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Abstract 

In AISC 360-16, the Direct Analysis Method (DM) has been set as the primary method for the stability 

design of frames. DM, considering initial global sway imperfection, is essentially Geometrically Non-linear 

Analysis (GNA) in which tangent modulus is used. The aim of this thesis is to provide stiffness reduction 

factor formulations for using GNA coupled with tangent modulus approach for the stability design of 

stainless steel frames. GNA with the proposed stiffness reduction factor is aligned to AISC 360-16 and it is 

aimed at facilitating greater and more efficient use of stainless steel. In accordance with current design 

standards, the ultimate limit state for this method is the formation of first plastic hinge, and the adequacy 

of the method is confirmed through member-based resistance checks. 

The focus of the thesis is the development of flexural stiffness reduction factor formulation for the in-plane 

stability design of stainless steel elements and frames with cold-formed square hollow section (SHS) and 

rectangular hollow section (RHS). The proposed beam-column stiffness reduction factor (τMN) accounts for 

the deleterious influence of material non-linearity, residual stresses and member out-of-straightness. The 

use of a GNA coupled with the proposed τMN eliminates the need for member buckling strength checks and 

thus, only cross-sectional strength checks are required.  

Two types of τMN formulations, applicable to compact SHS and RHS, are proposed: analytical and 

approximate. The analytical expression of τMN presumes knowing the maximum internal second order 

moment (Mr2) within a member. It is developed by means of extending the formulations for evaluating the 

elastic second order effects to the inelastic range. A GNA with τMN determined by the analytical expression 

for the design of stainless steel beam-columns proves accurate. Furthermore, since in practical design Mr2 

is not known in advance, an approximate expression of τMN, which is assumed to be a function of relevant 

variables, is proposed by fitting variables to the analytically determined expression. For the purpose of 

developing the approximate expression of τMN, column flexural stiffness reduction factor (τN) and beam 

flexural stiffness reduction factor (τM) are derived from stainless steel column strength curves and from the 

moment-curvature relationship, respectively. 

The accuracy of the proposal is assessed in stability analysis of planar stainless steel frames with compact 

SHS and RHS. The applicability of GNA using a stiffness reduction factor equal to 0.8τN, which is similar 

to the DM provided in AISC 360-16 is also verified. For a series of frames, results determined by GNA-

τMN as well as GNA-0.8τN are compared with those determined by Geometrically and Materially Non-linear 

Analysis with Imperfections (GMNIA). 

In practical situations, many economical cold formed steel sections comprise slender thin-walled elements 

that are susceptible to local buckling. Thus, the approximate expression of flexural stiffness reduction 

factors (τN, τM, τMN) are extended to account for local buckling effects and initial localized imperfection (ω), 



 

ii 

 

by means of reducing cross-section resistance. The reduction factor ρ, determined in accordance with the 

Direct Strength Method (DSM), depending on cross-sectional slenderness, is incorporated into the 

formulations. For elements with SHS and RHS, the accuracy of GNA with the extended stiffness reduction 

is verified against results determined by GMNIA. It is found that GNA with stiffness reduction (using beam 

element) generally achieves the accuracy of GMNIA (using shell element). Since thin-walled elements are 

sensitive to initial localized imperfections (ω), a new approach utilizing Fourier series to generate the three-

dimensional (3D) models of members with random ω is proposed. Probabilistic studies based on the 

proposed 3D models are then carried out to evaluate the effect of uncertainty in ω on the accuracy of GNA 

coupled with the extended stiffness reduction factor. 
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Principal notations 

λ Load factor  

c Column slenderness 

λl Cross-sectional slenderness 

ω  Initial localized imperfection 

ωmax The maximum initial localized imperfection 

τb Flexural stiffness reduction factor derived from the CRC column strength curve 

τN Flexural stiffness reduction factor derived from the AISC-based column strength curve 

τN-ρ τN considers local buckling effects 

τM Flexural stiffness reduction factor for beams with compact sections 

τM-ρ τM considers local buckling effects 

τMN Flexural stiffness reduction factor for beam-column with compact section 

τMN-ρ τMN considers local buckling effects 

τM-shell τM derived from the M-k curve determined by GMNIA-shell element 

τM-beam τM derived from the M-k curve determined by GMNIA-beam element   

Δ2nd-order /Δ1st-order  The ratio of second-order to first-order story drifts 

∆/h Out-of-plumbness 

δ/L Out-of-straightness 

σlb Through-thickness longitudinal bending residual stress 

ρ Reduction factor account for local buckling effects (determined by DSM)  

µ Mean value 

COV Coefficients of Variation 

ε ε= Mr2-GNA-τMN / Mr2-GMNIA (Chapter 5) 

εav Average value of ε in the group (Chapter 5) 

εcov Coefficient of variation of ε in the group (Chapter 5) 

ε+ Maximum value of ε in the group (Chapter 5) 

ε-  Minimum value of ε in the group (Chapter 5)  
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|εmax| Maximum value of relative error for each set of 50 models (Chapter 8) 

(Mu-rand) The mean value of the Mu-rand (Chapter 8) 

𝑑𝑀𝑟1

𝑑𝜅
 The slope of the tangent at a given point on the M-k curve 

ASOM  Approximate second-order elastic analysis method 

B1 Amplification factor accounts for P-δ effects provided in ASIC 360-16   

B2 Amplification factor accounts for P-∆ effects together with P-δ effects provided in ASIC 360- 

16   

B1-E  Amplification factor evaluates P-δ effects on elastic beam-columns  

B1-P  Amplification factor evaluates P-δ effects on inelastic beam-columns  

B2-E  Amplification factor evaluates P-∆ effects together with P-δ effects on elastic beam- 

columns  

B2-P  Amplification factor evaluates P-∆ effects together with P-δ effects on inelastic beam- 

columns  

Cm Equivalent uniform moment factor  

DM Direct Analysis Method provided in AISC 360-16 

ELM Effective length method 

(EI)t  Tangent flexural stiffness  

LA Linear Elastic Analysis 

GMNIA Geometrically and Materially Non-linear Analysis with Imperfections 

GMNIA-shell   GMNIA using shell element (Chapter 7) 

GMNIA-beam   GMNIA using beam element (Chapter 7) 

GNA Geometrically Non-linear Analysis  

GNA-τMN GNA coupled with τMN  

GNA-τN GNA coupled with τN    

GNA-τN-ρ GNA coupled with τN-ρ 

K Effective length factor of the column 

Kb Critical buckling factor for members 
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Ksw  Second order sway effects factor provided in EN1993-1-1: 2015(E) 

M1 and M2 Applied external end moments, |M1| ≤ |M2|. 

Mcrl Elastic critical local buckling moment. 

Mn  Nominal flexural strength of a beam 

Mne Nominal global (lateral-torsional) buckling moment 

Mnl Nominal local buckling moment 

Mnt First order internal moment in sway-restrained (no lateral translation) frames     

Mlt First order internal moment in sway-permitted (with lateral translation) frames 

My  Moment at yielding of the extreme fiber 

MP  Moment at full cross-section yielding (not considering strain-hardening) 

Mr1 Maximum internal first order moment within the member 

Mr2 Maximum internal second order moment within the member 

Mr2-E Maximum internal second order elastic moment within the member 

Mr2-P Maximum internal second order inelastic moment within the member 

Mr2-GMNIA Mr2 determined by GMNIA 

Mr2-τMN Mr2 determined by GNA-τMN  

Mr2-τN Mr2 determined by GNA-τN  

Mr2-GMNIA-S Mr2 determined by GMNIA-shell (Chapter 7) 

Mu-GMNIA Ultimate external moment of the member determined by GMNIA 

Mu-GMNIA-B Mu determined by GMNIA-beam (Chapter 7) 

Mu-GMNIA-S Mu determined by GMNIA-shell (Chapter 7) 

Mu-τMN-ρ Mu determined by GNA-τMN-ρ (Chapter 7) 

Mu-rand Predicted ultimate external bending moment for each model with random ω (Chapter 8)    

N Parameter in Ramberg-Osgood equation 

Pe Elastic critical buckling strength of the member with effective length (KL) 

Pe1 Elastic critical buckling strength (non-sway mode) of the member with K=1 

Pes Elastic critical buckling strength (sway mode) of the member with effective length (KL) 
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Pe-τN Elastic critical buckling load determined by the reduced flexural stiffness: τN times EI 

Pe-τNρ Elastic critical buckling load determined by the reduced flexural stiffness: τN-ρ times EI 

Plt First order internal axial force in sway-permitted frames 

Pnt First order internal axial force in sway-restrained frames  

Pn Nominal compressive strength of a column 

Pne Nominal global buckling strength in compression 

Pnl Nominal local buckling strength in compression 

Pstory Total vertical load transferred by the story (from Linear Elastic Analysis) 

Pe*-story Elastic critical buckling (sway mode) strength of the story (without including RM) 

Pr1 Maximum internal first order axial force within the member 

Pr2 Maximum internal second order axial force within the member 

Pr2-GMNIA Pr2 determined by GMNIA 

Pr2-τMN Pr2 determined by GNA-τMN  

Pr2-τN Pr2 determined by GNA-τN 

Pu Ultimate axial load of the member  

Pu-GMNIA Pu determined by GMNIA 

Pu-τMN Pu determined by GNA-τMN  

Pu-τN-ρ Pu determined by GNA-τN-ρ 

Pu-GMNIA-B Pu determined by GMNIA-beam (Chapter 7)  

Pu-GMNIA-S Pu determined by GMNIA-shell (Chapter 7) 

Pu-EXP Ultimate compressive strength obtained from experiment (Chapter 8) 

Pu-rand Predicted ultimate compressive strength for each model with random ω (Chapter 8)           

Py  Cross-section yield strength 

Rc Demand-capacity ratio determined by interaction design equations provided in ASIC 360-16 

Rc-GMNIA Rc with second order axial force and moment determined by GMNIA  

Rc-τMN Rc with second order axial force and moment determined by GNA-τMN   

Rc-τN Rc with second order axial force and moment determined by GNA-τN   
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RM Factor accounts for P-δ effects on the global behavior of the structure 

Wel Elastic cross-section modulus 

Wpl Plastic cross-section modulus 
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1. Introduction  

1.1 Background 

1.1.1 Stainless steel 

Stainless steel is a steel alloy that contains a minimum of 10.5% chromium (Cr) content by mass and a 

maximum of 1.2% carbon (C) by mass. Stainless steel is most notable for its corrosion resistance, which 

increases with the increasing chromium content. To suit the environment the alloy must endure, there is a 

wide range of stainless steels with varied levels of corrosion resistance and mechanical strength. So far, 

more than 200 standardized stainless steel grades have hitherto been developed (FCSA, 2008).  

The basic alloying elements of stainless steel grades are chromium (Cr) and nickel (Ni), other alloying 

elements such as molybdenum (Mo), titanium (Ti) and manganese (Mn) are also included in stainless steels 

to improve their mechanical properties and corrosion resistance. According to Cr -Ni content by mass, 

stainless steels can be classified into five basic groups (Rossi, 2014). The five types are austenitic, ferritic, 

austenitic-ferritic (duplex), martensitic and precipitation hardening stainless steels, as shown in Fig 1.1. 

The first three types have a wide and diverse application in construction industry, such as building exteriors 

and facades, and pedestrian bridges (Baddoo, 2013). The last two types are for specialist applications. For 

instance, martensitic grades are commonly used for bearings and turbine blades, and precipitation hardening 

grades are mostly used in nuclear and aerospace industry (Baddoo, 2013). 

10 15 20 25 30
0

5

10

15

20

Ferritic
steels

Ferritic-austenitic
Steels (Duplex)

Precipitation 
hardening
steels

Martensitic
steels

Austenitic steels

% Cr

% Ni

 

Fig.1.1. Classification of stainless steels groups based on the content of Cr and Ni 
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 Austenitic stainless steels 

Austenitic stainless steels have favorable corrosion resistance and high ductility. They are easily cold-

formed are readily weldable. The most widely used types of austenitic stainless steels have a Cr content of 

17% to 18% and Ni content between 8% and 11%. Compared to carbon steels, austenitic stainless steels 

have significantly better toughness over a wide range of temperatures.   

 Ferritic stainless steels 

Compared to austenitic stainless steels, ferritic stainless steels are generally less ductile, less formable and 

less weldable. The most widely used ferritic stainless steels have a Cr content of 10.5% to 18%. The Ni 

content is either very small or not included in them. 

 Duplex stainless steels 

Duplex stainless steels have a mixed microstructure of austenite and ferrite. The most widely used types of 

duplex stainless steels contain 20% to 26% Cr, 1% to 8% Ni, 0.05 % to 5% Mo, and 0.05% to 0.3% N. 

Compared to austenitic stainless steels, they provide higher strength.  

 Martensitic stainless steels 

Martensitic stainless steels are similar to low alloy or carbon steels. Compared to austenitic and ferritic 

stainless steels, martensitic stainless steels have higher carbon content, and can be strengthened by heat 

treatment. They are generally used in a hardened and tempered condition. 

 Precipitation hardening stainless steels. 

Precipitation hardening steels have properties similar to a mix of martensitic and austenitic steels. They can 

be strengthened by heat treatment. Precipitation hardening steels are mostly used in the aerospace industry 

and are also used in other applications that require high strength and moderate corrosion resistance. 

1.1.2 Application of cold-formed stainless steel RHS and SHS 

Steel hollow sections are a versatile and efficient form for construction applications. Buildings that use 

steel hollow sections have high strength-to-weight ratios. The efficient use of steel hollow sections reduces 

material usage resulting in lightweight structures. It allows for large span, and thus is an alternative to 

achieve optimal economic benefits. Since stainless steels have excellent corrosion resistance properties, 
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considerable long-term durability, and good mechanical strength, the use of cold-formed stainless steel 

rectangular hollow section (RHS) and square hollow section (SHS) (shown in Fig. 1.2) in construction 

industry has attracted considerable attention.  

 

Fig.1.2. Cold-formed stainless steel RHS and SHS 

For construction applications, the most commonly used stainless steel hollow sections are made of 

austenitic grades EN1.4301, EN1.4307, EN1.4404 and EN1.4571. For example, these sections have been 

used in the facade of the building of Institute of Chemical and Bioengineering, ETH Zürich (Switzerland), 

shown in Fig. 1.3 (a), and the support frame of Marqués de Riscal Vineyard (Spain), shown in Fig. 1.3 (b), 

Also, they can be used for the main frame structure of residential buildings, as shown in Fig. 1.3 (c). Hollow 

sections made of austenitic steel grades EN1.4541, EN1.4318, EN1.4372, EN1.4432 and EN1.4539, ferritic 

steel grades EN1.4003 and EN1.4509, and duplex steel grades EN1.4162, EN1.4362 and EN1.4462, are 

mainly used for specialist applications. 
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(a) 

  
(b) 

 

(c) 

Fig.1.3. Applications of stainless steel RHS and SHS in construction: (a) Facade of the building of Institute 

of Chemical and Bioengineering, ETH Zürich (Switzerland) (b) Support frame of Marqués de Riscal 

Vineyard (Spain) (c) Main frame structure of the private residential buildings (FCSA, 2008) 
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1.1.3 Manufacturing of cold-formed stainless steel RHS and SHS 

Cold-formed hollow sections are manufactured by cold working and welding. There are two different 

forming methods for cold-formed stainless steel RHS and SHS, direct-forming and round to square forming. 

In direct forming (shown in Fig 1.4(a)), the steel strip is transformed into a square or rectangular hollow 

section by bending it through rollers, and welding the seam after that. In round to square forming (shown 

in Fig 1.4(b)), steel strip is first formed into a circular hollow section and then it is welded. After forming 

circular hollow section, square or rectangular shapes are created by using profiling rollers. The stages of a 

direct-forming line are shown in Fig.1.5. 

Box hollow section

Rollers

(a) (b)

Round hollow 

section

Box hollow section

Rollers

 

Fig.1.4. Two forming methods for cold-formed RHS and SHS (a) Direct forming (COPRA, 2014) (b) Round 

to square forming (Nagamachi et al., 2011) 

Uncoiling
Flattening Loop 

storing

Shearing and 

butt welding Circle shearing

Roll forming 
High frequency 

weldingRemove of burrsWater cooling

Forming

Non-destructive 

inspection
Cutting off

                  

Fig.1.5. The stages of a direct-forming line (Sunny Steel) 
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Cold-forming process changes the mechanical properties of stainless steel, induces residual stresses and 

initial localized imperfection. 

(1) Strength levels of stainless steels, especially the austenitic grades, are enhanced by cold working. A 

strength enhancement of about 50% is typical in the cold formed corners of cross sections (Design Manual 

for Structural Stainless steel, 2017); the strength of the material in the flat faces also increases. 

Accompanied with this enhancement is a reduction in ductility. The changes in mechanical properties 

depend on the forming method and dimensions of the hollow section, and the mechanical properties can be 

measured by testing coupons taken from the RHS and SHS. 

(2) Plastic deformation produced in cold-working process such as uncoiling, leveling, and rolling to form 

a section, results in residual stresses. For cold formed steel box sections, the induced residual stresses are 

complicated, typically comprising bending residual stresses, membrane residual stresses, and layer residual 

stresses. 

(3) The rolling and fabrication process produce initial localized imperfections. The induced localized 

imperfections have sufficient variability and have no definitive characterization. In practical situations, 

many economical cold-formed hollow sections, which contain slender thin-walled elements, are sensitive 

to initial localized imperfection. Initial localized imperfection, coupled with member imperfection and 

global sway imperfection that resulted from fabrication and erection process, should be considered in 

structural analysis.  

1.2 Motivation 

Current design methods are based on resistance checks at member levels and the design limit state is the 

formation of first plastic hinge. The internal forces and moments are evaluated using elastic structural 

analysis. For member-based design methods, using a Geometrically Nonlinear Analysis (GNA) coupled 

with stiffness reduction to determine internal forces and moments for ultimate limit state design checks has 

become a significant strategy. GNA with stiffness reduction can capture second order effects at system and 

member levels (P-∆ and P-δ), considers initial global sway imperfection, and adopts reduced stiffness to 

account for the influence of material non-linearity and residual stresses. For GNA with stiffness reduction, 

initial member out-of-straightness (δ/L) can be accounted for by four ways: (1) By geometrically modelling 

out-of-straightness directly (2) By applying equivalent horizontal loads appropriately (3) By reducing 
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stiffness implicitly using reduction factors (4) By checking bucking resistance of members. If member out-

of-straightness is included in the stiffness reduction factors, there is no need for member buckling strength 

checks and only cross-sectional strength checks are required.  

A representative example of GNA with stiffness reduction is the Direct Analysis Method (DM). DM first 

appeared in AISC 360-05 (2005) as an alternative to Effective Length Method (ELM) for frame stability 

design, was upgraded in AISC 360-10 (2010) and reorganized in AISC 360-16 (2016) as the primary 

method for frame stability design (ELM was moved to Appendix 7 of AISC 360-16). Compared with ELM, 

a significant advantage of GNA with stiffness reduction is that it eliminates the need of calculating of 

effective length of the column. The calculation of effective length factor (K) may be both difficult and 

inaccurate for geometrically irregular frames. Another main advantage is that it provides more accurate 

value of internal moment, which is a great concern for the design of connections. In most cases, compared 

to ELM, GNA with stiffness reduction gives an improved representation of internal moments. 

The accuracy of GNA with stiffness reduction highly depends on the adopted stiffness reduction factor. The 

reduction in stiffness will produce more deformations, which will in turn result in increased internal forces 

and moments due to second order effects. Although calibration studies have shown that the flexural stiffness 

reduction factor provided in AISC 360-16 (2016) is appropriate to stability design of carbon steel beam-

columns and frames, it may not be appropriate to the stainless steel counterparts. The reason is stainless 

steel is softer than carbon steel in the stress range of proportional limit and 0.2% proof strength, and member 

buckling curves of stainless steel differs from carbon steel. Therefore, when using GNA with stiffness 

reduction for the stability design of stainless steel elements and frames, appropriate stiffness reduction 

factors are needed. 

1.3 Objectives 

The primary objective of this thesis is to develop flexural stiffness reduction factor formulations that are 

applicable to the in-plane stability design of stainless steel elements and frames with cold-formed square 

hollow section (SHS) and rectangular hollow section (RHS). The proposed stiffness reduction factor 

formulations accounts for the deleterious influence of material non-linearity, residual stresses and member 

out-of-straightness. The specific generals are listed below: 

(1) Developing column flexural stiffness reduction factor (τN), beam flexural stiffness reduction factor 
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(τM), and beam-column flexural stiffness reduction factor (τMN), which are applicable to compact sections. 

(2) Assessing the accuracy of the GNA coupled with flexural stiffness reduction factors (τN, τM, τMN) in 

stability analysis of planar stainless steel elements and frames with compact SHS and RHS. 

(3) Extending flexural stiffness reduction factors (τN, τM, τMN) that are applicable to compact sections to 

account for local buckling effects and initial localized imperfection (ω). 

(4) Evaluating the effect of uncertainty in ω on the accuracy of GNA coupled with the extended stiffness 

reduction factor the sections that are susceptible to local buckling effects. 

1.4 Research methodology 

This thesis investigates the behavior of stainless steel structures made up of cold formed stainless steel RHS 

and SHS. The GNA coupled with stiffness reduction method is only applicable to the in-plane stability 

design of structures. The ultimate limit state for this method is the formation of first plastic hinge. Analytical 

and numerical studies are conducted to develop the beam-column flexural stiffness reduction factor (τMN) 

formulations. The accuracy of GNA coupled with stiffness reduction method is assessed through numerical 

studies. In-plane structural behavior of stainless steel elements and frames is studied using finite element 

(FE) software ABAQUS 6.13. MATLAB 2017b and MINITAB 18 are also employed in this study. 

The adopted methodology is illustrated in Fig. 1.6. The details of the methodology are the following: 
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τMN for compact sections

τMN-ρ for non-compact 

and slender sections

Development of analytical expression 

based on theoretical formulations 

of evaluating P-δ effects and  P-  effects 

Analytical expression

Approximate expression: 

a function contains variables of   

τN, τM , Mr1, Pr1,Cm, Wel/Wpl, B2-E,

Verification for elements through ABAQUS 6.13: 

GNA coupled with  τMN (analytical solution) 

against GMNIA 

Extended by 

incorporating the 

factor ρ 

Verification for elements through ABAQUS 6.13: 

GNA coupled with τMN-ρ against GMNIA 

Verification for frames through ABAQUS 

6.13: GNA coupled with  τMN (approximate  

solution)  against GMNIA 

Fitting through 

MATLAB 2017b

τN : Column stiffness reduction factor 

τM  : Beam stiffness reduction factor 

Mr1 : First order bending moment 

Pr1 :  First order axial force 

Wel/Wpl : Cross section shape factor 

Cm :  Equivalent uniform moment factor

B2-E : Second order effects factor

 ρ, determined by direct 

strength method (DSM), 

accounts for local buckling 

effects

Out-of-straightness of 0.001

Residual stresses

Spread of plasticity

accounts for

Fourier series-based 3D models with random 

localized imperfection, generated through 

MATLAB 2017b

Effect of uncertainty in localized 

imperfection on the accuracy of 

τMN-ρ 

 Statistical analysis of the maximum localized 

imperfection through MINITAB 18.

Chapter 5

Chapter 5

Chapter 5

Chapter 5 Chapter 6

Chapter 7

Chapter 8

Chapter 8

Chapter 8

Chapter 7

Chapter 4

Chapter 5

Chapter 5

 

Fig 1.6. Illustration of the adopted methodology 

 For compact sections that are not are not prone to local buckling reductions: 

(1) Column flexural stiffness reduction factor (τN) is derived from AISC LRFD-based column flexural 

buckling strength curve. Beam flexural stiffness reduction factor (τM) is derived from moment-curvature 

relationship curve that based on Ramberg-Osgood equation. 

(2) Two types of beam-column flexural stiffness reduction factor (τMN) formulations, applicable to compact 

SHS and RHS, are proposed: analytical and approximate. The analytical expression of τMN presumes 

knowing the maximum internal second order moment (Mr2) within a member. It is developed by means of 
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extending the formulations for evaluating the elastic second order effects to the inelastic range. The 

accuracy of the GNA coupled with τMN (determined by the analytical expression) is assessed in stability 

analysis of planar stainless steel elements and sub-assemblages. Since in practical design Mr2 is not known 

in advance, an approximate expression of τMN, which is assumed to be a function of relevant variables, is 

proposed by fitting variables to the analytically determined expression. 

(3) The accuracy of the GNA coupled with τMN (determined by the approximate expression) is assessed in 

stability analysis of planar stainless steel frames with compact SHS and RHS. The applicability of GNA 

using a stiffness reduction factor equal to 0.8τN, which is similar to the DM provided in AISC 360-16 is 

also verified. For a series of frames, results determined by GNA-τMN as well as GNA-0.8τN are compared 

with those determined by GMNIA. Comparisons of Demand-Capacity ratio and maximum internal second 

order moment within members are made. 

 For non-compact and slender sections that are not are susceptible to local buckling reductions: 

(1) The approximate expression of flexural stiffness reduction factors (τN, τM, τMN), applicable to compact 

sections, are extended to account for local buckling effects and initial localized imperfection (ω), by means 

of reducing cross-section resistance. The reduction factor ρ, determined in accordance with the Direct 

Strength Method (DSM), depending on cross-sectional slenderness, is incorporated into the formulations. 

For elements with SHS and RHS, the accuracy of GNA with the extended stiffness reduction is verified 

against results determined by GMNIA 

(2) A Fourier series-based three-dimensional (3D) models for members with random ω is proposed. The 

proposed model is generated through MATLAB. Probabilistic studies based on the proposed 3D models are 

then carried out to evaluate the effect of uncertainty in ω on the accuracy of GNA coupled with the extended 

stiffness reduction factor. 

1.5 Thesis outline 

This thesis is structured as follows: 

Chapter 2 provides a review of the various types of structural analysis methods as well as the assumptions 

implied within them, followed by discussion of the application and limitations of these structural analysis 

methods for evaluating frame and member stability. A brief summary and comparison of frame and beam-



Chapter 1. Introduction 

11 

 

column design provisions in different design standards are then presented. Finally, a review of the material 

response, initial geometric imperfections, and residual stresses considered in structural analysis is presented. 

Chapter 3 describes the finite element (FE) modelling approach adopted in Chapter 4-6, to verify GNA 

coupled with stiffness reduction factor for the design of stainless steel elements and frames with compact 

cross-sections. The FE models are developed using the general-purpose package ABAQUS 6.13 (2013), 

and validated against experimental results from the literature.  

Chapter 4 presents the development of column flexural stiffness reduction factor (τN) and beam flexural 

stiffness reduction factor (τM). The proposed τN and τM are applicable to stainless steel members with 

compact cold-formed RHS and SHS. τN is derived from stainless steel column strength curve provided in 

AISC design guide 27. τM is developed based on the moment-curvature relationship for stainless steel beams 

with cold formed RHS and SHS.  

Chapter 5 focuses on the development of beam-column flexural stiffness reduction factor (τMN) formulation 

for the in-plane stability design of stainless steel beam-columns with compact cold-formed RHS and SHS. 

Two types of τMN formulations are proposed: analytical and approximate. The analytical expression of τMN 

presumes knowing the maximum internal second order moment (Mr2) within a member. It is developed by 

means of extending the formulations for evaluating the elastic second order effects to the inelastic range. A 

function (approximate expression) independent of Mr2-P, which matches analytical expression of τMN, is 

proposed. The approximate expression of τMN is developed by fitting variables to the analytically 

determined expressions. 

Chapter 6 presents the verification of the accuracy of GNA with flexural stiffness reduction formulation 

(τMN) to in-plane stability design of stainless steel frames. The adopted τMN is determined by the 

approximate expression presented in the previous chapter. The applicability of GNA using a stiffness 

reduction factor equal to 0.8τN, which is similar to the Direct Analysis Method (DM) provided in AISC 

360-16 is also verified. The study is focused on a series of stainless steel frames with different geometrical 

and loading configurations. The main objectives of verification study are the comparisons of Demand-

Capacity ratio and comparisons of maximum internal second order moment within members determined 

by: GMNIA, GNA coupled with τMN, and GNA coupled with 0.8τN. 

Chapter 7 presents the extension of flexural stiffness reduction factors (τN, τM, τMN), applicable to compact 
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sections, to account for local buckling effects and initial localized imperfection (ω). Local buckling 

reduction is taken into account by means of reducing cross-section resistance. The reduction factor ρ, 

determined in accordance with the Direct Strength Method (DSM), depending on cross-sectional 

slenderness, is incorporated into the formulations. For elements with SHS and RHS, the accuracy of GNA 

with the extended stiffness reduction is verified against results determined by GMNIA. 

Chapter 8 presents the evaluation of the effect of uncertainty in ω on the ultimate capacity of stainless steel 

columns and the effect of uncertainty in ω on the accuracy of GNA with stiffness reduction for stainless 

steel beam-columns. For a series of tested stainless steel columns (susceptible to local buckling) reported 

in the literature, the statistical characteristics of the ultimate axial load, obtained from GMNIA in which ω 

is modelled randomly, are compared against the experimental results. Then, for the studied beam-columns 

presented in Chapter 7, the statistical characteristics of the ultimate capacity, obtained from GMNIA in 

which ω is modelled randomly, are compared against those determined by GNA-τMN-ρ as well as GMNIA 

in which ω is modelled as the lowest local buckling mode. 

Chapter 9 draws conclusions about this research and provides recommendations for future research studies. 
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2. Literature review 

2.1 Introduction 

The chapter provides a review of the various types of structural analysis methods. A brief summary of frame 

and beam-column design provisions in different design standards is then presented, followed by a 

comparison of different design provisions. Finally, a review of the material response, initial geometric 

imperfections, and residual stresses considered in structural analysis is presented. 

2.2 Structural analysis of steel structures 

The structural analysis methods described in this chapter are distinguished according to whether or not 

geometric and material nonlinear behavior are considered in them. Geometric nonlinear behavior refers to 

equilibrium of internal forces and moments on the deformed geometry of the structure, while material 

nonlinear behavior refers to material yielding, or more specifically, spread of plasticity through the cross 

section and along the member length. 

2.2.1 General analysis types  

An overview of the structural analysis types for the design of frames is shown by the load-deflection curves 

in Fig. 2.1, where the load factor (λ) relates to the amplitude of the applied gravity and lateral loads. In 

general, the analysis types are classified into four groups: 

 First-order Elastic Analysis   

 Second-order Elastic Analysis 

 First-order Elastic-Plastic Analysis  

 Second-order Elastic-Plastic Analysis 
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Fig. 2.1 Schematic illustration of structural analysis types by load-deflection curves 

(1) First-order elastic analysis 

First-order elastic analysis is the most basic type of structural analysis in which neither geometric non-

linearity (P-Δ and P-δ effects) nor material non-linearity is considered. The material is modeled as linear-

elastic and equilibrium of internal forces and moments are calculated based on the undeformed shape of 

the structure. Thus, the deformations of the structure are directly proportional to the applied loads 

throughout the analysis, and the principle of superposition which simplifies the analyses for different load 

combinations applies to first-order elastic analysis. 

(2) Second-order elastic analysis 

For a second order elastic analysis, the equilibrium of internal force is formulated on the deformed geometry 

of the structure, and the material is modeled as linear-elastic. The upper-bound solution for a second order 

analysis is the solution (eigenvalue λcr) obtained from bifurcation analysis, in which initial imperfection, 

pre-buckling deformation, and material non-linearity are ignored. The superposition that simplifies the 
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analyses for different load combinations does not apply to this type of analysis because the second-order 

response is nonlinear. 

(3) First-order elastic-plastic analysis  

A first-order elastic-plastic includes material non-linearity, but equilibrium of internal forces are formed 

based on the undeformed shape of the structure. When strain hardening is neglected, the load-defection 

response determined by a first-order inelastic analysis asymptotically approaches the plastic limit load (λp), 

which is determined by a first-order rigid-plastic hinge analysis. In the first-order rigid-plastic hinge 

analysis, spread of yielding along the member length and through the cross-section is concentrated in 

discrete regions. 

(4) Second-order elastic-plastic analysis 

A second-order inelastic analysis includes both geometric and material nonlinearity. It accounts for the 

reduction in stiffness caused by both member yielding and large deflections, and can accurately model 

inelastic force redistribution. The ultimate load determined by a second-order inelastic analysis is the most 

accurate representation of the actual ultimate load of the structure. 

