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ABSTRACT

A key challenge in autonomous mobile manipulation is the ability to determine in real-time
how to safely execute complex tasks when placed in an unknown world. Motion Planning
has been widely used in terrestrial and aerial robots to cope with such challenges, while
it stayed unexplored for underwater intervention. In the last few years, Intervention Au-
tonomous Underwater Vehicles (I-AUVs) became subject of broad interest in research,
with only few real demonstrations mostly relying on variations of the task-priority redun-
dancy control framework.

In response to those arising needs, this thesis focused on advancing the state of the art
by investigating the use of Motion Planning to increase the autonomy of I-AUVs in the
context of “Inspection, Maintenance, Repair” missions in unknown environments.

Through our work, we initially present a modeling and integration of our I-AUV using
common terrestrial mobile manipulation framework Movelt!, showing for the first time
motion planning for an I-AUVs in the presence of virtual obstacles. Then, based on our
observations of our previous demonstrations, and in order to base our choice of the motion
planning technique on a solid scientific foundation, we performed a deep analysis of the
state of the art motion planning techniques. We created benchmarks, and compared 17
motion planners in 5 different scenarios and came out with guidelines for choosing the best
fitting method for given requirements. Later, we identified planner specifications for un-
derwater intervention: 1) Real-Time response for a high Degree of Freedom (DoF) system,
2) Consistency, 3) Efficient trajectories in terms of traveled distance, safety, and system
loose coupling utilization. As a consequence, we propose a new motion planning algorithm
under the umbrella of search-based method, that exploits the loose coupling nature of an I-
AUV while generating consistent, efficient, and safe trajectories in unknown environments.

Both simulation and experimental (in water tanks) results are presented for various stages
of the work, showing the flow and validating the efficiency and potential of the developed
algorithm. The proposed method, conveniently integrated within the robot system’s ar-
chitecture, increases the reliability of the I-AUV performing intervention, both safely and
robustly when operating in unknown terrains.






RESUM

La capacitat de decidir en temps real com executar de manera segura uns tasca com-
plexa en un entorn desconegut és un repte clau en la manipulacié mobil autonoma. Per
abordar-ho, s’utilitzen habitualment tecniques de Planificacié de Moviment tant en robots
terrestres com aeris, mentre la seva aplicacio a I’ambit submari roman inexplorada. Durant
els darrers anys, 'interes de la comunitat cientifica pels - AUVs ha crescut significativa-
ment, havent fructificat les primeres demostracions experimentals basades en variacions
del metode de control de redundancia utilitzant tasques amb prioritat. Aquesta tesi doc-
toral avanca 'estat de ’art investigant ’as dels metodes de Planificacié de Moviment per
augmentar ’autonomia dels I-AUVs per aplicacions d’Inspeccié, Manteniment i Reparacié
executades en entorns desconeguts. A través del nostre treball, presentem la modelitzacié
i integraci6 del nostre I-AUV en Movelt!, un entorn per a la programacié d’aplicacions de
manipulacié mobil comunament utilitzat en robotica terrestre. Amb ’objectiu de fona-
mentar cientificament 1’eleccié del metode de Planificacié de Moviment apropiat al nostre
problema, s’ha dut a terme un analisi comparatiu de 'estat de I'art. S’han definit 5
escenaris de manipulacié representatius (benchmarks) i s’han comparat 17 planificadors
diferents. L’analisi dels resultats ens ha permeés establir les guies per a l'eleccié de la
tecnica més apropiada a les nostres necessitats. Posteriorment, s’han identificat les especi-
ficacions desitjades pels planificadors en aplicacions d’intervenci6é submarina: 1) Resposta
a temps real d’un sistema amb un elevat nombre de graus de llibertat, 2) Consisténcia
3) Generacié de trajectories eficients en termes de distancia i seguretat, aixi com 1'ts
de sistemes debilment acoblats. A partir dels resultats de ’analisi, es proposa un nou
algoritme de planificacié de moviment, dintre de la familia dels meétodes de cerca, que
explota l'acoblament debil entre el manipulador i el vehicle, generant, al mateix temps,
trajectories consistents, eficients i segures en entorns desconeguts. Al llarg de la recerca
duta a terme s’han utilitzat resultats en simulaci6 i experimentals (en tanc d’aigua), per
a validar l'eficiencia i el potencial de l'algoritme. EIl meétode proposat, convenientment
integrat en el sistema de control, incrementa la fiabilitat del robot que desenvolupa la
intervencid, millorant la seguretat i robustesa operant en un entorn desconegut.






RESUMEN

La capacidad de decidir en tiempo real como ejecutar de manera segura una tarea com-
pleja en un entorno desconocido es un reto clave en la manipulaciéon moévil auténoma.
Para abordarlo, se utilizan habitualmente técnicas de Planificacion de Movimiento tanto
en robots terrestres como aéreos, mientras su aplicacion al ambito submarino permanece
inexplorada. Durante los ultimos anos, el interés de la comunidad cientifica por los I-
AUVs ha crecido significativamente, habiendo fructificado las primeras demostraciones
experimentales basadas en variaciones del método de control de redundancia utilizando
tareas con prioridad. Esta tesis doctoral avanza el estado del arte investigando el uso de
los métodos de Planificacién de Movimiento para aumentar la autonomia de los I-AUVs
en aplicaciones de Inspeccién, Mantenimiento y Reparacién ejecutadas en entornos de-
sconocidos. A través de nuestro trabajo, presentamos la modelizaciéon e integraciéon de
nuestro [FAUV en Mowelt!, un entorno para la programacién de aplicaciones de manipu-
lacién movil cominmente utilizado en robdtica terrestre. Con el objetivo de fundamentar
cientificamente la eleccién del método de Planificacién de Movimiento apropiado a nue-
stro problema, se ha llevado a cabo un analisis comparativo del estado del arte. Se han
definido 5 escenarios de manipulacién representativos (benchmarks) y se han comparado
17 planificadores diferentes. El andlisis de los resultados nos ha permitido establecer las
guias para la eleccién de la técnica méas apropiada a nuestras necesidades. Posteriormente,
se han identificado las especificaciones deseadas para los planificadores en aplicaciones de
intervencién submarina: 1) Respuesta en tiempo real de un sistema con un elevado nimero
de grados de libertad, 2) Consistencia 3) Generacién de trayectorias eficientes en términos
de distancia y seguridad, asi como el uso de sistemas débilmente acoplados. A partir de
los resultados del andlisis, se propone un nuevo algoritmo de planificacién de movimiento,
dentro de la familia de los métodos de busqueda, que explota el acoplamiento débil en-
tre el manipulador y el vehiculo, generando, al mismo tiempo, trayectorias consistentes,
eficientes y seguras en entornos desconocidos. A lo largo de la investigacién llevada a
cabo se han utilizado resultados en simulacién y experimentales (en tanque de agua), para
validar la eficiencia y el potencial del algoritmo. El método propuesto, convenientemente
integrado en el sistema de control, incrementa la fiabilidad del robot que desarrolla la
intervencion, mejorando la seguridad y robustez operando en un entorno desconocido.






INTRODUCTION

N this chapter we introduce the main problems that have been covered by this thesis: the use of
I real-time motion planning for underwater intervention in unknown environments. The motive
of this work is introduced in Section 1.1, presenting the background of underwater intervention
and what has been done so far in the field, as well as the background of using motion planning
for autonomous manipulation. Next, we present the objectives of the thesis in Section 1.2 and we
briefly describe, in Section 1.3, the context in which this work has been carried out. Lastly, the
organization of the thesis document is presented in Section 1.4.
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1.1 Motivation

1.1.1 Underwater Intervention

Nowadays, Autonomous Underwater Vehicles (AUVs) are used for survey missions, while
other set of arising applications demand intervention capabilities. Such applications in-
clude marine rescue, marine science, archaeology and the “Inspection, Maintenance, Re-
pair” (IMR) operations common in the offshore industries. Currently, Remotely Operated
Vehicles (ROVs) equipped with tele-operated robotics arm, are used for such interventions.
However, their use suffers from its dependence on human involvement to manage the com-
plex cooperation between the vehicle and the arm pilots. In addition, their running cost
is very high, making the use of ROVs not practical on the long term.

As a consequence, during the last 20 years researchers were motivated to consider the
natural evolution of the intervention ROVs, the I-AUVs, as a practical low cost solution
(an extensive list of references and a broader introduction on the IAUVs can be found in
[8])-

Pioneering work involving UVMS technology appeared in the early 90s with OTTER
(MBARI) [9], ODIN (UH) [10], VORTEX (IFREMER) [11] underwater vehicles. While,
field demonstrations were only presented by the 1%¢ decade of the 21%¢ century. Due to the
difficulty of demonstrations, most of the trials were carried out in mock-up or constrained
sea environments, focusing on two types of applications:

Object Search And Recovery:

The first result based on floating manipulation, was achieved in 2009 in the SAUVIM
project [12], [13]. It demonstrated the capability of searching for an object whose position
was roughly known a priori. The object was endowed with artificial landmarks and the
robot autonomously located and hooked it with a recovery device while hovering. A 6-ton
vehicle was used and hence the mass of the arm did not cause significant disturbances.
In 2012, the same task was approached in the RAUVI project [14] using a lighter vehicle
(<200Kg). First, the object was searched using a downward-looking camera and photo-
mosaicing techniques and next, the object was hooked autonomously in a water tank.
Later on, during the TRIDENT project [15], the experiment was extended in a harbour
environment using the 7-DOF arm endowed with a 3 fingered hand, demonstrating the
first multipurpose object search and recovery strategy. In contrast with the autonomous
trials, innovative recent work [16] has been carried out to bring the ROVs to a new level,
where a humanoid diving robot outfitted with human vision, haptic force feedback and an
artificial brain, has been successfully used for recovery missions.

Inspection, Maintenance, and Repair (IMR):

Given the importance of IMR tasks for the offshore industry to routinely inspect and
maintain sub-merged infrastructures, recent research focused on representative tasks like
“Valve Turning” and “Connector Plug/unplug” demonstrated in mock-up environments.
Such automation has followed two different patterns:

e Docking-Base Intervention The first fully autonomous intervention at sea, was
demonstrated by ALIVE [17] 1.5 Ton I-AUV. A mechanical scanning imaging sonar
was used to locate and home to a subsea panel, and visual servoing techniques
were used for docking the vehicle using 2 hydraulic grasps. Once the vehicle was
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docked, a hydraulic 7-DOF manipulator was used to open/close a valve. A similar
approach was proposed in the TRITON project [18] to demonstrate docking to a
custom sub-sea panel, fixed-based manipulation for both valve turning and hot stab
connection. An active localization strategy employing a Sum-of-Gaussian filter and
range measurements to the subsea panel was used to discover its position and then, to
home onto it. Next, visual servoing methods based on the a priori known appearance
of the panel were used to autonomously dock the robot into a funnel-shaped docking
station.

e Free-Floating Base Intervention A more challenging approach is to perform the
intervention with the AUV floating. This approach comes with its own issues to solve
in terms of AUV and arm coordination to complete the mission. A first autonomous
free-floating valve-turning was carried out based on a Learning-by-Demonstration
paradigm within the PANDORA project [19], [20]. Later, a kinematic-based task
priority [21] approach has been used by the authors to demonstrate the same valve
turning intervention. More recently, a compliant motion control of the UVMS end-
effector while in contact with an underwater pipe has been demonstrated [22] using
force torque sensing.

The previously developed solutions relied on variations of Task-Priority Redundancy Con-
trol (TPRC) where a set of control tasks are being executed respecting a pre-defined
priority. Even though such tasks might include end-effector guidance or obstacle avoid-
ance, current implementations do not guarantee the success of intervention in proximity
of obstacles in challenging, unknown environments as would be expected in a real sea-
environment. As a consequence, using a global motion planning approach is the next
step to take profit of the planner’s knowledge of the environment and move towards more
realistic demonstrations of the actual interventions.

1.1.2 Motion Planning

On the other hand, Motion Planning has been a fundamental topic in robotics [23, 24,
25], used to describe the process of breaking down a desired motion task into discrete
collision-free motions that satisfy one or more constraints and possibly optimizing some
aspect of the movement (i.e. length, consumed energy, safety). For decades, it has been
a key functionality of autonomous robots, specially mobile manipulators where the high
dimensionality of the system introduces more challenges. Other challenging factors are
triggered by various sources of uncertainties in perception and robot localization, as well
as dealing with unstructured changing environments. As a consequence, the adoption of
certain motion planning strategy is critical in order to cope with the given challenges of a
particular domain or problem.

Planning for a High Dimensional Space: as discussed in [26] and [27], planning
for high dimensionality introduces additional challenges:

1. The increase of the system DoF, resulting into performance degradation of planning
techniques due to the computational complexity, even in simple environments.

2. Considering typical human tasks in unstructured environments imposes additional
difficulties: For example, a ground mobile manipulator moving a tray would require
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the end-effector to move on a constrained trajectory rather than simply reaching a
specific location.

3. For successful grasping and manipulation to occur, a minimal to zero tolerance
around the goal constraint is needed, suggesting a fine discretization of the high-
dimensional state space.

4. While goal constrains are usually defined in the workspace of the end-effector, the
feasibility check for a given state is performed in joint space. An effective and fast
kinematic conversion between both is thus required.

As mentioned earlier, complex, but common, task requirements are those imposing a
real-time response to a rapidly changing world. Often, existing motion planners make as-
sumptions that are too restrictive for unstructured environments and too computationally
expensive to satisfy such requirements. Researchers typically make assumptions to relax
such constraints. For example, assuming that complete models of objects in the environ-
ment are available a priori (or may be acquired through sensors), or that the environment
remains static during the interaction. All these challenges and assumptions have not yet
been investigated in the context of planning for an UVMS. Whereas the focus of this work
is on motion planning for mobile manipulation and considering that it is a widely spread
topic, we dedicate a full chapter to cover its various aspects with a thorough analysis of
the existing approaches, along with their pros and cons under different conditions.

1.2 Objectives

The work included in this thesis has the purpose of developing a real-time motion planning
strategy to perform advanced manipulation for an UVMS in unknown environments, within
a framework incorporating system modeling, collision-checking, kinematics, and sensing
capabilities.

This general goal can be broken down into the following more specific objectives:

e Develop a first solution for an I-AUV using Motion Planning: To model
and integrate the existing Girona500 architecture cola2 [28] with a motion planning
stack using “Movelt!” framework.

e Perform an in-depth analysis of state of the art Motion Planning tech-
niques: to define benchmarks, qualitative and quantitative metrics for comparison,
and to come out with a set of guidelines facilitating the choice of a planning strategy
for a given system or domain. In addition, use this analysis as a baseline to choose
an appropriate motion planning strategy to deploy into our solution.

e Propose a real-time motion planner for an I-AUV: To develop a motion plan-
ner that satisfies the requirements for underwater intervention, as observed from our
previous experiments: consistency, safety, real-time response in unknown environ-
ments, and efficiency in terms of trajectories length, and loose coupling between the
system components (less accurate, high motion range floating vehicle vs. limited,
more accurate manipulator).

e Validate experimentally the proposed approach: First, to undertake the sys-
tems integration required to validate the proposed motion planning algorithm on
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a real IFAUV (GIRONA500 & ECA arm). Then, to demonstrate, through water
tank experiments, the viability of the proposed solution to tackle a representative
intervention mission.

1.3 Context

The work presented in this thesis has been supported by the FI 2016 grant from the Sec-
retaria d’Universitats i Recerca del Departament d’Economia i Coneixement de la Gen-
eralitat de Catalunya and has been developed at the Underwater Robotics and Vision
Research Center (CIRS) research group of the Universitat de Girona (UdG), which is part
of the VICOROB research institute. The group started researching in underwater vision
and robotics in 1992 and it is currently formed by pre-doctoral researchers, engineers,
technicians, postdoctoral fellows and permanent staff. The group is a leading team in
the research and development of AUVs for mapping and intervention. It has participated
in several European-funded and National-funded projects (of both basic and applied re-
search) and it has also been involved in technology transfer projects and contracts with
companies and institutions worldwide.

The group has developed several AUV prototypes and has currently two fully operative
robots: Sparus II [29], a torpedo-shaped vehicle winner of multi-domain robotics compe-
tition Eurathlon 2014, 2015 and 2017, and Girona500 [30] a reconfigurable AUV for both
survey and intervention. Girona500 along a 4 DoF ECA /CSIP Arm have been used during
this thesis for both the simulation and water tank demonstrations.

The line of research in autonomous underwater manipulation started at CIRS since 2009,
before this work, it followed two different paradigms: Learning by Demonstration [20, 31,
32], and Control-based (TPRC) [22, 33]. Simultaneously in CIRS, various path planning
techniques for survey missions has been and still being developed: initially a topological
path planner using homotopy classes was deployed to plan for AUVs in 2-D [34]. Then,
in the work of [35], coverage path planning have been explored, while an online approach
for mapping and planning has been developed in [36]. Recently, View Planning is being
developed in [37, 38] for mapping and inspection of unexplored structures.

In this context, the work presented in this thesis is a normal progression towards connecting
these two lines of research by adopting, for the first time, motion planning for underwater
intervention. In addition, this thesis benefited from a research stay at Carnegie Mellon
University (USA) under the supervision of Prof. Maxim Likhachev, a research associate
professor at the Robotics Institute. His research is focused on search-based motion plan-
ning for navigation and manipulation, for both terrestrial and aerial robots [27, 39, 40,
41].

1.4 Document Structure

The rest of the manuscript is organized in a way that presents the incremental and pro-
gressive development of the thesis as follow:

Chapter 2: Motion Planning for a Free-Floating I-AUV covers the system
modeling and initial implementation of an I-AUV using motion planning in a simplified
environment with virtual obstacles.

