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Abstract

The ability of organisms to extract and store information from their surroundings

marked a revolution in the history of life. Cells, from prokaryots to eukaryots, use

specific receptors inserted in their membranes to detect extracellular molecules

that cannot cross into the cell, where cell decisions are taken. Hence, those mem-

brane receptors represent an information channel through which the environmental

information can affect cell behavior and adaptation. In this Thesis, we modeled

information transmission through the ErbB system, a family of receptors involved

in many different cellular behaviors, such as cell proliferation or migration. There-

fore, dysregulation of ErbB receptors is at the core of what can be called infor-

mation diseases, that is, diseases that arise from the loss of the capacity to obtain

and interpret extracellular information, i.e. tumor formation. Our results show a

decrease in the information transmitted through the ErbB channel as the amount

of ErbB receptors at the membrane increases. We considered different dynamics

of the receptors and showed that the loss of information depends on the dynam-

ics of interaction between the receptors, as well as on their interactions with the

intracellular signaling machinery. In particular, we studied the interaction of ac-

tive receptors with several signaling intracellular proteins and showed that the

observed tendency of proteins to bind several binding sites with similar affinities

translates into an increased synergy between the signaling proteins. All in all,

quantifying and analysing these dependencies results in a better understanding of

the dynamics and information transmission through ErbB and similar molecular

systems.
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Chapter 1

Introduction

1.1 The biology: An insight into cell signaling

Most of the cells in our body have the same genetic material, yet we have hundreds

of different cell types. One of the causes of this diversity is the way in which a cell’s

genetic information is ‘read’. A myriad of molecular processes and interactions,

coordinated both in space and time, take place during the acquisition of a cell

fate or behavior from the information encoded in our genes. The ways in which

such processes and interactions can be regulated are countless and there has been

extensive work unveiling the different molecular pathways involved in cell ‘decision

making’.

Both the complexity arising from such a scenario and the particularities of every

different case in the ‘catalogue’ of cell diversity makes it difficult to bring together

detailed and global explanations of the whole process. It is possible nonetheless

to describe the path leading from the level of the genes to level of the cell in

a very general and simplified manner: the Central Dogma of Molecular Biology.

Since it was proposed in 1958 by Francis Crick following the discovery of DNA’s

structure in 1956 by Watson and Crick, it has fallen short of an explanation to

several phenomena in cell biology and an ‘updated’ version of it is more adequate

to illustrate how cells depend on their genes.

1
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Figure 1.1: Schematic representation of the Central Dogma.
Figure modified from

https://commons.wikimedia.org/wiki/File:Central Dogma of Molecular Biochemistry with Enzymes.jpg

1.1.1 The Central Dogma revisited

The Central Dogma can be stated briefly as DNA makes RNA and RNA makes

proteins (Fig.1.1). DNA (DeoxyriboNucleic Acid) is present in the nucleus of our

cells in the form of chromosomes, and its sequence encodes our biological informa-

tion. It can be copied into RNA (RiboNucleic Acid) in a process called transcrip-

tion. RNA in turn is the template read during translation: the composition (and

thus the structure) of a protein is translated from the genetic information encoded

in RNA (copied from DNA). The reverse process is not possible.

In Crick’s own words ‘The Central Dogma (...) states that once information has

passed into protein it cannot get out again. In more detail, the transfer of infor-

mation from nucleic acid to nucleic acid, or from nucleic acid to protein may be

possible, but transfer from protein to protein, or from protein to nucleic acid is

impossible. Information means here the precise determination of sequence, either

of bases in the nucleic acid or of amino acid residues in the protein’ [1].

Following Crick’s definition of information, there have not yet been found instances

of information transmission from proteins back to the DNA or RNA levels. But

proteins do affect DNA and RNA in other ways: they control the accessibility to

certain parts of the DNA and control the stability of RNA, among others. This

is relevant inasmuch as the repertoire of the proteins in a cell determine the cell’s
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Figure 1.2: Central dogma revisited.
Figure modified from

https://commons.wikimedia.org/wiki/File:Central Dogma of Molecular Biochemistry with Enzymes.jpg

features in two ways: a) proteins are the main responsibles for a cell’s activity and

b) proteins regulate gene expression.

What makes cells with the same genetic information adopt different phenotypes

is the way in which this genetic information is read (and thus which proteins are

being synthesized), and this is in turn highly controled by proteins. Moreover, this

is not a closed loop: cells need to detect and react to extracellular clues and adapt

their behavior (protein state and gene expression) to the extracellular conditions

(Fig 1.2).

Information gathering and processing is thus a crucial process for cells. We are

familiar with such processes at the organismic scale: sensory organs of several

kinds are able to detect different types of stimuli, which then will be processed by

a more or less complex nervous system in order to elaborate a response. But how

do cells receive and handle information? What are the ‘sensory organs’ of a cell?

Which are the mechanisms involved in this process?

1.1.2 Basics of cell signaling

Eukariotic cells can be thought as basic units in multicellular organisms, delimited

by a lipidic cell membrane that separates the extracellular environment from the
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intracellular medium where cell components (organelles, molecules...) are located.

The cell membrane allows the maintenance of cell homeostatis, an equilibrium in

cell conditions appropriate for cell functioning. It also acts as a selective filter by

letting liposoluble molecules diffuse freely through it, while acting as a barrier for

polar hydrosoluble molecules.

Among all the information sources and types, information relevant to cells is often

carried by organic molecules, known as ligands. Ligands can be liposolube (e.g.

steroid hormones) or hydrosoluble (proteic ligands such as growth factors). De-

pending on this feature, their detection will be performed in different ways. Since

liposoluble molecules can cross the cell membrane (and also the nuclear membrane)

they do not need intermediaries for transmembrane transport. By contrast, hy-

drosoluble molecules cannot cross the cell membrane: their detection depends on

intermediary molecules that will ‘catch the relay’ in the information transduction

process.

1.1.3 Membrane receptors: a bridge between the exterior

and the interior of a cell

Membrane receptors are proteins that are inserted in the cell membrane, spanning

from the extracellular to the intracellular medium: they have an outer domain, a

transmembrane domain and an intracellular domain. Their function is to detect

hydrosoluble molecules that can be informative to the cell and transfer the infor-

mation about such molecules to the interior of the cell, where cell decisions can

be taken.

There are several types of membrane receptors which participate in information

transduction, from which the receptors with tyrosine kinase activity (RTK) are the

most extensively studied for many reasons. Firstly, this receptor family includes

different kinds of receptors involved in many different cell responses. Furthermore,

many of them are direct targets for anti-cancer drugs ([2–5]). Thus, their structure

and dynamics have been the subject of research for more than 30 years and there

is a substantial body of knowledge about RTKs. However, there still remain many

unsolved issues about the functioning of those receptors in vivo, and also the

phenotypic effects that altered function of the RTK may have and the mechanisms

by which those phenotypic effects are expressed.
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Figure 1.3: Schematic representation of the activation of an RTK.
Figure from The Cell, GM Cooper, 4th Ed.

One of the multiple ways of regulating protein activity is by means of the ad-

dition of a phosphate group to a protein’s residue. This covalent modification

changes the configuration of the protein, normally exposing the protein’s domain

in charge for a specific function (catalytic activity, binding sites...). The addition

of phosphate groups is called phosphorylation and is commonly performed by the

catalytic activity of a family of enzymes, called kinases, with the consumption of

ATP. There are different types of kinases depending on the type of residue that

is phosphorylated. In the case of RTK, the receptors are able to add phosphate

groups to tyrosine residues, hence their name.

A canonical and simplified scheme of RTK operation is show in Fig.1.3.

RTKs are synthesized and inserted into the plasma membrane, where they are

kept in an inactive configuration unless they bind a ligand. Upon ligand binding,

the configuration of the receptor changes, which allows it to interact with other

receptors to form stable dimers, where the receptors are able in turn to modify

the intracellular part of each other by means of their kinase activity.

This modification of the intracellular domain by tyrosine phosphorylation creates

docking sites for other proteins to bind, and it’s one of the first steps in the

signaling cascade that will activate, within the cell, the machinery needed to react

to the ligand detected [6].

The RTK receptor family contains a lot of different types of receptors involved in

many cell responses, and each subgroup has its particularities. We will focus in

the Epidermal Growth Factor Receptor (EGFR) family.
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1.1.4 The ErbB family

ErbB receptors are involved in a variety of cell responses, including growth, prolif-

eration, differentiation, migration and apoptosis. This diversity is due to several

combinatorial layers of interaction: at the level of the ligand, at the level of the

receptors and at the intracellular level.

The ErbB family is a group of four related RTKs which are able to bind a variety

of ligands (EGF, TGF, neuregulin, amphiregulin and betacatenin) with different

affinities [7]. Which ligand binds to which receptor is crucial to the specificity of

the responses this family of receptors are involved in.

The four different receptors of the family (ErbB1, ErbB2, ErbB3 and ErbB4) need

to form dimers in order to become active, and both homodimers (dimers that

contain two receptors of the same type) and heterodimers (dimers that contain

two receptors of different types) have been observed experimentally ([8, 9]). The

amount of dimers of each type depends on the cell type (which receptors and in

which amount are being synthesized) and the relative affinities of the different

combinations.

Upon dimerization the receptors can activate their partner by means of their ki-

nase activity. The phosphorilated tyrosine residues of the receptors become then

docking sites for signaling intracellular proteins that are at the top of the signaling

pathways. The phosphorilation pattern in the intracellular domain of the receptors

depends on the receptor sequence itself but also on the dimerization partner.

ErbB1 (also called EGFR) and ErbB4 have an extracellular domain that binds the

ligand, a transmembrane domain and an intracellular domain with kinase activity,

as most of the RTKs. ErbB3 receptor has all three domains but lacks kinase

activity, so it needs to form heterodimers to become active.

ErbB2 is an orphan receptor -it does not bind any known ligand-, as it lacks the

extracellular domain for ligand binding; this fact confers it a special role in sig-

naling [10]. ErbB2 has been described as the preferred heterodimerization partner

of all other ErbB receptors [8]. It has been detected in the membrane in different

configurations: monomers, and both active and inactive dimers. We will study

ErbB2 in greater detail in the next chapter.
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1.1.4.1 ErbB receptors and cancer

Amidst a well organized signaling system that governs tissue structure by care-

fully controling cellular divisions, the ability to sustain proliferative growth is the

fundamental trait of cancer cells [11]. Because of their role as growth signaling

mediators, the family of ErbB receptors play a key role in cancer. In particular,

ErbB2 overexpression has been reported in a number of human tumors, and it

is found, as a crucial marker for poor prognosis, in about 18-25% human breast

cancers [12, 13].

Without consideration of the underlying mechanisms, overexpression of ErbB2

surface molecules facilitates the formation of ErbB2 hetero- and homodimers. Be-

cause of their particular configuration, ErbB2 dimers do not need external growth

signaling ligands to activate, and their excess results in sustained proliferative mes-

saging that grants the cell with tissue-independent growth [14]. Targeted therapy

focusing on ErbB2 function inhibition demonstrated positive results in early ex-

periments [15], and it has since become an important target for cancer intervention

strategies [4, 5, 16]. Its actual recognition as an oncogene - a driver of disease -

has led to the development of a range of therapies (see e.g. [17] and references

therein) that interfere with sustained signaling emanating from its overexpression.

However, although ErbB2 targeted therapies improve the prognosis in the early

stages of treatment, it is common that the patients develop resistance to the drugs

within a period of one year of treatment initiation [18]. It has been proposed that

the intricate structure of the ErbB signaling network is determinant to the elusive

response of such receptors to treatment [19, 20].

Many open questions remain about the role of ErbB2 overexpression in cancer, and

understanding its double-edged effect, as a necessary receptor for normal signaling

and a driver of malignancy when overexpressed, might be key in producing novel

cancer therapies. Are there viability limits in the concentration of ErbB2 relative

to other receptors of the family, and if so, what external information is lost when

trespassing them?

1.1.4.2 Downstream of ErbBs

As previously introduced, ErbB receptors are involved in many signaling pathways,

affecting processes as diverse as growth, proliferation, differentiation, migration
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and apoptosis [14]. This is possible because a plethora of intracellular proteins

bind to the docking sites of the active ErbB receptors to initiate and continue the

signaling process. Among such proteins, a particular set is fundamental in the

pathways controlling cellular growth and proliferation.

PhosphatidylInositol 3-Kinases (PI3Ks) are enzymes with kinase activity that are

involved in the PI3K/Akt/mTOR pathway, which mainly controls cell growth

and proliferation [21]. As a result, disregulation of PI3Ks is often involved in

tumor formation [22]. Some members of the PI3Ks family are able to bind the

phosphotyrosines in ErbB receptors [23] and it has been observed that breast

cancers that overexpress ErbB2 also maintain high PI3K activity [24].

Another signaling pathway involved in cell decision processes (as to whether dif-

ferentiate or proliferate) is the MAP kinase pathway. Several proteins with kinase

activity are involved in a chain reaction that begins at the cell membrane level

and reaches the nucleus, where gene expression is modified. The first steps in this

pathway involve Ras and Grb2, two proteins that are able to bind the ErbB recep-

tors [25]. Mutations and/or overexpression of these proteins have been identified

in tumors [26, 27], and overexpression of ErbB2 causes and increase in Ras/Grb2

activity and therefore in the MAP kinase signaling pathway [28]. This has been

related with a change in cell behavior: cells switch from differentiation to prolif-

eration states [29, 30].

Other canonical signaling pathways that can be triggered by ErbB activation are

the PLC pathway and the JAK-STAT pathway, both involved in cell proliferation,

motility and tumor formation [31–33]. Both PLC and JAK have binding sites for

active ErbBs.

The interaction of the active ErbB receptors with the proteins listed in this section

have been quantified in an extensive screening and published by Jones et al. [23].

1.1.5 Intracellular interactions

Signaling pathways controling cellular structure and function are regulated by

specific molecular interactions between the different cell components as well as

extracellular molecules. The stability of such interactions is shaped by structural

and chemical complementarity of the molecules involved and can be characterized



9

by the equilibrium (or dissociation) constant of the binding and unbinding reaction

at play.

Protein binding and unbinding has been studied extensively in the context of

ligand-receptor interactions, giving rise to a mathematical framework to charac-

terize them. Let us consider a ligand (L) and receptor (R) that bind to form a

complex (C). The binding and unbinding reversible reaction is described by

L+R
k+−⇀↽−
k−

C

where k+ (k−) are the binding (unbinding) constants, indicating how likely is the

(un)binding reaction to occur.

According to this reaction, and following mass action kinetics [34], the complex is

formed at a rate kon = k+LR and it splits at a rate koff = k−C. The chemical

equilibrium of the system happens for kon = koff , which yields a ratio between

the concentrations of both free and bound receptors of

R

C
=

k−
k+L

The binding constant, k+ has units M−1s−1 and the unbinding constant has units

s−1. Kd = k−
k+

is referred to as the equilibrium dissociation constant and its inverse,

Keq, the equilibrium constant, is a measure of the stability of the complex.

There are several bulk methods to measure the dissociation constant of a reaction

[35], but it was not until the advent of single molecule experiments that individ-

ual binding and unbinding rates have been experimentally accessible [36–38]. As

a result, whereas experimental dissociation constants for typical reactions can be

found easily in the literature, the instances of experimental binding and unbinding

constants in the literature are rare. Because similar values of Kd can be obtained

from very different binding and unbinding kinetics (very fast binding and unbind-

ing rates -fast turnover- can yield the same Kd as very slow binding and unbinding

-slow turnover-) [39], the availability of experimental data of individual rates will

is crucial to characterize protein interactions.

Besides the binding and unbinding reactions, covalent modification of the proteins

is often needed in signaling pathways. One example of covalent modification we
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are already familiar with is the addition of a phosphate group to certain residues

in the intracellular part of the RTKs. There are other kinds of covalent modifica-

tions and most of them happen though a catalyzed reaction. Biological catalysts

are called enzymes. Enzymes (E) are able to bind a substrate (S) and convert it

to a product (P) by lowering the energy barrier between the unmodified and the

modified states. The first model explaining successfully the kinetics of enzymes as

a function of the rates of the different reactions (binding, unbinding and catalysis)

and the substrate concentration was proposed by Michaelis and Menten [40]. The

Michaelis-Menten model for enzyme kinetics is still widely used in biochemistry

and related disciplines, more than 100 years after it was proposed, in order to pre-

dict the velocity of product formation as a function of the substrate concentration

and the different reaction constants:

v =
Vmax[S]

KM + [S]

where [·] denotes a concentration and Vmax is the maximum velocity of product

formation, which happens when all the enzymes are occupied by a substrate. The

Michaelis-Menten model introduces a parameter, KM = k−+kcat
k+

, where kcat is the

rate at which the enzyme converts a bound substrate into a product.

Recent advances in single molecule spectroscopy methods have allowed to track

the activity of a single enzyme over its activity cycles, giving the opportunity to

tackle stochastic effects in the enzyme’s kinetics. In the light of recent available

data, it has been proposed that the unbinding reaction has a dual role: on the one

hand, the unbinding rate needs to be low enough to avoid futile cycles (unbinding

of the enzyme-substrate complex before product formation). However, new in-

sights consider that, under particular conditions, such low unbinding rates result

in cycles where the enzyme-substrate complex remains locked, making the process

unproductive [41].

The possibility of such trade-off in unbinding kinetics poses a good example of

how measuring individual rates instead of equilibrium constants might give further

insight into protein interaction processes. We explore these issues in the context

of ErbB-driven signaling in Chapter 3 of this thesis.
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1.2 Background on mathematical modeling of the

ErbB system

Besides being a focus for experimental research, the ErbB system has also been

the subject of a number of modeling approaches.

The first models of ErbB receptors had their origin in classical models of enzyme

kinetics aiming at understanding ligand binding, internalization and degradation

of the receptors [42]. Dynamical models together with quantitative experiments

proved the validity of the mathematical approach to explain the behavior of the

ErbB receptor system [43]. As more and more experimental results became avail-

able thanks to the development of new biomolecular techniques, mathematical

models incorporated additional layers of complexity.

This increase in complexity is illustrated by the publication in 2002 of the work

by Schoeberl et al. [44] presented a comprehensive dynamical model of the ErbB

receptors, compatible with experimental evidence. Due to the high number of

species and reactions involved (it considers more than 100 reactions between over

50 species), the model can only be solved by means of numerical simulations. These

modeling efforts have made it possible to predict the dependence of downstream

signaling events on the receptor-ligand dynamics. In particular, it has been shown

that the MAPK pathway activation depends in a non-linear way on the ErbB-

ligand interaction.

Ten years later, Helikar et al. [45] presented an even larger model that included

245 species and over a thousand reactions. The model predicts enhanced receptor

endocytosis upon Src overexpression, which has been confirmed by experimental

evidence.

Other models have focused on the role of homo and heterodimerization processes

in signaling. Hedricks et al. [46] proposed a multiscale approach where receptor

trafficking and the binding and unbinding dynamics are taken into account by

considering their characteristic time scales separately. From the interplay between

the model and the experimental data, the authors concluded that the affinity

between all receptor types is similar and that ErbB2 has a role in sustaining and

amplifying ErbB response to the ligand.
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Shankaran et al. ([47]) also studied dimerization of the ErbB receptors to predict

the abundance of the different phosphorilated receptor dimers as a function of the

monomer concentrations using a dynamical ODE based model of dimerization.

Zhang et al. [48] modeled the ErbB system by means of transfer functions to

establish whether the information transmitted through the receptor system was

receptor based or dimer based, concluding that the phosphorilated dimers are a

better predictor of the intracellular state. This result will be used in Chapters 2

and 4 of this thesis.

Other modeling approaches have considered the different regulatory interacions

(feedback loops) and their effect in the ErbB dynamics [49], and the combinatorial

complexity of the ErbB network [50].

1.3 Information in biological systems

Many fields have used the methods of Information Theory to characterize commu-

nication processes since it was first proposed by Shannon in 1948 [51]. It has been

widely used in biology, specially in neurophysiology [52]. Its application to molec-

ular and cell biology has been less frequent, but a number of relevant approaches,

both experimental and mathematical, have used information theory in the last

decade. Refs. [53] and [54] offer good reviews on the subject. A brief introduction

to the mathematics of information theory can be found in the Appendix, Section

A.2.

Focusing in the molecular level, specially in signaling processes in cellular commu-

nication, information theory has emerged as an appropriate framework to study

what, and to what extent, can be said about the extracellular cues from the re-

sponse they elicit in the cell, or equivalently, to what extent the extracellular

signals can influence the cell’s behavior.

Pioneering the application of information theory to molecular processes were Bialek

and Tkačik, who studied the information capacity of genetic regulatory elements

and successfully applied it to the patterning of the fruit fly embryo to conclude

that the patterning system achieves ∼ 90% of its theoretical maximum information

transmission [55, 56]. They also studied extensively the optimization of informa-

tion flow in small genetic networks, where a single transcription factor protein
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controls the readout of one or more genes [57–60]. The idea that information is

maximized in biological processes of communication stands out remarkably along

their work (see [61] for a concise summary of the mathematical formalism behind

it).

