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It is change, continuing change, inevitable change, that is the dominant factor in
society today.

No sensible decision can be made any longer without taking into account not only
the world as it is, but the world as it will be.

Isaac Asimov

To the CARLA team /c\. . .
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Abstract

Autonomous vehicles are now considered as an assured asset in the future. Liter-
ally, all the relevant car-markers are now in a race to produce fully autonomous
vehicles. These car-makers usually make use of modular pipelines for designing
autonomous vehicles. This strategy decomposes the problem in a variety of tasks
such as object detection and recognition, semantic and instance segmentation,
depth estimation, SLAM and place recognition, as well as planning and control.
Each module requires a separate set of expert algorithms, which are costly specially
in the amount of human labor and necessity of data labelling. An alternative that re-
cently has driven considerable interest is the end-to-end driving. In the end-to-end
driving paradigm, perception and control are learned simultaneously using a deep
network. These sensorimotor models are typically obtained by imitation learning
from human demonstrations. Themain advantage is that this approach can directly
learn from large fleets of human-driven vehicles without requiring a fixed ontology
and extensive amounts of labeling. However, scaling end-to-end drivingmethods to
behaviorsmore complex than simple lane keeping or lead vehicle following remains
an open problem. On this thesis, in order to achieve more complex behaviours, we
address some issues when creating end-to-end driving system through imitation
learning. The first of them is a necessity of an environment for algorithm evaluation
and collection of driving demonstrations. On this matter, we participated on the
creation of the CARLA simulator, an open source platform built from ground up for
autonomous driving validation and prototyping. Since the end-to-end approach
is purely reactive, there is also the necessity to provide an interface with a global
planning system. With this, we propose the conditional imitation learning that
conditions the actions produced into some high level command. Evaluation is also
a concern and is commonly performed by comparing the end-to-end network out-
put to some pre-collected driving dataset. We show that this is surprisingly weakly
correlated to the actual driving and propose strategies on how to better acquire data
and a better comparison strategy. Finally, we confirm well-known generalization is-
sues (due to dataset bias and overfitting), new ones (due to dynamic objects and the
lack of a causal model), and training instability; problems requiring further research
before end-to-end driving through imitation can scale to real-world driving.

Key words: autonomous driving, computer vision, machine learning, deep learn-
ing, imitation learning, simulation
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Resumen

Los vehículos autónomos ahora se consideran como un activo asegurado en el
futuro. Literalmente, todos los marcadores de automóviles relevantes se encuen-
tran ahora en una carrera para producir vehículos totalmente autónomos. Estos
fabricantes de automóviles generalmente utilizan tuberías modulares para diseñar
vehículos autónomos. Esta estrategia descompone el problema en una variedad de
tareas tales como detección y reconocimiento de objetos, segmentación semántica
y de instancias, estimación de profundidad, SLAM y reconocimiento de lugares,
así como planificación y control. Cada módulo requiere un conjunto separado de
algoritmos expertos, que son costosos, especialmente por la cantidad de mano de
obra humana y la necesidad de etiquetar los datos. Una alternativa que reciente-
mente ha despertado un interés considerable es la conducción end-to-end. En el
paradigma de conducción de end-to-end, la percepción y el control se aprenden
simultáneamente utilizando una red profunda. Estos modelos sensoriomotores
se obtienen típicamente mediante imitación de aprendizaje a partir de demos-
traciones de humanos. La principal ventaja es que este enfoque puede aprender
directamente de grandes flotas de vehículos conducidos por el hombre sin requerir
una ontología fija y una gran cantidad de datos etiquetados. Sin embargo, los méto-
dos end-to-end se usaban comúnmente para aprender comportamientos simples
como el mantenimiento de carriles y el seguimiento del vehículo. En esta tesis,
para lograr comportamientos más complejos, abordamos algunos problemas al
crear un sistema de conducción de extremo a extremo a través del aprendizaje por
imitación. El primero de ellos es la necesidad de un entorno para la evaluación
de algoritmos y la recopilación de demostraciones de conducción. En este asunto,
participamos en la creación del simulador de CARLA, una plataforma de código
abierto creada desde cero para la validación y creación de prototipos de conducción
autónoma. Dado que el enfoque de end-to-end es puramente reactivo, también exis-
te la necesidad de proporcionar una interfaz con un sistema de planificación global.
Con esto, proponemos el aprendizaje de imitación condicional que condiciona las
acciones producidas en un comando de alto nivel. La evaluación también es una
preocupación y se realiza comúnmente al comparar la salida de la red de extremo
a extremo con un conjunto de datos de conducción recolectados de forma previa.
Demostramos que esto está sorprendentemente débilmente relacionado con la
conducción real y proponemos estrategias sobre cómo adquirir mejor los datos y
una mejor estrategia de comparación. Finalmente, confirmamos los problemas de
generalización conocidos (debido al sesgo de sobreajuste del conjunto de datos
y el sobreajuste), los nuevos (debido a los objetos dinámicos y la falta de modelo
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acausal) y la inestabilidad de la capacitación; Los problemas que requieren investi-
gación adicional antes de la finalización de la conducción a través de la imitación
pueden escalar a la conducción en el mundo real.

Palabras clave: vehículos autónomos, visión artificial, aprendizaje automático
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Resum

Els vehicles autònoms es consideren ara com a actius assegurats en el futur. Literal-
ment, tots els marcadors d’automòbils rellevants es troben en una cursa per produir
vehicles totalment autònoms. Aquests fabricants de cotxes solen fer ús de canona-
des modulars per al disseny de vehicles autònoms. Aquesta estratègia descompon
el problema en diverses tasques com la detecció i el reconeixement d’objectes, la
segmentació semàntica i la instància, l’estimació de profunditat, el reconeixement
de llocs i SLAM, així com la planificació i el control. Cada mòdul requereix un con-
junt separat d’algoritmes experts, que són costosos especialment quant al treball
humà i la necessitat d’etiquetatge de dades. Una alternativa que recentment té
un interès significatiu és la conducció integral. En el paradigma de conducció de
extrem a extrem, la percepció i el control s’obtenen simultàniament mitjançant una
xarxa profunda. Els models de tesisensorotor s’obtenen normalment mitjançant
l’aprenentatge de imitacions de les demostracions de humà. L’avantatge principal
és que aquest enfocament pot aprendre directament de les grans flotes de vehicles
dirigits per humans sense necessitat d’un ontologia fixa i d’una àmplia quantitat
d’etiquetatge. No obstant això, els mètodes de extrem a extrem es van utilitzar
habitualment per aprendre conductes simples com ara manteniment de carrils
i el vehicle principal. En aquesta tesi, per tal d’aconseguir comportaments més
complexos, abordem alguns problemes quan es crea un sistema de conducció de
extrem a extremmitjançant l’aprenentatge de la imitació. El primer d’aquests és la
necessitat d’un entorn per a l’avaluació d’algorismes i la recopilació de demostraci-
ons d’administració. En aquest sentit, hem participat en la creació del simulador de
Carla, una plataforma de codi obert construïda des de la base per a la validació i el
prototipatge d’autònoms. Atès que l’enfocament de extrem a extrem és purament
re-actiu, també hi ha la necessitat de proporcionar una interfície amb un sistema de
planificació global. Amb això, proposem l’aprenentatge d’imitació condicional que
condiciona les accions produïdes en algun comandament d’alt nivell. L’avaluació
és també una qüestió i normalment es fa mitjançant la comparació de la sortida de
la xarxa de cap a cap a un conjunt de dades de conducció que es recull. Demostrem
que això és correlacionat sorprenentment debilitat amb la conducció real i propo-
sa estratègies sobre com adquirir millor les dades i una estratègia de comparació
millor. Finalment, confirmem problemes de generalització ben coneguts (deguts a
biaixos i sobraccessos actuals), de nous (a causa d’objectes dinàmics i la manca de
model acausal) i la inestabilitat de la formació; Els problemes que requereixen més
investigacions abans de finalitzar la conducció a través de la imitació poden escalar
a la conducció del món real.
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1 Introduction

1.1 Motivation

Robotic cars that are able to drive themselves are an asset imagined in the literature
since cars have became a central good in our society. From just imagination, this
idea of having Autonomous Vehicles (AVs) is now considered as inevitable to happen
at some point in the future. There are several reasons to build an autonomous vehi-
cle. One of them is safety. The world health organization estimates that around 1.35
million fatalities are caused by road vehicle crashes [81]. From all these fatalities at
least 94% [4] of them are caused by human errors, such as distraction or inaccurate
decision making. As is currently estimated, autonomous vehicles could reduce the
number of fatalities by 80% [49][68] . However, the motivation that attracts now,
literally, every relevant automaker to the AVs development market is economical.
Autonomous Vehicles are estimated to inject around 7 trillion US dollars into the
world economy by 2050 [59]. By removing the driver from the equation, companies
can further profit by proving mobility as a service, in a cheaper way, as Uber or Lift
does today.

What is the precise definition of an autonomous vehicle ? There is no standard
single definition of an AV since it depends on what can the vehicle perform and on
which context. The NHTSA, since 2016, gives an updated definition that divides an
AV based on five levels of autonomy:

• Level 0: There is not automation involved, so the vehicle is totally controlled
by a human driver.

• Level 1: The human driver literally is still controlling the vehicle but some
assist features can provide help to the driver.

• Level 2: The vehicle has some automated functions and is able to control steer-
ing and acceleration eventually. However, the driver must remain engaged in
full attention.
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• Level 3: The driver is necessary but does not need full attention. The vehicle
is usually on control and warns the driver when it needs assistance.

• Level 4: Under certain conditions the vehicle can take full control without
need of the human driver.

• Level 5: The vehicle does not need a steering wheel. This level represents the
full autonomy.

At the time this thesis is being written some autonomous vehicles, that could
arguably be placed on different levels of autonomy, are being commercialized. We
can already have samples of commercial cars that incorporate features from levels
2 or 3. However, the holly grail of autonomy that could, in theory, fully provide both
the economical and safety benefits are the levels 4 and 5. For that, several strategies
are being developed, and these, including the one of interest of this thesis, are going
to be detailed on the next sections.

1.2 The Modular Autonomous Vehicle

Building a level 5 autonomous driving agent is really a multi-disciplinary and com-
plex task. It encapsulates many areas of knowledge such as sensor development,
computer vision, machine learning, control theory, planning and even ethics. A
fully autonomous vehicle needs to pick up a passenger, anywhere, and drive this
person to a desired destination by travelling over any city and respecting all the
traffic rules. To do that safely, it also needs to react accordingly to all troublesome
situations that can eventually happen, such as careless drivers or sudden crossings
of pedestrians. Further, everything needs to be performed under any weather or
road conditions.

Traditionally, as shown on Figure 1.1, several modules are used for the purpose
of driving. The driving agent needs to be able to understand the scene as it drives
through the environment. For that, it needs to detect all the moving objects [69,
86, 87] and recognize them [126], as well as segment the road and other parts
of the scene [70, 80, 117, 122]. The AV also needs to localize itself on the road
(GPS is not precise enough) and create an adequate plan to reach its destination
[65, 109, 121, 125]. Finally it needs to translate the plan and what it recognized into
control [82], which uniquely determine the actions performed in the world. Each
module requires a separate set of expert algorithms which are costly in terms of
development effort, integration, testing, and adaptability in the constantly changing
open world.

Recently, there has been huge advances in each of these specific modules, due
to the development of deep learning allied with huge amounts of available data.
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Cheaper sensors and huge investment allows companies to collect thousands miles
of footage. This advance is specially significant on scene understanding, since in
Computer Vision, for instance, the use of convolutional neural networks (CNNs)
allied with a huge amount of data and less manual design of features has lead to
super-human performance on image classification [116].

Hence, developing AVmodules is changing from an engineering centered ap-
proach to a data centered one. On the engineered centered approach, each specific
problem is carefully engineered. For example, to detect pedestrians, the traditional
way would be to design features to represent a pedestrian and try to match those
in an image by training a classifier and requiring little amount of training data [34].
The data centered approach, on the other hand, solves that by using hundreds
of thousands of labelled examples of pedestrians. These labelled examples are a
ground truth (GT) of some raw data (e.g. images) that is used as a supervision for
the CNNs to learn.

However, not all the data that is collected can readily be used for improving
the driving agent. One of the main drawbacks of the data centered approaches
is the necessity for labelling. This usually can be done manually (e.g., assigning
a semantic class to each pixel of an image) by using crowdsourcing tools such as
Amazon’s Mechanical Turk [15] and LabelMe [95]. However, this cumbersome task
does not scale to the full length of the available data, since the annotators must
have certain degree of expertise annotating data, and their annotations come with
errors and inaccuracies.

Even though learning has been set as the main paradigm especially for percep-
tion, the decision making, planning and control are still mostly being made on an
engineered based approach which does not allow to fully leverage the available data.
Different techniques that could use all the available data without the burden of high
dense quantity of labelling would be more scalable. These techniques could also
be able to introduce the learning approach not only on perception andmapping
but also in the decision making. The exploration of these alternatives is what we
address on this thesis.

1.3 End-to-end Driving

Instead of learning each single component, we could think of a driving agent as a
single CNN that could map directly what the vehicle perceives (e.g., from a camera)
in terms of vehicle control parameters producing a target maneuver (Fig. 1.2). With
this, all the sub-tasks are not defined, but may be implicitly learned from data or
interaction. This approach, called end-to-end driving, was pioneered in 1988 by
Pomerleau [61, 84] and has recently attracted renewed interest [11, 17, 20, 77, 115].
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Figure 1.1 – Some keymodules of an autonomous vehicle. The scene understanding
provides information for the localization and planning algorithms to work. Finally,
based on the plan the control outputs can be produced.

This interest was mainly due to the advances in deep learning and convolutional
neural networks allied with a higher availability of annotated data and computing
power.

There are several ways to train an end-to-end driving agent (i.e. a CNN). Oneway
is tomimic the actions fromexpert humandemonstrators [2, 3, 85, 104]. Given some
sensor inputs (i.e. observations of the current state of the world) and desired control
actions made by the human, the neural network is taught to produce the same
outputs as the human. The process happen by the continuous backpropagation of
the error between the controller’s action and the desired human action. The idea is
to minimize this propagated error through some optimization technique such as
gradient descent [36]. This approach is commonly called imitation learning (IL).

Instead of directly imitating a human reference that could be not perfect, an
alternative way with great success in many fields is reinforcement learning (RL)
[105] [76]. In this approach, the driving agent would interact with the environment
and receive rewards when it drives according to all traffic and safety rules and is
penalized for any mistake. This way, the CNN-based agent would made aminimum
number of mistakes and try to perform in a way that would maximize its rewards.

However, RL poses some complications when learning within physical environ-
ments since it can generate unsafe situations before convergence. Also, it typically
requires millions of trial and error runs in the target environment [64] or a faithful
simulation. End-to-end imitative systems, on the contrary, allows for safe off-line
learning and can directly rely on data collected from large fleets of human-driven
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vehicles without requiring a fixed ontology and extensive amounts of sensor data
labeling. It is also a simple and efficient system, able to run in real-time on embed-
ded hardware [11], a key requirement for online safety-critical decision making in
robotic platforms. Yet, RL can be indeed complementary through imitation learning
as RL can be used to improve an initial imitative policy [105].

Imitation learning essentially is performed by training a regressor to replicate
the driving policy (behavior) of a referential demonstrator. However, it is erroneous
to assume this as a simple classification or regression problem, since every action
performed does affect the future state of the world. Thus, there will be always
shifts on what is seen at training and at test time [92]. When human drivers collect
reference data they rarely demonstrate "recovery behavior" for potential mistakes.
Thus, since the learning process is imperfect, as soon as the agent makes a mistake
it will not have any reference from the demonstrator on how to recover and will
continue to make further mistakes until failure. There are several ways to solve this
problem. Usually they require querying an expert when the agent is driving [93][42]
[63]. With this the agent could benefit from expert information to further learn how
to correct mistakes. This approaches have the expensive requirement of needing
an expert during the learning process. The simpler strategy, that does not need
to use information from when the model is driving is commonly called behavior
cloning, a sub-part of imitation learning, and has been shown to have good success
recently [11] [20][115]. The key is to use extra subterfuges to force the human driver
to provide "recovery behavior" data, either by using extra sensors [11] or by adding
noise to the demonstrator. From now on when we refer to imitation learning (IL) ,
we actually refer to behavior cloning that does not need to query the expert when
the agent is driving.

In this thesis we focus on end-to-end driving behavior cloning and how to
make it more advantageous, either by increasing the controllability (integrate it
with higher level systems), by improving the understanding of its limitations or by
providing tools and mechanisms to better evaluate such systems. We choose to use
behavior cloning since we aim to propose techniques that can easily benefit from
the huge load of data that can be collected by human drivers without any additional
human labor for labelling or the presence of humans during learning.

1.4 Objectives

Even though it was pioneered a while ago [61, 84], end-to-end driving through be-
havior cloning still lack development on some critical topics. In this thesis we focus
on three issues that we found as the main barriers: Simulation, Controllability and
Evaluation. By addressing these three issues we put our final efforts on exploring
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Figure 1.2 – End-to-end driving scheme. The sensor input composed by sensor
data (images, speed) is directly mapped by a deep neural network into car controls
(throttle, steer, brake).

the limitations of current end-to-end driving agents based on behavior cloning..

Simulation Where can we develop end-to-end driving agents?
End-to-end driving requires environments where the actual driving interaction

can happen. Relying on physical environments during all the development phase is
expensive and time consuming, making it hard for quick prototyping and testing.
Further, initial versions of the driving agents can be potentially unsafe.

This could be addressed by using simulation. However, when we started this
PhD work we realized the lack of simulated environments with the required con-
ditions to study the end-to-end driving algorithms . For this reason, we helped
significantly to the development of the CARLA simulator (CARs Learning to Act;
carla.org). CARLA is an open source simulator made from ground up to be used for
autonomous driving validation and prototyping. The simulator allows quick testing
of end-to-end driving agents and to have access to privileged information such as
image labels ground truth. Further, it allows the creation of repeatable benchmarks,
that are fundamental to assess the driving capabilities of different agents.

Controllability How do we control end-to-end driving agents ?
The end-to-end agents as shown in Figure 1.2, are purely reactive, without the

ability to incorporate any route plan. Thus, these systems, when approaching a
decision point, such as an intersection, will have no route context in order to make
a decision. For example, the CNN trained by Bojarski et al. [11] was given control
over lane and road following only. When a lane change or a turn from one road to
another were required, the human driver had to take control. The lack of possibility
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to guide the driving agent to a certain objective limits the kind of task it can perform,
specially on urban environments. For instance, when driving in a city, one cannot
evaluate if a given system is able to reach a certain objective.

