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Computer Architecture Department

Universitat Politècnica de Catalunya

A thesis submitted for the degree of

Doctor of Philosophy in Computer Architecture

September 2019

mailto:suzana.milutinovic@bsc.es
http://www.ac.upc.edu/
http://www.upc.edu




On the Limits of Probabilistic Timing
Analysis

Suzana Milutinović
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Abstract

Over the last years, we are witnessing the steady and rapid growth of
Critical Real-Time Embedded Systems (CRTES) industries, such as
automotive and aerospace. Many of the increasingly-complex CRTES’
functionalities that are currently implemented with mechanical means
are moving towards to an electromechanical implementation controlled
by critical software. This trend results in a two-fold consequence. First,
the size and complexity of critical-software increases in every new em-
bedded product. And second, high-performance hardware features like
caches are more frequently used in real-time processors.

The increase in complexity of CRTES challenges the validation and
verification process, a necessary step to certify that the system is
safe for deployment. Timing validation and verification includes the
computation of the Worst-Case Execution Time (WCET) estimates,
which need to be trustworthy and tight. Traditional timing analysis is
challenged by the use of complex hardware/software, resulting in low-
quality WCET estimates, which tend to add significant pessimism to
guarantee estimates’ trustworthiness. This calls for new solutions that
help tightening WCET estimates in a safe manner.

In this Thesis, we investigate the novel Measurement-Based Probabilis-
tic Timing Analysis (MBPTA), which in its original version already
shows potential to deliver trustworthy and tight WCETs for tasks run-
ning on complex systems. First, we propose a methodology to assess
and ensure that all cache memory layouts, which can significantly im-
pact WCET, have been adequately factored in the WCET estimation
process. Second, we provide a solution to achieve simultaneously cache
representativeness and full path coverage. This solution provides evi-
dence proving that WCET estimates obtained are valid for all program
execution paths regardless of how code and data are laid out in the
cache. Lastly, we analyse and expose the main misconceptions and
pitfalls that can prevent a sound application of WCET analysis based
on Extreme Value Theory (EVT), which is used as part of MBPTA.
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Chapter 1

Introduction

———————————————————————

1.1 Embedded Systems

In recent years, embedded systems – computers designed to perform a specific
function within a larger system – have become ubiquitous in our professional and
personal lives. The services they provide are numerous and increasingly involve
critical aspects, such as controlling the engines and brakes of cars, flight control
in planes, and monitoring health devices, to name a few. Currently, embedded
systems are the fastest-growing portion of the computer market [62].

Embedded systems present key differences when compared to desktop and
server systems. Due to their integrated nature, size, weight and power constraints
for this kind of systems are more stringent. Embedded systems are designed to
perform a certain domain-specific function, typically by the joint use of hardware
and software, and are not intended for ‘general-purpose’ operation. This function
often needs to be performed both correctly and timely, otherwise, the result might
be useless or the system controlled by this function may fail. Other than meeting
its functional and non-functional constraints, other key factors to consider when
designing embedded systems are cost and time-to-market. In particular, embedded
systems must meet specific performance levels within given power envelopes and
cost constraints, and reaching the market timely. Sacrificing any of these metrics
(e.g. cost) for the sake of further improving another beyond its requirements (e.g.
increasing performance) is not an option for embedded systems [62].

The subclass of embedded systems in which functions are bounded by tim-
ing constraints are referred to as real-time embedded systems. They commonly
comprise a set of concurrent tasks, where each task issues jobs to perform a compu-
tational activity. Unlike the common use of the term ‘real-time’ in other computing
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Chapter 1. Introduction

domains, these systems are not designed to be fast in the average case or at peak
performance. The objective is to guarantee that timing constraints will be consis-
tently met, even when the system performs under worst-case conditions. Evidence
has to be provided that each instance of a task will complete its execution before
its assigned deadline. As predictability and stringent size, weight and power con-
straints are of prominent importance, processors deployed in real-time embedded
systems have historically been simpler than general-purpose processors and pro-
gramming guidance for software more restrictive (e.g. bounded loop iterations and
limited usage of recursion).

In Critical Real-Time Embedded Systems (CRTES) a functional or timing
failure may lead to catastrophic consequences. These systems can be characterised
as safety-critical (malfunctioning of the system may cause loss of human lives or
severe environmental damage), mission-critical (system failure will impede some
goal-directed activity), or business-critical (failure will cause important economic
losses to the organization). Before being deployed for the operation, CRTES need
to pass a strict certification process, in which an independent certification body
assesses whether a system complies with the safety-standard for its corresponding
domain and is safe for its intended purpose (e.g. ISO 26262 for road vehicles [70]).

1.2 Specific Requirements of CRTES

1.2.1 High Performance

As any other embedded system, CRTES aim at providing additional and innovative
features to improve products’ competitive edge in the market [66]. To support
these new services, the software frequently drives the decision-making process over
vast amounts of data of diverse types, which significantly increases its complexity.
This trend is illustrated in Figure 1.1, which shows the exponential increment in
code size in space, avionic and automotive domains across products delivered in
the last forty years. We see an exponential increase in all three analysed domains,
with this trend expected to continue in coming years.

On the hardware side, CRTES have traditionally deployed rather simple proces-
sors with a single-core, short pipelines, in-order execution and no cache memories.
However, the computational power provided by traditional hardware has already
been shown insufficient to support the performance needs for today’s critical soft-
ware. The need for computation capacity is going to exacerbate in the next years,
e.g. the performance required in the automotive domain is expected to increase
by 100x [13]. The demand for performance is further increased as more functions
are integrated together with the adoption of the integrated architecture paradigm
(presented in Section 1.2.3).
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Figure 1.1: Code size in different CRTES products in space, avionic and automo-
tive sectors. (Figure from J. Bin et al. [20])

To catch up with increasing computing performance demands, the CRTES
industry is progressively assessing the use of performance-accelerating hardware
features (e.g. caches), typically designed to increase average performance. The
other side of the coin is that the presence of these features, together with the
increased complexity of software, reduces the predictability of the system and
challenges deriving the evidence of correct functional and timing behaviour needed
for certification.

1.2.2 Timing Validation and Verification

The validation and verification process for CRTES requires collecting sufficient
evidence that critical functions will execute correctly and timely. In this con-
text, the term sufficient evidence relates to the corresponding functional safety
standard and the integrity level of the task analysed. The safety integrity level
is a quantitative measure of the amount of evidence for safety functions needed
to achieve an acceptable risk for a process hazard [69]. A target safety integrity
level is determined based on a process hazard analysis which identifies all potential
hazards of a process, estimates their frequency of occurrence and the severity of
their consequences. Examples of safety standards are ARP4761 in the avionics
domain [105] and ISO26262 in the automotive domain [70].

Timing validation and verification of real-time tasks comprises estimating a
bound to the Worst-Case Execution Time (WCET) of those tasks with appropri-
ate methods and tools, and providing evidence that they can be scheduled into
their allocated time budgets. In industrial environments, several factors deter-
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mine the WCET analysis tool/technique to use. First, providing reliable WCET
estimates – with the level of assurance defined by the relevant safety standards.
Second, obtaining WCET estimates as tight as possible so that tasks can be suc-
cessfully scheduled while minimising the number of hardware resources required.
And third, keeping the overall cost of the timing analysis technique as low as pos-
sible to maintain the competitive edge. The growing complexity of the software
and hardware used in CRTES affects all three factors and challenges state-of-the-
art methods and practices for WCET estimation [6]. These methods are generally
classified as static and measurement-based timing analysis techniques.

Static Timing Analysis (STA) [36, 63, 119, 120] computes WCET bounds by
analysing a task code and potential control-flow paths through the task, and de-
riving an abstract model of the hardware on which the task runs. To calculate
reliable estimates, for each event in the hardware influencing timing, if the out-
come is unknown and in the absence of timing anomalies, STA makes the worst-
case assumption (e.g. cache miss or branch misprediction). The tightness of the
derived estimates depends on the ability of STA to predict which events in the
platform that potentially increase tasks’ execution time will not occur during the
execution. The main challenge of STA is its dependence on detailed knowledge of
the software and hardware, which may be absent (e.g. to protect the intellectual
property) or simply incorrect (e.g. processor manuals are often revised with errata
documents). Similarly, determining the outcome of hardware events influencing
timing is immensely complicated, as it commonly depends on the history of tasks’
execution and input values. The challenge exacerbates with the introduction of
high-performance features (multi-level cache hierarchies, deep pipelines, branch
prediction, etc.), decreasing the predictability of the system. As a result, the
worst-case assumptions in a complex system lead to overly pessimistic WCETs.

Measurement-Based Timing Analysis (MBTA) [82, 118, 119] derives WCET
bounds from measurements of the task running under stressful conditions on the
target hardware platform. To account for the events that influence timing but are
not observed in measurements, an engineering margin is added to the longest mea-
sured execution time, also referred to as high-water mark. The challenge of MBTA
lies in ensuring that the measurements taken at analysis occur under conditions
similar or worse to those that can arise during operation. The user (or timing an-
alyst) is required to design stressful tests that will trigger events with detrimental
effect on timing at analysis time, which builds on user’s experience and control of
those elements impacting application’s execution time (e.g. timing of a task may
be affected by the concrete memory layout, which users often do not have con-
trol over). The latter is challenged by the presence of complex hardware/software
with massive interactions among components with non-obvious impact on timing,
ultimately decreasing the level of assurance on MBTA’s derived WCET estimates.
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1.2.3 Time Composability

Traditionally, the design of CRTES has followed the federated architecture model
in which different functions in a system are implemented in dedicated hardware
units, physically separated from each other [94, 97]. This paradigm facilitates
timing and functional isolation, improving system predictability. Additionally, the
federated approach allows providers to implement system functions independently
from other suppliers, creating a clear boundary of responsibility and error propaga-
tion, which simplifies the certification process. However, the increased complexity
of modern CRTES challenges the scalability of this traditional paradigm as every
new software functionality requires its specific hardware unit. For example, the
number of electronic control units in 2017 already reached 200 for some cars [114].

The relentless need for more functionality in many CRTES has motivated the
shift from the federated to the integrated architecture model, in which multiple
functions execute on the same hardware unit. Following a divide-and-conquer
strategy, the final product is the result of integrating together various pieces of
hardware and software, which are typically made available by specialised providers
in different steps in the industrial development chain. Several industrial domains
have embraced this approach: integrated modular avionics [105] in avionics, auto-
motive open system architecture [94] in automotive and integrated modular avion-
ics for space [121] in the space domain. Integrated architectures bring significant
technical and economic advantages, such as reducing hardware cost by decreasing
the number of hardware dedicated units, wiring and connectors (which additionally
increases reliability).

From the certification point of view, a key element of integrated architectures
is incrementality, which allows an effective and economically efficient production
and qualification of integrated systems. When it comes to software, incrementality
means that different modules are progressively integrated to form more complex
functionalities upon successive releases. Each software module follows its own
development cycle so that different modules can be developed and qualified (at
the test unit level) by their providers themselves. A system integrator is the
person in charge of certifying a final product by bringing together pre-qualified
parts. Unfortunately, in practice, integration may require modifications to already-
integrated software to capture, for example, functional errors. As a result, it is not
uncommon that a given application integrated in a given release suffers changes
in later releases.

In this incremental integration and qualification approach, composability plays
a central role [106]. At a functional level, composability guarantees that new soft-
ware functionalities in a fresh release do not affect the functional behaviour of
already integrated software. If composability does not hold, then costly regres-
sion tests are required to (re)assess the functional correctness of the whole system.
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Likewise, in the timing domain, time composability [103] is also fundamental, guar-
anteeing that timing verification performed for a given software module in isolation
remains valid upon integration.

In modern CRTES time composability is broken as tasks executing on the same
processor system compete for shared resources like cache memories and branch
predictors, whose access times are state dependent [103]. On the other hand, the
state of these resources is dependent on the layout of code and data in the memory,
on the history of accesses and the update strategy on access. As a consequence,
the execution time of a task will vary depending on the state of shared resources
left by other tasks or different instances of the same task. The challenge for MBTA
is that the state seen at analysis time is very likely not the same state that will
occur during the system operation.

1.3 A Probabilistic Approach to MBTA

The limitations of current timing analysis methods to cope with the increasing
complexity of CRTES has motivated researchers to investigate alternative timing
analysis paradigms. This includes probabilistic timing analysis [18, 19, 26, 28, 45],
which gained attention due to its potential to derive estimates based on (black-box)
observations, instead of relying on detailed knowledge on hardware and software
internals. Probabilistic timing analysis techniques are divided into two categories
Static Probabilistic Timing Analysis (SPTA) and Measurement-Based Probabilis-
tic Timing Analysis (MBPTA), see Table 1.1. Over the last years MBPTA [7, 38]
matured more rapidly owing to its cost-effectiveness which is attractive to industry.

Table 1.1: Broad classification of timing analysis techniques with acronyms.

Deterministic Probabilistic
Static (STA) SDTA SPTA
Measurement-Based (MBTA) MBDTA MBPTA

Instead of a single WCET estimate, probabilistic timing analysis delivers a
probabilistic Worst-Case Execution Time (pWCET), a distribution that expresses
the maximum probability with which one instance of the program can exceed a
given execution time bound. For a distribution shown in Figure 1.2, the probability
that the program will exceed the duration of 8 execution time units is lower than
10−13. Assuring that a single WCET bound covers all possible execution scenar-
ios is normally done through qualitative assessments for traditional timing analysis
techniques Static Deterministic Timing Analysis (SDTA) and Measurement-Based
Deterministic Timing Analysis (MBDTA). In the case of SDTA the assurance de-
pends on the level of detail known about the underlying model, while MBDTA
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Figure 1.2: pWCET curve (blue, solid line) built based on a limited sample of
measurements (red, dotted line). The selected WCET estimate is linked with a
maximum (cut-off) probability of exceeding that execution time.

argues that all relevant test cases have been run and the WCET estimate provided
is higher than any execution time observed. The increasingly complex processors
affect both variants. In particular, they challenge delivering reliable models needed
for SDTA and lead to higher variability of execution times, increasing the risk of
missing relevant, high execution times for MBDTA. This lowers confidence on the
WCET bounds provided based on qualitative reasoning. On the other hand, by
assigning the probabilities of exceedance to the execution time bounds, probabilis-
tic timing analysis provides quantitative means to upper-bound the residual risk of
a timing fault. The WCET value assigned to a task is the one whose exceedance
probability is deemed sufficiently low in relation to the safety integrity level of the
task with respect to the corresponding safety standard (see Section 1.2.2). For
instance, in the case of avionics, software with the highest design assurance level
A must not exceed a failure rate of at most 10−9 per hour of operation [105].

1.3.1 Basic Concepts of MBPTA

As other MBTA techniques, MBPTA collects a sample of measurements (typically
in the order of hundreds or thousands) on a target platform in the early stage of
system development life cycle, called analysis phase. The stage after system de-
ployment is known as operation phase. The conditions at which measurements are
collected at the analysis phase need to be equal or more stressful than those during
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the operation phase. This issue, common to all MBTA techniques, is known as
representativeness. Unlike conventional MBDTA techniques that require explicit
control over factors of influence on timing, called Sources of Jitter (SoJ), MBPTA
attains representativeness through statistical control of SoJ.

To achieve their statistical control, MBPTA relies on the assumption that SoJ
can be probabilistically modelled. This is done by upper-bounding jitter or mak-
ing it have a random nature [77]. The latter is accomplished by injecting timing
randomisation into the program’s behaviour, e.g. by deploying random place-
ment/replacement policies in cache memories [73]. In time randomised resources
different executions of a program exercise different scenarios (e.g. different cache
layouts). A probabilistic argument can be derived on how many executions of a
program are needed so that the probability of missing a particular timing event
is low enough such that residual risk of a timing fault is negligible. Alternatively,
SoJ causing minor variation of execution times are upper-bounded by enforcing
them to take their longest possible latency at the analysis phase only [27].

A key solution to manage those SoJ that cannot be controlled by end-users is
time randomisation together with MBPTA. This reduces the dependency of tim-
ing events on the execution time history, facilitates time composability, preserves
performance (i.e. we do not enforce the worst-case systematically), and relieves
end users from having to exercise any control, which may be beyond their reach.
One of the resources with substantial impact on timing, whose behaviour heavily
depends on the execution time history and cannot be easily controlled by end-
users is cache memory. L. Kosmidis et al. [75] show that the information needed
to characterise the interference from other software units (e.g. other tasks) on
shared cache memories and derive time composable WCET estimates is the num-
ber of unique data and instruction accesses of the code of those software units.
On the other hand, characterising the interference on (time) deterministic cache
memories requires detailed knowledge of all addresses of other software units.

Based on a sample of analysis phase measurements, MBPTA models a prob-
abilistic Worst-Case Execution Time (pWCET) distribution to predict execution
times occurring with rare probabilities. This is done by applying the well-known
statistical method called Extreme Value Theory (EVT) [50, 80] on the collected
sample. EVT intrinsically captures the impact and probability of multiple SoJ
happening together, relieving the user of the need to trigger their simultaneous
occurrence with a single test. This, along with timing randomisation and upper-
bounding, significantly reduces the need for user’s control and information that
has to be provided. This is especially relevant in the presence of high-performance
hardware, which vastly increases the need for a user’s control.

While MBPTA has emerged only recently, the first industrial case studies show
its promising potential [51, 116]. However, to reach the readiness level required for
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transferring to industrial practice, MBPTA must respond to a set of challenges.
Some of them have been addressed with recent works that we survey in the Sec-
tion 1.3.2, while there are still some limitations that prevent the wide adoption of
MBPTA (Section 1.3.3) and motivate the work of this Thesis (Section 1.4).

1.3.2 State of the Art on MBPTA

The selected timing analysis method must be compatible with the current cer-
tification procedures and standards in the corresponding domain. This requires
the qualification of tools (or alternatively verification of their output) and safety
justification for any additional manual work used in the analysis [6]. The tool
needs to be qualified if its output directly impacts the software produced, or if
faults undetected by this tool will reach the final product. The level of qualifi-
cation needed spans from the most rigorous Level 1 to Level 5 and is on a par
with the safety level of the system it is applied to. The compatibility of MBPTA
with the actual certification practice (its certifiability) has been assessed in several
studies [10, 113].

EVT has been used traditionally to model tail distributions in domains such as
finance and hydrology. However, applying it in the execution time domain, as it is
done by MBPTA, is not a straightforward process and requires the adaptation of
the process for the particular problem being analysed. In the scope of this Thesis
we build on the foundations set by J.Abella et al. [7] and use the MBPTA-CV
method (more details in Section 3.2).

As discussed in Section 1.3.1, MBPTA assumes certain properties on the plat-
form, in which the timing behaviour of jittery resources is either time upper-
bounded or time randomised, resulting in the so-called MBPTA-compliant plat-
forms [77]. A LEON3-based multicore Field-Programmable Gate Array (FPGA)
board implementing these techniques has been developed in the project “Prob-
abilistic real-time control of mixed-criticality multicore and manycore systems”
(PROXIMA) [101] and it is now part of a commercial product for the space do-
main [33]. Platform-level randomisation uses a pseudo-random number generator
developed by I. Agirre et al. [8], which has been shown to adhere to safety integrity
level 3 under IEC 61508 [69] safety standard. IEC-61508 is a generic international
safety standard for systems comprised of electrical and electronic elements that
perform safety functions, upon which domain-specific safety standards (automo-
tive, railway, etc.) are built.

MBPTA has also been applied on top of time-deterministic architectures, in
which the program’s execution time, in theory, does not vary under the same
input values and initial platform state. In this case, randomisation is implemented
with software techniques that work at the compiler/linker level [74] or source code
level [79].
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Assuring sufficient execution path coverage is a widely acknowledged require-
ment of all timing analysis approaches [119, 122]. In fact, the WCET estimates
computed by MBTA methods hold only for the execution paths observed at anal-
ysis time. Measurement-based analyses typically assume the availability of path
traversal conditions information to guide the identification of a subset of struc-
turally feasible paths to be included in the analysis. In the context of MBPTA,
two solutions to achieve full path coverage have been proposed: Path Upper-
Bounding (PUB) [76] and extended path coverage [122]. PUB modifies the source
code by injecting functionally neutral instructions with impact on timing, such
that execution of any path in the modified program has higher latency of that of
the original program. This way WCET can be computed with MBPTA using the
single input, as it will trigger the execution of some path which is time upper-
bound to the original program paths. Extended path coverage, instead, operates
on fine-grain measurements at a basic block level to discount the benefits of specific
path traversals and obtain path-independent measurements.

1.3.3 Problems and Limitations of MBPTA

The trustworthiness of pWCET estimates depends not only on the correctness of
the EVT application but also the quality of input data. The latter is assessed
through the evidence provided that analysis phase observations are representa-
tive of the execution conditions arising during the operation phase. This rep-
resentativeness issue [54, 108, 122] is a universally recognised open problem for
all measurement-based timing analysis techniques. The SoJ influencing repre-
sentativeness can be broadly categorised as high-level, coming from a program’s
structure, and low-level, related to the execution platform.

The representativeness challenge is becoming critical as the number of SoJ
increases in the novel processor designs. Many hardware features that aim at im-
proving the average performance are dependent on either the history of execution
or the data accessed by the program. This is the case of cache memories, which
face the challenge of how to obtain representativeness as the number of their pos-
sible cache states explodes even for simple programs. In the near future, this issue
is likely to exacerbate as the industry is transitioning to deploy more complex
applications.

Another consequence of having advanced programs is that it is more difficult for
the user to determine which is the required input vector set to obtain path coverage.
MBPTA has already made first advancements over the current practices to simplify
the process of exercising relevant paths. However, no previous work has studied
how the selection of execution paths used during timing analysis influences the
low-level representativeness. The aforementioned issue is relevant as the exercised
paths directly impact the platform states seen during timing analysis.
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1.4 Thesis Contributions

This Thesis proposes a methodology and guidance to the user for a trustworthy
application of MBPTA techniques. The foreseen impact of achieving this goal is
the adoption of MBPTA in the industrial practice, as a reliable and cost-effective
timing analysis method for future CRTES deploying high-performance hardware.
As other measurement-based approaches, to deliver good-quality WCET estimates,
MBPTA needs to operate on the input data that represents the behaviour of
the system under potentially unobserved conditions. The representativeness is
required both on the software and platform level, as the subset of exercised paths
in a program and explored platform states are hugely dependent on the provided
input data. This Thesis develops a set of solutions to attain representativeness for
input data. MBPTA benefits from EVT and its ability to predict the impact of
unseen conditions on timing, reducing the level of information needed for timing
analysis. However, EVT poses specific requirements on the platform and the input
data which are elaborated in this Thesis. The contributions of this Thesis are based
around three main themes which are described next:

I. Cache representativeness

II. Representativeness and path coverage

III. Trustworthiness of EVT application

1.4.1 Cache Representativeness

MBPTA-compliant platforms aid the timing analysis by reducing the number of
hardware resources that need to be controlled by the user to collect the sample
of measurements representative of the platform behaviour. In the processor archi-
tectures studied so far, the execution time observations used as input for MBPTA
capture with high probability the impact of all timing events produced by MBPTA-
compliant hardware resources except for Time Randomised Caches (TRC) [73].

In our first three contributions we propose a set of solutions to collect mea-
surement samples representative of conflictive cache behaviours that can occur
during the operation phase. Each of them, based on a trace of program addresses
generated through inputs provided by the user, identifies the potential cache place-
ments with high impact on timing that are unlikely to be observed in the number of
measurements generally required by MBPTA. The probability of observing these
placements increases as more measurements are collected, which also increases the
application costs of MBPTA, drastically reducing its overall benefit/cost ratio.
Our solutions provide means to quantify the probability (risk) of not capturing
relevant cache placements and the increased cost of performing more runs. This
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provides the system engineer with a mechanism to take a guided decision on the
number of measurements to collect, properly balancing the time/effort available for
the analysis, the criticality of the software being analysed, and the corresponding
safety requirements in the reference application domain.

In particular:

• The first contribution provides an exact way to identify relevant cache place-
ments, but with limited scalability, and proposes the overall process to follow
in order to calculate the needed number of measurements. While this solution
has prohibitive cost and therefore low applicability in practice, it provides a
way to assess the accuracy of the next two scalable solutions.

• The second contribution proposes a technique to find critical sets of memory
objects that lead to the highest overhead when mapped together under one
of the state-of-the-art placement policies deployed in TRC: hRP [73]. Based
on the probability to trigger these critical placements in measurements, the
technique derives the minimum number of measurements to collect in order to
derive a trustworthy WCET. This solution outperforms previous algorithms
by orders of magnitude in terms of execution time cost, to the point of being
practical to apply it on real applications.

• The third contribution provides an in-depth analysis of the behaviour of hRP
and a more recent placement policy for TRC: RM [65], which shed light on
how conflictive cache placements arise differently for each of them. Based
on the analysis, this solution proposes a heuristic-inspired methodology for
deriving a list of address combination that leads to high miss counts (together
with their probability of occurrence) specifically targeting RM caches. From
this, the needed number of measurements is computed. The second and
third contribution perform similarly and complement each other to allow the
analysis of the state-of-the-art TRC designs.

1.4.2 Representativeness and Path Coverage

Previous work proposed techniques to achieve path coverage in the context of
MBPTA [76, 122], ensuring that measurement samples are representative of all
possible program flows, but without addressing the cache-related representative-
ness. The first three contributions of this Thesis build measurement samples rep-
resentative of the platform behaviour and in particular of cache memories, relying
on the user to provide the input vectors to trigger the worst-case path. The
fourth contribution provides an approach that produces trustworthy WCET es-
timates that hold for all program paths and achieve probabilistically measurable
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cache representativeness, thus capturing the impact of both software and platform
events on the execution time.

The solution proceeds hierarchically: it first makes modifications to the pro-
gram under analysis to balance the impact of cache memories across any path
and then derives the minimum number of runs required for the modified program
factoring in cache layouts resulting in high execution times. The contribution pro-
vides a theoretical analysis of the effects of combining these two approaches and
demonstrates its practicability through empirical evidence.

1.4.3 Trustworthiness of EVT application

Since EVT treats the system as a black box, it is the responsibility of the user to
ensure that its parameters and provided input data are appropriate for its intended
use. On the one hand, the sample of measurements given to EVT needs to represent
the reality that has to be modelled. On the other hand, EVT parameters used for
modelling should be adapted to its domain of usage, which is the execution time
domain in this case.

The fifth contribution examines different approaches of applying EVT for
MBPTA with respect to their viability for industrial applications and highlights
the main misconceptions and pitfalls that risk to threaten the soundness of EVT-
based WCET analysis. First, it shows the risk of relying solely on execution times
randomisation or applying EVT on time-deterministic hardware platforms without
ensuring that measurements are representative of all platform-level SoJ. Second,
the proposal demonstrates the risk of using one EVT analysis for all paths of a
multi-path program and proposes a multiple-bucket application of EVT. Third,
the contribution explores the suitability of EVT and Gumbel distribution to anal-
yse execution times originating from different classes of software programs.

1.5 Thesis Structure

The rest of this document is structured as follows:

• Chapter 2 describes the necessary background on MBTA and in particular
its probabilistic variant MBPTA. It introduces the problem statement and
related work on MBPTA representativeness.

• Chapter 3 discusses our experimental methodology and the case studies to
assess the proposals.

• Chapters 4 to 6 present our proposals to attain cache representativeness,
starting with an exact but expensive method (Chapter 4) and following with
two timing efficient methods for hRP (Chapter 5) and RM (Chapter 6).
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• Chapter 7 describes the process to achieve cache and execution path repre-
sentativeness.

• Chapter 8 discusses relevant EVT aspects for its trustworthy application in
the industrial practice.

• Chapter 9 concludes this Thesis and recognises the potential future work.
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Background

2.1 Measurement-Based Timing Analysis

Worst-Case Execution Time (WCET) has been an important concern for decades,
with a plethora of methods proposed to estimate it [119], each of them with its ben-
efits and limitations. While Static Timing Analysis (STA) is still (and will continue
to be) the preferred technique to deal with relatively simple high-critical systems,
Measurement-Based Timing Analysis (MBTA) approaches are the most effective
means to analyse cutting-edge systems, exploiting high-performance hardware fea-
tures. This has not only been directly acknowledged by automotive representa-
tives [98], but also, in recent industrial works, since original equipment manufac-
turer/Tier1 teams and STA tool providers increasingly resort to MBTA to derive
timing bounds for processor architectures like the NXP P4080 [95], Texas Instru-
ments TMS320C6678 [81], and Arm-based SABRE Lite multicore systems [21].

The mentioned trend occurs because STA does not scale to handle the com-
plexity of hardware and software. STA aims at delivering evidence for timing
validation and verification models building on formal proofs that are meant to
show the soundness of the application of the analysis steps. While this can be
agreed to be scientifically sound, the confidence on STA results still builds on
the fragile assumption of the correctness of the underlying timing model, which
is expected to represent the behaviour of the real hardware being analysed faith-
fully. The extraordinary complexity of multicore platforms and the lack of enough
technical details in manuals cause this assumption to be hardly sustainable in prac-
tice [6]. Thereby, the industrial practice is driven to build on empirical evidence
(measurements) as the central element to show adherence to timing requirements.
In this line, most recent industrial approaches to handle the timing of complex
hardware [30] build on requirements that, for the same reasons above, can only be
assessed empirically. This includes, for instance, the identification of interference
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channels, which necessarily requires an extensive set of tests showing the processor
resources in which tasks affect each other’s timing behaviour.

Furthermore, empirical evidence and heuristics are widely used in hardware
testing processes. For instance, ISO26262 [70] defines different failure rate thresh-
olds for different automotive safety integrity levels according to the diagnostic
coverage with respect to residual faults (see clause 9.4.3.6 in ISO26262 Part 5).
Fault models used for assessing diagnostic coverage are in many cases restricted to
models that can be tested at appropriate abstraction levels. For instance, stuck-at
faults can be easily assessed at gate-level, where the model of the hardware is pre-
cise enough, and engineers have full controllability and observability of the circuit.
However, circuit timing faults depend on physical parameters of the fabricated
device, so they could only be reliably tested during post-silicon validation, when
controllability, to set the inputs of individual components, and observability, of
their outputs, is extremely limited. In the absence of complete fault models to
assess diagnostic coverage, heuristics are used to generate a sufficiently low num-
ber of tests with high enough diagnostic coverage. For instance, tests are typically
created with automatic test pattern generators [35, 109], which build upon heuris-
tics (including guided search algorithms). Target test coverage can be as low as
90% even for the highest criticality levels (automotive safety integrity level D),
thus leaving up to 10% of the design untested against relevant faults. Overall,
evidence for certification builds upon measurements obtained with heuristics due to
the inability to afford exhaustive explorations.

The WCET estimates obtained with MBTA are reliable to the degree that the
user is capable of designing test scenarios whose conditions are close to those that
can arise during operation. It is well known that the observable timing behaviour of
a program reflects the specific execution conditions incurred in the measurement
run, which are not guaranteed to stay the same from analysis to operation. In
measurement-based approaches, this problem calls for some form of control by the
user. Sufficient evidence for qualification or certification can be obtained, including
for the highest criticality functions (e.g. automotive safety integrity level D), only
as long as the user can prove the ability to exercise exhaustive control over all the
execution conditions considered of consequence.

Looking at hardware only, the use of increasingly complex processors makes
achieving the required level of control over all factors of influence on timing, which
we refer to as Sources of Jitter (SoJ), much harder. For example, how program
objects, such as code or stack, are assigned to memory defines their memory ad-
dresses, which in turn determines how they are mapped to cache sets and, ulti-
mately, the program’s pattern of hits and misses. Controlling the effect of memory
layout to avoid incurring bad scenarios is not always feasible in practice. Existing
techniques are typically exploitable only at the end of the development process
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as any analysis result obtained on single software units gets inevitably disrupted
after integration. This inherently clashes with the principle of incrementality (Sec-
tion 1.2.3) in software development and analysis, which is a fundamental cross-
domain industrial concern [91]. This difficulty in analysing and controlling SoJ
decreases the confidence that can be placed in the computed WCET estimates, and
increases the effort intensiveness of the measurement collection, thereby reducing
the benefit/cost ratio of MBTA dramatically.

