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Abstract

Quantum physics is arguably both the most successful and the most coun-
terintuitive physical theory of all times. Its extremely accurate predic-
tions on the behaviour of microscopic particles have led to unprecedented
technological advances in various fields and yet, many quantum phenom-
ena defy our classical intuition.

Starting from the 1980’s, however, a paradigm shift has gradually
taken hold in the scientific community, consisting in studying quantum
phenomena not as inexplicable conundrums but as useful resources. This
shift marked the birth of the field of quantum information science, which
has since then explored the advantages that quantum theory can bring
to the way we process and transfer information.

By now, it is a very well established fact that encoding bits in quantum
particles can lead for instance to more efficient computations as well as
extremely secure communications. Because of its practical applications to
every-day life, quantum information science has therefore attracted a lot
of political and economic interest. Several initiatives have been recently
launched with the purpose of bridging the gap between basic science and
industry in this field, both at the national and the international level. At
the same time, more and more companies are increasing their effort in
producing quantum devices at the commercial level.

There is no doubt that we have entered the era of the near-term
quantum devices, where controllable quantum systems composed of tens
or hundreds of particles are becoming increasingly more accessible. In
such a scenario, certifying that these devices are exhibiting their appeal-
ing quantum properties constitutes a timely problem. Importantly, for
the desired certification methods to be applicable in realistic situations,
they have to be scalable with the system size. In other words, they have
to involve computational and experimental requirements that grow poly-
nomially with the number of particles in the system of interest.

In this thesis, we introduce scalable certification tools that apply to
various operational properties of many-body quantum systems. In the
first three cases we consider, we base our certification protocols on the
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detection of nonlocal correlations. These kinds of non-classical correla-
tions that can displayed by quantum states allow one to assess relevant
properties in a device-independent manner, that is, without assuming
anything about the specific functioning of the device producing the state
of interest or the implemented measurements.

In the first scenario we present an efficient method to detect multipar-
tite entanglement in a device-independent way. We do so by introducing
a numerical test for nonlocal correlations that involves computational and
experimental resources that scale polynomially with the system number
of particles. We show the range of applicability of the method by using
it to detect entanglement in various families of multipartite systems.

In multipartite systems, however, it is often more informative to pro-
vide quantitative statements. We address this problem in the second sce-
nario by introducing scalable methods to quantify the nonlocality depth
of a multipartite systems, that is, the number of particles sharing nonlo-
cal correlations among each other. We show how to do that by making
use of the knowledge of two-body correlations only and we apply the re-
sulting techniques to experimental data from a system of a few hundreds
of atoms.

In the third scenario, we move to consider self-testing, which is the
most informative certification method based on nonlocality. Indeed, in a
self-testing task, one is interested in characterising the state of the system
and the measurement performed on it, by simply looking at the resulting
correlations. We introduce the first scalable self-testing method based
on Bell inequalities and apply it to graph states, a well-known family of
multipartite quantum states. Moreover, we show that the certification
achieved with our method is robust against experimental imperfections.

Lastly, we address the problem of certifying the result of quantum
optimizers. They are quantum devices designed to estimate the ground-
state energy of classical spin systems. We provide a way to efficiently
compute a convergent series of upper and lower bounds to the minimum
of interest, which at each step allows one to certify the output of any
quantum optimizer.



Resumen

La física cuántica es posiblemente la teoría física más exitosa y la más
contraintuitiva jamás desarollada. A pesar de que sus predicciones ex-
tremadamente precisas sobre el comportamiento de las partículas mi-
croscópicas han llevado a avances tecnológicos sin precedentes en varios
campos, muchos fenómenos cuánticos desafían nuestra intuición basada
en una concepción clásica de la física.

Sin embargo, a partir de la década de 1980 tuvo lugar un cambio
de paradigma en la comunidad científica, que se orientó en estudiar los
fenómenos cuánticos no como enigmas inexplicables, sino como recursos
útiles. Este cambio marcó el nacimiento del campo de la ciencia de la
información cuántica, que desde entonces ha explorado las ventajas que la
teoría cuántica puede aportar a la forma en que procesamos y transferimos
la información.

Hoy en día es un hecho bien establecido que la codificación de in-
formación en partículas cuánticas puede llevar, por ejemplo, a procesos
de cálculo más eficientes, así como a comunicaciones extremadamente
seguras. Además, debido a sus aplicaciones prácticas a la vida cotid-
iana, la ciencia de la información cuántica ha atraído un gran interés
político y económico. Recientemente se han lanzado varias iniciativas
con el propósito de cerrar la brecha entre la ciencia básica y la indus-
tria en este campo, tanto a nivel nacional como internacional. Al mismo
tiempo, cada vez más empresas están incrementando sus esfuerzos para
producir dispositivos cuánticos a nivel comercial.

No hay duda de que hemos entrado en la era de la primera generación
de dispositivos cuánticos, en la cual los sistemas cuánticos controlables
compuestos de decenas o cientos de partículas son cada vez más accesibles.
En tal escenario, el certificar que estos dispositivos exhiben sus atractivas
propiedades cuánticas constituye un problema fundamental. Es impor-
tante destacar que, para que los métodos de certificación deseados sean
aplicables en situaciones reales, éstos deben ser escalables con el tamaño
del sistema. En otras palabras, tienen que basarse en requerimientos com-
putacionales y experimentales que crezcan, a lo sumo,polinomialmente
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con el número de partículas en el sistema de interés.
En esta tesis, introducimos herramientas de certificación escalables

que se aplican a varias propiedades operativas de sistemas cuánticos de
muchos cuerpos. En los primeros tres casos que consideramos, basamos
nuestros protocolos de certificación en la detección de correlaciones no
locales. Estos tipos de correlaciones no clásicas, que únicamente pueden
ser producidas por sistemas cuánticos, permiten evaluar propiedades rele-
vantes de forma independiente del dispositivo, es decir, sin realizar hipóte-
sis acerca del funcionamiento específico del dispositivo que produce el
estado de interés o las mediciones implementadas.

En el primer escenario, presentamos un método eficiente para detectar
entrelazamiento en sistemas multipartitos de forma independiente del dis-
positivo. Lo hacemos mediante la introducción de una prueba numérica
para las correlaciones no locales que involucra recursos computacionales
y experimentales que escalan polinomialmente con el número de partícu-
las del sistema. Mostramos el rango de aplicabilidad de dicho método
usándolo para detectar entrelazamiento en varias familias de sistemas
multipartitos.

