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Abstract
Ground deformation measurements can provide valuable information for minimization of
associated loss and damage caused by natural and environmental hazards (e.g., earth-
quakes, landslides, ground subsidence and volcanism). As a kind of remote sensing tech-
nique, Differential Interferometry Synthetic Aperture Radar (DInSAR) or Persistent Scat-
terer Interferometry (PSI) SAR is able to measure ground deformation independent of
light and weather with high spatial resolution, efficiently. Moreover, thanks to the short
wavelength (typically 3-25 cm) and coherent nature of SAR system, the ground deforma-
tion monitoring accuracy of PSI techniques can reach up to millimeter level. However,
low coherence could hinder the exploitation of SAR data, and high-accuracy deformation
monitoring can only be achieved by PSI for high quality pixels slightly affected by decor-
relation. Therefore, pixel optimization and identification of coherent pixels are
crucial for PSI techniques as they directly determine the quality of final PSI
products. In this thesis, advanced pixel selection and optimization algorithms have been
investigated for PSI or Polarimetric PSI (PolPSI) applications.

Firstly, a full-resolution pixel selection method based on the Temporal Phase
Coherence (TPC) has been proposed. This method first estimates noise phase term
of each pixel at interferogram level. Then, for each pixel, its noise phase terms of all
interferograms are used to assess this pixel’s temporal phase quality (i.e., TPC). In the
next, based on the relationship between TPC and phase STandard Deviation (STD), a
threshold can be posed on TPC to identify high phase quality pixels. This pixel selection
method can work with both deterministic or Permanent Scatterers (PSs) and Distributed
Scatterers (DSs). To validate the effectiveness of the developed TPC pixel selection
algorithm, it has been used to monitor the Canillo (Andorra) landslide with a super high
resolution TerraSAR-X data set. The results show that the TPC method can obtain the
highest density of valid pixels among the employed three approaches in this challenging
area with X-band SAR data.

Second, to balance the polarimetric DInSAR phase optimization effect and
the computational cost, a new PolPSI algorithm is developed. This proposed
PolPSI algorithm is based on the Coherency Matrix Decomposition result to determine
the optimal scattering mechanism of each pixel, thus it is named as CMD-PolPSI. CMD-
PolPSI do not need to search for the solution within the full space of solutions, it is
therefore much computationally faster than the classical Equal Scattering Mechanism
(ESM) method, but with lower optimization performance. On the other hand, its opti-

ix



mization performance outperforms the most computational efficient BEST method as a
more extended solution space has been explored.

Third, an adaptive algorithm SMF-POLOPT has been proposed to adaptive
filtering and optimizing PolSAR pixels for PolPSI applications. This proposed
algorithm is based on PolSAR classification results to firstly identify Polarimetric Homo-
geneous Pixels (PHPs) for each pixel, and at the same time classify PS and DS pixels.
After that, DS pixels are filtered by their associated PHPs, and then optimized based
on the coherence stability phase quality metric; PS pixels are unfiltered and directly
optimized based on the DA phase quality metric. PolSAR filtering results show that
SMF-POLOPT can simultaneously reduce speckle noise and retain structures’ details.
Meanwhile, SMF-POLOPT presents good interferogram optimization results, and thus it
is able to obtain much higher densities of valid pixels for deformation monitoring than
the ESM method.

To conclude, an innovative pixel selection method has been developed and tested by
applying it to landslide monitoring, and two PolPSI algorithms have been proposed in
this thesis. I hope the work presented in this thesis could make some contributions to
the research area of “Advanced Pixel Selection and Optimization Algorithms for
Persistent Scatterer Interferometry (PSI) ”.
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Resum
Les mesures de deformació del sòl poden proporcionar informació valuosa per minimitzar
les pèrdues i els danys associats causats pels riscos naturals i ambientals. Com a tècnica
de teledetecció, la interferometria de dispersors persistents (Persistent Scatter Interfer-
ometry, PSI) SAR és capaç de mesurar de forma eficient la deformació del terreny amb
una alta resolució espacial. A més, la precisió de monitorització de la deformació del sòl
de les tècniques PSI pot arribar a arribar a nivells del mil·ĺımetre. No obstant això, una
baixa coherència pot dificultar l’explotació de dades SAR i el control de deformació d’alta
precisió només es pot aconseguir mitjançant PSI per a ṕıxels d’alta qualitat. Per tant,
l’optimització de ṕıxels i la identificació de ṕıxels coherents són crucials en
les tècniques PSI. En aquesta tesi s’han investigat algorismes avançats de selecció i
optimització de ṕıxels.

En primer lloc, s’ha proposat un mètode de selecció de ṕıxels de resolució
completa basat en la coherència temporal de fase (Temporal Phase Coherence,
TPC). Aquest mètode estima per primera vegada el terme de fase de soroll de cada ṕıxel
a nivell d’interferograma. A continuació, per a cada ṕıxel, s’utilitzen els termes de la
fase de soroll de tots els interferogrames per avaluar la qualitat de fase temporal d’aquest
ṕıxel (és a dir, TPC). A la següent, basant-se en la relació entre el TPC i la desviació
estandard de fase (STD), es pot plantejar un llindar de TPC per identificar ṕıxels de
qualitat de fase alta. Aquest mètode de selecció de ṕıxels es capaç de detectar tant els
dispersors deterministes (PS) com els distribüıts (DS). Per validar l’eficàcia del mètode
desenvolupat, s’ha utilitzat per controlar l’esllavissada de Canillo (Andorra). Els resultats
mostren que el mètode TPC pot obtenir la major densitat de ṕıxels vàlids, comparat amb
els mètodes clàssics de selecció, en aquesta àrea dif́ıcil amb dades de SAR de banda X.

En segon lloc, per equilibrar l’efecte d’optimització de fase DInSAR polarimètrica
i el cost de càlcul, es desenvolupa un nou algorisme de PolPSI. Aquest algorisme
proposat de PolPSI es basa en el resultat de la descomposició de la matriu de coherència
per determinar el mecanisme de dispersió òptim de cada ṕıxel, de manera que es denom-
ina CMD-PolPSI. CMDPolPSI no necessita buscar solucions dins de l’espai complet de
la solució, per tant, és molt més eficient computacionalment que el mètode clàssic de
mecanismes d’igualtat de dispersió (Equal Scattering Mechanism, ESM), però amb un
efecte d’optimització no tant òptim. D’altra banda, el seu efecte d’optimització supera el
mètode BEST, el que te un menor cost computacional.
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En tercer lloc, s’ha proposat un algoritme adaptatiu SMF-POLOPT per al
filtratge adaptatiu i l’optimització de ṕıxels PolSAR per a aplicacions PolPSI.
Aquest algorisme proposat es basa en els resultats de classificació PolSAR per identificar
primer els ṕıxels homogenis polarimètrics (PHP) per a cada ṕıxel i, alhora, classificar
els ṕıxels PS i DS. Després d’això, els ṕıxels DS es filtren pels seus PHP associats i, a
continuació, s’optimitzen en funció de la mètrica de qualitat de la fase d’estabilitat de
coherència; els ṕıxels classificats com PS no es filtren i s’optimitzen directament en funció
de la mètrica de qualitat de la fase DA. SMF-POLOPT pot reduir simultàniament el
soroll de la fase interferomètrica i conservar els detalls de les estructures. Mentrestant,
SMF-POLOPT aconsegueix obtenir una densitat molt més alta de ṕıxels vàlids per al
seguiment de la deformació que el mètode ESM.

Per concloure, en aquesta tesi s’ha desenvolupat i provat un mètode de selecció de ṕıxels,
i s’han proposat dos algoritmes PolPSI. Aquest treball contribueix a la recerca en ”Ad-
vanced Pixel Selection and Optimization Algorithms for Persistent Scatterer
Interferometry (PSI)”.
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Chapter 11
Introduction

1.1 Background

Ground deformation induced by crustal movement (e.g., earthquakes, volcanoes, etc.) or
human activities (e.g., extractions of underground natural resources and constructions of
underground infrastructures) may cause environmental or structural hazards [1–5]. These
hazards caused by ground deformation could bring massive economic loss and may even
threaten people’s life. It is therefore essential to monitor ground deformation with high
accuracy and adequate spatial resolution. In this way, ground displacements can be bet-
ter understood and managed to minimize the associated loss and damage. Conventional
point-based monitoring techniques such as leveling and Global Positioning System (GPS)
are with very high accuracy. However, ground deformation monitoring with these tech-
niques are time and money consuming, especially for large areas. Moreover, some mon-
itoring areas could be unreachable or very dangerous for these conventional techniques,
as instruments have to be deployed and people have to come into the investigated areas.

As a remote sensing technique, Differential Interferometry SAR (DInSAR) can provide
high resolution ground deformation monitoring results, efficiently [6, 7]. Theoretically,
the ground deformation monitoring accuracy of DInSAR can reach up to millimeter level,
which makes it a powerful tool in land motion detection [8]. However, there are some
limitations, mainly due to temporal and geometrical decorrelations as well as atmospheric
artifacts, that restrict the number of image pairs suitable for interferometric applications,
and compromise its ground deformation monitoring accuracy [9, 10]. To overcome these
limitations, Multi-Temporal InSAR (MTInSAR) or Persistent Scatterer Interferometry
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Chapter 1. Introduction

(PSI) techniques have been proposed and developed in the last two decades, where a set
of Synthetic Aperture Radar (SAR) images of the same area acquired on different dates
are jointly analyzed to retrieve information of ground deformation [10–22].

As SAR pixels are affected by decorrelations [9], only a part of them are able to preserve
high phase quality along the whole observing period. PSI only exploits these high phase
quality pixels for deformation monitoring. Therefore, pixel optimization and selection is
an essential step of all PSI techniques, and there are still some open research questions.
It is actually a trade-off between density and phase quality of the selected pixels. On the
one hand, as many as possible pixels should be selected to guarantee that more details
of the ground deformation can be retrieved. Also the atmospheric artifacts will be better
eliminated if selected pixels’ density is higher, as they are assumed to be low-pass in the
spatial domain. On the other hand, to ensure the accuracy of final products of PSI, only
those pixels with high phase quality should be selected.

1.2 State of the Art

1.2.1 Pixel selection algorithms

1.2.1.1 Permanent scatterers (PSs) and distributed scatterers (DSs)

The reflected signal of a SAR pixel is the coherent sum of contributions from all scatterers
within it. There are in general two kinds of scatterers, one are the so-called determin-
istic scatterers or Permanent Scatterers (PSs) and the other are known as Distributed
Scatterers (DSs).

Permanent Scatterer (PS)s are those targets that are time-invariant and spatially con-
centrated, which are typically characterized by high reflectivities generated by dihedral
or trihedral reflection or simple (deterministic) single-bounce scattering [23]. Man-made
structures, boulders, and outcrops can all generate good PSs [16,18].

Contrary to PSs, Distributed Scatterer (DS)s are those extended targets that are affected
by angular decorrelation and with electromagnetic responses variable between satellite
passes [20]. Vegetation, roads, debris, desert and water areas are typical DSs [16, 18].
Based on their phase characteristics, DSs can be further classified into Random Dis-
tributed Scatterer (RDS) and Coherent Distributed Scatterer (CDS). RDS is the kind
of DS whose phase is totally randomly distributed between [−π, π], like water areas, and
thus it should be treated as noise; while CDSs are those scatterers with coherent infor-
mation for small-baseline interferograms, for instance some roads or non-cultivated lands
with short vegetation, and thus they could be used for information extraction in PSI.

Corresponding with the two kind of scatterers above-mentioned, there are two categories
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1.2 - State of the Art

of SAR pixels can be used for ground deformation monitoring, one are PS pixels and the
other are CDS pixels. A pixel that is dominated by a PS is a PS pixel, as Fig. 1.1(a) shows.
Since the dominant PS is much brighter than the background DSs within one PS pixel, it
contributes mostly to (or determines) the final signal (i.e., amplitude and phase) of this
pixel. And because this dominant PS’s phase is with high Signal to Noise Ratio (SNR),
the phase quality of this PS pixel is good as well. Thus, PS pixels, more paticularly
PS pixels’ phases, can be utilized to extract underlying ground deformation signal [16,
18]. CDS pixels, on the other hand, contain many similar slowly changing distributed
scatterers (CDSs), as Fig. 1.1(b) shows. These pixels contain coherent information in
small-baseline interferograms, thus, they can be exploited for deformation inversion by
using these small-baseline interferograms. Besides, one CDS pixel is usually surrounded
by other neighboring CDS pixels with similar characteristics, as they are usually belong
to same ground objects like roads or desert areas [18].

(a) (b)
Coherent distributed 

scatterer

Random distributed 

scatterer

Permanent scatterer

(a) PS pixel (b) CDS pixel

Figure 1.1: Two categories of pixels.

Correspondly, two classical phase quality metrics, Dispersion of Amplitude (DA) (bet-
ter for PS pixel selection) and coherence stability (better for DS pixel selection), have
been proposed to identify high quality pixels for PSI techniques. Each selection method
explores a particular characteristic, thus they can be considered complementary. Other
sophisticated methods [18] [20] have been also developed based on these two methods.
Those closely related to this thesis will be introduced in the following sections.

1.2.1.2 Permanent scatterer pixel selection

(1) PS pixel selection by amplitude dispersion (DA)

This PS pixel selection approach is based on the assumption that amplitude stable pixels
are high phase quality pixels [10]. High reflectivity pixels which remain amplitude stable
along the temporal span of the acquisitions exhibit a low DA, defined as [10]

DA = σA/mA (1.1)

where mA and σA refer to the mean and the Standard Deviation (STD) of the temporal
amplitude evolution, respectively. It should note that SAR images have to be radiometi-
cally calibrated before calculatingDA by (1.1). Pixels with low values ofDA are associated
with a low phase STD, as Fig. 1.2 (a) demonstrated [10]. Therefore, DA can be used as
the metric of phase stability.

3



Chapter 1. Introduction

DA criterion allows to detect those pixels that are dominated by PSs, and the typical PSI
technique that uses this criterion is the so-called PSInSAR algorithm [10]. This criterion
can preserve the full resolution of a SAR image and it has no theoretical limitation on
the length of interferometric baselines, as PS pixels are supposed to be slightly affected
by both temporal and geometrical decorrelations. Nevertheless, it has the disadvantage
of low density of selected pixels, especially in non-urbanized areas where DSs account for
the majority. What is more, a large number of SAR images, usually more than 20 [10,24],
are required to ensure the reliability of this method.

(2) PS Pixel selection in the spectral domain

Another PS pixel selection method, i.e., the Temporal Sublook Coherence (TSC) method,
which is aimed at finding those point-like pixels that are highly spectral correlated, works
in the spectral domain [19, 25]. The rationale of this approach is that targets exhibiting
high values of TSC (i.e., highly spectral correlated) are directly related to as point-like
scatterers and, consequently, as high phase quality pixels [19, 25]. Fig. 1.2 (b) shows the
relationship between TSC and the phase STD. It can be seen from this figure that PS
pixels with high phase quality (i.e., those pixels with low phase STD) can be selected by
posing a threshold on the TSC. Comparing with DA based pixel selection algorithm, this
method has several advantages. On the one hand, it is able to work on a reduced number
of SAR images, and the radiometric calibration is not required. On the other hand, it
can detect targets which are stable in phase but with high amplitude fluctuations, like
highly directive objects. By combing DA and TSC selection method together, a significant
increase of PS pixels’ density can be obtained [19]. Despite the good performance of the
TSC approach on pixel selection, it only allows the identification of deterministic point-
like scatterers.
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Figure 1.2: Standard deviation of the phase as a function of (a) DA, (b) TSC for the data
set of 32 SAR images.

(3) Other PS Pixel selection methods
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Except the above-mentioned two PS selection algorithms, there are other approaches.
For instance Hooper proposed the so-called temporal coherence for PS identification,
which is calculated directly based on the estimated noisy phase component in stacks of
interferograms [15,16]. The maximum likelihood estimation approach has been also used
to identify PSs subjected to a given phase Probability density function (PDF) [26, 27].
More recently, the polarimetric information has been employed for PSs identification in
cases long-term PolSAR data sets are available [27–29]. Meanwhile, by setting a threshold
on the highest eigenvalue of the interferometric coherence matrix [30] or on the consistency
between PS clusters [31], two new PS pixel selection strategies have been developed.

1.2.1.3 Coherent Distributed scatterer pixel selection

The selection of CDS pixels is baed on the coherence stability criterion. This phase quality
metric is based on pixels’ coherence of each interferogram. The coherence γ

SP C
of one

pixel in an interferogram can be expressed as [6]

γ
SP C

=| γ
SP C
| ·ejψ = E[S1 · S∗2 ]√

E[| S1 |2] · E[| S2 |2]
(1.2)

where S1 and S2 are the complex pixels of the two SAR images forming the interfer-
ogram, E[] and ∗ stand for the expectation and conjugate operator, respectively. The
modulus | γ

SP C
| of the complex coherence, which varies between the range [0, 1], indi-

cates the quality of the interferometric phase ψ. With 1 for fully correlated data, and 0
for totally uncorrelated data. Ideally, a large number of interferograms, which should be
acquired under identical circumstances, would be needed to obtain the expectation values
in (1.2). However, this is impossible as every pixel is observed only once during each SAR
acquisition [32].

