

TOWARDS ADAPTIVE MONITORING

for

SELF-ADAPTIVE SYSTEMS

EDITH ZAVALA

TOWARDS ADAPTIVE MONITORING

for

SELF-ADAPTIVE SYSTEMS

EDITH ZAVALA

Thesis supervised by

DR. XAVIER FRANCH1 AND DR. JORDI MARCO2

1Department of Service and Information System Engineering

2Department of Computer Science

PhD in Computing program

Universitat Politècnica de Catalunya (UPC) – Barcelona Tech

Abstract

Nowadays, most of the approaches supporting self-adaptive systems

rely on static feedback control loops for managing their adaptation

process. One of the most popular feedback loops is the MAPE-K

loop. In this loop, the Monitor element plays a crucial role since the

quality of the monitoring data (e.g., timeliness, freshness, accuracy,

availability, etc.) affects directly the performance of the rest of the

elements of the loop, and in consequence the quality of the resulting

adaptation decisions. Assuming static feedback loops implies that the

structure and behavior of the elements of the loop should be

determined at design time and cannot change at runtime, i.e., in the

case of the Monitor, systems’ owners should know everything to be

monitored at design time. If that is the case, current self-adaptive

systems would not be able to react to unpredictable runtime events

such as faults or changing requirements. Motivated by this fact , in

this thesis we present HAFLoop (Highly Adaptive Feedback control

Loop), an architectural proposal that extends the MAPE-K feedback

loop for enabling and supporting the adaptation of the elements of

the loop. We propose a generic structure for the adaptive elements as

well as the mechanisms required for coordinating their operation

with their adaptation process. In HAFLoop, the generic functionality

of the elements of the loop is separated from the custom one, thus

the proposed architecture can be reused by any approach for

designing and developing self-adaptive systems with adaptive

feedback loops. Given its importance, for validating HAFLoop, we

focus on the adaptation of the Monitor element of the loop.

Experiments are executed in the domain of smart vehicles and run in

both simulation and real environments.

Acknowledgments

This work would not have been possible without the support of many people. I would like to

express my sincere gratitude to Dr. Xavier Franch and Dr. Jordi Marco for guiding me in the

realization of this thesis, for their invaluable support, continuous motivation, and patience. I

would also like to thank my friends and colleagues, who helped me during all these years and

contributed to improve this work. Finally, I would like to thank my family for all the love and

unconditional support they give me in every project that I decide to undertake. Especially, I

would like to thank Mario for all the stimulating discussions, technical and spiritual support.

This work has been possible thanks to the funding of the National Council for Science

and Technology (CONACYT), Spanish projects EOSSAC (TIN2013-44641-P) and

GENESIS (TIN2016-79269-R); the SUPERSEDE project, funded by the European

Union´s Information and Communication Technologies Programme (H2020) under

grant agreement no. 644018; and the SALI project, funded by the Swedish

openresearch@astazero program (call 4 - 20180430).

Table of contents

I Introduction... 6

1.1 Context and terminology .. 6

1.2 Objectives and research questions .. 9

1.3 Methodological approach ... 11

1.4 Contributions of this thesis ... 13

1.5 Structure of this thesis .. 16

II How to adapt: Study on adaptive monitoring .. 18

2.1 Introduction to adaptive monitoring .. 19

2.2 Introduction to systematic mapping studies ... 20

2.3 Planning the review .. 20

2.4 Results of the review ... 31

2.5 Discussion .. 50

III How to improve: Study on SASs’ self-improvement .. 58

3.1 Introduction to self-adaptation ... 59

3.2 Open research challenges affecting SASs .. 60

3.3 State of the art on SASs’ engineering and requirements challenges .. 62

3.4 Open research challenges affecting SASs self-improvement .. 67

3.5 State of the art on SASs’ self-improvement ... 68

IV How to support: Building a SAS’s self-improvement architecture 86

4.1 Our vision of SASs’ self-improvement .. 87

4.2 A reusable design for MAPE-K loops ... 89

4.3 HAFLoop .. 90

4.4 SACRE: a proof-of-concept .. 98

4.5 The HAFLoop4J framework ..115

4.6 SALI: the smart self-driving vehicle ...120

V Conclusions and future work ... 155

5.1 Conclusions of RQ1 ..156

5.2 Conclusions of RQ2 ..156

5.3 Conclusions of RQ3 ..157

5.4 Future work ..158

VI Bibliography ... 159

APPENDIX A .. 169

A1 SMS references ..169

A2 Data mining variables and results ..178

APPENDIX B .. 183

B1 SASs’ literature review references (identified in first manual search iteration)183

B2 SASs’ literature review references (identified in second manual search iteration)186

B3 SASs’ literature review references (final set) ..187

B4 SASs’ self-improvement literature resources ...187

B5 SASs’ self-improvement literature review references ..189

Towards adaptive monitoring for self-adaptive systems 6

I

Introduction

1.1 Context and terminology

The complexity of modern software systems has increased dramatically over the years and is

continuing to do so. Users can access software applications using a variety of devices and since

mobile technologies are on the rise, applications are becoming ubiquitous in our society. In

order to deal with the great diversity of execution contexts (i.e., user profiles, system faults,

changing environmental conditions and user needs, etc.), modern software systems monitor

themselves and their environment, and respond to runtime changes through adaptation. In this

process, the monitoring task plays a crucial role since the quality of the monitoring data, i.e., its

timeliness, freshness, accuracy, availability, etc., affects directly the adaptation decisions. The

research of this thesis explores how this quality can be ensured at runtime. In order to do that,

two main research fields of Software Engineering have been studied: Self-Adaptive Systems and

Adaptive Monitoring. In the rest of this section, these two fields are explained in order to

provide a general context and introduce the terminology used along this document.

 Self-adaptive systems

Modern software systems such as smart cities, smart vehicles, and mobile apps are extremely

capable, mimicking natural systems’ characteristics such as intelligence, rationality, ability to

learn, anticipation, and automatic adaptation. This kind of systems are called Self-Adaptive

Systems (SASs) [1], [2]. Concretely, as defined by Cheng et al.:

Chapter I Introduction

Towards adaptive monitoring for self-adaptive systems 7

“A SAS is a system able to automatically modify itself in order to respond to

changes in its environment and the system itself”

Cheng et al., Software Engineering for Self-Adaptive Systems: A Research Roadmap [3]

SASs are composed of two main parts: an autonomic manager (AM), also known as the

adaptation logic, and the managed elements (MEs), also known as managed resources [2], [4].

The MEs are the components of the software system that provide the main functionality and can

be adapted at runtime. While, the AM corresponds to the control unit that manages the MEs’

adaptation process [2]. In practice, AMs are implemented through feedback control loops. One

of the most popular feedback loops is the MAPE-K loop. The MAPE-K loop has been firstly

introduced by Kephart and Chess [5] with their notion of an autonomic element which

culminated in IBM’s architectural blueprint for autonomic computing and the Autonomic

Computing Reference Architecture (ACRA)[6]. The MAPE-K loop consists of five elements that

originate its name: Monitor, Analyzer, Planner, Executer, and a Knowledge base (see Figure 1).

Below, we describe the function of each MAPE-K element, based on IBM’s proposal [6]:

Figure 1: MAPE-K feedback control loop

 Monitor. Its function is to provide the mechanisms that collect, aggregate, filter and

report details (such as metrics and topologies) collected from MEs, users, the

environment, etc., using a Sensors interface.

 Analyzer. Based on the contextual data gathered by the Monitor element, the Analyzer

provides the mechanisms that correlate and model complex situations (for example,

time-series forecasting and queuing models). These mechanisms allow the feedback

loop to learn about the environment and help predict future situations.

 Planner. Using the analysis results, the main function of the Planner element consists in

providing the mechanisms that construct the adaptation actions needed to achieve MEs’

Chapter I Introduction

Towards adaptive monitoring for self-adaptive systems 8

goals and objectives. The Planner uses policy information to guide its operation.

Adaptation plans are sent to the Executer for being enacted over the MEs.

 Executer. It is in charge of providing the mechanisms that control the execution of an

adaptation plan with considerations for dynamic updates using an Effectors interface.

 Knowledge base. It manages different knowledge sources that can contain different

types of knowledge (such as data resulting from MAPE elements’ operation and

management data) for supporting the operation of the whole loop.

Due to the great diversity of applications, intensive efforts from different research fields have

been spent on the realization of SASs. However, some challenges regarding the capabilities and

engineering of SASs remain open, what makes this domain still an important subject of research

[7].

 Adaptive monitoring

Nowadays, the monitoring activity is integrated into software systems’ control processes for

gathering relevant data at runtime, as it is the case of SASs. Over the years, different methods

and techniques for monitoring software systems in a variety of domains have been proposed.

Monitoring allows systems’ stakeholders checking how their systems progress or behave under

different conditions, and reporting on relevant changes. However, it is often expensive and

intrusive. Thus, the design of a monitoring system (i.e., the software system that implements

monitoring capabilities) usually involves tradeoffs between the impact caused by the action of

monitoring and its expected quality of results, such as data accuracy, freshness, coverage,

etc.[8], [9]. In addition, a monitoring system is exposed to a diversity of runtime events, e.g.,

structural or operational changes on the System under Monitoring (SuM), faults on the

monitoring system’s components or the emergence of new monitoring requirements.

In order to deal with all these challenging factors, software engineers have proposed different

approaches for making current monitoring systems adaptive. Proposals have emerged from a

variety of research fields (e.g., sensor networks, instrumentation, requirements monitoring).

However, although these diverse proposals share most high-level challenges, solutions have

been developed, evolved, and kept isolated in those different fields. This hinders the discovery of

synergies among the different proposals to adaptive monitoring as well as the standardization of

the main field concepts, starting with the adaptive monitoring term itself, and the normalization

of the challenges faced.

The adaptation of monitoring systems requires to manage and control their monitoring activity

itself [10]. That is, monitoring systems’ components and their operation should be supervised

somehow as well, in order to determine monitoring systems’ state and the adequacy of their data

gathering strategies. According to Moui and Desprats [10], a monitoring strategy can be

constructed by answering the questions: why do we monitor?, how do we monitor?, what do we

monitor?, and when do we monitor?. In Chapter II, we study how the state-of-the-art

Chapter I Introduction

Towards adaptive monitoring for self-adaptive systems 9

approaches support the adaptation of the monitoring systems’ strategies as well as their

composition.

 Adaptive monitoring for self-adaptive systems

Most of the current approaches supporting SASs focus on the adaptation of the MEs and

consider the AM a static component, i.e., the MAPE-K elements of the loop operating in the AM

are not able to change their structure or behavior at runtime. If a change has to be done, it must

be executed manually offline. This implies to restart the system that executes the AM and

probably a long time of unavailability. The adaptation of the AM might be beneficial and even

necessary to respond to different runtime situations. For instance, changes in system resources,

its environment or its adaptation goals and requirements, as well as to deal with unanticipated

events such as faults [11]–[15]. In order to support the adaptation of the AM, SASs must

implement correctly a self-* property called self-improvement. As recently defined by Krupitzer

et al. [16]:

“Self-improvement […] is the adjustment of the adaptation logic to handle

former unknown circumstances or changes in the environment or the managed

resources.”

Krupitzer et al., Comparison of approaches for self-improvement in self-adaptive systems [16]

From the state of the art analyzed in this research, only a few studies focusing on supporting the

self-improvement property of SASs have been identified. Moreover, most of the approaches

propose partial and use case-specific solutions. Apart from that, as pointed out by Krupitzer et

al. [16], given the novelty of the topic, different research challenges are still open, ranging from

adaptation capabilities to software engineering solutions generalizability.

Among the MAPE-K elements composing the AM, the Monitor element plays a crucial role

since the quality of the monitored data affects directly the performance of the rest of the

elements and in consequence the resulting adaptation of the MEs. Low quality data will produce

low quality adaptations. Current approaches considering static AM, are assuming that software

systems’ stakeholders know everything to be monitored at design time. However, in order to

ensure the adequacy and correctness of the Monitor element operation at runtime, adaptation

capabilities should be supported, e.g. for adding new measures to collect, updating the sampling

rate, or changing the data collection protocol.

1.2 Objectives and research questions

The complexity of handling the adaptation of SASs’ AM, concretely the Monitor element, in

coordination with the MEs’ adaptation process turns out to offer new opportunities to software

engineers. Several approaches for supporting adaptive monitoring have been proposed;

however, very few of them support adaptive monitoring in SASs. Motivated by this fact, this

Chapter I Introduction

Towards adaptive monitoring for self-adaptive systems 10

thesis explores and experiments with new and existing methods and techniques in order to

provide a solution for supporting adaptive monitoring in SASs. Concretely, the main goal of this

thesis is:

To support the automatic runtime adaptation of self -adaptive systems’

autonomic manager, particularly the Monitor element, in order to

respond to changes in the managed elements, the environment, and the

autonomic manager itself.

In order to reach our research goal, we first have to understand the needs of current monitoring

systems and the current state-of-the-art of the adaptive monitoring topic. The adaptation of the

Monitor element of the AM is a specific application of the self-improvement property of SASs.

Therefore, understanding how the Monitor and the other elements of the AM are adapted by

existing SASs solutions (if any) so far, is also very important for the purposes of this thesis.

Understanding the current open research challenges and opportunities will allow us to develop

a suitable solution for supporting adaptive monitoring in modern SASs. In order to achieve this,

we have defined three main research questions that will be addressed in this thesis (see Table 1).

Table 1

Research questions of this thesis

Id Research questions

RQ1 How is monitoring systems’ adaptation, in general, supported by existing approaches?

RQ2 How is self-adaptive systems’ self-improvement supported by existing approaches?

RQ3 How the self-improvement property, particularly autonomic manager’s Monitor element

adaptation, can be (better) supported in self-adaptive systems?

Below, the main objective of each research question is described:

 RQ1. This RQ aims at investigating on the approaches of existing proposals supporting

the adaptation of monitoring systems, and provide a framework of common

understanding for the definition of how to adapt, monitoring systems.

 RQ2. The objective of RQ2 is to investigate on the approaches of existing proposals

supporting the adaptation of the AM in SASs, and provide a framework of common

understanding for the definition of how to improve, SASs through the implementation

of the self-improvement property.

 RQ3. Finally, this RQ aims at investigating on the aspects that can be done (and

improved in existing proposal) for understanding how to support SASs’ self-

improvement (particularly, understanding how the adaptation of the AM’s Monitor

element can be coordinated with loop’s normal operation), and develop an architectural

solution that correctly supports the process.

Chapter I Introduction

Towards adaptive monitoring for self-adaptive systems 11

1.3 Methodological approach

In order to address the RQs of this thesis, we have adopted a methodological approach based on

the approach proposed by Shaw [17] for characterizing software engineering research. The

characterization proposed by Shaw is described in terms of research settings, research products,

and validation techniques. Below, we describe how the research of this thesis is characterized in

each of these terms.

 Research settings

Research settings refer to different classes of research problems, i.e., a problem is transferred

into a research setting with the aim of finding solutions to it. Shaw lists five research settings

corresponding to different types of RQs (see Table 2) [17].

Table 2

Research settings [17]

Research Setting Sample questions

Feasibility Is there an X, and what is it? Is it possible to accomplish X at all?
Characterization What are the important characteristics of X? What is X like? What, exactly, do we

mean by X? What are the varieties of X, and how are they related?
Method/Means How can we accomplish X? What is a better way to accomplish X? How can I

automate doing X?
Generalization Is X always true of Y? Given X, what will Y be?
Selection How do I decide between X and Y?

The settings of this thesis are characterization, and method/means, i.e.:

 In RQ1 and RQ2, we address the characterization of different approaches for supporting

the adaptation of monitoring systems and SASs’ AM.

 In RQ3, we define ways and improvements to the existing ways for (better)

accomplishing the adaptation of the AM’s Monitor element in SASs.

 Research products

The research products are the tangible results of the research. Five research products are

described by Shaw as well as the ways of how to achieve them (see Table 3) [17]. The research

products of this thesis include:

 A qualitative or descriptive model, reporting the state of the art of the adaptive

monitoring and SASs’ self-improvement topics (RQ1 and RQ2)

 Techniques, on how to correctly support the adaptation of the AM’s Monitor element in

SASs (RQ3)

 A system, implementing the techniques for the approach validation (RQ3)

Chapter I Introduction

Towards adaptive monitoring for self-adaptive systems 12

Table 3

Research products [17]

Research Product Research approach or method

Qualitative or
descriptive model

Organize & report interesting observations about the world. Create & defend
generalizations from real examples. Structure a problem area; formulate the right
questions. Do a careful analysis of a system or its development

Technique Invent new ways to do some tasks, including procedures and implementation
techniques. Develop a technique to choose among alternatives.

System Embody result in a system, using the system development as both source of insight
and carrier of results.

Empirical
predictive model

Develop predictive models from observed data.

Analytic model Develop structural (quantitative or symbolic) models that permit formal analysis.

 Research validation

The validation techniques allow evaluate the research results to demonstrate that they satisfy the

research settings. In this regard, Shaw proposes a list of five validation techniques (see Table 4)

[17].

Table 4

Validation techniques [17]

Technique Character of validation

Persuasion A technique, design or example.
Implementation Of a system or technique.
Evaluation With respect to a descriptive model, a qualitative model, an empirical quantitative

model.
Analysis Of an analytic formal model, an empirical predictive model.
Experience Expressed in a qualitative or descriptive model, as decision criteria or an empirical

predictive model.

From this list, the validation techniques used in this thesis are:

 Persuasion, using examples that illustrate our ideas and proposal

 Implementation, of a system to demonstrate the feasibility and adequacy of our solution

for supporting adaptive monitoring in SASs

 Evaluation, of the system implemented and the proposed approach with a series of use

cases

For conducting the research of this thesis, we have designed an iterative process consisting of

literature reviews, opportunities and challenges identification, proposal development, system

implementation, and approach validation (see Figure 2).

Chapter I Introduction

Towards adaptive monitoring for self-adaptive systems 13

Figure 2: Research process

1.4 Contributions of this thesis

 Contributions of RQ1

The main contribution of this RQ is given by a systematic mapping on adaptive monitoring

which attempts to provide a reference for future researches and practitioners in the field,

especially to offer a starting point avoiding the development of new proposal that do not align

with the current needs and research. Specifically, the study evaluates the current state of the art

of adaptive monitoring investigating the following aspects: 1) which are the current proposals

and how are they related; 2) how do they define adaptive monitoring; 3) how do they conduct

the adaptation of monitoring systems; and, 4) what are the relations among the proposals’

solutions. From the research perspective, the following contributions can be remarked:

 Generic definition (missing in the current state-of-the-art) for the term adaptive

monitoring

 Distribution of the studies about adaptive monitoring based on their demographic

characteristics (time, location, etc.)

 Relation among studies about adaptive monitoring from the solution perspective and

distribution of them in approaches

 Current state and patterns on approaches for supporting the adaptation of monitoring

systems

 Comprehensive overview of the domains where adaptive monitoring has been applied

The contribution of this cross-domain study is to make available a solid and comprehensive

baseline for researchers and practitioners in the adaptive monitoring field. Especially, it may

help in identifying opportunities of research; for instance, the need of proposing generic and

flexible software engineering solutions for supporting adaptive monitoring in a variety of

systems. The systematic mapping study has been published at the SCI-indexed journal

Information and Software Technology (I.F.2017: 2.627) [18].

Chapter I Introduction

Towards adaptive monitoring for self-adaptive systems 14

 Contributions of RQ2

The main contribution of this RQ is given by a series of literature reviews on this topic, which

attempt to provide an overview of the current research and requirements of SASs and the AM’s

adaptation. Specifically, the reviews evaluate the current state of the art investigating the

following aspects: 1) which are the current proposals; 2) what components of the AM are

adapted; and, 3) how do they conduct the adaptation process. From the research perspective,

the contributions of the literature reviews include:

 The identification of methods and techniques utilized so far for supporting SASs’ self-

improvement

 An analysis of modern SASs’ requirements

 The assessment of the applicability of existing proposals in modern SASs

The literature reviews have been conducted at different points of time, aligned with the iterative

process we have designed for conducting this thesis research (see Figure 2 in Section 1.3). The

contributions of this RQ were published in: two deliverables of the SUPERSEDE H2020

European project [19], [20] and the SCI-indexed journal Expert Systems with Applications

(I.F.2017: 3.768)[7].

 Contributions of RQ3

This RQ has different contributions. First, based on the contributions of RQ2, open research

challenges in SASs in general and for supporting their self-improvement in particular have been

identified. Second, an architectural approach for addressing the still open research challenges

affecting SASs’ self-improvement and in this way correctly support the adaptation of the AM,

especially the adaptation of its Monitor element. Third, a generic and modular framework for

supporting adaptive AM in SASs, named HAFLoop, implementing the ideas of our approach.

HAFLoop has been validated by different use cases in the domain of smart vehicles.

Experiments have been run in both simulation and real environments.

Aligned with our research methodology, several refinement and evaluation iterations have been

performed during the development process of our final proposal, which is reflected in the

different publications resulting from the contributions of this RQ. Concretely, the first

contribution related to this thesis proposal was developed by the applicant in her Master thesis

[21] followed by a publication at the demo tool session of the 23rd IEEE International

Requirements Engineering Conference (CORE2018: A) [22]. Later, during the development of

this thesis, the contributions of this RQ were published in:

 three deliverables of the SUPERSEDE H2020 European project [23]–[25],

 a report of the SALI Swedish project (openresearch@astazero program) [26],

 the tutorials and poster abstracts session of the BSR winter school - Big Software on the

Run: Where Software meets Data [27],

Chapter I Introduction

Towards adaptive monitoring for self-adaptive systems 15

 the PhD symposium of the International Conference on Service-Oriented Computing

(CORE2018: A) [28],

 the SCI-indexed journal Expert Systems with Applications (I.F.2017: 3.768) [7]

 List of contributions

Table 5 summarizes the list of publications related to this thesis, authored, and co-authored by

the applicant.

Table 5

List of publications

Ref. Authors Type/Venue Title Year Impact

Published peer-reviewed

Journal

[18] Edith Zavala,
Xavier Franch,
Jordi Marco

Information and
Software Technology

Adaptive Monitoring: A
Systematic Mapping

2019 I.F.: 2.627

[7] Edith Zavala,
Xavier Franch,
Jordi Marco,
Alessia Knauss,
Daniela Damian

Expert Systems with
Applications

SACRE: Supporting contextual
requirements' adaptation in
modern self-adaptive systems
in the presence of uncertainty
at runtime

2018 I.F.: 3.768

Conference

[28] Edith Zavala International
Conference on
Service-Oriented
Computing

Towards Adaptive Monitoring
Services for Self-adaptive
Software Systems

2017 CORE A

[22] Edith Zavala,
Xavier Franch,
Jordi Marco,
Alessia Knauss,
Daniela Damian

IEEE International
Requirements
Engineering
Conference

SACRE: A Tool for Dealing
with Uncertainty in Contextual
Requirements at Runtime

2015 CORE A

Other publications

[27] Edith Zavala,
Xavier Franch,
Jordi Marco

BSR winter school -
Big Software on the
Run: Where Software
meets Data

Decision-Making Support for
Software Adaptation at
Runtime

2016 -

Published non-peer-reviewed

Technical report

[26] Edith Zavala,
Christian Berger,
Xavier Franch,
Jordi Marco

SALI [Project final
report]

Smart self-driving vehicle
project: Final report

2018 -

[25] Jesús
Gorroñogoitia,
Denisse Muñante,
Fitsum Kifetew,
Angelo Susi, Edith
Zavala, Srdjan
Stevanetic

SUPERSEDE
[H2020 Project
Deliverable]

D3.6: Methods and techniques
for runtime DM v1

2016 -

Chapter I Introduction

Towards adaptive monitoring for self-adaptive systems 16

[23] Marc Oriol, Denisse
Muñante, Jesús
Gorroñogoitia,
Anna Perini, Danilo
Valerio, Edith
Zavala, Quim
Motger

SUPERSEDE
[H2020 Project
Deliverable]

D4.8: Feedback-gathering and
monitoring reconfiguration
techniques v2

2016 -

[20] Anna Perini, Danilo
Valerio, Denisse
Muñante, Edith
Zavala, Marc Oriol,
Melanie Stade,
Norbert Seyff, Jesús
Gorroñogoitia,

SUPERSEDE
[H2020 Project
Deliverable]

D4.7: Feedback-gathering and
monitoring reconfiguration
techniques v1

2016 -

[24] Gorroñogoitia,
Jesús, Edith
Zavala, Marc
Oriol, Quim
Motger, Srdjan
Stevanetic,

SUPERSEDE
[H2020 Project
Deliverable]

D4.5: Methods and tools to
enact software adaptation and
personalization v2

2016 -

[19] Jesús
Gorroñogoitia,
Danilo Valerio,
Tudor Ionescu,
Edith Zavala

SUPERSEDE
[H2020 Project
Deliverable]

D4.4: Methods and tools to
enact software adaptation and
personalization v1

2016 -

Other publications

[29] Edith Zavala PhD proposal Towards Adaptive Monitoring
for Self- * Systems: Research
Plan

2017 -

[21] Edith Zavala Master thesis Dealing with Uncertainty in
Contextual Requirements at
Runtime: A Proof of Concept

2015 -

Co-authorship statement: In all the aforementioned publications in which

the applicant figures as first author, she has been the main contributor to

all aspects related to self-adaptive systems’ adaptation process and self-

adaptive systems’ self-improvement, under the supervision of the two

PhD thesis advisors. Whereas, the contributions of specific research

aspects that are out of scope of this thesis (e.g. feedback gathering) were

conducted mainly by the other authors. Moreover, in the rest of co-

authored publications the applicant has contributed in the aspects related

monitoring reconfiguration, decision-making, and adaptation enactment.

1.5 Structure of this thesis

This thesis is presented in three parts, which correspond to the three RQs exposed in Section

1.2. The first part “How to adapt: Study on adaptive monitoring”, refers to RQ1, the second

part “How to improve: Study on SASs’ self-improvement”, refers to RQ2, and the third part

“How to support: Building a SASs’ self-improvement architecture” refers to RQ3. Each part

presents the contributions we have described in Section 1.4, for each of the RQs. Finally, we

Chapter I Introduction

Towards adaptive monitoring for self-adaptive systems 17

provide the conclusions and future work of this thesis. Table 6 specifies the overview of each

chapter.

Table 6

Overview of thesis’ chapters

Chapter Overview

1 Provides the fundamentals and research settings of this thesis
2 Describes a Systematic Mapping conducted to study the different approaches for supporting

the adaptation of monitoring systems. It is divided in five main sections. Section 1 and 2
introduce adaptive monitoring and systematic mapping studies, respectively. Section 3
provides the planning for the review, including the threats to validity. Then, Section 4
reports the results of the review. Finally, Section 5 discusses the results of the review.

3 Presents the state of the art in the field of SASs’ self-improvement through different
Systematic Literature Reviews. It uncovers modern SASs’ needs and the different
approaches for satisfying such needs. It is divided in five main sections. Section 1
introduces self-adaptation. Section 2 presents open research challenges affecting SASs.
Section 3 presents the protocol and results of the SLR conducted for determining the state
of the art regarding the open research challenges identified in Section 2. Section 4 presents
open research challenges affecting SASs’ self-improvement. Section 5 presents the protocol
and results of the SLR conducted for determining the state of the art regarding the open
research challenges identified in Section 4.

4 Describes the proposed architectural solution for correctly supporting SASs’ AM
adaptation, in general, and AM’s Monitor element adaptation, in particular. It is divided in
seven sections. Section 1 described our vision about SASs’ AM adaptation. Section 2
describes the architecture. Section 3 presents a proof-of-concept of our proposal. Section 4
presents the implementation of our solution in the form of a framework. Section 5 provides
the details of a use case implementation using our framework. Section 6 presents the
evaluation of our solution in different environments. Section 7 provides the performance
results of the evaluation.

5 Provides the conclusions and future work of this thesis
6 Presents the references list of this thesis

Towards adaptive monitoring for self-adaptive systems 18

II

How to adapt

Study on adaptive monitoring
Over the years, methods and techniques for monitoring a variety of systems have been

proposed. There are approaches proposed for monitoring communication networks (e.g., Liu et

al. [30]), buildings’ or persons’ health (e.g., Kijewski-Correa et al. [31] and Mshali et al. [32],

respectively), software systems (e.g., Toueir et al. [33]), environmental conditions (e.g., Alippi

et al. [34]), etc. Monitoring allows systems’ stakeholders checking how their systems progress

or behave under different conditions, and reporting on relevant changes. However, it is often

expensive and intrusive. Thus, the design of a monitoring system (i.e., the software system that

implements monitoring capabilities) usually involves tradeoffs between the impact caused by

the action of monitoring and its expected quality of results, such as data accuracy, freshness and

coverage, among others [8], [9]. In addition, a monitoring system is exposed to a diversity of

runtime events, e.g., structural or operational changes on the System under Monitoring (SuM),

faults on the monitoring system’s elements or the emergence of new monitoring requirements.

In order to deal with all these challenging factors, software engineers have proposed different

approaches for making current monitoring systems adaptive. Interesting proposals have

emerged from a variety of research fields (e.g., sensor networks, instrumentation, requirements

monitoring). However, although these diverse proposals share most high-level challenges,

solutions have been developed, evolved, and kept isolated in those different fields. This hinders

the discovery of synergies and reusable components among the different proposals to support

adaptive monitoring as well as the standardization of important concepts, starting with the

Chapter II How to adapt

Towards adaptive monitoring for self-adaptive systems 19

adaptive monitoring term itself. This contribution aims at uncovering and characterizing

existing approaches supporting the adaptation of monitoring systems.

In order to achieve this goal, we have conducted a systematic mapping study (SMS) for

identifying the primary studies on adaptive monitoring published in academic venues. We have

retrieved and selected the studies conducting a rigorous protocol, defined later in this chapter,

which follows the guidelines presented by Petersen et al. [35] and Kitchenham & Charters [36].

For analyzing the identified studies, we have designed five high-level research questions (RQs)

which we have divided into 18 research sub-questions. To extract data from these studies, we

have used a qualitative analysis approach based on the method describe by Miles et al. [37].

After the qualitative analysis, we have applied Data Mining over the extracted data for

identifying patterns in the approaches. Concretely, we have used the rule-based algorithm JRip

[38], [39] implemented by the Data Mining tool Weka [40].

The aim of this first contribution of the thesis is to identify and relate existing proposals of

adaptive monitoring, characterize them with respect to some criteria, and uncover patterns on

how adaptive monitoring is conducted by approaches so far. The importance of this

contribution lies mainly along two lines, namely providing an overview of existing adaptation

processes and providing a generic definition for the adaptive monitoring term, not found in the

studies surveyed. The systematic mapping study has been published at the SCI-indexed journal

Information and Software Technology (I.F.2017: 2.627) [18].

2.1 Introduction to adaptive monitoring

Adaptive (and self-adaptive) systems have emerged as a response to the increasing complexity of

modern software systems. Nowadays, complex software systems are enabled with adaptation

capabilities that allow them to respond to changes in the environment and the system itself.

Given its wide range of application, this kind of systems has been subject of considerable

research effort. For instance, Krupitzer et al. [2] and Salehie et al. [41] have presented extensive

surveys on self-adaptive systems in general as well as taxonomies for unifying and improving the

understanding of the concepts present in this research area. Given their research objectives,

none of these works has analyzed how the adaptation process should be conducted, or may

differ in a specific type of adaptive system, such as monitoring systems.

Nowadays, the monitoring activity is integrated into control processes for gathering relevant

data that is later analyzed by other software systems or the SuM administrators. The results of

the analysis are mainly used for determining the state of the system and deciding whether any

action (e.g., administering a medication when monitoring a person’s health, or modifying a

software service behavior in a nuclear plant) should be taken for keeping the SuM under control.

Although some works consider the data gathering and analysis activities as part of a whole

monitoring system (e.g., works by Bukenya et al. [42] and Ramirez et al. [9]), in this SMS we

Chapter II How to adapt

Towards adaptive monitoring for self-adaptive systems 20

differentiate between them and focus on approaches that specifically support the adaption of the

data gathering activity.

2.2 Introduction to systematic mapping studies

Systematic mapping studies or scoping studies are designed to give an overview of a research

area through classification and counting contributions in relation to the categories of that

classification [36], [43]. It involves searching the literature in order to know what topics have

been covered, and where the literature has been published [43]. SMSs share some

commonalities with another type of empirical instrument, namely systematic literature reviews

(e.g., with respect to searching and study selection). However, according to Petersen et al. [35],

they are different in terms of goals and approaches to data analysis. While systematic literature

reviews aim at synthesizing evidence, considering its strength, SMSs are primarily concerned

with structuring a research area [35].

In order to ensure the quality of systematic reviews, a precise and rigorous methodology for

conducting the review process has to be used. For this purpose, we have followed the widely

used guidelines proposed by Kitchenham & Charters [36] in conjunction with the updated ones

for SMSs proposed by Petersen et al. [35]. The review process consists of three main phases:

 Planning the review. During this phase, all the decisions relevant to conducting the

study are made. This includes the identification of the need for a review, the definition of

the protocol for identifying primary studies and extracting the relevant data, and the

definition of the visualization instruments and the validity threats of the study.

 Conducting the review. In this phase, the review process as defined during the planning

phase has to be implemented. This process is iterative and may require revisions. It is

recommended to record the information at all stages of the process.

 Reporting the mapping. Finally, this phase consists in reporting the results of the

review. It includes specifying the dissemination mechanisms, the format of the report

and the evaluation of the process.

2.3 Planning the review

According to Petersen et al. [35] and Kitchenham & Charters [36], the planning phase of the

review process consists of five main activities: need for a review identification and scoping,

study identification, data extraction and classification, visualization and analysis of validity

threats. In this section, we describe how we have performed each of these activities in our SMS.

As recommended by Petersen et al. [35], some activities have been further split into sub-

activities.

Chapter II How to adapt

Towards adaptive monitoring for self-adaptive systems 21

2.3.1. Need identification and scoping

The need identification and scoping activity has been divided in two sub-activities: need for a

review identification and research questions definition.

 Need for a review identification

Before carrying out any systematic literature study, researchers should identify and evaluate any

existing systematic review on the topic of interest [35]. Hence, in order to identify secondary

studies on adaptive monitoring, we have followed a search protocol analogous to the main one

presented in the study identification phase of this SMS (see Section 2.3.2). In consequence, we

have searched for existing reviews once the protocol was defined and before the SMS was

conducted. In short, we have built a search string as a conjunction of population and

intervention, as recommended by Kitchenham & Charters [36], and performed an automatic

search on the databases of IEEE Xplore, ACM, Scopus and Inspect/Compendex (Engineering

Village). We have selected these databases based on the experience reported by Dybå et al. [44]

and the results obtained by Petersen et al. [35] using them.

In software engineering, the population may refer to a specific software engineering role, a

category of software engineer, an application area, or an industry group [36]. In our context, the

population corresponds to studies in the application area of adaptive monitoring (see Table 7).

On the other hand, the intervention corresponds to a software

methodology/tool/technology/procedure that addresses a specific issue [36]. In our case, the

intervention is systematic mappings (see Table 7). In order to increase the number of results,

from each main term, we have defined a set of synonyms, variants, and acronyms, which are

shown in Table 7. Wildcards have not been used because: 1) some databases do not support the

number of wildcards per search we would require; 2) in this way, we dramatically reduce the

number of noisy studies. We have constructed the search string by applying the Boolean OR

operator to link the Population terms and Intervention terms presented in Table 7 separately,

and a Boolean AND operator to link these two resulting substrings.

The search resulted in 271 papers. Then, we have applied a study selection protocol similar to

the one applied in our SMS. The only difference is the inclusion/exclusion criteria we have used

for selecting the studies of interest. In this case, the inclusion criteria that have been applied

were:

 Studies present summaries of adaptive monitoring approaches

 Studies are in the fields of computer science or engineering

 Studies were published until 2016

Chapter II How to adapt

Towards adaptive monitoring for self-adaptive systems 22

For excluding studies, we have applied the following criteria:

 Studies present non-peer reviewed material

 Studies not written in English

 Studies not accessible in full-text

Table 7

Search string terms.

Type Main term Alternative terms (Synonyms/Variants/Acronyms)

Population Adaptive
monitoring

adaptive monitor
adaptive monitors
adaptable monitoring
adaptable monitor
monitor adaptation
monitoring adaptation
reconfigurable monitor
reconfigurable monitoring
monitoring reconfiguration
dynamic monitor
dynamic monitors
dynamic monitoring
monitoring evolution
monitor evolution
monitors evolution

evolving monitoring
evolutionary monitoring
monitoring customization
customized monitor
customized monitors
customized monitoring
customised monitoring
monitoring personalization
personalized monitors
personalized monitoring
personalised monitoring
reactive monitoring
reactive monitors
proactive monitoring

Intervention Systematic
mappings

systematic mapping
state of the art
SLR
review

After applying the selection protocol, we have not found any secondary study on the adaptive

monitoring topic, neither in general or in a particular research field. However, when performing

the snowballing process in our SMS, we have been able to identify one related work [45].

Although, this work is not focused on adaptation and surveys only approaches supporting

energy-efficient wireless sensor networks, we have considered it worth to mention since it has

been the only review we have found related to our work. As we will explain later in Section

2.3.2, the approaches cited in this survey that provide energy-conservation through the

adaptation of the data gathering activity have been considered in our SMS.

 Research questions definition

Given the lack of secondary studies, conducting a SMS in the adaptive monitoring topic is

important and justified. In order to provide a comprehensive overview of the current state of the

art, for this SMS, we have designed five high-level RQs divided into 18 research sub-questions

(see Table 8).

Chapter II How to adapt

Towards adaptive monitoring for self-adaptive systems 23

Table 8

Research questions of the review.

Research Question Sub-question

RQ1. What is adaptive
monitoring?

RQ1.1 What are the terms related to the term “adaptive monitoring”?
RQ1.2 Are there specific definitions of adaptive monitoring?

RQ2. What are the
demographic
characteristics of the
studies about adaptive
monitoring?

RQ2.1 When are the studies published?
RQ2.2 Where are the studies published?
RQ2.3 How are publications distributed between academy and

industry?
RQ2.4 How publications are geographically distributed?
RQ2.5 How are the studies organized into approaches for adaptive

monitoring?
RQ3. What is proposed by
adaptive monitoring
approaches?

RQ3.1 What type of contributions is presented?
RQ3.2 How generic are the solutions presented?

RQ4. How adaptive
monitoring is conducted by
the approaches?

RQ4.1 What is the purpose of adaptation?
RQ4.2 What is adapted?
RQ4.3 What triggers adaptation?
RQ4.4 How analysis is performed?
RQ4.5 How adaptation decisions are made?
RQ4.6 How adaptation decisions are enacted in the monitoring system?
RQ4.7 What type of adaptation is executed?

RQ5. How adaptive
monitoring approaches are
evaluated?

RQ5.1 What type of evaluation is performed?
RQ5.2 In which type of systems is the evaluation performed?

2.3.2. Study identification

The study identification activity has been divided into three sub-activities: search string

construction, literature sources identification, and study selection.

 Search string construction

The aim of the search process is to find as many primary studies related to the RQs as possible

using an unbiased search strategy. In order to build the search string, we have followed again

the recommendation of Kitchenham & Charters [36] and created the string as a conjunction of

population and intervention. As in the secondary studies’ search, our population is composed by

studies in the application area of adaptive monitoring. What has changed in this search is the

intervention: we are now interested in approaches supporting adaptive monitoring and not in

SMSs. In order to increase the number of results, we have defined a set of synonyms and

variants for the main search terms (i.e., adaptive monitoring and approaches). In the case of the

population, we have reused the alternative terms identified in Section 2.3.1 (see Table 7).

While evaluating the articles resulting from the search of Section 2.3.1, we have noticed that the

dynamic monitor, dynamic monitors and dynamic monitoring terms have been utilized by

some of the studies for referring to the continuous runtime monitoring of dynamic factors (e.g.,

Chapter II How to adapt

Towards adaptive monitoring for self-adaptive systems 24

in works by Bukenya et al. [42] or Magalhães et al. [46]). Or, as an adjective to describe how the

adaptation process is actually conducted (e.g., in works by Clark et al. [47] or Jeswani et al.

[48]). Thus, in order to reduce the amount of noisy papers, we have decided to do not consider

these terms for the search string of the SMS. Regarding the intervention, we have identified the

alternative terms: approach, method, framework, and technique. The search string has been

constructed using the terms and the Boolean OR and AND operators as we have done in Section

2.3.1.

 Literature resources identification

In order to identify primary studies, researchers can perform either automatic search through

the usage of scientific databases or manual search through gathering the studies from specific

known journals and conferences of the target field. Both approaches present advantages and

drawbacks. The most common way of searching is the automatic search, followed by the manual

search [35]. However, in this SMS, this was not possible since we were not able to identify any

relevant dedicated conference or journal in the specific field of adaptive monitoring (neither

before nor after conducting the data extraction process). For this reason, similarly to Petersen et

al. [35], we have decided to conduct an automatic search and complement it with a backward

snowball sampling of all studies selected after full-text reading.

In order to select the databases for conducting the automatic search, we have followed the same

criteria as in Section 2.3.1, since we have not found any other secondary study in the adaptive

monitoring topic for guiding the search. Thus, the databases used in the SMS are IEEE Xplore,

ACM, Scopus, and Inspect/Compendex (Engineering Village). As recommended by Petersen et

al. [35], we have used a tool for managing the references extracted from the databases and a tool

for recording extracted data. Concretely, we have used the reference management tool Mendeley

and the qualitative data analysis tool Atlas.ti® (www.atlasti.com).

 Study selection

In order to select the final set of studies, we have designed a study selection strategy that

consists of five stages (see Figure 3). Our strategy is an adaptation of the steps proposed by

Petersen et al. [35] and Kitchenham & Charters [36]. In Figure 3, we provide an overview of our

strategy and the number of papers resulting in each stage. Figure 3 also details the backward

snowballing process we have conducted in the last stage of our study selection strategy.

The exclusion of studies has been done based on titles and abstracts, as well as full-text reading.

In order to identify as many primary studies as possible, we have also added studies through

backward snowballing. The application of the inclusion and exclusion criteria has been

conducted by the applicant. Along the process, periodical meetings have been held with the rest

of the authors for discussing and refining the final set of included and excluded papers. The

following inclusion criteria have been applied to the studies:

Chapter II How to adapt

Towards adaptive monitoring for self-adaptive systems 25

 Studies present a solution (i.e., approach, method, framework, technique or others) for

supporting adaptive monitoring.

 Studies are in the fields of computer science or engineering.

 Studies were published until 2016.

Studies fulfilling the following criteria have been excluded:

 Studies are secondary studies.

 Studies present work in progress.

 Studies present non-peer reviewed material.

 Studies are not written in English.

 Studies are not accessible in full-text.

 Studies are books, books reviews, or grey literature.

Figure 3: Study selection strategy

Below, we provide the details of each of the stages of the study selection strategy shown in

Figure 3.

 Stage 1 - Automatic search. This stage corresponds to the automatic search on the digital

databases we have detailed before. In this stage, 990 primary studies have been identified.

Table 9 shows how many studies have been extracted per database (see column Search

results).

 Stage 2 - Automatic search with filters. After performing the automatic search, we have

applied a set of filters that some of the digital libraries offer for automatically excluding

studies that are not of our interest. The filters correspond to some of the inclusion/exclusion

criteria we have listed before in this section. Table 9 shows the filters we have used in each

database and the resulting number of articles after applying those filters (see column

Filtered search results). In this stage, 401 papers have been automatically discarded,

resulting in 589 primary studies.

 Stage 3 - Removal of duplicates. From the 589 papers identified in the previous stage, we

have automatically removed duplicated studies by using the reference manager Mendeley.

Chapter II How to adapt

Towards adaptive monitoring for self-adaptive systems 26

In addition, the applicant has manually reviewed the list of articles in order to identify

duplicated records (no detected by Mendeley). As a result, 253 articles have been excluded.

That is, after this stage we have ended up with 336 remaining primary studies.

 Stage 4 - Exclusion by title, abstract and full-text reading. In this stage, the applicant has

reviewed all the titles and abstracts and applied the inclusion and exclusion criteria for each

study. A paper has been taken to full-text reading when in doubt and discussed with the

thesis supervisors. The final set of included and excluded papers has been revised through a

series of periodic meetings. After this stage, 294 out of the 336 studies resulting from the

previous stage have been excluded, resulting in 42 remaining articles.

Table 9

Number of studies per database with filters applied.

Database Filters Search
results

Filtered search
results

IEEE No filters applied 95 95

ACM Exclude: 2017 85 84

Scopus Exclude: 2017
Limit to:

 Subject Area: Computer Science, Engineering

 Document Type: Conference paper, Article

 Language: English

440 238

Inspect/
Compendex

Exclude: 2017
Limit to:

 Classification code: Computer Software, Data
Handling and Applications, Computer Applications,
Control Systems, Digital Computers and Systems,
Computer Systems and Equipment, Automatic
Control Principles and Applications, Distributed
Systems Software, Software Engineering techniques

 Document type: Conference article, Journal article,
Conference proceeding

 Language: English

370 172

 Stage 5 - Backward snowballing. In order to identify as many primary studies as possible,

we have conducted a backward snowballing process organized into four iterations (see

Figure 3). The process’ start set has been composed of the articles that have resulted from

Stage 4 (42 articles). While iterating, relevant works have been identified from the reference

list of the articles. During the first iteration of the snowballing process, we have identified a

secondary study relevant to our SMS [45]. As we have explained in Section 2.3.1, this

secondary study surveys approaches supporting energy-efficient wireless sensor networks.

Due to the inclusion and exclusion criteria, this study has not been included in our final set

of articles. However, since we have identified that some of the surveyed approaches’

Chapter II How to adapt

Towards adaptive monitoring for self-adaptive systems 27

solutions involve the adaptation of the data gathering activity, we have considered this

secondary study when performing the backward snowballing process. That is, for the

second iteration we have included the relevant works identified in the reference list of this

secondary study.

Referenced works have been included based on the inclusion and exclusion criteria we have

previously defined in this section. Moreover, we have decided to exclude papers published

before 2000 (publication year of the oldest start set paper is 2001). Figure 3 shows the

number of papers that we have extracted during the process and that fulfill the inclusion

criteria (the secondary study mentioned before, identified in iteration 1, has been omitted in

the image for the sake of simplicity). As recommended by Wohlin [49], we have finished the

snowballing when no new papers fulfilling our criteria have been found. From this stage, 68

papers have been added to the start set, resulting in a final set of 110 relevant primary

studies to analyze in our SMS.

2.3.3. Data extraction and classification

In order to extract the data from the primary studies, we have used a qualitative data analysis

approach based on the method described by Miles et al. [37]. The qualitative data analysis tool

Atlas.ti® has been used for supporting this process and ensuring consistent and accurate

extraction of the key information related to the RQs. The extraction process has been performed

by the applicant, and reviewed and confirmed by the supervisors. Extracted data has been

discussed in a series of periodic meetings scheduled for this purpose. To extract data from the

primary studies, we have developed the template shown in Table 10. The qualitative analysis

has consisted of the following three steps:

 Data extraction preparation. In this step, the 110 primary studies included in our SMS

have been imported into a new Atlas.ti® project.

 First cycle coding. Codes are labels that assign symbolic meaning to the descriptive or

inferential information compiled during a study. They are primarily, but not exclusively,

used to retrieve and categorize similar data chunks so the researcher can quickly find, pull

out, and cluster the segments relating to a particular RQ, hypothesis, construct, or theme

[37]. In order to create the codes of our SMS, we have performed both deductive and

inductive coding. First, we have defined a start list of codes from the RQs, i.e., deductive

coding. Then, we have added codes that progressively emerged during the data extraction

process, i.e., inductive coding. Table 10 shows the information extracted from the primary

studies (i.e., data extraction forms) that we have used to define the codes.