Sin embargo, al tratar con sistemas de muchos cuerpos a menudo es
más informativo proporcionar informaciones cuantitativas. Abordamos
este problema en el segundo escenario mediante la introducción de méto-
dos escalables para cuantificar la profundidad no local (non-locality depth)
de un sistema multipartito, es decir, la cantidad de partículas que com-
parten correlaciones no locales entre sí. Mostramos cómo realizar dicha
cuantificación a partir del conocimiento únicamente de los correladores
de dos cuerpos, y aplicamos las técnicas resultantes a los datos experi-
mentales de un sistema de unos pocos cientos de átomos.

En el tercer escenario, pasamos a considerar el caso de self-testing, que
es el método de certificación más informativo basado en la no localidad.
De hecho, en una tarea de self-testing, el objetivo es caracterizar el estado
del sistema y las mediciones realizadas en él, simplemente observando las
correlaciones resultantes. Introducimos el primer método de self-testing
escalable basado en las desigualdades de Bell y lo aplicamos a estados
de grafo, una familia muy conocida de estados cuánticos multipartitos.
Además, demostramos que la certificación lograda con nuestro método es
robusta a imperfecciones experimentales.

Por último, consideramos el problema de certificar el resultado de
optimizadores cuánticos. Estos son dispositivos cuánticos diseñados para
estimar la energía del estado fundamental de sistemas de espines clásicos.
Desarollamos un método eficiente para calcular una serie convergente de
límites superiores e inferiores al mínimo de interés, que en cada paso
permite certificar el resultado de cualquier optimizador cuántico.
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La física quàntica és, sens dubte, la teoria física més reeixida i més contra-
intuïtiva de tots els temps. Les seves prediccions extremadament precises
sobre el comportament de les partícules microscòpiques han donat lloc a
avenços tecnològics sense precedents en diversos camps i, no obstant això,
molts fenòmens quàntics desafien la nostra intuïció clàssica.

A partir de la dècada dels 80, però, un canvi de paradigma s’ha
anat establint entre la comunitat científica, consistint a estudiar fenò-
mens quàntics no tan com quelcom inexplicable o contra-intuïtiu, sinó
com a recursos útils per a certes tasques. Aquest canvi va marcar el naix-
ement del camp de la ciència de la informació quàntica, que des de llavors
ha explorat els avantatges que la teoria quàntica pot aportar a la nostra
manera de processar i transferir informació.

Avui dia és un fet molt ben establert que la codificació de bits en les
partícules quàntiques pot conduir, per exemple, a càlculs més eficients,
així com a comunicacions extremadament segures. A causa de les seves
aplicacions pràctiques a la vida quotidiana, la ciència de la informació
quàntica ha atret molt interès polític i econòmic. Recentment s’han posat
en marxa diverses iniciatives amb la finalitat de reduir la distància entre
la ciència bàsica i la indústria en aquest camp, tant a nivell nacional com
internacional. Al mateix temps, cada vegada són més les empreses que
estan duent a terme esforços en la producció de dispositius quàntics a
nivell comercial.

No hi ha dubte que hem entrat a l’era dels dispositius quàntics a
curt termini, on els sistemes quàntics controlables composts per desenes
o centenars de partícules són cada vegada més accessibles. En aquest es-
cenari, la certificació que aquests dispositius satisfan, en efecte, les seves
atractives propietats quàntiques constitueix un problema oportú i alta-
ment rellevant. És important destacar que per tal que els mètodes de
certificació desitjats siguin aplicables a situacions realistes, han de ser
escalables amb la mida del sistema. En altres paraules, han complir amb
els requisits computacionals i experimentals que demanen un creixement
polinomial amb el nombre de partícules del sistema d’interès.
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En aquesta tesi, introduïm eines de certificació escalables que s’apliquen
a diverses propietats operacionals dels sistemes quàntics de molts cossos.
En els tres primers casos que considerem, basem els nostres protocols de
certificació en la detecció de correlacions no locals. Aquests tipus de cor-
relacions no clàssiques, que es poden revelar per alguns estats quàntics,
permeten avaluar les propietats pertinents d’una manera independent
del dispositiu, és a dir, sense assumir cap hipòtesi sobre el funcionament
específic del dispositiu que produeix l’estat d’interès o les mesures imple-
mentades.

En el primer escenari presentem un mètode eficaç per detectar
l’entrellaçament de múltiples sistemes de manera independent del dis-
positiu. Ho fem introduint una prova numèrica per a correlacions no
locals que impliqui recursos computacionals i experimentals que escala
polinomialment amb el nombre de partícules del sistema. Mostrem el
rang d’aplicabilitat del mètode utilitzant-lo per detectar l’entrellaçament
en diverses famílies de sistemes multipartits.

En sistemes multipartits, però, sovint és més informatiu proporcionar
declaracions quantitatives. Abordem aquest problema en el segon es-
cenari introduint mètodes escalables per quantificar la profunditat de
no localitat d’un sistema multipartit, és a dir, el nombre de partícules
que comparteixen correlacions no locals entre elles. Mostrem com fer-ho
fent ús del coneixement de les correlacions de dos cossos i apliquem les
tècniques resultants a dades experimentals a partir d’un sistema d’uns
quants centenars d’àtoms.

En el tercer escenari, considerem l’anomenat self-testing (autoavalu-
ació), que és el mètode de certificació més informatiu basat en la no lo-
calitat. De fet, en una tasca de self-testing, interessa caracteritzar l’estat
del sistema i es mesures que s’hi fan, només a partir de les correlacions
resultants. Introduïm el primer mètode de self-testing escalable basat
en les desigualtats de Bell i l’aplicem als estats de grafs, una coneguda
família d’estats quàntics multipartits. A més, demostrem que la certifi-
cació aconseguida amb el nostre mètode és robusta contra imperfeccions
experimentals.

Finalment, abordem el problema de certificar el resultat dels optim-
itzadors quàntics. Són dispositius quàntics dissenyats per preparar una
aproximació de l’estat de menor energia en els sistemes de spin clàssics.
Proporcionem un mètode per calcular de manera eficient unes seqüències
convergents de fites superiors i inferiors al mínim d’interès, i que a cada
pas ens permet certificar la sortida de qualsevol optimitzador quàntic.
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Chapter 1

Introduction

We give a brief introduction to the field of quantum information the-
ory and to the notion of device-independent protocols. Afterwards, we
present the general motivation behind this work and we summarise our
main contributions.