2.2.2 Inelastic analysis types 

Based on how material nonlinearity is accounted for, elastic-plastic analysis types can be further divided 

into:  

 Elastic-Plastic Hinge Analysis 

 Refined-Plastic Hinge Analysis 

 Reduced Tangent Modulus Analysis 

 Plastic-Zone Analysis 

(1) Elastic-plastic hinge analysis 

In an elastic-plastic hinge analysis, spread of yielding along the member length is concentrated in discrete 

regions (zero length) where plastic hinges form. Fully yielded sections are modeled using plastic hinges 

that enforce a yield surface criterion and allow for elastic unloading. Plastic hinge methods rely on 
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simplified force interaction expressions to approximate the yield surface. It neglects residual stresses and 

typically one element is used to model each frame member. This analysis may be adequate for frames with 

slender members whose failure is governed by elastic instability (Chen, 2000; Chen and Lui, 2017). But it 

significantly overestimates the ultimate strength of multistory frames whose failure is governed by material 

yielding (White et al, 1991; White and Chen, 1993), since material yielding is concentrated in the zero-

length plastic hinges and the associated instability are not considered.  

(2) Refined-plastic hinge analysis 

Based on modifications of the elastic-plastic hinge analysis, the refined-plastic hinge analysis captures 

partial yielding along member and across cross-section due to residual stresses and large axial force. The 

influence of spread of plasticity is accounted for by using a tangent modulus (Et). It provides a more accurate 

estimate of member capacities in an inelastic analysis than a typical elastic-plastic hinge analysis (Ziemian, 

2010). Great efforts have been contributed to this approach for the stability design of in-plane frames 

(Abdel-Ghaffar et al.,1991; Al-Mashary and Chen,1991; Clarke et al., 1992; King, et al.,1991; Liew and 

Chen,1991; Liew et al.,1993a,1993b; White,1993; Kim,1996; Kim and Chen,1996a, 1996b,1997,1998; 

Kim et al,2000; Ziemian and McGuire, 2002; Ziemian et al., 2008) and three-dimensional frames (Liew 

and Tang,1998; Kim et.al, 2001; Kim and Choi, 2001). Avery (1998) extended this approach to account for 

the effect of local buckling. A program (MASTAN2, 2000) that can perform refined-plastic hinge analysis, 

has been developed by Ziemian and McGuire (Ziemian and McGuire, 2000; McGuire et al., 2000). This 

program is based on MATLAB. 

(3) Reduced tangent modulus analysis 

This types of analysis captures the effects of spread-of plasticity by means of reducing the stiffness of 

members (Cheong-Siat-Moy,1977; Orbison et al., 1982; White and Chen, 1993; Ziemian et al., 1992a, 2008; 

Ziemian and McGuire, 2002, Surovek-Maleck and White, 2004a, 2004b; Zubydan, 2010; Kucukler et al., 

2014, 2015a, 2015b, 2016; Kucukler and Gardner, 2018, 2019a,2019b; White et al., 2016). Some 

researchers use stiffness reduction factor derived from column flexural buckling curves to approximate 

stiffness reductions in steel members with high axial load (Ziemian et al., 1992a, 1992b; Ziemian and 

McGuire, 2002; White and Chen, 1993; Orbison et al., 1982). Since this tangent-modulus adjustment does 

not consider the combined action of axial compression and bending, it produces considerable errors for the 
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members whose plastification under combined axial compression and bending are significant (Ziemian 

2010). To accurately capture plastification effects in a second-order analysis, the reduced stiffness must 

consider the combined effects of axial compression and bending, residual stresses, and shape factor for 

different cross-sections (Surovek-Maleck and White, 2004a, 2004b; Ziemian et al., 2008; White et al.,2016; 

Kucukler et al., 2014, 2016; Kucukler and Gardner, 2019a). 

Surovek-Maleck and White (2004a, 2004b) proposed a general flexural stiffness reduction factor 0.9τb for 

strong axis bending and 0.8τb weak axis bending. The factor τb, derived from Column Research Council 

(CRC) column strength curve (Johnston, 1966), is intended to mainly account for the influence of partial 

yielding accentuated by the presence of residual stresses. The factor 0.8 or 0.9, accounts for additional 

stiffness reduction under combined axial loading and bending moment. The flexural stiffness reduction 

factor 0.8τb has been adopted in the Direct Analysis Method (DM) for the design of steel frames provided 

in AISC 360-16 (2016). The definition for τb in AISC 360-16 (2016) has been modified to account for the 

effects of local buckling of slender elements in compression members. 

Kucukler et al. (2014, 2016) developed a function of beam-column flexural stiffness reduction factor for 

the stability design of in-plane carbon steel beam-columns and frames with compact I sections (referred to 

as τMN,Kucukler, note that the symbols presented in this section are not identical to their original symbols). The 

main variables of the function include first order maximum axial force, first order maximum bending 

moment, column flexural stiffness reduction factor (referred to as τN,Kucukler), beam flexural stiffness 

reduction factor (referred to as τM, Kucukler ), and a moment gradient factor Cm. τN, Kucukler is derived from 

column buckling curves given in EN 1993-1-1 (2005), while τM, Kucukler for beams sufficiently restrained 

against lateral-torsional buckling (LTB) under pure bending, is developed using a similar empirical 

formulation to the one proposed by Zubydan (2010) for compact I and H cross-sections subjected to 

combined axial loading and bending moment. For the development of flexural stiffness reduction 

formulations in Kucukler et al. (2014, 2016) and Zubydan (2010), strain-hardening is not considered and 

residual stresses pattern recommended by the European Convention for Construction Steelwork (ECCS, 

1984) is adopted.  

Furthermore, White et al. (2016) proposed a simple interpolation equation to represent beam-column 

flexural stiffness reduction factor (referred to as τMN,White) for using direct buckling analysis to the stability 

design of carbon steel members and frames with I-sections. The general expression of the interpolation 
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equation is τMN,White = *τa(/90o)+ τM,AISC (1-/90o), where the angle  represents the position of the current 

force point within a normalized interaction plot of the axial and moment strength ratios for a given cross-

section. For the interpolation equation, τa is derived from column buckling curves given in AISC 360-16 

(2016) and * accounts for local buckling effects, while τM,AISC is derived from lateral-torsional buckling 

(LTB) curve of beams given in AISC 360-16 (2016). For using second order refined plastic hinge method 

to frame stability design, Kim and Chen (1999) extended the column flexural stiffness reduction factor 

derived from Column Research Council (CRC) column strength curve, to be applicable to beam-columns 

with compact I cross-sections.  

In addition, SEI/ASCE 8-02 (2002) provides the tangent modulus approach to determine the buckling 

strength of members. The flexural buckling stress (fn) is determined by fn=(π2 Et)/(KL ⁄ r)2. The tangent 

modulus Et is derived from the nonlinear stress–strain curve determined by the Ramberg–Osgood 

expression. Et, shown in Fig.2.2, is given by  

𝐸𝑡 =
𝑓𝑦𝐸0

𝑓𝑦+0.002𝑛𝐸0(
𝑓

𝑓𝑦
)
𝑛−1                                                               (2.1) 

Where n is Ramberg–Osgood parameter; f is the stress in the member; E0 is initial elastic modulus (Young’s 

Modulus); fy is 0.2％ proof stress. 

εp=0.01% εy=0.2%

fp

fy

E0

Es

E0

Et

E0 = initial elastic modulus 

Et = tangent modulus

Es = secant modulus

fy = 0.2% proof strength

fp = proportional limit

 

Fig.2.2 Et derived from Ramberg-Osgood equation-based nonlinear stress–strain 

However, it should be pointed out that Et is not adopted in this paper and is not detailed further, due to the 
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reason that:  

(1) Many studies have shown that, the single Ramberg-Osgood curve from which the tangent modulus Et 

is derived, is generally incapable of accurately representing the full stress-strain curve of stainless steel 

(Mirambell and Real, 2000; Rasmussen, 2003; Gardner and Nethercot, 2004; Arrayago et al. 2015). 

(2) The GNA coupled with stiffness reduction method proposed in this paper is aimed to align with AISC 

360-16 (2016). Thus, the adopted column buckling strength curve, and beam-column interaction curve are 

based on AISC provisions, with modifications made where necessary to fit in with test results. 

(4) Plastic-zone analysis 

A plastic-zone analysis is typically taken as an “exact” solution and is used as a benchmark to verify other 

simplified analysis. The AISC-LRFD beam-column interaction equations were established based on "exact" 

beam-column strength curves from the plastic-zone analysis conducted by Kanchanalai (1977). In plastic-

zone analysis, members are discretized into finite elements, and furthermore the cross-section of each finite 

element is subdivided into many fibers. The deflection at each division point along a member is obtained 

by numerical integration. Spread of plasticity and second-order effects are rigorously captured through the 

incremental load-deflection response at each loading step.  

Over the past decades, the application of this type of analysis was limited to verifying the accuracy of 

simplified methods, since it was too intensive in computation (Alvarez and Birnstiel, 1967, King et al.,1992; 

Liew, 1992; Liew et al., 1993a, Clarke et al., 1992; White, 1993; Vogel, 1985; El-Zanaty et al., 1980; Wang, 

1988; Chen and Atsuta, 1977). However, with the development computer technology, numerous finite 

element software, such as ANSYS v19.0 (2018), ABAQUS v2013 (2013), and LS-DYNA SMP R11.0.0 

(2019), which can perform plastic-zone analysis, have been developed. These software facilitate the 

application of plastic-zone analysis in practical engineering. 

2.3 Methodologies for evaluating frame stability provided in AISC 360-16  

Chapter 3 of AISC 360-16 (2016) provides Direct Analysis Method (DM), which is the primary method for 

the stability design of steel frames. Appendix 7 and 8 of AISC 360-16 (2016) provide two alternative 

methods for the stability design of steel frames: Effective length method (ELM) and approximate second-

order elastic analysis method. 
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2.3.1 Direct analysis method (DM) 

DM first appeared in AISC 360-05 (2005) as an alternative to Effective Length Method (ELM) for frame 

stability design, was upgraded in AISC 360-10 (2010) and reorganized in AISC 360-16 (2016) as the 

primary method for frame stability design. DM has been further explored by the cold-formed steel industry 

(Sarawit and Pekoz, 2006) and was adopted in the AISI S100-16 (2016): North American Specification for 

the Design of Cold-Formed Steel Structural Members. 

Compared with ELM, it eliminates the need of calculating of effective length of the column. The calculation 

of effective length factor (K) may be both difficult and inaccurate for geometrically irregular frames. 

Another main advantage is that it provides more accurate internal moment, which is a great concern for the 

design of connections. In most cases, DM gives an improved representation of internal moments, which is 

closer to the values obtained by more advanced analysis such as plastic-zone analysis at member-based 

ultimate strength limit state. For a frame example, the plots of normalized maximum internal moment (Mr2) 

and normalized axial force (Pr2) for a column in the frame determined by DM and GMNIA (plastic zone) 

are shown in Fig.2.3. Pn and Mn are nominal compressive strength and nominal bending strength, 

respectively. The Pr2/Py versus Mr2/Mp curve determined by DM is softer than that determined by GMNIA, 

because the flexural stiffness of the frame is reduced (0.8EI) when implementing DM. 

Interaction curve
DM

GMNIA

 Pr2/ Py 

 Mr2/ Mp  

Fig.2.3 Plots of Mr2/Mp versus Pr2/Py determined by DM and GMNIA 

With heavy reliance on a rigorous second-order elastic analysis, DM takes into account initial geometric 
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imperfections and adopts adjusted (reduced) stiffness. 

 Initial geometric imperfections 

DM in AISC 360-16 (2016) conservatively adopts the maximum allowable initial imperfection values 

specified in AISC 303-16 (2016): out-of-plumbness (∆/h) of 0.002 for frame and out-of-straightness (δ/L) 

of 0.001 for member. By employing a column buckling strength curve that accounts for member initial out-

of-straightness, only the remaining initial out-of-plumbness needs to be incorporated within the analysis. 

In member buckling strength checks, the column length is taken as the length between braced points (K=1). 

Initial imperfections may be accounted for through direct modeling or the applying horizontal notional 

loads of Ni = 0.002Yi, where Yi is the total factored gravity load applied at the i th level. When the ratio of 

second-order drift to first-order drift (Δ2nd-order /Δ1st-order) or B2 factor is not exceed 1.7, it is permitted to 

apply notional loads only in gravity load-only combinations and not in combination with other lateral loads 

(commentary in Section C2.2 of AISC 360-16).  

 Stiffness adjustment  

For frames with slender members, the axial load is typically not exceed 0.5Py (τb is equal to 1). The limit 

state is governed by elastic stability. The 0.8τb (0.8τb=0.8*1=0.8) factor on stiffness results in a system 

available strength equal to 0.8 times the elastic stability limit. 0.8 is close to the resistance factor ϕ (ϕ=0.9) 

times 0.877, where 0.877 is the factor used within the AISC column buckling strength curve to modify the 

Euler buckling load to account for member out-of-straightness. The compressive strength of the slender 

member (governed by elastic stability) is ϕPn = 0.90(0.877Pe) = 0.79Pe. The combination of axial load and 

partial yielding (accentuated by the presence of residual stresses) may has not considerable influence on 

bending stiffness.  

For frames with intermediate or stocky columns, the 0.8τb factor reduces the stiffness to account for inelastic 

softening prior to the members reaching their design strength. The bending stiffness of members with an 

axial load in excess of 0.5Py is reduced by the stiffness reduction factor τb derived from CRC column 

strength curve, to account for the influence of partial yielding accentuated by the presence of residual 

stresses. τb also accounts for the effects of local buckling of slender elements in compression members. The 

0.8 factor accounts for additional softening under combined axial compression and bending.  
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2.3.2 Effective length method (ELM) 

2.3.2.1 ELM for the stability design of frames 

The effective length method (ELM) has been used in various steel design codes and specifications. The 

current provisions for ELM in AISC 360-16 (2016) are essentially the same as those in Appendix 7 of the 

AISC 360-10 (2010). ELM utilizes the nominal geometry and the nominal elastic stiffness in the global 

analysis.  

The column effective length factor K (K>1), accounts for the effects of initial out-of-plumbness and 

member stiffness reductions due to the spread of plasticity.    

Some studies (Deierlein et al., 2002; White et al., 2006; Griffis and White, 2013; White and Hajjar, 1997; 

Surovek-Maleck and White, 2004a and 2004b) showed that the ELM could significantly overestimate the 

ultimate capacity of the symmetric framing systems with low redundancy and high gravity-to-horizontal 

load ratios. Particularly, the second-order internal moment was significantly underestimated since initial 

out-of-plumbness was not considered when modeling frames with nearly symmetrical geometry and 

loading patterns. As a consequence, AISC 360-16 (2016) stipulates two additional requirements for the use 

of the effective length method: 

(1) The use of the ELM is restricted to cases where the second order sway effect amplification factor, Δ2nd-

order /Δ1st-order (the ratio of second-order to first-order story drifts), which can be taken as the B2 multiplier, is 

less than or equal to 1.5.  

(2) For gravity-only load cases (without lateral load component), a notional lateral load of Ni = 0.002Yi 

should be included, where Yi is the total factored gravity load at the ith level. 

For the stability design of frames, effective length method is combined with second order elastic analysis. 

The effective length, KL, is used to calculate the nominal compressive strength, Pn, through LRFD column 

strength curve (empirical) that accounts for initial member out-of-straightness and spread of plasticity 

(including the effects of residual stresses). The nominal compressive strength, Pn, is then combined with 

the nominal flexural strength, Mn, and second-order elastic axial force and moment (Pr2 and Mr2), in the 

beam-column interaction equations. The beam-column interaction equations are determined by  
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𝑃𝑟2

𝜙𝑐𝑃𝑛
+

8

9

𝑀𝑟2

𝜙𝑏𝑀𝑛
≤ 1     for 

𝑃𝑟2

𝜙𝑐𝑃𝑛
≥ 0.2                                                 (2.2) 

𝑃𝑟2

2 𝜙𝑐𝑃𝑛
+

𝑀𝑟2

𝜙𝑏𝑀𝑛
≤ 1     for 

𝑃𝑟2

𝜙𝑐𝑃𝑛
< 0.2                                                 (2.3) 

where ϕc is resistance factor for compression and ϕb for bending; ϕc = ϕb =0.9.  

2.3.2.2 Calculation of the effective length factor K. 

Over the past decades, a wide range of methods for determining the effective length K, ranging from simple 

solutions of idealized columns, to complicated solutions for frames with various loading and boundary 

conditions, has been proposed, such as the alignment chart approach (Kavanagh, 1962; Wood, 1974; 

Johnston, 1976), the storey buckling approach (LeMessurier, 1977) the system buckling approach (Ziemian, 

1990; Liew et al.,1991), and the unified approach (White and Hajjar, 1997). 

For practical design, the most commonly used method of calculating K is through the alignment charts 

(Kavanagh, 1962), as shown in Fig.2.4 for sway-restrained frames and Fig.2.5 for sway-permitted frames.  

where  

𝐺 =
∑(𝐸𝑐𝑜𝑙𝐼𝑐𝑜𝑙/𝐿𝑐𝑜𝑙)

∑(𝐸𝑔𝐼𝑔/𝐿𝑔)
=

∑(𝐸𝐼/𝐿)𝑐𝑜𝑙

∑(𝐸𝐼/𝐿)𝑔
                                                         (2.4) 

The subscripts A and B represents the joints at the ends of the column being considered. The subscripts Col 

and g refer to the column and girder, respectively. E, I, and L are the elastic modulus, moment of inertia, 

and unsupported length. 
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Fig. 2.4. Alignment chart—sway-restrained (braced frame). 

 

Fig.2.5. Alignment chart—sway-permitted (moment frame). 
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The alignment charts are developed based on the following assumptions, which are idealized and hardly 

satisfied in practical conditions. 

(1) Behavior is purely elastic. 

(2) All members have constant cross section. 

(3) All joints are rigid. 

(4) For sway-restrained frames, rotations at opposite end of beams are equal in magnitude, producing single 

curvature  

(5) For sway-permitted frames, rotations at opposite ends of the restraining beams are equal in magnitude, 

producing reverse-curvature bending. 

(6) The stiffness parameter of all columns is equal. 

(7) Joint restraint is distributed to the column above and below the joint in proportion to I/L of the two 

columns.  

(8) All columns buckle simultaneously. 

(9) No significant axial compression force exists in the girders. 

(10) Shear deformations are neglected. 

For the calculation of K factor, AISC 360-16 (2016) additionally states that: 

(1) For braced frames, the effective length factor, K, of components of the braced frame is normally taken 

as 1.0, unless a smaller value is justified by structural analysis. 

(2) For moment frames, which rely primarily on the flexural stiffness of the connected beams and columns 

for stability, when Δ2nd-order /Δ1st-order or B2 ≤ 1.1, it is permitted to use K = 1.0 in the design of all the 

columns in the storey. The study of White and Hajjar (1997a) showed that the simplification for stiffer 

structures results in a 6% maximum error in the in-plane beam-column strength checks) 

2.3.3 Approximate second-order elastic analysis method (ASOM) 

Approximate second-order elastic analysis (ASOM) is essentially amplified first order analysis. Different 

to explicit second order analysis, the approximate second-order elastic analysis apply amplification factors 

(B1 and B2) to first-order analysis results. It provides an approximate procedure to account for second-order 

effects in structures by amplifying the internal forces and moments determined by two first-order elastic 
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analyses, as expressed by 

𝑀𝑟2 = 𝐵1𝑀𝑛𝑡 + 𝐵2𝑀𝑙𝑡                                                             (2.5) 

𝑃𝑟2 = 𝑃𝑛𝑡 + 𝐵2𝑃𝑙𝑡                                                                 (2.6) 

where Mr2 and Pr2 are second order internal axial force and moment, respectively. B1is the multiplier factor 

accounts for P-δ effects, B1 should be taken as 1.0 for members not subject to compression; B2 accounts for 

P-∆ effects (P-δ effects on the overall response are indirectly considered through a factor RM, (LeMessurier, 

1977). B2 is determined by an entire storey; Mnt and Mlt are first order internal moment in sway-restrained 

(no lateral translation) frames and sway-permitted frames (with lateral translation), respectively. Pnt and Plt 

are first order internal axial force in sway-restrained frames and sway-permitted frames, respectively. 

The main approximation in this technique is that it evaluates P-Δ and P-δ effects separately, through the 

two separate multipliers, B2 and B1, respectively. B2 is applied to all members, while B1 is only applied to 

compression members. To meet equilibrium requirement, other members at the joint should be multiplied 

by the same B1 or the largest B1 if there are more than one compression members at the joint. AISC 360-16 

(2016) suggests that a more rigorous second-order elastic analysis should be performed if B1 is larger than 

1.2 in members that have a significant effect on the response of the overall structure. 

It should be mentioned that B1 and B2 are used for developing the approximate expression of stainless steel 

beam-column stiffness reduction factor. Details on the determination of the two factors are shown in 

Chapter 5 of the thesis. 

An illustration of amplifying first order moment for a sway permitted frame is shown in Fig.2.6. Although 

second order moments caused by P-δ or P-∆ effects may have different distribution to first order elastic 

moments (LeMessurier, 1977; Kanchanalai and Lu, 1979), one should keep in mind that member sizes are 

governed by the value of the maximum moment rather than the location of the maximum moment in 

practical design. Note that when performing a general second-order analysis, superposition of basic load 

cases is not appropriate since the second order effects are nonlinear 
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Fig.2.6 (a) Deflected shape (b) Actual bending moments (c) Moment amplification accounts for P-δ effects 

(d) Moment amplification accounts for P-∆ effects. 

2.3.4 Comparison of DM, ELM and Approximate SOM 

A comparison of DM, ELM and amplified first order analysis is shown in Table .2.1.  

Note that for in-plane instabilities, the influence of geometric imperfections, partial yielding, and residual 

stresses are either (1) implicitly accounted for by using a column strength curve that is based on effective 

lengths in the AISC beam-column interaction equation or (2) explicitly accounted for by use of the direct 

analysis with column strength based on actual member length. 
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Table 2.1 Analysis method for ultimate limit state design checks provided in AISC 360-16 

 DM ELM ASOM 

Limitation None 
Δ2nd/Δ1st (or B2) ≤1.5 

(for all stories) 
B1 ≤1.2  

Analysis to determine 

internal force and 

moment  

Second order Second order First order 

P-∆ effects Structural analysis  Structural analysis 
Amplification factor 

B2 

P-δ effects Structural analysis  

    Member buckling 

resistance check with 

K>1(for Pn) 

Amplification factor 

B1  

 Initial out-of-

plumbness 

Notional load 0.002Yi or 

modelling directly  

(1) K>1 (for Pn)  

(2)Notional load: for 

gravity-only load 

cases, 0.002Yi ; for 

other cases：not 

considered 

K>1  (for Pn)  

 Initial out-of-

straightness 

Member buckling 

resistance check with K=1 

(for Pn) 

Member buckling 

resistance check with 

K>1 (for Pn) 

Member buckling 

resistance check with 

K>1 

Spread of plasticity 

(including residual 

stresses) 

Reduced stiffness: 0.8EA 

and 0.8τbEI 
K>1 (for Pn)  K>1 (for Pn)  

Note: 

(1) τb = 1.0 is permissible in 

all members if additional 

notional loads of 0.001Yi are 

applied.  

(2) Reduction of 0.8τbEI and 

0.8EA to all members is 

recommended. 

(1) For ELM provided in 

AISC, structural analysis 

commonly captures only 

P-∆ effects                                       

(2) Design using K = 1.0 

is recommended, when K 

< 1.0 for columns in 

braced frames, or 

Δ2nd/Δ1st ≤1.1 

B1 ≤1.2 is limited to 

compression members 

that have a significant 

influence on the 

response of the overall 

structure 

The accuracy of ELM and Approximate second-order elastic analysis (ASOM) highly depend on K factors. 

For simple frames, K factors are easily calculated and thus effective length method or amplified first order 

analysis method may be a convenient tool for stability design. However, for most structures, the calculation 

of K factors is not straightforward, and even tedious. Therefore, the direct analysis method, is more efficient 

for the stability design of frames.  
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2.4 Methodologies for evaluating frame stability provided in and EN 1993-1-

1:2015(E) 

EN 1993-1-1 (2015 E), which is the next generation of EN 1993-1-1(2005), provides 6 methods of analysis 

for ultimate limit design checks of separated members, as summarized in Table. 2.2. The 6 methods, M0, 

M1, M2, M3, M4, and M5, are from less complex to more complex based on the type of second order 

effects and imperfections (including initial geometric imperfections and residual stresses) considered in 

global analysis. According to the global analysis types, second order effects (P-Δ and P-δ effects) are 

considered by: 

 Entirely in the global analysis 

 Partially by member buckling resistance checks and partially in the global analysis. 

Table. 2.2 Analysis method for ultimate limit state design checks provided in EN 1993-1-1 (2015 E) 

 M0 M1 M2 M3 M4 M5 

Analysis to 

determine internal 

force and moment  

First order First order First order Second order Second order Second order 

P-∆ effects Neglected  Neglected  Neglected  Considered  Considered  Considered  

P-δ effects Neglected  Neglected  Considered  Considered  Considered  Considered  

 Initial out-of-

plumbness 
No need  No need Considered  Considered  Considered  Considered  

 Initial out-of-

straightness 
No need  No need Neglected  Neglected  Considered  Considered  

Cross-sectional 

resistance check 
Required Required Required Required Required Required 

Member buckling 

resistance check 
No need  

 Out-of-

plane 

 In-plane 

(K=1) and 

out-of-

plane 

In-plane 

(K=1) and 

out-of-plane 

 Out-of-

plane 
No need 

Note: 
(1) Geometric imperfections and residual stresses can be taken into account by equivalent 

geometric imperfections (2) Torsional effects are considered in M5 

The imperfections adopted in EN 1993-1-1 (2015 E) are the equivalent imperfections for some methods. 

For in-plane stability design, if the increase of internal forces and moments due to P-Δ effects is no more 

than 10% of the original internal forces and moments, first order analysis can be used for the determination 

of the internal forces and moments. This condition may be fulfilled if the second order sway effect factor 
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αcr,sw is equal to or larger than 10. αcr,sw is the ratio of Fcr,sw/FEd, where Fcr,sw is the elastic critical flexural 

buckling load for a global sway buckling mode; FEd is the design load on the structure.  

2.5 Comparison of the provisions in AISC 360-16 and EN 1993-1-1:2015(E) 

Both EN 1993-1-1 (2015E) and AISC 360-16 (2016) rely on using global elastic analysis in conjunction 

with interaction equations to confirm frame and beam-column stability. Besides, they are similar in several 

key ways:  

 The ultimate state is limited to the appearance of first plastic-hinge.  

 Initial geometric imperfections are accounted for either by explicitly including them in the analysis 

model or by the use of equivalent notional loads;  

 Resistance checks is on separated member-level through the use of interaction equations.  

There are major differences in the two standards for frame stability and beam-column strength assessment, 

including: 

 The resistance factors or partial safety factors for actions and resistances  

 Column buckling strength curves, and beam buckling strength curves 

 Whether or not stiffness reduction factors are used 

 The number and shape of the interaction curves used for beam-column 

For these difference, special focus is given on the interaction curves. AISC 360-16 (2016) employs a single 

interaction curve for or all types of cross sections, where cross sectional and member strength are not 

separate phenomena, since all beam-columns of finite length fail by some combination of inelastic bending 

and stability effects. The curve defines the lower-bound for compact wide-flange stub-columns bent about 

their major axis, and it is conservative for minor-axis bending. EN 1993-1-1 (2015E) provides separate 

interaction curves for cross-section strength, member in-plane buckling, and member lateral-torsional 

buckling. Based on classification of cross sections, different shape of interaction curves are used. 

Beyond the differences listed above, there are many additional differences in the provisions of the two 

standards. Detailed comparisons of assessment of beam-column strength and frame stability are provided 

in Ziemian (2010), White and Clarke (1997a,1997b), Chen and Kim (1997), and Chen (1992, 2000). 
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2.6 Stainless steel design standards 

Current stainless steel design standards, such as EN 1993-1-4 (2015), SEI/ASCE 8-02 (2002), and AS/NZS 

4673 (2001), are developed based on assumed analogies with carbon steel behavior, with modifications 

made where necessary to fit in with test results. None of them allows the benefit of strain-hardening. A brief 

overview of the provisions for the stability design of frame systems and member buckling strength checks, 

given in these stainless steel design standards, are presented in this section. This overview is not intended 

to provide an in-depth explanation of the provisions, such as grades and mechanical properties covered by 

the each standard. 

2.6.1 Frame stability 

EN 1993-1-4 (2015) states that the provisions for structural analysis given in EN 1993-1-1 (2005) should 

be applied for stainless steels, with the exception that, plastic global analysis is not allowed unless there is 

sufficient experimental evidence to ensure that the assumptions made in the calculations are representative 

of the actual behavior of the structure. SEI/ASCE 8-02 (2002) and AS/NZS 4673 (2001) do not cover the 

design of frame systems. The two specifications apply to stainless steel structural members used for load-

carrying purposes in buildings and other structures. 

2.6.2 Member buckling resistance 

EN 1993-1-4 (2015) provides similar formulations to EN 1993-1-1 (2005). The buckling curves (flexural, 

torsional, flexural-torsional buckling) of stainless steel columns, lateral-torsional buckling curves of 

stainless steel beams are essentially same to those of carbon steel, where slight differences exist in the 

selection of the imperfection parameter α and the limiting slendernessλ0. The two factors, α andλ0, 

effectively define the buckling curves’ shape.  

SEI/ASCE 8-02 (2002) provisions for the design of stainless steel members mainly follow the 

recommendations for carbon steel provided in AISI Specification (1986) for the design of cold-formed steel 

structural members. To take into account the nonlinear stress–strain behavior (determined by the Ramberg–

Osgood expression), the tangent modulus is used to replace the initial elastic modulus in the buckling 

formulations. AS/NZS 4673 (2001) adopts the recommendations by SEI/ASCE 8-02 (2002) for the 

determination of the buckling strength of members. It also gives an additional method similar to the Europe 
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buckling curve approach for the design of columns.  

2.6.2.1 Buckling strength of columns 

(1) EN 1993-1-4 (2015)  

In accordance with EN 1993-1-1 (2005), the flexural, torsional, and flexural-torsional buckling curves of 

stainless steel columns, are based on the Perry-Robertson buckling curves. Compared to carbon steel, 

different imperfection parameter α and the limiting slendernessλ0 for stainless steel is used, to account for 

the differences in mechanical properties and amplitudes of residual stresses. 

(2) SEI/ASCE 8-02 (2002) 

For doubly symmetric sections, closed cross-sections and any other sections that can be shown not to 

subject to torsional or flexural-torsional buckling, the flexural buckling stress (fn) is determined by  

𝑓𝑛 =
𝜋2𝐸𝑡

(𝐾𝐿 𝑟⁄ )2
≤ 𝑓𝑦                                                                   (2.7) 

Where Et is the tangent modulus in compression corresponding to the buckling stress; K is the effective 

length factor; L is the unbraced length of the member; r is the radius of gyration of the full, unreduced cross-

section. 

(3) AS/NZS 4673 (2001)  

AS/NZS 4673 (2001) adopts the approach in SEI/ASCE 8-02 (2002), but additionally provides column 

buckling curves based on Perry-Robertson approach. 

2.6.2.2 Lateral torsional buckling strength of unrestrained beams 

(1) EN 1993-1-4 (2015)  

Lateral torsional buckling curves for unrestrained beams bending about the major axis, provided in EN 

1993-1-4 (2015), are based on the Perry-Robertson buckling curves, with different values of imperfection 

parameter α and the limiting slendernessλ0 to those applicable for flexural buckling.  

(2) SEI/ASCE 8-02 (2002)  

In ASCE 8-02 (2002), the lateral torsional buckling strength of unrestrained beams is calculated directly 
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from the expression for the elastic critical moment (for lateral torsional buckling). To account for the non-

linear behavior of stainless steel in the inelastic stress range, the initial elastic modulus and initial shear 

modulus are replaced by the tangent modulus and tangent shear modulus.  

(3) AS/NZS 4673 (2001)  

AS/NZS 4673 (2001) adopts the approach in ASCE 8-02 (2002). 

2.6.2.3 Interaction equation for beam-columns 

(1) EN 1993-1-4 (2015)  

EN 1993-1-4 (2015) adopts the approach taken for carbon steel in EN 1993-1-1 (2005). For in-plane beam-

columns under bending and axial compression, the interaction equation provided is given by  

𝑁𝐸𝑑

𝑁𝑏,𝑅𝑑
+ k

𝑀𝐸𝑑
𝑀𝑏,𝑅𝑑
𝛾𝑀1

≤ 1                                                                  (2.8) 

NEd and MEd are the required axial force and moment (first order), respectively. Nb,Rd, and Mb,Rd are column 

buckling resistance and beam bending resistance, respectively. γM1 is partial factor, and γM1=1.1 is 

recommended. 

The interaction factor k is determined by  

1.2 ≤ 𝑘 = 1 + 2(𝜆 − 0.5)
𝑁𝐸𝑑

𝑁𝑏,𝑅𝑑
                                                       (2.9) 

(2) SEI/ASCE 8-02 (2002)  

SEI/ASCE 8-02 (2002) adopts the interaction equation in AISI Specification (1986) without modification. 