 Second cycle coding (pattern codes). In this step, codes have been grouped into smaller

number of categories, themes, or constructs (i.e., pattern codes). Pattern codes are

explanatory or inferential codes that identify an emergent theme, configuration, or

explanation [37]. In Section 2.4, the pattern codes of this SMS are described in the RQs

where they have been identified.

Chapter II How to adapt

Towards adaptive monitoring for self-adaptive systems 28

The process has consisted of several iterations in which codes were added, modified, and

removed over time in order to ensure the validity and consistency of the results.

Table 10

Data extracted from primary studies

Data item

Full reference
Year of publication
Source (conference, journal, workshop)
Type of publication (academy, industry)
First author’s affiliation (organization and country)
Relation(s) with other primary studies of this SMS (references, references and extends, extends)
Term(s) used for referring to the data gathering activity adaptation
Definition(s), if any, of adaptive monitoring
Application domain(s), if any, where adaptive monitoring is applied
Type of main research contributions (algorithm(s), architecture) of the approach and its
generalizability level (problem-specific, domain-specific, generic)
Approach purpose of adapting the monitoring system
Monitoring system’s element(s) adaptation supported by the approach.
Approach adaptation process trigger(s).
Method(s), if any, used by the approach for analyzing relevant runtime data.
Method(s) used by the approach for (planning and) making the adaptation decision(s).
Type of adaptation decision enactment process supported by the approach (manual, semi-automatic,
automatic)
Type of adaptation executed by the approach for adapting the monitoring system (structural,
parameter)
Type of approach evaluation (experiment, industry use case), if any, and type of system in which the
evaluation is performed

2.3.4. Visualization

In order to present the findings of the study, we have used different kind of methods (e.g., tables

and charts) (see Section 2.4). The goal is to condense the major data for further analysis and to

represent and present the conclusions. Table 11 presents the variables that have been tabulated

and are used to answer the RQs.

2.3.5. Validity threats

For any empirical study the discussion of validity threats is of importance and is a quality

criterion for study selection [35]. This section presents the aspects of the research process that

might represent threats to validity and the actions performed to mitigate them. According to the

recommendations by Petersen et al. [35], the types of validity threats that should be taken into

account are: descriptive validity, theoretical validity, generalizability validity, interpretive

validity and repeatability.

Chapter II How to adapt

Towards adaptive monitoring for self-adaptive systems 29

Table 11

Data tabulated per research question

Data RQ

Terms related to adaptive monitoring RQ1.1

Number of studies per term related to adaptive monitoring RQ1.1

Year at which each term related to adaptive monitoring has been first and last used RQ1.1

Sources of adaptive monitoring definitions RQ1.2

Adaptive monitoring definitions RQ1.2

Number of studies per year RQ2.1

Number and percentage of studies per type of source and year RQ2.2

Number and percentage of studies per type of publication and year RQ2.3

Number and percentage of studies per continent and year RQ2.4

Number of studies per country RQ2.4

Studies per approach and research field RQ2.5

Adaptive monitoring application domains RQ2.5

Studies citation relation(s) with other studies of this SMS RQ2.5

Number and percentage of approaches per type of contribution and year RQ3.1

Number and percentage of approaches per generalizability level and year RQ3.2

Number and percentage of approaches per type of adaptation purpose and year RQ4.1

Number of approaches per combination of types of adaptation purposes (for most relevant
combinations)

RQ4.1

Number of approaches per adaptation purpose (for most relevant types) RQ4.1

Number and percentage of approaches per element adapted and year RQ4.2

Number of approaches per combination of elements adapted (for most relevant
combinations)

RQ4.2

Number and percentage of approaches per type of adaptation trigger and year RQ4.3

Number of approaches per combination of types of triggers (for most relevant
combinations)

RQ4.3

Number of approaches per adaptation trigger (for most important types) RQ4.3

Number and percentage of approaches per analysis method and year RQ4.4

Number of approaches per combination of analysis methods (for most relevant
combinations)

RQ4.4

Number and percentage of approaches per decision-making method and year RQ4.5

Number of approaches per combination of decision-making methods (for most relevant
combinations)

RQ4.5

Number and percentage of approaches per type of enactment and year RQ4.6

Number and percentage of approaches per type of adaptation executed and year RQ4.7

Number and percentage of approaches per type of evaluation and year RQ5.1

Number and percentage of approaches per type of system in which the evaluation is
performed and year

RQ5.2

 Descriptive validity

Descriptive validity is the extent to which observations are described accurately and objectively

[35]. In order to reduce this threat, we have designed a data extraction template for supporting

the recording of data. The template tries to objectify the data extraction process. The different

Chapter II How to adapt

Towards adaptive monitoring for self-adaptive systems 30

template items, in the form of codes, are linked to specific parts of the primary studies, so they

can be revisited when required, as it has been the case during the analysis. Constraining the

extraction process exclusively to the data contained in the publication itself objectifies the

observations; however, we must be aware that using this method, papers’ classification accuracy

may be affected in some cases. For instance, in this SMS, authors’ affiliation data corresponds to

the affiliation of authors at publication time. In this case, we are aware that results for the

geographic and orientation (industry or academic) classifications may differ if for instance

authors’ affiliation data at submission time would be considered instead.

 Theoretical validity

Theoretical validity is determined by our ability of being able to capture what we intend to

capture. Confounding factors such as biases and selection of subjects play an important role

[35]. In order to reduce this threat, first, in the study identification process we have

complemented the automatic search with backward snowballing of all studies. Then, since the

selection process has mainly been conducted by the applicant (biases may appear), we have

scheduled a set of periodic meetings for discussing and refining the final set of included and

excluded papers.

This study has been conducted during 2017 and written during end of 2017 and beginning of

2018. Hence, only studies from 2016 and earlier have been included in the analysis, which

implies that there is a risk that a recent paper may be missing. In spite of this limitation, we

consider our sample of primary studies a good representation since a total of 110 studies,

organized in different approaches proposed from different monitoring application domains,

were identified (see Figure 10). Furthermore, different types of publication venues are well

represented (see Figure 6). Finally, during the extraction process, codes have been created by

the applicant what could also affect the validity of this task. In order to reduce this threat, the

supervisors have assessed the extracted data. Though, given that this step involves human

judgment, the threat cannot be eliminated [35].

 Generalizability validity

There are two types of generalizability validity, internal and external [35]. Given that the

identified primary studies come from different monitoring application domains and research

fields, we consider internal generalizability not a major threat of this SMS. Regarding the

external generalizability, since the results of our SMS are within the scope of adaptive

monitoring and we do not attempt to generalize conclusions beyond this scope, validity threats

in this regard do not apply.

 Interpretive validity

Interpretive validity is achieved when the conclusions drawn are reasonable given the data, and

hence maps to conclusion validity [35]. In order to reduce this threat, the experienced

Chapter II How to adapt

Towards adaptive monitoring for self-adaptive systems 31

supervisors have revised insights obtained by the applicant and discussed with her possible

misunderstandings.

 Repeatability

The repeatability requires detailed reporting of the research process [35]. We have reported the

process that we have followed for conducting our SMS and described the actions taken to reduce

threats to validity. We have also helped repeatability by using existing guidelines for conducting

the review.

2.4 Results of the review

In this section, we address the RQs introduced in Table 8. With this goal, we summarize the

results obtained from the data extraction process. The data extracted from the studies and used

to address the RQs is available at [50].

2.4.1. RQ1. What is adaptive monitoring?

 RQ1.1 - What are the terms related to the term “adaptive monitoring”?

In order to answer this question, we have performed a first cycle coding (see Section 2.3.3)

using the In Vivo method defined by Miles et al. [37]. Next, we have categorized those codes

into different groups. We were looking for other terms used by the researchers for referring to

adaptive monitoring. We have found that 90 out of the 110 studies use other terms for referring

to adaptive monitoring. We have grouped these different terms into 33 categories. In order to do

that, we have identified terms that could be variants of a simpler term and put them into the

same group (e.g., Monitoring Reconfiguration, Reconfigurable Monitors, Self-configuring

Monitoring, Monitors Configuration, among other similar terms, can been grouped into a

category named Monitor Configuration). Some of the terms could not be grouped with others;

therefore, a category for each of them has been created.

In Figure 4, we present the most relevant categories (i.e., categories of terms mentioned in more

than one study) ordered by the total number of studies that mentioned them (number in

parenthesis). Categories composed by more than one term are marked with an asterisk. We

have included a category named Adaptive Monitor in which we grouped terms such Adaptive

Monitoring or Adaptive Monitors. Terms in the Adaptive Monitor category have been found in

41 out of the 110 studies of this SMS. Regarding the rest of terms, as it can be noticed, terms

grouped into the Monitor Configuration category are the most mentioned (17 papers) followed

by Adaptive Sampling (16 papers).

Chapter II How to adapt

Towards adaptive monitoring for self-adaptive systems 32

Figure 4: Categories of terms related to the term “adaptive monitoring”

present in more than one study over the years

In this RQ, we were also interested on studying the way in which these terms have been used

over the years. Thus, for each category, we have determined the year at which its terms have

been, first and last used. Figure 4 shows how some groups of terms are well established in the

community with a long life span (e.g., Adaptive Monitor, Monitor Configuration and Adaptive

Sampling) while others show some obsolescence (e.g., Active Probing) or even a spurious

momentum (e.g. Conditional Data Acquisition).

 RQ1.2 - Are there specific definitions of adaptive monitoring?

For answering this RQ, we have applied first cycle coding (see Section 2.3.3), restricted to the

Adaptive Monitor category introduced in RQ1.1. As a result, we have identified that in the

majority of the studies, there was no interest on defining the terms in the Adaptive Monitor

category but instead on describing how they are actually realized (e.g., adjusting a variable,

reconfiguring components). Specifically, we have found only 2 out of the 41 studies that actually

present a definition for the term Adaptive Monitoring. Both works are from the same authors

and the definition presented was the same as well. Concretely, authors define Adaptive

Monitoring as:

Chapter II How to adapt

Towards adaptive monitoring for self-adaptive systems 33

 “The ability an online monitoring function has to decide and to enforce, without

disruption, the adjustment of its behavior for maintaining its effectiveness, in

respect of the variations of both functional requirements and operational

constraints, and possibly for improving its efficiency according to self-

optimization objectives.”

 Moui et al. , A CIM-based Framework to Manage Monitoring Adaptability[51], Information

Models for Managing Monitoring Adaptation Engorcement [52]

2.4.2. RQ2. What are the demographic characteristics of the studies about

adaptive monitoring?

 RQ2.1 - When are the studies published?

To answer this RQ, we have also applied only first cycle coding (see Section 2.3.3). Concretely,

we have created a pre-defined list of codes deduced from the publication years we are

considering in this SMS (2000 to 2016). Figure 5 shows the number of studies published per

year.

Figure 5: Number of studies published per year

RQ2.2 - Where are the studies published?

For addressing this RQ, we have conducted an inductive first cycle coding (see Section 2.3.3),

using the In Vivo method [37] on the name of the sources. Then, we have classified the sources

by type: Conference, Journal, and Workshop. The distribution of the 110 primary studies

among these categories is shown in Figure 6a. According to our data, conference proceedings

(with 68 papers) are the most prevalent publication type. Figure 6b shows the percentage of

studies published in the different types of sources per year.

Chapter II How to adapt

Towards adaptive monitoring for self-adaptive systems 34

Figure 6: Number and percentage of studies per source type: (a) total, (b) over the years.

 RQ2.3 - How are publications distributed between academy and industry?

In order to answer this question, we have analyzed whether all authors of a study come from

academic institutions (similarly to the approach applied by Franco-Bedoya et al. [53]), and

applied first cycle coding (see Section 2.3.3). Figure 7a shows that 84 out of the 110 studies are

from Academy, while 26 out of the 110 studies have at least on author from Industry. From the

26 studies coded as Industry publications, we have found that 12 studies are exclusively

authored by researchers affiliated to industry. In Figure 7b, we provide an overview of the

percentage of Industry and Academy studies published per year.

 RQ2.4 - How are publications geographically distributed?

In a SMS, the geographical distribution of the studies allows researchers to identify which

continents (and countries) are making significant contributions to a specific research topic, and

which are leading in terms of research publications [54]–[56]. In this SMS, the geographical

data extracted from studies uncovers the locations of the main researchers interested on the

adaptive monitoring topic. In order to do so, we have conducted a first cycle coding (see Section

2.3.3) using the In Vivo method [37] on the whole affiliation information of the first author of

each study. Then, for the second cycle of coding (see Section 2.3.3), we have done two

iterations: first, we have categorized affiliations per country; second, we have grouped countries

by continents.

Chapter II How to adapt

Towards adaptive monitoring for self-adaptive systems 35

Figure 7: Number and percentage of industry and academy studies: (a) total, (b) over the years.

Figure 8: Number and percentage of studies published

per continent: (a) total, (b) over the years

Chapter II How to adapt

Towards adaptive monitoring for self-adaptive systems 36

In Figure 8a, we show the distribution of studies among the different continents. North America

(57 papers) and Europe (41 papers) are the most dominant continents. Figure 8b provides

information about the percentage of studies published in each continent by year. It can be

noticed that until 2010, studies were mainly published by institutions placed in North America.

Afterwards, Europe takes the lead. Finally, in Figure 9, we display how studies are

geographically distributed among the different countries. USA is by far the country with more

published studies (51 papers).

.

Figure 9: Number of studies published per country

 RQ2.5 – How are the studies organized into approaches for adaptive monitoring?

In order to organize the studies into approaches, we have determined, based on the list of

authors and full-text reading of the articles, which studies were extended by other studies (i.e.,

belong to the same approach according to our interpretation). We have conducted a first cycle

coding (see Section 2.3.3), creating a network of the 110 primary studies, using Atlas.ti® in

which we indicate which studies reference and extend, or are extended by (but not referenced

by), other studies. As a result, 81 approaches have been identified, 64 composed of only 1 study

and 17 consisting of more than one. In Figure 10, we represent the 110 studies by small circles.

We have assigned to each circle a resource identifier (extracted from the list of references

provided in Appendix A1). The studies that are part of the same approach have been grouped

into bigger circles (circles numbered from 1-17 in Figure 10).

During the analysis, we have also extracted the citation information among the studies of the

SMS. In Figure 10, this information is shown in the form of arrows. Some of the studies had not

citation relation with other studies of the systematic mapping. In Figure 10, these studies were

grouped into the rectangle placed at the bottom of the figure. Once placed, we have classified the

studies in different abstract topics or research fields that predominated on each cluster. The

categories are shown in Figure 10 in the form of circles tagged with the topic or field name. The

Chapter II How to adapt

Towards adaptive monitoring for self-adaptive systems 37

rectangle containing the studies without citation relation has been tagged as Various (since

those studies are cross-domain).

Figure 10: Studies organized by citing information in approaches and research fields

Finally, we have further analyzed the studies in order to identify the application domains where

adaptive monitoring is applied. Not all the studies provide examples of applications and there

are studies that provide more than one example. In order to extract the data from studies, we

have conducted both types of coding (see Section 2.3.3). First, using the In Vivo method [37],

we have coded all the application examples found in the studies. Then, we have grouped similar

applications into application domains. In total, 27 categories for application domains have been

identified (see Figure 11). In Figure 11, we have organized the domain categories by the

number of application examples provided by studies (number in parenthesis). As it can be

Chapter II How to adapt

Towards adaptive monitoring for self-adaptive systems 38

noticed, the Web applications monitoring domain (from the Service-based systems field) is the

most popular, followed by the Object tracking application domain (normally realized by sensor

networks).

Figure 11: Application domains in which adaptive monitoring is applied by the studies

2.4.3. RQ3. What is proposed by adaptive monitoring approaches?

Given their more profound intent, the research questions RQ3, RQ4 and RQ5, have been

analyzed considering the 81 approaches instead of the individual papers. For the 17 approaches

composed by more than one study, we have mainly based the analysis on either the latest

published study of the set or the most complete version (e.g., journal publications may provide

more details than conference proceedings). Occasionally, we have revised other studies of the set

to clarify unclear issues. It is worth remarking that, when visualizing the approaches by year, we

have used the year of the last contribution, i.e., the study of the set with the latest publication

date. Finally, in order to focus on trends when further exploring second cycle categories (when

applicable), we calculate the average number of approaches per category in each research sub-

question and focus on categories present in a total number of approaches above this average.

 RQ3.1 - What type of contributions are presented?

Based on the type of proposals presented by the studied approaches, we have derived the codes:

Algorithm(s)-only and Algorithm(s) and architecture with which we have conducted a first cycle

coding (see Section 2.3.3). Figure 12a shows that the contributions of 42 approaches are of the

Chapter II How to adapt

Towards adaptive monitoring for self-adaptive systems 39

type Algorithm(s) and architecture while the contributions of 39 approaches are Algorithm(s)-

only. In Figure 12b, we condense the information about the percentage of published approaches

per type of contribution over the years.

Figure 12: Number and percentage of approaches

per type of contribution: (a) total, (b) over the years

 RQ3.2 - How generic are the solutions presented?

For answering this question, we have classified approaches’ solutions in three main types:

Problem-specific, Domain-specific, and Generic. Problem-specific solutions correspond to

approaches that try to solve a specific problem in a specific domain, e.g., an algorithm for

adapting the path of mobile sensors in order to improve monitoring precision when supervising

water quality. Domain-specific solutions are considered for approaches supporting adaptive

monitoring in a specific domain but without constraining the solution to a specific problem, e.g.,

an approach for supporting monitoring rules adaptation in WS-BPEL processes through

dynamic weaving. Finally, the Generic category corresponds to solutions that can be applied in

any domain, e.g., a threshold-based solution for changing monitoring systems’ sampling rate.

We have conducted a first cycle coding (see Section 2.3.3), and as a result, we have found 64

approaches proposing Problem-specific solutions, 14 providing Domain-specific solutions and

3 presenting Generic ones (see Figure 13a). Figure 13b shows the percentage of approaches per

Chapter II How to adapt

Towards adaptive monitoring for self-adaptive systems 40

type of solution over the years. As it can be noticed, most of the Domain-specific solutions

belong to approaches with contributions published after 2007.

Figure 13: Number and percentage of approaches

per type of solution: (a) total, (b) over the years

2.4.4. RQ4. How adaptive monitoring is conducted by the approaches?

 RQ4.1 - What is the purpose of adaptation?

To answer this RQ, we have first derived from the approaches all the different adaptation

purposes in the form of descriptive codes, i.e., inductive first cycle coding (see Section 2.3.3).

Then, we have classified these purposes into different types. Figure 14a shows the number of

approaches motivated by the different types of purposes. The most popular type is Solve a

trade-off (42 approaches). There are some approaches motivated by two types of purposes;

however, except for one pair of purposes that was used by two approaches (Provide adaptation

capabilities and Respond to changes) each combination of purposes was used just by one

approach. In Figure 14b, the percentage of approaches per type of purpose is displayed by year.

This figure shows that Solve a trade-off has motivated approaches for a long timespan (from

2001 to 2016).

Chapter II How to adapt

Towards adaptive monitoring for self-adaptive systems 41

The average amount of approaches per type of purpose is 14,17. As it can be noticed, Solve a

trade-off type of purpose is by far above this average, thus we further explore it. This type of

purpose is composed of 14 different trade-offs, here we focus in the most relevant ones, i.e.,

trade-offs motivating more than one approach. From the most to the least popular:

 Improve the understanding about the SuM while Reducing the overhead associated with

monitoring (14 approaches)

 Improve the understanding about the SuM while Reducing the energy consumption (9

approaches)

 Improve monitoring data accuracy while Reducing the overhead associated with

monitoring (6 approaches)

 Improve monitoring data accuracy while Not exceeding available resources (2

approaches)

 Improve monitoring coverage while Reducing energy consumption (2 approaches)

Figure 14: Number and percentage of approaches

per type of adaptation purpose: (a) total, (b) over the years

Chapter II How to adapt

Towards adaptive monitoring for self-adaptive systems 42

 RQ4.2 - What is adapted?

In order to address this question, we have derived codes that describe what is adapted by

existing approaches during the data extraction process, i.e., we have conducted inductive first

cycle coding (see Section 2.3.3). Figure 15a shows the aspects that existing approaches adapt

and the number of approaches that support the adaptation of each aspect. In Figure 15b, we

provide the percentage of approaches per year that support the adaptation of a specific aspect.

As it can be noticed, the most adapted aspects are the Sampling points (37 approaches) and the

Sampling rate (25 approaches). Moreover, the relevance of the adaptation of these aspects over

the years is evident, particularly for the Sampling points (present from 2000 to 2016 except for

2008).

Some of the approaches support the adaptation of more than one aspect. From the most to the

least popular, the most relevant combinations of elements supported by existing approaches,

i.e., combinations supported by more than one approach, are: Metrics to monitor and Sampling

points (4 approaches) and Metrics to monitor and Sampling rate (2 approaches).

Figure 15: Number and percentage of approaches

per element adapted: (a) total, (b) over the years

Chapter II How to adapt

Towards adaptive monitoring for self-adaptive systems 43

 RQ4.3 - What triggers adaptation?

For answering this question, we have applied both cycles of coding (Section 2.3.3). First, we

have derived a set of codes for describing the different triggers we have found in existing

approaches. Then, we have grouped them by type. In Figure 16a, the number of approaches per

type of trigger is presented while Figure 16b shows the percentage of approaches per trigger

type over the years. A Suspected problem is the most common factor that triggers adaptation in

existing approaches (28 approaches); the relevance of this type of trigger is corroborated by its

long and continuous presence in approaches over the years (from 2001 to 2016 with just two

years of absence, 2002 and 2014). Some of the approaches use more than one type of factor for

triggering the monitoring adaptation process. The most relevant combinations of types of

triggers we have found, i.e., combinations used by more than one approach, are: Suspected

problem and Time (2 approaches) and SuM or monitoring system changes and Monitoring

requirements changes (2 approaches).

Figure 16: Number and percentage of approaches

per type of adaptation trigger: (a) total, (b) over the years

According to data shown in Figure 16a, the average amount of approaches per type of trigger is

14,67. Thus, we further explore the Suspected problem and SuM or monitoring system changes

Chapter II How to adapt

Towards adaptive monitoring for self-adaptive systems 44

types. Suspect problem type of trigger is composed of 7 triggers, the most relevant, i.e., triggers

present in more than one approach, from the most to the least popular:

 Monitoring system component anomaly (11 approaches)

 Requirement or constraint violation (5 approaches)

 Requirement or constraint likely to be violated (4 approaches)

 SuM component anomaly (3 approaches)

 SuM component likely to present an anomaly (2 approaches)

 Likely environmental problem (2 approaches)

Anomalies in systems’ components include faults. On the other hand, the SuM or monitoring

system changes category is composed of 4 triggers, from most to less popular:

 SuM state changes (16 approaches)

 SuM components de/activation (4 approaches)

 Monitoring system components addition/removal (2 approaches)

 Execution context changes (2 approaches)

Thus, in conclusion a change in the SuM state is the most popular trigger.

 RQ4.4 - How is analysis performed?

To answer this question, we have conducted an inductive first cycle coding for identifying

analysis solutions, and then a second cycle coding for grouping them by type (see Section 2.3.3).

Categories for grouping approaches that do not perform analysis or do not provide details about

how it is performed have also been created. Figure 17a shows the categories created as well as

the number of approaches per category. As it can be noticed, most of the approaches use a

specially designed Algorithm for conducting the analysis task (28 approaches) followed by

solutions that use Probability/Statistics (22 approaches).

Figure 17b provides the details about the percentage of approaches using specific types of

analysis per year. In this figure, the relevance of the Algorithm category is corroborated since

this type of analysis is present every year from 2001 to 2016. During the data extraction

process, we have found that this type of analysis is combined with Probability/Statistics by two

approaches. Other combinations, e.g., Human analysis and Probability/Statistics, have been

also identified; however, since they were used only by one approach each, they have not been

considered relevant for the purposes of this SMS (i.e., finding trends). For the same reason, we

have no further decomposed the most relevant categories (i.e., Algorithm and

Probability/Statistics); every analysis solution in these categories is unique which do not

provide information relevant for finding trends.

Chapter II How to adapt

Towards adaptive monitoring for self-adaptive systems 45

Figure 17: Number and percentage of approaches per analysis type: (a) total, (b) over the years

 R4.5 - How adaptation decisions are made?

For addressing this question, we have derived codes based on the type of criterion used by

existing approaches for making adaptation decisions, i.e., inductive first cycle coding (see

Section 2.3.3). Resulting codes are shown in Figure 18a. Polices is the most used type of

criterion for conducting the decision-making process in existing approaches (49 approaches). In

Figure 18b, we provide an overview of the percentage of approaches using the different types of

decision-making criteria over the years. This figure show clearly that Policies have played an

important role in decision-making processes since, apart from being the most used type of

criterion, they have been utilized by approaches since 2000 till 2016 (except for 2009). Policies

have also been combined in existing approaches with the other types of decision-making

criteria. Concretely, four approaches have combined them with Human decision, three with

Rules, and two with an Objective function. We have not found any combination that does not

involve Policies.

 RQ4.6 - How adaptation decisions are enacted in the monitoring system?

Three codes for describing the type of enactment process have been derived from existing

approaches in order to answer this question: Automatic, Semi-automatic, and Manual (see

Figure 19). Automatic enactment has been assigned to the approaches that perform the

Chapter II How to adapt

Towards adaptive monitoring for self-adaptive systems 46

adaptation of the monitoring system without any human intervention. Semi-automatic is

assigned to the approaches that require human intervention at some degree, for instance,

approaches requesting human approval before enacting adaptations. Finally, Manual

enactment corresponds to approaches in which the enactment of the adaptations is completely

performed by humans.

Figure 18: Number and percentage of approaches

per decision-making type: (a) total, (b) over the years

Figure 19a shows the distribution of approaches among the different types, resulting from a first

cycle coding (see Section 2.3.3). The percentage of approaches using the different types of

enactment per year is shown in Figure 19b. Automatic is by far the type of enactment most used

by existing approaches (70 approaches published between 2000 and 2016). During the data

extraction, we have identified four approaches that support both Automatic and Manual

enactment.

 RQ4.7 - What type of adaptation is executed?

For addressing this RQ, we have considered two codes that describe two different types of

adaptation: Structural and Parameter (see Figure 20). The first one refers to changes in the

structure of the monitoring system, such as the exchange of components or a new composition

of components [2]. The second one refers to changes in the monitoring system’s parameters,

such as the change of the sampling rate or the change of the list of metrics to monitor [2]. Using

these codes, we have conducted a first cycle coding (see Section 2.3.3).

Chapter II How to adapt

Towards adaptive monitoring for self-adaptive systems 47

Figure 19: Number and percentage of approaches per enactment type:

(a) total, (b) over the years

Figure 20: Number and percentage of approaches

per type of adaptation executed: (a) total, (b) over the years

Chapter II How to adapt

Towards adaptive monitoring for self-adaptive systems 48

Figure 20a shows that in existing approaches most of the adaptation decisions have been

translated into Structural monitoring systems’ changes (45 approaches). From the extracted

data, we have identified three approaches that support both types of adaptations. In Figure 20b,

we provide an overview of the percentage of approaches per type of adaptation over the years.

2.4.5. RQ5. How adaptive monitoring approaches are evaluated?

 RQ5.1 - What type of evaluation is performed?

To address this question, we have derived a set of codes based on the types of evaluation we have

found in existing approaches, if any, and conducted a first cycle coding (see Section 2.3.3). The

resulting codes are: Experimentation, Industry use case and No evaluation (see Figure 21). We

have assigned the Experimentation code to approaches conducting their evaluation in simulated

systems. The Industry use case code has been assigned to approaches conducting their

evaluation in real systems, both in controlled and production environments. Approaches

presenting theoretical examples or no evaluation, where grouped into the No evaluation

category.

Figure 21: Number and percentage of approaches per evaluation type:

(a) total, (b) over the years

Chapter II How to adapt

Towards adaptive monitoring for self-adaptive systems 49

In Figure 21a, we provide the information about the number of approaches per type of

evaluation. Experimentation has been the most used method for evaluating existing approaches

(59 approaches). Information about how the different types of evaluation have been used over

the years by existing approaches is displayed in Figure 21b. Experimentation and Industry use

case have been present over long timespans (2000 to 2016 for Experimentation and 2001 to

2016 for Industry use case). We have not found approaches utilizing more than one type of

evaluation.

 RQ5.2 - In which type of systems is the evaluation performed?

For answering this question, codes describing the different types of systems in which

approaches are evaluated have been progressively added during the data extraction process, i.e.,

we have applied inductive first cycle coding (see Section 2.3.3). Figure 22a shows the number of

approaches per system type (approaches not evaluated have been grouped into a No evaluation

code).

Figure 22: Number and percentage of approaches per type of system

in which the evaluation is performed: (a) total, (b) over the years

Chapter II How to adapt

Towards adaptive monitoring for self-adaptive systems 50

The most common types are: Sensor networks (composed of non-mobile sensors) present in 18

approaches, Service/component-based systems utilized by 17 approaches and Networks used

for evaluating 14 approaches. Figure 22b shows the percentage of approaches evaluated in a

specific type of system per year. According to this figure, most of the approaches evaluated in

Sensor networks were published before 2008, while a wave of approaches performing

evaluation in Service/component-based systems has been experienced after 2009. Evaluation in

Networks cannot be characterized based on this figure. We have identified only one approach

that has been evaluated in more than one type of system (Sensor networks and Clouds/Grids).

2.5 Discussion

In this section, we apply Data Mining techniques to the resulting codes of Section 2.4 in order to

find further insights about the current state of the art of adaptive monitoring approaches. We are

interested on identifying patterns in the approaches that cannot be easily determined by

traditional analysis techniques, such the ones used in Section 2.4. Moreover, we analyze the

results and discuss our findings for each research question.

2.5.1. Data Mining

Data Mining refers to the process of applying Machine Learning algorithms to data sets in order

to discover patterns within the data. It is useful when human analysis is not feasible (e.g., very

large amounts of data or high-dimensional data) and/or patterns are non-obvious. In literature

reviews, Data Mining has been applied, for instance, in the form of text mining for supporting

the study selection process [57]–[60]. In this SMS, we use Data Mining techniques for

identifying patterns among the demographic characteristics of existing approaches (RQ2 of this

SMS), the ways they present and conduct adaptive monitoring (RQ3, RQ4 of this SMS) as well

as the evaluation processes (RQ5 of this SMS).

As we have mentioned before, in order to perform the Data Mining analysis, we have defined a

set of variables based on the codes extracted in Section 2.4. The complete list of variables used is

provided in Appendix A2 (Table A2-1). For conducting the analysis, we have used the rule-

based JRip algorithm [38], [39] and the Waikato Machine Learning tool (Weka) [40]. In order

to select the Data Mining algorithm, we have considered three main factors:

 Type of data. The data to be mined are the codes resulting from the answers to this SMS

RQs. That is, for each RQ there is a list of discrete possible values. This type of data is

known as nominal data and the most intuitive method to mine this kind of data is

classification.

 Algorithm complexity and results comprehensibility. Among the available classifiers in

Weka, we can find networks, decision trees, and rule-based classifiers. Networks are

very well known by their complexity in terms of both computation and time required.

Moreover, their classification results are less comprehensible (from a human point of

Chapter II How to adapt

Towards adaptive monitoring for self-adaptive systems 51

view) given the increased complexity of their models. Decision trees, on the other hand,

are simpler classifiers that provide easy to comprehend classification results (in the form

of trees). However, decision trees should be further processed in order to summarize the

relations between variables in a more descriptive way (which is required in our case).

Finally, rule-based classifiers, such the JRip, are very simple classifiers that provide easy

to comprehend and easy to present classification results (in the form of descriptive rules)

[61].

 Experience. In some works that will be presented later in this thesis [7], [22], we have

applied the rule-based JRip algorithm for different purposes. From our experience, this

algorithm performs well with small data sets and the resulting classification rules are

easy for us to read, understand, and trace to the mined data set.

We have run a classification for each variable, using the variable in turn as the class attribute of

that run and the rest of variables as predictors. All resulting classifiers were evaluated using

stratified 10-fold cross validation. The performance metrics produced for each classifier in Weka

and that are averaged using the cross validation, include precision, recall and f-measure [40].

From each run, we have tabulated the classifier’s resulting rules and the values of the

performance metrics mentioned before.

In Appendix A2 (see Figure A2-1), we provide an overview of the performance metrics’ values

obtained for the classifier of each variable. The closer the values are to 1.0, the better the

performance of the classifier. The criteria for deciding whether a classifier is good enough

depend on the specific use case. In our case, we have not precedents for establishing criteria

since we have not found any other review applying Data Mining to RQs answers for finding

patterns. Thus, we have decided to consider classifiers with precision, recall, and f-measure

greater than or equal to 0.9. As a result, classifiers for 17 out of the 47 analyzed variables were

considered relevant. In Appendix A2 (Table A2-2), the list of rules that compose these 17

relevant classifiers is provided. In the rest of this section, we discuss the results we have

obtained in Section 2.4 and complement the analysis with the cross-question patterns found.

2.5.2. Analysis of results

 RQ1. What is adaptive monitoring?

The diversity of research fields from which studies of our SMS have emerged, has certainly

contributed to the diversification of the vocabulary used for referring to adaptive monitoring.

This phenomenon can be clearly seen in Figure 4, in which we have presented the different

terms categories utilized by 81,81% of the studies as alternatives to the term “adaptive

monitoring”. Most of these terms are domain-specific and in consequence cannot be reutilized

in all the research fields.

Chapter II How to adapt

Towards adaptive monitoring for self-adaptive systems 52

One of the objectives of this study was to find a generic definition for the term “adaptive

monitoring”. In Section 2.4, we have looked for definitions in the studies of our SMS. As a

result, we have found only one definition. Moreover, this definition is not complete and generic

enough for being applied to the different realizations of adaptive monitoring we have found in

this review, e.g., monitoring systems composition’s adaptation based on SuM state changes,

could not be covered with this definition.

In order to achieve our objective, we have adjusted the definition proposed by Moui et al. [51],

[52] and created a generic definition for the term “adaptive monitoring”:

“Adaptive monitoring is the ability a monitoring system has to modify its

structure and/or behavior in order to respond to internal and external stimuli

such changes in their execution context, functional and non-functional

requirements, systems under monitoring or the monitoring system itself”

 Zavala et al., Adaptive Monitoring: A Systematic Mapping [18]

In this definition, all monitoring systems are treated equally (sensor networks, component-

based software monitoring systems, instrumentation systems, etc.) which is beneficial for later

standardizing other concepts applicable to all high-level monitoring systems as well, e.g.,

monitoring frequency adaptation. Moreover, unlike the definition proposed by Moui et al. [51],

[52] which only consider the adjustment of behavioral aspects, in this definition adaptation is

understood as changes in the monitoring system behavior as well as in its structure. Finally, the

possible triggers of the adaptation process are not constrained in our definition, as they are in

the one provided by Moui et al.

 RQ2. What are the demographic characteristics of the studies about adaptive

monitoring?

The adaptation of monitoring systems is a lively research area with studies published every year

from 2000 to 2016 (see Figure 5). However, it is remarkable that, if we take 3-year windows,

the last period (2014-2016) is the one with fewer contributions (excluding the first period

2000-2002, when the topic was formulated). Interpretation of these trends needs always to be

careful. On the one hand, the third period with fewer contributions was 2008-2010 but only a

2-year shift (2010-2012) yields to the most populated window. On the other hand, the advent

of domains like Internet of Things (IoT), smart vehicles, etc., where self-adaptation and in

relation to it, adaptive monitoring, is crucial, it may be expected a growth of contributions.

In terms of venue, most of the published papers in this topic have appeared in conference

proceedings (see Figure 6); the percentage is very close to the average of 25.9% reported by

Ameller et al. [62] from a sample of 14 systematic mappings in software engineering. On the

other hand, we have not found any dominant venue in any of the categories. For instance, the

conference with more publications is the International Conference on Network and Service

Chapter II How to adapt

Towards adaptive monitoring for self-adaptive systems 53

Management (CNSM) with 4 out of the 68 conference papers. In our opinion, this situation is

due to the diversity of research fields in which adaptive monitoring is present. That is, papers

are mainly published in venues specialized in the research field they belong to. This fact

contributes to the isolation of solutions per research field and in some cases even per research

communities. The need of venues in which the adaptive monitoring topic is central per se and

research from different fields could be found and compared would help to promote this area.

From the type of publication perspective (see Figure 7), it is not surprising that the majority of

the papers are from Academy (academics usually are more motivated to submit papers to

conferences and journals [53]); however, the number of papers with authors affiliated to

Industry indicates that adaptive monitoring is a topic of interest of practitioners as well.

Moreover, this interest has been present almost every year considered in this review (see Figure

7b).

In this RQ, we have also explored how studies are distributed geographically. We have found

that authors of North American and European organizations are the most active researchers in

the adaptive monitoring topic (see Figure 8). This phenomenon could be explained by the

numerous grants and research and innovation programs, often mentioned in the

acknowledgements of the studies (e.g., the National Science Foundation and the European

Community’s 7th Framework Programme), funded by different organizations in these

geographical areas. Regarding the geo-temporal distribution, from 2010 publications from

North American organizations have dramatically decreased, 82,46% of their studies have been

published before 2010 (see Figure 8b). The opposite effect has happened to European

organizations’ amount of publications. From this observation, we expect more European

contributions in the next years in this topic than North American. Even though, USA, which is

the main contributor in North America, is by far the country with most published papers (see

Figure 9). Although this is the usual situation in Computing Science as reported by Ruiz [63],

the difference is much greater (26.4% of the publications are from USA in this SMS). We do not

expect others countries to reach the same amount of publications in the short-term.

Finally, we have analyzed how studies are organized in approaches. As a result, we have

identified many different approaches (see Figure 10). The most prominent ones (approaches

with more contributions) are from the Networks monitoring and the Monitoring systems (in

general) research fields. While, studies composing the approach for Networks monitoring do

not have interaction with studies of other fields (derived from citation data), the studies of the

approach for supporting adaptation of Monitoring systems (in general) interact with studies of

Networks monitoring as well as Service-based systems monitoring fields. This can be explained

by the difference in the scopes of the approaches, i.e., while the first one tries to improve

networks monitoring through adaptation, the second one aims at enabling adaptation

capabilities in any type of monitoring system (e.g., networks or service-based systems).

In general, studies do not tend to reference studies of others research fields. The lack of

interaction between the research communities, shown above in the venues’ analysis, could be

Chapter II How to adapt

Towards adaptive monitoring for self-adaptive systems 54

the cause of this phenomenon. For finalizing the demographic analysis of studies, we have

identified the application-domains where adaptive monitoring is applied. As we have foreseen,

the adaptive monitoring topic has a wide range of applications (27 were found in the studies of

this review). Regarding the application of Data Mining in the codes of this question, no relevant

classifiers have been found.

 RQ3. What is proposed by the approaches?

The distribution of approaches between the two types of contributions identified is quite even

(see Figure 12). However, it can be noticed in Figure 12b that approaches that present

algorithms supported by architectural proposals have been more and more proposed in the last

years. The opposite happens to approaches contributing with only algorithms. This

phenomenon could be explained by the increasing need, in the last years, of monitoring systems’

owners to provide formal solutions to the adaptation problem in order to support adaptive

monitoring in complex domains such cloud-based applications, smart cities, etc. where isolated

algorithms are not enough. Regarding the generalizability level of the solutions (see Figure 13),

the majority is Problem-specific and cannot be reutilized or extended for dealing with other

issues or supporting other adaptation functionalities. However, this type of solutions in some

cases could be aggregated for instance, in order to solve a group of problems in a specific

domain.

A concrete example of aggregation could be an approach that combines the context-aware e-

health monitoring proposal of Mshali et al. [32] with a re-configurable service-based monitoring

system infrastructure (e.g., Villegas et al. [64]) for supporting an energy-efficient monitoring

system that can incorporate new sensors at runtime. Regarding the few Generic solutions we

have found, unfortunately, they are all algorithmic solutions, not complete enough for providing

a unified software engineering solution to current adaptive monitoring systems of the different

research fields. The predominance of problem-specific solutions over generic ones can be

explained by the lack of visibility of the adaptive monitoring contributions. Finally, when

applying Data Mining to the codes derived in this RQ, no relevant classifiers have been found.

 RQ4. How adaptive monitoring is conducted by the approaches?

Unlike in previous RQs, relevant classifiers have been found for at least one code of each

research sub-question of this SMS RQ (see Table A2-2 in Appendix A2). As we have mentioned

before, classifiers are cross-question, this means that the resulting rules relate answers of one

sub-question with the answers of the rest of sub-questions (including sub-questions of other

RQs of this SMS). This allows us to identify cross-findings above the different RQs. For

research sub-questions where answers’ codes are not exclusive, e.g., in RQ4.1 more than one

purpose could motivate an approach, relations between codes of the same sub-question were

also mined.

Chapter II How to adapt

Towards adaptive monitoring for self-adaptive systems 55

The first rule found has been for the adaptation purposes, we have found that Satisfying

system’s goals is a purpose very unlikely to find in existing approaches (pattern that can also be

visualized in Figure 14). We have also found that Solve a trade-off purpose do not usually

motivate approaches in conjunction with other purposes (pattern expectable since in case of

appearing in the same approach, purposes would form part of the trade-off). Apart from the

patterns, we have noticed that after 2009 the variety of purposes considered by approaches has

increased (see Figure 14b). This can be explained by the increasing diversity of applications,

users’ needs, and execution contexts identified for software systems, in the last years. We expect

more and more varied factors motivating adaptive monitoring to emerge in the short-term.

Regarding what is adapted, a classifier confirming what is shown in Figure 15, regarding the

unlikeliness of finding an approach adapting the monitor operation, has resulted. We have also

found a classifier that positively relates Monitoring system composition adaptation to Structural

changes and negatively the last one with Sampling rate adaptation. This makes sense since one

can expect Structural changes when re-composition is required and a Parameter changes when

the adaptation is of a variable such the Sampling rate. For the adaptation triggers, we have

found a classifier that corroborates that SuM or monitoring system changes type of trigger is not

combined with other types apart from Monitoring requirements changes. Another classifier

relates positively Open triggers with Human analysis, which is reasonable considering that in

most of the approaches Open triggers represent humans making the decision, by any reason, of

triggering the adaptation process. From the chronological data shown in Figure 15b and Figure

14b, we have not found relevant information.

A strong positive relation has been found between Human analysis and Human decision codes

(two classifiers relate them; see Table A2-2 in Appendix A2); particularly, in cases when

adaptations are executed manually. Regarding the decision-making criteria, a second classifier

for Policies has resulted, the pattern indicates that in general approaches do not combine

Policies with Objective functions or Rules for making decision and that in most of the cases

decisions made using Policies are execute automatically. Specifically, the relation of Policies with

Automatic enactment makes sense since systems’ owner usually design policies for being

evaluated and executed automatically and in this way reduce the need of human intervention.

Finally, we would like to remark that in general, analysis solutions are developed in an ad-hoc

manner while decision-making methods are reutilized by different approaches.

For the types of enactment, we have found a classifier that positively relates Manual enactment

with Human decision criteria, a second one that negatively relates Human analysis with

Automatic enactment, and a third one that indicates that Semi-automatic enactment is not

usually supported together with the other two types. Given the relations we have found, we can

say that approaches in which the adaptation process is started by humans tend to position the

whole process in a human-driven manner (i.e., analysis, decision-making and enactment are not

automatized). Regarding the chronological information (see Figure 19b), it can be noticed that

the involvement of humans in the adaptation process has been retaken after 2009. This is

Chapter II How to adapt

Towards adaptive monitoring for self-adaptive systems 56

aligned with the need identified by Cheng et al. [65] and ratified by Krupitzer et al. [2] of

considering the users in the adaptation process to ensure their trustiness. However, this

participation should be kept as less intrusive as possible so that the automatic adaptation

process performance is not affected. Finally, for Structural and Parameter adaptation, we have

found that in general they are not both supported by a single approach, i.e., there is a negative

relation between them.

 RQ5. How adaptive monitoring approaches are evaluated?

The distribution of the usage of the different evaluation types over the years is almost the same

for all the types. However, Experimentation is by far the most used, which is normally the case

on scientific papers. Regarding the types of systems in which these evaluations take place, we

have found a classifier that indicates that approaches evaluated in Mobile sensors are usually

found in academic papers and use objective functions as decision-making criterion.

Furthermore, those approaches do not tend to trigger adaptations periodically but instead use

specific triggers. Particularly, the relation between the type of system and the decision-making

criterion makes sense since approaches for Mobile sensors in many cases try to solve a trade-off

(e.g., distance traveled vs phenomenon understanding) which is usually translated into an

objective function. From the chronological perspective, in Figure 22b, it can be noticed that

Sensor networks popularity has dramatically decreased after 2007 (83,33% of approaches using

Sensor networks for evaluating their solutions have been published from 2000 to 2007). On the

other hand, evaluations in Clouds/Grids have suffered the inverse phenomenon (88.88% of

approaches have been published after 2007). This can be explained by the emergence of more

and more applications for Clouds and Grids in the last years, such the already mentioned IoT.

The last classifier that has resulted from the Data Mining analysis (see Table A2-2 in Appendix

A2) does not represent any new insight regarding our understanding about how approaches are

evaluated. Instead, it confirms that our coding mechanism is correct, i.e., we expected to find a

No evaluation code for the type of system in all the approaches coded with No evaluation code

as type of evaluation. From the literature reviews’ point of view, this kind of rules could be

beneficial during the data extraction process for checking the correctness of codes assignation

and reducing the probability of misunderstandings. Although more experiments with different

Data Mining techniques should be performed, the results obtained in this work, regarding the

application of Data Mining to qualitative analysis codes, are promising. We have been able to

extract meaningful insights, find hidden relations, and analyze review results among different

RQs. Moreover, Data Mining has demonstrated to be useful for checking the correctness of the

review method’s implementation.

To sum up, this SMS has pointed out the lack of generalizability and completeness of current

approaches for supporting adaptive monitoring, starting with the lack of a definition for the

adaptive monitoring term. We have determined, that most of the current approaches

supporting adaptive monitoring focus on solving specific problems producing problem-specific

Chapter II How to adapt

Towards adaptive monitoring for self-adaptive systems 57

solutions. Moreover, most of current approaches do not support the whole life cycle of adaptive

monitoring software systems, i.e., from their design to their deployment, as well as their

maintenance. As a first step, we have provided a generic definition for adaptive monitoring. In

order to construct our definition, we have taken into account our findings about how current

approaches conduct the adaption of monitoring systems, i.e., the different types of adaptations

supported, triggers, types of monitoring systems and SuM, etc. The generic definition of

adaptive monitoring contributed by this thesis RQ, is taken into account for designing our

architectural solution for supporting adaptive monitoring in SASs (i.e., contribution of RQ3 of

this thesis).

Towards adaptive monitoring for self-adaptive systems 58

III

How to improve

Study on SASs’ self-improvement

Modern software systems are expected to operate under uncertain conditions, without

interruption. Possible causes of uncertainties include changes in the operational environment,

dynamics in the availability of resources, and variations of user goals. The aim of self-adaptation

it to let the system monitor itself and based on its goals reconfigure or adjust itself to satisfy the

changing conditions, or if necessary degrade gracefully [66]. Examples of modern systems

adopting self-adaptation capabilities go from small-scale smartphones and laptops to large-scale

systems-of-systems (SoS) like smart vehicles, production facilities, or data centers [16].

