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Abstract

The present thesis explores the viability of the proper generalised decomposi-

tion (PGD) as a tool for parametric studies in a daily industrial environment.

Starting from the equations modelling incompressible flows, the separated

formulation of the equations, the development of a parametric solver, the

implementation in a commercial computational fluid dynamics (CFD) soft-

ware, OpenFOAM, and a numerical validation are presented.

The parametrised Stokes and Oseen flows are used as an initial step to test

the applicability of the PGD to flow problems. The rationale for the construc-

tion of a separable approximation is described and implemented in Open-

FOAM. For the numerical validation of the developed strategy analytical

test cases are solved. Then, the parametrised steady laminar incompressible

Navier-Stokes equations are considered. The nonintrusive implementation of

PGD in OpenFOAM is formulated, focusing on the seamless integration of

a reduced order model (ROM) in the framework of an industrially validated

CFD software. The proposed strategy exploits classical solution strategies

in OpenFOAM to solve the PGD spatial iteration, while the parametric one

is solved via a collocation approach. Such nonintrusiveness represents an
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important step towards the industrialisation of PGD-based approaches. The

capabilities of the methodology are tested by applying it to benchmark tests

in the literature and solving a parametrised flow control problem in a realistic

geometry of interest for the automotive industry.

Finally, the PGD framework is extended to turbulent Navier-Stokes prob-

lems. The separable form of an industrially popular turbulence model,

namely Spalart-Allmaras model, is formulated and a PGD strategy for the

construction of a parametric turbulent eddy viscosity is devised. Different im-

plementation possibilities in the nonintrusive PGD for parametrised Navier-

Stokes equations are explored and the proposed strategy is applied to well-

documented turbulent flow control benchmark cases in both two and three

dimensions.

Keywords: Reduced order models, proper generalised decomposition,

parametrised incompressible flows, parametrised turbulent flows, incompress-

ible Navier-Stokes, Spalart-Allmaras turbulence model, OpenFOAM, nonin-

trusive, finite volume, parametrised flow-control
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Chapter 1

Introduction

In the daily industrial environment computational fluid dynamics (CFD)

has become a key component of the design pipeline. With robustness highly

valued, simulations of incompressible flows are performed on a daily ba-

sis to solve different problems both in automotive and aeronautical indus-

tries. The most widely spread CFD methodology is the finite volume (FV)

method [67, 108, 73, 7, 38, 100]. Using this technique, numerically evalu-

ated quantities of interest (e.g. drag and lift) have proved to match reason-

ably well experimental results while recent efforts towards better parallelisa-

tion [110, 43] and implementation of higher-order schemes [26, 76, 75, 93, 42]

have yielded further improvement in both the efficiency and accuracy of the

technique.

Depending on the nature of the problem, the automotive industry has

adopted a range of methodologies. For internal flow simulations the Reynolds

Averaged Navier Stokes (RANS) method is employed, as is for external aero-
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dynamics when turnaround time is of the essence. Otherwise, Detached

Eddy Simulation [103, 59] (DES), Improved Delayed Detached Eddy simula-

tion [109, 112] (IDDES) and lattice Boltzmann [17, 97] methods have their

own use-cases in the computation of vehicle external aerodynamics. The

turbulence models most widely used are the k − ω SST [71], applicable to

both internal and external aerodynamics and the Spalart-Allmaras turbu-

lence model [102] (SA), used solely for external aerodynamics.

In recent years, the optimisation pipeline of the automotive industry has

seen the introduction of tools based on the continuous adjoint method [79].

Such tools simplify the aerodynamic optimisation process by computing sen-

sitivity maps, quantifying the effect of the design variables (typically shape)

to the quantities of interest (cost functional of drag, lift, etc.). Adjoint solvers

have been developed for both RANS and DES [60, 81, 82], as well as lattice

Boltzmann [18], making their use in the industrial environment as seamless

as possible.

1.1 Problem statement

Despite the advanced tools and the maturity of the method, the design and

optimisation cycles in a production environment are still characterised by

the large amount of configurations of the same problem that require testing.

Varying boundary conditions, physical properties of the fluid and geometry

of the domain within a prescribed range are typical examples of interest. In

this context, such parameters act as extra-coordinates of a high-dimensional
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partial differential equation (PDE). The computational cost of such para-

metric studies currently represents the major limitation to the application

of simulation-based engineering techniques in a daily industrial environment.

It is well-known that the computational complexity of approximating the

PDEs describing the problems under analysis increases exponentially with

the number of parameters considered.

Dimensionality reduction via active subspaces [80] has been considered

for the simplification of parametric studies. Reduced order models [19], in-

cluding reduced basis (RB) [6, 48, 47, 94, 16, 57, 70], proper orthogonal

decomposition (POD) [58, 62, 8, 10, 5, 65, 11] and hierarchical model reduc-

tion (HiMod) [89, 90, 2, 52], have also been proposed to reduce the compu-

tational burden of parametric analysis and optimisation for several physical

problems, including incompressible flows. The aforementioned techniques

rely on an a posteriori reduction based on snapshots computed as solutions

of the full-order model for different values of the parameters under analy-

sis. An alternative approach is represented by PGD [3, 20, 21, 22, 23]. This

method features an a priori reduction, using a separable approximation of

the solution, which depends explicitly on the parameters under analysis. In

this context, during an offline phase, a reduced basis is constructed with no

a priori knowledge of the solution, whereas efficient online evaluations of the

generalised solution are performed by simple interpolation in the parametric

space. See [33, 4, 114, 72, 101, 30, 56] for several applications of PGD to

different physical problems. Moreover, special attention has been devoted to

the study of convective phenomena and convection stabilisation using PGD-
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based separated representations [45, 44]. Of course, parametric solutions

involving the geometry of the domain, which are beyond the contributions

of this thesis, are of great interest in an industrial environment for the speed

up of shape design and optimisation procedures. A separated solution of a

PDE involving parametrised geometries was first proposed in [4] and further

investigated in [114, 101, 30]. Such technique can be extended to the PGD

algorithm for OpenFOAM proposed in this work via the definition of two

nested computational meshes, one with the FV cells used for the flow com-

putation and one featuring macrocells for the description of the geometry.

In the context of geometrically parametrised problems, it is worth mention-

ing that a seamless integration of PGD and computer aided design (CAD)

tools has been recently proposed in [99] to exploit the potential of paramet-

ric representation of curves and surfaces via the control points of nonuniform

rational B-splines (NURBS).

In the context of flow problems, model reduction techniques based on

Galerkin projection have been extensively studied in the literature [27, 69,

113]. In this framework, several strategies have been proposed to construct

the trial basis, using POD [55], RB [53] or the empirical interpolation method [32].

Concerning incompressible Navier-Stokes equations, in [68, 104] supremiser

stabilisations techniques have been investigated to couple the FV method

with POD to solve parametrised turbulent flow problems. Coupled strate-

gies, where the turbulent Navier-Stokes are approximated using classical

POD with data-driven models and non-intrusive reduced order modelling

(NIROM) with machine learning techniques are proposed in [54, 111]. In [13,
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15, 12, 66], alternative non-linear projection methods have been discussed.

More recently, special attention has also been devoted to FV-based structure-

preserving ROMs for conservation laws [14].

Another key aspect for the application of simulation-based techniques

to industrial problems is the capability of the proposed methods to pro-

vide verified and certified results. This problem has been classically treated

by equipping numerical methods with reliable and fully-computable a pos-

teriori error estimators using equilibrated fluxes [29, 36, 37] and flux-free

approaches [85, 24, 84] to control the error of the solution as well as of quan-

tities of interest [78, 83, 86, 63, 1, 74, 41, 40]. Nonetheless, these approaches

require intrusive modifications of existing computational libraries and may

not be feasible in the context of commercial software. Hence, although the

effort of the academic community in this direction, such solutions have not

been successfully and widely integrated in codes utilised by the industry.

More recently, to circumvent this issue, great effort has been devoted to

nonintrusive implementations in which novel numerical methodologies are

externally coupled to existing commercial and open-source software used in

industry on a daily basis. Some contributions in this direction have been

successfully proposed coupling PGD with Abaqus R© for mechanical problems

[115] and PGD with SAMTECH R© for shape optimisation problems [25]. For

flow problems, the coupling of POD and OpenFOAM has been discussed in

[9, 104]. This work explores the viability of a nonintrusive integration of the

PGD framework in OpenFOAM for the solution of parametrised incompress-

ible Navier-Stokes problems in both the laminar and turbulent regime. The
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RANS method offers a convenient first step towards an easily adopted PGD

scheme in the industry, seeing how it is used in the majority of simulations.

Similarly, the Spalart-Allmaras turbulence model, being a widely spread sin-

gle equation model, presents both a relevant and convenient entry point for

parametrised turbulent problems.

1.2 Contributions and outline

The main contributions of this thesis are:

1. Implementation of a PGD solver for parametric Stokes and Oseen prob-

lems in OpenFOAM.

2. The nonintrusive PGD method for the solution of parametrised flow

problems. This method offers a straightforward and flexible implemen-

tation procedure in industrial CFD software packages and brings the

otherwise complex PGD solver closer to the industry.

3. The implementation of the PGD method in OpenFOAM. The result-

ing pgdFoam algorithm relies on OpenFOAM [107] CFD libraries and

exploits the incompressible flow solver simpleFoam for the spatial iter-

ation of the alternating direction scheme.

4. Application of the nonintrusive PGD to flow control problem and re-

alistic geometries of industrial interest.

5. The PGD solver for the Spalart-Allmaras turbulence model and the

method to solving parametrised Navier-Stokes problems residing in the
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turbulent regime. Developing a PGD methodology to approximate pa-

rameter dependent turbulent viscosity and including it in the pgdFoam

algorithm is a significant milestone towards PGD applications to para-

metric studies of industrial flows.

6. The approximation of convection-dominated parametric Navier-Stokes

flow problems with PGD.

The thesis, not including the introduction and conclusions, is organised

in three main chapters summarised below. The first chapter presents a first

study of the viability of PGD for the solution of parametrised flow problems

using OpenFOAM. More precisely, Chapter 2 recalls the flow problem and

introduces the PGD rationale. The strategy for the construction of a separa-

ble approximation of velocity and pressure for parametrised Stokes flow and

linearised Navier-Stokes (Oseen) flow is described. This chapter concludes

with numerical validation of the aforementioned strategy. Analytical test

cases are used to verify the theoretical order of convergence.

Chapter 3 introduces the concept of the ’nonintrusive PGD’ method. Us-

ing the parametrised laminar Navier-Stokes flow, the strategy to assembling

problems solvable using standard OpenFOAM solvers is described. Other al-

ternatives are also discussed. The second part of the chapter focuses on appli-

cations of the proposed nonintrusive PGD to both two- and three-dimensional

cases. The method’s validity is tested with a benchmark case, before transi-

tioning to parametrised flow control problems.

The final chapter considers the application of PGD in more realistic sce-
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narios, where the parameters affect turbulence. First, in Chapter 4 the PGD

formulation and strategy to solving the parametrised Spalart-Allmaras tur-

bulence model is recalled. The communication between this PGD structure

and the nonintrusive PGD is analysed, proposing a methodology to tackle the

parametrised turbulent Navier-Stokes problem. Then, the proposed method

is applied to flow control problems of significantly high Reynolds number

(from 100, 000 to 1, 000, 000) to verify that the PGD approximation can re-

cover the flow structure changes that the full-order solver predicts.
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Chapter 2

The proper generalised

decomposition for linear flow

problems

This chapter aims at introducing the PGD rationale for flow problems and

exploring its applicability in OpenFOAM. Initially, a general form of the flow

governing equations is recalled, along with a brief introduction of the finite

volume solver chosen. Focusing on linear problems, the construction of a

separable approximation is detailed in steps. Following the PGD rationale,

the parametrised Stokes flow problem is formulated and the PGD strategy for

the construction of a separable approximation is recalled. Next, a linearised

convection term is considered, yielding the parametrised Oseen flow problem

and the PGD strategy is adapted accordingly. Finally, test cases are used

for the numerical validation of the implemented PGD methodology.
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2.1 A cell-centred finite volume approxima-

tion using OpenFOAM

In this section, a linearised form of the steady Navier-Stokes equations for the

simulation of incompressible viscous laminar flows in d spatial dimensions is

recalled.

Let Ω ⊂ Rd, ∂Ω=ΓD ∪ ΓN be an open bounded domain with disjoint

Dirichlet, ΓD, and Neumann, ΓN , boundaries. The flow problem under anal-

ysis consists of computing the velocity field u and the pressure p such that



∇·(u⊗a)−∇·(ν∇u) + ∇p = s in Ω,

∇·u = 0 in Ω,

u = uD on ΓD,

n·(ν∇u−pId) = t on ΓN ,

(2.1)

where the first equation describes the balance of momentum and the second

one the conservation of mass. In Equation (2.1), a is a divergence-free veloc-

ity field, s represents a volumetric source term, ν>0 is the dynamic viscosity

and Id is the d×d identity matrix. On the Dirichlet boundary ΓD, the value

uD of the velocity is imposed, whereas on ΓN the pseudo-traction t is applied.

From the modelling point of view, inlet surfaces and physical walls are de-

scribed as Dirichlet boundaries with an imposed entering velocity profile and

a homogeneous datum, respectively, whereas outlet surfaces feature homoge-

neous Neumann boundary conditions. For the sake of simplicity and without

loss of generality, ΓN is henceforth assumed to be an outlet boundary, that
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is a null t is considered.

Based on the choice of the velocity field a, two linear flow regimes can be

recovered

• a = 0 resulting in the Stokes flow.

• a = u0 where u0 is an a priori known divergence-free velocity field,

resulting in the Oseen flow.

The formulation of a FV scheme for the incompressible linearised Navier-

Stokes equations is briefly recalled to introduce the notation needed for the

high-dimensional parametrised problem developed in all following Sections.

The domain Ω is partitioned in N nonoverlapping cells Vi, i=1, . . . , N

such that Ω:=
⋃N
i=1 Vi and Vi∩Vj=∅, for i 6=j. The FV discretisation is con-

structed starting from the integral formulation of Equation (2.1), namely

find (u, p), constant on each cell Vi, i=1, . . . , N , such that u=uD on ΓD and

it holds


∫
Vi

∇·(u⊗a) dV −
∫
Vi

∇·(ν∇u) dV +

∫
Vi

∇p dV =

∫
Vi

s dV ,∫
Vi

∇·u dV = 0.

(2.2)

OpenFOAM implements a cell-centred FV rationale in which piecewise

constant approximations are sought for velocity and pressure in each cell

of the computational mesh and the degrees of freedom of the discretised

problem are located at the centroid of each finite volume. Employing Gauss’s

theorem, the integrals in Equation (2.2) are rewritten in terms of fluxes
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over the boundaries of the cells and approximated using classical central

differencing schemes [7, 38]. The resulting solution strategy relies on the

SIMPLE algorithm which belongs to the family of fractional-step projection

methods [87, 31]. A brief description of this method for the Navier-Stokes

problem, the handling of the nonlinearity in the convection term, as well as

typical discretisation is provided in B.

Note that this thesis aims to develop a nonintrusive PGD strategy to

approximate parametrised Navier-Stokes flows using OpenFOAM. For the

solution of the Stokes and Oseen flows, modified versions of the SIMPLE

solver were introduced in OpenFOAM. By definition the corresponding PGD

strategies are intrusive. A more detailed view on the Stokes and Oseen solver

adaptations can be found in Appendix B.1 and B.2, respectively.

2.2 The proper generalised decomposition

(PGD) rationale

Consider now the case in which the user-prescribed data in Equation (2.1),

i.e. the viscosity coefficient, the source term and the boundary conditions,

depend on a set of parameters µ ∈ I ⊂ RM , with M being the number

of parameters. More presicely, the set I describing the range of admissible

parameters can be defined as the Cartesian product of the domains of the

M parameters, namely, I:=I1 × I2 × · · · × IM with µi ∈ Ii for i=1, . . . ,M .

