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x

In this PhD we have approached the human color vision from two different points of
view: psychophysics and computational modeling. First, we have evaluated 15 dif-
ferent tone-mapping operators (TMOs). We have conducted two experiments that
consider two different criteria: the first one evaluates the local relationships among
intensity levels and the second one evaluates the global appearance of the tone-
mapped images w.r.t. the physical one (presented side by side). We conclude that the
rankings depend on the criterion and they are not correlated. Considering both cri-
teria, the best TMOs are KimKautz (Kim and Kautz, 2008) and Krawczyk (Krawczyk,
Myszkowski, and Seidel, 2005). Another conclusion is that a more standardized
evaluation criteria is needed to do a fair comparison among TMOs.

Secondly, we have conducted several psychophysical experiments to study the
color induction. We have studied two different properties of the visual stimuli:
temporal frequency and luminance spatial distribution. To study the temporal fre-
quency we defined equiluminant stimuli composed by both uniform and striped
surrounds and we flashed them varying the flash duration. For uniform surrounds,
the results show that color induction depends on both the flash duration and in-
ducer’s chromaticity. As expected, in all chromatic conditions color contrast was
induced. In contrast, for striped surrounds, we expected to induce color assimila-
tion, but we observed color contrast or no induction. Since similar but not equi-
luminant striped stimuli induce color assimilation, we concluded that luminance
differences could be a key factor to induce color assimilation. Thus, in a subse-
quent study, we have studied the luminance differences’ effect on color assimila-
tion. We varied the luminance difference between the target region and its inducers
and we observed that color assimilation depends on both this difference and the
inducer’s chromaticity. For red-green condition (where the first inducer is red and
the second one is green), color assimilation occurs in almost all luminance condi-
tions. Instead, for green-red condition, color assimilation never occurs. Purple-lime
and lime-purple chromatic conditions show that luminance difference is a key fac-
tor to induce color assimilation. When the target is darker than its surround, color
assimilation is stronger in purple-lime, while when the target is brighter, color as-
similation is stronger in lime-purple (’mirroring’ effect). Moreover, we evaluated
whether color assimilation is due to luminance or brightness differences. Similarly
to equiluminance condition, when the stimuli are equibrightness no color assimila-
tion is induced. Our results support the hypothesis that mutual-inhibition plays a
major role in color perception, or at least in color induction.

Finally, we have defined a new firing rate model of color processing in the V1
parvocellular pathway. We have modeled two different layers of this cortical area:
layers 4Cβ and 2/3. Our model is a recurrent dynamic computational model that
considers both excitatory and inhibitory cells and their lateral connections. More-
over, it considers the existent laminar differences and the cells’ variety. Thus, we
have modeled both single- and double-opponent simple cells and complex cells,
which are a pool of double-opponent simple cells. A set of sinusoidal drifting grat-
ings have been used to test the architecture. In these gratings we have varied several
spatial properties such as temporal and spatial frequencies, grating’s area and ori-
entation. To reproduce the electrophysiological observations, the architecture has
to consider the existence of non-oriented double-opponent cells in layer 4Cβ and
the lack of lateral connections between single-opponent cells. Moreover, we have
tested our lateral connections simulating the center-surround modulation and we
have reproduced physiological measurements where for high contrast stimulus, the
result of the lateral connections is inhibitory, while it is facilitatory for low contrast
stimulus.
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En aquest doctorat, hem estudiat la visió del color dels humans des de dos punts de
vista diferents: la psicofísica i la modelització computacional. Primer, hem avaluat
15 "tone-mapping operators" (TMOs) diferents en dos experiments que consideren
criteris diferents: el primer té en compte les relacions locals entre nivells d’intensitat
i el segon avalua l’aparença global de la imatge resultant respecte l’escena física (pre-
sentades una al costat de l’altra). La conclusió és que els rankings depenen del criteri
utilitzat i que no estan correlacionats. Considerant els dos criteris, els millors TMOs
són el KimKautz (Kim and Kautz, 2008) i el Krawczyk (Krawczyk, Myszkowski, and
Seidel, 2005). Tot i això, s’han de definir criteris estàndards per a poder fer una
comparació justa entre els diferents TMOs.

Després, hem realitzat diferents experiments psicofísics per estudiar la induc-
ció del color. Bàsicament, hem estudiat dues propietats diferents dels estímuls: la
freqüència temporal i la distribució espaial de la lluminància. Per a estudiar la fre-
qüència temporal, vam definir uns estímuls equiluminants compostos per voltants
uniformes i ratllats, els quals els vam mostrar durant un flash. En els voltants uni-
formes, els resultats mostren que la inducció del color depèn de la duració del flash
i de la cromaticitat del inductor. Tal com esperàvem, en totes les diferents condi-
cions cromàtiques, es va induir contrast cromàtic. Per contra, en els voltants ratllats,
esperàvem induir assimilació cromàtica, però vam observar contrast o no inducció.
Com que estímuls ratllats similars, que no són equiluminants, indueixen assimilació
del color, vam concloure que les diferències llumíniques podien ser un factor clau
per a la inducció. Per tant, hem analitzat l’efecte de les diferències llumíniques en
l’assimilació. Vam variar les diferències de lluminància entre la regió d’interès i els
seus inductors i vam veure que l’assimilació cromàtica depèn d’aquestes diferències
i de la cromaticitat del inductor. En la condició vermell-verd (quan el primer in-
ductor és vermell i el segon és verd), l’assimilació de color es produeix en gairebé
totes les condicions llumíniques. En canvi, en el cas del verd-vermell, mai s’observa
assimilació del color. Les condicions lila-llima i llima-lila mostren clarament que la
diferència llumínica és un factor clau per induir assimilació del color. Quan la regió
d’interès és més fosca que el seu voltant, l’efecte és més fort en la condició lila-llima,
mentre que quan la regió d’interès és més brillant, l’efecte és més fort en la condi-
ció llima-lila (efecte mirall). A més a més, vam avaluar si l’assimilació del color ve
donada per diferències llumíniques o de brillantor. De manera similar a la condi-
ció equiluminant, no s’observa assimilació del color quan l’estímul és equibrillant.
Els nostres resultats donen suport a la hipòtesis que la inhibició mútua juga un rol
important en la percepció del color, o com a mínim en la inducció del color.

Finalment, hem definit un nou model del processament del color (del "parvocel-
lular pathway") a V1. Hem modelitzat dues capes diferents: les capes 4Cβ i 2/3. El
nostre model és una xarxa dinàmica recurrent que considera neurones excitadores i
inhibidores i les seves connexions laterals. A més, també considera les diferències
laminars existents i les diferents cèl·lules que les componen. Per tant, hem mod-
elitzat les neurones simples "single-" i "double-opponent" i les neurones complexes,
les quals es consideren un conjunt de neurones simples "double-opponent". Per
testejar l’arquitectura, hem utilitzat un conjunt the "drifting gratings" sinusoïdals
i hem variat algunes de les seves propietats com la freqüència temporal i espaial, la
seva àrea i la seva orientació. Per repoduir les observacions electrofisiològiques, vam
haver de suposar l’existència d’unes neurones "double-opponent" sense selectivitat
a orientació i la falta de connexions laterals entre neurones "single-opponent". A
més a més, hem testejat les connexions laterals modelitzades simulant la modulació
del centre i voltant. Hem observat que quan l’estímul té un alt contrast, el resultat
d’aquestes connexions és inhibitori, però és facilitatori quan el contrast és baix.
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Chapter 1

Introduction

1.1 What’s color?

The answer to this question is not as simple as one could think. The definition of
color depends on the personal background: a physicist would say that color is the
spectrum of light that its reflected from a surface; a psychologist would say that it
is the light you perceive; an engineer would say that it is a coordinate in a given
color space and a neuroscientist would say that it is a visual feature that activates
certain mechanisms of the visual system. Hence, we can say that color definition
depends on the point of view. Fortunately, in this PhD, we have not tried to elucidate
what color is, but we have studied this visual feature from different points of views:
from psychology (through psychophysics) to neuroscience (through computational
models).

1.2 Is color that important?

In our daily life, color is a helpful feature to describe the objects present in our envi-
ronment. For example, when we are at a parking looking for our car, we differentiate
our car from the others because of its brand and model (its shape), but also because
of its color (see Figure 1.1 for a visual example). Nevertheless, in object recogni-
tion, color by itself is not as discriminative as shape (Stockman and Brainard, 2010).
Therefore, if we describe our car as a combination of brand, model and color we
would have a reduced number of candidates, but if we only describe it using the
color instead, we would have a huge number of candidates (see Figures 1.1c for a
visual example). In that sense, Computer Vision algorithms have shown that color
descriptors, in combination with others such as shape, achieve excellent results in
object detection and recognition (Van de Sande, Gevers, and Snoek, 2010; Khan et
al., 2012).

1.2.1 Is object detection and/or recognition the aim of color vision?

Color vision is a striking feature of the human visual system (HVS). The Old World
Monkeys were the first mammals who developed trichromacy (three different pho-
toreceptors) and, thus, color vision. In particular, in some species the trichromatic
color vision is linked to the gender (e.g., female are trichromats but male are dichro-
mats). The fact that we are able to perceive colors is not casual. Nowadays, nobody
doubts that it is due to natural selection, but what’s the aim of color vision? To this
question, several theories arise: the frugivory and folivory theories (Reagan et al.,
1998; Lucas et al., 1998; Reagan et al., 2001). The former supports the idea that color
vision helps to detect fruits and the latter to detect edible young leaves (Mollon,
1989; Reagan et al., 1998; Lucas et al., 1998; Dominy and Lucas, 2001; Reagan et al.,
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(A) Original Image

(B) Achromatic component (C) Chromatic components

FIGURE 1.1: In the original image we can distinguish perfectly the
different fruits (different varieties of apples, oranges, pears, etc.).
When we separate the achromatic and the chromatic components, we
can observe that fruits are more distinguishable in the achromatic do-
main than in the chromatic one, although it is not as easy as in the
original image. Thus, chromatic components help to discriminate ob-
jects but it is not the most discriminatory feature. Figure adapted

from (Stockman and Brainard, 2010).

2001; Lucas et al., 2003). Although at a first sight they could be considered oppo-
site, both theories could be complementary and both could explain trichromacy sur-
vival (Sumner and Mollon, 2003). On one hand, the authors of frugivory theory did
an empirical test: They collected the fruits eaten by three different primate species
and several leaves (Reagan et al., 2001). The authors concluded that, for the three
studied species, the trichromacy assists fruit detection against the foliage. Also, they
concluded that the spectral response of the cones is optimal to this detection task,
supporting the frugivory hypothesis, but also that fruit colors have been co-evolved
to be well detected by their consumers. On the other hand, the authors of the fo-
livory theory did an observational study of the feeding behaviors in eight primate
species during a year (Lucas et al., 2003). The authors observed that trichromats tend
to consume more reddish leaves than dichromats but there were not significant dif-
ferences for red fruits, concluding that trichromats evolved in a context where they
had to consume leaves. Moreover, the authors did not observed fidelity to any fruit
hue and they pointed out that fruits have a wide range of chromaticities an that red
is only one possibility. Thus, it is feasible to conclude that the aim of color vision is
to detect (but maybe also to recognize) objects.
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1.3 How do we perceive colors?

The light reflected by the objects is projected by the cornea and lens onto the rear sur-
face of the eye: the retina. This light is absorbed by the rods and cones. The rods are
responsible for the achromatic night vision (scotopic and mesopic vision, low light
levels), while the cones are responsible for the achromatic and chromatic vision dur-
ing daytime (photopic vision, high light levels). Cones are concentrated in the fovea
while rods are almost absent in it (in particular at the central region of the fovea) (see
Figure 1.2). The cone mosaic is composed by: L-, M- and S-cones, which are sensitive
to long, medium and short wavelengths of the visible spectra and associated to red,
green and blue colors, respectively (see Figure 1.3). For instance, color blindness is
caused by a deficient response of one or more of these cones (McIntyre, 2002). The
ganglion cells present in the retina combine the outputs of rods and cones (cone op-
ponency) and segregate the information in three different pathways: magno-, parvo-,
and koniocellular. The magnocellular pathway (parasol cells) is a combination of L-
and M-cones, with a strong rod input, thus, it carries the luminance information.
The ganglion cells that generate the parvocellular pathway (midget cells) consider
the M- and L-cone on-center and M- and L-cone off-center varieties, having very
little rod input. Thus, this pathway processes the red-green color information. Fi-
nally, the ganglion cells responsible for the koniocellular pathway (small-bistratified
and other cells) compare the S-cone on- and off-center to the L- and M-cells. This
pathway processes the blue-yellow color information and it does not have rod in-
put (Dacey and Lee, 1984; Callaway, 1998; Sincich and Horton, 2005; Nassi and Call-
away, 2009; Callaway, 2014; Kaplan, 2014; Lee, 2014). The output of ganglion cells is
transformed to electrical impulses and they are sent to the Lateral Geniculate Nucleus
(LGN), in the thalamus, through the optical nerve (see Figure 1.4).

FIGURE 1.2: Rods’ and cones’ density as a function of eccentricity.
Cones are concentrated at the fovea (0 deg), while rods are located

out of it (> 10 deg). Figure adapted from (Rodieck, 1988).

There are several chromatic spaces consistent with retinal and LGN physiology,
being the most popular the ones defined by MacLeod and Boynton (1979) and Der-
rington, Krauskopf and Lennie (1984). The LGN receives feedback from higher areas
but mainly projects to the primary visual cortex (also known as V1, see schematics in
Figure 1.4). The latter has three different types of neurons: single-, double- and non-
opponent neurons (SO, DO and NO neurons, respectively) (Johnson, Hawken, and
Shapley, 2001; Shapley and Hawken, 2002; Johnson, Hawken, and Shapley, 2008;
Shapley and Hawken, 2011). SO neurons (or Color neurons) respond best to large
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FIGURE 1.3: The three types (S-, M- and L-cones) of cones are sen-
sitive to short, medium and long wavelengths of the visible spectra,
respectively. These photoreceptors are responsible for trichromacy,

i.e., color vision.

chromatic areas, DO neurons (or Color-Lum neurons) respond to both chromatic and
luminance variations, i.e. edges, and NO neurons (or Lum neurons) respond best
to luminance variations. Regarding spatial frequency selectivity, Lum and Color-
Lum neurons are band-pass (i.e., they respond best to medium spatial frequency
stimuli of 2 cpd) and Color neurons are low-pass (they respond optimally to spatial
frequencies < 0.5 cpd and do not respond at all to spatial frequencies > 2 cpd) (John-
son, Hawken, and Shapley, 2001; Johnson, Hawken, and Shapley, 2008; Shapley and
Hawken, 2011; Xing et al., 2015; Nunez, Shapley, and Gordon, 2018). Considering
orientation selectivity, SO do not have orientation selectivity (i.e., when the stimulus
is rotated, they respond equally) and DO and NO can both have and do not have
orientation selectivity (Johnson, Hawken, and Shapley, 2008).

Additionally, neurons can also be classified as simple and complex. Simple cells
can be SO, DO and NO cells which receive input from LGN, while complex cells
are mainly DO and they usually receive input from simple cells. Simple cells have
ON- and OFF-regions and, when they have orientation selectivity, its bandwidth is
narrow and they do not respond at all to the orthogonal-to-preferred orientation. In
contrast, complex neurons do not segregate ON- and OFF-regions, typically respond
to direction of motion and, when they have orientation selectivity, they also have a
bandwidth, but they respond to all orientations (Rolls and Deco, 2002; Andoni, Tan,
and Priebe, 2014). The role of these different neurons is not fully understood, but
it is suggested that DO neurons play an important role in color perception (Nunez,
Shapley, and Gordon, 2018).

From V1, the visual information is mainly sent (although some feedback to LGN)
to higher visual areas such as V2, V4 and Inferior Temporal cortex (IT) which allows
the HVS to perform high visual tasks such as texture analysis, form perception and
edge detection (Loffler, 2008; Freeman and Simoncelli, 2011; Landy, 2014). These
higher visual areas, in turn, send feedback to V1. We can classify the connections
that exist in the HVS according to their origin and their target. In that sense, there
are inter- and intra-area connections (e.g., connections from one area to another one
and connections within the same area, respectively). In turn, intra-area connections
can be differentiated between inter- and intra-layer connections (i.e., connections be-
tween different layers of the same area and connections within the same layer). Due
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FIGURE 1.4: Schematics of the visual pathway. Only considering the
feedforward path, the light is transformed to electrical impulses at the
retina and they are sent to the primary visual cortex (V1) through the
LGN (in the thalamus). Then, V1 projects the visual information to
higher areas such as V2, V4 and IT. Figure adapted from (Akbarinia,

2017).

to the different properties of these connections and the different amount (or the per-
centage) of SO, DO and NO neurons from one layer to another, V1 shows several
laminar differences such as the spontaneous firing rate and the orientation selectiv-
ity (Johnson, Hawken, and Shapley, 2001; Johnson, Hawken, and Shapley, 2008). For
instance, the higher layers of V1 such as layer 2/3 and layer 4A have a higher ori-
entation selectivity than the lower ones such as layer 4Cα and layer 4Cβ (Ringach,
Shapley, and Hawken, 2002; Johnson, Hawken, and Shapley, 2008).

1.4 How is color measured?

One method to measure the physical color is using a spectroradiometer (a device
that measures the spectral power distribution of a source). From a psychological
point of view, it is possible to use psychophysics to measure the perceived color.
Psychophysics is a psychology branch that investigates the relationship between
the physical stimuli and the perceptual experience (visual perception in our case).
In psychophysics, the experimenters use standard procedures such as cancellation,
pairwise comparison and asymmetric matching (among others) to measure the color
(or visual) perception.

1.4.1 Could the physical and the perceived color be different?

The answer to this question is "certainly, yes." There are two types of illusions: the
optical and the visual illusions. In both of them, the reality and the perception are
different. The former can be defined by its physical properties while the latter is a
consequence of the HVS processing. Figure 1.5a shows an optical illusion, in this
case, the refraction of a drinking straw in a glass of water. The refractive power of
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the water makes the straw to appear displaced (the illusion occurs due to the optical
properties of the water). Figure 1.5b shows a visual illusion, in this case, the borders
seem to tilt but they are horizontally aligned. This visual effect, named tilt effect,
occurs due to the HVS architecture (Todorovic, 2017). Although tilt effect is one of
the most striking visual effects, many others such as color constancy, aftereffects and
brightness and color induction exist.

(A) Refraction Optical Illusion (B) Tilt Visual Illusion

FIGURE 1.5: Examples of both optical and visual illusions. In (A) the
drinking straw appears to be displaced due to the refraction power of
the water. In (B) the borders seem to tilt (the first and the third clock-
wise, and the others anti-clockwise). Figures adapted from (Science

Photo Library, 2018) and (Kitaoka, 2007), respectively.

Since these visual effects are the result of the neural mechanisms present in the
HVS, they are usually used to study the involved mechanisms (Cao and Shevell,
2005; Hurlbert and Wolf, 2004; Gordon and Shapley, 2006; Xing et al., 2015). For
example, it is considered that color induction (both color contrast and color assimi-
lation) is the result of the lateral connections present in V1 (Zaidi et al., 1992). Thus,
in this thesis we have used the color induction effect for a better understanding of
these lateral connections.

1.5 Computational models

Computational models are mathematical models that help to study the behavior of
complex systems. Since this kind of models need an extensive computational power,
they started to emerge in the 90’s (when powerful computers, and computer clus-
ters, appeared). We can differentiate two different types of computational models:
the phenomenological and the mechanistic. The aim of both types is data prediction,
but the mechanistic models mimic the mechanisms of a system associated to a given
task to reproduce its results, while the phenomenological reproduce the results in-
dependently of the mechanisms. Phenomenological models are very common in
Engineering, where the aim is to solve a problem, but not to understand the solution.
In contrast, mechanistic models allow scientists to make assumptions on the differ-
ent model components and to point out the possible unobserved properties of these
components.

In this thesis we have defined a new mechanistic computational model that sim-
ulates the first layers of the parvocellular pathway (possibly the most studied and
understood chromatic pathway) in V1. We reproduced several electrophysiological
observations of the neurons that comprise these layers.
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1.6 Sections of the dissertation

My PhD has been composed by two different main topics and this dissertation is
divided according to them:

1. Psychophysics

In this part (Part I), we present the psychophysical experiments that we have
conducted. First, to get in touch with the psychophysics’ methodology and
human perception, we conducted a psychophysical experiment to evaluate
different tone-mapping operators. The novelty of these experiments is that we
placed the real scene next to the monitor. Thus, subjects performed the experi-
ments while they observed the real scene. Second, we conducted experiments
to study different properties of the color induction effect. We studied the color
induction when flashed stimuli were presented and the effect of both lumi-
nance and brightness differences on color assimilation.

2. Computational Modeling

In this part (Part II), we present a new firing rate computational model. This
multilayer model is focused on the parvocellular pathway in V1, where the
red-green color information is processed. The aim of this architecture is to
model the receptive fields (RFs) and their lateral connections present in this path-
way and to reproduce some electrophysiology recordings from literature.

1.7 Summary of published works/studies

Several publications in the following journals and conferences have arisen from this
dissertation.

1. Psychophysics

(a) HDR

• Which tone-mapping operator is the best? A comparative study of
tone-mapping perceived quality (Cerda, Parraga, and Otazu, 2014),
European Conference on Visual Perception (ECVP), 2015.

• Which tone-mapping operator is the best? A comparative study of
the perceptual quality (Cerda-Company, Parraga, and Otazu, 2018),
Journal of the Optical Society of America A, 2018.

(b) Color induction

• Is luminance a key factor for static and flashed chromatic assimila-
tion? (Cerda-Company and Otazu, 2017b), European Conference on Vi-
sual Perception (ECVP), 2017.

• Color induction in equiluminant flashed stimuli (Cerda-Company and
Otazu, 2019), Journal of the Optical Society of America A, 2019.

• Luminance spatial distribution plays a major role in color assimila-
tion (Cerda-Company et al., 2018b), European Conference on Visual Per-
ception (ECVP), 2018.

• The effect of luminance differences on color assimilation (Cerda-Company
et al., 2018c), Journal of Vision, 2018.

• Stronger colour induction in migraine (Otazu et al., 2018), European
Conference on Visual Perception (ECVP), 2018.
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• Colour induction in migraine (Cerda-Company et al., 2018a), Applied
Vision Association (AVA) Christmas Meeting, 2018.

2. Computational Modeling

• Brightness and colour induction through contextual influences in V1 (Otazu,
Penacchio, and Cerda-Company, 2015b), Scottish Vision Group (SVG), 2015.

• A multi-task neurodynamical model of lateral interactions in V1: chro-
matic induction (Cerda-Company and Otazu, 2016a), European Conference
on Visual Perception (ECVP), 2016.

• A new dynamical firing rate model of the parvocellular pathway in V1 (Cerda-
Company, Otazu, and Penacchio, 2018), Barcelona Computational, Cognitive
and Systems Neuroscience (BARCCSYN), 2018.

3. Miscellaneous (unpublished)

• An excitatory-inhibitory firing rate model accounts for brightness induc-
tion, color induction and visual discomfort (Otazu, Penacchio, and Cerda-
Company, 2015a), Barcelona Computational, Cognitive and Systems Neuro-
science (BARCCSYN), 2015.

• Dynamic colour induction can be reproduced by a neurodynamical model
of lateral interactions in V1 (Cerda-Company and Otazu, 2016b), Barcelona
Computational, Cognitive and Systems Neuroscience, 2016.

• Equiluminant colour induction in flashed and static stimuli (Cerda-Company
and Otazu, 2017a), Scottish Vision Group (SVG), 2017.
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Part I

Psychophysics
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“There is no truth.
There is only perception”

Gustave Flaubert
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Chapter 2

HDR

Tone-mapping operators (TMOs) are designed to generate perceptually similar low-
dynamic range images from high-dynamic range ones (see Figure 2.1). We stud-
ied the performance of fifteen TMOs in two psychophysical experiments where ob-
servers compared the digitally-generated tone-mapped images to their correspond-
ing physical scenes. All experiments were performed in a controlled environment
and the setups were designed to emphasize different image properties: in the first
experiment we evaluated the local relationships among intensity-levels, and in the
second one we evaluated global visual appearance among physical scenes and tone-
mapped images, which were presented side by side. We ranked the TMOs according
to how well they reproduced the results obtained in the physical scene. Our re-
sults show that ranking position clearly depends on the adopted evaluation criteria,
which implies that, in general, these tone-mapping algorithms consider either local
or global image attributes but rarely both. Regarding the question of which TMO
is the best, KimKautz (Kim and Kautz, 2008) and Krawczyk (Krawczyk, Myszkowski,
and Seidel, 2005) obtained the better results across the different experiments. We
conclude that a more thorough and standardized evaluation criteria is needed to
study all the characteristics of TMOs, as there is ample room for improvement in
future developments.

2.1 Introduction

In almost all naturalistic viewing situations, we are immersed in scenes that could
be described as High Dynamic Range (HDR), in other words, the intensity difference
between the brightest and the darkest patch is much higher than the difference both
imaging and capturing devices can faithfully capture. For instance, the energy ratio
between sunlight and starlight is approximately about 100,000,000:1 (Ferwerda and
Luka, 2009). If the Human Visual System (HVS) was to linearly represent these ex-
treme differences in its normal daylight operation, it would require a much larger
sensitivity range for its retinal sensors (cones) and neural pathways than is achiev-
able within biological limitations. Instead, millions of years of evolution have solved
this problem by adapting the sensorial and neural machinery, allowing it to non-
linearly convert the large natural intensity range into a much smaller range of about
10,000:1 (Reinhard et al., 2005; Snowden, Thompson, and Troscianko, 2006).

2.1.1 Historical Context

The problem of translating the HDR world into Low Dynamic Range (LDR) depictions
is very old. Renaissance painters such as da Vinci and Caravaggio tried to solve it
by creating an artistic technique called Chiaroscuro, which pays attention to strong
contrasts in different painted areas, creating very strong effects. This and the need
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FIGURE 2.1: General workflow of a tone-mapping process. Several
LDR images, with different exposure times covering different lumi-
nosity ranges of a physical scene, are captured by a camera. From
these images a HDR image is obtained, which can be processed by a
TMO in order to obtain a new LDR image that can be displayed on a

standard LDR monitor.

to overcome the limitations of physical materials (oil paints and substrates) inspired
later artists to produce remarkable paintings. Perhaps the most dramatic were cre-
ated by depicting a single artificial source of light (such as a candle), making the
details of the central subject very bright, while other subjects are slightly darker (see
Figure 2.2). It can be argued that some of the works by Rembrandt and Constable
are no different from today’s HDR photography (McCann, 2007; Parraman, 2010;
McCann and Rizzi, 2012).

The arrival of photography implied a new set of challenges given the strong lim-
itations of early light-sensitive material (Mees, 1921). Examples of the first charac-
terization of silver halide films as plots of density vs exposure was made by Hurter
and Driffield in 1890 (McCann and Rizzi, 2012). In particular, outdoor scenes were
very difficult to capture and early photographers experimented with multiple ex-
posures to overcome dynamic range problems. When photographs involved human
subjects, these had to remain still during the whole process so that several exposures
could be combined into a single image.

2.1.2 Electronic HDR imaging

Analog HDR imaging allowed only limited manipulations (via exposure time, chem-
ical reactions or the combination of several exposures, etc.) but the arrival of elec-
tronic digital imaging made possible for long-range interactions of pixels located in
different parts of the image. This opened the field to multiple possibilities including
mimicking the operation of the HVS and the work of chiaroscuro artists.
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(A) (B)

FIGURE 2.2: Examples of Caravaggio’s chiaroscuro paintings. In (A)
Salome receives the Head of John the Baptist and in (B) The Taking of

Christ.

Physiological and psychophysical research has shown that photopic human vi-
sion is the result of highly nonlinear processing of the information captured by reti-
nal cones. This processing includes the inhibition of the output of a neuron by the
output of surrounding neurons in its field of view (Barlow, 1953), which results
in higher sensitivity for edges and spots than for uniform light. Other processing
includes the combination of visual information in the retina into a series of post-
receptoral chromatically-opponent channels to transmit it to the visual cortex via
the optic nerve (Derrington, Krauskopf, and Lennie, 1984). In the cortex, visual
information is mostly processed in terms of its spatial frequency and visual orienta-
tion (Blakemore and Campbell, 1969). In the 1960’s a series of psychophysical exper-
iments with achromatic Mondrians run by Edwin Land demonstrated that patches
reflecting light with exactly the same physical properties appear completely differ-
ent to observers (Land, 1964). This implies that a digital image (where these patches
produce exactly the same pixel values) cannot be modified using a pixel-wise trans-
formation to simulate the appearance reported by observers. In other words, the
information contained in individual pixels is not enough to mimic human vision. A
comprehensive review of these experiments can be found in (Land and McCann,
1971; McCann, 2004; McCann, 2017; McCann, 1999). Other effects to consider are re-
lated to how the visual cortex processes local brightness interactions (Otazu, Vanrell,
and Parraga, 2008; Otazu, Parraga, and Vanrell, 2010). More detailed experiments
have shown the effects of edges in illumination perception by matching the appear-
ance of painted wooden facets to that of a painted test target ("ground truth") (Mc-
Cann, Parraman, and Rizzi, 2014), a paradigm very similar to ours (see below).

In order to mimic the response of the HVS, electronic imaging systems set out
to use information not only from single pixels but from the entire scene. This al-
lowed them a much larger flexibility to calculate appearances and to apply them to
electronic displays or prints. Ironically, later HDR algorithms reverted to the old
"multiple exposures" and "pixel-wise" processing techniques of analog photography
for the same task (see below).

2.1.3 Tone-Mapping Operator

Mapping the HDR of the world into LDR media presents an important challenge for
visual representation technologies mainly because most imaging devices (cameras
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and monitors) are only able to obtain/display images within a small range of about
100:1 (Reinhard et al., 2005) which can be increased up to 1000:1 for specialized HDR
led-based displays (Ruppertsberg et al., 2007). To solve this problem, an assortment
of non-linear image processing techniques were defined to display HDR scenes in
LDR devices. To construct the HDR image (see Figure 2.1), many LDR images of the
same scene are usually taken at different exposure values, capturing a much larger
dynamic range. This HDR image is generated by extracting from each LDR image
the information corresponding to its region of interest (where it is neither over- or
under-exposed) and combining them. Since this new HDR image cannot be dis-
played on a standard LDR monitor, an algorithm is needed to reduce its dynamic
range to match that of the monitor. A common solution is to use a Tone-Mapping
Operator (TMO) to reduce the dynamic range while keeping the perceptual char-
acteristics of the original HDR image approximately constant. The performance of
these TMOs depends of several factors including lighting and viewing conditions,
aesthetic/realistic preferences, local/global assumptions, etc. and are usually eval-
uated using computational (Aydin et al., 2008; Yeganeh and Wang, 2012) and psy-
chophysical (Drago et al., 2003b; Kuang et al., 2004; Yoshida et al., 2005; Ledda et al.,
2005; Ashikhmin and Goyal, 2006; Cadík et al., 2006; Yoshida et al., 2007; Kuang et
al., 2007; Kuang, Johnson, and Fairchild, 2007; Akyüz et al., 2007; Cadík et al., 2008)
methods.