Although, many initiatives have emerged for supporting SASs in the last decades, only recently

the first attempts to establish suitable software engineering approaches for the provision of self-

adaptation have been made [1]. Thus, many research challenges remain open in this field.

The basis of SASs’ self-adaptation ability is the support at runtime of the self-* or self-

management properties like: self-configuration and self-healing, useful for instance, in case of

failures; self-optimization and self-protection, utilized for example, in the presence of threats; or

self-improvement, used for updating SASs’ adaptation logic in order to for instance, respond to

an adaptation goal change [5], [16]. Given the great variety of application domains where SASs

are utilized, self-* properties have been investigated from different perspectives, such as fault-

tolerant computing, distributed systems, biological inspired computing, distributed artificial

intelligence, robotics, control theory, etc. [65]. However, almost in all the cases, researchers

have focused on the adaptation of the target system and no on the adaptation of the adaptation

Chapter III How to improve

Towards adaptive monitoring for self-adaptive systems 59

logic, i.e., the self-improvement property. This contribution aims at uncovering the challenges

that currently affect SASs and the implementation of their self-improvement property as well as

the state of the art regarding those challenges. In order to achieve this goal, we have conducted

two literature reviews following a systematic protocol. Concretely, we have followed the

guidelines of Kitchenham & Charters [36] for SLRs. However, in this case we do not aim at

developing an exhaustive SLR with all the work available in the literature, but to report relevant

contributions. This contribution of the thesis identifies commonalities and differences of existing

proposals for supporting SASs’ self-improvement as well as uncovers the current research gaps

of this topic. The importance of this contribution is twofold: 1) providing an overview of how

self-improvement is implemented by current solutions; 2) turning out new research directions.

Most of the contributions presented in this chapter were published in: two deliverables of the

SUPERSEDE H2020 European project [19], [20] and the SCI-indexed journal Expert Systems

with Applications (I.F.2017: 3.768)[7].

3.1 Introduction to self-adaptation

As it has been explained before, in the introduction of this thesis, SASs are systems composed of

two main parts: an autonomic manager (AM) (also referred to as adaptation logic) and the

managed elements (MEs) (also referred to as managed resources) [2], [4]. The MEs are the

components of the system that provide the main functionality and can be adapted, while the AM

corresponds to the control unit that manages the MEs’ adaptation process [2]. As introduced in

Section 1.1, in practice, the AM is implemented through a feedback control loop such the

MAPE-K loop [5], [6]. Investigating SASs, typically consist in finding ways to support the

process carried out by the AM. Different taxonomies have been developed over the years for

characterizing such process [2]. Recently, Krupitzer et al. [2] have conducted and extensive

literature review on self-adaptation and proposed a taxonomy based on the results of the review.

The taxonomy consists of five dimensions: Reason, Time, Technique, Level, and Adaptation

Control (see Figure 23).

Figure 23: Taxonomy for self-adaptive systems [2]

Chapter III How to improve

Towards adaptive monitoring for self-adaptive systems 60

Below, we describe each of these dimensions:

- Reason. The first dimension refers to the reason for an adaptation. For instance, a

change in context, in the system’s resources, or a change (e.g., changing goals) caused by

the user which includes a possible administrator.

- Time. The time dimension refers to when an adaptation is executed with respect to a

change. This dimension is divided into reactive and proactive.

- Technique. This dimension refers to the technique utilized for adapting the MEs.

Techniques can be parameter adaptation or structural adaptation (including algorithmic

and compositional adaptation). Additionally, in the view of the authors, the context itself

can also be adapted.

- Level. This dimension refers to the specific level at which an adaptation is executed on a

system. As the level of the adaptation, it could be the application itself, the system

software, the communication, the technical resources, or the context.

- Adaptation control. This last dimension refers to how the adaptation process is

controlled in SASs. In this taxonomy, the adaptation control is split into three sub-

dimensions: adaptation approach, adaptation decision criteria, and degree of

decentralization. The adaptation approach can be internal (i.e., interwoven with the

MEs) or external (i.e., separated from the MEs). While, the decision criteria would

depend on each approach, some examples are models, rules/policies, goals, or a utility

(function). Regarding the degree of decentralization, it may vary depending on whether

various subsystems are responsible for controlling the adaptation or the functionality is

centralized.

3.2 Open research challenges affecting SASs

Although the extensive efforts that have been spent in different research fields on the realization

of SASs, some challenges regarding the capabilities and construction of SASs remain open. In

this section, we investigate different works in order to identify these challenges. Particularly, we

focus on challenges that affect the operation of SASs at runtime (e.g., challenges about design-

time languages for describing SASs will be out of the scope). In the first and second Software

Engineering for SASs research roadmap papers [65], [67], the authors identified a set of

challenges that affect current SASs and motivate the need for research in different fields (i.e.,

runtime RE, SASs engineering, runtime verification and validation (V&V), adaptation

assurance, etc.). Besides these challenges, Krupitzer et al. [2] added two more important ones

regarding the capability of supporting runtime proactive adaptation and context adaptation.

In a more recent work, Weyns [66], speculating on how the field may evolve in the future,

presents what he considers the most worth focusing open research challenges. Some of the

challenges identified by Weyns, coincide with the ones identified in the works of Cheng et

al.[65], De Lemos et al. [1] and Krupitzer et al. [2]. However, others were new, such as the

integration of systems’ adaptation and evolution processes, and the support of automated

Chapter III How to improve

Towards adaptive monitoring for self-adaptive systems 61

runtime system models. Concretely, from these four resources [1], [2], [65], [66], we have

identified the following open research challenges (Chl), which we have divided into four

categories:

CATEGORY 1 - SASs capabilities challenges

Chl1.1 Provide self-adaptation capabilities to existing systems [65]

Chl1.2 Perform trade-off analysis between several potential conflicting system goals [2], [65]

Chl1.3 Support different adaptation mechanisms (e.g., structural, parameter) for leveraging

system capabilities [65]

Chl1.4 Support context adaptation [2]

Chl1.5 Support proactive adaptation [2]

Chl1.6 Integrate system adaptation with evolution for dealing with unanticipated changes

[66]

CATEGORY 2 - SASs engineering challenges

Chl2.1 Perform adaptation activities (i.e., monitoring, analysis, decision-making, execution,

V&V) without affecting target system performance and availability [2], [65]

Chl2.2 Communicate, coordinate and share AM elements with other SASs [2], [65], [66]

Chl2.3 Support both centralized and decentralized AMs [1], [2], [66]

Chl2.4 Predict the effects of adaptation, e.g., overhead [65]

Chl2.5 Support runtime use of system models (machine-driven) [66]

CATEGORY 3 – SASs requirements challenges

Chl3.1 Capture self-adaptation capabilities and runtime uncertainty in requirements [2], [65],

[66]

Chl3.2 Permit requirements and goals monitoring and adaptation at runtime [2], [65], [66]

Chl3.3 Enable dynamic traceability from requirements to implementation [65].

Chl3.4 Consider the user-in-the-loop [2], [65]

Chl3.5 Balance requirements adaptation and assurance such that target system high-level

goals are always met [65]

CATEGORY 4 - SASs runtime assurance challenges

Chl4.1 Identify and verify new contexts at runtime for accurately calculating requirements

[65].

Chl4.2 Sense and recover from failures [67].

Chl4.3 Integrate V&V activities (e.g., testing, formal verification, adaptation decisions

checking, analysis) in the runtime self-adaptation lifecycle (i.e., control loop) [2], [67]

From the challenges listed before, it can be noticed that some engineering and requirements

challenges have prevailed over the years, these are: Chl2.2, Chl2.3, Chl3.1, and Chl3.2. This

does not mean that the rest of challenges have been already addressed by existing approaches

Chapter III How to improve

Towards adaptive monitoring for self-adaptive systems 62

but we believe that these prevalent challenges have particular importance and they must be on

the top of the SASs’ research community agenda. The requirements challenges, particularly

Chl3.2, are highly related to the self-improvement property of SASs, while, the engineering

challenges are more related to the support of self-adaptation in modern SASs; where

decentralization and cooperation are very important factors.

3.3 State of the art on SASs’ engineering and requirements challenges

Given their importance, in this section, we analyze, characterize, and compare how existing

proposals address challenges Chl2.2, Chl2.3, Chl3.1, and Chl3.2. We are concretely interested

on investigating whether and how approaches addressing challenges related to self-

improvement, i.e., Chl3.1 and Chl3.2, support such functionalities in modern SASs, i.e., Chl2.2,

Chl2.3. In the rest of this section, we provide the details about the protocol we have followed for

identifying the proposals. Then, we present our analysis about the state-of-the-art works.

3.3.1. Study identification and selection protocol

The identification and selection process has been guided by the principles of Systematic

Literature Reviews (SLRs) defined by Kitchenham and Charters [36]. However, this work does

not aim at developing an exhaustive SLR with all the work available in the literature, but to

report relevant contributions. Concretely, our selection process has consisted of two main

phases:

PHASE 1 – Planning the review

 Literature resources identification. In order to identify relevant contributions, we have

considered as main literature resources, the studies we have used for identifying the

open research challenges in Section 3.2, i.e., [1], [2], [65], [66]. Moreover, we have

considered as literature resource, a work [61], highly related to this thesis, presenting

state-of-the-art approaches for supporting SASs’ requirements adaptation in the

presence of uncertainty. This work is related to this thesis as it presents the first ideas

that have motivated our proposal. Moreover, the first proof-of-concept implementation

of our architectural solution [21], [22], has been based on the ideas of this work.

 Inclusion/exclusion criteria. For including and excluding studies, we have designed a

series of criteria that we applied to studies’ titles, abstracts, as well as full-text reading.

Below, we provide the list of the criteria.

Inclusion criteria

- Studies present a solution for supporting the adaptation of SASs requirements at

runtime

- Studies present a solution for dealing with runtime uncertainty affecting SASs

requirements, through their adaptation

Chapter III How to improve

Towards adaptive monitoring for self-adaptive systems 63

- Studies present a solution for supporting requirements adaptation in decentralized

or distributed SASs

- Studies present a solution for adapting SASs requirements and support the

communication, sharing, and/or coordination of SASs AM elements with other

SASs

Exclusion criteria

- Studies presenting summaries of solutions fulfilling the inclusion criteria, i.e.,

secondary studies

- Studies not accessible in full-text

PHASE 2 – Conducting the review

 Stage 1 - Manual search. We have conducted two iterations of manual search. In the

first iteration, we have extracted studies from the four literature resources utilized in

Section 3.2, i.e., [1], [2], [65], [66]. From the 364 papers (once duplicates were

automatically removed) cited by the four resources, 33 articles have been found to be

related to challenges Chl2.2, Chl2.3, Chl3.1, and Chl3.2 (see Figure 24). The list of

references resulting from this iteration can be found in Appendix B1. In the second

iteration, we have included the state-of-the-art approaches presented by Knauss et al.

[61], as well as the Knauss et al.’s work itself. The second iteration provided us 10 more

papers (see Figure 24). The list of references added in this iteration can be found in

Appendix B2.

 Stage 2 - Forward snowballing and exclusion by title, abstract and full-text reading. In

this second stage, the applicant has performed a forward snowballing process, in order

to identify advances added on top of the approaches found in the manual search, or new

emerging approaches. In order to select the final set of papers, the inclusion/exclusion

criteria presented in Phase 1 have been applied. Studies have been excluded based on

titles, abstracts, as well as full-text reading. Periodic meetings with the supervisors,

during the process of selection for discussing the papers, were done.

In order to decide when to stop the snowballing process, the saturation criterion [49]

has been used as follows. When an article did not fulfill the inclusion criteria (or

fulfilled the exclusion criteria), the snowballing process, for that article, has stopped,

and the article was discarded. When the studies referencing an article that fulfilled the

inclusion criteria did not fulfill them (or fulfilled the exclusion criteria), the process for

that article has stopped, and the article was added to the final set. From this process,

four studies have resulted [61], [68]–[70](see Figure 24). The reference details of these

works can be found in Appendix B3.

Chapter III How to improve

Towards adaptive monitoring for self-adaptive systems 64

Figure 24: Number of included articles during the selection process

3.3.2. Results of the review

Now, we analyze how the approaches presented in the four works selected [61], [68]–[70],

address challenges Chl2.2, Chl2.3, Chl3.1 and Chl3.2. A summary of the results of this analysis

is presented in Table 12.

Table 12

Comparing how approaches address SASs’ requirements and engineering challenges

Work by Chl2.2 Chl2.3 Chl3.1 Chl3.2

Gerostathopoulos
et al. [71]

Interaction
with other
SASs is not
supported
(not
considered)

Decentralization
is not supported
(not discussed)

Adaptation strategies
capture the self-
adaptation capabilities

Adaptation
strategies
monitoring and
adaptation at
runtime is
supported

Klos et al. [69] Interaction
with other
SASs is not
supported
(not
considered)

Decentralization
is not supported
(not discussed)

Adaptation rules capture
self-adaptation
capabilities. Uncertainty
at design time is not
captured but managed
through runtime models
mutation for satisfying
goals

Adaptation rules
monitoring and
adaptation at
runtime is
supported

Han et al. [70] Interaction
with other
SASs is not
supported
(considered
)

Decentralization
is not supported
(not discussed)

Fuzzy rules capture self-
adaptation capabilities
and uncertainty.

Fuzzy rules
monitoring and
adaptation at
runtime is
supported

Knauss et al. [61] Interaction
with other
SASs is not
supported
(not
considered)

Decentralization
is not supported
(not discussed)

Contextual requirements
capture self-adaptation
capabilities. Uncertainty
at design time is not
captured but managed
through contextual
requirements’ re-
operationalization at
runtime

Contextual
requirements
monitoring and
adaptation at
runtime is
supported

Chapter III How to improve

Towards adaptive monitoring for self-adaptive systems 65

Gerostathopoulos et al. [71], present a 3-layer architectural solution for increasing the

homeostasis of self-adaptive software-intensive cyber-physical systems, i.e., the capacity to

maintain an operational state despite runtime uncertainty, by introducing runtime changes to

the self-adaptation strategies, i.e., the SASs adaptation capabilities (Chl3.1 and Chl3.2). The

architecture is composed of a set of MAPE-K loops that interact between them hierarchically for

supporting architectural adaptations of complex SASs and their adaptation capabilities.

However, these MAPE-K loops are centralized and details about how they can interact with

elements of other SASs’ AMs (Chl2.2 and Chl2.3) are not provided.

Klos et al. [69], proposes an extended architecture of the MAPE-K loop for supporting the

adaptation of SASs’ adaptation capabilities in the form of rules in order to respond to

unanticipated environmental changes (Chl3.1 and Chl3.2). The approach utilizes system,

environment, and global goal models stored in the Knowledge base (K element of the loop) for

automatically evaluate the adequacy of current adaptation rules and delete or generate new rules

at runtime through the mutation of runtime models. The MAPE-K loop is extended with two

new components: Evaluation and Learning. The decentralization of the elements of the AM and

their collaboration with other AMs have not being discussed in this work (Chl2.2 and Chl2.3).

Another interesting work dealing with runtime uncertainty in SASs through the automatic

adaptation of SASs adaptation capabilities, is the one presented by Han et al. [70]. This work

combines the Analyzer and Planner elements in a single component called Self-learning adapter.

Apart from the normal operation, this component is provided with learning abilities that enable

it to adapt the rules that capture the SASs’ adaptation capabilities, when necessary, in order to

handle runtime uncertainty (Chl3.1 and Chl3.2). In order to do that, it analyses runtime sensor

data and triggers rules’ adaptation based on learnings obtained from that data. The internal

approach proposed by this solution could affect the performance of the AM operation,

introducing unnecessary overhead. As described by Krupitzer et al. [72], external approaches

like the hierarchical adopted by Gerostathopoulos et al. [71], are preferable since they ease the

scalability and maintainability of the system. Moreover, this approach lacks of decentralization

and collaboration mechanisms, constraining its applicability in modern SASs (Chl2.2 and

Chl2.3).

Finally, Knauss et al. [61] proposes the adaptation of SASs’ contextual requirements (i.e.,

adaptation capabilities) for dealing with runtime uncertainty (Chl3.1 and Chl3.2). The proposal

relies on a complete and external MAPE-K feedback loop that interacts with SASs for

monitoring and adapting their requirements. The advantage of this solution is the possibility of

reusing methods and techniques already investigated for SASs’ AM, in order to implement the

external MAPE-K loop. However, this work does not provide architectural details for

constructing such proposal. Moreover, cooperation and decentralization mechanisms are not

considered, limiting the demonstration of its value in modern SASs (Chl2.2 and Chl2.3).

Chapter III How to improve

Towards adaptive monitoring for self-adaptive systems 66

3.3.3. Discussion

According to the results of this review, very few approaches have been proposed for improving

SASs’ operation once they have been deployed; concretely, for automatically monitoring and

adapting their requirements (and in consequence their capabilities) as well as dealing with

uncertain conditions. Moreover, none of the identified approaches provides the mechanisms

required for varying the (de)centralization level of the elements of the AM and supporting the

communication and cooperation of AMs of different SASs. As a first step, we provide an abstract

idea of how the improvement process of modern SASs could be supported. First, we propose to

adopt an external approach in which the improvement process of SASs is managed by other

MAPE-K loops (see Figure 25). In this way, existing solutions for MAPE-K loops can be reused.

Moreover, adopting an external approach allows systems’ owners to manage their SASs and the

MAPE-K loops in charge of the improvement process, independently.

Figure 25: Hierarchical inter-intra collaborative pattern (HIIC)

In order to support the communication between AMs, and different (de)centralization levels, we

propose an architectural pattern for designing MAPE-K loops. Concretely, we have extended the

notation described by Weyns et al. [4] for decentralized control in SASs and propose a pattern

named Hierarchical inter-intra collaborative pattern (HIIC) [7] (see Figure 25). This pattern

consists of three layers: a bottom layer, corresponding to the MEs; a middle layer, consisting of

the AM in charge of the adaptation of the MEs; and a top layer, corresponding to the MAPE-K

loop(s) in charge of managing the adaptation of the middle-layer AM operation, in order to

better support the MEs. Moreover, this pattern makes explicit the communication of the SASs’

AM elements with others of the same or different nature (e.g., a Monitor with other Monitors or

Chapter III How to improve

Towards adaptive monitoring for self-adaptive systems 67

a Monitor with two Analyzers). This characteristic can be seen by observing the cardinalities of

the interaction arrows in Figure 25, denominated: Inter-component interaction and Intra-

component interaction. The communication of AM elements with elements of other SASs’ AMs,

not only allows the cooperation and sharing of elements, but also increases the resilience of

modern SASs.

In order to allow systems’ owners to vary the (de)centralization level of the elements of the AM,

we have incorporated two concepts: MAPE-K component configuration and Configuration-

component interaction (see Figure 25). The configuration elements contain all the knowledge

required by each element for performing its functionalities. Apart from enabling the

decentralization, the explicit representation of elements’ knowledge as a separate element,

allows the later adaptation of it and in consequence of the operation of the elements. This

architectural contribution has served as a starting point for designing the generic proposal of

this thesis for supporting SASs self-improvement (i.e., contribution of RQ3 of this thesis).

3.4 Open research challenges affecting SASs self-improvement

In the SASs research filed, many works have discussed solutions for correctly supporting the

adaption process of the MEs [1], [2], [65], [66]. On the contrary, very few works cover the

adaptation of the elements of the loop that implement AMs [16], as it has been demonstrated in

Section 3.3. According to the analysis presented in Section 3.2 and Section 3.3, enabling the

adaptation of these elements would allow modern SASs to address complex challenges such as

runtime uncertainty. However, correctly supporting this process entails its own challenges.

During the need for a review identification process performed in the literature review that will

be presented later in Section 3.5, we have identified the work of Krupitzer et al. [16]. In this

work, authors have conducted a comparison of 12 approaches that support SASs’ self-

improvement. As a comparison metric, authors have utilized the taxonomy for self-adaptation

that we have presented before in Section 3.1. The study presents a series of limitations but still

we would like to remark one of its outputs, namely a set of open research challenges affecting

SASs self-improvement:

Chl1. Future works should elaborate on common, generic strategies to offer more reusable

approaches for self-improvement or provide guidelines within use cases and generic

guidelines across use cases.

Chl2. Future approaches for self-improvement should consider both reactive (reaction after a

change) and proactive (action before a change) adaptation for higher flexibility and

improved adaptation results.

Chl3. Future approaches should include structural adaptation of the AM in order to fit better

runtime changes, e.g., AM elements’ faults.

Chl4. Future works should offer self-improvement in decentralized settings to improve

scalability.

Chapter III How to improve

Towards adaptive monitoring for self-adaptive systems 68

Some of these challenges overlap with the challenges identified in Section 3.2 for SASs in

general, and with our findings regarding adaptive monitoring systems (i.e., RQ1 of this thesis).

In the literature review conducted in Section 3.3, we have focused on approaches that improve

SASs through the adaptation of their requirements. In next section, we follow a systematic

protocol for identifying existing approaches that support the adaptation of SASs’ AM elements,

in general. As part of the analysis, we will determine whether and compare how existing

proposals address the open research challenges listed above (i.e., Chl1-Chl4).

3.5 State of the art on SASs’ self-improvement

As we have mentioned before, the literature reviews conducted in this chapter do not aim at

developing an exhaustive SLR with all the work available in the literature, as described by

Kitchenham and Charters [36], but to report relevant contributions. In this case, we are focusing

on quality (sustained by the publishing venues) rather than the quantity of papers.

3.5.1. Need for a review

As stated by Petersen et al. [35], before carrying out any literature study, researchers should

identify and evaluate any existing systematic review on the topic of interest. Hence, in order to

identify secondary studies on adaptive feedback loops, we have followed a search protocol

analogous to the main one presented in the study identification process of our review (see

Section 3.5.3). That is, we have searched for existing reviews once the protocol was defined and

before the literature review was conducted. In short, we have built a search string as a

conjunction of population and intervention, as recommended by Kitchenham and Charters [36],

and performed an automatic search on the databases of IEEE Xplore, ACM, Scopus and

Inspect/Compendex (Engineering Village).

In software engineering, the population may refer to a specific software engineering role, a

category of software engineer, an application area or an industry group [36]. In this review, the

population corresponds to studies in the application area of adaptive feedback loops. This term

can be split into two simpler terms: adaptive and feedback loops. The intervention is defined as

a software methodology, tool, technology or procedure that addresses a specific issue [36]. In

our case, the intervention corresponds to a review. In order to increase the number of results

from each of the terms mentioned before, we have defined a set of synonyms, variants, and

acronyms (see Table 13). Due to the amount of possibilities, we have decided to use wildcards

for the terms related to adaptation and some of the intervention terms. The search string has

been constructed using the resulting terms and the Boolean OR and AND operators, as it is

shown in Table 13. The string has been implemented adequately in each database, considering

their possibilities and limitations.

The search on the different databases resulted in a final set of 123 papers. Concretely, 39 studies

resulted in IEEE Xplore, 21 in ACM, 54 in Scopus and 62 in Inspect/Compendex; after

Chapter III How to improve

Towards adaptive monitoring for self-adaptive systems 69

combining all the 176 studies, 53 duplicates were removed. For the resulting studies, we have

applied a study selection protocol similar to the one applied in our review (see Section 3.5.3).

Table 13

Search string

Type Terms

Population ((adapt* OR self-adapt*) AND (“feedback loop” OR “feedback loops” OR
“adaptation logic” OR “adaptation logics” OR “autonomic manager” OR
“autonomic managers”))

Intervention (review* OR survey* OR overview* OR SLR OR “systematic mapping”)

Inclusion criteria
Studies present summaries of approaches Supporting the adaptation of AMs
in SASs.
Studies are in the fields of computer science, systems, or software engineering.

Exclusion criteria Studies present non-peer reviewed material.
Studies are not written in English.
Studies are not accessible in full-text.

The only difference is the inclusion/exclusion criteria. Table 13 shows the criteria that we have

applied for discarding and including secondary studies. After applying such criteria, only one

secondary study related to this review has been identified [16]. The study provides a

comprehensive overview of 12 approaches supporting SASs’ AM adaptation. However, it

presents some important limitations:

 A systematic protocol for the identification and selection of primary studies is not

followed. Therefore, relevant works may be missing.

 A rigorous qualitative method for analyzing in-depth primary studies is not presented.

Instead, a taxonomy for self-adaptation proposed by the same authors in a previous

work [72], is used for characterizing approaches.

 Comparison is performed considering only a single source per approach, except for one

approach. Hence, relevant contributions for understanding the research field

characteristics, such as maturity and evolution, may be missing.

 A comprehensive understanding about the research field is not provided.

Given these limitations, we consider that conducting a literature review in the adaptive feedback

loops topic following a systematic protocol is important and justified. Still, we have decided to

reuse one of the outputs of this secondary study [16], namely the set of open research challenges

stated at the end of the paper (see Section 3.4). In this review, we analyze whether and how the

resulting approaches address such challenges.

3.5.2. Research questions

Given the state-of-the-art, this literature review aims at improving the understanding of

adaptive feedback loops in SASs’ field. In order to reach this goal, we have designed four main

Chapter III How to improve

Towards adaptive monitoring for self-adaptive systems 70

RQs (see Table 14). These RQs will allow us to perform a deeper analysis, not only of the

approaches but also of the research field.

Table 14

Research questions of this review

Research question

RQ1. What are the demographic characteristics of the existing approaches?

RQ1.1. How are approaches distributed over time?

RQ1.2. How are approaches distributed between industry and academy?

RQ2. How is feedback loops adaptation in SASs supported by existing approaches?

RQ2.1. What triggers the SASs’ feedback loops adaptation process?

RQ2.2. When is the need for adaptation detected?

RQ2.3. Which technique is utilized for executing SASs’ feedback loops adaptation?

RQ2.4. How is the adaptation process controlled?

RQ2.4.1. Which adaptation approach is utilized?

RQ2.4.2. Which criteria are considered for making adaptation decisions?

RQ2.4.3. How are components in charge of the adaptation process organized?

RQ3. In which types of systems can the approaches be adopted?

RQ4. How do current open research challenges relate to the approaches characteristics?

First, in order to improve the understanding about the research field, we have included a

demographic RQ that describes the distribution of the approaches: over the years and between

industry and academy communities (RQ1). Next, we aimed at characterizing the existing

approaches (RQ2). With this purpose, we have used the self-adaptation taxonomy described in

Section 3.1. We use the taxonomy dimensions to split RQ2 (see Table 14). Please note that in

this review, the Level dimension will always correspond to the Application (i.e., the feedback

loop implementing the SAS’s AM); for this reason, we have not derived any research sub-

question from that dimension. In addition, RQ2.4 has been further split into three sub-

questions, which correspond to the values of the Adaptation control dimension. Finally, in order

to understand better whether and how existing approaches address open research challenges

cited in Section 3.4, we have designed two more RQs: RQ3 and RQ4.

3.5.3. Study identification and selection protocol

As it has been mentioned before, the identification and selection process of the primary studies

has been guided by very well-known principles of SLRs [36] and SMSs [35]. Concretely, our

study selection process has consisted of two main phases: Planning the review and Conducting

the review.

Chapter III How to improve

Towards adaptive monitoring for self-adaptive systems 71

PHASE 1 – Planning the review

 Search string construction. As in the initial search (see Section 3.5.1), the population of

our search is composed by studies in the application area of adaptive feedback loops. On

the other hand, the intervention in this case is not needed. Therefore, the construction of

the search string of the review has consisted on the population terms listed in Table 13.

 Literature resources identification. In order to identify relevant contributions, we have

searched the top ranked journals in Computer Science, particularly, in Software

engineering, Artificial intelligence, Automation and Control systems, and Information

systems, based on their JCR Impact Factor (only Q1). We have also included top ranked

conferences based on the CORE index (CORE-A and CORE-B). We have considered

CORE-B venues since most of the conferences specialized in software adaptation are

CORE-B. We have identified 105 journals and 51 conferences. From this set, we have

discarded 54 journals and 25 conferences that were not related to our research topic,

based on their title and description. As a result, the final set of selected literature

resources has consisted of 51 journals and 26 conferences. The complete lists of

resources can be found in Appendix B4.

 Inclusion/exclusion criteria. The criteria utilized for selecting the primary studies is

shown below:

Inclusion criteria

- Studies present a solution for supporting the adaptation of AMs in SASs.

- Studies are published in the last decade (2008-2018).

Exclusion criteria

- Studies present work in progress.

- Studies are not written in English.

- Studies are not accessible in full-text.

As it can be noticed, we have limited our search to the last decade, gathering hence the

most updated solutions with respect to modern SASs.

PHASE 2 – Conducting the review

 Stage 1 - Automatic search. Using the search string designed in the Planning phase, in

this stage, we have conducted an automatic search on the selected literature resources.

As a result, we have obtained 602 journal papers and 228 conference papers. In total,

830 studies have resulted from this stage.

 Stage 2 - Exclusion by title, abstract and full-text reading. From the 830 papers

identified in previous stage, we have discarded 817 by title, abstract and full-text

reading. The 13 resulting papers conform 11 different approaches: DYNAMICO, ESOs,

Chapter III How to improve

Towards adaptive monitoring for self-adaptive systems 72

RINGA, Generation & evolution of adaptation rules, ACon, SACRE, ActivFORMS,

FESAS, Adaptive KBs, Service ensembles and Auto-adjust.

Figure 26: Number of included articles during the selection process

 Stage 3 - Backward snowballing. In order to improve the quality of our analysis, we

have conducted a backward snowballing process [49]. First, we have considered the

secondary study introduced in Section 3.5.1 (also present in the results of Stage 1) and

extracted, from its reference list, the works related to approaches that have not appeared

in our automatic search. For the sake of simplicity, the secondary study is not included

in Figure 26. As a result, 11 new papers have been added to our set, conforming 10

additional approaches: 3LA, NoMPRoL, DCL, PLASMA, FUSION, KAMI, OTC, OTC

DPSS, DSPLs and Reqs@RT. Then, on the resulting 24 papers, two more snowballing

iterations have been performed for identifying all the studies related to the total 21

approaches. In this process, the publication date has not been restricted, since we were

interested on gathering all the studies related. As a result, 18 studies were added to

reach a final set of 42 primary studies. The complete list of references can be found in

Appendix B5.

3.5.4. Data extraction and visualization

In order to address the RQs of this review (see Table 14), the first author has extracted relevant

data from studies following a structured approach based on Miles et al.’s [37] method. A series

of meetings have been carried out with the rest of authors for reviewing the resulting data. The

reference tool Mendeley and the analysis tool Atlas.ti® have been used for supporting the

whole process, ensuring process’ consistency, and accuracy. The template utilized for extracting

studies’ data is shown in Table 15.

Concretely, the data extraction and analysis approach has consisted in two steps: preparation

and first cycle coding [37]. In the first step, the primary studies have been imported into a new

Chapter III How to improve

Towards adaptive monitoring for self-adaptive systems 73

Atlas.ti® project. In the second step, primary studies have been coded using the features offered

by the analysis tool.

Table 15

Data extracted from primary studies

Data item RQs Values

Full reference - -

Year of publication RQ1 -

Type of publication RQ1 Industry, Academy

Adaptation trigger (Reason) RQ2.1 Context, Users, MEs (called Resources in [16])

Adaptation time RQ2.2, RQ4 Proactive, Reactive

Adaptation execution technique RQ2.3, RQ4 Parameter, Structure, Context

Adaptation control approach RQ2.4.1 Internal, External

Adaptation decision criteria RQ2.4.2 Model, Rules, Goal, Utility function

Type of adaptation control
elements’ structure

RQ2.4.3, RQ4 Centralized, Decentralized

Type of software systems RQ3, RQ4 -

In this review, some of the codes have been derived from the RQs, i.e., we have performed

deductive coding [37], while others, concretely for the data items: full reference, year of

publication and types of software system, have progressively emerged from studies during the

data extraction process, i.e., we have performed inductive coding [37]. Finally, regarding results

visualization, we present our findings in two ways: (1) using figures and tables (see Section

3.5.6), (2) formulating an software engineering theory [73] (see Section 3.5.7). All data

extracted from studies is available online at https://goo.gl/oSRXWw.

3.5.5. Validity threats

 Generalizability validity

This study reviews works from different application domains of SASs, from product lines to

smart vehicles; therefore, we consider internal generalizability not a major threat. Regarding

external generalizability, the results of this review are within the scope of SASs’ adaptive

feedback loops and we do not attempt to generalize such results beyond that scope. Therefore,

this validity threat does not apply to our review.

 Interpretive validity

This validity refers to how reasonable conclusions are given the resulting data. In order to

reduce this threat, the insights obtained by the first author as well as possible

misunderstandings have been discussed by the other two experienced authors. A series of

periodic meetings have been conducted for this purpose.

Chapter III How to improve

Towards adaptive monitoring for self-adaptive systems 74

 Descriptive validity

Descriptive validity is the extent to which observations are described accurately and objectively.

For reducing this threat, we have: (1) designed a data extraction template that objectifies the

data extraction process (see Table 15), (2) utilized a rigorous qualitative method [37] for

extracting the template items from the studies.

 Theoretical validity

Theoretical validity is determined by our ability of being able to capture what we intend to

capture. In order to reduce this threat, we have complemented the automatic search with

backward snowballing [49]. Our study has not exhaustively reviewed all the work available in

the literature; instead, it reports relevant contributions focusing on quality rather than the

quantity of papers. Thus, some works may be missing. In spite of this limitation, we consider

our sample of primary studies a good representation since 77 high-rated venues, related to the

research topic have been considered for performing the automatic search.

 Repeatability validity

In order to ensure repeatability, we have reported the process followed for conducting this

review, as recommended by Kitchenham and Charters [36] and Petersen et al. [35]. Moreover,

we have used existing well-known guidelines for conducting the review and an existing

qualitative method for performing the analysis. Apart from that, we provide a software

engineering theory that summarizes and formalizes our results. Therefore, further research can

validate, refine, and/or extend our propositions.

3.5.6. Results

In this section, RQs introduced in Table 14 are addressed. Table 16 and Table 17 summarize

the answers of the RQs. We have also included the solution that we present in this thesis,

named HAFLoop. Before answering the RQs, we briefly describe the 21 approaches identified

in Section 3.5.3.

 DYNAMICO [11], [74] relies on three loops in charge of: 1) governing changes in ME’s

requirements and adaptation properties, 2) preserving ME’s adaptation properties, 3)

managing the monitoring strategy adaptation for responding to requirements changes,

respectively.

 ESOs (Exact-State Observers) [14], [75]–[77] also supports the adaptation of the

monitoring strategy as well as the adaptation of the AM enactment process. In order to

do that, it relies on a set of pre-defined policies.

Chapter III How to improve

Towards adaptive monitoring for self-adaptive systems 75

 RINGA [78] utilizes finite state machines for controlling the adaptation of MEs. If the

state machine can no longer respond to environmental changes, a request for re-

designing the model is triggered.

 Generation & evolution of adaptation rules [79] consists of a reinforcement learning-

based framework for: 1) learning adaptation rules offline from different goal settings; 2)

evolving adaptation rules online from real-time information about the environment and

user goals.

 ACon (Adaptation of Contextual requirements) [61] also proposes to utilize learning

techniques for adapting SASs’ adaptation rules, at runtime.

 SACRE (Smart Adaptation through Contextual REquirements) [7], [22] extends ACon

with an architectural proposal for supporting the engineering process (from design to

implementation) of the approach as well as enabling SASs’ AM adaptation in

decentralized settings.

 The Three Layer Architecture (3LA) [80] is the basis of the layer-based approaches for

supporting self-improvement. The proposal consists of detecting situations that cannot

be handled by the current system’s setup, propagating this information through the

different layers, and creating new adaptation strategies.

 The ActivFORMS approach [13], [81] follows the architecture proposed by 3LA for

managing the adaptation of SASs’ formal models, when they cannot deal with the state

of the system.

 The NoMPRoL approach [82]–[85] also relies on a 3-layer architecture, and

probabilistic rule learning for adapting system’s model at runtime.

 Dynamic Control Loops (DCL) [86] considers SASs with various feedback loops in

charge of adapting different parts of the system. Then, it proposes a solution consisting

of a framework for dynamically adding and removing loops; and, a modeling technique

for designing that kind of systems.

 PLASMA [87], [88] proposes a solution for plan-based SASs in which plans are

generated/adapted when high-level goals changes or component failures are

experienced. It also proposes a layer-based solution.

 FUSION [89], [90] supports the development of feature-oriented SASs. It relies on a

learning cycle for creating a knowledge base about the impact of adaptation decisions

and making better decisions in the future.

 In KAMI [91], non-functional requirements models are used to reason about

adaptations. These models are updated at runtime using a Bayesian estimator, to fit

system’s evolution.

 In the Organic Traffic Control (OTC) [92]–[95] approach, SASs use evolutionary

algorithms for the control of road traffic signals. Therefore, new and unforeseen traffic

configurations are generated over time.

 OTC is extended by the OTC DPSS [96] approach. In OTC DPSS, intersections

collaborate and can form dynamic progressive signal systems (DPSSs).

Chapter III How to improve

Towards adaptive monitoring for self-adaptive systems 76

Table 16

Approaches’ characterization

Approach Time Reason Technique Adaptation control System

type Appro. Decision

criteria

(De)

centralization

DYNAMICO [11], [74] Reactive User Structure External Goal Centralized OD

ESOs [14], [75]–[77] Reactive Context Structure Internal Rules Centralized CB

RINGA [78] Reactive Context Parameter External Model/

Rules

Centralized MB

Gen. & evol. of

adaptation rules [79]

Both Context/

User

Parameter External Utility Centralized GO

ACon & SACRE [7],

[22], [61]
Both Context/

MEs/ User

Parameter External Rules (De)

centralized

RD

3LA [80] Reactive Context/

MEs/ User

not

specified

External Goal Centralized RD

ActivFORMS [13],

[108]
Reactive Context/

MEs/User

Parameter External Goal Centralized GO and

CB

NoMPRoL [82] Reactive Context Parameter External Model/

Rules

Centralized GD

DCL [86] not

specified

User Structure External not

specified

Centralized CB

PLASMA [87] Reactive MEs/User Parameter External Model/

Goal

Centralized GO and

CB

FUSION [89] Reactive Context/

MEs

Parameter External Goal/ Utility Centralized GO and

MB

KAMI [91] Both Context Parameter External Model Centralized FO and

MB

OTC [92] Proactive Context Parameter External Utility Centralized MB

OTC DPSS [96] Both Context Both External Utility Decentralized AS

FESAS [15], [97] Both Context/

MEs

Both External Rules/

Utility

Centralized AS

DSPLs [98] Both Context/

User

Parameter External Model/

Utility

Centralized (Any)

Reqs@RT [102] Reactive MEs/ User Parameter Internal Rules Centralized FO and

MB

Adaptive KBs [69] Reactive Context/

MEs

Parameter External Goal/ Rules Centralized GO

Service ensembles
[105], [106]

Reactive User Parameter External Rules Centralized CB

Auto-adjust [107] Reactive Context Parameter External Rules Centralized (Any)

HAFLoop Both Open Both External Open (De)

centralized

(Any)

Chapter III How to improve

Towards adaptive monitoring for self-adaptive systems 77

 The FESAS [15], [97] approach enables self-improvement by adding an extended

MAPE loop (including a Prediction component) for adapting the AM and a proxy for

collecting information from the AM.

 Dynamic Software Product Lines (DSPL) [98]–[101] proposes to utilize reinforcement

learning for finding new adaptation rules in the configuration space. If the learning is

not successful, developers can re-define the DSPL and learning is triggered again.

 Reqs@RT [102]–[104] proposes to support SASs’ requirements changes at runtime. In

this approach, a goal model and an implementation model are maintained. A mapping

between these two models allows the correct handling of requirement changes at

runtime.

 The Adaptive KBs [69] approach has been also identified in the literature review

presented in Section 3.3 (Klos et al. approach) where we describe it. In short, it extends

the MAPE-K loop by an evaluation and a learning component. Adaptation rules, stored

in the Knowledge base, are evaluated at runtime taking into account system goals, and

adapted accordingly (removed or added).

 Service ensembles [105], [106] utilize two MAPE-K loops. One loop manages the

reconfiguration of a service-based system based on requirements (e.g., QoS or required

capabilities) while the second one is in charge of adapting such requirements at runtime.

In order to do that, the second loop monitors the interaction of users and services.

 The Auto-adjust [107] description approach adds a component called Auto-adjust to the

MAPE reference model. This extra component continually assesses the current situation

using monitoring data and adapts the MAPE elements accordingly. In this approach, all

the adaptations consist on adjusting parameters, e.g., the frequency of the loop or the

active algorithms.

 RQ1 - What are the demographic characteristics of the existing approaches?

 RQ1.1. How are approaches distributed over time? The 21 approaches found by our

protocol are presented in 42 papers published from 1999 to 2018. All except one of the

primary studies (97,4%) have been published from 2006 to 2018. In this period, there

has been at least one publication about the topic every year. See Figure 27 for details.

 RQ1.2. How are approaches distributed between industry and academy? In order to

address this research question, we have extracted the affiliations of all the authors of the

42 studies. The results show that 100% of the authors belong to academic institutions.

Chapter III How to improve

Towards adaptive monitoring for self-adaptive systems 78

Figure 27: Approaches distribution over time (RQ1.1). Numbers in parenthesis correspond to

the number of publications per approach while the circles to their publication year

 RQ2 - How is feedback loops adaptation in SASs supported by existing approaches?

 RQ2.1. What triggers the SASs’ feedback loops adaptation process? Regarding what

triggers the adaptation of loops, Context, e.g., SAS position, is the most popular trigger

(16 approaches, 76,2%), followed by User, e.g., a smart vehicle driver mood (12

approaches, 57,1%), and changes in the MEs, e.g., changes on SAS’s topology (8

approaches, 38,1%). Only 4 approaches (19,0%) consider the three triggers. While User

and MEs are specific triggers, Context comprises a broader space; therefore, in this

work, we have decided to investigate further this trigger. As a result, we have

determined that most of the context-driven approaches do not constrain their solutions

to a specific variable; instead, they provide examples of them. Figure 28 shows the

context variables found and their relevance.

Figure 28: Context variables mentioned by existing approaches (RQ2.1)

Chapter III How to improve

Towards adaptive monitoring for self-adaptive systems 79

 RQ2.2. When is the need for adaptation detected? The need for adaptation can be

detected proactively, e.g., predicting a lack of resources before it happens, or reactively,

e.g., responding to a component fault. Reactive adaptation is the most popular type of

adaptation time (19 approaches, 90,5%) while Proactive adaptation is less applied (8

approaches, 38,1%). Most of the approaches supporting Proactive adaptation also

support Reactive adaptation (7 out of the 8 approaches, 87,5%).

 RQ2.3. Which technique is utilized for executing SASs’ feedback loops adaptation? The

adaptation technique can be: Parameter, e.g., by changing the frequency of MAPE-K

loops’ iterations, or Structure, e.g., by deactivating a software component. Parameter

adaptation is the most utilized technique (17 approaches, 81,0%) while Structure

changes are less supported (5 approaches, 23,8%). Only very few approaches support

both techniques (2 approaches, 9,5%).

 RQ2.4. How is the adaptation process controlled?

 RQ2.4.1. Which adaptation approach is utilized? The system in charge of the

adaptation can be implemented internally, e.g., reutilizing existing MAPE-K

loop components, or externally, e.g., introducing new components for

exclusively managing the process. External solutions are the most common (19

approaches, 90,5%) while less popular are the Internal (2 approaches, 9,5%).

 RQ2.4.2. Which criteria are considered for making adaptation decisions? In

order to conduct the decision making process, most of the approaches utilize

Rules, e.g., ECA rules (10 approaches, 47,6%), followed by Utility functions,

e.g., a trade-off of adaptation cost and adaptation quality, and Goals (6

approaches, 28,6%, each). The less use criterion is Model (4 approaches,

19,0%). Some approaches consider more than one criterion (6 approaches,

28,6%).

 RQ2.4.3. How are components in charge of the adaptation process organized?

The system in charge of the adaptation can manage the process in a Centralized

or a Decentralized way (or hybrid). Most of the current approaches, consider

Centralized control (19 approaches, 90,5%) while very few incorporate

Decentralized settings (2 approaches, 9,5%).

 RQ3 - In which types of systems can the approaches be adopted?

The types of systems found belong to 7 main groups: Goal-oriented (GO) (7 approaches,

33,3%); Model-based (MB) (6 approaches, 28,6%); Component-based (CB) (5 approaches,

23,8%); Requirements-driven (RD) and, particularly, contextual requirements (2 approaches,

9,5%); Feature-oriented (FO) (2 approaches 9,5%); Application-specific (AS), concretely,

traffic-control systems (2 approaches 9,5%); and Objective-driven (OD), e.g., SLAs (1

approach, 4,8%). While some of the systems’ categories constrain the type of system

architecture (e.g., CB), others require the adoption of a specific technique for operating correctly

(e.g., GO). Some approaches belong to 2 groups (6 approaches, 28,6%). Finally, we have

Chapter III How to improve

Towards adaptive monitoring for self-adaptive systems 80

identified 2 approaches (9,5%), FESAS and Auto-adjustment, that could be adopted by

(almost) any type of SAS.

 RQ4 - How do current open research challenges relate to the approaches

characteristics?

In order to determine whether and how the reviewed approaches address the open research

challenges introduced in Section 3.4, we have first determined how the items analyzed in

previous RQs relate to them. Below, we discuss our findings, organized by challenges. Table 17

summarizes which challenges are addressed by each approach.

 Chl1. In order to address this challenge, approaches should be adoptable by a variety of

SASs. Therefore, this challenge relates to RQ3’s answers. Generic solutions may provide

the correct abstraction level to allow other researchers to integrate their problem-

specific solutions to their proposals [16]. In this review, most of the approaches do not

provide generic solutions; instead, they focus on a specific application domain or

specific system type. The FESAS approach proposes the use of MAPE-K loops (with

prediction capabilities) for adapting existing ones. The idea is generic enough to be

adopted by any SAS. On the other hand, the Auto-adjustment approach proposes a

generic component, called auto-adjust, that is added on top of MAPE-K loops for

managing the Parameter adaptation of their elements. Regarding reusability, none of the

approaches provides support. Moreover, low-level details for implementing the

solutions are not provided.

 Chl2. This challenge refers to the time at which the need for adaptation is identified and

triggered, i.e., it relates to answers of RQ2.2. Approaches should manage adaptations

both proactively and reactively. In this review, we have identified 7 approaches

supporting both types of adaptation (33,3%). A common solution is to use learning

techniques on top of SASs’ feedback loops for proactively improving their understanding

about context, users, and MEs.

 Chl3. This challenges is about enabling the adaptation of the feedback loops’ structure at

runtime; therefore, it is related to the answers of RQ2.3. According to Table 16, 5

approaches support Structure changes (23,8%) while only 2 of them support both

adaptation types (9,5%).

 Chl4. This challenge refers to the decentralization degree of the solution, i.e., it relates to

answers of RQ2.4.3. In this regard, we have identified 2 approaches that support

decentralized settings (9,5%) while only one of them, SACRE, supports a varying degree

of (de)centralization.