2.2 Measurement-Based Probabilistic Timing

Analysis

After a seminal paper [45], a lot of effort has been devoted to understanding
the challenges of applying statistical approaches to WCET analysis [18, 55, 59].
Measurement-Based Probabilistic Timing Analysis (MBPTA) has been receiving
increasing attention due to its promising potential to analyse complex systems
while lessening the burden on the user control considerably and warranting sound-
ness. MBPTA has been applied to avionics [116] and space [51] case studies and
its impact on certification has also been addressed [113].

MBPTA delivers a probabilistic Worst-Case Execution Time (pWCET) distri-
bution function that describes execution time bounds at different probability levels.
This is better understood with the example in Figure 2.1. Figure 2.1a shows the
Probability Distribution Function (PDF) of the execution times collected from
R=1,000 runs of a synthetic program executing on an MBPTA-compliant plat-
form [77]. The corresponding Cumulative Distribution Function (CDF) and the
Complementary Cumulative Distribution Function (CCDF or 1-CDF) are depicted
in Figure 2.1b in logarithmic scale. With R observations (execution time measure-
ments), one could accurately estimate the pWCET at an exceedance probability of
1/R at most. Since much smaller probabilities are needed in the context of critical
real-time systems, Extreme Value Theory (EVT) is used to estimate the function
that describes the rightmost tail of the execution time distribution. Figure 2.1c
shows the result of applying EVT to estimate the pWCET distribution in our
example. The dashed line corresponds to the 1-CDF for the 1,000 measurements
collected, whereas the continuous line corresponds to the pWCET distribution.

In its original fields of application, EVT is used to produce predictions on the
extreme behaviour of the system from observations of it collected non-intrusively:
the key (and highly realistic) postulate is that the observer cannot affect the events
of interest. When EVT is applied to the execution time domain, the user deter-
mines the execution conditions under which the program is run during the timing
analysis phase, which can introduce a bias in the measurements being collected. If
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(a) Probabilistic Distribution
Function (PDF)

(b) CDF and 1-CDF (logarithmic scale)

(c) Example of pWCET curve

Figure 2.1: Synthetic program PDF, CDF, 1-CDF and pWCET curve.

different execution conditions may occur between analysis and operation, different
(extreme) timing behaviours may emerge in the two situations: for EVT, they
would describe two distinct systems, whose respective extreme behaviours may be
far off one another. A simple-minded application of EVT will produce pWCET
estimates that solely upper-bound the execution time of the program under the
execution conditions captured in the analysis time experiments, but not necessarily
those execution times occurring at operation phase.

In order to ensure that the computed pWCET estimates hold during operation,
MBPTA creates a judicious framework of use around EVT. Firstly, it takes care
of ensuring that the analysis time distribution of the observation measurements
upper-bounds the operation time distribution. Subsequently, it feeds a sample of
analysis time distribution, called analysis time sample, to EVT, which can then
safely use it to model the tail of the distribution being sampled, which in turn is
warranted to upper-bound the tail of the operation time distribution. This is bet-
ter illustrated in Figure 2.2. The dotted line depicts the Empirical Complementary
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Figure 2.2: Example of EVT projections based on a sample of representative and
non-representative analysis time distribution.

Cumulative Distribution Function (ECCDF) of the execution time behaviour of
a program, derived from observations of it taken during operation. We plot this
operation time distribution for illustrative purposes only since its retrospective
nature (which observes operation time events) is too late to feed WCET analy-
sis. The dashed line depicts instead the program’s analysis time distribution, as
resulting from the execution time conditions in effect during analysis. The solid
light line depicts the curve computed by EVT when feeding it with the analysis
time sample. MBPTA ensures that analysis time distribution upper-bounds op-
eration time distribution, and makes sound use of EVT to compute high-quality
pWCET estimates that upper-bound analysis time distribution, and hence oper-
ation time distribution. Incorrect use of EVT might instead result in low-quality
pWCET estimates that may fail to upper-bound operation time distribution while
still upper-bounding non-representative analysis time distribution.

The example in Figure 2.2 outlines three important steps of the MBPTA pro-
cess to derive trustworthy pWCET estimates:

• Ensuring that the analysis time distribution upper-bounds the operation time
distribution. This property holds by construction for MBPTA-compliant ar-
chitectures (see Section 2.2.1), which makes them the favourable candidate
for MBPTA. The relationship existing between the pWCET estimates ob-
tained during analysis and the timing behaviour during operation is analysed
by J. Abella et al. [7].

• Ensuring that the analysis time sample is representative of analysis time
distribution. A representative sample of an execution time distribution cap-
tures all the relevant SoJ (see Section 2.3). We have no guarantees that the
pWCET estimate built upon a non-representative sample is an upper-bound
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of the analysis time and therefore of the operation time distribution. This
has been recognised as an open problem [54] and we provide a solution in
this Thesis.

• Guaranteeing a sound use of EVT. EVT treats the system as a black box,
focusing just on its output. MBPTA process needs to ensure the correct
application of EVT in our domain (see Section 2.2.2 and our contribution in
Chapter 8).

2.2.1 MBPTA-Compliant Architectures

The notion of MBPTA compliance has been defined by L. Kosmidis et al. [77, 78],
which reflects specific abilities of the observation process and particular features
of the execution platform. The latter requires applying combinations of (hardware
or software) randomisation or upper-bounding to the execution time behaviour of
the hardware resources with the highest jitter.

Applying time upper-bounding at analysis time ensures that the observed pro-
gram’s timing behaviour upper-bounds its timing behaviour during operation.
This technique is typically applied to the SoJ that cause a smaller variation on
the execution time of a program, e.g. a floating-point unit. These SoJ are forced
to work in their worst latency at analysis time, whereas during operation they
preserve the original behaviour. By doing so, the user is relieved from triggering
the worst-case condition of those resources.

On the other hand, applying time upper-bounding on SoJ that cause a high
variation on execution time can easily lead to a large overestimation of the WCET
(e.g. it is equivalent to assuming that each access to a memory address misses
in cache). In MBPTA-compliant platforms, resources with high jitter are time
randomised (both at analysis and operation time), ensuring that the distribution
of execution times at analysis upper-bounds that of the program during operation.
Note that, in all cases the functional behaviour of the program is unaltered.

With time randomisation all potential behaviours that a given SoJ can exhibit
are naturally (and randomly) explored in every new test so that, if enough mea-
surements are performed, the impact of their jitter in execution time is captured.
This principle emanates from probabilistic and statistics theory, where a random
variable can be modelled based on a sample of observations with increasing con-
fidence and accuracy as the size of the sample grows. The user is not required
to explicitly trigger the worst-case behaviour (which is the immensely difficult
problem), but only to collect the sufficient number of measurements to reach the
needed confidence. An example of a time randomised resource is a cache memory
deploying both random placement and random replacement. Time randomisation
can be realised directly by low-overhead modifications in the hardware or obtained
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by software manipulations neutral to functional behaviour on top of commercial
off-the-shelf processors.

Time Randomised Caches

Time Randomised Caches (TRC) [73] are MBPTA’s preferred cache designs and
their value has been demonstrated on Field-Programmable Gate Array (FPGA)
implementations [65]. The original design with random replacement and hash
Random Placement (hRP) was proposed by L. Kosmidis et al. [73]. The drawback
of hRP is that, due to random allocation of memory addresses across sets, conflicts
may occur even when data would fit in the cache. To address this limitation, novel
Random Modulo Placement (RM) has been proposed [65] that provides the ran-
domisation required by MBPTA but ensures that addresses stored close in memory
are mapped into different sets, thereby fulfilling benefits of modulo placement. To
allow the analysis with MBPTA of existing legacy systems featuring deterministic
caches, software randomisation techniques have been proposed. They perform by
randomising the placement of memory objects (instructions and stack) through
compiler/linker support [74] or by inserting random padding and reordering the
memory objects at the source code level [79].

Motivation for TRC. TRC break the structural dependence between address
location in memory and its cache set position. As a result, during the test cam-
paign, users do not need to control the program’s code/data memory placement,
which is very sensitive to environmental execution conditions that may change
across software integration steps. Instead, users just need to make sure that the
impact of different cache placements on timing has been accounted for by perform-
ing enough execution time measurements at analysis time. This enables performing
measurements in isolation factoring in the impact of any cache alignment inde-
pendently of the memory placement produced by future integration. This has the
potential of enabling incremental software integration – and its benefits – in the
presence of caches.

Incremental software integration is the common practice in integrated architec-
tures to handle software complexity and its desired property, time composability,
is a key concept in the design of Critical Real-Time Embedded Systems (CRTES),
see Section 1.2.3. In the timing domain, caches make the timing behaviour of
the previously integrated modules change as their memory layout is altered across
releases [91]. This has disruptive effects on time composability in systems with
deterministic (modulo-placement based) caches. In this type of caches, the par-
ticular addresses in which application’s code and data are allocated determine the
cache sets where they are mapped. Hence the memory placement directly and
significantly impacts cache behaviour, especially in the number of conflict misses.
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Consequently, as applications are brought together across releases and the mem-
ory layout of existing modules changes, WCET figures previously derived for a
software unit in isolation, during system early-design phase, are invalidated. This
issue is exacerbated when different modules share code (functions) or data.

In the absence of time composability, consolidated timing estimates can only
be obtained in late-design phase, in clear contrast with incremental integration
and qualification. If timing violations (e.g. time budget overruns) are discovered
in late-design phase, costly application re-factoring may be required, changing
the system schedule or even requiring additional processing power if the current
computation capabilities do not offer an adequate margin to accommodate all the
required functionalities. This, of course, may significantly increase the overall
product (system) cost and time-to-market.

On deterministic caches, the volatility of WCET figures can be handled by
performing fine-grain control of code and data memory placement so that cache
alignment is optimised and preserved. However, besides the associated complexity,
these approaches are not completely robust to code changes and modification, may
increase the burden on the user, may be challenging in practice, and may easily
lead to memory fragmentation.

Random placement, instead, breaks the dependence between the memory align-
ment of program data/code and the cache sets used. Therefore, time composability
is not threatened any more by the volatility of memory layout. Since in this case
the cache behaviour does not depend on cache placement, the WCET figures ob-
tained for each software module in isolation hold valid across the layout changes
occurred in subsequent software releases.

TRC Implementations. TRC deploy random replacement and random place-
ment policies. Random replacement chooses a cache line for eviction randomly on
a miss. Random placement uses a random number, called random index identifier1

and some address bits to derive the set to map an address. So far two mapping
functions have been proposed: hRP and RM.

hRP hashes addresses with a random index identifier to derive the cache set to
place the address. The random index identifier remains constant during program
execution so that an address is always placed in the same set during the whole
execution, but it is randomly changed across executions so that the particular set
where an address is placed is also random and independent of the placement for
the other addresses across executions. Thus, the probability of any two addresses2

1Random numbers are generated with a pseudo-random number generator that provides
sequences with long periods to prevent any correlation.

2For the sake of simplicity we assume that the addressable unit matches the size of a cache
line.
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Figure 2.3: Small example for a 4-set hRP and RM cache.

to be placed in the same set is 1/S where S is the number of sets. The main
disadvantage of hRP is that it exhibits cache conflicts even in the scenarios where
all data (or the subset of most-accessed data) is largely below cache capacity since
all addresses can be potentially placed in the same set.

RM groups the addresses sharing the same memory page into cache segments
and ensures that all addresses from the same segment are mapped to distinct
sets. Randomisation is achieved by using the random number (changed across
executions) and some address bits to drive the permutation of index bits to the
bits denoting the set to map the address. By avoiding conflicts among consecutive
memory addresses (those in the same page), RM better exploits spatial locality
in a similar manner as modulo placement, and outperforms hRP in terms of both
average and worst-case performance.

As an illustrative example, Figure 2.3 shows how 4 addresses could be mapped
to a 4-set cache in different runs. We see that, since the addresses belong to the
same memory page, they cannot be mapped to the same set under RM. Instead,
with hRP every single address can be mapped to any set.

Note that RM requires that memory page alignment does not change upon
integration. Otherwise, WCET estimates obtained under the assumption that
some contents reside in the same page (and hence cannot conflict in cache), would
be no longer valid if those contents move to separate pages. Thus, RM improves
performance with respect to hRP, but also poses some additional constraints.
RM preserves the properties needed by MBPTA (independence of actual memory
addresses) as long as the page size is equal (or a multiple) of the way size since
this guarantees that addresses in a page can be randomly mapped to any set and
with even probability. Otherwise, if the page size is smaller than the way size,
the location of the page in memory would determine the sets where it would be
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mapped, thus making placement dependent on the memory location of the page.
Hence, if the page is smaller, then hRP must be implemented instead of RM.

2.2.2 Extreme Value Theory

EVT is a branch of statistics that predicts the probability of events more ex-
treme than those that can be usually observed in a sample (i.e. either maxima
or minima). EVT has been traditionally applied in meteorological, hydrological,
insurance and financial domains [1, 46], to predict extreme characteristics such as
exceedance probability or return periods. The application of EVT for the timing
analysis of CRTES needs to take into account the particular event EVT is expected
to model: the WCET.

EVT is agnostic to the particular variable being measured and how it is mea-
sured, as long as some statistical properties hold for the sample. Therefore, when
applied to execution time measurements, EVT makes no assumption on the inter-
nals of the system (a computing platform in our case) from which the measurements
are collected. In our problem domain, EVT has to be understood as a technique
to predict the probability distribution of the combined impact of the timing events
observed in the provided sample of analysis time measurements. To contribute to
the combined effect that EVT seeks to predict, the base events have to be ob-
served, while their cumulative effect needs not. It follows that unobserved events
(whose effect on execution time might be arbitrarily large) cannot contribute to
the computation [3, 27]: if they can occur and are not captured in the observations,
then the predictions are inaccurate and therefore fallacious.

EVT accurately approximates the tail (hence the extreme) of a given proba-
bility distribution, taking as input only those observations from the sample that
belong to the tail. The block maxima and peak over threshold [50] methods are
used to that end.

Block maxima defines a block size (bs) and splits the sample in smaller groups
(e.g. a sample of R = 2, 500 elements and a block size of bs = 25 elements yield
nb = R

bs
= 100 blocks of bs observations each). EVT draws the highest value in

each block and creates a sample of maxima to which it fits a probability distri-
bution. Three families of continuous probability distributions are used for fitting
in conjunction with the block maxima method: Gumbel, Fréchet and reversed
Weibull. They are jointly described by the parametric Generalised Extreme Value
distribution family. The CCDF of this distribution family is defined by the pa-
rameters µ, σ and ξ, known as the location, scale and shape respectively [34, 80].
Figure 2.4 shows illustrative tail shapes from those three families: a Weibull distri-
bution (light tail) with ξ = −0.1 has a sharp slope that converges to a maximum
value (1,000 in the figure); a Gumbel distribution (exponential tail) with ξ = 0
exhibits a relatively sharp slope, but does not converge to a maximum; a Fréchet
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Figure 2.4: Example of CCDF of Generalised Extreme Value distributions with
ξ = −0.1, ξ = 0 and ξ = 0.1 respectively. µ = 0 and σ = 100.

distribution (heavy tail) with ξ = 0.1 has the gentlest (polynomial) descent slope,
and does not converge to a maximum.

Peak over threshold defines a threshold (th) value and creates a maxima
population drawing from the sample only the observations higher than th. The
resulting probability distribution function can be described by the Generalised
Pareto distribution family. This distribution family can be described with either 2
or 3 parameters. In the latter case, µ, σ and ξ, have the same interpretation as for
Generalised Extreme Value distribution (and ξ is identical): for the same ξ, and
similar values for µ and σ, both Generalised Pareto distribution and Generalised
Extreme Value yield the same distribution. S. Coles [34] explains how to determine
µ, σ and ξ, and how µ and σ vary for these two distribution families.

The tail shapes produced by the said distribution families are not equally apt to
model WCET behaviour: the reversed Weibull family approaches asymptotically
an exact (maximum) value, which helps when the WCET is known (but is not our
problem domain); the Gumbel family decreases exponentially without converging
to a finite upper-bound; the Fréchet family does the same as Gumbel but decreases
polynomially, which makes it less tight for our problem domain. The same holds
for the Generalised Pareto distribution model distributions. We restrict EVT to
using Gumbel distribution [7] on the account that it has been argued to be the most
stable (and always overapproximating) distribution to model worst-case execution
of real-time software [7, 110]. We discuss the implications of fitting execution
times with distributions potentially more pessimistic than exponential tails to the
Gumbel in Chapter 8.
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2.3 MBPTA Representativeness Arguments

The quality of the WCET estimates obtained with any MBTA technique depends
on the representativeness of the measurements collected at analysis with respect
to the timing behaviour of the system during operation [4]. The main concern in
MBTA lies in the construction of test cases for the test campaign that exhaustively
(and simultaneously) captures the worst-case behaviour of all SoJ. On the other
hand, MBPTA controls the impact on the execution time of SoJ during the test
campaign. SoJ that cause low execution time variation are enforced to work on
their worst latency so that their impact on execution time is upper-bounded in
analysis time runs. SoJ that cause high execution time variation are time ran-
domised, such that worst-case timing behaviour is captured with a quantifiable
increasing probability as more measurements are taken. Further, MBPTA simpli-
fies the process of collecting observations during the test campaign by deploying
EVT. EVT transparently derives the combined probability that the worst-case
behaviour of different SoJ occur simultaneously in a single run, provided that the
worst-case behaviour of each single SoJ has been captured in the collected runs. As
a consequence, triggering the longest-latency timing of all SoJ individually suffices
for a trustworthy WCET estimation with MBPTA. This is in contrast to MBDTA
that requires all worst-case behaviour to be triggered in a single run. Therefore,
in the context of MBPTA, a representative analysis time sample of measurements
needs to capture the longest-latency timing behaviour of each SoJ individually,
while EVT is responsible for modelling the combined behaviour of several SoJ.

For low-variability SoJ, which are enforced to work at their highest latency
at analysis, a single measurement is sufficient to capture worst-case behaviour.
For high-variance SoJ, which are instead meant to be time randomised, all rele-
vant events need to be captured by carrying out enough runs. Events of interest,
see Figure 2.5, are all those timing events occurring with a probability above a
threshold that relates to the corresponding safety standard in the domain (e.g.
Prel = 10−9). To understand relevant probabilities, we first clarify some concepts
related to timing faults and next define probabilities Prel and Pobs.

Timing Faults and Safety Standards. A common misconception in real-
time systems is that a program overrun (timing fault) necessarily causes a failure at
a system level. In reality, a safety process factors in the impact that timing faults
can have on the overall system failure rate. Taking as a reference the ISO26262 [70]
standard in the automotive domain, the safety life cycle defines safety goals (and
their associated automotive safety integrity level) for each system element. If those
goals are reached, the residual risk of failure is deemed as sufficiently low. The
safety process also defines the safety requirements on the hardware/software to
reach the safety goal. Proper measures are put in place to reduce the probability
that a fault in a hardware/software element can contribute to the violation of its
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Figure 2.5: Probability range of interest derived from the relevant and observable
probabilities.

safety requirements – and hence the safety goal – beyond an established threshold.
For instance, random hardware residual faults are considered acceptable if their
rate is below a given threshold and the diagnosis coverage – i.e. the mechanisms
detecting whether this type of fault can occur for a given hardware block – is below
a given target. For instance, for the highest automotive safety integrity level D
the maximum allowed failure rate is 10−8 per hour of operation when the diagnosis
coverage reaches 99%.

Prel. Due to the representativeness requirement, all relevant events occurring
with probabilities higher than a defined probability Prel (see Figure 2.5) need to
be properly upper-bounded at analysis time. Prel probability relates to what the
corresponding functional safety standard describes as reasonable or unreasonable
risk, which is determined by the integrity level of the task and the probability of
failure allowed under such integrity level as dictated by the corresponding func-
tional safety standards in the domain. Based on the hazard analysis and risk
assessment of the particular functionality implemented by the task, one can deter-
mine an appropriate probability threshold (Prel). For instance, if Prel = 10−9 and
a given event occurs with 0.9 probability, the probability of not observing it in 10
trials would be (1.0−0.9)10 = 10−10, and hence irrelevant in this context. In other
words, the risk of missing this event with 10 trials is not unreasonable.

Pobs. All relevant events, whose probability is above Prel, need to be accounted
for pWCET estimation, which requires that their effect is captured in the mea-
surements collected at analysis time. However, given a number of runs R carried
out at analysis, only events with a relatively high probability can be observed in
the measurement runs. The probability of not observing a relevant random event
at analysis (Pnobs) is a function of the number of measurements taken (R) and the
event probability (Pevent): Pnobs = (1 − Pevent)

R, as presented in Figure 2.5. For
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example, let us assume that R = 10,000 measurements are taken during the test
campaign at analysis. The events with a per-run probability of occurrence equal to
Pevent may not be properly covered (i.e. missed) with negligible probability, Pcth,
if (1 − Pevent)

10000 ≤ Pcth. For instance, for Pcth = 10−7 events with a probability
Pevent ≥ 0.00162 are captured with a probability higher than 1− 10−7. To capture
events with lower probabilities of occurrence with enough confidence, more runs
are needed.

Overall, the range of probabilities in which relevant events are unlikely to be
observed (for R=10,000) is Pevent ∈ [10−9, 0.00162]. If such events can occur in
the system, the user is required to take an explicit action to ensure their represen-
tativeness in the analysis time sample.

2.3.1 The Cache-Related Representativeness Challenge

Time-randomised resources other than cache placement have been shown to have
a sufficiently high Pobs so that the minimum number of runs required by MBPTA
already ensures that all their timing events are observed [4].

Set-associative (and direct-mapped) TRC deploy random placement, which
makes each address to be mapped to a random and independent set across pro-
gram runs. Therefore, each run results in random cache (set) placement. Previ-
ous work [4, 92, 104] identified that certain placements, called Conflictive Cache
Placement (CCP), may produce a significant increase in the number of cache
misses (and thus execution time), but occur with the probabilities falling into the
non-observable and relevant probability range. This affects the trustworthiness of
MBPTA pWCET estimates, as in these cases MBPTA is unlikely to capture the
impact of this event of interest on the program’s execution time. Thus, evidence
that those CCPs are sufficiently represented in the measurements passed as in-
put to EVT, known as the cache-related representativeness challenge, is needed to
compute trustworthy MBPTA results.

So far only the Heart of Gold (HoG) [4] method and its extensions [14, 15]
have addressed this challenge. In particular, the authors notice that the number
of addresses competing for a set is the critical parameter affecting execution time
noticeably: whenever up to W addresses are mapped into the same set, those
lines end up fitting in the cache set regardless of their access pattern. This occurs
because, after some random evictions, each address can be stored in a different
cache line in the set, thus not causing further misses. Conversely, if more than
W cache line addresses compete for the cache set space, then they do not fit and
evictions will occur often, which is considered a CCP.

However, HoG relies on the assumption that the impact of all addresses in
execution time is homogeneous, which happens, for instance, in access sequences
in which addresses are accessed in a round-robin fashion. We observe that having
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more than W addresses mapped to the same set is a necessary condition to trigger
a CCP, but it is not sufficient. Whether such cache placement causes an abrupt
increase of the execution time depends on the access pattern for those addresses.
This general case is addressed in this Thesis and solutions are proposed to identify
CCPs. The benefit of TRC is that the user does not need to trigger the identified
CCP explicitly, but as more measurements are collected, the coverage of possible
placements increases. The proposed solutions derive how many measurements
are needed to guarantee that relevant CCPs are captured with sufficiently high
probability.

2.3.2 Representativeness of Execution Paths

Applying EVT on software programs brings the dependence of execution times
(and traversed program paths) on input-data into the equation [86, 122]. Static
and measurement-based approaches tackle input-data dependence by requiring
program features like loop bounds or recursion level to be bounded to derive WCET
estimates. Hence, input vectors mainly affect the paths traversed. Yet, path
identification and generation of the respective input vectors remain a non-trivial
problem for end-users, arising interest in methods to relieve the user from the
burden to achieve sufficient path coverage.

With MBPTA achieving full path coverage is possible by building a synthetic
upper-bounding path [76] or using the measurements from several paths to arti-
ficially derive measurements for all unobserved paths [122]. Next, we introduce
Path Upper-Bounding (PUB) [76], since it is the basis for part of the work in this
Thesis.

Path Upper-Bounding Method

The PUB method [76] builds a modified version of the program (Ppub) such that
any path of Ppub exhibits an execution time distribution that upper-bounds those
of all paths in the original program Porig.

∀i, j ∈ paths(Porig) : F (Pi
orig(t)) ≥ F (Pj

pub(t)) (2.1)

That is, the accumulated probability (F (x)) of any path i of the original pro-
gram for any execution time t is equal or higher than for any path j of the pubbed
version of the program. Note that the extended program is used only to gener-
ate the pWCET at analysis, while at deployment time the original unmodified
program is used.

PUB extends the source code of the original program with a compiler pass
that inflates the code of each branch of conditional constructs (e.g. if-then-else,
switch). It adds instructions and memory accesses so that each branch in the
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Figure 2.6: Example of pubbed code

pubbed code includes equivalent cache access patterns in all of the branches of
the original conditional construct1. By applying this concept recursively starting
from the innermost conditional constructs, operations and memory patterns can
be upper-bounded. Interestingly, PUB inserts the needed memory accesses with
functionally-innocuous operations (e.g. loading data into a read-only register).
PUB builds on input vectors triggering the highest loop bounds and all basic blocks
(but not all paths), which is a common requirement of safety standards for code
coverage. PUB relieves end users from having to control memory mapping, values
operated and paths traversed, which are much less obvious from code inspection.

PUB relies on a key property of TRC that does not hold for time-deterministic
caches: given a memory access sequence, adding any memory access in any posi-
tion necessarily causes a worse probabilistic execution time distribution [76]. For
instance, given an if-then-else statement for which the ‘if’ branch contains the
memory access sequence Mif = {ABCA} and the ‘else’ branch Melse = {BACA},
the sequence Mpub = {ABACA} is an upper-bound for both (see Figure 2.6). If
we compare Mif and Mpub, the first two accesses (A and B) will have the same
probabilistic behaviour. If the third access in Mpub is a hit (A), cache contents are
not altered and the rest of the sequence is identical to the remaining part of Mif .
Hence, Mpub increases execution time by 1 hit. Conversely, if the third access is
a miss, the fifth access (A again) has a higher probability to hit. Thus, Mpub will
experience 4 misses in the first 4 accesses and a likely-hit in the last access. In-
stead, Mif will experience at most 4 misses, hence having a shorter execution time
than Mpub. We refer the reader to the PUB technique for further proofs, details
on instruction cache specifics and memory alignment issues [76]. Note that, this

1For clarity we refer to the sequence of addresses of one path, regardless of whether they are
instructions or data since the reasoning provided applies to both.
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method is not compatible with time-deterministic caches since, for instance, least
recently used replacement policies may lead to lower execution time by inserting
accesses. E.g. in a 2-way cache the sequence {ABCA} experiences 4 misses (all
accesses), whereas {ABACA} experiences only 3 (second and third occurrence of
A are hits).

2.4 Related Work

WCET analysis has been broadly investigated both by conventional (deterministic)
and probabilistic timing analysis. We refer readers interested in the conventional
timing analysis techniques to the survey by Wilhelm et al. [119]. A recent study
surveys the probabilistic timing analysis techniques [28]. Previous work performed
an initial comparison between MBPTA and SDTA [3]. Results show that MBPTA,
the central point of our study, provides competitive results with respect to SDTA
techniques with lower information requirements for the application of the analysis.

The problem of timing analysis in the presence of single-level private caches de-
ploying random replacement has also been approached in the context of SPTA [12,
31, 84]. The solutions offered in these works are complementary to the ones pre-
sented in this Thesis, and the user will choose the appropriate method according
to the tradeoff of the advantages and disadvantages offered by STA and MBTA ap-
proaches. We note that the representativeness problem is only relevant for MBTA.

Cache placement has also been recognised in other related work as a key element
in the amount of conflict misses experienced and consequently a great contributor
to the execution time. To that end, several works propose average and worst-case
cache optimization approaches [48, 61, 87, 99]. These techniques, whose focus is
on modulo placement, rely on deriving the number of cache conflicts by either
statically analysing or profiling a program under a heuristically determined subset
of cache placements. This information is later used to select the cache placement
(among those observed) that produces the minimum number of conflicts. These
approaches, however, are built on the assumption that a cache layout is robust
against program variations and incremental system integration, widely spread in
automotive and avionics among other domains (see Sections 1.2.3 and 2.2.1). Our
interest in CCPs is not in finding an optimal one (which is indeed a fragile concept),
but rather in providing guarantees that relevant CCPs are covered in the analysis
test campaign.

Several efforts have been directed to studying the statistical requirements and
support needed to effectively use EVT. The initial works [55, 59] claim that
observations provided as input to EVT have to be independent and identically
distributed (i.i.d). MBPTA-compliant architectures guarantee that the i.i.d. re-
quirement is satisfied by construction [78] and allow probabilistic reasoning on the
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representativeness of input data and the quality of results. The i.i.d. requirement
has later been softened [34, 56, 107] showing that EVT can be applied on data
exhibiting stationary or weak dependence. This observation led to the definition
of well-structured approaches to apply statistical tests on the sample data and to
assess the goodness of fit of the model [56]. This has paved the way for the appli-
cation of EVT tools to programs running on deterministic (i.e. non-randomised)
hardware [17, 49, 107]. In this line, some authors consider together the use of EVT
on deterministic hardware whenever different program runs may exhibit some form
of dependence among them (e.g. applications with multiple execution modes that
follow specific patterns) [57]. However, these usages lack explicit means to address
low-level timing effects beyond the reach of the end-user. Those effects are the
ones accounted for with randomisation to sustain representativeness against those
sources of execution time jitter.

Our work is based on the assumption that randomisation is provided by the
underlying MBPTA-compliant platform. Other works achieve randomisation by
randomly sorting or selecting values from the measurements [55, 88] or by append-
ing random padding to the observed measurements [85]. To the best of our knowl-
edge, the representativeness challenge has not been studied on the specific, other
than MBPTA-compliant platforms. An abstract procedure has been proposed to
guide the measurement process without assuming the specific platform [90]. The
process is considered representative if for some value k of collected measurements
a delivered pWCET is close to the ideal pWCET. However, the work leaves as an
open issue how to attain the representativeness. Obtaining pWCET estimates in
the presence of discrete and/or dependent data has been addressed by G. Lima
and I. Bate [85]. Other studies analysed the impact of selecting different EVT pa-
rameters and confidence intervals [108]. Besides EVT methodology, several works
investigated the computation of pWCET by using Copulas [18] and Markov mod-
els [42, 53].

An evaluation framework to assess the quality of results derived by MBTA
techniques has been proposed [83] and the model was instantiated to assess the
reliability of MBPTA. The results show that the quality of the derived WCET esti-
mates is highly reliant on the achieved path coverage. Achieving full path coverage
in MBTA has been studied from different angles. Some works attempt to reduce
programs to a single execution path building on predicated instructions [102], but
its requirements and cost are difficult to leverage with industrial practice. Other
approaches, instead, use genetic algorithms and model checking to generate input
vectors to achieve full path coverage [22, 117].

Regarding multicore architectures, pWCET estimates computed with MBPTA
hold valid by construction for multicores if hardware shared resources are MBPTA-
compliant [116]. Instead, if no hardware support is in place, contention in shared
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resources can be accounted for by adding on top of the derived bound for isolation
conditions, the possible contention suffered [43]. Then, the contention is monitored
during operation to check that the margin added is not exceeded [95, 96]. EVT
was also applied to estimate the worst-case timing behaviour of highly-parallel
applications running on GPGPU [16].

Hardy et al. [60] propose two reliability mechanisms to mitigate the impact of
faulty cache blocks in deterministic instruction caches on pWCETs. The impact of
transient and permanent faults in time randomised caches has been covered both
in the scope of SPTA [32] and MBPTA [111].