Starting in 2010, a series of papers were published that addressed experimental

measures of the information transduction through signaling networks, yielding in-

teresting results on the nature of molecular information and what mechanisms can

make information transmission effective. Cheong et al. [62] studied the limitations

imposed by noise in information transmission and proposed a number of mecha-

nisms to overcome such communication constraints. They concluded that time

integration can increase the information transferred from the external ligand to

the intracellular state through the Tumor Necrosis Factor (TNF) pathway. This

is consistent with the result obtained by Uda et al. [63], which established that

the information transmitted at individual time points represents a lower bound

to the information transmitted along the complete time course of signaling. An

experimental test for this hypothesis was presented by Selimkhanov et al. [64],

where signaling dynamics were proven to have a key role in overcoming extrinsic

noise.

Voliotis et al. [65] have addressed another interesting problem concerning the

time modulation of the response by means of feedback loops: under particular

conditions, negative feedback increases the information transfer. This results from

preventing flat average response curves and thus reducing sensitivity to variation

in the expression levels of the signaling molecules, all in all providing robustness

to the system.

1.4 Outline of the thesis

The main goal of this thesis is to present an in-depth study of the transmission of

information in the context of the cell, by means of dynamical, probabilistic and

information-theoretical models. The main problem that we address is the role of

membrane receptors and intracellular receptor-protein interactions in efficiently

reading and transmitting the extracellular information.

We have seen along the introduction that extracellular information is often pre-

sented to the cell in the form of ligands. Ligands are detected by membrane
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receptors, that undergo nonlinear dynamical interactions in the cell surface. Such

dynamics of the membrane receptors is considered in detail in Chapter 2, with the

aim of producing analytical expressions for the amount of active receptors upon

stimulation by a ligand.

Following the receptors’ reaction to an external ligand, intracellular proteins that

bind the active receptors ’catch the relay‘ in information transmission. In Chapter

3, we address the dynamics of binding and unbinding of the intracellular proteins

in order to predict the cellular state that results from a given level of receptor

stimulation.

Chapter 2 and 3 are thus the necessary and consecutive links that allow us to

study information transmission through the ErbB system. In Chapter 4, we use

the results of Chapters 2 and 3 regarding the concentration of active receptors and

the intracellular bound protein distributions to find analytical expressions for the

mutual information under different signaling scenarios, thus providing a framework

to understand the role and effect of the main components of the signaling system.

Finally, the results stemming from these three mathematical approaches are dis-

cussed in the Conclusions chapter, where further steps are introduced, leaving an

open door for ongoing research.



Chapter 2

Mathematical models of the ErbB

system

In Chapter 1, we have briefly introduced cell signaling and the molecular processes

that take place when signaling is mediated by membrane receptors, as they per-

tain to the topic of this dissertation. In general, membrane receptors are activated

upon extracellular ligand binding. Active receptors, in turn, activate intracellular

proteins that will transmit the information to the interior of the cell, where cell

decisions are taken. In many cases, this is a complex process that involves many

different molecules and interactions.

In the case of membrane receptors with tyrosine kinase activity (RTKs), the first

steps in the signaling cascade involve the interaction between inactive, monomeric

receptors to form dimers (molecular complexes of two monomers) or oligomers

(complexes of more than two monomers). This interaction between monomeric

receptors adds to the complexity of the system: as we will see in this chapter,

dimerization turns the receptors into a nonlinear channel for information trans-

mission, which affects the amount of information can be transmitted through a

channel, as we will see in Chapter 3.

In order to study such effects, first we need a model of the relevant processes in

cell signaling through membrane receptors: ligand binding, receptor dimerization

and activation, and activation of intracellular proteins by binding to active tyro-

sine residues. Initial conditions (concentrations of the different species considered

15
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when the cell is stimulated with the ligand) are also relevant and need to be esti-

mated or calculated for a proper analysis of the system. This involves estimating

the concentration of receptors in the membrane (taken from experimental data) as

well as taking into account the dynamics of the receptors in the absence of ligand

(synthesis, internalization, degradation...).

In this chapter, we present a mean-field model of the dynamics of the receptors in

the absence of ligand, in particular the dynamics of the ErbB2 receptor. We then

continue to model the behavior of the system upon the addition of the ligand. The

different processes involved in this molecular cascade have different time scales.

We will explore the effect of such time scale separation and exploit it in order

to turn the full model into a more tractable one that we can analyze. Last, we

model the binding of intracellular proteins to the binding sites of active receptors.

The state of the intracellular proteins will be used in the next chapter in order to

compare the distrubitions of signaling molecules in and out of the cell.

2.1 Review of parameter values reported in the

literature

When reviewing the literature searching for experimental values (or estimates) of

parameters, concentrations or other quantifiable biological quantities, BioNumbers

[66] comes to hand as an excellent tool. The aim of this web site is -as put forward

by its the developers- ‘(...) that the database will facilitate quantitative analysis

and reasoning in a field of research where numbers tend to be soft and difficult to

vouch for’.

In general, it is difficult to obtain accurate values of the quantities one usually

considers in a mathematical model of a biological system (rates, molecule num-

bers...). The reasons for this are twofold. Firstly, the complexity of biological

systems (diversity, variability, dependence on the external conditions) make it dif-

ficult (if not impossible) to give a single estimate for the quantity of interest. On

the other hand, there is often a lack of coordination between different approaches

to the same problem and as such, the quantitative results of experimental studies

not always match the needs of a mathematical model and viceversa. Bearing these
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factors in mind, one can feel more at ease using approximate values of the different

quantities to be considered in a model.

The models presented later in this chapter are systems of ordinary differential

equations (ODEs) describing the changes in time of the concentration (or number

of molecules) of ErbB receptors in several conformations. Their concentrations

depend on several processes, each characterized by its own rate. Both the rates

and concentrations used within the models we present below are taken from the

literature. A review of our main sources of such data follows.

The most thoroughly studied ErbB ligand has been the Epidermal Growth Factor

(EGF). Reported values of physiological EGF serum concentrations range from

60 pM to 30 nM [67], which is equivalent to a concentration of 40 to 20000 EGF

molecules per µm3. The interaction of EGF with ErbB1 has an equilibrium dis-

sociation constant Kd = 6.7 · 10−10M , with an association rate k+ = 1.8 · 108M−1

min−1 and a dissociation rate k− = 0.12 min−1[68].

The number of ErbB1 in normal cells has been estimated to be between 50000

and 200000 receptors per cell in healthy cells, whereas it raises up to 2 − 3 · 106

receptors per cell in cancer cells [69]. ErbB2 is present at around 10000-60000

receptors per cell [70].

An intuitive interpretation of these number follows from the ensuing discussion.

The volume of an eukaryotic cell is around 2000 µm3. Assuming a spherical cell,

the corresponding surface area is around 800 µm2. The density of receptors at the

membrane ranges from less than 1 to 400 ErbB1 molecules/µm2 and from 10 to

100 molecules of ErbB2/µm2.

Values regarding the receptor dimerization rates are given in [46], where the bind-

ing rates are estimated to be 103 min−1 and the unbinding rates are estimated to

be 0.1 min−1.

Values of the parameters characterising the interaction of intracellular proteins

with phosphotyrosines are given in [23]. They provide experimental measurements

of the dissociation constant between a collection of intracellular proteins to every

phosphotyrosine site in ErbB receptors. High affinity interactions have Kd ∼
102nM while low affinity interactions have Kd ∼ 2 · 103nM. Although this study

provides very extensive information about such interactions, the value of Kd is

sometimes not sufficient to address the dynamics of binding and unbinding of the
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intracellular proteins to the phosphotyrosine sites, as it will be analysed in the

Chapter 3.

Estimated values of intracellular proteins-phosphotyrosine sites binding and un-

binding constants used in ErbB models can be found in [44]. In this computa-

tional model for signaling, intracellular protein binding rates are estimated to be

10−2nM−1min−1 and unbinding rates are estimated to be 10 min−1, which would

give Kd ∼ 103nM (compatible with the data given in [23]). However, recent single

molecule experiments have allowed to measure individual binding and unbinding

rates. In [37], the measurements of the binding and unbinding rates of chaperonin

and co-chaperonin interactions yielded values of 0.1 and 30 min−1, respectively.

Studies with selectin [71] and cadherins [72] yielded similar results for the unbind-

ing rate (15 min−1 and 60 min−1, respectively).

The values of the parameters used throughout this thesis (unless other values are

specified) are summarized in Table 2.1.

Receptor dynamics

µ1 2400 min−1 µ2 12 min−1

ks+ 107 M−1min−1 ks− 10−3 min−1

k1+ 103 M−1min−1 k1− 0.1 min−1

k12+ 103 M−1min−1 k12− 0.1 min−1

k2+ 103 M−1min−1 k2− 104 min−1

a1+ 1 min−1 a1− 0 min−1

a12+ 1 min−1 a12− 0 min−1

a2+ 1 min−1 a2− 10 min−1

δR1 0.014 min−1 δR2 0.0006 min−1

δD1 0.1 min−1 δD12 0.1 min−1

[R1T ] 5− 20 · 104 cell−1 [R2T ] 1− 6 · 104 cell−1

[ST ] pM to nM Ptot 500 nM

Intracellular proteins dynamics

kp+ 0.1 nM−1 min−1 kp− 30 min−1

Table 2.1: Reference parameters used in our model analysis and simulations.

Reported values for the intracellular concentration of signaling molecules range

from 0.1 to 1 µM [73].
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2.2 Dynamical models of ErbB receptors

EGF-like ligands have been described to promote dimerization of monomeric recep-

tors, but the mechanism by which dimerization happens has been a controversial

issue. In the first studies on ErbB dimerization, it was hypothesized that ligands

form dimers themselves, and that the interaction between receptor-bound ligands

brought the monomers close together to enable receptor dimerization [74]. Later,

experimental results supported an alternative hypothesis for receptor dimeriza-

tion: ligand binding exposes the receptors’ dimerization domains allowing direct

interaction between the monomeric receptors: dimerization is ligand induced, but

receptor mediated [75]. We refer to this mechanism as ligand-induced dimeriza-

tion and we model the dynamics of the receptors according to this mechanism in

Section 2.2.1.2.

Out of the four members of the ErbB receptor family, ErbB2 exhibits some note-

worthy peculiarities. Firstly, it has been identified as the preferred heterodimer-

ization partner for all the other ErbB receptors [8]. More importantly, ErbB2

does not bind any known extracellular ligand and it has been shown to present a

rich behavior at the membrane even in the absence of ligands: ErbB2 has been

detected at the membrane in the form of monomers, as well as in the form of

homodimers (both active and inactive) in a dynamic equilibrium [76]. Why these

dimers form remains an open question, though it has been hypothezised that kid-

napping ErbB2 in the form of dimers avoids ‘accidental’ or non-specific signaling.

In any case, there are several processes involving ErbB2 in the absence of ligands:

synthesis and insertion in the membrane, interaction with other ErbB2 monomers,

activation/deactivation, internalization, recycling and degradation.

It has recently been discovered that dimerization in the absence of ligands is not

exclusive of ErbB2 but all the members of the ErbB family are in a dynamic

equilibrium between monomeric, inactive dimeric and active dimeric forms at the

membrane. These dimeric forms are referred to as predimers [77]. In contrast to

the ErbB2, since the other ErbB receptors have an extracellular binding domain

which avoids activation in the absence of a ligand, the active dimeric forms of

ErbB1, ErbB3 and ErbB4 have poor kinase activity and are rare. The amount of

receptors that are forming predimers at the cell membrane has been measured to

be between 40% and 100% [78]. We devote Section 2.2.2 to model ErbB dynamics

when pre-dimerization is the main mechanism of receptor dimerization.
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The existence of both dimeric and monomeric receptors at the membrane suggests

that a combination of the mechanisms listed above could be taking place at the

membrane.

The dimerization mechanism is relevant to establish the membrane composition of

signaling dimers. Once the dimers are activated by a ligand, they are interalized

and then degraded or recycled. If we consider that internalized receptors keep on

signaling (until they are degraded) with the same intensity as in the membrane and

that recycled receptor are reinserted in the membrane in an inactive configuration,

we can consider a one compartment model for signaling.

2.2.1 Receptor dimerization driven by ligand binding

2.2.1.1 Dynamics of the ErbB2 receptors in the absence of ligand:

steady state at the membrane.

In this section, we address two issues regarding ligand-free ErbB2 dynamics: first,

active dimers can signal in the absence of a ligand, and this will influence infor-

mation transmission through this system, and second, the receptor composition

at the membrane at the onset of signaling is a key feature that determines the ac-

tivation state of the receptors that the system will reach and consequently, which

(and how intensely) proteins will be recruited in the signaling process.

Consider an ErbB2 molecule through its life cycle (in the absence of ligand), from

synthesis to degradation (shown schematically in Fig. 2.1). As it is synthesized, it

travels to the membrane inserted in a vesicle, which will ‘fuse’ with the membrane.

Upon fusion, the receptors will be inserted in the cell membrane, with the catalytic

(kinase) site in the interior of the cell. Once at the membrane, there are many paths

an ErbB2 monomer can follow: it can diffuse through the membrane until it finds

another ErbB2 monomer and interact to form a dimer. While the monomer is part

of the dimer, it will be switching between the two states (active and inactive), until

the dimer splits or is internalized or degraded. Dimers, as well as monomers, can

be internalized by means of invaginations of the cell membrane. The internalized

receptors can either be recycled to the cell membrane again, or be degraded.

As shown in Fig. 2.1, ErbB2 can be found at the membrane in three configura-

tions: monomers (R), inactive dimers (D) and active dimers (D∗). Consider also
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Figure 2.1: Simplified behavior of ErbB2 behavior in the absence of a ligand.
A monomeric receptor is inserted in the membrane (1), and can diffuse until
it interacts with another monomeric receptor and forms a dimer (2). Dimers
switch between an active and an inactive state (3). In their active state, they can
phosphorilate tyrosine residues in their intracellular domain, which will act as
docking sites for many intracellular proteins (4). Bidirectional arrows indicate

reversible processes.

the most relevant processes: synthesis/insertion to the membrane (with rate µ),

dimerization/undimerization (with rates k+ and k−, respectively), activation/de-

activation (with rates a+ and a−), internalization/degradation (with rate δ). In

this model, µ and δ account for the turnover of the receptors (transitions in and

out of the membrane, respectively), while the rest of the parameters are related

to in-membrane dynamics.

The inactive dimers have been described to be more stable than their active dimers

counterparts [76]. This has implications regarding the values of the parameters

for activation and inactivation of ErbB2 homodimers: the inactivation rate will

be greater than the activation rate (k− > k+). Hence, we expect the amount of

inactive to be higher in the membrane at the steady state.

For simplicity and analytical tractability, we omit in this model the processes of

internalization into vesicles and recycling, considering only one compartment (the

cell membrane), instead of two (membrane and vesicles), which would double the

number of different species of the system.
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With such ingredients, we formulate the following model for the ErbB2 dynamics

in the absence of a ligand:

dR

dt
= µ− 2k+R

2 + 2k−D − δRR (2.1)

dD

dt
= k+R

2 − k−D − a+D + a−D
∗ − δDD (2.2)

dD∗

dt
= a+D − a−D∗ − δD∗D∗ (2.3)

where R is the monomeric ErbB2 receptor, D is the inactive ErbB2 dimer and D∗

is the active ErbB2 dimer.

The concentration of every species can be found at the steady state by solving the

following set of non-linear equations.

µ− 2k+R
2
0 + 2k−D0 − δRR0 = 0 (2.4)

k+R
2
0 − k−D0 − a+D0 + a−D

∗
0 − δDD0 = 0 (2.5)

a+D0 − a−D∗0 − δD∗D∗0 = 0 (2.6)

We first consider that the degradation rate of the monomeric form of ErbB2 is

small enough (δR << 1), we find that the state of the system at the steady state

(at first order in δR) is

R0 =

√
µ+ 2k−D0

2k+

(2.7)

D0 =
k+R

2
0 + a−D

∗
0

k− + a+ + δD
(2.8)

D∗0 =
a+D0

a− + δD∗
(2.9)
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R0 =

√√√√ µ

2k+

(
1 +

k−

δD + δD∗a+

a−+δD∗

)
(2.10)

D0 =
1

2

µ

δD∗

1
a+

a−+δD∗
+ δD

δD∗

(2.11)

D∗0 =
1

2

µ

δD∗

1

1 + δD
δD∗

(a−+δ
D∗ )

a+

(2.12)

The small δR approximation provides a simple expression for the steady state

concentration of the different species (R, D and D∗) of the system.

By relaxing the δR << 1 approximation the analytic expression for the steady

state solution (Rd) becomes more complicated:

Rd =
1

2

δR
2k+

(
1 +

k−

δD + a+
δD∗

a−+δd∗

)√√√√1 + 4µ
2k+

δ2
R

1

1 + k−

δD+a+
δD∗

a−+δd∗

− 1

 (2.13)

which can be rewritten as a function of the solution we found with the small δ

approximation (Eq. 2.10), R0

Rd =
1

2

δR
µ

(
2k+

µ

)3

R0

√R2
0 +

(
2
µ

δR

)2

−R0

 , (2.14)

where R0 =

√
µ

2k+

(
1 + k−

δD+
δD∗a+
a−+δD∗

)
Fig.2.2 shows the amount of each configuration at the membrane for different

values of the synthesis rate of the ErbB2 receptor. We can see that, for reference

values of the parameters (Table 2.1), most of the ErbB2 is in a dimeric inactive

form.
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Figure 2.2: Amount of the different forms of R2 as a function of the synthesis
rate µ. Solid lines show the results of the numerical integration of the system,
dotted lines show the concentration at the steady state calculated with the small

δ approximation.

2.2.1.2 Ligand-dependent receptor dynamics.

When considering ligand-driven signaling, the system becomes slightly more com-

plicated. Ligand binding and unbinding and dimerization between the different

types of monomers increase the number of reactions that are to be taken into

account considerably.

Consider now the life cycle of an ErbB1 receptor in the cell (Figs. 2.3 and 2.4).

Once synthesized, the receptor will be inserted in the cell membrane, with the

ligand-binding domain in the extracellular environment and the kinase domain in

the interior of the cell. It will not interact with other monomeric receptors until it

is ‘unlocked’ by ligand binding. Meanwhile, it can be internalized and recycled or

degraded. Once it binds a ligand molecule, it can either form dimers with other

monomers of the same kind (homodimers) or with monomers of other members of

the ErbB family (heterodimers). Upon dimer formation, there is activation of the

receptors by addition of phosphate groups to the tyrosine residues, catalyzed by the

kinase activity of the intracellular part of the receptors. Ligand-bound monomers,

as well as inactive and active dimers will eventually get internalized and recycled or

degraded. Bidirectional arrows in Figs 2.3 and 2.4 represent reversible processes.

The set of processes that determine the dynamics of the system of receptors de-

scribed above can be modelled as a set of ODEs. For simplicity, we consider

only two members of the ErbB family: ErbB1 (R1, ligand-dependent) and ErbB2

(R2, ligand-independent). L stands for the ligand concentration, C1 stand for



25

Figure 2.3: Schematic representation of the life cycle of ErbB1 when forming
homodimers.

the ligand-bound ErbB1 receptor, Dij (with i, j = 1, 2) are the different types of

inactive dimers and D∗ij are the active dimers.

dL

dt
= −ks+LR1 + ks−C1(2.15)

dR1

dt
= µ1 − ks+LR1 + ks−C1 − δ1R1(2.16)

dR2

dt
= µ2 − k12+C1R2 − 2k2+R

2
2 + k12−D12 + 2k2−D2 − δ2R2(2.17)

dC1

dt
= ks+SR1 − (ks− + 2k1+C1 + k12+R2)C1 + 2k1−D1 + k12−D12 − δ1D1(2.18)

dD1

dt
= k1+C

2
1 − (k1− + a1+)D1 + a1−D

∗
1 − δ1D1(2.19)

dD12

dt
= k12+R2C1 − (k12− + a12+)D12 + a12−D

∗
12 − δ12D12(2.20)

dD2

dt
= k2+R

2
2 − (k2− + a2+)D2 + a2−D

∗
2 − δ2D2(2.21)

dD∗1
dt

= a1+D1 − a1−D
∗
1 − δ1D

∗
1(2.22)

dD∗12

dt
= a12+D12 − a12−D

∗
12 − δ12D

∗
12(2.23)

dD∗2
dt

= a2+D2 − a2−D
∗
2 − δ2D

∗
2(2.24)
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Figure 2.4: Schematic representation of the life cycle of ErbB1 and ErbB2
when forming heterodimers.

Note that in the absence of ligand, the ErbB1 receptor is synthesized with rate

µ1 and internalized/degraded with rate δ1, so its steady state concentration on

the membrane (R1,ss) is R1,ss = µ1

δ1
. The steady state of the ErbB2 receptor was

described in the previous section. We consider that the rest of species are not

present before the system is exposed to ligand (at t = 0).

In the following, we consider a pulse of ligand, so that the time of exposure to the

ligand is very short in comparison to the dynamics of the receptors.

Multiple time scales in the dynamics of the response to ligand

In this section we explore the dynamics of the response of the system of receptors

when stimulated with a pulse of ligand.

