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Abstract 

Influenza A viruses (IAVs), members of the Orthomyxoviridae family, have 

been implicated in five pandemics throughout the history and are the 

cause of seasonal epidemics year after year. They are characterized for 

their high zoonotic potential, affecting a wide range of hosts. Apart from 

having great impact on human and animal health, IAVs are also 

involved in huge economic loses.  

IAVs are characterized for having a lipidic bilayer and consist of 8 

segments of RNA (single chain and negative sense) which codify for viral 

proteins like the virus surface glycoproteins: hemagglutinin (HA) and 

neuraminidase (NA) among others. Evolution of IAVs is abrupt and 

rapid, mainly due to the function of antigenic drift that leads to 

mutations (mainly in the HA) and emergence of new variants, and 

antigenic shift that gives rise to reassortant influenza virus progeny.  

Wild aquatic birds are the main reservoirs of IAVs that transmit the 

virus to domesticated birds and may spread further to pigs and humans. 

Moreover, pigs are considered intermediate hosts, susceptible to 

infection for both humans and avian influenza viruses. The fact of being 

able to infect and transmit to different hosts is mainly due to changes in 

the HA preference for the receptors in the target cells (which varies 

between avian and mammalian viruses) but also to other mutations in 

some viral proteins. 

The most used and effective countermeasure against IAVs are the 

vaccines. Most of them, both in human and in pigs, are inactivated 
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vaccines containing strains of the most common circulating subtypes of 

IAVs. However, they present several inconveniences like limiting cross-

protection capacity against heterovariant or heterosubtypic strains. In 

contrast, avian influenza vaccines are usually composed of HA (or NA) 

obtained from particular influenza virus strain of interest. These 

limitations generally require reformulation of vaccines matched to the 

genetic changes of the virus and demand continuous vigilance/constant 

alert for possible pandemics. To overcome these hurdles, current 

research focuses on seeking for a universal influenza vaccine, 

implementing several vaccine/immunization strategies by using different 

immunomodulators and highly conserved IAV epitopes in vaccine 

formulations.  

 

This doctoral thesis evaluates distinct approaches both in improving 

vaccine formulation and its application/evaluation to different IAV 

natural hosts with the objective to achieve an efficient and effective 

immune response against IAV infection. The work has been divided into 

3 parts with the corresponding chapters: 

In the Part I, the general introduction (Chapter I) and the general 

objective of the thesis with specific objectives for each of the studies 

(Chapter II), are described. The introduction part explains (i) the 

influenza virus in general and, in particular; (ii) the viruses of the genus 

A (IAVs); (iii) the host's immune response against the virus; (iv) a 

summary of the commercial influenza vaccines available against influenza 

in human, avian and porcine; (v) the concept and approaches in process 

to obtain a universal vaccine and the (vi) ISM, an in silico tool which has 

been used in the thesis to predict conserved peptides. Chapter II 
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describes the rationale and the main objective of this thesis. Overall, it is 

intended to create a universal prototype vaccine against different 

subtypes of influenza virus using techniques that incorporate in silico 

predicted conserved HA-epitopes introduced in plasmid or soluble form 

along with different adjuvants. 

 

In Part II (Chapters III-V), three studies that have been carried out 

during the thesis that are either published or submitted to international 

peer-reviewed scientific journals, are included. The design of vaccine 

prototypes with possible multivalent character and its subsequent 

application in pigs and birds, important hosts to prevent IAVs infection 

and transmission (for both zoonosis and animal health), is evaluated. 

 

In the first study, one of the conserved HA epitopes NF-34, predicted by 

ISM, was modified and formulated in a plasmid with the CTLA-4 

molecule (pCMV-CTLA4-Ig-NG34), promoter of the adaptive response. 

The vaccine approach was used in swine influenza seronegative and 

seropositive pigs and challenged against heterologous H3N2 virus. 

Vaccinated pigs secreted fewer viruses, cleared the virus in the respiratory 

airways, presented humoral response to the most relevant circulating 

subtypes and also elicited neutralizing antibodies. However, there were 

no differences in the degree of pulmonary lesions and clinical signs. In 

addition, maternal antibodies did not interfere with the effect of the 

vaccine. 

In the second study, a cocktail of epitopes of HA combined with flagellin 

(VC-4 flagellin), a promoter of the innate response, was used in 
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seronegative and seropositive swine influenza pigs and were challenged 

with homologous and heterologous influenza virus strains. Vaccinated 

pigs reduced the excretion of the virus, produced humoral response to 

subtypes H1 and H3, and neutralizing antibodies against both viruses. 

Again, maternal antibodies were not an obstacle but, clinical signs and 

pathology in the lungs were not reduced. 

Finally, in the third study baculovirus expression vector system (BEVS) 

was used to obtain protein extracts containing HA-peptides linked with 

flagellin. The formulation was used to immunize chickens that were 

further challenged with H7N1, a highly pathogenic virus. Vaccinated 

animals survived without showing any clinical sign and fewer or no virus 

secretion. The protection mechanism is still under investigation. 

The general discussion is described in part III (Chapters VI-VII) with 

possible significance of the results obtained and the relation of 

conclusions drawn from each one of the studies. In addition, the 

bibliographical references (Chapter VIII) and appendices with additional 

information of the chapters are also included in the last sections of the 

thesis.  
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Resum  

Els virus de la influença tipus A (VIAs), membres de la família 

Orthomyxoviridae, han estat implicats en cinc pandèmies al llarg de la 

història i segueixen ocasionant, any rere any, epidèmies estacionals. Es 

caracteritzen pel seu elevat potencial zoonòtic, afectant un ampli ventall 

d’hostes. A banda d’impactar greument en la salut humana i l’animal, els 

VIAs també repercuteixen en l’economia provocant enormes pèrdues 

econòmiques.  

Els VIAs es caracteritzen per tenir envolta lipídica i consisteixen en 8 

segments de RNA (de cadena senzilla i sentit negatiu) que codifiquen per 

proteïnes virals com ara: hemaglutinina (HA) i la neuraminidasa (NA), 

entre d’altres. L’evolució dels VIAs és abrupta i ràpida, sobretot degut a 

la funció de “antigenic drift” que deriva en mutacions (principalment en 

la HA) i en la emergència de noves variants, i “antigenc shift” que dóna 

lloc a una progènie de virus amb reagrupaments en el genoma. 

Els principals reservoris dels VIAs són les aus salvatges aquàtiques, les 

quals poden transmetre el virus a les aus domèstiques, i aquestes, poden 

transmetre el virus principalment a porcs i a humans. A més, els porcs 

són considerats hostes intermediaris, susceptibles d’infecció tant per 

virus humans com aviars. La capacitat dels VIAs de poder infectar i 

transmetre’s en diferents hostes és majoritàriament degut a canvis en la 

preferència de la HA pels receptors en les cèl·lules diana (la qual varia 

entre virus aviars i mamífers), però també a altres mutacions en algunes 

proteïnes víriques.  
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La mesura preventiva més utilitzada contra els VIAs són les vacunes. La 

majoria d’elles, tan en humans com en porcs, són vacunes inactivades 

que contenen soques dels subtipus circulants més habituals de virus de la 

grip. No obstant això, presenten diversos inconvenients, com ara una 

limitada capacitat de cross-protecció enfront soques heterovariants o 

heterosubtípiques. En canvi, les soques contra la grip aviar solen estar 

formades per HA (o NA) obtingudes a partir de la soca d’influenza 

d’interès a combatre. Aquestes limitacions, generalment, requereixen 

una reformulació de les vacunes per tal que s’ajustin als canvis genètics 

del virus i exigeixen una vigilància continua/alerta constant davant 

possibles pandèmies. Per tal de superar aquests obstacles, la investigació 

actual es centra en cercar una vacuna universal contra la grip, 

implementant diverses estratègies de vacuna/immunització utilitzant 

diferents immunomodul·ladors i epítops altament conservats dels VIAs 

en les formulacions vacunals.  

 

Aquesta tesi doctoral avalua diverses estratègies enfocades en la millora 

de les formulacions vacunals, com en la seva aplicació/avaluació en 

diferents hostes naturals de la grip amb l'objectiu d'aconseguir una 

resposta immune eficient i eficaç contra la infecció de la grip. Per això, 

aquest treball, s'ha dividit en tres parts amb els capítols corresponents: 

 

A la primera part, s’hi descriu la introducció general (Capítol I) i 

l’objectiu general de la tesi amb els objectius específics per a cadascun 

dels estudis (Capítol II). La introducció general explica (i) el virus de la 
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grip en general i, en particular; (ii) els virus del gènere A (VIAs); (iii) la 

resposta immune de l'hoste contra el virus; (iv) un resum de les vacunes 

comercials contra la grip disponibles en humans, aviar i porcí; (v) el 

concepte i les estratègies en procés per obtenir una vacuna universal i (vi) 

l’ISM, una eina in silico que s'ha utilitzat en la tesi per predir els pèptids 

conservats. El capítol II descriu la justificació i l’objectiu principal 

d’aquesta tesi. En general, es pretén crear un prototip de vacuna 

universal contra diferents subtipus del virus de la grip utilitzant 

tècniques que incorporen epítops conservats de la hemaglutinina, predits 

in silico, introduïts en plàsmids o en forma soluble juntament amb 

adjuvants diferents. 

 

En la part II (Capítols III-V), s'hi inclouen els tres estudis realitzats 

durant la tesi i què s’han publicat o enviat a revistes científiques 

internacionals revisades per experts. El disseny de prototips vacunals 

amb possible caràcter multivalent i la seva posterior aplicació en porcs i 

aus, hostes clau a prevenir la infecció i transmissió per VIAs (tant per 

zoonosis com per salut animal), és avaluada.  

En el primer estudi, un dels epítops conservats de la HA: el NF-34, 

predit per ISM, va ser modificat i formulat en un plàsmid amb la 

molècula CTLA-4 (pCMV-CTLA4-Ig-NG34), promotora de la resposta 

adaptativa. Les estratègies vacunals es van utilitzar en porcs seronegatius i 

seropositius contra la grip porcina, els quals es van desafiar contra el 

virus heteròleg H3N2. Els porcs vacunats van secretar menys virus, van 

eliminar el virus a les vies respiratòries, van presentar una resposta 

humoral als subtipus circulants més rellevants i van mostrar anticossos 
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neutralitzants. No obstant això, no hi va haver diferències en el grau de 

lesions pulmonars ni en els signes clínics. A més, els anticossos materns 

no van interferir amb l’efecte de la vacuna. 

En el segon estudi, es va utilitzar un còctel d'epítops de HA combinats 

amb flagel·lina (VC-4-flagellin), promotor de la resposta innata, en porcs 

seronegatius i seropositius a la grip porcina i es van desafiar amb soques 

homòlogues i heteròlogues del virus de la grip. Els porcs vacunats van 

reduir l'excreció del virus, van produir resposta humoral front els 

subtipus H1 i H3 i, van produir anticossos neutralitzants contra ambdós 

virus. De nou, els anticossos materns no varen ser un obstacle, no 

obstant, els signes clínics i la patologia dels pulmons no es van reduir. 

Finalment, en el tercer estudi, es va utilitzar el sistema vectorial 

d’expressió de baculovirus (BEVS) per obtenir extractes de proteïnes que 

contenien pèptids de la HA units a la flagel·lina. La formulació es va 

utilitzar per immunitzar els pollastres que es van desafiar amb H7N1, un 

virus altament patogènic. Els animals vacunats van sobreviure sense 

mostrar cap signe clínic i sense secretar o, en menor quantitat, el virus. 

El mecanisme de protecció encara està sota investigació. 

 

En la part III (capítols VI-VII), es descriu la discussió general amb la 

possible importància dels resultats obtinguts i la relació de conclusions 

extretes de cadascun dels estudis. A més, en les darreres seccions de la 

tesi també s’hi inclouen les referències bibliogràfiques (Capítol VIII) i els 

annexos amb informació addicional dels capítols. 
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     PART I: 

General Introduction, 

Hypothesis and Objectives 

 

 

 
“Scientific knowledge is in perpetual evolution;  

it finds itself changed from one day to the next” 

Jean Piaget 

 



 

 

 

 

 

 

 

 

 

 

 

 



 

   

          

 

CHAPTER I 
General Introduction 
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1. Introduction 

1.1. Influenza viruses (IVs) 

The Orthomyxoviridae family encompasses seven distinct genera of RNA 

viruses: Influenza viruses (IVs) classified into four types (A, B, C and D), 

Isaviruses, Thogotoviruses and Quaranjaviruses. 

IVs are causative agents of the contagious respiratory disease named 

influenza. They are divided according to the antigenic variations within 

their nucleoprotein (NP) and matrix 1 (M1) proteins and are considered 

from different genera when their intergenic homology is low (20-30%) 

and the intragenic one is high (>85%) [1–3]. Additionally, such genetic 

divergences may promote reassortment solely within intragenic strains 

and subsequent viable progeny could occur [4,5].  

Influenza A viruses (IAVs) are recurrently evoking seasonal epidemics 

and on several occasions have been responsible of global pandemics with 

high rates of morbidity and mortality. These IAVs mainly infect birds, 

particularly in avian species such as wild waterfowl and shorebirds that 

live in aquatic environments [6,7]. Nevertheless, due to the IAVs 

zoonotic potential they have also been isolated from a wide variety of 

avian and mammalian animals and, in some instances, their adaptation 

promoted efficient replication and maintained transmission [8,9]. 

IVs from type B also trigger seasonal global epidemics, also creating 

urgent public health problems worldwide. Influenza B viruses (IBVs) 

belong to only one subtype [10] and are circulating in humans and seals 

[11–14]. In humans, two antigenically distinct lineages (B/Victoria and 

B/Yamagata) have been recognized that distinctly spread periodically and 
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geographically across the world [15–20]. Though causing milder disease 

than IAVs in humans [10,14,21], IBVs may cause severe illness 

demanding hospitalization on occasions [22]. 

Types C and D influenza viruses (ICVs and IDVs, respectively), on the 

other hand, are not reported to cause epidemics. Type D affects only 

cattle and swine [3,23–25] but not humans, while type C infects humans 

[26–28] and has also been detected in pigs [29,30], dogs [31] and cattle 

[32]. In humans, ICVs generally induce mild respiratory disease or an 

asymptomatic infection mainly during childhood and adolescence 

[3,33,34].  

 

1.2. Influenza A viruses (IAVs) 

1.2.1. Antigenic types and nomenclature 

The two major surface proteins of IVs, the hemagglutinin (HA) and the 

neuraminidase (NA), are used to classify IVs into different subtypes. Up 

to date, 18 HAs (H1 to H18) and 11 NAs (N1 to N11) have been 

recognized. Two subtypes (H17N10, H18N11) have been detected in the 

last decade and found exclusively in bats, dramatically expanding the 

host range of IAVs [35–37].  

The standard nomenclature that IVs follow consists in: virus type 

(A/B/C/D), species from which it was isolated (if non-human), location 

where it was isolated, isolate number, isolate year; and in case it is type 

A, HA and NA subtypes are indicated in brackets. An example such as 

the 39th isolate of an IAV with H1 and N1 retrieved from a person in 
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Denmark during 2000 would be written as A/Denmark/39/2000 

(H1N1). 

1.2.2. Structure 

IAVs are enveloped and characterized by a negative sense single-stranded 

(ss) RNA genome, divided into 8 segments. The virus is about 100 nm in 

diameter and approximately 300 nm long [38]. The envelope consists of 

a host cell-derived lipid bilayer harboring two transmembrane 

glycoproteins as spikes: HA and NA (in a ratio of 4 HAs to 1 NA) [4,38]. 

While HA, a rod-like shaped protein is a trimer, the NA protein forms a 

tetramer and is described as a mushroom-like shape [38–40]. 

Furthermore, a membrane protein with proton channel activity, the 

matrix-2 (M2) protein, consolidates also the envelope [41]. All these 

proteins overlay the matrix-1 (M1) protein, present in the inner layer of 

the capsid or virion core, maintaining IAVs shape and integrity. The 

virion core contains the nuclear export protein (NEP), also known as the 

nonstructural protein 2 (NS2), and the viral ribonucleoprotein (vRNP) 

complexes. vRNP complexes are formed by each of the eight viral RNA 

segments folded on the viral NP in association with a globular head, the 

heterotrimeric RNA-dependent RNA-polymerase (RdRp). Three 

subunits form the RdRp: the polymerase basic protein 2 (PB2), the 

polymerase basic protein 1 (PB1) and the polymerase acid protein (PA) 

[42] (Figure 1-1). 

1.2.2.1.  Genome 

The IAVs genome size is of 13.6 kb [43], comprising 8 vRNA segments. 

Each segment is numbered to decrease length and encodes for at least 
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one protein [4]. IAVs can also make use of different mechanisms such as 

leaky ribosomal scanning, alternative splicing, ribosomal frameshifting or 

use of alternative start codons to encode more than one protein [44,45].  

Segments 1, 2 and 3 consolidate the proteins forming the RdRp of IAVs: 

PB2, PB1 and PA respectively. Segments 4, 5 and 6 encode for the HA, 

the NP and the NA, respectively. Segment 7 encodes for both matrix 

proteins (M1 protein and, by RNA splicing, the M2). Finally, segment 8 

encodes for both non-structural proteins (NS1 and, by RNA splicing, the 

NEP/NS2).  

Nonetheless, the proteome of IAVs can be more complex as novel 

accessory proteins like M42, PB1-N40, PA-N155, PA-N182, PA-X, PB1-

F2, PB2-S2 and NS3 have been discovered. PB2-S2 is encoded by a novel 

spliced mRNA in segment 1 [45]. In segment 2, ribosomal scanning 

produces two internal open reading frames (ORFs), PB1-F2 [46] and 

PB1-N40 [47]. In segment 3, three other protein isoforms can be 

synthesized: PA-X, obtained by a second ORF accessed via ribosomal 

frameshifting [48], and two N-terminally truncated forms of PA, namely 

PA-N155 and PA-N182 [49]. Segment 7 also translates for M42 

(functionally equal as M2), when an alternative initiation codon is read 

[47]. Segment 8 encodes for NS3, which corresponds to the NS1 isoform 

with an internal deletion of a motif consolidated by three antiparallel β-

strands spanning codons 126 to 168 [50] (Figure 1-1). Some of these 

proteins are implicated in IAVs pathogenicity (see 1.2.6.1.; “Virulence 

determinants”). 
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Figure 1-1. (A) Schematic structure of an IAV with eight negative-

strand RNA segments, (B) an illustration of a vRNP structure, and (C) 

accessory proteins derived from corresponding (color) virus RNA 

segment. Image modified from [42].  

 

1.2.3. Replication cycle 

IAVs infection initiates with the recognition of the HA protein to 

terminal N-acetylneuraminic sialic acid (SA), monosaccharide usually 

encountered in glycoconjugates present on the surface of the host airway 

epithelial cells [51–53]. Once attached, the virus can internalize into 

target cells by receptor-mediated endocytosis [54–56] or, alternatively, by 

macropinocytosis [57,58]. After internalization, the virus moves to late 

endosomes and undergoes a conformational change in the HA protein 

owing to the low pH in the endosomal environment. Specifically, host 

cell proteases cleave HA into two subunits (HA1 and HA2), enabling the 

exposure of the fusion peptide [59–61].  
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Subsequently, the fusion peptide binds to endosomal membranes 

permitting the fusion of virus and endosome [62,63]. Moreover, the 

acidity of endosomes triggers the M2 ion channel acidifying the virus by 

pumping protons as well as K+ ions into the virus [41,64,65]. The 

acidification promotes M1 depolymerization resulting in the capsid 

uncoating [66] and the disruption of protein-protein interactions making 

possible the dissociation of the viral ribonucleoproteins (vRNPs) [67]. 

vRNPs are released through the fusion pore into the cell cytosol and 

translocated to the host cell nucleus with the help of nuclear localization 

signals (NLSs). Transcription and replication take place in the nucleus. 

Viral negative ss-genome serves as a template for RdRp to synthesize two 

positive-RNA species: mRNAs for viral protein synthesis and 

complementary RNA (cRNA) further used for genomic vRNA 

replication [68,69]. After polyadenylation and 5’-capping, M1 and 

NEP/NS2 proteins help vRNAs to be transported into the cytoplasm via 

nucleoporins [70]. Envelope proteins (HA, NA and M2) are translated 

on membrane-bound ribosomes into the endoplasmic reticulum and 

non-envelope proteins (PB1, PB2, PA, NP, NS2, NS2 and M1) on 

cytosolic ribosomes. Post-translational modifications are held in the 

Golgi apparatus.  

Sorting signals allow all proteins to be directed to the host cell 

membrane regions termed “lipid rafts” [71]. To ensure the new virions 

assembly, both glycoproteins (HA and NA) are essential to initiate the 

budding by deforming the plasma membrane [72–74]. Eventually, the 

role of M2 in membrane scission [75] and of NA in cleaving terminal 

sialic residues is important. In particular, the NA enzymatic activity, 
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which function prevents aggregation of the nascent virions at the cell 

surface, is essential for release of virus progeny [76–78]. Finally, the new 

virus generation leads to subsequent infection of the host’s cells and 

virus spread (Figure 1-2). 

 

Figure 1-2. Illustration of the IAVs replication cycle. Image taken from 

[79]. 

Other cell types such as airway macrophages and dendritic cells (DCs) 

are also susceptible for infection, although no infectious progeny is 

released in these cases [80].  

1.2.4. Host range 

IAVs have global presence and their host range is wide as illustrated in 

Figure 1-3. They have been isolated from humans, birds (including 

ostriches), horses, marine mammals, camels, ferrets, minks, pigs, dogs, 
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cats and bats. In few occasions, IAVs have also been detected in tigers 

and leopards as well [81,82]. Furthermore, the interspecies transmission 

of IAVs is commonly occurring between humans, poultry and pigs. In 

particular, pigs may represent an intermediate host for the generation of 

new IAVs able to infect humans.  

Figure 1-3. Host range of IAVs. The HA subtypes which have been 
isolated from the represented hosts are specified in parenthesis. The 
significant interspecies IAVs transmission is shown by solid (common) 
and dashed (sporadic) arrows (modified from [83]). 
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 Avian influenza viruses (AIVs): As mentioned in section 1.1., 
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poultry (e.g. chicken, turkeys, quails), which are susceptible to natural 

infections promoted by avian IAVs [84].  

Isolates of AIVs have been typed either of “highly pathogenic avian 

influenza viruses” (HPAIVs) or “low pathogenic avian influenza viruses” 

(LPAIVs) (see 1.2.6.; “Pathogenesis and transmission” and 1.2.6.1.; 

“Virulence determinants”). HPAIVs are defined as these isolates 

causing>75% of mortality in a period of 10 days or that induce an 

“intravenous pathogenicity index” (IVPI) higher than 1.2. in a defined 

chicken population a mortality rate [85]. 

HPAIV subtypes are more restricted than LPAIVs. The first comprise 

isolates from H5Nx, H7Nx and H9N2 carrying a multibasic cleavage site 

in their HA protein [42,86]. Until mid-1950s, all HPAIVs were from the 

H7 subtype. In 1959, an H5N1 HPAIV was reported in chickens [87]. In 

2002, a fatal outbreak of H5N3 HPAIV in wild birds was reported for 

the first time [88]. Since then, many others HPAIV outbreaks have been 

detected in wild birds [89–92].  

In 1997 the first fatal outbreak of a HPAIV H5N1 was reported in 

humans [93]. Since then, AIVs from subtypes H5, H7 and H9 have been 

involved in human infections and to a minor extent, H6 and H10 

isolates have also been detected [42] causing mild-to-fatal disease to their 

hosts. Acquiring gene segments from other co-circulating AIVs has 

expanded the host range frequently breaking the host barrier [94]. 

Human-to-human transmission of HPAIV strains, fortunately, has not 

been frequently reported [42,81].  
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 Swine influenza viruses (SIVs): Direct introduction from distinct 

AIV subtypes, the reintroduction from human-adapted viruses and 

reassortment among human and avian viruses [95] are factors that have 

contributed to the establishment of IAVs in the swine herds, leading to 

the emergence of SIVs.  

Although being infected by several IAV subtypes [96–98], only three 

subtypes have been established among swine herds. For decades, H1N1, 

H1N2 and H3N2 subtypes have been enzootic in pigs [6,99–101]. Other 

species such as wild boar [102] and turkeys [103] have also been infected 

by SIVs. Nevertheless, novel reassortments between enzootic SIVs or 

between SIVs and seasonal human IVs have been reported [104–106]. 

Human infections with SIVs have also occurred and in a few isolated 

cases were even lethal [107,108]. For example, in 2009 a reassortant IAV 

previously circulating in pigs emerged (H1N1pdm) infecting huge 

numbers of humans with fatal cases in thousands (See 1.3.2.; “Influenza 

A virus pandemics”).  

1.2.4.1.  Host receptors 

The receptor preferences of distinct IAVs vary depending on the linkages 

to galactose present in the SA. NA on the surface of IAVs scans and 

searches the specific IAV receptors on the host cell depending on the 

IAV [109]. In 1990s, it was shown that while most avian influenza 

viruses (AIVs) preferentially attached to α-2,3-linked SAs linearly 

presented [110,111]; the human IAVs preferred the α-2,6 linkage, 

exposed in a “bent” presentation [112,113].  
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AIVs replicate efficiently in the avian gastrointestinal epithelium mainly 

expressing α-2,3 receptors. In humans, IAVs replicate in the upper 

respiratory tract (URT) where α-2,6 receptors are more prevalent. The 

lower respiratory tract (LRT), however, expresses more α-2,3 receptors 

where IAVs may attach. Consequently, the SA linkage receptor 

preferences of the IAVs correlated with the distribution of the SA 

linkages expressed on cells/tissues in their respective hosts [61]. Hence, it 

was determined that those variations in the SA receptors could define 

the IAVs host range [114].  

