
XML DATA BINDING FOR GEOSPATIAL MOBILE
APPLICATIONS

PH.D. DISSERTATION

Presented in Partial Fulfillment of the Requirements for the Degree
Doctor of Philosophy in the Institute of New Imaging Technologies of

Universitat Jaume I

By
Alain Tamayo Fong

M.Sc. Geospatial Technologies, M.Sc. Computer Science
Doctoral Programme in Integration of Geospatial Information

Supervisors:
Carlos Granell, Phd
Joaqúın Huerta, Phd

Laura Dı́az, Phd

This work has been partially supported by the “España Virtual” project
(ref. CENIT 2008-1030) through the Instituto Geográfico Nacional

(IGN).

Castellón de la Plana, 2011

To my parents

Enlace de Datos XML en Aplicaciones
Geospaciales para Móviles

Tesis Doctoral

Alain Tamayo Fong

Directores: Dr. Carlos Granell Canut, Dr. Joaqúın Huerta Guijarro,
Dr. Laura Dı́az Sánchez

Castellón de la Plana, 2011

Las aplicaciones geoespaciales se han vuelto muy comunes tanto en
entornos de escritorio, servidor, web, como en entornos móviles. El crec-
imiento de estas aplicaciones, aśı como del número de proveedores de
datos, hace necesario la utilización de formatos y protocolos estándares
para intercambiar información geospacial. En este sentido los estándares
definidos por el Open Geospatial Consortium (OGC) constituyen un
método efectivo para mejorar la interoperabilidad, dado que permiten
la integración de datos procedentes de distintas fuentes. Estos estándares
incluyen un conjunto de especificaciones de implementación de interfaces
de servicios web y de codificaciones de datos para estandarizar la forma
en que se comunican los componentes de un sistema distribuido. En par-
ticular, las interfaces de servicios web son conocidas como Servicios Web
OGC (OWS)1. El gran número de instancias de servicios OGC disponibles
en Internet dan fe del éxito alcanzado por estos estándares [FMLPNI10].

La irrupción de las aplicaciones geoespaciales en el mundo de la com-
putación móvil ha sido posible gracias al aumento de la disponibilidad
y capacidad de procesamiento de dispositivos de este tipo durante la
última década. Esta tendencia también ha sido estimulada por la cre-
ciente demanda de los usuarios para ejecutar estas aplicaciones en sus
teléfonos móviles [CCL09, Ant11]. Mientras que aplicaciones geoespa-
ciales, tales como los sistemas de navegación, servicios web de mapas y

1OGC Web Services

i

globos virtuales son ya comunes en dispositivos móviles, el número de
aplicaciones de este tipo basadas en estándares de OGC son muy escasas
en estos dispositivos. En nuestra opinión, la complejidad de los protocolos
definidos por los estándares dificulta enormemente el desarrollo de estas
aplicaciones. Estos protocolos se basan en complejas estructuras de datos
intercambiadas en formato XML, cuyo procesamiento eficiente en los dis-
positivos móviles es un problema importante debido a las limitaciones de
hardware presentes en estos dispositivos [KLT07, WTS07].

La solución más común para hacer frente a la complejidad de los
datos intercambiados en el ámbito de los servicios web, es el uso de her-
ramientas tales como los generadores de código [VEG02, Her03, ZMCO04,
BCG+05]. Estos generadores alivian el trabajo de los desarrolladores al
producir automáticamente código de comunicación y procesamiento de
XML, tanto para el lado cliente como para el lado servidor. Esta solución
no se puede aplicar fácilmente a los Servicios Web OGC debido al gran
tamaño y complejidad de los esquemas asociados a sus especificaciones.
Aunque es posible que el código generado satisfaga las necesidades de un
sistema sin grandes limitaciones de capacidad de procesamiento, memoria
o tamaño del código generado, seguramente no satisfará las necesidades
de dispositivos con restricciones de hardware como las que encontramos
en la mayoŕıa de los dispositivos móviles.

Objeto y Objetivos de la Investigación

La importancia del código de procesamiento de XML y su impacto en
el rendimiento y el tamaño de las aplicaciones han sido tradicionalmente
subestimadas. Muchos diseñadores trabajan sobre la hipótesis de que
independientemente de cuán complejos sean los esquemas construidos, es
posible generar fácilmente código para su procesamiento utilizando algún
tipo de herramienta. Aunque esto es cierto para algunos casos, como
aplicaciones que se ejecutan en un entorno servidor asumiendo que una
gran cantidad de recursos de hardware está disponible, no ocurre lo mismo
para otros entornos con otras limitaciones. Este es precisamente el caso
de las aplicaciones geospaciales móviles basadas en estándares de OGC.

El objetivo fundamental de este trabajo es la definición de una solución
que permita la generación automática de código de procesamiento de
XML personalizado para aplicaciones móviles basadas en estándares de
OGC. La solución propuesta se basa en la observación de que las imple-
mentaciones reales de estos estándares suelen utilizar solo un subconjunto
de sus esquemas y permite la extracción automática de este subconjunto a

ii

partir de un grupo de documentos XML que deben ser procesados por una
aplicación en particular. La utilización de este subconjunto, unido a otra
información relacionada con la utilización de los esquemas, posibilita la
generación de un código más compacto que se adapta mejor a las restric-
ciones de los dispositivos móviles actuales. La efectividad de esta solución
se demuestra a través de la implementación de aplicaciones de ejemplo
entre las que se incluye un cliente para la especificación de Servicio de
Observación de Sensores (SOS) dirigido a la plataforma Android.

Planteamiento y Metodoloǵıa

El primer paso de nuestra investigación ha consistido en demostrar
una de nuestras hipótesis fundamentales, que es que la mayoŕıa de las ver-
siones actuales de esquemas asociados a los estándares OGC son grandes
y complejos, lo que provoca que los generadores de código disponibles
para plataformas móviles produzcan un código binario que no satisface
algunas de las limitaciones presentes en estas plataformas. En concreto,
el tamaño del código generado no es adecuado para la ejecución en un
dispositivo con recursos limitados. Para satisfacer este objetivo se ha
utilizado un conjunto de métricas de software para medir la complejidad
de los esquemas asociados a los estándares ([LKR05, MSY05, BM09b]),
mostrando que esta complejidad no solo es bastante alta sino que también
continúa creciendo. La mayoŕıa de estas métricas se han extráıdo de la
bibliograf́ıa existente en el tema, aunque ha sido necesario la definición
de nuevas métricas para medir la influencia que tienen los mecanismos
de subtipos presentes en los esquemas XML en la complejidad final de
dichos esquemas.

El proceso mismo de medición de la complejidad de los esquemas ha
sugerido diferentes soluciones para tratar con esta complejidad. Algunas
de estas soluciones son expuestas en este documento y sus beneficios son
medidos utilizando métricas de software concretas. Partiendo de estas
posibles soluciones se ha desarrollado en detalle aquella que consider-
amos como la más pragmática, que permite la ejecución de código de
procesamiento de XML para clientes móviles sin necesidad de modificar
la infraestructura de servidores basados en estándares OGC existente.

La solución que se presenta en este documento para lidiar con la com-
plejidad de los esquemas se denomina generación de código de enlace
de datos XML basada en instancias (Instance-based XML data binding).
Como se ha mencionado anteriormente, esta solución se basa en la ob-
servación de que las implementaciones reales de sistemas basados en los

iii

estándares utilizan solamente un subconjunto de sus esquemas. Esto per-
mite el desarrollo de aplicaciones personalizadas que presentan un mejor
rendimiento que las basadas en los requisitos genéricos. Para demostrar
la suposición de que las aplicaciones reales solo utilizan una parte de los
estándares se incluye en este documento un estudio que intenta medir el
porcentaje de los esquemas relacionados con la especificación SOS que
es utilizado por un conjunto de servidores disponible en Internet. Se ha
elegido SOS porque sus esquemas están entre los más complejos de todas
las especificaciones OGC.

La generación de código de enlace de datos XML basada en instancias
esta compuesta de dos pasos. El primer paso consiste en la extracción
automática del subconjunto de los esquemas de una especificación que
es utilizado por una aplicación espećıfica. Este subconjunto se calcula
basándose en la suposición de que se dispone de un grupo representa-
tivo de documentos XML que deben ser manipulados por la aplicación.
El segundo paso consiste en utilizar toda la información extráıda en el
paso anterior para generar el código optimizado tanto como sea posible
para una plataforma de dispositivos móviles espećıfica. Se ha dividido el
proceso en dos etapas, porque de esta forma los resultados de la primera
etapa se puede utilizar de manera independiente de la plataforma, lo que
significa que el subconjunto de esquemas extráıdos se pueden utilizar para
generar código con cualquier generador disponible para cualquier sistema
operativo o lenguaje de programación. El segundo paso genera código
para una plataforma y lenguaje de programación espećıficos, Android y
Java, en nuestro caso. La elección de la plataforma móvil y el lenguaje
de programación se ha realizado sobre la base de la disponibilidad de her-
ramientas maduras para implementar un prototipo que se utilizará para
construir dos aplicaciones de ejemplo.

Aportaciones Originales

Las aportaciones de este trabajo se incluyen principalmente en el tema
de procesamiento de XML para dispositivos móviles, aplicadas en partic-
ular al tema de los servicios web estándares para el intercambio de infor-
mación geospacial. También se presentan algunas aportaciones de menor
relevancia al tema de métricas de complejidad para esquemas XML. Estas
aportaciones se pueden resumir de la siguiente manera:

1. Un estudio de la complejidad de los esquemas asociados a los
estándares de OGC. El estudio utiliza métricas nuevas o existentes

iv

anteriormente para medir diferentes aspectos de la complejidad de
los esquemas.

2. Un proceso de generación de código de procesamiento de XML para
aplicaciones basadas en estándares de OGC dirigidas a dispositivos
móviles. El proceso se compone en primer lugar de un algoritmo que
permite la simplificación de los esquemas según las necesidades de
aplicaciones espećıficas. Se incluye además, la implementación de
un generador de código de enlace de datos XML que utiliza el algo-
ritmo mencionado anteriormente para producir código optimizado
para la plataforma Android.

3. También se presenta una evaluación de desempeño del código gener-
ado con nuestra herramienta con datos reales de sensores extráıdos
de servidores SOS.

Conclusiones

En este trabajo se ha realizado un estudio de la complejidad de los es-
quemas de los estándares de OGC. Los resultados han demostrado que al
menos la mitad de los estándares analizados pueden ser considerados como
grandes y complejos de acuerdo con las métricas incluidas en el estudio.
Adicionalmente, se han propuesto un conjunto de nuevas métricas para
mostrar diferentes puntos de vista de los efectos del uso de los mecanismos
de subtipos de los esquemas XML en su complejidad. También se han
presentado casos de uso en los que estas métricas pudieran ser aplicadas,
por ejemplo para evaluar el impacto de decisiones de diseño, evaluación
de la eficacia de diferentes soluciones para hacer frente al problema de
la complejidad de esquemas, para detectar posibles problemas de diseño,
etc.

También se ha presentado una solución que permiten la generación
personalizada de código de procesamiento de XML para aplicaciones
basadas en OGC dirigidas a dispositivos móviles. La solución está com-
puesta de un algoritmo que permite la simplificación de esquemas de
datos según las necesidades de aplicaciones espećıficas, y de un generador
de código dirigido a la plataforma Android. Los resultados de la apli-
cación del algoritmo a un escenario de uso real de casos han mostrado
que permite una reducción sustancial de los esquemas originales de alrede-
dor del 90% de su tamaño. Esta enorme reducción en el tamaño de los
esquemas se traduce en una reducción del código binario de más del 80%

v

en el caso de uso considerado. La transformación realizada por este algo-
ritmo se realiza a nivel de esquema y sin hacer ninguna suposición sobre la
plataforma de destino, en consecuencia, los esquemas de salida se puede
utilizar en combinación con cualquier generador de código de enlace de
datos XML. El generador de código implementado utiliza información
acerca de cómo los documentos XML hacen uso de sus esquemas asoci-
ados para optimizar el tamaño del código generado. Esta herramienta
ofrece un grupo de funciones que permiten la producción de un código
muy compacto, y su eficacia ha sido demostrada a través de una serie de
experimentos y la construcción de dos aplicaciones de ejemplo. Los exper-
imentos han demostrado que el código generado por nuestra herramienta
es sustancialmente menor que el código generado por otras herramientas.

Futuras Ĺıneas de Investigación

Actualmente se están siguiendo varias ĺıneas de investigación derivadas
de los resultados presentados en este documento. En el tema de las im-
plementaciones de OWS para dispositivos móviles se trabaja en la ex-
ploración de formatos alternativos para el intercambio de información
entre clientes y servidores. El uso de XML para codificar la información
añade una sobrecarga que puede no ser soportada por algunos dispositivos
con recursos limitados. Otra ĺınea de investigación está relacionada con
la generalización de los resultados presentados para SOS al resto de las
especificaciones de OGC. Las aplicaciones de ejemplo construidas como
demostración tienen mucho en común, presentan retos similares y cues-
tiones sin resolver en las que se podŕıa profundizar aún más en el contexto
de otras especificaciones. La resolución de algunos problemas pendientes,
tales como el uso de las técnicas de generación de código para lógica de
negocio e interfaz de usuario de este tipo de aplicaciones puede reducir
la complejidad del proceso de construcción de las mismas. Por último, el
tema de la complejidad de los esquemas también puede ser explorado con
mayor profundidad. El conjunto de caracteŕısticas de los esquemas que
puede medirse a través de métricas de software que permitan una mejor
comprensión de estos esquemas y que a la vez faciliten la implementación
de aplicaciones basadas en los mismos es potencialmente grande.

vi

Abstract

Geospatial applications such as navigation systems, web mapping ser-
vices, and even virtual globes, are more common everyday on mobile
devices. Nevertheless, applications based on OGC standards, in these
devices are still a few. In our opinion, the complexity of the protocols
defined by the standards makes the task of writing reliable and efficient
mobile applications based on them a difficult task.

The large size of the XML schemas associated to OGC specifications
causes that they cannot be easily used to produce XML processing code
targeted to mobile devices. The task of writing this code manually is
recognised to be difficult and error-prone. On the other hand, the use
of a code generator in the presence of such large schemas may produce
results that do not meet all the requirements of mobile applications, which
have severe performance limitations when compared to desktop systems.

In this context, we present in this dissertation an approach that allows
the automatic generation of XML processing code for mobile applications
based on OGC standards. Using this approach it is possible to generate
customised code with a small size that can be easily accommodated in
a resource-constrained device. Our solution, named Instance-based XML
data binding extracts useful information from a subset of XML documents
that must be manipulated by the application that allows the optimisa-
tion of the generated code. The approach has been implemented in a code
generator targeted to Android mobile devices. Its usefulness is demon-
strated by building a set of sample applications, including a full-fledged
mobile client for the Sensor Observation Service (SOS) specification. We
also present a complexity study for the specification schemas. This study
provides a quantitative way to analyse and measure the complexity of
these schemas.

ix

Acknowledgements

It is a pleasure to thank those who made this thesis possible.
First and foremost I would like to thank my advisors for the support

and guidance they provided me over the years. I would like to show my
gratitude to my principal supervisor, Carlos Granell, for his good advice,
patience, swift and accurate comments, and words of encouragement. I
would also like to thank to my co-advisor Joaqúın Huerta for always
being able to find a solution to all of the problems I encountered along
the way. Additionally, I thank Laura Dı́az for her constructive comments
and valuable exchange of ideas pertaining to this research.

Thank you to the experts in my thesis committee: Luis Eduardo
Leyva, Pedro Muro Medrano, and Theodor Foerster. Their valuable com-
ments have definitely improved the quality of this dissertation.

I am indebted to many of my colleagues for providing a stimulating
and fun environment. Thanks to all of the former and current members
of the Geospatial Technologies Research Group for their support and
friendship. I would like to especially thank Pablo Viciano for helping me
with the implementation of experiments and sample applications included
in this document.

Last, I would like to thank my family and friends for their support in
the new life I started four years ago. Thanks to Karen for always being at
my side all these years. Thanks to Carlos Abargues for his unconditional
friendship and support. Thanks to Hebert for being patient in correcting
my English writing.

Thanks to my friends from the Master degree in Geospatial Technolo-
gies: Rania, Ledjo, Luc, Tanmoy, and the others. Thanks to my compa-
triots sharing this new life with me; they made me feel at home: Arturo
Canler, Guillermo Matos, Luis Enrique Rodŕıquez, Arturo Quintana, and
all the rest.

xi

Table of Contents

List of Figures xix

List of Tables xxiii

Part I Introduction

1 Introduction 3

1.1 Motivation 3

1.2 Research Methodology 4

1.3 Contributions 6

1.4 Structure of the Dissertation 7

Part II Background

2 XML, XML Schema and Web Services 11

2.1 XML 11

2.2 XML Schema 13

2.2.1 Type Derivation 14

2.2.2 Document Composition 15

2.2.3 Criticism 16

2.3 XML Processing 17

2.3.1 Vocabulary-independent Data Access Interfaces 18

2.3.2 XML Data Binding 18

2.4 Web Services 21

2.4.1 Approaches to Web Service Development 22

2.5 Concluding Remarks 23

3 OGC Web Services 25

3.1 OWS Architectural Principles 26

xiii

CONTENTS

3.2 OWS Specifications Overview 27
3.3 OWS Implementations 29

3.3.1 Server Side 30
3.3.2 Client Side 30

3.4 Sensor Observation Services 32
3.5 Concluding Remarks 36

4 Mobile Computing 37
4.1 Mobile Hardware 37
4.2 Mobile Software 38

4.2.1 Android 39
4.3 Web Services for Mobile Devices 40
4.4 XML Processing for Mobile Devices 41
4.5 OWS Implementations for Mobile Devices 42
4.6 Concluding Remarks 44

Part III XML Processing for Geospatial Mobile Ap-
plications

5 Complexity of OWS Schemas 47
5.1 Related Work 49
5.2 Metrics 50

5.2.1 C(XSD) Metric Definition 52
5.2.2 Subtyping-related Metrics 54
5.2.3 Measurement Process Description 58

5.3 Results 58
5.3.1 XML-Agnostic Metrics 58
5.3.2 XSD-Aware Metrics 60
5.3.3 C(XSD) 63
5.3.4 Subtyping Metrics 65
5.3.5 Discussion 68

5.4 Practical Use of Metrics 69
5.4.1 Use Case Scenario: Evaluating Design Decisions 69
5.4.2 Use Case Scenario: Studying Specifications Evolution 71
5.4.3 Other Possible Scenarios 72

5.5 Pragmatic Solutions to Complexity 73
5.5.1 XML Data Binding Code Generators 73
5.5.2 Profiles 75
5.5.3 Using the Linked Data Style 76

5.6 Concluding Remarks 77

xiv

CONTENTS

6 Instance-based Schema Simplification 79
6.1 Instance-based XML Data Binding 80

6.1.1 Instance-based Schema Simplification 81
6.2 Notation 83
6.3 Simplification Algorithm 87

6.3.1 Helper Functions 87
6.3.2 Algorithm 88

6.4 Experimentation 90
6.4.1 Gathering Input Instance Files 91
6.4.2 Generating the Output Subset 92
6.4.3 Generating Binary Code 92

6.5 Concluding Remarks 94

7 XML Data Binding for Mobile Devices 97
7.1 XML Data Binding Code Generator 98

7.1.1 Supported Features 98
7.2 Basic Mapping of Schema Components 100

7.2.1 Mapping Complex Types 101
7.2.2 Mapping Simple Types 105
7.2.3 Mapping Global Elements 106

7.3 Supported Features Explained 107
7.3.1 Support for Instance-based Code Generation 108
7.3.2 Source Code Based on Simple Code Patterns 113
7.3.3 Tolerate Common Validation Errors 113
7.3.4 Collapse Elements Containing Single Elements 114
7.3.5 Disabling Parsing/Serialization Operations 115
7.3.6 Ignoring Sections of XML Documents 116

7.4 Experimentation 116
7.4.1 DBMobileGen 116
7.4.2 Experiment Description 117
7.4.3 Results 117

7.5 Sample Applications 120
7.5.1 WPS Basic Client 121
7.5.2 SOS Mobile Client 124
7.5.3 Challenges and Open Issues 127

7.6 Concluding Remarks 129

Part IV Experiments

8 Empirical Study of SOS Server Instances 133

xv

CONTENTS

8.1 SOS Server Instances 134

8.2 Limitations of the Study 134

8.3 Dataset Description 135

8.4 Results 135

8.4.1 Capabilities Files 136

8.4.2 Procedure Description Files 142

8.4.3 Observation Files 147

8.5 Subset of XML Schemas Used 149

8.5.1 GML 149

8.5.2 SOS 151

8.6 Discussion 152

8.7 Concluding Remarks 155

9 Performance Evaluation 157

9.1 Performance Considerations for Java Programs 157

9.1.1 Startup Performance 159

9.1.2 Steady-State Performance 159

9.2 Experimental Setup 160

9.2.1 Test Datasets 161

9.2.2 Hardware and Software 162

9.3 Results 163

9.3.1 CAPS Dataset 163

9.4 Discussion 167

9.5 Concluding Remarks 169

Part V Conclusions and Future Work

10 Conclusions 173

10.1 Contributions 173

10.2 Future Work 175

Bibliography 177

Part VI Appendices

A List of SOS server instances 195

B Performance Results 197

B.1 Sensor Descriptions Dataset 197

xvi

CONTENTS

B.1.1 Mobile Configuration 198
B.1.2 Mac OS X Laptop 198
B.1.3 Windows PC 199

B.2 Observations Dataset 199
B.2.1 Mac OS X Laptop 200
B.2.2 Windows PC 202

B.3 Measurements Dataset 203
B.3.1 Mobile Configuration 203
B.3.2 Mac OS X Laptop 204
B.3.3 Windows PC 204

C Parsers Comparison 205
C.1 Mobile Configuration 206
C.2 Mac OS X Laptop 207
C.3 Windows PC 208

xvii

List of Figures

2.1 Graph of dependencies between schema components 16

2.2 XML data binding code generation process 19

3.1 Dependencies between OGC specifications 29

3.2 CartoCiudad web portal 32

3.3 Integrated ocean observing system web portal 33

3.4 Interaction with the SOS server 35

4.1 gvSIG Mini screenshots. To the left some of the options
available are shown over a WMS layer. To the right the
current location is shown using Open Street Map as base
map layer 43

5.1 Graph of relations between schema component for schema
fragment in Listing 2.3 57

5.2 Values for the LOC metric 60

5.3 Distribution of the number of schema components in the
specification schemas 62

5.4 C(XSD) values for R=2 65

5.5 XSD-aware simple metrics values for WMS 1.3.0 and its
merging with OWS and GML 70

5.6 Following GML evolution through metrics 72

5.7 Comparing size of code (KBs) for different code generators 74

5.8 Comparing effectiveness of different approaches to deal with
the complexity of schemas 76

6.1 Instance-based XML data binding code generation process 81

6.2 Relations between information items in XML documents
(right) and schemas components defining its structure (left) 82

6.3 Graph of relations in schema fragment in Listing 2.3 85

6.4 Location of air pollution control stations in the Valencian
Community 91

6.5 Simple schema metrics for original and simplified schemas 94

7.1 Flow diagram for the code generation process 99

7.2 Elements in the substitution group of gml: Feature 110

xix

LIST OF FIGURES

7.3 Elements in the substitution group of gml: Feature for the
a subset of the SOS schemas 110

7.4 Type definition hierarchy for GML 3.1.1 112

7.5 Size of generated code for full schemas 119

7.6 Size of generated code for simplified schemas 120

7.7 WPS Google Maps-based client 122

7.8 WPS basic client architecture. 122

7.9 Selecting or adding servers 126

7.10 Showing sensors stations in the map 126

7.11 Specifying Filters 127

7.12 Tables and charts 128

8.1 Support of SOS operations in actual server instances 138

8.2 Number of servers classified by the number of offerings,
procedures and observed properties 142

8.3 Observation offerings in North America 143

8.4 Hierarchy of observation types 148

8.5 Dependencies of SOS from other specifications 150

8.6 Overall number of schema components vs actually used
components in SOS 152

9.1 Typical execution time pattern followed by a Java program 158

9.2 Execution times of XBinder and DBMG for CAPS-S dataset
(Mobile Scenario) 165

9.3 Execution times of XBinder and DBMG for CAPS-L dataset
(Mobile Scenario) 166

9.4 Execution times for CAPS-S dataset (PC Scenario 1 - Mac
OS X Laptop) 167

9.5 Execution times for CAPS-L dataset (PC Scenario 1 - Mac
OS X Laptop) 168

9.6 Execution times for CAPS-S dataset (PC Scenario 2 - Win-
dows PC) 169

9.7 Execution times for CAPS-L dataset (PC Scenario 2 - Win-
dows PC) 170

B.1 Execution times for SD dataset (Mobile Scenario) 198

B.2 Execution times for SD dataset (PC Scenario 1 - Mac OS
X Laptop) 198

B.3 Execution times for SD dataset (PC Scenario 2 - Windows
PC) 199

B.4 Execution times for OBS-S dataset (PC Scenario 1 - Mac
OS X Laptop) 200

xx

LIST OF FIGURES

B.5 Execution times for OBS-L dataset (PC Scenario 1 - Mac
OS X Laptop) 200

B.6 Execution times for OBS-S dataset (PC Scenario 2 - Win-
dows PC) 202

B.7 Execution times for OBS-L dataset (PC Scenario 2 - Win-
dows PC) 202

B.8 Execution times for MEA dataset (Mobile Scenario) 203
B.9 Execution times for MEA dataset (PC Scenario 1 - Mac

OS X) 204
B.10 Execution times for MEA dataset (PC Scenario 1 - Mac

OS X) 204
C.1 Execution times for CAPS-S dataset (Mobile Scenario) 206
C.2 Execution times for CAPS-L dataset (Mobile Scenario) 206
C.3 Execution times for CAPS-S dataset (PC Scenario 1 - Mac

OS X Laptop) 207
C.4 Execution times for CAPS-L dataset (PC Scenario 1 - Mac

OS X Laptop) 207
C.5 Execution times for CAPS-S dataset (PC Scenario 2 - Win-

dows PC) 208
C.6 Execution times for CAPS-L dataset (PC Scenario 2 - Win-

dows PC) 208

xxi

List of Tables

3.1 Geospatial web service interfaces and data encodings 28

3.2 SOS operation profiles 34

5.1 Lines of code (LOC) and number of files (#F) 59

5.2 Number of complex types (#CT) 61

5.3 Main XML features metrics (except #CT) 62

5.4 Use of wildcards 63

5.5 C(XSD) values for OWS specifications 64

5.6 C(XSD) values for encoding specifications 64

5.7 Use of subtyping mechanisms 65

5.8 DPR values for the OWS specifications 66

5.9 DPF values for the OWS specification schemas 67

5.10 SRR values for the OWS specification schemas 67

6.1 Comparing original and simplified schema sets 93

6.2 Comparing size of code (KBs) for original and simplified
schema sets 93

7.1 Comparing size of code (KBs) for original and simplified
schema sets 118

7.2 Comparison between the number of complex types in the
schemas related to the WPS Basic Client before and after
applying the instance-based simplification algorithm 123

8.1 Dataset description 135

8.2 Most frequent validation errors for capabilities files 137

8.3 Operations supported by the server instances 138

8.4 Support of filters 140

8.5 Formats supported to represent observation information 141

8.6 Most frequent validation errors for sensor description files 144

8.7 Most frequent validation errors for observation files 147

8.8 Comparison between overall number of components in GML
and number of components actually used 150

8.9 Distribution of SOS schema files by specification 151

xxiii

LIST OF TABLES

8.10 Comparison between the overall number of components in
SOS and number of components actually used 152

9.1 Datasets description 161
9.2 Generated parsers for each dataset 162

xxiv

Part I

Introduction

CHAPTER 1

Introduction

Geospatial applications have become commonplace in desktop, server,
web and mobile environments. As nowadays the number of data providers
and clients all around the world is continuously growing, standard ways of
exchanged data are needed. In this regard, standards defined by the Open
Geospatial Consortium (OGC) are a vehicle for interoperability as they
allow the integration of data coming from different sources. OGC has
defined a set of web service interfaces and data encondings to exchange
geospatial information in a standard way. The success of these standards
is witnessed by the large number of service instances available online
[FMLPNI10].

The irruption of geospatial applications in the mobile computing world
has been possible because the availability of mobile devices and its ca-
pabilities has increased rapidly over the last decade. This trend has also
been stimulated by the increasing demand from users to run such appli-
cations on their mobile phones [CCL09, Ant11].

1.1 Motivation

While geospatial applications such as navigation systems, web map-
ping services and even virtual globes are more common everyday on mo-
bile devices, applications based on OGC standards in these devices are
still a few. In our opinion, the complexity of the protocols defined by
the standards makes the task of writing reliable and efficient mobile ap-
plications based on them an arduous task. These protocols are based on

3

CHAPTER 1. INTRODUCTION

complex data structures exchanged in XML format, which reputed as be-
ing too verbose [Bar11], causes that they cannot be efficiently processed
in mobile devices because of their hardware limitations [KLT07, WTS07].

The common solution to deal with all this complexity in the web ser-
vice realm has been the use of tools such as code generators [VEG02,
Her03, ZMCO04, BCG+05]. Using generators, developers are relieved
from the burden of producing communication and/or XML processing
code manually for web service end-points. While the interaction between
clients and servers in OGC Web Services, if analysed in the context of
individual specifications, is not really complex in terms of communica-
tion (low average number of operations per specification, few restrictions
regarding the order of operations, etc.), the opposite happens in terms of
the complexity of the exchanged data. An evidence of this statement is
the ever growing size of the XML schemas associated to these specifica-
tions, used to describe the structure of the exchanged data.

The importance of XML processing code and its impact in perfor-
mance and size of applications have been traditionally underestimated
[NJ03, AIM+04]. Many designers work with the assumption that no
matter how complex schemas are, code to process XML documents based
on them can be easily produced by using some sort of generator. Al-
though, this is true in some scenarios, there are still others where finding
a code generator that produce code meeting all the requirements of an
application (performance, size, scalability, etc.) may be very difficult or
even impossible. This is precisely the case of building web services end-
points based on OGC standards for mobile devices, which have severe
performance limitations when compared to a desktop system.

In this context, we are trying to find better ways to build mobile appli-
cations based on OGC standards. The first step is to define an approach,
and a set of supporting tools, that allows the automatic generation of
XML processing code for mobile applications based on the aforemen-
tioned standards. These tools must cope with the problems related with
the processing of large schema files, which often prevent existing genera-
tors from producing code that meet the users’ expectation.

1.2 Research Methodology

Finding ways to overcome the complexity of the information exchange
protocols to make them suitable for mobile devices has been our main
research goal. We have started by trying to prove our main assump-
tion, which is that most of the current versions of schemas associated

4

1.2. RESEARCH METHODOLOGY

to OGC Web Service specifications are big and complex, which provokes
that code generators produce a binary code that does not meet application
requirements for mobile devices. Specifically, generators produce code
with large binary sizes that is not adequate for execution in a device
with constrained resources. To achieve our main goal we have used a
set of software metrics to measure the complexity of the specification
schemas to show that this complexity is not only high but it is also grow-
ing [LKR05, MSY05, BM09b]. When metrics to measure some aspects
of interest did not exist previously we have introduced new metrics, e.g.,
metrics to measure the influence of the subtyping mechanisms of XML
Schema in complexity. We also measure the impact of the complexity of
the schemas in the final code of actual systems, to reinforce the idea that
the complexity we are facing is indeed very real.

The process of measuring complexity has itself suggested different so-
lutions to deal with it. We outline some solutions and measure its benefits
using concrete software metrics. From these solutions, we have developed
further the one we consider the most pragmatic, which will allow the
implementation of XML processing code for mobile clients without mod-
ifying the existing infrastructure of available standard-based servers.

The solution proposed here is based on the observation that actual
system implementations do not use all of the capabilities included in the
specifications schemas. This allows the development of customised appli-
cations that will present better performance than those based on generic
requirements. Although, the assumption above could seem obvious to
some extent, we present a study about how a set of Sensor Observation
Service (SOS) server instances uses the schemas associated to this speci-
fication. This not only to prove that the assumption is true, but also to
try to quantify how much of the schemas is used in real implementations.
We have chosen SOS because of our previous experience with the specifi-
cation [Tam09, THG+09], and also because the SOS schemas are among
the most complex schemas of the OGC specifications.

Our solution, named Instance-based XML data binding code genera-
tion consists in the automatic extraction of the subsets of the specification
schemas used on a given application, and the use of such subset to gen-
erate XML processing code adapted to the constraints of mobile devices.
The term XML Data Binding is used to refer to the process of mapping
XML data to application objects [McL02, LM07]. This process is often
accomplished by using code generators that offers better productivity and
improved type-checking of XML data. As mobile platforms present sev-
eral hardware constraints, we restrict our main objective to the reduction

5

CHAPTER 1. INTRODUCTION

of the size of code generated from the schemas, allowing it to be eas-
ily accommodated on a mobile application. Secondary objectives are to
allow the successful processing of as many XML documents as possible
even if they do not follow correctly the structure defined by the specifi-
cations, and to ensure that the previous goals are met without sacrificing
execution speed.

Instance-based XML data binding code generation, is a two-step pro-
cess. The first step extracts the subset of the specification schemas that
is used by the application, based on the assumption that a representative
subset of the XML instances that must be manipulated by the applica-
tion is available. The second step consists in using all of the information
extracted in the previous step to generate XML processing code as opti-
mised as possible for the target platform. We have divided the process
in two steps because this way the results of the first step can be used in
a platform-neutral way, meaning this that the extracted schemas subset
can be used to generate code using any other code generator available for
any operating system or programming language. The second step pro-
duces code for a specific platform and programming language, Android
and Java, respectively. The choice of mobile platform and programming
language has been made based on the availability of mature tools to im-
plement a prototype, which will be used to build a full-fledged sample
application. This application will be an SOS client for the Android plat-
form.

1.3 Contributions

The contributions of this work are mainly included in the topic of
XML processing for mobile devices, with a particular application to the
subject of OGC Web Services and Encodings. We also present some
minor contributions to the topic of complexity metrics for XML Schema.
These contributions are summarised as follows:

1. A comprehensive complexity study for the OGC specification
schemas is presented. The study uses existing and new metrics
to measure different aspects of the complexity of XML schemas.

2. A two-step process to generate XML processing code for OGC-based
applications targeted to mobile devices. The process is composed
first, by an algorithm that allow the simplification of specification
schemas according to the needs of particular applications. It also

6

1.4. STRUCTURE OF THE DISSERTATION

includes the implementation of a XML data binding code generator
that uses the algorithm mentioned before to produce source code
for OGC-based clients targeted to the Android Platform.

3. A performance evaluation of the XML processing code generated
with our tool in the context of the SOS specification.

1.4 Structure of the Dissertation

This dissertation follows the structure described next. Part I, which
contains the present chapter, presents an introduction to the work pre-
sented here, explaining the motivation, research methodology and the
main contributions. In Part II, we include the necessary background on
the topics our work is related to, with the aim to provide a context to the
reader for the rest of the dissertation. Part II is composed of three chap-
ters. Chapter 2 presents an introduction to topics related to XML, XML
Schema and Web services; Chapter 3 presents briefly web service inter-
faces and encodings defined by OGC; and Chapter 4 introduces mobile
computing.

Part III includes the core of our work. Chapter 5 presents a com-
prehensive complexity study of the specification schemas. It also anal-
yses briefly some possible solutions to the problem of the complexity of
schemas. Chapter 6 presents the algorithm used to calculate the subset
of the specification schemas that is used by a given application. Next,
Chapter 7 exposes details of the process of generating XML processing
code for Android mobile applications.

Part IV presents experiments designed to prove some of our assump-
tions and to prove that the generated code meets its initial requirements.
Chapter 8 presents an empirical study of existing SOS server instances.
Although this study was originally conceived to determine an approxima-
tion of how much of the schemas was used in actual implementations it
was extended to consider other aspects related to how the SOS specifica-
tion is used in practice. Chapter 9 presents a comprehensive performance
study to show that our goals are met without sacrificing execution speed.
Last, Part V presents in Chapter 10 the conclusions of our work and
different future lines of research that can be followed in this topic.

7

Part II

Background

CHAPTER 2

XML, XML Schema and
Web Services

The eXtensible Markup Language (XML) is a textual data format
that has reached a great success in the Internet era. XML documents are
similar to HTML documents, but do not restrict users to a single vocabu-
lary, which offers them a great deal of flexibility to represent information.
To define the structure of documents within a certain vocabulary, schema
languages such as Document Type Definition (DTD) or XML Schema, can
be used. XML has become the main exchange format for Web services.

In this chapter, we present an introduction to the concepts and tech-
nologies related to XML, XML Schema and Web services used in the
remainder of this dissertation.

2.1 XML

XML is a text format originally designed to meet the challenges of
large-scale electronic publishing [W3C08]. It is derived from the Standard
Generalized Markup Language (SGML) [ISO86] and it defines a set of
rules to encode documents in a machine-readable form. XML documents
use tags to structure the information, but these tags are not restricted to a
specific vocabulary. Instead, documents creators can define and use their
own vocabulary. XML documents must only follow a few syntactic rules to
be considered well-formed. The information contained in these documents
follows a tree structure, specifically an unranked tree,a finite labelled tree
where nodes can have an arbitrary number of children [Nev02].

11

CHAPTER 2. XML, XML SCHEMA AND WEB SERVICES

Listing 2.1: Simple XML document

<?xml version=” 1 .0 ”?>
<Container>

<item>
<baseElement>St r ing Value 1</ baseElement>

</ item>
<item>

<baseElement>St r ing Value 2</ baseElement>
</ item>

</ Container>

XML instances1 are made up of information items, which can be el-
ements or attributes. Elements are delimited by start and end tags, and
they are identified by a name. Elements may contain other elements, re-
ferred to as their children, or just a value within its start and end tags2.
Attributes are name/value pairs that are contained inside element start
tags. The information items of an XML document form its Information
Set or Infoset, which is specified in [W3C04b]. The Infoset specification is
also used as information model for other XML-related technologies such
as XPath3[W3C99b] or XML Schema (see Section 2.2).