The AISI (1986) equation, given by Eq.(2.5) and (2.6), is based on the interaction equation recommended 

in the 1961 AISC specification (AISC,1961). 

When 
𝑃𝑢

𝜙𝑐𝑃𝑛
> 0.15         

𝑃𝑢

𝜙𝑐𝑃𝑛
+ (

𝐶𝑚

1−
𝑃𝑢
𝑃𝐸

)
𝑀𝑢

𝜙𝑏𝑀𝑛
≤ 1                                    (2.10) 

When 
𝑃𝑢

𝜙𝑐𝑃𝑛
≤ 0.15         

𝑃𝑢

𝜙𝑐𝑃𝑛
+ 

𝑀𝑢

𝜙𝑏𝑀𝑛
≤ 1                                          (2.11) 

The term 
𝐶𝑚

1−
𝑃𝑢
𝑃𝐸

 accounts for P-δ effects together with the benefit of moment gradient. Pu and Mu are 
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required axial force and moment (first order), respectively. The resistance factor ϕc =0.85 for columns, ϕc 

=0.9 for beams. In the interaction equations, P-Δ effects are not accommodated. 

(3) AS/NZS 4673 (2001)  

AS/NZS 4673 (2001) adopts the approach in ASCE 8-02 (2002). 

2.7 Consideration of material properties, geometric imperfections and residual 

stresses for frame stability design  

2.7.1 Material properties 

2.7.1.1 Stress-strain behavior of material 

The most important difference between stainless and carbon steels is in the shape of the stress-strain curve. 

Carbon steel typically exhibits linear elastic behavior up to the yield stress and a plateau before strain 

hardening is encountered, while stainless steel has a more rounded response with no well-defined yield 

stress, as shown in Fig.2.7. 

Strain

S
tr

e
ss

 

Fig.2.7 Stress-strain curves for stainless steel and carbon steel (Design Manual for Structural Stainless steel 

(2017)) 

For design and numerical simulation, many stress-strain models, based on the equation originally proposed 
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Ramberg and Osgood (1943) and modified by Hill (1944), have been developed. Mirambell and Real (2000) 

proposed a two-stage model based on the Ramberg-Osgood expression. In this proposed model, the basic 

Ramberg–Osgood expression was adopted up to the 0.2% proof stress. Beyond the 0.2% proof stress and 

up to ultimate stress, a second Ramberg–Osgood curve was used. Further work on this two-stage model 

was conducted by Rasmussen (2003) where the additional parameters required by the two-stage model were 

described. Gardner and Nethercot (2004) suggested that 1% proof stress should be used to replace the 

ultimate stress for the Mirambell-Real model. The accuracy of the modified model at low strains (less than 

approximately 10%) is improved and the modified model is applicable to describe the compressive stress-

strain behavior. In addition, a comprehensive description of available stress-strain curves for stainless steels 

was reported by Arrayago te al. (2015). 

2.7.1.2 Influence of the non-linear stress-strain response 

Depending on the type of the structural element or system, the round nonlinear stress-strain behavior can 

lead to either a reduced or enhanced capacity compared to an equivalent component with idealized elastic-

perfectly plastic stress-strain behavior.  

(1) Frame systems 

For stability governed frame systems, the early onset of stiffness degradation, which results in more 

deformation and in turn increased second order effects, may lead to reduced capacity. 

(2) Members 

For stainless steel members (columns and unrestrained beams), their buckling behavior is broadly similar 

to that of carbon steel, even though stainless steels exhibit considerable nonlinear stress-strain behavior. 

The influence of the nonlinear stress-strain behavior on the ultimate strength (or stiffness) of a stainless 

steel member relies on the stress level in the member (Baddoo, 2013; Baddoo and Francis, 2014). Take 

columns for example, this can be explained in terms of slenderness: 

(a) If the columns have very high slenderness (cross-sectional slenderness (λl) or member slenderness (λc)) 

so that they fail in the linear part of the stress-strain curve, the capacity of the columns are governed by the 

critical elastic local buckling strength or critical elastic global buckling strength. In this case, there may be 

little difference in the strength (stiffness) between the stainless steel and carbon steel columns, provided 
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that they have same initial geometric imperfections and residual stresses. 

(b) For columns which have intermediate slenderness, the average stress lies in the range between 

proportional limit and 0.2% proof strength. The ultimate strength (stiffness) of stainless steel columns is 

lower than similar carbon steel columns, since stainless steel is softer than carbon steel in this stress-strain 

range. 

(c) If the columns have relatively lower slenderness so that the average stress of the columns can exceed 

0.2% proof strength, the ultimate strength (stiffness) of the stainless steel columns are expected to be higher 

than the similar carbon steel columns, due to the benefit of strain-hardening. 

2.7.2 Initial geometric imperfections 

Initial geometric imperfections of frame structures refer to member out-of-straightness (δ0/L, member lever), 

out-of-plumbness (∆0/h, storey and frame level), and localized imperfection (ω0, cross-sectional and 

member lever). Out-of-straightness and out-of-plumbness are resulted from fabrication and erection process. 

Localized imperfection is complicated and has sufficient variability. For cold-formed box sections, 

localized imperfection is mainly induced by cold forming process. The illustration of out-of-plumbness 

(storey-level) and out-of-straightness is shown in Fig.2.8. 

h
ϕ

 

out-of-plumbness:   h  

out-of-straightness:  δ /L

 

Fig.2.8 Illustration of out-of-plumbness (storey-level) and out-of-straightness 

2.7.2.1 Out-of-plumbness and out-of-straightness 

Out-of-straightness and out-of-plumbness of structures are commonly caused by the following factors 
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(Ziemian, 2010) :  

(1) Actual column piece lengths and splice locations. 

(2) Beam length and connection fit-up tolerances. 

(3) Finite member size effects. 

(4) Unavoidable eccentricities at foundations. 

(5) Three-dimensional geometry. 

(6) Imperfect load placement.   

In the absence of more accurate information, the maximum allowable fabrication and erection tolerances 

specified in relevant design codes and specifications can be a reference for modelling geometric 

imperfections. The limits of out-of-straightness and out-of-plumbness specified in AISC 303-16 (2016): 

Code of Standard Practice for Steel Buildings and Bridges are: 

 Member out-of-straightness: δ0 /L < 1/1000, where L is the distance between brace points. 

 Story out-of-plumbness: ∆0/h < 1/500, where h is the story height. 

 Maximum lack of verticality : the maximum value of ∆0 should be less than 25 mm below the 20th 

floor, and less than 50 mm above the 20th floor. 

EN1993-1-1: 2015(E) provides a specific formulation to determine the value of initial out-of-plumbness 

(ϕ=∆/h-total; h-total is the total height of the frame) that should be considered in the global analysis. The ϕ 

provided in EN1993-1-1: 2015(E) is based on the two reduction factors provided in ECCS (1984). ϕ is 

determined by  

𝜙 = 𝜙0𝛼ℎ𝛼𝑚                                                                     (2.12) 

where ϕ0 is the basic value; ϕ0 =1/400 for verification of elastic resistance; ϕ0 =1/200 for verification of 

plastic resistance. 

The two reduction factors, αh and αm, given by Eq.(2.13) and (2.14), are based on the number of columns 

in a story and the number of stories in the building (ECCS,1984). 

𝛼ℎ =
2

√ℎ
     but 𝛼ℎ ≤ 1.0                                                          (2.13) 

𝛼𝑚 = √0.5 (1 +
1

𝑚
)                                                                (2.14) 
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where h is the height of the structure in meters; m is the number of columns in a row including only those 

columns which carry a vertical load not less than 50％ of the average value of all the columns in the vertical 

plane considered. 

Note that the initial sway imperfection ϕ provided in this design code is uniform sway imperfection over 

the entire height of the frame, which is different isolated storey-level sway imperfection, as shown in Fig. 

2.9. However, the study of Bridge and Bizzanelli (1987) showed that the imperfection values have no 

correlation to the number of columns in a story. Bridge and Bizzanelli’s study is based on statistical data of 

actual imperfections of present in a 47 story office building. The conclusion is contradictory to the ECCS 

(1991) provisions. 

ϕ

 

h-total

 

Fig.2.9 Uniform sway imperfection (frame-level) 

According to the report of Clarke and Bridge (1992, 1996), using a uniform out-of-plumbness that equals 

to the maximum out-of-plumbness over the entire height of the frame, are generally conservative. 

Nevertheless, this method may be adopted in the design of taller buildings, for the purpose of simplicity in 

design. Clarke and Bridge (1996) indicates that, for multistory frames that are not extremely slender, 

assuming a uniform out-of-plumbness of 1/500 over the entire height of the frame is reasonable and not 

overtly conservative. For slender frames, a more accurate strategy is needed since a uniform out-of-

plumbness applied over the height of the frame may generate unrealistically large overturning effects near 

the base of the frame. 

The sensitivity of frames to imperfections cannot easily be correlated to a single parameter. It is not hard to 

identify frames for which imperfections can be neglected. Ziemian (2010) suggests that out-of-plumbness 
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should be accounted for in the global stability analysis for all frames subjected to gravity loads. The 

consideration of member out-of-straightness depends on:  

 whether separated member buckling strength checks are conducted 

 whether the member out-of-straightness has a considerable influence on the structural behavior of the 

frame. 

Currently, member buckling strength checks are required in almost all the design codes and specifications. 

Thus, member out-of-straightness is not need to be included in the global analysis. If member buckling 

strength checks are not conducted, initial out-of-straightness should be taken into account unless its 

influence on the structural behavior of the frame can be neglected. The effect of out-of-straightness on 

frame behavior is based on:  

 the relative magnitude of axial force and primary bending moment levels. 

 whether the primary bending moments cause single or reverse curvature bending. 

 the slenderness of the member. 

Liew (1992) used the ratio of Pu/Pe1 to evaluate the influence of member out-of-straightness, where Pu is the 

design value of compression load; Pe1 is the critical buckling strength of the pinned member under 

compression (in-plane flexural buckling). Liew reported that effects due to member out-of-straightness are 

less than 5% for a wide range of section types when the ratio of Pu/Pe1 is no more than 0.2. Later, White and 

Nukala (1997) suggest that a limit of Pu/Pe1 < 1/7 is sufficient to restrict the reduction in strength due to 

out-of-straightness to less than 5%. EN1993-1-1: 2015(E) states that member out-of-straightness should be 

included in the global analysis for the frames that are sensitive to second order effects, where the following 

conditions are met: (1) at least one moment resistant joint at one member end, (2)Pu/Pe1 > 0.25. 

2.7.2.2 Localized imperfection 

In practical situations, many economical cold-formed hollow sections, which comprise slender thin-walled 

elements, are sensitive to initial localized imperfection. Initial localized imperfection (ω) (shown in 

Fig.2.10) induced by rolling and fabrication process is inevitable. It has sufficient variability and has no 
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definitive characterization. The study of Wang et al. (2017) and Zhao et al. (2015, 2016) showed that both 

the shape and magnitude of ω varied randomly in longitudinal direction for cold-formed members with box 

section, as shown in Fig. 2.10 (a). The shape of ω in transverse direction (cross-sectional) was found to be 

convexity /concavity (Young and Lui, 2005; Lui et al., 2014), which can be modelled by a half-sine wave, 

as shown in Fig. 2.10(b). ω is typically modelled by local buckling mode (shown in Fig. 2.10(c)) obtained 

from linear perturbation buckle analysis. The local buckling mode gives idealized ω and neglects 

uncertainty in localized imperfection.  

(b)(a)

ω

(c)

ω

 

Fig. 2.10. Localized imperfection (ω): (a) Random ω along longitudinal centerline of the surface (b) ω in 

transverse direction (convexity /concavity) (c) Idealized ω obtained from Buckle Analysis 

The distribution of ω in longitudinal direction for two tubes reported in (Zhao et al., 2016) are shown in 

Fig 2.11. It is observed that ω in longitudinal direction has a considerable variability and its characterization 

in a definite closed-form is not feasible. 
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Fig 2.11. Distribution of ω in longitudinal direction for two tubes reported in (Zhao et al., 2016) (a) RHS 

100 X 40 X 2 (b) SHS 60 X 60 X 3 

Some standards provide the maximum allowable value of localized imperfection in transverse direction 

(EN 10219-2, 2019; JG/T 178, 2005). The tolerance for convexity /concavity of a cross-section specified 

in EN-10219-2 (2019) is min {ωmax/b, 0.5mm}, where ωmax/b ≤ 0.008; b is the side (straight side of the 

cross-section) length; ωmax represents the maximum deviation from the straight side. 

2.7.3 Residual stresses 

Plastic deformation produced in cold-working process such as uncoiling, leveling, and rolling to form a 

section, results in residual stresses. Residual stresses of cold formed steel box sections comprise bending 

residual stresses, membrane residual stresses, and layer residual stresses (for the case of thick plates) (Key 

and Hancock,1993; Jandera and Gardner, 2008; Cruise and Gardner, 2008; Li et al., 2009; Tong et al., 2012; 

Ma et al., 2015; Somodi and Kövesdi, 2017). The distribution and magnitude of residual stresses of cold 
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formed stainless steel RHS and SHS were found to be comparable to those for cold formed carbon steel 

box sections, even though stainless steel shows different physical and thermal properties to carbon steel 

(Gardner and Cruise, 2009; Cruise and Gardner, 2008; Ma et al., 2015). A common conclusion from them 

is bending residual stresses (both longitudinal and transversal) in the corner area are smaller than those in 

the flat area. Bending residual were found significantly higher than membrane residual stresses in Key and 

Hancock (1993), Cruise and Gardner (2008) and Ma et al. (2015). Besides, for cold formed box sections 

comprised of thin steel plate, bending residual stresses typically vary linearly throughout the thickness 

while for those with thick steel plate, bending residual stresses throughout the thickness is nonlinear and 

there is a third component termed as layer residual stress (Key and Hancock, 1993; Gardner and Cruise, 

2009; Liu et al., 2017). 

The magnitude and distribution of tensile bending residual stresses in the out surface of cold formed 

stainless steel sections reported by Gardner and Cruise (2009) is shown in Fig.2.12. It can be seen that 

bending residual stresses are around 30% to 70% of the 0.2% proof stress (fy), which is close to the 

proportional limit of stainless steels (0.4fy to 0.7fy ) stated in Design Manual for Structural Stainless steel 

(2017). Characteristic values (representing the 95th percentile values based on a normal distribution) of 

bending residual stresses are 0.63fy in the flat regions of the section and 0.37fy in the corner regions. The 

bending residual stress pattern suggested in Gardner and Cruise (2009) is shown in Fig. 2.13, in which a 

rectangular block through thickness distribution is assumed. 

 

Fig.2.12. Normalized bending residual stresses in cold rolled boxes (Gardner and Cruise, 2009) 
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Fig 2.13. Bending residual stress pattern suggested in Gardner and Cruise (2009) 
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3. Numerical models and validation 

3.1 Introduction 

This chapter describes the finite element (FE) modelling approach adopted in Chapter 4-6, to verify GNA 

coupled with stiffness reduction factor for the design of stainless steel elements and frames with compact 

cross-sections. Compact sections in the current paper, which are in accordance with Baddoo N (2013), refer 

to sections that are not prone to local buckling reductions. These sections effectively cover Class 1 and 2 in 

the Eurocodes 3. The FE models are developed using the general-purpose package ABAQUS 6.13 (2013), 

and validated against experimental results from the literature. FE modelling approach for verifying GNA 

coupled with stiffness reduction factor that accounts for local buckling is presented in Chapter 7. FE 

modelling approach for probabilistic studies is presented in Chapter 8. In Chapter 4-6, only beam elements 

were employed, while both shell and beam elements were employed in Chapter 7-8. 

3.2 Finite element models 

3.2.1 Elements  

Abaqus offers a wide range of beam elements with solid, thin-walled closed and thin-walled open sections 

(Abaqus User Manual, 2013). Among all beam elements, Euler-Bernoulli-type beams and Timoshenko-

type beams are available. 

(1) Euler-Bernoulli beams do not allow for transverse shear deformation, and thus plane sections, which 

are initially normal to the beam's axis, remain plane (if there is no warping) and are normal to the beam 

axis. They are typically used to model slender beams. 

(2) Timoshenko beams allow for transverse shear deformation. They are applicable to model deep as well 

as slender beams. For beams made of uniform material, shear flexible beam theory provides accurate results 

for cross-sectional dimensions up to 1/8 of typical axial distances. Abaqus assumes that the transverse shear 

behavior of Timoshenko beams is linear elastic with a fixed modulus. 

In this study, the 2-node linear Timoshenko-type beam element (B21) is employed for in-plane members 

and frames with compact cross-sections. Local buckling and lateral torsional buckling are not need to be 

considered. RHS and SHS are modelled using box section with sharp corners. A B21 box section has 5 
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default Simpson integration points in the two walls of the section, as shown in Fig.3.1. There are no default 

integration points in the top and bottom wall of the B21 box section, nor user defined integration points are 

allowed in the two walls. 

a

b

2

1

Integration point

 

Fig.3.1 Default integration points in B21 box section 

3.2.2 Iterative solution methods 

In nonlinear analyses the total load applied in a step is broken into smaller increments so that the nonlinear 

solution path can be followed. At the end of each increment the structure is in (approximate) equilibrium. 

An iteration is an attempt at finding an equilibrium solution in an increment when solving with an implicit 

method. If the model is not in equilibrium at the end of the first iteration, further (second, third, …) 

iterations will be conducted until the obtained solution is closer to equilibrium. Sometimes many iterations 

are needed to obtain an equilibrium solution. When an equilibrium solution has been obtained, the 

increment is complete.  

ABAQUS/Standard (implicit solver) provides several numerical techniques to solve the nonlinear 

equilibrium equations: 

 Load Control Newton-Raphson Method  

 Displacement Control Method 

 Arc-length Method 

The load controlled Newton-Raphson method is the earliest method in this regard (Süli and Mayers, 2003). 

The conventional Newton-Raphson method (illustrated in Fig. 3.2(a)) updates the tangent stiffness matrix 

of the structure at each iteration, while the modified Newton-Raphson method (illustrated in Fig. 3.2(b)) 

only evaluates the stiffness relation at the start of the increment and the stiffness matrix is constant at each 
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iteration (within an increment). Both of the conventional and modified Newton-Raphson method fail near 

the limit point. 

Applied load (P)

Displacement (U)

K

K: Stiffness matrix

(updated at each iteration)

Load 

increment

Equilibrium path

Last solution point

Solution point

Applied load (P)

Displacement (U)

K

K: Stiffness matrix

(constant at each iteration)

Load 

increment

Solution point

Last solution point

Equilibrium path

Applied load (P)
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Specified 
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increment

Solution point

Last solution point

 P1

 P2

 U1

 U2
Equilibrium path

Computed 
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Solution point

Last solution point
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 P2

Equilibrium path

Sphere

 U1  U2

(a) (b)

(c) (d)  

Fig .3.2 Numerical techniques for solving the nonlinear equilibrium equations (a) Conventional Newton-

Raphson Method (b) Modified Newton-Raphson Method (c) Displacement Control Method (d) Arc-length 

Method 

To overcome difficulties with limit points, Displacement Control Method (illustrated in Fig. 3.2(c)) was 

introduced (Argyris, 1965; Zienkiewicz, 1971; Sabir and Lock, 1972, Batoz and Dhatt, 1979). However, 

for structural systems exhibiting snap-through or snap-back behavior, this technique leads to error. To solve 

this problem and obtain a more general technique, the arc-length method (illustrated in Fig. 3.2(d)) for 
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structural analysis was developed by Wempner (1971), Riks (1972; 1979) and later modified by Ramm 

(1980).  

In this study, Newton-Raphson method is adopted in first order elastic analysis and second order elastic 

analysis, where the applied load is known. The Arc-length Method is adopted in second order inelastic 

analysis, where the loading cases are proportional (unstable collapse and postbuckling analysis). 

ABAQUS/Standard, the Newton-Raphson method is available in *STATIC-GENERAL analysis type, 

while the arc-length method is available in *STATIC-RIKS analysis type. 

3.2.3 Stress-strain curves  

The material behavior of stainless steel is modelled based on the nonlinear two-stage stress-strain curve 

provided in EN 1993-1-4 (2015), given in Eq.(3.1) and (3.2) and shown in Fig.3.3, which is essentially the 

expression proposed by Ramberg-Osgood (1943). 

ε =
𝜎

𝐸
+ 0.002(

𝜎

𝑓𝑦
)
𝑛

                    for 𝜎 ≤ 𝑓𝑦                                  (3.1) 

ε = 0.002 +
𝑓𝑦

𝐸
+

𝜎−𝑓𝑦

𝐸𝑦
+ 𝜀𝑢(

𝜎−𝑓𝑦

𝑓𝑢−𝑓𝑦
)𝑚       for 𝑓𝑦 < 𝜎 ≤ 𝑓𝑢                              (3.2) 

where E is Young’s Modulus; 𝑓𝑦 is 0.2% proof stress; n is the first stage strain hardening exponent; Ey is 

the tangent modulus at the 0.2% proof stress; Ey=E/(1+0.002nE/fy); m is the second stage strain hardening 

exponent; εu is the ultimate strain; fu is the ultimate stress.  

fy 

fu

0.2%  εy εu

σ  

ε

 Ey

0.01%
 

Fig.3.3 Stress-strain curve for stainless steel 
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The expression of the two-stage stress-strain curve involves three basic parameters (E, fy, n) for σ ≤ fy and 

three additional parameters (εu, fu, m) for σ > fy. The additional parameters can be determined in terms with 

E, fy and n (Rasmussen,2003). Although the full stage Ramberg-Osgood curve was adopted in FE modeling, 

the ultimate strengths from FE analysis were limited to full plastic strength of the cross-section, and thus 

strain hardening that results in strengths greater than the full plastic strength of the cross-section is not 

considered in the study. Currently strain-hardening is not permitted to be considered in the stability design 

of stainless steel structures (EN 1993-1-4, 2015; ASCE 8-02, 2002; AS/NZS 4673, 2001), even though 

stainless steel has considerable strain-hardening behavior. 

The weighted material property method proposed by Hradil and Talja (2013) is adopted to account for the 

enhanced material properties of the corner regions (including the extended area) in cold-formed stainless 

steel cross sections. In this method, the material parameters are weighted in accordance with the flat or 

corner area compared to the whole cross-section area, and the weighted average material properties are 

assigned to the whole cross-section. The study of Arrayago (2016) showed that the weighted average 

material property method provided excellent results for cold-formed stainless steel columns, beams, and 

beam-columns with cold formed RHS and SHS. For FE models described in this paper, the considered 

enhancement amplitude for yield strength and ultimate strength (if applicable) of the corner regions are 

based on the available test data reported in Arrayago (2016), Gardner and Nethercot (2004) and Afshan et 

al. (2013). 

3.2.4 Modelling of initial geometric imperfections 

Initial geometrical imperfections (out-of-plumbness and out-of-straightness) can be taken into account 

either by modifying them directly or by applying equivalent notional loads in combination with the gravity 

loads. It is generally acknowledged that geometrical imperfections should be modelled in the direction that 

produces the most destabilized effects.  

In this study, both out-of-plumbness and out-of-straightness are considered for sway-permitted members 

and frames, while only out-of-straightness is considered for sway-restrained members and frames. In some 

studies, out-of-plumbness and out-of-straightness are treated as unified imperfection. The unified 

imperfection is typically modelled by means of introducing relevant buckling mode that obtained from 

Buckle Analysis. However, it is not straightforward to determine the amplitude of the unified imperfection, 
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since its shape is the combination of out-of-plumbness and out-of-straightness. In this study, the effects of 

out-of-plumbness and out-of-straightness are taken into account by applying horizontal notional loads. Out-

of-plumbness is represented by concentrated notional loads and modelled in the direction of sway 

deformation. The notional loads are applied at all levels, as shown in Fig. 3.4. The magnitude (Ni) of the 

notional load is determined by  

𝑁𝑖 = 𝑊𝑖
Δ0

ℎ
                                               (3.3) 

where Wi is gravity load applied at level i. The value of out-of-plumbness (
Δ0

ℎ
) adopted in this study is the 

maximum allowable value 0.002 specified in AISC 303-16 (2016): Code of Standard Practice for Steel 

Buildings and Bridges. 

W1

W2

W3

W4

   h

N1=W1    h

N2=W2    h

N3=W3    h

N4=W4    h

N1+N2+N3+N4

 

Fig. 3.4 Notional loads for modelling uniform out-of-plumbness over the height of the frame 

To avoid additional shear force at the member or frame base due to notional loads, corresponding horizontal 

reaction forces, equal and opposite in direction to the sum of all notional loads, are applied.  

Out-of-straightness is represented by concentrated notional loads and modelled in the direction that the 

members deforms in a preliminary Buckle Analysis through ABAQUS. Out-of-straightness could also be 

modelled using uniformly distributed loading instead of applying the concentrated load at the mid-height. 

Both modelling approaches should provide similar results. For the columns that have double curvatures, 

the concentrated notional loads are applied in the mostly deformed direction, as illustrated in Fig. 3.5.  
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Fig. 3.5 Notional loads for modelling out-of-straightness of the member 

The magnitude (Nq) of the notional load is determined by 

𝑁𝑞 =
4𝑃𝑟1𝛿

𝐿
                                          (3.4) 

where Pr1 is the maximum first order internal axial force within the member; L is the length between brace 

points; the adopted member out-of-straightness (δ/L) is 0.001. 

Similarly, the horizontal reaction force of 
𝑁𝑞

2
 should be applied at both ends of the member to avoid 

additional fictitious shear forces. 

3.2.5 Modelling of residual stresses 

Due to the presence of residual stress, premature yielding may occur under external loading, and 

consequently loss of stiffness which results in a reduction in strength. The report of Jandera and Gardner 

(2008), Jandera and Machacek (2014) showed that for global behavior of stainless steel members with box 

sections, the effect of through-thickness longitudinal bending residual stresses is dominant and the effects 

of other residual stress components are negligible. Similar conclusion for carbon steel members with cold 

formed box sections has been reported in (Key and Hancock, 1993; Liu et al., 2017). Therefore, only 

longitudinal residual stresses are considered in this paper and they are accounted for by modifying the 

stress-strain curve. The procedure of modifying the stress-strain curve is in based on the study of Liu et al. 

(2017), and the amplitude of longitudinal residual stresses is based on the residual stress pattern for flat 
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zone of the cross section suggested in Gardner and Cruise (2009). 

For shell elements, residual stresses are commonly incorporated into the FE models through integration 

points (using the SIGINI subroutine of ABAQUS). Nevertheless, residual stresses components considered 

here can not be introduced through integration points, since there is only one integration point through the 

thickness of beam element but the considered residual stresses varies linearly through the thickness of the 

section. 

The modification of stress-strain curve is based on the assumption that the material properties of stainless 

satisfy von Mises yield criterion and Prandtl-Reuss flow rules.  

According to von Mises yield criterion, for a plate in a plane stress state (shown in Fig. 3.6), yielding occurs 

when the equivalent stress (σeq) reaches the yield strength of the material, as given by  

𝜎𝑒𝑞
2 = 𝜎𝑥

2 + 𝜎𝑦
2 − 𝜎𝑥𝜎𝑦 + 3𝜏𝑥𝑦

2     (3.5)                                                                                                                                                             

where σx and σy are the normal stresses in the longitudinal and transversal directions, respectively, and τxy 

is the shear stress.  

X

Y

Z

σx 
τxy

σy

 

Fig.3.6 A plate in the state of plane stress 

In the presence of both longitudinal and transverse residual stresses, σx , σy and τxy are given by  

𝜎𝑥 = 𝜎 + 𝜎𝑙      (3.6)                                                                                                                                               

𝜎𝑦 = 𝜎𝑡      (3.7) 

𝜏𝑥𝑦 = 0                (3.8)                                                                                   
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where σ is the applied stress in longitudinal direction; σl and σt are the residual stresses in the longitudinal 

and transversal directions, respectively.  

Since the stress-strain curve of stainless steel differs to that of carbon steel, the procedure of modifying 

stress-strain curve is slightly differnt to the one present in Liu et al. (2017). It is carried out by the following 

steps. 

1. Divide the section into different layers (shown in Fig.3.7 (a)) and monitor the stress at each node between 

the layers. 

(a)

t
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(b)
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   σx = + σlb
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Fig.3.7 (a) layer through thickness (b) distribution of through-thickness longitudinal bending residual stress 

(σlb) (c) the applied tension stress (d) the total stress in longitudinal direction 

2. Rewrite Eq.(3.1) that determines the stress-strain curves of stainless steel as 

ε = 𝜑(𝜎)                                        (3.9)                                                                                                                                          

Then, it gives 

𝜎 = 𝜑−1(𝜀)                                      (3.10)  

If strain-hardening is not considered, φ-1 (ε) is the inverse function of one stage Ramberg-Osgood equation, 

while if strain-hardening is considered, φ-1 (ε) is the inverse function of the two stage Ramberg-Osgood 

equations. 

3. Assuming the applied initial strain ε0 is zero, apply an increment of strain (Δεi) to the section  

Δ𝜀𝑖 = 𝜀𝑖 − 𝜀𝑖−1         (𝑖 = 1,2,3⋯)                   (3.11)                                                                                                     
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The change in stress is  

Δ𝜎𝑖 = 𝜑−1(𝜀𝑖) − 𝜑−1(𝜀𝑖−1)                         (3.12)                                                                                                                    

4. Assume the applied initial stress is zero (𝜑−1(𝜀0) = 0) and only longitudinal bending residual stresses 

are considered. In the i (i=1,2,3……) step, the total stress in longitudinal direction is  

𝜎𝑥 = ∑ Δ𝜎𝑖
𝑖
1 + 𝜎𝑙𝑏                                (3.13)                                                                                                          

= ∑ [𝜑−1(𝜀𝑖) − 𝜑−1(𝜀𝑖−1)]
𝑖
1 + 𝜎𝑙𝑏                  (3.14)                                                                                            

= 𝜑−1(𝜀𝑖) − 𝜑−1(𝜀0) + 𝜎𝑙𝑏                        (3.15)                                                                                                 

= 𝜑−1(𝜀𝑖) + 𝜎𝑙𝑏                                (3.16)                                                                                                           

where σlb is through-thickness longitudinal residual stress; σlb, ∑ Δ𝜎𝑖
𝑖
1 , and σx are shown in Fig.3.7 (b), (c) 

and (d), respectively. 

5. Substituting Eq.(3.16)  into Eq.(3.5), it gives  

𝜎𝑒𝑞
2 = (𝜑−1(𝜀𝑖) + 𝜎𝑙𝑏)

2                           (3.17)                                                                                                      

6. In the i step, if σeq ≤ fy, calculate the average applied stress on the cross section through integration for 

all the points as follows 

𝜎𝑎𝑣 = 
∫ ∑ [𝜑−1(𝜀𝑖)−𝜑−1(𝜀𝑖−1)]𝑖

1𝑡
𝑑𝑡

𝑡
=

∫ 𝜑−1(𝜀𝑖)𝑡
𝑑𝑡

𝑡
           (𝑖 = 1,2,3⋯ )         (3.18)                                                                              

7. Else if σeq > fy, define Δσi in the i step as  

Δ𝜎𝑖 = 𝛼∗[𝜑−1(𝜀𝑖) − 𝜑−1(𝜀𝑖−1)]                       (3.19) 

8. Substituting Eq.(3.19)  into Eq.(3.13), it gives 

𝜎𝑥 = 𝜑−1(𝜀𝑖−1) + 𝛼[𝜑−1(𝜀𝑖) − 𝜑−1(𝜀𝑖−1)] + 𝜎𝑙𝑏          (3.20) 

9. Calculate the solution of α*, so that 

𝜎𝑒𝑞 = 𝑓𝑦 (without strain hardening)   𝑜𝑟  𝜎𝑒𝑞 = 𝑓𝑢 (with srain hardening)  (3.21)                                                                                                                  

10. Calculate the average applied stress as follows 

𝜎𝑎𝑣 = 
∫ [𝜑−1(𝜀𝑖−1)+𝛼[𝜑−1(𝜀𝑖)−𝜑−1(𝜀𝑖−1)]]𝑡 𝑑𝑡

𝑡
                  (3.22)                                                                                                                  

11. Repeat the above steps 1–10 to obtain a series of points of strain and stress (∑Δεi , σav), where ∑Δεi 

represents the total applied strain, and σav represents the corresponding stress. The curve of ∑Δεi versus σav 
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is the modified stress-strain curve that accounts for longitudinal bending residual stresses. 

For the example of stainless steel with E=200GPa, n=7 and fy = 450MPa (without strain hardening), 

comparison of the modified stress-strain curve accounting for the influence of longitudinal bending residual 

stresses against the stress-strain curve without residual stresses is shown in Fig.3.8. In this example, 

longitudinal bending residual stresses (σlb) vary linearly throughout the thickness, and the amplitude of σlb 

in outer surface and inner surface of the wall is taken as 0.63fy. 