In Fig. 2.5, we show that, as time progresses, the system goes through a number

of different regimes, associated with different time scales (for a more detailed

presentation, see Appendix, Section B.1). The only species that change in the

shortest characteristic time scale (i.e. immediately upon ligand stimuation) are

the ligand L and the ligand-bound receptor C1 (Fig. 2.5 (a)); R1 is in excess
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and is not shown in the figure). The amount of the different forms of R2 remains

constant at the steady state value (different from 0) that it attained before ligand

stimulation - as determined in Section 2.2.1.1. At an intermediate time scale

(Fig.2.5 (b)), the concentrations of the ligand-bound receptor C1 and the dimers

D1 and D12 evolve. The ErbB2 receptor R2 and its dimeric inactive form D2 also

change: they are perturbed from their previous steady state. At this time scale,

the active dimers D∗1 and D∗12 are not formed yet and D∗2 still remains at the steady

state it attained in the absence of ligand, different from 0 (see Section 2.2.1.1. The

dimers activate and they are internalized or degraded at a longer time scale (Fig.

2.5, c,d). R2 and its different conformations reach the no-ligand steady state once

the other species disappear from they system.

According to the values of the parameters proposed in the literature and reported

in section 2.1 (see Table 2.1), the binding rate of the ligand is much faster than

the rest of the reactions (Fig. 2.5, a). Therefore, we consider that within a very

short time scale from initial stimulation with the ligand, all of it has bound a re-

ceptor so that the initial conditions at the onset of signaling given an initial ligand

concentration L0 are L = 0, R1 = R1,ss − L0 = µ1

δ1
− L0 and C1 = L0 (see section

B.1).

Intermediate time scale: dynamics of the dimers D1 and D12

We are interested in the amount of dimers of each type (D1, D12 and D2) formed

upon ligand binding. We assume that the unbinding and activation rates of the

active receptors are negligible in the time scale of dimerization (see Fig. 2.5

(b)), and Appendix, Section B.1). Within this time scale, considering only the

dimerization processes, the system reduces to:

dR2

dt
= k12+C1R2 − 2k2+R

2
2 + 2k2−D2 (2.25)

dC1

dt
= −(2k1+C1 + k12+R2)C1 (2.26)

dD1

dt
= k1+C

2
1 (2.27)

dD12

dt
= k12+R2C1 (2.28)

dD2

dt
= k2+R

2
22− k2−D2 (2.29)
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Figure 2.5: Time evolution of the amount of the different species in the system
at different timescales. a) Short time scale (ligand binding), b) intermediate
time scale (receptor dimerization), c) long time scale (receptor activation), d)
very long time scale (receptor degradation). The parameters are shown in Table

2.1.
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Since we are interested in the amount of dimers of each type that are formed upon

stimulation of the system with a pulse of ligand, and once the dimers have been

formed, the concentration of ligand bound receptor decays to 0, the concentrations

of the system at the steady state cannot be determined analytically. In order to

provide an analytic estimation of the steady state values ofD1 andD12, we consider

an alternative approach to find the amount of dimers of each type formed upon

detecting a concentration of the ligand L0, which will be needed in Chapter 4.

Such analytical estimates cannot be obtained by directly tackling Eqs (2.25-2.29).

Two further key assumptions here are:

• Because R1 is in excess, all the ligand molecules bind a receptor, and hence

we take the initial concentration of the ligand bound receptor (C1) as equal

to the total amount of ligand presented to the cell, L0.

• If we suppose that the R2 receptor reaches its steady state (presented in

section 2.2.1.1) rapidly after a perturbation (see Fig. 2.5,b), then we can

simplify the model presented above by considering the amount of R2 constant

(and equal to its steady state value, R0, Eq. 2.7), and the amount of C1

decaying because of interaction (with itself and with ErbB2).

The system is thus further simplified to:

dC1

dt
= −(2k1+C1 + k12+R0)C1 (2.30)

dD1

dt
= k1+C

2
1 (2.31)

dD12

dt
= k12+R0C1 (2.32)

Now we can find the amount of each type of dimers as a function of C1:

dD1

dC1

=
k1+C

2
1

−(2k1+C1 + k12+R0)C1

(2.33)

dD12

dC1

=
k12+R0C1

−(2k1+C1 + k12+R0)C1

(2.34)
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which can be integrated to get

D1(C1) =
k12+R0 log (2k1+C1 + k12+R0)

4k1+

− C1

2
+ c1 (2.35)

D12(C1) = −k12+R0 log (2k1+C1 + k12+R0)

2k1+

+ c12 (2.36)

The constants c1 and c12 can be found by considering that D1 = 0 and D12 = 0

when C1 = S0, so that

D1(C1) =
L0 − C1

2
+
k12+

4k1+

R0 log

(
2k1+C1 + k12+R0

2k1+L0 + k12+R0

)
(2.37)

D12(C1) =
k12+

2k1+

R0 log

(
1 +

2k1+C1 + k12+R0

2k1+L0 + k12+R0

)
(2.38)

Now we can now take the limit of D12 as the amount of ligand bound receptor C1

approaches 0 (which is the maximum amount of dimers that is formed)

D1,max = lim
C1→0

D1 =
L0

2
− k12+

4k1+

R0 log

(
1 +

2k1+L0

k12+R0

)
(2.39)

D12,max = lim
C1→0

D12 =
k12+

2k1+

R0 log

(
1 +

2k1+L0

k12+R0

)
(2.40)

As depicted in Fig. 2.6 the values of D1 and D12 obtained with the method de-

scribed above are only a moderately accurate fit to those obtained by numerical

integration of Eqs. (2.25-2.29), as they capture the tendency of D1 to decrease

and D12 to increase. The mismatch is due in part to the fact that the full model

includes reactions (unbinding, activation and degradation) not taken into account

in the analytical calculation. Also, the assumption of constant R2 is very strong

(as can be seen in Fig. 2.5 (b)). Nonetheless, the ratio between the homo- and

hetero-dimers shows a good agreement between the simulations and the analytical

expression (see Fig. 2.6, right), indicating that what we are missing in the ana-

lytical approximation is the loss of the dimers by other reactions, rather than the

interconversion of dimer types.
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Figure 2.6: Left: Amount of dimers of each type as a function of the amount
of monomeric R2 at the steady state, for an initial value of 25 ligand molecules.
Solid lines are computed by means of numerical integration of the whole system
for different values of R0, dotted lines are calculated by means of Eqs. 2.39
and 2.40. Left: Quotient between the amount of dimers of each type D1

D12
. The

parameter values are shown in Table 2.1.

We have assumed that the equilibrium between the different configurations of

ErbB2 is reached instantaneously. In the Section 2.2.1.1 we calculated the steady

state concentration of the different forms of ErbB2 (Eqs. 2.7-2.9). Using the steady

state values for the ErbB2 subsystem, we can calculate the ratio between ligand-

dependent and ligand-independent active dimers as a function of the amount of

monomeric ErbB2 at the steady state.

Figure 2.7: Left: Amount of dimers of each type as a function of the amount
of monomeric R2 at the steady state, for an initial value of 25 ligand molecules.
Results of the numerical integration of the whole system for different values of
R0. Left: Quotient between the amount of informative active dimers and non-

informative active dimers
D∗1+D∗12
D∗2

. The parameter values are shown in Table
2.1.

Fig. 2.7 shows that the relative amount of informative dimers (D1 and D12) de-

creases when compared to the amount of non-informative dimers (D2) as a function

of steady state monomeric HER2 concentration. For high concentrations of ErbB2,
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the amount of informative dimers is smaller than the amount of non-informative

dimers (which is most likely a bad situation for signaling). Furthermore, Fig. 2.6

shows that the amount of dimers of each type depends on the initial concentration

of ErbB2 monomers (determined by the steady state of the different conformations

of ErbB2 at the membrane).

2.2.2 Predimerization: on the amount of homo and het-

erodimers in the absence of ligand

The presence of ErbB receptors in homo- and heterodimeric forms in the membrane

in the absence of a ligand (not only for ErbB2 but also for other members of the

ErbB family) has been reported in several studies [77], [78]. These forms are

referred to as predimers, and their prevalence (the amount of receptors involved in

a predimer) has been quantified to be between 40% and 100% of the total amount

of ErbB receptors at the membrane. In this scenario, the amount of every predimer

type (homo- and heterodimers) will be determined by the amount of each type of

receptor and the relative affinities between them. Fig. 2.8 shows schematically

the membrane composition in the absence of a ligand when predimers are formed

prior to signaling.

Figure 2.8: Membrane receptors when there is dimerization in the absence
of a ligand. Receptors can be in several conformations: monomers (A and B),
inactive (C) and active (D) R2 homodimers, inactive R1 homodimers (E) and

inactive R1-R2 heterodimers (F).

In order to predict the predimer composition at the membrane in this new scheme,

where dimers are (pre)formed before the onset of signaling, we propose the follow-

ing model.
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dR1

dt
= µ1 − 2k1+R

2
1 − k12+R1R2 + 2k1−D1 + k12−D12 − δ1R1 (2.41)

dR2

dt
= µ2 − 2k2+R

2
2 − k12+R1R2 + 2k2−D2 + k12−D12 − δ2R2 (2.42)

dD1

dt
= k1+R

2
1 − k1−D1 −∆1D1 (2.43)

dD12

dt
= k12+R1R2 − k12−D12 −∆12D12 (2.44)

dD2

dt
= k2+R

2
2 − k2−D2 −∆2D2 − a+D2 + a−D

∗
2 (2.45)

dD∗2
dt

= a+D2 − a−D∗2∆2∗ (2.46)

The equilibrium state for this system is

−µ1 + 2k1+R
2
1(1− k1−

(k1− + ∆1)
) + k12+R1R2(1− k12−

(k12− + ∆12)
) + δ1R1 = 0 (2.47)

−µ2 +R2

(
2k2+R2(1− k2−

(k2− + ∆2 − a+∆2∗
a−+∆2∗

)
) + k12+R1(1− k12−

(k12− + ∆12)
) + δ2

)
= 0 (2.48)

D1 =
k1+

(k1− + ∆1)
R2

1 (2.49)

D12 =
k12+

(k12− + ∆12)
R1R2 (2.50)

D2 =
k2+R

2
2 + a−D

∗
2

(k2− + a+ + ∆2)
(2.51)

D∗2 =
a+D2

a− + ∆2∗
(2.52)

Because the analytical analysis of this model is quite involved and the analytical

steady state expressions are too complex to be informative, we proceed to consider

an alternative probabilistic approach to estimate the expected number of dimers

of each type. We will use the deterministic model introduce in Eqs. (2.41-2.46) to

check the accuracy of the probabilistic approach.

If we consider that the binding reactions are very fast compared to the other

processes affecting the system, then we expect the amount of dimers of each type

to be proportional to the probability of picking the two components of a dimer

from a pool of receptors of the two types, if the binding affinities for homo and

heterodimers are the same [46]. Let R1T be the total amount of ErbB1 and R2T
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the total amount of ErbB2. For large receptor populations, so that the probability

of picking a given receptor type can be considered constant, we have

p(D1) =
1

2
p(R1T )2 =

1

2

(
R1T

R1T +R2T

)2

, (2.53)

p(D12) = p(R1T )p(R2T ) =
R1T

R1T +R2T

R2T

R1T +R2T

, (2.54)

p(D2) =
1

2
p(R2T )2 =

1

2

(
R2T

R1T +R2T

)2

. (2.55)

where p(D1), p(D12) and p(D2) are the probabilities of selecting a D1, a D12 or a

D2 dimer, respectively.

From Eqs. (2.53-2.55), we can compute the expected number of dimers of each

type (by multiplying the probabilities by the total number of receptors) as

〈D1〉 =
1

2

R2
1T

R1T +R2T

, (2.56)

〈D12〉 = p(R1T )p(R2T ) =
R1TR2T

R1T +R2T

, (2.57)

〈D2〉 =
1

2
p(R2T )2 =

1

2

R2
2T

R1T +R2T

. (2.58)

The total amount of receptors R1T and R2T can be expressed as a function of the

synthesis and degradation rate as R1T = µ1

δ1
and R2T = µ2

δ2
, which yields

〈D1〉 =
1

2

δ1

δ2

µ2
1

µ1δ2 + µ2δ1

, (2.59)

〈D12〉 =
µ1µ2

µ1δ2 + µ2δ1

, (2.60)

〈D2〉 =
1

2

δ2

δ1

µ2
2

µ1δ2 + µ2δ1

. (2.61)

In Fig. 2.10, we show the amount of dimers of each type as a function of the ErbB2

synthesis rate, µ2, as given by Eqs. (2.59-2.61). In order to assess the accuracy of

our approximation, we also compare our analytical expression with the numerical

solution of the steady state (Eqs. 2.47-2.52).
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Figure 2.9: Steady state of the different predimers for different values of µ2.
Solid lines show the results of the numerical integration of the system described
in Eqs. (2.41-2.46) at the steady state. Dashed lines show the theoretical
prediction described by Eqs. (2.59-2.61). The theoretical prediction is accurate
for low values of the synthesis rate (remind the ErbB2 synthesis rate has been

estimated to be 0.12 min−1).

As µ2 increases, the amount of D2 homodimers and D12 heterodimers increases at

the expense of a decrease in the amount of D1 homodimers.

Using Eqs. (2.59-2.61), we can estimate the membrane dimer composition. Upon

cell stimulation by a ligand, the ligand molecules bind and activate the predimers.

We consider that the probability of the ligand binding a dimer is proportional to

the number of binding sites for the ligand in the dimer. Because D1 dimers have

two binding sites for the ligand whereas D12 has only one binding site for the ligand

(and assuming that there is no interaction between the ligand binding sites in a

dimer so that the proportionality constant is 1), we take the probability of binding

a D1 dimer (β1) as twice the probability of binding and activation a D12 dimer

(β12 = 1
2
β1). We take the probability of activation of a ligand bound dimer as 1.

The probability of D2 activation (α2) is proportional to the equilibrium constant

of the activation/inactivation reaction and does not depend on ligand stimulation.

The expected amount of active D1, D12 and D2 dimers under those assumptions

is
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〈D∗1〉 = L0
R1T

R1T +R2T

(2.62)

〈D∗12〉 = L0
R2T

R1T +R2T

(2.63)

〈D∗2〉 = α2
1

2

R2
2T

R1T +R2T

(2.64)

Figure 2.10: Amount of the different active dimers for different values of µ2.
Solid lines show the results of the numerical integration of the system described
in Eq.2.41 to 2.46 at the steady state. Dashed lines show the theoretical predic-
tion described by Eq.2.62 to 2.64. The theoretical prediction is accurate for low
values of the synthesis rate (remind the ErbB2 synthesis rate has been estimated

to be 0.12 min−1).

2.3 Summary

In this chapter, we have analyzed the dynamics of the ErbB system under differ-

ent assumptions. First, we analyzed the dynamics of the ErbB2 receptors, which

displays a dynamics between different monomeric and dimeric forms even in the

absence of cell stimulation by a ligand. This dynamic behavior of ErbB2 is relevant

for cell signaling inasmuch the initial amount of monomeric and dimeric ErbB2

receptor is crucial to determine the amount of dimers of each type that are formed

upon ligand stimulation. Next, we analyzed the dynamics of two different dimer-

ization mechanisms proposed in the literature: ligand induced dimerization (Fig.

2.11) and predimerization (Fig. 2.12). Those two mechanisms yield a qualitatively

similar dimer activation (increasing ErbB2 causes a decrease in ErbB1 homodimers
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and an increase in ErbB1-ErbB2 heterodimers and ErbB2 homodimers), though

there are quantitative differences. It is specially noteworthy the fact that in the

case of predimerization, there is a greater range of the synthesis rate of ErbB2

for which ErbB2 homodimers is negligible, and also ErbB1 homodimers are pre-

dominant. This is due to heterodimer formation prior to cell stimulation, which

decreases the amount of ErbB2 available for homodimerization. This is relevant

in information transmission, as we will study in Chapter 4.

Figure 2.11: Amount of active dimers as a
function of µ2 for ligand induced dimerization.

Figure 2.12: Amount of active dimers as a
function of µ2 for predimerization.





Chapter 3

Intracellular interactions

In Chapter 1, we learned that tyrosine kinase receptors phosphorilate tyrosine

residues in their intracellular domain upon dimerization. These phosphotyrosines

act as docking points for many intracellular proteins which, upon binding, get

activated by the kinase activity of the receptors. A signaling cascade starts with

these events that will ultimately cause a response of the cell to the stimulus.

The identity and the amount of the intracellular proteins which bind the active re-

ceptors is thought to determine the cellular response to extracellular information.

Which proteins (and in which amount) bind which phosphotyrosine is determined

by the aminoacid composition of the sites close to the tyrosine [25] and the likeli-

hood and strength of the interaction is quantified by the equilibrium constant or

the dissociation constant (see Chapter 1).

Jones et al. [23] measured the dissociation constant of several proteins to the

tyrosines of the intracellular part of every member of the ErbB receptor family.

We use their estimates in order to give a proxy of the intracellular state during

the first steps of the signaling cascade.

Receptor activation, as we saw in Chapter 2, occurs after receptor dimerization. It

is a slow process relative to the binding reactions, but slower than the degradation

or internalization. As can be seen in Fig. 2.5, c) and d), the activation is relatively

fast compared to internalization/degradation. Once the receptors are active, their

concentration decays exponentially. Such exponential decay will be relevant for

the intracellular protein dynamics, as we will see in this Chapter.

39
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3.1 Probability distributions of the intracellular

proteins: instantaneous measurement.

The values reported in the literature for the binding and unbinding constants

of intracellular proteins are ∼ 10−1 nM−1 min−1 and ∼ 0.1 min−1, respectively

[37]. The binding rate also depends on the protein concentration, which has been

reported to be between 100 and 1000 nM for signaling molecules [79]. Therefore

the binding rate is ∼ 10 nM−1min−1. Taking into account the estimates of the

parameter values reported in Table 2.1, we consider this to be fast compared to

the activation, and especially compared to the inactivation and degradation rates

of the receptors and proteins, so we take the steady state approximation for the

intracellular binding and unbinding reactions: we consider that the proteins reach

their steady state immediately compared to the dynamics of the active receptors

(see Appendix, Section B.1).

We model earliest events of the intracellular signaling cascade triggered by receptor

activation by considering that every binding site can be found in several states:

free or occupied by any of the proteins that have a significant affinity for it.

We start our analysis by considering that we have only one type of intracellular

protein. Then, a binding site can be in either of two states: free or bound. For

many of such binding sites, the fact that it is free or bound can be modelled as a

Bernouilli process, and the probability of finding x sites in a given state (free or

bound) follows a binomial distribution.

For every binding site bi and every protein Pj in a population of nT receptors, the

probability of nij sites in a bound state is

p(nij = k) =
niT !

(niT − k)!k!

(
1 + Ai −Kij

1 + Ai

)niT−k ( Kij

1 + Ai

)k
(3.1)

where Kij is the affinity of the protein for the binding site and Ai =
∑nP

l=1Kil.

Because we are interested in the total number of proteins of each type that have

bound an active receptor, we want to calculate p(n∗j).
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p(n∗j = X) = p

((
nG∑
i=1

nij

)
= X

)
(3.2)

where n∗j is the sum of the proteins that have bound any binding site, nB is the

number of different binding sites and each nij is binomially distributed. Under

appropriate conditions regarding the values of the parameters (large n and p(=
Kij

1+Ai
) not close to 0 or 1), we can approximate the binomial distribution by a

gaussian distribution according to

B(n, p) ∼ G(µ = np, σ2 = np(1− p)) (3.3)

where n = niT and p =
Kij

1+Ai
. Now, gaussian variables with different parameters

can be added together just by adding the first and second moments characterizing

the distribution: let X and Y be two independent normal distributions X ∼
G(µx, σ

2
x) and Y ∼ G(µy, σ

2
y), then U = X+Y is U ∼ G(µu = µx+µy, σ

2
u = σ2

x+σ2
y)

[80].

In our case, with two types of receptors with n1 and n2 binding sites respectively,

the distribution of bound protein to any of the binding sites follows

Xj ∼ G

(
µx =

∑
i∈n1,n2

niT
Kij

1 + Ai
, σ2

x =
∑

i∈n1,n2

niT
Kij(1 + Ai −Kij)

(1 + Ai)2

)
(3.4)

Fig. 3.1 shows the comparison between the theoretical prediction by Eq. 3.4 and

stochastic Gillespie simulations for the probability distribution of the number of

bound proteins of a single type to active receptors.

3.1.1 Several proteins: multinomial distribution

Since the intracellular proteins are not independent -they are correlated through

competition for the receptors-, we continue by considering two proteins, X1 and

X2, that compete for the binding sites of receptors of one type.
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Figure 3.1: Probability distribution of bound intracellular protein. The solid
line shows the theoretical prediction by the gaussian approximation of binomial
distributions for each binding sites, the dots line show the results of stochastic
Gillespie simulations of the binding and unbinding of the intracellular protein.

p1 is calculated from the affinities in [23] for ABL2.

The distribution of bound proteins of both types to one binding site is a multino-

mial (see Appendix, Section B.2):

p(X1, X2) =
n!

x1!x2!(n− x1 − x2)!

(
k1

1 + k1 + k2

)x1
(

k2

1 + k1 + k2

)x2
(

1

1 + k1 + k2

)(n−x1−x2)

(3.5)

We can approximate this multinomial by a multivariate normal (when n is large

and p1 = k1

1+k1+k2
and p2 = k2

1+k1+k2
are not close to 0 or 1, see Appendix, Section

A.1), using the normal approximation to a multinomial with parameters µ =
(
np1

np2

)
and Σ =

(
np1(1−p1) −np1p2

−np1p2 np2(1−p2)

)
. Here, n is the number of active receptors and p1 =

ki
1+
∑
j∈P kj

, where ki is the affinity of protein i to the binding site, and P is the set

of considered proteins.