1.1 Introduction to quantum information theory

At the beginning of the 20th century, the formulation of quantum theory
constituted a complete change of paradigm in how physics described the
world. The many counterintuitive phenomena that govern the behaviour
of quantum particles have long since represented a puzzle for all scientists.
Nevertheless, quantum mechanics is arguably the most successful physical
theory of all times, having been capable to predict extremely accurately
many new phenomena and leading to unprecedented scientific advances,
especially in the study of matter and particle physics.

In more recent times, the ability to control and manipulate single
quantum particles, initiated by the advancements in quantum optics,
started a second wave of studies on the fundamental properties of quan-
tum theory. While allowing one to analyse more closely the paradoxical
effects predicted by the superposition principle and measurement postu-
lates, the new experiments also stimulated a change of perspective that
proposed to look at the paradoxical properties of quantum systems as
resources.

Taking from the expanding field of information theory, the idea that
started forming was that encoding bits into quantum particles could bring
advantages in the way the information is processed and transferred. The
consecutive seminal works of Weisner, Bennett and Brassard introduced
the first quantum cryptography [BB84] and quantum coding [BW92] pro-
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tocols and opened the door to many more, including the first algorithms
for quantum computers. After nearly 40 years of research, quantum infor-
mation science is currently a well-established field, whose interests range
in directions as diverse as optimisation problems, secure communication
and chemistry [NC02].

In this thesis we focus on a particular framework for quantum infor-
mation protocols: the device-independent scenario. Such a framework
originated from the foundational studies of John Bell in the 1960’s, who
was the first to discover that composite quantum systems can exhibit cor-
relations that escape any classical explanation [Bel64]. Further studies
showed that these correlations, referred to as nonlocal, allow one to infer
properties of the system in a device-independent manner, that is, without
making assumptions about the devices that produce and manipulate it
[BCP+14].

1.2 Motivation and main contributions

The last years have witnessed a serious increase in political, scientific
and economic interest towards bridging the gap between industry and
research in quantum information theory. In fact, apart from keeping the
impulse of basic science, the field is rapidly advancing in more applicative
directions. This tendency is evident if one looks at the number of new
quantum-inspired start-ups that have been launched in the last two years
only. Quantum technologies have also attracted the interest of the big
tech companies all over the world: each of them, ranging from Google,
IBM, Amazon to Alibaba, has started developing its own prototype of
quantum computer.

Indeed, quantum computing and quantum simulation constitute two
of the most promising research directions that could find commercial ap-
plications in the near future. Their focus is on harnessing properties of
large quantum states in order to solve problems that no classical com-
puter can tackle, one prominent examples being the simulation of com-
posite quantum systems themselves. Being able to perform calculations
at such an unprecedented level of complexity opens the way to poten-
tial breakthroughs in fields as diverse as finance, chemistry, medicine and
machine learning.

For all of these advances to be possible, a compelling requirement is
not only to produce and control larger and larger quantum systems, but
also to be able to verify that these systems are exhibiting the features that
make them appealing in the first place. In other words, the ubiquitous
problem that these quantum technologies are facing is that of certifying
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whether a given many-body quantum system satisfies some operational
properties. Among others, the crucial questions are: is this given system
in an entangled state? Does the observed state correspond to the ground
state of a given hamiltonian? Does it contain the solution to a hard
classical optimisation problem?

To be of practical use, the desired certification methods should be
scalable in the systems size. More precisely, if one is interested in detect-
ing relevant properties of many-body states, any approach that requires
collecting and processing an amount of information that grows exponen-
tially with the system size is bound to become intractable for large enough
systems. The main goal of this thesis is to provide scalable certification
techniques for some of the most significant operational properties of quan-
tum many-body systems. In most of the scenarios we consider, we adopt
a device-independent framework, which is particularly appealing because
it allows one to assess these properties by making no assumption on the
internal working of the quantum device under study.

1.2.1 Device-independent multipartite entanglement de-
tection

Entanglement is provably a vital ingredient for many of the most relevant
protocols in quantum information theory. For this reason, certifying that
a given multi-particle system is entangled is a crucial step for the practical
implementation of these protocols [GT09]. From the theoretical point of
view, it is well known that determining whether a given quantum state
is not separable is a hard problem. Therefore, there is no hope to find
an efficient criterion that can determine whether any density matrix is
entangled or not. Despite the complexity obstacle, the practical interest
of the problem has obviously stimulated a lot of research on approximate
entanglement detection methods.

Nevertheless, all the known techniques suffer from at least one of the
following drawbacks: i) being tailored to a very specific class of states,
hence lacking generality, or ii) requiring an amount of information on
the system that scales exponentially with the number of particles, or iii)
constituting an inefficient test from the computational point of view.

Contribution: We introduce a device-independent multipartite en-
tanglement detection method that can be applied to any set of observed
correlations and that meets all the experimental and computational scal-
ability requirements. Indeed, it necessitates the knowledge of up to four-
body correlations, which can be estimated by performing a polynomial
amount of measurements. Moreover, the entanglement criterion can be
cast into an efficient numerical test, consisting in solving a semidefinite
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program involving a number of variables that scales polynomially with N .
The price to pay is that the introduced technique is a relaxation of the
nonlocality detection problem, hence it can only provide necessary con-
ditions for non-separability. Nevertheless, we examine several scenarios
and we provide examples of relevant classes of multipartite states whose
entanglement is successfully detected by our method for systems of few
tens of particles.

1.2.2 Detecting nonlocality depth with two-body correla-
tors

Bell nonlocality has attracted an increasing amount of attention over the
last years, not only for its fundamental interest, but also for its role in
device-independent quantum information protocols [BCP+14]. Remark-
ably, while nonlocal correlations have been extensively explored in the
bipartite scenarios, their features in multipartite settings are much less
characterised. The main reason for that is the exponentially increas-
ing computational complexity of the multipartite scenario, which pre-
vents one from having a complete understanding of the space of classical,
quantum and even post-quantum correlations for an arbitrary number of
parties.