Research in this field has established that virus tropism though not 

critical for infection, is a determinant for virus transmission [115–118]. 

It has also been shown that some strains of IAVs causing human 

pandemics bore mutations in the HAs from the former avian IAVs 

altering this way their SA receptor preferences (See 1.2.6.1.; “Virulence 

determinants”).  

Owing to the presence of both the α-2,3 and α-2,6 receptors in the 

respiratory tract of pigs [119,120], pigs may act as “mixing vessels” 

allowing infection of both avian and human IAVs. This “mixing vessel” 

concept is narrower than originally thought. Current research indicates 

that the respiratory tract of the pigs resembles to that observed in 

humans [121] and points at the opportunity (changes of contact between 

infected birds and swine, sheer numbers and dense housing) rather than 

the physiology as the major cause of their interspecies transmission role 

[95].  
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1.2.5. Evolution 

Two major mechanisms are described determining the evolution of 

IAVs. These mechanisms can enable IAVs to expand the host range and 

allow replication in other hosts as well: 

i. Antigenic drift is due to the lack of proof-reading function of 

the RdRp, which leads to the gradual accumulation of point 

mutations in the IVs genome, thereby creating new IVs 

variants. This phenomenon is the main cause of the annually 

repeated seasonal epidemics.  

 

ii. Antigenic shift is due to genetic segment reassortment, 

which can occur in cells infected by different (two or more) 

IVs. Resulting reassortment of IV genomes can enable the 

formation of viruses containing novel antigenic proteins, for 

which the hosts have no preexisting immunity, thereby 

leading to new pandemics. The resulting progeny also must 

have an efficient replication-competent set of internal genes 

and be able to spread from human to human.  

Influenza vaccines must provide strain-specific protection against the 

circulating strains during specific seasons. Changes in antigenic drift or 

in antigenic shift may influence the efficacy of the seasonal flu vaccine. 

Thus, for humans, their composition is annually updated and 

immunogenically evaluated. In addition, if antigenic shift occurs that 

may result in pandemics, there is the need to manufacture and rapidly 

distribute a vaccine which protects and provides a long-lasting 

protection. 
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1.2.6. Pathogenesis and transmission 

AIVs: While wild birds may carry LPAIVs without showing 

severe clinical signs and disease after transmission to domestic poultry, 

LPAIVs cause subclinical or mild illnesses (weight loss, ruffled feathers 

and/or a reduction in their egg production) [122]. On the contrary, 

HPAIVs cause fatal outbreaks in wild and domestic birds. Mortality can 

reach up to 90%-100%, often within 48 hours. In some instances, no 

clinical signs are recorded but sudden death occurs. In other 

circumstances, the disease is characterized by respiratory, nervous, 

reproductive and gastrointestinal signs [123]. Exceptionally, ducks do not 

exhibit any, or only very mild, clinical signs [84]. 

Transmission of AIVs mainly occurs through the fecal-oral route. 

Contaminated feeding grounds and surface waters, where AIVs can be 

retained are the major source of AIVs transmission [124]. Infected birds 

generally excrete AIVs via oropharyngeal and cloacal routes [125]. 

Airborne transmission of IAVs although, may occur but at a lower 

frequency [126,127]. 

 

Human IVs: IVs cause recurrent epidemics to humans and even 

evoke pandemics (See 1.3.; “Social and economic impact, epidemics and 

pandemics”). In humans IVs infection cause pneumonia and acute 

respiratory failure, frequently complicated by bacterial coinfection [128]. 

Even though IVs may affect at all ages, the most vulnerable are the young 

children, the elderly and immunocompromised individuals. 
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Person to person transmission of human IVs is mediated by the air 

through droplets excreted by infected individuals via cough or sneeze. 

The rapid spread of the disease is accelerated particularly in crowded 

atmospheres. Infection frequency is higher in the winter in temperate 

climates since IVs survive longer when the weather is cold and dry [129].  

Zoonotic IAV infections have been more frequently detected in people 

working in pig and poultry farms [130–132]. People in contact with wild 

birds (e.g. hunters) [133] and exposure to live poultry markets [134] are 

also a potential target of AIVs infections. The most common 

transmission route is through the contact with the eye conjunctiva and 

mucosal membranes (e.g. inhalation of dust, droplets) or swimming or 

bathing in contaminated water (e.g. household ponds) [135–138]. 

 

SIVs: Onset of clinical signs and nasal shedding begins after 24 

hours of SIVs infection. Though some infections remain subclinical, 

others are clinical (25%-30%) [139]. Gross lesions are characterized by 

broncho-interstitial pneumonia (BIP) and there is no extra-respiratory 

evidence of infection. 

SIV transmission initiates via the nasopharyngeal route (nose-to-nose 

contact or direct contact of mucus) through the contact between infected 

and susceptible pigs. SIVs are present in the excretions from infected 

pigs through coughing, sneezing and nasal discharges that also facilitate 

spread and airborne transmission of SIVs [140].  
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1.2.6.1.  Virulence determinants 

Some mutations in specific gene sequences have influenced virus 

virulence in one particular host. Nevertheless, the same mutation may 

not affect the IAVs virulence in other hosts [46]. Some virulence 

determinants of IAVs are described below:  

I. HA: 

HA affinity for receptors: SAs expressed on the host cells are described as 

receptors for HA. The affinity of the virus HA for specific SA may 

promote the adaptation of IAVs to specific hosts. Targeting α-2,6 SA 

receptors is a requirement for AIVs to enable efficient human-to-human 

transmission. Pandemic viruses acquired the ability to bind to α-2,6 SA 

receptors present on human cells [113,141]. Although some amino acid 

changes found in H5N1 HPAIVs receptor binding site enhanced the 

affinity to α-2,6 SA [142–146], HPAIVs H5N1 are not able to exclusively 

attach to specific α-2,6 SA. This fact reinforces why H5N1 did not show 

sustained transmission among humans [147]. 

HA cleavability: As explained in section 1.2.3., the HA cleavage is a 

prerequisite for viral infectivity [148] and in AIVs, the cleavage 

susceptibility of uncleaved precursor haemagglutinin (HA0) correlates 

with the virulence of HPAIVs. As demonstrated, a mutant of an H5N1 

HPAIV harboring the HA cleavage of a LPAIV becomes attenuated in 

mice [149]. This is related to the fact that while LPAIVs only possess a 

conserved arginine residue targeted by host trypsin-like proteases, 

HPAIVs possess multiple basic amino acids targeted by subtilisin-like 

proteases. Trypsin-like proteases are found extracellularly, secreted by 
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cells from the respiratory and intestinal tract, thus restricting infection in 

those tissues. On the other hand, subtilisin-like proteases are 

intracellular and ubiquitous, favoring systemic infections [150].  

II. NS1:  

This non-structural protein permits efficient viral replication since it 

suppresses the host innate immune response by influencing on distinct 

mechanisms, mainly counteracting with the cellular antiviral type I 

interferon (IFN) pathway. NS1 can interfere with the activation of the 

retinoic acid induced gene protein-I (RIG-1) innate pathway and thus, to 

IFN responses [151–153] (See 1.4.1.; “Innate immunity triggered against 

IAVs infection”). NS1 can also inhibit transcription factors, which will 

further impair IFN production (interferon regulatory factor-3 (IRF-3), 

nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and 

the activator protein-1 (AP-1) [154–156]) and interferon-stimulated genes 

(ISGs), which have antiviral effects (protein kinase R (PKR) and 2’-5’-

oligoadenylate synthetase (OAS)-RNaseL) [157,158]. Furthermore, NS1 

can also inhibit the nucleotide binding oligomerization domain (NOD)-

like receptor family (NLRs) pyrin domain-containing 3 (NLRP3) 

inflammasome activation, interfering with the cleavage of pro-interleukin 

(IL)-1β and pro-IL-18 into mature forms (See 1.4.1.; “Innate immunity 

triggered against IAVs infection”) [159,160]. Moreover, NS1 blocks the 

proper processing of host cellular pre-mRNAs, by binding either to 

cleavage and polyadenylation specificity factor (CPSF30) [161,162] or to 

the poly(A)-binding protein II (PABPII) [163]. When attached to 

CPSF30, interfering with the cleavage of pre-mRNAs and when attached 

to PABPII, interfering with synthesis of the poly(A) tails.  



  General Introduction 

 
21 

III. NS3:  

Although being identified so far in 33 strains, NS3 isoform seems to be 

aiding in viral transmission between hosts [44,50]. Several examples of 

avian viruses being transmitted to human (1977 H5N1, 1999 H9N2), 

swine (1979 H1N1) or canine [50,164] have supported this hypothesis. 

IV. PA:  

PA has been reported to play an important role in inhibiting host type I 

IFN signaling. A single mutation has been determined (K351E) to 

contribute to the mentioned role [165]. Also, in vitro, PA inhibits NF-κB 

transcription of H5N1 HPAIVs [166]. 

V. PA-X:  

PA-X protein induces the shutoff of host protein expression, 

counteracting the antiviral responses in the host. PA-X widely degrades 

host RNA polymerase II (Pol II)-transcribed mRNAs and non-coding 

RNAs in the nucleus of infected cells [48] by means of its interaction 

with the host’s 5′->3′ Xrn1 exonuclease activity. However, it has been 

reported that the effects of PA-X on pathogenesis are host- and strain-

specific. 

VI. PB1-F2:  

PB1-F2 protein disrupts mitochondrial antiviral signaling protein 

(MAVS) signaling and promotes inflammatory responses and apoptosis 

in immune cells [46,167,168]. During IAVs infection, PB1-F2 may 

facilitate secondary bacterial infections [169–171]. In vitro, it enhances 

polymerase activity by binding to the PB1 protein [172]. Its contribution 
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in the pathogenicity of the 1918, 1957 and 1968 pandemic viruses as 

well as H5N1 HPAIVs have also been demonstrated [169,173,174]. 

Specifically, N66S mutation in these pandemic virus (1918 H1N1 and 

H5N1) enhanced the pro-inflammatory cytokine release and the viral 

replication at lung level [173,175]. PB1-F2 mainly contributes to 

virulence of pandemic strains when it is recently derived from an avian 

reservoir [169], primordially, since PB1-F2 becomes truncated following 

introduction into humans or pigs [176]. 

VII. PB2: 

PB2 enhances IAVs pathogenicity and can alter host range, most likely 

by controlling levels of vRNA replication. Punctual mutations in specific 

aa positions have further supported the role of PB2 in pathogenicity of 

IAVs. For instance, a replacement of lysine (K) at position 627 instead of 

a glutamic acid (E) enables IAVs to replicate in the URT of human 

[149]. This mutation seems to be influencing the temperature sensitivity 

of the PB2 allowing AIVs (usually replicating at nearly 41ºC) to replicate 

at a lower temperature of 33ºC [177]. Another mutation in PB2, PB2 

D701N, is also known that triggers pathogenicity in mammals and is 

related to enhanced levels of virus replication, transmissibility and 

nuclear localization of PB2 [178]. In addition, PB2 interferes with 

MAVS signaling [179] or inhibits the transcription of the IFN-β gene 

induced upon an IV infection [180]. 
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1.3. Social and economic impact of IVs 

IVs cause seasonal epidemics, occasional pandemics and lethal zoonotic 

outbreaks universally. Estimations made by the World Health 

Organization (WHO) conclude that IVs are the global causative agents of 

a billion cases annually, being 290,000 to 650,000 among them lethal. 

Apart from the burden of IVs in the human population, IV epidemics 

promote a significant toll economically in productivity and financial 

resources. In industrialized countries, losses also involve the health care 

costs, worker absenteeism and workforce productivity losses [181]. 

Moreover, the threat of a future flu pandemic could emerge anywhere 

and spread universally.  

Economic consequences of AIVs and SIVs are also severe not only for 

the potential occurring zoonosis concerning the public health but also 

for their impact on animal health.  

AIVs can produce disease in chickens, turkeys and other birds of 

economic importance. Mild illnesses can influence the egg quality and 

final number of birds. Furthermore, H5 and H7 HPAIVs have mortality 

rates over 30% in humans [182]. Hence, the World Organization for 

Animal Health (OIE) makes mandatory to notify any HPAIVs and 

H5/H7 LPAIVs. The H5/H7 LPAIVs need to be reported due to their 

capability to acquire mutations leading to HPAIVs [183]. AIVs are one 

of the OIE priority topics; OIE in cooperation with the WHO and the 

Food and Agriculture Organization (FAO) exchange follow-up 

information of zoonotic AIVs. When any noticeable outbreak occurs, 

strict control strategies described in the OIE Terrestrial Animal Health 

Code must be implemented to eradicate disease. Disinfection, isolation 
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and culling are the main measures practiced to prevent its spread. 

Overall, AIVs cause enormous losses due to death and slaughtering of 

infected birds as part of control policies. 

SIVs have also an enormous financial impact on the pork industry. A 

total of 100% of morbidity is reported, though mortality is rather low (1-

4%) [139,140]. Losses are coming mainly through retarded growth of 

infected pigs leading to an increase in their finishing time [184]. A 

greater predisposition of pigs to secondary bacterial infections is also 

affecting the economy [140,184]. Another impact is the possibility of 

participating in the generation of a mutant/reassortant isolate that may 

spread between people initiating a pandemic as observed in the 2009 

pandemic (See 1.3.2.; “Influenza A virus pandemics”). During the 

pandemic, false perceptions on the safety of pork meat cause to the 

United States (US) pork industry estimated losses over $ 1 billion [185].  

1.3.1.  Epidemics 

Evolution of seasonal IVs due to novel antigenic variants results in 

recurrent annual epidemics of disease. Seasonal influenza virus burden is 

associated with IAVs from subtypes H1N1, H3N2 and two IBVs of two 

distinct lineages (B/Victoria and B/Yamagata). Recurring seasonal 

influenza epidemics, that may last for 6-12 weeks, have infection rates of 

10-30% in adults and 20-50% in children [186].  

1.3.2.  Influenza A virus pandemics 

Pandemic IAVs were generated by antigenic shift due to the segmented 

genome of IVs.  
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I. 1918 Spanish influenza (H1N1): In 1918-1919, the first IV 

pandemic is associated with the major number of deaths 

worldwide (50-100 million) [187]. The causative agent of this 

pandemic was characterized as H1N1 from an avian-origin 

virus [188,189]. Its reconstruction by means of reverse 

genetics allowed unraveling mechanisms of its high virulence 

phenotype and host susceptibility [190]. HA and PB2 were 

defined as key determinants in transmission of this pandemic 

H1N1 IV [191].  

 

II. 1957 Asian flu (H2N2): In 1957, a novel IAV emerged 

within humans in southern China that was associated with 

one million fatal outcomes [192]. It was characterized to be a 

reassortant of the 1918/H1N1 and an avian IAV virus, since 

it harbored H2, N2 and PB1 segments from an avian-derived 

virus [193–195]. 

 

III. 1968 Hong Kong flu (H3N2): In 1968, a reassortant of the 

H2N2 virus with another avian IV emerged in Hong Kong. 

The 1968 pandemic virus carried H3 instead of H2 and a 

PB1 segment from avian origin [193,195]. One million of 

fatalities were reported during the pandemics [84].  

 

IV. 1977 Russian influenza (H1N1): An H1N1 IV re-emerged in 

China causing a pandemic in 1977, leading to severe disease 

and fatalities primarily in the young population (greater than 

50%) [84,147]. High similarity was encountered within the 
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re-emerged virus and the H1N1 from 1950s [196]. The re-

emergence was presumably caused by a laboratory stock 

accidental release.  

 

V. 2009 H1N1pdm09: Last reported flu pandemic was in 2009, 

with more than 18,000 deaths associated with the infection 

[197]. Triple reassortants H1N2 and H3N2 first arose in the 

late 1990s harboring: 

i.  the PB2/PA segments of North-American avian IVs, 

ii.  the PB1 segment from a human H3N2 IVs,  

iii.  the HA/NP/NS segments from human H1N1 IVs.  

The triple assortants of H1N2and/or H3N2 reassorted with a 

Eurasian H1N1 avian-like swine virus (segments NA/M), 

finally resulting in the emergence of H1N1pdm09 [198,199] 

(Figure 1-4). Prior to its human spread, H1N1pdm09 seemed 

to be circulating asymptomatically in the swine population 

[200]. Likewise, the Russian flu, H1N1pdm09 caused a severe 

disease with a high incidence in the younger population, 

pregnant women and population with chronic diseases. The 

youngers were also more affected, assumedly linked to the 

lack of cross-reactive antibodies to the H1N1-typed virus 

circulating between 1918 and 1943 [201].  
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 Figure 1-4. Origin of H1N1pdm09. Gene segments of H1N1pdm09 are 

colored depending on their host origin: avian, human or swine. Image 

taken from [147]. 

1.4. Immune responses to IAVs infection 

Understanding the host immunity response to IAVs infection is crucial 

to interfere with the severity of the disease and to design vaccine 

candidates. The host immune response to IAVs infection triggers both 

the innate and the adaptive immune responses. Innate response is 

quicker and comprises a number of factors that can interfere with IAVs 

infection and viral replication. However, adaptive immunity owns 

antigen specificity and memory, being effective to combat recurrent IAV 
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immunity by distinct mechanisms and establish a proper infection.  
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1.4.1.  Innate immune response to IAVs infection 

Albeit nonspecific, innate immunity serves to initiate the first line of 

host defense against IV and triggers proinflammatory responses. Several 

components like physical barriers (mucus and collectins), host pathogen 

recognition receptors (PRRs) compounds and distinct host cells (target 

epithelial cells and immune effector cells) consolidate the host innate 

immunity against IAVs. 

Whilst mucus and collectins aim to prevent infection of the IAVs to 

target cells, several PRRs can be induced upon IAVs infection implying 

subsequent expression of type I and III IFNs (Figure 1-5). 

PRRs are receptors that distinguish non-self conserved structures, 

referred to as pathogen associated molecular patterns (PAMPs), in the 

IAV infected cells. To date, the PRRs described to sense IAVs include 

the RIG-I, the melanoma differentiation associated gene 5 (MDA-5), the 

toll-like receptors (TLR3, TLR7 and TLR8) and the NLRs, namely the 

NRLRP3 and NRLRP5.  

RIG-I and MDA-5 are cytosolic receptors which can identify viral single 

stranded RNAs and transcriptional IAV intermediates in IAV infected 

cells. Upon the recognition, both of them associate with MAVS. This 

interaction triggers a downstream cascade signaling at the outer 

mitochondrial membrane [202], which ends up with the activation of 

transcriptional factors such as IRF3, IFR7 and NF-κB [203,204]. 

Subsequently, IRF3 and IRF7 promote the production of type I and III 

IFNs and NF-κB, the expression of pro-inflammatory cytokines such as 

IL-6, tumor necrosis alpha (TNF-α) and IL-1β. 
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Figure 1-5. Representation of the induced host PRRs of the innate 

immune response orchestrated upon an IAV infection and subsequent 

expression of type I and III IFNs. Image taken from [205]. 
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[209]. On the other hand, little is known about the role of TLR8 in 

sensing IAVs, except their capability in human to recognize ssRNA and 

their subsequent IL-12 production by monocytes and macrophages [210].  

As described, triggering PRRs leads to type I IFNs (IFN-α/β) and type III 

IFNs (IFN-λ) production [211]. Type I IFNs interact with IFN receptor 

(IFNAR) and activates the Janus kinase-signal transducer and activator of 

transcription (JAK-STAT) signaling. This reaction ends up in an antiviral 

state in the cell caused by the expression of numerous IFN-stimulated 

genes (ISGs) that target different steps of IAVs cycle [212]. Type III IFN 

(IFN-λ) activates the same cascade but is mainly produced by pDCs [213] 

and interacts with IFNL receptors in the lung. Thus, IFN-λ controls 

locally the IAVs infection in the lung [205,214]. 

The airway epithelial cells upon being infected by IAVs can release 

antiviral or chemotactic molecules (such as TNF-α and IL-1), which can 

lead to the recruitment/migration of the innate effector cells to the 

infection site. These immune effector cells can play quite diverse roles to 

clear the virus.  

Monocytes and alveolar macrophages release pro-inflammatory cytokines 

such as TNF-α and IL-6 but also can limit the spread of IAVs by opsono-

phagocytosing IAV particles and/or phagocytosing apoptotic infected 

cells [215,216]. In contrast, natural killer (NK) cells, cytotoxic 

lymphocytes, can mediate target and lysis of IAV-infected cells [217,218]. 

In addition, upon an IAV infection, dendritic cells (DCs), can acquire 

viral antigens and degrade them into small peptides by means of 

proteasomes present in the cytosol. Then, they present them to naïve 
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and memory T lymphocytes. Depending on how the antigen uptake 

takes place, two mechanisms can be triggered. When DCs present the 

virus-derived antigens by major histocompatibility complex (MHC) class 

I molecules, this results in CD4+ T helper (Th) cells activation. On 

contrary, when the molecules used are MHC-class II, the viral antigens 

are recognized by specific CD8+cytotoxic T cells (CTLs).  

 

1.4.2.  Adaptive immune responseto IAVs infection 

Adaptive immune responses are specific to pathogen and consists 

humoral (virus-specific antibodies) and cellular (T cells) immunity.  

1.4.2.1. Humoral immunity to IAVs 

Infection of IAVs leads to the production of virus antigen-specific 

antibodies. In particular, antigens expressed on the surface of the virus 

like HA, NA and M2 are targets of humoral immune mechanism. 

IAVs infection induces production of HA-specific antibodies that are 

directed to the globular and stem part of the HA. As mentioned in 

section 1.2.3., HA protein is important and crucial in initiating the IAVs 

infection cycle. Antibodies produced against the HA-globular part can 

bind to the HA receptor-binding site (RBS) and prevent the IAVs 

infection (by blocking the RBS). Besides, HA specific antibodies also 

facilitate antibody-dependent cellular cytotoxicity (ADCC). Nevertheless, 

these antibodies are ineffective when IAVs acquire mutations in their 

head region [219].  
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The antibodies induced against HA stem part can be neutralizing the 

IAVs and/or non-neutralizing (e.g. ADCC antibodies) [220]. Owing to 

the highly conserved epitopes consolidating the HA-stem part and 

because they are not under immense immune pressure [221], HA-stem 

epitopes are suggested as promising universal vaccine candidates (See 1.7.; 

“Universal vaccines”). Conserved regions of the HA-stem part however, 

bear particular features which divide them into two phylogenetically 

different groups: Group 1 (H1, H2, H5, H6, H8, H9, H11, H12, H13 

and H16 subtypes) and Group 2 (H3, H4, H7, H10, H14 and H15), 

which afford a non-equivalent protective efficacy. Besides, their immune-

subdominance is another of their drawbacks since HA-globular head 

masks the stem of the IAV virion [222]. 

Published reports also suggest that specific antibodies against virus 

surface protein NA facilitate ADCC and prevent virus spread since they 

inhibit the NA enzymatic activity [223,224]. In addition, M2 and NP 

specific antibodies can also be produced and, although non-neutralizing, 

may promote protection against distinct IAVs [225–227] eliminating the 

virus by activating complement cascade ending up with cytolysis [228]. 

IAVs target the respiratory epithelial cells encountered in the mucosal 

tissues of the respiratory tract. To limit IAVs infection, presence of IgA, 

IgM and IgG antibodies in the mucosa is fundamental. Mucosal or 

secretory IgAs are locally produced and can afford local protection of 

airway epithelial by neutralizing HA and NA viral proteins [229,230]. 

A high IgM level, hallmark of primary infection, it is associated with a 

quicker clearance of IAVs. Likewise, it is also correlated with an elevated 

IgG antibody titer thatis dominant during secondary responses occurring 
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in the periphery [231–233] subjected to the interplay between innate 

early IgM response and subsequent IgG production [234]. Although 

some of those antibodies are short-living others can even last for a 

lifetime being produced by Ab-secreting cells (ASCs). 

 

1.4.2.2. Adaptive cellular immunity to IAVs 

IAVs infection activates both the helper CD4+ and cytotoxic CD8+ T 

lymphocytes. 

I. Helper CD4+T cells 

Naïve helper CD4+ T cells differentiate into Th1 or Th2 phenotypes 

after activation [235–237]. Th1 or Th2 cell types depends on their 

stimulators including antigen, co-stimulatory molecules, cytokines 

secreted by DCs, epithelial cells, and inflammatory cells [238–240]. Th1 

cell subset produce mainly IFN-γ and IL-2 and are involved in cell 

mediated immunity and may further promote the differentiation of 

CD8+T cells into CTLs [241,242]. On the other hand, Th2 type cells 

release IL-4 and IL-13, which predominant role is stimulating B cell 

responses [233,243] that significantly leads to class-switching of antibody, 

affinity maturation and generation of long-lived plasma cells.  