Chapter 3: Motion Planning Survey - UVMS Case Study is an exhaustive
analysis of state of the art motion planning methods. It defines underwater intervention



12 CHAPTER 1. INTRODUCTION

benchmarks, and compares seventeen algorithm across those benchmarks, using qualitative
and quantitative methods. Finally it introduces a set of guidelines for the choice of the
best techniques given a set of requirements.

Chapter 4: Multi-Representation, Multi-Heuristic A* Motion Planning
for a Free-Floating UVMSs in Unknown Environment is a proposal of a search-
based motion planner algorithm based on exploiting system loose coupling. The proposed
method has been verified in simulation and in a water tank. The results have been an-
alyzed to verify its efficiency from length, safety and base vs. arm motion optimization
perspectives.

Chapter 5: Results and Discussion lays out the results obtained during this thesis,
following the objectives previously presented.

Chapter 6. Conclusions, discussion and Future Work it concludes and discusses
the work presented in this thesis, and suggests possible extension as future work.



MOTION PLANNING FOR A
FREE-FrLoATING [-AUV

N this chapter, we demonstrate the use of Movelt! for the first time for underwater manipulation.
As a mobile manipulator framework, Mowvelt! incorporates the latest advances in motion plan-
ning, manipulation, 3D perception, kinematics, control and navigation. It has been widely used
for terrestrial robots, specially industrial arms but never explored for underwater. We describe the
modeling of our I-AUV using Gironab00 vehicle and ECA 4 DoF arm. The proposed solution has
been validated in water tank, performing two different interventions: valve turning in the presence
of virtual obstacles, and connector plug/unplug. The proposed work and the validation results
were detailed and published in the following journal paper:

Title: Movelt!: Autonomous Underwater Free-Floating Manipulation

Authors: D. Youakim, P. Ridao, N. Palomeras, F. Spadafora, D. Ribas, and M. Muzzupappa
Journal: IEEE Robotics & Automation Magazine

Volume: 24, Number: 3, Pages: 41-51, Published: 2017

Quality index: JCR2017 , IEEE Robotics & Automation Magazine, Q1 (4/26)
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Abstract

Today, autonomous underwater vehicles (AUVs) are mostly used for survey missions, but many
existing applications require manipulation capabilities, such as the maintenance of permanent
observatories, submerged oil wells, cabled sensor networks, and pipes; the deployment and
recovery of benthic stations; or the search and recovery of black boxes. Currently, these tasks
require the use of work-class remotely operated vehicles (ROVs) deployed from vessels equipped
with dynamic positioning, leaving such solutions expensive to adopt. To face these challenges during
the last 25 years, scientists have researched the idea of increasing the autonomy of underwater
intervention systems.
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PLANNING SURVEY -
UVMS CASE STUDY

ollowing our observations from the previously preformed demonstrations, we realized the ne-
F cessity to explore the various elements affecting the behaviour of a motion planner, in more
depth to be able to meet the requirements of an I-AUV. To reach this purpose, in this chapter
we present an exhaustive analysis of the state of the art motion planning techniques, we created
underwater benchmarks, defined qualitative and quantitative measures; and compared 17 motion
planning algorithms along five benchmarks, to come out with a set of guidelines. This extensive
theoretical and experimental survey has been published in the following journal paper:

Title: Motion planning survey for autonomous mobile manipulators underwater manipulator
case study

Authors: D. Youakim and P. Ridao

Journal: Robotics and Autonomous Systems

Volume: 107, Pages: 20-44, Published: 2018

Quality index: JCR2017 , Robotics & Autonomous Systems, Q2 (9/26)
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Sampling-based, search-based, and optimization-based motion planners are just some of the different
approaches developed for motion planning problems. Given the wide variety of application tackled by
autonomous mobile manipulators, the question “which planner to choose” may be tough. In this paper, we
review the state of the art of the most common approaches, and present a set of benchmarks with the aim
to provide not only a theoretical review but also a qualitative/quantitative comparison of the algorithms.
Our purpose is to provide an insight and analyze their performance with respect to different metrics. The
results are based on an Underwater Vehicle Manipulator System UVMS, although they can be extended to
terrestrial and aerial robots as well. The paper uses these results to formalize a set of guidelines for the
selection process of the most appropriate approach, for a given problem/requirements.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Motion planning is a fundamental topic in robotics [ 1-3] which
deals with the problem of finding a collision-free path going from
an initial to a target configuration. Its basic form is the piano
mover’s problem which assumes a robot is a point. It has evolved
through time to address a number of variations, depending on the
specifications of the system and the environment in which it is
expected to operate.

During the last few years several works have compared and
analyzed the motion planning algorithms. The basic theory and the
most common motion planning approaches have been reviewed
in [4]. On the other hand, [5] and [6] each focused on just one
common approach, being the sampling-based and heuristic-based
respectively. Similarly [7] focused on the theory of classical and
heuristic-based motion planning for navigation. In [8], the authors
presented an analysis of probabilistic-based algorithms, discussing
their performance regarding dynamic obstacles and narrow pas-
sages. Some other studies have been concerned with different
robotics domains. For instance, the work presented in [9] focused
on Unmanned Aerial Vehicles, [ 10] dealt with autonomous vehicles
and [11] presented a more thorough algorithms taxonomy for
3D path planning. A quantitative comparison of motion planning
algorithms for an aerial manipulator using Movelt! was presented
in [13] through a single test case. Similarly in [14], underwater

* Corresponding author.
E-mail address: dina.isaac@udg.edu (D. Youakim).
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0921-8890/© 2018 Elsevier B.V. All rights reserved.

bench-marking was covered. This paper focused on explaining
a framework for simulating the environment using UWSIM [15]
through one case study. Other surveys addressed different research
problems related to motion planning. In this direction, [ 16] studied
the coverage path-planning problem and [17] dealt with motion
planning in dynamic environments, which is becoming a challeng-
ing topic of research.

Regarding benchmarking, some work has been done related to
the quantitative evaluation of the techniques. For instance, in [18]
the authors defined their own benchmarks to carry out a compar-
ative study among a set of optimal motion planners. In [17], the
focus was reviewing techniques for motion planning in dynamic
environments. A ROS-based [19] framework using Movelt! [12],
was proposed in [20] for benchmarking sampling-based motion
planning. Their purpose was to set-up guidelines for a terrestrial
robots benchmarks database, along with the infrastructure to get
comparative results. In contrast, the work in [21] is one of a kind,
being focused on dual-arm manipulation; summarizing the state
of the art of different approaches, ranging from low-level control
to high level task planning and execution. Finally, [22] presented
an early but unique work through an experimental evaluation of
different collision detection mechanisms as well as their impact
on the motion planning problem.

The intended contribution of the present work, with respect to
the state-of-the-art surveys, is to advance beyond a theoretical-
only review of the literature. This paper provides extensive com-
parisons based on kinematic simulations of the UVMS system.
New statistical measures are proposed to provide a meaningful
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qualitative/quantitative comparison for existing/new planners. In
addition, we present new underwater benchmarks, with the pur-
pose of complementing those already available in the literature.
Finally, to maintain a standardized and re-usable solution, the
results presented are based on the latest ROS/Movelt! framework
for mobile manipulation. A total set of seventeen representative
algorithms have been tested using five illustrative benchmarks and
compared against seven metrics; with the purpose of providing
clear and structured guidance for other researchers, on how to
choose the most suitable motion planner for their application. To
implement a full solution for mobile manipulators, it would be
common to use hybrid frameworks (as will be summarized in
Section 5) merging motion planning and reactive control tech-
niques. For instance having two levels of obstacle avoidance: with
reactive avoidance at the low level, in addition to the motion
planning one. In this paper we will focus only on comparing the
performance of the motion planning algorithms. It is worth noting
that all the surveyed algorithms could be integrated with existing
reactive control techniques.

The paper is organized as follows: Sections 2 and 3, present
general motion planning concepts and requirements to be taken
into account before deciding the approach to be used. Special at-
tention is given to manipulation planning as explained in Section 4.
Section 5 presents the theory of different motion planning ap-
proaches, with highlights of the pros and cons of each, based on
the literature. In Section 7, we detail our own UVMS system as well
as the tools and methodology we have followed. The main contri-
bution of the work is in Section 8 where the comparative results
and analysis are detailed. Finally, we conclude with guidelines and
discussion in Section 9.

2. Common concepts
2.1. System properties

The feasibility of a motion planning approach is highly depen-
dent on the characteristics of both the robot and the environment.
Below are the common terminologies used to define a planning
problem:

o Configuration-Space (CS): alternatively called Joint Space.
A robot configuration is a vector of values representing the
state of each movable joint, usually expressed as a vec-
tor of joint positions (either angular or prismatic): ¢ =
(91, q2, - - . , Gn). The number of Degrees Of Freedom (DoFs)
is the number of joints (n). The set of feasible configurations
that avoids collision with obstacles is called the free space
Cfree. Its complement in CS is called the obstacle region
Cobstacle- Planning in the Configuration Space may constitute
a bottleneck for systems with many DoFs like mobile ma-
nipulators or humanoids.

o Work-Space (WS): interchangeably named End-Effector
space, refers to the environment where the robot is allowed
to move. It is either 2-D where the robot moves in a plane
or 3-D which is equivalent to motion in the real world.
A redundant system is a system for which the same end-
effector pose may be reached with more than one valid
configuration.

e State-Space (SS): a state represents the condition of the
robot. It is the set of all feasible states and this is usually infi-
nite. A state can be represented in either the configuration-
space or the work-space, it can also be discrete or continu-
ous.

e Path: in the CS, a path is a continuous curve C connecting
two configurations q and q'. A trajectory is a path C(t) pa-
rameterized by time t.

Any motion planning problem can be represented by an initial
start state Syq and a goal state Sgoq. A goal can be represented
either in the CS where each joint has to attain a specific value,
or in the WS where the end-effector of the robot has to reach a
defined pose (2-D or 3-D). A plan constitutes a sequence of actions
(either in the CS or WS depending on the planning space) to be
taken to move the robot from the start to the goal, successfully
taking into account one or more constraints. Section 3 will discuss
the constraints in greater depth.

2.2. Motion planner properties

o Computation Time: the computational cost of the planner
in terms of running time, i.e. the time spent by the planner
to generate a valid plan.

e Completeness: An algorithm is complete if it finds a solution
whenever one exists. Normally, it is a result of exact algo-
rithms that build an exact representation of the world with-
out losing any information. Usually completeness is traded-
off against efficiency, as an accurate representation of the
world may decrease efficiency. Two weaker notions exist to
relax these conditions: “Resolution-Completeness” which
means that the planner is able to find a plan if one exists,
and if the resolution of the environment discretization is
fine enough to capture relevant information. “Probabilistic-
Completeness” planners refer to those that as more as they
spend time planning, the probability of finding a solution,
if one exists, increases to 1. Usually their performance is
measured by their rate of convergence.

e Optimality: An algorithm is said to be optimal with respect
to a certain criterion if it is able to find a plan that reaches the
goal while optimizing such a criterion (e.g. length, execution
time, energy consumption). As in the case of completeness,
there are two weaker notions of optimality: “Resolution-
Optimality” and “Probabilistic-Optimality”.

o Offline vs. Online: An offline-planner is the one which does
offline pre-processing to easily provide an online plan. On
the other hand, the online planner incrementally processes
the information to compute the plan at the time it is re-
quested. Online planners can adapt to unexpected changes
in the system/environment, an essential requirement for
autonomous systems. Designing such a planner, and simul-
taneously keeping time-efficiency remains a challenge.

o Local vs. Global: local planners rely on local information in
the neighborhood of the current state of the robot, contrarily
global ones rely on system sensors to be able to perceive the
global state of the environment and plan accordingly.

2.3. Path quality

An important aspect to be considered when evaluating and
choosing a planner is the quality of the plans/paths produced. As
in [23], the common metrics to evaluate path quality are:

o Path Length: typically, it is desirable to produce short paths,
while maintaining planning efficiency. Since maintaining
both is challenging, some techniques reduce the path length
in a post-processing step after the plan generation.

e Path Clearance: the aim of any autonomous system is to
generate collision-free paths. It is desirable that the gen-
erated path keeps at least a minimum distance away from
obstacles. Moreover, traveling along high clearance paths
reduces the chances of collisions due to various uncertain-
ties (e.g. robot localization). This can also be treated as a
post-processing step.
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o Path smoothness & stability: describes avoidance of jerky
motions for critical joints. In addition, it ensures stable tran-
sition through the path, specially for humanoids.

3. Motion planning requirements

A basic functionality of autonomous robots is to be able to
generate collision-free paths. It becomes more challenging for high
dimensional systems and in unstructured environments. More-
over, The various sources of uncertainties in perception and robot
localization add to the challenges. As suggested in [24], to succeed
in unstructured environments, robots have to carefully select task-
specific features and identify relevant real-world characteristics to
reduce the state space without affecting the performance of the
task (e.g. using projection from the state space to a low dimen-
sional Euclidean space, and plan in that Euclidean space instead).
In this direction, a categorization of additional motion planning
requirements was detailed in [25] together with their impact on
the planner’s choices. A summary is given below.

3.1. Planning in dynamic environment

Two types of dynamic environment relate to: (1) Robot knowl-
edge about the environment ahead of planning: partial/uncertain
knowledge and unexplored parts constitute a dynamism that will
lead to changes in the robot’s perceived map of the world. Thus,
planning has to adapt accordingly. (2) Time-variant environments,
which regardless of the current level of robot knowledge, there is a
possibility of future changes, e.g. moving obstacles. For the system
to deal with such changes, it has to be equipped with real-time re-
planning capabilities to adapt accordingly.

3.2. Planning with uncertainties

Robots cannot rely completely on their knowledge about their
surroundings since perceiving the environment is a challenge in
itself. They have to autonomously and continuously acquire the
information necessary for decision making while navigating. More-
over, they cannot assume that their actions will succeed reliably.
Instead, they have to continuously monitor their effect on the
environment and sometimes take corrective actions. Many exist-
ing, well-established motion planning techniques rely on perfect
knowledge of the world and perfect control of the environment,
which has become an unrealistic assumption and makes them
unable to cope with fully autonomous system challenges. Proba-
bilistic robotics is a recent approach which is able to incorporate
different sources of uncertainties within robot navigation and mo-
tion planning.

3.3. Planning with constraints

In addition to achieving the goal state, motion planning may
involve one or more constraints. Some of those constraints are
not optional, like avoiding collisions and keeping the joint angles
within limits. Others, may arise due to the mechanical nature of
the robot or related to the task to be executed.

o Differential Constraints: arise from both the kinematics
(e.g. non-holonomic robot) and the dynamics (e.g. high-
order constraints like acceleration) of the robotic system.

e Task Constraints: related to the nature of the task to be
executed. For example, an end-effector pose constraint is
needed for the task of transporting a glass filled with liquid,
the robot has to keep the glass in an upright vertical position
in order to successfully carry out the task. Another example
is visibility constraints, like keeping a target object within
the field of view of the robot.

4. Manipulation — planning in high dimensional space

We place emphasis on autonomous mobile manipulation, es-
pecially on collision-free motion for the end-effector (i.e. goals de-
fined in the 3D-workspace). Manipulation includes moving objects
of varying dimensions by pushing or pulling, and prehensile and
non-prehensile grasping of smaller objects. Both, [24] and [26], dis-
cussed additional challenges of motion planning for manipulation:

(1) Adding a manipulator to a mobile robot increases its reach-
able workspace and its DoF accordingly. Motion planning
for robots with many degrees of freedom is computationally
expensive, even in structured environments, due to its high-
dimensionality.

(2) Considering unstructured environments imposes additional
difficulties. In addition, manipulation tasks may require the
end-effector to move on a constrained trajectory rather than
simply to reach a specific location. Each of these increase the
challenge of the motion planning problem.

(3) For successful grasping and manipulation to occur, a min-
imal to zero tolerance around the goal constraint may be
allowed, suggesting the need for a fine discretization of the
state space.

(4) While goal constrains are usually defined in the workspace
of the end-effector, the feasibility check for a given state
is performed in joint space. An effective and fast kinematic
conversion between both is thus required. Probably, most
complex task requirements are those imposing a real-time
response to a rapidly changing world. Often, existing mo-
tion planners make assumptions that are too restrictive for
unstructured environments and too computationally ex-
pensive to satisfy such requirements. Researchers typically
make assumptions to relax such constraints. For example,
assuming that complete models of objects in the environ-
ment are available a priori (or may be acquired through
sensors), or that the environment remains static during the
interaction.

5. Motion planners categories

The various approaches in the literature, differ in their choice of
the free-space representation, as well as the efficiency metrics they
consider. When choosing an approach to solve a given problem,
we might consider one or more of those factors (e.g. how exact
is the free-space representation, time/memory usage ...). For ma-
nipulators, where the major challenge is the high dimensionality,
the balance between trajectory quality and performance is a key
trade-off, given the real-time and computational constraints of an
autonomous robot. In this section, we present a brief description
of the most common motion planning techniques, including some
basic algorithms, not necessarily suitable for high-dimensional
systems, but presented for completeness.

5.1. Potential fields

Given the difficulty of fully representing the free-space, the
Potential Fields method is an alternative approach which explores
the space incrementally moving towards the goal. The incremental
exploration is guided by assuming the robot is a particle that moves
according to the sum of defined forces applied to its mass. These
potential forces are computed by defining a set of functions as
detailed in [27,28]. Those functions can be divided into two main
categories: attractive & repulsive. The role of attractive functions
is to guide the robot to the goal, while the repulsive ones pushes it
away from obstacles. The resultant force is what leads the robot
through a collision-free motion. Other types of functions exist
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(detailed in [2]). This method is easy and efficient, because at any
moment the motion of the robot is determined by the potential
field at its location. Another benefit is its extensibility when adding
a new obstacle, which is simply incorporated by summing its field
to the previous ones. However its main disadvantage is getting
trapped in local minima. A way to escape such local minima is using
“Randomized Potential Field”, where random motion is generated
whenever stuck, to guide the robot outside the dead region.