Apart from WCET estimation, probabilistic analysis has also been applied
to scheduling [24, 68]. However, applying probabilistic timing analysis to the
WCET computation does not require probabilistic scheduling. Instead, the user
can derive the pWCET distribution for each task and select a WCET estimate
at the probability defined by the safety standard. Then, standard scheduling
approaches can be used.
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Chapter 3

Experimental Methodology

3.1 Processor Modelling Framework

The overall goal of our experimental setup is to evaluate the accuracy and effi-
ciency of Measurement-Based Probabilistic Timing Analysis (MBPTA) enhanced
with the solutions proposed within this Thesis. On the one hand, the accuracy is
measured by comparing the Worst-Case Execution Time (WCET) estimate deliv-
ered by MBPTA against empirical distributions for more than 106 execution time
measurements at different probability levels of interest. These measurements have
been collected by running benchmarks on the modelled hardware, as it allowed
the collection of bigger execution time samples. Let’s call ET p

mbpta the probabilis-
tic Worst-Case Execution Time (pWCET) delivered by MBPTA at probability p
and ET p

emp the execution time attached to the same probability level p read from
the Empirical Complementary Cumulative Distribution Function (ECCDF) built
from collected measurements. Then, the accuracy metric can be computed as:

Accuracy = (ET p
mbpta − ET

p
emp)/ET

p
emp

On the other hand, the efficiency is measured in terms of the timing cost to
perform the analysis needed to deliver the number of measurements to collect. We
use as a reference point the Representativeness Validation by Simulation (ReVS)
method, which provides the assuredly accurate results at the price of a generally
unaffordable computation cost. Let’s call TCp

mbpta the time cost of MBPTA en-
hanced with the proposed solution and TCp

revs the execution time of ReVS. Then,
the efficiency metric can be computed as:

Efficiency = TCp
mbpta/TC

p
revs

The reference architecture for this Thesis is an MBPTA-compliant architecture,
with TRCs implemented in hardware, using random replacement, hash Random
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Figure 3.1: Schematic of the LEON3 4-core multicore architecture [64].

Placement (hRP) or Random Modulo Placement (RM) placement policies. In our
experiments, we collect end-to-end measurements running a task in isolation and
flushing caches across different executions. In particular, we use three different
infrastructures:

• Field-Programmable Gate Array (FPGA) prototype: Within case
studies performed in this Thesis we collect execution times measurements
on top of a LEON3-based multicore FPGA prototype used in the space
domain [64], whose schematic is shown in Figure 3.1. It comprises of four
cores implementing SPARC V8 architecture interconnected by an AMBA
AHB bus. The memory hierarchy comprises of private L1 caches in each core
and a shared L2 cache and DDR2 memory controller. The FPGA prototype
implements techniques in hardware to support MBPTA-compliance: the time
upper-bounding technique is applied to the floating-point unit, and time
randomisation to cache memories and the bus. The time randomised bus
implements an enhanced random permutation arbitration [71], which defines
time windows divided into as many slots as the number of cores in the system.
Each core is assigned one random slot within each time window.

Instruction and data addresses of program instructions are collected with
the standard debug interface support present in our LEON3-based FPGA
board. Notably, other processor architectures provide similar or more ad-
vanced tracing features, e.g. the Nexus Interface for NXP processors and
the Coresight for Arm processors. Since address tracing can affect execution
time, time measurements are collected only with the address tracing mech-
anism disabled. Address traces are collected in a single separate run, for
which timing is not considered. The obtained data and instruction traces
are used to perform analysis of our proposed methods, as well as to generate
random-cache simulations. Note that this is possible because we are able to
decouple the cache-set mapping from the address of the memory instruction.
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Table 3.1: SoCLib-based simulator configuration.

Architecture PowerPC 750
Pipeline 4-stages, in-order, single issue
Branch Prediction No, stalls until resolved
Floating Point Unit Yes (implementing time upper-bounding)
Memory Management Unit Yes
Multicore No
Caches Split L1 Instruction and Data caches
IL1 and DL1 Cache Size 32B per line, 2 ways, 64 sets
DL1 Write policy Write-Back
TLBs Split Instruction and Data TLBs
ITLB and DTLB Size 16 ways, 1 way, 1KB per page
Placement policies hRP and RM
Replacement policies Random eviction on miss
MSHR 32 entries
Coherency None
Memory request latency 16 cycles
Memory read latency 10 cycles
Memory write latency 9 cycles
Write buffer Single pending write

• SoCLib simulator: In order to understand the program’s timing behaviour
at lower probabilities, and have a ground-truth reference, we resort to collect
very large samples of execution times (in the order of millions of measure-
ments). Although a priori an FPGA is faster than a cycle-accurate simula-
tor, the limited access to that shared resource and the inability to parallelise
the work make the timing cost of collecting that number of measurements
on the real board prohibitive. To overcome this issue, we run some exper-
iments in the execution-driven, cycle-accurate simulator based on the Sys-
temC component library SoCLib [112]. Our simulator has been developed
by the Computer Architecture/Operating System interface (CAOS) team
at Barcelona Supercomputing Center (BSC) and it was already deployed in
multiple research projects (PROARTIS, PROXIMA). Many simulations can
then be run in parallel in appropriate computing clusters without having to
serialise experiments, as it occurs in the FPGA prototype.

Our SoCLib-based simulator models an architecture featuring a single-core
four-stage (Fetch, Decode, Execute and Write-Back) pipelined in-order pro-
cessor, with the features shown in Table 3.1. The memory hierarchy consists
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of separated Instruction Cache Level 1 (IL1) and Data Cache Level 1 (DL1).
Our cache module is fully custom and highly flexible, allowing us to evaluate
multiple cache configurations, different cache policies and cache latencies.

We configure the IL1 as read-only and the DL1 cache as write-back/write-
allocate. DL1/IL1 access latency is 1 cycle for hits with 3 extra cycles for
misses, which are added to the main memory request latency (16 cycles
unless otherwise stated). The selected configuration support virtualization,
having both instruction and data Translation Lookaside Buffers (TLBs) to
cache 1KB pages. The cache sizes and replacement policies are configurable,
as described in Section 3.1.1.

• Cache simulator: The solutions developed in this Thesis propose measur-
ing the cache miss count as part of the MBPTA process, in particular for
achieving representativeness. However, a lot of simulation time may be re-
quired to get such level of representativeness using a cycle-accurate simulator
like SoCLib. To accelerate the development cycle without losing precision
we have implemented a light-weight cache simulator written in C++ that
allows the quick measurement of the miss count metric under different ran-
dom cache placements. The simulator allows enforcing a group of addresses
to be mapped to the same set, such that we can assess the impact of specific
cache placements and identify the ones causing the highest number of cache
misses. The simulator is trace-driven, taking as input sequences of memory
accesses to the data and instruction caches, e.g. such as those traced from
the FPGA prototype. It supports random replacement policy and hRP/RM
placement policies. Writing policies are write-back and write-allocate.

3.1.1 Cache Configurations

We use three different cache configurations across the Thesis: a baseline configu-
ration sized according to the benchmarks’ size, a small configuration that further
stresses the proposed techniques, and the FPGA configuration for the assessment
on a commercial product. The specific setups are as follows:

• Default configuration: 4KB 2-way set-associative 32B-line instruction and
32B-line data caches. This is our baseline configuration for experiments run
in the simulators. Caches have been sized in accordance with the require-
ments of the benchmarks used in the evaluation, thus not being oversized in
relative terms.

• Small configuration: 512B 2-way set-associative 32B-line instruction and
32B-line data caches. These uncommonly tiny configurations are intended
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Figure 3.2: Steps in the application of the MBPTA-CV technique [7].

to exacerbate cache conflicts and allowed us to see the impact of some tech-
niques in very stressful scenarios.

• FPGA configuration: 16KB 4-way set-associative 32B-line instruction
and 16B-line data caches. This setup matches the one implemented in the
LEON3-based FPGA and we use it for all case studies run on top of the
board.

3.2 Timing Analysis Tools

To compute WCET estimates, we use MBPTA-CV performance tool [2, 7]. The
overall process consists of four steps, as illustrated in Figure 3.2.

1. Collecting observations. First, execution time measurements are collected
on the target platform and provided as input to the tool. The solutions
developed in this Thesis are integrated into this step to compute how many
measurements R′ are needed to ensure representativeness. For comparison
and assessment of our solutions, we also apply MBPTA-CV on default R
numbers without the representativeness step. The lowest value of runs R
that we inspect is 300.

2. Testing independence and identical distribution (i.i.d.) assump-
tion. The next step tests whether the collected measurement sample follows
i.i.d. hypothesis. With MBPTA-compliant platforms, i.i.d. is attained by
construction and, therefore, if a particular sample fails these statistical prop-
erties, it will eventually meet them as we increase the sample by collecting
more measurements.
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3. Identifying tail values. MBPTA-CV builds upon the coefficient of vari-
ation distribution to identify the sample size of tail values, for which expo-
nentiality cannot be rejected with a confidence of 0.95. It passes to the next
step the sample of tail values that best fit to the exponential tail, with at
least 50 values, and whose exponentiality cannot be rejected for any smaller
sample of the highest execution times (with the exception of samples with
less than 10 values, which are not sufficient to derive reliable distributions).

4. Fitting exponential distribution. Based on the selected tail values, the
method derives parameters to model pWCET as an exponential tail distribu-
tion, which has been proven to fit well with the WCET estimation problem.
Finally, the obtained Extreme Value Theory (EVT) distribution is used to
derive the WCET estimate at the chosen probability threshold (e.g. 10−12

per run).

3.3 Benchmarks

To evaluate our proposals, we use two benchmark suites widely adopted in the
real-time community: EEMBC Automotive (Section 3.3.1) and Mälardalen (Sec-
tion 3.3.2) benchmark suites, as well as a railway case study (Section 3.3.3). All
benchmarks have been compiled targeting the specific architecture of the simula-
tor/FPGA prototype used on each experiment using static and -O2 optimization
flags. Benchmarks have been executed in bare-metal, i.e., without any Real-Time
Operating System (RTOS) controlling the program execution. This allowed us to
run the benchmarks directly in hardware without preemption or additional over-
heads caused by task scheduling. We analyse the complexity of the benchmarks
used in this Thesis in Section 3.3.4.

3.3.1 EEMBC Automotive Suite

We use the EEMBC AutoBench 1.1 Performance Benchmark Suite, which is rep-
resentative of some safety-related real-time automotive applications [100]. The
function of individual benchmarks from the suite is given in Table 3.2, which
involves generic tests that include bit manipulation and cache-busting, basic au-
tomotive algorithms like controller area network or angle-to-time conversion, and
signal processing algorithms commonly embraced by sensors in the automotive
domain. The benchmarks comprise the main loop with few function calls in its
body. Each iteration of the loop processes different input data embedded in the
application.
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Table 3.2: Description of EEMBC Autobench benchmark suite.

a2time Angle to Time Conversion
aifftr Fast Fourier Transform (FFT)
aifirf Finite Impulse Response (FIR) Filter
aiifft Inverse Fast Fourier Transform (iFFT)
basefp Basic Integer and Floating Point
bitmnp Bit Manipulation
cacheb Cache ”Buster”
canrdr CAN Remote Data Request
idctrn Inverse Discrete Cosine Transform
iirflt Infinite Impulse Response (IIR) Filter

Table 3.3: Description of Mälardalen suite.

bs Binary search
cnt Counts non-negative numbers in a matrix
crc Cyclic redundancy check computation
edn Finite Impulse Response (FIR) filter calculations
fdct Fast Discrete Cosine Transformation
fir Finite Impulse Response filter over a 700 items long sample
insertsort Insertion sort on a reversed array
janne Nested loop program
jfdc Discrete-cosine transformation
matmult Matrix multiplication
ns Search in a multi-dimensional array

3.3.2 Mälardalen Suite

Mälardalen WCET benchmarks [58] are a popular benchmark suite used in
academia in the real-time domain. We use a subset of benchmarks with descrip-
tions given in Table 3.3. Benchmarks follow simple structures, with a few small
loops with upper-bounded number of iterations. The input data is embedded in
the application (the program contains its own inputs) and for the majority of
benchmarks, the input leading to the worst-case path is known.

3.3.3 Railway Case Study

We use a railway case study that is part of the European railway traffic manage-
ment system [47] initiative that seeks to define a unique European train signalling

41



Chapter 3. Experimental Methodology

standard. The functionality of the case study is described by I. Agirre et al. [9].
Our focus is on the on-board unit of this system, called the European train control
system. The European train control system is a safety-critical embedded system
(safety integrity level 4 for EN-50126 [29]) that protects the train by supervis-
ing the travelled distance and speed and activates an emergency brake in case
threshold values are exceeded. To that end, it relies on the distance and speed
measurements from a set of diverse sensors such as wheel angular speed encoders,
doppler radars and GPS positioning systems. As a fail-safe system, whenever an
over-speed of the train is detected, the European train control system must switch
to a safe-state where the emergency brake is active. This safety function shall be
provided with the highest integrity level defined in the railway safety standards
(safety integrity level 4) and has strict real-time requirements.

For evaluating the railway case study, we have generated 10 different traces that
have been collected using different input sets (labelled TEST0 to TEST9) derived by
the end-user (IK4-IKERLAN). The path coverage is achieved by the user providing
input vectors to exercise the relevant paths for the timing analysis, which is a
common industrial practice. Note that, as each trace corresponds to a different
execution path, traces should be treated independently when doing timing analysis.
Each trace comprises 8,500 lines of code.

3.3.4 Benchmark Analysis

Table 3.4 shows important information about the benchmark suites in terms of
the number of lines of code, unique instruction and data addresses.

The first thing worth to mention is that both the EEMBC Automotive and the
Railway case study have around fifteen times more lines of code than Mälardalen
benchmarks. The main reason is that the former benchmark suite belongs to the
industrial world, and therefore is more complex than the latter suite, which is used
in academia. Although the smaller size of Mälardalen benchmarks allowed us to
test and evaluate some programming constructs, it makes difficult to see how those
algorithms scale in larger programs.

Additionally, we can also observe that the ratio between unique instruction and
data addresses changes on each benchmark suite. While EEMBC touches more
data locations per instruction (and thus puts more pressure on the mechanisms to
place and manage the data accessed during the program), the railway case study
behaves the other way around, with the potential of experiencing great benefit
if the data placement policies can manage the few data accessed in the program
efficiently.
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Table 3.4: Lines of code (LOC), unique instruction addresses (UIA) and unique
data addresses (UDA) for benchmarks used in this Thesis.

EEMBC Automotive Mälardalen Railway case study
LOC UIA UDA LOC UIA UDA LOC UIA UDA

a2time 2380 1575 1191 bs 114 148 21 Trace 0 8.5k 2779 569
aifftr 9437 3026 15768 cnt 267 259 129 Trace 1 8.5k 2864 570
aifirf 3534 1948 2396 crc 128 324 231 Trace 2 8.5k 2696 558
aiifft 9343 2713 15769 edn 285 1187 533 Trace 3 8.5k 2722 556
basefp 5134 1301 4188 fdct 239 754 62 Trace 4 8.5k 2733 560
bitmnp 2458 4872 1222 fir 276 210 1461 Trace 5 8.5k 2717 558
cacheb 2430 1217 16830 insertsort 92 201 27 Trace 6 8.5k 2866 568
canrdr 4591 854 3105 janne 64 138 17 Trace 7 8.5k 2994 597
idctrn 17674 3560 4978 jfdc 375 619 91 Trace 8 8.5k 1843 449
iirflt 3774 3279 2194 matmult 163 271 1224 Trace 9 8.5k 1732 444

ns 535 150 642
Average 6076 2434 6764 Average 231 387 403 Average 8.5k 2595 543
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Chapter 4

An Exact Method to Reach
Cache Representativeness

4.1 Introduction

Time Randomised Caches (TRC) are the preferred design for Measurement-Based
Probabilistic Timing Analysis (MBPTA) as they reduce the level of control needed
for timing analysis and favour incremental software integration (see Section 2.2.1).
This makes them the focal point of our study. As deterministic (modulo) set-
associative caches, TRC are also sensitive to the placement of the addresses across
sets. Previous work [4] has shown that when the number of addresses mapped
to a cache set exceeds its associativity (W ), systematic cache conflicts may occur
and potentially result in increased execution times. We call a placement with
significant impact on execution time Conflictive Cache Placement (CCP).

With TRC, the user is not required to control the cache mapping to avoid
or trigger some specific CCP, as the effect of cache placement is transparently
exposed with an adequate number of measurements, which will lead to different
random placements, thus exposing any relevant CCP. As CCPs occur with cer-
tain probabilities, and due to their random nature when using TRC, with more
measurements different placements are explored, and hence, it is possible to derive
probabilistic guarantees that relevant CCPs are captured for a given number of
measurements R′.

The challenge with random placement is that it causes timing events with
probabilities high enough to impact the timing budget of the system, but low
enough to defy observation in the commonly required number of analysis runs
R [4, 92, 104]. For example, for an application that accesses 5 addresses in its
execution, the probability that all of them are randomly mapped to the same
set in a 32-set 4-way cache is 10−6 ≈ (1/32)4, which can be of relevance for the
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domain safety standards. If R=1,000 analysis runs are performed, a typical value
for MBPTA, the probability of mapping the five addresses in at least one run to
the same set is very low (≈ 10−3).

However, the relevant events may occur with an as low probability as 10−9.
The number of measurements needed to ensure that these events are captured (see
Section 2.3) is, in the general case, too high. Therefore, it is necessary to assess
whether CCPs can occur in the system and carefully size the needed number of
measurements R′. So far, this issue has been solved in a limited scenario where
the program accesses memory addresses uniformly [4]. However, access patterns of
programs may be arbitrary, since addresses are accessed with different frequencies
and with arbitrary interleaving. In this chapter, we propose a solution to identify
CCPs exactly for the general case of arbitrary address interleaving.

Contributions. We present ReVS, a method valid for arbitrary cache access
patterns to identify CCPs with both hash Random Placement (hRP) and Random
Modulo Placement (RM) and assess whether probabilistic Worst-Case Execution
Time (pWCET) estimates obtained with MBPTA – for a given number of runs –
are reliable. Otherwise ReVS provides means to determine the number of extra
runs needed.

In particular, we make the following contributions:

1. We present a method based on cache simulations to explore the space of
cache random placements (with hRP and RM) and determine those leading
to the highest execution times (CCPs) at different exceedance probability
thresholds. In particular, we identify their probability of occurrence and
their impact in terms of miss count for instruction and data caches. By
applying MBPTA on the R miss counts collected from the program by means
of simulation, we derive a probabilistic Worst-Case Miss Count (pWCMC)
distribution – an upper-bound of the miss count distribution of the program
under analysis.

2. If the pWCMC distribution does not upper-bound the derived CCPs, ReVS
increases the number of runs iteratively until the pWCMC distribution suc-
cessfully upper-bounds those scenarios. At that point, the execution time
observations with R′ runs can be used to derive a pWCET estimate that
reliably upper-bounds the impact of the worst cache-placement scenarios.

3. ReVS determines R′ based on the analysis of the most accessed addresses in
the program. Only a limited number of these addresses can be considered,
due to the high computation cost of analysis. In order to understand the
impact of dismissing the least frequently accessed addresses, we provide a
qualitative analysis together with a quantitative assessment by comparing
the results of ReVS for a different number of addresses considered.
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4. We evaluate ReVS using the EEMBC automotive suite (see Section 3.3.1).
Our results show that, differently to the default application of MBPTA,
ReVS allows increasing confidence up to a given user-defined threshold (e.g.
10−9) by increasing the number of runs whenever needed.

5. So far, in the real-time domain, Extreme Value Theory (EVT) has been
applied only to predict execution time [38, 59], whereas in other domains
EVT has been applied to measure flow floods, stock min/max values, etc. In
this respect, we contribute to extending the use of EVT to other metrics in
the real-time domain, in particular to miss counts.

4.2 Motivating Example

Next, we illustrate the cache-related representativeness challenge and expose the
limitations of the state-of-the-art method for attaining representativeness Heart
of Gold (HoG) with two examples. For simplifying the discussion, in this section
we focus on direct-mapped caches and hRP, though in the rest of the Thesis our
focus is on set-associative caches with both hRP and RM. In the first example, the
number of misses generated when a subset of addresses is mapped to a set is the
same regardless of the particular addresses chosen, as assumed by HoG method.
Hence, both HoG and ReVS are effective in this case. In the second example,
different conflicting addresses (i.e. addresses mapped to the same set) produce
different miss counts, so only ReVS is effective in this case.

Let Q1 = (A1B1A2B2A3B3A4B4A5B5) be a sequence of memory accesses, whose
unique (cache line) addresses are @(Q1) = {A,B} with |@(Q1)| = 2. Such a
sequence may happen when A and B are accessed inside a loop body. For an S-set
direct-mapped cache, the probability that A and B are randomly mapped to the

same set is given by Pevent = S ×
(
1
S

)|@(Q1)|, so 1/S in this case. The probability
that in the R measurement runs taken at analysis – in each of which a new random
set is given to A and B – there is no run in which both are mapped to the same
set, P (sA = sB) = Pevent, is given by Pevent(R) = (1− Pevent)

R.

For R=1,000, a typical value used for MBPTA, the two rows corresponding
to |@(Q1)| = 2 in Table 4.1 show Pevent and Pevent(R) for different values of S
representative of typical first and second level caches in real-time systems. CCPs
are those where Pevent ∈ [10−9, 0.021] (for R = 1, 000), so that the event can occur
with a non-negligible probability during operation, and there is a considerable
probability of missing this event in the measurements taken at analysis time. All
cells correspond to the events occurring with relevant probabilities, but only the
cells in grey mark events that are unlikely to be observed in R = 1, 000 runs. We
notice that the larger the cache is, the lower the probability of A and B to conflict
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Table 4.1: Pevent and Pevent(R) as a function of S. (Pobs = 0.021)

Number of sets (S)

8 16 32 64 128 256 512 1024 2048 4096

Pevent 0.125 0.063 0.031 0.016 8E-03 4E-03 2E-03 1E-03 5E-04 2E-04
|@(Q1)|=2

Pevent(R) 1E-58 9E-29 2E-14 1E-07 4E-04 0.020 0.142 0.376 0.614 0.783

Pevent 0.590 0.333 0.177 0.091 0.046 0.023 0.012 6E-03 3E-03 1E-03
|@(Q2)|=4

Pevent(R) 9E-388 6E-177 3E-85 3E-42 3E-21 6E-11 8E-06 3E-03 0.053 0.231

in the same set (Pevent), with MBPTA likely missing the impact of this event when
S ≥ 64 (gray cells).

Let Q2 = (A1B1A2B2A3B3A4B4A5B5C1D1) be another sequence with @(Q2) =
{A,B,C,D} and |@(Q2)| = 4. Q2 may occur when A and B are accessed in a
loop and C and D after the loop. HoG assumes that all addresses have the same
impact, so it will determine Pevent as the probability of any two addresses (i.e. AB,
AC, AD, BC, BD and CD) to be mapped in the same set, plus the probability
of 3 addresses to be mapped in the same set (i.e. ABC, ABD, BCD), plus the
probability of the 4 addresses to be mapped in the same set (i.e. ABCD). This
will lead to the values in the two rows corresponding to |@(Q2)| = 4 in Table 4.1.
However, the true CCP occurs only when A and B are mapped in the same set
(AB, ABC, ABD, ABCD). In that case, all accesses are misses and otherwise,
there will be exactly 4 misses (cold misses for the 4 different addresses accessed).
Hence, in this case, HoG fails to determine Pevent for Q2. As a result, for instance,
for S = 256 HoG determines that the probability of the CCP is 0.023, which is not
in the range of interest since it is higher than Pobs (0.021). In reality it is 4 · 10−3,
which falls in the range of interest: [10−9, 0.021]. In this scenario, more runs are
required to provide enough confidence in capturing CCPs in the measurements,
but HoG fails to identify this situation.

Overall, providing evidence that those cache mappings where at least W+1 ad-
dresses compete for the same cache set have been observed with a sufficiently high
probability increases evidence on whether cache jitter is captured with MBPTA.
However, mapping more than W addresses in the same set is necessary, but not
sufficient condition for triggering a CCP. This requires being aware of the actual
access pattern of the program under analysis so that only those cache placements
producing a high impact on execution time are considered. If the probability of
missing any such cache placement is too high, the number of runs needed at anal-
ysis needs to be increased so that confidence in observing those placements is high
enough.
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4.3 ReVS: a High-Level Description

The ReVS method identifies the (conflictive) combinations of (cache line) ad-
dresses, aCi, with high impact on execution time when they are randomly mapped
to the same cache set. ReVS also tightly upper-bounds the probability of occur-
rence of those scenarios and assesses whether the pWCET distribution derived
with MBPTA upper-bounds their impact. The validation is performed in the miss
count domain rather than in the execution time domain, and it is applied for
each cache memory individually (i.e. instruction and data caches). ReVS relies
on miss counts correlating with execution time. While this is usually the case as
cache misses have been shown to be one of the major contributors to programs’
execution time, we perform a quantitative assessment for our reference processor
architecture (Section 4.6.1). Whenever this is not the case, then the impact of
cache misses can be disregarded as jitter due to other resources is much larger,
and therefore ReVS would not be needed. In that case, the default number of
runs R would suffice for a reliable application of MBPTA since so far only cache
placement events have been shown to challenge MBPTA reliability [4]. Still, as
long as cache misses are one of the main Sources of Jitter (SoJ), the use of ReVS
is mandatory for a reliable application of MBPTA.

4.3.1 ReVS Main Steps

ReVS includes the following steps:

1. Due to the computational cost of ReVS, only a limited number of the most
accessed cache line addresses are kept in the address trace (from which ReVS
considers all potential combinations). Our proposals in Chapter 5 and Chap-
ter 6 consider, in a first step, the most accessed U ′ (cache line) addresses for
comparison purposes against ReVS. Then, we evaluate complete address
traces since our proposals quickly discard those combinations that cannot be
the most conflictive ones, i.e. those that if mapped to the same set cause a
low impact on execution time. This allows considering arbitrarily large and
complex programs.

2. For each combination of addresses aCi regarded as conflictive – and also
for each group of combinations – ReVS (i) determines its probability and
(ii) performs cache simulations in which conflictive addresses are mapped to
the same cache set. The probability (obtained analytically) and miss count
information (obtained through simulation) allows ReVS identifying those
conflictive aCi leading to CCPs that must be upper-bounded. ReVS uses a
light-weight cache simulator for TRC (presented in Section 3.1) to estimate
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Figure 4.1: Illustrative application of ReVS in which address combinations are
assessed against pWCMC.

the number of misses when a given aCi is mapped in the same cache set,
where |aCi| > W .

3. ReVS also performs cache simulations in which all addresses are randomly
mapped and applies MBPTA with a default number of runs R [7]. ReVS
generates a pWCMC with these miss count measurements. By validating
whether the pWCMC distribution obtained upper-bounds all CCPs (i.e. miss
count and probability pairs), ReVS determines whether the number of runs R
used by MBPTA suffices. If this is not the case, more runs are performed until
the validation step is passed with R′ ≥ R runs. Whenever it is passed, the
number of runs R′ is the minimum number of execution time measurements
that MBPTA needs to use.

4.3.2 ReVS Process

ReVS process is illustrated in Figure 4.1. The blue curve represents the pWCMC
estimate generated from the miss counts obtained from R runs and the black tri-
angles and black squares represent the miss counts obtained for all aCi – and their
combinations – whose probability of occurrence is above Prel. Their gray counter-
parts are those below Prel, which are discarded by ReVS since their probability of
occurrence is deemed as irrelevant. Triangles are those aCi (and their combina-
tions) whose miss counts are upper-bounded by the pWCMC, while the miss counts
of the aCi marked with squares are not. In this case, ReVS requires increasing
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Figure 4.2: Impact (miss count) of different aCi in the example sequence.

the number of runs, from R to R′, such that the impact of those aCi is properly
upper-bounded. As shown, the resulting pWCMC curve with R′ runs, marked
with red, upper-bounds the impact of all aCi occurring with relevant probabilities
(black squares and triangles). Note that even one grey square may be missed, its
probability is deemed as irrelevant, as it falls below Prel. Therefore, the pWCET
estimate obtained with R′ runs upper-bounds the timing impact of all CCPs with
sufficient confidence.

4.3.3 An Illustrative Example

Let us assume a loop that contains the following sequence of accesses Q1 =
(A1B1C1D1E1C2D2E2C3D3E3C4D4E4F1G1) which is being repeated. In this sce-
nario there are 35 different aCi with cardinality K=3, {ABC,ABD,ABE, ...}.
Figure 4.2 shows the impact when the addresses in each aCi (shown in the X axis)
are forced to be mapped to the same set (in a direct-mapped cache) and the rest
are mapped randomly. We observe that aC1 = {C,D,E} generates the highest
impact. The second step occurs when two addresses of < (C, D, E) > and any
other address are mapped to the same set (e.g. aC2 = {C,D, F}). The lowest
step in terms of impact occurs when only one or none of the three most repeated
addresses is in the address combination (e.g. aC3 = {C,F,G}). Intuitively, what
ReVS needs to capture is the probability and impact of each step. ReVS con-
siders incrementally only one aCi, e.g. {C,D,E}, then combinations of aCi, for
instance the case where {C,D,E} or {A,C,D} occur, then {C,D,E}, {A,C,D}
or {D,E,G}, and so on and so forth, thus always considering the worst set of
combinations and obtaining the corresponding < impact, probability > pairs. A
pair represents impact as the average miss count of one or several combinations,
attached to their probability of occurrence. Each of these pairs will be compared
against the pWCMC distribution as illustrated in Figure 4.1. This step will be
repeated for all cardinalities K (or |aCi|) in the range [W + 1, |@(Q1)|].
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4.4 ReVS Detailed Steps

In this section, we describe in detail ReVS’ main application steps.

4.4.1 Generating Combinations of Conflictive Addresses

Let Qi be the sequence of accesses under analysis. In theory, all aCi such that
|aCi|>W need to be properly upper-bounded. The number of those address com-
binations is computed as shown in Equation 4.1. Note that the generated aCi have
cardinalities in the range [W + 1, |@(Qi)|].

NQi
aCi

=

|@(Qi)|∑
K=W+1

(
|@(Qi)|
K

)
(4.1)

Ideally, we would like to consider all addresses in the program under analysis
U , such that |@(Qi)|=U . However, computation costs to generate all combinations
and simulate them in the cache simulator limits the actual number of addresses
that can be considered to be up to |@(Qi)|=U ′, where U ′ < U .This may affect
the minimum number of runs R′ provided by ReVS. How the address count U ′

impacts R′, and so the confidence of the pWCET estimates, is discussed in detail
later in Section 4.5.

4.4.2 aCi Impact and Probability

Probability. The probability of a given combination of addresses aCi to be mapped
to the same set is shown in Equation 4.2. The probability of one address to be
mapped in a specific set is 1/S, and so the probability of mapping |aCi| addresses

to a specific set is (1/S)|aCi|. Since there are S sets in the cache, this probability
needs to be multiplied by S.

probsame−set(aCi) = S × (1/S)|aCi| (4.2)

Impact. The impact is obtained by performing a Monte-Carlo experiment [39]
where each observation is a cache simulation. In each simulation, all the addresses
in aCi are forced to be mapped to exactly one random set. The other addresses in
Qi are mapped randomly, with no restrictions. The number of observations (M)
needs to be sufficiently high so that the impact of the random mapping of addresses
not present in aCi is captured. The impact, i.e. miss count in our case, that is
produced for the aCi is the average miss count under all M mappings1. In our

1The expected value of a random variable is the average value obtained after infinite repeti-
tions of the experiment. In the case of a finite sample, the expected value is approximated with
the average of the observed values.
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experiments we assume M = 1, 000, which provides a confidence interval of ±2%
with 99% confidence. The inputs for the cache conflict simulator include (i) the
sequence of cache lines accessed; (ii) aCi, whose addresses are mapped to the same
(random) set, while the rest of the addresses in Qi are mapped randomly; and (iii)
the cache configuration. While our work focuses on random placement as well as
random replacement, the latter is not strictly needed. Instead, other replacement
policies could be used (e.g. least recently used or pseudo least recently used). This
could change the impact of the different address combinations. However, ReVS
would be applied exactly in the same way. Studying the impact on R′ and the
pWCET estimates of other replacement policies is beyond the scope of this Thesis.