Although HDR images are able to reproduce a wider range of luminance high-
lights and shadows than LDR ones, the presence of veiling glare both in the camera
and the eye limits the possible range of accurate luminance measurements (McCann
and Rizzi, 2012). Since HDR are perceptually closer to the original scene, there must
be other reasons than simply obtaining a larger range of luminances for this per-
ceived improvement. It has been hypothesized (McCann and Rizzi, 2012) that the
improvement comes from a better preservation of relative spatial information that
comes from digital quantization (spatial differences in highlights and shadows are
preserved) and TMOs use this to replicate the HVS processing.

In this work we present a new set of experiments and analysis to psychophysi-
cally evaluate the performance of 15 state-of-the-art TMOs. This allowed us to rank
the TMOs according to how well they represent the original scene as human ob-
servers perceive it. Unlike previous studies, all the experiments were performed
in a controlled environment and tone-mapped images were presented side by side
with the physical scene.

2.1.4 "Global" vs "Local" analysis

At this point we believe it is important to clarify the terminology used throughout
this work. The term "Tone" is traditionally used to describe pixel data (as in "Tone
Mapping") and was introduced by Mees (Mees, 1921) in 1920 to explain how ex-
posure was related to photographic print density (silver halide response). Indeed
“Tone Scale” is the name given to a look-up table that transforms data in an input
space to a desired output space.

The term "Global TMO", which is also used by several authors (Tumblin and
Rushmeier, 1993; Ward, 1994; Reinhard et al., 2002) generally refers to an algorithm
that applies the same pixel-wise adjustment to all pixels in the image (although, in
fact, it uses the most local information: a single pixel). In contrast, the term "Local
TMO" generally defines an algorithm that applies a combination of pixel-wise pro-
cessing and spatial transformations to improve the image. Although confusing we
will follow the traditional terminology here, calling Global TMOs to algorithms that
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apply pixel-wise processing and Local TMOs to algorithms that apply a combination
of pixel-wise and spatial image processing.

We will refer to our psychophysical experiments (see below) as "Scene Reproduc-
tion" when observers judge images by freely comparing them, and "Segment Match-
ing" when they match the luminances of specific points in the scene to those of a
reference table in the same scene.

2.2 State-of-the-Art

2.2.1 Previous TMO Psychophysics

Although the idea of using algorithms to match the brightness of real scenes to
that of imaging devices is not new (Miller, Y., and D., 1984; Tumblin and Rush-
meier, 1993), TMOs did not become popular until the turn of the century, when af-
fordable digital cameras became available (Ferwerda et al., 1996; Ashikhmin, 2002;
Durand and Dorsey, 2002; Fattal, Lischinski, and Werman, 2002; Reinhard et al.,
2002; Drago et al., 2003a; Krawczyk, Myszkowski, and Seidel, 2005; Li, Sharan, and
Adelson, 2005; Reinhard and Devlin, 2005; Kuang, Johnson, and Fairchild, 2007;
Mertens, Kautz, and Van Reeth, 2007; Meylan, Alleysson, and Süsstrunk, 2007; Kim
and Kautz, 2008; Ferradans et al., 2011; Otazu, 2012). To date, many different psy-
chophysical experiments have been performed and they can be classified as follows:

Experiments without a reference HDR scene

One of the first psychophysical experiments to evaluate TMOs compared the per-
formance of 6 TMOs on 4 different (synthetic and photographic) scenes by asking
subjects to make pairwise perceptual evaluations and by rating stimuli with respect
to three attributes: apparent image contrast, apparent level of detail, and apparent
naturalness (Drago et al., 2003b). The results showed that preferred operators pro-
duced detailed images with moderate contrast.

Kuang et al. (2004) performed pairwise comparisons on 8 different TMOs using
10 different scenes and two conditions (color and gray-level) where subjects had to
choose the preferred image considering general rendering performance (including
tone compression performance, color saturation, natural appearance, image contrast
and image sharpness). Their results showed that the gray-scale tone-mapping per-
formances are consistent with those in the overall rendering results, if not the same.

Experiments with a reference HDR scene

Yoshida et al. (2005) conducted a psychophysical experiment based on a direct com-
parison between the appearance of real-world scenes and TMO images of these
scenes displayed on a LDR monitor. In their experiment, they differentiate between
global and local operators, and introduced, for the first time, the comparison be-
tween tone-mapped image and real scene, selecting two different indoor architec-
tural scenes. Fourteen subjects were asked to give ratings according to several crite-
ria like realism (image naturalness in terms of reproducing the overall appearance of
the real world views) and image appearance (brightness, contrast, detail reproduc-
tion in dark regions, and in bright ones). They found that none of these image ap-
pearance attributes had a strong influence on the perception of naturalness by itself.
This work was extended to find out which attributes of image appearance accounted
for the differences between tone-mapped images and the real scene (Yoshida et al.,
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2007). They observed a clear distinction between global and local operators. How-
ever, they concluded again that none of the evaluated image attributes had a strong
influence on the perception of naturalness by itself which suggested that naturalness
depends on a combination of the other attributes with different weights.

In an another work, Ashikhmin and Goyal (2006) performed three different ex-
periments. Subjects ranked different tone-mapped images depending on the task. In
the first experiment, the authors asked which image they liked more without having
the reference scene. In the second one, the authors asked which image seemed more
real without viewing the reference scene and, in the third one, they asked which
image was the closest to the real scene viewing the reference scene. They observed
that rankings were totally different when subjects could compare the tone-mapped
image to the reference scene.

In a subsequent study, Kuang et al. (2007) performed three different experiments
they named preference evaluation, image-preference modeling and accuracy evaluation.
In the preference evaluation experiment, pairwise comparisons between tone-mapped
images were performed. Here they used only color images and the aim was to eval-
uate the general rendering performance by instructing observers to consider per-
ceptual attributes such as overall impression on image contrast, colorfulness, image
sharpness, and natural appearance. In contrast, in the image-preference modeling ex-
periment, they rated gray-scale images (which were gray-scale versions of the first
experiment color images). Here, observers considered perceptual attributes such as
highlight details, shadow details, overall contrast, sharpness, colorfulness and ap-
pearance of artifacts, comparing the TMOs’ visual rendering "to their internal rep-
resentation of a ‘perfect’ image in their minds" (Kuang et al., 2007). In the accuracy
evaluation, both pairwise comparison and rating techniques were used in order to
evaluate the perceptual accuracy of the rendering algorithms. The pairwise compari-
son of TMOs was performed without viewing the real scene and subjects were asked
to compare the overall impression on image contrast, colorfulness, image sharpness,
and overall natural appearance. An additional rating evaluation was performed us-
ing the real scenes set up in the adjoining room as references. Here, subjects had to
rate image attributes like highlight contrast, shadow contrast, highlight colorfulness,
shadow colorfulness, overall contrast and the overall rendering accuracy comparing
to the overall appearance of the real-world scenes. In both experiments, observers
did not have immediate access to the real scene and had to rely on their memories
(either short- or long-term) to perform the tasks.

To validate the iCAM06 operator (Kuang, Johnson, and Fairchild, 2007), its au-
thors performed two psychophysical experiments similar to the previous ones (Kuang
et al., 2007). The first experiment was a pairwise comparison without viewing the
reference scene. Observers had to choose the tone-mapped image that they pre-
ferred based on overall impression on image quality (considering contrast, colorful-
ness, image sharpness, and overall natural appearance). In the second experiment,
observers were also asked to evaluate overall rendering accuracy by comparing the
overall appearance of the rendered images to their corresponding real-world scenes,
which were set up in an adjoining room.

While looking for a definition of an overall image quality measure, Cadík et
al. (2006) studied the relationships between some image attributes such as bright-
ness, contrast, reproduction of colors and reproduction of details. They performed
two psychophysical experiments, using 14 TMOs, in order to propose a scheme of re-
lationships between these attributes, being aware that some special attributes, which
were not evaluated (e.g. glare stimulation, visual acuity and artifacts), can influence
their relationships. In the first one, 10 subjects were asked to perform ratings using
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five criteria: overall image quality and the four basic attributes (brightness, contrast,
reproduction of detail and colors). These evaluations were performed using a real
scene as a reference (a typical real indoor HDR scene). In the second experiment,
subjects did not have access to the real scene and they had to rank image printouts
according to the overall image quality and the four basic attributes.

In a new study, Cadík et al. (2008) performed exactly the same type of experi-
ments adding two new scenes, that is, they had a total of three scenes, i.e. a real
indoor HDR scene, a HDR outdoor scene and a night urban HDR scene. In the
first experiment, subjects were asked to rate overall image quality and the quality
of reproduction of five attributes by comparing samples to the real scene. These at-
tributes were the same four basic ones of their previous work and the lack of disturb-
ing image artifacts (which was one of the non-evaluated special attributes). These
experiments were set-up in an uncontrolled natural environment, so subjects had
to perform the experiments at the same time of the day as the HDR image was ac-
quired. In the second experiment, subjects had no possibility of directly comparing
to the real scene and had to rank the image printouts according to the overall image
quality, and the quality of basic attributes.

Experiments using an HDR monitor

In 2005, Ledda et al. (2005) performed two different psychophysical experiments
comparing 6 different TMOs to linearly mapped HDR scenes displayed on a HDR
device. They used 23 different color and gray-scale HDR scenes showing 3 differ-
ent images per comparison: the HDR and two tone-mapped images. In the first
experiment, subjects were asked to select the TMO image more similar to the HDR
reference by judging its global appearance. In the second one, they were asked to
make their judgment based on reproduction detail.

In a later work, Akyüz et al. (2007) asked subjects to rank six images (1 HDR
image, 3 tone-mapped images, 1 objectively good LDR exposure value and 1 sub-
jectively good LDR exposure value) according to their subjective preferences. They
found that participants did not systematically prefer tone-mapped HDR images over
the best single LDR exposures.

All the previous studies have been focused on subjective comparisons of global
and local image appearance attributes such as contrast, colorfulness, sharpness, re-
production artifacts, etc. either within TMOs or against the real scene. While this is
no doubt extremely important, we believe a good TMO should output a scene that
produces the same visual sensation as the physical scene, in particular the interre-
lations between objects and their perceived attributes. For instance, no study has
been conducted (as far as we know) to evaluate whether objects represented within
a TMO image maintain the same perceived visual differences as the real scene. This
is the main objective of our work.

2.2.2 Tone-Mapping Operators

As mentioned before, TMOs can be classified according to their processing in global
and local. Global operators perform the same computation in all pixels, regardless
of spatial position, which make them more computationally efficient at the cost of
losing contrast and image detail. Some examples of global TMO are (Drago et al.,
2003a; Ferwerda et al., 1996; Kim and Kautz, 2008; Reinhard and Devlin, 2005). On
the other hand, local operators, which take into account surrounding pixels, produce
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images with more contrast and higher detail level, but they may show problems with
halos around high contrast edges. Local operators are inspired on the local adapta-
tion process present at the early processing stages of the human visual system. Some
examples of local operators are (Ashikhmin, 2002; Durand and Dorsey, 2002; Fattal,
Lischinski, and Werman, 2002; Krawczyk, Myszkowski, and Seidel, 2005; Kuang,
Johnson, and Fairchild, 2007; Li, Sharan, and Adelson, 2005; Meylan, Alleysson, and
Süsstrunk, 2007; Otazu, 2012). There are some tone-mapping operators which could
be global or local depending on their setup configuration parameters. One example
is (Reinhard et al., 2002) and another one is (Ferradans et al., 2011), which is devel-
oped in two stages, the first global and the second local. A brief summary of the
properties of each tone-mapping operator used in our experiments is given in Ta-
ble 2.1. The first column shows the names that we will use to refer to each operator
throughout this work. The characteristics of each TMO are detailed below:

TABLE 2.1: Summary of used TMOs’ characteristics. Second col-
umn shows whether the TMO is global (G) or local (L). Third col-
umn shows whether it is inspired by the HVS, and following columns

show whether it processes luminace and color information.

TMO Global/Local HVS Luminance Color
Ashikhmin L X X

Drago G X
Durand L X X
Fattal L X

Ferradans L X X X
Ferwerda G X X X
iCAM06 L X X X

KimKautz G X
Krawczyk L X

Li L X
Mertens -
Meylan L X X X
Otazu L X X

Reinhard G X
Reinhard-Devlin G X

• Ashikhmin (Ashikhmin, 2002). This local TMO is inspired by the processing
mechanisms present at the first stages of the HVS. Intensity range is com-
pressed by a local luminance adaptation function and, in a last step, detail
information is added.

• Drago (Drago et al., 2003a). This global TMO is based on luminance logarithmic
compression that, depending on scene content, uses a predetermined logarith-
mic basis to preserve contrast and details.

• Durand (Durand and Dorsey, 2002). This local TMO decomposes the image in
two layers: the base and the detail. Large-scale variations of the base layer are
encoded, while the magnitudes of the detail layer are preserved.

• Fattal (Fattal, Lischinski, and Werman, 2002). This local TMO manipulates the
gradient fields of the luminance image. Its idea is to identify high gradients in
different scales and attenuate their magnitudes, while maintaining their direc-
tions.
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• Ferradans (Ferradans et al., 2011). This TMO can be executed as global or local
because it is divided in two stages. In the first stage, it applies a global method
that implements the visual adaptation, trying to mimic human cones’ satura-
tion. In the second stage, it enhances local contrast using a variational model
inspired by color vision phenomenology. In our work, this operator was run
as local.

• Ferwerda (Ferwerda et al., 1996). This global TMO is based on computational
model of visual adaptation that was adjusted to fit psychophysical results on
threshold visibility, color appearance, visual acuity, and sensitivity over the
time.

• iCAM06 (Kuang, Johnson, and Fairchild, 2007). This local TMO is based on
the iCAM06 color appearance model, which gives the perceptual attributes of
each pixel, like lightness, chromaticity, hue, contrast and sharpness. It includes
an inverse model which considers viewing conditions to generate the result.

• KimKautz (Kim and Kautz, 2008). This global TMO is based on the assumption
that human vision sensitivity is adapted to the average log luminance of the
scene and that it follows a Gaussian distribution.

• Krawczyk (Krawczyk, Myszkowski, and Seidel, 2005). This local TMO is in-
spired on the anchoring theory (Gilchrist et al., 1999). It decomposes the image
into patches of consistent luminance (frameworks) and calculates, locally, the
lightness values.

• Li (Li, Sharan, and Adelson, 2005). This local TMO is based on multiscale
image decomposition that uses a symmetrical analysis-synthesis filter bank to
reconstruct the signal, and applies local gain control to the subbands to reduce
the dynamic range.

• Mertens (Mertens, Kautz, and Van Reeth, 2007). This technique fuses original
LDR images of different exposure values (exposure fusion) to obtain the final
“tone-mapped” image, which avoids the generation of an HDR image. Guided
by simple quality measures like saturation and contrast, it selects “good” pix-
els of the sequence and combines them to create the resulting image. Thus, for
this method instead of an HDR image we used a stack of LDR images.

• Meylan (Meylan, Alleysson, and Süsstrunk, 2007). This local TMO is derived
from a model of retinal processing. In a first step, a basic tone-mapping al-
gorithm is applied on the mosaic image captured by the sensors. In a second
step, it introduces a variation of the center/surround spatial opponency.

• Otazu (Otazu, 2012). This local TMO is based on a multipurpose human color
perception algorithm. It decomposes the intensity channel in a multiresolution
contrast decomposition and applies a non-linear saturation model of visual
cortex neurons.

• Reinhard (Reinhard et al., 2002). This TMO can be executed as global or local.
It performs a global scaling of the dynamic range followed by a dodging and
burning (local) processes. In our work, this operator was run as global which
is its default value in the toolbox.

• Reinhard-Devlin (Reinhard and Devlin, 2005). This global TMO uses a model of
photoreceptors adaptation which can be automatically adjusted to the general
light level.
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2.3 Methods

In order to compare TMOs, we performed two different experiments called Segment
Matching and Scene Reproduction experiments. The aim of the first experiment was to
study the internal relationships among gray-levels in the tone-mapped image and in
the real scene (i.e. a segment matching experiment similar to (McCann, Parraman,
and Rizzi, 2014)). The aim of the second experiment was to evaluate TMOs accord-
ing to how similar their results were perceived to be with respect to the real scene. In
both cases, we obtained a ranking of the different TMOs. Behind these experiments
is the idea that a good TMO is one whose output is perceptually similar to the real
scene and, to do that, a good reproduction of the objects’ relationships is needed.

2.3.1 Materials

Our experiments were performed in a controlled environment where the only sources
of light were a lamp, which illuminated the real scene and a CRT screen. We used a
ViSaGe MKII Stimulus Generator and a Mitsubishi Diamond-Pro®2045u CRT mon-
itor side-by-side with a handmade real HDR scene. The monitor was calibrated
via a customary Cambridge Research Systems Ltd. software for ViSaGe MKII Stim-
ulus Generator (Rochester, England) and a ColorCal (Minolta sensor) suction-cup
colorimeter. Both the monitor and the real scene were setup so that the objects in
both scenes subtended approximately the same angle (18.13 × 13.81°) and looked
similarly positioned to the observer.

We built three different HDR scenes, each including a gray-level reference table
and two solid parallelepipeds (cuboids). The reference table was built by printing
a series of 65 gray squares (2.8× 2.2 cm) arranged in a flat 11× 6 distribution. The
arrangement of rows and columns was labelled A,B,C,...,K for the rows and 1,2,3...,6
for the columns. The lightness of these patches decreased monotonically from the
top (patch A1 - #1) to the bottom (patch K5 - #65), as measured by our PR-655 Spec-
traScan®Spectroradiometer. The printed values were selected so that their CIE L*
(lightness) value was equally spaced, meaning that their distribution was approxi-
mately uniform in terms of perceived lightness (see Table 2.2). The cuboids consisted
of pieces of wood (3.6× 3.6× variable length between 9.4 and 10 cm), whose sides
(facets) were covered with arbitrary samples of the same printed paper as the ref-
erence table. There were two cuboids in each scene (one under direct illumination
and the other in the shade). The third column of Table 2.3 shows the patch of the ref-
erence table that the cuboid’s facet corresponded to, the fourth column indicates its
position with respect to the illumination and the last column indicates its luminance
(when placed within its scene). Table 2.2 also shows the luminance values for these
patches once lit by our light source. The chromaticity of all printed material was CIE
xy= (0.3652, 0.3817). The rest of the scenes consisted of many plastic and wooden
objects of different colors and shapes (see Figure 2.3).

Two facets of one cuboid and three of the other were always visible from the
subjects’ location, resulting in 15 different gray facets in total (see Table 2.3). The
incandescent lamp (100 W) had its bulb painted blue to simulate D65 illumination
and was set up so that the luminance of the brightest object was about the same as
the maximum luminance the monitor was capable of producing (about 100 cd/m2).

We photographed the real scene using a Sigma Foveon SD10 camera placed in the
exact same position as the subjects’ heads during the psychophysical experiments.
The same camera was calibrated for use in other measurements (Camera Calibration
Methods) and because of this, we have a fairly good idea of the linearity and spectral
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(A) Scene 1 (B) Scene 2 (C) Scene 3

FIGURE 2.3: To show the general appearance of the physical scenes,
here we show a single LDR exposure (chosen by simple visual inspec-
tion by the authors) from the set of LDR exposures used to create the
HDR images. Since they are a single LDR exposure, the cuboids in

the dark regions are not completely visible in these pictures.

TABLE 2.2: In this table we show the L* CIELab color space values
and the luminance values (cd/m2) of each patch in the reference ta-
ble. The lightness values have been measured by our PR-655 Spec-
traScan®Spectroradiometer under a uniform illumination. In con-
trast, the luminance values were measured in the scene by the same
Spectroradiometer. The lightness of the patches monotonically in-
creases from patch #1 (A1) to patch #65 (K5). Middle gray is uni-
versally defined as 18% reflectance on a white surround. In this table,

18% max is patch #34 (F4).

Lightness (L*) of patches in the reference table
Coordinate 1 2 3 4 5 6

A 1.50 3.64 5.76 7.88 9.97 12.06
B 14.13 16.18 18.22 20.25 22.26 24.26
C 26.24 28.20 30.15 32.08 34.00 35.90
D 37.78 39.65 41.50 43.33 45.15 46.95
E 48.73 50.49 52.24 53.96 55.67 57.36
F 59.03 60.68 62.31 63.91 65.50 67.07
G 68.61 70.14 71.64 73.11 74.57 76.00
H 77.40 78.78 80.13 81.46 82.76 84.03
I 85.27 86.49 87.67 88.82 89.93 91.01
J 92.05 93.06 94.02 94.94 95.81 96.63
K 97.40 98.11 98.74 99.30 99.73

Luminance (cd/m2) of patches in the reference table
Coordinate 1 2 3 4 5 6

A 0.559 0.565 0.617 0.692 0.853 0.815
B 0.901 0.957 1.007 1.360 1.484 1.622
C 1.575 1.734 1.992 2.218 2.624 2.978
D 3.031 3.243 3.651 4.133 4.634 5.076
E 5.215 5.718 6.439 7.199 7.827 10.39
F 12.95 15.85 16.94 18.69 20.63 21.32
G 22.53 23.67 25.79 28.34 30.40 31.47
H 32.66 34.2 37.69 38.40 42.75 44.63
I 46.28 48.39 52.27 55.57 58.1 60.61
J 61.76 66.17 67.75 69.82 74.71 78.24
K 78.96 84.67 90.37 96.38 104.0
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TABLE 2.3: Photometric assessment of the scene facets used in our
matching experiments. Column 3 indicates the corresponding gray
patch (same material) from the reference table. Column 4 indicates
whether the facet was directly illuminated or in the shade and column

5 shows its luminance from the observer’s point of view.

Luminance values (cd/m2) of the scene facets
Scene Facet Original Patch Light/Shade Luminance (cd/m2)

1 1 B4 light 0.66
1 2 H4 light 59.22
1 3 F4 light 33.38
1 4 B4 shade 5.34
1 5 F4 shade 7.48
2 6 C4 light 3.44
2 7 H1 light 32.13
2 8 C1 shade 5.93
2 9 J1 shade 12.00
2 10 E4 shade 0.80
3 11 A4 light 1.73
3 12 I1 light 25.93
3 13 J1 light 27.46
3 14 G4 shade 31.58
3 15 B1 shade 9.06

sensitivity of its sensors. The setup was arranged so that the images presented on the
monitor looked geometrically the same as the real ones shown beside it. Since the
walls were covered in black felt, reflections from all other objects were minimized.
The dynamic range of the scenes as measured by multiple exposures using the cam-
era were approximately 105 for scene 1 and 106 for scenes 2 and 3. The dynamic
range of the reference table as measured by the PR-655 was 104.0 - 0.559 cd/m2.

Although it has been shown that because of glare, is not possible to achieve an
accurate representation of scene luminance distribution from a combination of many
LDR images, this technique can still provide a good enough approximation (McCann
and Rizzi, 2012). In consequence, a set of 25 photographs were taken at different
exposure values (from 15 sec to 1/6000 sec) using the same aperture, focal distance,
zoom settings and visual field. Individual images were stored in RAW format and
transformed into 16 bits sRGB (using the camera manufacturer’s software).

To avoid any bias regarding the operators, all experiments started with a 1 min
subject adaptation to the ambient light. Most TMO implementations were obtained
from the popular HDR Toolbox for MATLAB (Banterle et al., 2011) while others (Fer-
radans, iCAM06, Li, Meylan and Otazu, were obtained from their corresponding au-
thors’ web pages). In order to avoid benefiting any of the TMOs, we ran all of them
with their default settings. In Ferradans’ case, we had to chose between two different
parameters and we selected the default values specified in their paper (ρ = 0 and
α−1 = 3). Other cases required that the TMO’s author was asked to perform the best
tone-mapping, but we discarded this option because of its impracticality (we could
not ask all authors the same) and besides, this practice impairs the reproducibility
of the results.
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(A) Task 1 (B) Task 2

FIGURE 2.4: In Experiment 1, observers performed two tasks. In Task
1 (A), observers had to match the brightnesses of the 5 cuboids’ facets
to the brightnesses of 5 patches in the reference table. In Task 2 (B),
observers had to perform the same task on the TMO image displayed
on the calibrated monitor. Red arrows are randomly drawed just for

illustrative purposes.

2.4 Experiments

2.4.1 Experiment 1: Segment Matching

Procedure

The Segment Matching experiment consisted on two different tasks:

• Task 1. After adaptation, subjects were asked to match, in the real scenes (i.e.
with monitor turned off), the brightness of the 5 cuboids’ facets to the bright-
ness of the patches in the reference table in each scene (see Figure 2.4a). Al-
though there were no time constraints to perform the tasks, subjects were ad-
vised to take no more than 30 seconds per match.

• Task 2. Here the real scene was not visible and the observers only saw digital
(tone-mapped) versions presented on the monitor. Their task was similar to
Task 1, except that all matches were conducted entirely between the facets and
patches shown on the screen (see Figure 2.4b).

There were three conditions for Experiment 1, corresponding to the three differ-
ent scenes created (see Figure 2.3). Observers performed 240 matchings in total (5
facets x 15 different tone-mapped images x 3 scenes plus 15 matchings in the real
scenes). In practice, all matchings were conducted by writing for each facet, the co-
ordinates of the matching reference table patch on a piece of paper. The presentation
order of the tone-mapped images was randomized.

Experimental Design

In Experiment 1, the independent variables (IVs) were the cuboid’s facets and the
reference table patches. The dependent variables (DVs) were the subjects’ segment
matches in the tone-mapped images (Task 2) and the control variable (CV) was the
subjects’ segment matches in the real scene (Task 1). Our null hypothesis was that
there was not significant difference between the segments matched in the real scene
(CV - Task 1) and the matches in the tone-mapped images (DVs - Task2) because the
TMOs perfectly reproduce the perceptual relationships among the objects present in
the real scene.
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Participants

Task 1 was completed by a group of 12 observers with normal or corrected-to-normal
vision, recruited from our lab academic/research community. This group (8 males
and 4 females) was comprised by people aged between 17 and 54. Nine of them
were completely naïve to the aims of the experiment. Task 2 was completed by 10 of
the previous observers (8 males and 2 females).

Results

Figure 2.5 shows a plot of the segments matches obtained in Task 2 against the seg-
ments matches in Task 1. We fitted a linear model to the results obtained by each
TMO. If a TMO reproduced well the interrelations among the gray facets, the fitting
should be very similar to the fitting for the real scene (i.e. points should lay about
the diagonal).

We performed two different analyses to evaluate to what extent the local inter-
relations perceived by the observers in the tone-mapped versions corresponded to
those perceived in the real scene. In the first analysis, we studied the slopes of the
different fitted linear models w.r.t. the slope obtained in the real scene. The smaller
the difference, the better the reproduction of the interrelations (it means that the
TMO maintained the relationships among the facets and patches). Figure 2.5 shows
the offset between the lines fitted to the TMOs and the line fitted to the real scene.
In the second analysis, we studied this displacement by computing the root mean
squared error (RMSE) between them.

TABLE 2.4: Performance of all TMOs in the Segment Matching exper-
iment. The second and third columns show the analysis’ results and
the last the type of the TMO. In both metrics (i.e. slope difference and
root mean squared error -RMSE- between the diagonal and the TMO
fitted line), the smaller (indicated in bold), the more similar to the real

scene, and thus, the better.

TMO Slope Difference RMSE Type
Ashikhmin 0.29 11.19 Local

Drago 0.15 7.02 Global
Durand 0.12 5.01 Local
Fattal 0.02 4.66 Local

Ferradans 0.00 5.12 Local
Ferwerda 0.09 7.09 Global
iCAM06 0.01 0.42 Local

KimKautz 0.09 5.51 Global
Krawczyk 0.09 5.46 Local

Li 0.01 4.02 Local
Mertens 0.15 3.84 -
Meylan 0.16 5.93 Local
Otazu 0.24 5.30 Local

Reinhard 0.15 6.72 Global
Reinhard-Devlin 0.16 6.82 Global

All results are shown in Table 2.4, where iCAM06 has the smallest distance to
the real scene in both analyses. Since its slope difference and RMSE are very small,
we can assume that the pixel interrelations in its tone-mapped image perceptually
mimic the real scene. Given that iCAM06 is based on a color appearance model
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FIGURE 2.5: Results of Experiment 1. Segments matches in the tone-
mapped images are plotted against segment matches in the real scene.
Markers and lines identify each TMOs. Since not all the data had
a normal distribution, the markers show the median of the subjects’
observations. Horizontal lines indicate the first and the third quartiles
of Task 1 and vertical lines indicate the first and the third quartiles of
Task 2. For each operator, we fitted a linear model using the median
of the subjects’ observations. The figure is divided in four panels for
clarity. The real scene is plotted against itself in all panels to provide
a fixed reference (y = x). In summary, the better the TMO, the closer

its fit to the solid black line.

that considers perceptual attributes such as lightness, chromaticity, hue, contrast
and sharpness, its results are expected to be in line with observers’ perception.

We calculated the Spearman’s rank correlation coefficient between the rankings
obtained from both Segment Matching analyses (see Table 2.4) and obtained a value
of 0.59 (p < 0.05). Since both rankings are quite similar, it is worth paying attention
to some interesting cases such as Ferradans, whose slope is very close to that of the
real scene, but the fitted model lays systematically under the real scene’s line (i.e. its
RMSE is very big). An opposite example is Mertens which has a different slope, but
its RMSE is the second smallest.

Another interesting observation from Figure 2.5 is that, at the lowest and highest
brightness values, the agreement between subjects is higher than at middle values
(both horizontal and vertical dispersion lines are smaller). This suggests that the
TMOs are more accurate at reproducing both the brightest and the darkest parts of
the image. To analyze this effect in more detail, we studied the subjects’ results for
each facet. In Figure 2.6, the abscissa shows the segments matched in the real scene
ordered from darkest to brightest and the ordinate represents the RMSE in the tone-
mapped images with respect to the real scene. We defined RMSE as: RMSEscene =√

1
n ∑∀i (xi − yi)2, where xi is the i-th subject segment matched in the real scene, yi

is the i-th subject segment matched in the tone-mapped image and n is the number
of subjects. Again, in almost all TMOs, the RMSE value is smaller for darkest and
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brightest facets than for mid-gray facets. Thus, not only the agreement between
subjects but also the error (RMSEscene) is lower for both brightest and darkest values.

FIGURE 2.6: The RMSE w.r.t. the real scene (RMSEscene) is the dif-
ference between segments matched in the tone-mapped image and
in the real scene. Different types of lines and markers represent dif-
ferent TMOs. Abscissa represents the segments matched in the real
scene ordered from darkest to brightest. According to this metric, the

smaller the value, the better the TMO.