5.2. Cell decomposition

Cell decomposition methods represent the free space by a col-
lection of non-overlapping cells, where the cells result from a non-
uniform process of dividing the Cs. given the obstacle informa-
tion available. Different decomposition techniques have been pro-
posed: The trapezoidal decomposition being the most popular exact
cell decomposition, the environment and the obstacles which are
represented as polygons are divided into trapezoidal and triangular
cells by simply drawing parallel line segments from each vertex of
each polygon in the configuration space to the exterior boundary
of the space. A more general decomposition class is termed Morse
Decomposition like brushfire and wavefront [2]. Another variation
is the visibility-based decomposition that uses changes in line-of-
sight information to define cells. For instance, moving from one
cell to another corresponds to a change in visibility (e.g. obstacle
or target appears or disappears). Approximate Cell Decomposition
on the other hand, uses a recursive method to continue subdividing
the cells until either: (1) each cell lies either completely in Cp 01 in
Cobstacle- (2) and an arbitrary limit resolution is reached. Examples
of such technique are quadtree, octree, or 2n-tree [2].

After performing the decomposition, a path is computed in two
steps. First, the planner determines the cells that contain the start
and goal, and then it searches for a path within the adjacency
graph. In this graph a node corresponds to a cell and an edge
connects adjacent cells. It encodes the adjacency relationships of
the cells, and thus serves as a roadmap of the free space. Therefore,
planning can be achieved by incrementally expanding this graph.

Cell decomposition is conceptually easy, however it does not
scale due to its complex implementation and poor time efficiency.
For example, for the trapezoidal decomposition, there is a com-
plexity residing in constructing the decomposition itself, with
overall time estimation of O(n?) and storage of O(n), where n is the
number of nodes in the graph.

5.3. Roadmaps

Considered as a complete general method that applies to spaces
of any dimension [29]. Instead of focusing on solving (start, goal)
problems, they are concerned with capturing the connectivity of
the whole free space. As a consequence this map contains infor-
mation about all feasible routes in the environment, hence it can
be queried for multiple (start, goal) pairs. A roadmap (R) is defined
as a subset of the configuration space that results from the union
of one-dimensional curves, in which any (start, goal) contained in
Cfree can be connected by a path that is:

(1) Accessible: there is a free path in R from start to another
configuration q,,.

(2) Deplartable: there is a free path in R from some qéou, to the
goal.

(3) Connected: there is a free path in R that connects g, to

q‘/goal'
There are various types of roadmaps: the visibility graph [30]

assumes a 2D configuration space with polygonal obstacles, the
set of the visibility nodes v; is composed of the (start, goal) pair

and all the vertices of the obstacles. Its edges, ej;, are straight-
line segments that connect any possible combination of two nodes
v; and v;, without colliding with the obstacles. Once the visibil-
ity graph is fully defined, the solution path can be obtained by
implementing any graph search method (e.g. Dijkstra’s [31]). It
suffers from a clearance issue, as usually the solution found touches
obstacles at the vertices or even edges. This drawback is addressed
in the Voronoi diagrams [32], where the diagram is defined for sets
of points equidistant to at least two obstacles. This means that
they are the mid-point between two obstacles to be avoided, and
the edges correspond to the possible channels that maximize the
distance to the obstacles [2]. Other variations exist such as the
freeway net [33], and the silhouette [2].

5.4. Sampling-based

Each of the previous methods relies on an explicit represen-
tation of the geometry of the free space. As a consequence, with
the growth of the dimensionality of the configuration space, they
might become impractical. In contrast, the sampling-based meth-
ods create a sampled (discrete) representation of the configuration
space that captures the connectivity of Cs... They exploit the fact
that, while explicitly building C.. is expensive, checking a given
configuration for collisions is quicker. To build such a discrete
representation, they follow a two-stage technique: “sample” &
“connect”. In the first, they generate random sample routes g
that are checked for collision. Secondly, they interconnect the
random and collision-free configurations, thus establishing differ-
ent routes (paths) to solve queries. Their basic version is focused
on finding any feasible path rather than minimizing the solution
cost. However, this methodology may often result in solutions of
unpredictable length with superfluous movements, motions that
graze the obstacles and jerky trajectories that may be potentially
hard for the manipulator to follow. In order to compensate for
this quality loss, various post-processing techniques (e.g. short-
cutting, smoothing) became essential. Furthermore, they may fail
in cluttered environments, and narrow passages (i.e. areas with
less samples). Most of the sampling-based approaches provide
no optimality guarantees of the solution and only probabilistic-
completeness (the probability of finding the solution increases
with the sampling density)

Two main categories exist:

o Multi-query planners: similar to the Roadmap technique, as
they are able to answer multiple queries through building a
Probabilistic Roadmap PRM [34].

e Single-query planners solve a query specified by a (start, goal)
pair by growing a tree of configurations between them.

Because there is a wide variety of sampling-based algorithms,
we will summarize only those to be compared in Section 8, while
a more exhaustive list of planners (including those taking into ac-
count planning with constraints) and their implementation guide-
lines can be found in the OMPL library documentation [35], a state-
of-the-art library for sampling-based motion planning.

e Rapidly-exploring Random Trees RRT was first presented
in [36] and is now the most widely used single-query
method, along with its bi-directional version RRTCon-
nect [37] which grows two RRT trees (one at the start, one
at the goal) in an attempt to connect both and find a path.

e Expansive-Space Trees EST [38]: during the construction
phase the algorithm selects the node q to be connected in
a way that prioritizes less-explored regions (e.g. narrow
passages), and then it randomly samples a configuration
(rang around q, thus attempting to overcome one of the
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weaknesses of the basic RRT. In order to estimate less ex-
plored regions, they apply a linear projection to reduce the
high-dimensional configuration space. It has a bi-directional
(start & goal), lazy collision-checking (i.e. collision check
along connections in the tree deferred until they are needed
not during tree expansion) version: the Single-query Bi-
directional Lazy collision checking planner SBL [39].

e Search Tree with Resolution Independent Density Estima-
tion STRIDE: inspired by EST, instead of linear projection,
they rely on a tree data structure to search for nearest-
neighbor information and estimate the sampling density
needed in a given region. It is useful for high-dimensional
systems where the free space cannot easily be captured with
a low-dimensional linear projection [40].

Since the original sampling-based techniques trade optimality
for speed, they do not provide any guarantee of the produced path
optimality, for a given cost function. A set of optimal planners
were introduced like RRT* and PRM*, for single and multi-query
planners [41] in order to improve the quality of the produced paths
in terms of different criteria (e.g path length). The improvement
happens in the “connection” step of the algorithm, where new
configurations are connected to the closest and best configuration
given the cost function.

5.5. Search-based

Also called “Grid-based”, they use a discrete representation
of the configuration-space through a uniformly discretized grid.
Then the planning problem is formulated as a graph-based search
to find an optimal path between a given (start, goal) pair, with
collision-checking occurring only when expanding nodes of the
graph. Assuming S denotes the finite set of states of the domain,
c(s, s') denotes the cost of the edge between states s and s’ (s, s’ €
S); if there is no such edge, then c(s, s") = oo. Succ(s) .= {s' € S |
c(s, s") # oo denotes the set of all successors of s. g(s) denotes the
current best path cost from sy, to s, and h(s) denotes the heuristic
for state s, which is an estimate of the best path cost from s to Sgyq.
A priority queue (commonly known as OPEN list) holds the states
eligible for expansion, ordered by their estimated path cost. A
CLOSED set holds those states that have already been expanded. A
typical search-based algorithm runs first by picking the minimum
estimated-cost node from the OPEN queue, and expands this node
by generating its successors. For each successor s’ € Succ(s), if a
less costly path to s’ is found through this new expansion, its g(s’)
is lowered and, if it has not been expanded yet, s" is added to the
OPEN queue.

Heuristic-based techniques typically come with strong theoret-
ical guarantees on completeness and optimality or at least bounds
on sub-optimality [42]. In addition, the generality of heuristic
searches allows incorporation of complex cost functions and con-
straints to easily represent arbitrarily shaped obstacles with grid-
like data structures [43]. They also provide consistency in the
solutions, given the deterministic nature of the grid as opposed to
random samples in sampling-based techniques.

Different variations of the basic technique have been devel-
oped:

e Static Planners like simple A*, useful for simple low dimen-
sional problems.

e Anytime Planners such as ARA* (Anytime Repairing A*) [44],
they aim to find the best plan they can within the amount of
time provided. They operate by quickly finding an approx-
imate and possibly highly sub-optimal plan first, and then
keep improving it until no more time is available. The time
spent on improvement is called Repair Time. In addition to
being able to meet time constraints, many such algorithms

make it possible to interleave planning and execution: while
the agent executes its current plan, the planner keeps im-
proving it.

e Dynamic Planners are able to adapt with changing environ-
ments, due to their re-planning capabilities, an example is
D* Lite [45].

e Hybrid Planners like the anytime re-planning algorithms
(e.g. AD* [46,47], and R*[48]) combine a range of features
to cover a wider range of problems.

Search-based methods have long been known to struggle when
it comes to high DoFs systems. They become inefficient due to the
increase of the graph size, which is reflected in the search time
(i.e. high planning time).

The work presented in [26] shifted the paradigm by introducing
the notion of lattice-based graphs (originally introduced in [49])
to overcome this inefficiency. Lattice-based graphs use what is
called lattice states, i.e. states that discretize the possible robot
actions into Motion Primitives. This notion removes the bounds
on using search-based planners only with 4/8-connectivity, and
allows robot actions to not be tied to the grid and are now free to
cover more than one grid cell. For this new paradigm, a search-
based algorithm is labeled in terms of three aspects: search al-
gorithm, heuristic, and graph representation. The design of these
core components determines several important factors including
the planning time, memory footprint, smoothness of the trajectory
and kinematic/dynamic feasibility of the generated path. Our study
focuses on two of these search techniques: anytime A* (ARA*) and
its lazy version (LARA*) where the states are checked for collision
only when extracting the final solution.

In addition, two graph representations are used:

e Manipulation Lattice (indicated shortly as CS or confi-
guration-space lattice), where the Motion-Primitives (MP)
are defined in the configuration space of the system (i.e. each
MP modifies one or more DoF). Two types of MPs can be
defined: long and short, where the short ones are usually
used around the goal regions (a configured threshold allows
use of one or the other). Usually these short MPs imply
relatively longer motions to jump straight to the goal, while
the long ones help in exploring the space.

e Workspace Lattice (indicated shortly as WS) where the
Motion-Primitives are defined in a 3-D workspace instead
(X,¥,2z, ¢, ¥, 0). In order to produce a final kinematically-
valid/collision-free trajectory, periodic inverse-kinematic
calls are needed during the graph search/expansion process.

The trade-off respectively is speed versus coverage of a wider
variety of domains. If the environment is known in advance then
designing the MPs for the manipulation lattice is easy and one
would profit from a fast-performing planner. However, the same
MPs set would probably fail or at least result in a poorer per-
formance for a completely different environment. Whereas for
the workspace lattice, the fact of using the end-effector enables
covering various environments with higher maneuverability, at
the expense of frequent inverse-kinematic calls which increase the
planning time.

And finally, we focus on the following three heuristics:

e Euclidean: computes the euclidean distance to the goal ei-
ther in the configuration space or workspace depending
on the graph representation used. They are goal-directed,
which helps in computing short paths, but not aware of the
environment and information on obstacles. This may lead
to colliding paths and frequent failure in complex environ-
ments.
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e Breadth-First Search (BFS): the idea is to keep track of the
obstacles information in the environment through a 3-D grid
with cells marked free/occupied. This grid has the x,y, z
end-effector goal as the origin cell for the BFS. An inflation
radius is specified for the end-effector - given its dimen-
sions - and itis used to inflate the grid cells. Those cells lying
in the area within this radius are marked as occupied, help-
ing to guide the end-effector in cluttered regions. Finally,
in a breadth-first manner, the heuristic computes distances
for all the cells in the constructed 3-D grid that correspond
to the lengths of paths for the end-effector to reach its goal
while avoiding obstacles

e Multi-frame Breadth-First (MFBFS): provides the possibility
of running multiple parallel BFS in order to fasten and im-
prove the search process. Each of the new BFS has its own
reference frame (instead of the usual end-effector) frame
(e.g. using two reference points on the arm end-effector
given its shape to help manoeuvring around obstacles). It is
a domain-dependent heuristic, and in common cases might
not demonstrate any improvements over single BFS.

5.6. Optimization-based

They formulate the motion planning problem as on optimizing
problem to be solved by defining one or more cost function(s) to
be optimized through an iterative process [50-53].

Common cost functions include path smoothness, obstacle avoid-
ance, and joint limits as essentials. Although, others can be added
like system dynamics, stability (for humanoids), manipulability
(for arms), any other task specific constraints, or a combination of
them.

The Covariant Hamilton Optimization Motion Planning
(CHOMP) [51] works by creating a naive initial trajectory from
the start position to the goal and then, uses a modified version of
gradient descent for the cost function to optimize the trajectory.
Some advantages over the sampling-based approaches include
the ability to optimize trajectories for smoothness and to keep
a pre-defined minimum distance to obstacles when possible. On
the other hand, gradient-based methods might suffer from getting
stuck in local minima. As a consequence, [54] introduced the use
of Hamilton Monte Carlo algorithm to apply perturbations to the
path and restart the optimization process to deal with this issue.
However, this approach introduces randomization in CHOMP and
reduces its deterministic nature.

Similarly, Stochastc Trajectory Optimization Motion Planning
(STOMP) [53] offers the capability to optimize general cost func-
tions providing good performance for manipulation problems. It
relies on generating noisy trajectories to explore the space around
an initial (even unfeasible) one. Those noisy trajectories are later
combined to generate an updated lower-cost solution. An advan-
tage of the optimization technique used by STOMP is that no gradi-
ent information is required, thus allowing optimizing generic cost
functions with no derivatives computation. In addition, its stochas-
tic nature is able to overcome the local minima that gradient-based
methods usually suffer from.

5.7. Hybrid techniques

Some methodologies have been reported which do not specifi-
cally fall within one category or another, but adopt hybrid mecha-
nisms:

e Dynamic Roadmaps: [55] based on the sampling-based
roadmap concept, they maintain an online dynamic version
of the roadmap in order to cope with dynamic changing
environments.

e Real-time Planners: [56] Focusing on real-time motion plan-
ning with dynamic obstacles, these authors suggested two
approaches. One is to modify a leading motion planning
algorithm to make it real-time, a solution called R*. The
other is to modify a leading real-time algorithm to be better
suited for motion planning. They came out with what they
called Partitioned Learning Real-Time A* (PLRTA*).

e Elasticbands: a technique based on integrating motion plan-
ning and control to achieve real-time path generation, with
dynamic obstacle avoidance and re-planning capabilities. In
addition, the use of task-based control, enables the possibil-
ity of embedding other task specific requirements (i.e. sta-
bility behavior for a humanoid, or orientation constraint
for tray transporting). Different variations can be found in
[57-60]

6. Benchmarks

In this section, the various benchmarks (see Fig. 1) as well as the
philosophy behind choosing them is explained, to provide insight
on how to benchmark a given motion planning problem.

The five benchmarks have been carefully created to demon-
strate when randomness is a strength, and when the determinis-
tic approach is the way to go. For each scenario an end-effector
goal was chosen by specifying its position x, y, z and orientation
¢, 0, . The idea behind choosing the start posture in all scenarios
is to be around the manipulation region, not too close to over
simplify the scenario and not too far so that the problem would
be more concerned about navigation instead of manipulation. The
arm configuration was set to zeros in all benchmarks, and the depth
of the AUV was set in the same range of the manipulation object.
The main difference between the scenarios was either in the AUV
orientation or side positioning. For instance in BM#1 & BM#2, we
chose the orientation to be perpendicular to the valve and on the
left side (as opposed to the blue bar obstacle in BM#2), to add
a challenge to the scenario and see how the different planners
will deal with the AUV orientation change. For the same reason,
in BM#3, the AUV was initially positioned on the right side with
respect to the plug to be picked up. In contrast, for BM#4 & BM#5,
the AUV was centered in front of the window, to avoid more
complexities to an already challenging scenario. Different initial
configurations would lead to different results, but we believe it
should be tailored to reflect the purpose of the benchmarking.
In addition, they should not be neither over-simplified (e.g. posi-
tioned straight in front of the object to be manipulated) nor over-
complicated.

A subset of the planners explained in Section 5 were chosen
for comparison. Others have been omitted, either because they
are too theoretical (e.g. cannot scale to high-dimensional systems)
or because there is no open-source ROS-based implementation
of the algorithm. Having an open-source ROS-based implemen-
tation is important to allow fair comparison using the latest ROS
standard tools. Three categories are covered: (1) sampling-based,
(2) optimization-based, and (3) search-based planners. For each
category, our choice aims to cover the basic approach in addition
to the various features provided by each planning family (e.g. lazy
collision checking for both sampling-based and search-based),
with a total of 17 planners (listed in Table 1). For the search-
based planners, the different combinations of the different core
components: search, graph & heuristic (as explained in Section 5)
were compared. In order to reduce the number of results pre-
sented, and because for some scenarios a given combination was
not showing improvement; we omitted some search-based combi-
nations and ended up dividing the benchmarks into two sets: Set(1)
[BM#1,BM#2 BM#3] & Set(2) [BM#4,BM#5]. The combination of
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(a) BM#1: Simple Valve (b) BM#2:Valve
Turn. Turn With
Obstacle.