σ (MPa)

ε

(×10-3)

Without residual stress 

Considering longitudinal 
bending residual stress 

fy

 

Fig. 3.8 Comparison of the stress-strain curves with and without residual stresses 

It should be pointed out that, for numerical models using stress-strain curves obtained from tensile coupons 

test directly, there may be no need to reintroduce longitudinal bending residual stresses. This is due to the 

reason that the influence of through-thickness longitudinal bending residual stresses is approximately 

presented in the stress-strain curves obtained from tensile coupons test. It can be explained by the following. 

Due to releasing longitudinal bending residual stresses, coupons are typically curved after cutting from the 

member. Since the coupons will be straightened in the beginning of the test, the original through-thickness 

longitudinal residual stresses are approximately reintroduced again.  

3.3 Validation of the finite element models 

The developed FE models were validated against the test results on stainless steel beam-columns with cold-

formed RHS reported in Arrayago et al. (2016), and validated against test results on carbon steel frames 
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comprising cold-formed RHS reported in Wilkinson and Hancock (1999). Both the beam-columns and 

frames considered for the validation study are not susceptible for local buckling (class 1 and 2 sections). 

For the validation study, initial geometric imperfections was modelled as explained in Section 3.2.3. The 

adopted imperfection value and the material properties were modelled as those reported in the literature. 

The longitudinal bending residual stresses were not modelled, since they are implicitly included in the 

stress-strain curves. 

Comparison of numerical results against test results for the two beam-columns is shown in Fig. 3.9 (a). It 

can be seen that the numerical results are in very close agreement with experimental results. Fig. 3.9 (b) 

shows the comparison of the developed FE models against the tests results of two steel frames. The 

discrepancy between the predicted results and the test results may be attributed to the fact that the 

connections of the tested frames are not perfectly rigid. These differences were also observed in the FE 

models presented in Wilkinson and Hancock (1999). The close agreement between predicted results and 

the test results indicates that the developed FE models can accurately predict the in-plane response of steel 

frames.  

0 10 20 30 40 50
0

50

100

150

200

250

300

S1-EC1

S3-EC1

Lateral  deflection (mm)

FE
Experiment

A
x

ia
l 

lo
ad

 (
k

N
)

P

M

P

M

0 50 100 150 200
0

10

20

30

40

50

60

70

V
er

ti
ca

l 
L

o
ad

 (
k
N

)

Vertical Displacmement at Apex (mm)

Frame 1-Test

Frame 3-Test

Frame 1-FE

Frame 3-FE

 

                        (a)                                              (b) 

Fig. 3.9 Validation of the developed FE models against the tests results for (a) beam-columns from Arrayago 

et al. (2016) (b) frames from Wilkinson and Hancock (1999). 

3.4 Concluding remarks 

The in-plane structural behavior of stainless steel elements and frames is studied through FE analysis. In 
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FE modelling, the influence of out-of-plumbness and out-of-straightness can be taken into account by 

applying equivalent notional loads. To avoid additional shear force at the member or frame base due to 

notional loads, corresponding horizontal reaction forces should be applied. For cold-formed RHS and SHS, 

only longitudinal bending residual stresses are considered in FE models and they are accounted for by 

modifying the stress-strain curve. For numerical models using stress-strain curves obtained from tensile 

coupons test directly, there is no need to model longitudinal bending residual stresses since they are 

approximately presented in the stress-strain curves obtained from tensile coupons test.  
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4. Flexural stiffness reduction factor for stainless steel columns and 

beams  

4.1 Introduction 

In this chapter, column flexural stiffness reduction factor (τN) and beam flexural stiffness reduction factor 

(τM) are derived from stainless steel column strength curve and moment-curvature curve, respectively. The 

accuracy of both τN and τM is subsequently verified.  

The proposed τN and τM are applicable to stainless steel members with compact cold-formed RHS and SHS. 

The primary purpose of developing τN and τM is to develop the approximate expression of stainless steel 

beam-column stiffness reduction factor (τMN) formulation (presented in Chapter 5), since τN and τM are the 

main variables in the approximate expression. 

 τN is derived from stainless steel column strength curve provided in AISC Design Guide 27. The 

stainless steel column strength curve is established by modifying relevant coefficient of AISC LRFD 

carbon steel column strength curve and calibrated against experimental data. 

 τM is developed based on the moment-curvature relationship for stainless steel beams with cold 

formed RHS and SHS. The employed moment-curvature relationship considers material non-

linearity and it is fitted by an analytical expression similar to the Ramberg-Osgood equation. 

4.2 Derivation of flexural stiffness reduction factor for stainless steel columns 

Carbon steel column flexural stiffness reduction factor τb is derived from Column Research Council (CRC) 

column strength curve. The CRC column strength curve is developed based on test results of columns with 

hot-rolled wide-flange I sections (Johnston,1976). The CRC curve (for compact sections) is given by:  

When 𝜆𝑐 ≤ 1.414    𝑃𝑛 = (1 −
𝜆𝑐

2

4
) 𝑃𝑦           (4.1)                                               

When 𝜆𝑐 > 1.414    𝑃𝑛 = 𝑃𝑒 =
𝑃𝑦

𝜆𝑐
2              (4.2)                                              

where Pn is the nominal compressive strength of a column; Pn is equal to nominal global buckling strength 

(Pne) for a column with compact section; c is column slenderness; c= (Py / Pe)^0.5; Pe is the elastic critical 
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buckling strength of a column with effective length factor (K). Eq. (4.1) represents inelastic buckling 

whereas Eq. (4.2) represents elastic buckling. The plot of CRC column strength curve is shown in Fig. 

4.1(a). 
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Fig.4.1. (a) CRC carbon steel column strength curve (b) A plot of τb against Pr1/Py 

τb is given by  

𝜏𝑏 = 1             for 
𝑃𝑟1

𝑃𝑦
≤ 0.5            (4.3) 

𝜏𝑏 = 4
𝑃𝑟1

𝑃𝑦
(1 −

𝑃𝑟1

𝑃𝑦
)   for 

𝑃𝑟1

𝑃𝑦
> 0.5               (4.4)     

where Pr1 is maximum first order internal axial force; Py is cross -section yield strength Py=Afy ; A is cross-

section area; fy is 0.2% proof stress. A plot of τb curve is shown in Fig.4.1 (b). 

τb is intended to mainly account for the influence of partial yielding accentuated by the presence of residual 

stresses, but it may not be applicable to cold-formed RHS and SHS. This is because the distribution and 

magnitude of residual stresses of cold-formed RHS and SHS differs from that of hot-rolled wide-flange I 

sections. Therefore, a new column stiffness reduction factor (τN) for cold-formed stainless steel with RHS 

is developed. τN is derived from stainless steel column strength curve provided in Section 5.3 of AISC 

Design Guide 27 (2013). This curve is established by modifying relevant coefficient of AISC LRFD carbon 

steel column strength curve and calibrated against experimental data. The AISC LRFD-based stainless steel 

column strength curve (for compact section) is given by: 
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When 𝜆𝑐 ≤ 1.2    𝑃𝑛 = 0.5𝜆𝑐
2
𝑃𝑦                   (4.5)            

When 𝜆𝑐 > 1.2    𝑃𝑛 = 0.531𝑃𝑒 =
0.531

𝜆𝑐
2 𝑃𝑦           (4.6)                                            

where the nominal compressive strength Pn is equal to nominal global buckling strength for a column with 

compact section; Eq. (4.5) represents inelastic buckling while Eq. (4.6) represents elastic buckling. A plot 

of the AISC LRFD-based stainless steel column strength curve is shown in Fig 4.2 (a)  
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Fig. 4.2 (a) AISC-based stainless steel column strength curve (b) Illustration of deriving τN (c) A plot of τN 

The derivation of column stiffness reduction formulation is based on Eq. (4.7), as illustrated in Fig.4.2 (b). 
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𝜏𝑁 =
𝑃𝑛

0.531𝑃𝑒
                                (4.7)                                                   

For the elastic buckling case, τN=1. For the inelastic buckling case, τN is less than 1. Rewriting Eq. (4.7), 

the following equation for both elastic and inelastic buckling is obtained. 

𝑃𝑒 =
𝑃𝑛

0.531𝜏𝑁
                                (4.8)                                                   

Rewriting Eq. (4.5) gives 

𝑃𝑛 = 0.5
𝑃𝑦

𝑃𝑒𝑃𝑦                              (4.9)         

Substituting Eq.(4.8) into Eq.(4.9) gives  

𝑃𝑛

𝑃𝑦
= 0.5

0.531𝜏𝑁𝑃𝑦

𝑃𝑛                             (4.10)                                                    

ln
𝑃𝑛

𝑃𝑦
= 0.531𝜏𝑁

𝑃𝑦

𝑃𝑛
ln 0.5                      (4.11)                                                   

𝜏𝑁 = −2.717
𝑃𝑛

𝑃𝑦
𝑙𝑛

𝑃𝑛

𝑃𝑦
                         (4.12)                                                   

For 𝜆𝑐 = 1.2, 𝑃𝑛 𝑃𝑦⁄ = 0.37. Thus,  

when 
𝑃𝑛

𝑃𝑦
≤ 0.37 (𝜆𝑐 ≥ 1.2)       𝜏𝑁 = 1            (4.13)                                                 

when 
𝑃𝑛

𝑃𝑦
> 0.37 (𝜆𝑐 < 1.2)       𝜏𝑁 = −2.717

𝑃𝑛

𝑃𝑦
𝑙𝑛

𝑃𝑛

𝑃𝑦
       (4.14)                                        

A plot of τN is shown in Fig 4.2 (c). It should be noted that for the determination of τN under different axial 

load, the nominal compressive strength Pn should be replaced by maximum internal axial force Pr1 under 

corresponding axial load. Thus, the expression of τN is given by  

When 
𝑃𝑟1

𝑃𝑦
≤ 0.37       𝜏𝑁 = 1                 (4.15)                                                

When 
𝑃𝑟1

𝑃𝑦
> 0.37       𝜏𝑁 = −2.717

𝑃𝑟1

𝑃𝑦
𝑙𝑛

𝑃𝑟1

𝑃𝑦
         (4.16)                                           

The above τN formulation accurately accounts for the effects of residual stress, member imperfection (out-

of-straightness), and spread of plasticity on stainless steel columns. Comparison of τN and τb is shown in 

Fig.4.3. It can be observed that τN is lower than τb. 
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Fig 4.3 Comparison of τN and τb 

4.3 Verification of column flexural stiffness reduction factor (τN) 

The accuracy of column flexural stiffness reduction factor (τN) for predicting compressive strength of 

members subjected to axial load is assessed in this section. A total of 23 simply supported columns with 

section 120x80x6 (E=175 GPa, fy=350MPa, n=6) subjected to axial loads are studied. The applied axial 

load is factored. The length of the columns varies from 50mm to 7000 mm. L= [50, 100, 200, 300, 350, 

400, 450, 500, 600, 700, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000, 5500, 6000, 6500, 7000]. 

For each column, GMNIA and GNA with τN (denoted by GNA-τN) are conducted. 

The procedure of implementing GNA-τN is shown in Fig.4.4. Firstly, GMNIA is conducted to determine 

ultimate axial load (Pu) of the columns, where the introduced out-of-straightness is 0.001. In this figure, Pu 

predicted by GMNIA is denoted by Pu-GMNIA. Secondly, Linear Elastic Analysis (LA) is conducted to obtain 

maximum first order axial force, where the applied load is Pu-GMNIA. The introduced out-of-straightness is 

0.001 in implementing LA. Maximum first order axial force obtained from LA is referred to as Pr1. For all 

the studied simply supported columns, Pr1 is equal to Pu-GMNIA. τN is calculated according to Eq.(4.15) and 

(4.16). Lastly, GNA-τN is conducted to predict ultimate axial load of the columns. Ultimate axial load 

predicted by GNA-τN is denoted by Pu-τN. It should be mentioned that, an imperfection value much smaller than 

0.001is introduced into the columns to ensure that these columns can buckle in GNA (columns without any 

imperfection would not buckle in GNA), even though τN includes out-of-straightness of 0.001. If the proposed τN 
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expression is “perfect”, the failure load determined by GNA-τN should be equal to the failure load determined by 

GMNIA. The discrepancy between them shows the quality of τN.  

Column subjected 

to  factored load 

Pr1 

τN  

LA 

GNA 

 Eq.(4.15) 

and Eq.(4.16) 

GMNIA 

Pu-GMNIA

Pu-τN  

Fig.4.4 Procedure of implementing GNA-τN and GMNIA 

It is found that, the ultimate load Pu-τN (inelastic global buckling strength) of simply supported columns 

predicted by GNA-τN matches the bifurcation load (or elastic critical buckling load) Pe-τN determined by 

reduced flexural stiffness (τN times EI), as shown in Fig.4.5. Pe-τN is given by  

𝑃𝑒−𝜏𝑁 =
𝜋2(𝜏𝑁𝐸𝐼)

(𝐿)2
                         (4.17)                                                        

where EI is initial flexural stiffness; L is unbraced length of the column. 

Pu

 

GNA-τN

 

Fig.4.5 Illustration of ultimate axial load (Pu) determined by GNA-τN and elastic critical buckling load (Pe-

τN) based on effective flexural stiffness (τNEI) 
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Comparison of predicted results from GNA-τN against those determined by GMNIA is shown in Fig.4.6, 

where ultimate axial load (Pu) predicted by different method is normalized by full cross-section yield 

strength (Py). It is observed that the ultimate axial loads predicted by GNA-τN agree very well with those 

predicted by GMNIA. The discrepancy between Pu-τN and Pu-GMNIA relies on the ability of the adopted AISC 

LRFD-based stainless steel column strength curve to capture accurately the actual behavior of the studied 

columns. Since AISC LRFD-based stainless steel column strength curve provided in AISC design guide 27 

(Baddoo, 2013) is calibrated against experimental data, further verification of column flexural stiffness 

reduction factor (τN) for other columns is not needed. 

P

P

 Pu/ Py 

 λ c

GNA-τN

GMNIA

 

Fig.4.6 Normalized ultimate axial load (Pu/Py) predicted by different methods against column slenderness 

(c) 

4.4 Derivation of flexural stiffness reduction factor for stainless steel beams 

Bending stiffness reduction for in-plane beams refers to influence of spread of plasticity through cross-

section and along the member. Bending stiffness reduction factor (τM) can be determined by the ratio of 

tangent flexural stiffness (EI)t to the initial flexural stiffness EI, given by:  

𝜏𝑀 =
(𝐸𝐼)𝑡

𝐸𝐼
=

𝑑𝑀𝑟1
𝑑𝜅

𝐸𝐼
                           (4.18)                                                 

where 
𝑑𝑀𝑟1

𝑑𝜅
 is derived from a moment-curvature (M-κ) curve. 
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The adopted moment-curvature relationship prior to outer fibers yielding is based on the moment-curvature 

relationship for stainless steel beams with cold formed RHS and SHS, proposed by Real and Mirambell 

(2005). It considers material non-linearity and it is fitted by an analytical expression similar to the Ramberg-

Osgood equation. The moment-curvature relationship is given by Eq.(19) (symbols are not identical to 

those employed in the original paper).  

𝜅 =
𝑀𝑟1

𝐸𝐼
+ [

2

𝐷
(
𝑓𝑦

𝐸
+ 0.002) −

𝑀𝑦

𝐸𝐼
] (

𝑀𝑟1

𝑀𝑦
)
𝑛−1

                      (4.19)                                  

In Eq. (4.19), EI is the initial flexural stiffness; D is the height of the cross-section; fy is 0.2% proof stress; 

n is the coefficient in the Ramberg–Osgood equation; My is moment at yielding of the extreme fiber; 

My=Welfy; Wel is elastic gross section modulus.It should be mentioned that the cross-section already 

undergoes plastic straining before internal moment reaches to My, due to the nonlinear stress-strain behavior 

of stainless steel. 

Eq.(4.19) is an implicit equation. Differentiating with respect to κ on both sides of Eq. (4.19) gives 

𝑑𝑀𝑟1

𝑑𝜅
= [

1

𝐸𝐼
+ (𝑛 − 1)

1

𝑀𝑦
(

2

𝐷
(
𝑓𝑦

𝐸
+ 0.002) −

𝑀𝑦

𝐸𝐼
) (

𝑀𝑟1

𝑀𝑦
)
𝑛−2

]

−1

             (4.20)                          

Substituting Eq. (4. 20) into Eq. (4.18) gives                         

𝜏𝑀 = [1 + (𝑛 − 1) (
2

𝐷

1

𝑀𝑦
(𝑓𝑦𝐼 + 0.002𝐸𝐼) − 1) (

𝑀𝑟1

𝑀𝑦
)
𝑛−2

]

−1

              (4.21)                         

Substituting 
2𝐼

𝐷
= 𝑊𝑒𝑙 into Eq. (4. 21) gives 

𝜏𝑀 = [1 + (𝑛 − 1) (
𝑊𝑒𝑙

𝑀𝑦
(𝑓𝑦 + 0.002𝐸) − 1) (

𝑀𝑟1

𝑀𝑦
)
𝑛−2

]

−1

                 (4.22)                        

Substituting 𝑊𝑒𝑙𝑓𝑦 = 𝑀𝑦 into Eq. (4.22), the τM formulation is given by 

𝜏𝑀 = [1 + (𝑛 − 1)
0.002𝐸

𝑓𝑦
(
𝑀𝑟1

𝑀𝑦
)
𝑛−2

]

−1

                                 (4.23)                        

Eq. (4.23) can be written in terms of the ratio of Mr1/Mp as follows: 
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𝜏𝑀 = [1 + (𝑛 − 1)
0.002𝐸

𝑓𝑦
(
𝑀𝑟1

𝑀𝑝

𝑊𝑝𝑙

𝑤𝑒𝑙
)
𝑛−2

]

−1

                               (4.24)                       

where Mp is full plastic bending moment; Mp=Wplfy; Wpl is plastic gross section modulus. 

4.5 Verification of beam flexural stiffness reduction factor (τM) 

τM determined by Eq.(4.24) is assumed to be applicable to the deformation range when My<Mr1≤ Mp. To 

evaluate the ability of τM capturing spread of plasticity through cross-section and along member length, 

simply supported beams with a wide range of cross-sections and material properties subjected to varied 

load cases are studied. τM determined by Eq.(4.24) are compared against flexural stiffness reduction derived 

from M-k curves of GMNIA. The derivation of flexural stiffness reduction is based on Eq. (4.18), where 

dMr1/dκ is the slope of the tangent at a given point on the M-k curve. The calculation of tangent slope is 

conducted through MATLAB 2017b. 

Two examples, a beam with cross-section 200x100x10 (E=175GPa, fy=400MPa, n=6, Wpl/Wel=1.27, 

Mp=140.8 kN*m) subjected to a pair of identical end moments, and a beam with cross-section 120x80x6 

(E=190GPa, fy=370MPa, n=7, Wpl/Wel=1.23, Mp=33.2 kN*m) subjected to uniform distributed load, are 

shown in in Fig.8. For the two beams, the M-k curves determined by GMNIA are shown in Fig.4.7 (a) and 

(c). Comparison of flexural stiffness reduction derived from M-k curves of GMNIA (denoted by τM-GMNIA) 

and τM determined by equations (denoted by τM-Eq) is shown in Fig.4.7 (b) and (d). 
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Fig.4.7 Two examples used to evaluate the accuracy of τM: (a) and (c) M-k relationship determined by 

GMNIA, (b) and (d) comparison of τM and flexural stiffness reduction derived from M-k relationship 

It is observed that, τM-Eq determined using Eq. (4.24) underestimates the beam flexural stiffness reduction 

factor determined by GMNIA. Further analysis shows that, for the deformation range when 0 <Mr1≤ My, 

replacing the term (n-1) by (n-1)/2 generates more accurate results. Thus, the modified τM formulation, 

given by Eq. (4.25), is adopted to predict flexural stiffness reduction before extreme fiber of the cross-

section yields (Corresponding to My). 

𝜏𝑀 = [1 + (𝑛 − 1)
0.002𝐸

2·𝑓𝑦
(
𝑀𝑟1

𝑀𝑝

𝑊𝑝𝑙

𝑤𝑒𝑙
)
𝑛−2

]

−1

                       (4.25)                                

After yielding of the extreme fiber of the cross-section, plastic strain increases at a high rate, and results in 

rapid increase of plastic curvature (κ). For the deformation range when My<Mr1≤ Mp, the flexural stiffness 
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reduction factor, given by Eq. (4.26) is proposed in this paper. The development of Eq. (4.26) is based on 

the moment-curvature relationship (determined by GMNIA) of beams with a wide range of cross-sections 

and material properties.  

𝜏𝑀 = [(1 −
𝑀𝑟1

𝑀𝑝
)

1

1−
𝑊𝑒𝑙
𝑊𝑝𝑙

]

0.9

[1 + (𝑛 − 1)
0.002𝐸

2·𝑓𝑦
]
−1

               (4.26)                                 

From Fig.4.7 (b) and (d), it is seen that τM-Eq determined Eq. (4.25) and (4.26) is in very close agreement 

with τM-GMNIA, which shows that the adopted stiffness reduction formulations accurately captures spread of 

plasticity through cross-section and along member length. It should be mentioned that the discrepancy 

between τM-Eq (determined Eq. (4.25) and (4.26)) and τM-GMNIA is considered in the development of the 

approximate expression for beam-column stiffness reduction factor (τMN). 

4.5 Concluding remarks 

Column flexural stiffness reduction factor (τN) and beam flexural stiffness reduction factor (τM), applicable 

to stainless steel members with compact cold-formed RHS and SHS, are developed. The proposed τN 

depends on the maximum internal first order axial force within a member (Pr1). The proposed τM depends 

on the maximum internal first order moment within a member (Mr1) and material properties (E, fy, and n). 

The results of verification study show that GNA coupled with the developed stiffness reduction factor (τN 

and τM) reaches the accuracy of GMNIA. The slight discrepancy between the developed stiffness reduction 

factor (τN and τM) and the actual stiffness reduction factor will be considered in the development of the 

approximate expression of stainless steel beam-column stiffness reduction factor (τMN) expression. 
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5. Flexural stiffness reduction for stainless steel beam-columns 

5.1 Introduction 

This chapter focus on the development of beam-column flexural stiffness reduction factor (τMN) formulation 

for the in-plane stability design of stainless steel beam-columns with compact cold-formed RHS and SHS. 

Two types of τMN formulations are proposed: analytical and approximate. The analytical expression of τMN 

presumes knowing the maximum internal second order moment (Mr2) within a member. It is developed by 

means of extending the formulations for evaluating the elastic second order effects to the inelastic range.  

The proposed τMN accounts for the deleterious influence of material non-linearity, residual stresses and 

member out-of-straightness. The use of a Geometrically Non-linear Analysis (GNA) with the proposed τMN 

eliminates the need for member buckling strength checks and thus, only cross-sectional strength checks are 

required. 

To develop the analytical expression of τMN, formulations that determine maximum second order elastic 

moment (Mr2-E) within sway-restrained and sway-permitted beam-columns are first described. Then, based 

on these formulations, the analytical expression of stiffness reduction factor (τMN) for beam-columns 

(elastic and inelastic) is developed. The formulations that determine maximum second order elastic 

moments are assumed to be applicable to determining maximum second order inelastic moment (Mr2-P), if 

flexural stiffness reduction factor τMN is incorporated into the elastic critical buckling load. The soundness 

of this assumption as well as the accuracy of GNA with τMN (determined by the analytical expression) for 

stainless steel beam-columns are verified.  

The aim of developing expression of τMN is to apply GNA with stiffness reduction to stability design of 

frames. Nevertheless, τMN determined by the analytical expression cannot be applied directly to the design 

of frames, since the maximum internal second order inelastic moment (Mr2-P) in the analytical expression 

is unknown. Therefore, a function (approximate expression) independent of Mr2-P, which matches analytical 

expression of τMN, is proposed. The approximate expression of τMN is developed by fitting variables to the 

analytically determined expressions. 
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5.2 Maximum second order elastic moment within sway-restrained beam-

columns 

For elastic beam-columns with no relative lateral displacement between member ends (sway-restrained), 

maximum second order elastic moment (Mr2-E) within the member can be calculated by amplification of 

maximum first order moment (Mr1), as shown in Eq.(5.1).  

𝑀𝑟2−𝐸

𝑀𝑟1
≈

𝐶𝑚

1−
𝑃𝑟1
𝑃𝑒1

= 𝐵1−𝐸 ≥ 1                        (5.1)                                               

𝑃𝑒1 =
𝜋2𝐸𝐼

𝑙2
                                  (5.2) 

where the amplification factor B1-E evaluates P-δ the effects on maximum second order elastic moment 

(Mr2-E). B1-E has the same definition as the amplification factor B1 provided in Appendix 8 of AISC 360-16 

(2016). Pe1 (K=1) is elastic critical buckling strength of the member with unbraced length. Equivalent 

uniform moment factor Cm accounts for the beneficial effects of moment gradient for beam-columns.  

Eq. (5.1) is developed based on differential equations governing the in-plane behavior of the elastic beam-

column. For an elastic beam-column (sway-restrained and without transverse loadings) subjected to varied 

end moments, shown in Fig. 5.1 (a), the maximum moment within the member is given by Eq. (5.3). 

Detailed differential equations is provided in Chapter 2 of Chen and Lui (2017). 

M2

P P

M1

 |M2   |M1|

Meq

P P

Meq

First order moment

Second order total moment

Second order total moment

First order moment

M1

M2 Meq=M2 Cm Meq

Mmax

(a) (b)
 

Fig. 5.1. Illustration of equivalent moment (a) Moment of beam-column subjected to varied end moments 

(b) Moment of beam-column subjected to a pair of equal and opposite end moments 

𝑀𝑚𝑎𝑥 = 𝑀2 [
√(𝑀1 𝑀2⁄ )2+2(𝑀1 𝑀2⁄ )𝑐𝑜𝑠𝑘𝑙+1

𝑠𝑖𝑛𝑘𝑙
]                           (5.3)  
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where = √
𝑃

𝐸𝐼
 ; |M2|≥|M1|; l is the length of the beam-column. 

For the same elastic beam-column subjected to a pair of equal and opposite end moments, shown in Fig. 

5.1 (b), the maximum moment within the member is given by  

𝑀𝑚𝑎𝑥 = 𝑀𝑒𝑞 [
√2(1−𝑐𝑜𝑠𝑘𝑙)

𝑠𝑖𝑛𝑘𝑙
]                                        (5.4) 

Setting Eq. (5.3) equal to Eq. (5.4), it gives 

𝑀𝑒𝑞 = 𝑀2 [
√(𝑀1 𝑀2⁄ )2+2(𝑀1 𝑀2⁄ )𝑐𝑜𝑠𝑘𝑙+1

2(1−𝑐𝑜𝑠𝑘𝑙)
]                             (5.5) 

The expression in brackets is regarded as equivalent uniform moment factor (Cm) 

√(𝑀1 𝑀2⁄ )2+2(𝑀1 𝑀2⁄ )𝑐𝑜𝑠𝑘𝑙+1

2(1−𝑐𝑜𝑠𝑘𝑙)
= 𝐶𝑚                                  (5.6) 

𝑀𝑒𝑞 = 𝑀2𝐶𝑚                                                 (5.7) 

Substituting Eq. (5.7) back into Eq. (5.4), it gives 

𝑀𝑚𝑎𝑥 = 𝑀2𝐶𝑚 [
√2(1−𝑐𝑜𝑠𝑘𝑙)

𝑠𝑖𝑛𝑘𝑙
]                                      (5.8) 

Substituting 𝑘 = √
𝑃

𝐸𝐼
  back into the expression in brackets, it gives 

√2(1−𝑐𝑜𝑠𝑘𝑙)

𝑠𝑖𝑛𝑘𝑙
=

√2(1−𝑐𝑜𝑠(𝜋√𝑃 𝑃𝑒⁄ ))

𝑠𝑖𝑛(𝜋√𝑃 𝑃𝑒⁄ )
= sec (

𝜋

2
√𝑃 𝑃𝑒⁄ ) ≈

1

1−
𝑃

𝑃𝑒

               (5.9) 

Therefore, Eq. (5.8) can be approximately expressed by  

𝑀𝑚𝑎𝑥

𝑀2
≈

𝐶𝑚

1−
𝑃

𝑃𝑒

                                                    (5.10) 

Note that Mmax , M2, and P correspondents to Mr2-E , Mr1 and Pr1 in Eq.(5.1), respectively. 

Since the theoretical expression of Cm is impracticable for engineering design, a simplified linear expression 

for Cm has been proposed by Austin (1961), given by 

Cm= 0.6-0.4(M1/M2)                 (5.11)  

where M1 and M2 are applied external end moments, |M1| ≤ |M2|.   

For sway-restrained beam-columns with transverse loadings, the Austin equation is adopted. It does not 
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consider material non-linearity, however, according to the research findings of Chen (Chapter 2 of Chen 

and Lui (2017)), the derived Cm considering material non-linearity is always lower than the solutions of 

Austin equation, which means Cm determined by Eq.(5.11) is conservative and safe for design. For sway-

restrained beam-columns with transverse loadings between member ends, Cm is determined by equation C-

A-8-4 provided in Commentary to Appendix 8 of AISC 360-16 (2016). 

5.3 Maximum second order elastic moment within sway-permitted beam-

columns 

For sway-permitted elastic beam-columns, maximum internal elastic moment (for a storey) within different 

columns caused by P-∆ effects and together with P-δ effects may be determined by amplifying maximum 

first order moment (Mr1) through the factor B2-E, given by Eq.(5.12). It is essentially the expression of 

evaluating P-∆ effects provided in Cheong-Siat-Moy (1977). The amplification factor B2-E in this paper is 

based on a similar definition of factor B2 provided in Appendix 8 of AISC 360-16 (2016) for frames with 

lateral displacement between stories, where the influence of P-δ effects on the global behavior of the frame 

(including isolated beam-column) is considered indirectly through the factor RM given by Eq. (5.14). 

𝑀𝑟2−𝐸

𝑀𝑟1
≈

1

1−
𝑃𝑠𝑡𝑜𝑟𝑦

𝑅𝑀𝑃𝑒∗−𝑠𝑡𝑜𝑟𝑦

= 𝐵2−𝐸 ≥ 1            (5.12)                                                                        

𝑃𝑒∗−𝑠𝑡𝑜𝑟𝑦 =
𝐹𝐻ℎ

Δ
                         (5.13)                       

𝑅𝑀 = 1 − 0.15
𝑃𝑚𝑓

𝑃𝑠𝑡𝑜𝑟𝑦
                     (5.14)                                                      

where Pstory is total vertical load transferred by the story (Pstory =∑Pr1); Pe*-story is elastic critical buckling 

(sway mode) strength of the story; Pe*-story can be determined by side-sway buckling analysis or Eq.(5.13); 

FH and Δ are first order total story shear force and relative story drift due to FH, respectively; h is storey 

height; the factor RM , accounts for P-δ effects on the overall response of the structure, 0.85≤ RM ≤1; Pmf is 

total vertical load in columns of the story that are part of moment frames. For isolated sway-permitted 

elastic beam-column, Pstory is Pr1 of the member; Pe*-story is equal to Pes; Pes = (π^2 EI)/(KL)^2 ; RM=0.85. 

It should be mentioned that Pe*-story/Pstory corresponds to the definition of αcr,sw provided in EN1993-1-1: 

2015(E); If RM is taken as 1, B2-E then corresponds to second order sway effects factor Ksw provided in 

EN1993-1-1: 2015(E). 
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𝐾𝑠𝑤 =
1

1−
1

 𝛼𝑐𝑟,𝑠𝑤

                                       (5.15)                  

5.4 Development of analytical expression of τMN  

Analytical expressions of stiffness reduction factor τMN for beam-columns are developed through extending 

the formulations (Eq.(5.1) and Eq.(5.12)) that evaluate second order effects for elastic beam-columns to 

inelastic range. These formulations are assumed to be applicable to determine maximum second order 

inelastic moment (Mr2-P) of beam-columns provided that flexural stiffness reduction factor τMN is 

incorporated into elastic critical buckling load. After Mr2-P for studied beam-columns are obtained, τMN 

determined by the analytical expression is subsequently calculated. 

For sway-restrained beam-columns including material non-linearity, through incorporating τMN into 

Eq.(5.1), it is obtained: 

𝑀𝑟2−𝑃

𝑀𝑟1
≈

𝐶𝑚

1−
𝑃𝑟1

𝑃𝑒−𝜏𝑀𝑁

= 𝐵1−𝑃 ≥ 1                                 (5.16) 

where 

𝑃𝑒−𝜏𝑀𝑁 = 𝜏𝑀𝑁𝑃𝑒1 =
𝜋2(𝜏𝑀𝑁𝐸𝐼)

𝑙2
                          (5.17)                                                                  

The amplification factor B1-P evaluates P-δ effects on maximum second order inelastic moment (Mr2-P). 