2.4.2 Experiment 2: Scene Reproduction

Procedure

Experiment 2 consisted of a pairwise comparison of tone-mapped images obtained
using different TMOs in the presence of the original scene (side by side). After 1 min
adaptation in front of the physical scene, a pair of tone-mapped images of the same
physical scene was randomly selected and presented sequentially to the observer
on the CRT screen besides the real scene. Subjects could press a gamepad button
to toggle which image of the tone-mapped pair was presented on the monitor (only
one image was displayed at a time). For this task, they were asked to ’select the
image that was more similar to the real scene.’ As before, there was no time limit
but subjects were advised to complete a trial in less than 30 seconds. After an image
was chosen, a gray background was shown for two seconds, and a different ran-
dom pair was selected for the next trial. Every subject performed 105 comparisons
per scene taking around 25 minutes in total. There were three experimental condi-
tions, corresponding to the three different physical scenes created (see Figure 2.3).
Between conditions, subjects were forced take 5 to 10 minutes breaks outside while
the physical scene was replaced.
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Experimental Design

In this experiment the IVs were the different TMOs, the DVs were the subjects’ eval-
uations (i.e. the preference matrix), and the CV was the real scene. Our null hypoth-
esis was that there were no differences in the TMOs performances since all of them
perceptually reproduce the real scene.

Participants

A group of 10 people with normal or corrected-to-normal vision, 7 males and 3 fe-
males recruited from our lab academic and research community, completed this ex-
periment. This group was comprised by people aged between 17 and 54 y.o. Seven
of them were naïve to the aims of the experiment.

Results

From the pairwise comparison results, we defined a preference matrix for each sub-
ject and each scene. We constructed a directed graph where the nodes were the
evaluated TMOs and the arrows pointed from a preferred TMO to a non-preferred
TMO, e.g. if the TMOi is preferred over the TMOj (tone-mapped image from TMOi
is more similar to the real scene than the one from TMOj), we drew an arrow from
nodei to nodej, for i 6= j.

From this graph, we were able to analyse intra-subject consistency coefficient ζ
for each scene. The consistency coefficient for each subject and scene is defined by

ζst =

{
1− 24dst

n3−n , if n is odd.
1− 24dst

n3−4n , if n is even.
, with

dst =
n(n− 1)(2n− 1)

12
− 1

2

n

∑
i=1

a2
ist

(2.1)

where s is the scene number (s ∈ [1, 3]), t is the subject number (t ∈ [1, m]), n is the
number of evaluated TMOs, and ai is the number of arrows which leave the nodei.
The maximum ζ value is 1 (perfect consistency within-subject).

The consistency between subjects, i.e. inter-subject agreement, is measured by
the Kendall Coefficient of Agreement (Kendall and Babington-Smith, 1940; Ledda
et al., 2005). This measure is defined by

us =
2 ∑i 6=j (

pij
2 )

(m
2 )(

n
2)
− 1 (2.2)

where pij is the number of times TMOi is preferred over TMOj and m is the number
of subjects. Since the number of subjects is even (m = 10), the possible minimum
value of u, given by Equation 2.2, is u = − 1

m−1 and its possible maximum value is
u = 1.

In order to study if us values are significant, we used the chi-squared test (χ2).
The χ2

s values are defined by

χ2
s =

n(n− 1)(1 + us(m− 1))
2

(2.3)

The number of degrees of freedom of the chi-squared test is given by n(n−1)
2 .
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TABLE 2.5: Summary of all statistical analysis from section 2.4.2. We
computed the intra-subject evaluation (consistency coefficient ζ), the
inter-subjects evaluation (Kendall Agreement Coefficient u) and cal-

culated chi-squared test to see if u values were significant.

Scene ζ̄ u χ2 p, 105 df
1 0.91 0.61 681 < 0.001
2 0.95 0.65 719 < 0.001
3 0.93 0.55 624 < 0.001

(A) Scene 1 (B) Scene 2

(C) Scene 3

FIGURE 2.7: Case V Thurstone Law’s scores for each evaluated TMO
for each different scene. Thurstone scores are an arbitrary measure
that shows how many times a particular TMO is better than the other
ones. Thus, in that case, the higher score, the better TMO. Vertical

lines show the 95% confidence limits.

In Table 2.5, we show all statistical measures for each scene, where we can see
that intra- and inter-subject consistency values are very high and statistically sig-
nificant. Then, in Figure 2.7, we show the results of the overall paired comparison
evaluations for every scene (obtained from Thurstone’s Law of Comparative Judg-
ment, Case V (Montage, 2004)) with 95% confidence limits. Spearman’s correlation
between these rankings shows that TMOs have similar behaviour across different
scenes (their coefficients are equal or higher than 0.90, with p < 0.05). We computed
the mean value along all the scenes (Table 2.6) and observed that the best ranked
TMOs were KimKautz, Krawczyk and Reinhard, which are completely different from
the rankings obtained in the previous experiment.

2.5 Discussion

Comparing the results of our two experiments, we observe that in Section 2.4.1 (Seg-
ment Matching experiment - see Table 2.4), local TMOs are significantly better than
global ones. On the contrary, in Section 2.4.2 (Scene Reproduction experiment - see
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TABLE 2.6: Ranking obtained by averaging the scores given by Case
V Thurstone Law in the three different scenes. In this ranking, the

higher, the more similar to the real scene.

Averaged Thurstone Law’s Scores
TMO Score Type

Krawczyk 2.10 Local
KimKautz 2.03 Global
Reinhard 1.90 Global
Ferwerda 1.57 Global
Ferradans 1.48 Local

Drago 1.36 Global
Li 0.75 Local

Otazu 0.13 Local
Durand 0.10 Local
iCAM06 0.00 Local
Meylan -2.01 Local

Reinhard-Devlin -2.04 Global
Mertens -2.22 -

Ashikhmin -2.25 Local
Fattal -2.89 Local

Table 2.6), global TMOs are significantly better than local ones. We computed Spear-
man’s correlation coefficient between both experiments rankings and verified that
there is no correlation.

An interesting example of this lack of correlation is iCAM06. It is clearly at the
top of the rankings in the Segment Matching experiment, but it is in the middle
position in the Scene Reproduction experiment. This means that it correctly repro-
duces relationships among gray-levels, but overall features are not maintained. An
extreme example is Fattal, which is in the fourth position in the Segment Matching
rankings, but is the last in the Scene Reproduction ranking. This can be explained
because Fattal is based on local (or spatial) features, e.g. luminance gradients, but
it does not enforce global features (such as global brightness and contrast). In fact,
from Table 2.4 (RMSE results) we can conclude that Fattal produces a tone-mapped
image which is systematically brighter than the real scene. Since Fattal’s fitted line
has almost the same slope as the real scene (see Figure 2.5) removing this offset could
improve its performance in the Scene Reproduction experiment.

From the previous results, we infer that overall appearance does not only depend
on the correct reproduction of intensity relationships, but it might depend on many
other weighted local attributes, such as the reproduction of gray-level and color re-
lationships, contrast, brightness, artifacts, level of detail, etc. This is in agreement
with other authors (Yoshida et al., 2005; Yoshida et al., 2007; Cadík et al., 2006; Cadík
et al., 2008). Furthermore, our results show that overall attributes should also be
considered to correctly reproduce the appearance.

Regarding the question of which is the best TMO, KimKautz and Krawczyk are
very close in all rankings, hence both can be considered equally good.
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2.5.1 Comparison to other Studies

In Section 2.4.1 (Segment Matching) we took into account a particular criterion which,
up to our knowledge, has never been studied in this kind of TMO ranking experi-
ments. Moreover, we compare our Segment Matching results to the ones obtained by
other works that study TMOs applied to gray-level images (given that our analysis
has been performed on gray-level facets).

Many works perform overall appearance comparisons, either with (as in our
work) or without the real scene. Although Kuang et al. (2004) performed an experi-
ment without a real scene reference, our scene reproduction results agree with theirs
in that Fattal is the worst ranked operator and Reinhard is one of the best ranked.
Contrary to our results, Kuang et al. (2004) conclude that Durand is better than Rein-
hard. The reason could be that they might have run Reinhard in local operator mode,
which we did not. Furthermore, they performed a study with gray-scale images and
their results showed that Durand was better than Reinhard, but iCAM was worse than
Reinhard, which is approximately similar to our Segment Matching experiment’s re-
sults. They differ in iCAM’s result, but they used iCAM (Fairchild and Johnson,
2000) instead of iCAM06, as in our case.

Yoshida et al. (2005; 2007) performed experiments with architectural indoor HDR
scenes and they concluded that Reinhard and Drago were good in terms of natural-
ness and Durand was not ranked as highly as in (Kuang et al., 2004) (in an experi-
ment without the reference scene). Our results agree with Yoshida et al. (2005; 2007).
Moreover, Yoshida et al. (2007) showed that global and local operators obtain dif-
ferent results, but global TMO results are more similar among themselves than local
TMO. As pointed out in the previous section, this relationship is also present in our
study (Tables 2.4 and 2.6).

Ledda et al. (2005) used a HDR display and obtained a ranking according to
the overall similarity of TMO images. In this ranking, iCAM was the first one,
which does not agree with our results. In addition, their ranking shows the follow-
ing TMO’s order: Reinhard, Drago and Durand, which match to our results. These
authors also performed experiments in gray-scales obtaining Reinhard as the best
ranked, which does not agree with our results.

Cadík et al. (2006; 2008) performed a very exhaustive study of perceptual at-
tributes. We agree with some of their results like the good ranking of Reinhard (close
to the best) and the unnaturalness of Fattal. Moreover, we strongly agree with them
in that the best overall quality is generally observed in images produced by global
TMOs. Nevertheless, we want to point out that there was some conflict between
these two studies. In the first one (Cadík et al., 2006), Durand was the worst ranked
operator, ranked even lower than Fattal, but in the second one (Cadík et al., 2008),
Fattal was the worst ranked and Durand was in a middle position. Our results are in
line with Cadík et al. (2008).

We do not agree with Kuang et al. (2007) in that Durand is always the best ranked
operator (with and without a reference scene). Furthermore, in contrast with our
results, Reinhard is in a middle position of their ranking.

Kuang et al. (2007) suggested, again, that Durand was better than Reinhard and
iCAM06 was even better than Durand. In our results, Durand and iCAM06 are quite
close, but Reinhard is much better than them. Again, Reinhard could have been run
in local TMO mode.

In a similar study as Kuang et al. (2004), Ashikhmin and Goyal (2006) concluded
that, comparing to the real scene, Fattal and Drago were two of their overall best
performers. We do not agree that Fattal is one of the best performers, but we have
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to point out that, in their work, they tuned the TMO’s parameters, which implies
that Fattal could be a good TMO when a fine tuning of the parameters is performed.
Furthermore, in their work, Drago obtained more or less the same results as Fattal,
but Reinhard obtained worse results than them. They do not specify how they run
Reinhard, but it is possible that they run it in the local mode. They obtained that
the trilateral filtering (Choudhury and Tumblin, 2003), which is an improvement of
Durand, was the worst ranked TMO, so it makes sense that, in our work, Durand has
obtained worse results than Drago and Reinhard.

In (Akyüz et al., 2007), the outputs of the most internally sophisticated TMO are
statistically worse than the best single LDR exposure. Since a global operator is gen-
erally less sophisticated than a local, we could expect that global TMO results are
better than local TMO results. Contrary to this theory, Mertens (which cannot be
considered a sophisticated TMO because it uses single exposure values) is on mid-
dle positions in the Segment Matching experiments but it is one of the worst ranked
in the Scene Reproduction experiments.

Some authors emphasize the creation and use of particular metrics to compare
tone-mapped images. For example, Ferradans et al. (2011) performed an evaluation
of several TMOs using the metric of Aydin et al. (2008). Although it is not the pur-
pose of our work, we performed a very preliminary analysis comparing our results
to those of Aydin et al. (2008) as shown in (Ferradans et al., 2011). We agree that
Fattal was the operator with highest total error percentages, but disagree with the
general overall TMOs ranking. A detailed analysis comparing numerical metrics
and psychophysical results is scheduled for future work.

It is possible to identify several shortcomings in our study that need to be ad-
dressed before a more definitive conclusion is achieved. Firstly, we have assumed
that the software provided by the Sigma camera manufacturers is accurate enough to
convert the scene luminance array to the sRGB digital file used as input to all TMO
algorithms. This assumption hides possible inaccuracies because of glare effects,
lens aberrations and possible tone/chroma enhancements. In the past, we calibrated
this camera and measured the linearity and spectral sensitivity of its sensors for use
in daylight settings (Camera Calibration Methods) and verified that tone/chroma en-
hancements are kept to a minimum at least for its raw image settings. For this work
we did not employ our own calibration (which is valid within a fairly limited dy-
namic range) but decided to rely on the manufacturer’s algorithm instead. All these
limits the reproducibility of our experiments (unless of course the same camera is
used). We are also aware that the absence of an accurate radiometric description of
our scenes also limits the reproducibility of our experiments. To this end we pro-
vide photometric information at least of the patches and facets used in the matching
comparisons (see Tables 2.2 and 2.3) and the dynamic range of the both the monitor
and the scenes (see Section 2.3.1).

2.6 Conclusions

Our results show that TMO quality rankings strongly depend on the criteria used for
the psychophysical evaluation. Not surprisingly, on one hand, local TMOs are better
than global TMOs on our Segment Matching experiment because these operators do
not consider just a pixel, but also a region of pixels (i.e. spatial information). On
the other hand, global TMOs are better than local ones in our Scene Reproduction
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experiment. We have found no significant correlation between Segment Matching
and Scene Reproduction rankings, showing that observers are using several visual
attributes to perform their tasks and some of these attributes are not considered
by TMOs. We conclude that TMOs should take into account both local and global
characteristics of the image, which implies that there is ample room for improvement
in the future development of TMO algorithms. Furthermore, we suggest that an
agreed standard criteria should be defined for a proper and fair comparison among
them.

Our rankings also show there is no TMO that is clearly better than all the others
across our experiments, but KimKautz and Krawczyk are perhaps the best ranked
since they do not underperform in any of the metrics.

As a general conclusion, since none of the tested TMOs satisfies all the testing cri-
teria ("Segment Matching", "Scene Reproduction" and their respective analyses), op-
erators have to be selected depending on each particular task. This is a consequence
of the lack of coherent understanding of the goals of a TMO, which is reflected in
the wide variety of evaluation methods and results present in the literature. From a
scientific point of view, a TMO should aim to perceptually reproduce the real scene
instead of modifying image appearance according to aesthetics (for which we al-
ready have a wide selection of image tools). Having said so, it is also important to
consider that these operators are widely used in digital cameras and mobile phone’s
cameras and TMO users often prefer aesthetic improvements over accurate scene
reproduction.

2.7 Related Publications

• Which tone-mapping operator is the best? A comparative study of the per-
ceptual quality (Cerda-Company, Parraga, and Otazu, 2018), Journal of the
Optical Society of America A, 2018.
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Chapter 3

Color Induction

The phenomenon of color induction (which occurs when the perceived color of an
object changes according to the colors of the objects around it) has been known and
exploited by artists for centuries (Chevreul, 1839; Von Bezold, 1876). There are two
types of color induction: color contrast and color assimilation (see Figure 3.1). Color
contrast occurs when the perceived color (the target) shifts away from the surround-
ing color (the inducer) and color assimilation occurs when the perceived color shifts
towards the inducer. For instance, given a gray object surrounded by green objects, if
the first is perceived as reddish (the color complementary to green), we say that color
contrast is occurring. On the other hand, if the gray object is perceived as green-
ish, we say that color assimilation is happening. The type of induction (contrast or
assimilation) is usually associated to the spatiochromatic characteristics of the sur-
round. Psychophysical research has shown that uniform surrounds tend to induce
color contrast, while striped surrounds tend to induce color assimilation (Monnier
and Shevell, 2003; Monnier and Shevell, 2004; Otazu, Parraga, and Vanrell, 2010).

In this chapter, we have studied two different stimuli characteristics that play an
important role in color induction: the temporal frequency and both luminance and
brightness differences. We have divided it in two main sections according to the
studied features. First, we studied the temporal frequency effect on color induction
using equiluminant stimuli. Then, we studied both the luminance and brightness
differences effect on color assimilation using temporally static stimuli. We focused
the second study on color assimilation because it was less explored than color con-
trast and because the color induction appears and disappears just by increasing the
luminance or brightness contrast. At the end of this chapter, we detail the publica-
tions that aroused from these studies.

3.1 Optics considerations

There are optical effects that influence visual perception and may account for some
of the properties of assimilation. The most often cited are wavelength-independent
spread light and wavelength-dependent chromatic aberration. Spread light is a con-
sequence of optical imperfections in the lens which change the light of the test stim-
ulus that reaches the retina (Devinck, Pinna, and Werner, 2014). To calculate the
influence of spread light, Smith et al. (2001) used the function derived by Williams
et al. (1994) and a method similar to Shevell and Burroughs (1988). They calculated
the amount of light that spread into their test stimulus region considering an equi-
luminant square-wave grating and observed that, as spatial frequency increases, the
spread light contribution (to the center of the test stimulus region) increases. In their
case they obtained that for stimuli of 4.0 cpd and below the spread light contribution
was negligible.
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(A) Color assimilation effect

(B) Color contrast effect

FIGURE 3.1: Examples of both (A) color assimilation and (B) color
contrast effects. In the top panel the target ring is perceived as green-
ish (left) and bluish (right), but as the rectangle shows they are both
of the same color. The difference between these two stimuli is the or-
der of the inducers (the rings that surround the target one). Thus, in
the left stimulus, the target ring is shifted towards the orange, while
in the right stimulus it is shifted towards the purple. In the bottom
panel the target ring is shifted away from its inducers (green and yel-
low, respectively) and it is perceived as yellowish and greenish, but

again they are of the same color.

Chromatic aberration is also a source of spread light which depends on spectral
wavelength and increases with higher spatial frequencies. Smith et al. (2001) found
that even for square-gratings of 9 cpd, the effects of chromatic aberration were small,
concluding that it does not appear to be a key factor for color assimilation. Similarly,
Bradley et al. (1992) concluded that chromatic aberration is more relevant at higher
spatial frequencies than at lower ones (Devinck, Pinna, and Werner, 2014).

Although these optical effects could account for part of the color assimilation re-
sults, most authors agree that even for high spatial frequencies there are clear neural
contributions (Helson, 1963; De Weert and Kruysbergen, 1997; Monnier and Shevell,
2003; Cao and Shevell, 2005; Devinck, Pinna, and Werner, 2014).

3.2 Color induction in equiluminant flashed stimuli

3.2.1 Introduction

In striped surround stimuli, the spatial frequency of the stripes is a key factor to in-
duce color assimilation (Fach and Sharpe, 1986; Smith, Jin, and Pokorny, 2001), with
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higher spatial frequencies (> 2.74 cpd) leading to a stronger assimilation (Cao and
Shevell, 2005; Otazu, Parraga, and Vanrell, 2010). Nevertheless, Smith et al. (2001)
found that thick (< 0.7 cpd) stripes can induce color contrast.

Color induction has also been studied using dynamic and flashed stimuli (Anstis,
Rogers, and Henry, 1978; Kelly and Martinez-Uriegas, 1993; De Valois, Webster, and
De Valois, 1986; Singer and D’Zmura, 1994; Kaneko and Murakami, 2012). In dy-
namic stimuli, the inducer is modulated along time, being the temporal frequency
of the surround modulation an important factor for color induction, e.g. stronger in-
duction at low temporal frequencies, falling down beyond 2− 3 Hz (De Valois, Web-
ster, and De Valois, 1986; Singer and D’Zmura, 1994). In flashed stimuli, the target
stimulus is presented during a brief time (a ’blank’ frame is usually shown when the
target stimulus is not presented) (Kaneko and Murakami, 2012). Some of these stud-
ies measured the color induction of afterimages (Anstis, Rogers, and Henry, 1978;
Kelly and Martinez-Uriegas, 1993). They showed that color contrast can produce
afterimages and, conversely, color afterimages can induce color contrast (Anstis,
Rogers, and Henry, 1978). Furthermore, Kelly and Martinez-Uriegas (1993) con-
cluded that isoluminant chromatic stimuli create isoluminant chromatic afterimages.

Recently, Kaneko and Murakami (2012) published an extensive study in color
induction using equiluminant flashed color stimuli with uniform surrounds. They
measured the color induction at different flash durations (from 10 ms to 640 ms) and
observed that color contrast significantly depends on the duration of the flash. They
concluded that the shorter the flash duration, the stronger the contrast. Since they
used uniform surrounds, only color contrast was reported.

In this study, we extend the one of Kaneko and Murakami (2012), using both
uniform and striped surrounds and both static and flashed stimuli (see several static
stimuli examples in Figure 3.2). Similarly to other studies (Monnier and Shevell,
2003; Monnier and Shevell, 2004; Otazu, Parraga, and Vanrell, 2010; Cao and Shev-
ell, 2005; Fach and Sharpe, 1986; Smith, Jin, and Pokorny, 2001; Kaneko and Mu-
rakami, 2012; Anstis, Rogers, and Henry, 1978; Kelly and Martinez-Uriegas, 1993;
De Valois, Webster, and De Valois, 1986; Singer and D’Zmura, 1994), we expect to
observe color contrast in uniform surround stimuli and color assimilation in striped
surround stimuli. Furthermore, we expect to reproduce the Kaneko and Murakami’s
results (2012) for flashed uniform surrounds and to analyze whether color induction
depends on flash duration for both striped and uniform surrounds. In previous
papers (Otazu, Vanrell, and Parraga, 2008; Otazu, Parraga, and Vanrell, 2010; Pe-
nacchio, Otazu, and Dempere-Marco, 2013) one author of this paper simultaneously
reproduced psychophysical results of both color and brightness induction using a
Wavelet model and a neurodynamical model of V1. These models suggest that color
contrast and color assimilation could be the result of the same mechanism (lateral
connections) (Zaidi et al., 1992; Zaidi, 1999; Penacchio, Otazu, and Dempere-Marco,
2013). Thus, our hypothesis is that uniform and striped surrounds, when flashed,
would induce similar temporal color induction effects, but in opposite directions
(color contrast and color assimilation, respectively).

3.2.2 Methods

Apparatus

All experiments were conducted in a dark room, on a calibrated 21′′ SONY GDM-
F500R CRT monitor (1024× 768 px, 100Hz) with a viewable image size of 19.8′′. The
display was viewed binocularly and freely (subject’s head was not constrained) from
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FIGURE 3.2: Examples of some stimuli used in this study (see Ta-
ble 3.1). In this figure, we can observe that the achromatic ring (sur-
rounded by 8 black dots) is perceived differently depending on the
surround chromaticity. This effect is called color induction. For in-
stance, on the top-left panel, the achromatic ring surrounded by a
purple inducer is perceived as lime-ish, while the achromatic ring
surrounded by a green inducer (bottom-left panel) is perceived as
reddish. In this figure, the Spatial Conditions 2 and 3 of the Exper-
iment U (left panels, from top to bottom) and the Spatial Conditions
2 and 3 of the Experiment S (right panels, from top to bottom) are

shown.

an approximate distance of 132 cm, subtending around 17.3× 13.0 deg of visual angle
for the observer. The monitor was connected to a Wildcat Realizm R500 PCI Express
graphics card through a digital video processor (Cambridge Research Systems ViS-
aGe MKII Stimulus Generator) capable of displaying 14-bit color depths. The mon-
itor was calibrated via a customary software for the stimulus generator (Cambridge
Research Systems, Ltd., Rochester, UK) and a ColorCal (Minolta sensor) suction-cup
colorimeter.

Stimuli

The software was implemented in Matlab (The MathWorks, Inc., Natick, MA, US),
and the video processor was managed using the Cambridge Research Systems custom-
made toolbox. We used the same spatial configuration of visual stimuli as Otazu et
al. (2010), which was inspired by Monnier and Shevell (2003; 2004). In this study, we
added a temporal component, following Kaneko and Murakami (2012) flash dura-
tion values.

All stimuli were defined in the MacLeod-Boynton color space (Boynton, 1986),
which is based in the Smith and Pokorny cone fundamentals (Smith and Pokorny,
1975). In this opponent space, the l axis represents the red-green opponency (i.e.,
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’L vs M’ cone opponency) and the s axis represents the purple-lime opponency
(i.e., ’S vs (L+M)’ cone opponency), where s is normalized to unity equal-energy
white (Boynton, 1986).

Spatial Configuration Several stimuli examples are shown in Figure 3.2 and a
schematic of the stimuli’s spatial configuration is shown in Figure 3.3. The test frame
was composed by two circularly symmetric patterns (i.e., the test and the compari-
son stimuli) presented side by side and separated by 8.68 deg of visual angle from the
observer’s point of view. Similarly to Otazu et al. (2010), the stimuli’s background
was dark and the test ring (in the test stimulus) was achromatic and surrounded by
concentric rings (inducers) of spatially alternating colors (the 1st and 2nd inducer,
according to the physical distance to the test ring). When these two inducers had
the same chromaticity, the surround was a uniform region. The striped surround
was built with 11 circular stripes (stripes’ spatial frequency was 1.94 cpd) because,
as observed in Otazu et al. (2010), they produce more color induction than 5 stripes
and are not as thin as 17 stripes. In fact, in the 17 stripes case, observers reported
that for the shortest flash they could not detect the test ring. To make the detection
of the test ring easier, we drew 8 black dots of 1 pixel size: 4 dots in the inner radius
of the test ring and 4 points in the outer radius (at 0, 90, 180 and 270°). The com-
parison ring, on the right side of the frame, was always surrounded by a uniform
achromatic disk approximately metameric to equal-energy white (l = 0.66, s = 0.98
and Y = 20 cd/m2) (Monnier and Shevell, 2004).

All chromaticities were located on the individual subject-calibrated equilumi-
nant planes. The calibration of subjects’ equiluminant plane was performed using
the Minimally Distinct Border (MDB) (Boynton and Kaiser, 1968; Kaiser, 1971; Wag-
ner and Boynton, 1972; Kaiser et al., 1990; De Valois and De Valois, 1988a; Brill, 2014;
Boynton, 1973). Thus, for each subject, all the colors of the stimuli were shown on
his/her perceptually equiluminant surface.

Temporal Configuration In Figure 3.4, we show the temporal configuration of the
stimuli. Two different frames were defined: the test frame and the blank frame. Dur-
ing the blank frame, the test stimulus was an achromatic disk of the same intensity
as the test ring. During the test frame, the test stimulus (either striped or uniform)
was flashed while the achromatic test ring was not modified. That is, the achromatic
test ring remained constant along the experiment and only the chromatic surround-
ing rings were flashed. The time duration of our blank frame was 1 s and the flash
duration took values from 10 to 320 ms in a dyadic temporal frequency sequence
(i.e., 10, 20, 40, 80, 160 and 320 ms, Ntc = 7, see temporal conditions in Table 3.1). The
stimulus sequence (i.e., blank and test frames) was repeated until subjects finished
the task.

In addition, we also used static stimuli, which was equivalent to infinite flash
duration of the test frame.

All the experimental conditions (both spatial and temporal) are shown in Ta-
ble 3.1. These inducers’ colors were chosen because they are located on the cardinal
axes of the MacLeod-Boynton color space (Boynton, 1986), with the achromatic locus
at the center.
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FIGURE 3.3: Spatial configuration of the stimuli. Subjects had to ad-
just the chromaticity of the comparison ring in order to perceptually
match the chromaticity of the test ring. The colors in this figure are

illustrative. All experimental conditions are described in Table 3.1.

FIGURE 3.4: Temporal configuration of the stimuli. The blank frame
was shown during 1 s and the duration of the flash (when the test
frame was presented) depended on the temporal condition. All ex-

perimental conditions are described in Table 3.1.
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TABLE 3.1: Summary of the experimental conditions (both spatial
and temporal). In the spatial conditions, we detail the chromaticity
sets in MacLeod and Boynton color space. Only l and s chromatic
axes are reported because all chromaticities were located on the in-
dividual subject-calibrated equiluminant planes (Y = 20 cd/m2). In
the temporal conditions, we indicate the flash duration in ms. During
the flash, the test frame was presented. In particular, in the static con-
dition only the test frame was presented (unlimited duration). The
last column indicates the color name of the inducers. When two color
names (e.g., red-green) are indicated, it means that the 1st (e.g., red)

and the 2nd (e.g., green) inducers are different.

Experiment U (Uniform surround)
Spatial Conditions

Test Ring 1st Inducer 2nd Inducer Inducer’s color
l s l s l s

1 0.66 0.98 0.69 0.98 0.69 0.98 Red
2 0.66 0.98 0.66 1.38 0.66 1.38 Purple
3 0.66 0.98 0.63 0.98 0.63 0.98 Green
4 0.66 0.98 0.66 0.58 0.66 0.58 Lime

Temporal Conditions (in ms)
10, 20, 40, 80, 160, 320, static

Experiment S (Striped surround)
Spatial Conditions

Test Ring 1st Inducer 2nd Inducer Inducers’ color
l s l s l s

1 0.66 0.98 0.69 0.98 0.63 0.98 Red-green
2 0.66 0.98 0.66 1.38 0.66 0.58 Purple-lime
3 0.66 0.98 0.63 0.98 0.69 0.98 Green-red
4 0.66 0.98 0.66 0.58 0.66 1.38 Lime-purple

Temporal Conditions (in ms)
10, 20, 40, 80, 160, 320, static

Subjects

The experiments were done by six observers (Nsub = 6), four of them from our lab
(AA, DB, LR and XO), who were familiar with color spaces, and two others who
were not related to the lab (BG and CM). All of them were informed of the aim of
the experiments and consented to participate in the experimentation. Five observers
were completely naïve (AA, BG, CM, DB and LR), while one of them is one of the
authors of the paper (XO). Three of them are male (AA, DB and XO) and the other
three are female (BG, CM and LR). The ages were comprised between 22 and 45
years old. All of them had normal or corrected-to-normal vision, tested using the
Ishihara (Ishihara, 1972) and the D-15 Farnsworth Dichotomous Test (Farnsworth,
1947). To learn the experimental procedure, all observers did a one day training
session before starting the experiments. All the data collected during this training
session was discarded.
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Experimental Procedure

The subjects’ task was to adjust the chromaticity of the comparison ring until they
perceived it equal to the test ring. To do the task, they used a Logitech© gamepad
and they were instructed to do the match according to the test ring color perceived
during the test frame, ignoring the after-effect produced during the blank frame.

We conducted two different experiments (Experiments U and S) to study how the
surround chromaticity and the flash duration influence the color perception. Since
color induction strongly depends on the surround type, we divided the experiments
according to it. In Experiment U, the test ring had a uniform surround and, in Ex-
periment S, the test ring had a striped surround.