Chapter III How to improve

Towards adaptive monitoring for self-adaptive systems 81

Table 17

How approaches address current SASs self-improvement challenges

Approach Chl1 Chl2 Chl3 Chl4

DYNAMICO [11], [74] - -  -

ESOs [14], [75]–[77] - -  -
RINGA [78] - - - -

Generation & evolution of adaptation rules [79] -  - -

ACon & SACRE [7], [22], [61] -  - 

3LA [80] - - - -

ActivFORMS [13], [108] - - - -
NoMPRoL [82] - - - -
DCL [86] - -  -
PLASMA [87] - - - -

FUSION [89] - - - -
KAMI [91] -  - -
OTC [92] - - - -
OTC DPSS [96] -   
FESAS [15], [97]    -

DSPLs [98] -  - -
Reqs@RT [102] - - - -
Adaptive KBs [69] - - - -
Service ensembles [105], [106] - - - -
Auto-adjust [107]  - - -
HAFLoop    

3.5.7. Discussion

In this section, we discuss the results of the review. First, we present our findings for RQ1.

Then, we discuss our findings for RQ2-RQ4 through the formulation of a software engineering

theory.

 Adaptive feedback loops in SASs research field

According to our findings for RQ1.1, the adaptation of SASs’ feedback loops is a lively research

area that has gained particular attention in the last decade (36 primary studies, 85,7 %, were

published from 2008 to 2018). However, the research field is still not as mature as other related

SE areas such the SASs field in which hundreds of contributions can be found [65]–[67], [72].

This can be due to the topic’s novelty since it has emerged as a response to the challenges

affecting existing SASs and that could have not been addressed with traditional solutions such

static feedback loops. The immaturity of the research field is also reflected on the lack of

contributions from industry (RQ1.2) as well as the lack of standardized terms for referring to

this adaptation process. For instance, some works utilize terms related to the concept of

evolution, others use terms related to the concept of learning while others relate this process

Chapter III How to improve

Towards adaptive monitoring for self-adaptive systems 82

with the concept of improvement. This situation could hinder the advancements on the field

since existing works are not easily visible to each other.

Given this lack of standardization, in this review we have had trouble for systematically

identifying existing work with our previous knowledge (reflected on the search string utilized).

Many of the primary studies of this review emerged during the snowballing processes. As a first

step towards the creation of a common understanding of this topic, Krupitzer et al. [16] have

introduced the self-improvement term. However, this new term still has to be adopted by the

research community. As an extra step of the field analysis, we have investigated on data trends

over time. The results show an increased support of Proactive adaptation, in the last years.

Moreover, Context and its combination with the other Triggers have also gained popularity

lately. Details about this analysis can be found online at https://goo.gl/YNuYck.

 Theory model

In order to discuss RQ2-RQ4, we have summarized and formalized our results in a theory,

following the methodology proposed by Sjøberg et al. [73]. This methodology consists of 5

steps, but for the sake of brevity, in this work, we present the results in a more condensed way.

According to Sjøberg et al., a software engineering theory is built by first stating its main

constructs (of the archetypes Actor, Technology, Activity and Software System); and then

asserting propositions as relationships among constructs. Explanations should justify

propositions. Table 18 summarizes the constructs and the explanations of the propositions of

our theory while Figure 29 presents the theory, following the UML-inspired notation proposed

by Sjøberg et al. [73]:

 Software system refers to the scope of the study. In this review, we are focusing on SASs,

particularly, the adaptation of their AMs.

 Technology corresponds to the focus of the review. In our case, we are evaluating

adaptive feedback loops. We include different factors on the technology that may

influence a particular proposal.

 Activity refers to what the Technology does on the Software System. In our case, it

adapts its AM.

 Actor refers to the entity that performs the Activity. In this work, it corresponds to

another software system. Our Actor has three relevant attributes, which relate to the

open research challenges presented in Section 3.4.

Propositions (P1-P12 in Figure 29) and their explanations (E1-E12) are discussed below,

organized by RQ. In order to derive the propositions of our theory, apart from analyzing results

of Section 3.5.6, we have investigated trends among solutions using data mining techniques, as

we have done in Chapter II. The resulting data mining rules (patterns) can be found online at

https://goo.gl/i5jN9e.

Chapter III How to improve

Towards adaptive monitoring for self-adaptive systems 83

Table 18

Constructs and explanations

Constructs

C1. SAS
C2. AM
C3. Reason
C4. Adaptation

approach
C5. Time
C6. Technique
C7. Reactive

C8. System type
C9. Context
C10. External
C11. Generalizability
C12. Adaptation criteria
C13. Decentralization
C14. Adaptive feedback loops

C15. Parameter
C16. Centralized
C17. Adapt
C18. System in charge of loop

adaptation
C19. Reusability
C20. Flexibility

Explanations

E1. External approaches have many advantages over internal ones.
E2. Uncertainty is a key challenge of SASs.
E3. To decide the adaptation action, system adaptation capabilities as well as the type of system,

must be known.
E4. Designing decentralized systems is more complex than designing centralized systems.
E5. Predicting an event is more complex than reacting to it once it happened, e.g., a component’s

fault.
E6. To decide the adaptation technique, adaptation capabilities as well as the type of system, must

be known.
E7. Flexible solutions should also support decentralized settings.
E8. Re-composing a system, adding or removing components, is more complex than adjusting a

parameter.
E9. Generic solutions should be applicable to any type of SAS.
E10. A solution is reusable if it can be applied to a variety of SASs.
E11. Flexible solutions should support both Reactive and Proactive adaptation.
E12. Supporting changes on SASs’ structure, apart from parameter changes, improves the flexibility

of a solution.

 RQ2. According to our findings, many of the approaches reviewed provide External (P1)

and Context-aware solutions (P2). Advantages of External approaches are very well-

known in the SASs community (E1) [72]. On the order hand, most of the context-aware

approaches try to respond to the highly dynamic and uncertain environments to which

modern SASs are exposed (E2). In this review, we have presented some of the most

common variables: sensor data disturbances, SASs’ workload, interaction with other

SASs, etc. As mentioned before, uncertainty is one of the most challenging factors

affecting SASs [7]. Evidence also indicates that Reactive and Parameter adaptation have

been the first and most supported types of adaptation (P5, P8). One can imagine that re-

composing a software system at runtime is more complex than simply adjusting a

parameter. A typical Parameter adaptation is the adjustment of the adaptation rules or

the inference of new ones at runtime (E8). In a similar way, one can imagine that

reacting to an event once it happens is easier than trying to correctly predict it, i.e.,

timely, accurately, etc. (E5).

Data mining results also show that Proactive and Structure adaptation are typically

supported in conjunction with their counterparts, i.e., Reactive and Parameter

Chapter III How to improve

Towards adaptive monitoring for self-adaptive systems 84

adaptation, respectively. The type of SAS may influence the solution to apply; this can

be notice more on the Adaptation criteria (P3) and the adaptation Technique (P6). For

instance, in a Component-based system, the natural adaptation Technique is Structure

(E6) while in a Goal-oriented the decision criteria are the Goals (E3). Finally, the great

majority of the approaches propose Centralized settings (P4). In most of the cases, this

is done for the sake of simplicity; however, no guidelines are provided for applying the

solutions in decentralized systems. This situation is critical since most of modern SASs

are deployed in such kind of settings, e.g., IoT systems [65], [72] (E4).

Figure 29: Adaptive feedback loops in SASs’ theory model

 RQ3. The type of software system in which solutions can be applied is directly related to

the generalizability (P9) and reusability (P10) aspects of the solution. Most of the

approaches have emerged for solving application or domain-specific problems,

generating ad-hoc solutions. Therefore, standardized solutions that make the

development of adaptive loops for SASs easier and faster are still missing (E9, E10).

 RQ4. Some characteristics of adaptive feedback loops’ solutions are directly related to

their generalizability, reusability, and flexibility. As mentioned in RQ3, the System type

(P9, P10) is one of them. We can also mention the type of Technique (P12), the degree

of Decentralization (P7) and the type of adaptation Time (P11). The relations of these

Chapter III How to improve

Towards adaptive monitoring for self-adaptive systems 85

concepts to the challenges are explicitly stated in Section 3.4 (E12, E7, and E11). None

of the reviewed approaches tackles all the open research challenges, being

generalizability, reusability, and decentralization the less supported properties.

Moreover, the approaches providing these characteristics, do not present a complete

proposal for supporting the whole software development lifecycle. Addressing this issue

may improve the maturity and visibility of this research field.

This section has presented a literature review on adaptive feedback loops for SASs. The review

aimed at providing an overview of this research topic and identifying how existing approaches

address current research challenges. In order to achieve this goal, 42 studies organized in 21

approaches, from a variety of domains, were identified, following a rigorous protocol. The

primary studies were used for addressing a series of RQs. The results point out the liveliness at

the same time as the immaturity of the field. There is a lack of solutions for supporting the

development process of modern SASs with adaptive loops. Moreover, the study made evident a

gap between researchers and practitioners in this research field. With modern SASs on the rise

such as IoT systems, mobile apps, etc., addressing such issues should be a high-priority task to

the community members of this research field. The findings of this contribution have motivated

the design of HAFLoop, our proposal for supporting modern SASs’ self-improvement. In next

chapter, we describe our vision of adaptive feedback control loops for SASs as well as our

proposal for realizing such vision. The generic solution of HAFLoop is then instantiated for

supporting adaptive monitoring in SASs (i.e., contribution of RQ3 and the main research goal of

this thesis).

Towards adaptive monitoring for self-adaptive systems 86

IV

How to support

Building a SAS’s self-improvement architecture

The construction of SASs has been studied from different perspectives of the Software Engineering

field. Concretely, Weyns [66] has structured these perspectives in six different waves of research:

Architecture-based adaptation, Runtime models, Automating tasks, Goal-driven adaptation,

Guarantees under uncertainties and Control-based adaptation. The solution that we present in this

thesis, HAFLoop, belongs to the Control-based adaptation wave. This wave is concerned with

exploiting the basis of feedback control loops for analyzing and guaranteeing key properties of self-

adaptive systems, e.g., adjusting SASs’ AM at runtime [66]. Control-based adaption is triggered by

the complexity to provide assurances (from wave five) and the need for a theoretical framework for

self-adaptation (from wave two) [66]. As we have summarized in the reviews presented in Chapter

III, there are still gaps to face SASs’ AM adaptation in terms of both capabilities and construction.

The aim of this contribution of the thesis is to build a SAS’s self-improvement architecture that can fill

the gaps pointed out in Chapter III. Concretely, our solution should address the challenges affecting

modern SASs’ self-improvement process (i.e., challenges Chl1-Chl4, identified in Section 3.4). In

order to do that, we have first developed an abstract vision about how SASs’ self-improvement should

be done (Section 4.1). Then, we have specified the key aspects of our architectural solution for

materializing such vision. In Section 4.3, we describe the components of our architecture as well as

their behavior for supporting adaptive AMs and coordinating such process with other AMs’ tasks. In

order to do develop our solution, we have taken into account the contributions of RQ2 of this thesis

(see Chapter III). The result is a complete, modular, and generic architecture, named HAFLoop, able

Chapter IV How to support

Towards adaptive monitoring for self-adaptive systems 87

to support the designed and development of fully or partially adaptive AMs for SASs. That is,

adaptation capabilities are supported for all the MAPE-K elements composing the AM’s feedback

loop. However, the solutions can be partially adopted for enabling such capabilities to only the

components of interest. For instance, a partial proof-of-concept implementation of HAFLoop has

been done for supporting the adaptation of SASs’ requirements stored in the Knowledge base.

As the main goal of this thesis states, in this research we focus on the adaptation of the Monitor

element given the crucial role it plays in the AM. Thus, considering the contributions of RQ1 and

RQ2 (see Chapter II and III) we have developed a partial implementation of HAFLoop for supporting

adaptive monitoring in modern SASs. This implementation has been evaluated in the domain of the

smart vehicles. Different use cases and scenarios for runtime challenging situations such as sensor

faults, limited resources, and unpredictable road events were designed and tested. Moreover,

experiments were carried out in both simulation and real environments.

Most of the contributions presented in this chapter have been published. The first ideas were

published in the applicant’s Master thesis [21] and a demo tool session of the 23rd IEEE International

Requirements Engineering Conference (CORE2018: A) [22]. Later, during the development of this

thesis, contributions were published in: three deliverables of the SUPERSEDE H2020 European

project [23]–[25], a report of the SALI Swedish project (openresearch@astazero program) [26], the

tutorials and poster abstracts session of the BSR winter school - Big Software on the Run: Where

Software meets Data [27], the PhD symposium of the International Conference on Service-Oriented

Computing (CORE2018: A) [28] and the SCI-indexed journal Expert Systems with Applications

(I.F.2017: 3.768) [7]

4.1 Our vision of SASs’ self-improvement

Following the ideas of our HIIC pattern (see Figure 25 in Chapter III), in order to support the

adaptation of the SASs’ AM, we consider the MAPE-K feedback loops implementing the AMs as MEs

of other MAPE-K loops in charge of their adaptation (see Figure 30). In this way, existing proposals

for building SASs could be used (and improved) for adapting the MAPE-K elements. Moreover, in

this thesis, we propose to use an external approach. According to previous works in the field of SASs

[2], [16], [65], [67], the external design in self-adaption offers several benefits such as:

 scalability, since one MAPE-K loop can manage the adaptation of various MAPE-K loops and

vice versa;

 maintainability, as the responsibilities of the loops adapted and the loops in charge of their

adaptation are decoupled and can be maintained separately;

 reusability, as the architecture, processes and algorithms can be reused among different

loops;

 flexibility, as different degrees of (de)centralization (i.e., decentralized, hybrid, or centralized)

are possible.

Chapter IV How to support

Towards adaptive monitoring for self-adaptive systems 88

In a space conformed of AMs and their MEs, systems can be organized at different operation levels, as

shown by Figure 30. An AM would be situated in the upper immediate level of which its MEs are

placed. In our vision, every MAPE-K loop should be able to: 1) process adaptation instructions for

changing its structure or its behavior; 2) manage the adaptation of any type of ME (including MAPE-

K loops’ elements); 3) collaborate with other feedback loops of the same level for enriching its

operation (e.g., improve context knowledge).

Figure 30: MAPE-K loops adaptation process in HAFLoop

We consider that there could be an unlimited number of levels for the improvement of the adaptation

logic of SASs. For instance, a Level-1 MAPE-K loop could utilize simple adaptation rules and policies

for driving the adaptation process of the MEs. Then, in a Level-2, a more complex loop with learning

capabilities could operate for better supporting the adaptation process conducted by the Level-1 loop.

In a Level-3, a loop with more sophisticated techniques could be placed for enriching the operation of

the Level-2 loop in the long-term, for instance, using deep-learning techniques. As it can be noticed,

levels could be used for growing in complexity and supporting functionalities that require longer

iterations. In this way, time-critical adaptation processes performed at lower levels are not affected.

Moreover, with this level-based approach, the adaptation process of a SAS could be gradually

enhanced, as levels are added or upgraded over time. Finally, as it is shown in Figure 30, the

participation of the user (i.e., system owners, developers, end-users, etc.) at the different levels is

considered. Given the description of the levels provided before, we assume that the degree of user

involvement will vary from one level to another. At lower levels less user participation may be

Chapter IV How to support

Towards adaptive monitoring for self-adaptive systems 89

required since loops’ operation would be simpler and in most of the cases completely automatized;

while at upper levels, more complex conflicts may appear, thus higher degree of user participation

may be desirable or required.

4.2 A reusable design for MAPE-K loops

Many architecture-based proposals supporting SASs offer reusability on a high abstraction level.

However, they neglect reusability on the low component implementation level [109]. Motivated by

this fact, Krupitzer et al. propose the FESAS component template [109]. This template separates the

generic structure and mechanisms of Autonomic Computing from the custom MAPE elements’

functionalities. The contribution is part of the FESAS project framework [110] and aims at

simplifying and fastening the development of MAPE elements through reusability of components.

The template describes an implementation-independent reusable MAPE element (see Figure 31). As

it is shown in Figure 31, a FESAS MAPE element is composed of an exchangeable logic (e.g., for an

Analyzer, this would be an algorithm for analyzing monitoring data) and logics for communication

and data handling. Moreover, it provides interfaces for receiving and sending data to other

components as well as requesting data from other components. The division of communication and

data handling functionalities in subcomponents, as well as customized functional logic, enables the

reuse of subcomponents among the different MAPE elements as well as different MAPE-K loops.

Figure 31: FESAS component template [109]

The FESAS template works as a skeleton of methods for calling the elements’ functional logic,

communication, and data handling. It is highly reusable since only the functional logic

implementation must be customized in each MAPE element. In this thesis, we extend the FESAS

Chapter IV How to support

Towards adaptive monitoring for self-adaptive systems 90

component template with adaptation capabilities for supporting the design and development of

reusable adaptive MAPE-K elements. Moreover, we define and provide detailed descriptions of

element’s components and subcomponents as well as the mechanisms required for coordinating their

normal operation with their adaptation process. In our proposal, the Knowledge base element is

considered as any other adaptive AM element, thus it is modeled using the same enhanced template.

Our design decisions make our proposal a complete and reusable solution for developing adaptive

MAPE-K loops in SASs.

4.3 HAFLoop

In this section, we present our architectural proposal called HAFLoop (Highly Adaptive Feedback

control Loop). Aligned with the principles of the research methodology utilized in this thesis (see

Section 1.3), HAFLoop has been developed following an incremental and iterative approach.

Nevertheless, we illustrate the results of such development in a linear way for the sake of simplicity.

To design HAFLoop, we have taken into account the open research challenges affecting modern

SASs’ self-improvement, identified in Section 3.4:

Chl1. Future works should elaborate on common, generic strategies to offer more reusable

approaches for self-improvement or provide guidelines within use cases and generic

guidelines across use cases.

Chl2. Future approaches for self-improvement should consider both reactive (reaction after a

change) and proactive (action before a change) adaptation for higher flexibility and improved

adaptation results.

Chl3. Future approaches should include structural adaptation of the AM in order to fit better

runtime changes, e.g., AM elements’ faults.

Chl4. Future works should offer self-improvement in decentralized settings to improve scalability.

HAFLoop proposes a generic architecture for adaptive MAPE-K loops able to support different

adaptation processes (i.e., proactive, reactive, structure, parameter) and system settings (i.e.,

centralized, hybrid or decentralized), in a variety of SASs. The architecture consists of a set of modular

components that can operate together or in isolation. Concretely, we have defined four types of

reusable components that correspond to different abstraction levels, from more complex to simpler:

 Adaptive AM or adaptive feedback loop

 Adaptive MAPE-K element

 Element component

 Managers and policies

The term “adaptive” is used in our solution for indicating the ability, but not the obligation, of being

adapted. That is, our proposal can be partially implemented for supporting non-adaptive MAPE-K

loops or fully implemented for supporting adaptive MAPE-K loops. In this thesis, we emphasize on

Chapter IV How to support

Towards adaptive monitoring for self-adaptive systems 91

adaptive loops; thus, a fully implementation in the form of a framework for Java-based systems, will

be presented. Below, we provide more details about each of the HAFLoop components.

 Adaptive feedback loop

Regarding the AM structure, in HAFLoop, we consider that the loop implementing the adaptive AM

should have at least one element of each type (i.e., a Monitor, an Analyzer, a Planner, an Executer and

a Knowledge base), in order to be able to perform the different tasks and manage the necessary

knowledge as to implement adaptation. However, we also consider that it could have more than one

element of each type, as we have established in the principles of the HIIC pattern [7]. This could be

beneficial in some situations, e.g., for load-balancing, redundancy or for comparing two approaches in

a single SAS. AMs could also need to share elements with each other in order to, for instance,

coordinate the adaptation decisions of different SASs. This is the case of complex SASs such as traffic

control systems, considered SoS [2], [65], [67]. In HAFLoop the communication, sharing and

coordination of MAPE-K elements of different AMs is also possible. These structural and behavioral

characteristics of adaptive AMs are supported in HAFLoop by the use of runtime policies,

configuration elements previously introduced by the HIIC pattern [7]. Policies encompass all the

knowledge required by an element for performing its tasks and communicating with other elements of

its AM as well as other AMs.

 Adaptive MAPE-K element

In order to address Chl1, we propose a generic architecture for the adaptive MAPE-K elements in

which we separated their generic functionality, e.g., communication, adaptation, and data handling

tasks, from their specific functionality, i.e., the logic required to monitor, analyze, plan, execute, and

manage runtime knowledge. The HAFLoop MAPE-K element architecture extends the FESAS

template [109] presented before, with a set of components in order to coordinate MAPE-K elements’

normal operation with the execution of adaptation instructions at runtime. Concretely, a HAFLoop

MAPE-K element is composed of four functional layers: a Communication layer, a Message

processing layer, a Logic layer, and a Knowledge layer (see Figure 29). These layers represent the

main functionalities of an element, i.e., communicate with other components, process input and

output messages (including data and requests), execute element-specific or adaptation logics and

manage runtime knowledge, respectively.

The Communication and Message processing layers correspond to the communication and data

handling components in the FESAS template. While, the Logic layer partially corresponds to the

logic component, since adaptation capabilities are not considered in the FESAS template. Finally, we

have extended the original template with a Knowledge layer, in order to enable MAPE-K elements to

manage element-specific runtime knowledge such as policies, which also play a crucial role in the

elements’ adaptation process. In order to perform the functionalities described above, each layer relies

on one or more components (see Figure 32). Concretely,

 Communication layer. This layer is composed of a Sender and a Receiver component.

Chapter IV How to support

Towards adaptive monitoring for self-adaptive systems 92

 Message processing layer. This layer consists of a Logic selector and a Message composer

component.

 Logic layer. This layer is composed of a Functional logic and an Adaptation logic component.

 Knowledge layer. This layer consist of a single component called Knowledge manager.

Figure 32: HAFLoop adaptive MAPE-K element

Below, we describe each of these components.

 Receiver. The Receiver component is in charge of providing an interface for enabling external

systems (e.g., other loop elements or the MEs) to communicate with the elements. It receives

all input messages and forwards them to the Logic selector component.

 Logic selector. The Logic selector component, in its turn, analyzes the input messages and

selects the logic component that should process them, i.e., the Functional or the Adaptation

logic component.

 Functional logic. The Functional logic is the component in charge of enacting any logic related

to the main functionality of the elements and is what gives them their nature, i.e., it

determines whether an element is a Monitor, an Analyzer, a Planner, an Executer or a

Knowledge base. Output messages produced by this component are sent to the Message

composer component where they are further processed.

 Adaptation logic. This component contains the logic for processing adaptation request

messages received from the Logic selector, for instance, it could decide whether an adaptation

action can actually be enacted or not given a specific context. The Adaptation logic forwards

adaptation requests to the Knowledge manager for being executed, and, if needed, sends

output messages (e.g., an acknowledgement of the received adaptation request) to the

Message composer.

Chapter IV How to support

Towards adaptive monitoring for self-adaptive systems 93

 Message composer. The Message composer component is in charge of preparing elements

output messages. Output messages are mainly generated by the Functional and the

Adaptation logic components. Concretely, the Message composer’s function consists in

determining the recipients of a specific message, ensuring format adequacy, and creating the

necessary message copies. These copies are passed to the Sender component for being

forwarded to the final recipients.

 Sender. The main function of this component is to send output messages to the corresponding

recipients (e.g., other loop elements or the MEs).

 Knowledge manager. The Knowledge manager, as its name implies, is in charge of managing

the knowledge required by the rest of components for operating correctly. In our proposal,

knowledge is stored in the form of runtime policies, which can be adapted at runtime. In order

to support the adaptation process, this component receives adaptation requests from the

Adaptation logic, then it determines to which component(s) the requests should be

forwarded. This component can also be utilized for managing other types of knowledge.

However, in this thesis we focus only on the adaptive runtime policies since they play a crucial

role in the adaption of the MAPE-K elements.

 Element component

In HAFLoop, element’s adaptations are managed at the component level. This decision makes our

design modular and scalable since each element’s component can be adapted completely independent

from the rest of the element’s components. In order to manage both the normal operation and the

adaptation process, we propose to include in each element’s component, three subcomponents: a

Message manager, a Component policy manager, and a Component policy (see Figure 33). The

Message manager subcomponent is dedicated to receive normal operation messages from other

components (or external systems, e.g., in the case of the Receiver). The Component policy manager

receives adaptation messages from the Knowledge manager. After processing the adaptation

message, the Component policy manager sends the corresponding adaptation action to the

Component policy subcomponent. This last subcomponent represents the current active policy. After

receiving the adaptation action, the Component policy performs two tasks: first, it updates the

component-specific policy variables; second, it notifies the changes to the rest of subcomponents that

utilize the policy variables, e.g., the Message manager.

Figure 33: HAFLoop element component

Chapter IV How to support

Towards adaptive monitoring for self-adaptive systems 94

 Managers and policies

In order to perform the component-specific tasks described before, each component’s Message

manager should be implemented in a customized way. In Figure 34, we propose a set of

subcomponents for implementing the different Message managers. As it can be seen, some Message

managers are more complex. Below, we describe these subcomponents:

 Receiver. The Message manager of the Receiver is implemented by the Message processor.

This subcomponent utilizes the Receiver’s policy for deciding to which Logic selector a

message should be sent and sends the message.

 Logic selector. The Message manager of the Logic selector is implemented by the Message

dispatcher. This subcomponent utilizes the Logic selector’s policy for deciding to which logic

a message should be sent, i.e., the Functional or the Adaptation logic, and sends the message.

 Functional logic. The Message manager of the Functional logic is implemented by the

Functional logic enactor. The enactor’s functionality consists in calling the Functional logic

enactor manager for deciding to which specific logic a message should be sent. The

implementation of the Functional logic enactor manager as well as the available logics should

be done by each HAFLoop instance. Apart from updating its policy variables, the enactor

transmits those changes to the manager, which in its turn may decide to which specific

logic(s) these changes should be communicated.

 Adaptation logic. The Message manager of the Adaptation logic is implemented by the

Adaptation logic enactor. This subcomponent utilizes the Adaptation logic’s policy for

deciding whether an adaptation can be enacted, given the current context, and to which

Knowledge manager the accepted adaptations should be communicated. The Adaptation

logic enactor sends then the corresponding message.

 Message composer. The Message manager of the Message composer is implemented in part

by a Formatter subcomponent, which utilizes the Message composer’s policy for

determining: 1) to which recipients a specific message type should be sent, 2) which data

format is required by each of the message recipients. Then, a Message creator subcomponent,

which receives requests from the Formatter, generates an output message per each request.

Using the Message composer’s policy, the Message creator sends the messages to the

corresponding Sender.

 Sender. The Message manager of the Sender is implemented by the Message sender. The

logic of this subcomponent should be implemented by each HAFLoop instance in order to

allow the MAPE-K element to communicate with external systems, i.e., considering the

different interfaces required/available for those interactions. It is advisable to use the Sender’s

policy for conducting this task.

 Knowledge manager. The Message manager of the Knowledge manager is implemented by

the Adaptive knowledge manager. This subcomponent utilizes the Knowledge manager’s

policy for deciding to which element’s component an adaptation should be sent, and sends the

message.

Chapter IV How to support

Towards adaptive monitoring for self-adaptive systems 95

Figure 34: HAFLoop adaptive element components and subcomponents

Extending the HIIC pattern [7] to a lower level, in HAFLoop, similarly to at the AM level, at the

element level, more than one type of component (Receiver, Logic selector, Functional logic,

Adaptation logic, Message composer, Sender and Knowledge manager) can be present. The only

consideration is that at least, one component of each type is necessary for setting up an adaptive

element. The advantages of allowing different MAPE-K elements’ structures are similar: redundancy,

load balancing, etc. In this case, the decision of considering component-level policies is what allows

systems’ owners to design elements with different structures (e.g., an Executer with two Sender

components for managing separately messages of two MEs). Moreover, since each component and

element has all the knowledge it requires in its policies, different loop, and element settings are

possible, from centralized to fully decentralized, addressing Chl4.

Chapter IV How to support

Towards adaptive monitoring for self-adaptive systems 96

HAFLoop components’ operation is driven by a set of adaptive runtime policies. The configuration

variables contained in policies are intended to describe both how an element, and in consequence its

components, should behave and be structured. This allows HAFLoop instances’ owners to focus only

on how every policy adaptation should be translated into changes of their specific components and

not on how to manage the adaptation process. Policies can contain innumerable configuration

variables; variables will depend on the requirements of each HAFLoop instance, i.e., each use case.

Variables can be generic and reusable among different SASs, but also domain specific. In Table 19, we

provide a list of element-independent variables that could be included in policies. While, in Table 20,

we extend this list with a set of element-specific variables that could be included in policies. These

lists of variables do not intend to be complete, but to serve as guideline for future approaches adopting

HAFLoop.

Table 19

Element-independent policies

Element component Component policy variables

Receiver  List of Logic selectors to which input messages could be sent

 Criteria for deciding to which Logic selector(s) an input message should be
sent

Logic selector  List of Functional and Adaptation logics to which input messages could be
sent

 Criteria for deciding to which Functional and Adaptation logic(s) an input
message should be sent

Functional logic  List of Messages composers to which output messages could be sent

 Criteria for deciding to which Messages composer(s) an output message
should be sent

Adaptation logic  List of Messages composers to which output messages could be sent

 List of Knowledge managers to which input messages could be sent

 Criteria for deciding to which Messages composer(s) an output message
should be sent

 Criteria for deciding to which Knowledge manager(s) an input message
should be sent

Knowledge manager  List of Receivers, Logic selectors, Functional and Adaptation logics,
Messages composers and Senders to which adaptation messages should be
sent

 Criteria for deciding to which kind of element’s component an adaptation
request should be sent and to which specific Receiver(s), Logic selector(s),
Functional and Adaptation logic(s), Messages composer(s) or Sender(s) an
adaptation request should be sent (in case the adaptation is not for the
Knowledge manager itself)

Message composer  List of Senders to which output messages should be sent

 Final recipients and format(s) accepted by each of them.

 Criteria for deciding to which Sender(s) an output message should be sent
Sender  List of external recipients to which output messages should be sent

 Criteria for deciding to which external recipient(s) an output message
should be sent

Chapter IV How to support

Towards adaptive monitoring for self-adaptive systems 97

Table 20

Element-specific policies

Adaptive
element

Element
component

Component policy variables

Monitor

Functional logic  List of data gathering instruments or monitors (sensors, services,
logs)

 List of variables to be monitored

 Monitoring variables characteristics (e.g., type of variable,
thresholds, etc.)

 Data gathering instruments’ mechanism (pull, push)

 Monitoring frequency (per monitor or variable)

 Monitoring cost
Sender  List of Analyzers, Knowledge bases and MEs to which output

messages could be sent

 Criteria for deciding to which Analyzer(s), Knowledge base(s) or
ME(s) an output message should be sent

Analyzer

Functional logic  List of analysis instruments (tools, algorithms, techniques, etc.)

 Analysis’ parameters (constraints, evaluation parameters, etc.)
Sender  List of Planners and Knowledge bases to which output messages

could be sent

 Criteria for deciding to which Planner(s) or Knowledge base(s) an
output message should be sent

Planner

Functional logic  List of planning/decision making instruments (tools, algorithms,
techniques, etc.)

 Planning instruments’ parameters (objective functions, evaluation
parameters, etc.)

Sender  List of Executers and Knowledge bases to which output messages
could be sent

 Criteria for deciding to which Executer(s) or Knowledge base(s) an
output message should be sent

Executer

Functional logic  List of MEs that could be adapted

 MEs’ adaptation enactment requirements (e.g., adaptation request
format)

 Criteria for deciding to which ME(s) and adaptation request should
be sent

Sender  List of Knowledge bases and MEs (and their Effectors) to which
output messages could be sent

 Criteria for deciding to which Knowledge base(s) or ME(s)
(through its/their Effectors) an output message should be sent

Knowledge
base

Functional logic  List of data stores for persisting runtime data and the format in
which data should be persisted (e.g., json, relational tables, etc.)

 List of data types to be persisted (e.g., sensor data, analysis alerts,
etc.)

Sender  List of Monitors, Analyzers, Planners and Executers to which
output messages could be sent

 Criteria for deciding to which Monitor(s), Analyzer(s), Planner(s)
or Executer(s) an output message should be sent

Chapter IV How to support

Towards adaptive monitoring for self-adaptive systems 98

The policy variables listed in Table 19 and Table 20 can be adapted at runtime. According to these

lists, a Sender’s policy could be adapted for changing the loop structure, e.g., changing the Analyzer to

which a Monitor has to send messages, or add a new Knowledge base (addressing Chl3). On the other

hand, Functional logic’s policy could be adapted for changing the behavior of the AM elements, e.g.,

changing the monitoring frequency, the analysis algorithm or the decision-making evaluation

parameters. Policies are also useful for enabling feedback loops to support the addition and removal of

MEs at runtime. For instance, when a ME is added, its corresponding policy variables can be

communicated to the AM elements using the same mechanism as the one applied for policies’

adaptation.

HAFLoop architecture can be utilized for supporting both, proactive and reactive adaption techniques

(partially addressing Chl2). In order to exemplify how Chl2 could be address by approaches adopting

the HAFLoop architecture for constructing SASs, in this thesis we provide an evaluation on the smart

vehicles domain where different scenarios involving proactive, reactive as well as structural and

parameter adaptation are tested. Finally, thanks to the external approach adopted by vision,

HAFLoop MAPE-K loops in charge of self-improvement operate independently from loops in charge

of the MEs’ adaptation; therefore, no overhead on MEs’ adaptation process is introduced. Instead,

considering adaptive feedback loops may help existing SASs to deal with challenging factors such as

faults and uncertainty. In this thesis, we focus on the performance of self-improvement loops, as we

will describe in next sections dedicated to the evaluation of HAFLoop.

4.4 SACRE: a proof-of-concept

SACRE (Smart Adaptation through Contextual REquirements) [7], [22] is a proposal that we have

developed for supporting the detection of modern SASs’ contextual requirements (i.e., adaptation

rules) affected by uncertainty, and the application of Machine Learning techniques to determine the

best operationalization of context based on sensed data, at runtime. This approach is a step forward of

the approach ACon [61] which contributed with the ideas of the techniques to be used for supporting

SASs under uncertain conditions. SACRE has primarily focused on architectural decisions, its main

contributions is the HIIC pattern that we have mentioned in RQ2.

Summing up, SACRE provides the first, and some of the fundamental, ideas of HAFLoop, applied to

the field of runtime requirements engineering for SASs. Concretely, SACRE adopts the HIIC pattern

as follows. At the bottom layer, MEs are placed; at the middle layer, an AM in charge of the

adaptation of the MEs (through the evaluation of contextual requirements) operates; and at the top

layer, a second MAPE-K loop is in charge of adapting the contextual requirements utilized by the

middle layer AM, when runtime uncertainty is experienced. In order to evaluate SACRE, we have

conducted an evaluation using different uncertainty scenarios in real-time in the domain of smart

vehicles.

Chapter IV How to support

Towards adaptive monitoring for self-adaptive systems 99

4.4.1 The smart vehicles domain

Smart (or intelligent) vehicles are systems capable of sensing contextual data (e.g., from the driver, the

environment, the vehicle itself) and making decisions based on these data (e.g., turn on an alarm or

activate self-driving functionality). These systems have become increasingly popular in the

automotive industry. In consequence, the interest of the research community in this domain has

increased steadily. Smart vehicles have brought several societal benefits, for instance, improving

drivers’ safety, optimizing fuel consumption, improving driver’s experience and comfort. At the same

time, their control systems need to face challenging characteristics such as runtime faults, uncertainty,

or limited resources, what make this domain still subject of research. In SACRE, we have used

contextual requirements for describing a particular functionality of a smart vehicle involving self-

adaptation capabilities. This functionality consists of the detection and support of drowsy drivers. A

contextual requirement is defined as follows:

“A contextual requirement consists of a 2-tuple of the <<expected system behavior>>

and the specific <<context>> within which this expected behavior is valid”

 Knauss et al., Acon: A learning-based approach to deal with uncertainty in contextual requirements

at runtime [61]

 Contextual requirements for detecting and supporting drowsy drivers

Many of the road accidents are occurring due to driver fatigue (i.e., driver drowsiness or driver

sleepiness). Sleepiness reduces the concentration, activeness, alertness, and vigilance of the driver and

it makes the driver to take slow decisions and sometimes no decisions at all. Drowsiness affects the

mental alertness and decreases the ability of the driver to operate a vehicle safely, increasing the risk of

human error that could lead to fatalities and injuries. Hence, to increase the road safety, there is a

need to address this issue to avoid accidents by alerting the driver [111]. In order to do so, the state of

drowsiness and alertness of the driver should be effectively monitored [112].

Drivers can experience different levels of drowsiness and alertness, from drowsy to dangerously

drowsy and finally sleeping. In order to prevent accidents, different mechanisms for alerting and

supporting drivers have been used, for example, in previous a work [113], auditory and seat-based

vibration warnings have been proposed to mitigate driver distraction. Other examples are lane

keeping assistance systems and lane departure avoidance systems studied by many researchers [113].

In SACRE, in order to detect and support drowsy drivers at different stages, we have defined three

levels of drowsiness with three different actuators to support each of these levels. In order to be

supported by SACRE, we have modeled them as contextual requirements (see Table 21).

The different drowsiness levels correspond to the <<context>> of the requirement, while the

activation of the actuators corresponds to the <<expected system behavior>>. The satisfaction of the

contextual requirements consists of the execution of the corresponding expected system behavior

when a context holds at runtime. In order to evaluate contexts continuously, SACRE uses sensor data.

Chapter IV How to support

Towards adaptive monitoring for self-adaptive systems 100

Thus, situations such de-calibration of sensors or faults can cause contextual requirements

dissatisfaction. Below, we describe the set of sensors used for the operationalization of the contextual

requirements’ context listed in Table 21.

Table 21

Contextual requirements

Id Context Behavior

cr1 Driver is drowsy Activate seat-vibration alarm

cr2 Driver is dangerously drowsy Activate sound-light alarm

cr3 Driver is sleeping Activate lane keeping support

 Sensors

According to a previous work [112], there are three types of measures that have been used widely for

monitoring drivers’ drowsiness:

 Vehicle-based measures. These include deviations from the lane position, movement of the

steering wheel, pressure on the acceleration pedal, etc. Once crosses a specified threshold, it

indicates a significantly increased probability that the driver is drowsy.

 Behavioral measures. For example, yawning, eye closure, eye blinking or head position,

usually monitored through a camera.

 Physiological measures. Namely, electrocardiogram (ECG), electromyogram (EMG),

electrooculogram (EoG), and electroencephalogram (EEG).

For the development of an efficient drowsiness detection system, the strengths of the various

measures should be combined into a hybrid system [112]. In the evaluation of SACRE, we use three

different (simulated) sensors for obtaining measures from the three types mentioned above. Below,

we describe each of the sensors:

 Steering wheel pressure sensor. The lack of hands or only one hand on a steering wheel could

be an indication of a drowsy driver [114]. Based on the patent presented by Lisseman et al.

[114], we consider a steering wheel pressure sensor (triangles in Figure 35) for continuously

obtaining the number of driver’s hands on the steering wheel (hosw).

 Driver’s vigilance level camera. Eyes closure during long periods and frequently non-frontal

face position are clear symptoms of driver fatigue [115]. Camera-based sensors for monitoring

drivers in real time, as the prototype presented in a previous work [115], have been proposed

for extracting behavioral measures such the ones mentioned before. In SACRE, we have

considered a camera sensor (circle in Figure 35) able to report the eyes’ state, indicated by the

percentage of the driver’s pupils that is visible, and the face position, with two possible values

frontal and non-frontal. Then, using the eyes’ state variable we have calculated the percent eye

Chapter IV How to support

Towards adaptive monitoring for self-adaptive systems 101

closure (perclos) measure, consisting in the percentage time where driver’s pupils have been

less than 20% visible.

 Electrocardiogram. As driving, fatigue develops heart rate slows, triggering a series of events

(i.e., blood pressures go down, poor circulation and finally hypoxia in brain) that induces

drowsiness and loss of concentration [116]. More and more non-intrusive electrocardiogram

sensors, as the one presented by Wartzek et al. [117], are developed for being incorporated in

vehicles in order to continuously monitor drivers’ heart rate. Based on Wartzek et al.

prototype, in this work we consider an electrocardiogram sensor (squares in Figure 35) for

obtaining the physiological measure hearth beats per minute (hbpm).

Figure 35: Smart vehicle sensors: steering wheel pressure sensor, camera, and electrocardiogram

The measures obtain by the sensors (i.e., environmental variables) listed above (i.e., hosw, perclos,

face position and hbpm) are combined by expression operators (i.e., relational, arithmetic, and

logical) in order to operationalize the contextual requirements’ contexts. For example, a context

operationalization of cr1 (i.e., driver is drowsy, see Table 21), could be:

perclos >= 15 AND hbpm >= 67 AND hbpm <= 72

 Actuators

The actuators are used for executing the contextual requirements’ expected behaviors defined in Table

21. When drowsiness is detected, smart vehicles may use feedback to warn the driver. Such feedback

can be, for example, a warning sound, voice, light or vibration [114]. When driver’s drowsiness level

reaches high values, sophisticated actuators such as lane keeping systems may support them better.

Below, we list the set of actuators we have considered in SACRE:

 Seat-vibration alarm. Graded seat-vibration alarm has been perceived as a trusted (and less

annoying) actuator for warning drivers [113]. In the evaluation of SACRE, we have

considered a seat-vibration alarm (circles in Figure 36a) based on the prototype presented by

Lee et al. [113], for supporting drowsy driver context (see cr1 in Table 21).

 Sound-light alarm. Substantial research shows that complementing visual cues with

redundant cues in another sensory mode speeds people’s reaction time. A common

Chapter IV How to support

Towards adaptive monitoring for self-adaptive systems 102

combination of sensors is the use of visual and auditory displays [113]. Thus, in the

evaluation of SACRE, we have used a sound-light alarm actuator (squares in Figure 36a) for

alerting, dangerously drowsy drivers (see cr2 in Table 21).

 Lane keeping support. In order to prevent accidents caused by fatigue drivers, many

researchers have focused on studying the self-driving functionality of smart vehicles. Diverse

lane keeping assistance systems and lane departure avoidance systems have been proposed

[113]. These systems are characterized by being punctually activated when critic situations

occur (e.g., when a driver falls asleep). We consider a lane-keeping support system for

responding to the driver is sleeping context (see cr3 in Table 21). Examples of such systems

can be found in the contributions of BMW [118] and Toyota Motor Sales [119]. Figure 36b

provides an illustration of this actuator.

Figure 36: Smart vehicle actuators: (a) seat-vibration and sound-light alarm,

(b) lane keeping support system

Actuators can be turned off by the driver after they are activated by the system (for satisfying

contextual requirements), or disabled when the driver wants to keep them off. Particularly, the lane

keeping support actuator can also be turned on by the driver. The actions of turning on/off and

disabling actuators, triggered by the driver, result in candidate adaptations of the SAS’s contextual

requirements stored in the AM’s knowledge base. The adaptation of will lead the smart vehicle to

activate an actuator at some point of time, while in the past it was not the case, or the other way

around.

4.4.2 Implementation of SACRE

The modules of the SACRE implementation are shown in Figure 37. The implementation has can be

split into two main parts:

PART 1 – Self-improvement property

 Top-layer MAPE-K loop. This module implements the AM in charge of the adaptation of the

middle-layer loop. The MAPE-K loop elements (i.e., monitor, analyze, plan, execute,

knowledge base, sensors and effectors) as well as the modules in charge of managing their

policies have been implemented in Java ME 8.1. The actual policy documents were created at

design-time as .properties files. Asynchronous communication between the Monitor and the

Chapter IV How to support

Towards adaptive monitoring for self-adaptive systems 103

Analyzer and between the Monitor and the Knowledge base modules was implemented with

the help of buffers. This decision was done based on previous experiences, in which we have

noticed that these modules are the most work-intensive. The Knowledge base module stores

context data in the form of .arff files in the File System for being later used by the Data Mining

component.

Figure 37: Implementation of SACRE for the smart vehicles domain

 Analysis tool. SACRE utilizes Data Mining for finding patterns on runtime data and adapt

contextual requirements’ operationalization based on those patterns. For the evaluation of

SACRE, the JRip algorithm [38], [39] and the Weka tool [40] have been used for applying

Data Mining at runtime. The Analysis tool component is in charge of using the Weka tool

Java API for applying the JRip algorithm. It also supports the Knowledge base in the

persistence of the .arff files, in the File System. Since Java ME was not compatible with the

Weka API, we have used Java SE (Java Platform, Standard Edition) 1.8 for implementing this

Chapter IV How to support

Towards adaptive monitoring for self-adaptive systems 104

component. In order to enable the communication between the Analysis tool and the MAPE-

K components, the tool has been implemented as a RESTful service.

The .arff format is the format used by Weka and it consists in a file with a header and a body.

The header contains the list of the context variables and their type, as well as the variable to

analyze. The actual context data is then provided in the body. The separation of the Analysis

tool and the MAPE-K loop modules has allowed us to reuse the implementation of the first

one in the subsequent evaluations of HAFLoop.

PART 2 – Smart vehicle

 Middle-layer MAPE-K loop. The feedback control loop in charge of the contextual

requirements evaluation has been implemented in Java ME 8.1 by a single module. For the

sake of simplicity, in Figure 37 we show this module as separated MAPE-K elements. The

policies, including the initial set of requirements, are provided to the AM as .properties files.

Requirements are loaded in memory as runtime variables, and when an adaptation is

received, these variables are updated.

 Vehicle logic. Finally, a module simulating the interaction of the driver with the smart vehicle

has been implemented. This module reports sensors and actuators data. The module has been

implemented in Java SE 1.8. The communication with the middle-layer MAPE-K loop is

done through a RESTful interface. Sensors and actuators data is simulated and read by the

smart vehicle view module (see Figure 37), from the File System. These files have been

created at design-time.

The source code of this implementation as well as more details about its construction, artifacts, and

instructions of usage are available at https://github.com/edithzavala/sacre-sv.

4.4.3 Evaluation of SACRE

The evaluation of SACRE aimed at assessing the feasibility of adding self-improvement capabilities to

modern SASs. The smart vehicles domain is extremely demanding in terms of both functionality and

response time. Therefore is a perfect example for testing the fundamental ideas of our proposal,

contained in SACRE. The evaluation of SACRE has been performed in real-time using a simulated

environment. Concretely, we have used an IntelR CoreTM 2 Duo CPU P7350 @ 2.00 GHz, with

3,0GB RAM for running the evaluation. In the remainder of this section, we describe the evaluation

process and the threats to validity we have identified for this evaluation.

 Preparation activities

In Table 22 and Table 23, we provide the policy variables’ values we have set for the top and middle-

layer loops, respectively.

Chapter IV How to support

Towards adaptive monitoring for self-adaptive systems 105

Table 22

Top-layer MAPE-K loop policies

Policy Configuration variable Value

Monitor

Monitoring variables perclos, facePosition, heartBeatsPerMinute,

handsOnSteeringWheel

Monitoring variables

normalization max

perclos Max = 100, facePositionMax = 1 heartBeatsPerMinuteMax

= 120, handsOnSteeringWheelMax = 2

Monitoring variables

normalization min

perclos Min = 0, facePositionMin = 0, heartBeatsPerMinuteMin =

0, handsOnSteeringWheelMin = 0

Pre-processing

functions

perclos = calculate(eyesSate), facePosition = -,

heartBeatsPerMinute = -, handsOnSteeringWheel = -

Monitoring variables

min

perclos Min = 0, facePositionMin = 0, heartBeatsPerMinuteMin =

0,3, handsOnSteeringWheelMin = 0

Monitoring variables

max

perclos Max = 1, facePositionMax = 1 heartBeatsPerMinuteMax =

1, handsOnSteeringWheelMax = 1

Analyzer

Analysis variables perclos, facePosition, heartBeatsPerMinute,

handsOnSteeringWheel

Data Mining algorithm JRip

Data Mining tool Weka

Data Mining expected

output

Rules, Precision, Recall, fMeasure

Min analysis iterations N/A. This parameter has been indicated in source code. Since no

experimental evidence is available for setting this parameter we

configure it as 0 iterations (except for uncertainty case 2(a, b and

c) in Table 20 for which we set 3 iterations because in that case

Data Mining is not used and we want to avoid requirements’

adaptation triggered by isolated uncertainty situations)

Planner

Data Mining measures Precision, Recall, fMeasure

Data Mining measures

min

PrecisionMin = 0,95, RecallMin = 0,95, fMeasureMin = 0,95

Executer Managed element(s) N/A. Indicated in code (smart vehicle)

Knowledge

base

Loop frequency 14,28 iterations per second. By experience, this is the highest

frequency rate SACRE can reach in the machine used for the

evaluation. Authors from previous work [120] in the domain of

Chapter IV How to support

Towards adaptive monitoring for self-adaptive systems 106

smart vehicles, determined that a minimum rate of 5-10 iterations

per second is required for correctly detecting drivers fatigue. Thus,

this frequency value is good and supported by the literature.

