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Chapter 1

PRELIMINARIES

1.1 HistoricalIntroduction

1.1.1 Confirming Einstein 's General Relativity

Half a century before Albert Einstein arrived to his geometric account of gravity,
Georg Friedrich Bernhard Riemann had already marked the way to a new conception of

space. Riemann [115], who generalized the concepts of his master Carl Friedrich Gauss,
not only realized that space, telling mass how to move, could itself -by the newtonian

principie of action and reaction- be curved by mass becoming not a mere spectator but a

participant in the world of physics, but also achieved a great mathematical description for

this space curvature. Later on, the indissoluble character of space and time was revealed

by the Special Relativity of Einstein which also restored the physical equivalence between

all of the inertial frames. Einstein fruitlessly attempted at first to formulate a field law

for gravitation consistent with the spacetime structure given by this theory. However, the

Equivalence Principle, and in a much less precise sense Ernst Mach's principie [89], made
him suspect that a new theory was unavoidable and necessary for a correct description
of space and gravitation, a theory which extended the principle of relativity to the non

inertial coordinate systems and where the structure of spacetime, and not just space, was
influenced by the presence of matter.

This theory was formulated on the mathematical basis of the absolute differential

calculus of Ricci and Levi-Civitá and was called Einstein's General ReIativity [43, 44J. It
is based on a central idea: gravity is a manifestation of the curvature of spacetime, which

basically arises from the fundamental principie in any metric theory: the Principie of



2 Chapter 1. PRELIMINARIES

Equivalence of Gravitation and Inertia, which rests on the equality of gravitational and
inertial mass to tell us how an arbitrary physical system responds to an external gravi­
tational field. It states that the intrinsic, observer-independent, properties of spacetime
are given as functions of a spacetime metric g,_.v which need not have the flat form 1J,_.v

it has in Special Relativity. Indeed, its curvature accounts for the gravitational effects

usually ascribed to a gravitational field, locally equivalent to an accelerated reference

system. What distinguishes one metric theory from other metric theories of gravity is

its particular field equations, which are necessary to determine the gravitational fields
themselves. In General Relativity, Einstein postulated them by way of relating the cur­

vature of spacetime to the stress-energy-momentum tensor of the matter T,_.v in that very
spacetime.

Since its publication in 1916, impressive confirmations of the foundations of Einstein 's

theory and also of some of its new predictions and implications have been obtained. From

the beginning, the well-known three classical tests, proposed by Einstein himselfin 1916,

-explanation of the anomalies in the motion of the perihelion of Mercury, prediction of

bending of light rays confirmed by Eddington [38, 107], and the partially proved effect of

red shift of spectral lines [107]- soon conformed a successful basis for General Relativity.
However, experimental gravitation lay nearly dormant during a number of years, as much

as the theory itself, partly because, although being considered as a beautiful theory
leading to even revolutionary implications in particular areas such as Cosmology, its

potential relevance to the rest of physics had not been universally acknowledged, partly
because Einstein's and Newton's theories led to the same predictions when dealing with

weak gravitational fields as in the case of laboratory experimental conditions.

Nevertheless, strong interest began to be revived in the late 1950s, particularly by the

Princeton group led by John Wheeler and the London group led by Herman Bondi. Two

discoveries greatly contributed to the sustained interest which has continued since then.

The first refers (,0 the astronomical discoveries of the existence of a cosmic microwave

background radiation and of highly energetic compact objects involving strong gravita­
tional fields, i.e., quasars and compact X-ray sources. The second is the realization that

a quantum theory of gravitation will help to further understanding laws of nature. Even

aside from this potential impact on other branches of physics, the theory of General

Relativity on its own also attracted more attention and this renewed interest, along with
the development of great technical advances, led to more accurate versions of the older
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astronomical tests as well as observations of previously inaccessible effects", from which

Einstein's General Relativity stands as the classical theory of gravitation.
So, the third effect predicted by Einstein was neatly verified by Pound and Rebka

[112] in the sixties and soon other experiments concerning the foundations of the theory
were also performed and repeated again. In particular, important features of Einstein

theory that are consequences or parts of the Equivalence PrincipIe in its various forms

-from the uniqueness of free fall for test particles, or Galilei equivalence principIe, to

the very strong form� have been tested, among them the gravitational time dilation or

gravitational redshift, the constancy in time and space of constants as the gravitational
constant G, the local Lorentz invariance of physical laws in the freely falling frames or

the equal contribution of the gravitational binding energy to the inertial mass of celestial

bodies in agreement with the very strong formo It is also worth noting that there exists

experimental support for another basic assumption of GR. For instance, space curvature

is supported by the confirmation of the de Sitter effect (or geodesic precession), or by
solar system measurements of the deflection of photons and of the Shapiro time delay in

the propagation of radio waves travelling near the sun. And certain other effects which

confirm more than one single aspect ofGeneral Relativity have also been observed. Thus,
experimetal verifications of the equations of motion and of the solution of the Einstein

field equation are obtained from the outcomes of studies dealing with the pericentre
advance of a test body, the dynarnics of planets, spacecraft or even the moon motion, or
observations of sorne astrophysical binary systems such as the paradigmatic case of the

binary pulsar PSR 1913 + 16, which deserves special attention since it also stands as the

observational test confirming the existence of another fundamental prediction of General

Relativity: Gravitational Waves.

1.1.2 An Early Prediction: GravitationaI Waves

Gravitational Waves were one of the new physical phenomena not ensuing from new­

tonian gravitat.ion but naturally predicted by Einstein's General Relativity, and also by
any metric theory of gravity [135, 66, 67, 54]. As Einstein soon indicated, the gravita­
tional field became a dynamical entity making possible curvature perturbations propa­

gating in spacetime with a finite speed, analogously to what happens when one goes from

Coulomb's electrostat.ics to Maxwell's theory of electromagnetismo He showed [41, 42]
that his equations for t.he gravitational field admitted in the linear approximation radia-

1 See [28, 120, 142] for further references.
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tive solutions that represented plane GWs and that divided into real waves, which carry

energy, and apparent waves, which do not and can be eliminated by a coordinate trans­

formation. Eddington [40] first gave an invariant criterion valid in any coordinate system
to distinguish real from apparent waves. Like electromagnetic waves, in GR gravitational
waves are transverse plane waves with two states of polarization propagating in vacuum

with the velocity of light.

In his paper on linearized gravitation theory, Einstein also investigated the genera­

tion of GW by the sources of the field, being able to compute the power radiated by

non-self-gravitating masses by the derivation in this case of the quadrupole moment for­

mula relating the intensity of the radiation field to the second time derivative of the

quadrupole moment of the stress-energy tensor of the sources. However, in most astro­

physical applications, such as gravitationally bound binary star systems, it is just the

self-gravitational field that is crucial. Consequently, during the 1940s and the 1950s

there was considerable controversy over the applicability of the quadrupole formula and

indeed over whether self-gravitating systems emit gravitational radiation at all. Thus,
for may years the subject became exclusively a matter of theoretical discussion focussed

on the attempt to extend the quadrupole formula to self-gravitating systems, which was

acquired by the notably methods of Landau-Lifshitz in 1941 (77) and Fock in 1955 [46],
later further developed and improved in response to criticisms. Despite these advances,
it was not until the work by Bondi in 1957 [12] that Gravitational Waves were generally
accepted as a potentially measurable physical phenomenon implying energy transport,
instead of the mere coordinate effect suggested by other authors (Infeld in [65]).

Testing GW

It. was J. Weber who pioneered the work of measuring GW in the 1960s. His method

was based on the fact that free particles moving through a gravitational field experience
relative accelerations as expressed by the equation of geodesic deviation. If the particles
are not. free to move but are connected by a rigid solid piece ofmaterial, the gravitational
tidal forces will stress it whence the whole system will be set into oscillation. Weber's

technique [136, 137] consisted in measuring these deformations in large aluminium cylin­
ders at room temperature, presumably triggered up by incident gravitational radiation

impulses. After working with a single detector during the period 1963-1968, Weber built a

second cylinder at the Argonne National Laboratory of Chicago to undertake coordinate

experiments between the opposite ends of a 1000 Km baseline, searching for coincidences
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in their outputs within the maximum delay in respective times of arrival of the events.

Indeed, strong gravitational waves cannot be produced on Earth, so he had to look

for the events producing them in the sky. His work was soon backed up by the discovery
in the same decade of a wealth of new astrophysical objects such as quasars, pulsars and

binary X-ray sources [110]. It was then possible to conceive highly relativistic events such
as pulsating. accreating or colliding black holes, collapsing stars or merging neutron stars

binaries which could be strong sources of gravitational radiation [109]. In this period of

enthusiasm for the physics and astrophysics of collapsed objects, Weber announced the

detection of radiation emanating from the centre of our galaxy [138, 139]. He assured

that he had detected several signals per day, although this assertion was not supported
by other contrasting observations as those of optical telescopes. However, the news led

to a wave of work on the gravitational radiation from astrophysical sources and also to

the construction of a first generation of room temperature detectors. All this happened

despite the considerable controversy that surrounded Weber's claims, since the sensitivity
of the bar antennee was considered to be only enough to detect radiation emanating from

supernovee explosions in our galaxy, what in accordance to Weber's results implied that

severa.l of these events ocurred each day in the Milky Way, an incredible circumstance.

Moreover, there was also dispute over the way the results were analysed and the consensus

is that the equipment was probably not detecting GW. Nevertheless, Weber is recognized
as the pioneer who promoted this area of investigation with the invention of the resonant

antenna able to reach revolutionary -although not sufficient- precision of order o/- =
10-16, under one nuclear radius in a length of 1m. Not only this, but he also played
the import.ant role of alerting the experimentalists to the possibility of undertaking this

investigation and hence. in the late seventies. other researchers got involved in building
a second qeneration of gravitational antennee [10], which offered better perfomance by
means of important technological improvements in their designo such as cryogenics, more
careful isolation or improved readout systems with resonant transducers and low-noise

quantum-effect based amplifiers,
It was at t.he period of the growing of resonant antennee that other methods of detect­

ing gravitational radiation, such as spacecraft Doppler tracking or interferometry, also

initiated -for instance. in 1972 Forward [48] constructed the first srnall-scale prototype
of a Iaser interferornetric detector. Nevertheless, the general realization was that the

detection of GW was a much more difficult task t.han was originally expected. It also

became clear that in order to study strong sources of GW more elaborate models had to

be worked out. This meant that new experimental, as well as theoretical. tools had to be
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developed in order to succeed. As a result, both resonant and interferometric detectors,
and also other techniques, were perfected in the eighties and nowadays a continued major
effort is being pursued as is reflected by the several ambitious projects under planning
or even operating [28, 111,45]2.

In spite of all this outstanding technological effort, Weber's observations have received

no confirmation from other experiments. But fortunately, the existence of Gravitational

Waves, as well as sorne of the predictions of gravitational wave physics, was confirmed by
the discovery by Hulse and Taylor [64] of the binary pulsar PSR 1913 + 16 in 19743. This

stellar object consists of a 59 milisecond periodic pulsar drawing an elliptical orbit, of

period 2.79 x 104 seconds, around the centre of mass of the system and a second neutron

star with a maximum separation of only 1011 cm (:::::: 1 solar radius). After five years of

continuous data analysis, secular changes in the orbit of the pulsar, which were expected
to correspond to gravitational radiation damping effects according to the quadrupole
radiation formula, were observed [126]. More concretely, analysis of the arrival times of

the signals from the pulsar have shown that the observed value of the decay of the system 's

orbital period is in convincing agreement with that predicted by General Relativity, with
less than a 1% error" [127, 128].

This strong experimental evidence suggests that negative results of present gravita­
tional antennee ensue from not having enough sensitivity. The fact is that the expected
signals are ext.remely weak and can be easily swamped by the noise emanating from

different disturbing sources: brownian mot.ion of the atoms of the detector due to its

temperat.ure aboye the absolute zero, seismic perturbations, rudimentary readout sys­

tems ... Therefore. further improvements are needed to increase it. For interferometers,

the future seems to relay in projects of large magnitude. For resonant detection , the

sensitivity threshold is expected to be pushed forward with the aid of technological im­

provements -ultracryogenics and SQUID low noise amplifiers-, but there is a different

way of making a further step: t.he introduction of spherical geometry. Indeed, it was long
ago recognized by Forward [47] that a sphere is a very natural shape for a resonant mass

detector of gravitational waves offering better detection capabilities than cylindrical bars.
SOOI1 after, other authors were also interested in the topic. Thus, in 1975, Ashby and

Dreitlein [4] studied the response of an elastic sphere to gravitational radiation and in

2See section 2.2 in next chapter for more detailed references.
3 In 1993, Taylor and Hulse were awarded t.he Nobel Prize in Physics for the cliscovery of and work

on this system.
4 In [72] calculat.ions yield Tpredvct ed =

- 2.4032 X 10-12, while Tob.erved = - 2.409 X 10-12•
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1977 Wagoner and Paik [133] found a set of equations to determine the source direction in

the celestial hemisphere and wave polarizations from their modes, and also showed that

sphere's sensitivity per unit mass is slightly better than that of cylinders. These results

were ignored by experimentalists until the beginning of the present decade, when several

research groups have appeared worldwide developing spherical detectors from both theo­

retical [80, 32,84, 103] and experimental [49, 69, 97] points of view. With the prospects
of success improving significantly at each step, they face the challenging but promising
task of detecting GW, which seems an actual possibility not so far in the future.

1.2 Motivation

In view of this short account of the evolution of gravitational radiation research, it is

not possible to avoid the fol!owing question: which is in fact the final objective pursued
by these scientific investigators involved in the detection of gravitational waves? Is it the

mere resolution, defiant on the other hand, of quantitatively measuring those extremely
weak travelling spacetime perturbations, or possibly is it the search for a concluding and

direct experimental proof of their reality?
It seems that after the discovery ofthe binary pulsar PSR 1913+16 and the subsequent

related analyses and conclusions, the existence of GW in Nature must be no longer
a polemical subject. However, these results are sometimes referred to as providing an

indirect proo], and so the interest in designing and constructing an operative GW antenna

is explained by the airn of obtaining a direct evidence.

Nevertheless, it would be not exact to restrict the answer to such a concrete short-term

motivation. It is not at al! unwise to state that the ultimate purpose resides in an attempt
to lay down the basis for a new gravitational-wave astronom.y. If cosmic gravitational
waves can be detect.ed and studied, they will become a new source of information for

astrophysics and cosmology. Furthermore, it is believed that they will create a revolut.ion

in our knowledge about the Universe, comparable to or greater than that which result.ed

from the discovery of radio waves and radio astronomy, which changed our view from

a serene Universe where stars and planets wheel smoothly in their orbits as viewed by
light to a violent scenario where galaxies in collision, jets ejected from galactic nuclei.

or quasars with luminosities varying on timescales of hours occurred as viewed by radio

waves. This spectacular revolution was possible due to the fact that the information

carried by radio waves is so different from that carried by light. lt happens that the
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differences are even more important in the eomparison between electromagnetie and

gravitational radiation, which makes it likely that the advent of gravitational astronomy
will deeply impaet, allowing direet investigation of the gravitational interaetion under

extreme conditions and creating again a new and more trustworthy image ofthe Universe.

The development of such a new gravitationally based astronomy demands not only
experimental effort but also theoretieal eontributions. On one hand, realistic sourees of

GW have to be further studied so that more appropriate models determine with greater

accuraey the values of gravitational radiation emitted by astrophysieal systems, what
kind of sources aetually occur and how frequently. On the other hand, it is obvious that

a complete understanding of the physical eharaeteristics and the dynamieal behaviour of
deteetors is absolutely essential for the correct interpretation of their readout information.

In the case of resonant antennee, existing dynamical models are based on oversimpli­
fied assumptions which neglect important effects. In particular for spherical detectors,
the main oversight -leaving aside the noise question- refers to the consideration of the

resonator problem. The philosophy of using resonant transducers for motion sensing
began with cylindrical bars. They are used as mechanieal-impedanee matching deviees

of the primary vibrational modes of the antenna. producing an essential increase in the

mechanical eoupling when their resonance frequency is accurately tuned to that of the

cylinder. This idea is t.ransplanted to spherically shaped antennee undel' the proviso that
a multiple set rather than a single resonator is needed to exploit its better potential capa­
bilities as a multimode systern, i.e., if information on the GW amplitudes and incidence

direetion is required. Thus, the coupled dynamics of the whole system has to be stud­

ied to give an adequate theoretical interpretation of its readout, or, in other words, the
resonator problem has to be solved. Currently, t.he predicted behaviour of this coupled
sphere is just an extrapolation from the results that hold for the free sphere, what, for

example. amounts to producing an invalid implementation of second arder corrections on

the accura.cy of experimental data. And this situation becomes highly undesirable under

rhe reasonable expectation t.hat future spherical GW antennze will make use of extremely
precise measurement techniques, likely to demand more refined analyses.

Hence, our particular aim in this work is devoted to construct such a sophisticated
theoretieal model depending on, as far as possible. not unwarranted hypotheses, with
the objective of determining the system response to any interesting signal with unlim­

ited precision. The mathematics we develop are based on perturbative expansions of

the solutions to our general equations describing the antenna in ascending powers of

the small coupling constant 1J -given by the rat.io of the transducers' average mass to
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the sphere's mass-, but also on the simple and powerful algebraic scheme emerging
from Green function formalism and Laplace transformation. The analysis reveals with

remarkable transparency the general structure of the resonant mode splitting and cou­

pling, providing results which account, in a systematic way, for the dynamical effects

of the coupled device for completely general resonator distributions over the sphere's
surface. Beyond this. unprecedented new considerations are aIlowed, such as that of

the second resonance frequency -making possible to exploit the already demonstrated

potentiaIly good sensit.ivity of spherical detectors at two frequencies-, or the question of

how the system characteristics are affected by slight departures from perfect spherical
symmetry or identity of resonators, what constitutes the foundations for the analysis of

more realistic instances. Furthermore, we wil! see that within this study we are able to

confirm and generalize other previous implementations, and even to evaluate any existent

particular proposal for spherical detector or transducers layout. It enables the discussion

of several interesting alternatives, such as the truncated icosahedrallayout TIGA or our

specific PHCA proposal for a rather complete monopole-quadrupole GW antenna.

1.3 Overview

Summing up, this t.hesis presents an accurate, both mathematical and physical, de­

scription of the dynamical behaviour of GW spherical antennee when excited by incoming
gravitational radiation and also by calibration signals", making special attention to the

resonator problem and developing a general procedure applicable to any proposal for a

spherical detector.

It has been structured in three major parts.
The first part, which ineludes chapters 1 and 2, stands as an introduction. After the

historical background set in this chapter of Preliminaries, Chapter 2 begins with a brief

survey of the theory of Gravitational Radiation within the weak field limit of General

Relativity, although it has been pointed out that the main arguments also apply to any

other metric theory of gravity. We derive the wave equation in the linear approximation
and discuss its vacuum solutions, characterized as plane waves, their polarizations and

their action on extended bodies. what will become of major interest for the study of

resonant detectors, General solutions of the retarded potential type for the complete

5 It will lie somewhat out. of the thesis' main line of development, but represents also an interesting
case from both experimental and theoretical points of view.
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Einstein equation will be considered in connection to the subject of generation of grav­

itational waves and quadrupole radiation, where we also enumerate sorne of its possible
sources.

Then, in the second part of the chapter, attention is centred in another important,

already classical, topic referring Gravitational Radiation: the detection of gravitational
waves, the frame subject of this essay. So to establish a general perspective, we firstly
describe the present status revising the several developed detection techniques. After

a short description of Doppler Tracking in Space and Interferometry induding com­

ments on the last experimental projects, we restrict to resonant antennee providing sorne

more technical details. We briefly review how the present bars work and how a suit­

able readout system -composed of a resonant transducer, dynamically described as an

harmonic-oscillator, and an electromagnetic amplifíer- must be added to the body in

order to monitor the effects and quantitatively assess their magnitude and physical sig­
nificance; which are the operative detectors nowadays and what are their already reached

sensitivities to the several possible sources of gravitational radiation and that expected
for the future detectors of spherical shape. Finally, we conclude by revising theoreti­

cally the advantages of those spherical antennee, which offer better detection capabilities
and possibly will be the next generation of GW detectors of the resonant type. For the

remainder of this thesis, parts two and three, emphasis exclusively focuses on them.

Chapter 3 opens the second part of the work. It is centered on the mathematical

description of the dynamical behaviour of a spherical GW antenna under the action of

a gravitational wave or also a calibration signal. The core of the device, the detector, is

modelled as a perfect homogeneous spherical elastic solido As a necessary introduction,
we will first review sorne well known derivations about its free performance when it is

acted upon by an external force, and will see how its monopole and quadrupole normal

modes of vibration are the only possibly excited ones by an incoming GW. Practicality
requires also a readout system for mot.ion sensing. Thus, the detector is endowed with a

multiple set of identical resonant. transducers attached at fixed but arbitrary positions on

its surface. The resona.t.ors will be treated as linear harmonic oscillators with a natural

resonance frequency accurately tuned to a specific frequency of the free sphere spectrum,

logically a monopole or a quadrupole one.

The analysis of the coupled device begins by laying out the differential set of equations,
callee! the GRD equations, describing the system under several most general assumptions:
the detector is a solid elastic body of any shape, the resonators are modelized to behave

as linear harmonic oscillat.ors moving radially, they could be non-identical and are cou-
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pled at arbitrary locations. Immediately after, the set is transformed into an algebraic
system in the Laplace dornain, which of course will be constricted to perfect spherical
detectors, identical resonators, and forces of the GW -or calibration- type. The reso­

lution provides the new coupled device resonances from the splitting of the uncoupled

sphere's frequencies, as well as the vibrational amplitudes at the resonators' positions,

although exact solutions are not available and all the results are obtained as perturbative
senes expansions in ascending powers of the srnall dimensionless coupling constant 7]�
(7] == mM,Qnq.w). We will restrict to first order calculations. Finally, we discuss the

sphe re

possibility of construction of mode channels -fixed linear combinations of the measured

resonators' motions directly proportional to the GW amplitudes at single specific coupled

frequency pairs- and find the mathematical property which characterizes their existence.

Our PHCA proposal or the TIGA antenna of Jonhson and Merkowitz, which are

examined in Chapter 4 as applications of our theoretical developments in Chapter 3.

present minimal distributions of transducers which allow the implementation of mode

channels, For experimental exigencies, they both adopt the substitution of a true sphere
by a regular polyhedron which approximates it, and suggest specific configurations of

resonators. according to axial syrnmetry or rnaximurn isotropy respectively. Hence, their

associated GW responses differ obviously not in the basic structures arising from the

general model, but in particular although relevant peculiarities, also contrastable in the

simpler case of the detector being set into vibration by a calibration signal.
After this exposition of the core of our theory and its most outstanding derivations

111 the most ideal situation, we undertake in the third part of the essay two essential

and further steps: the question of how the system characteristics are affected by slight
departures from ideality, and the problem of the signal deconvolution also in the noisy
situation.

The first subject is specially interesting for increasing the degree of applicability of

the ideal model to rea.l systems -it is important to remind that we meant to describe

t.he behaviour of experimental devices-, so that special attention is devoted to non­

identity of resonators, to the existence of a second resonance frequency (URF effect), or
t.o the breaking of spherical symmetry by suspension. These two last failures lead to

significant changes with respect to the ideal perfect device perfomance. Furthermore, for
the suspended antenna our model's predictions have been confronted with the reported

experimental data obtained in the TIGA prototype experiment, and they both have been

found to satisfactorily agree.

Signal deconvolution is the last topic treated in the essay, We will begin by finding the
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incidence direction of the GW signal, its amplitudes and polarization -i.e., by solving the

inverse problem- in the noiseless case, and next we wiII address for the first time in this

work the important question of the presence of noise in the system. We restrict to treat

this key problem just for deconvolution, and study how noise affects the determination

of the GW parameters, with associated errors which are expected to be isotropic.
The memory is closed with a brief final discussion which summarizes our results and

sorne comments on proposals for future work.

1.4 Notation

• Latin indices i,j, k and so run over three spatial coordinate labels, usually 1,2,3
or x,y,Z.

• Greek indices u, v and so range from O to 3, the four coordinate labels in a general
coordinate system.

• Repeated indices are summed folIowing Einstein's summation convention.

• The metric tensor of the spacetime g¡;,v has signature - + ++; the metric tensor

T/f.1V in an inertial coordinate system has diagonal elements -1 + 1 + 1 + 1.

• Boldface letters denote three-dimension Cartesian vectors.

• A doto over any quantity denotes the time derivative of that quantity.

• Partial derivatives with respect to x appear in the text in the form of tx'

• Part.ial derivatives wit.h respect to xf.1 appear in the form of a colonj..

• Laplace t.ransform of a function F(t) is denoted by j(s) or by .c{F(t)}.

• The speed of light is taken to be unity.

• Gis the Newtonian gravitational constant and Ka is the Boltzmann's const.ant..

• Acronyms:
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GR

GW

TT gauge

SQUID
SNR

GRD equations
PHC

PHCA

TI

TIGA

URF

IRF

scS,wcS
scD,wcD

scT,wcT
L-F

\r-F

D-F

General Relativity,
Gravitational Wave,
Transverse Traceless gauge,

Superconducting QUantum Interference Device,

Signal to Noise Ratio,
General Resonant Detector equations,

Pentagonal HexaContahedron,
Pentagonal HexaContahedral gravitational wave Antenna,
Truncated Icosahedron,
Truncated Icosahedral Gravitational wave Antenna,
Unisolated Resonance Frequency,
Isolated Resonance Frequency,

strongly coupled Singlet, weakly coupled Singlet,
strongly coupled Doublet, weakly coupled Doublet,

strongly coupled Triplet, weakly coupled Triplet,
Laboratory reference Frame,

Wave reference Frarne,
Diagonal reference Frame.

13
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Chapter 2

THEORY AND DETECTION OF

GRAVITATIONAL WAVES

In this chapter, we shall centre our attention on Gravitational Wave Detection and

more specifically on Resonant Spherical Antennre. Our main aim is to briefiy present

a general panorama of the current status of gravitational-wave research. Secondly, we

would like to confine the scope going into sorne more technical details referring Resonant

Detectors and looking with a major interest to the case of Spherical Antennee.
But before, let us give an overview of the standard theory of Gravitational Radiation

itself, focusing on the basic ideas that conform it and that will help us in a better under­

standing of subsequent discussions. Of course, more complete and thorough presentations

may be found in standard textbooks, such as Kenyon [72], Wald [134] or Weinberg [140].

2.1 Generalities on Gravitational Radiation Theory
As we have already pointed out, Gravitational Waves are not unique to Einsteins

theory of gravity. Among the alternative theories, there is a wide class +the so-called

metric theories '> whose members are very similar to General Relativity, which is in fact

a metric theory of gravity itself, as much as Dicke-Brans-Jordan's theory or Rosens

theory [141]. Any metric theory of gravity predicts curvature perturbations propagating
in spacetime carrying energy, thus responsible for changes in geometric quantities and

1 A metric theory of gravity is characterized by a 4-dimensional, syrnmetric spacetime metric gcd of

signature +2. and by satisfying the Einstein's Equivalence Principie, i.e., all the nongravitationallaws
of physics take on their standard special relativistic forms in the local Lorentz frames of go.(5 [100).
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for tidal forces in material systems. Here , we will restrict ourselves to a discussion of

GW in General Relativity, although the perspective and general arguments -such as

the existen ce and validity of the geodesic deviation equation derived from the Einstein's

Equivalence Principie- also holds for any other metric theory of gravity.
Our specific purpose is to see how it is possible to find weak radiative solutions

of Einstein equations describing waves carrying not enough energy and momentum to

affect their own propagation, and how they, that are described by a symmetric matrix

with , in principle, ten independent terms, can be fully locally characterized by just two
functions due to gauge invariance. We shall also try to briefly describe sorne important
gravity waves topics'': the produced effects on spacetime depending on the polarization

properties of the waves, their action as tidal driving forces on material physical systems,
and their generation and approximate strain magnitude derived through the quadrupole
formalism, which is highly accurate for many sources and is accurate at least in order of

magnitude for mosto Finally a few words are written on possible sourees.

2.1.1 Gravitational Radiation in the Weak Field Limit

A. weak gravitational field is one in which the spacetime is nearly flato Exeept for

phenomena dealing with the large seale strueture of the universe, this gravitational field
limit is in practice an excellent approximation in nature very appropriate for the waves

likely to reach the Earth.

In this situation, and III a properly chosen coordinate system , the metric can be

consie!ered

(2.1)

where T/{LV represents the flat Minkowski metric and h{Lv(x) is a small perturbation.
Substituting this particular decomposition in Einstein's equations

R
1

a

{LV
- 2gJlvRa = 87rGTJlv,

ane! retaining only the linear terms in hJlv(x), a new set of equations is achieved:

(2.2)

2There remain sorne other aspects laying somewhat out of the scope of this work but which are of

importance in sorne specific areas of gravitational waves theory -and more concretely of gravitational
wave detection- not treated in th.is essay. For instance, a complete description of the GW received on

Earth distorted by the Doppler effect[70, 101] is essential for data analysis. For a general catalogue of

effects, see [130].
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(2.3)

(2.4)

Here, the energy-momentum tensor TJJv is taken to lowest order in hJJv(x), so it is

in fact independent of those quantities and satisfies the ordinary conservation condition

Tt,JJ = O implying

JJ - �SASv,JJ -

2 A,V· (2.5)

Due to the gauge invariance of the field equation, from any of its solutions it is possible
to generate equivalent ones by performing coordinate transformations. The most general
transformation that leaves the field weak is

(2.6)

with éJJ(X) four arbitrary functions only subject to the condition of being of the same

order of magnitude as hJJv. We can certainly benefit from this and fix the gauge by
choosing those coordinates which simplify most the equations. In particular, we can

work with harmonic coordinates such that

(2.7)

and then

(2.8)

In this case, the linearized Einstein's equation reduces to

(2.9)

with solut.ions of the ret.arded type that can be formally expressed by

J d3x'
hl"v(x) = 4G SJJV (x', t - [x - x'[) I l'x-x'

(2.10)

to which we can add any soIution of the homogeneous equation

Dhl"v = o. (2.11)
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We interpret the retarded potential (2.10) as the gravitational radiation propagating
with the speed of light produced by the sources S¡.¡y, whereas any additional term satis­

fying the homogeneous equation (2.11) represents the gravitational radiation coming in

from infinity.
Since eventual detection of GW will take place far from their source, S¡.¡y = O , we

centre our attention on the vacuum Eisntein equation which will clearly provide plane­
wave solutions of the form:

(2.12)

provided that

(2.13)

(2.14)

being k¡.¡ the constant four-dimensional wave vector.

At first sight, it may seem that the symmetric polarization tensor e¡.¡y, and so h¡.¡y, has
ten independent components, but the four relations (2.13) would lower this number to six,

although in fact only two of them are actually relevant since four more constraints can

be imposed by fixing gauge degrees of freedom. Indeed, we still are able to perform any

first order change of coordinates preserving equation (2.8), it is their harmonic character.
If one chooses a suitable harmonic system of coordinates such as t.he transverse-traceless

or TT gauge, one has the canonical form of h¡.¡v

h""(X)�( ¡
O O

h+ hx

hx -h+
O O

for a. wave orthogonal to its direction z of propagation, which effectively is traceless and

transverse (the vibration of the wave is orthogonal to its propagation). Here,

h; A+ exp( -iw(t - z))

Ax exp( -iw(t - z + cp)) (2.16)
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with 'P an arbitrary phase angle and A+ and Ax the wave amplitudes. Thus, the general
solution can be expressed by superposition of plane waves as a linear combination of two

polarization states.

2.1.2 Plane-Wave Polarizations

The distinction between the different components of the polarization tensor e¡J.V IS

clarified by the study of its behaviour under a rotation R of angle O about the direction

of propagation of the wave, say the z axis.

This is just a Lorentz transformation of the form

n� = n� = cosO

ni = -n� = sinO

n� = n8 = 1 other n� = O,

that takes e¡J.v into:

(2.17)

Taking into account relations (2.14), it happens that

e' e±2i8 e±±

f± e±li8 J±
I

e33 e33

I

eoo eoo

(2.18)

(2.19)

(2.20)

(2.21)

where

(2.22)

(2.23)

Any plane wave 1J which transforms into

(2.24)

after a rotation of angle O about its direction of propagation is said to have helicity h.

Hence, it has been shown that a gravitational plane wave can be generally decomposed
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into six different polarization contributions: two parts (2.20) and (2.21), with just one

polarization state each corresponding to helicity O; and parts (2.19) and (2.18) each

having two polarization states with associated helicities ±1 and ±2 respectively (see [39]
for further details).

In General Relativity, as has already been seen, parts with helicities O and ±1 can

be made to vanish by a suitable choice of coordinates, and so the physical!y significant
components arejust spin 2 waves, said ofthe T2 type (waves-transverse, spin-two). This
is not the case for other metric theories of gravity. For instance, Brans-Dicke-Jordan 's

theory has both spin 2 waves and spin O waves, T2 and TO waves [19].
These characteristic polarization properties would al!ow experimental investigation

to discriminate among the competing theories of GW physics. The discerning fact is

that different polarization states produce different deformation patterns in spacetime.
In order to construct a picture of these effects one can consider a cloud of nearby test

particles surrounding a central, fiducial one, al! of them in the x - y planeo Initial!y,
the cloud resides in flat spacetime, al! its particles are at rest with respect to each other

and its shape is precisely that of a circumference. Then, a GW travelling along the z

axis hits and deforms the cloud. The deformations can be analysed using the equation
of geodesic deviation , which describes the relative motion that any pair of nearby freely
falling particles exhibits to an observer that falls with them under the presence of a

gravitational field,

(2.25)

being D the covariant derivative applied to �J1., the relative four-vector called geodesic
deviation connecting the two test particles, and UV the four-velocity of any of them. with

proper time T.

Whenever the separation between particles is much less than the characterist.ic di­

mensions of the field, and t aking the particles at rest before the passage of the wave. the

geodesic deviation equation can be written

d2Ck<'i
_

k i .

dt2
- Rojo(tK , (2.26)

é,f represents the k component of the i-particle location in the local inertial frame as­

sociated to the fiducial particle at the center of the circumference, where the Riemann

tensor is evaluated.

In the weak field limito and for General Relativity, the Riemann tensor is seen to be
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1
Rlco'o = --hk· 00J 2 J,

a.nd then the only non-zero components in the TT-gauge are

(2.27)

1
(2.28 )R",oJ:o = -Ryoyo = --h+ 00

2 '

1
(2.29)R:royo = Ryoxo = --hx 00

2 '

since (2.15) holds. In this case, (2.26) can be integrated to give the components X¡(t)
and y¡(t) of �¡(t) == (X¡(t), y¡(t), O):

X¡(t) lo cos tjJi + � (h+(t) cos tjJi + h ¿ (t) sin tjJi)

10sintjJ¡ + 1; (hx(t) cos tjJ¡ - h+(t)sintjJ¡), (2.30)y¡ (t)

where we have used first that the particles were originally at rest at a distance lo respect

to the center of the circle being tjJi the angular variable that locates them in the x - y

plane, and secondly that the deformations in the distance I are always smaÚ: � << 1 .

If one restricts to T2+, which means that h-¿ = 0, or to T2x, and so h+ = 0, those

deformations are respectively

1

-2h+(t) cos 2tjJ¡

�hx(t)sin2<f¡¡.
(2.31 )

(2.32)

If we assume h; and h-¿ having a sinusoidal behaviour of the form given in (2.16),
we find that T2+ and T2 x deform the circumference to elliptical shape with patterns

rotated an angle of 45° from one another and both of them exhibiting invariance under

a 1800 rotation about the propagation direction at any momento

Analogously, calculations for the spin O radiation appearing in Brans-Dicke-Jordans

theory show that it will set the cloud into alternating expansions and compressions in

the transverse plane, while leaving it transversely circular (see Figure 2.1, taking into

account that the displacements introduced in the graph have been enhanced for the sake

of clarity).
Remarkably, these TO, T2+ and T2x waves maintain their polarization charact.er in

any Lorentz frame, what arises from these particular spins being Lorentz invariant (129).



22 Chapter 2. THEORY AND DETECTION OF GRAVITATIONAL WAVES

(a) (b) (e)

Figure 2.1. The effect of a GW on a cloud of test partieles arranged on a circular

layout befo re its propagation out of the page. In (a), the TO wave present in Brans­

Dicke-Lordan's theory. In (b) and (c), the spin-2 T2+ and T2x waves of General

Relativity. As the wave oscillates, the solid circumjerence gets deformed in the

manner shoum dashed after one-quarter 01 its cyele; after hall a cyele, the ring
rerurns to its circular shape, and ajter three-quarters the eloud is distorted in the

manner shown dotted. As can be seen, T2+ and T2 x cause the same sequence of

distortions, with the pattern rotated 45° from one another. A general wave of the

Brans-Dicke-Tordan's theory causes a superposition of the three distortions, and

of the two shoum in (b) and (c) in General Relativity.

2.1.3 Gravitational Waves as Tidal Driving Forces

Up to this point we have reviewed how curvature perturbations travelling in spacetime
change geometric quantities such as proper distances. But, and as a consequence of, they
can a.lso act as tida.l driving forces to modify the shape and dimensions ofmaterial objects,
t.hat eventually could become detectors of gravitational waves [129]. This driving density
of force reads:

(2.33)

which a.rises from the geodesic deviation equation (2.26) after multiplying its both sides

by the density f2 of the material, and considering xk the cartesian coordinates of a point
of the solid relative to a coordinate system with origin in its centre of mass, in relation

t.o which the eleciric components of the Riemann tensor ROjOk(i) are also evaluat.ed.



2.1. Generalítíes on Gravítational Radíatíon Theory 23

Assuming as always General Relativity and a TT-coordinate reference system, the

previous equation simplifies to just:

(2.34)

However, one could be interested in calculating the solid's response to other metric

GWs. So, we consider ROjOk(t) more generally:

1
RojOk(t) = -"2(hjk,oo(t) - hOj,Ok(t) - hOk,oj(t) + hOO,jk(t» (2.35 )

and

1 kf·(x t) = --g(h'k 00
- ho' Ok - hOk O' + hoo 'k)X .}. . 2] , s, , ] .s (2.36)

By the study of the form of the Riemann tensor spatial components ROjOk(t), it can
be shown that the structure of this tidal force follows a monopole-quadrupole pattern.
It happens that RojOk(t) is a three-dimensional symmetric tensor, whereby it and there­

fore f(x, t) consequently admit the decomposition into a non traceless and a traceless

contribution. the latter expressed in a suitable basis:

f'(x, t)
a

m=2

feOOl(x)geOO\t) + ¿ fe2ml(x)gl2m!(t),
'--v-' m=-2
non-tracele.53

(2.37)

trace/es.

where geOOl(t) and gI2m1(t) are the monopole and the quadrupole amplitudes of the

Riemann tensor carrying all the dynamical GW information, while feOO) and fe2m) are

pure tidal form factors with explicit expressions [80]

gOO(t) =

fpo(x) =

47TE·eOO)R . ·(t)3 ij 010]· g2m(t)

film(x)

_

87r .e2m)
- 15Eij ROiOj(t)
_ E12m)- g ij Xj, (2.38)

provided that. the following choice is made:
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E(2±1)=( 15)� ( �
1) 3271'

=f1

Ee�O) = (_5_) �
'1 16"

(2.39)Ee2±2) _ (_l!L)1ij
-

32"
2

which is the one bringing out the monopole-quadrupole structure of the Riemann tensor

for a general metric.
We see that E�O)is amatrix proportional to the identity, while {Er¡o), E�±l), E�±2)}

constitutes an orthogonal set of linearly independent matrices, which is a basis for the

five-dimensional vector space of three-dimensional, symmetric and traceless matrices.

They obey the orthogonality relations

E*e2mJEe2m') _ �.
'k 'k

- Umm'J J 8'il'

and satisfy the following properties

(2.40)

(2.41 )

where n is the radial unit. vector rxr and Y2m(e, 0) denotes spherical harmonics.

Of course. a decomposition analogous to (2.37) also holds for hjk(t):

1
m=2

hjk(t) = '3h(t)Ójk + ¿ Enm)h(m)(t)
m--')

(2.42)

with

hem)(t) = 8" E*e2m)h· (t)15)k )k .

Once again, as expected and already described in section 2.1.2., we see the structure

of gravitational waves emerging from the analysis of their effects. Again, they separate
into a monopole (00) contribution corresponding to spin O transversal waves -the TO

waves of Brans-Dicke-Jordan theory-, and the quadrupole (2m.) terms of helicity 2 in

General Relativity.
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2.1.4 Quadrupole Radiation

We centre now our attention on equation (2.10) in section 2.1.1. So, we turn now to

wave generation. We wish to study the energy that a given physical system emits in the

form of gravitational radiation. If we consider it far from the source, i.e., in the wave

zone as realistically occurs in GW observations,

Ixl�lx'I, (2.43)

it happens that l' == Ix- x'l � [x] is the distance between that source and the observation

point and

(2.44)

Beyond the basic assumption that the fields are weak, we make a further approxi­

mation and accept that the source radius R is much smaller than the wavelength of the

radiation, which is equivalent to assume that the typical velocity within the source is

very much less than the velocity of light (nonrelativistic systems). The absence of dipole
radiation in the gravitational field because of the conservation of the total momentum

and the angular momentum -what amounts to be a revealing difference between grav­

itational and electromagnetic radiation- makes the contribution due to the quadrupole
motion of the source to be the relevant term in the computation of the metric. In these

circumstances. equation (2.44) can be rewritten in a useful way according to the approx­

imations by using the conservation laws T,�v = O for the energy-mornenturn tensor, so

that the only nonvanishing contributions in the TT gauge are:

2G ..

hij(x) = -Q¡j(t - 1').
r

(2.45 )

Qíj is the trace-free part of the second moment of the source's mass density p evalu­

ated at t.he ret arded time (t - r):

Qij(t) = J (XiXj - �IXI2Óíj) Tood3x',
as computed in a Cartesian coordinate system centred on the source, and taking into

account that the energy density Too can be substituted by the rest-rnass density p(t) of

(2.46 )

the system, which is dominant in slow motion.

Equivalently, Qíj could also be read off the coefficient of the /3 part of the Newtonian

gravitational potential of the source of mass M:
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M 3 Qij(t) Xi Xj 5 Qijk(t) Xi Xj Xkcf; -
-- - ----- - ------ _ ...

-

r 2 r3 r r 2 r5 r r r
' (2.47)

since under the assumed hypotheses of slow internal motions and even if the source has

strong internal gravity, it can be described with high accuracy as Newtonian at least in a

region of space far enough from the source to be in vacuum and far enough from gravity
to be weak, yet near enough for retardation and wave behaviour to be unimportant.

It seems that, in principle, one could compute Qij and therefore have the values of

hij for several different emitters, or even the energy Ioss rate due to the emission of

gravitational radiation:

(2.48 )

However, it is not an easy task in most cases of interest, and so it would be convenient

to find, in the basis of these equations and for a more general understanding, an order

of magnitude estimation for (2.45). It can be given by the product [81]

Ro v2
-x-
r c2 ' (2.49)

for a typical source of Schwarzschild radius Ro = 2�f1 and typical velocity v. Hence, in

the case of Earth-based sources such as ordinary mechanical oscillators, the two terms

of (2.49) are very small, what means that vastly more of its energy will always be given
out, for instance. to heat than to gravitationaI radiation, Thus, appreciable generation
of gravitational waves must imply enormous masses undergoing not uniform highly swift
motions and for this reason potentialIy measurable GWs have to be searched in the outer

Universe.

Sources

Likely astrophysical sources of gravitationaI radiation [130, 81, 1l8] can be classi­

fiecl according to the emission duration in short signals, long signals, and a permanent
stochast.ic background.

The most intense are bursts of brief duration related with astrophysicaI catastrophic
events: collapsing stars, supernovee, coalescencing binaries, or the fall of stars and small

holes into superrnassive holes. Other candidates, such as pulsars, produce periodic waves

which are superpositions of sinusoids with frequencies that are more or less constant

over times long compared to an observation runo And finally, a stochastic background
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of gravitational waves produced by binary stars in the low frequency range, Population
III stars, or relic waves from string cosmology and phase transitions associated with

quantum cromodynamics and with electroweak interactions, is predicted to be always

present with a continuous frequency spectrum.