In practical situations, the accuracy of phase observations of a uniform region is assumed
to be stationary. Under the assumption of ergodicity, the expectation operator in (1.2) is
replaced by the spatial average, leading to the maximum likelihood estimator | γ̂

SP C
|

| γ̂
SP C
|=

| ΣN
n=1

Sn1 · (Sn2 )∗ |√
ΣN

n=1
| Sn1 |2 ·ΣNn=1

| Sn2 |2
(1.3)

where N indicates the number of looks, i.e. the effective number of independent pixels
involved in the spatial averaging [32]. For simplicity, γ

SP C
means the value of | γ

SP C
|,

and γ̂
SP C

means the value of | γ̂
SP C
| hereafter. The coherence γ̂

SP C
can be calculated

over each interferogram of all the employed interferograms by (1.3). And then the mean
coherence along the stack of the included interferograms can be used as the pixel phase
quality metric for pixel selection. Particularly, if an interferometric phase STD threshold
is set, the threshold on the mean coherence can be determined from the relationship
between coherence and phase STD [32], as Fig. 1.3 shows.

The PSI algorithms like SBAS [12, 14] and Coherent Pixel Technique (CPT) [13, 17]
use coherence stability to identify CDS pixels. The coherence magnitude provides an
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Figure 1.3: Interferometric phase standard deviation vs. coherence for different number of
effective looks (different color lines).

estimation of the pixel’s phase quality for each interferogram, and it is not dependent on
the number of provided images. For this reason, a good estimation of the phase quality
can be reached even when a reduced number of SAR data are available. In addition, a
higher pixels’ density can be obtained in suburban areas by using this criterion, when
compared with the PS pixel selection approaches.

However, the resolution is naturally reduced as spatial averaging is employed in the coher-
ence calculation. On the one hand, the accuracy of the estimated coherence increases as
the number of the involved samples (i.e., the effective looks) grows, as Fig. 1.4 shows. On
the other hand, the resolution decreases as the estimation window size increases. Thus,
to ensure the robustness of the coherence criterion, the loss of the resolution is inevitable.
Moreover, in heterogeneous areas, coherence estimations of central pixels that obtained
through surrounding pixels could be unreliable and important details could be lost. In
addition, the estimated coherence is always greater than the true one, especially for low-
coherence pixels with smaller estimation window sizes the bias are more significant, as
Fig. 1.4 shows. This could affect the pixel selection by this approach, as some low phase
quality pixels’ coherence values could be overestimated and thus be wrongly selected.

1.2.2 Polarimetric Persistent Scatterer Interferometry

PSI techniques have been traditionally applied to single-polarization data, mainly due to
the shortage of long-term polarimetric SAR (PolSAR) datasets. As more satellite sen-
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(a) (b)

Figure 1.4: Coherence estimator validity: (a) True coherence γSP C vs estimated coherence
γ̂SP C . (b) True coherence γSP C vs coherence estimation STD. Lines of different colors shows
the cases of different effective looks.

sors with polarimetric capabilities were launched, such as RADARSAT-2, TerraSAR-X,
Advanced Land Observing Satellite (ALOS-2) or Sentinel-1, the possibility of extend-
ing PSI to the polarimetric case became a reality. Therefore, the polarimetric DInSAR
(PolDInSAR), or Polarimetric Permanent Scatterer Interferometry (PolPSI), was intro-
duced [33] and developed to improve the detection and characterization of deformation
phenomena by increasing the density and quality of valid pixels in comparison with the
single polarization case. Starting from the so-called BEST method [33], which selects
the polarimetric channel with the highest quality estimator among all available chan-
nels, PolPSI techniques have been evolved to more sophisticated methods that search the
optimal polarimetric channel in a more extended space [34–44].

Conventional PolPSI techniques improve interferograms through either the optimization
of an amplitude-based criterion (e.g., DA, suitable for PSs) [34–36, 44, 45] or the maxi-
mization of the coherence stability (γ, suitable for DSs) [27,34–36,41–43,46–48]. Another
phase quality metric, the TSC [19, 49], has also been proposed to optimize interfero-
grams [49], and it is effective mainly for point-like scatterers (i.e., PSs). More recently,
by using the phase-based criterion temporal coherence [15], Sadeghi et al. [50] proposed
a new PolPSI algorithm. This algorithm is able to retain the full spatial resolution of
Single Look Complex (SLC) images, and it is more applicable than the amplitude-based
PolPSI approaches in vegetated areas. Nevertheless, it works mainly for PSs and the
computational cost of optimizing the temporal coherence is higher [50].
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1.2.3 Permanent and Distributed Scatterers Joint Processing

As PSs and DSs are present in real scenarios more adaptive PSI algorithms have been
proposed to deal simultaneously with both.

SqueeSAR [18], which is the so-called second generation of PSInSAR technique, is pro-
posed and incorporated into the traditional PSInSAR framework to exploit both PS and
DS pixels. SqueeSAR and its variants [51–54] utilize similarity tests, e.g., Kolmogorov-
Smirnov (KS) [55] or Anderson-Darling (AD) [56], to search for Statistically Homogeneous
Pixel (SHP)s and perform an adaptive filtering based on the SHPs found. These tech-
niques assume that a DS pixel is usually surrounded by its SHPs. Thus, by setting a
threshold on the number of identified SHPs, pixels can be classified as PS or DS pixels.
PSs are processed by the original PSI method, DSs are treated as a segment with its
SHPs to estimate the covariance matrix. And then based on the covariance matrix, the
maximum likelihood estimation of phase history of the segment can be obtained.

Another category of adaptive PSI algorithm is CAESAR [20] and its variants [47, 57],
which try to separate different scattering mechanisms within one pixel by decomposing
pixels’ covariance matrices using a principal component analysis. Thus, they are able to
mitigate the effects of layover in urban areas for PS pixels and reduce decorrelation of
DS pixels [20]. It is worth to mention that the interferometric covariance matrices for
the decomposition analysis are built in an adaptive way similar with that in SqueeSAR.
Particularly, for PS pixels their covariance matrices are directly obtained on pixel level
while an adaptive averaging should be applied for the case of DS pixels.

For PolPSI techniques, inspired by SqueeSAR [18], Navarro-Sanchez proposed an adaptive
PolDInSAR optimization method, which is based on a spatial adaptive speckle filtering
approach that can jointly process DS and PS pixels [58]. As expected, this new method
can achieve higher pixel densities than the conventional ones. However, as it has to carry
out a similarity test to identify Polarimetric Homogeneous Pixel (PHP)s [58] for each
pixel, its computation burden is high.

1.3 Motivations and objectives

As the aforementioned literature shows, there are some hot topics and open questions
related with pixel optimization and selection for (Pol)PSI techniques. And the two overall
research questions this thesis would like to answer are:

• How can high quality pixels be adequately selected for single-polarimetric
PSI techniques?

• How can polarimetric SAR data sets be utilized in a more efficient and
adaptive way for PolPSI applications?
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The more detailed questions this thesis would like to cope with are:

• How to identify high phase quality pixels from both PS and DS pixels for PSI appli-
cations?

• How can the interferometric phases be efficiently optimized by polarimetric opti-
mization techniques?

• How can PS and DS pixels of multi-temporal PolSAR images be jointly processed to
reduce the influence of decorrelation on PSI applications?

Corresponding to the research questions above, the research objectives are summarized
as follows:

I 1) Develop an inclusive phase quality metric for the identification of high phase
quality pixels from both PS and DS pixels.

I 2) Study a fast and effective phase optimization method for PolPSI techniques.

I 3) Investigate an adaptive multilooking and inclusive pixel selection scheme to
jointly process PS and DS pixels for PolPSI techniques.

I 4) Integrate the above-mentioned methodologies into the SUBSIDENCE-GUI soft-
ware, which is the DInSAR processing chain developed by TSC-UPC based mainly
on the CPT [13,17] technique.

1.4 Thesis outline

This thesis is dedicated to develop advanced pixel optimization and identification al-
gorithms for PSI applications by using single- or multi-polarimetric SAR image stacks.
Corresponding to the research objectives, it is structured as follows:

• Chapter 2 briefly introduces some basic concepts of SAR imaging, DInSAR and
PSI techniques. Meanwhile, fundamentals of PolPSI have also been given to ease
the comprehension of the following chapters related.

• In Chapter 3, the main results of this thesis, which are also the most significant
results related to the four articles construct this thesis, are presented and discussed.

• Chapter 4 summarizes the main contributions and conclusions of this thesis, and
some possible future research outlines related with this thesis are given.

9
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• Chapter 5 lists the four articles generated during the development of this thesis.
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Chapter 22
Theoretical Basis

2.1 SAR Imaging

A SAR system consists of an active microwave sensor mounted in a moving platform
(space-born, air-born or ground-based). This microwave sensor, i.e., the radar, transmits
electromagnetic pulses with a certain Pulse Repetition Frequency (PRF) towards the
observed scene and simultaneously receives the reflected echoes that contain the scene
information. These echoes associated with the observing area are usually stored in a 2D
matrix called raw-data. Fig. 2.1 shows the acquisition geometry of the SAR system.
When it is working, the platform moves along the azimuth direction while the sensor
transmits electromagnetic pulses towards the range direction. The acquired SAR image
is a projection of the observing targets on the Earth surface, known as the ground-range
plane, into the radar acquisition plane, i.e., slant-range plane. The incidence angle θ is
defined as the angle between the range direction and the normal direction of the ground-
range plane as Fig. 2.1 shows.

The range resolution ∆r of a SAR image can be expressed as

∆r = cτ

2 ≈
c

2Bw
(2.1)

where τ is the time duration of the radar transmitted electromagnetic pulses, c the speed
of light, 2 accounts for the round trip delay and Bw refers the pulse bandwidth. As
(2.1) shows, reducing the pulse transmission duration τ or increasing Bw can improve
the range resolution ∆r. However, in order to maintain a required SNR the pulse time

11



Chapter 2. Theoretical Basis

footprint

sensor

azimuth directionnadir track

sl
an

t r
an

ge

orbit

ra
ng

e 
di

re
ct

io
n

X
Y

Z

Figure 2.1: SAR acquisition geometry.

should be kept long enough to guarantee a reasonable level of transmitted power. To
solve this dilemma, the pulse compression technique is typically used. This technique is
based on transmitting a long modulated pulse and processing it afterwards by a matched
filter. The most popular waveform used in range compression of SAR systems is named
as chirp [59], which is a linear frequency-modulated pulse. The bandwidth Bw of the
chirp signal directly depends on the duration of the pulse and the chirp rate α, which can
be expressed as

Bw = ατ. (2.2)

By introducing the chirp signal, the new range resolution can be derived as (2.3) according
to (2.1) and (2.2)

∆r = c

2Bw
≈ c

2ατ . (2.3)

At this point, according to (2.3), the range resolution of SAR image can be improved
thanks to this pulse compression technique.

For a Real Aperture Radar (RAR), its azimuth resolution ∆x is limited by the used
antenna’s beamwidth as follows

∆x ≈ r λ
L

(2.4)

where r is the slant-range distance (i.e., target-to-sensor distance), L the effective antenna
dimension in the azimuth direction, and λ the wavelength. As indicated by (2.4), to
achieve high azimuth resolution an extremely large antennas would be required, which
is technically impossible. To overcome this limitation, the synthetic aperture concept
was invented, which is demonstrated by Fig. 2.2. When a SAR system is working, a
certain target P in the scene is being observed by the sensor during a period tobs that
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depends both on the antenna beamwidth and the velocity of the platform, as Fig. 2.2
shows. Within this observing period several pulse echoes are acquired by the antenna
every ∆t = 1

PRF , and then by coherently combining all these acquired echoes, a larger
equivalent antenna can be synthesized. The length of this synthesized antenna is

LSA = vstobs = 2rλ
L

(2.5)

where vs refers to the platform moving velocity along the orbit. Introducing (2.5) into
(2.4), the new azimuth resolution can be expressed as

∆x ≈ L

2 . (2.6)

Notice how now the azimuth resolution of SAR image has been improved to the level of
the physical length of the real antenna. Moreover, it does not dependent on the very long
sensor-to-target distance any more, and it is constant along the swath.

Ground taget P

Figure 2.2: Synthetic aperture radar concept.

The data obtained through the above procudure is the raw image in the range-azimuth
domain. It has to be processed in both azimuth and range directions to concentrate
each target’s information distributed along these two directions. This processing is the
so-called focusing, and there are several focusing algorithms [60–62].

After focusing processing of SAR raw images, the complex SAR images called Single Look
Complex (SLC) images have been obtained. SLC images contain amplitude and phase
information of the observed scene. For PSI applications, the most useful information
contained in SLC is the phase ϕ, and for a single target it can be expressed as

ϕ = −4π
λ

(r) + ϕscatterer + ϕatm + ϕnoise (2.7)

where r is the sensor-to-target distance, and ϕscatterer is the intrinsic phase that relates to
the target’s electric properties, ϕatm is the extra delay caused by the propagation through
atmospheric layers, and ϕnoise the SAR system thermal noise.
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Because of the side-looking geometry of space-born SAR systems, three main geometric
distortions may occur in space-born SAR images, as Fig. 2.3 shows.

• Foreshortening. For slopes oriented toward the SAR system, they are compressed
in SLC images after the slant-range projection, for instance, from A−B to A′−B′
in Fig. 2.3(a).

• Layover. When the angle of a slope facing to the radar (A − B in Fig. 2.3(b))
exceeds the radar incidence angle, scatterers on this slope are imaged in a reverse
order. In other words, targets at higher elevations appear earlier in SAR image and
they could superimpose on the contribution from the other areas, A−B to B′−A′
in Fig. 2.3(b).

• Shadowing. When a slope away from the radar illumination is steeper than the
incidence angle, there are some parts (e.g., C − D in Fig. 2.3(c)) that are not
illuminated by the radar. As a consequence, no useful information of this area can
be collected and very low amplitudes will appear in SLC, C −D to C ′ −D′ in Fig.
2.3(c).
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Figure 2.3: SAR image geometrical acquisition distortions: (a) foreshortening, (b) layover,
and (c) shadowing.

2.2 SAR Interferometry

Once two SLC images (master image S1 and slave image S2) corresponding to the same
area are co-registered, the interferogram I is defined as the complex product of this pair
of SLC images

I = S1S∗
2 (2.8)

and the related interferometric phase of a target in the scene can be derived as (2.9) by
referring to (2.7)

φ = ϕ1−ϕ2 = −4π
λ

(r1−r2)+(ϕscatterer1−ϕscatterer2)+(ϕatm1−ϕatm2)+(ϕnoise1−ϕnoise2)
(2.9)
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Figure 2.4: Interferogram acquisition geometry.

where ϕ1 and ϕ2 are the targets’ phases of the master and slave images, respectively.
Under the assumption that the target characteristics do not change that much from one
image to the other, i.e. ϕscatterer1 ≈ ϕscatterer2 , (2.9) turns to

φ = −4π
λ

(r1 − r2) + φatm + φnoise (2.10)

where φatm = ϕatm1 − ϕatm2 accounts for the difference between the two atmospheric
phase terms of these two acquisitions, and φnoise = ϕnoise1 − ϕnoise2 .

For space-born SAR systems, the two SLC images are acquired at slightly different po-
sitions separated by a distance known as baseline B, as Fig. 2.4 shows. For two given
generic targets A and B, as Fig.2.4 shows, the related interferometric phase increment
∆φAB between these two targets can be expressed as a function of their slant-range dis-
tances difference ∆rAB , the reference distance r0, the radar incidence angle θ, the height
difference between the two points ∆hAB and the perpendicular baseline Bn. The latter
is the projection of the baseline into the perpendicular direction of the incidence angle,
as it shows in Fig. 2.4.

Particularly, the increment of the interferometric phase ∆φAB can be expressed as

∆φAB = ∆φflat + ∆φtopo + ∆φatm + ∆φnoise (2.11)

where
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• ∆φflat is the flat earth phase contribution, which accounts for a phase trend gener-
ated by an ideally flat earth. This phase term appears as a phase ramp that depends
on the perpendicular baseline Bn, and it grows from the near-range (minimum dis-
tance) to the far-range (maximum distance).

∆φflat = 4π
λ

Bn
r0tan(θ)∆rAB (2.12)

• ∆φtopo is the topographic phase term induced by the height variation ∆h, and it
contains the topographic information of the scene. The larger the spatial separation
(perpendicular baseline Bn) between acquisitions, the higher the topographic phase
variation, as (2.13) shows.

∆φtopo = 4π
λ

Bn
r0sin(θ)∆hAB (2.13)

• ∆φatm accounts for changes in the atmospheric conditions between the two different
temporal acquisitions.

• ∆φnoise is the noise phase term introduced by all the decorrelation factors that
degrade interferometric phase quality.

A Digital Elevation Model (DEM) can be generated by the exploitation of the topographic
phase term ∆φtopo, which was the fisrt application of SAR interferometry. Particularly, by
removing the flat earth term and neglecting (or canceling) atmosperic and noise phase ones
in (2.11), only ∆φtopo left. And then, because of the cyclical nature of the interferometric
phase, an unwrapping process has to be applied to ∆φtopo [63–65]. In the next, the
unwrapped phase can be converted into heights through the inversion of (2.13) and this
floating solution can be fixed by one or more tie points with known heights.