4.4.3 Combined aCi Impact and Probability

If two combinations of addresses, aCj and aCk, lead to the same miss count im-
pact, the probability of that miss count is the union of the probabilities of both
combinations of addresses. This is because mapping any of the two combinations
to the same set leads to that miss count. Hence, in addition to considering each
combination of addresses (aCi) in isolation, it is also needed to determine the joint
probability of several aCi. For instance, let us consider an example where aC1 and
aC2 have the same impact and |aC1| = |aC2| = K. Their individual probabilities

are P (aC1) = P (aC2) = S ×
(
1
S

)K
, but the probability of having exactly one of

them is P (aC1∪aC2) = P (aC1)+P (aC2)−P (aC1∩aC2), whereas the impact will
be the same. In general, determining the impact and probability of joint scenarios
exactly is challenging.

Probability. Determining the total probability for the union of any arbitrary
number of aCi is overly complex in practice because we should be able to compute
the intersections of each pair of aCi, each group of three, four, and so on and so
forth. Note that, P (aCj) and P (aCk) are not mutually exclusive in general because
addresses may repeat across sets, thus leading to arbitrary intersections for each
group. We address this issue by upper-bounding such union of probabilities as their
addition. Note that this choice may lead to an increased risk of not passing the
validation step because miss count and probability pairs will be more likely to be
above the pWCMC. This, however, may imply collecting more runs than needed,
but will not lead to false positives in validation assessment against pWCMC.

In extreme cases, some < impact, probability > pairs could be set with such
a high probability that the pWCMC never upper-bounds them, thus leading to a
failure to pass ReVS. However, false positives cannot occur. Note also that pairs
are never disregarded even if they reach Pobs (0.021). However, in practice, we
would need extremely tiny caches and large address counts to reach Pobs.

Impact. The impact of having any of two aCj or aCk with the same cardinal-
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ities is obtained as the average of their impacts, since either of them can occur
individually with the same probability. Note that individual probabilities for all
of them have already been considered, and the case of having aCj and aCk si-
multaneously in the same set is captured when analysing those aCh with larger
cardinality such that |aCh| = |aCj ∪ aCk|.1

For each cardinality K in the range [W+1, U ′] we analyse the combined impact
of those aCi with higher individual impact. Conceptually, this can be implemented
by sorting the different aCi from highest to lowest impact, and selecting those two
combinations with the highest impact, then the three with the highest impact, and
so on and so forth. For instance, if we have the following four combinations aC1 =
{A,B,C}, aC2 = {C,D,E}, aC3 = {F,G,H} and aC4 = {A,D, J} for K=3, with
their respective < impact, probability > pairs < 100, 0.0001 >, < 70, 0.0001 >,
< 90, 0.0001 > and < 80, 0.0001 >, we would sort them and obtain: aC1, aC3, aC4,
aC2. aC1 in isolation has already been considered as an individual combination.
We now consider groups of two, three and four combinations. The group of two
combinations includes aC1 and aC3. Its < impact, probability > pair would be
< 95, 0.0002 >, thus reflecting the average impact and the added probabilities. The
group of three combinations includes aC1, aC3 and aC4, and would be represented
with the pair < 90, 0.0003 >. The group with four combinations includes all of
them and is represented with the pair < 85, 0.0004 >. Note that there is no
way to select groups of 2, 3 or 4 combinations with the highest average impact
than the ones chosen, and their probabilities would be exactly the same since all
combinations with the same number of addresses have identical probabilities. This
step delivers a list of pairs (< impact, probability >) that must be upper-bounded
by the pWCMC curve.

4.4.4 Validation Against the pWCMC

The final step consists in collecting the miss counts for R runs without enforcing
any specific placement, so that all addresses are mapped randomly. Then, MBPTA
is applied to obtain the pWCMC curve. Those R runs can be performed, for
instance, in the same simulator where the < impact, probability > pairs have been
obtained. Finally, those pairs are compared against the pWCMC curve.

Outcomes of the Validation

Different scenarios may arise for the set of < impact, probability > pairs when
assessing them against the pWCMC.

1aCh contains all addresses from aCj and aCk.
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• Step passed. If all pairs < impact, probability > are upper-bounded by the
pWCMC curve, or the curve falls within their confidence interval, then it can
be argued that R runs account for all relevant cache placements. Similarly
to any statistical approach, there is some chance that the actual impact of
a particular cache placement is larger than estimated simply because it is
above the confidence interval estimated. In this case, we make the following
considerations:

1. Safety functional standards accept confidence levels of 99% even for the
highest safety integrity levels. For instance, the verification of hardware
design in terms of single-point fault metric in the context of ISO26262
in the automotive domain sets the coverage threshold at 99% for the
highest automotive safety integrity level D [70] in Clause 8.4.5.

2. The probability of an estimated impact of cache placement being above
the confidence interval is very low (< 1% due to the 99% confidence).
Due to the Gaussian distribution produced by Monte-Carlo experi-
ments, the probability could only be above with decreasing probabil-
ities. Therefore, the actual impact is very unlikely to be above the
confidence interval and, if it was, it should be naturally very close to
the confidence interval estimated. Therefore, the evidence obtained
with this process is in line with the industrial practice since pWCMC
reliability is proven to be probabilistically high.

• Step failed. If the pWCMC is below the confidence interval for at least
one pair, ReVS asks for more runs. However, there is a risk of having a
false positive despite the number of runs already suffices to upper-bound all
pairs. For instance, the Monte-Carlo experiment may produce, by chance, a
particular cache placement with very high impact but that occurs with very
low probability. For instance, there is a 0.001 probability that 1,000 obser-
vations in the Monte-Carlo experiment trigger a placement occurring once
every 1,000,000 times. Such placement, if observed, may shift the confidence
interval towards higher impact values, thus making the pWCMC to be below
the confidence interval for this pair. In this case, the cost of the false-positive
relates to asking the end-user for more execution time measurements of his
program, but it does not decrease the reliability of the method.

Determining the Number of Runs

ReVS starts an iterative process by setting the value of R′ to the number of runs
required by MBPTA (R) [38] . If more runs are required (i.e. pWCMC does
not upper-bound all pairs), we increase the number of runs by ∆R = 10. As the
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number of runs R′ increases, we also increase ∆R accordingly for efficiency. That
is, we make ∆R = 100 when R′>1,000 runs, ∆R = 1, 000 for R′>10,000 runs, and
so on and so forth. Whenever a value of R′ is found such that the pWCMC curve
upper-bounds all pairs, then we explore the interval in steps of ∆R = 10 to provide
a precise answer, although this last step is not strictly needed.

Whenever several caches are analysed, the number of runs to be performed
is the maximum R′ across all caches obtained with ReVS. In our case we have
instruction and data cache so, R′ = max(R′dcache, R

′
icache). As miss counts in the

instruction and data caches are independent events, it is sufficient to observe their
CCPs separately. EVT is in charge of predicting the impact and probability of the
different bad address placements for data and instructions to occur simultaneously
(see Section 2.2.2). Note that using the maximum R′ across all caches may be
pessimistic due to several reasons and a lower value for R′ could suffice:

• It could be the case that, for instance, R′icache < R′dcache, and IL1 placements
observed with R′icache runs lead to higher pWCET estimates than those DL1
placements observed with R′dcache runs, thus meaning that only IL1 place-
ments are relevant in practice for this program. In that case R′ = R′icache
would suffice. However, building such a proof is complex so we resort to
using the maximum R′ across all caches for reliability of the method.

• The pWCET value will be chosen at a specific probability threshold (e.g. at
10−12 per run). Therefore, it may be completely irrelevant that the pWCET
value at higher probabilities (e.g. at 10−6 per run) is not a true upper-
bound as long as all relevant events are conveniently upper-bounded with
the pWCET selected. For instance, the pWCET at 10−6 could be 100,000
cycles with R < R′ runs, whereas execution times of 101,000 cycles could
occur at this probability. By using only R measurements MBPTA would
fail to observe the worst-case latency at probability 10−6. However, if the
pWCET selected at 10−12 with R runs is 150,000 cycles and the highest
execution time that can occur at that probability is 145,000 cycles, then the
pWCET estimate is reliable despite using only R runs.

4.5 Reliability Considerations of ReVS

The computational cost of ReVS prevents us to apply it to all program addresses
U . We limit our application of ReVS to the U ′ = 15 most accessed cache lines, as
those are most likely to produce conflictive scenarios under different placements.
The computational cost to analyse U ′ = 15 cache lines is around 1.5 hours per
cache and per benchmark for EEMBC benchmark suite (Section 3.3.1) on a regu-
lar laptop. Assuming 32-byte cache lines, the selected lines represent 15× 8 = 120
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(a) Instruction accesses coverage. (b) Data accesses coverage.

Figure 4.3: Coverage of all memory accesses by the U ′ = 15 cache line addresses
for EEMBC benchmarks.

addresses. The number of accesses to these addresses account for 67% of all the
memory accesses. In Figures 4.3a and 4.3b we show, for instructions and data re-
spectively, the percentage of the total program’s accesses (assuming 32-byte cache
lines), covered by the most accessed cache-line addresses. We observe the vari-
able behaviour across benchmarks, especially with respect to instruction access
coverage. For some benchmarks the 15 most accessed addresses are sufficient to
achieve very high coverage (e.g. canrdr, with > 95% instruction and > 75% data
accesses covered), while for others we observe much lower coverage (e.g. aifftr

and aiifft, with < 20% instruction accesses covered).

Using the higher number of addresses (e.g. U ′=20) increases the computational
cost of ReVS exponentially due to the exponential increase in the number of ad-
dress combinations to explore (see Equation 4.1). Therefore, we had to set a limit
arbitrarily. We regarded U ′=15 as sufficient for illustrative purposes and did not
go for U ′=20 since it took around 2 days per cache and benchmark. Thus, increas-
ing U ′ would only be affordable by decreasing the number of cache simulations
per combination (e.g. from 1, 000 down to 100), which would lead to much wider
confidence intervals for the < impact, probability > pairs. This would challenge
the usefulness of ReVS as too wide intervals would make almost any pWCMC to
fall within the interval, thus failing to identify those cases where the number of
runs is too low to capture relevant placements.

In this section, we provide an analysis of the potential impact on the confidence
of dismissing some addresses.
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4.5.1 Impact of Address Choice

As a rule of thumb, the most accessed addresses are the ones able to create a
higher miss variability with different cache placements, and hence higher execution
time variability. This is typically the case since most accessed addresses are the
ones with the highest potential to create miss count variations, thus affecting
representativeness. This relates to instruction addresses accessed in loops and
data accesses with reuse distances1 long enough not to be mapped into registers.
In both cases, this leads to reuse distances often above W , so that some random
placements may make each of those addresses cause much higher miss counts than
usual. However, there are some known, as well as some potential exceptions that
we review next.

Exception 1. Due to the particular access patterns of the program, the most
accessed addresses might have very high hit rates even if placed in the same set as
other addresses simply because their reuse distance is pretty short. For instance, in
a cache withW=4 a program whose access pattern is (A1B1A2C1A3D1A4E1A5F1A6

G1A7B2A8C2A9D2A10E2A11F2A12G2) would lead to very high hit probabilities for
A despite the particular cache placement. However, addresses B, C, D, E, F and
G are much more sensitive to the particular cache placement since they may lead
to high miss rates if 5 or more addresses are placed in the same set. Hence, al-
though in general higher access counts relate to higher miss counts, and so higher
sensitivity to the particular cache placement, this cannot be proven true in all
cases.

Exception 2. In some cases the addresses considered may be as relevant as
some of the addresses dismissed. This is, for instance, the case of instruction
addresses in a loop. Let us assume a loop whose code spans to 20 cache lines. By
using U ′ = 15, 5 of those 20 addresses will be ignored. In this case, all address
combinations with a given address count (e.g. 5 addresses) have the same impact.
However, the number of combinations produced with 15 addresses is lower than
the one that would be obtained with 20 addresses. Hence, the corresponding pair
< impact, probability > with U ′=15 will have a lower probability than the one
obtained with U ′=20. As a result, for a given R the resulting pWCMC may be
deemed as not reliable for U=20 (thus requesting more runs), whereas it may be
deemed as reliable with U=15 (thus not requesting more runs).

4.5.2 Impact on R′

Using a limited number of unique addresses may affect the final number of runs R′

requested to the user. If R′ with U ′=15, referred to as R′15, is equal or higher than

1Reuse distance is the number of cache lines accessed between two consecutive accesses to
the same cache line.
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R′U , where U stands for all addresses in the program, then our method may be
requesting some extra runs above those strictly needed. This increases the burden
on the user side but delivers confidence levels equal to or higher than the desired
ones.

Conversely, it can be the case that R′15 < R′U . In this case, some risk exists
that those R′15 runs do not capture all relevant cache placements with sufficient
confidence. Still, even in that case, the pWCET is not necessarily optimistic. Other
cache placements or other sources of execution time variability may make MBPTA
produce a reliable pWCET curve even if the particular event in the example has
not been observed in the measurements collected during the analysis phase, which
could occur with a probability higher than required (e.g. 10−6 instead of 10−9).

In order to understand the impact onR′ of different values of U ′, in Section 4.6.4
we perform an analysis of ReVS comparing U ′=15 and U ′=10. This allows us to
understand what we lose by discarding the 5 least accessed addresses out of the
15 most accessed ones.

4.6 Experimental Results

We run cache simulations and measure miss counts in our light-weight cache sim-
ulator (Section 3.1) with two different configurations: 4KB 2-way set-associative
32B/line DL1 and IL1 (default configuration from Section 3.1.1) for hRP and
512B 32B/line 2-way IL1/DL1 (small configuration from Section 3.1.1) for RM.
We have chosen a different setup for RM, because by limiting the number of ad-
dresses to U ′=15, the number of accessed pages reduces to 1 or 2 cache segments
for most benchmarks, making that no CCP exists for RM in most of the cases.
In our small cache configuration, even programs with small address footprints can
exhibit a conflictive behaviour. Note that with hRP 15 addresses can easily exceed
cache associativity. In the case of hRP reducing cache size would further increase
the probability of CCP, which would easily make the default number of runs of
MBPTA sufficient, so no insight would be shown if cache size was decreased.

We measure execution times in an analytical model that prototypes an in-order
processor with a memory hierarchy comprising the aforementioned configurations
for caches and main memory. The latency of an instruction depends on whether
the access hits or misses in the instruction cache: a hit has 1-cycle latency and a
miss has 100-cycle latency. The memory operations access the data cache so they
can last 1 or 100 cycles depending on whether they miss or not. The remaining
operations have a fixed execution latency (e.g. integer additions take 1 cycle).

We evaluate several EEMBC benchmarks described in Section 3.3.1. We con-
sider the U ′=15 most accessed addresses for instructions and data for each bench-
mark that covers on average 67% of the accesses across all benchmarks. We show
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Table 4.2: Average and standard deviation for the reuse distances and instruc-
tion/data accesses coverage for EEMBC benchmarks.

Reuse distance Coverage

U U ′=15 U ′ / U

IL1 DL1 IL1 DL1 IL1 DL1

µ σ µ σ µ σ µ σ

a2time 7.97 28.94 2.53 8.20 0.57 1.75 1.26 2.45 62% 82%
aifftr 3.16 9.05 7.92 71.45 0.34 0.99 0.52 0.77 16% 69%
aifirf 0.81 3.52 2.02 9.24 0.55 1.16 0.74 1.22 59% 79%
aiifft 3.27 9.29 7.93 73.55 0.34 0.93 0.51 0.75 16% 72%
basefp 0.37 2.21 2.81 38.22 0.30 0.71 0.35 0.61 92% 75%
bitmnp 9.55 27.49 1.92 4.51 0.56 1.52 1.24 0.85 8% 77%
canrdr 0.62 1.77 1.79 11.73 0.58 1.18 0.41 0.72 97% 76%
idctrn 0.96 3.78 2.07 14.38 0.29 0.77 0.46 0.72 51% 76%

the coverage for instructions and data of each benchmark individually in Table 4.2.
In the same table we present the average reuse distances and their standard de-
viation for the full traces (U) and those with U ′=15. As shown, there is a wide
variety of behaviours across benchmarks, especially for the DL1, thus stressing the
ability of ReVS to determine the number of runs R′ needed. In order to analyse
the impact of dismissing some addresses, we also consider U ′=10 and compare it
against U ′=15 (Section 4.6.4). For these experiments we use hRP. In all cases, we
start by applying MBPTA with the number of runs R regarded as sufficient by the
MBPTA technique for each program [7]. Then we apply our approach, ReVS, for
the instruction and data caches, and obtain the number of runs required to pass
the validation step R′.

4.6.1 Correlating Execution Time and Miss Counts

ReVS and other cache-related solutions presented in Thesis rely on the assumption
that execution time and miss count are (highly) correlated. While this is generally
the case since cache misses lead to slow off-chip accesses, we perform a quantita-
tive assessment of this fact. We first illustrate such correlation visually for some
benchmarks and hRP. Then, we evaluate quantitatively such correlation for the
whole set of EEMBC automotive benchmarks (Section 3.3.1) and both hRP and
RM. For that purpose, we use our Field-Programmable Gate Array (FPGA) plat-
form, whose specific setup is shown in Section 3.1. Executions on this FPGA take
much longer than the ones on our analytical model, whose accuracy has been as-
sessed against the FPGA implementation. However, as shown next, these results
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Figure 4.4: NormMiss and NormET with hRP for a2time and bitmnp sorted
by NormMiss.

prove that modelling execution time mostly with cache behaviour is an extremely
accurate proxy. Both, the cache simulator and the FPGA, implement write-back
write-allocate policies in DL1. However, the FPGA includes a write buffer for
dirty lines evicted, whereas the simulator does not.

Qualitative assessment. First, we perform R=1,000 runs for each bench-
mark collecting both their execution times and their total number of misses in
first-level data and instruction caches (DL1 and IL1 misses) with hRP. In or-
der to correlate the variation of both metrics, we normalise them to the values
between 0 and 1: for each benchmark we subtract the minimum execution time
(miss count) from the execution time (miss count) observed in each experiment.
This differential is normalised to the differential between the minimum and maxi-
mum values observed. Formally, normalised misses for a given execution i, referred
to as NormMissi, are obtained as follows, where Missi stands for the number of
misses measured in execution i:

NormMissi =
Missi −

(
MINR

j=0Missj

)
(
MAXR

j=0Missj

)
−
(
MINR

j=0Missj

) (4.3)

Likewise, we compute NormETi:

NormETi =
ETi −

(
MINR

j=0ETj

)
(
MAXR

j=0ETj

)
−
(
MINR

j=0ETj

) (4.4)

where ETi is the execution time measured in execution i.
NormMiss and NormET for a2time and bitmnp benchmarks are shown in

Figure 4.4. As shown, both metrics overlap almost completely. Only some dis-
crepancies are observed for a2time due to the effects of the store buffer. However,
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the average deviation of one metric with respect to the other is 0.4% and 1.5% for
a2time and bitmnp, respectively.

Table 4.3: Pearson and Spearman coefficients for NormMiss and NormET .

hRP RM

Pearson Spearman Pearson Spearman

a2time 0.997 0.992 0.976 0.970
aifftr 0.918 0.911 0.969 0.960
aifirf 0.960 0.956 0.988 0.986
aiifft 0.923 0.913 0.960 0.952
basefp 0.999 0.998 0.952 0.933
bitmnp 0.998 0.998 0.975 0.960
cacheb 1.000 0.970 0.992 0.988
idctrn 0.950 0.951 0.969 0.973
iirflt 0.997 0.979 0.977 0.997

Quantitative correlation. In order to assess the correlation between miss
counts and execution times quantitatively, we have used two different correlation
methods to obtain correlation coefficients [67]: Pearson product-moment correla-
tion coefficient and Spearman’s rank correlation coefficient. The Pearson product-
moment correlation coefficient measures the linear dependence between two vari-
ables. Spearman’s rank correlation coefficient measures the statistical dependence
between two variables by assessing to what extent those variables can be modelled
using a monotonic function. Both methods deliver as output value in the range
[-1,1], where 1 indicates a total positive correlation, 0 no correlation and -1 total
negative correlation. In our case we expect values close to 1, meaning that there
is a linear positive correlation between execution times and miss counts. For both
methods, we use a 5% significance level (a typical value for this type of tests [52]).

As shown in Table 4.3, all benchmarks obtain very high values for these tests,
so miss counts and execution times are highly correlated and such correlation is
highly linear (high values for Pearson’s test) for both hRP and RM. We have
further analysed benchmarks with the lowest values and have realised that they
experience very low execution time and miss count variations. Thus, other SoJ,
like those introduced by the store buffer, have a relatively higher impact than for
other benchmarks.

4.6.2 ReVS Results: Illustrative Examples

To illustrate how ReVS works, we present results for one EEMBC Automotive
benchmark passing the validation step with R runs (bitmnp) and for one requir-
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(a) pWCMC for bitmnp (b) pWCET for bitmnp

(c) pWCMC for aifirf (d) pWCET for aifirf

Figure 4.5: ReVS applied to the instruction accesses of bitmnp and aifirf (the
analysis is performed for combinations of addresses with increasing cardinality,
|aCi| ∈ [W + 1, U ′]) and pWCET estimates obtained with R and R′ runs, with
hRP.

ing extra runs (aifirf), both assuming hRP. For the purpose of this experi-
ment, we perform ten million runs to compute the actual distribution of execution
times, Empirical Complementary Cumulative Distribution Function (ECCDF).
Note that performing that number of runs is not required for ReVS application;
we just perform them for illustrative purposes in this section.

ReVS passed. Figure 4.5a shows the result of applying ReVS for the instruc-
tion accesses of bitmnp. The curves on the left show the < impact, probability >
pairs derived with ReVS for each cardinality |aCi| ∈ [W+1, U ′]. It can be observed
that all < impact, probability > pairs are below the pWCMC curve, thus meaning
that the number of runs R suffices for a reliable application of MBPTA for this
benchmark. This is corroborated in Figure 4.5b, where the ECCDF is reliably
upper-bounded by the pWCET estimate derived with MBPTA with R runs.
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Table 4.4: Results for all EEMBC benchmarks with hRP.

ReVS (U ′ = 15) MBPTA / HoG / HoG (U ′ = 15)
R′IL1 R′DL1 R′ likelihood(R′) R likelihood(R)

a2time 58,360 540 58,360 10−9 2,650 0.390
aifftr 6,840 5,500 6,840 10−9 2,200 0.001
aifirf 21,390 11,530 21,390 10−9 4,400 0.014
aiifft 8,920 8,770 8,920 10−9 1,900 0.011
basefp 82,080 20,010 82,080 10−9 300 0.927
bitmnp 4,640 3,510 4,640 10−9 850 0.007
canrdr 18,610 7,950 18,610 10−9 350 0.677
idctrn 65,770 47,700 65,770 10−9 3,650 0.317

ReVS failed. In the case of aifirf, our method detects that the number of
runs obtained with MBPTA R=4,400 is not enough to provide a reliable pWCET
estimate. In Figure 4.5c we observe that the pWCMC curve does not upper-bound
the < impact, probability > pairs generated by ReVS. As a result in the timing
domain, the pWCET estimate derived with R runs does not upper-bound the
execution time of the program. ReVS requires the number of runs to be increased
to R′=21,390. If MBPTA is applied in the timing domain with R′ runs, the
resulting pWCET estimate is reliable as we can observe in Figure 4.5d.

In general, applying MBPTA withR runs instead ofR′ delivers reliable pWCET
estimates. We have corroborated this fact empirically with all the benchmarks
and through a number of experiments with different configurations in other works.
However, if ReVS is not used there may be some probability of obtaining an un-
reliable pWCET upper-bound. Still, whether this occurs or not relates to the
confidence level obtained with R runs instead of R′ as explained later.

4.6.3 ReVS Results: EEMBC Automotive

Table 4.4 and Table 4.5 summarise the number of runs required by MBPTA (R)
and ReVS (R′) in the miss domain for both DL1 and IL1 for all benchmarks
and hRP and RM, respectively. For the sake of completeness, we also compare
ReVS against different flavors of HoG: its original [4] and improved versions [15],
considering the full address trace or only U ′=15 cache line addresses. The number
of runs required by ReVS is the maximum across DL1 and IL1. That is, R′ =
max(R′IL1, R

′
DL1). By comparing R′ and R we can assess whether the number

of runs required by MBPTA in the execution time domain could lead to lower
confidence levels than desired, which occurs when R < R′ for MBPTA.

We observe that this is the case for all the benchmarks in Table 4.4 for MBPTA.
For RM we observe that the number of runs needed is lower than that for hRP
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Table 4.5: Results for all EEMBC benchmarks with RM.

ReVS (U ′ = 15) MBPTA (U ′ = 15)
R′IL1 R′DL1 R′ likelihood(R′) R likelihood(R)

a2time 1,460 8,650 8,650 10−9 300 0.487
aifftr 480 670 670 10−9 670 10−9

aifirf 6,300 300 6,300 10−9 300 0.373
aiifft 410 8,500 8,500 10−9 6000 4.44 * 10−7

basefp 420 300 420 10−9 400 2.68 * 10−9

bitmnp 370 3,570 3,570 10−9 300 0.175
cacheb 300 690 690 10−9 800 < 10−9

idctrn 300 300 300 10−9 300 10−9

in all cases. Also, RM reduces the number of possible conflicts by construction,
so for some examples ReVS does not ask more runs to those required by MBPTA
convergence criteria. Regarding HoG (proposed only for hRP), we realise that, for
the full address trace, the number of cache line addresses for either data or code
is no less than 35 across benchmarks. Regardless of whether we use the original
or improved version of HoG, the number of runs required as determined by those
methods is upper-bounded by the number delivered by MBPTA. If we restrict
the traces to U ′=15, the same conclusion holds since, for instance, the improved
version of HoG makes MBPTA start with 209 runs, which is always upper-bounded
by the minimum number of runs required by MBPTA (300).

Note that these results are not independent of the actual cache setup. For
instance, if we used a 4-way 32-set cache instead of a 2-way 64-set cache, then HoG
improved would request at least 10,955 runs for U ′=15, which is higher than the
minimum number of runs required by MBPTA (300). Therefore the judgment on
whether MBPTA number of runs is sufficient differs from the conclusion reached for
2-way 64-set caches. We can conclude that the number of runs needed to achieve
the level of confidence desired is highly sensitive to the actual access patterns.
Therefore, ReVS is needed in the general case.

On the other hand, this does not mean that results obtained with less than
R′ runs are unreliable, but the confidence level placed on their sufficiency is lower
than the target confidence level. ReVS keeps the likelihood of missing relevant
CCPs below 10−9, as discussed in Section 4.2. Instead, if we only use the number
of runs, R, determined by MBPTA (HoG), the likelihood of missing those scenar-
ios becomes higher (see the corresponding likelihood columns). This decreases the
confidence in the results below the levels defined in the corresponding safety stan-
dards. Still, it is often the case that relevant scenarios are observed and, whenever
they are not, their effect may be superseded by other processor effects. Although
this may result in pWCET estimates truly upper-bounding the program’s execu-
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Table 4.6: Results for all EEMBC benchmarks with hRP [U ′=10].

ReVS
R′IL1 R′DL1 R′ likelihood(R′)

a2time 78,930 1520 78,930 < 10−9

aifftr 14,230 19,600 19,600 < 10−9

aifirf 25,890 5,400 25,890 < 10−9

aiifft 18,030 46,230 46,230 < 10−9

basefp 72,900 1,700 72,900 1.0 · 10−8

bitmnp 3,670 4,000 4,000 1.7 · 10−8

canrdr 17,750 10,000,000 10,000,000 < 10−9

idctrn 65,460 58,860 65,460 1.1 · 10−9

tion time, the lack of evidence on this challenges the development of arguments
for certification. Regarding execution time cost, HoG method executes in around
100ms per cache and benchmark on average (in comparison to 27 hours running
100 cache simulations in parallel for ReVS method). This is expected as HoG
neglects access patterns and can model the program as the number of unique ad-
dresses U . Instead, ReVS is a pattern-aware method that tradeoffs computational
cost for accuracy.

Despite using different setups, we observe that ReVS asks fewer runs for RM
than hRP. This occurs because CCP for RM (if any) can only occur with few
addresses because there are few cache segments. Therefore, the probability to
capture those CCPs is relatively high and few runs suffice in general. Conversely,
with hRP it is often the case that CCPs involve more addresses than those for
RM. Therefore, their probability of occurrence is lower and thus, a larger number
of runs is required to guarantee that they are effectively captured.

4.6.4 Assessing ReVS Reliability

We assess the impact on reliability of analysing a limited number of addresses by
comparing the results in terms of R′ of applying ReVS considering U ′=10 (R′10)
and U ′=15 (R′15). Results for R′15 are shown in Table 4.4, whereas results for R′10
are shown in Table 4.6.

The first observation is that either R′10 is higher than R′15 or, if lower, close to it.
In particular 5 out of 8 benchmarks meet the condition R′10 ≥ R′15. Therefore, the
confidence level obtained is equal or higher than the desired one, but the number
of runs requested to the user may increase. For instance, the most extreme cases
are those of aifftr and aiifft, where the end-user is requested to increase the
number of runs by 3x and 5x respectively with respect to the case where U ′=15, as
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well as the case of canrdr, where MBPTA required 10,000,000 runs1. The reason
for a much higher number of measurements required with R′10 is that a smaller
number of addresses provide lower variability of execution times. Consequently,
EVT needs bigger samples to converge. In those cases where R′10 < R′15, the
difference is between 0.5% and 13.8%. This makes that the confidence level of the
pWCET estimates obtained with R′10 is slightly lower than desired. In this case,
the chance of missing relevant events grows to the range [1.1 · 10−9, 1.7 · 10−8].
While this is not desirable, still, the likelihood of these unwanted scenarios can be
deemed as extremely low.

If we analyse the results in more detail, we realise that R′10 is higher or only
slightly lower than R′15 for the IL1. This relates to the scenarios described in
Section 4.5 for the IL1: the number of addresses accessed in a round-robin manner
inside the main loop may be higher than U ′. By using a low value for U ′, the
probability of producing CCPs is lower in the Monte-Carlo experiment and thus,
more runs are needed to produce those placements so that the pWCMC curve
upper-bounds all < impact, probability > pairs. However, when increasing U ′, the
true probability of the relevant placements is higher than assumed by ReVS with
low U ′ values. A larger U ′ value also increases the chances of randomly placing
enough conflictive addresses in the same set and thus, triggering CCP, which leads
to pWCMC curves upper-bounding all < impact, probability > pairs. Hence, fewer
runs are needed to guarantee that those placements are conveniently observed.
Runs needed for the DL1 grow in all cases but for two notable exceptions: aifirf
and basefp. This decrease in R′DL1 with U ′=10 with respect to U ′=15 has no
effect on the confidence level achieved since it is masked by the fact that R′IL1 is
typically higher than R′DL1. However, this is not necessarily always the case and
thus, discarding some DL1 addresses might potentially affect the confidence level
achieved for the pWCET estimates. For instance, if we compute the probability
of missing relevant placements only with R′DL1, then likelihood for R′10 would be
6.1 · 10−5 and 0.17 for aifirf and basefp respectively.

In summary, using the most accessed addresses of programs typically allows
achieving the desired confidence level for the pWCET estimates. However, ReVS
reliability might be affected in some specific scenarios due to the effects of those
addresses dismissed due to the computational cost of the method. This motivated
our work on extending ReVS to be able to analyse all program addresses within
acceptable computation time bounds presented in Chapters 5 and 6.