(c) BM#3: Cluttered Environment.

=7

8

(e) BM#5: 1 m Stick Ma-
nipulation.

=)

(d) BM#4: 50 cm Stick
Manipulation.

Fig. 1. Benchmarks with the I-AUV Start configuration & the goal pose (x, y, z — yellow sphere, ¢, 0, ¥ — RGB Axis).

Table 1
Planners choice & benchmarks coverage.

Categories Planners Benchmarks
RRTConnect All
SBL All

Sampling-based STRIDE All
RRT* All
PRM* All

N STOMP All

Optimization-based CHOMP All
ARA*.BFS.CS All
ARA*.MFBFS.CS BM#4 & BM#5
ARA*.EUCLID.CS All
ARA*BFS.WS All

Search-based ARA*.MFBFS.WS BM#4& BM#5
ARA*.EUCLID.WS All
LARA*.BFS.CS BM#1,BM#2,BM#3
LARA*.EUCLID.CS BM#1,BM#2,BM#3
LARA*.BFS.WS BM#1,BM#2,BM#3
LARA*.EUCLID.WS BM#1,BM#2,BM#3

(ARA*) search, CS & WS graph, and heuristics (EUCLID & BFS) was
tested for both sets, while the lazy-collision checker was tested for
Set(1) with a total of 15 planners, and the multi-frame BFS was
tested for Set(2) with a total of 13 planners. This division allowed
us to minimize the amount of data presented in this work while
still showing the reader the existence of different features and their
possible usage.

The benchmarks have been inspired by the work done so far in
terrestrial robotics, with some adaptations to fit the underwater
environment. Nevertheless, we consider that the results presented
are applicable to other robotics domains including ground as well
as aerial robotics.

6.1. Simple “table-top” like manipulation

One of the most common underwater intervention tasks, con-
sists of turning a valve on an offshore sub-sea panel like those
used in the offshore industry. It is considered of interest for the
0il&Gas industry, which is why it has been used as a representative
task for intervention. Moreover, its simplicity allows comparison of
the performance of the motion planners under relaxed conditions.
This task has resemblances to the operation in table-top or what is
commonly known as pick & place tasks for ground robots. Although
in this case the “table” is rather vertical. Two variations have been
implemented:

e BM#1: Obstacle-Free Valve Turning The benchmark is
shown in Fig. 1(a). The unique obstacle to be avoided is the
sub-sea panel itself.

e BM#2: Valve Turning in presence of Static Obstacles The
benchmark is shown in Fig. 1(b). In this case, a rectangular

bar has been added to the scene, located at the right side
of the valve to be turned. It makes the intervention more
challenging.

In both cases, the robot starts in a pose parallel to the panel and
has the goal of bringing the end-effector to the middle lower T-
shaped valve to turn it.

6.2. Manipulation in cluttered environment

A significant challenge for mobile manipulation arises when the
manipulation target is located within an environment cluttered
with obstacles. This type of problems can be extended to dynamic
environments with moving obstacles or when there is uncertainty
in the knowledge of the environment, which is not covered in the
present work. In such circumstances, a high accuracy is required to
manoeuvre around the obstacles to reach the object to manipulate.
Moreover, it might be required to pass through narrow passages,
adding complexity to the problem. For ground robots, this has been
usually represented through manipulation of objects within a shelf
cluttered with obstacles.

BM#3 benchmark shown in Fig. 1(c), represents the underwater
version of a cluttered environment. The task consists of unplug-
ging a hot-stab connector. The same panel of BM#1&2 has been
used, but located horizontally and equipped with a set of hot-stab
connectors and valves. A secondary horizontal panel and 2 vertical
side panels complemented the scene. Their role is to constrain the
environment and to force the generated plan to go through the
clutter instead of reaching it from above. The target end-effector
attitude was selected to be on the plane perpendicular to the
connector (v = 1,6 = —0.2, ¢ = 2.4), assuming the connector
can be moved up for unplugging. .

6.3. Manipulation through narrow passage

The Narrow-Passage is one of the most challenging problems
that have been addressed in motion planning. For this reason,
we give it more attention, and we carefully reviewed the litera-
ture to find the best representation of this problem. The selected
scenario for this benchmark is shown in Fig. 1(d) & 1(e)), where
a stick whose size can be chosen within specified limits, has to
be manipulated to pass across a window of size 60 x 60 cm,
simulating an object manoeuvre through a narrow passage. This
benchmark is inspired by the work presented in [61]. This scenario
is quite common for ground robots where an object is to be moved
from one side to the other through a narrow shelf, or for robots
working in rescue where narrow tunnels/holes might exist due to
the nature of the disaster through which they need to operate.
For the underwater domain, this could be similar to a structure
inspection task, where a camera attached to a bar needs to be
placed into different sections of a complex sea structure where
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there are narrow passages. Four test cases with different stick sizes
(25,50,75,100 cm) have been tested, although only the second and
the last are reported (BM#4 & BM#5), as they represent interesting
findings.

In BM#4, the 50 cm stick was used, and the goal position was
carefully chosen (20 cm from the window center in the positive
X-direction, taking into account the wall thickness T = 4 cm) to
challenge the planning problem and at the same time ensure it is
reachable with = 0,6 = 0, » = 0 orientation.

While in BM#5, the stick length was increased to 1 m in order to
make it longer than both the height and the width of the window.
In this case, the goal was modified to ensure its feasibility with
the large stick. An additional 20 cm with respect to BM#4, were
added in the positive X. Additionally, the orientation was modified
toy = 0,0 = 0.7, ¢ = 0.Itis worth noting that at this X-position,
the v = 0,606 = 0,¢ = 0 was failing for the heuristic-based
planners, as the heuristic guides the search though the window,
and it was impossible to pass the large stick through the window
with 0 orientation.

7. System, tools & methodology
7.1. Underwater vehicle manipulation system

The system used in the tests is an underwater mobile ma-
nipulator, where a 4-DoF ECA/CSIP Micro-Arm arm is attached
to Girona500 vehicle [62]. The vehicle has 4 controllable DoF
X, Y, z, ¢, being passively stable in roll and pitch (¢, #), resulting in
an 8-DoF system. All the DoFs were modeled in Movelt! as a single
planning group. This UVMS has been used for several intervention
tasks, but specifically with Movelt! in [63].

7.2. Tools & methodology

The results conducted in this survey are based on the bench-
mark plugin provided by Movelt! [12]. It is an ROS-based [19] plu-
gin based on the benchmark plugin provided by the Open Motion
Planning Library for sampling-based planners [20,35]. The plug-in
uses the warehouse concept of Movelt!, where a database is used to
save different planning scenes (i.e. test scenarios), the starting and
the goal states. From the plug-in side, a connection to this database
is established and the scenes are loaded together with the corre-
sponding start-goal queries. The (start-goal) query(ies), the scene
to be loaded, the number of runs, and the planners to be tested are
defined in a configuration file (.yaml) as explained in [64]. A generic
motion planning plug-in implemented in [65] was used in order
to load planners from different categories (OMPL, SMPL, STOMP, &
CHOMP), each with its specific configuration.

Some modifications had to be done to the benchmark plug-in
to support the test cases as designed (e.g. support for: multiple
workspace goals, updating world objects status, collision & non-
collision objects, adding attached objects, metrics logging tool ),
and the corresponding modified code can be found in [66]. Each
benchmark was repeated M times (M = 20) for each planner, with
amaximum allowed-time of 20 s. The goal query was defined in the
3-D workspace (x,y, z, ¥, 6, ¢), with a tolerance of 0.01 for each.

The nature of the optimization-based planners does not allow
providing goals in the end-effector space. As a consequence, an
automated pre-call to an inverse kinematic service was added to
convert the goal to the configuration space. This is considered a
limitation, since only one of the redundant configurations leading
to the considered end effector goal-pose is taken into account. In
our specific case, with limited redundancy (only 2 DoF), we believe
that it does not dramatically affect the comparison result.

Parameter Tuning: each planner, especially search-based ones,
has dependency on the setting/tuning of some parameters. Here is
a brief explanation of those parameters:

e Search-based planners: The grid resolution remains a criti-
cal parameter, as well as the motion primitives set chosen
(as explained earlier). The Repair Time was set in all tests to
1 s. In addition, the cost of the edges and nodes of the graph
was uniform.

e Sampling-based planners: a considerable advantage of this
category is the possibility to use the default parameters
provided by the OMPL with a wide variety of scenarios, and
still perform pretty well, as will be shown. It is possible, that
further tuning per test-case would improve the outcome,
but we choose to leave the default tuning and consider it
an advantage over other planners’ implementations.

e Optimization-based planners: similar to sampling-based, no
specific parameter tuning was needed, except for STOMP in
BM#5 (this will be explained later).

Metrics: In the result sections, a set of plots per benchmark
are presented. Five metrics are compared, four of them are shown
as box plots, in order to capture the variation along the different
runs of the same planner for the same test case. Details of the
computation of each metric are given below:

(1) Planning time: represents the time needed to find a solu-
tion, or the first solution for optimal sampling-based plan-
ners (i.e. RRT* & PRM*). It is separately computed by each
planner given its own implementation, and it includes post-
processing time (e.g. smoothing or short-cutting).

Path length: computed as the Manhattan Distance between
consecutive way points. Reported in Eq. (1) where N is the
total number of way points in the path.

(2

—

N

L= dila—a-1); a=[XyZ¥ q1d2q3 4al (M

k=2
(3

=

Path clearance: computed as in Eq. (2), the higher the value
the safer the path. A Movelt! provided routine, based on an
octomap representation of the environment [67], is used
to compute the minimum distance to the world objects
for a given robot configuration (q). Usually the clearance is
computed over the whole trajectory, but since our bench-
marks are concerned with planning for manipulation, and
the obstacles are found only in the manipulation region; we
noticed that considering the full path for clearance com-
putation can lead to unfair comparison. For example for
some sampling-based planners, and in the narrow passage
benchmarks, the resulting path was expanding more in free
areas (see Fig. 15) before getting to the target pose, which
might lead to better clearance even though it is not a matter
of keeping a reasonable distance to obstacles, but rather
a sampling issue. As a consequence, we decided to apply
a threshold to the trajectory, considering only the portion
of it lying in the neighborhood of the goal region defined
with a threshold radius R (In our case, in order to suit our
benchmarks, we chose R as dist /2 with dist being the start
to goal euclidean distance).

¢ - Zhydnta)
N
where N = #{qk / d(qlo qgoal) < R},
(qx, ggoa) are the kth and goal configurations

(2)

=
A

Path smoothness: a path is viewed as a sequence of seg-
ments, and the angle between consecutive segments is com-
puted. The smoothness (as computed in [35]) is considered
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No1[2 A? + B% - C? obstacles. This graph visually assesses the behavior of the planner
g [2(m — arceos( 2AB )] 3) with respect to obstacles, and also allows perceiving the change
= A+B ) of planner behavior with respect to environment complexity. For

Fig. 2. Path segments for smoothness computation.

as the complementary to this angle (Eq. (3)/Fig. 2). The
smaller the value the smoother the path.

(5) Success rate: displays the success vs. failure rates for each
planner. A legend of three colors (green, red and orange) is
used. Green reports the successful (i.e solution found) runs
percentage. Red represents the percentage of non-collision
free solutions found. Finally, the orange represents the runs
where the algorithms was not able to find a solution within
the given time.

To complement the quantitative assessment, a qualitative eval-
uation is also presented in the last plot Distance to objects color
map:

This plot (e.g. Fig. 4(e)) captures the evolution of the trajectory
with respect to the obstacles. The y — axis represents the length
of the trajectory in number of way-points, the bottom of the bar
being the beginning of the trajectory and the top its end. The bar
progress is displayed as a colored heat bar, where the color of a
box reflects how distant/close is the robot (its closest joint) to the

example, transitions from blue to orange and back to blue illustrate
unnatural behaviors where the system does not evolve in a smooth
way towards the goal. It is worth noting that, as a difference with
respect to the rest of the plots, this plot illustrates the results of
only one of the M runs, in particular the one corresponding to the
longest path. All non-collision free paths were ignored. The range
of each color (far — collision) is not fixed but computed based on
the minimum and maximum distance found in the selected runs of
all the planners for a specific scenario.

8. Results & analysis

In this section we present analysis of the previously explained
metrics, applied to the benchmarks motion planners combinations
asin Table 1). It is worth noting that some planners showed a 100%
failure rate for some benchmarks, and for such cases they have
been omitted from the plots to avoid confusion (e.g. CHOMP for
BM#2).

8.1. “Valve Turning” with & without obstacles

The motion primitives used by the manipulation lattice search-
based planners, for these two benchmarks and the cluttered test,
are shown in Fig. 3, with a total of 26 long motion primitives and
10 short ones.

The results for BM#1 and BM#2 are reported in Figs. 4 and 5

Planning Time: [Figs. 4(a) and 5(a)] In both test cases, the
sampling-based methods outperformed the other planners, while
the highest time is demonstrated by STOMP. It is worth noting
that for both benchmarks, both ARA*.BFS.WS and LARA*.BFS.WS

v JF B

(@) Xauv> Yauv Zauy LONg MPs.

K5

d) Zguy, elbow & yqu,, shoulder Short
MPs

(b) dauv, jaw, elbow Long MPs.

(c) shoulder, wrist Long MPs.

TR

e) Gauy, shoulder & gy, , wrist Short MPs.

Fig. 3. Manipulation lattice motion primitives for BM#1, BM#2, BM#3. The yellow is the current I-AUV configuration & the purple are all possible motions from the current.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 4. Benchmark results for the simple valve turning.

search-based methods provide times pretty close to that of the
sampling-based methods. In addition, the BFS versions system-
atically surpass their EUCLID counterparts due to the nature of
the heuristic. On the other hand, from the results it cannot be
concluded which of the graph representations (WS or CS) behaves
better. A variability along the runs appears in the presence of
obstacles (BM#2), for the sampling-based, and was significantly

noted for STOMP where planning time increases by 1 s for the same
benchmark. In addition, the lazy EUCLID.WS experienced longer
planning time compared to the non-lazy version.

Path Length: [Figs. 4(b) and 5(b)] A major degradation was
encountered moving from BM#1 to BM#2 for the sampling-based
planners. The average range increased, as well as the variability
along the runs (specially for SBL), also outliers appeared. While
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Fig. 5. Benchmark results for valve turning with bar obstacle.

they outperformed the rest of the planners in the simple case.
The path length for the optimization-based and the search-based
planners was not highly affected by the bar addition, and they
were able to circumnavigate the obstacle as shown in the different
trajectories in Figs. 6 and 7.

Path Clearance: [Figs. 4(c) and 5(c)] The search-based methods
exhibit worse clearance even in the simple BM#1. In contrast,

sampling-based and optimization-based clearance decreased from
BM#1 to BM#2, and the data standard deviation increased.

Path Smoothness: [Figs. 4(d) and 5(d)] ARA*.EUCL.WS showed
higher smoothness for both benchmarks, at the same time the
other methods’ smoothness remain low. Trajectories obtained in
BM#2 are slightly less smooth, which is expected due to the bar
obstacle to be avoided.
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c) ARA* — Euclidean — Workspace.

(a) ARA* — BFS — Manipulation.

(b) ARA* — BFS — Workspace.

=
L

(d) Lazy ARA* — Euclidean — Workspace.

Fig. 6. Search-based: I-AUV end effectory trajectory changes due to obstacle addition — BM#1 vs. BM#2.
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(c) Single Bi-directional Lazy collision checking.

Fig. 7. Sampling & optimization based: I-AUV end effectory trajectory changes due to obstacle addition — BM#1 vs. BM#2.

Finally, for BM#1, the Distance To Obstacle Color Map
[Figs. 4(e) and 5(e)] shows an intuitive behavior of all the algo-
rithms, starting in blue and evolving smoothly to orange. Never-
theless, transiting to BM#2, an increase in the number of points
for the sampling planners (reflected in higher path length and a
taller bar) is observed, as well as an increase of the distance to
obstacle range. The explanation of the second finding, is found in
the tendency of some planners (SBL, STRIDE and RRTConnect) of

finding longer paths moving away from the goal, in wider areas
(i.e. more samples), then moving again in the direction of the goal.
This interpretation can also be seen in the alteration of the bar
colors of these planners, and the unnatural transitions between the
different regions for BM#2.

Finally, a 100% success ratio is achieved for all planners in BM#1,
while conversely the SBL fails 60% of the runs, and CHOMP was not
able to plan in BM#2.
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Fig. 8. Benchmark results for unplugging a connector in a cluttered environment.

8.2. Intervention in cluttered environment “unplug connector”

In order for this intervention to succeed, the target connector
had to be removed from collision check (i.e. allowed to touch)
with the end-effector. It is worth noting that both normal and
lazy ARA*.EUCLID.WS constantly failed to find a collision-free path
within the 20 s allowed. It is highly probable that providing

additional time would lead to successful planning. In addition,
some planners encountered higher failure rates due to collision,
especially CHOMP as in Fig. 8(f).

Planning Time: [Fig. 8(a)] CHOMP recorded the highest plan-
ning time (between 6 and 12 s) with the highest variation along
the runs as well. Sampling-based planners outperformed the rest,
keeping the same time range as in BM#1 & BM#2. Only BFS.CS
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(a) ARA* — BFS — Workspace.

(c) Lazy ARA* — BFS — Workspace.

(b) ARA* — BFS — Manipulation.

Wy

(d) Lazy ARA* — BFS — Manipulation.

Fig. 9. Different search-based planners generated trajectories for BM#3.