Within this context, µ is treated as a set of additional independent variables,

or parametric coordinates, instead of problem parameters. For the purpose
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of discretisation, each interval Ii is subdivided in Nµ subintervals. The un-

known pair (u, p) is thus sought in a high-dimensional space described by the

independent variables (x,µ) ∈ Ω×I and fulfils the following parametrised

equations on each cell Vi, i=1, . . . , N



∫
I

∫
Vi

∇·(u⊗a) dV dI −
∫
I

∫
Vi

∇·(ν∇u) dV dI

+

∫
I

∫
Vi

∇p dV dI =

∫
I

∫
Vi

s dV dI,∫
I

∫
Vi

∇·u dV dI = 0.

(2.3)

In the following sections, a step-by-step approach will be used to recall the

rationale for the construction of a separated solution for parametrised flow

problems. The Stokes flow system of equations will be used to introduce the

main components of the strategy, while the parametrised Oseen flow problem

will be expressed as an adaptation of the Stokes PGD.

The PGD constructs an approximation (un
PGD
, pn

PGD
) of the solution (u, p) of

Equation (2.3) in terms of a sum of n separable functions, or modes. Each

mode is the product of functions depending solely on one of the arguments

x, µ1, µ2, . . . , µM . For the sake of readability and without loss of generality,

only the spatial coordinates x and the parametric ones µ are henceforth

separated.

Following [30], the so-called single parameter approximation is detailed.

That is, for each mode, a unique scalar parametric function φ(µ) is considered

13



for all the variables and the resulting separated form of the unknowns is


un

PGD
(x,µ) = un−1

PGD
(x,µ) + σnu f

n
u (x)φn(µ),

pn
PGD

(x,µ) = pn−1
PGD

(x,µ) + σnp f
n
p (x)φn(µ).

(2.4)

where the superindex n denotes the, a priori unknown, number of terms in

the PGD expansion and the positive scalar coefficients σnu and σnp represent

the amplitude of the n-th mode for velocity and pressure, respectively. These

coefficients are obtained normalising the modal functions, namely

σnu := ‖fnu ‖ and σnp := ‖fnp ‖,

with ‖φn‖ = 1. Appropriate user-defined norms on the spatial and para-

metric domains are introduced for each function. For all the simulations in

Section 3.3, the L2 norm has been considered for normalisation.

Remark 1. The normalisation coefficients play a critical role in checking the

convergence of the PGD algorithm and may be used as quantitative stopping

criterion in the PGD enrichment procedure described in Section 2.3.

For a discussion on alternative formulations of the separation in Equa-

tion (2.4), involving both scalar and vector-valued parametric functions the

interested reader is referred to [30]. Henceforth and except in case of ambi-

guity, the dependence of the modes on x and µ is omitted.

Considering a linearised approach to compute each new mode, Equa-

tion (2.4) can be rewritten as the following predictor-corrector single param-
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eter approximation


un

PGD
= ũn

PGD
+ σnu δ̃u

n
PGD

= un−1
PGD

+ σnuf
n
u φ

n + σnu δ̃u
n
PGD
,

pn
PGD

= p̃ n
PGD

+ σnp δ̃p
n
PGD

= pn−1
PGD

+ σnp f
n
p φ

n + σnp δ̃p
n
PGD
,

(2.5)

where ũn
PGD

:=un−1
PGD

+ σnuf
n
u φ

n and p̃ n
PGD

:=pn−1
PGD

+ σnp f
n
p φ

n account for the n−1

previously computed terms and a prediction of the current mode. More

precisely, (σnuf
n
u φ

n, σnp f
n
p φ

n) play the role of predictors in the computation

of the n-th mode, whereas (σnu δ̃u
n
PGD
, σnp δ̃p

n
PGD

) are the corresponding correctors

featuring the variations ∆ in the spatial and parametric functions, namely


δ̃un

PGD
:= ∆fuφ

n + fnu ∆φ+∆fu∆φ,

δ̃p n
PGD

:= ∆fpφ
n + fnp ∆φ+∆fp∆φ.

(2.6)

Note that the last term in Equation (2.6) represents a high-order variation

which is henceforth neglected. As for the classical single parameter approxi-

mation, σnu and σnp represent the amplitudes of the n-th velocity and pressure

modes. That is, setting ‖φn +∆φ‖ = 1, they are defined as

σnu := ‖fnu +∆fu‖ and σnp := ‖fnp +∆fp‖.
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2.3 Predictor-corrector alternating direction

scheme for parametrised Stokes flow

In order to compute (un
PGD
, pn

PGD
) in Equation (2.5), a greedy algorithm is im-

plemented. The first PGD mode (u0
PGD
, p0

PGD
) is arbitrarily chosen to fulfil the

Dirichlet boundary conditions of the problem and the n-th mode is succes-

sively computed assuming that term n−1 is available [22, 23]. Some varia-

tions of this strategy based on Arnoldi-type iterations have been investigated

in [77, 105]. In this section, the parametrised Stokes flow system of equations

is introduced and the concept behind the alternating direction scheme used to

compute the PGD modes is described. A key assumption for the application

of this method is the separability of the data. For the sake of simplicity and

without any loss of generality, the separated form of the viscosity coefficient,

see e.g. [114], is reported

ν(x,µ) := ψ(µ)D(x) =
nν∑
i=1

ψ1,i(µ1) · · ·ψM,i(µM)Di(x), (2.7)

and analogous separations are considered for all the parametric data in the

problem under analysis.
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2.3.1 Separable form of the parametrised Stokes flow

The parametrised Stokes flow equations can be recovered from Equation (2.3)

by setting the advective velocity field a = 0


−
∫
I

∫
Vi

∇·(ν∇u) dV dI +

∫
I

∫
Vi

∇p dV dI =

∫
I

∫
Vi

s dV dI,∫
I

∫
Vi

∇·u dV dI = 0.

(2.8)

By plugging (2.5) into (2.8) and gathering the unknown increments

(σnu δ̃u
n
PGD
, σnp δ̃p

n
PGD

) on the left-hand side while leaving on the right-hand side the

residuals computed using the previous modes (un−1
PGD

, pn−1
PGD

) and the predictions

(σnuf
n
u φ

n, σnp f
n
p φ

n) of the current one, the following equations are obtained


−
∫
I
ψ

∫
Vi

∇·(D∇(σnu δ̃u
n
PGD

)) dV dI +

∫
I

∫
Vi

∇(σnp δ̃p
n
PGD

) dV dI = Ru,∫
I

∫
Vi

∇·(σnu δ̃unPGD) dV dI = Rp,

(2.9)

where the residuals are defined as

Ru :=Ru(u
n−1
PGD

, pn−1
PGD

, σnuf
n
u , σ

n
p f

n
p , φ

n) = Ru(ũ
n
PGD
, p̃ n

PGD
)

=

∫
I

∫
Vi

s dV dI

+

∫
I
ψ

∫
Vi

∇·(D∇ũn
PGD

) dV dI −
∫
I

∫
Vi

∇p̃ n
PGD
dV dI,

(2.10)

Rp :=Rp(u
n−1
PGD

, σnuf
n
u , φ

n) = Rp(ũ
n
PGD

)

=−
∫
I

∫
Vi

∇·ũn
PGD
dV dI.

(2.11)
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As classical in ROMs [88, 95], an affine dependence of the forms in (2.9),

(2.10) and (2.11) on the parameters is required to construct the PGD ap-

proximation. The spatial (respectively, parametric) component of each mode

is thus computed by restricting Equation (2.9) to the tangent manifold asso-

ciated with the spatial (respectively, parametric) coordinate. Following from

Equation (2.6) and setting a fixed value for the parametric function φn, the

pair (σnu∆fu, σ
n
p∆fp) is determined by solving a purely spatial PDE. Recall

that the PGD alternating direction scheme handles homogeneous Dirichlet

boundary conditions at each iteration of the spatial solver [23], whereas in-

homogeneous data are treated by the first arbitrary PGD mode (u0
PGD
, p0

PGD
)

introduced above. In a similar fashion, the increment ∆φ is computed as the

solution of an algebraic system of equations in the parameter µ while the

spatial functions (σnuf
n
u , σ

n
p f

n
p ) are considered known.

Note that at each iteration of the alternating direction scheme, ũn
PGD

is

known and may be expressed in separated form as
∑n

m=1 σ
m
u f

m
u φ

m. Thus,

exploiting the separated structure of the unknowns and the affine parametric

decomposition of the involved integral forms, the numerical complexity of

the high-dimensional PDE is reduced by alternatively solving for the spatial

and the parametric unknowns, as detailed in the next subsections.

Remark 2. By restricting Equation (2.9) to the tangent manifold in the

spatial (respectively, parametric) direction, the integral forms are multiplied

by φn (respectively, (σnuf
n
u , σ

n
p f

n
p )). This is equivalent to the projection of

the high-dimensional PDE to the tangent manifold discussed for PGD in

the context of finite element approximations [30]. In the framework of FV
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discretisations, the finite element test functions are set equal to 1 to retrieve

the classical integral form of the PDE under analysis. Hence, the restriction

of the high-dimensional PDE to the tangent manifold introduces a factor

φn multiplying the integral forms in Equations (2.9), (2.10) and (2.11) for

the spatial iteration. Similarly, in the parametric iteration, a factor σnuf
n
u

appears in the integral form of the momentum equation and in the residual

Ru, whereas σnp f
n
p multiplies the integrand terms in the mass conservation

equation and in the residual Rp.

2.3.2 The spatial iteration

First, the parametric function φn is fixed and the increments (σnu∆fu, σ
n
p∆fp)

are determined by solving a spatial PDE. More precisely, restricting Equa-

tion (2.9) to the tangent manifold in the spatial direction, a pair (σnu∆fu, σ
n
p∆fp),

constant element-by-element, is sought such that in each cell Vi, i=1, . . . , N

it holds


−α2

∫
Vi

∇·(D∇(σnu∆fu)) dV +α3

∫
Vi

∇(σnp∆fp) dV = Rn
u,

α3

∫
Vi

∇·(σnu∆fu) dV = Rn
p ,

(2.12)

where Rn
u and Rn

p are the spatial residuals associated with the discretisa-

tion of the momentum and mass equations, respectively, and each coefficient

αi, i=1, 2 depends solely on the parametric function φn and on the data of

the problem

α2 :=

∫
I

[φn]2 ψ dI, α3 :=

∫
I

[φn]2 dI. (2.13)
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Note that given the separable form of (2.10)-(2.11), an efficient implemen-

tation of the right-hand side of the spatial iteration may be devised and the

corresponding FV discretisation is obtained. A detailed description of the

residuals acting as linear functionals on the right-hand side of Equation (2.12)

is provided in A.

The PDE of Equation (2.12) can be solved in Ω using the FV discretisa-

tion scheme libraries of OpenFOAM yielding the correction to the velocity

and pressure modes.

It is reminded that for any particularisation of the parameters the solution

of the full-order Stokes flow problem is carried out by a SIMPLE-based Stokes

solver as implemented in OpenFOAM (see Appendix B.1).

2.3.3 The parametric iteration

In the parametric step, the value of the previously computed spatial functions

is fixed (fnu , f
n
p )←(σnuf

n
u +∆fu, σ

n
p f

n
p +∆fp) and the parametric increment ∆φ

acts as unknown. Within the single parameter approximation rationale, a

unique scalar function depending on µ is sought. Following the strategy

described for the spatial iteration, Equation (2.9) is restricted to the para-

metric direction of the tangent manifold and ∆φ is computed by solving the

following algebraic equation

(−a2ψ + a3)∆φ = rnu + rnp , (2.14)
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where rnu and rnp are the parametric residuals associated with the discretisa-

tion of the momentum and mass equations, respectively, and each coefficient

ai, i=1, 2 depends solely on the spatial functions (σnuf
n
u , σ

n
p f

n
p ) and on the

data of the problem, namely


a2 :=

∫
Vi

σnuf
n
u ·
[
∇·(D∇(σnuf

n
u ))
]
dV ,

a3 :=

∫
Vi

σnuf
n
u ·∇(σnp f

n
p ) dV +

∫
Vi

σnp f
n
p ∇·(σnufnu ) dV .

(2.15)

The unknown ∆φ is discretised at the nodes of the parametric domain I and

the resulting algebraic equation is solved via a collocation method. Similarly

to the spatial iteration, the separable form of (2.10)-(2.11) is exploited to

perform computationally efficient pointwise evaluations of the residuals at

the nodes of I. The complete derivation of the separated form of the right-

hand side is detailed in A.

2.4 Predictor-corrector alternating direction

scheme for parametrised Oseen flow

At this step, and moving towards the Navier-Stokes system, a linearised

convection term is considered. Setting a = u0 in Equation (2.3), with u0

a user prescribed divergence-free velocity field, yields the Oseen system of

equations
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

∫
I

∫
Vi

∇·(u⊗ u0) dV dI −
∫
I

∫
Vi

∇·(ν∇u) dV dI

+

∫
I

∫
Vi

∇p dV dI =

∫
I

∫
Vi

s dV dI,∫
I

∫
Vi

∇·u dV dI = 0.

(2.16)

Similarly to the Stokes flow, a SIMPLE-based solver for the full-order Oseen

flow problem has been implemented in OpenFOAM (see Appendix B.2).

As observed from a comparison between equations (2.8) and (2.16) the

Oseen flow system is identical to the Stokes flow system described above with

the exception of the linearised convection term. As such, the main point of

interest will be the handling of the extra term and the required adaptation

of the alternating direction scheme.

It must be noted that the assumption of separability of data discussed in

Section 2.3 stands for the Oseen flow. Much like viscosity (Equation (2.7))

the following separable form of the prescribed velocity field is assumed

u0(x,µ) := ξ(µ)F (x) =

nu0∑
i=1

ξ1,i(µ1) · · · ξM,i(µM)F i(x), (2.17)

2.4.1 Separable form of the linearised convection term

By plugging the predictor-corrector approximation (2.6) in (2.16) the contri-

bution of the convection term to the left- and right-hand side, respectively,
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reads:

LHS :

∫
I
ξ

∫
Vi

∇·(σnu δ̃unPGD⊗F ) dV dI

RHS : −
∫
I
ξ

∫
Vi

∇·(ũn
PGD
⊗F ) dV dI.

(2.18)

Augmenting the separable form of the Stokes system (2.9) with the afore-

mentioned convection terms yields the separable Oseen system



∫
I
ξ

∫
Vi

∇·(σnu δ̃unPGD⊗F ) dV dI −
∫
I
ψ

∫
Vi

∇·(D∇(σnu δ̃u
n
PGD

)) dV dI

+

∫
I

∫
Vi

∇(σnp δ̃p
n
PGD

) dV dI = Ru,∫
I

∫
Vi

∇·(σnu δ̃unPGD) dV dI = Rp,

(2.19)

where the residuals are defined as

Ru :=Ru(u
n−1
PGD

, pn−1
PGD

, σnuf
n
u , σ

n
p f

n
p , φ

n) = Ru(ũ
n
PGD
, p̃ n

PGD
)

=

∫
I

∫
Vi

s dV dI −
∫
I
ξ

∫
Vi

∇·(ũn
PGD
⊗F ) dV dI

+

∫
I
ψ

∫
Vi

∇·(D∇ũn
PGD

) dV dI −
∫
I

∫
Vi

∇p̃ n
PGD
dV dI,

(2.20)

Rp :=Rp(u
n−1
PGD

, σnuf
n
u , φ

n) = Rp(ũ
n
PGD

)

=−
∫
I

∫
Vi

∇·ũn
PGD
dV dI.

(2.21)
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2.4.2 The spatial iteration

Restricting Equation (2.19) to the tangent manifold in the spatial direction

the spatial increments of the n-th mode are sought



α1

∫
Vi

∇·
(
σnu∆fu⊗F

)
dV − α2

∫
Vi

∇·(D∇(σnu∆fu)) dV

+α3

∫
Vi

∇(σnp∆fp) dV = Rn
u,

α3

∫
Vi

∇·(σnu∆fu) dV = Rn
p ,

(2.22)

where Rn
u and Rn

p are the spatial residuals associated with the discretisa-

tion of the momentum and mass equations, respectively, and each coefficient

αi, i=1, . . . , 3 depends solely on the parametric function φn and on the data

of the problem

α1 :=

∫
I

[φn]2 ξ dI, α2 :=

∫
I

[φn]2 ψ dI, α3 :=

∫
I

[φn]2 dI. (2.23)

A detailed description of the residuals acting as linear functionals on the

right-hand side of Equation (2.22) is provided in A.

The PDE of Equation (2.22) features a structure similar to the origi-

nal Oseen problem in the spatial domain Ω and can thus be solved using

numerical schemes found in OpenFOAM.