Rewriting Eq.(5.16), the analytical solution of τMN can be expressed by 

𝜏𝑀𝑁 ≈
𝑃𝑟1

(1−𝐶𝑚
𝑀𝑟1

𝑀𝑟2−𝑃
)(𝑃𝑒1)

                                          (5.18) 

Similarly, for sway-permitted beam-columns including material non-linearity, through incorporating τMN 

into Eq.(5.12), it gives 

𝑀𝑟2−𝑃

𝑀𝑟1
≈

1

1−
𝑃𝑠𝑡𝑜𝑟𝑦

𝑃𝑒∗−𝑠𝑡𝑜𝑟𝑦−𝜏𝑀𝑁

= 𝐵2−𝑃 ≥ 1                                    (5.19) 

where 

𝑃𝑒∗−𝑠𝑡𝑜𝑟𝑦−𝜏𝑀𝑁 = 𝜏𝑀𝑁𝑅𝑀𝑃𝑒∗−𝑠𝑡𝑜𝑟𝑦                                         (5.20)                                                             

In Eq.(5.19), the amplification factor B2-P evaluates P-∆ effects and together with P-δ effects on Mr2-P; Mr2-

P (for a storey) is maximum internal second order moment within different columns in a storey.  
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Rewriting Eq.(5.19), τMN for sway-permitted inelastic beam-columns can be expressed by  

𝜏𝑀𝑁 ≈
𝑃𝑠𝑡𝑜𝑟𝑦

(1−
𝑀𝑟1

𝑀𝑟2−𝑃
)(𝑅𝑀𝑃𝑒−𝑠𝑡𝑜𝑟𝑦)

                                            (5.21) 

τMN determined by Eq.(5.18) and Eq.(5.21) accounts for influence of member out-of-straightness, residual 

stresses and spread of plasticity, provided that maximum second order inelastic moment (Mr2-P) in these 

equations are obtained from an analysis that includes corresponding out-of-straightness, residual stresses 

and material non-linearity.  

Note that Eq.(5.21) is essentially the same as Eq.(5.18). The equivalent uniform moment factor Cm is 

implicitly included in Eq.(5.21) whereas it is explicitly used in Eq.(5.18). It should be stressed that, the 

concept of Cm is, by amplifying maximum first-order moment of pinned beam-column subjected to a pair 

of equal and opposite end moments, to obtain maximum total second order moment of beam-columns with 

different loading conditions (varied moment distribution along member) and different boundary conditions, 

as illustrated in Fig. 5.1. In Eq.(5.21), the influence of different loading conditions (moment distribution) 

and different boundary conditions is implicitly included in the ratio of Pstory/Pe*-story (or Pr1/Pes), where the 

accuracy of Pe*-story (or Pes) depends on the column effective length (K) that amplifies the length of pinned 

column. 

It is worth noting that although second order moments caused by P-δ or P-∆ effects may have different 

distribution to first order elastic moments (altering the location of maxima), one should keep in mind that 

member sizes are governed by the value of the maximum moment rather than the location of the maximum 

moment in practical design. 

5.5 Verification of GNA with analytically determined τMN 

This section verifies the accuracy of GNA with τMN determined by the proposed analytical expressions and 

demonstrates the soundness of the above-described assumption. A series of beam-columns including simply 

supported beam-columns, cantilever beam-columns, and beam-columns in structural sub-assemblages, are 

studied. All members bend about major axis. 

Maximum second order moment within a member obtained from GMNIA and that obtained from GNA 

with τMN are denoted by Mr2-GMNIA
 and Mr2-GNA-τMN, respectively. The target of verification study in this 

section is that Mr2-GNA-τMN provided by GNA with τMN, where the value of τMN is determined by analytical 
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expressions, should tend towards, or close to Mr2-GMNIA provided by GMNIA.  

5.5.1 Steps for verification 

Verification study for sway-restrained beam-columns and sway-permitted beam-columns are carried out 

through the following steps, illustrated in Fig.5.2.  

Beam-columns and  

subassemblages 

Pr1 , Mr1 , Cm ,  
Pstory , Pe-story , RM  

τMN  

Pr2-GMNIA ,  

Mr2-GMNIA

GMNIA

LA

GNA

Pr2-τMN, 

Mr2-τMN

 Eq.(5.18)  

and Eq.(5.21)

Target: Mr2-GMNIA   Mr2-τMN

(a) For elastic beam-column, 

Mr2-GMNI represents Mr2-E , τMN =1

(b) For inelastic beam-column, 

Mr2-GMNI
 
represents Mr2-P , τMN <1

 

Fig.5.2 Procedure of verification study for beam-columns 

Firstly, GMNIA analysis for beam-columns subjected to factored loading is conducted. Out-of-straightness 

of 0.001 is introduced to simply supported beam-columns and sway-restrained sub-assemblages while out-

of-plumbness of 0.002 and out-of-straightness of 0.001 are introduced to cantilever beam-columns and 

sway-permitted sub-assemblages. Maximum second order moment and axial force within a member 

determined by GMNIA are denoted by Mr2-GMNIA
 and Pr2-GMNIA, respectively. Secondly, Linear Elastic 

Analysis (LA) is conducted, where the applied loads are same to those in GMNIA. Pr1, Mr1, Cm, Pstory , Pe*-

story and RM are obtained. Thirdly, analytical solutions of τMN for sway-restrained and sway-permitted beam-

columns that experience inelastic stage are calculated according to Eq. (5.18) and Eq. (5.21). In such 

calculation, Mr2-P is taken as Mr2-GMNIA. Note that for beam-columns in elastic stage, analytical solution of 

τMN is equal to unity. Fourthly, under the same load applied in GMNIA, GNA with τMN (denoted by GNA-

τMN) is conducted. Maximum second order moment and axial force within a member obtained from GNA-

τMN are denoted by Mr2-τMN
 and Pr2-τMN, respectively. Out-of-straightness is not introduced in GNA-τMN, 

since the influence of out-of-straightness of 0.001 is intended to be included in the above τMN. Thus, when 
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conducting GNA-τMN, only out-of-plumbness of 0.002 is considered for cantilever beam-columns and 

sway-permitted sub-assemblages, while no geometric imperfection is considered for sway-restrained beam-

columns. The material stress-strain curve for GNA-τMN does not include the effect of residual stress, 

because the influence of residual stresses is included in τMN. Lastly, Mr2-τMN are verified against Mr2-GMNIA. 

Mr2-GMNIA
 contains both maximum second order elastic moment and maximum second order inelastic 

moment. In the elastic range, Mr2-GMNIA
 refers to Mr2-E of the member and the analytical solution of τMN is 

actually equal to 1, since both internal axial force and moments are small. With Pr1 and Mr1 increasing, the 

beam-column reaches to inelastic range, and consequently Mr2-GMNIA
 represents Mr2-P of the member.  

5.5.2 Verification study for simply supported beam-columns and cantilever 

beam-columns 

Firstly, simply supported beam-columns (shown in Fig. 5.3.) with cross-section 120x80x6 (E=175GPa, 

fy=350MPa, n=7, and c=0.65) are studied. The beam-columns are subjected to a combination of axial load 

(P) and moments (M1, M2) at the ends. P is a continuously factored load; M2=e*P; “e” ranges from 5 to 150 

( e= [5,10,20,30,50,100,150]) and the unit of e is mm; M1=s*M2; the non-dimensional factor s ranges from 

-1 to 1(s= [-1,-0.5,0, 0.5, 1]) ; |M2|≥|M1|. For the simply supported beam-columns, one focus is whether the 

influence of non-uniform bending moments (moment gradient) on inelastic maximum second order 

moments is well captured by τMN. Non-uniform bending moments are produced by applying varied end 

moments. End moment variation is controlled by the non-dimensional factor s.  

The normalized strength curves (Mu-GMNIA/Mp versus Pu-GMNIA/Py) provided by GMNIA are shown in Fig. 

5.3 (a), where Pu-GMNIA is the ultimate axial load for a given factor e and s, and the corresponding ultimate 

external moment (denoted by Mu-GMNIA) is equal to M2. By varying “s”, it can be observed that the benefit 

of moment gradient is considerable for the studied beam-columns.  

Comparison of Mr2-GMNIA against Mr2-τMN for this cross-section is shown in Fig.5.3. (b). In this figure, Mr2-

GMNIA
 and Mr2-τMN are normalized by maximum first order internal bending moment Mr1 obtained from 

Linear Elastic Analysis (LA). Similarly maximum second order internal axial force Pr2-GMNIA and Pr2-τMN are 

normalized by cross-section yield strength (Py). It is observed that for the case of uniform bending (s= -1), 

Mr2-τMN values are in very close agreement with Mr2-GMNIA. For the cases of non-uniform bending moment 
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(s ≠-1), a slight discrepancy between Mr2-GMNIA
 and Mr2-τMN

 occurs in the inelastic range. For the studied 

simply supported beams, it can be concluded that GNA coupled with τMN determined by Eq.(5.18) gives 

accurate predictions. It indicates the above-described assumption for sway-restrained beam-columns is 

sound, and the influence of moment gradient on maximum second order inelastic moment is well captured 

by the analytical expression of τMN. 

(a)

e=150

                    |M2   |M1|

M2=e* P

 P P

M1=s*M2 

Mu-GMNIA/ Mp

  Pu-GMNIA/ Py 

s= 1 s= 0.5

M2=e*P

 P P

M1=s*M2 

 |M2   |M1|

  Pr2 / Py

Mr2 / Mr1

(b)

GMNIA

GNA-τMN

 Fig.5.3 Predicted results for simply supported stainless steel beam-column (a) Strength curve under 

moment gradient obtained from GMNIA, (b) Comparison of maximum second order moment (Mr2) 

predicted by GMNIA and GNA-τMN  

Secondly, cantilever beam-columns (shown in Fig.5.4) with cross-section 100x100x5 (E=180 GPa, 

fy=370MPa, and n=6), subjected to a combination of axial (P) and transverse (0.1P) loads at the cantilever 

end, are studied. The applied load P is discretely factored, where P=i·Pu-GMNIA ; i is less than 1 and it has 7 

different values for each cantilever beam-column; Pu-GMNIA is the ultimate axial load of a cantilever beam-

column under the combined loading determined by GMNIA. The cantilever beam-columns have different 

column slenderness (c): 0.73, 0.95, 1.1, 1.25, and 1.47.  

Comparison of Mr2-GMNIA
 and Mr2-τMN is shown in Fig. 5.4. Mr2-GMNIA

 and Mr2-τMN are also normalized to Mr1 

and Pr2-GMNIA
 and Pr2-GNA-τMN are normalized by cross-section yield strength (Py). Compared to Py, the 

ultimate axial load of the studied cantilever beam-columns is relatively small, and consequently the ratio 

of Pr2 to Py is small, as observed. For cantilever beam-columns with varied column slenderness (c), 

maximum second moments obtained from GNA-τMN agree well with those obtained from GMNIA. As the 
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applied axial load P increases, a slight discrepancy between Mr2-GMNIA
 and Mr2-τMN occurs in the inelastic 

range. For the studied cantilever beam-columns, it can be concluded that GAN with τMN determined by 

Eq.(5.21) gives accurate predictions. It demonstrates that the above assumption for sway-permitted beam-

columns is reasonable and the analytically determined expression for τMN is accurate. 

0.1(P)

 λc=0.73

 λc=0.95

 λc=1.1

λc=1.25

 λc=1.47

Mr2 / Mr1

  Pr2 / Py 

P

GMNIA 

GNA-τMN 

 

Fig. 5.4. Comparison of maximum second order moment predicted by GMNIA and GNA-τMN for cantilever 

beam-columns 

Lastly, a series of simply supported and cantilever beam-columns with varied cross-sections and material 

properties, (shown in Table. 5.1) are studied. 3 different column slenderness (c), where 0.5 ≤ c ≤ 1.5, are 

considered for each cross-section. The loading cases are shown in Fig. 5.5, where the applied axial load is 

factored load for all the cases, and the unit of the e is mm for the simply supported beam-columns. The 

accuracy of GNA-τMN is assessed using the newly defined parameter ε. ε= Mr2-GNA-τMN / Mr2-GMNIA. The 

predicted results are shown in Table. 5.1, where Nε is the total number of ε for a particular group; εav and 

εcov indicate average values of ε and the coefficient of variation (COV). ε+ and ε- are the maximum and 

minimum value of ε in the group.  
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Table.5.1 Details of simply supported and cantilever beam-columns with varied cross-sections and material 

properties, and evaluation of predicted results of ε  

Beam-column Cross-section 
Load 

case 

E 

(GPa) 

fy 

(MPa) 
n 

Wel/ 

Wpl 
Nε εav εcov ε+ ε- 

Simply 

supported 

80x80x4 
SL 

200 300 6 0.85 105 0.99 0.008 1.03 0.97 

150x100x8 175 350 7 0.85 105 1.01 0.010 1.03 0.96 

160x80x8 
SL-T 

190 450 5 0.84 48 0.97 0.017 1.07 0.93 

150x150x8 190 400 7 0.79 48 1.05 0.021 1.08 0.95 

Cantilever 

80x60x4 

CL 

175 350 5 0.85 63 0.98 0.013 1.05 0.94 

200x200x10 175 450 7 0.82 63 1.03 0.010 1.06 0.95 

150x120x10 190 400 6 0.82 63 0.99 0.019 1.05 0.94 

i= [0.1,0.2,0.3, 0.4, 0.5, 0.6, 0.7]

α= [0.05, 0.1,0.2]

α*P

P=i*Pu 

 P P

β = [0.2, 0.5, 0.7, 1]e= [5, 50,100,150]

M2=e* P

l

Load case: SL-T

                    |M2   |M1|

M2=e* P

 P P

M1=s*M2 

s= [-1,-0.5,0, 0.5, 1]

e= [5,10,20,30,50,100,150]

Load case: SL Load case: CL

 

Fig.5.5 Load cases for studied beam-columns 

It can be seen that, the COVs for the 60 beam-columns are about 0.008-0.021, which indicates a small 

scatter of the ratio of Mr2-τMN / Mr2-GMNIA. The εav for all the beam-columns are about 0.97–1.05, which 

demonstrates that maximum internal second order moment determined by GNA-τMN are in very close 

agreement with those determined by GMNIA. The maximum ε+ and ε- are 1.08 and 0.93, respectively. From 

the perspective of practical design, the maximum error of overestimation and underestimation of Mr2-GMNIA 

are in acceptable range. From Table.5.1, it confirms again that GNA with τMN determined by the two 

analytical expressions gives accurate predictions and indicates that the above-described assumption for 

sway-restrained and sway-permitted beam-columns is sound.  
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5.5.3 Verification study for beam-columns in structural sub-assemblages 

Further verification study is conducted for beam-columns in structural sub-assemblages. The studied beam-

columns present double curvature in sway-restrained sub-assemblages (C1, shown in Fig. 5.6 (a)), beam-

column with single curvature in sway-restrained sub-assemblages (C2, shown in Fig. 5.6 (b)), and beam-

column with double curvature in sway-permitted sub-assemblages (C3, shown in Fig. 5.6 (c)).  

Details of cross-section and material properties are shown in Table .5.2. Geometry and boundary conditions 

are shown in Fig. 5.6. Factored uniformly distributed loads (q) are applied on beams, concentrated loads 

(P) and bending moment (M) are applied on top and bottom of the columns, where P=qL; M=100mm*P; L 

is the length of the beam. 

Table 5.2 Cross-section and material properties for the studied sub-assemblages 

Sub-assemblage Beam-column Curvature Cross-section 
E 

(GPa) 

fy 

(MPa) 
n Wpl/Wel 

Sway-restrained (a) C1 
double 120x80x6 200 300 6 1.23 

double 120x80x6 200 350 6 1.23 

Sway-restrained (b) C2 
single 200x100x10 190 350 7 1.27 

single 200x100x10 175 455 7 1.27 

Sway-permitted (c) C3 
double 150x100x10 190 400 7 1.25 

double 150x100x10 200 450 7 1.25 

C2

5m

3m

3m

3m

5m

C3

5m

3m

3m

3m

C1

5m

3m

3m

3m

(a) (b) (c)

q

P

M

P

M

P
M

P

P P

M

q

q
q

q

q

M

Fig. 5.6 (a) beam-column with double curvature (sway-restrained) (b) beam-column with single curvature 

(sway-restrained) (c) beam-column with double curvature (sway-permitted) 
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Comparison of Mr2-GMNIA against Mr2-τMN for studied beam-columns in all structural sub-assemblages is 

shown in Fig.5.7. In this figure, the vertical axis represents selected load ratios (). Mr2-GMNIA and Mr2-τMN 

are normalized by Mr1 (determined by LA). It is observed that for all the cases, maximum second moments 

obtained from GNA-τMN is in close agreement with those obtained from GMNIA in both elastic and inelastic 

ranges. For beam-column C2, it seems that the discrepancy between Mr2-τMN and Mr2-GMNIA increases as the 

load ratio () increases. However, it can be seen that the maximum error is within 5%. It can be concluded 

that GNA coupled with τMN determined by the above-described two analytical expressions provides accurate 

predictions for the studied beam-columns in structural sub-assemblages. It further demonstrates the 

extension of formulations for evaluating elastic second order effects to determine inelastic maximum 

second order moment is sound, provided that τMN is incorporated into elastic critical buckling load.  

(a)
λ

Mr2 / Mr1(c)

GMNIA : fy = 450MPa

GNA-τMN : fy = 450MPa

GMNIA : fy = 400MPa

GNA-τMN :fy = 400MPa

λ

Mr2 / Mr1 

(b)

GMNIA : fy = 455MPa

GNA-τMN : fy = 455MPa

GMNIA : fy = 350MPa

GNA-τMN : fy = 350MPa

λ

Mr2 / Mr1 

GMNIA : fy = 350MPa

GNA-τMN : fy = 350MPa

GMNIA : fy = 300MPa

GNA-τMN : fy = 300MPa

 

Fig.5.7 Comparison of the maximum second order moments predicted by GMNIA and GNA-τMN for the 

studied beam-columns in structural sub-assemblages (a) C1 (b) C2 (c) C3 
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5.6 Development of an approximate expression of τMN  

Since the maximum second order internal moment (Mr2-P) is unknown in the actual design cases, the 

analytically determined τMN can not be applied directly. The aim of proposing the analytically determined 

τMN is to develop an approximate expression for τMN (has no relationship with Mr2-P) which can be applied 

in practice. 

As flexural stiffness reduction factor of carbon steel beam-columns can be determined by a function that 

includes relevant variables without Mr2-P (Kucukler et al., 2014, 2016, 2019; White et al., 2016), a function 

(approximate expression) independent of Mr2-P, which matches analytical expression of τMN, is proposed. 

The variables in the proposed approximate expression are: first order maximum axial force (Pr1), first order 

maximum bending moment (Mr1), equivalent uniform moment factor (Cm), cross-section shape factor 

(Wel/Wpl), second order effects factor (B2-E), column flexural stiffness reduction factor τN (τN depends on 

the independent variable Pr1), beam flexural stiffness reduction factor τM (τM depends on the independent 

variable Mr1 and material properties (E, fy, and n)).  

The approximate expression of τMN is developed by fitting variables to the analytical expressions 

determined by Eq.(18) and Eq.(21), as illustrated in Fig. 5.8. The fitting process is carried out through 

running codes in MATLAB (2017b). Since analytical solution of τMN accounts for member out-of-

straightness of 0.001, residual stresses and spread of plasticity, these factors are consequently included in 

the approximate expression of τMN. 
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Fig. 5.8. Illustration of the development of the approximate expression of τMN 

The approximate expression of τMN is given by Eq.(5.22). It is based on the numerical study of stainless 

steel beam-columns with a wide range of cross-sections, length, material properties, and boundary 

conditions. Uncertainty in material strength and stiffness is not considered here, since it is intended to be 

accounted through resistance factor ϕc and ϕb.in beam-column interaction design equation. 

𝜏𝑀𝑁 = 𝛾Ω𝑀𝜏𝑁𝜏𝑀 [1 − (
𝑃𝑟1

𝑃𝑦
)
0.9

(𝐶𝑚
𝑀𝑟1

𝑀𝑝
)

𝑊𝑒𝑙
𝑊𝑝𝑙]                       (5.22) 

0.8 ≤ 𝛾 = 2(𝐵2−𝐸 − 0.6) < 1  for 1≤ B2-E <1.1                    (5.23) 

𝛾 = 1                      for 1.1 ≤ B2-E                         (5.24)  

Ω𝑀 = 1                    for 0 ≤
𝑀𝑟1

𝑀𝑝
< 0.4                   (5.25) 

Ω𝑀 = (0.6 +
𝑀𝑟1

𝑀𝑝
)
1.4

         for 0.4 ≤
𝑀𝑟1

𝑀𝑝
≤ 1                     (5.26) 

It should be noted that, for sway-restrained beam-columns, the factor B2-E is taken as 1. The proposed 

equation is affected by B2-E factor (B2-E≥1). B2-E <1.1 means the increase of internal forces and moments 

due to P-∆ effects and together with P-δ effects can not be greater than 10%. 
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For the cases of 1≤ B2-E <1.1, when Mr1 and Pr1 are close to 0, the upper bound for τMN would be γ·τN and 

γ·τM, respectively. For the cases of 1.1 ≤ B2-E, when Mr1 and Pr1 are close to 0, the asymptotic upper bound 

of τMN is τN and τM, respectively. When γ=1 and Mr1/Mp ≤ 0.4, Eq.(5.22) has the similar formation to beam-

column stiffness reduction expression proposed by Kucukler et.al (2014).  

A three-dimensional (3D) plot of τMN determined by Eq. (5.22) for beam-columns with two typical cross-

sections is shown in Fig.5.9. For the beam-column with cross-section 150x100x8 (n=6, fy=350MPa, 

E=200GPa), B2-E is assumed to be equal to 1.0 (sway-restrained, γ =0.8) and moment gradient factor Cm is 

assumed to be equal to 1.0 (subjected to a pair of equal but opposite end moments). For the beam-column 

with cross-section 150x150x10 (n=7, fy=450MPa, E=190GPa), B2-E is assumed to be larger than 1.1 (sway-

permitted, γ =1) and Cm is assumed to be equal to 0.6 (subjected to only one end moment). 

 Pr1/ Py 

 Mr1/ Mp

τMN τMN

 Pr1/ Py 

 Mr1/ Mp

(a) (b)  

Fig.5.9 3D plot of τMN for beam-columns (a) cross-section 150x100x8 (b) cross-section 150x150x10 

A two dimensional (2D) plot of Eq.(5.22) for the case of sway-permitted beam-column with cross-section 

120x80x6 (fy = 350 MPa, E=200GPa, Wel/Wpl=0.798, and n=6) is shown in Fig. 5.10. In Fig. 5.10 (a), B2-E 

is assumed to be equal to 1.05 (γ =0.9) and equivalent uniform moment factor Cm is assumed to be equal to 

1.0 (subjected to a pair of equal but opposite end moments). In Fig. 5.10 (b), B2-E is assumed to be higher 

than 1.1 (γ =1) and Cm =1.0. It can be observed that, when Mr1 is close to 0, the asymptotic upper bound of 

τMN is 0.9τN in Fig. 5.10 (a) and τN in Fig. 5.10 (b). The lower bound of τMN for different ratio of Mr1/Mp 

correspondents to cross-sectional Demand-Capacity ratio (Rc) being equal to unity , where Rc is determined 

by AISC-based beam-column design interaction equations (note that required axial force and moment here 

are taken as Pr1 and Mr1). In the two figures, the dash line represents flexural stiffness reduction factor 0.8τb 

for carbon steel provided in AISC 360-16 (2016).  
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Fig.5.10. A 2D plot of the proposed stiffness reduction factor: (a) B2-E =1.05, Cm=1 (b) B2-E >1.1, Cm=1 

5.7 Concluding remarks 

In this chapter, the flexural stiffness reduction formulation for applying Geometrically Non-linear Analysis 

(GNA) to in-plane stability design of stainless steel beam-columns is proposed through analytical and 

numerical study. The proposed beam-column flexural stiffness reduction factor (τMN) accounts for 

deleterious influence of spread of plasticity, residual stresses and member out-of-straightness of 0.001. Two 

main aspects of developing τMN are: (1) Develop analytical expression of τMN through extending 

formulations that evaluate second order effects of beam-columns. These formulations are extended to 

determine maximum second order inelastic moment of beam-columns by incorporating τMN into elastic 

critical buckling load. (2) Based on numerical study of beam-columns, the approximate expression of τMN 

is developed by fitting relevant variables to analytically determined expression. 

The soundness and accuracy of τMN determined by analytical expression are verified through comparison 

of maximum bending moments within members determined through GNA-τMN against those obtained from 

GMNIA. It is observed that predicted results from GNA-τMN are in very close agreement with those 

provided by GMNIA. Besides developing flexural stiffness reduction factor (τN, τM , τMN) formulations that 

are applicable to stainless steel members. Moreover, it is worth pointing out that the formulations of 

evaluating second order elastic effects are extended to determine inelastic maximum second order moment 

within beam-columns, through incorporating τMN into elastic critical buckling load. 
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6. Verification of GNA with τMN for stainless steel frames with 

compact sections 

6.1 Introduction  

In this chapter, the accuracy of GNA with flexural stiffness reduction formulation (τMN) to in-plane stability 

design of stainless steel frames is verified. The adopted τMN is determined by the approximate expression 

presented in the previous chapter. It accounts for the deleterious influence of spread of plasticity, residual 

stresses and member out-of-straightness of 0.001. The applicability of GNA using a stiffness reduction 

factor equal to 0.8τN, which is similar to the Direct Analysis Method (DM) provided in AISC 360-16 is also 

verified. 

The study is focused on a series of stainless steel frames with different geometrical and loading 

configurations. Comparisons between GMNIA (full nonlinear analysis) and GNA coupled with stiffness 

reduction are provided. The main objectives of verification study are the comparisons of Demand-Capacity 

ratio and comparisons of maximum internal second order moment within members determined by:  

 Geometrically and materially nonlinear analysis with imperfections: GMNIA 

 Geometrically nonlinear analysis with stiffness reduction based on τMN: GNA-τMN  

 Geometrically nonlinear analysis with stiffness reduction based on 0.8·τN: GNA-τN 

6.2 Description of the conducted analysis 

GMNIA, GNA-τMN and GNA-τN are conducted. Details of the three methods are shown in Table.6.1. For 

GNA-τMN, since the influence of out-of-straightness of 0.001 and residual stresses are included in τMN, only 

out-of-plumbness of 0.002 is introduced to the frame models. Similarly, for GNA-τN, the influence of out-

of-straightness and residual stresses are included in τN, only out-of-plumbness of 0.002 is introduced. It 

should be noted that out-of-straightness considered by τN is taken as 0.001, since τN is derived from the 

AISC LRFD-based column strength curve, where sinusoidal out-of-straightness of 0.001 is considered. In 

the implementation of GMNIA, out-of-plumbness of 0.002 and out-of-straightnes of 0.001 are introduced, 

and residual stress is considered through modified stress-strain curves. There is no need to conduct member 
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buckling strength check for internal forces and moments determined by the three methods since second 

order effects (P-∆ and P-δ) as well as initial geometric imperfections (out-of-plumbness, out-of-straightness) 

are accounted for. 

Table 6.1 Details of GNA-τMN , GNA-τN and GMNIA 

Analysis 
P-Δ and 

P-δ effects 

Material 

nonlinearity 

Geometric imperfection 

Residual stresses Out-of-

plumbness 

Out-of-

straightness 

GMNIA Captured Captured by notional load by notional load 
Considered in 

stress-strain curve 

GNA-τMN Captured 
Implicitly 

included in τMN 
by notional load 

Considered in 

τMN 
Considered in τMN 

GNA-τN Captured 
Implicitly 

included in 0.8τN 
by notional load Considered in τN Considered in τN 

It should be mentioned that instead of direct modelling geometric imperfection, the effects of out-of-

plumbness (∆/h) and out-of-straightness (δ/L) are accounted for by means of applying notional loads 

(equivalent horizontal loads). Notional loads are applied to the directions that produce most destabilizing 

effects. Out-of-straightness is represented by concentrated notional loads and modelled in the direction that 

the members deforms in a preliminary Buckle Analysis through ABAQUS. For the columns that have 

double curvatures, the notional loads are applied in the mostly deformed direction. Out-of-plumbness is 

represented by concentrated notional loads and modelled in the direction of sway deformation. To avoid 

additional shear force at the frame base due to notional loads, corresponding horizontal reaction forces are 

applied.  

6.3 Geometries and loads of the studied stainless steel frames 

Two-bay two-storey frames with pinned end, three-bay three-storey frames with fixed end, and a two-bay 

five-storey frame with fixed end, are studied. All beam-to-column joints of the studied frames are rigid. 

The geometry of the studied frames are shown in Fig.6.1. The frames shown in Fig.6.1 (a), (b), and (c) are 

referred to as Frame-2X2, Frame-3X3 and Frame-2X5, respectively, and the presented load case is 

combination of wind load and gravity load. Members of Frame-2X2 have varied cross-sections, as shown 

in Fig.6.1, while all members of Frame-3X3 have same cross-section 200x100x10, and all members of 
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Frame-2X5 have same cross-section 250x150x10. The use of the same cross-section for all members in a 

frame is intended to obtain widely dispersed flexural stiffness reduction τMN. All beams and columns for 

the studied frames bend about major axis. Information related to design load combinations as well as to 

material properties are provided in Table. 6.2.  
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3m

3m

(c) Frame-2X5

Fig.6.1 Studied stainless steel frame: (a) two bay-two storey frame, (b) three bay-three storey frame (c) two 

bay-five storey frame 

Table. 6.2 Details of the studied frames 

Frame Load combination Cross-section E(GPa) fy (MPa) n 

Frame-2X2-G 1.2Dn +1.6Ln Varied 200 400 7 

Frame-2X2-GW 1.2Dn+0.5Ln+1.6Wn Varied 200 400 7 

Frame-3X3-G 1.2Dn +1.6Ln 200x100x10 175 450 6 

Frame-3X3-GW 1.2Dn+0.5Ln+1.6Wn 200x100x10 175 450 6 

Frame-2X5-GW 1.2Dn+0.5Ln+1.6Wn 250x150x10 190 450 7 

For the 2x2 and 3x3 cases, two types of load combination provided in ASCE/SEI 7-16 (2016) are considered: 



Chapter 6. Verification of GNA with τMN for stainless steel frames 

92 

 

Gravity load combination 1.2Dn +1.6Ln, in which Dn and Ln denote nominal dead (gravity) load and nominal 

live (gravity) load, respectively, and the typical nominal live-to-dead load ratio Ln/Dn= 1.5. Combination 

of wind load and gravity load 1.2Dn+0.5Ln+1.6Wn, in which Wn denotes nominal wind load; live-to-dead 

load ratio Ln/Dn= 1.0, and wind-to-gravity load ratio Wn /(Ln+Dn)=0.1. For the 2x5 frame, one load case 

(wind load and gravity load 1.2Dn+0.5Ln+1.6Wn) is considered. Besides, for all the frames, the combined 

load applied on the top-storey is half of that applied on other storeys.  

It should be mentioned that Frame-3X3-G, Frame-3X3-GW, and Frame-2X5-GW represent frames that 

have considerable load redistribution capacity after occurrence of first plastic hinge, where u = 1.13, 1.20, 

and 1.21 for Frame-3X3-G, Frame-3X3-GW, and Frame-2X5-GW, respectively. u is the ultimate load 

factor of the frame system, shown in the following section. 