To reduce the available color space to one-dimension, similarly to Kaneko and
Murakami (2012), we performed a previous experiment where subjects were able
to adjust the chromaticity in a MacLeod-Boynton two-dimensional color space. We
observed that in both experiments (Experiment U and S) the observations were ap-
proximately on the cardinal axis which includes the test and inducers’ chromatici-
ties. Thus, we reduced the available color space to one-dimension, i.e., the observers
only changed the comparison ring chromaticity along l or s axis, depending on the
experimental spatial condition (1-D Experiment).

For each 1-D Experiment (Experiments U and S) we had 28 different experimen-
tal conditions (4 different spatial conditions -Nsc = 4- and 7 temporal conditions
-Ntc = 7-, see Table 3.1). Each subject evaluated each experimental condition 10 dif-
ferent times (i.e., 10 different observations, Nobs = 10). An experimental condition
was determined by the combination of a spatial condition and a temporal condition.
Each run started with 3 minutes of dark adaptation (Kaneko and Murakami, 2012)
and subjects performed 48 different observations (8 different spatial conditions, 3
different temporal conditions, and 2 repetitions). Subjects did not have any time re-
striction, but they were advised not to take more than 1 minute for each experimental
condition. On average, each run took about 30 minutes. Subjects evaluated the static
conditions of both experiments on two days apart. In that case, they performed 24
observations in each run (8 different spatial conditions, 1 temporal condition -static-
and 3 repetitions, except for the last run, which was 4 repetitions), taking about 15
minutes.

To mitigate a potential memory effect, we defined a pseudo-random order of the
temporal conditions in each run, while the spatial conditions were randomized.

3.2.3 Ethics approval

All experiments conducted in this study have been approved by the Ethical Com-
mittee of our University (Comissio d’Etica en l’Experimentacio Animal i Humana
de la Universitat Autonoma de Barcelona).

3.2.4 Data Analysis

To estimate the strength of color induction we used a one-dimensional metric (see
Equation 3.1) which is sensitive to both color contrast and color assimilation. In
Equation 3.1, ∆Ci is the strength of the induction phenomenon along any of the two
axes of the McLeod-Boynton color space (i = [l, s]) and Cc

i is the chromaticity of the
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comparison ring along the axis considered. Similarly, Ct
i and Cs

i are the chromatici-
ties of the test ring and 1st inducer ring along the same axis respectively.

∆Ci =
Cc

i − Ct
i

Cs
i − Ct

i
, (3.1)

According to Equation 3.1, when ∆Ci is negative, color contrast is induced since
the chromaticity difference between the comparison ring and the test ring (Cc

i − Ct
i )

shifts away from that of the 1st inducer (Cc
i − Ct

i has different sign from Cs
i − Ct

i ).
Similarly, when ∆Ci is positive, color assimilation is induced since the chromaticity
difference between the comparison ring and the test ring shifts towards that of the 1st

inducer (Cc
i − Ct

i has the same sign as Cs
i − Ct

i ).
It is important to note that there is a region below the just noticeable difference

(JND) where no color changes are perceived and, therefore, no color induction (nei-
ther contrast nor assimilation) is induced. We estimated this region (∆E = 1) from
the CIELab color space, which is an approximately perceptually uniform. Since both
inducers were defined on the same color axis, we defined induction in each of the
orthogonal axes i separately This metric does not include the 2nd inducer because
only the 1st one determines the type of color induction (color contrast or color as-
similation).

For each experimental condition, we averaged all 10 observations of each subject
and computed the average and the standard error of means (SEM) of all 6 subjects
(Nsub = 6).

We used a nested ANOVA analysis to observe whether temporal conditions af-
fect to color induction. Once the nested ANOVA indicated that there are significant
differences, a Fisher’s Least Significant Differences post-hoc analysis (Fisher’s LSD)
was performed to group the temporal conditions according to the color they induce.

3.2.5 Results

Experiment U

In this experiment, we study the color induced by equiluminant uniform surrounds
on an achromatic test ring at different temporal conditions (see Table 3.1). The results
(Figure 3.5) show that chromatic contrast is induced in all experimental conditions,
except at the 10 ms flash in the purple-lime opponent axis. In fact, under these ex-
perimental conditions (Spatial Conditions 2 and 4 -purple and lime inducers- flashed
during 10 ms), observers pointed out that the test frame detection was very difficult.

The statistical analyses show that for Spatial Conditions 1, 3 and 4, maximum
color contrast induction is produced by 40 ms flash, while in the Spatial Condition
2 there is no peak at 40 ms. Furthermore, for all spatial conditions there are no sig-
nificant differences between the perceived colors at 80 and 160 ms. Moreover, the
induction produced by a 320 ms flash was similar to the induction produced by the
static stimulus. All the ANOVA statistics’ details are shown in Table 3.2 and the
letters below error bars in Figure 3.5 show the temporal conditions that induced
statistically similar colors (Fisher’s LSD post-hoc analysis’ results). The temporal
conditions which have the same letter can be considered that induce the same per-
ceptual color.
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FIGURE 3.5: Results of Experiment U. The averaged (mean of 6 ob-
servers) color induction metric (∆C) is plotted against the flash du-
ration (7 different temporal conditions). Separate plots correspond
to the different spatial conditions (see Experiment U in Table 3.1).
The gray area is the region where subjects cannot perceive chromatic
differences (∆C ∈ [−JND, JND]). Error bars indicate ±1 SEM. An
ANOVA analysis of the data (see Table 3.2) shows that there are sig-
nificant differences in color induction strength for different tempo-
ral conditions. Fisher’s LSD post-hoc analysis (letters below the er-
ror bars), which allows us to measure which temporal conditions are
significantly different, stresses that the peak of color induction is al-
ways perceived at 40 ms, except for Spatial Condition 2. Furthermore,
static stimulation induces the same color as the longest flash duration
(320 ms) and the perceived color at 80 and 160 ms does not vary. In all
chromatic conditions, chromatic contrast (∆C < 0) or no induction is

induced.

Experiment S

In this experiment, we study the color induced by equiluminant striped surrounds
on an achromatic test ring under different temporal conditions (see Experiment S
in Table 3.1). In Figure 3.6, we can observe that Spatial Conditions 1 and 4 do not
induce any color when the stimuli are flashed. Only one out of 6 subjects observed
assimilation in flashed Spatial Condition 1, and 2 out of 6 perceived assimilation
in flashed Spatial Condition 4. By contrast, static stimulus of Spatial Condition 1
induces chromatic assimilation (∆C > 0). In Spatial Conditions 2 and 3 only color
contrast (∆C < 0) is perceived.



3.2. Color induction in equiluminant flashed stimuli 45

Subjects pointed out that, again, they left a gray color for Spatial Conditions 2
and 4 (purple-lime axis) flashed during 10 ms because they were not able to see the
test frame.

Similarly to Experiment U, ANOVA analysis shows significant differences be-
tween the induction produced by flashes of different durations in all spatial condi-
tions (see Experiment S in Table 3.2). We have not observed any grouping or be-
havioral pattern over all spatial conditions in the Fisher’s LSD post-hoc analysis.
Since the profile of the results of Figures 3.5 and 3.6 are completely different and the
strongest induction in this experiment is not observed at the same flash duration as
in the previous one, our initial hypothesis should be rejected.

FIGURE 3.6: Results of Experiment S. The averaged (mean of 6 ob-
servers) color induction metric (∆C) is plotted against the flash dura-
tion. Separate plots correspond to the different spatial conditions (see
Experiment S in Table 3.1). The gray region indicates where induction
cannot be perceived ([−JND, JND]). Error bars indicate±1 SEM. An
ANOVA analysis of the data (see Experiment S in Table 3.2) shows
that there are significant differences between color induction for dif-
ferent temporal conditions. Like in Experiment U, we do a Fisher’s
LSD post-hoc analysis (letters below error bars) to know the tempo-
ral conditions that induce significantly different colors. In this Ex-
periment, we observe that the static stimuli induction has significant
differences with respect to the induction produced by a 320 ms flash.
No color assimilation has been induced, except by static stimulus in

Spatial Condition 1.
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TABLE 3.2: Summary of the nested ANOVA results. The first column
indicates the experiment (Exp), the second one the spatial condition
according to Table 3.1, the third the effect (between groups, within
groups and the error), the fourth the degrees of freedom, the fifth the
sum of squares (SS), the sixth the mean square (MS) and the last two
the F and p values. These results show that, in all spatial conditions,
color induction depends on the temporal condition of the stimulus
(i.e., the flash duration). The nested ANOVAs have 6 and 378 degrees
of freedom, corresponding to Ntc − 1 and NtcNsub(Nobs − 1), respec-

tively.

Exp
Spatial

Source df SS MS F p
Cond

U

1
Flash Duration 6 0.47 0.08 18.74 <0.001

Observer(Flash Duration) 35 2.52 0.07 17.18 <0.001
Error 378 1.59 0.00

2
Flash Duration 6 6.05 1.01 160.80 <0.001

Observer(Flash Duration) 35 2.56 0.07 11.65 <0.001
Error 378 2.37 0.01

3
Flash Duration 6 0.53 0.09 11.95 <0.001

Observer(Flash Duration) 35 3.68 0.11 14.12 <0.001
Error 378 2.82 0.01

4
Flash Duration 6 2.75 0.46 41.43 <0.001

Observer(Flash Duration) 35 2.55 0.07 6.58 <0.001
Error 378 4.18 0.01

S

1
Flash Duration 6 0.97 0.16 84.26 <0.001

Observer(Flash Duration) 35 4.66 0.13 69.44 <0.001
Error 378 0.72 0.00

2
Flash Duration 6 2.77 0.46 27.19 <0.001

Observer(Flash Duration) 35 4.09 0.12 6.88 <0.001
Error 378 6.41 0.02

3
Flash Duration 6 0.22 0.04 20.56 <0.001

Observer(Flash Duration) 35 0.71 0.02 11.60 <0.001
Error 378 0.66 0.00

4
Flash Duration 6 1.14 0.19 10.87 <0.001

Observer(Flash Duration) 35 21.50 0.61 35.06 <0.001
Error 378 6.62 0.02

3.2.6 Discussion

We have divided the discussion into two parts, according to the two experiments
(Experiment U and Experiment S).

Uniform surround (Experiment U)

Our results from uniform surround stimuli (see Figure 3.5) show that static uniform
surrounds induce color contrast in all experimental conditions, in line with previous
studies (Monnier and Shevell, 2003; Monnier and Shevell, 2004; Gordon and Shap-
ley, 2006; Otazu, Parraga, and Vanrell, 2010; Kaneko and Murakami, 2012). Con-
cretely, Gordon and Shapley (Gordon and Shapley, 2006) used uniform surrounds
to study how the luminance and brightness of the test region affect color induc-
tion, observing color contrast in all conditions. In accordance to Kirschmann’s Third
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Law (Kirschmann, 1891), they concluded that brightness, but not luminance, is cru-
cial in the effect on color induction. They found that color contrast is maximal when
the stimulus is equibrightness (but not equiluminant) and, as brightness contrast is
increased, the color contrast is reduced. In their study, Kaneko and Murakami (2012)
also used equiluminant stimuli (using the heterochromatic flicker photometry tech-
nique) and they also found color contrast under all conditions. They used flashed
stimuli and measured the color contrast induced by color surrounds presented in
different temporal conditions. They concluded that the shorter the flash duration,
the stronger the color contrast. By contrast, we observe a clear peak of color contrast
when stimuli are flashed during 40 ms. Although our study shares several features
with Kaneko and Murakami (2012) such as temporal conditions, temporal configu-
ration, equiluminant stimuli and methodology, there are some differences between
the current and their study. They measured color induction on a central disk and
we measure it on a ring similar to the one used by Monnier and Shevell (2003) and
Otazu et al. (2010). Thus, the visual angle of the evaluated feature is different (a disk
of 1 deg and a ring width of 15.5 min of visual angle). In addition, they introduced
a thin black ring around the central disk, i.e., a border of lower luminance between
the central disk and its color surround, which could lead to different results (Xing
et al., 2015). Carefully analyzing their raw data, we can observe that in some spatial
conditions there is not a clear peak of color contrast at the shortest flash (10 ms), but
there is around 20 and 40 ms. Moreover, they showed two subjects (subjects MS and
YY) who seemed to obtain similar results to ours: they had a peak of induction dur-
ing the short flashes (around 20 ms), but not at the shortest (10 ms). Thus, all these
reasons could explain the dissimilarity between our and their results.

It is assumed that color induction (both color contrast and assimilation) is the re-
sult of neural mechanisms in V1 (Zaidi et al., 1992; Zaidi, 1999; De Weert and Kruys-
bergen, 1997; Cao and Shevell, 2005) and stimuli on l (red and green surrounds)
and s (purple and lime surrounds) axes are nearly independently processed at the
first stages of the HVS, i.e., in the retina, LGN and V1 (Sincich and Horton, 2005).
Since stimuli on the l axis are processed by the parvocellular pathway and stimuli
on s axis are processed by the koniocellular pathway (Nassi and Callaway, 2009), we
expected to obtain different results using stimuli that independently activate these
different visual pathways. In particular, we expected to observe different temporal
behaviors for each pathway because parvocellular and koniocellular pathways have
different processing speeds (Casagrande et al., 2007; Briggs and Usrey, 2009). From
the obtained results (see Figure 3.5), we can see that the color contrast when the in-
ducer is purple (Spatial Condition 2 of Table 3.1) is completely different to that with
other color surrounds. This spatial condition induces color contrast, i.e., the achro-
matic test ring is perceived as lime, when flashed longer than 20 ms. Moreover, it is
the only color of the surround with no induction maximum, except at infinite flash
duration (i.e., static temporal condition). This stimulus activates the S-OFF channel
of koniocellular pathway, which directly projects to layer 4A of V1 (Chatterjee and
Callaway, 2003; Callaway, 2014). By contrast, the S-ON channel of the koniocellular,
and both parvocellular and magnocellular pathways project to layers 2/3, 4Cβ, and
4Cα of V1, respectively, and all of them converge into layer 2/3 of V1 (Sincich and
Horton, 2005). The different processing of S-ON and S-OFF channels of koniocel-
lular pathway could explain the dissimilar psychophysical results (see Figure 3.5)
on color contrast when inducers have lime (S-ON on test ring) or purple (S-OFF on
test ring) chromaticities. In addition, since all channels of parvocellular pathway (L-
ON, L-OFF, M-ON, and M-OFF) are processed in the same layers of V1 (first in layer
4Cβ, 4B and finally in 2/3), and S-ON channel of koniocellular pathway is mainly
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processed in layer 2/3, it could explain this similarity in color induction when in-
ducers have red, green or lime chromaticities (Spatial Conditions 1, 2 and 4).

Striped surround (Experiment S)

Our results from striped surround stimuli (see Figure 3.6) show that, similarly to
other authors (Fach and Sharpe, 1986; Smith, Jin, and Pokorny, 2001), striped sur-
rounds can induce color contrast. Only one out of 28 experimental conditions in-
duces color assimilation, namely when the stimulus is static, its 1st inducer is red
and the 2nd one is green. In contrast, Monnier and Shevell (2003; 2004) and Otazu et
al. (2010) observed that striped surrounds induce color assimilation in all spatial con-
ditions and never found color contrast. Although our study has very similar features
to these ones, such as spatial configuration and chromaticities (see Section 3.2.2),
they used non-equiluminant stimuli and we have used equiluminant stimuli. Thus,
our hypothesis is that this luminance difference could explain the difference between
our results and the ones obtained by these authors. Monnier and Shevell (2003;
2004), and Otazu et al. (2010) introduced a luminance difference between the test
ring and its surround, and they found chromatic assimilation for striped surrounds.
De Weert and Spillmann (1995) found no color induction in equiluminant stimuli,
but found color induction when the 1st inducer had lower luminance than the cen-
tral region. Extending this study, Cao and Shevell (2005) showed that assimilation
in the l axis of MacLeod-Boynton color space is found when the inducer luminance
is lower than the central region luminance, but not when it is higher, observation
that was also reported by De Weert and Spillmann (1995). In the s axis, they showed
that color assimilation does not depend on the inducing luminance (i.e., induction
was observed when the inducing luminance was either lower or higher than the
central region luminance), but depends on the spatial configuration of the inducers
(i.e., on both spatial frequency and inducer’s spatial separation). Thus, our hypoth-
esis is supported by De Weert and Spillmann (1995) and Cao and Shevell (2005)
results. Considering that chromatic assimilation mainly appears when stimulus
is not equiluminant, i.e., only when magnocellular pathway is activated, it could
suggest that magnocellular pathway could act as a switch-like signaling system ac-
tivating or deactivating assimilation in both parvocellular and koniocellular path-
ways in layer 2/3 (where all the pathways converge). In recent neurophysiological
and psychophysical studies (Xing et al., 2015; Nunez, Shapley, and Gordon, 2018),
the authors concluded that brightness and color interact in V1. In particular, their
study supports the hypothesis that the color appearance depends on brightness con-
trast (Kirschmann, 1891; Gordon and Shapley, 2006; Faul, Ekroll, and Wendt, 2008;
Bimler, Paramei, and Izmailov, 2009) because there is a mutual-inhibition (i.e., color
assimilation) between color-responsive cells and luminance-responsive cells. Fur-
thermore, they proposed that these interactions are driven by double-opponent cells,
which respond to both luminance and color differences (Color-Lum neurons) (John-
son, Hawken, and Shapley, 2001; Johnson, Hawken, and Shapley, 2008). The non-
opponent neurons, or Lum neurons, are inactive when the stimulus is equiluminant,
and single-opponent neurons, or Color neurons, respond to large areas of color and
do not respond to luminance differences. These neurophysiological observations,
also supports our hypothesis that luminance difference between the test ring and
its surround, which activates Lum neurons, could be a key factor to induce color
assimilation. In addition, psychophysical studies by Fach and Sharpe (1986), and
Smith et al. (2001) concluded that spatial frequency is another crucial factor to in-
duce color assimilation in equiluminant striped stimuli. In particular, they observed
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that very thin stripes (> 9 cpd) induce color assimilation and thick stripes (< 0.7 cpd)
induce color contrast, with a transition point from assimilation to contrast around
4 cpd (Smith, Jin, and Pokorny, 2001). Considering that the spatial frequency of our
stimuli is 1.94 cpd, we agree with them: In that range both color contrast and color
assimilation could be induced (Fach and Sharpe, 1986; Smith, Jin, and Pokorny, 2001;
Cao and Shevell, 2005).

Comparing the results from flashed and static stimuli, we can observe that in
almost all spatial conditions (except for Spatial Condition 1), the type of color induc-
tion, e.g. assimilation or contrast, does not vary between flashed and static stimuli,
when the flash is longer than 40 ms.

In both types of surround configurations, e.g., uniform and striped surrounds
(see Figures 3.5 and 3.6), we can see that at the shortest flash duration (10 ms) sub-
jects only perceived color induction when the surrounding colors are on the l axis
of MacLeod-Boynton color space, but do not perceive any induction when the sur-
round is on the s axis (purple or lime colors). In fact, when subjects finished the
experiment they pointed out that under these experimental conditions (purple and
lime surround colors flashed for 10 ms) they were not able to see the test frame and,
therefore, left an achromatic comparison ring. This consideration goes in line with
the physiological observation that the koniocellular pathway is slower than the par-
vocellular pathway (Casagrande et al., 2007; Briggs and Usrey, 2009), i.e., the purple
and lime colors are processed more slowly than the red and green colors.

3.2.7 Computational Model

As pointed out in Section 3.2.1, there are several computational models that repro-
duce color, or brightness, induction effects (Blakeslee and McCourt, 1977; Blakeslee
and McCourt, 1999; Blakeslee and McCourt, 2004; Spitzer and Barkan, 2005; Robin-
son, Hammon, and de Sa, 2007; Otazu, Vanrell, and Parraga, 2008; Otazu, Parraga,
and Vanrell, 2010; Penacchio, Otazu, and Dempere-Marco, 2013). Most of them work
on static stimuli and are based on several receptive field properties such as spatial
frequency and orientation selectivity. Since the neurodynamical model proposed by
Penacchio et al. (2013) is one of the few models that works on temporally dynamic
stimuli, we have chosen it to study the temporal evolution of the system when our
flashed stimuli are presented. In addition to the spatial frequency and the orienta-
tion selectivity of the neurons, it also models their lateral connections, as defined
by Li (1998). This computational model was designed to reproduce brightness in-
duction effects using both static and dynamic stimuli, therefore it only considers the
luminance channel. Since the spatial configurations that we defined only activate
one pathway (parvo- or koniocellular pathway), we applied the model to the ac-
tivated chromatic channel for the sake of simplicity (Otazu, Parraga, and Vanrell,
2010). To be more biologically plausible, we used a Gabor decomposition instead of
the Wavelet one that the authors used in their work, and we analyzed the temporal
evolution of the output’s firing rate activity. This Gabor decomposition models the
receptive fields of V1 (Daugman, 1985) neurons and the response of the model is de-
termined by both the input flashed stimulus, as a sequence of frames (i.e., images),
and the interactions between the different neuronal populations. This architecture
models the excitatory and inhibitory neurons and their membrane potentials, which
are transformed to firing rate activity using sigmoid-like positive non-linear and
non-decreasing functions (Penacchio, Otazu, and Dempere-Marco, 2013). Since this
model does not consider any difference between parvo-, konio-, and magnocellular
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(A) (B)

FIGURE 3.7: Computational simulation of the psychophysical exper-
iments presented in this study using the computational model de-
fined by Penacchio et al. (2013). We have chosen this model because
it allows us to use dynamic (or flashed) stimuli. Both panels show
the mean firing rate activity (in arbitrary units) of the computational
model for the different temporal conditions defined in our experi-
ments (see Section 3.2.2 for more details). In (A) we show the re-
sults for Experiment U (uniform surround) and in (B) the results for
Experiment S (striped surround). We can observe that the uniform
surround (left panel) produces a peak of activity for short flashes (at
20 ms), while striped surround does not produce any peak. This ob-
servation goes in line with our experimental data which show an in-
duction’s peak for short flashes (around 40 ms in Spatial Conditions
1, 3 and 4) when uniform surrounds are presented, but do not when

striped surrounds are shown.

pathways, given an experiment (e.g., Experiments U or S), we obtained the same
results for the different spatial conditions. In Figures 3.7a and 3.7b, we show the
qualitative results of the model. Here, the y axis is the mean firing rate activity (at
the spatial frequency associated to the ring size) when the test frame is presented.
We can observe that the profiles in Figures 3.7a and 3.7b are different. In Figure 3.7a
(Experiment U), the mean firing rate activity for short flashes is higher than the mean
activity for long flashes. In contrast, in Figure 3.7b (Experiment S) we cannot observe
any peak of activity. These observations go in line with some of our psychophysical
results: An induction peak is observed at 40 ms for uniform surrounds (Experiment
U) and no induction peak is observed for striped surrounds (Experiment S).

As stated before, the Spatial Conditions 1, 3 and 4 of the Experiment U (the ones
that show an induction peak at 40 ms) are processed by the layers 4Cβ and 2/3 in
V1. The results of the computational model suggest that it reproduces the lateral
connections present in these layers. In contrast, it does not reproduce the results of
Spatial Condition 2 (processed by layer 4A). Thus, the architecture does not correctly
model the lateral connections in this layer. In contrast, in the results’ analysis of
Experiment S, we cannot observe any grouping pattern over the different spatial
conditions. Therefore, it is difficult to link these computational model results to the
ones obtained in the Experiment S. We can only note that, in both psychophysical
and computational results, we cannot observe a peak of either induction or activity.
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3.2.8 Conclusions

Taking into account that we only observed color contrast (except for red-green in-
ducer in static striped stimuli) for the two different types of surround (uniform and
striped) and that temporal behavior of color induction depends on visual pathways
(see Figures 3.5 and 3.6), we can conclude:

• The strongest color contrast is induced by a uniform surround stimulus flashed
for 40 ms.

• Purple inducer (which induces a lime chromaticity and, thus, activates the S-
OFF channel in layer 4A) induces a temporal response that is completely dif-
ferent to the temporal response induced by other inducers such as red, green
and lime (which activates other channels in layer 2/3).

• Striped equiluminant stimuli do not induce color assimilation (except for red-
green inducers).

• The test frame cannot be perceived during flashes shorter than 20 ms when
the colors of the surrounding are on the s axis of the MacLeod-Boynton color
space.

• Our initial hypothesis, i.e., flashed uniform and striped surrounds would in-
duce opposite colors but with a similar temporal behavior, should be rejected.

Considering previous studies, we can also conclude that luminance could be a
key factor to induce color assimilation. In particular, assimilation only appears in
non-equiluminant stimuli, or in equiluminant striped stimuli with a very high spa-
tial frequency. This could suggest that color contrast and color assimilation effects
are the result of different mechanisms or, at least, the result of the same mecha-
nism which needs an interaction with the magnocellular pathway (the luminance
channel) to induce color assimilation. In this study we do not analyze which inter-
action is responsible for color assimilation. Nevertheless, other authors concluded
that mutual-inhibition (when Lum cells inhibit Color and Color-Lum neurons) has
an important role in color perception (Xing et al., 2015). Our results could support
this idea.

3.3 The effect of luminance and brightness differences on
color assimilation

In the previous section, we concluded that luminance differences could be a key
factor to induce color assimilation. Thus, in this section, we have studied the effect
of both luminance and brightness differences on color assimilation.

3.3.1 Introduction

The effects of achromatic contrast (either luminance or brightness contrast) on color
induction have received relatively less attention from the scientific community. Lu-
minance is the photometric measure of luminous intensity per unit area of light trav-
elling in a given direction and is usually measured by photometric devices. Bright-
ness is the perception elicited by the luminance of a visual target, which is not nec-
essarily proportional to luminance. Below we review the color induction literature,
discriminating between both concepts.
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Color contrast

Color contrast has been reported under a wide range of spatiochromatic conditions:
unconstrained, when there are luminance and/or brightness and color differences be-
tween the target and the inducer (Monnier and Shevell, 2003; Monnier and Shevell,
2004; Gordon and Shapley, 2006; Otazu, Parraga, and Vanrell, 2010); equiluminant,
when there are no luminance differences between the target and the inducer (Gordon
and Shapley, 2006; Kaneko and Murakami, 2012); and equibrightness, when there are
no brightness differences between the target and the inducer (Gordon and Shapley,
2006; Faul, Ekroll, and Wendt, 2008; Bimler, Paramei, and Izmailov, 2009). In gen-
eral, researchers have found that color contrast does occur under all these conditions
with various degrees of strength, which depends mostly on luminance or brightness
differences (Gordon and Shapley, 2006). Several psycophysical studies (Gordon and
Shapley, 2006; Faul, Ekroll, and Wendt, 2008; Bimler, Paramei, and Izmailov, 2009)
indicate that color induction follows Kirschmann’s Third Law (Kirschmann, 1891),
which says that color contrast is highest when the stimulus is equibrightness (but
not equiluminant) and, as brightness contrast is either increased or decreased, color
contrast is reduced.

Color assimilation

Although color assimilation is more common than color contrast in daily life (De Val-
ois and De Valois, 1988b) it has been less studied. As color contrast, assimilation has
been studied under several spatiochromatic conditions such as unconstrained (Van
Tuijl and De Weert, 1979; Ejima et al., 1984; Watanabe and Sato, 1989; De Weert
and Spillmann, 1995; Pinna, Brelstaff, and Spillmann, 2001; Monnier and Shevell,
2003; Monnier and Shevell, 2004; Devinck et al., 2005; Cao and Shevell, 2005; Otazu,
Parraga, and Vanrell, 2010), and equiluminant (Fach and Sharpe, 1986; Watanabe
and Sato, 1989; De Weert and Spillmann, 1995; Pinna, Brelstaff, and Spillmann,
2001; Devinck et al., 2005; Cerda-Company and Otazu, 2017b; Cerda-Company and
Otazu, 2019). It has also been studied using several patterns such as the pincush-
ion (Schachar, 1976) and watercolor (Pinna, 1987) illusions and those of Van Tu-
ijl (1975) and Ehrenstein (1941). Using the pincushion illusion, De Weert and Spill-
mann (1995) used red and green stripes on different chromatic backgrounds and
measured the color induction on the background when it was either higher, lower
or the same as the luminance of the inducers. Although they did not report the
details of their results, they concluded that color assimilation is induced when the
luminance of the target’s surface is higher than that of the inducers, but not when it
is lower. Moreover, they reported that no color change is induced by equiluminant
stimuli. In line with this work, Pinna et al. (2001) and Devinck et al. (2005) studied,
among other features, the effect of luminance contrast between the two inducers on
the strength of the watercolor effect. They concluded that, when the two inducers are
nearly equiluminant, color spreading is still present but weak, suggesting that the
watercolor effect is the result of a luminance-dependent mechanism (Devinck et al.,
2005; Devinck et al., 2006). Using concentric rings, Cao and Shevell (2005) found that
assimilation occurred along the l axis of the MacLeod-Boynton color space (Boyn-
ton, 1986) when the inducer’s luminance was lower than that of the target, but not
when it was higher. In the s axis, they found that color assimilation occurs when
the inducer’s luminance is either lower or higher than that of the target, but its
strength depends on the spatial configuration of the inducers (i.e., on both spatial
frequency and spatial separation). In the same line, several researchers (Fach and
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Sharpe, 1986; Smith, Jin, and Pokorny, 2001) studied the role of the spatial frequency
in color assimilation using equiluminant stimuli. They observed that by making
stripes increasingly thicker, it is possible to make the transition from assimilation
to contrast (Smith, Jin, and Pokorny, 2001). Other researchers (Monnier and Shevell,
2003; Monnier and Shevell, 2004; Otazu, Parraga, and Vanrell, 2010) found similar ef-
fects using unconstrained stimuli and observed that thinner stripes induce stronger
color assimilation (Otazu, Parraga, and Vanrell, 2010). In summary, there seems to
be two major stimuli characteristics that induce color assimilation: spatial frequency
content and luminance differences.

Brightness induction

Achromatic inducers change the perceived brightness of the achromatic target re-
gion (brightness induction), an effect that has been widely studied for different stim-
uli (White, 1979; McCourt, 1982; Blakeslee and McCourt, 1977; Blakeslee and Mc-
Court, 2004; Kingdom, 2011). Using a similar paradigm to ours (see below), Hong
and Shevell (2004) concluded that the luminance of both the 1st and the 2nd inducers
contribute to brightness induction, suggesting that luminance differences between
the target region and its surrounds (i.e., the context) are important. Moreover, other
studies reported an asymmetry between "brightness" and "darkness", pointing out
that the strength of the effect depends on whether the target region is surrounded
by bright or dark inducers (Beck, 1966; Festinger, Coren, and Rivers, 1970; Hamada,
1984; De Weert and Spillmann, 1995).