Although several models have been developed for describing the physics of such sys­

tems and processes, detailed knowledge about them is hardly available, specially if rel­
ativistic effects are relevant for their dynamics, what precisely amounts to be the most

interesting case. What is commonly done is to assume simplifications which enable at

least to calculare order of magnitude estimations.

These estirnations for the outgoing flux of gravitational energy of periodic sources

producing monochromatic waves give results several orders of magnitude smaller than

the typical burst amplitudes [130]. So, the events [50] more easily detectable by most

of the cryogenic resonant antennee are of this kind: massive star collapses or gamma­

ray bursters [116], because of their relative large intensity, but also because of their

short duration when compared with the characteristic time-scales (the decay time of the

meehanical oseillations) of the resonant deteetors. Then, it ean be done on-line data

analyses [83, 13] with the explicit aim of detecting those impulses, or subsequent studies,
for instance for timing information [33] or more generally for an optimal reconstruction

of the input signal [104].
Among this type of events, one finds that stellar eollapses in our Galaxy would produce

the most energetic waves likely to be observed on Earth, estimated to produce stresses in

spaeetime of amplitude about h � 10-18, whieh represents tiny strains comparable to a

displacement of under one nuclear diameter in a length of 1 m. Unfortunately, their rate
of oecurrence is fairly well determined observationally to be roughly one type I supernova
eaeh 40 years and one type II also each 40 years. If one wants to inerease this rate of

potentially observable events in a given period of time, it is unavoidable to look for them

in more distant places, say in the Virgo cluster at about 10 Mpc, where a few events per

year could be detected , but then the strain sensitivity must be appreciably inereased to

a smaller value around 10-21.

2.2 Detection of Gravitational Waves

As we have seen , gravitational waves received on Earth show a breathtaking weakness

that has always handicapped the attempt to measure Gravitational Radiation. However,
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experimentalists and theoreticians working on this subject have always vigorously re­

sponded to this difficult task.

They have thought up several different methods for measuring gravity waves, what

has given place to an important number of suggested different possible detectors which

can be classified in accordance to their operational frequency regime: those that work

in the high-frequency spectrum, f � 10Hz, all of them earth-based; and those for low

frequencies, 10H:; :::: f � lO-5Hz, and for very low frequencies, f::; lO-5Hz which must

be space-based in order to maximally avoid seismic, acoustic and gravity-gradient noise.
The first kind ofreceivers ineludes resonant massive detectors and laser-interferorneters

of the Michelson type. In addition, other possibilities have been conceived of, although
none of these have been taken into practice: other electromagnetically coupled detectors

[53] -large microwave cavities in which wall motion driven by GWs upconverts microwave

quanta from one mode to another mode of slightly higher frequency, or where GWs inter­

act with a resonating electromagnetic field to change the mode of these quanta or even

to create them, etc.-j superfiuid interferometers and superconducting circuits based on

the direct interaction of a GW and a magnetic field in superconducting solenoids, with
the resulting current change monitored by a SQUID [117, 2] ...

For low frequencies. Doppler tracking of spacecraft and ambitious interferometers

have been proposed, as well as sorne other less successful techniques and experimental
devices, Suggestions refer to measuring the normal modes of the Earth and the Sun [15],
the vibrations of blocks of the Earth's crust [16], or to study an Earth-orbiting skyhook
consisting of two masses one on each end of a long thin cable with a spring at its centre

[18].
At frequencies below about 10-5Hz, the only sources of gravitational waves are prob­

ably stochastic background from the early Universe, and detection involves the use of

clistant astronomical boclies as asironornical deieciors of gravity waves [35, 143]: pulsar
timing or orbital motions timing of lunar or planetary or binary systems, the search of

a.nisotropies in the temperature of the cosmic microwave radiation, among other astro­

nomical observations that can be used as probes of low-frequency gravitational waves,
such as cleviations from Hubble flow of galaxies ancl elusters or peculiarities in primorclial
nucleosynthesis. Resonant-mass GW cletectors are also interesting [132].

All these planned techniques have not had, of course, equal success ancl had not been

pursuecl in a serious experimental way with the same intensity. Up to this mornent, the

only actually developecl cletectors that have been taking data for years are bars of the

resonant type, although some prototypes of earth-based laser-interferometers have been



2.2. Detection oE Gravitational Waves 29

constructed, all ofthem working at high frequencies aboye lOHz. For the following years,

it seems that these detectors will be joined respectively by spherical resonant antennee, as

yet under experimental and theoretical consideration, and space-based interferometers,
but also Doppler tracking of spacecraft is foreseen to attract an increasing interest.

2.2.1 Doppler Tracking in Space and Interferometry

One of the two most general procedures to detect gravitational radiation is based on

the analysis of the perceptible influence that gravitational waves have on the propagation
of light. The main experiments investigating this effect develop two different methods:

Doppler tracking of spacecraft and interferometry.

Doppler Tracking in Space

Doppler tracking of spacecraft are the best present gravity wave detectors working
at low frequencies at periods between a few minutes and a few hours. These devices are

thought to measure variations in hij due to a gravitational signal, which will produce
oscillations in the Doppler shift of electromagnetic radiation. This phenomenon could

be observed when an electromagnetic signal travels between two faraway points, say the

Earth and a spacecraft orbiting in the Solar System, and coincides in the same region
with a GW having a wavelength of the order of the Earth-spacecraft distance. Then,
oscillations in the Doppler shift would be produced having a relative magnitude of Ii; � h,
where the metric perturbation is computed in the TT gauge and v is the frequency of the

electromagnetic wave which in practice is controlled by an hydrogen-maser dock with a

high stability standard frequency.
The use of Doppler clata for gravity-wave searches was first proposed by Braginsky ancl

Gertsenshtein in 1967 [17] and later other author have discussed the subject. Preliminary
measurements have already been clone with the VIKING, the VOYAGER, the PIONEER

10 and 11, the GALILEO and the ULYSSES spacecraft and will be performed with the

CASSINI mission (see [28] and references therein). It is believed that with this last

project it shoulcl be possible to reach a sensitivity to bursts better than � 10-15 in the

range offrequencies between 10-2 and lO-4Hz, and in the future it is expected to be of

order � lO-lí.

However, interferometers can improve these values.
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Interferometry

Schematically, interferometers consist of one or more receivers that are operated si­

multaneously with cross-correlated outputs -the cross-correlation is always necessary to

remove spurious noise-. Each receiver works in a very similar way to an interferometer

of the Michelson type, with a system of masses and mirrors where a laser beam is sent

back to its origin and recombined after travelling a distance along two different paths

drawing the so-called arms. Oscillations in the arrn-lengths difference 8l(t) induced by
a passing GW produce oscillations in the relative phases of the recombined light which

goes to a photodetector. This equipment, by monitoring the changes in intensity, is in

effect monitoring the oscillation of ól(t) and thence the gravity-wave oscillations hij(t).
Since the 1970s, when a number of small-scale prototypes were set up using laser

interferometers with arm lengths of 3 to 40 m to measure the separation of suspended
test masses, important progress has been made. Earth-based prototypes, like those in

Glasgow and Garching [102], were considered a previous step to earth-based detectors

with kilometric arms and able to work in the frequency range of 10 - 103Hz at best

strain sensitivity h < 10-23Hz-1/2. They are now in construction: TAMA300. [71],
GE0600 [88], LIGO [1] and VIRGO [23]. At the same time, the ideas for carrying out

interferometer experiments in space began to be developed. They offer the possibility
of escaping from the low background noise that is present on Earth and besides of a

very long path length which relaxes the requirements on position measurement noise.

These experiments are thought to work in the range of 10-4 - 1H z , with expected strain

sensitivity around h < 10-23H :;-1/2. One of these projects is the ambitious LISA [34]
of the European Space Agency. It aims for low-frequency sensitivity by employing laser

interferometric distance measurements over a very long baseline of � 5 x 1061":m. Three

of these baselines form an equilateral triangle with spacecraft at each vertex in an Earth­

like orbit around the Sun.

2.2.2 Resonant Detectors 1. Present Status

The other main method. and historically the first, for the detection of gravitational
waves makes use of antennee of the resonant type.

As known, Weber was t.he first building a detector of these characteristics [136. 137].
He constructed large, heavy. solid cylindrical aluminium bars of M = 1.4 X 103 Kgr ,

length Lo = 1.5 m, first resonant frequency fl = 104s-1 and a quality factor Q about

105 (the quality factor is given by Q = 7l'flT, where T is the time that the amplitudes
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of oscillations in the bars take to drop by a factor of e -i.e., it is the decay time of the

mode- so that Q is a measure of the energy losses of the cylinders when they vibrate).
It has been this Weber's experimental philosophy and practice of using bars that has

prevailed and developed up to present day.
Bars [130] become operative when undergoing mechanical oscillations that are thought

to be potentially driven by gravitational waves, with a maximum efficiency if the antenna

is tuned so that its resonant frequency n is equal to the frequency ofthe incident wave and

its axis is perpendicular to the direction of propagation of the gravitational perturbation
-what is just a reflection of the fact that GW, like electromagnetic waves, are transverse.

A transducer converts the information about the bar's oscillations into an electrical

signal, and an amplifier and a recording system are also needed. The transducer is

formed by the coupled system of a resonator and an amplifier. It is very much lighter
than the cylinder and is designed to couple mechanically to the bar and is typically
mounted on one of its ends, producing an output voltage or current proportional to the

displacement x(t) of the bar's end from equilibrium. As a consequence of the fact that

this transducer has also a main resonant frequency very close to the fundamental one of

the detector -ideally it would be the same-, a pre-electronics mechanical magnification
of the amplitude is acquired by this particular tuning that makes the vibrational energy

to be resonantly transferred between the bar and the transducer.

By the application of the elasticity theory to the bar ends, approximating its be­

haviour to that of a one-dimensional finite medium described with a harmonic-oscillator

model to derive and solve the corresponding dynamical equations for the dispIacement
;r( t), i t is found that the response of the antenna at the frequency associated to i ts

fundamental mode can be expressed in the form

xCt) = X e-21riílt, (2.50)

so that an impinging gravitational wave will produce length changes in the cylinder.
After the first Webers experiments, other roorn-temperature resonant antennee like

GEOGRAV [21] were designed and built. However, a second generation of technically
enhanced cryogenic detectors appeared in the late seventies with the development of
the ALTAIR [14] detector. Since 1990, these cryogenic resonant antennee have been t.he

only detectors in continuous operation and data have been recorded by EXPLORER

[101, 7], ALLEGRO [93] or NIOBE [59]. More recently, the ultracryogenic AURIGA [26]
antenna at Legnaro in Padua and the NAUTILUS [9] detector of the INFN laboratories
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currently work with continuity at such low temperature as O.lK and have entered into

coincident operation for the search of wave bursts and for the measurement of stochastic

background. Finally, in Tokyo a resonant antenna of a particular shape, which has lower

natural frequencies for a given size than bars, has been planned resonating at about 60

Hz to detect gravitational waves possibly emitted by the Crab pulsar [125].

EXPERIMENT LOCATION START MASS T(K) SENSITIVITY

(Kgr)

ALLEGRO (LSU) Louisiana June 1991 2300 4 6 X10-19

AURIGA (INFN) Legnaro 1995 2300 0.1 6 XlO-19

EXPLORER (CERN) Geneva July 1990 2270 2.6 6 X10-19

NAUTILUS (INFN) Frascati 94-95 2300 0.1 6 XlO-19

NIOBE Perth June 1993 1500 6 6 X10-19

CRAB Tokyo 1991 1200 4.2 2 XlO-22

Table 2.1. Present-day cryogenic resonant bars in different world places, operating

since indicated dates. Sensitivity is given is terms 01 the mínimum detectable GW

amp/itude for a 1ms burst, except for GRA B highest sensitivity, which is attained

only [or monochromatic sources, All of them are bars, except GRAB.

The detector burst sensitivity h depends on the time duration of the event Tb and

on the noise temperature Te!! of the system, defined such that KBTe!! is the minimum

energy increase that can be detected (with a value of the signal to noise ratio, SNR.

equal to 1) [.,)1]:

L KBTeff
h�--2

TbV M

For monochromatic waves [8], the expression for h is

(2.51 )

(2.52)

where ti.; is the so-called spectral amplitude sensitivity and Tm is the duration of the

measurernent.. This idea of spectral strain amplitude also holds for stochastic background
measurements. although t.he sensitivity is also usually given by the estimation of the

energy density per unit logaritmic frequency depending on the closure density of the

Universe [132].
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Numerical results referring these calculations over current parameters' values [8, 132]
show that resonant bars have reached a burst sensitivity of the order of h � 10-19 -

corresponding to a total energy of less than 0.001 solar masses for a source in the Galactic

Center. Their spectral amplitude sensitivity would be of less than 1 x 10-21Hz-1/2 -with
such a value they can detect monochromatic waves with an amplitude of h � 2 X 10-25

for one year of integration-, and about h � 7 X 10-22Hz-1/2 for stochastic background
radiation.

In addition to bars, other new projects for resonant detectors are beginning. Most of
the groups referred aboye as well as others are considering the possibility of new resonant

detectors with spherical shape. Spherical detectors have basically two advantages with

respect to bars: it is possible to use much heavier antennee and the spherical detector
is omnidirectional. In fact , one sphere is equivalent to six bars properly oriented each

one with a mass � of the mass of the sphere [27, 29]. Estimations of the sensitivity
for a 3m sphere resonating at 1KHz and cooled down to 20mK give, for 1ms bursts,
an approximate strain of h � 3 X 10-22; the spectral amplitude sensitivity would be

of h � 7 X 10-24Hz-1/2 and the sensitivity for monochromatic waves should approach
h � 10-27; and finally, the cross-correlation of two such large detectors for one year can

give a sensitivity for stochastic background of the order of h � 10-26Hz-1/2 [108, 132].

2.2.3 Resonant Detectors II. Future Spherical Antenme

We would like to emphasize the mot.ivation for changing from bars to spherical de­
tectors. In a few words, the aim is to optimize the capabilities of resonant antennee.

One possibility for reaching this objective with present cylindrical detectors is to

control noise in bars. Detectors respond not only to the inftuence of an impinging wave

but also to any external or internal perturbation. Two important sources of such kind

are the thermal noise in the cylinders and the noise in the sensors of the readout system.
Bot.h of them combine to determine the so-called noise t.emperature of the antenn ee Tn.
It is clear that by lowering down this Tn by the use of cryogenic and ultracryogenic
techniques and by including low noise quantum-based amplifiers of the SQUID type.
the sensitivity of bars could be increased. One needs also to increase the bandwidth of

transducers and enhance their matching to the amplifiers and to the bar; it would also

be advantageous to maximize the fundamental bar mode's quality factor Q, since larger
is its value, more time the oscillation induced by a perturbation will remain increasing
the chance of detection.
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Nevertheless, there are other possibilities to improve resonant massive antennee that

are independent of the noise temperature. The cross section of the antennee could be

optimized, or one could construct many of them, each aimed in a different direction, so

every source direction and polarization, which could be determined, will be in the most

sensitive part of at least one device pattern. However, there aIready exists one more way

of making a further step that will provide all these advantages: the introduction of a

more adequate geornetry, the spherical geometry.
From a strictly theoretical point of view, a salid elastic sphere is the best resonant mass

GW antenna, obviously omnidirectional, that one can possibly think of, yet practical
difficulties have prevented their construction so faro

One requirement for practicality is the use of a multiple transducer set, since the

single sensor used for bars would be insufficient to take advantage of the perfect matching
between the structure of the Riemann tensor of a general metric and the sphere 's vibration

modes [80]. The GW radiation patterns were already presented in section 2.1.3., where

we saw how a general metric generates a tidal field of forces in elastic bodies which is

given in terms of equation (2.37) reproduced here:

f(x, t)

m=2

f(OOl(x)g(OOl(t) + L f(2m1(x)g(2ml(t),
m--?

(2.53)

where we recall that g(a1(t) are suitable combinations of the Riemann tensor components

ROiOj(t) which carry all the dynamical information on the GW's monopole (00) and

quadrupole (2m) amplitudes. On the other hand, the high degree of symmetry in a

free elastic sphere results in a simple mathematical structure of its vibration eigenmodes
divided into two families: toroidal and spheroidal modes, ordered into ascending series of

l-pole harrnonics, being their frequencies (21 + l)-fold degenerate. It happens that only
monopole, / = O. and quadrupole, / = 2, spheroidal modes can possibly be excited by an

incoming metric G\V [11] (see section 3.1. in Chapter 3), and their driven amplitudes are

directly proportional to the GW amplitudes g(a)(t) of equation (2.53), so that these are

the quantities to be determined by a GW detector on the basis of suitable measurements

of its vibrations.

Consequently, a spherical antenna is particularly well adapted to sense metric tidal

GW excitations and, when suitably monitored, can genera te knowledge on the gravi-
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tational wave amplitudes, including the associated to monopole gravitational radiation,
and on the incidence direction and wave polarizations [133, 90]. In other words, up to

this moment, it is the only existing possibility for an individual multimode device. Even

wave form information could be obtained by the construction of a set of spherical de­

tectors with decreasing sizes so that their fundamental frequencies form an ascending
series, which would constitute a wideband detector or xylophone with a further improved

sensitivity, even better than planned for interferometers in the range of frequencies over

750Hz [32].
Furthermore, they present good sensitivity not only at the first but also at the second

quadrupole harmonics [32], and besides it has a higher absorption cross section than a

cylinder [133]. The absorption cross section is the ratio of the fraction of energy EA (w)
carried by the incoming radiation that will be absorbed by the antenna, to the incoming
flux F(w) of GWs of angular frequency w impinging on it:

(2.54)

According to calculations comparing a sphere to a cylindrical bar of the same material

and same resonance frequency (for this being accomplished, cylinder's length must be

roughly equal to sphere's diameter), the sphere has a larger cross section because of

its larger mass and because it is omnidirectional, thus avoiding the severe problem of

the non-optimal orientation of the bar antennee at signal's arrival time since cylinder's
amplitude sensitivity is direction dependent, dropping as much as sin2(B) for an angle B

between the detector's axis and the incoming radiation direction.

We present a realistic'' example in table 2.2, to emphasize sorne of these relevant

results, where we see that the sphere has an energy sensitivity over 20 times that of a

cylinder at the first mode. Even more, and in contrast to bars whose fundamental mode

is the only one showing a significant cross section value, the second sphere's mode still

shows a rather large cross section, only about half the maximum for th� fundamental

mode and still over 15 times bigger than that associated to the cylinder for its first

mode. So, a spherical antenna is potentially sensitive at two frequencies, this being a

new advantage of this kind of detectors over cylindrical ones.

Cautiously, one may expect that these presumed advantages of a sphere could be lost

if the practical requirement of a clear understanding of its dynamical behaviour is not

3The quoted numbers for cylinder correspond to the existing detectors EXPLORER, NAUTILUS,
AURIGA and ALLEGRO.
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Characteristic CYLINDER SPHERE

magnitudes

Resonant frequencies (Hz) 1/1 = 910 1/1 = 910

1/2 = 1747

Dimensions (m) D= 0.6 D=3

L = 3.1

Mass (tons) M= 2.3 M =42

Cross Sections (cm2 Hz) 0"1 = 4.3 X 10-21 0"1 = 9.2 X 10-20

0"2 = 3.5 X 10-20

Other Optimal Orientation Omnidirectional

Table 2.2. Inteqrated cross sections for a standard cylinder in its first longitudinal
mode and optimal orientation and for a sphere in its two quadrupole modes.

achieved , That is why, in what follows, we are going to proceed with the development of
a rigorous theoretical model describing its performance.
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SPHERICAL ANTENNlE

As a multimode antenna, a spherical GW detector requires for motion sensing a set of

transducers attached to its surface at suitable locations. These transducers will amplify
the extremely tiny oscillations of the antenna's surface potentially induced by a passing
GW, converting them into readable information. If they are of the resonant type, their

motion couples to that of the sphere bringing about desirable advantages, such as that of

a pre-electronics amplification of the measured quantities, but also new complexities due

to the back action effects which are non negligible in the study of fine structure details of

the system, whose significance grows along with the control improvement of the various

antenna experimental parameters. Thus, a complete dynamical analysis of the coupled
device, or in other words, the resolution of the resonator problem, is essential for the

correct interpretation of the detector's readout.

In this chapter we present in full theoretical rigour this analysis. It results in an ele­

gant description of the physical perfomance of spherical resonant GW antennee, arising
from a powerful mathematical scheme founded on Green function formalism, Laplace
transformation and perturbative developments. More specifically, we will see how this

perturbative approach will provide, to any desired order of precision. the frequency spec­

trum of the antenna and the amplitude readouts in the resonators locations. Summing
up, we are going to obtain the solutions of the general equations of motion for the coupled
system formed by the perfect sphere and the set of identical resonators, when influenced

by an external force which can be a GW signal, of course, but also a calibration signal, for

example. In both cases. it will be shown that under certain specific requirements there

exist certain suitable linear combinations of the resonators' readouts which directly yield
the quadrupole amplitudes for GW inputs, or the hitting point position for calibration
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signals of the point-like impulse type. This fact is really advantageous because signal
and direction deconvolution methods can take benefit from directly working with these

arrangements called mode channels.

As a preliminary step, we shall review sorne derivations concerning the dynamical
behaviour of the free uncoupled sphere in order to recover sorne results that become

indispensable in our subsequent treatment of the resonator problem. Also, sorne remarks

about the structural components, functioning and modelling of resonators themselves

will be briefty pointed out.

3.1 The Bare Sphere

A GW antenna, spherical or not, is considered as a coupled device formed by an

elastic solid of a given shape and a set of resonators (or just one for bars). A general
outline of the way in which it works will require the study of the system as a whole.

However, this analysis is in fact constructed on the basis of the outcomes obtained from

the investigation of the dynamical behaviour of the uncoupled elastic solid constituting
the detector.

Thus, before undertaking the task of describing mathematically and physically the

complete spherical antenna, it is unavoidable to previously know sorne essential features

concerning the uncoupled sphere. So, in subsection 3.1.1 we first look at the idealized case

of a free, elastic, spherical solid exhibiting time-dependent, periodic vibrations when sub­

ject to neither external forces nor surface tractions. These motions are known as normal

modes of vibration, and provide the basis for building and understanding the induced

small deformations that the detector undergoes when influenced by a general driving
force. or more concretely by a tidal driving force f(x, t) derived from the Riemann tensor

of a metric theory of gravity. The basic features referring this situation are collected in

subsection 3.1.2.

Analyses of normal modes of vibration of elastic bodies, also of spherical shape, can

be found in classical works on elasticity theory [68, 75, 87, 78], but also in more modern

papers [4, 133, 80. 97, 95] being to our knowledge [103] the most complete survey. For

the study of the problem of how an impinging gravitational wave interacts with solid

homogeneous elastic bodies within the framework of a generalization of the classical

theory of elastic media emerging from General Relativity, see [103, 24, 25, 60, 94, 106,
122].
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We are going to summarize sorne of these results.

3.1.1 Normal Modes of Vibration

Normal modes of vibration of homogeneous, isotropic, elastic bodies with constant

density (! and Lamé coefficients .A and l' describing their elastic properties are solutions

of the homogeneous equation

(3.1)

satisfying suitable boundary conditions on the body's surface. The aboye equation is

derived from the Classical Theory of Elasticity [78], and u == u(x, t) stands for the vector

field of elastic displacements in the solido

Equation (3.1) is of the separable type for x and t; in consequence, the general form
for its homogeneous periodic solutions is also separable and expressable as the following
product of a function u(x) of the space coordinates times an exponential function of the

time coordinate:

u(x, t) = u(x) eiwt, (3.2)
where the spatial part u(x) satisfies the equation

(3.3)

as well as homogeneous boundary conditions.

Due to its vectorial character, u(x) splits up into its irrotational and divergence-free
components, or respectively longitudinal and transversal components:

u =Ut +u/, (3.4)
with

\7'Ut = O, \7XU¡ = O. (3 ..') )

Introducing this splitting into (3.3), one finds that both Ut and U¡ obey differential

equations of the Helmholtz type:

\72Ut + k2Ut = O, k2 (!W2
l'

')

\72U¡ + q'2U¡ = O, q2
(!W-

---_

-

.A + 21'

(3.6)

(3.1)
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In fact, we are dealing with an eigenvalue problem in a Hilbert space -clearly, equa­
tions (3.3), (3.6) or (3.7) are eigenvalue equations. Solutions u(x) will form a denumer­

ably infinite set, each of its components labelled u¡(x) with associated eigenfrequency
W¡. They are known as normal modes of vibration, describe the unforced oscillations of

the elastic body and are bound to satisfy the homogeneous conditions:

.x(\7u¡)n + 2J..Lu¡\7u¡ + J..Ln x (\7 x U¡) = O at r = R, (3.8)

which ensure the absence of tractions on the body's surface, with normal vector n. From

(3.3) and (3.8), these normal modes are orthogonal and admit only real eigenfrequencies.
In the case of solids with spherical symrnetry, the resolution of the former equations

in spherical coordinates (r, (J, ¡p) leads to expressions depending on the Bessel functions

of the first kind, jl(qr) [56], plus the spherical harmonics, Yim«(J, ¡p) [61]. After rather

lengthy algebra, two families of independent normal modes arise: spheroidal modes uJ (x)
showing longitudinal distortions UI as well as transverse displacements contributing to

u-, and the purely tangential toroidal modes uTex), depending only on u-. We are. not

going to give the details of the computation here, since this is a highly complicated and

sophisticated task published and presented with clarity in [103, 80]. We simply quote
here the final results:

uJ(x) == U�lm(X)
uf(x) == U;lm(X)

Anl(r)Yim «(J, ¡p)n - Bnl(r)n x iLYim «(J, ¡p)

Cnl(r)iLYim«(J, ¡p), (3.9)

where L = -ix x \7 is the angular momentumoperator and Anl(r), Bnl(r) and Cnl(r) are
complicated functions given in Appendix A, which contain the spherical Bessel functions
and give the relative amplitudes of the r-independent fields Yimn, n x iLYim and iLYlm.

As we see, 1 is an abbreviation for a multiple index {n/m}, n running from 1 to

infinity and, as usual, 1 denoting a multiple integer index from zero to infinity while 111

can t.ake any integer value from -[ to l.

In a perfect sphere each n-fixed set of / = 2 quadrupole eigenmodes -just the inter­

esting for GW interaction, along with 1 = O monopole ones- has five normal modes of

vibration distinguished only by their angular dependence. All of them are degenerate in

frequency. In [103] one can find not only an accurate derivation of the related analytical
expressions but also detailed numerical tables showing the values of the first eigenfre­
quencies for a realistic aluminium spheric prototype, according to the parameters and
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data given in [31]. We reproduce the spheroidal spectrum in Figure A.l of Appendix A.

3.1.2 Response to Specific Signals
The nice mathematical structure of the sphere oscillation normal modes shown aboye

allows its perfect coupling to that ofthe Riemann tensor of any metric theory which enters
the equations of motion as a tidal driving force f(x, t) if measurements taken in a normal

coordinate system, the locally newtonian one, are considered. Normal coordinates are

those attached to a freely falling object and valid at distances which are small compared
to the radius of curvature, what amounts to saying that the detector's size is small

compared to the wavelength of the signal, which shall always be the case for realistic

resonant detectors. Also admitting that relativistic motions will not occur at expected
GW typical frequencies (� in the range of 1 KHz), the equation of motion reads

(3.10)

Green Function Formalism

Equation (3.10) applies to any driving force. It is in fact very general, and for the

moment we are going to avoid constriction to particular cases. The only proviso will be

that f(x, t) be of the separable type, i.e., it must have the form of a product of a function
of the space variable x times a function of the time variable t, when properly written:

f(x, t) = f(x) g(t), (3.11 )

or linear combinations of similar terms.

One can formally represent the solution by the application of a Green function formal­
ism [123], which introduces a Green's operator G(x; t, t') defined by the impulse equation

[{! !22 - ¡tv2 - (..\ + ¡t) \7(\7)] G(x; t, t') = f(x) b(t - t'). (3.12)

The Green 's function is therefore a solution for the case which is -here, inhomogeneous
in space but- homogeneous in time, except at one point t = t' representing the precise
instant when the signal hits the body.

Multiplying both sides of (3.12) by g(t') and integrating over the same variable i',
it is easy to see that the formal solution to (3.10) can be written down in terms of the

Green function integral
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u(x, t) = 100 G(x; t, t') g(t') dt'. (3.13)

G(x; t, t') satisfies the initial condition

G(x; 0, t') = G(x; 0, t') = 0, (3.14)

necessary if we want that at the initial time and previously the solid be at rest and

undeformed:

u(x, O) = u(x, O) = O. (3.15)

The following matching conditions also hold

G(x; t' + 0, t') - G(x; t' - 0, t')

G(x; t' + 0, t') - G(x; t' - 0, t')

°

1
-f(x),
e

(3.16)

stating that the Green function is a regular continuous solution for t", except at the

point t = t' where it has a singularity as a consequence of the presence of the unit point

inhomogeneous time term in the right hand side of (3.12).
Since u¡(x, t), of the form in (3.2), are just the orthogonal solutions of the eigenvalue

problem associated to the homogeneous counterpart of equation (3.10), they form a

complete set whereby G(x; t, t'), as any other piecewise continuous function, can be

expanded as a superposition of eigenfunctions

G(x; i ; t') = L U¡(x) [A¡(t')e-iw1t + B¡(t')eiw1t 1
¡

t > t'. (3.17)

Obviously, G(x; t, t') is nul! in the time range t < t' for the period before the action of

the impinging force.

After determining the complex functions A¡(t') and B¡(t') from the matching condi­

tions (3.16),

A¡(t') -_l-f¡ eiw1t'
2zw¡

1 .,

---f e-,w1t
2.

¡ ,

ua¡
(3.18)B¡Ct')
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where the spatial contribution to the gravitational effective force for mode I of the sphere
lS

f¡ = � J uj(x) f(x) dx,

the final Green function can be written

(3.19)

{O t < t'
G(x; t, t') = 1LL/ w� u/ex) sin w/(t - t') t > t',

Consequently, the formal solution (3.13) to the non-homogeneous equation (3.10) is

(3.20)

the orthogonal expansion

",f¡u(x, t) = L.J
- u/ex) g/(t),

/
W¡

(3.21)

with

g/(t) = lat g(t') sinw¡(t - t') dt'. (3.22)

These expressions are valid for a solid of any shape, whenever its normal modes of

vibration are u/ex), when driven by any separable force like (3.11). We must begin to

get down to cases.

Interaction with a Tidal Driving Force

If f(x, t) is in fact a tidal driving force associated to an incoming GW, it reads

f'(x, t)

m=2

feOO)(x)glOO)(t) + L fe2m)(x)gC2ml(t),
m=-2

(3.23)

as we saw in section 2.1.3 of chapter 2, being geOO)(t) and ge2m)(t) the monopole and the

quadrupole amplitudes of the Riemann tensor carrying al! the dynamical GW informa­

tion, while feOO) and fe2m) were pure tidal form factors.

In this case. and for spherical!y shaped solids, the solution (3.21) is found to be a

combination of normal modes Unlm(X) in equation (3.9):
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u(x, t)
a

(3.24)

with

(3.25)

as in (3.22), and

f��l = � J Un/m(x)*f(a)(x) dx. (3.26)

as in (3.19).
Taking into account the explicit expressions (2.38) for f(a)(x) in section 2.1.3 of

Chapter 2, calculations of the spatial gravitational effective forces f��),. for a sphere of

radius R and mass M give [80]

¡(a),rn/m o Va,nlm

- � ÓIOÓmO lR 1'3Ano(1')ed1'

anO( R)ólO ÓmO

- 2�Ó/2Ómml lR 1,3 [An2(1') + 3Bn2(1')] pdr

an2(R)Ó/2Ómml

(3.27)

¡(00),5n/m

¡(2m),Snlm'

(3.28)

for toroidal, superscript T. and spheroidal, superscript S, eigenmodes.
Therefore, the final expression for the dynamical response of spberically shaped per­

fect. elastic bodies when excited by incoming GWs [80, 103] is:

� 00

[m-2 1ano(R)" (00) an2(R)
-

S (2m)U(X, t) = L -,-u�OO(X)gnO (t) +L -- L Un2m(X)gn2 (t)
n=l

WnO
n cc L Wn2

m=-2

(3.29)

As we can see, it remarkably happens tbat spheres become particularly convenient

GW observatories, since only monopole (1 = O) and quadrupole (1 = 2) spheroidal modes
can be excited by any impinging GW, and their amplitudes are directly proportional to
the monopole and quadrupole wave amplitudes g(a)(t) of equation (3.24).
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Interaction with a Calibration Signal

Taking into account results from (3.10) to (3.22) in the preceding subsection and

proceeding analogously, it is now very easy to find the response of the bare sphere to a

calibration signal consisting in an impulse of intensity fo and delivered perpendicular to

the sphere's surface at point Xo and time to = o:

fcalibration(x, t) = fo Ó(3)(x - xo) ó(t). (3.30)

We quote the results associated to (3.19), (3.21) and (3.22) in this case. A trivial

calculation yields

gl == gnlm = sin Wnl t "1m, (3.31)

and

U(x, t) =¿ ; u�lm(xO) Unlm(X) sinwnlt
nlm

(3.32)

is the dynamical response of the uncoupled detector when driven by an impulse calibra­

tion signal [80). Clearly, it excites all of the sphere's vibration eigenmodes except those

perpendicular to fo, with amplitudes which are inversely proportional to the mode's fre­

quency, what is seen to be a rather general result in the theory of sound waves in isotropic
elastic solids.

3.2 The Resonators

The previous results not only show that the uncoupled sphere can be used as the core

of a GW antenna, but also that its particular geometry offers advantageous detection

capabilities. However, for completeness and practicality, a readout device is required for

motion sensing and data acquisition.
Motion sensors in current bar antennee are made up of two essential separate parts:

a resonator fastened to one end of the detector and interacting only with the vector

component of the antenna motion normal to the surface on which they are mounted 1,
and an electromagnetic amplifier.

1 Interaction with transverse components has also been under theoretical consideration [144J.
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The last technological advances have led to the use of transducers of the resonant

type and d.c. SQUIDs, a quantum-effect based electromagnetic amplifier. A resonant

transducer [113, 114, 105, 6, 5] consists in a small, relative to the detector, mechanical

device. To get the idea of how small it is in fact, we give here the data of a presently

working cryogenic cylindrical antenna: the Explorer detector [7, 101] installed at CERN.

It consists on an aluminium bar of 2270Kgr, in contrast to the light O.4Kgr in weight
of the only resonator attached to its surface, so that their ratio is

=
mtran.ducer

'" 1 76 10-4'1- M
"'. x .

bar
(3.33)

Such resonator is usually a mushroom-shaped solid, designed to mechanically couple
to the cylinder: it possesses a resonance frequency, associated to one mode of its flexural

vibrations, ideally equal to the main resonance frequency ofthe cylinder. The bar surface

motion excites this mode causing a back-and-forth resonant energy transfer between the

resonator and the bar, which results in turn in amplified oscillations of the smaller body
when compared to the bar ones, the amplification factor depending on TI.

This effect of pre-electronics mechanical amplification -small motions of the large an­

tenna turn into large motions of the small resonator- is not the only purpose of resonant

transducers. The second task they carry out consists in efficiently turning the cylin­
der vibrations into electric voltages and currents, for instance by the use of capacitors/
(Explorer). The transducer has a disk-like part that acts as a constitutive component
of a two-plate capacitor connected to other electric elements, so that distances are first

turned into volt.ages and then into currents, ultimately induced by the relative motion

bet.ween the transducer and the bar end.

Those electric signals are finally fed into a d.c. SQUID -the d.c, Superconducting
QUantum Interference Device [22] is nowadays the most sensitive detector of magnetic
flux and capable of transforming it into voltages afterwards- for electronics amplification.

Going back to spherical antennee, it seems natural to restrict our considerations to

resonant transducers like the one described in this section, so that one of their own

normal modes could be tuned to be resonant with one frequency of the bare sphere 's

spectrum and they could be considered to move normal to the surface to which they are

linked, that is, to move radially.
It is clear that, also, we have to assurne a simplified model for calculations, and the

first step is to leave aside the electric parts of resonators and just restrict to the mechanical

2lnductive transducers (Allegro) or microwave transducers (Niobe) are also cornrnonly used.
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m M

Figure 3.1. Linear spring cotlpling model for a resonator attached to the sphere '8

su.rface. For claríty. dimensions in thís sketch are out o] proportion to reality.

Actually, the resonator is much smaller than the sphere, over an approximate

[actor in mass o] the order of thousands,

ones. Then, we shall treat them as point masses attached to one end of a linear spring,
whose other end is rigidly linked to the sphere at defined positions. Therefore, each

resonator in out' model will obey a one-dimensional harmonic oscillator equation.

3.3 Spherical Detectors and the Resonator Problem

.\'ow we a.re ready to commence the central part of our work undertaking the task

of understanding the dynamics of spherical GW antennee, We are going to study in full

theoretical rigor the problem of the coupled motion of a solid elastic perfect sphere and

a set of resona.tors attached to its surface at arbitrary locations [82, 84, 85, 86).
For this purpose. we develop a mathematical scheme that transforms the differential

equations of motion associated to the device, as usual derived from elasticity theory,
into an a.lgebraic system in the La.pla.ce domain through the application of the powerful
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Green function formalism method and Laplace transformation. Finally, by using theory
of singularities and calculus of residues for functions of complex variables, we find the

frequency spectrum of the system, the resonators' readouts, and when existing their

advantageous linear combinations called mode channels, as ascending series in powers of

the small coupling constant 1], the ratio of the resonators' average mass to the sphere's

large mass.

This procedure lead to predictions of aIl the major system characteristics and response

to different incoming signals -calibrational inputs or gravitational waves-, in principie
with arbitrary mathematical precision, and, of great importance, lay down a sound ba­

sis for further considerations and more realistic practical instances developed in next

chapters.

3.3.1 GRD Equations for the Coupled Resonant System

We shall assume that our detector is an elastic isotropic solid perfect sphere of mass

M, radius R, uniform density (! and Lamé coefficients A and 1-'. It behaves in accordance

with the Classical Theory of Elasticity, since we recall that relativistic motions in the

extremely small displacements that the particles of the elastic body undergo as a result

of a impinging gravitational wave at typical frequencies in the range of 1 KHz are not

expected.
In these circumstances, equation (3.10) is valid

(3.34)

being u == u(x, t) as usual the field of elastic displacements in the sphere, and f(x, t) in
this case the density of all non-inertial forces acting on it.

As already discussed, this sphere needs a set of J electromechanical transducers of

masses m.a == T/aM much lighter than the sphere's (T/a�l), and resonance frequencies na,

being a the subscript that denotes a given resonator and so a = 1, ... , J. We restrict

our considerations to radial motion resonators and quantitatively model them as point
masses atta.ched to one end of a linear spring whose other end is rigidly linked to the

sphere a.t locations Xa. So, the quantities describing resonators motion will be their

radial displacements Za (t) relative to the sphere's undeformed surface, which will obey
the simplest classical Hookes law, with a spring deformation given by

(3.35 )
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being na == xa/R the outward pointing normal at the a-th resonator's attachement point
and consequently nau(xa, t) == ua(t) the radial deformation of the sphere's surface at Xa.

Thus, the dynamical behaviour of the coupled system is given by the set of 1 + J

differential equations

a2U
º fJt2

- f..l\l2u - (,X + ¡.¡.) \l(\l·u)

za(t) + n� [za(t) - ua(t))

f(x, t)

(a(t) a=l, ... ,J.

(3.36)

(3.37)

with (a(t) possible external forces affecting the resonators.

External Forces on the Sphere

Equation (3.36) describes, as (3.10), the sphere's motion and contains, in its left hand

side, the inertia due to the internal strain forces, whereas f(x, t) in its right hand side

represents all the externa/ density forces acting on the solido

f'(x, t) expediently split into a component due to the resonators back action and an

externa! action proper, be it a GW signa! or a ca!ibration signa!, for examp!e. Thus,

f(x, t) = fre.onators(x, t) + fexternat(x, t) (3.38 )

Since we are making the hypothesis that the resonators are point masses behaving
as one-dimensional harmonic oscillators following Hcok's law and moving radially, their
back action on the sphere will be perpendicular to its surface and will have the locations

of resonators
'

attachement positions as direct hit points:

J

fresonat01's(X, t) = L man�ó(3)(x - xa) [za(t) - ua(t)) na
a=l

(3.39)

where Ó(3) is the three dimensional Dirac density function. This term offorce concentrates

all the informat.ion about the interaction between sphere and resonators ando as we

shall see, ir. causes a certain level of intercommunication between different vibration

eigenmodes of the sphere and is responsible for the fine structure characteristics of the

system.

On the other hand, external forces will be par exce//ence gravitational wave signals
described as tidal driving forces of the separable type in section 2.1.2. of chapter 2:
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faw(x,t)

m=2

f(ool(x)g(ool(t) + L f(2ml(x)gC2ml(t),
m=-2

(3.40)

where the explicit form of the several components is given there.

Besides, we shall consider in this work, although as a side subject, the response of the

system to a particular calibration signa!. We recall it consists in an impulse of intensity

fa and delivered perpendicular to the sphere's surface at point xn and time to = O:

fcalibration(X, t) == f08(3l(x - xo)8(t). (3.41)

External forces for resonators

Resonators themselves could also be affected by external forces (a(t).
If a GW sweeps the antenna, they will be driven by a tidal acceleration (GW,a(t)

relative to the sphere's centre, as well as the spherical detector itself. As always, it can
be derived from the geodesic deviation equation (2.26):

fj(t)
-- == ROiOj(t) Xi ,

m

and since resonators only move radially,

(3.42)

.
_ fj(t)�GW,a(t) ==

--;:;;- na,j
= ROiOj Rna,i na,j a = 1, ... , J. (3.43)

Like in the case of extended bodies, it may now be used the monopole-quadrupole
decomposition of the electric components of the Riemann tensor:

ROiOj(t) == L E&m) gClmJ(t),
1=0 and 2
m=-I, ... ,I

(3.44)

where we recall E(lm) verifv
1) •

l==0,2, m==-l, ... ,l, (3.45)

so that
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(mv,a(t) ( ¿ E�m) g(lm) (t)) Xa,i na,j
1=0 and 2

m=-l, ... ,l

R ¿ Yím(na)ge1m)(t), a = 1, ... , J.

1=0 and 2
m=-l, ... ,l

(3.46)

In return, we are just going to consider impulse calibration signals always delivered

just on the spheres surface, so not having a direct effect on the resonators, and hence

(calibration ,a (t) = O a = 1, ... ,J. (3.47)

GRD Equations

Our equations for the general resonant detector, named GRD equations, can be rewrit­

ten as:

J

z:::: man�ó(3)(x - xa) [za(t) - ua(t)] na
a=l

+fexternal(X, t) (3.48)

(3.49)ia(t) + n� [za(t) - ua(t)] (a(t) a= 1, ... ,J

where fexternal(X. t) will be given by either (3.40) or (3.41) as the case may be, and

likewise (a(t) respectively by (3.46) or (3.47).
At this point, it is important to emphasize that although these equations have been

reported as those for the sphere plus resonators, in fact they are completely general, valid
for any solid body and boundary conditions, and so valid for any detector shape and also

for any configuration of resonant transducers.

3.3.2 Mathematical Framework

The remainder of this chapter will be concerned with finding the solutions to the GRD

equations of motion, but before proceeding to make further hypotheses utterly necessary

to completely solve them, we shall deal first with the procedure's general guidelines
that wil! establish the suitable mathematical framework. This procedure comes in two

essential stages:
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• the use of the Creen function theory to obtain from the GRD equations the corre­

sponding integro-differential system;

• the application of Laplace transforme to reduce the former system to a linear one

of algebraic equations.