6.4 Procedure of implementing GNA-τMN, GNA-τN and GMNIA 

The procedure of implementing GNA-τMN, GNA-τN and GMNIA is illustrated in Fig.6.2. Firstly, for the 

studied frames subjected to the assumed factored load, a GMNIA analysis is conducted. The applied load 

is defined as a design load for the Demand-Capacity ratio (Rc) of the critical member equal to 1.0. Rc is 

defined as the value of 
𝑃𝑟2

𝜙𝑐𝑃𝑛
+

8

9

𝑀𝑟2

𝜙𝑏𝑀𝑛
 or 

𝑃𝑟2

2 𝜙𝑐𝑃𝑛
+

𝑀𝑟2

𝜙𝑏𝑀𝑛
. Maximum internal second order moment within a 

member (Mr2), maximum internal second order axial force within a member (Pr2), and Demand-capacity 

ratio (Rc), determined by GMNIA, are denoted by Mr2-GMNIA, Pr2-GMNIA, and Rc-GMNIA and thus defined as 

benchmark solutions. Secondly, under this design load, GMNIA is continued to obtain ultimate load factor 

(u) of the frame system. Thirdly, a Linear Elastic Analysis (LA) under the design load is conducted to 

obtain Pr1, Mr1, Pstory, Pe*-story. Then τN, τM, Cm, RM, B2-E are calculated according to relevant equations. τMN 

determined by Eq.(5.22) is subsequently calculated. Finally, under the design load, GNA-τMN and GNA-τN 

are conducted to obtain relevant maximum internal forces and moments, and Demand-Capacity ratios.  
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+

No
Yes
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τN τM

 Eq.(4.15) 

and (4.16)

 Eq.(4.25) 

and (4.26)
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                     λDn

Frame 

1.2Dn +1.6Ln

1.2Dn+0.5Ln+1.6Wn

Cm RM  

GNA

 Eq.(5.11) or 

AISC(2016) 
 Eq.(5.14)  

Eq.(5.12)

 Eq.(5.22)

Pr2-τN, 

Mr2-τN, 

Rc-τN

Mr2-GMNIA/Mp

Pr2-GMNIA/Py

Critical member

λu

λ=1

λ

Step
Frame

Rc-GMNIA =1 

 

Fig.6.2 Procedure of conducting GNA-τMN, GNA-τN and GMNIA for studied frames 

6.5 Predicted results from GNA-τMN, GNA-τN and GMNIA 

Firstly, the relationship between the ratio of Mr2-GMNIA/Mr1 and the factors (B2-E and B2-P) that evaluate 

second order effects is studied. Secondly, the accuracy of GNA-τMN, GNA-τN is assessed. Comparison of 

predicted results from different methods is mainly focused on Demand-capacity ratio (Rc) and Maximum 

internal second order moment (Mr2). 
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6.5.1 Relationship of Mr2-GMNIA/Mr1 and B2-P (B2-E) 

Predicted results of Mr2-GMNIA/Mr1, B2-P and B2-E for the studied frames are shown in Fig.6.3. In this figure, 

the horizontal axis represents specific member in the frame (for example, 1 correspondents to C11 and 10 

correspondents to B22 for Frame-2X2). 

Member

(a) Frame-2X2-G

C11 B22

1st 

storey
2nd 

storey

B2-P

B2-E

Mr2-GMNIA/Mr1

Mmax

(b) Frame-2X2-GW

C11 B22Member

1st 

storey
2nd 

storey

B2-P

B2-E

Mr2-GMNIA/Mr1

Mmax

C11 B33Member

(c) Frame-3X3-G

1st 

storey

2nd 

storey

3rd 

storey

B2-P

B2-E

Mr2-GMNIA/Mr1

Mmax

C11 B33Member

(d) Frame-3X3-GW

1st 

storey
2nd 

storey
3rd 

storey

B2-P

B2-E

Mr2-GMNIA/Mr1

Mmax

C11 B52Member

(e) Frame-2X5-GW

B2-P

B2-E

Mr2-GMNIA/Mr1

Mmax

Member

(a) Frame-2X2-G

C11 B22

1st 

storey
2nd 

storey

B2-P

B2-E

Mr2-GMNIA/Mr1

Mmax

(b) Frame-2X2-GW

C11 B22Member

1st 

storey
2nd 

storey

B2-P

B2-E

Mr2-GMNIA/Mr1

Mmax

C11 B33Member

(c) Frame-3X3-G

1st 

storey

2nd 

storey

3rd 

storey

B2-P

B2-E

Mr2-GMNIA/Mr1

Mmax

C11 B33Member

(d) Frame-3X3-GW

1st 

storey
2nd 

storey
3rd 

storey

B2-P

B2-E

Mr2-GMNIA/Mr1

Mmax

C11 B52Member

(e) Frame-2X5-GW

B2-P

B2-E

Mr2-GMNIA/Mr1

Mmax

Fig.6.3 Predicted results of Mr2-GMNIA/Mr1, B2-P and B2-E : (a) Frame-2X2-G (b) Frame-2X2-GW (c) Frame-

3X3-G (d) Frame-3X3-GW (e) Frame-2X5-GW 
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Both B2-E and B2-P are calculated at storey levels. For the calculation of B2-P, τMN from the member with the 

maximum ratio of Mr2-GMNIA/Mr1 (denoted by (Mr2-GMNIA/Mr1)max) within a storey is employed. If the B2-E 

factor of a storey is larger than 1.1, the increase of internal moments due to P-∆ effects and together with 

P-δ effects may be more than 10%, and the whole storey is regarded as sensitive to second order effects. 

From Fig. 6.3, it is found that, for those storeys with high sensitivity to second order effects, such as the 1st 

storey of Frame-2X2-G which has a B2-E equal to 1.60, the B2-P factor is significantly higher than the B2-E, 

compared to those storeys with lower sensitivity to second order effects. The discrepancy between B2-E and 

B2-P is resulted from additional second order effects due to material non-linearity, as illustrated in Fig. 6.4. 

After equilibrium is established, applying more load produces more deflections. Load combined with 

deformed (initial geometric imperfection) shape produces second order effects (P-∆ and P-δ effects). With 

load increasing, material yielding occurs through cross-section and along member. Material yielding leads 

to loss in flexural stiffness, results in increased deflections, and in turn produces additional second order 

effects. Equilibrium can be achieved until the structure becomes instable. 

Load (P)
Deflection

(∆, δ)

Material 

yielding 

Reduced 

stiffness

Second order effects 

(P-  and P-δ)  

Fig. 6.4 Illustration of additional second order effects resulted from material non-linearity 

From Fig. 6.3, it is observed that, for each storey of these frames, (Mr2-GMNIA/Mr1)max within different 

members in a storey is in very close agreement with B2-P. There are considerable discrepancy between the 

ratio of Mr2-GMNIA/Mr1 and B2-P for other members in a storey, especially for the storeys with a large B2-E. 

This may be explained that B2-P is calculated based on storey-level, while Mr2-GMNIA/Mr1 is calculated on 

member-level. Besides, the discrepancy between Mr2-GMNIA/Mr1 and B2-P also relies on the accuracy of the 

employed τMN. For the storeys with B2-E close to or less than 1.1, the ratio of Mr2-GMNIA/Mr1of different 

members within a storey are close to B2-E. 

A plot of B2-E and (Mr2-GMNIA/Mr1)max for the five frames is shown in Fig.6.5. From this figure, the higher 

the B2-E factor is, the larger the discrepancy between (Mr2-GMNIA/Mr1)max and B2-E becomes. It indicates that 
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for the stability design of the frames with a large B2-E factor, the increase of internal second order moments 

caused by additional second order effects due to material nonlinearity is considerable and should be taken 

into consideration. Similar remarks have been reported in Walport et al. (2019). 

(Mr2-GMNIA/Mr1)max

1.1

 

Fig. 6.5 A plot of (Mr2-GMNIA/Mr1)max and B2-E against Pstory/RMPe-story 

6.5.2 Comparison of predicted results. 2X2-G and 2X2-GW 

For 2X2-G and 2X2-GW, the ratio of axial force to cross-section yield strength of all the members is very 

small, and the Demand-Capacity ratio (Rc) of these members is very close to the ratio of maximum second 

moment to plastic moment (Mr2/MP). Therefore, comparison of predicted results from different methods is 

focused on the ratio of Rc-τMN /Rc-GMNIA and Rc-τN /Rc-GMNIA, where Rc-GMNIA, Rc-τMN and Rc-τN represent Rc 

determined by GMNIA, GNA-τMN and GNA-τN, respectively, as shown in Table. 6.3. In this table,  

represents mean value and COV represents coefficient of variation. 
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Table. 6.3: Predicted results for two-bay two-storey frames (members have varied cross-sections) 

Member 

Frame-2X2-G Frame-2X2-GW 

GMNIA GNA-τMN GNA-τN GMNIA GNA-τMN GNA-τN 

Rc-GMNIA τMN 

Rc-τMN / 

Rc-

GMNIA
 

 .8τN 

Rc-τN / 

Rc-

GMNIA
 

Rc-GMNIA τMN 

Rc-τMN / 

Rc-

GMNIA
 

 .8τN 

Rc-τN / 

Rc-

GMNIA
 

C11 0.24 0.81 1.11 0.80 1.03 0.88 0.72 1.05 0.80 0.99 

C12 0.42 0.79 1.04 0.80 0.82 0.87 0.76 1.16 0.80 1.00 

C13 0.27 0.72 1.18 0.80 0.89 0.90 0.68 0.99 0.80 1.03 

B11 0.33 0.79 0.98 0.80 1.02 0.96 0.76 1.12 0.80 0.96 

B12 0.87 0.76 1.07 0.80 0.97 1.00 0.64 1.04 0.80 0.99 

C21 0.49 0.84 1.09 0.80 1.03 0.32 0.90 1.00 0.80 0.93 

C22 0.68 0.77 1.16 0.80 0.99 0.16 0.90 0.99 0.80 0.86 

C23 0.96 0.67 0.96 0.80 0.93 0.78 0.67 1.00 0.80 1.02 

B21 0.50 0.7 1.09 0.80 1.01 0.64 0.69 1.12 0.80 0.99 

B22 1.00 0.66 1.06 0.80 0.96 0.67 0.63 1.00 0.80 1.02 

   1.07  0.97   1.05  0.98 

COV   0.07  0.06   0.06  0.05 

Max   1.18  1.03   1.16  1.03 

Min   0.96  0.82   0.99  0.86 

In Table 6.3, the value of τMN (determined by Eq.(5.22)) for different members is mainly dominated by the 

ratio of maximum first order moment to plastic moment (Mr1/MP) and τM, since the ratio of axial force to 

cross-section yield strength of all the members is very small (τN =1) . For all members, the value of 0.8τN is 

equal to 0.8. The critical members of both frames are beams whose failure is governed by the formation of 

first-plastic hinge (no elastic global buckling occurs in advance). 

It is observed that both Rc-τMN and Rc-τN are in close agreement with Rc-GMNIA for the two frames. Nevertheless, 

Rc-τN underestimates Rc-GMNIA for most members, which means that GNA-τN provides unsafe predictions for 

these members. It should be pointed out that, under the same design load, safe prediction and unsafe 

prediction refer to overestimating Rc-GMNIA and underestimating Rc-GMNIA, respectively. If Rc-τMN or Rc-τN are 

larger than Rc-GMNIA, it means that the predicted internal moments or axial forces are overestimated 

compared against those predicted by GMNIA. For the critical members (B22 of Frame-2X2-G and B12 of 

Frame-2X2-GW), GNA-τMN gives accurate and safe predictions, while GNA-τN underestimates Rc-GMNIA of 

the critical members to some extent (within 5%).  
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The difference in the predicted results may be explained as follows. Since the two frames are very sensitive 

to second order effects, where the maximum value of B2-E is 1.60 and 1.41 for Frame-2X2-G and Frame-

2X2-GW, respectively, the increase of internal forces and moments resulted from additional second order 

effects are considerable. For GNA-τMN, the influence of additional second order effects due to material 

nonlinearity is well captured by the flexural stiffness reduction factor τMN, and therefore GNA-τMN gives 

improved predictions. From Table 6.3, τMN is smaller than 0.8τN for most members and τMN for different 

members is not widely dispersed. It indicates that, for the two frames that are very sensitive to second order 

effects, a reduced flexural stiffness factor smaller than 0.8τN should be adopted when using GNA-τN. 

6.5.3 Comparison of predicted results. 3X3-G and 3X3-GW 

Predicted results for the three-bay three-story rigid frame under gravity load combination (Frame-3X3-G) 

and under combination of wind load and gravity load (Frame-3X3-GW) are shown in Table 6.4 and Table 

6.5, respectively. In table 6.4, Pr2-GMNIA, Pr2-τMN and Pr2-τN represent Pr2 determined by GMNIA, GNA-τMN 

and GNA-τN, respectively; Pr2-GMNIA and Mr2-GMNIA are normalized by cross-section yield strength (Py) and 

major axis plastic bending moment resistance (Mp), respectively. For Frame-3X3-GW, Pr2 determined by 

different methods is not shown in Table 6.5, since the ratio of Pr2-GMNIA/Py is small for all the members of 

the frame. 

As expected, τMN for the two frames are widely dispersed, due to the reason that all members have the same 

cross-section but the distribution of first order axial forces and moments is varied within different members. 

Columns C12 and C13 of Frame-3X3-G are axially loaded to a high extent. The value of 0.8τN for the two 

columns is 0.75. For all other members of the two frames, the value of 0.8τN is equal to 0.8. For Frame-

3X3-G, there are two critical members (B13 and B22). 
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Table 6.4:  Predicted results for Frame-3X3-G 

Member 

GMNIA GNA-τMN GNA-τN 

Pr2-

GMNIA/ 

Py 

Mr2-

GMNIA/ 

MP 

Rc-

GMNIA 
τMN 

Pr2-

τMN / 

Pr2-

GMNIA 

Mr2-

τMN / 

Mr2-

GMNIA 

Rc-

τMN / 

Rc-

GMNIA
 

 .8τN 

Pr2-τN 

/ 

Pr2-

GMNIA 

Mr2-τN 

/ 

Mr2-

GMNIA 

Rc2-τN 

/ 

Rc-

GMNIA
 

C11 0.245 0.59 0.77 0.72 0.99 0.98 0.98 0.80 0.97 0.94 0.95 

C12 0.505 0.17 0.66 0.78 1.00 0.95 0.99 0.75 1.01 0.99 1.01 

C13 0.503 0.19 0.67 0.79 1.01 1.09 1.03 0.75 1.02 1.06 1.03 

C14 0.249 0.62 0.80 0.72 0.98 0.99 0.99 0.80 0.96 0.97 0.97 

B11 0.013 0.87 0.87 0.66 1.14 1.10 1.10 0.80 0.99 1.01 1.01 

B12 0.011 0.97 0.97 0.61 1.15 1.03 1.03 0.80 1.06 0.93 0.93 

B13 0.012 0.99 1.00 0.69 1.12 1.12 1.12 0.80 0.96 1.07 1.07 

C21 0.146 0.43 0.50 0.76 1.00 1.14 1.12 0.80 0.98 1.02 1.01 

C22 0.303 0.11 0.40 0.9 1.01 0.97 0.99 0.80 1.01 0.91 0.99 

C23 0.302 0.13 0.42 0.93 1.01 1.09 1.03 0.80 1.01 1.01 1.01 

C24 0.149 0.48 0.55 0.71 0.99 1.08 1.07 0.80 0.97 0.99 0.99 

B21 0.007 0.98 0.98 0.68 0.97 1.11 1.11 0.80 0.98 1.00 1.00 

B22 0.007 0.99 0.99 0.74 1.07 1.05 1.05 0.80 1.11 1.09 1.09 

B23 0.007 0.98 0.98 0.74 1.12 1.08 1.08 0.80 0.88 0.98 0.98 

C31 0.047 0.47 0.49 0.86 1.02 1.02 1.02 0.80 1.01 0.93 0.93 

C32 0.102 0.09 0.14 1.00 0.99 1.10 1.06 0.80 1.00 1.11 1.07 

C33 0.102 0.05 0.10 1.00 1.00 1.05 1.02 0.80 0.97 1.04 1.00 

C34 0.049 0.44 0.46 0.86 0.99 1.08 1.08 0.80 1.01 0.94 0.94 

B31 0.013 0.63 0.63 0.88 1.07 0.99 0.99 0.80 0.97 0.98 0.98 

B32 0.012 0.61 0.61 0.89 1.07 0.98 0.98 0.80 0.93 1.01 1.01 

B33 0.012 0.48 0.48 0.92 1.08 1.14 1.14 0.80 0.97 0.91 0.91 

     1.04 1.05 1.05  0.99 0.99 0.99 

COV     0.06 0.06 0.05  0.04 0.06 0.05 

Max     1.15 1.14 1.14  1.11 1.11 1.09 

Min     0.97 0.95 0.98  0.88 0.91 0.91 
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Table 6.5: Predicted results for Frame-3X3-GW 

Member 

GMNIA GNA-τMN GNA-τN 

Mr2-GMNIA/ 

MP 
Rc-GMNIA τMN 

Mr2-τMN / 

Mr2-GMNIA 

Rc-τMN / 

Rc-GMNIA
 

 .8τN 
Mr2-τN / 

Mr2-GMNIA 

Rc-τN / 

Rc-GMNIA
 

C11 0.73 0.76 0.66 1.09 1.08 0.80 0.95 0.95 

C12 0.80 0.89 0.65 1.01 1.01 0.80 0.99 0.99 

C13 0.79 0.88 0.62 1.03 1.03 0.80 1.04 1.03 

C14 0.80 0.85 0.65 1.03 1.03 0.80 1.02 1.02 

B11 0.97 0.99 0.59 1.10 1.10 0.80 1.07 1.06 

B12 0.85 0.86 0.61 1.05 1.05 0.80 0.98 0.98 

B13 0.88 0.88 0.66 1.04 1.04 0.80 1.04 1.04 

C21 0.19 0.20 0.82 1.07 1.08 0.80 0.96 1.01 

C22 0.55 0.60 0.69 1.10 1.09 0.80 1.00 1.01 

C23 0.53 0.59 0.70 1.08 1.07 0.80 0.98 0.97 

C24 0.56 0.59 0.68 1.09 1.09 0.80 1.00 1.00 

B21 0.74 0.75 0.64 1.01 1.02 0.80 1.03 1.04 

B22 0.71 0.71 0.59 1.06 1.06 0.80 0.99 0.99 

B23 0.69 0.69 0.61 1.10 1.10 0.80 1.01 1.02 

C31 0.18 0.19 0.91 1.07 1.06 0.80 1.03 1.01 

C32 0.25 0.27 0.89 1.06 1.05 0.80 0.98 0.97 

C33 0.22 0.24 0.89 1.05 1.05 0.80 0.97 0.96 

C34 0.31 0.32 0.87 1.03 1.03 0.80 0.98 0.98 

B31 0.34 0.34 0.85 1.05 1.05 0.80 1.02 1.03 

B32 0.31 0.31 0.87 1.10 1.10 0.80 0.99 0.99 

B33 0.29 0.29 0.88 1.02 1.02 0.80 0.99 1.01 

    1.06 1.06  1.00 1.00 

COV    0.03 0.03  0.03 0.03 

Max    1.10 1.10  1.07 1.06 

Min    1.01 1.01  0.95 0.95 

From Table 6.4 and 6.5, it is observed that predicted results from both GNA-τMN and GNA-τN are in close 

agreement with those determined by GMNIA. For the critical members, both GNA-τMN and GNA-τN give 

safe predictions, where the maximum error of overestimating Rc-GMNIA is 12% for GNA-τMN and 9% for 

GNA-τN. It should be noted that, GNA-τN gives safe predictions for Frame-3X3-G that is also very sensitive 

to second order effects. It is contrary to the predicted results of the 2X2 frames. One possible explanation 

is, besides the influence of additional second order effects, the increase of internal forces and moments is 

affected by distribution of internal force and moment, which may be related to the configuration of a 

structure. Note that the distribution of internal force and moment here is different to redistribution of 

internal force and moment after the formation of first plastic hinge for statically indeterminate structures. 
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The Coefficient of Variation (COV), absolute value of maximum error caused by underestimation and 

maximum error caused by overestimation, for Pr2, Mr2 and Rc predicted by GNA-τMN, are generally smaller 

than those predicted by GNA-τN. It shows that the predicted results of GNA-τMN have lower deviation from 

predicted results of GMNIA, and indicates that GNA-τMN provides improved estimation of internal forces, 

moments and Demand-capacity ratios for the studied frames. This is due to the reason that τMN can more 

accurately capture stiffness reduction caused by spread of plasticity through cross-sections and along 

members. The accurate stiffness reduction for different members leads to reasonable distribution of internal 

force and moment and well captures additional second order effects due to material non-linearity. It should 

be mentioned that GNA-τN, with COV ranging from 0.03 to 0.06, and  around 1.0, also predicts results 

with acceptable errors for the studied frames. 

Compared to the predicted results for the frames that are sensitive to second order effects (Frame-2X2-G, 

Frame-2X2-GW, Frame-3X3-G), both GNA-τMN and GNA-τN give more accurate predictions for Frame-

3X3-GW that is not sensitive to second order effects. One possible explanation is additional second order 

effects caused by spread of plasticity are not considerable. Consequently, the increase of internal forces and 

moments is not dominated by material nonlinearity whose influence is accounted for through the flexural 

stiffness reduction factor (τMN or 0.8τN).  

6.5.4 Comparison of predicted results. 2X5-GW 

Predicted results for Frame-2X5-GW are shown in Fig. 6.6. In this figure, the horizontal axis represents 

specific member in the frame (for example, 1 correspondents to C11, and 25 correspondents to B52); Pr2, 

Mr2 and Rc determined by GNA-τMN and GNA-τN are compared against those determined by GMNIA. 
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Fig. 6.6 Comparison of the predicted results determined by GNA with stiffness reduction against those 

determined by GMNIA for Frame-2X5-GW (a) Pr2 of different members (b) Mr2 of different members (b) 

Rc of different members 

The studied Frame-2X5-GW is not sensitive to second order effects. It is seen that, from the 3rd storey up 

to the top storey, the distribution of Rc-τMN/ Rc-GMNIA (or Rc-τN/ Rc-GMNIA) is in very close agreement with the 

distribution of Mr2-τMN/ Mr2-GMNIA (or Mr2-τN/ Mr2-GMNIA). This is due to the reason that, for the columns in 

these storeys, the ratio of axial force to cross-section yield strength is small, and thus Rc is dominated by 

Mr2.  

It is observed that, for the critical member (C12), both GNA-τMN and GNA-τN provide accurate and safe 

predictions. GNA-τMN gives a maximum error of overestimation (safe) of Rc-GMNIA within 13% for other 
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members, where slight error of underestimation of Rc-GMNIA is found for few members. GNA-τN gives 

predictions with acceptable errors for most members, but it produces large errors for few members, for 

example, overestimation of Mr2-GMNIA nearly 20% for B11. Compared to GNA-τN, GNA-τMN gives improved 

predictions. 

It is found that, Mr2 and Rc determined by GNA-τMN are generally higher than those determined by GMNIA. 

This may be explained that τMN determined by the approximate expression is conservative. The conservative 

stiffness reduction produces more deformations, which in turn results in increased second order effects (P-

∆ and P-δ) and subsequently increased internal bending moment and Demand-capacity ratio. 

6.6 Concluding remarks 

The accuracy of GNA coupled with flexural stiffness reduction factor to in-plane stability design of stainless 

steel frames is verified. The maximum bending moment and Demand-Capacity ratio within a member 

determined by GNA-τMN and GNA-τN are compared against those determined by GMNIA. It is found that 

predicted results of GNA-τMN are in close agreement with those provided by GMNIA. In some cases, GNA-

τN gives unsafe predictions for the frames that are very sensitive to second order effects, one possible 

explanation is the adopted stiffness reduction factor 0.8τN underestimates actual reduced stiffness, and 

therefore underestimates additional second order effects resulted from material non-linearity. Both GNA-

τMN and GNA-τN are safe for predicting the ultimate capacity (member-based) of the studied frames that are 

not sensitive to second order effects. Compared to GNA-τN, GNA-τMN with lower deviation from predicted 

results of GMNIA, provides improved estimation of internal moments and Demand-Capacity ratios for 

most members. This is due to the reason that τMN can accurately capture stiffness reduction caused by spread 

of plasticity through cross-section and along members. As a consequence, GNA-τMN produces more 

reasonable distribution of internal force and moment, and well captures additional second order effects due 

to material non-linearity. 
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7. Flexural stiffness reduction factor accounting for local buckling 

effects 

7.1 Introduction 

In this chapter, for stainless steel elements with non-compact and slender sections, the stiffness reduction 

formulations presented previously are extended using a similar approach to the one adopted in AISC 360-

16 (2016). For the determination of column flexural stiffness reduction factor (τN), beam flexural stiffness 

reduction factor (τM), beam-column flexural stiffness reduction factor (τMN), the cross-sectional resistance 

is reduced by an additional coefficient that accounts for local buckling effects. 

Non-compact section here refers to cross-section that is able to reach the yield stress (0.2% proof stress) in 

its compression elements before inelastic local buckling occurs, but is unable to develop fully plastic stress 

distribution due to local buckling. Slender section here refers to cross-section in which inelastic local 

buckling will occur in the range between proportional limit (0.01% proof stress) and yield stress (0.2% 

proof stress). According to Design Manual for Structural Stainless steel (2017), the proportional limit of 

stainless steels ranges from 40% to 70% of the 0.2% proof strength. Cross-sections in which elastic local 

buckling occurs below proportional limit are not considered in this paper. The studied cross-sections are 

cold-formed rectangular hollow section (RHS) and square hollow section (SHS). Due to the nonlinear 

stress-strain characteristics of stainless steel, the limiting width-to-thickness ratios for stainless steel given 

in AISC Design Guide 27: Structural Stainless Steel (2013) differ from those given for carbon steel in AISC 

360-16 (2016).  

7.2 Reduction factors for considering local buckling effects   

In general, reduction factors accounting for local buckling effects for compression elements can be 

determined by two approaches, the Effective Width Method (EWM) and Direct Strength Method (DSM). 

EWM, which is firstly proposed by von Karman (1932), extended and improved by Winter (1970), has been 

adopted in many design codes and specifications worldwide. The reduction factor formulations based on 

EWM may vary slightly in different design codes and specifications. DSM, which is originally proposed 

by Schafer (2000, 2019), has already been adopted in AISI S100-16 (2016) and AS/NZS4600 (2005). The 

reduction factor determined by DSM is hereafter referred to as ρ, while the reduction factor implicitly 
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provided in AISC 360-16 (2016) is referred to as ρ*. 

It should be pointed out that, since the reduction factor formulations determined by EWM and DSM were 

calibrated against experimental results, the influence of initial localized imperfection are implicitly included 

in the reduction factor. 

7.2.1 Reduction factor determined by DSM 

(1) ρ for members in compression 

For members in compression, ρ is given by Eq.(7.1) and (7.2), shown in Fig.7.1. The reduction factor ρ 

considers interaction between global and local buckling. 

when 𝜆𝑙 ≤ 0.776    
𝑃𝑛𝑙

𝑃𝑛𝑒
= 𝜌 = 1                         (7.1)                                       

when 𝜆𝑙 > 0.776    
𝑃𝑛𝑙

𝑃𝑛𝑒
= 𝜌 = 𝜆𝑙

−0.8 − 0.15𝜆𝑙
−1.6

         (7.2)                                         

where 𝜆𝑙 = √
𝑃𝑛𝑒

𝑃𝑐𝑟𝑙
 ; Pnl is the nominal local buckling strength in compression; Pnl is equal to the nominal 

compressive strength (Pn) of a column (without distortional buckling); Pne is the nominal global buckling 

strength in compression; Pcrl is the elastic critical local buckling strength.  

ρ or ρ*

 λ l

 AISC 360-16: ρ*

DSM : ρ 

 

Fig.7.1 Reduction factor versus cross-section slenderness (λl) 

(2) ρ for members in bending 
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Eq. (7.1) and (7.2) are applicable to members subjected to bending, provided that inelastic reserve strength 

resulted from partial plastification of the cross-section under bending is not considered (AISI S100-16: 

2016).The reduction factor for members in bending is given by 

when 𝜆𝑙 ≤ 0.776   
𝑀𝑛𝑙

𝑀𝑛𝑒
= 𝜌 = 1                           (7.3)                                              

when 𝜆𝑙 > 0.776   
𝑀𝑛𝑙

𝑀𝑛𝑒
= 𝜌 = 𝜆𝑙

−0.8 − 0.15𝜆𝑙
−1.6

           (7.4)                                          

where 𝜆𝑙 = √
𝑀𝑛𝑒

𝑀𝑐𝑟𝑙
; Mnl is the nominal local buckling moment; without distortional buckling, Mnl is equal 

to the nominal flexural strength (Mn) of a beam; Mne is the nominal global (lateral-torsional) buckling 

moment; Mcrl is elastic critical local buckling moment. 

7.2.2 Reduction factor implicitly provided in AISC 360-16 

For members with RHS and SHS in compression, the reduction factor ρ* is implicitly included in the two 

equations (E7-2 and E7-3 provided in ASIC 360-16) that determine the nominal compressive strength (Pn) 

of a member comprising slender-elements. The two equations are given by  

When b/t ≤ λr √𝑓𝑦 𝑓𝑛𝑒⁄     
𝐴𝑒

𝐴
= ρ∗ = 1                    (7.5)                                                                                                                            

When b/t > λr √𝑓𝑦 𝑓𝑛𝑒⁄     
𝐴𝑒

𝐴
= ρ∗ = (1 − 𝑐1√

𝑓𝑐𝑟𝑙

𝑓𝑛𝑒
 )√

𝑓𝑐𝑟𝑙

𝑓𝑛𝑒
       (7.6) 

where Ae is effective section area; A is gross section area; b is the width of flat element, t element thickness; 

λr is the limiting width-to-thickness ratio; fcrl is critical local buckling stress, 𝑓𝑐𝑟𝑙 = [𝑐2𝜆𝑟/(𝑏/𝑡)]2; fne is 

global buckling stress, fne = Pne/A; c1 and c2 are effective width imperfection adjustment factor. 

Eq. (7.5) and (7.6) can be written in terms of cross-section slenderness (λl) through the following procedure. 

For RHS and SHS 

λr =1.4√𝐸 𝑓𝑦⁄                             (7.7)                                                          

c1=0.2 and c2=1.38, and thus gives 

𝑓𝑐𝑟𝑙 = 3.73𝐸/(𝑏/𝑡)2                     (7.8)                                                           

Substituting Eq.(7.7) and (7.8) back into Eq.(7.5) and (7.6), gives 
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When 
𝑓𝑛𝑒

𝑓𝑐𝑟𝑙
 ≤  0.5256        

𝐴𝑒

𝐴
= ρ∗ = 1              (7.9)                                              

When 
𝑓𝑛𝑒

𝑓𝑐𝑟𝑙
>  0.5256        

𝐴𝑒

𝐴
= ρ∗ = (1 −  0.2√

𝑓𝑐𝑟𝑙

𝑓𝑛𝑒
 )√

𝑓𝑐𝑟𝑙

𝑓𝑛𝑒
             (7.10)                              

Members with RHS and SHS are not subject to distortional buckling, and thus the nominal compressive 

strength Pn is equal to the nominal local buckling strength (Pnl). Substituting 𝜆𝑙 = √
𝑃𝑛𝑒

𝑃𝑐𝑟𝑙
= √

𝑓𝑛𝑒

𝑓𝑐𝑟𝑙
 into Eq. 

(7.9) and (7.10) and replacing 
𝐴𝑒

𝐴
 by 

𝑃𝑛𝑙

𝑃𝑛𝑒
, gives 

when  λl ≤ 0.725      
𝑃𝑛𝑙

𝑃𝑛𝑒
= 𝜌∗ = 1                                 (7.11)                                                

when  λl > 0.725      
𝑃𝑛𝑙

𝑃𝑛𝑒
= ρ∗ = 𝜆𝑙

−1 − 0.2𝜆𝑙
−2

                      (7.12)                          

A plot of ρ* versus λl is shown in Fig.7.1. It can be seen that the ρ* curve is under the ρ curve determined 

by DSM. It should be noted that the ρ* curve determined by Eq.(7.11) and (7.12) does not apply to members 

subjected to bending. 

7.2.3 Reduction factor for stainless steel 

Although the ρ curve determined by DSM is developed based on experimental results of cold formed carbon 

steel members with C and Z sections Schafer (2000, 2019), it is also applicable to cold formed stainless 

steel members with RHS and SHS (Arrayago et al., 2017a, 2017b) . The reduction factor ρ determined by 

DSM gives accurate prediction for stainless steel SHS and RHS members. Thus, the reduction factor ρ 

determined by DSM is adopted in this paper.  

It should be pointed out that, for stainless steel members with RHS and SHS, initial localized imperfection 

(ω) considered in the ρ factor is unknown. In the current paper, the value of ω considered in the ρ factor is 

conservatively taken as the mean value of the maximum localized imperfection (ωmax) collected from 

reported tests, since the results determined by the ρ curve agree well with the reported experimental results 

of stainless steel SHS and RHS members.  

For the calculation of ρ, the nominal buckling strength and moment (Pne, Pcrl, Mne, and Mcrl) are determined 

in accordance with rules that are applicable to stainless steels, as follows: 

(1) The nominal global buckling strength Pne, given by Eq. (7.13) and (7.14), is determined in accordance 



Chapter 7. Flexural stiffness reduction factor accounting for local buckling effects 

109 

 

with AISC Design Guide 27: Structural Stainless Steel (2013). 

When 𝜆𝑐 ≤ 1.2    𝑃𝑛𝑒 = 0.5𝜆𝑐
2
𝑃𝑦                          (7.13)                                      

When 𝜆𝑐 > 1.2    𝑃𝑛𝑒 = 0.531𝑃𝑒 =
0.531

𝜆𝑐
2 𝑃𝑦                  (7.14)                                          

where λc is member slenderness; 𝜆𝑐 = √
𝑃𝑦

𝑃𝑐𝑟𝑒
 ; Py is full cross -section yield strength; Py=Afy ; fy is 0.2% 

proof stress; A is gross section area; 𝑃𝑐𝑟𝑒 =
𝜋2𝐸𝐼

(𝐾𝑙)2
; E is Young’s Modulus, I moment of inertia, K effective 

length factor, l length of the member.   