Color processing by the human visual system

The initial stages of visual information processing by the human visual system (HVS)
are by far the most understood. Light is absorbed by rods and cones in the retina.
Cones operate in well-lit (photopic) conditions and can be classified in three classes:
L, M and S which are sensitive to long, middle and short wavelengths (LWS, MWS
and SWS) of the visible electromagnetic spectra respectively. Visual information is
segregated by ganglion cells into three nearly independent (Livingstone and Hubel,
1988; Sincich and Horton, 2005) pathways called magno-, parvo- and koniocellular
and sent to a structure in the thalamus called Lateral Geniculate Nucleus (LGN).
The magnocellular pathway carries mainly low-spatial resolution and spatially op-
ponent luminance (LWS + MWS) information, while the other two carry spatio-
chromatically opponent information (the parvocellular pathway carries high-spatial
resolution luminance alongside LWS versus MWS opponent signals and the ko-
niocellular pathway carries SWS versus LWS+MWS opponent signals) (Derrington,
Krauskopf, and Lennie, 1984; Nassi and Callaway, 2009). There are several chro-
matic spaces consistent with retinal and LGN physiology, the most popular being
the ones by MacLeod and Boynton (MacLeod and Boynton, 1979) and Derrington,
Krauskopf, and Lennie (Derrington, Krauskopf, and Lennie, 1984). The LGN re-
ceives feedback from higher areas but projects mainly to cortical area V1, which
has three different types of neurons: single- (SO), double- (DO) and non-opponent
(NO) neurons (Johnson, Hawken, and Shapley, 2001; Shapley and Hawken, 2002;
Johnson, Hawken, and Shapley, 2008; Shapley and Hawken, 2011). SO neurons (or
Color neurons) respond best to large chromatic areas; DO neurons (or Color-Lum
neurons) respond to both chromatic and luminance variations and NO neurons (or
Lum neurons) respond best to luminance variations. Considering spatial frequency
selectivity, Lum and Color-Lum neurons are band-pass (i.e., they respond best at
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medium spatial frequency stimuli of 2 cpd) and Color neurons are low-pass (they
respond optimally to spatial frequencies < 0.5 cpd and do not respond at all to spa-
tial frequencies > 2 cpd) (Johnson, Hawken, and Shapley, 2001; Johnson, Hawken,
and Shapley, 2008; Shapley and Hawken, 2011; Xing et al., 2015; Nunez, Shapley,
and Gordon, 2018). Although to fully silence Lum neurons is difficult, equilumi-
nant stimuli of medium to high spatial frequency only produce weak responses in
them. In fact, equiluminant stimuli of high spatial frequency (> 3 cpd) also sup-
presses parvocellular responses (Derrington, Krauskopf, and Lennie, 1984; Granger
and Heurtley, 1973; Skottun, 2013).

The neural mechanisms behind color induction are not completely understood.
Some explanations rely on retinal mechanisms (Kamermans, Kraaij, and Spekrei-
jse, 1998; VanLeeuwen et al., 2007; Sabbah et al., 2013) while others rely on low-
level (Xing et al., 2015; Nunez, Shapley, and Gordon, 2018) or higher cortical mech-
anisms or combinations of both (Gegenfurtner, 2003; Horiuchi et al., 2014). There
are also important interactions between brightness and color that might produce
changes in color appearance. For example, increases in the variance of surround
colors cause color objects to appear desaturated (they appear more vivid and richly
colored against low-contrast gray surrounds than against high contrast multicolored
surrounds) (Brown and MacLeod, 1997). The same occurs for increases in surround
brightness contrast (Faul, Ekroll, and Wendt, 2008; Bimler, Paramei, and Izmailov,
2009). These effects have been explained by inhibition in cortical V1 circuits gen-
erated by local brightness contrast at the boundary between the target and the sur-
round (Xing et al., 2015). In consequence, an important contribution to color induc-
tion (both color contrast and color assimilation) is likely to come from these neural
mechanisms in V1 (Zaidi et al., 1992; Rossi, Rittenhouse, and Paradiso, 1996; De
Weert and Kruysbergen, 1997; Zaidi, 1999; Shapley and Hawken, 2002; Cao and
Shevell, 2005), with DO neurons playing a major role in color appearance (Nunez,
Shapley, and Gordon, 2018).

In addition to not having a comprehensive explanation for the phenomenon,
there are few observations on how achromatic information interacts with the chro-
matic channels to produce color induction. In previous work, Monnier and Shev-
ell (2003; 2004) reported color assimilation with a luminance difference of +5 cd/m2

between the target and inducers. Given that using similar but equiluminant stim-
uli we did not (Cerda-Company and Otazu, 2017b; Cerda-Company and Otazu,
2019) (see previous Section), we wanted to test whether a transition from color con-
trast (or no induction) to color assimilation occurs just by increasing or decreas-
ing the luminance of the target with respect to its inducers (De Weert and Spill-
mann, 1995; Monnier and Shevell, 2003; Monnier and Shevell, 2004; Cao and Shev-
ell, 2005; Otazu, Parraga, and Vanrell, 2010; Cerda-Company and Otazu, 2017b;
Cerda-Company and Otazu, 2019). Then, to understand the role of the different
elements of a patterned stimulus (i.e., 1st and 2nd inducers), we separately varied
their luminance (luminance experiment). Finally, to study whether color assimila-
tion is due to luminance or brightness differences, we reran the luminance exper-
iment but varying the brightness of the elements instead (brightness experiment). To
this end, we present two new psychophysical studies where we systematically mea-
sured the contribution of both luminance and brightness differences on color induc-
tion. First, for each varied element, we measured the colors induced in five different
luminance conditions: (1) when the target’s luminance was much lower than the
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inducers’ luminance (∆Y = −10 cd/m2); (2) when the target’s luminance was no-
ticeably lower than the inducer’s (∆Y = −5 cd/m2); (3) when the stimuli were equi-
luminant (∆Y = 0 cd/m2); (4) when the target’s luminance was noticeably higher
(∆Y = +5 cd/m2), and (5) when it was much higher (∆Y = +10 cd/m2). Then, we
defined similar brightness conditions: (1) when the target’s luminance (and, thus,
its brightness) was much lower than the inducers’ brightness (∆B = −10 cd/m2);
(2) when the target’s luminance was noticeably lower than the inducer’s brightness
(∆B = −5 cd/m2); (3) when the stimuli were equibrightness (∆B = 0 cd/m2); (4)
when the target’s luminance was noticeably higher (∆B = +5 cd/m2), and (5) when
it was much higher (∆B = +10 cd/m2). As the luminance and brightness differ-
ences were increased or decreased, we expected to observe significant differences in
the strength of color induction since in the equiluminant condition, responses come
mostly from Color and Color-Lum neurons, and in the unconstrained conditions all
neurons respond (Xing et al., 2015; Nunez, Shapley, and Gordon, 2018). We also
expected to observe differences when the luminance was varied in either the tar-
get ring or in any of the inducers, since the elements that affect the color induction
could be determined by the distance of the neural lateral connections (Zaidi et al.,
1992). Finally, if color assimilation is due to luminance differences, we expected to
observe color assimilation in the equibrightness condition (where small luminance
differences are present).

3.3.2 Methods

Apparatus and Stimuli

We used the same apparatus as in the previous study (see Section 3.2.2).
Two different circularly symmetric patterns (test and comparison stimuli) were

simultaneously presented to the observers side by side on the CRT monitor (simi-
larly to the test frame of the previous study; see Figure 3.8). The test stimulus (pre-
sented on the left side) was composed by 11 concentric rings of the same width
(equivalent to 15.5 arcmin of visual angle), which included the test ring. The test
ring was always achromatic (l = 0.66 and s = 0.98) and its luminance, as well as
the luminance of the concentric rings, depended on the evaluated luminance condi-
tion. We defined five different luminance conditions depending on the luminance
of the test ring relatively to the other rings (see Figure 3.9 for the test ring case):
∆Y = [−10,−5, 0,+5,+10] cd/m2. The inducer stimuli consisted of two types of
rings, called the 1st and the 2nd inducer according to their physical distance to the
test ring. These inducer rings always had opponent chromaticities (e.g. when the
1st inducer was red, the 2nd one was green and vice versa). We varied separately
the luminance of the different elements present in a patterned stimulus, that is: the
test ring, 1st inducer and 2nd inducer. Additionally, we varied the luminance of both
inducers in an opposite way (e.g., when the 1st inducer was brighter, the 2nd one was
dimmer than the test ring). When we varied the luminance of an element of the
patterned stimulus all the other elements (the unvaried elements) were equiluminant
with respect to an achromatic reference equal to 20 cd/m2. For instance, in the test
ring case, we varied the luminance of the test ring and we kept constant the inducers’
luminance and, in the both inducers case, we varied the luminance of both inducers,
and we kept unvaried the luminance of the test ring. Therefore, for each varied ele-
ment, we had five different luminance conditions. See further equiluminance details
in the Section entitled "Equiluminance point measure". Thus, in two luminance con-
ditions the test ring was brighter than its surround, in two it was darker and in one
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had the same luminance. We also defined four chromatic conditions according to
the 1st and 2nd inducer’s chromaticities: red-green, green-red, purple-lime and lime-
purple. These were: red (l = 0.69, s = 0.98); green (l = 0.63, s = 0.98); purple
(l = 0.66, s = 1.38); and lime (l = 0.66, s = 0.58). The colorimetric properties of the
inducer’s rings were selected to represent orthogonal axes in the MacLeod-Boynton
color space (Boynton, 1986) with the achromatic locus at the centre. To facilitate
the correct identification of the test ring by the subjects, in all conditions, we placed
small pairs of dots in four different positions (see Figure 3.8).

The comparison stimulus (presented on the right side) was the same across all
conditions (see Figure 3.8). It consisted of a uniform achromatic disk (l = 0.66,
s = 0.98, Y = 20 cd/m2) containing the comparison ring. Both the test and comparison
rings had the same physical dimensions and their respective surrounds (the inducer
and the comparison surrounds) had exactly the same size. The rest of the screen
was set to its minimum possible value (dark background). Subjects were asked to
modify the chromaticity and luminance of the comparison ring to match that of the
test ring using the gamepad to navigate on the MacLeod-Boynton color space. We
chose to define all chromaticities in the MacLeod and Boynton color space (Boynton,
1986), because it is a commonly used opponent color space (red-green, purple-lime,
and bright-dark), based on the Smith and Pokorny (1975) cone fundamentals.

All stimuli were implemented in Matlab (The MathWorks, Inc., Natick, MA, US),
and the video processor was controlled via a Cambridge Research System custom-
made toolbox.

To evaluate whether color assimilation is due to either luminance or brightness
differences, we used exactly the same stimuli as described before, but the unvaried
elements were equibrightness instead of equiluminant (see further details in the Sec-
tion entitled ”Equibrightness point measure”). Therefore, we also have five different
brightness conditions (∆B = [−10,−5, 0,+5,+10] cd/m2). The unvaried elements
were equibrightness with respect to an achromatic reference of 20 cd/m2 and the
varied element had a brightness equal to the defined luminance difference. For in-
stance, in the 1st inducer case, we varied the luminances of the 1st inducer according
to the subject-equibrightness calibration. Thus, the 1st inducer in the brightness con-
dition ∆B = −10 cd/m2 had the same brightness as an achromatic light of 10 cd/m2

(10 cd/m2 less than the reference value of 20 cd/m2).

Equiluminance point measure Equiluminant (or isoluminant) color stimuli are
defined as containing variations only in chromaticity. It is commonly used to sepa-
rate magno- and parvocellular responses in psychophysical experiments, since they
are processed by physiologically distinct channels from the retina to the visual cor-
tex. Equiluminant stimuli have been reported as having special perceptual proper-
ties. For example, artists use these properties to make a painting to appear unstable
(or "jittery") and to cause motion illusions (isoluminant chromatic motion). An equi-
luminant display consists of an array of stimuli of different colors whose luminances
have been selected to maximize these effects. Since the effects are a consequence
of the physiology, the equiluminant point varies slightly from one observer to the
next. In this work, we generated equiluminant stimuli by finding the colorimetric
input that generates equiluminance in each of the subjects. Before starting the ex-
periment described above, subjects participated in an equiluminant-point measure
procedure, which lasted 3 hours and was performed in 3 different days. We mea-
sured individual equiluminant points using the Minimally Distinct Border method
(MDB) (Boynton, 1973; Boynton and Kaiser, 1968; Brill, 2014; Kaiser, 1971; Kaiser
et al., 1990; Wagner and Boynton, 1972). The stimuli consisted on two juxtaposed
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FIGURE 3.8: Stimuli design. The 1st and 2nd inducers consisted of
pairs of rings of opposing chromaticities such as red-green or purple-
lime. The test ring was always achromatic (l = 0.66 and s = 0.98) and,
as well as the 1st and 2nd inducers, could have 5 different luminance
values (luminance conditions): Y = [10, 15, 20, 25, 30] cd/m2. When
all the elements (test ring, 1st and 2nd inducers) had a luminance of
Y = 20 cd/m2, the stimulus was equiluminant. Instead, when all the
elements had a brightness equal to a luminance of ∆Y = 20 cd/m2,
the stimulus was equibrightness. Although it is difficult to see in this
figure because of their size, 8 black dots of 1 pixel size were drawn
around test ring for easier detection: 4 dots in the inner radius of the
ring and 4 points in the outer radius (at 0, 90, 180 and 270°). Subjects
had to match the color of the comparison ring to that of the test ring.
Colors in this figure might not be the same as the experiment since

they were created for illustrative purposes.

semicircular disks presented in the same apparatus as the experiment. One of the
disks was achromatic (l = 0.66 and s = 0.98) and the other had one of the colors de-
fined in the experiment’s chromatic conditions (i.e., red, green, purple or lime) plus
an achromatic condition, for control. We set the luminance of the achromatic disk at
the defined luminance conditions (Y = [10, 15, 20, 25, 30] cd/m2) and asked subjects
to adjust the luminance of the colored disk until "the border between the colored
and the achromatic disks was minimal", i.e. when only chromatic but not luminance
differences are perceived. Ideally, there would be no border between the two disks
(in fact, it happened in the control condition) but in our case, at least a chromatic
border was always perceived. At the end of the whole procedure, we obtained an
average (from 8 measures) of the luminance necessary to match each of the four col-
ors to the achromatic disk (according to the defined luminance conditions) for each
subject. These luminance values were used to construct the inducer rings of the test
stimulus in the luminance experiment (see left panel of Figure 3.8).

Equibrightness point measure As stated before, brightness and luminance are
similar concepts, but not the same one. Often, when luminance differences are
present, there are also brightness differences, but previous studies showed that when
a stimulus is equiluminant it is not necessarily equibrightness (Boynton and Kaiser,
1968; Kaiser, 1971; Wagner and Boynton, 1972; Roufs, 1978). Therefore, for each
subject we measured their luminance values that makes the stimuli equibrightness.
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FIGURE 3.9: Test ring case: luminance profile of stimuli. This pro-
file was calculated using the central row of Figure 3.8. We used a
dark background, in this case, inducers formed an equiluminant sur-
round, and the luminance of the comparison ring was adjustable (dot-
ted line). We defined 5 different luminance conditions for the test
ring (dashed lines), in two of them the test ring’s luminance was be-
low that of the inducers’ luminance (Y = 10 and 15 cd/m2), in two
it was above (Y = 25 and 30 cd/m2), and in one it was equilumi-
nant (Y = 20 cd/m2). For simplicity’s sake, the small black dots that
marked the test ring were removed from this figure (they would be

placed in both sides of the test ring).

The stimuli consisted in two semicircular disks presented in the same apparatus as
the experiment but, in contrast to MDB, separated by a small gap of 30.5 arcmin.
Similarly to the MDB, one of the semicircular disks was achromatic (the reference
one) and the other one had a chromaticity of the colors defined in the experiment’s
chromatic conditions (i.e., red, green, purple or lime) plus an achromatic control
condition. We set the luminance of the achromatic disk at the defined luminance
conditions (Y = [10, 15, 20, 25, 30] cd/m2) and asked subjects to adjust the luminance
of the colored disk until ”the radiance of the colored disk appear as bright as the
reference one” (Roufs, 1978). Since this data had a higher intra-subject variability
(standard deviation) than the equiluminance point measure, we doubled the num-
ber of matches to calibrate the subject-equibrightness point. Then, we obtained an
average (from 16 measures) of the luminance necessary to match each of the four
colors to the achromatic disk (according to the defined brightness conditions) for
each subject. These luminance values were used to construct the inducer rings of the
test stimulus in the brightness experiment.

Subjects

Thirteen subjects recruited from our academic community participated in the exper-
iment. Five of them were familiar with color spaces (DB, MM, NS, XC and XO) and
eight of them were not (AC, AT, CG, CS, DC, DG, IR and MF). All of them signed
the consent form to participate in the experiment, where the aim of the study was
described. Ten of them were completely naïve (AC, AT, CG, CS, DB, DC, DG, IR, MF
and MM) while the others were not (NS, XC and XO). The age range was between
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18 and 46 years old. Ten of them were male (AC, AT, CG, DB, DC, DG, IR, MM,
XC and XO) and three of them female (CS, MF and NS). All subjects had normal
or corrected-to-normal vision, and they scored as normals in the Ishiara’s test (Ishi-
hara, 1972) and the D-15 Farnsworth Dichotomous Test (Farnsworth, 1947). Not all
subjects participated in both experiments. Ten of them (AC, CG, CS, DB, DC, MF,
MM, NS, XC and XO) participated in the test ring case for luminance experiment,
eight of them (AC, CS, DC, DG, MF, NS, XC and XO) participated when the induc-
ers’ luminance were varied, nine participated in the test ring case for the brightness
experiment (AC, AT, CS, DC, IR, MF, NS, XC and XO) and seven participated when
the inducers’ brightness were varied (AC, CS, DC, MF, NS, XC and XO). Thus, a
total of seven subjects (AC, CS, DC, MF, NS, XC and XO) did both experiments.
Since the experiments were conducted during one year, several people abandoned
them due to time constraints. The experiments were approved by our university’s
ethic commitee (Comissio d’Etica en l’Experimentacio Animal i Humana -CEEAH-
de l’Universitat Autonoma de Barcelona).

Experimental procedure

Subjects adjusted the color of the comparison ring until "it was perceived the same
as the test ring" (asymmetric matching task). To do this, subjects could adjust the
chromaticity and the luminance of the comparison ring navigating in the MacLeod-
Boynton color space using the gamepad buttons.

For each varied element, the procedure consisted of a training session (discarded)
and 5 experimental sessions lasting about 40 minutes each. Each of the sessions con-
sisted of three parts: a 3 min dark adaptation and 2 trials containing 20 matching
runs each. Individual trials included all possible random combinations of the chro-
matic and luminance conditions of the 1st and 2nd inducer rings [red− green, green−
red, lime − purple, purple − lime] × [10, 15, 20, 25, 30] cd/m2, totalling 20 runs each.
In a single day, a subject would come to the laboratory and spend about 80 min-
utes (80 runs) in two sessions (between sessions, subjects took 10 min break). After
5 sessions, the subject would have ideally finished 10 trials (for one varied element),
totaling 200 runs (matches).

Statistical analysis

To test whether luminance and brightness conditions induce different chromaticities,
we performed a statistical analysis of the results obtained in our experiment. Our
independent variables (IVs) consisted of: chromatic condition, luminance (or bright-
ness) condition, subject id and trial. Our dependent variables (DVs) were the chro-
maticities induced in the l and s color space directions (in the metric units defined
by Equation 3.1). Our null hypothesis was that all luminance (or brightness) condi-
tions induced the same strength of chromatic induction. We did a nested ANOVA
analysis (subject id nested in luminance condition) for each chromatic condition to
analyze the induction differences at different luminance and brightness conditions.

When the ANOVA analysis showed significant differences, we did a Fisher’s
LSD post-hoc analysis to study which luminance (or brightness) conditions induce
different chromaticities.
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3.3.3 Results

To estimate the strength of color induction we used the metric 3.1 defined in the
previous study (see Section 3.2.4). Figures 3.10 and 3.11 show the contribution of
luminance and brightness to color induction. The colors indicate the varied element
and, in Figure 3.10, the x axis represents the luminance difference (∆Y = Yt − Ys)
between the test ring and its surround (5 luminance conditions). Negative values
indicate that the test ring was darker than its surround, positive values indicate the
opposite and zero difference indicates the equiluminant condition. Similarly, in Fig-
ure 3.11 the x axis represents the brightness differences (∆B = b(Yt)− b(Ys), where
b(Y) is the brightness of the luminance Y) between the test ring and its surround
(5 brightness conditions). The y axis represents color induction as defined by Equa-
tion 3.1 for each luminance (or brightness) and chromatic condition, averaged across
subjects with their corresponding standard errors of means (SEM). Outlier points
were detected using the interquartile range measure (Disraeli, 1996) and were re-
moved from the analysis. Each panel in Figures 3.10 and 3.11 detail a chromatic
condition (20 runs in total for each varied element). The gray region shows the JND
region, where no chromatic difference is perceived.

Luminance experiment results

Notice that the results depend on both luminance and chromatic conditions (see
Figure 3.10). For instance, along the l axis (top panels: red-green and green-red
chromatic conditions), results are not symmetric. When the 1st inducer was red (top-
left panel), weak color assimilation (positive ∆Cl) was often induced. Conversely, in
the top right panel (when the 1st inducer ring was green), color contrast (negative
∆Cl) was always induced when the test stimulus was darker than its surround, and
even for the equiluminant condition.

Regarding the s axis, the results of the two chromatic conditions (bottom panels)
are quite similar, as if a ’mirroring’ of the two chromatic conditions (purple-lime and
lime-purple) occurs. Here, color assimilation (positive ∆Cs) was induced in almost
all cases when the stimuli were unconstrained (not equiluminant) and we varied
the luminance of the test or 1st inducer rings. When the 1st inducer was purple
(bottom left panel), the assimilation was stronger when the test ring was darker than
its surround. Similarly, when the 1st inducer was lime, assimilation was stronger
when the test ring was lighter than its surround.

The color induction effect on the test ring also depends on the varied element.
When the 2nd inducer is varied, the color induction distribution is almost flat in all
panels, pointing out that the luminance of this inducer by itself does not play a role
in the color induction effect. In almost all panels (except for the bottom-left panel),
the results for the 1st and both inducers cases are very similar, suggesting that only
the luminance of the 1st inducer plays a role in color induction. Top panels (l axis)
show that color induction does not depend much on the varied element (the different
color lines overlap). In bottom panels, we can observe that the strength of the effect
decreases as the varied luminance is spatially further from the test ring. For the test
ring case, the effect is stronger than for the 1st inducer case and it is stronger than for
the 2nd inducer case.

Since subjects were allowed to manipulate both chromaticity and luminance,
we can also analyze whether there was any luminance effect in the matches. Ta-
ble 3.3 shows the averaged luminance differences and their SEMs as defined in the
Macleod-Boynton space between the match (i.e., the comparison ring after each trial)
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FIGURE 3.10: Color induction for the 20 combinations (runs) of lu-
minance and chromatic conditions. The colors indicate the varied
element, abscissas show different luminance conditions and panels
show different chromatic conditions. The gray region shows the Just
Noticeable Difference (JND) region, where no chromatic difference is
perceived. The ordinates show color induction as defined by Equa-
tion 3.1: when ∆C > JND color assimilation is induced, and when
∆C < −JND color contrast is induced; and the error bars indicate
±1 SEM. We observe that the results are very different for the l and
s color opponent axes. In particular, assimilation is stronger along
the s axis. Moreover, no color assimilation is induced by an equilu-
minant stimulus. The letters above or below the error bars show the
results of Fisher’s LSD post-hoc analysis, i.e., they indicate whether
the differences in our color induction’s measures are significant or
not: measures that have the same letter cannot be considered differ-

ent and measures with different letters can.

and the comparison surround (∆Ycomp). The first column shows the luminance dif-
ferences between the test ring and its surround (luminance conditions) and the sec-
ond one indicates the varied element. We observe that, for the test ring element, the
values produced by the subjects are quite close to those of the first column (save
some weak brightness induction effects) and they do not vary for the different chro-
matic conditions. These results show that brightness induction does not depend on
the chromaticity of the inducers and, thus, it does not depend on the chromatic in-
duction. In general, rings that induce color contrast, induce similar brightness as
rings that induce color assimilation. For instance, in the test ring case, red-green
inducers at ∆Y = −10 induce color assimilation and a brightness induction of
∆Ycomp = −11.6 cd/m2, while green-red inducers at the same luminance condition
induce color contrast and the same brightness induction.

Another interesting observation is that this brightness induction is not symmet-
ric when either the 1st or the 2nd inducers are varied. Much stronger brightness
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induction is induced for dark test rings (∆Y < 0) than for bright ones (∆Y > 0).
Furthermore, when both inducers are simultaneously varied in an opposite way, the
test ring is always perceived darker than its physical value (Y = 20 cd/m2), indepen-
dently of the 1st inducer’s polarity (only negative brightness values are reported).

TABLE 3.3: Luminance differences obtained for the comparison ring
in different luminance conditions. The values in the table are the
mean and the standard error of means (SEM) of the luminance dif-
ference between the comparison ring and the comparison surround,
calculated for all subjects. When test ring luminance was varied,
the values of ∆Ycomp are similar to those of ∆Y, confirming that a
small brightness contrast is induced by the inducer rings. Since these
brightness contrasts are very similar for different chromatic condi-
tions, the results suggest that luminance is independent of the chro-
maticity of the inducer (inducers of the same luminance but different

chromaticity induce similar brightness).

∆Ycomp

∆Y Varied element Red-Green Green-Red Purple-Lime Lime-Purple

-10

Test −11.6± 0.20 −11.6± 0.25 −10.7± 0.28 −11.2± 0.21
1st inducer −4.55± 0.21 −4.1± 0.29 −3.8± 0.35 −4.5± 0.28
2nd inducer −4.5± 0.25 −4.9± 0.45 −5.1± 0.36 −4.0± 0.27

Both inducers −2.7± 0.29 −2.0± 0.40 −2.1± 0.42 −2.2± 0.32

-5

Test −6.5± 0.26 −6.7± 0.24 −5.9± 0.21 −6.3± 0.31
1st inducer −2.8± 0.26 −2.5± 0.28 −2.4± 0.25 −2.34± 0.24
2nd inducer −2.9± 0.25 −3.4± 0.38 −3.4± 0.37 −2.6± 0.25

Both inducers −1.9± 0.27 −1.4± 0.28 −1.4± 0.25 −1.3± 0.29

0

Test −0.9± 0.28 −1.0± 0.36 0.1± 0.12 −0.1± 0.11
1st inducer −0.8± 0.41 −0.4± 0.29 0.1± 0.15 −0.1± 0.08
2nd inducer −0.9± 0.36 −1.0± 0.38 0.0± 0.09 0.0± 0.16

Both inducers −0.6± 0.34 −0.9± 0.32 −0.1± 0.08 0.1± 0.07

+5

Test 4.9± 0.55 4.6± 0.53 6.6± 0.41 5.8± 0.28
1st inducer 0.26± 0.18 0.1± 0.58 0.8± 0.48 1.1± 0.43
2nd inducer 0.3± 0.31 0.4± 0.13 0.2± 0.12 0.5± 0.38

Both inducers −0.4± 0.42 −1.8± 0.38 −1.1± 0.39 −0.8± 0.53

+10

Test 10.5± 0.33 11.2± 0.66 12.8± 0.60 11.9± 0.46
1st inducer 1.5± 0.39 1.4± 0.50 2.1± 0.55 1.5± 0.50
2nd inducer 0.7± 0.40 1.1± 0.36 0.5± 0.21 0.7± 0.38

Both inducers −0.6± 0.50 −1.4± 0.57 −0.9± 0.60 −0.9± 0.60

Brightness experiment results

In the subsequent experiment, the results (see Figure 3.11) also show that color in-
duction depends on both the brightness and the chromatic condition. We can ob-
serve that the results along the l axis (top panels) are not symmetric. For instance,
when the 1st inducer is red, there are several conditions that induce color assimi-
lation, while when the 1st inducer is green, there is no condition that induce color
assimilation. Interestingly, when the test ring is darker than its greenish surround
(top-right panel), color contrast always occurs.

In the s axis (bottom panels), unconstrained conditions tend to induce color as-
similation (except for ∆B = −5 cd/m2). Similar effects are observed when varied
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FIGURE 3.11: Color induction for the 20 combinations (runs) of
brightness and chromatic conditions. Similarly to Figure 3.10, the col-
ors indicate the varied element, abscissas show different brightness
conditions and panels show different chromatic conditions. The gray
region shows the Just Noticeable Difference (JND) region, where no
chromatic difference is perceived. The ordinates show color induc-
tion as defined by Equation 3.1: when ∆C > JND color assimilation
is induced, and when ∆C < −JND color contrast is induced; and
the error bars indicate ±1 SEM. We observe that the results are very
different for the l and s color opponent axes. In particular, assimi-
lation is stronger along the s axis. Moreover, no color assimilation
is induced at equibrightness conditions. The letters above or below
the error bars show the results of Fisher’s LSD post-hoc analysis, i.e.,
they indicate whether the differences in our color induction’s mea-
sures are significant or not: measures that have the same letter cannot

be considered different and measures with different letters can.

the test ring and the 1st inducer brightness. In the purple-lime condition the effect
is weaker in the 1st inducer case, but in the lime-purple the effect is almost the same
one (in fact, in condition ∆B = +5 the effect is even stronger than that of the test ring
case).

Comparing both luminance and brightness results (see Figures 3.10 and 3.11),
we can observe that they are very similar. In fact, regarding the l axis, the results are
almost the same ones: Red-green induces a weak color assimilation in several uncon-
stained conditions and green-red never induces color assimilation. Along the s axis,
the behavior is not as different: Unconstrained conditions induce color assimilation
(except for ∆B = −5) and in the equi-conditions (equiluminance and equibright-
ness) no color assimilation is induced. The major difference is the strength of the
color assimilation on the s axis. For the test ring element, the strength of the effect is
about the half in the brightness conditions with respect to the luminance ones.
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TABLE 3.4: Luminance differences obtained for the comparison ring
in different brightness conditions. The values in the table are the
mean and the standard error of means (SEM) of the luminance dif-
ference between the comparison ring and the comparison surround,
calculated for all subjects. Similarly to Table 3.3, the small brightness
contrasts do not depend on the chromatic condition (i.e., on the in-

ducers’ chromaticity).