Green Function Formalism

We first 100k at equation (3.48). The general procedure of subsection 3.2.1. is also

applicable to it, which indeed is a particular version of (3.10) where f(x, t) can be con­

sidered as the back action of resonators, fresonators, plus a component due to external

forces, fexterna/. It is always the case that all terms in f(x, t) are of the separable type:

(a) ( )gre.onators t Za(t) - ua(t) a = 1, ... , J,

(3.50)

(3.51 )

and generally for fexternal

fexterna/(x, t) =L f(a)(x)g(a)(t).
a

(3.52)

In these circumstances, we recall that the formal solution reads

u(x,t)

/al() J f(a)()"'"" "'"" ¡,ext X
U ( ) (a) (t) + "'"" "'"" ¡,re. X

() (a) (t)Z:: L.....t ¡ X g¡ ext L.....t L.....t U¡ X g¡ res
a ¡.J.)¡ 'a=l ¡

W¡ ,

J

U X t) "'"" U¡(x) "'"" (a) (a)ext(, + e:
--

e: Ji reo (x) g¡ res(t),
I

W¡ a=l'
,

(3.53 )

where ext stands for externa/. res stands for resonaiors, and Uexterna/(x, t) is the sphere's
response to an external force in the absence ofresonators, either (3.29) for impinging GWs

01' (3.32) for calibration signa.is.
Substituting
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(aJ ()gj,res t lat [za(t') - ua(t')] sinw¡(t - t') dt'

a = 1, ... ,J, (3.54)

we obtain

u(x, t) = uer.t(x, t)+

L¡ U�\X) L�=l �n�nauj(xa) ¡; [za(t')-ua(t')] sinw¡(t-t') di', (3.5.5)

We now specify x = x.,, since the purpose of attaching transducers to the sphere 's

surface is precisely to sense the sphere motion by sampling at a finite number ofpositions.

Besides, by multiplying the both sides of expression (3.55) by na, one finds an integral

equation equivalent to (3.48):

ua(t) (a) ( )Uexternal t
J t

+L 7Jb 1 Kab(t - t') [Zb(t') - Ub(t')] dt'.
b=l O

(3.56)

Ua(t) is the scalar function nauexternal(Xa, t), and the Kernel matrix Kab stands for

the following weighted sum of diadic products of the perfect sphere wavefunctions:

(3.57)

Finally, 1Jb are the ratios of the resonators' mass to that of the sphere

mb
1}b = M

b = 1, ... , J, (3.58)

which actually are small dimensionless parameters since mb << Msphe"e in' a real device.

This last term in (3.56) is introduced by the small parameter 1)b -what will allow

perturbative developments as we shall see-, and is commanded by the Kernel matrix

Kab correla.ting all of the sphere's spheroidal eigenmodes. Therefore. attachement of res­
onators to the free sphere causes a cross-comrnunication between modes so that, although
initially only sorne of t.hem could be excited by an incoming signal -Iike a GW that just
couple to monopole and quadrupole spheroidal mcdes-, energy will be transferred frorn

these into the others creating a flux between the different possible vibration states.
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Laplace Transformations

Formula (3.56) describing sphere 's deformations mathematically corresponds to an

integra.l equation of the Volterra type [131]. The equations belonging to this category

accept a series solution in ascending powers of the small coupling constants 1]b by iterative

subsitutions of U6(t) into the kernel integral. However, in this particular case this is not

useful because this integral equation forms part of a coupled set, now transformed into

the integro-differential system

ua(t)
J t

u�:�ernal(t) +L 1]6
f Ka6(t - tI) [Z6(t') - U6(t')] dt'

b=1 Jo
-n� [Za(t) - ua(t)] + (a(t) a = 1, ... , J,

(3.59 )

Za(t) (3.60)

containing the differential equa.tions (3.60) that govern the behaviour of the dynamical
contribution of Zb(t) in (3.59).

Nevertheless, there is another general mathematical procedure of resolution based in

the application of Laplace transforms (see Appendix B), which will convert the former

integro-differential system into a set of coupled algebraic equations:

Ua(S)
J

ú�:�(s) +L 1)6kab(s) [Z6(S) - Ub(S)] (3.61)
6=1

-n� [za(S) - ua(s)] + (a(s). (3.62)

Under the assumption that the system is at rest and undeformed before the instant of

time t = O.

u(x, O) = út x, O) = za(O) = za(O) = 0, (3.63 )

we write

Úa(S)
J

.

u�:�ernal(S) +L 1]6Í<a6(S) [Z6(S) - U6(S)] (3.64)
6=1

-n� [:<](s) - ua(s)] + (a(s) a = 1, ... , J. (3.65)

At this point, we make use of the fact that the only measurable quantities are the

resonators elastic deformations qa(t). related to the equations variables through
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qa(t) == za(t) - ua(t). (3.66)

Therefore, these are the only quantities of our concern, so that the final step before

proceeding to definitely solve the set of equations (3.64)-(3.65) is to make a further

transformation and express it as a function of qa(t) rather than za(t) or ua(t). After

sorne algebraic rearrangement, it is readily seen that the Laplace transform of qa(t)
verifies

a = 1, ... ,J, (3.67)

where Mab(S) is the following matrix in the Laplace domain:

Mab == [bab + 7]b s2 : O� Kab(S)] ,

and the Laplace transforms of Ua,external and Kab read

(3.68)

LL 82 �w2ff��ternal [naU¡(Xa)lg��;ernal(S)
ex ¡ ¡

L 2
O�

2 [nbuj(Xb)] [naU¡(Xa)].
¡

8 +W¡

Thus, the process of transformation of the initial differential GRD system has ef-

Ua,external(S} (3.69)

(3.70)

fectively led to a set of just J a/gebraic equations (3.67), what constitutes a significant
sirnplification of the original problem.

Now, it is possible to solve (3.67) for the unknowns qa(8) in the Laplace domain, and
then perform inverse transforrns to revert to time domain (see again Appendix B). This
can be done by computing the Fourier-Mellin integral through the residue theorem, for
which it is necessary to determine the residues at the poles of qa(s)est.

By inspection of (3.67) and (3.68), it is seen that the poles correspond to those values

of s for which the matrix Mab is singular, or equivalently non-invertible, since. contrary
to appearances at first sight, there are no poles at S2 = _02 or at s2 = -W�I because

divergences compensare each other at those points when qa(S) is isolated in (3.67).
Thus, the only poles correspond to the zeroes of the determinant:

(3.71)
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As one can find in [58], the imaginary parts of these poles give the system character­

istic frequencies or resonances, and residues at such poles determine the specific weight
of the respectively associated modes in the system response to a given external agent.

3.4 The Ideal Approximation

The generality of assumptions in last section make the algebraic GRD equations (3.67)
applicable to any shaped detector coupled to a set of J resonators in arbitrary locations

and which can differ in mass and resonance frequency.

This freedom is highly desirable since then one can evaluate the response of differently
shaped antennre to any external separable force acting on them by following the given
procedure's guidelines.

For instance, one could study cylindrical bar detectors, already constructed and cur­

rently working and generating data. It would be only necessary to know their normal

modes of vibration and associated eigenfrequencies, and restrict to just one transducer

with resonance frequency in coincidence with the most suitable frequency of the bar's

spectrum. The results obtained from our scheme could in fact corroborate the conclusions

drawn from other analyses or provide fine structure details.

But indeed our model has been thought up with a more interesting and complicated
purpose: that of finding the dynamical performance of spherical antennee through a non

oversimplified and rigorous development.
We begin with the simplest, most idealized case, of a perfect sphere with perfectly

tuned identical resonators. This situation corresponds to the acceptance of four further

hypotheses concerning the set (3.67) for the resonators' elastic deformations and the

characteristic frequencies.

The first assumption is obvious: the detector is perfectly spherically shaped. It means
that its modes of vibration, when uncoupled, as well as its response to external forces,
are those of section 3.1. There, we saw that this specific solid has two different families

of eigenmodes, toroidal and spheroidal, with eigenfrequencies that can be classified as

I-pole series of ascending harmonics, each frequency in a given series being (21 + 1 )-fold
degenerate. Since GWs exclusively couple to spheroidal eigenmodes, result.s (3.27)-(3.28),
and the resonators are theoretically sensitive to just radial deformations of the sphere,
only spheroidal modes will be relevant:
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Unlm(X) == U�lm(X) = Anl(r)Yim(O, If')n - Bnl(r)n x iLYim(O, If'), (3.72)

with radial projections

n Unlm(X) = Anl(r))'ím(O, If'), (3.73)

which introduced into the kernel matrix give

(3.74)

Degeneracy of eigefrequencies enables direct summation over the degeneracy index

m. Spherical harmonics obey the summation formula

I
*

2/ + 1
L Yrm(Ob,lf'b))'ím(Oa,<Pa) = --¡;;:-PI(nbna)
m=-I

a, b = 1, ... , J, (3.75 )

where nb and na are unit vectors associated to directions (Oh, <Pb) and (Oa, <Pa) respectively,
and PI is the Legendre polynomial

1 di I IPI(Z) = 21[! dzl (z
- 1) . (3.76)

From these results, we can construct a J x J symmetric matrix PI for each / having as

element ab the Legendre polynomial or order / PI(nanb) (see Appendix C). lt is interesting
to note that matrix PI is very similar to a so-called Toeplitz matrix -that associated to

a hierarchy for the autocorrelation functions of, for instance, auto-regressive models in

the theory of time series-. In fact, the structure of PI stands for a generalization of the

structure of a Toeplitz matrix, and for some particular resonator layouts -as the PHCA

or the TIGA proposals discussed in next chapter- the first strictly matches the second.

Hence, the common sense understanding of PI as a matrix keeping the information about

the correlations beiuieen pairs of resonators is further supported by this characterization.

Going back to (3.74), writing

(ni) _

21 + 1 2
Xab = --¡;;:-IAnl(R)1 PI(nanb)

we have the condensed form

(3.77)

te () L Q� (ni)
\. ab S =

2 � \' ab
S +W-

ni ni
(3.78)
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for the kernel matrix of a perfect sphere.
Our next hypothesis is that all the resonators are identical:

mb m::::} r¡b = r¡ \/ b = 1, ... , J

\/b = 1, ... , J. (3.79)

We also make use of the idea that transducers are resonators mechanically designed
to have a resonance frequency ideally equal to one of the eigenfrequencies of the sphere's

spectrurrr':

(3.80)

Equation (3.67) is now

J •

"". s2. (a(s)
L.J Mab qb(s) = -

s2 + sV Ua,external(s) + S2 + n2 '

b=l

a = 1, ... ,J (3.81)

with

-"fab == [8ab + r¡ � (s2 + n�;�: +w;l) x��l)l '

or distinguishing the :VL term in the sum:

(3.82)

(3.83)

And finally, we assume that WNL is an isolated resotuince frequency: there is no other

frequency ..vn 1 of the free sphere's spectrum in its neighbourhood. What do we mean by
a neighbourhood of _.;NL

0 We advance that we already have a good indication in the

parametrization assumed in general for ideality departures studied in Chapter 5, in this

case

2 2 l

Wnl = wNL(1+rnlr¡2), (3.84)
3At t.his stage, this eigenfrequency WN L is not fixed. We maintain its generic subindexes for the time

being to consider any possibility, although for GWs detection only L = O and L = 2 will be convenient,
with N tuned to the first , N = 1, or even the second harmonic, N = 2 (see section 3.4.2.).
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which here reflects the fact that one of the uncoupled sphere's frequencies, Wnl, is at a

distance

rnl lo
wnl - wNL = WNL - TI'2

(3.85)

from the resonance frequency WNL.

This distance can be calculated for any Wnl of the free sphere spectrum, whereby
the dimensionless parameter Tril must be bounded for (3.84) to be meaningful: it seems
clear that if rnl is too large Wnl will be placed at a sufficient distance from WNL for not

interfering in the resonance but, in return, if rnl is of order 1 or at least significantly larger
than r¡t, then the order r¡t is fully maintained in (3.84) and the dynamical behaviour of

the system could be affected by the nearness. Eventually, if rnl is too smalI, of order T}t
itself or smaller, then the device wiII not be able to discriminate between Wnl and WNL

for responses at leading order.

Therefore, we imagine that rnl is of order appreciably larger than 1, so that Wnl, \:Inl =F
NL, does not interfere in the resonance. In practice this is not always the case as we will

see in section 5.2 of Chapter 5, but for the moment we limit to this most ideal situation.

3.4.1 Frequency Spectrum

First Order Calculations

Perturbation methods are particularly appropiate when the system under considera­

tion closely resembles one which is exactly solvable, or whenever one kows the solution

for the unpert.urbed problem, here the free sphere problem. In our case, one can con­

sider the coupling of resonators as a source of disturbance, so that it becomes possible
to develop t.he interesting quantities describing the change in the physical situation as a

series in the small dimensionless coupling constant T},

111resonators
'17-=

u.;-:
which precisely is the parameter introducing the term of interact.ion between resonat.ors

« 1, (3.86 )

and sphere in the equations of motion.

Froquency Spectrum

For the frequencies, the interesting quantities which have to be developed as series in

powers of T} a.re the possible roots of the determinant �(s) giving the system resonances.
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They are obtained from:

) _ [ 8202 (NL) '"' 82[22 (ni)] O�(8 = det bab + TI (82 + 02)2 Xab + TI nl�L (82 + 02)(82 + W�I) Xab =.

(3.87)
The first remark about this determinant is that bab is obviously a regular matrix;

a second remark is that we can theoretically assign an arbitrarily small value to TI.

Therefore, solutions of equat.ion (3.87) are required to be such that the denominators in

the fractions are proportional to TI so as to cancel the already appearing as multiplicative
factors to guarantee the vanishing of �(8). Due to the fact that it is necessary and just
sufficient only one of the two denominators being proportional to TI, we distinguish two

categories ofroots: roots which are close to 8 = ±iO = ±iwNL and roots which are close

to 8 = ±iWnl, ni f. NL.

For roots near O, it is clear that they must be of the form

? 2 1

sií=-O (1+Xl.r¡2+Xlr¡+ ... ),2
(3.88)

whereas roots near Wnl, ni f. NL must be expressed as

2
_

2 ( b(nl) (ni) 2 )8nl - -Wnl 1 + 1 TI + b2 TI .... (3.89)

Roots near n: The expansion (3.88) is in powers of r¡&. The reason is that, as

explained , for arbitrarily small values of r¡ the second term in �(8),

(3.90)

is required to compete with the regular matrix bab, whence the denominator (82 + 02)2
must be proportional to TI so as to cancel the one already appearing.

The coefficients X �. \ 1.·.. can be calculated recursively. Substituting (3.88) into

(3.87).

�(8)

= O,
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(3.91)

and operating we write down ¿les) as

(NL) 02 (ni»)�+ " Xab +
X2 L.... w2 - 02 X'� nlf:.NL ni ,

((
')

)Xi .. '0
+ TI Xl - 3-2 + 2-.X� X,

02 (ni») 1Xab _

2 02
+ ...

- O.
Wnl -

X�
(3.92)

From this expression it is readily seen that X.!. is a solution to the algebraic equation
2

for the lowest order, Tlo, in the development of the determinant:

del [6•• - Xl x�L)l � O

This shows that xl are the J eigenvalues of the J x J square symmetric matrix x��L),
2

and from (3.77) they have the form

(3.93)

,2 =
2/+ llA (RweX� 47r

NL a' (3.94)

where �� are the .] positive or null eigenvalues of the PL matrix. At this point, it is

worth noting that the number of positive non-null eigenvalues �� is at most 2L + 1,

independently of the number J of resonators (see Appendix C), and so there actually
will exist at most 2L + 1 different pairs of poles near 82 = _02 at order TI�. The poles
can be written

a = 1, ... , J, (3.95 )

their imaginary parts giving the system resonant frequencies, the .] syrnmetric pairs
around o:

a = 1, .... J (3.96 )

This result is analagous to that for bars [6], for which the attachment of one resonator

causes the main resonance frequency of the bar to split up into a symmetric pair a.round
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the original value, the amount of relative shift being proportional to 7]!. It is precisely
controlled by the geometry dependent eigenvalues �a.

Roots near wnl' ni -# NL: For the rest of possible roots close to other eigenfrequen­
cies Wnl different from [2 = WNL, i.e., that of non-tuned modes, an analogous analysis
leads to forms in (3.89),

2
_

2 ( b(nl) b(nl) 2 )5nl - -wnl 1 + 1 7] + 2 7]..., (3.97)

since in this case it is the term of the sum in (3.87)

52[22 (ni)
7] (52 + [22)(52 +W;I) Xab

that has to compete with the identity matrix Óab through the denominator (52 + W;I)
being of arder 7]. The finding of the coefficients b; is absolutely analogous to that of the

(3.98)

coefficients Xi. Once more, the substitution of (3.97) into equation (3.87),

�(5) [ ( b(nl)) 02 (ni)
= det Ó

1 + 1 7] + . . . H Xab_
- ab +

b��1) w�, (ni) 02 - w�1 b1(1 + -;TnIí7] + ... )( 1 -

!V-w2 b1 7] + ... )
b1 nI

7]
(1 b(nl) ) 02 ')

+ 1 7] + . . . �¿ W;'I

(1- 2!Vw_��2 b�nl)7] + ... ) ([22 - W�I)2
nI

(NL)
Xab -

[22w�1 ;(nlll)]_([22 _ W2 )(W2 _ W2 ) Xab - O,
ni n'l' ni

(3.99)
yields after sorne algebraic manipulation

.. 2 ')
H W;'I (NL)

([22 - W;;'I)2 Xab (3.100)

Therefore, we find that binl) is obtained from the lowest order equation

[[22 w2

]det
-

ni b(nl) Ó _

(nI) - O
Sv 1 ab Xab -, (3.101)
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which is again an eigenvalue equation with J solutions representing downshifts for fre­

quencies aboye O and upshifts if they are below, due to the fact that the eigenvalues
of X��l) are always positive or null (Appendix C), and so the sign of bln1) is that of

(02 - W�l)'

Figure 3.2. Each thin line represents a single frequency w;,¡ of the free sphere,
uihereas thick linee ¡.t2 denote a multiple set of the coupled sphere spectrum. For

the tuning [requencq [22 = w¡_'L, the splitting happens in J pairs symmetrically
distributed ar'ound it, For each of the reamining, the new multiplet contains only
J [requencies, all of them doumshijted in relation to the initial one if they are

above [22, 01' upsliijted when below.

Hence, we see that the presence of resonators indeed affects the whole spectrum
of the free sphere being responsible for the appearance of J doublets of frequencies
symmetrically distributed around the tuning frequency O, and J shifted singlets for

the original non-tuned ones uJn/, the splitting always in accordance with the number of

resonators. Particularly, at order r¡! the accordance is in fact with the number 2L + 1
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of non-null eigenvalues ��.
With respect to higher order corrections, they are both interesting and necessary for

better accuracy, but they show complex characteristics and so will be treated with special
attention in future work.

3.4.2 System Response to Specific Signals

Amplitudes

The calculation of the amplitudes of the excited modes corresponding to the frequen­
cies that we have just estimated is an extremely laborious task, although the way to

proceed is relatively simple and clear.

In fact, we have already solved the problem in the Laplace domain, since it is formally
trivial to isolate qa(s) in (3.81):

J 2

( A())A -1 S
A (b S

qa(S) = - � Mab S2 + Q2 Ub,external(S) -

�
a = 1, ... ,J. (3.102)

However, the final aim would be to find it in the time domain. For doing that, it is

necessary to perform its inverse Laplace transforrn by computing its associated Bromwich

integral (Appendix B)

(3.103)

through the residue theorem

qa(t) = L residues at the poles 01 estqa(s) zn the complex s - plane, (3.104)

what amounts to be a quite bothersome work.

We recal! that residues must be ca.lculated at poles of e·tqa(s), and they happen to

be exclusively al. the already calculated zeros of the determinant �(s) of matrix Mab,
those of equations (3.88) and (3.89). We advance that these poles are simple poles and

then their associated residues are simply calculated as the limits

lim (s - Spole) X estqa(s).
3-Spole

(3.105)
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These responses can not be obtained in an analytic formo But, like for the frequencies,
one can fall back on perturbative expansions so that the result can be written as a series

function in ascending powers of the small parameter r¡. However, the nature of the

calculations would make it impossible to advance an a priori structure of the development
specifying, for instance, which would be its leading order. It would rather be obtained a

posteriori.
For further work, it is necessary to specify both the tuning frequency WNL and the

expressions of Ub,external(S) and (b(S) in (3.102). This is what we are going to do in

next subsections, where we analyse the response of the antenna to two different possible
signals: the major topic of gravitational waves and the also interesting case of calibration

inputs.

System Response to a Gravitational Wave

For a gravitational wave we saw, when studying the case of the isolated sphere, that
the system response was

Uext(X. t)

00

¿ L anl U�lm(X)g�;n)(t),
1=0 and 2 n=l

Wnl

m=-I, ... ,l

(3.106)

and in the paragraph devoted to describe the possible external forces that could act on

the resonators

(GW.a(t) = R ¿ tím(na)g(lmJ(t).
1=0 and 2
m=-I, ...• I

a=l, ... ,J. (3.107)

From them. and making use of the convolution theorem (Appendix B), we can fine!

the Laplace transforms:

Úext,b(S) llb . Úext(Xb, s)

L Loo anIAnl(R) Yi ( ) -(lm)( )2 � 1m n, g S
S +W-

.

1=0 and 2 n=l ni

m=-/, ... .l

(3.108)
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(GW,b(S) R L l'ím(nb)g(1m) (s)
1=0 and 2
m=-I, ... ,I

b = 1, ... ,J.

(3.109)

Once these expressions have been inserted into the general form (3.102) for qa(s),

J

[202
202 ]-1'" S H (NL) '" S H (ni)

-

L...; Dab + TI
(s2 + f22)2 Xab + TI L...; (s2 + f22)(s2 + W2 ) Xab X

b=l nl"tNL ni

'" (� anlAnl(R)
_ R) Yi ( )'(Im)()2 02 L...; L...; 2 + 221m

ns 9 S ,

S + H
1=0 and 2 n=l

S Wnl S
(3.110)X

m=-I ..... I

it is advisable to look for further simplifications before entering residue calculation to

find it in the time domain.

The amplitudes qa(s) has been expressed in such a way that makes explicit its sum­

mation structure, so that we can write it in a more compact form:

qa(S) = L J¡�lm)(s)g(lm)(s)
1=0 and 2
m=-l, ... ,l

a = 1, ... , J, (3.111)

whereupon one just needs to compute the separate contributions

(3.112)x

where 1 = O or 1 = 2.

It also allows the applicatiou of the convolution theorem so to differentiate and make

good use of the information in the time domain depending on the gravitational waves
that act on the antenna:

qa(t) = L 11 «:« - t') gClm!(t') dt'
1=0 and 2
m=-I, ,I

a = 1,. _., J. (3.113)
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Before undertaking the task of calculating <p�/m)(t), we study the substitutions of

spo/es , which are So or Sn/, in place of S in (3.112). It will provide an idea about what

will be the leading contributions.

sO poles: Let us first consider So poles. From (3.88), the sum s6 + 02 = s5 + wJn
around a given resonance frequency n = WNL is of order 1]t,

2 (")2 2 2 2 (1. )So + H = So + wNL = -WNL Xt1]2 + Xl1] +... ,

while s2 + w;/, ni f. NL is proportional to 1]0,

(3.114)

2 2 (2 2) 2 ( 1.+ + )So + Wn/ = Wn/ - WNL - WNL Xt7J2 Xl1] ... . (3.115)

Then,

• beginning by the inspection of the quotient

(3.116)

it is easily understood that So roots near n will make it to contribute at order TJ- �
.

• We also analyse the free sphere response term, the first expression of the bracket

in (3.112):

(3.117)

The first to do is the following separation:

(3.118)

Secondly, we imagine that we are interested in roots around n = WNL, but L f. O

and L f. 2. From (3.115), the two sums yield to 1]0 contributions. In return, if

O = WNL is such that L = O or L = 2, there is a addend in the corresponding
summation formula which is proportional to 1]- �, respectively

aNoANO(R)
s6 + wIvo

or
amAN2(R)
s6 + wIv2

. (3.119)
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Hence, the natural link for the resonant transducers, which will take advantage of a

maximum transference of energy, is their tuning to a particular WNO for monopole
radiation sensing, and to a certain wN2 for quadrupole radiation sensing. These are

the ones associated to the eigenmodes of the free sphere excited by impinging GWs,
what shows again the perfect coupling between the monopole-quadrupole structure
of this radiation and the vibration patterns of the detector. Other frequencies can

be chosen for tuning, but then the coupling to GW will be weaker, for the factor

TI- � aboye mentioned being substituted by higher orders.

The examination of the gravitational external force on resonators 1} is trivial be­

cause it is always the case that it is proportional to Tlo.

• Under the circumstance of just considering So poles around the resonance frequency
n of the form WNO or WN2, we finally examine the inverse matrix components

(3.120)

This work has been already done in the previous subsection, where the frequency

spectrum was obtained. There we saw that the dominant term for So roots is

precisely

(3.121 )

that associated to the tuning frequency, which from (3.114) is the one compensating
the multiplicative factor TI, while the others in (3.120) maintain r¡�.

snplp poles: The evaluation of the poles around a certain non-tuning frequency, say

Wnplp' is in complete analogy to the former approach for So roots. We begin by recalling
from (3.89) that

S2 +w"nplp nplp
" "

s;plp + WÑL
2 "

Snplp + W�'I'

-W�plp (b1Tl1 +b2r¡2 + ... )
(wJ.n - "';�plp) - W�plp (b1r¡1 + b2r¡" + ... )

(3.122)

Hence,
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• Snplp roots will make the term

(3.123)

to behave as a T}0 power.

• Al! the components in the sum

(3.124)

are O(T}°), except in the case Wnplp being a monopole or a quadrupole frequency

wnpo or Wnp2; then, the term

,or (3.125 )

is O(T}-l).

Again, the gravitational external force on resonators � is O( T}0).

• Eventually, the relevant inverse matrix component is just

(3.126)

also of 0(7)°) if 52 == 5� 1 •

p p

After all these cornputations, for first order calculations it will suffice to concentrate

on:

• the computation of the residues of

a = 1, .... J (3.127)x

when [22 = wJ.{L' L = O and L = 2 at the, in principle J but 2L + 1 indeed, pairs of

poles around the resonance frequency:
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(3.128)

• the computation of the residues of

x

when 1 := O and 1 := 2 at the J poles around any non-tuning monopole or quadrupole
frequency Wnl:

S�l := -W�l (1 + b1r¡) + O(r¡). (3.130)

Although it is not at al! obvious, the relevant contributions at leading order -we

advance it is 1]- � - are in fact provided by the calculation of residues at just the Sb roots,
the first it.em in the list above.This is proved in Appendix D, where we give a detailed

exposition of the procedures.
Here we plot the final results for the two different groups of tuning frequencies:

monopole frequencies WNO and quadrupole frequencies WN2.

Monopole Response
In contrast to General Relativity, sorne metric theories of gravitation -e.g. Brans­

Dicke-Jordan theory - predict the existence of monopole radiation propagating in the

weak field limit as plane waves with helicity O, that is TO waves [19].
Looking at (3.29) for the dynamical perfomance of spherically shaped antennze when

excitecl by incoming GWs 01' also at (3.127) and the discussion for So poles, it is under­

stoocl t.hat they coulcl be sensitive to this kind of radiation whenever

Q:=WNO (3.131)

i.e., Q is tuned lo one given monopole frequency of the sphere.
For instance, for typical planned aluminium spheres of radius R := 1.5m, one has for

the first monopolar frequency [80, 103]
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WIO= 2'1l"1.8068 ten», (3.132)

which is the lowest in value in its category, therefore being the more easily excitable and

so probably the chosen one in a practical device for monopolar tuning.
From (3.128), the coupled mode frequencies are

W�,± = w�o (1 ± vhIANO(R)lea1]t) + 0(1])

where e� are the eigenvalues of the J x J symmetric matrix PL with L = O.

For this value of L, PL contains Legendre polinomials of the form

a = 1, ... , J, (3.133)

Po(nanb) = 1 Va,b= 1, ... ,J, (3.134)

or in other words, Po is a matrix with all its components equal to 1, independently of

the number J of resonators or their distribution. Its eigenvalues e� are (Appendix C)

el = J, e; = o Va = 2, ... , J, (3.135)

whereupon we see that the spliting in (3.133) results in a single pair

Wl = w�o (1 ± [l;IANO(R)Ir¡t) + O(r¡).

For the monopole amplitudes qa(s) = J�OO)(s)g(OO)(s), calculations in Appendix D

(3.136)

yield in the Laplace domain

(3.137)

and so

qa(s) .(_l)J 1
1]-' VI aN0"2 [(s2 + w¡)-l - (s2 + w�)-ll g(OO)(s) + 0(0)

a = 1, ... , J, (3.138)

where for the first harmonic the overlap coefficient defined in (3.27) is [80]

alQ � 0.214 R. (3.139)
We recall that the inverse Laplace transform of
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(3.140)

IS

� sin �(w+ - w_)t cosQt, (3.141)

which is a beat, i.e., a sinusoid of carrier frequency n and amplitudemodulated by another

sinusoid of much smaller frequency (w+ - w_). Thus, the time domain responses, qa(t)
are

_1. (_l)J 1
r¡ ,

·VJ aN0"2 x

100 [�sin �(w+ - w_ )(t - t') cos Q(t - t')] gCOO)(t') dt' + 0(0)
a = 1, ... , J. (3.142)

Quadrupole Response
The relevant analysis now is that referred to quadrupole sensing. In this case, the

tuning frequency must be

(3.143)

and again the chosen harrnonic is the first, which is indeed the lower frequency of the

whole spectrum of the sphere:

wI2=27r·0.8725 KHz, (3.144)

also for a typical aluminium sphere of R = 1.5m. Due to the capability of spherical
antennee of being potentially sensitive at two frequencies because of its remarkably good
sensitivity at the second mode, it would be convenient also considering

n = W22 = 27r' 1.6781 KHz. (3.145 )

Following the steps of the former study for monopole radiation, one has now to specify
the frequencies
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w�,± = w¡'{2 (1 ± ffIAN2(R)I�a1Jt) + 0(1])

by calculating the eigenvalues �� of P2(llallb). This matrix contains the Legendre polono-

(3.146)

mials of order 2:

(3.147)

Its diagonal elements remain 1 -in fact this is a general characteristic of all PL matrices,
so that their invariant trace is always J for all L (Appendix C)-, but the non-diagonal
ones depend on the locations of resonators through the llallb = COS()ab quantities. At this

stage, we want to maintain the generality of the results for any resonator layout. Thus,
we postpone more particular results until the treatment of specific layouts in Chapter 4.

This situation also holds for the amplitudes, which again from the computation in
'(2m)Appendix D of �a (S):

(3.148)x

where v�c) is the c-th normalised eigenvector of P2(llallb) associated to its non-null eigen­
values �;, are

m==2

x L Y2m(llb)g(2m)(s) + 0(0)
m==-2

a = 1, ... , J. (3.149)

Again the overlap coefficients can be calculated by means of formulas (3.28) [80]

a12 � 0.328R, an � 0.106R (3.150)

for the first and the second harmonic respectively.
Eventually. in the time domain one has
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x

m=2

L Y2m(nb)g(2m)(t') di' + 0(0)
m=-2

a = 1, ... ,J. (3.151 )

For L being 2, and since 2L + 1 is the maximum number of independent non-null

eigenvalues �; of a general PL matrix of arbitrary order J x J (see Appendix C), let
us stress that at most there will exist five pairs of modes Wc± in the system strongly

coupling to the five quadrupole GW amplitudes.

Discussion

The first thing to notice in the last results is the general structure of J�lm) (8) at the
dominant order:

J�lm)(s) ex 1]-t L [(82 +w�+)-l - (82 +w;_)-l] ,

Ec¡éO

where, as always, �� are the non-null eigenvalues of the corresponding PL matrix and

(3.152)

Wc± are the symmetric pairs of coupled mode frequencies arising from the spliting of

the tuning frequency n = wNL as a consequence of the presence of resonators, and

which dominate the spectral composition of their motions. From this expression, it is

immediately seen that there exists a mechanical amplification factor 1]-! affecting the

resonators' displacements relative to the driving GW amplitudes g(lm)(8), what amounts
to be a pre-electronics amplification in the antenna highly desirable due to the extreme

weakness of expected gravitational-wave signals to be detected.

It is also essential to emphasize that the only modes contributing to the amplitudes
at order 1]-! are those associated to the tuned modes and the non-null eigenvalues �c of

PL. Due to this fact, these modes and their related frequencies are said to be strongly
coupled, whereas all the non-tuned modes or particular tuned modes corresponding to

null eigenvalues are said to be weakly coupled, and contribute to higher order terms.
Now in particular for monopole response (3.138), besides one observes some other

features, as the fact that all the components of the system response qa(8) have the same

value independently of the label a; in other words, each resonator dynamically behaves
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in the same way, as corresponds to the spherical symmetry of monopole sphere's oscil­

lations. Even more, they are proportional to J- �, a factor indicating that GW energy

is evenly distributed among all the resonators. For these reasons, a single transducer

will experimentally suffice in this case to determine the single monopole GW amplitude

g(OO)(s), in contrast to what happens for quadrupole GW amplitudes g(2m)(s) appearing
in (3.149). There, the response of one resonator is, in principle, different from another

so that at least we will need five resonators providing independent outputs, as expected.
Also, these expressions for tJa(s) reassure us that we have chosen the correct tun­

ing frequency WNO or WN2 for respectively measuring the scalar amplitude g(OO)(s) or

the quadrupolar amplitudes g(2m)(s): tJa(S) in (3.138) is always directly proportional
to g(OO)(s) and analogously tJa(s) in (3.149) is always proportional to combinations of

g(2m) (s), reflecting the fact that the tuning of the device to a monopole frequency makes

it strongly couple to just monopole wave amplitudes, while its tuning to a quadrupole
frequency makes it couple to only quadrupole wave amplitudes, even if the incoming
wave carries significant quadrupole energy at the monopolar duplet W±, or significant
monopole energy at the quadrupolar frequencies Wc±'

Calibration Signals

Equation (3.102) is completely general, being applicable to any sort of signal exciting
t.he detection device, with the only proviso that its associated mathematical representa­
t.ion is a separable function in the variables of space and time.

This requirement is accomplished by the calibration signal of the type described in

(3.41), for which

Ua,ext(Xa, t) L � U�lm(XO) Unlm(Xa) sinwnlt
nlm

(3.153)

(calibration ,a (t) O. (3.154)

so that

Úa,ext (s)

(calibration,a (s)

" IAnl(R}¡2
-

L..... ( 2 + 2) PI(nano)!Oni
S Wnl

O a = 1, ... , J,

(3.155)

(3.156)
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where no are the coordinates of the hit point on the sphere, and fa == nx!º. Then,

x

(3.157)

It would be tedious and innecesary to reproduce in this essay the whole procedure
until arriving to the final expression for qa(s), in first place because the derivation follows

step by step the developments for GW excitations, with the only proviso that one has

to consider directly the amplitudes qa(s) instead offunctions like J�lm)(s) in (3.111) and

(3.112). In any case, results will be analogous, and are placed below:

x

qa(s)

when the syst.em is tuned to a certain arbitrary WNL spheroidal harmonic.
In particular, if WNL is a monopole frequency WNO, the system response reduces to

an expression similarto (3.138):

(-1)J-lry-L.h_1ANO(R)1 x

,ffiJ
x � [(s:? +w�)-l - (s2 +w:)-lJ + 0(0) a = 1, ... , J. (3.159)

and in the time domain

a = 1, ... , J, (3.160 )x

again identical for al! a, independent of either the resonator layout or the hit point and

showing the expected factor J -!¡ and the pair of frequencies w±.
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For quadrupole frequencies, one can just substitute L by 2 in (3.158), but the calcu­

lations are more interesting for specific distributions of resonators, which are going to be

studied immediately in Chapter 4.

3.4.3 Mode Channels

The aim of a detection experiment is not simply the mere corrobotation of the ocur­

rence of the physical phenomena under testing, but also the acquisition of a maximum

amount of information concerning it and and its causes.

In accordance to this philosophy, one must be able to handle the results outcoming
from the observation of the spherical antenna's vibrations, that referred to the resonators'

outputs, to trace back the features about the causes. This is commonly called signal
deconvolution [133, 80, 91) and it is expected to provide source direction, amplitudes and

polarizations of gravitational waves reaching the detector from the experimental data.

It is easily recognizable that the first step of the deconvolution procedure consists

in expressing the information about the signal directly appearing in the mathematical

equations of the problem as a function of the measurable quantitíes.

For the case of a spherical GW detector endowed wíth a set of resonators tuned to

a monopole frequency, the previous operation can trivially he put into practice. Results

in (3.138) for a gravitational wave allow to experimentally determine the only monopole
GW amplitude _g(OOl(s) as a function of any qa(s) since this response is the same for every

resonator. Results in (3.159) for a calibration signal show that the only quantity to fix is

fo, the intensity of the impulse. Therefore, not much knowledge is eventually available

from them ultimately due as a last resort to the spherical symmetry of monopole sphere's
oscillations.

More interesting is the tuning to a quadrupole harmonic, although then the way to

proceed is more complicated. Let us work with the Laplace transforrns, a.!though t.he

same reasonings will be valid in the time domain. The purpose is here to decouple
the quadrupole wave amplitudes _g(2m)(s) in (3.149), or find the hit point position and

intensity of the calibration impulse from (3.158).
First of all, we are going to establish a matrix notation for the sake of clarity and

for representing at a time both cases. The resonators' elastic deformations ga(s} will be
arranged in a J -vect.or q:
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(h(s)
(h(s)

(3.161)

(iJ(s)

so that (3.149) or (3.158) are rewritten as

q= bn . y . D . yt . H . e, (3.162)

if we make the following identifications:

• bn is a function of Tl-! and radial contributions, and sign depending on J:

bn ,ca/ibration

( l)J _1.
- TI 2 an2

(_1)J-1 Tl-! foIAn2(R)I.
(3.163)

(3.164)

• y is the J x n matrix of the n eigenvectors v(C) of P2(nanb) corresponding to the

non-null eigenvalues ��. We are going to consider always the maximum possible
value of n, i.e. n = 5, what amounts to assume that at least one has five resonators

providing independent outputs -see Appendix C. Of course, this must be just the
minimum nurnber of transducers in independent positions of a layout to completely
determine the separation of the five quantities in (}GW without recursing to non­

fixed arbitrary parameters. Then:

y == (¡J(1) ¡J(2) ¡J(3) ¡J(4) ¡J(5)), (3.165)

where to ease the notation each colurnn containing the components of a given
eigenvector has been represent.ed by the name of the whole eigenvect.or.

t in (3.162) stands for complex * and transposed T, so that

yt == v:". (3.166)

• D is the n x n matrix , undel' our assumptions the 5 x 5 matrix, represented by
the diagonal form
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(3.167)

where the only non-null elements of D placed in its diagonal are the following
functions depending on the eigenvalues and the split frequencies in the Laplace
domain:

(3.168)

• H is the J x 5 matrix of spherical harmonics:

(3.169)

each vector being of the form

Y2,m(rh, so1)
Y2,m({12, S02)

(3.170)

wi th ({1a, rpa) the angular posi tion of the a- resonator.

From Appendix e, we see that H is just the matrix from which PL is made up

Slllce

(3.171)

• Finally, G is the 5-vector offunctions directly related to the signals and which have

to be decoupled: the quadrupolar GW amplitudes g(2m)(s)

GGW ==

¡¡C2,-2J(S)
_g(2,-1)(s)
_g(2,O)(s)
g(2,1)(s)
_g(2,2)(s)

(3.172)

or the vector of spherical harmonics
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Y2',_2(no)
Y2�_1(no)
Y2',o(no)
Y2�1 (no)
Y2�2(no)

depending on the hitting point position llO, and which arises from the decomposition

� ¡¡;Gcalibration == V 5 (3.173)

OfPL(llbnO) in (3.158) for L = 2 giving

(3.174)

Now, to isolate G one has to eliminate matrices Y, D, yt and H in the rhs of (3.147),
taking into account that not all of them are square matrices and consequently the inverse

of everyone is not defined.

Nevertheless, let us first investigate matrix Y. This is a matrix of orthonormalised

eigenvectors arranged in columns. If we multiply it on the left by its complex transposed
vr, we will obtain the 5 x 5-identity matrix 1, since in fact we are performing scalar

products between the eigenvectors which are orthogonal and normalized:

yt. Y = 1, (3.175)

and then

(3.176)

At this point the problem reduces to analyse just the separation of D and vrn from

6 in the rhs of (:3.176).
We are going to call D the frequency matrix. ClearIy, D is invertible: it is an square

matrix wit.h an associated non-null determinant. However, when 52 = -w;±, i.e., when 5

is evaluated at the resonances of the system (the poles of estqa(5)), D presents singular
elements.

With respect to vin, rather than considering these two matrices separately, it is more
convenient to work with the whole product, which amounts to be a square 5 x 5 matrix

invertible matrix", This property can be easily verified by performing the operation
4We recall we are assurning a sufficient minimum number of resonators in non-parallel positions, t.hat
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(3.177)

We recall that Y is the matrix of eigenvectors of P2 arranged in columns, so that

(3.178)

with

y� == (�fV<l) ��V(2) ��V(3) aV(4) �gV(5)).
Inserting this new result in (3.177)

(3.179)

(3.180)

which is a regular diagonal and invertible matrix frorn their elements being the non-null

eigenvalues of P2.

Then, for the determinant of vtn we have

(3.181)

and for its right-side inverse

(ytH)-l = (ytH)t . E-1riqh.t �
. (3.182)

In square matrix algebra [76], it is proved that when the determinant of a matrix

IS non-null and there exists an one-side inverse, it is unique and is indeed the znverse

matrix, what generally holds in our case.

Thus, from (3.162) it would always be mathematically possible to find G under the

only general assumption of having a layout with at least five resonators in non-parallel
positions tuned to a quadrupolar frequency:

(3.183)

is, Y is a matrix of order J x n, with number of resonators J � 5 and number of non-null eigenvectors
n = 5. If these conditions are not accomplished, matrix vrn of order n X 5 is not invertible. Therefore,
the case J < 5 or n < 5 is problematic, since then (3.162) turns out to be a set of n algebraic equations
insufficient for determining the 5 spinorial amplitudes in a, so that 5 - n of them would remain as

arbitrary parameters to be fixed.
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We have seen that the number of necessary and sufficient final equations is always 5,
so that 5 must always be the number of non-null eigenvalues, degenerate or not, of P2
with independence of the number J of resonators. It indicates that more than five of

them will provide redundant information, while less than five will not lead to a complete
separation of the ge.!m),s amplitudes. Of course, these results are valid for quadrupole
tuning frequencies ;,)N2. For other non-quadrupole tuning frequencies WNL, it would be

easy to implement the whole development, but then the number of required equations
is maintained to be 5, as the number of spinorial amplitudes, and not 2L + 1, as the

maximum number of non-null eigenfrequencies of PL. So, also in this situation the

optimum number of resonators generating independent outputs to be mounted on the

sphere's surface is 5; otherwise, we would not have enough equations (J < 5), or we are

obliged to restrict to specific layouts with only five non-null associated eigenvectors.
Note that each element of vector O obtained as a linear combination of the vibrational

amplitudes depends also on the split frequencies Wi± through the inverse frequency matrix
D-1. It would be possible and interesting to demand that each linear combination of

the measured qa(s) providing the g(2m)(s) comes at a single specific frequency pair w;.±.
This specific condition is not generally supplied by every resonator configuration allowing
(3.183). It is necessary a further requirement. Let us go back to (3.176). Obviously,our
desired property would be immediately achieved if D and VtH commute, so that

(3.184)

Vector DO is already of the desired formo For instance, for a GW:

C_29(2,-2)(S)
C_19(2,-1)(s)
co 9(2,0)(s)
C1 g(2,1)(S)
C2 g(2,2)(s)

and hence we only need to separate it in (:3.162):

OGW == (3.185)

(3.186)

Therefore, configurations of at least five resonators in non-parallel positions satisfying

(3.187)
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will be the only allowing the construction of linear combinations at single specific fre­

quency pairs proportional to the amplitudes in G. The commutativity of these matrices

is exclusively possible in two non-excluding situations: D is proportional to the identity

matrix, that is, all the eigenvalues �i and so all the frequencies Wi± are exactly equal

(maximum degeneracy, maximum isotropy in the transducers distribution); or vrn is

diagonal.
In next chapter we will analyse the two minimum configurations in number of res­

onators accomplishing these requirements, although actually they are not unique [91].
These particular distributions are on the basis ofthe PHCA and TIGA proposals. In fact,
separation of the spherical amplitudes hm(t) for gravitational waves by forming fixed lin­

ear combinations of the measured resonators' motions was first obtained by Merkowitz

and Johnson [69, 97] when studying their specific proposal TIGA for a GW antenna.