To make the end-to-end agents controllable, in this PhD work we focus on
proposing a new formulation where the control produced is conditioned on high
level commands. We call this formulation as conditional imitation learning. This
allows, at test time, for the network to resolve the ambiguity in the perceptuomotor
mapping and allow the trainedmodel to be controlled by the input provided by a
passenger or a topological planner.

Evaluation How do we evaluate end-to-end driving agents ?
In order to find the best training parameters and strategies for driving agents

based on imitation learning, it is necessary to have a quick and adequate evaluation
protocol. In this context, there is a tendency to evaluate end-to-end vision-based
driving systems in similar way as in a generic computer vision task. This idea is
appealing, since camera-based autonomous driving can be viewed as a computer
vision problem. The usual evaluation methodology in computer vision consists of
comparing the results of a given model or algorithm with the ground truth of some
collected dataset. This evaluation strategy is very advantageous since, while the
evaluation using real physical systems needs lots of resources and time, evaluating a
driving algorithm on a dataset can takemaximum a few hours under an appropriate
hardware budget.

In this thesis, we empirically investigate the relation between (offline) driving
control accuracy on a dataset and (online) the actual driving quality on a simulator.
We found that the common offline computer vision evaluation approach has a weak
correlation to actual driving, since a driving agent with low prediction error can be
surprisingly bad at driving. We also show two general approaches for increasing
this poor correlation between prediction and driving.

Limitations How can we improve the performance of end-to-end driving agents?
Commonly, end-to-end driving IL approaches have been used to more simple

tasks such as lane following or lead vehicle following. More complex task such as
avoiding obstacles are achieved by hybridizing end-to-end driving with modular
approaches [18, 77, 97, 102], but the real limits of end-to-end driving are not yet
clear.

The final contribution of this thesis is that, by using the simulation infrastructure
and the conditional imitation, we were able to analyze some limitations of end-to-
endmodels. This was possible since we had a repeatable benchmark in a controlled
environment making it easy to understand different aspects of the IL based end-
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to-end driving agent. We found that there is a considerable amount of sensitivity
towards initialization and order of data sampling during training. A model with
the same network parameters can have significant different performance of up to
42%. This finding is analogous to recent debates on reproducibility of RL algorithms
[46]. We also discover that higher amounts of data do not necessarily scales the
performance since there could be biases on the data that burdens the network
generalization, specially when reacting to complex dynamic scenes.

However, by leveraging these limitations we were able to outperform other
modularized approaches on the CARLA benchmarks and we also show that there is
still some degree of interpretability on end-to-end models. Yet, these specific issues
must be addressed in order to further improve the results obtained by IL.

1.5 Contributions

This thesis addresses the problem of end-to-end imitation learning for autonomous
driving contributing to several problems:

• We contribute in the development of the CARLA simulator. This simulator
allows large scale collection of demonstrations for imitation learning ap-
proaches as well as multiple benchmarks to evaluate end-to-end models, as
well as modular paradigms.

• We propose the conditional imitation learning approach. This allows an imita-
tion learning network to learn multiple policies conditioned on a topological
planner or on the passengers intentions.

• We show that the commonly used average prediction of driving controls on
an static driving dataset is not so correlated with actual driving. This enforces
the use of simulation as a better alternative. We also propose strategies to use
offline datasets which are more correlated to actual driving.

• We disclose some limitations found on end-to-end driving agents, that when
leveraged to small degree can already outperform other existent approaches.

1.6 Outline

This thesis is organizing in self-contained chapters that further develop each of
the contributions exposed on the previous section. Each chapter will present an
introduction, the state-of-the-art within its context and the obtained experimental
results and conclusions.
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Chapter 2 presents the CARLA simulator as well as two benchmarks inside
the simulator to better measure end-to-end imitation learning approaches perfor-
mance as well as comparing to others. Chapter 3 presents the conditional imitation
learning approach. Chapter 4 discusses the correlation between offline computer
vision based evaluation and actual driving. Chapter 5 discusses the limitations of
imitation learning as well as insights on how to obtain better driving agents for end-
to-end imitation learning approaches. Finally, Chapter 6 presents the conclusions
and some possible future perspectives for continuing the work presented by this
thesis.
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2 CARLA: An Open Urban Driving Simulator

In order to be able to effectively evaluate end-to-end learned agents it is first fun-
damental to have a realistic and safe environment where the agent can be eval-
uated. On this chapter we introduce CARLA, an open-source simulator for au-
tonomous driving research. CARLA has been developed from the ground up to
support development, training, and validation of autonomous urban driving sys-
tems. In addition to open-source code and protocols, CARLA provides open dig-
ital assets (urban layouts, buildings, vehicles) that were created for this purpose
and can be used freely. The simulation platform supports flexible specification of
sensor suites and environmental conditions. We use CARLA to build benchmarks
to compare and develop end-to-end autonomous driving algorithms. We build
controlled scenarios of increasing difficulty, to analyze methods performance via
repeatable metrics provided by CARLA, illustrating the platform’s utility for au-
tonomous driving research. a

aIn this chapter we describe the family of CARLA releases until version 0.8.4 that are the
ones used on this thesis. CARLA is still under constant development. To find information about
the current system please visit http://carla.org

2.1 Introduction

Sensorimotor control in three-dimensional environments remains a major chal-
lenge in machine learning and robotics. The development of autonomous ground
vehicles is a long-studied instantiation of this problem [84, 103]. Its most difficult
form is navigation in densely populated urban environments [82]. This setting is
particularly challenging due to complex multi-agent dynamics at traffic intersec-
tions; the necessity to track and respond to the motion of tens or hundreds of other
actors that may be in view at any given time; prescriptive traffic rules that neces-
sitate recognizing street signs, street lights, and road markings and distinguishing
betweenmultiple types of other vehicles; the long tail of rare events – road construc-
tion, a child running onto the road, an accident ahead, a rogue driver barreling on
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the wrong side; and the necessity to rapidly reconcile conflicting objectives, such
as applying appropriate deceleration when an absent-minded pedestrian strays
onto the road ahead but another car is rapidly approaching from behind andmay
rear-end if one brakes too hard.

Research in autonomous urban driving is hindered by infrastructure costs and
the logistical difficulties of training and testing systems in the physical world. In-
strumenting and operating even one robotic car requires significant funds and
manpower. And a single vehicle is far from sufficient for collecting the requisite data
that cover the multitude of corner cases that must be processed for both training
and validation. This is true for classic modular pipelines [31, 82] and even more so
for data-hungry deep learning techniques. Training and validation of sensorimotor
control models for urban driving in the physical world is beyond the reach of most
research groups.

An alternative is to train and validate driving strategies in simulation. Simulation
can democratize research in autonomous urban driving. It is also necessary for
system verification, since some scenarios are too dangerous to be staged in the
physical world (e.g., a child running onto the road ahead of the car). Simulation
has been used for training driving models since the early days of autonomous
driving research [84]. More recently, racing simulators have been used to evaluate
new approaches to autonomous driving [18, 118]. Custom simulation setups are
commonly used to train and benchmark robotic vision systems [10, 32, 38, 40, 78,
91, 106, 124]. And commercial games have been used to acquire high-fidelity data
for training and benchmarking visual perception systems [88, 89].

While ad-hoc use of simulation in autonomous driving research is widespread,
existing simulation platforms are limited. Open-source racing simulators such as
TORCS [118] do not present the complexity of urban driving: they lack pedestrians,
intersections, cross traffic, traffic rules, and other complications that distinguish
urban driving from track racing. And commercial games that simulate urban en-
vironments at high fidelity, such as Grand Theft Auto V [88, 89], do not support
detailed benchmarking of driving policies: they have little customization and con-
trol over the environment, limited scripting and scenario specification, severely
limited sensor suite specification, no detailed feedback upon violation of traffic
rules, and other limitations due to their closed-source commercial nature and
fundamentally different objectives during their development.

In this chapter, we introduce CARLA (Car Learning to Act) – an open simulator
for urban driving. CARLA has been developed from the ground up to support
training, prototyping, and validation of autonomous drivingmodels, including both
perception and control. CARLA is an open platform. Uniquely, the content of urban
environments provided with CARLA is also free. The content was created from
scratch by a dedicated team of digital artists employed for this purpose. It includes
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urban layouts, a multitude of vehicle models, buildings, pedestrians, street signs,
etc. The simulation platform supports flexible setup of sensor suites and provides
signals that can be used to train driving strategies, such as GPS coordinates, speed,
acceleration, and detailed data on collisions and other infractions. A wide range of
environmental conditions can be specified, including weather and time of day. A
number of such environmental conditions are illustrated in Figure 2.1.

We use CARLA to build different benchmarks to evaluate the performance of
end-to-end driving via imitation learning compared to other two approaches to
autonomous driving. We stage controlled goal-directed navigation scenarios of
increasing difficulty. We manipulate the complexity of the route that must be
traversed, the presence of traffic, and the environmental conditions. With this into
account, we propose two benchmarks that concerns to evaluate different features
on autonomous driving. The first one correspond to the CoRL 2017 benchmark
that mainly focuses on testing navigation and lane following abilities of the driving
agents. Finally, the NoCrash benchmark is proposed in order to evaluate more
the longitudinal control and ability of the driving agent on how to react to more
complex situations such as “jaywalking” pedestrians or suddenly stopping vehicles.

2.2 Related Work

Raw sensor data together with ground truth and/or privileged information is critical
for designing, training and validating autonomous agents. Simulators allow to
produce all this information in an efficient manner and can lead to the generation
of groundbreaking new knowledge.

Pursuing this idea, different works have focused on the use and creation of
simulated environments to produce synthetic data for developing algorithms to
obtain visual cues such as optical flow [16, 75] and disparity from stereo [37]. Other
works proposed the use of synthetic data to develop scene understanding mod-
ules for indoor scenes [41] and for driving scenarios [32, 38, 89, 91, 101]; even to
learn unwritten common sense [113] or classifying videos according to actions
[23]. Since the ultimate goal of autonomous agents is, indeed, operating within a
desired environment, other works focused on training the agents by in simulation
rather than only producing datasets. Examples of these are used to learn physical
intuition in a simple blocks world [62], or to perform interaction with static objects
in photo-realistic indoor scenarios[127]. For the specific domain of autonomous
driving, TORCS [118] has been used for learning mediated driving representations
for autonomous navigation[18]. However, in most of the cases the available open
frameworks are very constrained in terms of scenario complexity and assets vari-
ability, limiting the scope of the study. The research community found a more
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challenging and complex alternative in AAA video games, such as GTA-V, which
can be used for urban driving simulation, not only to produce datasets such as
in [89], but also to perform in-game training [54]. However, these engines are not
open source and, therefore, their usability for simulation purposes is restricted and
recently it has even claimed to be illegal.

CARLA brings the best qualities of the previous tools. Firstly, it is totally open
source, both the code and also all the 3D assets, including towns, vehicles, pedestri-
ans, etc. It can generate synthetic datasets with ground truth including images with
pixel-wise semantic classes, depth, etc. It also provides privileged information such
as GPS-like information of the vehicle, speed, 3D acceleration vector, timestamps
(in game and OS), degree of invasion in both opposite lanes and sidewalks, collision
strength segregated per vehicles, pedestrians and others (infrastructure, houses,
trees, rocks), etc. But most importantly, CARLA is an urban driving simulator that
allows autonomous agents to drive within urban scenarios for learning to act and
assessing their capabilities. In this sense, CARLA is a clear step forward in simula-
tion, addressing urban scenarios in a highly realistic way, both in terms of graphics
and fidelity. CARLA’s focus is set on challenging situations, where the layout of the
scene is complex (e.g., intersections with traffic signs, sidewalks, buildings, etc.) and
strong interaction and negotiation with other vehicles and pedestrians is required.

2.3 Simulation Engine

CARLA has been built for flexibility and realism in the rendering and physics simu-
lation. It is implemented as an open-source layer over Unreal Engine 4 (UE4) [29],
enabling future extensions by the community. The engine provides state-of-the-art
rendering quality, realistic physics, basic NPC logic, and an ecosystem of interoper-
able plugins. The engine itself is free for non-commercial use.

CARLA simulates a dynamic world and provides a simple interface between
the world and an agent that interacts with the world. To support this functionality,
CARLA is designed as a server-client system, where the server runs the simulation
and renders the scene. The client API is implemented in Python and is responsible
for the interaction between the autonomous agent and the server via sockets. The
client sends commands and meta-commands to the server and receives sensor
readings in return. Commands control the vehicle and include steering, acceler-
ating, and braking. Meta-commands control the behavior of the server and are
used for resetting the simulation, changing the properties of the environment, and
modifying the sensor suite. Environmental properties include weather conditions,
illumination, and density of cars and pedestrians. When the server is reset, the
agent is re-initialized at a new location specified by the client.
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Figure 2.1 – A street in Town 2, shown from a third-person view in four weather con-
ditions. Clockwise from top left: clear day, daytime rain, daytime shortly after rain,
and clear sunset. See the supplementary video for recordings from the simulator.

Environment. The environment is composed of 3Dmodels of static objects such
as buildings, vegetation, traffic signs, and infrastructure, as well as dynamic objects
such as vehicles and pedestrians. All models are carefully designed to reconcile
visual quality and rendering speed: we use low-weight geometric models and
textures, but maintain visual realism by carefully crafting the materials and making
use of variable level of detail. All 3D models share a common scale, and their
sizes reflect those of real objects. At the time of writing, our asset library includes
40 different buildings, 16 animated vehicle models, and 50 animated pedestrian
models.

We used these assets to build urban environments via the following steps: (a)
laying out roads and sidewalks; (b) manually placing houses, vegetation, terrain,
and traffic infrastructure; and (c) specifying locations where dynamic objects can
appear (spawn). This way we have designed two towns: Town 1 with a total of 2.9
km of drivable roads, used for training, and Town 2 with 1.4 km of drivable roads,
used for testing. Images from both of the two towns are shown on Fig. 2.2

One of the challenges in the development of CARLA was the configuration of
the behavior of non-player characters, which is important for realism. We based the
non-player vehicles on the standard UE4 vehicle model (PhysXVehicles). Kinematic
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parameters were adjusted for realism. We also implemented a basic controller
that governs non-player vehicle behavior: lane following, respecting traffic lights,
speed limits, and decision making at intersections. Vehicles and pedestrians can
detect and avoid each other. More advanced non-player vehicle controllers can are
integrated on the newer versions of CARLA.

Pedestrians navigate the streets according to a town-specific navigationmap,
which conveys a location-based cost. This cost is designed to encourage pedestrians
towalk along sidewalks andmarked road crossings, but allows them to cross roads at
any point. Pedestrians wander around town in accordance with this map, avoiding
each other and trying to avoid vehicles. If a car collides with a pedestrian, the
pedestrian is deleted from the simulation and a new pedestrian is spawned at a
different location after a brief time interval.

To increase visual diversity, we randomize the appearance of non-player charac-
ters when they are added to the simulation. Each pedestrian is clothed in a random
outfit sampled from a pre-specified wardrobe and is optionally equipped with one
or more of the following: a smartphone, shopping bags, a guitar case, a suitcase,
a rolling bag, or an umbrella. Each vehicle is painted at random according to a
model-specific set of materials. This diversity is shown on Fig. 2.3.

We have also implemented a variety of atmospheric conditions and illumination
regimes. These differ in the position and color of the sun, the intensity and color of
diffuse sky radiation, as well as ambient occlusion, atmospheric fog, cloudiness, and
precipitation. Currently, the simulator supports two lighting conditions – midday
and sunset – as well as nine weather conditions, differing in cloud cover, level of
precipitation, and the presence of puddles in the streets. This results in a total of 18
illumination-weather combinations. (In what follows we refer to these as weather,
for brevity.) Four of these are illustrated in Figure 2.1.
Sensors. CARLA allows for flexible configuration of the agent’s sensor suite. On
version 0.8.4, sensors are limited to RGB cameras and to pseudo-sensors that pro-
vide ground-truth depth, semantic segmentation and LIDAR. Some of these are
illustrated in Figure 2.4. The number of cameras and their type and position can be
specified by the client. Camera parameters include 3D location, 3D orientation with
respect to the car’s coordinate system, field of view, and depth of field. Our semantic
segmentation pseudo-sensor provides 12 semantic classes: road, lane-marking,
traffic sign, sidewalk, fence, pole, wall, building, vegetation, vehicle, pedestrian, and
other.

In addition to sensor and pseudo-sensor readings, CARLA provides a range of
measurements associated with the state of the agent and compliance with traffic
rules. Measurements of the agent’s state include vehicle location and orientation
with respect to the world coordinate system (akin to GPS and compass), speed,
acceleration vector, and accumulated impact from collisions. Measurements con-
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Town 1Map Town 2Map

Figure 2.2 – The two CARLA towns. Left: views and a map of CARLA Town 1. Right:
views and a map of CARLA Town 2.
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Figure 2.3 – Diversity of cars and pedestrians currently available in CARLA.

18



2.4. Benchmarks

Figure 2.4 – Three of the sensing modalities provided by CARLA. From left to right:
normal vision camera, ground-truth depth, and ground-truth semantic segmen-
tation. Depth and semantic segmentation are pseudo-sensors that support exper-
iments that control for the role of perception. Additional sensor models can be
plugged in via the API.

cerning traffic rules include the percentage of the vehicle’s footprint that impinges
on wrong-way lanes or sidewalks, as well as states of the traffic lights and the speed
limit at the current location of the vehicle. Finally, CARLA provides access to exact
locations and bounding boxes of all dynamic objects in the environment. These
signals play an important role in training and evaluating driving policies.

2.4 Benchmarks

CARLA supports development, training, and detailed performance analysis of au-
tonomous driving systems. For that we create some sets of tasks, refereed as bench-
marks, in order to evaluate and compare different kinds of autonomous driving
algorithms. In this section we present two benchmarks built in CARLA in order to
validate different capabilities of the autonomous driving models.

2.4.1 CoRL2017 Benchmark

The CoRL2017 benchmark was created in order to test some basic capabilities of
autonomous driving system by using the increasingly difficult tasks within the
CARLA Environment. The tasks are set up as goal-directed navigation: an agent
is initialized somewhere in town and has to reach a destination point. In these
experiments, the agent is allowed to ignore speed limits and traffic lights. We
organize the tasks in order of increasing difficulty as follows:

• Straight: Destination is straight ahead of the starting point, and there are no
dynamic objects in the environment. Average driving distance to the goal is
200 m in Town 1 and 100 m in Town 2.

• One turn: Destination is one turn away from the starting point; no dynamic
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objects. Average driving distance to the goal is 400 m in Town 1 and 170 m in
Town 2.