∆Ycomp

∆B Varied element Red-Green Green-Red Purple-Lime Lime-Purple

-10

Test −10.6± 0.25 −10.8± 0.27 −10.7± 0.22 −11.4± 0.19
1st inducer −3.5± 0.32 −3.5± 0.39 −3.0± 0.36 −4.1± 0.10
2nd inducer −3.5± 0.29 −3.8± 0.39 −4.9± 0.27 −3.4± 0.39

Both inducers −2.1± 0.19 −2.2± 0.57 −1.2± 0.50 −2.8± 0.35

-5

Test −5.3± 0.38 −5.3± 0.48 −6.0± 0.48 −5.5± 0.41
1st inducer −0.9± 0.79 −1.9± 0.41 −0.9± 0.67 −2.3± 0.32
2nd inducer −1.5± 0.48 −1.9± 0.71 −2.8± 0.38 −1.5± 0.56

Both inducers −0.3± 0.77 −1.1± 0.49 0.2± 0.40 −1.6± 0.36

0

Test 0.6± 0.52 0.1± 0.06 −0.1± 0.38 0.3± 0.37
1st inducer 0.4± 0.57 0.4± 0.51 −0.2± 0.51 0.1± 0.02
2nd inducer −0.1± 0.44 0.2± 0.53 −0.1± 0.61 −0.6± 0.32

Both inducers 0.5± 0.62 0.4± 0.53 −0.1± 0.56 0.3± 0.22

+5

Test 6.6± 0.70 7.1± 0.64 7.3± 0.34 5.5± 0.58
1st inducer 1.0± 0.55 1.4± 0.54 0.8± 0.55 2.4± 0.66
2nd inducer 1.1± 0.44 1.0± 0.53 2.6± 0.58 −0.1± 0.23

Both inducers 0.0± 0.40 −0.1± 0.55 −0.7± 0.59 0.7± 0.52

+10

Test 12.4± 0.73 13.3± 0.79 13.8± 0.45 11.5± 0.59
1st inducer 2.4± 0.73 2.2± 0.68 2.1± 0.66 2.8± 0.70
2nd inducer 1.4± 0.48 1.6± 0.62 2.0± 0.49 0.6± 0.48

Both inducers −0.1± 0.40 −0.3± 0.49 −0.8± 0.62 −0.1± 0.66

Similarly to luminance results, Figure 3.11 shows that, in brightness conditions,
the effect also depends on the varied element. The further the varied element from
the test ring, the weaker is the effect on it. In particular, we can observe that the
brightness of the second inducer, as its luminance, does not play any role in color
induction and, when both inducers are varied, the results do not differ much to the
ones for the 1st inducer case.

The similarity between equiluminance and equibrightness (at least along the s
axis) is surprising because equiluminance and equibrightness calibrations are sub-
stantially different (i.e., in equiluminance condition, there are brightness differences
and in equibrightness there are luminance differences), but none of equi-conditions
induce color assimilation. If the results differed, we could throw some light to
whether luminance or brightness drives the color assimilation effect. Since the effect
is only reported in unconstrained conditions (where both luminance and brightness
are altered), the results do not show enough evidence of which measure (the physi-
cal or the perceptual) mediates in the color assimilation effect. But, considering that
color induction is much stronger when the surround forms an equiluminant surface
(and not equibrightness), these results could suggest that the luminance differences
in the equibrightness conditions are not big enough to induce color assimilation.

Regarding the brightness results of both experiments (see Tables 3.3 and 3.4), we
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can observe that they are very similar, even at the equi-conditions. In fact, similarly
to luminance experiment, in Table 3.4 we can observe that the different chromatic
conditions do not induce different brightness (results are very similar along the dif-
ferent columns). In contrast, SEMs values are quite different: They are higher in the
brightness conditions than in luminance, i.e., the agreement between observers in
the brightness component is lower in the brightness conditions than in luminance
ones.

The statistical analyses showed that, in all chromatic conditions, the null hypoth-
esis should be rejected. Therefore, significant differences in color induction exist at
different luminance conditions (see Table A.1 in Appendix for the ANOVA details).
The letters in Figures 3.10 and 3.11 relate which luminance (or brightness) conditions
produce statistically similar results (Fisher’s LSD post-hoc analysis; same letter im-
plies no statistical difference).

3.3.4 Discussion

Some of the results described above are consistent with previous work and some are
novel. In this section we will try to interpret them in terms of previous psychophys-
ical results and the neural correlate of color perception.

Psychophysics

Chromatic and brightness induction have been studied using many psychophysical
paradigms (e.g., matching, cancellation tasks, etc.) that generally rely in sharp-edge
patterns presented on a computer screen (White, 1979; Pinna, Brelstaff, and Spill-
mann, 2001; Devinck et al., 2006; Monnier and Shevell, 2003; Otazu, Parraga, and
Vanrell, 2010). In our case, the stimuli are composed by concentric rings with sharp
edges that contain energy within a broad range of spatial frequencies (see Figure 3.8).
The general case of the Fourier decomposition for a square-wave is (Weisstein, 2018):

f (x) =
4
π

∞

∑
n=1,3,5...

1
n

sin
nπx

L
(3.2)

where L is the period of the square-wave, and n are odd integers. The dominant term
of the decomposition (n = 1) has the same spatial frequency as the original square-
wave and its closest term in the series has a frequency 3 times higher than that (all
Fourier components have greater spatial frequencies than that of the square-wave).
The relative contributions of the extra terms are 1/3, 1/5, 1/7, etc. To produce the
square-wave, all sinusoidal terms become zero at the edges. Although we did not
assess the contribution of the n > 1 terms, we assumed it to be small since most cor-
tical neurons respond weakly to spatial frequencies outside a one-octave range (De
Valois, Albrecht, and Thorell, 1982). Following this, and in order to compare our
results to those of the literature, we used concentric rings of fixed spatial frequency
(1.94 cpd) whose dominant sinusoidal Fourier component also had this spatial fre-
quency. From this point forward we will refer to the square-wave spatial frequency
and the dominant Fourier component indistinctly.

Equiluminant stimuli are widely used to study color induction (De Weert and
Spillmann, 1995; Fach and Sharpe, 1986; Smith, Jin, and Pokorny, 2001; Gordon and
Shapley, 2006; Kaneko and Murakami, 2012; Xing et al., 2015) but, as mentioned in
Section 3.3.1, color assimilation is not as comprehensively studied as color contrast.
Some studies used striped equiluminant stimuli, but they mainly focused on the ef-
fects of spatial frequencies (Fach and Sharpe, 1986; Smith, Jin, and Pokorny, 2001)
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or the spatial configuration of the inducers (Cao and Shevell, 2005), concluding that,
for equiluminant stimuli, the spatial frequency distribution is a key factor in color
assimilation. In particular, they observed that very thin stripes (9 cpd) induce color
assimilation and thick stripes induce color contrast (0.7 cpd), with a transition point
from assimilation to contrast near 4 cpd (Smith, Jin, and Pokorny, 2001). Regardless
of this, at equiluminance, our stimuli, which are composed by stripes of 1.94 cpd,
can induce color contrast (green-red chromatic condition) or generate no induction
at all (red-green, purple-lime and lime-purple chromatic conditions). These effects
of luminance distribution on color induction have been only sparsely studied. De
Weert and Spillmann (1995) did a preliminary psychophysical experiment pointing
out that the luminance of a spatial distribution could affect color assimilation, but
they did not provide any quantitative support to their results. They measured color
induction on a colored background, which had a lower spatial frequency (0.59 cpd)
than our test ring and their inducers had red and green chromaticities. As in our
test ring case, the luminance of the inducers did not vary, but the luminance of the
background (the target) was varied. The authors concluded that no color induc-
tion (neither contrast nor assimilation) is induced at equiluminance and that the
backgrounds should have higher luminance than its inducers to induce color as-
similation. For similar chromatic conditions (see red-green and green-red chromatic
conditions in Figure 3.10 at equiluminance) we observed: no color induction when
the 1st inducer is red and the 2nd is green, and color contrast when the 1st is green
and the 2nd is red. Apart from equiluminance, they measured color induction at
two different luminance conditions (∆Y = [−2.7,+4.7] cd/m2) finding color assim-
ilation in both chromatic conditions when the background’s luminance was higher
(∆Y = +4.7) than the inducers’ luminance. We did not measure color induction in
exactly the same luminance conditions, but at similar ones. We agree that color as-
similation is not induced in either of the red-green or green-red chromatic conditions
at low luminance (∆Y = −5 cd/m2 in our case) and it is induced in red-green at high
luminance (∆Y = +5 cd/m2), but we have never found color assimilation when the
chromatic condition was green-red. Moreover, we found color assimilation in red-
green making the test ring even darker than their low luminance condition. In a
subsequent study, Cao and Shevell (2005) also measured color assimilation in two
different luminance conditions (∆Y = [−1.33,+2] cd/m2) and eight chromatic con-
ditions, covering a range. As De Weert and Spillmann, they concluded that in the l
direction, the luminance of the inducer has to be lower than the targets’ luminance to
induce color assimilation and they observed that in the s direction color assimilation
does not depend on the luminance difference, but on the spatial configuration of the
inducers (spatial frequency and spatial separation). In their work, they did not use
equiluminant stimuli (they did not compare against equiluminance) but compared
against different luminance conditions. Conversely, we observed that in the pres-
ence of a luminance difference, color assimilation is induced in the s direction with
a strength that depends on this difference. This could be explained by the spatial
frequency content of the stimulus given that both, De Weert and Spillmann (1995)
and Cao and Shevell (2005) used stimuli of higher spatial frequency than we did.
Regarding the stimulus configuration, we measured color induction in similar con-
ditions as Monnier and Shevell (2003; 2004) did (see purple-lime and lime-purple
chromatic conditions at ∆L = +5 cd/m2), and we reproduced their results. They ob-
served stronger induction than us, but with higher spatial frequency stimuli (3.3 cpd)
and more saturated colors (purple chromaticity l, s = [0.66, 2.0] and lime chromatic-
ity l, s = [0.66, 0.16]) (Monnier and Shevell, 2003; Monnier and Shevell, 2004). As
Otazu et al. (2010) reported in a similar study, the higher the spatial frequency of the
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striped stimuli, the stronger the color induction.
The effect of luminance on color assimilation has been studied using a variety of

patterns (Van Tuijl and De Weert, 1979; Ejima et al., 1984; Watanabe and Sato, 1989;
Bressan, 1995; Pinna, Brelstaff, and Spillmann, 2001; Devinck et al., 2005; Devinck
et al., 2006). For example, the Watercolor effect (Pinna, 1987) is usually studied on
a white background because its color assimilation is stronger on that background
than on either gray or black (Pinna, Brelstaff, and Spillmann, 2001). As we observed
in our results, the strength of color assimilation is not the same when the target
region is either brighter or darker than the inducers. In their case, not only the
luminance of the target region, but also the luminance contrast of both inducers is
important: when both inducers are equiluminant, color assimilation is only weakly
induced (Pinna, Brelstaff, and Spillmann, 2001; Devinck et al., 2005). Interestingly,
some authors found that the strength of the effect also depends on the chromaticity
of the inducers (Schober and Munker, 1967), pointing out that when the inducer was
yellow, color assimilation was weaker (Fach and Sharpe, 1986; Devinck et al., 2005).
We also found that color assimilation depends on the chromaticity of the inducers,
but our weakest effect occurred when the inducer was green, not yellow (for that
chromaticity, color assimilation never occurred). Fach and Sharpe (1986) explored
the effects of spatial frequency on color induction using equiluminant square-wave
gratings whose bars varied from 2 to 20 arcmin. They measured color induction for
10 and 20 arcmin bars, but unfortunately they did not explore spatial frequencies
similar to ours (15.5 arcmin). For red-green and blue-yellow equiluminant gratings,
they reported color contrast (or no color induction), but never color assimilation.
Similarly to them, at equiluminance we only observed color contrast or no color
induction.

Neurophysiology

It is well established in the literature that the type of neuron responding in V1 largely
depends on stimulus properties such as spatial frequency or chromatic and lumi-
nance spatial distribution (Johnson, Hawken, and Shapley, 2001; Johnson, Hawken,
and Shapley, 2008; Shapley and Hawken, 2011; Xing et al., 2015; Nunez, Shapley,
and Gordon, 2018). In terms of their responses, SO cells are non-orientation selec-
tive, being activated mostly by uniform color stimuli while DO cells are orientation
selective and responsive to both color and luminance patterns. NO cells are mostly
responsive to luminance patterns (Johnson, Hawken, and Shapley, 2008). Since our
test stimuli were composed of colored concentric rings of medium spatial frequency
(1.94 cpd), it is safe to assume that both types of color-responsive neurons (SO and
DO) were always activated. In fact, DO neurons might have been close to their max-
imum sensitivity, which is at 2 cpd (Johnson, Hawken, and Shapley, 2001; Johnson,
Hawken, and Shapley, 2008). At equiluminance (∆Y = 0), NO neurons are weakly
responsive (Skottun, 2013), but by increasing the luminance contrast these neurons
become responsive (Johnson, Hawken, and Shapley, 2001; Johnson, Hawken, and
Shapley, 2008). Thus, by presenting several luminance conditions, our stimuli is
likely to activate different numbers of NO neurons in V1, varying the strength of
the inhibition (mutual-inhibition) on both SO and DO neurons. According to the
mutual-inhibition hypothesis (Xing et al., 2015; Nunez, Shapley, and Gordon, 2018),
as luminance contrast is increased, color response is inhibited. In terms of color in-
duction, this means that (1) color contrast is greatest at equiluminance when color
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response is maximal (mutual-inhibition is minimal) (Xing et al., 2015; Nunez, Shap-
ley, and Gordon, 2018), and (2) color assimilation increases with luminance contrast,
i.e. when mutual-inhibition is greatest, color response is reduced.

Although we have used equiluminant stimuli with striped instead of uniform
surrounds (Xing et al., 2015), we observed (see purple-lime and lime-purple chro-
matic conditions in Figures 3.10 and 3.11) that color assimilation is stronger as lumi-
nance contrast is increased. This seems to support the mutual-inhibition hypothesis,
which might be related to the "probably inhibitory" (Zaidi, 1999) lateral connections
between neurons that are the principal ingredient for color induction. Considering
that our results could only be explained by an interaction between the chromatic
and the luminance channels, they do not support models where color induction oc-
curs earlier than V1 (Kamermans, Kraaij, and Spekreijse, 1998; VanLeeuwen et al.,
2007; Sabbah et al., 2013). In the same way, we cannot rule out models where color
induction occurs at higher levels (Gegenfurtner, 2003; Horiuchi et al., 2014).

Our color induction results are completely different depending on whether the
stimuli are defined in the l or the s directions of MacLeod-Boynton color space, sug-
gesting that mutual-inhibition mechanisms are different at different pathways or at
different layers of V1. When the stimuli are defined in the l direction (red-green and
green-red chromatic conditions), the parvocellular pathway is activated, and when
they are in the s direction (purple-lime and lime-purple chromatic conditions), the
koniocellular pathway is activated (Nassi and Callaway, 2009). From a feedforward
point of view, the parvocellular pathway is first processed in layer 4Cβ and then in
layer 2/3 (Sincich and Horton, 2005); the koniocellular pathway projects its S-ON
channel to layer 2/3 and its S-OFF channel to layer 4A (Chatterjee and Callaway,
2003; Callaway, 2014; Kaplan, 2014); and the magnocellular pathway first projects to
layer 4Cα and then to layer 2/3 (Sincich and Horton, 2005; Kaplan, 2014). Although
this is highly speculative and there is no neurophysiological evidence, the dissimi-
larity of color induction regarding the l and s directions could be due to the different
circuitry and composition of the V1 layers (there are different amounts of SO, DO
and NO neurons in the different layers) (Johnson, Hawken, and Shapley, 2001; John-
son, Hawken, and Shapley, 2008). Another possibility is that color induction in the l
direction is different from that in the s direction because of some ’pre-’processing at
layer 4Cβ.

In any case, it is surprising to find dissimilarities between the red-green and
green-red chromatic conditions since both of them are processed by the same layers
(assumingly) in a similar fashion (Solomon and Lennie, 2007). A plausible reason for
this asymmetry might be ecological, since it has been suggested that tropical fruits
have co-evolved with the trichromatic color vision of Old World monkeys to facili-
tate their detection over a background of green leaves (Mollon, 1989; Reagan et al.,
1998). In this framework, it makes sense for the HVS to want to enhance their visual
targets (via chromatic contrast) when placed against such chromatic backgrounds.
This could also explain why we did not observe any instance of chromatic assimila-
tion when the 1st inducer was green.

The ’mirroring’ effect observed in the purple-lime and lime-purple chromatic
conditions (bottom panels in Figure 3.10) could be produced by mutual-inhibition,
or inhibition itself. Looking at the results in more detail, we find that for the purple-
lime chromatic condition (bottom-left panel), assimilation is stronger when the test
ring is darker than when it is brighter (negative values of ∆L), and the opposite is
true for the lime-purple chromatic condition (assimilation is stronger when the test
ring is brighter than when it is darker, positive values of ∆L). For a given dark
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purple-lime stimulus (∆L < 0 in bottom-left panel in Figure 3.10), the test ring ac-
tivates the S-OFF and the Lum-OFF post-receptoral channels (konio- and magno-
cellular pathways, respectively) because the gray test ring excites less the S-cones
than the surrounding purple and also has a lower luminance than the 1st inducer.
Conversely, for a bright purple-lime stimulus (∆L > 0 in bottom-left panel in Fig-
ure 3.10), the test ring activates the S-OFF and the Lum-ON post-receptoral channels
(the chromatic information does not change, but luminance does). A possible ex-
planation of this stronger assimilation when the S- and the Lum-OFF channels are
activated is that channels of the same polarity inhibit more each other than channels
of opposite polarity do. The same might occur in the lime-purple chromatic condi-
tion: it activates the S-ON channel while the low luminance condition (∆L < 0 in
bottom-right panel in Figure 3.10) activates the Lum-OFF channel. The latter leads to
a weaker inhibition and, thus, to a much weaker (or no) chromatic assimilation than
the higher luminance condition (∆L > 0, which activates the Lum-ON channel).

We also considered the influence of non-neural (optical) effects in our results.
Since our stimuli had relatively low spatial frequency (1.94 cpd), we could consider
that the effects of spread light in our results (see Section 3.1) are much lower than
the variability of our observers and therefore negligible.

3.3.5 Conclusions

We performed two psychophysical experiments based on the well-known color in-
duction paradigm of Monnier and Shevell (in concrete, their color assimilation re-
sults) (2003; 2004). Our paradigm was similar to theirs, except that we varied both
the luminance and brightness difference between the target ring (where the induc-
tion was measured) and its surround. We obtained similar results for the same lu-
minance condition they tested (∆Y = +5, being the test ring the varied element),
and observed that for other conditions, color assimilation depends on the luminance
contrast of the inducer. This suggests that the magno-, parvo- and koniocellular
pathways cannot be considered as having independent processing mechanisms, or
at least they have a significant interaction in V1. In particular, our results show that
luminance influences color induction, but not the opposite (different chromatic con-
ditions result in similar brightness induction). Moreover, at either equiluminance or
equibrightness, color assimilation is not induced.

We were not able to find a simple and global explanation for our results based on
linear combinations of chromatic and luminance signals from the visual pathways.
Indeed color assimilation depends on both luminance contrast and chromatic condi-
tion (see a visual summary of our test ring results in Figure 3.12). Remarkably, in the
red-green and green-red chromatic conditions, subjects always see the test ring as
"reddish" or "gray" regardless of the spatiochromatic configuration of the inducers
or luminance conditions. Also, color assimilation for the red-green and purple-lime
color pairs is completely different and luminance contrast seems to play a more im-
portant role in the koniocellular than in the parvocellular pathway.

Although our results are significant, they need to be taken with caution since we
did not explore other stimuli configurations such as different spatial frequencies or
patterns, other color pairs, etc. We did not intent to explore all possible combina-
tions but to concentrate on luminance differences which allowed us to test a single
unexplored aspect of color assimilation.

In summary, our results support the hypothesis that mutual-inhibition between
V1 neurons plays a major role in color appearance (Xing et al., 2015; Nunez, Shap-
ley, and Gordon, 2018), or at least in color induction. Furthermore, since our results
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FIGURE 3.12: Test ring case: Visual summary of the results. The
columns correspond to the 5 different luminance conditions. In that
case, we fixed the luminance of the inducers at 20 cd/m2 (grey disks)
and we evaluated 5 different luminance conditions of the test ring
∆Y = [−10,−5, 0,+5,+10] cd/m2 (black, dark gray, gray, light gray
and white rings respectively). The rows correspond to the 4 differ-
ent chromatic conditions (red-green, green-red, purple-lime and lime-
purple). The colors of the concentric rings and their spatial configura-
tion only have an illustrative purpose (we used 11 rings in our exper-
iment instead of 5). The colored dots in the figure indicate the match
performed by the subjects, the number of dots indicates the strength
of the color induction, and the abbreviations above them indicate the
type of color induction effect, e.g., assimilation, contrast or no effect.
We observed that (1) color assimilation at equiluminance do not oc-
cur, (2) color assimilation is never induced in the second row -in other
words, subjects only see the test ring as "reddish" or "gray" regard-
less of the spatiochromatic configuration of the red/green inducers
or luminance conditions-, (3) a ’mirroring’ effect occurs between the
third and the fourth rows, (4) color assimilation depends on both lu-
minance contrast and chromatic condition. These results support the
hypothesis that mutual-inhibition between color and luminance neu-

rons plays a major role in color induction.

strongly depend on the studied chromatic condition, they suggest that this mutual-
inhibition mechanism is different for the parvo- and koniocellular pathways, with a
’mirroring’ effect occurring between the two koniocellular (S-ON and S-OFF) chan-
nels.

3.3.6 Future work

We observed that the luminance difference between the target ring and its surround
plays a major role in color assimilation. In particular, when the inducers composed
an equiluminant surround. Thus, it would be interesting to study different chro-
matic conditions defined not only on the cardinal axes of the MacLeod-Boynton
color space, but also on the diagonals of this color space, where both parvo- and
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koniocellular pathways are activated. The mutual-inhibition hypothesis was formu-
lated considering the interaction between the luminance (magnocellular pathway
neurons) and the chromatic channels (either parvo- or koniocellular pathway neu-
rons) (Xing et al., 2015). It would be interesting to study whether activating both
parvo- and koniocellular neurons, despite of being all Color or Color-Lum neu-
rons, and not activating the magnocellular pathway (using equiluminant stimuli)
the color assimilation occurs. If so, it could suggest that this inhibitory mechanism
is not related to a luminance-chromatic interaction but it is an inhibitory mechanism
without pathway, or neuron type, selectivity. Moreover, it would be interesting to
use the stimuli defined here to study the temporal frequency effect on color assimi-
lation (repeat the previous study but using stimuli that induce color assimilation).

A new computational model of color induction capable of reproducing these re-
sults should be implemented. Color induction models such as CIWaM (Otazu, Par-
raga, and Vanrell, 2010), ODOG (Blakeslee and McCourt, 1999), etc. (Spitzer and
Barkan, 2005) are likely to fail to reproduce these results because they assume inde-
pendent chromatic and luminance channels (i.e., parvo- and konio-, and magnocel-
lular pathways). Thus, a further biologically plausible computational model should
include some mutual-inhibition mechanism or at least, some kind of luminance-
chromatic interaction.

Probably, the most striking future work that can arise from this study is the idea
of color induction in natural environment. In this study we have found that, con-
trary to the other chromatic conditions, a green inducer never induces color assim-
ilation. Not surprisingly, the green color can be related to the color of the foliage.
In fact, the color of the foliage would be in the quadrant between the green and the
lime colors in the MacLeod-Boynton color space. From our point of view, it would
be very interesting to elucidate whether the color induction effect is a desired effect
rather than a side-effect. Up to now, it is assumed that color induction is a side-effect
of the neural processing, but it would be interesting to study these color induction
effects (both color contrast and color assimilation) in a natural environment. To do
so, first, a calibrated dataset of natural images with fruits in their context should be
acquired. Then, the color induction should be measured in these images and sev-
eral properties of the images should be modified to vary the color induction effect.
Then, in a subsequent experiment, using a natural task such as fruit detection, we
should measure the task performance against the color induction effect, observing
whether color contrast or color assimilation helps to do the task. Our hypothesis is
that, according to the results of this study, color contrast would be maximal or color
assimilation minimal in the natural images (fruits surrounded by greenish context)
and that color contrast would improve the fruit detection task, while color assimila-
tion would not.

3.4 Related publications

• Is luminance a key factor for static and flashed chromatic assimilation? (Cerda-
Company and Otazu, 2017b), European Conference on Visual Perception (ECVP),
2017.

• Color induction in equiluminant flashed stimuli (Cerda-Company and Otazu,
2019), Journal of the Optical Society of America A, 2019.

• Luminance spatial distribution plays a major role in color assimilation (Cerda-
Company et al., 2018b), European Conference on Visual Perception (ECVP), 2018.
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• The effect of luminance differences on color assimilation (Cerda-Company et
al., 2018c), Journal of Vision, 2018.

• Stronger colour induction in migraine (Otazu et al., 2018), European Conference
on Visual Perception (ECVP), 2018.

• Colour induction in migraine (Cerda-Company et al., 2018a), Applied Vision
Association (AVA) Christmas Meeting, 2018.
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Computational Modeling
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“How do I know that a table still exists if I go out of the room and can’t see it? What does
it mean to say that things we can’t see, such as electrons or quarks—the particles that are
said to make up the proton and neutron—exist? One could have a model in which the table
disappears when I leave the room and reappears in the same position when I come back, but
that would be awkward, and what if something happened when I was out, like the ceiling
falling in? How, under the table-disappears-when-I-leave-the-room model, could I account
for the fact that the next time I enter, the table reappears broken, under the debris of the
ceiling? The model in which the table stays put is much simpler and agrees with observation.
That is all one can ask.”

Steven Hawking
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Chapter 4

A computational model of color
processing in V1

4.1 Introduction

The brain is probably the most important organ of the animals because it exerts the
control over the other organs. The brain collects the information from sense organs
and processes it to determine the actions to take (Carew, 2000). Therefore, the brain
has a key-role in animal perception, motor control, arousal, homeostasis, motivation,
learning and memory (Ramon y Cajal, 1894; Chiel and Beer, 1997; Dougherty, 1997;
Singh, 2006). Since it is involved in a wide range of functionalities, it is probably
the most complex organ in the vertebrate’s animals and its detailed circuitry is still
a mystery. Nevertheless, lots of efforts have been done for a better understanding of
the mechanisms that compose this circuitry.

As stated, the brain processes a huge amount of information from all the sense
organs. In this thesis, we have focused on one perception sense, in particular, in
mammal vision. More concretely, in the humans’ color vision.

In humans, light is absorbed by rods and cones in the retina, the outputs of which
are combined by the retinal ganglion cells and segregated into three different path-
ways: the magno-, parvo- and koniocellular pathways. The magnocellular path-
way carries luminance information (obtained by the combination of L- and M-cones
and rods output), the parvocellular pathway carries the red-green chromatic infor-
mation (combination of L- and M-cones) and the koniocellular pathway carries the
blue-yellow chromatic information (combination of L-, M- and S-cones). All this in-
formation is sent to the Lateral Geniculate Nucleus (LGN) in the thalamus through
the optical nerve and then to the primary visual cortex (V1), where the three path-
ways start to interact (Xing et al., 2015; Nunez, Shapley, and Gordon, 2018).

In the early stages of the HVS (up to V1), the neurons extract low-level features
thank to their receptive fields (RFs), the region in which a stimulus changes the re-
sponse of a neuron (Hubel and Wiesel, 1959). It is worth to note that the term ”recep-
tive field” is sometimes confusing. Authors often say RF to refer to both the classical
RF (cRF) and the extra-classical (also known as non-classical or surround) RF (extra-
cRF). The extra-cRF is the region that surrounds the cRF and where stimulus does
not cause a neuronal response when presented alone, but it could alter the neuronal
response when the cRF is also activated (in general the extra-cRF suppresses the neu-
ronal response) (Blakemore and Tobin, 1972; Levitt and Lund, 1997; Solomon, Peirce,
and Lennie, 2004). Nevertheless, this extra-cRF could act also as facilitatory, for low-
contrast stimuli. In fact, it has been proposed that the extra-cRF is composed by a
near-surround and a far-surround. The former can be either facilitatory or inhibitory
depending on the stimulus contrast and the latter is always inhibitory. Moreover,
some authors proposed that the near-surround is mediated by horizontal (lateral)
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connections and far surround by inter-area feedback connections (Ichida et al., 2007;
Shushruth et al., 2009; Angelucci and Shushruth, 2014). Thus, one can consider that
there are at least three main ingredients (see below) in the HVS processing: the RFs,
the lateral connections and the feedback connections. From here and so on, we will
refer to the cRF and the RF indistinctly.

4.1.1 Receptive fields

Neurons can be classified according to their RF properties (or selectivities). Sim-
ple cells’ RFs are composed by an antagonistic center and surround. Depending
on the light’s polarity they respond to, simple cells are classified as ON and OFF:
ON-neurons respond (fire) to increments of light and OFF-neurons respond to decre-
ments of light. On one hand, an ON-center/OFF-surround neuron is activated when
an increment of light is presented to the center of the RF. In contrast, when the in-
crement of light is presented to the OFF-surround alone, the neuron remains inac-
tive (see left-panel in Figure 4.1). On the other hand, an OFF-center/ON-surround
neuron is activated when the increment of light is presented to the surround (see
right-panel in Figure 4.1). That means that both the center and the surround are
antagonistic and excitatory. Nevertheless, usually it is considered that the center is
excitatory and the surround is inhibitory (Solomon and Lennie, 2007). Complex cells
respond to both polarities of light instead (see Figure 4.2) and, thus, they are consid-
ered as a hierarchical scheme (a pool) of simple cells (Hubel and Wiesel, 1962; Van
Kleef, Cloherty, and Ibbotson, 2010). The classification of simple and complex cells
is not as straight because different criteria such as presence and degree of ON- and
OFF- subregions’ overlap, spontaneous activity level, response amplitude, length
summation, responses to patterns of random dots, responses to moving light and
dark bars and reverse correlation can be used (Mechler and Ringach, 2002; Martinez
and Alonso, 2003). Thus, a simple cell could be considered complex and vice versa
depending on the adopted criteria.

To study the RFs’ properties, researchers usually use drifting gratings. Chang-
ing the properties of the drifting grating such as spatial and temporal frequency and
orientation, they are able to identify the cell type and, thus, to study its properties.
For instance, simple cells have oscillatory response (they fire when the polarity of
the grating matches its preference) and complex cells have unmodulated responses
(see bottom-panel in Figure 4.2) (Van Kleef, Cloherty, and Ibbotson, 2010). More-
over, uniform stimuli are presented to measure the spontaneous firing rate (John-
son, Hawken, and Shapley, 2001; Ringach, Shapley, and Hawken, 2002; Johnson,
Hawken, and Shapley, 2008) and white noise is also presented to map the RFs, usu-
ally using the reverse correlation technique (Ringach and Shapley, 2004; Yeh et al.,
2009). Neuroscientists have been able to map several RFs such as the ones of single-
(SO) and double-opponent (DO) cells (Thorell, de Valois, and Albrecht, 1984; Lennie,
Krauskopf, and Sclar, 1990; Johnson, Hawken, and Shapley, 2001; Johnson, Hawken,
and Shapley, 2004; Solomon, Peirce, and Lennie, 2004; Solomon and Lennie, 2007;
Johnson, Hawken, and Shapley, 2008). Single-opponent RFs are divided in: type I
and type II. Both receive nearly equal but opposite input from L- and M- cones (John-
son, Hawken, and Shapley, 2004; Shapley, Hawken, and Johnson, 2014) and, while
type II has a circularly symmetric center and surround, type I has a circular but
larger surround instead (see Figure 4.3). Therefore, none of these RFs are orientation
selective (Ringach, Shapley, and Hawken, 2002). Their main difference is that type I
is found in the parvocellular pathway in LGN and also responds to luminance stim-
uli (see left-panels in Figure 4.3) and type II is found in the parvocellular pathway
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FIGURE 4.1: Receptive fields of ON- and OFF-neurons. (A) An
ON-center/OFF-surround neuron becomes active when an increment
of light is presented to the center of the RF, while it remains in-
active when the light is presented on the surround. (B) An OFF-
center/ON-surround neuron becomes active when the increment of
light is presented on the surround, while it remains inactive (does not
respond to) when the light is presented to the center. Figure adapted

from (Watson and Breedlove, 2015).

in V1 and does not respond to luminance stimuli (Wiesel and Hubel, 1966; Shap-
ley and Hawken, 2002; Johnson, Hawken, and Shapley, 2008; Shapley, Hawken, and
Johnson, 2014).