II. Cytotoxic CD8+ T cells 

Recognition of IAV epitopes with MHC class I molecules on antigen-

presenting-cells (APCs), promote the differentiation of naïve CD8+ T 

cells, draining in the lymph nodes into cytotoxic cells [232,233,244]. 
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Immunomodulators like type I IFNs, IFN-γ, IL-2 and IL-12 are described 

to help CD8+ T cell differentiation process [245,246]. When activated 

upon detecting IAV infected cells, CD8+ T cells migrate to the infection 

site and kill infected cells by secreting cytotoxic granules containing 

perforin and granzymes (e.g. GrA and GrB) [247,248]. These specific 

CTL cells can be reactivated upon secondary IAVs infection and it has 

been revealed that their specificity is mainly directed to conserved IAV 

epitopes. Hence, their response is characterized for being of a 

heterosubtypic nature [249]. 

 

III. Th17, T regs and T follicular helper (Tfh) cells 

Other subsets that can be activated against IAVs are the Th17 and the T 

regs, whose role is to control/regulate the cellular immune response 

[232]. Th17 cells promote T helper responses by secreting IL-6. This 

cytokine hampers the T regs to suppress the T helper responses 

[250,251]. The Th17 cytokine, IL-17, has a controversial role in terms of 

being or not being indispensable in an effective influenza vaccination 

[252,253]. Albeit it has been reported a role in recruiting B cells to the 

pulmonary infection site upon H5N1 infection [254]. 

T regs contribute in controlling lung inflammation during an IAV 

infection by dampening both exaggerated innate and adaptive immune 

responses against IAVs [255,256]. Furthermore, it is described that T 

regs release IL-35 that is upregulated during secondary infections and 

suppresses the inflammatory responses [257].  
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Moreover, in terms of effector activity (humoral memory and 

vaccination), other subset named as T follicular helper (Tfh) cells are an 

area of extreme interest [258]. Tfh are believed to carry out effector 

CD4+ T cell Th2 responses (antibody switch, affinity maturation and 

long lived plasma cell generation) in secondary lymphoid tissues [259].  

 

1.4.3. Immune response in swine 

Immunity to SIVs infection in pigs is relatively less studied in 

comparison to humans and rodents. Pig innate immune system shares 

many features with that of humans, albeit there is alarge contribution of 

the γδ-T-lymphocytes [260]. These cells can contribute to kill some IAV-

infected cells [261] and can be activated by either the PRRs and/or 

cytokines receptors (innate mechanisms) [262] or via T cell receptor 

(TCR) (adaptive mechanisms) [263]. 

Adaptive immune response in pigs against SIVs, in particular the 

humoral responses, are similar to mice [264]. IgG and IgA are the main 

isotypes elicited against SIVs infection and are mainly involved in 

protection. Furthermore, maternal derived antibodies (MDA) are 

essential to protect piglets in the first weeks of live [265]. 

Cell-mediated immunity (CMI) to SIVs helps reducing the viral titer in 

lungs similar to humans [266]. Increased numbers of CD4+ and 

CD4+CD8+ cells in bronchoalveolar lavage fluid (BALF) during SIVs 

infection in pigs suggest an important role of this cell population during 

infection [267]. Indeed, at least some of these double positive cells subset 



Chapter I 

 
36 

may be effector memory T cells (TEM) [268]. Similar as in humans, the 

increase in the numbers of CD8+T cells migrating to lungs and BALF 

peak at 7 days pots infection [269].  

 

1.4.4. Immune response in avian species 

Avian species differ in many aspects of immunity from mammals, in 

particular regarding organs and cells, functional mechanisms, genes and 

secreted molecules. One example is their primary lymphoid organs. T-

cell development usually occurs in the thymus like the mammals, while B 

lymphopoiesis develops in a unique organ existing in birds, the bursa of 

Fabricius. Avian species also lack eosinophils and instead of neutrophils 

they carry heterophils. Furthermore, birds lack organized lymph nodes 

[270], although not all of them [271].  

Other secondary organs involved in the immunity of birds are: the 

spleen, bone marrow, Harderian gland and lymphoid tissues such as 

bronchial-associated lymphoid tissue (BALT), conjunctiva-associated 

lymphoid tissue (CALT) and gut-associated lymphoid tissue (GALT). 

GALT also involve the tonsils and the Peyer’s Patches in the intestines. 

In chicken, B cells when differentiated to plasma cells secrete IgM, IgA 

and IgY antibodies [272,273]. The same antibodies are present in other 

birds such as pheasants, turkeys, quails [274] and ducks [275,276]. While 

IgM and IgA share features from mammalian counterparts, IgY 

equivalent with IgG in mammals, differs in the number of CH domains 

of the heavy chains [273,277]. Moreover, in the avian Harderian gland 
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IgA-typed antibodies predominate. No equivalents of IgD or IgE are 

described in any avian specie [277].  

Immunity in avian species consists of both the innate and adaptive 

immune responses. Innate immunity includes TLRs, NOD-receptors and 

RIG-I/MDA5 pathways. Albeit it seems RIG-I to be inexistent in the 

chicken specie [278]. Reports indicate that adaptive immunity in avian 

species involves the paradigm of CD4+ helper T cells with its two subsets 

and the CD8+ response is also described [279]. 

 

1.4.5. Immune correlates of protection for influenza 

The European Committee for Medicinal products for Human Use 

(CHMP) is in charge of licensing human medicinal products, including 

vaccines. The criteria and correlates of protection followed when 

evaluating IV vaccines are described in Table 1-1. While seasonal vaccines 

need to accomplish one or more criteria, pandemic vaccines need to 

meet all three criteria.  

As mentioned in the table below, an influenza vaccine is considered 

protective when the hemagglutination inhibition (HI) titer is ≥ 40. In 

conditions of pre-exposure to the virus, geometric mean titers (GMT) 

and seroconversion parameters are more representative to better 

distinguish the response mediated by the vaccine.  

Nonetheless, the appropriateness of this protection correlate has been 

widely questioned [280–282]. Principally due to its low sensitivity to 

avian and IBV strains [283,284] but also since these established 
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parameters only target healthy adults, not including population at risk 

such as elderly, children and immunocompromised population [285–

287]. 

For instance, some studies suggest CMI as correlate of protection in the 

elderly population while other demand higher HI titers, particularly in 

children, to achieve protection.  

Alternative assays are required to overcome such limitations but also to 

assess other immune markers such as anti-NA, anti-M2, anti-NP, CD4+ 

and CD8+ T cells and mucosal response that can be included in the next 

generation vaccines as immune correlates. 

 

Table 1-1. European CHMP criteria for evaluation of influenza vaccine 
immunogenicity (copied from [288]).  

 Adults Older adults 
 (>60 years) 

GMT increase 2-5 2 

Seroconversion/significant 
increase*  

70% 30% 

Seroprotection* 40% 60% 

Abbreviations: GMT: Geometric mean titer. *In HI tests, seroconversion 
corresponds to: negative pre-vaccination serum (HI < 1:10), post-
vaccination serum HI ≥ 1:40; pre-vaccination serum >1:10, significant 
increase: at least a four-fold increase in titer. Seroprotection corresponds 
to the percentage with serum HI ≥ 1:40.  

 

Swine influenza vaccines: According to the OIE guidelines (Chapter 

3.8.7.;-Influenza A virus of swine, OIE) [289], vaccines against swine 
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influenza must induce protection against both the subtypes H1 and H3. 

Moreover, statistically significant reduction of the virus in the respiratory 

tract (both in terms of titers and duration of shedding) and minimizing 

the clinical signs and lung lesions in the vaccinated pigs are the criteria 

of efficacy in a vaccine against SIVs. These vaccines need to be pure, safe 

and potent.  

 

Avian influenza vaccines: Survival and a reduction of the viral shedding 

are the efficacy requirements that need to be demonstrated for vaccine 

licensing against AIVs, according to OIE guidelines (Chapter 3.3.4.; 

Avian influenza (infection with avian influenza viruses, OIE) [139]. A 

minimum of 80% of the vaccinated and challenged birds (with a dose of 

106) need to survive and must reduce stastistically both the titer and the 

number of birds shedding the virus from oropharynx and/or cloaca.  

In both AIVs and SIVs the vaccine efficacy focuses on reducing viral 

shedding, because this way the transmission is also reduced and, at the 

same time, the risk of zoonosis to humans. Survival, clinical signs and 

lung lesions will reduce the economic impact of the disease and will 

contribute to animal welfare. 
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1.5. Vaccines 

Prophylactic vaccines are a forefront method to prevent or, in the most 

optimal cases, to eradicate, various types of infectious diseases [290]. For 

influenza, vaccination is the best primary method of infection prevention 

and control and, if effective, they contribute to mitigate the harm and to 

combat the huge economical losses caused by the virus at both human 

and animal health stages.  

1.5.1.  Current vaccines in humans 

Two types of vaccines have been developed to protect individuals against 

IVs: 

i. Seasonal influenza vaccines 

In 1945, the first inactivated seasonal vaccine against IVs was approved 

[291]. Since then, several types of vaccines have been licensed. Table 1-2 

summarizes the licensed influenza vaccines in Europe for the 2017-2018 

season. Overall, influenza vaccines are divided into trivalent influenza 

vaccines (TIVs) or quadrivalent influenza vaccines (QIVs). Whilst, TIVs 

target two IAV strains (subtypes H1N1 and H3N2) and one IBV strain, 

tetravalent vaccines target also an additional B strain (containing 

Victoria and Yamagata lineages). As seen in Table 1-2, inactivated-type 

vaccines predominated (inactivated whole, inactivated split or subunit 

split vaccines). However, one live attenuated influenza vaccine (LAIV) 

has also been licensed. Split inactivated vaccines consist on ether and/or 

detergent disrupted IVs while subunit split vaccines only harbor purified 

and enriched HA and NA viral components. These vaccines are generally 

produced using egg-based or cell-based technology [292].  
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The strain vaccine composition is adapted, manufactured and delivered 

annually prior to the flu season. They must comply with the 

recommendations of the continuous surveillance by WHO Global 

Influenza Surveillance and Response System (GISRS).  

Moreover, several measures have been implicated to improve the 

efficiency of these seasonal vaccines, like increasing antigen dose 

[293,294], intradermal administration route [295–300] and including 

adjuvants such as MF59® [301,302] and AS03 [303] adapted for high risk 

population. 

Lately, another type of vaccine has been licensed in the United States 

(US), FluBlock®, produced in a baculovirus expression system. The first 

licensed human influenza vaccine employing recombinant DNA 

technology [304,305]. 

ii.  Pandemic mock-up vaccines 

For pandemic preparedness, the WHO coordinates the development of 

influenza candidate vaccine viruses (CVVs). Upon a pandemic IAV 

emergence, the particular CVV could be rapidly licensed speeding up the 

regulatory approval process. Particularly, developing vaccines against 

HPAIVs H5N1 and H7N9 subtypes are in focus. In addition, CVVs 

against H9N2 and virus variants of H1 and H3N2 subtypes are also 

being tailored [306].  

 

 



 

 

Table1-2: Vaccines licensed and commercialized in Europe for the last season 2017/2018.  

Abbreviations: Inact: Inactivated; IM: intramuscular; Sc: subcutaneous; Id: intradermal; In: intranasal; EU: European Union; EEA: 
European Economic Area

Product name Vaccine 
type 

Adjuvant Administration route Produced in 
egg/cell 

Age 
recommen

ded 

  Available for use in the following countries 

Trivalent vaccines                  

Influvac® Inact/sub
unit 

None IM/Sc Egg > 6 months All EU/EEA countries 

Imuvac® Inac/subu
nitt 

None IM/Sc Egg > 6 months UK   

Fluarix Alpahrix Influsplit Inact/split None IM/Sc Egg > 6 months All EU/EEA countries 

Agrippal Inact/sub
unit 

None IM Egg > 6 months All EU/EEA countries 

Fluad Inact/sub
unit 

Squalene 
(MF59) 

IM Egg > 65 years Austria, Germany, Italy, Spain, UK 

Fluval AB Inact Aluminum 
phospahte gel 
(AS03) 

IM Cell > 6 months Hungary   

Afluria*** Enzira Inact None IM Egg > 5 years Belgium, Czech republic, Denmark, Finland, Germany, Greece, Ireland, Italy, 
Luxembourg, Netherlands, Norway, Portugal, Romania, Spain, Sweden, United 
Kingdom  

Vaxigrip** Inact None IM/Sc Egg > 6 months All EU/EEA countries 

Istivac Inact None IM/Sc Egg > 6 months Portugal/Spain   

Mutagrip Inact None IM/Sc Egg > 6 months Italy/Spain   

Intanza Inact None Id Egg > 18 years Austria/UK   

Quadrivalent vaccines                  

Vaxigrip Tetra Inact None IM/Sc Egg > 6 months Austria, Belgium, Bulgaria, Croatia, Czech republic, Estonia, Finland, Germany, 
Greece, Hungary, Italy,  

Ireland, Latvia, Lithuania, Malta, Poland, Romania,  

Slovenia, Sweden, UK  

Fluarix Tetra**  Inact/Spli
t 

None IM Egg > 6 months Belgium, France, Germany, Italy, Spain, Switzerland, UK 

Fluenz Tetra/ Flumist 
Quadrivalent * 

LAIV None In Egg > 24 
months 

Austria, Finland, Germany, Norway, Sweden, UK 

to 17 years 

               4
2
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1.5.2.  Current vaccines in swine 

Current vaccines against SIVs are whole or split inactivated, non-

replicating alphavirus RNA particles, LAIV or autogenous. The 

commercial SIVs vaccines more commonly used in Europe and US are 

depicted in Table 1-3. They all contain (whole, split or HA) from H1 and 

H3 IAV subtypes. In US, novel vaccines harbor 4-5 strains in response to 

the antigenically distinct clusters circulating in herds. All inactivated-type 

SIVs vaccines are propagated in egg-based or cell-based technologies and 

formulated with oil-in-water adjuvants. A viral vector vaccine consisting 

alphavirus-like replicon particles (RP) (Swine Influenza Vaccine, RNA; 

Harrisvaccines, Ames, IA, USA), in which replication is restricted since it 

does not contain all the genes for packaging, is also currently on market 

in US [307]. Additionally, an attenuated-type vaccine was also authorized 

recently against SIVs by United States Department of Agriculture 

(USDA). 

Despite the predominance of the inactivated-typed vaccines, they are 

limited to confer protection against different IV subtypes (heterovariant 

or heterosubtypic viruses) and currently ongoing research focuses to 

overcome this inconvenience. For instance, the development of 

autogenous/custom inactivated vaccines by individual farms is allowed 

in US and Canada. However, such vaccines are only used when the 

circulating strain in the herd does not match with commercial vaccines. 

MDA are another obstacle for the inactivated vaccine, since they may 

interfere with the vaccine response to post-weaning vaccination. 

 



 

 

    Table 1-3. Current commercial vaccines against SIVs licensed in the US and Europe.

Manufacturer Commercial vaccine Strains (Subtype) Formulation Adjuvant  Where 
IDT Biologika 

GmbH 
Respiporc Flu 3 Bakum/IDT1769/2003 (H3N2) Whole/Inactivated Carbomer 971 P NF Europe 

Bakum/1832/2000 (H1N2) 
Haselünne/IDT2617/2003 (H1N1) 

IDT Biologika 
GmbH 

RESPIPORC 
FLUpan H1N1 

A/Jena/VI5258/2009(H1N1)pdm09 Whole/Inactivated Carbomer 971 P NF 

Zoetis FluSure XP® A/Sw/Oklahoma/0726H/2008 (H1N2): 
cluster delta 1- H1N2 

Whole/Inactivated Amphigen® US 

A/Sw/Iowa/110600/2000 (H1N1): cluster 
gamma H1N1 
A/Sw/North Carolina/394/2012 (H3N2): 
cluster IV-A H3N2  

A/Sw/Minnesota/872/2012 (H3N2): cluster 
IV-B H3N2 

Zoetis FluSure® Pandemic A/California/04/2009 (H1N1): pandemic 
H1N1 

Whole/Inactivated Amphigen® 

Harrisvaccines Swine Influenza 
Vaccine, RNA 

Cluster IV H3N2 Whole/Inactivated None 

Boehringer 
Ingelheim 

Ingelvac Provenza™ α-cluster H1 LAIV None 
Cluster IV H3N2 A/swine/Nebraska/97901-
10/2008 

Abbreviations: LAIV: Live attenuated influenza vaccine; US: United States. 

 

 

               4
4
 



  General Introduction 

 
45 

Progress towards new more effective inactivated vaccines is rather slow. 

Currently, LAIV and alphavirus vaccine, despite their safety concerns, 

are commercially available in some parts of the world and induce 

cellular/mucosal immunity and reduce viral shedding [308–310]. 

1.5.3.   Current influenza vaccine in avian 

Until the 1990s, the stamping out policy (euthanasia of infected and 

contact flocks) was the main countermeasure to control and eradicate 

HPAIV outbreaks in poultry. The widespread of HPAIVs outbreaks and 

their endemic situation in several countries (China, Hong Kong, 

Indonesia and Vietnam) made vaccination a common control measure 

[311]. For endemic LPAIV of H5N2 and H9N2 [312,313], vaccines are 

also utilized as a control strategy. These vaccines are tailored as 

‘autogenous’ vaccines containing the strain detected in the field. For 

AIVs, distinct vaccine types are licensed and can be categorized as; 

i. Inactivated AIV vaccines 

Inactivated AIV vaccines are adjuvanted, parentally injected and grown 

in embryonated chicken eggs. Protection in poultry is achieved by 

inducing solid systemic humoral response when matched to the 

challenge strain. However, biosafety level 3 (BSL-3) facilities are required 

to develop HPAIVs vaccines. Due to the fact that HPAIVs mutate from 

LPAIVs, matching LPAIV strains are searched to be manufactured. 

Another approach is the reverse genetics (RG) technology. RG alters the 

HA cleavage site and inserts the HA in a vaccine virus backbone, 

permitting their production in BSL2-facilities [314]. Some RG vaccines 

have been licensed in China, Egypt, US and Mexico [315,316]. 
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Nonetheless, differentiating infected from vaccinated animals (DIVA) 

strategy is an inconvenience when using this vaccination type.  

ii. Subunit vaccines 

In vitro expressed HA protein: Large quantities of HA can be expressed 

in an in vitro system and can be used for vaccines either as crude extract 

or purified HA. This approach is more convenient since it does not 

require safety concerns and yet provides comparable immune response 

to IAVs like the inactivated vaccines. For example,Volvac® B.E.S.T. AI + 

ND.A vaccine produced in baculovirus expression system technology 

(BEST) against H5 subtype has been recently licensed in Egypt [317].  

In vivo expressed HA (NA also in some cases) protein: Live 

administered viral vectors with inserts of the HA gene as either cDNA or 

RNA are used as AIVs vaccines. Examples of such vaccines are 

fowlpoxvirus [315,318–320], Newcastle disease virus (NDV) 

[315,321,322], herpesvirus of turkeys (HVT) [323], alphavirus [324] and 

duck enteritis virus (DEV) [324] vaccines. Viral vectors generally induce 

cellular immunity promoting protection but with low HI titers. 

Alphaviruses, apart from inducing humoral immune response, also 

induce cellular immune responses [325,326]. Likewise, subunit vaccines 

also allow the use of the DIVA concept, which is not generally possible 

when conventional inactivated vaccines are used. Depending on the viral 

vector type, the vaccines can be host-specific [327] or can be used in a 

mass-vaccination approach by water or aerosol application [324]. 

However, the use of these vaccines is more restricted since their 

production costs are more elevated than the ones of the non replicating 

vaccines [324]. 
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1.6. Universal vaccines 

Developing a universal flu vaccine inducing a broad and a long-lasting 

immune response, potentially defeating virus antigenic variation has 

been widely pursued by vaccine virologists. The vaccine targets for 

universal IV vaccines are conserved sites on influenza proteins [328]. The 

most common targets include the type of epitopes summarized here: 

*Epitopes from the HA globular head: They inhibit hemagglutination 

although they are susceptible to antigenic variations. Conserved epitopes 

close to the RBS are investigated [329–331]. Other approaches are the 

search of antibodies which could mimic the conserved residues within 

the HA RBS [332–336].  

*Epitopes from the HA-stem part: Due to their immune-subdominant 

property (See 1.4.2.1.; “Humoral immunity to IAVs”), headless HA 

proteins have been constructed [337]. However, not all the stem could be 

introduced into the construct. Thus, serially immunizing with chimeric 

HA molecules with distinct globular parts have been engineered [338]. 

This way, each time, a primary response will be induced by the head 

domain whilst the stem part will be boosted [339]. 

*Epitopes from the M2: M2 has an extracellular domain highly conserved 

among human IAVs [340,341]. However, this domain is weakly 

immunogenic. Exploring new avenues to enhance its immunity, some 

candidates already used in clinical trials have been developed (M2e-HBc 

(hepatitis B virus core) fusion protein, M2e-flagellin fusion vaccine) 

[342–344].  
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*Epitopes from NP and M1: As internal proteins, they induce T-cell 

responses and, thus, facilitating cross-reactive protection. An approach 

consisting in Vaccinia virus Ankara (MVA) expressing NP and M1 is 

undergoing clinical phases [345,346].  

*Epitopes from NA: conserved epitopes near their enzymatic site could be 

of great interest [347]. Moreover, a potential universal NA-inhibiting 

antibody has been determined [348]. 

Moreover, as aforementioned, innovative delivery systems are widely 

tested with those conserved sequences:  

 Adjuvants: to elicit robust immune responses either by triggering 

innate immunity or by facilitating antigen delivery. Nonetheless, 

they use to require of extensive safety measures.  

 Fusing the peptides with carrier proteins: For effective 

presentation of antigens and enhancing their immunogenicity. 

Example: M2e fused with bacterial flagellin [343,344]. 

 Expressed in viral vectors: this strategy mimics the viral infection 

inducing the cellular immune response as well [349,350].  

 Virus like particles (VLPs): VLPs can present multimeric peptide 

antigens, as being explored for the M2e domain [351–353]. 

 Phage-based nanoparticles: Easy production at large scale, low 

cost and immunogenic [354–356].  

 Prime/boost with DNA prime and recombinant adenovirus or 

protein vaccine boost [357].  
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1.7. Informational Spectrum Methodology (ISM) 

The emergence of the bioinformatics, in silico tools have been a catalyst 

in drug and peptide-based vaccine designing [358]. This is because a 

computational virtual screening is more effective in terms of time and 

cost in comparison to experimental conventional screening [359–361]. 

Specifically, the informational spectrum methodology (ISM) is an 

example of one of these in silico tools and encompasses three stages. The 

first step is the transformation of the amino acid (aa) sequences into 

numerical sequences. This is possible because an electron-ion interaction 

potential (EIIP) is assigned to each aa. By using the discrete Fourier 

transformation (a mathematical approach), the numerical sequence can 

be transformed into a frequency domain; this creates an informational 

spectrum (IS). When finding common informational characteristics of 

sequences, these are determined by cross-spectrum or consensus 

informational spectrum (CIS). In the last step, the antigens which 

sharing a common frequency components in their IS are considered 

immunologically cross-reactive [362,363].  

Some studies have used this in silico approach to identify important 

informational characteristics of protein-protein interactions, protein-

DNA interactions and structure/function of proteins [363]. Moreover, 

ISM has also promoted the de novo design of biologically active peptides 

[364] as well as assessment of the possible effects created by 

mutations/substitutions of aa [365] and predict novel interactions [366]. 

A plausible example is the well-characterized information of the 

conserved glycoprotein gp120 regions of the human immunodeficiency 

virus type 1 (HIV-1), revealed by means of ISM, prompting the 
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interaction between CD4, CCR5 and CXCR4 receptors [366–368]. 

Our group has used several ISM predicted epitopes supposed to be 

immunogenic and conserved as potential vaccines against IAVs. One of 

them (NF-34) elicited a strong cellular response, with a notable cross-

reactive effect with different IAV subtypes [331]. In the present PhD 

thesis, all three studies employed predicted ISM sequences.  
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2. Hypothesis and objectives 

2.1. Hypothesis: 

One of the surface proteins of IVs, the hemagglutinin (HA), plays a key 

function in recognition and entry of the viral genome into the target 

host cells. Similarly, targeting HA is highly desired in achieving 

protection against IAVs infection. Conserved HA peptides (HA-epitopes) 

capable of eliciting antibodies that inhibit virus attachment to target cells 

are attractive immunogens to include in vaccine formulations against 

influenza virus infection. Using ISM technology, potential antigenic 

epitopes from HA, that share common immunogenically cross-reactive 

informational characteristics among different IAV subtypes, were 

selected and used as subunit vaccine against IAV infection. Subunit 

vaccines nonetheless, are often poor immunogens that require a potent 

adjuvant to be more efficacious. Bacterial components like flagellin as 

well as some costimulatory molecules, for example CTLA4, on the other 

hand, are powerful tools that can modulate both the innate and/or 

adaptive immune response and may serve as effective adjuvants. 

Including such adjuvants along with conserved HA epitopes in vaccine 

formulations may provide a broad and efficacious cross-protective 

immune response against heterovariant/heterosubtypic influenza virus 

infections. 

2.2. General and specific objectives: 

The general objective of the present thesis is to improve IAV vaccine 

efficacy. To this end, various vaccine formulations, based on in silico 
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predicted HA-epitopes, combining with different adjuvants co-

administered either in plasmid or soluble form were developed. The 

vaccine formulations were further evaluated in different animal infection 

models to validate the efficacy of vaccine to induce effective immune 

response and protection against IAV infections. 