• Navigation: No restriction on the location of the destination point relative to
the starting point, no dynamic objects. Average driving distance to the goal is
770 m in Town 1 and 360 m in Town 2.

• Navigation with dynamic obstacles: Same as the previous task, but with
dynamic objects (cars and pedestrians).

Experiments are conducted in two towns. Town 1 is used for training, Town
2 for testing. We consider six weather conditions for the experiments, organized
in two groups. Training Weather Set was used for training and includes clear day,
clear sunset, daytime rain, and daytime after rain. Test Weather Set was never used
during training and includes cloudy daytime and soft rain at sunset.

For each combination of a task, a town, and a weather set, testing is carried out
over 25 episodes. In each episode, the objective is to reach a given goal location. An
episode is considered successful if the agent reaches the goal within a time budget.
The time budget is set to the time needed to reach the goal along the optimal path
at a speed of 10 km/h. Infractions, such as driving on the sidewalk or collisions, do
not lead to termination of an episode, but are logged and reported.

Results

Table 2.1 reports the percentage of successfully completed episodes under four
different conditions. The first is the training condition: Town 1, Training Weather
Set. Note that start and goal locations are different from those used during training:
only the general environment and ambient conditions are the same. The other
three experimental conditions test more aggressive generalization: to the previously
unseen Town 2 and to previously unencountered weather from the Test Weather
Set. We use the benchmark to compare a conditional imitation learning approach,
explained on Chapter 3 with a modular pipeline and a reinforcement learning
approach, described on [26].

Results presented in Table 2.1 suggest several general conclusions. Overall,
the performance of all methods is not perfect even on the simplest task of driving
in a straight line, and the success rate further declines for more difficult tasks.
Generalization to new weather is easier than generalization to a new town. The
modular pipeline and the agent trained with imitation learning perform on par on
most tasks and conditions. Reinforcement learning underperforms relative to the
other approaches.

Surprisingly, none of the methods performs perfectly even on the simplest task
of driving straight on an empty street in the training conditions. Training conditions
include four different weather conditions. The exact trajectories driven during
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Training conditions New town New weather New town&weather

Task MP IL RL MP IL RL MP IL RL MP IL RL

Straight 98 95 89 92 97 74 100 98 86 50 80 68

One turn 82 89 34 61 59 12 95 90 16 50 48 20

Navigation 80 86 14 24 40 3 94 84 2 47 44 6

Nav. dynamic 77 83 7 24 38 2 89 82 2 44 42 4

Table 2.1 – Quantitative evaluation of three autonomous driving systems on goal-
directed navigation tasks. The table reports the percentage of successfully com-
pleted episodes in each condition. Higher is better.

training are not repeated during testing. Therefore performing perfectly on this
task requires robust generalization, which is challenging for existing deep learning
methods. On more advanced tasks the performance of all methods declines. On
the most difficult task of navigation in a populated urban environment, the two
best methods – modular pipeline and imitation learning – are below 90% success
in all conditions and are below 45% in the test town. These results clearly indicate
that performance is far from saturated even in the training conditions, and that
generalization to new environments poses a serious challenge.
Infraction analysis. CARLA supports fine-grained analysis of driving policies. We
use to benchmark to analyze the behavior of the three systems on the hardest task:
navigation in the presence of dynamic objects. We characterize the approaches by
average distance traveled between infractions of the following five types: driving on
the opposite lane, driving on the sidewalk, colliding with other vehicles, colliding
with pedestrians, and hitting static objects.

Table 2.2 reports the average distance (in kilometers) driven between two in-
fractions. All approaches perform better in the training town. For all conditions, IL
strays onto the opposite lane least frequently, and RL is the worst in this metric. A
similar pattern is observed with regards to veering onto the sidewalk.

These results highlight the susceptibility of end-to-end approaches to rare
events: breaking or swerving to avoid a pedestrian is a rare occurrence during
training. While CARLA can be used to increase the frequency of such events during
training to support end-to-end approaches, deeper advances in learning algorithms
andmodel architectures may be necessary for significant improvements in robust-
ness [18].
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Training conditions New town New weather New town&weather

Task MP IL RL MP IL RL MP IL RL MP IL RL

Opposite lane 10.2 33.4 0.18 0.45 1.12 0.23 16.1 57.3 0.09 0.40 0.78 0.21

Sidewalk 18.3 12.9 0.75 0.46 0.76 0.43 24.2 > 57 0.72 0.43 0.81 0.48

Collision-static 10.0 5.38 0.42 0.44 0.40 0.23 16.1 4.05 0.24 0.45 0.28 0.25

Collision-car 16.4 3.26 0.58 0.51 0.59 0.41 20.2 1.86 0.85 0.47 0.44 0.37

Collision-pedestrian 18.9 6.35 17.8 1.40 1.88 2.55 20.4 11.2 20.6 1.46 1.41 2.99

Table 2.2 – Average distance (in kilometers) traveled between two infractions. Higher
is better.

2.4.2 NoCrash benchmark

We propose an on-line driving benchmark focused on testing the ability of the ego
vehicles to handle complex events caused by changing traffic conditions (e.g., traffic
lights) and dynamic agents present in the scene. For this benchmark, we propose
different tasks and also different metrics than the CoRL2017 in order to precisely
measure specific reaction patterns that we know good drivers must master in urban
conditions. For the NoCrash benchmark, we propose three different tasks, each task
corresponding to completing 25 goal directed episodes. As in the CoRL 2017, on
each episode, the agent starts in some start position and is directed by a high-level
planner into reaching some goal position. The three tasks have the same set of start
and end positions, as well as an increasing level of difficulty as follows:

1. Empty Town: no dynamic objects.

2. Regular Traffic: mild number of cars and pedestrians.

3. Dense Traffic: large number of pedestrians and heavy traffic (dense urban
scenario).

Similar to CoRL2017 benchmark, NoCrash has six different weather conditions,
where four were seen in training and two reserved for testing. It also has two
different towns, one was seen in training and the other is reserved for testing. The
tuples of start/goal positions are based on the ones used in CARLA CoRL2017
benchmark for the tasks “Navigation” and “Nav. Dynamic”. However, we increased
the difficulty of some start/goal positions that had a too small distance between
them. Figure 2.5 shows the start end positions for both Towns.

Evaluation protocol. As mentioned, in our evaluation the measure of success
of an episode should be more representative of the agent capabilities to react to
dynamic objects. The original CoRL 2017 has a goal conditioned success rate
metric that is computed separately from a kilometers between infractions metric.
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Figure 2.5 – The start and goal positions for the NoCrash Benchmark. The start
positions are in red and the goal positions are in green. Same number correspond
to matching start-end positions.
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Task Training conditions NewWeather New Town New town&weather

Empty Town 79 59 41 24
Regular Traffic 61 40 22 18
Dense Traffic 22 6 7.33 2.67

Table 2.3 – Results from the Conditional Imitation Learning model (Chapter 3 on
the complex NoCrash benchmark. “Empty” does not contain other agents (cars,
pedestrians), “Regular” contains a moderate amount of other agents, “Cluttered”
corresponds to dense urban scenarios. The table reports the percentage of success-
fully completed episodes in each condition.

The latter metric was proposed to be analogous to the one commonly used by
driving evaluations on real world where the number of human interventions per
kilometer is counted [52]. These interventions usually happen when the safety
driver notices some inconsistent behaviour that would lead the vehicle to a possibly
dangerous state. On a potentially inconsistent behavior, the human intervention
will put the vehicle back to a safe state of the system. However, on the CoRL2017
benchmark analysis, when a infraction is made, the episode continues after the
infraction, leading to some inconsistencies on infraction counting. Some examples
of inconsistencies include whether a crash after leaving the road be counted as one
or two infractions.

In NoCrash, instead of counting the number of infractions per kilometer, we end
the episode as failing when any collision, bigger than a fixedmagnitude, happens.
With this, we are setting a lower bound and have a guarantee of acceptable behaviors
based on the measured percentage of success. Further, this makes the evaluation
also similar to the km/interventions evaluation, since the episode goes back to a safe
state, in this case the next episode. In summary, we consider a task as a success if
the agent reaches a certain goal under a time limit without colliding with any object.
We also care about the ability of the agent to obey traffic rules. In particular, we
measure and report the percentage of traffic light violations. Note that an episode is
not terminated when a traffic light violation occurs.

Results

On Table 2.3 we present the results of the conditional imitation learning described
on Chapter 3 for the new tasks and evaluation protocol proposed at NoCrash bench-
mark.

We notice some clear significant drop specially for the Cluttered scenario, en-
forcing the conclusions obtained with the infraction analysis from section 2.4.1.

24



2.5. Conclusion

This benchmark is going to be further explored on Chapter 5 where we will use to
make a deeper analysis of the limitations of imitation learning through behavior
cloning approach.

2.5 Conclusion

We have presented CARLA, an open simulator for autonomous driving. In addition
to open-source code and protocols, CARLA provides digital assets that were created
specifically for this purpose and can be reused freely. We leverage CARLA’s simula-
tion engine to propose different kind of benchmarking tools to be able to compare
different algorithmic approaches. CARLA provided us with the tools to develop and
train the systems and then evaluate them in controlled scenarios. The feedback
provided by the simulator enables detailed analyses that highlight particular failure
modes and opportunities for future work. We hope that CARLA will enable a broad
community to actively engage in autonomous driving research. The simulator and
accompanying assets are released open-source at http://carla.org.
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3 Conditional Imitation Learning

(a) Vehicle following (b) Stopping for traffic lights (c) Stopping for “jaywalkers”

Figure 3.1 – Conditional imitation learning allows an autonomous vehicle trained
end-to-end to be directed by high-level commands. (a) We train and evaluate
robotic vehicles in the physical world (top) and in simulated urban environments
(bottom). (b) The vehicles drive based on video from a forward-facing onboard
camera. At the time these images were taken, the vehicle was given the command
“turn right at the next intersection”. (c) The trained controller handles sensorimotor
coordination and follows the provided commands.

Deep networks trained on demonstrations of human driving have learned to fol-
low roads and avoid obstacles. However, driving policies trained via imitation
learning cannot be controlled at test time. A vehicle trained end-to-end to imitate
an expert cannot be guided to take a specific turn at an upcoming intersection.
This limits the utility of such systems. We propose to condition imitation learning
on high-level command input. At test time, the learned driving policy functions
as a chauffeur that handles sensorimotor coordination but continues to respond
to navigational commands. We evaluate different architectures for conditional
imitation learning in vision-based driving. We conduct experiments in realistic
three-dimensional simulations of urban driving and on a 1/5 scale robotic truck
that is trained to drive in a residential area. Both systems drive based on visual
input yet remain responsive to high-level navigational commands.
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3.1 Introduction

Why has imitation learning not scaled up to fully autonomous urban driving? One
limitation is in the assumption that the optimal action can be inferred from the per-
ceptual input alone. This assumption often does not hold in practice: for instance,
when a car approaches an intersection, the camera input is not sufficient to predict
whether the car should turn left, right, or go straight. Mathematically, the mapping
from the image to the control command is no longer a function. Fitting a function
approximator is thus bound to run into difficulties. This had already been observed
in the work of Pomerleau: “Currently upon reaching a fork, the network may output
two widely discrepant travel directions, one for each choice. The result is often an
oscillation in the dictated travel direction” [84]. Even if the network can resolve the
ambiguity in favor of some course of action, it may not be the one desired by the
passenger, who lacks a communication channel for controlling the network itself.

In this chapter, we address this challenge with conditional imitation learning.
At training time, the model is given not only the perceptual input and the control
signal, but also a representation of the expert’s intention. At test time, the network
can be given corresponding commands, which resolve the ambiguity in the percep-
tuomotor mapping and allow the trainedmodel to be controlled by a passenger or a
topological planner, just as mapping applications and passengers provide turn-by-
turn directions to human drivers. The trained network is thus freed from the task
of planning and can devote its representational capacity to driving. This enables
scaling imitation learning to vision-based driving in complex urban environments.

We evaluate the presented approach in realistic simulations of urban driving
and on a 1/5 scale robotic truck. Both systems are shown in Figure 3.1. Simulation
allows us to thoroughly analyze the importance of different modeling decisions,
carefully compare the approach to relevant baselines, and conduct detailed ablation
studies. Experiments with the physical system demonstrate that the approach can
be successfully deployed in the physical world. Recordings of both systems are
provided in the supplementary video.

3.2 Related Work

Imitation learning has been applied to a variety of tasks, including articulated
motion [6, 28, 85], autonomous flight [1, 35, 94], modeling navigational behav-
ior [128, 129], off-road driving [61, 103], and road following [11, 18, 84, 123]. Tech-
nically, these applications differ in the input representation (raw sensory input or
hand-crafted features), the control signal being predicted, the learning algorithms,
and the learned representations. Most relevant to our work are the systems of
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Pomerleau [84], LeCun et al. [61], and Bojarski et al. [11], who used ground vehi-
cles and trained deep networks to predict the driver’s actions from camera input.
These studies focused on purely reactive tasks, such as lane following or obstacle
avoidance. In comparison, we develop a command-conditional formulation that
enables the application of imitation learning to more complex urban driving. An-
other difference is that we learn to control not only steering but also acceleration
and braking, enabling the model to assume full control of the car.

The decomposition of complex tasks into simpler sub-tasks has been studied
from several perspectives. In robotics, movement primitives have been used as
building blocks for advancedmotor skills [55, 83]. Movement primitives represent a
simple motion, such as a strike or a throw, by a parameterized dynamical system.
In comparison, the policies we consider have much richer parameterizations and
address more complex sensorimotor tasks that couple perception and control,
such as finding the next opportunity to turn right and thenmaking the turn while
avoiding dynamic obstacles.

In reinforcement learning, hierarchical approaches aim to construct multiple
levels of temporally extended sub-policies [8]. The options framework is a promi-
nent example of such hierarchical decomposition [108]. Basic motor skills that
are learned in this framework can be transferred across tasks [57]. Hierarchical ap-
proaches have also been combined with deep learning and applied to raw sensory
input [58]. In these works, the main aim is to learn purely from experience and
discover hierarchical structure automatically. This is hard and is in general an open
problem, particularly for sensorimotor skills with the complexity we consider. In
contrast, we focus on imitation learning, and we provide additional information on
the expert’s intentions during demonstration. This formulation makes the learning
problemmore tractable and yields a human-controllable policy.

Adjacent to hierarchical methods is the idea of learning multi-purpose and
parameterized controllers. Parameterized goals have been used to train motion
controllers in robotics [22, 24, 56]. Schaul et al. [99] proposed a general framework
for reinforcement learning with parameterized value functions, shared across states
and goals. Dosovitskiy and Koltun [25] studied families of parameterized goals in
the context of navigation in three-dimensional environments. Javdani et al. [48]
studied a scenario where a robot assists a human and changes its behavior de-
pending on its estimate of the human’s goal. Our work shares the idea of training a
conditional controller, but differs in themodel architecture, the application domain
(vision-based autonomous driving), and the learningmethod (conditional imitation
learning).

Autonomous driving is the subject of intensive research [82]. Broadly speaking,
approaches differ in their level of modularity. On one side are highly tuned sys-
tems that deploy an array of computer vision algorithms to create a model of the
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environment, which is then used for planning and control [31]. On the opposite
side are end-to-end approaches that train function approximators to map sensory
input to control commands [11, 84, 123]. Our approach is on the end-to-end side
of the spectrum, but in addition to sensory input the controller is provided with
commands that specify the driver’s intent. This resolves some of the ambiguity in
the perceptuomotor mapping and creates a communication channel that can be
used to guide the autonomous car as one would guide a chauffeur.

Human guidance of robot actions has been studied extensively [14, 45, 74, 110,
114]. These works tackle the challenging problem of parsing natural language
instructions. Our work does not address natural language communication; we limit
commands to a predefined vocabulary such as “turn right at the next intersection”,
“turn left at the next intersection”, and “keep straight”. On the other hand, our work
deals with end-to-end vision-based driving using deep networks. Systems in this
domain have been limited to imitating the expert without the ability to naturally
accept commands after deployment [11, 18, 84, 123]. We introduce such ability into
deep networks for end-to-end vision-based driving.

3.3 Conditional Imitation Learning

We begin by describing the standard imitation learning setup and then proceed
to our command-conditional formulation. Consider a driving agent that interacts
with the environment over discrete time steps. At each time step t , the controller
receives an observation ot and takes an action at . The basic idea behind imitation
learning is to train a controller that mimics an expert. The training data is a set of
observation-action pairs D = {〈oi ,ai 〉}Ni=1 generated by the expert. The assumption
is that the expert is successful at performing the task of interest and that a controller
trained to mimic the expert will also perform the task well. This is a supervised
learning problem, in which the parameters θ of a function approximator F (o;θ)
must be optimized to fit the mapping of observations to actions:

minimize
θ

∑
i
�
(
F (oi ;θ),ai

)
. (3.1)

An implicit assumption behind this formulation is that the expert’s actions are
fully explained by the observations; that is, there exists a function E that maps ob-
servations to the expert’s actions: ai = E (oi ). If this assumption holds, a sufficiently
expressive approximator will be able to fit the function E given enough data. This
explains the success of imitation learning on tasks such as lane following. However,
in more complex scenarios the assumption that the mapping of observations to
actions is a function breaks down. Consider a driver approaching an intersection.
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The driver’s subsequent actions are not explained by the observations, but are ad-
ditionally affected by the driver’s internal state, such as the intended destination.
The same observations could lead to different actions, depending on this latent
state. This could be modeled as stochasticity, but a stochastic formulation misses
the underlying causes of the behavior. Moreover, even if a controller trained to imi-
tate demonstrations of urban driving did learn to make turns and avoid collisions,
it would still not constitute a useful driving system. It would wander the streets,
making arbitrary decisions at intersections. A passenger in such a vehicle would
not be able to communicate the intended direction of travel to the controller, or
give it commands regarding which turns to take.

To address this, we begin by explicitly modeling the expert’s internal state by
a vector h, which together with the observation explains the expert’s action: ai =
E (oi ,hi ). Vector h can include information about the expert’s intentions, goals, and
prior knowledge. The standard imitation learning objective can then be rewritten
as

minimize
θ

∑
i
�
(
F (oi ;θ),E(oi ,hi )

)
. (3.2)

It is now clear that the expert’s action is affected by information that is not provided
to the controller F .

We expose the latent state h to the controller by introducing an additional
command input: c = c(h). At training time, the command c is provided by the expert.
It need not constitute the entire latent stateh, but should provide useful information
about the expert’s decision-making. For example, human drivers already use turn
signals to communicate their intent when approaching intersections; these turn
signals can be used as commands in our formulation. At test time, commands
can be used to affect the behavior of the controller. These test-time commands
can come from a human user or a planning module. In urban driving, a typical
command would be “turn right at the next intersection”, which can be provided by
a navigation system or a passenger.