Listing 2.1 shows an example of a simple XML document. It defines
a root element called Container that has a set of items inside. Items also
include other child elements. XML documents can only contain a single
root element. Listing 2.2 presents a second example that shows the use
of attributes. In this case, item has an attribute called xsi:type with the
value “Child”4.

XML has gained a lot of popularity, being used extensively as ex-
change format in the Web. It has been adopted as the most common
form of encoding information exchanged by Web services [Kay03, WG08,
Wil03] (see Section 2.4). [Kay03] attributes this success to two reasons.
The first one is that the XML specification is accessible to everyone and
it is reasonably simple to read and understand. The second one is that

1The terms document and instance are used interchangeably to denote data
encoded in XML.

2It is possible to mix child elements and values if the mixed content model is
used, but for the sake of simplicity we are ignoring this possibility here.

3 XPath defines a syntax to address parts of an XML document.

4The purpose of this attribute is introduced in Section 2.2.1

12

2.2. XML SCHEMA

Listing 2.2: XML document illustrating the use of the xsi:type attribute

<?xml version=” 1 .0 ”?>
<Container>

<item x s i : t y p e=” Child ”>
<baseElement>Base St r ing Value</ baseElement>
<chdElement>Child St r ing Value</chdElement>

</ item>
</ Container>

several tools for processing XML are readily available. We add to these
reasons that as XML is vocabulary-agnostic, it can be used to represent
data in basically any domain. On the other hand, XML is reputed as
being too verbose, e.g. [Bar11] compared the representations of a fairly
large dataset in XML and a simple application-specific format. The re-
sults show that data encoded in XML was 180 times larger than the
application specific format, which also had a significant impact on per-
formance.

2.2 XML Schema

The XML Schema definition language is used to define the structure
of information contained in XML documents [W3C04c, W3C04d]. The
language itself is defined using XML. Each XML schema file has a root
element named schema that contains the definition of the structure of
a set of XML documents. This structure is expressed through schema
components such as complex types, simple types, elements, attributes,
and element and attribute groups.

An XML document conforming to the structure defined in some
schema is said to be valid against the schema. We denote the set of
all valid files against a schema S as I(S). If schemas are available when
an XML document is parsed, its infoset can be annotated with type infor-
mation from the schemas. This extended infoset is known as Post Schema
Validation Infoset (PSVI).

XML Schema, in addition to a set of predefined types defined by the
language, allows users to define their own types. Types are used to define
the structure of elements. Element declarations in schemas are matched
to elements in XML documents. Elements in schemas can be either local
or global. An element is local when it is defined inside a type or element
group definition. It is global when it is defined as a child element of

13

CHAPTER 2. XML, XML SCHEMA AND WEB SERVICES

Listing 2.3: XML Schema fragment

<complexType name=”Base”>
<sequence>

<element name=” baseElement ” type=” s t r i n g ”/>
<element r e f=” baseElement2 ” minOccurs=”0”>

</ sequence>
</complexType>

<complexType name=” Child ”>
<complexContent>

<ex tens i on base=”Base”>
<sequence>

<element name=”chdElement” type=” s t r i n g ”/>
</ sequence>

</ extens i on>
</complexContent>

</complexType>

<complexType name=”ContainerType”>
<sequence>

<element name=” item ” type=”Base” maxOcurrs=”unbounded”/>
</ sequence>

</complexType>

<element name=” Container ” type=”ContainerType” />
<element name=”baseElem2” type=” s t r i n g ” />

the root element of a schema file. Global elements are useful to reuse
element declarations on the schemas by defining them in a single place
and referencing them latter from different parts of the schemas. They also
define which elements can be used as root elements of XML documents.

Listing 2.3 shows a fragment of an XML schema file. This fragment
contains the declaration of three global complex types and two global ele-
ments. XML instances presented in Listings 2.1 and 2.2 are valid against
this schema, meaning that they satisfy the constraints defined on it. For
the sake of simplicity we have omitted the schema root element.

2.2.1 Type Derivation

XML Schema provides a derivation mechanism to express subtyping
relationships. The mechanism allows types to be defined as subtypes
of existing types, either by extending their content model in the case
of derivation by extension (Child in the schema fragment above); or by
restricting it, in the case of derivation by restriction. Type derivation in

14

2.2. XML SCHEMA

XML Schema is similar to inheritance in the context of Object-oriented
programming but limited only to data (fields).

What is interesting about type derivation is that wherever we find in
the schemas an element of type A, the actual type of the element in an
XML document can be either A or any type derived from it. This is why
in Listing 2.2 an element of type Base has been substituted by an element
of type Child, although it requires its real type to be specified using the
xsi:type attribute.

Apart from type derivation, a second subtyping mechanism is provided
through substitution groups. This feature allows global elements to be
substituted by other elements in XML documents. A global element
E, referred to as head element, can be substituted by any other global
element that is defined to belong to the E’s substitution group.

Both mechanisms provoke a polymorphic situation where the real or
dynamic type of an element found in an XML instance may differ from its
declared type in the schemas. In the remainder of this document we use
the term Data Polymorphism (DP) to refer to the fact that nodes in XML
documents may have a dynamic type that differs from its declared type.
A side-effect of this situation is that dependencies between elements and
types in the schemas are not always explicit, as an element of a certain
type in an XML instance, may contain elements of types not mentioned
explicitly in its declaration. We refer to these non-explicit dependencies
as hidden dependencies. This is the case in the schema in Listing 2.3 of
the relationship between ContainerType and Child (Figure 2.1). In an
XML document an element of type ContainerType may contain elements
of type Child, although no direct relationship between both types can be
inferred by looking only at the definition of ContainerType.

2.2.2 Document Composition

Schema components defined in a file can be reutilised in other files
through the use of include and import tags. Before explaining how they
work, the concept of namespace must be introduced. XML namespaces is
a mechanism that assigns expanded names to elements and attributes in
order to avoid clashes between names from different markup vocabularies
[W3C09].

Components defined in the same namespace, but in a different file,
can be accessed by using the include tag that specifies in the schemaLo-
cation attribute where the external schema is located. Similarly, com-
ponents defined in a different namespace may be accessed by importing

15

CHAPTER 2. XML, XML SCHEMA AND WEB SERVICES

Figure 2.1: Graph of dependencies between schema components

the namespace and optionally specifying where the external schema is
located.

2.2.3 Criticism

XML Schema has been widely adopted by the industry and academia,
but has been frequently criticised for being an overly complex language.
For example, [MNSB06] state that the complexity of the XML Schema
specification and the difficulty of understanding the effect of constraints
on typing and validation of schemas might be the cause why in practice
the extra expressiveness of this language over its predecessor, DTD, is
only used to a very limited extent.

[MS06] present a list of limitations of XML Schema arguing that one
important factor of its complexity is the type system, as the notion of
types adds a layer of complexity. Information items in XML instances
must be matched to an element declaration, and then to a type definition
with the constraints for its content, differing from DTD, where the infor-
mation item can be matched directly to its associated constraints. These
authors also consider the inclusion of both subtyping mechanisms intro-
duced in Section 2.2.1 as the presence of conflicting design approaches
in the W3C XML Schema Working Group, resulting in an unnecessarily
complex specification. [Hos10] attributes the complexity of the schema
language to the attempt of mixing two completely different notions: regu-
lar expressions and object orientation. [Kay03] qualifies the XML Schema
specification as “impenetrable to mere mortals”.

16

2.3. XML PROCESSING

2.3 XML Processing

The term XML processing includes the application programming in-
terfaces (APIs) and techniques used to manipulate information in XML
format. The main operations supported by these APIs are parsing5 and
serialization. Parsing is the action of reading the information contained
in an XML document into the application. Serialization is the reverse
process, i.e., saving application data into an XML file.

According to [WKNS05], XML processing can be implemented us-
ing a vocabulary-independent data access interface such as those pro-
vided by SAX 6[SAX], DOM7[W3C04a] or StAX8[Jav04]; or using a
vocabulary-dependent data access interface, where XML data is mapped
into application-specific concepts. The first option is recognised to be
difficult and error-prone and produces code that is hard to modify and
maintain. In words of Tim Bray, one of the co-creators of XML, he found
the task of writing code to process arbitrary XML as “irritating, time-
consuming, and error-prone” [Bra03].

The second option, also known as XML Data Binding, is favoured as
developers can focus on the semantics of the data they are manipulating.
An abstraction layer is added over the raw XML processing code, where
XML information is mapped to data structures in a given application
data model. XML data binding code is often produced by using code
generators.

The importance of XML processing code and its impact in perfor-
mance and size of applications have been traditionally underestimated.
Analyses of the impact of XML processing code in the context of web
servers and databases have been presented by [NJ03] and [AIM+04].
[NJ03] present a set of database applications where XML processing is
the performance bottleneck. [AIM+04] show that in a commercial server
under study with a real workload, 37 % of the time was spent in XML
processing code.

5Also referred as deserialization, unmarshalling, etc.

6Simple API for XML

7Document Object Model

8Streaming API for XML

17

CHAPTER 2. XML, XML SCHEMA AND WEB SERVICES

2.3.1 Vocabulary-independent Data Access Interfaces

Vocabulary-independent DAIs can be subdivided in tree APIs, like
DOM, and streaming (event-based) APIs, like SAX. The main difference
lies in that tree APIs create a hierarchical representation of the informa-
tion, and the information cannot be accessed until the whole document
has been parsed. Streaming APIs, however, do not need to parse the en-
tire document before it can be processed, at the expense of not allowing
random access to the document content. In the case of tree APIs, reading
the whole document before accessing the information implies that much
more memory must be used to accommodate this information than in the
case of streaming APIs.

Streaming APIs can be further subdivided in push-style APIs (e.g.
SAX), where the parser reads the documents and executes callback meth-
ods in the application to process the information; and pull-style APIs (e.g.
XMLPull API [HS], StAX), where the application reads the document as
a sequence of events and processes them as they are reached. In [LDL08],
it is stated that the use of streaming APIs is preferred for networking ap-
plications, as information can be processed as it is received and memory
is used much more efficiently.

2.3.2 XML Data Binding

A large number of code generators for XML data binding code exists
for many platforms and target programming languages. These genera-
tors offer the possibility to generate source code to read and write XML
documents based on a given set of XML schema files. Figure 2.2 shows
the common process followed when a generator is used to produce XML
processing code. A set of schema files is used as input to the generator
that produces source code in a target programming language or binary
code for a given platform. The generation process may be controlled by
a configuration file defining different parameters to customise the trans-
formation.

The transformation of schema components into programming lan-
guage components can be defined in a pseudo-formal way as T (x, p) = c.
In the formula, T is the transformation function, x ∈ S, where S is the
set of all schema components in the input files; p ∈ P , where P is the set
of all possible configuration parameters, and c ∈ C, where C is the set
of data constructs in the target programming language. The Cartesian
product of S and P , (S ∗ P), is the function domain and C is the func-
tion co-domain. Each code generator defines its own rules to accomplish

18

2.3. XML PROCESSING

Figure 2.2: XML data binding code generation process

this transformation. Hence, in theory, we could uniquely describe each of
them by defining how T is implemented.

Code generators provide an attractive approach, potentially giving
benefits such as increased productivity, consistent quality throughout all
the generated code, higher levels of abstraction as we usually work with
an abstract model of the system; and the potential to support different
programming languages, frameworks and platforms [Her03]. Neverthe-
less, current implementations present some limitations such as:

• Most generators make a straightforward mapping of components in
the schemas to components into the target programming language.
This is a problem when large schemas are used because the gener-
ated code can be very large to be executed on a resource-constrained
device.

• In case code generators provide more advanced mapping capabilities
between XML Schema and the target programming language, the
parametrisation process can be complex. It will usually involve
very low level manipulation of schema components requiring a deep
understanding of their interrelationships.

The straightforward mapping of schema components to programming
language constructs in the presence of large schemas is not a big problem
in the context of desktop or web server applications, but it is critical for
a mobile device. For example, the code generated from the SOS schemas
using XBinder, presented next, and targeted to the Android mobile plat-
form has a size of almost 4 MB, which is rather large to be included in

19

CHAPTER 2. XML, XML SCHEMA AND WEB SERVICES

a mobile application9. The parametrisation problem is not as critical as
the former problem, but it can be a cause of delay during development
when schemas with a large size and containing complex relationships are
used.

In the remainder of this dissertation we will use the following XML
data binding tools to demonstrate the large size of the code generated
from geospatial schemas, and as reference points against which our data
binding implementation will be compared:

• JAXB-RI [JAX]: Reference implementation of the Java Architec-
ture for XML Binding(JAXB) API [Jav06]. This API allows Java
developers to map information in XML instances to Java objects
inside their applications. JAXB-RI maps types in schema files to
types of the Java language in a straightforward way, making ev-
ery complex type defined in the schemas a class declaration in the
programming language.

• XMLBeans [Apa]: XMLBeans is a widely used code generator for
the Java language. It offers similar features than JAXB but per-
forms a more sophisticated mapping of schema components to Java
classes and interfaces that result in a larger and more complex code.

• XBinder [Obj]: XBinder produces code for several programming
languages (C, C++, Java, C#). It also allows the generation of
code targeted to different mobile platforms such as Android and
CLDC10[Oraa]. The structure of the generated source code resem-
bles the structure of the XML Schema definitions.

The availability of a large number of XML data binding code gener-
ators has caused that the task of producing XML processing code has
been taken for granted by schema designers, which frequently assume
that independently of the length of schemas, a working implementation
can be built with little effort. Although this is true in some occasions,
with the growth in size of schemas in some domains it might not be the
case. For example, we face this problem when code generated from large

9An experiment measuring the size of generated binary code for SOS schemas
is detailed in Chapter 6

10The Connected Limited Device Configuration (CLDC) defines the base set
of application programming interfaces and a virtual machine for resource-
constrained devices using the Java language

20

2.4. WEB SERVICES

schemas must be accommodated in a device with memory or processing
limitations such as mobile devices.

2.4 Web Services

A comprehensive definition of Web services is provided by [Pap08].
This book states that “A Web service is a platform-independent, loosely-
coupled, self-contained, programmable Web-enabled application that can
be described, published, discovered, coordinated, and configured using XML
artifacts (open standards) for the purpose of developing distributed inter-
operable applications”, besides, “Web services expose their feature pro-
grammatically over the Internet (or Intranet) using standard Internet
languages (based on XML) and standard protocols, and can be imple-
mented via a self-describing interface based on open Internet standards.”.
From the previous definition we can infer that there is a tight relation
between Web services and XML, hence, all of the issues related with XML
processing has a direct impact on web service development.

Summarizing, the more relevant points about Web services are:

• Web services are loosely coupled software modules: A web service
exposes its functionality through an interface. This interface is de-
fined in a platform-independent way, which allows the interaction
of services built on different operating systems and programming
languages.

• Web services semantically encapsulate discrete functionality : They
are software modules that perform well-defined tasks.

• Web services can be accessed programmatically : They are not tar-
geted to a human user, but operate to the code level.

• Web services are distributed over the Internet : They make use of
widely-adopted internet protocols such as HTTP [IET99].

According to [Kra07] Web services offer several technical advantages
and organizational benefits:

• Maintenance of legacy systems: Services can be added on top of
existing systems without affecting internal processes.

• Independence of programming languages: Web service end-points
may be developed in different programming languages (and de-
ployed in different platforms), being still able to interoperate.

21

CHAPTER 2. XML, XML SCHEMA AND WEB SERVICES

• Reduction of data management issues: Clients only access the data
they need at a specific point of time. They are not deeply concerned
with bandwidth, data and storage management issues.

• Rapid application development and integration: As the number of
services provided worldwide through web service interfaces is con-
tinuously growing, new sophisticated applications can be created.
This results in applications with no explicit data embedding and a
multitude of data sources for integration.

Web services are the more common technology used to implement a
Service Oriented Architecture (SOA), defined in [Bea09] as ‘‘...a combina-
tion of consumers and services that collaborate, is supported by a managed
set of capabilities, is guided by principles, and is governed by supporting
standards”.

2.4.1 Approaches to Web Service Development

Currently, there are two main competing architectures for web service
development: RPC-style (or “Big” web services) and RESTful resource-
oriented [RR07, PZL08]. In addition, [RR07] identify a third one, which
is a combination of both: REST-RPC hybrid.

Remote Procedure Calls (RPC) in computer science refers to the ex-
ecution of a procedure located in a remote computer across a network.
The term RPC applied to Web services consists of exchanging informa-
tion in the form of self-contained documents (messages) over the HTTP
protocol. Messages are encoded usually, but not necessarily using SOAP,
an XML language defining a message architecture and formats [W3C07].
SOAP simply acts as an envelope for the content or payload that is anno-
tated with some information included in headers. Web services end-points
are commonly described using the Web Services Description Language
(WSDL), an XML-based language designed for this purpose [W3C01].
In our opinion, the main characteristic identifying the RPC-style is that
functionality is accessed using the notion of procedure. A procedure is just
a processing entity that receives some input and produces some output.
The RPC-style is the most widespread because a more mature stack of
technologies, with extensive tool support, has been constructed on top of
this paradigm. Functionality related to transaction support, reliability or
message-level security can be integrated into SOAP headers. The main
disadvantage of this style is its complexity, although much of it can be
overcome with the use of appropriate tools [PZL08].

22

2.5. CONCLUDING REMARKS

The RESTful resource-oriented style was originally defined by Roy
Fielding for building large-scale distributed hypermedia systems [Fie00].
The style contains a set of constraints applied to elements within the ar-
chitecture, such as client-server interaction, statelessness, cacheability, or
use of an uniform interface. The term RESTful web service, not included
in the original Fielding’s work, is the application of these constraints to
the Web service realm. Here, services are built as collections of resources
(anything that can be named) that are accessed through the uniform in-
terface provided by HTTP. This way, services can be built with no more
infrastructure that the one provided by the Web itself, and consequently
they are perceived to be very simple. A more detailed description of this
architectural style can be found in [Fie00].

2.5 Concluding Remarks

In this chapter we have introduced the main concepts and technolo-
gies related to XML, XML Schema and Web services. Understanding
these concepts is a requirement to understand the context in which our
work has been developed. Web services are the abstraction used to define
standard web service interfaces to exchange geospatial information. The
structure of the messages exchanged between client and servers, in XML
format, is described using the XML Schema language. With the purpose
of building a working implementation based on the standards, XML pro-
cessing code must be produced either by using a manual or automatic
approach. The task of producing code manually is tedious and error-
prone, but the alternative, using an XML data binding code generators
do not always produce code satisfying mobile application requirements,
as we will see in the following chapters.

23

CHAPTER 3

OGC Web Services

The Open Geospatial Consortium (OGC) is a non-profit, international
organisation that is leading the development of standards for geospatial
and location based services [OGCa]. This organisation has produced and
promoted open standards to enable interoperability between geospatial
information producers and consumers. The aim is to build the Geospatial
Web, defined in [LF07] as “...an integrated, discoverable collection of geo-
graphically related Web services and data that spans multiple jurisdictions
and geographic regions. In a broad sense, the Geospatial Web refers to
the global collection of general services and data that support the use of
of geographic data in a range of domain applications”.

The use of these standards and the participation in its definition of-
fers several benefits to content providers and consumers. For example,
content providers position themselves early to influence definition of new
standards, reduce costs through cooperative standard development with
other OGC members, shorten time to market by using OGC standards
rather than custom interfaces, and have a convenient forum for discus-
sion of industry issues and solve shared problems. They can also form
customer relationships and business partnerships, deliver solutions more
quickly and at lower costs; they can mobilize a range of products across
open interfaces, rather than performing resource intensive custom inte-
gration [Per10].

On the other side, technology and information consumers can voice
their interoperability needs directly to a broad global industry, academic
and government community; they can be assured that reusability of soft-
ware is achieved, or work with other users in the OGC process to demon-
strate the need for and potential market appeal of new requirements.

25

CHAPTER 3. OGC WEB SERVICES

They can consider OGC programs as a form of technology risk reduc-
tion, mobilize new technologies solutions quickly, and adapt easily to the
rapidly changing information technology world, policy changes, and new
emerging requirements [Per10].

3.1 OWS Architectural Principles

OGC defines a set of web service interface specifications and data
encodings to exchange geospatial data. These services are known as a
whole as OGC Web Services (OWS) and they are built following the
fundamental principles summarised next [Per10]:

• Components implementing services are organised into multiple tiers:
These services are available to clients or other software compo-
nents. Services are loosely arranged in four tiers from Clients to
Application Services to Processing Services to Information Man-
agement Services. Services can use other services within the same
tier. Servers can operate on data stored in that server and/or on
data retrieved from another server.

• Collaboration of services produces user-specific results: All services
are self-describing, supporting dynamic connection binding of ser-
vices supporting publish-find-bind1. Services can be chained with
other services. Services are provided to facilitate defining and exe-
cuting chains of services.

• Service communication uses open Internet standards: Communica-
tion between components uses standards World Wide Web protocols
such as HTTP GET, HTTP POST, and SOAP. Specific server op-
erations are addressed using Uniform Resource Locators (URLs).
Multi-purpose Internet Mail Extensions(MIME) types are used to
identify data transfer formats. Data transferred is often encoded
using XML, with the contents and format specified using XML
schemas.

• Service interfaces use open standards and are relatively simple: OGC
web services interfaces are coarse-grained, providing only a few

1Deployment pattern where services are published to a register, where service
consumers find (discover) service instances and then bind (invoke) to these
services.

26

3.2. OWS SPECIFICATIONS OVERVIEW

static operations per service. Service operations are stateless, not
requiring servers to retain information about past interactions. One
server can implement multiple service interfaces whenever useful.
Standard XML-based data encoding languages are specified for use
in data transfers.

• Server and client implementations are not constrained : Services
are implemented by software executing on general purpose comput-
ers connected to the Internet. The architecture is hardware and
software vendor neutral. The same cooperating services can be im-
plemented by servers that are owned and operated by independent
organisations. Many services are implemented by standard-based
Commercial Off-The Shelf (COTS) software.

In the next section we introduce the main OWS specifications. Further
information about the OWS topic can be found in [Kra07, LF07] and
[Per10] or the OGC website2.

3.2 OWS Specifications Overview

Some of the most widely known specifications used in this dissertation
are shown in Table 3.1. As mentioned before, OGC specifications include
web services interfaces, as well as data encodings used to exchange data
between OWS servers and clients. Content providers publish their data
through a well-defined interface that clients may access through standard
Internet protocols such as HTTP. The preferred method to encode web
service operations in OWS has been so far the use of HTTP bindings.
These bindings use HTTP GET with Key-Value Pair (KVP) encodings
and/or HTTP POST with an attached XML document containing the
request parameters. Newer specifications also include SOAP bindings
[OGC08d].

An important requirement in the design of OGC specifications design
is reusability. They are built on the foundation provided by other spec-
ifications. The reutilisation of existing components simplifies the spec-
ification design task, but it also brings the complexity of the reutilised
specifications into the other specifications as well. Figure 3.1 shows the

2http://www.opengeospatial.org/

27

http://www.opengeospatial.org/

CHAPTER 3. OGC WEB SERVICES

Table 3.1: Geospatial web service interfaces and data encodings
Name Description
Web Map Service
(WMS)

WMS provides a simple HTTP interface for requesting geo-
registered map images from one or more distributed geospatial
databases [OGC06c]

Web Feature Service
(WFS)

It allows a client to retrieve and update geospatial data en-
coded in GML format [OGC10c]

Web Coverage Service
(WCS)

It provides access to rich sets of spatial information, in forms
useful for client-side rendering, multi-valued coverages, and
input into scientific models [OGC10a]

Sensor Observation
Service (SOS)

It provides an API retrieving sensor and observation data
[OGC07h]

Web Processing Ser-
vice (WPS)

It defines a standardised interface to publish geospatial pro-
cesses [OGC07g]

Sensor Planning Ser-
vice (SPS)

It defines interfaces for queries that provide information
about the capabilities of a sensor and how to task the
sensor[OGC07d]

Geography Markup
Language (GML)

GML is a grammar for expressing geographical features. It
serves as a modelling language systems as well as an inter-
change format [OGC04]

Sensor Model Lan-
guage (SensorML)

SensorML is a language that specifies models and encodings
that provide a framework within which characteristics of sen-
sors and sensor systems can be defined [OGC07c]

Observation and Mea-
surements (O&M)

O&M defines an abstract model and Sensor Model Language
schema encoding for observations [OGC07a]

KML KML is a language focused on geographic visualisation, in-
cluding annotation of maps and images [OGC08a]

dependencies that exists between some of the OGC specifications intro-
duced in Table 3.13. Boxes in darker colours represent service speci-
fications and the others represent mostly data encoding specifications.
These dependencies have been extracted from the schemas included with
the specifications themselves. For example, WCS 2.0 schemas depend for
its definition on Web Services Common Standard (OWS 2.0 in the fig-
ure) [OGC10b], GML 3.2.1 and the SWE Common Data Model Encoding
Standard (sweCommon 2.0) [OGC11]. OWS 2.0 defines a set of aspects
that are common to all of the OGC web services implementations, and
sweCommon 2.0 defines low-level data models for exchanging sensor re-
lated data. In the figure we can observe that not all the specifications
have the same number of dependencies, which suggests that the level of
complexity varies between specifications. The dependencies do not always
have the same nature either, for example, there are circular dependencies

3Table 3.1 only includes the specifications that are used later on this document,
as a consequence some of the specifications in the figure are not listed.

28

3.3. OWS IMPLEMENTATIONS

Figure 3.1: Dependencies between OGC specifications

and also specifications that depends on others through different paths on
the graph.

In the remainder of this document when referring to schemas in a spec-
ification we differentiate between main schemas, those defined completely
in the specification, and external schemas, those included or imported
from the main specification schemas.

3.3 OWS Implementations

The number of OWS implementations keeps growing every year. The
number of registered products in the OGC website implementing the spec-
ifications are counted by hundreds [OGCb]. Regarding service instances
available online the study presented in [LPBHF+10] found 6,544 service

29

CHAPTER 3. OGC WEB SERVICES

instances in Europe of which more than 50% were WMS servers. In this
section, we show some existing products in the server and client-side. We
also highlight the fact that few implementations exist for mobile plat-
forms.

3.3.1 Server Side

In the server side a group of well-known products exists. Some of
them implements several OWS specifications such as GeoServer [geo],
MapServer [map] or Deegree [dee]. Other family of server products is
produced by 52 ◦ North - Initiative for Geospatial Open Source Software
GmbH 4.

GeoServer is an open source software server that implements sev-
eral OGC web service specifications such as WMS, WFS and WCS. This
product is the OGC’s reference implementation for these specifications.
Deegree is a geospatial software package that provides server-side imple-
mentations of several OGC web services such as WMS, WFS, WCS, Cat-
alogue Service Web-Profile(CSW) and in more recent versions WPS and
SOS. Similarly, MapServer, provides implementations for WMS, WFS,
WCS, SOS, etc., and also includes modules for web client-side applica-
tions.

The 52 ◦ North product family includes implementations for WPS,
and sensor-related specifications such as SOS, Sensor Alert Service (SAS)
[OGC06b], Sensor Event Service (SES)[OGC08c], SPS and Web Notifica-
tion Service (WNS)[OGC07f]. SAS enables real-time alerting for sensor
related information. SES is an enhanced version of SAS, and WNS pro-
vides support for asynchronous notification of sensor events. None of
these last specifications has reached the status of standard.

3.3.2 Client Side

For the client side a large number of implementations has also been
developed. We can roughly classify these products as: generic clients,
centralised portals, and middleware or supporting libraries. The classi-
fication is not meant to be exhaustive and different products may be
included in more than one category at the same time.

In the category of generic clients we include products that allow users
to select the server they want to connect to, and they may request in-
formation from this server. Examples of these clients are uDig [Ref],

4http://www.52north.org/

30

http://www.52north.org/

3.3. OWS IMPLEMENTATIONS

gvSIG [gvsa] and OPENJump [ope]. As a general rule, these clients al-
low users to connect explicitly to servers providing data through different
standards.

The second category, centralised portals, refers to web portals where
users can visualise information that is provided by one or several organi-
sations. In this case, the users usually do not select the servers they want
to connect to, but can select from a list of available data which part of it
they want to visualise and/or process.

One example in this category is CartoCiudad5, a web portal contain-
ing information about Spain, regarding territorial division, urban back-
ground, address, transportation network, etc. It allows the visualisation
of this information as well as it provides functions to search for places
or to calculate routes (Figure 3.2). Another example in this category is
the Integrated Ocean Observing System (IOOS)6. According to its web-
site IOOS is a federal, regional, and private-sector partnership working
to enhance the ability to collect, deliver, and use ocean information. The
website provides a viewer that allows users to visualise information gath-
ered by sensors and served through SOS instances (Figure 3.3).

The last category is that of middleware or supporting libraries which
allows developers to access OGC web services through an API. This is
the case of Geotools7, a Java open source library to manage geospatial
data. The library provides support for different OGC web services such as
WMS and WFS. In addition it supports different vector and raster data
formats such as GML, ESRI Shapefiles [ESR98], GeoTIFF [NR00], etc.
It also allows developers to interact with spatial databases in PostGIS8,
Oracle Spatial9 or MySQL10.

5http://www.cartociudad.es

6http://www.ioos.gov

7http://www.geotools.org

8http://postgis.refractions.net/

9http://www.oracle.com/technetwork/database/options/spatial/

index.html

10http://www.mysql.com

31

http://www.cartociudad.es
http://www.ioos.gov
http://www.geotools.org
http://postgis.refractions.net/
http://www.oracle.com/technetwork/database/options/spatial/index.html
http://www.oracle.com/technetwork/database/options/spatial/index.html
http://www.mysql.com

CHAPTER 3. OGC WEB SERVICES

Figure 3.2: CartoCiudad web portal

3.4 Sensor Observation Services

The SOS specification will be used frequently in the remainder of
this document. The main reasons for this are first, the large experience
we have with the specification [Tam09, THG+09, TGD+11, TVGH11,
TGH11b]. Second, the specification is one of the more complex in nature
from all of the OWS specifications, as it provides larger functionality and
depends on a larger number of other specifications (see Figure 3.1). As it
will be the main focus of our experiments we consider pertinent to provide
a wider introduction to SOS.

SOS has been developed in the context of the Sensor Web Enablement
(SWE) initiative, a framework that specifies interfaces and metadata en-
codings to enable real-time integration of heterogeneous sensor networks.
It provides services and encodings to enable the creation of web-accessible
sensor assets [OGC08b]. SWE is an attempt to define the foundations
for the Sensor Web vision, a worldwide system where sensor networks of
any kind can be connected [LCT05, vZSM08]. It includes specifications

32

3.4. SENSOR OBSERVATION SERVICES

Figure 3.3: Integrated ocean observing system web portal

for service interfaces such as: Sensor Observation Service (SOS); and
Sensor Planning Service (SPS); and encodings such as: Observation and
Measurement (O&M) and the Sensor Model Language (SensorML). All of
these web service interfaces and encodings have been described in Table
3.1. SWE also comprises other OGC discussion papers such as SAS, SES
and WNS. A comprehensive review of SWE can be found in [BEJ+11].

The SOS implementation specification provides access to observations
gathered by sensors in a standard way that is consistent for all sensor sys-
tems, including remote, in-situ, fixed and mobile sensors [OGC07h]. The
information exchanged between SOS clients and servers, as a general rule,
will follow the O&M specification for observations and the SensorML
specification for sensors or system of sensors descriptions. Besides, the

33

CHAPTER 3. OGC WEB SERVICES

Table 3.2: SOS operation profiles

Profile Operations

Core (Mandatory) GetCapabilities, DescribeSensor, GetObservation
Transactional RegisterSensor, InsertObservation
Enhanced GetResult, GetFeatureOfInterest, GetFeature-

OfInterestTime, DescribeFeatureOfInterest, De-
scribeObservationType, DescribeResultModel

specification is open to extension by using observation types defined by
information providers. The main goal of SOS is to provide access to ob-
servations, which are grouped into observation offerings. An observation
offering is a set of observations related by some criteria. Unfortunately,
the specification does not provide a more precise definition or any clear
guidance about how to do this grouping. The only clue provided is that
classifiers (sensor systems, observed property, location, etc.) must be
factored into offerings in such a way that in response to a GetObserva-
tion request the likelihood of getting an empty response for a valid query
should be minimised. The offerings are constrained by the following pa-
rameters [OGC07h]:

• Specific sensor systems that report the observations,

• Time period(s) for which observations may be requested (supports
historical data),

• Phenomena that are being sensed,

• Geographical region that contains the sensors, and

• Geographical region that contains the features that are the subject
of the sensor observations (may differ from the sensor region for
remote sensors)

The SOS implementation specification defines three operation profiles:
core profile (mandatory), transactional profile (optional) and enhanced
profile (optional). These profiles are shown in Table 3.2 and explained
next.

The core profile contains three operations: GetCapabilities, De-
scribeSensor, and GetObservation. These are the basic operations needed

34

3.4. SENSOR OBSERVATION SERVICES

Figure 3.4: Interaction with the SOS server

for any data consumer to access sensor observations stored in an SOS
server. GetCapabilities is an operation that is common for all the OGC
web services, and as such is defined in [OGC07b]. This operation al-
lows clients to access metadata about the capabilities provided by the
server. The DescribeSensor operation allows SOS clients to retrieve Sen-
sorML or Transducer Markup Language (TML) [OGC07e] descriptions
of a given sensor specified as parameter of the operation. The GetOb-
servation operation is used to retrieve observation data from the server.
Several parameters for filtering the observations must be supplied. The
common flow of interactions of a client with a SOS server is shown in
Figure 3.4.

The transactional profile offers support for data producers. Using the
supplied operations RegisterSensor and InsertObservation, a data pro-
ducer can register its sensor systems and insert the observations produced

35

CHAPTER 3. OGC WEB SERVICES

by them into the server. Later, clients can read this information using
the core profile operations.

The third and last profile is the enhanced profile, which provides clients
with a richer interface for interacting with the server. The operations are
GetResult, that allows clients to obtain sensor data repeatedly without
having to send and receive requests and responses that largely contain
the same data except for a new timestamp; GetFeatureOfInterest returns
the description of a feature advertised in some observation offerings of the
SOS capabilities document; GetFeatureOfInterestTime returns the time
periods for which the SOS will return data for a given advertised feature of
interest; DescribeFeatureOfInterest returns the XML schema for a given
feature; DescribeObservationType returns the XML schema that describes
the Observation type that is returned for a particular phenomenon; and
DescribeResultModel returns the schema for the result element that will
be returned when the client asks for the given result model by the given
ResultName.

3.5 Concluding Remarks

Standard specifications to exchange geospatial data are defined using
web service interfaces. The use of these standards and the participation
in its definition offers important benefits to content providers and con-
sumers. The specifications includes a set of operations which rely in a
set of encodings describing the structure of the exchanged data. The en-
codings and the structure of operation requests are defined using XML
Schema, as the messages are encoded using XML. An important number
of applications implementing OWS specifications exists for the server and
client side, which is a proof of their ample acceptance in academic circles
and industry.

36

CHAPTER 4

Mobile Computing

In the last decade, we have witnessed an outstanding growth in the
number of mobile devices such as hand-held PCs, PDAs and smartphones.
These devices frequently equipped with wireless networking capabilities
are changing the way people interact with information in the Internet,
shaping what has been called the mobile Web [CCL09]. In the mobile
Web users access Web content anytime, anywhere, and through any class
of device. This revolution has been possible by the rapid evolution of
mobile hardware and software, and the widespread use of wireless com-
munications. In this chapter we present a brief introduction to the realm
of mobile computing, focusing mostly on mobile phones, as they are the
mobile devices our work is targeted to.

4.1 Mobile Hardware

In the hardware aspect, Advanced RISC Machine (ARM) has been the
predominant architecture for mobile processors. Currently, it is easy to
find 1 GHz processors in smartphones, such as the Qualcomm Snapdragon
family of processors [Qua] or the Apple A4 processor [Mac10]. These are
System-on-a-chip processors including at least graphic processing capa-
bilities in the same unit.

Regarding networking, mobile connectivity is based on wireless tech-
nologies, which has evolved very quickly with networks such as GPRS
[3GP], the UMTS/3GSM family 1 with data rates of 384 Kbit/s to 14.4

1http://www.umtsworld.com/technology/technology.htm

37

http://www.umtsworld.com/technology/technology.htm

CHAPTER 4. MOBILE COMPUTING

Mbit/s, or more recently LTE2 offering download speed above 100 Mbit/s.
It has also become common that mobile phones be equipped with Wireless
LAN (WLAN) transmission [IEE07]. These options allow mobile users
to choose depending on their location and the available services which
technology better suits their needs for a certain application.

Storage capacity has also grown in the last years, and today it is pos-
sible to incorporate Secure Digital (SD) and SD High-Capacity (SDHC)
cards to mobile phones. SD cards have a capacity of up to 4 GB and
SDHC cards of up to 32 GB, although its support on different mobile
platforms varies. The transfer speed of these cards ranges between 2
MB/s to 10 MB/s. SDHC can also support the Ultra High Speed mode I
(UHS-I) with a trasfer rate of up to 104 MB/s. A more recent technology
in the market is SDXC (SD eXtended-Capacity), to our best knowledge
still not available for mobile phones. It offers capacities of more than 32
GB up to 2 TB3.

Despite all these advances, a key point regarding mobile hardware
is that they are battery-powered, so even when applications with more
demand for processing capabilities, data bandwith, etc. may be executed
on mobile devices, saving energy by reducing both processing and data
transmission is still of paramount importance [KLT07, WTS07, vB09].
As such, the use of advanced features such WLAN networking or GPS
support must be balanced with the large impact they have in battery
life. In [PS05], it is shown that as disk capacity, CPU speed, RAM and
wireless transfer speed have been increasing exponentially since 1990,
battery energy density has had a much more modest growth.