Min uncertainty

iterations

3 iterations. There is no evidence for setting this parameter, thus

we inverted the analysis policy configuring 3 iterations for the

uncertain cases requiring Data Mining and 0 (indicated in code)

for uncertainty situations of case 2 (a, b and c in Table 20).

Variables to persist perclos, facePosition, heartBeatsPerMinute,

handsOnSteeringWheel, cr1ExpectedBehaviorState,

cr2ExpectedBehaviorState, cr3ExpectedBehaviorState

Table 23

Middle-layer MAPE-K loop policies

Policy Configuration variable Value

Monitor

Monitoring variables eyesState, facePosition, heartBeatsPerMinute,

handsOnSteeringWheel

Monitoring variables

normalization max

eyesStateMax = 1, facePositionMax = 1

heartBeatsPerMinuteMax = 120,

handsOnSteeringWheelMax = 2

Monitoring variables

normalization min

eyesState Min = 0, facePositionMin = 0

heartBeatsPerMinuteMin = 0, handsOnSteeringWheelMin = 0

Pre-processing functions N/A. Indicated in code (perclos = calculate(eyesState))

Analyzer

Contextual requirements’

context

ctx1: Driver is drowsy

ctx2: Driver is dangerously drowsy

ctx3:Driver is sleeping

Contextual requirements’

context operationalization

variables

var1: perclos

var2: facePosition

var3: heartBeatsPerMinute (hbpm)

var4: handsOnSteeringWheel (hosw)

Contextual requirements’

context operationalization

ctx1Oper = perclos>=0,15 AND hbpm<=0,60 AND

hbpm >=0,56

ctx2Oper = perclos>=0,21 AND facePosition=1 AND

hbpm<=0,55 AND hbpm>=0,46

ctx3Oper = perclos >0,30 AND facePosition=1 AND

hbmp<=0,45 AND hosw <1

Planner
Contextual requirements’ beh1: Activate Seat Vibration,

beh2: Activate Sound/Light Alert

Chapter IV How to support

Towards adaptive monitoring for self-adaptive systems 107

expected system behavior beh3: Activate lane keeping support

Contextual requirements cr1: ctx1, beh1

cr2: ctx2, beh2

cr3: ctx3, beh3

Executer Managed element(s) N/A. Indicated in code (adaptive vehicle)

Knowledge

base

MAPE-K loop frequency 20 iterations per second

Contextual requirements’

operationalization update

functions

ctx1Oper = process(ctx1SACRENewOper)

ctx2Oper = process (ctx2SACRENewOper)

ctx3Oper = process (ctx3SACRENewOper)

In SASs, runtime uncertainty can be caused by different factors. In the work of Knauss et al. [61], four

main cases were identified (see Table 24).

Table 24

Uncertainty cases affecting SASs’ contextual requirements’ satisfaction

Case Detection of uncertainty

Case 1 No operationalized context.

Case 2 a) Sensor lost.

Case 2 b) Sensor de-calibrated.

Case 2 c) Sensor up (again).

Case 3 Violation (i.e., requirement’s context holds (true) but expected behavior is not active (false)).

Case 4 Potentially wrong context (i.e., requirement’s context does not hold (false) but expected

behavior is active (true)).

In order to evaluate SACRE, we have designed six uncertainty scenarios (us1 to us5 in Table 21). Each

scenario focuses on a specific uncertainty case (from Table 20) that at certain point (determined by

the number of iterations in Table 25) affects one or more contextual requirements (from Table 17),

triggering the adaptation of them.

 Scenarios execution

In order ensure the reliability of the results, we have replicated several times the execution of the

uncertainty scenarios. For calculating a correct number of replications, we have used the formula of

Berenson and Levine [121]:

 𝑛 =
𝑍𝛼

2𝑁𝑝𝑞

𝑒2(𝑁 − 1) + 𝑍𝛼
2𝑝𝑞

Chapter IV How to support

Towards adaptive monitoring for self-adaptive systems 108

Table 25

Uncertainty evaluation scenarios

Id Uncertainty case Loop iterations

us1 cr1 affected by uncertainty case 3
(vibration alarm disabled)

1.000

us2 cr2 affected by uncertainty case 3
(sound-light alarm disabled)

15.000

us3 cr3 affected by uncertainty case 3
(lane keeping support disabled)

30.000

us4a cr2 and cr3 affected by uncertainty case 2b
(driver’s vigilance level camera sensor reports facePosition variable
values out of thresholds)

45.000

us4b cr1, cr2 and cr3 affected by uncertainty case 2c
(driver’s vigilance level camera sensor reports facePosition variable
values within thresholds again)

60.000

us5 cr3 affected by uncertainty case 4
(lane keeping support manually activated)

75.000

Where:

 n: is the number of replications we require (i.e., sample size).

 𝑍𝛼: is the value from the standard normal distribution for a selected confidence level. We

selected a typically used 95% of confidence level which corresponds to a 𝑍𝛼 of 1,96.

 𝑁: is the total population size. In our case, this is the total number of executions we expect for

the system, i.e., the smart vehicle. Considering a vehicle lifespan of 15 years [122], and a

twice-daily use, we set a total population size of 10,950 executions.

 𝑒: is the sample error we accept for this evaluation. We considered a 0,1.

 𝑝 & 𝑞: are the probability of success and failure respectively. We used the typical value of 0,5

for each of them.

Given the formula and variables’ values presented above, we obtained a n of 95,21 replications. Based

on this result, we have decided to run 100 replications for each uncertainty scenario.

Figure 38 shows the normalized values of the sensors’ variables in each uncertainty scenarios. The x-

axis of each sub-graph shows the number of iteration while the y-axis shows the normalized value. On

the other hand, Figure 39 shows the actuators’ state (0 for inactive, 1 for active) during the execution

of each scenario. The x-axis of each sub-graph shows the number of iteration while the y-axis shows

the state. Moreover, in Figure 38 and Figure 39 the exact time at which the uncertainty cases are

experienced can be seen. The resulting adapted contextual requirements’ operationalization per

scenario is presented in Table 26. In bold, we present the variables that have been adapted, i.e.,

changed or added. In the cases of the variables that have been removed, we simply do not include

them in the new operationalization. Since we have used a statistical method for determining new

operationalizations, in some cases, different valid operationalizations may results in different

replications, such it was the case of us5.

Chapter IV How to support

Towards adaptive monitoring for self-adaptive systems 109

Figure 38: Sensors’ variables values over execution time

p
er

cl
o

s

fa
ce

P
o
si

ti
o
n

h
b

p
m

h
o

sw

 SACRE iteration

Chapter IV How to support

Towards adaptive monitoring for self-adaptive systems 110

Figure 39: Actuators' state over execution time

 Analysis of the results

In order to analyze the results we have: 1) explored response time (time elapsed since the uncertainty

case is experienced until the requirements’ adaptation is enacted), 2) statistically assessed the Data

Mining algorithm.

 Response time results: In Table 27, we provide the replications’ average response time (in

milliseconds) for each of the uncertainty scenarios executed. We include for each average

response time its standard deviation.

vi
b

ra
ti

o
n

A
la

rm

so
u

n
d

L
ig

h
tA

la
rm

la
n

eK
ee

p
in

g
S

u
p

p
o

rt

 SACRE iteration

Chapter IV How to support

Towards adaptive monitoring for self-adaptive systems 111

Table 26

Resulting adapted contextual requirements

Uncertainty
scenario

CR
adapted

Initial operationalization Adapted normalized operationalization

us1 cr1 perclos>=0,15 AND hbpm<=0,60 AND
hbpm >=0,56

perclos>=0,15 AND hbpm<=0,60 AND
hbpm>=0,56 AND facePosition=1

us2 cr2 perclos>=0,21 AND facePosition=1
AND hbpm<=0,55 AND hbpm>=0,46

perclos>=0,21 AND facePosition=1 AND
hbpm <=0,55 AND hbpm >=0,46 AND
hosw=0,5

us3 cr3 perclos >0,30 AND facePosition=1
AND hbmp<=0,45 AND hosw <1

perclos >0,30 AND facePosition=1 AND
hbpm <=0,45 AND hosw=0

us4a cr2 perclos>=0,21 AND facePosition=1
AND hbpm<=0,55 AND hbpm>=0,46

perclos>=0,21 AND hbpm <=0,55 AND
hbpm >=0,46

cr3 perclos >0,30 AND facePosition=1
AND hbpm<=0,45 AND hosw <1

perclos >0,30 AND hbpm <=0,45 AND
hosw<1

us4b N/A N/A (facePosition variable added to the
active variables set for future
operationalizations)

N/A (facePosition variable added to the active
variables set for future operationalizations)

us5 cr3 perclos >0,30 AND facePosition=1
AND hbpm<=0,45 AND hosw <1

perclos <0,05 AND facePosition=0 AND
hbpm <=0,75 AND hbpm>=0,56 AND
hosw<1

OR

perclos <0,05 AND face position=0 AND
hbpm <=0,75 AND hbpm>=0,56 AND
hosw=0

Table 27

Average response time per uncertainty scenario

Uncertainty scenario Average adaptation
response time (ms)

Adaptation response time

standard deviation ()

us1 3.859,50 1.004,60
us2 9.271,46 2.229,70
us3 13.358,25 3.028,38
us4a 2.477,52 689,39
us4b 261,63 124,31
us5 30.262,09 5402,64

Figure 40 presents the detailed response time values obtained in each of the replications of the
six uncertainty scenarios, represented each in a separate sub-graph. The x-axis of each sub-
graph shows the number of replication, while the y-axis the adaptation response time.

The response time values obtained in the different uncertainty scenarios go in average: from

3,85 sec. to 30,26 sec., for scenarios where Data Mining was required (all, except us4a and

us4b); and from 0,26 sec. to 2,47 sec., for scenarios that do not require Data Mining. For the

first type of scenarios, graphs in Figure 40 suggest a correlation between the amount of data to

analyze (dictated by the number of loop iterations elapsed before triggering the uncertainty

case, see Table 25) and the experienced adaptation response time. Thus, we have calculated

the Pearson Product-Moment Correlation Coefficient (PPMCC) for the scenarios’ iterations

Chapter IV How to support

Towards adaptive monitoring for self-adaptive systems 112

and the corresponding average response times. We have obtained a coefficient of 0,99 which

corroborates the existence of a correlation.

Figure 40: Adaptation response time per uncertainty scenario replication

 Statistical analysis: In order to analyze the performance of the Data Mining module, we have

used 10-fold cross validation. The cross validation has been executed at runtime every time

the data algorithm was called. If the resulting precision, recall, and f-measure are above the

acceptance thresholds indicated in the Planner element, requirements’ adaptation is accepted.

We present in Table 28 the average resulting values of precision, recall, and f-measure in each

of the uncertainty scenarios. We have average the values reported in each scenario replication

when an adaptation is accepted. Uncertainty scenarios us4a and us4b are not included in the

table since they did not use the Data Mining algorithm.

Table 28

Data Mining algorithm measures

Uncertainty scenario Precision Recall f-measure

us1 1 1 1
us2 1 1 1
us3 1 1 1
us5 0,969059 1 0,984252

 us1 us2 us3

Adaptation

response

time(ms)

 Replication Replication Replication

 us4a us4b us5

Adaptation

response

time (ms)

 Replication Replication Replication

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

1

10 19 28 37 46 55 64 73 82 91

10
0

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

1

10 19 28 37 46 55 64 73 82 91

10
0

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

1

10 19 28 37 46 55 64 73 82 91

10
0

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

1

10 19 28 37 46 55 64 73 82 91

1
0

0

0

5000

10000

15000

20000

25000

30000

35000

40000

45000
1

10 19 28 37 46 55 64 73 82 91

1
0

0

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

1

10 19 28 37 46 55 64 73 82 91

10
0

Chapter IV How to support

Towards adaptive monitoring for self-adaptive systems 113

Figure 41 provides the details about the resulting Data Mining measures in each of the

replications of the six uncertainty scenarios, represented each in a separate sub-graph. The x-

axis of each sub-graph shows the number of replication, the y-axis the measure precision,

recall or f-measure accordingly. As it can be noticed, the results of the measures were very

high: invariantly 100%, for each of the measures in uncertainty scenarios us1, us2 and us3; and,

96,90%, 100% and 98,42%, for the precision, recall and f-measure respectively for the

uncertainty scenario us5. Variations in measures values, when existent, are presumably very

small, thus we have not statically analyzed them.

It is worth to mention that particularly, in the uncertainty scenario us5, the Data Mining

algorithm presented an output variation between replications, generating two different, but

still valid, operationalization’s adaptation. The factors generating these variations could also

explain the resulting measures in this uncertainty scenario. However, the study of the

variation due to the internal operation of the Data Mining algorithm was out of the scope of

the evaluation. For better understanding this and other Data Mining algorithms’ operation we

refer the reader to previous works [61], [123], [124].

 Threats to validity

 Construct validity. In SACRE’s evaluation, a threat to construct validity was that it was based

on a simulated environment in which sensors and actuators data was specifically designed.

Thus, the evaluation could be affected by our interpretation of contexts and interactions of the

driver with the smart vehicle. In order to reduce this threat, we have studied each of the

variables simulated, in existing works of the domain, and tried to model each of the variables

as closest as possible to a real behavior, independently and in conjunction.

 Internal validity. The internal validity of SACRE’s evaluation concerns to our ability to draw

conclusions about the connections between the uncertainty scenarios and the resulting

adaptation response time and Data Mining measures. In order to reduce this threat, we have

quantitatively interpreted our results using descriptive statistics for determine tendencies,

dispersion and dependencies.

 External validity. External validity refers to the generalizability of our conclusions. SACRE

has been evaluated in the domain of smart vehicles. The results were satisfactory. However,

due to the simulated environment in which the evaluation has been executed, generalization

may be limited, not only to the domain, but also to the application in the domain. Motivated

by this fact, we have conducted a series of experiments in other execution environments,

which we will present later in this thesis document.

Chapter IV How to support

Towards adaptive monitoring for self-adaptive systems 114

Figure 41: Data Mining algorithm measures per uncertainty scenario replication

 Discussion

SACRE condenses the first ideas of our architectural proposal, HAFLoop, for correctly supporting the

construction of SASs with self-improvement capabilities. The implementation of SACRE has pointed

out software requirements (e.g., asynchronous communication) and reusability opportunities (e.g.,

analysis tool) in terms of components, and communication and data handling mechanisms, at a lower

level. Moreover, the results of the evaluation of SACRE were promising regarding the feasibility of

 Precision Recall f-measure

us1

us2

us3

us5

 Replication Replication Replication

0

0,2

0,4

0,6

0,8

1

1,2

1

10 19 28 37 46 55 64 73 82 91

10
0

0

0,2

0,4

0,6

0,8

1

1,2

1

10 19 28 37 46 55 64 73 82 91

10
0

0

0,2

0,4

0,6

0,8

1

1,2

1

10 19 28 37 46 55 64 73 82 91

10
0

0

0,2

0,4

0,6

0,8

1

1,2

1

10 19 28 37 46 55 64 73 82 91

10
0

0

0,2

0,4

0,6

0,8

1

1,2

1

10 19 28 37 46 55 64 73 82 91

10
0

0

0,2

0,4

0,6

0,8

1

1,2

1

10 19 28 37 46 55 64 73 82 91

10
0

0

0,2

0,4

0,6

0,8

1

1,2

1

10 19 28 37 46 55 64 73 82 91

10
0

0

0,2

0,4

0,6

0,8

1

1,2

1

10 19 28 37 46 55 64 73 82 91

10
0

0

0,2

0,4

0,6

0,8

1

1,2

1

10 19 28 37 46 55 64 73 82 91

10
0

0

0,2

0,4

0,6

0,8

1

1,2

1

10 19 28 37 46 55 64 73 82 91

10
0

0

0,2

0,4

0,6

0,8

1

1,2

1

10 19 28 37 46 55 64 73 82 91

10
0

0

0,2

0,4

0,6

0,8

1

1,2

1

10 19 28 37 46 55 64 73 82 91

10
0

Chapter IV How to support

Towards adaptive monitoring for self-adaptive systems 115

adopting feedback loop-based architectures in demanding application domains such as the smart

vehicles. Concretely, they show up the benefits of applying such kind of solution and the potential of it

in the smart vehicles domain. In the evaluation of SACRE, we have focused on the adaptation of the

AM for better detecting and supporting drowsy drivers. In order to demonstrate the validity of our

proposal in different setting, for the evaluation of HAFLoop, we have designed a set of different use

cases in which different types of adaptation are tested.

4.5 The HAFLoop4J framework

Taking into account our findings when implementing the proof-of-concept SACRE, we have

implemented HAFLoop as a framework for Java-based applications (henceforth HAFLoop4J). The

framework implements the generic functionality of proposal. Due to the modularity of HAFLoop, the

implementation has followed a bottom-up approach, i.e., from the simplest to the most complex

components while the functionalities have been developed from the most generic to the most specific.

The software modules that we have developed first are shown in Figure 42. Below, we describe each

of these modules:

 Managers and policies. As we have explained in Section 4.3, every MAPE-K element’s

component consists of three subcomponents: a Message manager, a Component policy

manager, and a Component policy. We have implemented the generic functionality of these

subcomponents as follows:

 Message manager. This module manages two behaviors: normal operation and

adaptation. For the normal operation, this module provides a processMessage()

method that should be implemented by each component’s subcomponent assigned to

perform this task, e.g., in the Receiver component, the Message processor is in charge

of extending this Message manager module implementing the processMessage()

method with ad-hoc logic. For the adaptive behavior, we have developed a

PolicyChangeListener interface with a listen() method that should be implemented by

all the subcomponents willing to be notified in case of a policy adaptation. The

Message manager implements this method updating its policy variables.

 Component policy manager. This module implements a processPolicy() method in

order to receive policy adaptation messages from the Knowledge manager component

and communicate the changes to the corresponding Component policy.

 Component policy. This module implements two main methods: updatePolicy() and

notifyPolicy(). The former, as its name indicates, implements the logic for updating

the component’s runtime policy variables. The latter, provides the logic for notifying

the corresponding policy’s listeners about the changes. In order to support this second

method, a series of methods for managing listeners have been implemented (i.e., add,

remove, update, etc.). In order to manage the whole adaptation process in the

Component policy, we have utilized functional reactive programming

Chapter IV How to support

Towards adaptive monitoring for self-adaptive systems 116

(http://reactivex.io/), through the implementation for Java-based programs RxJava

(https://github.com/ReactiveX/RxJava) available in Java 1.8.

 Element component (HAFLoopElementComponent). This module implements two main

interface methods: doOperation() and adapt(). The doOperation() method is the entry point

of all input messages related to the components’ normal operation. This method administrates

input messages and calls the corresponding component’s Message manager for processing

those messages. The adapt() method, in its turn, receives and administrates adaptation

messages sent by the Knowledge manager and calls the corresponding Component policy

manager for processing those messages. Both methods use the RxJava library for managing

and dispatching messages. Moreover, each of these methods operates in a different thread,

improving components’ performance.

The generic HAFLoopElementComponent module also implements a series of methods for

managing its recipients (i.e., add, remove, update, etc.) which is also reflected on its policy.

This means that the list of a component’s recipients can be adapted at runtime, resulting on

element’s structural changes, as we have explained before in Section 4.3. Finally, this module

implements a method called construct() in which the corresponding subcomponents are

subscribed to the Component policy, i.e., the element is constructed, and a first notify() is

executed with the initial configuration. This first notify() is treated as any other subsequent

notify(), normally triggered by adaptation requests.

 Adaptive MAPE-K element (HAFLoopElement). Among the most relevant methods

implemented by this module, there is a construct() method in charge of creating the

connections among the element’s components and assigning them their corresponding policy

(this specific implementation of an element considers one component of each type).

Moreover, this method calls the construct() method of the components, described before. The

HAFLoopElement module also implements a series of methods for managing element’s

recipients (directly linked to the element’s Sender component) and a method for enabling

other systems (e.g., other elements or MEs) to communicate with its Receiver component.

 Adaptive AM (AutonomicManager). Finally, similarly to the previous modules, the

AutonomicManager module provides a construct() method for creating the connections

among the elements of the loop, assigning them their policies and triggering their construct()

methods. Moreover, it has an addME() method for connecting MEs to the loop at runtime.

The addME() method triggers elements policies’ changes which are managed with the same

mechanism as the adaptations. Finally, it provides an adaptLoopElement() method in order

to receive and enact elements' adaptations. This last method can be omitted if adaptations are

managed in a decentralized way. We provide an instance of an AM called

SimpleAutonomicManager, which implements the AutonomicManager’s methods and is

composed of one MAPE-K element of each type.

http://reactivex.io/
https://github.com/ReactiveX/RxJava

Chapter IV How to support

Towards adaptive monitoring for self-adaptive systems 117

Figure 42: HAFLoop4J framework’s generic modules class diagram

Chapter IV How to support

Towards adaptive monitoring for self-adaptive systems 118

Subcomponents, components, and elements are aware of which component(s), element(s), and

autonomic manager(s), they belong to, respectively; this information is used by the communication

mechanism that we will describe later in this section. After developing the generic modules, we have

implemented the ad-hoc logic of the components’ Message managers. Figure 43 shows a class

diagram of these modules. As mentioned in Section 4.3, the logics of the Functional logic component

should be implemented by each HAFLoop4J instance, as well as the logic of the Sender’s Message

manager, the Message sender module in Figure 43.

The implementation of the specific elements, i.e., Monitor, Analyzer, Planner, Executer and the

Knowledge base, do not have any further functionality but the one provided by the generic element

implementation described before. The same happens with the AM. We have added a Sensor and

Effector interface to the Monitor and the Executer, respectively. Each HAFLoop instance should

implement these interfaces for the specific use case. Systems’ owners may implement as many sensors

and effectors as required. Finally, for communicating internally (and externally if desired), we have

proposed a standard message format (see class diagram in Figure 44). In HAFLoop, a Message

contains the following data:

 To. This field indicates the immediate next recipient of a message.

 From. This field indicates the immediate previous sender of a message.

 Code. This field is used for determining, based on policies, how a message should be

processed (or forwarded) by the components till reaching the final recipient, e.g., if a message

code indicates that a message is an adaptation, then the message should go to the adaptation

logic of an element. In this implementation of HAFLoop, messages’ codes are mainly used by

element’s components.

 Type. This field indicates the type of message, e.g., request for analysis, response to a ME, etc.

In this implementation of HAFLoop, the type field is mainly used for leading messages among

elements and to/from MEs.

 Body. This field contains the body of the message. In this implementation of HAFLoop, the

message body consists of a set of key-value pairs, completely customizable for sending any

type of content. In this implementation, we provide an example of a policy’s adaptation

message body (containing the policy owner and the new policy) and an example of a normal

operation message body (containing the type of data, e.g., monitoring data, and the actual

data).

Chapter IV How to support

Towards adaptive monitoring for self-adaptive systems 119

Figure 43: HAFLoop4J framework’s components and ad-hoc modules class diagram

Chapter IV How to support

Towards adaptive monitoring for self-adaptive systems 120

Figure 44: HAFLoop4J framework’s message class diagram

The HAFLoop4J framework improves the development process of adaptive feedback loops for SASs

in different ways. First, the great majority of the components and subcomponents as well as the

communication mechanism, can be reused by any SAS. Therefore, systems’ owners can focus on

domain or application-specific issues, i.e., the development of MAPE-K elements’ functional logics.

Second, the operation of the components has been optimized based on previous experiences, utilizing

popular software engineering techniques such as multi-threading and asynchronous communications.

Third, as it is shown in Figure 43 and Figure 44, when possible, HAFLoop4J components have been

structured into layers, i.e., they have an interface, and abstract class and an implementation class.

Therefore, components and subcomponents can be replaced by other implementations and/or

extended for fulfilling specific SASs’ requirements.

Moreover, from an organizational perspective, since components are conceptually and technically

loosely coupled, they can be developed independently, e.g., by different specialized teams/companies,

and gradually improved as required. This characteristic is quite convenient since nowadays software

systems are developed more and more in distributed environments and following agile

methodologies. Fourth, regarding usability, due to the close relation between the terms typically used

in the SASs’ filed and the HAFLoop4J components, we consider that our framework is easy to

understand, learn, and use. Finally, the source code of this implementation as well as more details

about its construction, tests, artifacts, and instructions of usage are open and available at

https://github.com/edithzavala/loopa.

4.6 SALI: the smart self-driving vehicle

In the last decades, many efforts have been spent on the development of self-driving (or autonomous)

technology. This technology intends to replace driving tasks where the human driver is “under-

challenged”, for example, long distance travels on highways. Thus, the driver can focus on other tasks

during such periods like doing business or relaxing. On the other hand, self-driving technology is said

to be infallible from human failure because computer programs never get tired. Thus, it can manage

complex and critical traffic situations where the human driver might be “over-challenged”, for

example, when the driver is drowsy or tired (as described in Section 4.4) [125].

Self-driving vehicles (SDVs) may face runtime challenging factors such as unpredictability (e.g., a

road accident), runtime faults (e.g., a sensor fault) and limited resources (e.g., running out of battery).

Chapter IV How to support

Towards adaptive monitoring for self-adaptive systems 121

While most researchers have focused on studying the self-driving functionality, less have investigated

how the runtime challenging factors, mentioned before, affect and could be addressed in SDVs.

Motivated by this fact, we have developed a project called SALI (SmArt seLf-driving vehIcle), funded

by the Swedish program openresearch@astazero

(https://azopenresearch.fluidreview.com/res/p/A0034/). In SALI, we have incorporated our

solution, HAFLoop, to a feedback loop-based SDV, for enabling adaptation capabilities to its

monitoring system. The resulting smart SDV (SSDV) is able to respond at runtime to the challenging

factors mentioned before.

The evaluation of the SSDV has been performed in two environments, as part of the SALI project

tasks: a simulation and a real environment. The role of the applicant in the SALI project has been as

co-leader. She has coordinated and executed all the experiments with the support of technicians and

engineers of the AstaZero test track and the vehicle laboratory Chalmers Revere

(https://www.chalmers.se/en/researchinfrastructure/revere). Moreover, she has been in charge of

implementing the software solution in both environments: the simulation and the real. In the rest of

this section, we describe each of the execution environments. First, we introduce the implementation

details for both cases. Second, we provide the details of the evaluation tests.

4.6.1 SALI in a simulation environment

 The self-driving vehicle

OpenDaVINCI (https://opendavinci.readthedocs.io) is an open-source software environment

written in C++ that acts as a middleware to realize distributed software components exchanging

messages. It also provides a domain-specific library for supporting additional functions typically

required by automotive software systems to realize the self-driving functionality. For instance, it

provides methods to describe a logical road network, a visualization environment, and components to

embody simulations (vehicle kinematics, sensor simulations for a virtual camera, infrared, and

ultrasonic sensors). Moreover, it provides a series of reusable algorithms for autonomous vehicles

[126]. In order to implement the adaptive feedback loop supporting our SDV, we have extended

OpenDaVINCI (https://github.com/edithzavala/OpenDaVINCI) and the vehicle software

environment OpenDLV (https://github.com/edithzavala/opendlv/tree/feature.smartcar).

OpenDLV (https://github.com/chalmers-revere/opendlv) is an open source software environment

to support the development and testing of SDVs, both in simulation and real environments. It

facilitates the migration of software modules tested in simulated vehicles to real ones. In this

implementation, we have containerized software components using the Docker platform

(https://www.docker.com/), and exposed them as services. In order to enrich contextual data, apart

from the sensor data simulated with OpenDaVINCI, we have included data gathered through vehicle-

to-vehicle (V2V) communications and a weather and traffic monitoring service. Figure 45 shows the

software modules of our SDV. Below, we briefly describe each of these components:

https://opendavinci.readthedocs.io/

Chapter IV How to support

Towards adaptive monitoring for self-adaptive systems 122

Figure 45: Self-driving vehicle (simulation environment)

SDV – OpenDaVINCI modules

 Odsupercomponent. This module is in charge of creating a UDP multicast session to enable

the communication between the rest of components. Moreover, it provides to the components

their corresponding initial configuration, i.e., policies.

 Odsimvehicle. This component simulates the actual vehicle, i.e., dimensions, heading,

position, etc.

 Odsimirus. This component gathers infrared and ultrasonic sensors data from the virtual

environment (see Figure 46). Three sensors of each type are simulated. Figure 47 shows the

sensors layout. The Odsimirus module has been extended for supporting structural

adaptation. That is, infrared and ultrasonic sensors can be (de)activated at runtime, if it is

required.

 Odsimcamera. This component gathers camera data in the form of images from the virtual

environment (see Figure 45). In the simulation, the camera captures images of the objects

placed in front of the vehicle (see Figure 47). Moreover, this component provides a

visualization of the video images in real-time. This specific sensor is not adaptive.

 Odcockpit. This component provides the visualization of the road, the vehicle, and the

infrared and ultrasonic sensors (see Figure 46).

Chapter IV How to support

Towards adaptive monitoring for self-adaptive systems 123

Figure 46: Self-driving vehicle’s odsimirus

Figure 47: Self-driving vehicle’s sensors layout (simulation environment) [125]

Figure 48: Self-driving vehicle’s odsimcamera

Chapter IV How to support

Towards adaptive monitoring for self-adaptive systems 124

 Lane follower. This module has been extended for supporting a context-aware SDV, i.e., a

self-adaptive SDV. The driving logic performs three main tasks: 1) follow the lane, 2) overtake

vehicles moving slower (or static objects), 3) recalculate route based on traffic information

and road events (e.g., a crash). The logic of this component consists of three parts (even if they

were implemented by a single class), corresponding to different MAPE-K elements, as it is

shown in Figure 42.

 Perception manager. This submodule is in charge of processing monitoring data and

determining the current context (Analyzer).

 Dynamics planner. This submodule processes output data from the Perception

manager, and determines route, required acceleration, and required steering wheel

angle (Planner).

 Action sender. Finally, this submodule sends the proposed dynamics to the vehicle

(Executer).

SDV – OpenDLV modules

 V2V data. This module simulates V2V communication data, both Cooperative Awareness

Message (CAM) [127] and Decentralized Environmental Notification Message (DENM)

[128].

 Adaptation data manager. This component is in charge of forwarding monitoring data

gathered through sensors and services to the MAPE-K loop in charge of the monitors’

adaptation (i.e., the HAFLoop instance we will describe in next subsection).

 Adaptation enactor manager. This component receives adaptation requests from the MAPE-

K loop in charge of the adaptation of the monitors and sends requests for change to the

corresponding monitors (i.e., sensors modules and monitoring services). Then, monitors

update their policy variables and adapt their logic for enacting these adaptations.

SDV – External services

 City reporter. This service utilizes the API offered by HERE (https://developer.here.com/)

for providing traffic load data and the OpenWeatherMap (https://openweathermap.org/)

API for providing weather data. This monitoring service implements both structural and

parameter adaptation.

 Adaptive monitoring using HAFLoop4J

In order to support the adaptation of the SDV monitoring system, we have implemented a second

feedback loop using the HAFLoop4J framework. That is, two HAFLoop AMs will operate in a single

SDV: a Level-1 AM implemented in C++, described before, in charge of managing the context-aware

self-driving functionality; a Level-2 AM implemented in Java, in charge of Level-1 AM’s Monitor

adaptation. For the Java-based AM, we have imported HAFLoop4J as a library in a new project and

instantiated a generic AM (concretely, we have created an instance of the SimpleAutonomicManager

introduced in Section 4.5). Then, we have developed the functional logic and sender components of

Chapter IV How to support

Towards adaptive monitoring for self-adaptive systems 125

each element. For the sake of simplicity, in Figure 49, we provide an overview of only the most

relevant components of our implementation.

Figure 49: MAPE-K loop in charge of SDV monitors’ adaptation

The MAPE-K elements are exposed as Java modules to each other, and containerized and exposed

together as a service to external systems, such the SDV. The loop utilizes two external services: one for

applying Data Mining techniques over monitored data (which is an extended version of the one

utilized for SACRE’s evaluation, see Section 4.4) and a second one for visualizing runtime data (see

Figure 49). These services have also been containerized. The main modules that compose the

elements of the loop in charge of SDV monitors’ adaptation are:

LEVEL-2 AM – Monitor

 Monitoring data thresholds’ checker. This component receives monitoring data and based on

policies, revises its correctness. Monitoring data out of thresholds may indicate, for instance, a

failure; in this case, an alert is sent to the Analyzer. In any case, monitoring data is sent to the

Knowledge base for being persisted.

 Battery inspector. This component revises vehicle’s battery level, at every loop’s iteration. For

this implementation, we have introduced the cost of each source of monitoring data through

policies. If battery level issues are detected, an alert is sent to the Analyzer. In any case, battery

level data is sent to the Knowledge base for being visualized.

Chapter IV How to support

Towards adaptive monitoring for self-adaptive systems 126

LEVEL-2 AM – Analyzer

 Analysis alerts manager. This module receives analysis requests in the form of alerts from the

Monitor. Based on the type of alert, e.g., monitor fault or a battery issue, this module analyzes

historical runtime data (persisted by the Knowledge base) and determines which sensors and

monitoring services will be required in the near future. In order to do that, it utilizes the Data

miner service. With the Data Mining results, this module decides whether an adaptation is

worth it or not. In case of yes, an alert to the Planner is sent.

 Data miner. The Data miner component utilizes the API of the Weka tool [40] for finding

patterns on historical runtime data, in order to determine: 1) vehicles’ position(s) in the near

future, 2) monitors that will be required in that future position(s).

LEVEL-2 AM – Planner

 Planner alert manager. This component is in charge of receiving and processing alerts sent by

the Analyzer. With the list of available and required monitors, it performs a trade-off between

the monitors’ cost, their coverage, and their utility regarding the self-driving functionality

usage. Cheaper monitors are prioritized as long as they (or a combination of them) are able to

gather the monitoring data required. For the most critical situations, coverage is sacrificed as

long as the self-driving functionality can still be supported. As a last resort, a request for

disabling the self-driving functionality is sent to the driver. A list with the monitors to adapt,

and how they should be adapted, among other parameters, are sent to the Executer.

LEVEL-2 AM – Executer

 Adaptation request sender. This module receives adaptation requests from the Planner,

decides to which ME they should be sent (in this case we only have the OpenDaVINCI SDV

vehicle), transforms the requests into the required data format (understandable by the ME)

and sends them.

LEVEL-2 AM – Knowledge base

 Data persister. This component is in charge of storing runtime data sent by the MAPE

elements. Similarly to in SACRE, in this implementation, monitoring data is directly stored in

.arff files, the format required by Weka. The rest of data is stored in runtime variables, e.g.,

active monitors, active functionalities, last adaptation request. This component is also in

charge of sending received data to the Runtime data dashboard module, which has been

independently containerized and exposed as a service.

 Runtime data dashboard. This module receives runtime data from the Data persister through

an instance of the monitoring tool Graphite (http://graphite.readthedocs.io), and provides a

visualization of this data using the Grafana (https://grafana.com/) platform (see Figure 50).

For supporting the logic of this module, we have used existing Docker images

(https://hub.docker.com/r/graphiteapp/graphite-statsd/ and

Chapter IV How to support

Towards adaptive monitoring for self-adaptive systems 127

https://hub.docker.com/r/grafana/grafana/). Then, we have provided the corresponding

configuration and designed the visualization components (i.e., graphs, alerts, etc.).

Figure 50: Level-2 AM runtime data dashboard

The source code of this implementation is available at https://github.com/edithzavala/ksam-loopa.

4.6.2 Evaluation of SALI in a simulation environment

The evaluation of SALI aimed at assessing the feasibility of supporting adaptive monitoring in modern

SASs such the smart vehicles. The evaluation of SALI has been performed in real-time using the

simulated environment described before. Concretely, we have used an IntelR CoreTM i7-7700HQ

CPU @ 2.80GHz, with 16,0GB RAM. In the remainder of this section, we describe the evaluation

process and the threats to validity we have identified for this evaluation.

 Preparation activities

The evaluation of HAFLoop has consisted in six use case scenarios (us1 to us6 in Table 29). They

belong to two main use cases: sensor fault and battery level issues. Adaptation decisions are based on

three main factors: the number of vehicles on the road (the more vehicles, the more increased driving

risk); the typical self-driving functionality usage, learned from driver’s behavior in a training phase;

and, the cost and utility of each source of monitoring data, i.e., sensors, V2V communication, and

cloud services.

In order to find patterns on the self-driving functionality usage, given the good results of SACRE, in

SALI we have also utilized the data mining tool Weka [40]. In order to train the SSDV, we have

considered a driver that goes from work to home in a daily basis and utilizes the self-driving

functionality in specific segments of the journey. Models are generated offline, in a real setting it they

could be generated at the end of a journey, for instance. The resulting models are then used at runtime

Chapter IV How to support

Towards adaptive monitoring for self-adaptive systems 128

for: 1) predicting the position of the vehicle in the near future (i.e., next N iterations) when a fault or

battery issues are experienced, 2) predicting the self-driving functionality usage in that position.

Given the nature of the data, for learning route preferences we have utilized the IBk (K-nearest

neighbors) classifier [129] on vehicle’s position data; meanwhile, for learning about the self-driving

usage, we have utilized the JRip classifier [38], [39] on a Boolean class variable that indicated whether

the functionality was active or not. The resulting rules regarding the self-driving functionality usage

are shown in Figure 51.

Table 29

Use case scenarios

Id Use case Scenario Expected adaptation

us1

Sensor fault

Frontal ultrasonic sensor fails when the
SSDV goes on a road with no other
vehicles, at the beginning of the
journey.

No adaptation is enacted. Self-driving
functionality stays active.

us2 Frontal ultrasonic sensor fails when the
SSDV goes on a road with other
vehicles, at the beginning of the
journey.

V2V communication is activated given
the increased driving risk. Self-driving
functionality stays active.

us3 Frontal ultrasonic sensor fails when the
SSDV goes on a road with no other
vehicles, close to the end of the journey.

No monitor adaptation is enacted.
According to patterns learned, driver will
change to manual mode in the near
future.

us4

Battery
issues

Critical battery level is experienced
when the SSDV starts its journey in a
road with no other vehicles. Parameter
adaptation is not supported.

A trade-off between required and non-
required monitor is performed, resulting
in the deactivation of the city service
(traffic and weather monitoring).

us5 Medium battery level is experienced
when the SSDV is in the middle of its
journey in a road with no other
vehicles. Parameter adaptation is
supported.

A trade-off between required and non-
required data sources, and their
monitoring frequency is performed,
resulting in the adaptation of the traffic
monitoring frequency (i.e., it is reduced).

us6 Critical battery level is experienced
when the SSDV starts its journey in a
road with other vehicles.

No monitor adaptation is enacted given
the increased driving risk. However, a
take-over request is sent to the driver.
Driver mode is changed to manual.

At runtime, Level-1 and Level-2 AMs require policy variables for driving their operation. Therefore,

we have defined a set of policies for the AM elements. Table 26 and Table 27 provide a simplified

version of the most relevant configuration variables considered in SALI evaluation, and the initial

values assigned to them in each use case scenario. Apart from the operational-related variables listed

in Table 30 and Table 31, policies also include variables related to the AMs’ structure, e.g., initial list

of recipients, type of messages accepted by each recipient, etc. Moreover, the Level-1 AM policies

contain variables related to the simulation environment, e.g., the type of vehicle and road to use,

initial vehicle position, among others.

Chapter IV How to support

Towards adaptive monitoring for self-adaptive systems 129

 Figure

51: Self-driving patterns in the simulation environment odcockpit4

Table 30

Level-2 AM policies

Policy
element

Variable Variable description us1 us2 us3 us4 us5 us6

Monitor Alert
iterations

Number of iterations,
detecting sensor fault
or battery issue, to
wait before triggering
an analysis alert

3 0

Initial battery
level

The battery level at the
initial point of each
scenario execution

100% 60%

Battery limit The battery level
considered as critical

45%

Monitors List of monitoring data
sources, type of source
(T), the monitoring
data provided (Vars),
the monitoring
frequency (F) and
their cost (C, a factor

traffic: (T) service,
(Vars) traffic factor,
(F) 60000ms, (C) 40
weather: (T) service,
(Vars) weather, (F)
60000 ms, (C) 16

traffic: (T) service,
(Vars) traffic factor,
(F) 10000ms, (C) 40
weather: (T) service,
(Vars) weather, (F)
10000 ms, (C) 16

Chapter IV How to support

Towards adaptive monitoring for self-adaptive systems 130

in relation to the rest
of monitors, taking
into account power
and monetary aspects,
and its utility for
correctly supporting
the self-driving
functionality)

imu: (T) sensor, (Vars) longitude – latitude -
speed, (F) 100 ms, (C) 1
camera: (T) sensor, (Vars) image size – frontal
distance, (F) 100 ms, (C) 10
infrared (frontal right, rear and rear right): (T)
sensors, (Vars) frontal right distance – rear
distance – rear right distance, (F) 100 ms, (C)
5 each
ultrasonic (frontal center, front right, rear
right): (T) sensors, (Vars) frontal center
distance – frontal right distance – rear right
distance, (F) 100 ms, (C) 3 each
V2V: (T) service, (Vars) distance – road event,
(F) 100 ms, (C) 30

Monitoring
variables

Variables to be
monitored and
variables’ values
characteristics (type
(T), min, max or
possible values (Val)).
Values out of min-max
range or not listed as
possible values, might
indicate a monitor
fault

traffic factor: (T) Double, (Val) -1, 10
weather: (T) String, (Val) Rain, Snow,
Extreme, Clear, Clouds, Foggy, Fog, Drizzle,
Mist
longitude: (T) Double, (Val) -180, 180
latitude: (T) Double, (Val) -90, 90
speed: (T) Double, (Val) 0, 2 [m/s]
frontal right distance, rear right distance,
frontal center distance, rear distance: (T)
Double, (Val) -1, 39
road event: (T) String, (Val) Crash
image size: (T) Double, (Val) 0, 5000000 (this
variable is useful for determining camera
correct operation)

Initial
monitors

Initial set of active
monitoring data
sources

traffic, weather, imu, camera, infrared (frontal
right, rear and rear right), ultrasonic (frontal
center, front right, rear right)

Analyzer Alert
iterations

Number of iterations,
receiving an alert from
the Monitor, to wait
before triggering Data
mining analysis

3 0

Adaptation
supported

Type(s) of adaptation
supported

Structural (S) S Para. S

Analysis
technique

This could include:
technique, tool,
endpoint, algorithms,
algorithms’
parameters

Technique: Machine Learning
Tool: Weka
Endpoint: protocol, host, port
Algorithms: JRip, IBk
Parameters: Positions to predict (N = 100)

ME
functionalities

Critical functionalities
to be provided by the
ME

Self-driving

Planner Plan
technique

This could include:
technique, tool,
endpoint, algorithms,
algorithms’
parameters

Technique: Objective function (min
(monitoring cost), max (monitoring data
required by the ME functionalities))

Chapter IV How to support

Towards adaptive monitoring for self-adaptive systems 131

Monitoring
data required
by ME
functionalities

Monitoring data
required by each of the
ME functionalities

Self-driving: longitude, latitude, speed, frontal
right, rear right and frontal center distance

Executer Level-1 AM
endpoint

ME interface to
communicate
adaptation decisions

protocol, host, port

Knowledge
base

Persistence
format

The format in which
data is going to be
persisted

.arff (the format required by the Weka tool)

Monitoring
data

List of monitoring data
sources to take into
account for persistence

traffic, weather, imu, camera, infrared (frontal
right, rear and rear right), ultrasonic (frontal
center, front right, rear right), V2V

Table 31

Level-1 AM policies

Policy
element

Variable Variable description us1 us2 us3 us4 us5 us6

Monitor Monitors List of monitoring data
sources and their
monitoring frequency

Same as in Table 26 Monitoring
variables

Variables to be monitored

Initial
monitors

Initial set of active
monitoring data sources

Analyzer Vehicle
variables

Variables resulting from
vehicle’s monitoring

vehicle's position and speed, frontal right,
rear right, frontal center and rear distance

Context
variables

Variables gathered from
external systems

weather, traffic, road event

Planner Adaptation
variables

Variables to include in the
adaptation plan

Acceleration, steering wheel angle, driving
route

Executer ME
endpoint

ME interface to
communicate adaptation
decisions

vehicle id

Knowledge
base

Level-2 AM
sensors
endpoint

Interface to send runtime
data to Level-2 AM

protocol, host, port

Similar to SACRE, in SALI each scenario has been replicated several times for ensuring the reliability

of the results. Concretely, each scenario has been executed under the same conditions 100 times.

Figure 52 illustrates how each scenario has been executed, i.e., the number of vehicles on the road

and the point (average point calculated after executing all scenarios’ replications) at which the sensor

fault or the battery issue has been experienced.

Chapter IV How to support

Towards adaptive monitoring for self-adaptive systems 132

Figure 52: SALI evaluation use cases scenarios

 Analysis of the results

In order to analyze the evaluation results, two aspects of the self-improvement process are explored:

response time and adequacy. The response time is split into:

 Level-2 AM response time. Time elapsed since the Monitor element detects a sensor fault or a

battery issue until an adaptation decision (in case of no adaptation required) or an adaptation

request is sent to the Level-1 AM.

 Level-1 AM response time. Time elapsed since an adaptation request is received since it is

enacted.

 Data mining response time. Time required by the Data mining module for performing the

predictions at runtime. This time is subsumed by the Level-2 AM response time but still we

find interesting to isolate it in our benchmarking.

Regarding the adequacy, two metrics are taken into account:

 Adaptation enactment/decision correctness. Expected adaptations, described in Table 29,

that are finally realized.

Chapter IV How to support

Towards adaptive monitoring for self-adaptive systems 133

 Prediction correctness. The need for (no) adaptation is correctly predicted and prediction

results are timely, i.e., SSDV position after prediction is the same or previous to the last

predicted.

Table 32 provides the replications’ average response time (in milliseconds) for each use case scenario.

We include the standard deviation of the response times. On the other hand, Figure 53 and Figure 54

present the detailed response time values obtained in each of the replications of each use case

scenario. The x-axis of each sub-graph shows the number of replication, while the y-axis the response

times. The Level-1 AM response time values obtained in the different scenarios are in average from

4,06 ms to 15,57 ms. While in us2 this response time corresponds to the activation of a simulated

V2V service; in us4 and us5 the response time reflects a real service adaptation. In the implementation

of HAFLoop for the SALI project, the deactivation of a service (us4) consists in modifying a Boolean

variable, while the frequency adaptation consists in killing an existing periodic process and creating a

new one (us5); this fact could explain the response time variation. Regarding Level-2 AM response

time, values are in average from 291,06 ms to 892,18 ms. Comparing these results with the results

obtained in SACRE (see Section 4.4.3), a great improvement can be noticed. In SACRE, resulting

response time in scenarios using data mining was of the order of seconds, while in this evaluation

results are of the order of milliseconds.