The training dataset becomes D = {〈oi ,ci ,ai 〉}Ni=1. The command-conditional
imitation learning objective is

minimize
θ

∑
i
�
(
F (oi ,ci ;θ),ai

)
. (3.3)

In contrast with objective (3.2), the learner is informed about the expert’s latent
state and can use this additional information in predicting the action. This setting
is illustrated in Figure 3.2.
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Figure 3.2 – High-level overview. The controller receives an observation ot from
the environment and a command ct . It produces an action at that affects the
environment, advancing to the next time step.

3.4 Methodology

We now describe a practical implementation of command-conditional imitation
learning. Code is available at https://github.com/carla-simulator/imitation-learning.

3.4.1 Network Architecture

Assume that each observationo = 〈i,m〉 comprises an image i and a low-dimensional
vector m that we refer to as measurements, following Dosovitskiy and Koltun [25].
The controller F is represented by a deep network. The network takes the image i,
the measurements m, and the command c as inputs, and produces an action a as
its output. The action space can be discrete, continuous, or a hybrid of these. In our
driving experiments, the action space is continuous and two-dimensional: steering
angle and acceleration. The acceleration can be negative, which corresponds to
braking or driving backwards. The command c is a categorical variable represented
by a one-hot vector.

We study two approaches to incorporating the command c into the network.
The first architecture is illustrated in Figure 3.3(a). The network takes the command
as an input, alongside the image and the measurements. These three inputs are
processed independently by three modules: an image module I (i), a measurement
module M(m), and a commandmoduleC (c). The image module is implemented
as a convolutional network, the other two modules as fully-connected networks.
The outputs of these modules are concatenated into a joint representation:

j = J (i,m,c)= 〈I (i),M(m),C (c)〉 . (3.4)

The control module, implemented as a fully-connected network, takes this joint
representation and outputs an action A(j). We refer to this architecture as command
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(a)

(b)

Figure 3.3 – Two network architectures for command-conditional imitation learning.
(a) command input: the command is processed as input by the network, together
with the image and the measurements. The same architecture can be used for
goal-conditional learning (one of the baselines in our experiments), by replacing
the command by a vector pointing to the goal. (b) branched: the command acts as
a switch that selects between specialized sub-modules.

33



Chapter 3. Conditional Imitation Learning

module input dimension channels kernel stride

Perception

200×88×3 32 5 2
98×48×32 32 3 1
96×46×32 64 3 2
47×22×64 64 3 1
45×20×64 128 3 2
22×9×128 128 3 1
20×7×128 256 3 2
9×3×256 256 3 1
7 ·1 ·256 512 − −
512 512 − −

Measurement
1 128 − −
128 128 − −
128 128 − −

Joint input 512+128 512 − −

Control
512 256 − −
256 256 − −
256 1 − −

Table 3.1 – Exact configurations of all network modules for the imitation learning
approach.

input. It is applicable to both continuous and discrete commands of arbitrary
dimensionality. However, the network is not forced to take the commands into
account, which can lead to suboptimal performance in practice.

We therefore designed an alternative architecture, shown in Figure 3.3(b). The
image andmeasurement modules are as described above, but the commandmod-
ule is removed. Instead, we assume a discrete set of commands C = {c0, . . . ,cK }
(including a default command c0 corresponding to no specific command given)
and introduce a specialist branch Ai for each of the commands ci . The command c
acts as a switch that selects which branch is used at any given time. The output of
the network is thus

F (i,m,ci )= Ai (J (i,m)). (3.5)

We refer to this architecture as branched. The branches Ai are forced to learn
sub-policies that correspond to different commands. In a driving scenario, one
module might specialize in lane following, another in right turns, and a third in left
turns. All modules share the perception stream.
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3.4.2 Network Details

For all controllers, the observation o is the currently observed image at 200×88 pixel
resolution. For themeasurementm, we used the current speed of the car, if available
(in the physical system the speed estimates were very noisy and we refrained from
using them). All networks are composed of modules with identical architectures
(e.g., the ConvNet architecture is the same in all conditions). The differences are in
the configuration of modules and branches as can be seen in Figure 3.3. The image
module consists of 8 convolutional and 2 fully connected layers. The convolution
kernel size is 5 in the first layer and 3 in the following layers. The first, third, and
fifth convolutional layers have a stride of 2. The number of channels increases
from 32 in the first convolutional layer to 256 in the last. Fully-connected layers
contain 512 units each. All modules with the exception of the image module are
implemented as standard multilayer perceptrons. We used ReLU nonlinearities
after all hidden layers, performed batch normalization after convolutional layers,
applied 50% dropout after fully-connected hidden layers, and used 20% dropout
after convolutional layers. The datails of the networks are detailed on Table 3.1.

Actions are two-dimensional vectors that collate steering angle and acceleration:
a = 〈s,a〉. Given a predicted action a and a ground truth action agt, the per-sample
loss function is defined as

�(a,agt)= �
(〈s,a〉 , 〈sgt,agt

〉)
= ‖s − sgt‖2+λa‖a −agt‖2. (3.6)

All models were trained using the Adam solver [53] with minibatches of 120
samples and an initial learning rate of 0.0002. For the command-conditionalmodels,
minibatches were constructed to contain an equal number of samples with each
command.

3.4.3 Training Data Distribution

When performing imitation learning, a key decision is how to collect the training
data. The simplest solution is to collect trajectories from natural demonstrations
of an expert performing the task. This typically leads to unstable policies, since
a model that is only trained on expert trajectories may not learn to recover from
disturbance or drift [63, 93].

To overcome this problem, training data should include observations of recov-
eries from perturbations. In DAgger [93], the expert remains in the loop during
the training of the controller: the controller is iteratively tested and samples from
the obtained trajectories are re-labeled by the expert. In the system of Bojarski et
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al. [11], the vehicle is instrumented to record from three cameras simultaneously:
one facing forward and the other two shifted to the left and to the right. Record-
ings from the shifted cameras, as well as intermediate synthetically reprojected
views, are added to the training set – with appropriately adjusted control signals –
to simulate recovery from drift.

For our approach we adopt a three-camera setup inspired by Bojarski et al. [11].
However, we have found that the policies learned with this setup are not sufficiently
robust. Therefore, to further augment the training dataset, we record some of the
data while injecting noise into the expert’s control signal and letting the expert
recover from these perturbations. This is akin to the recent approach of Laskey et
al. [60], but instead of i.i.d. noise we inject temporally correlated noise designed
to simulate gradual drift away from the desired trajectory. An example is shown in
Figure 3.4. For training, we use the driver’s corrective response to the injected noise
(not the noise itself). This provides the controller with demonstrations of recovery
from drift and unexpected disturbances, but does not contaminate the training
set with demonstrations of veering away from desired behavior. The perturbation
is a triangular impulse: it increases linearly, reaches a maximal value, and then
linearly declines. This simulates gradual drift from the desired trajectory, similar
to what might happen with a poorly trained controller. The triangular impulse is
parametrized by its starting time t0, duration τ ∈R+, sign σ ∈ {−1,+1}, and intensity
γ ∈R+:

sper tur b(t )=σγmax

(
0,

(
1−

∣∣∣∣2(t − t0)

τ
−1

∣∣∣∣
))
. (3.7)

Every second of driving we started a perturbation with probability pper tur b . We
used pper tur b = 0.1 in our experiments. The sign of each perturbation was sampled
at random, the duration was sampled uniformly from 0.5 to 2 seconds, and intensity
was fixed to 0.15.

3.4.4 Data Augmentation

We found data augmentation to be crucial for good generalization. We perform
augmentation online during network training. For each image to be presented to
the network, we apply a random subset of a set of transformations with randomly
sampled magnitudes. Transformations include change in contrast, brightness, and
tone, as well as addition of Gaussian blur, Gaussian noise, salt-and-pepper noise,
and region dropout (masking out a random set of rectangles in the image, each
rectangle taking roughly 1% of image area). No geometric augmentations such as
translation or rotation were applied, since control commands are not invariant to
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Figure 3.4 – Noise injection during data collection. We show a fragment from an
actual driving sequence from the training set. The plot on the left shows steering
control [rad] versus time [s]. In the plot, the red curve is an injected triangular
noise signal, the green curve is the driver’s steering signal, and the blue curve is
the steering signal provided to the car, which is the sum of the driver’s control
and the noise. Images on the right show the driver’s view at three points in time
(trajectories overlaid post-hoc for visualization). Between times 0 and roughly 1.0,
the noise produces a drift to the right, as illustrated in image (a). This triggers a
human reaction, from 1.0 to 2.5 seconds, illustrated in (b). Finally, the car recovers
from the disturbance, as shown in (c). Only the driver-provided signal (green curve
on the left) is used for training.

these transformations.

3.4.5 Training details.

We trained all networks with Adam [53]. We used mini-batches of 120 samples. We
balanced the mini-batches, using the same number of samples for each command.
Our starting learning rate was 0.0002 and it was multiplied by 0.5 every 50,000 mini-
batch iterations. We trained for 294,000 iterations in total. Momentum parameters
were set to β1 = 0.7 and β2 = 0.85. We used no weight decay, but performed 50%
dropout after hidden fully-connected layers and 20% dropout on convolutional
layers. To further reduce overfitting, we performed extensive data augmentation
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by adding Gaussian blur, additive Gaussian noise, pixel dropout, additive and
multiplicative brightness variation, contrast variation, and saturation variation.
Before feeding a raw 800× 600 image to the network, we cropped 171 pixels at
the top and 45 at the bottom, and then resized the resulting 800×384 image to a
resolution of 200×88.

3.5 Experiments

3.5.1 Simulated Environment

Experimental setup

The use of the CARLA simulator enables running the evaluation in an episodic
setup. In each episode, the agent is initialized at a new location and has to drive
to a given destination point, given high-level turn commands from a topological
planner. An episode is considered successful if the agent reaches the goal within
a fixed time interval. In addition to success rate, we measured driving quality by
recording the average distance travelled without infractions (collisions or veering
outside the lane).

The two CARLA towns used in our experiments are illustrated on Fig. 2.2 from
Chapter 2, Section 2.3. Town 1 is used for training, Town 2 is used exclusively for
testing. For evaluation, we used 50 pairs of start and goal locations set at least 1 km
apart, in each town.

Our training dataset comprises 2 hours of humandriving in Town 1 ofwhich only
10% (roughly 12 minutes) contain demonstrations with injected noise. Collecting
training data with strong injected noise was quite exhausting for the human driver.
However, a relatively small amount of such data proved very effective in stabilizing
the learned policy. We only collected training data on the Clear Noon weather.

Results

We compare the branched command-conditional architecture, as shown in Fig-
ure 3.3(b), with two baseline approaches, as well as several ablated versions of
the full architecture. The two baselines are standard imitation learning and goal-
conditioned imitation learning. In standard (non-conditional) imitation learning,
the action a is predicted from the observation o and the measurement m. In the
goal-conditional variant, the controller is additionally provided with a vector point-
ing to the goal, in the car’s coordinate system (the architecture follows Figure 3.3(a)).
Ablated versions include: a network with the command input architecture instead
of branched (see Figure 3.3), and three variants of the branched network: trained
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Success rate Km per infraction
Model Town 1 Town 2 Town 1 Town 2

Non-conditional 20% 26% 5.76 0.89
Goal-conditional 24% 30% 1.87 1.22

Ours branched 88% 64% 2.34 1.18

Ours cmd. input 78% 52% 3.97 1.30
Ours no noise 56% 22% 1.31 0.54
Ours no aug. 80% 0% 4.03 0.36
Ours shallow net 46% 14% 0.96 0.42

Table 3.2 – Results in the simulated urban environment. We compare the presented
method to baseline approaches and perform an ablation study. We measure the
percentage of successful episodes and the average distance (in km) driven between
infractions. Higher is better in both cases, but we rank methods based on success.
The proposed branched architecture outperforms the baselines and the ablated
versions.

without noise-injected data, trained without data augmentation, and implemented
with a shallower network.

The results are summarized in Table 3.2. The controller that is trained using
standard imitation learning only completes 20% of the episodes in Town 1 and 24%
in Town 2, which is not surprising given its ignorance of the goal. More interestingly,
the goal-conditional controller, which is provided with an accurate vector to the
goal at every time step during both training and at test time, is performing only
slightly better than the non-conditional controller, successfully completing 24% of
the episodes in Town 1 and 30% in Town 2. Qualitatively, this controller eventually
veers off the road attempting to shortcut to the goal. This also decreases the number
of kilometers the controller is able to traverse without infractions. A simple feed-
forward network does not automatically learn to convert a vector pointing to the
goal into a sequence of turns.

The proposed branched command-conditional controller performs signifi-
cantly better than the baseline methods in both towns, successfully completing
88% of the episodes in Town 1 and 64% in Town 2. In terms of distance travelled
without infractions, in Town 2 the method is on par with baselines, while in Town 1
it is outperformed by the non-conditional model. This difference is misleading: the
non-conditional model drives more cleanly because it is not constrained to travel
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towards the goal and therefore typically takes a simpler route at each intersection.
The ablation study shown in the bottom part of Table 3.2 reveals that all compo-

nents of the proposed system are important for good performance. The branched
architecture reaches the goal more reliably than the command input one. The addi-
tion of even a small amount of training data with noise in the steering dramatically
improves the performance. (Recall that we have only 12 minutes of noisy data out
of the total of 2 hours.) Careful data augmentation is crucial for generalization,
even within Town 1, but much more so in the previously unseen Town 2: the model
without data augmentation was not able to complete a single episode there. Finally,
a sufficiently deep network is needed to learn the perceptuomotor mapping in the
visually rich and complex simulated urban environment.

3.5.2 Physical System

Experimental setup

The training dataset consists of 2 hours of driving the truck via remote control in a
residential area. Figure 3.5 shows a map with the route on which the vehicle was
evaluated. The route includes a total of 14 intersections with roughly the same
number of left, straight, and right.

Wemeasure the performance in terms of missed intersections, interventions,
and time to complete the course. If the robotic vehicle misses an intersection for
the first time, it is rerouted to get a second chance to do the turn. If it manages
to do the turn the second time, this is not counted as a missed intersection but
increases the time taken to complete the route. However, if the vehicle misses the
intersection for the second time, this is counted as missed and we intervene to
drive the vehicle through the turn manually. Besides missed intersections, we also
intervene if the vehicle goes off the road for more than five seconds or if it collides
with an obstacle. The models were all evaluated in overcast weather conditions.
The majority of training data was collected in sunny weather.

Main results

We select themost important comparisons from the extensive evaluation performed
in simulation (Section 3.5.1) and perform them on the physical system. Table
3.3 shows the results of several variants of command-conditional imitation learn-
ing: branched and command input architectures, as well as two ablated models,
trained without data augmentation or without noise-injected data. It is evident
that the branched architecture achieves the best performance. The ablation experi-
ments show the impact of our noise injection method and augmentation strategy.
The model trained without noise injection is very unstable, as indicated by the
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Figure 3.5 – A map of the primary route used for testing the physical system. In-
tersections traversed by the truck are numbered according to their order along the
route. Colors indicate commands provided to the vehicle when it approaches the
intersection: blue = left, green = straight, orange = right.
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average number of interventions rising from 0.67 to 8.67. Moreover, it misses almost
25% of the intersections and takes double the time to complete the course. The
model trained without data augmentation fails completely. The truck misses most
intersections and very frequently leaves the lane resulting in almost 40 interven-
tions. It takes more than four times longer to complete the course. This extreme
degradation highlights the importance of generalization in real world settings with
constantly changing environmental conditions such as weather and lighting. Proper
data augmentation dramatically improves performance given limited training data.

Model Missed turns Interventions Time

Ours branched 0% 0.67 2:19
Ours cmd. input 11.1% 2.33 4:13
Ours no noise 24.4% 8.67 4:39
Ours no aug. 73% 39 10:41

Table 3.3 – Results on the physical system. Lower is better. We compare the
branchedmodel to the simpler command input architecture and to ablated ver-
sions (without noise injection and without data augmentation). Average perfor-
mance across 3 runs is reported for all models except for “Ours no aug.”, for which
we only performed 1 run to avoid breaking the truck.

Generalization to new environments

Beyond the implicit generalization to varying weather conditions that occur nat-
urally in the physical world, we also evaluate qualitatively how well the model
generalizes to previously unseen environments with very different appearance. To
this end, we run the truck in three environments shown in Figure 3.6. The truck is
able to consistently follow the lane in all tested environments and is responsive to
commands.

Figure 3.6 – Testing in new environments with very different appearance.
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3.6 Discussion

We proposed command-conditional imitation learning: an approach to learning
from expert demonstrations of low-level controls and high-level commands. At
training time, the commands resolve ambiguities in the perceptuomotor mapping,
thus facilitating learning. At test time, the commands serve as a communication
channel that can be used to direct the controller.

We applied the presented approach to vision-based driving of a physical robotic
vehicle and in realistic simulations of dynamic urban environments. Our results
show that the command-conditional formulation significantly improves perfor-
mance in both scenarios.

While the presented results are encouraging, they also reveal that significant
room for progress remains. In particular, more sophisticated and higher-capacity
architectures along with larger datasets will be necessary to support autonomous
urban driving on a large scale. On Chapter 5 we develop more into this idea of
improving conditional imitation learning performance. We hope that the presented
approach to making driving policies more controllable will prove useful in such
deployment.

Our work has not addressed human guidance of autonomous vehicles using
natural language: a mode of human-robot communication that has been explored
in the literature [14, 45, 74, 110, 114]. We leave unstructured natural language
communication with autonomous vehicles as an important direction for future
work.
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4 On Offline Evaluation of Vision-based Driv-
ing Models

Autonomous driving models should ideally be evaluated by deploying them on
a fleet of physical vehicles in the real world. Unfortunately, this approach is not
practical for the vast majority of researchers. An attractive alternative is to eval-
uate models offline, on a pre-collected validation dataset with ground truth an-
notation. In this chapter, we investigate the relation between various online and
offline metrics for evaluation of autonomous driving models. We find that offline
prediction error is not necessarily correlated with driving quality, and two mod-
els with identical prediction error can differ dramatically in their driving perfor-
mance. We show that the correlation of offline evaluation with driving quality
can be significantly improved by selecting an appropriate validation dataset and
suitable offline metrics.