Fig. 10. RRTConnect & STRIDE trajectories for BM#3.

was able to compete with its sampling-based counterparts, while
STOMP and the BFS.WS (normal and lazy) recorded similar plan-
ning times, higher than the others.

Path Length: [Fig. 8(b)] All planners other than the sampling-
based ones, kept almost the same path length over the runs,
demonstrating comparable values to previous benchmarks.
RRTConnect, SBL, STRIDE suffered the most from outliers and
recorded higher path length. However, it is worth noting that
both RRT*, PRM* were able to keep a lower range by successfully
optimizing their cost (i.e. path length) compared to non-optimal
sampling-based planners.

Path Clearance: [Fig. 8(c)] Similar to BM#1 & BM#2, sampling-
based and optimization-based planners outperformed their
search-based counterparts. The lazy BFS.WS showed lower clear-
ance compared to the non-lazy version, that actually achieved the
highest clearance among all search-based planners (which justifies
its higher path length). The trajectories generated by both BFS.WS
and BFS.CS are shown in Fig. 9.

Path Smoothness: [Fig. 8(d)] Surprisingly, sampling-based
planners recorded higher smoothness specially the SBL, even
though they suffered from high variation across the runs. Only the
BFS.WS planners (both normal and lazy) were able to compete.

For the Distance To Obstacle Color Map [Fig. 8(e)], similar to
BM#2, some of the sampling-based planners suffered swings both
close to and far from the obstacles region. An example trajectory
of RRTConnect is shown in Fig. 10, where the path gets close to
the target but is almost touching one of the surrounding valves,
and could not find a way out except by moving away from the
obstacles region. This is basically due to the nature of this planner
which grows two trees (from start and goal configurations) and
tries to connect them, and added to this the uniform sampling,
which generates more samples in wider areas. A minor jump as
well is shown in the BFS workspace case (seen also in the generated
trajectory) where the planner adapted its depth, by a backward
upward motion, before proceeding to the goal. The interpretation
of this behavior is highly likely related to the motion primitives set
and the grid resolution.

8.3. Intervention in narrow passage “stick manipulation”

The various results are shown in Figs. 11 and 12. The complexity
of this benchmark is reflected in higher failure rates for some
planners, as in Figs. 11(f) and 12(f). For the 1 m stick manipu-
lation, there is a percentage of the failure rate which is not due
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Fig. 11. Benchmark results for 50 cm stick manipulation across a narrow window.

to collision, but rather to the inability of the planner to find a
solution (e.g. being unable to sample valid states around start/goal
configurations). The search-based planners were also affected by
the complexity, which was reflected in less planners (with respect
to previous benchmarks) succeeding to find a solution within the
20 s time frame. This is mostly seen in BM#5 where all euclidean
search-based methods failed. In addition, for the workspace lattice,
different end-effector resolution for BM#4 & BM#5 was used. For

the multi-frame heuristic, a second frame was defined shifted 0.1
unit in both X & Y directions. The motion primitives used by the
manipulation lattice are a sub-set of the ones in Fig. 3, with a
decrease by a factor to allow short-range motions and more accu-
rate manoeuvring across the narrow window. The total number of
motion primitives are 18 long ones, and 2 short ones. In addition,
STOMP was highly affected by the complexity of the benchmark
especially for the 1 m-stick case. Using the same configuration
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Fig. 12. Benchmark results for 1 m stick manipulation across a narrow window.

as for the 50 cm-stick leads to 100% failure, we had to increase
the standard deviation of the noise generation, from 0.1 to 0.5
for all the joints. This increase allowed higher randomness in the
explored paths and finally it was able to find solution in 20% of
the cases, regardless of the path quality. The random trajectories
generated are shown in Fig. 16, where it was allowed to explore
the area around the window, instead of only exploring paths going
through the window. Looking at the sampling-based plots for

BM#4 & BM#5, the variations between the runs is more evident.
As a general note, the sampling-based performance decayed com-
pared to BM#1 & BM#2, as expected, since the Narrow Passage
remains a challenge for those techniques.

Planning Time: [Figs. 11(a) and 12(a)] The complexity of the
two tests with respect to each other is reflected in a wider range
of planning times for BM#5. Sampling-based planners were still
able to bypass other planners. There was a noticeable variation
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= .

a) ARA* — euclidean — Manipulation.

b) ARA* — euclidean — Workspace.

Fig. 13. Search-based: I-AUV end effectory trajectory for the 50 cm stick manipulation.

a) ARA* — bfs — Workspace.

=

c) ARA* — bfs — Manipulation.

(b) ARA* — mfbfs — Workspace.

d) ARA* — mfbfs — Manipulation.

Fig. 14. Search-based: I-AUV end effectory trajectory for the 1 m stick manipulation.

along the runs of STRIDE, CHOMP & STOMP, with higher variation
for the 1 m-stick. CHOMP recorded the slowest planning time for
BM#4 & BM#5, whereas STOMP had a similar performance for the
second. The search-based CS showed comparable performance to
sampling-based ones for the 1 m-stick, yet the WS outperforms the
CS for the 50 cm-stick.

Path Length: [Figs. 11(b) and 12(b)] Optimization-based &
search-based outperformed sampling-based as in previous sce-
narios. The latter shows variations and outliers along the runs.
Similar variations appeared for STOMP in the 1 m-stick case. The
average path length for the search-based planner increased for
BM#5 specially the BFS.WS.

Path Clearance: [Figs. 11(c) and 12(c)] The search-based plan-
ners demonstrated the least clearance. This may be due to the
fact that the generated trajectories go through the window cre-
ating a challenge to maintain high clearance given the length of
the stick and the arm dimensions, a reason why the clearance
decreases even more for the 1 m-stick. Conversely, in most cases
the sampling-based and optimization-based generate a trajectory
going around the window, thus leading to higher clearance.

Path Smoothness: [Figs. 11(d) and 12(d)] Similarly to
path length, optimization based & search-based outperformed
sampling-based.

In the Distance To Obstacle Progression: [Figs. 11(e)and 12(e)]
plot, the sampling-based planners can be clearly seen to have

difficulties with the narrow passage and their inability to sample
in narrow areas. This is observed in the swing in and out of the
intervention region. STOMP suffered similar swings in the 1 m-
stick case. Different trajectories are shown in Figs. 13-14. As an
overall observation, the search-based planners performance was
not highly affected by the increasing complexity between the two
cases except for the planning time. However, optimization-based
& sampling-based planners demonstrated a degradation in almost
all metrics.

8.4. Across benchmarks quantitative comparison

In the present section, we cover additional quantitative mea-
sures in order to conclude how the complexity of the benchmarks
affect the planning output. We are mainly concerned with: (1)
Planning Consistency, and (2) what can be considered natural
human-like motion. The latter is specifically important in applica-
tions that involve human interaction or human-cluttered environ-
ments, where unexpected or unnatural behavior is dangerous.

8.4.1. Consistency index

In most of the work presented in the literature a separate
benchmark was dedicated to measure the consistency of a given
motion planner, and reported through measuring the mean path
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length. Such a benchmark consists of repeating a motion between
the same (start-goal) configurations or same start and various goals
distributed on a cube separated by small distances. In this work,
we propose a new measure “consistency index C.I.” to quantify the
consistency of a given motion planner. The CI. defined as inversely
proportional to the normalized mean of the amount of variation of
the distance traveled along the M runs by the N DoF of the system.
Mathematically it is computed as in (Eq. (4)). Given a certain run
j(0 < j < M) of a given planner, a joint q; (0 < i < n)and a
way-point qg. (< 0 < k < N) of the 7; trajectory of run j, p; is
the average of the distance traveled by g; along t;. Then, y; and o;
are respectively, the mean and the standard deviation of y; along
the M runs. They represent how the average distance p; of joint g;
along t; changes over the M runs. For consistent trajectories i is
not expected to change significantly over the M runs, so ¢; should
be small. Since we are interested in a single index to evaluate a
planner, we need a single consistency value for all the DoFs. For
this reason we averaged o; for all DoFs getting . In addition, to
obtain an index in the [0 — 1] range, 4, was normalized by dividing
by 7, the maximum o; of all joints, which was then subtracted
from 1 to make the index higher for more consistent trajectories.
Finally, in case of failure, the consistency index is penalized by
a factor ¢ = f/M where f is the number of failures. Table 2
shows the consistency index of all tested planners for the five
benchmarks. We can observe that the search-based planners have
been consistent for all tested scenarios, with one exception for the
ARA* EUCLID.WS in BM#1. A logical interpretation is that this is
due to the redundancy of the system, and because this planner
relies on frequent inverse kinematics calls to go from the end-
effector space to the joint-space, it is possible to have a source of
randomness due to the different IK (inverse-kinematic) responses
each time. Whereas the optimization-based planners showed high
consistency for simpler benchmarks (BM#1 for CHOMP & STOMP,
and BM#2 for STOMP), the index noticeably decreased for BM#4. In
addition, STOMP recorded lower consistency compared to CHOMP,
as it involves higher randomness in its nature (the stochastic
process of generating noise). Finally, the sampling-based planners
showed the least consistency and especially with BM#5 which
presented the smallest index among all benchmarks.

n
o i—1 Oi
cl=0-50)_¢; /xa=%; 1 = max(o;)
(4)

M M N ke
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8.4.2. Natural motion index

For some applications (e.g. involving human-robot interaction),
we would like to achieve what could be called a natural motion,
or a predictable human-like behavior. For example, in BM#4 &
BM#5, a human-like motion would manoeuver the stick through
the window instead of circumnavigating around it.

We define a new statistical measure “Natural-Motion Index
N.M.L.”, to quantify how close/far is the motion from what would
be considered ideal by human. Considering a set of concentric
spheres centered in the goal with increasing radius (Fig. 17 where
the heatmap-like color reflects distance to the goal). A natural
end-effector motion would successively move forward (transiting
from colder to warmer colored regions) to the goal and perform
backwards motion only in case of avoiding obstacles. In this case,
the maximum distance between 2 consecutive way-points of the
trajectory is not expected to transit more than one region. How-
ever, we consider an oscillatory motion between 2 consecutive
regions to be natural (e.g. to avoid obstacles), while back and forth
motions with a length greater than a region are considered unnat-
ural. For this metric, we have chosen to work in the workspace,

Table 2
Planners consistency index across Set(1) on the left & Set(2) on the right for the 5
benchmarks.

Planner BM#1 BM#2 BM#3
RRTConnect 0.59 0.66 0.56
SBL 0.62 0.0 0.4
STRIDE 0.68 0.59 0.42
RRT* 0.85 0.7 0.57
PRM* 0.83 0.69 0.52
STOMP 0.99 0.99 0.93
CHOMP 1 - 0.47
ARA*.BFS.CS 1 1 1
ARA*.EUCLID.CS 1 F 1
ARA*.BFS.WS 1 1 1
ARA*EUCLID.WS 0.96 1 F
LARA*.BFS.CS 1 1 1
LARA*.EUCLID.CS 1 F 1
LARA*.BFS.WS 1 1 1
LARA*.EUCLID.WS 1 1 F
Planner BM#4 BM#5
RRTConnect 0.56 0.17
SBL 0.15 0.23
STRIDE 0.76 0.27
RRT* 0.75 0.44
PRM* 0.63 —0.17
STOMP 0.29 0.19
CHOMP 0.39 0.68
ARA*.BFS.CS 1 1
ARA*.MFBFS.CS 1 1
ARA*.EUCLID.CS 1 F
ARA*.BFS.WS 1 1
ARA*.MFBFS.WS 1 1
ARA*.EUCLID.WS 1 F

instead of the configuration-space due to the system redundancy,
resulting in different joint configuration for different planners/runs
for the same goal. An example of natural vs. unnatural motions is
shown in Fig. 17. In this example, we consider a trajectory of 6
segments (a total of 7 way-points), the segments indicated with
the bold black arrows are the natural ones, where the trajectory
progresses in the direction of the goal, moving forward between
one or more transition regions. While the dotted arrows (i.e. S3 &
S5) demonstrate a backward transition over more than one region
(e.g. from yellow to light blue).

In order to compute this index, we first compute the radius
of each of the 5 regions, by splitting the start to goal euclidean
distance into two equal parts. Then, a label Region(qy) is assigned
to a way-point g, by computing the Euclidean distance between
the workspace pose of the configuration g (let it be x..(qx)) and
the goal pose and comparing this distance with the previously
computed region’s radius. For example, on Fig. 17, the two way
points of S1 will be labeled as R5. The final index is computed by
comparing each way-point label with its previous one. The index is
penalized (increased by 1) when a non-smooth transition is found.

Mathematically, the N.M.I is computed as card(S) which is the
cardinality of the set S, with S containing those way-points whose
region Region(qy), compared with the region of the previous way
point Region(qy_1), transits mores than a single region (see Eq. (5)).

Let S = {Xec(q) / Region(xee(qr)) — Region(xee(qr—1))

< —1}; NMI = card(S) ()

Table 3 shows: the minimum, the maximum, and the mean
of the N.M.L. of the planners along the 20 runs and for the 5
benchmarks as in Eq. (5). The higher the index value, the more
transitions it exhibits and the less natural is the motion. STOMP &
CHOMP suffered the most for the cluttered environment in BM#3.
Similarly, the search-based planners showed less natural motion
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Fig. 15. Sampling-based: [-AUV end effectory trajectory changes due to obstacle addition — BM#4 vs. BM#5.
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Fig. 16. STOMP stochastic trajectories for BM#5.

for the cluttered environment, with the EUCLID heuristic being
less affected. It is possible that the behavior of this heuristic is
due to its nature of being goal-directed. On the other hand, the
sampling-based planners’ transitions increase continuously with
the benchmark complexity, with the highest value being shown
for the narrow passage tests (BM#4 & BM#5), while they behave
naturally for the simple BM#1.

8.5. Optimality measure for optimal planners

In this section, we analyze the optimality measures provided
by the different optimal planners. The notion of optimality and the
cost function optimized by each of them vary as explained below.

8.5.1. Sampling-based planners

For the asymptotically-optimal sampling-based planners [68]
it is interesting to study the progress of the cost function as well
as the number of iterations executed within the allowed planning
time. We imported this feature to the Movelt! benchmark plug-in,
in order to observe how both RRT* & PRM* perform with respect
to each other for the various benchmarks. The cost function, in
this case, is the path length. For each benchmark and planner the
shortest (best) and the longest (worst) paths among the M runs
is shown in Fig. 18. The cost function is initialized with infinity,
and with the first solution found the value changes to its path
length. It is important to note that the shown path length is that
of the original path before post-processing (i.e. smoothing and
short-cutting), thus the values may not match those shown in the
previous box plots.
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Table 3

Upper — natural motion index across Set(1) BMs & lower — natural motion index across Set(2) BMs.
Planner BM#1 BM#2 BM#3
Transition Factor min w max min " max min n max
RRTConnect 0 0.05 1 0 9.6 37 5 16.85 44
SBL 0 0 0 0 30.8 98 0 15.67 57
STRIDE 0 0 0 1 26 52 5 23.2 43
RRT* 0 0 0 0 0.8 15 2 4.35 13
PRM* 0 0 0 0 0.8 7 2 7.5 17
STOMP 13 16.4 20 6 16.4 33 72 76 81
CHOMP 10 10 10 - - - 29 29.5 30
ARA*.BFS.CS 0 0 0 0 0 0 45 45 45
ARA* EUCLID.CS 2 2 2 - - - 22 22 22
ARA*BFS.WS 0 0 0 0 0 0 63 63 63
ARA*EUCLID.WS 0 2.4 3 0 0 0 F F F
LARA*.BFS.CS 0 0 0 2 2 2 43 43 43
LARA*.EUCLID.CS 1 1 1 - - - 22 22 22
LARA* BFS.WS 1 1 1 1 1 1 58 58 58
LARA* EUCLID.WS 0 0 0 0 0 0 F F F
Planner BM#4 BM#5
Transition Factor min " max min n max
RRTConnect 0 50.4 356 0 12 46
SBL 9 46.1 289 0 9.78 48
STRIDE 1 20.16 46 0 225 101
RRT* 0 2.3 17 0 13 7
PRM* 0 40.58 170 0 314 69
STOMP 0 6 17 0 31.6 80
CHOMP 0 4 8 0 0 0
ARA*.BFS.CS 0 0 0 0 0 0
ARA*.MFBFS.CS 0 0 0 0 0 0
ARA*.EUCLID.CS 0 0 0 F F F
ARA*.BFS.WS 0 0 0 0 0 0
ARA* MFBFS.WS 0 0 0 0 0 0
ARA*EUCLID.WS 0 0 0 F F F

Start

Fig. 17. An example of transitions over a heat-map representation of transition
regions in the context of N.M.I computation. Orange — Close to Goal & Blue —
Far from Goal. The black solid arrows shows a natural expected progress of the
trajectory vs. the dotted arrows where the motion is considered unnatural.

As a general observation, the RRT* costs for different bench-
marks, for the shortest and the longest paths are quite close, indi-
cating higher consistency in the generated plans (this can also be
appreciated from Table 2). However PRM* has wider gaps between
short and long paths, specially with more complex scenarios like
BM#4 & BM#5. This may be due to the nature of each algorithm, as
the RRT family is tree-based goal-oriented, while the PRM is multi-
query road-map based. Another observation is that PRM* in its best
case generated the same or a better cost than RRT*, whereas for
the worst case, the final path cost was higher than the RRT*. In the
simplest scenario (BM#1), both planners were able to find low-cost
solutions with no further improvement over time. However for the
highly complex BM#5, both planners were not able to optimize
much if at all, resulting in high-cost final solution. It also happens,
for the same benchmark, that the PRM* worst case could not find
a non-infinity solution cost until T = 17 s, being the highest cost
among all test cases.