2.3 Differential SAR Interferometry

The Differential interferometry SAR (DInSAR) technique quantifies ground deformation
by exploiting interferometric phase difference. The differential interferometric phase equa-
tion, which accounts for the possible terrain deformation undergo between the two SAR
acquisitions, can be expressed as

φ = φflat + φtopo + φdef + φatm + φnoise (2.14)

with
φflat = 4π

λ

Bn
r0tan(θ)∆r, φtopo = 4π

λ

Bn
r0sin(θ)∆h, φdef = 4π

λ
ρ (2.15)

where ∆r is the target-to-radar distance difference between the two acquisitions (caused
by the perpendicular baseline), ∆h represents the target’s height (w.r.t. the flat earth
plane), and ρ in φdef is the deformation to be estimated.
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The deformation phase term is the objective of DInSAR techniques and thus the other
interferometric phase should be canceled. Based on an external DEM and orbital infor-
mation, the topographic term φtopo and flat earth phase term φflat can be canceled. Once
these two phase terms have been canceled from (2.14), the remain residual phase can be
exploited for deformation extraction. However, two important aspects must be taken into
account when retrieving displacement by DInSAR techniques:

• There could be undesirable phase fringes caused by the changes of atmospheric
artifacts between the two SAR acquisitions (i.e., φatm). These atmospheric fringes,
in some cases, are hard to be canceled from differential interferograms as they may
be similar with the ones generated by deformation.

• The differential phase can be wrapped for case of abrupt terrain displacement,
which could be solved by employing unwrapping techniques or relating close targets
to avoid phase cycles.

2.4 Persistent Scatterer Interferometry

The classic DInSAR technique is effective for large and abrupt deformation, such as those
caused by earthquakes or volcanic eruptions. However, it is difficult to apply it in mon-
itoring low velocity deformations where differential interferograms with large temporal
baselines should be used. In this case, temporal decorrelation can degrade interferometric
phases, making the extraction of useful information almost impossible, unless large co-
herent areas are present. Moreover, the presence of atmospheric artifacts and geometrical
decorrelation can also undermine qualities of interferometric phases, consequently, reduc-
ing deformation estimation accuracy. To overcome these limitations, various techniques
have been proposed during the last two decades to investigate the temporal evolution of
deformations from large image datasets. These techniques are known as the advanced
DInSAR, the Multi-Temporal InSAR (MTInSAR) or the Persistent Scatterer Interferom-
etry (PSI) [10–20].

The work in this thesis is developed based on the Coherent Pixels Technique (CPT)
[13,17], which is the PSI algorithm proposed by CommSensLab of the Signal Theory and
Communications department of the Universitat Politècnica de Catalunya (UPC). It has
now been implemented in the SUBSIDENCE-GUI processor. CPT has been successfully
applied to different scenarios for ground deformation monitoring [66–72], and it consists
of mainly four blocks: Interferogram selection and generation, Pixel optimization and
selection, Linear deformation estimation, Non-linear deformation estimation.

The interferogram selection block determines the approach of interferogram generation
(e.g., the single-master or multi-master approach), and both spatial and temporal maxi-
mum baseline lengths allowed for interferograms. Details about this block can be found
in [73]. The second block, i.e. the pixel optimization and selection block, is employed
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to optimize pixels’ interferometric phases and identify those high phase quality pixels
along the observing period. This thesis is focused on this block, and its state-of-art has
been described in detail in Chapter 1. The other two blocks that aimed respectively
at linear and non-linear deformation estimation will be briefly introduced in this section.
More details of CPT and the SUBSIDENCE-GUI processor can be found by referring
to [73], [74].

2.4.1 Linear Deformation Estimation Block (LDEB)

Starting from the differential interferograms and a map of selected Persistent Scatterer
Candidate (PSC)s, the Linear Deformation Estimation Block (LDEB) estimates the linear
deformation velocity v and the residual topographic error ε, which is due to inaccuracies
of the DEM employed for the generation of differential interferograms. This is accom-
plished by adjusting a linear model of v and ε to the data (i.e., the phases of differential
interferograms). This linear model, on interferogram level, of one pixel can be expressed
as

φmodel = 4π
λ
· T · v + 4π

λ
· Bn
r · sin(θ) · ε (2.16)

where λ is the wavelength, T and Bn are respectively the temporal and perpendicular
baselines of the interferogram, r the sensor-to-target distance, θ the local incidence angle.

The LDEB can be divided into three sub-blocks, i.e., Triangulation, Minimization and
Integration, as Fig. 2.5 shows:

Interferograms PSCs Map

Triangulation

Minimization

Integration

Phase Increments

Linear Increments

Linear velocity and 
DEM error

Figure 2.5: Diagram for the estimation of the linear components of CPT.
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1) Triangulation

Due to different phase offsets among differential interferograms, it is very difficult to
derive v and ε through (2.16) by using phases of individual pixels, directly. On the other
hand, the differential interferometric phases are wrapped and may contain atmospheric
artifacts, which can affect the adjustment of (2.16). These problems are overcome by
relating neighboring PSCs by the means of Delaunay triangulation, where the PSCs are
nodes and links between nodes are arcs. Then phase increments along arcs are calculated
on the interferogram level, and the phase increment along arcm,n of the i− th differential
interferogram can be expressed as

∆φi (Ti, Bn,i, xm, ym, xn, yn) = ∆φi (Ti, Bn,i, arcm,n) = φi (xm, ym)− φi (xn, yn)
(2.17)

where the (xm, ym) and (xn, yn) are locations of the two nodes (i.e., the two selected
pixels) forming this arc. In this way, CPT is able to work with interferometric phase
increments rather than absolute phases. On the other side, for the i − th differential
interferogram, the linear model along arcm,n can be derived as (2.18) according to (2.16)

∆φimodel (Ti, Bn,i, arcm,n) = 4π
λ
· Ti ·∆v (arcm,n) + 4π

λ
· Bn,i
ri · sin(θi)

·∆ε (arcm,n) (2.18)

where ∆v (arcm,n) and ∆ε (arcm,n) are respectively the linear velocity and DEM error
increment along arcm,n [73, 74].

2) Minimization

As ∆v (arcm,n) and ∆ε (arcm,n) are constants for all the interferograms, they can be esti-
mated by adjusting ∆φimodel to the data ∆φi. This is achieved through the minimization
of a designed cost function Γ (arcm,n) as

Γ (arcm,n) = 1
Nint

·
Nint∑
i=1

∣∣∣e−j∆φi(Ti,Bn,i,arcm,n) − e−j∆φ
i
model(Ti,Bn,i,arcm,n)

∣∣∣2 (2.19)

where Nint is the number of interferograms. This minimization is done in the complex
plane, thus, any kind of phase unwrapping on interferograms is not required at this step.
By doing this minimization from one arc to the other, increments of linear velocity and
DEM error of all arcs in the network can be obtained. Meanwhile, the model quality (or
model coherence) of each arc is calculated to asses the quality of its related solution (i.e.,
∆v and ∆ε). After this, to ensure final products’ reliabilities of LDEB, bad quality arcs
are eliminated by discarding those with model coherence values below a threshold [73,74].

3) Integration

From the arc increments obtained in the previous step, the linear displacement and DEM
error for each selected pixel are derived through an integration process. And then this
float solution can be fixed by using one or multiple pixels with known DEM errors and
linear velocities as tie points. The flow-chart of LDEB is depicted in Fig. 2.5.
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2.4.2 Non-linear Deformation Estimation Block (NLDEB)

The LDEB obtains linear component of the displacement, to retrieve a complete estima-
tion, the non-linear deformation has to be retrieved. This is completed by Non-linear
Deformation Estimation Block (NLDEB) of CPT, and it consists of two parts, i.e., atmo-
spheric artifacts estimation and temporal non-linear displacement estimation, as Fig. 2.6
shows.

Linear phase model

Residues

Low-pass spatial 
filtering + 

Unwrapping

SVD + High-pass 
temporal filtering 

APS Estimation

Refined phase model

Non-linear 
deformation 

Residues

SVD

Non-linear 
deformation

Final Total time-series 
deformation 

Interferogram
stack

+

DEM error Linear velocity

Figure 2.6: Diagram for the estimation of the non-linear displacement of CPT.

1) atmospheric artifacts estimation

The residual interferometric phase φres for each interferogram can be obtained by sub-
tracting the linear components obtained by LDEB from the differential interferometric
phase φ as

φres = φ− φmodel (2.20)

where φmodel is the linear model phase that can be obtained according to (2.16). Then
based on φres, the atmospheric phase can be isolated by taking advantage of its different
spatio-temporal frequency properties with that of the non-linear deformation component.
Particularly, the atmospheric phase can be considered as a spatial low-pass signal in each
interferogram (or image) and a white noise process in time. On the other hand, the
non-linear deformation presents a narrower spatial correlation window compared with
Atmospheric Phase Screen (APS) and presents a low-pass behavior in time. It is worth to
note that due to the white noise process of atmospheric artifacts, their frequencies fill the
whole temporal spectra and, thus, partially overlap with that of non-linear deformation.
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Firstly, a low-pass spatial filtering is applied to the interferometric residue of each inter-
ferogram and the filtered residue should become

φres,SLR = φnon−linear,SLR + φatm (2.21)

where φnon−linear,SLR is the Spatial Low Resolution (SLR) non-linear component of the
displacement, and φatm the APS as it is assumed to be low-pass in spatial domain and
not affected by the spatial filter.

After the spatial low-pass filter, an offset for each φres,SLR can be estimated through an
histogram analysis. And this new set of residual interferometric phases are easy to unwrap
since they should be very smooth in spatial as almost all fringes have been removed. Once
unwrapped the phase and removed an offset for each one of the residual interferograms, the
Singular Value Decomposition (SVD) is applied to transform the phase from differential
time domain to the image time one.

After the above inversion, the result is integrated with respect to the first image. And
then a high-pass temporal filter is employed to extract the image level APS term. Until
now, the atmospheric phase φAPS for any interferogram can be calculated. It is worth to
note that the high-pass cut frequency for the temporal filter should be set as the highest
possible frequency of the non-linear displacement.

2) temporal non-linear displacement estimation

Once the APS has been estimated, a new residual interferometric phase free of atmospheric
artifacts can be calculated as

φres,APSfree = φ− φmodel − φAPS − φoff = φnon−linear + φnoise (2.22)

where φAPS and φoff are the APS and phase offset estimated in the previous step,
φnon−linear the non-linear deformation component, and φnoise the interferometric phase
noise term. Then by employing a new SVD process on φres,APSfree of all the interfer-
ograms, the temporal phase profile corresponding with non-linear deformation can be
retrieved and converted to displacement. Finally, the total deformation is obtained by
adding the linear and non-linear terms together, as it is shown in Fig. 2.6.

2.5 Polarimetric Persistent Scatterers Interferometry
(PolPSI)

2.5.1 Polarimetric SAR interferometry (PolInSAR)

Polarimetric SAR interferometry (PolInSAR) is based on two polarimetric SAR images
acquired from two spatially separated locations [40, 75]. In monostatic systems the as-
sumption of reciprocity can be applied and for quad-pol SAR data sets the PolSAR
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scattering vector k under Pauli basis can be obtained with

k = 1√
2

[Shh + Svv, Shh − Svv, 2Shv]T (2.23)

where T means the transpose, Shh and Svv stand for the horizontal and vertical co-polar
channels, respectively, and Shv, equal to Svh in the monostatic case, is the cross-polar
channel of the scattering matrix [76]. If the data is dual-pol, (2.23) is replaced by (2.24)
if only the co-polar channels are available,

k = 1√
2

[Shh + Svv, Shh − Svv]T (2.24)

or by (2.25) if a co-polar xx and the cross-polar channels are available,

k = [Sxx, 2Shv]T . (2.25)

Then the PolInSAR vector can be defined as

K = [k1, k2]T (2.26)

where k1 and k2 are the two scattering vectors from the master and slave PolSAR images
that form the interferogram. To generate a single interferogram based on K, two nor-
malized complex projection vectors ω1 and ω2 are introduced [75,76]. These two vectors
can be interpreted as two scattering mechanisms (SMs), and the two PolInSAR vectors
k1 and k2 can be projected onto them, respectively

µi = ω†i · ki, i = 1, 2 (2.27)

where † refers to the conjugate transpose, µ1 and µ2 are the two scattering coefficients,
analogous to single-polarization SAR images [75], [76]. To avoid introducing artificial
changes in the phase centers of the scatterers in PolPSI applications, ω1 and ω2 are forced
to be identical to one optimal projection vector ω for all the interferograms [35,36,75].

The rationale of polarimetric optimization techniques, i.e. PolPSI techniques, is to en-
hance the phase quality of the interferograms by combining adequately the different po-
larization channels available to produce an improved one according to a figure of merit.
And as it will be introduced in the following two subsections, there are two common
phase quality metrics used for the polarimetric optimization in PolPSI techniques. One is
DA, which is better for the optimization of PS pixels, and the other is coherence stability
better for DS pixels’ optimization.

2.5.2 Polarimetric Optimization for Deterministic Scatterers (PSs)

For deterministic scatterers, ki in (2.27) corresponds to a deterministic vector [36,58,76].
The expression for vector interferogram can be obtained as [75]

Intf = µ1 · µ∗2 (2.28)
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where ∗ is the complex conjugate. The commonly used pixel phase quality criterion for
PSs is the amplitude dispersion DA, which can be can be expressed as [34,36]

DA = σA
mA

= 1
|ω†k|

√√√√ 1
N

N∑
i=1

(
|ω†ki| − |ω†k|

)2
(2.29)

with

|ω†k| = 1
N

N∑
i=1
|ω†ki| (2.30)

where σA and mA are the standard deviation and mean of the images’ amplitudes, N is
the number of images and the over line indicates the empirical mean value [34,36].

2.5.3 Polarimetric Optimization for Distributed Scatterers (DSs)

For distributed scatterers, (2.26) behaves as a random vector due to the complex stochastic
scattering process within one resolution cell [36, 58]. In this case, the 6 × 6 (for full-pol
data) or 4 × 4 (for dual-pol data) PolInSAR coherency matrix T6 or T4 are defined as
(2.31) to characterize the scatterers’ behaviors

T6 \ T4 = E{kk†} =
[

T11 Ω12
Ω†12 T22

]
(2.31)

where E is the expectation operator, which is usually implemented with a spatial neigh-
boring average [75,76]. T11 and T22 are the individual coherency matrices and Ω12 is the
PolInSAR coherency matrix given by [75]

T11 = E{k1k†1} T22 = E{k2k†2} Ω12 = E{k1k†2}. (2.32)

Then the vector interferogram can be obtained with

Intf = E{µ1 · µ∗2} = E{(ω†k1)(ω†k2)†}

= ω†E{k1k†2}ω = ω†Ω12ω
(2.33)

from which the interferometric phase can be derived as arg(ω†Ω12ω). The corresponding
coherence γ(ω) is then given by [75,76]

γ(ω) = |ω†Ω12ω|√
ω†T11ω

√
ω†T22ω

. (2.34)

For PolPSI applications, the mean coherence γ expressed by (2.35) is used as the inter-
ferometric phase quality estimation [34,36,58]

γ = 1
Nintf

Nintf∑
k=1

γ(ω)k (2.35)
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where Nintf is the number of interferograms.

It can be seen from (2.29) and (2.35) that the two phase quality estimators DA and γ
are both influenced by the projection vector ω. Therefore, phase optimization in PolPSI
consists in searching for the optimal projection vector ω that minimizes DA or maximizes
γ. The simple BEST method simply selects the polarization channel with the highest
estimated phase quality. The ESM approach explores the full space of solutions while
SOM just a subspace, both at the price of a high computational burden. The detailed
implementation of the three methods can be found in [36].

It has to be noted that in PolPSI applications the same projection vector ω has to be
used for all images. If not, the choice of different projection vectors for each image of the
interferograms may lead to undesired changes in the phase centers of the scatterers [36].
So, it has to be ensured for any pixel that ω1 = ω2 = ω for all images of the data set.
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Chapter 33
Results

The objectives of this thesis are addressed in four peer-reviewed journal articles. This
chapter briefly presents the core idea and main results of the four articles, and the full
contents of these four journal articles can be found in Chapter 5.

3.1 A Temporal Phase Coherence Estimation Algo-
rithm for the Selection of Persistent Scatterers

This section is based on: Feng Zhao and Jordi Mallorqui, A Temporal Phase Coherence
Estimation Algorithm and Its Application on DInSAR Pixel Selection, IEEE Transactions
on Geoscience and Remote Sensing, 2019 [77] (See Section 5.1).