Table 32

Average response time per use case scenario

Use case
scenario

Level-1 AM
response time

(ms)

Level-1 AM
response time

standard

deviation ()

Level-2 AM
response time

(ms)

Level-2 AM
response time

standard

deviation ()

Data mining
response time

(ms)

Data mining
response time

standard

deviation ()

us1 N/A N/A 855,34 23,34 113,93 13,31
us2 4,06 3,56 892,18 27,16 129,68 19,44
us3 N/A N/A 875,35 18,35 130,47 16,39
us4 10,82 6,36 291,06 42,39 113,30 27,45
us5 15,57 8,62 297,00 51,50 115,03 30,45
us6 N/A N/A 315,50 52,34 142,68 35,12

This improvement can be due to different factors. First, with the adoption of the HAFLoop4J

framework, software modules now communicate to each other asynchronously. Second, normal

operation and adaptation process are treated independently, i.e., modules are multi-thread. Third, the

amount of data to analyze at runtime has been drastically reduced while ensuring its relevance, as

suggested in the conclusions of SACRE. Finally, data mining is used for prediction and not for model

generation. The significant difference in Level-2 AM’s response time of sensor fault and battery issue

scenarios is due to the waiting iterations of the Monitor and the Analyzer. That is, for us1-us3, the

Monitor and the Analyzer wait 3 iterations before triggering an alert and the data mining process,

respectively; meanwhile, for us4-us6 the amount of iterations is 0.

Finally, regarding the Data mining module response time, it goes in average: from 113,30 ms to

142,68 ms. The Data mining module response time is composed of both the position and the self-

Chapter IV How to support

Towards adaptive monitoring for self-adaptive systems 134

driving functionality usage predictions’ response time. For us1-us3, this module’s response time seems

to be a small part of the Level-2 AM response time; this is because the total response time is affected

by the waiting iterations mentioned before. The us4-us6 scenarios reveal that the performance of this

module does actually have a great impact; in these scenarios, it represents almost half of the Level-2

AM response time.

Figure 53: Adaptation response time per use case scenario replication (us1-us3)

In all the six use case scenarios, adaptation has been enacted when required and the decision of no

adaptation needed has been correctly made (according to expected adaptations described in Table

25). Moreover, regarding the prediction correctness, both position and self-driving functionality

usage have been predicted correctly in all the scenarios. Finally, in order to determine the prediction

timeliness, we have plot for each scenario five metrics (see Figure 55):

us1

us2

us3

0

100

200

300

400

500

600

700

800

900

1000

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8

6
1

6
4

6
7

7
0

7
3

7
6

7
9

8
2

8
5

8
8

9
1

9
4

9
7

1
0

0

R
e

sp
o

n
se

 t
im

e
 (

m
s)

Number of iteration

Level 2 AM

Data mining

0

100

200

300

400

500

600

700

800

900

1000

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8

6
1

6
4

6
7

7
0

7
3

7
6

7
9

8
2

8
5

8
8

9
1

9
4

9
7

1
0

0

R
e

sp
o

n
se

 t
im

e
 (

m
s)

Number of iteration

Level 1 AM

Level 2 AM

Data mining

0

100

200

300

400

500

600

700

800

900

1000

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8

6
1

6
4

6
7

7
0

7
3

7
6

7
9

8
2

8
5

8
8

9
1

9
4

9
7

1
0

0

R
e

sp
o

n
se

 t
im

e
 (

m
s)

Number of iteration

Level 2 AM

Data mining

Chapter IV How to support

Towards adaptive monitoring for self-adaptive systems 135

 Route. The route followed by the SSDV during the execution of the scenario.

 Self-driving active. The segment in which the self-driving functionality is usually active,

according to patterns learned (see Figure 52).

 Sensor fault/battery issue position. The average SSDV position, taking into account the

results of all the replications at which the sensor fault or the battery issue is experienced.

 Position after analysis. The position of the SSDV after executing the data mining and

providing the predictions.

 Last predicted position. According to the policies defined in Table 26, the Analyzer will try to

predict the position of the SSDV in the following 100 iterations and the self-driving

functionality usage in those positions. Therefore, the last predicted position corresponds to

the 100th predicted.

Figure 54: Adaptation response time per use case scenario replication (us4-us6)

us4

us5

us6

0

100

200

300

400

500

600

700

800

900

1000

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8

6
1

6
4

6
7

7
0

7
3

7
6

7
9

8
2

8
5

8
8

9
1

9
4

9
7

1
0

0

R
e

sp
o

n
se

 t
im

e
 (

m
s)

Number of iteration

Level 1 AM

Level 2 AM

Data mining

0

100

200

300

400

500

600

700

800

900

1000

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8

6
1

6
4

6
7

7
0

7
3

7
6

7
9

8
2

8
5

8
8

9
1

9
4

9
7

1
0

0

R
e

sp
o

n
se

 t
im

e
 (

m
s)

Number of iteration

Level 1 AM

Level 2 AM

Data mining

0
100
200
300
400
500
600
700
800
900

1000

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8

6
1

6
4

6
7

7
0

7
3

7
6

7
9

8
2

8
5

8
8

9
1

9
4

9
7

1
0

0

R
e

sp
o

n
se

 t
im

e
 (

m
s)

Number of iteration

Level 2 AM

Data mining

Chapter IV How to support

Towards adaptive monitoring for self-adaptive systems 136

Figure 55: Prediction timeliness per use case scenario

According to the results shown in Figure 55, it can be concluded that in all the scenarios, the data

mining predictions, apart from correct, have been timely performed. The number of positions to

predict (100 in this evaluation) as well as the iterations to wait before triggering alerts and data

Chapter IV How to support

Towards adaptive monitoring for self-adaptive systems 137

mining analysis (3 for the Monitor and Analyzer in this evaluation), as in SACRE, are exploratory

variables and they may be further investigated. These parameters may depend on each application

domain and sometimes even on each use case. The advantage of adopting HAFLoop and the

HAFLoop4J framework is that SASs’ owners can focus on investigating these kinds of domain-

specific variables instead of spending resources on designing and constructing the generic

functionalities of adaptive MAPE-K loops.

 Threats to validity

 Internal validity. The internal validity of this evaluation concerns to our ability to reason

about the resulting self-improvement process’ response time and adequacy, in each use case

scenario, for instance, confounding variables’ relationships. In order to reduce this threat, we

have quantitatively interpreted our results using descriptive statistics for determine

tendencies, dispersion and dependencies. Accidental bugs in software components are also a

threat to internal validity. We have tried to reduce this unavoidable threat using well-

established frameworks and tools for building our solution such as Spring boot

(https://spring.io/projects/spring-boot), Gradle (https://gradle.org/), Docker, among

others.

 Construct validity. In this evaluation, a threat to construct validity is that it was conducted

using simulated components. Thus, the evaluation could be affected by our interpretation of

the environment and the interactions of the driver with the SSDV. Moreover, factors that can

only be measured in a real environment, e.g., time required by a sensor for physically turning

on and off, could not be reflected in our evaluation results. In order to reduce this threat, we

have utilized the OpenDaVINCI middleware, which offers a scaled environment with realistic

road and vehicle dimensions, as well as real-time sensor data. OpenDaVINCI has been

proposed as a standardized experimental platform for self-driving vehicles [125]. It enables

efficient and riskless experiments and validation during the design process of solutions. Due

to the standardized interfaces implemented in OpenDaVINCI, experiments’ results can easily

be transferred to real-scale vehicles.

 External validity. External validity refers to the generalizability of our conclusions. SALI

evaluates HAFLoop in the domain of smart vehicles. The results have shown the feasibility

and benefits of using our solution in this extremely demanding domain. However, due to the

simulation environment in which the evaluation has been executed, generalization may be

limited, not only to the domain, but also to the application of HAFLoop in this specific

domain. This threat will be reduce with the evaluation of the SALI vehicle in a real

environment. The details of this evaluation will be described in next section.

 Discussion

The SALI vehicle implements the fundamental ideas of our architectural proposal, HAFLoop, for

correctly supporting adaptive monitoring in modern SASs. The implementation of SALI has satisfied

the requirements identified in SACRE for better supporting the self-improvement process, i.e.,

Chapter IV How to support

Towards adaptive monitoring for self-adaptive systems 138

support asynchronous communication, control the amount of data to analyze at runtime, ensure

components reusability at a lower level, among others. The results of the evaluation of SALI in the

simulation environment have not only confirmed the feasibility of adopting adaptive feedback loops in

demanding application domains such the smart vehicles, but the benefits of supporting such feature.

Thanks to the adoption of HAFLoop, challenging runtime factors affecting SSDVs, such as runtime

unpredictable events and limited resources could be addressed. In next section, HAFLoop is

incorporated in a real vehicle and the results of a series of experiments executed in a real scaled

environment are presented.

4.6.3 SALI in a real environment

 The self-driving vehicle

For conducting experiments in real vehicles, OpenDLV provides a series of low-level hardware-

software interfaces for interacting with vehicles’ sensors and actuators. OpenDLV has been developed

in the context of the vehicle laboratory Chalmers Revere. This laboratory provides resources to

researchers for the development and verification of software solutions in real vehicles. Using real

vehicles provided by Revere (and AstaZero) and the facilities of the test ground AstaZero

(http://www.astazero.com/), we were able to test HAFLoop in (controlled) real traffic environments.

Concretely, we have utilized three Volvo cars: two XC90 and one V40. For collecting the evaluation

data, we have enable self-improvement capabilities to one of the vehicles and utilize the other two for

creating different scenarios. More details about the experiments conducted in AstaZero will be

provided later in this section.

Most of the software modules running in the real vehicle are the same as the ones used in the

simulated SDV (see Figure 45 and Figure 49). Policy variables were utilized for indicating the

modules if the execution environment was simulation or real. In this section, we describe only the

software modules that were not part of the simulated vehicle (see Figure 56):

 Opendlv-device-gps. This module interfaces with an Applanix POS GPS/INSS unit,

providing data about the vehicle position (latitude and longitude, see Figure 57). More

information about this module can be found at https://github.com/chalmers-

revere/opendlv-device-gps-pos.

 Opendlv-device-lidar. This module interfaces with a VelodyneLidar HDL32e unit providing

360º 3D point cloud data (see Figure 58). LIDAR data is further processed by the extended

version of OpenDLV8 for reporting frontal, gear and lateral distances. Details about this

component can be found at https://github.com/chalmers-revere/opendlv-device-lidar-

hdl32e.

 Opendlv-device-camera. This module is utilized for interfacing with an Axis camera unit

proving image data (see Figure 59). When receiving image data, a simulated image post-

processing is performed, by the extended version of OpenDLV, and frontal distance data is

Chapter IV How to support

Towards adaptive monitoring for self-adaptive systems 139

reported. More information about this component can be found at

https://github.com/chalmers-revere/opendlv-device-camera-opencv.

Figure 56: Self-driving vehicle (real environment)

Figure 57: SALI vehicle GPS data in the OpenDLV viewer

Chapter IV How to support

Towards adaptive monitoring for self-adaptive systems 140

Figure 58: SALI vehicle lidar data (point cloud) in the OpenDLV viewer

Figure 59: SALI vehicle camera

In this implementation, the lane follower component is the same as in the simulated vehicle. The only

difference is that in the real environment dynamics instructions are not executed by the real vehicle.

Instead, a test driver simulates the functionality. For the self-improvement loop, i.e., the loop in

charge of managing the adaptation of the Monitor element, the same implementation presented in

Section 4.6.1 has been used in the real environment. Thus, in next section we present the evaluation

of SALI.

Chapter IV How to support

Towards adaptive monitoring for self-adaptive systems 141

4.6.4 Evaluation of SALI in a real environment

This evaluation aims at assessing in a real setting the performance of HAFLoop-based solutions for

supporting adaptive monitoring in modern SASs, particularly in smart vehicles. Performance is

evaluated in terms of both adaptation correctness and response time. The evaluation has been

conducted at the AstaZero test track. We have run three use cases: the two use cases tested in the

simulation environment, sensor fault and battery issues (see Section 4.6.2) and a use case of

uncertainty, concretely, a road accident with uncertain sensor data. Experiments were conducted in

two test areas: a scaled city area (see Figure 60) and a rural road (see Figure 61).

A soft vehicle (see yellow vehicle in Figure 62) and three real Volvo vehicles (see Figure 60 and Figure

61) were utilized for the experiments: two XC90 (Snowfox and Greyfox hereafter) and one V40. The

Snowfox was selected for testing our proposal, while, the other two vehicles were utilized for creating

the scenarios. Level-2 AM has been deployed on the same machine used for the simulation-based

evaluation while Level-1 AM has been run on the vehicle’s machine. Both machines have been

connected through a local area network.

Figure 60: SALI project experiments execution at the AZ city area

Chapter IV How to support

Towards adaptive monitoring for self-adaptive systems 142

Figure 61: SALI project experiments execution at the AZ rural road

Figure 62: SALI project soft vehicle simulating a road accident at the AZ city area

 Preparation activities

In order to evaluate SALI in the real environment, we have designed eight use case scenarios (us1 to

us8 in Table 33). Figure 63-65 illustrate the different use cases. Similar to previous evaluation, a

training phase has been conducted for predicting vehicles’ position in the near future and the self-

driving functionality usage. The road accident scenarios do not utilize the prediction feature.

Therefore, the rural road has been utilized for performing the training phase. The driving scenario

utilized exemplifies a driver that goes from work to home in a daily basis and utilizes the self-driving

functionality in specific segments of that journey, as was the case if the simulation-based evaluation.

The IBk [129] and JRip [38], [39] algorithms as well as the data mining Weka tool [40] have also

Chapter IV How to support

Towards adaptive monitoring for self-adaptive systems 143

been used in the real environment. The resulting patterns of this training phase are illustrated in

Figure 66.

Table 33

Use case scenarios

Id Challenging
factor

Scenario Expected adaptation

us1

Road accident

A road accident notification is
received and traffic data gathered by
the city reporter service indicates
normal traffic load, and parameter
adaptation is enabled.

Traffic monitoring frequency is
increased in order to gather
fresher data.

us2 A road accident notification is
received and traffic data gathered by
the city reporter service indicates
normal traffic load, and parameter
adaptation is disabled.

Traffic monitoring is deactivated
and V2V communication is
utilized instead in order to
improve traffic data accuracy (1st
adaptation). After route re-
calculation and change, city
reporter traffic monitoring is re-
activated and V2V deactivated (2nd
adaptation).

us3

Sensor fault

LIDAR sensor fails when the SSDV
goes on a road with no other vehicles,
at the beginning of the journey.

Axis camera is activated.

us4 LIDAR sensor fails when the SSDV
goes on a road with other vehicles, at
the beginning of the journey.

Axis camera plus V2V
communication is activated given
the increased driving risk. Self-
driving functionality stays active.

us5 LIDAR sensor fails when the SSDV
goes on a road with no other vehicles,
close to the end of the journey.

No monitor adaptation is enacted.
According to patterns, driver will
change to manual mode in the
near future.

us6

Battery issues

Critical battery level is experienced
when the SSDV starts its journey in a
road with no other vehicles, and
parameter adaptation is disabled.

A trade-off between required and
non-required monitor is
performed, resulting in the
deactivation of the city reporter
and the axis camera.

us7 Critical battery level is experienced
when the SSDV starts its journey in a
road with other vehicles, and
parameter adaptation is disabled.

No monitor adaptation is enacted
given the increased driving risk.
However, a take-over request is
sent to the driver. Driver mode is
changed to manual

us8 Critical battery level is experienced
when the SSDV goes on a road with
no other vehicles, close to the end of
the journey.

No monitor adaptation is enacted.
According to patterns, driver will
change to manual mode in the
near future.

Chapter IV How to support

Towards adaptive monitoring for self-adaptive systems 144

Figure 63: Road accident use case

Figure 64: Sensor fault use case

Chapter IV How to support

Towards adaptive monitoring for self-adaptive systems 145

Figure 65: Battery issues use case

Figure 66: SALI learning phase patterns (real environment)

Chapter IV How to support

Towards adaptive monitoring for self-adaptive systems 146

Regarding policies, Table 34 and Table 35 provide the policy variables’ values we have set for the

Level-2 and Level-1 AM, respectively.

Table 34

Level-2 AM policies

Policy
element

Variable Variable description us1 us2 us3 us4 us5 us6 us7 us8

Monitor Alert
iterations

Number of iterations,
detecting sensor fault
or battery issue, to
wait before triggering
an analysis alert

0 1st adapt: 0
2nd adapt: 3

3 0

Initial
battery level

The battery level at
the initial point of
each scenario
execution

100% 50% 60%

Battery limit The battery level
considered as critical

40%

Monitors List of monitoring
data sources, type of
source (T), the
monitoring data
provided (Vars), the
monitoring
frequency (F) and
their cost (C, a factor
in relation to the rest
of monitors, taking
into account power
and monetary
aspects, and its
utility for correctly
supporting the self-
driving functionality)

traffic: (T) service, (Vars) traffic factor, (F) 60000ms,
(C) 6.7
weather: (T) service, (Vars) weather, (F) 60000 ms, (C)
6.7
can: (T) sensor, (Vars) speed, (F) 10 ms, (C) 0.1
camera: (T) sensor, (Vars) image size – frontal
distance, (F) 50 ms, (C) 3.5
gps: (T) sensor, (Vars) longitude – latitude, (F) 100
ms, (C) 28.5
lidar: (T) sensor, (Vars) end and start azimuth –
frontal, right, left and rear distance, (F) 100 ms, (C) 2.7
V2V: (T) service, (Vars) traffic factor – frontal distance
– road event, (F) 100 ms, (C) 40

Monitoring
variables

Variables to be
monitored and
variables’ values
characteristics (type
(T), min, max or
possible values
(Val)). Values out of
min-max range or
not listed as possible
values, might
indicate a monitor
fault

traffic factor: (T) Double, (Val) -1, 10
weather: (T) String, (Val) Rain, Snow, Extreme, Clear,
Clouds, Foggy, Fog, Drizzle, Mist
image size: (T) Double, (Val) 0, 5000000
longitude: (T) Double, (Val) 11.0, 13.0
latitude: (T) Double, (Val) 56.0, 59.0
speed: (T) Double, (Val) 0, 120
start azimuth: (T) Double, (Val) 0, 1
end azimuth: (T) Double, (Val) 358, 360
frontal right distance, rear right distance, frontal center
distance, rear distance: (T) Double, (Val) -1, 10000
[cm]
road event: (T) String, (Val) Crash

Initial
monitors

Initial set of active
monitoring data

can, lidar, gps,
traffic, weather,

can, lidar, gps,
traffic, weather,

can, lidar, gps,
traffic, weather,

Chapter IV How to support

Towards adaptive monitoring for self-adaptive systems 147

sources camera camera

Analyzer Alert
iterations

Number of iterations,
receiving an alert
from the Monitor, to
wait before triggering
Data mining analysis

0 1st adapt: 0
2nd adapt: 3

3 0

Adaptation
supported

Type(s) of adaptation
supported

Para. Structure

Analysis
technique

This could include:
technique, tool,
endpoint, algorithms,
algorithms’
parameters

Technique: Machine Learning
Tool: Weka
Endpoint: protocol, host, port
Algorithms: JRip, IBk
Parameters: Positions to predict (N = 500)

ME
functiona-
lities

Critical
functionalities to be
provided by the ME

Self-driving

Planner Plan
technique

This could include:
technique, tool,
endpoint, algorithms,
algorithms’
parameters

Technique: Objective function (min (monitoring cost),
max (monitoring data required by the ME
functionalities))

Monitoring
data
required by
ME
functiona-
lities

Monitoring data
required by each of
the ME
functionalities

Self-driving: frontal, right, left and rear distance,
longitude, latitude, speed

Executer Level-1 AM
endpoint

ME interface to
communicate
adaptation decisions

protocol, host, port

Know-
ledge
base

Persistence
format

The format in which
data is going to be
persisted

.arff (the format required by the Weka tool)

Monitoring
data

List of monitoring
data sources to take
into account for
persistence

traffic, can, camera, weather, lidar, gps, V2V

 Scenarios execution and analysis of results

The execution of the experiments was done in the context of the SALI project. Six testing days were

utilized for conducting the experiments, two days per use case. The execution of the experiments has

consisted on running the different scenarios, repeatedly. In total, 30 executions have been computed.

In order to analyze the evaluation results, two aspects of the self-improvement process are explored:

response time and adequacy. The response time is split into three categories.

Chapter IV How to support

Towards adaptive monitoring for self-adaptive systems 148

Table 35

Level-1 AM policies

Policy
element

Variable Variable description us1 us2 us3 us4 us5 us6 us7 us8

Monitor Monitors List of monitoring data
sources and their
monitoring frequency

traffic: (T) service, (Vars) traffic factor, (F) 60000ms,
(C) 6.7
weather: (T) service, (Vars) weather, (F) 60000 ms, (C)
6.7
can: (T) sensor, (Vars) speed, (F) 10 ms, (C) 0.1
camera: (T) sensor, (Vars) image size – frontal distance,
(F) 50 ms, (C) 3.5
gps: (T) sensor, (Vars) longitude – latitude, (F) 100 ms,
(C) 28.5
lidar: (T) sensor, (Vars) end and start azimuth – frontal,
right, left and rear distance, (F) 100 ms, (C) 2.7
V2V: (T) service, (Vars) traffic factor – frontal distance
– road event, (F) 100 ms, (C) 40

Monitorin
g variables

Variables to be
monitored

traffic factor: (T) Double, (Val) -1, 10
weather: (T) String, (Val) Rain, Snow, Extreme, Clear,
Clouds, Foggy, Fog, Drizzle, Mist
image size: (T) Double, (Val) 0, 5000000
longitude: (T) Double, (Val) 11.0, 13.0
latitude: (T) Double, (Val) 56.0, 59.0
speed: (T) Double, (Val) 0, 120
start azimuth: (T) Double, (Val) 0, 1
end azimuth: (T) Double, (Val) 358, 360
frontal right distance, rear right distance, frontal center
distance, rear distance: (T) Double, (Val) -1, 10000
[cm]
road event: (T) String, (Val) Crash

Initial
monitors

Initial set of active
monitoring data
sources

can, lidar,
gps, traffic,
weather,
camera

can, lidar, gps,
traffic, weather

can, lidar, gps,
traffic, weather,
camera

Analyzer Vehicle
variables

Variables resulting
from vehicle’s
monitoring

vehicle's position and speed, frontal, rear, right, and left
distance

Context
variables

Variables gathered
from external systems

weather, traffic, road event

Planner Adapta-
tion
variables

Variables to include in
the adaptation plan

Acceleration, steering wheel angle, driving route

Executer ME
endpoint

ME interface to
communicate
adaptation decisions

vehicle id

Know-
ledge
base

Level-2
AM
sensors
endpoint

Interface to send
runtime data to Level-
2 AM

protocol, host, port+

Chapter IV How to support

Towards adaptive monitoring for self-adaptive systems 149

 Level-2 AM response time. Time elapsed since the Monitor element detects a challenging

factor (from Table 33) until a decision of no adaptation required or an adaptation request is

sent to the Level-1 AM.

 Level-1 AM response time. Time elapsed since an adaptation request is received until it is

enacted.

 Data mining response time. Time required by the data mining module for performing the

predictions at runtime, i.e. the prediction of the vehicle’s position in the near future and the

prediction of the self-driving functionality usage in that position. This time is subsumed by

the Level-2 AM response time but still we find interesting to isolate it in our benchmarking for

comparing it with previous evaluations.

For the self-improvement adequacy, we have first evaluated the correctness of the adaptation

enactment process, i.e., we have determined whether the expected adaptations, described in Table 33,

are finally enacted and checked if they are enacted in a timely way (from a human-perspective). After

the execution of all the use cases scenarios, we have been able to confirm that all the adaptation

decisions have been executed correctly and as expected. From a human-perspective, we have also

determined that they have been timely enacted as follows. For the road accident use case, the

adaptation has been executed before the vehicle reaches the intersection (see Figure 63); therefore,

the self-driving logic has been able to re-calculate the route to home, on time. For the sensor fault use

case, when an adaptation has been enacted, it was performed within the road segment in which the

self-driving functionality is typically used (according to patterns on Figure 66). Similarly, it has

happened for the battery issues use case, i.e., sensors trade-off has also been performed within the

segment where self-driving was required.

We have also evaluated the self-improvement adequacy in terms of the prediction correctness. For all

the use cases, the prediction on the self-driving usage (and in consequence, the prediction of the

vehicle’s position) has been accurate and timely. That is, when the vehicle was at the beginning of the

journey the prediction has indicated that functionality will be used while when it was at the end of the

segment where self-driving is usually used (see Figure 66), the prediction was the other way around.

This has allowed the vehicle to correctly made the decisions of (no) adaptation described before.

Table 36 provides the average response time (in milliseconds) of the self-improvement loop (Level-2

AM). Response time of use cases requiring data mining is differentiated from the one that does not.

We have also reported separately the response time of the scenarios that considered a minimum

number of Monitor and Analyze alert iterations from the ones that do not. Table 37 provides the

resulting average response time of the Data mining module, i.e., the predictions. We have included

the standard deviation of the different response times in both tables. In Figure 67, the detailed

response time values obtained in each use case scenario execution are provided. The x-axis shows the

number of execution, while the y-axis the response times.

Chapter IV How to support

Towards adaptive monitoring for self-adaptive systems 150

Table 36

Self-improvement loop response time

Involved

use case

scenarios

Challenging

factors

Monitor/

Analysis alert

iterations

Self-improvement loop avg.

response time (ms)

Self-improvement loop

response time std. dev.

With data

mining

Without data

mining

With data

mining

Without

data mining

us1-us2 Road

accident

0 N/A 249,83 N/A 232,27

3 N/A 781,5 N/A 192,61

us3-us5 Sensor fault 3 4421,5 N/A 915,14 N/A

us6-us8 Battery

issues

0 3971,75 N/A 739,49 N/A

Table 37

Data mining response time

Involved

use case

scenarios

Challenging factors Data mining avg.

response time (ms)

Data mining

response time std. dev.

us1-us2 Road accident N/A N/A

us3-us5 Sensor fault

3624 838,52
us6-us8 Battery issues

The resulting Level-2 AM response times go in average from 249,83 ms to 781,5 ms when data

mining is not required and from 3971,75 ms to 4421,5 ms when it is required. For the second case, in

average 3624 ms are spent by the Data mining module. In both case, there is an increment of the

response time (around 500 ms) for the scenarios considering waiting alert iterations, e.g., the second

adaptation of uc2. As in previous evaluations, the waiting alert iterations are exploratory variables that

may be further investigated; it may depend on each application domain or even on each use case.

Regarding the adaptations’ enactment, for uc2 and uc6 adaptation involved changes of OpenDLV

components (Camera and V2V communication) as well as of the City reporter service (Traffic

monitoring). In these cases, adaptation requests have been sent sequentially, i.e., first to the cloud

service and then to the sensors. This can be noticed in Figure 67, where Level-2 AM response time for

the City reporter is clearly smaller than for OpenDLV. This issue depends directly on the

implementation and it can be easily fixed with parallelism. For the purposes of this evaluation, we

have averaged both response times.

Comparing our results to the experiments executed in the simulation environments, a great

improvement regarding SACRE can be noticed. In SACRE, response times went in average from 260

Chapter IV How to support

Towards adaptive monitoring for self-adaptive systems 151

ms to 2470 ms when data mining was not required and from 3850 ms to 30260 ms when it was. This

improvement can be due to the different factors mentioned in the analysis of the results of the

evaluation presented in Section 4.6.2. Regarding the last evaluation performed in a simulation

environment (see Section 4.6.2), Level-2 AM response times are greater. Considering that most of the

software modules have been reutilized for the evaluation presented in this section, one explanation of

the increased response times can be the complexity of the execution contexts. For instance, due to the

real vehicle speed (around 20 km/h for us1-us2 and 40-50 km/h for the rest of scenarios) the amount

of predicted time steps (positions) has been increased to 500 (5 times the valued used in the

evaluation of Section 4.6.2). Although, the response time is greater, it is acceptable for a real

environment. Further research may investigate optimization methods for improving our results.

Figure 67: Self-improvement loop response time per execution

Table 37 provides the average response time (in milliseconds) of the Adaptation loop (Level-1 AM).

Response times are reported by each monitoring system adapted, i.e., Camera, V2V or City reporter

service. For the Camera and V2V communication, the de/activation has been simulated by software

Chapter IV How to support

Towards adaptive monitoring for self-adaptive systems 152

components; thus, the enactment response time in real cases may differ from what is reported in this

evaluation. On the order hand, the response time of the City reporter does actually reflect a real

service adaptation, although services implementations may vary in several ways. We have included

the standard deviation of the different response times. In Figure 68, the detailed enactment response

times obtained in each use case scenario execution are provided. Each monitoring system’s enactment

time is provided in a different graph. The x-axis of the graphs show the number of execution, while

the y-axis the response times.

Table 38

Adaptation loop response time

Involved

use case

scenarios

Challenging

factors

Adaptation loop average

response time (ms)

Self-improvement loop

response time std. dev.

Camera V2V City reporter Camera V2V City reporter

us1-us2 Road accident N/A
9,5

298,95

N/A
8,24

176,92 us3-us5 Sensor fault
1,91 4,5

us3-us5 Battery issues N/A N/A

Focusing on the results of the City reporter service, one can notice that for the second adaptation of

us2, the response time is much smaller than for the first adaptation (almost of the order of 20). This

can be due to the service communication protocol, which could have affected the first communication

established between both services. However, no conclusions can be done since an existing framework

for managing such communication has been used (i.e., Spring boot); therefore, low-level details are

hidden from our perspective. What can be concluded is that this phenomenon is systematic, as it was

present in all the executions; therefore, an explanation should be possible. More experiments could be

executed for exploring this factor, for instance involving a 3rd (or more) adaptation (s).

The evaluation of HAFLoop in a real environment has provided promising results regarding the

feasibility and benefits of supporting adaptive monitoring in modern SASs such the SDVs. Our

solution has enabled a SDV to respond to runtime challenging events such as uncertain sensor data,

sensor faults, and battery issues, accurately and timely. Among the benefits of using HAFLoop, it can

be remarked: the ability of SASs to implement self-improvement capabilities and in this way adapt

their feedback loops at runtime for better supporting MEs. Without adopting a self-improvement

approach such HAFLoop, this would not be possible. Moreover, given the generalizability level of

HAFLoop (and its implementation, HAFLoop4J), it is easy to adopt, reuse and extend for supporting

a variety of SASs as well as different types of adaptation, addressing the principle challenges affecting

this field.

Chapter IV How to support

Towards adaptive monitoring for self-adaptive systems 153

Figure 68: Adaptation loop response time per execution

 Threats to validity

 Internal validity. The internal validity of this evaluation concerns to our ability to reason

about the resulting self-improvement process’ response time and adequacy, in each use case

scenario, for instance, confounding variables’ relationships. In order to reduce this threat, we

have quantitatively interpreted our results using descriptive statistics for determine tendencies

and dispersion. Accidental bugs in software components are also a threat to internal validity.

We have tried to reduce this unavoidable threat using well-established frameworks and tools

for building our solution such as Spring boot, Gradle, Docker, among others.

 Construct validity. In this evaluation, a threat to construct validity is that some of the vehicle’s

dynamics and sensors’ adaptation have been simulated. Therefore, some factors cannot be

measure, e.g., time required by a sensor for physically turning on and offs. In order to reduce

this threat, we have incorporated a monitoring service that supports both structural and

parameter adaptation and that reflects a more realistic runtime adaptation response time.

Chapter IV How to support

Towards adaptive monitoring for self-adaptive systems 154

 External validity. External validity refers to the generalizability of our conclusions. This work

evaluates HAFLoop in the domain of smart vehicles. The results show the feasibility and

benefits of using our solution in this extremely demanding domain. However, the evaluation

scenarios are simple compared to the complex situations an AV may experience in real life;

therefore, generalization of the results without taking into account other factors may be

limited, not only to the domain, but also to the application of HAFLoop in this specific

domain. Although more experimentation may reduce this threat, given the great diversity of

SASs’ execution contexts, it will always exist.

 Discussion

From the results analyzed in this thesis, and our experience at AstaZero, we can say that HAFLoop is

a promising proposal for supporting adaptive monitoring in modern SASs such the SDVs. Moreover,

it also demonstrates the feasibility of integrating data mining techniques in complex SASs at runtime.

From the SDVs perspective, our solution enables systems to respond to runtime challenging events

affecting this application domain, both accurately and timely. The adoption of the HAFLoop4J

framework has fastened the development of the solution as well as its portability from one

environment to another, e.g., using policies for indicating the evaluation environment. Thanks to the

modularity of the software components at low-level, further experiments with different considerations

can be easily executed for evaluating the adoption of self-improvement capabilities in existing SASs,

particularly in SDVs. For example, the data mining algorithms can be replaced, sophisticated

decision-making techniques can be integrated, or the waiting alert iterations can be adjusted.

Towards adaptive monitoring for self-adaptive systems 155

V

Conclusions and future work

 In this thesis, we have addressed the automatic runtime adaptation of SASs’ AM, particularly

the Monitor element, in order to respond to changes in the MEs, the environment and the AM

itself. Concretely, we have presented HAFLoop, an architectural proposal for supporting the

SASs’ self-improvement property. We have identified open research challenges affecting SASs’

and AMs’ adaptation at runtime and analyzed whether and how existing approaches address

those challenges. We have also studied how state-of-the-art approaches support adaptive

monitoring in current monitoring systems. Although great efforts have been done for supporting

the adaptation of SASs’ AM, none of the state-of-the-art solutions satisfactorily addresses all the

open research challenges. Motivated by this fact, we have developed HAFLoop. HAFLoop, in

conjunction with its implementation HAFLoop4J, is a generic and reusable solution that easies

the design and development of adaptive AMs in modern SASs, from higher to lower levels. Our

solution enables AMs to support different types of adaptation in a variety of settings. HAFLoop

has been evaluated in different scenarios and in both simulation and real environments. The

evaluations of HAFLoop have been conducted in the domain of smart vehicles with very

promising results. In the introduction of this thesis, we have stated three RQs. In the rest of this

section, we provide answers to these RQs and discuss the possible future work from the current

state of the research.

Chapter V Conclusions and future work

Towards adaptive monitoring for self-adaptive systems 156

5.1 Conclusions of RQ1

In order to address RQ1, we have conducted a systematic mapping study on adaptive

monitoring focused on the adaptation of the elements directly related to the data gathering

activity. The study aims at giving a comprehensive overview of the current state of the art of the

adaptive monitoring topic and improving the understanding about how approaches from

different research fields (tend to) conduct the adaptation process. For this purpose, we have

followed a systematic review protocol that has allowed us to identify 110 studies organized in 81

proposals for supporting adaptive monitoring in a variety of research fields. The studies have

been used for addressing a series of research questions we have defined as part of the review

process. The analysis has been thorough, relying on coding and Data Mining for a deep

understanding of the answers to the research questions.

We consider that the results we have obtained can be useful in the standardization of adaptive

monitoring concepts (e.g., utilizing the codes we have developed for describing the different

elements), as well as in the development of more complete, flexible, reusable and generic

software engineering solutions for supporting adaptive monitoring in a variety of systems. From

our side, we have proposed a generic definition for the term adaptive monitoring, based on our

findings in the SMS. Moreover, in this thesis we propose a software engineering solution that

satisfies the requirements of modern systems such are the SASs. Our solution can support any

type of monitor adaptation and provides a reusable architecture that coordinates normal

monitors’ operation with their adaptation process. In order to do that, our solution for adaptive

monitoring separates generic from system-specific functionalities. Moreover, we have developed

a framework that easies the systematic development of adaptive monitors.

5.2 Conclusions of RQ2

In order to address RQ2, we have conducted two literature reviews, one driven by current

requirements and engineering challenges affecting SASs, and a second one on the driven by the

current challenges affecting SASs’ self-improvement. The reviews aim at providing an overview

of the current state-of-the-art approaches dealing with the adaptation of the AM of SASs at

runtime. As well as uncovering the research gaps of this topic. For this purpose, we have

followed a systematic review protocol that has allowed us to identify: in the first case, four

approaches for supporting the adaptation SASs’ capabilities (i.e., adaptation requirements): in

the second case, 25 articles organized in 17 proposals for supporting SASs’ self-improvement.

The approaches’ proposal have been characterized and analyzed in terms of whether and how

they address current research challenges affecting SASs.

We consider that the results we have obtained can be useful in the understanding of the current

research challenges that affect the field of SASs in general and the support of the self-

improvement property in particular. Moreover, our results may motivate new proposals

Chapter V Conclusions and future work

Towards adaptive monitoring for self-adaptive systems 157

towards more flexible, in terms of (de)centralization levels, more complete, in terms of

supporting different types of adaptations, and more reusable and generic, in terms of supporting

the software engineering life cycle from higher to lower implementation levels of this kind of

systems. From our side, in this thesis we propose a software engineering solution that addresses

some of the most relevant challenges of modern SASs. Our solution not only can support the

adaptation of the Monitor element of SASs’ AM, but a complete adaptive AM. Moreover, thanks

to its generalizability level, any the different types of adaptation described in challenges can be

supported. In the form of a framework, we offer extensible and reusable software components

that easy the implementation of adaptive MAPE-K loops for SASs. Using a set of policies

implementations can be customized and applied in a variety of domains.

5.3 Conclusions of RQ3

In order to address RQ3, we have presented HAFLoop, a generic and highly-modular SASs’

self-improvement architecture able to support the adaptive AMs in modern SASs, where

decentralization and cooperation are highly important characteristics. In RQ1 and RQ2, we

have identified the requirements and open research challenges affecting adaptive monitoring

systems and SASs’ self-improvement, respectively. Through systematic literature reviews, we

have shown current solutions for supporting the adaptation of monitoring systems and the

adaptation of SASs’ AM, however, none of them satisfactorily addressed all the current

challenges. Motivated by this fact, we proposed HAFLoop. The main features of HAFLoop have

been designed based on the current needs of SASs. That is:

 Generic and reusable approaches

 Support both reactive and proactive adaptation

 Include structural adaptation of the AM

 Support adaptation on different settings, from centralized to fully decentralized

We have implemented HAFLoop in the form of a framework of Java-based applications,

ensuring the satisfaction of SASs’ needs even at the low implementation level. Asynchronous

communication mechanisms and separation of concerns at the components’ knowledge level,

allows HAFLoop to support a variety of settings. Moreover, HAFLoop can be, fully or partially

implemented, not only in terms of AM elements’ adaptation capabilities but also in terms of

separated MAPE-K elements. Thus, for instance, an adaptive monitoring system could be

implemented in isolation for a different purpose that does not involve SASs. However, that is

out of the scope of this thesis.

HAFLoop has been validated in a variety of use cases scenarios and in both simulation and real

environments. The evaluation has been conducted in the extremely demanding domain of smart

vehicles, where both the correctness of the functionality and the response time are very

important factors. Our proposal has demonstrated to be not only suitable for such kind of

systems but also useful for dealing with challenges affecting that specific application domain.

Chapter V Conclusions and future work

Towards adaptive monitoring for self-adaptive systems 158

5.4 Future work

This work can be extended in different directions:

1) The SMS study on adaptive monitoring can be extended to answer new research questions

of interest for the community. For instance, to assess the specific techniques utilized for

analyzing runtime data and the decision-making approaches.

2) In the SMS, we have introduced the use of Data Mining for analyzing approaches solutions

and finding hidden patterns among them. The analysis can be extended, comparing different

algorithms and techniques for performing this task.

3) Regarding the literature reviews on SASs’ self-improvement, it could be extended to answer

other research questions such as which are the terms utilized by the community for referring

to the adaptation of the AM. For instance, one of our findings was that researchers also

utilized the word evolution for referring to the same process.

4) A next step for HAFLoop would be to developed generic approaches for the adaptation of

each of the MAPE-K elements. Given their differences in nature, specific approaches may be

studied for each of the elements. For instance, the adaptation of the frequency parameter

may be interesting for the Monitor element, but no relevant for the Planner.

5) Finally, regarding the evaluation of HAFLoop, it can be extended with experiments in other

application domains as well as by the utilization of different techniques in the domain of

smart vehicles, e.g., using different analysis techniques or different algorithms.

Towards adaptive monitoring for self-adaptive systems 159

VI

Bibliography

[1] R. De Lemos, H. Giese, H. A. Müller, and M. Shaw, “Software engineering for self-
adaptive systems: A second research roadmap,” Softw. Eng. Self-Adaptive Syst. II, vol.
7475, 2013.

[2] C. Krupitzer, F. M. Roth, S. Vansyckel, G. Schiele, and C. Becker, “A survey on
engineering approaches for self-adaptive systems,” Pervasive Mob. Comput., vol. 17, no.
PB, pp. 184–206, Feb. 2015.

[3] B. Cheng et al., D, vol. 5525. eyns, and J. Whittle. Software Engineering for Self-
Adaptive Systems: A Research Roadmap. Springer Berlin Heidelberg, Lecture Notes in
Computer Science, 2009.

[4] D. Weyns et al., “On patterns for decentralized control in self-adaptive systems,” Lect.
Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes
Bioinformatics), vol. 7475 LNCS, pp. 76–107, 2013.

[5] J. O. Kephart and D. M. Chess, “The Vision of Autonomic Computing,” IEEE Comput.
Soc., vol. 36, no. 1, pp. 41–50, 2003.

[6] IBM-Corporation, “An architectural blueprint for autonomic computing,” IBM White
Pap., vol. 36, no. June, p. 34, 2006.

[7] E. Zavala, X. Franch, J. Marco, A. Knauss, and D. Damian, “SACRE: Supporting
contextual requirements’ adaptation in modern self-adaptive systems in the presence of
uncertainty at runtime,” Expert Syst. Appl., vol. 98, pp. 166–188, May 2018.

Chapter VI Bibliography

Towards adaptive monitoring for self-adaptive systems 160

[8] A. Toueir, J. Broisin, and M. Sibilla, “A goal-oriented approach for adaptive SLA
monitoring: A cloud provider case study,” in 2nd IEEE Latin American Conference on
Cloud Computing and Communications (LatinCloud), 2013, pp. 53–58.

[9] A. J. Ramirez, B. H. C. Cheng, and P. K. McKinley, “Adaptive monitoring of software
requirements,” in 1st International Workshop on Requirements@Run.Time
(RE@RunTime), 2010, pp. 41–50.

[10] A. Moui and T. Desprats, “Towards self-adaptive monitoring framework for integrated
management,” in IFIP International Conference on Autonomous Infrastructure,
Management and Security (AIMS), 2011, vol. 6734 LNCS, pp. 160–163.

[11] G. Tamura, N. M. Villegas, H. A. Muller, L. Duchien, and L. Seinturier, “Improving
context-awareness in self-adaptation using the DYNAMICO reference model,” in 2013
8th International Symposium on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS), 2013, pp. 153–162.

[12] T. Zhao, W. Zhang, H. Zhao, and Z. Jin, “A Reinforcement Learning-Based Framework
for the Generation and Evolution of Adaptation Rules,” in Proceedings - 2017 IEEE
International Conference on Autonomic Computing, ICAC 2017, 2017, pp. 103–112.

[13] M. U. Iftikhar and D. Weyns, “Assuring system goals under uncertainty with active
formal models of self-adaptation,” in Companion Proceedings of the 36th International
Conference on Software Engineering - ICSE Companion 2014, 2014, no. 1, pp. 604–
605.

[14] R. J. Anthony, M. Pelc, and W. Byrski, “Context-aware Reconfiguration of Autonomic
Managers in Real-time Control Applications,” in Proceeding of the 7th international
conference on Autonomic computing - ICAC ’10, 2010, pp. 73–74.

[15] C. Krupitzer, J. Otto, F. M. Roth, A. Frommgen, and C. Becker, “Adding Self-
Improvement to an Autonomic Traffic Management System,” in Proceedings - 2017
IEEE International Conference on Autonomic Computing, ICAC 2017, 2017, pp. 209–
214.

[16] C. Krupitzer, F. M. Roth, M. Pfannemuller, and C. Becker, “Comparison of approaches
for self-improvement in self-adaptive systems,” in Proceedings - 2016 IEEE
International Conference on Autonomic Computing, ICAC 2016, 2016, pp. 308–314.

[17] M. Shaw, “Coming of Age of Software Architecture Research,” in 23rd IEEE
International Conference on Software Engineering, 2001, pp. 656–664.

[18] E. Zavala, X. Franch, and J. Marco, “Adaptive monitoring: A systematic mapping,” Inf.
Softw. Technol., vol. 105, pp. 161–189, Jan. 2019.

[19] J. Gorroñogoitia, D. Valerio, T. Ionescu, and E. Zavala, “D4 . 4: Methods and tools to
enact software adaptation and personalization v1,” 2016.

[20] A. Perini et al., “D4 . 7: Feedback-gathering and monitoring reconfiguration techniques
v1,” 2016.

Chapter VI Bibliography

Towards adaptive monitoring for self-adaptive systems 161

[21] E. Zavala, “Dealing with Uncertainty in Contextual Requirements at Runtime: A Proof of
Concept,” Universitat Politècnica de Catalunya, 2015.

[22] E. Zavala, X. Franch, J. Marco, A. Knauss, and D. Damian, “SACRE: A tool for dealing
with uncertainty in contextual requirements at runtime,” in 23rd IEEE International
Requirements Engineering Conference (RE), 2015, pp. 278–279.

[23] M. Oriol et al., “D4 . 8: Feedback-gathering and monitoring reconfiguration techniques
v2,” 2016.

[24] J. Gorroñogoitia, E. Zavala, M. Oriol, Q. Motger, and S. Stevanetic, “D4 . 5: Methods
and tools to enact software adaptation and personalization v2,” 2016.

[25] J. Gorroñogoitia, D. Muñante, F. Kifetew, A. Susi, E. Zavala, and S. Stevanetic, “D3 . 6:
Methods and techniques for runtime DM v1,” 2016.

[26] E. Zavala, C. Berger, X. Franch, and J. Marco, “Smart self-driving vehicle project: Final
report,” 2018.

[27] E. Zavala, X. Franch, and J. Marco, “Decision-Making Support for Software Adaptation
at Runtime.” BSR winter school Big Software on the Run: Where Software meets Data.
Tutorials & Poster abstracts. BPM Center Report BPM-16-10, pp. 70–73, 2016.

[28] E. Zavala, “Towards Adaptive Monitoring Services for Self-Adaptive Software Systems,”
Springer, Cham, 2018, pp. 357–362.

[29] E. Zavala, “Towards Adaptive Monitoring for Self- * Systems: Research Plan,” 2017.

[30] G. Liu, M. Trotter, Y. Ren, and T. Wood, “NetAlytics: Cloud-Scale Application
Performance Monitoring with SDN and NFV Guyue,” in 17th International Middleware
Conference (Middleware), 2016, pp. 1–14.

[31] T. Kijewski-Correa, M. Haenggi, F. Hall, P. Antsaklis, and F. Hall, “Wireless Sensor
Networks for Structural Health Monitoring,” Signal Processing, vol. 76, no. 12, pp. 1–
22, 2006.

[32] H. H. Mshali, T. Lemlouma, and D. Magoni, “Context-Aware Adaptive Framework for e-
Health Monitoring,” in 2015 IEEE International Conference on Data Science and Data
Intensive Systems, 2015, pp. 276–283.

[33] A. Toueir, J. Broisin, and M. Sibilla, “Goal-oriented monitoring adaptation:
Methodology and patterns,” in IFIP International Conference on Autonomous
Infrastructure, Management and Security (AIMS), 2014, vol. 8508 LNCS, pp. 133–
146.