Remark 3. It has to be noted at this points that with the use of a fictitious

viscosity ν̂ = α2

α3
D and a modified user-prescribed velocity â = α1

α3
F an Oseen

flow problem can be assembled and the discretisation is thus performed using

the Oseen FV solver implemented in OpenFOAM, see Appendix B.2. This
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point will be revisited in the chapter regarding the nonintrusive PGD for

Navier-Stokes problems.

2.4.3 The parametric iteration

Much like the parametric step of the PGD for parametrised Stokes flow de-

scribed in 2.3.3 the value of the previously computed spatial functions is fixed

(fnu , f
n
p )←(σnuf

n
u +∆fu, σ

n
p f

n
p +∆fp) and the parametric increment ∆φ acts as

the unknown. Equation (2.19) is restricted to the parametric direction of

the tangent manifold and ∆φ is computed by solving the following algebraic

equation

(a1ξ − a2ψ + a3)∆φ = rnu + rnp , (2.24)

where rnu and rnp are the parametric residuals associated with the discretisa-

tion of the momentum and mass equations, respectively, and each coefficient

ai, i=1, . . . , 3 depends solely on the spatial functions (σnuf
n
u , σ

n
p f

n
p ) and on

the data of the problem, namely



a1 :=

∫
Vi

σnuf
n
u ·
[
∇·(σnufnu ⊗F )

]
dV

a2 :=

∫
Vi

σnuf
n
u ·
[
∇·(D∇(σnuf

n
u ))
]
dV ,

a3 :=

∫
Vi

σnuf
n
u ·∇(σnp f

n
p ) dV +

∫
Vi

σnp f
n
p ∇·(σnufnu ) dV .

(2.25)

The complete derivation of the separated form of the right-hand side is de-

tailed in A.
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2.5 Numerical validation

In this section, the proposed PGD scheme for linear problems implemented

in OpenFOAM is validated using numerical examples. Starting with the

parametrised Stokes flow, a test case with known analytical solution is con-

sidered to verify the optimal convergence rate of the high-dimensional FV

approximation of the velocity and pressure fields, measured in the L2(Ω×I)

norm, for a multi-parametric anisotropic viscosity coefficient. In the Oseen

framework, the optimal rate of convergence is sought using a well documented

benchmark case where the viscosity coefficient is the parameter. In this con-

text, special emphasis is given to the additional error introduced by the PGD,

highlighting the range of applicability of the discussed reduced-order strategy

in terms of expected accuracy of the parametric solution.

2.5.1 Parametrised Stokes flow

Consider a spatial domain Ω=[0, 1]2 with anisotropic viscosity that is con-

trolled by M = 2 parameters. More specifically, the dependence reads

ν(x, µ1, µ2) = µ1(1− y) + µ2y

with I1 ∈ [1, 2] and I2 ∈ [3, 4], both discretised with the same number of

uniform intervals. The spatial domain is discretised with a family of cartesian

meshes of quadrilateral cells.
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Introducing the following external body forces

s(x, µ1, µ2) =

(−µ1µ2 + µ2
1)(6x(1− x)− 1)

(µ1µ2 − µ2
2)(6y(1− y)− 1)


velocity and pressure can be analytically expressed as

u(x, µ1, µ2) =

µ1(1− y) + µ2x

−µ1x− µ2y


p(x, µ1, µ2) = (−µ1µ2 + µ2

1(x
2(3− 2x)) + (µ1µ2 − µ2

2)y
2(3− 2y).

(2.26)

Using the same normalised characteristic length hµ1 , hµ2 and hx, listed in

Table 2.1, a uniform mesh refinement study is run.

h 8.3× 10−2 4×10−2 2×10−2 1×10−2 5×10−3 2.5×10−3

Table 2.1: Normalised characteristic length of both the spatial and paramet-
ric discretisations.

In order to run the PGD an affine separation of the data, as detailed

in Section 2.3, is required. The separable form of the anisotropic viscosity

consists of two modes

D1(x) = 1− y , ψ1(µ1) = µ1 , ψ1(µ2) = 1

D2(x) = y , ψ2(µ1) = 1 , ψ2(µ2) = µ2 .

(2.27)

while the Dirichlet velocity datum is imposed via three modes, with respec-
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tive null pressure fields

f 1
u (x) =

x+ y(y − 1)x(x− 1)

−y

 , f 1
p (x) = 0

f 2
u (x) =

 1− y

−x− y(y − 1)x(x− 1)

 , f 2
p (x) = 0

f 3
u (x) =

−(x2 − 1)2y + x(x− 1)2(y − 1)y3

(y2 − 1)2x− x(x− 1)2(y − 1)y3

 , f 3
p (x) = 0

φ1(µ1) = 1 , φ2(µ1) = µ1 , φ3(µ1) = 1,

φ1(µ2) = µ2 , φ2(µ2) = 1 , φ3(µ1) = 1 .

(2.28)

Each individual PGD is run until either the relative amplitude of the

computed mode drops below a threshold or N modes have been computed.

More specifically, the relative amplitude criterion is η(u,p) ≤ 10−5, where η(u,p)

accounts for the relative amplitude of both the velocity and pressure modes,

such that

η(u,p) :=

√(
σnu∑n
m=1 σ

m
u

)2

+

(
σnp∑n
m=1 σ

m
p

)2

. (2.29)

and the maximum number of modes is N = 20.

The L2(Ω×I) error between the PGD approximation (un
PGD
, pn

PGD
) com-

puted and the analytical solution (u, p) as a function of the characteristic

mesh size hx is displayed in Figure 2.1. The optimal first-order convergence

rate for pressure and second-order one for velocity are obtained.
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Figure 2.1: Optimal convergence of the L2(Ω×I) error of the PGD approxi-
mation of the analytical Stokes flow with parametrised anisotropic viscosity
using two parameters with respect to the exact solution as a function of the
characteristic mesh size h.

2.5.2 Parametrised Oseen flow

Consider the Kovasznay flow [61] for a parametrised viscosity ν(µ)=µ. The

analytical solution is

u(x, y, µ) =
(

1− eλ(µ)x cos(2πy), λ(µ)
2π
eλ(µ)x sin(2πy)

)
p(x, y, µ) = 1

2

(
1− e2λ(µ)x

)
+ C

(2.30)

where the constant C is determined by fixing a reference value for the pressure

field in one point of the domain, whereas λ is a function of the parametrised

viscosity and changes when the Reynolds number is modified, namely,

λ(µ) = 1
2ν(µ)

−
√

1
(2ν(µ))2

+ 4π2.

The parameter µ is sought in the space I=[5×10−3, 10−2], which is discretised

with uniform intervals. The corresponding values of the Reynolds number
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span from 100 to 200. The spatial domain Ω=[−1, 1]2 is discretised with a

family of Cartesian meshes of quadrilateral cells. The characteristic lengths

hx and hµ of the spatial and parametric discretisations, respectively, are

provided in Table 2.2.

hx 8.3× 10−2 4×10−2 2×10−2 1×10−2 5×10−3 2.5×10−3

hµ 2×10−2 1×10−2 5×10−3 2.5×10−3 1.25×10−3 6.25×10−4

Table 2.2: Normalised characteristic lengths of the spatial and parametric
discretisations.

A convergence study under uniform mesh refinement is performed for the

linearised Navier-Stokes equations using the meshes described in Table 2.2.

In this context, a convective field a given by the analytical expression of the

Kovasznay velocity is introduced in Equation (2.1). As detailed in Section

2.4, an affine separation of the data is required to run PGD. Thus, the convec-

tive field a is separated a priori considering the first four terms of the Taylor

expansion of eλx in the analytical form of the velocity, see Equation (2.30).

For µ=10−2, the relative L2(Ω) error of the resulting separated velocity field

with respect to the exact one is 4.3×10−3 and, consequently, a target error of

10−2 in the spatial discretisation is considered for the following convergence

study. Moreover, the Dirichlet boundary datum uD requires five modes to

be described in a separated form.

The L2(Ω×I) error between the PGD approximation (un
PGD
, pn

PGD
) com-

puted using fifteen modes and the high-dimensional analytical solution (u, p)

as a function of the characteristic mesh size hx is displayed in Figure 2.2. The

optimal first-order convergence rate for pressure and second-order one for ve-

locity are obtained.
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10-2 10-110-2

10-1
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Figure 2.2: Optimal convergence of the L2(Ω×I) error of the PGD approx-
imation of the Kovasznay flow with parametrised viscosity with respect to
the exact solution as a function of the characteristic mesh size hx.

Similarly to section 2.5.1, the stopping criterion is chosen to be η(u,p) ≤

10−5 (2.29). In Figure 2.3(a), the evolution of the amplitude η(u,p), ηu and ηp

is displayed for the finest mesh described in Table 2.2. After ten computed

modes, the stopping criterion is fulfilled and the PGD enrichment stops.

As previously mentioned, five terms are required to describe the Dirich-

let boundary conditions in a separated form. Henceforth, only the computed

modes, starting from the sixth term of the PGD approximation are displayed.

In Figures 2.3(b), the first six normalised computed parametric modes are

displayed. The corresponding computed spatial modes for pressure and ve-

locity are presented in Figure 2.4 and 2.5, respectively.

The PGD approximation (un
PGD
, pn

PGD
) using n=1, 3, 10 terms is compared

to the analytical solution for the case of Re=200, in Figure 2.6.

31



(a) Amplitude of the computed modes
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(b) Computed parametric modes

Figure 2.3: PGD approximation of the Kovasznay flow with parametrised
viscosity. (a) Relative amplitude of the computed modes fmu (black), fmp
(blue) and the combined amplitude of (fmu , f

m
p ) according to Equation (??).

(b) First six normalised computed parametric modes.

(a) f1p (b) f2p (c) f3p (d) f4p (e) f5p (f) f6p

Figure 2.4: PGD approximation of the Kovasznay flow with parametrised
viscosity. First six computed spatial modes fmp , m = 1, . . . , 6 for pressure.

(a) f1
u (b) f2

u (c) f3
u (d) f4

u (e) f5
u (f) f6

u

Figure 2.5: PGD approximation of the Kovasznay flow with parametrised
viscosity. First six computed spatial modes fmu , m = 1, . . . , 6 for velocity.
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(a) p1
PGD

(b) p3
PGD

(c) p15
PGD

(d) Exact p

(f) u1
PGD

(g) u3
PGD

(h) u15
PGD

(i) Exact u

Figure 2.6: Comparison of the PGD approximation to the analytical solution
of the Kovasznay flow for Re = 200, that is µ = 10−2. Pressure (top) and
velocity (bottom) using 1, 3 and 15 modes.
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Chapter 3

The nonintrusive PGD for

parametrised Navier-Stokes

flow

Having validated the OpenFOAM implementation of PGD for linear flow

problems the laminar Navier-Stokes flow is considered. As aforementioned,

a bottleneck to the adoption of PGD in the daily industrial environment

rests in the complexity and intrusiveness of the method. Initially, the con-

struction of a separable approximation of the parametrised Navier-Stokes

flow problem is recalled. During the derivation of the PGD formulation

the concept of the nonintrusive PGD is introduced and the implementation

of the nonintrusive PGD method in OpenFOAM is described. Finally, two-

and three-dimensional parametrised problems are solved to test the proposed

method.
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3.1 Predictor-corrector alternating direction

scheme for parametrised Navier-Stokes flow

This section expands on the separability of the laminar Navier-Stokes flow

as well as the feasibility of a nonintrusive implementation in OpenFOAM.

Setting a = u in Equation (2.3) the higher dimensional Navier-Stokes system

of equations reads



∫
I

∫
Vi

∇·(u⊗ u) dV dI −
∫
I

∫
Vi

∇·(ν∇u) dV dI

+

∫
I

∫
Vi

∇p dV dI =

∫
I

∫
Vi

s dV dI,∫
I

∫
Vi

∇·u dV dI = 0.

(3.1)

As is observed, in a similar fashion to the parametrised Oseen flow, the non-

linear convection term needs to be accounted for.

Remark 4. It is at this point reminded that all previous assumptions of

separability still stand.

By plugging the predictor-corrector approximation (2.6) in (3.1) and gath-

ering the unknown increments (σnu δ̃u
n
PGD
, σnp δ̃p

n
PGD

) on the left-hand side while

leaving on the right-hand side the residuals computed using the previous

modes (un−1
PGD

, pn−1
PGD

) and the predictions (σnuf
n
u φ

n, σnp f
n
p φ

n) of the current one,
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the following equations are obtained



∫
I

∫
Vi

∇·(σnu δ̃unPGD⊗σnu δ̃unPGD) dV dI

+

∫
I

∫
Vi

∇·(σnu δ̃unPGD⊗ũnPGD) dV dI +

∫
I

∫
Vi

∇·(ũn
PGD
⊗σnu δ̃unPGD) dV dI

−
∫
I
ψ

∫
Vi

∇·(D∇(σnu δ̃u
n
PGD

)) dV dI +

∫
I

∫
Vi

∇(σnp δ̃p
n
PGD

) dV dI = Ru,∫
I

∫
Vi

∇·(σnu δ̃unPGD) dV dI = Rp,

(3.2)

where the residuals are defined as

Ru :=Ru(u
n−1
PGD

, pn−1
PGD

, σnuf
n
u , σ

n
p f

n
p , φ

n) = Ru(ũ
n
PGD
, p̃ n

PGD
)

=

∫
I

∫
Vi

s dV dI −
∫
I

∫
Vi

∇·(ũn
PGD
⊗ũn

PGD
) dV dI

+

∫
I
ψ

∫
Vi

∇·(D∇ũn
PGD

) dV dI −
∫
I

∫
Vi

∇p̃ n
PGD
dV dI,

(3.3)

Rp :=Rp(u
n−1
PGD

, σnuf
n
u , φ

n) = Rp(ũ
n
PGD

)

=−
∫
I

∫
Vi

∇·ũn
PGD
dV dI.

(3.4)
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3.1.1 The spatial iteration

First, the parametric function φn is fixed and the increments (σnu∆fu, σ
n
p∆fp)

are determined by solving a spatial PDE. More precisely, restricting Equa-

tion (3.2) to the tangent manifold in the spatial direction, a pair (σnu∆fu, σ
n
p∆fp),

constant cell-by-cell, is sought such that in each cell Vi, i=1, . . . , N it holds



α0

∫
Vi

∇·(σnu∆fu⊗σnu∆fu)dV

+

∫
Vi

∇·
(
σnu∆fu⊗

n∑
m=1

αm1 σ
m
u f

m
u

)
dV

+

∫
Vi

∇·
( n∑
m=1

αm1 σ
m
u f

m
u ⊗σnu∆fu

)
dV

−α2

∫
Vi

∇·(D∇(σnu∆fu))dV+α3

∫
Vi

∇(σnp∆fp)dV = Rn
u,

α3

∫
Vi

∇·(σnu∆fu)dV = Rn
p ,

(3.5)

where Rn
u and Rn

p are the spatial residuals associated with the discretisa-

tion of the momentum and mass equations, respectively, and each coefficient

αi, i=0, . . . , 3 depends solely on the parametric function φn and on the data

of the problem

α0 :=

∫
I

[φn]3 dI, α2 :=

∫
I

[φn]2 ψ dI,

αm1 :=

∫
I

[φn]2 φm dI, α3 :=

∫
I

[φn]2 dI.
(3.6)

Note that given the separable form of (3.3)-(3.4), an efficient implementa-

tion of the right-hand side of the spatial iteration may be devised and the

corresponding FV discretisation is obtained. A detailed description of the
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residuals acting as linear functionals on the right-hand side of Equation (3.5)

is provided in A.