Once we have the multivariate normal distribution for every binding site, we can

find the distribution of total protein of each type bound to the receptor by summing

the multivariate normal distribution’s parameters [80]. Then, the parameters are

of the sum are

µT =

(∑
bs np1,bs∑
bs np2,bs

)
(3.6)
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ΣT =

(∑
bs np1,bs(1− p1,bs) −

∑
bs np1,bsp2,bs

−
∑

bs np1,bsp2,bs

∑
bs np2,bs(1− p2,bs)

)
(3.7)

Fig. 3.3 shows the comparison between stochastic Gillespie simulations and the

multivariate normal approximation of the number of bound proteins to active

receptors when there is competition between protein types for the binding sites.

In each row, we show pairs of competitors, chosen among the proteins considered

more relevant in [23]. As expected, the average number of bound proteins depends

on the affinity of both proteins to the binding sites.

3.2 Intracellular interactions during receptor de-

cay

Consider the long time behavior of the system (see Fig. 2.5, d). The receptors

are activated at a very fast scale, followed by a relatively slow exponential decay

of the active dimers, D∗, with decay rate δ: D∗(t) = D∗0e
−δt (see Chapter 2, Fig.

2.5, d). During the period where the dimers are active, they can bind and activate

intracellular proteins. The binding occurs following mass action kinetics (i.e. is

proportional to the amount of reactant, k+ = konP , where P is the amount of

intracellular protein), and the activation of intracellular proteins occurs at rate a.

If we consider that the proteins are in excess with respect to the binding sites, then

the binding events can be considered to happen at constant rate, independent of

the amount of intracellular proteins that have already interacted. The unbinding

rate of the complex is k−.

The probability of n binding events during the dimer’s active period (T) is

p(n) =

∫ +∞

0

p(n|T )p(T )dT, (3.8)

where p(n|T ) is the probability of n binding events in an interval T and p(T ) is

the probability distribution of the dimer’s active time.
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Figure 3.2: Probability distributions of pairs of proteins (one pair per row)
that compete for the binding sites of active ErbB1, with R1 = 100. Solid lines
show the predictions made with a multivariate normal distribution, dots show
the results of stochastic Gillespie simulations of the binding and unbinding of
two intracellular proteins. The mean and variance of the multivariate normal

distributions are calculated from the affinity values given in [23].
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3.2.1 One intracellular protein type

Consider first the simplest case: binding events to a free site are considered instan-

taneous, unbinding is a Poisson process with rate k−. The instantaneous binding

approximation is valid when the binding rate is very high, and this can happen

because of a high affinity interaction between proteins and the active receptor, or

alternatively because the concentration of the intracellular proteins is high.

Let’s consider the number of unbinding events, nU . In this scheme, p(nU |T ) is

given by

p(nU |T ) =
(k−T )nU e−k−T

nU !
(3.9)

Using this expression in Eq. (3.8) and the fact that the decay of the active receptor

is also a Poisson process (with rate δ), we get

p(nU) =

∫ +∞

0

(k−T )nU e−k−T

nU !
δe−δTdT (3.10)

After changing variables and using the Gamma’s function definition (see Appendix,

Section A.4), we arrive to the following expression for p(nU)

p(nU) =
knU− δ

(k− + δ)nU+1
(3.11)

which is a geometric distribution (p(nU) = pnU (1− p)) with parameter p = k−
k−+δ

.

The average number and variance of unbinding events is therefore given by:

〈nU〉 =
k−
δ

(3.12)

σ2
n =

k−
δ2

(k− + δ) (3.13)

For an unbinding event to take place, a binding event must have happened before

(a protein needs to be bound). After the last unbinding, since we consider the

receptor in excess, there is an instantaneous binding. Therefore, the expected
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number of binding events (and therefore the number of bound proteins) is 〈n〉 =

〈nU〉+ 1.

Consider now a slightly more complicated situation: the binding events need not

be instantaneous. The equations describing this process are

dPF
dt

= −k+PF + k−PB (3.14)

dPB
dt

= −k−PB + k+PF (3.15)

where PF and PB are the probabilities of the binding site being free and occupied

with the protein, respectively. We can solve the equilibrium equations

0 = −k+PF + k−PB (3.16)

0 = −k−PB + k+PF (3.17)

to get the stationary probability of each state (given that PF + PB = 1)

PF =
k−

k+ + k−
(3.18)

PB =
k+

k+ + k−
(3.19)

Knowing the probability PF of the binding site being free, we can now calculate

the effective binding rate of each protein to the binding site (binding can only

occur if the binding site is free)

λin = k+PF =
k+k−
k+ + k−

(3.20)

Therefore the binding and unbinding can be described as a Poisson process with

parameter λin = k+k−
k++k−

.

Following the same procedure than in the previous case, we find
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p(n) =
λninδ

(λin + δ)n+1
(3.21)

The expected number and variance of binding events is

〈n〉 =
λin
δ

=
k+k−

δ(k+ + k−)
(3.22)

σ2
n =

k+k−
δ(k+ + k−)

(
1 +

k+k−
δ(k+ + k−)

)
(3.23)

Figure 3.3: Probability distribution of the number of bound protein through
the lifetime of an active receptor. (δ = 10−3 min−1, k+ = 0.1 nM−1min−1,

P = 500 nM and k− = 1 min−1).

Consider now that not all binding events lead to activation, as activation is another

Poisson process, with parameter α. Only the binding events that last long enough

to be activated will yield an active protein. The probability of such event to occur

is given by

p(ta < tu) =
α

α + k−
(3.24)

where ta and tu are the time elapsed before and activation or an unbinding event

happen, respectively. This result allows us to calculate the average number of

proteins that have been activated by a receptor while it was active as the product

of Eqs. (3.22) and (3.24).
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〈a〉 =
k+k−

δ(k+ + k−)

α

α + k−
(3.25)

Figure 3.4: Expected number of bound (left) and active (right) proteins as
a function of the unbinding rate. Solid lines are the results from Eqs. (3.22)
and (3.25), respectively. Dots represent Gillespie simulations of the system.

The dashed vertical line indicates the value k− =
√

k+

α . The binding rate is

k+ = 0.01 min−1. The degradation and activation rates are δ = 0.001 min−1

and α = 1 min−1 and the concentration of intracellular protein is 500 nM.

Fig. 3.5 shows the amount of proteins activated by an active receptor during its

lifetime. We can see that the amount of activated proteins depends in a non-

monotonous way on the unbinding rate.

If the number of active proteins is a quantity to be maximized, we can calculate

the maximum of 〈a〉 with respect to any of the parameters. k− seems to be subject

to a trade-off: if it is too big, then the protein unbinds before activation; if it is

too small, then it occupies the binding site so other proteins cannot bind. The

maximum number of active proteins is achieved for k− such as

∂〈a〉
∂k−

=
k+α

δ

(k+α− k2
−)

(k+ + k−)2(α + k−)2
= 0 (3.26)

which yields k− =
√

k+

α
.
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3.2.2 Two intracellular protein types: competition for the

binding site

Consider the situation of one binding site that can be bound by two proteins (p1

and p2) with affinities K1 = k1+

k1−
and K2 = k2+

k2−
, respectively.

The binding of any of the two proteins is a stochastic process that can be described

as two independent Poisson processes in a queue: the proteins can bind whenever

the binding site is free, with rate ki+, and they stay bound for an average time of
1
ki−

.

The Master Equation describing such a process are

dPF
dt

= (−k1+ − k2+)PF + k1−P1 + k2−P2 (3.27)

dP1

dt
= −k1−P1 + k1+PF (3.28)

dP2

dt
= −k2−P2 + k2+PF (3.29)

where PF , P1 and P2 are the probabilities of the binding site being free, occupied

with protein p1 and occupied with protein p2, respectively. We can solve the

equilibrium equations

0 = (−k1+ − k2+)PF + k1−P1 + k2−P2 (3.30)

0 = −k1−P1 + k1+PF (3.31)

0 = −k2−P2 + k2+PF (3.32)

to get the stationary probability of each state
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PF =
1

1 +K1 +K2

(3.33)

P1 =
k1+ + k2+

k2−(k1+

k2+
+ 1)

PF (3.34)

P2 =
k1+ + k2+

k1−(k2+

k1+
+ 1)

PF (3.35)

Knowing the probability PF of the binding site being free, we can now calculate

the effective binding rate of each protein to the binding site (binding can only

occur if the binding site is free)

κi+ = ki+PF =
ki+

1 +K1 +K2

(3.36)

The probability of n binding events in a given period of time T , P (n|T ) for this

Poisson process (for protein pi) is

P (ni|T ) =
(κi+T )nieκi+T

ni!
(3.37)

Let’s introduce now the fact that the binding site has a finite lifetime: it shows

an exponential decay with rate δ. The expected lifetime of a binding site is

p(T ) = δe−δT (3.38)

We can calculate the probability of n binding events during the lifetime of a binding

site by solving

Pni =

∫ +∞

0

(κi+T )nieκi+T

ni!
δe−δTdT (3.39)

This yields a geometric distribution

Pni =
κnii+δ

(κi+ + δ)ni+1
(3.40)

with the following average and variance
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〈ni〉 =
κi+
δ

=
ki+

δ(1 +K1 +K2)
(3.41)

σ2
ni

=
ki+

δ(1 +K1 +K2)

(
1 +

ki+
δ(1 +K1 +K2)

)
(3.42)

The Fano factor of the PDF in Eq. (3.40) is

F =
σ2
ni

〈ni〉
= 1 +

ki+
δ(1 +K1 +K2)

(3.43)

According to Eq. (3.43), the presence of a competitor for the binding site reduces

the Fano factor of the distribution, i.e. reduces the dispersion) with respect to a

situation without competition (where the Fano factor is F = 1 + ki+
δ(1+K1)

).

Proteins that have bound a binding site can be activated. Activation is also

a Poisson process, with rate α. A bound protein gets active if the activation

happened before unbinding (Poisson process with rate ki−). The probability of

activation happening before unbinding is

PAi =
α

α + ki−
(3.44)

Then, the expected number of active proteins of type i is

〈ai〉 =
ki+

δ(1 +K1 +K2)

α

α + ki−
(3.45)

3.2.3 Distribution of bound proteins for several binding

sites and receptors

One protein

We derived in the previous section that the number of proteins that have bound

an active binding site before its degradation follows a geometric distribution:
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Figure 3.5: Expected number of bound (left) and active (right) proteins as
a function of the unbinding rate for two competing proteins. Solid lines are
the results from Eqs. (3.41) and (3.45), respectively. Dots represent Gillespie
simulations of the system. The binding rates are k1+ = 0.05 and k2+ = 0.01
min−1, respectively. The degradation and activation rates are δ = 0.001 min−1

and α = 1 min−1 and the concentration of intracellular protein is 500 nM.

X ∼ Geo

(
k+k−

δ(k+ + k−) + k+k−

)
. (3.46)

In a binary experiment (i.e. where the output can be 0 or 1), a geometric distribu-

tion describes the number of successes that are drawn before a failure. In the case

under consideration, a binding event represents a success, while degradation of the

receptor represents a failure. If we consider r receptors, then we are interested in

the number of successes (i.e. number of bound proteins XS) before r failures. This

is described by a negative binomial distribution (see Appendix, Section A.1):

XS ∼ NB

(
r,

k+k−
δ(k+ + k−) + k+k−

)
, (3.47)

where r is the number of copies of the binding site.

The negative binomial distribution can be approximated by a gaussian (NB(r, p) ∼
G(µ = r 1−p

p
, σ2 = r 1−p

p2 if r is sufficiently large or p not very small [81]. We approx-

imate the number of bound proteins to r binding sites by a normal distribution.

We then use the fact that normal distributions can be added by adding the re-

spective means and variances [80] to estimate the total amount of protein that has

bound an active receptor.
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XS ∼ G

(
µ = r

∑
bs

k+,bsk−,bs
δ(k+,bs + k−,bs)

, σ2 = r
∑
bs

k+,bsk−,bs
δ(k+,bs + k−,bs)

(
1 +

k+,bsk−,bs
δ(k+,bs + k−,bs)

))
.

(3.48)

Figure 3.6: Mean number (left) and variance (right) of RAS proteins having
bound an active receptor of type 1 through its lifetime as a function of the
initial number of active receptors. Dots show the results of stochastic Gillespie
simulations, solid lines show the average and variance, µ and σ2 of the gaussian
approximation described in Eq (3.48). (δ = 5 · 10−2, k+ = 0.1 and the k− are

determined by the experimental Kd as k− = Kdk+ given in [23]).

Two proteins

The generalisation to two proteins is straightforward. The distribution of two

competing proteins having bound an active receptor during its lifetime is

X1 ∼ Geo

(
k1+

δ(1 +K1 +K2) + k1+

)
(3.49)

As in the previous section, when there are r copies of the same binding site, the

distribution that describes the number of bound proteins is a negative binomial

X1,S ∼ NB

(
n,

k1+

δ(1 +K1 +K2) + k1+

)
, (3.50)

which can be approximated by a gaussian. The distribution for every binding site

can be added, yielding a new gaussian describing the number of proteins that have

bound an active receptors at any binding site:
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X1,S ∼ G

(
µ = n

∑
bs

k1+,bs

δ(1 +K1,bs +K2,bs)
, σ2 = n

∑
bs

k1+,bs

δ(1 +K1,bs +K2,bs)
(1 +

k1+,bs

δ(1 +K1,bs +K2,bs)
)

)
.

(3.51)

Figure 3.7: Average number (left) and variance (right) of bound proteins
when two proteins (PLC and ABL2) are competing for the active receptors.
Dots show the results of stochastic Gillespie simulations, solid lines show the
average and variance, µ and σ2 of the gaussian approximation described in Eq
(3.51). (δ = 5 · 10−2, k+ = 0.1 and the k− are determined by the experimental

Kd as k− = Kdk+ given in [23]).

Figs. 3.6 and 3.7 show the comparison between the approximation made in Eqs.

3.48 and 3.51, respectively, and the results of Gillespie stochastic simulations.

3.3 Effects of competition and specialization

The binding sites in the ErbB receptors are limited compared to the number of

different proteins that can bind the active receptors: ErbB1 and ErbB2 have 11

and 7 binding sites, respectively, while the number of different proteins they can

bind is over 60 for both ErbB1 and ErbB2 [23].

Although not all the proteins are present in the cell at the same time (the collection

of proteins expressed in the cell at a given time depends on the phenotype and other

factors), it is reasonable to expect a certain degree of competition for the binding

sites of the receptors, specially taking into account that most of the binding sites

have few interaction partners, while others show a great diversity in the repertoire

of proteins they can bind. Moreover, the affinity spectrum of the proteins for
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the different ErbB binding sites shows that most of the proteins can interact

with several binding sites, hinting to an underlying heterogeneous and complex

interaction network [23].

The structure of this interaction network is governed by structural and chemical

complementarity of the interacting parts, and this has been shaped by evolution

to give rise to functional organisms.

Linking evolutionary preassures as drivers of optimization processes of the func-

tion and structure of organisms is a delicate subject, specially in complex organ-

isms where trade-offs between different features are frequent and determining the

quantity that is being optimized is a particularly difficult task. Nonetheless, the

dependency of certain traits on the features of the systems can be addressed (with-

out necessarily claiming it is subject to optimization), and this gives an insight

into the factors that determine the function and structure of organisms. In this

Section, we want to study how protein binding processes are affected by the struc-

ture of the protein-receptor interactions when several proteins are expressed at the

same time.

With this aim in mind, we propose a toy model where two binding sites (A and B)

can be bound by two proteins (p1 and p2). We consider that proteins are subject to

structural and chemical trade-offs regarding to their interaction with their binding

partners [82, 83]. Specifically, here we consider that increased complementarity for

one binding site is achieved at the expense of a decrease in the complementarity

of other binding sites. The rationale for this claim comes from the fact that the

affinity of a protein for a binding site depends on the structural and chemical

complementarity between the interacting partners [84].

We model this trade-off with a parameter, θ ∈ [0, 1], which indicates the degree of

preference for a binding site, or equivalently, how the affinity is allocated among

the binding sites. Values of θ close to 0 or 1 indicate a strong preference for one

of the binding sites, while θ ∼ 0.5 indicates that the protein does not show a

preference for any binding site. Let KA and KB be the affinities for binding sites

A and B, respectively. Then, in our model, KA = θKT and KB = (1−θ)KT , where

KT be the total protein’s affinity to be allocated between both binding sites.

With those ingredients, we can calculate the amount of proteins p1 and p2 that

have been activated by an active receptor during its lifetime (Eq. (3.45)), and also

the time that the binding receptors have been occupied.
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The total amount of active protein of type i is (supposing that the protein is

excess):

〈ai〉 = 〈aiA〉+〈aiB〉 =
α

α + ki−

(
θiki+

δ(1 + θiKi + θjKj)
+

(1− θi)ki+
δ(1 + (1− θi)Ki + (1− θj)Kj)

)
(3.52)

The expected time that a binding site is occupied, τO can be calculated for both

scenarios as the product of the probability of the binding site being occupied,

(1− PF ) (Eq. (3.33)), times the expected lifetime of the binding site, τ = 1
δ

〈τO〉 =
1

δ

(
1− 1

1 + θiKi + θjKj

)
(3.53)

We can now compare analytically two different cases:

• p1 and p2 show the same affinity sharing (θ1 = θ2 = θ), so that:

K1A,eff = K1θ, K1B,eff = K1(1−θ) and K2A,eff = K2θ, K2B,eff = K2(1−θ)

• p1 and p show opposite affinity sharing (θ1 = 1− θ2 = θ, so that:

K1A,eff = K1θ, K1B,eff = K1(1−θ) and K2A,eff = K2(1−θ), K2B,eff = K2θ

Consider the first case (θi = θj):

〈ai〉 =
α

α + ki−

(
θiki+

δ(1 + θiKi + θiKj)
+

(1− θi)ki+
δ(1 + (1− θi)Ki + (1− θi)Kj)

)
=

ki+α

δ(α + ki−)

1 + 2(Ki +Kj)θ(1− θ)
1 + (Ki +Kj) + (Ki +Kj)2θ(1− θ)

(3.54)

The expected time that the binding sites are occupied is

〈τO,c〉 = 〈τO,A,c〉+ 〈τO,B,c〉

=
1

δ

(
1− 1

1 + θKi + θKj

)
+

1

δ

(
1− 1

1 + (1− θ)Ki + (1− θ)Kj

) (3.55)
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〈τO,c〉 =
1

δ

2 + (K1 +K2)

1 + (K1 +K2) + θ(1− θ)(K1 +K2)2
(3.56)

This situation would correspond to strong competition between p1 and p2.

We model specialization by considering two proteins with dissimilar preferences

(whenever pi has a strong preference for binding site A, then pj prefers binding

site B), such as θi = 1− θj. Then, the amount of active proteins is

〈ai〉 =
α

α + ki−

(
θiki+

δ(1 + θiKi + (1− θi)Kj)
+

(1− θi)ki+
δ(1 + (1− θi)Ki + θiKj)

)
=

ki+α

δ(α + ki−)

1 +Kj + 2(Ki −Kj)θ(1− θ)
1 +KiKj + (Ki +Kj) + (Ki −Kj)2θ(1− θ)

(3.57)

The expected free time is

〈τO,s〉 = 〈τO,A,s〉+ 〈τO,B,s〉

=
1

δ

(
1− 1

1 + θKi + (1− θ)Kj

)
+

1

δ

(
1− 1

1 + (1− θ)Ki + θKj

) (3.58)

〈τO,s〉 =
1

δ

2 + (K1 +K2)

1 + (K1 +K2) + θ(1− θ)(K1 −K2)2 +K1K2

(3.59)

By examining Eqs. (3.56) and (3.59), we realize that comparing τO,c and τO,s is

equivalent to comparing 2θ(1− θ) and 1− 2θ(1− θ) for competition and special-

ization, respectively.

We realize that 2θ(1− θ) = 1− 2θ(1− θ) = 0.5 for θ = 0.5, but this is a maximum

for 2θ(1−θ) (competition) and a minimum for 1−2θ(1−θ) (specialization). Thus,

specialization maximizes the time that the binding sites are occupied, specially for

higher values of θ (more specialized proteins). But, when competition is forced

upon intracellular proteins due to the limited availability of binding sites, then the

condition that maximizes the time that the binding sites are occupied is θ = 0.5,

which means that the proteins do not show a preference for any binding site. The

amount of time that binding sites are occupied correlates with a higher number of

total protein in the system.
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Figure 3.8: Amount of bound proteins as a function of θ. k+ = 0.1 min−1,
Ptot=500, Kd1 = 500 and Kd2 = 750 nM−1, δ = 10−3 min−1. Blue is p1, orange

is p2, green is the total, dashed is specialization, solid is competition.

In Fig. 3.8 we show the amount of each protein and the total amount of active

protein as a function of the degree of specialization for the two cases considered

(competition and specialization). For the competition scenario, the affinity dis-

tribution that maximizes the amount of active proteins is achieved for θ = 0.5,

which also maximizes the amount of time that the binding site are occupied. In

the specialization case, the optimal θ is different for each competitors: the good

competitor (bigger K) benefits from sharing its affinity equally between both bind-

ing sites, while the bad competitor (smaller K) benefits of specializing (so that it

can bind a binding site free of competition).

