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A. APPENDIX A: DERIVATION OF THE GOVERNING

EQUATION FOR SOLID DRYING WITH

SHRINKAGE

Take a cube of a solid. The initial cube size is R0. Let’s introduce the following definition
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In free shrinkage the actual solid density (kg/m3) is:
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for two-dimensional shrinkage
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for three-dimensional shrinkage
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The flat plate geometry is shown in Figure A.1.
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Figure A.1 Schematic of the flat slab drying with shrinkage

Mass balance of moisture for a slice dr thick is
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A is cross sectional area of the slice. It is large (infinite) compared to R and therefore can be

reduced. Therefore one obtains
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For isometric shrinkage
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Introducing (A.7) in (A.8) and introducing the constitutive equation
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one obtains
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By neglecting first term of equation (A.10) (in isotropic shrinkage ρm is constant in space)

and dividing by ρm one obtains
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In  (A.11) the value of dR/dt must be known. It can be evaluated from the overall mass

balance for the plate
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Finally
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In this equation dε/dt can be calculated as

for 3D shrinkage
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for 2D shrinkage
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for 1D shrinkage
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For all three one-dimensional geometries (plate, cylinder, sphere) equation (A.11) can be

generalised by introducing a proper expression for second order derivative and the formulas

(A.2 –A.4) for solid density. In the result one obtains:
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By introducing dimensionless variables
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one obtains
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where            n – geometry index,   m – shrinkage index

n=0  plate      possible   m=1 1D shrinkage

m=2 2D shrinkage

m=3 3D shrinkage

n=1 cylinder  possible m=2

m=3

n=2  sphere    possiblem=3

When solving equation (A.21) dδ/dt can be calculated from the linear shrinkage formula
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But, first of all one must derive a formula for space averaged X. It can be done by virtue of

the overall moisture balance
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The above equation can be easily converted to



                                                                                                                                                              Appendix A

192









+−








∂
∂

ρ+
τ∂

ρ∂
ρ

−=
τ Dm

m

m

w)1n(
t

X
XR

Xm

1

d

dR

 A.24

Introducing δ one obtains
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Boundary condition of the I type can be used as is, BC II must be derived for the conditions

of shrinkage. It leads to the following equation:
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