An interesting solution to overcome these difficulties, first proposed
in [TAS+14], is to restrict the study to the problem of detecting nonlocal
correlations with the knowledge of two-body correlations only. Surpris-
ingly enough, by further imposing permutational symmetry on the quan-
tities of interest, the characterisation of local correlations dramatically
simplifies, allowing one to show that such a limited amount of informa-
tion is enough to detect nonlocality in systems composed of any number
of particles. Apart from a theoretical interest, the introduced framework
also has a practical relevance, since these quantities can be estimated
by means of collective measurements. This simplification led to the first
experimental demonstration of Bell correlations in many-body systems
composed of thousands of particles [SBA+16, EKHK17].

So far, the above-mentioned techniques were able to provide quali-
tative information about the system, namely confirming the presence of
nonlocal correlations. However, the most relevant statements in a multi-
partite setting are actually those of quantitative nature, such as the esti-
mation of the so-called nonlocality depth, which represents the amount of
particles genuinely sharing non-classical correlations in the state. Com-
pared to the case of entanglement, in the field of nonlocality this direction
remains almost unexplored, mainly due to the lack of efficient methods
that can estimate nonlocality depth.



1.2 Motivation and main contributions 5

Contribution: We address the question of detecting nonlocality
depth in a multipartite scenario with the knowledge of the symmetrised
two-body correlations only. To do so, we introduce a general framework
and we show that, for any value of nonlocality depth, the complexity of
the problem is polynomial in the number of particles. This allows us to
obtain a complete characterisation of Bell inequalities detecting values
of nonlocality depth k ≤ 6, for the scenarios with a number of particles
N ≤ 15. Moreover, we show that those values of nonlocality depth can
be detected and distinguished for any N . Lastly, we study the use of our
techniques to many-body systems and we apply them to experimental
data from a Bose-Einstein condensate.

1.2.3 Scalable self-testing from Bell inequalities

Self-testing is the strongest form of device-independent verification of a
quantum device [MY04]. By simply exploiting the information encoded in
the correlations produced by a system, a self-testing protocol allows one to
certify the quantum state that was produced and the local measurements
that were performed on it. Such a tool is particularly interesting because
it offers a way to guarantee that a quantum device is working properly
without the need of knowing its internal functioning.

In recent years, many self-testing protocols have been proposed, tai-
lored to various families of bipartite and multipartite quantum states.
The considered approaches generally differ from each other depending on
the amount of information they require. The simplest method introduced
so far is based on Bell inequalities, providing a self-testing statement that
relies solely on the fact that the observed correlations achieve the maxi-
mal quantum violation of a given Bell inequality.

Another feature of a self-testing protocol that is relevant for practical
applications is its scalability. Indeed, if one is interested in certifying
properties of multipartite states, any approach based on an exponen-
tially scaling amount of information is bound to become intractable for
large enough systems. To the best of our knowledge, no polynomial Bell-
inequality-based self-testing method has been introduced so far.

Contribution: We present the first scalable self-testing technique
based on the maximal violation of Bell inequalities. To do so, we focus
on the well-known graph states, a family of multipartite quantum states
that have shown to be relevant for many quantum information protocols.
Given a graph state, we are able to derive a Bell inequality maximally
violated by it and we are able to show that from this violation one can
self-test the corresponding quantum state. Remarkably, these inequalities
are constituted by an amount of terms that scales linearly with the system
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size. Lastly, we show that the introduced method has the potential to be
generalised to other families of multipartite states.

1.2.4 Verification of quantum optimizers

The main motivation behind the construction of larger and better quan-
tum computers is to demonstrate the so-called quantum advantage, that
is, to show that there is a problem that those devices can solve in a more
efficient way than any classical computer can. Recently, a lot of interest
has been attracted by quantum optimizers, namely quantum computers
that are specialised in solving specific optimisation problems for which
no efficient classical algorithm is known.

A prototypical example of hard optimisation problem is that of find-
ing the ground states of classical Ising models, that is, hamiltonians of
systems of classical spins. Such energy minimisation problem is particu-
larly interesting because it finds applications in a huge variety of fields:
indeed, ground states of Ising models are capable of encoding the solu-
tion to important decision and optimisation problems that come from
risk assessment in finance or machine learning, among others [Luc14].

Given both the relevance and the hardness of the question, it comes
with no surprise that a plethora of approximate but more scalable clas-
sical energy minimisation algorithms have been introduced. Hence, a
natural comparison that has been extensively studied is that between
the solution provided by newly developed quantum optimizers and these
efficient classical algorithms. Nevertheless, all these optimisation meth-
ods - both quantum and classical - share a crucial drawback, namely the
fact that they provide only upper bounds to the ground state energy of
interest.

Hence, apart from showing that quantum optimizers find better upper
bounds than classical energy minimisation techniques, a very timely ques-
tion to address is how to certify that their output is actually close to the
exact minimum. To answer that, a very informative tool is constituted
by methods that provide lower bounds to the ground state energy.

Contribution: We study a hierarchy of relaxations of the classical
Ising ground state energy problem in the form of semidefinite programs.
A relevant property of these relaxations is that they can provide both
lower and upper bounds to the exact solution with a polynomial effort
in the size of the system. We also augment the method by leveraging
two additional tools. First, we improve its scalability by means of the so-
called chordal extension, a technique that can exploit the sparsity of the
problem in a systematic way. Second, we adopt a strategy referred to as
branch-and-bound that allows to combine lower and upper bounds so to
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converge to the exact ground state energy. We benchmark the introduced
method with the D-Wave 2000Q quantum annealer and find instances
where the latter is unable to reach the ground-state configuration, hence
being stuck in a local minimum.
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Chapter 2

Preliminaries

2.1 Convex optimisation in quantum information
theory

Finding the global minimum of a function f(x) over a set of variables
x ∈ Rn is a problem that has countless applications in all fields of both
fundamental and applied science. Despite its great interest stimulates a
lot of research in the topic, no general method providing a solution to any
minimisation problem in an efficient way is yet known. Interestingly, this
picture changes if one restricts the problem to the subcase of convex op-
timisation, that comprises the cases where both the function and the set
over which the optimisation is performed are convex1. Indeed, extensive
research showed that there exist algorithms to solve these problems effi-
ciently, that is, with a provably polynomial amount of resources [BV04].