The terms in Equation (3.5) feature a structure similar to the original

incompressible Navier-Stokes problem in the spatial domain Ω, see Equa-

tion (3.1). The discretisation is thus performed using the cell-centred FV

method implemented in OpenFOAM, see Section 2.1. The main difference

is represented by the second and third integrals on the left-hand side of the

momentum equation (3.5). In order to preserve the nonintrusiveness of the

discussed PGD approach, Equation (3.5) is modified by introducing a relax-

ation in the SIMPLE iterations to treat these two integrals in an explicit way

as part of the right-hand side of the momentum equation, leading to



α0

∫
Vi

∇·(σnu∆fu⊗σnu∆fu)dV

−α2

∫
Vi

∇·(D∇(σnu∆fu))dV + α3

∫
Vi

∇(σnp∆fp)dV = Rn
u

−
∫
Vi

∇·
( n∑
m=1

αm1 σ
m
u f

m
u ⊗σk−1u ∆fk−1u

)
dV

−
∫
Vi

∇·
(
σk−1u ∆fk−1u ⊗

n∑
m=1

αm1 σ
m
u f

m
u

)
dV,

α3

∫
Vi

∇·(σnu∆fu)dV = Rn
p ,

(3.7)

where the index k−1 is associated with the last computed increment σk−1u ∆fk−1u

in the SIMPLE algorithm, see B. It is straightforward to observe that Equa-

tion (3.7) now features the same structure as the original Navier-Stokes prob-

lem (3.1) for which the SIMPLE algorithm is designed. Hence, the resulting

solver for the spatial iteration does not require any modification of the ex-
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isting OpenFOAM routines and is nonintrusive with respect to simpleFoam.

Remark 5. The first integral in Equation (3.7) solely introduces a higher-

order perturbation which, upon convergence of the SIMPLE iterations, is neg-

ligible. Hence, an alternative formulation of the momentum equation within

the proposed PGD algorithm relies on neglecting such higher-order contribu-

tion. The convection term is thus linearised using the last computed approx-

imation
∑n

m=1α
m
1 σ

m
u f

m
u of the unknown velocity field, namely



∫
Vi

∇·
(
σnu∆fu⊗

n∑
m=1

αm1 σ
m
u f

m
u

)
dV

−α2

∫
Vi

∇·(D∇(σnu∆fu))dV+α3

∫
Vi

∇(σnp∆fp)dV = Rn
u

−
∫
Vi

∇·
( n∑
m=1

αm1 σ
m
u f

m
u ⊗ σk−1u ∆fk−1u

)
dV,

α3

∫
Vi

∇·(σnu∆fu)dV = Rn
p .

(3.8)

The left-hand side of Equation (3.8) mimics the SIMPLE strategy to solve

the linearised version of the Navier-Stokes equations because it substitutes the

unknown convection field with a relaxation. This approach converges to the

same solution of (3.7) (and this has been verified numerically). Nevertheless

it is slightly intrusive in the context of simpleFoam as it requires the imple-

mentation of the linear convection term. Hence, Equation (3.7) is preferred

for the PGD spatial iteration.
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3.1.2 The parametric iteration

In the parametric step, the value of the previously computed spatial functions

is fixed (fnu , f
n
p )←(σnuf

n
u +∆fu, σ

n
p f

n
p +∆fp) and the parametric increment ∆φ

acts as unknown. Within the single parameter approximation rationale, a

unique scalar function depending on µ is sought.

As noted in the previous Section, the correction introduced by the high-

order term in the momentum equation is negligible upon convergence. Fol-

lowing the strategy described for the spatial iteration and neglecting this

term in the restriction of Equation (3.2) to the parametric direction of the

tangent manifold, ∆φ is computed by solving the following algebraic equation

(
n∑

m=1

am1 φ
m − a2ψ + a3

)
∆φ = rnu + rnp , (3.9)

where rnu and rnp are the parametric residuals associated with the discretisa-

tion of the momentum and mass equations, respectively, and each coefficient

ai, i=1, . . . , 3 depends solely on the spatial functions (σnuf
n
u , σ

n
p f

n
p ) and on

the data of the problem, namely



am1 :=

∫
Vi

σnuf
n
u ·
[
∇·(σnufnu ⊗σmu fmu )

]
dV

+

∫
Vi

σnuf
n
u ·
[
∇·(σmu fmu ⊗σnufnu )

]
dV ,

a2 :=

∫
Vi

σnuf
n
u ·
[
∇·(D∇(σnuf

n
u ))
]
dV ,

a3 :=

∫
Vi

σnuf
n
u ·∇(σnp f

n
p ) dV +

∫
Vi

σnp f
n
p ∇·(σnufnu ) dV .

(3.10)

The unknown ∆φ is discretised at the nodes of the parametric domain I and
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the resulting algebraic equation is solved via a collocation method. Similarly

to the spatial iteration, the separable form of (3.3)-(3.4) is exploited to per-

form computationally efficient pointwise evaluations of the residuals at the

nodes of I. The complete derivation of the separated form of the right-hand

side is detailed in A.
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3.2 A nonintrusive implementation of the proper

generalised decomposition in OpenFOAM

A critical aspect to make ROM strategies suitable for application on a daily

basis in an industrial environment is their nonintrusiveness with respect to

existing solution methodologies validated by companies. Thus, in order to

solve parametrised flow problems using OpenFOAM, the proposed PGD algo-

rithm is designed to be nonintrusive with respect to the simpleFoam solver

as described above. As discussed in Section 2.3, inhomogeneous Dirichlet

boundary conditions are treated by means of a spatial mode computed using

the full-order solver, whereas the corresponding parametric mode is set equal

to 1 (Algorithm 1 - Step 1). Then, the enrichment process is started and at

each iteration of the alternating direction scheme a spatial mode is computed

using simpleFoam (Algorithm 1 - Steps 7 to 10) and a linear system is solved

to determine the corresponding parametric term (Algorithm 1 - Steps 11 to

14). The alternating direction iterations stop when the computed corrections

∆f�, ∆φ are negligible with respect to the amplitudes σn� , σφ of the current

mode for � = u, p and the residuals εr◦ are sufficiently small for ◦ = u, p, φ

(Algorithm 1 - Steps 6 and 15). The global enrichment strategy ends when

the amplitude of the current mode σn� is negligible with respect to the first

one σ1
� for � = u, p (Algorithm 1 - Step 3).

Remark 6. Alternative criterions may be considered to stop the greedy al-

gorithm, e.g. when the magnitude of the last mode normalised with respect

to the sum of the amplitudes of all the computed terms is lower than a user-
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defined tolerance η?�, namely

σn� < η?�

n∑
m=1

σm� , for � = u, p.

Algorithm 1 pgdFoam: a nonintrusive PGD implementation in OpenFOAM

Require: Tolerances η?� for the greedy algorithm. Tolerances η◦ for the am-
plitudes and ηr◦ for the residuals in the alternating direction iteration.
Typical values typ◦ for the residuals of the spatial and parametric prob-
lems. � = u, p and ◦ = u, p, φ.

1: Compute boundary condition modes: the spatial mode is solution of (2.2)
using simpleFoam and the parametric mode is equal to 1.

2: Set n← 1 and initialise the amplitudes of the spatial modes σ1
� ← 1.

3: while σn� > η?� σ
1
� do

4: Set k ← 0, the parametric predictor φn←1 and the spatial predictors
(fnu , f

n
p ) using the last computed modes.

5: Initialise ε◦ ← 1, εr◦ ← typ◦.
6: while ε◦ > η◦ or εr◦ > ηr◦ do
7: Compute the spatial residuals (A.9) and coefficients (3.6).
8: Solve the spatial Navier-Stokes problem (3.7) using simpleFoam.
9: Normalise the spatial predictors: σn�←‖σn�fn� +∆f�‖.

10: Update the spatial predictors: fn� ←(σn�f
n
� +∆f�)/σ

n
� .

11: Compute the parametric residual (A.11) and coefficients (3.10).
12: Solve the parametric linear system (3.9).
13: Normalise the parametric predictor: σφ←‖φn +∆φ‖.
14: Update the parametric predictor: φn←(φn +∆φ)/σφ.
15: Update stopping criterions: ε�←‖∆f�‖/σn� , εφ←‖∆φ‖/σφ, εr◦←‖r◦‖.
16: Update the alternating direction iteration counter: k ← k + 1.
17: end while
18: Update the mode counter: n← n+ 1.
19: end while
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η∗, ηo, η
r
o

n← 1, σ1 ← 1

σn� > η∗�σ
1
� End

k ← 0

φn ← 1

(fnu, f
n
p ) ← (fn−1

u , fn−1
p )

εo ← 1

εro ← typo

εo > ηo

OR

εro > ηro

Compute

residuals (A.9)

coefficients (3.6)

Solve spatial

problem (3.7)

using simpleFoam

σn� ← ‖σn� fn� + ∆f�‖

fn� ← (σn� f
n
� +∆f�)/σn�

Compute

residual (A.11)

coefficients (3.10)

Solve

parametric linear

system (3.9)

σφ ← ‖φn + ∆φ‖

φn ← (φn + ∆φ)/σφ
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εφ ← ‖∆φ‖/σφ
εro ← ‖ro‖

k ← k + 1

n← n+1

no

yes

yesno

1
Figure 3.1: Flowchart of the nonintrusive pgdFoam algorithm. Legend: � =
u, p and ◦ = u, p, φ.
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3.3 Applications of the nonintrusive PGD

methodology

In this section, the proposed methodology is applied to two- and three-

dimensional geometries. First, a classical benchmark test for incompressible

flow solvers, namely the nonleaky lid-driven cavity, is studied parametrising

the imposed velocity of the lid in a range of values of the Reynolds number

spanning from 1,000 to 4,000. Next, the nonintrusive PGD methodology

is applied to laminar flow-control problems. The first problem is a two-

dimensional case of academic interest, while the second is a real-life case

provided by Volkswagen AG.

3.3.1 The cavity with parametrised lid velocity

In this section, the classical benchmark problem of the nonleaky lid-driven

cavity is studied [39]. The unitary square Ω=[0, 1]2 is considered as spatial

domain and homogeneous Dirichlet boundary conditions are imposed on the

lateral and bottom walls. On the top wall, a velocity ulid(x, µ)=400µulid(x)

is enforced, where the parameter µ ∈ [0.25, 1] acts as a scaling factor of the

maximum velocity of the lid, whereas ulid(x) is a velocity profile featuring

two ramps on the top-left and top-right corners of the domain to account for

the change between null and maximum velocity. As classical in the literature

treating the lid-driven cavity example, for x ∈ [0, 0.06] and x ∈ [0.94, 1],

the horizontal component of the lid velocity changes linearly from 0 to 400µ

and vice versa. The dynamic viscosity is set to ν=0.1 m2/s and the values
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Figure 3.2: PGD of the cavity flow with parametrised lid velocity. (a) Rela-
tive amplitude of the computed modes fmu (black), fmp (blue) and the com-
bined amplitude of (fmu , f

m
p ) according to Equation (??). (b) First seven

normalised computed parametric modes.

considered for the Reynolds number span from 1,000 to 4,000.

The mode handling the boundary conditions is obtained as a full-order

solution of the Navier-Stokes equations using the simpleFoam algorithm for

a lid velocity computed using µ=1, that is for a maximum horizontal velocity

of 400 m/s. The corresponding parametric boundary condition mode is set

to be linearly evolving from µ=0.25 to µ=1, that is φ(µ)=µ.

Following the rationale described in the previous section, two different

stopping criterions are considered for the PGD enrichment strategy, namely

η(u,p) ≤ 10−3 and η(u,p) ≤ 10−4. Figure 3.2(a) displays the relative amplitude

of the computed modes. Note that the first stopping point is achieved after

seven computed modes, whereas fourteen terms are required to fulfil the lower

tolerance. The corresponding computed parametric modes are presented on

Figure 3.2(b). It is worth noting that all the computed parametric modes

are close or equal to 0 for µ=1. This is due to the fact that the boundary

conditions of the problem are imposed by means of a full-order solution
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Figure 3.3: Relative L2(Ω) errors of the PGD approximation of the cavity
flow with parametrised lid velocity with respect to the full-order solution
as a function of the global number of modes (i.e. boundary conditions and
computed) utilised in the PGD expansion.

computed for the maximum value of µ in the parametric space. Hence, the

case of µ=1 is accurately described by the PGD approximation using solely

the mode obtained via simpleFoam.

Now, the online evaluations of the PGD approximation of the velocity

and pressure fields for different values of the parameter µ are compared to

the full-order solutions computed using simpleFoam. The corresponding rel-

ative L2(Ω) errors are presented in Figure 3.3 as a function of the number

of modes utilised in the PGD approximation. The boundary condition

mode and the first seven computed modes, for which η(u,p) ≤ 10−3, provide

a good approximation of both velocity and pressure and limited corrections

are introduced by the following modes until the stopping criterion of 10−4 is

fulfilled. For the case µ=1, a small error of the order of 10−4 appears starting

from the fifth computed mode, i.e. n=6. This is due to the fact that the

boundary condition mode already captures all the features of the flow, being
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Figure 3.4: Comparison of the PGD approximation (top) and the full-order
solution (bottom) of the parametrised lid-driven cavity problem for µ=0.25,
µ=0.625 and µ=1, corresponding to a maximum velocity of the lid of 100,
250 and 400 m/s, respectively.
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a full-order solution of the Navier-Stokes equations as previously mentioned.

A qualitative comparison of the reduced-order and full-order solutions of

the parametrised lid-driven cavity problem is displayed in Figure 3.4. The

PGD approximations for µ=0.25, µ=0.625 and µ=1 are presented as long

as their corresponding simulations obtained using simpleFoam. The cases

under analysis are associated with a maximum horizontal velocity of the lid

of 100, 250 and 400 m/s, respectively. It is worth noting that pgdFoam is able

to capture the topological changes of the flow with great accuracy, managing

to identify location and size of the vortices, as well as their appearance and

disappearance according to the values of the Reynolds number considered in

the analysis.

3.3.2 Applications to parametrised laminar flow con-

trol problems

Dynamically controlling the features of a flow is a challenging problem with

several high-impact applications including, e.g., drag minimisation, stall con-

trol and aerodynamic noise reduction [34, 28, 51]. A major bottleneck to the

design of flow control devices is represented by the large number of simula-

tions involved in the tuning of the control loop. In this section, the potential

of the described nonintrusive PGD implementation in OpenFOAM is demon-

strated for parametrised flow control problems. Two- and three-dimensional

internal flows with jets are studied. Specifically, a parametric study involving

the peak velocity of the jets as extra-coordinate of the problem is considered
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to test the proposed PGD methodology.

3.3.2.1 Lid-driven cavity with parametrised jet velocity

Consider the nonleaky lid-driven cavity problem introduced in Section 3.3.1.

The lid velocity is defined with two linear ramps, increasing from 0 to 10 m/s

on the top-left corner and decreasing correspondingly on the top-right one.

Three jets of size 0.12 m are introduced on the vertical walls, two on the

right wall and one on the left, respectively. The parametrised velocity of the

jets is ujet(x, µ)=µujet(x), where the maximum velocity is controlled by the

parameter µ ∈ [0, 1] and the profile ujet(x) is defined as

ujet(x, y)=



(
−1+ cos

(
2πy/0.12

)
, 0
)

for x=1, y ∈ [0, 0.12],(
1− cos

(
2π(y−0.88)/0.12

)
, 0
)

for x=1, y ∈ [0.88, 1],(
1− cos

(
2π(y−0.88)/0.12

)
, 0
)

for x=0, y ∈ [0.88, 1].

(3.11)

An outlet boundary is added on the left vertical wall for y ∈ [0, 0.12] and a

free-traction condition is enforced. The dynamic viscosity is set to ν=0.01 m2/s,

therefore the corresponding Reynolds number is Re=1,000.

The boundary conditions of the problem are enforced through two modes

computed as full-order solutions via simpleFoam as shown in Figure 3.5: the

first one, for µ=0, corresponds to lid velocity of 10 m/s and inactive jets;

the second one, for µ=1, is associated with the maximum velocity of the jets

and a zero velocity of the lid. The corresponding parametric modes for the

boundary conditions are set to φ(µ)=1 and φ(µ)=µ, respectively.
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(a) B.C. mode for the lid (b) B.C. mode for the jets

Figure 3.5: Cavity flow with parametrised jet velocity. Spatial boundary
condition modes for velocity.

Following the rationale previously discussed, the PGD enrichment pro-

cess is stopped when η(u,p) ≤ 10−4. In Figure 3.6, the generalised solution

computed by the PGD is interpolated in different points of the parametric

space under analysis and compared with the corresponding full-order solu-

tions provided by simpleFoam. The flows for µ=0.1, µ=0.3, µ=0.5, µ=0.7,

µ=0.8 and µ=1 are displayed, covering a wide range of flow regimes in the

cavity. It is worth noting that the discussed reduced-order strategy is able to

capture the topological changes in the flow features and accurately reproduce

the appearance and disappearance of vortices localised in different regions of

the domain.