(2) The elastic critical local buckling strength Pcrl is given by  

𝑃𝑐𝑟𝑙 = 𝑓𝑐𝑟𝑙𝐴                                  (7.15)                                                      

where fcrl is the elastic critical local buckling stress. fcrl can be determined by the following equation or 

determined by the software CUFSM (Schafer, 2019). 

𝑓𝑐𝑟𝑙 =
𝑘𝜋2𝐸𝑡2

12(1−𝜈)2𝑏2                                  (7.16)                                                   

where t is plate thickness; ν is Poisson's ratio; b is width of the slender element; Kb is the buckling factor. 

The buckling factor Kb for members with RHS (SHS) under uniform compression can be conservatively 

taken as 4 or be determined by the formulation provided in BS 5950-1(2000), given by  

𝐾𝑏 ≈ 7 −
2𝛽

0.11+𝛽
− 1.2𝛽3                           (7.17)                                                                   

where β=b2/b1; b1 and b2 are the length and breadth of the rectangular hollow section, respectively. A plot 

of Eq.(7.17) is shown in Fig.7.2. 
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Kb

b2

b1

b2/b1

(b2   b1)

 

Fig.7.2 The buckling factor Kb for box section subjected to compression 

(3) The nominal global (lateral-torsional) buckling moment Mne is determined based on AISC Design Guide 

27: Structural Stainless Steel (2013). Since global lateral-torsional buckling is not considered in this paper, 

Mne is taken as Mp for beams with non-compact sections while Mne is taken as My for beams with slender 

sections. 

(4) The elastic critical local buckling moment Mcrl is given by  

𝑀𝑐𝑟𝑙 = 𝑊𝑒𝑙𝑓𝑐𝑟𝑙                               (7.18)                                                       

where Wel is elastic gross section modulus; fcrl can be determined by the software CUFSM 

(https://www.ce.jhu.edu/bschafer/cufsm/), or determined by Eq.(7.17) but with the buckling factor K for 

slender plates subjected to bending (AISI S100-16). 

7.3 Numerical modelling 

7.3.1 Elements, material models and residual stresses 

In-plane structural behavior of stainless steel elements susceptible to local buckling is studied using finite 

element (FE) software Abaqus 6.13. Two types of finite elements are employed: one-dimensional beam 

elements (B21) and three-dimensional shell elements (S4R). In conducting GNA with stiffness reduction, 

beam elements are employed, while both beam and shell element are employed in implementing 

Geometrically and Materially Non-linear Analysis with Imperfections (GMNIA). The cross-section 
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(without rounder corner) is defined as box section for beam element. To make the results determined by 

beam element and those determined by shell element comparable, the same box section is used for shell 

element. The stress-strain curves and the longitudinal bending residual stresses were modelled as those 

presented in Chapter 3. Spread of plasticity through cross-section and along member length is traced by 

distributed plasticity approach.  

7.3.2 Initial geometric imperfections 

For sway-restrained members, out-of-straightness (δ/L) and localized imperfection (ω) are considered and 

modelled directly. Out-of-straightness and localized imperfection are combined together by means of linear 

superposition of relevant modes (local buckling mode and global buckling mode). These modes are 

obtained from preliminary Buckle Analysis through ABAQUS. The deterministic value for out-of-

straightness is taken as 0.001. The deterministic value for localized imperfection (ω), is taken as the mean 

value (0.185) of the maximum ω collected from the reported tests results. For linear superposition, the 

global buckling mode is multiplied by 0.001, while local buckling mode is multiplied by the mean value 

(0.185) of the maximum ω. 

For sway-permitted members, out-of-plumbness (∆/h), out-of-straightness (δ/L) and localized imperfection 

(ω) are considered. Localized imperfection (ω) is directly modelled through local buckling mode times the 

mean value of the maximum ω. Out-of-plumbness (∆/h) is taken as 0.002 and out-of-straightness is taken 

as 0.001. The effects of out-of-plumbness and out-of-straightness are accounted for by means of applying 

notional loads (equivalent horizontal loads). Notional loads are applied to the directions that produce most 

destabilizing effects. The procedure of applying notional load is similar to the one present in [42].To avoid 

additional shear force at the member base due to notional loads, corresponding horizontal reaction forces 

are applied.  

7.3.3. FE model validation 

A validation of the developed FE models against experimental results reported in Arrayago et al. (2016) is 

shown in Fig.7.3. For the validation study, initial geometric imperfections was modelled as explained in 

Chapter 3. The material properties were modelled as those reported in Arrayago et al. (2016). The 

longitudinal bending residual stresses were not modelled, since they are implicitly included in the stress-
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strain curves. In Fig. 7.3, the FE model using beam element is validated against the beam-column with 

compact cross-section, while the FE model using shell element is validated against the beam-column prone 

to local buckling reduction. It is seen that the numerical results are in very close agreement with 

experimental results.  
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Fig.7.3. Validation of the developed FE models using shell element against experimental results reported 

in Arrayago et al. (2016). 

7.4 Flexural stiffness reduction accounting for local buckling effects and 

localized imperfection 

7.4.1 Introduction 

In this section, stiffness reduction formulations, presented in Chapter 4 and 5, are extended to account for 

local buckling effects and initial localized imperfection (ω) by means of incorporating the reduction factor 

(ρ) to reduce the resistance of the gross section. Verification studies for GNA with extended stiffness 

reduction are then carried out numerically. Predicted results by GNA with extended stiffness reduction 

(using beam element) are compared against those determined by GMNIA using shell element. To evaluate 

local buckling effects and influence of initial localized imperfection (ω), predicted results by GMNIA using 

shell element are compared against those obtained from GMNIA using beam element.  

7.4.2 Extended column flexural stiffness reduction factor  

Stiffness reduction caused by local buckling and initial localized imperfection (ω) is accounted for by 

reducing the resistance of the gross section through incorporating the reduction factor ρ (ρ≤1) determined 
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by DSM. The extended column flexural stiffness reduction factor (τN-ρ) formulation is given by  

𝜏𝑁−ρ = 1     for 
𝑃𝑟1

ρ𝑃𝑦
≤ 0.37                               (7.19) 

𝜏𝑁−ρ = −2.717
𝑃𝑟1

ρ𝑃𝑦
𝑙𝑛

𝑃𝑟1

ρ𝑃𝑦
   for 

𝑃𝑟1

ρ𝑃𝑦
> 0.37                    (7.20)                     

A plot of the extended column stiffness reduction factor (τN-ρ) against Pr1/ρPy is shown in Fig.7.4 (a). 

Regardless of the reduction factor ρ, the curve of τN-ρ versus Pr1/ρPy is same to the curve of τN versus Pr1/Py 

(compact sections). To exhibit the influence of ρ on column stiffness reduction, cross-section slenderness 

(λl ) is assumed to be varied from 0 to 2 , as shown in Fig.7.4 (b). In the figure, the curve with λl ≤0.776 

(ρ=1) represents stiffness reduction for columns with compact cross-sections. 

 Pr1 / Py

τN-ρτN-ρ

 Pr1  ρPy
(a) (b)

Fig.7.4 Column stiffness reduction (τN-ρ) accounts for local buckling effects and initial localized 

imperfection: (a) τN-ρ versus Pr1/ρPy (b) τN-ρ versus Pr1/Py 

7.4.3 Verification of the extended column flexural stiffness reduction factor  

The accuracy of the extended column stiffness reduction factor (τN-ρ) for stainless steel members susceptible 

to local buckling effects subjected to axial load is assessed. Simply supported columns with cross-section 

120x80x2.5 (E=200GPa, fy=350MPa, n=6) subjected to axial loads are studied. The length of the columns 

varies from 100mm to 7000 mm. The applied axial load is factored load. For each column, GMNIA using 

shell element (denoted by GMNIA-shell), GMNIA using beam element (denoted by GMNIA-beam), and 

GNA with τN-ρ (denoted by GNA-τN-ρ) are conducted. 
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The procedure of implementing GMNIA-beam, GMNIA-shell and GNA-τN-ρ, shown in Fig.7.5, is 

illustrated by the following. 

Column  subjected to  

factored axial load 

Pr1 

τN-ρ  

Pu-GMNIA-B

GMNIA using 

beam element

LA using beam 

element

GNA using 

beam element 

GMNIA using 

shell element

Pu-GMNIA-S 

Pu-τN-ρ
 

Fig.7.5. Procedure of implementing GNA-τN-ρ, GMNIA-shell and GMNIA-beam 

(1) Perform GMNIA-shell and GMNIA-beam analysis to obtain the ultimate axial load (Pu) of the 

columns.  

The introduced out-of-straightness is 0.001 and the amplitude of maximum localized imperfection (ωmax) 

is 0.185. The value of 0.185 is the mean value of ωmax for stainless steel RHS and SHS members collected 

from reported test results. Pu predicted by GMNIA-beam is denoted by Pu-GMNIA-B, while Pu predicted by 

GMNIA-shell is denoted by Pu-GMNIA-S.  

(2) Perform Linear Elastic Analysis (LA, using beam element) to obtain maximum first order axial 

force. 

The applied load is Pu-GMNIA-S. Maximum first order axial force obtained from LA is referred to as Pr1. For 

all the studied simply supported columns, Pr1 is equal to Pu-GMNIA-S.  

(3) Calculate the ρ factor and the extended column flexural stiffness reduction factor τN-ρ. 

The ρ factor is calculated according to Eq. (7.1) and (7.2). τN-ρ is determined according to Eq.(7.19) and 

(7.20).  
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(4) Perform GNA-τN-ρ (using beam element) analysis to predict the ultimate axial load of the columns.  

Ultimate axial load predicted by GNA-τN-ρ is denoted by Pu-τN-ρ. 

As expected, the ultimate load (Pu) of the simply supported columns predicted by GNA-τN-ρ matches the 

bifurcation load (or elastic critical buckling load) Pe-τNρ determined by the reduced flexural stiffness (τN-ρ 

times EI), shown in Fig.7.6. Pe-τNρ is given by  

𝑃𝑒−τNρ =
𝜋2(𝜏𝑁−𝜌𝐸𝐼)

(𝐿)2
                              (7.21) 

where EI is initial flexural stiffness; L is unbraced length of the column. 

Pu

 

GNA-τN-ρ  :  Beam element

 

Fig.7.6. Comparison of the ultimate axial load (Pu) determined by GNA-τN-ρ and the elastic critical buckling 

strength (Pe-τNρ) based on effective flexural stiffness (τN-ρEI) 

Comparison of the results determined by GNA-τN-ρ, GMNIA-shell and GMNIA-beam is shown in Fig.7.7, 

where the ultimate axial load (Pu) predicted by different method is normalized by full cross-section yield 

strength (Py). The difference between the curve of GMNIA-beam and the curve of GMNIA-shell is mainly 

resulted from local buckling effects. It is observed that the smaller the column slenderness (λc) is, the more 

significant the difference is. This can be explained by the following. For a given cross-section, since elastic 

critical local buckling strength (Pcrl) is constant, the cross-sectional slenderness λl (𝜆𝑙 = √
𝑃𝑛𝑒

𝑃𝑐𝑟𝑙
) ) is governed 

by Pne. According to Eq. (7.13) and (7.14), Pne increases with λc decreasing. It means the smaller λc is, the 

larger λl . As a consequence, the difference between the two curves due to the influence of local buckling 

becomes more considerable. 
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GMNIA :    Beam element
GNA-τN-ρ  :  Beam element
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Fig.7.7. Normalized ultimate axial load (Pu) determined by different methods against column slenderness 

(c) 

It is observed that the ultimate axial loads predicted by GNA-τN-ρ using beam element are in very close 

agreement with those predicted by GMNIA-shell. For columns with low member slenderness (λc), GNA-

τN-ρ slightly overestimates the ultimate axial load. One possible explanation is that the incorporated 

reduction factor ρ somewhat underestimates local buckling effects, which results in a higher τN-ρ than the 

actual stiffness reduction factor. Since the ultimate load predicted by GNA-τN-ρ is equal to the bifurcation 

load determined by Eq.(7.21), in which the bifurcation load is directly proportional to τN-ρ, a higher τN-ρ 

leads to overestimated ultimate axial load. Note that the discrepancy between the predicted results of GNA-

τN-ρ and those determined by GMNIA may also be caused by the introduced initial localized imperfection 

(ω), since the actual localized imperfection (ω) considered in the ρ factor is unknown. 

7.4.4 Extended beam flexural stiffness reduction factor. 

For beams with non-compact and slender sections, local buckling effects and the influence of initial 

localized imperfection are accounted for by means of incorporating the reduction factor (ρ) to reduce the 

resistance of the gross section (My for slender section, Mp for non-compact section).  

The extended beam flexural stiffness reduction factor (τM-ρ) formulation for slender section is given by 

When 0 <Mr1≤ ρMy           𝜏𝑀−𝜌 = [1 + (𝑛 − 1)
0.001𝐸

𝑓𝑦
(

𝑀𝑟1

ρ𝑀𝑦
)
𝑛−2

]

−1

                        (7.22) 
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The extended beam flexural stiffness reduction factor (τM-ρ) formulation for non-compact section is given 

by 

When 0 <Mr1≤ ρMy          𝜏𝑀−𝜌 = [1 + (𝑛 − 1)
0.001𝐸

𝑓𝑦
(

𝑀𝑟1

ρ𝑀𝑝

𝑊𝑝𝑙

𝑤𝑒𝑙
)
𝑛−2

]

−1

               (7.23) 

When ρMy <Mr1≤ ρMp       𝜏𝑀−𝜌 = [(1 −
𝑀𝑟1

ρ𝑀𝑝
)

1

1−
𝑊𝑒𝑙
𝑊𝑝𝑙

]

0.9

[1 + (𝑛 − 1)
0.001𝐸

𝑓𝑦
]
−1

       (7.24) 

For a non-compact cross-section (fy = 430MPa, E=200GPa, and n=6, Wel/Wpl=0.82), a plot of the extended 

beam stiffness reduction (τM-ρ) determined by Eq.(23) and (24) against Mr1/ρMy is shown in Fig.7.8 (a). To 

exhibit the influence of ρ on beam flexural stiffness reduction, cross-section slenderness (λl) is assumed to 

be varied from 0 to 1.1, as shown in Fig.7.8 (b). The figure shows the decreasing trend of τM-ρ as the assumed 

cross-section slenderness (λl ) increases.  

Mr1 /Mp

τM-ρ

(b)

τM-ρ

 Mr1  ρMp(a)

Fig.7.8 A plot of beam flexural stiffness reduction (a) τM-ρ versus Mr1/ρMP (b) τM-ρ versus Mr1/MP 

7.4.5 Verification of the extended beam flexural stiffness reduction factor 

The ability of τM-ρ capturing the effects of local buckling and spread of plasticity through cross-section and 

along member length is verified. It should be noted that, due to the non-linear stress-strain behavior (beyond 

proportional limit) of stainless steel, the cross-section already undergoes plastic straining before internal 

moment reaches to My. 

Simply supported beams with slender cross-section 120x80x2 (E=200GPa, fy=350MPa, n=7, 
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My=9.53kN*m, =0.97, Mu =9.24kN*m, Mu is the maximum bending moment predicted by GMNIA-shell) 

and non-compact cross-section 250x150x5 (E=190GPa, fy=450MPa, n=7,Wpl/Wel=1.204, Mp=147.49 

kN*m, =0.95, Mu =9.24kN*m) are studied. The beam with slender cross-section is subjected to a pair of 

identical end moments, while the beam with non-compact cross-section is subjected to uniformly 

distributed loads. GMNIA-shell element and GMNIA-beam element are conducted to obtain M-k curves, 

where the introduced out-of-straightness is 0.001 and the amplitude of the maximum localized imperfection 

(ωmax) is 0.185 in implementing GMNIA-shell. 

τM-ρ determined by Eq. (7.22), (7.23) and (7.24) are compared against flexural stiffness reduction derived 

from M-k curves provided by GMNIA-shell element. Stiffness reduction derived from M-k curve of 

GMNIA-shell element is denoted by τM-shell, and that derived from M-k curve of GMNIA-beam element is 

denoted by τM-beam. 

The derivation of flexural stiffness reduction is based on  

𝜏𝑀−𝑠ℎ𝑒𝑙𝑙(𝑜𝑟 𝜏𝑀−𝑏𝑒𝑎𝑚) =
(𝐸𝐼)𝑡

𝐸𝐼
=

𝑑𝑀𝑟1
𝑑𝜅

𝐸𝐼
                   (7.25)         

where 
𝑑𝑀𝑟1

𝑑𝜅
 is the slope of the tangent at a given point on the M-k curve. The procedure of calculating 

tangent slope is conducted through MATLAB 2017b.   

Comparison of τM-ρ against τM-shell and τM-beam is shown in Fig.7.9. In the figure, the difference between τM-

beam and τM-shell is mainly attributed to the influence of local buckling. Compared to the curve of τM-beam , the 

curve of τM-shell decreases at a high rate after local buckling occurs in the inelastic range. It is observed that 

the τM- curves generally agree well with τM-shell curves. The discrepancy between τM-ρ and τM-shell may be 

attributed to the incorporated reduction factor  or introduced initial localized imperfection. It should be 

pointed out that, besides the influence of the factor  and initial localized imperfection, the discrepancy 

between τM-ρ and τM-shell also relies on the accuracy of the beam flexural stiffness reduction τM applicable to 

compact sections to capture the spread of plasticity of the beams. 
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Eq.(7.22) : τM-ρ 
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GMNIA-shell element: τM-shell 

GMNIA-beam element: τM-beam 

Eq.(7.23) and (7.24): τM-ρ 

MM  q

Fig.7.9 Comparison of τM-ρ against τM-shell and τM-beam (a) slender section (b) non-compact section 

7.4.6 Extended beam-column flexural stiffness reduction factor 

Similar to the above approach, local buckling effects and the influence of initial localized imperfection on 

beam-columns are taken into consideration by reducing the resistance of the gross section through the factor 

ρ. It should be pointed out that ρ is taken as min {ρ-column, ρ-beam}. ρ-column is calculated according to 

Eq. (7.1) and (7.2), while and ρ-beam is calculated according to Eq. (7.3) and (7.4).  

The extended τMN-ρ formulation is given by  

𝜏𝑀𝑁−𝜌 = 𝛾Ω𝑀𝜏𝑁−𝜌𝜏𝑀−𝜌 [1 − (
𝑃𝑟1

𝜌𝑃𝑦
)
0.9

(𝐶𝑚
𝑀𝑟1

𝜌𝑀𝑝
)

𝑊𝑒𝑙
𝑊𝑝𝑙]         (7.26) 

0.8 ≤ 𝛾 = 2(𝐵2−𝐸 − 0.6) < 1  for 1≤ B2-E <1.1                                       (7.27) 

𝛾 = 1                       for 1.1 ≤ B2-E                                   (7.28)  

Ω𝑀 = 1                     for 0 ≤
𝑀𝑟1

𝜌𝑀𝑝
< 0.4                                     (7.29) 

Ω𝑀 = (0.6 +
𝑀𝑟1

𝜌𝑀𝑝
)
1.4

          for 0.4 ≤
𝑀𝑟1

𝜌𝑀𝑝
≤ 1                                   (7.30) 

The factor B2-E evaluates P-∆ effects and together with P-δ effects on sway-permitted elastic beam-columns. 

For sway-restrained beam-columns, B2-E is equal to 1. For sway-permitted isolated beam-column, B2-E is 

given by 
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𝐵2−𝐸 =
1

1−
𝑃𝑟1

0.85 𝑃𝑒𝑠

≥ 1                            (31) 

where the factor 0.85 accounts for the influence of P-δ effects on the global behavior of a sway-permitted 

member; Pes=(FH L)/Δ; FH is first order shear force; Δ is relative drift between member ends due to FH; L is 

length of the member.  

Note that Eq.(7.26) is not applicable to slender cross-sections, since inelastic reserve strength is considered 

in this equation. For beam-columns with slender sections, Eq. (7.26) is slightly modified, where plastic 

bending moment (Mp) is replaced by My, and Wel/Wpl is replaced by the factor 0.7. The factor 0.7 is based 

on the results of numerical studies. 

7.4.7 Verification of the extended beam-column flexural stiffness reduction 

factor 

The accuracy of the extended beam-column stiffness reduction factor (τMN-ρ) for in-plane stainless steel 

beam-columns with non-compact and slender sections are evaluated. Simply supported beam-columns and 

cantilever beam-columns are studied. 

Simply supported beam-columns, with different cross-sections and material properties (shown in Table.1), 

are subjected to combined axial load (P) and varied moments (M1, M2) at the member ends. The applied P 

is factored load, M2=e*P; e ranges from 1 to 150 ( e= [0,10,30,50,80,100,150]) and the unit of e is mm; 

|M2|≥|M1|. The applied end moments are varied for different cross-sections: a pair of equal but opposite end 

moments for cross-section 120x80x2, one end moment for cross-section 200x100x3, and a pair of identical 

end moments for cross-section 250x150x5.  

Cantilever beam-columns, with different cross-sections and material properties (shown in Table.7.1), are 

subjected to combined axial load (P) and horizontal load (iP) at the cantilever end, where the applied load 

P is factored load, and i=[0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3]. 
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Table.7.1 Details of studied beam-columns 

Beam-column Cross-section  L(mm) E(GPa) fy(MPa) n Wpl/Wel 

Simply supported 

a 120x80x2 2000 200  350 6 1.19 

b 200x100x3 2500 175  400 8 1.22 

c 250x150x5 3000 190  450 7 1.20 

Cantilever 
a 120x80x1.5 2000 200  350 6 1.19 

b 200x100x3 2500 175  400 7 1.22 

Verification study for the studied beam-columns are conducted through the following steps, as illustrated 

in Fig.7.10.  

Beam-column 

subjected to  factored load 

Pr1 , Mr1 , B2E

τMN-ρ  

GMNIA using 

beam element

LA using 

beam element

GNA using 

beam element 

 Mr2-τMN-ρ

GMNIA using 

shell element

Mr2-GMNIA-S

Mr2-GMNIA-S 

= Mr2-τMN-ρ

Pu-GMNIA-B , 

Mu-GMNIA-B

Pu-GMNIA-S, 

Mu-GMNIA-S

Pu-τMN-ρ , 

Mu-τMN-ρ  

Fig.7.10 Procedure of implementing GNA-τMN-ρ, GMNIA-shell and GMNIA-beam analysis. 

(1) Perform GMNIA-shell and GMNIA-beam to obtain the ultimate axial load and moment (Pu and 

Mu) of the beam-columns.  

The introduced maximum localized imperfection (ωmax) is 0.185 for all beam-columns. Out-of-straightness 

of 0.001 is introduced to simply supported beam-columns, while out-of-straightness of 0.001 and out-of 



Chapter 7. Flexural stiffness reduction factor accounting for local buckling effects 

122 

 

plumbness of 0.002 are introduced to cantilever beam-columns. For simply supported beam-columns, Mu 

is the end moment M2, and it is equal to e*Pu. For cantilever beam-columns, Mu is equal to horizontal load 

(iPu) multiplied by member length (L). Pu and Mu determined by GMNIA-beam are denoted by Pu-GMNIA-B 

and Mu-GMNIA-B, respectively, while Pu and Mu determined by GMNIA-shell are denoted by Pu-GMNIA-S and 

Mu-GMNIA-B, respectively. For GMNIA-shell analysis, maximum internal second order moment (denoted by 

Mr2-GMNIA-S) within the beam-column, corresponding to Pu-GMNIA-S and Mu-GMNIA-S, are obtained.  

(2) Perform Linear Elastic Analysis (LA, using beam element) to obtain maximum first order internal 

axial force (Pr1) and moment (Mr1) 

The applied axial load and end moment are Pu-GMNIA-S and Mu-GMNIA-S, respectively. For cantilever beam-

columns, the applied horizontal load multiplied by member length is treated as end moment. The factor B2-

E is calculated according to Eq. (7.31). 

(3) Calculate the ρ factor and the extended beam-column flexural stiffness reduction factor τMN-ρ.  

The reduction factor ρ is taken as min {ρ-column, ρ-beam}. ρ-column is calculated according to Eq. (7.1) 

and (7.2), while and ρ-beam is calculated according to Eq. (7.3) and (7.4). For the calculation of the ρ factor, 

the nominal local buckling strength (Pnl) is taken as Pu-GMNIA-S for the column case, while the nominal local 

buckling moment (Mnl) is taken as Mu-GMNIA-S for the beam case. τMN-ρ is determined according to Eq.(7.26).  

(4) Perform GNA-τMN-ρ using beam element to predict the maximum internal second order moment 

(Mr2).  

Mr2 determined by GNA-τMN-ρ is denoted by Mr2-τMN-ρ. For GNA-τMN-ρ, the ultimate axial load (Pu-τMN-ρ) and 

end moment (Mu-τMN-ρ) of the beam-columns are achieved when Mr2-τMN-ρ is equal to Mr2-GMNIA-S. 

Comparison of the predicted results for simply supported beam-columns and cantilever beam-columns is 

shown in Fig.7.11 and 7.12, respectively. In the two figures, Pn and Mn are the nominal compressive strength 

of the column and nominal flexural strength of the beam, respectively; Pn and Mn determined by equations 

provided in Section 7.2.3 are very close to Pu (column case) and Mu (beam case) determined by GMNIA-

shell element, respectively; Pu and Mu predicted by different method are normalized by Pn and Mn, 

respectively. It should be mentioned that for all the beam cases, Mu-τMN-ρ is taken as the ultimate end moment 

determined by GMNIA-shell element. 



Chapter 7. Flexural stiffness reduction factor accounting for local buckling effects 

123 

 

GMNIA :     Shell element
GMNIA :     Beam element
GNA-τMN-ρ  : Beam element

80

120
y

z

2.0

M

M2=e*PM1= -M2

PP

 Pu/ Pn 

Mu / Mn
(a)

(c)

Mu / Mn

M2=e*P

PP

100

200
y

z

3

M

M1= 0

 Pu/ Pn 

(b)

GMNIA :     Shell element
GMNIA :     Beam element
GNA-τMN-ρ  : Beam element

150

250
y

z

5

M

M2=e*PM1= M2

PP

Mu / Mn

 Pu/ Pn 

GMNIA :     Shell element
GMNIA :     Beam element
GNA-τMN-ρ  : Beam element

Fig.7.11 Comparison of predicted results for simply supported beam-columns 
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                Fig.7.12 Comparison of predicted results for cantilever beam-columns 
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In the two figures, the considerable discrepancy between the curve of GMNIA-beam element and the curve 

of GMNIA-shell element is attributed to local buckling effects and the influence of initial localized 

imperfection (ω). It is observed that the results predicted by GNA-τMN-ρ are in close agreement with those 

determined by GMNIA-shell element. For the studied beam-columns, the discrepancy between the 

predicted results of GNA-τMN-ρ and those provided by GMNIA-shell mainly occurs in the intermediate part 

of the interaction curves (Pu/Pn versus Mu/Mn). It may be resulted from the incorporated reduction factor ρ 

or the amplitude of introduced maximum initial localized imperfection (ωmax) in implementing GMNIA-

shell analysis. From the Fig.7.11 and Fig.7.12, it is concluded that, besides capturing the influence of spread 

of plasticity, the extended stiffness reduction τMN-ρ can well capture local buckling effects. 

It should be noted that, for design check of non-compact and slender cross-sections, full cross-section 

resistance have to be reduced by the ρ factor to account for local buckling effects. For member-based 

ultimate limit design checks using internal axial forces and moments determined by GNA-τMN-ρ or 

GMNIA-shell in this paper, only cross-section strength check is needed and member buckling strength 

check is eliminated. This is because second order effects (P-∆ and P-δ) and all initial geometric 

imperfections (out-of-plumbness, out-of-straightness, and localized imperfection) are considered in both 

GNA-τMN-ρ and GMNIA.  

7.5 Concluding remarks 

In this chapter, the stiffness reduction formulations, applicable to stainless steel elements and frames with 

compact sections, are extended to account for local buckling effects and initial localized imperfection (ω). 

Local buckling effects and influence of initial localized imperfection are accounted for by means of 

reducing the gross section resistance using a factor ρ. The factor ρ, determined by the Direct Analysis 

Method, depending on cross-section slenderness, is adopted. The accuracy of GNA with extended stiffness 

reduction factor for in-plane stability design of stainless steel elements (columns, beams and beam-columns) 

with non-compact and slender sections is verified. Predicted results by GNA with stiffness reduction (using 

shell element) are in close agreement with those determined by GMNIA using shell element. 
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8. Effect of uncertainty in localized imperfection on members 

susceptible to local buckling 

8.1 Introduction 

The structural behavior of members with non-compact and slender sections are sensitive to initial localized 

imperfection (ω). In this chapter, probabilistic studies based on the proposed 3D model with random ω 

(presented in Chapter 3) are conducted to  

(1) evaluate the effect of uncertainty in ω on the ultimate capacity of stainless steel columns. 

(2) evaluate the effect of uncertainty in ω on the accuracy of GNA coupled with stiffness reduction for 

stainless steel beam-columns. It is indirectly assessed through evaluating the effect of uncertainty in ω on 

the ultimate capacity of stainless steel beam-columns. 

Firstly, a statistical analysis of experimental results of the ωmax from the literature is carried out. The studied 

samples refer to the stainless steel grades commonly used in construction. 

Secondly, a new approach utilizing Fourier series to generate the three-dimensional (3D) model of elements 

with random localized imperfection (ω) is presented. The proposed 3D models are used to conduct 

probabilistic studies of stainless steel elements that are susceptible to local buckling. 

Thirdly, for a series of tested stainless steel columns (susceptible to local buckling) reported in the literature, 

the statistical characteristics of the ultimate axial load, obtained from GMNIA in which ω is modelled 

randomly, are compared against the experimental results. 

Lastly, for the studied beam-columns presented in Section 7.4, the statistical characteristics of the ultimate 

capacity, obtained from GMNIA in which ω is modelled randomly, are compared against those determined 

by GNA-τMN-ρ as well as GMNIA in which ω is modelled as the lowest local buckling mode (obtained from 

Buckle Analysis) times a deterministic value . Through probabilistic studies, the influence of uncertainty 

in ω on the accuracy of GNA-τMN-ρ is indirectly evaluated. 

Parts of the research presented in this chapter have also been reported by Shen and Chacón (2019). 
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8.2 Statistical analysis of the maximum localized imperfection (ω) 

Although there is a considerable uncertainty when characterizing localized imperfection (ω) in cold-formed 

hollow sections, experimental data on the maximum localized imperfection (ωmax) are available for the 

particular case of RHS and SHS stainless steel specimens. A statistical analysis of experimental results of 

the ωmax from the literature is carried out in this section. A total of 161 cold-formed stainless steel RHS and 

SHS samples are collected. A summary of the samples is shown in Table 8.1. The studied samples refer to 

the stainless steel grades commonly used in construction. In these references, some studies (Young and Lui, 

2005; Lui et al., 2014) provided the pattern of ω in transverse direction (cross-sectional), in which all the 

reported patterns are very close to a half-sine wave. Few of them reported the variation of localized 

imperfection in longitudinal direction.  

Table.8.1 Summary of the samples collected from the literature 

Reference Stainless steel groups Grade  
No. of samples 

with measured ω 

B.F. Zheng et al., 2016  Austenitic EN1.4301  4 

I. Arrayago. et al., 2016  Ferritic EN1.4003  12 

B. Young and W.M. Lui, 2005  Duplex EN1.4162  5 

O. Zhao et al.,2015  

Austenitic EN1.4301  10 

Austenitic EN1.4571  6 

Austenitic EN1.4307  6 

Austenitic EN1.4404  6 

Duplex EN1.4162  6 

M.Theofanous and L.Gardner, 2009 Duplex EN1.4162  8 

W.M. Lui et al., 2014  Duplex EN1.4462  10 

Y. Huang and B.Young, 2013  Duplex EN1.4162  22 

S.Afshan and L.Gardner,2013  
Ferritic EN1.4003  6 

Ferritic EN1.4509  2 

M. Bock et al., 2015  Ferritic EN1.4003  8 

I. Arrayago and E. Real, 2015  Ferritic EN1.4003  26 

O. Zhao et al.,2016 Ferritic EN1.4003  24 

    Total :161 
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The probability distribution for ωmax among the samples collected in the literature was identified by 

statistical distribution tests (Anderson–Darling method) as well as from probability plots. Both distribution 

tests and probability plots were performed by using the statistical software Minitab 18 (2018).  