They named their combinations mode channe/s, to indicate that each one is coupled only
to a single mode amplitude of the uncoupled sphere and hence to a single amplitude of
the gravitational field, so that signal and direction deconvolution methods can be directly
applied to the mode channel set very advantageously, whereupon their occurrence is an

important and attractive property highly desirable. We extend their nomenclature t.o

the linear combinations of resonators outputs prividing the decoupling of the g(2ml(t)
amplitudes, directly related to the the spherical hm(t) amplitudes -the specific relations

are given in Chapter 6.
Here we have demonstrated that such combinations are not exclusive to the distribu­

t.ion associated to the TIGA layout, but always exist for resonator layouts in spherical
antennze whenever the number of non-null eigenvalues of their associated PL matrix is

exactly 5, which in particular is always assured in quadrupolar tuning for layouts with at

least five resonators located in non-parallel positions, and matrices D and vrn commute.

It is nevert.heless true that among those, sorne particular transducer configurations yield
to the simplest expressions for their associated mode channels, as we will see in next

chapter.
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Chapter 4

SPECIFIC RESONATOR

LAYOUTS

In Chapter 3, we have presented an elegant approaeh to the question of how the

eoupled system formed by a solid elastic perfect sphere and a tuned set of any number

of identieal resonators in arbitrary loeations dynamieally behaves when exeited by an

ineoming signal, par excellence a gravitational wave. It has been achieved through the

development of a detailed and rather sophisticated mathematical scheme, although sim­

ple in structure, providing the whole spectrum of the spherical antenna as a splitting
of the free sphere's frequencies, the relative displacements at the resonators' positions,
and t.he mode channels. It has been shown how these responses are obtained as series

expansions in the small coupling constant "1, revealing relevant general features such as

that of the pre-electronics amplitude amplifications, or the implications of the transducer

attachement causing the eorrelation of the sphere's deformations to all of the sphere's
spheroidal eigenmodes.

Based on these results, it is possible and convenient for practical situations to analyse
particular proposals of spherical antennee with resonators fixed at specifie locations. The

generality of our procedures ensures their capability of being applicable to any thinkable

device, whenever the transducers remain identieal at this stage and the eore of the de­

tector is, if not a perfect sphere, a quasi spherieal elastic body with equivalent monopole
and quadrupole vibrational modes.

This philosophy of substituting a true sphere by an object that approximates it is

required as a solution to certain technical complications of spherical antennee, like, for
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instance, those emerging from the practical mounting and stability of resonators. Thus,

practical GW-antenna devices are milled into a close-to-spherical geometry, usually a reg­

ular polyhedric shape, with a given number of ideally-identical ideally-tuned resonators

linked at specific positions making a particular configuration. Then, the important ques­
tion is whether there exists any favoured or optimum arrangement between those allowing
mode channels.

Stephen Merkowitz and Warren Johnson were the pioneers suggesting and experi­

mentally implementing a GW detector of these characteristics at LSU [69, 97,95, 98].
They proposed for quadrupole sensing a highly symmetric resonator layout consisting in

a set of six transducers attached to the six non-parallel faces of a truncated icosahedron.

The system was called TIGA, the acronym for Truncated Icosahedral Gravitational wave

Antenna, and will be reconsidered in section 4.2 according to our general procedures and

results in the former chapter, reassessing in this new light its response.

Previously, in section 4.1, we present an alternative new proposal based on pentago­

nallayouts of only five resonators equidistantly distributed along a parallel of the sphere,
in this case replaced by a pentagonal hexacontahedron (PHC). These pentagonal ar­

rangements exhibit rather appealing properties and also sorne desirable advantages for
a complete GW antenna called by us PHCA -Pentagonal Hexacontahedral Antenna-,
which we are going to discuss immediately below [84, 85, 86].

4.1 PHCA Proposal

As we have discussed when analysing the concept of mode channels in subsection

3.4.3 of Chapter 3, the minimum number of resonators in a layout providing indepen­
dent outputs required for the unambiguous determination of the five quadrupole GW

amplitudes !/:lmJ(s) in a deconvolution procedure is precisely five. Since having more

than five sensors, even in non-parallel positions, just produces redundant information

and also increases the number of mathematical equations in the GRD set describing the

dynarnical behaviour of the coupled system, what, in principIe, makes more difficult its

resolution -for instance, it would be necessary to find the eigenvalues and eigenvectors
of t.he J x J matrix P2(nanb), where we recall J is the number of resonators-, one may

wonder whether there exist optimum transducer layouts with only five of them. The

answer is affirmative: distributions having a sphere diarneter as an axis of pentagonal
symmetry show a rather interesting structure. On the basis of this feature, let us present
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our PHCA proposal.

4.1.1 Description

In pursuing a search for five transducer configurations, we found that sets with res­

onators placed in the same plane along a parallel of the sphere every 720, i.e., layouts

exhibiting pentagonal symmetry, also named by us pentagonal arrangements, possess

important distinguishing characteristics affecting the responses of the complete GW an­

terma: the splitting and distribution of the system's frequencies and amplitudes, the

structure of the mode channels ...

More explicitly, in pentagonal layouts the five resonators are located at the spherical
positions on the sphere surface:

Ba = e,
271"

<{Ja = (a - 1)--5
a = 1, ... ,5. (4.1)

Figure 4.1. Pentagonal layout. Resonators are positioned on the sphere surface
drawing an imaginary regular pentaqon on aplane includinq a given parallel of
the sphere, denoted by angle 8. 'P stands for the angle of separation between any

pair of neighbouring transducers, and its value is of 72°.

As explained aboye, these transducers are not mounted in practice on a perfect sphere,
but on a quasi spherically shaped detector so to avoid technical complications. Therefore,
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shapes with axes of pentagonal symmetry facilitating such distributions must be searched.

Among the 18 quasi-regular convex polyhedra! [63, 57], the pentagonal hexacontahe­

dron, PHC, erects into the most satisfactory candidate. This is a sixty face convex body
with six different axes of pentagonal syrnrnetry, whose faces are the identical irregular

pentagons shown in Figure 4.2., but no two of thern are parallel, so that we have not to

worry about the rnatter of locating the resonators in non-parallel positions.

p

Figure 4.2. Face of the pentagonal hexacontahedron. The conftuence point of
the dotted fines at the centre is the tangency point of the inscribed sphere to the

polyhedron: the labeled angles have values o = 61.863°, f3 = 87.205°; the angles at

the Tí-uertices are all equal, and are 118.1366°, while the angle at P is 67.4536°;
the ratio o] a long edge (e.g. PT1) to a short one (e.g. T¡ T2) is 1.74985, and the

radius 01 the inscribed sphere is twice the long edge of the pentagon, R = 2 PT¡ .

This polyhedron endoses an inscribed sphere which is tangent to each face at the

confluence point marked in the figure. If transducers are attached to such positions,
they will all be equidistant from the centre of the body, in a very good sirnulation of

the ideal theoretical spherical situation, also supported by the fact that the ratio of the

lIndeed. 5 of these quasi-regular convex polyhedra actually are strictly regular, and are called t.he

Plato's solids: the t etrahedron, the cube, the octahedron, the dodecahedron and the icosahedron. One

can also count as elements of the quasi-regular convex polyhedra group the duals of the remaining 13

Archimedes' bodies. whereupon the total number of elements grows up to 31, and up to 35 if the 4 mirror

images which differ from the originals are also added.
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pentagonal hexacontahedron volume to that of the inscribed sphere IS very close to 1,

being the exact value of 1.057.

We thus propose ihe pentagonal hexacontahedron elastic salid coupled to a set of 5
resonant transducers attached to the centres of certain suitable faces distributed so as to

preserve an axis of pentagonal symmetry as a GW antenna.

Figure 4.3. PHC Proposal. Marked faces in the pentagonal hexacontahedron in­

dicate resonator positions: a square for transducers tuned to the first quadrupole
[requencsj, (1 trianqle for that tuned to the second, and a star for the mO,nopole
sensor:

The question of which is the most suitable transducer distribution with an axis of

pentagonal symmetry, or equivalently, which must be the chosen faces for sensor mount­

ing, is clarified by the analysis of the spherical antenna responses for generic pentagonal
configurations, what will be undertook in the following subsection, before the conclud­

ing study of the capabilities of such a device as a complete multimode multifrequency
individual antenna.
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4.1.2 Pentagonal Arrangements Response

It is worth noting that, as already shown in subsection 3.4.2, the system response

to monopole gravitational radiation does not depend on the resonators' positions on

the sphere's surface, so attention here will be exclusively centred on the expressions for

quadrupole gravitational radiation.

We recall that results in the precedent chapter are general and valid for spherical
detectors coupled to any layout of identical resonators, so that, in particular, they also

apply and can be further constrained to arrangements of the pentagonal type. It would
be only necessary to evalúate the eigenvalues and eigenvectors of the 5 x 5 P2 matrix of

Legendre polynomials, which will read as always (see Appendix C)

(4.2)

being H the 5 x 5 matrix made up from the spherical harmonics 5-vectors Y2,m having
as components the values for each resonator location:

H = ¡¡;¡51T' (V 5 Y2,-2 (4.3)

Y2,m(n¡)
Y2,m(n2)

( 4.4)

Since the five pentagonal locations of the transducers are:
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Resonator Polar angle () Azirnuthal angle <p

1 e o

2 e 720 == 2; rad

3 e 1440 == � rad

4 e 2160 == 6; rad

5 e 2880 == 85" rad

H can be written

A B C -B A

Ae-2i2; Be-i2; C B i2� Ae2i 2S�- e s

H= Ae-2i 4S� Be-i\r C Bill Ae2i 's� (4.5 )- e s

Ae-2i 6s� Be-i6sr C B i6� Ae2i 6s�- e s

Ae-2i·; Be=! ·sr C B i·� Ae2i ·sr- e s

with A, B and C just functions of the cornrnon polar angle a entering the spherical
harmonics Y2,m:

B �sinecose
1 ?

2 (3 cos" e - 1), (4.6)C

and P2 is
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1 b2 c2 c2 b2

b2 1 b2 c2 c2

P2 c2 b2 1 b2 c2 (4.7)
c2 c2 b2 1 b2

b2 c2 c2 b2 1

with

b2
47r 27r

C22A2 cos5 + 2B2 cos 5 +

c2
27r 47r

e:2A2 cos5 + 2B2 cos 5 + (4.8)

We clearly observe, as already announced in Chapter 3, that P2 strictly is a Toeplitz
matrix for pentagonal distributions with the correlations between pairs of resonators

distinguishing between firsi and second neighbours, being respectively b2 and c2 their

characteristic values.

It happens that the five eigenvalues of P2 are precisely

�� = �':2 = 1: sin4 8
? 2 15. 2 2�1 =Cl = 2sm 8cos 8

� 5 �

�i5 = -(3cos28-1)- .

4
.'íc"2 (4.9)

This can be easily verified from the fact that they also are eigenvalues of HtH. The

proof is given in Appendix C.

HtH is here a diagonal matrix due to the fol!owing identity nicely fulfil!ed by pen­

tagonal distributions:

(4.10)

for any integer value of 11. except multiples of 5; in this case, the result wil! be just 5 and

not Q.

Having this into account, the multiplication of matrices nr and H is
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5A2 O O O O

O 5B2 O O O

HtH= O O 5C2 O O = EE'
O O O 5B2 O

O O O O 5A2

93

(4.11)

and from this it is directly seen that the eigenvalues of P2 = HHt are those in (4.7).
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Figure 4.4. Eigenvalues �o, 6 and 6 for pentagonal confiquratione as [unctions of
the polar (Ingle O' relative lo the a:¡;is of symmetry of ihe distribution, in accordance

lo [ormulas 4.7.

With respect t.o the eigenvectors, they are immediately inferred from (4.9) by multi­

plying its left hand side by matrix H on the left

(4.12)
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and its right hand side by the same matrix also on the left

(4.13)

Then,

(4.14)

what means that eigenvectors of P2 corresponding to the found eigenvalues (4.7) are

basically the constructing vectors of H, from (4.3):

;;(m) _ ¡4;y.�V -

v« :l,m (4.15 )

with components

(4.16)

Their normalization includes the eigenvalues as normalization constants, so that the

normalized eigenvectors finally are:

v(m) = ¡4;c-1-y.V s"m 2,m' (4.17)

Now, the only operation one has to perform is the substitution of these pentagonal
eigenvalues and eigenvectors in the expressions for the frequencies, the amplitudes and

the mode channels.

• Frequencies

From (3.131),

m = -2, ... ,2. (4.18)

Hence, to the lowest order one has for pentagonal configurations:

2 o ( 5 {l ? ,)wo,± wÑ2 1 ± 2V ¡;IAN2(R)I(3 cos" e - 1) 7]2
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-r. -i.. =W:"l,± =WIv2 (1± ��IAN2(R)lsineCOSe7]�)
w�,± W�2,± = w:..2,± = WIv2 (1 ± �ji;IAN2(R)1 sin2 e 7]� ) . (4.19)

As is clearly reflected in these formulas, the five expected pairs of frequencies reduce

to three different doublets w6,±, wr,± and wl±, so that pentagonal distributions keep a

certain degree of degeneracy.

• Amplitudes

The most important distinguishing characteristics of pentagonal layouts is best dis­

played by the explicit vibrational amplitudes measured by the transducers. Frorn (3.134):

qa(S) = -7]- ��aN2 {2�o [(s2 + w6+)-1 - (s2 +w6-)-l] Y2o(na)g(20)(s)

+�1 [(s2 +wI+)-l - (s2 +wL)-lj [Y21(na)g(21)(s) + Y2_1(na)g(2-1)(s)]
+ 2�2 [(S2 +w�+)-l - (S2 +wL)-l] [Y22(na)g(22)(s) + Y2_2(na)g(2-2)(s)]} (4.20)

This equation clearly indicates that different wave amplitudes selectively couple to dif­

ferent detector frequencies. This should be consideed a very remarkable fact, for it

thence follows that simple inspection of the system readout spectrum immediately re­

veals whether a given wave amplitude [/2m)(s) is present in the incoming signal or noto

• Mode Channels

Mode channels for pentagonal configurations are easily constructed. Equation (3.171)
gives us the recipe in a general case:

( 4.21)

whenever D and vrn commute (quantities, vectors and matrices entering this expression
are the usual -refresh your memory in 3.4.3).

Thanks to the nice properties of the layouts we are working with, the commutativity
requirement is satisfied due to the fact that via is in this case a diagonal matrix. indeed
matriciallq proporiional to E� in (4.9):
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1 O O O O"G
O 1 O O OG

ytH fitH= O O 1 O O . E€�
O O O 1 OG
O O O O 1

€2

6 O o O O

o 6 o o o

= o o �o o o (4.22)
O O O �1 O

O O O O 6

since the renamed matrix ilt == yt is basically Ht:

1 �.
"G Y2-2
1 �.

-t fi
G Y2-1

1
�

(4.23)H = -
- Y2·05 (o
1 �.
G Y21
1 �.
t; Y22

Hence. by substitution into (4.19), it is found that

DG = b-1(ytH)t . E-l. yt .
�-

n E q-

el O O O O-2

O el O O O-1

= b;;l O O �ol O O yt -

(4.24)q,

O O O �11 O

O O O O (?l
arid equivalent.ly

�-2 O O O O

O �-l O O O

y(s) == ytq(s) = bn O O �O O O DO, (4.25)
O O O �1 O

O O O O 6
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or in components

5

yem)(s) == L ¡;�m)*qa(s) =

(4.26)

As could be expected, each mode channel comes at a single specific pair Wm,± as­

sociated to a certain quadrupole component of the gravitational wave. It thus appears

that a pentagonal transducer configuration not only immediately reflects the spinorial
GW structure as seen in the laboratory frame, but at the same time enables signal ob­

servations ayer a somewhat richer frequency band than other recognized configurations,
as will be seen in next section.

4.1.3 PHCA as a Complete GW Antenna

Among all the virtually infinite number of pentagonal configurations of resonators

attachable to a spheres surface, it is clear that that compatible with the pentagonal
hexacontahedron face orientations must be selected for the construction of a PHCA

antenna.

Once given a certain axis of symmetry of the polyhedron, it happens that the number

of possible pentagonal distributions reduce to only twelve available Iayouts, which can be

divided into two groups. each element of one of them having a relative in the other, so that
their respective layout parallel's co-latitude angle e are supplementary; however, these

suppLEmentary pentago n.al disiributions are not reflections with respect to the equatorial
planeo since the resonators' azimuthal angles are not the same. In any case, these spherical
coordinates of course coincide with the polar and azimuthal angles locating in space the

centre of the faces on which they are mounted.

These supplementary pentagonal distributions cause identical frequency splitting and

hence identical systerns responses, what can be inferred from the eigenvalues �m only
depending through trigonometric functions on angle e and never on <p (see (4.7) and

(4.17)), whereby the actual number ofpentagonal arrangements being individual candi­

dates for finally conclude the PHCA proposal is six.

Which one would be the most favourable distribution? The answer must be searched

in accordance to adequate optimization criteria on the basis of properties for the sys­

tem 's responses. There is not an unique criterion for the selection of a certain polar
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Pentagonal Polar Angle Azimutal angles
Layout e 'Pi CP2 CP3 CP4 CP5

1 23.233° 0°

2 42.6° 36°

3 50.05° 0°

+72° +144° +216° +288°

4 67.617° 23.95°

5 76.783° 69.417°

6 86.15° 43.967°

6' 93.85° 18.25°

5' 103.217° 64.8°

4' 112.383° 38.267°

+72° +144° +216° +288°

3' 129.95° 62.217°

2' 137.4° 26.217°

1 ' 156.767° 62.217°

Table 4.1. Possible pentagonal distribuiions of resonators in a pentagonal heza­

contahedron Cll'Ound an unique axis of pentagonal symmetry taken as the z axis of
coordinates. 0 comes in pairs of supplementary anqles [or layouts n and n'. and

'P is explicitly written [or Orle of the resonalors in every pentagonal distribution.
The ,'emaming [our azimuthal angles are always obiained from respectively adding
to the one given the quantities7Zo, 144°. 216° and288°,
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angle e, mainly if we do not restrict to exclusively consider the pentagonal hexaconta­
hedron [124]. For exarnple, if the 5 faces of a regular icosahedron are selected for sensor

mounting, e = 63.45°. then a four-fold degenerate pair plus a single non-degenerate pair
is obtained. Moreover. the number of choices in virtually infinite if the sphere is not

milled into a polyhedral shape; if the resonator parallel is 50° 01' 22.6° then the three

frequencies WO+, "'1+ and W2+ are equally spaced. In analogy, and since the most relevant

distinguishing characteristic of pentagonal arrangements is precisely that of causing the

selective coupling of the different wave amplitudes to the different detector frequencies

arising from the splitting of the resonant WNL, the assessment leading to the definite

PHCA proposal will be that of maintaining the frequency pairs Wm± as evenly spaced as

possible so to maximally preserve the spectral structure far from any degree of nearness

01' even degeneracy of the WO±, Wl± a.nd W2± frequencies.
Then, regarding the pentagonal hexacontahedron, there is only one pentagonal layout

in the best agreement with the previous criterion, and it is that arranged at angle e =

67.617°, whence

Wo± W12 (1 ± 0.57561Jt)
W1± W12 (1 ± 0.87871Jt )
W2± W12 (1 ± 1.06681Jt) (4.27)

for instance for v';S2 == W12, the first quadrupole harmonic.

Sllmming IIp. 0111' PHCA proposal plans the use of a pentagonal hexacontahedral

shaped detector uiih. fii»: resotuitors attached to its five faces at polar angle e = 67.617°

following a distribiüion. of pentagonal geometry arourul an axis of symmetry.
Even more, this proposal was made with the idea ofbuilding an as complete as possible

spherical GW antenna. which amounts to making it sensitive at the first two quadrupole
frequencies and at the first monopole one. This would take advantage of the good sphere
CI'OSS section at the second quadrupole harmonic [32] -see Table 2.2. in Chapter 2-, and
would enable measuring, 01' thresholding, eventual monopole GW radiation. This second

quadrupole harmonic can be W22, and thanks to the fact that the systern patterns have

ident.ical structure for the harmonics of a given I series, in this case l = 2, -see formulas for

quadrupole and monopole radiation sensing, respectively (3.123) and (3.134)-, identical
criteria for resonator la.yout design apply to either set of transducers tuned to the first

harmonic WI2 or t.he second W22. Therefore, we propose that a second set of resonators
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Figure 4.5. Splitting 01 the resonance frequency for the first quadrupole harmonic
in the PHCA propasal, The two outer pairs 01 the spectrum are doubly degenerate
each. whereas the inner pair is non-degenerate. Distances from the new frequencies
t.o the resonance original one are represented in the graduated vertical axis, where
unit8 are W12 r¡ �, and the central t'alue, labelled 0.0, corresponds to W12.

tuned to the second quadrupole harrnonic can be placed in an equivalent position in

the southern hemisphere , i.e., we propose two seis of supplementary pentagonallayouts,
each respect inelu tuned lo tlie first quadrupole harmonic W12 and ihe second quadrupole
harmonic ' •.;::2, so lo exploit the possibility of the PHCA antenna as a multi-frequency
device. Fin a lly, an eleoentli resonaior tuned io the first monopole frequency Wl0 can b«

added at another arbitrary face [or rnonopole sensing. It is not difficult to see, by the

general methods outlined in this essay, that cross interactions between these three sets

of resonators is only second order in 7]�, therefore weak.

A spherical GW detector with such a set of altogether 11 transducers would be a

very complete multi-mode multi-frequency device with an unprecedented capability as

an individua.l antenna.. Among other , it would practically enable monitoring of coales-
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cencing binary chirp signals by means of a rather robust double passage method [30], a

prospect which was considered so far possible only with broadband long baseline laser

interferometers [73, /4], and is almost unthinkable with currently operating cylindrical
bars.

4.2 The TIGA Configuration

Stephen Merkowitz and Warren Johnson ofthe LSU were the first suggesting a specific

desing for a spherical GW antenna, which consisted in a set of six transducers attached to

the six non-parallel pentagonal faces of a truncated icosahedron, as shown schematically
in Figure 4.6. They called this special arrangement TIGA, for Truncated Icosahedral

Gravitational wave Antenna [69, 97, 95, 98]. It wiU be reconsidered here as one more

particularization of our general theory for spherical GW detectors.

Figure 4.6. Scheme o/ the Truncated Icosohedral GW Antenna. with resoncror

locations iruiicated,

4.2.1 Description

The truncated icosahedron, TI, is a polyhedron belonging to the same point group
of symmetries as the dodecahedron [63, 57], although the former better approximates
a sphere: the ratio of the circumscribed sphere to the TI volume is of 1.153 +cornpare

with the 1.057 for the ratio of the inscribed sphere to the PHC volume; clearly, the
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pentagonal hexacontahedron is appreciably more spherical-: It has 32 fíat surfaces -

instead of the sixty of the PHC- for mounting transducers, calibrators, balancing weights
and suspension attachments. 20 of them are regular hexagons, whereas the remaining
12 are pentagons forming six pairs of parallel faces. Merkowitz and Johnson precisely
proposed for resonator locations the centers of six of those pentagons, being non-parallel,
which were interesting for being also the positions of the centres of half the faces of a

suitably oriented dodecahedron.

Resonator Polar angle () Azimuthal angle 'P

1 37.377° 1800

2 37.377° 60°

3 37.377° 300°

4 79.188° 1200

5 79.188° 0°

6 79.188° 240°

Table 4.2. Resonator positions [or the TIGA configuration. The iransducers lie at

two polar angles. and the azimuthal angles are multiples 0160° as shown, whenever
the coordinate aIes are taken so that ihe z axis is perpendicular to the x-y plane
of Figure 4·6 .. passinq through the centre 01 the central hexaqon,

They discovered that they had an arrangement that greatly simplified the frequency
structure of the systern 's spectrum: it became two degenerate quintuplets and a singlet.
It is also not difficult to see that the TIGA was the minimal configuration with so much

degeneracy, as there are no 5-resonator configurations with equivalent high symmetry
since there is no regular polyhedron with 10 faces. (There are however other non-minimal

sets with the same degree of degeneracy, but then more than six resonators are required,
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for example 10 transducers on the ten non-parallel faces of a regular icosahedron, etc.
-see [91] for further analysis of this and other possibilities). This high symmetry of the

TIGA arrangement became evident even when examining the analyiic solutions for the

equations of motion describing the resonator amplitudes qj(t), and from these the mode

channels.

Let us now reconsider these results in accordance with our general procedures, indeed

applicable to any conceivable proposa!.

4.2.2 TIGA Response

The first step in the finding of the eigenvalues and the eigenvectors of the P2 matrix

of Legendre polynomials, in this case of range 6 x 6, which is written

(4.28)

with

H fi( Y2,-2 Y2,-1 Y2,0 Y2,1 Y2,2 ) =
Aa -Ba C Ba Aa

Ab -Bh C Bb Ah
Ah -Bb C Bh Ab

Bh Ab -C -Ah Bb

Ba Aa -c -Aa Ba

Bb Ah -c -Ab Bh

where A. B and C are the real values:

(4.29)

A. ¡¡ . 2e f[ sin e2 cos e2 ; el 37.37rSll1 1

B ¡¡ sin2 e2 f[ sin el cos el ; e2 79.188°

e 1 (3 cos
' (}1 - 1) - � (3 cos2 (}? - 1) (4.30)"2 2

-,

and a, b and e are the complex numbers:
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a 1

b
1 J3. - 1 J3.

(4.31)-2-2z b=--+-z.
2 2

P2 is

1 _b2 _b2 _b2 _b2 _b2

_b2 1 _b2 _b2 _b2 _b2

_b2 _b2 1 _b2 _b2 _b2
b2 = A2 + B2 _ C2. (4.32)P2

_b2 _b2 _b2 _b2 _b2
,

1

_b2 _b2 _b2 _b2 1 _b2

_b2 _b2 _b2 _b2 _b2 1

P2 in this case trivially is a Toeplitz matrix like for pentagonal distributions. The cor­

relations between any given pair of resonators is always characterized by the same value

_b2.

The product of Ht and H immediately gives the five non-null eigenvalues (see the

precedent section 4.2.1 and Appendix e):

3A2 + 3B2 o o o o

o 3 A2 + 3 B2 o o o

HtH o o 6C2 o o

o o o 3A2 + 3 B2 o

o o o o 3 A2 + 3 B2

6 o o o o"5

o 6 o o o"5
6

o o 6 o o "515x5 == EE' (4.33)ji

o o o 6 o"5

o o o o 6
"5

from which we read that they are completely degenerat.e, and recalling that there exists

a sixth nul! eigenvalue the whole set is:

e - �
1, .... 5

-

5 a = O. (4.34)
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For the TIGA configuration, and due to the fact that HtH == E€ is a diagonal
matrix, indeed here proportional to the identity, it is also true that the eigenvectors of

P2 essentially are the constituting eigenvectors of matrix H:

iJ(m) = ¡;¡; ,-1 Y =
(2iyV 5 <'m 2,m V 3" 2,m

when normalized, with components

m=-2, ... ,2 (4.35)

(4.36)
There remains also a single eigenvector associated to the null eigenvalue. But this

mode is at the original sphere resonance frequency and does not interact at lowest order

with a GW. In fact, the amplitude of this mode appears at a dominant order of 1]0,
smaller than that of the quintuplets, 1]- �, by a factor of 1]�. It is because of this that we

say it is weakly coupled, and as already seen, it does not enter the explicit expressions
for the system response.

• Frequencies

Eigenvalues in (4.31) imply that al! the five pairs of strongly coupled frequencies
collapse into a single, five-fold degenerate pair

(4.37)

and when t.uning to the first quadrupolar harmonic

(4.38)

Comparing with the numerical values for the PHCA spectrum in (4.25), we see that

the span of both distributions is naturally comparable, yet the PHCA is slightly broader .

• Amplitudes

Again. from the general expression (3.134) and taking into account the calculated

eigenvalues and eigenvectors:

2

x L Y2m(na)g(2m)(s) + 0(0)
m=-2

a = 1, ... ,6. ( 4.39)
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Figure 4.7. TIGA spectrum, The weakly coupled central frequency is non­

degenerated and corresponde to the null eigenvalue, whereas the thick lines rep­

resent the frequency pair five-fold degenerated. As in Figure ..1-5 for the PHCA
1

specirum, units in the graduated vertical axis are W127]2, and the central value 0.0

corresponds to W12.

This highly symmetric and remarkably simple formula was first obtained by Merkowitz
and Johnson [69, 97], although its scope and range of validity are now more firmly es­

tablished in the light of the present analysis.

• Mode Charrnels

Based on the aboye equation, Merkowitz and Johnson also were the first in defining
the concept of mode channel [69]. They discovered that they could decouple each of the

spherical amplitudes at the splitted frequencies by forming linear combinations of the

measured amplit.udes qa(t). We have demonstrated in Chapter 3 that it does not exclu­

sively occur for the TIGA configuration; on the contrary, it is possible for any resonator

layout satisfying the commutativity condition (3.187 ). When it is accomplished, we can

write:
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(4.40)

Nevertheless, it is true that here we face perhaps the simpler case, for the key matrix

via in the construction of the mode channels is not only diagonal, like for the PHC

pentagonal arrangements, but furthermore proportional to the identity:

(4.41)

as much as the frequency matrix itself:

1 1
D ="2 [(S2 +w!)-l - (s2 +w:'t1j e-I5x5.

Hence, it is simply found that:

(4.42)

(4.43)

01' analogously:

fj(s) == ytq(s) = b-. � De (4.44 )

and in components

6

2:>�m)* qa(s) =
a=l

7J-�aN:!� [(s:! +W!)-l - (s2 +w:')-lj g(2m)(s) + 0(0)
m = -2, ... ,2. (4.45 )

There nat.urally are 5 rather than 6 mode channels, each giving a direct one-to-one

readout of a single mode amplitude of the gravitational field.

4.3 A Simpler Example: Responses to a

Calibration Signal
To contrast these results for the PHCA and the TIGA configurations we now study

the responses of these devices to a part.icular simpler signal, a calibration signal, what will
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very neatly display the most relevant features of both resonator distributions enabling a

comparison of the merits of either.

We recall that in this work the calibration signals are always considered to be impulses
of intensity fo delivered perpendicularly to the sphere's surface at point Xo and time

to = O:

fcalibration(X, t) = fo 83(x - xo) 8(t) (4.46)

as aiready described in section 3.1.2 of Chapter 3. In that very chapter, the behaviour of

a generic spherical GW antenna under the action of such a force density was also treated,

whereby the following amplitude responses of the transducers were obtained:

x

qa(S)

+

for any resonator layout when the system was tuned to a certain arbitrary WNL spheroidal
harmonic.

Besides, there we gave these system responses when resonators were tuned to a

monopole frequency, WNL = WNO , but postponed the implementation of the quadrupole
tuning, WNL = WN2, until the study of specific layouts since these are indeed the inter­

esting considerations. Therefore, we are now ready to reach sorne results concerning this

situation, what at this point amounts to be a very easy task, only requiring the respec­

tive substitutions in (4.44) of the already calculated eigenfrequencies and eigenvalues of
matrix P2 for the PHCA and the TIGA proposals.

In the first case, the number .] of resonators was fixed to 5. The eigenvectors 11m)
and the eigenvalues �� were computed to be (section 4.1.):

m = -2, ... ,2

15 . 4

3sm O:' c� 15. 2 2
<, 1 = - SIl1 O:' cos O:'

2
2 5 ? �

�o = -(3cos--1)-4 (4.48)

for na the resonator positions in a pentagonal distribution, preferable at polar angle
a = 67.617" on the PHC surface (see Table 4.l.).



4.3. A Simpler Example: Responses to a Calibration Signal 109

When inserted in formula (4.44), these values directly yield

Qa,PHc(8) = r¡-��IAN2(R)lfo x

2

x L � [(82 +w;'+)-l - (82 +w;'_)-l] �� Y2,m(na)Y2�m(nO)
m=-2

a = 1, ... ,5. (4.49)

For the mode channels one has:

,(m) ( )YPHC 8 1J-�IAN2(R)lfO� [(82 +w;'+)-l - (82 +w;,_)-l] Y2�m(no)
m = -2, ... ,2. (4.50)

We recall that the inverse Laplace transform oí

(4.51)

lS

WN� sin �(Wm+ - wm_) t . cosWN2 t + O(r¡�) (4.52)

which is a beat, a sinusoid of carrier frequency WN2 and amplitude modulated by another

sinusoid of much smaller frequency of order r¡�WN2' This is illustrated in a numerical

simulation for the five measurable quantities qa(t) -the resonator displacements-- when
the antenna is acted upon by the abovementioned calibration signal, what is displayed in

graphs 4.8 for the time series and their respective spectra. Mode channels temporal and

spectral evolutions are also showed. Note that while the former are not simple beats, the
latter are.

In the second case for the TIGA, the number J ofresonators was 6, and the completely
degenerate non-null eigenvalues and associated eigenvectors read:

-

:)
m = -2, ... ,2, (4.53)

for na the locations of the centers of half the pentagonal faces of the TI (Table 4.2).
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In terms of these quantities, the amplitude responses are:

qa,TIGA(S)

(4.54)

These equations show that the hitting point position no can be easily and reduntlantly
determined from the readouts lÍa(s).

The mode channels

.(m) ()YTIGA S -7]- � IAN2(R)lfo� [(s2 + w�)-l - (S2 +w:)-l] Y2�m(no)
m=-2, ... ,2 (4.55)

are proportional to the sphere's quadrupole radial oscillation amplitude IAN2(R)IY2�m(no)
at the hit point (801. The results of a numerical simulation of these TIGA responses to

an impulse signal delivered to the TI solid at the same location as in the PHCA example
is plotted in diagrams labelled Figure 4.9.

As clearly shown in both Figure 4.8. and Figure 4.9., the most relevant difference

between the PHCA and the TIGA proposals is that the PHCA system responses qa(t)
are superpositions of three different beats, from which the frequency spectrum shows

three pairs of peaks as expected from (4.17), in contrast to the unique component for

the TIGA. In return, the PHCA mode channels are single beats each, but with differing
modulation frequencies, whereas the modulation frequencies of the single beats in the

TIGA case are exactly equal.
So we see that the mode channels are always pure beats, whose spectra consist of

the individua//y separate pairs of peaks at , of course, precisely the frequencies arising
fr0111 the splitting of the resonance due to the coupling. One might interpret that the
PHCA device gives rise to a sort of Zeeman sp/itting of the TIGA degenerate frequencies,
which can be attributed to an axial symmetry breaking of the isotropic character of that

resonator distribution; the PHCA mode channels naturally resolve the split multiplet
into its components.
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Figure 4.8. Simulated responses oi PHCA to an impulsive calibration signal, with
associated spectra.
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Figure 4.9. Simulaled responses of TIGA lo an impulsive calibration siqnal, with
associated spectra.



Chapter 5

IDEALITY DEPARTURES IN

SPHERICAL DETECTORS

Our model for the dynamical description ofGW antennee was constructed regarding a

perfectly homogeneous and symmetric spherical detector and a set of identical resonators,

which were ideally located on its surface at exact positions and were also tuned to just
one given isolated resonance frequency of the free sphere spectrum.

Since these are, of course, quite unrealistic assumptions, a natural extension of this

work would be the calculation of the effects produced in the antenna behaviour by small

departures from those perfect matching and perfect spherical symmetry assumed so far,

thereby increasing the degree of the theory applicability to real systems.

Experience with similar failures, for example in perfect matching on bar antennee

[121], suggests that t.he system responses should be influenced only in second order by
small departures of a parameter from its nominal value, at least with respect to a certain

number of those small defects. Nevertheless, a quantitative calculation for each case will

be of practical interest.
As we shall see, t.his evaluation reveals that the system is effectively rather robust

against sorne of those small imperfections. what has also been reported in reference [98);
however, there are two cases deserving special attention because they show significant
changes relative to the ideal perfect device performance: the existence of a second free

sphere's frequency nfar the resonator's one, and the breaking of spherical symmetry due

to suspension.
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• Parametrization of Ideality Departures

In order to quantitatively assess those ideality departures, we are going to adopt a phi­
losophy derived from the procedure applied to the ideal system. Its key point consists
in accepting that the difference between the numerical value Preal of a certain system

parameter suffering departure from ideality -resonator masses, frequencies or locations,
... -, and its value Pideal in the ideal detector, is, a priori, of order 1]!:

Preal = Pideal (1 + P1]!), (5.1)

which in fact stands as a definition for p.

Hence, once Pideal is thought to be known p could be readily determined, whereupon
the robusiness of the system can be tested: if the dimensionless parameter p is of order

1 or, at least, appreciably larger than 1]!, then the device is recognized to be affected

by that particular deviation from ideality, but if, in return, p happens to be too small,
i.e., of order 1]! itself or smaller, then the system will be considered robusi as regards the

failing parameter.

This parametrization is understood from the fact that our solutions are always given
as perturbative series expansions in ascending powers of the small quantity 1]!. It is

therefore appropriate to parametrize deviations in terms of its powers so as to address

them consistently with the orders of accuracy of the series solutions to the equations of
motion. When p is appreciably larger than 1]!, ideality departures actually are of order

r¡! and the aboye mentioned solutions will be appreciably altered in their leading order

terms -contributions proportional to 1]! for the frequencies and those proportional to

1]- t for the amplitudes-; if, on the other hand, p is too small, such defects are of order

1] or smaller, and any modification to the responses will be swallowed into their non­

dominant higher order correction terms -0(0) or 0(1) ...-, so that the more important
ones will remain unaffected, from which the system is said to be robusi against that

ideality breaking as explained aboye.

Let us now quantitatively develop the procedures to study various interesting depar­
tures from ideality.

5.1 Mismatched Resonator Parameters

In this section, we are going to study ideality departures in three different param­
eters referred to the physical characteristics and situation of resonators. Firstly, exact
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resonator positions of the ideal detector are going to be displaced to new close real lo­

cations. Afterwards, resonator masses and natural frequencies, both of them groups of

quantities with the same value in a perfect device, would be allowed to slightly differ

among them.

• Location Tolerances

Let na, a = 1, ... , J, denote the J resonator positions relative to a pre-selected ideal

distribution, for example the TIGA or the PHCA configurations. Let now n'a be the

reallocations, not equal to the former but e/ose to them. Following (5.1), we write

I 1

n a
= na + Va r¡ 'j a = 1, ... , J. (5.2)

As shown in Chapter 3, the system responses depend on the resonator positions

through the spherical harmonics Yím(na) and through the eigenvalues e;' and the eigen­
vectors v(m) of the P¡(nanb) matrix, explicitly entering the expressions within lowest

order terms. So, it would be necessary to find out how these functions change when na

is subst.ituted by nia. It can be easily found that

Y/m (u'a)

e'm
v(m)1

Y/m (na) + O(r¡t)
em + O(r¡t)
v(m) + O(r¡t). (5.3)

Hence, corrections to the coupled antenna normal frequencies, amplitudes or mode

channels will be of second order.

\Ve thus conclude that the system is robust with respect to small misplacements of
resonators relative to their pre-established chosen positions .

• Non Identical Resonators

Non identical resonators may differ in mass or natural frequency.
For the masses, one can consider changes like

a = 1, ... , J, (5.4)

or
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a = 1, ... , J, (5.5)

where 1] has to be defined in this situation, for instance, as the ratio of the average

resonator rnass to the sphere mass.

The circumstance of 1] appearing as a multiplicative factor in the rhs of expression

(5.5) makes obvious the fact that non-uniforrnities in the resonator masses only affect the

equations describing the dynamics of the antenna again in second order, since from this

formula it can be seen that the parameter 1] allowing the perturbative series expansions
of the system responses is corrected itself by 1]� terms.

Therefore, the device is also robust to resonator mass mismatches.

As regards the frequencies, they may also differ among them:

a = 1, ... , J. (5.6)

Here, continuity arguments like those used aboye cannot be applied due to the fact

that these changes on the resonator frequencies affect calculations of the coupled sphere
spectrum, and so the situation of poles and the value of their residues in the original
Laplace transform expressions for the measurable qa(s) displacements.

Instead, one must go back to formula (3.71) in Chapter 3 for the zeroes of the �(s)
determinant:

�(s) = det [Óab + r¡ S2 : O� Í<ab(S)] = O,

which we recall is the equation leading to the coupled detector spectrum, and recalculate

it following the procedures of section 3.4 in Chapter 3, but taking also into account the

substitutions (5.6). We recall that for roots around the resonance frequency 0= WNL,

(5.7)

(5.8)

the dominant term in kab(s) is

2,...,2
S Hb lNL)

s2 + O� Xab (5.9)

Hence, �(s) is given by

�(s) [ 202 (NL)

1s b Xabdet Óab + r¡ � 2 2 2
S· + 0a S + 0b

O, (5.10)
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and inserting (5.6) and (5.8) one finds:

�(8) [
2,....2 1

1.

(NL)]d e
8�G +eb1J2+... Xab

et Uab + 1J 2 1 182 + Q2 1 + .2�n2 ea1J2 + ... 82 + Q2(1 + eb1J2)

From here, one can easily arrive to see that the old equation (3.93) for the lowest order

coefficient X 1. in the development (3.88) of the system frequencies around the resonant
2

[ 1 (NL)]det bab -

Xt Xab
0, (5.12)

is replaced by

[ (NL)]det bab - tab )
= 0,

Xt Xt
- eb

(5.13)

which of course reduces to formula (5.8) when all the e's vanish, i.e., when all the res­

onators are characterised by the same resonance frequency.
Therefore. if resonator real frequencies are actually described by (5.6), then significant

effects on the results of the theory for the ideal device are expected even to lowest order
• 1

1l11J2.

But before carrying on with more complicated operations to quantitatively assess the

consequences of this assertion, equation (5.6) has to be carefully reconsidered, since we

are precisely concerned with realistic situations and it is possibly unrealistic to admit

such large tolerances in resonator vibrational behaviour.

For example, in the TIGA experiment [95], an error of order 1]� would amount to

around 50H;:; of mistuning between resonators, what by all means is absurdo Besides,
in a full scale sphere ( :::::: 40 tons, :::::: 3 m in diameter, :::::: 80Hz fundamental quadrupole
frequency and 1] :::::: 10-5) the same error would amount to between 5Hz and 10H.:: in

resonator mistunings for the lowest frequency, what is probably excessive for a capacitive
transducer, although, on the contrary, may be realistic for an inductive one. Then, (5.9)
would be the master equation providing the frequencies of the antenna.
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With this exception, it is thus more appropiate to consider that resonator mistunings
are at least of order 11. If this is the case, once more the system happens to be insensitive

at leading order to such mistunings.

5.2 Non Ideal Tuning: URF Effect

In the introduction to the chapter we announced that, in contrast to what happens for
the aboye treated ideality failures against which the system behaviour is quite unsensitive,
at least two different departures from the original assumptions can be considered to

appreciably affect the device response even at leading order.

In this section, we are going to discuss the first of them, which assumes the existence

of a second free sphere frequency WN'L' near WNL == n, quantifying and evaluating also

its substantial effects on the detector frequency spectrum.

5.2.1 Unisolated Resonance Frequency

The first question we want to address now is this: does the presence in the neigh­
bourhood of WNL of a second WN'L' frequency alter in sorne appreciable way the results

obtained for the ideal antenna?

The first thing to do is the definition of what we mean by a neighbourhood of WNL.
We have already set out this question again in section 3.4 of Chapter 3, when supply­
ing the hypotheses for the most idealized situation of a perfect sphere with perfectly
tuned identical resonators. We recall here that the nearness between eigenfrequencies is

pararnetrized, as any ideality departure, in the form

2 2 !.

WN'L' = WNL (1 + 1'r¡2). (5.14)

If r is of order 1 or at least significantly larger than 1)�, then the order r¡� is fully
maintained in (.5.14) and the clynamical behaviour ofthe system could be affected by the

nearness, as usual.

In contrast to the discussion for mismatched resonator parameters, here r must not

be determined but is in fact a known quantity, since the whole spectrum of the free

sphere is known (see references in Chapter 3) and r¡� is a fixed quantity in a particular
experimento Hence, the key point here resides in investigating the differences between

the Wnl of the free sphere spectrum and the chosen resonant WNL, for bringing out to

Iight the possible existence of a given WN'L' satisfying (5.14) with the required condition
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on r. Naturally, WNL must be a quadrupole harmonic with L = 2 if quadrupole motion

sensing is expected, and preferably the first, N = 1, or the second, N = 2, of the series

in a practical system.
After a careful examination of the spectrum of a typical planned aluminium sphere 1,

see graph in Figure A.1 of Appendix A, one can verify that there is a pair of candidates,
with values expressed in kH z: W22 and W14.