4.2 Mobile Software

In the software aspect, highly influenced by hardware advances, a
group of strong software platforms have been developed such as Symbian
OS [Nok], Android [Goo], Blackberry OS [RIM], iOS [App], and Windows
Phone [Mic]. These platforms have also a large number of applications
that can be bought or downloaded for free from different software market
stores such as Apple App Store, Android Market, Ovi Store or Windows
Marketplace for Mobile.

Symbian OS is the leader of the operating systems for the smartphones

23GPP Long Term Evolution: http://www.3gpp.org/article/lte

3http://www.sdcard.org

38

http://www.3gpp.org/article/lte
http://www.sdcard.org

4.2. MOBILE SOFTWARE

market with around 37% of the market share [Gar11]. The design of
Symbian OS is highly modular, and most of its components expose a
C++ API that is available to third-party application developers [Hay09].
Symbiam applications can also be developed using the Java Platform,
Micro Edition (Java ME)[Orab], a Java platform designed for embedded
systems (mobile phones, set-top boxes, digital TVs, vending machines,
etc.).

4.2.1 Android

Android, developed by Google, is currently the platform with the
fastest growth rate in the smartphones market, having a market share of
22.7% as of February 2011 [Gar11].

Android is a Linux-based operating system targeted to smartphones.
It provides a Java API similar to that offered by Java ME. One difference
of the Android API with Java ME is that Android is not targeted to mul-
tiple device configurations, which makes the Android API simpler as it
is targeted to a single device model. Another difference is that Java Vir-
tual Machine included in Android (called Dalvik) is more optimised and
responsive than other JVM [HKM+10]. The Dalvik VM is specially opti-
mised for slow CPU and little RAM. It is has also been highly optimized
to keep power consumption as low as possible.

Dalvik uses it own byte-code format called Dalvik Executable format
(DEX), which is more compact than compressed .jar files [PK10]. Last
versions of Dalvik have added Just-In-Time (JIT) compilation to speed
up the execution of Java code. Android also implements the SAX, DOM
and XMLPull APIs for XML processing.

We have chosen Android as our development platform because, apart
from its growing popularity, the Android SDK includes an useful set of de-
velopment tools available for free. These tools allows its integration with
the Eclipse Integrated Development Environment4. The Eclipse plug-in,
named Android Development Tools(ADT) includes, in addition to the
possibility to develop and execute applications directly in an Android de-
vice, a platform emulator where applications can be developed, debugged
and tested.

4http://www.eclipse.org/

39

http://www.eclipse.org/

CHAPTER 4. MOBILE COMPUTING

4.3 Web Services for Mobile Devices

The progress of mobile hardware and software in the last few year
has made possible to access services available in the Web from mobile
terminals. The adoption of Web services in mobile devices is a hot topic in
research [TVN+03, FC05, SNMRRP07, KL09, CCL09, ZDL09]. [ZDL09]
presents a convenient categorisation of the work in the subject:

• Adaptation of standard web service technology : Standard technolo-
gies such as WSDL and SOAP are applied directly to mobile sys-
tems. Smaller and more restricted devices might omit some ad-
vanced capabilities such as dynamic discovery and transactions.

• Alternative protocols: The use of low bandwidth consuming proto-
cols enhances communication between clients and providers. Exam-
ples are the use of compression techniques or alternative exchange
formats to deal with the overhead of XML in service descriptions
and formats.

• Use of mediator components: Proxy components can be placed be-
tween mobile devices and service providers. These proxy compo-
nents can adapt the service responses to the limitations of mobile
devices.

Web service clients in the first category, may interact with existing
services available online without these being modified. In the second cat-
egory, services must support alternative protocols to deliver compressed
data. The last category is a trade-off, where services remain unmodi-
fied by the addition of an extra component that deals with needed data
transformation.

Another interesting category of Web services is that of Mobile-aware
web services. These services have the capability of adapting their re-
sponses to the need of mobile clients, such as screen resolution limita-
tions, bandwidth limitations, etc. The adaptation of the content to the
user device provides an improved user experience and avoids occupying
network bandwidth with information that will not be shown to the final
user [CCL09, OdP09]. These services might belong to the first category
above, if still using standard web service formats; or to the second cate-
gory if using alternative, specialised formats.

40

4.4. XML PROCESSING FOR MOBILE DEVICES

4.4 XML Processing for Mobile Devices

When considering XML processing in the context of mobile devices
there are two main competing requirements: compactness and processing
efficiency [KLT07]. The smaller the messages transmitted, the less re-
sources are spent in data transmission, but this may require the use of
more processing power if the data must be compressed and decompressed.
Processing efficiency refers both to time and memory spent during pro-
cessing.

To reduce message size several compression techniques or alternative
protocols have been used. For example, the use of more compact XML-
based formats such as WAP Binary XML [W3C99a], EXI [W3C11] or
Xebu [KTL05]; or even the use of general purpose compression techniques
such as gzip [Deu96]. Some of these techniques, such as EXI5 and Xebu,
reduce the size of data but do not require this data to be decompressed by
the message receiver, while others must spend processing time performing
compression/decompression tasks (gzip). The choice of using compres-
sion or not must be carefully considered because it has been proven that
wireless communication can be much more expensive than computation
in terms of energy consumption [BA03]. This may cause that in some
scenarios transmitting uncompressed large datasets may be more expen-
sive that the option of compressing-transmitting-decompressing the same
dataset. In all these cases there is a drawback, which is that the use
of these alternative protocols must be supported on the server side, or at
least on a mediator component handling the communication with the real
server.

About processing efficiency, not much work has been done in the mo-
bile devices area. XML processing code has been produced following best
practices such as the use of streaming APIs to avoid unnecessary memory
consumption when large documents are handled. A prominent exception
in this topic is the work presented in [KLT07], [KTL05] and [LK08].
These articles are all related to the implementation of a middleware plat-
form for mobile devices: the Fuego mobility middleware [TKLR06], where
XML processing has a large impact. The proposed XML stack provides a
general-purpose XML processing API called XAS [KLT07], an XML bi-
nary format called Xebu [KTL05], already mentioned before, and others
APIs such as Trees-with-references (RefTrees) and Random Access XML
Store (RAXS)[LK08]. XAS is implemented on top of kXML [Hau], an

5EXI can also be combined with compression, but we are considering here the
case where this feature is not used.

41

CHAPTER 4. MOBILE COMPUTING

XMLPull parser implementation for mobile devices, adding support for
typed content. Xebu is a binary XML format based on the event model
provided by XAS. Last, RefTrees and RAXS, built also on top of XAS,
allow manipulating XML documents using a tree model, and provides
document management operations, such as change transactions, version-
ing, and synchronisation.

Regarding XML data binding there are also several tools available for
generating XML data binding code for mobile devices such as XBinder
and CodeSysnthesis XSD/e [Cod], or for building complete web service
communication end-points for resource constrained environments, such
as gSOAP [VEG02]. All of these tools map XML Schema structures to
programming languages construct in a straightforward way, which is not
adequate when large schema sets are used.

4.5 OWS Implementations for Mobile Devices

The integration of OGC web services in mobile devices has been slow.
The main reason for this is that geospatial data usually occupies lots
of space and requires substantial processing capabilities, which are not
always available in mobile platforms. Most of the communication and
data exchange in OWS is encoded in XML format. The performance
problems associated with XML processing in mobiles is well-known, as the
effort to parse and serialise XML messages from files (or communication
channels) to memory and vice versa, consumes a lot of resources. [KLT07,
DKDF09, ZXjC+10]

Unfortunately, the approaches to XML processing presented in the
previous section are not easily or effectively applied to mobile OWS-based
applications. For example, the use of compression techniques would re-
quire to spend processing time performing compression operations and to
modify the existing infrastructure of OWS-based servers to support the
compressed formats. On the other hand, XML data binding code gener-
ators tend to map types in schema files to types in the target language
in a straightforward way, which cause that large schema files produces
large binary compiled files. Last, SOAP-based generators cannot applied
for some specifications because they do not provide support for SOAP
bindings.

We have been able to find only a few actual OWS clients for mobile
devices, most of them for the WMS specification. The first one is J2ME

42

4.5. OWS IMPLEMENTATIONS FOR MOBILE DEVICES

Figure 4.1: gvSIG Mini screenshots. To the left some of the options avail-
able are shown over a WMS layer. To the right the current
location is shown using Open Street Map as base map layer

OGC WMS Client by Skylab6, which is a Java ME client able to get
and display maps from a WMS server. The second and third one are the
two versions of gvSIG for mobile devices, gvSIG Mobile [gvsb] and gvSIG
Mini [Pro].

gvSIG Mobile is a GIS that allows to access the most common spatial
formats and a wide range of GIS and GPS tools. It allows to connect
to WMS servers. gvSIG Mini is a free viewer of publicly available maps
based on tiles, which also acts as a WMS client. It also allows address
and Point Of Interest (POI) searches, route calculations, etc. Figure 4.1
shows some screenshots of this application. It runs on Android and Java
ME CLDC compatible platforms.

Last, in [DKDF09], a WMS client implementation for mobile devices

6http://www.skylab-mobilesystems.com/en/products/j2me_wms_

client.html

43

http://www.skylab-mobilesystems.com/en/products/j2me_wms_client.html
http://www.skylab-mobilesystems.com/en/products/j2me_wms_client.html

CHAPTER 4. MOBILE COMPUTING

is presented. The WMS client is divided in two parts: the Mobile Client
(MC) and the WMS Connectivity Layer (WCL). WCL, running in a desk-
top computer, acts as a proxy for MC, providing caching and tiling func-
tionality to reduce data transfer with the mobile client.

4.6 Concluding Remarks

With this chapter we close the presentation of the context in which
our work has been developed. As mobile devices include today tasks that
a few years ago were only feasible for server and desktop computers, the
adoption of web service technologies was just a matter of time. Mobile
web service clients interact with existing web services that may or may not
be aware of the nature of the devices they are interacting with. Knowing
that they are interacting with a mobile device allows them to adapt their
content to existing device limitations, although this requires the existing
infrastructure of services to be modified. Despite the rapid evolution of
mobile phones, battery life is still a serious limitation, as such processing
power and data transmission capabilities must be used judiciously. For
this reason, the role of XML processing in the mobile scenario is very
important and it must avoid consuming scarce resources unnecessarily.

The verbosity of XML, and the large size and complexity of OWS spec-
ifications and schemas provoke that existing technologies such as XML
data binding code generators, could not easily produce code meeting mo-
bile application requirements. This fact may be one the causes of the low
number of OWS applications available for mobile devices.

44

Part III

XML Processing for
Geospatial Mobile

Applications

CHAPTER 5

Complexity of OWS
Schemas

The number and size of OGC standards have been growing in the
last few years. The complexity of the standards is well-known, but rarely
mentioned in research literature. Besides, little effort has been made to
measure it properly using well-defined software metrics. Understanding
how and why the specifications have grown and finding solutions to deal
with this complexity can be hardly accomplished without the use of ap-
propriate metrics to control and assess the evolution of the specifications.

Complexity in geospatial web services comes mostly from the complex-
ity of the geospatial domain. As stated in [GYC07], “geographic represen-
tation has become more complex through time as researchers have added
new concepts, leading to apparently endless proliferation and creating a
need for simplification”. The authors also question if such complexity is
really necessary. Although we cannot deny the inherent complexity of the

A short version of the content of this chapter has been published with the
title “Analysing complexity of XML schemas in geospatial web services” in
Proceedings of the 2nd International Conference on Computing for Geospatial
Research & Applications (COM.Geo 2011), May 23-25, Washington, DC 2011.
DOI: 10.1145/1999320.1999337

A modified version with the title “Measuring Complexity in OGC Web Ser-
vices XML Schemas: Pragmatic Use and Solutions” has been accepted to the
International Journal of Geographical Information Science, Taylor & Francis.

47

CHAPTER 5. COMPLEXITY OF OWS SCHEMAS

problem domain, during the modelling process of geospatial standards,
some extra complexity is introduced due to design decisions. Besides, as
the standards are implementation specifications, the path is not complete
until concrete implementations are built, hence, other implementation-
related aspects, such as poor tool support, may increase the perceived
complexity of the specifications.

In our opinion, the complexity of the schemas associated to OWS
specifications reflects the complexity of the whole web service specifica-
tions. This is because, on the one hand, these web service interfaces
do not contain a large number of operations requiring users to have a
complex flow of interactions with the servers. This coincides with the
results presented by [YLRY07], where a comparison of web services with
object-oriented software components was performed. The reasons pre-
sented there to explain this observation were that web service interfaces
prefer to have less operations with larger parameters, due to the stateless
nature of web services and to minimise the number of messages exchanged
on the network.

On the other hand, the amount of increasingly structured data ex-
changed between clients and servers has reached levels that represent a
serious challenge when building a real system. The influence of data com-
plexity in web services interfaces has been highlighted in [BM09a], where
a metric to calculate complexity of web services based on exchanged data
was developed. The results were contrasted with other metrics that do
not take data complexity into account, showing that their metric provides
a more accurate measure for complexity.

For all of the reasons mentioned above, we present in this chapter
an attempt to measure the complexity of XML schemas included in the
OWS specifications. The complexity is measured using a set of metrics
extracted from the literature, as well as a set of metrics defined by our-
selves. Our metrics are targeted to measure the influence that the use of
the subtyping mechanism of XML Schema has in complexity. The typing
mechanism of XML Schema, and the language itself, have been seriously
criticised for been very complex [MNSB06, MS06, Hos10]. We also present
examples of the pragmatic use that can be given to these metrics either
during the design or implementation phase, as well as pragmatic solutions
to the schemas complexity problem.

The remainder of this chapter is structured as follows. Section 5.1
presents related work in the subject of XML Schema complexity metrics.
After this, the metrics used and the results obtained of calculating their
values are exposed in sections 5.2 and 5.3. Sections 5.4 and 5.5 deals

48

5.1. RELATED WORK

with pragmatic aspects related to the metrics such as practical use and
solutions to deal with complexity.

5.1 Related Work

Literature about measuring XML schemas complexity has increased
in the last few years. They are based mainly on adapting metrics for
assessing complexity on software systems or on XML documents [BMV05,
McC76, QS05]. To our best knowledge the most relevant attempt in this
topic is presented in [LKR05]. The authors conducted a comprehensive
study of a sample of XML schemas and proposed a categorisation of
schemas according to its size. Most of the metrics considered in this study
are limited to counting distinct XML Schema features, although more
complex metrics such as the Mcabbe’s ciclomatic complexity were adapted
to measure schema complexity. Another relevant study is [MSY05] which
defines eleven metrics to measure the quality and complexity of XML
schemas. In addition to several simple metrics, two composite indices
were defined to measure these aspects.

In [BM09b], the authors present a more sophisticated metric that
takes into account, not only the number of main schema components like
the previous mentioned works, but also the internal structure of these
components. A weight is assigned to every schema component based on
the weight of its inner components. These metrics also recognise recursive
structures as a feature that increases complexity of schemas.

In a similar way, [Vis06] proposes more advanced schema metrics,
arguing that previous work in the topic only measures size as an approx-
imation for complexity. The authors present a set of metrics to measure
other structural properties of the schemas but do not provide any ev-
idence of why these metrics are a better approximation to complexity
than others.

Last about schemas complexity, we have the work in [PSH10] where
a set of schema metrics are presented in the context of schema mapping.
Based on a set of metrics that consider schemas size, use of different
schema features and naming strategies, a combined metric is defined.
The combined metric is evaluated in the context of business document
standards.

Similar studies in the geospatial domain are scarce, though, an inter-
esting discussion of complexity in the context of the Geographic Markup

49

CHAPTER 5. COMPLEXITY OF OWS SCHEMAS

Language (GML) can be found in Ron Lake’s blog1. This discussion tries
to identify the origin of GML complexity and use some of the metrics in
[LKR05] to categorise its schemas. Our research attempts to extend this
discussion to the OWS specifications, but focusing more on the complex-
ity of the schemas themselves.

5.2 Metrics

In this section we present the metrics used in the complexity analysis
for the schemas in the specifications listed in Table 3.1. We consider a
wide set of metrics ranging from simple metrics that simply count schema
features to more complex metrics that attempt to give an overall value for
complexity or measure specific aspects of the schemas. The main criterion
to select the metrics is that they could be intuitively understood, i.e., that
we easily understand what we are measuring. In contrast to the use of
‘esoteric’ metrics, which end up being of little interest to the industry
[FN99].

The first group of metrics attempts to measure the raw size of the
schemas and do not consider any XML-related information. For this
reason, they are classified by [LKR05] as XML-agnostic:

• Lines of Code (LOC): Total number of lines of code on the specifi-
cations’ schemas.

• Number of files (#F): Total number of files related to the spec-
ification. Here, we consider recursively all of the files referenced
through include and import XML schema statements.

The second group of metrics are XSD-aware metrics, which are con-
cerned with schema information. The metrics have been taken from
[LKR05], [MSY05] and [BM09b]:

• Number of complex types (#CT): All complex types, including global
(#CTG) and anonymous (#CTA) complex types.

• Number of simple types (#ST): All simple types, including global
(#STG) and anonymous (#STA) simple types.

• Number of global elements (#EL): All global element declarations.

1http://www.galdosinc.com/archives/140, http://www.galdosinc.com/

archives/186

50

http://www.galdosinc.com/archives/140
http://www.galdosinc.com/ archives/186
http://www.galdosinc.com/ archives/186

5.2. METRICS

• Number of global model groups (#MG): All global model groups
definitions.

• Number of global attributes (#AT): All global attribute declara-
tions.

• Number of global attribute groups (#AG): All global attribute groups
definitions.

• Number of global items (#GLOBAL): Number of global schema
components (types, elements, model groups, attributes and attribute
groups):

#GLOBAL = #CTG + #STG + #EL + #AT + #MG + #AG

• Wildcards: Number of times wildcards are used.

• C(XSD): This metric calculates a complexity weight taking into ac-
count the internal structure of schema components. It calculates ap-
proximately the number of primitive (or atomic) information items
that must be considered to fully understand a set of schemas, as
well as the number of recursive branches contained in the schemas.
The complete definition of the metric can be found in [BM09b].

The last group contains those metrics that attempt to measure the
influence in complexity of the subtyping mechanism of XML Schema.
First, we just count the XML Schema features related to the subtyping
mechanism [LKR05]. After this, we define a set of new metrics to measure
the influence of the use of subtyping in schemas complexity. These metrics
were first introduced in [TGH11a], and are developed in greater depth in
the following subsections.

• Use of subtyping features of XML schema: Here, we consider first
basic counting metrics such as the number of substitution groups,
uses of derivation by restrictions and uses of derivation by extension.

• Data Polymorphism Rate (DPR): This is a measure of how much
polymorphism is contained in the schemas. It measures the fraction
of the schema elements that are polymorphic.

• Data Polymorphism Factor (DPF): This metric attempts to mea-
sure how much the polymorphic elements affect the overall complex-
ity. Depending on the number of elements or types a given element

51

CHAPTER 5. COMPLEXITY OF OWS SCHEMAS

can be substituted for, the perception of complexity can be higher
or lower.

• Schemas Reachability Rate (SRR): This metric measures the frac-
tion of the schemas that are “hidden” for the schema users. By
hidden we mean that main schemas have dependencies on them,
but these dependencies are not explicit.

For some of the metrics mentioned in this section we present three dif-
ferent values. These values try to separate the complexity that is located
in main schemas from that one located on external schemas(see Section
3.2):

• CO, an overall value that includes all of the components in the main
and external schemas.

• CL, local value that includes only the components in the main
schemas

• CE , a external value that includes only the components in the ex-
ternal schemas

The overall value (CO) gives us an idea of the complexity of the
whole schema set related to a given specification. Support for this schema
set must be implemented when building a single OGC web service from
scratch. Local values (CL) are useful to measure complexity of a specifi-
cation without considering the external schemas. This is the case when
the support for external schemas is already implemented somewhere (e.g.
in a library). External values (CE) give us a measure of how much com-
plexity we are importing into a given schema. Which of the three values
is the most important depends on the problem at hand.

5.2.1 C(XSD) Metric Definition

In our study we include the metric presented in [BM09b] that mea-
sures the complexity of schemas based on its internal structure, opposed
to the metrics presented so far that limit themselves to just counting
schema components or features. It pays special attention to the use of
recursive structures as a source of complexity to schema users. A com-
plexity value, or weight, is calculated for each schema component as an
aggregation of the weights of the components it contains. The overall
value of the metric is calculated with the following formula:

52

5.2. METRICS

C(XSD) =
N∑
i=1

C(Egi) +
M∑
j=1

C(Agj) +
K∑
t=1

C(EGgt)+

P∑
r=1

C(AGgr) +

R∑
s=1

C(CTgs) +

Q∑
q=1

C(STgq) (5.2.1)

where, the first two terms are the summation of weights of global el-
ement and attribute declarations respectively. The remaining terms are
the summation of weights of global unreferenced model groups, attribute
groups, complex and simple types that are declared/defined in the main
specification schemas. The values N, M, K, P, R and Q are the number
of global elements, attributes, unreferenced element groups, unreferenced
attributes groups, unreferenced complex types and unreferenced simple
types respectively. In the second group of terms only unreferenced com-
ponents are considered to avoid counting them several times as they are
used in the declaration of global elements and attributes.

In [BM09b] formulae are provided to calculate the weight of the dif-
ferent types of schema components. For example, to calculate the weight
of a complex type we use the following formula:

wtype = wbaseType ± [

N∑
i=1

C(Egi) +

M∑
j=1

C(Agj)+

K∑
t=1

C(EGgt) +
P∑

r=1

C(AGgr)] + NRC ∗R

(5.2.2)

where, wbaseType
2 is the weight of the base type. If derivation is not

explicit (anyType is the base type) the weight of the base type is 1. If we
are in the case of derivation by extension, N, M, K, P, are the number
of non-inherited local or referenced elements, attributes, and referenced
element and attribute groups, that are not related to any element con-
taining recursion. The sum of all these values is added to the weight of
the complex type. If the complex type is derived by restriction, N, M,
K, P, are the corresponding number of schema components not inherited

2The notation wtypename is equivalent to C(CTtypename)

53

CHAPTER 5. COMPLEXITY OF OWS SCHEMAS

from the base type, and its weight is subtracted from the weight of the
base type. In both cases NRC is the number of child elements that con-
tains recursion; and R is an integer value greater or equal than 1 that can
be understood as the weight given to recursion in a schema set.

5.2.2 Subtyping-related Metrics

To measure the influence of the subtyping mechanisms in complexity
we introduce three new metrics: Data Polymorphism Rate(DPR), Data
Polymorphism Factor (DPF) and Schema Reachability Rate (SRR).

The term Data Polymorphism (DP) was introduced in Chapter 2 to
describe the fact where XML nodes have a type (dynamic type) that
differs from the type of its corresponding element declaration (declared
type).

Data Polymorphism Rate

The Data Polymorphism Rate (DPR) is a measure of how much poly-
morphism is contained in the schemas. It calculates the fraction of ele-
ments contained in complex type declarations that are polymorphic, i.e,
its dynamic type may differ from its declared type. It is expressed by the
formula:

DPR =

∑N
i=1 PECTi∑N
j=1 ECTj

(5.2.3)

In the formula, N is the total number of complex types, PECTi is
the number of elements in the declaration of the complex type CTi that
are polymorphic. ECTj is the overall number of elements in the type
declaration of type CTj . For every type, a reference to a global element
and an inner element declaration are considered as equals and count as
1. As a consequence, the numerator is the total number of polymorphic
elements in the schemas. Similarly, the denominator is the total number
of elements contained in all complex types in the schemas. The result
value is in the interval [0, 1], indicating the fraction of the elements that
are polymorphic. This metric is a variation of the Polymorphic Factor
(POF) metric used in the OOP context [AM96].

54

5.2. METRICS

Data Polymorphism Factor

The previous metric gives an idea of the number of polymorphic el-
ements in schemas, but does not measure their influence in the overall
complexity of the schemas. For instance, a polymorphic element that
can be replaced by two other elements does not have the same effect in
complexity than an element that can be substituted by twenty different
elements. In this regard, we define the Data Polymorphism Factor (DPF)
as follows:

DPF =

∑N
i=1 OECTi∑N
j=1 ECTj

(5.2.4)

In this case, OECTi is the number of possible different elements that
could be contained in a complex type. It is the summation of the number
of elements declared in CTi, the number of elements in the substitution
groups of those elements, and the number of possible dynamic types that
can have any element in CTi different from its declared type. The de-
nominator is the same as in the previous metric.

In the formula OECTi >= ECTi for all i ∈ N in the interval [1, N].
As a consequence the values of DPF are always equal or greater than 1,
representing the factor by which the number of elements to be considered
might grow when polymorphic elements are taken into account.

Let us consider, for example, the schema fragment in Listing 2.3.
In this code ContainerType has an element declaration of declared type
Base, but it may also have a different dynamic type: Child. As there are
no substitution groups in the fragment the value of OEContainerType =
1 + 1 = 2. The value of OECTi for the other two types is straightforward
to calculate as they do not contain polymorphic elements. The metric
value for the whole fragment is calculated as follows: DPF = (2 + 1 +
2)/(2 + 1 + 1) = 1.25

Schema Reachability Rate

The last metric proposed in this chapter, Schema Reachability Rate
(SRR), attempts to measure the fraction of imported schema components
that are hidden (not referenced explicitly) by the subtyping mechanisms.
As mentioned in Section 3.2, the schemas of OWS specifications reutilise

55

CHAPTER 5. COMPLEXITY OF OWS SCHEMAS

other schemas by importing them from the main schemas. An imported
component may be referenced directly if it is explicitly mentioned in the
declaration of another schema component, or indirectly, if it is in the
substitution group of a referenced element, or its derived from a type that
is referenced directly. For example, it is not clear for everybody that if
we are using GML 3.1.1 in our schemas and we define an inner element to
be of type gml:AbstractFeatureType3, this element may have 13 different
dynamic types (considering only GML types) in XML documents based
on these schemas.

To calculate SRR, we define first GS , GSH and VRm(G) as follows:

Definition 1: We define GS for the schemas in a specification S
as the directed graph GS = (VS , ES), where vertices in VS, are all of
the global schema components declared in all of the schemas related to S
(main and external schemas). ES are directed edges between these ver-
tices. An edge from vi to vj exists if vj is used somehow in the declaration
of vi.

Definition 2: We define GSH for the schemas in a specification S
as the directed graph GSH = (VSH , ESH), where VSH = VS. ESH extends
ES by including also non-explicit dependencies, i.e. an edge from vi to
vj exists if vj is used somehow in the declaration of vi, or if vj, is in
the substitution group of an element referenced from vi, or vj is a type
derived from a type used in the declaration of vi.

Definition 3: We define, VRm(G) for a directed graph G = (V,E)
and Vm, a subset of V , as the subset containing all of the vertices in V
that are reachable from Vm

Based on these definitions, if we consider that Vm(G) is the subset of
V (G) containing the schema components included in the main schemas,
VRm(G) would contain any schema component that is reachable from
the main schemas. In the case of GS , this will be components reach-
able through explicit dependencies, and in the case of GSH , these are
reacheable components through explicit and non-explicit dependencies.
Using these vertex sets the SRR metric is calculated as follows:

3The prefix gml refers here and in the remainder of this document to the
namespace http://www.opengis.net/gml

56

5.2. METRICS

Figure 5.1: Graph of relations between schema component for schema
fragment in Listing 2.3

SRR =
|VRm(GSH)| − |VRm(GS)|

|VS |
(5.2.5)

The metric measures the fraction of schema components a specifica-
tion depends from, but that are not explicitly referenced from any compo-
nent in the main schemas, or any component reachable through explicit
dependencies from the main schemas.

Figure 5.1 shows the graph of component relations for the schema
fragment in Listing 2.3. If we ignore the hidden dependency between
ContainerType and Child we obtain GS , otherwise we obtain GSH . If we
consider, for example, that the declaration of element container and type
ContainerType are located in the main schemas, and Base and Child and
baseElem2 declarations are located in external schemas, we can calculate
the value of DPRF for the main schemas: Vm = {container, ContainerType},
VRm(GS) = {container, ContainerType,Base, baseElem2}, VRm(GSH) =
{container, ContainerType,Base, Child, baseElem2}, so:

SRR =
5− 4

5
= 0.2

This value means that a fifth of the schema components are referenced
through non-explicit dependencies.

57

CHAPTER 5. COMPLEXITY OF OWS SCHEMAS

5.2.3 Measurement Process Description

The general process used to calculate the values of the metrics for a
specification P (except for C(XSD) and SRR) is described by the following
algorithm:

1. Input: I = {x | x schema files that belongs to main schemas of P }
2. S = I,CO = 0 CL=0, CE = 0

3. While there are unprocessed files in S

(a) Get next unprocessed file x from S

(b) Calculate C(x), value of the metric for x

(c) If x belongs to main schema files CL = CL + C(x)

(d) Else If x belongs to external schema files CE = CE + C(x)

(e) CO = CO + C(x)

(f) Calculate W ={y | y file imported or included in x}
(g) S = S ∪W

4. Output: CO, CL,CE

The most important step is the calculation of C(x) that is the value of
the metric for the corresponding schema file being analysed. For C(XSD)
a more complicated recursive algorithm must be applied to calculate the
metric values. Similarly, to calculate SRR, a modified version of the
breadth-first search algorithm presented in [CLRS01] is used.

The measurement process considers all of the external files included
or imported from the main schemas directly or indirectly. In this regard,
it must be noticed that a particular implementation might not need all of
these schemas. As a consequence, the value of the metrics must be taken
as a worst-case estimation of the size or complexity of the schemas.

5.3 Results

The results of applying the metrics mentioned before to the specifica-
tion schemas listed in Table 3.1 are shown in the following subsections.

5.3.1 XML-Agnostic Metrics

In this section we calculate the values of XML-agnostic metrics, which
are those that do not consider XML-related information. The total
amount of lines of code (LOC) and the number of files (#F) give us
a raw idea of the size of a given schema set. Table 5.1 shows the value

58

5.3. RESULTS

of the metrics for the considered OWS specifications. According to the
categorisation for LOC values presented in [LKR05], a schema set with
between 10,000 and 100,000 LOC is considered large. Values between
1,000 and 10,000 correspond to medium-sized schemas. And values be-
tween 100 and 1,000 correspond to small-sized schemas. There are also
categories for mini schemas, below 100 LOC, and huge schemas, above
100,000 LOC

Table 5.1: Lines of code (LOC) and number of files (#F)

SOS
1.0

WFS
2.0

WCS
2.0

SPS
1.0

WPS
1.0

WMS
1.3.0

GML
3.2.1

GML
3.1.1

SML
1.0.1

O&M
1.0

KML
2.2.0

LOCO 17,877 3,631 15,416 14,439 3,412 774 11,349 10,110 14,242 14,458 3,388
LOCL 1,006 781 407 1,234 1,426 652 7,349 9,598 1,416 216 1,708
LOCE 16,871 2,850 15,009 13,205 1,986 122 4,000 512 12,826 14,242 1,680
#FO 87 23 87 71 29 3 59 33 50 52 3
#FL 16 1 5 20 13 2 29 32 5 2 2
#FE 71 22 82 51 16 1 30 1 45 50 1

Considering the overall values, 7 out of 11 of the specifications are
considered large, three of them are considered medium and only one is
considered small. The specifications related with sensors (SOS, SPS,
SensorML, O&M), as well as WCS, exhibit the higher values for the
metrics. It is not a coincidence that they are the ones with higher number
of dependencies from other specifications. On the other hand, WMS turns
out to be the simplest (which is maybe why it is the most widespread) of
the specifications, being in terms of lines of code, about 20 times smaller
than SOS. WMS does not depend on any major external schema for its
definition. It might be a little bit surprising that WFS presented such
small figures when compared to other web service interface specifications.
The reason for this is that WFS schemas do not reference directly the
schemas for the data exchanged between clients and servers. An actual
implementation of WFS should include some version of GML; hence if we
use for example GML 3.2.1 the overall LOC would be similar to the one of
SPS. The same applies for WPS, which is designed to be complemented
with application-specific schemas, so its final metric value will depend
from the specific implementation.

The proportion of local v. external values for both metrics follows well-
defined patterns (Figure 5.2). Most of the size of web service interfaces is
imported from the encodings defining the data formats. Encodings can

59

CHAPTER 5. COMPLEXITY OF OWS SCHEMAS

Figure 5.2: Values for the LOC metric

have lower or larger local values depending whether they have more or
less dependencies from other encoding specifications. In the cases of SOS,
WCS, SPS, SensorML and O&M, a larger portion of the metric values is
due to their dependencies to some of the GML versions. In all of these
cases, the corresponding GML value of the metric accounts for more than
50% of the overall value.

5.3.2 XSD-Aware Metrics

In this section we calculate the values of XSD-aware metrics, which
are concerned with schema information. The metrics are divided into
those that simply count main schema features, and C(XSD), which takes
the internal structure of components into account to assign a weight value
to each component. These weights are aggregated later to calculate an
overall complexity value for a schema set.

60

5.3. RESULTS

XSD-Aware Simple Metrics

We present first the results of applying XSD-aware metrics that count
the number of main schema components. We start with the number of
complex types (#CT), which is considered paramount for measuring com-
plexity because it measures the number of structured concepts modelled
by the schemas [LKR05] . Moreover, types are the fundamental concept
when schemas are used to write (or generate) XML data binding code.
The #CT metric includes global complex types, as well as anonymous
complex types. The number of complex types by specification is shown
in Table 5.2.

Table 5.2: Number of complex types (#CT)

SOS
1.0

WFS
2.0

WCS
2.0

SPS
1.0

WPS
1.0

WMS
1.3.0

GML
3.2.1

GML
3.1.1

SML
1.0.1

O&M
1.0

KML
2.2.0

#CTO 740 163 797 585 99 33 654 394 610 615 153
#CTL 37 61 16 54 53 33 366 394 109 5 69
#CTE 703 102 781 531 46 0 288 0 501 610 84

Schemas with #CT in the range 256-1,000 are considered large, in
the range 100-256 are considered medium and small with #CT between
32 and 100 [LKR05]. As complex types model concepts, we can state
that higher values of the metric imply higher conceptual complexity. The
values of the overall metrics for all of the 11 specifications belong to these
three ranges, 7 of them are large, two of them is medium-sized and the
other two are small schemas. Again, WCS, SOS and SPS are among the
most complex schemas and WMS is the simplest. We have to take into
account for WFS and WPS, as in the previous group of metrics, that they
are meant to be combined with other encoding specifications.

A categorisation of the schemas based on the number of other schema
components is not provided in the literature. Nevertheless, they can give
us some idea of size of schemas and how often these features are used in
the specifications. Table 5.3 shows the overall values of the metrics for
these schema components, which are also included in Figure 5.3. These
values reinforce the idea of having a clear differentiation between a first
group containing large specifications (SOS, SPS, WCS, both GML ver-
sions, SensorML and O&M), a second group containing medium-sized
specifications (WFS, KML) and a last group with small specifications

61

CHAPTER 5. COMPLEXITY OF OWS SCHEMAS

Table 5.3: Main XML features metrics (except #CT)

SOS
1.0

WFS
2.0

WCS
2.0

SPS
1.0

WPS
1.0

WMS
1.3.0

GML
3.2.1

GML
3.1.1

SML
1.0.1

O&M
1.0

KML
2.2.0

#ST 118 46 74 103 15 5 70 64 100 100 42
#EL 727 156 754 593 64 60 653 485 586 588 292
#MG 28 3 14 19 7 0 7 12 26 26 0
#AT 23 15 20 15 16 9 17 15 33 33 0
#AG 40 12 17 37 9 7 39 35 39 39 2
#ALL 1498 354 1,625 1,150 174 80 1,414 986 1,249 1,256 441

Figure 5.3: Distribution of the number of schema components in the spec-
ification schemas

(WPS and WMS). In Figure 5.3 we can observe the correlation that ex-
ists between the values of the metrics. This observation suggests that the
coding style used in the schemas is consistent through all of the specifi-
cations.

Last, we count wildcards, which allow schema designers to specify
extensibility points using any tags. By using these tags in a complex type
definition, we indicate that any global element can occupy that place in

62

5.3. RESULTS

an instance document. The scope of the valid elements the wildcard is
replaced by can be constrained by their namespace. The use of wildcards
is widespread with the purpose of keeping schemas extensible, but they
greatly complicate the processing of instance files.

A discussion about why the use of wildcards should be avoided when
designing web service interfaces can be found in [Pas06]. We just want to
highlight the fact that when parsing an XML instance we cannot be sure
of what we will find in the place of the wildcards, so we must be ready to
find almost anything. This obviously makes the source code for process-
ing the instances files more complicated. If instead of writing the code
manually we use a code generator, the presence of wildcards limits their
possibilities of performing optimisations. Table 5.4 shows how wildcards
are used in the specifications. In this case, only the specifications already
labelled as large and medium-sized make use of this feature. It is worth
noticing the case of KML where 23 wildcards have been found. 21 of these
wildcards are located in an external schema file imported by KML con-
taining the definition of the eXtensible Address Language (xAL) defined
by OASIS (Organization for the Advancement of Structured Information
Standards)4. The external schema is referenced in a single place in the
KML schemas.

Table 5.4: Use of wildcards

SOS
1.0

WFS
2.0

WCS
2.0

SPS
1.0

WPS
1.0

WMS
1.3.0

GML
3.2.1

GML
3.1.1

SML
1.0.1

O&M
1.0

KML
2.2.0

Wildcards 13 13 5 9 0 0 9 7 10 11 23

5.3.3 C(XSD)

C(XSD) is introduced in [BM09b] and it calculates a weight for each
schema component taking the internal structure of the component into
account. For each schema component a complexity value or weight is
calculated. These values are then aggregated to calculate an overall com-
plexity value for the schemas. This result is an approximation of the
number of primitive (or atomic) information items that must be consid-
ered to fully understand a set of schemas. The metric also considers the

4http://www.oasis-open.org/home/index.php

63

http://www.oasis-open.org/home/index.php

CHAPTER 5. COMPLEXITY OF OWS SCHEMAS

influence in complexity of recursive branches. Tables 5.5 and 5.6 show the
value of the metric for the web service and encoding specifications consid-
ered here. Figure 5.4 shows the value of the metric for the specifications,
assuming a value of R = 2 (weight given to recursion).