8.5.2. Search-based planners

As heuristic-based planners, their purpose is to find optimal
solutions in terms of the heuristic function (i.e. path length). Three
parameters were considered in order to analyze the optimality
of the solution found by each combination of the search-based
planners: 1- The number of expansions, indicating the size of the
graph (which can also indicate the memory usage). 2- The opti-
mality measure epsilon of the path found (1 indicates the optimal
solution). 3- The solution cost which sums the edges and nodes cost
from start to goal. Table 4 gives an impression of the best perform-
ing planner ARA*.BFS.WS. It was able to generate close to optimal,
low cost paths even with the most complex scenarios, and also
the least expansion of nodes. On the contrary ARA*.BFS.CS perfor-
mance was highly affected for BM#5. In general the manipulation
graph representation is less competent in terms of optimality, even
though changing the set of motion primitives might improve its
performance.

8.5.3. Optimization-based planners

CHOMP does not directly optimize the path length but it mini-
mizes the sum squared velocities through what is called a smooth-
ness cost function (more details about the computations in [51]
&[52]), while keeping a minimum clearance to obstacles. As a
result, in some cases the path length might increase in order to
keep certain clearance. However, STOMP cost function (given the
implementation integrated with Movelt!) relies on optimizing the
distance to obstacles (thus higher clearance).

From Table 5, we can conclude that STOMP is able to generate
higher clearance paths with a smaller number of iterations. As
expected, the cost of the solution found is proportional to the
benchmark complexity, which is not necessarily the same for both
planners. CHOMP shows a higher cost for the cluttered environ-
ment, due to the collision objects representation it uses, and given
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Fig. 18. Cost Function [Path-Length] Progress for Sampling-based Sub-Optimal Planners across all Benchmarks in Order. Left Column — shortest-path & Right Column —

longest-path.
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Table 4
Number of expansions, path optimality & cost for search-based planners.
Planner # Expansion Epsilon Cost (*10%)
BM#1 BM#2 BM#3 BM#4 BM#5 BM#1 BM#2 BM#3 BM#4  BM#5 BM#1 BM#2 BM#3 BM#4 BM#5
ARA*.BFS.CS 104 130 118 269.9 346 3 5 1 8 40 6 8 5 9 15
ARA*.MFBFS.CS - - - 266.7 328.7 - - - 4 8.75 - - - 9 12
ARA*.EUCLID.CS 171 - 287.65 278 - 3 - 4 17 - 8 - 10 15 -
ARA*.BFS.WS 40 25 48 48 962 1 1 1 1 3 0.54 0.51 0.36 0.698 1.1
ARA*.MFBFS.WS - - - 22 647 - - - 1 2 - - - 0.57 0.75
ARA*.EUCLID.WS 3135 2189 - 292 - 2 4 - 2 - 3.36 3.87 - 2.55 -
LARA* BFS.CS 782.5 997.5 176 - - 1.8 1 - - 6 7 5 - -
LARA*.EUCLID.CS 916 - 2076 - - 1.6 - 24 - - 7 - 10 - -
LARA*.BFS.WS 28 28 64 - - 1 1 5 - 0.54 0.51 0.36 - -
LARA*.EUCLID.WS 447 308 - - - 14 5 - - - 3.36 3.81 - - -
Table 5
Number of iterations & cost for optimization-based planners.
Planner # Iterations Cost
BM#1 BM#2 BM#3 BM#4 BM#5 BM#1 BM#2 BM#3 BM#4 BM#5
STOMP 1 1.3 1 1 4.6 665.8 737.49 569.3 634.67  906.45
CHOMP 11 - 1534 60.5 76.85 19742 - 35359 19371 19199

that in this benchmark there are many cluttered objects, the cost
of the initial path found is already high. While STOMP suffers more
with the 1 m stick manipulation.

9. Guidelines & conclusions

To conclude this paper, we will provide guidelines to answer
the fundamental question proposed at the beginning: “Given a
certain problem, which is the best motion planner to choose?”.
Unfortunately, there is no single technique that would perfectly fit,
out of the box, all possible applications, systems and environments.
Nevertheless, a valid open question would be: “Which motion
planning technique to start with?”. The purpose of the work pre-
sented here is to provide an insight on how to tackle this question.

It is obvious from the previous analysis, that non-optimal
sampling-based techniques would fit the highly time-constraint
applications well, as they demonstrated the fastest planning
time across all benchmarks, at the expense of other quality
metrics like path length and natural motion generation. The
asymptotically-optimal sampling-based methods compromise a cost
function (e.g. path length) with the planning time. An additional
advantage of the sampling-based planners provided by the OMPL
library, is that they are well tweaked for a wide range of appli-
cations, and their default parameters, sampling-strategy and dis-
tance metric work quite well. This leaves room for improvement to
overcome their weaknesses using application-oriented parameters
and sampling strategies.

On the other hand, the search heuristic-based planners showed
an advantage in generating optimal trajectories, with more natural
motion and higher consistency, while still meeting average time
performance. The planning time is highly affected by the number
of motion primitives and the resolution chosen. Increasing the
motion primitives would lead to better coverage at the cost of
spending more time searching the graph. A major disadvantage is
their dependency on parameter tweaking ( i.e. resolution & motion
primitives). In particular, for the manipulation lattice, designing
the motion primitives requires significant effort and a consider-
able knowledge of the environment. Using convenient heuristics,
it would be possible to adapt them to deal with more complex
objective functions (e.g. the manipulability index).

As for the optimization-based planners, overall their perfor-
mance is average among the others, being highly affected by the
benchmark complexity. Their strongest advantage, is that they
solve the motion planning as an optimization problem, which al-
lows the combining of complex cost functions. This raises another

issue with such planners, the complexity of their mathematical
background, which impacts on their implementation.

As a summary, Table 6 presents the planners categories versus
the various features/requirements for a typical motion planning
problem. Whenever a feature is marked possible, it means that
it showed average performance against this feature in our tests;
or, that simple parameter tuning would enhance its performance
against such a feature. A feature is considered as not supported,
if the nature of the planner does not (without major changes)
support it.

The methodology followed in the work presented involves:
First, study of the type of application to be covered. This involves
the features of the possible environment (e.g. cluttered obstacles)
and any constrained requirements (e.g. time constraints). The sys-
tem available might add complexity to the problem as well. For
example, in the case presented here, having a limited 4-DoF arm,
was a reason why we modeled the base and the arm as one system
in order to gain higher reachability to achieve full control of the
end-effector. Second, having this image in mind, proceed with
defining a set of application oriented benchmarks and test cases.
This is essential both to give more insights into the applicability
of different techniques to the application, and to augment the
benchmarks database to be shared among the robotics community.

The case study we are considering for our future work, involves
using the UVMS for underwater free-floating manipulation with
the following requirements:

(1) Fast planning response to allow real-time execution.

(2) Cluttered non-moving obstacles, possibly leading to narrow
passages in some cases.

(3) A priori unknown environment, this would require real-time
re-planning capabilities to deal with the changes.

(4) Generated trajectories with a combined optimization func-
tion: short path, good manipulability index, a smart selection
for the redundant DoFs (e.g. during the intervention, it might be
preferable to move the arm and not the AUV).

(5) Consistency is preferable given the incomplete knowledge
about the environment and the possible sensor error scanning
the environment, even though it is not as essential as with other
applications interacting with humans.

What is not covered in this case study, is moving obstacles as
well as dealing with uncertainty either in the sensor or in the
system localization and motion. In addition, higher clearance and
smoothness are preferred but are not the main interest. Given such
requirements as well as the planners vs. environment features, a
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Table 6
Planners vs. environment features.
Planners Real-Time Cluttered Narrow Consistency Human-Like Fast Re-plan Clearance Objective
categories Response passage motion function
Non-Optimal Sampling 4 possible X X X possible v X
Optimal Sampling possible possible X X X possible v 4
Heuristic anytime A* workspace possible possible v v v possible possible possible
Heuristic anytime A* manipulation possible possible v v v possible possible possible
Optimization-based X possible X X possible possible X v

summary is provided in Table 6, where the potential of each plan-
ner is marked in green. Our own conclusion would be to go for the
Anytime A*.BFS heuristic.workspace lattice. This planner has a high
potential in all the basic features with above average performance,
with consistent performance among different environments. We
prefer it over the manipulation lattice even though they share
similar features, due to the dependency of its performance on the
motion primitives set. A second possible choice is the RRT*, as
it showed promising behavior with possible improvements using
other sampling strategies. Finally, this choice does not imply using
the planner as it is, but includes the possibly of adapting it to the
study case requirements.

In terms of data analysis limitations, this work did not cover
memory usage analysis or collision checkers profiling. They might
be part of future work as we believe they have not received ap-
propriate attention in the literature, even though their effect on
choosing the convenient planner. A more advanced case study that
needs further future attention, is a dual-arm or multiple coopera-
tive vehicles system.
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N this chapter, we focus on our proposal of a new motion planning algorithm to meet the

I previously defined requirements (consistency, real-time response, efficiency and safety). The
Multi-heuristic, multi-representation A* falls under the search-based planning group. It generates
deterministic trajectories that consider the shortest collision-free path to the goal. In addition, it
exploits a characteristic of our system, which is its loose coupling nature between the base and the
arm. The approach takes profit of this characteristic to efficiently move one or the other keeping
the shortest, safe path as the metric. It is worth noting, that decoupling the base and arm motion
has been previously introduced, in simulation, in [42], where a control-based approach was pro-
posed to distribute the control input between the arm and the base depending on their nature and
on the phase of the mission (approach vs. intervention phase).
The proposed approach has been compared to other common available planning algorithms to
validate its efficiency. Moreover, it has been validated in a two-phase intervention mission in a
known apriori environment, in simulation. Lastly, it has been demonstrated in a water tank, to
turn a valve in an unknown environment. This work has recently been submitted to the following
journal and is currently under review:

Title: Multi-Representation, Multi-Heuristic A* Search-based Motion Planning for a Free-
floating Underwater Vehicle Manipulator System in Unknown Environment
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Abstract

A key challenge in autonomous mobile manipulation is the ability to determine, in real-time,
how to safely execute complex tasks when placed in unknown or changing world. Addressing
this issue for Intervention Autonomous Underwater Vehicles (I-AUVs), operating in poten-
tially unstructured environment is becoming essential. Our research focuses on using motion
planning to increase the I-AUVs autonomy, and on addressing three major challenges: 1)
Producing consistent deterministic trajectories, 2) Addressing the high-dimensionality of the
system and its impact on the real-time response, and 3) Coordinating the motion between
the floating vehicle and the arm. The latter challenge is of high importance to achieve the
accuracy required for manipulation, especially considering the floating nature of the AUV
and the control challenges that come with it. In this paper, we extend our previous work
relying on exploiting the loose coupling between the AUV and the arm, by applying MR-
MHA* (Multi-Representation, Multi-Heuristic A*) search-based motion planning to control
a simulated I-AUV operating in a known apriori offshore environment. We further developed
the previously proposed algorithm to control a real system (GIRONA 500 I-AUV) doing in-
tervention on a sub-sea pipe infrastructure mock-up located in a water tank. Moreover, the
experiment is performed in unknown environment, being discovered by the robot during the
mission. we relied on an underwater laser scanner to provide real-time point-cloud updates
of the sensed world. The results show the success and efficiency of our approach to meet
the desired behavior, as well as the ability to adapt to unknown environments.

*Patryk Cieslak has received funding from the European Union’s Horizon 2020 research and innovation programme under
the Marie Sklodowska-Curie grant agreement no. 750063



RESULTS AND DISCUSSION

He content of this chapter is split into two parts. Initially, the results previously presented
T is summarized with key points pointed out with the following structure: First we present
the preliminary intervention demonstration using motion planning from Chapter 2 in Section 5.1.
Then, the experimental analysis of the state of the art motion planning techniques in Sec-
tion 5.2. At the end of this summary,in Section 5.3, we present a representative intervention
mission in simulation, followed by a water tank experimentation validation, and finally an ad-
ditional simulation analysis of the proposed algorithm “Multi-Representation, Multi-Heurisitc A*”.

Lastly, in Section 5.4, in order to criticize our proposed solution, we expand the previously obtained
results by a comparison of our approach against five of the most common motion planners. We
used three of the previously defined benchmarks, in addition we introduced two more, in order to
show when and why the new approach performs well.
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5.1 Motion Planning for an UVMS using Mowvelt!

The focus of this initial step was the evaluation of the use of Movelt! motion planning
capabilities to control Girona500 AUV & ECA Arm and demonstrate beyond-state-of-
the-art tasks.

As a first output, we presented the modeling of the 8 DoF AUV-Arm as a single system
using the standard Universal Robot Description File (URDF) format, in addition to the
Semantic Robot Description File (SRDF) for the collision representation (more details can
be found in [43]). At this stage, we wanted to validate the idea of using motion planning,
the choice of the planner was not the focus; for that we used the default planner provided
by Mowelt!, the “RRT-Connect”. To experimentally validate the use of motion planning,
we demonstrated two free-floating intervention tasks in a water tank: “Valve Turning”
and “Connector plug/unplug”, using a subsea panel mock-up with four T-shaped valves
and a hotstab type of connector. The working space included two types of known apriori
obstacles:

1. The walls of the water tank and the panel.

2. Virtual obstacles (in the valve turning scenario).

5.1.1 Valve Turning:

In this experiment, a fixed V-shaped gripper matching the valve shape was used. The
intervention task was carried out through four phases as follow:

e Detection: as a first step, the purpose is to locate the panel and establish a visual
contact to enable visual navigation with respect to the panel [44].

e Inspection: for homing the AUV to the panel. It enables high-accuracy visually
based navigation, providing a good estimate of the valve pose. The EE is guided to
a Cartesian-space-defined pose located in front of the panel.

e Grasp planning: To perform the intervention, one must specify the desired valve
pose. We performed a workspace analysis that involved sampling the end-effector
orientation space 1,6, ¢, with a sampling step of 15° (the whole space shown in
Fig. 5.1a with the arrow pointing in the +ve X-axis of the end-effector), then a
different filters were applied:

1. Filter out those orientations that do not satisfy the task constraints: respecting
the approach direction (filtering out the half sphere pointing on the negative
approach direction), and allowing a variability of +45° in 1, 0, ¢ with respect
to the computed grasp orientation (see Fig. 5.1b).

2. Filter out those infeasible orientations that violate the system kinematic con-
straints and joint limits (see Fig. 5.1c).

3. Filter out those orientations resulting in a colliding configuration (see Fig. 5.1d
for the environment in Fig. 5.2, where the best orientation is marked in yellow
arrow).
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(a) Sampled EE Orientation Space (b) Task-Valid EE Orientation

(c) Kinematically-Valid EE Orientation (d) Environment-Valid EE Orientation

Figure 5.1: Workspace Analysis Output at Various Stages

Figure 5.2: The Best (highest MI) End-Effector Orientation for the Valve Turning in the presence
of Obstacle close to the Panel.

e Valve turning: involving the following two steps:

1. Approach: aiming at getting close to the panel at a predefined distance, in
the direction normal to the panel, guaranteeing the end-effector pose before
performing the intervention.

2. Grasp & Turn: The method is based on the Movelt! pick pipeline. The frame
of reference for the approach is the valve, and the approach direction is normal
to the subsea panel Z-axis. Because there is no gripper to open/close, the grasp
closure pose is used to perform the turn action. The wrist joint is specified as
the posture joint, and the turning degree is provided as the joint value.
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5.1.2 Connector Plug/Unplug:

We used a model inspired by a hot-stab connector, similar to the one used in the oil and
gas industry. To perform this task, a newly developed three-finger hand described in [45],
was used. The task starts with the connector plugged in, then requesting the robot to
unplug it, move away, and finally plug it back. The intervention procedure is similar to
the procedure previously described but with the valve-turning step replaced by:

e Unplug: The hand is requested to grasp the connector by closing the fingers. Similar
to the valve turning, the Mowvelt! pick pipeline is used. First, an approach direction
perpendicular to the plane of the connector is specified, and the pre-grasp pose
is chosen to open the hand before grasping. The connector pose corresponds to
the pick pose, and the grasp closure pose is used to close the hand after holding
the connector. Once the grasping is successful, the unplugging is accomplished by
performing a retreat backward. The retreat direction is specified along the Z-axis in
the connector frame.

e Plug: The Mowvelt! place pipeline is used to plug the connector to its original
location. Once the connector reaches its original location, the hand is opened, leaving
the connector plugged in.

For each demonstration, we showed the planned versus the executed trajectories for
each DoF x,y, 2, ¢, ql,q2, ¢3, ¢4, to demonstrate how the system followed the plan as well
as the performed grasping (i.e. 90° valve turn or the hand opening/closing) within the
predefined tolerances [ 0.06 cm, 0.06 cm, 0.02 cm, 0.06 rd, 0.075 rd, 0.075 rd, 0.075 rd,
0.3 rd] for each DoF respectively. The resulting end-effector error corresponding to these
tolerances, is variable depending on: tthe AUV and the arm controllers accuracy, as well
as the localization accuracy. Given the fact that the intervention was performed facing
the panel, that was simultaneously used for localization, the resulting end-effector error
was minimal (as can be appreciated in Fig.9(d) in Chapter(2)), allowing the success of the
mission. The following states the end-effector pose error for both the inspection and valve
turning, the detection was skipped as the goal was to reach a given joint configuration:

e For the inspection point the end-effector pose error is [0.00085 cm, 0.03101 cm,
0.08292 c¢m, —0.23 rd, 0.01 rd, 0.88 rd]

e For the valve turning point the end-effector pose error is [0.00031 cm, 0.01594 cm,
0.00092 cm, 0.16 rd, 0.00327 rd, 0.18 rd]

In addition the 3-D end effector trajectory was shown to verify the obstacle avoidance
(Fig. 9,10 Chapter 2).