3.1.1 Introduction

Pixel selection is a crucial step of all advanced DInSAR techniques that has a direct im-
pact in the quality of the final PSI products. The conventional DA or coherence stability
approach has shortcomings as discussed in Chapter 1. To overcome these shortcom-
ings, in [77] (i.e., Section 5.1), we propose a full-resolution phase quality etimation and
pixel selection approach for PSI processing. The proposed algorithm is similar to the
conventional coherence method, but it estimates the phase coherence temporally. Since
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the conventional coherence is estimated based on the spatial neighboring pixels and the
new coherence is obtained in the temporal dimension, we refer the classical coherence as
spatial coherence (SPC) and the new coherence as Temporal Phase Coherence (TPC).
As the coherence is now evaluated temporally at pixel level, the method is able to work
on both PS and DS pixels. The idea of TPC is similar with that was proposed by
Hooper [15], but a different approach has been used to estimate it. Also, the influence
of different interferograms’ combinations on the estimation of TPC and its relationship
with the interferometric phase standard deviation (phase STD), which had not been suf-
ficiently discussed in Hooper’s paper [15], [16], have been deeply investigated in [77] (i.e.,
Section 5.1).

3.1.2 Main Results

Together with the classical coherence and amplitude dispersion methods, the TPC pixel
selection algorithm has been tested on 37 VV polarization Radarsat-2 images of Barcelona
Airport. The derived deformation maps by employing the three pixel selection methods
are shown in Fig. 3.1 (i.e., Fig. 11 in [77]), where very similar subsidence trends are
detected by all the three approaches. The derived subsidence patterns and deformation
values are in good accordance with previous studies [35, 36, 58], which further validates
the reliability of the results. The subsidence mainly occurred over the airport access road
and Terminal T1 areas, and the maximum subsidence velocity reaches up to 2.5 cm/year.

As Fig. 3.1 illustrates, the TPC approach has much better performance in pixels’ den-
sity than the other two methods. Particularly, the TPC method is able to select 22,744
pixels, which accounts for about 318% and 146% of that obtained by DA (7,150 pixels)
and SPC (15,547 pixels) approaches. For the SPC case it has to be pointed out that as a
moving averaging window has been used the pixels are not at full resolution. Due to the
obvious improvement on pixels’ density, TPC can detect at full resolution more detailed
subsidence patterns than the other two. Besides obvious improvements on the number
of selected pixels, the new method shows some other advantages comparing with the
other classical two [77]. The proposed pixel selection algorithm, which presents an afford-
able computational cost, is easy to be implemented and incorporated into any advanced
DInSAR processing chain for high quality pixels’ identification.
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Figure 3.1: Deformation velocity map in Barcelona ”El Prat” Airport retrieved by (a) the
PS (DA) approach, (b) the classical spatial coherence (SPC) approach, and (c) the proposed
temporal phase coherence (TPC) approach. The number in the bracket represents the amount
of selected pixels by each approach.
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3.2 Landslide Monitoring Using PSI With Advanced
Persistent Scatterers Selection Methods

This section is based on: Feng Zhao, Jordi Mallorqui, Rubén Iglesias, Josep Gili, and Jordi
Corominas, Landslide monitoring using multi-temporal SAR interferometry with advanced
persistent scatterers identification methods and super high-spatial resolution TerraSAR-X
images, Remote Sensing, 2018, 10(6), 921 [78] (See Section 5.2).

3.2.1 Introduction

The TPC pixel selection approach has been proposed and tested in a small area with
the C-band Radarsat-2 data set in [77] (i.e., Section 5.1). However, its validity and
advantages have not been demonstrated by other SAR data set of different band over dif-
ferent scenario. On the other hand, landslides are usually located in mountainous areas
and the area of interest can be partially or even heavily vegetated. The inherent tempo-
ral decorrelation that dramatically reduces the number of Coherent Scatters (Coherent
Scatterer (CS)s) of the scene limits in practice the application of PSI technique for land-
slide monitoring. It is thus crucial to be able to detect as much CSs as possible that
can be usually embedded in decorrelated areas. High resolution imagery combined with
efficient pixel selection methods can make possible the application of DInSAR techniques
in landslide monitoring. Therefore, in [78] (Section 5.2), the TPC approach with the
other two full-resolution PS identification algorithms are employed together with 32 su-
per high-spatial resolution (Super High-spatial Resolution (SHR)) TerraSAR-X (TSX)
images, staring-spotlight mode, to monitor the Canillo landslide (Andorra) [See Fig. 1
in Section 5.2]. The performance of TPC is assessed by comparing with the other two
pixel selection methods in this challenging area with a X-band SAR data set.

3.2.2 Main Results

3.2.2.1 Line-of-Sight (LOS) Monitoring Results

The Line of Sight (LOS) displacement rate maps derived by the three full-resolution pixel
selection methods (i.e., the DA, TSC and TPC) are shown in Fig. 3.2(a-c) (i.e., Fig.
8(a-c) in [78]), respectively. To make a fair comparison, the pixel selection thresholds for
all the three methods were established based on a phase standard deviation of around 15◦.
Then the corresponding thresholds for each strategy can be selected. Similar displace-
ment trends have been detected by all of them, and the maximum displacement velocity
reaches up to −3.5 cm/year (the minus sign means movement away from the satellite, i.e.,
downslope motion due to the landslide orientation). Within the landslide limits, there are
mainly three large displacement subareas (indicated by the red rectangles in Fig. 3.2),
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located at the El Pic de Maians (subarea A), costa de les Gerqueres (subarea B) and Cal
Borró-Cal Ponet (subarea C), respectively. These three subareas’ locations and displace-
ment patterns are coincident with the monitoring results obtained with another data set
in 2011 [79]. The data set consisted on Sliding-spotlight TerraSAR and GB-SAR images,
and data from inclinometers deployed in the landslide, all acquired from October 2010
until October 2011. Previous results have confirmed that the location and evolution of
the landslide body have not changed significantly during the recent years. This fact is in
good agreement with the geological expectations.

Among the three pixel selection methods, DA and TSC select pixels that behave as point
scatterers while TPC can work on both point and distributed scatterers (DSs). Since
there are many DS pixels (e.g., the road) in the study area, TPC obtains a much higher
density of pixels than DA and TSC approaches. Notice in Fig. 3.2 how well the TPC
method has identified those pixels along the downhill road, while the other two have just
selected a reduced set of them. At the same time, the TSC method obtains more PSs
than DA. This can be explained by the fact that the DA method is very sensitive to
the amplitude changes that highly directive scatterers produce when the local incidence
angle changes from image to image. Specifically, the number of CSs obtained by TPC
method is 757,086, the counterparts of TSC and DA methods are 139,065 and 294,484,
respectively. The improvement of the TPC and TSC methods on DA is around ×5.4 and
×2.1, respectively. The TPC method thus has the best performance in terms of obtained
valid pixels’ density.

3.2.2.2 Comparison with GPS Measurements

The displacement velocities of the 37 GPS control points have been projected to the
LOS direction to compare them with the DInSAR results, as shown in Fig. 3.2(d). In
subarea A of Fig. 3.2(d), a small displacement with a velocity around −1 cm/yr has
been detected. In the subarea C, significant movement with velocity around −4 cm/yr
has been monitored by the GPS. In the subareas A and C, the GPS and PSI measured
displacement velocities are consistent with each other. Unfortunately, no GPS points
were available in the subarea B for comparison. On the contrary, large displacements
have been recorded by the GPS within the subarea D (highlighted by the red rectangle
in Fig. 3.2(d)), where there are no counterpart PSI pixels in its near vicinity. However,
the further neighboring PSI pixels present LOS velocities about −1.5 cm/yr, providing
evidence of the agreement of the GPS and PSI results also in this subarea.

To summarize the comparison, a scatter plot with the GPS and PSI derived displacements
is shown in Fig. 3.3 (i.e., Fig. 11 in [78]). In this plot, the PSI displacements are estimated
by averaging those of the neighbouring pixels of the related GPS measurement point (less
than 50 m apart). In addition, they have been determined from the displacement time-
series taking the overall two year displacement from October 2014 to October 2016, as
the GPS date campaigns. As Fig. 3.3 reveals, the GPS and PSI displacements follow the
same trends and present a correlation coefficient of R2 = 0.90. For GPS measurement
points with noticeable displacement (highlighted by the red ellipse in Fig. 3.3), their
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Figure 3.2: LOS displacement velocity maps derived by (a) DA, (b) TSC, (c) TPC and (d)
GPS approaches, respectively. The filled blue triangle in (d), i.e., E1, indicates the location
of the GPS base point. GPS displacements have been projected to LOS. The red rectangles
highlight the areas of deformation. The red numbers at the right bottom corner of (a–c)
represent the amount of valid pixels obtained by each method.
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surrounding PSI pixels show large displacements as well. Meanwhile, for those stable
GPS measurement points (limited by the blue rectangle), with displacements between −2
to 2 cm, their corresponding PSI displacements are also within this range.
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Figure 3.3: Comparison of PSI and GPS derived displacements (October 2014 to October
2016).

3.2.2.3 Summary

The results show that advanced full-resolution pixel selection strategies (i.e., the temporal
sub-look coherence (TSC) and temporal phase coherence (TPC) methods) are able to
obtain much more valid pixels than the classical amplitude dispersion (DA) method. In
addition, the TPC method presents the best performance among all three full-resolution
strategies employed. Thanks to the huge amount of valid pixels obtained by the TPC
method with SHR TSX images, the complexity of the structure of the Canillo landslide
has been highlighted and three different slide units have been identified. The results of
this study indicate that the TPC approach together with SHR SAR images can be a
powerful tool to characterize displacement rates and extension of complex landslides in
challenging areas.

3.3 Coherency Matrix Decomposition Based Polari-
metric Persistent Scatterer Interferometry

This section is based on: Feng Zhao and Jordi Mallorqui, Coherency Matrix Decomposition
Based Polarimetric Persistent Scatterer Interferometry, IEEE Transactions on Geoscience
and Remote Sensing, 2019 [80] (See Section 5.3).
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3.3.1 Introduction

In [77] and [78] the TPC pixel selection approach for single-polarimetric PSI techniques
has been proposed and tested in different scenario. As more and more SAR sensors are
capable of acquiring polarimetric SAR data sets, it is necessary to investigate pixel op-
timization and selection methods by employing polarimetric SAR images. The rationale
of polarimetric optimization techniques, i.e. PolPSI techniques, is to enhance the phase
quality of the interferograms by combining adequately the different polarization chan-
nels available to produce an improved one. Different approaches have been proposed
for interferometric phase optimization of Polarimetric Persistent Scatterer Interferometry
(PolPSI). They range from the simple and computationally efficient BEST, where for
each pixel the polarimetric channel with the best response in terms of phase quality is
selected, to those with high computational burden like the Equal Scattering Mechanism
(ESM) and the Sub-Optimum Scattering Mechanism (SOM).

BEST is fast and simple but it does not fully exploit the potentials of polarimetry. On
the other side, ESM explores all the space of solutions and finds the optimal one, which
is very time-consuming and may limit its applications in practice for large scenes. Other
efficient methods [41,42] have been investigated to reduce the computation time of polari-
metric coherence optimization. Unfortunately, they can hardly be applied on polarimetric
optimizations that based on full-resolution quality metrics, like DA.

In [80] (i.e., Section 5.3), a new PolPSI approach with a good compromise between
computation burden and phase optimization performance is proposed. This approach has
been named as CMD-PolPSI and it uses the coherency matrix decomposition to determine
the optimal polarimetric channel. It does not have to search for the solution within the
full space of solutions and the optimization, despite it is not as optimal than with ESM,
outperforms BEST. To assess the performance of the proposed CMD-PolPSI, it has been
tested with three different PolSAR data sets. One is the quad-pol Radarsat-2 images
acquired over Barcelona (Spain), the other two are dual-pol TerraSAR-X and Sentinel-1B
data sets acquired over Murcia (Spain) and Mexico City (Mexico), respectively. All the
three test sites are affected by subsidence phenomena. The benefits of the proposed CMD-
PolPSI regarding phase quality improvement and pixel densities of the final deformation
maps have been evaluated and discussed in [80] (i.e., Section 5.3). The main results
corresponding with the Barcelona study area are presented in the following section (i.e.,
Section 3.3.2) to demonstrate the effectiveness of the proposed CMD-PolPSI.

3.3.2 Main Results

DA is a good estimator of phase quality for values below 0.4 [10]. The smaller the DA,
the better the phase quality. Typical thresholds are set to 0.25 as they lead to a good
compromise between phase quality and pixels’ density.
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3.3.2.1 Phase Optimization Results

DA histograms obtained with the different approaches over Barcelona are presented in Fig.
3.4 (i.e., Fig. 2 in [80]). It can be seen from Fig. 3.4(a) that all optimization methods
improve pixels’ phase qualities, w.r.t the HH channel, for DA below 0.4. Fig. 3.4(b)
shows a detailed view of the histograms in the pixel selection range, this is DA < 0.25.
As expected, ESM is the technique that has the best optimization performance. Except
ESM, the proposed CMD-PolPSI achieves the best optimization results, closely followed
by SM-BEST and SM1 in the range of pixel selection. SM1 performs a little slightly below
SM-BEST, as the two histograms (black and blue lines in Fig. 3.4(b)) overlap, but much
better than BEST. This implies that if there is one dominant scattering mechanism (SM)
within one pixel, which is the case for good PSs, it can be well represented by the first
eigenvector of its full-pol coherency matrix. For lower quality pixels out of the selection
range, the first eigenvalue produces worst results and its performance is even below the
single HH channel, as it is shown by Fig. 3.4(a).

(a)

(b)

Barcelona Amplitude Dispersion Histograms

Figure 3.4: (a) Dispersion of amplitude (DA) histograms using HH polarimetric channel or
the SM1, BEST, SM-BEST, ESM and the proposed CMD-PolPSI DA optimization methods
over Barcelona. (b) Detail for DA values from 0 to 0.25.

3.3.2.2 Ground Deformation Monitoring Results

Ground deformation results estimated by the BEST, CMD-PolPSI and ESM approaches
are shown in Fig. 3.5 (i.e., Fig. 3 in [80]). All methods, using a DA threshold of 0.25
(around 15◦), have provided similar results in terms of location, magnitude and extend
of the different deformation bowls but with different final PS pixel densities. In order to
compare the final densities, the results of the HH channel have been used as a reference.
Using only the HH channel 78,454 valid pixels have been obtained. BEST is able to rise
its number to 164,152, which implies an improvement of 109%. CMD-PolPSI achieves
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203,030 pixels, an improvement of 159%. Comparing both methods, the proposed CMD-
PolPSI is able to retrieve 38,878 additional pixels w.r.t. the BEST method, which accounts
for 24% more than BEST. This better performance of CMD-PolPSI is due to the fact that
it explores the optimal SM in a more extended space (HH, VV, HV, SM1, SM2 and SM3).
As shown in Table II of [80] (i.e., Section 5.3), SM1 represents the 63.5% of the final
PS pixels while the other two SM have a marginal contribution. HH and VV channels
have similar weights in the obtained pixels, around 10.7%, and HV channel a 15.0%.
As expected, the ESM optimization is able to reach the highest density with 499,028
final PS pixels obtained, which represents improvements of 536% w.r.t. the HH case
and 146% w.r.t the CMD-PolPSI. However, the computational burden of ESM is much
higher than that of CMD-PolPSI. Particularly, for the Barcelona full-pol data set (1602
× 4402 pixels), ESM takes 271,900 seconds (around 75.5 hours) for the DA based phase
optimization and the CMD-PolPSI just 1,068 seconds (around 0.3 hours), which is 255
times faster than ESM. The experiment has been carried out on a workstation equipped
with an 8-core Intel(R) Xeon(R) E5620 processor (2.4 GHz) and 60 GB of RAM. The
implementation of the software is in IDL.

To conclude, the results show that CMD-PolPSI presents better optimization results than
BEST method. Compared with the ESM algorithm, CMD-PolPSI is much more faster
but its performance is not as optimal.
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(a) HH (78454) (b) BEST (164152, 109%) 

(c) CMD-PolPSI (203030, 159%) 

(d) Additional pixels of 

(c) w.r.t. (b) (38878) 

(e) ESM (499028, 536%) 

(f) Additional pixels of 

(e) w.r.t. (c) (295998) 

Figure 3.5: Ground deformation estimated by (a) HH, (b) BEST, (c) CMD-PolPSI and (e)
ESM approaches over Barcelona. (d) the additional pixels of CMD-PolPSI w.r.t. BEST,
and (f) the additional pixels of ESM w.r.t. CMD-PolPSI. The number in brackets represents
the final number of PS pixels for each approach, and the improvement percentage is w.r.t.
those derived by the HH approach.
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3.4 Deterministic and Distributed Scatterers Joint Pro-
cessing For Polarimetric PSI (PolPSI)

This section is based on: Feng Zhao and Jordi Mallorqui, SMF-POLOPT: An Adaptive
Multi-temporal Pol(DIn)SAR Filtering and Phase Optimization Algorithm for PSI Appli-
cations, IEEE Transactions on Geoscience and Remote Sensing, 2019 [81] (See Section
5.4).

3.4.1 Introduction

In [80] (i.e., Section 5.3), an efficient PolPSI technique CMD-PolPSI has been proposed.
Like the other conventional PolPSI algorithms [36], it optimize interferometric phases
through either DA (good for PSs) or coherence stability (good for DSs). However, as
PSs and DSs are present in real scenarios more adaptive PolDInSAR optimization algo-
rithms have been proposed to deal simultaneously with both. Inspired by SqueeSAR [18],
Navarro-Sanchez proposed an adaptive PolDInSAR optimization method, which is based
on a spatial adaptive speckle filtering approach that can jointly process DS and PS pix-
els [58]. As expected, this new method can achieve higher pixel densities than the con-
ventional ones. However, as it has to carry out a similarity test to identify polarimetric
homogeneous pixels (PHPs) [58] for each pixel, its computation burden is high.