Table 5.5: C(XSD) values for OWS specifications

SOS 1.0 WFS
2.0

WCS 2.0 SPS 1.0 WPS
1.0

WMS
1.3.0

CXSD 261,238
+ 2,381R

1,960 +
16R

209,997
+ 1,171R

96,451
+ 885R

1,578 +
2R

707 +
3R

Table 5.6: C(XSD) values for encoding specifications

GML
3.2.1

GML
3.1.1

SML
1.0.1

O&M 1.0 KML
2.2.0

CXSD 150,094
+ 839R

74,609 +
611R

244,827
+ 2,267R

233,194
+ 2,137R

74,940 +
614R

The results of applying this metric to the specifications are much in
the same course of the previous metrics. A couple of interesting facts
deserve more attention, though. For example, the structural complexity
of elements in SensorML and O&M is higher than in WCS even when the
latter contains more complex types in its definition. SensorML and O&M
contain the most complex schema components if analysed individually.
The schema component with the higher value for the metric is Component
with 23016 + 219R. Coincidentally, this element contains the highest
number of recursive branches in its definition. Similarly, the structural
complexity of KML is similar to the one of GML 3.1.1 even when it
contains less than half of its complex types and one third of its LOC
values.

These results reinforce the idea presented in [BM09b] that simpler
metrics such as #CT do not give us all of the information we need about
the complexity of a given schema, as the internal structure of a type can
be very complex or very simple. Hence, they should not have the same
weight in the overall complexity.

64

5.3. RESULTS

Figure 5.4: C(XSD) values for R=2

5.3.4 Subtyping Metrics

XML Schema subtyping mechanisms were introduced in Section 2.2.1.
In this category we count first number of abstract elements or types
(#AET), number of substitution groups (#SG) and number of complex
types derived by restriction or extension (#TE and #TR). The values of
these metrics are shown in Table 5.7.

Table 5.7: Use of subtyping mechanisms

SOS
1.0

WFS
2.0

WCS
2.0

SPS
1.0

WPS
1.0

WMS
1.3.0

GML
3.2.1

GML
3.1.1

SML
1.0.1

O&M
1.0

KML
2.2.0

#AET 61 15 74 52 2 2 63 47 53 53 124
#SG 83 11 123 72 4 0 112 60 72 72 10
#TE 291 55 356 243 30 4 300 182 241 243 55
#TR 59 1 15 54 1 0 13 53 57 57 0

65

CHAPTER 5. COMPLEXITY OF OWS SCHEMAS

The results show that subtyping mechanisms are widely used in the
specifications leading to an elevated number of non-explicit dependencies
between schema components. This may lead to inadvertently overlook im-
portant details when analysing dependencies. An important detail about
type derivation by restriction is that it cannot be mapped “smoothly” to
an object-oriented programming language [Oba95, Das01]. Hence, speci-
fications that make a large use of this feature may suffer from difficulties
when schemas are mapped to these languages, presumably using a code
generator. High values of #TR could also be interpreted as a potentially
flawed design, because if a large number of subtypes requires their content
to be redefined there is a good chance that their ancestors has not been
selected/defined in a correct way.

From the values of #AET in the table the one corresponding to KML
stands out from the rest. KML makes a wide use of abstract elements
and types. On the other hand, it has a relatively low use of substitution
groups and it does not use derivation by restriction at all. These values
contrast with the one for GML schemas, which has lower values for #AET
but have higher values for the rest of the metrics in Table 5.7.

Data Polymorphism Rate

The values for the DPR metric are presented in Table 5.8. From these
results we can observe that simpler specifications contain zero or a low
degree of polymorphism. The rest of the specifications have a similar
degree ranging from 12 to 15%. Saying if these values are too high or
not is not a trivial task; however in [AM96], analysing polymorphism
in the context of OOP, it is stated that a values of POF above 10%
are expected to reduce the benefits obtained with an appropriate use of
polymorphism. This is because highly polymorphic hierarchies will be
harder to understand, debug and maintain.

Table 5.8: DPR values for the OWS specifications

SOS
1.0

WFS
2.0

WCS
2.0

SPS
1.0

WPS
1.0

WMS
1.3.0

GML
3.2.1

GML
3.1.1

SML
1.0.1

O&M
1.0

KML
2.2.0

DPR 0.13 0.12 0.15 0.13 0.05 0 0.15 0.14 0.13 0.13 0.05

66

5.3. RESULTS

Data Polymorphism Factor

Table 5.9 shows the values of DPF for the schemas of the different
specifications. These results show that the effect of polymorphic ele-
ments on SOS and SPS is higher than in WFS and WCS. Presumably
this is caused by the larger number of dependencies of the sensor-related
specifications. SOS and SPS have a lot of common dependencies, that is
why DPR and DPF values are basically the same for both specifications.
As the simplest specifications barely contain polymorphic elements, the
values of DPF for them are equal or close to the minimal value, 1.

Table 5.9: DPF values for the OWS specification schemas

SOS
1.0

WFS
2.0

WCS
2.0

SPS
1.0

WPS
1.0

WMS
1.3.0

GML
3.2.1

GML
3.1.1

SML
1.0.1

O&M
1.0

KML
2.2.0

DPF 2.20 1.47 1.48 2.20 1.05 1 1.40 2.17 2.15 2.16 1.13

Schema Reachability Rate

The different values used to calculate the SRR metric, as well as the
actual value of these metrics are shown in Table 5.10. The results show
that for SOS, WCS, and SPS more than 60% of the schema components
that could be used in XML documents are not referenced explicitly from
the schema component in the main schemas, or any component that is
referenced from them. This high rate suggests that the effect of the
subtyping mechanism in schemas complexity is enormous. For the rest
of the specification the effect goes from moderate (WFS, WPS) to non-
existent (WMS).

Table 5.10: SRR values for the OWS specification schemas

SOS
1.0

WFS
2.0

WCS
2.0

SPS
1.0

WPS
1.0

WMS
1.3.0

GML
3.2.1

GML
3.1.1

SML
1.0.1

O&M
1.0

KML
2.2.0

|VRm(GSH)| 1,277 321 1,349 1,058 146 71 1,334 975 1,070 1,076 398
|VRm(GS)| 319 245 220 203 126 71 1,033 975 325 180 398
|VS | 1,498 353 1,625 1,266 179 80 1,414 986 1,249 1,256 399
SRR 0.64 0.22 0.69 0.68 0.11 0 0.21 0 0.59 0.71 0

67

CHAPTER 5. COMPLEXITY OF OWS SCHEMAS

Specifications with higher values of SRR are those having a larger
number of dependencies and higher values of DPR and DPF. The con-
sequence of having a large number of polymorphic elements, which can
be replaced by a large number of elements or types, is that many of
the schema components dependencies are not explicit. This, on the
other hand, can be the cause of errors or unexpected situations to
schema designers and users. Let us consider an example for GML 3.1.1:
gml:AbstractFeatureType references the global element gml:name, which is
the head element of a substitution group containing other global elements
such as gml:srsName, gml:csName, gml:ellipsoidName, etc. This reference
to gml:name is inherited by a large set of types which derives, directly
or indirectly, from gml:AbstractFeatureType such as gml:PolygonType. At
this point, a polygon instance whose gml:name element is substituted
by an gml:srsName or gml:ellipsoidName element is valid against the
schemas, although this substitution may not make sense at all.

In an experiment presented in Chapter 8, it is reported that only
29.5% of the components of the SOS schemas are used in of a group of
56 server instances. The cause of this low usage may be that the schemas
are perhaps more complex than needed, but may also be that server
developers do not fully comprehend all of the relations between schema
components mostly because these relations are not explicit, nor easy to
discover.

5.3.5 Discussion

The results of the analysis show that at least half of the presented
specifications can be considered as large and/or complex according to
all of the metrics that provide some sort of categorisation. Most of the
metrics coincide in finding a clear differentiation between a first group
containing large specifications (SOS, SPS and WCS), a second group
containing medium sized specifications (WPS and WFS), and a third
group of simple specifications (WMS). More complex specifications, as a
general rule, are those that present a larger number of dependencies from
other specifications. The results show that the subtyping mechanisms,
which is by itself very complex, is extensively used in the schemas, being
an important source of complexity for schema users.

The results also suggest that for obtaining a general view of the com-
plexity of a specification more than one metric must be used because none
of them provides an integral measure that solely could order the specifica-
tions by its complexity or size. This multidimensional view of complexity

68

5.4. PRACTICAL USE OF METRICS

has been mentioned in the research literature, e.g. [KMB04, MD01]. For
example, a metric such as C(XSD), which at first sight looks like an in-
tegral complexity metric, do not measure the effect of wildcards or even
the effect of the subtyping mechanisms. In the same manner, a metric
such as DPF may be used to compare schemas with approximate sizes,
because if the size difference is too big these values may be irrelevant.

5.4 Practical Use of Metrics

The low penetration of software metrics in the software industry has
been frequently highlighted [FN99, MD01, KMB04]. This has been at-
tributed to several factors, such as much academic research is irrelevant
to industrial needs, mainly because academic models often rely in param-
eters which cannot be measured precisely in practice or they mostly focus
on detailed code metrics and not on relevant metrics for process improve-
ment. Another factor is the fact that sometimes it is hard to prove that
a metric actually measures the attribute it claims to measure, specially if
these attributes are qualitative and subjective in nature, as is frequently
the case for software attributes such as quality, maintainability or relia-
bility. For these reasons we consider pertinent to provide examples of how
the metrics presented in this chapter could be used in practice: specifi-
cally we illustrate how metrics aid the evaluation of design decisions and
how they can be used to follow up the evolution of different versions of
the schemas.

These use case scenarios provide examples of the use of software met-
rics in the two different ways introduced in [MD01]: predictive, before
evolution occurs; and retrospective, after evolution occurs. The use case
scenarios are presented in a succinct way due to space limitations.

5.4.1 Use Case Scenario: Evaluating Design Decisions

Using metrics in a predictive way, they can be helpful to decision mak-
ing during the specification design phase. For example, a typical decision
that must be made is redefine vs. reuse, when we must choose between
reusing components in existing specification schemas or redefining them.
Using appropriate metrics we can have an idea of the effect of one decision
or the other in the final size and complexity of the schemas.

For example lets us analyse how WMS 1.3.0 could be affected if we
make it compatible with OWS Common Specification 1.1.0 [OGC07b] and
GML 3.1.1. With a few simple transformations to WMS 1.3.0 schemas,

69

CHAPTER 5. COMPLEXITY OF OWS SCHEMAS

Figure 5.5: XSD-aware simple metrics values for WMS 1.3.0 and its merg-
ing with OWS and GML

we could change the Capabilities file of this specification to follow the
structure defined in OWS common. From Figure 5.5 we can see that using
OWS Common does not make WMS much bigger, with the added value
that support for OWS common can be reutilised from other specifications
if it has been already implemented.

In a second step we could try to reuse components from GML 3.1.1
to define WMS layers. In its broadest sense, a feature is defined as an
abstraction of a real world phenomenon, and a geographic feature is a
feature associated to a location relative to the Earth. According to this
definition we might consider a WMS layer as a geographic feature and as
such, we could define it as a subtype of gml:AbtractFeatureType, defined
on the GML schemas. After modifying the WMS schemas to point to
gml.xsd and calculating the values of the metrics shown in Figure 5.5, we
can see that adding GML is not very helpful, as complexity and size of
the specification is dramatically raised.

70

5.4. PRACTICAL USE OF METRICS

5.4.2 Use Case Scenario: Studying Specifications Evolution

A valid use of metrics in a retrospective way could be the analysis
of schema evolution for a given specification. Evolution of the schemas
may be useful for understanding how and why schemas have grown (or
shrunk), to help choosing which version is more appropriate for a given
application, or to estimate development effort when related web services
specifications are implemented. They can also give us some hints about
what to expect in the future for a certain specification.

For example let us consider the evolution of GML. Figure 5.6 a and
b show the values of the metrics #F, #CT, #EL, #ST, #AT, #AG,
and #MG5. In the figure we can observe the growing trend followed by
the size of GML schemas since its first version. We can observe that the
number of files has been almost multiplied by 20 since the first to the last
version of the specification. Until the advent of GML 3.2.1, the trend was
that numbers inside versions corresponding to the same major revision
(1.x, 2.x) were similar, but in version 3.x the number of complex types
and the number of files have grown more than 90% from version 3.0.0 to
version 3.2.1.

The values of the metrics can help to estimate the effort to upgrade
from one version of GML to another. It can be very useful to figure out
that upgrading a system from using GML 3.1.1 to version 3.2.1 could
not be as straightforward as someone might expect, based on the thought
that the latter is supposed to be a not-so-large revision of the former. If
we take a closer look to local and external values of these metrics we can
see that this “unexpected” growth in size is because of the dependencies
of GML 3.2.1 from the ISO 19139 schemas6.

Apart from the metrics introduced in previous sections, we could use
other metrics to explore and understand the changes from a GML version
to the other. For example, we can consider the number of types kept and
not kept in the GML namespace from one version to the other. If we
consider that two types are the same if they have the same name, we
can say that 305 types were kept, 153 were erased and 113 new types
were introduced in the GML namespace in version 3.2.1 if compared with

5GML 1.0.0 is not defined using XML Schema. The metric values shown for
that version of the specification are the result of converting from DTD to XML
Schema using the XML editor <oXygen/>: http://www.oxygenxml.com

6ISO/TS 19139:2007. Geographic information – Metadata – XML schema
implementation (http://www.iso.org/iso/catalogue_detail.htm?
csnumber=32557)

71

http://www.oxygenxml.com
http://www.iso.org/iso/catalogue_detail.htm?csnumber=32557
http://www.iso.org/iso/catalogue_detail.htm?csnumber=32557

CHAPTER 5. COMPLEXITY OF OWS SCHEMAS

Figure 5.6: Following GML evolution through metrics

version 3.1.1. We can refine the type equality statement to consider in
addition to the type name, its location or other more sophisticated criteria
if we need more precision in the comparison.

5.4.3 Other Possible Scenarios

Metrics can also help us detecting potential problematic issues re-
lated to implementation. For example, as mentioned in Section 5.3.4,
derivation by restriction tend to cause problems when mapped to object-
oriented languages. Another potential problematic implementation issue
is the use of similar names that could cause name collisions when using
generators. For example, GML 3.1.1 contains several element names dif-
ferentiated only by casing or by the use of underscores or similar symbols
as a prefix: gml:FeatureStyle and gml:featureStyle, gml:TopologyStyle and
gml:topologyStyle, gml:Surface and gml: Surface, etc. Last, metrics can
also be used to asses the effectiveness of different solutions to the problem
of complexity of schemas as will be presented in more detail in the next
section.

72

5.5. PRAGMATIC SOLUTIONS TO COMPLEXITY

5.5 Pragmatic Solutions to Complexity

In this section we expose several possible solutions to manage the com-
plexity of the OWS specification schemas. Some of the metrics presented
before are used to illustrate the effectiveness of each solution.

5.5.1 XML Data Binding Code Generators

The use of automatic tools for code generation may reduce consider-
ably the work of developers. In fact, it seems that many schema designers
take for granted that code generators will be used to generate XML pro-
cessing code for the specification schemas. Let us consider here, a scenario
where XML data binding code for the SOS schemas must be produced.
To produce this code we will use the code generators presented in Section
2.3.2: JAXB, XMLBeans and XBinder. In the case of XBinder the code
will be targeted to Android. All of these generators need, apart from the
generated code, a set of supporting libraries that must be included in our
applications at execution time.

Figure 5.7 shows a comparison of the code generated with these tools
regarding the size of the compiled generated code. In addition to this
value, the size of the supporting library and the combined size of gener-
ated code and libraries are presented.

The results show that in all cases the overall size is rather large, if we
look at them taken into account the inherent constraints of mobile de-
vices. The values for JAXB stands out among the rest, being significantly
smaller. Still, these values are too large to be adequate for execution in
a mobile device, in addition to the fact that JAXB is not supported in
J2ME nor Android Java API. In the opposite direction, the figures for
XMLBeans are also significant, the generated code, as well as the library
code, are much larger than the other generators. The main reason seems
to be that it was never meant to be used with such large schemas, as such
it uses a more complex mapping from schema components to program-
ming language objects.

The differences in code distribution between JAXB and XBinder seem
very interesting. XBinder, when used to generate code for mobile devices,
uses very light supporting libraries, but at the expense of moving most
of XML processing to the generated code. On the other hand, JAXB has
all of the XML processing in the supporting libraries and generates clean
and compact code7.

7In some stage of the investigation we use the XSD Schema Definition Tool for

73

CHAPTER 5. COMPLEXITY OF OWS SCHEMAS

Figure 5.7: Comparing size of code (KBs) for different code generators

This comparison between code generated using different tools shows
that the size and complexity of the schemas has a direct impact on the
code generated from them. In many desktop or server environments the
effects of this impact, although should not be taken lightly, can be reduced
by the use of powerful hardware. Unfortunately, this is not the case for
mobile devices, where limitations regarding memory, processing power,
and its close relation to battery life do not have a solution yet.

Last, we would like to point out that for none of the generators the
binary code could be directly produced without needing some kind of
adjustments. The adjustments could be related to modifying code by
hand to avoid compilation problems related to the use of derivation by
restriction, or changing configuration parameters to avoid name clashes,

.NET platform http://msdn.microsoft.com/en-us/library/x6c1kb0s(v=

VS.100).aspx. The code generated by this tool was similar to that of JAXB,
very clean and compact, because all of the XML processing was located in
the supporting libraries. In .NET Framework 4.0, the size of the supporting
library for XML processing is 2156 KB.

74

http://msdn.microsoft.com/en-us/library/x6c1kb0s(v=VS.100).aspx
http://msdn.microsoft.com/en-us/library/x6c1kb0s(v=VS.100).aspx

5.5. PRAGMATIC SOLUTIONS TO COMPLEXITY

or the failure of the generator to follow the intricate dependencies between
schema components.

5.5.2 Profiles

The use of profiles, used here in its broadest sense as subset of the
schemas, is a well-known solution to the problem of complexity of schemas.
Even, a subsetting tool is included with GML 3, to extract subsets of the
GML schemas. In addition, a set of standard profiles for GML has been
defined such as the Simple Feature Profile (SFP)[OGC06a], Common CRS
[OGC05a] or CRS Support Profile [OGC05b].

A similar solution to the use of profiles is what we call “selective
importing”, where only the used schemas of a given specification are im-
ported instead of the whole specification. For example, if we need support
for GML features in our schemas, we could import feature.xsd directly
instead of gml.xsd8.

Following the steps of the GML subsetting tool, [TGH11b] presented
an algorithm to extract customised schemas depending on specific appli-
cation needs. This algorithm uses a set of instance files that must be
processed by an application to identify which parts of the schemas are re-
ally necessary. Although the example presented there is related to mobile
applications based on the SOS specification the algorithm can be applied
to other specification schemas as well. This algorithm will be presented
in detail in Chapter 6, as it is the core of the approach we are proposing
to deal with schemas complexity.

Let us suppose that the portion of SOS schemas that belongs to GML
3.1.1 used in the application in [TGH11b] are all included in SFP and the
set of schemas that starts in feature.xsd. In this case, we could compare
the following approaches according the some of the metrics presented
before:

• Use the whole GML schemas (by importing gml.xsd)

• Use the Simple Feature Profile

• Use selective importing (by importing feature.xsd)

• Use the GML subset extracted using the algorithm in [TGH11b]

8This is not always possible such as in the case of GML 3.2.1. This version
is designed in a way that schemas using GML schemas can only be validated
correctly if they import gml.xsd

75

CHAPTER 5. COMPLEXITY OF OWS SCHEMAS

Figure 5.8: Comparing effectiveness of different approaches to deal with
the complexity of schemas

The result of counting the main schema components in each case is
presented in Figure 5.8. It is obvious from the figure that any of the
approaches that try to avoid the use of the whole schemas could reduce
considerably the overall schemas complexity. We could also conclude that
the use of more specific solutions instead of generic ones could greatly
simplify the implementation of real systems.

5.5.3 Using the Linked Data Style

A second pragmatic solution could be the use of the “linked-data
style”. Linked data is a paradigm that advocates for, similarly to the web
of hypertext, building the Web of Data by linking the information con-
tained in documents in the web with other documents containing related
information. This can be accomplished by following for basic principles:
Use URIs as names for things, use HTTP URIs so that people can look up

76

5.6. CONCLUDING REMARKS

those names, when someone looks up a URI provide useful information
using the standards (RDF, SPARQL), and include links to other URIs
[BL06].

As pointed out in [SGD10], since its inception GML has provided a
mechanism to implement this paradigm of distributed data model. The
GML specifications allow users to either use embedded objects or use
references to external objects. What would be the effect on schema com-
plexity if we force the use references instead of embedding data directly?
Let us analyse this in the context of GML 3.1.1. Next, we compare the
value of the metric C(XSD) for the original schemas against a modified
version of the schemas in which only the “linked style” is supported. It
must be noticed that forbidding the embedded style does not change the
number of global components in the specifications, for this reason we
have not used any of the metrics based on counting these items. The
overall value of C(XSD) for the full schemas is 74,609 + 611R. The over-
all value for the schemas following the linked-style (GML Linked Profile)
has been reduced to 18,731 + 13R, which considering that R=2 ,signifies
a reduction of more than 75% of the complexity of the original schemas.

The scenario presented here is an extreme one, as all the embedded
data has been removed from the schemas. In a real implementation other
aspects apart from schemas complexity must be considered. In the case
above, removing the chance of embedding data will increase the number of
messages exchanged on the network as each piece of information must be
requested separately by following the links provided by other documents.
Nevertheless, this does not necessarily imply that we will have a higher
network traffic, as we could follow these links only if needed, and we will
not be obliged to read all of the information as if were embedded in other
documents. In any case, in a real implementation, different trade-offs
could be made about what to link and what to embed to satisfy all of the
application requirements.

5.6 Concluding Remarks

In this chapter we have presented a quantitative way to analyse and
measure the complexity of OWS schemas. The use of adequate metrics
allows us to quantify the complexity and other properties of the schemas.
The results of the analysis have shown that at least half of the presented
specifications can be considered as large and complex according to all
of the metrics included in our study. The metrics also allowed to group
specifications according to their complexity.

77

CHAPTER 5. COMPLEXITY OF OWS SCHEMAS

The new metrics introduced here (DPR, DPF and SRR) have shown
from different views the effect of the use of subtyping mechanism on
complexity. For example, DPR has shown the fraction of polymorphic
elements, frequently high, included in the schemas. DPF has consid-
ered how the possible polymorphic situations for these elements increase
the effort needed to fully understand the schema components definitions.
Last, SRR has shown that more than 60% of the schema components in-
cluded in large specifications are referenced in ways that cannot be seen
explicitly, augmenting the risk of making mistakes while working with the
schemas.

We have also presented use case scenarios where metrics could be ap-
plied. Nevertheless, the metric set presented here should not be seen as
a closed set, many other metrics can be useful in many different scenar-
ios. Some of the potential uses of metrics are to evaluate the impact of
design decisions, assessing the effectiveness of different solutions to deal
with schemas complexity, and to detect potential design problems such
as components with too many information items, or excessively deep sub-
typing hierarchies.

78

CHAPTER 6

Instance-based Schema
Simplification

In the previous chapter we have seen that most of the OWS spec-
ifications schemas are large and this has a direct impact on the XML
processing code generated using XML data binding tools. While develop-
ing an application, if the generated code does not meet its requirements,
it must be written manually, which could be a daunting task judging for
the size of the schemas. Although the application may not need all of the
information contained in the schemas, due to their length and complex
dependencies that exist between schema components, it is very hard to
separate the parts we need from those we do not. This implies in many
cases that developers partially or totally ignore the specification schemas,
wasting all of the potential they offer to automate the production of XML
processing code.

In our opinion, the impossibility of writing XML processing code for
mobile devices in an easy and reliable way is probably one of the main
causes of the low adoption of OWS clients in mobile environments. In
this spite, we present in this dissertation a solution called Instance-based
XML Data Binding. This solution consists in the automatic extraction

The algorithm presented in this chapter has been published with the title
“Dealing with large schema sets in mobile SOS-based applications” in Pro-
ceedings of the 2nd International Conference on Computing for Geospatial
Research & Applications (COM.Geo 2011), May 23-25, Washington, DC 2011.
DOI: 10.1145/1999320.1999336

79

CHAPTER 6. INSTANCE-BASED SCHEMA SIMPLIFICATION

of the subsets of the specifications schemas used in a given application,
and the use of such subset to generate XML processing code adapted to
mobile device restrictions. Our main optimisation metric will be the size
of code generated from the schemas, as it is one of the main obstacles to
accommodate this code on OWS-based mobile applications. We also want
the solution to generate code that is able to process as many XML docu-
ments as possible even if they contain typical validation errors. The main
objectives must be accomplished without incurring in severe performance
penalties regarding mostly execution time.

In this chapter we present an introduction to Instance-based XML
Data Binding. After this, the remainder of the chapter focuses in the
first step of the solution, which is concerned with extracting the subset of
the schemas that are used on a given application. All the details regarding
code generation for a specific platform and programming language will
be presented in the next chapter.

6.1 Instance-based XML Data Binding

Instance-based XML data binding code generation, is a two-step pro-
cess. The first step, Instance-based schema simplification, extracts the
subset of the specification schemas that is used by the application, based
on the assumption that a representative subset of XML instances that
must be manipulated by the application is available. The second step,
Code generation, consists on using all of the information extracted on the
previous step to generate XML processing code as optimised as possible
for a target platform.

We have divided the process in two steps because this way the results
of the first step can be used in a platform-neutral way, meaning that
the extracted schemas subset can be used to generate code using any
other code generator available for any operating system or programming
language. The second step produces code for a specific platform and
programming language, Android and Java, respectively.

The whole process is shown in Figure 6.1, the inputs to the first step
are the schemas for a given specification and a set of XML documents
conforming to them that must be processed by the application. The
outputs will be a subset of the schemas and other information about the
use of certain features of the schemas that can be used to optimise the
code in the following step. The outputs of the first step are the inputs of
the code generation step. In this chapter we will focus only in Instance-
based Schema Simplification.

80

6.1. INSTANCE-BASED XML DATA BINDING

Figure 6.1: Instance-based XML data binding code generation process

6.1.1 Instance-based Schema Simplification

The aim of the Instance-based Schema Simplification step is to ex-
tract the subset of the schemas used on a set of XML documents. This
information can be used later to produce more compact XML processing
code (see Chapter 7). The idea behind this approach, which is more for-
mally defined in subsequent sections is depicted graphically in Figure 6.2.
Starting from a set of XML instances and the schema files defining their
structure, we calculate which schema components are used and which are
not. After this, we suppress all of the components that are no longer
necessary.

81

CHAPTER 6. INSTANCE-BASED SCHEMA SIMPLIFICATION

Figure 6.2: Relations between information items in XML documents
(right) and schemas components defining its structure (left)

The figure shows to the left the graph of relationships between
schema components. The different planes represent different specification
schemas, with the main specification schemas at the top. Links between
schema components represent dependencies between them. To the right
we have the tree of information items (XML nodes) contained in XML
documents. For the sake of simplicity we show only the tree of nodes
corresponding to a single instance. An edge between an XML node and
a schema component represents that the component describes the struc-
ture of the node. To simplify the figure we have only shown a few edges,
although and edge for every XML node must exist.

In the following sections we present in detail how the simplification
algorithm works, focusing in how the subset of the schemas is determined.
The calculation of the second output, Schema Use Information, is not
detailed here, it will be just mentioned as needed in the following chapter
as this information is more closely related to code generation issues. The
next section presents the necessary notation and concepts used later on.
After this, Section 6.3 presents the algorithm in detail. Last, Section
6.4 presents experimental results of applying the algorithm to a real case
study.

82

6.2. NOTATION

6.2 Notation

To refer to nodes contained in instance files, we will use XPath no-
tation [W3C99b]. XPath expressions are shown in bold. The following
examples referring to nodes in Listings 2.1 and 2.2 should suffice to un-
derstand the notation through the remainder of this chapter:

• /Container refers to the root node of both instances.

• /Container/item refers to all items contained in the root ele-
ments.

• /Container/item[i] refers to item in position i inside /Container.
Positions are counted starting at 1.

To refer to components in schema files, we will use the following notation:

• To refer to global types and elements, we use its name in italics,
e.g. Container, ContainerType, etc.

• To refer to attributes or elements within types, model groups or
attribute groups, we add their name and a colon as prefix to the at-
tribute or element name. The whole expression is written in italics.
For example: ContainerType:item, Base:baseElem, Child:chdElem,
etc.

For the purpose of our discussion we define the concept of schema set in
the following way:

Definition 1: An schema set S = (TS, ES, AS, MGS, AGS, RS),
where TS is the set of all type definitions, ES is the set of all element
declarations, AS is the set of all attribute declarations, MGS is the set
of all element group definitions, AGS is the set of all attribute group
definitions, and RS is a set of binary relations (described later) between
components of TS, ES, AS, MGS, and AGS.

Components included in sets TS , MGS and AGS , are composed by
a set of inner components. In the case of types, inner components can
be references to global elements, attributes, model groups and attribute
groups, or they can be nested element and attribute declarations. Model
groups may contain references to global elements and other model groups,
or they may contain nested element declarations. Similarly, attribute
groups may contain references to other global attributes and attribute

83

CHAPTER 6. INSTANCE-BASED SCHEMA SIMPLIFICATION

groups, or they may contain nested attribute declarations. Inner compo-
nents can be optional, meaning that it is legal that they do not appear
in all valid instance documents. For example in Listing 2.3, element
baseElem2 in Base is optional; as such, items in Listings 2.1 and 2.2 are
valid even when they do not contain this element.

The binary relations contained in RS are:

• isOfType(x, t): relates an element or attribute x to its correspond-
ing type t. For example: isOfType(Container, ContainerType),
isOfType(Base:baseElem, string).

• reference(x, y): relates x ∈ TS ∪MGS ∪ AGS to y ∈ ES ∪ AS ∪
MGS∪AGS if x references y in its definition using the ref attribute
in any of its components, e.g. reference(Base, baseElem2).

• contains(x, y): relates x ∈ TS∪MGS∪AGS to y ∈ ES∪AS if x de-
fines y as an inner attribute or element in its declaration, e.g. con-
tains(Base,Base:baseElem), contains(Child,child:chdElem), con-
tains(Container, Container:item).

• isDerivedFrom(t, b): relates a type t to its base type b, e.g.
isDerivedFrom(Child, Base)

• isInSubstitutionGroup(x, y): relates an element x to another
element y if y is the head element of the x ’s substitution group.

The schema set S for the schema fragment in Listing 2.3 remains as
follows1:

S = { TS = { Base, Child, string, ContainerType}
ES = { Container, baseElem2, Base:baseElem,

Child:chdElem, ContainerType:item}
AS = ∅
MGS= ∅
AGS= ∅
RS = { isOfType = { (Container,ContainerType),

(baseElem2, string),
(Base:baseElem, string),
(Child:chdElem, string),
(ContainerType:item, Base) },

1XML Schema anyType has been omitted purposely to simplify exposition.

84

6.2. NOTATION

Figure 6.3: Graph of relations in schema fragment in Listing 2.3

isDerivedFrom = {(Child, Base)},
reference = {(Base: Base:baseElem2)},
contains = {(Base, Base:baseElem),

(Child, Child:chdElem),
(ContainerType,

ContainerType:item)}
isInSubstitutionGroup = ∅}

Figure 6.3 shows a graph with all of these relations. This graph does
not reflect hidden dependencies between types or elements. To include
them in the graph we had to add an extra edge between Container-
Type:item and Child as the former may be of type Child in instance files.

Next, we define the subset relation for schemas:

85

CHAPTER 6. INSTANCE-BASED SCHEMA SIMPLIFICATION

Definition 2: Let S = (TS, ES, AS, MGS, AGS, RS) and S1=(TS1,
ES1, AS1, MGS1, AGS1, RS1), be two schema sets, we said that S1 is a
subset of S if TS1 ⊆ TS, ES1 ⊆ ES , AS1 ⊆ AS ,MGS1 ⊆ MGS , AGS1 ⊆
AGS, and for every relation RiS in RS , RiS1 ⊆ RiS, for example,
isTypeOfRS1 ⊆ isTypeOfRS

According to this definition a subset of the schema set shown above
could be:

S = { TS = Base, string, ContainerType
ES = {Container, Base:baseElem,

ContainerType:item}
AS = ∅
MGS= ∅
AGS= ∅
RS = { isOfType = { (Container,ContainerType),

(Base:baseElem, string),
(ContainerType:item, Base) },

isDerivedFrom = ∅,
reference = ∅,
contains = {(Base, Base:baseElem),

(ContainerType,
ContainerType:item)}

isInSubstitutionGroup = ∅}

Last, we define the union of two schema sets. This operation will be
used in the following sections.

Definition 3: Let S1 = (TS1, ES1, AS1, MGS1, AGS1, RS1) and
S2=(TS2, ES2, AS2, MGS2, AGS2, RS2), be two schema sets, we said
that S = (TS, ES, AS, MGS, AGS, RS) is the union of S1 and S2

if TS = TS1 ∪ TS2, ES = ES1 ∪ ES2, MGS = MGS1 ∪ MGS2, AS =
AS1∪AS2, AGS = AGS1∪AGS2 and ∀RiS ∈ Rs, RiS = RiS1∪RiS2; e.g.
isTypeOfRS = isTypeOfRS1 ∪ isTypeOfRS2

86

6.3. SIMPLIFICATION ALGORITHM

6.3 Simplification Algorithm

In practical terms our problem of simplifying the schema set related
to a given specification Z, denoted as SZ , to the subset that is used in an
actual implementation P, denoted as SP can be formulated as follows:

Problem: Calculate SP starting from SZ and X, a set of instance
files, knowing that X ⊆ I(SP), trying to make SP as small as possible.
I(SP) is the set of all instances valid against SP

As the set of valid XML instances for a schema is potentially infinite,
the resulting schema set should validate correctly all of the instances in
X files, but might validate others as well.

6.3.1 Helper Functions

The algorithm to calculate SP uses the following helper operations in
its definition:

• typeOf(node): returns the type of an XML node in an instance
file. For example in Listing 2.1, typeOf(/Container) = Con-
tainerType, typeOf(/Container/item[1]) = Base. In instance 2
typeOf(/Container/item[1]) = Child.

• element(node): returns the element definition matching the con-
tent of node. For example, element(/Container/item[1]) =
ContainerType:item in both instances in Listings 2.1 and 2.2.

• containerOf(node): returns the component contain-
ing the definition or reference to element(node). For
example, containerOf(/Container/item[1]) = con-
tainerOf(ContainerType:item) = ContainerType in Listings
2.1 and 2.2.

• ancestors(type): returns all of the ancestors of type.

• leaf(node) : returns true is node is a leaf, i.e. node does not con-
tain any child element and has a value. Examples of leaf nodes in
Listing 2.2 are /Container /item[1]/baseElem and /Contain-
er/item[1]/chdElem.

• root(instance file): returns the root node of instance file.

• addValueToRelation(S, R(x,y)): adds R(x,y) to the schema set
S. R must be one of the relations defined in Section 6.2.

87

CHAPTER 6. INSTANCE-BASED SCHEMA SIMPLIFICATION

• copyRelations(ST , SS, C): Copy all relation pairs between schema
components in C, from the source schema set SS to the target
schema set ST .

6.3.2 Algorithm

Algorithm 6.1 shows how SP is calculated.

1: Input: X = { x|x input instance file }
2: Input: schema set S
3: Output: schema subset SX needed to validate instances in X
4: SX = ∅
5: for each x in X do
6: T = SchemaSubsetUsedIn(root(x), S)
7: SX = union(SX , T)
8: end for

Algorithm 6.1: Schema simplification algorithm

The key of the algorithm is the function SchemaSubse-
tUsedIn(node, schema set) that calculates the subset of the schemas
used in an XML file fragment starting at a given node (Algorithm 6.2).
The second parameter is the schema set defining the fragment structure.
The result of this function is calculated for the root element of all XML
instances and then combined through the union operation defined in the
previous section.

Algorithm 6.2 shows the details of SchemaSubsetUsedIn. For the
sake of clarity in the exposition of the algorithm we do not consider
attributes and substitution groups. The code considering these cases is
similar to processing element and subtypes, respectively.

The algorithm starts by adding the element definition matching the
content of the node specified as input to the result (line 5). The
type of the node is also added (line 6), as well as pair (element(x),
typeOf(element(x))) to relation isTypeOf (line 7). It is very impor-
tant to notice at this point that typeOf(x) and typeOf(element(x)) are
not always the same because the dynamic type of x may be a subtype of
the declared type for the element matching its structure.

The next step is to analyse the child nodes in x, in case it has any (line
9). For each child node z, we call recursively the function SchemaSubse-
tUsedIn and the schema set returned by this function is combined with

88

6.3. SIMPLIFICATION ALGORITHM

1: Input: XML node x
2: Input: schema set S
3: Output: schema subset SX needed to validate instances in x
4: Sx = ∅
5: ESx = ESx + element(x)
6: TSx = TSx + typeOf(x) + ancestors(typeOf(x))
7: addValueToRelation(Sx,typeOf (element(x),

typeOf(element(x))))
8: copyRelations(Sx, S, ancestors(typeOf(x)))
9: if not leaf(x) then

10: for each child node z of x do
11: Sx = union (Sx, SchemaSubsetUsedIn(z, S))
12: Container =containerOf(x)
13: if z belongs to a model group M then
14: MGSx = MGSx + x
15: addValueToRelation(Sx,reference(

containerOf(M), M))
16: Container = M
17: end if
18: if z is reference to global element then
19: addValueToRelation(Sx,reference(Container,

element(z)))
20: else
21: addValueToRelation(Sx, contains(Container,

element(z)))
22: end if
23: end for
24: end if
25: Result =Sx

Algorithm 6.2: SchemaSubsetUsedIn function

the current result using the union operation (line 11). After this, a set of
relation values are added to maintain the consistency of the model. First,
the container of x is calculated (line 12). The container is the type or
model group that contains the element matching node x. This container
could be typeOf(x) but could also be any of its ancestors. It also could be
any model group referenced by typeOf(x) or any of its ancestors. For ex-
ample, let us calculate containerOf(/Container/item[1]/baseElem)

89

CHAPTER 6. INSTANCE-BASED SCHEMA SIMPLIFICATION

in Listing 2.2 presented in Chapter 2. Even when typeOf(/Container/
item[1]) is type Child, this type does not contain the definition of Con-
tainer/item[1]/baseElem because it was inherited from type Base.