I. To evaluate DNA influenza vaccine, encoding one HA-epitope 

(NG-34) fused with cytotoxic T lymphocyte-associated antigen 

(CTLA4), against a heterologous (SwH3N2) IV challenge in pig 

model. The vaccine efficacy was also evaluated in pigs presenting 

MDA (Chapter III). 

 

II. To evaluate DNA influenza vaccine, encoding a combination of 

conserved immunogenic HA-epitopes along with flagellin (VC4-

flagellin), in SIV-seronegative and SIV-seropositive pigs (Chapter 

IV) against IV challenge. 

 

III. To test the vaccine efficacy of soluble larva extracts expressing 

flagellin-NG34/CS17 (two HA-epitopes fused with flagellin) 

against a heterologous (H7N1 HPAIV) IV challenge in chickens 

(Chapter V).  
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3. Study I 
“Conserved HA-peptide NG34 formulated in pCMV-CTLA4-

Ig reduces viral shedding in pigs after a heterosubtypic 

influenza virus SwH3N2 challenge” 

 

3.1. Abstract 

Previously, our group has reported the use of conserved hemagglutinin peptides 

(HA-peptides) derived from H1-influenza virus as a potential multivalent 

vaccine candidate. Immunization of swine with these HA-peptides elicited 

antibodies that recognized and neutralized heterologous influenza viruses in 

vitro and demonstrated strong hemagglutination-inhibiting activity. In the 

present work, we cloned one HA-peptide (named NG34) into a plasmid fused 

with CTLA4 which is a molecule that modifies T cell activation and with an 

adjuvant activity interfering with the adaptive immune response. The resulting 

plasmid, named pCMV-CTLA4-Ig-NG34, was administered twice to animals 

employing a needle-free delivery approach. Two studies were carried out to test 

the efficacy of pCMV-CTLA4-Ig-NG34 as a potential swine influenza vaccine, 

one in seronegative and another in seropositive pigs against SIV. The second 

one was aimed to evaluate whether pCMV-CTLA4-Ig-NG34 vaccination would 

overcome MDA. After immunization, all animals were intranasally challenged 

with an H3N2 influenza strain. A complete elimination or significant reduction 

in the viral shedding was observed within the first week after the challenge in 

the vaccinated animals from both studies. In addition, no challenged 

heterologous virus load was detected in the airways of vaccinated pigs. Overall, 

it is suggested that the pCMV-CTLA4-Ig-NG34 vaccine formulation could 

potentially be used as a multivalent vaccine against influenza viruses. 
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3.2. Introduction 

Influenza-like disease in pigs started occurring in both US and Europe in 

connection with the human influenza pandemic in 1918. Proof of this is 

the close relationship between the early H1N1 swine viruses with the 

human influenza virus of 1918, as determined by genetic analyses [184]. 

 

SIVs co-circulating in European swine are from the subtypes H1N1 

(SwH1N1), H3N2 (SwH3N2) and H1N2 (SwH1N2) [100,101] that are 

also equivalent to the more prevalent subtypes in North America [369]. 

Thus, in line with the circulating subtypes in the swine population 

[100,101,369], current commercial vaccines available for pigs consist of 

two or three inactivated SIV strains belonging to the aforementioned 

subtypes. Vaccines are commonly administered in pregnant sows to 

stimulate passive antibody transfer via colostrum. Regrettably, protection 

with these commercial vaccines is only achieved when the strain either 

closely or completely matches with the challenged virus [8,370–373]. The 

reported lack of protection against divergent strains is thought to be 

associated with the poor stimulation of the mucosal and cellular 

immunity provided by inactivated-typed vaccines [8,374,375]. It is thus 

fundamental to seek new vaccine strategies eliciting robust immune 

response and protection against drifted or emerging strains occurring 

from antigenic drift or antiviral shift, respectively.  
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The new emergent vaccine formulas must take MDA interference into 

account since the presence of MDA inhibit/neutralize current vaccines 

[376,377]. Even though optimal vaccination of animals should begin at 

the time of disappearance of maternal antibodies, this approach is often 

unfeasible due to a high degree of variability in antibody titers between 

individuals [378]. Similarly, inactivated-type vaccines may pose 

drawbacks in piglets with MDA by suppression of the antibody responses 

[379–381], and because they may enhance respiratory diseases upon 

influenza infection [382,383] or cause an aggravated pneumonia called 

vaccine associated enhanced respiratory disease (VAERD) [384]. Thus, 

an additional aim of this work was to evaluate the capacity of the vaccine 

to provide protection against a heterologous influenza virus strain to 

individuals with MDA. 

Our group has previously reported the use of an HA1-based peptide (NF-

34) in pigs as potential vaccine [331]. Partial virus clearance after an 

intranasal challenge with the homologous pH1N1 (pandemic swine-

origin A/Catalonia/63/2009 H1N1 IV) influenza virus was observed 

along with a strong humoral and T-cell response in animals vaccinated 

with the NF-34 HA-peptide. Although NF-34 HA showed concomitant 

detection of antibody response it did not totally correlate with 

neutralizing activity [331]. In the present study, NF-34 peptide has been 

modified (named NG-34) and employed in a DNA vaccine approach 

(pCMV-CTLA4-Ig-NG34). In addition, to ameliorate safety and large-

scale vaccination approaches, a needle-free intradermal administration 

technique intra dermal application of liquids (IDAL® device) was 

applied. 



Chapter III 

 
62 

The research objectives were two-fold in two different swine experiments 

depending on the initial presence/absence of MDA. Firstly, to assess 

vaccine efficacy against a heterologous SIV isolate in seronegative 

animals (SwH3N2) and, secondly, to investigate whether farm animals 

could clear a heterologous virus challenge, thus overcoming MDA 

obstacles. 

 

In the present work, we demonstrated that immunization of seronegative 

pigs with pCMV-CTLA4-Ig-NG34 antigen formulation induced 

neutralizing antibodies that inhibited hemagglutination of a 

heterologous SIV. Moreover, immunized conventional farm pigs (both 

the influenza virus seropositive and seronegative) were fully or partially 

protected against a heterologous influenza virus challenge as they either 

completely eliminated or significantly reduced virus secretion and 

cleared the virus from the respiratory airways. 

 

3.3. Materials and methods 

3.3.1.   Ethics statement 

All animal studies presented in this work were approved by IRTA’s 

Ethics Committee for Animal Experimentation and the Animal 

Experimentation Commission from the Catalonia Government (Spain) 

in compliance with the Directive, EU 63/2010, the Spanish Legislation 

(RD 53/2013) and the Catalan Law 5/1995 and Decree 214/1997. 

Treatment with anesthetics or analgesics was not considered because 
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animals did not suffer from the disease and/or experimental 

manipulation. 

3.3.2.  Experimental design 

The results presented in this chapter are representative of two almost 

identical experimental studies performed in swine, whose outlines are 

described in Figure 3-1. In both studies, animals were observed daily 

during the course of the experiments by monitoring for flu-like clinical 

signs and rectal temperature profiles; and the severity of clinical signs 

was assessed from 0 to 3 according to a previously described scoring 

[385]. Animals received water and food ad libitum. 

Clinically healthy pigs were selected and tested for presence of specific 

antibodies in sera against the influenza NP using the ID Screen® 

Influenza A Antibody Competition ELISA (ID VET, France) kit. SIV-

seronegative animals were selected for study I. For MDA positive pig 

studies, piglets were obtained from vaccinated sows and were controlled 

for having NP antibodies by ELISA. Moreover, in both cases, RT-qPCR 

(see 3.3.7.; “Quantitative real time RT-PCR (RT-qPCR)”) was also 

determined to ensure animals were not exposed to IAVs. 

In a first study, 10 five-to-six week-old, influenza A virus seronegative, 

Yorkshire x Landrace pigs were used. Animals were housed, vaccinated 

and challenged in the animal BSL-3 facility at CReSA (Barcelona, Spain). 

Animals were randomly distributed into two groups of 5 animals each 

(Group A = non-vaccinated pigs, animals 1-5; Group B = vaccinated pigs, 

animals 6-10). After an acclimatization period of 5 days, five pigs were 

vaccinated twice with an interval of 3 weeks by injecting the final 
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plasmid formulation using a needle-free device (IDAL®, MSD Animal 

Health, Salamanca, Spain), on the dorsal side of the back of each animal 

as previously described [386]. 

Figure 3-1. Experimental outline of two studies. (A) 1st study outline: 

seronegative pigs against SIV were vaccinated at 0 and 21 days, and 

challenged at 42 days. Sera were collected each pre-vaccination, pre-

challenge and at necropsy day (7 dpi), as indicated. Lung tissues at 7 dpi. 

Nasal swabs collection took place at challenge day and at all days 

indicated in the figure. (B) 2nd study outline: seropositive pigs against 

SIV, vaccinated at 0 and 21 days, and challenged at 42 days. Sera were 

collected each pre-vaccination, pre-challenge and necropsy days (7 and 14 

dpi). Lung tissues were obtained at 7 and 14 dpi. In this case, BALFs 

were also collected at 7 and 14 dpi. Nasal swabs collection took place at 

challenge day and at all days indicated in the figure. Dpi, days post-

inoculation; NS, nasal swabs.  
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The final plasmid formulation used for immunization consisted of 600 

µg DNA construct pCMV-CTLA4-Ig-NG34 (applied in 3 

shots/vaccination) mixed with Diluvac Forte® from MSD Animal Health 

(1:1 v/v). The remaining five pigs were sham-vaccinated (control group). 

Two weeks after the second vaccination, both groups received an 

intranasal challenge of a SIV H3N2 isolate at a concentration of 106 

TCID50/mL in 3 mL saline solution into each animal (1.5 mL/nostril) 

by using the MAD® device (Intranasal Mucosal Atomizing Device, 

Teleflex® Inc. NC, USA). Euthanasia and necropsies were carried out 7 

days post-inoculation (dpi). Sera from all individuals were collected 

previous to each immunization, before the challenge, and at 7 dpi. Nasal 

swabs were collected before challenge and at 5 and 7 dpi. Eventually, 

lung tissues were obtained and fixed by immersion in 10% neutral buffer 

formalin to perform the histopathological analysis.  

 

The second study was performed applying identical conditions as those 

of the first study, albeit with influenza A virus seropositive animals. The 

goal of this second study was to simulate conditions generally occurring 

under usual conventional farm conditions. For that reason, animals were 

vaccinated in the farm and were transported to BSL-3 facilities for 

challenge. Each group consisted of six animals (Group A = non-

vaccinated pigs, animals 1-6; Group B = vaccinated group, animals 7-14), 

and three pigs were euthanized at either 7 or 14 dpi. Sample collection 

was similar in both studies until day 7, albeit at different times. In this 

study, nasal swabs were collected before challenge and at 5, 7, 11 and 14 
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dpi. Moreover, BALFs were collected from the right lung of each pig at 

the time of euthanasia (7 and 14 dpi). 

 

A complementary study with three SIV-seronegative pigs was performed 

in order to evaluate the immunogenic effect of the plasmid without the 

NG-34 sequence (empty vector). The same experimental design as the 

described for the study 1 was carried out (Figure 3-1), but animals were 

vaccinated with 600 µg DNA construct pCMV-CTLA4-Ig. Here, BALFs 

were also collected at 7 dpi.  

 

3.3.3.   Cells, virus and antigens 

Madin-Darby Canine Kidney (MDCK, ATCC CCL-34) cells were 

cultured in Dulbecco's Modified Eagle Medium (DMEM), supplemented 

with 10% fetal bovine serum (FBS), 1% penicillin/streptomycin and 1% 

L-glutamine. The cell cultures were kept at 37ºC with 5% CO2 

atmosphere in a humidified incubator.  

SwH3N2 (A/swine/Spain/003/2010 H3N2 IV) [GenBank JQ319724 

and JQ319726] influenza virus was used in this study for the intranasal 

challenge. The 50% tissue culture infectious dose (TCID50) was 

calculated in MDCK cells according to Reed and Muench method [387]. 

The sequence identity between antigen of interest (NG-34) and challenge 

virus, SwH3N2, used in this study is of 26% (Table 3-1).  
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Table 3-1. Amino acid sequence of NG-34 (peptide of interest) and the 
HA from the challenged virus (A/swine/Spain/001/2010 (H3N2). 

Antigen Aminoacid sequence 

NG-34 NSDNGTCYPGDFIDYEELREQLSSVSSFERFEIF  

HA from 

A/swine/Spain/001/2010 

(H3N2) 

KA -  FSNCYPYDVPEYTSLRSLIASSGTLEFTNED 

 The amino acid identity between sequences is depicted in bold.  

Purified hemaggluinins of A/California/04/09(H1N1)pdm09 and 

A/Aichi/2/1968 (H3) were purchased from SinoBiological (Sino 

Biological, cat. no. 40340-V08B and 11707-V08H; respectively) and were 

used as antigens. 

 

3.3.4.   Sample collection 

Nasal swabs collected at predetermined time points were placed in 500 

µL of PBS with antibiotics (100 U/mL penicillin and 0.1 mg/mL 

streptomycin). Serum samples were obtained from the jugular vein. After 

necropsy, BALFs from animals from the second study were also obtained 

by introducing 150 mL of PBS into the right lung of each pig, massaged 

gently and recollected into 50 mL falcon tubes [388]. BALFs were further 

centrifuged to remove cells. All supernatant samples were stored at -80ºC 

until analysis.  
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3.3.5.   Pathological assessment 

Complete necropsies were performed, with special emphasis on 

macroscopic examination of lung parenchyma. Moreover, samples from 

apical, medial and cranial part of diaphragmatic pulmonary lobes were 

taken and fixed by immersion in 10% buffered formalin. Lung tissues 

were then embedded in paraffin, cut in 5 µm sections, stained in 

hematoxylin and eosin, and the severity degree of BIP was scored in a 

blinded fashion by a single pathologist using established criteria [389].  

 

3.3.6.   Plasmid synthesis 

Two amino acids were replaced from the original HA1-based peptide 

(NF-34) to design the NG-34 peptide (Table 3-2). NG-34 peptide derives 

from the HA1 protein of the pH1N1 A/Catalonia/63/2009 strain 

[GenBank: ACS36215] and was theoretically predicted by the ISM, and 

mapped within the flanking region of the HA1. In order to enhance 

immunogenicity, the NG-34 peptide sequence was reverse-translated and 

cloned into an expression vector encoding human IgG fused with the 

extracellular domain of CTLA4. EndoFree plasmid gigakit (Qiagen, 

Barcelona, Spain) was used for purification and large-scale plasmid 

production. The plasmid was resuspended in sterile saline solution and 

stored at -20°C until use. 
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Table 3-2. Amino acid modifications in peptide NF-34 to obtain the 
NG-34 peptide. 

Peptide  Aminoacid sequence 

NF-34 NSENGTCYPGDFIDYEELREQLSSVSSFEKFEIF  

NG-34 NSDNGTCYPGDFIDYEELREQLSSVSSFERFEIF  

The amino acids differences between sequences are depicted in bold 

type.  

 

3.3.7.   Quantitative real time RT-PCR 
(RT-qPCR) 

A TaqMan RT-qPCR was carried out to determine and quantify viral 

RNA in nasal swabs and BALFs collected at different time-points during 

the study. Extraction of RNA was carried out using NucleoSpin RNA 

isolation kit (Macherey-Nagel GmbH&CoKG, Düren, Germany) 

according to the manufacturer's instructions. Primers and probes used in 

this study, one-step RT-PCR Master Mix Reagents (Applied Biosystems, 

Foster City, CA, USA) and amplification conditions ran in a Fast7500 

equipment (Applied Biosystems) to amplify the conserved fragment of 

the matrix (M) gene of influenza viruses are described elsewhere [390]. 

Samples in which fluorescence was undetectable were considered 

negative. 
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3.3.8.   Subtypic quantitative real time RT-
PCR (RT-qPCR) 

Viral RNA extracted with NucleoSpin RNA isolation kit (Macherey-

Nagel GmbH&CoKG, Düren, Germany) was tested to amplify a 95 base-

pairs (bp) fragment of the HA gene of the challenged strain 

A/swine/Spain/003/2010 H3N2 IV. Based on a previous work, specific 

primers for the subtype H3 were designed [391]: forward 5’-

TCCTTTGCCATATCATGCTTTTTG-3, and reverse 5’-

ATGCAAATGTTGCACCTAATGTTG-3’. Specificity of primers was 

checked utilizing BlastN [392] through the Influenza Research Database 

(https://www.fludb.org/brc/blast.spg?method=ShowCleanInputPage&d

ecorator=influenza) [393]. Real time amplification was performed 

employing the Power SYBR Green RNA-to-CT 1-Step Kit (Applied 

Biosystems, P/N #4389986) following manufacturer’s indications and 

using 2 μL of eluted RNA in a total volume of 20 μL. In brief, for RNA-

to-CT 1-Step, the real-time PCR was performed using a Fast7500 

equipment (Applied Biosystems, Foster City, CA, USA) and following 

cycles: 48ºC for 30 min (for cDNA synthesis), 95ºC for 10 min 

(transcriptase inactivation), followed by 95ºC for 15 s and 60ºC for 1 

min for 40 cycles. Dissociation curve (melting curve) analyses were 

performed employing the parameters of a hot start at 60ºC for 15 s and 

measuring the fluorescence every 0.5ºC until 95ºC to confirm specific 

amplification. 

 

Prior to the setting up of the RT-qPCR, standards were constructed. The 

amplification conditions for 95 bp of the HA fragment were: a reverse 

transcription at 50ºC for 30 min, an initial denaturation reaction at 



  Study I 

 
71 

95ºC for 15 min and 40 PCR-cycles of 94ºC 30 s, 55ºC 1 min and 72ºC 

1 min. The obtained HA gene fragment amplicon was cloned into 

pGEM-T vector (Promega Madison, WI, USA) and transformed by heat 

shock in Escherichia coli TOP10 competent cells (Invitrogen, Paisley, UK). 

The recombinant plasmid was purified using the QIAprep Spin kit 

(Qiagen) and quantified by using BioDropµLITE Spectrophotometer 

(BioDrop Ltd, Cambridge, UK). The copy number of recombinant 

plasmid was calculated as described elsewhere [394] by following the 

formula: N (molecules per μL) = (C (DNA) μg/μL/K (fragment size in 

bp)) × 182.5 × 1023 (factor derived from the molecular mass per the 

Avogadro constant). Serial 10-fold dilutions of known concentration 

were made and the standard curves were generated using copies of the 

recombinant plasmid harbouring the HA gene fragment from the 

SwH3N2 isolate. 

 

3.3.9.   Immunoassays 

Virus-antigen specific serum antibodies were detected by enzyme-linked 

immunosorbent assays (ELISA). The influenza virus proteins used to 

detect specific antibodies were hemagglutinins (HA) from 

A/California/04/09(H1N1)pdm09 and A/Aichi/2/1968(H3N2). 

Briefly, ELISA plates (Costar, Corning Incorporated) were coated 

overnight with 2 µg/mL recombinant influenza hemagglutinin protein 

antigen in sodium bicarbonate (50 mM) buffer at 4ºC. Blocking was 

performed using 3%BSA/PBS for 1 hour at room temperature following 

washes with 1% Triton X-100/PBS. Sera were diluted 1:100 in the 
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blocking buffer and added to the 96 well plates during an incubation 

period of 1 hour at room temperature. Then, plates were washed four 

times and incubated during 30 minutes at 37ºC with an anti-pig IgG 

(whole molecule)-Peroxidase (Sigma) diluted 1:10000 with the washing 

buffer. Plates were again washed four times with 1%Triton X-100 PBS 

and 50 µL of 3, 3’, 5, 5’-tetramethylbenzidine (TMB) was added during 8 

to 10 minutes for the enzymatic reaction. Finally, the reaction was 

stopped by adding 50 µL of 1 N H2SO4. All samples were analyzed in 

triplicates. 

 

3.3.10.  Inhibition of the hemagglutination assay 
(IHA) 

IHA was performed following the standard procedures described 

previously [331]. Positive and negative sera against H3N2 were purchased 

from GD Animal Health, Deventer, The Netherlands. All sera were 

analyzed in duplicate. 

 

3.3.11.  Statistical analysis 

Mean and standard deviations were calculated with Excel 2007 

(Microsoft Office) and statistical differences between the groups were 

calculated. Briefly, all data obtained were first normalized by Shapiro-

Wilk test and later the groups were compared using either the t-test (in 

case of normally distributed data), or the Wilcoxon test (in case of non-

normally distributed data). All calculations were carried out using R 

statistical software (http://cran.r-project.org/).  
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3.4. Results 

3.4.1.  Clinical and pathological evaluation 

In the first study, one animal from unvaccinated group (animal 5) 

manifested fever at 4 and 7 dpi. From the vaccinated group, fever could 

be detected in four out of five pigs; three of them (animals 6, 7 and 8) 

had fever during days 2, 3 and 4 post-inoculation and one of them 

(animal 9) on days 3 and 4. No other clinical signs could be observed, 

except one vaccinated animal (animal 8), which was coughing at 4 and 5 

dpi. Likewise, four out of six animals had fever in the unvaccinated 

group (animals 1, 2, 5 and 6) and three out of six from the vaccinated 

group (animals 7, 8 and 11) from the second study. Also, one animal 

from each group was coughing (animal 1 and 14, both at 3 dpi), and 

only one vaccinated pig (animal 7) showed apathy and a loss of weight 

after the challenge.  

In the first study, no differences in the histological lesions in the lung 

tissues were found at 7 dpi between groups. No differences in the 

severity of the histological lesions in the lung tissues were detected at 7 

or 14 dpi in the second study (Table 3-3). Figure 3-2 shows different 

sections of histological lung tissues illustrating the different scoring 

values (0, 1, 2 or 3). Additionally, besides the BIP scoring, other 

pathological findings were also recorded. In the first study, animal 8 had 

bronchiolitis fibrosa obliterans. In the second study, suppurative 

bronchopneumonia was present in one animal from the unvaccinated 

group (animal 1) and in 3 out of 6 animals from the vaccinated group 

(animals 7, 9 and 10), pig 8 had fibrous pleuritis.  
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Table 3-3. Scoring and observations given to each hematoxylin-eosin 

stained preparation for every single pig of 2nd study. 

Vaccine 
applied 

Animal 
identification 

Necropsy 
date 

Broncho-interstitial 
pneumonia (BIP) 

Unvaccinated 1 7 dpi 2 

2 7 dpi 2 

5 7 dpi 3 

3 14 dpi 0.5 

4 14 dpi 1.5 

6 14 dpi 0.5 

Vaccinated 7 7 dpi 3 

9 7 dpi 3 

12 7 dpi 2 

8 14 dpi 2 

10 14 dpi 0.5 

11 14 dpi 1 

Figure 3-2. Representative sections from lung samples fixed with 

formalin and embedded in paraffin, stained with hematoxylin and 

eosin and microscopically evaluated following the scoring system [389] 

(magnification 100x): (A) scoring 0, (B) scoring 1, (C) scoring 2, and (D) 

scoring of 3.  
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3.4.2.  Immunization with pCMV-CTLA4-Ig-
NG34 eliminates or significantly reduces viral shedding 

In comparison to the control group, pigs immunized twice with pCMV-

CTLA4-Ig-NG34 showed reduced viral shedding within the first week 

after challenge in both studies (Figure 3-3). The mean of genomic 

equivalent copies (GEC) per mL of the vaccinated pigs was inferior to 

the mean of the unvaccinated group at 5 and 7 dpi (Figure 3-3A). 

Remarkably, in the first study (seronegative pigs) from the vaccinated 

group, in three out of five animals no viral RNA was detected at 7 dpi. 

In contrast, viral RNA could be detected in all the five pigs from the 

unvaccinated group (P<0.01) (Figure 3-3A). Moreover, one animal from 

the unvaccinated group (animal 3) died, most likely due to a secondary 

bacterial infection. A reduction in the subtypic RNA shedding was also 

observed at 5 dpi in pCMV-CTLA4-Ig-NG34 vaccinated seronegative 

animals; however, no virus was detectable in the vaccinated and non-

vaccinated animals on day 7 post-inoculation (Figure 3-3B).  

 

In animals with MDA (Study II; seropositive pigs), the mean of GEC per 

mL was lower at 5 and 7 dpi than those observed in the unvaccinated 

group. Noteworthy, at 7 dpi, in two out of the six animals (animals 8 and 

9) we could not detect viral RNA (P<0.05) (Figure 3-3C). Regarding 

subtypic viral RNA in MDA positive animals, at 5 and 7 dpi, the mean 

of GEC per mL, was lower than those of the unvaccinated group. 

Furthermore, at 7 dpi viral RNA could not be detected in two vaccinated 

animals (Figure 3-3D). The unvaccinated-infected pigs continued 

shedding influenza virus up to 14 dpi (Figure 3—3C) whereas IV virus was 
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not detected in vaccinated group at 11 dpi, and only in one vaccinated 

pig at 14 dpi (Figure 3-3C). Results from the vaccinated pigs with pCMV-

CTLA4-Ig (empty plasmid) showed that none of the three pigs were 

reducing the viral shedding at 7 dpi (S1 Table).  