From these quantities and any sphere:

Wf4 = W�2 (1 - 1.105 . 10-2). (5.15)

Introducing a Iikely value for TJ, around the exact value in the TIGA prototype, of

approximately TJ � 1 iDo = 5.88.10-4, r is found to be r � -0.456, a quantity appreciably
larger by one order ofmagnitude in absolute value than 7]t � 2.42.10-2, so that equation
(5.14) is appropiate for describing the degree of nearness between the frequencies of that
selected pairo Moreover, if the mass of the spherical detector is increased, a desirable

prospect and indeed a requirement in a future experimental full scale device, then the

ratio of the resonator mass to the sphere mass would decrease, so that the difference

between r and TJk wiII be even larger and r can be strictly considered of order 1.

It is in this sense that we say Wn is an unisolated resonance frequency -there exists a

second frequency of the free sphere, W14, within a distance of order 7]t-, and as long as it

is in fact a suitable sphere's frequency for the resonator set to be actuaIIy tuned to, the

effects of such unisolation , which we are going to caII URF effects, must be accurately
determined and analysed to achieve a description of the detector real behaviour.

5.2.2 Modified Responses

One may expect that the presence of a second frequency WNI LI near the resonant WNL

alters in a fundamental form the dynamical responses of the device, since that affects an

essential hypothesis for the developments of the theory of the ideal system.
In order to evaluate the induced modifícations, it is not necessary to change the

method used to solve the GRD equations on the basis of our model. It will just suffice
to re-examine our expressions searching for new contributions when (5.14) is taken into

account.

1 We explain that for typical planned aluminium spheres R = 1.50m, the Poisson ratio is a = t and
the transversal velocity of normal vibrations in the material has the value Vt = 3160ms-1, according to

data given in (31).
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• Frequency Splitting

We start from equation (5.7) for the zeroes of the determinant 6.(s):

(5.16)

whose solutions, giving the coupled detector natural resonances around the resonance

frequency n, were taken as the perturbative series

., 2 !.
sñ = -n (1 + X!.7]2 + X17J + ...).

2
(5.17)

For the one associated to first order, X 1., determinant 6.(s) reduces to
2

det [óo• - xli. X��L)] = 0,

from which xi were found t.o be the eigenvalues of x�f,L):
2

(5.18)

(5.19)

being �� the J positive or null eigenvalues of matrix PL(nanb), implicitly contained in
,(nl) .

Xab .

(5.20)

We face a different situation when there exists a second WN'L' neighbouring WNL.

In this case, the contributing term to leading order in 6.(s) is not only that associated
(NLl (N'L')to Yab . but also the ene related to Xab ,what simply arises from the result of

subst.ituting (5.14) and (.5.11) into (5.16), and just retaining terms of order 7]0:

[ 1 (NL) 1 (N'Lll]_det. Óab -" X b
- X b

- O.
\ 1 CRFaX!,uRF(XVfRF - r) a

The zeroes of this determinant will provide the URF2 resonances of the antenna

(5.21)

around WNL:

2URF on a subscript of a quantity stands for a label indicating that such quantity is calculated for

the case of the system having an unisolated resonance frequency.
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Wr,URF == wIn (1 + X�,i,URF T}�) + O(T}). (5.22)

Clearly, the determinant (5.21) is more complicated than its counterpart (5.18) for the
situation of isolated resonance frequency, IRF case, to which it reduces when r is large,
i.e., when Wn can be considered to be isolated. The procedure of diagonalizing X��L)
developed for (5.18) can also be applied here. X��L) and X��' L') are hermitian matrices,
hence their combination in (5.21) is also hermitian and therefore diagonalizable.

Which one is the correct basis diagonalasing at the same time both X��L) and X��' L')
is not an obvious question, since the simultaneous reduction of a pair of matrices to a

diagonal form cannot always be performed.
However, consider the particular situation in which we construct a matrix Q whose

columns consist in the common normalised eigenvector of X��L) and X��'L'). From their

orthogonality property, Qt will of course coincide with Q-1, so that

Qt .Q==Q-1.Q==1
Qt . X(NL) . Q == diag [Xi,NLl ... 1 x},NL]
Qt . XCN'L') . Q == diag [ XI,N'L" XJ,N' L' ] , (5.23)

being X;,NL the eigenvalues of XCNL) and xl,N'L' those of XCN'L'):

2
Xi,NL

(5.24)
2

Xi,N'L'

each pair associated to an unique eigenvector vCi).
Then it is easy t.o see that Q diagonalizes the matrix associated to (5.21):

Q-1. [b 1 (NL) 1 (N'L')]ab
-

-x,-- Xab -

( )
\::ab

!,URF X!. URF X.!. URF-r
2 I 2'

. Q ==

(5.25 )
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so that its determinant could be rewritten

J

II [Xl URF -1'· Xl URF- (X[ NL + x;NILI)' Xl. URF + r· x;NL] = o.
2 I 2' ' 1 2' I

;=1

(5.26)

Therefore, the assumption of the existence ofmatrix Q simplifies the process of finding
the roots of determinant (5.21) in a general case, but, in return, gives rise to the crucial

question: when does it happen that there exists a common set of eigenvectors for XCNL)
and X(NIL'l?

The following theorem holds [20, 36, 119):

If two herrnitian matrices commute -their product is independent of the order of the

factors-, they have a common set of eigenvectors forming an orthogonal basis. The

converse of this result, that if there exists a complete set of vectors such that each

of thern is simultaneously an eigenvector of both matrices, then they cornmute, can

also be proved.

Hence, we have arrived to a certainly simple requirement ayer XCNL) and XCN'L'), 01'

over PL and Pí. which allows us to go further in the interpretation of possible generic
conclusions about how any spherical GW antenna is influenced by the URF effect. The

requirement is

(5.27)
As we shall see, this is the case for the PHC and TIGA arrangements.
Note that the implementationof (5.27) leads to re-express (5.21) as the product (5.26)

of cubic algebraic independent equations having as unknowns Xl, once the eigenvalues
2

X;,NL and X¡,NIL' are fixed. This simplicity allows us to advance, previously to further

calculations constricted to specific layouts of resonators, a qualitative a priori picture of

the new frequency spectrum, where doublets appearing in the splitting of the isolated

resonance frequency t.ransform into iriplets in the unisolated case:

• if PL does not present null eigenvaluesé, Pu may or may not, then each factor in

(5.26) maintains its four terms, so that each will present three non-zero solutions

which, in principie, could integrate a triplet containing three strongly coupled fre­

quencies (triplet of the scT type) at most, although the actual classification will

depend on the final numerical outcomes;

30f course, this case is only possible if J :S 2L + 1.
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vertical axis on the right, where units are n27]�, and the central value, labelled

0.0, corresponds to n2.

• if PL presents a number n of null eigenvalues, sublabelled j, associated to certain

eigenvectors of the common basis, whereas the corresponding eigenvalues of Pi»
are non-null, the cubic equations associated to j will decompose as follows:

Xl URF (xi URF - 1'· Xl URF
- \'J2 N/U) = O.

2 I
2 J 2' J (5.28)

Among the resulting J triplets n will contain a central weakly coupled value exactly
at the resonance WNL frequency. so that each of them will be constituted at most

by a doublet of strongly coupled frequencies (triplets of the scD+wcS type);

• if both PL and Pu present m null eigenvalues, sublabelled j, associated to the same

common eigenvector, the cubic equations depending on j will decompose as follows:

(5.29)
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Of the J resulting sets, m will show at most one strongly coupled frequency and

two more weakly coupled forming the triplet (seS + weD type).

Weakly eoupled frequencies are understood here as those at the resonance frequency
at leading order, with assoeiated amplitudes smaller than those of the strongly coupled
ones by factors of order 1]! at least, and which are calculated from the null Xl,nl or �1.1
eigenvalues. so that their expression in powers of'l reads

w�c = n2 (1 + X1,wc'l + ... ). (5.30)

In a given URF triplet, they oecur in singlets when it is only one of the matrices, P2,
which presents null eigenvalues, while they appear in pairs when it happens for the two

matrices.

In order to clarify this casuistry, let us graphically display an idealised example.
Consider a resonator distribution such that P2 only presents null eigenvalues when J > 5,

consequently being its number J - 5, and P4 only when J > 9, so that its number of null

eigenvalues will be J - 9. In other words, consider the layouts for which the ranges of the

matrices are as large as possible. Besides, we assume that the number of strongly coupled
frequencies in each set is also the maximum allowed by the speeification of the eigenvalues
in the equations. Then, the former eonsiderations lead to the situation plotted in Figure
5.4 where, as usual, seT stands for strongly coupled Triplets; seD + weS refers to the

t.riplets including a strongly coupled Doublet and a weakly coupled Singlet, and finally
seS + weD is the label for strongly eoupled Singlet and a weakly eoupled Doublet. As

shown , the number of seT triplets can never exeeed 5, while the number of seD + weS

sets is never greater than 4.

In addition t.o these results, further appreciations can be pointed out. Inspection of

orders of magnitude in (5.26), with

7' :::::: -0.456

.V L = 22

\1,22 = 4� IA22(RW�1.2
.-l.22(R) = 0.0745

a,2:::::: 1

\},22 :::::: 0.0022

.V' L' = 14

Xl,14 = 4911' IA14(R)12�¡,4
A.14(R) = -3.6308

(5.31)

E.l4::::::1
\1,14:::::: 9.4414 i = 1, ... , J,

reveals that it has just two dominant terms in every eubie equation,
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= 0, (5.32)

from which it becomes clear that one of the frequencies of the triplets will always be

located very close to the original tuning frequency ;,)NL. To assess how much near this

frequency actually is. one needs to restrict to particular cases and numerical evaluations.

This is an important point, because an excessive nearness could alter the order of this

frequency contribut.ion, turning it weakly coupled. This will happen if the whole product
y 11]! in (5.17) is in fact of the form X11], with €1 of order 1 or even smaller, because

3

then its contribution to the vibrational amplitudes will not affect the dorninant order

but a higher one. The rernaining pair will forrn a rather symmetric doublet around it,
in good agreement with the idea that the presence of the second frequency must be

just a perturbation of the ideal situation, although the strict syrnrnetry of the ideal IRF
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doublets will be broken.

Finally, a similar exploration for the effect on the Wnl "# WNL frequencies of the

uncoupled spectrum and their splittings would demonstrate that the presence of WN'L'

near WNL does not indeed affect in its essentials the IRF distribution of the J singlets
corresponding to each Wnl in the coupled spectrum scheme at leading order.

In conclusion , the configuration of the natural non-tuned-frequencies splittings of

the coupled antenna seems to be robust with respect to the neighbourhood effect. In

contrast, and as expected, the splitting of the tuning mode is influenced so that doublets

associated to ideal tuning essentially become triplets, although possibly integrated by
strongly coupled doublets, in any case non-symmetrically placed around WNL, and a

third weakly coupled frequency .

• PHCA and TIGA cases

As always, let us specify the aboye presented general analysis for the two spherical GW
antennee proposals: the PHCA and the TIGA arrangements. Our specific purpose will

be to solve equation (5.26) for the X 1. URF unknowns determining the URF frequencies
2 •

-see (5.22).
URF-PHCA frequencies around W22

Let us consider first the neighbourghood effect, or URF effect, for the PHCA antenna.

As usual. the process of application of the general results to certain particular pro-
posals, in which the resonator layout presents specific configurations, begins with the

derivation of the eigenvalues and eigenvectors of the PI(nanb) matrices involved in the

calculations -see Chapter 4.

Taking t.he neighbouring frequencies W22 and W14, the PI matrices to work with are

P2(nanb) and P4(nanb), constructed from the Legendre polynomials of order 2 and of

order 4, respectively:

1 2P2(COSab) = 2" (3cos Bab -1)
1 4 2P4(COSab) = S(35cos Bab - 30cos Bab + 3). (5.33)

When the positions of the five sensors are fixed in the surface of the pentagonal
hexacontahedron at the pentagonal configuration locations with polar angle B = 67.617°

(see Table 4.1), matrices P2 and P4 adopt the same structure:
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1 B C C B

B 1 B C C

P2 == P4 == e B 1 B C
B2 = -0.249 B4 = -0.130

(5.34)
e C B 1 B

C2 = -0.052 C4 = -0.355.

B C C B 1

This particular arrangement is indeed common to all the PI associated to the PHCA con­

figuration, for their structure being determined by that of an unique matrix constructed

from the angular relative positions between the resonators. Then, it is easy to prove that

any pair of these PI matrices commute:

[PI,P!'] = O. (5.35)

As explained aboye, it means that there exists a basis of simultaneous eigenvectors
for PI and PI', and in particular it happens for P2 and P4, which present the associated

eigenvectors arranged in columns of Q:

0.4472 -0.5899 0.0419 -0.5525 .0727

0.4472 -0.3992 0.6131 0.2661 -0.4281

Q== 0.4472 0.3432 0.3371 0.1220 0.6200 (5.36)
0.4472 0.6113 -0.4048 -0.4635 -0.5750

0.4472 0.0346 -0.5872 0.6279 0.3104

with associated eigenvalues in Table 5.1.

Therefore, eigenvalues of \:��2) and X��4) appearing in the cubic equations (5.26) for
the lowest order coefficient \: J;.URF in the frequency series can be calculated from (5.24)
-we give the results also in Table 5.1-, so that the only quantity to be eventually fixed in

the three final different cubic equations to be sol ved for the triplets of splitted frequencies
IS 1'.

Remember that, once the neighbouring frequencies have been fixed, this is a coefficient

depending on the exact value of r¡ -see (5.14). We will work with two possible quantities,
the first corresponding to the ratio of the resonator mass to the sphere mass in the TIGA

experimental prototype: r¡ = 176�.45' hence 11'1 will be 0.464; and the second a likewise

value in a full scale future sphere r¡ = 40600' with Irl = 2.21. In both cases, the equations
will read:
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Eigenvalues P2 P4

�6 0.3990 0.0295

e -e -e 0.9298 1.4939-1
-

+1 = 1

e e-e 1.3707 0.9914-2 =
+2 = 2

129

Eigenvalues (22) (14)
Xab Xab

X6 8.84. 10-4 0.2785

2 2 - 2 20.55. 10-4 14.1045X-l = X+l = Xl

2 2 - 2 30.29.10-4 9.3602X-2 = \:+2 = X2

Table 5.1. Eiqencalues ofmatrices P2 and P4 in the left table and of matrices X��2)
and XS�4) in the right table for the PHCA arrangement. As for any pentagonal

configuration, the number of diJJerent values is 3, in accordance to the expected

degeneracy in the ±1 and ±2 indexes.

'(tURF - 1'· \�.URF - 2.794.10-1 .

X�,URF + 8.82.10-4., = O (O)

xi URF -,. xl URF - 14.1066· X.!. URF + 20.55.10-4., = O (1)
2 I 2 I 2 I

ti URF -,'. Xl URF - 9.3632· Xl URF + 30.29 .10-4., = O (2)
2' 2 I 21

(5.37)

with solutions gathered together in Table 5.2.

It happens that solutions in the (1) and (2) sets are doubly degenerate as a con­

sequence of the fact that the eigenvalues of both P2 and P4 also are simultaneously
degenerate in their indexes ±1 and ±2. Therefore, the total number of triplets arising
from the splitting of the tuning frequency in the PHCA proposal for the URF' case is, as

expected. five, although they collapse into three different triplets. The IRF degeneration
structure of the resulting sets is maintained again following the spinorial pattern of the

gravitational waves, a property that the URF effect does not affect.

The analysis of the URF effect is by itself necessary for a complete study of spherical
GW antennee. However, we are specially interested in it with respect to the PHCA

proposal, The reason is that we are able to demonstrate that our model not only gives
an accurate account of the coupled spectrum of the detector when it is linked to a first

layout of resonators in pentagonal configuration tuned to W12, but, what is even more



130 Chapter 5. IDEALITY DEPARTURES IN SPHERICAL DETECTORS

I I
Value of the Solution Triplet-Equation Index

Mass Ratio Index (O) (1) (2)

1 - 0.8085 - 3.9949 - 3.3006
_ 1

'f/prototype -

1762.45

2 0.3461 3.5311 2.8369

r = -0.464

3 -0.0015 - 0.0001 - 0.0001

1 - 2.3295 - 5.0199 -4.3581

I]
- 1

sphere -

40000

2 0.1261 2.8102 2.1488

r = -2.210

3 - 0.0066 - 0.0003 - 0.0007

Table 5.2. Solutions 01 the three different cubic equations jor the PHCA proposal,
The solution inder. indicates a particular [requencu in a given triplet, which is

labelled as a whole by the equation indexo

interesting, it can also describe the device dynamics when a second group -non cross­

interacting at leading order with the first- is tuned to Wn, as we have proposed so to

t.ake advantage of the good sphere absorption cross section at the first and the second

quadrupole harmonics.

For this coupling, the model considers the effects of the actual presence of W14 near

..Li22, so that then the understanding of the behaviour of the antenna under the influence

of an incoming signal is as complete and as close to reality as possible. The final sum­

marized issues are that our theory predicts the appearance of three different doublets of

frequencies, two of them doubly degenerate, around W12 as a result of the coupling of the
first layout, whereas Wn will split into three different triplets of the seD + weS type, be­

ing the degeneracy of the sets maintained in aIl the cases, from which, certainly, different
wave amplitudes wiIl couple selectively to different frequencies for the two layouts, and
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therefore for the complete antenna .

• URF-TIGA frequencies around W22

With respect to the TIGA, considerations are even simpler. TIGA resonators' arrange­

ment greatly simplifies once more the algebraic mathematical developments, and so the

frequency structures of the system's spectrum under the URF effect showing as always
a maximum degree of degeneracy.

This is already made evident at the first stages of the analysis. Matrices P2(nanb)
and P4(nanb) are identical when the 6 resonators' positions for the TIGA configuration
in Table 4.2 are used to fix na and nb; and not only this, but furthermore all the non-

diagonal elements have the same value:

1 A A A A A

A 1 A A A A

P2 = P4 =
A A 1 A A A

A = -0.2
A A A 1 A A

A A A A 1 A

A. A A A A 1

Eigenvectors read

-0.1796 0.7880 0.2332 -0.3543 -0.0122 -0.4082

0.0234 -0.4376 0.2639 -0.3175 -0.6861 -0.4082

Q=.
0.0044 -0.4012 0.2527 -0.2828 0.7270 -0.4082

-0.6929 -0.0869 -0.0694 0.5834 -0.0220 -0.4082

0.6775 0.1377 0.1963 0.5628 -0.0067 -0.4082

0.1671 0.0000 -0.8768 -0.1915 0.0000 -0.4082

(5.38)

(5.39)

and eigenvalues, that. in fact were already calculated in Chapter 4 when studying the

TIGA ideal proposal +see (4.31)-, are easily found to be those in Table 5.3, from which

one can also derive \[,22 and X[,14'
These quantities enter the two different cubic equations for X.!.:

2

xi URF - r.:ti CRF - 11.3323· x.!. URF + 1'1.0106.10-5 = O (1) - (5)2' :2 I 2 '

320X 1. URF
- r . X 1. URF

=

2' 2 '
(6) (5.40)
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Eigenvalues P2 P4

(Í = ...
= �g 1.2 1.2

a o o

Eigenvalues (22) (14)
Xab Xab

XI = ...
= X� 0.0027 11.3297

X� o o

Table 5.3. Eigenvalues ofmatrices P2 and P4 in the left table and ofmatrices X�2b2)
and X��4) in the right table for the TIGA arrangement. The degree of degeneracy
18 maxlmum.

with solutions given in Table 5.4.

Once again, the frequency shifts in each triplet are al! identical among the different

sets from (1) to (5), as a consequence ofthe degeneracy in the eigenvalues. In other words,
the quintuplet of degenerare bare sphere-modes associated to W22 has bifurcated into non­

symmetrical!y upshifted, downshifted and central degenerate quintuplets of modes.
For the remaining single triplet (6), that corresponding to the nul! eigenvalue, we

effectively see that it is of t.he seS + weD type: a strongly coupled singlet below W22, plus
a weakly coupled doublet just at the original sphere resonance frequency which would

not interact with the gravitational wave at leading order.

• Discussion

Analysis of the resul ts in Table 5.2 and Table 5.4 for the X.!. uRF solutions in the PHCA
2'

and TIGA cases. which directly yield the coupled frequency spectrum under the URF

effect. in Table 5.·) for bot h devices, not only corroborates sensible expectations, sueh

as that of the maintenance of the ideal degeneracy pattern, but also qualitative predic­
tions. in particular the existen ce of triplets including a central element very close to the

resonance one and a non stjmtnetric doublet around it.

Furthermore. the study reveals sorne new features. The first set of observations refers

to the structure and numerical values of the obtained triplets without a priori weakly
coupled components: (0)-(2) for PHCA and (1)-(5) for TIGA.

First of all, the found numbers are comparable to those of the IRF situation (see
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I
Value of the Solution Triplet-Equation Index

Mass Ratio Index (1) - (5) (6)

1 - 3.6062 O

r¡
- 1

prototype -

1762.45

2 3.1424 O

r = -0.464

3 - 0.0001 -0.464 = a

1 - 4.6479 O

r¡
- 1

sphere -

40000

2 2.4384 O

r = -2.210

3 - 0.0005 - 2.21 = a

Table 5.4. Solutions of the twa different equatians obtainedfar the TIGA proposal.
The soll.ltion index indicates a particular frequency in a given set, which is labelled

as a whole by the equation indexo For the (6) case consiructed from the null

eiqenualues, the third arder algebraic equation reduces to first arder so that it has

an l.lnique non-null strong caupled solutian, at which the triplet becames af the

scS + wcD type.

PHCA frequencies in (4.25) and TIGA frequencies in (4.35)), although the URF quanti­
ties are appreciably larger, and so is the frequency span of the sets.

It a.lso happens that each of them has two downshifted components being the re­

maining one upshifted, what means that the bifurcation of the degenerate free sphere
modes associated to the resonance frequency always follows the same pattern: one fre­

quency aboye the value of W22, a second frequency under but near it -we are going to

call it central frequency-, and finally a third solution also located under W22, but non

symmetrically with respect to the first one.

Hence, each triplet contains a pair imitating the IRF doublets, but it is clearly shown
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I
Proposal Frequencies around W22

r¡prototype r¡.phere

WO,u =w22(1+0.17317]!) WO,u = W22 (1 + 0.0631 r¡!)
WO,d = W22 (1 - 0.4043 7]!) WO,d = W22 (1 - 1.1648 r¡!)

PHCA Wl,u = w22(1 + 1.76567]!) Wl,u = W22 (1 + 1.4051 r¡t)
Wl,d = W22 (1 - 1.99757]!) Wl,d = W22 (1 - 2.5100 r¡t)

W2,u = w22(1 + 1.41857]!) W2,u = W22 (1 + 1.0744 r¡t)
W2,d = W22 (1 - 1.65037]!) W2,d = W22 (1 - 2.1791 r¡t)

Wl, ... ,5,u = W22 (1 + 1.5712 7]t) Wl, ... ,5,u = W22 (1 + 1.2192 r¡!)
TIGA Wl, ... ,5,d = Wn (1 - 1.8031 r¡!) Wl, ... ,5,d = W22 (1 - 2.3240 r¡t)

W6 =;,,)22 (1- 0.232r¡!) W6 = W22 (1 - 1.105 r¡t)

Table 5.5. Strong/y coupled [requencies of the spherica/ antenna spectrum when

the CRF effect is considered. Ca/cu/ation haoe been performed [or two different
raiios of the resonator mas to the sphere mas s -r¡prototype, corresponding to the

TIGA experimeta/ prototype at LSU, and f/.phere, a iheoretical va/ue for a full
sca/e juture spherical detector=, and besides for the two exístent specific proposals,
PHCA. and TIGA. Subindexu-(up) /abe/s the values which are above the resonance

[requcncij W22, uihereas d-(down) labels those underneath.
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in the results that their strict syrnmetry is broken under the URF effect, so that it is

always the frequency under W22 the greater in absolute value. Besides, taking into account

that the central frequency is also smaller than W22, it became obvious that the whole set

has been influenced by the fact that W14 is smaller than W22, which explicitly enters the

equations for instance through the sign of a. So, each group of coupled frequencies in

the IRF case has suffered a displacement approaching W14. This dragging is always more

important for the frequency closer to it: the absolute value of the downshifted frequency
is greater than that of the upshifted one in each seto

Summing up, the URF effect results in a dragging effect breaking the symmetry of

the IRF doublets, which approach the second disturbing frequency W14, and moreover

induces the appearance of a third component near the resonant W22.

Near actually means really near: we see from the numbers that the central X 1. URF
2 •

in each group is indeed of order 17� itself or even smaller", so that the central URF

resonances will actually be of the form

2 2 �

Wi,centra/ = WNL( 1 + Xl,centra/1J ) + 0(172). (5.41)

Reproduction of the process of calculation of residues determining the vibrational ampli­
tudes would demonstrate that the contributions of such modes are not at leading order

1J-�, but at terms of higher orders; this once more is proved in Appendix D. Therefore,

they are referred to as be weakly coupled. The result is that the predicted seT triplets
are in fact triplets of the seD + wcS type, possibility which was prudently advanced in

the general discussion.
One more remark. When the mass of the detector is increased, or equivalently 17

decreases, the symmetry breaking of the URF doublets is appreciably more pronounced,
and the frequency span of each set is slightly broader; also, the central frequency grows

in absolute value, although not enough to become relevant.

5.3 The Suspended Sphere and Axial Symmetry

Our next concern deals with the last of the ideality departures treated in this essay:

the breaking of spherical symmetry provoked by the practical requirement of suspension
for antennee in earth-based observatories.

4 As aboye indicated, we are not considering the scS + weD of the TIGA case, which could be

understood as a downshifted singlet.
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5.3.1 Spherical Symmetry Breaking and New Frequency
Splitting

We are not interested m the suspension mechanism per se, but in the disturbing
effects that it could cause in the detector responses and in their departures from those

predicted for the ideal device.

Nevertheless. we explain in a few words that practicality technically requires to select

a nodal point of suspension in the sphere which determines, along with the geometrical
center of the body, a diameter that is drilled to make a diametral bore across the detector.

The hole is then redrilled half way through using a larger drill bit in order to suspend
the detector on a wedge at the end of a rod that clears the inside diameter of the large
suspension hole but plugs the small hale. The other end is treated so that it can be

screwed into a support piece. This has been the procedure followed, for instance, in the

mounting of the TIGA prototype support system [95].

Figure 5.5. Vertical section of a suspended sphere.

As a result of those unavoidable manipulations, spherical symmetry is broken , al­

though axial synunetry around the diametral bore is maintained. The most direct con­

sequence of this is that the degeneracy of the spectral frequencies wnl of the free perfect
sphere -each is (2/ + l)-fold degenerate- is also broken, so that they split up into mul­

tiplets Wnlm (m = +l, ... I 1) I with components Wnlm that actually depend on three
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different indexes and are associated one to one to the spheroidal oscillation eigenmodes
of the suspended sphere (REF).

The question is that, in this case, resonators cannot be tuned to one of the degenerate
Wnl as was done for the free sphere.

If we assurne that all the transducers on a given layout are identical with natural

frequency O, one could demand that O falls within the span of the multiplet of the

WNL{m}, and then we can write the next relations dictated by (5.1) once again:

2 � 1.

WNL{m} = O� (1 + Pm TI' ). (5.42)

It is obvious that these equations are in complete analogy to that describing the

connection between neighbouring free sphere frequencies directly involved in the coupling
with resonators, formula (5,14). Hence, the derivation of the new frequency splitting
related to the coupled device resonators-suspended sphere naturally follows that of the

URF spectrum detailed in the preceding section.

The first step led to find the zeroes of the determinant Ó(s), although here we must

resort to its most general expression due to the removed degeneracy of the Wnl. From

(3.72) and (3.75):

+
2n2

18 H (nlm)
r¡ L (82 + 02)(82 + w2 ) Xab
nltNL.m nlm

= O, (5.43)

bei (nlm) h
.

emg Xab t e matrices

(.5.44 )

We shal] exclusively concentrate on the splitting around O, so that at leacling order

u( s) reduces t.o

[ 1
L .(nlm)

1�(8) == clet {¡ab - - L Xab
= O,

X� m=-L Xt
- Pm

(5.4.5 )

which becomes (5.18) -valid for full degeneracy- when Pm = O.

Solutions to the algebraic equation (5.45) are no longer symmetric pairs. Rather,
there are at most 2L + 1 + J non iclentically zero roots with a maximum number of
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2(2L + 1) if J 2: 2L + 1 and, as always, modes associated to null roots can be seen to be

weakly coupled.
We have applied this theoretical considerations to a real system, the TIGA prototype

at LSU, in order to see what are its predictions and how they confront with experimental
data.

5.3.2 Experimental Measurements with TIGA

The TIGA prototype at LSU was suspended as described aboye in the text, so that

its first quadrupole frequency split up into a multiplet of five frequencies, with measured

values

W120 = 3249Hz

W121 = 3238Hz W12-1 = 3236Hz

Wl22 = 3224Hz W12-2 = 3223Hz.

AH six resonators were equal, and had the following characteristic frequency and mass

(with respect the TI mass):

(5.46)

[2 = 3241Hz.
1

(5.47)r¡ = 1762.45'

Substituting these values into (5.42). it is seen that

Po = 0.2075

Pl = -0.0777 P-l = -0.1036

P2 = -0.4393 P-2 = -0.4650.

( 5.48)

Once these quantities are inserted into equation (5.45) and the resonator positions
for the TIGA configurations, in table 4.2 of Chapter 4, are specified in matrices X��2m),
one can calculate the t 1 coefficients which provide the system frequencies by formula:

2

2 � 1

W,' = [2- (1 + t1,' 7]2),.

2'
(5.49)

Merkowitz gave a complete account of all the measured system frequencies as res­

onators are progressively attached to the selected faces, beginning with one and ending
with six, in reference [95)5, In Table 5.8 we include the numerical values of these experi­
mentally reported frequencies a.long with the calculated theoretically by solving equation
(5.45).

"We want to express OUT gratitude to Stephen Merkowitz for kindly handing these data to uso
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Item Measured Calculated Difference Item Measured Calculated Difference

(Hz) (Hz) % (Hz) (Hz) %

Tuning :3241 (3241) (0.00) 4 resonators 3159 3155 -0.12

Free multiplet 3223 (3223) (0.00) 3160 3156 -0.11

:3224 (3224) (0.00) 3168 3165 -0.12

3236 (3236) (0.00) 3199 3198 -0.05

3238 (3238) (0.00) 3236 3236 0.00

3249 (3249) (0.00) 3285 3286 0.03

1 resonator 3167 3164 -0.08 3310 3310 0.00

3223 3223 0.00 3311 3311 0.00

3236 3235 -0.02 3319 3319 0.00

3238 3237 -0.02 5 resonators 3152 3154 0.08

:3245 3245 0.00 3160 3156 -0.14

:3305 3307 0.06 3163 3162 -0.03

2 resonat.ors 3160 3156 -0.13 3169 3167 -0.08

3177 3175 -0.07 3209 3208 -0.02

:3233 3233 0.00 3268 3271 0.10

:3236 3236 0.00 3304 3310 0.17

:3240 3240 0.00 3310 3311 0.03

:3:302 3303 0.03 3313 3316 0.10

:3311 3311 0.00 3319 3321 0.06

3 resonators :3160 3155 -0.15 6 resonators 3151 3154 0.11

:3160 3156 -0.13 3156 31.')5 -0.03

:3191 3190 -0.02 3162 3162 0.00

:3236 3235 -0.02 3167 3162 -0.14

:3236 3236 0.00 3170 3168 -0.07

:3297 3299 0.08 [3239] [3241] [0.06]
:3310 3311 0.02 3302 3309 0.23

:3:311 3311 0.00 3308 3310 0.06

3312 3316 0.12

3316 3317 0.02

3319 3322 0.10

Table .5.6. Measured Suspended-TIGA frequencies versus their theoretical predic­
tiOTlS [rom our modelo In brackets, calculated va/u es which are token by definiiion
equal io the measur'ed ones; in squar'e brackeis, the weakly coupled central rnode in

ihe ¡ull 6 resotuitor rICA layout.
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As can be seen, coincidence between our theoretical predictions and the experimental
data for TIGA is remarkable: the worst error is 0.2%, while for the most part it is

below 0.1%. So, discrepancies between prediciions and experiment are of order 1], as

indeed expected. what is an encouraging result supporting the correctness of our model.

Besides, in reference [98] it is also reported that the ll-th weakly coupled mode of the

TIGA has a practically zero amplitude, again in exceIIent agreement with our general
theoretical predictions about weakly coupled modes.

We observe that estimations of next order corrections in the theoretical expressions
for the frequencies does not result in a better matching between the compared quantities.
This is because the control of the general experimental conditions in which data were

obtained had a certain level of tolerance, as Merkowitz and Johnson explicitly stated in

[98], and hence the accuracy of these available real outputs is not as refined as to be of

order 1]. As a consequence, those authors showed satisfaction that � 1% of coincidence

between theory and measurement is comfortably accomplished. Nevertheless, the evalua­

tion of next order corrections will be necessary in the future as a response to a forseeable

enhancement in the control of the system experimental parameters.

5.3.3 Nearly Invariant PHCA Spectrum

Besides the considerations related to TIGA we also add sorne comments about PHCA.

Indeed, they will be suitable for any PHC configuration, those described in section 4.1 of

Chapter 4, since the crucial fact consists in having the resonator layout in a pentagonal
configuration around a symmetry axis. This axis is taken to coincide with that of the

diametral suspension bore in the sphere, so that the coupled-suspended-device \ViII clearly
broke the spherical symmetry of the free sphere, but instead wiII stiII keep the axial

syrnmetry of the suspended sphere and of the PHC layouts.
One may expect t.hat these axially symmetric distributions give place to suspended­

PHC spectrums quite similar to those of t.he perfect PHC configurations, with like struc­

tures of the frequency pairs. even possibly maintaining the degeneracy scheme.

To be specific , we shall particularly speculate over the PHCA configuration. under the

hypothesis that the values of its split W12 frequencies and its resonator characteristics are

those in (5.46) and (5.47). This wiII enable comparison with the actual TIGA prototype
data. Results are displayed in Figures 5.6 and 5.7.

It is clear that the drilled TIGA pairs, obtained from measured real data, are different

from those of the ideal non-suspended TIGA. This is not at aII surprising. since the high
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Frequcncy (Hz)
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3300
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3220
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3180

311iO
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3120

_---- SUSPENDED -- FREE_ 3100

Figure 5.6. Suspended PHCA spectrum versus that corresponding to the non­

suspended device. Clearly, the essential structural characteristics are similar in

both cases.

SPLlT

MüLTIPLET

(1) l2(ml

_____ SUSPENDED --FREE_

Figure 5.7. Suspended TIGA spectrum versus that corresponding to the non­

suspended device. Degeneracy in the second case in not further maintained in

the first.
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symmetry of the ideal device inducing the appearance of an unique pair 5-fold degenerate
is no longer maintained when the truncated icosahedron is drilled.

Instead, PHCA pairs effectively remain distributed in agreement to similar schemes

in both situations, as an indication that PHC configurations naturally adapt to the

suspended device, becoming the alternative to more symmetric proposals in real systems.



Chapter 6

SIGNAL DECONVOLUTION

The previous chapters have been devoted to the investigation of the behaviour of

spherical resonant detectors when they are typically influenced by the action of impinging

gravitational waves. This is, of course, the first important problem in the resonant GW

detection research. As has already been shown, it has been rigorously solved through the

implementation of powerful mathematical techniques which have allowed us to determine

the antennae's responses III a general case and even more to limit them to particular
proposals.

Beyond this first step, there exist sorne other key questions. One ofthem, and possibly
the next in a series of logical order , is the so-called Inuerse Problem or Signa/ Deconvo­

Iuiioii Problem: determination of the unknown direction, polarization and amplitudes of
the incoming GW from the responses and data provided by the antenna.

This specific informat.ion is available from the readout of a single spherical detector,
an appealing advantage over cylindrical bar detectors. Nevertheless, there are certain

other details in the signal deconvolution process which cannot be sorted out with a single
sphere. For example. the direction determination is only unique within an hemisphere:
the position of a given source and a second one located on its antipode in the sky would

be indistinguishable: or nothing could be said about t.he propagation speed of the wave or

the wave formo A two sphere array performing a coincidence experirnent wil! help solving
sorne of these problems, and ifaxylophone -a set of detectors for different frequencies­
is used the reliability of detection and the amount of achievable information could be

further increased.

Let us consider here the basic inverse problern. that solvable from the data that a

single detector wil! produce. exclusively in the case in which:
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• we do not know (a priori or by other means) anything about the incidence direction,

polarization or amplitudes of the gravitational wave, and

• we cannot assume any hypothetical model relatively to the GW source.

The relaxation of any of our hypothesis will induce modifications in the deconvolution

procedure, which will be altered if we actually know sorne properties of the incoming
gravitational wave because the source is known from astronomical observations or even

a network of other GW antennee, or at least we are confident about an hypothesis over

the GW source to be checked a posteriori.
Here, we are facing the most unfavorable deconvolution situation presupposing a high

degree of disinformation. Besides, and although Lobo outlined in [80] a procedure that

can be used if the valid theory of gravity is unknown, we will always restrict here to

accept that General Relativity happens to be correcto So, the viability of our procedure
is strongly dependent on GR being true, and any appearance of incompatibilities in the

procedure has to be held as vetoes on the hypothesis that GR is correcto

In section 6.1 we will sketch the signal deconvolution procedure for a noiseless spher­
ical antenna, subject which has been extensively treated in literature (see references

below), and will continue by introducing for the first time in this essay the problem of

noise in section 6.2. We will show that it is also possible to analytically treat the inverse

problem using only linear algebra even in the presence of those disturbances [96,99]. As

expected from the omnidirectionality of spherical antennee, we shall see that error esti­

mations for the incidence direction and the GW amplitude are direction independent.
On the contrary, we will demonstrate that the polarization angle or the polarization am­

plitudes cannot be determined with isotropic sensitivity under the original hypotheses
exposed in this introduction.

6.1 Signal Deconvolution in the Absence of Noise

The solution to the inverse problem for a noiseless spherical antenna was partly out­

lined by Wagoner and Paik in the mid 1970's [133]. More recently, in 1988, Dhurandhar
and Tinto published an article [37] where the inverse problem was analytically solved

in the case of a network of five detectors (either bars or laser interferometers) by using
only their complex amplitudes for monochromatic signals. Since a sphere monitored by n

transducers can be thought of as n bar detectors occupying the same space, the solution

of Dhurandhar and Tinto has been adapted for spherical antennee by several authors
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[144, 90, 92). In addition, a more general guideline has been pointed out by Lobo [80]
even allowing the possibility of assessment or at least establishment of vetoes on which

is the theory or the class of theories compatible with the measures.

All these solutions have the common property of only requiring linear algebra to

estimate the unknowns from the detector outputs. Let us expose here an approach.

6.1.1 Detector Outputs and GW Amplitudes

As repeatedly explained through this essay, the standard technique for extracting
information from spherical detectors is to position a number of resonant transducers on

its surface at specific locations and tuned to a quadrupolar frequency wN2 of the free

sphere.
Such a device will indeed measure the quantities qa(t) representing the resonators'

actual elastic deformations, and it has been already seen in Chapter 3 how these func­

tions relate to the spinorial GW amplitudes g(2m)(t) in a general case and in the most

interesting particular proposals allowing the construction of mode channels yem) (t) char­
acterized by a one-to-one correspondence with the quadrupole modes of the sphere and

thus with the g(2m)(t) amplitudes of the GW.

Here, a word is in order about how the GW amplitudes ge2m)(t) are related to the

spherical GW amplitudes hm(t) of GR commonly used in the literature.

These spherical amplitudes also provide a complete and orthogonal representation of

the cartesian metric deviation tensor H(t) == hij(t)l ,which in the laboratory frame (L-F),
wi t h origin at t.he center of rnass of the detector, coordinate axes (x, f¡, i) and the i axis

aligned with the local vertical. reads:

(
h¡(t) - �h5(t)

H(t) = h'](t)
h4 (t)

h2(t)

-h1(t) - )Jh5(t)
h3(t)

h4(t)
h3(t)

�h5(t) ) (6.1 )

Through t.he definitions (2.:38) for the g(2m) (t) as combinations of the spatial Riemann
tensor components,

(6.2)

1 \\'e recall that we restrict ourselves to detectors much smaller than the gravitational wavelength, so
only the time dependence of hi; will have significant physical effects.
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(the basis of the five-dimensional vector space of three-dimensional, symmetric and trace­

less matrices {Ei}mJ} is given in (2.39», and in GR

1
ROjOk(t) = -2hjk,oo(t),

the following relations are easily found:

(6.3)

g(2+2)(t) = -Ifi (hl(t) - ihz(t»
g(Z-21(t) = -Ifi (hl(t) + ih2(t»
g(2+II(t) = -Ifi (-h4(t) + ih3(t»
g(2-11(t) = -Ifi (h4(t) + ih3(t»
g(20J(t) = -ffih5(t)
hl(t) = _/* (g(2+2)(t)!g(2-2)(t)
h2(t) = /*(g(2+2)(t);/2-2)(t)
h3(t) = _/* (g(2+1)(t)�g(2-1)(t)
h4(f) = 1* (g(2+1)(t);9(2-1'(t)
h5(t) = -1* g(20)(t).

Therefore, it uaturally occurs as it must be that the spherical GW amplitudes hm(t)

(6.4)

(6.5)

can also be obtained as particular linear combinations of the measured qa(t). We can

construct them t.hrough formulas (6.5) from our previously achieved results for the GW

amplitudes g(2m),
In what follows, and for the sake of simplicity in further results, we will work with

the spherical G\V amplitudes hm,(t) and wil! drop the notation of time dependen ce (t)
for brevity.

6.1.2 Deconvolution Procedure

Definitely, the existence of mode channels wil! no doubt facilitate the calculation of

the quantities h.; from the measured qa. It would be only necessary to substitute each

function g(2111) in (6.5) by its correspondent mode channel combination (see section 3. in

Chapter 3 or result.s in Chapter 4 for specific proposals).
Then , in the absence of noise matrix Hin (6.1) can be directly constructed from our

measurements ancl so it also coincides with a matrix describing the response of the detec­

tor to the gravitational wave. Let us to introduce this matrix as matrix A(t), although
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for the moment we are just going to work always with H due to their equivalence''. This
matrix A(t) is indeed related to what Dhurandhar and Tinto called the detector response

[37]. They were also the first indicating that the eigenvector of A(t) with zero eigenvalue
points in the propagation direction of the wave. As well as other authors -e.g. [96]-, we
will also use this basic concepto The full procedure is as follows.

Once the spherical amplitudes b-« have been determined, it would be now easy to

deduce which are the unknown incidence direction, polarization and amplitudes of the

incoming GW. The key idea arises when studying the general form of the spatial compo­
nents of the metric deviation tensor in a second reference frame: the wave frame (W-F).
It is a coordinate frame with origin also at the center of mass of the detector and wave

axes (x', fj', i'), with axis i' aligned by definition to the propagation direction of the wave

and (x', f)') axes of the polarization ellipse. If, as assumed, GR is valid, the strain tensor

in the wave frame can be written when working in the TT (transverse traceless) gauge

as:

h ¿ (t)
-h+(t)

O

(6.6)

where we recall h+(t) and hx(t) are the wave plus and cross amplitudes for the two

allowed states of linear polarization (see section 2.1 in Chapter 2).
It. becomes obvious that tensor H' has a particular matrix structure. It makes evident

two related properties:

• H' is a canonical form in the sense that rotations of any angle about the i' axis

leaves its structure invariant;

• H' possess a null eigenva.lue with a.n associated eigenvector pointing in the direction

of the z' axis. Due to the fact that, by definition , this axis tells the propagation
direct.ion of the wave, this nu/l eigenvector is an indicator of the propagation direc­

t.ion.

