APPENDIX A: DERIVATION OF THE GOVERNING EQUATION FOR SOLID DRYING WITH SHRINKAGE

Take a cube of a solid. The initial cube size is R_{0}. Let's introduce the following definition

$$
\delta=\frac{\mathrm{R}}{\mathrm{R}_{0}}
$$

In free shrinkage the actual solid density $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$ is:
for one-dimensional shrinkage

$$
\rho_{m}=\frac{m_{s}}{R_{0}^{2} R}=\frac{\rho_{0} R_{0}^{3}}{R_{0}^{2} R}=\rho_{0} \frac{R_{0}}{R}=\frac{\rho_{0}}{\delta}
$$

for two-dimensional shrinkage

$$
\rho_{m}=\frac{m_{s}}{R_{0} R^{2}}=\frac{\rho_{0} R_{0}^{3}}{R_{0} R^{2}}=\rho_{0}\left(\frac{R_{0}}{R}\right)^{2}=\frac{\rho_{0}}{\delta^{2}}
$$

for three-dimensional shrinkage

$$
\rho_{\mathrm{m}}=\frac{\mathrm{m}_{\mathrm{s}}}{\mathrm{R}^{3}}=\frac{\rho_{0} \mathrm{R}_{0}^{3}}{\mathrm{R}^{3}}=\rho_{0}\left(\frac{\mathrm{R}_{0}}{\mathrm{R}}\right)^{3}=\frac{\rho_{0}}{\delta^{3}}
$$

The flat plate geometry is shown in Figure A.1.

Figure A. 1 Schematic of the flat slab drying with shrinkage

Mass balance of moisture for a slice dr thick is

$$
\mathrm{jA}-\left(\mathrm{j} \mathrm{~A}+\frac{\partial(\mathrm{jA})}{\partial \mathrm{r}} \mathrm{dr}\right)=\frac{\partial\left(\mathrm{drf}_{\mathrm{m}} \mathrm{XA}\right)}{\partial \tau}
$$

A is cross sectional area of the slice. It is large (infinite) compared to R and therefore can be reduced. Therefore one obtains

$$
\begin{gathered}
\left.\frac{\partial \mathrm{j}}{\partial \mathrm{r}} \mathrm{dr}=\rho_{\mathrm{m}} \mathrm{X} \frac{\partial \mathrm{dr}}{\partial \tau}+\mathrm{dr} \frac{\partial\left(\rho_{\mathrm{m}} \mathrm{X}\right)}{\partial \tau} \right\rvert\, \mathrm{dr} \\
\frac{\partial \mathrm{j}}{\partial \mathrm{r}}=\rho_{\mathrm{m}} \mathrm{X} \frac{\partial \mathrm{dr}}{\partial \tau}+\mathrm{dr} \frac{\partial\left(\rho_{\mathrm{m}} \mathrm{X}\right)}{\partial \tau}
\end{gathered}
$$

For isometric shrinkage

$$
\frac{1}{\mathrm{dr}} \frac{\partial \mathrm{dr}}{\partial \tau}=\frac{1}{\mathrm{dR}} \frac{\mathrm{dR}}{\mathrm{~d} \tau}
$$

Introducing (A.7) in (A.8) and introducing the constitutive equation

$$
\mathrm{j}=-\mathrm{D} \rho_{\mathrm{m}} \frac{\partial \mathrm{X}}{\partial \mathrm{r}}
$$

one obtains

$$
\begin{equation*}
D \frac{\partial \rho_{m}}{\partial r} \frac{\partial X}{\partial r}+D \rho_{m} \frac{\partial^{2} X}{\partial r^{2}}=\rho_{m} \frac{X}{R} \frac{d R}{d \tau}+\rho_{m} \frac{\partial X}{\partial \tau}+X \frac{\partial \rho_{m}}{\partial \tau} \tag{A. 10}
\end{equation*}
$$