Figure 3-3. Viral detection in nasal swabs samples by RT-qPCR. (A) 

Mean values of GEC per mL obtained from nasal swabs samples (1st 

study) collected at 0, 5 and 7 dpi, from seronegative animals and (B) 

subtypic RT-qPCR results from the 1st study (C) Mean values of GEC per 

mL obtained from nasal swabs samples (2nd study) collected at 0, 5, 7, 11 

and 14 dpi from seropositive animals and (D) subtypic RT-qPCR from 

the 2nd study. Grey bars correspond to Group A (unvaccinated group) 

and black bars to Group B (pCMV-CTLA4-Ig-NG34 vaccinated group). 

Dpi, days post-inoculation. Dashed lines indicate the detection limit of 

the assays: 1.24 log10GEC/mL. Error bars indicate the mean ± SEM.  
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3.4.3.  Humoral response to a heterologous 
influenza virus after pCMV-CTLA4-Ig-NG34 vaccination 

To determine whether the NG-34 peptide of H1N1 origin could confer 

protection against a heterosubtypic circulating influenza strain, pigs were 

challenged with the H3N2 influenza virus subtype. In addition, 

attempting to potentially improve the vaccine efficiency, we decided to 

deliver the antigen in a DNA vaccination approach instead of peptide. 

Immunogenicity of the vaccine was examined by the presence of specific 

antibodies, raised against H1 and H3, and their ability to inhibit the 

hemagglutination against the challenged heterologous virus in the sera 

collected from vaccinated and non-vaccinated animals. Specific immune 

response in the BALFs collected from MDA seropositive animals (from 

the 2nd study) was also examined by testing for specific H1 and H3 

antibodies. 

 

pCMV-CTLA4-Ig-NG34 immunization in pigs elicited antibodies that 

were recognizing both the H1 and H3 hemagglutinin subtypes (Figures 3-

4A and B). Increased antibody levels were observed at 35 post-vaccination 

days (PVD, pre-challenge) in the vaccinated group (Figures 3-4A and B). 

The levels of antibodies were higher against H1 (Figure 3-4A), since NG-

34 belongs to H1 subtype. Furthermore, sera from all vaccinated 

animals, collected 7 days after the intranasal challenge with SwH3N2 

influenza virus, manifested a potent boost in H3 subtype-specific 

antibodies in comparison to non-vaccinated SwH3N2 influenza virus 

infected control group (Figure 3-4B).  
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Additionally, we evaluated the H1 and H3 subtypes HA-specific IgG 

titers in BALFs samples. While not statistically significant, vaccinated 

animals achieved a greater antibody titer at the two necropsy points of 

the 2nd study, with increased values at 14 dpi (Figures 3-4C and D). The 

difference encountered was greater for antibodies against the H3 subtype 

among groups and, in a higher rate, likely due to the fact that an H3 

virus was used for the challenge.  

None of the pigs vaccinated with pCMV-CTLA4-Ig (empty plasmid) 

raised antibodies against H3 subtype before or after the challenge against 

SwH3N2 (S1 Table). 

To further evaluate whether antibodies obtained from seronegative pigs 

(Study I) could inhibit the attachment of the virus to the chicken red 

blood cells (cRBCs), an IHA against the challenged virus was carried out. 

Albeit only detecting HI activity at 7 dpi, results displayed in Figure 3-5 

suggest that all swine from the vaccinated group had significantly higher 

detectable HI titers than the non-vaccinated pigs (P<0.05). None of the 

pigs vaccinated with pCMV-CTLA4-Ig (empty plasmid) could inhibit the 

hemagglutination of SwH3N2 (S1 Table). 
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Figure 3-4. Serum antibody HA-specific IgG titers detected in sera and 

BALFs samples by ELISA test. Mean of serum antibody levels detected 

in all individuals at time-points 0, 20 PVD and 35 PVD, and 7 dpi of 

Groups A and B (A) against HA from 

A/California/04/09(H1N1)pdm09, and (B) against HA from 

A/Aichi/2/1968(H3N2) are shown. Mean of BALFs antibody levels 

detected in pigs necropsied at 7 and 14 dpi of Groups A and B (C) 

against HA from A/California/04/09(H1N1)pdm09, and (D) against 

HA from A/Aichi/2/1968(H3N2). Grey circles/bars designate group A 

(unvaccinated group), and black squares/bars designate group B (pCMV-

CTLA4-Ig-NG34 vaccinated group). OD, optical density. PVD, post-

vaccination days and dpi, days post-inoculation. Error bars indicate the 

mean ± SEM. Statistically significant differences between vaccine 

treatment groups (P value <0.05) are marked with **: P<0.01, ***: 

P<0.001, ****:P<0.0001. 
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Figure 3-5. IHA activity at 7 dpi against SwH3N2 in sera from 

seronegative pigs (Study I). HI titer obtained with sera from 

unvaccinated (Group A) and vaccinated (Group B) pigs, at 7 dpi against 

the SwH3N2. Grey circles designate group A (unvaccinated group), and 

black squares designate group B (pCMV-CTLA4-Ig-NG34 vaccinated 

group). HI: Hemagglutination inhibition. Error bars indicate the mean ± 

SEM and statistically significant differences between vaccine treatment 

groups (P value <0.05) are marked with *:P<0.05. 

 

3.4.4.  Virus detection in BALFs 

BALFs collected in the second study were also used to assess whether at 

7 dpi and 14 dpi SIV RNA could be detected in the respiratory tract of 

the lungs. While no viral RNA could be detected at 14 dpi in any of the 

vaccinated pigs, differences between groups were evident at 7 dpi. 

Influenza virus RNA could not be detected in any of the BALFs collected 

from the vaccinated pigs. In contrast, BALFs from two out of the three 

non-vaccinated pigs were positive for SIV RNA (Figure 3-6), 
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demonstrating a clearance of viral RNA in the respiratory airways from 

the pCMV-CTLA4-Ig-NG34 vaccinated pigs. Data gathered from the 

complementary study showed that none of the three pigs vaccinated with 

pCMV-CTLA4-Ig (empty plasmid) cleared the infection in the lung (S1 

Table).  

 

 

 

 

 

 

 

 

Figure 3-6. Influenza viral RNA detection in BALFs performed by RT-

qPCR. GEC per mL values obtained in BALFs samples, obtained from 

MDA positive animals (Study 2), from unvaccinated (Group A) or 

vaccinated (Group B) pigs at 7 dpi, corresponding to necropsy day. Grey 

circles designate group A (unvaccinated group), and black squares 

designate group B (pCMV-CTLA4-Ig-NG34 vaccinated group). Dashed 

lines indicate the detection limit of the assay: 1.24 log10GEC/mL. 

 

 

Group A Group B
0

1

2

3

4

RT-qPCR in BALF

Necropsied animals at 7 dpi

L
og

1
0G

E
C

/m
l



Chapter III 

 
82 

3.5. Discussion 

Conserved peptides are highly desirable vaccine antigens/candidates for 

various reasons [395], particularly with regard to safety and ease of 

production. NG-34, the peptide antigen used in this study, is relatively 

conserved and, as we reported previously [331], it consists of both a B 

and T cell epitope. For this dual role of the peptide fomenting both 

humoral and cellular responses in conventional pigs and the 

demonstrated in vitro cross-protective immune reaction [331], we are 

seeking new strategies to present the antigen in a formulation that can 

potentiate the immune response and confer protection against influenza 

virus infection. For this purpose, NF-34 was modified to NG-34. 

Immunization of mice with this modified HA-peptide (NG-34) elicited 

sustained antibodies with strong neutralizing capacity [396]. Moreover, 

by cloning NG-34 into the pCMV-CTLA4-Ig plasmid, our intention was 

to target the APCs with the objective to induce an enhanced immune 

response. CTLA4 was chosen due to its described adjuvant like role at 

low doses as it delivers fused antigens to APCs [397]. Data reported in 

mice [397] indicated that targeting antigens to APCs by means of 

CTLA4 increased both the humoral and the cellular responses. The role 

of CTLA4-Ig as an adjuvant has also been reported in other studies 

including a model of asthma [398]. Although it has been described that 

IgG2a production is predominant after DNA immunization [399], mice 

immunized with DNA-CTLA4-Ig generated enhanced levels of distinct 

IgG subclasses (IgG1, IgG2a, IgG2b), with a predominance of the IgG1 

subtype [397]. This suggests that CTLA4 might have caused a non-
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specific change in the immune response, possibly by a direct stimulation 

of APCs. 

 

An intradermal delivery approach was chosen for vaccine prototype 

delivery mainly owing to a large number of studies [400–402] warranting 

higher antibody titers by this method in comparison to gene injection 

into skeletal muscles. Furthermore, using this approach we facilitated 

DNA uptake by skin-associated-lymphoid tissue that may play a role in 

inducing cytotoxic T cells against viruses or intracellular pathogens [401]. 

We used the DNA vaccine delivery approach first described by [403] 

which was previously applied also using another influenza DNA vaccine 

in pigs with challenge [404]. Optimal influenza DNA plasmid doses 

(moles) were identified and suggested using this delivery method in pigs 

[386]. Using the same delivery method in pigs but another multivalent 

influenza DNA vaccine we also were able to break MDA and protect pigs 

from influenza challenge. Since the DNA vaccine and the challenge 

strain (H1N1psm2009) were different, we cannot compare. However, the 

influenza DNA studies both suggest that naked DNA vaccine seems all 

very powerful in protecting pigs from heterologous influenza strains of 

both H1N1 and H3N2. Similar results have been consistently reported 

by others using different influenza DNA and delivery methods [405,406]. 

 

Introduction of the NG-34 peptide sequence into plasmid together with 

CTLA4 further improved the immunogenicity and protective potential 

of the peptide-based vaccine previously reported by our group [331]. 
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Moreover, seeing the complementary study data using pCMV-CTA4-Ig it 

is evident that the combination of CTLA4 with NG-34 is fundamental. 

An additional DNA adjuvant effect may be obtained using the Diluvac 

diluent containing tocopherol [407]. Vaccinated animals completely 

eliminated virus from the lung within 7 days after challenge as 

demonstrated from BALFs samples collected from seropositive pigs. 

Additionally, in seronegative vaccinated animals, viral shedding was also 

reduced to basic levels within 5 to 7 days after infection, suggesting that 

transmission of the virus could greatly be reduced with the vaccine 

approach used. Interestingly, vaccinated MDA positive could also reduce 

virus replication and shedding, suggesting that pCMV-CTLA4-Ig-NG34 

vaccine could overcome a possible inhibition/delay in inducing an active 

antibody and/or cellular immune response [379,386]. We occasionally 

see virus secretion from the vaccinated pigs at 14 dpi, but we assume this 

might be by contact (residual) coming from the non-vaccinated animals. 

The virus clearing effects could apparently be linked to CTLA4-Ig 

vaccination that is involved in IgG1 activity promoting Th2 response, in 

a possible transportation of the antigens in lymphoid organs [408] and in 

an increase of the B cell and T cell response [397]. In addition, elevated 

levels of anti-HA specific antibodies at 35 PVD and 7days after a H3N2 

inoculation in the vaccinated pigs might have played a role in the 

elimination of the heterologous challenged virus. Additionally, these 

antibodies potently inhibited the hemagglutination activity of the 

challenged virus at 7 dpi. Moreover and as reported in [331] vaccination 

induced and maintained antibody cross-reactive response against H3N2 

and H1N1 subtype. Furthermore, a tendency of a higher IgG titer in 
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BALFs against H3N2 and H1N1 subtypes was observed in the vaccinated 

MDA animals compared to the non-vaccinated ones.  

 

Clinical signs and lung lesions were similar between groups. However, in 

the first study, more animals from the vaccinated groups had fever than 

the animals from the unvaccinated group. Likewise, there was one 

seropositive pig from the unvaccinated group (2nd study, animal 11) that 

cleared the virus at 7 dpi, at least based on viral RNA presence in BALFs 

samples. This animal coincided to have had the highest MDA levels of 

the group at the onset of the experiment. Besides, due to the small 

number of samples studied for SIV RNA and antibody titers in BALFs, 

no statistical analyses were performed.  

 

In summary, intradermal application of pCMV-CTLA4-Ig-NG34 DNA 

vaccine might represent a potential alternative to combat SIVs and could 

overcome MDA-associated blockage of the virus secretion. We anticipate 

that reducing/blocking/eliminating the influenza virus shedding after 

infection is crucial for concomitant transmission to indirect naïve 

contact pigs. Nonetheless, more studies are indispensable (with larger 

groups) and might be mainly addressed to examine whether the 

presented formulation is also capable of promoting a solid response 

against other widely circulating swine influenza subtypes. 
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4. Study II 
“DNA vaccine based on conserved HA-peptides induces 

strong immune response and rapidly clears influenza virus 

infection from vaccinated pigs”  

 

4.1. Abstract 

The present work aimed to evaluate a new DNA influenza vaccine based on 

distinct conserved HA-peptides fused with flagellin and applied together with 

Diluvac Forte® as adjuvant. Two experimental pig studies were performed to 

test DNA-vaccine efficacy against SIVs in pigs vaccinated with a needle-free 

device (IDAL®). The first one was performed with SIV-seronegative pigs 

intranasally challenged with a pH1N1. In the second study, SIV-seropositive 

animals were intranasally challenged with an H3N2 SIV-isolate. Both 

experiments demonstrated a complete elimination or significantly reduced viral 

shedding within the first week after challenge, suggesting vaccine efficacy 

against both the H1 and H3 influenza virus subtypes. In addition, the results 

proved that MDA did not constitute an obstacle to the vaccine approach 

employed. Moreover, elevated titers in antibodies both against H1 and H3 

proteins in serum and in BALFs was detected in the vaccinated animals along 

with a markedly increased mucosal IgA response. Additionally, vaccinated 

animals developed stronger neutralizing antibodies in BALFs and higher 

inhibiting hemagglutination titers in sera against both the pH1N1 and H3N2 

influenza viruses compared to unvaccinated, challenged-pigs. It is proposed that 

the described DNA-vaccine formulation could potentially be used as a 

multivalent vaccine against SIV infections. 
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4.2. Introduction 

SIVs are common throughout pig populations worldwide and they 

generally cause coughing, sneezing, nasal discharges, fever, conjunctivitis, 

respiratory difficulties, lethargy, decreased food intake [140,405,409,410] 

and, in some instances, abortions in pregnant sows due to fever 

[289,411].  

 

In spite of the reduction in clinical signs and high antibody titers 

induced both in serum and alveolus, commercial vaccines have some 

weaknesses [369,412]. Apart from not being sufficiently protective when 

the strain does not closely match with the ones included in the vaccine 

product, they do not confer protection when facing against heterovariant 

or heterosubtypic challenges [8,371–373]. Some research studies have 

hypothesized that this matter could be related to the lack of cell-

mediated and/or mucosal responses provided by the inactivated-type 

vaccines [8,374,375]. Moreover, it is also evidenced that MDA may 

interfere in the development of immunity provided by vaccination 

[377,381]. Fundamentally, piglets with MDA at vaccination showed 

prolonged flu-like clinical signs, more severe SIV-pneumonia and 

suppression of both humoral and cellular responses in comparison to 

vaccinated MDA-seronegative piglets [377]. 

 

For these abovementioned reasons, many efforts have been directed to 

design a universal vaccine that should cover all relevant subtypes of 

influenza, including varying field strains, and able to avoid the likelihood 
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of emergence of forthcoming pandemic strains. The ideal vaccine should 

also overcome MDA interference. Currently, conserved areas of the virus 

proteins are targeted for the design of such vaccine [331,413–416]. In 

fact, those designs are based on combining different well-conserved 

epitopes to improve their protection and strain coverage.  

 

Our group has defined new vaccine strategies utilizing conserved 

epitopes of the IAVs, specifically from the HA protein [331]. In the 

present work, with the aim to improve our vaccine prototype, a DNA 

vaccine encoding a combination of HA-conserved immunogenic epitopes 

along with flagellin (VC4-flagellin) was designed. Selection of these HA 

peptide epitopes (from H7, H5N1 or pH1N1) was based on the encoded 

informational spectrum frequencies that are common for the IVs judged 

by ISM. Previously, it has been shown that antigens which share a 

common frequency component in their informational spectra are 

immunologically cross-reactive [417].  

 

Instead of immunizing animals with this new construct via 

intramuscular, a needle-free approach (IDAL® device) was used. This 

administration route is safer because of the needle-free system and easy 

to be used in large-scale vaccination programs [403,404]. Moreover, to 

test the broad-based immunity and the protective efficacy of the vaccine, 

both MDA-seropositive and MDA-seronegative animals were used in this 

study. Further, animals were challenged with either pH1N1 or SwH3N2 

to assess the cross-protective effect of the vaccine.  
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Herewith, we demonstrated that vaccination with VC4-flagellin DNA 

induced high titers of seroprotective/neutralizing antibodies and 

contributed in reducing the viral shedding of the vaccinated pigs in 

presence and absence of MDA.  

 

4.3. Materials and methods 

4.3.1.   Immunogen and expression vector 
construction 

Four conserved HA-peptides were predicted in silico by the ISM 

[362,418] and expressed along with a flagellin-derived construct, which 

was also designed by the ISM bioinformatics platform [419]. The 

predicted peptides along with the flagellin were organized in tandem to 

construct the multipeptide: 

PQRERRRKKRGLFGAIAGVEVVNATETVERTNIPRICSKGKRTVD

LGQCGLLTIQVGANDGETIDIDLKQINSQTLSSSGSSGSSGSSIDAA

LAQVDALRSDLGAVQNRFNSAGVEVVNATETVERTNIPRICSKGK

RTVDLGQCGLSLPFQNIHPITIGKCPKYVKSTKLRLATGLRNV, 

designated hereafter as VC-4-flagellin. This sequence was reverse-

translated with codon optimization for swine expression and cloned into 

the pCDNA3.1(+) plasmid (GenScript, NJ, USA). Table 4-1 describes 

each of the four predicted HA epitopes. Expression of the construct was 

controlled by vitro transfection (data not shown). Purification of the 

plasmid at large-scale production was performed with the EndoFree 

plasmid Gigakit (Qiagen, Barcelona, Spain). Purified plasmid DNA was 

quantified by using Biodrop μLITE Spectrophotometer (BioDrop Ltd, 
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Cambridge, UK), resuspended in sterile saline solution and kept at -20ºC 

until used. 

 

Table 4-1. Amino acid sequences from the HA-epitopes used in the 

VC4-flagellin construct, aa positions from their respective consensus 

IVs are also indicated. 

*the most common aa positions of HA-epitopes, though they also could 

be encountered in other aa positions. The aa positions shown are 

according to the reference cited from the GenBank database. 

Abbreviations: aa= amino acid; HA= hemagglutinin; Id=identification. 

 

4.3.2.  Cells and antigens 

Madin-Darby Canine Kidney (MDCK, ATCC CCL-34) cells were used 

to prepare viral stocks and to perform the seroneutralization assays on 

HA-epitopes Aa 
positions* 

Consensus 
virus 

subtype 

GenBank Id 

PQRERRRKKRGLFGAIA 337-357 H5N1 AAC32098.1 

GVEVVNATETVERTNIPRICSKGKRTVDLGQCGLLTI 41-77 H7N1 AGT40751.1 

37-71 H7N7 ACN80240.1 

33-67/ 
37-71 

H7N8 AFP99768.1 

41-75 H7N9 ASV61404.1 

GVEVVNATETVERTNIPRICSKGKRTVDLGQCGL 41-74 H7N3 APD70004.1 

H7N6 ANK78016.1 

H7N7 ANC28237.1 

H7N9 AJU15322.1 

SLPFQNIHPITIGKCPKYVKSTKLRLATGLRNV 168-200 H1N1 ALN12227.1 
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BALFs. MDCKs were grown in DMEM supplemented with 10% FBS, 

1% penicillin/streptomycin and 1% L-glutamine.  

 

Hemagglutinins of A/California/04/09(H1N1)pdm09 and 

A/Aichi/2/1968 (H3N2) were acquired from SinoBiological (Cat no. 

40340-V08B and 11707-V08H; respectively, SinoBiological Inc., PA, 

USA) and were used as purified antigens for in-house ELISA test 

developments. 

 

4.3.3.  Ethics statement 

Experiments with SIVs were performed at the BSL-3 facilities at IRTA-

CReSA (Barcelona, Spain). The experiment protocols were supervised 

and approved by the Ethical and Animal Welfare Committee of IRTA 

and the Ethical Commission of Animal Experimentation of the 

Autonomous Government of Catalonia.  

In addition, both conducted research studies followed the Directive UE 

63/2010, the Spanish Legislation, RD 53/2013, the Catalan Law 

5/1995 and Decree 214/1997. 

Animals from Study II were housed in a conventional farm during the 

immunization, and transferred to BSL-3 facilities one week prior to 

challenge (adaptation period).  
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4.3.4.  Animal experimental design 

Two experiments were carried out to assess the DNA-vaccine efficacy in 

vivo (Table 4-2). Clinically healthy pigs were selected and tested for 

presence of specific antibodies in sera against the influenza NP using the 

ID Screen® Influenza A Antibody Competition ELISA (ID VET, France) 

kit. SIV-seronegative animals were selected for Study I. For MDA 

positive pig studies, piglets were obtained from vaccinated sows and were 

controlled for having NP antibodies by ELISA. Moreover, in both cases, 

RT-qPCR (see 4.3.8.; “Quantitative real time RT-PCR (RT-qPCR)”) was also 

determined to ensure animals were not exposed to IAVs. 

Table 4-2. Schematic outline of Studies I and II. 

 

4.3.4.1.  Study I (SIV-seronegative pigs/challenged with 

pH1N1) 

Ten 5-to-6-week-old male pigs seronegative against SIV were randomly 

divided into two groups: animals 1-5 (Group A, n=5) and animals 6-10 

(Group B, n=5). Animals from group B were immunized twice with a 21-

day interval period. The immunizations consisted of 600 µg (3 IDAL® 

shots/200 µg/100 µL animal) of the VC4-flagellin DNA construct mixed 

Study Groups Nº animals 
(n) 

MDA Challenged 
virus 

Study I Group A: unvaccinated 5 Absence pH1N1 

Group B: pCDNA3.1(+)-
VC4-flagellin 

5 

Study II Group A: unvaccinated 6 Presence SwH3N2 

Group B: pCDNA3.1(+)-
VC4-flagellin 

6 
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in a ratio of 1:1 (v/v) with Diluvac Forte® adjuvant (MSD Animal 

Health, Salamanca, Spain) applied with the IDAL® device (MSD Animal 

Health) on the dorsal side of the back of each pig [404]. Animals from A 

group were sham-vaccinated by administration of 2 mL/animal of 

PBS+Diluvac Forte®. Two weeks after booster immunization, all pigs 

were intranasally challenged with pH1N1. All animals were euthanized 

seven days dpi with an overdose of pentobarbital followed by 

exsanguination. 

 

  4.3.4.2.  Study II (SIV-seropositive pigs/challenged with 

SwH3N2) 

Twelve 4-week-old SIV-seropositive male or female pigs were separated 

into two groups: animals 1-6 (Group A, n=6) and animals 7-12 (Group 

B, n=6). Animals from groups A (sham-vaccinated) and B (VC4-flagellin 

DNA-vaccinated) were immunized as described in Study I. Two weeks 

after the second immunization, animals were intranasally challenged 

with SwH3N2. Animals were euthanized with an overdose of 

pentobarbital followed by exsanguination either at 7 or 14 dpi.  

 

4.3.5.  Sampling and clinical records 

Flu-like clinical signs were monitored during all the experiment. Fever 

was considered when rectal temperatures reached values above 40ºC 

[385]. The sampling schedule for both experiments is represented in 

Table 4-3. Briefly, nasal swabs were collected to determine the presence of 
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viral RNA and sera were collected to analyse the humoral immune 

response at different time-points. 

 

Table 4-3. Sampling schedule for studies I and II. 

Sample Study  0 PVD 21 PVD 35 PVD 5 dpi 7 dpi 11 dpi 14 dpi  

Sera Study I            

Study II         

Nasal swabs Study I            

Study II         

BALF Study I                

Study II            

Lung tissues Study I               

Study II            

Abbreviations: BALF= bronchoalveolar lavage fluid; dpi= days post-

inoculation; PVD= post-vaccination days. 

 

Complete necropsies were performed at the indicated times after 

infection (7dpi, Study I; 7 or 14 dpi, Study II). Gross pictures were taken 

from both sides of the lung to assess the macroscopiclung lesion score. 

Subsequently, three lung samples were collected (apical, middle and 

diaphragmatic lobes) from the left lung and fixed by immersion in 10% 

neutral buffered formalin to perform histopathological analysis. BALFs 

were also collected immediately from the right lung after post-mortem 

examination [388]. The BALF supernatants obtained were stored at -

80ºC to investigate antibody response (IgG and IgA) and to assess 

seroneutralizing titers against the challenged virus. 
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4.3.6.  Pathological procedures 

Only in study II, the macroscopically affected lung area (%) from each 

individual was quantified by image analysis (IA) (ImageJ® online free 

software) as previously described [420]. Formalin fixed tissues of animal 

from both studies were dehydrated and embedded in paraffin wax, 

sectioned at 3-5 μm and stained with hematoxylin-eosin (HE) for 

examination under light microscopy. In all lung samples, a semi-

quantitative scoring method was determined as previously described 

[389].  

 

4.3.7.  SIVs and inoculum preparation 

The viruses used for inoculation were the pH1N1 virus 

(A/Catalonia/63/2009 H1N1 IV) [GenBank GQ464405-GQ464411 

and GQ168897] and the SwH3N2 (A/swine/Spain/003/2010 H3N2 

IV) [GenBank JQ319724 and JQ319726]. The infectious virus titres 

were determined by following the Reed and Muench methodology [387]. 