Remarkably, a broad variety of optimisation problems can actually be
cast in the form of convex ones and those appearing in quantum informa-
tion theory are no exception to this phenomenon. In fact, in many of the
scenarios considered in the context of quantum information protocols, one
is precisely interested in characterising properties of convex sets. That
is the case, among others, of the set of quantum states, separable states,
completely positive quantum channels, as well as the sets of local, quan-
tum and no-signalling correlations in the device-independent framework.
Therefore, it comes with no surprise that convex optimisation tools play
a central role in quantum information theory, with a particular attention
to the special cases of linear and semidefinite programming. Moreover,

1Recall that a function f(x) is convex if it satisfies the inequality f(αx1 + βx2) ≤
αf(x1) + βf(x2) for any positive coefficients α and β that sum up to one. Similarly,
a set S ⊂ Rn is convex if for any two points x1, x2 ∈ S, their convex combination
αx1 + βx2 belongs to S as well.
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even in the cases in which either the function or the considered set (or
both of them) are not convex, it is often possible to consider relaxations
expressed in terms of a convex optimisation problem, which allow for an
efficient computation of lower bounds to the minimum of interest.

Here we focus on two specific examples of convex optimisation prob-
lems: the cases of linear and semidefinite programming. Later, we revise
the case of a convex relaxation to the generally non-convex problem of
constrained polynomial optimisation.

2.1.1 Linear programming and polytopes

Linear programming (LP) is the problem of minimising a linear function
subject to linear equality and inequality constraints. In its standard or
primal form, a general linear programming problem is usually written as

minimise cTx

s.t. Ax = b , (2.1)
x ≥ 0 ,

where A ∈ Rm×n, b ∈ Rm, x ∈ Rn and the inequality x ≥ 0 is inter-
preted componentwise, that is xi ≥ 0 for i = 1, . . . , n. Geometrically, LP
problems have a nice interpretation in terms of their feasible set, i.e. the
set over which the optimisation is performed. Indeed, the feasible set of
(2.1) is the intersection of an affine subspace (defined by the constraints
Ax = b) and the non-negative orthant (represented by the points satis-
fying x ≥ 0) and, being an intersection of two convex sets, it is clearly
convex.

In general, a set defined by a finite collection of linear inequalities and
equalities is called polyhedron. For the purposes of this thesis, we are only
interested in cases where the feasible set is bounded, thus constituting
what is called a polytope. The geometry of polytopes is very well un-
derstood: in particular, the Minkowski-Weyl theorem [Zie12] states that
any polytope P can be expressed as the convex hull of a finite amount of
extremal points, namely

P = conv (v1, . . . , vs) =

{
s∑

i=1

λivi
∣∣

s∑

i=1

λi = 1 , λi ≥ 0 , i = 1, . . . , s

}
.

(2.2)
The set of vectors vi ∈ Rn is usually referred to as vertices of the poly-
tope. As already pointed out, polytopes can equivalently be defined by a
finite set of inequalities. The minimal amount of inequalities required to
define P is called its facets. Given the facet representation of a polytope,
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determining the list of its vertices is usually called vertex enumeration
problem. Conversely, deriving the complete set of facets corresponding
to a vertex representation is known as solving the convex hull problem.
Algorithms for solving both tasks are known and have been implemented
in software [Fuk97, Avi00]. Notice that the best algorithm for finding the
list of facets (vertices) for a polytope composed of n vertices (facets) in
a space of dimension d has a worst-case time complexity that scales as
O(nbd/2c) [Cha93].

Importantly, to any primal form of a LP problem is associated the
following dual problem

maximise bT y

s.t. AT y ≤ c . (2.3)

Notice that (2.3) defines a maximisation over a polyhedral set as well.
Moreover, there is a strong algebraic relation between any feasible so-
lution x∗ of a primal LP problem and any solution y∗ of its dual. The
relation is called weak duality and it states that cTx∗ ≥ bT y∗. In practice,
it means that any feasible dual solution can be used to lower bound the
value of the primal and, conversely, any feasible primal solution provides
an upper bound for the dual problem. Remarkably, it is known that
whenever both the primal and the dual problem are feasible, then the
equality holds, corresponding to the case of strong duality.

In practice, linear programming problems are interesting because they
can be solved efficiently. More precisely, many algorithms are known that
provide solutions in polynomial time and are currently implemented in
software, such as interior points methods [Kar84, RTV97].

2.1.2 Projecting and intersecting polytopes

Before moving to the more general case of semidefinite programming, let
us discuss how to characterise polytopes restricted to subspaces. More
precisely, we consider a scenario where the complete description (either
through vertices or through facets) of a polytope is known, but one is
interested in its representation in a given subspace. There are two relevant
operations to explore, namely projection and intersection.

Let us start with analysing the first: consider a subspace V ⊂ Rd and
denote by πV : Rd → V the projection onto it. Imagine then that we
want to project a given polytope P ⊂ Rd onto V . There are two ways of
determining the action of πV on P . First, πV (P ) can be straightforwardly
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x

y

(0, 0)

(1, 1)

(2, 0)

Py=0

T2
T1

(0, 1)

Figure 2.1: Example of projection of a triangle onto the y axis. The
vertices of the triangle are the set {(0, 0), (2, 0), (1, 1)}, whose projection
are the points {(0, 0), (0, 1)}. Therefore the desired projected polytope is
the set 0 ≤ y ≤ 1. Conversely, the intersection of the triangle with the y
axis coincides with the point (0, 0).

defined in terms of projection of its vertices, i.e.,

πV (P ) =

{
p ∈ V | p =

s∑

i=1

λiπV (vi) , λi ≥ 0 ,
s∑

i

λi = 1

}
. (2.4)

Notice that the projections of the vertices vi, πV (vi) might not be vertices
of the projected polytope πV (P ). On the other hand, a vertex of πV (P )
must come from a vertex of P under the projection πV .

However, in certain situations it is much easier to describe a polytope
by using inequalities instead of vertices. In such a case it is thus impos-
sible to use (2.4) in order to find πV (P ), and one needs to exploit the
facets of P for that purpose. A method that does the job is the so-called
Fourier-Motzkin elimination [Sch98], which allows one to find facets of
πV (P ) starting from facets of P .