In [81] (i.e., Section 5.4), we propose an alternative adaptive Pol(DIn)SAR optimiza-
tion algorithm that avoids the time-consuming similarity test for PSI applications. This
algorithm is mainly based on the extension of Lee’s PolSAR filter [82] and polarimetric
optimization techniques [36, 58]. It first utilizes PolSAR classification results and pix-
els’ scattering mechanisms to identify for each pixel its polarimetric homogeneous pixels
(PHPs) [58] and classify it as DS or PS. Then, DS pixels are filtered with the Minimum
Mean Square Error (MMSE) method [83] based on their associated PHPs, while PS pixels
are preserved with no further modifications. After that, DS and PS pixels are optimized
based on their coherence, γ, and dispersion of amplitude, DA, respectively. Finally, the
optimized DS and PS pixels are jointly processed to estimate the deformation.

To validate the feasibility and evaluate the performance of the proposed algorithm, it has
been tested with two different data sets. One with quad-pol Radarsat-2 data acquired
over Barcelona airport (Spain) and the other with dual-pol TerraSAR-X data acquired
over Murcia (Spain). Both scenarios are affected by subsidence phenomena. The benefits
of the proposed approach in terms of phase quality improvement and higher pixel densities
of the final deformation maps have been assessed and discussed in [81] (i.e., Section 5.4).
The main results of this study associated with the Barcelona airport area are employed to
illustrate the effectiveness of this algorithm in the following section (i.e., Section 3.4.2).
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3.4.2 Main Results

3.4.2.1 PolSAR Filtering Result

One PolSAR image over Barcelona airport has been used to illustrate the effectiveness
of the SMF adaptive filter. Besides SMF, the PolSAR image has been also filtered with
another two well established filters, i.e the Lee’s scattering-model-based speckle filtering
(Lee SM) [82] and the intensity-driven adaptive-neighborhood filtering (IDAN) [84], in
order to compare their performances. The results are presented in Fig. 3.6 (i.e., Fig. 3
in [81]), where the original PolSAR image is also shown to visualize the noise reduction
each filter is able to achieve. All the three filters have reduced the PolSAR image’s speckle
noise, however the proposed SMF strategy can better preserve the details of structures
while the other two tend to blur their edges.

(a) Original (b) IDAN (c) Lee SM (d) SMF

Figure 3.6: Original and filtered Pauli RGB composites over the Barcelona airport. Bottom
row shows the close-up of the area limited by the red rectangle in the top row. The color
channels are R = HH - VV, G = 2HV, and B = HH + VV.
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3.4.2.2 Polarimetric Optimization Results

The performance of the proposed algorithms is evaluated in terms of phase optimization
and pixels’ densities of the derived deformation maps. In order to better illustrate the
advantages of the proposed approaches, i.e. the SMF and SMF-POLOPT, they have
been compared with other two conventional full resolution methods, i.e. DA (only the
HH channel) and ESM-DA (referred hereafter as ESM for the sake of simplicity ). SMF
results correspond also to the HH channel.

During the generation of the interferograms, except for the DA approach, the other three
methods filter or optimize DInSAR phases taking advantage of the polarimetric data.
Fig. 3.7 (i.e., Fig. 5 in [81]) shows the optimized phases with the different methods of a
Radarsat-2 interferogram over Barcelona airport. The unfiltered HH channel’s phase is
also included for comparison purposes. The ESM method is able to maximize the phase
quality mainly on PSs, like in the airport terminal and building areas as seen in Fig.
3.7(c). The SMF-POLOPT and SMF approaches significantly reduce the phase noise
level on DSs, e.g., the runway areas as seen in Fig. 3.7(a) and Fig. 3.7(b). As expected,
the SMF-POLOPT method shows a better performance than SMF thanks to the further
polarimetric optimization of the adaptively filtered interferograms. Good examples of
this are the roads highlighted by the black dashed lines in Fig. 3.7(a). Fig. 3.8 (i.e., Fig.
6 in [81]) shows the close-up of the airport terminal section of Fig. 3.7. As the SMF-
POLOPT can adaptively optimize both PSs and DSs, it presents the best performance
among all methods.

(a) SMF-POLOPT (b) SMF (c) ESM (d) HH
-3.14

0

3.14

Figure 3.7: An interferogram phase optimization results of Barcelona airport by different
algorithms. The black dashed lines in (a) indicate the locations of roads where the SMF-
POLOPT approach presents the best optimization effect.

3.4.2.3 Ground Deformation Monitoring Results

After generating the differential interferograms, those pixels with phase qualities over a
given threshold are selected. For DA and ESM method, pixels with DA values below 0.25
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(a) SMF-POLOPT (b) SMF

(c) ESM (d) HH

Figure 3.8: Close-up of the phase optimization results of Fig 3.7, which corresponds to the
area of the airport terminal.

are selected. The pixel selection strategies for the SMF-POLOPT and SMF approaches
are identical and they follow the method introduced in the previous section. To make
a fair comparison, the same phase standard deviation threshold (around 15◦) is used
for all cases during pixel selection. Finally, based on the selected pixels and generated
interferograms, the CPT algorithm is used to estimate the deformation.

For Barcelona Airport full-pol Radarsat-2 data, the retrieved deformation velocity maps
are shown in Fig. 3.9 (i.e., Fig. 7 in [81]). Very similar subsidence trends are detected
by all four approaches, which illustrates the goodness of the proposed algorithms. The
subsidence areas are mainly located at the airport access road and terminal T1 areas, and
the maximum subsidence velocity reaches up to 2.5 cm/year. The deformation amount
and patterns are in good accordance with previous studies [35, 36, 58], which further
validates the reliability of the results.

As Fig. 3.9 shows, all the three advanced algorithms perform better, in terms of pixels’
densities, than the classical single-pol DA method. The density improvement of ESM with
respect to single-pol DA is around ×2.7 (11,248 compared to 4,149). The improvement is
mostly due to the polarimetric optimization provided by ESM as the three polarimetric
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(a) DA HH (4149) (b) ESM (11248)

(c) SMF (7502) (d) SMF-POLOPT (29963)

-2.5

Figure 3.9: Barcelona airport ground deformation velocity maps obtained by (a) DA, (b)
ESM, (c) SMF and (d) SMF-POLOPT. The number in the brackets represents the amount
of pixels in each algorithm derived deformation result.

channels are combined into a single one. The SMF method applied to HH channel achieves
an increase of pixels of around ×1.8 w.r.t. single-pol DA (7,502 versus 4,149). This
improvement is due to the inclusive pixel filtering and selection strategy in SMF, which
is able to reduce DS pixels’ noise and identify high quality pixels from both PS, over
buildings, and DS, over runaways. As expected, the highest pixel densities are obtained by
SMF-POLOPT, as it combines the benefits of the adaptive filtering with the polarimetric
optimization of data. The increase of SMF-POLOPT w.r.t. single-pol DA is around × 7.2
(29,963 compared to 4,149). The highest pixel density allows SMF-POLOPT to better
detect and characterize the extend and details of ground motion than the other methods.
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4.1 Main Conclusions

This PhD thesis is dedicated to investigate advanced pixel optimization and selection
methodologies for PSI applications by using both single- and multi-polarimetric SAR im-
age stacks. To this end, related research work have been carried out and four related
articles have been finished. Particlularly, a new pixel selection approach based on TPC
has been proposed in [77] (i.e., Section 5.1), its effectiveness and advantages have been
further verified by applying it on landslid monitoring in [78] (i.e., Section 5.2). For
PolPSI techniques, to overcome the limitation of high computation burden, a new com-
putational efficient PolPSI method named as CMD-PolPSI has been proposed in [80]
(i.e., Section 5.3). To adptive optimize PS and DS pixels, in [81] (i.e., Section 5.4), an
adaptive plolarimetric phase optimization algorithm has been proposed.

The main contributions and conclusions of this thesis may be summarized as follows:

• High phase quality pixel selection with TPC

In [77] (i.e., Section 5.1) a full-resolution Interferometry SAR (InSAR) phase qual-
ity estimator, i.e. the temporal phase coherence (TPC), has been proposed and used
to identify high quality pixels in SAR images. Instead of using the temporal vari-
ation of pixels’ amplitude like DA or the temporal stability of the coherence, TPC
estimates pixels’ phase quality directly from its interferometric phase noise at full
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resolution. For each pixel, the interferometric phase systematic terms are firstly
eliminated in order to leave just the noise term in the interferometric phase. Then,
the TPC is calculated based on the pixel-based noise phase term of all interfero-
grams.

The impact of the interferograms’ generation way (single-master (SM) or the multi-
master (MM)) on TPC estimation has been studied. It is found that the relationship
between SM-TPC γ̂SM

T P C
and MM-TPC γ̂MM

T P C
is constrained by the lower bound

γ̂MM
T P C

= (γ̂SM
T P C

)2 and the upper bound γ̂MM
T P C

= γ̂SM
T P C

. To better complete the
pixel selection, the relationship between TPC and phase standard deviation (STD)
has been derived through simulation. Thus, the TPC threshold can be accurately
determined according to the requirement of the phase STD of the pixels. The
influence of the neighboring window size on the value of TPC has been studied, as
well. For the Barcelona airport data set, it is found that window sizes larger than
21 × 21 do not imply any noticeable improvement in the results and increase the
processing time. Considering efficiency and reliability, window sizes of 21 × 21 are
a good choice for TPC estimation.

To validate the feasibility of the proposed pixel selection algorithm, it has been
tested together with the other two classical approaches (DA and SPC). The detected
deformation patterns of all three methods over Barcelona Airport are very similar
and consistent with previous studies, which validates the feasibility and effectiveness
of TPC. Comparing the results obtained with the three methods, TPC shows some
advantages. When comparing with DA, besides the pixels selected by DA it can
identify much more other (about 3.2 times of that obtained by the DA approach over
the Barcelona airport study area) as it is able to detect stable pixels, independently
if they are PSs or DSs. Moreover, it is more flexible regarding the number of
SAR images necessary for a reliable selection. When comparing with SPC, TPC
preserves the original resolution of the SAR image as no multilooking is applied.
Low quality pixels surrounded by high quality ones will not be wrongly selected
as the multilooking causes an overestimation of its quality. Similarly, isolated high
quality pixels have a lower probability to be underestimated due to their low quality
neighbors. As a result, more pixels can be selected (about 1.5 times of that obtained
by SPC approach over the study area).

The computation cost of TPC, which is determined mainly by the size of the neigh-
boring window, is low and affordable for all cases. This pixel selection strategy is
also easy to implement and incorporate into any advanced PSI processor.

• Landslide monitoring by SHR SAR images together with advanced PS
selection strategies

In [78] (i.e., Section 5.2) the ability of SHR SAR images together with advanced PS
selection strategies for regional-scale landslide monitoring in a challenging area has
been studied. Thirty-two SHR TerraSAR-X (TSX) images (July 2014 to October
2016), with resolutions of 0.23 and 0.59 m in azimuth and range directions, have
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been employed to monitor the Canillo landslide (Andorra) by using PSI techniques
with three different pixel selection methods.

The study has demonstrated that improving the number of high-quality pixels for its
later PSI processing results of crucial importance in landslide monitoring in natural
environments. Under the application point of view, to the author’s knowledge, it is
one of the first times when such a high density of valid pixels has been obtained in
mountainous areas. SHR SAR data jointly with advanced full-resolution PSI strate-
gies allow the achievement of a more robust network of valid pixels (improving the
linear estimation without propagation errors and the reliable estimation of APS)
and thus favors the reliable estimation of displacement maps in a major number of
points inside a landslide. This is a general conclusion that does not depend on the
landslide. A different issue is if the particularities of a given landslide (orientation,
type of vegetation coverage, local topography, snow episodes, etc.) made it unsuit-
able for PSI monitoring. Similarly, well-established interferometric techniques for
DEM generation fail on forested areas. It is clear that the particular characteristics
of the scenario may limit the application of the technique.

The landslide’s overall displacement patterns observed by the three methods in El
Forn de Canillo are similar. Three main subareas with noticeable displacement have
been detected, which are similar to those obtained in previous PSI monitoring re-
sults. This indicates that the evolution of the landslide main body did not change
significantly during recent years. The PSI measured displacement rates have been
compared with GPS measurements of the same period, and they are both in good
agreement. Although already highlighted in the literature, in the Canillo Land-
slide, the PSI capability for detecting incipient movements in zones not previously
surveyed by the geological engineering specialists has been verified. The displace-
ment time-series of two significant pixels are characterized by considerable nonlinear
components, exhibiting some acceleration and stabilization periods within each year.
These periods can be correlated with the averaged monthly precipitation amounts,
revealing the important influence of rain/snow melting episodes on the development
of this landslide.

SHR SAR data initially designed for improving monitoring capabilities over man-
made structures, such as buildings, bridges, railways or highways, have also demon-
strated an outstanding performance over natural reflectors, such as outcrops or
exposed rocks with the proper pixel selection strategy. Indeed, this improvement in
terms of density allows a better characterization and delineation of complex land-
slides. Among the three full-resolution pixel selection strategies, the advanced ones
(i.e., the TSC and TPC) are able to obtain much more valid pixels than the classi-
cal DA method. The TPC method presents the best performance. Thanks to these
huge amount of valid pixels, the displacement details of the regional-scale landslides
can be characterized with better precision when combining the TPC method with
SHR TSX data. Compared with the lower-spatial resolution SAR data (Sentinel-1A
in this study), SHR data can better characterize the landslide, particularly if the
different subareas are small.
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The results of this part of work show that the density of valid pixels can be greatly
enhanced by using the TPC method together with SHR SAR images. Thus, they
can together be used as a powerful tool for detailed landslide monitoring in difficult
areas.

• Computationally efficient PolPSI

In [80] (i.e., Section 5.3) a new Polarimetric Persistent Scatterers Interferometry
(PolPSI) algorithm based on the coherency matrix decomposition has been pro-
posed. This PolPSI algorithm, referred as CMD-PolPSI, produces optimization re-
sults better than the simple BEST approach. On the other side, the ESM methods
outperforms CMD-PolPSI but its high computational burden reduces its applica-
bility to large areas. CMD-PolPSI, thus, constitutes a good compromise between
pixel density improvement and computational burden. Two approaches have been
developed, one oriented to permanent scatters (PS) that uses the dispersion of am-
plitude DA as pixel selection criteria, and the other better for distributed scatterers
(DS) based on the mean coherence from multilooked interferograms.

Three complementary data sets in terms of polarization (Radarsat-2 full-pol, TerraSAR-
X and Sentinel-1 dual-pol), wavelength (C and X-band) and image resolution have
been used to evaluate the performance of the proposed algorithm in different condi-
tions. In terms of interferometric phase optimization, CMD-PolPSI presents better
performance than BEST in all three data sets and, as expected, below ESM. The
best results are always achieved with full-pol data at the highest resolution.

With the DA approach, for full-pol data the improvement obtained by CMD-PolPSI
in final PS pixels’ density has been 159% w.r.t. the single-pol HH processing while
BEST has been able to improve only by a 109%. The dual-pol datasets have pro-
duced lower improvements, for TerraSAR-X data a 62%, compared with the 40% of
BEST, and for Sentinel-1 a 63%, while BEST has been a 37%. For all three cases,
ESM has been able to produce improvements of 536%, 137% and 148% respectively.
The full-pol dataset has been used to generate all possible dual-pol combinations
in order to evaluate, under exactly the same conditions, which one performs better.
Among them, HH+VV data is the one that produces the highest improvement in
number of selected pixels.

The coherence approach with multilooked interferograms has produced lower im-
provements and, as a general rule, the lower the interferograms resolution (as a
combination of the original image resolution and applied multilook) the worst the
polarimetric optimization performs. Using the same phase quality threshold as with
the DA approach, the improvements achieved by CMD-PolPSI on numbers of final
PS pixels are limited to 40%, 32% and 3% w.r.t the single-pol case for Radarsat-2,
TerraSAR-X and Sentinel-1, respectively. It is worth to note that if the selection
threshold is more restrictive, this is higher coherence values, the improvements in-
crease as well. For instance, coherencies above 0.9 produce improvements of 139%,
59% and 27% by CMD-PolPSI w.r.t. single-pol case, respectively. In this case,
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with the highest coherence thresholds, pixels with a single and significant scattering
mechanism are being selected.

Compared with the powerful ESM algorithm, the proposed CMD-PolPSI has a
lower computational burden, being around 255 times faster with full-pol data for
the DA based optimization (full resolution optimization). On the other hand, ESM
presents much better optimization results as it is able to explore the full space of
polarimetric scattering mechanisms. In practice, CMD-PolPSI is able to provide a
good compromise between computational burden and pixels’ density improvement
when performing PSI processing in cases that wide areas have to be processed.