Only one type of double-opponent RF has been mapped: orientation-selective
DO cell (Johnson, Hawken, and Shapley, 2004). This neuron receive input from L-
and M- cones and, due to its double-opponency, it is selective to both luminance
and chromatic oriented edges (see bottom-panel in Figure 4.3) (Johnson, Hawken,
and Shapley, 2004). Moreover, several properties of DO cells have been observed
and cannot be related to this type of RF, that is, a DO neuron without orientation
selectivity (see Figure 4E in (Johnson, Hawken, and Shapley, 2008)). The authors
hypothesized that it is plausible to consider the existence of a RF (named hypothet-
ical RF) such the one depicted in Figure 4.3 (Shapley and Hawken, 2002; Conway
and Livingstone, 2006; Johnson, Hawken, and Shapley, 2008). This neuron would be
responsive to both luminance and chromatic edges and would not have orientation
selectivity. In contrast to SO cells, DO cells are much more diverse in its color prop-
erties because of the wide range of weights of cone inputs (Johnson, Hawken, and
Shapley, 2004).

Regarding temporal properties, simple cell’s RFs can change their size, spatial
frequency selectivity (Bredfeldt and Ringach, 2002; Malone, Kumar, and Ringach,
2007), orientation selectivity (Mazer et al., 2002), response (De Valois et al., 2000) and
polarity along time (DeAngelis, Ohzawa, and Freeman, 1993a; DeAngelis, Ohzawa,
and Freeman, 1993b; DeAngelis, Ohzawa, and Freeman, 1995; DeAngelis and Anzai,
2014).
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FIGURE 4.2: Due to their different RFs, simple and complex cells re-
spond differently to the same stimulus. In (A) the RFs of a double-
opponent simple cell (left) and a complex cell (right) are shown. In
contrast to simple cells, complex cells respond to both increments and
decrements of light. In the double-opponent RF, the red color indi-
cates the excitatory area and the blue one indicates the inhibitory area.
In (B) the response (vm) of the cells to a ON (white patch) and OFF
(black patch) light spots. Notice that complex cell has the same re-
sponse to both luminance increment (ON light) and luminance decre-
ment (OFF light). In (C) the response of both cells to drifting gratings.
Because of simple cell fires when both grating’s and preference’s po-
larities match, its response is oscillatory. In contrast, since complex
cells respond to both ON and OFF luminances, its response is un-

modulated. Figure extracted from (Martinez and Alonso, 2003).

4.1.2 Lateral connections

Because of lateral (also known as horizontal) and feedback connections, when a stim-
ulus is also presented outside the cRF, a cell activity may change. Due to these lat-
eral connections, different neuronal populations in the same layer interact. Since it
is considered that there is a close link between both the physiology and anatomy
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FIGURE 4.3: The different types of simple cells’ receptive field. On the
right, the spatial and chromatic structure of the receptive fields and,
on the left, their spatial frequency selectivity when either luminance
(black line) or chromatic (red line) stimuli are presented. Two types
of single-opponent RFs are proposed: type I and type II. Type I neu-
rons respond to large chromatic areas and to luminance edges. Type
II neurons also respond to large chromatic areas, but have a weak
response to luminance stimuli. Since both types of single-opponent
RFs are circular, they do not have orientation selectivity. Moreover,
two types of double-opponent RFs are proposed: oriented DO and
the hypothetical (or concentric) DO. Both RFs respond to both lumi-
nance and chromatic edges, but the former has orientation selectiv-
ity and the latter does not. Although the hypothetical DO receptive
field has not been mapped, several observations (like non-oriented
DO cells) point out to its existence (Conway and Livingstone, 2006;
Johnson, Hawken, and Shapley, 2008). Figure adapted from (Solomon

and Lennie, 2007) and (Johnson, Hawken, and Shapley, 2008).

of these connections and the visual behavior in certain psychophysical tasks (Field,
Golden, and Hayes, 2014), psychophysical experiments can shed some light on the
performance of these connections (Tolhurst and Barfield, 1978; Sagi and Hochstein,
1985; Field, Hayes, and Hess, 1993; Field, Golden, and Hayes, 2014).

The interaction between neighboring neurons through lateral connections de-
pends on the retinotopical position of the neurons (their physical distance), their spa-
tial frequency and their orientation selectivity. Lateral connections can be excitatory-
excitatory (excitatory neighbors activates the excitatory cell) and excitatory-inhibitory
(excitatory neighbors activates the inhibitory cell) (Li, 1998; Penacchio, Otazu, and
Dempere-Marco, 2013).

These type of connections compose the near-surround of the extra-cRF, playing
an important role in the center-surround modulation (Ichida et al., 2007; Shushruth
et al., 2009; Angelucci and Shushruth, 2014), and they are able to change the cells’
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RF (Xing et al., 2005; Yeh et al., 2009). Thus, it is not surprising that they are an
important factor in visual perception and that several effects such as brightness and
chromatic induction are the result of the lateral connections present in V1 (Zaidi et
al., 1992; Stemmler, Usher, and Niebur, 1995; Stettler et al., 2002; Penacchio, Otazu,
and Dempere-Marco, 2013).

4.1.3 Feedback connections

The HVS is a complex network composed by a huge amount of feedforward and
feedback connections (Garcia-Marin, Kelly, and Hawken, 2017). Feedback process-
ing has been observed in all stages of the HVS such as retina, LGN, V1 and higher
visual areas (Verweij, Kamermans, and Spekreijse, 1996; Kamermans and Spekreijse,
1999; Kolb, 2005; Briggs and Usrey, 2008; Briggs and Usrey, 2014). This feedback can
connect one area to another, e.g., corticogeniculate (from V1 to LGN) feedback, or
layers or neurons of the same area, e.g., from horizontal cells to cones or from layer
4Cβ to layer 6 in V1. As stated before, the neuronal activity is modulated by the RFs,
the lateral connections and the feedback connections. In fact, it is believed that feed-
forward connections such as the ones from retina to LGN drive the activity, while
feedback connections modulate it (Sherman and Guillery, 1998; Briggs and Usrey,
2014).

Although feedback functionality is still a mystery, several authors observed that
the corticogeniculate feedback sharpens the tuning of LGN receptive fields and mod-
ulates the transmission of sensory information between the thalamus and the cor-
tex (Briggs and Usrey, 2008; Briggs and Usrey, 2014). Moreover, feedback connec-
tions (which compose the far-surround in the extra-cRF) participate actively in the
center-surround modulation (Ichida et al., 2007; Shushruth et al., 2009; Angelucci
and Shushruth, 2014; Briggs and Usrey, 2014) and it is suggested to help in figure-
background discrimination (feedback from higher visual areas to lower ones ampli-
fies and focuses the neurons’ activity of those areas) (Hupe et al., 1998).

4.1.4 Color processing in the parvocellular pathway of V1

The primary visual cortex is composed by several layers, i.e., layers 1, 2/3, 4A, 4B,
4Cα, 4Cβ, 5 and 6. The red-green color information (parvocellular pathway) arrives
to V1 in layer 4Cβ. This layer is formed by simple SO and DO cells and complex
cells, it lacks orientation selectivity (Blasdel and Fitzpatrick, 1984; Ringach, Shapley,
and Hawken, 2002; Johnson, Hawken, and Shapley, 2008) and there are not large in-
tracortical connections (lateral connections) (Binzegger, Douglas, and Martin, 2004;
Chisum and Fitzpatrick, 2004; Hirsch and Martinez, 2006; Binzegger, Douglas, and
Martin, 2009; Callaway, 2014). In particular, the simple SO cells that exist in V1 are
of type II (circularly symmetric center-surrounds of the same size and almost well-
balanced) (Johnson, Hawken, and Shapley, 2004). Then, the information is sent to
layer 4B and 2/3. Especially interesting is layer 2/3 because it is the output of V1 to
higher visual areas such as V2. The studies of this layer structure are quite controver-
sial because cytochrome oxidase (CO) blobs have been observed in it (Wong-Riley,
1979; Horton and Hubel, 1981). Many studies pointed out that CO blobs contain
color information and are the input of the V2 thin stripe and that interblobs con-
tain form information and are the input of pale stripe in V2 (Lu and Rose, 2007),
see review in (Sincich and Horton, 2005), but other studies did not find a correlation
between the functional properties and CO blobs and interblobs (Levitt, Kiper, and
Movshon, 1994; Leventhal et al., 1995; Gegenfurtner, Kiper, and Fenstemaker, 1996;
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Friedman, Zhou, and von der Heydt, 2003). Anyway, similarly to layer 4Cβ, layer
2/3 is composed by SO and DO simple cells and complex cells. The main difference
is that layer 2/3 cells have orientation selectivity (Ringach, Shapley, and Hawken,
2002; Johnson, Hawken, and Shapley, 2008) and that horizontal connections in layer
2/3 link preferentially neurons of similar orientation preference (Malach et al., 1993).
Thus, layer 4Cβ non-oriented neurons serve as input of layer 2/3 oriented ones.

4.1.5 Computational models

Theoretical and computational models can improve our understanding on the HVS.
Since their aim is to reproduce what (and/or how) the system does (and/or is), when
a model works, it could suggest the components and how they are assembled in the
biological architecture. In fact, these models do not necessarily reveal how the HVS
works, but they suggest how the HVS could work. Such models are especially in-
teresting when they fail, because they show when the system may not work (Field,
Golden, and Hayes, 2014). Thus, theoretical and computational models help to pre-
dict the answer to unresolved questions.

For example, several theoretical and computational models have shown that
complex cells can be modeled as a pool of simple cells (Hubel and Wiesel, 1962;
Van Kleef, Cloherty, and Ibbotson, 2010), see review in (Martinez and Alonso, 2003).
These models do not ensure that complex cells work as the authors modeled, but
it is a strong suggestion because the modeled architecture reproduces some of their
behaviors. Several architectures that link visual functions and physiology have been
proposed (Li, 1998; Li, 1999; Courtney, Finkel, and Bachsbaum, 1995; Serre et al.,
2007; Otazu, Parraga, and Vanrell, 2010; Foster, 2011; Penacchio, Otazu, and Dempere-
Marco, 2013; Gao et al., 2015; Chariker, Shapley, and Young, 2016; Angelucci et al.,
2017; Akbarinia and Parraga, 2018; Martinez-Cañada, Morillas, and Pelayo, 2018).
Some of these models propose that SO and DO cells are the main ingredients for
edge detection and color constancy (Yang et al., 2013; Gao et al., 2015) and that
near- and far-surrounds also play an important role in these tasks (Akbarinia and
Parraga, 2016; Akbarinia and Parraga, 2018). In particular, one of them proposed
that type I SO and hypothetical DO cells are the ones responsible for color con-
stancy (Gao et al., 2015). Other models are more biologically plausible but they
still reproduce psychophysical results on contour integration and texture segmen-
tation (Li, 1998; Li, 1999). Since the HVS can be considered as a unique system
that performs several tasks, a model similar to the one by Li (1999) showed that
it also reproduces psychophysical data on brightness induction (Penacchio, Otazu,
and Dempere-Marco, 2013). These models are mainly defined by excitatory-inhibitory
networks, which model separately the inhibitory and excitatory neurons (Wilson and
Cowan, 1972). In these recurrent dynamic systems the activity of the inhibitory neu-
rons depends on the activity of the excitatory ones, and this in turn depends on the
inhibitory neurons’ activity. Thus, in this kind of systems oscillations arise (Dayan
and Abbott, 2001). In Section 3.2.7 we studied the temporal evolution of Penacchio
et al.’s architecture (2013) when we present flashed stimuli to study color induc-
tion. We concluded that the architecture reproduces the lateral connections present
in layer 2/3 because, for uniform surround, the model results where similar to the
ones of psychophysics (compare Figures 3.5 and 3.7a).

Other models do not reproduce psychophysical data, but reproduce visual func-
tions observed in electrophysiological recordings (Chariker, Shapley, and Young,
2016; Angelucci et al., 2017; Martinez-Cañada, Morillas, and Pelayo, 2018). Sev-
eral computational architectures were used to study the orientation selectivity in V1
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from LGN input (Ringach, Hawken, and Shapley, 1997; Sompolinsky and Shapley,
1997; McLaughlin et al., 2000; Shapley, Hawken, and Ringach, 2003; Xing et al., 2011).
They concluded that both the feedforward and feedback connections are important
for orientation selectivity. In particular, they point out that suppressive feedback
connections from the same area sharpen the orientation tuning of V1 neurons (Som-
polinsky and Shapley, 1997; McLaughlin et al., 2000; Xing et al., 2011), and that this
sharpening, in output layers (layers 2/3, 4B, 5 or 6), changes with time (Ringach,
Hawken, and Shapley, 1997).

Only few models focused on color processing have been published (De Valois
and De Valois, 1993; Billock, 1995; Momiji et al., 2006; Momiji et al., 2007; Martinez-
Cañada, Morillas, and Pelayo, 2017; Martinez-Cañada, Morillas, and Pelayo, 2018).
Some of them are focused on the color processing in the retina (Momiji et al., 2006;
Momiji et al., 2007; Martinez-Cañada, Morillas, and Pelayo, 2017), one models SO
cells in cortical area (Billock, 1995) and the rest are multi-stage architectures (De Val-
ois and De Valois, 1993; Martinez-Cañada, Morillas, and Pelayo, 2018). Recently,
Martinez-Cañadas et al. (2018) published an extensive work where they provide a
biologically plausible framework of the parvocellular pathway from the retina to V1
layer 4Cβ. Based on physiological and anatomical studies and a previous model of
the retina (Martinez-Cañada, Morillas, and Pelayo, 2017), they modeled LGN and
V1 neurons, considering the SO type I cell in LGN and both SO type II and DO sim-
ple cells in V1. To test their architecture, the authors used several visual stimuli such
as light-flashes, spatially uniform squares and gratings.

Similarly to Martinez-Cañada et al. (2018), in this chapter, we provide a new
firing-rate architecture of the parvocellular pathway. In this work, we have focused
on the parvocellular pathway in V1 because it is the most well-understood chromatic
pathway. Thus, we implemented a multilayer architecture composed by V1 layers
4Cβ and 2/3. Our model considers their RFs and their lateral connections. We tested
our architecture using standard visual stimuli from electrophysiological recordings
such as drifting gratings varying the spatial and temporal frequency, orientation and
grating’s size.

4.2 Methods

The proposed architecture models two layers (layers 4Cβ and 2/3) of the parvocel-
lular pathway in V1. It is based on an excitatory-inhibitory network, where we have
modeled both excitatory and inhibitory populations that interact between them. The
model is inspired by Li’s (1999) and Penacchio et al’s (2013) architectures. The visual
input I is decomposed by the RFs into several scales (s = 1, 2, ..., ns), orientations
(θ = 0, π

nθ
, ..., π) and polarities (φ = 1, 2, ..., nφ). The subindexes isθφ indicate that

the neuron at the ith retinotopic position responds best to the spatial frequency of
scale s, orientation θ and polarity φ. The provided architecture is ruled by a general
equation (see Equation 4.1).


ẋisθφ = −αxxisθφ − gy(yisθφ)

−∑∆θ ψ(∆θ)gy(yisθ+∆θφ) + Jogx(xisθφ)

+∑j 6=i,θ′ J[isθφ,jsθ′φ]gx(xjsθ′φ) + Iisθφ + I0,
ẏisθφ = −αyyisθφ + gx(xisθφ) + ∑j 6=i,θ′ W[isθφ,jsθ′φ]gx(xjsθ′φ) + Ic.

(4.1)
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FIGURE 4.4: The membrane potentials of simple cells (γ = 1) are
transformed to firing rate by the functions gx(x) (for excitatory neu-
rons) and gy(y) (for inhibitory neurons). Similarly to Li (1999) and Pe-
nacchio et al. (2013), both functions are positive non-linear and non-
decreasing. The maximum firing rate for excitatory simple neurons is

gx(x) = 1 and gy(y) has not maximum.

where xisθφ is the membrane potential of the excitatory neuron and yisθφ is the mem-
brane potential of the inhibitory neuron at the same retinotopic position and spatial
frequency, orientation and polarity preferences. The membrane potentials are trans-
formed to firing rate by functions gx and gy for excitatory and inhibitory neurons,
respectively (see Figure 4.4). The firing rate function for excitatory neurons is de-
fined by gx(x) = (0.5γ)(tanh((2/γ)(x − (1.5γ))) + 1) and the one for inhibitory
neurons is gy(y) = 0.5(sign(y) + 1)y(1 + tanh((y− (2 ∗ γ))/γ)), where γ = 1 when
the neuron is a simple cell and γ = 10 when it is a complex cell. This γ param-
eter models the higher spontaneous firing rate activity of complex cells (Ringach,
Shapley, and Hawken, 2002). Similarly to Li (1999) and Penacchio et al. (2013),
both firing rate functions are non-linear and non-decreasing. The decay constants
are αx = 1 and αy = 2, the function ψ(y) models the divisive normalization de-
fined by Carandini and Heeger (2012). Similarly to Penacchio et al. (2013), we de-
fined it as ψ(∆θ) = cos(∆θ)6. J and W model the lateral connections of excita-
tory and inhibitory neurons, respectively, being J0 the self-excitatory connection
(J0 = 0.8). Ic and I0 model the background neural noise, where Ic = 1.0γ + Inoiseγ
and I0 = 0.85γ + Inorm + Inoiseγ. The spatial white noise is modeled by Inoise =
N(x̄; σt, σx) = N(0; 0.1, 0.1) (Li, 1999) and Inorm is defined in Equation 4.2, where
Si = {j|d(i, j) ≤ 2}, d(i, j) is the Euclidean distance between the ith and the jth
neurons, σf = FWHM/2.355 and FWHM = 5 (in distance units).

Inorm(isθφ) =− 2
(

∑j∈Si
f (i, j)gx(xjsθφ)

∑j∈Si
f (i, j)

)
, with

f (i, j) =e
− d(i,j)2

2σ2
f

(4.2)

We have divided the section according to the two different layers and the compo-
nents we have modeled, detailing the differences with respect to the architecture’s
general equation 4.1. In Figure 4.5, we can observe an illustrative general structure
of the provided architecture.
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FIGURE 4.5: An illustrative scheme of the provided architecture. For
sake of simplicity, here we only show the simple cells. The architec-
ture considers two different layers of the V1 parvocellular pathway
(layers 4Cβ and 2/3). The information in V1 arrives to layer 4Cβ,
where SO and DO cells lack orientation selectivity. Lateral connec-
tions between DO cells only considers the physical distance between
neighboring neurons and the model predicts that SO cells lack lat-
eral connections. Then, the information is sent to layer 2/3 where
DO cells are orientation selective and their lateral connections connect
near neurons that have similar orientation preference (Malach et al.,
1993). The layer 2/3 lateral connections scheme is adapted from (Pe-

nacchio, Otazu, and Dempere-Marco, 2013).

4.2.1 Layer 4Cβ

Although there are some orientation-selective cells, Color (SO cells) and Color-Lum
(both DO and complex) neurons of layer 4Cβ lack orientation-selectivity (Blasdel
and Fitzpatrick, 1984; Ringach, Shapley, and Hawken, 2002; Hubel and Wiesel, 2004).
Moreover, this layer is mainly composed by simple cells instead of complex ones, but
we cannot consider them non-existent (Ringach, Shapley, and Hawken, 2002). In the
computational architecture, according to their properties, all the different cells obey
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different equations (see below).

Simple cells

When the parvocellular pathway is activated, in layer 4Cβ of V1 two types of simple
cells respond: SO and DO cells. As stated before, they respond to different stimuli
(SO cells respond to large areas of uniform chromaticity and DO cells respond to
chromatic and luminance borders). Thus, their RFs are completely different:

FIGURE 4.6: The cells that interact through the lateral connections
depend on the cells’ type and the layer. Up to our knowledge, lat-
eral connections between SO cells have not been described, thus, we
have modeled them and we have not. Then, we have compared both
results in order to predict whether these connections are present be-
tween SO cells. Similarly to Li (Li, 1999) and Penacchio et al. (2013),
the lateral interactions between neighboring cells depend on the cells’
properties and their distance. In layer 4Cβ, since the neurons lack
orientation selectivity, these interactions only depend on the physical
distance. In layer 2/3, the interactions depend on both the physical
distance and the orientation preference instead. From observations
published in the literature, we have assumed that complex cells lack
lateral connections (see Section 4.2.1). In this figure, both sizes and
ratios of the lateral connections only have an illustrative purpose.
The colors indicate whether the connections are excitatory (J term of
Equation 4.1, green color) or inhibitory (W term of the equation, red
color) and the shape indicates the orientation selectivity. Circles in-
dicate that the lateral connections do not depend on the orientation
preference of the target neuron (indicated in blue) w.r.t. the neigh-
bors’ orientation preference. The crossed lines indicate that the lat-
eral connections between the target (in blue) and its neighbors also
depend on the orientation preference: Neurons of similar orientation
preference (the same one with a certain bandwidth) interact. For il-
lustrative purpose, the DO cell of layer 2/3 has a vertical orientation
preference (vertical blue line) and interacts with neighbors that have
similar orientation preferences (vertical and almost vertical red and

green lines).
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Single-opponent cells In layer 4Cβ, these cells are of type II (see Figure 4.3) and
are modeled as the difference of two gaussians, one that responds to L-cones and an-
other one that responds to M-cones (Johnson, Hawken, and Shapley, 2004; Solomon
and Lennie, 2007). For the sake of simplicity and to reduce the computational cost,
the architecture only considers the L-ON and M-OFF SO cells (two different po-
larities L-ON-center/M-OFF-surround and M-OFF-center/L-ON-surround). Thus,
the RFs respond to L-cone increments and M-cone decrements. The size of the RF
varies according to the different spatial frequencies. Although the RF’s sizes should
range from 0.1 to 1 deg of visual angles (Hubel and Wiesel, 1965; Schiller, Finlay, and
Volman, 1976; Serre and Riesenhuber, 2004), due to computational constraints, we
have reduced the biggest RF size to 0.6 visual angles. We have defined 6 different
scales ranging from 0.1 to 0.6 deg of visual angles with a scale increment of 0.1 deg.
Type II SO cells do not have orientation selectivity and we have not modeled lateral
connections between them (see the reason in Section 4.3 and a schematic of lateral
connections in Figure 4.6). Thus, the excitatory-inhibitory network of these cells do
not have the lateral connections terms (J = 0 and W = 0).

Double-opponent cells In layer 4Cβ, these cells lack orientation selectivity (John-
son, Hawken, and Shapley, 2008). To model them, we have used the hypotheti-
cal DO cells (Shapley and Hawken, 2002; Conway and Livingstone, 2006; Johnson,
Hawken, and Shapley, 2008). The activation of these cells is given by two type II RFs
of different sizes which overlap (see Figure 4.3). One of these type II cells is an L-
ON-center/M-OFF-surround and the other one is a M-OFF-center/L-ON-surround.
Again, for computational constraints, we have only modeled the L-ON-center/M-
OFF-surround neurons, but the L-OFF/M-ON also exist. The modeled neurons have
two different polarities (when the L-ON-center/M-OFF-surround RF is bigger than
the M-OFF-center/L-ON-surround RF and the inverse). Since these neurons lack
orientation selectivity, the modeled lateral connections link neurons that have the
same spatial frequency preference and the same polarity preference. In particular,
lateral connections in this layer are short range (Binzegger, Douglas, and Martin,
2004; Chisum and Fitzpatrick, 2004; Hirsch and Martinez, 2006; Binzegger, Dou-
glas, and Martin, 2009; Antolík and Bednar, 2011) and inhibitory connections (W)
are larger than excitatory (J) ones (Antolík and Bednar, 2011). The strength of the
lateral connections between one neuron and its neighbors depends on their physical
distance, according to the Gaussian function 4.3, where σx = 0.5, σy = 1.5, d(i, j) is
the Euclidean distance between the neighboring cells and z is a factor to normalize
the lateral connections area according to Li (1999) (zx = 6.88 and zy = 3.52) (see
summary of the lateral connections of the different components in Figure 4.6).

l(xisθφ, xjsθφ) = zx
e
− d(i,j)2

2σ2
x

∑∀j e
− d(i,j)2

2σ2
x

(4.3)

Complex cells

Complex cells respond equally to both ON and OFF light, are selective to one ori-
entation but respond to all (Ringach, Shapley, and Hawken, 2002) and are usually
modeled as a pool of simple cells. Thus, we have modeled them as a pool of sim-
ple cells of different orientations and polarities. Pooled simple cells are weighted
according to both their physical distance to the complex cell (σ = 2) and their orien-
tation preference w.r.t the orientation preference of the complex cell using Gaussian
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functions (σ = 0.41/(
√

2 log
√

2)). Complex cells can be classified as DO cells be-
cause they respond to both luminance and chromatic stimuli, in fact, they are usu-
ally classified as Lum or Color-Lum neurons (Johnson, Hawken, and Shapley, 2001;
Johnson, Hawken, and Shapley, 2004; Shapley, Hawken, and Johnson, 2014). Thus,
in this architecture, we have only modeled complex cells that pool DO simple cells.
Yeh et al. (2009) used sparse noise and Hartley subspace stimuli to study the RFs of
both simple and complex neurons in layers 2/3, 4C and 5/6. It is considered that
sparse noise does not activate lateral connections and Hartley subspace stimuli do.
Regarding layer 4C and 2/3 results, they observed that there is interlaminar differ-
ence for simple cells (high Receptive Field Similarity -RFS- in layer 4C and low RFS
in layer 2/3). The higher the RFS, the more similar the RFs when both sparse noise
and Hartley subspace stimuli are used. They concluded that this difference might
be explained by the activation (using the Hartley subspace stimuli) or no activation
(using sparse noise) of lateral connections in layer 2/3. Moreover, they observed
that the RFS for complex cells was not significantly different between both layers.
Although it is highly speculative, the similarity of RFS in both layers could be due
to either the lack of lateral connections between complex cells or the similarity of
these connections in both layers. Considering that complex cells have an orienta-
tion preference in layer 2/3 and do not in layer 4C and that lateral connections link
neighbors with similar orientation preference (Malach et al., 1993), it does not seem
feasible that lateral connections between complex cells are similar in both 4C and 2/3
layers. For this reason, we have modeled complex cells without lateral connections.

4.2.2 Layer 2/3

The red-green chromatic information from layer 4Cβ is projected to layer 2/3. This
layer is considered the output of V1 to higher visual areas such as V2. Regarding the
parvocellular pathway, the input of this layer is layer 4Cβ, thus, orientation selectiv-
ity of layer 2/3 cells arises from the output of layer 4Cβ non-oriented cells (Ringach,
Shapley, and Hawken, 2002; Xing et al., 2011).

Similarly to layer 4Cβ, this layer is also composed by simple (both SO and DO
cells) and complex cells, although the number (or the density) of complex cells in
this layer is higher than in layer 4Cβ (Ringach, Shapley, and Hawken, 2002).

Simple cells

Simple cells in layer 2/3 are either SO or DO cells. The main difference with respect
to layer 4Cβ is that DO cells are orientation selective.

Single-opponent cells In layer 2/3, these cells are very similar to the ones of layer
4Cβ. They also lack orientation selectivity and they are of type II. We have used
the same filters as for layer 4Cβ SO cells, but instead of using the visual input, they
use the activity of layer 4Cβ excitatory cells. Thus, the activity of layer 2/3 SO cells
comes from the activity of layer 4Cβ SO cells. In this case, the term Iisθφ is the activity
of excitatory SO cells in layer 4Cβ and they also lack lateral connections.

Double-opponent cells These cells are very different to layer 4Cβ DO cells be-
cause, in this layer, they have an orientation preference. DO cells are usually mod-
eled by Gabor filters (Daugman, 1985), but in this architecture we have only consid-
ered odd- and mixed-symmetric filters (even-symmetric filters have been removed) (Gi-
rard and Morrone, 1995; Shapley, Hawken, and Johnson, 2014). The input of these
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neurons is the activity of excitatory DO cells in layer 4Cβ. Layer 4Cβ DO cells are
weighted according to their polarity preference w.r.t. the polarity preference of layer
2/3 DO cell. The lateral connections between these neurons depend on both the
physical distance and the orientation preference of the neighboring cells (Malach et
al., 1993). To model these connections, we have used the same implementation as
Penacchio et al. (2013) (see Figure 4.6 and Equation 4.4), but we did not introduce a
scale interaction because it was minimal.

J[isθφ,jsθ′φ] =


0.126e−(β/d)2−2(β/d)7−d2/90 if (0 < d ≤ 10 and β < π/2.69)

or [(0 < d ≤ 10 and β < π/1.1)
and |θ1| < π/5.9 and |θ1 < π/5.9]

0 otherwise

W[isθφ,jsθ′φ] =


0 if d = 0 or d ≥ 10 or β < π/1.1

or |∆θ| ≥ π/3 o r|θ1| < π/11.999
0.14(1− e−0.4(β/d)1.5

)e−(∆θ/(π/4))1.5
otherwise

(4.4)

Complex cells

As stated before, complex cells can be modeled as a pool of DO simple cells. An
open question is whether complex cells of layer 2/3 receive an input of complex
cells of layer 4Cβ. Up to our knowledge, there are no studies in this direction. Thus,
we have modeled the complex cells neurons of layer 2/3 as a pooling of DO simple
cells neurons of the same layer with a small contribution of layer 4Cβ complex cells.
Thus, the activity of complex cells in layer 2/3 is driven by DO simple cells of the
same layer and complex cells of the previous one (layer 4Cβ). For the same reason
as in layer 4Cβ, we have assumed that these cells do not have lateral connections
between them.

Although the output of the architecture could be considered the excitatory activ-
ity of DO cells in layer 2/3 (similarly to the HVS), it does not have a single output,
because it considers several types of neurons and several connectivities (feedfor-
ward and lateral connections). Thus, the output varies from one run to another
depending on the properties to analyze.