Let us now briefly describe this method starting from an illustrative
bidimensional example: suppose that we want to project the triangle
shown in Figure 2.1 onto the y axis. It is easy to see that the inequalities
defining such geometrical object are

x+ y ≤ 2, −x+ y ≤ 0, y ≥ 0. (2.5)

If we cancel out the x coordinate from the inequalities, as we would have
done when projecting vertices, we obtain the following three inequalities:
y ≤ 2, y ≤ 0 and y ≥ 0, which is not the projection we want since it
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defines only a single point y = 0. For further purposes, we notice that
the result of this procedure coincides with the intersection of the polytope
with the x = 0 axis, instead of the projection. Thus, projecting facets is
a different task than projecting vertices: while for the latter it is enough
to map each original vertex into the projected one, the above example
shows that this procedure does not work for inequalities.

The basic principle of the Fourier-Motzkin elimination procedure is
the fact that any convex combination of two facets of a polytope defines
another valid inequality for it. To be more precise, let us consider a
polytope P ⊂ Rd for some finite d, and let f1 · p ≤ β1 and f2 · p ≤ β2

be inequalities defining two different facets of it; here, f1, f2 ∈ Rd and
β1, β2 ∈ R, and p ∈ P . It is clear that any vector p satisfying both these
inequalities obeys also the following inequality

[λf1 + (1− λ) f2] · p ≤ λβ1 + (1− λ)β2 (2.6)

for any 0 ≤ λ ≤ 1. The Fourier-Motzkin elimination exploits this prop-
erty in order to define new valid inequalities bounding the polytope in
which the coordinate that we want to project out is no longer involved.
Coming back to the triangle example, we notice that by taking a convex
combination with λ = 1/2 of the first two inequalities in (2.5) we get a
new inequality that involves only y, i.e., y ≤ 1. If we consider in addition
the third inequality, that does not contain x, we get the right projection
of the triangle, that is the set 0 ≤ y ≤ 1, as shown in Figure 2.1.

Let us now state the general procedure of the Fourier-Motzkin elimi-
nation. Given a generic polytope in Rd defined by a finite set of inequal-
ities fi ·p ≤ βi, where fi ∈ Rd and βi ∈ R, the list of inequalities defining
its projection in the subspace defined by pi = 0 for some i, is obtained
through the following steps:

• divide the list of inequalities according to the sign of the coefficient
in front of pi to obtain three sub-lists fi+ , fi− ,fi0 corresponding to
positive, negative or zero coefficient,

• take all the possible convex combinations between one element of
fi+ and one of fi− , choosing the proper combination in order to get
a new valid inequality with zero coefficient in front of pi,

• the obtained list, together with fi0 , gives a complete set of inequal-
ities that defines the projected polytope,

• remove all the redundant inequalities to get the minimal set.

The main problem with the Fourier-Motzking elimination method is
that it is in general very costly in terms of computational requirements.
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Indeed, due to the redundancy that one gets at each step, the time and
memory needed to eliminate the variables scale exponentially with the
number of variables that one wants to project out.

Another operation that we exploit in this thesis is an intersection of
a polytope P with a given subspace. To define it let us consider again
a linear space Rd and its subspace V ⊂ Rd. Then, the intersection
operation, denoted intV : Rd −→ V is defined as

intV (P ) = {p ∈ P | p · w = 0 for all w ∈ V ⊥}, (2.7)

where V ⊥ is the subspace of Rd orthogonal to V . It is not difficult to
notice that any element belonging to the intersection of P with V is also
an element of its projection onto the subspace, that is

intV (P ) ⊆ πV (P ). (2.8)

Moreover, contrarily to the projection, the intersection of a polytope is
more easily described in the dual representation. To show how, we define
the dual basis {~v∗i } and {~w∗j} for the dual of the subspaces V and V ⊥,
respectively, so to decompose any inequality in P ∗ as ~f =

∑
i fi~v

∗
i +∑

j fj ~w
∗
j . Then, we can define

intV (P )∗ =

{
g ∈ V ∗ | g =

∑

i

fi~v
∗
i where fi = ~f · ~v∗i for ~f ∈ P ∗

}
.

(2.9)
Lastly, we also notice that (2.8) implies, for the dual representation

intV (P )∗ ⊇ πV (P )∗, (2.10)

meaning that some inequalities valid for the intersection of the polytope
might be not valid for its projection. In other words, there are generally
inequalities in intV (P )∗ that cannot be written as a convex combination
of the original ones in P ∗.

2.1.3 Semidefinite programming

Semidefinite programming is a broad generalisation of linear program-
ming, representing the case of optimisation of a linear function subjected
to linear matrix inequalities. Let us denote by Sn the set of symmetric
real n × n matrices. Recall that a matrix A ∈ Sn is said to be positive
semidefinite and denoted by A � 0 if it satisfies vTAv ≥ 0 for any vector
v ∈ Rn. The set Sn+ of positive semidefinite n × n matrices is a cone,
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hence a convex subset of Sn. Then, a general semidefinite programming
(SDP) problem can be stated in its primal form as

minimise 〈C,X〉
s.t. 〈Ai, X〉 = bi , i = 1, . . . ,m , (2.11)

X � 0 ,

where Ai, C are symmetric n× n matrices and 〈X,Y 〉 := tr (XY ). Sim-
ilarly to the linear programming case, the feasible set of an SDP is the
intersection of the affine subspace defined by 〈Ai, X〉 = bi and the pos-
itive semidefinite cone Sn+, hence it is also convex. More precisely, the
set of matrices satisfying the constraints in (2.11) is generally called a
spectrahedron and, unlike the feasible set of a LP, it will generally not
be a polyhedron. In particular, this implies that spectrahedra cannot be
defined by a finite amount of linear inequalities.

As for the formulation of LP problems, the primal form of an SDP
can also be associated to its dual problem, which reads as follows

minimise bT y

s.t.
m∑

i=1

Aiyi � C , (2.12)

where b = (b1, . . . , bm) and y = (y1, . . . , ym) are the dual decision vari-
ables. Remarkably, weak duality between dual and primal problems holds
for SDPs as well, allowing one to use the feasible solutions of one to bound
the values of the other. The conditions for strong duality are however
more stringent than in the linear programming case. In particular, strong
duality holds if both problems are strictly feasible, meaning that there
exists a X � 0 that satisfies the constraints in the primal problem (2.11)
and, on the dual side, there exist a vector y for which C−∑m

i=1Aiyi � 0.
From a practical point of view, SDPs can provably be solved effi-

ciently, that is, with algorithms that provide a solution in polynomial
time [VB96]. In terms of software implementation, many packages are
known that work as parsers (i.e. softwares that take care of casting a
generic SDP into its standard primal or dual form) such as CVX [Cvx]
and YALMIP [Yal] and solvers (i.e. software packages implementing nu-
merical algorithms to solve SDPs), such as MOSEK [Mos] and SDPA
[Sdpa].