[34] C. Alippi, G. Anastasi, C. Galperti, F. Mancini, and M. Rove, “Adaptive Sampling for
Energy Conservation in Wireless Sensor Networks for Snow Monitoring Applications,”
in IEEE International Conference on Mobile Adhoc and Sensor Systems (MASS), 2007,
pp. 1–6.

[35] K. Petersen, S. Vakkalanka, and L. Kuzniarz, “Guidelines for conducting systematic

Chapter VI Bibliography

Towards adaptive monitoring for self-adaptive systems 162

mapping studies in software engineering: An update,” in Information and Software
Technology, 2015, vol. 64, pp. 1–18.

[36] B. Kitchenham and S. Charters, “Guidelines for performing Systematic Literature
Reviews in Software Engineering,” Engineering, vol. 2, p. 1051, 2007.

[37] M. B. Miles, M. a Huberman, and J. Saldana, Qualitative Data Analysis: A Methods
Sourcebook, 3rd ed. California, USA: SAGE Publications, 2014.

[38] S. B. Kotsiantis, “Supervised Machine Learning: A Review of Classification Techniques,”
Informatica, vol. 31, pp. 249–268, 2007.

[39] P.-N. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining,. Pearson
Publishing, 2005.

[40] Machine Learning Group at the University of Waikato, “Weka 3: Data Mining Software
in Java,” 2016. [Online]. Available: http://www.cs.waikato.ac.nz/ml/weka/.

[41] M. Salehie and L. Tahvildari, “Self-adaptive software: Landscape and research
challenges,” ACM Trans. Auton. Adapt. Syst., vol. 4, no. 2, 2009.

[42] P. Bukenya, P. Moyo, H. Beushausen, and C. Oosthuizen, “Health monitoring of
concrete dams: A literature review,” J. Civ. Struct. Heal. Monit., vol. 4, no. 4, pp. 235–
244, 2014.

[43] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson, “Systematic Mapping Studies in
Software Engineering,” in Proceedings of the 12th International Conference on
Evaluation and Assessment in Software Engineering, 2008, pp. 68–77.

[44] T. Dybå, T. Dingsøyr, and G. K. Hanssen, “Applying systematic reviews to diverse study
types: An experience report,” in Proceedings - 1st International Symposium on
Empirical Software Engineering and Measurement, ESEM 2007, 2007, no. 7465, pp.
225–234.

[45] G. Anastasi, M. Conti, M. Di Francesco, and A. Passarella, “Energy conservation in
wireless sensor networks: A survey,” Ad Hoc Networks, vol. 7, no. 3, pp. 537–568,
2009.

[46] F. Magalhães, A. Cunha, and E. Caetano, “Vibration based structural health monitoring
of an arch bridge: From automated OMA to damage detection,” Mech. Syst. Signal
Process., vol. 28, pp. 212–228, 2012.

[47] K. P. Clark, M. Warnier, and F. M. T. Brazier, “Self-adaptive service level agreement
monitoring in cloud environments,” in Multiagent and Grid Systems, 2013, vol. 9, no. 2,
pp. 135–155.

[48] D. Jeswani, M. Natu, and R. K. Ghosh, “Adaptive monitoring: A framework to adapt
passive monitoring using probing,” in Proceedings of the 2012 8th International
Conference on Network and Service Management, CNSM 2012, 2012, pp. 350–356.

[49] C. Wohlin, “Guidelines for snowballing in systematic literature studies and a replication

Chapter VI Bibliography

Towards adaptive monitoring for self-adaptive systems 163

in software engineering,” in Proceedings of the 18th International Conference on
Evaluation and Assessment in Software Engineering - EASE ’14, 2014.

[50] E. Zavala, X. Franch, and J. Marco, “Adaptive Monitoring: A systematic Mapping -
Studies RQs data, Mendeley Data, v1.” Mendeley Data, v1, 2018.

[51] A. Moui et al., “A CIM-based framework to manage monitoring adaptability,” in
Proceedings of the 2012 8th International Conference on Network and Service
Management, CNSM 2012, 2012, pp. 261–265.

[52] A. Moui, T. Desprats, E. Lavinal, and M. Sibilla, “Information Models for Managing
Monitoring Adaptation Enforcement,” Int. Conf. Adapt. Self-Adaptive Syst. Appl., no. c,
pp. 44–50, 2012.

[53] O. Franco-Bedoya, D. Ameller, D. Costal, and X. Franch, “Open source software
ecosystems: A Systematic mapping,” Inf. Softw. Technol., vol. 91, pp. 160–185, 2017.

[54] P. H. Nguyen, S. Ali, and T. Yue, “Model-based security engineering for cyber-physical
systems: A systematic mapping study,” Information and Software Technology, vol. 83.
Elsevier, pp. 116–135, 01-Mar-2017.

[55] R. Hoda, N. Salleh, J. Grundy, and H. M. Tee, “Systematic literature reviews in agile
software development: A tertiary study,” Inf. Softw. Technol., vol. 85, pp. 1339–1351,
May 2017.

[56] F. Febrero, C. Calero, and M. Á. Moraga, “A systematic mapping study of software
reliability modeling,” Information and Software Technology, vol. 56, no. 8. Elsevier, pp.
839–849, 01-Aug-2014.

[57] K. R. Felizardo, S. R. S. Souza, and J. C. Maldonado, “The Use of Visual Text Mining to
Support the Study Selection Activity in Systematic Literature Reviews: A Replication
Study,” in 2013 3rd International Workshop on Replication in Empirical Software
Engineering Research, 2013, pp. 91–100.

[58] K. R. Felizardo, N. Salleh, R. M. Martins, E. Mendes, S. G. MacDonell, and J. C.
Maldonado, “Using Visual Text Mining to Support the Study Selection Activity in
Systematic Literature Reviews,” 2011 Int. Symp. Empir. Softw. Eng. Meas., pp. 77–86,
2011.

[59] C. Marshall and P. Brereton, “Tools to support systematic literature reviews in software
engineering: A mapping study,” Int. Symp. Empir. Softw. Eng. Meas., pp. 296–299,
2013.

[60] P. D. Skalski, K. A. Neuendorf, and J. A. Cajigas, “Content Analysis in the Interactive
Media Age,” in The Content Analysis Guidebook, 2017, pp. 201–242.

[61] A. Knauss, D. Damian, X. Franch, A. Rook, H. A. Müller, and A. Thomo, “Acon: A
learning-based approach to deal with uncertainty in contextual requirements at runtime,”
Inf. Softw. Technol., vol. 70, pp. 85–99, 2016.

[62] D. Ameller, X. Burgués, O. Collell, D. Costal, X. Franch, and M. P. Papazoglou,

Chapter VI Bibliography

Towards adaptive monitoring for self-adaptive systems 164

“Development of service-oriented architectures using model-driven development: A
mapping study,” Inf. Softw. Technol., vol. 62, no. 1, pp. 42–66, 2015.

[63] F. Ruiz González, “La Investigación en Informática en España : Análisis bibliométrico,”
Novatica, vol. 215, pp. 54–58, 2012.

[64] N. M. Villegas, H. A. Müller, and G. Tamura, “Optimizing run-time SOA governance
through context-driven SLAs and dynamic monitoring,” in 2011 International
Workshop on the Maintenance and Evolution of Service-Oriented and Cloud-Based
Systems, MESOCA 2011, 2011, pp. 1–10.

[65] B. H. C. Cheng et al., “Software Engineering for Self-Adaptive Systems: A Research
Roadmap,” Softw. Eng. Self-Adaptive Syst., vol. 5525 LNCS, pp. 1–26, 2009.

[66] D. Weyns, “Software Engineering of Self-Adaptive Systems: An Organised Tour and
Future Challenges,” in Handbook of Software Engineering, Springer, 2017.

[67] R. De Lemos et al., “Software engineering for self-adaptive systems: A second research
roadmap,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect.
Notes Bioinformatics), vol. 7475 LNCS, pp. 1–32, 2013.

[68] I. Gerostathopoulos, D. Skoda, F. Plasil, T. Bures, and A. Knauss, “Architectural
Homeostasis in Self-Adaptive Software-Intensive Cyber-Physical Systems,” in Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), vol. 7957, no. January, 2016, pp. 113–128.

[69] V. Klos, T. Gothel, and S. Glesner, “Adaptive Knowledge Bases in Self-Adaptive System
Design,” Proc. - 41st Euromicro Conf. Softw. Eng. Adv. Appl. SEAA 2015, pp. 472–478,
2015.

[70] D. Han, J. Xing, Q. Yang, J. Li, and H. Wang, “Handling Uncertainty in Self-Adaptive
Software Using Self-Learning Fuzzy Neural Network,” Proc. - Int. Comput. Softw. Appl.
Conf., vol. 2, no. 1, pp. 540–545, 2016.

[71] I. Gerostathopoulos et al., “Self-adaptation in software-intensive cyber–physical
systems: From system goals to architecture configurations,” J. Syst. Softw., vol. 122, pp.
378–397, Dec. 2016.

[72] C. Krupitzer, F. M. Roth, S. Vansyckel, G. Schiele, and C. Becker, “A survey on
engineering approaches for self-adaptive systems,” Pervasive Mob. Comput., vol. 17, no.
PB, pp. 184–206, 2015.

[73] D. I. K. Sjøberg, T. Dybå, B. C. D. Anda, and J. E. Hannay, “Building theories in software
engineering,” in Guide to Advanced Empirical Software Engineering, 2008, pp. 312–
336.

[74] N. M. Villegas, G. Tamura, H. A. Müller, L. Duchien, and R. Casallas, “DYNAMICO: A
reference model for governing control objectives and context relevance in self-adaptive
software systems,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell.
Lect. Notes Bioinformatics), vol. 7475 LNCS, pp. 265–293, 2013.

Chapter VI Bibliography

Towards adaptive monitoring for self-adaptive systems 165

[75] R. J. Anthony, “Policy-centric integration and dynamic composition of autonomic
computing techniques,” in ICAC, 2007.

[76] R. J. Anthony, “A versatile policy toolkit supporting run-time policy reconfiguration,”
Cluster Comput., vol. 11, no. 3, pp. 287–298, 2008.

[77] R. Anthony et al., “Autonomic middleware for automotive embedded systems,” in
Autonomic Communication, 2009, pp. 169–210.

[78] E. Lee, Y.-G. G. Kim, Y.-D. D. Seo, K. Seol, and D.-K. K. Baik, “RINGA: Design and
verification of finite state machine for self-adaptive software at runtime,” Inf. Softw.
Technol., vol. 93, no. September 2017, pp. 200–222, 2018.

[79] T. Zhao, “The Generation and Evolution of Adaptation Rules in Requirements Driven
Self-adaptive Systems,” in Requirements Engineering Conference (RE), 2016 IEEE 24th
International, 2016.

[80] J. Kramer and J. Magee, Self-Managed Systems: An Architectural Chal- lenge. FOSE
’07. IEEE Computer So- ciety: In Future of Software Engineering, 2007.

[81] M. U. Iftikhar and D. Weyns, “ActivFORMS: active formal models for self-adaptation,”
in Proceedings of the 9th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems - SEAMS 2014, 2014, pp. 125–134.

[82] D. Sykes, D. Corapi, J. Magee, J. Kramer, A. Russo, and K. Inoue, “Learning revised
models for planning in adaptive systems,” in 2013 35th International Conference on
Software Engineering (ICSE), 2013, pp. 63–71.

[83] D. Corapi, D. Sykes, K. Inoue, and A. Russo, “Probabilistic rule learning in
nonmonotonic domains,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif.
Intell. Lect. Notes Bioinformatics), vol. 6814 LNAI, pp. 243–258, 2011.

[84] D. Sykes, W. Heaven, J. Magee, and J. Kramer, “From goals to components: A combined
approach to self-management,” SEAMS’08 Proc. 2008 Int. Work. Softw. Eng. Adapt.
self-managing Syst., pp. 1–8, 2008.

[85] D. Sykes, J. Magee, and J. Kramer, “FlashMob: Distributed Adaptive Self-Assembly,” in
Proceeding of the 6th international symposium on Software engineering for adaptive
and self-managing systems - SEAMS ’11, 2011, p. 100.

[86] H. Nakagawa, A. Ohsuga, and S. Honiden, “Towards Dynamic Evolution of Self-
Adaptive Systems Based on Dynamic Updating of Control Loops,” 2012 IEEE Sixth Int.
Conf. Self-Adaptive Self-Organizing Syst., pp. 59–68, Sep. 2012.

[87] H. Tajalli, J. Garcia, G. Edwards, and N. Medvidovic, “PLASMA: A plan-based layered
architecture for software model-driven adaptation,” in Proceedings of the IEEE/ACM
international conference on Automated software engineering - ASE ’10, 2010, p. 467.

[88] N. Medvidovic, D. S. Rosenblum, and R. N. Taylor, “A language and environment for
architecture-based software development and evolution,” Proc. 21st Int. Conf. Softw.
Eng. - ICSE ’99, pp. 44–53, 1999.

Chapter VI Bibliography

Towards adaptive monitoring for self-adaptive systems 166

[89] N. Esfahani, A. Elkhodary, and S. Malek, “A learning-based framework for engineering
feature-oriented self-adaptive software systems,” IEEE Trans. Softw. Eng., vol. 39, no.
11, pp. 1467–1493, Nov. 2013.

[90] A. Elkhodary, N. Esfahani, and S. Malek, “FUSION: A framework for engineering self-
tuning self-adaptive software systems,” in Proceedings of the ACM SIGSOFT Symposium
on the Foundations of Software Engineering, 2010, pp. 7–16.

[91] I. Epifani, C. Ghezzi, R. Mirandola, and G. Tamburrelli, “Model Evolution by Run-Time
Parameter Adaptation,” in Proceedings - International Conference on Software
Engineering, 2009, pp. 111–121.

[92] H. Prothmann, F. Rochner, S. Tomforde, J. Branke, C. Müller-Schloer, and H. Schmeck,
“Organic control of traffic lights,” in Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
vol. 5060 LNCS, Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 219–233.

[93] J. Branke et al., “Organic Computing - Addressing complexity by controlled self-
organization,” Proc. - ISoLA 2006 2nd Int. Symp. Leveraging Appl. Form. Methods,
Verif. Valid., pp. 185–191, 2007.

[94] F. Rochner, H. Prothmann, J. Branke, C. Müller-Schloer, and H. Schmeck, “An organic
architecture for traffic light controllers,” Proc. Inform., vol. 1, pp. 120–127, 2006.

[95] J. Branke, P. Goldate, and H. Prothmann, “Actuated traffic signal optimization using
evolutionary algorithms,” in Proceedings of the 6th European Congress and Exhibition
on Intelligent Transport Systems and Services (ITS 2007), 2007.

[96] S. Tomforde et al., “Decentralised progressive signal systems for organic traffic control,”
in Proceedings - 2nd IEEE International Conference on Self-Adaptive and Self-
Organizing Systems, SASO 2008, 2008, pp. 413–422.

[97] F. M. Roth, C. Krupitzer, and C. Becker, “Runtime evolution of the adaptation logic in
self-adaptive systems,” in Proceedings - IEEE International Conference on Autonomic
Computing, ICAC 2015, 2015, pp. 141–142.

[98] A. M. Sharifloo, A. Metzger, C. Quinton, L. Baresi, and K. Pohl, “Learning and evolution
in dynamic software product lines,” in Proceedings of the 11th International Workshop
on Software Engineering for Adaptive and Self-Managing Systems - SEAMS ’16, 2016,
pp. 158–164.

[99] P. Jamshidi, A. M. Sharifloo, C. Pahl, A. Metzger, and G. Estrada, “Self-Learning Cloud
Controllers: Fuzzy Q-Learning for Knowledge Evolution,” Proc. - 2015 Int. Conf. Cloud
Auton. Comput. ICCAC 2015, pp. 208–211, 2015.

[100] L. Baresi and C. Quinton, “Dynamically Evolving the Structural Variability of Dynamic
Software Product Lines,” Proc. - 10th Int. Symp. Softw. Eng. Adapt. Self-Managing Syst.
SEAMS 2015, pp. 57–63, 2015.

[101] C. Quinton, R. Rabiser, M. Vierhauser, P. Grünbacher, and L. Baresi, “Evolution in

Chapter VI Bibliography

Towards adaptive monitoring for self-adaptive systems 167

dynamic software product lines: challenges and perspectives,” Proc. 19th Int. Conf.
Softw. Prod. Line - SPLC ’15, pp. 126–130, 2015.

[102] L. Pasquale, L. Baresi, and B. Nuseibeh, “Towards adaptive systems through
requirements@runtime?,” in CEUR Workshop Proceedings, 2011, vol. 794, pp. 13–24.

[103] L. Baresi, L. Pasquale, and P. Spoletini, “Fuzzy goals for requirements-driven
adaptation,” in Proceedings of the 2010 18th IEEE International Requirements
Engineering Conference (RE’10), 2010, pp. 125–134.

[104] L. Baresi and L. Pasquale, “An eclipse plug-in to model system requirements and
adaptation capabilities,” in Proc. of the 6th IT-Eclipse Workshop, 2011.

[105] C. Dorn and S. Dustdar, “Interaction-driven self-adaptation of service ensembles,” Lect.
Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes
Bioinformatics), vol. 6051 LNCS, pp. 393–408, 2010.

[106] C. Dorn, D. Schall, and S. Dustdar, “Context-aware adaptive service mashups,” 2009
IEEE Asia-Pacific Serv. Comput. Conf. APSCC 2009, no. c, pp. 301–306, 2009.

[107] Z. A. Mann and A. Metzger, “Auto-Adjusting Self-Adaptive Software Systems,” in 2018
IEEE International Conference on Autonomic Computing (ICAC), 2018, pp. 181–186.

[108] “ActivFORMS: Active Formal Models for Selfadaptation.”

[109] C. Krupitzer, F. M. Roth, S. Vansyckel, and C. Becker, “Towards reusability in
autonomic computing,” in Proceedings - IEEE International Conference on Autonomic
Computing, ICAC 2015, 2015, pp. 115–120.

[110] C. Krupitzer, S. Vansyckel, and C. Becker, “FESAS: Towards a Framework for
Engineering Self-Adaptive Systems,” in 2013 IEEE 7th International Conference on Self-
Adaptive and Self-Organizing Systems, 2013, pp. 263–264.

[111] V. Krishnasree, N. Balaji, and P. Sudhakar Rao, “A real time improved driver fatigue
monitoring system,” WSEAS Trans. Signal Process., vol. 10, no. 1, pp. 146–155, 2014.

[112] A. Sahayadhas, K. Sundaraj, and M. Murugappan, “Detecting driver drowsiness based
on sensors: A review,” Sensors (Switzerland), vol. 12, no. 12, pp. 16937–16953, 2012.

[113] J. Lee, J. Choi, K. Yi, M. Shin, and B. Ko, “Lane-keeping assistance control algorithm
using differential braking to prevent unintended lane departures,” Control Eng. Pract.,
vol. 23, no. 1, pp. 1–13, 2014.

[114] J. Lisseman, D. Andrews, and J. Bosch, “Steering wheel with hand pressure sensing,”
2015.

[115] L. M. Bergasa, J. Nuevo, M. A. Sotelo, R. Barea, and M. E. Lopez, “Real-Time System for
Monitoring Driver Vigilance,” IEEE Trans. Intell. Transp. Syst., vol. 7, no. 1, pp. 63–77,
2006.

[116] W. C. Liang, J. Yuan, D. C. Sun, and M. H. Lin, “Changes in physiological parameters

Chapter VI Bibliography

Towards adaptive monitoring for self-adaptive systems 168

induced by indoor simulated driving: Effect of lower body exercise at mid-term break,”
Sensors, vol. 9, no. 9, pp. 6913–6933, 2009.

[117] T. Wartzek, B. Eilebrecht, J. Lem, H. J. Lindner, S. Leonhardt, and M. Walter, “ECG on
the road: Robust and unobtrusive estimation of heart rate,” IEEE Trans. Biomed. Eng.,
vol. 58, no. 11, pp. 3112–3120, 2011.

[118] BMW, “Steering and lane control assitant incl. traffic jam assitant.,” 2016. [Online].
Available:
http://www.bmw.com/com/en/insights/technology/connecteddrive/2013/driver_ass
istance/intelligent_driving.html.

[119] U. S. A. Toyota Motor Sales, “Toyota Safety Sense P (TSS P) - Pre Collision System with
Pedestrian Detection (PCS),” 2016. [Online]. Available: http://www.toyota.com/safety-
sense.

[120] J. Jiménez-Pinto and M. Torres-Torriti, “Optical flow and driver’s kinematics analysis
for state of alert sensing.,” Sensors (Basel)., vol. 13, no. 4, pp. 4225–4257, 2013.

[121] M. L. Berenson and D. M. Levine, Basic Bussiness Statistics: Concepts and Applications,
6th ed. Prentice-Hall International, Inc., 1996.

[122] T. Baumhöfer, M. Brühl, S. Rothgang, and D. U. Sauer, “Production caused variation in
capacity aging trend and correlation to initial cell performance,” J. Power Sources, vol.
247, pp. 332–338, 2014.

[123] A. Rook, A. Knauss, D. Damian, and A. Thomo, “A Case Study of Applying Data Mining
to Sensor Data for Contextual Requirements Analysis,” 2014 IEEE 1st Int. Work. Artif.
Intell. Requir. Eng., pp. 43–50, 2014.

[124] A. Rook, “On the Feasibility of Integrating Data Mining Algorithms into Self Adaptive
Systems for Context Awareness and Requirements Evolution (Master thesis),” University
of Victoria, 2014.

[125] C. Berger, “From a Competition for Self-Driving Miniature Cars to a Standardized
Experimental Platform: Concept, Models, Architecture, and Evaluation,” J. Softw. Eng.
Robot., vol. 5, no. 1, pp. 63–79, Jun. 2014.

[126] C. Berger, “An open continuous deployment infrastructure for a self-driving vehicle
ecosystem,” IFIP Adv. Inf. Commun. Technol., vol. 472, pp. 177–183, 2016.

[127] ETSI, “Intelligent Transport Systems (ITS) - Vehicular Communications - Basic Set of
Applications - Part 2 : Specification of Cooperative Awareness Basic Service,” History,
vol. 1, pp. 1–22, 2011.

[128] ETSI, “ETSI EN 302 637-3 Intelligent Transport Systems (ITS); Vehicular
Communications; Basic Set of Applications; Part 3: Specifications of Decentralized
Environmental Notification Basic Service,” Etsi, vol. 1, pp. 1–73, 2010.

[129] D. W. Aha, D. Kibler, and M. K. Albert, “Instance-based learning algorithms,” Mach.
Learn., vol. 6, no. 1, pp. 37–66, 1991.

Towards adaptive monitoring for self-adaptive systems 169

A

APPENDIX

How to adapt: Study on adaptive monitoring

A1 SMS references

[R1] Aderohunmu, F. A., Paci, G., Benini, L., Deng, J. D., & Brunelli, D. (2013).
SWIFTNET: A data acquisition protocol for fast-reactive monitoring applications. In
IEEE International Symposium on Industrial Embedded Systems (SIES) (pp. 93–96).
IEEE. https://doi.org/10.1109/SIES.2013.6601478

[R2] Agarwala, S., Chen, Y., Milojicic, D., & Schwan, K. (2006). QMON: QoS-and utility-
aware monitoring in enterprise systems. In IEEE International Conference on
Autonomic Computing (ICAC) (Vol. 2006, p. 124-133).

[R3] Alippi, C., Anastasi, G., Galperti, C., Mancini, F., & Rove, M. (2007). Adaptive
Sampling for Energy Conservation in Wireless Sensor Networks for Snow Monitoring
Applications. In IEEE International Conference on Mobile Adhoc and Sensor Systems
(MASS) (pp. 1–6). https://doi.org/10.1109/MOBHOC.2007.4428700

[R4] Allman, M., & Paxson, V. (2008). A reactive measurement framework. In International
Conference on Passive and Active Network Measurement (PAM) (Vol. 4979 LNCS, pp.
92–101). https://doi.org/10.1007/978-3-540-79232-1_10

[R5] Arumuga Nainar, P., & Liblit, B. (2010). Adaptive bug isolation. In 32nd ACM/IEEE
International Conference on Software Engineering (ICSE) (Vol. 1, p. 255). New York,
NY, USA. https://doi.org/10.1145/1806799.1806839

 APPENDIX A

Towards adaptive monitoring for self-adaptive systems 170

[R6] Baresi, L., & Guinea, S. (2005). Towards dynamic monitoring of WS-BPEL processes.
In International Conference on Service-Oriented Computing (ICSOC) (Vol. 3826
LNCS, pp. 269–282). https://doi.org/10.1007/11596141_21

[R7] Barford, P., Duffield, N., Ron, A., & Sommers, J. (2009). Network Performance
Anomaly Detection and Localization. 28th IEEE INFOCOM Conference on Computer
Communications, 1377–1385. https://doi.org/10.1109/INFCOM.2009.5062053

[R8] Batalin, M. A., Srivastava, M., Estrin, D., Rahimi, M., Yu, Y., Liu, D., … Pottie, G. J.
(2004). Call and response. In 2nd international conference on Embedded networked
sensor systems (SenSys) (p. 25). https://doi.org/10.1145/1031495.1031499

[R9] Bertolino, A., Calabrò, A., Lonetti, F., Di Marco, A., & Sabetta, A. (2011). Towards a
model-driven infrastructure for runtime monitoring. In International Workshop on
Software Engineering for Resilient Systems (SERENE) (Vol. 6968 LNCS, pp. 130–
144). https://doi.org/10.1007/978-3-642-24124-6_13

[R10] Bhatia, S., Kumar, A., Fiuczynski, M. E., & Peterson, L. (2008). Lightweight, High-
Resolution Monitoring for Troubleshooting Production Systems. In 8th USENIX
Symposium on Operating Systems Design and Implementation (OSDI) (pp. 103--116).
https://doi.org/10.1.1.145.5057

[R11] Brodie, M., Rish, I., Ma, S., Odintsova, N., & Beygelzimer, A. (2003). Active Probing
Strategies for Problem Diagnosis in Distributed Systems. In 18th International joint
conference on Artificial intelligence (IJCAI) (pp. 1337–1338).

[R12] Cantieni, G. R., Iannaccone, G., Barakat, C., Diot, C., & Thiran, P. (2006).
Reformulating the monitor placement problem: Optimal network-wide sampling. In
IEEE Conference on Information Sciences and Systems (CISS) (pp. 1725–1731).
https://doi.org/10.1109/CISS.2006.286433

[R13] Chen, Q., Wang, L., & Yang, Z. (2012). SAM: Self-adaptive dynamic analysis for
multithreaded programs. In Haifa Verification Conference (HVC) (Vol. 7261 LNCS,
pp. 115–129). https://doi.org/10.1007/978-3-642-34188-5_12

[R14] Chu, M., Haussecker, H., & Feng Zhao. (2002). Scalable Information-Driven Sensor
Querying and Routing for Ad Hoc Heterogeneous Sensor Networks. In International
Journal of High Performance Computing Applications (Vol. 16, pp. 293–313).
https://doi.org/10.1177/10943420020160030901

[R15] Clark, K. P., Warnier, M., & Brazier, F. M. T. (2013). Self-adaptive service level
agreement monitoring in cloud environments. In Multiagent and Grid Systems (Vol. 9,
pp. 135–155). https://doi.org/10.3233/MGS-130203

[R16] Clark, K., Warnier, M., & Brazier, F. M. T. (2011). Self-adaptive service monitoring. In
Adaptive and Intelligent Systems (Vol. 6943 LNAI, pp. 119–130).
https://doi.org/10.1007/978-3-642-23857-4_15

[R17] Comuzzi, M., & Spanoudakis, G. (2010). Dynamic set-up of monitoring infrastructures
for service based systems. In ACM Symposium on Applied Computing (SAC) (p. 2414).
https://doi.org/10.1145/1774088.1774591

[R18] Contreras, R., & Zisman, A. (2011). Identifying, modifying, creating, and removing
monitor rules for service oriented computing. In 3rd international workshop on
Principles of engineering service-oriented systems (PESOS) (pp. 43–49). New York,
NY, USA: ACM. https://doi.org/10.1145/1985394.1985401

[R19] Contreras, R., & Zisman, A. (2010). A pattern-based approach for monitor adaptation.
In IEEE International Conference on Software Science, Technology, and Engineering
(SwSTE) (pp. 30–37). IEEE. https://doi.org/10.1109/SwSTE.2010.12

 APPENDIX A

Towards adaptive monitoring for self-adaptive systems 171

[R20] Cotroneo, D., Di Leo, D., & Natella, R. (2010). Adaptive monitoring in microkernel
OSs. In International Conference on Dependable Systems and Networks Workshops
(DSN-W) (pp. 66–72). IEEE. https://doi.org/10.1109/DSNW.2010.5542619

[R21] Deshpande, A., Guestrin, C., Madden, S., Hellerstein, J., & Hong, W. (2004). Model-
Driven Data Acquisition in Sensor Networks. In 30th International conference on Very
large data bases (VLDB) (pp. 588–599). Elsevier. https://doi.org/10.1016/B978-
012088469-8/50053-X

[R22] Deshpande, A., Guestrin, C., Madden, S. R., Hellerstein, J. M., & Hong, W. (2005).
Model-based approximate querying in sensor networks. International Journal on Very
Large Data Bases (VLDB Journal), 14(4), 417–443.
https://doi.org/10.1007/s00778-005-0159-3

[R23] Dilman, M., & Raz, D. (2001). Efficient reactive monitoring. In 20th IEEE INFOCOM
Conference on Computer Communications (Vol. 20, pp. 668–676).
https://doi.org/10.1109/JSAC.2002.1003034

[R24] Dmitriev, M. (2004). Profiling Java applications using code hot swapping and dynamic
call graph revelation. In 4th International workshop on Software and performance
(WOSP) (Vol. 29, p. 139). New York, New York, USA: ACM Press.
https://doi.org/10.1145/974044.974067

[R25] Doelitzscher, F., Reich, C., Knahl, M., Passfall, A., & Clarke, N. (2012). An agent based
business aware incident detection system for cloud environments. Journal of Cloud
Computing: Advances, Systems and Applications, 1(1), 9.
https://doi.org/10.1186/2192-113X-1-9

[R26] Dwyer, M. B., Kinneer, A., & Elbaum, S. (2007). Adaptive Online Program Analysis. In
29th ACM/IEEE International Conference on Software Engineering (ICSE) (pp. 220–
229). IEEE. https://doi.org/10.1109/ICSE.2007.12

[R27] Ehlers, J., & Hasselbring, W. (2011). A self-adaptive monitoring framework for
component-based software systems. In European Conference on Software Architecture
(ECSA) (Vol. 6903 LNCS, pp. 278–286). https://doi.org/10.1007/978-3-642-
23798-0_30

[R28] Ehlers, J., van Hoorn, A., Waller, J., & Hasselbring, W. (2011). Self-adaptive software
system monitoring for performance anomaly localization. In 8th IEEE international
conference on Autonomic computing (ICAC) (p. 197). New York, NY, USA: ACM.
https://doi.org/10.1145/1998582.1998628

[R29] Estan, C., Keys, K., Moore, D., & Varghese, G. (2004). Building a better NetFlow. In
Conference on Applications, technologies, architectures, and protocols for computer
communications (SIGCOMM) (Vol. 135, p. 245). New York, New York, USA: ACM
Press. https://doi.org/10.1145/1015467.1015495

[R30] Fan Ye, Zhong, G., Cheng, J., Songwu Lu, & Lixia Zhang. (2003). PEAS: a robust
energy conserving protocol for long-lived sensor networks. In 23rd International
Conference on Distributed Computing Systems (ICDCS) (pp. 28–37). IEEE.
https://doi.org/10.1109/ICDCS.2003.1203449

[R31] Fan, L., & Xiong, L. (2012). Real-time aggregate monitoring with differential privacy.
In 21st ACM international conference on Information and knowledge management
(CIKM) (Vol. 26, p. 2169). New York, New York, USA: ACM Press.
https://doi.org/10.1145/2396761.2398595

[R32] Fei, L., & Midkiff, S. (2006). Artemis: Practical runtime monitoring of applications for
execution anomalies. In ACM SIGPLAN Conference on Programming Language

 APPENDIX A

Towards adaptive monitoring for self-adaptive systems 172

Design and Implementation (PLDI) (Vol. 41, pp. 84–95).
https://doi.org/10.1145/1133981.1133992

[R33] Feng Zhao, Jaewon Shin, & Reich, J. (2002). Information-driven dynamic sensor
collaboration. IEEE Signal Processing Magazine, 19(2), 61–72.
https://doi.org/10.1109/79.985685

[R34] Findrik, M., Kristensen, T. le F., Hinterhofer, T., Olsen, R. L., & Schwefel, H. P.
(2015). Information-quality based LV-grid-monitoring framework and its application
to power-quality control. In International Conference on Ad-Hoc Networks and
Wireless (ADHOC-NOW) (Vol. 9143 LNCS, pp. 317–329).
https://doi.org/10.1007/978-3-319-19662-6_22

[R35] Gedik, B. B. B., Liu, L., & Yu, P. S. (2007). ASAP: An Adaptive Sampling Approach to
Data Collection in Sensor Networks. IEEE Transactions on Parallel and Distributed
Systems, 18(12), 1766–1783. https://doi.org/10.1109/TPDS.2007.1110

[R36] Gonzalez-Herrera, I., Bourcier, J., Daubert, E., Rudametkin, W., Barais, O., Fouquet,
F., … Baudry, B. (2016). ScapeGoat: Spotting abnormal resource usage in component-
based reconfigurable software systems. Journal of Systems and Software, 122, 398–
415. https://doi.org/10.1016/j.jss.2016.02.027

[R37] Gonzalez-Herrera, I., Bourcier, J., Daubert, E., Rudametkin, W., Barais, O., Fouquet,
F., & Jezequel, J. M. (2014). Scapegoat: An adaptive monitoring framework for
component-based systems. In IEEE/IFIP Conference on Software Architecture
(WICSA) (pp. 67–76). IEEE. https://doi.org/10.1109/WICSA.2014.49

[R38] Groenendijk, J., Huang, Y., & Fallon, L. (2011). Adaptive Terminal Reporting for
Scalable Service Quality Monitoring in Large Networks. In 7th International
Conference on Network and Service Management (CNSM) (pp. 427–431).

[R39] Halal, F., Pedrocca, P., Hirose, T., Cretu, A. M., & Zaremba, M. B. (2014). Remote-
sensing based adaptive path planning for an aquatic platform to monitor water quality.
In IEEE International Symposium on RObotic and SEnsors Environments (ROSE) (pp.
43–48). IEEE. https://doi.org/10.1109/ROSE.2014.6952981

[R40] Haran, M., Karr, A., Last, M., Orso, A., Porter, A. A., Sanil, A., & Fouche, S. (2007).
Techniques for classifying executions of deployed software to support software
engineering tasks. IEEE Transactions on Software Engineering, 33(5), 287–304.
https://doi.org/10.1109/TSE.2007.1004

[R41] Hernandez, E. a, Chidester, M. C., & George, A. D. (2001). Adaptive Sampling for
Network Management. Journal of Network and Systems Management, 9(4), 409–434.
https://doi.org/10.1023/A:1012980307500

[R42] Horling, B., Vincent, R., Mailler, R., Shen, J., Becker, R., Rawlins, K., & Lesser, V.
(2001). Distributed sensor network for real time tracking. In 5th international
conference on Autonomous agents (pp. 417–424).

[R43] Iacono, M., Romano, E., & Marrone, S. (2010). Adaptive monitoring of marine
disasters with intelligent mobile sensor networks. In IEEE Workshop on
Environmental Energy and Structural Monitoring Systems (EESMS) (pp. 38–45).
IEEE. https://doi.org/10.1109/EESMS.2010.5634179

[R44] Jain, A., & Chang, E. Y. (2004). Adaptive sampling for sensor networks. In 1st
International workshop on Data Management for Sensor Networks (DMSN): in
conjunction with the International Conference on Very Large Data Bases (VLDB) (pp.
10–16). https://doi.org/10.1145/1052199.1052202

 APPENDIX A

Towards adaptive monitoring for self-adaptive systems 173

[R45] Jeswani, D., Natu, M., & Ghosh, R. K. (2012). Adaptive Monitoring: A Framework to
Adapt Passive Monitoring using Probing. 8th International Conference on Network and
Service Management (Cnsm) and Workshop on Systems Virtualiztion Management
(Svm), 350–356. https://doi.org/10.1007/s10922-014-9330-8

[R46] Jeswani, D., Natu, M., & Ghosh, R. K. (2015). Adaptive Monitoring: Application of
Probing to Adapt Passive Monitoring. Journal of Network and Systems Management,
23(4), 950–977. https://doi.org/10.1007/s10922-014-9330-8

[R47] Ji, X., Zha, H., Metzner, J. J., & Kesidis, G. (2004). Dynamic Cluster Structure for
Object Detection and Tracking in Wireless Ad-Hoc Sensor Networks. In IEEE
International Conference on Communications (Vol. 0, pp. 3807–3811).

[R48] Jiao, J., Naqvi, S., Raz, D., & Sugla, B. (2000). Toward efficient monitoring. IEEE
Journal on Selected Areas in Communications, 18(5), 723–732.
https://doi.org/10.1109/49.842988

[R49] Katsaros, G., Kousiouris, G., Gogouvitis, S. V., Kyriazis, D., Menychtas, A., &
Varvarigou, T. (2012). A Self-adaptive hierarchical monitoring mechanism for Clouds.
Journal of Systems and Software, 85(5), 1029–1041.
https://doi.org/10.1016/j.jss.2011.11.1043

[R50] Kho, J., Rogers, A., & Jennings, N. R. (2007). Decentralised Adaptive Sampling of
Wireless Sensor Networks. In 1st International Workshop on Agent Technology for
Sensor Networks at the 6th International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS) (Vol. 5, pp. 55–62).

[R51] Kiciman, E., & Livshits, B. (2007). AjaxScope: a platform for remotely monitoring the
client-side behavior of Web 2.0 applications. In ACM SIGOPS symposium on
Operating systems principles (SOSP) (Vol. 41, pp. 17–30).
https://doi.org/http://doi.acm.org/10.1145/1294261.1294264

[R52] Kim, H., Yoon, H., Cho, Y., Park, S., & Sugumaran, V. (2011). Multi-layered adaptive
monitoring in service robots. In 5th International Conference on Secure Software
Integration and Reliability Improvement - Companion (SSIRI-C) (pp. 76–83). IEEE.
https://doi.org/10.1109/SSIRI-C.2011.22

[R53] Kim, S., & Pakzad, S. (2006). Wireless Sensor Networks for Structural Health
Monitoring: A Multi-Scale Approach. In 17th Analysis and Computation Specialty
Conference at Structures Congress (ASCE).
https://doi.org/10.1145/1182807.1182889

[R54] Kyriazis, D., Kostantos, K., Kapsalis, A., Gogouvitis, S., & Varvarigou, T. (2013). QoS-
oriented service management in large scale federated clouds. In IEEE International
Symposium on Computers and Communications (ISCC) (pp. 22–27). IEEE.
https://doi.org/10.1109/ISCC.2013.6754917

[R55] Lassoued, I., & Barakat, C. (2011). A Multi-task Adaptive Monitoring System
Combining Different Sampling Primitives. In International Teletraffic Congress (ITC)
(pp. 79–86). International Teletraffic Congress. Retrieved from
http://dl.acm.org/citation.cfm?id=2043468.2043482

[R56] Lee, C. G., & Lee, K. S. (2012). A development framework toward reconfigurable run-
time monitors. In IT Convergence and Services (Vol. 107 LNEE, pp. 519–525).
https://doi.org/10.1007/978-94-007-2598-0_55

[R57] Liu, G., Trotter, M., Ren, Y., & Wood, T. (2016). NetAlytics: Cloud-Scale Application
Performance Monitoring with SDN and NFV Guyue. In 17th International Middleware
Conference (Middleware) (pp. 1–14). New York, New York, USA: ACM Press.

 APPENDIX A

Towards adaptive monitoring for self-adaptive systems 174

https://doi.org/10.1145/2988336.2988344
[R58] Liu, J., Guibas, L., & Zhao, F. (2002). A Dual-Space Approach to Tracking and Sensor

Management in Wireless Sensor Networks. In ACM Workshop on Wireless Sensor
Networks and Applications (pp. 131–139). https://doi.org/10.1145/570753.570757

[R59] Madden, S., Franklin, M. J., Hellerstein, J. M., & Berkeley, U. C. (2003). The Design of
an Acquisitional Query Processor For Sensor Networks. ACM SIGMOD International
Conference on Management of Data (SIGMOD), 491–502.
https://doi.org/10.1145/872757.872817

[R60] Mainland, G., Parkes, D. C., & Welsh, M. (2005). Decentralized, adaptive resource
allocation for sensor networks. In 2nd conference on Symposium on Networked
Systems Design & Implementation (NSDI) (pp. 315–328).

[R61] Massie, M. L., Chun, B. N., & Culler, D. E. (2004). The ganglia distributed monitoring
system: Design, implementation, and experience. Parallel Computing, 30(7), 817–840.
https://doi.org/10.1016/j.parco.2004.04.001

[R62] Maurel, Y., Bottaro, A., Kopetz, R., & Attouchi, K. (2012). Adaptive monitoring of end-
user OSGi-based home boxes. In 15th ACM SIGSOFT symposium on Component
Based Software Engineering (CBSE) (p. 157). New York, NY, USA: ACM.
https://doi.org/10.1145/2304736.2304763

[R63] Meng, S., & Liu, L. (2013). Enhanced monitoring-as-a-service for effective cloud
management. IEEE Transactions on Computers, 62(9), 1705–1720.
https://doi.org/10.1109/TC.2012.165

[R64] Merghem, L., Gaiti, D., & Pujolle, G. (2003). On using multi-agent systems in end to
end adaptive monitoring. IFIP/IEEE International Conference on Management of
Multimedia Networks and Services (MMNS), 2839, 422–435.

[R65] Mos, A. (2004). COMPAS: adaptive performance monitoring of component-based
systems. In Workshop on Remote Analysis and Measurement of Software Systems
(RAMSS) at 26th ACM/IEEE International Conference on Software Engineering
(ICSE) (Vol. 2004, pp. 35–39). https://doi.org/10.1049/ic:20040348

[R66] Moui, A., & Desprats, T. (2011). Towards self-adaptive monitoring framework for
integrated management. In IFIP International Conference on Autonomous
Infrastructure, Management and Security (AIMS) (Vol. 6734 LNCS, pp. 160–163).
https://doi.org/10.1007/978-3-642-21484-4_18

[R67] Moui, A., Desprats, T., Lavinal, E., & Sibilla, M. (2012). A CIM-based framework to
manage monitoring adaptability. In 8th international conference on network and
service management (cnsm) and workshop on systems virtualiztion management
(svm) (pp. 261–265). Laxenburg, Austria, Austria: IEEE.

[R68] Moui, A., Desprats, T., Lavinal, E., & Sibilla, M. (2012). Information Models for
Managing Monitoring Adaptation Enforcement. International Conference on Adaptive
and Self-Adaptive Systems and Applications (ADAPTIVE), (c), 44–50.

[R69] Moui, A., Desprats, T., Lavinal, E., & Sibilla, M. (2010). Managing polling adaptability
in a CIM/WBEM infrastructure. In 4th International DMTF Academic Alliance
Workshop on Systems and Virtualization Management (SVM) (pp. 1–6).
https://doi.org/10.1109/SVM.2010.5674749

[R70] Mshali, H. H., Lemlouma, T., & Magoni, D. (2016). Context-Aware Adaptive
Framework for e-Health Monitoring. In IEEE International Conference on Data
Science and Data Intensive Systems (DSDIS) (pp. 276–283). USA: IEEE.
https://doi.org/10.1109/DSDIS.2015.13

 APPENDIX A

Towards adaptive monitoring for self-adaptive systems 175

[R71] Munawar, M. A., Reidemeister, T., Jiang, M., George, A., & Ward, P. A. S. (2008).
Adaptive Monitoring with Dynamic Differential Tracing-Based Diagnosis. In
International Workshop on Distributed Systems: Operations and Management
(DSOM) (Vol. 5273 LNCS, pp. 162–175). https://doi.org/10.1007/978-3-540-
87353-2_13

[R72] Munawar, M. A., & Ward, P. A. S. (2006). Adaptive monitoring in enterprise software
systems. Tackling Computer Systems Problems with Machine Learning Techniques
(SysML), 1–5.

[R73] Munawar, M. A., & Ward, P. A. S. (2007). Leveraging Many Simple Statistical Models
to Adaptively Monitor Software Systems. In I. Stojmenovic, R. K. Thulasiram, L. T.
Yang, W. Jia, M. Guo, & R. F. de Mello (Eds.), International Symposium on Parallel
and Distributed Processing and Applications (ISPA) (Vol. 4742 LNCS, pp. 457–470).
Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-
74742-0_42

[R74] Natu, M., & Sethi, A. S. (2006). Active Probing Approach for Fault Localization in
Computer Networks. In 4th IEEE/IFIP Workshop on End-to-End Monitoring
Techniques and Services (pp. 25–33). IEEE.
https://doi.org/10.1109/E2EMON.2006.1651276

[R75] Natu, M., & Sethi, A. S. (2007). Probabilistic Fault Diagnosis Using Adaptive Probing.
In International Workshop on Distributed Systems: Operations and Management
(DSOM) (Vol. 4785 LNCS, pp. 38–49). https://doi.org/10.1007/978-3-540-75694-
1_4

[R76] Natu, M., & Sethi, A. S. (2008). Application of adaptive probing for fault diagnosis in
computer networks. In IEEE/IFIP Network Operations and Management
Symposium: Pervasive Management for Ubiquitous Networks and Services (NOMS)
(pp. 1055–1060). https://doi.org/10.1109/NOMS.2008.4575278

[R77] Natu, M., & Sethi, A. S. (2007). Efficient probing techniques for fault diagnosis. In 2nd
International Conference on Internet Monitoring and Protection (ICIMP) (pp. 0–5).
https://doi.org/10.1109/ICIMP.2007.14

[R78] Newman, H. B., Legrand, I. C., Galvez, P., Voicu, R., & Cirstoiu, C. (2003).
MonALISA : A Distributed Monitoring Service Architecture. In 13th International
Conference on Computing in High-Enery and Nuclear Physics (CHEP).
https://doi.org/10.1109/IEMBS.2005.1616960

[R79] Nguyen, T. A. B., Siebenhaar, M., Hans, R., & Steinmetz, R. (2014). Role-based
templates for cloud monitoring. In 7th IEEE/ACM International Conference on Utility
and Cloud Computing (UCC) (pp. 242–250). IEEE.
https://doi.org/10.1109/UCC.2014.33

[R80] Nobre, J.C., Granville, L.Z., Clemm, A., Prieto, A. G. G. (2012). Decentralized detection
of SLA violations using P2P technology. In International Conference on Network and
Service Management (CNSM) (pp. 100–107).

[R81] Okanovic, D., van Hoorn, A., Konjovic, Z., Vidakovic, M. (2011). Towards Adaptive
Monitoring of Java EE Applications. In 5th International Conference on Information
Technology (ICIT).