The relation between element(z) and its container must be added to
the result. The pair (ContainerOf(element(z)),element(z)) is added
to reference or contains, depending if the element is referenced or it
is a nested declaration. In the case the container is a model group the
reference between its own container and the model group must be added
to the result as well.

6.4 Experimentation

With the purpose of proving the effectiveness of the algorithm we will
use it to calculate the subset of the SOS schemas used in a case study.
The case study is the implementation of the communication layer for a
client for SOS targeted to the Android platform. The client must provide
support for the core profile of the SOS specification, which includes the
operations GetCapabilities, DescribeSensor and GetObservation.

On the server side we will use a 52◦ North SOS Server2, containing
information about air quality for the Valencian Community gathered by
57 control stations located in that area (Figure 6.4). The stations measure
the level of different contaminants in the atmosphere.

To measure how much of the schemas can be reduced with the algo-
rithm presented above, we compare the size of the original or full schema
set with the size of the reduced or simplified schema set. To measure the
size of a schema set S = (TS , ES , AS , MGS , AGS , RS), we calculate
the cardinality of the first five sets conforming the schema set, and the
cardinalities of every relation included in RS .

After this, we use three different XML data binding generators to
measure how much the generated binary files are reduced when using the
simplified schema set. As our work is focused on the implementation of
XML processing code, we just consider this part of the implementation
code in the following subsections.

2http://52north.org/SensorWeb/sos/

90

6.4. EXPERIMENTATION

Figure 6.4: Location of air pollution control stations in the Valencian
Community

6.4.1 Gathering Input Instance Files

In order to generate the schema subset needed for the SOS client we
must decide which XML instances should be passed as input to the al-
gorithm. To obtain these files a set of requests have been manually sent
to the server and the server responses have been stored. As a result of
this process, we gathered 2492 instance files as input: the capabilities

91

CHAPTER 6. INSTANCE-BASED SCHEMA SIMPLIFICATION

file, 2312 responses containing sensor descriptions, and 179 correspond-
ing to observations3. Our application must be capable of processing the
following root elements:

• Capabilities: Server response with the service capabilities file

• SensorML: Server response containing information about a sensor.

• ObservationCollection: Server response with observation data.

The first element is defined directly in the SOS specification and
the other two are imported from the SensorML [OGC07c] and O&M
[OGC07a] specifications, respectively. The number of files to be used as
input will depend from the particular application being developed. It
might depend on the availability of XML instances and how different the
content of these files is.

6.4.2 Generating the Output Subset

After applying the algorithm with the inputs described above we ob-
tained the results shown in Table 6.1 and Figure 6.5, where the original
schema set is compared with the simplified set. In addition to cardinal-
ities of components and relations we use two composite metrics: TotalC
for the summation of cardinalities of all components and TotalR for the
summation of cardinalities of relations. Results show that the new algo-
rithm allows a substantial reduction of the original schema set of about
90% of its size.

6.4.3 Generating Binary Code

We explore next how this reduction is translated into generated code,
using the generators presented in Chapter 2. As in Section 5.5.1 the
main metric used to compare generated code is size measured in Kilobytes
(KBs).

Source code is generated for the schemas before and after the simplifi-
cation algorithm is applied. Then, the source is compiled and compressed
into a JAR file. The size of the generated code is compared with and
without considering the supporting libraries.

3In this case, a much smaller set of files would suffice as the structure of the
XML documents of the same type were nearly identical

92

6.4. EXPERIMENTATION

Table 6.1: Comparing original and simplified schema sets

Metric Full Schema
Set

Simplified
Schema Set

|TS | (#T=#CT+#ST) 846 112
|ES | (#EL) 2,020 183
|AS | (#AT) 400 22
|MGS | (#MG) 28 7
|AGS | (#AG) 39 3
|isTypeOfS | 2,420 205
|referenceS | 968 63
|containsS | 739 81
|isDerivedFromS | 490 74
|isInSubstitutionGroupS | 290 17
|TotalC | (#GLOBAL) 3,333 327
|TotalR| 4,617 423

Table 6.2: Comparing size of code (KBs) for original and simplified
schema sets

XBinder JAXB XMLBeans

Full 3626 754 2822
Reduced 567 90 972
Full+libs 3816 1810 8879
Reduced+libs 684 1146 3655

Table 6.2 shows in the first two rows the comparison of the code
size only for generated code (Full, reduced) showing a large reduction
of between 79 and 88%. Next two rows compare code size including
supporting libraries (Full+libs, reduced+libs). In this case the reduction
is smaller as the size of the libraries remains constant. It ranges from a
37% reduction in JAXB to 84% in XBinder. In all cases the reduction of
the generated code size is substantial. And the size of the code targeted
to mobile devices (684 KB) seems like something that can be handled by
modern devices.

93

CHAPTER 6. INSTANCE-BASED SCHEMA SIMPLIFICATION

Figure 6.5: Simple schema metrics for original and simplified schemas

6.5 Concluding Remarks

In this chapter we have presented an algorithm to simplify large
schema sets in an application-specific manner. The algorithm takes ad-
vantage of the fact that individual implementations use only portions of
the schemas, which allows the simplification of large schema sets by using
a set of XML instance files conforming to these schemas.

Results of applying the algorithm to a real-world use case scenario
have shown that the algorithm allows a substantial reduction of the origi-
nal schema set of about the 90% of its size. This huge reduction in schema
size is translated into a reduction of generated binary code of more than
80% of its size for a SOS client targeted to the Android platform. As

94

6.5. CONCLUDING REMARKS

the transformation is done at the schema level and no assumption about
the target platform is made by the algorithm, it still can be used for
other kind of SOS applications. Nevertheless, the resource constraints
associated to mobile devices make the algorithm far more useful in this
area. The algorithm could be also applied to other OWS specifications
although based on the little experience we have with other specifications
besides SOS, we cannot state that the reduction could be as large as that
obtained in the use case scenario presented here.

95

CHAPTER 7

XML Data Binding for
Mobile Devices

As mentioned before in this document, Instance-based XML data bind-
ing code generation, is a two-step process. The first step, Instance-based
schema simplification, has been presented in the previous chapter. The
second step, involving the generation of code for a mobile platform is
presented in this chapter.

Generating code for mobile devices poses additional complications to
XML Data Binding code generators. The constraints related to memory,
processing and battery life has not made possible that existing generators

A short version of the content of this chapter with the title “XML Data
Binding for Mobile Applications Based on Large XML Schemas” has been
accepted to the Third International Workshop Middleware for Pervasive Mo-
bile and Embedded Computing, M-MPAC 2011, (A workshop of the ACM/I-
FIP/USENIX 12th International Middleware Conference), December 12, Lis-
bon, Portugal.

An extended version of the sample application in Section 7.5.1 with the title
“Building Compact Standard-Based Geoprocessing Mobile Clients” has been
submitted to The Fourth International Conference on Advanced Geographic
Information Systems, Applications, and Services (GEOProcessing 2012).

An extended version of the sample application in Section 7.5.2 has been
published with the title “Sensor Observation Service Client for Android Mo-
bile Devices” in Proceedings of Workshop on Sensor Web Enablement 2011
(SWE2011), October 6-7, Banff, Alberta, Canada.

97

CHAPTER 7. XML DATA BINDING FOR MOBILE DEVICES

for desktop or server applications could be easily adapted to these devices.
As a consequence, the availability of generators for mobile devices is much
more limited than for other environments.

In our case, we will generate code for the Java programming lan-
guage and the Android mobile platform. These choices have been made
based on the availability of mature tools to implement a prototype which
will be used to build some sample applications and to be readily applied
to ongoing projects with actual requirements. Although the number of
generators and development tools per mobile platform and programming
language may vary, the techniques and conclusions drawn in this chapter
are applicable to most platforms.

7.1 XML Data Binding Code Generator

Even when using the schema simplification algorithm may largely re-
duce the size of code generated with different XML data binding genera-
tors, the process can still be improved using other information gathered
during the analysis of XML instances. For this reason, we decided to
build our own generator to take advantage of this information. This in-
formation was labelled as Schema Use Information in Chapter 6 (Figure
6.1). It will contain a record of the usage of schema characteristics such
as type and element substitutions, occurrence constraints, etc.

Figure 7.1 shows a more detailed view of the code generation process
(Step 2 in Figure 6.1). The outputs of the schema simplification step are
used as inputs to the schema processor, the component of the generator in
charge of creating the data model that will be used later by the template
engine. The template engine combines pre-existing class templates with
the data model to generate the final source code. The use of a template
engine allows the generation of code for other platforms and programming
languages by just defining new class templates.

7.1.1 Supported Features

The code generator presented here presents the following features that
contribute to the generation of optimised code. All of these features will
be explained in detail later on this chapter:

• Support for instance-based code generation: The first step of the
instance-based XML data binding process, in addition to calculating
the subset of the schemas used, also gather other information that

98

7.1. XML DATA BINDING CODE GENERATOR

Figure 7.1: Flow diagram for the code generation process

allow customisations to be applied to the generated code such as
those listed next:

– Efficient handling of subtyping and wildcards: Using the infor-
mation contained in XML documents we can bound the num-
ber of entities that may replace types and substitution groups
head elements in valid documents. Something similar can be
done with substitutions of wildcards.

– Inheritance flattening : Geospatial schemas typically present
deep subtyping hierarchies and by flattening these hierarchies
we can reduce the number of classes in the generated code.

– Adjust occurrence constraints: Occurrence constraints define

99

CHAPTER 7. XML DATA BINDING FOR MOBILE DEVICES

the number of occurrences that are valid for an element. As
the schemas are built to be applied to many different scenar-
ios, they must be designed to be as general as possible. In
actual applications, depending on its use of XML documents,
occurrence constraints can be strengthened to generate more
optimised code.

• Source code based on simple code patterns: The generated source
code is straightforward to understand and modify in case it is nec-
essary.

• Tolerate common validation errors: Occasionally, XML documents
that are not valid against their respective schemas must be pro-
cessed by our applications. In many cases, the validations errors
can be ignored following simple coding rules.

• Collapse elements containing single child elements: Information
items that will always contain single elements can be replaced di-
rectly by its content.

• Disabling parsing/serialization operations as needed : Some code
generators always includes code for parsing and serialization even
when only one of these functions is needed.

• Ignoring sections of XML documents: Frequently, we are not inter-
ested in all of the information contained in XML files, ignoring the
unneeded portions of the file will reduce the memory and processing
requirements of the applications

Except for the first group of features the rest has been implemented
in existing code generators, although not frequently they can be found all
together in the same generator.

7.2 Basic Mapping of Schema Components

In this section we explain how the schema processor maps schema
components to programming language constructs. The basis of this map-
ping is very simple, containing rules for mapping complex types, simple
types and global elements. To simplify exposition we say that given s,
an schema component, T(s) will be the corresponding programming lan-
guage construct generated from s.

100

7.2. BASIC MAPPING OF SCHEMA COMPONENTS

7.2.1 Mapping Complex Types

Each complex type in the schemas is mapped to a class in the target
programming language (Java in our case), i.e. if s is a complex type, T (s)
will be a Java class representing s. An example can be seen in Listing 7.1,
where a portion of the generated code for the complex type Child (Listing
2.3) is shown1. The mapping is performed by applying the following rules:

1. Attribute references and declarations are transformed into fields of
the class. The type of each field, which is always a simple type, is
determined according to the rules for mapping simple types.

2. Element references and declarations are transformed into fields of
the class. The type of each field, which in this case can be a simple
or complex type, depends on whether the type of the element in the
schemas te has a counterpart in the generated code, or is mapped to
a primitive Java type. It also will depend on the element occurrence
constraints. If the occurrence constraints of the element allow that
instances contain at most one occurrence, the type of the element
will be T (te). If multiple occurrences are accepted it will be mapped
to List < T (te) >.

3. Setter and getter methods are generated for each field

4. All classes will inherit directly or indirectly from XMLInstanceTag,
a base class containing the common structure and behaviour for all
the mapped classes.

5. An overridden version of the method processTag defined in XMLIn-
stanceTag is generated for the class. This method will contain the
code needed to parse the content of the XML node containing the
information to be processed.

6. A method named processAttributes is generated for the class. This
method will contain the code needed to parse the attributes of the
XML node.

In Listing 7.1 we can see that the processTag and processAttributes
have a parameter of type KXmlParser, a pull parser included in the open
source library kXML2. This library is an implementation of the XMLPull

1The exceptions thrown from class methods have been omitted in this and the
following code listings in this chapter

2http://kxml.sourceforge.net/kxml2/

101

http://kxml.sourceforge.net/kxml2/

CHAPTER 7. XML DATA BINDING FOR MOBILE DEVICES

Listing 7.1: Java class corresponding to complex type Child

public class Child extends XMLInstanceTag{

private St r ing baseElement ;
private St r ing baseElement2 ;
private St r ing chdElement ;

public Child (int tagCode) {
super (tagCode , true) ;

}

public St r ing getBaseElement () {
return baseElement ;

}

public void setBaseElement (S t r ing baseElement) {
this . baseElement = baseElement ;

}

public St r ing getBaseElement2 () {
return baseElement2 ;

}

public void setBaseElement2 (St r ing baseElement2) {
this . baseElement2 = baseElement2 ;

}

public St r ing getChdElement () {
return chdElement ;

}

public void setChdElement (S t r ing chdElement) {
this . chdElement = chdElement ;

}

@Override
protected boolean processTag (KXmlParser parser , boolean i gno r e){

// method body omitted
}

@Override
protected void p r o c e s s A t t r i b u t e s (KXmlParser par s e r){

// method body omitted
}

}

API targeted to be used mostly in resource constrained devices such as
mobile phones. The size of the version used in our implementation has a
size of only 10.3 KB.

102

7.2. BASIC MAPPING OF SCHEMA COMPONENTS

XMLInstanceTag

XMLInstanceTag is the base class for all of the types produced during
the generation process. It provides the basic mechanisms to read the
content of a node in an XML document. Listing 7.2 shows an extract of
the code of this class.

The class constructor receives the tag code of the XML node to parse
and a boolean value as parameter. The tag code, generated from the
node names, is necessary because Java classes correspond to types in the
schemas, and as such nodes with different names may have the same type
in XML documents. This tag code is used by the method fromXML of the
class to determine when it reaches the end of the node being processed.
The boolean value defines if the node may have children elements or not.

The class also contains the methods fromXML and toXML for parsing
and serialization respectively. fromXML reads the content of the current
XML node during the parsing process. It first reads the content of at-
tributes, by calling processAtributtes, method that must be overridden
by classes extending XMLInstanceTag. After this, fromXML depending
whether the node may have children nodes or not, iterates through the
nodes processing them as they are reached, or just reads the correspond-
ing value. Children nodes are processed inside the method processTag
that must be overridden by subclasses as well. Similarly, node values
are read using the method processValue. The method fromXML is an
implementation of the Template Method design pattern [GHJV95].

Processing Children Nodes

The general structure of the code to process children of the current
node is shown in Listing 7.3. First, the method gets the tag code for the
child node to be processed. The method NameResolver.getNextTagCode
also checks if the dynamic type of the node is different from its declared
type. After this, an entry (a case statement) for each child node type
that must be processed exists inside a switch statement.

The nature of the entries will vary depending on the type of the fields
that are used to store the child node information. Listing 7.4 shows the
general forms of these entries for child nodes that will be stored as single
objects and as a list of objects. The notation <value> is used to denote
the parts of the code that vary according to the context. The first case
statement shows how a child node that must be read into a complex
type field is processed. The code shows the most complex scenario where
dynamic typing must be supported. Depending on whether a dynamic

103

CHAPTER 7. XML DATA BINDING FOR MOBILE DEVICES

Listing 7.2: Common base class for all types

public abstract class XMLInstanceTag{
protected int tagCode ;
protected boolean hasChi ldren ;

protected XMLInstanceTag (int tagCode , boolean hasChi ldren){
this . tagCode = tagCode ;
this . hasChi ldren = hasChi ldren ;

}

public void fromXML(KXmlParser pa r s e r){
boolean end = fa l se ;
p r o c e s s A t t r i b u t e s (pa r s e r) ;

i f (hasChi ldren){
int currentTag = par s e r . nextTag () ;
while (! end){

switch (currentTag){
case KXmlParser .START TAG:

processTag (par s e r) ;
break ;

case KXmlParser .END TAG:
end = (NameResolver . getNextTagCode (par s e r)==tagCode) ;
break ;

}
i f (! end)

currentTag = par s e r . next () ;
}

}
else

processValue (KXmlParser pa r s e r) ;
}

public St r ing toXML() {
throw new NotImplementedException () ;

}

protected abstract void p r o c e s s A t t r i b u t e s (KXmlParser par s e r) ;
protected abstract boolean processTag (KXmlParser pa r s e r) ;
protected abstract boolean processValue (KXmlParser pa r s e r) ;

}

type is present or not, a different object type is created. After this, the
content of the node is read by calling the method fromXML. The second
case statement is similar but as the information to be read is an object
in a list and not the field itself, it must be read in an auxiliary variable
and then inserted in the list.

It is worth noticing that when an element type is replaced by a subtype

104

7.2. BASIC MAPPING OF SCHEMA COMPONENTS

Listing 7.3: ProcessTag method definition for class Child

@Override
protected boolean processTag (KXmlParser pa r s e r){

boolean m loca lResu l t = fa l se ;
int nextTagCode = NameResolver . getNextTagCode (par s e r) ;

switch (nextTagCode){
// Case en t r i e s to process ch i l d r en nodes

}
return m loca lResu l t ;

}

through the use of attribute xsi:type, the name of the node is the same
whether it has a type or another. As a consequence, the tag code will
be the same as well. For this reason, the same case statement handles
both situations. When substitution groups are used, the head element
and the elements in its substitution group do not have the same names
(nor tag code), hence different case statements are generated for possible
substitutions.

Other cases that must be handled such as fields of primitives types
are much more simpler than the ones presented here.

Processing Node Attributes

Processing the attributes of a node is very simple, we just have to
override the processAttributtes method inherited from XMLInstanceTag
as is shown in Listing 7.5. Method getAttributeValue is defined as a
protected method in XMLInstanceTag.

Listing 7.5: Processing code for node attributes
@Override
protected void p r o c e s s A t t r i b u t e s (KXmlParser par s e r){

// Read a t t r i b u t e va lue s
< f i e l d name 1> = getAttr ibuteValue (parser , <Attr ibute Code 1>);
< f i e l d name 2> = getAttr ibuteValue (parser , <Attr ibute Code 2>);
. . .

}

7.2.2 Mapping Simple Types

Simple types in the schemas will be mapped whenever possible to
primitive or predefined Java types. As a general rule, facets that constrain

105

CHAPTER 7. XML DATA BINDING FOR MOBILE DEVICES

Listing 7.4: Entry types for single field and list complex types in Pro-
cessTag

// Complex type s i n g l e f i e l d with dynamic type support
case <Element Code>:

i f (NameResolver . hasDynamicType ())
< f i e l d > = TypeFactory . getObjectForType (

NameResolver . getXSIType ()) ;
else

< f i e l d > = new <ObjectType >() ;

< f i e l d >.fromXML(par s e r) ;
m loca lResu l t = true ;
break ;

}

// Complex type l i s t f i e l d with dynamic type support
case <Element Code>:

<Object Type> auxValue ;
i f (NameResolver . hasDynamicType ())

auxValue = TypeFactory . getObjectForType (
NameResolver . getXSIType ()) ;

else
auxValue = new <ObjectType >() ;

auxValue . fromXML(par s e r) ;
< f i e l d >.add (auxValue) ;
m loca lResu l t = true ;
break ;

}

the values of schema predefined types will be ignored to speed up parsing
of XML documents. This allows mapping most of the simple types defined
in the schemas without having to create new types in the generated code.

The only exception will be when a simple type is declared as the
union of several types that cannot all be mapped to the same Java type.
In that case, a Java class is created with a field for each possible type of
the contained values and boolean flags indicating which of the values are
set.

7.2.3 Mapping Global Elements

By default, global elements will not be mapped to any programming
language construct unless it is explicitly specified that they can act as
root of XML documents. In that case, a parser class is created with
methods to parse the instances for files or streams. An example is shown

106

7.3. SUPPORTED FEATURES EXPLAINED

Listing 7.6: Parser class generated for element Capabilities

public class C a p a b i l i t i e s P a r s e r {

public stat ic Element Capab i l i t i e s parse (InputStream i s){

Element Capab i l i t i e s s e r v i c e D e s c r i p t o r ;
// Create namespace−aware parser
KXmlParser pa r s e r = new KXmlParser () ;
pa r s e r . s e tFeature (KXmlParser .FEATURE PROCESS NAMESPACES, true) ;

try
{

//Assign input stream to parser and read the f i r s t tag
par s e r . s e t Input (i s , encoding) ;
pa r s e r . nextTag () ;
int tagName = NameResolver . getNextTagCode (par s e r) ;

i f (tagName == Constants . SOS CAPABILITIES){
// Parse XML document
s e r v i c e D e s c r i p t o r =

new Element Capab i l i t i e s (Constants . SOS CAPABILITIES) ;
s e r v i c e D e s c r i p t o r . fromXML(par s e r) ;

} else
throw new SOSException (‘ ‘ Pars ing f a i l e d with s t a r t tag : ’ ’

+ tagName) ;
}
catch (Exception e){

//Handle excep t ion
}
return s e r v i c e D e s c r i p t o r ;

}

public stat ic Element Capab i l i t i e s parse (KXmlParser par s e r){
// method body omitted

}

public stat ic Element Capab i l i t i e s parse (F i l e f){
// method body omitted

}
}

in Listing 7.6, where a fragment of the class to parse SOS capabilities files
is shown.

7.3 Supported Features Explained

In this section we explain in greater detail the features supported
by the code generator. We spend most of the time explaining features

107

CHAPTER 7. XML DATA BINDING FOR MOBILE DEVICES

related to instance-based code generation because to our best knowledge
they have not been implemented previously in available code generators.

7.3.1 Support for Instance-based Code Generation

Instance-based code generation refers to the use of information ex-
tracted from XML documents to improve the generated code according
to some criteria. These documents contain valuable information that can
be very useful while generating code. The nature of this information and
how it is used to optimise the code produced by our generator is shown
in the following subsections.

Efficient Handling of Subtyping and Wildcards

The handling of subtyping and wildcards can be a complicated issue.
As mentioned in Chapter 2, the dynamic type of elements may differ from
its declared type, because of the substitution of a type for a subtype or
the substitution of the head element of a substitution group.

In the general case, where no instance-based information is available,
generic code to face any possible type or element substitution must be
written, as was shown in Listing 7.4 for the case of type substitution.
In Section 7.2.1, was also pointed out that a case statement is generated
for each possible element substitution. Nevertheless, this scenario can be
substantially simplified with instance-based information. Let us consider
for example the case of complex type gml:FeaturePropertyType in the
context of the SOS schemas. This type is used as a container for any
feature and contains a reference to a global element gml: Feature (Listing
7.7). gml: Feature is the head element of the substitution group shown in
Figure 7.2, as such, the source code for gml:FeaturePropertyType must be
ready to parse any of these elements. If instead of generating code for the
full SOS schemas, we consider the subset of the schemas needed for the
case study introduced in Chapter 6, we reduce the number of elements
in the substitution group to those in Figure 7.3. Even more, we can
determine for every specific type which referenced elements are replaced
by which element in its substitution group. In the example above we can
figure out that class FeaturePropertyType only must be aware of parsing
elements of type FeatureCollection and SamplingPoint, which makes the
final code a lot simpler.

Similarly we can determine which inner elements of a type may have a
dynamic type different from its declared type. If dynamic typing is used

108

7.3. SUPPORTED FEATURES EXPLAINED

Listing 7.7: Extract of feature.xsd containing the definition of
gml:FeaturePropertyType

<?xml version=” 1 .0 ” encoding=”UTF−8”?>
<schema targetNamespace=” ht tp : //www. openg i s . net /gml”>

<element name=” Feature ” type=” gml:AbstractFeatureType ”
abs t r a c t=” true ” subst i tut ionGroup=”gml: GML”/>

<complexType name=” AbstractFeatureType ” abs t r a c t=” true ”>
<complexContent>

<ex tens i on base=”gml:AbstractGMLType”>
<sequence>

<element r e f=”gml:boundedBy” minOccurs=”0”/>
<element r e f=” g m l : l o c a t i o n ” minOccurs=”0”/>

</ sequence>
</ extens i on>

</complexContent>
</complexType>

<complexType name=” FeaturePropertyType ”>
<sequence minOccurs=”0”>

<element r e f=” gml : Feature ”/>
</ sequence>
<attr ibuteGroup r e f=” gml :Assoc iat ionAttr ibuteGroup ”/>

</complexType>
</schema>

in the XML documents we generate generic code such as that in Listing
7.4, but if it is not used we can generate simpler code. In addition, if
dynamic typing must be supported the information about which types can
be replaced and which subtypes are used in every case is used to optimise
the implementation of the function TypeFactory.getObjectForType.

Last, the same technique is applied to wildcards and elements of type
anyType, during the execution of the instance-based schema simplification
algorithm, it recognises which elements are used to replace wildcards or
anyType elements. This information is used by the generator to generate
the appropriate code to handle valid substitutions.

Inheritance Flattening

The domain model defined by OWS schemas contains very deep type
hierarchies. For example, Figure 7.4 shows the type definition hierarchy
of GML 3.1.1. A type definition hierarchy is a tree including all of the
derivation relationships between types [W3C04c]. If this specification
were analysed in the context of SOS the hierarchy would be even bigger,

109

CHAPTER 7. XML DATA BINDING FOR MOBILE DEVICES

Figure 7.2: Elements in the substitution group of gml: Feature

Figure 7.3: Elements in the substitution group of gml: Feature for the a
subset of the SOS schemas

110

7.3. SUPPORTED FEATURES EXPLAINED

as SOS uses several GML types as base types for locally defined types.
Type hierarchies in OWS schemas contain many abstract classes, which
by definition cannot be instantiated in XML documents.

Our code generator optionally allows to “flatten” the inheritance tree,
eliminating all of the classes in the tree that are not instantiated in XML
documents. Each class is transformed by adding all of the inherited fields
and methods to the class declaration. The flattening process makes the
number of generated classes smaller, although this does not imply that
the final size will also be smaller. The reason for this is that elements
and attributes included in base types eliminated during flattening must
be replicated as fields in the generated code in all of the subtypes of these
types. Depending on whether the number of these fields is high or low
the size of the generated code can have a bigger or smaller size than the
original one. The effect of a high number of replicated fields may be
important if we consider that type hierarchies in the geospatial schemas
tend to be deep. Anyway, the effect of inheritance flattening in general
will tend to be beneficial as less classes must be loaded by the virtual
machine to start execution.

One of the disadvantages of this technique is that all of the information
related with subtyping between generated classes is lost. As this infor-
mation might want to be kept, this option can be enabled and disabled
as needed before performing code generation.

The technique of inheritance flattening has been widely explored and
used in different computer science and engineering fields as is proven but
the literature found on the topic [BLS00, CRC+06, BEMW08, CREP08,
LSZ09, BEWZ10].

Adjust Occurrence Constraints

As explained in Section 7.2.1 the occurrence constraints of an element
determine if it will be mapped to single object instances or to lists. If the
element can have multiple occurrences it will be mapped to a list, other-
wise it will be mapped to a single instance variable. In XML documents,
many fields that are declared in schemas as having possibly multiple oc-
currences, have only a single occurrence. In this case, they can be safely
mapped to a unique instance variable instead of a list. This way the final
code will make a better use of memory during execution as instead of
creating a list that will only contain a single object, it will create a single
object instance.

111

CHAPTER 7. XML DATA BINDING FOR MOBILE DEVICES

Figure 7.4: Type definition hierarchy for GML 3.1.1

112

7.3. SUPPORTED FEATURES EXPLAINED

7.3.2 Source Code Based on Simple Code Patterns

XML data binding code generators relieve the work of developers pro-
ducing substantial parts of XML processing code. Unfortunately, occa-
sionally the generated code must be manually modified because of dif-
ferent reasons, such as the generator does not support a certain schema
feature, or it is not capable of mapping correctly certain situations to the
target programming language3. In these cases, a valid alternative is to
modify the generated code to solve any conflict that impedes the correct
execution of the final code.

In order to allow the generated code to be modified easily when needed
it must be based on simple code patterns, which is not the case for most
code generators. In our case, the generated code is straightforward to
use or modify. As shown in previous sections the complexity of the code,
compared with the code generated by other tools, is not high and it can
be assimilated by an average Java programmer in a short period of time.

7.3.3 Tolerate Common Validation Errors

As will be shown in Chapter 8, XML documents that must be pro-
cessed in our applications occasionally contains validation errors. Ignor-
ing these invalid documents and informing of this situation to be user is
not always an option as users may need to access this information to do
their jobs. For this reason, it is advisable for XML processing code to
be ready to handle these situations and if possible, to continue normal
execution of the application.

Most of the errors that are commonly found can be overcome by us-
ing simple coding rules. For example, mapping most simple types to Java
primitives or predefined types, and ignoring facets constricting type val-
ues, will allow that values for elements and attributes of these types can
be parsed despite possible validation errors. The use of a switch statement
in the processTag method of every generated class implies that the order
of the children nodes is not checked so misplaced elements will be suc-
cessfully parsed. In addition, the absence of a node that according to the
schemas is mandatory will not impede the document of being processed.

The general approach is to shift to upper layers the responsibility of
determining if errors found in the data will affect the correct functioning
of the whole application. This approach has as advantage that a larger

3We had these problems in the past while using XMLBeans and XBinder with
geospatial schemas

113

CHAPTER 7. XML DATA BINDING FOR MOBILE DEVICES

number of documents will be successfully parsed and the parsing process
will be faster. On the downside, the application must include extra code
to validate the correctness of certain data values. The real effect of this
disadvantage may vary depending on applications requirements. For ex-
ample, if a client application gets data from a trusted source it will not
have to double-check the data and the lack of strong validation in the
XML processing code will have no negative impact. If the source is not
trusted and the applications well-functioning relies in a strong adjustment
of data to the structure defined on its schemas, validation code will have
to be added to components using the generated XML processing code,
which of course will augment development time and software costs.

7.3.4 Collapse Elements Containing Single Elements

A schema coding pattern commonly used on OWS schemas is the
object-property model [LBT04]. This pattern defines object properties by
encapsulating the actual value of a property in an extra element which
usually explicitly indicates in its name that it is a property. These ele-
ments mostly contain a single child. Although very useful for clarity pur-
poses these extra elements usually results in a higher number of classes
in the generated code that may increase the size of the binary code and
the amount of memory that must be used by the application.

Let us consider the example of the type sos:ObservationOfferingType4

defined in the SOS schemas. An extract of the type definition is shown
in Listing 7.8. The fragment of the type contains two children el-
ements, gml:boundedBy and time, with types gml:BoundingShapeType
and swe:TimeGeometricPrimitivePropertyType respectively. These
types are mere containers for gml:Envelope objects and time objects
(gml:TimePeriod and gml:TimeInstant). In the case study presented in
the previous chapter the only time object used is gml:TimePeriod. If we
make a straightforward mapping of complex types in schemas to Java
classes at least six of these classes should be created: ObservationOffer-
ingType, BoundingShapeType, TimeGeometriPrimitivePropertyType, En-
velopeType, TimePeriodType and TimeInstantType. But in practice, only
three of them are really needed to get the job done: ObservationOffering-
Type, EnvelopeType and TimePeriodType. Types used only as containers
can be eliminated from the generated code as well as unused types.

4Prefixes sos and swe refer here and in the remainder of this

114

7.3. SUPPORTED FEATURES EXPLAINED

Listing 7.8: Extract of sosContents.xsd containing the definition of
sos:ObservationOfferingType

<complexType abs t r a c t=” true ” name=” Observat ionOffer ingBaseType ”>
<complexContent>

< r e s t r i c t i o n base=” gml:AbstractFeatureType ”>
<sequence>

< !−− Group re f e r ence omit ted −−>
<element r e f=”gml:boundedBy”/>

</ sequence>
</ r e s t r i c t i o n>

</complexContent>
</complexType>

<complexType name=” Observat ionOffer ingType ”>
<complexContent>

<ex tens i on base=” sos :Observat ionOf fe r ingBaseType ”>
<sequence>

<element name=” time ”
type=” swe:TimeGeometricPrimitivePropertyType ”/>

< !−− The r e s t o f the e lements have been omitted −−>
</ sequence>

</ extens i on>
</complexContent>

</complexType>
</schema>

7.3.5 Disabling Parsing/Serialization Operations

Most generators produce code including parsing as well as serialization
code. In different scenarios the importance of the role of these tasks
varies greatly. For example, in the context of the case study presented
in Chapter 6, parsing is a task much more important than serialization.
Serialization would be needed to generate requests sent to the server in
XML format, which in all cases had a size below 1KB. In addition, some
of the request were sent using HTTP GET, which does not require XML
serialization at all. On the other hand, the server responses varied from
very small responses(<1KB) to responses with a size of about 1.5 MB. In
this scenario, the classes in charge of processing server responses do not
need serialization code to be generated, which will make the size of the
generated code much smaller.

document to the namespaces http://www.opengis.net/sos/1.0 and
http://www.opengis.net/swe/1.0.1, respectively

115

CHAPTER 7. XML DATA BINDING FOR MOBILE DEVICES

7.3.6 Ignoring Sections of XML Documents

Not always our applications need to process all of the information
included in XML documents. Ignoring the portions of the document
that we do not need will improve the speed of the parsing process and
it may have a significant impact in the amount of memory used by our
application to store the data read from these documents. By default if
a child of the current node is not explicitly handled in the processTag
method it is ignored, but if this child node contains other children node
the generated code will try to process them. If we want to completely
ignore a child node and all of its content we can use class IgnoredTag to
“process” the node. This class ignores the whole subtree of nodes starting
at a given node.

7.4 Experimentation

In this section we present a simple experiment to measure if the cur-
rent implementation of the generator fulfil its main goal which is to re-
duce the size of the generated code as much as possible. We present
first a short introduction to the current implementation of the XML data
binding code generator, called DBMobileGen (DBMG for short). After
this, we analyse the size of the code produced by our generator for the
case study presented in Chapter 6.

7.4.1 DBMobileGen

DBMobileGen is the current implementation of the Instance-based
XML Data Binding Approach. It includes components implementing both
the simplification algorithm and code generation process. It is imple-
mented in Java and relies on existing libraries such as Eclipse XSD5 for
processing XML schemas, Freemarker6 as template engine library, and as
well as the generated code, KXml for low-level XML processing. Imple-
mentation details beyond what has been presented so far are not included
in this document as in our opinion they do not help to understand the
approach presented here or the process of measuring how effective it can
be.

5http://www.eclipse.org/modeling/mdt/?project=xsd#xsd

6http://freemarker.sourceforge.net

116

http://www.eclipse.org/modeling/mdt/?project=xsd#xsd
http://freemarker.sourceforge.net

7.4. EXPERIMENTATION

The current implementation has some limitations. Because of the
complexity of OWS specifications and the XML Schema language itself,
support for certain features and operations have been only included if
it is considered necessary for the case studies and sample applications
considered in these document. Some of these limitations are listed next:

• Serialization is not supported yet : The role of parsing for our sample
applications and case studies is far more important than serializa-
tion. This is mainly because request issued using HTTP GET do
not need serialization at all, and the size of the XML payload in
HTTP POST request use to be small and with a relatively simple
structure.

• Conflicts with the extension by restriction mechanism: The simpli-
fication algorithm may produce reduced versions of complex types
that are not valid XML Schema definitions in the presence of sub-
types hierarchies using extension by restriction.

• Dynamic typing using xsi:type not fully supported : The mechanism
described in section 7.2.1 for dealing with dynamic type substitu-
tion has not been fully implemented yet, as the XML documents
processed in the case studies do not make use of this feature. Gen-
erally, the substitution group mechanism is preferred for dynamic
typing scenarios.

7.4.2 Experiment Description

In section 6.4, a case study for an SOS client was presented. Within
the context of this case study we analysed how much the schemas can
be simplified and the impact of this simplification in the size of the code
produced by various generators. In this section, we compare those results
with the code generated by DBmobileGen for the same scenario. Here,
we use DBMobileGen to generate code from the full SOS schemas and the
simplified schemas. For both cases, we generate code with all of the opti-
misations enabled, and with all of the optimisations disabled (inheritance
flattening, collapsing single child elements, etc.).

7.4.3 Results

We replicate here Table 6.2 adding the size of the code generated by
DBMG. The results are also shown in Figures 7.5 and 7.6 and detailed
next.

117

CHAPTER 7. XML DATA BINDING FOR MOBILE DEVICES

Table 7.1: Comparing size of code (KBs) for original and simplified
schema sets

XBinder JAXB XMLBeans DBMG
(Opt. Off)

DBMG
(Opt. On)

Full 3626 754 2822 1251 88
Reduced 567 90 972 138 88
Full+libs 3816 1810 8879 1281 118
Reduced+libs 684 1146 3655 168 118

Figure 7.5 shows the code generated from the full SOS schemas. In
the first group of columns we can observe that when optimisations are not
used the code generated by DBMG is larger than JAXB, but still shorter
than XBinder and XMLBeans. It must be noted that comparing this code
with that generated by XBinder is not completely fair as serialisation is
not still implemented7. JAXB has the smaller memory footprint for the
generated code, except for DBMG with optimisations enabled, because
as pointed out in the previous chapter it does not include processing
code in the generated code. Nevertheless, if the supporting library were
included in the comparison the advantage of JAXB regarding total size of
the code vanishes as the supporting libraries are much bigger than those
for DBMG (1056 KB against 30 KB). Again, it must be considered that
if serialisation code for our generator were included the combined size
will be probably slightly bigger than that of JAXB. The code generated
by DBMG with all optimisations enabled is fairly smaller than the rest
because it has built-in support for the schema simplification algorithm.