2.1.4 The moment problem and polynomial optimisation

Consider the following problem: take a set of n random variables x1, . . . , xn
that can take real values inside some compact set S = {x ∈ Rn | g1(x) ≥
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0, . . . , gm(x) ≥ 0}, distributed according to some non-negative measure
µ : Rn → R+. Assume that one has access to some of the expectation
values or moments of such probability measure, namely the numbers

〈xα〉 =

∫
xα1

1 xα2
2 . . . xαnn µ(dx) , (2.13)

where, for instance, only moments up to some degree d are considered,
that is those that satisfy

∑
i αi ≤ d. A very relevant question to ask is,

given a finite set of such moments, how to check whether they are indeed
compatible with a valid probability measure. In other words, which are
the constraints that the numbers 〈xα〉 have to respect so to allow the
construction of a measure µ∗ that reproduces them according to (2.13)?
This question is usually referred to as the truncated moment problem
and it cannot be answered with a simple and self-contained test in the
general multivariate case (i.e. with n > 1). Interestingly enough, it is
however possible to introduce an infinite sequence of SDP conditions that
approximate the set of valid moments arbitrarily well.

The idea on which these conditions are based can be introduced as
follows: take an arbitrary polynomial q(x) =

∑
α qαx

α of degree at most
ν in the variables x. By taking into account that the expectation value
of its square is positive for any measure, one derives

〈q(x)2〉 =
∑

α,β

qαqβ〈xαxβ〉 = ~qTΓ(ν)(x)~q ≥ 0 (2.14)

where we have introduced the vector ~q with components qα indexed by
α = α1, . . . , αn and the matrix Γ, usually referred to as moment matrix,
that has entries Γ

(ν)
α,β(x) = 〈xαxβ〉. The fact that the condition (2.14) has

to be satisfied by any vector ~q of any degree ν directly implies that the
moment matrix Γ(ν)(x) constructed from a general measure µ has to be
positive semidefinite. Recall that we consider measures that have support
on a compact set S defined by a finite amount of polynomial inequalities
gi(x) ≥ 0. We can therefore use also those conditions to obtain

〈gi(x)q(x)2〉 =
∑

α,β

qαqβ
∑

γ

gi,γ〈xαxβxγ〉 = ~qTΓ(ν)(gix)~q ≥ 0 (2.15)

where we have definedm different localising matrices Γ(ν)(gix) associated
to the polynomial constraints gi(x) ≥ 0 and whose entries are defined as
Γ(ν)(gix)α,β =

∑
γ gi,γ〈xαxβxγ〉. It follows from (2.15) that moments

associated to any measure supported on S always produce non-negative
localising matrices. Notice that Γ(ν)(x) contains moments of order up
to 2ν while the localising matrices Γ(ν)(gix) involve moments of order
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smaller or equal to 2ν + di, where di is the degree of the polynomial
gi(x).

The above considerations allow one to devise a hierarchy of tests to
check whether a given collection of numbers 〈xα〉 are compatible mo-
ments of the same probability measure. The level l of such hierarchy is
constructed as follows: take the moment matrix Γ(l)(x) and the localis-
ing matrices Γ(νi(l))(gix) of the order chosen to satisfy νi(l) + bdi/2c = l.
The entries of these matrices correspond to the numbers 〈xα〉 and, de-
pending on the level l, to some unassigned variables associated to higher
order moments. The test, at level l, consists in checking whether those
numbers are compatible with positive semidefinite moment and localising
matrices, which is a question that can be efficiently solved as an SDP.
Importantly, for any finite level there are numbers that give rise to non-
negative Γ(l)(x), Γ(νi(l))(gix) that cannot be associated to any probability
measure. This implies that the corresponding SDP can only provide a
necessary condition for moment compatibility. Moreover, increasing the
level provides more and more stringent conditions, since the matrices for
level l always contain as submatrices those of lower levels l′ ≤ l. Re-
markably, this hierarchy of SDP tests defines a convergent series of outer
approximation to the set of compatible moments, meaning that any col-
lection of numbers that does not correspond to moments of a probability
measures has to fail the test at some finite level [Las01b].

To give a concrete example, let us consider the case of two random
variables x1 and x2 defined on a circle, delimited by the following in-
equality g(x) = 1 − x2

1 − x2
2 ≥ 0. The moment matrix at level l = 2

reads

Γ(2)(x) =




1 〈x1〉 〈x2〉 〈x2
1〉 〈x1x2〉 〈x2

2〉
〈x1〉 〈x2

1〉 〈x1x2〉 〈x3
1〉 〈x2

1x2〉 〈x1x
2
2〉

〈x2〉 〈x1x2〉 〈x2
2〉 〈x2

1x2〉 〈x1x
2
2〉 〈x3

2〉
〈x2

1〉 〈x3
1〉 〈x2

1x2〉 〈x4
1〉 〈x3

1x2〉 〈x2
1x

2
2〉

〈x1x2〉 〈x2
1x2〉 〈x1x

2
2〉 〈x3

1x2〉 〈x2
1x

2
2〉 〈x1x

3
2〉

〈x2
2〉 〈x1x

2
2〉 〈x3

2〉 〈x2
1x

2
2〉 〈x1x

3
2〉 〈x4

2〉




(2.16)
Correspondingly, since the constraint g(x) is of degree 2, the localising
matrix for a test at level l = 2 is chosen to be at order one, hence