• Deterministic and distributed scatterers jointly processing for PolPSI

In [81] (i.e., Section 5.4) an adaptive multi-temporal Pol(DIn)SAR filtering and
phase optimization algorithm, i.e. SMF-POLOPT, has been proposed. It is in-
spired by Lee’s PolSAR filter [82] and PolDInSAR optimization techniques [36,58].
This algorithm, which is based on the Scattering-Mechanism based Filtering (SMF)
and adaptive POLInSAR OPTimization (POLOPT), can separately filter or (and)
optimize PS and DS pixels. Moreover, an inclusive pixel selection method based
on pixels’ phase standard deviation (STD) has been introduced and developed to
identify high quality pixels for PSI processing in this scheme.

Two SAR data sets, full- and dual-polarization, have been used to evaluate the
performance of the proposed algorithm. For PolSAR filtering, the SMF achieves
the speckle reduction and details preservation simultaneously, and it outperforms
the other two well established PolSAR filters [82,84]. In terms of PolDInSAR phase
optimization, the proposed SMF-POLOPT presents better performance than the
other algorithms. In both test areas, significant improvements regarding pixels’
densities have been achieved by the SMF-POLOPT algorithm. Particularly, an
increase of around ×7.2 and ×3.8 in the number of pixels w.r.t. the single-pol
DA method have been achieved with the SMF-POLOPT approach with Barcelona
(full-polarization) and Murcia (dual-polarization) SAR data sets, respectively. The
corresponding improvements achieved by the ESM and SMF algorithms are ×2.7
and ×1.8 for the full-polarization case, ×2.4 and ×1.7 for the dual-polarization case
w.r.t. the single-pol DA method, respectively.

The advantages and shortcomings of the four employed ground deformation mon-
itoring algorithms have been discussed and analyzed. The proposed SMF method
can adaptive filter DS pixels and preserves PS ones, it is thus a good alternative
to the ESM approach that mainly optimizes PS pixels. When a high computation
cost is acceptable, SMF-POLOPT is the best one among the four methods for both
dual- and full-pol SAR data. The proposed adaptive filtering and phase optimiza-
tion algorithm, i.e. SMF-POLOPT, can be used for adaptive Pol(DIn)SAR images’
filtering or interferograms’ polarimetric optimization when multi-temporal PolSAR
images are available.
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To conclude, [77] (i.e., Section 5.1) and [78] (i.e., Section 5.2) answer the first research
question of this thesis, i.e., “How to identify high phase quality pixels from both PS and
DS pixels for PSI applications?”. The second research question “How can the interfero-
metric phases be efficient optimized by polarimetric optimization techniques?” is partially
answered by [80] (i.e., Section 5.3). The last one “How can PS and DS pixels of multi-
temporal PolDInSAR images be jointly processed to reduce the influence of decorrelation
on PSI applications?” has been answered by [81] (i.e., Section 5.4).

4.2 Future Research Lines

There are several open questions and research lines related to the work presented in this
thesis that deserve further investigations, the key ones are listed as follows.

• Polarimetric optimization by using TPC

The proposed TPC could be used as the interferometric phase quality metric in
polarimetric optimization for PolPSI techniques. It should be more effective than
the classical DA or coherence stability as it is applicable on both PSs and DSs.
The TPC optimization procedure need to be carefully designed to minimize the
computational burden as much as possible, the advantages and flexibility of the
TPC based PolPSI required further detailed investigations.

• Similarity metric to identify spatio-temporal homogeneous SAR pixels

As more and more time-series SAR images are being acquired everyday, the devel-
opment of similarity metrics between pixels, which consider spatio-temporal phase
and amplitude information of SAR images, for Homogeneous Pixel (HP)s’ identifi-
cation could be an interesting research topic. This research could be started with
the already existing similarity metrics that are mostly for the single-temporal case.
For instance, the one in NL-SAR [85] could be extended to multi-temporal cases.
It is worth to mention that the computation cost for the estimation of the designed
similarity metric is also an important issue to be considered, since it should be
applicable for large areas.

• CMD-PolPSI built by other coherency matrix decomposition algorithms

As it has been discussed in [80] (i.e., Section 5.3), variants of the proposed CMD-
PolPSI could be obtained by replacing the eigenvector-based decomposition with
others like the classical Huynen and Cloude decomposition [76] or the advanced
Yamaguchi decomposition [86–88]. Moreover, a combination of two or more differ-
ent PolSAR decomposition approaches could be used to retrieve different scattering
mechanisms contained within pixels. In this way, better interferometric phase opti-
mization effects could be achieved thanks to that extended exploring solution spaces.
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In addition, the factors that undermine polarimetric optimization, like structures’
orientations, could be better accounted for.

• Homogeneous SAR pixels’ identification by advanced (Pol)SAR classifi-
cation methods

The H/A/Alpha-Wishart PolSAR classifier [76, 89–91] has been used for the PHP
identification in [81] (i.e., Section 5.4). Similarly, other latest (Pol)SAR image clas-
sification methods could be used to identify HPs. Particularly, the deep-learning
based (Pol)SAR image classification and segmentation has recently become a re-
search hotspot and achieved good performances than the conventional ones [92–96].
Therefore, it would be interesting to take advantage of these latest methods and
apply them on HPs’ identifications for SAR image filtering and PSI applications.
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Abstract: Landslides are one of the most common and dangerous threats in the world that generate
considerable damage and economic losses. An efficient landslide monitoring tool is the Differential
Synthetic Aperture Radar Interferometry (DInSAR) or Persistent Scatter Interferometry (PSI). However,
landslides are usually located in mountainous areas and the area of interest can be partially or even
heavily vegetated. The inherent temporal decorrelation that dramatically reduces the number of
Persistent Scatters (PSs) of the scene limits in practice the application of this technique. Thus, it is
crucial to be able to detect as much PSs as possible that can be usually embedded in decorrelated
areas. High resolution imagery combined with efficient pixel selection methods can make possible
the application of DInSAR techniques in landslide monitoring. In this paper, different strategies to
identify PS Candidates (PSCs) have been employed together with 32 super high-spatial resolution
(SHR) TerraSAR-X (TSX) images, staring-spotlight mode, to monitor the Canillo landslide (Andorra).
The results show that advanced PSI strategies (i.e., the temporal sub-look coherence (TSC) and
temporal phase coherence (TPC) methods) are able to obtain much more valid PSs than the classical
amplitude dispersion (DA) method. In addition, the TPC method presents the best performance
among all three full-resolution strategies employed. The SHR TSX data allows for obtaining much
higher densities of PSs compared with a lower-spatial resolution SAR data set (Sentinel-1A in this
study). Thanks to the huge amount of valid PSs obtained by the TPC method with SHR TSX images,
the complexity of the structure of the Canillo landslide has been highlighted and three different slide
units have been identified. The results of this study indicate that the TPC approach together with
SHR SAR images can be a powerful tool to characterize displacement rates and extension of complex
landslides in challenging areas.

Keywords: DInSAR; landslide monitoring; PSI; super high-spatial resolution TerraSAR-X images;
pixel selection; measurement pixels’ density

1. Introduction

Every year, with the onset of rains and snow melting, landslides represent one of the
major natural threats to human life and infrastructures in natural and urbanized environments.
In this context, different surveying techniques, such as inclinometers, extensometers, piezometers,
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jointmeters, photogrammetry, LiDAR or Global Positioning Satellite System, are typically employed
to address landslide monitoring problems [1–8]. Nonetheless, these conventional techniques present
several limitations. They are labor intensive, expensive and usually require skillful users for data
interpretation. Moreover, they typically provide poor spatial sampling and coverage, which hinder
the characterization of complex landslides. Finally, some of these techniques require the direct
installation of devices over the landslide surface, which could be a complex task, sometimes impossible
to fulfill, in hard-to-reach locations. During the last decade, Synthetic Aperture Radar (SAR)
Differential Interferometry (DInSAR) techniques based on space-borne SAR sensors have matured
to a widely used geodetic tool for the accurate monitoring of complex displacement phenomena
with millimetric accuracy [9–13]. Concretely, the new generation of X-band SAR sensors, like the
German TerraSAR-X and TanDEM-X satellites or the Italian constellation Cosmo-Skymed, have led to
a scientific breakthrough presenting a lower revisiting time (up to few days) and an improved spatial
resolution (even below the meter), compared with their predecessors ERS-1/2, ENVISAT-ASAR and
RADARSAT-1 or the recently Sentinel-1, which worked at the C-band.

Despite all these clear advantages, DInSAR solutions present some limitations, especially for the
X-band, over vegetated scenarios in mountainous environments, where landslides typically occur.
The DInSAR technique takes advantage of a time-series of SAR images but not all pixels of the
image are useful for interferometric processing. Only those pixels with enough phase quality along
the whole observing period, i.e., the Persistent Scatterers (PSs), can be used as measurement points
(MPs) to derive ground displacement. These PSs, which usually correspond to man-made structures
(like buildings, bridges or roads), rocky areas and bare surfaces with no vegetation, are usually scarce
in mountainous areas [14,15]. In addition, severe limitations arise from temporal decorrelation over
vegetated areas, snow episodes typical in mountainous regions, layover and shadowing effects caused
by SAR geometrical distortions, the presence of tropospheric atmospheric artifacts or when rapid
displacements are faced, making the processing in such areas difficult and challenging at the same
time. Finally, it must be taken into account that SAR sensors are only sensitive to the satellite-to-target
component of displacement, i.e., line of sight (LOS) direction, which may notably differ from the real
one. The measured displacement will be in fact a projection of the real one [9,12]. Many DInSAR, also
known as Persistent Scatters Interferometry (PSI), techniques and algorithms, which share similar
principles, have been developed. They have been tested in the last twenty years using many different
sensors, either orbital, airborne or ground-based, and over many different scenarios, making this
technique a powerful and reliable tool for monitoring any kind of ground motion episodes [14–21].

Large landslides constitute a very specific and challenging scenario for DInSAR. As they are
located in mountainous areas and the displacement is usually down-slope, the landslides have to be
mostly oriented east to west in order to be sensitive to the displacement if polar orbital sensors are
going to be used [9,10]. Not all landslides are suitable for being monitored with orbital SAR. On the
one hand, to avoid problems with phase ambiguity, the displacement rate of the landslide must be
small enough, let us say a few decimetres per year (depending on the wavelength and revisiting period
of the radar). In other words, the SAR interferometry is suitable for monitoring landslides “Very
slow” to “Extremely slow” according to the standard landslide classifications [22,23]. In addition,
foreshortening and layover can jeopardize the performance of the DInSAR processing so the selection
of the proper acquisition geometry is also crucial. In order to reduce geometric distortion and, at
the same time, maximize the projection of the landslide displacement to the LOS, it is advisable to
observe, if possible, the landslide from behind, as it has been done in this paper. However, each case
can be different from the other and so it would require a detailed analysis considering the landslide
particularities and the surrounding topography [9,10,12,24]. Atmospheric artifacts, caused by both
tropospheric stratification and turbulent component, can contaminate the interferometric phase and,
as they can be strongly correlated with the topography, they can also be difficult to remove [25–29].
Finally, a landslide can present a quite complex behaviour with different sliding units moving at
different velocity rates. A good density of PS is required in order to be able to delimit and characterize
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the behaviour of the different local displacements, so it would be necessary to use a PSI strategy
able to select as much pixels as possible at full resolution in areas where most of the pixels will be
severely decorrelated [9,10]. It is evident that the chances of detecting small and isolated PSs within
decorrelated areas will arise as the resolution of the images employed increases [11,30,31].

With super high-resolution (SHR) data, the classical Gaussian scattering model used to model
speckle is not always fulfilled since it is possible to find resolution cells with few scatterers [24,32].
This approach is known as partially developed speckle [33,34]. In the situation of having an isolated
scatterer within the resolution cell, the value is given by the deterministic impulse response of the SAR
system, i.e., by a bidimensional sinc response [24,35]. These types of scatterers typically correspond to
man-made structures, outcrops, exposed rocks, etc. These objects can be exploited as opportunistic
high-quality points for displacement monitoring applications. Of course, in high-resolution SAR
images, it is more probable to have this situation in natural environments [11,30]. Taking into account
the previous considerations, landslide monitoring will be greatly benefited by the usage of SHR data.

In this paper, 32 Staring Spotlight TerraSAR-X images (acquired from July 2014 to November 2016,
with a resolution of 0.23 m in azimuth and 0.59 m in range) and three full-resolution PSI approaches
(i.e., the classical amplitude dispersion [14], the temporal sub-look coherence (TSC) [36,37] and the
temporal phase coherence (TPC) [38] methods) are employed to monitor a complex landslide located in
El Forn de Canillo (Andorran Pyrenees). Although the advantages of the Staring Spotlight TerraSAR-X
SAR data have been demonstrated by different applications such as absolute height estimation [39]
and measuring rates of archaeological looting [40], the examples in terms of PSI landslide monitoring
are still rare. To our knowledge, the work presented in this paper is the first attempt to study the
possible benefits of SHR SAR images for landslide monitoring, especially regarding the aspects of pixel
density and capability to detect PSs within decorrelated areas. At the same time, the above-mentioned
three PS strategies have also been tested to determine the one most suited for this kind of scenario.

The paper is organized as follows. The landslide’s geological setting and employed dataset are
firstly presented in Section 2. Section 3 introduces the procedures of PSI, where the different strategies
are described. Section 4 presents the landslide monitoring results with TerraSAR-X images, which are
analyzed and compared with GPS measurements to evaluate their reliability. After that, in Section 5 the
advantages of SHR SAR images are highlighted by the comparison of the results with those achieved
with lower resolution sensors, Sentinel-1 in this case. Finally, Section 6 presents the conclusions.

2. Study Area and Dataset

2.1. Canillo Landslide

The area selected in this paper corresponds to one of the biggest and ancient landslides of the
Andorran Pyrenees. It is located at El Forn de Canillo (42.5610◦N, 1.6018◦E) in the Principality
of Andorra, which is a mountainous country between Spain and France in the Central Pyrenees,
as Figure 1a shows. It is a complex structure with deposits composed of overlapped colluvial layers
generated by different landslide episodes. It was firstly described by Corominas and Alonso in
1984 [41] and has been the subject of several studies where its morphology, failure mechanisms and
evolution has been deeply analyzed. The hillslope of El Forn de Canillo is composed by a sequence of
slides and earth-flows with a complex structure, which affects an estimated mass at around 3× 108 m3.
In this context, different ancient sliding units were identified in 1994 by Santacana [42] (see Figure 1b).
The first one corresponds to a slide originated in the area of Pla del Géspit-Costa de les Gerqueres,
located in the southeast of the landslide, which reaches the foot of the hillside. A second event
was originated under El Pic de Maians, reaching the height of 1540 m, and which overlaps with
the previous sliding unit, closing in the Valira river valley. Finally, a third rockslide with a lower
extension originated on the hillside known as La Roca del Forn, in the northeast side of the hillslope,
was identified. Recent local instabilities have been identified in different locations within the landslide
mass [43]. The landslide of El Forn de Canillo was originated as the result of the hillside destabilization,



Remote Sens. 2018, 10, 921 4 of 23

due to a decompression phenomenon after the removal of the Valira Glacier during the Pleistocene,
after the Maximum Ice Extent. The Valira River has been progressively eroding the base of the whole
mass without reaching the bedrock, and thus originating the landslide [42].

In front of some evidence of displacement (geomorphological signs of instability and some
cracking in the road pavement and in a hydroelectric channel that crosses the Forn de Canillo),
the authorities promoted several actions in the year 2000 for the management of their geo-hazard
threats leading to the monitoring of El Forn de Canillo. Between the years 2007 and 2009, a network
of geotechnical devices, including inclinometers, rod extensometers and piezometers, were installed
over the landslide surface to characterize and understand the dynamics of the sliding mass. A total
of 10 boreholes, reaching typically a depth between 40 and 60 m, were drilled and equipped with
this instrumentation [43,44]. The readings recorded have provided evidence that, in addition to a
residual movement of some millimeters per year in the main body of the slide, the most active part of
the landslide corresponds to the secondary landslide of Cal Borró-Cal Ponet. This area registered a
velocity up to roughly 2 cm/month between May and June 2009 when intense sudden rain events and
snow melting occurred [44].

(a)

Cal Borró-Cal Ponet

Study area 

limit

(b)

Canillo

El Pic de 

Maians

costa de les 

Gerqueres 

sliding unit

El Pic de 

Maians 

sliding unit

La Roca del 

Forn  

sliding unit

Figure 1. (a) location and topography of the Canillo landslide; (b) aerial view of the study area (Google
Earth, 11 October 2017). The town of Canillo is located on the north border of the landslide. The red
arrows indicate the moving directions of the ancient landslide units (modified from Santacana, 1994 [42]).

2.2. SAR Dataset

In this study, the slides’ motion is monitored with 32 Staring Spotlight TerraSAR-X (TSX) Single
Look Complex (SLC) SAR images. This imaging mode is the classical spotlight mode and it is able
to enhance the azimuth resolution, compared with the stripmap mode, by steering the antenna in
azimuth to a rotation center within the imaged scene [45]. The coverage of the SAR images is around
6.5 km in length and 3 km in width, which has been plotted in Figure 2a (yellow rectangle). The SAR
image main parameters are presented in Table 1.