1In fact, due to the difficulties to search for the precise value in our toolchain for big samples,
we could only determine that the pWCMC was not upper-bounded with 1,000,000 runs, but it
was with 10,000,000 runs.
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4.7 Summary

In this chapter, we introduce a representativeness challenge related to the cache
placement. In particular, certain cache layouts with high impact on execution
time may occur with a probability so low that they are likely to be missed during
the analysis phase. This leads to some risk of not capturing all relevant events
affecting execution time during analysis runs. Therefore, the confidence placed
on the WCET estimates obtained is lower than desired. While this challenge has
already been addressed for programs with homogeneously accessed addresses (with
HoG method), access patterns are arbitrary in the general case.

We propose a validation step for MBPTA, needed to attain the desired confi-
dence in pWCET estimates for arbitrary memory access patterns. Our method,
ReVS, identifies the worst miss counts and their probabilities of occurrence and, by
means of controlled cache simulations, tests whether the number of measurement
runs used for pWCET estimation is high enough to capture all CCPs. Our results
illustrate the effectiveness of our method to attain the desired confidence level in
the pWCET estimates obtained.

We also show the main limitation of our method, which is low scalability and
high computational cost, and assess the impact of analysing only a subset of ad-
dresses on reliability.
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Chapter 5

Reducing Computational Cost to
Attain Cache Representativeness
for hRP

5.1 Introduction

In the previous chapter, we presented the Representativeness Validation by Sim-
ulation (ReVS) method, a solution for the cache representativeness problem for a
limited scenario in which the program accesses a small number (≤ 15) of cache
lines. ReVS considers all combinations of the most accessed cache line addresses
with a cardinality bigger than cache associativity W , i.e. ∀aCi : |aCi| > W ,
and captures their impact in a cache simulator. However, the number of address
combinations with a cardinality bigger than W is huge:

∑|@(Qi)|
K=W+1

(|@(Qi)|
K

)
for a se-

quence Qi, where in the general case |@(Qi)|=U , the number of unique cache line
addresses in a program. In our reference benchmarks, U is typically in the order
of thousands (Table 3.4). Hence, evaluating in the cache simulator all potentially
conflictive combinations of addresses is not feasible in the general case due to its
exponential dependence on the number of addresses.

In this chapter, we propose a low-overhead solution to quickly identify Conflic-
tive Cache Placements (CCPs) with hash Random Placement (hRP) and evaluate
in the cache simulator only the most relevant subset of all possible address combi-
nations, which allows analysing programs with an arbitrary number of addresses
U . In the next chapter we address the same problem for Time Randomised Caches
(TRC) deploying Random Modulo Placement (RM).

Contributions. In this chapter we present the Conflictive Cache Placements
for hash Random Placement method (CCP-hRP), a general and computationally-
tractable method that, from the program’s sequence of accessed addresses, deter-
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mines whether the number of runs performed by MBPTA, referred to as R, suffices
to capture the CCPs with required probability. Else it derives a higher number of
runs, referred to as R′, for which this can be asserted. Our contributions are the
following:

1. CCP-hRP derives a list of address combinations that, when mapped to the
same set, result in a high miss count. For each combination, CCP-hRP
determines its probability and by means of a light-weight cache simulator,
the number of misses that would be incurred when the addresses in each
combination are mapped to the same set – while the rest of the addresses
are randomly mapped. This results in an < impact, probability > pair for
each combination.

2. The user is advised to explore random cache placements with the cache
simulator until the probabilistic Worst-Case Miss Count (pWCMC) curve
derived with Extreme Value Theory (EVT) eventually upper-bounds the
< impact, probability > pairs determined by CCP-hRP. This occurs when
enough address combinations (R′) singled out by CCP-hRP have been sim-
ulated and the number of observed miss counts becomes sufficient for EVT
to converge to an exponential tail approximation (see Section 2.2.2). The
user is then instructed to perform R′ runs on the actual system to assure a
reliable application of MBPTA.

3. We compare CCP-hRP results against ReVS method presented in Chapter 4
for controlled scenarios where ReVS can be applied (for a subset of program
addresses U ′). The comparison shows that CCP-hRP covers all conflictive
aCi.

4. Results with EEBMC Autobench suite (Section 3.3.1) and a Railway Case
Study (Section 3.3.3) running on an MBPTA-compliant Field-Programmable
Gate Array (FPGA) show that CCP-hRP successfully identifies conflictive
address combinations and determines the number of runs R′ required to bring
the assurance level of the Worst-Case Execution Time (WCET) obtained
with MBPTA to a desired threshold.

5.2 CCP-hRP Mechanism

For a sequence of addresses, CCP-hRP focuses on identifying combinations of
W+1 or more addresses aCi that, when mapped to the same cache set, cause high
execution times. The application of CCP-hRP comprises the following steps.
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Step 1. List creation. Rather than considering all address combinations with
a cardinality bigger than W as ReVS does, CCP-hRP provides a list of poten-
tial conflictive aCi ranked according to their expected impact on execution time
(the size of the list T is defined as described later in this section). To that end,
CCP-hRP builds a Guilt Table (GTAB) (Section 5.2.1) to quickly retrieve those
combinations of addresses that, when mapped to the same set, can cause high miss
counts.

Step 2. Impact calculation. Each combination in the list is evaluated with
a cache simulator. Several Monte-Carlo simulations [39] are performed to derive
the number of misses occurring when the addresses in the combination collide in
the same set while the rest of the addresses are mapped randomly. The number
of combinations in this list is fixed and, therefore, independent of the number of
addresses in the program. ReVS, instead, simulates all combinations of addresses,
which has a huge cost. The next steps are following the same flow as ReVS method.
We briefly summarise them, while we refer the reader to Section 4.4 in Chapter 4
for more details.

Step 3. Probability calculation. CCP-hRP upper bounds the probability of
occurrence of those aCi – and combinations of them. The probability of every
aCi to occur is: S × (1/S)|aCi|, where |aCi| is the number of addresses in aCi. For
the combined probability of several aCi we pessimistically use the addition of their
individual probabilities. In reality, due to dependences among aCi, their combined
probability is smaller than that (see Section 4.4.3 in Chapter 4 for details).

Step 2 and Step 3 result in a pair < impact, probability > for each com-
bination, as previously shown in Figure 4.1 in Chapter 4. Black triangles and
squares represent the miss counts obtained for all aCi – and their combinations –
whose probability of occurrence is above Prel. Meanwhile, their gray counterparts
are those below Prel, which are discarded by CCP-hRP since their probability is
deemed as negligible.

Step 4. pWCMC curve. CCP-hRP uses MBPTA on the miss counts obtained
from cache simulations in which all addresses are randomly mapped, as it would
occur in reality, to obtain a pWCMC curve (see blue line in Figure 4.1). The
number of simulations, R, is determined by MBPTA.

Step 5. Assessment. In Figure 4.1 triangles are those aCi (and their combi-
nations) whose miss count is covered by the pWCMC, while the miss counts of
the aCi marked with squares are not. Hence, by validating whether the pWCMC
curve upper-bounds all conflictive mappings (i.e. < impact, probability > pairs),
we determine whether the number of runs R used by MBPTA suffices. If this is
not the case, more runs are performed until the validation step is passed with R′

≥ R runs. Whenever it is passed, the number of runs R′ is the minimum number
of execution time measurements that MBPTA needs to use.
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CCP-hRP builds on the correlation between miss counts and execution time
that has been positively assessed for our target platform (Section 4.6.1). If such a
correlation is weak, cache behaviour would have a low impact on execution time,
which would have a higher dependence on other Sources of Jitter (SoJ). However,
those other SoJ do not challenge MBPTA as probabilities of their events are higher
than Pobs [4].

5.2.1 The Guilt Table

CCP-hRP follows an iterative process in which, across iterations, an incremental
number of addresses K (starting from K=W+1) is considered to be mapped to the
same set. This creates a cache conflict scenario exceeding cache space in one set.
The process stops when K is large enough so that the probability of occurrence of
the event “K addresses mapped to the same set for the most relevant combinations
of K addresses” is below a given cutoff probability Pcth

1. In practice, we only need
the most relevant combination for each value of K since EVT already accounts for
the probability of several of those events occurring simultaneously. Our results for
controlled scenarios show that the worst combination is always among the few top-
ranked ones by CCP-hRP. However, to increase the confidence of capturing the
combination with the highest impact, our method returns the T=20 combinations
predicted to cause the most conflicts for each value of K. Each combination is
representative of several combinations that are predicted to cause a similar impact.
Therefore the number of combinations considered by method for each value of K is
at least one order of magnitude higher than the number we empirically identified
as necessary across all analysed benchmark suites.

CCP-hRP builds on the concept of guilt, which is intended to help identifying
those aCi that, if mapped to the same set, result in high miss counts. For a given
access Ai with a non-null cache miss probability, guilt provides an approximation
to the extent each intermediate access between Ai and Ai−1 causes Ai to miss in
cache. Note that this concept, although related, differs from the probability of
miss since we are not interested in how many misses each access experiences, but
how much certain addresses can impact each other address if placed in the same
cache set. For instance, given a direct-mapped (i.e. single way) cache and the
sequence Qi = {A1B1A2}, if both addresses A and B are mapped to the same set,
A2 will miss in cache, and the cause of that is access B1, so B1 takes full guilt of A
eviction. Later in this section we present an efficient mechanism to approximate
guilt for arbitrarily complex sequences.

From probability of miss to guilt. Several approaches [11] have been pro-

1Note that, while Prel stands for the threshold probability of relevant events at analysis (e.g.
10−9), Pcth relates to the probability of events during operation (e.g. 10−15) [4].
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posed to derive upper-bounds to the miss probability. However, in this work we are
interested in the actual impact rather than on upper-bounds, and on guilt rather
than on Pmiss. Approaches exist to approximate Pmiss (P̃miss) in the context of
MBPTA [73]. These approaches are as shown in Equation 5.1, where

∑
P̃miss(Xi)

corresponds to the accumulated miss probability of the intermediate accesses.

P̃miss = 1−
(
W − 1

W

)∑
P̃miss(Xi)

(5.1)

While this approach provides good P̃miss approximations [93], it does not help
to identify how much each intermediate access contributes to causing the miss.

CCP-hRP sorts address combinations based on their impact, which requires
having means to estimate the relative impact that each address and group of
addresses have on each other address (guilt) in terms of cache misses. To cover
this gap we propose the Pguilty estimator (see Equation 5.2) that targets providing a
precise relative value for guilt as needed by CCP-hRP, rather than approximating
Pmiss.

Pguilty = 1−
(
W − 1

W

)m1

m1 =


0, if q < W
q, if W ≤ q < K
K − 1, otherwise

(5.2)

When the number of intermediate addresses between Ai and Ai−1 (let us call
this q) is smaller than the number of cache ways W , they all would fit in a cache
way, so misses may only be produced due to random replacement, whose impact
is already captured with the default number of runs of MBPTA [4]. Hence, we
assume that Ai results in a hit, so the guilt of intermediate accesses is 0. Hence,
we ignore Ai and look for the next occurrence of A until q ≥ W or we reach the
end of the sequence. The rationale behind this is that hits do not change cache
state in TRC, thus they can be ignored. On the other hand, ignoring intermediate
accesses due to having extra hits in between Ai and Ai−1 would be misleading.
For instance, let us consider W = 2 and Q1 = {A1B1A2C1A3}. We cannot assume
that A3 will always hit in Q1 since sooner or later A will be evicted. Thus, A2 is
ignored and A3 considers the guilt of B1 and C1. It can also be observed that we
enforce m1 to be smaller than K, the reason behind this is explained next.

Guilt estimation. When for an access Ai Pguilty 6= 0, its value is ‘distributed’
among the intermediate accesses between Ai and Ai−1. Each access is assigned
a guilt value w.r.t. address A computed as shown in Equation 5.3. For instance
given a cache with W = 2 ways, the sequence Q1 = (A1B1C1D1A2) and K = 3, we
obtain that q = 3 and Pguilty(A2) = 1−(1/2)2 = 0.75 according to Equation 5.2. In
this scenario we assign a guilt of 0.375 to each of the q = 3 intermediate accesses.
Note that the addition of guilt assigned to intermediate accesses is bigger than
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Pguilty. The idea is that for K = 3, CCP-hRP constructs 3-address combinations
that in this case can be any of ABC, ABD, ACD, BCD. In all those containing
A, we want to assign one half of the guilt to each of the two intermediate accesses.
That is, for ABC one half of the guilt is assigned to B and another half to C. At
any moment only K − 1 accesses will be simultaneously considered by CCP-hRP,
so the guilt of a given access is not decreased because of having other intermediate
accesses (more thanK). As the value ofK increases – as part of CCP-hRP iterative
process – those other intermediate accesses will be considered simultaneously.

guilt =

{ Pguilty

m1
, if m1 > 0

0, otherwise
(5.3)

Based on the concept of guilt, which applies at access level, we build the Guilt
Table. The GTAB comprises as many rows and columns as different (cache line)
addresses are accessed in the program. Cell GTAB[A].guilt[B] captures the guilt
of B on A, that is, a measure of to what extent misses of every access Ai are caused
by any access to Bj. It is computed as the addition of individual guilts assigned
to any Bj for potentially evicting A. The GTAB is built for every value of K.
From the GTAB we infer information about the impact that each address has on
the evictions of each other address. To that end we use the technique described in
Section 5.2.2, which covers Step 1 and Step 2.

The metric, obtained from the guilt, does not have a semantic meaning in the
real world, yet it provides a way to rank address combinations so that if aCi is
ranked higher than aCj, the actual impact in miss count (and execution time) of
aCi is higher than that of aCj. This allows performing cache simulations for those
highly ranked address combinations to measure their actual impact.

5.2.2 Smart Search of Address Combinations

Exhaustive Search. As a reference we use an algorithm that exhaustively
searches the GTAB and later provide refinements to limit computational costs.
For every value of K we build all potential combinations of K addresses out of U ,
so performing an Exhaustive Search. For each combination, we query the GTAB
to obtain the expected impact if those addresses are mapped to the same set. The
impact is obtained as follows: (1) for each address i in the combination aCi we
compute a value Mi obtained as the minimum impact that any of the W most
conflictive addresses in the combination may have on it. Hence, we take the min-
imum Mi out of the highest W values in the GTAB (GTAB[i].guilt[X]) where
X is any other address in the combination). Note that we care only about those
W addresses that can create the highest impact on the address of that row in
the GTAB, since W+1 addresses suffice to exceed the cache set space. Then, we
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select the minimum value out of those to reflect that, if an address produces few
evictions, the others will not produce more evictions than that one because other
accesses will become hits. (2) Finally, we obtain the impact as the harmonic mean
of all Mi values to, again, reflect that the number of evictions is limited by the
address producing the lowest number of evictions. The harmonic mean has proved
to be a better estimator than the average mean as it promotes the address combi-
nations in which all addresses are conflictive among them. We exclude pairs for the
same address (e.g. GTAB[A].guilt[A]) since an address cannot create evictions on
itself. If one or some of the addresses have little impact on the other addresses,
then its Mi value is much lower and so the final impact, thus allowing to discard
this combination. For instance, in the combination aCi = {A,B,C,D,E, F}, if F
has almost zero impact on the other addresses, this combination will be discarded
for K=6. If the other 5 addresses have a high impact among them, they will be
conveniently considered for K=5. Whenever all combinations are considered in the
GTAB (without performing any cache simulation), we create a list of top-ranked
combinations (Step 1 ) for which cache simulations are performed to measure miss
counts (Step 2 ).

Smart Search. Since the computational cost of considering this Exhaustive
Search in the GTAB is prohibitive, we propose a smart search algorithm that
comprises the following steps. Steps 1-3 are done for each address (each row in
the GTAB) unless the address is discarded as irrelevant.

First, we discard the rows in the GTAB whose Pguilty is below 1% of the highest
Pguilty in the table since their combinations with relevant addresses (Pguilty above
the 1% threshold) will already be accounted by those other addresses, and their
impact on irrelevant addresses is deemed irrelevant as well. Then, we create address
buckets in each row of the GTAB with all the addresses with the same guilt value
with respect to the address of that row. Empirically, we observed that EEMBC
and the railway case study produce a low number of buckets. Otherwise, some
difference is tolerated among addresses in the same bucket to reduce their count.

Second, the relevant buckets for a certain address are only those whose relative
impact with respect to the total guilt in the row is significant for the address
of that row. Such significance threshold Sth (1% in our case) is used to explore
combinations with meaningful impact. The remaining addresses (their guilt is
below Sth) are simply regarded as irrelevant.

Third, we generate the combinations of K elements for each row by making
all possible combinations with the address corresponding to that row and K−1
elements from different buckets. For instance, assuming K= 4 and 2 buckets
(b1 and b2), we make all combinations of 4 addresses using the one of the row
and three addresses from the buckets: 3 from b1, 2 from b1 and 1 from b2, 1
from b1 and 2 from b2, and 3 from b2. We always choose those addresses with
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the highest Pguilty in each bucket. We take into account the size of the bucket
by computing how many combinations are expected to have the same impact as
the representative ones. For instance, if b1 and b2 contain 4 and 5 addresses
respectively, when picking 2 addresses from b1 and 1 from b2, we determine that
there are 30 different combinations meeting those constraints. This is used to set
the probability of the pair < impact, probability > if these combinations have a
sufficiently high impact to be simulated.

Fourth, when all addresses have been analysed and the list with T= 20 com-
binations1 for a particular value of K is obtained (Step 1 ), we perform cache
simulations to determine their miss counts (Step 2 ). In the case of addresses in
a bucket, we simulate only those with the highest Pguilty and assume the same
impact for other combinations that could be generated with other addresses in the
bucket. While this may lead to a little pessimism in terms of the impact of those
addresses, such pessimism is very limited given that addresses belong to the same
bucket. This may result in pairs < impact, probability > further challenging the
reliability of the pWCMC curve, thus potentially rejecting some very tight (yet
reliable) pWCMC estimates.

5.3 Evaluation

We model a pipelined in-order processor with 4KB 2-way-associative 32B-line sep-
arated Instruction Cache Level 1 (IL1) and Data Cache Level 1 (DL1). Both
caches deploy random placement and replacement policies [73], with DL1 imple-
menting write-back (IL1 is read-only). DL1/IL1 access latency is 1 cycle for hits
with 3 extra cycles for misses. The latter is added to the main memory latency
(16 cycles). This corresponds to default configuration in Section 3.1.1.

We evaluate CCP-hRP on the EEMBC automotive benchmarks (Section 3.3.1).
In particular we use these benchmarks: a2time, aifftr, aifirf, aiifft, basefp,
bitmnp, cacheb, idctrn and iirflt. We consider all addresses accessed by each
benchmark. Additionally, we analyse the same benchmarks in a controlled scenario
in which we focus on a subset of the most accessed cache line addresses to allow
for comparison against ReVS, which hardly scales for high values of U .

CCP-hRP vs ReVS. For this comparison, we focus only on the U ′=15 most
accessed addresses for which ReVS is capable of exploring all address combina-
tions. While in this scenario we cover on average 58% of the accesses across all
benchmarks – thus leaving some degree of uncertainty due to the remaining 42%

1One combination may be the representative of many others if addresses belong to buckets.
Hence, simulating 20 combinations provides information of, at least, 20 actual address combina-
tions, but generally many more than 20.
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Table 5.1: Runs for CCP-hRP and ReVS for Prel = 10−9 and U ’=15.

R′IL1 R′DL1 R′

ReVS CCP-hRP ReVS CCP-hRP ReVS CCP-hRP
a2time 58,360 58,360 540 540 58,360 58,360

aifftr 6,840 6,840 5,500 5,500 6,840 6,840

aifirf 21,390 21,390 11,530 11,530 21,390 21,390

aiifft 8,920 8,920 8,770 8,770 8,920 8,920

basefp 82,080 82,080 20,010 20,010 82,080 82,080

bitmnp 4,640 4,640 3,510 3,510 4,640 4,640

cacheb 18,610 18,610 7,950 7,950 18,610 18,610

idctrn 65,770 65,770 47,700 47,700 65,770 65,770

iirflt 18,310 18,310 49,760 49,760 49,760 49,760

accesses that are neglected by ReVS it allows comparing CCP-hRP against ReVS,
with the latter guaranteeing exact results.

Table 5.1 shows the number of runs that each of the methods regards as the
minimum to use for a reliable MBPTA application. We show results for both IL1
and DL1. As shown, both approaches provide exactly the same number of runs
(R′) for these limited address traces. In particular, CCP-hRP identifies the same
address combinations most of the times or, alternatively, address combinations
with roughly the same impact as those regarded by ReVS as the most conflictive
ones for each value of K. The exceptions are the cases in which ReVS identifies
for high values of K combinations which, in fact, are the addition of two or more
independent combinations. For instance, ReVS identifies combinations for K= 6
that, in reality, correspond to two combinations of K= 3 occurring at the same
time. As explained before, EVT needs to observe high-impact events, but not their
combination. Thus, this difference has no influence on R′.

Execution time cost. For U ′= 15, ReVS requires on average 27 hours per
benchmark with 1,000 cache simulations per address combination on a cluster
running 100 jobs in parallel. CCP-hRP is 148 times faster requiring 2 seconds on
average per program on a laptop computer to derive the address combinations and
their cost, and around 11 minutes per benchmark to run cache simulations for the
limited address combinations considered on the same cluster. For full benchmarks,
i.e. unrestricted U , ReVS could not be applied, while CCP-hRP required 1 minute
per program to generate the pairs < impact, probability > and around 38 minutes
per program to perform cache simulations in our cluster.

CCP-hRP evaluation on full benchmarks. In Table 5.2 we report the
number of runs required by CCP-hRP to guarantee that relevant events can only
be missed with a probability below a parametrizable residual threshold, e.g. 10−9.
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Table 5.2: Results for complete EEMBC benchmarks.

CCP-hRP MBPTA
R′IL1 R′DL1 R′ likelihood(R′) R likelihood(R)

a2time 67,150 300 67,150 10−9 300 0.911
aifftr 300 4,760 4,760 10−9 300 0.271
aifirf 20,080 8,090 20,080 10−9 14,260 10−7

aiifft 300 10,630 10,630 10−9 300 0.557
basefp 78,220 300 78,220 10−9 1,250 0.718
bitmnp 330 1,800 1,800 10−9 300 0.032
cacheb 19,840 1,500 19,840 10−9 9,360 10−5

idctrn 67,460 43,040 67,460 10−9 300 0.912
iirflt 29,920 2,430 29,920 10−9 300 0.812

We also show the runs requested by MBPTA together with the probability of
missing those events with the default number of runs required. MBPTA takes as
input the number of execution times belonging to the tail of the distribution that
need to be observed in measurements, in our case 50 values [7] (see Step 3 in the
Section 3.2). Then, starting from 300 runs, MBPTA inspects whether enough tail
values are observed. If this is not the case, it asks for more runs until this condition
is satisfied and EVT converges.

As shown, R′ ≥ R: in many cases we observe that the likelihood of missing
critical address combinations in the default runs (R) determined by MBPTA only is
high. This does not mean that probabilistic Worst-Case Execution Time (pWCET)
estimates are necessarily wrong but indicates that there is a non-negligible risk of
not observing some high-impact timing events in the analysis runs if CCP-hRP is
not used. On average CCP-hRP requires around 11 times more runs compared to
the default MBPTA.

When comparing the number of runs of CCP-hRP with full address traces
with respect to only U ′=15 addresses, we observe in most of the cases a limited
variation in R′. However, in some cases R′ decreases noticeably (e.g. R′IL1 for
aifftr) because there are many combinations with a similar impact that cannot
be observed with only 15 addresses. This makes the probability of observing one of
those combinations much higher and thus, fewer runs are needed to observe one of
them. In any case, differently to ReVS, which is limited to 15 addresses, CCP-hRP
can deal with arbitrary access patterns without any explicit limit. Thus, CCP-hRP
removes the uncertainty brought by ReVS due to non-analysed addresses.

78



5.4 Railway Case Study

Table 5.3: Runs needed by CCP-hRP and MBPTA to achieve a confidence of 10−9.

IL1 DL1
R R′ R R′

TEST0 300(Y) 300(Y) 370(N) 1,300(Y)
TEST1 300(N) 600(Y) 3,800(Y) 3,800(Y)
TEST2 300(N) 600(Y) 300(N) 1,000(Y)
TEST3 300(N) 1,600(Y) 300(N) 850(Y)
TEST4 300(N) 1,200(Y) 750(N) 1,100(Y)
TEST5 300(N) 2,100(Y) 480(N) 900(Y)
TEST6 300(N) 500(Y) 890(Y) 890(Y)
TEST7 300(N) 500(Y) 300 (N) 4,400(Y)
TEST8 300(N) 700(Y) 300 (N) 2,300(Y)
TEST9 300(N) 4,800(Y) 1,740(Y) 1,740(Y)

5.4 Railway Case Study

We evaluate our method for the railway case study presented in Section 3.3.3. Ta-
ble 5.3 reports the results we obtained, in terms of the number of runs that MBPTA
and CCP-hRP require in the miss domain. For each test, we show whether (Y) or
not (N) MBPTA’s default number of runs (R) and that reported by CCP-hRP (R′)
suffice to upper-bound the pairs < impact, probability >. As it can be seen, the
default application of MBPTA failed to upper-bound some address combinations
for data and instructions for many input sets. Furthermore, in those cases where
R < R′, confidence in having enough runs for a reliable application of MBPTA is
not sufficiently high.

This is illustrated in Figure 5.1 for TEST7 and the DL1 where CCP-hRP
< impact, probability > pairs (points in the plot) are not upper-bounded by the
pWCMC curve (lower straight line in the plot) when using R=300, the number
or runs required by MBPTA. Instead, if we use R′=4,400, as determined by
CCP-hRP, the pWCMC curve properly upper-bounds those pairs.

For this industrial application, CCP-hRP required, on average, 1, 828 runs
per input set, which is affordable in a usual test campaign. CCP-hRP took 1.3
minutes to derive the conflictive combinations and 0.35 minutes per test for cache
simulations.

5.5 Summary

In this chapter, we propose CCP-hRP, a low-overhead mechanism that determines
whether the number of runs is enough to cover CCPs with hRP to a given quantifi-
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Figure 5.1: pWCMC for TEST7 (DL1) by applying MBPTA (R) and CCP-
hRP+MBPTA (R′).

able threshold. If this is not the case, CCP-hRP requests an increased number of
runs to the user until the threshold is reached. Results with EEMBC Automotive
benchmarks and a real railway case study show that CCP-hRP successfully identi-
fies conflictive address combinations and increases the number of runs accordingly
so that reliable WCET estimates can be obtained for programs with arbitrary ac-
cess patterns. Compared to the previous solution ReVS, CCP-hRP is not limited
to a (low) number of different addresses, so it conveniently captures the impact of
all program addresses.
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Chapter 6

Computationally Tractable
Method to Attain Cache
Representativeness for RM

6.1 Introduction

In Chapter 4 we have presented a theoretical evaluation framework originally pro-
posed for hash Random Placement (hRP). This framework can be adapted for
all Time Randomised Caches (TRC) which build on Monte-Carlo simulations [39]
to explore the impact of a relatively large set of random cache placements. From
these simulations, we evaluate the miss impact in a cache simulator of all potential
Conflictive Cache Placements (CCPs). Therefore, Representativeness Validation
by Simulation (ReVS) can be applied to analyse caches deploying Random Mod-
ulo Placement (RM), with the only difference of modifying accordingly the cache
simulator. However, as in the case of caches with hRP, ReVS’ execution time re-
quirements are unaffordable in the general case as the number of cache placements
is a function of the number of different (unique) addresses in the program: with
address counts as small as 20 the number of simulations to perform reaches the or-
der of billions, simply preventing ReVS as a valid general solution. Instead, ReVS
can be used in controlled experiments, with a reduced number of unique addresses,
to assess the accuracy of computationally-tractable techniques to capture CCPs.

In Chapter 5 we have presented Conflictive Cache Placements for hash Random
Placement method (CCP-hRP), a technique to derive the minimum number of
runs required for hRP with affordable computational cost, but such a solution
does not work on RM. Yet, MBPTA-compliant hardware implements both of
these random cache placement techniques, as they provide different and valuable
tradeoffs. RM provides competitive results in comparison to standard (modulo
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placement) caches [65]. On the other hand, hRP provides lower performance but
imposes fewer constraints in hardware and software designs.

Contributions. In this chapter we present Conflictive Cache Placements for
Random Modulo Placement method (CCP-RM), a timing efficient solution to the
cache-related representativeness problem for caches deploying RM. In particular,
the main contributions of this work are as follows:

1. We analyse the behaviour of RM and hRP to shed some light on how CCPs
emerge in a different manner under those designs. We show that the particu-
lar set of W+1 (or more) addresses that, when mapped to the same set, cause
a CCP are different under RM and hRP. Further, both the miss counts and
the number of CCPs decrease under RM, which in turn reduces the num-
ber of runs required. This motivates the necessity of different design-specific
techniques to intercept CCPs.

2. We propose the CCP-RM mechanism that identifies the CCPs for a given
sequence of addresses, along with their probability and impact on execution
time, for RM. For a given configurable coverage probability threshold Pcth,
CCP-RM determines whether the impact of CCPs is captured in the default
R runs performed by MBPTA. Otherwise, more runs need to be carried out
until the probability of not observing one of the random CCPs is below Pcth.
While CCP-RM shares some steps with the previously proposed CCP-hRP
method, we present the full methodology here for completeness.

3. We evaluate CCP-RM on a cycle-accurate timing simulator where we provide
evidence of its benefits on reference EEMBC automotive benchmarks. The
simulator experimental setup allows building controlled scenarios in which
we can exhaustively derive all cache placements and show how CCP-RM
captures the actual set of CCPs. This information can be used as evidence
for certification.

4. We assess CCP-RM on a real setup with a case study, representative of
the railway domain, running on a real implementation of RM on an Field-
Programmable Gate Array (FPGA) board. Results show that CCP-RM
identifies CCPs with a limited burden on the user side (in terms of effort and
time) and derives the number of observations R′ that need to be collected
to ensure that the probability of not capturing a relevant CCP is below
acceptable levels.
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6.2 Understanding Conflictive Cache Placementes

Under RM and hRP

RM and hRP cause CCPs to be triggered differently, which motivates having two
different CCPs detection techniques (for details of both mapping functions see
Section 2.2.1). In order to better understand the differences between RM and
hRP let us assume the address sequence Q0.

Q0 = {A0
1B

0
1C

1
1D

1
1C

1
2D

1
2C

1
3D

1
3A

0
2B

0
2A

0
3B

0
3C

1
4D

1
4C

1
5D

1
5C

1
6D

1
6A

0
4B

0
4}

Each element is a memory address with the superscript denoting the memory
page (cache segment) it belongs to, and the subscript the number of times that
address has been referenced. Further, let us assume a 2-set direct-mapped cache.
With hRP, addresses have an equal probability to be mapped to a set. This also
holds for RM except for addresses belonging to the same memory page that are
prevented from colliding in the same set. As a consequence, the set of possible
cache placements generated by RM is always a subset of the possible cache place-
ments by hRP. For Q0, Table 6.1 lists all possible placements. As it can be seen,
from all hRP placements, only two can arise with RM.

Table 6.1: Conflictive cache placements for Q0 under RM and hRP

Placement hRP RM

{set0}{set1} or Misses CCPs? Misses CCPs?
{set1}{set0}
{ABCD} {-} 20 yes not possible
{AB} {CD} 20 yes not possible
{BCD} {A} 17 yes not possible
{ACD} {B} 17 yes not possible
{ABC} {D} 15 yes not possible
{ABD} {C} 15 yes not possible
{AC} {BD} 10 yes 10 yes
{AD} {BC} 10 yes 10 yes

hRP and RM produce different CCPs. hRP does not prevent any addresses
to coexist in a set, resulting in potential conflicts among addresses in the same
memory page. RM, instead, avoids such behaviour by design. Moreover, the
CCPs with RM, in general, produce lower miss counts compared to those of hRP,
as illustrated in Figure 6.1, reporting miss count and frequency for the bitmnp

EEMBC benchmark executed in our reference setup (later presented in Section 6.4
and corresponding to default configuration from Section 3.1.1). RM incurs similar
miss counts as hRP when addresses of the sequence causing conflict misses belong
to different memory pages.
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Figure 6.1: bitmnp behaviour in first level instruction hRP and RM caches.