Indeed. t.he resolution of the general eigenvalue problem for the strain tensor H' 111

the wave frame:

H'V'¡ = AiU-;. (6.7)
2ln the noisy case .4 and H will no longer coincide.
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leads to the following results:

Eigenvalues Al = -A

(6.8)

Eigenvectors

(6.9)

with the values for the normalization constants:

(6.10)

Summarizing. the absolute value A of Al or A2, can be taken as a measure for the

wave amplitude, whereas eigenvector v� == i' associated to the null eigenvalue A3 points
in the propagation direction with a perpendicular plane or polarization plane defined by

v;_ and V;.
Which are the implications of these propert.ies for the quantities in the laboratory

frame? As we han' seen. the strain tensor H' in the wave frame is a symmetric traceless

matrix and thus it can be orthogonally diagonalized. Its counterpart in the lab frame,
tensor H, must maintain these characteristics as shown in (6.1), whereupon it could also

take a diagonal formo Even more, it is immediately demonstrated that the eigenvalues
of H in the L-F and H' in the W-F have exactly the same value, whereas eigenvectors
change as dictated by the ma trix RwL which changes the basis from the W - F to the L-F

and can be considered t.he rot.ation matrix that transforms the metric perturbation H'

to the lab frame:

(6.11)

The proof is as follows. \\'e start from the eigenvalue equation (6.7),

(6.12)
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and introduce the suitable RWL and R-Y/L rotations in (6.11). For any rotation, RWL or

another, we will use the Euler angles (a, ¡J. ,) in their y-convention formo Generally, the

rotation matrix for the y-convention is:

R=

(
cos �( cos ¡3 cos el' - sin I sin el'

- sin I cos ,3 cos el' - cos I sin el'

sin (3 cos el'

cos I cos f3 sin el' + sin I cos el'

- sin I cos (3 sin el' + cos I cos CI'

sin (3 sin el'

- cos �( sin (3

)sin I sin f3 ,

cos f3

(6.13)

made of three diffeent rotations: the first of angle a about the original i axis, the second

of angle ¡J around the new f¡ axis, and the third of angle , around the final i axis.

Going back to (6.12), one finds:

R-1 H'R R-1 -1

WL WL' WLv¡ (6.14)

which is rewritten

n e, = ..\i V;, (6.15)

so that it has been shown that effectively H and H' possess exactly the sarne eigenvalues
while their respective eigenvectors, Vi and V:' are just related through vi = R-yA V:. Of
course. the two sets of eigenvectors describe in fact the same reference system, i.e., that

in which the strain tensor is seen to be diagonal (D-F): the set Vi is the expression of the

diagonal axes (xD. YD. iD) in the laboratory basis whereas in parallel the set v: represents
those same diagonal a.xes in the wave frame.

Then, results directly involving tensor H in the L-F are the foUowing:

• Incidence Direction. In accordance to (6.8) and (6.15), tensor H constructed

from the experimenta.l data must have a null eigenvalue with an associated tiull

eigenvector which indicates the incidence direction of the incorning GW as seen in

the L-F.

It. is possible to finally define the propagation direction on the basis of the cor­

responding Euler angles, simply recognizing that the matrix. named RLD, which

diagona.lizes H in the L- F and which is constructed from its eigenvectors Vi. can

once again be understood as a rotation matrix of the general form in (6.13) (it
may also include a reflection). It will teU us the angles of rotation by identificating
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the null eigenvector V3 with the last column vector of RLD. Looking at expression

(6.13) and dividing the elements of this column we find

tan 'Y _

V3y
V3x

V3y 1

V3z sin 'Y
(6.16)tanf3 =

• Wave Amplitude. Besides, H possess two more eigenvalues, Al and A2, which,

again from (6.8), are equal in absolute value A actually giving a determination of

the wave amplitude A = jh� + h� .

• Polarization Amplitudes alld Angle. The problem of the settling of the po­

larization amplitudes has been classically solved (see for example [144, 90, 96])
by looking at equation (6.11) stating the relation between the expressions for the

strain tensor in the wave frame and in the lab frame:

(6.17)

We need only the angles f3 and I to rotate H' to H, since the remaining o-rotation

only changes the polarization components of the tensor and not its canonical form

01' the direction relative to the lab frame defining the wave frame. This is the reason

why a has commonly been assumed t.o be zero [133), which has a clear geometrical
interpretation involving the relative position between the W-F coordinate axes and

the L-F coorclinate axes: if Q is taken to be zero, the iI axis of the W-F reference

system is taken to rest on the i - fj plane of the L-F reference system.

The embracement of this criterion has as a consequence that the polarization com­

ponents of the strain tensor remain fixed at certain values which can be found from

our measurements once the propagation direction is known. Reversing relation

(6.17) with Q = O in RWL,

IJ' = RwL(a = O) IJ RwL(a = 0)-1, (6.18)

a.nd selecting (he proper elements one arrives to [96]:

h h
1
(

o

3) h
1

2(3)
.

h
l. .

+ 1"21+c08-, c082,- 22'(1+C08 sm2,- 3"2sm2(38m,
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h
l.

(3 h
V3 . 2(3+ 4 2" sm 2 cos v + 5 2sm

h1 cos (3 sin 2, + ha COS (3 cos 2, + h3 sin (3 cos v + h4 sin (3 sin " (6.19)

equations that can also be directly derived again from (6.17) by taking linear

combinations of the resulting spherical amplitudes as functions of the polarization
amplitudes and the source direction.

We face now a new possibility more in accord to our general previous line of ex­

pressing the unknowns as functions of the eigenvalues and the eigenvectors of H

(the importance of this strategy will be clarified in next section where we will anal­

yse the inverse problem in the presence of noise). Our intention is then that of
finding alternative formulas io those in (6.19) [or h; and h ; 1 now in ierms of Ai
and Vi.

This new approach leads again as before to investigate relations between the rep­

resentations of the strain tensor in different reference frames. In this case, we are

interested in the rotation that takes H' -normally not represented by a diagonal
matrix- to the diagonal form

(6.20)

It is simply a rotation about the propagation axis, since the wave frame and that

in which the strain tensor is diagonal clearly share their i axes and thus its per­

pendicular or polarization planeo In fact, this rotation is characterized only by the

Euler angle a as defined aboye in the text, so that

H' (6.21)

with RO' the rot.ation matrix

(
cos a

n; = -

s�n a
silla

(6.22)cos a

o

Substituting the explicit forms in (6.21) and performing the operations we find
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A

Z

A

X

y

v = Z,
3-

Figure 6.1. Relative position belu'een the ihree different reference frames consid­

ered. The sct (i:,_O,z) labels the L-Faxes, iohereas (i:',i/,z') name those of the
W-F. (VI, ii2, ¡G.) st.aruls [or the Ihree eiqenceciors of the cartesian strain tensor

defining the D-F. Note that i/ rests on the 1; - fj plane of the labomtory frame as a

consequence of the Cl' = O cI'iterion fixing tlie wave frame. Secondly, the W-Faxis

i' pointing in the incidence direction o] the GW obviously coincides with axis V3

of the diagonal frame, so that these two systems are just related by a rotation of

angle Cl' around 'i' == V3. Finollsj. Ihe remaining two Euler angles (3 and v indícate

the rotations that iake the W-F lo the L-F.
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C+
hx O

) (
-A cos 2a - �A3 -A sin 2a O

)hox -h+ O -Asin 2a Acos2a - �A3 O (6.23)
O O O O A3

Hence.

h; -A cos2a

-A sin 2a, (6.24)

since we recall that in the noiseless case

(6.25)

and obviously

(6.26)

In accordance t.o t.he a = O criterion fixing the wave frame and its geometrical
interpret.ation explained aboye, it is not difficult to realize that this new Euler

angle o relating the W-F and the D-F appearing in (6.24) is just the absolute value

of the quantity that one needs to rotate the YD axis of the D-F around i' == iD
1.0 take it to coincide with y' placed on the x - y plane of the laboratory frame.

Precisely, directly from (6.24) or also from the quotient

hx
-,-

= tan 2a
1+

(6.27)

defining the polarization angle, it is found that the Euler angle a is just half the

value of the polarization angle oro in other words, the polarization angle is double

the angle of rotat.ion around i' == ZD which places vector YD of the D-F basis 011

the plane x - fj of the L-F or , equivalently, it is double the angle between the GW's

polarization axes and t he eigenvectors v¡ and V2 perpendicular to the incidence

direction V3'
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Now, we have the polarization amplitudes given in terms of the eigenvalues of the
cartesian strain tensor H and of the polarization angle. To complete our purpose

it is then necessary to express a in terms of the eigenvectors Vi of H. For this,
we have to take into account that the rotation relating the wave frame and the

diagonal frame can also be directly evaluated in an independent form with respect
to other rotations in the laboratory frame. Starting from the geometrical view, we

actually have to perform the operation

(6.28)

where the ij element of R(V3, a) is defined as

(6.29)

being Eijk the Levi-Civitá antisymmetric tensor. This is a rotation of angle a

around i' == =D, V3 in the L-F, taking vector YD, which in its turn reads V2, to the

plane x-y.

From equalizing the third components of the resulting vectors in both sides of

(6.28), we arrive to

t an o (6.30)

or in spherical coordinates

tan o = (6.31)el
'

with el and e2 the polar angles associated to eigenvectors VI
lab frame.

and V2 of H in the

It is timely to point out that if eigenvector V3 coincides by chance with the i axis or,

in other words, the propagation direction of the wave is just that of the vertical axis
of the laboratory frame, then VI and V2 stay in the x - fj L-F plane perpendicular
to z , or equivalently it happens that 81 = 82 = �. Therefore, tan a becomes

indeterminate an the sense that we cannot fix it from our equations. This is not, of

course, an intrinsic inconvenience of the inverse problem , but just a consequence
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of the use of a parametrization with anomalous definitions at certain points (e.g.,
the azimuthal angle associated to vector (O, 0,1) in spherical coordinates can never

be determined).

In short, up to here we have shown how it is possible to extract relevant information

about GWs affecting a spherical detector from the eigenvalues and eigenvectors of its

measurable response matrix, exactly equal to the cartesian strain tensor H in absence

of noise. Let us now analyse all these procedures and results when noise affecting the

detector responses is taken into account.

6.2 Signal Deconvolution in the Presense of Noise

The solution to the inverse problem in the presence of noise is more complicated.
Zhou and Michelson investigated using a maximum likelihood method [144] applied be­

forehand by Gürsel and Tinto to the case of noisy interferometers [55]. However, the

original transparency of the procedure and results for the noiseless situation was lost,
and furthermore exact solutions were not found making it necessary to solve the problem
numerically.

In contrast, we will show in this section that it is possible to analytically solve the

inverse problem using only linear algebra even in the presence of noise [96, 99]. To

fully discuss the effects of those disturbances we would need to introduce a model of the

detector that ineludes noise from several sources such as Brownian motion and noise from

the motion sensors (see [97, 124] for a discussion of noise sources in spherical antennee).
However, such a model is beyond the scope of this essay, but it is worthwhile to have a

feel for the magnitude of the errors with a simplified model. Its simplicity will result in
understandable solutions which will enable the exploration of the errors in the estimated

GW parameters to any desired degree of precision using standard techniques.
More specifically, we will examine the isotropic errors on the inciden ce direction

and on the GW amplitude estimations calculated from the mode channels, not only
at first but also considered at higher orders. Of course, we will also discuss the errors

011 the polarization amplitudes and angle estimates, demonstrating that their disturbing
direction dependence appears even when they are written as functions of the eigenvalues
and eigenvectors of H. Possibly, this problem could be circumvented by using a rotation

axis description of the wave, i.e., by accepting an hypothesis over the source able to

describes the real situat.ion.
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6.2.1 Isotropic Direction and Amplitude Estimation Errors

In the presence of noise, the detector matrix A introduced in section 6.1 is no longer
equal to the cartesian strain tensor H in the lab frame. Nevertheless, A will maintain

the structure and the properties of symmetry and tracelessness of H since we construct

it from the detector responses combined into mode channels Ym having a one-to-one

correspondence with the spherical amplitudes of the gravitational wave, so that

(
Yl (t) - )3 Y5 (t )

A(t) = Y2(t)
Y4(t)

Y2(t)
-Yl(t) - 7aY5(t)

Y3(t)
(6.32)

We insist on the fact that in the absence of noise A was equal to H so that the

direction of the gravitational wave could be determined from the detector outputs by

finding the eigenvalues and eigenvectors of A == H as described in section 6.1.

In the presence of noise and under ideal conditions referring it, it has been shown

that a modified version of the aboye procedure can be used: the eigenvector of the noisy
A� with eigenvalue closest to zero is the best approximation to the eigenvector of H that

points in the propagation direction of the wave [96]. We will also use this concept to

derive the equations of the noisy problem just in the context of linear algebra.

Eigenvalue Errors

Let us start from the idea that noise in the mode channels will change the eigenvalues
and eigenvectors of A such that they are no longer equal to those of H.

We assume that the mode channels form a set y = (Yl, Y2, Y3, Y4, Y5) of five inde­

pendent Gaussian random variables as defined in standard textbooks, for instance [62],
with mean f-l = (f-ll,f-l2,f-l3,f-l4,f-l5) at their ideal values if there were no noise and vari­

ances (J2 = ((Ji, (J�, (J�, (J� . (Jg) calculated from the expectation values (represented by the
bracket <»

:! ( )2 ()2 2
(Jm =< Ym - f-lm >=< Ym > -f-lm· (6.33)

Then, any regular function having as arguments the elements of the y set is a random

variable itself, although ir will generally be non-Gaussian, with an expectation value or

mean and a variance represented by:
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(J'2¡

<1>

< 12(y) > - < I(y) >2 . (6.34)

f1.¡

Obviously, eigenvalues and eigenvectors ofmatrix A are functions of this kind for they
being expressed in terms of the mode channel functions Ym, with associated statistical

errors that can be evaluated and used to find the direction estimation error.

We start from the eigenvalue equation

k = 1,2,3, (6.35)

and write the characteristic polynomial giving the eigenvalues:

(6.36)

where we have defined

D det(A). (6.37)

Solving this cubic equation we find the eigenvalues of A to be

k = 1,2,3, (6.38)

where

Bk =
B+2(k-l)'7r

3
and cose =

3v'3 D
(6.39)

In the absence of noise, these eigenvalues will coincide with those in (6.8) since D wil!

be exactly zero at which 8 = 7r /2 and then

el
7r

Al = -y
6

e2
.57r

A2
6

= y

83
37r

A3 = O.- (6.40)2
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However, in the presence of noise A3 will no longer be identically null but it will

generally be the one closest to zero. Random fluctuations may change this (more likely
for low SNR), but we shall always take the corresponding eigenvector V3 as the best

approximation to the direction of the source. With respect to the other two eigenvalues,
their semi-difference A = (A2 - )..1)/2 will give the best estimate for the amplitude of the
wave [96], although it can be indeed calculated in many ways from the mode channels

(for example, y is an estimate for the amplitude).
Our aim now is to calculate the mean and variance of the eigenvalue functions )..k (y).

To this end we Taylor expand it around the mode channels mean u. Formally:

(6.41)

with

(6.42)

where the usual convention of summation over repeated indexes has been adopted.
Given that y is a set of independent Gaussian variables, it is easy to see that the

expectations of the eigenvalues are:

(6.43)

so that down to first order in the variances of the variables the expectations take in fact

their values in the noiseless case. those in (6.8) or in (6.40), as it should be.

From (6.33), (6.34) and (6.41), the lowest order statistical errors are easily calculated

by

= � (OAk)2 2
z: o 0""
i=l Yi

(6.44 )

where the derivatives of the eigenvalues must be evaluated from the expressions (6.37),
(6.38) ancl (6.39). If the variances on the mode channels are equal, O"¡ = 0"; Vi, the final

results are

?
_

4 2 4
O"�k -

30"Y + O(O"y)'
so that all three eigenvalues show equal variance at first order.

(6.45 )
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Cross correlations are also easily calculated, and for equal rnode channel variances

they are again equal for all pairs (Al;, Akl):

(6.46)

,

O"� I

o 10 20 30 40 50 60 70 80 90 100

SNR

Figure 6.2. Comparison between nume"¡cal simulation outputs and analytic resulte

for the mriance of the first eigenvalue. The dashed Une was computed by a 1000

trial Jfonte Cario simulatíon for every of 100 given values of SNR. The solid thin

lim i$ the error found from the first order analytic expression and the solid thick

line includes second orde r correcrroras.

Higher order corrections for the means !-l)..k are easily calculated from (6.43):

30"; 4
- Y - _- + 0(0" )2 y

y

30"2
Y - _ __}!_ + 0(0";)2 y

O + O(O"�). (6.47)
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o 10 20 30 40 50 60 70 80 90 100

SNR

Figure 6.3. Comparison between numerical silumation ouiputs and analytic resulis

for the variance of the second eigenvalue. The dashed line was computed by a 1000

trial Monte Cario simulationfor every of 100 gíven values of SNR. The solid thin

line is the error found from the first 07·der analytic expression and the solid thick

fine ineludes second order corrections.

In contrast, the variances require calculations of higher order derivatives for the added

terms resulting in complicated general expressions. They somewhat simplify for equal
mode channel variances, but are still rather cumbersome:

4 2
-(T
3 y (6.48)

After long algebra, it is found that

4 2
-(J'
3 y (6.49)
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o 10 20 30 40 50 60 70 80 90 100

SNR

Figure 6.4. Comparison between numerical silumation outputs and analytic resulte

for the variance of the second eigenvalue. The dashed line was computed by a 1000

trial Monte Carlo simulation jor every of 100 given values of SNR. The salid thin

line is the error found from the first order analytic expression and the salid thick

line inc/udes second order corrections.

Note also that this formula shows that errors in )11 and A2 split from the error in A3,
and reproduces the observed behaviour that for low SNR crt falls below crt and crt.

These variances are displayed in graphs 6.2, 6.3 and 6.4 as functions ofthe SNR= �,
y

along with the results of a Monte Carlo type numerical simulation of the errors. It turns

out that the second order analytic expressions constitutes an evident improvement to
the first order analytic values matching the simulated errors for the most of the studied

SNR range. For low SNR, discrepancies arise between the analytic and simulated values,
which is within expectation since the series for the variances converge very slowly in this

zone so that even higher order terms would be required here for a further improvement.
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Direction and Amplitude Estimation Errors

We are ready to face now the problem of the determination of the direction estimation

error. As explained, we assume that the eigenvector V3 points in the propagation direction
of the gravitational wave. 'Ve want to estimate the fluctuations in the determination of

this direction caused by the presence of noisy fluctuations in the mode channels. Allowing
fluctuations in (6.35) and retaining only first order terms (high SNR) we arrive to

(6.50)

where we represent with 8 a difference between a given quantity and its ideal value if

there were no noise.

As expected, matrix [A - A3) is not invertible. Hence, we cannot determine the

component of 8;;3 which is parallel to V3 itself, although the orthogonal components
parallel to vI and V2 can easily be found:

1
-

cA-
\ \ Vi u V3
Al -

A3

1
-

"A-
\ V2 u V3.
A2 - A3

An appropriate assessment of the error on a direction measurement is the solid angle
error ó.n. Since ! V3! = 1. this error is

(6.51)

(6.52)
where the quadrat.ic error in the determination of V3 is just

(6.53)

First order calculations only require to take expectations in 8A:

5 �

!Ó.r3!� = L [(Vi· .-lmV3? + (V2 . AmV3?l O"� •

m=i �

where matrices A.m are formally defined by Am == ;y'!. .

Equal variances on the mode channels lead to

(6.54)
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(J2
An

__ �I�V312 = 2-f, so that L..l.H, (6.55)
y SNR

which is independent of the incidence direction as expected of an omnidirectional antenna.

Furthermore, this expression is in perfect agreement with the estimation error of Zhou

and Michelson [144]. The advantage of our approach is that, by using unit vectors

described by cartesian components, we are free from the anomalously high errors and

correlations in intervening calculations related to the Euler angle parametrization used

by other authors [144, 96].
The quadratic errors l�vd2 and I�V212 for the remaining two eigenvectors can be

analogously calculated. One obtains at leading order:

(6.56)

If high order corrections are considered, we will arrive to expressions for the direction

errors:

(6.57)

which amounts to be a better approach, although it is important to remind ourselves

that for very low SNR the uncertainties on the direction estimation are so large that the
measurement is almost meaningless.

The observed isotropy in the estimation of the propagation direction error arising from
the isotropy in the estimated quantities referring the eigenvalues and the eigenvectors of
the cartesian strain tensor H in the lab frame, is also preserved in the computation of

the GW amplitude y == A = Jh� + h�. It has been shown [96] to have a best estimate.

y == A = (A2 - A1}/2, which can clearly be determined with isotropic sensitivity for it

being possible for the eigenvalues Al and A:¡ as just seen. Calculations are simple once the

eigenvalues' expectations values, their variances and their correlation are known. From

(6.47), (6.49) and (6.46), we respectively have:
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and to evalúate the statistical central moments of the trigonometric functions sin 2a and

cos 2a. These eomputations referring angle a are quite eomplicated and are precisely the

source of direction dependences as we shall see.

Since we can always express sin 2a and cos 2a as functions of tan a,

sin2a
2tana

1 + tan2a
1- tan2a
1 + tan2 a' (6.62)cos2a =

we will directly work with tan a folIowing standard developments in statistical mathe­

matics [62]. We recall once more that

tana = ( 6.63)

a defined in accordance to the a = O criterion as the angle which takes the diagonal
frame to the wave frame -both of the frames described in section 6.1- through a single
rotation around the incidence direction indicated by eigenvector V3. Equivalently, ex is

also the necessary angle in a rotation of the polarization plane to take eigenvector V2 to

the L-F i: - iJ planeo
Now , the action of noise will induce changes in a through fiuctuations of the eigen­

vectors V1, V2 and Ü3, which we consider vary folIowing an uniform probability density
function -the simplest one- in a range inside three respective eones with bases on the

spherical surface of radius 1, heights in the directions of the eigenvectors' ideal values

vOl, VO'2 and r03 if there were no noise -in fact the eigenvalues of the cartesian strain

tensor H-, and aperture angles 6.61, 6.62 and 6.63 clearly fixed by l6.v1l, l6.v21 and

l6.v31 already known as functions ofthe mode channels and their variance, see (6.55) and

(6.56). We give an schematic representation in Figure 6.5.

Finally, let us obviate the correlation between eigenvectors V1 and V'2, which actually
must always be perpendicular for they forming part of an orthogonal basis. Up to this

point, t.his is possibly the stronger supposition assumed referring correlation, but this
simplification is unavoidable if one accounts for final analytic results simple enough to

be interpreted. Besides, we insist on the idea that we are basically interested in the

qualitative pathological dependences, so that we can think that if they already become

evident at high SNR, which would imply small values of 6.61 and 6.62 and so small

eorrelation effects, they will not disappear at low SNR.
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which is independent of the incidence direction as expected of an omnidirectional antenna.

Furthermore, this expression is in perfect agreement with the estimation error of Zhou

and Michelson [144]. The advantage of our approach is that, by using unit vectors

described by cartesian components, we are free from the anomalously high errors and

correlations in intervening calculations related to the Euler angle parametrization used

by other authors [144, 96].
The quadratic errors I�VlI2 and I�V2i2 for the remaining two eigenvectors can be

analogously calculated. One obtains at leading order:

(6.56)

If high order corrections are considered, we wiU arrive to expressions for the direction

errors:

(6.57)

which amounts to be a better approach, although it is important to remind ourselves

that for very low SNR the uncertainties on the direction estimation are so large that the
measurement is almost meaningless.

The observed isotropy in the estimation of the propagation direction error arising from
the isotropy in the estimated quantities referring the eigenvalues and the eigenvectors of
the cartesian strain tensor H in the lab frame, is also preserved in the computation of

the GW amplitude y == >. = Jh� + h�. It has been shown [96] to have a best estimate,

y == >. = (>'2 - >.1)/2, which can clearly be determined with isotropic sensitivity for it

being possible for the eigenvalues >'1 and >'2 as just seen. Calculations are simple once the

eigenvalues' expectations values, their variances and their correlation are known. From

(6.47), (6.49) and (6.46), we respectively have:
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4 2 5 O"�
-O"y

-

-2 + ...

3 2y

(6.58)

whence

(6.59)

expressions which evidently are direction independent.

6.2.2 Polarization Amplitudes and Anisotropic Estimated

Errors

We come now to discuss errors for the components of A, the polarization amplitudes

li.; and hx. We recal! that they are obtained as functions of the mode channels and the

incidence direction Euler angles 8 and I once the a = O criterion has been adopted, see
formulas (6.19), or they can be in parallel computed from the eigenvectors and eigenvalues
of the cartesian strain tensor H evaluated in the laboratory frame. From formulas (6.23)
and (6.30):

h+
1

-A cos 2a - -A3
2

hx -A sin 2a

and tan a
V2z cos (J2

(6.60)---

VIz cos (JI

The term in h; containing >-3 appears here as a consequence of the fact that it is no

longer zero once noise is introduced in the developments. These formulas of course reduce

to (6.24) when there is no noise.

Anisotropic Estimations and the a = O criterion

Based on methods including Euler angle parametrizations computing h; and h ¿ from

(6.19), sorne authors have clairned [144, 124] that it does not appear to be a standard

description of the wave polarization that has a direction independent variance. It turns
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out that these direction dependent uncertainties seem inherent to the use of Euler angles
to describe the wave direction. This is easily visualized in the y-convention of the Euler

angles also used in this chapter (see Figure 6.1): it is dear that if f3 goes to zero, a and I

become indistinguishable, leading to large errors in their estimations, whereupon errors

in the polarization angle ap = 2a = tan-l �: go to infinity near f3 = O.

On the other hand. the a = O criterion, commonly used to resolve the arbitrariness

in the a Euler angle relating the diagonal frame to the wave frame and also associated to

the rotation which takes eigenvector V2 to the 1-F x - fj plane, is a very much observer

dependent criterion, for detectors at different locations would claim different values for

h; and h-¿ even if they agree to be seeing the same source. Consequently, errors based

on this criterion have been shown to be strongly direction dependent, which is certainly
not surprising.

Here rests indeed the due to the problem of the anisotropy of the h; and h x estimated

errors since, as we are going to prove immediately, the second parametrization(6.60) of
these quantities as functions of the eigenvalues Al, A2 and A3 and their eigenvectors'
components also leads to anisotropic estimations of these errors whenever the a = O

criterion (or equivalently any other a fixation) is adopted.
The demonstration begins from (6.60) by understanding that the associated errors

will be induced by fluctuations in the eigenvalues Al, A2 and A3, and so also in the

GW amplitude A, along with fluctuations in the polarization angle ap = 2a, and so

in the trigonometric functions cos 2a and sin 2a, all these quantities naturally being
in its turn functions of the mode channels. These two categories of fluctuations will

be considered uncorrelated (in favour of this supposition we can argue that the GW

energy is independent of the GW polarization, and anyway the corrections obtained

from taking into account correlation would be just numeric and would not affect the

qualitative isotropic or anisotropic behaviour of the results, therefore not being justifiable
the complexness which would be introduced in t.he developments).

Following as always (6.34) and taking fluctuations in (6.60) it is straightforward to

find that the variances on the polarization amplitudes will formally read:

2 2 :) 2
/l>. . O"sin 2", + /lsin 20

. 0">. (6.61 )

Previously, it is then necessary to recover the results for the GW amplitude A and the

third eigenvalue A3 in (6.49) and (6.59) -we recall all of them showed perfect isotropy-.
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and to evaluate the statistical central moments of the trigonometric functions sin 2a and

cos 2a. These computations referring angle a are quite complicated and are precisely the

source of direction dependences as we shall see.

Since we can always express sin 2a and cos 20" as functions of tan a,

2tana
sin2a

1 + tan ' a

1- tan2 a
(6.62)cos2a

1 + tan2 a ,

we will directly work with tan a following standard developments in statistical mathe­

matics [62]. We recall once more that

tan o = (6.63)

a defined in accordance to the a = O criterion as the angle which takes the diagonal
frame to the wave frame -both of the frames described in section 6.1- through a single
rotation around the incidence direction indicated by eigenvector V3. Equivalently, O' is

also the necessary angle in a rotation of the polarization plane to take eigenvector ih to

the L-F x - f¡ plane.
Now, the action of noise will induce changes in O' through ftuctuations of the eigen­

vect.ors V1, V2 and V3, which we consider vary following an uniform probability density
function -the simplest one- in a range inside three respective eones with bases on the

spherical surface of radius l. heights in the directions of the eigenvectors' ideal values

Val, V02 and V03 if there were no noise +in fact the eigenvalues of the cartesian strain

tensor H-, and aperture angles .lb1, /).b2 and /).b3 clearly fixed by!/).V1!, !/).V2! and

!/).V3! already known as functions of the mode channels and their variance, see (6.55) and

(6,,')6), We give an schematic representation in Figure 6.5.

Finally, leí. us obviate t.he correlation between eigenvectors V1 and V2, which actually
must always be perpendicular for they forming part of an orthogonal basis. Up to this

point, this is possibly the st.ronger supposition assumed referring correlation. but this

simplification is unavoidable if one accounts for final analytic results simple enough to

be interpreted. Besides, we insist on the idea that we are basically interested in the

qualitative pathological dependences, so that we can think that if they already become

evident at high SNR, which would imply small values of /).b1 and /).b2 and so small

correlation effects, they will not disappear at low SNR.
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Figure 6.5. Error canes as seen in the L-F associated to the three eigenvalues VI,
ih (md ih calculaied [rom the noisy data. As shown in {he sketch, the axis 01 the

cones [olloui {he directions 01 their ideal values VOl, V02 and V03 il there were no

nosse .

Under all these conditions, the normalized uniform probability density function will

be of the forrn:

(6.64)

where the two first quotients are normalization constants, say NI and N2, naturally
depending on the aperture angles of the eones, (61, 'lj;1) are the spherical coordinates

describing the position of the unit eigenvector i)¡ calculated frorn noisy data in the refer-
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ence system SI having its i axis in the direction of VOl, and respectively (62, '!/J2) are the

spherical coordinates associated to V2 in the reference system S2 where the z axis follows

the direction of V02.
We will first evaluate the expectation value of tan a. Substituting this function by

its expression in spherical coordinates:

(6.65)

with 81 and 82 the polar angles which respectively indicates the separation between VI
and V2 and the :: axis of the L-F. To compute the integral, it is essential to express these

angles in terms of (61, '!/JI) and (62, '!/J2), what is acquired by resorting to our well known

summation formula for spherical harmonics involving the P¡ Legendre polynomial (see
Appendix C):

¡

P¡(cos8) = 2/4: 1 L Y¡;"(P1,(1))'ím(P2,(2),
m=-¡

(6.66)

where 8 stands for the angle between the two directions (P1,(!) and (P2,(2). For 1 = 1:

P1(cosB) = cosB, (6.67)

and that we can take SI ( S2 ) as a common reference system in which (PI, (1) are the

spherical coordinates (BOl, '!/Jo!) ( (B02, ¡P02) ) of the L-F z axis and (P2, (2) are those

named (61. ¡PI) ( (62, '!/J2) ) for the fluctuating eigenvector vI (V2 ), see Figure 6.6. Once

the explicit. expressions for the spherical harmonics has been introduced, it is possible to

write:

sin BOl sin é¡ COS('!/J1 - '!/JOl) + cosB01 cos é¡

sin 802 sin 62 cos( ¡P2 - '!/J02) + COS B02 COS 62. (6.68)

Then, (6.65) can effectively be split up into the product of two double integrals, one
for each cone, as expected from the non-correlation of VI and V2 assumed so far:
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x
cos BOl

In
1 + cos BOl

1 - cos ó.81 cos ó.81 + ,¡cos? BOl - sin2 ó.81

For the variance O";an a' we start from the general definition in (6.34):

2 ()2 2 2
O"tana =< tan o >-<tana> = J.Ltan2a-J.Ltana'

and since

one has first to work out two more double integrals:

2'1r ( cos BOl 1) COS BOl?: ! sin ó.81!
'¡cos2 BOl - sin ' Ó.Ó1

-

'Ir [� - sin2 B02 COS ó.82 + cos3 ó.82 (sin 2B02 - �)] .

Eventually, J.L�an a is

x

_1 � - sin 2 B02 COS ó.82 + COS3 ó.82 (sin B02 - �)
�------------------------------=-x

2 1- COSÓ.Ó2

(cos Bol) / ( '¡cos2 BOl - sin2 Ó.Ó1) - 1

1 - cos ó.81

(6.72)

(6.73)

(6.74)

(6.75)

(6.76)

(6.77)

It is obvious that the expression for the expectation value and even more that for

the variance are quite complicated. To gain some insight one could Taylor expand them

around the free noise values. From (6.56), one sees that

and for small apertures of the eones (high SNR) it is found that

(6.78)



172 Chapter 6. SIGNAL DECONVOLUTION

¡7f 1
1 = d'lfJl,

o a + b cos '1j;1

a = cos (JOI
b = sin .ó.ÓI

(6.82)

1 could be evaluated through complex integration and calculation of residues, al­

though it becomes evident directly from (6.82) that:

• if a > Ibl the integrand is perfectly regular for every value of '1j;1 in the integration
interval;

• on the contrary, if a = Ibl the integrand I±C�S.pl is singular in just one point in

coincidence with one of the integration limits;

• the case a < Ibl also presents singularities ofthe integrand L±i-�OS.pl' this time in

two '1j;1 values between O and 1r.

Then, the not allowed situations cos (JOI = I sin .ó.óII and cos (JOI < I sin .ó.óII corre­

spond to integrals divergent in just one and just two points of the integration interval of

which it is not even possible to define its principal value.
These divergences bring about values for the mean and the variance of tan O:" divergent

111 their turn in the sense that they cannot be determined. It is consistent with the

geometrical view for such situations: if at the same time that eigenvector V2 is actually
blended with the x - y plane the error cone of VI intersects this very plane even in just
one of its generatrix, then the error cone of V3, with aperture angle .ó.Ó3 wider than those

of the error eones of VI and V2, will be placed so vertical in the laboratory frame that

the angle between V03 and the L-F z axis will be smaller than .ó.Ó3, what means that we
cannot distinguish between the two directions in a.nalogy with the case (3 = O when noise

is absent. Notice that the described situation is only possible if originally it is in fact the
case, i.e., if before the O:" rotation it happens that the plane VI - V2 is already confounded

with the plane x-y. Hence, we are actually facing the case in which the propagation
direction of the GW can be confounded with the L-F vertical axis, whereupon it is not

possible indeed to fix the angle O:" which one needs to rotate V2 to take it to the x - y
planeo

This indetermination is completely transferred to the polarization amplitudes through
their dependence on the polarization angle O:"p = 20:". Let liS limit to the case cos (JO 1 >

I sin .6.óll and work with Ptan Q and lT�an a' The mean and variances related to the polar­
ization angle entering lT¡ and lT� in (6.61) can easily be found. It would be necessary
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independent situation.

Isotropic Estimations

The anisotropy in the determination of h.; and h-¿ arises as a disturbing paradox given
that a spherical antenna is equally sensitive to waves from all directions and polarizations.
It seems that under our assumed hypotheses at the beginning of the chapter, this paradox
is unsolvable.

However, if we make suitable reference to the source properties, i.e., if we relax our

initial conditions of absolute disinformation about the source and admit that the GW

source is known ahead of time or that we can at least base on a hypothesis to be checked

a posteriori isotropic error estimations could be obtained.

If a is known beforehand, we can use results in (6.45), (6.58), (6.59) and (6.60) to see

that

u2 (�+ cos2 2a) u2+ y

u2 sin ' 20- (J2x y

� 1
. � 2

u:¡"x _- sm
: 4a u

4 y' (6.84)

indeed isotropic quantities for they only depend on u;.
In the second case, a is no longer known. Then, the key idea is that any criterion to

resolve its arbitrariness, therefore to estimate h.s: and h x i should be resolved relatively
to the hypothetical GW source.

We finally summarize in a few words the general procedure for solving the inverse

problem in the presence of noise. We construct the response matrix A from the rnode

channels y and compute its eigenvalues )q, A2 and A3 and its eigenvectors V1, r2 and V3.
The eigenvector with eigenvalue closest to zero is assumed to point in the propagation
direct.ion of the GW, which can be determined with isotropic sensitivity as well as the

GW amplitude A. In return, the polarization angle a -by the sake of its arbitrariness

commonly fixed by the imposition of a certain criterion- and so the polarization am­

plitudes h; and h-¿ -calculated on the basis of a single o-rotation of the polarization
plane relating the wave frame and the diagonal frame or equivalently on the basis of two

independent Euler rotations relating the wave frame and the laboratory frame- cannot
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be known frorn the eigenvalues and eigenvectors of A as direction independent estima­
tions. If isotropy is expected, direct reference to the source physical properties, real or

hypothetical, must be made.
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Chapter 7

CONCLUSIONS

We conclude with a brief summary of our main results and add a few words on sorne

opened questions and prospects for future work.

7.1 Summary of Results

1. The development. of a rigorous mathematical frame for the physical description of

a resonant spherical GW antenna has been at the core of our investigation, which

presents the theoretical scheme for the statement and treatment of the completely

general and signal-independent GRD set of equations, indeed applicable to a solid

elastic detector of any shape endowed with a set of resonant radial motion sensors

in arbitrary locations and which can differ in mass and resonance frequency .

• We have applied to the ideal case of a perfect spherical detector coupled to an

arbitrary layout of J identical resonators for resolving the equations and de­

termining t he system responses to an impinging G\V when a specific resonator

tuning is chosen, with resonance frequency WNL. The solutions are written

as perturbative series expansions in ascending powers of the small coupling
constant n�. where r¡ = mr.,ong'pr<.'1 Alsphere

• \Ve obtain t.he frequency spectrum of the coupled device to lowest order in

n. It is seen to be structured in J pairs Wa± -although at most only 2L + 1

of them are strongly coupled pairs- split from the tuning frequency WNL and

symmetrically distributed around it.
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The amplitudes of the excited modes are also obtained through the quanti­
ties qa(t) representing the actual deformations associated to the linear springs
which model the resonators. We find that these amplitudes occur with a me­

chanical amplification factor of r¡- �, and their spectral composition is domi­

nated by the symmetric frequency pairs Wa±.

• We also show how , under several quite general requirements over the resonator

layout, these amplitudes can be arranged in certain linear combinations named

mode channe/s, each one coupled only to a single mode amplitude of the

uncoupled sphere, and hence to a single amplitude of the gravitational field.

• Our approach allows not only to investigate the responses to a GW, but also to

inquire into the dynamical behaviour of the antenna to other external agents
such as calibration signals. We show the final results for two specific resonator

configurations, those of the TIGA and PHCA proposals.

2. Our model Ieads to:

• The analysis and even the suggestion of particular proposals of spherical per­

fectly ideal antennre with resonators fixed at specific positions. It is only
necessary to calculate for each given distribution the eigenvalues and the

eigenvectors of the geometry dependent matrix, which are the only quantities
determining the particular distinctive characteristics of the coupled spectrum
and of the amplitudes or the mode channels.

Then, we can reconsider already existent proposals, such as the TIGA of the

pioneers Johnson and Merkowitz, but furthermore we are able to present an

alternative proposal based on pentagonallayouts keeping axial symmetry. Our
PHCA antenna is thought as a complete multi-mode multi-frequency device,
so that we propose two sets of supplementary pentagonal layouts respectively
tuned to the first and the second quadrupole harmonic frequencies to maxi­

mally exploit the possibilities of the detector. An elevent h resonator is also

added al. the first monopole frequency for monopole sensing.
• The implementat ion of realistic assumptions leading to the investigation of

departures from the perfectly ideal detector.

Our model has t.urned out to be flexible enough to be also valid for the study
of small defects -thereby increasing its degree of applicability to real systems­

by the use of a generic parametrization for a wide class of ideality departures
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consistently with our perturbative expansions, so that we have been able to

address the question whether the device is affected or not by those ideality

breakings.
The evaluations reveal that the antenna's response is rather robust against
sorne of those small imperfection: non accurate locations in the layout or non
identical masses or natural frequencies of the resonators.

In contrast, the existence of a second free sphere frequency WN' L' near the

resonant wNL appreciably affects the system's responses even at leading order.
The analysis for the TIGA and the PHCA demonstrates that it results in

a dragging effect breaking the original symmetry of the ideal doublets, and

moreover induces the appearance of a third weakly coupled component near

the resonance frequency WNL. This effect is relevant for our PHCA proposal
since, as explained, it considers a second layout of resonators coupled to the

second quadrupole harmonic of the free sphere, which in fact has a second

free sphere frequency very close to it. Then, we are able to correctly describe

the whole PHCA spectrum as composed of two groups of strongly coupled

frequency pairs. the first syrnrnetrically distributed around the first quadrupole
harmonic frequency whereas the second arises as a non-symmetrical splitting
from the second quadrupole harmonic.

The breaking of spherical symmetry by suspension also induces significant
changes relative to the ideal perfect device performance. We put to test our

model's predictions for the spectrum by confronting them with the reported
experimental data obtained in the TIGA prototype experiment, and see that

agreement. is fully satisfactory in the given experimental conditions.

3. Finally, we are able to handle the ideal antenna's responses to trace back the

features of the incoming G\V. This is commonly called the inverse or the deconvo­

lution problem. and we show that it is solvable using only linear algebra even in

the presence of noise.

In the noiseless situat.ion, the incidence direction of the GW, its amplitudes and

polarization can be worked out from the eigenvalues and eigenvectors of the detector

response matrix constructed from the mode channels.

For t.he noisy antenna, we implement a modified version of the aboye procedure
which provides isotropic errors on the GW incidence direction and amplitude as
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Appendix A

Bare Sphere Radial Eigenfunctions
and Spheroidal Spectrum

This is a digest of explicit expressions for the radial components entering the toroidal

and spheroidal eigenfunctions describing the normal modes of vibration of a perfect
bare sphere (formulas (3.9)). We also present a diagram for the spectrum of spheroidaI

eigenfrequencies Wn/.

A.l Bare Sphere Radial Eigenfunctions
Radial eigenmodes Anl(r), Enl(') and Gn/(,) are complicated functions which de­

scribe the radial behaviour of spheroidal and toroidal normal modes of vibration in a

solid elastic bare sphere. They are rigorously derived in [80] or [103], but we give here

their explicit expressions:

G ( 1)"3 (ks R)dj,(q�,Tl 1(1 1) CL(3 ( s R)j'lk:,Tl]a n, l 3 ni d(q�,rl
- + V >-+21' 1 qnl k�,r (A.1)

(A.2)

(A.3)

Enl(') = e (n.l) [(3 (kS R)dj,(q:,r)j,(q:,rl - �(31(q�,R) d {'J. (kS r)}]b 3 ni d(q:,r) q:,r V >-+21' k:,r dr I ni

Gnl(,) = Gc(n,l)jl(k;;lr)

with

• G(n,l) norrnalisation constants with dimensions of length,

• 8; (z) the auxiliary functions
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/31 (z) 5!_ (i1(Z))dz z

/32(Z) d2jl(z)
dz2

/33(Z) � [/32(Z) + (l + 2)(/- 1) ji;:) ]
/34(Z) /32(Z) - 2�jl(Z), (A.4)

• jl(z) the Bessel functions of the first kind [56] defined as:

Zl {Z2 z4 }jl(z) = 21[!
1 -

2(21 + 2)
+
2.4. (21 + 2)(21 + 4)

-

... , (A.5)

s d kS T .

l he ei f
. S T

• qnl an ni proportiona to t e elgen requencies Wnl '

2 S,T
k2 S,T _

(lWnl
ni

-

J.l
(A.6)

• superindex S and T denoting the spheroidal and the toroidal families respectively,

• subindex 1 running from O to infinity and n from 1 to infinity for each fixed /.

A.2 Spheroidal Spectrum
In next page, we present in graphical form the free sphere's spectrum for a Poisson

ratio a = 0.33 associated to its spheroidal normal modes of vibration.

Then, for determining the corresponding frequencies in the usual Wnl form one also

needs to fix other sphere 's physical characteristics such as its radius R and the speed Vt

of transversal elastic waves propagating in it. The relationship is

? (] 2 2+cr?
k;'1 = -Wnl = --W;'I·

J.l Vt
(A.7)

In particular, for typical planned aluminium spheres R = 1.5m and Vt = 3160ms-l.
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Appendix B

Laplace Transform

Chapter 3 was devoted to the presentation and resolution of the GRD equations
describing any coupled spherical GW antenna. Previously to resolution, it was necessary

to convert the original differential set of equations into a more manageable system, so that
the GRD set transmuted first into its integro-differential counterpart by the application of
the Green Function Formalism, and finally into an algebraic system on account of Laplace
transformations. Here, we summarize sorne results we have made use of concerning that

integral transform: its direct and inverse definitions, and related theorems helpful with

respect to its application. AH this information can be found more extensively treated in

standard textbooks, such as [3] or [79].