5.2 In-depth Analysis of Motion Planning for Mobile Ma-
nipulation

At this stage of our work, we tried to answer the tough question of “which planner to
choose” given an application or set of requirements for an autonomous mobile manipula-
tor. We reviewed the state of the art of the most common approaches, and presented a
set of benchmarks with the aim to provide not only a theoretical review but also a quali-
tative/quantitative comparison of the algorithms. Our objective was to provide an insight
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of their performance with respect to different metrics. Even though the results are based
on our UVMS, they can be extended to terrestrial and aerial robots.

5.2.1 Benchmarks

5 m S E-E

(a) BM#1: Simple (b) BM#2:Valve (c) BM#3: (d) BM#4: 50cm
Valve Turn Cluttered Stick (e) BM#5: 1m Stick
Turn With Obstacle Environment Manipulation Manipulation

Figure 5.3: Benchmarks with the I-AUV Start Configuration & the goal Pose (z,y,z — Yellow
Sphere, ¢, 0,1 — RGB Axis)

We have carefully created five benchmarks to demonstrate the strengths and the weak-
nesses of each approach. Moreover, they reflect representative set-ups/environments in
which a mobile manipulator might be placed:

e BM#1, BM#2: correspond to subsea panel intervention, similar to “table-top”
manipulation for terrestrial robots. BM#1 is free of obstacles, while BM#2 includes
static obstacle close to the manipulation object.

o BM#3: represents a cluttered environment, where various obstacles are scattered
around the manipulation object.

e BM#/, BM#5: represent narrow passage manipulation.

5.2.2 Planners

Three motion planning families have been addressed: 1) sampling-based, 2) optimization-
based, and 3) search-based. For each family, our choice aims to cover the basic approach
in addition to the various features provided by the planning family (e.g. lazy collision
checking for both sampling-based and search-based), with a total of 17 planners (listed
in Table 5.1). For the search-based planners, the different combinations of the different
core components: search, graph and heuristic were compared. In order to reduce the
number of results presented, and because for some scenarios a given combination was not
showing improvement; we omitted some search-based combinations and ended up with the
following set-up: The combination of ARA* search, C'S and WS graph, and heuristics
(EUCLID and BF'S) was tested for all benchmarks. The lazy-collision checker version
was tested for BM#1,BM#2,BM#3, while the multi-frame BFS was tested for BM#4,
BM#5.

5.2.3 Metrics

For each benchmark, all the planners were compared along M runs, with respect to four
standard metrics:
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Categories Planners Benchmarks
RRT Connect All
SBL All
Sampling-based STRIDE All
RRT* All
PRM* All
Optimization-based (S;Il;gll\\/[dl; ﬁﬁ
ARA* BFS.CS All
ARA*.EUCLID.CS All
ARA*.BFS.WS All
ARA*.EUCLID.WS All

LARA* BFS.CS BM#1,BM#2,BM#3
LARA* EUCLID.CS | BM#1,BM#2 BM#3
LARA* BFS.WS BM4#1,BM#2,BM#3
LARA* EUCLID.WS| BM#1,BM#2 BM#3
ARA* MFBFS.CS BM#4 & BM#5
ARA* MFBFS.WS BM+#:48& BM#5

Search-based

Table 5.1: Planners Choice & Benchmarks Coverage

e Planning Time the time needed by the planner to report a collision-free trajectory.

e Path Clearance the minimum distance to obstacles along each way-point of the
computed trajectory.

e Path Smoothness the measure of smoothness of transitions between successive
way-points of the computed trajectory.

e Success Rate the percentage of runs (out of M run) where the planner succeeded
to report a collision-free trajectory.

Details on the definition and computation of each metric can be found in Chapter 3.

In addition, a complementary qualitative assessment graph was introduced, named as
“Distance to objects colour map”, where the purpose was to visually assess the be-
havior of the planner with respect to obstacles. It also allows perceiving the change of
planner behavior with respect to environment complexity (for more details about the plot
data see Chapter 3). It is worth noting that, as a difference with respect to the rest of the
plots, this plot illustrates the results of only one of the M runs, the one corresponding to
the longest path, ignoring all non-collision free paths.

5.2.4 Analysis & Guidelines:

Through the previously defined benchmarks and metrics, we can conclude general outlines
for each planning group:

e Sampling-based Planners:

1. Non-optimal Strategies: they fit the highly time-constraint applications well,
as they demonstrated the fastest planning time across all benchmarks, at the
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expense of other quality metrics like path length, consistency, and natural mo-
tion generation. Moreover, for the uniform sampling, the planner has tendency
to generate more samples in free regions, leading in general to high clearance.

2. Asymptotically-optimal Strategies: they compromise a cost function (e.g. path
length) with the planning time. In average, they showed higher consistency
and more human-like motion than their non-optimal counterpart, with the least
performance for the narrow passage scenarios.

An additional advantage of the sampling-based planners provided by the OMPL
library, is that they are well tweaked for a wide range of applications, and their
default parameters, sampling-strategy and distance metric work quite well. This
leaves room for improvement to overcome their weaknesses using application-oriented
parameters and sampling strategies.

e Optimization-based planners: overall their performance is average among the
others, being highly affected by the benchmark complexity. Their strongest ad-
vantage, is that they solve the motion planning as an optimization problem, which
allows the combining of complex cost functions. On the other hand, they suffer
technical difficulties when it comes to implementation due to the complexity of their
mathematical background.

e Search-based planners: showed an advantage in generating optimal trajectories
in terms of path length, with more natural motion and higher consistency, while
still meeting average time performance. The planning time is highly affected by
the number of motion primitives and the resolution chosen. Increasing the motion
primitives would lead to better coverage at the cost of spending more time searching
the graph. A major disadvantage is their dependency on parameter tweaking ( i.e.
resolution & motion primitives). In particular, for the manipulation lattice, design-
ing the motion primitives requires significant effort and a considerable knowledge of
the environment. Using convenient heuristics, it would be possible to adapt them to
deal with more complex objective functions (e.g. the manipulability index).

Unfortunately, there is no single technique that would perfectly fit, out of the box,
all possible applications, systems and environments. Nevertheless, a valid open question
would be: “Which motion planning technique to start with?”. Table 5.2 summarizes the
planners categories versus the various features/requirements for a typical motion planning
problem. Whenever a feature is marked possible, it means that it showed average perfor-
mance against this feature in our tests; or, that simple parameter tuning would enhance
its performance against such a feature. A feature is considered as not supported, if the
nature of the planner does not (without major changes) support it.

5.2.5 UVMS Requirements

For our next step, we are considering the case of an UVMS for underwater free-floating
manipulation with the following requirements:

1. Fast planning response to allow real-time execution.

2. Cluttered obstacles, possibly leading to narrow passages in some cases.
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Real- Human-
Plannel.rs Time Cluttered Narrow Consistency Like Fast Clearance ObJeCt.we
Categories Re- Passage . Re-plan Function
Motion
sponse
Non-
Optimal v possible X X X possible v X
Sampling

Optimizatio
based

X possible X X possible possible possible v

Table 5.2: Planners vs. Environment Features

3. A priori unknown environment, this would require real-time re-planning capabilities
to deal with the incremental map-building process.

4. Generated trajectories with a combined optimization function: short path, good
manipulability index, optimizing the redundant DoFs motion (e.g. during the inter-
vention, it might be preferable to move the arm and not the AUV).

5. Consistency is preferable given the incomplete knowledge of the environment. It is is
in particular useful in applications requiring human-robot interaction; and for those
autonomous systems that operate under human supervision as the robot behavior
would be foreseen for the observer.

5.2.6 Planner Selection

Considering the previously detailed requirements and the outcome of our analysis (as
summarized in Table 5.2, we had two options to proceed with; either asymptotically-
optimal sampling-based planning or search-based planning. The asymptotically-optimal
family showed promising behavior specially in terms of planning time. On the other hand,
the search-based had a key feature due to its deterministic nature, “the consistency”; also it
demonstrated above average performance in all basic features. Moreover, sampling-based
planners have been widely investigated for mobile manipulation, while the search-based
remained less explored. For these reasons, we decided to build our solution under the
search-based umbrella.

5.3 Exploiting System Loose Coupling in Search-based Mo-
tion Planning

Based on the survey results presented in the previous section, both the workspace and
manipulation lattices have similar benchmarking results, but only the manipulation lat-
tice can exploit the “Loose Coupling” nature of the UVMS. In this lattice, the search
occurs in the configuration space, allowing to decouple to some extent the AUV vs. the
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arm motion. Based on this observation, in Chapter 4 we proposed a manipulation lattice
search-based motion planning algorithm that exploited this common mobile manipulators
characteristic denoted “Loose Coupling”. As the results will show later, this characteristic
allowed not only to coordinate the AUV and the arm motion, but also to increase the
planning efficiency in terms of path length and time in some cases.

The validation of the proposed algorithm followed three stages: first, an interventions sim-
ilar to those used in the off-shore industry were performed in simulation in a known apriori
environment. Later, a water tank demonstration was performed. For this experiment, the
environment was assumed to be unknown and a laser scanner was integrated to sense the
robot surroundings while moving. Finally, an exhaustive analysis of the planner behavior
was carried out in simulation to give further insights about the proposed method.

5.3.1 Representative Intervention Mission Simulation:

This step consisted of a simulation of a representative underwater manipulation mission
in a typical sub-sea structure like those used by the Oil&Gas industry. An octomap
of a real sub-sea structure is used as a known apriori map. The mission consisted of
two common intervention tasks: 1) Pipe Inspection and 2) Connector unplug/plug, with
the corresponding goals labeled B(1) initial,intermediate,final and C(1) initial,final as in
Fig. 5.4.1.

Fig. 5.4 shows some of the I-AUV configurations during the execution with the start
configuration shown in Fig. 5.4.1. The inspection intervention consisted of three tasks
(i.e. three planning queries): First to pick the bar from its initial position (Fig. 5.4.2,
Fig. 5.4.3) with planning Time = 4.8 s, second to inspect pipes on the upper part of the
structure (Fig. 5.4.4, Fig. 5.4.5) and it took 6.8 s to plan this task. Finally, moving to the
side of the structure holding the bar (Figures Fig. 5.4.6, Fig. 5.4.7) with a planning time
of 14.3 s. After terminating the inspection, the bar is placed on the structure to start the
new intervention.

For the second intervention, the connector had to be picked and un-plugged (Fig. 5.4.8,
Fig. 5.4.9), and this phase took 1.6 s to plan. At last, the connector was plugged in one of
the destined holes for connectors (as shown in Fig. 5.4.10, Fig. 5.4.11), with 1.7 s planning
time. We can conclude that the planner is able to cope with complex tasks, given that the
overall mission (i.e. 5 tasks) planning time is almost 30 s, which would enable real-time
performance in real environments.

5.3.2 Water Tank Demonstration:

The water tank test environment is shown in Fig. 5.5, where the yellow structure is
equipped with multiple valves, and the purpose of the mission was to turn the lower
left (blue) valve where initially the environment is unknown and has to be sensed online
by the I-AUV (see Fig. 5.5)

In order to carry out the valve turning in unknown environment, four stages were
followed:

e FEzxploration Phase: where the purpose is to locate the pipe structure position with
respect to the world frame whose origin was defined at the right front corner of the
water tank. Initially, the AUV is placed at this origin. Then, different detection
points defined in the configuration space are sent to the planner and executed until
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Figure 5.4: Parts of the Different Trajectories during the 5 Phases of the Mission.
1 — 7 : Pipe Inspection Mission
8 — 12 : Connector unplug/plug
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Figure 5.4: Parts of the Different Trajectories during the 5 Phases of the Mission.
1 — 7 : Pipe Inspection Mission
8 — 12 : Connector unplug/plug

the two corner markers are detected (known by their IDs). Those points mainly
move the AUV in the X-Y plane. When the markers are observed, their relative
poses with respect to the robot can be computed. Then, compounding these poses
with the robot pose, the markers poses in the world frame can thus be computed.
Once available, the pose of the structure in the world frame can also be computed.
Even the pose of the structure is not required to complete the mission, it is useful
to compute approximately an approach pose to the vale to turn. Moreover, knowing
the pipe pose helps to interpret the results, since it allows us to compare the robot
trajectory with the actual position of the pipe.

e Homing Phase: the aim of this step is to move the I-AUV in a position that enables
it to visualize the pipe well in order to carry out the desired intervention. This phase
is similarly carried out by planning the I-AUV to a configuration space, where the
goal is computed with respect to the pipe center previously detected.

e Approach Phase: given the computed pipe center, and knowing the geometry of the
pipe, the position of each valve can be computed. In this phase, the objective is to
approach the valve to be turned (lower-left valve in Fig. 5.5). Given the computed
valve pose, the end-effector goal is sent to the planner with an offset in the Z-axis,
in order to place the end-effector in an approach position on the top of the valve.
This offset (= 40 cm in the experiment) was estimated based on the FOV of the
end-effector camera to ensure full view of the valve when reaching it from the top, in
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Figure 5.5: Test Environment in a Water Tank with the blue valve to be turned

order to re-compute and correct the estimated valve pose using a vision-based algo-
rithm. During this phase, the planner has no prior knowledge of the pipe existence.
After computing the first plan, the laser starts scanning the environment, providing
updates to the octomap, then the planner acts accordingly and re-computes alterna-
tive collision-free plans each time the occupied octomap voxels obstruct the current
plan solution. The process is repeated until safely reaching the top of the valve.

Visual Servoing: the last phase of the mission has the purpose of turning the valve.
Due to the various inaccuracies (AUV localization, camera-calibration, pipe model
geometry vs. reality), it is not possible to use the initial estimated valve pose and
plan directly to it. Thus we rely on a visual servoing mechanism to perform the
turning, which is a combination of Task-Priority based control and vision-based
valve detection. The vision-based algorithm provides pose updates while the I-AUV
is moving towards the valve in a closed-loop feedback. The valve orientation updates
are provided as long as the whole valve is seen in the image, while the position is
more frequently updated as long as the blight-blue circle in the valve center (Fig. 5.5)
is seen, enabling better positioning in the last few centimeters of getting close to the
valve. The sequence is performed by sending a series of desired end-effector poses
to the Task-Priority. First, a closer approach is computed from the detected valve
position with an offset in Z-axis, and same detected orientation. Next, the end-
effector lands on the valve by moving to the exact valve detected pose. In the third
stage, after the I-AUV is locked on the valve, a pose rotated by the desired angle
(70° in the experiment) around the Z-axis is generated. Lastly, an end-effector pose
is generated to retreat the IFAUV back to the initial position.
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For the motion planning stages, in Chapter 4 we showed the planning vs.actual trajec-
tories for the 8 DoF, as well as for the end-effector trajectories. These plots demonstrated
how the loose coupling of the base vs. arm resulted in moving the AUV until close to the
goal region, then the arm complemented the motion when close to the goal. Moreover, it
showed the sensing and re-planning capabilities of the system once an obstacle invalidates
the already computed plan. Additionally, the planning time, system clearance, path length
were reported to validate the real-time response of the system, and its efficiency in terms
of the distance traveled and safety.

Similarly, for the visual servoing part, the plots demonstrate how the different activated
task in the TPRC hierarchy were respected:

1. The arm joint limits were respected.

2. Both the AUV and the arm yaw were restricted to the already planned configurations
to ensure safe operation given that the planned configuration is collision-free.

3. The end-effector pose followed the valve detected pose and performed the desired
turn.

5.3.3 In-Depth Motion Planning Analysis in Simulation:

At this step, we performed a thorough analysis of two characteristics of the motion planner:
1) The clearance cost function, and 2) The AUV vs. the arm motion loose coupling.

To serve this purpose, we created a simulation scenario using the same pipe structure as
in the water tank experiment, but with the target of turning the valves [V#1, V#4, V#2,
V#5, V#8| (labeled in Fig. 5.6).

Figure 5.6: Pipe Simulation Environment with the octoamp & Valves to be turned.

Each manipulation consisted of an “Approach” and a “Turn”. The scenario has been
repeated three times with different clearance threshold (0,0.1 m,0.5 m), and each time
the environment was assumed unknown.

The evolution of both the g and the h functions vs. the distance to obstacles, for various
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clearance thresholds, were reported in Chapter 4 showing the penalty imposed on the
states violating the set clearance threshold. The minimum distance to obstacle at each
way-point of the generated trajectories, demonstrated the variability in the plans given the
clearance threshold. It also showed the difficulty of respecting the 0.5 m at all moments,
specially when moving to/from a valve.

In order to analyse the motion loose coupling, we reported plots showing the percentage
of either the arm or the AUV motion with respect to the position of the corresponding
way-point in the plan. We could deduce that the arm was used either around the goal
region or to maneuver around obstacles, else the base was taking over the motion. Lastly,
numerical analysis was reported for the different tested clearance thresholds: graph search
time, clearance overhead, overall planning time, path length, and number of expansions.
From these numbers it can be shown the effect of increasing the clearance threshold on
the search time as well as on the path length, with the worst performance reported for the
0.5 m clearance.

5.4 MR-MHA#* Planner Evaluation

In order to evaluate the performance of our algorithm, we used five benchmarks (shown in
Fig. 5.7), similar to the ones previously reported in Chapter 3. BM#1, BM#2 and BM#3
are identical to those in Section 5.2. BM#4 simulates the task of moving an elongated
object (stick) through a window-like opening. BM#?5 performs the same operation but
going through a space cluttered with obstacles. The stick length in BM#3 and BM#5
is 50 cm, which is smaller than the window width. For BM#4 the stick is 1m length (>
window width), with same initial I-AUV configuration as in BM#3, but with the window
closer to the [L-AUV, making it more challenging to reach the goal by passing the stick
through the window.