6.3 The CCP-RM Mechanism

CCP-RM derives the minimum number of runs needed to ensure that all relevant
cache events (i.e. CCP) have been observed with sufficiently high probability for
an RM cache. For a given cache setup, CCP-RM analyses the sequence of memory
accesses of the program (considering instruction and data accesses separately).
From these inputs, CCP-RM:

1. First creates a list of those address combinations that, if placed in the same
set, can result in high cache miss counts (Section 6.3.1).

2. Derives for each combination its impact in miss count and probability of
occurrence (Section 6.3.2).

3. Assesses whether for a probability threshold 1 − Pcth the number of runs
typically required by MBPTA (R) already captures these combinations and,
otherwise, iteratively requests further runs (R′) until the probability of miss-
ing those combinations falls below a maximum allowed threshold Pcth (Sec-
tion 6.3.3).

CCP-RM is based on the heuristic to improve its computational efficiency.

6.3.1 Deriving Relevant Address Combinations

A necessary characteristic of CCP address combinations is that their cardinality
(i.e. the number of addresses) exceeds the number of cache ways W (e.g. for
a 2-way cache, all address combinations of 3 or more addresses are potentially
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conflictive). CCP must also have a probability of occurrence sufficiently high to
be considered relevant by the corresponding safety standard.

For each address count K>W , CCP-RM derives a list of addresses (combi-
nations) expected to generate many misses if they are randomly mapped to the
same set. CCP-RM focuses on those combinations whose probability of occurrence
is above a safety-standard defined probability (e.g. 10−9). It stops exploring K
values when the probability that K addresses are mapped to the same set falls
below that threshold. Such probability is analytically derived as (1/S)K−1, (the
multiplication of the number of available sets S and individual probabilities to be
mapped to the selected set 1/S, for each of the K addresses). CCP-RM sets a
maximum size (T ) for the list of most relevant combinations to be considered for a
given value of K. As detailed later, those T combinations, once evaluated, provide
information of at least T address combinations but, due to the way we select them,
often represent many more than T combinations.

Next, we describe how to produce the lists (for each value ofK). We accompany
the explanation with examples in which we assume a 2-way set-associative cache.

Guilt Estimation

We present an estimator (loosely based on the probabilities of address misses)
called guilt that, for each address AX in a program, classifies the other addresses
with respect to how many evictions of AX they will cause if randomly mapped
to the same set. The guilt attribute is later exploited to calculate the predicted
impact of a group of addresses, which in turn is used to rank the address combina-
tions based on the increase of the overall number of cache misses caused by these
addresses placed together in the set. To estimate guilt, CCP-RM analyses the
access sequence between consecutive accesses to the same address. The concept
of guilt has been first introduced in Section 5.2.1. While its high-level meaning is
the same as for CCP-hRP, the way how it is computed is different.

Notably, under RM only addresses belonging to different segments can evict
each other. Hence, CCP-RM ignores addresses belonging to the same segment.
For example, in the sequence Q1 = (A100

1 , B100
1 , C100

1 , A100
2 ), A100

2 is necessarily a
hit, since all intermediate accesses, i.e. those between A100

1 and A100
2 , belong to

the same segment.
Also with RM, addresses mapped to a set necessarily belong to different seg-

ments. Therefore, an address can only conflict with exactly one address from every
other segment, but all addresses from that segment are equally probable to conflict.
For example, in Q2 = (A100

1 , B102
1 , C102

1 , A100
2 ), addresses B102 and C102 both can

be mapped with the same probability 1/S to the same set as A100, but only one
of them will be actually mapped (i.e. either B102 or C102). Hence, the number of
addresses accessed in-between two accesses to the considered address (A100) that
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can be placed in the same set is at most the number of different cache segments
accessed in between, denoted by s.

For each memory access AX
j , we define Pguilty as the likelihood of AX being

evicted due to the conflicts with other addresses, see Equation 6.1. Since in RM
caches, conflicts can only happen between addresses mapped to different cache
segments, s in Equation 6.1 represents the number of distinct cache segments
accessed in between two accesses (AX

j−1 and AX
j ) to the same address AX .

Pguilty(AX
j )=1−

(
W − 1

W

)m1

m1 =


0, if s<W
s, if W ≤s<K
K−1, otherwise

(6.1)

The fraction W−1
W

represents the probability of a cache line to survive an evic-
tion, whereas m1 relates to the number of evictions occurring. When s is smaller
than W , the intermediate accesses would fit in a cache set, so misses may only be
produced due to random replacement, whose impact is already captured with the
default number of runs of MBPTA [4]. Hence, we assume that AX

j hits, so the
guilt of intermediate accesses is 0. For values of s larger or equal to W , we assume
s evictions, but bounding that number up to K − 1, since we inspect different
address group cardinalities (K) iteratively and for a given K value at most K − 1
addresses can conflict with the address in focus.

Equation 6.1 captures the case when the number of distinct segments ac-
cessed between AX

j−1 and AX
j is higher or equal to W (i.e., s ≥ W ). Conflicts

can also occur under other address interleavings. For example, in the sequence
Q3 = (A100

1 , B101
1 , A100

2 , C102
1 , A100

3 ), A100
3 is likely to suffer misses, even though the

estimator would predict hits because s < W . In this case, we may have misses
because hits do not alter cache state so that they can be stripped out of the access
sequence conceptually (e.g. A100

2 ), thus making other accesses (e.g. A100
3 ) likely

miss due to evictions caused by B101
1 and C102

1 . To account for this, when deriving
Pguilty of an access, CCP-RM searches for the previous access to the same address
with derived Pguilty value higher than 0. The access is predicted to hit only if s is
strictly lower than W also in the subsequence between those two accesses. Other-
wise, the access is considered a miss and the computed Pguilty value is distributed
over the subsequence. In the example, A100

1 is a miss (the first access to an address
is always a miss) and A100

2 is a hit (s = 1 < W ). When assessing A100
3 , CCP-RM

searches for previous accesses until reaching A100
1 (A100

2 is ignored as it is predicted
not to change cache state) and evaluate that A100

3 may miss since s = 2 > W due
to accesses B101

1 and C102
1 .
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The Guilt Table

Each eviction of an address in a program under a conflictive placement, which
occurs with estimated probability Pguilty, is caused by a set of addresses. The share
of responsibility of each of these addresses on causing the eviction is quantified with
their guilt value. While guilt describes the pair-wise relation between addresses,
the predicted impact of the group of addresses will depend on the connection
between each pair of addresses in a group. Computed guilt values are stored in
the Guilt Table (GTAB), which is later queried (either by inspecting exhaustively
all possible address combinations or a subset of them as proposed in Section 6.3.1)
to derive predicted impacts of address groups.

The GTAB is organised as a matrix. For each address Aseg(A) in a program,
the GTAB keeps track of:

• The overall likelihood of that address to miss due to conflicting with other
addresses under CCP (GTAB[Aseg(A)].P̃guilty). It is equal to the accumulated
Pguilty values of each access to address Aseg(A).

• The overall guilt of each other address on potential evictions of address
Aseg(A). For instance, cell GTAB[Aseg(A)].guilt[Bseg(B)] keeps guilt values
of address Bseg(B) with respect to misses of all accesses to address Aseg(A)

during the execution of the program.

To populate GTAB, CCP-RM iterates through the sequence of memory ac-
cesses and computes their Pguilty value. If for a given access to address A

seg(A)
i

Pguilty 6= 0, then this value is added toGTAB[Aseg(A)].P̃guilty and distributed among

the different segments in-between A
seg(A)
i and the previous access to Aseg(A), i.e.

A
seg(A)
i−1 , as shown in Equation 6.2, using m1 value computed in Equation 6.1. Then,

the guilt assigned to a segment is added on top of the GTAB[Aseg(A)].guilt of each
intermediate accessed address that belongs to that segment. This is done because
each address in a given segment can be placed in the same set as the analysed
address with identical probability. For example, let us consider the access A100

2

in the sequence Q4 = {A100
1 , B102

1 , C100
1 , D103

1 , B102
2 , E102

1 , A100
2 }, with W=2 and the

group cardinality K=3. The number of distinct cache segments accessed after
A100

1 is s= 2 (segments 102 and 103). Those segments together with segment

100 exceed the cache associativity. We compute Pguilty(A
100
2 ) = 1 −

(
1
2

)2
=0.75

and add it to GTAB[A100].P̃guilty. Next, we distribute 0.75 across s = 2 seg-
ments, such that Pguilt−seg = 0.75

2
= 0.375. The guilt of all addresses belonging

to segments 102 and 103 (GTAB[A100].guilt[B102], GTAB[A100].guilt[D103] and
GTAB[A100].guilt[E102]) is then increased by 0.375.

Pguilt−seg =

{ Pguilty

m1
, if m1 > 0

0, otherwise
(6.2)
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Table 6.2: Relevant fields of GTAB to derive predicted impact of an address
combination [A100, B102, D103, F 104].

Pguilty guilt.B guilt.D guilt.F guilt.A guilt.xxx MX

B102 550.0 0.0 150.0 20.0 15.0 365.0 20.0
D103 400.0 145.0 0.0 30.0 10.0 215.0 30.0
F 104 250.0 16.0 28.0 0.0 30.0 176.0 28.0
A100 235.0 15.0 5.0 30.0 0.0 185.0 15.0

A GTAB is derived for each cardinality K and is later inspected to compute
the predicted impact of address combinations. This is done in two steps:

First, for each address A in the combination under analysis, we sort all the
other addresses in the combination by their guilt on A, and take the value on the
W th position and keep it as MA. The reason is that address A needs to conflict
with at least W addresses to exceed the cache set space and such scenario cannot
occur more times than the number of conflicts between address A and the least
conflictive address with A among W of them. In the example in Table 6.2, we
observe high guilt values between addresses B102 and D103, but not among the
rest of addresses. This happens when those two addresses are interleaved together
with other addresses that do not interleave systematically with these ones. In
the table, guilt.xxx stands for the guilt values for other addresses omitted in the
example for clarity.

And second, the predicted impact of an address combination is computed by
applying the harmonic mean of all MA values of addresses in a combination so
to give lower rank to combinations with low MA values, which reflects that A
cannot have many conflicts if one of the other addresses cannot create many con-
flicts. Instead, CCP-RM seeks address groups in which conflicts occur due to the
interaction among all of them. If a conflictive behaviour occurs because of the in-
teraction of a subset of these addresses, such combination is already accounted for
by CCP-RM for lower K values. For instance, in Table 6.2 the predicted impact of
the combination [A100, B102, D103, F 104] equals the harmonic-mean1 of 20.0, 30.0,
28.0 and 15.0, which is 21.54.

Generation of Address Combinations

To derive a list of the conflictive combinations, CCP-RM builds a GTAB for each
K value. Next, it generates possible combinations of K addresses and derives

1The harmonic mean is a good estimator due to its sensitivity to lower values, giving lower
ranking to combinations in which at least one address is not conflicting with others. Average
mean, however, promotes combinations with only a subset of addresses conflicting.
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Algorithm 1 Generation of Address Combinations with CCP-RM

1: Input: K . number of addresses in a combination;
GTAB . address Guilt Table derived for K;
S . number of cache sets;

2: Output: List of <combination; probability> pairs;
List of predicted impacts for each element in pairs listPI;

3: sort GTAB row-wise by P̃guilty;
4: N ← nrows(GTAB);
5: for addr ← 1:N do
6: if GTAB[addr].P̃guilty < 0.01∗GTAB[1].P̃guilty then
7: break;
8: end if

9: totalGuilty ←
N∑
j=1

GTAB[addr].guilt[j];

10: addrSpace ← [ ];
11: for m ← (addr+1):N do
12: if (m 6∈ getSeg(addr) and GTAB[addr].guilt[m]≥ Sth∗totalGuilty) then
13: addrSpace.add(m);
14: end if
15: end for
16: <combination; probability> pairs ← [ ];
17: Segs ← list distinct segments in addrSpace;
18: combsSeg ← list all combinations of (K-1) segments from Segs;
19: for all cs: cs ∈ combsSeg do
20: listA ← [ ];
21: cntA ← [ ];
22: for seg ← cs[1]:cs[K-1] do
23: listA[seg] ← [ ];
24: cntA[seg] ← [ ];
25: for all g: distinct guilt values in seg do
26: listTmp ← [ ];
27: for all a: a ∈ seg do
28: if (GTAB[addr].guilt[a] == g) then
29: listTmp.add(a);
30: end if
31: end for
32: listA[seg].add(address with the highest P̃guilty in listTmp);
33: cntA[seg].add(number of addresses in listTmp);
34: end for
35: end for
36: for all combinations< a1,a2,..,ak−1,addr>: aj ∈ listA[j], where j=1,..,K-1 do

37: prob ← S ∗ (
1

S
)K ∗

K−1∏
j=1

cntA[getSeg(aj)][aj ];

38: pairs.add(<< a1, a2,...,ak−1, addr>; prob>);
39: listPI.add(predicted impact of < a1, a2,...,ak−1, addr>);
40: end for
41: end for
42: end for
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their impact as previously described. Ideally, CCP-RM would inspect all possible
combinations (discarding the ones in which addresses from the same segment re-
peat). However, the number of combinations grows exponentially with the number
of addresses. Therefore, CCP-RM adopts an algorithm (see Algorithm 1) to opti-
mise this search by generating the subset of all possible combinations of addresses
expected to be the most conflictive ones (similar to the smart search in Chapter 5).

Rows in GTAB are sorted by their overall Pguilty value. For each row, e.g.
that for address Aseg(A), the algorithm generates combinations of K addresses,
containing Aseg(A), belonging to addresses (rows) not yet inspected, i.e. with lower
Pguilty. The search stops when Pguilty of a row address is below 1% of the highest
Pguilty in the table (lines 6-8), since potential combinations could only consist of
low impact addresses (each below the 1% threshold).

In each iteration, the algorithm considers the potential conflictive addresses
with Aseg(A) (lines 9-15). It excludes all addresses belonging to the same segment
and those whose guilt value on the row address with respect to the total guilt on
that address is below the defined significance threshold Sth (1% in our case). Next,
the remaining addresses are grouped by the segment they belong to into Segs, to
account for the fact that only one address from each group can belong to the same
combination. Our search derives all the possible ways to select K − 1 addresses
from Segs groups (lines 17-18).

Then we need to explore conflicts against all the segments in each combination
(lines 22-35). In order to explore all addresses of any given segment in Segs, we
take into account their individual guilt on the address addr with which we are
generating combinations, and only consider one address representative (with the
highest overall Pguilty value) for those that have the same GTAB[addr].guilt value,
since their impact will be identical. When computing the probability of those com-
binations (lines 36-40), we account for the number of combinations that could be
produced with addresses in that group (due to several of them having identical
guilt value) to multiply the probability of having just one address. Considering
a combination touching 3 segments: having 2 addresses with identical guilt value
in a first segment, 3 in a second one, and 3 in the other, will lead to 18 potential
combinations with exactly one address from each segment. Such probability is
specifically computed at line 37. Still, multiplying probabilities without consider-
ing that combinations may overlap (the latter would diminish the overall combined
probability) leads to some pessimism. As shown later, this could only lead to re-
questing more runs than strictly required, thus not diminishing the confidence of
the method. On the other side, addresses from the same Segs group, but with
different guilt values, are considered individually.

Illustrative example. Next, we show the generation of combinations of size
K = 3 in one iteration. We inspect the row containing address A100 and the set
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of potentially conflictive addresses [E102,C103,B102,D103] with their corresponding
values of guilt on A100: [15, 15, 15, 20] and Pguilty: [72.5, 62.5, 58.75, 30.375], as
illustrated in Table 6.3.

Table 6.3: The relevant fields of GTAB to generate combinations of addresses
containing address A100.

Seg 100 Seg 102 Seg 103
Pguilty guilt.A guilt.B guilt.E guilt.C guilt.D

A100 0.0 15.0 15.0 15.0 20.0
E102 72.500
C103 62.500
B102 58.750
D103 30.375

Addresses are grouped in Segs 102 and 103. The only way to make a combi-
nation of K − 1 addresses is to select one address from each segment. Segs 102
contains two addresses with identical guilt value, thus it returns the address with
higher Pguilty, which is E102, and marks that two addresses share this behaviour.
Segs 103 returns addresses C103 and D103 since they have different guilt value. If
p is the probability that three addresses are mapped to the same set, then the step
will result in the next < combination; probability > pairs: [A100,E102,C103; 2p] and
[A100,E102,D103; 2p]. Here 2p is the probability of combining the 2 addresses in
segment 102 with the specific address in segment 103.

Finally, the address combination search returns T < combination; probability >
pairs, the highest predicted impacts in listPI, where the list is derived as shown
in lines 36-40 of Algorithm 1 and predicted impact computed as described in Sec-
tion 6.3.1 (see example in Table 6.2). While these combinations are expected to
produce the highest impact in terms of the number of misses when placed in the
same set, their actual impact needs to be determined since guilt and Pguilty are
estimators that are used just to rank address combinations.

While we simplified Algorithm 1 for the sake of readability, its implementation
can be further optimised, which we did in our experiments. We recommend the
recursive implementation to generate combinations (line 18). Finding distinct
segments of addresses (line 17) can be done while iterating through addresses
(lines 11 and 12) by storing segments into a structure with non-repeated values
(e.g. a set). listA and cntA (lines 22-34) can be created at line 13, where the user
does not need to keep all the addresses with the same guilt, but only K with the
highest Pguilty value. For efficient searching of relevant data, we recommend the
use of map structures (instead of lists/arrays).
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6.3.2 Impact and Probability Calculation

The algorithm from the previous step derives a list of < combination; probability >
pairs, describing representative address combinations and the probability of ob-
serving them or any other with the same predicted impact. The impact in terms
of miss count of each representative address combination is evaluated with a cache
simulator, similarly to the CCP-hRP. The addresses in the combination are
mapped to the same set, while others are randomly mapped. Several Monte-Carlo
simulations are performed and the impact of the given combination is determined
as the average impact across the different Monte-Carlo simulations.

Next we map< combination; probability > pairs into the< impact, probability >
domain by ordering the pairs per derived impact, and computing the combined
probability and impact for the first pair, first two pairs, first three pairs, and so
on, until we cover all pairs in the list, in the same way as it is done by CCP-hRP.
Given a number of first N address combinations, the combined miss count (hav-
ing one of them) is their average miss count, and the combined probability is the
union of their probabilities. Since their individual probabilities do not have to be
necessarily disjoint, to determine the exact joint probability one would need to
determine the overlaps between all groups of 2, 3,...,N combinations. However, to
avoid the inherent computational complexity of such activity, similar to the pre-
vious step, we upper-bound such probability as the addition of their probabilities,
which is generally a tight upper-bound. The individual probabilities of all combi-
nations of K addresses are identical, so determining the joint probability becomes
trivial.

6.3.3 Assessment Against the pWCMC Curve

Previous steps result in a pair < impact, probability > for each CCP, i.e. combina-
tion and group of combinations deemed as conflictive. As next step, we generate
a probabilistic Worst-Case Miss Count (pWCMC) by applying Extreme Value
Theory (EVT) to the miss counts in a sample of R randomly generated RM map-
pings. We check whether the pWCMC distribution upper-bounds all CCPs (i.e
their miss count). If this is the case, the default number of measurements R used
by MBPTA suffices to derive trustworthy Worst-Case Execution Time (WCET)
estimates. Otherwise, more runs are performed, until pWCMC upper-bounds all
pairs. The obtained number of runs R′ is finally returned as the number of runs
to be collected by the end user.
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6.4 Evidence for Certification

The CCP-RM mechanism that we propose to identify and capture CCPs, is meant
to enhance the reliability of MBPTA results, to meet the reliability requirements
of the validation and verification of embedded critical systems. Not surprisingly,
CCP-RM features a heuristic search over the CCP space: a reasoned heuristic-
based empirical evidence is de-facto the only means to analyse overly-complex
hardware and software systems, where providing exhaustive evidence is generally
untenable.

This section aims at showing that CCP-RM can concretely improve the relia-
bility of MBPTA. We do so by conducting a three-fold assessment.

1. We show that the implemented heuristic is accurate by comparing its out-
come with that of ReVS (see Chapter 4), which provides exact results by
exhaustively exploring the impact of all address combinations with cardinal-
ities higher than cache associativity. Since the cost of ReVS is prohibitive for
real-size programs (hence the need for a heuristic), we stick to a controlled
scenario as explained next.

2. We show the effectiveness of CCP-RM in detecting otherwise ignored CCPs,
and the impact this has on the overall number of runs CCP-RM requires to
use (R′) as compared to the default number of runs used by MBPTA (R).

3. We show that the benefits of CCP-RM come with extremely affordable com-
putational requirements.

It is worth noting that, in our case, the implication of using a heuristic is that
the CCP impact computed by CCP-RM may slightly differ from that computed
by the exact method. However, our algorithm does not focus on a single CCP
but on a list thereof, and the list of CCPs considered by the heuristic is always
including the topmost (highest-impact) CCPs. For the benchmarks evaluated in
this section and case study (next section) we consider the topmost 20 CCPs (i.e.,
T = 20), which in practice results in considering already more combinations than
strictly required, as confirmed by the results.

6.4.1 Experimental Setup

We use a simulation environment based on the cycle-accurate SoCLib framework
(see Section 3.1). We model an architecture featuring a pipelined in-order processor
with separated Instruction Cache Level 1 (IL1) and write-back Data Cache Level
1 (DL1) caches, both deploying random replacement, and RM policy. Access
latencies for IL1 and DL1 are 1 cycle for hits and 3 additional cycles for misses,
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which sums up to the main memory latency, for a total of 20 cycles (3+1 cycles
for misses and 16 cycles for memory latency). In the first set of experiments, we
use the EEMBC benchmark suite ( 3.3.1).

6.4.2 CCP-RM Accuracy

Due to the prohibitive cost of ReVS, in this section, we focus on a controlled
scenario with a small number of addresses, which was obtained by creating syn-
thetic benchmarks accessing the 15 most-frequent cache line addresses from each
EEMBC Automotive benchmark. We use the small cache configuration: 512B
32B/line 2-ways IL1/DL1 (Section 3.1.1), in order to observe conflicts with small
address footprints.

Table 6.4: R′ for CCP-RM and ReVS in controlled scenario

R′IL1 R′DL1 R′

ReVS CCP-RM ReVS CCP-RM ReVS CCP-RM
a2time 1,460 1,460 8,650 8,650 8,650 8,650
aifftr 480 480 670 670 670 670
aifirf 6,300 6,300 300 300 6,300 6,300
aiifft 410 410 8,500 8,500 8,500 8,500
basefp 420 420 300 300 420 420
bitmnp 370 370 3,570 3,570 3,570 3,570
cacheb 300 300 690 690 690 690
idctrn 300 300 300 300 300 300
iirflt 300 300 300 300 300 300

Table 6.4 reports the minimum number of measurements (R′) deemed sufficient
for a reliable application of MBPTA according to CCP-RM and ReVS for IL1 and
DL1. The final number of runs required for each technique is the maximum of
both (IL1 and DL1). The accuracy of CCP-RM is confirmed by the fact that
in all cases it computes the same values as ReVS. In particular, when CCP-RM
identifies that conflictive placement can occur, it returns the same address com-
binations that are top-ranked by ReVS, or with a very close miss-impact. For
the IL1, for six benchmarks (ia2time, iaifftr, iaifirf, ibitmnp, icanrdr,

iidctrn) CCP-RM does not return any conflictive address combination: this is
explained by the fact that in those cases all address combinations returned by
ReVS are already upper-bounded with the default number of measurements by
MBPTA. For other benchmarks, CCP-RM also returns no address combinations
as potentially conflictive for high cardinalities of K, while ReVS does. This hap-
pens when the conflictive impact is actually caused by address groups smaller than
K that are instead considered by CCP-RM.
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Figure 6.2: pWCMC for cacheb and a DL1 RM cache.

For instance, Figure 6.2 shows that, although conflictive placements – referred
to as address combinations – can occur with cardinalities K=4 and K=5, as
recognised by ReVS, those placements are upper bounded by the truly conflictive
placement of combinations with cardinality K=3.

The exception to this comes from the case in which ReVS identifies for high
values of K combinations which, in fact, are the addition of two or more indepen-
dent combinations. For instance, ReVS identifies combinations for K=6 that, in
reality, correspond to two combinations of K=3 occurring at the same time. As
explained before, EVT needs to observe high-impact events, but not their combi-
nation. Thus, this difference has no influence on R′.

6.4.3 Evaluation of CCP-RM Effectiveness

With the purpose of entailing an increase in the number of conflicts and hence,
further stressing CCP-RM, in this section we evaluate CCP-RM for a relatively
small cache 4KB 32B/line 2-ways IL1 and DL1 cache (default configuration in
Section 3.1.1). We also focus on full-size EEMBC benchmarks to assess whether
our method effectively improves MBPTA reliability by identifying potentially un-
observed CCP. To that end, we compare the number of measurements required by
a default application of MBPTA (R) against those required by CCP-RM (R′), for
a set of EEMBC benchmarks. Note that for this experiment using all addresses,
ReVS could not be used due to its exponential execution time requirements with
the number of benchmarks’ number of unique addresses.

For CCP-RM Table 6.5 reports different values of R and R′. Only for one
benchmark (cacheb) the default MBPTA application asks for more runs than
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Table 6.5: CCP-RM on EEMBC (‘lhood’ stands for likelihood)

CCP-RM MBPTA
R′IL1 R′DL1 R′ lhood(R′) R lhood(R)

a2time 300 730 730 10−9 300 2.00 ∗ 10−4

aifftr 300 6,160 6,160 10−9 300 3.64 ∗ 10−1

aifirf 470 22,490 22,490 10−9 370 7.11 ∗ 10−1

aiifft 300 110,000 110,000 10−9 74,600 7.88 ∗ 10−7

basefp 320 1,120 1,120 10−9 960 1.93 ∗ 10−8

bitmnp 300 310 310 10−9 300 1.95 ∗ 10−9

cacheb 460 390 460 10−9 500 1.65 ∗ 10−10

idctrn 350 1,050 1,050 10−9 500 5.18 ∗ 10−5

iirflt 300 930 930 10−9 320 8.00 ∗ 10−4

those actually needed to observe conflictive placements. In this case, 460 runs
suffice for MBPTA to converge in the cache miss domain, but few more runs are
needed in the execution time domain to have enough high execution time values to
converge due to variations across random samples. For the remaining eight bench-
marks, collecting R measurements results in a probability of not capturing CCP for
RM higher than the established threshold, see lhood(R) column. In fact, for two
benchmarks (aifftr, iirflt) we observe that the EVT projection using R does
not upper-bound the Empirical Complementary Cumulative Distribution Func-
tion (ECCDF) applied on an arbitrarily large number of runs, which is actually
upper-bounded when the probabilistic Worst-Case Execution Time (pWCET) is
estimated using R′ runs as determined by CCP-RM. Figure 6.3 reports the results
for one of those benchmarks, aifftr.

While in the comparison of our method with MBPTA we report the likelihood
of missing relevant placements at a probability level of 10−9, the number of mea-
surements computed is not dependent on this probability level. In fact, as we can
see in Figure 6.3, the CCPs are assessed against pWCMC at all probability levels
higher or equal than this one.

In Figure 6.3(a) the pWCMC estimate derived with R runs and R′ is plotted
against the conflictive sets of addresses (from 3 to 7 addresses) found by CCP-RM
for DL1. As it can be observed, for the default R the pWCMC does not cover all
relevant address combinations, while with the CCP-RM provided R′ the resulting
pWCMC does upper-bound all conflictive address combinations.

In the time domain we take as term of comparison the ECCDF derived from
four million execution times we collected. Figure 6.3(b) shows that the pWCET
curve obtained from R runs does not upper-bound the ECCDF. The pWCET
obtained with R′ runs returned by CCP-RM, instead, upper-bounds the ECCDF.
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(a) pWCMC estimate with R and R′ runs

(b) pWCET estimate with R and R′ runs

Figure 6.3: EVT projections for benchmark aifftr with RM caches

6.4.4 CCP-RM Execution Time Requirements

The main execution time requirement of CCP-RM comes from the cache simula-
tions (Section 6.3.2). In order to run the simulations, we used a cluster running
100 jobs in parallel.

• For the controlled scenario, CCP-RM requires 1 minute per program on
average. ReVS, due to its complete exploration approach, required 2 hours.

• With full benchmarks, CCP-RM requires on-average 18 minutes per bench-
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Table 6.6: CCP-RM results on the Railway case study.

CCP-RM MBPTA
R′IL1 R′DL1 R′ R

TEST0 1,560 300 1,560 300
TEST1 300 410 410 300
TEST2 300 340 340 300
TEST3 350 300 350 300
TEST4 — — 300 300
TEST5 10,300 300 10,300 300
TEST6 — 3,200 3,200 300
TEST7 1,240 300 1,240 300
TEST8 — — 300 300
TEST9 — 300 300 300

mark. With ReVS, simulations take longer than affordable (years) to be
executed.

Our results show that CCP-RM results in affordable execution time require-
ments.

6.5 Railway Case Study on RM Implementations

on an FPGA

We also evaluate CCP-RM with a real industrial case study from the railway do-
main presented in Section 3.3.3. We run measurements on a LEON3 FPGA board
modified to support RM cache (see Section 3.1). The case study is executed by
the end-user on the FPGA (following the exact specifications of the FPGA setup).
Both first-level caches are 16KB 4-way, with 32B cache line size for instructions
and 16B for data (FPGA configuration in Section 3.1.1).

Table 6.6 reports the number of runs identified by CCP-RM (R′) for IL1, DL1
and globally, against the default number required by MBPTA for convergence (R).
Both R and R′ measurements suffice to upper bound all CCPs in the RM setup.
Since the number of segments for each benchmark is generally low (between 4
and 13), conflictive behaviour can occur only for combinations of addresses of low
cardinality, which are more likely to be observed already with a moderate number
of runs. For data traces of two benchmarks (TEST8 and TEST9), the number
of segments does not exceed cache associativity. For data trace of TEST2 and
instruction traces of groups of benchmarks (TEST0, TEST1, TEST2, TEST3,
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TEST5, TEST6, TEST7 and TEST9) the method does not identify any CCP:
even though CCP can exist in theory, as the number of segments exceeds associa-
tivity, the addresses from distinct segments are barely interleaved, hence CCP-RM
attaches small guilt values. For data traces of (TEST0, TEST1, TEST3, TEST5,
TEST7), the method identifies relevant combinations at most for a single K value
(5 in all cases apart from TEST5 with 6). However, each of them is already up-
per bounded by the number of runs required by a default MBPTA application,
10,300 at most. Further, by comparing the EVT projection with the actual im-
pact (ECCDF projection over 10 million observed miss counts), we observed that
pWCMC estimates are very close to actual values.

Regarding computation time for the railway case study, CCP-RM took less
than 0.5s on average per input vector to identify conflictive placements and less
than 5s on average for cache simulations.

6.6 Summary

In this chapter, we propose CCP-RM, the conflictive-placement detection mecha-
nism for high-performance TRC deploying RM placement. CCP-RM identifies the
CCPs that result in high execution times. We exploit this information to derive
the minimum number of measurements R′ to be performed so that the probability
of missing the impact of those CCPs is below a configurable threshold (e.g. 10−9).
The adoption of CCP-RM guarantees a cache-conflictive placement aware, reliable
application of MBPTA. Our results using benchmarks and a real case study, re-
spectively ran on a simulator and a real board deploying RM caches, show the
effectiveness of CCP-RM in identifying CCPs and deriving an appropriate value
for R′.
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Chapter 7

Reaching Cache
Representativeness and Path
Coverage

7.1 Introduction

In Chapters 4, 5 and 6, we focus on Sources of Jitter (SoJ) stemming from the
platform behaviour. We presented two computationally tractable methods that
work on top of MBPTA to factor in cache layouts building on randomisation prop-
erties called Conflictive Cache Placements for hash Random Placement method
(CCP-hRP) and Conflictive Cache Placements for Random Modulo Placement
method (CCP-RM). Here we call them jointly Conflictive Cache Placements
method (for arbitrary Random Placement) (CCPX). The first is appropriate to
use for cache memories deploying hash Random Placement (hRP) and the second
for Random Modulo Placement. CCPX guarantees that the number of execution
time measurements fed to MBPTA is large enough to observe the effect of all rel-
evant cache placements, whose probability of occurrence may be sufficiently low
not to be observed in the default number of runs of MBPTA. If the number of
runs satisfies this criteria, measurements are regarded as cache-layout representa-
tive. However, CCPX has only been demonstrated on single-path (single input)
analysis (CCP-hRP in Chapter 5 and CCP-RM in Chapter 6).