The two cases considered above are limiting cases of a wider possibility space. In

Fig. 3.9, we show the amount of active proteins and the time bound for different

combinations of θ1 and θ2, where red and orange lines represent competition and

specialization, respectively, as considered above.

Let us now consider the case of more than two binding sites. One way of quantify-

ing the sharing of the affinity between the receptors’ binding sites is by measuring

the entropy of the affinity for all the binding sites a given protein can bind, Hn:

Hn = −
n∑
i

Ai logAi, (3.60)
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Figure 3.9: Amount of bound proteins (titles P1, P2, P1+P2 ) and bound
time (title Time) of the receptor as a function of θ1 and θ2. k+ = 0.1 min−1,
Ptot=500 nM, Kd1 = Kd2 = 500 nM−1, δ = 10−3 min−1. Red line shows

competition, orange line shows specialization

where Ai = Ki
1+
∑n
j Kj

is the affinity of a binding site normalised by the total affinity

of the protein and the subindex n indicates the number of binding sites that the

protein can bind.

In our toy model, we can calculate the number of active proteins as a function of

the entropy in the affinities of each competitor (see Fig. 3.10) in order to compare

the result with experimental data.

Jones et al. [23] published data on the affinity of a collection of proteins binding

to ErbB receptors. We use this dataset in order to study the proteins’ affinity

distribution among binding sites. With this aim, we calculate the entropy of each

protein’s affinities for the different binding sites. Because the entropy depends

on the number of states n (number of binding sites) as log n, we normalise the
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Figure 3.10: Amount of bound proteins (titles P1, P2, P1+P2 ) and bound
time (title Time) as a function of Hn of each protein in a pair of competitors.

k+ = 0.1 min−1, Ptot=500 nM, Kd1 = Kd2 = 500 nM−1, δ = 10−3 min−1

calculated entropy as H = Hn
logn

. For every pair of proteins in the dataset, we

represent the pair in the space of Hn
logn

, the normalised entropy of the affinities for

the different binding sites (Fig. 3.11), if the two proteins compete for at least

one binding site. Each pair is then represented as a point in this space, whose

coordinates correspond to the normalised affinity entropy of each member of the

pair.

The entropy of real interaction partners is such that it yields a higher number of

active proteins, except for certain cases, where it maximizes the amount of one or

the other competitor. The reason for this could lay in the physico-chemical features

of the binding site and the intracellular proteins, and/or it may have evolved in

such a way to maximize the amount of proteins that are activated through ErbB

membrane receptors. Such a selective preassure could arise from the fact that
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Figure 3.11: Proteins in [23], represented in the space of the normalised en-
tropy of the affinities for the different binding sites. Each dot represents a pair
of competitors, and its coordinates indicate the normalised affinity entropy of

each member of the pair.

synthesizing intracellular proteins has a metabolic cost that would render useless

if such proteins are not active in the signaling process.





Chapter 4

Information transmission through

the ErbB system

In Chapter 1, we have given details as to how cells need to sense extracellular

information in order to adjust their behaviour to their (micro)environment. Ex-

tracellular information needs to be transmitted across the cell membrane in order

to reach the cytosol and the nucleus, where most of the cell decisions are taken.

Membrane receptors serve such a purpose, acting as an information transmission

channel. However, a) membrane receptors have their own dynamics at the mem-

brane and within the cell, b) they interact with other receptors in a nonlinear

way, c) they present stochasticity (due to diffusion at the membrane and to low

copy numbers), and d) ligand-receptor interactions are not exclusive: one ligand

can bind several kinds of receptor and vice-versa, and there is crosstalk between

receptors. All these issues make the analysis of information transmission through

the membrane a complex issue [54].

In this chapter, we will deal with information transmission through the cell mem-

brane using information theory. In order to make analytical progress, we will

make a number of simplifying assumptions, the scope and validity of which will be

tested by means of numerical simulations. In particular, we will only consider one

ligand with a given distribution and the membrane composition of the different

active receptors upon ligand binding. We will derive an expression for the mu-

tual information bewteen the input (ligand) distribution and the output (active

intracellular proteins) distribution for several situations, starting with simpler sit-

uations, and moving on to more complicated cases. We will start by calculating

63
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the mutual information for a system with only one type of receptor (R1, which

has the same distribution as the ligand) and one intracellular protein. Then, a

case with two types of receptors (R1 and R2) and one intracellular protein will be

considered. This will allow us to address the effects of nonlinearities during in-

formation transmission. Next, we will study the situation where there is only one

type of receptor (R1) with two types of intracellular proteins in order to explore

the effects of multiple proteins binding to the same binding sites.

4.1 One receptor, one protein

We start our analysis by studying the mutual information between the ligand and

one intracellular protein for two different cases: when the detection of the activa-

tion state of the receptors is fast, ’snap shot-like‘, so that the system measures the

instantaneous state of the system (Section 4.1.1), and when the detection is slow

enough to consider the total binding events that happened on an active receptor

(Section 4.1.2). It has been shown in [63] that the ’snap shot-like‘ sensing gives a

lower bound to the information obtained from temporal trajectories. Since we are

interested in the effects of the different molecular components and interactions in

the mutual information, rather than in the actual value of the mutual information,

and given that the expression for the ’snap shot ‘ mutual information is simpler

than the mutual information over temporal trajectories, we chose the first for the

analysis of the mutual information.

Let y and x be random variables accounting for the concentration of the ligand and

an intracellular protein, respectively. We first consider information transmission

through ErbB1 alone. At the activation peak, the amount of active receptor

is proportional to the initial amount of ligand, L0, so in the low noise limit in

the interaction between the ligand and the receptors, we can consider that the

distribution of active receptor is a linear function of the ligand concentration, αy.

For simplicity, we consider α = 1.

The mutual information between the input distribution (distribution of the ligand,

Y) and the output distribution (distribution of intracellular protein, X ) is defined

as
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I(X, Y ) =

∫
dy

∫
dxp(x, y) log2

p(x, y)

p(x)p(y)
(4.1)

which, if we use conditional probabilities, can be rewritten as

I(X, Y ) = H(X|Y )−HY (X) (4.2)

whereH(X|Y ) =
∫
dyp(y)

∫
dxp(x|y) log2 p(x|y) andHY (X) =

∫
dyp(y)

∫
dxp(x|y) log2 p(x).

In the following sections, we consider gaussian input distributions, Y ∼ G(µy, σy),

so that

p(Y = y) =
1√

2πσy
e
− 1

2

(y−µy)2

σ2
y (4.3)

4.1.1 Mutual information at the activation peak

As derived in Chapter 3, Section 3.1, the amount of bound proteins to each binding

site at a given time is binomially distributed,

p(Xbs = k) =
niT !

(niT − k)!k!

(
1 + Ai −Kij

1 + Ai

)niT−k ( Kij

1 + Ai

)k
(4.4)

with Ai =
∑nP

l=1Kil.

In Chapter 3, we have determined that the PDF of the bound intracellular pro-

teins X1 in Eq. (4.4) is well approximated by X ∼ G(µ = n
∑

bs p1,bs, σ
2 =

n
∑

bs p1,bs(1 − p1,bs)), with n being the amount of active receptors and p1,bs =
Kbs

1+Abs
, Kbs being the equilibrium constant of the protein for binding site bs and

Abs =
∑

i∈P Ki the sum of the equilibrium constants of all the proteins to binding

site bs.

We are interested in the amount of bound proteins at the activation peak where the

amount of active receptors is maximum (which is when all ligand bound receptors

are active and none has degraded), hence R∗1max = Y . Taking this into account,

H(X|Y ) in Eq. 4.2 is given by:
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H(X|Y ) = − log2

√
2πe

∑
bs

p1,bs(1− p1,bs)−
1

2
〈log2 y〉. (4.5)

The expected value of a function of a random variable can be calculated by means

of the method of Taylor expansions around the mean (see Appendix, Section A.3).

Applying the Taylor expansion method [85] to 〈log2 y〉, we can rewrite Eq. (4.5)

as

H(X|Y ) = − log2

√
2πe

∑
bs

p1,bs(1− p1,bs)−
1

2
log2 µy −

1

4

σ2
y

µ2
y

. (4.6)

Consider the second term HY (X). We do not have direct knowledge of p(x)

(we only know the conditional distribution, Eq. (4.4)), so we need to resort to

estimating
∫
dyp(y)p(x|y) in an indirect way. This can be estimated as an infinite

weighted sum of gaussians, and therefore its mean and variance can be calculated

using a gaussian mixture model [86]. The average, µ′, and variance, σ2′, of the

resulting normal distribution are given by:

µ′ =

∫
dyp(y)µx(y) =

∫
dyp(y)y

∑
bs

p1,bs = µy
∑
bs

p1,bs (4.7)

σ2′ =

∫
dyp(y)σx(y)2 +

∫
dyp(y)µx(y)2 −

(∫
dyp(y)µx(y)

)2

= µy
∑
bs

p1,bs(1− p1,bs) + σ2
y

(∑
bs

p1,bs

)2 (4.8)

Estimating p(x) as p(x) = G(µ′, σ2′), we can calculate HY (X):

HY (X) =

∫
dy

∫
dxp(x, y) log2

1√
2πσ′

e
−(x−µ′)2

2σ′2

= − log2

√
2πσ′ − 1

2σ′2

∫
dy

∫
dxp(x1, y)(x− µ′)2 = − log2

√
2πeσ′

(4.9)

Then, we obtain an analytical expression for the mutual information defined in

Eq. 4.2 by combining Eqs. (4.6) and (4.9):
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I(X, Y ) = log2

√
σ′2∑

bs p1,bs(1− p1,bs)
− 1

2
(log2 µy −

1

2

σ2
y

µ2
y

) (4.10)

I(X, Y ) =
1

2
log2

(
1 +

σ2
y

µy

(
∑

bs p1,bs)
2∑

bs p1,bs(1− p1,bs)

)
+

(
1

2

σy
µy

)2

(4.11)

In order to check the accuracy of the gaussian approximation to the PDF of the

number of bound protein regarding the mutual information, we have performed

Gillespie stochastic simulations [87] of a system consisting of one type of receptor

and one type of protein (see Appendix, Section C.2 for details). The comparison

between our analytical result, Eq. (4.11), and the mutual information calculated

from our numerical results is shown in Fig. 4.1. We observe that the agreement

between both is very good, except in the limit of very broad ligand distributions

(large Fano factor of the input distribution).

Regarding the dependence of the mutual information on the Fano factor of the

input distribution, σy
µy

, we observe that the higher the Fano factor of the input dis-

tribution, the higher the mutual information (this is confirmed by direct stochastic

simulations). This could seem counter-intuitive, as noisier input distributions yield

higher mutual information. However, simulation results confirm such behavior. By

inspection of Eq. (4.2), we can see that the mutual information not only depends

of the input distribution but also on the square of the signal to noise ratio of the

output distribution: SNR2 =
(
µ
σ

)2
=

(
∑
bs p1,bs)

2∑
bs p1,bs(1−p1,bs)

. The higher the signal to

noise ratio of the output distribution, the higher the mutual information. This is

achieved for high binding probabilities of the protein to several binding sites in

the active receptor.

Our interpretation of this property is that in order to achieve optimal mutual

information, the input distribution should be wide, allowing for a wide range of

ligand concentrations (y), and the output (bound proteins) distribution should be

narrow around the actual ligand value detected.

Note that the values of the mutual information obtained here are low (generally

less than 1 bit). This is consistent with experimental results which found values

of the mutual information ∼ 1 bit [62, 63, 65].
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((a)) ((b))

((c)) ((d))

Figure 4.1: Mutual information as a function of the Fano factor of the input distri-
bution for four different proteins (PI3K, ABL2, PLCγ and RAS). Blue dots represent
the mutual information calculated with Eq. (4.11), orange dots are the results of Gille-
spie stochastic simulations. The binding probabilities pbs are calculated with the values

of the affinities given in [23].

4.1.2 Mutual information in the active period

It has been proposed that, measuring over an extended period of time can increase

the mutual information through a biological signaling system [62]. In this section,

we test whether this hypothesis applies to our system.

We will show here that whereas the analytical expression of our estimates of the

mutual information is very similar to the one in the previous section, the signal

to noise ratio of the output distribution (and therefore the mutual information) is

rather different to the previous case.

In Chapter 3, section 3.2.3, we have shown that the number of proteins that

have bound a binding site though its life time follows a geometric distribution,
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and that summing over binding sites the intracellular protein distribution can be

approximated as

XS ∼ G

(
µ = r

∑
bs

k+,bsk−,bs
δ(k+,bs + k−,bs)

, σ2 = r
∑
bs

k+,bsk−,bs
δ(k+,bs + k−,bs)

(
1 +

k+,bsk−,bs
δ(k+,bs + k−,bs)

))
(4.12)

where r is the number of active receptors at the onset of signaling. As before, we

consider that the amount of active receptors is the same as the total amount of

ligand presented to the cell, so r ≡ y.

The mutual information in this case reads

I(X, Y ) =
1

2
log2

1 +
σ2
y

µy

(∑
bs

k+,bsk−,bs
δ(k+,bs+k−,bs)

)2

∑
bs

k+,bsk−,bs
δ(k+,bs+k−,bs)

(1 +
k+,bsk−,bs

δ(k+,bs+k−,bs)
)

+

(
1

2

σy
µy

)2

(4.13)

The dependence of the average and variance on y is the same as in section 4.1.1,

so the functional form of the mutual information remains as in Eq. 4.11 but the

coefficients change.

Instantaneous versus sustained sensing

In order to carry out a comparison between the mutual information with instan-

taneous versus active-period sensing, we consider a receptor and a protein which

interact only through one binding site.

In this case, the mutual information with instantaneous sensing is

I(X, Y ) =
1

2
log2

1 +
σ2
y

µy

( k+
k−

1+
k+
k−

)2

k+
k−

1+
k+
k−

· 1

1+
k+
k−

+

(
1

2

σy
µy

)2

=
1

2
log2

(
1 +

σ2
y

µy
Keq

)
+

(
1

2

σy
µy

)2

(4.14)
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whereas for the active-period sensing, the mutual information is

I(X, Y ) =
1

2
log2

1 +
σ2
y

µy

(
k+k−

δ(k++k−)

)2

k+k−
δ(k++k−)

(1 + k+k−
δ(k++k−)

)

+

(
1

2

σy
µy

)2

=
1

2
log2

(
1 +

σ2
y

µy

k+k−

δ(k+ + k−) + k+k−
δ(k++k−)

)
+

(
1

2

σy
µy

)2

(4.15)

Whenever k+k−
δ(k++k−)+k+k−

> Keq, measuring over extended periods yields a higher

mutual information. This is equivalent to

k−(k− − k+) > δ(k− + k+) (4.16)

Eq. (4.2) holds if k− > k+ and k− > δ 1+K
1−K . This is true for the parameter values

reported in the literature and that we have used throughout this thesis ( see Table

2.1).

((a)) ((b))

Figure 4.2: Mutual information as a function of the Fano factor of the ligand dis-
tribution for snapshot sensing (A) and active period sensing (B). Blue dots represent
the mutual information calculated with Eq. (4.11) and Eq. (4.13), orange dots are the
results of Gillespie stochastic simulations. Results are shown for PI3K. The binding

probabilities pbs are calculated with the values of the affinities given in [23].

In Fig. ?? we see that although fit between the mutual information predicted

by Eq. (4.13) and the corresponding stochastic simulations is not as good as in

the case of instantaneous sensing, it works fine for high Fano factor of the input

distribution.
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The mutual information in the active period sensing is lower than in instantaneous

sensing. This is due to the faster increase in the variance of the output distribution

in the active period case.

It has been hypothesized that intantaneous sensing gives a lower bound to the

mutual information transmitted through a system ([63]), and that sensing over

extended periods should yield higher values of the mutual information. This is

true only in the case where the system is able to measure the temporal variation

in the signal [88]. Our results suggest that measuring the total active proteins

over a period results in a loss of mutual information due to a greater increase

of the variance of the intracellular protein distribution (compared to ‘snap-shot’

signaling).

4.2 Two receptors, one protein: the effects of a

nonlinear channel

We consider in this section the effects on mutual information of the nonlinearity

in the information transmission channel associated with the interaction between

different monomeric receptors to form homo and heterodimers.

As discussed in Chapter 2, different dimerization mechanisms have been described,

namely, ligand induced dimerization [75] and predimerization [77]. Ligand-induced

dimerization was the first to be described, but lately, with the advent of single

molecule experiments, the existence of predimers in the membrane has gained

support [78, 89]. In both cases, it remains to be established whether subsequent

steps are determined by the amount of active monomers or active dimers, although

there are studies supporting the notion that only one member of the dimer is

activated upon ligand binding [90] and that the downstream activation levels are

better explained by the amount of dimers of each type rather than the amount

of receptors of each type in active dimers [48]. It has also been described that

ErbB2 homodimers exist in the membrane in two dimeric configurations: active

and inactive [76].

We start our analysis by deriving the mutual information for the predimerization

mechanism. We then proceed to derive the expression for the mutual information

for the ligand induced dimerization.
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4.2.1 Mutual information when dimers are preformed

Consider now two types of receptors, R1 and R2, which form dimers. The ran-

dom variable Y accounts for the ligand concentration, which follows a gaussian

distribution G(µy, σ
2
y).

We consider here that activation within the dimers is directional, so that only one

member of the dimer becomes active [90]. The relevant quantity in this case is not

the amount of receptors that form dimers, but the amount of dimers itself [48].

We assume that ErbB2 is activated in the heterodimers, as proposed in [91].

In Chapter 2, section 2.2.2, we saw that the expected number of active dimers of

each type can be approximated by

〈D∗1〉 = L0
R1T

R1T +R2T

(4.17)

〈D∗12〉 = L0
R2T

R1T +R2T

(4.18)

〈D∗2〉 = α2
1

2

R2
2T

R1T +R2T

(4.19)

where L0(≡ y) is the concentration of ligand.

Because the PDF of the bound intracellular proteins can be approximated by the

sum of the gaussians for every binding site (see Chapter 3, Section 3.1), the average

and variance of the intracellular protein distribution can be expressed (considering

only the informative dimers) in the following way

〈x〉 = n1S1 + n2S2 (4.20)

σ2
x = n1S1− + n2S2−, (4.21)

where n1 = 〈D∗1〉 is the number of active ErbB1 and n2 = 〈D∗12〉 + 〈D∗2〉 is the

number of active ErbB2, Si ≡
∑

bs,1 pbs,i and Si− ≡
∑

bs,i pbs,i(1− pbs,i) for i = 1, 2

indicating the receptor type (ErbB1 and ErbB2, respectively) and
∑

bs indicates

the sum over binding sites. By substituing Eqs. (4.17-4.19) into Eqs. (4.20-4.21)

we get
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〈x〉 = y
R1T

R1T +R2T

S1 + y
R2T

R1T +R2T

S2 + α2
1

2

R2
2T

R1T +R2T

S2 (4.22)

σ2
x = y

R1T

R1T +R2T

S1− + y
R2T

R1T +R2T

S2− + α2
1

2

R2
2T

R1T +R2T

S2− (4.23)

Consider the entropy of the conditional distribution, H(X|Y ) (see Eq. (4.2)),

H(X|Y ) = −1

2
log2 2πe−1

2

∫
dyp(y) log2

(
y

(
R1

R1 +R2

S1− +
R2

R1 +R2

S2−

)
+
α2

2

R2
2

R1 +R2

S2−

)
(4.24)

where we take, for simplicity, Ri ≡ RiT . This notation will be used throughout

this Chapter.

In order to proceed further, we need to compute the variance of the output dis-

tribution p(x) from the conditional distributions, p(x|y), by integrating over y.

As in section 4.1.1, we calculate the average µ′ and variance σ′2 of the resulting

distribution by means of a mixture model [86].

µ′ =

∫
dyp(y)µx(y) = µy

(
R1

R1 +R2

S1 +
R2

R1 +R2

S2

)
+
α2

2

R2
2

R1 +R2

S2 (4.25)

σ2′ =

∫
dyp(y)σx(y)2 +

∫
dyp(y)µx(y)2 −

(∫
dyp(y)µx(y)

)2

= µy

(
R1

R1 +R2

S1− +
R2

R1 +R2

S2−

)
+
α2

2

R2
2

R1 +R2

S2− + σ2
y

(
R1S1 +R2S2

R1 +R2

)2

(4.26)

We give an estimate of the distribution of X as G(µ′, σ2′). Using this distribution

in the expression for HY (X) we obtain

HY (X) = −1

2
log2 2πe

(
µy

R1 +R2

(R1S1− +R2S2−) +
α2

2

R2
2T

R1T +R2T

S2− + σ2
y

(
R1S1 +R2S2

R1 +R2

)2
)

(4.27)

The mutual information, obtained by substracting HY (X) from H(X|Y ), is

I(X, Y ) =
1

2
log2

(
1 +

σ2
y

µy

(R1S1 +R2S2)2

(R1 +R2)(R1S1− +R2S2− + α2

2µy
R2

2)

)
(4.28)
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In Fig. 4.3, we show the agreement between Eq. (4.28) and Gillespie stochastic

simulations (see Appendix, Section C.2 for details on the simulations). ErbB2

homodimer activation reduces the mutual information transduced by the receptor

system (lower valuer of I(X, Y )), and this effect becomes more pronounced as the

amount of membrane ErbB2 receptors increases.