All pigs were intranasally inoculated with a total dose of 106TCID50/mL 

diluted in 3 mL saline solution and delivering a final volume of 1.5 

mL/nostril using a mucosal atomisation device (MAD® Nasal; Teleflex® 

Inc. NC, USA) to mimic aerogenous infection. 
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4.3.8.  Quantitative real-time RT-PCR (RT-
qPCR) 

Viral RNA quantification was performed in nasal swab samples using the 

NucleoSpin RNA isolation kit (Macherey-Nagel GmbH&CoKG, Düren, 

Germany) following the manufacturer’s instructions. Subsequently, a 

TaqMan RT-qPCR designed to detect influenza viruses (IVs) using the 

PCR primers and hydrolysis probe already described [390] was run in a 

Fast7500 equipment (Applied Biosystems, Foster City, CA, USA) with 

the conditions already set and described [421]. 

 

4.3.9.  IgGs and IgAs ELISAs 

To assess IgG antibody responses against the purified antigens from 

H1N1 and H3N2 in sera and BALFs samples, specific ELISA tests were 

developed. Briefly, 96 well plates were coated with 2 µg/mL of each HA 

antigen diluted in 50 mM sodium bicarbonate buffer and incubated 

overnight at 4ºC. After blocking with 3%BSA/PBS (100μL/well) for 1 

hour at room temperature (RT) either serum from individuals diluted at 

1:100 or neat BALFs samples were added (50µl/well) to the coated plate, 

followed by 1 hour incubation at RT. Plates were washed three times 

with 1% Triton X-100/PBS, and anti-pig IgG (whole molecule)-

Peroxidase (Sigma-Aldrich, MO, USA) diluted 1:10,000 was added to 

wells followed by 30 minutes incubation at 37ºC. After washing the 

plates four times (1% Triton X-100/PBS), 50 μL of TMB substrate 

solution was added to the wells and allowed to develop protected from 

light exposure for 10 minutes. Reaction was stopped by adding 50 µL of 
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1 N H2SO4 and the optical density (OD) was measured at 450 nm. Each 

sample was run in triplicates.  

 

An in-house ELISA to detect mucosal response (IgA) against 

hemagglutinins from H1 and H3 subtypes was run in BALF samples. For 

that purpose, a previous protocol was followed with few modifications 

and by means of using IgA antibody (Cat no. AA140p; AbD Serotec, 

Oxford, UK) [422]. Briefly, the high-binding 96-well plates (Costar, 

Corning Incorpororated, NY, USA) were coated with 2 µg/mL of each 

HA in 50 mM sodium bicarbonate buffer and incubated overnight at 

4ºC. Samples were diluted 1:1 with blocking buffer.  

 

4.3.10.  Inhibition of the hemagglutination assay 
(IHA) 

HI titers were obtained following the standard protocol instructions out 

of the OIE (2012) [289] using cRBCs and 4 hemagglutination units of 

either pH1N1 IV or SwH3N2 IV. All sera were analyzed in duplicates. 

Positive and negative reference sera (purchased at the GD Animal 

Health, Deventer, The Netherlands) were used to validate the technique. 

“Seroprotective” titer (HI≥40) has been used as a criteria of 

immunogenicity in a vaccine and standard for licensure [288,423–425]. 
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4.3.11  Serum neutralization test (SNT) 

MDCK cells were seeded into 96- well tissue culture plates to achieve 

confluence the following day. After 24 hours, BALFs samples were 

inactivated at 56ºC for 30 minutes and serially diluted two-fold up to 1: 

2,560 dilution using DMEM supplemented with 1% 

penicillin/streptomycin and 1% L-glutamine. In parallel, to promote a 

proper cleavage of the hemagglutinin protein, the H3N2 virus was 

trypsinized using porcine-trypsin (Sigma-Aldrich, MO, USA) for 30 

minutes at 37ºC. After this step, the virus was added to the diluted 

BALFs to yield final concentrations of 100 TCID50/well. Serum-virus 

mixtures were incubated at 37ºC temperature for 2 hours and were 

added to PBS 1X washed MDCK cells. Media controls (no virus) and 

virus controls (no serum) were included on each plate. Reference 

positive and negative sera against H3N2 (GD Animal Health, Deventer, 

The Netherlands) were also incorporated. Each sample dilution was 

plated in duplicates. After an incubation period of 7 days, the plates 

were read. SNT titers were calculated as 50% endpoints for the greatest 

serum dilution giving complete inhibition of the virus growth [387].  

 

4.3.12.  Flow cytometry 

In order to identify the phenotype of T cells, peripheral blood 

mononuclear cells (PBMCs) were isolated before the challenge from 

whole blood by density centrifugation using Histopaque®-1077 gradient 

(Sigma-Aldrich, MO, USA) and performed the flow cytometry using 

monoclonal antibodies (mAbs). Cell numbers were calculated using a 
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dye solution and the cell concentration was adjusted to 106 cells/well, 

and single- or double-stained with surface antibodies diluted in PBS 1% 

anti-CD4 (clone 74-12-4, IgG2b) Alexa Fluor® 647-labelled (BD 

Pharmingen™, CA, USA) and anti-CD8 (clone 76-2-11, IgG2a) 

fluorescein isothiocyanate (FITC)-labelled (BD Pharmingen™, CA, 

USA). Cells were acquired by means of FACSCalibur (Becton Dickinson 

FACSAria I) (Becton Dickinson, CA, USA), and the positive frequencies 

analyzed by FACSDiva software, version 8.01. Gated images of different 

cell populations are shown in S1 Figure.  

 

4.3.13.  Statistical analyses 

Mean and standard deviations of studied parameters were calculated 

with Excel 2007 (Microsoft Office). All data obtained were first 

normalized by the Shapiro-Wilk test and the t-test (in case of normally 

distributed data) or the Wilcoxon test (in case of non-normally 

distributed data) and were subsequently used to compare A and B groups 

within each study. Statistical analyses were performed using the R 

statistical software (http://cran.r-project.org/) and the significance was 

depicted depending on the significance threshold obtained: P<0.05 (*), 

P<0.01 (**), P<0.001 (***) and P<0.0001 (****). 
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4.4. Results 

4.4.1.  Study I (SIV-seronegative pigs/challenged 
with pH1N1) 

4.4.1.1.  Clinical and pathological evaluation 

Previous to the challenge, all animals were clinically healthy. Upon 

challenge, one animal out of five (pig 1) from the unvaccinated group 

had fever at 6 dpi and also one animal (pig 8) from the VC4-flagellin 

vaccinated group had fever but only at 2 dpi. Also, one animal (pig 2) 

from the unvaccinated group displayed loose feces at 7 dpi. No other 

clinical signs were recorded. 

 

Challenge with pH1N1 caused subclinical infection in all pigs and minor 

histopathological changes observed at the necropsy. No differences in 

the severity of microscopic lung lesions between vaccinated and 

unvaccinated animals were recorded. Apart from the lung scorings based 

on BIP, other pathological findings were documented. Multiple abscesses 

with bacterial colonies were visualized in animal 7; animal 8 had fibrous 

pleuritis and animal 10 showed pulmonary congestion and edema. All 

three animals belonged to the VC4-flagellin vaccinated group.  
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4.4.1.2.  Vaccination using VC4-flagellin limited or 

reduced pH1N1 viral load 

A reduced mean of GEC per mL was observed at 5 and 7 dpi in the 

vaccinated group compared to the unvaccinated group. Furthermore, 

two out of five animals cleared the virus at 5 dpi and a total of three out 

of five animals at 7 dpi. All pigs from the unvaccinated group showed 

viral RNA until the end of the experiment (Figure 4-1A). 

 

Figure 4-1. Viral RNA load in nasal swabs by RT-qPCR. (A) Mean of 

GEC per mL obtained from nasal swabs from seronegative pigs (Study I) 

collected at 0, 5 and 7 dpi (B) and from nasal swabs from seropositive 

animals (Study II) collected at 0, 5, 7, 11 and 14 dpi. Group A 

(unvaccinated animals) is represented grey bars and Group B 

(pCDNA3.1(+)-VC-4-flagellin vaccinated group) by black bars. Dpi, days 

post-inoculation. Dashed lines indicate the detection limit of the assays: 

1.24 log10GEC/mL. Error bars indicate the mean ± SEM. 
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4.4.1.3.  Vaccination using VC4-flagellin induced 

higher IgG titers in sera against both the H1 and H3 subtypes 

Pigs immunized with the VC4-flagellin vaccine manifested a boost in IgG 

antibodies against H1 and H3 subtypes in sera compared to 

unvaccinated groups (Figure 4-2A and B), being the peak at 35 PVD 

(Figure 4-2A and B). The increased antibody level was significant (P<0.01) 

for H1 subtype. In comparison to the H3 subtype, the increment in the 

antibody levels at 35 PVD was also significant, but with a higher P value 

(P<0.05). This difference could probably be attributed to one particular 

animal in this group (pig 10: vaccinated challenged with pH1N1) that, 

unlike the four other animals from the VC4-flagellin group, did not 

show seroconversion against H3 neither upon vaccination with VC4-

flagellin nor after challenge with pH1N1 IV.  

 

4.4.1.4.  Vaccination using VC-4 flagellin promoted 

higher HI titers in sera against pH1N1 

Likewise, to discriminate whether the antibodies obtained in sera could 

also block viral entry, we carried out an IHA against the pH1N1. Two of 

the five VC4-flagellin vaccinated pigs showed values ≥40 before challenge 

and, unexpectedly, one pig from the unvaccinated group (Figure 4-3A). 

Nevertheless, the differences among groups were more illustrative at 7 

dpi when all pigs from the VC4-flagellin vaccinated displayed HI titers 

≥40. By contrast, only two unvaccinated pigs (animal 11 and 12) 

obtained seroprotective titers (animal 1, 1:40; animal 12; 1:160) at 7 dpi 

(Figure 4-3A).  
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Figure 4-2. Serum antibody HA-specific IgG titers detected in sera and 

BALFs samples by ELISA test. Mean of serum IgG antibody levels 

detected at 0, 20 PVD and 35 PVD, and 7 DPI of Groups A and B (A) 

against HA from A/California/04/09(H1N1)pdm09, and (B) against 

HA from A/Aichi/2/1968(H3N2) are represented. Mean of BALFs IgG 

antibody levels detected in pigs sacrificed at 7 and 14 dpi of Groups A 

and B (C) against HA from A/California/04/09(H1N1)pdm09, and (D) 

against HA from A/Aichi/2/1968(H3N2). Grey circles/bars refer to 

group A (unvaccinated group), and black squares/bars refer to group B 

(pCDNA3.1(+)-VC4-flagellin vaccinated group). OD, optical density. 

PVD, post-vaccination days and dpi, days post-inoculation. Error bars 

indicate the mean ± SEM. Statistically significant differences between 

vaccine treatment groups (P value <0.05) are marked with *: P<0.05, **: 

P<0.01. 
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the unvaccinated group. From the VC4-flagellin group, the pigs with 

fever were the number 7 (fever at 4 dpi), 10 (fever at 3 and 7 dpi), 11 

(fever at 2, 5 and 7 dpi) and 12 (fever from 2 to 4 dpi). Referring to 

clinical signs, one unvaccinated pig (pig 1) was coughing at 3 dpi. Three 

pigs vaccinated with VC4-flagellin were also coughing: pig number 7 and 

8 (both coughing at 3 dpi) and pig 11 (at 4 dpi).  

 

Using ImageJ® analysis tools, the percentage of affected lung area of pigs 

were examined. Results revealed that two out of the three unvaccinated 

pigs (pig 1 and 5) had multifocal pulmonary cranio-ventral consolidation 

lesions: 4.11% and 2.93%, respectively, observed on the dorsal side of 

the lung. From the VC4-flagellin vaccinated group only one pig (pig 9) 

had dorsally (3.04%) and ventrally (2.61%) visible macroscopic lesions. 

Lungs collected at 14 dpi did not have lesions. 

 

Intranasal inoculation with SwH3N2 caused a mild infection in all pigs 

and minor histopathological changes observable at necropsy. No 

differences in the severity of microscopic lung lesions of vaccinated and 

unvaccinated animals were recorded. Representatively, observations 

detected at 7 and 14 dpi from the second study are depicted in Table 4-4. 

Other pathological findings documented were one unvaccinated pig 

(animal 1) and two vaccinated pigs (animal 7 and 9) with suppurative 

bronchopneumonia. In addition, one immunized pig (animal 8) had 

fibrous pleuritis.  
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Table 4-4. Pathological microscopic score for all the animals from 

Study II based on BIP-compatible lesions. BIP was assessed by a semi-

quantitative scoring (0-3, indicating lack of, mild, moderate or severe 

pneumonia lesions, respectively). 

Group Animal 
Id 

Dpi BIP scoring 

A: Unvaccinated 
group 

1 7  2 

2 2 

5 0.5 

3 14  1.5 

4 3 

6 0.5 

B: pCDNA3.1(+)-
VC4-flagellin 

vaccinated group  

7 7  3 

9 2 

12 3 

8 14  0.5 

10 1 

11 2 

Abbreviations: BIP= broncho-interstitial pneumonia; dpi= days post-

inoculation; Id=identification. 

 

4.4.2.2.  Vaccination using VC4-flagellin limited or 

reduced SwH3N2 viral load 

The mean of GEC from the VC4-flagellin vaccinated group was lower 

than the unvaccinated group at 4 and 7 dpi. Notably, four out of six 

VC4-flagellin vaccinated pigs cleared the virus at 7 dpi. Conversely, none 

of the unvaccinated group was able to clear the virus at 7 dpi (P<0.01) 

(Figure 4-1B). The unvaccinated-infected pigs continued shedding 

influenza virus up to 14 dpi (Figure 4-1B) whereas IV virus was not 

detected in VC4-flagellin vaccinated group (Figure 4-1B). 
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4.4.2.3.  Vaccination using VC4-flagellin induced 

superior IgG titers in BALFs against both the H1 and H3 subtypes 

The presence of specific antibodies against H1 and H3 was also 

examined in the BALF samples from seropositive animals. The average 

of IgG antibody OD values at 7 and 14 dpi of the H1 and H3 subtypes 

were higher in the vaccinated group (Figure 4-2C and D). Considering 

that the challenged virus in study II belonged to H3 subtype, enhanced 

antibody values against H3 were expected (Figure 4-2D) in comparison to 

H1 subtype. At 7 dpi, all H3 antibody OD values from the VC4-flagellin 

vaccinated group were higher than the ones of the unvaccinated group 

(Figure 4-2D). 

 

4.4.2.4.  Vaccination using VC4-flagellin promoted 

higher HI titers in sera against SwH3N2 

HI results against the SwH3N2 evidenced that the VC4-flagellin 

vaccinated pigs had higher HI titers at 7 and 14 dpi than the 

unvaccinated animals. At 7 dpi, all pigs from the VC4-flagellin 

vaccinated group exhibited a positive HI titer (≥40) (P<0.01). Contrarily, 

only three out of six animals of the unvaccinated group remained with 

seroprotective titers ≥40. In addition, at 14 dpi, the inhibiting capacity of 

the three remaining VC4-flagellin vaccinated animals (animal 7, 1:640; 

animal 11, 1:320; animal 12, 1:640) was higher than the remaining three 

unvaccinated (animal 3, 1:40; animal 4, 1:320; animal 5, 1:160) (Figure 4-

3B). 
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4.4.2.5.  Vaccination using VC4-flagellin induced 

stronger IgA responses in BALF samples 

The mucosal antibody response was investigated in the BALF samples. 

Against H1 subtype, vaccinated pigs elicited an increase in the IgA 

response in comparison to unvaccinated pigs at 7 dpi (Figure 4-4A). At 14 

dpi, the same tendency was observed although the OD values of 

antibodies were less than at 7 dpi. At 7 and 14 dpi, the VC4-flagellin 

vaccinated pigs exhibited elevated IgA values compared to the 

unvaccinated pigs when analyzing IgAs against H3 subtype (Figure 4-4B). 

 

 

Figure 4-4. Antibody HA-specific IgA titers detected in BALFs samples 

from Study II. Mean of BALFs IgA antibody levels detected in pigs 

sacrificed at 7 and 14 dpi of Groups A and B (A) against HA from 

A/California/04/09(H1N1)pdm09, and (B) against HA from 

A/Aichi/2/1968(H3N2). Grey bars refer to group A (unvaccinated 

group), and black bars refer to group B (pCDNA3.1(+)-VC4-flagellin 

vaccinated group). OD, optical density. PVD, post-vaccination days and 

DPI, days post-inoculation. Error bars indicate the mean ± SEM. 
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4.4.2.6.  Vaccination using VC4-flagellin promoted 

higher SNT titers in BALFs 

After determining that the VC4-flagellin vaccinated group displayed 

higher antibody titers in the BALFs compared to the unvaccinated pigs, 

we were intrigued to find wether the elicited antibodies could neutralize 

the virus. VC4-flagellin vaccinated pigs showed higher mean values of 

seroneutralizing antibody titers in BALFs than the unvaccinated pigs at 7 

and 14 dpi (Figure 4-5). Moreover, at 7 dpi, all animals from the 

vaccinated group manifested seroneutralizing titers (animal 6, value 1:20; 

animal 8, value 1:20; animal 9, 1:60). None of the unvaccinated animals 

developed seroneutralizing antibodies. At 14 dpi, two out of three 

unvaccinated pigs achieved seroneutralizing titers (animal 3, 1:60; animal 

4, 1:320), but to lesser extent than immunized pigs (animal 8, value 

1:320; animal 11, value 1:1280; animal 12, value 1:120).  

 

4.4.2.7.  Vaccination using VC4-flagellin promoted 

higher percentage of double-positive T-cells CD4-CD8 

A numeric increment of phenotypic population of T-cells CD4 SP (single 

positive) and T-cells CD8 SP was observed in the vaccinated group in 

comparison to the unvaccinated group prior to challenge and such 

increase was significant for CD4-CD8 DP (double positive) cells 

(P<0.001) (Figure 4-6). 
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Figure 4-5. Seroneutralization (SN) titers detected in BALF samples 
from Study II by seroneutralization assay. Mean of seroneutralization 
titers detected at 7 and 14 dpi of Groups A and B against the 
A/swine/Spain/003/2010 H3N2 IV challenged virus. Grey bars refer to 
group A (unvaccinated group) and black bars depict group B 
(pCDNA3.1(+)-VC-4-flagellin vaccinated group). SN, seroneutralization. 
DPI, days post-inoculation. Error bars indicate the mean ± SEM.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-6. Flow cytometry from PBMCs isolated at 35 PVD (Study II). 
Mean of the percentages of T cells CD4, CD8 and CD4-CD8 DP from 
unvaccinated (Group A) and vaccinated (Group B). Grey bars refer to 
group A (unvaccinated group) and black bars depict group B 
(pCDNA3.1(+)-VC-4-flagellin vaccinated group). Error bars indicate the 
mean ± SEM and statistically significant differences between vaccine 
treatment groups are marked with ***: P<0.001. 
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4.5. Discussion 

Each year there is a must to identify the strains of influenza A and B 

viruses that will be circulating in the next season, in order to 

manufacture the best option for seasonal influenza vaccines. 

Consequently, universal vaccines against influenza virus making use of 

highly conserved epitopes or proteins have been investigated during 

years. Thus, the present studies describe how the combination of several 

conserved HA-peptides in a DNA approach constitutes a potential 

influenza vaccine for use in conventional pigs.  

 

To generate further information of this novel universal vaccine 

prototype, two experiments were designed. Study I was developed under 

a more favorable scenario: SIV-seronegative pigs challenged with a 

homologous virus (pH1N1) for the HA-peptide: 

SLPFQNIHPITIGKCPKYVKSTKLRLATGLRNV. By contrast, Study II 

was designed to evaluate vaccine efficacy when the MDA were present 

and a heterologous virus was challenged (SwH3N2), representing a more 

unfavorable scenario. Subtypes H1 and H3 were the ones chosen to be 

inoculated in view of being the most prevalent subtypes circulating in 

swine herds.  

 

All HA-peptides included in the DNA approach presented were selected 

by means of the ISM platform, which is based on virtual spectroscopy 

[362,418]. HA-peptides were selected since well-matched antibodies to 

the HA can block an influenza virus infection and also contribute to the 

clearance of the virus from the lungs [426,427]. Furthermore, to obtain 

an improved presentation of the antigens and to enhance 
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immunogenicity, flagellin was fused to the conserved HA-peptides. Such 

approach should result more potent and efficacious since incorporates 

TLR-ligands (such as flagellin) [428]. The flagellin ligand fused to an 

antigen of interest has been shown to yield vaccines able to induce 

higher IgG responses by means of improving APCs functions [428–432]. 

Moreover, flagellin induces TLR5 signaling and this pathway triggers the 

recruitment of granulocytes and macrophages/monocytes in the 

respiratory airways. Subsequently, the production of cytokines and 

chemokines required to initiate strong humoral and cellular responses is 

primed [419]. This characteristic is coherently related to the flagellin 

stimulation of monocytes to produce IL-10 and TNF-α cytokines [433], 

of the NK cells to deliver IFN-γ and α-defensins and of the T cells to 

proliferate and produce cytokines and chemokines (e.g. IL-10, IL-8 and 

IFN-γ) [434]. Furthermore, it is a usual practice to include flagellin (FliC) 

as an adjuvant in novel universal vaccine approaches to face influenza 

viruses [428,435–439]. It is reported in those studies that conserved 

influenza epitopes linked to the flagellin either at the N or C terminus, 

or inclusive in its hypervariable region, did not impair the proper 

binding of the flagellin ligand to the TLR5.  

 

Due to the final length of the construct and since DNA vaccines can 

provide the activation of both humoral and cellular responses, the 

construct VC4-flagellin was reverse-translated into a pCDNA3.1(+) 

plasmid. Moreover, DNA-based vaccines may cross-protect when facing 

heterologous swine influenza viruses without being as hazardous as the 

attenuated-type [440]. Besides, a suitable delivery platform of the vaccine 

was sought. At the very end, an intradermal delivery approach seems to 
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promote higher antibody titers than the intramusucular route [400–402]. 

The overall approach used was also selected because the optimal doses of 

DNA plasmid (moles) to be used were already described [386]. 

 

Thus, in this work, the VC-4-flagellin construct administered 

intradermally mixed with Diluvac Forte® adjuvant was tested as a vaccine 

candidate in pigs with or without MDA. Diluvac Forte® was mixed with 

the vaccine formulation but also was administered to unvaccinated pigs. 

Intriguingly, the VC4-flagellin vaccinated pigs demonstrated a 

reduction/clearance of the viral shedding in days 5 and 7 in Study I 

(seronegative animals, pH1N1 challenged) and in Study II (seropositive 

animals, H3N2 challenged). Therefore, we anticipate that MDA 

antibodies were not an apparent obstacle for the vaccine to reduce viral 

shedding and, eventually, to potentially block the viral transmission. 

Surprisingly, unlike unvaccinated pigs, seropositive vaccinated pigs did 

not shed the challenge H3N2 virus at 11 or 14 dpi although they were 

constantly in contact with unvaccinated infected animals. This fact 

indicated that vaccination with VC4-flagellin not only limited the virus 

shedding from vaccinated pigs but, most possibly, also prevented re-

infection in a contaminated environment. Further studies are needed to 

prove this assumption using contact infection experiments in larger 

groups. 

 

Previous to challenge, the vaccinated animals of Study I could recognize 

both the H1 and H3 IV-subtypes. In consequence, seroconversion and a 

cross-protecting effect against the two IV-subtypes were demonstrated. 

Apart from the post-vaccination seroconversion, the HI titers of ≥40 are 
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considered to constitute a marker that correlates in vitro with protection 

[288,423–425]. Analyzing HI titers against pH1N1 (Study I, SIV-

seronegative pigs/challenged with pH1N1) seroprotective antibodies 

could be found in 2 out of 5 pigs prior to the challenge. Noticeably, all 

the five vaccinated pigs manifested seroprotective titers at 7 dpi. 

Moreover, seropositive vaccinated pigs elicited higher HI values against 

SwH3N2 at 7 and 14 dpi than the unvaccinated group, thus confirming 

that MDA were not interfering with the vaccine effect. 

 

Nevertheless, the vaccine failed to reduce the influenza clinical signs and 

lung lesions. Indeed, no relevant differences were found between groups. 

Also, it is vital to take into consideration that the clinical picture and 

disease caused by the pH1N1 in pigs it is generally mild and subclinical 

[441,442]. In fact, in Study I very little number of pigs manifested fever 

or any clinical sign. Also, we assume that pig 7 was suffering from a 

pathological disorder before being transported to the experimental unit, 

since had fever before challenge and bacterial colonies were present in its 

lungs.  