B.l Direct Laplace Transform

The Laplace Transform of a generic function F(t) is defined by

C{F(t)} == j(8) = lco F(t)e-st di. (B.1 )

It has two important properties with a central position in its application; for in­

stance, this integral representation allows to convert integral and differential equations
into simpler forrns that may be solved more easily.

The first one is that it obeys the faltung theorem, also named convolution theorem.

In words, it states that the Laplace Transform of a convolution integral product of two
functions is the simple algebraic product of the Laplace Transform of each individual

function:
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C (100 F(t) G(t - t') dt') = les) g(s),

which, for instance, will hold for the kernel integral in (3.60).
The second property is that -like Fourier transform- it replaces differentiation with

(B.2)

multiplication:

C{F(n)(t)} = s" les) - sn-l F(O) - sn-2F'(O) ... - F(n-l)(o), (B.3)

what could be easily verified by using the integration by parts technique.

B.2 Inverse Laplace Transform

The Inverse Laplace Transform of any given function les) is denoted by

C-1{j(s)} = F(t). (B.4)

Among the several methods to find it. the most powerful is that of the Bromwich

integral, also known as the Fourier-Mellin integral or theorem:

1 11'+;00F(t) = -2. est les) ds.
1ft 1'-;00

(B.5)

s is a. complex variable of the form s = 1+ iu, with I such that

singularities
L

y
s-plane

al! the possible singularities of ](s) are on the left-hand side of L [79].
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The integral in (B.5) may be evaluated by the methods of contour integration. If

t > O, as it is for the functions we are concerned with, the integral contour may be

closed by Jordan's lemma by an infinite semicircle in the left half-plane, and this does

not change the value of the integral. Then, it becomes of the form

tg(s) ds
where e represents the closed integration path, and by the residue theorem [79]

(B.6)

t g(s)ds 21ri (a-l,o + a-l,l + a-l,2 + ... )

21l'i¿ resulues enclosed by C. (B.7)

This is the residue theorem, which replaces the problem of evaluating one contour integral
by the algebraic problem of computing residues at the singular points of g(s) enclosed in

the region boundered by C.

Hence, for F(t) in (B.5) g(s) == e" j(s) and it reduces to a calculation of residues at

the singularities of est j(s) included in this region.



190 Appendix B



Appendix e

PI Matrices

Pi matrices are at. the core of the mathemat.ical developments describing the dynarn­
ical behaviour of G\V antennee, They become the key for the characterization of the

system responses. Here, we present a brief survey of their interesting structure and im­

portant properties for arbitrary order 1, number of resonators J, and resonator's locations

C.I Description

P¡ matrices ese] x .] matrices constructed so that their ab element is the Legendre
polynomial

(C.I)

where subindex l stands for a given integer value in the range from zero to infinity, and

:::ab == cos eab depends on the eab angle between the na and the nb resonators
'

locations.

Therefore. Pi will be a symmetric matrix of real values with diagonal components always
l. with independence of the number .] of resonators and of the order / of the matrix.

It can be represented by

l p¡(COSe12)
p¡(COSe12) 1

p¡(cos elJ)

(C.2)

p¡(coselJ) l

where the first possible Legendre functions p¡( cos e) entering it are given in next table:
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1 PI( cos (})

O Po(cos(}) - 1-

1 PI (cos(}) = cos fJ

2 P�(cos(}) - t(l + 3 cos 2fJ)-

3 P3(cos(}) - �(3 cos () + 5 cos 3(})-

4 P4(cos(}) - ¿ (9 + 20 cos 2fJ + 35 cos 4fJ)-

Appendix e

It interestingly happens that every PI can be decomposed following the summation

formula for spherical harmonics products:

or in vector form

yt_l(nb)
yt-I+l (nb)

Y¡*I-l (nb)
Y¡�I(nb)

so t.hat matrix PI is in fact the product of two matrices of spherical harmonics:

(C.3)

(C.4)

(C.5)
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being H the J x (21 + 1) matrix

�(, -

--)H =

V 2T+1 }"I.-I, Yi,-I+l, ... , Yi,I-l, Yi,1 , (C.6)

where each column has been represented as a whole by Yim, the name of the J-vector

Yi,m(n¡)

Yim Yí,m(n2)
(C.7)

Yí,m(nJ)

and Ht stands for the complex transposed, or the hermitian conjugate, of H.

C.2 Eigenvalues and Eigenvectors
As usual in matrix theory [76], eigenvalues �; of the PI matrices and their associated

eigenvectors v(c) are defined by

(C.8)

which is equivalent to

o. (C.9)

It has non-trivial solutions if and only if

det [ PI - E�1] = O, (C. 10)

so that e are commonly calculated as the zeroes of this determinant. Once they are

known. one could construct the eigenvectors v(c) from (C.8).
As long as all the PI matrices follow the same pattern, some general assertions af­

fecting all of them about the properties of their eigenvalues and eigenvectors can be

made:

• The first remark is that PI is real and symmetric and so coincides with its corn­

plex transposed counterpart, i.e .. it is an hermitian matrix by construction as the

product of a matrix times its herrnitian conjugate:
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(C.ll)

whereupon it is diagonalizable and uiould have real eigenvalues with corresponding

eigenvecfors forming an orthogonal basis .

• Secondly. ihe maximum number of its non-null eigenvalues is at most 21 + 1. To

prove this. we recall once again that PI is the product

(C.12)

being H the J x (21+ 1) matrix in (C.6) and Ht its (21+ 1) x J hermitian conjugate.
It happens that the rank of a given matrix is always equal to the rank of its hemitian

conjugate, here

rank H = rank nr

and at most it clearly would have the value of (21+ 1), of course even if J > (2l+ 1).
Taking int.o account that for the product of two matrices the rank generally satisfies

rank A.E < min (rank A, rank E) .

it happens in this case that

rankPI:::; (21+1).

Since the rank is an invariant property, it must be maintained by PI even in its

diagonal form, so that the number of its non-null eigenvalues can never exceed

(2/ + 1). and consequently, if J :::: (2/ + 1), there will be a minimum number

.] - (21 + 1) of them identically null,

• Now, it is easy to prove that the non-tiull eiqetioalues are positive.

This can be deduced from the structure of PI. Products of matrices of the form

AA t or AtA are always positive semi-definite, and then their rank gives just the
number of positive eigenvalues [í6]. Matrix PI has just this form, whence it is

positive semi-definite and hence it has at most (21 + 1) positive eigenvalues, -this is

why we have used the squared notation e. The rest of eigenvalues of course must

be zero for the condition of PI of being positive semi-definite.
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One could also see it from the eigenvalue equation (C.8):

(C.13)

It would be necessary to multiply its both sides by the hermitian conjugate eigen­
vector v(b)t:

(C.14)

Clearly, the rhs of this formula contains a scalar product of orthogonal eigenvectors
(recall that PI is hermitian) which can be taken to be normalized:

(C.15)

Whereas, the lhs of (C.14) can be rewritten as

(C.16)

from which (C.13) reads

(C.17)

Here we see that {Ht v(c) Ve} constitutes a set of orthogonal (21 + 1 )-vectors, �; N
appearing as a result of the scalar product providing the squared modulus of each

of them, whereupon it would be always strictly positive .

• Furthermore, all the non-null eigenvalues of PI = HHt ere also Eigenvalues of
PI = HtH. The proof set out from the eigenvalue equation for HHt:

(C.18)

The following and final step consists in multiplying its boths sides by Ht 011 the

left:

(C.19)

The converse of this result, that the eiqenralues of HtH are also eiqenuolues of
HHt, is immediately proved by the same procedure:
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eU¡
�? ·HUi.

• FinalIy, the tra.ce is another invariant property of a matrix. For PI:

J J

t.r PI = L PI (llalla) = L 1 J,
a=l a=l

but in the diagonal form

J

tr PI = L �� = L ��,
a=l €0;<'0

so that the sum of the eigenvalues must always result J:

Appendix e

(C.20)

(C.21)

(C.22)

(C.23)

(C.24)
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Calculation of Residues

Results in Chapter 3 for the amplitudes of excited modes in a spherical GW antenna

rely on residue calculations. We recall that the concern was the finding of the Laplace
inverse transform

a = 1, ... , J, (D.1)

computing it through the residue theorem:

qa(t) = L residues of estqaCs) at its po/es in the complex s - planeo (D.2)

The poles of [stqa(s) are isolated singularities which happen to be exclusively at the

zeroes of the determinant 6.(s) in (3.86) for the Mab matrix:

[
2102

1.

_

S H ,enl) _�(s) - det bab + T) � (S2 + S12)(s2 + W;l) \ab
- 0, (D.:3)

which were given in formulas (3.87) and (3.93) as roots near the tuning frequency Q ancl

roots near other frequencies Wnl -# Q.

We are going to demonstrate that for first order calculations it will suffice to consicler

the contributions due to just the first kind of zeroes.

D.I So Polos

So poles are:
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� ? � ( /2i+11 (1 1.) (sa.c± = -w�± = -Q- 1 ± V ----¡;- ANL R) f.cT" + O 1]), c= 1, ... ,J, (D.4)

calculated from the determinant

(D.5)

These roots are arranged in a set of J symmetric pairs around Q = WNL, depending
on the eigenvalues f.; of matrix PL(llallb). Let us write them in a more suitable form:

s6.c± = -w�± = _Q2 (1 + bC±1]�) + 0(1]),

and taking the square roots

(D.6)

SO.poles = ±so.c± = ±iwc± = ±in (1 + �bc±l]� ) + 0(",)

When the detector is acted upon by an incoming gravitational wave, the amplitudes

e = 1, ... , J. (D.7)

qa (s) in the Laplace domain are written as

qa(S) = a = 1, ... , J, (D.8)
L=O and 2

rn=-L, ... ,L

being

(D.9)

(formula (3.127) in Chapter 3), and

[
�n�

]-1"
-1

_

S��!- (.VL)Mab - 8ab + 1]
(S2 + Q2)2 Xab (D. 10)

for L = O monopolar response and L = 2 quadrupolar response, with Q = WNO and

Q = ..vN2 respectively.
Hence, one just has to find <p�Lm)(t), since the convolution theorem assures

qa(t) = L 1! dJ�Lml(t -tl)geLm)(tl)dt'
L=O and 2
m=-L .....L

a = 1, ... , J. (D.l1)
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In analogy with (D.2),

L residues o] e·tJ�Lm)(s) at its poles

in the complex s - planeo (D.12)

We shall see that these poles are still so,c±, those in equation (D.6), and that they
are the only appearing. For this, it would be more convenient to express the determinant

�(s) in (D.5) like the product of its contributing root monomials at leading order:

J

�(s) (s:!+Q2)-2Jrr(s2+w�+)(s2+w�_)
c=l

J

(s2 + Q2)-2J rr (s + iwc+ )(s - iwc+ )(s + iwc_ )(s - iwc_), (D.13)
c=l

so that the inverse of matrix Mab reads

J

M-1 h( )-1 'JADJ (2 (2)2J II
1

MADJab
= ti S -

.

ab = S + �t

(2 2)( 2 2) ab ,

c=l
S +wc+ s +wc_

(D.14)

where ADJ stands for labelling the adjoint operation which substitutes each of the

elements of Mab by i ts conj ugate minor (currently, matrix inversion also requires trans­

posit.ion, but Mab is a symmetric matrix whereupon it and its transposed are equal).
-(LmlFinally, for <Pa (s):

J

X L MjDJ aNLA1VL(R)YLm(nb)
b=l

a = 1, ... , J. (D.15)

Clearly, the only singularities in last equation are s5,c± = -w�±, even when multiplied
by the analytic function ést. Each ±so,c± appears there in a monomial of unit power,

whereupon they are classified as simple poles. Theory of residues [79] establish that the

residues associated to such poles are simply calculated as the limits
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Ra,O-pole lim (s - SO,pole) X les)
S-+SO,polc

lim (s - SO,pole) X estJ�Lm '{s)
S-SO,pole

J

l· ( ) st 2( 2 n2)2J-2 rr
1

im - s - SO,pole e s s + H

( 2 2)( 2 2)
X

s�SO.polc
c=l

S + Wc+ s + Wc_

J

X I: Mj,DJ aNLANL(R)YLm(nb).
b=1

Let us perform this computation in two stages, always taking into account that we

(D.16)

are interested in calculations to the lowest order:

Ra,O-pole R1a,O-pole X R2a,o-pole
J

u ( ) st 2( 2 n2)2J-2 rr
1

.

im - s - SO,pole e s s + H

( 2 2)( 2 2)
X

s-+SO.polc
c=l

S + Wc+ s + Wc_

(D.17)

• R1a,O-pole
In compact notation, (s - SO,pole) is substituted by (s - (±wc±)) , so that in fact

one has to undertake only one calculation giving results for the four different cases

for a fixed c.

x

lim -(s - (±iwc±))ests2(s2 + n2)2J-2 x
s-±r.wc±
J

1

g (s2 +w�+)(s2 +w�_)

± ±i",'c±t 2 (,,2 2 )2J-2
1

e w c± H - W c± . 2 2
X

2zwc±(wc:¡: - wc±)
1

JI (wJ+ - w�±)(""L - w�±)

R1a,o-pol,

x

(D.18)
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• R2a,0-pole
Here, one has to consider the second limit:

R2a,pole
J

lim aNLANL(R)L M,j,DJYLm(nb)
S-±ZWc±

b=l

lim aNLANL(R) x
S-+±ZWc±

J

[ 82Q2 (NL)]
ADJ

x L Dab + TI (82 + Q2)2 Xab YLm(nb).
b=l

(D.19)

It would only be necessary to substitute the value ±iwc± in place of s, since this

expression does not contain singularities at these points.

In that limit and restricting to the dominant order, matrix M,j,DJ presents the

general structure

_b-(2J-2) [ (NL)
_ b2 e ]ADJc± Yab c±Uab

b-(2J-2)-

c± x

d t [ ,(NL),ADJ _ b2 í ] [ (NL),ADJ
_ b2 í: ]-1X e Xab c± uab Xab c± uab (D.20)

Realizing that b�± is an eigenvalue ofmatrix X��L),

(D.21)

we give matrix [X��L),ADJ - b�±Óab] the name Dab(Xn, which depends on the

eigenvalue X� of X��L).
Next step wil! be to introduce these new labels in the multiplication of the two results

for R1a,o-poIE and R2a,o-pole:

J

X L D1bDJ (\�)YLm(nb).
b=l

(D.22)
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The whole process has to be repeated for every e from 1 to J, except for those with

associated null �c since they will provide contributions at higher orders, what can be

demonstrated just recalculating R1a,o-po/e in these cases (the dominant term in R2a,o-po/e
is always of order 7l). Instead of depending on the amplification factor r¡-� appearing in

(D.18), this limit depends on r¡J-l at leading order, where J is the number ofresonators

in the layout. Hence, its contribution will affect higher order terrns, and not just the

leading ones.

Following (D.12), all the residues at leading order has to be summed up. To perform
this summation we use that

e+iwc± t _ e-iwc± t

----2-i---
= sinwc±t, (D.23)

and then

J

X :L D�bDJ (X�)YLm(llb)_l- [sinwc+t - sin:.lc_t],
b=l Wc±

(D.24)

which indeed is the expression for the dominant approximation of <p�Lm) in the time

domain. Trivially, in the Laplace domain:

x

a=l. .... J.

We are going to exploit the possibility of expressing mat.rices D�DJ (X�) by means of

eigenvectors 1'1<) of PLCllallb) associated to the non-null eigenvalues éj , Dab(X�) matrices
have t he form:

D ( 2) _ (NL) 2
ab Xc - Xab - Xc8ab. (D.26)

When applied t.o vector veel):
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D ( 2) (e')
ab Xe Vb ( (NL) 28) (e/)_

Xab - Xe ab Vb -

(Do27)

since v(e/) is of course eigenvector of X��L) with eigenvalue Y�/, and as a result it. also

will occur to Dab{ X�), with associated eigenvalue (X�, - X�) o

Therefore, we can rewrite the matrix term

rr 2

1
2
DADJ (X�)

d-f;e Xe -

Xd

in formula (Do25) by introducing these results and taking the determinant of matrix

D(X�) in the basis that makes it diagonal:

(Do28)

(Do29)

Now. we continue in (Do29) by inserting results from (Do21) in the case e = e':

(Do30)

and introducing it and also (Do21) into (Do25), the final result is obtained:

a = 1, o o 00 Jo (Do31)x
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The two interesting cases are those corresponding to monopole tuning n = WNO and

quadrupole tuning n = W.'i2. In each situation, it would be necessary to know the

eigenvalues �; and the eigenvectors uCe) for achieving the definite form of J�Lm)(s).
In the quadrupole case, evaluation of

x

(e)

(e).}Va Vb y. ( )
�e

2m nb (D.32)

requires to fix the distribution of resonators since eigenvalues and eigenvectors depend
on it and will be different for each layout.

On theother hand, monopolar��OO)(s) is independent ofthe transducer configuration,
so that it can be computed in general. From (D.31),

x

�c and v(C} are the eigenvalues and the eigenvectors of the J x J matrix Po(nallb). This
matrix presents a simple form: each of its elements has numerical value 1, independently
of t.he number of resonators .] or their locations. �e were already found in Chapter 3:

t,� = J. �� = O Va = 2 .... , J, (D.34)

and calculation of eigenvectors is not more difficult. It is easily found that the normalised

eigenvector associated to the non-null eigenvalue �� is the J-vector

1
1'(1)=-

JJ

1

1
(D.35)

1

so that
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J

""' (1) (1)* 1 1 J 1
� Va Vb YOO(nh) == ----- = -- Va,
b= 1 VI ,_¡¡_; VI y'41r

which simplifies J�OOl(s) to

(D.36)

(D.37)

D.2 Sn} Poles

In this section we will prove that Snl poles,

e = 1, ... ,J, (D.38)

calculated from the determinant

(D.39)

do not give contributions to the residues of estqa(s) at leading order 71- �
.

The procedure runs in parallel with that described in the previous section. From the

convolution and the residue theorems, respectively in (D.l1) and (D.12), it will suffice
to compute the residues of estJ�lml(s) at its poles in the complex s-planeo For Snl poles,
we saw in Chapter 3 t hat J�lml(s) is, formula (3.29),

(D.4D)

and

-1
_ [ s2n2 (nll]-1·\[ab - Óab+TJ(s2+n2)(s2+w;;'I)Xah

for 1 = D mouopolar response and l = 2 quadrupolar response. This inverse matrix ca.n

(D.41)

also be expressed as

M-1 - .6.(S)-l MADJah
- ab , (D.42)

with .6.(s) in (D.39). Substituting this determinant by the product of its contributing
monomials,
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.6.(s)
J

(S2 + n2)-J (S2 + W�I)-J TI (S2 + W�)
c=1

J

(S2 + n2)-J (S2 + W�I)-J TI (s + iwc)(s - iwc),
c=1

(D.43)

the inverse matrix reads

J

M-1 - .6.(S)-1 MADJ = (S2 + n2)J (S2 + W2 )J TI
1

MADJ
ab

- ab ni (s2 + w2) ab .

c=1 e

(D.44)

'(1m)Finally, for e" epa (S) we have:

J

X 2:= Mj,DJ anIAnl(R)Yím(nb)
b=1

a = 1, ... ,J. (D.45)

Hence, ±Snl,c are the only singularities in last equation and their classification as

simple poles leads to the calculation of the residues in the form

Ra,nl-pole lim (s - Snl,pole) X estJ�lm)(s)
S-+Snl.pole

J

lim -(s - s )est s2(s2 + n2)J-l (s2 + w2 )J-l TI
1

n.lip ol e ni
(2 2)

X
$----t"Snl.pole S + W

('=1 e

J

X 2:= M;1DJ a.nIAnl(R)Ylm(nb)
b=l

a. = 1. ... , J. (D.46)

As for So poles, we compute them to the lowest order in two stages:

Ra.nl-pole R1a,nl-pole X R2a,nl-pole. (D.47)

• R1a,nl-pole
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R1a,nl-pole

x

x

x

207

(D.48)

Therefore, R1a,nl-pole is of order r¡o, in contrast to what happens for Rla,O-pole
which is responsible for the dominant amplification factor r¡- t.

• R2a,nl-pole

R2a,nl-pole

x

=

x

which is O(r¡O) like R2a,o-pole.
From these results, we event.ually find

x

(D.49)

(D.50)
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which is O( 1J0) o Therefore, it represents a correction for the O( 1J0) terms of the tuning
mode and does not contribute at leading order r¡- t, as announced,

D.3 Scentral Poles

Scentral poles appear in the coupled frequency spectrum structure when the rRF

situation is studied, i.e., when there exists a second free sphere's frequency WN'L' in the

neighbourhood of the resonance frequency n = WNL, formula (5014). We recall from

Chapter 5 that it then splits into J different triplets containing each a rather symmetric

pair wc,u and Wc,d imitating the IRF doublets plus a third component, a central frequency

wc,c very near no Due to their excessive nearness, these central resonances are actually
of the form in (5039),

2 2 �

Wi c = WNL ( 1 + Xlc r¡ ) + O( 1J 2)., (D.51)

How to demonstrate that the contributions of such modes are not at the leading order

r¡-� but at superiors? Simply by computing again (D.12), with ��Lm)(s) in (D09) and
(Do10)0 With respect to the So poJes analysis, we face an unique reJevant change. From

(5.16) and (5021), �(s) is here

�(s)
J

(S2 + n2)-2J (s2 + WF"IL' )-J rr (S2 + w�,u)(s2 + W�,d)(s2 + W�,c),
c=1

(D.52)

and so

J

_

2 2 02)2J-2( 2 2 J rr
1

s (s + - - S + WN'L') 2 2)( � �) � 2
X

c=l (s + ..<!c,u s- + W�,d (s- + Wc,c)
J

X L Mj,DJGNLÁNL(R)YLm(nb)
b=l

a = 1, o o o, J. (Dooj3)

We have repeatedly seen that the order of the dominant contribution is revealed in the

computation of just the Jimit Rla,pole in (Do18) or in (D.48)0 Here, for central frequencies

R'la,central-pole
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x

x

x
1

tl X�k,uX�k,d(Xk,c - Xc,c)' (D.54)

Therefore, the dominant order depends here on the number J of resonators in the

layout. For the URF effeet, the interesting resonanee frequeney is always a quadrupolar
one. Sueh tuning demands a minimum number of five resonators to extract the maximum

information from the detector's readout. For J = 5 we have 7J�, and henee Scentral

eontributions are not at so-poles leading order 7J-� and can be obviated.
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RESUMEN

R.l Preliminares

R.1.1 Introducción Histórica

Desde su publicación en 1916, se han obtenido confirmaciones ciertamente impresio­
nantes de los fundamentos de la teoría de la Relatividad General de Einstein y también

de algunas de sus predicciones y nuevas implicaciones. Inicialmente, los tres tests clásicos

propuestos por el propio Einstein ya en 1916 -explicación de las anomalías en el movimiento

del perihelio de Mercurio, predicción de la desviación de rayos de luz por campos gravitatorios
confirmada por Eddington [38, 107], y el efecto parcialmente demostrado del desplaza­
miento al rojo de líneas espectrales [107]- pronto conformaron una base exitosa para

la Relatividad General. Sin embargo, la experimentación en este campo permaneció

letárgica durante un tiempo, al igual que la investigación propiamente teórica, debido

a. que pese a ser considerada una bella teoría con implicaciones incluso revolucionarias

en areas concretas como la Cosmología, su relevancia potencial con respecto al resto de

la Física no había sido universalamente admitida, en parte porque la teoría de Newton

llevaba a las mismas predicciones cuando se trataban campos poco intensos, como en el

caso de experimentación en condiciones de laboratorio.

No obstante. a finales de los 50 se comenzó a reavivar un fuerte interés. especialmente
promovido por el grupo de Princeton encabezado por John Wheeler y el grupo de Lon­

dres dirigido por Herman Bondi. Aparte del potencial impacto en otros campos de la

Física, la propia teoría de la Relatividad General atrajo mayor atención y este renovado

interés, junto con el desarrollo de avances tecnológicos, llevó tanto a la realización de ver­

siones más cuidadosas y precisas de los viejos tests astronómicos como a observaciones

previamente inaccesibles de otros efectos", de las que la. Relativida.d General de Einstein

1 Ver [28. 120. 142] para ampliar referencias.
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queda perfectamente establecida como la teoría clásica de la gravitación.
De esta manera, el tercer efecto predicho por Einstein fue cuidadosamente verifi­

cado por Pound y Rebka en los 60 [112] y pronto otros experimentos concernientes a

los fundamentos de la teoría fueron repetidos otra vez o realizados por primera vez.

En particular, consecuencias o partes importantes del Principio de Equivalencia en sus

varias formas -desde la unicidad en la caída libre para partículas de prueba, o Principio
de Equivalencia de Galileo, hasta la forma muy fuerte- han sido probadas, entre ellas

la dilatación temporal gravitacional, la invariabilidad temporal y espacial de constantes

como G, la invariabilidad local de Lorentz de las leyes de la Física en los sistemas en

caída libre, o la contribución de la energía gravitatoria a la masa inercial de los cuerpos

celestes de acuerdo a la forma muy fuerte. También hay que señalar que existe soporte

experimental para otras suposiciones básicas de la RG. Por ejemplo, la curvatura del

espacio está confirmada por la verificación del efecto de de Sitter (o precesión geodésica),
o por medidas en el Sistema Solar de desviaciones en las trayectorias de fotones y de

retraso temporal en la propagación de ondas de radio viajando cerca del Sol. Cierta­

mente, también han sido observados otros efectos que confirman más de un aspecto. Así,
se obtiene verificación experimental de las ecuaciones del movimiento y de las soluciones

de Einstein para las ecuaciones de campo, por ejemplo, de estudios sobre la dinámica de

planetas, naves espaciales o incluso el movimiento de la Luna, u observaciones de algunos
sistemas binarios, como el paradigmático pulsar binario PSR 1913+16, que merece es­

pecial atención por proporcionar el test observacional que confirma la existencia de otra

predicción fundamental de la Relatividad General: las ondas gravitatorias.

Ondas Gravitatorias

U no de los nuevos fenómenos físicos predichos por la RG, y también por cualquier
otra teoría métrica de la gravedad [135. 66, 67, 54], que se encontraba fuera del marco

de la gravitación newroniana fue la existencia de ondas gravitatorias, Como Einstein

indicó tempranamente. el campo gravitatorio es una entidad dinámica que permite per­

turbaciones de la curvatura que se propagan en el espaciotiempo con velicidad finita,

análogamente a lo que ocurre en la teoría del electromagnetismo de Maxwell. Einstein

demostró [41, 42] que sus ecuaciones para el campo gravitatorio admitían en la aproxi­
mación lineal soluciones radiativas que representaban ondas planas y que se dividían en

ondas reales, que transportaban energía, y ondas aparentes, que no lo hacían y podían
ser eliminadas mediante transformaciones de coordenadas. Eddingt.on [40] fue el primero



R.l. Preliminares 213

en dar un criterio invariante que las distinguía y era válido en cualquier sistema de coor­

denadas: la onda era física si el tensor de Riemann calculado de su métrica no era cero.

Al igual que las ondas electromagnéticas, en RG las ondas gravitatorias son ondas planas
transversales con dos estados de polarización propagándose en el vacío con la velocidad

de la luz.

J. Weber fue pionero en los 60 en la tarea de intentar medir ondas gravitatorias.
Su método se basaba en el hecho de que partículas libres que se mueven en un campo

de gravitación experimentan aceleraciones relativas como se refleja en la ecuación de la

desviación geodésica. Si las partículas no se pueden mover libremente sino que están

conectadas mediante una pieza sólida rígida, las fuerzas gravitatorias de marea pro­

ducirán un esfuerzo en el material que lo llevará a un estado de oscilación. La técnica

de Weber [136, 137] consistía en medir estas deformaciones en grandes cilindros de alu­

minio a temperatura ambiente, presumiblemente excitados por un impulso incidente de

radiación gravitatoria. Después de trabajar con un único detector en el período 1963-

1968, Weber mandó construir un segundo cilindro en el Argone National Laboratory
de Chicago para llevar a cabo experimentos coordinados buscando coincidencias en sus

resultados.

De hecho, en un laboratorio no se pueden producir ondas gravitatorias intensas, así

que Weber las buscó en el espacio. Su trabajo fue pronto respaldado por el descubrim­

iento en la misma década de una profusión de nuevos objetos astrofísicos tales como

quásares, pulsares y fuentes binarias de rayos X [110]. Era entonces posible concebir

sucesos altamente relativistas en agujeros negros pulsantes, acrecientes o en colisión, es­
trellas que colapsan o sistemas binarios emergentes de estrellas de neutrones, que podían
ser fuentes intensas de radiación gravitatoria [109]. En este período de entusiasmo por

la física y la astrofísica de estos objetos interestelares, Weber anunció la detección de

radiación emanando del centro de nuestra galaxia [138, 139]. Él aseguraba que había

detectado varias señales por día. aunque su afirmación no era corroborada por otras ob­

servaciones tales como las llevadas a. ca.bo por telescopios ópticos. Sin embargo. estas

noticias provocaron una. oleada de nuevo interés y trabajo en radiación gravitatoria y sus

fuentes astrofísicas y la construcción de una primera generación de detectores que tra­

bajaban a temperatura ambiente. Todo ello ocurría pese a la considerable controversia

que rodeaba las proclamas de Weber, ya que la sensibilidad de su antena era considerada

suficiente sólo para detectar radiación emanando de explosiones de supernova en nuestra

galaxia que, de acuerdo con sus resultados, debían ocurrir varias veces cada día en la.

Vía. Láctea, una circunstancia increible. Además, también había desacuerdo en la forma
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en que los resultados habían sido analizados, y el consenso es que en realidad el equipo

probablemente no detectó radiación. Aún así, Weber es reconocido como el pionero que

promovió este área de investigación con la invención de la antena resonante capaz de al-
.. ,
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debajo de un radio nuclear en una distancia de 1m. También desempeñó la importante
función de alertar a los experimentales de la necesidad de acometer esta investigación
y así, a finales de los 70, otros investigadores se vieron envueltos en la construcción de

una segunda generación de antenas gravitatorias [10] que ofrecían mejor respuesta como

consecuencia de importantes mejoras tecnológicas en el diseño, tales como criogenia,
mayor aislamiento, o sistemas de lectura más perfecionados con transductores resonantes

y amplificadores de bajo ruido basados en efectos cuánticos.

En este período de desarrollo de antenas resonantes comenzaron a surgir otros métodos

de detección, tales como el seguimiento Doppler de naves espaciales o la interferometría

-por ejemplo, en 1972 Forward [48] construyó el primer prototipo a pequeña escala de de­

tector interferométrico de láser. Todas estas técnicas de detección fueron perfeccionadas
en los 80 y actualmente se lleva a cabo un esfuerzo continuado como se refleja en varios

proyectos ambiciosos, incluso algunos en funcionamiento [28,111,45]2.
Pese a todos estos esfuerzos, ningún otro experimento ha confirmado los resultados

de las observaciones de Weber. Pero aún así, la existencia de las ondas gravitatorias,
y también otras predicciones de la física de radiación gravitatoria, se confirmaron afor­

tunadamente a partir del descubrimiento del pulsar binario PSR 1913+16 por Hulse y

Taylor [64] en 1974. Este objeto estelar consiste en un pulsar periódico (59 milisegundos)
en órbita elíptica. de periodo 2.79 X 104, alrededor del centro de masas del sistema que

está formado además por una estrella de neutrones con una separación máxima de sólo

1011 cm (:::::: 1 radio solar). Cinco años de análisis de datos llevaron a la observación de

cambios seculares en la órbita del pulsar, que se esperaba correspondieran a efectos de

emisión de radiación gravitatoria descritos por la fórmula de radiación cuadrupolar. Más

concretamente, a partir del análisis de los tiempos de llegada de las señales pulsantes se

ha visto que el valor observado del decrecimiento del periodo orbital del sistema está en

acuerdo con el predicho por la Relatividad General con un error'' de aproximadamente
un 1% [127, 128J.

Esta indudable evidencia experimental sugiere que los resultados negativos propor-

2Ver sección R.2 para referencias más detalladas.

3En [72]. los cálculos dan Tpredicted = -2.4032 X 10-12, mientras que Tobserved = -2.409 X 10-12.
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cionados por las antenas gravitatorias actuales son debidos a una falta de sensibilidad

en los dispositivos. El hecho es que las señales que se esperan detectar son extremada­

mente débiles y pueden ser fácilmente disimuladas por el ruido que emana de diversas

fuentes. Por tanto, se necesita mejorar la sensibilidad. En el caso de interferómetros,
el futuro prevee proyectos de gran embergadura. Para detección resonante, además de

perfeccionamientos tecnológicos se plantea la cuestión de sustituir la geometría cilíndrica
de las barras por la geometría esférica. Forward [47] fue el primero en reconocer que la

esfera presenta una geometría natural para un detector resonante ofreciendo mejores ca­

pacidades de detección que las barras cilíndricas. Poco después, otros autores también se

interesaron por esta idea y así, en 1975, Ashby y Dreintlein [4] estudiaron la respuesta de

una esfera elástica influenciada por radiación gravitatoria. En 1977, Wagoner y Paik [133]
encontraron un sistema de ecuaciones de las que se podían hallar la dirección de inciden­

cia de la señal, y así la posición de la fuente en el hemisferio celeste, y las polarizaciones
de la onda, y además demostraron que la sensibilidad de la esfera por unidad de masa

es superior a la de los cilindros. Los investigadores experimentales ignoraron estos resul­

tados hasta el comienzo de la década actual, momento en el que varios grupos en todo

el mundo han comenzado a desarrollar el tema de los detectores esféricos, tanto desde el

punto de vista teórico [80. 32, 84, 103] como desde el experimental [49, 69, 97].

R.l.2 Motivación

En vistas a este breve relato sobre la evolución de la investigación de la radiación grav­

itatoria, no se puede evitar la siguiente pregunta: ¿cuál es de hecho el objetivo final que

se persigue? ¿Es la mera resolución, por otro lado desafiante, de medir cuantitativamente

tan débiles perturbaciones o es posiblemente la búsqueda de una prueba experimental
directa y concluyente de su realidad?

Parece ser que después del descubrimiento del pulsar binario PSR 1913+ 16 y de

los análisis y conclusiones subsiguientes, la existencia de las ondas gravitat.orias en la

)¡aturaleza no debe ser ya un asunto polémico. Sin embargo, en ocasiones se dice que

estos resultados proporcionan una prueba indirecta y el interés en construir antenas

operativas se explica por la intención de obtener una evidencia directa.

No obstante, no sería correcto restringir la respuesta a una motivación tan primaria
y concreta. No es en absoluto imprudente afirmar que la intención última recae en un

intento de establecer los fundamentos de una nueva astronomía de ondas gravitatorias,
una nueva fuente de información para la Astrofísica y la Cosmología. Es más. se cree que
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provocaría una revolución en nuestro conocimiento del Universo comparable o incluso

superior a la que resultó del descubrimiento de las ondas de radio y la radioastronomía,

que transformó nuestra visión de un Universo sereno donde las estrellas y los planetas

viajaban suavemente en sus órbitas en un escenario violento con galaxias en colisión, jets

emergiendo de núcleos galácticos o quasares con luminosidades que varían en horas. Esta

espectacular revolución fue posible debido a que la información que se puede obtener de

las ondas de radio es muy diferente de la que proporciona la luz visible. Las diferencias

son incluso mayores en la comparación entre radiación electromagnética y gravitatoria,
lo que hace que una Astronomía Gravitatoria pueda llegar a crear una nueva y más fiable

imagen del Universo.

El desarrollo de esta nueva astronomía no sólo requiere esfuerzo experimental, sino
también contribuciones teóricas. Por una parte, se deben estudiar más a fondo posibles
fuentes de ondas gravitatorias elaborando modelos más apropiados que determinen con

mayor precisión la cantidad de radiación emitida, qué tipos de fuentes ocurren realmente

y con qué frecuencia. Por otra parte, es obvio que es esencial un estudio completo de las

características físicas y del comportamiento dinámico de los detectores para la correcta

interpretación de la información que pueden proporcionar.
En el caso de antenas resonantes, los modelos existentes se basan en suposiciones ex­

cesivamente simplificadoras que negligen efectos relevantes. En particular, las principales
simplificaciones para detectores esféricos -dejando a un lado el problema del ruido- se

refieren al problema de los resonadores. La filosofía de utilizar transductores resonantes

como sensores del movimiento comenzó con las barras cilíndricas. Son dispositivos que se

acoplan a los modos de vibración de la antena, amplificándolos mecánicamente cuando su

frecuencia de resonancia se sintoniza cuidadosamente con una del cilindro. En detectores

esféricos son igualmente útiles y necesarios, con la única salvedad de que es necesario un

conjunto múltiple en lugar de un único resonador para explotar sus capacidades poten­
ciales como sistema multimodo, es decir, para obtener la máxima información sobre la

dirección de incidencia de la onda y sus amplitudes. En consecuencia, la dinámica del

sistema acoplado debe ser estudiada si se quiere obtener una interpretación adecuada

de las lecturas o. en otras palabras, se debe resolver el problema de los resonadores.

Corrientemente. el comportamiento predicho para la esfera acoplada se extrapola de los

resultados para la esfera libre lo que, por ejemplo, lleva a implementaciones no válidas

para la') correcciones de segundo orden según la exactitud de los datos expeimentales. y
esta situación resulta ser altamente indeseable bajo la perspectiva razonable de que las

antenas esféricas utilizarán en el futuro técnicas de medición extremadamente precisas,
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que probablemente requieran análisis más refinados.

Por ello, nuestra intención en este trabajo es la de construir un modelo teórico más

sofisticado con el objetivo de determinar la respuesta de la antena a cualquier señal

interesante y con precisión ilimitada.

R.1.3 Sumario

En resumen, esta tesis presenta una cuidadosa descripción, tanto física como matemática,
del comportamiento dinámico de las antenas esféricas resonantes de ondas gravitato­
rias cuando son excitadas por radiación gravitatoria o también por señales de cali­

bración", centrando especialmente nuestra atención en el problema de los resonadores

y desarrollando un procedimiento general aplicable a cualquier propuesta.
El trabajo se ha estructurado en tres partes.
La primera es una introducción que incluye los Capítulos 1 y 2. Después de los prelim­

inares en el Capítulo 1, el Capítulo 2 comienza con una breve supervisión de la teoría de

Radiación Gravitatoria según la Relatividad General, aunque los principales argumentos
son también válidos para cualquier otra teoría métrica. Se deriva la ecuación de ondas en

la aproximación lineal y se discuten sus soluciones de vacío -caracterizadas como ondas

planas-, sus polarizaciones y su acción sobre cuerpos extensos, lo que resulta ser del

mayor interés en el estudio de detectores resonantes. Las soluciones de las ecuaciones

de Einstein de tipo retardado se consideran en conexión con el tema de la generación
de ondas gravitatorias y radiación cuadrupolar, y también se hace referencia a algunas
de sus posibles fuentes. En la segunda parte del capítulo la atención se centra en otro

asunto ya clásico y que es el marco de referencia de este ensayo: la detección de ondas

gravitatorias. Para establecer una perspectiva general. se describe primero el estado ac­

tual revisando las diversas técnicas de detección: seguimiento Doppler, interferometría y

detección resonante especialmente con detectores esféricos. El resto de la tesis se centra

exclusivamente en estos últimos.

El Capítulo 3 abre la segunda parte del trabajo. En él se desarrolla una descripción
matemática del comportamiento dinámico de las antenas esféricas bajo la acción de on­

das gravitatorias o también de señales de calibración. Como introducción necesaria se

recogen primero algunos resultados bien conocidos sobre la esfera libre -por ejemplo el

hecho de que sólo sus modos cuadrupolares y monopolares pueden ser excitados por las

4 Este apartado se halla fuera de la línea principal de este trabajo, pero representa un caso interesante

tanto desde el punto de vista experimental corno teórico.
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ondas gravitatorias incidentes- modelizada como un sólido elástico y homogéneo perfec­
tamente esférico, y sobre el conjunto de resonadores que se acoplan en posiciones fijas
pero arbitrarias. Estos resonadores se tratan como osciladores armónicos lineales con una

frecuencia natural de resonancia cuidadosamente sintonizada a una dada del espectro de

la esfera libre, lógicamente una monopolar o cuadrupolar.
El análisis del sistema. acoplado comienza con el establecimiento del conjunto de ecua­

ciones diferenciales, las ecuaciones GRD, que describen el sistema bajo suposiciones gen­

erales: el detector es un sólido elástico sin geometría fijada, los resonadores se modelizan

como osciladores armónicos lineales que se mueven radialmente, pueden no ser idénticos y

se acoplan en posiciones arbitrarias, y por último la fuerza que actúa sobre el sistema es de

tipo separable. Inmediatamente, el sistema se transforma en algebraico mediante trans­

formadas de Laplace y se restringe a detectores esféricos perfectos, resonadores idénticos

y fuerza de marea gravitatoria -o asociada a señales de calibración-. Su resolución pro­

porciona las resonancias del sistema acoplado, así como las amplitudes vibracionales en

las posiciones de los resonadores, aunque no se pueden obtener soluciones exactas sino

que se trabaja con series perturbativas para obtener resultados a primer orden en r¡!
-r¡ es el cociente entre la masa de los resonadores y la masa de la esfera-. Finalmente,
se discute la posibilidad de construcción de canales de modo (mode channels), que son

combinaciones lineales de las medidas de los resonadores directamente proporcionales
a las amplitudes de las ondas gravitatorias con pesos determinados por las frecuencias

acopladas.
Nuestra propuesta PHCA o la antena TIGA de Johson y Merkowitz. que se exami­

nan en el Capítulo 4 como aplicaciones de nuestros desarrollos teóricos en el Capítulo 3,
presentan distribuciones mínimas de transductores que permiten la implementación de

los canales de modo. Debido a exigencias experimentales, las dos propuestas adoptan
la sustitución de la esfera por un poliedro regular que la aproxima, y también sug­
ieren configuraciones específicas de resonadores, según simetría axial o máxima isotropía
respectivamente. Se ve que sus respuestas no difieren en la estructuración básica expli­
cada por el modelo general. sino en ciertas peculiaridades particulares aunque relevantes.

Después de esta exposición del núcleo de nuestra teoría, en la tercera y última parte de

la tesis emprendemos el tratamiento de dos cuestiones más: cómo pequeñas desviaciones

de la situación ideal afectan las respuestas del sistema, y el problemas de la deconvlución

de señales también cuando se tiene en cuenta el ruido del dispositivo. El primer tema
es especialmente interesante por incrementar el grado de aplicabilidad del modelo ideal

a sistemas reales. Nos centraremos en desiguladades entre resonadores, en la existencia
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de una segunda frecuencia de resonancia que provoca el efecto URF, y en la rotura de

simetría esférica debido a la suspensión. Estos dos últimos efectos llevan a cambios sig­
nificativos con respecto al comportamiento del sistema ideal, e incluso para la antena

suspendida la predicción de nuestro modelo ha sido confrontada con resultado satisfac­

torio con los datos experimentales obtenidos del prototipo TIGA. La deconvolución de

señales es el último punto tratado en este trabajo. Se trata de determinar la dirección

de incidencia de la onda, sus amplitudes y su polarización a partir de las lecturas de la

antena. Se estudian los dos casos de ausencia y presencia de ruido.

La memoria se cierra finalmente con una breve discusión que resume los resultados y

algunos comentarios sobre perspectivas para futuros trabajos.

R.2 Teoría y Detección de Ondas Gravitatorias

En este capítulo nos centraremos de forma más concreta en la Detección de Ondas

Gravitatorias y más específicamente en Antenas Esféricas. Nuestro principal interés es

el de presentar brevemente un panorama general del estado actual de la investigación
sobre ondas gravitatorias, concentrándonos en los detectores resonantes para evaluar las

posibilidades de las antenas esféricas. Previamente, será necesario repasar la teoría que

describe y explica la radiación gravitatoria para asegurar la comprensión de resultados

posteriores. Por supuesto, se pueden encontrar presentaciones más completas y extensas

en obras clásicas como Kenyon [72], Wald [134] o Weinberg [140].