((a)) ((b))

Figure 4.3: Mutual information between the ligand and PI3K for different values of
initial ErbB2 concentration and different averages of the ligand distribution (µy = 20
(red), µy = 30 (green), µy = 40 (orange), µy = 50 (blue)) when there is no activation of
ErbB2 homodimers (A, α2 = 0) and when there is activation of ErbB2 homodimers (B,
α2 = 0.5). The solid line was calculated according to Eq. 4.28, dots show the results of
stochastic simulations. R1 = 50 and the binding probabilities pbs are calculated with

the values of the affinities given in [23].

In order to study more thoroughly this effect, we show in Fig. 4.4 how the mutual

information, Eq. (4.28) varies as we change the initial amount of ErbB2 receptors

and the degree of ErbB2 homodimers activation, α2. We explore the dependence

of the mutual information on this two factors for four different combinations of the

protein-binding site affinities in ErbB1 and ErbB2: low affinity for both receptors

(a), high affinity for ErbB1 and low affinity for ErbB2 (b), low affinity for ErbB1

and high affinity for ErbB2 (c) and high affinity for both receptors (d). The effect

of the activation of ErbB2 homodimers (increasing α2) is detrimental in terms of

mutual information for every situation considered. The effect of increasing the

concentration of ErbB2 depends on the affinities of the intracellular protein for

ErbB1 and ErbB2: if the protein binds preferentially to ErbB1 ((a) and (c)), then

increasing the ErbB2 concentration decreases the value of the mutual information.

Such effect is the consequence of the ‘kidnapping’ of ErbB1 by the formation of

assymetric heterodimers, in which ErbB2 is activated by ErbB1. However, if the

protein binds to ErbB2 preferentially ((b) and (d), then the mutual information
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Figure 4.4: Mutual information as a function of the amount of ErbB2 receptors and
the equilibrium constant for active ErbB2 homodimers, for different affinities of the

intracellular proteins for active ErbB1 and ErbB2.

can be increased by increasing the concentration of the ErbB2 receptor, whenever

α2 remains low. For high α2, increasing the amount of ErbB2 pronounces the effect

of the formation of non informative ErbB2 homodimers and, as a consequence, the

mutual information is reduced.

We conclude that the decrease of the mutual information by an overexpression of

ErbB2 is affinity-dependent and it can happen through two different mechanisms:

• Activation of non informative ErbB2 homodimers (which increases as the

concentration of ErbB2 increases [76]),

• ‘Kidnapping’ of ErbB1 in heterodimers (detrimental when the intracellular

protein binds ErbB1 preferentially).
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4.2.2 Mutual information for ligand-induced dimerization

When we consider ligand induced dimerization the average active ErbB1 homod-

imers and ErbB1-ErbB2 heterodimers can be estimated by (see Chapter 2, Section

2.2.1.2)

D1,max =
L0

2
− k12+

4k1+

R2 log2

(
1 +

2k1+L0

k12+R2

)
(4.29)

D12,max =
k12+

2k1+

R2 log2

(
1 +

2k1+L0

k12+R2

)
(4.30)

The average and the variance of the intracellular protein are (see Section 4.2.1)

〈x〉 = n1S1 + n2S2 (4.31)

σ2
x = n1S1− + n2S2−, (4.32)

where n1 and n2 are the number of active ErbB1 and ErbB2 receptors, respectively,

specified in Eqs. 4.29 and 4.30. Then, the average and the variance of the bound

protein distribution are

〈x〉 = S1
S0

2
+

(
1

2
KR2 log2

(
1 +

2S0

KR2

))
(S2 −

1

2
S1) (4.33)

σ2
x = S1−

S0

2
+

(
1

2
KR2 log2

(
1 +

2S0

KR2

))
(S2− −

1

2
S1−), (4.34)

where K = k12+

k1+
and S0 ≡ y.

The mutual information between the ligand and the protein distributions is de-

fined in Eq. (4.2), and thus we need to calculate the expected value of non-linear

functions of a random variable. Applying the Taylor expansion method (see Ap-

pendix, Section A.3 and reference [85]), we can calculate H(X|Y ) and HY (X) and

obtain the mutual information between the ligand (input) distribution and the

intracellular proteins (output) distribution.
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The conditional entropy H(X|Y ) is given by

H(X|Y ) =− 1

2
log2 2πe

− 1

2

∫
dy log2

1

2

[
yS1− +KR log2

(
1 +

2y

KR

)(
S2− −

1

2
S1−

)]
,

(4.35)

which applying the Taylor expansion method, becomes

H(X|Y ) =− 1

2
log2 2πe

− 1

2
log2

1

2

[
µyS1− +KR2 log2

(
1 +

2µy
KR2

)(
S2− −

1

2
S1−

)]
.

(4.36)

The term HY (X) involves the variance of the distribution of the intracellular

protein distribution (HY (X) = − log2

√
2πeσ2′), which we can estimate by means

of a mixture model (σ2′
x =

∫
dypyσ

2
x+
∫
dypyµ

2
x−
(∫

dypyµx
)2

) (see reference [86]).

σ2′

x =
1

2

(
µyS1− +KR log2

(
1 +

2µy
KR

)(
S2− −

1

2
S1−

))

+ σ2
y

(S1

2
+

(
S2 − 1

2
S1

)
1 + 2µy

KR2

)2

+

((
S2 − 1

2
S1

)
1 + 2µy

KR2

log(1 +
2µy
KR2

)

)2
 (4.37)

Then, the mutual information between the input distribution and the output dis-

tribution in the case of ligand-induced dimerization is well approximated by

I(X, Y ) =
1

2
log2

1 +

σ2
y

((
S1

2
+

KR2(S2− 1
2
S1)

KR2+2µy

)2
)

1
2

(
µyS1− +KR2

(
S2− − 1

2
S1−
)

log2

(
1 + 2µy

KR2

))
 (4.38)
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In Fig. 4.5, we show that the agreement between our analytical expression (Eq.

4.38) and the stochastic simulations of the system is excellent.

Figure 4.5: Mutual information for different values of initial ErbB2 concentration
and different averages of the ligand distribution (µy = 20 (red), µy = 30 (green),
µy = 40 (orange), µy = 50 (blue)) for ligand induced dimerization. The solid line
was calculated according to Eq. 4.38, dots show the results of stochastic simulations.
R1 = 50, K = 1 and the binding probabilities pbs are calculated with the values of the

affinities given in [23].

Furthermore Fig. 4.6 shows that only when the intracellular protein binds ErbB1

preferentially (c), ErbB2 overexpression and an increase in heterodimerization

(increase in K) are detrimental for mutual information. In all other cases, an

increase in ErbB2 concentration and in the relative heterodimerization rate (K)

result in higher mutual information. This is due to the fact that the total number

of signaling dimers increases with heterodimer formation in the ligand induced

dimerization mechanism, as proposed in [46].

Different dimerization mechanisms yield different values of the mutual

information

In Fig. 4.7, we compare the mutual information corresponding to the two dimeriza-

tion mechanisms compared throughout this thesis. Predimerization yields higher

values of the mutual information and it is also less sensitive to changes in the

levels of ErbB2. Therefore, the predimerization mechanism seems to be more ef-

ficient as an information transduction channel and it also provides robustness to

the information transmission process.
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Figure 4.6: Mutual information between the ligand and PI3K as a function of the
amount of ErbB2 receptors and K = k12+

k1+
, for different affinities of the intracellular

proteins for active R∗
1 and R∗

2.

4.2.3 Effect of the receptor-protein affinity on the mutual

information

In this Section, we consider the dependency of mutual information on the intra-

cellular proteins affinities for the active receptors.
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((a)) ((b))

Figure 4.7: Mutual information for different values of initial ErbB2 concentration
and different averages of the ligand distribution (µy = 20 (red), µy = 30 (green),
µy = 40 (orange), µy = 50 (blue)) for the two different dimerization mechanisms:
predimerization (A) and ligand induced dimerization (B). The solid lines were calculated
according to Eq. 4.28, dots show the results of stochastic simulations. R1 = 50 and the
binding probabilities pbs are calculated with the values of the affinities given in [23].

The mutual information depends on the average and the variance of the intracellu-

lar proteins’s affinity distribution. Fig. 4.8 shows the relation between the scaled

variance and average (normalised by the number of binding sites that the protein

can bind in the active receptor), taking the parameter values for all the proteins

in Jones’s database [23]. We performed an exponential fit to the data, so that we

can approximate the variance as a function of the average:

σ2 = 0.005(1− e4µ) + 0.28 (4.39)

Using such fit, we can explore the mutual information as a function of only S1 and

S2 by considering S1−(S1) and S2−(S2).

Fig. 4.9 shows how the mutual information depends on the affinity of the intra-

cellular protein for each receptor (ErbB1 and ErbB2), for the two different dimer-

ization mechanisms considered. In both cases higher affinities for both receptors

yield a higher mutual information. As in the previous section, predimerization

gives higher values of the mutual information, and it is less sensitive to changes

in the affinity of the intracellular protein to ErbB2 receptors (compatible with the

reduced sensitivity to changes in the amount of ErbB2 receptors discussed in the

previous section).
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Figure 4.8: Variance as a function of the average of the distribution for the different
proteins studied in [23]. Dots show the parameters calculated from the experimental

values, the dashed line shows the fit by y = 0.005(1− e4x) + 0.28.

This is in contrast to what we observe from real data (shown in Fig. 4.10), if mutual

information is a quantity to optimize: experimental data show that proteins that

bind to ErbB receptors have binding affinities for each one that do not correspond

to maxima in information transmission. This can be due to structural constraints

as well as dynamical constraints (as we discussed in Chapter 3).

((a)) ((b))

Figure 4.9: Mutual information for different affinities of one intracellular protein for
the different receptors (ErbB1 and ErbB2) and for different dimerization mechanisms
(predimerization (A) and ligand induced dimerization (B)). µy = 25, σ2

y = 5, R1 = 25,
R2 = 25.
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Figure 4.10: Proteins in [23], represented in the space of affinities for each receptor.
Each dot represents a protein, and its coordinates indicate the affinity for ErbB1 and

ErbB2.

4.3 One receptor, two proteins: the effects of

competition.

We continue our analysis by tackling the more realistic case in which the intracel-

lular proteins are not independent from one another: they are correlated through

competition for the binding sites in active receptors. We thus move on to consider

the information transmitted by two proteins that compete for the binding sites of

receptors of one type.

Since the mutual information only measures correlations between two variables at

a time, in this section we use multivariate mutual information [92, 93] in order to

quantify the effect of having several proteins competing for the binding sites in

information transmission. Multivariate mutual information measures the degree

of redundancy or synergy between the two dependent variables (X1 and X2, the

intracellular proteins in our case), that is, how much information about the inde-

pendent variable (Y , the ligand) is shared by the two dependent variables. The

multivariate mutual information is defined as

I(X1, X2, Y ) = I(X1, Y )− I(X1, Y |X2) (4.40)

The first term in Eq. (4.40) reads
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I(X1, Y ) =

∫
dy

∫
dx1p(x1, y) log2

p(x1, y)

p(x1)p(y)
(4.41)

which, if we use conditional probabilities, turns into

I(X1, Y ) =

∫
dyp(y)

∫
dx1p(x1|y) log2

p(x1|y)

p(x1)
(4.42)

The second term in Eq. 4.40, I(X1, Y |X2) is given by

I(X1, Y |X2) =

∫
dx2 p(x2)

∫
dy

∫
dx1 p(x1, y|x2) log2

p(x1, y|x2)

p(x1|x2)p(y|x2)
(4.43)

which, after a few rearrangements, becomes

I(X1, Y |X2) =

∫
dy p(y)

∫
dx2

∫
dx1 p(x1, x2|y) log2

p(x1, x2|y)p(x2)

p(x1, x2)p(x2|y)
(4.44)

Taken together, these results allow us to express the multivariate mutual informa-

tion as follows:

I(X1, X2, Y ) =

∫
dx2

∫
dx1 p(x1, x2) log2

p(x1, x2)

p(x1)p(x2)

−
∫
dy p(y)

∫
dx2

∫
dx1 p(x1, x2|y) log2

p(x1, x2|y)

p(x1|y)p(x2|y)

= I(X1, X2)− I(X1, X2|Y )

(4.45)

In Chapter 3, we established that the distribution of bound proteins of both types

to one binding site is a multinomial (see Chapter 3, Section 3.1.1):

p(X1, X2) =
n!

x1!x2!(n− x1 − x2)!

(
k1

1 + k1 + k2

)x1
(

k2

1 + k1 + k2

)x2
(

1

1 + k1 + k2

)(n−x1−x2)

(4.46)

As we saw in Chapter 3, we can approximate this multinomial distribution by a

multivariate normal distribution, using the normal approximation to a multinomial
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with parameters µ =
(
np1

np2

)
and Σ =

(
np1(1−p1) −np1p2

−np1p2 np2(1−p2)

)
. Here, n is the number of

active receptors and p1 = ki
1+
∑
j∈P kj

, where ki is the affinity of protein i to the

binding site, and P is the set of considered proteins.

Once we have the multivariate normal distribution for every binding site, we can

find the distribution of total protein of each type bound to the receptor by sum-

ming the multivariate normal distribution’s parameters. Then, the corresponding

parameters are µT =
(∑

bs np1,bs∑
bs np2,bs

)
and ΣT =

(∑
bs np1,bs(1−p1,bs) −

∑
bs np1,bsp2,bs

−
∑
bs np1,bsp2,bs

∑
bs np2,bs(1−p2,bs)

)
.

We use the notation introduced in Section 4.1.1, Si =
∑

bs npi,bs and Si− =∑
bs npi,bs(1− pi,bs), where i refers to the protein type.

I(X1, X2) in Eq. (4.45) is the mutual information of the multinomial or multivari-

ate normal distribution p(X1, X2|Y ), which is given by (see [94])

I(X1, X2|Y ) = −1

2
log2 (1− ρ2), (4.47)

where ρ = cov(x1,x2)
σ1σ2

= S12√
S1−S2−

is the Pearson correlation coefficient. Here S12 =∑
bs p1,bsp2,bs.

Regarding I(X1, X2) in Eq. (4.45), we do not have direct access to the distributions

p(x1), p(x2) and p(x1, x2), but we can calculate them indirectly by integrating the

conditional distributions for all y. Integrating the multivariate normal distribution

with respect to y, we can calculate the new covariance matrix, which is is

Σ′ =

(
µyS1− + σ2

yS
2
1 −µyS12 + σ2

yS1S2

−µyS12 + σ2
yS1S2 µyS2− + σ2

yS
2
2

)
, (4.48)

which, in turn, allows us to calculate the mutual information between X1 and X2

(using Eq. (4.47) with the correlation coefficient of Σ′),

I(X1, X2) = −1

2
log2

(
1− (−µS12 + σ2S1S2)2

(µS1− + σ2S2
1)(µS2− + σ2S2

2)

)
. (4.49)

Then, the multivariate information is
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I(X1, X2, Y ) =
1

2
log2

 1− ρ2

1− (−µS12+σ2S1S2)2

(µS1−+σ2S2
1)(µS2−+σ2S2

2)

 (4.50)

Fig 4.11 shows the agreement of our theoretical prediction for the multivariate

mutual information (Eq. (4.50)) with the mutual information calculated from

stochastic simulations.

Figure 4.11: Multivariate mutual information as a function of the average of the
input distribution for two proteins, one with 6 bs, the other with 2bs (competition for

2 bs). Note that MVMI is positive in most of the conditions.

We now consider the issue of under which conditions we observe positive multivari-

ate mutual information, associated to redundancy, or negative multivariate mutual

information, corresponding to synergy or complementarity. This is determined by

the sign of I(X1, X2, Y ) (see [95] for details).

I(X1, X2, Y ) is positive if

(1− ρ2) > (1−
(−µyS12 + σ2

yS1S2)2

(µyS1− + σ2
y(S1)2)(2−+σ2

y(S2)2)
)

σ2
y

µY
>

(
(S1)2

S1−
+

(S2)2

S2−
+ 2

S1S2

S12

)(
S1−S2−

(S1)2(S2)2
(

(S12)2

S1−S2− − (S12)2
)

)
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σ2
y

µy

(
S1−S2− − (S12)2

(S12)2

)
1(

S1−
(S1)2 + S2−

(S2)2 + 2 S1−S2−
S12S1S2

) > 1 (4.51)

Let us define ξ ≡ σ2
y

µy

(
S1−S2−−(S12)2

(S12)2

)
1(

S1−
(S1)2

+
S2−
(S2)2

+2
S1−S2−
S12S1S2

) . In Fig. 4.12, we plot

the multivariate mutual information as a function of ξ to check the validity of Eq.

(4.51).

Figure 4.12: Multivariate mutual information as a function of ξ, for different Fano
factors of the input distribution and different proteins with binding affinities taken
from [23]. The color scale is related to the intensity in the competition between the
proteins, as explained in the main text. Note that the multivariate mutual information

is negative (synergy between intracellular proteins) for ξ < 1.

In Eq. 4.51, we can distinguish three factors. The first, σ2

µ
is the Fano factor of the

input (ligand) distribution, which measures how noisy the input is: high values of

the Fano factor are due to high variance or low mean and indicate a noisy input,

whereas low values of the Fano factor are related to low variance or high mean,

which come from an input with low noise.

The third factor, 1(
S1−
(S1)2

+
S2−
(S2)2

+2
S1−S2−
S12S1S2

) accounts for the affinities of each protein to

the binding sites.
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The second factor,
(
S1−S2−−(S12)2

(S12)2

)
involves the variances and covariance of the

output multivariate normal distribution, corresponding to the bound intracellular

proteins, and it accounts for the correlations between different proteins, which

are caused by competition for limited binding sites. Therefore is the term which

includes the effect of competition on the multivariate mutual information. In Fig.

4.12, the color code represents this quantity.

Consider the second factor of Eq. 4.51 for the case of a receptor with two binding

sites which both proteins can bind. We can rewrite it as

(
S1−S2− − (S12)2

(S12)2

)
=(p1A + p1B)(p2A + p2B)

(
1− p2

1A + p2
1B

p1A + p1B

− p2
2A + p2

2B

p2A + p2B

)
+ (p1Ap2B − p1Bp2A)2 − (p1Ap2A + p1Bp2B)2

(4.52)

The term (p1Ap2B− p1Bp2A)2 measures the extent of competition: if both proteins

bind the same binding site with similar affinity, then this term will be very low,

whereas if the binding affinity of each protein for a given binding site is very differ-

ent, then this term will be high. In Fig. 4.12, it can be appreciated that negative

values of the multivariate mutual information are only possible for low values of(
S1−S2−−(S12)2

(S12)2

)
, which are achieved, in part, due to similar affinity binding for

the two proteins for a binding site. Therefore we can say that competition for a

binding site (at least in the case of two proteins) yields more negative values of the

multivariate mutual information, thus contributing to synergy between competing

proteins.





Chapter 5

Conclusions

5.1 Main results and conclusions

The ability of organisms to extract and store information from their surroundings

marked a revolution in the history of life. Living systems able to make decisions,

through many different ways, based on their perception of a changing environment

gained key evolutionary advantages early in the appearance of complex life forms

[96].

Cells, from prokaryots to eukaryots in multicellular systems, use specific receptors

inserted in their membranes to detect extracellular molecules that cannot cross into

the cell. In the present thesis, we have studied in detail the dynamical properties

of the signaling processes of two molecular receptors of the ErbB family. Through

detection of different ligands, these receptors play a key role in many cellular

processes such as cell growth, proliferation, migration or apoptosis [97].

In particular, two main aspects determine the adequacy of a response to the cel-

lular environment: the dynamics of membrane receptors and the interactions be-

tween these and intracellular molecules. Here we have studied the information flow

from external ligands, throughout membrane receptors and eventually into inter-

nal molecular cascades that elicit the corresponding response. If this dynamical

events can be understood as an information transmission process, what insights

can mathematical modeling give us about the role played by each of the molecular

components involved?
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In order to explore this question, we have tracked how the input information

(encoded in stimuli involving extracellular ligand) is translated into intracellular

information (amount of the different active intracellular components), both char-

acterised as probability distributions. In Chapter 2 we have modeled the dynamics

of membrane receptors, the readers of the input distribution, and determined the

extent of receptor activation as a response to ligand detection. The fact that in-

tracellular proteins bind to these receptors at much faster time scales allowed us

to treat their dynamics separately, as introduced in Chapter 3. In Chapter 4, both

components are brought together to understand how the activation of receptors

and their interactions with intracellular proteins can be predictive of the output

distribution signal. This allowed us to quantify the amount of information that

the output distribution read by the cell (amount of proteins of each type) carries

about the input distribution of its environment (amount of ligand).

Information transmission is higher in predimerized recep-

tors

Despite ErbB receptors represent one of the most thoroughly studied receptor

families, many open questions remain about their mechanism of action and the

specific roles of each member of the family. For instance, it was not until the avail-

ability of single molecule experiments that molecular configurations were described

explaining the mechanisms of dimerization and activation of the ErbB receptors

[98]. However, even by knowing in detail the molecular configurations that allow

dimerization and activation, the prevalence of different dimerization mechanisms

(such as ligand induced vs predimerization) remains to be assesed, with current

estimates of the prevalence of predimerization ranging from 40 to 100% in ErbB

membrane receptors [77, 78].