For the case of distribution tests, Anderson-Darling statistics (AD) and P-values measure how well 

specified distributions fit to the data. For a given sample data and distribution, the smaller the AD is, the 

better the distribution fits to the data. Higher p-values indicate a better fit, and p-values less than 0.05 

typically indicate that the data do not follow the specified distribution. The indicator LRT P is for 3-

parameter distributions only. A lower LRT P indicates that the related 2-parameter distribution can be 

significantly improved by a third parameter. Goodness of fit test results for 16 different distribution tests is 

shown in Fig 8.1(a). The Box-Cox transformation and the Johnson transformation are disregarded since the 

target is to identify probability distribution rather than to perform any transformation. It is found that, the 

log-normal distribution (AD=1.016, P-value = 0.011) represents the best fit for the data of ωmax. 

Probability plots is another efficient way to determine whether the specified distribution fits the sample 

data. The closer the data to the middle straight line, the better the distribution fits the data. The probability 

plot of the sample data is shown in Fig 8.1(b). It is observed that the data points are in close agreement with 

the center straight line. It again demonstrates that the sample data follow the log-normal distribution. The 

histogram of ωmax is shown in Fig 8.1(c). The log-normal distribution is fitted to the histogram. Comparison 

of the cumulative probability (CDF) curve against the log-normal distribution is shown in Fig 8.1(d), in 

which CDF determines the probability that an observation will be less than or equal to a certain value. 
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Fig 8.1. Identifying probability distribution for ωmax (a) Goodness of fit test results for 16 different 

distribution tests (b) Probability plot of ωmax (c) histogram of ωmax (d) Comparison of cumulative probability 

(CDF) curve against the log-normal distribution 

8.3 Fourier series-based 3D models 

Cross-sections comprising slender elements are widely used in construction engineering to pursue 

economic benefits. These sections undergo local buckling reduction in advance of failure, and their ultimate 

capacity may be significantly influenced by the uncertainty in localized imperfection, which has been 

described in Chapter 2. For this purpose, a new approach utilizing Fourier series to generate the 3D models 

of members with random ω is proposed. The proposed 3D model is employed for probabilistic studies 

presented in Chapter 8. 

The proposed 3D model with random localized imperfection (ω) is based on superposition of Fourier series 
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expansion of different functions. Fourier series technique has been widely used for 3D surface modeling 

(Davis, 1973; Higgins, 1996). For a function f(x) that is periodic on an interval [−L, L], it can be expressed 

as Fourier series, given by 

f(𝑥) =
𝑎0

2
+ ∑ [a𝑘cos (

kπ𝑥

𝐿
)

∞

𝑘=1
+ b𝑘sin (

kπ𝑥

𝐿
)]    (8.1) 

where 

𝑎0 =
1

𝐿
∫ 𝑓(𝑥)

𝐿

−𝐿
𝑑𝑥                   (8.2)                                                               

𝑎𝑘 =
1

𝐿
∫ 𝑓(𝑥)

𝐿

−𝐿
cos (

kπ𝑥

𝐿
) 𝑑𝑥     (k =  0, 1, 2, 3,⋯ )                             (8.3) 

𝑏𝑘 =
1

𝐿
∫ 𝑓(𝑥)

𝐿

−𝐿
sin (

kπ𝑥

𝐿
) 𝑑𝑥     (k =  1, 2, 3,⋯ )                                  (8.4) 

Assume a surface consists of n×m points in a 3D coordinate system, where X coordinate represents 

longitudinal (length) direction, Y represents transverse (width) direction, and Z represents deviation from 

the flat surface parallel to XY plane. For a point (xi, yj, zij) (i=1, 2, ⋯, m; j=1, 2, ⋯, n) on the surface, zij 

governs localized imperfection (ω). All zij elements comprise n×m matrix [Z] which can be determined by  

[𝐙] =  [𝐅𝟏] + ([𝐅𝟐] − [𝐅𝟏])[𝐒]   (8.5)                                                                     

[F1]= [

f1(x1) f1(x2) ∙∙∙ f1(x𝑖) ∙∙∙ f1(x𝑚)
f1(x1) f1(x2) ∙∙∙ f1(x𝑖) ∙∙∙ f1(x𝑚)

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
f1(x1) f1(x2) ∙∙∙ f1(x𝑖) ∙∙∙ f1(x𝑚)

]

𝑛×𝑚

                         (8.6) 

[F2]= [

f2(x1) f2(x2) ∙∙∙ f2(x𝑖) ∙∙∙ f2(x𝑚)
f2(x1) f2(x2) ∙∙∙ f2(x𝑖) ∙∙∙ f2(x𝑚)

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
f2(x1) f2(x2) ∙∙∙ f2(x𝑖) ∙∙∙ f2(x𝑚)

]

𝑛×𝑚

                         (8.7) 

Where f1(xi) and f2(xi) are functions that are decomposed into Fourier series. 

[S] is m×m diagonal matrix  

[𝐒] =

[
 
 
 
sin(πy𝑗/B) 0 ∙∙∙ 0

0 sin(πy𝑗/B) ∙∙∙ 0

⋮ ⋮ ⋱ ⋮
0 0 ∙∙∙ sin(πy𝑗/B)]

 
 
 

𝑚×𝑚

                       (8.8) 

([𝐅𝟐] − [𝐅𝟏])[𝐒] = 
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[
 
 
 
 [f2(x1) − 𝑓1(x1)]sin (

πy1

𝐵
) ∙∙∙ [f2(x𝑖) − 𝑓1(x𝑖)]sin (

πy1

𝐵
) ∙∙∙ [f2(x𝑚) − 𝑓1(x𝑚)]sin (

πy1

𝐵
)

[f2(x1) − 𝑓1(x1)]sin (
πy2

𝐵
) ∙∙∙ [f2(x𝑖) − 𝑓1(x𝑖)]sin (

πy2

𝐵
) ∙∙∙ [f2(x𝑚) − 𝑓1(x𝑚)]sin (

πy2

𝐵
)

⋮ ⋮ ⋮ ⋮ ⋮

[f2(x1) − 𝑓1(x1)]sin (
πy𝑛

𝐵
) ∙∙∙ [f2(x𝑖) − 𝑓1(x𝑖)]sin (

πy𝑛

𝐵
) ∙∙∙ [f2(x𝑚) − 𝑓1(x𝑚)]sin (

πy𝑛

𝐵
)]
 
 
 
 

  (8.9) 

The fundamental principles of generating 3D surfaces with random ω are illustrated by the following. f1(xi) 

and f2(xi) are two functions that are decomposed into Fourier series with random coefficients. [F1] and [F2] 

governs two curved surfaces, as shown in Fig 8.2(a), where L and B are the length and width of the surface, 

respectively. Localized imperfection (ω) is determined by matrix ([F2]-[F1])[S]. It comprises two 

components: transverse variation and longitudinal variation, as shown in Fig. 8.2 (b). The shape and 

magnitude of ω in the longitudinal direction depends on the curve along longitudinal centerline. It is 

determined by the function [f2(xi) - f1(xi)] sin (π/2).The shape of ω in the transverse direction is modelled 

by a half-sine-wave, since its shape in transverse direction reported in most literatures is convexity 

/concavity. The half-sine-wave is determined by the function [f2(xi) - f1(xi)] sin (πyj/B), as shown in Fig 8.2 

(b), where the two half-sine waves correspond to (xa, yj) and (xb, yj) (j= 0, 1, ⋯, m). The generated surface 

with random ω is determined by [F1] + ([F2]-[F1])[S], as shown in Fig 8.2 (c). 
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[f2(xa)-f1(xa)]sin(πyj /B)
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Z

Y

X

[f2(xb)-f1(xb)]sin(πyj /B)

[f2(xi)-f1(xi)]sin(0) =0

xa xb

+

(b) 

([F2]- [F1])[S]

(a) 

Z

Y

X

LB

[F1] and [F2]

[F2]

[F1]

f1(xi)f2(xi)

f1(xi) 

f2(xi)  
f1(xb)+[f2(xb)-f1(xb)]sin(πyj /B)

X

Y

Z

xbxa

f1(xa)+[f2(xa)-f1(xa)]sin(πyj /B)

(c) 

[F1]+([F2]- [F1])[S]

Fig. 8.2. Development of 3D surface with random ω (a) Two surfaces determined by [F1] and [F2] (b) 

Surface determined by ([F2]-[F1])[S] (c) Surface determined by [F1] + ([F2]-[F1])[S] 

Fig 8.3 shows the generated 3D model for a typical surface with random ω and half-sine edges. The 3D 

model of a member is finally assembled by four surfaces. It should be mentioned that in order to fit the four 

faces together, relevant coordinate transformation should be conducted. Coordinate transformation depends 

on assembling order and the position of the surface in a 3D space. For developing 3D model of RHS and 

SHS with round corners, additional curved surfaces representing round corners should be modelled. The 

generated 3D model for member with random ω and straight edges is shown in Fig. 8.4 (a). The 3D model 

of a member with random ω and half-sine-wave edges is shown in Fig.8.4 (b). Fig. 8.4 (c) shows the 3D 

model of a member with random ω and complex edges. For developing 3D model of RHS and SHS with 

round corners, additional curved surfaces representing round corners should be modelled and assembled. 
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Fig. 8.4 (d) shows the generated 3D model with round corner, random localized imperfection and half-sine-

wave edges. 

f1(xi) : half-sine
f2(xi) : random 

X

Y

Z

Amplitude of ω: random

(a) (b) 

XY

Z

 

Fig 8.3 A typical surface with random ω and half-sine edges 
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Fig. 8.4. Generated 3D models with random localized imperfection (a) member with straight edges (b) 

member with half-sine-wave edges (c) member with complex edges (d) member with round corners and 
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half-sine-wave edges 

8.4 Effect of uncertainty in ω on the capacity of columns susceptible to local 

buckling 

8.4.1 Columns for probabilistic studies 

A series of stainless steel columns with cold-formed RHS and SHS are selected among the tested specimens 

reported in the literature. The studied columns have cross-sectional slenderness (λl) higher than 0.776. This 

is to ensure that the columns undergo cross-sectional local buckling reduction before they reach the ultimate 

compressive strength. 

Table 8.2. Details of the selected stainless steel columns for probabilistic studies 

Reference Specimen 
D      

(mm) 

W      

(mm) 

t  

(mm) 

R      

(mm) 

L        

(mm) 
λc λl ωg 

Young and Lui,  

2006 

SHS2L300 50.1 50.3 1.58 2.8 300 0.14 0.8 - 

RHS1L3000 140.1 79.9 3.01 10.0 3000 0.71 0.9 0.927 

Huang and Young,  

2013 

C5L200 100.1 50.1 2.5 3.7 200 0.18 1.0 - 

C6L200 150.0 50.1 2.5 4.3 200 0.18 1.5 - 

C6L550 150.1 50.2 2.49 4.5 550 0.48 1.4 0.5 

C5L900R 100.1 50.4 2.49 3.5 900 0.79 0.8 0.857 

C6L900 150.4 50.3 2.47 4.7 900 0.79 1.3 0.857 

C6L1200 149.9 50.5 2.46 4.5 1200 1.04 1.2 1.143 

C6L1550 150.5 50.3 2.49 4.5 1550 1.35 1.0 1.476 

Afshan and Gardner,  

2013 

RHS 120x80x3-SC2 120.0 80.0 2.83 6.7 362 0.16 0.82 - 

RHS 120x80x3-1077 120.0 79.9 2.87 6.8 1077 0.35 0.8 0.95 

RHS 120x80x3-1577 120.0 79.9 2.81 6.4 1577 0.51 0.8 0.96 

Young and Liu, 

 2003 

R1L1200 120.1 40.1 1.94 5.0 1199 0.48 1.1 0.254 

R1L2000 120.2 40.0 1.95 5.1 2000 0.80 1.0 0.444 

R3L2000 120.0 80.0 2.80 6.7 2000 0.44 0.8 0.381 

Gardner and Nethercot,2004 

SHS100x100x2-LC-2m 99.8 99.9 1.86 3.2 2000 0.73 1.0 0.1 

RHS100x50x2-LCJ-2m 99.8 49.8 1.83 3.7 2000 0.80 0.9 0.6 

RHS100x50x2-LC-1m 99.8 50.0 1.82 3.6 1000 0.69 1.0 0.1 

RHS120x80x3-LC-1m 120.0 80.2 2.86 5.7 1001 0.45 0.8 1 

Young and Lui,  

2005 

160x80x3 160.1 80.8 2.87 9.0 600 0.09 1.2 - 

200x110x4 196.2 108.5 4.01 13.0 600 0.07 1.1 - 

The Details of the studied columns are shown in Table 8.2. Namely, D, W and t are the depth, width and 

thickness of the hollow cross-section, respectively; R is external radius of the round corner; L is the length 
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of the column; λc and λl are member slenderness and cross-sectional slenderness, respectively; ωg is the 

amplitude of global member imperfection (out-of-straightness). ωg is not reported for some cases of stub 

columns (λc ≤ 0.2), while the shape of ωg is adopted as a half-sine wave for other columns. 

8.4.2. Generation of 3D models and FE analysis 

The structural behavior of stainless steel columns with random ω was studied using finite element (FE) 

software Abaqus 6.13. The Fourier series-based 3D model of the columns with random ω was generated by 

Matlab 2017b. Then the generated models were then imported into Abaqus to conduct FE analysis. Input 

file of ABAQUS is generated by MATLAB script.  

8.4.2.1 Generation of 3D model with random ω using MATLAB 

The development of the coefficient of Fourier series terms of function f2(x) and f2(x) was performed in 

Matlab. For the stub columns (λc≤0.2), Fourier series expansion of function f1(x) generated a straight line. 

For other columns, f1(x) generated half-sine-waves, where the magnitude of half-sine wave was taken as 

the corresponding ωg shown in the above Table 8.2. For all columns, coefficients of Fourier series terms of 

function f2(x) were defined as random. The maximum amplitude of the modelled ω for each column was 

limited to min{0.008b, 0.5}. For each column, 50 models with random values of localized imperfection ω 

were produced. The developed Matlab program automatically created a Python script associated with an 

Input file operated in Abaqus. It is worth pointing out that the distribution of the generated random ωmax 

followed a log-normal distribution as the experimental data of ωmax. This was explicitly set in the developed 

Matlab program. 

8.4.2.2 FE analysis using ABAQUS 

To accurately predict the response of the studied columns, the adopted stress-strain curve for each column 

is obtained from tensile coupons test. Details of the stress-strain curves are reported in the literature. In the 

FE analysis, only longitudinal bending residual stresses are considered and they are implicitly included in 

the stress-strain curves obtained from tensile coupons test. For each model of the column with random ω,  

Abaqus/Standard (implicit solver) was employed for FE analysis. A 4-nodes shell element with reduced 

integration (S4R) was used. It allows transverse shear deformation, and accounts for finite membrane 
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strains and arbitrarily large rotations. The number of integration points through the thickness is five 

(Simpson's rule). The load-displacement response was predicted using an incremental procedure based on 

arc-length methods. The modified Riks method (1979), which is available in Abaqus, was used. Based on 

a mesh convergence study, at least ten elements across the plate widths were used. Stainless steels have 

considerable non-linear stress-strain response. To accurately predict the structural behavior of the studied 

columns, the adopted material property for each column was obtained from corresponding uniaxial tensile 

stress-strain coupon test. Details of the parameters that describe the stress-strain curves can be found in the 

literature. For all the models, edge elements at both ends (top and bottom) were kinematically coupled and 

connected to two control points where the relevant degrees of freedom were constrained.  

Spread of plasticity through cross-section and along member length was traced by distributed plasticity 

approach. In FE analysis, residual stresses have to be considered as they may have negative effects on the 

ultimate capacity of a structure. Since the effect of through-thickness longitudinal bending residual stresses 

on the global behavior of stainless steel members with box sections are dominant (Jandera and Machacek, 

2014), only longitudinal bending residual stresses were considered and they were implicitly included in the 

stress-strain curves obtained from tensile coupons test. For each model of the column with random ωmax, 

GMNIA was carried out to determine the ultimate compressive strength of the column. 

8.4.3. Predicted results of the statistical characteristics of the ultimate 

compressive load  

The experimental results and predicted results of the columns with random localized imperfection and are 

shown in Table 8.3. Namely, Pu-EXP is the ultimate compressive strength obtained from experiment; Pu-rand is 

the predicted ultimate compressive strength for each model (each column have 50 models); µ and COV are 

the mean value and Coefficients of Variation, respectively; |εmax| is the maximum value of relative error for 

each set of 50 models.  
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Table 8.3 Experimental results and predicted results for the studied columns  

Specimen λl 
Pu-EXP     

(kN) 

µ(Pu-rand)     

(kN) 

µ(Pu-rand)     

/ Pu-EXP     
COV(Pu-rand) |εmax| 

SHS2L300 0.84 175.7 177.8 0.985 0.086 0.043 

RHS1L3000 0.88 513.5 454.7 0.980 0.073 0.077 

C5L200 0.95 370.1 387.5 1.103 0.036 0.065 

C6L200 1.47 404.1 413.2 0.931 0.175 0.171 

C6L550 1.41 353.2 388.1 1.026 0.212 0.175 

C5L900R 0.84 336.0 326.0 1.007 0.055 0.029 

C6L900 1.32 333.5 345.2 0.988 0.139 0.098 

C6L1200 1.20 284.5 300.7 1.142 0.108 0.185 

C6L1550 1.02 230.0 249.2 1.008 0.095 0.102 

RHS 120x80x3-SC2 0.82 441.0 434.2 1.072 0.093 0.086 

RHS 120x80x3-1077 0.79 463.0 432.1 1.018 0.109 0.075 

RHS 120x80x3-1577 0.79 382.0 401.5 0.973 0.045 0.058 

R1L1200 1.07 167.0 153.5 1.02 0.129 0.115 

R1L2000 0.97 141.3 137.9 0.999 0.088 0.055 

R3L2000 0.79 394.0 355.7 1.071 0.071 0.047 

SHS100x100x2-LC-2m 1.04 176.0 183.0 1.066 0.162 0.096 

RHS100x50x2-LCJ-2m 0.92 157.0 145.3 1.041 0.085 0.117 

RHS100x50x2-LC-1m 0.96 163.0 151.4 1.090 0.133 0.102 

RHS120x80x3-LC-1m 0.79 448.0 415.5 1.053 0.079 0.086 

160x80x3 1.24 537.3 505.0 0.939 0.158 0.139 

200x110x4 1.07 957.0 928.0 0.958 0.081 0.070 

For all the studied columns, µ(Pu-rand) / Pu-EXP and COV (Pu-rand) versus λl are plotted in Fig 8.5(a) and 8.5(b), 

respectively. A plot of |εmax| against λl is shown in Fig 8.5(c). It is observed that the value of µ(Pu-rand) / Pu-

EXP range between 0.931-1.103 for all the columns except the column with λl =1.20. Compared to Pu-EXP, 

the value of µ(Pu-rand) for most columns with relatively lower cross-sectional slenderness (λl < 1.0) is 

overestimated, while the value of µ(Pu-rand) for columns with higher cross-sectional slenderness seems to be 

underestimated. For the column with λl =1.20, the value of µ(Pu-rand) / Pu-EXP is 1.142. It indicates that most 

predicted results (from the 50 models with random ω) significantly overestimate the experimental result. 

This may be due to the reason that the value of actual maximum localized imperfection for this column, 

which is not reported in the literature, is relatively larger compared to the modelled ω whose maximum 

value is min{0.008b, 0.5}. 
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Fig 8.5. Predicted results against cross-sectional slenderness (a) µ(Pu-rand) / Pu-EXP versus λl (b) COV (Pu-rand) 

versus λl (c) |εmax| versus λl  

On the other hand, both COV (Pu-rand) and |εmax| increase as λl increases. One explanation is that, the larger 

the cross-sectional slenderness is, the more sensitive the column is to initial localized imperfection. 

Consequently, the change in the value of modelled localized imperfection can result in larger discrepancy 

in the ultimate compressive strength.  

For the columns with relatively lower cross-sectional slenderness (λl < 1.0), the values of COV (Pu-rand) and 

|εmax| are less than 0.13 and 0.12, respectively. The result indicates that uncertainty in ω has not considerable 

influence on the ultimate compressive strength of these columns. This may be due to the reason that the 

columns with relatively lower cross-sectional slenderness are still not sensitive to initial localized 

imperfection. Besides, the result indicates that ω can statistically be modelled as deterministic for these 

columns, such as using measured ω in experimental study.  
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For the columns with λl≥1.2, COV (Pu-rand) are around 0.139-0.238 and the maximum value of |εmax| is 17.5%. 

It demonstrates that random ω results in largely scattered ultimate compressive strength for the columns 

with larger cross-sectional slenderness, and it is important to consider the effect of uncertainty in ω on these 

columns. The distribution of Pu-rand for a typical column (R1L1200) is shown in Fig 8.6. In the figure, Pu-

rand is normalized by Pu-EXP. It is found that the distribution of Pu-rand / Pu-EXP can be fitted by a normal 

distribution. 
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Fig 8.6. Histograms of Pu-rand / Pu-EXP for a typical column (R1L1200) 

8.5 Effect of uncertainty in ω on the accuracy of GNA-τMN-ρ 

8.5.1 Beam-columns for probabilistic studies 

The studied beam-columns are the same beam-columns presented in Section 7.4, but only one combined 

loading case is considered for each beam-column. All the studied beam-columns, shown in Fig. 8.7, are 

susceptible to local buckling. For all the studied beam-columns, the applied axial load (P) is factored load. 

For simply supported beam-columns, the applied end moment M2=e*P; e=50mm (constant). For cantilever 

beam-columns, the applied horizontal load at the cantilever end is equal to 0.1P. Details of conducted 

analysis are shown in Table. 8.4. 
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Fig 8.7 The studied beam-columns  

For each beam-column, 100 models with random ω are produced. For each model, GMNIA-shell (with 

random ω) analysis is carried out to determine the ultimate axial load and end moment (referred to as Mu-

rand). Thus, each beam-column has 100 Mu-rand in all.  

Table 8.4. Details of conducted analysis  

Method Element 
Localized imperfection (ω) 

Shape Amplitude(mm) 

GMNIA Shell Idealized ωmax=0.185 

GNA-τMN-ρ beam 
Implicitly considered 

in τMN-ρ 

GMNIA Shell Random 
0< ωmax ≤min 

{0.008b, 0.5} 

8.5.2 Generation of 3D models and FE analysis 

The procedure of generating of 3D models with random ω for beam-columns are similar to that for columns. 
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There is slight difference between simply supported beam-columns and cantilever beam-columns. For 

simply supported beam-columns, Fourier series expansion of function f1(x) generated half-sine-waves. For 

cantilever beam-columns, Fourier series expansion of function f1(x) generated straight lines, since the 

effects of out-of-straightness and out-of-plumbness are considered by applying notional loads (equivalent 

horizontal loads).  

Two types of finite elements are employed: one-dimensional beam elements (B21) and three-dimensional 

shell elements (S4R). In conducting GNA with stiffness reduction, beam elements are employed, while 

shell element is employed in implementing GMNIA. The cross-section (without rounder corner) is defined 

as box section for beam element. To make the results determined by beam element and those determined 

by shell element comparable, the same box section is used for shell element. The stress-strain curves and 

the longitudinal bending residual stresses were modelled as those presented in Chapter 3 

8.5.3. Predicted results of the statistical characteristics of the ultimate external 

moment  

Mu(kN*m) 

Simply supported Cantilever 

a b c a b 

Mu-GMNIA-S 6.0 21.9 76.8 4.75 30.83 

Mu-τMN-ρ 5.2 23.5 77 4.03 32.15 

(Mu-rand) 5.9 22.2 79.6 4.66 29.90 

COV(Mu-rand) 0.07 0.05 0.11 0.05 0.13 

 (Mu-rand)/ Mu-GMNIA-S 0.98 1.01 1.04 0.98 0.97 

 (Mu-ran) / Mu-τMN-ρ 1.13 0.94 1.03 1.15 0.93 

The predicted results are shown in Table. 8.5. Since the ultimate end moment (Mu) is directly proportional 

to the ultimate axial load (Pu), where Mu=e*Pu for the simply supported beam-columns and Mu=0.1Pu*L 

for the cantilever beam-columns, only Mu predicted by different method is shown in the table. In the table, 

Mu-GMNIA-S is determined by GMNIA-shell with idealized ω (the lowest local buckling mode), and Mu-τMN-ρ 

is determined by GNA-τMN-ρ. Both of them are already shown in Section 7.4. The mean value of the Mu-rand 

is denoted (Mu-rand). 

From the table, COVs (Coefficients of Variation) for the simply supported beam-column of case c is 0.11, 

and COVs for the cantilever beam-column of case b is 0.13. The two COVs demonstrate a relatively large 

extent of variability in relation to (Mu-rand). One possible explanation is that the localized imperfection (ω) 
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amplitude of the generated models is largely scattered. The mean-to-nominal ratios,  (Mu-rand)/ Mu-GMNIA-S, 

for all the beam-columns are about 0.98-1.04, which indicates that for the studied beam-columns, localized 

imperfection (ω) can be statistically modelled as idealized shape times the deterministic value 0.185 (the 

mean value of the maximum ω).  

The ratios of  (Mu-rand) / Mu-τMN-ρ, for all the beam-columns are all about 0.93-1.15. It shows that prediction 

errors for GNA-τMN-ρ caused by uncertainty in ω are acceptable. This is because the results provided by 

GNA-τMN-ρ generally close to those provide by GMNIA with idealized ω times the deterministic value of 

0.185, where the ultimate external moment of the latter can statistically represent the ultimate external 

moment of the beam-columns with random ω.  

8.6 Concluding remarks 

An approach of generating 3D model with random localized imperfection (ω) is presented. The proposed 

3D model with random ω is based on superposition of Fourier series expansion of different functions. The 

effect of uncertainty in ω on the ultimate capacity of cold-formed stainless steel columns and beam-columns 

that are susceptible to local buckling is studied. 

For a series of columns, it is found that both the coefficients of variation and the maximum value of absolute 

error for the predicted results increases as cross-sectional slenderness increases. This is due to the reason 

that columns with large cross-sectional slenderness are sensitive to initial localized imperfection, and 

consequently the change in the value of modelled localized imperfection can lead to much discrepancy in 

the ultimate compressive strength. Therefore, the effect of uncertainty in ω on the columns with larger 

cross-sectional slenderness should be considered in practical design. 

For the studied beam-columns, the mean value of the ultimate end moment obtained from GMNIA in which 

ω is modelled randomly, is very close to the ultimate end moment obtained from GMNIA in which ω is 

modelled as local buckling mode times 0.185. It also shows uncertainty in ω result in prediction errors for 

GNA-τMN-ρ to some extent, but ignoring uncertainty in ω does not lead to significant errors for GNA-τMN-ρ 

(prediction errors are within 15%). 
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9. Conclusions and suggestions for future research 

9.1 Conclusions 

The following is a summary of the conclusions drawn from this research: 

(1) Column flexural stiffness reduction factor (τN) and beam flexural stiffness reduction factor (τM), 

applicable to stainless steel members with compact cold-formed RHS and SHS, are developed. The 

proposed τN depends on the maximum internal first order axial force within a member (Pr1). The proposed 

τM depends on the maximum internal first order moment within a member (Mr1) and material properties (E, 

fy, and n). The results of verification study show that GNA coupled with the developed stiffness reduction 

factor (τN and τM) reaches the accuracy of GMNIA. The slight discrepancy between the developed stiffness 

reduction factor (τN and τM) and the actual stiffness reduction factor will be considered in the development 

of the approximate expression of stainless steel beam-column stiffness reduction factor (τMN) expression. 

(2) Flexural stiffness reduction factor (τMN) formulation applicable to the in-plane stability design of 

stainless steel beam-columns is proposed through analytical and numerical study. The proposed beam-

column flexural stiffness reduction factor (τMN) accounts for deleterious influence of spread of plasticity, 

residual stresses and member out-of-straightness of 0.001. Two main aspects of developing τMN are: (1) 

Develop analytical expression of τMN through extending formulations that evaluate second order effects of 

beam-columns. These formulations are extended to determine maximum second order inelastic moment of 

beam-columns by incorporating τMN into elastic critical buckling load. (2) Based on numerical study of 

beam-columns, the approximate expression of τMN is developed by fitting relevant variables to analytically 

determined expression. 

The soundness and accuracy of τMN determined by analytical expression are verified through comparison 

of maximum bending moments within members determined through GNA-τMN against those obtained from 

GMNIA. It is observed that predicted results from GNA-τMN are in very close agreement with those 

provided by GMNIA. Besides developing flexural stiffness reduction factor (τN, τM , τMN) formulations that 

are applicable to stainless steel members. Moreover, it is worth pointing out that the formulations of 

evaluating second order elastic effects are extended to determine inelastic maximum second order moment 

within beam-columns, through incorporating τMN into elastic critical buckling load. Furthermore, since in 
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practical design Mr2 is not known in advance, an approximate expression of τMN, which is assumed to be a 

function of relevant variables, is proposed by fitting variables to the analytically determined expression. 

For the purpose of developing the approximate expression of τMN, column flexural stiffness reduction factor 

(τN) and beam flexural stiffness reduction factor (τM) are derived from stainless steel column strength curves 

and from the moment-curvature relationship, respectively. 

(3) The accuracy of GNA coupled with flexural stiffness reduction factor (determined by the approximate 

expression) for the in-plane stability design of stainless steel frames is verified. The maximum bending 

moment and Demand-Capacity ratio within a member determined by GNA-τMN and GNA-τN are compared 

against those determined by GMNIA. It is found that predicted results of GNA-τMN are in close agreement 

with those provided by GMNIA. In some cases, GNA-τN gives unsafe predictions for the frames that are 

very sensitive to second order effects, one possible explanation is the adopted stiffness reduction factor 

0.8τN underestimates actual reduced stiffness, and therefore underestimates additional second order effects 

resulted from material non-linearity. Both GNA-τMN and GNA-τN are safe for predicting the ultimate 

capacity (member-based) of the studied frames that are not sensitive to second order effects. Compared to 

GNA-τN, GNA-τMN with lower deviation from predicted results of GMNIA, provides improved estimation 

of internal moments and Demand-Capacity ratios for most members. This is due to the reason that τMN can 

accurately capture stiffness reduction caused by spread of plasticity through cross-section and along 

members. As a consequence, GNA-τMN produces more reasonable distribution of internal force and moment, 

and well captures additional second order effects due to material non-linearity. 

(4) The stiffness reduction factor formulations, applicable to stainless steel elements and frames with 

compact sections, are extended to account for local buckling effects and initial localized imperfection (ω). 

Local buckling effects and influence of initial localized imperfection are accounted for by means of 

reducing the gross section resistance using a factor ρ. The factor ρ, determined by the Direct Analysis 

Method, depending on cross-section slenderness, is adopted. The accuracy of GNA with extended stiffness 

reduction factor for in-plane stability design of stainless steel elements (columns, beams and beam-columns) 

with non-compact and slender sections is verified. Predicted results by GNA with stiffness reduction (using 

shell element) are in close agreement with those determined by GMNIA using shell element. 

(5) The effect of uncertainty in ω on the ultimate capacity of cold-formed stainless steel columns and beam-

columns that are susceptible to local buckling is studied. For a series of columns, it is found that both the 
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coefficients of variation and the maximum value of absolute error for the predicted results increases as 

cross-sectional slenderness increases. This is due to the reason that columns with larger cross-sectional 

slenderness are sensitive to initial localized imperfection, and consequently the change in the value of 

modelled localized imperfection can lead to much discrepancy in the ultimate compressive strength. 

Therefore, the effect of uncertainty in ω on the columns with larger cross-sectional slenderness should be 

considered in practical design. For the studied beam-columns, the mean value of the ultimate end moment 

obtained from GMNIA in which ω is modelled randomly, is very close to the ultimate end moment obtained 

from GMNIA in which ω is modelled as local buckling mode times 0.185. It also shows uncertainty in ω 

result in prediction errors for GNA-τMN-ρ to some extent, but ignoring uncertainty in ω won’t lead to 

significant errors for GNA-τMN-ρ. 

9.2 Recommendations for future research 

(1) The influence of uncertainty in system strength, member strength, connection strength, and stiffness, 

should be considered for the stability design of frames. For the GNA coupled with tangent modulus method 

in this thesis:  

(a) Effect of uncertainty in stiffness on member strength is included in member strength formulas with K=1. 

In the adopted member strength formulations, the resistance factor, 0.9, for both compression and flexure, 

can ensure reliability index (β) for carbon steel members not fall below 2.6. However, the resistance factor 

may be lower for stainless steel to ensure similar reliability levels. 

(b) Effect of uncertainty in stiffness on overall structural response is thought being included in the stiffness 

reduction factor. Whether or not reliability requirements are fulfilled should be studied further. 

(2) The applicability and accuracy of the GNA coupled with tangent modulus method for frames with non-

compact or slender sections should be assessed, and the comparison against system-based design method 

should be made. 
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