The user also needs to take into account the execution time variability coming
from software behaviour. Path Upper-Bounding (PUB) (see Section 2.3.2) builds
an upper-bounding program to automatically extend path coverage beyond the sub-
set of paths exercised with user’s input vectors, effectively relieving the user from
the enumeration of all paths. Nonetheless, the minimum number of runs required
for factoring in cache representativeness for a reliable application of MBPTA has
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not been explored in the scope of automatic full-path coverage, as provided by
PUB.

Contributions. Overall, no existing MBPTA solution attains cache represen-
tativeness and full path coverage simultaneously. We cover this gap by proposing
the first approach to determine the minimum number of runs required in MBPTA-
compliant platforms for MBPTA techniques delivering full path coverage automat-
ically. In particular, we make the following contributions:

1. We provide an in-depth analysis of the relation between the memory address
sequences in the original program and its modified (pubbed) version, identi-
fying key properties that guide the joint application of PUB and CCPX. We
show that no relation can be made between the number of runs needed to
account for conflictive cache scenarios for different versions of the program.

2. We devise a reliable combined application of PUB and CCPX mechanisms in
which we create a modified program for analysis purposes only where cache
impact is upper-bounded across any path, and derive the minimum number
of runs required to capture in the test campaign cache layouts resulting
in high execution times. As outcome PUB+CCPX returns a probabilistic
Worst-Case Execution Time (pWCET) estimate that accounts for both path
variability and cache conflictive scenarios at relevant probabilities.

3. We provide evidence of the reliability of the approach through a set of Corol-
laries and show its effectiveness in terms of computation cost and efficiency
in achieving cache representativeness and full path coverage through evalu-
ation on the Mälardalen benchmark suite. We further provide an in-depth
analysis of the approach using the representative binary search benchmark
from the Mälardalen suite.

7.2 Achieving Full Path Coverage and Cache Rep-

resentativeness

7.2.1 Difficulties Integrating PUB and CCPX

In order to reach full path coverage, PUB modifies programs which result in address
sequences that are very likely different from that of the original program. This
complicates reasoning on CCPX, i.e. on the number of runs to ensure that random
cache layouts causing high execution times are captured. Intuitively, since PUB
adds cache accesses to the original program, one would expect the number of runs
required for CCPX to reduce, since the more addresses in a program, the more
likely they conflict in the same cache set, and hence the lower the number of runs
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to randomly hit one of those cases. However, this is not the case. To illustrate so,
let M j

orig be the address sequence of path j. Let ins(M,x) be an operator to insert
an address x in a sequence M , which can be done in multiple ways, as long as the
same ordering of address accesses in the original path is preserved. The sequence
of addresses of a path j in the pubbed program (M j

pub) is the result of inserting

several addresses, nj ≥ 0, in M j
orig.

∀j ∈ paths(P ) : M j
pub = ins(...(ins(ins(M j

orig, x1), x2)...), xnj
) (7.1)

No relationship can be established between the number of runs required to
achieve representativeness in M j

orig and M j
pub. That is, RCCPX(M j

orig) can be high-

er/lower than RCCPX(M j
pub), where RCCPX(M) is the minimum number of runs

required for address sequence M as determined by CCPX. This is shown in two
examples.

Case 1: RCCPX(M j
orig) < RCCPX(M j

pub)

Let us assume a program with two paths, P1
orig and P2

orig with address sequences
M1

orig = {ABCA}1000 and M2
orig = {ADEA}1000, and a cache with S=8 cache sets

and W=4 ways. The exponent of the address sequences represents the number
of times that those address sequences repeat. PUB application tries to minimise
the number of addresses inserted to reduce the impact in the pWCET estimate.
Hence, a potential result of applying PUB could be as follows:

M1
pub = M2

pub = (ins(ins(M1
orig, D), E))1000 =

(ins(ins(M2
orig, B), C))1000 = {ABCDEA}1000 (7.2)

Since both M1
orig and M2

orig have 3 different addresses each, none of them can
exceed the space in a cache set (4 ways), i.e. they cannot generate a cache layout
resulting in high execution time. As a result, CCPX does not impose a minimum
number of runs higher than that required by the standard application of MBPTA.
Note that, for instance, in the case of M1

orig addresses A, B and C will end up
fitting in a cache set after, potentially, few random replacements.

Instead, M1
pub (and M2

pub) has 5 different addresses, so it exceeds the space in
a cache set. For instance, if addresses A, B, C, D and E are randomly placed
in the same set, they will experience at least 1000 misses due to the address not
present in the cache set in each of the 1000 traversals of the address sequence.
Hence, CCPX determines that a sufficient number of runs is needed to guarantee
that this sequence is not observed with a maximum configurable probability. The
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probability of observing such a sequence is exactly (1/S)4 = 0.000244, so the
probability of not observing it in R runs is (1 − 0.000244)R. If such probability
needs to be lower than 10−9 to be regarded as negligible w.r.t. the corresponding
safety standard, then R > 84875. Hence, PUB address sequences may require a
higher minimum number of runs than the original ones.

Case 2: RCCPX(M j
orig) > RCCPX(M j

pub)

Let us now consider that M1
orig = {ABCDEA}1000 and M2

orig = {ABCDFA}1000.
In this case, and building upon the results obtained in the example before, each
original path would requireR > 84875 runs. M1

pub (andM2
pub) would be {ABCDEFA}1000,

thus including 6 different addresses. Abrupt cache miss counts would require 5 out
of the 6 addresses to be placed in the same set, whose probability is (1/S)4 · 6 =
0.00146. Therefore, R > 14138. Hence, PUB address sequences may require a
lower minimum number of runs than the original sequences.

7.2.2 Sensible Application of PUB and CCPX

Since no relation can be established between the minimum number of runs required
by the original program and its pubbed version, our method relates both using only
the pWCET and their execution time distributions. To that end, we build on the
following reasoning.

Observation 1: The probabilistic Execution Time Distribution (pETD) ob-
tained for any given path of the pubbed program is an upper-bound to the pETD
of any path of the original program [76].

This observation is formalised in Equation 2.1 in Chapter 2. Note that the
pETD refers to those distributions that would be obtained by running the corre-
sponding program paths an infinite number of times. Thus, while this observation
would generally hold also for the statistical samples obtained from the pETD, it
can only be guaranteed to hold for the reference distributions due to the statistical
nature of samples.

Observation 2: The pWCET curve obtained from the sample of a pETD is
(probabilistically) an upper-bound for the execution time distribution that has been
sampled [7].

Under the appropriate setup for execution time collection, e.g. ensuring in-
dependence across experiments, and sources of randomisation injected at hard-
ware or software level, it has been shown that pWCET estimates upper-bound
pETD [7, 110].

Corollary 1: From Observations 1 and 2, it follows that the pWCET curve
obtained from a sample of any given path of a pubbed program upper-bounds the
pETD of any path of the original program.
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From Corollary 1, we make the following key observation:

Observation 3: Any path choice from the pubbed program is equally valid to
derive a minimum number of runs and a reliable pWCET distribution that upper-
bounds the pETD of all paths in the original program.

For instance, by applying CCPX on an arbitrary path Pj
pub we obtain that

the minimum number of runs needed for cache representativeness is Rj
pub. Since

pWCET (Pj
pub), when it is derived from a sample of at least Rj

pub runs, is an upper-
bound for the pETD of any path of the original program, pWCET (Pj

pub) achieves
both full path upper-bounding and cache representativeness.

Some observations must be made to complete the view on the approach taken
to use PUB and CCPX appropriately.

Observation 4: For two different paths j and k of a pubbed program, CCPX
results in Rj

pub and Rk
pub minimum number of runs, respectively. In general, no

relation can be established between Rj
pub and Rk

pub since the insertion of the missing
addresses in each path with ins(M,x) may not lead to identical address sequences.

For instance, if M1
orig = {ABA} and M2

orig = {ACA}, by applying PUB we
could obtain M1

pub = {ABCA} and M2
pub = {ACBA}. In the general case, address

sequences can be arbitrarily different, thus leading to different results when apply-
ing CCPX. This is analogous to the scenario when relating the number of runs of
the original and pubbed paths, described in Section 7.2.1.

Nevertheless, building on previous observation, even if a different pubbed path
is used, the pWCET remains reliable and representative with respect to all paths
in the original program. Building on the reasoning above, we also note that:

Observation 5: The pWCET estimates obtained for Pj
pub and Pk

pub cannot be
related to each other. In other words, potentially, the pWCET estimate for path
Pj
pub can be above or below that of Pk

pub for the full range of probabilities or only for
a subset of them. In any case, this is irrelevant given that both pWCET estimates
are reliable and representative upper-bounds of all paths of the original program.

Corollary 2: Since every single pWCET estimate for each pubbed path is a
reliable and representative upper-bound for the pETD of all paths of the original
program, we can take as pWCET for any given exceedance threshold the lowest
value across all pubbed paths.

Corollary 2 builds upon the fact that the pWCET estimates of all paths are
equally reliable and representative. Differences only relate to pessimism, so we can
trade analysis cost for tightness by analysing an increased number of paths of the
pubbed program. While only one is strictly needed, the larger the number of paths
analysed, the higher the chances of obtaining tighter pWCET estimates. Note,
however, that no guarantee exists on whether tighter pWCET estimates will be
obtained since it could turn to be that the lowest one across the available paths is
the first one we obtain.
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Figure 7.1: ECCDF for bs’s original paths and pubbed paths.

Figure 7.2: Overall application process of PUB and CCPX.

Overall, the application process of PUB and CCPX comprises the steps shown
in Figure 7.2. Starting from the original program Porig, we apply PUB to generate
the pubbed program Ppub. By default, we choose an arbitrary input vector provided
by the user, which executes path j, to collect its address sequence. Optionally, we
may explore more paths to search for tighter pWCETs, as explained before. We
analyse the address sequence with CCPX to derive the number of measurements
required, Rj

pub. We execute the pubbed program with the same input vector as
many times as dictated by CCPX, thus producing a sample of execution times,
ET j

pub. Finally, we apply MBPTA on the resulting sample to obtain a pWCET
estimate that reliably upper-bounds any path of the original program, under any
layout of objects in memory/cache.
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Figure 7.3: pWCET for bs (path v9) with Rpub and Rpub+ccpx runs.

7.2.3 A Practical Example

We illustrate how our method works with an example based on the binary search
(bs) benchmark from the Mälardalen suite (Section 3.3.2). Details on the hardware
setup are provided later in Section 7.3. Bs is a multipath program whose input
determines the number of loop iterations and the actual path traversed. For the
sake of illustration, we stick to its default input to set the loop bounds (15 integer
elements) and explore the different type of input vectors (related to the degree of
ordering of the elements to sort) that lead to the maximum number of iterations.
In particular, 8 different cases lead to different paths triggering the maximum
number of iterations.

The first experiment provides evidence for Corollary 1: we collect 1,000,000
execution times for each of the 8 original paths characterised by the maximum
number of iterations, before and after applying PUB. Their ECCDF is shown in
Figure 7.1. As it can be seen, each pubbed path upper-bounds all original paths.
Hence, when applying MBPTA to any pubbed program, resulting pWCET curves
upper-bound all original paths. For instance, the highest observed execution time
across all paths is below 2,000 cycles, whereas the lowest pWCET estimate across
all pubbed paths at an exceedance probability of 10−6 per run (so at the same
probability as the highest execution time, 1/R = 10−6) is 2,297 cycles (for path
v9).

In a second experiment, we compute the pWCET curve for input v9, with
Rpub = 1, 000 and Rpub+ccpx = 70, 000 (as computed by CCPX), see Figure 7.3
that also shows the ECCDF with 6,000,000 runs of the path triggered with v9
(dashed green line). A sample of Rpub = 1, 000 runs does not capture the ‘knee’
(abrupt variation) in the ECCDF, so when used with MBPTA it fails to capture
the abrupt change. This change is caused by a cache placement with high impact
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on execution time that occurs with low probability. With Rpub+ccpx = 70, 000 runs
the impact of that cache placement is observed and the resulting pWCET upper-
bounds it. In general, for all inputs (vi), see Table 7.2, CCPX requires more runs
than PUB to account for CCPs.

Table 7.1: BS. Execution Time Domain.

Runs pWCET@10−12

Rpub Rpub+ccpx PUB PUB+CCPX
v1 1,000 40,000 3,212 4,125
v3 2,000 20,000 3,149 4,432
v5 50,000 50,000 6,712 6,712
v7 20,000 20,000 4,317 4,317
v9 1,000 70,000 2,850 7,571

v11 1,000 8,000 3,455 4,003
v13 1,000 80,000 3,026 7,377
v15 6,000 40,000 2,995 3,694

Table 7.2: Runs for PUB, PUB+CCPX and MBPTA.

Runs
Rorig Rpub Rpub+ccpx

bs 1,000 1,000 40,000
cnt 10,000 2,000 70,000
fir 6,000 9,000 600,000
janne 3,000 1,000 200,000
crc 3,000 5,000 10,000
edn 1,000 1,000 70,000
i.sort 40,000 40,000 80,000
jfdc 2,000 2,000 50,000
m.mult 200,000 200,000 200,000
fdct 8,000 8,000 8,000
ns 3,000 3,000 500,000
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7.3 Evaluation

We model a pipelined in-order processor with Instruction Cache Level 1 (IL1) and
Data Cache Level 1 (DL1) in the simulator based on the cycle-accurate SoCLib
framework (see Section 3.1). IL1/DL1 caches are 4KB 2-way 32B/line, and imple-
ment hRP and random replacement policy (SoCLib configuration in Section 3.1.1).
Therefore in our experiments we apply CCP-hRP variant of CCPX. The content
of cache memories is flushed before each run of a program. We conduct the evalua-
tion using the Mälardalen benchmark suite (Section 3.3.2) with default input sets,
considering them representative of the worst-case for loop bounds. Some of the
analysed benchmarks are single-path, so the execution time variability is due to
hardware effects, while for others execution time varies depending on input values.
Applying PUB+CCPX took approximately 15 minutes per benchmark on average.

7.3.1 Representative Number of Runs

First, we have collected the number of runs required for MBPTA convergence
on the pubbed version of the programs, Rpub, and the number of runs on those
same pubbed versions as reported by CCPX (in particular its CCP-hRP variant),
Rpub+ccpx. Results are shown in Table 7.2. As shown, despite in some cases the
number of runs does not increase, CCPX often requires Rpub+ccpx>Rpub to attain
representativeness. In practice, Rpub runs often provide enough measurements
from the tail of the execution time distribution, but not with enough confidence.
Moreover, in some cases, as shown later in the discussion of Figure 7.4, using
Rpub runs instead of Rpub+ccpx may lead to pWCET estimates that do not account
for some events that occur with significant probability. For completeness, we
also report the number of runs required on the original version of the programs,
applying neither CCPX nor PUB, so only determined by MBPTA (Rorig). As
shown, Rpub+ccpx >Rorig, although there is no specific relation between Rpub+ccpx

(or Rpub) and Rorig, since they correspond to different programs in practice.

7.3.2 pWCET Estimates

For some benchmarks, the particular input data available leads to the worst-case
path (or they are simply single-path). Hence, for those benchmarks, we can deter-
mine that any difference between the pWCET obtained with and without PUB is
fully accountable to overestimation introduced to attain full path coverage. On the
remaining benchmarks, instead, it is not possible to clearly tell apart how much
of the pWCET increase corresponds to unobserved (worst) paths and how much
is a plain overestimation.
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Figure 7.4: pWCET estimates of PUB and PUB+CCPX with respect to the orig-
inal pWCET with user-provided input sets at the probability level 10−12.

Some of the benchmarks evaluated are single path (the 6 rightmost ones in
Figure 7.4): edn, insertsort, jfdc, matmult, fdct and ns. Others (the 4 leftmost
ones in Figure 7.4) have multiple paths, but the default input vector used already
triggers the worst-case path: bs, cnt, fir and janne. Finally, for crc we are
unable to identify the worst-case path and, based on code inspection, we are highly
confident that the default input does not trigger it.

Figure 7.4 shows the pWCET increase caused by the application of PUB and
PUB+CCPX with respect to the direct application of MBPTA with neither PUB
nor CCPX at the probability level 10−12. We have chosen the probability level
representative for tasks of the highest criticalities in Critical Real-Time Embed-
ded Systems (CRTES). First, we observe that the application of PUB increases
pWCET estimates between 4% and 59% for the 4 leftmost benchmarks. In this
case, since we know that we already exercised the worst-case path, we can tell this
increase is pessimism due to PUB. For the 6 rightmost benchmarks PUB has no
impact as they are single-path and hence, PUB application is innocuous. Finally,
in the case of crc PUB leads to a 4.4x higher pWCET estimate (340% above that
without PUB). While code inspection reveals that this increase captures unob-
served paths, it is hard to tell apart how much of this increase is needed to attain
path coverage and how much is pessimism incurred by PUB. However, this is the
general situation we can expect in real applications: the worst-case path cannot
be determined a priori and PUB accounts for it automatically.

When applying CCPX on top of PUB, we observe a variety of different be-
haviours:

1. In most cases (e.g. bs and fir) pWCET variation is relatively small. This
occurs because Rpub runs already included execution time measurements for
all relevant cache placements. Hence, variations are mostly caused by random
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variations in the execution time sample used. Note that this may lead to
either higher or lower pWCET estimates.

2. In some cases, CCPX accounts for cache placements likely not observed
otherwise, such as for edn and jfdc.

3. Finally, in the case of ns, the pWCET estimate decreases by 15% with
PUB+CCPX w.r.t. PUB only. In this case, we realise that execution times
observed are already close to the maximum execution time possible in prac-
tice. Moreover, the application of CCPX increases the number of runs from
3,000 to 500,000 to guarantee that high execution times are observed suffi-
ciently. As a consequence, the set of highest execution times obtained with
Rpub+ccpx is relatively more homogeneous, since an increasing number of runs
makes execution times approach the maximum possible value asymptoti-
cally. As a result, MBPTA delivers a tighter bound and hence, the pWCET
estimate decreases by 15%.

7.4 Summary

In this chapter, we tackle the issues of achieving full path coverage and repre-
sentativeness against potential cache layout scenarios that may appear with low-
probability. We demonstrate that both objectives can be achieved simultaneously,
supporting our proposed method with empirical evidence. We show that the execu-
tion time distribution of any path of a pubbed program upper-bounds the execution
time distributions of all paths in the original program. Then, we also show that by
collecting a sufficient number of execution time measurements of any pubbed path,
the pWCET estimate upper-bounds all paths in the original program under all
cache layouts occurring with relevant probabilities. As a result, we simultaneously
deliver both, full path coverage and cache representativeness.
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Chapter 8

Applicability of EVT Fit for
Industrial Quality WCET
Analysis

8.1 Introduction

The quest for novel Worst-Case Execution Time (WCET) analysis methods ca-
pable of keeping pace with the trend towards more complex hardware has caused
considerable interest to arise in statistical tools based on Extreme Value Theory
(EVT), see Section 2.2.2. Since EVT builds on observations, it is particularly
attractive to real-time systems industry. In particular, it fits very naturally with
Measurement-Based Timing Analysis (MBTA), which in spite of its theoretical
limitations dominates industrial practice for WCET analysis. Measurement-Based
Probabilistic Timing Analysis (MBPTA) approach (Section 2.2) combines EVT’s
potential with the cost/benefit attractiveness of MBTA. MBPTA much improves
on standard Measurement-Based Deterministic Timing Analysis (MBDTA) by en-
abling the user to attach quantitative confidence to the probabilistic Worst-Case
Execution Time (pWCET) bounds computed from timing measurements of the
software program of interest, collected on the target platform.

Several works have consolidated various flavours of MBPTA [3, 27, 92, 107],
showcasing industrial-strength experiments run on processor simulators [115] or
real hardware boards [37, 51]. However, before being deemed ready for transfer to
industrial practice, MBPTA needs to be proven to:

• Deliver trustworthy results.

• Be adaptable enough to embrace different kinds of software programs.
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• Cause lightweight impact on an already effort-intensive validation and veri-
fication process (Section 1.2.2).

Arguably, the latter trait is a generally ascertained fact, with a score of industrial
case studies [37, 51, 115] confirming that MBPTA requires an affordable number of
measurement observations in addition to what normal practice already provides.
The same cannot be said with respect to the trustworthiness and adaptability
concerns, which have been questioned [86, 104] in the past. At the time of writing
different views exist on how to guarantee the trustworthiness of results delivered by
probabilistic methods and which class of programs is suitable to analyse with these
methods (see Section 2.4). These concerns are not inherent to EVT (or MBPTA)
per se, but rather pertain to the way EVT is applied to the WCET domain, which
may be seriously fallacious.

Contributions. The work delivered in this Thesis relies on the assumptions
surrounding the usage of the MBPTA techniques as developed in the PROARTIS
and PROXIMA projects. In this Chapter, we reassess the assumptions underlying
the way EVT is applied in this Thesis, with respect to the two concerns raised
around the viability of the application of EVT in industrial practice:

1. The trustworthiness of EVT has been challenged noting that the quality
of its results critically reflects the quality of its inputs (for data, coverage,
state control) [86, 104], with poor inputs yielding wholly unsound probability
models. This should not surprise in fact, as the application of EVT to
observations over user-controlled program runs instead of uncontrolled (e.g.
natural) phenomena needs very careful attention and adaptation. We show
that this misunderstanding originates from solely minding that the maxima
of the input data (i.e. execution-time observations) pass EVT’s all-famous
pre-requisite tests of identical distribution and (sufficient) independence [34,
107]. However, it stands to reason that the measurement observations that
one collects reflect the execution conditions that the program incurs (for
input data, coverage of execution space and state control) during analysis
runs. In particular, those conditions are intended to bear a sound relation
with the worst execution conditions that can arise at operation. Only if
that relation can be asserted, the analysis-time measurements can be said
to be representative, thus useful for MBPTA. Ensuring representativeness
is very complex indeed, for it requires controlling all sources of significant
variation in the execution conditions explored in the analysis process.

2. The adaptability trait has been criticised too, on the argument that EVT-
based analysis would not apply to all classes of software programs [86]. The
critique showed that EVT was unable to produce good-fit distributions even
for programs that exhibited sufficient execution-time variability, and was not
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applicable at all for those that had near-constant execution-time behaviour.
This is where adaptation kicks in, which requires a profound understanding
of what differentiates the application of EVT to execution time observations
of the program runs from its use in other domains, where the observed events
and their sources have an altogether different nature.

We show that the MBPTA techniques applied under the assumptions adopted
in this Thesis, and established in the PROARTIS/PROXIMA projects, solve the
adaptation problem and can be used to produce trustworthy pWCET results. In
particular, we show how platform time randomisation and upper-bounding (see
Section 2.2.1), combined with appropriate treatment of the observations coming
from different program paths, allow the sound application of EVT, making it fit for
transfer to industrial practice. We also show how system settings that lack those
features (for example, time-deterministic execution platforms taken as-is) challenge
representativeness. We back our claims with several illustrative examples.

8.2 EVT Specifics for WCET Domain

EVT cannot be applied sensibly without understanding the specifics of the domain
of interest, and how their nature can be captured by the underlying theory and
its mathematical devices. It is evident that (real-time) software programs differ
substantially from the phenomena that EVT is classically used to study: this dif-
ference warrants thorough scrutiny, which must precede and enable adaptation.
This appreciation, however, has only recently started to emerge: numerous efforts
to apply EVT to the WCET problem did not really contemplate that need. In
continuation we discuss the assumptions that characterise the problem domain of
WCET analysis and review what they imply for the application of EVT, particu-
larly the way it models the tail of the probability distribution.

8.2.1 WCET Existence and Finiteness

The base axioms to consider when applying EVT to the timing domain is that
in order to produce useful results, WCET analysis rests on two main assump-
tions: (i) target programs execute a finite number of instructions; and (ii) each
instruction executes in a finite number of cycles. Those assumptions guarantee
that a WCET does actually exist and that an upper-bound to it is computable.
Parametric static timing analyses have been proposed to soften the finiteness as-
sumptions [25]: while they are useful to reuse results from static analysis, they
only produce preliminary formulas that need instantiation before use. A real-time
software program is therefore assumed to have a theoretical maximum execution
time, the WCET, which needs to be estimated and upper-bounded for safety. For
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this condition to hold true, the input space of the program itself may require to be
known and/or controlled. For example, it would be impossible to derive an upper
bound to the execution time of the Factorial function if we did not know or con-
strain its execution context, in this case, the range of admissible input values. We
identify two main classes of relevant information on the input ranges that affect
the search space, also known as feasible region, of the WCET:

Finite execution conditions: these are determined by input values that af-
fect loop bounds and/or the depth of recursion when they are not hard-coded in
the program. Excluding parametric methods, which we do not consider in this
work, all timing analysis methods, whether static or measurement-based, deter-
ministic or probabilistic alike, need the user to provide some information on finite
execution conditions. The quality of that information may affect the tightness
and trustworthiness of the analysis results. For instance, Static Timing Analysis
(STA) may require the user to provide flow facts to fill in bounding information
that could not be automatically derived by, e.g. data flow or range analysis.

Path traversal conditions: when the software program features multiple
structural execution paths, identifying the set of feasible and relevant paths is
crucial to precision or trustworthiness. This is especially true for MBTA, which
critically depends on the availability of input vectors capable of providing sufficient
path traversal conditions coverage, to warrant cognizant confidence that the paths
exercised in the measurement observations include the path leading to the WCET.
STA techniques do not need path traversal conditions information to achieve full
path coverage, but excluding non-relevant or semantically infeasible paths, may
improve the quality of their output.

8.2.2 Tail Distributions and pWCET Estimation

The existence and finiteness assumptions in the WCET problem domain impact
the expressiveness of the Generalised Extreme Value and Generalised Pareto dis-
tribution models, especially for the characterisation of the shape parameter ξ (see
Section 2.2.2). As we noted in Section 2.2.2, the reversed Weibull family of dis-
tributions should be used when a maximum value exists and it is known. The
former hypothesis generally holds for the WCET of real-time software programs;
the latter does not. When the WCET is unknown, which is the case in the vast
majority of situations in our problem domain, it can be upper-bounded by either
a Gumbel or a Fréchet distribution, as the slope of their right tail decreases much
more gently than the reversed Weibull one. The descent of the Fréchet distribution
is gentler than that of its Gumbel correspondent, and therefore it upper-bounds
the latter’s right tail. The Fréchet distribution is most appropriate when a max-
imum value does not exist, which places it outside of the core WCET problem
domain. Gumbel, instead, is most appropriate when a maximum value exists but

116



8.2 EVT Specifics for WCET Domain

Figure 8.1: Effect of misclassified tails. The left part shows pWCET of aifftr

benchmark modelled as Fréchet, Gumbel and Weibull distribution. The right part
shows the coefficient of variation over the sample of 500 execution time measure-
ments of aifftr.

it is unknown.

Methods as the Exponential Test [44] and the coefficient of variation [41] help
to determine whether the sample fits a Fréchet, Weibull or Gumbel distribution
(or their Generalised Pareto distribution counterparts). Yet, for the argument we
have given above (further developed by J. Abella et al. [7]), the extreme behaviour
of the execution-time distribution of a real-time software program can always be
modelled with a Gumbel distribution: it may not be the tightest one, but it
is always – at least – a safe over-approximation of it. Unless we assume that
our program of interest has an unbounded WCET, using the Fréchet distribution
should be considered inappropriate. If a Fréchet distribution were to best fit a
given sample of execution-time measurements, this should happen because either
the sample does not contain enough tail values or some of them do not really
belong to the tail of the distribution. The remedy would be to increase the sample
to capture more tail values or use different block sizes with block maxima (see
Section 2.2.2) to discard less tail values.

To demonstrate our reasoning, we apply MBPTA to aifftr, a Fast Fourier
Transform procedure included in the EEMBC automotive benchmark suite (Sec-
tion 3.3.1), which we executed 1,000 times on an MBPTA-compliant platform.
We first tested exponentiality with the coefficient of variation test (with 95%
confidence): the right part of Figure 8.1 shows that the exponentiality hypoth-
esis, considered for the 95 highest observations, cannot be rejected, since the blue
line (that projects those 95 values) falls within the red lines, meaning that ex-
ponentiality cannot be rejected with 95% confidence. This means that less than
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96 maxima observations are sufficient to approximate the Gumbel (exponential)
pWCET distribution. Note, however, that passing such test means that data are
compatible with the exponentiality hypothesis (ξ = 0), but the best fit will likely
be non-exponential (although ξ ≈ 0). As explained before, the decision of us-
ing an exponential tail as upper-bound resorts to knowledge about the domain
(pWCET estimation), not about the best fit for the data. We obtained fitting
pWCET distributions for the three cases plotted in the left part of Figure 8.1 (us-
ing point estimation, although confidence intervals for the rate of the Exponential
distribution could also be considered): (1) Using the 40 highest values yielded a
curve that was more a Fréchet than a Gumbel distribution. This is no surprise,
in fact, for the probability of obtaining exactly ξ = 0 for a sample, as required
for a Gumbel distribution, is close to nil; actual sampling typically yields ξ > 0
or ξ < 0. With 40 values from the sample, we had ξ = 0.086, which causes the
tail to decrease polynomially (the red line in the plot). (2) Using any other num-
ber of values (always less than 96), e.g. 15, yielded ξ = −0.55. The resulting
pWCET curve was in the domain of the reversed Weibull family (the green line in
the plot). As noted earlier, going this way could lead to an unsound, optimistic
bound. (3) Picking 40 maxima values and fitting the best Gumbel distribution to
them, yielded the tightest and most reliable pWCET curve (the blue line in the
plot), which tightly upper-bounds the actual sample (the dashed line) increased
to 5,000,000 measurements to prove our point.

Using the best fit distribution from any family in the Generalised Extreme
Value distribution (or Generalised Pareto distribution) can lead to arbitrarily
pessimistic pWCET estimates. For instance, choosing an exceedance probabil-
ity of 10−15 per run, the pWCET estimate for the test program would be around
5,560,000 cycles for the exponential fit with 40 excesses. For the best fit (leaning
toward Fréchet), it would go to 5,780,000 cycles. However, for 95 values, whose
exponentiality cannot be rejected, we obtain a Fréchet distribution and a pWCET
of more than 23 million cycles.

Whenever the best fit is a reversed Weibull distribution, we can use a Gum-
bel equivalent in its stead since, for tail (extreme) behaviour, the Gumbel curve
always over-approximates its Weibull correspondent. In other words, the reversed
Weibull Complementary Cumulative Distribution Function (CCDF) may be above
the Gumbel one in the first part of the curve, which corresponds to high proba-
bilities, but it is going to be always below it for low probabilities. And only the
latter matter in the WCET problem domain.

If the method used to test exponentiality rejects the hypothesis that the tail
can be modelled (or upper-bounded) with an exponential tail (e.g. Gumbel or, at
least, Weibull), then the sample size needs to be increased until the test passes.

EVT requires the random variable being observed to exhibit a “variable” tim-
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ing behaviour. Lack of variability prevents EVT from producing good quality
models and likely from converging to an exponential distribution. In theory, this
can happen regardless of time randomisation when the timing behaviour of the
program under analysis has a degenerate distribution. While this is extremely rare
in practice, at least for real-world programs, it is not necessarily a bad scenario: if
representativeness is guaranteed, lack of variability would suggest that the maxi-
mum observed execution time could be reasonably regarded as a precise estimator
for the WCET.