By modeling the two alternative dimerization mechanisms separately we have been

able to compare the extent of information transmission for each situation, show-

ing that the mutual information of the predimerization system is higher than

in its ligand induced counterpart. If the need for effective signalling processes

maximizes mutual information between external ligand and intracellular protein

distributions, our modeling is indicative of why predimerization seems to be more

prevalent: ErbB receptors represent a more efficient information channel when

they predimerize because of two reasons. First, the mutual information through
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predimerized receptors is higher than for ligand induced dimerization. Second,

the mutual information is less sensitive to changes in the amount of ErbB2, which

makes information transmission more robust.

The role of ErbB2 in signaling and cancer

The role of ErbB2 remains another open question, with key implications in many

cellular processes. This receptor does not have any known ligand, meaning it

does not specifically sense extracellular signals. Furthermore, its affinity spectrum

for the intracellular proteins is different to that of the rest of ErbB receptors: it

appears to be more ’promiscuous‘, that is, it binds a more diverse repertoire of

intracellular proteins than other ErbB receptors [23].

To understand its role, current research proposes it is the preferred heterodimer-

ization partner of the other ErbB family members [8], while amplifying and sus-

taining their signaling activity [46]. However, it has also been shown that its

overexpression leads to self-induced growth signaling, a process leading to uncon-

trolled cellular proliferation at the core of carcinogenesis [11].

In Chapter 2, we analysed in the first place the dynamics of ErbB2 in the absence

of ligand. ErbB2 is present in the membrane in a dynamic equilibrium between

three configurations: monomers, inactive dimers and active dimers. This consti-

tutive dimerization might be useful to buffer changes in the ErbB2 synthesis rate

and it has been proposed as a mechanism for preventing ErbB2 monomers to in-

teract in the absence of signaling [76]. Next, we analysed the coupled dynamics of

ErbB1 and ErbB2 by considering two different dimerization mechanisms (ligand

induced dimerization and predimerization). We have proposed two models that

allow us to predict the amount of active dimers of different types (ErbB1 and

ErbB2 homodimers and ErbB1-ErbB2 heterodimers). In Chapter 4, we used the

predicted values of the active dimers upon ligand stimulation in order to calculate

the mutual information between the ligand and the intracellular proteins. This

allowed us to assess the impact of changes in the receptor membrane composition

on the information transmitted through this molecular channel.

In particular, we found that the effect of changes in the receptors concentration

depends on the affinity spectrum of the intracellular protein considered, and we can
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draw two main conclusions about the effect of ErbB2 overexpression on information

transmission.

Firstly, because of ErbB2 ligand-independent dynamics, active homodimers are

formed in the absence of a ligand. This implies receptor activation that does not

carry information regarding the ligand so that the associated activation of the

intracellular proteins provokes a decrease in the mutual information when ErbB2

is overexpressed.

Second, we observe a decrease of mutual information for increasing concentrations

of ErbB2 in proteins that bind ErbB1 preferentially (even when we do not consider

ErbB2 active dimers). This is due to an increase in the formation of asymmetric

heterodimers -where ErbB2 is being activated by ErbB1- when ErbB2 concentra-

tion increases. Therefore, ErbB1 is ’kidnapped‘ instead of being signaling as a

part of an ErbB1 homodimer.

Taken together, these results regarding a decrease in the mutual information for

increasing values of ErbB2 concentration is compatible with the loss of the ability

to respond properly to the extracellular information carried by the ligand.

Other factors can be also causing this missbehavior, as the recruitment of a greater

diversity of molecular pathways, elicited by the particular ’promiscuity‘ of ErbB2

[23]. One possible direction to extend this work would be by measuring the di-

versity of intracellular proteins recruited as a function of membrane receptors’

concentrations.

Binding and unbinding rates in intracellular interactions

Another basic process in cell signaling is the binding and unbinding of intracellular

proteins to active receptors, and their subsequent activation by the receptors’

kinase activity. This process can be understood as an enzymatic chemical reaction

where an enzyme (the receptor) binds and acts on a substrate (the intracellular

proteins).

Reactions of this kind are usually modeled with Michaelis-Menten kinetics [40],

which allows for a description of the rates of product formation as a function of the

substrate concentration. Contrary to the assumptions involved in the Michaelis-

Menten model, we included in our analysis of receptor-protein interactions the
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decay of the receptor and we have realized how the limited lifetime of the receptors

relates to a trade-off in the values of the rate constants. We carried out this analysis

in Chapter 3.

By considering the exponential decay of receptors as a Poisson process, we have

discussed the appearance of a novel trade-off in the intrinsic rates of the interac-

tions (binding (k+), unbinding (k−) and activation (α)). This arises when studying

the conditions, with the decay time scale at play, that maximize the amount of

substrate that is converted into product. We put forward that this translates into

a benefit for the cell, since synthesizing intracellular proteins has a metabolic cost

that would render useless if such proteins are not active in the signaling process.

In particular, we have derived analytically an estimation for the optimal unbinding

rate, k− =
√

k+

α
, that gives insight into how the intrinsic activation rate of the

receptor constraints the rates of the binding and unbinding processes if we expect

the maximum number of proteins to be participating in signaling.

Although there exist several experimental (bulk) techniques to measure equilib-

rium constants, measuring the individual binding and unbinding rates requires of

single molecule techniques, which have been relatively rare. Thus, the experimen-

tal data regarding binding and unbinding constants is scarce. We have reviewed

the literature in the search of such data, together with the catalytic rate of ki-

nases. Although we did not find single molecule experimental data for the rates of

a particular enzyme, we could find the binding (k+ ∼ 0.1 min−1) and unbinding

(k− ∼ 30 min−1) rates of chaperonin and co-chaperonin (proteins that are involved

in protein folding). Taking a value of the intracellular protein concentration of 500

NM (the intracellular protein concentration value used throughout this thesis). an

optimal catalytic rate (if the number of active proteins is to be maximized) would

be α = k+k
2
− ∼ 4.5 ·104 min−1 = 7.5 ·102 s−1. Experimental values of the catalytic

rate of kinases span several orders of magnitude, from 10−2 to 106 s−1, with a

maximum in kcat = 10 s−1 (see Fig. 5.1), so our estimate of the optimal catalytic

rate is well within the experimental feasible range, close but above the average

value.
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Figure 5.1: Distribution of experimental measures enzymatic catalytic rates
(kcat). Figure taken from BioNumbers [66].

Competition and specialization in binding site affinities

The binding rates of intracellular proteins to receptor binding sites, are dependent

on the type of protein and binding site: protein-receptor interactions are specific.

This specificity introduces novel dynamics when we understand that different pro-

teins coexist and compete for binding site occupation. In Chapter 3 we have

introduced this notion by means of understanding how binding site specificity in a

population of different proteins shapes the possible occupancy levels of such sites,

thus playing a key role in the efficiency of the initial stage of the signaling cascade.

In this approach, we considered several binding sites and several proteins compet-

ing for them. We considered structural constraints in the proteins and binding

sites that cause that adaptation for one binding site happens in detriment of the

complementarity for the other binding sites. In such a scenario, we found that the

distribution of affinities that maximizes the total amount of proteins activated is

such that every protein is specialized in the interaction with one binding site and

does not bind the others. However, when the number of binding sites are limited

and competition is forced upon proteins for the binding sites, then the affinity

distribution that maximizes the efficiency of the binding and activation processes

is equipartition - when the affinity is allocated equally between the binding sites

without a preference for any particular binding site). We studied the allocation of

the affinity for the proteins studied in [23] and found that the a high entropy for

the affinity values for the different binding sites, hinting to a tendency to bind the
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Figure 5.2: Average affinity for ErbB1 of the different proteins studied in
[23]. The histograms represent the probability density for proteins that bind

one binding site (blue) and proteins that bind two binding sites (orange).

different binding sites with similar affinity. As discussed here, such an allocation

maximizes the number of proteins activated by the active receptors.

If we assume that there is a trade-off between generality and specificity, then, in a

protein binding several partners, the affinity for every partner would be lower than

the affinity of a protein binding a single partner, which seems to be compatible

for the proteins studied in [23] for ErbB1 (see Fig. 5.2). A tendency to reduce

binding rates in higher organisms has been described in [99] and a tradeoff between

compexity, stability and specificity is describes in [82]. This is consistent with a

broadening of the spectrum of binding partners. In a context of increasing com-

plexity, reducing the binding affinities and increasing the repertoire of interaction

partners could be a way to gain robustness.

Competition and information

Last but not least, wee also studied the effects of competition on information

transmission. We focused on the multivariate mutual information as a way of

quantifying the degree of synergy or redundancy between two intracellular pro-

teins and arrived, with this approach, to the conclusion that a uniform distribution

of the affinity between binding sites contributes to synergy between intracellular

proteins: when the two proteins have no preference for any binding site, the in-

formation obtained by the two proteins together is greater than the information
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obtained with each protein separately. This ‘equipartition’ of the binding affinity

is obtained also as a way of maximizing the efficiency of the binding-activation

processes, as we discussed in Chapter 3.

5.2 Open questions and further steps

In this doctoral thesis we have established and developed a mathematical frame-

work to gain insight into the information transmission processes governed by ErbB

receptors. As discussed in these conclusions, we have studied the dynamics at sev-

eral scales within the system, from the roles of different dimerization mechanisms

in receptor activation to the stochastic dynamics governing the binding of intracel-

lular proteins to the receptors’ binding sites. This approach has been the starting

point to study and quantify several questions such as the role of ErbB2, protein

unbinding rates or affinity distributions in cell signaling.

Nonetheless, further relevant questions regarding the ErbB system are still open,

and we consider that our mathematical approach can be useful to shed further

light when approaching them in the future. Firstly, several results acknowledges

that noise might play a crucial role in many biological process [100], where it

seems to be not only a by-product of deterministic dynamics, but itself a relevant

variable. From this perspective, taking noise into account by admitting that ErbB

receptors are not, as in our work, noiseless, will provide further insight into what

are the specific roles of each receptor of the family.

On the other hand, we have put forward an explanation to the proliferative dy-

namics resulting from ErbB2 overexpression as a loss of the capacity of the re-

ceptors channel to transmit information. Knowing that this cellular process plays

a determining role in tumour formation, our modeling approach has given pre-

liminary insights by understanding how cells with overexpressed ErbB2 present

a loss of mutual information and thus a poorer reading of the signals for multi-

cellular homeostasis. However, many other factors are known to participate in

this process, and our model could benefit from taking into account the fact that

a great diversity of proteins are activated following ErbB2 upregulation. The role

of plethora of new interacting proteins in the malignant transformation of cells

remains an open area that could benefit from a mathematical approach similar to

the one here discussed.
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Finally, a more detailed examination of the structure of the intracellular interac-

tions of the ErbB receptors with the first intracellular intermediaries in cell sig-

naling and, more importantly, of the identity of the interacting partners (together

with the pathways they trigger) should allow to classify the different intracellular

proteins according to their affinities for one or the other receptor. Two relevant

outcomes could stem from further developing this perspective. First, it would re-

sult in a better understanding of which specific interactions, and through which

mechanisms, participate in each of the ErbB signaling cascades: how -and to what

extent- each signaling pathway is triggered by the different receptors. This could

be explored by means of information-theoretical tools as multi-channel information

transmission [95]. Furthermore, when put together with experimental studies of

protein expression, it would allow for the identification of proteins and pathways

that are more sensitive to ErbB overexpression. This information could be used to

identify cell types more likely to develop drug resistance in ErbB2-positive cancer

treatments. In the light of this, strategies to circumvent the inadequate activation

of such proteins could be designed based on the knowledge of their interactions

with the different receptors.

All in all, by producing new results and pointing a way towards the next steps in

ErbB modeling, we realize once again how the language of mathematics provides

us with a powerful way of studying reality.





Appendix A

Mathematical methods

A.1 Brief summary on random variables and prob-

ability distributions

Let X be a variable representing the state of a system and X the set of all the

possible states. We can assign a probability p(X) to each state: the states with a

higher probability will be more likely to be observed. In mathematical terms, we

call X a random variable and p(X) is its probability distribution.

Given that X must be in one of the possible states, the total probability must be

1:

∑
x∈X

pn = 1 (A.1)

where K is the number of possible states of the system. We say that the probability

is normalized.

Moments of a probability distribution

Probability distributions are functions that can be described by their position and

shape. Two important quantities that characterize the position and shape of a

probability distribution are the average and the variance.
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The average, or expected value of the variable X, is

〈X〉 =
∑
x∈X

xp(x), (A.2)

and the variance,

var(X) = 〈X2〉 − 〈X〉2 =
∑
x∈X

x2p(x)− (
∑
x∈X

xp(x))2 (A.3)

.

The standard deviation, σX(=
√
var(X)) is a measure of the broadness of the

probability distribution.

〈X〉 and 〈X2〉 are the first two moments of a distribution and indicate where the

distribution is located and how broad it is. Higher moments of the distribution

are related to other features of the distribution, such as the symmetry or other

parameters describing the shape of the distribution.

Correlations

When we deal with more than one random variable, the specification of the proba-

bility distribution of each variable separately falls sometimes short: the probability

of X depends on the value of Y and viceversa. When this happens, we say that

the variables are correlated. If the probability of X does not depend on the values

of Y , then we say that X and Y are independent.

Correlation between two random variables can be quantified in several ways, often

by means of correlation coefficients. The most common one is Pearson correlation

coefficient

ρX,Y =
cov(X, Y )

σXσY
=
E[(X − µX)(Y − µY )]

σXσY
, (A.4)

which is a measure of the dispersion of the joint distribution of X and Y , relative

to the dispersion of each variable separately.

Values of |ρX,Y | close to 1 indicate a strong correlation between X and Y , whereas

values of ρX,Y close to 0 indicate that X and Y are not correlated.
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Probability distributions used in this thesis

In this thesis, we will be dealing with some of the basic probability distributions:

gaussian, binomial and poisson.

In a normal or gaussian random variable, the only non-zero moments are the

first and the second. Thus, normal variables are characterized by their mean and

variance: X ∼ N(µ, σ2), and their probability distribution follows

p(X = x) =
1√
2πσ

e−
(x−µ)2

2σ2 . (A.5)

Multivariate gaussian distributions follow the same expression, but with vec-

torial parameters:

p(X = x) =
1√
2πσ

e−
(x−µ)2

2Σ2 . (A.6)

with µ =
(
µX
µY

)
and covariance matrix Σ =

(σ2
X cov(X,Y )

cov(X,Y ) σ2
Y

)
.

The binomial distribution is a discrete probability distribution describing the

discrete random variable number of successes (or failures) in binary events with

probabilities p and (1− p):

p(X = x) =
n!

(n− x)!x!
px(1− p)n−x, (A.7)

where n is the number of trials.

The average of a binomial distribution B(n, p) is µ = np and the variance is

σ2 = np(1− p). According to the de Moivre-Laplace theorem, in the limit of very

large number of trials, the binomial distribution B(n, p) can be approximated by

a gaussian distribution G(µ = np, σ2 = np(1− p). In particular, if np(1− p)→∞
is sufficiently large, the limiting distribution of the binomial is normal. Different

rules of thumb may be used to decide whether n is large enough, and p is far

enough from the extremes (0 or 1) to get a good approximation of the binomial

by a normal distribution. The most widely used is min(np, np(1− p) ≥ 5 [85].

The counterpart of the binomial distribution when we deal with several variables

is the multinomial distributions
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p(X = x, Y = y) =
n!

x!y!(n− x− y)!
pxXp

y
Y (1− pX − pY )(n−x−y) (A.8)

As for the binomial distribution, for large n and/or p far from 0 or 1, we can

approximate a multinomial distribution by a multivariate gaussian distribution

with µ =
(
npX
npY

)
and Σ =

(
npX(1−pX −npXpY
−npXpY npY (1−pY )

)
.

The Poisson distribution is a discrete probability distribution arising from count-

ing the number of events occurring independently one of each other with a constant

rate, in a given interval. It reads

p(X = x) =
λxe−λ

x!
(A.9)

It is characterized by only one parameter, λ, the average number of events in the

considered interval. The mean and the variance of Po(λ) are equal: µ = σ2 = λ.

The rate at which the events occur if λ
T

, where T is the size of the interval.

According to the Poisson limit theorem, the Poisson distribution Po(λ = np) can

be obtained from a binomial distribution B(n, p) as the number of trials n goes to

infinity and the expected number of successes remains fixed.

The poisson distribution Po(λ) can be also approximated by a Gaussian G(µ =

λ, σ2 = λ) for big λ.

In a binary experiment (i.e. where the output can be 0 or 1), a geometric

distribution describes the number of successes that are drawn before a failure. A

geometric distribution is characterized by a single parameter, the probability of a

success, p. If X ∼ Geo(p), then

p(X = x) = px(1− p). (A.10)

If we generalize to the number of successes before r failures, then the corresponding

random variable follows a negative binomial distribution with parameters r, the

number of failures, and p, the probability of a success (X ∼ NB(r, p)). Then

p(X = x) =
(r + x− 1)!

(r − 1)!x!
px(1− p)r (A.11)
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The negative binomial distributionNB(r, p) includes the normal distributionN(µ =

r 1−p
p
, σ2 = r 1−p

p2 ) as a limiting case when rp(1− p)→∞.

An exponential distribution is described by

p(X = x) = λe−λx (A.12)

This distribution describes the time between events in a Poisson process.

A.2 Basics of information theory

Information seems to be a very intuitive concept, but very difficult to quantify. It

was not until Shannon formulated the first concepts of information theory [51] that

information became a quantifiable quantity. Here, we remind the basic concepts

in information theory. For a detailed account on information theory, we refer the

reader to the book by Thomas and Cover [101].

Entropy

Uncertainty is a very important concept in information theory. Entropy, the basic

concept from which most of information theory is based, is a measure of uncer-

tainty.

By definition, entropy is

H(X) = −
∑
x∈X

p(x) log p(x) (A.13)

This expression can be derived from the basic features information must have

and can be understood as the degree of uncertainty we have about the value of a

random variable: entropy is maximum when all the values are equiprobable, and

minimum (H(X) = 0) when only one value is possible.

Entropy can also be defined for more than one variable in several ways.
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The joint entropy is

H(X, Y ) = −
∑
x∈X

∑
y∈Y

p(x, y) log p(x, y) (A.14)

and it measures the amount of uncertainty that we have about the value of both

variables.

The conditional entropy is

H(Y |X) = −
∑
x∈X

p(x)
∑
y∈Y

p(y|x) log p(y|x). (A.15)

Mutual information

Mutual information is a measure of the amount of information that one random

variable contains about another random variable, or the reduction in the uncer-

tainty of one random variable due to the knowledge of the other.

I(X, Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
(A.16)

It is a measure of correlation between two random variables.

Multivariate mutual information

A related measure is the multivariate mutual information, which quantifies the

effect of considering other variables

I(X1, X2, Y ) = I(X1, Y )− I(X1, Y |X2). (A.17)

If the multivariate mutual information is positive, it means that knowing X2 does

not increase the information between X1 and Y and we say that X2 is redundant.

If the multivariate mutual information is negative, it means that the information
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between X1 and Y increases when we know the value of X2. In this case, the new

variable X2 adds information to the system and we say that it is complementary.

A.3 Taylor expansion method

The Taylor expansion method can be used in order to approximate the moments

of a function of a random variable [85].

Let f(X) be a function of the random variable X. The expectation of f(X) is

E[f(X)] = E[f(µX + (X − µX))] (A.18)

where µX is the mean of the random variable X.

Performing a Taylor expansion of f(x) around the mean to second order, Eq.

(A.18) turns into

E[f(X)] ≈ E[f(µX) + f ′(µX)(X − µX) +
1

2
f ′′(µX)(X − µX)2]

≈ f(µX) +
1

2
f ′′(µX)σ2

X

(A.19)

Similarly, for the variance of X, we have

V ar(f(X)) = E[(f(X)− f(µX))2] (A.20)

To second order in the Taylor expansion

V ar(f(X)) ≈ E

[(
f ′(µX)(X − µX) +

1

2
f ′′(µX)(X − µX)2

)2
]

≈ f ′(µX)2σ2
X +

1

4
f ′′(µX)2σ2

X

(A.21)

This can be generalized to functions of several random variables. Let X1, ..., Xn

be random variables with mean µ1, ..., µn and covariance matrix Σ and define
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X = (X1, ..., Xn) and µ = (µ1, ..., µn). Let f(X) be a function of the random

variables. Then (to first order in the Taylor expansion)

E(f(X)) ≈ f(µ) (A.22)

and

V ar(f(X)) ≈
k∑
i=1

(f ′i(µ))2Σii + 2
∑
i>j

f ′i(µ)f ′j(µ)Σi,j (A.23)

A.4 Poisson distribution with an exponential pa-

rameter and the geometric distribution

Let N be a random variable describing the number of events in a Poisson process

given a time interval, T . N has a Poisson distribution with parameter k (the rate

at which events happen):

p(N = n|T ) =
(kT )ne−kT

n!
. (A.24)

Let T be a random variable with an exponential distribution with parameter δ:

p(T = t) = δe−δt. (A.25)

The number of events N that happen in a time interval T , when T has an expo-

nential distribution is

p(N = n) =

∫ +∞

0

(kt)ne−kt

n!
δe−δt.dt (A.26)

In order to solve Eq. (A.26), we define x = (k + δ)t so that

p(N = n) =
δkn

(k + δ)n+1

∫ ∞
0

xne−x

n!
dt. (A.27)
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Let us remind two alternative definitions of the Gamma function [102]:

• When n is a positive integer: Γ(n) = (n− 1)!