The accuracy of the PGD approximation with respect to the full-order

solution is also verified by computing the relative L2(Ω) error of the spatial

discretisation while enriching the modal description of the solution. More

precisely, Figure 3.7 shows that using two boundary condition modes and six

computed modes all approximations achieve a plateau with relative errors of

10−2 or lower.
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u
PGD

u
REF

µ=0.1 µ=0.3 µ=0.5

u
PGD

u
REF

µ=0.7 µ=0.8 µ=1.0

Figure 3.6: Comparison of the PGD approximation (top) and the full-order
solution (bottom) of the lid-driven cavity with jets for µ=0.1, µ=0.3, µ=0.5,
µ=0.7, µ=0.8 and µ=1, corresponding to a maximum velocity of the jets
spanning from 0.2 to 2 m/s.
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Figure 3.7: Relative L2(Ω) error of the PGD approximation of the cavity
flow with parametrised jet velocity with respect to the full-order solution
as a function of the global number of modes (i.e. boundary conditions and
computed) utilised in the PGD expansion, for µ=0.1, µ=0.5, µ=0.7 and µ=1.

3.3.2.2 S-Bend with flow control driven by a jet

In this section, the proposed PGD methodology is applied to a flow control

problem using a three-dimensional geometry of industrial interest. The model

of a heating, ventilation and air conditioning (HVAC) duct section provided

by Volkswagen AG is shown in Figure 3.8. A jet is introduced on the red

patch, at the first bend of the duct. The velocity profile of the jet is a

sinusoidal function defined on the reference planar square [0, 1]2 as

uŷ(x̂, ẑ) = 0.0375(1− cos(−2πx̂))(1− cos(2πẑ)) (3.12)

and pointing in the direction ŷ orthogonal to the plane (x̂, ẑ). The parametri-

sation is constructed as a scaling of the jet velocity from uy=−0.015 m/s, i.e.

blowing, to suction with uy=0.15 m/s. A single parameter µ is introduced and

the parametric domain considered for the analysis is I=[−0.1, 1]. Note that
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(a) Front view (b) Bottom view

(c) Perspective view (d) Patches of the duct

Figure 3.8: Geometrical model of the S-Bend. On the bottom-right image,
the jet patch is highlighted in red.

this problem is especially challenging due to the change of sign in the inter-

val of parametric values considered leading to different physical phenomena.

The remaining boundary conditions feature homogeneous velocity on all the

lateral walls, a parabolic velocity profile with mean value u=(0.83, 0, 0)m/s

on the inlet and a free-traction on the outlet. The dynamic viscosity is set

to ν=1.588×10−5 m2/s and the corresponding value of the Reynolds number

is Re=280. The quantity of interest in this problem is the pressure drop

computed along the duct.

As previously done for the lid-driven cavity with jets, two modes to ac-

count for the boundary conditions are computed using simpleFoam. The

first mode is a full-order solution corresponding to the case of inactive jet

and given inlet parabolic profile; the second one, is obtained setting a zero in-

let velocity and a jet of maximum velocity uy=0.15 m/s. The corresponding

parametric modes are φ(µ)=1 and φ(µ)=µ, respectively.
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Setting a tolerance of 10−3, pgdFoam computes five modes before fulfilling

the stopping criterion for η(u,p), see Equation (2.29), whereas seventeen com-

puted modes are required for the amplitude to drop at 10−4, as displayed in

Figure 3.9(a).

The PGD approximation obtained is compared with the full-order so-

lutions given by simpleFoam for the values µ=−0.1, µ=0.45 and µ=1 of

the parameter under analysis. In Figure 3.9(b), the relative L2(Ω) error for

these configurations is reported. The numerical experiments confirm that an

accuracy of 10−2 is achieved, for all parameters, using two computed modes

additionnally to the two terms accounting for the boundary conditions. Note

that the first computed mode is one order of magnitude more relevant than

the following ones (Fig. 3.9(a)) and after two computed modes only lim-

ited corrections are introduced to the existing PGD approximation. It is

worth observing that a comparable accuracy of the PGD solution is achieved

throughout the whole parametric space for both velocity and pressure.

A qualitative comparison of the pressure and velocity fields computed

using the PGD solution interpolated in different points of the parametric

interval I and the corresponding full-order discretisations is presented in

Figures 3.10 and 3.11.

As mentioned at the beginning of this section, the quantity of engineering

interest in the analysis of this problem is the pressure drop computed along

the duct. Considering a zero reference pressure on the outlet, the weighted
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Figure 3.9: Internal flow in the S-Bend with parametrised jet velocity. (a)
Relative amplitude of the computed modes fmu (black), fmp (blue) and the
combined amplitude of (fmu , f

m
p ) according to Equation (??). (b) Relative

L2(Ω) error of the PGD approximations of pressure and velocity with respect
to the full-order solutions for different values of µ.
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(a) p
REF
, µ=− 0.1 (b) p

PGD
, µ=− 0.1

(c) p
REF
, µ=0.45 (d) p

PGD
, µ=0.45

(e) p
REF
, µ=1 (f) p

PGD
, µ=1

Figure 3.10: Comparison of the PGD approximation (right) and the full-
order solution (left) of the pressure field of the internal flow in the S-Bend
with a jet configuration of µ=−0.1, µ=0.45 and µ=1, corresponding to a jet
which spans from blowing at maximum velocity 0.015 m/s to suction with
peak velocity 0.15 m/s.
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(a) u
REF
, µ=− 0.1 (b) u

PGD
, µ=− 0.1

(c) u
REF
, µ=0.45 (d) u

PGD
, µ=0.45

(e) u
REF
, µ=1 (f) u

PGD
, µ=1

Figure 3.11: Comparison of the PGD approximation (right) and the full-
order solution (left) of the velocity field of the internal flow in the S-Bend
with a jet configuration of µ=−0.1, µ=0.45 and µ=1, corresponding to a jet
which spans from blowing at maximum velocity 0.015 m/s to suction with
peak velocity 0.15 m/s.
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(b) Pressure drop

Figure 3.12: PGD approximation of the internal flow in the S-Bend with
parametrised jet velocity. (a) Relative error of the pressure drop enriching the
PGD modal approximation. (b) Pressure drop with respect to the maximum
jet velocity.

average pressure drop is defined as

pdrop :=
1

Ain

Nin∑
i=1

Aipi, (3.13)

whereAin is the area of the inlet surface, Nin the number of faces Si, i=1, . . . , Nin

on the inlet patch and pi, Ai are the pressure and area on the face Si, re-

spectively. For µ=−0.1, µ=0.1, µ=0.45, µ=0.55 and µ=1, the pressure drop

is evaluated interpolating the generalised PGD solution in the corresponding

values of the parametric space and using the full-order solver simpleFoam.

Figure 3.12(a) presents the convergence history of the error in the pressure

drop as a function of the number of modes in the PGD approximation. It

is straightforward to observe again that using the modes accounting for the

boundary conditions and two computed modes is sufficient to capture the

flow features of a wide range of parameters, with a maximum error in the

pressure drop below 10−2. Moreover, by comparing the pressure drop with
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respect to the maximum velocity of the jet for different configurations with

the corresponding values provided by the full-order solver, the capability of

the discussed reduced-order strategy to accurately capture the evolution of

a quantity of interest throughout the range of values of the parameter µ is

confirmed (Fig. 3.12(b)). Finally, these experiments highlight that the pro-

posed PGD algorithm is able to provide an accurate approximation of the

solution both in terms of a global measure of the error in the domain, see

the L2 error in Figure 3.9(b), and of a localised quantity of interest as the

pressure drop in Figure 3.12(a).
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Chapter 4

The PGD rationale for the

Spalart-Allmaras turbulence

model

Industrial cases typically reside in the turbulent regime. It is therefore crit-

ical to devise a PGD framework suitable for application to flow problems

characterised by high Reynolds number. Applying the nonintrusive PGD

methodology detailed in Chapter 3 requires knowledge of the effects of the

parameters on turbulence. Therefore, focusing on building a fully a priori

method using PGD, a strategy for the efficient computation of a separable

approximation of the turbulent eddy viscosity is required.

In this chapter, firstly, the Spalart-Allmaras turbulence model is recalled

and a PGD strategy for the construction of a separable Spalart-Allmaras

viscosity field is described. Then a method to efficiently implement the com-
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putation of the Spalart-Allmaras in a PGD enrichment process is proposed.

Finally, two- and three-dimensional test cases are solved for the validation of

the proposed method.

4.1 The Spalart-Allmaras turbulence model

In a daily industrial environment where robustness, stability and speed are

of the utmost importance, Reynolds-Averaged-Navier-Stokes methods are

widely popular. In the RANS framework turbulence is introduced via the

turbulent viscosity coefficient νt, and the steady incompressible turbulent

Navier-Stokes system now reads



∇·(u⊗u)−∇·((ν + νt)∇u) + ∇p = s in Ω,

∇·u = 0 in Ω,

u = uD on ΓD,

n·(ν∇u−pId) = t on ΓN

(4.1)

Considering an effective viscosity νeff := ν+νt the similarity between laminar

and turbulent Navier-Stokes system becomes more apparent. The sole change

is the extra step required to evaluate the effective viscosity at each step

(Appendix B). As aforementioned, for a variety of external aerodynamics

cases the turbulence model of choice is the Spalart-Allmaras [102].

The Spalart-Allmaras turbulence model, is a single equation model, mean-

ing it offers a convenient entry point to building a PGD solver. Under some

common assumptions in the automotive field, the classical Spalart-Allmaras
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model is simplified, leading to the following steady transport equation for ν̃



∇ · (ν̃ ⊗ u)− 1

σ
∇ · [(ν + ν̃)∇ν̃]− Cb2

σ
|∇ν̃|2

= Cb1S̃ν̃ − Cw1fw
(
ν̃

y

)2

in Ω,

ν̃ = ν̃D on ΓD,

n·∇ν̃ = 0 on ΓN ,

(4.2)

where ν̃ is a fictitious viscosity, from now on refered to as state viscosity, ν̃D

is the state viscosity datum on the Dirichlet boundaries and y is the distance

to the closest wall. The terms S̃ and fw are given by

S̃ = S + fv2(χ, fv1)
ν̃

(κy)2
, fw = g 6

√
1 + C6

w3

g6 + C6
w3

,

with

g = r + Cw2
(
r6 − r

)
, r =

ν̃

S̃(κy)2
,

S =
√

2Ω2 , Ω =
1

2

(
∇u−∇uT

)
,

fv2 = 1− χ

1 + χfv1
, fv1 =

χ3

χ3 + C3
v1

χ =
ν̃

ν

and coefficients σ = 2
3
, κ = 0.41, Cb1 = 0.1355, Cb2 = 0.622, Cv1 = 7.1,

Cw2 = 0.3, Cw3 = 2 and Cs = 0.3. It is here noted that the OpenFOAM

implementation omits the tripping term ft2.

The turbulent eddy viscosity is computed in terms of ν̃ using the expres-

sion

νt = ν̃fv1 . (4.3)
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For the sake of readability in the coming sections Equation 4.2 is broken

down to components. The first term represents convection, the second and

third diffusion and lastly, the first and second terms on the right-hand side

represent a production and destruction term, respectively.

4.2 The PGD rationale for the SA model

The concept of constructing a separable approximation of the state viscosity

is similar to the one described in Chapters 2 and 3. Assuming the same dis-

cretisation as in Chapter 2 the high-dimensional form of the steady Spalart-

Allmaras equation reads

∫
I

∫
Vi

∇ · (ν̃ ⊗ u) dV dI −
∫
I

∫
Vi

1

σ
∇ · [(ν + ν̃)∇ν̃] dV dI

−
∫
I

∫
Vi

Cb2
σ
|∇ν̃|2 dV dI =

∫
I

∫
Vi

Cb1S̃ν̃ dV dI −
∫
I

∫
Vi

Cw1fw

(
ν̃

y

)2

dV dI

(4.4)

Considering a single parameter µ affecting the turbulent viscosity, the

separable form of ν̃ using m modes reads

ν̃m
PGD

= ν̃m−1
PGD

(x, µ) + σmν B
m(x) ξm(µ) ,

and employing a predictor-corrector scheme yields

ν̃m
PGD

= ν̄ m
PGD

+ σmν δ̄ν
m
PGD

= ν̃m−1
PGD

+ σmν B
mξm + σmν δ̄ν

m
PGD
, (4.5)

where ν̄m
PGD

and δ̄νm
PGD

notes the prediction of the current approximation and
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its corresponding variation, not to be confused with ν̃m
PGD

, the final prediction

after convergence of m modes.

For the sake of readability and without loss of generality, a constant

physical viscosity ν independent from the problem parameters is considered.

Plugging (4.5) in (4.4), and using the PGD approximation for velocity,

the separable weak form of the Spalart-Allmaras equation is derived in parts.

Note that n and m, which are the number of modes used for the separation

of velocity and state viscosity, respectively, are not necessarily the same.

Separation of the convection term yields

∫
I

∫
Vi

∇ · (ν̃ ⊗ u) dV dI ≈∫
I

∫
Vi

∇ · (σm
ν
δ̄νm

PGD
⊗ ũn

PGD
) dV dI +

∫
I

∫
Vi

∇ ·
(
ν̄m

PGD
⊗ ũn

PGD

)
dV dI ,

(4.6)

separation of the two diffusion terms yields

∫
I

∫
Vi

1

σ
∇ · ((ν + ν̃)∇ν̃) dV dI ≈∫

I

∫
Vi

1

σ
∇ ·

(
ν∇

(
σm
ν
δ̄νm

PGD

))
dV dI

+

∫
I

∫
Vi

1

σ
∇ ·

(
σm
ν
δ̄νm

PGD
∇
(
σm
ν
δ̄νm

PGD

))
dV dI

+

∫
I

∫
Vi

1

σ
∇ ·

(
ν̄m

PGD
∇
(
σm
ν
δ̄νm

PGD

))
dV dI

+

∫
I

∫
Vi

1

σ
∇ ·

(
σm
ν
δ̄νm

PGD
∇ν̄m

PGD

)
dV dI

+

∫
I

∫
Vi

1

σ
∇ ·

((
ν + ν̄m

PGD

)
∇ν̄m

PGD

)
dV dI ,

(4.7a)
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∫
I

∫
Vi

Cb2
σ
|∇ν̃|2 dV dI ≈∫

I

∫
Vi

Cb2
σ
|∇
(
σm
ν
δ̄νm

PGD

)
|2 dV dI +

∫
I

∫
Vi

2
Cb2
σ

∇
(
σm
ν
δ̄νm

PGD

)
·∇ν̄m

PGD
dV dI

+

∫
I

∫
Vi

Cb2
σ

∇ν̄m
PGD
·∇ν̄m

PGD
dV dI,

(4.7b)

and finally, separation of the production and destruction terms yields

∫
I

∫
Vi

Cb1S̃ν̃ dV dI ≈
∫
I

∫
Vi

Cb1S̃σ
m
ν
δ̄νm

PGD
dV dI +

∫
I

∫
Vi

Cb1S̃ν̄
m
PGD
dV dI,

(4.8a)

∫
I

∫
Vi

Cw1fw

(
ν̃

y

)2

dV dI ≈∫
I

∫
Vi

Cw1fw

(
σm
ν
δ̄νm

PGD

y

)2

dV dI +

∫
I

∫
Vi

2Cw1fw
σm
ν
δ̄νm

PGD
ν̄m

PGD

y2
dV dI

+

∫
I

∫
Vi

Cw1fw

(
ν̄m

PGD

y

)2

dV dI.