Figure 7.6 shows the code generated from the simplified schemas.
Again, the code generated with DBMG with all of the optimisations en-
abled is the smallest. Although the code for JAXB, without considerings
its supporting libraries is about the same size.

The size difference for the code generated for Android devices is sig-
nificant. XBinder code is about six times larger than the one generated

7We roughly estimate an increase of about 30% of the code size when serialisa-
tion code is included. XBinder allows to choose whether parsing or serializa-
tion code is included or not when code is generated for C++. Unfortunately
this option is not available for Java.

118

7.4. EXPERIMENTATION

Figure 7.5: Size of generated code for full schemas

by DBMG. One of the reasons, the lack of serialisation support, was al-
ready mentioned above. Another reason is that XBinder produces code
for most user-defined simple types, generating code for ensuring that the
value follows all of the restrictions specified in the schemas. This is an
advantage if we parse data obtained for a non-trusted source and the
application requires the data to be carefully validated, but it is a disad-
vantage in the opposite case, as unneeded verification increases processor
usage and memory footprint. In the case of DBMG, as it aggressively
tries to lower final code size, these simple type restrictions are ignored
and these types do not even have a counterpart in the generated code.
This is the same strategy used by JAXB which justifies the small size
of the code generated with this tool. A final point making DBMG code
simpler is that it does not check the order of elements’ children order
when processing XML nodes. This, to maximise the number of XML
documents potentially containing invalid data that must be parsed by
the application.

Summarising, we can conclude that the code generated by DBMobi-
leGen for the case study is substantially smaller than the code generated

119

CHAPTER 7. XML DATA BINDING FOR MOBILE DEVICES

Figure 7.6: Size of generated code for simplified schemas

by other tools. If we compare this tool directly with XBinder, the only
generator known by the authors producing code for Android, we can say
that it generates much more compact code for the analysed scenario (al-
most 6 times smaller) and provides more flexibility to parse potentially
invalid XML documents. This, at the price of delegating data validation
code to other parts of the application.

7.5 Sample Applications

As a final proof of the feasibility of building actual mobile applications
we briefly describe here two sample applications built using DBMobile-
Gen. The first application is a basic WPS client and the second one is
a full-fledged generic SOS client. Both applications are targeted to the
Android mobile platform.

120

7.5. SAMPLE APPLICATIONS

7.5.1 WPS Basic Client

The Web Processing Service (WPS) [OGC07g] is one of the newest
implementation specifications. It aims to provide geospatial processes
through the web, allowing the reutilisation of legacy systems, the execu-
tion of long-running geospatial algorithms in more capable servers, etc.
Compared to other specifications WPS presents an additional challenge
as processes may define their own data input and output formats, making
the development of a client a very specific task, which cannot always be
reused to build other clients. This also makes the possibility of building
clients for running in mobile devices a harder task, as they present serious
constraints in memory and processing capabilities.

The adoption of geoprocessing service clients in mobile devices is prac-
tically unexistent, even when the model provided by the Web Processing
Services (WPS) seems to fit the philosophy of accessing computation in-
tensive processes from devices with less capabilities. The main reason to
such a low use of WPS in mobile computing is that the exchanged geospa-
tial data is often encoded in some XML-based format that demands large
processing power for the targeted devices.

The number of WPS clients, or software components to build them, is
scarce. Due to the nature of WPS itself, which is just a generic protocol
to execute remote processes, it is very difficult to build a generic client
that suits every process because of the great degree of freedom of input
and output parameters.

We present here a WPS client based on Google Maps that allows users
to enter simple GML geometries that will be used as input to remote
processes. The operations tested are: buffer, intersection, area8, and
population statistics9. Figure 7.7 shows screenshots for the calculation of
the area (top) and buffer (bottom) of geometries introduced by touching
the device screen. The geometries are sent to the server on user request
and the result is displayed as a different layer on the map.

8Geometric processes are executed in http://elcano.dlsi.uji.es:8080/

topologywps/WebProcessingService

9Populations statistics are provided by the Population Estimation Service:
http://sedac.ciesin.columbia.edu/gpw/wps.jsp

121

http://elcano.dlsi.uji.es:8080/topologywps/WebProcessingService
http://elcano.dlsi.uji.es:8080/topologywps/WebProcessingService
http://sedac.ciesin.columbia.edu/gpw/wps.jsp

CHAPTER 7. XML DATA BINDING FOR MOBILE DEVICES

Figure 7.7: WPS Google Maps-based client

Application Architecture

Figure 7.8 shows the architecture of the application following a Lay-
ered Application Pattern [BMR+96]. The application contains layers for
user interface, bussines logic and communication.

Figure 7.8: WPS basic client architecture.

Of special interest to us is the communication layer, which includes a
light-weight network communication library, as well as a set of adapters

122

7.5. SAMPLE APPLICATIONS

generated using DBMobileGen. Adapters are in charge of transforming
WPS messages, encoded in XML, into application objects in the bussines
layer (Capabilities, Process descriptions, GML adapters in Figure 7.8).
Adapters for other formats, e.g. raster formats, can be added indepe-
dently.

XML Processing Code

The XML processing code for this application is not trivial as different
kinds of geometries are involved. If we look at the process descriptions
of the supported operations we can see that responses to the buffer and
intersection operations are XML instances based on several versions of the
GML schemas. Even more, if GML 3, in any of its subversions, is used
the result is encoded in a particular GML application schema (52NAS
in Table 7.2). The area operation returns a value embedded in a WPS
ResponseDocument file. Last, the Population Estimation Service returns
its result in its own GML application schema (PSAS in Table 7.2).

If we capture some responses of the given remote operations and we
apply the instance-based schema simplification algorithm we can reduce
the schemas in a large degree. Being pragmatic in the case of the first two
operations we will support only the application schema based on version
3.1.1 of GML. Table 7.2 show the number of complex types in the schemas
before and after applying the algorithm.

Table 7.2: Comparison between the number of complex types in the
schemas related to the WPS Basic Client before and after ap-
plying the instance-based simplification algorithm

#CT (before) #CT (after) % reduction
WPS schemas 99 11 87.1
52NAS 395 18 94.4
PSAS 59 6 89.8

The WPS schemas can be largely simplified because only the subset
needed to parse a simple Execute response document with a single lit-
eral value as result must be processed. The 52 North WPS Application
Schemas includes explicitly all of the GML 3.1.1 schemas, but only refer-
ence directly types gml:AbstractFeatureType and gml:SurfacePropertyType.
In the instances files considered the server always used gml:Polygon to

123

CHAPTER 7. XML DATA BINDING FOR MOBILE DEVICES

describe the result of the operations. In the case of the Population Es-
timation Service, it uses a geometry in the response, but as we are only
interested in the statistics we can safely ignore it and focus only on the
rest of the data.

7.5.2 SOS Mobile Client

The second application is a generic SOS client. This client must sup-
port the following functionality:

• Support for the core profile of SOS specification: The operations
GetCapabilities, DescribeSensor and GetObservations must be sup-
ported

• Visualisation of sensor locations and information: The application
must allow users to visualise sensor and sensor systems location and
its associated metadata.

• Visualisation of observations in tables and graphics: The applica-
tion must provide flexible ways to manipulate the parameters used
to request information about observations.

• Support for temporal and spatial filters: The opportunity of filtering
observations requested to the server using temporal and spatial fil-
ters must be provided. Specifically, observations for a given instant
of time, or gathered during a time interval, or restricted spatially
to a bounding box may be retrieved.

• Easy server information management : The information about the
URLs of the servers must be stored to allow users to connect to these
servers without having to introduce all of the information again.

The application has an architecture that is almost identical to the
WPS client, having layers for user interface, bussines logic and commu-
nication. The communication layer, in addition of handling connections
to SOS servers, must allow to connect to the SQLite10 database used to
store the information about servers. Fortunately, Android provide native
support for these databases, so it is an almost trivial task.

10http://www.sqlite.org/

124

http://www.sqlite.org/

7.5. SAMPLE APPLICATIONS

XML Processing Code

In this case, the XML processing code for this application may be
generated similarly as it was done for the case study presented in Chapter
6. The main difference in this case is that the SOS application is meant
to be generic, meaning this that it must be capable of connecting to a
potentially large number of SOS servers. Still, using the full SOS schemas
to generate XML processing code is not advised, as it has been shown
that the size of the generated code can be too large. For this reason what
we do is to use a larger set of XML documents as input to maximise the
number of XML documents that can be parsed. As input we use the set
of XML instances that will be described in Chapter 8. This set has been
gathered from a set of 56 SOS servers available online.

The XML processing code has been generated using the input files
described above with DBMobileGen with only the optimisation related
to the use of the subset of the schemas enabled and the rest of the optimi-
sations disabled. These optimisations are disabled because the generated
code will probably has to be extended in the future if servers that use in
their responses schema components not used in the initial XML instances
must be supported. If the new documents to be parsed are substantially
different than the initial input set the best solution is to regenerate the
code, but if not, modifying the code manually will be easier if it is not
highly optimised.

The size of the generated code for this client is 214 KB including the
supporting libraries in compressed JAR format.

Application funcionality description

We describe here briefly the functionality of the SOS client. We start
describing the server management facilities offered by the application.
Figure 7.9 shows to the left the first screen shown to the user which
contains a list of all of the servers introduced previously to the application.
The user may add or remove server from this list. Selecting a server from
the list establishes a connection with the server. This process implies that
the capabilities file is retrieved from the server. Once the connection is
established the user is informed about it.

At this point, the user may select from the list of observation offerings
those we are interested in, and the related sensors are shown in the map.
Figure 7.10 shows a set of sensors in the application map window. If
several sensors have the same exact location the number of sensors at

125

CHAPTER 7. XML DATA BINDING FOR MOBILE DEVICES

Figure 7.9: Selecting or adding servers

that location is added to the marker representing the sensors. Users can
tap on a marker to see the metadata associated to a sensor.

Figure 7.10: Showing sensors stations in the map

126

7.5. SAMPLE APPLICATIONS

Figure 7.11: Specifying Filters

To request observations, a set of sensors must be selected in the map.
These sensors are used to initialise some of the parameters of the GetOb-
servation request, which can be further refined through the GetObserva-
tion wizard. The wizard checks that mandatory parameters are correctly
set and allows the spatial and temporal filters to be specified as is shown
in Figure 7.11.

Last, after the observations have been retrieved from the servers they
can be shown in tables or charts as shown in Figure 7.12

7.5.3 Challenges and Open Issues

During the development of the sample applications we faced several
challenges. The most important one was the size of XML schemas used
to describe the encoding of geospatial data. For example, in the WPS
basic client, even with the assumption that only the two described appli-
cation schemas were supported, the overall number of complex types for
the whole schemas was more than 500. Considering the limited applica-
tion functionality, this number is rather large. This problem was solved
by extracting only the section of the schemas that are needed for the ap-
plication using the instance-based simplification algorithm intergrated in
DBmobileGen. Although, the process of using only sections of the schema

127

CHAPTER 7. XML DATA BINDING FOR MOBILE DEVICES

Figure 7.12: Tables and charts

can be accomplished using a manual approach, using a dedicated tool is
a more time and effort saving approach.

Another challenge was writing light-weight communication libraries,
which was accomplished by implementing only the required behaviour.
For example, the WPS specification allows operation requests to be en-
coded using HTTP GET with KVP or HTTP POST with XML payload,
but for each operation only one of them is required. In the case that the
specification do not mandates a binding type or the other we preferred
HTTP GET request for operations with simple parameters and HTTP
POST for operations with more complex parameters.

In addition to these challenges, we have identified some open issues
in the topic of OWS for mobile devices. The first issue is the lack of a
mechanism to now beforehand is we have enough memory or processing
capabilities to handle a server response. When a request is issued to the
server, there is no way to know if the response will be too large to be
handled by the device. A mechanism to estimate the response size would
be of invaluable importance for a resource constrained device. Large re-
sponses can cause memory problems and, as the network hardware of the
phones consumes a lot of battery power, they may also drain the phone
battery. The problem with large responses is aggravated by the use of

128

7.6. CONCLUDING REMARKS

a verbose base encoding format such as XML. In this regard, in version
2.0 of SOS, still passing through the OGC standardisation process, an
extension to retrieve metadata about available data has been proposed
[OGC10d]. This extension contains the operation GetDataAvailability,
which according to [BEJ+11] enables clients to discover the temporal re-
lationship between given procedures, observed properties and features of
interest. The operation contains parameters that can be used by clients to
indicate for which period of time these relationships are to be discovered
and also to generalise the information about the temporal relationships.

The second issue is related with the use of code generation techniques
for sections of the applications in the business logic and user interface
layer. During the development of the applications, common coding pat-
terns for drawing geometries on the screen or related with the user inter-
face components used to interact with the servers were noted. A further
look into these topic to generate a larger sections of the final application
might be interesting.

7.6 Concluding Remarks

In this chapter we have presented a detailed description about how
we generate code using the Instance-based XML data binding approach.
Utilising information about how XML documents make use of its associ-
ated schemas we can refine the code generated to optimise it according
to certain criteria. In this case, our main goal is to make the final binary
code as small as possible to ease its inclusion in application targeted to
resource-constrained devices. We have shown here how the two steps of
the approach link to each other, using the output of the schema sim-
plification step as input to the code generation process. We have also
implemented a code generator to asses the approach, and targeted to the
Android mobile platform. The generator, called DBMobileGen, offers an
interesting number of features that allow the production of very compact
code. The effectiveness of this tool has been demonstrated through a set
of experiments, and with the generation of the XML processing code for
two sample applications.

129

Part IV

Experiments

CHAPTER 8

Empirical Study of SOS
Server Instances

Early in our research endeavour, we realised that we must provide
some proof for one of our main assumptions that claims that actual OGC
web services implementations do not use all of the capabilities included
in the specifications schemas. This statement may be obvious to some
extent to people with experience in the development of OGC standard-
based software, but it does not have to be so for a wider audience. For
this reason we present in this chapter a study about how a set of Sensor
Observation Service (SOS) server instances use the schemas associated
to this specification. This is done not only to prove that the assumption
is true, but also to try to quantify how much of the schemas is used in
actual implementations.

The study was initially focused on which parts of the specification
schemas were used and which parts not, but is later widened to include
many practical issues about how SOS server are implemented in practice.

The content of this chapter has been published with the same title in “Ad-
vancing Geoinformation Science for a Changing World”, Lecture Notes in
Geoinformation and Cartography, 2011, Volume 1, Part 3, pages 185-209.
DOI: 10.1007/978-3-642-19789-5 10.

133

CHAPTER 8. EMPIRICAL STUDY OF SOS SERVER INSTANCES

8.1 SOS Server Instances

In order to carry out our study we gathered information from a set of
SOS server instances freely available on the Internet. The URLs of these
servers are listed in Appendix A. These servers where located using web
services catalogs such as the OWS Search Engine1 and IONIC RedSpider
Catalog Client2, and using general-purpose search engines such as Google
and Yahoo!. The server list only shows those claiming to support version
1.0.0 of the standard.

Starting from these servers we retrieved a sample set of XML docu-
ments including service metadata, and sensor and observation informa-
tion. These documents were then analysed mainly regarding to schema
validity and used features. The results from this analysis are shown ex-
tensively in Section 8.4.

8.2 Limitations of the Study

This study presents some limitations. First, it is impossible to retrieve
all of the information published on the servers. We tried to overcome the
effects of this limitation by making the sample dataset as large as possible
and, in cases where several alternatives existed for making a request,
we retrieved at least one instance file from each alternative. Second,
only responses from the core profile operations were considered. This is
because most servers do not implement the rest of the operations (see
Section 8.4.1). Third, we did not test server instances for full compliance
to the SOS specification; we only dealt with the information contained
in the XML instance files and XML schema files. Last, we analysed
server instances without considering the server product used to deploy
the instance. This is because for several instances we were not able to
determine which product was used, and in some cases handcrafted servers
have been developed for specific problems.

1http://ows-search-engine.appspot.com/index

2http://dev.ionicsoft.com:8082/ows4catalog/elements/sos.jsp

134

http://ows-search-engine.appspot.com/index
http://dev.ionicsoft.com:8082/ows4catalog/elements/sos.jsp

8.3. DATASET DESCRIPTION

8.3 Dataset Description

Details about the information contained in the sample dataset are
presented in Table 8.1. The table includes the following information for
the responses of the considered operations:

• Number of files (NF): Number of files retrieved for the operation.

• Number of objects described (NO): Depending on the operation
these objects can be observation offerings, in the case of the GetCa-
pabilities operation; sensor systems, in the case of DescribeSensor ;
and observations, in the case of GetObservation.

Table 8.1: Dataset description

Operation NF NO

GetCapabilities 56 7190
DescribeSensor 6,719 6,719
GetObservation 204 3,990,656
Total 6979 4,004,565

8.4 Results

In this section we present the results of computing the sample dataset
according to the following metrics:

• Number of invalid files: Number of invalid files according to the
schema files.

• Most frequent validation errors: List with most frequent errors
found during validation, including an error description and the num-
ber of occurrences of each error.

• Used Features: The features presented depend on the analysed op-
eration. For example, while analysing the capabilities files we con-
sidered supported operations or filters and response formats. While
analysing observation files, we considered, for example, which ob-
servation type is most frequently used to encode the information
gathered by sensors.

135

CHAPTER 8. EMPIRICAL STUDY OF SOS SERVER INSTANCES

• Parts of the schemas that are actually used: Schema files defining
the message structures for SOS are large and complex, moreover,
SOS schema files depend on schema files included on other specifi-
cations as well. For these reasons actual implementations only use
a subset of these schemas.

We present the results of applying the first three metrics divided by
operation. Then, in a different section we analyse the part of schemas
that are actually used.

8.4.1 Capabilities Files

The capabilities file of a server contains all of the information needed
to access the data it contains. In the case of SOS servers, this file contains
available observation offerings, supported operations and filters, etc.

Instance validation

The first important fact extracted from the sample dataset is that 34
out of 56 (60.7%) capabilities files are invalid according to the schemas
defining their structure. Table 8.2 shows the most frequent errors found
in the instance files.

The most frequent error found was the use of a different name for an
element that the one specified in the schemas. For example, this was the
case for element sos:Time, which specifies the time instant or period for
the observations within an offering. The element name was changed to
sos:eventTime in some of the servers, maybe because that was the name
used in previous versions of the specification. The second most frequent
error was elements with invalid content (errors 2, 3, 4 and 5). Common
mistakes were time values with incorrect format, or offering ID values
containing white spaces or colons.

Despite the large number of errors found, most of them did not prevent
the files from being correctly parsed, although they supposed and extra
amount of work while implementing the parsers. At the end only 2 of
the 56 files contained serious errors, which makes parsing their content
impossible for us.

Supported Operations

The capabilities files also indicate which operations are supported by
the servers, including information about how to access them and which

136

8.4. RESULTS

Table 8.2: Most frequent validation errors for capabilities files

Error code Description Number of
Ocurrences

1 cvc-complex-
type.2.4.a

Invalid content was found start-
ing with element [element name].
One of valid element list is ex-
pected

2,754

2 cvc-complex-
type.2.2

Element must have no element
[children], and the value must be
valid

978

3 cvc-datatype-
valid.1.2.3

[value] is not a valid value of
union type

960

4 cvc-attribute.3 The value of attribute on element
is not valid with respect to its
type

468

5 cvc-datatype-
valid.1.2.1

[value] is not a valid value of
union type

379

6 cvc-id.2 There are multiple occurrences of
ID value

107

values are allowed as parameters. Table 8.3 shows which and how fre-
quently the different operations are supported.

The results, also depicted in Figure 8.1, show that all of the servers im-
plement the GetCapabilities request using HTTP GET as required by the
SOS implementation specification. Apart from that, most of them also
implement the operation using HTTP POST. Most complex requests such
as GetObservation are implemented easier using HTTP POST than using
HTTP GET, as the SOS specification does not define KVP encodings for
this operation.

The core profile is mandatory for every server but 10 of the 56 servers
do not implement the DescribeSensor request, or at least they do not
include it in the capabilities file. Some operations for the transactional
and enhanced profile are implemented by a few server instances and some
of them are not implemented at all.

137

CHAPTER 8. EMPIRICAL STUDY OF SOS SERVER INSTANCES

Table 8.3: Operations supported by the server instances

Operation Name Profile GET
Support

POST
Support

1 GetCapabilities Core 56 54
2 DescribeSensor Core 33 45
3 GetObservation Core 42 54
4 RegisterSensor Transactional 0 2
5 InsertObservation Transactional 1 2
6 GetFeatureOfInterest Enhanced 0 12
7 GetObservationById Enhanced 0 10
8 GetResult Enhanced 0 1
9 GetFeatureOfInterestTime Enhanced 0 0
10 DescribeFeatureType Enhanced 0 0
11 DescribeObservationType Enhanced 0 0
12 DescribeResultModel Enhanced 0 0

Figure 8.1: Support of SOS operations in actual server instances

138

8.4. RESULTS

Supported Filters

The number of potential observations published on a server can be
very large. For this reason, filters are used to request just the observa-
tions in which we are interested. Filters for SOS fall into four categories:
spatial, temporal, scalar, and identifier filters. Only 16 of the 56 (28.5%)
capabilities files include information about the supported filters. These
filters are detailed in Table 8.4. For each filter category the supported
operands and operators are shown, as well as how frequently they have
been used.

The most implemented filters are BBOX and TM During that allow
to restrict the location of the observations to a given bounding box or to a
given time period respectively. Id filters are also frequently implemented.
They allow information to be filtered by specifying the ID of entities re-
lated with the request. Even though some servers do not include the filter
capabilities section, most of them allow observations to be also filtered
using a bounding box or a time interval.

Supported Response Formats

Observations published on different server instances are encoded using
several different formats. These formats and the number of offerings that
represent information with them are presented in Table 8.5. The most
widely supported format to represent observations is O&M 1.0.0, which
is the default format specified by SOS.

Offerings Information

Observation offerings contain information about a set of related sen-
sor observations. The SOS specification does not say how observations,
procedures or observed properties should be grouped into offerings. For
this reason, it would be very interesting to know how this grouping is
realised in actual implementations. Regarding observation offerings we
computed the followed metrics:

• Number of offerings per server (OpS): How many offerings are usu-
ally published on a server.

• Number of procedures per server (PpS): How many sensor or sensor
systems are published on a server.

• Number of observed properties per server (OPpS): How many ob-
served properties are usually published on a server.

139

CHAPTER 8. EMPIRICAL STUDY OF SOS SERVER INSTANCES

Table 8.4: Support of filters

Filter Category Number of
Appearances

Spatial Filters Operands gml:Envelope 16
gmlPolygon 11
gml:Point 11
gml:LineString 11

Operators BBOX 15
Contains 11
Intersects 11
Overlaps 11
Equals 1
Disjoint 1
Touches 1
Within 1
Crosses 1
DWithin 1
Beyond 1

Temporal Filters Operands gml:TimeInstant 16
gml:TimePeriod 16

Operators TM During 15
TM Equals 14
TM After 14
TM Before 14
TM Begins 1
TM Ends 1

Scalar Filters Operators Between 14
EqualTo 13
NotEqualTo 13
LessThan 13
LessThanEqualTo 13
GreaterThan 13
GreaterThanEqualTo 13
Like 12
NullCheck 1

Id Filters eID 16
fID 15

140

8.4. RESULTS

Table 8.5: Formats supported to represent observation information

Format Number

text/xml; subtype=”om/1.0.0” 5110
text/xml;schema=”ioos/0.6.1” 2064
text/csv 664
application/vnd.google-earth.kml+xml 664
text/tab-separated-values 664
application/zip 110
text/xml 4
application/com-binary-base64 1
application/com-tml 1

• Number of offering as points: An interesting peculiarity observed
during the experiments is that location of most offerings is a point,
instead of a bounding box.

The result of computing the first three metric values is shown in Figure
8.2. The figure shows the values grouped into 6 categories. The number of
offerings per server ranges from 1 to 1772. 48% of the servers contain 1-4
offerings, and 63 % contain 16 or less. This indicates that servers tend to
group observations in a few offerings. Similarly, the number of procedures
per server ranges from 1 to 1957. Although in a lesser degree than the
case of offerings, the number of servers with a large amount of procedures
per server is always lower than the number of servers with a small number
of procedures. The number of observed properties per server ranges from
1 to 114. This number behaves much like the previous ones having 65%
of the server instance with less than 16 observed properties advertised.

A last interesting phenomenon found here is the number of observa-
tion offerings which are restricted to a point in the space. Each offering
has a property named boundedBy defining a bounding box where the ob-
servations grouped in the offering are located. In 6,575 offerings in the
sample data set the bounding box was indeed a point, representing the
95.7% of the total number of offerings. This clearly indicates that the
first criteria followed to group observations into offerings is the sensors
location, which in most of the cases is a single point on Earth. Fig-
ure 8.3 shows as an example a set of offerings located in North America
represented in Google Earth. In the figure, placemarks represent point
offerings and bounding boxes represent other offerings.

141

CHAPTER 8. EMPIRICAL STUDY OF SOS SERVER INSTANCES

Figure 8.2: Number of servers classified by the number of offerings, pro-
cedures and observed properties

8.4.2 Procedure Description Files

The 56 servers considered in this study mention in their capabilities
files 12,222 procedures. From this number we were able to retrieve the
description files of 6719 of them (54.9%). All of these files were encoded
in the SensorML format.

142

8.4. RESULTS

Figure 8.3: Observation offerings in North America

Instance Validation

The validation of the sensorML files gave as result that 1,896 files
were invalid according to the XML schemas files defining the structure
of these documents. The value represents 28.2% of the overall number of
files. The most frequent errors found are presented in Table 8.6. The first
error type occurred frequently because required elements where omitted
or elements not defined in the schemas where introduced in the wrong
place. Errors 2, 4 and 5, similarly to the case of capabilities files refer to
incorrectly formatted values: identifiers including whitespaces or colons,
incorrect time values, or values just being left empty. The most serious
errors were those of type 2. In these cases, wrong use of namespaces,
or not specifying the version of the schemas used, made it impossible to
process the documents at all.

Procedure Description Types

The sensorML specification models sensor systems as a collection of
physical and non-physical processes. Physical processes are those where

143

CHAPTER 8. EMPIRICAL STUDY OF SOS SERVER INSTANCES

Table 8.6: Most frequent validation errors for sensor description files

Error code Description Number of
Ocurrences

1 cvc-complex-
type.2.4.a

Invalid content was found start-
ing with element [element name].
One of valid element list is ex-
pected

1,778

2 cvc-attribute.3 The value of attribute on element
is not valid with respect to its
type

556

3 cvc-elt.1.a Cannot find the declaration of el-
ement [element name]

500

4 cvc-datatype-
valid.1.2.1

[value] is not a valid value of
union type

300

5 cvc-pattern-valid Value is not facet-valid with re-
spect to pattern for type

256

information regarding their positions and interfaces may be relevant. Ex-
amples of these processes are detectors, actuators, and sensor systems.
Non-physical or “pure” processes according to the specification can be
treated as merely mathematical operations [OGC07c]. These categories
are further subdivided as shown next:

• Physical processes

– Component : Any physical process that cannot be subdivided
into smaller sub-processes.

– System: It may group several physical or non-physical pro-
cesses.

• Non-physical processes

– Process Model : Defines an atomic pure process which is used
to form process chains.

– Process Chains: Collection of executable processes in a sequen-
tial manner to obtain a desired result.

From 6,219 processed sensorML files, 6,215 described Systems (99.9%),
and 4 of them ProcessChains. This indicates that the usual is to describe

144

8.4. RESULTS

sensor systems that have a location in space and measure an observed
property for a period of time.

Specifying Location

An important piece of information about the procedure is its loca-
tion. Unfortunately for programmers, location can be specified in differ-
ent parts of the procedure description file (sensorML file). In the sample
dataset we have found this information located in at least three different
places and using different names to identify coordinates:

• Under the location tag in the description of a System as a point:

<SensorML xmlns=” h t t p : //www. openg i s . net /sensorML / 1 . 0 . 1 ”
version=” 1 . 0 . 1 ” [Other a t t r i b u t t e s]>
<member>

<System gml : id =[System ID]>
. . .
< l o c a t i o n>

<gml:Point srsName=[SRS Name]>
<gml : coo rd ina t e s>39 .99 −0.068 0</ gml : coo rd ina t e s>

</ gml:Point>
</ l o c a t i o n>
. . .

</System>
</member>

</SensorML>

• Under the position tag in the description of a System as a vector
with named elements:

<SensorML xmlns=” h t t p : //www. openg i s . net /sensorML / 1 . 0 . 1 ”
version=” 1 . 0 . 1 ” [Other a t t r i b u t t e s]>
<member>

<System gml : id =[System ID]>
. . .
<s m l : p o s i t i o n name=[name]>

<swe :Po s i t i on re ferenceFrame =[SRS name]>
<s w e : l o c a t i o n>

<swe:Vector>
<swe : coo rd ina t e name=”x”>

<swe:Quantity>
<swe :va lue>−0.068</ swe :va lue>

</ swe:Quantity>
</ swe : coo rd ina t e>
<swe : coo rd ina t e name=”y”>

<swe:Quantity>
<swe :va lue>39 .99</ swe :va lue>

</ swe:Quantity>
</ swe : coo rd ina t e>
<swe : coo rd ina t e name=”z”>

<swe:Quantity>

145

CHAPTER 8. EMPIRICAL STUDY OF SOS SERVER INSTANCES

<swe :va lue>0</ swe :va lue>
</ swe:Quantity>

</ swe : coo rd ina t e>
</ swe:Vector>

</ s w e : l o c a t i o n>
</ swe :Po s i t i on>

</ s m l : p o s i t i o n>
. . .

</System>
</member>

</SensorML>

• Under the positions tag in the description of a System as a list of
positions:

<SensorML xmlns=” h t t p : //www. openg i s . net /sensorML / 1 . 0 . 1 ”
version=” 1 . 0 . 1 ” [Other a t t r i b u t t e s]>
<member>

<System gml : id =[System ID]>
. . .
<s m l : p o s i t i o n s>

<s m l : P o s i t i o n L i s t>
<s m l : p o s i t i o n name=[name p o s i t i o n 1]>

[Po s i t i on data]
</ s m l : p o s i t i o n>
<s m l : p o s i t i o n name=[name p o s i t i o n 2]>

[Po s i t i on data]
</ s m l : p o s i t i o n>
. . .

</ s m l : P o s i t i o n L i s t>
</ s m l : p o s i t i o n s>
. . .

</System>
</member>

</SensorML>

In the first case reading the coordinates values is straightforward, the
values are grouped together into a gml:Point object. In the second one,
several tags must be parsed to reach the coordinates; a problematic issue
at this point is that different names are used by servers to refer to the
coordinate values. For example longitude was also named x or easting ;
latitude was also named y or northing ; and altitude was also named z.
The contents and attributes of the tags involved are also slightly different,
some servers includes unit of measurements, some include the axis they
refer to, etc. The third case is a generalisation of the second one, where
positions are included in a list, allowing more than one to be specified.
None of the analysed files included more than one position for a sensor
or sensor system.

146

8.4. RESULTS

8.4.3 Observation Files

To analyse GetObservation responses, 1.7 GB of observation data was
retrieved from the server instances. All of the retrieved files follow the
format specified by O&M 1.0.0 encoding specification. As it was shown
in Table 8.5 this is the most widely used format and it is the default
encoding for observations in SOS 1.0.0.

Instance Validation

Validation of observation files was much more difficult than expected.
The validation process failed repeatedly to process correctly large files
(>10MB) and did not allow the validation of files containing measure-
ments alleging that schema files were incorrect. Measurements are spe-
cialised observations where the observation value is described using a nu-
meric quantity with a scale or using a scalar reference system [OGC07a].
Large files were only a few, so the first limitation was not a great problem
but files containing measurements were about half of the whole observa-
tion files. Although we were able to parse correctly all of the observations,
we were only able to apply the validation process to 62 files (31.3%). From
these 62 files, 56 were reported to be invalid (90%). Details about the
errors found are shown in Table 8.7.

Table 8.7: Most frequent validation errors for observation files

Error code Description Number of
Ocurrences

1 cvc-attribute.3 The value of attribute on element
is not valid with respect to its
type

206

2 cvc-complex-
type.2.4.a

Invalid content was found start-
ing with element [element name].
One of valid element list is ex-
pected

189

3 cvc-datatype-
valid.1.2.1

[value] is not a valid value of
union type

121

The validation errors for observation files are similar to those for ca-
pabilities and sensor description files. Values with wrong formats, and

147

CHAPTER 8. EMPIRICAL STUDY OF SOS SERVER INSTANCES

wrong named or misplaced elements made up all of the errors found in
the instance files.

Observation Types

According to the O&M 1.0.0 encoding specification observation types
are organised as shown in Figure 8.4. The base type for all observations
is ObservationType, which inherits from AbstractFeatureType located in
GML schemas. Starting from ObservationType a set of specialisations
is defined based on the type of the results contained in the observations.
Additionally, information providers can derive their own observation data
types from the different types in the figure.

Figure 8.4: Hierarchy of observation types

From 3,990,656 observation values processed in the dataset, 56.3 %
(2,246,639) of the values were Observation elements (instances of Ob-
servationType), and 43.7 % (1,744,017) were instances of Measurement
elements (instances of MeasurementType). Values corresponding to none
of the other types were found in the sample dataset. Despite the fact that
the number of measurement values was lower than the number of observa-
tions, the amount of disk space needed to contain these values was about
7 times larger than the space occupied by the observations (1533 MB
against 213 MB). This difference in size seems to be the cause why most

148

8.5. SUBSET OF XML SCHEMAS USED

implementations choose not to use observation specialisation types. Al-
though the lack in the O&M specification of well-defined semantic models
might influence this decision as well [Pro08, Kuh09].

8.5 Subset of XML Schemas Used

The last piece of information we extracted from the sample dataset
is the subset of the XML schemas that is actually used by the server in-
stances. The number of schema files associated to the SOS specification
is huge. If we follow all of the dependencies from the main schema files
of the specification we obtain a set of 87 files. If we additionally consider
the observations specialisation schemas (containing the definition of Mea-
surementType) and their own dependencies this number grows up to 93.
The size of schemas brings as a consequence that server instances only
provide support for a subset of them.

Next, we calculate from the sample dataset which part of the schemas
is used and which part is not used at all. To calculate this information we
inspect the information contained on the instance files to determine which
schema components are directly used in the files (initial set). After doing
this, we determine which other schema components are used to define
the initial set3. The algorithm used is similar to the one included in the
GML subsetting profile tool, a tool used to extract subsets of the GML
schemas [OGC04]. We present the results in two steps. First, we detail
the subset of the GML schemas that is actually used. Second, a similar
analysis with the overall results for the SOS specification is presented.

8.5.1 GML

GML constitutes more than 50% of the overall number of global
schema components (types, elements, model groups) comprising the SOS
schemas. It is used to model geographic features embedded into the
instance files, and its components are extended or composed into new
components of the SOS specification. As shown in Figure 8.5, most of
the specifications relevant to our study depend to a large extent on GML.
Table 8.8 shows a comparison between the number of components in the
original GML schemas for version 3.1.1 (original files) and the subset of

3The algorithm used here is an early version of the Instance-based algoritm
presented in Chapter 6. The results obtained with this older version has been
kept here to maintain consistency with the results published in [TVGH11]

149

CHAPTER 8. EMPIRICAL STUDY OF SOS SERVER INSTANCES

the schemas that is referenced directly, or used in the definition of others
components referenced directly in the sample dataset (profile).

Figure 8.5: Dependencies of SOS from other specifications

Table 8.8: Comparison between overall number of components in GML
and number of components actually used

Original Files Profile

#CT 394 60
#ST 64 15
#EL 485 74
#AT 15 9
#MG 12 2
#AG 35 4
#GLOBAL 1005 164

The results are divided by component type: complex types (#CT),
simple types (#ST), global elements (#EL), global attributes (#AT),

150

8.5. SUBSET OF XML SCHEMAS USED

model groups (#MG) and attribute groups (#AG). It turned out that
only 16.3% of the components were actually used. All of the compo-
nents contained in the following files were not used at all: coverage.xsd,
dataQuality.xsd, defaultStyle.xsd, direction.xsd, dynamicFeature.xsd, ge-
ometricComplexes.xsd, geometricPrimitives.xsd, grids.xsd, measures.xsd,
temporalreferenceSystems.xsd, temporalTopology.xsd, topology.xsd, and val-
ueObjects.xsd.

8.5.2 SOS

As mentioned before, the full SOS schemas are comprised by 93 files,
distributed by specification as presented in Table 8.9. This full set is
calculated starting from the SOS main schemas and following the ref-
erences specified with include and import tags. For example, a typical
practice when accessing a component in the GML schemas is to import
the whole schemas through the file gml.xsd. This way all of the GML
schemas become referenced even when most of them are never used.

Table 8.9: Distribution of SOS schema files by specification

Specification Version Number of
files

SOS 1.0.0 16
GML 3.1.1 32
SensorML 1.0.1 5
OM 1.0.0 3
SWE Common 1.0.1 11
Sampling 1.0.0 5
OWS 1.1.0 14
Filter 1.1.0 4
Others 3

Table 8.10 shows a comparison between overall number of components
in the full SOS schemas (original files) and the subset of the components
that is really needed as explained before in the case of GML (profile).
The results are also displayed in Figure 8.6.