Conclusions: in general, using EVT without passing this step cannot be
considered a valid approach to estimate the WCET of real-time programs: it might
be used for other classes of programs characterised, for example, by unbounded
execution times (e.g. modelling the execution time distribution of the Factorial
function for any input value). However, as already discussed, these scenarios are
typically not considered as they do not produce directly “usable” WCET estimates.

We therefore conclude that EVT is adaptable (can be applied) to all programs
that are analyzable by other timing analysis techniques. Moreover, we observed
that the tail distributions of this class of programs are properly described by a
Gumbel. This contrasts with the conclusions by G. Lima et al. [86] that the
Gumbel family does not always provide a reliable model, resulting in low-quality
WCET estimates. In fact, those conclusions were drawn outside of the WCET
finiteness and existence assumptions, considering a class of programs that can
only be analysed parametrically.

8.3 MBPTA and EVT Trustworthiness

The trustworthiness of the EVT results, when applied to the WCET analysis
problem domain, is not a given. The accuracy of the model used to represent
the timing behaviour of the program of interest is a major factor of influence, not
only for the representativeness of observations but also for how they are collected
and fed to EVT. In fact, even when representativeness is assured (which requires
collecting a minimum number of runs, as we have seen in Chapters 4, 5 and 6),
the way the observations are collected and submitted to analysis critically affects
the quality of the EVT results. This is especially evident for the contribution of
individual paths to the pWCET distribution of a multi-path program.

In the following, we show how MBPTA deals with those concerns, and discuss
the role that platform-level time randomisation and time upper-bounding play in
achieving representativeness. In describing an ideal MBPTA approach, we focus
first on those programs whose input vectors (or all those regarded as relevant
for the WCET) restrict the paths of interest to one. We then consider how the
MBPTA guarantees extend to multi-path programs.
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8.3.1 Representativeness on Single-Path (Single-Input) Pro-
grams

EVT, as a black-box technique, can produce a high-quality WCET estimate under
the conditions that the analysis input (i.e. measurements from the analysis-time
distribution) do exhaustively capture all factors with bearing on execution time
variability, with EVT being only responsible for combining their effect. MBPTA
relies on time randomisation and upper-bounding, applied to Sources of Jitter
(SoJ), to guarantee that measurements capture execution conditions that are no
better than those that may occur at system operation [27].

Two main steps are needed for assuring representativeness with MBPTA: (1)
singling out the resources with jittery timing behaviour; (2) either randomising
or upper-bounding their response time, to make the analysis-time observations
representative of worst-case operation conditions.

(Step 1) Singling Out SoJ

SoJ can affect even the simplest of single-path programs. The nature and number
of such factors are platform-dependent and have to be determined by an expert.
Examples of SoJ include variable-latency floating-point unit operations, cache be-
haviour, or simple contention effects in a multicore. Each SoJ should be controlled
in a manner that guarantees that the timing behaviour observed at analysis time
captures the full extent of possible variability and, hence, is representative of sys-
tem behaviour at operation.

Mastering the impact of all SoJ with MBDTA techniques is not generally vi-
able. Understanding and explicitly triggering scenarios in which diverse hardware
components may have to interact with one another is untenable in practice. More-
over, the increasing complexity of commercial off-the-shelf processors causes the
cost of any classic timing analysis approach to explode and the quality of their
results to decrease. A qualitative analysis of the contribution of hard-to-predict
resources is thus the prerequisite to the application of any timing analysis tech-
nique. For MBPTA, this effort allows singling out the SoJ, to determine how
randomisation and upper-bounding can capture their jitter.

(Step 2.a) A Case for Randomisation

The seemingly insurmountable complexity of guaranteeing representativeness of
the diverse SoJ can be attained by injecting randomisation in the timing behaviour
of selected hardware or software components (see Section 2.2.1). Randomisation
ensures that several of the sources of execution-time variability are transparently
captured in the analysis results without needed direct user intervention (whether
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by providing specific input vectors or setting the internal state). Time-randomised
resources may include placement and replacement policies in the different cache
memories, as well as arbitration policies in shared resources such as interconnection
networks (e.g. buses, trees) and memory controllers.

(Step 2.b) A Case for Upper-Bounding

Some processor operations incur different latencies depending on their operands.
This is the case for floating-point operations (or even integer ones) in such em-
bedded processor architectures as PowerPC P4080 and Cobham-Gaisler LEON3.
To complement randomisation and attain representativeness, a possible solution
to this problem consists in enforcing the unit to execute on a worst-latency mode
at analysis time (Section 2.2.1). Specific hardware support is required to this end.
Alternatively, by thoroughly logging and examining the observed latencies, the
user should determine whether the jitter occurred at analysis does indeed capture
the impact that it can cause during operation.

An MBPTA-compliant platform – which addresses the SoJ concerns as de-
scribed above – meets the EVT statistical requirements for single-path programs.
Each, conveniently collected (see [27, 78]), execution-time measurement corre-
sponds to an independent and identically distributed (i.i.d.) observation of a
random variable. Hence, if all requirements are met by construction, EVT can be
applied to that problem space safely. A note of caution is in order in this regard:
with that procedure, EVT is not applied to the real distribution (the full universe
of values), but on a sample of it. Hence, although with MBPTA the required
properties hold on the full population, they need to be empirically confirmed to
hold for the specific sample, with appropriate i.i.d. tests [5, 38].

Once the exponential test and i.i.d. tests are passed, and the representativeness
constraint holds, the distribution yielded by the sample can be regarded as a valid
pWCET distribution.

8.3.2 Limits of Randomisation

It has been suggested that randomisation alone does not suffice to enable the use of
MBPTA [86]. As already observed, while randomisation might not cure degenerate
distributions, this is not a problem as long as the collected observations are truly
representative. We insist, however, that an inattentive use of randomisation does
not guarantee representativeness.

Applying time randomisation to individual processor components (e.g. the
cache) makes their jitter MBPTA-compliant. However, doing that on a single
resource does not cover the jitter of other resources: for example, G. Lima at
al. [86] note that randomising the cache does not cover the jitter caused by the
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floating-point unit or by multiple program paths. Instead, all SoJ have to be
studied individually and a solution has to be proposed to address each of them.
Hence, time randomising the cache does certainly not ensure per se that all SoJ
in the platform can be captured in the measurement campaign.

Moreover, the probability of capturing random events for each SoJ is strongly
related to the minimum number of runs required by MBPTA to capture execution-
time variability. A convergence criterion has been proposed by L. Cucu-Grosjean
et al. [38] for the determination of the number of observations needed to compute
trustworthy bounds by characterizing the effects of time randomised caches on the
execution time of a given (single-path) program. While this criterion has been
shown to guarantee MBPTA convergence, it does not assure that critical but rare
events (e.g. bad cache placements) have been properly captured. Solutions to
detect those situations and compute the minimum number of runs required to
capture all hardware events that may happen with a probability above a given
threshold have been proposed in the previous Chapters of this Thesis.

8.3.3 Probability Distribution of Multi-Path Programs

MBPTA, as described, promises that measurements taken at analysis do capture
(or upper-bound) all the possible execution conditions that may occur at operation.
MBPTA only requires that every single factor with bearing on timing behaviour
has been intercepted in the collected measurements, while it is up to EVT to model
their combined effect. When the program of interest has multiple execution paths,
the concept of representativeness extends to whether and how frequently each path
is traversed by the input data provided and, thus, captured in the analysis.

Representativeness of Execution Paths

Assuring sufficient path coverage is a widely acknowledged requirement of all tim-
ing analysis approaches based on measurements [119, 122]. In contrast with STA,
the results computed by MBTA methods hold only for the execution paths ob-
served at analysis. Measurement-based analyses typically assume the availability
of path traversal conditions information to guide the identification of a subset of
structurally feasible paths to be included in the analysis.

MBPTA-compliant architectures simplify the identification of worst-case sce-
narios and the production of input vectors that trigger them. They do so by pro-
viding true probabilistic coverage for a number of SoJ, through randomisation and
upper-bounding (e.g. cache placement, bus arbitration, input values of variable-
latency units). However, path identification and generation of the respective input
vectors remain a non-trivial problem for the end-users. When path traversal condi-
tions information is not available (or is considered unreliable), it is still possible to
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build a synthetic upper-bounding path [76] or use the measurements from several
paths to artificially derive measurements for all unobserved paths [122].

Modelling the Distributions of Several Paths

The critical question is whether the timing behaviour of a multi-path program can
still be modelled as the outcome of a single random variable, or else each path in the
program needs to be considered separately. In the former case, indistinctly feeding
all measurements to EVT on account that all paths concur to a unique distribu-
tion postulates that the distribution occurred at analysis does match what will
happen at operation. While there have been some works on timing analysis based
on a priori knowledge of path frequency [40], assuming that the analysis-time ob-
servations always match the eventual distribution at operation is very hazardous.
The average user is most likely unable to predict how often each input that leads
to a distinct execution path will happen at operation for all programs of inter-
est. Therefore, even if we assume that users can provide input vectors capable of
triggering all execution paths of interest for WCET estimation, we cannot expect
them to reason about their probability of occurrence at operation.

Instead, we observe that each single path potentially leads to a different exe-
cution time distribution. This is especially evident in programs with significant
input-data dependence (and operation modes), where observations may fit signifi-
cantly different distributions depending on the provided input vectors. Putting all
measurements into a single bucket and applying EVT simple-mindedly on them
is not advisable, as the collected measurements, while possibly independent, do
not necessarily have identical distribution. Even seeking fair path frequency at
analysis, for example by enforcing uniformly distributed inputs [89], does not solve
the problem that the path distribution at operation is generally unknown and thus
cannot be modelled.

Hence, one option is to study each execution path in isolation and derive an
envelope distribution that safely accounts for all considered paths. We refer to this
solution as multiple-bucket application of EVT, as opposed to its single-bucket al-
ternative. We do not consider how these paths have been selected, whether by the
user or by other means [76, 122]. In this scenario, the whole MBPTA process is
applied on a per-path basis to obtain individual Complementary Cumulative Dis-
tribution Function (CCDF)s. Then a Max-Envelope can be computed taking the
maximum value for each exceedance threshold across the pWCET distributions of
all the considered paths. The resulting pWCET envelope is necessarily a discrete
function as it is built from point-to-point over-approximations of all pWCET dis-
tributions. If the cost of considering each path separately is high, the user can
apply path upper-bounding [76] and then analyse any of the modified paths, which
is an upper-bound of all possible traversed paths.
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Considering measurements from different paths in the same bucket can po-
tentially lead to unreliable results that can equally be unsafe or more pessimistic
than those obtained with the Max-Envelope method, which is safe by construction.
We illustrate this on a real case study from the railway domain (Section 3.3.3),
running on a LEON3-based Field-Programmable Gate Array (FPGA) implemen-
tation, with 16KB randomised Instruction and Data caches (Section 3.1). We
collect observations for 10 input vectors, which correspond to 10 distinct paths
in the programs. To demonstrate the inappropriateness of the single-bucket ap-
proach, we compared the results of applying MBPTA on each path in isolation
against the results from the pairwise combination of different paths. The left side
of Figure 8.2 shows that combining samples from paths 0 (yellow) and 3 (blue) in a
single bucket causes the computed distribution (red) to fall even behind the distri-
bution of each individual path considered in isolation. The right side of Figure 8.2
shows the combined distribution (red) obtained by merging the samples from paths
7 (yellow) and 9 (blue). In this case, the selection of the subset of data that should
belong to the tail of the target distribution causes the final combined distribution
to fall largely beyond the Max-Envelope values (in this case corresponding to the
yellow line).

Figure 8.2: Unsafe and pessimistic results when combining paths.

8.4 Applying EVT on Deterministic Platforms

A discussion on the industrial viability of MBPTA must necessarily consider how
EVT alone or embedded within MBPTA works on purely deterministic platforms,
where no support for hardware or software randomisation is available. This matter
has been considered in a number of recent studies [17, 56]. On purely determin-
istic platforms, the execution of a program under the same inputs and the same
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initial state will take roughly the same amount of time, yielding a fully degen-
erate distribution. With all measurement data collected indistinctly across the
paths traversed in the analysis, EVT, which is a black-box approach, unaware of
the internals of the system being observed, is bound to produce results extremely
sensitive to the frequency distribution of the observed path traversal. The rela-
tion that this has with the system behaviour (for path traversal) at operation can
hardly be determined, as the latter is indefinable in practice.

Therefore, while applying EVT to deterministic platforms is possible in theory,
we deem it very fragile for results and very difficult to control in the general
case. To preserve trustworthiness and representativeness, the user is required to
(i) enumerate all execution conditions with bearing on timing, (ii) generate all
input vectors required to control and trigger them, and (iii) sample from these
vectors in a way that matches or upper-bounds the distribution that may occur at
operation.

Enumerating all combinations of execution conditions with bearing on the pro-
gram execution time is an intractable problem in general. The sheer amount
of possible combinations of memory placements, operands for jittery units (e.g.
floating-point unit), contention for shared resources in multicores, and execution
paths is overwhelming, other than in extremely limited scenarios that do not apply
to most real-time industrial programs.

A second stumbling block stems from the cost and complexity of generating
input vectors that trigger each and every set of identified conditions. This is
further complicated by the fact that some SoJ may be very far outside of user
control. This is a single point of failure for EVT, as not producing input vectors
for scenarios that can occur at operation an arbitrary number of times defeats
the whole point of attempting to relate pWCET estimates with actual operation
conditions (i.e., representativeness) and threaten to undermine their reliability.

Finally, even in the hypothetical case we were able to enumerate and produce
input vectors for all individual execution conditions, we would still have the prob-
lem of determining how often each combination of them will occur at operation
with effect on each individual unit of the system. Again, this is clearly untenable.

The typical workaround, as some works have proposed (e.g. Y. Lu et al. [89]),
consists in performing random sampling across a subset of input vectors (and so
potentially across a subset of execution conditions). In fact, no evidence is had of
the representativeness of those subsets of input vectors with respect to operation
conditions. And yet, this creates an execution-time sample that will very likely
pass all i.i.d. tests (except in case of very few program paths with low variability),
which will be taken to allow using EVT to compute a pWCET distribution. In
reality, however, each input vector would lead to a different and mostly-degenerate
execution-time distribution, which means that the identical distribution require-
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ment would not hold by construction. In this case, the user would be fooling
EVT (or its use) and the results of it could not even be called “a distribution”.
Instead, before applying EVT, the user should accurately understand the popu-
lation of operation-time events. This would require knowledge of the frequency
of execution of each individual path, which some researchers have been able to
explore [40]. However, expecting users to enumerate all combinations of execution
conditions, also considering how often each one of them would occur at operation,
and to produce the input vectors that trigger them is utterly unrealistic.

8.5 Summary

MBPTA builds on EVT to provide a novel approach to analyse the timing be-
haviour of real-time programs. Together they offer an extremely cost-effective
and scalable solution when compared to standard timing analysis approaches, es-
pecially when applied to complex commercial off-the-shelf platforms. As such,
MBPTA appears particularly interesting from an industrial standpoint and its in-
dustrial viability has been already demonstrated on real case studies [115, 116].
Nonetheless, an inattentive application of EVT can lead to low-quality results,
eventually preventing the industry to consider MBPTA industrially viable.

In this chapter, we argued that the main misconceptions on the application
of EVT to the WCET problem can be defeated by considering the peculiarities
of execution time as the event EVT is expected to model. With a view to the
application of EVT to industrial-quality programs, we demarcate MBPTA, a well-
defined, rigorous analysis process that guarantees a WCET-centric application of
EVT with guarantees on the trustworthiness of its results and wide adaptability
to software programs.
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Conclusions and Future Work

9.1 Summary of Contributions

The need for new functionalities motivated Critical Real-Time Embedded Sys-
tems (CRTES) industry to adopt advanced hardware features used in the high-
performance domain to increase average performance. These functionalities are
implemented in software, which makes it grow in size and complexity. The in-
creased complexity prompted CRTES industry to search for novel timing analysis
techniques to provide evidence of timing correctness for certification. The tradi-
tional timing analysis has shown to inflate derived Worst-Case Execution Time
(WCET) to the point of being unusable, or the confidence on the trustworthiness
of derived estimates is not sufficient for certification.

Measurement-Based Probabilistic Timing Analysis (MBPTA) is a promising
candidate to estimate WCET in modern CRTES. While pessimism is of less con-
cern for Measurement-Based Timing Analysis (MBTA) approaches, as measure-
ments are collected on the real platform rather than using a model, evidence needs
to be delivered relating measurements collected at analysis time with the platform
behaviour during operation. MBPTA simplifies building that evidence by reducing
the control of resources influencing timing needed by the user and moving it to the
platform itself, through features like time upper-bounding and time randomisation.
In this Thesis, we have improved the applicability of MBPTA in complex CRTES
by providing means to derive evidence of the trustworthiness of WCET estimates
in the presence of cache memories and software programs traversing potentially
different paths during operation than what is seen at analysis.

In particular, we have reached the following achievements:

• We proposed the Representativeness Validation by Simulation method (ReVS)
that, assuming a known memory access pattern, computes and instructs the
user on how many measurements to collect on the target platform to ac-
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count for cache-related representativeness. ReVS advances the state-of-the-
art Heart of Gold (HoG) method by extending the solution from programs
with homogeneously accessed addresses to the general case of programs with
arbitrary patterns. Our method performs a validation step in the miss count
domain, applying for the first time Extreme Value Theory (EVT) to a metric
other than execution time. Being based on cache simulations, the method
works independently of the underlying random cache placement/replacement
policy. However, this is also its weak point, as the cost of applying ReVS is
prohibitive for real-size programs due to the exponential increase of potential
placements to simulate.

• We proposed Conflictive Cache Placements for hash Random Placement
method (CCP-hRP) and Conflictive Cache Placements for Random Modulo
Placement method (CCP-RM) methods to identify CCPs for hash Random
Placement (hRP) and Random Modulo Placement (RM), respectively. They
are placed together under the term Conflictive Cache Placements method
(for arbitrary Random Placement) (CCPX). Both methods are based on
heuristics and increase the generality of ReVS by trading off its accuracy
(ReVS is able to derive exact results) with the execution time cost. Our
experiments with benchmarks representative of the automotive domain and
a Railway case study have shown that: 1) CCPX can analyse full programs
with affordable execution time; 2) CCPX successfully identifies CCPs with
high enough confidence.

• All proposed methods for cache-related representativeness allow the user to
derive WCET estimates at the desired confidence level. By complimenting
MBPTA with our solutions, the user can obtain the trustworthiness evidence
needed for the estimated WCET, and supplement it with the quantitative as-
sessment of the coverage of relevant platform events impacting WCET. This
is an important advancement with respect to traditional Measurement-Based
Deterministic Timing Analysis (MBDTA) techniques, which are only able to
provide a qualitative assessment of the coverage of relevant platform events,
which is highly dependent on the user’s expertise and ability to control those
events.

• Our proposed methods for cache-related representativeness assume that rele-
vant program paths are known and we have shown that it is unsafe to pursue a
single-bucket approach for multi-paths. We proposed a PUB+CCPX method
that extends the applicability of MBPTA to multi-path programs running
on systems deploying cache memories. Our experiments demonstrated that
the method achieves both, full path coverage and cache representativeness,
with sufficient trustworthiness and minimal engagement of the user.
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• We discussed misconceptions on the application of EVT to the domain of
worst-case executions times and argued how its unmindful use might com-
promise otherwise trustworthy results. In particular, we have shown that
users should not mix measurements belonging to different execution paths.
We have also demonstrated that the appropriate distribution to fit data to
is closely related to the nature of the event it represents. In the case of ex-
ecution time, the Gumbel distribution has been shown to deem stable – yet
tight – estimates.

9.2 Future Work

We foresee several directions in which the results of this Thesis may evolve.

1. As a short-term objective, the work of this Thesis can be extended to analyse
multi-level cache hierarchies. While we analysed separately hRP (in general
used for L2 caches) and RM (generally deployed in L1 caches), the interaction
between different cache levels and the impact of various inclusion properties
on CCPs have not been studied so far.

2. In our work we have assumed partitioned caches, which is the state-of-the-
art design practice for time-critical tasks adopted by CRTES industry, as
partitioning allows better control over cache interference and tighter WCET
estimates [72]. However, cache sharing can alleviate the drawback of frag-
mentation due to partitioning, which makes it a suitable choice for soft and
non-real-time tasks in emerging mixed-criticality systems [23]. The influence
of sharing on CCPs should be studied in the future.

3. In this Thesis, we considered hardware solutions for time randomisation,
which, although providing promising potential, cannot be applied to com-
mercial off-the-shelf processors and typically require a longer time to be
adopted to the market compared to software solutions. Therefore, we see
the adaptation of methods proposed in our work to some of the existing
software randomisation tenchiques [74, 79] an interesting line of research.

4. Our work considered Path Upper-Bounding (PUB) method and demon-
strated how to apply it together with our cache-related representativeness
solutions efficiently. Future work may investigate means to analyse multi-
path programs by using the extended path coverage method and combine
it with cache-related representativeness solutions. Previous work [122] has
shown that extended path coverage obtains tighter WCET estimates sim-
plifying the implementation of PUB, at the expense of providing full block
rather than full path coverage.
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Chapter 9. Conclusions and Future Work

5. The long-term goal for MBPTA is allowing timing analysis of arbitrary com-
plex architectures. Some of the challenges toward reaching this goal are
covered by other PhD students at the Universitat Politècnica de Catalunya
(UPC). In addition, the work of this Thesis can be extended to consider the
reliability of MBPTA on heterogeneous platforms, NoC-based platforms and
platforms with accelerators (GPUs, FPGAs, etc.).
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[15] P. Benedicte, L. Kosmidis, E. Quiñones, J. Abella, and F. J. Cazorla. Mod-
elling the Confidence of Timing Analysis for Time Randomised Caches. In
11th IEEE Symposium on Industrial Embedded Systems (SIES), May 2016.
28, 64

[16] K. Berezovskyi, L. Santinelli, K. Bletsas, and E. Tovar. WCET
Measurement-Based and Extreme Value Theory Characterisation of CUDA
Kernels. In 22nd International Conference on Real-Time Networks and Sys-
tems (RTNS), October 2014. 33

[17] K. Berezovskyi, F. Guet, L. Santinelli, K. Bletsas, and E. Tovar.
Measurement-Based Probabilistic Timing Analysis for Graphics Processor

132

https://www.autotechcouncil.com/autotech-blog/archive/arm-expects-vehicle-compute-performance-to-increase-100x-in-next-decade/
https://www.autotechcouncil.com/autotech-blog/archive/arm-expects-vehicle-compute-performance-to-increase-100x-in-next-decade/
https://www.autotechcouncil.com/autotech-blog/archive/arm-expects-vehicle-compute-performance-to-increase-100x-in-next-decade/


Bibliography

Units. In 29th International Conference on Architecture of Computing Sys-
tems (ARCS), April 2016. 32, 124

[18] G. Bernat, A. Colin, and S. M. Petters. WCET Analysis of Probabilis-
tic Hard Real-Time System. In 23rd IEEE Real-Time Systems Symposium
(RTSS), pages 279–288, December 2002. 6, 17, 32

[19] G. Bernat, A. Burns, and M. Newby. Probabilistic Timing Analysis: an
Approach Using Copulas. Journal of Embedded Computing, 1(2):179–194,
April 2005. 6
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midis, J. Abella, E. Mezzetti, E. Quiñones, and F. J. Cazorla. Measurement-
Based Probabilistic Timing Analysis for Multi-Path Programs. In 24th Eu-
romicro Conference on Real-Time Systems (ECRTS), July 2012. 6, 47, 55,
121, 122

[39] Z. I. Botev D. P. Kroese, T. Taimre. Handbook of Monte Carlo Methods.
Wiley Series in Probability and Statistics. Wiley, 2011. 52, 71, 81

[40] L. David and I. Puaut. Static Determination of Probabilistic Execution
Times. In 16th Euromicro Conference on Real-Time Systems (ECRTS),
July 2004. 123, 126

[41] J. Del Castillo, J. Daoudi, and R. Lockhart. Methods to Distinguish Between
Polynomial and Exponential Tails. Scandinavian Journal of Statistics, 41
(2):382–393, January 2014. 117

[42] F. Despaux, Y. Song, and A. Lahmadi. Extracting Markov Chain Models
from Protocol Execution Traces for End-to-End Delay Evaluation in Wireless
Sensor Networks. In IEEE World Conference on Factory Communication
Systems (WFCS), May 2015. 32

[43] E. Dı́az, M. Fernández, L. Kosmidis, E. Mezzetti, C. Hernández, J. Abella,
and F. J. Cazorla. MC2: Multicore and Cache Analysis via Deterministic and
Probabilistic Jitter Bounding. In 22nd Ada-Europe International Conference
on Reliable Software Technologies, June 2017. 33

[44] J. Diebolt, M. Garrido, and S. Girard. The ET Test, a Goodness-of-Fit Test
for the Distribution Tail. In 2nd International Symposium on Extreme Value
Analysis, January 2001. 117

[45] S. Edgar and A. Burns. Statistical Analysis of WCET for Scheduling. In
22nd IEEE Real-Time Systems Symposium (RTSS), December 2001. 6, 17

[46] P. Embrechts, T. Mikosch, and C. Klüppelberg. Modelling Extremal Events:
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quet, E. Quiñones, C. Lo, E. Mezzetta, I. Broster, J. Abella, L. Cucu-
Grosjean, T. Vardanega, and F. J. Cazorla. Timing Analysis of an Avionics
Case Study on Complex Hardware/Software Platforms. In Design, Automa-
tion Test in Europe Conference Exhibition (DATE), March 2015. 8, 17, 32,
126

[117] I. Wenzel, B. Rieder, R. Kirner, and P. Puschner. Automatic Timing Model
Generation by CFG Partitioning and Model Checking. In Design, Automa-
tion Test in Europe Conference Exhibition (DATE), March 2005. 32

[118] I. Wenzel, R. Kirner, B. Rieder, and P. Puschner. Measurement-Based Tim-
ing Analysis. In 3rd International Symposium on Leveraging Applications of
Formal Methods, Verification and Validation (ISOLA), October 2008. 4

[119] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley,
G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller, I. Puaut,
P. Puschner, J. Staschulat, and P. Stenström. The Worst-Case Execution-
Time Problem - Overview of Methods and Survey of Tools. ACM Transac-
tions on Embedded Computing Systems (TECS), 7(3):36:1–36:53, May 2008.
4, 10, 15, 31, 122

[120] R. Wilhelm, S. Altmeyer, C. Burguière, D. Grund, J. Herter, J. Reineke,
B. Wachter, and S. Wilhelm. Static Timing Analysis for Hard Real-Time

142

http://www.soclib.fr/trac/dev


Bibliography

Systems. In 11th International Conference on Verification, Model Checking,
and Abstract Interpretation (VMCAI), January 2010. 4

[121] J. Windsor, M. H. Deredempt, and R. De-Ferluc. Integrated Modular Avion-
ics for Spacecraft - User Requirements, Architecture and Role Definition. In
IEEE/AIAA 30th Digital Avionics Systems Conference (DASC), October
2011. 5

[122] M. Ziccardi, E. Mezzetti, T. Vardanega, J. Abella, and F. J. Cazorla. EPC:
Extended Path Coverage for Measurement-Based Probabilistic Timing Anal-
ysis. In IEEE Real-Time Systems Symposium (RTSS), December 2015. 10,
12, 29, 122, 123, 129

143



144


	List of Figures
	List of Tables
	List of Acronyms
	List of Symbols
	1 Introduction
	1.1 Embedded Systems
	1.2 Specific Requirements of CRTES
	1.2.1 High Performance
	1.2.2 Timing Validation and Verification
	1.2.3 Time Composability

	1.3 A Probabilistic Approach to MBTA
	1.3.1 Basic Concepts of MBPTA
	1.3.2 State of the Art on MBPTA
	1.3.3 Problems and Limitations of MBPTA

	1.4 Thesis Contributions
	1.4.1 Cache Representativeness
	1.4.2 Representativeness and Path Coverage
	1.4.3 Trustworthiness of EVT application

	1.5 Thesis Structure
	1.6 Publications

	2 Background
	2.1 Measurement-Based Timing Analysis
	2.2 Measurement-Based Probabilistic Timing Analysis
	2.2.1 MBPTA-Compliant Architectures
	2.2.2 Extreme Value Theory

	2.3 MBPTA Representativeness Arguments
	2.3.1 The Cache-Related Representativeness Challenge
	2.3.2 Representativeness of Execution Paths

	2.4 Related Work

	3 Experimental Methodology
	3.1 Processor Modelling Framework
	3.1.1 Cache Configurations

	3.2 Timing Analysis Tools
	3.3 Benchmarks
	3.3.1 EEMBC Automotive Suite
	3.3.2 Mälardalen Suite
	3.3.3 Railway Case Study
	3.3.4 Benchmark Analysis


	4 An Exact Method to Reach Cache Representativeness
	4.1 Introduction
	4.2 Motivating Example
	4.3 ReVS: a High-Level Description
	4.3.1 ReVS Main Steps
	4.3.2 ReVS Process
	4.3.3 An Illustrative Example

	4.4 ReVS Detailed Steps
	4.4.1 Generating Combinations of Conflictive Addresses
	4.4.2 gls:addrcomb Impact and Probability
	4.4.3 Combined gls:addrcomb Impact and Probability
	4.4.4 Validation Against the pWCMC

	4.5 Reliability Considerations of ReVS
	4.5.1 Impact of Address Choice
	4.5.2 Impact on R'

	4.6 Experimental Results
	4.6.1 Correlating Execution Time and Miss Counts
	4.6.2 ReVS Results: Illustrative Examples
	4.6.3 ReVS Results: EEMBC Automotive
	4.6.4 Assessing ReVS Reliability

	4.7 Summary

	5 Reducing Computational Cost to Attain Cache Representativeness for hRP
	5.1 Introduction
	5.2 CCP-hRP Mechanism
	5.2.1 The Guilt Table
	5.2.2 Smart Search of Address Combinations

	5.3 Evaluation
	5.4 Railway Case Study
	5.5 Summary

	6 Computationally Tractable Method to Attain Cache Representativeness for RM
	6.1 Introduction
	6.2 Understanding Conflictive Cache Placementes Under RM and hRP
	6.3 The CCP-RM Mechanism
	6.3.1 Deriving Relevant Address Combinations
	6.3.2 Impact and Probability Calculation
	6.3.3 Assessment Against the pWCMC Curve

	6.4 Evidence for Certification
	6.4.1 Experimental Setup
	6.4.2 CCP-RM Accuracy
	6.4.3 Evaluation of CCP-RM Effectiveness
	6.4.4 CCP-RM Execution Time Requirements

	6.5 Railway Case Study on RM Implementations on an FPGA
	6.6 Summary

	7 Reaching Cache Representativeness and Path Coverage
	7.1 Introduction
	7.2 Achieving Full Path Coverage and Cache Representativeness
	7.2.1 Difficulties Integrating PUB and CCPX
	7.2.2 Sensible Application of PUB and CCPX
	7.2.3 A Practical Example

	7.3 Evaluation
	7.3.1 Representative Number of Runs
	7.3.2 pWCET Estimates

	7.4 Summary

	8 Applicability of EVT Fit for Industrial Quality WCET Analysis
	8.1 Introduction
	8.2 EVT Specifics for WCET Domain
	8.2.1 WCET Existence and Finiteness
	8.2.2 Tail Distributions and pWCET Estimation

	8.3 MBPTA and EVT Trustworthiness
	8.3.1 Representativeness on Single-Path (Single-Input) Programs
	8.3.2 Limits of Randomisation
	8.3.3 Probability Distribution of Multi-Path Programs

	8.4 Applying EVT on Deterministic Platforms
	8.5 Summary

	9 Conclusions and Future Work
	9.1 Summary of Contributions
	9.2 Future Work

	Bibliography