(4.8b)

Plugging the Equations 4.6-4.8b into Equation 4.4 and keeping the vari-

ation terms on the left-hand side while transferring to the right-hand side all

terms depending solely on the current prediction of the state viscosity, yields
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the separable form of the high-dimensional SA turbulence model

∫
I

∫
Vi

∇ · (σm
ν
δ̄νm

PGD
⊗ ũn

PGD
) dV dI −

∫
I

∫
Vi

1

σ
∇ ·

(
ν∇(σm

ν
δ̄νm

PGD
)
)
dV dI

−
∫
I

∫
Vi

1

σ
∇ ·

(
σm
ν
δ̄νm

PGD
∇
(
σm
ν
δ̄νm

PGD

))
dV dI

−
∫
I

∫
Vi

1

σ
∇ ·

(
ν̄m

PGD
∇
(
σm
ν
δ̄νm

PGD

))
dV dI

−
∫
I

∫
Vi

1

σ
∇ ·

(
σm
ν
δ̄νm

PGD
∇ν̄m

PGD

)
dV dI −

∫
I

∫
Vi

Cb2
σ
|∇
(
σm
ν
δ̄νm

PGD

)
|2 dV dI

−
∫
I

∫
Vi

2
Cb2
σ

∇
(
σm
ν
δ̄νm

PGD

)
·∇ν̄m

PGD
dV dI −

∫
I

∫
Vi

Cb1S̃σ
m
ν
δ̄νm

PGD
dV dI

+

∫
I

∫
Vi

Cw1fw

(
σm
ν
δ̄νm

PGD

y

)2

dV dI +

∫
I

∫
Vi

2Cw1fw
σm
ν
δ̄νm

PGD
ν̄m

PGD

y2
dV dI = Rm

ν ,

(4.9)

where the residual is defined as

Rm
ν :=Rν := Rν(ũ

n
PGD
, ν̃m−1

PGD
, σm

ν
ν̄m

PGD
)

=−
∫
I

∫
Vi

∇ ·
(
ν̄m

PGD
⊗ ũn

PGD

)
dV dI

+

∫
I

∫
Vi

1

σ
∇ ·

((
ν + ν̄m

PGD

)
∇ν̄m

PGD

)
dV dI

+

∫
I

∫
Vi

Cb2
σ

∇ν̄m
PGD
·∇ν̄m

PGD
dV dI +

∫
I

∫
Vi

Cb1S̃ν̄
m
PGD
dV dI

−
∫
I

∫
Vi

Cw1fw

(
ν̄m

PGD

y

)2

dV dI.

(4.10)

Remark 7. From equations (4.9) and (4.10) can be observed that no sep-

arable form has been assumed for the terms fw and S̃. The expressions for

fw and S̃, as recalled in Section 4.2, feature a non-linear dependence to the

parameter, making them inefficient to reconstruct in a separable form. Thus

a relaxation of the Spalart-Allmaras model is considered where they depend
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solely on the last known approximation of viscosity. What is more, due to

their complexity it is more efficient at this point to reconstruct and use their

high-dimensional form, fw(x, µ) and S(x, µ), rather than attempt a separa-

tion that would result in extra loss of accuracy. More precisely, using the

last known state viscosity PGD approximation the process of assembling the

high-dimensional form of the aforementioned terms reads

S = S + f v2
ν̃m−1

PGD

(κy)2
, fw = g 6

√
1 + C6

w3

g6 + C6
w3

, (4.11)

where

f v2 = 1− χ

1 + χf v1
, f v1 =

χ3

χ3 + C3
v1

, χ =
ν̃m−1

PGD

ν

and

g = r + Cw2r
6 − r , r =

ν̃m−1
PGD

S(κy)2
.

Similarly, upon convergence, the high-dimensional approximation of the

turbulent viscosity from the separable state viscosity (Eq.(4.3)) is assembled

as follows

νtpgd = f̃v1ν̃
m
PGD

, (4.12)

with

f̃v1 =
χ̃3

χ̃3 + C3
v1

, χ̃ =
ν̃m

PGD

ν
.

Note that in the formulations above, bar variables note relaxations of the

Spalart-Allmaras model, whereas tilde variables express the dependence on the

converged PGD approximation and should not be confused. In the following
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sections, for the sake of readability, whenever S̃ and fw are used in the PGD

formulation, they represent the relaxation terms S and fw.

4.2.1 Spatial iteration

In classical alternating direction fashion Equation (4.9) is restricted to the

spatial direction of the tangent manifold yielding the PDE of Equation (4.13).

Using the numerical schemes implemented in OpenFOAM the 5th term of

(4.9) is handled explicitly as part of the residual of (4.13). The residual Rm
ν

can be efficiently computed using the separable form of the already computed

approximation (Appendix A).

∫
Vi

∇ ·
(
σm
ν
∆Bm ⊗

n∑
k=1

αk1σ
k
uf

k
u

)
dV

− β3
∫
Vi

1

σ
∇ ·

(
ν∇

(
σm
ν
∆Bm

))
dV

− β2
∫
Vi

1

σ
∇ ·

(
σm
ν
∆Bm∇

(
σm
ν
∆Bm

))
dV

−
∫
Vi

1

σ
∇ ·

(
m∑
j=1

βj4σ
j
ν
Bj∇

(
σm
ν
∆Bm

))
dV

− β2
∫
Vi

Cb2
σ
|∇
(
σm
ν
∆Bm

)
|2 dV

− 2

∫
Vi

Cb2
σ

∇
(
σm
ν
∆Bm

)
·∇

(
m∑
j=1

βj4σ
j
ν
Bj

)
dV

− β5
∫
Vi

Cb1σ
m
ν
∆Bm dV + β6

∫
Vi

Cw1

(
σm
ν
∆Bm

y

)2

dV

+ 2

∫
Vi

Cw
σm
ν
∆Bm

y2

m∑
j=1

βj7σ
j
ν
Bj dV = Rm

ν ,

(4.13)

71



where the coefficients βi with i = 1, . . . , 7 are

βk1 =

∫
I
(ξm)2 φk dI, β2 =

∫
I
(ξm)3 dI,

β3 =

∫
I
(ξm)2 dI, βj4 =

∫
I
(ξm)2 ξj dI,

β5 =

∫
I
S̃ (ξm)2 dI, β6 =

∫
I
fw (ξm)3 dI,

βj7 =

∫
I
fw (ξm)2 ξj dI,

(4.14)

with j = 1, . . . ,m and k = 1, . . . , n. Due to the high-dimensional form of fw

and S̃ (Remark 7), coefficients β5, β6 and β7 represent spatial functions.

Remark 8. The second, fifth and eighth terms in equation (4.13) represent

high-order variations. Omitting these terms leads to stability issues.

4.2.2 Parametric iteration

Fixing the computed spatial mode and restricting (4.9) to the parametric

direction of the tangent manifold, the parametric increment is computed

from the following algebraic equation

−
(

1

σ
b2 +

Cb2
σ
b6 − Cw1b9

)
(∆ξm)2

+

(
n∑
k=1

bk1φ
k − 1

σ

(
b3 +

m∑
j=1

(
bj4ξ

j + bj5ξ
j
)))

∆ξm

−
(

2
m∑
j=1

Cb2
σ
bj7ξ

j + Cb1b8 − 2Cw1

m∑
j=1

bj10ξ
j

)
∆ξm = rmν ,

(4.15)
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where the coefficients bi with i = 1, . . . , 10 are computed as follows

bk1 =

∫
Vi

σm
ν
Bm∇ ·

(
σm
ν
Bm ⊗ σkufku

)
dV ,

b2 =

∫
Vi

σm
ν
Bm∇ ·

(
σm
ν
Bm∇

(
σm
ν
Bm
))
dV ,

b3 =

∫
Vi

σm
ν
Bm∇ ·

(
ν∇

(
σm
ν
Bm
))
dV ,

bj4 =

∫
Vi

σm
ν
Bm∇ ·

(
σj
ν
Bj∇

(
σm
ν
Bm
))
dV ,

bj5 =

∫
Vi

σm
ν
Bm∇ ·

(
σm
ν
Bm∇

(
σj
ν
Bj
))
dV ,

b6 =

∫
Vi

σm
ν
Bm|∇

(
σm
ν
Bm
)
|2 dV ,

bj7 =

∫
Vi

σm
ν
Bm∇

(
σm
ν
Bm
)
·∇

(
σj
ν
Bj
)
dV ,

b8 =

∫
Vi

σm
ν
BmS̃σm

ν
Bm dV ,

b9 =

∫
Vi

σm
ν
Bmfw

(
σm
ν
Bm

y

)2

dV ,

bj10 =

∫
Vi

σm
ν
Bmfw

σm
ν
Bmσj

ν
Bj

y2
dV .

(4.16)

Remark 7 is recalled for integrals including fw and S̃, therefore coefficients

b8, b9 and b10 represent parametric functions. The residual is described in

detail in Appendix A.
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4.3 Implementing turbulence in the nonin-

trusive PGD scheme in OpenFOAM

The structure of the PGD solver for the Spalart-Allmaras turbulence model

is similar to the one presented for the laminar Navier-Stokes system in 3.2.

The 0th mode will impose the boundary conditions as is common in the PGD

methodology. In this work, the state viscosity ν̃ boundary condition modes

are acquired from the respective boundary condition modes for velocity and

pressure. The enrichment process is then initiated and at each iteration of

the alternating direction scheme a spatial and parametric mode is computed

(Algorithm 2 - Steps 7 to 14). The alternating direction iterations stop

when the computed corrections ∆B, ∆ξ are negligible with respect to the

amplitudes σmν , σξ of the current mode (Algorithm 2 - Steps 6 and 15).

Similar to the laminar Navier-Stokes problem, the global enrichment strategy

ends when the amplitude of the current mode σmν is negligible with respect

to the first one σ1
ν (Algorithm 2 - Step 3). Remark 6 is recalled to remind

that various valid stopping criteria can be used.

Implementing Algorithm 2 in the non-intrusive PGD scheme introduced

in Section 3.2 requires but a few adaptions of Algorithm 1, owing to the addi-

tion of the parameter dependent turbulent viscosity coefficient. As aforemen-

tioned, in this work, the high-dimensional form of the turbulent viscosity is

reconstructed, as it simplifies the implementation and the computation pro-

cedure.

Since the PGD strategy introduced during the study of the steady lam-
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Algorithm 2 pgdSA: an OpenFOAM-based PGD library to solve the para-
metric Spalart-Allmaras turbulence model

Require: Tolerances η?ν for the greedy algorithm. Tolerances η◦ for the
amplitudes and ηr◦ for the residuals in the alternating direction iteration.
◦ = B, ξ.

1: Compute boundary condition modes: the spatial mode is solution of (4.2)
corresponding to the simpleFoam solution for the velocity and pressure
mode and the parametric mode is equal to 1.

2: Set m← 1 and initialise the amplitudes of the spatial mode σ1
ν ← 1.

3: while σmν > η?ν σ
1
ν do

4: Set k ← 0, the parametric predictor ξm←1 and the spatial predictor
Bm using the last computed modes.

5: Initialise ε◦ ← 1, εr◦ ← typ◦.
6: while ε◦ > η◦ or εr◦ > ηr◦ do
7: Compute the spatial residuals (A.13) and coefficients (4.14).
8: Solve the spatial PDE (4.13).
9: Normalise the spatial predictors: σmν ←‖σmν Bm +∆B‖.

10: Update the spatial predictors: Bm←(σmν B
m +∆B)/σmν .

11: Compute the parametric residual (A.15) and coefficients (4.16).
12: Solve the parametric linear system (4.15).
13: Normalise the parametric predictor: σξ←‖ξm +∆ξ‖.
14: Update the parametric predictor: ξm←(ξm +∆ξ)/σξ.
15: Update stopping criterions: ε�←‖∆B‖/σmν , εξ←‖∆ξ‖/σξ, εr◦←‖r◦‖.
16: Update the alternating direction iteration counter: k ← k + 1.
17: end while
18: Update the mode counter: m← m+ 1.
19: end while
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inar Navier-Stokes remains largely the unaffected, only required changes to

the diffusion term are recalled. The artificial diffusion term in the spatial

iteration of the laminar PGD strategy (3.5) is modified to include the co-

efficient dependent on turbulence. More specifically, the new diffusion term

reads

−
∫
Vi

∇· [(α3D + αν̃)∇ (σnu∆fu)] dV (4.17)

where αν̃ is the spatial function

αν̃(x) :=

∫
I

(φn)2 νt dI

and νt is computed as described in Equation (4.12), using the PGD approx-

imation of the turbulent viscosity described in Algorithm 2.

Similarly the residual (Appendix A.3) will now include the following extra

diffusion term
n∑

m=1

∫
Vi

∇· (αmν̃ ∇ (σmu f
m
u )) dV (4.18)

where αν̃ is the spatial function

αmν̃ (x) :=

∫
I
φnφmνtpgd dI.

The parametric direction is treated similarly with an extra term defined

on the left-hand and right-hand side of Equation (3.9), respectively

LHS :− aν̃∆φ ,

RHS :
n∑

m=1

amν̃ φ
m,

(4.19)
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where aν̃ and amν̃ are the following parametric functions

aν̃(µ) :=

∫
Vi

σnuf
n
u ·
[
∇·(νtpgd∇ (σnuf

n
u ))
]
dV ,

amν̃ (µ) :=
n∑

m=1

∫
Vi

σnuf
n
u ·
[
∇·(νtpgd∇ (σmu f

m
u ))

]
dV .

The PGD solver structure for the turbulent Navier-Stokes flow problem

aims to imitate the segregated approach of the SIMPLE algorithm when cou-

pled with a turbulence model. The first step consists of computing velocity

and pressure. In a subsequent step and using the computed velocity field

the turbulence model is called to update the turbulent viscosity. Finally,

the algorithm loops back to the computation of a velocity and pressure so-

lution, using the new turbulent viscosity. The PGD methodology emulates

this structure by enriching the velocity and pressure approximation until

a user-prescribed, exponentially decreasing relative amplitude criterion has

been met. Once the relative amplitude drops below said threshold, the SA

PGD solver (Algorithm 2) is called to computed a new approximation for the

turbulent viscosity. Using the new approximation for viscosity, the Navier-

Stokes PGD is reset and called to compute velocity and pressure modes until

the new amplitude criterion is met. For the sake of simplicity, let us call the

Navier-Stokes PGD solver PGD-NS and the Spalart-Allmaras PGD solver

PGD-SA.

Remark 9. The number of turbulent viscosity updates and effectively the

cost and accuracy of the method is controlled via the prescribed threshold of

the relative amplitude. In this work the threshold is exponentially decreased,
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initialised at 10% and dropped by 1 order of magnitude with each passing

update

ηturb = 10−(it+1) for it ≥ 0 (4.20)

where it is the iterator of SA PGD calls. That has proven to be an effective

compromise between cost and accuracy, while smaller steps lead to better

stability.

This strategy is described in Algorithm 3, where the steps of Algorithms

1 and 2 have been condensed for the sake of readability.

Algorithm 3 turbulent pgdFoam: a PGD solver for the parametric turbulent
Navier-Stokes problem

Require: Tolerances of Algorithms 1 and 2. � = u, p, B and ◦ = u, p, B, φ, ξ

1: Compute boundary condition modes: the spatial mode is solution of (4.1)
using simpleFoam and the Spalart-Allmaras turbulence model and the
parametric modes are equal to 1.

2: Set n ← 1, m ← 1 and initialise the amplitudes of the spatial modes
σ1
� ← 1. Initialise viscosity update counter it = 0.

3: while σn� > η?� σ
1
� do

4: Compute σnuf
n
u, σ

n
p f

n
p , φ

n using PGD-NS
5: if σn� < ηturb then
6: Call PGD-SA library 2. Update ν̃

PGD
approximation.

7: Increment viscosity update counter it ← it + 1.
8: Update the node counter: n← 0.
9: end if

10: Update the mode counter: n← n+ 1.
11: end while
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Update
turbulence?

Call
PGD-SA

n ← 1

Enrich? End

k ← 0
φn ← 1

Compute nth mode
PGD-NS

n← n+1

yes

no

yes

yes

no

Figure 4.1: Flowchart of the structure to approximation parametrised tur-
bulent Navier-Stokes flow via PGD (Algorithm 3).
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4.4 Applications of turbulent Navier-Stokes

flow-control problems

In this section the PGD methodology described in Section 4.3 is applied to

turbulent flow control problems. More specifically, the NASA wall-mounted

hump is studied, a turbulence modelling validation test case. The experimen-

tal set-up consists of a Glauert-Goldschmied type body mounted between two

endplates on a splitter plate (Fig. 4.2(a)). As was studied in [98] the char-

acteristic length is the length of the bump (c = 0.42 m). Flow separation

control is introduced via a suction jet acting through a plenum leading to a

slot at 65% of the chord (Fig. 4.2(b)). The proposed jet mass flow rate is

0.01518kg/s throughout the experimental 5.842-meter-span slot. With an in-

let flow velocity of 34.6 m/s and a kinematic viscosity ν = 1.55274 ·10−5 m2/s

the Reynolds number is approximately Re = 936, 000.