4.1 Introduction

Camera-based autonomous driving can be viewed as a computer vision problem. It
requires analyzing the input video stream and estimating certain high-level quanti-
ties, such as the desired future trajectory of the vehicle or the raw control signal to
be executed. Standard methodology in computer vision is to evaluate an algorithm
by collecting a dataset with ground-truth annotation and evaluating the results pro-
duced by the algorithm against this ground truth (Figure 4.1(a)). However, driving,
in contrast with most computer vision tasks, is inherently active. That is, it involves
interaction with the world and other agents. The end goal is to drive well: safely,
comfortably, and in accordance with traffic rules. An ultimate evaluation would
involve deploying a fleet of vehicles in the real world and executing the model on
these (Figure 4.1(b)). The logistical difficulties associated with such an evaluation
lead to the question: Is it possible to evaluate a driving model without actually
letting it drive, but rather following the offline dataset-centric methodology?

One successful approach to evaluation of driving systems is via decomposi-
tion. It stems from the modular approach to driving where separate subsystems
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Figure 4.1 – Two approaches to evaluation of a sensorimotor control model. Top: of-
fline (passive) evaluation on a fixed dataset with ground-truth annotation. Bottom:
online (active) evaluation with an environment in the loop.

deal with sub-problems, such as environment perception, mapping, and vehicle
control. The perception stack provides high-level understanding of the scene in
terms of semantics, 3D layout, and motion. These lead to standard computer vision
tasks, such as object detection, semantic segmentation, depth estimation, 3D recon-
struction, or optical flow estimation, which can be evaluated offline on benchmark
datasets [21, 33, 88]. This approach has been extremely fruitful, but it only applies
to modular driving systems.

Recent deep learning approaches [11, 119] aim to replace modular pipelines by
end-to-end learning from images to control commands. The decomposed evalu-
ation does not apply to models of this type. End-to-end methods are commonly
evaluated by collecting a large dataset of expert driving [119] and measuring the
average prediction error of the model on the dataset. This offline evaluation is con-
venient and is consistent with standard practice in computer vision, but howmuch
information does it provide about the actual driving performance of the models?

In this chapter, we empirically investigate the relation between (offline) pre-
diction accuracy and (online) driving quality. We train a diverse set of models for
urban driving in realistic simulation [26] and correlate their driving performance
with various metrics of offline prediction accuracy. By doing so, we aim to find
offline evaluation procedures that can be executed on a static dataset, but at the
same time correlate well with driving quality. We empirically discover best practices
both in terms of selection of a validation dataset and the design of an error metric.
Additionally, we investigate the performance of several models on the real-world
Berkeley DeepDrive Video (BDDV) urban driving dataset [119].
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Our key finding is that offline prediction accuracy and actual driving quality are
surprisingly weakly correlated. This correlation is especially low when prediction
is evaluated on data collected by a single forward-facing camera on expert driving
trajectories – the setup used in most existing works. A network with very low
prediction error can be catastrophically bad at actual driving. Conversely, a model
with relatively high prediction error may drive well.

We found two general approaches to increasing this poor correlation between
prediction and driving. The first is to use more suitable validation data. We found
that prediction error measured in lateral cameras (sometimes mounted to collect
additional images for imitation learning) better correlates with driving performance
than prediction in the forward-facing camera alone. The second approach is to
design offline metrics that depart from simple mean squared error (MSE). We
propose offline metrics that correlate with driving performance more than 60%
better thanMSE.

4.2 Related Work

Vision-based autonomous driving tasks have traditionally been evaluated on dedi-
cated annotated real-world datasets. For instance, KITTI [33] is a comprehensive
benchmarking suite with annotations for stereo depth estimation, odometry, optical
flow estimation, object detection, semantic segmentation, instance segmentation,
3D bounding box prediction, etc. The Cityscapes dataset [21] provides annota-
tions for semantic and instance segmentation. The BDDV dataset [119] includes
semantic segmentation annotation. For some tasks, ground truth data acquisition is
challenging or nearly impossible in the physical world (for instance, for optical flow
estimation). This motivates the use of simulated data for training and evaluating
vision models, as in the SYNTHIA [91], Virtual KITTI [32], and GTA5 datasets [89],
and the VIPER benchmark [88]. These datasets and benchmarks are valuable for
assessing the performance of different components of a vision pipeline, but they do
not allow evaluation of a full driving system.

Recently, increased interest in end-to-end learning for driving has led to the
emergence of datasets and benchmarks for the task of direct control signal predic-
tion from observations (typically images). To collect such a dataset, a vehicle is
equipped with one or several cameras and additional sensors recording the coor-
dinates, velocity, sometimes the control signal being executed, etc. The Udacity
dataset [112] contains recordings of lane following in highway and urban scenarios.
The CommaAI dataset [96] includes 7 hours of highway driving. The Oxford Robot-
Car Dataset [73] includes over 1000 km of driving recoded under varying weather,
lighting, and traffic conditions. The BDDV dataset [119] is the largest publicly
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available urban driving dataset to date, with 10,000 hours of driving recorded from
forward-facing cameras together with smartphone sensor data such as GPS, IMU,
gyroscope, and magnetometer readings. These datasets provide useful training
data for end-to-end driving systems. However, due to their static nature (passive
pre-recorded data rather than a living environment), they do not support evaluation
of the actual driving performance of the learned models.

Online evaluation of driving models is technically challenging. In the physical
world, tests are typically restricted to controlled simple environments [20, 51] and
qualitative results [11, 84]. Large-scale real-world evaluations are impractical for
the vast majority of researchers. One alternative is simulation. Due of its logistical
feasibility, simulation have been commonly employed for driving research, espe-
cially in the context of machine learning. The TORCS simulator [118] focuses on
racing, and has been applied to evaluating road following [18]. Rich active environ-
ments provided by computer games have been used for training and evaluation
of driving models [27]; however, the available information and the controllability
of the environment are typically limited in commercial games. The recent CARLA
driving simulator [26] allows evaluating driving policies in living towns, populated
with vehicles and pedestrians, under different weather and illumination conditions.
In this work we use CARLA to perform an extensive study of offline performance
metrics for driving.

Although the analysis we perform is applicable to any vision-based driving
pipeline (including ones that comprise separate perception [13, 50, 90, 100, 127]
and control modules [82]), in this chapter we focus on end-to-end trained models.
This line of work dates back to the ALVINN model of Pomerleau [84], capable of
road following in simple environments. More recently, LeCun et al. [61] demon-
strated collision avoidance with an end-to-end trained deep network. Chen et
al. [18] learn road following in the TORCS simulator, by introducing an intermediate
representation of “affordances” rather than going directly from pixels to actions.
Bojarski et al. [11] train deep convolutional networks for lane following on a large
real-world dataset and deploy the system on a physical vehicle. Fernando et al. [30]
use neural memory networks combining visual inputs and steering wheel trajec-
tories to perform long-term planning, and use the CommaAI dataset to validate
the method. Hubschneider et al. [47] incorporate turning signals as additional
inputs to their DriveNet. Codevilla et al. [20] propose conditional imitation learning,
which allows imitation learning to scale to complex environments such as urban
driving by conditioning action prediction on high-level navigation commands. The
growing interest in end-to-end learning for driving motivates our investigation of
the associated evaluation metrics.
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4.3 Methodology

We aim to analyze the relation between offline prediction performance and online
driving quality. To this end, we train models using conditional imitation learn-
ing [20], presented on Chapter 3, at the CARLA environment, presented on Chapter
2. We then evaluate the driving quality on goal-directed navigation and correlate
the results with multiple offline prediction-based metrics. We now describe the
methods used to train and evaluate the models.

4.3.1 Training

Data collection. We collect a training dataset by executing an automated navigation
expert in the simulated environment. The expert makes use of privileged informa-
tion about the environment, including the exact map of the environment and the
exact positions of the ego-car, all other vehicles, and pedestrians. The expert keeps
a constant speed of 35 km/h when driving straight and reduces the speed when
making turns. We record the images from three cameras: a forward-facing one and
two lateral cameras facing 30 degrees left and right. In 10% of the data we inject
noise in the driving policy to generate examples of recovery from perturbations. In
total we record 80 hours of driving data.
Action representation. The most straightforward approach to end-to-end learning
for driving is to output the raw control command, such as the steering angle, di-
rectly [11, 20]. We use this representation in most of our experiments. The action is
then a vector a ∈R3, consisting of the steering angle, the throttle value, and the brake
value. To simplify the analysis and preserve compatibility with prior work [11, 119],
we only predict the steering angle with a deep network. We use throttle and brake
values provided by the expert policy described above.
Loss function. In most of our experiments we follow standard practice [11, 20] and
use mean squared error (MSE) as a per-sample loss:

�(F (oi ,ci ,θ), ai )= ‖F (oi ,ci ,θ)−ai‖2. (4.1)

We have also experimented with the L1 loss. In most experiments we balance the
data during training. We do this by dividing the data into 8 bins based on the
ground-truth steering angle and sampling an equal number of datapoints from
each bin in every mini-batch. As a result, the loss being optimized is not the average
MSE over the dataset, but its weighted version with higher weight given to large
steering angles.
Regularization. Even when evaluating in the environment used for collecting the
training data, a driving policy needs to generalize to previously unseen views of this
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environment. Generalization is therefore crucial for a successful driving policy. We
use dropout and data augmentation as regularization measures when training the
networks.

Dropout ratio is 0.2 in convolutional layers and 0.5 in fully-connected layers.
For each image to be presented to the network, we apply a random subset of a set
of transformations with randomly sampled magnitudes. Transformations include
contrast change, brightness, and tone, as well as the addition of Gaussian blur,
Gaussian noise, salt-and-pepper noise, and region dropout (masking out a random
set of rectangles in the image, each rectangle taking roughly 1% of image area).
The applied transformations are similar to the ones used on Chapter 3. In order
to ensure good convergence, we found it helpful to gradually increase the data
augmentation magnitude in proportion to the training step.
Model architecture. We experiment with a feedforward convolutional network,
which takes as input the current observation as well as an additional vector of
measurements (in our experiments the only measurement is the current speed
of the vehicle). This network implements a purely reactive driving policy, since
by construction it cannot make use of temporal context. We experiment with
three variants of this model. The architecture presented on Chapter 3, Sec. 3.4.1,
with 8 convolutional layers, is denoted as “standard”. We also experiment with a
deeper architecture with 12 convolutional layers and a shallower architecture with
4 convolutional layers.

4.3.2 Performance metrics

Offline error metrics. Assumewe are given a validation set V of tuples 〈oi ,ci ,ai ,vi 〉,
indexed by i ∈V . Each tuple includes an observation, an input command, a ground-
truth action vector, and the speed of the vehicle. We assume the validation set
consists of one or more temporally ordered driving sequences. (For simplicity
in what follows we assume it is a single sequence, but generalization to multiple
sequences is trivial.) Denote the action predicted by the model by âi = F (oi ,ci ,θ).
In our experiments, ai and âi will be scalars, representing the steering angle. Speed
is also a scalar (in m/s).

Table 4.1 lists offline metrics we evaluate in this chapter. The first twometrics
are standard: mean squared error (which is typically the training loss) and absolute
error. Absolute error gives relatively less weight to large mistakes thanMSE.

The higher the speed of the car, the larger the impact a control mistake can have.
To quantify this intuition, we evaluate speed-weighted absolute error. This metric
approximately measures how quickly the vehicle is diverging from the ground-truth
trajectory, that is, the projection of the velocity vector onto the direction orthogonal
to the heading direction.
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Table 4.1 – Offline metrics used in the evaluation. δ is the Kronecker delta function,
θ is the Heaviside step function,Q is a quantization function (see text for details),
|V | is the number of samples in the validation dataset.

Metric name Parameters Metric definition

Squared error – 1
|V |

∑
i∈V

‖ai − âi ‖2

Absolute error – 1
|V |

∑
i∈V

‖ai − âi ‖1
Speed-weighted absolute error – 1

|V |
∑

i∈V
‖ai − âi ‖1vi

Cumulative speed-weighted absolute error T 1
|V |

∑
i∈V

‖
T∑

t=0
(ai+t − âi+t )vi+t ‖1

Quantized classification error σ 1
|V |

∑
i∈V

(
1−δ

(
Q(ai ,σ),Q(âi ,σ)

))

Thresholded relative error α 1
|V |

∑
i∈V

θ
(‖âi −ai ‖−α‖ai ‖

)

We derive the next metric by accumulating speed-weighted errors over time.
The intuition is that the average prediction error may not be characteristic of the
driving quality, since it does not take into account the temporal correlations in the
errors. Temporally uncorrelated noise may lead to slight oscillations around the
expert trajectory, but can still result in successful driving. In contrast, a consistent
bias in one direction for a prolonged period of time inevitably leads to a crash. We
therefore accumulate the speed-weighted difference between the ground-truth
action and the prediction over T time steps. This measure is a rough approximation
of the divergence of the vehicle from the desired trajectory over T time steps.

Another intuition is that small noise may be irrelevant for the driving perfor-
mance, and what matters is getting the general direction right. Similar to Xu et
al. [119], we quantize the predicted actions and evaluate the classification error. For
quantization, we explicitlymake use of the fact that the actions are scalars (although
a similar strategy can be applied to higher-dimensional actions). Given a threshold
value σ, the quantization functionQ(x,σ) returns −1 if x <−σ, 0 if −σ≤ x <σ, and
1 if x ≥σ. For steering angle, these values correspond to going left, going straight,
and going right. Given the quantized predictions and the ground truth, we compute
the classification error.

Finally, the last metric is based on quantization and relative errors. Instead
of quantizing with a fixed threshold as in the previous metric, here the threshold
is adaptive, proportional to the ground truth steering signal. The idea is that for
large action values, small discrepancies with the ground truth are not as important
as for small action values. Therefore, we count the fraction of samples for which
‖âi −ai‖ ≥α‖ai‖.
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Online performance metrics. Wemeasure the driving quality using three metrics.
The first one is the success rate, or simply the fraction of successfully completed
navigation trials. The second is the average fraction of distance traveled towards the
goal per episode (this value can be negative is the agent moves away form the goal).
The third metric measures the average number of kilometers traveled between
two infractions. (Examples of infractions are collisions, driving on the sidewalk, or
driving on the opposite lane.)

4.4 Experiments

We perform an extensive study of the relation between online and offline perfor-
mance of driving models. Since conducting such experiments in the real world
would be impractical, the bulk of the experiments are performed in the CARLA
simulator [26]. We start by training a diverse set of driving models with varying
architecture, training data, regularization, and other parameters. We then correlate
online driving quality metrics with offline prediction-based metrics, aiming to find
offline metrics that are most predictive of online driving performance. Finally, we
perform an additional analysis on the real-world BDDV dataset.

4.4.1 Experimental setup

Simulation. We use the CARLA 0.8.4 simulator to evaluate the performance of
driving models in an urban environment. We follow the testing protocol presented
on Chapter 2. We evaluate goal-directed navigation with dynamic obstacles. One
evaluation includes 25 goal-directed navigation trials.

CARLA provides two towns (Town 1 and Town 2) and configurable weather and
lighting conditions. We make use of this capability to evaluate generalization of
driving methods. We use Town 1 in 4 weathers (Clear Noon, Heavy Rain Noon,
Clear Sunset and Clear After Rain) for training data collection, and we use two
test conditions: Town 1 in clear noon weather and Town 2 in Soft Rain Sunset
weather. The first condition is present in the training data; yet, note that the specific
images observed when evaluating the policies have almost certainly not been seen
during training. Therefore even this condition requires generalization. The other
condition – Town 2 and soft rain sunset weather – is completely new and requires
strong generalization.

For validation we use 2 hours of driving data with action noise and 2 hours of
data without action noise, in each of the conditions. With three cameras and a
frame rate of 10 frames per second, one hour of data amounts to 108K validation
images.
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Real-world data. For real-world testswe use the validation set of the BDDVdataset [119],
containing 1816 dashboard camera videos. We computed the offline metrics over
the entire dataset using the pre-trainedmodels and the data filtering procedures
provided by Xu et al. [119].
Network training and evaluation. All models were trained using the Adam opti-
mizer [53] with minibatches of 120 samples and an initial learning rate of 10−4.
We reduce the learning rate by a factor of 2 every 50K iterations. All models were
trained up to 500K iterations. In order to track the evolution of models during the
course of training, for each model we perform both online and offline evaluation
after the following numbers of training mini-batches: 2K, 4K, 8K, 16K, 32K, 64K,
100K, 200K, 300K, 400K, and 500K.

4.4.2 Evaluated models

We train a total of 45 models. The parameters we vary can be broadly separated into
three categories: properties of the training data, of the model architecture, and of
the training procedure. We vary the amount and the distribution of the training data.
The amount varies between 0.2 hours and 80 hours of driving. The distribution
is one of the following four: all data collected from three cameras and with noise
added to the control, only data from the central camera, only data without noise,
and data from the central camera without noise. The model architecture variations
amount to varying the depth between 4 and 12 layers. The variations in the training
process are the use of data balancing, the loss function, and the regularization
applied (dropout and the level of data augmentation). A complete list of parameters
varied during the evaluation is provided on Table 4.2

4.4.3 Correlation between offline and online metrics

We start by studying the correlation between online and offline performancemetrics
on the whole set of evaluated models. We represent the results by scatter plots and
correlation coefficients. To generate a scatter plot, we select twometrics and plot
each evaluated model as a circle, with the coordinates of the center of the circle
equal to the values of these twometrics, and the radius of the circle proportional
to the training iteration the model was evaluated at. To quantify the correlations,
we use the standard sample Pearson correlation coefficient, computed over all
points in the plot. In the figures below, we plot results in generalization conditions
(Town 2, unseen weather). We focus our analysis on the well-performing models,
by discarding the 50% worst models according to the offline metric.
The effect of validation data. We first plot the (offline) average steeringMSE versus
the (online) success rate in goal-directed navigation, for different offline validation
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Training data
Amount The amount of training data (in hours of driving footage)
Distribution Distribution of the data used for training
3 cam. + noise Data from three cameras, with action noise in 10% of data
3 cam. Data from three cameras, without action noise
1 cam. + noise Data only from the central camera, with action noise
1 cam. Data only from the central camera, without action noise

Model architecture
Architecture The architecture of the network
Shallow 4-layer convolutional network
Standard 8-layer convolutional network
Deep 12-layer convolutional network

Training procedure
Regularization Regularization techniques applied during training
None No regularization
Mild Dropout Dropout: 50% in the FC layers of the measurements and control modules
High Dropout Dropout: 50% in all FC layers
Drop. + aug. Dropout and random transformations applied to input images

Balancing If data balancing w.r.t. steering angles is applied during training
Loss Type of loss function used for training
MSE (L2) Regression with MSE loss
L1 Regression with absolute error (L1)

Table 4.2 – Parameters of driving models explored in the evaluation.

datasets. We vary the number of cameras used for validation (just a forward-facing
camera or three cameras including two lateral ones) and the presence of action
noise in the validation set. This experiment is inspired by the fact that the 3-camera
setup and the addition of noise have been advocated for training end-to-end driving
models [11, 20, 26, 119].