To test our architecture, similarly to the works coauthored by Hawken and Shap-
ley (Johnson, Hawken, and Shapley, 2001; Ringach, Shapley, and Hawken, 2002;
Johnson, Hawken, and Shapley, 2008), we have defined a set of drifting gratings
that allow us to study the different cells’ properties (see Figure 4.7). Since we want
to study the properties of parvocellular pathway in V1, the drifting gratings are
sinusoidal and equiluminant. They are produced by modulating sinusoidally in an-
tiphase the L- and M-cones activation (L and M ∈ [0, 1]). Thus, when L-cone ac-
tivation is maximal (L = 1), M-cone activation is minimal (M = 0). The stimuli
depend on the temporal frequency (the speed of the drift), the spatial frequency of
the sinusoid (how thick are the stripes), the grating’s area (how many periods are
inside the circle) and the orientation. We have defined a set of values for each of
those parameters and we have measured the activity of a cell for all of them. The
cell preference isdetermined by the stimulus’ parameters that produce the highest
cell response (optimal stimulus). Once we find the preference of the cell, we system-
atically vary all the stimuli parameters in order to study the cells’ properties. For the
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sake of simplicity, we have always placed the grating in the middle of the stimulus
and we have measured the activity of the cells whose RF is centered in the stimulus.
We have selected the xisθφ neuron that responds best to the stimuli.

(A) Optimal stimulus

(B) Higher temporal frequency

(C) Stimulus with larger area

(D) Higher spatial frequency

(E) Rotated stimulus

FIGURE 4.7: Sinusoidal equiluminant drifting gratings are used to
study cells’ properties. First, we have found the optimal stimulus,
i.e., the parameters (temporal and spatial frequencies, area and orien-
tation) of the drifting grating that make the cell to respond best (A).
Then, we have varied several stimulus’ parameters such as the tem-
poral frequency (B), the grating area (C), spatial frequency (D), orien-
tation (E) to study the cells’ response (Ringach, Shapley, and Hawken,
2002). The gratings are presented inside a gray square and the L-M
grating is produced by modulating the L- (red color) and M-cones

(green color) activation in antiphase.

To study the orientation selectivity of the cells, we have calculated the circular
variance (CV) and the bandwidth which both together help to assess the orientation
tuning of a cell (Johnson, Hawken, and Shapley, 2008). CV measures the response
to the preferred orientation with respect to all orientations. When CV is close to
0, it means that the cell has a high orientation selectivity, whereas a CV close to 1
means that it has a broad orientation selectivity (Mardia, 1972; Ringach, Shapley,
and Hawken, 2002; Johnson, Hawken, and Shapley, 2008). The bandwidth measure
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shows the degrees in which the cell is selective to (standard deviation of the cell’s
response to different orientations). Therefore, the higher the bandwidth the less
orientation selective is the cell.

Another interesting measure for orientation selectivity is the ratio between the
orthogonal-to-preferred orientation and the preferred orientation (O/P) (Ringach,
Shapley, and Hawken, 2002). When the cell responds similarly to the preferred ori-
entation and to the orthogonal one, the ratio is close to 1. When the responses are
completely different, its value is close to 0.

It has been observed that, when the stimulus is high contrast, lateral connec-
tions act as inhibitory, while when the stimulus is low contrast, they act as facilita-
tory (Ichida et al., 2007; Shushruth et al., 2009; Angelucci and Shushruth, 2014). To
test the lateral connections of layer 2/3 DO cells, we have varied the grating’s area
in order to cover the lateral connections’ region. Thus, a very small grating does
not fill the cRF, but as the grating’s area increases the cRF is filled and the lateral
connections start to be activated.

Since, up to our knowledge, there are no studies that describe lateral connec-
tions between SO cells, we have run the model activating and deactivating them.
We have compared both results in order to predict whether these connections could
be present between these cells. SO cells are non-orientation selective cells, thus, sim-
ilarly to layer 4Cβ DO cells, we have modeled their lateral connections based on the
physical distance between neighboring neurons, being the inhibitory lateral connec-
tions larger than the excitatory ones (Antolík and Bednar, 2011). Using the same
methodology as described above, we have studied the spatial frequency selectiv-
ity of these cells (after obtaining the optimal stimulus, the spatial frequency of the
drifting gratings has been varied).

4.3 Results

This section is divided according to the studied properties. We have started studying
the temporal frequency, and then we have also studied the grating area, the spatial
frequency and the orientation. Moreover, we observe that the modeled lateral con-
nections participate actively in the center-surround modulation.

4.3.1 Temporal frequency

To study the temporal properties of the different architecture’s components, we vary
the temporal frequency ( f ) of the drifting grating ( f ∈ [2, 4, 8, 16] Hz; see an illustra-
tive example in Figure 4.7b). We observe that, in general, the modeled cells prefer
low temporal frequencies such as f = 2 or f = 4 Hz instead of higher ones such as
f = 8 or f = 16 Hz (see Figure 4.8).

4.3.2 Grating area

The stimulus is a gray square with a circular region in the center. The drifting grating
is presented in this circular region of sharp edges. In this study we vary the size of
the circular area (a), thus, the larger area, the more cycles of the drifting grating
are displayed (see Figure 4.7c). The number of cycles of the drifting grating are
(a ∈ [1, 2, 5, 7, 10] cycles). In Figure 4.9, the results for SO cells are not shown because
their distributions are completely flat. Since SO cells are low-pass and do not have
lateral connections, they are insensitive to area size variations because the drifting
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(A) SO simple cell in layer 4Cβ (B) DO simple cell in layer 4Cβ

(C) SO simple cell in layer 2/3 (D) DO simple cell in layer 2/3

(E) Complex cell in layer 4Cβ (F) Complex cell in layer 2/3

FIGURE 4.8: Study of the drifting grating’s temporal frequency in dif-
ferent cells of the proposed architecture. The higher the temporal fre-
quency, the faster the drift. Modeled neurons clearly respond best to

slow stimuli ( f < 4 Hz).

grating already covers their RF when a = 1 cycle. In contrast, we can observe that
DO and complex cells have an area size preference (a > 1 cycles).

4.3.3 Spatial frequency

Spatial frequency selectivity is one of the major factors to distinguish between SO
and DO cells. As described before, SO cells respond best to large chromatic ar-
eas and DO cells respond to both luminance and chromatic borders. Here, we
vary the spatial frequency of the drifting grating while maintaining the temporal
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(A) DO simple cell in layer 4Cβ (B) DO simple cell in layer 2/3

(C) Complex cell in layer 4Cβ (D) Complex cell in layer 2/3

FIGURE 4.9: We vary the area of the circular region where the drift-
ing grating is presented. Due to their low spatial frequency selectiv-
ity and their lack of lateral connections, SO cells (not shown) have a
completely flat distribution, pointing out that they are insensitive to
different area sizes. In contrast, DO cells’ activity depends on the area

of the circular region.

frequency, area size and orientation to match the optimal stimulus (see an exam-
ple in Figure 4.7d). We have tested the architecture using 8 different spatial fre-
quencies (υ ∈ [0.2, 0.5, 0.75, 1, 2, 3.5, 5, 10] cycles/deg). In Figure 4.10, we can ob-
serve that the SO cells of this architecture respond best to low spatial frequencies
(υ < 1 cycles/deg; i.e., large areas) and do not respond at all to high spatial frequen-
cies (υ > 2 cycles/deg). In contrast, DO cells respond best to borders and do not
respond to large chromatic areas. Similarly to DO cells, complex cells are band-pass,
although they also respond to low spatial frequencies.

4.3.4 Orientation

When we vary the orientation of the drifting grating, a clear distinction between
layer 4Cβ and layer 2/3 cells has arisen. We start from the optimal stimulus and
we rotate the grating between θp and θp + 2π, where θp is the preferred orientation
of the cell (see Figure 4.7e). For the sake of simplicity and taking into account that
the architecture does not consider motion direction, we rotate the grating from 0 to
180° in steps of 10°. In Figure 4.11, we can observe several cell responses when the
drifting grating is rotated (red line). Layer 4Cβ and layer 2/3 SO cells distributions
are almost flat, pointing out that they do not have orientation selectivity. Similarly,
since complex cells in layer 4Cβ pool non-oriented DO neurons, they do not have
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(A) SO simple cell in layer 4Cβ (B) DO simple cell in layer 4Cβ

(C) SO simple cell in layer 2/3 (D) DO simple cell in layer 2/3

(E) Complex cell in layer 4Cβ (F) Complex cell in layer 2/3

FIGURE 4.10: The abscissa shows different spatial frequencies for the
drifting grating and the ordinate shows the firing rate activity (in arbi-
trary units) for different cells (SO, DO and complex cells) in different
layers. We can observe that SO cells of this model respond best to
uniform chromatic areas whereas DO and complex cells respond best

to chromatic borders.

orientation selectivity neither. In contrast, layer 2/3 DO and complex cells have a
high orientation selectivity. All these observations are captured in the measures: CV
values are high for layer 4Cβ cells and layer 2/3 SO cells and low for layer 2/3 DO
and complex cells; bandwidth values are around 10° in orientation selective cells.
In addition, we can observe that orientation non-selective cells (layer 4Cβ cells and
layer 2/3 SO cells) have a high O/P value, while selective ones (layer 2/3 DO simple
and complex cells) have a low O/P ratio. Notice that layer 2/3 DO cells respond to a
determined orientation and bandwidth and, outside this range, they do not respond
at all. Layer 2/3 complex cells have a stronger response when the stimulus matches
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(A) SO simple cell in layer 4Cβ (B) DO simple cell in layer 4Cβ

(C) SO simple cell in layer 2/3 (D) DO simple cell in layer 2/3

(E) Complex cell in layer 4Cβ (F) Complex cell in layer 2/3

FIGURE 4.11: The x axis corresponds to the orientation of the grat-
ing (in degrees) and the y axis is the firing rate (in arbitrary units) of
the neuron which is centered in the stimulus (the cell response). The
bandwidth (not shown for non-oriented cells) together with circular
variance (CV), help to assess the orientation tuning of the cell. When
CV is high it means that the cell has a broad orientation selectivity,
while a low value means that the cell has a narrow orientation se-
lectivity. The bandwidth measures the number of degrees in which
the cell is responsive to. Finally, the ratio between the orthogonal-to-
preferred orientation and the preferred orientation (O/P) shows how
the cell responds to the orthogonal-to-preferred orientation with re-
spect to its preferred one. Thus, when the ratio is high (close to 1), it
means that the cell responds similarly to both oriented gratings and

when the ratio is low the cell’s response is completely different.

their preferred orientation, but they respond to all orientations (as the stimulus is
rotated, their firing rate never is close to 0).
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4.3.5 Center-surround modulation

In Figure 4.12, we show the response of a layer 2/3 DO cell for a high contrast stimu-
lus (blue line) and for a low contrast stimulus (red line). In this study, the contrast of
the high contrast stimulus is 5 times higher than the contrast of the low one (ch = 2
and cl = 0.4, where ch is the high contrast and cl is the low contrast). We can observe
that, as expected, the response is weaker when a low contrast stimulus is presented.
When the lateral connections are activated (around a = 5), the high contrast re-
sponse decreases (it is suppressed) but the low contrast response keeps increasing
(it is facilitated). Therefore, the modeled lateral connections act as facilitatory when
a low contrast stimulus is presented and act as inhibitory when a high contrast one
is presented.

4.3.6 Lateral connections between SO cells

The results of SO cells in Figure 4.10 have been calculated assuming no lateral con-
nections between these cells. When these lateral connections are activated, the re-
sults are quite different (see Figure 4.13). They show a band-pass cell for low spatial
frequencies, instead of a low-pass one (see Figure 4.10).

4.4 Discussion

In Section 4.2.1, we have assumed that SO cells lack lateral connections. As stated
before, the computational models are especially interesting when they fail. When
these lateral connections are activated, SO cells are not low-pass, they are band-pass
(see Figure 4.13). Thus, based on our results and the lack (up to our knowledge) of
studies that describe the lateral connections between SO cells in V1, we assume that
no lateral connections exist between these cells.

To test our architecture, we compare our results to electrophysiological studies.
In particular, we have studied the spatial frequency and orientation properties of
different types of neurons (both SO and DO cells) in different layers (layer 4Cβ and
2/3) of the parvocellular pathway in V1. In Figure 4.14 (Figure adapted from (John-
son, Hawken, and Shapley, 2001; Johnson, Hawken, and Shapley, 2008)), we can
observe the response of different cells when drifting grating’s spatial frequency is
varied. Our results (see Figure 4.10) reproduce these electrophysiological observa-
tions: SO cell are low-pass and DO cells are band-pass. Moreover, we can observe
that, similarly to our results, complex cells are also band-pass and their response
to low spatial frequencies is not zero. Unfortunately, we have not found results for
layer 4Cβ SO simple cell and simple cells in layer 2/3, but these studies point out
that they are not different from the ones shown in Figure 4.14.

Comparing Figures 4.11 and 4.15 (adapted from (Johnson, Hawken, and Shapley,
2008)), we can observe that our results also reproduce electrophysiological observa-
tions in terms of orientation selectivity: layer 4Cβ cells are non-orientation selective
and DO and complex cells in layer 2/3 are. Especially interesting is the layer 4Cβ DO
cell (see Figure 4.15b) because, although it is a DO cell, it lacks orientation selectiv-
ity. Their RF has not been mapped, but some of their properties have been observed.
In our architecture we have modeled the hypothetical RF defined by Shapley and
Hawken (2002). We can observe that accepting the existence of this DO cell, both
spatial frequency and orientation selectivity results can be reproduced.

Similarly to spatial frequency selectivity, layer 2/3 complex cells, although be-
ing orientation selective, respond to a broad band of orientations (see Figure 4.15d).
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(A) with lateral connections (B) without lateral connections

(C) Electrophysiological recording

FIGURE 4.12: As the area of the grating is increased, the cRF and the
lateral connections are activated. We presented both high contrast
and low contrast stimuli and we studied the response of the same cell
(a layer 2/3 DO cell). (A) We can observe that, due to the lateral con-
nections, around a = 5 cycles, the response to the high contrast stimu-
lus decreases, while the response to the low one increases. This points
out that the lateral connections act as facilitatory or inhibitory de-
pending on the stimulus contrast. (B) To test that the center-surround
modulation is due to modeled lateral connections between layer 2/3
DO cells we cut off these connections and we studied the cell’s re-
sponse. We can observe that the response increases as the cRF is
filled, but when it is completely filled, the response remains constant
(there are not lateral connections that modulates the cell response).
(C) Electrophysiology recordings show that the result of the lateral
connections depends on the stimulus’ contrast. When the stimulus is
high contrast, the result is inhibitory, while it is facilitatory when the
stimulus is low contrast. Far-surround always suppresses the cells’
response instead. The vertical red line indicates the limit of our archi-
tecture (it models up to the near-surround). Thus, in Figures (A, B)
we do not observe the suppression due to the far-surround (feedback
connections). Figure adapted from (Nurminen and Angelucci, 2014).

Thus, these cells have a high CV but a low bandwidth. Layer 2/3 complex cells
of our architecture have the same properties, they respond to all orientation, al-
though they respond best to the one of their preference and, with respect to layer
2/3 DO cells, their CV is higher and their bandwidth is similar (Ringach, Shapley,
and Hawken, 2002).
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FIGURE 4.13: In the proposed architecture we assume that SO cells do
not have lateral connections because if we activate them, these cells

are band-pass (the model fails).

In Figure 4.12, we observed that due to the lateral connections between layer
2/3 DO cells, the cells’ response to a high contrast stimulus is suppressed (for a >
5 cycles), while the response to a low contrast stimulus is facilitated. In several works
coauthored by Angelucci (Ichida et al., 2007; Shushruth et al., 2009; Angelucci and
Shushruth, 2014; Angelucci et al., 2017), the authors have observed this lateral con-
nections’ property (see Figure 4.12c, adapted from (Nurminen and Angelucci, 2014)).
Moreover, they have observed that the far-surround (composed by feedback connec-
tions) always suppresses the cells’ response, regardless of the stimulus’ contrast (An-
gelucci and Shushruth, 2014; Angelucci et al., 2017). In our architecture we did not
model these feedback connections, thus, the cell’s response for low contrast stimulus
in Figure 4.12 is not suppressed.

4.5 Conclusions

In this work, we have implemented a new firing rate neurodynamical model of the
parvocellular pathway (red-green chromatic information) in V1. To do so, it consid-
ers two different layers of this cortical areal: layers 4Cβ (where LGN information is
projected to) and 2/3 (from where the information is sent to higher visual areas such
as V2). Both layers are connected through feedforward connections and each layer
is modeled as a recurrent network composed by both excitatory and inhibitory cells.
Layer 4Cβ is composed by two types of simple cells: SO and DO cells; and com-
plex cells. As observed in electrophysiological recordings, all of them lack orienta-
tion selectivity and respond to different spatial frequencies (Johnson, Hawken, and
Shapley, 2001; Ringach, Shapley, and Hawken, 2002; Johnson, Hawken, and Shapley,
2008). To model non-oriented DO simple cells we have to suppose the existence of
the hypothetical DO cells, which have not been mapped but some of their properties
have been observed (Shapley and Hawken, 2002). Moreover, to reproduce electro-
physiological recordings we have to assume a lack of lateral connections between SO
simple cells because otherwise they are not low-pass (see Figure 4.13). To reproduce
their properties, complex cells have been modeled as a pool of DO simple cells.
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(A) SO simple cell in layer 6 (B) DO simple cell in an unknown V1 layer

(C) Complex cell in layer 4Cβ (D) Complex cell in layer 2/3

FIGURE 4.14: Several works have studied the spatial frequency prop-
erties of different cells located in different layers. Similarly to Fig-
ure 4.10, the x axis indicates the spatial frequency of the stimulus and
the y axis shows the cell’s response. Figures adapted from (Johnson,
Hawken, and Shapley, 2001; Johnson, Hawken, and Shapley, 2008).

The cells in layer 4Cβ serve as input of cells in layer 2/3. In the architecture, layer
2/3 is also composed by two types of simple cells: SO and DO cells; and complex
cells. Thus, the input of layer 2/3 SO and DO simple cells are layer 4Cβ SO and
DO simple cells, respectively. In contrast, complex cells from layer 2/3 receive input
from layer 2/3 DO simple cells (they pool them) and a small contribution of layer
4Cβ complex cells. Layer 2/3 DO cells receive input from non-orientation selective
cells but they are orientation selective (see Figure 4.11). Complex cells in layer 2/3
show orientation selectivity although they respond to all orientations. To test our ar-
chitecture, we have simulated electrophysiological studies (Johnson, Hawken, and
Shapley, 2001; Ringach, Shapley, and Hawken, 2002; Johnson, Hawken, and Shapley,
2008) and we have reproduced the cells’ response when several stimuli properties
are varied.

To test the lateral connections between layer 2/3 DO cells, we have simulated
the study performed by Ichida et al. (2007). We presented two different stimuli, one
of high contrast and one of low contrast. We observe (see Figure 4.12) that lateral
connections are mandatory to modulate the cell’s response and that their result is
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(A) SO simple cell in an unknown V1 layer (B) DO simple cell in layer 4Cβ

(C) DO simple cell in layer 2/3 (D) Complex cell in layer 2/3

FIGURE 4.15: As well as spatial frequency, cells’ orientation selec-
tivity has been widely studied using electrophysiological record-
ings (Johnson, Hawken, and Shapley, 2001; Ringach, Shapley, and
Hawken, 2002; Johnson, Hawken, and Shapley, 2008). Here, we show
several recordings, adapted from (Johnson, Hawken, and Shapley,
2008), of different cells when the orientation of the grating varied. As
stated before, SO cells and layer 4Cβ DO simple cells (A, B) lack ori-
entation selectivity and layer 2/3 DO simple and complex cells do not
(C-E). Thus, our results in Figure 4.11 reproduce these observations.

facilitatory for low contrast stimulus and inhibitory for high contrast stimulus. Al-
though Ichida et al. (2007) used achromatic stimuli, other works showed that, the
same is true (but reduced) for color selective cells and chromatic stimuli (Solomon,
Peirce, and Lennie, 2004).

4.6 Future work

This architecture can be extended considering feedback connections which are one of
the main ingredients in the HVS processing. There are several feedback connections
that could be modeled: the inter-area connections (i.e., feeback connections to LGN
or from V2) and intra-area (i.e., feedback connections in the same V1 area). Both have



102 Chapter 4. A computational model of color processing in V1

to be modeled together with layer 5/6, which plays an important role in feedback
functionality in V1.

Moreover, in the previous chapter, we have observed that luminance and chro-
matic channels (i.e., magno- and parvo- or koniocellular pathways) interact in V1
and that these interactions have an important role in color perception, or at least
in color induction. Although magno-parvo interactions have not the influence of
magno-konio interactions, it will be interesting to include the magnocellular path-
way in this architecture.

And last, but not least, this architecture could be used as saliency map estima-
tor (Li, 2002). Especially interesting would be the study of complex cells in these
tasks. Since they respond to a broad range of spatial frequencies and they respond to
all orientations, regardless of stimulus polarity, they could estimate well the saliency
map.

4.7 Related publications

• Brightness and colour induction through contextual influences in V1 (Otazu,
Penacchio, and Cerda-Company, 2015b), Scottish Vision Group (SVG), 2015.

• A multi-task neurodynamical model of lateral interactions in V1: chromatic
induction (Cerda-Company and Otazu, 2016a), European Conference on Visual
Perception (ECVP), 2016.

• A new dynamical firing rate model of the parvocellular pathway in V1 (Cerda-
Company, Otazu, and Penacchio, 2018), Barcelona Computational, Cognitive and
Systems Neuroscience (BARCCSYN), 2018.
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Chapter 5

General Conclusions

In this chapter, we have summed up the conclusions along all the chapters of this
PhD:

1. When tone-mapping operators are compared, the used criteria is fundamental.

2. Local tone-mapping operators perform best when local criteria is used and
global tone-mapping operators perform best when a global one is considered.

3. There is ample room to define a tone-mapping operator that considers both
local and global perceptual properties.

4. Since humans are the users of tone-mapping operators, a perceptual metric
based on psychophysics should be defined for a proper and fair comparison
among them.

5. Color induction depends on the inducers’ chromaticities and the luminance
differences between the target and the inducers.

6. Color contrast, but not color assimilation, could occur in equiluminant stimuli.

7. Color contrast, induced by flashed stimuli, depends on the flash duration.

8. When the stimulus is either equibrightness or equiluminant, no color assimi-
lation effect occurs.

9. When luminance is varied, color induction depends on the varied element.
The spatially further the varied element with respect to the target, the weaker
the induced color in the target.

10. A luminance-chromatic interaction is necessary to induce color assimilation
and it depends on the chromatic pathway and their polarities. This luminance-
chromatic interaction could be explained by a mutual-inhibition mechanism.

11. Maybe due to natural evolution, color assimilation never occurs when the sur-
round is green.

12. There is no computational model that reproduces color induction effects. None
of the defined models consider the inducers’ chromaticities and the luminance
differences.

13. We defined a computational model that reproduces electrophysiological record-
ings in terms of spatial frequency, orientation selectivity and center-surround
modulation.
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14. To reproduce the electrophysiological recordings, the provided architecture
has to assume the existence of the hypothetical double-opponent cells defined
by (Shapley and Hawken, 2002).

15. Our computational model predicts that no lateral connections are present be-
tween single-opponent cells because otherwise it fails to reproduce electro-
physiological observations.

During this PhD, several articles have been published and other ones are in
preparation, but during this period of almost 3.5 years not only the articles have
been important. I have also tried to acquire other "alternative" skills that I believe
they will be very useful in my future academic and research life. I think that maybe
the most relevant ones are: psychophysics methodology and computational model-
ing, but there are more which are as important such as analysis, comprehension and
synthesis capabilities, oral and written communications, article writing, searching,
perform a mid-term project, networking, consider alternatives, etc. I think that my
PhD is not only the publications and the new concepts that I have learned, but the
mosaic of all of them together with these "alternative" skills.
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Appendix A

Statistical Analysis of Section 3.3
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TABLE A.1: Summary of the nested ANOVA results for both luminance and brightness experiments. The first column indicates the ex-
periment (luminance or brightness), the second one the varied element, the third the chromatic condition, the fourth the effect (between
groups, within groups and the error), the fifth the degrees of freedom, the sixth the sum of squares (SS), the seventh the mean square
(MS) and the last two the F and p values. These results show that, in all conditions of both experiments, color induction depends on the

luminance/brightness differences

Experiment Element
Chromatic

Source df SS MS F p
Condition

Lu
m

in
an

ce

Test ring

red-green
Luminance Cond 4 0.16 0.04 6.31 <0.001

Subject(Luminance Cond) 43 1.10 0.03 3.96 <0.001
Error 426 2.75 0.00

green-red
Luminance Cond 4 1.35 0.34 68.5 <0.001

Subject(Luminance Cond) 43 1.44 0.03 6.79 <0.001
Error 426 2.10 0.00

purple-lime
Luminance Cond 4 11.5 2.88 248 <0.001

Subject(Luminance Cond) 44 12.0 0.27 23.5 <0.001
Error 437 5.06 0.01

lime-purple
Luminance Cond 4 9.41 2.35 173 <0.001

Subject(Luminance Cond) 44 10.0 0.23 16.7 <0.001
Error 438 5.96 0.01
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Continued from previous page

Experiment Element
Chromatic

Source df SS MS F p
Condition

Lu
m

in
an

ce

1st inducer

red-green
Luminance Cond 4 0.48 0.12 34.5 <0.001

Subject(Luminance Cond) 34 2.88 0.08 24.5 <0.001
Error 349 1.21 0.00

green-red
Luminance Cond 4 2.56 0.64 206 <0.001

Subject(Luminance Cond) 34 1.79 0.05 17.0 <0.001
Error 347 1.08 0.00

purple-lime
Luminance Cond 4 2.71 0.68 102 <0.001

Subject(Luminance Cond) 34 3.49 0.10 15.4 <0.001
Error 350 2.32 0.01

lime-purple
Luminance Cond 4 3.88 0.97 124 <0.001

Subject(Luminance Cond) 35 6.04 0.17 22.2 <0.001
Error 359 2.79 0.01

2nd inducer

red-green
Luminance Cond 4 0.12 0.03 12.4 <0.001

Subject(Luminance Cond) 34 1.17 0.03 14.5 <0.001
Error 349 0.83 0.00

green-red
Luminance Cond 4 0.16 0.04 17.7 <0.001

Subject(Luminance Cond) 34 1.33 0.04 17.1 <0.001
Error 350 0.80 0.00

purple-lime
Luminance Cond 4 0.13 0.03 5.52 <0.001

Subject(Luminance Cond) 35 5.66 0.16 27.9 <0.001
Error 360 2.08 0.01

lime-purple
Luminance Cond 4 0.18 0.05 7.40 <0.001

Subject(Luminance Cond) 34 2.28 0.07 11.0 <0.001
Error 349 2.13 0.01
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Continued from previous page

Experiment Element
Chromatic

Source df SS MS F p
Condition

Lu
m

in
an

ce

Both inducers

red-green
Luminance Cond 4 0.12 0.03 12.4 <0.001

Subject(Luminance Cond) 34 1.17 0.03 14.5 <0.001
Error 349 083 0.00

green-red
Luminance Cond 4 0.16 0.04 17.7 <0.001

Subject(Luminance Cond) 34 1.33 0.04 17.1 <0.001
Error 350 0.80 0.00

purple-lime
Luminance Cond 4 0.13 0.03 5.52 <0.001

Subject(Luminance Cond) 35 5.66 0.16 27.9 <0.001
Error 360 2.08 0.01

lime-purple
Luminance Cond 4 0.18 0.05 7.40 <0.001

Subject(Luminance Cond) 34 2.28 0.07 11.0 <0.001
Error 349 2.13 0.01

B
ri

gh
tn

es
s

Test ring

red-green
Brightness Cond 4 0.35 0.09 40.5 <0.001

Subject(Brightness Cond) 40 1.48 0.04 17.1 <0.001
Error 403 0.87 0.00

green-red
Brightness Cond 4 1.16 0.29 131 <0.001

Subject(Brightness Cond) 38 1.07 0.03 12.8 <0.001
Error 386 0.85 0.00

purple-lime
Brightness Cond 4 2.12 0.53 78.0 <0.001

Subject(Brightness Cond) 40 5.18 0.13 19.0 <0.001
Error 404 2.75 0.01

lime-purple
Brightness Cond 4 1.32 0.33 62.4 <0.001

Subject(Brightness Cond) 40 3.69 0.09 <0.001
Error 402 2.12 0.00
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Continued from previous page

Experiment Element
Chromatic

Source df SS MS F p
Condition

B
ri

gh
tn

es
s

1st inducer

red-green
Brightness Cond 4 0.15 0.04 35.9 <0.001

Subject(Brightness Cond) 29 0.84 0.03 27.1 <0.001
Error 304 0.33 0.00

green-red
Brightness Cond 4 1.07 0.27 211 <0.001

Subject(Brightness Cond) 30 1.26 0.04 33.1 <0.001
Error 310 0.39 0.00

purple-lime
Brightness Cond 4 0.85 0.21 72.0 <0.001

Subject(Brightness Cond) 29 1.95 0.07 22.9 <0.001
Error 303 0.89 0.00

lime-purple
Brightness Cond 4 2.90 0.73 255 <0.001

Subject(Brightness Cond) 27 1.52 0.06 19.8 <0.001
Error 285 0.81 0.00

2nd inducer

red-green
Brightness Cond 4 0.08 0.02 24.4 <0.001

Subject(Brightness Cond) 25 0.47 0.02 22.3 <0.001
Error 266 0.22 0.00

green-red
Brightness Cond 4 0.20 0.05 57.3 <0.001

Subject(Brightness Cond) 30 0.95 0.03 35.9 <0.001
Error 311 0.28 0.00

purple-lime
Brightness Cond 4 0.11 0.03 9.99 <0.001

Subject(Brightness Cond) 30 3.86 0.13 46.4 <0.001
Error 311 0.86 0.00

lime-purple
Brightness Cond 4 0.18 0.05 15.98 <0.001

Subject(Brightness Cond) 26 1.03 0.04 13.8 <0.001
Error 277 0.79 0.00
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Experiment Element
Chromatic

Source df SS MS F p
Condition

B
ri

gh
tn

es
s

Both inducers

red-green
Brightness Cond 4 0.12 0.03 31.4 <0.001

Subject(Brightness Cond) 28 0.67 0.02 24.2 <0.001
Error 297 0.29 0.00

green-red
Brightness Cond 4 0.57 0.14 152 <0.001

Subject(Brightness Cond) 30 0.48 0.02 17.0 <0.001
Error 313 0.29 0.00

purple-lime
Brightness Cond 4 0.47 0.12 45.9 <0.001

Subject(Brightness Cond) 30 1.51 0.05 19.9 <0.001
Error 315 0.80 0.00

lime-purple
Brightness Cond 4 1.86 0.47 195 <0.001

Subject(Brightness Cond) 27 1.03 0.04 16.0 <0.001
Error 287 0.69 0.00
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