The quantity of interest is the effect of the jet on the flow separation and

reattachment points. Both experimental and CFD validation tests have been

run [46, 96], showcasing the quasi-two-dimensional nature of the problem, de-

spite the small three-dimensional effects introduced by the endplates. It has

also been discussed that RANS solutions, regardless of the turbulence model

used, tend to overestimate the recirculation bubble showing reattachment

positions between 10 and 20% further downstream than the experiment [96].

The following sections introduce the parametric case, as well as a two-

and three-dimensional variant of the NASA wall mounted hump which will

be solved using the proposed PGD methodology.
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(a)

(b)

Figure 4.2: a) Graphical representation of the experimental set-up for
the the wall-mounted hump. The model is mounted on a splitter plate
with glass endplates on the sides. b) A jet acts at approximately 65%
of the hump chord. A 2-D visualisation of that jet slot. [Source:
https://cfdval2004.larc.nasa.gov/case3.html]
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4.4.1 Parametric study of the NASA wall-mounted hump

Considering how RANS methods tend to overestimate the reattachment

point, the main goal of the reduced order model is to properly estimate

the behaviour of the full-order solution instead of the experimental data.

Such assumption provides freedom to the case set-up. More specifically, for

the sake of reducing computational cost a set of changes are proposed to the

original test case. Starting with the two-dimensional case and in order to re-

duce the size of the computational domain, the version without the plenum

is chosen. A patch is defined on the part of the hump that was originally the

jet slot and a sinusoidal velocity profile normal to the patch face is imposed.

Similarly to the flow control cases in section 3.3, a single parameter, µ, con-

trols the jet peak velocity. More specifically when the jet patch is discretised

using i faces

ujeti (x, µ) = µU0
1− cos(2x̂iπ)

2
ni (4.21)

where U0 is the peak velocity of the jet and is chosen such that the mass flow

ratio between inlet and jet is similar to the one proposed in the original case,

x̂ is the normalised coordinate such that x̂ ∈ [0 , 1] and ni is the face normal

vector.

The three-dimensional case is the product of extrusion of the two-dimensional

domain in the third (z) direction by 0.8 chord lengths. The three-dimensional

version of the jet boundary condition reads

ujeti (x, µ) = µU0
(1− cos(2x̂iπ))(1− cos(2ẑiπ))

4
ni (4.22)
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where

ẑ =


0 for z ≤ 0.4C

z−min(z)
max(z)−min(z)

for 0.4C < z < 0.6C

0 for z ≥ 0.6C

(4.23)

In both cases the parametric domain is defined as I = [0.1, 1].

4.4.2 The parametric 2-D NASA wall-mounted hump

The computational domain of the two-dimensional wall-mounted hump is

displayed in Fig.4.3 and consists of 114, 000 cells. It extends 6.39c upstream,

5c downstream and has a height of 1c. In order to avoid singularities at the

inlet a parabolic ramp-up of the velocity is introduced, where starting from

null velocity at y = 0m the maximum velocity is achieved at y = 0.02m.

A similar ramp-up is used for the state viscosity at the inlet, where the

freestream value is chosen to be ν̃ = 3ν. The remaining boundary conditions

feature homogeneous velocity and state viscosity on the bottom wall/hump,

symmetry on the top wall, free traction on the outlet and zero Neumann

state viscosity on the jet patch. Using a mesh with y+ < 1 on the hump, no

wall treatment is required for turbulent viscosity.

Figure 4.3: Visual representation of the 2-dimensional computational domain for
the wall-mounted hump. The domain extends 6.39c upstream, 5c downstream and
has a height of 1c.
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The exact boundary conditions are imposed using two modes computed

using simpleFoam and the Spalart-Allmaras turbulence model. The first

mode corresponds to the full-order solution when the jet acts at 10% mass

flow rate (µ = 0.1) and the second to the case of maximum jet (µ = 1). The

parametric functions corresponding to the first and second spatial modes are

φ(µ) = 1− µ and φ(µ) = µ, respectively.

The enrichment process tolerance is set at 10−4, while the turbulence

enrichment tolerance is set at 10−2. The criterion to enter the viscosity

update loop is described in detail in Section 4.3. The NS PGD loop reaches

the desired tolerance after 8 computed modes and 3 SA PGD calls. Each

SA PGD loop reached the prescribed tolerance within 3 computed modes.

The relative amplitude of the modes, as the turbulent viscosity was being

updated, is reported in Figure 4.4(a).

The approximation of the PGD methodology is compared to the full-order

solution using simpleFoam for µ = 0.25, µ = 0.5 and µ = 0.75, respectively.

In Figure 4.4(b) the L2 error for these configurations is reported. For com-

parison the error when no SA PGD loops are called is included. It can be

observed how without updating viscosity the error is stagnated from the first

couple of modes and is higher by almost one order of magnitude.

The main point of interest is the effect of the suction jet in the reat-

tachment point. Focusing on the recirculation bubble, a comparison of the

skin friction coefficient between the PGD approximation and the full-order

solution is reported in 4.5(a). For comparison both the PGD approximation

using only the boundary condition modes (n = 2) and using all 8 computed
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Figure 4.4: a) Relative amplitude of the computed PGD modes. Each time the
relative amplitude drops by one order of magnitude, the Spalart-Allmaras PGD
loop is initiated to update the state viscosity modes. The previously computed
velocity and pressure modes are recomputed for the updated turbulent eddy viscos-
ity. b) Relative L2 error of the computed PGD approximation after the last state
viscosity update. For comparison the relative L2 error of the PGD approximation
for µ = 0.5 when no Spalart-Allmaras PGD loop is included is included.

modes (n = 10) are included. The skin friction coefficient is evaluated as

Cf :=
2τw
ρU2
∞

where τw is the wall shear stress and is defined as

τw := µ

(
∂u

∂y

)
y=0

.

Similarly, in Figure 4.5(b) a comparison of the coefficient of pressure of the

approximation to the full-order is reported. It is important to note how

closely the proposed PGD methodology follows the full-order solution and

how well it picks up the reattachment position for all three parametric values

(Table 4.1).

A qualitative comparison of the velocity, pressure and state viscosity fields

approximated with PGD and computed with the full-order solver are pre-
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Figure 4.5: a) Comparison of the skin friction coefficient between PGD approx-
imation and full-order solution for the three prescribed states, µ = 0.25, µ = 0.5
and µ = 0.75. b) Coefficient of pressure along the bottom wall and hump. The
PGD approximation for µ = 0.25, µ = 0.5 and µ = 0.75 is compared to the
corresponding simpleFoam solution.
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µ Full-Order PGD
0.25 1.184 c 1.183 c
0.50 1.154 c 1.156 c
0.75 1.131 c 1.129 c

Table 4.1: Comparison between the reattachment point computed with
simpleFoam and approximated with the proposed PGD methodology for three
different parameter values.

sented in Figures 4.6, 4.7 and 4.8.

4.4.3 The parametric 3-D NASA wall-mounted hump

As described in Section 4.4.1 the three-dimensional domain is the product of

extrusion of the two-dimensional version in the z direction with a displace-

ment length of 0.8 c (Fig.4.9). In order to further reduce the computational

cost of the three-dimensional case the Reynolds number was lowered, while

remaining in the turbulent range and allowing for a much coarser mesh. More

precisely the inlet and jet velocity is scaled down to 10% of the 2D case and

the new Reynolds number is Re = 93, 600, which is still within the turbulent

range. The z direction is discretised with 72 cells, resulting in a domain of

2.34 million cells.

The jet boundary condition is described in detail in section 4.4.1. The rest

of the boundary conditions are similar to the two-dimensional case, including

the ramp-up of the velocity and state viscosity on the inlet. Slip is imposed

to the two extra boundary patches.
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(a) uREF , µ = 0.25 (b) uPGD, µ = 0.25

(c) uREF , µ = 0.5 (d) uPGD, µ = 0.5

(e) uREF , µ = 0.75 (f) uPGD, µ = 0.75

Figure 4.6: Visual comparison of the recirculation bubble between simpleFoam

solution and PGD approximation for µ = 0.25 (top), µ = 0.5 (middle) and µ = 0.75
(bottom). The reattachment point is noted with a vertical line.
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(a) pREF , µ = 0.25 (b) pPGD, µ = 0.25

(c) pREF , µ = 0.5 (d) pPGD, µ = 0.5

(e) pREF , µ = 0.75 (f) pPGD, µ = 0.75

Figure 4.7: Visual comparison of the pressure field in the detachment area
between simpleFoam solution and PGD approximation for µ = 0.25 (top), µ = 0.5
(middle) and µ = 0.75 (bottom).
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(a) νtREF
, µ = 0.25 (b) νtPGD

, µ = 0.25

(c) νtREF
, µ = 0.5 (d) νtPGD

, µ = 0.5

(e) νtREF
, µ = 0.75 (f) νtPGD

, µ = 0.75

Figure 4.8: Visual comparison of the turbulent eddy viscosity in the detached
area between simpleFoam solution and PGD approximation for µ = 0.25 (top),
µ = 0.5 (middle) and µ = 0.75 (bottom).

Figure 4.9: Visual representation of the 3-dimensional computational domain for
the wall-mounted hump. The domain extends is the result of extrusion of the
2-dimensional domain by 0.8c.
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Similar to the 2-dimensional case, the boundary condition modes are the

full-order solutions using simpleFoam and correspond to the states described

by the extrema of the parametric space. More precisely the first boundary

condition mode refers to the solution when the jet functions at 10% of its

maximum value (µ = 0.1) and the second to the solution with the maximum

jet (µ = 1). The parametric functions remain φ(µ) = 1 − µ and φ(µ) = µ,

respectively.

Further reducing the computational cost of the case, the enrichment pro-

cess tolerance is increased by half an order of magnitude, set at 5 · 10−4,

while the turbulence enrichment tolerance is kept at 10−2. What is more,

the condition to call SA PGD, as recalled in 9, is modified to

ηturb = 10−(it+2),

resulting in one less SA PGD call. The NS PGD loop reaches the desired

tolerance after 4 computed modes and 2 SA PGD loops. Every SA PGD

loop reached the prescribed tolerance with 2 computed modes. Much like

the results presented in 4.4.2, first, the relative amplitude of the modes, as

SA PGD is called to update the turbulent viscosity is reported in Figure

4.10(a). The relative L2 error of the PGD approximation to the simpleFoam

solution is presented in Figure 4.10(b).

A qualitative comparison between PGD and full-order is displayed in

figure 4.11, a top view plot of the wall shear stress on the bottom wall starting

from the jet patch up to approximately 2.5c downstream, and figure 4.12

where the pressure is plotted on the same surface. The comparison between
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Figure 4.10: a) Relative amplitude of the computed PGD modes. Each
time the relative amplitude drops by one order of magnitude, the Spalart-
Allmaras PGD loop is initiated to update the state viscosity modes. The
previously computed velocity and pressure modes are recomputed for the
updated turbulent eddy viscosity. b) Relative L2 error of the computed
PGD approximation after the last state viscosity update.

PGD and full-order solver continues in figure 4.13, where the development of

the velocity profile for µ = 0.75 is showcased via two slices of the mesh at x =

0.71c and 1.42c, respectively. The velocity streamlines on the recirculation

bubble are added to display the ability of the PGD methodology to pick up

the effect of the jet on the vortices.
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(a) REF,
µ = 0.25

(b) PGD,
µ = 0.25

(c) REF,
µ = 0.25

(d) PGD,
µ = 0.25

(e) REF,
µ = 0.25

(f) PGD,
µ = 0.25

Figure 4.11: Top view plot of the wall shear stress on the bottom wall, starting
from jet patch up to 2.5c downstream, for µ = 0.25, µ = 0.5 and µ = 0.75.
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(a) REF,
µ = 0.25

(b) PGD,
µ = 0.25

(c) REF,
µ = 0.25

(d) PGD,
µ = 0.25

(e) REF,
µ = 0.25

(f) PGD,
µ = 0.25

Figure 4.12: Top view plot of the pressure on the bottom wall, starting from jet
patch up to 2.5c downstream, for µ = 0.25, µ = 0.5 and µ = 0.75.
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(a) REF,µ = 0.75

(b) PGD,µ = 0.75

Figure 4.13: Velocity streamlines on the recirculation bubble and velocity plot
at x = 0.71c and x = 1.42c for µ = 0.75. Notice how the PGD approximation
picks up the effect of the jet on the vortices and the development of the velocity
profile.
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Chapter 5

Concluding remarks

The feasibility of PGD methodologies for the solution of parametrised flow

problems has been explored. Parametrised Stokes and Oseen flows were

used to build an initial implementation of PGD in OpenFOAM and numeri-

cally validate its applicability to flow problems using a manufactured solution

to verify the optimal order of convergence of the PGD-FV approximation.

Then a nonintrusive PGD implementation in OpenFOAM has been proposed

in the context of parametrised incompressible laminar Navier-Stokes flows.

The main novelty of such approach is represented by the seamless exploita-

tion of OpenFOAM native SIMPLE solver, making the resulting reduced-

order strategy suitable for application in a daily industrial environment. The

pgdFoam algorithm relies on the industrially-validated solver simpleFoam to

compute the spatial modes of the solution, whereas the parametric ones are

determined via the solution of a linear system of algebraic equations.

The developed strategy has been validated using a classical benchmark
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test case in the literature of CFD techniques for incompressible flows. More-

over, the potential of the proposed PGD approach to rapidly and accurately

simulate incompressible flows for different sets of user-defined parameters has

been tested in the context of flow control problems. The pgdFoam algorithm

has been applied both to an academic test case and an industrial one with a

3D geometrical model provided by Volkswagen AG.

The proposed PGD methodology has proved to be able to compute an ac-

curate reduced basis for the problems under analysis with no a priori knowl-

edge of the expected solutions. Moreover, it has shown robustness when

dealing with a large range of values of the parameters, accuracy in capturing

significant topological changes in the flow features and reliability in evaluat-

ing quantities of engineering interest, with an extremely reduced computing

time.

Finally, a PGD solver for the Spalart-Allmaras turbulence model was

proposed for the approximation of parameter-dependent turbulence fields. A

segregated approach to the nonintrusive PGD strategy was proposed, imple-

menting the parametrised S-A solver in the enrichment process. This method

allows for the approximation of parametrised turbulent Navier-Stokes flows

with no a priori knowledge of either the flow or the turbulence fields.

Using a well-documented turbulence model validation test case, the pro-

posed PGD methodology has proved to be able to compute an accurate ap-

proximation of high Reynolds number cases. The methodology could closely

follow the simpleFoam solver coupled with the OpenFOAM-implemented

Spalart-Allmaras turbulence model. The effect of flow control on both tur-
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bulent viscosity and the flow structure could be reproduced. Quantities of

industrial interest, such as skin friction and the coefficient of pressure, were

approximated with high accuracy throughout the parametric domain.
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Chapter 6

Future works

After developing a nonintrusive proper generalised decomposition method-

ology for OpenFOAM that is able to tackle parametrised turbulent Navier-

Stokes flow problems there are plenty of continuations to be made both from

a scientific and practical (i.e. to be used by the industry) point of view. Such

improvements shall contribute to the ease of use of the methodology, there-

fore the adoption rate and deployment in the daily industrial environment.

1. Efficiency:

A characteristic of PGD, and any ROM for that matter, is the fact that

complex problems require a significant number of computed modes to

reach the desired approximation accuracy. The more modes in the ap-

proximation the more expensive each step becomes. The nonintrusive

PGD proposed in this work limits this extra cost to the assembly stages

of the spatial and parametric steps (Algorithm 1). The algebraic PGD

[35] uses more memory to keep track of the separable operators in a

101



matrix form. Despite the fact that PGD is an efficient tool for multi-

parametric problems, introducing post- or pre-processing steps in the

enrichment process to impose orthogonality between computed modes

could reduce the cost and speed-up the convergence process.

2. Turbulence:

It is multiple times expressed throughout Chapter 4 that certain non-

separable terms in the turbulence model are used in their higher di-

mensional form. This is an obvious limitation of the methodology as

is, increasing cost and computational time. Building an accurate sepa-

rable approximation of these terms would be a significant improvement

for two reasons. On one hand these terms depend on the state viscosity

approximation and removing the current under-relaxation would speed

up the convergence. On the other hand, the computation of high di-

mensional integrals, especially when considering multiple parameters,

introduces a bottleneck that would be lifted.