151

CHAPTER 8. EMPIRICAL STUDY OF SOS SERVER INSTANCES

Table 8.10: Comparison between the overall number of components in
SOS and number of components actually used

Original Files Profile

#CT 772 266
#ST 119 61
#EL 745 201
#AT 39 3
#MG 28 16
#AG 40 8
#GLOBAL 1743 515

Figure 8.6: Overall number of schema components vs actually used com-
ponents in SOS

8.6 Discussion

As the amount of information extracted from the sample dataset is
large we present a summary of our findings:

152

8.6. DISCUSSION

1. The number of invalid instances files is high: 29% (1986 out of
6837),

2. Most of the validation errors found are not serious enough to prevent
correct parsing,

3. Some servers do not implement all of the mandatory operations in
the core profile,

4. Most servers do not advertise filtering capabilities,

5. Most servers use O&M to encode observations,

6. Most servers group observations into a small number of offerings,
and they usually contain information about a small number of pro-
cedures and observation properties,

7. Offering locations were frequently points in space indicating that the
first criteria to distribute observations into offerings is the sensors
location,

8. Most procedure descriptions refer to Systems,

9. All of the observations in the sample dataset belong to only two
types: observations and measurements,

10. The size on disk needed to represent measurements is much higher
than the one used to represent the same information as basic ob-
servations.

11. Most servers only support operations from the core profile,

12. Procedure location is specified in at least three different parts of
the sensorML documents, and sometimes coordinates are referred
to under different names. This problem could be solved by allowing
only one of the three choices. If multiple locations can be specified
for a procedure the more general solution would be the most appro-
priate, although we did not find any instance with more than one
location in the sample dataset.

13. Only 29.5 % of the full schema set for SOS is used by the sample
dataset

153

CHAPTER 8. EMPIRICAL STUDY OF SOS SERVER INSTANCES

The first four points are closely related to interoperability. The pres-
ence of invalid files increases the chance of parsing errors in client-side
applications. The fact that most errors are easy to overcome if writing
the parsers manually, does not deny the fact that may limit the applica-
bility of XML data binding code generators if they are strict regarding
schemas validity. Not supporting mandatory operations may also lead
clients to fail if they request these operations to the server. Not advertis-
ing filtering capabilities simply prevents the clients to effectively filter the
observations, unless they know beforehand how the server works. Next
six points (5-10) provides useful insight for optimizing server and client
implementations. Knowing which formats, offering grouping strategies,
and types of sensor and observation representations are more commonly
used could be utilised to optimise implementations in these scenarios.
Even more, they could indicate which features are most likely to stay in
future versions of the specification. Point 10 is specially revealing if large
amounts of information are being handled. In this case using measure-
ments is not the right choice for encoding information.

The last three points, in our opinion, reflect the complexity of the SOS
specification. The number of operations in the specification is high if com-
pared with others OGC specifications. In addition, the complexity of the
formats that must be supported such as SensorML, O&M, SWE common,
and GML, makes the implementation of the core profile itself a complex
task. The example of how location is specified for procedures shows that
even getting a simple piece of information can be a difficult thing to do.
The last point could be the result of two options: the schemas are too
complex to be implemented in its entirety or most of the information in-
cluded or referenced by the schemas is not needed in real scenarios. In our
opinion both options are true to a certain degree. Schemas are complex
enough to make it almost impossible to fully implement them manually.
This complexity also makes code generation based on them tricky, as they
use schema features that are not supported by some generators. In ad-
dition, some of schemas contain validation errors. Regarding if all of the
information included in the schemas are really needed, they have been
designed to be useful in as many scenarios as possible. Even if the design
process starts with a very well defined use cases, how real users are going
to utilise them is not easy to predict.

154

8.7. CONCLUDING REMARKS

8.7 Concluding Remarks

In this chapter we have presented an empirical study of actual in-
stances of servers implementing SOS. The study has focused mostly on
which parts of the specification are more frequently included in real im-
plementations, and how exchanged messages follow the structure defined
by XML Schema files. Several interesting outcomes have been obtained
such as the main criteria to group observations into offerings, the small
subset of the schemas that are actually used, the large number of files
that are invalid according to the schemas, etc.

All of these findings must be taken with care because the study has
presented several limitations such as the impossibility to retrieve all of
the information published on servers or only the responses from the core
profile operations were considered. Nevertheless, they can be of practical
use when implementing SOS servers and clients. For example, to decide
which parts of the schemas to support, to suggest how to encode large
datasets of observations, to know where to look for the sensors location,
just to mention some.

155

CHAPTER 9

Performance Evaluation

In this chapter we present a set of experiments to prove that the main
objectives of the code generation process, to reduce generated code size
and allow flexible XML parsing, are fulfilled without a significant loss in
execution time. In addition to performance tests carried out on a mobile
device we include tests targeted to desktop computers to show that the
generated code can also be useful for different hardware and software
configurations.

9.1 Performance Considerations for Java Programs

Calculating performance of programs in a modern system is a diffi-
cult task. The main cause is the existence of multiple factors that may
alter the final results, such as cache memories, multi-threading, back-
ground processes, etc. For Java programs we have the added complexity
that they are not executed directly over the hardware but in a virtual
machine (VM). In this runtime systems there are additional sources of
non-determinism that may affect the overall performance [GBE07] such
as Just-In-Time compilation (JIT) or garbage collection. All these as-
pects provoke that different executions of the same program may lead to
very different results. For example, Figure 9.1 shows the execution times

A version of the content of this chapter has been published as a short paper
with the title “Analysing Performance of XML Data Binding Solutions for
SOS Applications” in Proceedings of Workshop on Sensor Web Enablement
2011 (SWE 2011), October 6-7, Banff, Alberta, Canada.

157

CHAPTER 9. PERFORMANCE EVALUATION

Figure 9.1: Typical execution time pattern followed by a Java program

of 100 iterations of a Java program. The first iteration takes considerably
more time than the rest because of the overhead related with class loading
and the action of the JIT compiler. The rest of the iterations have a more
regular behaviour, but still fluctuates as a result of the many factors that
affect execution time.

For this reason, to obtain accurate measurements of the execution
time of a Java program, a sound methodology that considers all these
situations must be chosen. For our experiments we selected the method-
ology presented in [GBE07] as it provides a statistically rigorous approach
to deal with all these factors.

The selected methodology differentiates between startup performance
and steady state performance. Startup performance measures the execu-
tion time of the first run, which as shown before tends to be larger than
the rest. Steady-state performance refers to the normal action of the ap-
plication once all of its classes are loaded in memory and, in case it is
available, the JIT compiler has also done its job and the application is
supposed to run without major interferences from other factors.

The methodology tries to cope with all the non-deterministic factors

158

9.1. PERFORMANCE CONSIDERATIONS FOR JAVA PROGRAMS

that may affect performance measurements. As the number of tests cov-
ered here is a bit large we will focus mostly in steady-state performance,
although an explanation about how startup performance is calculated is
also presented in the following sections.

The methodology uses the following notation for both situations:

• xi,j refers to the measurement of the j-th benchmark iteration of
the i-th VM invocation.

9.1.1 Startup Performance

To measure startup performance [GBE07] proposes the following two-
step methodology:

1. Measure the execution time of different VM invocations, each VM
invocation running a single benchmark iteration. This results in p
measurements xi,j with 1 ≤ i ≤ p and j = 1.

2. Compute the confidence interval for a given confidence level.

The use of confidence intervals is recommended as they allow de-
termining if differences observed are due to random fluctuations in the
measurements or due to actual differences in the alternatives compared
against each other. A confidence interval for the mean quantifies the
range of values that have a given probability (confidence level) to include
the actual population mean. Depending on whether the number of mea-
surements is large (n ≥ 30) or small (n < 30) the confidence interval is
calculated using a Gaussian distribution or a Student’s t-distribution.

9.1.2 Steady-State Performance

To measure steady-state performance [GBE07] proposes a more com-
plex sequence of steps:

1. Consider p VM invocations, each VM invocation running at most q
benchmark iterations supposed that we want to retain k measure-
ments per invocation.

2. For each VM invocation i, determine the iteration si where steady-
state is reached, which is when the coefficient of variation (CoV) of
the k iterations (si− k to si) falls below a preset threshold. CoV is
the ratio of the standard deviation to the mean.

159

CHAPTER 9. PERFORMANCE EVALUATION

3. For each VM invocation, compute the mean x̄i of the k benchmark
iterations under steady-state:

x̄i =

si∑
j=si−k

xi,j

4. Compute the confidence interval for a given confidence level across
the computed means from the different VM invocations. The overall
mean x̄ and the confidence interval is computed over the x̄i mea-
surements. The formula to calculate x̄ is as follows:

x̄ =

p∑
j=1

x̄i,j

The first step states that for every virtual machine invocation, we
want to retain k measurements, where the program is supposed to be in
its steady state. The use of different VM invocations is advised as it is
documented that different VM invocations may result in different steady-
states performances ([AHR02] cited in [GBE07]). The second step reflects
the difficulty of determining if the program is actually in its steady-state.
As many factors may affect the program execution time, we assume that
it has reached a steady-state when for a certain number of consecutive
measurements the variability of the execution time is minimal. This vari-
ability is calculated through the coefficient of variation (standard devia-
tion divided by the mean), which is a normalised measure of dispersion
of a probability distribution. The third and fourth steps calculate mean
values and confidence intervals for the aggregated results.

9.2 Experimental Setup

Once introduced the detailed methodology to measure performance
we present now further details about our specific experimental setup. We
attempt to compare the performance of the code generated by DBMobi-
leGen with other XML data binding generators in the following scenarios:
a mobile device running Android (Mobile Scenario 1) and two personal
computers with different hardware and software configurations (PC Sce-
narios 1 and 2).

In the first scenario we compare DBMG with XBinder because it
is to our best knowledge the only generator available for the Android

160

9.2. EXPERIMENTAL SETUP

Table 9.1: Datasets description

Dataset Description
Capabilities Dataset
(CAPS)

A set of 38 capabilities files. The files are all of the valid
capabilities file in SOS Dataset, plus others more files that do
not contain critical errors that prevent them to be parsed by
all of the generated parsers

Sensor Descriptions
Dataset (SD)

A set of 20 sensor descriptions selected from the valid files
in SOS Dataset. The files were randomly selected from the
available valid sensor descriptions.

Observations Dataset
(OBS)

A set of 45 observations files selected from SOS Dataset. This
set includes all of the observation files with a size below 10
MB1 that were processed correctly by all of the parsers, al-
though some of them are invalid.

Measurements Dataset
(MEA)

A set of 31 measurements files selected from SOS Dataset.
This set includes all of the files with a size below 10 MB that
were processed correctly by all of the parsers.

platform that produces Java code. For the other scenarios, DBMG is
compared with JAXB, XMLBeans, and again XBinder, which is capable
of generating Java code for desktop and server computers as well.

Although the code generated by DBMG is targeted mainly to mobile
devices, care has been taken to keep the code compatible to be run on
desktop or server Java applications. The reason behind this is that it
has not been discarded that it may be also useful in these scenarios. We
have also decided to use two different personal computer configurations
to illustrate how final results highly depend on the hardware and software
configuration.

9.2.1 Test Datasets

To measure generated code performance we will use four datasets.
These are based on the dataset presented in the previous chapter, re-
ferred to as SOS Dataset in the remainder of this chapter, containing real
data gathered from different SOS server instances. The test datasets are
described in Table 9.1.

161

CHAPTER 9. PERFORMANCE EVALUATION

Table 9.2: Generated parsers for each dataset

XMLBeans JAXB XBinder
(PC)

XBinder
(Android)

DBMG

CAPS X X X X X

SD X X X X X
OBS X X - - X
MEA X X X X X

It would be ideal to generate a single parser2 for each selected gener-
ator that were capable of processing the four datasets. Unfortunately, we
were unable to generate code with XBinder and JAXB from the whole
SOS schemas. Although the problems found could maybe be solved ad-
justing several configuration parameters or modifying the generated code
manually, we preferred to use the datasets separately as input to the
schema simplification algorithm (Chapter 6). This way four different
schema subsets were obtained and were used to produce independent
parsers with each generator. This procedure resulted in the generation of
20 different parsers as shown in Table 9.2.

The code generated by XBinder for parsing observations had to be
discarded because it was not capable of processing elements defined with
type anyType. In the case of observation files the element om:result3

is defined with this type with the purpose of acting as a container for
different forms of encoding observations.

9.2.2 Hardware and Software

A description of the hardware configurations where the generated
parsers will be executed is presented next. Network and storage spec-
ifications are not included because the tests have been designed in a way
that these parameters do not influence the results, except for the case of
storage in the mobile configuration.

2The term parser is used in this context to refer to the XML processing code
generated with the different tools considered here. We use the term underlying
parser to refer to the vocabulary-independent data access interface used by
this code for low-level access to XML data (StaX, DOM, etc.)

3Prefix om is used for namespace http://www.opengis.net/om/1.0

162

9.3. RESULTS

• Mobile Scenario: Mobile Configuration (HTC Desire Phone)

– Processor: Qualcomm QuadDragon 1 GHz

– RAM: 576 MB

– Storage: microSD card 2 Mbit/s transfer speed

– OS: Android 2.2

• PC Configurations:

– PC Scenario 1: Apple MacBook Laptop

∗ Processor: Intel Core Duo

∗ RAM: 4 GB

∗ OS: Mac OS X 10.6 64-bit

– PC Scenario 2: High-End Windows PC

∗ Processor: Intel Quad Core i7-860 2.80 GHz

∗ RAM: 8 GB DDR3-1333

∗ OS: Windows 7 Enterprise 64-bit

An interesting difference between personal computer configurations
is that Mac OS X uses its own implementation of the Java VM, while
Windows 7 uses the VM distributed by Oracle.

As we are using three different hardware configurations that must be
combined with four datasets we will use a single VM invocation (p =
1) in all of the tests with the purpose of keeping the exposition of the
experiments as simple as possible.

9.3 Results

Because of the great length of the experiment results we only detail
here those for the first datasets. The presentation of the results for the
other datasets can be found in Appendix B and will be summarised at
the end of this chapter.

9.3.1 CAPS Dataset

The capabilities dataset (CAPS) is composed by 38 files taken from
SOS Dataset. From the 56 files sample, we selected all of the files that
could be correctly parsed with the code produced by all of the generators
considered in our study. Some of these files were invalid according to the

163

CHAPTER 9. PERFORMANCE EVALUATION

SOS schemas and required small modifications to make them “parsable”
by the generated parsers. The 38 files have sizes ranging from less than 4
KB to 3.5 MB, with a mean size of 315 KB and a standard deviation of
26.7 KB. As the size range is large and with the purpose of simplifying
presentation we divide the files in two groups, those with a size below 100
KB, CAPS-S (30 files), and those with size equal to or higher than 100
KB, CAPS-L (8 files).

Mobile Configuration

For the mobile device under consideration the parsers generated by
XBinder and DBMG were tested. To avoid possible interferences related
with network delays the dataset files were stored locally. In addition, to
minimise the interference of data transfer delays from the storage medium
all of the files below 500 KB were read into memory before being parsed.
It was impossible to do the same for files with sizes above 500 KB because
of the device memory restrictions.

The value of CoV selected to control the detection of the steady state
for files below 100 KB was 0.05. This value was determined experimen-
tally as we were unable to get values for this variable much smaller than
this threshold during a battery of tests executed before the final measures
were taken. The value of CoV is calculated over a sample of 30 consecu-
tive measures. For files with size above 100 KB we chose a CoV of 0.02
as the relative variability of the measures was much lower.

Figures 9.2 and 9.3 show the mean execution times in the steady-state
for the files in CAPS. In both cases, the execution time of DBMG was
better for almost all of the files parsed (35 out of 38). For most of the
larger files, DBMG code was about 30% faster than XBinder code, which
is a significant difference of 2-3 seconds. The main reason for this is
one of those presented in Section 7.4.3 to justify the smaller size of code
generated by DBMG, restrictions defined in the schemas for simple types
are not enforced in the generated code. As the values of these types are
passed by DBMG directly to upper layers of the application, no time is
wasted checking for restrictions such as that a number is in predefined
interval or a string matches to a regular expression.

Mac OS X Laptop

In the case of the Mac OS X laptop, four different parsers were tested.
All of the files were stored locally and loaded into memory before starting

164

9.3. RESULTS

Figure 9.2: Execution times of XBinder and DBMG for CAPS-S dataset
(Mobile Scenario)

its processing. This way network and disk speed transfer have no effect
over the measured execution times. The value of CoV used to detect the
steady state was 0.02.

For this scenario the results obtained by XBinder when compared
to DBMG were worse than for the previous one (Figures 9.4 and 9.5).
Again, code generated with DBMG was faster for 35 of the 38 files, but
the differences were larger being more than 60% faster in some cases.
For small files (<30 KB), the DBMG parser was even faster than those
generated by JAXB and XMLBeans. For larger files, except for XBinder
that had worse results, the rest of the parsers had very similar execution
times, with some difference in favour of JAXB.

The worst performance shown by XBinder can be justified again be-
cause all of the validation code included in the generated parser. Never-
theless, XMLBeans generates similar validation code and it is as fast as
JAXB and DBMG. A possible reason for this is that XMLBeans does not
transform all of the data contained in XML documents into application
objects during parsing. Instead, it creates an XML Store, an in-memory
structure with the XML data, and then creates object instances contain-
ing portions of this data on user request.

165

CHAPTER 9. PERFORMANCE EVALUATION

Figure 9.3: Execution times of XBinder and DBMG for CAPS-L dataset
(Mobile Scenario)

Windows PC

Similarly to the previous case, in the high-end Windows PC four
parsers were tested. Processed files were loaded into memory before pars-
ing. For this test the results obtained by XBinder and DBMG, differing
from the previous experiments, were very similar (Figures 9.6 and 9.7).
The execution times for JAXB and XMLBeans continued to be the best
and were very close to each other for small files . For larger files JAXB
had a performance about 30% better than XMLBeans .

The cause of DBMG generated code being as slow as XBinder can
be found in the underlying parser. An additional experiment shown in
Appendix C has shown that execution times of the StAX parser on which
XBinder code is based is a lot faster than KXml. It is important to note
the KXml is a parser optimised to be executed in resource-constrained
devices. For this reason, it does not use sophisticated data structures
or algorithms that might speed up parsing at the expense of consuming
more computational resources.

166

9.4. DISCUSSION

Figure 9.4: Execution times for CAPS-S dataset (PC Scenario 1 - Mac
OS X Laptop)

9.4 Discussion

The results presented in the previous section show that in the mobile
scenario, DBMG not only generates code with smaller footprint, but this
code also has better execution times for the CAPS dataset than XBinder.
In other scenarios DBMG code is at least as good as that of XBinder,
and in some cases being as fast as more powerful tools such as JAXB and
XMLBeans.

The differences in the relative comparison of the generated code for
different scenarios show that external factors, such as hardware or VM
implementation, have a large influence over these results. These factors
might provoke that these differences could be enlarged or shortened when
the configuration is changed.

As mentioned before, the results for the rest of the datasets are pre-
sented in Appendix B. Nevertheless, a summary of these results relevant
to our discussion is presented in the following paragraphs.

The SD dataset is characterised for including very small files (<
20KB). The measures for this dataset show a slight advantage of XBinder

167

CHAPTER 9. PERFORMANCE EVALUATION

Figure 9.5: Execution times for CAPS-L dataset (PC Scenario 1 - Mac
OS X Laptop)

over DBMG for the mobile configuration. When executed in a more ca-
pable hardware the measures for all of the parsers show a high relative
variability, which could be caused by the fact that most measured values
are below 1 millisecond, and at this time resolution any minimal external
disturbance may affect the measurement process. In any case, as the time
taken to process these files is so small for PC scenarios we consider these
differences negligible.

On the other hand, the OBS dataset is characterised for having about
half of the files with sizes above 1 MB. Unfortunately, the code generated
by XBinder is not capable of processing correctly this data. For this
reason, we only included tests for the personal computer configurations.
In these scenarios, for small files, XMLBeans had an important advantage
over JAXB and DBMG, which showed similar results. For large files, the
figures for XMLBeans and JAXB were almost identical.

Last, the MEA dataset, where most of the files were above 2 MB,
showed similar results for XBinder and DBMG for the first two scenarios,
but XBinder was better in the third one. For the other generators, JAXB
tended to be better as the size of the files increased.

168

9.5. CONCLUDING REMARKS

Figure 9.6: Execution times for CAPS-S dataset (PC Scenario 2 - Win-
dows PC)

9.5 Concluding Remarks

The experiments presented in this chapter have shown that the code
generated by DBMG is faster that the one produced by XBinder in most
of the test cases. DBMG code has the added value that can be compiled
unmodified for mobile and desktop systems. The tests have also shown
that the hardware and software components conforming a given system
have a large influence over the relative performance of parsers. This
means that if a parser is faster than other for a given configuration, this
does not imply that it will be faster if the configuration is changed.

The performance of JAXB and XMLBeans was better than the per-
formance of DBMG in most of the test cases. But, experiments measuring
the performance of underlying parsers suggest that these differences can
be substantially shortened if this parser were changed for PC scenarios.

The selection of which generator would be more adequate for a given
application may require the consideration of other factors not covered in
this document such as memory consumption, support for certain XML
Schema features or the possibility of merging generated code with ex-
isting business logic code. In the case of our research, the priority was
to make the size of parser binaries as small as possible, because existing

169

CHAPTER 9. PERFORMANCE EVALUATION

Figure 9.7: Execution times for CAPS-L dataset (PC Scenario 2 - Win-
dows PC)

tools generate binaries that are excessively large to be executed in mobile
phones. Still, we wanted to achieve our main goal without sacrificing the
parsers performance, which has been demonstrated by the experiments
presented here.

170

Part V

Conclusions and Future
Work

CHAPTER 10

Conclusions

While geospatial applications are becoming commonplace in mobile
devices, the number of these applications that are based on OWS spec-
ifications is really low. In our opinion, the complexity of the protocols
defined by the standards makes the task of writing reliable and efficient
mobile applications based on them an arduous task. These protocols are
based on complex data structures exchanged in XML documents, which
are reputed as being too verbose, provoke that they cannot be efficiently
processed in mobile devices with still limited capabilities. In this dis-
sertation we have tried to find ways to overcome the complexity of the
communication protocols to make them suitable for mobile devices. We
detailed next the contributions of our research, followed by a description
of future research lines that could follow the results obtained so far.

10.1 Contributions

The work presented in this dissertation includes several contributions.
The first one is a comprehensive complexity study for the OGC specifica-
tion schemas presented in Chapter 5. The study uses a set of metrics to
measure different aspects of complexity of schemas and offers a quantita-
tive way to analyse and measure the complexity of OWS schemas. The
use of adequate metrics allows us to quantify the complexity and other
properties of the schemas. The results of the analysis have shown that at
least half of the presented specifications can be considered as large and
complex according to all of the metrics included in our study. The met-
rics also allowed to group specifications according to their complexity. A

173

CHAPTER 10. CONCLUSIONS

set of new metrics was proposed to show different views of the effect of
the use of subtyping mechanism on complexity. We have also presented
use case scenarios where metrics could be applied. The metric set pre-
sented here should not be seen as a closed set, many other metrics can be
useful in many different scenarios. Some of the potential uses of metrics
are evaluating the impact of design decisions, assessing the effectiveness
of different solutions to deal with schemas complexity, and to detect po-
tential design problems such as components with too many information
items, or excessively deep subtyping hierarchies.

The second contribution is an approach to generate XML process-
ing code for OGC-based applications targeted to mobile devices. The
approach, named Instance-based XML data binding code generation, is
composed first of an algorithm that allows the simplification of specifica-
tion schemas according to the needs of particular applications (Chapter
6), and a code generator targeted to the Android Platform (Chapter 7).
The algorithm output is used by the code generator to produce Java code.
The schema simplification algorithm works based on the assumption that
a representative subset of the XML instances that must be manipulated
by the application is available and that actual applications implementing
OWS specifications use only portions of their associated schemas. Results
of applying the algorithm to a real-world use case scenario showed that it
allows a substantial reduction of the original schema set of about 90% of
its size. This huge reduction in schema size is translated into a reduction
of generated binary code of more than 80% of its size for an SOS client
targeted to the Android platform. The transformation performed by this
algorithm is done at the schema level and no assumption about the tar-
get platform is made and, as a consequence, the output schemas can be
combined with any other available XML data binding code generator.

In order to prove that actual applications use only portions of the
schemas and to quantify how much of the schemas is used for actual
implementation, we presented an empirical study of actual instances of
servers implementing SOS in Chapter 8. The study focused mostly on
which parts of the specification are more frequently included in real im-
plementations, and how exchanged messages follows the structure defined
by XML Schema files. Several interesting outcomes have been obtained
such as the main criteria to group observations into offerings, the small
subset of the schemas that are actually used, the large number of files
that are invalid according to the schemas, etc.

The code generator, named DBMobileGen, utilises the information
about how XML documents make use of its associated schemas to refine

174

10.2. FUTURE WORK

the generated code with the aim of reducing its final binary size. This
tool offers an interesting number of features that allow the production of
very compact code, and its effectiveness has been demonstrated through
a set of experiments and by building two sample applications using the
generator. These experiments have shown that code generated by DBMo-
bileGen for the case study is substantially smaller than code generated by
other tools. If we compare this tool directly with XBinder, the only gen-
erator known by the authors producing code for Android, we can say that
it generates much more compact code for the analysed scenario (almost
6 times smaller) and provides more flexibility to parse potentially invalid
XML documents. The experiments presented in Chapter 9 showed that
code generated by DBMG is faster that the one produced by XBinder in
most of the test cases. The tests have also showed that the hardware and
software components conforming a given system have a large influence
over the relative performance of parsers. This means that if a parser is
faster than others for a given configuration, this does not imply that it
will be faster if the configuration is changed.

10.2 Future Work

As future work in the topic of OWS implementations for mobile de-
vices we are following several lines of research derived from the results pre-
sented in this document. The first line is related with the exploration of
alternative formats to exchange information between clients and servers.
The use of XML to encode the information adds an overhead that could
be unbearable for some resource-constrained devices.

Another research line is related with the generalisation of the results
presented for SOS and WPS to the rest of the OGC specifications. The
sample applications built as demonstration of our approach had a lot in
common, presenting similar challenges and open issues that could be fur-
ther explored in the context of other specifications. Some of the open
issues such as the use of code generation techniques for sections of the
applications in the business logic and user interface layer of the appli-
cations can potentially reduce the complexity of building these applica-
tions. We are currently planning to build a framework for OGC-based
client development which will include communication libraries for several
specifications, the possibility of customising XML processing code as well
as a set of common user interface components that could be useful to
application developers.

175

CHAPTER 10. CONCLUSIONS

Last, the topic of complexity of schemas can also be further explored.
New metrics can be considered as well as a more precise definition of which
interesting aspect of the schemas can be measured by which metrics. It
can be also questioned if XML Schema is the most appropriate option to
specify the structure of the exchanged information.

176

Bibliography

[3GP] 3GPP. GSM 03.60, General Packet Radio Service (GPRS);
Service description; Stage 2. Available from: http://www.
3gpp.org/ftp/Specs/html-info/0360.htm.

[AHR02] M. Arnold, M. Hind, and B. G. Ryder. Online feedback-
directed optimization of java. In Proceedings of the 17th
ACM SIGPLAN conference on Object-oriented program-
ming, systems, languages, and applications, OOPSLA ’02,
pages 111–129, New York, NY, USA, 2002. ACM.

[AIM+04] P. Apparao, R. Iyer, R. Morin, N. Nayak, M. Bhat, D. Hal-
liwell, and W. Steinberg. Architectural Characterization of
an XML-Centric Commercial Server Workload. In Proceed-
ings of the 2004 Int. Conference on Parallel Processing,
ICPP ’04, pages 292–300, Washington, DC, USA, 2004.
IEEE Computer Society.

[AM96] F. Brito Abreu and W. Melo. Evaluating the Impact of
Object-Oriented Design on Software Quality. IEEE Inter-
national Symposium on Software Metrics, 0:90, 1996.

[Ant11] G. Anthes. Invasion of the mobile apps. Commun. ACM,
54:16–18, September 2011.

[Apa] Apache Software Foundation. XMLBeans. Available from:
http://xmlbeans.apache.org/.

[App] Apple. iOS 4.3 Software Update. Available from: http:

//www.apple.com/ios/.

177

http://www.3gpp.org/ftp/Specs/html-info/0360.htm
http://www.3gpp.org/ftp/Specs/html-info/0360.htm
http://xmlbeans.apache.org/
http://www.apple.com/ios/
http://www.apple.com/ios/

BIBLIOGRAPHY

[BA03] K. Barr and K. Asanović. Energy aware lossless data com-
pression. In Proceedings of the 1st international conference
on Mobile systems, applications and services, MobiSys ’03,
pages 231–244, New York, NY, USA, 2003. ACM.

[Bar11] B. Barkstrom. When is it sensible not to use xml? Earth
Science Informatics, 4:45–53, 2011. 10.1007/s12145-010-
0063-2.

[BCG+05] B. Benatallah, F. Casati, D. Grigori, H. Nezhad, and
F. Toumani. Developing adapters for web services inte-
gration. In Oscar Pastor and João Falcão e Cunha, edi-
tors, Advanced Information Systems Engineering, volume
3520 of Lecture Notes in Computer Science, pages 415–429.
Springer Berlin / Heidelberg, 2005.

[Bea09] J. Bean. SOA and Web Services Interface Design: Prin-
ciples, Techniques, and Standards (The MK/OMG Press).
Morgan Kaufmann, 2009.

[BEJ+11] A. Bröering, J. Echterhoff, S. Jirka, I. Simonis, T. Everd-
ing, C. Stasch, S. Liang, and R. Lemmens. New Generation
Sensor Web Enablement. Sensors, 11(3):2652–2699, 2011.

[BEMW08] H. J. Bungartz, W. Eckhardt, M. Mehl, and T. Weinzierl.
DaStGen– A Data Structure Generator for Parallel C++
HPC Software. In Proceedings of the 8th international
conference on Computational Science, Part III, ICCS ’08,
pages 213–222, Berlin, Heidelberg, 2008. Springer-Verlag.

[BEWZ10] H. J. Bungartz, W. Eckhardt, T. Weinzierl, and C. Zenger.
A precompiler to reduce the memory footprint of multi-
scale pde solvers in c++. Future Generation Computer
Systems, 26:175–182, January 2010.

[BL06] T. Berners-Lee. Linked data, 2006. Available from: http:
//www.w3.org/DesignIssues/LinkedData.html.

[BLS00] D. Beyer, C. Lewerentz, and F. Simon. Impact of inheri-
tance on metrics for size, coupling, and cohesion in object-
oriented systems. In Proceedings of the 10th Interna-
tional Workshop on New Approaches in Software Measure-
ment, IWSM ’00, pages 1–17, London, UK, 2000. Springer-
Verlag.

178

http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html

BIBLIOGRAPHY

[BM09a] D. Basci and S. Misra. Data Complexity Metrics for XML
Web Services. Advances in Electrical and Computer Engi-
neering, 9(2):9–15, 2009.

[BM09b] D. Basci and S. Misra. Measuring and evaluating a design
complexity metric for XML schema documents. Journal
of Information Science and Engineering, 25(5):1405–1425,
September 2009.

[BMR+96] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad,
and M. Stal. Pattern-Oriented Software Architecture, Vol-
ume 1: A System of Patterns. Wiley, 1996.

[BMV05] D. Barbosa, L. Mignet, and P. Veltri. Studying the XML
Web: Gathering Statistics from an XML Sample. World
Wide Web, 8:413–438, 2005.

[Bra03] T. Bray. XML Is Too Hard For Programmers, 2003. Avail-
able from: http://www.tbray.org/ongoing/When/200x/
2003/03/16/XML-Prog.

[CCL09] C. Canali, M. Colajanni, and R. Lancellotti. Performance
Evolution of Mobile Web-Based Services. IEEE Internet
Computing, 13:60–68, March 2009.

[CLRS01] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to Algorithms. MIT Press, 2001.

[Cod] Code Synthesis. XSD/e: : XML for Light-Weight C++
Applications. Available from: http://codesynthesis.

com/products/xsde/.

[CRC+06] C. B. Chirila, M. Ruzsilla, P. Crescenzo, D. Pescaru, and
E. Tundrea. Towards a reengineering tool for java based
on reverse inheritance. In In Proceedings of SACI 2006
the 3-rd Romanian-Hungarian Joint Symposium on Ap-
plied Computational Intelligence, pages 963–7154, 2006.

[CREP08] A. Cicchetti, D. Di Ruscio, R. Eramo, and A. Pieranto-
nio. Automating co-evolution in model-driven engineering.
In Proceedings of the 2008 12th International IEEE En-
terprise Distributed Object Computing Conference, pages
222–231, Washington, DC, USA, 2008. IEEE Computer
Society.

179

http://www.tbray.org/ongoing/When/200x/2003/03/16/XML-Prog
http://www.tbray.org/ongoing/When/200x/2003/03/16/XML-Prog
http://codesynthesis.com/products/xsde/
http://codesynthesis.com/products/xsde/

BIBLIOGRAPHY

[Das01] E. M. Dashofy. Issues in Generating Data Bindings for an
XML Schema-Based Language. In In Proceedings of the
Workshop on XML Technologies and Software Engineering
(XSE2001, 2001.

[dee] Degree Homepage. Available from: http://deegree.org/.

[Deu96] P. Deutsch. GZIP file format specification version 4.3,
1996. Available from: http://www.gzip.org/zlib/

rfc-gzip.html.

[DKDF09] C. A. Davis, Y. Kimo, and F. L. P. Duarte-Figueiredo.
OGC Web Map Service Implementation Challenges for
Mobile Computers. pages 1–6, August 2009.

[ESR98] ESRI. ESRI Shapefile Technical Description. White Paper,
1998.

[FC05] P. Farley and M. Capp. Mobile Web Services. BT Tech-
nology Journal, 23:202–213, July 2005.

[Fie00] R. T. Fielding. Architectural Styles and the Design of
Network-based Software Architectures. PhD thesis, Uni-
versity of California, Irvine, Irvine, California, 2000.

[FMLPNI10] A.J. Florczyk, P. Maué, F.J. López-Pellicer, and
J. Nogueras-Iso. Finding OGC Web Services in the Digi-
tal Earth. In Proceedings of the Workshop Towards Digital
Earth: Search, Discover and Share Geospatial Data at Fu-
ture Internet Symposium, Berlin, Germany, 2010.

[FN99] N. E. Fenton and M. Neilf. Software Metrics: Success,
Failures and New Directions. J. Syst. Softw., 47:149–157,
July 1999.

[Gar11] Gartner Inc. Gartner Says Worldwide Mobile Device Sales
to End Users Reached 1.6 Billion Units in 2010; Smart-
phone Sales Grew 72 Percent in 2010, 2011. Available from:
http://www.gartner.com/it/page.jsp?id=1543014.

[GBE07] A. Georges, D. Buytaert, and L. Eeckhout. Statistically
rigorous java performance evaluation. In Proceedings of
the 22nd annual ACM SIGPLAN conference on Object-
oriented programming systems and applications, OOPSLA
’07, pages 57–76, New York, NY, USA, 2007. ACM.

180

http://www.gzip.org/zlib/rfc-gzip.html
http://www.gzip.org/zlib/rfc-gzip.html
http://www.gartner.com/it/page.jsp?id=1543014

BIBLIOGRAPHY

[geo] Geoserver Homepage. Available from: http://

geoserver.org/.

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns. Addison-Wesley, Boston, MA, 1995.

[Goo] Google. Android.com. Available from: http://www.

android.com/.

[gvsa] gvSIG Portal. Available from: http://www.gvsig.gva.

es.

[gvsb] gvSIG Portal. Available from: http://www.gvsig.org/

web/home/projects/gvsig-mobile.

[GYC07] M. F. Goodchild, M. Yuan, and T. J. Cova. Towards a
general theory of geographic representation in gis. Int. J.
Geogr. Inf. Sci., 21:239–260, January 2007.

[Hau] S. Haustein. kXML. Available from: http://kxml.

sourceforge.net/.

[Hay09] R. B. Hayun. Java ME on Symbian OS: Inside the Smart-
phone Model. Wiley Publishing, 2009.

[Her03] J. Herrington. Code Generation in Action. Manning Pub-
lications Co., Greenwich, CT, USA, 2003.

[HKM+10] Sayed Y. Hashimi, Satya Komatineni, Dave MacLean,
Sayed Y. Hashimi, Satya Komatineni, and Dave MacLean.
Pro Android 2. Apress, 2010.

[Hos10] H. Hosoya. Foundations of XML Processing: The Tree-
Automata Approach. Cambridge University Press, The
Edinburgh Building, Cambridge CB2 8RU, UK, 2010.

[HS] S. Haustein and A. Slominski. XMLPull API. Available
from: http://www.xmlpull.org.

[IEE07] IEEE Standards Asociation. 802.11-2007 - IEEE Stan-
dard for Local and Metropolitan Area Networks - Spe-
cific Requirements - Part 11: Wireless LAN Medium Ac-
cess Control (MAC) and Physical Layer (PHY) Specifi-
cations, 2007. Available from: http://standards.ieee.

org/findstds/standard/802.11-2007.html.

181

http://geoserver.org/
http://geoserver.org/
http://www.android.com/
http://www.android.com/
http://www.gvsig.gva.es
http://www.gvsig.gva.es
http://www.gvsig.org/web/home/projects/gvsig-mobile
http://www.gvsig.org/web/home/projects/gvsig-mobile
http://kxml.sourceforge.net/
http://kxml.sourceforge.net/
http://www.xmlpull.org
http://standards.ieee.org/findstds/standard/802.11-2007.html
http://standards.ieee.org/findstds/standard/802.11-2007.html

BIBLIOGRAPHY

[IET99] W3C IETF. Hypertext Transfer Protocol – HTTP/1.1,
1999. Available from: http://tools.ietf.org/html/

rfc2616/.

[ISO86] ISO. Information processing – Text and office
systems – Standard Generalized Markup Lan-
guage (SGML), 1986. Available from: http:

//www.iso.org/iso/iso_catalogue/catalogue_tc/

catalogue_detail.htm?csnumber=16387.

[Jav04] Java Community Process. JSR 173: Streaming API for
XML, 2004. Available from: http://jcp.org/en/jsr/

detail?id=173.

[Jav06] Java Community Process. JSR 222: Java Architecture for
XML Binding (JAXB) 2.0, 2006. Available from: http:

//www.jcp.org/en/jsr/detail?id=222.

[JAX] JAXB Project. JAXB Reference Implementation. Avail-
able from: http://jaxb.java.net/.