An amplitude image of the SAR dataset is presented in Figure 2b. As it can be seen, the SAR
images’ geometric distortion effects (i.e., foreshortening, shadow and layover) are not serious within
the study area limit. The extended brighter areas of the image are those affected by the foreshortening
and layover, due to the steepest topography. Dark areas are those affected by shadowing. This is
favoured by a certain parallelism between the topography of the slope and the LOS from the satellite,
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thanks to its descending flight direction. The landslide is partially vegetated. Only a few strong
scatterers (man-made structures, like buildings and roads, or bare rocks) are sparsely distributed
within the study area limit, as is also visible in Figure 1b, thus making it challenging to monitor this
landslide with conventional PSI techniques.

Range

A
zim

u
th

Study area 
limit

Cal Borró-Cal Ponet

Canillo

(b)

Study area 
limit

El Pic de 

Maians

(a)

Figure 2. (a) coverage of the TerraSAR-X dataset (i.e., the yellow rectangle) displayed on a topographic
map of the area (map from https://elevationmap.net); (b) amplitude of an SAR image in radar
coordinates (azimuth, slant-range) acquired by the TerraSAR-X sensor in Staring Spotlight mode,
and the red line illustrates the boundary of the study area limit.

Table 1. Main parameters of the employed Staring Spotlight TerraSAR-X images. Heading and LOS
angles defined clockwise with respect to the north.

Parameter Value

Acquisition Period 22 July 2014–15 November 2016
Heading Angle 189.8 (degree)

LOS Angle 279.8 (degree)
Incidence Angle 39 (degree)

Azimuth Resolution 0.23 (m)
Slant Range Resolution 0.59 (m)

Wavelength 3.1 (cm)
Revisit Cycle 11 (day)
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2.3. GPS Validation Data

The Canillo landslide is monitored with the Global Positioning System (GNSS/GPS) since
December 2012. Although several continuous monitoring GPS techniques exist [8], the small rate
of displacements justified a discontinuous approach, with yearly field campaigns [7]. A network
of 78 GPS points were established at Canillo, covering most of the landslide and the surrounding
area as Figure 3 shows. Six points (blue filled triangles in Figure 3) serve as base points to check the
stability of the local datum. Once per year, in October, a two day campaign is carried out covering all
the control points, spread along the landslide. The GPS method has been the Real Time Kinematic
(RTK), with two geodetic-level receivers (Topcon Hiper-Pro, double frequency, double constellation,
(Topcon Positioning Systems Inc., Tokyo, Japan)). The final results are the point coordinates in the
ETRS89 reference system (Longitude, Latitude and elevation for instance). The estimated accuracy of
the resulting coordinate increments is around 1 cm in planimetry and 2 cm in elevation [7].

Three GPS campaigns fit within the study period: October 2014, October 2015 and October 2016.
The six base points (E1, E2, E3, E4, E6 and G44 in Figure 3), which are on the assumed stable substrate
outside the unstable area, and a total of 72 control points spread over the landslide deposits have
been measured. The base points were measured in order to rule out systematic or instrumental errors
and thus validate the measures carried out. The control points have been distributed throughout the
landslide with the aim of providing a comprehensive overview of its behavior.

The results of the displacement observed at the reference points (points E and G44 in Figure 3),
outside the landslide, are within the range of the error and therefore can be considered stable, as
expected. Among the 72 GPS control points within the study area limit, 37 are selected for PSI results’
validation. The correspondence between GPS points and the PSs has been made with proximity
criteria but also discarding any change of geomorphological sub-unit. The difference between GPS and
PSI in terms of precision, spatial resolution and temporal resolution is noticeable, but the measured
displacement of these selected GPS control points can be used to examine the reliability of the PSI
derived ground displacement, as it will be done in Section 4.2.

E3
E1,E2

G44
E4

E6

Study area 

limit

Figure 3. The locations of the GPS measurement points. The filled-in blue triangles and red circles
indicate the GPS base points and control points, respectively.
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3. Methodology

In this section, the different PSI strategies that will be compared in this paper are introduced.
Most of the processing steps are identical for all of them, so the description will be focused on the
different PS identification methods used that characterize each strategy.

3.1. Differential SAR Interferometry (DInSAR) Processing

In the conventional strip-map mode, SAR images’ azimuth resolution is around half of the
azimuth antenna length, which cannot be reduced arbitrarily to improve the resolution without the risk
of causing range ambiguities. To overcome this limitation and achieve a higher resolution, the spotlight
mode extends the illuminating time of each scatterer by sweeping the azimuth beam backward during
imaging [46]. This brings a systematic Doppler centroid drift in the azimuth direction of the focused
SAR images.

Prior to the DInSAR processing of the data, the particularities of Staring Spotlight acquisition
mode have to be considered during the classical interferometric processing. When performing the
image co-registration and common band filtering (if required), all base-banding steps have to consider
the azimuth variation of the Doppler spectrum, which is different to the one of the stripmap mode
and would require a deramping of the images involved. The details of how to deal with this issue
can be found in [37,46]. The other steps of InSAR processing are identical to those of the stripmap
case. The spotlight DInSAR processing module, able to work with sliding and staring data, has been
implemented in the SUBSOFT-GUI, which is the UPC’s DInSAR processing chain based on the Coherent
Pixel Technique (CPT) [17,20].

In this study, in order to limit the influence of geometrical and temporal decorrelation on
interferograms, we set the interferograms’ temporal and spatial baseline thresholds as 365 days
and 230 m, respectively. These values have allowed a good interconnection of the images and
they act as upper-limits to avoid having interferograms with too long temporal or spatial baselines.
The interferograms have been selected using a Delauney triangulation over the SLCs’ distribution
considering its acquisition time and spatial baselines with respect a master image, as shown in Figure 4.
With these restrictions and with the help of an external DEM of the area with 5 m resolution provided
by the Government of Andorra, a total of 80 differential interferograms have been generated from the
32 TSX images.
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Figure 4. The spatial and temporal baseline distributions of the TerraSAR-X data generated
interferograms over the study area. The black diamonds and red lines denote the SAR images and
interferograms, respectively.
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One of the characteristics of X-band data is that it decorrelates very fast in vegetated areas, but,
at the same time, the coherent pixels are able to preserve their phase quality very well over time.
In other words, if they are coherent, they keep the coherence well. The main advantage of working
with high resolution data is the capability to detect small coherent features embedded in uncorrelated
areas. In order to illustrate this, Figure 5 shows two coherence maps obtained from two different
interferograms using a multi-look of 5 × 3 (azimuth × range). The resolution of the multi-looked
interferogram is 1.15 × 1.77 m. One with a temporal baseline of 11 days and the other with 10 months.
The coherence maps look very similar for both cases demonstrating the previous statement.

Figure 5. Coherence (a,b) and differential phase (c,d) of two interferograms with temporal baselines of
11 days (a,c) and 10 months (b,d) over the study area. Despite most of the pixels decorrelating very
fast, the coherent ones are able preserve their phase quality very well along time.

3.2. Persistent Scatterers Identification

Together with the classical full-resolution pixel selection method (i.e., the amplitude dispersion
(DA) method), another two techniques (the temporal sublook coherence (TSC) and the temporal phase
coherence (TPC) methods) have been used to identify pixels with high phase quality, known as PS
Candidates (PSCs). As the DA approach [14] is very well known by the PSI community, we will only
introduce briefly the TSC and TPC approaches, which are two pixel selection methods developed by
the authors.

3.2.1. PS Candidates Selection by Temporal Sublook Coherence (TSC)

Different from the DA method, which selects persistent PSs by exploring pixels’ amplitude
stability, the TSC method intends to identify those pixels that behave like point scatterers in the
spectral domain along time [36]. Any target that presents a correlated spectrum in range, azimuth
and elevation along time would be identified as PS. In practice, targets usually present a nonuniform
azimuth scattering pattern, worsened in the Staring Spotlight case due to the length of the synthetic
aperture, and the assumption of correlated spectrum can only be applied in range. This method
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presents some advantages. For instance, with this approach, the radiometric calibration of the images
is not necessary since amplitude plays no role in the detection and, thus, point-like scatterers that
change its amplitude along time can be perfectly selected. An example of the latter case will be highly
directive targets whose reflectivity has a strong dependence on the incidence angle. In addition, it was
demonstrated in [36] that it is more reliable with reduced sets of images than DA.

Before TSC estimation, two range sublooks (SL) of each SAR image have to be generated. Focused
SAR images are usually tapered with a linear window (Hamming, Hanning, Kaiser, etc.) to reduce the
impact of the sidelobes. In order to ensure that the two sublooks in which the spectrum will be divided
present a symmetrical shape, the original spectrum has to be unweighted to flatten it. Once the range
spectrum has been flattened, two sublooks are generated (each one corresponding to one half of the
original spectrum) and base banded to the same central frequency to avoid any undesired linear phase
term during the later spectral correlation. To reduce once again the sidelobes, each sublook is tapered
with a linear window. Finally, the inverse Fourier transform is applied to get both SLs in the spatial
domain. A detailed explanation of the whole process is perfectly detailed in [36]. Once the sublooks of
all SAR images are obtained, the TSC of any arbitrary pixel (i, j) can be calculated with Equation (1)

∣∣γ̂tmp(i, j)
∣∣ =

∣∣∣∣∣
Nim
∑

n=1
S1(i, j, n) · S∗2(i, j, n)

∣∣∣∣∣
Nim
∑

n=1
|S1(i, j, n)|2 ·

Nim
∑

n=1
|S2(i, j, n)|2

, (1)

where S1 and S2 are the pixel (i, j) corresponding complex values of the first and second sublook for
the acquisition image n, and Nim refers to the total number of images. The sketch of the TSC estimation
for a generic pixel can be represented by Figure 6.
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Figure 6. Sketch of the TSC estimation for a generic pixel. From left to right, the Single Look Complex
(SLC) images of the dataset, the two sublooks generated from each image, coherence calculation and
final TSC [37].

The temporal sublook coherence (TSC) can be regarded as the classical coherence and, similarly,
pixels can be selected based on the application of a threshold. High values of TSC would be associated
with point-like scatterers. Similarly to the case of classical coherence, relations between the true TSC
and the expected one can be established as a function of the number of images employed, as well as
the true TSC and the pixel phase standard deviation [36,37]. These relations help to perform the pixel
selection based on a phase standard deviation threshold, allowing for using a criterion independent on
the number of images. From the phase standard deviation, the corresponding TPC threshold can be
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calculated. The selected pixels can then be treated as PSs and processed by the DInSAR algorithm to
derive the displacement maps and time-series.

3.2.2. PS Candidates Selection by Temporal Phase Coherence (TPC)

After removing the topographic term using an external DEM, the phase of a differential
interferogram can be expressed as Equation (2)

ψ = ψde f + ψatm + ψorb + ψξDEM + ψnoise, (2)

where ψde f , ψatm and ψorb denote the phase terms introduced by displacement along the LOS direction,
atmospheric artifacts (atmospheric phase screen, APS) and SAR satellite orbit indeterminations. ψξDEM

is the residual phase due to the DEM error, and ψnoise is the noise phase term. This latter term can be
assumed to present a random behaviour in the neighbourhood of a given pixel while the other can
be assumed to be deterministic. Thus, the noise phase term can be used as a metric of pixel’s phase
quality. The temporal phase coherence (TPC) can be used to evaluate the quality of a pixel from the
behaviour of this phase noise along the stack of interferograms. TPC can be estimated based on ψnoise
from all generated interferograms, as Equation (3) shows

γTPC =
1
M
· |

M

∑
i=1

ej·ψnoise,i |, (3)

where M is the number of interferograms and ψnoise,i is the noise phase term of the ith interferogram.
To obtain for each interferogram the noise phase term of a pixel, it is necessary to estimate the

deterministic terms. In order to do that, the neighbouring pixels will be used assuming, in theory, a
spatial low-pass behaviour of all deterministic terms in the vicinity of the pixel whose TPC is being
estimated, a.k.a the central pixel. The phase of the neighbouring pixels is estimated by averaging their
complex values, but excluding the central pixel, and then calculating the argument of this complex
number. With this approach, similarly to the classical multi-looking in interferometry, the pixels’
amplitude is used to give more significance to those pixels with higher amplitude in front of those
with lower values that, in principle, can be expected to be noisier and less reliable. The first three terms
of Equation (2) can be assumed to be spatially low-pass. Indeed, APS, orbital residues and the phase
offset of the interferogram perfectly fulfill this condition while, for the deformation, it would be an
acceptable approximation. Then, subtracting the neighbouring phase from the central phase gives
Equation (4)

ψcentral − ψneigh ≡ ψdi f = ψ
di f
ξDEM

+ ψ
di f
noise, (4)

where ψ
di f
ξDEM

= ψcentral
ξDEM

− ψ
neigh
ξDEM

and ψ
di f
noise = ψcentral

noise − ψ
neigh
noise . Thus, the terms have been grouped in

deterministic along the interferometric stack, ψ
di f
ξDEM

, and random, ψ
di f
noise. As (4) shows, the estimation

of the noise phase of the central pixel, i.e., ψcentral
noise , would be affected by the deterministic terms.

The averaging would reduce the noise term of the neighbouring pixels, ψ
neigh
noise . Thus, we can assume

than ψcentral
noise ≈ ψ

di f
noise. Thus, by subtracting the deterministic term ψ

di f
ξDEM

from ψdi f , the noise phase of
the central pixel can be estimated. In the practical implementation, all phase operations are obviously
done in the complex domain.

The phases due to DEM errors (εcentral
DEM and ε

neigh
DEM) of the central and neighboring pixels can be

rewritten as Equations (5) and (6), respectively:

ψcentral
ξDEM

=
4π

λ
· Bn

R0 · sin(ϑ0)
· εcentral

DEM , (5)

ψ
neigh
ξDEM

=
4π

λ
· Bn

R0 · sin(ϑ0)
· εneigh

DEM, (6)
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where λ, Bn, R0 and ϑ0 are the wavelength, the perpendicular baseline, the absolute range distance in
the LOS direction between the sensor and the target and the incidence angle, respectively. Then, we
can derive ψ

di f
ξDEM

as (7)

ψ
di f
ξDEM

=
4π

λ
· Bn

R0 · sin(ϑ0)
· 4εDEM, (7)

where4εDEM = εcentral
DEM − ε

neigh
DEM is the difference of DEM errors between the central and the averaged

error of the neighboring pixels. We use Equation (8) to estimate each pixel’s 4εDEM and then the
ψ

di f
ξDEM

is calculated by Equation (7):

arg max
4εDEM

{γTPC =
1
M
· |

M

∑
i=1

ej·ψdi f
i −j·ψdi f

ξDEM ,i |}. (8)

Until now, ψ
di f
ξDEM

has been estimated and then ψcentral
noise can be derived by Equation (4) under

the assumption that ψcentral
noise ≈ ψ

di f
noise. All pixels’ noise phase terms of all the interferograms can be

estimated by this way and then the TPC can be calculated by Equation (3).
TPC provides a temporal coherence of each pixel and fixing a threshold can perform the

identification of PSCs. As in the case of classical coherence or the TSC, a relationship between TPC
and the phase standard can be established in order to select a threshold independent on the number of
images and interferograms. The derivation of these relations has been discussed in detail in [38].

3.3. Linear and Nonlinear (Time-Series) Displacement Estimation

The linear and nonlinear displacement terms and the DEM error can be estimated by using
UPC’s ground motion detection software SUBSOFT-GUI (UPC, Barcelona, Spain). SUBSOFT-GUI is a
user-friendly software package for PSI processing. It allows for performing all required steps, starting
from the image co-registration, differential interferograms generation and filtering, pixel selection
and deformation time-series extraction. The software uses a Graphical User Interface (GUI) and most
of the steps have been automatized, which facilitates the processing of any dataset. The detailed
procedures of the linear and nonlinear blocks in SUBSOFT-GUI can be found by referring to [17,20].
Three independent processes, based on the same set of differential interferograms but with three
different PS selection strategies (DA, TSC and TPC approaches), have been carried out to compare the
performance of each pixel selection technique under similar conditions. For each strategy, the measured
parameter can be related with a phase standard deviation as shown in Figure 7.
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for the 32 images set.
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The comparison of the different strategies is always a difficult task as there are many parameters
that can be adjusted. In this case, the key point that makes the difference is the capability of the
different strategies to select PSs. The larger the number, the better performance of the PSI processing,
as it allows a better connection of the different areas and reduces the chances of having isolated clusters
of PSs. It is also true that the three processes could have been optimized with a fine-tuning of the
processing parameters, but, in practice, it is expected that the possible small variations on the final
results would not be enough to modify the conclusions.

3.4. Atmospheric Artefacts

InSAR observations are usually plagued by propagation delays, which are also known as
atmosphere phase screen (APS). As the atmosphere properties (temperature, pressure, and relative
humidity that set the refractive index) between radar platform and the ground targets vary spatially
and temporally, the phase delays vary from one day to another. For microwaves, it is well
known that propagation delays have two major sources: tropospheric terms and ionosphere effects.
At X-band, ionosphere is almost invisible and so the only significant source is the troposphere [26,47].
The atmospheric propagation delay in interferograms can be categorized into vertical stratification and
turbulence mixing [26]. While the latter can be compensated, thanks to its random behaviour in time
and correlated behaviour in space, with a set of temporal and spatial filters during data processing
[14,18,20], the former can be much more difficult. Stratification is prone to occurring in areas with
steep topography and the APS appears to be strongly correlated with the elevation. If not properly
compensated, APS can be misinterpreted as topography or displacement. Different strategies can be
used to characterize and compensate the stratified APS, for instance with models following a linear or
quadratic phase-elevation relationship [25,27–29].