3. Geometry:

This methodology was built with flow control problems in mind. How-

ever, it offers a great baseline that could be adapted to handle other

problems. The first and main entry to a list of such new applications

would be for parameter controlled geometry variations. Geometry op-

timisation via reduced order models based on a posteriori separation

share a common issue which is the requirement to generate a library

of different meshes and compute the corresponding flow. Introducing a

separable mapping of a reference geometry [99] could prove an efficient
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alternative, especially when considering multiple parameters, while re-

taining the nonintrusiveness of the methodology. Aerodynamic shape

optimisation with deterministic methods using nonintrusive PGD could

be a quick and streamlined process of the industrial design pipeline.

4. Spatial adaptivity:

The actual PGD implementation computes global spatial modes. This

is reasonable for the first few modes. However, as the number of modes

increases, in flow problems, local features are more important. Conse-

quently, spatially adapted PGD strategy seems a reasonable alternative

to better capture local features and, at the same time, reduce the com-

putational cost.
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[97] T. Schütz. Hucho - Aerodynamik des Automobils. Springer Vieweg,

2013.

[98] A. Seifert and L. G. pack. Active flow separation control on wall-

mounted hump at high Reynolds numbers. AIAA, 40(7), 2002.

[99] R. Sevilla, S. Zlotnik, and A. Huerta. Solution of geometrically

parametrised problems within a CAD environment via model order

reduction. Comput. Methods Appl. Mech. Eng., 358:112631, 2020.

119



[100] Ruben Sevilla, Matteo Giacomini, and Antonio Huerta. A face-centred

finite volume method for second-order elliptic problems. Int. J. Numer.

Methods Eng., 115(8):986–1014, 2018.

[101] M. Signorini, S. Zlotnik, and P. Dı́ez. Proper generalized decomposition

solution of the parameterized Helmholtz problem: application to in-

verse geophysical problems. Int. J. Numer. Methods Eng., 109(8):1085–

1102, 2017.

[102] P. Spalart and S. Allmaras. A one-equation turbulence model for aero-

dynamic flows. AIAA, January 1992.

[103] P. Spalart, W.H. Jou, M. Strelets, and S. Allmaras. Comments on the

feasibility of les for wings, and on a hybrid rans/les approach. 01 1997.

[104] G. Stabile and G. Rozza. Finite volume POD-Galerkin stabilised

reduced order methods for the parametrised incompressible Navier-

Stokes equations. Comput. Fluids, 173:273 – 284, 2018.
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Appendix A

Separated representation of the

residuals

Consider a separable expression of the source term s(x,µ):=η(µ)S(x).

A.1 Parametrised Stokes flow

Considering the parametrised Stokes flow and for the spatial iteration, the

residuals in separated form read as

Rn
u :=

∫
Vi

α3S dV +

∫
Vi

∇·
(
D∇

( n∑
m=1

αm4 σ
m
u f

m
u

))
dV

−
∫
Vi

∇
( n∑
m=1

αm5 σ
m
p f

m
p

)
dV ,

(A.1a)

Rn
p := −

∫
Vi

∇·
( n∑
m=1

αm5 σ
m
u f

m
u

)
dV . (A.1b)

123



where the following expressions for the coefficients are devised


α3 :=

∫
I
φnη dI, αm4 :=

∫
I
φnφmψ dI,

α5 :=

∫
I
φnφm dI.

(A.2)

For the parametric iteration, the separated expression of the residuals is

rnu := a3η +
n∑

m=1

(am4 ψ − am5 )φm, (A.3a)

rp := −
n∑

m=1

am6 φ
m, (A.3b)

where the coefficients depend solely on the spatial modes, namely



a3 :=

∫
Vi

σnuf
n
u ·S dV ,

am4 :=

∫
Vi

σnuf
n
u ·
[
∇·(D∇(σmu f

m
u ))

]
dV ,

am5 :=

∫
Vi

σnuf
n
u ·∇(σmp f

m
p ) dV ,

am6 :=

∫
Vi

σnp f
n
p ∇·(σmu fmu ) dV .

(A.4)

A.2 Parametrised Oseen flow

In the spatial iteration of the parametrised Oseen flow system, the sepa-

rated form of the residuals, now including the contribution of the linearised
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convection term read

Rn
u :=

∫
Vi

α4S dV −
n∑

m=1

αm5

∫
Vi

∇·(σmu fmu ⊗F ) dV

+

∫
Vi

∇·
(
D∇

( n∑
m=1

αm6 σ
m
u f

m
u

))
dV −

∫
Vi

∇
( n∑
m=1

αm7 σ
m
p f

m
p

)
dV ,

(A.5a)

Rn
p := −

∫
Vi

∇·
( n∑
m=1

αm7 σ
m
u f

m
u

)
dV , (A.5b)

where the following expressions for the coefficients are devised


α4 :=

∫
I
φnη dI, αm5 :=

∫
I
φnφmξ dI,

αm6 :=

∫
I
φnφmψ dI, αm7 :=

∫
I
φnφm dI.

(A.6)

For the parametric iteration, the separated expression of the residuals is

rnu := a3η +
n∑

m=1

(−am4 ξ + am5 ψ − am6 )φm, (A.7a)

rp := −
n∑

m=1

am7 φ
m, (A.7b)
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where the coefficients depend solely on the spatial modes, namely



a3 :=

∫
Vi

σnuf
n
u ·S dV ,

am4 :=

∫
Vi

σnuf
n
u ·
[
∇·(σmu fmu ⊗ F )

]
dV ,

am5 :=

∫
Vi

σnuf
n
u ·
[
∇·(D∇(σmu f

m
u ))

]
dV ,

am6 :=

∫
Vi

σnuf
n
u ·∇(σmp f

m
p ) dV ,

am7 :=

∫
Vi

σnp f
n
p ∇·(σmu fmu ) dV .

(A.8)

A.3 Parametrised Navier-Stokes flow

Finally, in the spatial iteration of the parametrised Navier-Stokes flow, the

residuals in separable form read as

Rn
u :=

∫
Vi

α4S dV −
n∑

m=1

n∑
q=1

αmq5

∫
Vi

∇·(σmu fmu ⊗σquf qu ) dV

+

∫
Vi

∇·
(
D∇

( n∑
m=1

αm6 σ
m
u f

m
u

))
dV −

∫
Vi

∇
( n∑
m=1

αm7 σ
m
p f

m
p

)
dV ,

(A.9a)

Rn
p := −

∫
Vi

∇·
( n∑
m=1

αm7 σ
m
u f

m
u

)
dV , (A.9b)

where the following expressions for the coefficients are devised


α4 :=

∫
I
φnη dI, αmq5 :=

∫
I
φnφmφq dI,

αm6 :=

∫
I
φnφmψ dI, αm7 :=

∫
I
φnφm dI.

(A.10)
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For the parametric iteration, the separated expression of the residuals is

rnu := a4η +
n∑

m=1

(
−

n∑
q=1

amq5 φq + am6 ψ − am7

)
φm, (A.11a)

rp := −
n∑

m=1

am8 φ
m, (A.11b)

where the coefficients depend solely on the spatial modes, namely



a4 :=

∫
Vi

σnuf
n
u ·S dV ,

amq5 :=

∫
Vi

σnuf
n
u ·
[
∇·(σmu fmu ⊗σquf qu )

]
dV ,

am6 :=

∫
Vi

σnuf
n
u ·
[
∇·(D∇(σmu f

m
u ))

]
dV ,

am7 :=

∫
Vi

σnuf
n
u ·∇(σmp f

m
p ) dV ,

am8 :=

∫
Vi

σnp f
n
p ∇·(σmu fmu ) dV .

(A.12)
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A.4 Parametrised Spalart-Allmaras turbulence

model

The separable form of the Spalart-Allmaras residual in the spatial iteration

is evaluated as

Rm
ν :=Rν(ũ

n
PGD
, ν̃m−1

PGD
, σm

ν
ν̃m

PGD
)

=−
n∑
k=1

m∑
j=1

αk,j8

∫
Vi

∇ ·
(
σj
ν
Bj ⊗ σkufku

)
dV

+
m∑
j=1

αj9

∫
Vi

1

σ
∇ ·

(
σm
ν
∆Bm∇σj

ν
Bj
)
dV

+
m∑
j=1

αj10

∫
Vi

1

σ
∇ ·

(
ν∇σj

ν
Bj
)
dV

+
m∑
j=1

m∑
l=1

αj,l11

∫
Vi

1

σ
∇ ·

(
σl
ν
Bl∇σj

ν
Bj
)
dV

+
m∑
j=1

m∑
l=1

αj,l11

∫
Vi

Cb2
σ

∇σj
ν
Bj ·∇σl

ν
Bl dV +

m∑
j=1

∫
I

∫
Vi

Cb1α
j
12σ

j
ν
Bj dV

−
m∑
j=1

m∑
l=1

∫
Vi

Cwα
j,l
13

σj
ν
Bjσl

ν
Bl

y2
dV .

(A.13)

where the following expressions for the coefficients are devised



αk,j8 :=

∫
I
ξmξjφk dI, αj9 :=

∫
I

(ξm)2 ξj dI,

αj10 :=

∫
I
ξmξj dI, αj,l11 :=

∫
I
ξmξjξl dI

αj12 :=

∫
I
ξmξjS̃ dI, αj,l13 :=

∫
I
ξmξjξlfw dI.

(A.14)

with α12 and α13 being spatial functions.
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For the parametric iteration, the separated expression of the residuals is

rmnu :=−
n∑
k=1

m∑
j=1

ak,j11 ξ
jφk +

m∑
j=1

aj12ξ
j +

m∑
j=1

m∑
l=1

aj,l13ξ
jξl

+
m∑
j=1

m∑
l=1

aj,l14ξ
jξl +

m∑
j=1

aj15ξ
j −

m∑
j=1

m∑
l=1

aj,l16ξ
jξl,

(A.15)

where the coefficients are defined as

ak,j11 :=

∫
Vi

σm
ν
Bm∇ ·
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σj
ν
Bj ⊗ σkufku

)
dV ,
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∫
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σm
ν
Bm 1

σ
∇ ·

(
ν∇σj

ν
Bj
)
dV ,

aj,l13 :=

∫
Vi

σm
ν
Bm 1

σ
∇ ·

(
σl
ν
Bl∇σj

ν
Bj
)
dV ,

aj,l14 :=

∫
Vi

σm
ν
BmCb2

σ
∇σj

ν
Bj ·∇σl

ν
Bl dV ,

aj15 :=

∫
Vi

σm
ν
BmCb1S̃σ

j
ν
Bj dV ,

aj,l16 :=

∫
Vi

σm
ν
BmCwfw

σj
ν
Bjσl

ν
Bl

y2
dV ,

(A.16)
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Appendix B

simpleFoam: the semi-implicit

method for pressure linked

equations in OpenFOAM

In OpenFOAM, the steady laminar Navier-Stokes equations are approxi-

mated by means of an iterative procedure, namely simpleFoam. This al-

gorithm implements the SIMPLE method proposed in [87]. SIMPLE is a

fractional-step Chorin-Temam projection method [106, Sect. 3.7] that has

been extensively studied in the literature [50, 49]. A description of the rela-

tionship between SIMPLE and Chorin-Temam projection methods is detailed

in [91, Sect. 17.7, 17.8], whereas the implementation details of simpleFoam

are provided in the official OpenFOAM documention [107].

First, an intermediate velocity uk is computed starting from the mo-

mentum equation and neglecting the contribution of pressure, see Equa-
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tion (B.1a); second, the step involving the incompressibility constraint is

rewritten in terms of a Poisson equation for the pressure p, see Equation (B.1b);

eventually, a correction is applied to the intermediate velocity field to deter-

mine the final value u in Equation (B.1c). Special attention is required

to impose the correct set of boundary conditions in each step of the algo-

rithm [64].



uk − uk−1
∆t

+ ∇·(uk⊗uk−1)−∇·(ν∇uk) = s in Ω,

uk = uD on ΓD,

n·(ν∇uk) = t on ΓN ,

(B.1a)


∇·(∇p) =

1

∆t
∇·uk in Ω,

n·∇p = 0 on ΓD,

np = 0 on ΓN ,

(B.1b)

u = uk −∆t∇p. (B.1c)

Remark 10. A variant of the above numerical scheme, known as incremen-

tal Chorin-Temam projection method, is obtained by adding the term −∇pk

to the right-hand side of Equation (B.1a) to compute the velocity prediction.

Hence, the Poisson problem for pressure in Equation (B.1b) is solved to com-

pute a pressure variation ∆p, whereas the correction step in Equation (B.1c)

remains unchanged, now being p=pk+∆p.

Note that the algorithm in Equation (B.1) may also be rewritten in the

framework of an algebraic splitting method [92]. For a complete introduction

to the subject, interested readers are referred to [31, Sect. 6.7].
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For cases residing in the turbulent regime, an extra step is included in

the SIMPLE algorithm, namely the solution of the turbulence model. Sim-

ilarly to the laminar case, the algorithm computes an intermediate velocity

from Equation (B.2a), notice that an effective viscosity is used in the dif-

fusion term, instead of the physical viscosity coefficient. Then, the Poisson

equation for pressure p is assembled and solved, Equation (B.2b), and even-

tually, velocity u is explicitly corrected using the newly computed pressure,

Equation (B.2c). Before resetting the loop back to Equation (B.2a), the

turbulence model, in this case the Spalart-Allmaras, is solved using Equa-

tion (B.3a) to compute a state viscosity, ν̃, which is in turn used to update

the effective viscosity (Equation B.3b).



uk − uk−1
∆t

+ ∇·(uk⊗uk−1)−∇·(νeff∇uk) = s in Ω,

uk = uD on ΓD,

n·(νeff∇uk) = t on ΓN ,

(B.2a)


∇·(∇p) =

1

∆t
∇·uk in Ω,

n·∇p = 0 on ΓD,

np = 0 on ΓN ,

(B.2b)

u = uk −∆t∇p, (B.2c)
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

∇ · (ν̃ ⊗ u)− 1

σ
∇ · [(ν + ν̃)∇ν̃]− Cb2

σ
|∇ν̃|2

= Cb1S̃ν̃ − Cw1fw
(
ν̃

y

)2

in Ω,

ν̃ = ν̃D on ΓD,

n·∇ν̃ = 0 on ΓN ,

(B.3a)
νt = fv1ν̃,

νeff = ν + νt.

(B.3b)
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B.1 simpleFoam: a Stokes solver variation

In this section the adaptation of the simpleFoam algorithm to solve the

Stokes problem is discussed. Considering how the non-linear term is missing

from the momentum equilibrium, there is no need to linearise the system. A

velocity prediction is computed from equation B.4a and is used to solve the

Poisson equation for pressure B.4b. On the final iteration only, the velocity

is updated based on the computed pressure B.4c.



uk − uk−1
∆t

−∇·(ν∇uk) = s in Ω,

uk = uD on ΓD,

n·(ν∇uk) = t on ΓN ,

(B.4a)


∇·(∇p) =

1

∆t
∇·uk in Ω,

n·∇p = 0 on ΓD,

np = 0 on ΓN ,

(B.4b)

u = uk −∆t∇p. (B.4c)

B.2 simpleFoam: an Oseen solver variation

In this section the adaptation of the simpleFoam algorithm to solve the Oseen

problem is discussed. Similarly to the Stokes problem, the non-linear term is

missing from the momentum equilibrium and there is no need to linearise the

system. Initially a pre-scribed velocity field u0 is read to build the linearised

convection term. A velocity prediction is computed from equation B.5a and
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is used to solve the Poisson equation for pressure B.5b. On the final iteration

only, the velocity is updated based on the computed pressure B.5c.



uk − uk−1
∆t

+ ∇·(uk⊗u0)−∇·(ν∇uk) = s in Ω,

uk = uD on ΓD,

n·(ν∇uk) = t on ΓN ,

(B.5a)


∇·(∇p) =

1

∆t
∇·uk in Ω,

n·∇p = 0 on ΓD,

np = 0 on ΓN ,

(B.5b)

u = uk −∆t∇p. (B.5c)
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