By neglecting first term of equation (A.10) (in isotropic shrinkage ρ_{m} is constant in space) and dividing by ρ_{m} one obtains

$$
\mathrm{D} \frac{\partial^{2} \mathrm{X}}{\partial \mathrm{r}^{2}}=\frac{\mathrm{X}}{\mathrm{R}} \frac{\mathrm{dR}}{\mathrm{~d} \tau}+\frac{\partial \mathrm{X}}{\partial \mathrm{t}}+\frac{\mathrm{X}}{\rho_{\mathrm{m}}} \frac{\partial \rho_{\mathrm{m}}}{\partial \tau}
$$

In (A.11) the value of $\mathrm{dR} / \mathrm{dt}$ must be known. It can be evaluated from the overall mass balance for the plate

$$
\frac{\partial\left(\varepsilon \rho_{\mathrm{L}} \mathrm{~V}\right)}{\partial \tau}+\mathrm{Aw}_{\mathrm{D}}=0
$$

where

$$
\mathrm{V}=\mathrm{AR}
$$

and therefore

$$
\begin{gather*}
\frac{\partial\left(\varepsilon \rho_{\mathrm{L}} \mathrm{R}\right)}{\partial \tau}=-\mathrm{w}_{\mathrm{D}} \tag{A. 13}\\
\varepsilon \rho_{\mathrm{L}} \frac{\mathrm{dR}}{\mathrm{~d} \tau}+\mathrm{R} \rho_{\mathrm{L}} \frac{\mathrm{~d} \varepsilon}{\mathrm{~d} \tau}+\mathrm{R} \varepsilon \frac{\mathrm{~d} \rho_{\mathrm{L}}}{\mathrm{~d} \tau}=-\mathrm{w}_{\mathrm{D}}
\end{gather*}
$$

Finally

$$
\frac{\mathrm{dR}}{\mathrm{~d} \tau}=-\frac{1}{\varepsilon \rho_{\mathrm{L}}}\left[\mathrm{R}\left(\rho_{\mathrm{L}} \frac{\mathrm{~d} \varepsilon}{\mathrm{~d} \tau}+\varepsilon \frac{\mathrm{d} \rho_{\mathrm{L}}}{\mathrm{~d} \tau}\right)+\mathrm{w}_{\mathrm{D}}\right]
$$

A. 15

In this equation $\mathrm{d} \varepsilon / \mathrm{dt}$ can be calculated as
for 3D shrinkage

$$
\frac{\mathrm{d} \varepsilon}{\mathrm{~d} \tau}=\left(1-\varepsilon_{0}\right) \frac{3}{\delta^{4}} \frac{\mathrm{~d} \delta}{\mathrm{~d} \tau}
$$

A. 16
for 2D shrinkage

$$
\frac{\mathrm{d} \varepsilon}{\mathrm{~d} \tau}=\left(1-\varepsilon_{0}\right) \frac{2}{\delta^{3}} \frac{\mathrm{~d} \delta}{\mathrm{~d} \tau}
$$

for 1D shrinkage

$$
\frac{\mathrm{d} \varepsilon}{\mathrm{~d} \tau}=\left(1-\varepsilon_{0}\right) \frac{1}{\delta^{2}} \frac{\mathrm{~d} \delta}{\mathrm{~d} \tau}
$$

For all three one-dimensional geometries (plate, cylinder, sphere) equation (A.11) can be generalised by introducing a proper expression for second order derivative and the formulas (A. $2-A .4$) for solid density. In the result one obtains:

$$
\begin{equation*}
\frac{1}{\mathrm{r}^{\mathrm{n}}} \frac{\partial}{\partial \mathrm{r}}\left(\mathrm{r}^{\mathrm{n}} \mathrm{D} \frac{\partial \mathrm{X}}{\partial \mathrm{r}}\right)=(\mathrm{n}+1) \frac{\mathrm{X}}{\delta} \frac{\mathrm{~d} \delta}{\mathrm{dt}}-\mathrm{m} \frac{\mathrm{X}}{\delta} \frac{\mathrm{~d} \delta}{\delta \mathrm{dt}}+\frac{\mathrm{dX}}{\mathrm{dt}} \tag{A. 19}
\end{equation*}
$$