The time of the pass of the satellite for the TSX data acquisitions was early in the morning, around
6:03 a.m. UTC (8:03 a.m. in local summer time and 7:03 a.m. in local winter time). At this time of the
day, the atmosphere is very stable, compared with the strong fluctuations that can be observed during
the day, and stratified APS has not been observed in the dataset.

4. Results and Discussion

4.1. Line-of-Sight (LOS) Monitoring Results

The LOS displacement rate maps derived by the three methods (i.e., the DA, TSC and TPC) are shown
in Figure 8a–c, respectively. To make a fair comparison, the pixel selection thresholds for all the three
methods were established based on a phase standard deviation of 15◦. Using the plots shown in Figure 7, the
corresponding thresholds for each strategy can be selected. Similar displacement trends have been detected
by all of them, and the maximum displacement velocity reaches up to−3.5 cm/year (the minus sign means
movement away from the satellite, i.e., downslope motion due to the landslide orientation). Within the
landslide limits, there are mainly three large displacement subareas (indicated by the red rectangles in
Figure 8a–c), located at the El Pic de Maians (subarea A), costa de les Gerqueres (subarea B) and Cal
Borró-Cal Ponet (subarea C), respectively. These three subareas’ locations and displacement patterns
are coincident with the monitoring results obtained with another dataset in 2011 [37]. The dataset
consisted on Sliding-spotlight TerraSAR and GB-SAR images, and data from inclinometers deployed
in the landslide, all acquired from October 2010 until October 2011. Previous results have confirmed
that the location and evolution of the landslide body have not changed significantly during the recent
years. This fact is in good agreement with the geological expectations.

Among the three pixel selection methods, DA and TSC select pixels that behave as point scatterers
while TPC can work on both point and distributed scatterers (DSs). Since there are many DS pixels
(e.g., the road) in the study area, TPC obtains a much higher density of measurement pixels (MP) than
DA and TSC approaches.
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Figure 8. LOS displacement velocity maps derived by (a) DA, (b) TSC, (c) TPC and (d) GPS approaches,
respectively. The filled blue triangle in (d), i.e., E1, indicates the location of the GPS base point. GPS
displacements have been projected to LOS. The red rectangles highlight the areas zoomed in Figure 9.
The red numbers at the right bottom corner of (a–c) represent the amount of valid pixels obtained by
each method.
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Notice in Figure 8 how well the TPC method has identified those pixels along the downhill road,
while the other two have just selected a reduced set of them. At the same time, the TSC method
obtains more PSs than DA. This can be explained by the fact that the DA method is very sensitive
to the amplitude changes that highly directive scatterers produce when the local incidence angle
changes from image to image. Specifically, the number of PSs obtained by TPC method is 757,086,
the counterparts of TSC and DA methods are 139,065 and 294,484, respectively. The improvement of
the TPC and TSC methods on DA is around ×5.4 and ×2.1, respectively. The TPC method thus has the
best performance in terms of PSs’ density.

To better analyse the details of the landslide, the three subareas’ monitoring results have been
enlarged and plotted in Figure 9. From column A (results of the subarea A), we can find that
the displacement velocities obtained by DA (−1.3 cm/yr) are greater then those of TSC and TPC
(−0.6 cm/yr) at the locations highlighted by the red ellipses. Similar differences can be observed
between the TPC derived results and the other two methods within the subarea C (along the downhill
road). These displacement velocities’ differences are mainly caused by the sparsity of selected pixels
that reduces the number of connections of DA (Figure 9a,c) or TSC (Figure 9f) during the linear
displacement estimation. Different areas interconnected by low-quality links can lead to small offsets
in the velocity results. The sparser the local connections, the more easily the estimated displacement
can be affected by nearby lower quality pixels and APS. Therefore, the high estimated displacement
velocities in Figure 9a,c,f are mostly due to the low densities of PSs within these local areas.

As Figure 9g–i shows, thanks to the super high resolution (SHR) of the images and TPC’s good
performance on pixel selection, the displacement details of the different landslide units are well
detected. For instance, more pixels have been selected along the narrow paths (around 1 m in width),
as highlighted by red ellipses in Figure 9i. Benefiting from this high density of PSs, the displacement
boundaries (illustrated by the yellow dashed lines in Figure 9i) can be clearly determined by the TPC
approach in subarea C. These boundaries can hardly be seen from the results of the other two methods,
as shown in Figure 9c,f.

Besides the displacement results, PSI techniques can also obtain the DEM error of the selected
pixels with respect to the reference DEM used. The inclusion of the retrieved DEM error on the
geocoding of the final results largely improves the geolocation quality of the displacement maps.
Figure 10 shows some interesting examples that illustrate the capabilities of SHR TSX data to retrieve
the vertical distribution of scatterers in manmade structures. The examples shown have been obtained
from the TPC processing. Figure 10a shows a communications tower located in Canillo. The vertical
distribution of scatterers perfectly follows the tower’s structure as the picture validates. It is also
interesting, looking at the GoogleEarth image, to compare the distribution of scatterers with the
shadow of the tower projected over ground. Figure 10b and c show a couple of chairlifts from the
Grandvalira ski station. Once again, the vertical distribution of scatterers perfectly follows the metallic
structure, as the pictures and projected shadows demonstrate. Finally, Figure 10d shows a couple
of high voltage towers. The good performance of the vertical location of the scatterers, thanks to
the inclusion of the calculated DEM error on the geocoding process, can also be used as proof of
the reliability of the displacement velocity maps obtained. Both velocity and DEM error have been
calculated simultaneously when adjusting the linear model to the interferometric data [17,20].
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Figure 9. The close-up of the three subareas limited by red rectangles in Figure 8a–c. (a–c) are the
results of the DA method, (d–f) obtained by the TSC method and (g–i) obtained by the TPC method.
Red ellipses highlight areas commented in Section 4.1. Yellow dashed lines highlight the edges of
the slide.
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Figure 10. SHR TerraSAR-X data derived DEM errors at the locations of some manmade structures
in the study area by the TPC method. (a) communications tower, (b,c) chairlifts towers and (d) high
voltage towers. PSs have been geocoded over a GoogleEarth image using the retrieved DEM error.

4.2. Comparison with GPS Measurements

The displacement velocities of the 37 GPS control points introduced in Section 2.3 have been
projected to the LOS direction [48,49] to compare them with the DInSAR results, as shown in Figure 8d.
In subarea A of Figure 8d, a small displacement with a velocity around −1 cm/yr has been detected.
In the subarea C, significant movement with velocity around −4 cm/yr has been monitored by the
GPS. In the subareas A and C, the GPS and PSI measured displacement velocities are consistent with
each other. Unfortunately, no GPS points were available in the subarea B for comparison. On the
contrary, large displacements have been recorded by the GPS within the subarea D (highlighted by the
red rectangle in Figure 8d), where there are no counterpart PSI pixels in its near vicinity. However, the
further neighboring PSI pixels present LOS velocities about −1.5 cm/yr, providing evidence of the
agreement of the GPS and PSI results also in this subarea.

To summarize the comparison, a scatter plot with the GPS and PSI derived displacements is
shown in Figure 11. In this plot, the PSI displacements are estimated by averaging those of the
neighbouring pixels of the related GPS measurement point (less than 50 m apart). In addition,
they have been determined from the displacement time-series taking the overall two year displacement
from October 2014 to October 2016, as the GPS date campaigns. As Figure 11 reveals, the GPS
and PSI displacements follow the same trends and present a correlation coefficient of R2 = 0.90.
For GPS measurement points with noticeable displacement (highlighted by the red ellipse in Figure 11),
their surrounding PSI pixels show large displacements as well. Meanwhile, for those stable GPS
measurement points (limited by the blue rectangle), with displacements between −2 to 2 cm,
their corresponding PSI displacements are also within this range.
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Figure 11. Comparison of PSI and GPS derived displacements (October 2014 to October 2016).

4.3. Down-Slope (DSL) Direction Displacement Monitoring Result

The ground motion derived by DInSAR is along the LOS direction, but it is usually projected to
the down-slope (DSL) direction to better interpret the landslide displacement. The detailed LOS to DSL
direction projection method can be found by referring to [12,24]. As it is out the scope of this paper, we
do not describe it here. We projected the TPC method’s ground displacement velocities to the DSL
direction, and the result is shown by Figure 12. It has to be noted that, when doing the projection, only
those PSs with projection factors smaller than 3 have been preserved to avoid artificially amplifying
displacement values and noise when the slope is gentle. Thanks to the relative orientation of the
landslide with respect the satellite path, most of the projection factors within this study area are small.
Thus, the majority of PSs have been preserved, and the displacement patterns along the LOS and DSL
directions are similar (e.g., the neighboring area of P1). Except for a small set of pixels nearby point P4
in Figure 12, the displacement velocities of the previous three displacement subareas (in Figure 8c)
have not been heavily amplified via the projection.

P3

P2

P4

P5

0 -1 -2 -3

(cm/yr)

P1

Figure 12. Down-slope displacement velocity map derived by the TPC method. Estimated displacement
velocities within subareas A, B, C and D in Figure 8 have been enlarged for a better visualization with a
white background. The locations of points P1–P5 in the subareas, which are further analyzed in the text,
have also been indicated.
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Besides the subareas A, B and C in Figure 8, in Figure 12, we have highlighted another subarea,
which is located at the foot of the hill. In this subarea, noticeable displacement has been identified at
the location of P5, which may be caused by the extrusion of the landslide main body moving towards
the downhill direction.

4.4. PSI Time-Series

To investigate the temporal evolution of the Canillo landslide, the DSL time-series displacement
results obtained by the TPC method at two different PSs (P2 and P3 in Figure 12) have been plotted in
Figure 13. The displacements observed for both PSs are exhibiting considerable nonlinear components,
presenting some acceleration and deceleration periods within each year. From the two PSs’ 2016
displacement time-series (Figure 13b,d), we can find that the stable periods start at the beginning of
July and end at the middle of August. These periods are coincident with the trend of Canillo averaged
monthly precipitation, where the lowest precipitation is in July with an average of 79 mm, as Figure 13e
shows. This indicates that the movements of the landslide have some seasonal patterns, which are
correlated with the amount of precipitation.
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Figure 13. TPC method derived down-slope time-series displacement of P2 and P3, Figure 12.
(a,c) cover the period 22 July 2014–15 November 2016 whereas (b,d) are a close-up of the dashed
red rectangles inside (a,c), covering the period May 2016–November 2016 approximately. The red
lines indicate the different deformation trends while the vertical blue ones the location of trend
changes; (e) is the averaged monthly temperature (red line) and precipitation (blue bars) of Canillo
(CLIMATE-DATA.ORG, https://en.climate-data.org/location/13728/); July has been highlighted with
a red rectangle.

5. Comparison with Low-Resolution Data

Sentinel-1A data of the study area have been processed with DA and TPC methods to highlight
the advantages of the SHR data in regional-scale landslide monitoring. TSC has not been included as it
provides similar results than TPC. Sentinel-1A images have resolutions of 14 and 2.5 m in azimuth
and range directions, respectively. Fourteen Sentinel-1A SAR images acquired from the 11 May 2016
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to 19 November 2016 have been employed to generate 33 interferograms. In the pixel selection step,
the same phase standard deviation threshold (15◦) as with TSX data has been used. The displacement
velocity maps obtained using the two PSI strategies, DA and TPC, are shown in Figure 14.

Similarly to the case of TSX data, TPC is able to obtain much more PSs than DA (×4.0), and the
displacement trends derived are similar to those of TSX but less detailed. For both methods, their
PSs’ densities have decreased dramatically compared with the TSX data case. Specifically, for DA and
TPC methods, the numbers of PSs are ×146 and ×197 less w.r.t. that of the TSX case. This significant
reduction of the PSs’ density is mainly due to two reasons that are closely related. In addition to the
logical reduction due to the coarse resolution of Sentinel-1A data, there is also the fact that many small
PSs surrounded by decorrelated pixels that were detected with SHR data are now mixed all together
due to the worse resolution and, consequently, not detected.

(a) (b)cm/yr
0 -1 -2 -3

949(× 𝟏)

DA

3843(× 𝟒. 𝟎)

TPC

Figure 14. The LOS ground displacement velocity maps derived by (a) DA and (b) TPC methods with
Sentinel-1A SAR images.

The Sentinel-1A data monitoring results of the Cal Borró-Cal Ponet section (subarea C in Figure 8
and where the strongest displacement has been detected) have been highlighted with a red rectangle
in Figure 14. In this subsection, the displacement clearly detected with TSX data does not appear
in the Sentinel-1A results with none of the pixel selection methods. A detailed view of Cal Borró
is shown in Figure 15. Similarly, Figure 14 shows no noticeable displacement in any of the other
two subareas (subareas A and B in Figure 8c). However, the small displacement at the base of the
landslide is detected with both PSI strategies and agrees with the results of SHR data. Moreover, the
sparse distribution of PSs, which can be poorly interconnected, allows the appearance of some outliers,
pixels whose velocities are clearly erroneous, scattered along the image. The presence of outliers is
more noticeable on the DA results in the form of isolated red points, those with the highest velocities.

To conclude, for regional-scale landslide monitoring, the TSX SHR SAR images have the advantage
of obtaining more detailed monitoring results with better reliability compared with those of lower
resolution sensors.
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(a) (b)

Figure 15. The LOS ground displacement velocity maps, Sentinel-1A SAR images. Enlargement of the
red rectangles inside Figure 14. (a) DA method; (b) TPC method. The color scale for the displacements
is the same as that in Figure 14.

6. Conclusions

In this paper, the ability of super high-spatial resolution (SHR) SAR images together with
advanced PS selection strategies for regional-scale landslide monitoring in a challenging area has been
studied. Thirty-two SHR TerraSAR-X (TSX) images (July 2014 to October 2016), with resolutions of
0.23 and 0.59 m in azimuth and range directions, have been employed to monitor the Canillo landslide
(Andorra) by using PSI techniques with three different pixel selection methods.

This study has demonstrated that improving the number of high-quality pixels for its later PSI
processing results of crucial importance in landslide monitoring in natural environments. Under
the application point of view, to the authors’ knowledge, it is one of the first times when such a
high density of PS has been obtained in mountainous areas. SHR SAR data jointly with advanced
full-resolution PSI strategies allow the achievement of a more robust network of PS (improving the
linear estimation without propagation errors and the reliable estimation of APS) and thus favors the
reliable estimation of displacement maps in a major number of points inside a landslide. This is a
general conclusion that does not depend on the landslide. A different issue is if the particularities
of a given landslide (orientation, type of vegetation coverage, local topography, snow episodes, etc.)
made it unsuitable for PSI monitoring. Similarly, well-established interferometric techniques for DEM
generation fail on forested areas. It is clear that the particular characteristics of the scenario may limit
the application of the technique.

The landslide’s overall displacement patterns observed by the three methods in El Forn de Canillo
are similar. Three main subareas with noticeable displacement have been detected, which are similar
to those obtained in previous PSI monitoring results. This indicates that the evolution of the landslide
main body did not change significantly during recent years. The PSI measured displacement rates
have been compared with GPS measurements of the same period, and they are both in good agreement.
It is worth highlighting the higher information/resolution of the PSI techniques in comparison with
the GPS low point density, as it can be appreciated in Figure 8. Although already highlighted in the
literature, in the Canillo Landslide, the PSI capability for detecting incipient movements in zones not
previously surveyed by the geological engineering specialists has been verified (as the subarea costa
de les Gerqueres, red rectangle B in Figure 8).The displacement time-series of two significant pixels are
characterized by considerable nonlinear components, exhibiting some acceleration and stabilization
periods within each year. These periods can be correlated with the averaged monthly precipitation
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amounts, revealing the important influence of rain/snow melting episodes on the development of
this landslide.

SHR SAR data initially designed for improving monitoring capabilities over man-made structures,
such as buildings, bridges, railways or highways, have also demonstrated an outstanding performance
over natural reflectors, such as outcrops or exposed rocks with the proper PSs selection strategy.
Indeed, this improvement in terms of density allows a better characterization and delineation of
complex landslides. Among the three full-resolution PSC selection strategies, the advanced ones (i.e.,
the TSC and TPC) are able to obtain much more valid PSs than the classical DA method. The TPC
method presents the best performance. Thanks to these huge amount of PSs, the displacement details
of the regional-scale landslides can be characterized with better precision when combining the TPC
method with SHR TSX data. Compared with the lower-spatial resolution SAR data (Sentinel-1A in this
study), SHR data can better characterize the landslide, particularly if the different subareas are small.

The results of this work show that the density of valid PSs can be greatly enhanced by using the
TPC method together with SHR SAR images. Thus, they can together be used as a powerful tool for
detailed landslide monitoring in difficult areas.
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spain) during the 2004 seismic activation of teide volcano,” Journal of Volcanology
and Geothermal Research, vol. 160, no. 3-4, pp. 285–299, 2007. (Cited on page 1.)

[2] J. Fernández, P. Tizzani, M. Manzo, A. Borgia, P. González, J. Mart́ı, A. Pepe,
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