[Kay03] Michael H. Kay. XML five years on: a review of the
achievements so far and the challenges ahead. In Proceed-
ings of the 2003 ACM symposium on Document engineer-
ing, DocEng ’03, pages 29–31, New York, NY, USA, 2003.
ACM.

[KL09] Yeon-Seok Kim and Kyong-Ho Lee. A lightweight frame-
work for mobile web services. Computer Science - Research
and Development, 24:199–209, 2009. 10.1007/s00450-009-
0091-7.

[KLT07] Jaakko Kangasharju, Tancred Lindholm, and Sasu
Tarkoma. XML Messaging for Mobile Devices: From Re-
quirements to Implementation. Comput. Netw., 51:4634–
4654, November 2007.

[KMB04] Cem Kaner, Senior Member, and Walter P. Bond. Software
Engineering Metrics: What Do They Measure and How Do
We Know? In In METRICS 2004. IEEE CS. Press, 2004.

[Kra07] Athanasios Tom Kradilis. Geospatial Web Services: The
Evolution of Geospatial Data Infrastructure. The Geospa-
tial Web: How Geobrowsers, Social Software and the

182

http://tools.ietf.org/html/rfc2616/
http://tools.ietf.org/html/rfc2616/
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=16387
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=16387
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=16387
http://jcp.org/en/jsr/detail?id=173
http://jcp.org/en/jsr/detail?id=173
http://www.jcp.org/en/jsr/detail?id=222
http://www.jcp.org/en/jsr/detail?id=222
 http://jaxb.java.net/

BIBLIOGRAPHY

Web 2.0 are Shaping the Network Society, Scharl A. and
Tochtermann K. (Eds), Springer London, pages 223–228,
2007.

[KTL05] Jaakko Kangasharju, Sasu Tarkoma, and Tancred Lind-
holm. Xebu: A binary format with schema-based opti-
mizations for XML data. In 6th International Confer-
ence on Web Information Systems Engineering, volume
3806 of Lecture Notes in Computer Science, pages 528–
535. Springer-Verlag. Short, 2005.

[Kuh09] Werner Kuhn. A Functional Ontology of Observation and
Measurements. In Proceedings of the 3rd International
Conference on GeoSpatial Semantics, GeoS ’09, pages 26–
43, Berlin, Heidelberg, 2009. Springer-Verlag.

[LBT04] R. Lake, D. S. Burggraf, and M. Trninic. Geography mark-
up language GML: foundation for the geo-web. John Wiley
and Sons, New Jersey, 2004.

[LCT05] Steve H. L. Liang, Arie Croitoru, and C. Vincent Tao. A
distributed geospatial infrastructure for Sensor Web. Com-
puter and Geosciences, 31:221–231, March 2005.

[LDL08] Tak Cheung (Brian) Lam, Jianxun Jason Ding, and Jyh-
Charn Liu. XML Document Parsing: Operational and
Performance Characteristics. Computer, 41:30–37, 2008.

[LF07] Ron Lake and Jim Farley. Infrastructure for the Geospatial
Web. The Geospatial Web: How Geobrowsers, Social Soft-
ware and the Web 2.0 are Shaping the Network Society,
Scharl A. and Tochtermann K. (Eds), Springer London,
pages 15–26, 2007.

[LK08] Tancred Lindholm and Jaakko Kangasharju. How to edit
gigabyte XML files on a mobile phone with XAS, RefTrees,
and RAXS. In Proceedings of the 5th Annual International
Conference on Mobile and Ubiquitous Systems: Comput-
ing, Networking, and Services, Mobiquitous ’08, pages
50:1–50:10, 2008.

[LKR05] R. Lämmel, Stan Kitsis, and D. Remy. Analysis of XML
schema usage. In Proceedings of XML 2005, pages 1–35,
2005.

183

BIBLIOGRAPHY

[LM07] Ralf Lämmel and Erik Meijer. Revealing the x/o
impedance mismatch: changing lead into gold. In Pro-
ceedings of the 2006 international conference on Datatype-
generic programming, SSDGP’06, pages 285–367, Berlin,
Heidelberg, 2007. Springer-Verlag.

[LPBHF+10] F.J. López-Pellicer, R. Béjar-Hernández, A. J. Florczyk,
P .R. Muro-Medrano, and F. J. Zarazaga-Soria. State of
Play of OGC Web Services across the Web. In Proceedings
of INSPIRE Conference 2010: INSPIRE as a framework
for cooperation, Krakow, Poland, 2010.

[LSZ09] Giovanni Lagorio, Marco Servetto, and Elena Zucca. Flat-
tening versus direct semantics for featherweight jigsaw. In
FOOL’09, International Workshop on Foundations of Ob-
ject Oriented Languages. ACM Press, 2009.

[Mac10] MacWorld. Apple inside: the significance of
the iPad’s A4 chip, 2010. Available from:
http://www.macworld.com/article/145998/2010/

01/apple%20a4.html?lsrc=rss%20main.

[map] MapServer Homepage. Available from: http://

mapserver.org/.

[McC76] T.J. McCabe. A Complexity Measure. IEEE Transactions
on Software Engineering, 2:308–320, 1976.

[McL02] Brett McLaughlin. Java and XML Data Binding. O’Reilly
& Associates, Inc., Sebastopol, CA, USA, 2002.

[MD01] Tom Mens and Serge Demeyer. Future Trends in Soft-
ware Evolution Metrics. In Proceedings of the 4th Interna-
tional Workshop on Principles of Software Evolution, IW-
PSE ’01, pages 83–86, New York, NY, USA, 2001. ACM.

[Mic] Microsoft. Windows Phone 7. Available from: http://

www.microsoft.com/windowsphone/.

[MNSB06] Wim Martens, Frank Neven, Thomas Schwentick, and
Geert Jan Bex. Expressiveness and Complexity of XML
Schema. ACM Transactions on Database Systems, 31:770–
813, September 2006.

184

http://www.macworld.com/article/145998/2010/01/apple%20a4.html?lsrc=rss%20main
http://www.macworld.com/article/145998/2010/01/apple%20a4.html?lsrc=rss%20main
http://mapserver.org/
http://mapserver.org/
http://www.microsoft.com/windowsphone/
http://www.microsoft.com/windowsphone/

BIBLIOGRAPHY

[MS06] Anders Mller and Michael I. Schwartzbach. An Introduc-
tion to Xml And Web Technologies. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 2006.

[MSY05] A. McDowell, C. Schmidt, and K. Yue. Analysis and Met-
rics of XML Schema. In Proceedings of Intl Conference on
Software Engineering Research and Practice, pages 538–
544, 2005.

[Nev02] Frank Neven. Automata Theory for XML Researchers.
SIGMOD Rec., 31:39–46, September 2002.

[NJ03] Matthias Nicola and Jasmi John. Xml parsing: a threat to
database performance. In Proceedings of the twelfth inter-
national conference on Information and knowledge man-
agement, CIKM ’03, pages 175–178, New York, NY, USA,
2003. ACM.

[Nok] Nokia. Symbian at Nokia. Available from: http://

symbian.nokia.com/.

[NR00] Mike Ruth Niles Ritter. GeoTIFF Format Spec-
ification GeoTIFF Revision 1.0, 2000. Available
from: http://www.remotesensing.org/geotiff/spec/

geotiffhome.html.

[Oba95] Dare Obasanjo. Why You Should Very Carefully
Use Restriction Of Complex Types, 1995. Avail-
able from: http://www.xml.com/pub/a/2002/11/20/

schemas.html?page=4#restriction.

[Obj] Objective Systems, Inc. XBinder XML Schema Compiler.
Available from: http://jaxb.java.net/.

[OdP09] Guadalupe Ortiz and Alfonso Garcia de Prado. Mobile-
Aware Web Services. Mobile Ubiquitous Computing, Sys-
tems, Services and Technologies, International Conference
on, 0:65–70, 2009.

[OGCa] OGC. Open Geospatial Consortium. Available from:
http://www.opengeospatial.org/.

[OGCb] OGC. Registered Products. Available from: http://www.
opengeospatial.org/resource/products.

185

http://symbian.nokia.com/
http://symbian.nokia.com/
http://www.remotesensing.org/geotiff/spec/geotiffhome.html
http://www.remotesensing.org/geotiff/spec/geotiffhome.html
http://www.xml.com/pub/a/2002/11/20/schemas.html?page=4#restriction
http://www.xml.com/pub/a/2002/11/20/schemas.html?page=4#restriction
http://jaxb.java.net/
http://www.opengeospatial.org/
http://www.opengeospatial.org/resource/products
http://www.opengeospatial.org/resource/products

BIBLIOGRAPHY

[OGC04] OGC. OpenGIS Geography Markup Language (GML) Im-
plementation Specification 3.1.1. OGC Document, (03-
105r1), 2004.

[OGC05a] OGC. GML 3.1.1 common CRSs profile. OGC Document,
(05-095r1), 2005.

[OGC05b] OGC. GML 3.1.1 CRS support profile. OGC Document,
(05-094r1), 2005.

[OGC06a] OGC. Geography Markup Language (GML) simple fea-
tures profile. OGC Document, (06-049r1), 2006.

[OGC06b] OGC. OGC Sensor Alert Service Candidate Implementa-
tion Specification 0.9. OGC Document, (06-028r3), 2006.

[OGC06c] OGC. OpenGIS Web Mapping Server Implementation
Specification 1.3.0. OGC Document, (06-042), 2006.

[OGC07a] OGC. Observations and Measurements - Part 1 - Obser-
vation schema. OGC Document, (07-022r1), 2007.

[OGC07b] OGC. OGC Web Services Common Specification 1.1.0.
OGC Document, (06-121r3), 2007.

[OGC07c] OGC. OpenGIS Sensor Model Language (SensorML) Im-
plementation Specification 1.0.0. OGC Document, (07-
000), 2007.

[OGC07d] OGC. OpenGIS Sensor Planning Service Implementation
Specification 1.0.0. OGC Document, (07-014r3), 2007.

[OGC07e] OGC. OpenGIS Transducer Markup Language
(TML)Implementation Specification 1.0.0. OGC Docu-
ment, (06-010r6), 2007.

[OGC07f] OGC. OpenGIS Web Notification Service Implementation
Specification. 0.0.9 . OGC Document, (06-095), 2007.

[OGC07g] OGC. OpenGIS Web Processing Service 1.0.0. OGC Doc-
ument, (05-007r7), 2007.

[OGC07h] OGC. Sensor Observation Service 1.0.0. OGC Document,
(06-009r6), 2007.

186

BIBLIOGRAPHY

[OGC08a] OGC. OGC KML. OGC Document, (07-147r2), 2008.

[OGC08b] OGC. OGC Sensor Web Enablement: Overview And High
Level Architecture. OGC Whitepaper,, 2008.

[OGC08c] OGC. OpenGIS Sensor Event Service Interface Specifica-
tion 0.3.0. OGC Document, (08-133), 2008.

[OGC08d] OGC. Wrapping OGC HTTP-GET/POST Services with
SOAP. OGC Discussion Paper, (07-158), 2008.

[OGC10a] OGC. OGC WCS 2.0 Interface Standard - Core. OGC
Document, (09-110r3), 2010.

[OGC10b] OGC. OGC Web Services Common Standard version 2.0.0.
OGC Document, (06-121r9), 2010.

[OGC10c] OGC. OpenGIS Web Feature Service 2.0 Interface Stan-
dard. OGC Document, (09-025r1), 2010.

[OGC10d] OGC. SOS 2.0Get Data Availability Extension. Candidate
Standard, OGC Document, (10-167), 2010.

[OGC11] OGC. OGC SWE Common Data Model Encoding Stan-
dard. OGC Document, (08-094r1), 2011.

[ope] OpenJUMP. Available from: http://www.openjump.

org/.

[Oraa] Oracle. Connected Limited Device Configuration (CLDC);
JSR 139. Available from: http://java.sun.com/

products/cldc/.

[Orab] Oracle. Java ME Technology. Available from:
http://www.oracle.com/technetwork/java/javame/

tech/index.html.

[Pap08] Michael P. Papazoglou. Web Services: Principles and
Technology. Pearson, Prentice Hall, 2008.

[Pas06] James Pasley. Avoid XML Schema Wildcards For Web
Service Interfaces. IEEE Internet Computing, 10:72–79,
May 2006.

187

http://www.openjump.org/
http://www.openjump.org/
http://java.sun.com/products/cldc/
http://java.sun.com/products/cldc/
http://www.oracle.com/technetwork/java/javame/tech/index.html
http://www.oracle.com/technetwork/java/javame/tech/index.html

BIBLIOGRAPHY

[Per10] George Percivall. Progress in OGC Web Services In-
teroperability Development. In Liping Di and H. K.
Ramapriyan, editors, Standard-Based Data and Informa-
tion Systems for Earth Observation, Lecture Notes in
Geoinformation and Cartography, pages 37–61. Springer
Berlin Heidelberg, 2010.

[PK10] Kolin Paul and Tapas Kumar Kundu. Android on mobile
devices: An energy perspective. International Conference
on Computer and Information Technology, 0:2421–2426,
2010.

[Pro] Prodevelop SL. gvSIG Mini. Available from: https://

confluence.prodevelop.es/display/GVMN/Home.

[Pro08] Florian Probst. Observations, measurements and semantic
reference spaces. Appl. Ontol., 3:63–89, January 2008.

[PS05] Joseph A. Paradiso and Thad Starner. Energy scaveng-
ing for mobile and wireless electronics. IEEE Pervasive
Computing, 4:18–27, January 2005.

[PSH10] Christian Pichler, Michael Strommer, and Christian Hue-
mer. Size Matters!? Measuring the Complexity of XML
Schema Mapping Models. Services, IEEE Congress on,
0:497–502, 2010.

[PZL08] Cesare Pautasso, Olaf Zimmermann, and Frank Leymann.
Restful Web Services vs. ”Big”’ Web Wervices: Making the
Right Architectural Decision. In WWW ’08: Proceeding
of the 17th international conference on World Wide Web,
pages 805–814, New York, NY, USA, 2008. ACM.

[QS05] Mustafa H. Qureshi and M. H. Samadzadeh. Determining
the Complexity of XML Documents. In Proceedings of
the International Conference on Information Technology:
Coding and Computing (ITCC’05) - Volume II - Volume
02, ITCC ’05, pages 416–421, Washington, DC, USA, 2005.
IEEE Computer Society.

[Qua] Qualcomm. Mobile Processors - Snapdragon - Qualcomm.
Available from: http://www.qualcomm.com/snapdragon.

188

https://confluence.prodevelop.es/display/GVMN/Home
https://confluence.prodevelop.es/display/GVMN/Home
http://www.qualcomm.com/snapdragon

BIBLIOGRAPHY

[Ref] Refraction Research. uDig: User-friendly Desktop Internet
GIS. Available from: http://udig.refractions.net/.

[RIM] RIM. Blackberry OS 6. Available from: http://us.

blackberry.com/apps-software/blackberry6/.

[RR07] Leonard Richardson and Sam Ruby. RESTful Web Ser-
vices. O’Reilly, Beijing, 2007.

[SAX] SAX Project. SAX. Available from: http://www.

saxproject.org/.

[SGD10] S. Schade, C. Granell, and L. Dı́az. Augmenting SDI with
Linked Data. In Proceedings of the Workshop on Linked
Spatiotemporal Data 2010 (LSTD 2010), 2010.

[SNMRRP07] E. Sánchez-Nielsen, S. Mart́ın-Ruiz, and J. Rodŕıguez-
Pedrianes. Mobile and Dynamic Web Services. In M. Cal-
isti, M. Walliser, S. Brantschen, M. Herbstritt, C. Pau-
tasso, and C. Bussler, editors, Emerging Web Services
Technology, Whitestein Series in Software Agent Technolo-
gies and Autonomic Computing, pages 117–133. 2007.

[Tam09] A. Tamayo. gvSOS: A New Client for OGC SOS Interface
Standard. Master Thesis, Universitat Jaume I, Castellón
de la Plana, Spain, 2009.

[TGD+11] A. Tamayo, C. Granell, L. Dı́az, M. Gould, and J. Huerta.
Client-side processing for Sensor Web. In Paulo Alen-
car and Donald Cowan, editors, Handbook of Research on
Mobile Software Engineering: Design Implementation and
Emergent Applications. IGI Global, 2011.

[TGH11a] A. Tamayo, C. Granell, and J. Huerta. Analysing com-
plexity of XML schemas in geospatial web services. In
Proceedings of the 2nd International Conference on Com-
puting for Geospatial Research & Applications, COM.Geo
’11, pages 17:1–17:9, New York, NY, USA, 2011. ACM.

[TGH11b] A. Tamayo, C. Granell, and J. Huerta. Dealing with large
schema sets in mobile SOS-based applications. In Proceed-
ings of the 2nd International Conference on Computing for
Geospatial Research & Applications, COM.Geo ’11, pages
16:1–16:9, New York, NY, USA, 2011. ACM.

189

http://udig.refractions.net/
http://us.blackberry.com/apps-software/blackberry6/
http://us.blackberry.com/apps-software/blackberry6/
http://www.saxproject.org/
http://www.saxproject.org/

BIBLIOGRAPHY

[THG+09] A. Tamayo, J. Huerta, C. Granell, L. Dı́az, and R. Quiros.
gvSOS: A New Client for the OGC Sensor Observation Ser-
vice Interface Standard. Transactions in GIS, 13(s1):47–
61, June 2009.

[TKLR06] S. Tarkoma, J. Kangasharju, T. Lindholm, and
K. Raatikainen. Fuego: Experiences with Mobile Data
Communication and Synchronization. In Personal, Indoor
and Mobile Radio Communications, 2006 IEEE 17th In-
ternational Symposium on, pages 1 –5, sept. 2006.

[TVGH11] A. Tamayo, P. Viciano, C. Granell, and J. Huerta. Empir-
ical study of sensor observation services server instances.
In Stan Geertman, Wolfgang Reinhardt, and Fred Toppen,
editors, Advancing Geoinformation Science for a Changing
World, volume 1 of Lecture Notes in Geoinformation and
Cartography, pages 185–209. Springer Berlin Heidelberg,
2011.

[TVN+03] M. Tian, T. Voigt, T. Naumowicz, H. Ritter, and
J. Schiller. Performance Considerations for Mobile Web
Services. Elsevier Computer Communications Journal,
27:1097–1105, 2003.

[vB09] C. H. (Kees) van Berkel. Multi-core for mobile phones.
In Proceedings of the Conference on Design, Automation
and Test in Europe, DATE ’09, pages 1260–1265, 3001
Leuven, Belgium, Belgium, 2009. European Design and
Automation Association.

[VEG02] Robert A. Van Engelen and Kyle A. Gallivan. The gSOAP
Toolkit for Web Services and Peer-to-Peer Computing Net-
works. In Proceedings of the 2nd IEEE/ACM International
Symposium on Cluster Computing and the Grid, CCGRID
’02, pages 128–, Washington, DC, USA, 2002. IEEE Com-
puter Society.

[Vis06] J. Visser. Structure Metrics for XML Schema. In Proceed-
ings of XATA 2006, pages 236–247, 2006.

[vZSM08] T. L. van Zyl, I. Simonis, and G. Mcferren. The Sensor
Web: systems of sensor systems. International Journal of
Digital Earth, 99999(1):1–14, 2008.

190

BIBLIOGRAPHY

[W3C99a] W3C. WAP Binary XML Content Format, 1999. Available
from: http://www.w3.org/TR/wbxml/.

[W3C99b] W3C. XML Path Language (XPath) Version 1.0, 1999.
Available from: http://www.w3.org/TR/xpath.

[W3C01] W3C. Web Services Description Language (WSDL) 1.1,
2001. Available from: http://www.w3.org/TR/wsdl.

[W3C04a] W3C. Document Object Model (DOM) Level 3 Core Spec-
ification, 2004. Available from: http://www.w3.org/TR/

DOM-Level-3-Core/.

[W3C04b] W3C. XML Information Set (Second Edition), 2004.
Available from: http://www.w3.org/TR/xml-infoset.

[W3C04c] W3C. XML Schema Part 1: Structures Second Ed., 2004.
Available from: http://www.w3.org/TR/xmlschema-1.

[W3C04d] W3C. XML Schema Part 2: Datatypes Second Ed., 2004.
Available from: http://www.w3.org/TR/xmlschema-2.

[W3C07] W3C. SOAP Version 1.2 Part 1: Messaging Framework
(Second Edition), 2007. Available from: http://www.w3.

org/TR/soap12-part1.

[W3C08] W3C. Extensible Markup Language (XML) 1.0 (Fifth
Edition), 2008. Available from: http://www.w3.org/TR/

xml/.

[W3C09] W3C. Namespaces in XML 1.0 (Third Edition), 2009.
Available from: http://www.w3.org/TR/xml-names.

[W3C11] W3C. Efficient XML Interchange (EXI) Format 1.0, 2011.
Available from: http://www.w3.org/TR/exi.

[WG08] Erik Wilde and Robert J. Glushko. Xml fever. Commun.
ACM, 51:40–46, July 2008.

[Wil03] Erik Wilde. Xml technologies dissected. IEEE Internet
Computing, 7:74–78, September 2003.

[WKNS05] Jules White, Boris Kolpackov, Balachandran Natarajan,
and Douglas C. Schmidt. Reducing application code com-
plexity with vocabulary-specific XML language bindings.

191

http://www.w3.org/TR/wbxml/
http://www.w3.org/TR/xpath
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/DOM-Level-3-Core/
http://www.w3.org/TR/DOM-Level-3-Core/
http://www.w3.org/TR/xml-infoset
http://www.w3.org/TR/xmlschema-1
http://www.w3.org/TR/xmlschema-2
http://www.w3.org/TR/soap12-part1
http://www.w3.org/TR/soap12-part1
http://www.w3.org/TR/xml/
http://www.w3.org/TR/xml/
http://www.w3.org/TR/xml-names
http://www.w3.org/TR/exi

BIBLIOGRAPHY

In Proceedings of the 43rd annual Southeast regional con-
ference - Volume 2, ACM-SE 43, pages 281–287, New York,
NY, USA, 2005. ACM.

[WTS07] M. Walker, R. Turnbull, and N. Sim. Future mobile de-
vices: an overview of emerging device trends, and the im-
pact on future converged services. BT Technology Journal,
25:120–125, April 2007.

[YLRY07] Yijun Yu, Jianguo Lu, Juan F. Ramil, and Phil Yuan.
Comparing web services with other software components.
In 2007 IEEE International Conference on Web Services
(ICWS 2007), 2007. Appears in IEEE International Con-
ference on Web Services 2007 (ISBN 0-7695-2924-0).

[ZDL09] Sonja Zaplata, Viktor Dreiling, and Winfried Lamersdorf.
Realizing Mobile Web Services for Dynamic Applications.
AIS Transactions on Enterprise Systems, 2009(2):3–12, 11
2009.

[ZMCO04] Olaf Zimmermann, Sven Milinski, Michael Craes, and
Frank Oellermann. Second generation web services-
oriented architecture in production in the finance industry.
In Companion to the 19th annual ACM SIGPLAN confer-
ence on Object-oriented programming systems, languages,
and applications, OOPSLA ’04, pages 283–289, New York,
NY, USA, 2004. ACM.

[ZXjC+10] Deng-Hui Zhang, Bin Xie, Hua jun Chen, Yang Lv, and
Le Yu. Using Geodata and Geoprocessing Web Services
in Embedded Device. In Education Technology and Com-
puter (ICETC), 2010 2nd International Conference on,
volume 1, pages V1–272 –V1–275, 2010.

192

Part VI

Appendices

Appendix A

List of SOS server instances

The following table lists the URLs of the servers used in the study
presented in Chapter 8. The data used in this study was retrieved from
these servers between July 1 and September 15, 2010.

Server URLs

http://152.20.240.19/cgi-bin/oos/oostethys sos.cgi

http://204.115.180.244/server.php

http://81.29.75.200:8080/oscar/sos

http://ak.aoos.org/ows/sos.php

http://bdesgraph.brgm.fr/swe-kit-service-ades-1.0.0/REST/sos

http://ccip.lat-lon.de/ccip-sos/services

http://compsdev1.marine.usf.edu/cgi-bin/sos/v1.0/oostethys sos.cgi

http://coolcomms.mote.org/cgi-bin/sos/oostethys sos.cgi

http://data.stccmop.org/ws/util/sos.py

http://devgeo.cciw.ca/cgi-bin/mapserv/sostest

http://elcano.dlsi.uji.es:8080/SOS MCLIMATIC/sos

http://esonet.epsevg.upc.es:8080/oostethys/sos

http://gcoos.disl.org/cgi-bin/oostethys sos.cgi

http://gcoos.rsmas.miami.edu/dp/sos server.php

http://gcoos.rsmas.miami.edu/sos server.php

http://gis.inescporto.pt/oostethys/sos

http://giv-sos.uni-muenster.de:8080/52nSOSv3/sos

http://habu.apl.washington.edu/cgi-bin/xan oostethys sos.cgi

http://lighthouse.tamucc.edu/sos/oostethys sos.cgi

http://mmisw.org/oostethys/sos

195

APPENDIX A. LIST OF SOS SERVER INSTANCES

http://nautilus.baruch.sc.edu/cgi-bin/sos/oostethys sos.cgi

http://neptune.baruch.sc.edu/cgi-bin/oostethys sos.cgi

http://oos.soest.hawaii.edu/oostethys/sos

http://opendap.co-ops.nos.noaa.gov/ioos-dif-sos/SOS

http://rtmm2.nsstc.nasa.gov/SOS/footprint

http://rtmm2.nsstc.nasa.gov/SOS/nadir

http://sccoos-obs0.ucsd.edu/sos/server.php

http://sdf.ndbc.noaa.gov/sos/server.php

http://sensor.compusult.net:8080/SOSWEB/GetCapabilitiesGFM

http://sensorweb.cse.unt.edu:8080/teo/sos

http://sensorweb.dlz-it-bvbs.bund.de/PegelOnlineSOS/sos

http://sos-ws.tamu.edu/tethys/tabs

http://swe.brgm.fr/constellation-envision/WS/sos-discovery

http://vast.uah.edu/ows-dev/dopplerSos

http://vast.uah.edu/ows-dev/tle

http://vast.uah.edu/vast/nadir

http://vast.uah.edu:8080/ows-dev/footprint

http://vastserver.nsstc.uah.edu/vast/adcp

http://vastserver.nsstc.uah.edu/vast/airdas

http://vastserver.nsstc.uah.edu/vast/weather

http://v-swe.uni-muenster.de:8080/WeatherSOS/sos

http://weather.lumcon.edu/sos/server.asp

http://webgis2.como.polimi.it:8080/52nSOSv3/sos

http://wron.net.au/BOM SOS/sos

http://wron.net.au/CSIRO SOS/sos

http://ws.sensordatabus.org/Ows/Swe.svc/

http://www.cengoos.org/cgi-bin/oostethys sos.cgi

http://www.csiro.au/sensorweb/BOM SOS/sos

http://www.csiro.au/sensorweb/CSIRO SOS/sos

http://www.csiro.au/sensorweb/DPIW SOS/sos

http://www.gomoos.org/cgi-bin/sos/V1.0/oostethys sos.cgi

http://www.mmisw.org:9600/oostethys/sos

http://www.pegelonline.wsv.de/webservices/gis/sos

http://www.wavcis.lsu.edu/SOS/server.asp

http://www.weatherflow.com/sos/sos.pl

http://www3.gomoos.org:8080/oostethys/sos

196

Appendix B

Performance Results

B.1 Sensor Descriptions Dataset

The SD dataset is characterised for containing very small files if com-
pared with the rest of the datasets. The mean size of the 20 files is only
9 KB with a standard deviation of 4,7 KB. The execution time of all of
the generated parsers in the three scenarios are presented in the following
sections.

The measurements for this dataset show a slight advantage of XBinder
over DBMG for the mobile configuration. Nevertheless, they both have
fairly good results for small files. When executed in a more capable hard-
ware the measures for all of the parsers show a high relative variability,
which could be caused by the fact that most measured values are below 1
millisecond, and at this time resolution any minimal external disturbance
may affect the measurement process. In any case, as the time taken to
process these files is so small for PC scenarios we consider these differences
negligible.

197

APPENDIX B. PERFORMANCE RESULTS

B.1.1 Mobile Configuration

Figure B.1: Execution times for SD dataset (Mobile Scenario)

B.1.2 Mac OS X Laptop

Figure B.2: Execution times for SD dataset (PC Scenario 1 - Mac OS X
Laptop)

198

B.2. OBSERVATIONS DATASET

B.1.3 Windows PC

Figure B.3: Execution times for SD dataset (PC Scenario 2 - Windows
PC)

B.2 Observations Dataset

The Observations dataset contains files with very different sizes. For
this reason, we have separated the results exposition in two parts: files
below 100KB (OBS-S) and files with size equal to or above 100 KB (OBS-
L). The mean size is 1.32 MB with a standard deviation of 1.29 MB. The
value for the standard deviation is rather large because most files were
very small (< 10KB) or very big (> 2MB).

Unfortunately, the code generated by XBinder was not capable of
processing correctly observations data. For this reason, we only included
tests for the personal computer configurations. In these scenarios, for
small files (OBS-S), XMLBeans had a significant advantage over JAXB
and DBMG, which showed similar results. Although in general terms the
processing times were very small for all cases. For large files (OBS-L), the
figures for XMLBeans and JAXB were almost identical and both better
than DBMG.

199

APPENDIX B. PERFORMANCE RESULTS

B.2.1 Mac OS X Laptop

Figure B.4: Execution times for OBS-S dataset (PC Scenario 1 - Mac OS
X Laptop)

Figure B.5: Execution times for OBS-L dataset (PC Scenario 1 - Mac OS
X Laptop)

200

B.2. OBSERVATIONS DATASET

The peak values in figure B.5 and B.7 are for a file that use a differ-
ent form to encode observations. Listing B.1 shows the typical way of
encoding observations, where a group of observations is included in the
same om:Observation element. Using this method the metadata for the
observations is specificied only once for the whole set of observations. The
observations file showing the abnormal behaviour includes only a single
observation value in every om:Observation element, which results in a file
much bigger than an equivalent file encoded with the first method and
with the same number of observations.

Listing B.1: Typical observations encoding
<om:Observation>

<om:samplingTime> . . .</om:samplingTime>
<om:procedure x l i n k : h r e f = . . . />
<om:observedProperty> . . .</ om:observedProperty>
<om : f e a tu r e O f In t e r e s t> . . .</ o m: f e a tu r eO f I n t e r e s t>
<om: r e su l t>

<swe:DataArray>
<swe:elementCount> . . . </ swe:elementCount>
<swe:elementType name = . . .> . . .</ swe:elementType>
<swe :encoding>

<swe:TextBlock dec imalSeparator=” . ” tokenSeparator=” , ”
b lockSeparator=” ”/>

</ swe:encoding>
<swe :va lue s>

2004−05−15 T08:15:00 +10, feature name , 0 . 4 3
2004−05−20 T01:45:00 +10, feature name , 0 . 4 7 3
2004−05−20 T02:15:00 +10, feature name , 0 . 4 8 5
2004−05−20 T02:30:00 +10, feature name , 0 . 4 9 1
2004−05−20 T04:00:00 +10, feature name , 0 . 5 2 2
. . .

</ swe :va lue s>
</ swe:DataArray>
</ om: r e su l t>

</ om:Observation>

201

APPENDIX B. PERFORMANCE RESULTS

B.2.2 Windows PC

Figure B.6: Execution times for OBS-S dataset (PC Scenario 2 - Windows
PC)

Figure B.7: Execution times for OBS-L dataset (PC Scenario 2 - Win-
dows PC)

202

B.3. MEASUREMENTS DATASET

B.3 Measurements Dataset

Last, the Measurements Dataset contains mostly large files with a
mean size of 3.14 MB. The standard deviation is 1.52 MB. For this dataset
the experimetns showed similar results for XBinder and DBMG for the
first two scenarios, but XBinder was better in the third one. For the other
generators, JAXB tended to be better as the size of the files increased.

B.3.1 Mobile Configuration

Figure B.8: Execution times for MEA dataset (Mobile Scenario)

203

APPENDIX B. PERFORMANCE RESULTS

B.3.2 Mac OS X Laptop

Figure B.9: Execution times for MEA dataset (PC Scenario 1 - Mac OS
X)

B.3.3 Windows PC

Figure B.10: Execution times for MEA dataset (PC Scenario 1 - Mac OS
X)

204

Appendix C

Parsers Comparison

In this appendix we present a last experiment to measure the influence
of the underlying parsing implementation used by the code generated with
the different XML data binding tools presented in Chapter 9. In order to
measure parsers performance, we created test cases for each one of them
where the files where parsed but empty event handlers were executed each
time a start or end tag was found. We only preformed these experiments
for the CAPS dataset as we were only interested in having an approximate
idea of the parsers behaviour.

XMLBeans use Piccolo1 as XML parser. Piccolo is non-validating
SAX parser reputed as being very fast. XBinder use the StAX parser
distributed with the Java SE libraries based on Xerces2 for the PC con-
figurations. For code targeted to Android it uses an implementation of
the XML Pull API provided by this platform. The code generated with
DBMG use kXML as underlying parser. Last, JAXB use its own internal
parser implementations, as a consequence we were not able to include
measurements for it in this comparison.

In the mobile scenario the XML Pull parser provided by Android
showed a slightly, but not significant, better performance that KXml.
On the other hand, Piccolo and StaX outperformed KXml in the PC
scenarios. In these scenarios StaX was also significantly faster than Pic-
colo. These results suggest that if the underlying parser for DBMG were
changed for the PC scenarios the overall tool performance can be im-
proved.

1http://piccolo.sourceforge.net

2http://xerces.apache.org/xerces-j/

205

http://piccolo.sourceforge.net
http://xerces.apache.org/xerces-j/

APPENDIX C. PARSERS COMPARISON

C.1 Mobile Configuration

Figure C.1: Execution times for CAPS-S dataset (Mobile Scenario)

Figure C.2: Execution times for CAPS-L dataset (Mobile Scenario)

206

C.2. MAC OS X LAPTOP

C.2 Mac OS X Laptop

Figure C.3: Execution times for CAPS-S dataset (PC Scenario 1 - Mac
OS X Laptop)

Figure C.4: Execution times for CAPS-L dataset (PC Scenario 1 - Mac
OS X Laptop)

207

APPENDIX C. PARSERS COMPARISON

C.3 Windows PC

Figure C.5: Execution times for CAPS-S dataset (PC Scenario 2 - Win-
dows PC)

Figure C.6: Execution times for CAPS-L dataset (PC Scenario 2 - Win-
dows PC)

208

	List of Figures
	List of Tables
	I Introduction
	Introduction
	Motivation
	Research Methodology
	Contributions
	Structure of the Dissertation

	II Background
	XML, XML Schema and Web Services
	XML
	XML Schema
	Type Derivation
	Document Composition
	Criticism

	XML Processing
	Vocabulary-independent Data Access Interfaces
	XML Data Binding

	Web Services
	Approaches to Web Service Development

	Concluding Remarks

	OGC Web Services
	OWS Architectural Principles
	OWS Specifications Overview
	OWS Implementations
	Server Side
	Client Side

	Sensor Observation Services
	Concluding Remarks

	Mobile Computing
	Mobile Hardware
	Mobile Software
	Android

	Web Services for Mobile Devices
	XML Processing for Mobile Devices
	OWS Implementations for Mobile Devices
	Concluding Remarks

	III XML Processing for Geospatial Mobile Applications
	Complexity of OWS Schemas
	Related Work
	Metrics
	C(XSD) Metric Definition
	Subtyping-related Metrics
	Measurement Process Description

	Results
	XML-Agnostic Metrics
	XSD-Aware Metrics
	C(XSD)
	Subtyping Metrics
	Discussion

	Practical Use of Metrics
	Use Case Scenario: Evaluating Design Decisions
	Use Case Scenario: Studying Specifications Evolution
	Other Possible Scenarios

	Pragmatic Solutions to Complexity
	XML Data Binding Code Generators
	Profiles
	Using the Linked Data Style

	Concluding Remarks

	Instance-based Schema Simplification
	Instance-based XML Data Binding
	Instance-based Schema Simplification

	Notation
	Simplification Algorithm
	Helper Functions
	Algorithm

	Experimentation
	Gathering Input Instance Files
	Generating the Output Subset
	Generating Binary Code

	Concluding Remarks

	XML Data Binding for Mobile Devices
	XML Data Binding Code Generator
	Supported Features

	Basic Mapping of Schema Components
	Mapping Complex Types
	Mapping Simple Types
	Mapping Global Elements

	Supported Features Explained
	Support for Instance-based Code Generation
	Source Code Based on Simple Code Patterns
	Tolerate Common Validation Errors
	Collapse Elements Containing Single Elements
	Disabling Parsing/Serialization Operations
	Ignoring Sections of XML Documents

	Experimentation
	DBMobileGen
	Experiment Description
	Results

	Sample Applications
	WPS Basic Client
	SOS Mobile Client
	Challenges and Open Issues

	Concluding Remarks

	IV Experiments
	Empirical Study of SOS Server Instances
	SOS Server Instances
	Limitations of the Study
	Dataset Description
	Results
	Capabilities Files
	Procedure Description Files
	Observation Files

	Subset of XML Schemas Used
	GML
	SOS

	Discussion
	Concluding Remarks

	Performance Evaluation
	Performance Considerations for Java Programs
	Startup Performance
	Steady-State Performance

	Experimental Setup
	Test Datasets
	Hardware and Software

	Results
	CAPS Dataset

	Discussion
	Concluding Remarks

	V Conclusions and Future Work
	Conclusions
	Contributions
	Future Work

	Bibliography

	VI Appendices
	List of SOS server instances
	Performance Results
	Sensor Descriptions Dataset
	Mobile Configuration
	Mac OS X Laptop
	Windows PC

	Observations Dataset
	Mac OS X Laptop
	Windows PC

	Measurements Dataset
	Mobile Configuration
	Mac OS X Laptop
	Windows PC

	Parsers Comparison
	Mobile Configuration
	Mac OS X Laptop
	Windows PC