By introducing dimensionless variables

$$
\mathrm{Fo}=\frac{\mathrm{D}_{0} \mathrm{~d} \tau}{\mathrm{R}_{0}^{2}} \quad \zeta=\frac{\mathrm{r}}{\mathrm{R}} \quad \text { and } \quad \Phi=\frac{\mathrm{X}-\mathrm{X}^{*}}{\mathrm{X}_{0}-\mathrm{X}^{*}}
$$

one obtains

$$
\frac{1}{\zeta^{\mathrm{n}}} \frac{\partial}{\partial \zeta}\left(\zeta^{\mathrm{n}} \frac{\mathrm{D}}{\mathrm{D}_{0}} \frac{\partial \Phi}{\partial \zeta}\right)=(\mathrm{n}+1-\mathrm{m})\left(\Phi+\frac{\mathrm{X}^{*}}{\mathrm{X}_{0}-\mathrm{X}^{*}}\right) \delta \frac{\mathrm{d} \delta}{\mathrm{dFo}}+\delta^{2} \frac{\partial \Phi}{\partial \mathrm{Fo}}
$$

where
n - geometry index, m - shrinkage index
$\mathrm{n}=0$ plate possible $\mathrm{m}=1$ 1D shrinkage
$\mathrm{m}=2 \quad$ 2D shrinkage
$m=3 \quad 3 D$ shrinkage
$\mathrm{n}=1$ cylinder possible $\mathrm{m}=2$

$$
\mathrm{m}=3
$$

$\mathrm{n}=2$ sphere possiblem=3

When solving equation (A.21) d δ / dt can be calculated from the linear shrinkage formula

$$
\mathrm{R}=\mathrm{R}_{0}\left(\mathrm{~s}_{1} \overline{\mathrm{X}}+1\right)
$$

But, first of all one must derive a formula for space averaged X. It can be done by virtue of the overall moisture balance

$$
\frac{d\left(\rho_{\mathrm{m}} \bar{X} V\right)}{d t}-A w_{D}=0
$$

The above equation can be easily converted to

$$
\begin{equation*}
\frac{\mathrm{dR}}{\mathrm{~d} \tau}=-\frac{1}{\mathrm{~m} \bar{X} \rho_{\mathrm{m}}}\left[\mathrm{R}\left(\overline{\mathrm{X}} \frac{\partial \rho_{\mathrm{m}}}{\partial \tau}+\rho_{\mathrm{m}} \frac{\partial \overline{\mathrm{X}}}{\partial \mathrm{t}}\right)-(\mathrm{n}+1) \mathrm{w}_{\mathrm{D}}\right] \tag{A. 24}
\end{equation*}
$$

Introducing δ one obtains

$$
\frac{\mathrm{d} \overline{\mathrm{X}}}{\mathrm{dt}}=\delta^{\mathrm{m}+1} \frac{(\mathrm{n}+1)}{\rho_{0} \mathrm{R}_{0}} \mathrm{w}_{\mathrm{D}}
$$

Boundary condition of the I type can be used as is, BC II must be derived for the conditions of shrinkage. It leads to the following equation:

$$
\operatorname{Bi}_{0} \delta^{m+1} \frac{D}{D_{0}} \frac{Y_{i}-Y}{X-X^{*}} \Phi+\frac{1}{X_{0}-X^{*}} \frac{X_{i} \rho_{m}-Y_{i} \rho_{g}}{\rho_{m}} \frac{D_{0}}{D} \delta \frac{d \delta}{d t}+\frac{d \Phi}{d \zeta}=0
$$

where

$$
\mathrm{Bi}_{0}=\frac{\mathrm{k}_{\mathrm{Y}} \mathrm{R}_{0}}{\rho_{\mathrm{m} 0} \mathrm{D}_{0}}
$$