The results are shown in Figure 4.2. Themost striking observation is that the cor-
relation between offline prediction and online performance is weak. For the basic
setup – central camera and no action noise – the absolute value of the correlation
coefficient is only 0.39. The addition of action noise improves the correlation to 0.54.
Evaluating on data from three cameras brings the correlation up to 0.77. This shows
that a successful policymust not only predict the actions of an expert on the expert’s
trajectories, but also for observations away from the expert’s trajectories. Proper
validation data should therefore include examples of recovery from perturbations.
Offline metrics. Offline validation data from three cameras or with action noise
may not always be available. Therefore, we now aim to find offline metrics that are
predictive of driving quality even when evaluated in the basic setup with a single
forward-facing camera and no action noise.

Figure 4.3 shows scatter plots of offlinemetrics described in Section 4.3.2, versus
the navigation success rate. MSE is the least correlated with the driving success
rate: the absolute value of the correlation coefficient is only 0.39. Absolute steering
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Central camera, no noise Central camera, with noise Three cameras, no noise

Figure 4.2 – Scatter plots of goal-directed navigation success rate vs. steering MSE
when evaluated on data from different distributions. We evaluate the models in the
generalization condition (Town 2) and we plot the 50% best-performing models
according to the offline metric. Sizes of the circles denote the training iterations
at which the models were evaluated. We additionally show the sample Pearson
correlation coefficient for each plot. Note how the error on the basic dataset (single
camera, no action noise) is the least informative of the driving performance.

error is more strongly correlated, at 0.61. Surprisingly, weighting the error by speed
or accumulating the error over multiple subsequent steps does not improve the
correlation. Finally, quantized classification error and thresholded relative error are
also more strongly correlated, with the absolute value of the correlation coefficient
equal to 0.65 and 0.64, respectively.
Online metrics. So far we have looked at the relation between offline metrics
and a single online metric – success rate. Is success rate fully representative of
actual driving quality? Here we compare the success rate with two other online
metrics: average fraction of distance traveled towards the goal and average number
of kilometers traveled between two infractions.

Figure 4.4 shows pairwise scatter plots of these three online metrics. Success
rate and average completion are strongly correlated, with a correlation coefficient
of 0.8. The number of kilometers traveled between two infractions is similarly
correlated with the success rate (0.77), but much less correlated with the average
completion (0.44). We conclude that online metrics are not perfectly correlated and
it is therefore advisable to measure several online metrics when evaluating driving
models. Success rate is well correlated with the other twometrics, which justifies its
use as the main online metric in our analysis.
Case study. We have seen that even the best-correlated offline and online metrics
have a correlation coefficient of only 0.65. Aiming to understand the reason for this
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Steering MSE Steering absolute error Speed-weighted error

Cumulative error Quantized classification Thresholded relative error

Figure 4.3 – Scatter plots of goal-directed navigation success rate vs. different offline
metrics. We evaluate the models in the generalization condition (Town 2) and we
plot the 50% best-performing models according to the offline metric. Note how
correlation is generally weak, especially for mean squred error (MSE).

Success rate vs Avg. completion Km per infraction vs Success rate Km per infraction vs Avg. completion

Figure 4.4 – Scatter plots of online driving quality metrics versus each other. The
metrics are: success rate, average fraction of distance to the goal covered (average
completion), and average distance (in km) driven between two infractions. Success
rate is strongly correlated with the other twometrics, which justifies its use as the
main online metric in our analysis.
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Average accuracy Weighted with speed
Model All data Straight Stop Turns All data Turns

Feedforward 78.0 90.0 72.0 32.4 80.7 27.7
CNN + LSTM 81.8 90.2 78.1 49.3 83.0 43.2
FCN + LSTM 83.3 90.4 80.7 50.7 83.6 44.4

Table 4.3 – Detailed accuracy evaluations on the BDDV dataset. We report the 4-way
classification accuracy (in %) for various data subsets and varying speed.

remaining discrepancy, here we take a closer look at two models which achieve
similar prediction accuracy, but drastically different driving quality. The first model
was trained with the MSE loss and forward-facing camera only. The secondmodel
used the L1 loss and three cameras. We refer to these models as Model 1 and Model
2, respectively.

Figure 4.5 (top left) shows the ground truth steering signal over time (blue),
as well as the predictions of the models (red and green, respectively). There is
no obvious qualitative difference in the predictions of the models: both often
deviate from the ground truth. One difference is a large error in the steering signal
predicted by Model 1 in a turn, as shown in Figure 4.5 (top right). Such a short-
term discrepancy can lead to a crash, and it is difficult to detect based on average
prediction error. The advanced offline metrics evaluated above are designed to be
better at capturing such mistakes.

Figure 4.5 (bottom) shows several trajectories driven by both models. Model 1 is
able to drive straight for some period of time, but eventually crashes in every single
trial, typically because of wrong timing or direction of a turn. In contrast, Model
2 drives well and successfully completes most trials. This example illustrates the
difficulty of using offline metrics for predicting online driving behavior.

4.4.4 Real-world data

Evaluation of real-world urban driving is logistically complicated, therefore we
restrict the experiments on real-world data to an offline evaluation. We use the
BDDV dataset and the trained models provided by [119]. The models are trained to
perform 4-way classification (accelerate, brake, left, right), and wemeasure their
classification accuracy. We evaluate on the validation set of BDDV.

The offline metrics we presented above are designed for continuous values
and cannot be directly applied to classification-basedmodels. Yet, some of them
can be adapted to this discrete setting. Table 4.3 shows the average accuracy, as
well as several additional metrics. First, we provide a breakdown of classification
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Steering angle prediction vs Time Zoom-in of one turn

Driving trajectories of Model 1 Driving trajectories of Model 2

Figure 4.5 – Detailed evaluation of two drivingmodels with similar offline prediction
quality, but very different driving behavior. Top left: Ground-truth steering signal
(blue) and predictions of twomodels (red and green) over time. Top right: a zoomed
fragment of the steering time series, showing a large mistake made by Model 1
(red). Bottom: Several trajectories driven by the models in Town 1. Same scenarios
indicated with the same color in both plots. Note how the driving performance of
the models is dramatically different: Model 1 crashes in every trial, while Model 2
can drive successfully.

58



4.5. Additional results

accuracy by subsets of the data corresponding to different ground truth labels. The
prediction error in the turns is most informative, yielding the largest separation
between the best and the worstmodels. Second, we try weighting the errors with the
ground-truth speed. We measure the resulting metric for the full validation dataset,
as well as for turns only. These metrics reduce the gap between the feedforward and
the LSTMmodels.

4.4.5 Detailed evaluation of models

Scatter plots presented in the previous sections indicate general tendencies, but not
the performance of specific models. Here we provide a more detailed evaluation of
several driving models, with a focus on several parameters: the amount of training
data, its distribution, the regularization being used, the network architecture, and
the loss function. We evaluate two offlinemetrics –MSE and the thresholded relative
error (TRE) – as well as the goal-directed navigation success rate. For TRE we use
the parameter α= 0.1.

The results are shown in Table 4.4. In each section of the table all parameters are
fixed, except for the parameter of interest. (Parameters may vary between sections.)
Driving performance is sensitive to all the variations. Larger amount of training
data generally leads to better driving. Training with one or three cameras has a
surprisingly minor effect. Data balancing helps in both towns. Regularization
helps generalization to the previously unseen town and weather. Deeper networks
generally perform better. Finally, the L1 loss leads to better driving than the usual
MSE loss. This last result is in agreement with Figure 4.3, which shows that absolute
error is better correlated with the driving quality thanMSE.

Next, for each of the 6 parameters and each of the 2 towns we check if the best
model chosen based on the offline metrics is also the best in terms of the driving
quality. This simulates a realistic parameter tuning scenario a practitioner might
face. We find that TRE is more predictive of the driving performance than MSE,
correctly identifying the best-driving model in 10 cases out of 12, compared to 6
out of 12 for MSE. This demonstrates that TRE, although far from being perfectly
correlated with the online driving quality, is muchmore indicative of well-driving
models thanMSE.

4.5 Additional results

On section 4.4, we evaluate the models in the generalization condition (Town 2)
and we plot 50% best-performing models according to the offline metric. Here we
show results in the training condition (Town 1) and show plots with all models, not
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MSE TRE @ 0.1 Success rate
Parameter Value Town 1 Town 2 Town 1 Town 2 Town 1 Town 2

Amount of training data 0.2 hours 0.0086 0.0481 0.970 0.985 0.44 0.00
1 hour 0.0025 0.0217 0.945 0.972 0.44 0.04
5 hours 0.0005 0.0093 0.928 0.961 0.60 0.08
25 hours 0.0007 0.0166 0.926 0.958 0.76 0.04

Type of training data 1 cam., no noise 0.0007 0.0066 0.922 0.947 0.84 0.04
1 cam., noise 0.0009 0.0077 0.926 0.946 0.80 0.20
3 cam., no noise 0.0004 0.0086 0.928 0.953 0.84 0.08
3 cam., noise 0.0007 0.0166 0.926 0.958 0.76 0.04

Data balancing No balancing 0.0012 0.0065 0.907 0.924 0.88 0.36
With balancing 0.0011 0.0066 0.891 0.930 0.92 0.56

Regularization None 0.0014 0.0092 0.911 0.953 0.92 0.08
Mild dropout 0.0010 0.0074 0.921 0.953 0.84 0.20
High dropout 0.0007 0.0166 0.926 0.958 0.76 0.04
High drop., data aug. 0.0013 0.0051 0.919 0.931 0.88 0.36

Network architecture Shallow 0.0005 0.0111 0.936 0.963 0.68 0.12
Standard 0.0007 0.0166 0.926 0.958 0.76 0.04
Deep 0.0011 0.0072 0.928 0.949 0.76 0.24

Loss function L2 0.0010 0.0074 0.921 0.953 0.84 0.20
L1 0.0012 0.0061 0.891 0.944 0.96 0.52

Table 4.4 – Detailed evaluation of models in CARLA. “TRE” stands for thresholded
relative error, “Success rate” for the driving success rate. For MSE and TRE lower
is better, for the success rate higher is better. Wemark with bold the best result in
each section. We highlight in green the cases where the best model according to
an offline metric is also the best at driving, separately for each section and each
town. Both MSE and TRE are not necessarily correlated with driving performance,
but generally TRE is more predictive of driving quality, correctly identifying 10
best-driving models out of 12, compared to 6 out of 12 for MSE.
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Town 1 (training conditions), best 50% of the models.
Central camera, no noise Central camera, with noise Three cameras, no noise

Figure 4.6 – Scatter plots of goal-directed navigation success rate vs steering abso-
lute error when evaluated on data from different distributions. Town 1 (training
conditions), best 50% of the models.

only best-performing ones.
Figures 4.6 and 4.7 show scatter plots of online vs offline metrics with 50% best

models, evaluated in Town 1. Figure 4.8 shows scatter plots of online driving quality
metrics, evaluated in Town 1. Figures 4.9 and 4.10 show scatter plots of online vs
offline metrics with all models, evaluated in Town 1. Figures 4.11 and 4.12 show
scatter plots of online vs offline metrics with all models, evaluated in Town 2.

4.6 Conclusion

We investigated the performance of offline versus online evaluation metrics for
autonomous driving. We have shown that theMSE prediction error of expert actions
is not a goodmetric for evaluating the performance of autonomous driving systems,
since it is very weakly correlated with actual driving quality. We explore two avenues
for improving the offline metrics: modifying the validation data and modifying the
metrics themselves. Both paths lead to improved correlation with driving quality.

Our work takes a step towards understanding the evaluation of driving mod-
els, but it has several limitations that can be addressed in future work. First, the
evaluation is almost entirely based on simulated data. We believe that the general
conclusion about weak correlation of online and offline metrics is likely to transfer
to the real world; however, it is not clear if the details of our correlation analysis will
hold in the real world. Performing a similar study with physical vehicles operating
in rich real-world environments would therefore be very valuable. Second, we focus
on the correlation coefficient as the measure of relation between two quantities.
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Town 1 (training conditions), best 50% of the models.
Steering MSE Steering absolute error Speed-weighted error

Cumulative error Quantized classification Thresholded relative error

Figure 4.7 – Scatter plots of goal-directed navigation success rate vs different offline
metrics. Town 1 (training conditions), best 50% of the models.

Town 1 (training conditions), all models.
Success rate vs Avg. completion Km per infraction vs Success rate Km per infraction vs Avg. completion

Figure 4.8 – Scatter plots of online driving quality metrics versus each other. The
metrics are: success rate, average fraction of distance to the goal covered (average
completion), and average distance (in km) driven between two infractions. Town 1
(training conditions), all models.
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Town 1 (training conditions), all models.
Central camera, no noise Central camera, with noise Three cameras, no noise

Figure 4.9 – Scatter plots of goal-directed navigation success rate vs steering abso-
lute error when evaluated on data from different distributions. Town 1 (training
conditions), all models.

Town 1 (training conditions), all models.
Steering MSE Steering absolute error Speed-weighted error

Cumulative error Quantized classification Thresholded relative error

Figure 4.10 – Scatter plots of goal-directed navigation success rate vs different offline
metrics. Town 1 (training conditions), all models.
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Town 2 (generalization conditions), all models.
Central camera, no noise Central camera, with noise Three cameras, no noise

Figure 4.11 – Scatter plots of goal-directed navigation success rate vs steering abso-
lute error when evaluated on data from different distributions. Town 2 (generaliza-
tion conditions), all models.

Town 2 (generalization conditions), all models.
Steering MSE Steering absolute error Speed-weighted error

Cumulative error Quantized classification Thresholded relative error

Figure 4.12 – Scatter plots of goal-directed navigation success rate vs different offline
metrics. Town 2 (generalization conditions), all models.
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Correlation coefficient estimates the connection between two variables to some
degree, but a finer-grained analysis may be needed provide a more complete under-
standing of the dependencies between online and offline metrics. Third, even the
best offlinemetric we found is far frombeing perfectly correlatedwith actual driving
quality. Designing offline performance metrics that are more strongly correlated
with driving performance remains an important challenge.
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5 Exploring the Limitations of Behavior
Cloning for Autonomous Driving

Figure 5.1 – Driving scenarios from our new benchmark where the agent needs to
react to dynamic changes in the environment, handle clutter (only part of the envi-
ronment is causally relevant), and predict complex sensorimotor controls (lateral
and longitudinal). We show that Behavior Cloning yields state-of-the-art policies in
these complex scenarios and investigate its limitations.

Driving requires reacting to a wide variety of complex environmental conditions
and agent behaviors. Explicitly modeling each possible scenario is unrealistic.
In contrast, imitation learning can, in theory, leverage data from large fleets of
human-driven cars. Behavior cloning in particular has been successfully used to
learn simple visuomotor policies end-to-end, but scaling to the full spectrum of
driving behaviors remains open. In this chapter, we propose a new benchmark
to experimentally investigate the scalability and limitations of this approach. We
show that behavior cloning leads to state-of-the-art results, executing complex
lateral and longitudinal maneuvers without these reactions being explicitly pro-
grammed. However, we confirm well-known generalization issues (due to dataset
bias and overfitting), new ones (due to dynamic objects and the lack of a causal
model), and training instability; problems requiring further research before be-
havior cloning can scale to real-world driving.

5.1 Introduction

End-to-end imitative systems can suffer a domain shift between the off-line training
experience and the on-line behavior [93]. This problem, however, can be addressed
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in practice by data augmentation [11, 20]. Nonetheless, in spite of the early and
recent successes of behavior cloning for end-to-end driving [11, 17, 20, 61, 84], it
has not yet proved to scale to the full spectrum of driving behaviors, such as reacting
to multiple dynamic objects.

In this chapter, we propose to use our new benchmark, called NoCrash, pre-
sented on Chapter 2 and perform a large scale analysis of end-to-end behavioral
cloning systems in complex driving conditions not studied in this context before.
We perform a large scale off-line training and on-line evaluation in over 80 hours
of driving under several different conditions. We describe a strong Conditional
Imitation Learning baseline, an expansion to the one presented on Chapter 3, that
significantly improves upon state of the art modular [65], affordance based [97],
and reinforcement learning [67] approaches, both in terms of generalization perfor-
mance in training environments and unseen ones.

Despite its positive performance, we identify limitations that prevent behavior
cloning from successfully graduating to real-world applications. First, although
generalization performance should scale with training data, generalizing to complex
conditions is still an open problemwith a lot of room for improvement. In particular,
we show that no approach reliably handles dense traffic scenes with many dynamic
agents. Second, we report generalization issues due to dataset biases and the
lack of a causal model. We indeed observe diminishing returns after a certain
amount of demonstrations, and even characterize a degradation of performance on
unseen environments. Third, we observe a significant variability in generalization
performance when varying the initialization or the training sample order, similar
to on-policy RL issues [46]. We conduct experiments estimating the impact of
ImageNet pre-training and show that it is not able to fully reduce the variance. This
suggests the order of training samples matters for off-policy Imitation Learning,
similar to the on-policy case [123].

This chapter is organized as follows. Section 5.2 describes related work, Sec-
tion 5.3 our strong behavior cloning baseline, Section 5.4 our experimental results,
and Section 5.5 our conclusion.

5.2 Related Work

Behavior cloning for driving dates back to the work of Pomerleau [84] on lane
following, later followed by other approaches [61], including going beyond driv-
ing [2, 107]. The distributional shift between the training and testing distributions
is the main known limitation of this approach, which might require on-policy data
collection [92, 93], obtained by the learning agent. Nonetheless, recent works
have proposed effective off-policy solutions, for instance by expanding the space
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of image/action pairs either using noise [20, 60], extra sensors [11], or modular-
ization [66, 97]. We show, however, that there are other limitations important to
consider in complex driving scenarios, in particular dataset bias and high variance,
which both harm scaling generalization performance with training data.

Dataset bias is a core problem of real-world machine learning applications [7,
111] that can have dramatic effects in a safety-critical application like autonomous
driving. Imitation learning approaches are particularly sensitive to this issue, as
the learning objective might be dominated by the main modes in the training
data. Going beyond the original CARLA benchmark [26], we use our new NoCrash
benchmark to quantitatively assess themagnitude of this problemon generalization
performance for more realistic and challenging driving behaviors.