R.2.1 Generalidades sobre Teoría de Radiación Gravitatoria

Como se ha indicado anteriormente, las ondas gravitatorias no son exclusivas de la

Relatividad General de Einstein. Entre las teorías alternativas existe una amplia clase,
llamada de las teorías métricas, cuyos miembros son muy similares a la Relatividad

General: de hecho ésta es en sí misma una teoría métrica al igual que las teorías de

Dicke-Brans-Jordan o de Rosen [141]. Cualquier teoría métrica de la gravedad predice
perturbaciones de la curvatura que se propagan con velocidad finita en el espaciotiempo
transportando energía. siendo así responsables de cambios en cantidades geométricas y de

1a.'3 fuerzas de marea en la materia. Aquí, nos vamos a restringir a la discusión de ondas

gravitatorias en Relatividad General, aunque la perspectiva y los argumentos generales
son válidos para cualquier otra teoría métrica.

Nuestro propósito es ver cómo es posible encontrar soluciones radiativas de las ecua-
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ciones de Einstein, que describen ondas que no transportan suficiente energía o momento

como para afectar su propia propagación. Se trata de soluciones de las ecuaciones de

campo linearizadas válidas para campos débiles, de manera que la métrica se puede
considerar

(R.l)

donde T)¡.¡v representa la métrica plana de Minkowski y h¡.¡v(x) es una pequeña pertur­

bación. En esta aproximación las soluciones de vacío se pueden describir por un tensor

simétrico, localmente caracterizado solamente por dos funciones debido a la inviancia

gauge presente en las ecuaciones. De hecho, se trata de ondas planas transversales con

dos estados de polarización. Las diferentes polarizaciones dan lugar a patrones diferentes

de deformación del espacio tiempo que pueden ser analizados a partir de la ecuación de

la desviación geodésica. Estas perturbaciones no sólo son capaces de cambiar cantidades

geométricas como las distancias, sino que también pueden actuar como fuerzas de marea

-guardando una estructura monopolar-cuadrupolar según las teorías métricas- capaces

de modificar la forma de objetos materiales.

Esta propiedad es fundamental para entender el funcionamiento de los detectores

masivos resonantes, que se enfrentan a la difícil tarea de tener que detectar señales ex­

tremadamente débiles que no pueden generarse de forma mínimamente apreciable en el

laboratorio, como se puede deducir de las estimaciones que se obtienen a partir de la

fórmula cuadrupolar que describe las contribuciones a la métrica debidas al movimiento

cuadrupolar de la fuente, las más importantes ya que no existe radiación gravitato­
ria dipolar. Una producción medible en la Tierra requiere masas enormes que sufran

dinámicas altamente no uniformes o violentas y por esta razón las ondas gravitatorias
deben ser buscadas en el espacio exterior.

Sus fuentes se pueden distinguir según el tiempo de emisión en señales cortas, largas
yen el fondo estocástico permanente que baila el Universo. Las más intensas son explo­
siones de breve duración relacionadas con sucesos astrofísicos catastróficos: estrellas que

colapsan, supernovas, binarias coalescentes, etc .. Otros candidatos. tales como los pul­
sar, producen ondas periódicas que son superposición de sinusoides con frecuencias más

o menos constantes en t.iempos largos comparados con el de observación. Por último, el

fondo estocástico está siempre presente con espectro contínuo. Sucesos tales como colap­
sos estelares en nuestra galaxia producirían las ondas que se detectarían más fácilmente.

Sin embargo, ocurren raramente por lo que es inevitable buscar su procedencia en lugares
más distantes.
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R.2.2 Detección de Ondas Gravitatorias

Han sido varios los diferentes métodos que se han ideado para medir ondas gravita­
torias. Una clasificación a groso modo los divide en aquellos que trabajan en el régimen
de altas frecuencias, f � 10Hz, todos terrestres, los que lo hacen a bajas frecuencias,
10H z � f � lO-5Hz, y aquellos a muy bajas frecuencias f � lO-5Hz y que deben

situarse en el espacio para evitar al máximo cualquier tipo de ruido. Los primeros in­

cluyen detectores masivos resonantes e interferómetros, aunque se ha elucubrado sobre

otras posibilidades diferentes [53, 117,2). En el segundo grupo se incluirían como más

importantes el seguimiento Doppler de naves espaciales y ambiciosos proyectos de in­

terferometría. En el tercer caso, la detección requiere cuerpos astronómicos distantes

[35, 143), aunque también son interesantes los detectores resonantes [132).
El seguimiento Doppler [17, 28) constituye el mejor método de detección a bajas

frecuencias con periodos de entre unos pocos minutos y unas pocas horas. Se persiguen
sensibilidades de entre � 10-15 y � 10-17 en el rango de frecuencias 10-2 -10-4Hz. Pero

los interferómetros pueden mejorar estos resultados. Desde los 70 se han desarrollado

algunos prototipos, por ejemplo ver [102], y varios detectores se encuentran en una fase

final de construcctión: TAMA300 [71], GE0600 [88], LIGO [1] y VIRGO [23]. Además,
se pretenden llevar a cabo experimentos espaciales de gran escala. Uno de ellos es el

proyecto LISA [34] de la Agencia Espacial Europea.

Otra de las técnicas importantes de detección requiere el uso de antenas masrvas

resonantes. Weber fue el primero en construir antenas de este tipo con forma cilíndrica

[136, 137]. Estas barras [130) basan su funcionamiento en la medida de los cambios de

longitud asociados a oscilaciones mecánicas que pueden ser potencialmente inducidas por

ondas gravitatorias incidentes. A cada antena se le acopla un único sensor en el extremo

con una frecuencia natural de resonancia que coincide con la frecuencia fundamental del

cilindro. Entonces, se produce una transferencia resonante de energía entre ambos, lo

que provoca una amplificación pre-electrónica de las vibraciones.

Tras los primeros experimentos de Weber se construyeron otras antenas similares que

también trabajaban a temperatura ambiente, como por ejemplo GEOGRAV [21). Á fi­

nales de los 70 surgió una segunda generación más perfeccionada de detectores criogénicos
con la construcción del detector ALTAIR [14]. Desde 1990, estas antenas criogénicas han

sido las únicas en operación y se han obtenido datos de dispositivos como EXPLORER

[101,7], ALLEGRO [93] o NIOBE [59]. Más recientemente, dos antenas ultracriogénicas
han comenzado a trabajar a temperaturas tan bajas como O.lf{. Finalmente, existe una
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última antena con forma no cilíndrica adaptada para la detección de ondas provenientes
del pulsar Crab [125].

La sensibilidad que han alcanzado estas antenas ronda por ejemplo h � 10-19 para

ondas de tipo impulsivo, pero este valor puede ser mejorado hasta h � 3 X 10-22 si la

geometría cilíndrica de las barras se sustituye por la esférica.

Un detector esférico es omnidireccional. pero además la estructura de sus modos de

vibración se adapta perfectamente a la estructura del tensor de Riemann de una métrica

general, de forma que una onda gravitatoria sólo puede excitar sus modos esferoidales

monopolares o cuadrupolares, con amplitudes directamente proporcionales a las ampli­
tudes de la onda [80, 11]. Un único detector se erige así en un sistema multimodo, capaz
de proporcionar información sobre la dirección de incidencia de la onda, sus amplitudes
o su polarización [133, 90]. Incluso presenta mayor sensibilidad no sólo al primer modo

cuadrupolar sino también al segundo, y una sección eficaz superior a la de las barras

[133].

R.3 Antenas Esféricas

Como sistema multimodo, un detector esférico requiere todo un conjunto de sen­

sores unidos a su superficie en posiciones adecuadas. Estos sensores transforman las

oscilaciones en señales eléctricas que después amplifican, pero se da una conveniente am­

plificación mecánica previa obtenida por el acoplamiento resonante de sus constituyentes
mecánicos denominados resonadores. No todo son ventajas; resulta que éstos ejercen un

efecto de retroacción en la esfera que no es negligible en el estudio de la estructura fina del

sistema. Un análisis completo del dispositivo acoplado, en otras palabras, la resolución

del problema de los resonadores, es por ello esencial para la correcta interpretación de

las lecturas de la antena.

En este capítulo presentamos este análisis con rigor y obtenemos una elegante descripción
del comport.amiento físico de las antenas esféricas resonantes a partir de un robusto es­

quema matemático basado en el formalismo de las funciones de Green, las transformadas
de Laplace. y desarrollos perturbativos. \lás específicamente, se obtiene el espectro de

frecuencias y las amplitudes de vibración en las localizaciones de los resonadores con

precisión teórica ilimitada. A partir de éstas se construirán los cana/es de modo que fa­

cilitarán la deconvolución de las señales, típicamente ondas gravitatorias aunque también
son interesantes las señales de calibración.
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Como paso preliminar, se recuperan algunos resultados bien conocidos sobre la esfera

libre y se explica la modelización de los resonadores.

R.3.1 La Esfera Libre

Cualquier sólido elástico presenta vibraciones periódicas características cuando no

está sujeto a fuerzas externas o tra.cciones en su superficie. Estos movimientos reciben el

nombre de modos normales de vibración, y son los ingredientes para. construir la respuesta

del cuerpo a la influencia de una fuerza externa general como por ejemplo las fuerzas de

marea gravitatorias.
El estudio de estos modos naturales para cuerpos esféricos es un tema clásico [68, 75,

80, 97, 103) en la teoría clásica de la elasticidad [78). Se dividen en dos familias: modos

esferoidales y modos toroidales, cada uno de ellos dependiendo de armónicos esféricos y

funciones de Bessel y caracterizado por un triple subíndice {nlm}. Para cada uno de

éstos con n fija existe un único modo monopolar con l = O, mientras que si 1 = 2 existen

5 modos cuadrupolares degenerados en frecuencia.

El formalismo de las funciones de Green permite expresar la reacción de la esfera

libre a una fuerza externa en base a estos modos normales. Para fuerzas gravitatorias
de marea que interaccionan con sólidos esféricos homogéneos y elásticos [103, 24, 25. 60,
94, 106, 122) -admitiendo que no van a ocurrir movimientos relativistas a las frecuencias

típicas esperadas de 1KHz y trabajando en el sistema localmente newtoniano adecuado

si las dimensiones del detector son pequeñas en comparación con la longitud de onda

de la señal- se demuestra que la respuesta sólo depende de los modos esferoidales con

precisamente I = O y 1 = 2, con amplitudes directamente proporcionales a las amplitudes
correspondientes de la onda incidente [80, 103), de manera que la geometría esférica se

erige en part.icularmente conveniente para detectores masivos resonantes. En contraste,
la respuesta a una señal de calibración impulsiva involucra todos los modos excepto los

perpendiculares a la fuerza [80).

R.3.2 Los Resonadores

Los resonadores constituyen la parte mecánica de los sensores, compuestos básicamente

por un transductor que transforma las señales en eléctricas y un amplificador. Los reson­

adores deben ser diseñados para poseer una frecuencia característica idealmente idéntica

a una del espectro de la esfera libre. El acoplamiento producirá en este caso un efecto

de resonancia. que resultará en una amplificación mecánica pre-electrónica de las vibra-
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ciones. Se considera que estos resonadores son únicamente libres para moverse en la di­

rección radial, y se modelizan como osciladores armónicos lineales, por ejemplo formados

por masas puntuales al extremo de un muelle. Por último, hay que señalar que son mucho

más ligeros que la esfera, de manera que el parámetro adimensional TI ==

pequeño , � 0(10-4).

mre8ono.dore! es
Me"Jera

R.3.3 Detectores Esféricos y el Problema de los Resonadores

El estudio del problema de los resonadores parte del establecimiento del conjunto de

ecuaciones generales GRD que describe el sistema acoplado bajo la acción de una fuerza

general de tipo separable, y que se plantea en un principio para cualquier geometría del

detector y cualquier configuración de J resonadores idealmente sintonizados a una única

frecuencia WNL de la esfera libre.

Mediante la aplicación de la teoría de las funciones de Green, las ecuaciones GRD en

derivadas parciales se transforman en un sistema integro-diferencial, del que se obtiene

finalmente un sistema de J ecuaciones lineales algebraicas por transformación de Laplace.

R.3.4 Aproximación Ideal: Esfera Perfecta y Resonadores

Idénticos

Este último sistema se resuelve en el caso ideal de una esfera pefecta con resonadores

idénticos en masa y frecuencia de resonancia. Se puede entender que estos resonadores

causan una perturbación con respecto al comportamiento de la esfera libre provocando la

correlación entre las deformaciones de la esfera y todos sus modos normales esferoidales.

Este hecho se refleja en las ecuaciones a través de un término introducido por la pequeña
constante de acoplamiento adimensional TI. Esto va a permitir el desarrollo de series

perturbativas para las soluciones, que por otra parte no se pueden obtener de forma

exacta.

Estas soluciones proporcionan las frecuencias propias del sistema acoplado así como

las amplitudes de las deformaciones elásticas de los resonadores, las únicas cantidades

medibles. Con respecto a las frecuencias, se observa que la presencia de los J resonadores

afecta la estructuración de todo el espectro de la esfera libre, de manera que en principio
aparecerán generalmente J dobletes de frecuencias simétricamente distribuidas alrededor

de la frecuencia de resonancia WNL -aunque de hecho serán a lo sumo 2L + 1 los pares

fuertemente acoplados a orden 1) � -

y J single tes desplazados por cada una de las restantes

Wnl·
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La tarea del cálculo de las amplitudes es mucho más laboriosa y requiere la inversión

de las transformadas de Laplace que se habían llevado a cabo, lo que a su vez necesita

de la aplicación del cálculo de resíduos. Previamente, es conveniente fijar el tipo de

fuerza que actúa sobre la antena. Si corresponde a ondas gravitatorias monopolares y los

resonadores se sintonizan precisamente a una frecuencia también monopolar WNO, ocurre

que las respuestas de todos los resonadores son iguales ya que el comportamiento dinámico
de éstos es el mismo por la simetría esférica de las oscilaciones monopolares de la esfera.

Un único resonador será suficiente en este caso. En cambio, para detectar radiación

cuadrupolar serán necesarios al menos cinco resonadores con lecturas independientes
acoplados a una frecuencia cuadrupolar wN2. En ambos casos, se da la presencia de un

factor de amplificación r¡- �
, y sólo es relevante la contribución de los modos sintonizados

que estén fuertemente acoplados; el resto contribuirá a órdenes superiores. Además, la

composición espectral de estas amplitudes está dominada por las frecuencias acopladas
correspondientes. Para finalizar, se observa que cuando se expresan en el espacio del

tiempo tras realizar la transformada de Laplace inversa, estas amplitudes son de hecho

pulsos, es decir, sinusoides de frecuencia igual a la frecuencia de resonancia y amplitud
modulada por una nueva frecuencia que depende de hecho de las que surgen alrededor

de ésta después del acoplamiento.

Los resultados para señales de calibración son totalmente análogos y se obtienen

siguiendo estrictamente los mismos procesos.

Por último. para ciertas distribuciones de resonadores se pueden realizar determinadas

combinaciones linea.les de las amplitudes, cada una de ellas direct.amente proporcional a.

una única. amplitud del campo gravitatorio. Los primeros en obtenerlas fueron Johnson y

Merkowitz en el estudio de su propuesta TIGA [69. 97], y las llamaron canales de modo,

(mode channels). Su existencia es muy ventajosa ya que su utilización simplifica. notable­
mente los métodos de deconvolución. Hay dos configuraciones con un número mínimo

de resonadores que cumplen los requisitos de existencia y permiten la implementación
de canales de modo. aunque realmente no son las únicas. Estas dos distribuciones son la.

base para las propuestas de antena esférica PHCA y TIGA que se estudian en el próximo
capítulo.
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R.4 Configuraciones Específicas de Resonadores

Vamos a estudiar dos propuestas particulares sobre antenas esféricas, con resonadores

fijados en posiciones específicas que permiten la implementación de canales de modo. El

núcleo de la antena se sustituye por un poliedro regular que aproxima la esfera per­

fecta para evitar así complicaciones técnicas como las relacionadas con el montaje y la

estabilidad de los resonadores. Presentamos primero nuestra propia propuesta PHCA.

RA.l Propuesta PHCA

Para la detección de radiación cuadrupolar se requieren al menos cinco resonadores

en posiciones no paralelas. Dado que más de cinco producirían información redundante y

complicarían más la resolución de las ecuaciones GRD, nos limitamos a este número y los

distribuimos alrededor de un eje según una simetría pentagonal: los resonadores se hallan

en el mismo plano marcado por un cierto paralelo y separados cada dos consecutivos por

72°. Estas distribuciones pentagonales muestran un espectro acoplado alrededor de la

frecuencia de resonancia W""J. que se distribuye en tres dobletes diferentes, dos de ellos

doblemente degenerados. y amplitudes que se acoplan selectivamente a estas diferentes

frecuencias de manera que la inspección del espectro ya informa sobre qué amplitudes
están presentes.

Los resonadores se montan sobre un hexacontaedro pentagonal. Este es un cuerpo

regular convexo de sesenta caras iguales no paralelas con forma de pentágono irregular.
Este poliedro encierra una esfera inscrita -siendo la relación de volúmenes de 1.057- tan­

gente en un punto de confluencia a cada cara. lugar en el que los resonadores deben ser

acoplados. De ent.re las distribuciones pentagonales compatibles con la geometría de este

poliedro, se elige aquella que mantiene los pares de frecuencias acoplados más equitati­
vamente espaciados para mantener la estructura espectral máximamente diferenciada.

Así que, en definitiva. proponemos la antena PHCA formada por un hexacontaedro

pentagonal como núcleo del detector acoplado a una distribución pentagonal alrededor de
una eje de simetría con .) resonadores montados en las caras cuyos puntos de confluencia

corresponden al ángulo polar e = 67.617°.

Es más, esta antena puede ser sensible no sólo al primer modo cuadrupolar W12,

sino también al segundo ...;�� -debido a que la esfera posee una sección eficaz interesante

también a esta frecuencia- e incluso a radiación monopolar. Por ello proponemos un

segundo conjunto de resonadores sintonizados a esta nueva frecuencia W22 distribuidos
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una vez más según simetría pentagonal en una posición suplementaria a la pnrnera.

Para completar, se puede añadir un onceavo sensor a la frecuencia WIO para la detección

de radiación monopolar. Se comprueba que los diferentes grupos de resonadores no

interaccionan entre sí,

Un detector esférico como el descrito con 11 resonadores es un dispositivo multifre­

cuencial y multimodo sin precedentes en cuanto a capacidades como antena indiviual.

R.4.2 Propuesta TIGA

Stephen Merkowitz and Warren Johnson fueron los primeros en sugerir un diseño

específico para la construcción de una antena esférica de ondas gravitatorias, TIGA

[69, 97, 95, 98].
Se trata de un conjunto de 6 resonadores montados sobre un icosaedro truncado.

El icosaedro truncado es un poliedro con una esfera circunscrita asociada -Ia relación

de volúmenes es 1.153- de 32 caras, 20 de ellas hexágonos regulares y 12 pentágonos
formando 6 pares de caras paralelas. Merkowitz y Johnson precisamente propusieron los

centros de 6 de estas caras no paralelas, también interesantes por ser las posiciones de

los centros de la mitad de las caras de un dodecaedro convenientemente orientado.

Encontraron que su distribución simplificabamáximamente el espectro de frecuencias:

sólo se obtienen un par quíntuplemente degenerado y un singlete a la frecuencia de

resonancia débilmente acoplado. La distribución TIGA es la mínima configuración con

tal degeneración, aunque no es única en este sentido [91]. Esta degeneración se hace

también extensiva a las expresiones de las seis amplitudes, todas idénticas. y a los cinco

canales de modo, todos ellos con el mismo peso frecuencial.

RA.3 Un Ejemplo Simple: Respuestas a Señales de Calibración

Una forma simple de contrastar los resultados para ambas propuestas PROA y TIGA

es estudiar sus respuestas a señales particularmente simples, como lo son las señales de

calibración de tipo impulsivo, lo que reflejará las características más relevantes de las dos

configuraciones.
Los resultados muestran que la diferencia fundamental es que las respuestas PROA

son superposiciones de tres pulsos distintos -el espectro de frecuencias contiene tres

pares de picos como se ha comentado anteriormente-, en contraste a la componente
única para TIGA. Ademaás, los canales de modo para la antena PRCA son cada uno de

ellos pulsos simples, pero con diferentes frecuencias de modulación cada uno, mientras
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que las frecuencias de modulación de los pulsos simples en el caso TIGA son siempre

iguales. Así que los canales de modo son siempre pulsos puros con espectros que contienen

pares de picos individuales a las frecuencias que surgen del acoplamiento resonante. Se

puede interpretar que la antena PHCA da lugar a una especie de efecto Zeeman de

las frecuencias degeneradas de la antena TIGA, lo que se puede atribuir a una rotura

axisimétrica del carácter isotrópo de esta última distribución.

R.5 Desviaciones Respecto a la Aproximación Ideal

Nuestro modelo se ha construido para explicar la dinámica de esferas perfectas acopladas
a una distribución de resonadores idénticos, idealmente montados en su superfície en posi­
ciones exactas y teóricamente sintonizados a una única frecuencia del espectro de la esfera

libre.

Estas son ciertamente SUpOSICIOnes no muy realistas, por lo que el estudio de los

efectos que pequeñas desviaciones de esta situcaión ideal producen en el comportamiento
de la antena supone una extensión natural de este trabajo que aumentaría de hecho su

aplicabilidad a sistemas reales.

Como vamos a ver, esta evaluación revelará que el sistema es en efecto robusto con

respecto a algunas de estas imperfecciones. lo que también ha sido referido en otros

trabajos [121, 98], pero sin embargo existen dos casos que merecen especial atención ya

que muestran cambios significativos con respecto a la dinámica ideal: la existencia de una

segunda frecuencia de la. esfera libre WN' L' cercana. a la frecuencia de resonancia WNL. Y

la rotura de simetría esférica debida a la suspensión.

En todos los casos, hay que buscar una parametrización adecuada que describa estas

pequeñas divergencias. La clave está en aceptar que si la diferencia entre el valor real

de un cierto parámetro y su valor ideal es a priori de orden r¡� o superior, el sistema

puede quedar afectado por esta diferencia, mientras que si la diferencia es apreciablemente
menor el sistema será robusto frente a la desviación al orden dominante, lo que constituye
una parametrización consistente con la expansión de nuestras soluciones en series de

pot.encias de r¡�.
Desarrollemos estas ideas en algunos casos interesantes.
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R.5.1 Acoplamiento No Ideal de los Resonadores

En esta sección se estudian desviaciones en tres parámetros referidos a las carac­

terísticas y situación física de los resonadores. Primeramente, se examina la situación en

la que las posiciones reales de los resonadores se hallan muy cercanas a las localizaciones

ideales pero no son exactamente éstas. En segundo lugar, se toleran diferencias entre
1

las masas de los resonadores. En ambos casos, las desviaciones se piensan a orden 7J'i y
es fácil corroborar que el sistema resulta ser robusto en sus funciones características a

primer orden.

También se evalúan diferencias a este mismo orden entre las frecuencias naturales

de los resonadores. Para éstas, resulta que se deberían apreciar cambios significativos al

orden dominante en el espectro de frecuencias del sistema. Sin embargo, es aquí la propia
suposición de partida que asume diferencias de orden 7J! la que no es realista, al menos

para resonadores en transductores capacitativos. Estos errores se asumen inferiores,
orden 7J o superior, por lo que estos pequeños cambios tampoco serán relevantes.

R.5.2 Sintonización No Aislada: el Efecto URF

En constraste a lo analizado hasta ahora, el sistema sí resulta ser sensible a la presencia
de una segunda frecuencia WN' L' cercana a la de resonancia WNL. Como siempre, el grado
de cercanía debe ser de orden 7J! , lo que ocurre por ejemplo entre la frecuencia W14 Y la

segunda frecuencia cuadrupolar W22, que resulta ser adecuada como frecuencia de reso­

nancia a la que se pueden sintonizar los resonadores. Por ello, los efectos que pueden ser

inducidos por esta vecindad, llamados efectos URF, deben ser cuidadosamente determi­

nados para conseguir una descripción acertada del comportamiento real del detector.

Un nuevo examen de las cantidades características de las antenas teniendo en cuenta

la proximidad entre WN' L' Y WNL deriva en una nueva imagen del espectro de frecuen­

cias acoplado. Para una configuración general de resonadores, resulta que los doblet.es

simétricos alrededor de WNL se transforman en tripletes con una, dos o tres frecuencia"

fuertemente acopladas -tripletes scS+wcD. scD+wc8 y scT respect ivamente-. Ocurre

que de la" tres componentes una, la frecuencia central, se encuentra muy cercana a la

frecuencia de resonancia, mientras que el par restante se distribuye de forma no simétrica

a su alrededor.

Esto se demuestra en particular para las antenas TIGA y PHCA en la" frecuencias

Wn Y W14· SUS tripletes contienen una frecuencia central que está realmente cerca de la

de resonancia, esto significa a una distancia de orden 7J� o incluso menor, por lo que una
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reproducción del proceso de cálculo de resíduos que determine las amplitudes de vibración

demostraría que las contribuciones de estos modos son a órdenes superiores, de forma

que se catalogan como débilmente acoplados. El resultado es que los tripletes son de tipo
scD+wcS. El par restante imita los dobletes del caso ideal, aunque la estricta simetría

que presentaban aquellos se rompe, de manera que es justamente la frecuencia por debajo
de la de resonancia W22 la mayor en valor absoluto, siendo mayor esta asimetría cuanto

mayor es la masa de la antena. Teniendo en cuenta además que la frecuencia central

también es menor que W22, parece obvio que los tripletes en su conjunto están afectados

por el hecho de que W14 es menor que W22. Se puede entender entonces que cada grupo

de frecuencias ideales ha sufrido un desplazamiento que la acerca a W14 Y este efecto de

arrastre es más importante para las frecuencias más cercanas a ésta.

En resumen, el efecto URF es un efecto de arrastre hacia WN'L' que rompe la simetría

de los dobletes ideales e induce la aparición de una tercera componente cercana a wNL Y

por lo general débilmente acoplada.
El análisis de este efecto es relevante por sí mismo en un estudio completo de cualquier

antena esférica, pero es especialmente relevante para la antena PHCA. La razón es que

como se ha explicado ya, esta propuesta sugiere un segundo conjunto de resonadores

sintonizados precisamente a la frecuencia W22, de forma que sin la determinación de las

consecuencias del efecto URF no podríamos dar una imagen correcta del comportamiento
del detector. En particular, vemos que para el espectro de resonancia tendremos en

realidad un primer grupo de tres pares simétricos de frecuencias, dos de ellos doblemente

degenerados. alrededor de Wl� Y un segundo grupo de tres tripletes diferentes del tipo
scD+ wcS y que mantienen la degeneración alrededor de W22.

R.5.3 Suspensión de la Esfera y Simetría Axial

La última situación que se aparta de la ideal y que se estudia aquí es la rotura de

simetría esférica por la suspensión necesaria de la antena en observatorios terrestres.

El mecanismo de suspensión requiere la realización de una perforación a lo largo de un

diámetro de la esfera. Como resultado de esta manipulación, la simetría esférica inicial

se transforma en simetría axial de la esfera perforada y así de la esfera suspendida.
La consecuencia inmediata es que todas las frecuencias de la esfera libre pierden su

degeneración dividiéndose en multipletes Wnlm, con m = -1, ... , l. La cuestión ahora

es cómo sintonizar los resonadores. Siguiendo la filosofía de parametrización de todo el

capítulo, se puede pensar que la frecuencia natural que los caracteriza se encuentra en la
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banda marcada por unas ciertas N y L, con diferencias a las distintas componentes WNLm

que son de orden 1]! como siempre. El espectro de frecuencias de la esfera suspendida
y acoplada también cambia. Se obtienen 2L + 1 + J frecuencias alrededor de la de

resonancia, con un número máximo de 2(2L + 1) modos fuertemente acoplados.
Cuando estas consideraciones se aplican al prototipo TIGA de Johnson y Merkowitz,

para un acoplamiento en la banda W12m se predicen 11 frecuencias no degeneradas alrede­

dor de la frecuencia natural de los resonadores, de las que 10 corresponderán a mo­

dos fuertemente acoplados, una imagen muy diferente de la asociada a la antena no

suspendida que presentaba degeneración máxima. La comparación de los resultados

númericos teóricos para estas frecuencias y las medidas en TIGA muestran un notable

acuerdo, con un error de a lo sumo un 0.2%, siendo en general del 0.1%. Se puede decir que
las discrepacias entre la teoría y el experimento son de orden 1], un resultado que respalda
la validez de nuestro modelo. También se corrobora que el modo débilmente acoplado
tiene una amplitud prácticamente nula, en excelente acuedo con nuestras predicciones
teóricas sobre estos modos.

Para acabar, hay que subrayar que la consideración de estimaciones de correcciones

de orden superior no mejora el acuerdo con las cantidades medidas debido a que las

propias condiciones experimentales ya incluyen niveles de tolerancia. No obstante. la

necesidad de dicha evaluación cercerá a medida que lo haga el control y la precisión del

experimento.
Este efecto de suspensión tiene menos impacto en nuestra antena PHCA, dado que

la distribución de resonadores mantiene simetría axial. Si el eje de simetría y el de

suspensión coinciden, el esquema de frecuencias de resonancia de la esfera suspendida
mantiene la degeneración de las estructuras del sistema no suspendido, una indicación

de que las configuraciones pentagonales se adaptan naturalmente a la suspensión con­

virtiéndose en alternativas a considerar frente a propuestas más simétricas.

R.6 Deconvolución de Señales

El propósito de un experimento de detección no es simplemente la mera corroboración

de la ocurrecia del fenómeno físico que se examina, sino también la adquisición de la

máxima información con respecto a. éste y sus ca.usas.

De acuerdo a esta filosofía, uno debe ser capaz de manipular convenientemente las

lecturas que se obtienen de las vibraciones de una antena esférica para determinar las
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causas y sus propiedades. Esto es lo que comúnmente se conoce como problema inverso o

deconvolución [133, SO, 91], cuya resolución debe proporcionar la dirección de incidencia

de la onda gravitatoria, sus amplitudes y su polarización.
Vamos a tratar aquí este problema en el supuesto de que no conozcamos mnguna

información sobre la fuente por vías externas y ni siquiera podamos admitir ninguna
hipótesis sobre su naturaleza. Así que nos enfrentamos a la situación de deconvolución

más desfavorable.

Veamos cómo se resuelve este asunto tanto para antenas sin ruido como para detec­

tores ruidosos. En ambos casos, el procedimiento se centra en el álgebra lineal.

R.6.1 Deconvolución de Señales en Ausencia de Ruido

La resolución del problema inverso para una antena esférica ruidosa fue primeramente
tratada por Wagoner y Paik a mediados de los 70 [133]. Más recientemente, en 19S5,
Dhurandar y Tinto publicaron un tratamiento para barras e interferómetros [37] que ha

sido después adaptado por varios autores al caso de detectores esféricos [144, 90, 92],
para los que se han propuesto también procedimientos más generales [80].

Recordamos que los canales de modo son combinaciones lineales de las lecturas de los

resonadores que resultan directamente proporcionales a las amplitudes cuadrupolares de

la onda incidente. Por ello, si suponemos ausencia de ruido en los dispositivos, podemos
reconstruir en el sistema de referecia del laboratorio, con eje z en su vertical, el tensor

cartesiano de desviaciones de la métrica H, que describe la señal y codifica toda la

información relevante acerca de la onda, directamente de los canales de modo ya que H

coincide en este caso con la matriz respuesta del detector A.

La expresión de este tensor en el sistema de referencia de la onda, cuyo eje vertical

coincide por definición con la dirección de propagación de la misma, adquiere su forma

canónica que claramente explicita el hecho de que H posee un valor propio nulo con

vector propio asociado precisamente en aquella dirección. Por tanto, y debido a que los

valores propios no se modifican en un cambio de base, la dirección de incidencia de la

onda en el sistema del laboratorio vendrá simplemente dada por el vector propio de H

asociado a su valor propio cero.

En cuanto a la amplitud de la onda, se puede definir a partir de los dos valores propios
restantes como su valor absoluto que es igual pa.ra a.mbos.

y finalmente. hay que tratar de averiguar el ángulo y las amplitudes de polarización
de la onda. Este problema se ha resuelto a partir de relacionar los elementos del tensor
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H en los dos sistemas mencionados hasta ahora [96], asumiendo el criterio a = O [133]
para fijar sin ambiguedad el sistema de la onda. Este criterio se basa en la propiedad
de invarianza de la forma canónica de H en el sistema de referencia de la onda bajo
rotaciones de ángulo a alrededor de la dirección de incidencia.

Existe una forma alternativa que sigue la tónica de trabajar con los valores y vectores

propios de H. Para empezar, mantenemos el mismo criterio a = O que tiene una inter­

pretación geométrica: el eje y del sistema de la onda está situado sobre el plano x-y del

sistema del laboratorio. Podemos expresar las amplitudes de polarización en función de

la amplitud de la onda, que se tomaba como el valor absoluto de los dos valores propios
no nulos, y del ángulo de polarización, que resulta ser el doble del ángulo de rotación

que sitúa el segundo vector propio de H sobre el plano x-y del laboratorio o el doble del

ángulo entre los ejes de polarización de la onda y los vectores propios perpendiculares a

la dirección de incidencia.

Si por casualidad la onda se propagara en la dirección vertical del laboratorio, el

ángulo de polarización no podría ser determinado. Ésto no es un problema intrínseco

de la deconvolución, sino de la parmetrización con una definición anómala del ángulo
acimutal asociado a la dirección del eje z.

R.6.2 Deconvolución de Señales en Presencia de Ruido

El problema inverso en presencia de ruido es mucho más complejo, ver por ejemplo
[144, 55), y las soluciones hasta ahora se solían buscar de forma numérica.

Aquí mostramos que también se puede resolver analíticamente mediante álgebra lineal

[96, 99), partiendo de un modelo muy simplificado para el ruido del sistema [97, 124].
Se trata de identificar los canales de modo como variables aleatorias independientes con

distribuciones gausianas centradas en los valores del sistema sin ruido. Ahora, el tensor

H no coincidirá ya exactamente con la matriz respuesta del sistema A construida a

partir de la información que proporciona la antena. pero podemos continuar aplicando
una versión modificada de los procedimientos anteriores. Sus valores propios y vectores

propios serán también variables aleatorias, si bien no tienen porque ser gausianos. En

todo caso, se pueden calcular sus valores esperados y varianzas, que como siempres se

expresan como desarrollos perturbativos, aquí en series de potencias de la varianza de

los canales de modo o del SNR.

Como ya indicaron Dhurandhar y Tinto, el vector propio de A con valor propio

más cercano a cero será el que mejor aproxime la dirección real de incidencia de la
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onda. Por supuesto, la determinación de esta dirección conlleva un error asociado que

se puede dar en función de su ángulo sólido, y que en nuestros cálculos resulta libre

de parametrizaciones inadecuadas, independiente de la dirección de incidencia como se

podía esperar de una antena omnidireccional, y además en acuerdo con las estimaciones

de otros autores [144].
Esta isotropía también esá presente en la estimación de la amplitud de la onda, que

se obtiene de la semidiferencia de los valores propios restantes como mejor aproximación
[96].

El punto polémico está en la valoración del ángulo y las amplitudes de polarización
ya que, en base a métodos que utilizan parametrizaciones según ángulos de Euler, al­

gunos autores hallan una descripción no isotrópa para las varianzas de estas cantidades.

Nosotros las hemos recalculado partiendo de la idea de que el ruido induce fluctuaciones

en el ángulo de polarización a través de su definición a partir de los vectores propios.
En el caso más simple con distribuciones uniformes, los cálculos revelan que los errores

en la polarización y sus cantidades asociadas crecen cuando la dirección de incidencia se

acerca al eje vertical del laboratorio, mostrando incluso divergencias o indeterminaciones

si las dos direcciones pueden ser confundidas, situación que claramente se delimita en los

propios cálculos y que corresponde a la confusión del segundo vector propio con el plano
x-y del laboratorio. Así, se ve que estos errores efectivamente dependen de la dirección

de incidencia de la onda, y que el problema reside en última instancia en que el criterio

Q' = O, que de hecho fija el ángulo de polarización en el sistema sin ruido y que se admite

también en el caso ruidoso y es un criterio fuertemente dependiente del obsevador. Este

decreto está rompiendo de alguna manera una simetría presente en el sistema al que se

esperarían asociar cant.idades isótropas. Entonces, se debe deducir que tal criterio no

es adecuado para describir la sitaución física real que debe ser independiente del obser­

vador. La forma inmediata de superar esta aparente paradoja es introducir información

o hipótesis externas sobre la naturaleza de la fuente de las ondas.

R.7 Conclusiones

R. 7.1 Principales Resultados

1. El desarrollo de un marco matemático riguroso para la descripción física de antenas

esféricas resonantes ha constituido el núcleo de nuestra investigación, que presenta
un esquema teórico para el tratamiento del sistema de ecuaciones GRD aplicable
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a un detector sólido elástico de cualquier geometría acoplado a un conjunto de

resonadores radiales en posiciones arbitrarias y que pueden diferir en masa y fre­

cuencia de resonancia y que se sintonizan justo a una única frecuencia WNL del

espectro de la esfera libre.

• Nos hemos restringido al caso ideal de un detector perfectamente esférico

acoplado a una distribución arbitraria de J resonadores idénticos acoplados
a la frecuencia WNL para resolver el sistema de ecuaciones y determinar las

respuestas del sistema a una onda gravitatoria incidente. Las soluciones se

escriben como series perturbativas en potencias ascendentes de la pequeña
constante de acoplamiento TI!', donde 11 = mrc.2nadorer.

MsJera

• Obtenemos el espectro de frecuencias del sistema acoplado al orden dominante.

Se estructura en J pares "-'a± -aunque a lo sumo sólo 2L+ 1 de ellos serán pares

fuertemente acoplados- que derivan de la frecuencia de sintonización WNL Y

están simétricamente distribuidos a su alrededor. También se consiguen las

amplitudes a partir de las deformaciones asociadas a los osciladores que mod­

elizan los resonadores. Estas amplitudes conllevan un factor de amplificación
de orden "7- �, y tienen una composición espectral dominada por los pares de

frecuencias Wa±.

• También demostramos cómo bajo ciertos requisitos sobre la distribución de

resonadores estas amplitudes pueden ser ordenadas en ciertas combinaciones

lineales, los cana/es de modo (mode channe/s), cada uno acoplado a un único

modo de la esfera libre y por ello a una única amplitud del campo gravitatorio.
• Los desarrollos no sólo permite investigar las respuestas a ondas gravitatorias,
sino también a otros agentes externos tales como señales de calibración. Éstas
son interesantes debido a que constituyen un ejemplo simple que refleja to­

das las características principales del sistema y que también se asocian a las

respuestas a. señales gravitorias.

2. Nuest.ro modelo permite:

• El análisis e incluso la sugerencia de cualquier propuesta particular de antena

esférica con resona.dores fijados en posiciones específicas. Tan sólo será nece­

sario calcular los valores y los vectores propios asocia.dos a la distribución, que
son las cantidades que determinan las características distintivas y part.iculares
del espectro acopla.do, de las amplitudes y de los canales de modo.
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Entonces, no sólo es posible reconsiderar propuestas ya existentes, como la

TIGA de Johnson y Merkowitz, sino lo que es más, nosotros presentamos una

propuesta alternativa basada en distribuciones pentagonales que mantienen

simetría axial. Nuestra antena PHCA se piensa como un sistema multimodo y

multifrecuencial, para lo que proponemos dos grupos de distribuciones pentag­
onales suplementarias respectivamente sintonizadas a la primera ya la segunda
frecuencia armónica cuadrupolar para explotar al máximo las posibilidades del
detector. Un onceavo resonador sintonizado a la primera frecuencia monopolar
se añade también para percibir radiación monopolar .

• La implementación de suposiciones más realistas que llevan a la investigación
de desviaciones en los detectores ideales perfectos.

Nuestro modelo ha resultado ser suficientemente flexible como para ser válido

en el estudio de pequeños defectos, de este modo incrementándose su grado
de aplicabilidad a sistemas reales, a partir de una parametrización útil para

una amplia clase de desviaciones en consistencia con nuestras expansiones

perturbativas y su precisión, de forma que hemos sido capaces de tratar la

cuestión de si el sistema es afectado o no por estas violaciones de la situación

ideal.

Las evaluaciones revelan que la respuesta de la antena es robusta con respecto a

algunas de estas imperfecciones: desviaciones en las posiciones de los sensores

o desigualdades en sus masas o sus frecuencias naturales.

En cambio, la existencia de una segunda frecuencia WN' L' cercana a la fre­

cuencia de resonancia WNL afecta apreciablement.e las respuestas del sistema

incluso a primer orden. Esto constituye el efecto URF. Su análisis para las

propuestas PHCA y TIGA demuestra que provoca un efecto de arrastre que

rompe la simetría original de los dobletes ideales, y además induce la aparición
de una t.ercera componente débilmente acoplada y cercana a la frecuencia. de

resonancia iJJNL. Este efecto resulta ser muy importante para la antena PHCA,

ya que en ella se incluye una segunda distribución de resonadores sintonizados

a la segunda frecuencia cuadrupolar de la esfera libre, que se halla realmente

cerca de otra frecuencia del mismo espectro. En esta situación, el estudio del

efecto rRF permite describir correctamente el espectro completo de la an­

tena PHCA. compuesto por dos grupos de pares de frecuencias fuertemente

acopladas, el primero simétricamente repartido alrededor del primer armónico
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cuadrupolar, mientras que el segundo surge como una división no simétrica

del segundo armónico cuadrupolar.
La rotura de simetría esférica debido a la suspensión también induce cambios

significativos en relación al comportamiento ideal. El contraste de las predic­
ciones espectrales de nuestro modelo con datos experimentales del prototipo
TIGA ha demostrado un acuerdo satisfactorio bajo las condiciones reales de

experimentación.

3. Finalmente, somos capaces de tratar convenientemente las respuestas del sistema

para extraer información acerca de la onda gravitatoria incidente. Esto constituye
el llamado problema inverso o problema de la deconvolución, y demostramos que

es resoluble algebraicamente incluso si se considera ruido en el sistema.

Cuando se obvia la presencia de ruido, la dirección de la onda incidente, sus am­

plitudes y su polarización se obtienen de los valores y los vectores propios de la

matriz respuesta construida de los canales de modo.

Para la antena ruidosa, una versión modificada de los desarrollos anteriores da

errores isotrópos para la dirección de incidencia y la amplitud de la onda como se

puede esperar de un detector esférico. Por el contrario, los errores en el ángulo
de pola.rización y sus a.mplitudes de polarización son aparentemente anisotrópos.
Analizamos esta circunstancia y encontramos que tales dependencias direccionales

surgen como consecuencia de la rotura de simetría que introduce el criterio Q = O

comúnmente asumido y que fija el sistema de referencia de la onda. También

presentamos una interpretación geométrica que permite una discusión más clara

y nos lleva a concluir que se debe obtener alguna información externa o se debe

asumir alguna hipótesis con respecto al tipo de fuente de las ondas si se persiguen
resultados isotrópos para las cantidades relacionadas con la polarización.

R.7.2 Trabajo Futuro

Se planea estudiar al menos dos cuestiones más como extensiones naturales del trabajo
teórico presentado en este ensayo.

La primera de ellas deriva directamente de los desarrollos matemáticos perturbativos
que se han expuesto. Recordamos que nuestras soluciones no son exactas, sino que son

aproximaciones dominantes en series de potencias ascendentes de r¡!. Si en el futuro

se necesitara mayor precisión en las comparaciones con las medidas experimentales o
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se pretende un estudio teórico completo se deben calcular los términos de orden supe­

rior. La. valoración correcta de tales correcciones no es en absoluto una tarea fácil como

pudiera parecer a primera vista, y de hecho puede involucrar otras importantes y com­

plicadas cuestiones como el estudio de series divergentes y su posible tratamiento por

renormalización.

La segunda línea de acción se refiere más específicamente a la física de las condiciones

reales de experimentación. Nuestra intención en este sentido es la de introducir un

término de ruido en nuestras ecuaciones que describen el comportamiento dinámico del

sistema para obtener así una imagen más fiel de la situación real.
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