[R82] Okanovic, D., van Hoorn, A., Konjovic, Z., Vidakovic, M., Okanović, D., van Hoorn, A.,
… Vidakovic, M. (2013). SLA-Driven adaptive monitoring of distributed applications
for performance problem localization. Computer Science and Information Systems,
10(1), 25–50. https://doi.org/10.2298/CSIS1109260370

 APPENDIX A

Towards adaptive monitoring for self-adaptive systems 176

[R83] Orso, A., Liang, D., Harrold, M. J., & Lipton, R. (2002). Gamma System: Continuous
Evolution of Software after Deployment. In ACM SIGSOFT international symposium
on Software testing and analysis (ISSTA) (Vol. 27, p. 65). New York, New York, USA:
ACM Press. https://doi.org/10.1145/566172.566182

[R84] Padhy, P., Dash, R. K., Martinez, K., & Jennings, N. R. (2006). A utility-based sensing
and communication model for a glacial sensor network. In 5th International joint
conference on Autonomous agents and multiagent systems (AAMAS) (p. 1353).
https://doi.org/10.1145/1160633.1160885

[R85] Psiuk, M., & Zielinski, K. (2015). Goal-driven adaptive monitoring of SOA systems.
Journal of Systems and Software, 110, 101–121.
https://doi.org/10.1016/j.jss.2015.08.015

[R86] Rabiser, R., Vierhauser, M., & Grünbacher, P. (2015). Variability Management for a
Runtime Monitoring Infrastructure. In 9th International Workshop on Variability
Modelling of Software-intensive Systems (VaMoS) (pp. 35–42). New York, New York,
USA: ACM Press. https://doi.org/10.1145/2701319.2701330

[R87] Rahimi, M., Hansen, M., Kaiser, W. J., Sukhatme, G. S., & Estrin, D. (2005). Adaptive
sampling for environmental field estimation using robotic sensors. In IEEE/RSJ
International Conference on Intelligent Robots and Systems (pp. 3692–3698). IEEE.
https://doi.org/10.1109/IROS.2005.1545070

[R88] Rahimi, M., Pon, R., Kaiser, W. J., Sukhatme, G. S., Estrin, D., & Srivastava, M.
(2004). Adaptive sampling for environmental robotics. In IEEE International
Conference on Robotics and Automation (ICRA) (Vol. 4, p. 3537–3544 Vol.4).
https://doi.org/10.1109/ROBOT.2004.1308801

[R89] Ramirez, A. J., Cheng, B. H. C., & McKinley, P. K. (2010). Adaptive monitoring of
software requirements. In 1st International Workshop on Requirements@Run.Time
(RE@RunTime) (pp. 41–50). IEEE.
https://doi.org/10.1109/RE@RUNTIME.2010.5628549

[R90] Rish, I., Brodie, M., Odintsova, N., Sheng Ma, & Grabarnik, G. (2004). Real-time
problem determination in distributed systems using active probing. In IEEE/IFIP
Network Operations and Management Symposium (Vol. 1, pp. 133–146). IEEE.
https://doi.org/10.1109/NOMS.2004.1317650

[R91] Rish, I., Brodie, M., Ma, S., Odintsova, N., Beygelzimer, A., Grabarnik, G., &
Hernandez, K. (2005). Adaptive diagnosis in distributed systems. IEEE Transactions
on Neural Networks, 16(5), 1088–1109.
https://doi.org/10.1109/TNN.2005.853423

[R92] Shamsi, J., & Brockmeyer, M. (2012). Predictable service overlay networks:
Predictability through adaptive monitoring and efficient overlay construction and
management. Journal of Parallel and Distributed Computing, 72(1), 70–82.
https://doi.org/10.1016/j.jpdc.2011.09.005

[R93] Shao, J., Wei, H., Wang, Q., & Mei, H. (2010). A Runtime Model Based Monitoring
Approach for Cloud. In IEEE (Ed.), 3rd IEEE International Conference on Cloud
Computing (pp. 313–320). IEEE. https://doi.org/10.1109/CLOUD.2010.31

[R94] Shen, D., Tse, K. H., & Chan, C. K. (2012). Adaptive fault monitoring in all-optical
networks utilizing real-time data traffic. Journal of Network and Systems Management,
20(1), 76–96. https://doi.org/10.1007/s10922-011-9206-0

[R95] Talwar, V., Shankar, C. S., Rafael, R., Milojicic, D., Iyer, S., Farkas, K., & Chen, Y.
(2006). Adaptive Monitoring: Automated Change Management for Monitoring

 APPENDIX A

Towards adaptive monitoring for self-adaptive systems 177

Systems. In Workshop of the HP OpenView University Association (HP-OVUA).
[R96] Tang, Y. T. Y., Al-Shaer, E. S., & Boutaba, R. (2005). Active integrated fault localization

in communication networks. In 9th IFIP/IEEE International Symposium on Integrated
Network Management (IM) (pp. 543–556).
https://doi.org/10.1109/INM.2005.1440826

[R97] Thongtra, P., & Aagesen, F. A. (2010). An adaptable capability monitoring system. In
6th International Conference on Networking and Services (ICNS) (pp. 73–80).
https://doi.org/10.1109/ICNS.2010.19

[R98] Tierney, B., Crowley, B., Gunter, D., Lee, J., & Thompson, M. (2000). A Monitoring
Sensor Management System for Grid Environments. 9th International Symposium on
High-Performance Distributed Computing, 4(1), 19–28.
https://doi.org/10.1023/A:1011408108941

[R99] Toueir, A., Broisin, J., & Sibilla, M. (2013). A goal-oriented approach for adaptive SLA
monitoring: A cloud provider case study. In 2nd IEEE Latin American Conference on
Cloud Computing and Communications (LatinCloud) (pp. 53–58). IEEE.
https://doi.org/10.1109/LatinCloud.2013.6842223

[R100] Toueir, A., Broisin, J., & Sibilla, M. (2014). Goal-oriented monitoring adaptation:
Methodology and patterns. In IFIP International Conference on Autonomous
Infrastructure, Management and Security (AIMS) (Vol. 8508 LNCS, pp. 133–146).
https://doi.org/10.1007/978-3-662-43862-6_17

[R101] Trihinas, D., Pallis, G., & Dikaiakos, M. D. (2015). AdaM: An adaptive monitoring
framework for sampling and filtering on IoT devices. In IEEE International Conference
on Big Data (Big Data) (pp. 717–726). IEEE.
https://doi.org/10.1109/BigData.2015.7363816

[R102] Tseng, Y. C., Wang, Y. C., Cheng, K. Y., & Hsieh, Y. Y. (2007). iMouse: An integrated
mobile surveillance and wireless sensor system. Computer, 40(6), 60–67.
https://doi.org/10.1109/MC.2007.211

[R103] Villegas, N. M., & Müller, H. A. (2010). Context-Driven Adaptive Monitoring for
Supporting SOA Governance. In International Workshop on a Research Agenda for
Maintenance and Evolution of Service-Oriented Systems (MESOA) (p. 11).

[R104] Villegas, N. M., Müller, H. A., & Tamura, G. (2011). Optimizing run-time SOA
governance through context-driven SLAs and dynamic monitoring. In International
Workshop on the Maintenance and Evolution of Service-Oriented and Cloud-Based
Systems (MESOCA) (pp. 1–10). IEEE.
https://doi.org/10.1109/MESOCA.2011.6049036

[R105] Wang, J., Yan, W. Q., Kankanhalli, M. S., Jain, R., & Reinders, M. J. T. (2003).
Adaptive monitoring for video surveillance. In Joint Conference of the 4th International
Conference on Information, Communications and Signal Processing and 4th Pacific-
Rim Conference on Multimedia (ICICS-PCM) (Vol. 2, pp. 1139–1143). IEEE.
https://doi.org/10.1109/ICICS.2003.1292638

[R106] Wang, M., Wang, H., & Xu, D. (2005). The design of intelligent workflow monitoring
with agent technology. Knowledge-Based Systems, 18(6), 257–66.
https://doi.org/10.1016/j.knosys.2004.04.012

[R107] Wei, Y., & Blake, M. B. (2012). An agent-based services framework with adaptive
monitoring in cloud environments. In International Workshop on Enabling
Technologies: Infrastructure for Collaborative Enterprises (WETICE) (pp. 4–9).
IEEE. https://doi.org/10.1109/WETICE.2012.20

 APPENDIX A

Towards adaptive monitoring for self-adaptive systems 178

[R108] Willett, R., Martin, A., & Nowak, R. (2004). Backcasting: adaptive sampling for sensor
networks. In 3rd International symposium on Information processing in sensor
networks (IPSN) (p. 124). New York, New York, USA: ACM Press.
https://doi.org/10.1145/984622.984641

[R109] Zhang, W., & Cao, G. (2004). DCTC: Dynamic Convoy Tree-Based Collaboration for
Target Tracking in Sensor Networks. IEEE Transactions on Wireless Communications,
3(5), 1689–1701. https://doi.org/10.1109/TWC.2004.833443

[R110] Zhou, J., & De Roure, D. (2007). FloodNet: Coupling adaptive sampling with energy
aware routing in a flood warning system. Journal of Computer Science and Technology,
22(1), 121–130. https://doi.org/10.1007/s11390-007-9017-7

A2 Data mining variables and results

Table A2-1

Variables used in Data Mining

Research
sub-question

Id Variable Values

RQ2.1 v1 Year (of last approach
contribution)

2000-2016

RQ2.2 v2 Type of publication (of last
approach contribution)

Conference, Journal,
Workshop

RQ2.3 v3 Type of paper (of last approach
contribution)

Industry, Academy

RQ2.4 v4 Continent (of last approach
contribution)

North America, South
America, Europe, Asia,
Oceania

RQ3.1 v5 Type of contribution Algorithm(s) and architecture,
Algorithm(s)-only

RQ3.2 v6 Solution generalizability Problem-specific, Domain-
specific, Generic

RQ4.1 v7 Improve monitoring data
characteristics

True, False

RQ4.1 v8 Provide adaptation capabilities True, False
RQ4.1 v9 Reduce the impact of monitoring True, False
RQ4.1 v10 Respond to changes True, False
RQ4.1 v11 Satisfy systems' goals True, False
RQ4.1 v12 Solve a trade-off True, False
RQ4.2 v13 Metrics to monitor True, False
RQ4.2 v14 Monitoring operation True, False
RQ4.2 v15 Monitoring mechanism True, False
RQ4.2 v16 Monitoring system composition True, False
RQ4.2 v17 Sampling points True, False
RQ4.2 v18 Sampling rate True, False
RQ4.3 v19 Suspected problem True, False
RQ4.3 v20 SuM or monitoring system changes True, False

 APPENDIX A

Towards adaptive monitoring for self-adaptive systems 179

RQ4.3 v21 Monitored data characteristics True, False
RQ4.3 v22 Monitoring requirements changes True, False
RQ4.3 v23 Time True, False
RQ4.3 v24 Trigger open True, False
RQ4.4 v25 Algorithm True, False
RQ4.4 v26 Model-driven True, False
RQ4.4 v27 Analysis techniques not detailed True, False
RQ4.4 v28 Human analysis True, False
RQ4.4 v29 No analysis True, False
RQ4.4 v30 Probability/Statistics True, False
RQ4.5 v31 Human decision True, False
RQ4.5 v32 Objective function True, False
RQ4.5 v33 Policies True, False
RQ4.5 v34 Rules True, False
RQ4.6 v35 Manual True, False
RQ4.6 v36 Automatic True, False
RQ4.6 v37 Semi-automatic True, False
RQ4.7 v38 Parameter True, False
RQ4.7 v39 Structural True, False
RQ5.1 v40 Type of evaluation Experiment, Industry use

case, No evaluation
RQ5.2 v41 Software applications True, False
RQ5.2 v42 Clouds/Grids True, False
RQ5.2 v43 Mobile sensors True, False
RQ5.2 v44 Network True, False
RQ5.2 v45 No evaluation True, False
RQ5.2 v46 Sensor networks True, False
RQ5.2 v47 Service/Component-based systems True, False

 APPENDIX A

Towards adaptive monitoring for self-adaptive systems 180

Figure A2-1: Resulting precision, recall, and f-measure per variable classifier

Table A2-2

Resulting relevant Data Mining classifiers

Variable Rules Interpretation

Satisfy
systems'
goals

(for all) Satisfy system’s goals = False In general, approaches are not
motivated by the purpose of satisfying
system’s goals.

Solve a
trade-off

If ((Reduce the impact of monitoring =
True) or (Respond to changes = True)
or (Improve monitoring data
characteristics = True) or (Provide
adaptation capabilities = True))

then (Solve a trade-off = False)
(True otherwise)

Some adaptation purposes (reduce the
impact of monitoring, respond to
changes, improve monitoring data
characteristics or provide adaptation
capabilities) do not usually motivate
an approach in conjunction with
solving a trade-off purpose.

Monitoring
operation

(for all) Monitoring operation = False In general, approaches do not aim at
adapting the monitoring operation.

Monitoring
system

If (Structural = True and Sampling
points = False and Suspected problem =

Structural changes executed on
monitoring systems by approaches are

 APPENDIX A

Towards adaptive monitoring for self-adaptive systems 181

composition False)
then (Monitoring system
composition = True) (False
otherwise)

usually done for enacting monitoring
system composition adaptation
decisions, as long as they do not
correspond to sampling points’
adaptations and the adaptation trigger
is not a suspected problem.

Sampling
rate

If (Structural = False and Sampling
points = False)

then (Sampling rate = True) (False
otherwise)

Parameter changes are usually
executed by approaches for adapting
the sampling rate, except in the cases
of non-structural sampling points’
adaptation.

SuM or
monitoring
system
changes

If (Suspected problem = False and
Trigger open = False and Monitored
data characteristics = False and Time =
False)

then SuM or monitoring system
change = True (False otherwise)

Approaches triggering adaptation by
SuM or monitoring system changes do
not tend to consider some kinds of
triggers (suspected problem, open
trigger, monitored data characteristics
and time).

Trigger
open

If (Human analysis = True and SuM or
monitoring system change = False)

then (Trigger open = True) (False
otherwise)

Approaches considering human
analysis that do not trigger
adaptations by SuM or monitoring
systems changes, tend to leave the
adaptation trigger open.

Human
analysis

If (Human decision = True)
then (Human analysis = True)
(False otherwise)

Approaches considering human-based
decision-making usually also consider
human-based analysis.

Human
decision

If (Human analysis = True or Manual =
True)

then (Human decision = True)
(False otherwise)

Approaches considering human
analysis or manual enactment of the
adaptation decisions tend to conduct
decision-making supported by
humans.

Policies If (Objective function = True or
Automatic = False or Rules = True)

then (Policies = False) (True
otherwise)

Policies are mainly used by existing
approaches for making adaptation
decisions, except for approaches that
do not support automatic enactment
or use objective functions or rules as
decision-making criteria.

Manual If (Human decision = True and Semi-
automatic = False)

then (Manual = True) (False
otherwise)

Approaches considering human-
driven decision-making process tend
to enact adaptations semi-
automatically or manually.

Automatic If (Human analysis = True)
then (Automatic = False) (True
otherwise)

Most of the approaches considering
human analysis do not consider
automatic enactment.

Semi-
automatic

If (Automatic = False and Manual =
False)

then (Semi-automatic = True)
(False otherwise)

Approaches supporting semi-
automatic enactment do not support
other kinds of enactment.

 APPENDIX A

Towards adaptive monitoring for self-adaptive systems 182

Parameter If (Structural = False)
then (Parameter = True) (False
otherwise)

In general, approaches do not support
the execution of both types of

adaptation in a single solution.

Structural If (Parameter = True and Monitoring
system composition = False)

then (Structural = False) (True
otherwise)

Mobile
sensors

If (Objective function = True and Type
of paper = Academy and Time = False)

then (Mobile sensors = True)
(False otherwise)

Approaches evaluated in mobile
sensors systems do not trigger
adaptations periodically and use
objective functions for conducting
their decision-making process.
Moreover, most of them have been
published by academics.

No
evaluation

If (Type of evaluation= No evaluation)
then (No evaluation= True) (False
otherwise)

Approaches we have grouped in the
No evaluation category in RQ5.1 were
also correctly classified in RQ5.2 as
not evaluated.

Towards adaptive monitoring for self-adaptive systems 183

B

APPENDIX

How to improve: Study on SASs’ self-improvement

B1 SASs’ literature review references (identified in first manual search

iteration)

 Cheng et al., 2009
[R1] Coulson, G. et al. (2008). A generic component model for building systems software.

ACM Transactions on Computer Systems, 26(1), 1–42.
[R2] Fickas, S., & Feather, M. S. (1995). Requirements monitoring in dynamic

environments. In Proceedings of 1995 IEEE International Symposium on
Requirements Engineering (RE’95) (pp. 140–147). IEEE Comput. Soc. Press.

[R3] Finkelstein, A. (2008). Requirements reflection. Dagstuhl Presentation.
[R4] Kramer, J., & Magee, J. (2007). Self-Managed Systems: an Architectural Challenge. In

Future of Software Engineering (FOSE ’07) (pp. 259–268). IEEE.
[R5] Maes, P. (1987). Computional reflection (PhD thesis). Vrije Universiteit.
[R6] Robinson, W. N. (2003). Monitoring Web service requirements. In Proceedings of the

IEEE International Conference on Requirements Engineering (Vol. 2003–Janua, pp.
65–74). IEEE Comput. Soc.

[R7] Robinson, W. N. (2006). A requirements monitoring framework for enterprise systems.
Requirements Engineering, 11(1), 17–41.

[R8] Savor, T., & Seviora, R. E. (1997). An approach to automatic detection of software
failures in real-time systems. In Real-Time Technology and Applications - Proceedings
(pp. 136–146). IEEE Comput. Soc.

 APPENDIX B

Towards adaptive monitoring for self-adaptive systems 184

 De Lemos et al., 2013
[R9] Aßmann, U., Bencomo, N., Cheng, B. H. C., & France, R. B. (2012). Models@run.time

(Dagstuhl Seminar 11481). Dagstuhl Reports 1(11), 91–123.
https://doi.org/10.4230/dagrep.1.11.91

[R10] Bencomo, N., Blair, G., France, R., Muñoz, F., & Jeanneret, C. (2010). 4th
International Workshop on Models@run.time (pp. 119–123). Springer, Berlin,
Heidelberg. https://doi.org/10.1007/978-3-642-12261-3_12

[R11] Brun, Y., & Medvidovic, N. (2007). An Architectural Style for Solving Computationally
Intensive Problems on Large Networks. In International Workshop on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS ’07) (pp. 2–2). IEEE.
https://doi.org/10.1109/SEAMS.2007.4

[R12] Georgiadis, I., Magee, J., & Kramer, J. (2002). Self-organising software architectures for
distributed systems. In Proceedings of the first workshop on Self-healing systems -
WOSS ’02 (p. 33). New York, New York, USA: ACM Press.
https://doi.org/10.1145/582128.582135

[R13] Goldsby, H. J., & Cheng, B. H. C. (2008). Automatically Generating Behavioral Models
of Adaptive Systems to Address Uncertainty. In Model Driven Engineering Languages
and Systems (pp. 568–583). Berlin, Heidelberg: Springer Berlin Heidelberg.
https://doi.org/10.1007/978-3-540-87875-9_40

[R14] Malek, S., Mikic-Rakic, M., & Medvidovic, N. (2005). A decentralized redeployment
algorithm for improving the availability of distributed systems. In Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics) (Vol. 3798 LNCS, pp. 99–114). Springer, Berlin,
Heidelberg. https://doi.org/10.1007/11590712_8

[R15] Murray, R. M., Astrom, K. J., Boyd, S. P., Brockett, R. W., & Stein, G. (2003). Feature -
Future directions in control in an information-rich word. IEEE Control Systems
Magazine, 23(2), 20–33. https://doi.org/10.1109/MCS.2003.1188769

[R16] Sawyer, P., Bencomo, N., Whittle, J., Letier, E., & Finkelstein, A. (2010).
Requirements-Aware Systems: A Research Agenda for RE for Self-adaptive Systems. In
2010 18th IEEE International Requirements Engineering Conference (pp. 95–103).
IEEE. https://doi.org/10.1109/RE.2010.21

[R17] Vromant, P., Weyns, D., Malek, S., & Andersson, J. (2011). On interacting control
loops in self-adaptive systems. In Proceeding of the 6th international symposium on
Software engineering for adaptive and self-managing systems - SEAMS ’11 (p. 202).
New York, New York, USA: ACM Press. https://doi.org/10.1145/1988008.1988037

[R18] Weyns, D., Malek, S., & Andersson, J. (2010). On decentralized self-adaptation. In
Proceedings of the 2010 ICSE Workshop on Software Engineering for Adaptive and
Self-Managing Systems - SEAMS ’10 (pp. 84–93). New York, New York, USA: ACM
Press. https://doi.org/10.1145/1808984.1808994

 Krupitzer et al., 2015
[R19] De Wolf, T., & Holvoet, T. (2005). Emergence versus self-organisation: Different

concepts but promising when combined. In Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics) (Vol. 3464 LNAI, pp. 1–15). Springer, Berlin, Heidelberg.
https://doi.org/10.1007/11494676_1

 APPENDIX B

Towards adaptive monitoring for self-adaptive systems 185

[R20] De Wolf, T., & Holvoet, T. (2003). Towards autonomic computing: Agent-based
modelling, dynamical systems analysis, and decentralised control. In IEEE
International Conference on Industrial Informatics (INDIN) (Vol. 2003–Janua, pp.
470–479). IEEE. https://doi.org/10.1109/INDIN.2003.1300381

[R21] De Wolf, T., & Holvoet, T. (2007). Design Patterns for Decentralised Coordination in
Self-organising Emergent Systems (pp. 28–49). Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-540-69868-5_3

[R22] De Wolf, T., & Holvoet, T. (2005). Towards a Methodology for Engineering Self-
Organising Emergent Systems. Conference on Self-Organization and Autonomic
Informatics. IOS Press. Retrieved from
https://dl.acm.org/citation.cfm?id=1563536.1563540

[R23] Dowling, J., & Cahill, V. (2004). Self-managed decentralised systems using K-
components and collaborative reinforcement learning. In Proceedings of the 1st ACM
SIGSOFT workshop on Self-managed systems - WOSS ’04 (pp. 39–43). New York,
New York, USA: ACM Press. https://doi.org/10.1145/1075405.1075413

[R24] Krupitzer, C., Vansyckel, S., & Becker, C. (2013). FESAS: Towards a Framework for
Engineering Self-Adaptive Systems. In 2013 IEEE 7th International Conference on
Self-Adaptive and Self-Organizing Systems (pp. 263–264). IEEE.
https://doi.org/10.1109/SASO.2013.36

[R25] Nafz, F., Seebach, H., Steghöfer, J. P., Bäumler, S., & Reif, W. (2010). A formal
framework for compositional verification of organic computing systems. In Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics) (Vol. 6407 LNCS, pp. 17–31). Springer, Berlin,
Heidelberg. https://doi.org/10.1007/978-3-642-16576-4_2

[R26] Tomforde, S., Prothmann, H., Rochner, F., Branke, J., Hähner, J., Müller-Schloer, C.,
& Schmeck, H. (2008). Decentralised Progressive Signal Systems for Organic Traffic
Control. In 2008 Second IEEE International Conference on Self-Adaptive and Self-
Organizing Systems (pp. 413–422). IEEE. https://doi.org/10.1109/SASO.2008.31

[R27] Weyns, D. (2010). Architecture-based design of multi-agent systems. Architecture-
Based Design of Multi-Agent Systems. Springer. https://doi.org/10.1007/978-3-642-
01064-4

[R28] Weyns, D., Schmerl, B., Grassi, V., Malek, S., Mirandola, R., Prehofer, C., … Göschka,
K. M. (2013). On patterns for decentralized control in self-adaptive systems. In Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics) (Vol. 7475 LNCS, pp. 76–107). Springer, Berlin,
Heidelberg. https://doi.org/10.1007/978-3-642-35813-5_4

 Weyns, 2017
[R29] Bencomo, N., & Belaggoun, A. (2013). Supporting decision-making for self-adaptive

systems: From goal models to dynamic decision networks. In Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics) (Vol. 7830 LNCS, pp. 221–236). Springer, Berlin,
Heidelberg. https://doi.org/10.1007/978-3-642-37422-7_16

[R30] Bojke, L., Claxton, K., Sculpher, M., & Palmer, S. (2009). Characterizing structural
uncertainty in decision analytic models: A review and application of methods. Value in
Health, 12(5), 739–749. https://doi.org/10.1111/j.1524-4733.2008.00502.x

[R31] Brun, Y., Di Marzo Serugendo, G., Gacek, C., Giese, H., Kienle, H., Litoiu, M., …

https://doi.org/10.1111/j.1524-4733.2008.00502.x

 APPENDIX B

Towards adaptive monitoring for self-adaptive systems 186

Shaw, M. (2009). Engineering self-adaptive systems through feedback loops. In
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics) (Vol. 5525 LNCS, pp. 48–70).
https://doi.org/10.1007/978-3-642-02161-9_3

[R32] Calinescu, R., Gerasimou, S., & Banks, A. (2015). Self-adaptive software with
decentralised control loops. In Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol.
9033, pp. 235–251). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-
662-46675-9_16

[R33] Iftikhar, M. U., & Weyns, D. (2014). ActivFORMS: active formal models for self-
adaptation. In Proceedings of the 9th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems - SEAMS 2014 (pp. 125–134).
New York, New York, USA: ACM Press. https://doi.org/10.1145/2593929.2593944

B2 SASs’ l iterature review references (identified in second manual search

iteration)

[R1] Ali, R. (2010). Modeling and Reasoning about Contextual Requirements : Goal-based
Framework (PhD Thesis). University of Trento.

[R2] Canavera, K. R., Esfahani, N., & Malek, S. (2012). Mining the execution history of a
software system to infer the best time for its adaptation. In Proceedings of the ACM
SIGSOFT 20th International Symposium on the Foundations of Software Engineering
- FSE ’12 (p. 1). New York, New York, USA: ACM Press.
https://doi.org/10.1145/2393596.2393616

[R3] Esfahani, N., Elkhodary, A., & Malek, S. (2013). A learning-based framework for
engineering feature-oriented self-adaptive software systems. IEEE Transactions on
Software Engineering, 39(11), 1467–1493. https://doi.org/10.1109/TSE.2013.37

[R4] Gullapalli, R., Muthusamy, C., & Babu, A. (2011). Data Mining in adaptive control of
distributed computing system performance. Int. J. Comput. Trends Technol., 2(2),
128–133.

[R5] Inverardi, P., & Mori, M. (2011). Requirements models at run-time to support
consistent system evolutions. In Proceedings of the 2011 2nd International Workshop
on Requirements@Run.Time, RE@RunTime 2011 (pp. 1–8). IEEE.
https://doi.org/10.1109/ReRunTime.2011.6046241

[R6] Knauss, A., Damian, D., Franch, X., Rook, A., Müller, H. A., & Thomo, A. (2016).
Acon: A learning-based approach to deal with uncertainty in contextual requirements
at runtime. Information and Software Technology, 70, 85–99.
https://doi.org/10.1016/j.infsof.2015.10.001

[R7] Oriol, M., Qureshi, N. A., Franch, X., Perini, A., & Marco, J. (2012). Requirements
monitoring for adaptive service-based applications. In Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics) (Vol. 7195 LNCS, pp. 280–287). Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-642-28714-5_25

[R8] Qureshi, N. A., & Perini, A. (2009). Engineering adaptive requirements. In
Proceedings of the 2009 ICSE Workshop on Software Engineering for Adaptive and

https://doi.org/10.1145/2593929.2593944
https://doi.org/10.1109/ReRunTime.2011.6046241
https://doi.org/10.1016/j.infsof.2015.10.001

 APPENDIX B

Towards adaptive monitoring for self-adaptive systems 187

Self-Managing Systems, SEAMS 2009 (pp. 126–131). IEEE.
https://doi.org/10.1109/SEAMS.2009.5069081

[R9] Ramirez, A. J., Fredericks, E. M., Jensen, A. C., & Cheng, B. H. C. (2012).
Automatically RELAXing a goal model to cope with uncertainty. In Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics) (Vol. 7515 LNCS, pp. 198–212). Springer, Berlin,
Heidelberg. https://doi.org/10.1007/978-3-642-33119-0_15

[R10] Souza, V. E. S., Lapouchnian, A., & Mylopoulos, J. (2012). (Requirement) evolution
requirements for adaptive systems. In ICSE Workshop on Software Engineering for
Adaptive and Self-Managing Systems (pp. 155–164). IEEE.
https://doi.org/10.1109/SEAMS.2012.6224402

B3 SASs’ l iterature review references (final set)

[R1] A. Knauss, D. Damian, X. Franch, A. Rook, H. A. Müller, and A. Thomo, “Acon: A
learning-based approach to deal with uncertainty in contextual requirements at
runtime,” Inf. Softw. Technol., vol. 70, pp. 85–99, 2016.

[R2] I. Gerostathopoulos, D. Skoda, F. Plasil, T. Bures, and A. Knauss, “Architectural
Homeostasis in Self-Adaptive Software-Intensive Cyber-Physical Systems,” in Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), vol. 7957, no. January, 2016, pp. 113–128.

[R3] V. Klos, T. Gothel, and S. Glesner, “Adaptive Knowledge Bases in Self-Adaptive System
Design,” Proc. - 41st Euromicro Conf. Softw. Eng. Adv. Appl. SEAA 2015, pp. 472–
478, 2015.

[R4] D. Han, J. Xing, Q. Yang, J. Li, and H. Wang, “Handling Uncertainty in Self-Adaptive
Software Using Self-Learning Fuzzy Neural Network,” Proc. - Int. Comput. Softw.
Appl. Conf., vol. 2, no. 1, pp. 540–545, 2016.

B4 SASs’ self-improvement literature resources

Table B4-1

Journals

Id Name

1 ACM Transactions on Intelligent Systems and Technology
2 ACM Transactions on Software Engineering and Methodology
3 Advances in Engineering Software
4 Computer
5 Decision Support Systems
6 Empirical Software Engineering
7 European Journal of Information Systems
8 IEEE Cloud Computing
9 IEEE Control Systems Magazine
10 IEEE Internet of Things Journal

 APPENDIX B

Towards adaptive monitoring for self-adaptive systems 188

11 IEEE Robotics & Automation Magazine
12 IEEE Software
13 IEEE Systems Journal
14 IEEE Transactions on Automatic Control
15 IEEE Transactions on Automation Science and Engineering
16 IEEE Transactions on Cloud Computing
17 IEEE Transactions on Control Systems Technology
18 IEEE Transactions on Dependable and Secure Computing
19 IEEE Transactions on Emerging Topics in Computing
20 IEEE Transactions on Mobile Computing
21 IEEE Transactions on Reliability
22 IEEE Transactions on Services Computing
23 IEEE Transactions on Software Engineering
24 Information and Software Technology
25 Information Systems Frontiers
26 International Journal of Robust and Nonlinear Control
27 ISA Transactions
28 Journal of Information Technology
29 Journal of Network and Computer Applications
30 Journal of Strategic Information Systems
31 Journal of Systems and Software
32 Journal of the Association for Information Systems
33 Pervasive and Mobile Computing
34 IEEE Transactions on Fuzzy Systems
35 IEEE Transactions on Evolutionary Computation
36 IEEE Transactions on Neural Networks and Learning Systems
37 IEEE Computational Intelligence Magazine
38 IEEE Transactions on Affective Computing
39 International Journal of Neural Systems
40 Knowledge-based Systems
41 Neural Computing & Applications
42 Applied Soft Computing
43 Swarm and Evolutionary Computation
44 Expert Systems with Applications
45 Integrated Computer-aided Engineering
46 Cognitive Computation
47 International Journal of Intelligent Systems
48 Advanced Engineering Informatics
49 Neurocomputing
50 Engineering Applications of Artificial Intelligence
51 IEEE Transactions on Knowledge and Data Engineering

Table B4-2

Conferences

 APPENDIX B

Towards adaptive monitoring for self-adaptive systems 189

Id Name

1 Automated Software Engineering Conference
2 International Symposium on Software Reliability Engineering
3 International Symposium on Empirical Software Engineering and Measurement
4 International Conference on Web Information Systems Engineering
5 Americas Conference on Information Systems
6 International Conference on Advanced Information Systems Engineering
7 International Conference on Cooperative Information Systems
8 International Conference on Design Science Research in Information Systems and

Technology
9 European Conference on Information Systems
10 International Conference on Information Systems Development
11 Pacific Asia Conference on Information Systems
12 European Software Engineering Conference and the ACM SIGSOFT Symposium on

the Foundations of Software Engineering
13 International Conference on Software Engineering
14 International Conference on Information Systems
15 International Joint Conference on Autonomous Agents and Multiagent Systems
16 Fundamental Approaches to Software Engineering
17 Asia-Pacific Software Engineering Conference
18 International Conference on Evaluation of Novel Approaches to Software Engineering
19 Integration of Software Engineering and Agent Technology
20 International Symposium on Empirical Software Engineering
21 Euromicro Conference on Software Engineering and Advanced Applications
22 International Conference on Software Engineering and Formal Methods
23 International Conference on Information Systems Technology and its Application
24 International Conference on Knowledge-Based and Intelligent Information and

Engineering Systems
25 IEEE International Conference on Autonomic Computing
26 International Conference on User Modelling, Adaptation, and Personalization

B5 SASs’ self-improvement literature review references

[R1] Richard J. Anthony, Mariusz Pelc, and Witold Byrski. 2010. Context-aware
Reconfiguration of Autonomic Managers in Real-time Control Applications. In
Proceeding of the 7th international conference on Autonomic computing - ICAC ’10
(ICAC ’10), 73–74. DOI:https://doi.org/10.1145/1809049.1809061

[R2] Richard John Anthony. 2008. A versatile policy toolkit supporting run-time policy
reconfiguration. Cluster Comput. 11, 3 (2008), 287–298.
DOI:https://doi.org/10.1007/s10586-008-0058-7

[R3] Richard John Anthony. 2007. Policy-centric integration and dynamic composition of
autonomic computing techniques. In ICAC.
DOI:https://doi.org/10.1109/ICAC.2007.32

[R4] Richard Anthony, Dejiu Chen, Martin Törngren, Detlef Scholle, Martin Sanfridson,
Achim Rettberg, Tahir Naseer, Magnus Persson, and Lei Feng. 2009. Autonomic

 APPENDIX B

Towards adaptive monitoring for self-adaptive systems 190

middleware for automotive embedded systems. In Autonomic Communication. 169–
210. DOI:https://doi.org/10.1007/978-0-387-09753-4_7

[R5] Luciano Baresi and Liliana Pasquale. 2011. An eclipse plug-in to model system
requirements and adaptation capabilities. In Proc. of the 6th IT-Eclipse Workshop.
DOI:https://doi.org/33344444444

[R6] Luciano Baresi, Liliana Pasquale, and Paola Spoletini. 2010. Fuzzy goals for
requirements-driven adaptation. In Proceedings of the 2010 18th IEEE International
Requirements Engineering Conference, RE2010, 125–134.
DOI:https://doi.org/10.1109/RE.2010.25

[R7] Luciano Baresi and Clement Quinton. 2015. Dynamically Evolving the Structural
Variability of Dynamic Software Product Lines. Proc. - 10th Int. Symp. Softw. Eng.
Adapt. Self-Managing Syst. SEAMS 2015 (2015), 57–63.
DOI:https://doi.org/10.1109/SEAMS.2015.24

[R8] Jürgen Branke, Peter Goldate, and Holger Prothmann. 2007. Actuated traffic signal
optimization using evolutionary algorithms. In Proceedings of the 6th European
Congress and Exhibition on Intelligent Transport Systems and Services (ITS 2007).
DOI:https://doi.org/10.1179/1743284713Y.0000000425

[R9] Jürgen Branke, Moez Mnif, Christian Müller-Schloer, Holger Prothmann, Urban
Richter, Fabian Rochner, and Hartmut Schmeck. 2007. Organic Computing -
Addressing complexity by controlled self-organization. Proc. - ISoLA 2006 2nd Int.
Symp. Leveraging Appl. Form. Methods, Verif. Valid. (2007), 185–191.
DOI:https://doi.org/10.1109/ISoLA.2006.19

[R10] Domenico Corapi, Daniel Sykes, Katsumi Inoue, and Alessandra Russo. 2011.
Probabilistic rule learning in nonmonotonic domains. Lect. Notes Comput. Sci.
(including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) 6814 LNAI,
(2011), 243–258. DOI:https://doi.org/10.1007/978-3-642-22359-4_17

[R11] Christoph Dorn and Schahram Dustdar. 2010. Interaction-driven self-adaptation of
service ensembles. Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell.
Lect. Notes Bioinformatics) 6051 LNCS, (2010), 393–408.
DOI:https://doi.org/10.1007/978-3-642-13094-6_31

[R12] Christoph Dorn, Daniel Schall, and Schahram Dustdar. 2009. Context-aware adaptive
service mashups. 2009 IEEE Asia-Pacific Serv. Comput. Conf. APSCC 2009 c (2009),
301–306. DOI:https://doi.org/10.1109/APSCC.2009.5394107

[R13] A Elkhodary, N Esfahani, and S Malek. 2010. FUSION: A framework for engineering
self-tuning self-adaptive software systems. In Proceedings of the ACM SIGSOFT
Symposium on the Foundations of Software Engineering, 7–16.
DOI:https://doi.org/10.1145/1882291.1882296

[R14] Ilenia Epifani, Carlo Ghezzi, Raffaela Mirandola, and Giordano Tamburrelli. 2009.
Model Evolution by Run-Time Parameter Adaptation. In Proceedings - International
Conference on Software Engineering, 111–121.
DOI:https://doi.org/10.1109/ICSE.2009.5070513

[R15] Naeem Esfahani, Ahmed Elkhodary, and Sam Malek. 2013. A learning-based
framework for engineering feature-oriented self-adaptive software systems. IEEE
Trans. Softw. Eng. 39, 11 (November 2013), 1467–1493.
DOI:https://doi.org/10.1109/TSE.2013.37

[R16] M. Usman Iftikhar and Danny Weyns. 2014. ActivFORMS: active formal models for
self-adaptation. In Proceedings of the 9th International Symposium on Software

 APPENDIX B

Towards adaptive monitoring for self-adaptive systems 191

Engineering for Adaptive and Self-Managing Systems - SEAMS 2014, 125–134.
DOI:https://doi.org/10.1145/2593929.2593944

[R17] M. Usman Iftikhar and Danny Weyns. 2014. Assuring system goals under uncertainty
with active formal models of self-adaptation. In Companion Proceedings of the 36th
International Conference on Software Engineering - ICSE Companion 2014 (ICSE
Companion 2014), 604–605. DOI:https://doi.org/10.1145/2591062.2591137

[R18] Pooyan Jamshidi, Amir M. Sharifloo, Claus Pahl, Andreas Metzger, and Giovani
Estrada. 2015. Self-Learning Cloud Controllers: Fuzzy Q-Learning for Knowledge
Evolution. Proc. - 2015 Int. Conf. Cloud Auton. Comput. ICCAC 2015 (2015), 208–
211. DOI:https://doi.org/10.1109/ICCAC.2015.35

[R19] Verena Klos, Thomas Gothel, and Sabine Glesner. 2015. Adaptive Knowledge Bases in
Self-Adaptive System Design. Proc. - 41st Euromicro Conf. Softw. Eng. Adv. Appl.
SEAA 2015 (2015), 472–478. DOI:https://doi.org/10.1109/SEAA.2015.48

[R20] Alessia Knauss, Daniela Damian, Xavier Franch, Angela Rook, Hausi A. Müller, and
Alex Thomo. 2016. Acon: A learning-based approach to deal with uncertainty in
contextual requirements at runtime. Inf. Softw. Technol. 70, (2016), 85–99.
DOI:https://doi.org/10.1016/j.infsof.2015.10.001

[R21] Jeff Kramer and Jeff Magee. 2007. Self-managed systems: An architectural challenge.
FoSE 2007 Futur. Softw. Eng. (May 2007), 259–268.
DOI:https://doi.org/10.1109/FOSE.2007.19

[R22] Christian Krupitzer, Julian Otto, Felix Maximilian Roth, Alexander Frommgen, and
Christian Becker. 2017. Adding Self-Improvement to an Autonomic Traffic
Management System. In Proceedings - 2017 IEEE International Conference on
Autonomic Computing, ICAC 2017, 209–214.
DOI:https://doi.org/10.1109/ICAC.2017.16

[R23] Euijong Lee, Young-Gab Gab Kim, Young-Duk Duk Seo, Kwangsoo Seol, and Doo-
Kwon Kwon Baik. 2018. RINGA: Design and verification of finite state machine for
self-adaptive software at runtime. Inf. Softw. Technol. 93, September 2017 (2018),
200–222. DOI:https://doi.org/https://doi.org/10.1016/j.infsof.2017.09.008

[R24] Zoltan Adam Mann and Andreas Metzger. 2018. Auto-Adjusting Self-Adaptive
Software Systems. In 2018 IEEE International Conference on Autonomic Computing
(ICAC), 181–186. DOI:https://doi.org/10.1109/ICAC.2018.00030

[R25] Nenad Medvidovic, David S. Rosenblum, and Richard N. Taylor. 1999. A language
and environment for architecture-based software development and evolution. Proc.
21st Int. Conf. Softw. Eng. - ICSE ’99 (1999), 44–53.
DOI:https://doi.org/10.1145/302405.302410

[R26] Hiroyuki Nakagawa, Akihiko Ohsuga, and Shinichi Honiden. 2012. Towards Dynamic
Evolution of Self-Adaptive Systems Based on Dynamic Updating of Control Loops.
2012 IEEE Sixth Int. Conf. Self-Adaptive Self-Organizing Syst. (September 2012),
59–68. DOI:https://doi.org/10.1109/SASO.2012.17

[R27] Liliana Pasquale, Luciano Baresi, and Bashar Nuseibeh. 2011. Towards adaptive
systems through requirements@runtime? In CEUR Workshop Proceedings, 13–24.
DOI:https://doi.org/33344444444

[R28] Holger Prothmann, Fabian Rochner, Sven Tomforde, Jürgen Branke, Christian
Müller-Schloer, and Hartmut Schmeck. 2008. Organic control of traffic lights. In
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial

 APPENDIX B

Towards adaptive monitoring for self-adaptive systems 192

Intelligence and Lecture Notes in Bioinformatics). Springer Berlin Heidelberg, Berlin,
Heidelberg, 219–233. DOI:https://doi.org/10.1007/978-3-540-69295-9_19

[R29] Clément Quinton, Rick Rabiser, Michael Vierhauser, Paul Grünbacher, and Luciano
Baresi. 2015. Evolution in dynamic software product lines: challenges and
perspectives. Proc. 19th Int. Conf. Softw. Prod. Line - SPLC ’15 (2015), 126–130.
DOI:https://doi.org/10.1145/2791060.2791101

[R30] Fabian Rochner, Holger Prothmann, J. Branke, C. Müller-Schloer, and H. Schmeck.
2006. An organic architecture for traffic light controllers. Proc. Inform. 1, (2006),
120–127. Retrieved from http://subs.emis.de/LNI/Proceedings/Proceedings93/GI-
Proceedings-93-19.pdf

[R31] Felix Maximilian Roth, Christian Krupitzer, and Christian Becker. 2015. Runtime
evolution of the adaptation logic in self-adaptive systems. In Proceedings - IEEE
International Conference on Autonomic Computing, ICAC 2015, 141–142.
DOI:https://doi.org/10.1109/ICAC.2015.20

[R32] Amir Molzam Sharifloo, Andreas Metzger, Clément Quinton, Luciano Baresi, and
Klaus Pohl. 2016. Learning and evolution in dynamic software product lines. In
Proceedings of the 11th International Workshop on Software Engineering for Adaptive
and Self-Managing Systems - SEAMS ’16, 158–164.
DOI:https://doi.org/10.1145/2897053.2897058

[R33] D Sykes, W Heaven, J Magee, and J Kramer. 2008. From goals to components: A
combined approach to self-management. SEAMS’08 Proc. 2008 Int. Work. Softw.
Eng. Adapt. self-managing Syst. (2008), 1–8.

[R34] Daniel Sykes, Domenico Corapi, Jeff Magee, Jeff Kramer, Alessandra Russo, and
Katsumi Inoue. 2013. Learning revised models for planning in adaptive systems. In
2013 35th International Conference on Software Engineering (ICSE), 63–71.
DOI:https://doi.org/10.1109/ICSE.2013.6606552

[R35] Daniel Sykes, Jeff Magee, and Jeff Kramer. 2011. FlashMob: Distributed Adaptive
Self-Assembly. In Proceeding of the 6th international symposium on Software
engineering for adaptive and self-managing systems - SEAMS ’11, 100.
DOI:https://doi.org/10.1145/1988008.1988023

[R36] Hossein Tajalli, Joshua Garcia, George Edwards, and Nenad Medvidovic. 2010.
PLASMA: A plan-based layered architecture for software model-driven adaptation. In
Proceedings of the IEEE/ACM international conference on Automated software
engineering - ASE ’10, 467. DOI:https://doi.org/10.1145/1858996.1859092

[R37] Gabriel Tamura, Norha M Villegas, Hausi A Muller, Laurence Duchien, and Lionel
Seinturier. 2013. Improving context-awareness in self-adaptation using the
DYNAMICO reference model. In 2013 8th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS), 153–162.
DOI:https://doi.org/10.1109/SEAMS.2013.6595502

[R38] Sven Tomforde, Holger Prothmann, Fabian Rochner, Jürgen Branke, Jörg Hähner,
Christian Müller-Schloer, and Hartmut Schmeck. 2008. Decentralised progressive
signal systems for organic traffic control. In Proceedings - 2nd IEEE International
Conference on Self-Adaptive and Self-Organizing Systems, SASO 2008, 413–422.
DOI:https://doi.org/10.1109/SASO.2008.31

[R39] N M Villegas, G Tamura, H A Müller, L Duchien, and R Casallas. 2013. DYNAMICO:
A reference model for governing control objectives and context relevance in self-
adaptive software systems. Lect. Notes Comput. Sci. (including Subser. Lect. Notes

 APPENDIX B

Towards adaptive monitoring for self-adaptive systems 193

Artif. Intell. Lect. Notes Bioinformatics) 7475 LNCS, (2013), 265–293.
DOI:https://doi.org/10.1007/978-3-642-35813-5_11

[R40] Edith Zavala, Xavier Franch, Jordi Marco, Alessia Knauss, and Daniela Damian. 2015.
SACRE: A tool for dealing with uncertainty in contextual requirements at runtime. In
23rd IEEE International Requirements Engineering Conference (RE), 278–279.
DOI:https://doi.org/10.1109/RE.2015.7320437

[R41] Edith Zavala, Xavier Franch, Jordi Marco, Alessia Knauss, and Daniela Damian. 2018.
SACRE: Supporting contextual requirements’ adaptation in modern self-adaptive
systems in the presence of uncertainty at runtime. Expert Syst. Appl. 98, (May 2018),
166–188. DOI:https://doi.org/10.1016/j.eswa.2018.01.00

[R42] Tianqi Zhao, Wei Zhang, Haiyan Zhao, and Zhi Jin. 2017. A Reinforcement Learning-
Based Framework for the Generation and Evolution of Adaptation Rules. In
Proceedings - 2017 IEEE International Conference on Autonomic Computing, ICAC
2017, 103–112. DOI:https://doi.org/10.1109/ICAC.2017.47

This thesis presents an architectural proposal to

support adaptive feedback loops in self-adaptive

systems, called HAFLoop (Highly Adaptive

Feedback control Loop). HAFLoop extends the

widely used MAPE-K loop, providing a generic

structure for its elements, as well as the

mechanisms required for coordinating their

operation with their adaptation process. Given its

importance, this thesis focuses on the adaptation

of the Monitor element of the loop. The

experiments, executed in the domain of smart

vehicles, provide promising results both in

simulation and in real environments.

EDITH ZAVALA

Thesis supervised by

Dr. Xavier Franch and Dr. Jordi Marco