High variance is a key problem in powerful deep neural networks, and we show
that high performance behavior cloning models are particularly suffering from this.
This problem is related to sensitivity to both initialization and sampling order [79],
reproducibility issues in Reinforcement Learning [46, 72], and the need to move
beyond the i.i.d. data assumption towards curriculum learning [9] for sensorimotor
control [5, 123].

Driving benchmarks fall in two main categories: off-line datasets, e.g., [33,
44, 96, 119], or on-line environments. We focus here on on-line benchmarks, as
visuomotor models performing well in dataset-based evaluations do not necessarily
translate to good driving policies [19]. Driving is obviously a safety-critical robotic
application. Consequently, for safety and to enable reproducibility, researchers
focus on using photo-realistic simulation environments. In particular, the CARLA
open-source driving simulator [26] is emerging as a standard platform for driving
research, used in [20, 66, 67, 77, 97]. Note, however, that transferring policies from
simulation to the real-world is an open problem [71] out of the scope of this chapter,
although recent works have shown encouraging results [77, 120].

5.3 Behavior Cloning

In this section, we first describe the behavior cloning framework we use, its limita-
tions, and a robustified baseline that tries to tackle these issues.

5.3.1 Conditional Imitation Learning

Behavior cloning [64, 84, 93, 98] is a form of supervised learning that can learn
sensorimotor policies from off-line collected data. The only requirements are pairs
of input sensory observations associated with expert actions. We use an expanded
formulation for self-driving cars called Conditional Imitation Learning, proposed
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on Chapter 3. It uses a high-level navigational command c that disambiguates
imitation aroundmultiple types of intersections. Given an expert policy with access
to the environment state x, we can execute this policy to produce a dataset, D =
{〈oi ,ci ,ai 〉}Ni=1, where oi are sensor data observations, ci are high-level commands
(e.g., take the next right, left, or stay in lane) and ai =π∗(xi ) are the resulting vehicle
actions (low-level controls). Observations oi = {i ,vm} contain a single image i and
the ego car speed vm [20] added for the system to properly react to dynamic objects
on the road. Without the speed context, the model cannot learn if and when it
should accelerate or brake to reach a desired speed or stop.

We want to learn a policy F parametrized by θ to produce similar actions to the
reference policy based only on observations o and high-level commands c. The
best parameters θ∗ are obtained by minimizing an imitation cost �:

θ∗ = argmin
θ

∑
i
�
(
F (oi ,ci ;θ),ai

)
. (5.1)

In order to evaluate the performance of the learned policy F (oi ,ci ;θ) on-line at
test time, we assume access to a score function giving a numeric value expressing
the performance of the function approximator F on a given benchmark (cf. chap. 2
section 2.4).

5.3.2 Limitations

In addition to the distributional shift problem [93], behavior cloning presents some
key limitations.

Bias in Naturalistic Driving Datasets. The appeal of behavior cloning lies in its
simplicity and theoretical scalability, as it can indeed learn by imitation from large
off-line collected demonstrations (e.g., using driving logs from manually driven
production vehicles). It is, however, susceptible to dataset biases like all learning
methods. This is exacerbated in the case of imitation learning of driving policies, as
most of real-world driving consists in either a few simple behaviors or a heavy tail of
complex reactions to rare events. Consequently, this can result in performance de-
grading as more data is collected, because the diversity of the dataset does not grow
fast enough compared to the main mode of demonstrations. This phenomenon
was not clearly measured before. Using our new NoCrash benchmark (chapter 2,
section 2.4.2), we confirm it may happen in practice.

Causal Confusion. Related to dataset bias, end-to-end behavior cloning can suf-
fer from causal confusion [39]: spurious correlations cannot be distinguished from
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true causes in observed training demonstration patterns unless an explicit causal
model or on-policy demonstrations are used. Our new NoCrash benchmark con-
firms the theoretical observation and toy experiments of [39] in realistic driving
conditions. In particular, we identify a typical failure mode due to a subtle dataset
bias: the inertia problem. When the ego vehicle is stopped (e.g., at a red traffic light),
the probability it stays static is indeed overwhelming in the training data. This
creates a spurious correlation between low speed and no acceleration, inducing ex-
cessive stopping and difficult restarting in the imitative policy. Although mediated
perception approaches that explicitly model causal signals like traffic lights do not
suffer from this theoretical limitation, they still under-perform end-to-end learning
in unconstrained environments, because not all causes might be modeled (e.g.,
some potential obstacles) and errors at the perception layer (e.g., missed detections)
are irrecoverable.

High variance. With a fixed off-policy training dataset, one would expect CIL to
always learn the same policy in different runs of the training phase. However, the
cost function is optimized via Stochastic Gradient Descent (SGD), which assumes
the data is independent and identically distributed [12]. When training a reactive
policy on snapshots of longer human demonstrations included in the training
data, the i.i.d. assumption does not hold. Consequently, we might observe a high
sensitivity to the initialization and the order in which the samples are seen during
training. We confirm this in our experiments, finding an overall high variance due
to both initialization and sampling order, following the decomposition in [79]:

V ar (π)= ED
[
V arI (F |D)

]+V arD
(
EI [F |D]

)
, (5.2)

where I denotes the randomness in initialization. Because the function F is eval-
uated on-line in simulated environments, we evaluate in practice the variance of
the score on the test benchmark, and report results when freezing the initialization
and/or varying the sampling order for different training datasets D (including of
varying sizes).

5.3.3 Model

In order to explore the aforementioned limitations of behavior cloning, we propose
a robustified CIL model designed to improve on the model from Chapter 3 while
remaining strictly off-policy. Our network architecture, called CILRS, is shown in
Figure 5.2. We describe our enhancements below.
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Figure 5.2 – Our proposed network architecture, called CILRS, for end-to-end urban
driving, based on the one presented on Chapter 3. A ResNet perception module
processes an input image to a latent space followed by two prediction heads: one
for controls and one for speed.

Deeper Residual Architecture. We use a ResNet34 architecture [43] for the per-
ception backbone P (i ). In the presence of large amounts of data, using deeper
architectures can be an effective strategy to improve performance [43]. In particular,
it can reduce both bias and variance, maintaining in particular a constant variance
due to training set sampling with both network width and depth [79]. For end-to-
end driving, the choice of architecture has beenmostly limited to small networks
so far [11, 20, 97] to avoid overfitting on limited datasets. In contrast, we notice
that bigger models have better generalization performance on learning reactions to
dynamic objects and traffic lights in complex urban environments.

Speed Prediction Regularization. To cope with the inertia problem without an
explicit mapping of potential causes or on-policy interventions, we jointly train
a sensorimotor controller with a network that predicts the ego vehicle’s speed.
Both neural networks share the same representation via our ResNet perception
backbone. Intuitively, what happens is that this joint optimization enforces the
perception module to have speed related features into the learned representation.
This reduces the dependency on input speed as the only way to get dynamics of the
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scene, leveraging instead visual cues that are predictive of the car’s velocity (e.g.,
free space, curves, traffic light states, etc).

Other changes. We use L1 as loss function � instead of the mean squared error
(MSE), as it is more correlated to driving performance [19]. As our NoCrash bench-
mark consists of complex realistic driving conditions in the presence of dynamic
agents, we collect demonstrations from an expert game AI using privileged infor-
mation to drive correctly (i.e. mostly respecting rules of the road and not crashing
into any obstacle). Robustness to heavy noise in the demonstrations is beyond the
scope of our work, as we aim to explore limitations of behavior cloning methods
in spite of good demonstrations. Finally, we pre-trained our perception backbone
on ImageNet to reduce initialization variance and benefit from generic transfer
learning, a standard practice in deep learning seldom explored for behavior cloning.

5.4 Experiments

In this section we detail our protocol for model training and briefly show that it is
capable of being on par with the state-of-the-art. We also explore several corner
cases to stress the limitations of the behavior cloning approach.

5.4.1 Training Details

As the usual methodology for the training autonomous driving controllers, we
collect an exhaustive amount of data on a single town of the CARLA simulated
environment. More details about the dataset can be found at the appendix A.1.
From this dataset we trained our controller using 10 hours of expert demonstrations.
We found that augmentation was not as crucial as for the setup used on Chapter
3 and previous works [20, 66]. The only regularization we found important for
performance was using a 50% dropout after the last convolutional layer. Any larger
dropout led us to under-fitting models. All models were trained using Adam [53]
with minibatches of 120 samples and an initial learning rate of 0.0002. At each
iteration, a minibatch is sampled randomly from the entire dataset and presented
to the network for training. If we detect that the training error hasn’t decreased for
over 1000 iterations we divide the learning rate by 10. We used a 2 hours validation
dataset to discover when to stop the training processWe validate every 20k iterations
and if the validation error increases for three iterations we stale the training process
and use this checkpoint to test on the benchmarks, both CARLA and NoCrash. To
build the validation dataset we used the recommendations from the conclusions
obtained on Chapter 4.
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Scenario Task CIL[20] CIRL[67] CAL[97] MT[66] CILR CILRS

Training Conditions

Straight 98 98 100 96 94 96
One Turn 89 97 97 87 92 92
Navigation 86 93 92 81 88 95

Nav. Dynamic 83 82 83 81 85 92

NewWeather

Straight 98 100 100 100 96 96
One Turn 90 94 96 88 96 96
Navigation 84 86 90 88 94 96

Nav. Dynamic 82 80 82 80 92 96

New Town

Straight 97 100 93 100 92 96
One Turn 59 71 82 81 81 84
Navigation 40 53 70 72 60 69

Nav. Dynamic 38 41 64 53 55 66

NewWeather & Town

Straight 80 98 94 96 92 96
One Turn 48 80 72 82 92 92
Navigation 44 68 68 78 88 92

Nav. Dynamic 42 62 64 62 82 90

Table 5.1 – Comparison with the state of the art on the CoRL 2017 benchmark
(chapter 2, section 2.4.1). The “CILRS” version corresponds to our CIL-based ResNet
using the speed prediction branch, whereas “CILR” is without this speed prediction.
These twomodels and CIL are the only ones that do not use any extra supervision
or online interaction with the environment during training. The table reports the
percentage of successfully completed episodes in each condition, selecting the best
seed out of five runs.

5.4.2 Comparison with the state of the art

We compare our results using both the original CARLA benchmark [26] andNoCrash
benchmark (cf. chapter 2 section 2.4). We compare two versions of our method:
“CILRS” (our CIL extension with a ResNet architecture and speed prediction, as
described in section 5.3), and a version without the speed prediction branch noted
“CILR”. We compare our method with the original CIL from [20], Chapter 3, and
three state-of-the-art approaches: CAL [97], MT [66], and CIRL [67]. In contrast to
end-to-end behavior cloning, these methods enforce some modularization that
require extra information at training time, such as affordances (CAL), semantic
segmentation (MT), or extra on-policy interaction with the environment (CIRL).
Our approach only requires a fixed off-policy dataset of demonstrations.

We show results on the original CARLA benchmark in Table 5.1 and results
on NoCrash benchmark in Table 5.2. While most methods perform well in most
conditions on the original CARLA benchmark, they all perform significantly worse
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Scenario Task CIL[20] CAL[97] MT[66] CILR CILRS

Training Conditions
Empty 79±1 81±1 84±1 92±1 97±2
Normal 60±1 73±2 54±2 72±5 83±0
Cluttered 21±2 42±3 13±4 28±1 42±2

NewWeather
Empty 83±2 85±2 58±2 98±1 96±1
Normal 55±5 68±5 40±6 69±4 77±1
Cluttered 13±4 33±2 7±2 27±3 47±5

New Town
Empty 48±3 36±6 41±3 60±2 66±2
Regular 27±1 26±2 22±0 42±2 49±5
Cluttered 10±2 9±1 7±1 12±2 23±1

NewWeather & Town
Empty 24±1 25±3 57±0 66±2 90±2
Normal 13±2 14±2 32±2 54±2 56±2
Cluttered 2±0 10±0 14±2 13±4 24±8

Table 5.2 – Results on our NoCrash benchmark (chapter 2 sec. 2.4.2. Mean and
standard deviation on three runs, as CARLA 0.8.4 has significant non-determinism.

on NoCrash, especially when trying to generalize to new conditions. This confirms
the usefulness of NoCrash in terms of exploring the limitations of driving policy
learning due to its more challenging nature.

In addition, our proposed CILRS model significantly improves over the state of
the art, e.g., +9% and +26% on CARLA “Nav. Dynamic” in training and new weather
& town conditions respectively, +10% and +24% on NoCrash Regular traffic in train-
ing and new weather & town conditions respectively. As showed on [26], new town
conditions are harder than newweather & town and the improvements of the results
was smaller. The significant improvements in generalization conditions, both w.r.t.
CIL and mediated approaches, confirm that our improved end-to-end behavior
cloning architecture can effectively learn complex general policies from demon-
strations alone. Furthermore, our ablative analysis shows that speed prediction is
helpful: CILR can indeed be up to −14% worse than CILRS on NoCrash.

5.4.3 Analysis of Limitations

Although clearly above the state of the art, our improvedCILRS architecture nonethe-
less sees a strong degradation of performance similar to all other methods in the
presence of challenging driving conditions. We investigate how this degradation
relates to the limitations of behavior cloningmentioned in Section 5.3.2 by using the
NoCrash benchmark, in particular to better evaluate the interaction of the agents
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with dynamic objects.

Generalization in the presence of dynamic objects. Limited generalization was
previously reported for end-to-end driving approaches [26]. In our experiments, we
observed additional, and more prominent, generalization issues when the control
policies have to deal with dynamic objects. Table 5.2 indeed shows a large drop
in performance as we change to tasks with more traffic, e.g., −55% and −66%
from Empty to Dense traffic in NoCrash training / new conditions respectively. In
contrast, results in Empty town only degrade by −7% when changing to a new
environment and weather. Therefore, the learned policies have a much harder time
dealing robustly with a large number of vehicles and pedestrians. Furthermore, this
impacts all policy learning methods, including those using additional supervision
or on-policy demonstrations, often even more than our proposed CILRS method.

Driving Dataset Biases. Figure 5.3 evaluates the effect of the amount of training
demonstrations on the learned policy. Here we compare models trained with 2, 10,
50 and 100 hours of demonstrations. The plots show the mean success rate and
standard deviation over four different training cycles with different random seeds.
Our best results onmost of the scenarios were obtained by using only 10 hours of
training data, in particular on the “Dense Traffic” tasks and novel conditions such
as New Weather and New Town. These results quantify a limitation described in
Section 5.3.2: the risk of overfitting to data that lacks diversity.

This is here exacerbated by the limited spatial extent and visual variety of our
environment, including in terms of dynamic objects. We indeed observed that some
types of vehicles tend to elicit better reactions from the policy than others. The
more common the vehicle model and color, the better the trained agent reacts to it.
This raises ethical challenges in automated driving, requiring further research in
fair machine learning for decision-making systems [7].

We also observed considerable change in the success rate results when not using
ImageNet initialization, as show in Figure 5.6. The highest success rate becomes
the ones trained on 100 hours of demonstrations. However, these later results are
still below what can be achieved with less data and ImageNet pre-training, specially
on the dense traffic tasks.

In order to assure that the the used architectures do not underfit or overfit
to the data, we perform ablation studies with deeper and shalower architectures.
On Figure 5.7, we compare the results of the 8 layer convolutional model used on
Chapter 3 and several ResNet configurations using our newdataset. First, we noticed
that the 8 convsmodel obtained worse results than the ones reported as CIL at Table
5.1. This happened since we trained the 8 convolutions architecture with the more

76



5.4. Experiments

Figure 5.3 – The importance of data for improving the results. We can see a that
due to biases present on data that the results get either staled or worse after you
increase the amount of data.

complex CARLA100 dataset. Themodel did not have enough capacity to capture the
more complex actions and only fitted the several segments where the demonstrator
stands still in front of traffic lights. This shows that higher capacity models are able
to better learn different sub-tasks. However, for the deeper ResNet50 the results
get worse showing that there is still possibility for even further overfitting without
eliminating the dataset bias.

Causal confusion and the inertia problem. Themain problemweobserve caused
by bias is the inertia problem stemming from causal confusion, as detailed in Sec-
tion 5.3.2. Figure 5.4 shows the percentage of episodes that failed due to the agent
staying still, without any intention to use the throttle, for at least 8 seconds before
the timeout. Our results show the percentage of episodes failed due to that inertia
problem increases with the amount of data used for training. We proposed to use a
speed prediction branch as part of our CILRS model (cf. Figure 5.2) to mitigate this
problem. Figure 5.8 shows the percentage of successes for the NewWeather & Town
conditions on different tasks with and without speed prediction. We observe that
the speed prediction branch can substantially improve the success rate thanks to
its regularization effect. It is, however, not a final solution to this problem, as we
still observe instances of the inertia problem after using this approach.

High Variance. Repeatability of the training process is crucial for enhancing trust
in end-to-endmodels. Unfortunately, we can still see drastic changes in the learned
policy performance due to the variance caused by initialization and data sampling
(cf. Section 5.3.2). Figure 5.9 compares the cause of episode termination for two
models where the only difference is the random seed during training. The Model S1
has amuch higher chance of ending episodes due to vehicle collisions. Qualitatively,
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Figure 5.4 – The percentage of episode that failed due to the inertia problem. We can
see that by increasing the amount of data, this bias is further enforced degrading
specially the generalization capabilities of the models.

Figure 5.5 – Percentage of episodes ended by the “inertia problem” on different con-
ditions. We report the mean and the standard deviation over four different trainings.
We comparemodels with different amounts of training data and without image-net
pre-training. We can see that the inertia problem becomes more prominent with
more data.

Figure 5.6 – The importance of data without ImageNet pre-training. We can see that
the results improve with more data but not significant. We can see also one case of
worse results as from 50 to 100 hours on the NewWeather & Town conditions with
Dense Traffic.
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Figure 5.7 – Ablative analysis between different architectures. The eight convolu-
tions architecture,“8conv”, proposed by Codevilla [20] obtained poor results on the
more complex CARLA100 datasets. ResNet based deeper architectures, “res18” and
“res34”, were able to improve the results. However, when testing ResNet 50 we notice
a significant drop on the quality of the results.

it seemed to have learned a less general braking policy and was more prone to rear-
end collisions with other vehicles. On the other hand, Model S2 is able to complete
more episodes and is less likely to fail due to vehicle crashes. However, we can see
that it times out more, showing a tendency to stop a lot, even in non-threatening
situations. This can be seen by analyzing the histograms of the throttle applied by
bothmodels during the benchmark, as shown in Figure 5.10. We can see a tendency
for throttles of higher magnitude onModel S1.