• For all complex numbers except non-positive integers: Γ(z) =
∫ +∞

0
xz−1e−xdx

Using the definitions of the gamma function (Eqs. (A.4) and (A.4)), Eq. (A.27

becomes

p(N = n) =
δkn

(k + δ)n+1
, (A.28)

which is a geometric distribution with parameter k
k+δ

.





Appendix B

Time scale analysis

B.1 Deterministic multiscale analysis

Here, we carry out a non-dimensionalization of the system with respect to the

time, in order to uncover the multiple temporal scales involved in the dynamics of

the receptors.

Remind the system of two receptors, with ligand-induced dimerization:

dS

dt
= −ks+SR1 + ks−C1 (B.1)

dR1

dt
= m1 − ks+SR1 + ks−C1 − δ1R1 (B.2)

dR2

dt
= m2 − k12+C1R2 − 2k2+R

2
2 + k12−D12 + 2k2−D2 − δ2R2 (B.3)

dC1

dt
= ks+SR1 − (ks− + 2k1+C1 + k12+R2)C1 + 2k1−D1 + k12−D12 − δ1C1 (B.4)

dD1

dt
= k1+C

2
1 − (k1− + a1+)D1 + a1−D

∗
1 − δ1D1 (B.5)

dD12

dt
= k12+R2C1 − (k12− + a12+)D12 + a12−D

∗
12 − δ12D12 (B.6)

dD2

dt
= k2+R

2
2 − (k2− + a2+)D2 + a2−D

∗
2 − δ2D2 (B.7)

dD∗1
dt

= a1+D1 − a1−D
∗
1 − δ1D

∗
1 (B.8)

dD∗12

dt
= a12+D12 − a12−D

∗
12 − δ12D

∗
12 (B.9)

dD∗2
dt

= a2+D2 − a2−D
∗
2 − δ2D

∗
2 (B.10)
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Recall also that the set of parameters used in our models is given in Table B.1.

Receptor dynamics

µ1 2400 min−1 µ2 12 min−1

ks+ 107 M−1min−1 ks− 10−3 min−1

k1+ 103 M−1min−1 k1− 0.1 min−1

k12+ 103 M−1min−1 k12− 0.1 min−1

k2+ 103 M−1min−1 k2− 104 min−1

a1+ 1 min−1 a1− 0 min−1

a12+ 1 min−1 a12− 0 min−1

a2+ 1 min−1 a2− 10 min−1

δR1 0.014 min−1 δR2 0.0006 min−1

δD1 0.1 min−1 δD12 0.1 min−1

[R1T ] 5− 20 · 104 cell−1 [R2T ] 1− 6 · 104 cell−1

[ST ] pM to nM Ptot 500 nM

Intracellular proteins dynamics

kp+ 0.1 nM−1 min−1 kp− 30 min−1

Table B.1: Reference parameters used in the simulations.

We define a dimensionless time τ = ks+t,

dS

dτ
= (−SR1 +Kd,sC1) (B.11)

dR1

dτ
= (−SR1 +Kd,sC1) +

1

ks+
(m1 − δ1R1) (B.12)

dR2

dτ
=

1

ks+

(
m2 − k12+C1R2 − 2k2+R

2
2 + k12−D12 + 2k2−D2 − δ2R2

)
(B.13)

dC1

dτ
= SR1 −

(
Kd,s + 2

k1+

ks+
C1 +

k12+

ks+
R2 −

δ1

ks+

)
C1 + 2

k1−

ks+
D1 +

k12−

ks+
D12 (B.14)

dD1

dτ
=

1

ks+

(
k1+C

2
1 − (k1− + a1+)D1 + a1−D

∗
1 − δ1D1

)
(B.15)

dD12

dτ
=

1

ks+
(k12+R2C1 − (k12− + a12+)D12 + a12−D

∗
12 − δ12D12) (B.16)

dD2

dτ
=

1

ks+

(
k2+R

2
2 − (k2− + a2+)D2 + a2−D

∗
2 − δ2D2

)
(B.17)

dD∗1
dτ

=
1

ks+
(a1+D1 − a1−D

∗
1 − δ1D

∗
1) (B.18)

dD∗12

dτ
=

1

ks+
(a12+D12 − a12−D

∗
12 − δ12D

∗
12) (B.19)

dD∗2
dτ

=
1

ks+
(a2+D2 − a2−D

∗
2 − δ2D

∗
2) (B.20)
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In the shortest time scale associated to ligand binding (ks+ = 107 min−1), the only

significative reaction is ligand binding. All the other reactions have rates of the

order r = 104 min−1 or slower. At this time scale, the system can be simplified to

dS

dτ
= −SR1 (B.21)

dR1

dτ
= −SR1 (B.22)

dR2

dτ
= 0 (B.23)

dC1

dτ
= SR1 (B.24)

dD1

dτ
= 0 (B.25)

dD12

dτ
= 0 (B.26)

dD2

dτ
= 0 (B.27)

dD∗1
dτ

= 0 (B.28)

dD∗12

dτ
= 0 (B.29)

dD∗2
dτ

= 0 (B.30)
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In order to study the dynamics of the system at the intermediate time scale where

receptor dimerization occurs (k12+ = 103 min −1), we nondimensionalize using

τ = tk12+.

dS

dτ
= − ks+

k12+

SR1 +
ks−
k12+

C1 (B.31)

dR1

dτ
=

m1

k12+

− ks+
k12+

SR1 +
ks−
k12+

C1 −
δ1

k12+

R1 (B.32)

dR2

dτ
=

m2

k12+

− k12+

k12+

C1R2 − 2
k2+

k12+

R2
2 +Kd,12D12 + 2Kd,2D2 −

δ2

k12+

R2 (B.33)

dC1

dτ
=

ks+
k12+

SR1 − (
ks−
k12+

+ 2
k1+

k12+

C1 +
k12+

k12+

R2 −
δ1

k12+

)C1 + 2Kd,1D1 +Kd,12D12 (B.34)

dD1

dτ
=

k1+

k12+

C2
1 − (Kd,1 +

a1+

k12+

)D1 +
a1−

k12+

D∗1 −
δ1

k12+

D1 (B.35)

dD12

dτ
=
k12+

k12+

R2C1 − (Kd,12 +
a12+

k12+

)D12 +
a12−

k12+

D∗12 −
δ12

k12+

D12 (B.36)

dD2

dτ
=

k2+

k12+

R2
2 − (Kd,2 +

a2+

k12+

)D2 +
a2−

k12+

D∗2 −
δ2

k12+

D2 (B.37)

dD∗1
dτ

=
1

k12+

(a1+D1 − a1−D
∗
1 − δ1D

∗
1) (B.38)

dD∗12

dτ
=

1

k12+

(a12+D12 − a12−D
∗
12 − δ12D

∗
12) (B.39)

dD∗2
dτ

=
1

k12+

(a2+D2 − a2−D
∗
2 − δ2D

∗
2) (B.40)

For the values of the parameters shown in Table 2.1, at this time scale, ks−
k12+
∼

10−6, m1

k12+
∼ 10−1, m2

k12+
∼ 10−3, δi

k12+
∼ 10−6, ki+

k12+
∼ 1 Kd,i ∼ 10−4, Kd,2 ∼ 10,

ai+
k12+
∼ 10−3 and a2−

k12+
∼ 10−2. Neglecting all the reactions with rates slower than

10−1, we get
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dS

dτ
= 0 (B.41)

dR1

dτ
= 0 (B.42)

dR2

dτ
= −C1R2 − 2R2

2 + 2Kd,2D2 (B.43)

dC1

dτ
= −(2C1 +R2)C1 (B.44)

dD1

dτ
= C2

1 (B.45)

dD12

dτ
= R2C1 (B.46)

dD2

dτ
= R2

2 −Kd,2D2 (B.47)

dD∗1
dτ

= 0 (B.48)

dD∗12

dτ
= 0 (B.49)

dD∗2
dτ

= 0 (B.50)



114

A third time scale is that associated to dimer activation. To explore this regime,

we nondimensionalize the system with τ = ta12+ in order to simplify the system

at the time scale of activation of the dimers.

dS

dτ
= − ks+

a12+

SR1 +
ks−
a12+

C1 (B.51)

dR1

dτ
=

m1

a12+

− ks+
a12+

SR1 +
ks−
a12+

C1 −
δ1

a12+

R1 (B.52)

dR2

dτ
=

m2

a12+

− k12+

a12+

C1R2 − 2
k2+

a12+

R2
2 +

k12−

a12+

D12 + 2
k2−

a12+

D2 −
δ2

a12+

R2 (B.53)

dC1

dτ
=

ks+
a12+

SR1 − (
ks−
a12+

+ 2
k1+

a12+

C1 +
k12+

a12+

R2 −
δ1

a12+

)C1 + 2
k1−

a12+

D1 +
k12−

a12+

D12 (B.54)

dD1

dτ
=

k1+

a12+

C2
1 − (

k1−

a12+

+
a1+

a12+

)D1 +
a1−

D

∗

1
− δ1

a12+

D1 (B.55)

dD12

dτ
=
k12+

a12+

R2C1 − (
k12−

a12+

+
a12+

a12+

)D12 +
a12−

a12+

D∗12 −
δ12

a12+

D12 (B.56)

dD2

dτ
=

k2+

a12+

R2
2 − (

k2−

a12+

+
a2+

a12+

)D2 +
a2−

a12+

D∗2 −
δ2

a12+

D2 (B.57)

dD∗1
dτ

=
a1+

a12+

D1 −
a1−

a12+

D∗1 −
δ1

a12+

D∗1 (B.58)

dD∗12

dτ
=
a12+

a12+

D12 −
a12−

a12+

D∗12 −
δ12

a12+

D∗12 (B.59)

dD∗2
dτ

=
a2+

a12+

D2 −
a2−

a12+

D∗2 −
δ2

a12+

D∗2 (B.60)

For the values of the parameters shown in Table 2.1, at this time scale, ks−
a12+
∼ 10−3,

m1

a12+
∼ 103, m2

a12+
∼ 10, δi

a12+
∼ 10−3, ki+

a12+
∼ 104 ki−

a12+
∼ 10−1, k2−

a12+
∼ 104, ai+

a12+
∼ 1

and a2−
a12+
∼ 10. Considering only reactions with rate of order 1, we get
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dS

dτ
= 0 (B.61)

dR1

dτ
= 0 (B.62)

dR2

dτ
= 0 (B.63)

dC1

dτ
= 0 (B.64)

dD1

dτ
= − a1+

a12+

D1 (B.65)

dD12

dτ
= −a12+

a12+

D12 (B.66)

dD2

dτ
= − a2+

a12+

D2 +
a2−

a12+

D∗2 (B.67)

dD∗1
dτ

=
a1+

a12+

D1 (B.68)

dD∗12

dτ
=
a12+

a12+

D12 (B.69)

dD∗2
dτ

=
a2+

a12+

D2 −
a2−

a12+

D∗2 (B.70)
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Finally, at the time scale of degradation where only the dimers are evolving we

have (with τ = tδ12)

dS

dτ
=

1

δ12

(−ks+SR1 + ks−C1) (B.71)

dR1

dτ
=

1

δ12

(m1 − ks+SR1 + ks−C1 − δ1R1) (B.72)

dR2

dτ
=

1

δ12

(
m2 − k12+C1R2 − 2k2+R

2
2 + k12−D12 + 2k2−D2 − δ2R2

)
(B.73)

dC1

dτ
=

1

δ12

(ks+SR1 − (ks− + 2k1+C1 + k12+R2 − δ1)C1 + 2k1−D1 + k12−D12) (B.74)

dD1

dτ
=

1

δ12

(
k1+C

2
1 − (k1− + a1+)D1 + a1−D

∗
1 − δ1D1

)
(B.75)

dD12

dτ
=

1

δ12

(k12+R2C1 − (k12− + a12+)D12 + a12−D
∗
12 − δ12D12) (B.76)

dD2

dτ
=

1

δ12

(
k2+R

2
2 − (k2− + a2+)D2 + a2−D

∗
2 − δ2D2

)
(B.77)

dD∗1
dτ

=
1

δ12

(a1+D1 − a1−D
∗
1 − δ1D

∗
1) (B.78)

dD∗12

dτ
=

1

δ12

(a12+D12 − a12−D
∗
12 − δ12D

∗
12) (B.79)

dD∗2
dτ

=
1

δ12

(a2+D2 − a2−D
∗
2 − δ2D

∗
2) (B.80)

For the values of the parameters shown in Table 2.1, at this time scale, m1

δ12
∼ 106,

m2

δ12
∼ 10, δi

δ12
∼ 1, ki+

δ12
∼ 107 ki−

δ12
∼ 102, k2−

δ12
∼ 107, ai+

δ12
∼ 103 and a2−

δ12
∼ 104.

Considering only reactions with rate of order 1, we get
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dS

dτ
= 0 (B.81)

dR1

dτ
= −δ1R1 (B.82)

dR2

dτ
= −δ2R2 (B.83)

dC1

dτ
= −δ1C1 (B.84)

dD1

dτ
= −δ1D1 (B.85)

dD12

dτ
= −δ12D12 (B.86)

dD2

dτ
= −δ2D2 (B.87)

dD∗1
dτ

= −δ1D
∗
1 (B.88)

dD∗12

dτ
= −δ12D

∗
12 (B.89)

dD∗2
dτ

= −δ2D
∗
2 (B.90)

B.2 Stochastic multiscale analysis

In Chapter 2, Eqs. 2.47-2.52, we consider a deterministic system with different

time scales. In the slow time scale, the receptors are activated in an irreversible

reaction and then degraded, following an exponential decay. During the receptors’

active period, intracellular proteins can bind an unbind the receptors’ binding

sites. We consider the following set of stochastic reactions to give a stochastic

version of the system.

ø
a+iDi−−−→ D∗i (B.91)

D∗i
δD∗
i−−→ ø (B.92)

D∗i + Π
k+−⇀↽−
k−

Π∗ (B.93)
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where D∗i are the active receptor, Π are the unbound proteins and Π∗ are the bound

proteins. We consider that the proteins are in excess, so Π can be considered as

constant.

The master equation describing the state of the system is

∂P (D∗i ,Π
∗, t)

∂t
=
∑
i

(Wi(X − ri)P (X − ri, t)−Wi(X)P (X, t)) (B.94)

where X is the vector of variables and ri indicates the stoichiometry of reaction i

and Wi is the rate at which reaction i happens.

In this analysis, we will consider only one binding site and one proteins. The result

can be extended to several binding sites and proteins [103].

The rates of the reaction considered in Eqs. B.91-B.93 are

Rate Reaction Parameter value

W1 = a+Di D∗i → D∗i + 1 a+=1 min−1

W2 = δD∗i D∗i → D∗i − 1 δ = 10−3 min−1

W3 = k+D
∗
iΠ D∗i → D∗i − 1 k+ = 102 min−1

Π→ Π− 1

Π∗ → Π∗ + 1

W4 = k−Π∗ D∗i → D∗i + 1 k− = 101 min−1

Π→ Π + 1

Π∗ → Π∗ − 1

Let’s define ε = δ
k+

(>> 1) and rescale the system with k+ = κ+

ε
and k− = κ−

ε
.

w1 =
a+D

∗
i

δ
(B.95)

w2 = D∗i (B.96)

w3 = κ+D
∗
iΠ (B.97)

w4 = κ−Π∗ (B.98)

With this rescaling, we realise that the activation and degradation of the receptor

are slow reactions compared to the binding and unbinding reactions. We can

rewrite Eq. (B.94) as
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∂P (D∗i ,Π
∗, t)

∂t
=

2∑
i=1

(wi(X − ri)P (X − ri, t)− wi(X)P (X, t))

+
1

ε

4∑
i=3

(wi(X − ri)P (X − ri, t)− wi(X)P (X, t))

(B.99)

Let’s define the following generating function

G(p, t) =
∑
X

pXP (X, t) (B.100)

As discussed before, activation and degradation of the receptors are slow com-

pared to the binding and unbinding reactions. At this time scale, only the active

receptors, D∗i , change over time. On the other hand, binding and unbinding hap-

pen at a fast time scale and involve the active receptors that switch between free

(D∗i ) and bound (Π∗) configurations. At the fast time scale, the total amount of

active receptors (free and bound) is considered constant, but Π∗ changes, so we

consider it as a fast variable. This allows us to express G as a sum of slow and

fast processes involving slow and fast variables, respectively.

∂G(p, t)

∂t
= H0(p(S), ∂p(S))G(p(S), p(F )) +

1

ε
H1(p(F ), ∂p(F ))G(p(S), p(F )), (B.101)

where the supraindexes S, F denote slow and fast variables, respectively.

ε
∂G(p, t)

∂t
= εH0(p(S), ∂p(S))G(p(S), p(F )) +H1(p(F ), ∂p(F ))G(p(S), p(F )) (B.102)

The operators H0 and H1 are

H0 = (a+p
(S) − δ)(p(S) − 1)∂p (B.103)

H1 = (p− 1) (k+Π ((D∗ + Π∗)− pq)− k−q) (B.104)
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where q = ∂p.

Let us express G as a power series of ε

G = G0 + εG1 + (O)(ε) (B.105)

Keeping the 0th order term, we have

H1G0 = 0. (B.106)

Due to the time scale separation, G0 can be factorized as

G0(p(S), p(F )) = gs(p
(S), t)gF (p(F )) (B.107)

This result, togehter with Eq. (B.106), yields

gs(p
(S), t)H1(p

(F )
i , ∂p

(F )
i )gF (p(F )) = 0 (B.108)

This holds for H1(p
(F )
i , ∂p

(F )
i )gF (p(F )) = 0.

If we consider all the possible binding and unbinding reactions for nG different

binding sites and nP different proteins, the operator H1 is given by [103]

H1 =

nG∑
i=1

nP∑
j=1

(pij − 1)

(
kij+Pj

(
niT −

nP∑
k=1

pikqik

)
− kij−qij

)
, (B.109)

where qij ≡ij.

This equation can be solved using WKB methods [103], to get

G(pij, t = tss) =

nG∏
i=1

(
1 +

∑nP
k=1Kikpik

1 +
∑nP

k=1Kik

)niT
(B.110)
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This generating function corresponds to the product of nG independent multino-

mials, one for each type of binding site (binding sites are supposed independent

and the intracellular proteins are supposed in excess).





Appendix C

Numerical simulations

C.1 Numerical integration of ODE systems

The numerical integration of the ODE systems in Chapter 2 has been performed

using the integration method ‘lsoda’, implemented in SciPy [104]. The values of

the parameters used are listed in Table 2.1.

C.2 Stochastic Gillespie simulations

In Chapters 3 and 4, we compared our theoretical predictions with the results of

stochastic Gillespie simulations [87].

We simulated different situations (considering or not protein activation and recep-

tor decay) for populations of either one or two intracellular proteins.

In Table C.1, we list all the possible reactions that we considered in our simulations

(together with the corresponding rates, that follow the law of mass action [105]).

The values of the parameters are indicated in the captions of the figures where

theoretical results and stochastic simulations are compared.

In Table C.1, rFi is the number of free binding sites of type i, rij is the number of

binding sites of type i bound to a protein of type j, r∗ij is the number of binding

sites of type i bound to a protein of type j that have undergone an activation of

the protein, k+ is the binding rate, Ptot is the concentration of intracellular protein

(assumed to be constant), k− is the unbinding rate and δ is the degradation rate.
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Reaction Rate
1. Binding rFi → rFi − 1 k+PtotrFi

rij → rij + 1
2. Unbinding rFi → rFi + 1 k−rij

rij → rij − 1
3. Protein activation rij → rij − 1 αrij

r∗ij → r∗ij + 1

4. Active protein dissociation r∗ij → r∗ij − 1 k−r
∗
ij

rFi → rFi + 1
5. Receptor degradation rFi → rFi − 1 δrFi

6. Bound receptor degradation rij → rij − 1 δrij
7. Bound (active) receptor degradation r∗ij → r∗ij − 1 δr∗ij

Table C.1: Reactions and rates of the stochastic Gillespie simulations.

Chapter 3, Section 3.1

In these sections, we described the probability distribution of the number of bound

proteins at a given time. Therefore, we do not consider degradation of the recep-

tors, nor activation of the proteins: only binding and unbinding reactions (1 and

2 in Table C.1) are considered. In order to get the computational distributions,

we performed 1000 iterations of the stochastic simulation, starting with rFi = RT

(with RT being the number of active receptors) and letting the system reach equi-

librium (in a time scale ∼ 1
k+Ptot

before recording the system’s state.

Chapter 3, Section 3.2

In this section, we are interested in the number of proteins that have bound or have

been activated by the active receptors during their lifetimes. We consider therefore

all the reactions in Table C.1. We performed 100 iterations of the corresponding

stochastic simulation, where the simulation is run until all the active receptors have

been degraded. In this time course, every binding event and every activation event

is recorded in order to generate the distribution of bound and active intracellular

proteins.
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