 

IgG and IgA antibody titers against H1 and H3 subtypes and their 

seroneutralizing effect against the challenge virus were analyzed in the 

BALFs of Study II. Overall, IgG antibodies were to a higher rate against 

both the H1 and H3 subtypes in DNA-vaccinated animal group than the 

unvaccinated group at 7 and 14 dpi. The major difference among groups 

was observed at 14 dpi against the H3 subtype. Assuming that the 

challenged virus in Study II was an H3N2 virus, elevated H3 antibodies 

were expected. Furthermore, a stronger seroneutralizing effect could be 
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observed in the BALF samples obtained from the vaccinated pigs than in 

the samples from the unvaccinated ones. IgA antibodies were also to a 

higher rate against both the H1 and H3 subtypes in the vaccinated group 

than the unvaccinated one at 7 days pot-infection. A comparable 

tendency of IgA antibodies was observed in BALFs collected at 14 dpi 

against H3 subtype, indicating an enhanced mucosal immune response 

induced after VC-4-flagellin vaccination in pigs. This is in line with 

studies claiming that mucosal immune response is necessary for the 

design of an universal influenza vaccine as it is the first line of defense 

against IVs [443,444]. We consider that mucosal immune response (IgA) 

elicited after VC-4-flagellin vaccination in pigs might have contributed in 

limiting virus shedding and cross-protection, as reported previously also 

by others [445,446]. 

 

VC-4-flagellin vaccination in pigs, interestingly, also showed an increase 

in the frequency of the CD4-CD8 DP T cells subset. In fact, results from 

an earlier report [268] evidenced that some CD4-CD8 DP T cell subset 

likely belong to effect or memory T cells (TEM). This data was only 

analyzed at pre-challenge time point and not followed after the challenge. 

Further investigation would be necessary to ultimately define the role of 

the CD4-CD8 DP T cell subset in protection and clearance of IV after 

VC-4-flagellin vaccination in pigs. 

 

Our results strongly indicate that HA specific immune response 

effectively contributed to control influenza infections after VC-4 flagellin 

vaccination without MDA apparent interference. Promoting a solid 

systemic mucosal response and blocking viral transmission by reducing 
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earlier the viral shedding were the key outcomes in the VC4-flagellin 

vaccination approach. Therefore, VC4-flagellin as such maybe an 

interesting vaccine candidate against H1 and H3 subtypes. However, 

more studies are crucial in order to vaccinate with VC4-flagellin and 

mitigate clinical manifestations and lung pathology.  
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5. Study III 
“Conserved HA-peptides expressed along with flagellin in 

Trichoplusia ni larvae protects chicken against intranasal H7N1 

HPAIV challenge” 

 

5.1. Abstract 

Given the outbreaks of IVs infection reported in the human population, H5 

and H7 IV subtypes have been regarded as potential candidates for an 

upcoming IV pandemic. The immunization of poultry where such IVs are 

endemic is crucial to prevent possible zoonoses. Up to date, inactivated, live-

attenuated and recombinant vaccine types have been licensed for poultry. 

Recombinant vaccines provide several advantages over conventional vaccines 

used. Our group has been focused on conserved HA-epitopes as potential 

vaccine candidates to obtain multivalent and broad immune responses against 

IV subtypes infection. In this study, two conserved epitopes (NG-34 and CS-17) 

fused to increase the immune response with the TLR5 ligand, the flagellin, 

were produced in a Baculovirus platform based on Trichoplusia ni larvae as 

living biofactories. The efficacy of the experimental vaccine formulation was 

evaluated against a highly pathogenic heterologous H7N1 IV subtype influenza 

virus challenge in chickens. The vaccine consisted insoluble extracts obtained 

from larvae expressing the construct, designated as flagellin-NG34/CS17. The 

flagellin-NG-34/CS17 vaccine was able to protect the vaccinated chickens and 

was effective in blocking viral shedding orally and cloacally. A single fatal 

outcome and virus shedding in 2 out of 12 of the vaccinated chicken were 

observed. Furthermore, no apparent clinical signs were monitored in 10 out of 

12 vaccinated and virus challenged individuals. The mechanism of protection 

conferred by flagellin-NG34/CS17 vaccine against an H7N1 HPAIV infection 

in chicken is currently under investigation.  
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5.2. Introduction 

H7 subtype has become highly prevalent in avian species with some 

strains considered of having pandemic potential due to several human 

outbreaks caused in the past years. Though being the causative agents of 

severe poultry outbreaks [447–449], H7 barely infected humans [450]. In 

2003, a H7N7 IV subtype emerged in the Netherlands infecting at least 

89 humans. One of those ended up with a fatal case due to severe 

pneumonia [448,451]. Similarly, in 2013, an outbreak in China with the 

H7N9 subtype produced high morbidity and mortality in the 

population. The H7N9 subtype infected over 1625 humans with a 

fatality rate of almost 40% [452]. Genetic changes observed in the strain 

such as the specific lysine at the 627 position of the polymerase basic 

protein 2 (PB2), suggest that adaptation to mammals could have 

occurred [453]. Moreover, other subtypes such as H7N2, H7N3, H7N4 

have also been detected and related to sporadic human infections 

[81,454–456].  

 

Controlled vaccination campaigns in some endemic countries may 

prevent possible outbreaks caused by AIVs in the poultry. At present, 

most of the poultry influenza vaccines are inactivated-typed, many of 

them using reverse genetics to alter the cleavage site of HPAIV strains 

[314]. Nevertheless, alternatives have been sought to tackle the 

shortcomings of such vaccine for example failure to induce 

cellular/mucosal immune response, their egg-based manufacture which 

takes a minimum of 3-6 months time [457–460] and their lack of 

protection across subtypes. Furthermore, with conventional vaccines it is 
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hard differentiating infected from vaccinated animals [461]. To 

overcome these drawbacks, many current AIV vaccines are based on 

LAIVs [324] or have used recombinant IV proteins [462–465]. 

 

LAIVs against AIVs have been widely licensed using distinct viral vectors 

however, some hurdles such as potential reassortment of the vaccine 

strains with the circulating strains or the demand to be cultured in egg-

based technologies have limited their advance [466]. In contrast, 

recombinant IV vaccines do not possess such limitations. Concretely, the 

Baculovirus are non-pathogenic insect viruses which do not replicate and 

do not harm mammalian cells [467,468]. Thus facilitating their 

production without requiring high-level biosafety facilities [469]. Other 

advantages they procure are the high expression yields of recombinant 

proteins and their sustainment of the native conformation since they can 

be post-tranlationally modified [470]. On the whole, their safety and 

their cost-effectiveness to scale-up, reducing development time, have 

contributed as attractive and demanding IV vaccine vehicles 

[467,468,471].  

 

In the present study, Baculovirus were selected as suitable influenza 

vaccine technology platform. As biofactories, insect larvae from 

Trichoplusia ni (T.ni), the natural host for the commonly used Autographa 

californica multicapsid nucleopolyhedrovirus (AcMNPV) vector, was used 

as an excellent host insect for recombinant production [472]. Besides, a 

novel baculovirus vector expression cassette, TopBac®, was used to 
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optimize the baculovirus expression vector system (BEVS) system by 

conferring enhanced viability, integrity of the recombinant proteins and 

up to 4-fold increase in recombinant protein production [473,474].  

 

Hemaglutinin-based vaccines using the baculovirus approach have been 

widely investigated [469,475–478]. Safety, immunogenicity and efficacy 

were demonstrated with those approaches in human [304,477]. 

Hemagglutinin is the mostly selected recombinant protein from IVs due 

to its potent antigenic properties favoring antibodies which can prevent 

IV infection [426,427]. However, the antigenic changes that the HAs 

constantly undergo make probable that the IV can eventually evade the 

host immune response [219]. Such inconvenient occurs with the current 

seasonal inactivated influenza vaccines and required to be annually 

updated. By selecting conserved viral targets as immunogens, it is sought 

to obtain universal vaccines which confer broad protection against 

several subtypes [331,414–416]. Those vaccines should confer protection 

against epidemic viruses and even ever-changing viruses. 

 

Our research group has been dedicated to use conserved-HA epitopes as 

vaccine candidates [331]. Thus, two in silico predicted conserved epitopes 

of the HA were selected as vaccine candidates. One of them (NF-34) 

already used in pig model, was used but modified in two aminoacid 

positions (NG-34) (See Table 3.2.; “Chapter III, Study I). An H5 conserved 

epitope corresponding to the cleavage site of HPAIVs viruses (CS-17) was 

additionally linked to NG-34. Both epitopes were fused to phase 2 
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flagellin from Salmonella typhymurium to generate a more potent vaccine 

[428,430,479]. The final formulation (flagellin-NG34/CS17) was 

produced in the Baculovirus system and the soluble extracts obtained 

with the homogenization of larvae expressing flagellin-NG34/CS17 were 

used as a vaccine against IV infection in chicken.  

 

The final goal of this work was to study the vaccine efficacy of soluble 

extracts expressing flagellin-NG34/CS17 construct against a 

heterologous virus challenge in chicken.  

 

Our results indicate that chickens immunized twice with flagellin-

NG34/CS17 were protected against a lethal challenge with a 

heterologous influenza A virus (H7 subtype). Immunized animals 

showed no clinical signs of infection and did not shed virus. An 

increased IgM/IgY was also evident in some of the vaccinated chicken. 

 

 

5.3. Materials and methods 

5.3.1.  Immunogen and plasmid construction 

The prediction of the peptides belonging to the HA protein (HA-

epitopes) was developed by means of ISM approach [362,418]. Table 5-1 

depicts the aminoacidic sequence of the two conserved HA-peptides 

(NG-34 and CS-17) used in the vaccine approach, which are connected 
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by the linker sequence: SSGSSGSSGSS. Moreover, at the N-terminal site 

of that sequence, the complete sequence of Salmonella typhimurium phase 

2 flagellin (GenBank: AAC94993.1) was inserted as an adjuvant. The 

whole cDNA was chemically synthesized (GenScript, Piscataway, NJ, 

USA) following various requirements. Firstly, the complete sequence was 

introduced in between the BamHI and XbaI sites of the pcDNA3.1(+) 

vector with the flagellin sequence sited at the N-terminal site of the 

NG34/CS17 epitopes and delimited by XhoI and ClaI restriction sites. 

Moreover, a 6-His tag was added at the C-terminal site of the 

NG34/CS17 sequence delimited by EcoRI and XbaI sites for the later 

protein purification (Figure 5-1). Finally, the codon usage from Bombyx 

mori was utilized to optimize the sequence in order to improve the 

epitope expression in the Trichoplusia ni larvae by means of: 

(http://www.ebi.ac.uk/Tools/st/emboss_backtranseq/). The whole 

sequence of interest was excised from the pCDNA3.1(+) vector with 

BamHI and XbaI enzymes and inserted in the same restriction sites of 

the TopBac3.2® vector (Algenex, Madrid, Spain), the donor plasmid with 

an expression cassette characterized for being formed by baculovirus-

derived regulatory elements which work in cascade [362,418].  
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Table 5-1. Amino acid sequences from the HA-epitopes: NG-34 and 

CS-17, used in the vaccine approach.  

Aa positions referenced are in accordance with the reference cited from 
the GenBank database. Abbreviations: aa= amino acid; HA= 
hemagglutinin; Id=identification 
 

Figure 5-1. Illustration of the sequence of interest and restriction sites 

inserted in the pCDNA3.1(+) vector. 

5.3.2.  Construction of the recombinant 

baculovirus 

The resulting donor plasmid, named as pTB3.2 flagellin-NG34/CS17, 

was used to generate the corresponding recombinant baculovirus (rBac) 

by using the Bac-to-Bac® Baculovirus Expression System (Invitrogen, San 

Diego, CA, USA) following the manufacturer’s instructions. The 

expression cassette was integrated into the baculovirus genome (bacmid) 

contained into the DH10Bac™ chemically competent E.coli cells 

(Invitrogen, San Diego, CA, USA) through Tn7 transposition functions. 

The recombinant bacmid was transfected into Sf21 cells using 

HA-epitopes Aa 
positions 

Consensus 
virus  

subtype 

GenBank Id 

NSDNGTCYPGDFIDYEELREQLSSVSSFERFEIF 
(NG-34) 

59-92 pH1N1 ACS36215 

PQRERRRKKRGLFGAIA (CS-17) 337-357  H5N1 AAC32098.1 

Flagellin NG34-CS17 6x Histidine

Inserted gene Clal Xbal
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CellfectinII® Reagent (Invitrogen, USA) and following the 

manufacturer's instructions. After 96 hours post-transfection the culture 

medium containing the rBac was harvested. To reach high-titers of the 

baculovirus stock, the rBac obtained was propagated and amplified again 

in Sf21 insect cells for 96 hours. Baculovirus from the second passage 

were titrated in duplicate by a standard plaque protocol in 6-well plates 

containing Sf21 cells according to the protocol described at the Bac-to-

Bac® Baculovirus Expression System user guide (Invitrogen, No. 

MAN0000414). Virus titer was determined as plaque-forming units 

(PFU). Eventually, baculovirus stocks were stored at 4ºC for daily use 

and -80ºC for long-term storage.  

 

5.3.3.   Infection of insect larvae 

Trichoplusia ni (T. ni, Cabbage looper) larvae were reared following a 

previously described methodology [480–482]. T. ni larvae in stage of fifth-

instar larvae (last instar larvae before pupation) were sedated by 

incubation at 4ºC for 15 minutes and then were injected near the proleg 

(forward of the body cavity) with 5 µL of the recombinant baculovirus 

diluted with T. ni medium formulation Hink (TNM-FH) medium (PAN 

Biotech GmbH, Germany) to reach a dose of 5.5x106 pfu/mL. 

Inoculated larvae were kept at 28ºC for 72 hours in growth chambers 

and then frozen at -20ºC until processed.  
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5.3.4.  Protein extraction, determination and 

quantification 

Total soluble protein (TSP) extract from the frozen T. ni larvae infected 

with the rBac was obtained by mixing 16 mL of a extraction buffer (PBS 

1X, Brij®35 0.1%: Scharlau, Barcelona, Spain; BR00171000, 

phenylmethylsulfonyl fluoride (PMSF) 1mM and 1,4-dithiothreitol 

(DTT) 5 mM per gram of larvae biomass and homogenizing twice using a 

Bag Mixer blender (www.interscience.fr) for 2 min (total protein extract, 

TP). Later, a step of sonication (Bandelin Sonopuls 3200HD, tip TT13, 

amplitude 50%) with three cycles of 15 seconds and a break in between 

in ice of 45 seconds was carried out followed by a centrifugation step at 

2000 g for 30 minutes at 4ºC. Supernatant was then filtered with a 22 

μm Miracloth filter paper (Calbiochem®, Merck, UK) (total soluble 

protein extract, TSP). Samples were resolved in 12% SDS-polyacrilamide 

gels both for Coomassie blue staining and transference onto a 

nitrocellulose membrane (Bio-Rad, USA) to perform a Western blot 

analysis. Transferred membranes were blocked in PBS-0.1% Tween 20 

(PBST)-4% skim milk overnight at 4ºC. They were then incubated at 

room temperature (RT) for 1 h with an anti-His monoclonal antibody 

(mAb) (Clontech) diluted 1:2000 in PBST. After two washes of 15 min 

with PBST, a second incubation was made using an anti-mouse IgG 

horseradish peroxidase (HRP)-labeled conjugate (GE Healthcare, USA) 

diluted 1:2000 in PBST for 1 h. All membranes were developed using 

enhance chemiluminescence (ECL) reagent. Images were captured by 

ChemiDoc™ XRS Gel Imaging System (Bio-Rad, USA) and analyzed 

using the ImageLabTM Software (Bio-Rad, version 6). 
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Total protein concentration of the extract was determined by the 

Bradford method using a protein assay kit (Bio-Rad, USA) [483] and the 

quantification of the flagellin-NG34/CS17 expressed in T. ni larvae was 

carried out by measurement of band densitometry in Western Blot 

images with the Image Lab ™ Software (Bio-Rad, version 6) using a 

standard curve with a known quantified 6xHis-tagged protein (ASFV p54 

protein). 

5.3.5.  Cells, virus and antigen 

Spodoptera frugiperda Sf21 cell line (Invitrogen, San Diego, CA, USA) was 

cultured at 27 °C in TNM-FH medium (PAN Biotech GmbH, Germany) 

supplemented with 10% heat-inactivated fetal bovine serum (PAN 

Biotech GmbH) and gentamicin (50 µg/ml) (PAN Biotech GmbH) as 

antibiotic. Cell viability was calculated by means of trypan blue staining 

and determined with the frequency (%) of living cells with respect to the 

total number of cells. 

 

MDCK, ATCC CCL-34 cells were used for seroneutralization assays. 

Cells were grown in DMEM supplemented with 10% FBS, 1% 

penicillin/streptomycin and 1% L-glutamine was required for the 

MDCK proper culture. 

 

The H7N1 HPAI virus strain used in this study was kindly provided by 

Dr. Moreno from the Instituto Zooprofilattico Sperimentale della 

Lombardia e dell’Emilia Romagna (IZSLER) and corresponds to a fifth 

passage A/chicken/Italy/5093/99. It was propagated in 11-day-old 
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embryonated specific pathogen free (SPF) chicken eggs, collected their 

allantoic fluid and 0.45 µM filtered. Virus was then diluted tenfold in 

phosphate buffer saline (PBS) for titration in SPF eggs according to the 

method of Reed and Muench [387] and, later on, diluted in PBS to 

obtain a dose of 104.5 embryo lethal dose 50% (ELD50) in 0.1 mL (100 

µL). 

 

The H7 protein used was acquired from Sino Biological (cat no.40169-

V08H1), which corresponds to the strain: A/turkey/Italy/4602/99 

(H7N1).  

 

5.3.6.  Ethics statement 

All chickens were retained and handled according to procedures 

reviewed and approved by the IRTA’s Ethics Committee for Animal 

Experimentation and the Animal Experimentation Commission from 

the Autonomous Community of Catalonia Government. Additionally, 

the study was in accordance with the Directive, UE 63/2010; the 

Spanish Legislation, RD 53/2013; the Catalan Law 5/1995 and Decree 

214/1997. 
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5.3.7.  Experimental design 

Thirty-four SPF chickens (VALO BioMedia, Salamanca, Spain) were 

hatched and randomly divided in three different negative isolators with 

HEPA-filtered air under BSL-3 containment conditions at IRTA-CReSA. 

Throughout the experiment, chickens were feed with food and water ad 

libitum. One isolator (group A= animals 1-12) was used as negative 

control and individuals were subcutaneously sham-vaccinated with PBS 

mixed 70:30 with Montanide™ 71 VG ISA. Chickens in the second 

isolator (group B= 13-24) were vaccinated at 10 days of age with flagellin-

NG34/CS17 and after 21 days of interval a boost vaccination followed. 

In parallel, in the third isolator (group C=25-34) chickens were 

immunized only once with flagellin-NG34/CS17 (without receiving 

boost vaccination). The animals from Group B and C were 

subcutaneously vaccinated with 0.250 mL/animal of soluble larvae 

extracts containing 15 µg/mL of flagellin-NG34/CS17 and mixed in a 

ratio of 70:30 with Montanide™ 71 VG ISA. Two weeks later, all 

chickens (group A-C) were intranasally inoculated with 100 µL diluted 

infectious allantoic fluid containing 104.5 ELD50 H7N1 HPAIV. Two 

days pre-challenge onwards all the chickens were monitored daily for flu-

like clinical signs. The experiment terminated at 10 days post-infection, 

when all the remaining chickens were euthanized. Oropharyngeal (OS) 

and cloacal swabs (CS) samples were collected at 1, 2, 3, 5, 7 and 9 dpi 

and, in addition, blood sampling to collect sera in tubes without 

anticoagulant was undertaken previous to the challenge (33 PVD) and at 

10 dpi. All the samples gathered were stored at -80ºC until its use.  
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5.3.8.  Pathological assessment 

Daily monitoring for clinical signs was carried out according to OIE 

guidelines [139] and semi-quantitative scoring: healthy (0), sick (1), 

severely sick (2), moribund or dead (3) was established. Chickens 

presenting one of the potential flu-clinical signs were classified as sick (1) 

chickens manifested two or more of the potential flu-clinical signs were 

classified as severely sick (2) and were euthanized by inoculating 

intravenously sodium pentobarbital in a dose of 100 mg/kg (Dolethal®, 

Vétoquiunol, France). The potential flu-clinical signs were the following 

ones: respiratory involvement, depression, diarrhea, edema of the face 

and/or head, cyanosis of the exposed skin or wattles and nervous signs.  

5.3.9.  Quantitative real time (RT-qPCR) 

All swab samples (OS and CS) were examined for viral RNA 

quantification. Viral RNA was extracted using the kit NucleoSpin RNA 

isolation kit (Macherey-Nagel GmbH&CoKG, Düren, Germany) and a 

99 bp fragment of the M gene amplified as already described [421] in 

Fast7500 equipment (Applied Biosystems, Foster City, CA, USA). The 

detection limit of the technique was 0.84 log10GEC/mL viral RNA 

copies/sample.  

 

5.3.10.  H7-specific ELISAs 

ELISA plates were coated with 2 µg/mL of H7 antigen diluted in 50 mM 

sodium bicarbonate buffer and incubated overnight at 4ºC. Then, plates 
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were blocked for 1 hour at 37ºC with 100μl/well 3%BSA/PBS1x. 

Diluted 1:100 chicken sera (50µl/well) were later incubated during 1 

hour at 37ºC. Plates were then four times washed with 

0.5%Tween20/PBS 1x and incubated 45 minutes at 37ºC with either 

diluted 1:50000 HRP-conjugated goat anti-chicken IgY (ab6877, Abcam) 

(50µl/well) or diluted 1:50000 HRP-conjugated goat anti-chicken IgM 

(ab112813, Abcam). After four more washing steps, 50 µl/well of TMB 

substrate solution was dispensed and, after 10 minutes time protected 

from light stopped with 1 N H2SO4. Plates were finally read at an OD of 

450nm. Samples were evaluated in duplicates. Positive H7N1 and 

negative control anti-serums (GD Animal Health, Deventer, The 

Netherlands) were included in each plate.  

 

5.3.11.  Inhibiton of the hemaggluatination assay 

(IHA) and serum neutralization test (SNT) 

HI tests were developed according standard protocols [139]. Briefly, sera 

were incubated with 4 HA units of the H7N1 challenged strain and the 

sera-virus mixture was further incubated with 1% cRBCs. Positive H7N1 

and negative control anti-serums (GD-Animal Health, Deventer, The 

Netherlands) were included in each plate. All samples were evaluated in 

duplicates. HI titers were defined as the highest sera dilution where 

inhibition of the hemagglutination was detected. 

 

For SNT, plates containing 5*104cells/well were seeded and incubated 

overnight in order to achieve confluence. Chicken inactivated sera 
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samples (56ºC for 30 minutes) were serially diluted two-fold up to 1: 

2,560 and incubated with the H7N1 virus (100 TCID50/50 µL) during 2 

hours at 37ºC and in a 5% CO2 atmosphere. Serum-virus mixtures were 

then added to PBS 1X washed MDCK cells. Cytopathic effect (CPE) was 

monitored after 7 days. SNT titers were expressed at the highest dilution 

of serum showing CPE. Media controls (no virus) and virus controls (no 

serum) were included in each plate. Samples were evaluated in 

duplicates. Positive H7N1 and negative control anti-serums (GD Animal 

Health, Deventer, The Netherlands) were included in each plate.  

 

5.3.12.  Statistical analysis 

The significance between the survival curves was determined by Kaplan-

Meier survival analysis with log-rank (Mantel-Cox) test. Normality 

assessment was used in the rest of analysis, with a Shapiro-Wilk test 

followed by: Student’s t-test (when data was normally distributed) or 

Wilcoxon test (when data was non-normally distributed). Differences 

among groups were considered statistically significant when the P values 

were less than 0.05 and are represented with: P<0.05 (*), P<0.01 (**), 

P<0.001 (***) and P<0.0001 (****). R statistical software was used for 

developing all the statistical analysis (http://cran.r-project.org/).  

 

 

 

 



Chapter V 
 

 
138 

5.4. Results 

5.4.1.  Production of recombinant flagellin-

NG34/CS17 in T. ni larvae 

Fifth instars T. ni larvae were inoculated with 27500 pfu of the TB3.2 

flagellin-NG34/CS17 baculovirus and total soluble protein extract was 

obtained after 72 hour of infection and analyzed by SDS-PAGE and 

Western blot (Figure 5-2A). Flagellin-NG34/CS17 recombinant protein 

was detected by Western blot using an anti-6x His-tag monoclonal 

antibody as a major band of about 65 kDa. All the recombinant protein 

produced was solubilized with the conditions used for the extraction. For 

immunization experiments, the amount of flagellin-NG34/CS17 antigen 

in the soluble larvae extract was quantified by Western blot using a 

standard curve with a 6xHis-tagged protein (Figure 5-2B). Concentration 

was determined in 28.6 µg of flagellin-NG34/CS17 per ml of TSP larvae 

extract. 

 

5.4.2.  Immunization with flagellin-NG34/CS17 

protected chickens against heterologous influenza virus 

challenge. 

More than 91% (11/12) of the chickens vaccinated twice with flagellin-

NG34/CS17 survived against a challenge with H7N1 influenza virus 

until the end of the experiment. In contrary, only two animals (16.6%) 

survived from the control group. Animals which received only one 

vaccination also succumbed to infection and, at the end of the 

experiment, only two animals (22.2%) remained alive (Figure 5-3). 
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Chickens vaccinated twice remained healthy and only one animal 

(number 15) died on day 6 after challenge. Chickens in the control 

group showed signs of disease and the majority of animals died between 

5 and 8 dpi. Chickens which received only one vaccination died also 

between 5 and 8 dpi (Figure 5-3).  