As off-policy imitation learning uses a static dataset for training, this random-
ness comes from the order in which training data is sampled and the initialization of
the randomweights. This can possibly define which minima the models converges
to. Table 5.3 quantifies the effect of initialization on the success rate of driving tasks
by computing the variance expressed in Equation 5.2. The expected policy score
was computed by averaging twelve different training runs. We also consider the
variance with and without ImageNet initialization. We can see that the success
rate can change by up to 42% for tasks with dynamic objects. ImageNet initializa-
tion tends to reduce the training variability, mainly due to smaller randomness on
initialization but also due to a more stable learned policy.

5.4.4 Reacting to Traffic Lights

We show that other policies can also emerge for some of the models trained. In
Table 5.4 we show the percentage of traffic lights that were crossed on green light
for different models. This number is computed for the “Empty Town” task from the
dynamic urban scenarios benchmark. The original CIL model trained with older
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Figure 5.8 – Comparison between the results with and without the speed prediction
and different amounts of training demonstrations. We report the results only for
the case were highest generalization is needed (NewWeather and Town).

data [20] represents an effective policy that was trained without demonstrations
of stopping for red traffic light, so the number is actually a lower bound. The 8
convolutions is a model with the same architecture as the CIL model but trained
to react to traffic lights. We can see that this model probably was having some
reaction to traffic lights, but very poorly. On the other hand, CILRS, having only 47%
of traffic light violations, is clearly stopping for a significant amount of red traffic
lights. This result is even more expressive considering the version using 100 hours
of training data which did only 27% of traffic light violations. However, when we
analyze generalization conditions, Tab. 5.4 bottom, we see there is an ample room
for improvement.

80



5.4. Experiments

Figure 5.9 – Comparison of the cause of episode termination for twomodels with
identical parameters but different random seeds evaluated in the NoCrash bench-
mark. The models were evaluated under a series of goal directed episodes and the
plot shows the success rate for each termination condition. The episodes were ran
under “NewWeather & Town” conditions of the “Dense Traffic” task. The models
correspond to the Res34 10 hours of training data and ImageNet initialization.

Task Variation

CILRS
Empty 23%
Normal 26%
Cluttered 42%

CILRS ImNet
Empty 4%
Normal 12%
Cluttered 38%

Table 5.3 – Estimated variance of the success rate of CILRS on NoCrash computed
by training 12 times the samemodel with different random seeds. The variance is
reduced by fixing part of the initial weights with ImageNet pre-training.

5.4.5 Main Causes of Failure

On Table 5.5 we show some of our models compared with some of the literature
with regard to their cause of failure. We specify the percentage of episodes that
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Figure 5.10 – Probability distribution of having certain throttle values comparing
models with two different random seeds but trained with same hyper-parameters
and data. We can perceive that S1 (red) is muchmore likely to have a higher throttle
value.

(a) Input Image (b) Layer 1 (c) Layer 2

Figure 5.11 – Activation maps showing the increased selectivity for traffic lights in
the ResNet34 case (bottom) compared to the standard 8 convolution architecture
(top). For the ResNet34, layer 1, refers to the attention maps obtained after a full
ResNet block.

ended due to different causes of crash, due to timeout of the task or if the main
cause is if the controller stopped and did not continued again (inertia problem).
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Condition Models Traffic Light Violations

Training Conditions

CIL 83
8 Conv 71
CILRS 10 47
CILRS 100 27

New town & weather

CIL 82
8 Conv 81

CILRS 10 hours 64
CILRS 100 hours 78

Table 5.4 – Percentage of times the agents burned a traffic light (lower is better) in
the “Empty” conditions of the NoCrash benchmark.

5.5 Conclusion

Our new driving dataset (CARLA100), benchmark (NoCrash), and end-to-end senso-
rimotor architecture (CILRS) indicate that behavior cloning on large scale off-policy
demonstration datasets can vastly improve over the state of the art in terms of
generalization performance, including mediated perception approaches with addi-
tional supervision. This is thanks to using a deeper residual architecture with an
additional speed prediction target and good regularization.

Nonetheless, our extensive experimental analysis has shown that some big
challenges remain open. First of all, the amount of dynamic objects in the scene
directly hurts all policy learning methods, as multi-agent dynamics are not directly
captured. Second, the self-supervised nature of behavior cloning enables it to
scale to large datasets of demonstrations, but with diminishing returns (or worse)
due to driving-specific dataset biases that require explicit treatment, in particular
biases that create causal confusion (e.g., the inertia problem). Third, the large
variance resulting from initialization and sampling order indicates that running
multiple runs on the same off-policy data is key to identify the best possible policies.
This is part of the broader deep learning challenges regarding non-convexity and
initialization, curriculum learning and training stability.
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Training NewWeather
Task Metric CAL MT CIL CILRS 10 CILRS 100 CAL MT CIL CILRS 10 CILRS 100

Empty Town

Success 84.00 81.00 79.00 97.33 96.33 86.00 85.33 59.00 98.67 98.67
Col. Pedestrian 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Col. Vehicles 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Col. Other 9.00 11.67 11.00 1.33 1.33 10.00 9.33 33.00 0.00 0.00
Timeout 7.00 7.33 10.00 1.33 2.33 4.00 5.33 8.00 1.33 1.33

Regular Traffic

Success 57.00 74.00 61.50 83.33 87.33 58.00 68.00 40.00 77.33 80.00
Col. Pedestrian 7.00 3.33 9.50 4.00 2.00 6.00 8.67 15.00 2.00 6.67
Col. Vehicles 26.00 6.00 16.00 7.67 4.00 30.00 7.33 17.00 17.33 8.67
Col. Other 7.00 11.33 7.00 4.67 3.67 2.00 10.67 21.00 2.67 4.00
Timeout 3.00 5.33 6.00 0.33 3.00 4.00 5.33 7.00 0.67 0.67

Dense Traffic

Success 16.00 42.67 22.00 42.67 41.67 18.00 33.33 6.00 47.33 38.00
Col. Pedestrian 14.00 13.67 20.50 24.33 22.33 12.00 18.00 15.00 12.00 14.67
Col. Vehicles 57.00 22.33 49.50 18.33 20.67 68.00 18.00 69.00 26.00 34.00
Col. Other 10.00 12.33 4.50 13.33 12.33 0.00 20.00 12.00 11.33 12.00
Timeout 3.00 9.00 3.50 1.33 3.00 2.00 10.67 0.00 3.33 1.33

New Town NewWeather & Town
Task Metric CAL MT CIL CILRS 10 CILRS 100 CAL MT CIL CILRS 10 CILRS 100

Empty Town

Success 48.67 36.33 41.67 66.00 72.33 57.33 25.33 24.00 90.67 55.33
Col. Pedestrian 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Col. Vehicles 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Col. Other 45.33 56.67 51.00 21.33 20.00 33.33 64.00 66.67 5.33 2.67
Timeout 6.00 7.00 7.33 12.67 7.67 9.33 10.67 9.33 4.00 42.00

Regular Traffic

Success 27.67 26.00 22.00 49.67 49.00 32.00 14.67 13.33 56.67 42.67
Col. Pedestrian 6.00 3.33 4.33 8.33 4.33 7.33 2.00 1.33 6.67 2.00
Col. Vehicles 30.00 9.00 34.67 8.33 12.67 32.67 11.33 36.67 22.67 18.67
Col. Other 30.33 51.33 33.00 21.67 23.67 22.67 65.33 44.00 8.00 8.67
Timeout 6.00 10.33 6.00 12.00 10.33 5.33 6.67 4.67 6.00 28.00

Dense Traffic

Success 10.67 9.00 7.33 23.00 21.00 14.67 10.67 2.67 24.67 12.67
Col. Pedestrian 7.00 8.33 9.67 15.33 12.33 8.00 3.33 4.67 14.00 8.67
Col. Vehicles 46.33 27.67 55.67 39.00 35.00 46.67 38.00 57.33 37.33 34.00
Col. Other 28.33 40.33 24.67 17.33 22.67 20.00 35.33 31.33 7.33 7.33
Timeout 7.67 14.67 2.67 5.33 9.00 10.67 12.67 4.00 16.67 37.33

Table 5.5 – Analysis of the causes of episode end for different methods. We show
the results for all tasks, and weather conditions. The columns for a single method-
/task/condition should sum to 1. For each cause of episode end we highlight the
method with higher probability. The reported results are the average over three
different runs of the benchmark.
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6 Conclusions and Future work

6.1 Conclusions

In this PhD dissertation we have addressed the problem of end-to-end learning of
driving policies. We focused the studies on some topics we considered necessary
for the development of this area. The topics are: Simulation, Controllability and
Evaluation. By working on each of these topics we were then able to explore the
limits of end-to-end driving through behavior cloning. We show that besides the
main limitation of the distributional shift, other problems can affect the learned
policy such as lack of reproducibility and bias on the datasets. However, we also
showed some substantial improvement of end-to-end driving for urban driving on
a simulated environment.

Chapter 2 presented the CARLA simulator. This simulator provide tools to
develop systems for autonomous driving and test them on controlled scenarios.
Further, the simulator allows us detailed analysis of the performance of each system.
This simulator has been already used by several researchers and was a key tool for
the other contributions of this thesis.

Chapter 3 presented a way to make networks controllable by conditioning them
to a high level command. We showed that a branched architecture is a better
alternative then a more naive command input option. We evaluated our proposal
both on a physical hardware and on the CARLA simulator. This work has been
already used by several other authors including some extensions [97] [67].

Chapter 4 shows that evaluating drivingmodels by comparing the drivingmodel
predictions with the ground truth of some dataset is weekly correlated to the actual
driving. We also showed that depending on how the dataset was collected this
correlation can be improved. Collecting data augmented with additional cameras,
and adding perturbations to the demonstrator, improves the correlation to the
actual driving since the dataset will have comprised a bigger state-space. We also
found that MSE was particularly uncorrelated to driving. Using L1, or the proposed
threshold relative error, improves the correlation.

Finally, Chapter 5 shows that by using large scale evaluation of a model on
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the CARLA environment, we were able to give a more detailed look to potential
limitations of end-to-end driving IL. First there is a big variability when training
this kind of model. Further, dataset biases can easily burden the improvement that
could be obtained by leveraging bigger amounts of data. We opened this discussion
and proposed some techniques to help improving the performance of IL models on
this direction.

Learning to drive end-to-end is a very powerful technique since it allows leverag-
ing data with little necessity for extra annotation. However, there are complications
with respect to evaluation and generalization that must be still addressed in order
to allow the use of such techniques for the full spectrum of real world applications.
We could conclude that the use of simulation is fundamental and promising for the
development of end-to-end driving agents through imitation. Simulation allows the
development of replicable benchmarks that can be run in parallel and allow quickly
testing of models of different natures. And as we showed on Chapter 4 using offline
datasets is not a good evaluation strategy for end-to-end driving agents. Adding
integration with a higher level planning, as we did on Chapter 3, allow end-to-end
driving agents to performmore complex trajectories. This leads to a better use of
end-to-end IL techniques as well as a more realistic evaluation of its usability for
the real world applications.

6.2 Future Perspective

Simulation The simulator version explained on this paper is limited to control-
ling a single vehicle and to simple urban environment conditions. By having the
possibility to script the behavior of each vehicle one could produce much more
complex conditions to be tested. This is already released on the newest CARLA
version. Since CARLA is under constant update and now have several contributors,
please check the github repository https://github.com/carla-simulator/carla for an
updated state of the simulator.

Controllability The set of commands that were used for this matter were quite
limited, this happened due to the limitations of the simulated environment that
we had. However, it would be interesting to extend this idea for more complex
scenarios incorporating more complex intersections with multiple exits. Also it
would be interesting to evaluate the necessity of a lane change command or if this
behavior can emerge when conditioned to a certain policy.

Evaluation It would be interesting to propose a way to collect datasets that were
highly correlated to actual driving. This would have a big impact on industry
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and how to evaluate driving models. Also it is interesting to evaluate if the more
correlatedmetrics, such as the threshold relative error, also produce amore sensible
loss function.

Limitations The limitations can probably addressed by not using pure behavior
cloning. Purely imitating a referees driver produces end-to-end driving agents
that lack higher level knowledge of the objectives of driving such as traffic rules
and safety. By adding traffic and safety rules to the objective function it would be
possible to obtain models that generalize better. Still, behavior cloning has a much
bigger applicability to the industry since it is very easy to train. A different training
strategy that detects wrong causalities from data could be very beneficial for this
type of training.
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A Appendix

A.1 CARLA100

Wedescribe all the contents present on the CARLA100 dataset. Note that for training
our model we only used RGB sensor data, the ego-vehicle forward speed, the high
level turn intentions for the conditional imitation learning and the ego vehicle
controls.

A.1.1 Expert Demonstrator

We collect a training dataset, here referred as CARLA100, by executing an automated
navigation expert in the simulated environment. The expert has access to privileged
information about the simulation state, including the exactmap of the environment
and the exact positions of the ego-car, all other vehicles, and pedestrians.

The path driven by the expert is calculated using a planner. This planner uses
an A* algorithm to determine the path to reach a certain goal. This path is then
converted into waypoints used by a PID controller to generate the throttle, brake,
and steering for the expert demonstrator. The expert drives steadily on the center of
the lane, keeping a constant speed of 35 km/h when driving straight and reducing
the speed whenmaking turns to about 15 Km/h.

In addition, the expert is programmed to react to visible pedestrians when
required to prevent collisions. The expert reduces its speed proportionally to the
collision distance when the pedestrian is over 5meters away and less than 15meters
away, or breaking to full stop when the pedestrian is less than 5 meters away.

The proposed demonstrator also reduces its speed to follow lead cars. The
expert stops when the leading vehicle is closer than 5meters. For our data collection
process the expert never performs lane changes or overtakes.

To improve diversity, realism, and increase the number of visited state-action
pairs, we add noise to the ego car controls. This reduces the difference between
offline training and online testing scenarios [60]. We input noise to the expert
demonstrator in a similar way as proposed by [20]. The noise simulates a gradual
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drift away from the desired trajectory of the experts. However, for training, the drift
is not used, but only the reactions performed by the expert. The added noise signal
is detailed on Chapter 3, Section 3.4.3

A.1.2 Content

The dataset collection is divided into goal directed episodes were the expert goes
from a start position into some goal position while stopping for dynamic obstacles.
In total, we collected 2373 episodes with different characteristics. The entire dataset
was collected on Town01. Each episode has the following features:

• Number of Pedestrians: the total number of spawned pedestrians on the
town. This number is randomly sampled from the interval [50,100].

• Number of Vehicles: the total number of spawned vehicle on the town. This
number is randomly sampled from the interval [30,70].

• Spawned seed for pedestrians and vehicles: the random seed used for the
CARLA object spawning process.

• Weather: the used weather for the episode which is sampled from the set:
Clear Noon, Clear Noon After Rain, Heavy Rain Noon, Clear Sunset.

Each episode lasted from 1-5 minutes partitioned in simulation steps of 100 ms. For
each step, we store data divided into two different categories, sensor data, stored as
PNG images, and measurement data, stored as json files.

For the sensor data we have the different camera sensors used: RGB camera,
depth camera, and semantic segmentation pseudo sensor. For each sensor we
record data in three positions: aligned with the car center, rotated 30 degrees to the
left and rotated 30 degrees to the right.

As measurements, we have data measured from the ego-vehicle, the world
status, and from all the other non player agents. From the ego-vehicle and the world
status the following data was collected:

• Step Number: the step number of the current step, starts at zero and is
incremented by one for every simulation step.

• Game Time-stamp: the time that has passed since the simulation has started.

• Position: the world position of the ego-vehicle. It is expressed as a three
dimensional vector [x, y,z] in meters.

• Orientation: the orientation of the vehicle with respect to the world. Ex-
pressed as Euler Angles (row, pitch and yaw).
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• Acceleration: the acceleration vector of the ego-vehicle with respect to the
world.

• Forward Speed: an scalar expressing the linear forward speed of the vehicle.

• Intentions: a signal that is proportional to the effect that the dynamic ob-
jects on the scene are having on the ego car actions. We use three different
intention signals: stopping for pedestrians, stopping for cars and stopping for
traffic lights. For example, an intention of 1 for stopping for pedestrianmeans
that the ego car totally stopped for a pedestrians that is less than 5 meters
away. An intention of the same class of 0.5 means that the expert noticed a
pedestrians and has reduced its speed to a certain extent. An intention of 0
means there are no pedestrians nearby in the field of view of the expert.

• High Level Commands: the high level indication stating what the ego-vehicle
would do on the next intersection: go straight, turn left, turn right, or do not
care (the ego vehicle could pick any option). Each of these commands are
encoded as a integer number. 2 is do not care, 3 for turn left, 4 for turn right,
5 for go straight.

• Waypoints: a set containing the 10 future positions the vehicle would assume.

• Steering Angle: the current steering angle of the vehicle’s steering wheel.

• Throttle: the current pressure on the throttle pedal.

• Brake: the current pressure on the brake pedal.

• Hand Brake: if the hand brake is activated.

• Steer Noise: the current steering angle in the vehicle considering the noise
function.

• Throttle Noise: the current pressure on the throttle pedal considering the
noise function.

• Brake Noise: the current pressure on the brake pedal considering the noise
function. The noise function is described on Chapter 3.

For each of the non-player agents (pedestrians, vehicles, traffic light), the fol-
lowing information is provided:

• Unique ID: an unique identifier of this agent.

• Type: if it is a pedestrian, a vehicle or a traffic light.
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• Position: theworld position of the agent. It is expressed as a three dimensional
vector [x, y,z] in meters.

• Orientation: the orientation of the agent with respect to the world. Expressed
as Euler angles (row, pitch and yaw).

• Forward Speed: an scalar expressing the linear forward speed of the agent.

• State: only for traffic lights, contains the state of the traffic light, it its either
red, yellow or green.

A.2 Scientific Articles

A.2.1 International Conferences

• On Offline Evaluation of Vision-based Driving Models, F. Codevilla, A. López,
V. Koltun, A. Dosovitskiy, In Proc. of European Conference on Computer
Vision (ECCV), Munich, Germany, 2018

• End-to-end driving via conditional imitation learning, F. Codevilla, M Müller,
A Dosovitskiy, A López, V Koltun, In Proc. of the International Conference
on Robotics and Automation (ICRA), Brisbane, Australia, 2018

• CARLA: An open urban driving simulator, A Dosovitskiy, G Ros, F Codevilla,
A López, V Koltun, In Proc. of the Conference on Robotics Learning (CoRL),
Mountain View, USA, 2017

A.3 Contributed Code and Datasets

• CARLA 100 Dataset

• Benchmark Codes

https://github.com/carla-simulator/driving-benchmarks

• Data Collector

https://github.com/carla-simulator/data-collector

• Framework for training imitation learning networks

https://github.com/felipecode/coiltraine
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