T =)0y

L]

(b)
(a) BM#1: BM#2:Valve (c) BM#3: Stick (d) BM#4: Stick  (e) BM#5: Stick
Simple Valve Turn 50cm 1m Manipulation 50cm with
Turn With Obstacle Manipulation Close-Window Scattered Obstacles

Figure 5.7: Benchmarks representing various test environments used for simulation validation

We compared our technique against five other common planners, three of which are
sampling-based (RRT [46], RRTConnect [47], RRT* [48]), one optimization-based plan-
ner (STOM P [49]), and the basic search-based planner (ARA*). The evaluation consisted
of comparing four metrics based on 20 runs of each planner in each of the five benchmarks:
planning time, path length, success rate, and consistency. The reported numbers are the
mean over the 20 runs. Each planner was allowed at most 30 s for planning. In addition,
the reported solutions by each planner have been post-processed (e.g. shorcutting), and
the reported planning time includes the post-processing step. It is worth noting that for
both RRT* and ARA™* results are reported for the first solution found without further
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improvements to ensure fair comparison with other planners.

The results are shown in Tables 5.3, 5.4, and 5.5:
From the first table, our approach results in shorter path length (measured as a combi-
nation of the L2 norm of both translational and rotational joints) compared to all other
planners, with the exception of the first benchmark where the difference to the shortest
path is slight (0.37). A reason for this behavior, is the simplicity of the scenario with
wide obstacle-free areas around, where all planners after post-processing result in similar
solutions. While for the second benchmark, the difference with respect to ARAx is almost
negligible (0.02), not affecting the conclusion that the proposed approach generally per-
forms better.
Concerning the planning time, as expected, the non-optimal sampling based outperformed;
while our planner had comparable performance to the asymptotically-optimal sampling,
and generally outperformed the ARA*. A drawback is seen in BM#3 where ARA* is
able to find the direct path through the window faster than the proposed approach, and
expands much less nodes (as shown in Table 5.5).
On the other hand, with more challenging benchmarks, the success rate of some sampling-
based planners decreases, whereas the ARA* showed consistent failure in BM#4 & BM#5.
This proves the improvement of our proposed approach in the scenarios where the direct
path to the goal is blocked by obstacles or not feasible, and moving the base alone is
necessary to explore other areas.
Fig. 5.8 shows the trajectories found for BM#4 & BM#5 by our approach. The states
in red have been found by searching the base representation and those in blue have been
found by searching the arm representation. It can be appreciated the base support to get
around the blocked areas and advancing the search forward finding its way to the goal
faster.
To perform a consistency test, in each run out of N (= 20), the start configuration per
benchmark has been randomly modified in the exact same way for all the planners, and
within a range of (20 cm,5°) for the translational and rotational joints respectively, and
then the test was performed. Finally the reported numbers are the mean of the Frechet
Distance between the combination of the M successful computed motion (i.e. the joint-
space plan), where M is the number of successful runs (<= 20). Furthermore, the success
rate is reported as different failures were encountered due to the start configuration change.
In table 5.4, “bold” is used to denote the highest consistency (lowest Frechet distance). As
expected, due to their deterministic nature, search based planners demonstrated higher
consistency (i.e. lower consistency index) with the MR — M HA* outperforming. Dif-
ferently, STOMP shows an incredibly low index for BM#5 but only with a 20% success
rate.

Planner BM#1 BM#2 BM#3 BM#4 BM#5
TIL[%][T]L[% | T]L][% || T[L|[%||T[L] %

RRT 0.087 5.5 | 100 [ 0.84] 82 | 100 || 0.06§ 24.12 100 || 0.04518.74] 95 [[ 5.6 | 11.15 65
RRTConnect|| 0.02| 5.43| 100 || 0.03613.8 | 100 || 0.03| 19.8 | 100 || 0.05 | 17.94] 100 || 0.03516.4 | 90
RRT* 0.06 | 5.68 | 100 || 1.8 | 15.1 | 100 || 0.23 | 18.48 100 || 0.05 | 22.7 | 100 || 3.34 | 14.3 | 100
[STOMP  [[2.68] 6 [100[3.65]625]100 [[338[445[ 25 | F | F [ 0 [[238]1116 10 |
ARA* 0.087 7.1 [ 100 [| 0.12] 5.88[ 100 [[0.25] 6 [100] F [ F [ 0 [[ F [ F [ 0
MR-MHA* || 0.12] 5.9 | 100 || 0.15| 5.9 | 100 || 2.43 | 4.2 | 100 || 0.94 | 14.98 100 || 0.39 | 9.56] 100

Table 5.3: Planning Time, Path Length & Success Rate
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Figure 5.8: Found Solutions for BM#3, BM#4 & BM#5 (base motions in red & arm motions

in blue)
Planner BM#1 BM#2 BM#3 BM#4 BM#5
C.I | Success%|| C.I | Success%|| C.I | Success%|| C.I| Success%|| C.I| Success%
RRT 1.68 100 2.5 100 6.22 100 5.43 100 4.38 45
RRTConnect 0.78 100 2.3 100 4.62 100 8.72 100 4.36 100
RRT* 1.15 100 1.64 100 4.39 100 5.92 100 3.47 100
| STOMP [1.2] 100 Jor79 95 [oo] 5 [[58] 15 [0.66] 20
ARA* 0.61 100 0.9 100 1 100 F 0 2.32 65
MR-MHA* 0.5 100 0.66 100 0.59 100 4.23 100 1.45 95
Table 5.4: Consistency
Planner # Expansion
BM#1| BM#2| BM#3| BM#4| BM#5
ARA* 7 9 9 F F
MR-MHA* 12 12 340 80 50

Table 5.5: Average Number of Expansions for search-based Planners



CONCLUSIONS, DISCUSSION AND
FUTURE WORK

IN this chapter we first summarize, in Section 6.1, the contribution of this thesis related to the
previously proposed objectives (Section 1.2). Later in Section 6.2, potential future work in the
same line of research, is discussed.
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6.1 Conclusions and Discussion

For the first time, in this thesis, motion planning has been investigated and applied to
autonomous underwater intervention. Through this work, we have extended the state of
the art of [FAUVs, by demonstrating real-time manipulation in the presence of obstacles
in both known a priori and unknown environments.

The objectives previously detailed in Chapter 1, have been successfully covered through
the following contributions:

Develop a first solution for an I-AUV using Motion Planning : in an attempt to
import the already developed technologies deployed to terrestrial robots, to the un-
derwater field , we developed an initial solution based on Movelt! mobile manipula-
tion framework. We evaluated its motion planning capabilities to control an UVMS
and demonstrate beyond-state-of-the-art tasks like valve turning in the presence of
virtual obstacles and connector plug/unplug operations using free-floating manipula-
tion, for the first time. Although the work reached its purpose, this early experiment
revealed important aspects to be considered in order to achieve higher autonomous
intervention capabilities:

e Achieving a real-time response, specially when dealing with unknown environ-
ments.

e Keeping a minimum clearance to obstacles to ensure safety of operations, spe-
cially with the inherent uncertainty of the robot navigation.

e Generating efficient trajectories with respect to path length.

e Given that the UVMS is a compound system, optimizing the motion of the
AUV vs. the arm is a key in order to reach the goal with the shortest safest
possible trajectory.

e keeping a sensor field of view to ensure accurate localization through visual
servoing, leading to successful manipulation.

Some of these objectives have been already tackled within the task priority frame-
work, but further investigation is needed to introduce them to motion planning for
underwater intervention.

Perform an in-depth analysis of state of the art Motion Planning techniques:
at this step, we were concerned about choosing the most suitable motion planning
approach to reach the overall goal of the thesis. Given the lack of experimental
comparison of various approaches, we presented an in-depth analysis of the most
common ones.

e A thorough explanation of the state of the art motion planning approaches have
been presented.

e A discussion of the challenges introduced to planning for mobile manipulation
have been provided.

e Not only a theoretical comparison and categorization of the available approaches
have been conducted, but we went the extra mile of performing a qualitative
and quantitative comparison. To reach that purpose:
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1. Five representative underwater intervention benchmarks have been pro-
posed.

2. Seventeen motion planning algorithms have been compared through the
five benchmarks.

3. New quantitative measures have been introduced for comparison.

e A set of guidelines were introduced, based on the comparison results, to help
other researchers to base their choice on a scientific methodology.

Based on the results of this analysis, and considering the characteristics desired for
the I-AUV: consistency, efficiency in terms of one or more metrics (e.g. path length,
clearance...), and above average time response; we decided to adopt the search-based
planning strategy for our I-AUV.

Propose a real-time motion planner for an I-AUV: We presented an approach to
planning for an UVMS using Multi-Representation, Multi-Heuristic A*. The ap-
proach exploits loose coupling between the base and the arm when performing in-
tervention. This is particularly useful given the floating nature of the base (i.e. less
execution accuracy) and the limited arm reachability. The approach has been:

e Evaluated by comparing it to other common motion planning approaches using
similar benchmarks to those previously developed. The comparison showed the
efficiency of the proposed method in terms of consistency, path length, improved
planning time and motion compromise between the AUV and the arm.

e Validated in a known apriori environment in simulation, by preforming a two-
phases intervening mission in sub-sea structure.

e Validated in a water tank in unknown environment. A significant effort on
system integration was required for putting together:

1. A recently developed real-time laser scanner.
2. A real-time vision based navigation method.

3. A visual servoing task priority based method to grasp the valve.

For that last demonstration, the safety has been considered by adding a clear-
ance cost function to the proposed algorithm.

e Analysed in-depth through additional simulation tests that focused on validat-
ing:

1. The clearance cost function: by performing several tests with various clear-
ance thresholds. The tests demonstrated the success of incorporating the
clearance in most of the cases. In addition, it showed an increase in the
planning time and the path length with the increase of the clearance thresh-
old.

2. The loose coupling: the performed tests showed the ability of the algorithm
to choose between the AUV and the arm based on the ability of each. Thus,
the AUV was used until close to the goal region, while the arm was used
only inside the goal region or to manoeuvre an obstacle on the way.

Validate experimentally the proposed approach: at each of the previously stated
objectives, and whenever suitable, we focused on a real system demonstration in a
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water tank [1, 3, 5], in order to face the challenges of the full stack integration and
support our approach - at each step - with a strong validation.

Based on the technical development done during this thesis, we would like to further
discuss the benefits and issues that came out from building our solution within an existing
wide framework like Mowvelt!. Having such a generic framework, that covers a wide variety
of functionality for mobile manipulation, is like a two-sided weapon. The same features
that can be considered benefits in one situation, can turn out as an obstacle in another.

Benefits: The major advantage came from the quick and ease of introducing a new mo-
bile manipulator to Movelt! and the availability of all needed features as configurable
plug-ins:

e Easy definition of the UVMS kinematics: The use of a URDF file and the
integration with the KDL allowed for an easy definition of our model, avoiding
the tedious definition of Inverse Kinematics (IK) solvers or even the integration
with available libraries.

e Fasy generation of collision-free path: The ability to define the collision geom-
etry of the model, in combination with the Flexible Collision Library (FCL)
library, and the group of path-planning algorithms available at the Open Mo-
tion Planning Library (OMPL) library makes it easy to compute collision-safe
trajectories.

e Reduced development time: Having the arm and AUV low-level control al-
ready available, it was possible to implement the coordination layer in charge
of the joint AUV /arm control, including the experimental demonstration, in a
relatively short time.

Challenges: With further progression of our own approach and the specific needs of
our system, the generality of the framework turned out to be a challenge. It became
costly to maintain our solution within the framework in terms of development time
and limiting features. The major challenges included:

e Non-actuated DoFs: Underactuated AUVs may experience a degree of pertur-
bation on their non-actuated DoFs, for instance, with the roll DoF of our AUV.
It is not possible to control the roll, which is passively stable, but it may ex-
perience a few degrees of variation due to a perturbation. Because our arm is
almost neutrally buoyant and does not induce significant roll disturbances, a
compromise solution was adopted. The non-actuated DoFs were included in the
URDF model but with a fixed value equivalent to their values at the beginning
of each experiment. This solution suffers from a loss of accuracy of the end-
effector position in case the value of the non-actuated DoF changes significantly
during the manipulation. This is due to a limitation in the URDF modeling
as it does not allow read-only joints, where the joint would be skipped during
planning but still taken into account during the forward and inverse kinematics
computations.

e Rise of solution-based functionalities: on the way of developing our solution,
specific needs were arising and extending the existing framework was not a
straight forward process:
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1. During the survey development, using Movelt! benchmark plug-in, handling
end-effector goals, multiple start states, or relying on a scene with objects
attached to the end-effector were missing functionalities.

2. Because the OMPL is more commonly used, its employment within Movelt!
was more intuitive than any other library. For instance, for the motion
planning development, maintaining an internal environment representation
was mandatory, while Movelt! had its own representation. Thus, various
changes to Mowelt! internal pipeline was necessary to keep the framework
working as expected with the new approach.

3. The notion of interleaving execution and planning, or replanning, while
maintaining the old environment representation (without re-creation of var-
ious instances from scratch) is not the Movelt! default behavior.

6.2 Future work

As this thesis puts the first milestone in the usage of motion planning for underwater
intervention, it opens doors for further extensions in several directions. A step forward
would be to replace the 4 DoF arm with a more dexterous, higher dimensional one (e.g. 6
DoF). This would be more interesting as once the target is reachable, the 6 DoF pose of
the end-effector will only depend on the arm, which is faster and far more accurate than
the floating base.

Another aspect that has not been tackled in this work, is incorporating the Field of View
(FOV) as a constraint during planning, in order to give less preference to the motion that
would limit the sensor visibility (e.g. backward motion of the base).

In addition, in the future, it would be desirable to perform tests at sea, and this will
require further developments in other areas like the vision-based navigation that would
need to be based on Visual SLAM approach, and it is worth considering incorporating the
uncertainties in the robot localisation and sensor reading within the planning strategy.
As discussed earlier, the use of Mowvelt! has been helpful initially, but more an obstacle
as our own strategy started to develop. For that, it is worthy to invest effort on building
an underwater tailored framework, integrating: modeling, perception, control and motion
planning, and simulating the underwater environment to facilitate moving to water tank
demonstrations.

In addition, developing further the proposed benchmarks for underwater intervention
would be a great contribution to the community. Specially, if a focus is given to ana-
lyzing collision-checking, which is a major bottleneck for any planning strategy.
Moreover, further developing the framework is required to allow for interleaving planning
and execution, in order to extend the proposed approach to work in an anytime fashion,
allowing improvement of the computed trajectories as much time as it is given to the
planner.

The proposed solution, relies on optimizing the planner strategy to achieve real-time re-
action in unknown environment. A drawback of our solution, is that everytime a plan
is invalidated due to a sensor update, a plan from scratch is computed. An alternative
would be to take profit of the previously constructed search graph, to further reduce the
planning time and optimize the reaction to environment changes. A factor we did not
analyze, is the planner behavior in more complex and dynamic environment (e.g. in the
presence of moving obstacles).
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Another direction to consider for intervention in unknown environments, is to have a two-
level reaction framework: 1) a local control-based level (e.g. reactive obstacle avoidance
in a task priority framework); 2) a global planning-based level similar to our proposed
solution. Such integration would take profit of both strategies, and ensures fast and safe
reaction, while giving time to the global planning to generate an efficient, optimized tra-
jectory in terms of system-specific criteria.

An interesting next step would be to move to dual-arm manipulation and/or multiple I-
AUVs. Depending on how the problem is formulated (e.g. coordinated vs. non-coordinated
manipulation, how the goal for each arm is defined...), the complexity and challenges might
vary. For example, the overall problem might need to be divided into phases, like for hu-
manoid planning, and various planners at each phase might be better. In order, to gain a
better insight on such a different problem, extending the previously developed benchmarks
and analyzing the various planning approaches would be beneficial. Moreover, investigat-
ing the extension of the proposed solution to multiple-arm/I-AUVs, is worth it, as the
loose coupling concept would still hold.
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AHRS
ARA*
AUV
BF'S
CHOMP
CIRS
cola2

CS

DoF
DVL

EUCLID

FCL
FOV

GPS

I-AUV

IK
IMR

LARA*

MI

Attitude and Heading Reference System.
Anytime Repairing A*.
Autonomous Underwater Vehicle.

Breadth First Search.

Covariant Hamiltonian Optimization for Mo-
tion Planning.

Underwater Robotics and Vision Research
Center.

Component Oriented Layer-based Architec-
ture v.2.

Configuration Space.

Degree of Freedom.
Doppler Velocity Log.

Euclidean.

Flexible Collision Library.
Field of View.

Global Positioning System.

Intervention Autonomous Underwater Vehi-
cle.

Inverse Kinematics.

Inspection Maintance Repair.

Lazy Anytime Repairing A*.

Manipulability Index.
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ACRONYMS



112 Acronyms

MP Motion Primitives.

OMPL Open Motion Planning Library.

PRM Probabilistic Roadmap Method.

ROV Remotely Operated Vehicle.

RRT Rapidly Exploring Random Trees.

SBL Single-query Bi-directional Lazy collision
checking.

SMPL Search Motion Planning Library.

SRDF Semantic Robot Description File.

STOMP  Stochastic Trajectory Optimization for Mo-
tion Planning.

STRIDE Search Tree with Resolution Independent
Density Estimation.

TP Task Priority.

TPRC Task-Priority Redundancy Control.

UudG Universitat de Girona.

URDF Universal Robot Description File.

uuv Unmanned Underwater Vehicle.

UVMS Underwater Vehicle Manipulation System.

WS Workspace.
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