 
Figure 5-2. Production of recombinant flagellin-NG34/CS17 protein in 

T. ni larvae (A) Coomassie blue staining (left) and anti-6xHis-tag 

Western Blot (right) of protein extracts (10µl loaded/lane) obtained from 

empty rBac TB3.2-Ni (a recombinant TopBac baculovirus without a gene 

of interest) (lane 1: TP, lane 3: TSP) or rBac flagellin-NG34/CS17 (lane 

2: TP, lane 4: TSP) infected T. ni larvae run in a 10% SDS-PAGE gel. 

Arrow indicates the band corresponding to flagellin-NG34/CS17 protein 

in the Western Blot image. MW: BenchMark™ Unstained Protein 

Ladder (Invitrogen). (B) Quantification by anti-6xHis-tag Western Blot of 

the amount of flagellin-NG34/CS17 protein contained in the soluble 

larvae extract. Lanes: (1) TSP extract from empty rBac TB3.2-Ni infected 

T. ni larvae (5µl loaded), (2 and 9) TSP extract from rBac TB3.2 flagellin-

NG34/CS17 infected T. ni larvae (5µl loaded), (3 to 8) p54-His standard 

curve (150, 100, 50, 40, 20, 10 ng/lane, respectively). Arrows indicate the 

bands corresponding to flagellin-NG34/CS17 and p54-His proteins. 

MW: See Blue Plus2 Prestained Ladder (Invitrogen).  
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Figure 5-3. Survival curves of unvaccinated and once/twice flagellin-

NG34/CS17 vaccinated chicken upon challenge with 0.1mL of 

104.5ELD50 of a H7N1 HPAIV. Survival rates (%) of the three groups are 

depicted upon challenge with A/chicken/Italy/5093/99 until 10 dpi. 

Group A (unvaccinated animals) is depicted by grey circles, Group B 

(flagellin-NG34/CS17; twice vaccinated animals) by black squares and 

Group C (flagellin-NG34/CS17; once vaccinated animals) by black 

triangles. Statistically significant difference concerning survival among 

Group A and Group B (P<0.001) is depicted as ***: The significant 

difference (P< 0.01) among Group B and Group C is depicted as: **. 

 

5.4.3.  Flagellin-NG34/CS17 immunization 

saved chickens from flu-like clinical manifestations 

No clinical signs of disease were observed in majority of chickens 

vaccinated twice with flagellin-NG34/CS17. Only one chicken showed 

flu like symptoms (apathy) and was euthanized at 6 dpi for ethical 
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reasons. One more chicken from the flagellin-NG34/CS17 vaccinated 

group also manifested signs of sickness at 8 dpi (ruffled feathers and 

mucus secretions) but recovered during the course of the experiment.  

 

All animals from the control unvaccinated group were found sick with 

signs of apathy right from the first day of challenge. Apathy appeared 

more severe as one animal died at 2 dpi and other 2 animals at 5 dpi. 

Signs of flu-like sickness were more apparent and severe that obliged to 

sacrifice most of the unvaccinated chickens at 7 and 8 dpi. As described, 

euthanasia was solely applicable when two or more flu-like clinical signs 

were observed [139]. 

 

5.4.4.  Flagellin-NG34/CS17 immunization 

limited oropharyngeal and cloacal H7N1 viral shedding 

Significant differences were observed in the viral shedding both from 

oropharynx and cloaca of chickens vaccinated with flagellin-NG34/CS17 

(Figure 5-4). While the chickens vaccinated with flagellin-NG34/CS17 

had viral RNA detection values almost at the basal level, the 

unvaccinated group showed variations in the viral secretion that peaked 

at the seventh day post-inoculation (both orally and cloacally). 

Differences in the OS viral shedding among groups became more 

apparent between 5 and 9 dpi. Significant differences in the mean values 

of 2.73 log10 GEC/mL (unvaccinated group) and 1.01 log10 GEC/mL 

(vaccinated group) were noticed at 7 dpi (P<0.001). At 9 dpi, a 
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statistically significant difference among groups in the mean of shed 

virus: 3.23 log10 GEC/mL (unvaccinated group) and 0.93 log10 GEC/mL 

(vaccinated group) was also visualized (P<0.01).  

 

Similarly, cloacal viral shedding was more apparent and evident among 

vaccinated and unvaccinated groups right from 2 dpi. Unvaccinated 

animals were secreting higher number of IVs than the flagellin-

NG34/CS17 vaccinated animals. At 7 dpi, significant differences 

(P<0.001) in the mean values among groups: 3.47 log10 GEC/mL 

(unvaccinated) and 1.16 log10 GEC/mL (vaccinated) were detected. 

 

It should be noted that only two chickens remained alive from 

unvaccinated challenged group at 9 dpi. Viral secretion in OS, as 

recorded by RT-qPCR, was observed in both of the chickens, while viral 

secretion from CS was detected only from one animal (chicken number 

5). 
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Figure 5-4. Viral RNA shedding detected in oral and cloacal swabs by 

RT-qPCR. (A) Mean of GEC per mL obtained from oral swabs from 

sampled at 0, 1, 2, 3, 5, 7 and 9 dpi (B) and from the cloacal swabs 

sampled at 0, 1, 2, 3, 5, 7 and 9 dpi. Group A (unvaccinated animals) is 

depicted by grey bars and Group B (flagellin-NG34/CS17; twice 

vaccinated animals) by black bars. Dpi, days post-inoculation. GEC, 

genomic equivalent copies. Rates above the bars indicate the relation 

between positive chickens and the total of chickens examined. Dashed 

line marks the detection limit of the technique: 0.84 log10GEC/mL. 

Error bars represent the mean ± SEM. Statistically significant differences 

concerning shedding among groups (P value <0.05) are depicted as *** 

P<0.001, **:P<0.01.  

 

5.4.5.  Flagellin-NG34/CS17 immunization 

induced an increase in IgM and improved IgY response. 

Flagellin-NG34/CS17 vaccinated chicken displayed a higher mean of 

IgM antibodies against H7 in sera at 33 PVD than the unvaccinated 

chickens (P<0.05) (Figure 5-5). This tendency was also observed at 10 dpi. 

IgY antibody levels, on the other hand, were accelerated slightly in the 

Log
|

CGE
('
/
ntl

A B
7i

5

4

2

1

0

7 n

6-

“ » 212
8 9

Challenge 1 dpi 2 dpi 3 dpi 5 dpi 7 dpi 9 dpi
Days post-inoculation (dpi)

— _
5-

I
W 4.

i:1
I

o

1 2

89

4/12

Challenge 1 dpi 2 dpi 3 dpi 5 dpi 7 dpi 9 dpi
Days post-inoculation (dpi)



C
h

ap
ter V

 
  

1
4
4
 

fl agellin
-N

G
3
4
/C

S
1
7
 

vaccin
ated

 
ch

icken
s 

at 
3

3
 

P
V

D
 

th
o

u
gh

 
th

is 

ten
d

en
cy w

as n
o

t m
ain

tain
ed

 at 1
0
 d

p
i. In

 fact, h
igh

er m
ean

 o
f IgY

 

an
t ib

o
d

ies at 1
0
 d

p
i w

ere o
bserved

 in
 th

e u
n

vaccin
ated

 ch
icken

s rath
er 

th
a n

 
in

 
th

e 
ch

icken
s 

vaccin
ated

 
w

ith
 

flagellin
-N

G
3
4
/C

S
1
7

. 
T

h
is 

ten
d

en
cy m

ay attribu
te to

 th
e fact th

at o
n

ly tw
o

 ch
icken

s rem
ain

ed
 alive 

o
n

 
9
 

d
p

i 
an

d
, 

o
n

e 
o

f 
th

em
 

(ch
icken

 
2
) 

sh
o

w
ed

 
h

igh
er 

am
o

u
n

t 
o

f 

an
t ib

o
d

ies.  

 

 F
igu

re 5
-5

. H
A

-sp
ecific IgM

 an
d

 IgY
 titers in

 sera o
b

tain
ed

 b
y E

L
ISA

 

test. (A
) M

ean
 o

f IgM
 H

A
-sp

ecific an
tib

o
d

y levels d
etected

 at 3
3

 P
V

D
 

an
d

 1
0
 D

P
I o

f G
rou

p
s A

 an
d

 B
 (B

) M
ean

 o
f IgY

 an
tibo

d
y levels d

etected
 

at 3
3
 P

V
D

 an
d

 1
0
 D

P
I o

f G
rou

p
s A

 an
d

 B
. G

ro
u

p
 A

 (u
n

vaccin
ated

 

an
im

als) is d
ep

icted
 b

y grey circles an
d

 G
rou

p
 B

 (flagellin
-N

G
3
4
/C

S
1
7

, 

tw
ice 

vaccin
ated

 
an

im
als) 

is 
d

ep
icted

 
b

y 
b

lack 
sq

u
ares. 

O
D

, 
o

p
tical 

d
en

sity. 
P

V
D

, 
p

ost-vaccin
ation

 
d

ays 
an

d
 

D
P

I, 
d

ays 
p

ost-in
ocu

latio
n

. 

E
rro

r b
ars in

d
icate th

e m
ean

 ±
 S

E
M

. S
tatistically sign

ifican
t d

ifferen
ce 

co
n

cern
in

g O
D

 valu
es am

o
n

g gro
u

p
s (P

 valu
e <

0
.0

5
) is m

arked
 as *: 

P
<
0
.0

5 

 

OD 450 nin >\ «=> o
» k>

\X /J -
V #•

/
>s'

/ 1 *:\ V *% 1

/1 ITBr.

%
OD 450 mil

\ o
b

©
ij P p

b

\ ^\. % j

\
\\
\. {’*:

53



  Study III 

 
145 

5.4.6.  Flagellin-NG34/CS17 induced negative 

HI and SN titers against H7N1. 

HI and SN titers were negative in both the flagellin-NG34/CS17 

vaccinated and unvaccinated chickens. An HI titer of 1:80 was only 

observed in only one flagellin-NG34/CS17 vaccinated chicken that also 

showed flu-like clinical symptoms and recovered later (chicken 23).  

 

5.5. Discussion 

The monitoring and controlling the AIVs in the poultry is essential to 

further decrease their prevalence in avian species and the probable risk 

of human infections with HPAIV of zoonotic potential. Thus, 

immunization of poultry is vital as a prophylactic method when there is 

risk of IVs incursion and when the areas are endemic to such viruses. 

Moreover, considering the reported outbreaks in humans with H5 and 

H7 subtypes, WHO recommends not only vaccines against seasonal IVs, 

but also pandemic preparedness against potential pandemic strains [306].  

 

In addition, the concept of developing a universal influenza vaccine 

using conserved IV epitopes is widely sought. In the present study, two 

conserved HA-epitopes (NG-34 and CS-17) selected by in silico prediction 

were linked and used as vaccine candidates. The NG-34 peptide belongs 

to a highly conserved region of the HA, the E domain [113]. The CS-17 

peptide, corresponds to the cleavage site of the HA from H5 HPAIV. 

Previous immunization studies using polypeptide covering the cleavage 

site from IVs subytpes A and B have elicited neutralizing antibody 
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responses and conferred protection in mice [14,484]. Additionally, 

flagellin was fused to HA-epitopes (NG-34 and CS-17) in order to 

enhance immunogenicity of these peptides. It is known that flagellin 

induces TLR5 downsignaling pathway that ends up in the upregulation 

of immune cells, chemokines, and cytokines, promoting also the antigen 

uptake by the DCs to be further presented to the helper T cells 

[485,486]. Similar studies were also carried out previously with flagellin 

ligand in IV vaccines and effective adjuvants for poultry [487–489]. 

We have used baculovirus technology to express and produce flagellin-

NG34/CS17 vaccine against IV infection. Previous reports [480] 

indicated that extracts from larvae infected with an empty recombinant 

baculovirus (BacNi, a recombinant baculovirus with no foreign gene) 

does not interfere with the immune reaction associated to the antigen. 

Similarly, prior to virus challenge, we have not observed any local 

immune reaction upon flagellin-NG34/CS17 vaccine application 

produced in Baculovirus system. 

 

More than the 80% of chickens vaccinated twice survived the IV 

challenge reducing significantly the virus load in oropharyngeal and 

cloacal mucosal tissues. This is in accordance with the standard set by 

OIE [139]. We are aware that a higher viral dose must be used to achieve 

a 90% of the mortality in the control unvaccinated challenged animal 

group. However, it should be taken into account that one of the two 

survivors in the unvaccinated group was showing deteriorated signs of 

sickness and most probably needed euthanization adding up to 

increasing numbers of mortality in unvaccinated challenged group. 
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Protection against IVs is generally attributed to anti-HA antibodies, 

determined by ELISA, HI and SNT [490]. In this study, however, 

hemaglutination-inhibiting/neutralizing antibodies were either very low 

or below detection levels. Elevated IgM antibody levels in the flagellin-

NG34/CS17 vaccinated group however were recorded. We assume that 

simple ELISA test detect also lower affinity antibodies that are missed in 

HI or neutralization assays [491]. There is however, no consensus of the 

ELISA titers required in order to achieve protection [492,493]. 

Protection without the need of high HI and/or neutralizing titers against 

H7 subtype IVs has been described previously [494,495]. Reports 

indicate that candidate inactivated vaccines against potential pandemic 

viruses (H5/H7) have induced low immunogenicity, required two doses 

as well as adjuvant in their composition. Possible explanations of these 

low inhibiting/neutralizing titers are focused on the levels of 

glycosylation of the HA protein [496,497].  

 

Previous reports also suggest that non-neutralizing antibodies may confer 

protection against IVs [201,490,498]. These antibodies either interact 

with the complement [499,500] or recruit NK cells/monocytes leading to 

kill IV-infected cells by antibody-dependent cellular cytotoxicity (ADCC) 

[501,502]. IgM antibodies, on the other hand, could neutralize IVs as 

efficiently as IgY antibodies in the presence of complement [503]. 

Experiments with passive serum transfer from vaccinated to naïve 

chicken may unravel the mechanism of antibody induced protection. 

Possible involvement of cellular immune response in flagellin-

NG34/CS17-associated protection in chicken against IV challenge is 
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under investigation. In our previous work we showed that NG-34 

peptide included in the vaccine formulation induces strong T cell 

response [331]. 

 

In conclusion, flagellin-NG34/CS17 may serve as a potential vaccine to 

protect against heterologous IV infections in chicken. It further limits IV 

transmission by blocking virus shedding from vaccinated animals. 

Further experiments however are needed to understand completely the 

immune mechanisms associated to the protection conferred. Whether 

this vaccine would protect animals from other HPAIV infections is 

currently under investigation. 
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Nothing in life is to be feared, it is only to be understood.  

Now is the time to understand more, so that we may fear less.  

Marie Curie 
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6. General discussion 
 

IVs remain a major health threat although for many years efforts have 

been focused on exploring strategies to obtain a protective universal 

vaccine able to provide immunity against drifted and pandemic IVs. 

Their wide host range, antigenic drift and shift make IVs difficult to 

eradicate and combating influenza viruses is one of the major focus of 

the influenza research community. 

The three studies embedded in this thesis (Chapter III-Chapter V) were 

designed to potentially induce a broad and a multivalent immune 

response against IVs by employing distinct vaccines approaches. The 

vaccine strategy implicated in these studies made use of in silico predicted 

HA-conserved epitopes sharing common informational characteristics 

that are immunogenically cross-reactive among different IV subtypes and 

may provide resistance to heterotypic influenza viruses (as described in 

[417]). In order to enhance immunogenicity, HA-peptides were linked 

with different biological adjuvants either in a DNA (plasmid) approach 

or as soluble antigen formulation. Mainly, since adjuvants are often 

characterized for not inducing robust responses, and thus, suitable 

vaccine delivery to protect peptides from degradation and regulating 

release of antigens to the immune cells summed with appropriate 

adjuvants are essential to increase its immunogenicity [395]. 

The first two studies were undertaken in pigs for many reasons (Chapter 

III--IV). Apart from all the economic losses in the pig industry caused by 

the IVs, pigs are also hosts that may lead to zoonoses in humans with the 
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risk of a pandemic (such as the 2009 pandemic). Moreover, results 

obtained in pigs hosts might be extrapolated to the humans as the 

distribution of SA among the respiratory tracts of pigs and humans are 

very similar [121].  

An alternative to conventional inactivated vaccines that generally lack 

heterovariant and heterosubtypic protection, may enhance disease and 

experience interference by MDA [8] was taken into account in both the 

studies (Chapter III--IV). Thus, the capability of vaccine formulations 

and application approach to break the MDA was investigated in both 

cases (Chapter III--IV).  

Results gathered from Study I (Chapter III) using pCMV-CTLA4-Ig-

NG34 in a needle-free vaccine approach in SIV-seronegative and SIV-

seropositive pigs showed that the vaccine formulation was effective in 

reducing viral secretion, in clearing the virus from the lungs, in inducing 

antibodies against H1 and H3 subtypes and in promoting HI 

neutralizing antibodies. Results obtained with the vaccine approach used 

in the study also indicate that the initial presence of MDA could be 

bypassed. We assume that the effects observed might be in part of Th2 

type T cell response that results in the induction of IgG1 and further 

increase in humoral and cellular response. All these immune effects are 

valuable components in an efficacious SIV vaccine against influenza 

virus infection. Moreover, DNA vaccine used in this work, administered 

in a needle-free approach eases the mass-vaccination and quicker massive 

production in case of pandemic [504]. To note, the orchestrated 

immune response has been induced by a single HA-peptide from H1 

influenza subtype combined with the CTLA4 molecule, unlike to all the 
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SIV vaccines on the market described in section 1.5.2.; “Current vaccines in 

swine”.  

Lots of current studies are using conserved peptides which are tested in 

pigs (in order to get T-cell cross-protective response) [505–507]. This is 

because both the CD4+ T helper cells [508] and CTLs [509,510] can 

clear IAVs and/or help in inducing high titers of strain-specific 

antibodies [511]. Moreover, antigen-specific T cells are also associated 

with reductions in the IV shedding [512,513]. However, in those studies, 

other methodologies have been developed to present the antigen in 

order to augment their immunogenicity [505,506].  

pCMV-CTLA4-Ig-NG34 vaccine did not mitigate pneumonic lung lesion 

and reduced pigs from flu-like clinical signs suggesting an improvement 

in the vaccine formulation. Possibly introducing HA-specific T cell 

epitopes that can induce CTLs could be an option as CD8+ cytotoxic T 

cells are shown to be associated with reducing clinical severity in mice 

and humans [514,515].  

 

In chapter IV, we took advantage of bacterial surface protein flagellin, 

known to induce/enhance innate immune response, fused together with 

HA-peptides. The resulting VC4-flagellin construct was used to 

immunize pigs and the vaccine efficacy assessment was evaluated. Both 

the homologous and heterologous virus (SwH3N2) challenges were used 

in these studies. Besides, efficacy of VC4-flagellin vaccine was evaluated 

in both the SIV-seronegative and SIV-seronegative (MDA positive) 

animals.  
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We believe that VC-4 flagellin vaccine could be used as a multivalent 

vaccine against SIV infection in seronegative and seropositive pigs. 

Vaccination with VC-4 flagellin reduced viral shedding and induced 

higher HI titers compared to unvaccinated pigs. Stronger IgG antibody 

responses against H1 and H3 subtypes as well as higher seroneutralizing 

titers, increased mucosal IgA response in BALFs and elevated amount of 

DP CD4 CD8 T-cells were induced.  

 

Data collected in this work also points to a cross-reactive antibody effect 

and that MDA could be overcome by immunizing pigs with VC4-

flagellin, a criterion that lacks in commercially available vaccines. 

Moreover, the VC-4 flagellin vaccination approach induced mucosal 

immune response crucial for a good protective universal influenza 

vaccine candidate as IgA from nasal and lung washes can neutralize 

homo- and heterologous influenza virus challenges [516]. This correlates 

with other studies [517] which have demonstrated that the humoral 

mucosal antibody response can be induced when bacterial cytosolic 

flagellin is recognized by the NLR family members: NAIP5/NLRC4 

inflammasome [518]. Additionally, increase in DP CD4 and CD8 T cells 

that is correlated in other viral pig diseases with protective responses is 

also induced [519–522]. 

 

Wild birds are the natural reservoir of IAVs which can easily infect 

poultry. Occurring outbreaks in humans coming from HPAI AIVs in 

poultry (mainly H5 and H7 subtypes) make also crucial that universal 
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vaccine prototypes are sought and implemented in poultry to aid in 

animal health and combat zoonotic stages.  

HA- peptides fused to flagellin were produced in the baculovirus 

platform and the soluble extracts of infected larvae expressing the 

construct used as vaccine prototype against H7N1 subtype. Chickens 

vaccinated twice with flagellin-NG34/CS17 were protected against 

H7N1 virus challenge, viral shedding was blocked and were free of any 

flu-like clinical symptom, criteria that are needed and mentioned in OIE 

standards for a suitable avian influenza vaccine [139]. Nevertheless, SNT 

and IHA results were negative making it difficult to state mechanism/s 

associated to observed protection and demand further research. 

Similarly, protection, without high HI titers against H7 subtypes has also 

been reported by others [494,495] suggesting the need of other/different 

immune correlates for protection against IVs infection. 

 

In summary, we assume that ISM could be a good predictive tool to 

potentially select antigenic determinants/epitopes with cross-reactive 

immunological spectrum and may help in detection/protection against 

heterologous influenza virus challenge as seen in this work. Nevertheless, 

the approaches herein tested are initial step to the complicate issue of 

getting a universal IV vaccine and highlight the need of more studies (to 

further improve immune response, to test approaches in larger groups 

and against other IAVs, to understand protection mechanism, etc.) to 

finally develop an effective/efficient and suitable multivalent IAV 

vaccine. 
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     “Nobody said it was easy... 

No one ever said it would be this hard”. 

Coldplay.  
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7. Conclusions 
 

1) Cross-reactive antibodies (against both H1 and H3) and high HI 

titers were achieved in pigs vaccinated with pCMV-CTLA4-NG34 

and challenged with a heterologous H3N2 IV. Furthermore, the 

levels of anti-H3 specific antibodies exponentially increased after 

SwH3N2 challenge in vaccinated pigs. 

 

2) Increasing levels of anti-H3 antibodies in the vaccinated pigs 

correlated with the reduction of the viral shedding observed after 

H3N2 challenge. This reduction in the viral shedding was also 

observed in pCMV-CTLA4-NG34 vaccinated SIV-seropositive pigs, 

leading to the clearance of the H3N2 virus in their lungs.  

 

3) pCMV-CTLA4-NG34 partially protects against heterologous H3N2 

challenge in the presence of pre-existing antibodies as differences in 

the degree of pneumonic lesions or flu-like clinical signs were not 

observed. 

 

4) DNA vaccine based on conserved HA-epitopes and flagellin (VC-4 

flagellin) elicited cross-reactive antibodies against H1 and H3 

subtypes. Moreover, higher HI titers in the VC-4 flagellin vaccinated 

pigs were observed after pH1N1 and SwH3N2 IV challenge. 

 

5) The antibodies correlated with the reduction of the viral shedding 

observed in VC4-flagellin vaccinated SIV-seronegative and SIV-
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seropostive pigs. In the BALFs, VC-4 flagellin vaccinated pigs elicited 

elevated mucosal immune response and higher seroneutralizing 

titers.  

 

6) VC4-flagellin could be used as multivalent vaccine against SIV 

infections in both the seronegative and seropositve pigs. However, 

improvement is needed to mitigate clinical signs and lung lesions. 

 

 

7) Flagellin-NG34/CS17 vaccination in chicken protected animals from 

H7 HPAIV strain and as such it represents a potential vaccine 

candidate against H7 HPAIV strains in the chickens.  
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APPENDIX 

CHAPTER III:  

 

S1 Table. Summary of results obtained in a preliminary trial 

performed in pigs vaccinated with pCMV-CTLA4-Ig (empty vector) 

and challenged with H3N2 SIV. 

 

Abbreviations: BALFs, bronchoalveolar fluids; dpi, days post-
inoculation; GEC, genomic equivalent copies; HA, hemagglutinin; 
HI,hemagglutination inhibition; IV, influenza virus; NS, nasal swabs; 
OD, optical density; PVD, post-vaccination day; SIV, swine influenza 
virus. 

aMean Log10 GEC/mL of NS collected from animals immunized with 
pCMV-CTLA4-Ig at 7 dpi with 106 TCID50/mL H3N2 SIV.  

bMean Log10 GEC/mL of the BALFs from animals immunized with 
pCMV-CTLA4-Ig at 7 dpi with 106 TCID50/mL H3N2 SIV. 

cMean of OD450 nm values against HA (A/Aichi/2/1968(H3N2)) from 
sera samples at 35 PVD obtained by ELISAs.  

dMean HI titers against A/swine/Spain/003/2010 H3N2 IV from sera 
samples at 7 dpi with 106TCID50/mL H3N2 SIV. 

 

 

Assay
Mean Mean SD

Virus quantification by RT-
qPCR in NS

2,80* 0,526

Virus quantification by RT-
qPC'R in BALFs

4^0p 0.535

ELISA for H3-antibody
detection

0,35" 0,079

HI test 0,00d 0,00
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APPENDIX 

CHAPTER IV:  

 

S1 Figure. Plots for gating CD4, CD8 SP T-lymphocytes and CD4-CD8 

DP lymphocytes in flow cytometry. A) lymphocytes B) CD4, CD8 T-

lymphocytes and CD4-CD8 DP lymphocytes plot C) CD4 T-

lymphocytes, D) CD8 T-lymphocytes.  
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