Γ(1)(gx) =




1− 〈x2
1〉 − 〈x2

2〉 〈x1〉 − 〈x3
1〉 − 〈x1x

2
2〉 〈x2〉 − 〈x2

1x2〉 − 〈x3
2〉

〈x1〉 − 〈x3
1〉 − 〈x1x

2
2〉 〈x2

1〉 − 〈x4
1〉 − 〈x2

1x
2
2〉 〈x1x2〉 − 〈x3

1x2〉 − 〈x1x
3
2〉

〈x2〉 − 〈x2
1x2〉 − 〈x3

2〉 〈x1x2〉 − 〈x3
1x2〉 − 〈x1x

3
2〉 〈x2

2〉 − 〈x2
1x

2
2〉 − 〈x4

2〉




(2.17)
Let us also mention that the SDP approach to the truncated moment
problems finds applications in the field of polynomial optimisation. Sup-
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pose that one is interested in finding the minimum of a polynomial
q(x) =

∑
α qαx

α of some commuting real variables over a compact set
S. As noticed by Lasserre [Las01b], one can replace the above optimisa-
tion problem with the following

q∗ = minµ∈P(S)

∫
q(x)µ(dx) (2.18)

where P(S) is the space of probability measures on S. Not only the two
minimisation problems are equivalent, but one can then see that (2.18)
corresponds to minimising a linear function 〈q(x)〉 =

∑
α qα〈xα〉 over the

space of moments compatible with a probability measure on S. Hence,
one can use the previously introduced series of SDP conditions to define a
hierarchy of relaxation of any commuting polynomial optimisation prob-
lem. More specifically, at level l the minimisation (2.18) is replaced by
the following semidefinite program

minimise
∑

α

qα〈xα〉

s.t. Γ(l)(x) � 0, (2.19)

Γ(l)(gix) � 0, i = 1, . . . ,m .

Since the minimisation is carried over a set larger than the allowed one,
the optimisation is indeed a relaxation of the original problem and gener-
ally leads to lower bounds ql to the optimum q∗ (see Fig. 2.2 for a picto-
rial representation). Moreover, as the SDP condition gets more and more
stringent while increasing the level, one obtains a series q1 ≤ q2 ≤ . . . ≤ q∗
converging to the exact minimum in the asymptotic limit. Interestingly,
depending on the polynomial - and the minimisation set S - one is con-
sidering, the convergence might be achieved even at a finite step in the
hierarchy. Notice that neither q(x) is generally a convex function nor
the set S has to be convex, thus finding q∗ is a very hard optimisation
problem. Remarkably, the hierarchy introduced by Lasserre provides re-
laxations in terms of convex optimisation problems, which can be solved
much more efficiently.

To conclude, we stress that the techniques presented in this Section di-
rectly apply to minimisation problems over variables that take a discrete
set of values. Indeed, such sets can be expressed in terms of polynomial
inequality constraints, thus falling into the category of sets S considered
above. Let us show how by considering the example of dichotomic vari-
ables, that is xi that take only ±1 values. Clearly such condition can be
enforced by imposing the equality constraints x2

i = 1, which in turn are
equivalent to the pairs of inequalities x2

i ≤ 1 and x2
i ≥ 1.
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q⇤

q1
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q(x)

Figure 2.2: Graphical representation of the hierarchy of relaxations to a
polynomial optimisation problem. Geometrically, one can represent the
sets of moments γl compatible with the SDP condition at level l as outer
approximations of the set of valid moments on S. Since the optimisation
is carried over larger sets than the one of interest, the SDPs generally
lead to lower bounds q1 ≤ q2 ≤ . . . ≤ q∗ to the minimum of q(x).

2.2 Entanglement

Entanglement is beyond any doubt one of the key properties of quan-
tum mechanics, as first noticed by Schroedinger [Sch35], who also coined
the term. Mathematically, it is nothing more than a consequence of the
superposition principle applied to composite systems. However, its phys-
ical consequences deeply differentiate the behaviour of quantum particles
from what could be predicted by classical physics. Entanglement was
also the key argument behind a heated debate, initiated by [EPR35],
about whether or not quantum theory could be considered complete in
its attempt at giving a realistic description of nature.

Beyond its fundamental relevance, which was recognised since the ini-
tial formulation of quantum mechanics, entanglement is now identified as
a crucial ingredient for most of the paradigmatic protocols in quantum in-
formation. The first application that was proposed was in the context of
cryptography [Eke91]. After that, a plethora of results have followed and
nowadays entanglement plays a key role in many different applications,
ranging from quantum communication [BBC+93] to quantum computa-
tion [BBD+09] and quantum metrology and sensing [GLM04].

Here we revise the main notions related to bipartite and multipar-
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tite entanglement, together with some of the most relevant entanglement
detection techniques. Lastly, we present some examples of multipartite
states that will be considered in the rest of this thesis.

2.2.1 Characterisation of entanglement

Quantum states are represented by unit trace, positive semidefinite op-
erators acting on a Hilbert space H. Throughout the rest of this the-
sis, we will work with finite-dimensional complex Hilbert spaces, hence
we assume H = Cd. The set of bounded linear operators acting on
such a space is commonly denoted by B(H). By choosing an orthog-
onal basis of the space {|i〉 , 1 ≤ i ≤ d}, one can identify each el-
ement of B(H) as a d × d matrix with complex entries. The set of
quantum states, also commonly referred to as density matrices, con-
stitutes thus the subspace of B(H) composed by operators with non-
negative eigenvalues and trace one. More formally, we define such space
as D(H) = {ρ ∈ B(H) | ρ � 0 , tr (ρ) = 1}.

To define entanglement one has to consider composite systems. Let
us then introduce the concept by starting with the simplest case of two
particles. Imagine that two spatially separated parties, Alice and Bob,
own one particle each of a bipartite quantum system. The physical de-
grees of freedom of Alice’s particle may then be assigned to a local Hilbert
space HA of dimension dA, and similarly, Bob’s subsystem is assigned to
a space HB of dimension dB. A generic state of the composite system is
thus represented by a density matrix acting on the tensor product space
HAB = HA ⊗HB.

Consider now a composite state that factorises as ρ = ρA⊗ρB, where
ρA and ρB are some given density matrices acting on the local spaces
of Alice and Bob respectively. States of those kind are called product
states and don’t display any kind of correlations: physically, they can
be easily obtained by locally preparing the states of Alice‘s and Bob‘s
share, without any communication needed between the two parties. More
generally, a bipartite state is denoted separable if it can be decomposed
as a convex combination of product states, that is

ρ =
∑

i

piρ
A
i ⊗ ρBi ,

∑

i

pi = 1 , pi ≥ 0 . (2.20)

Separable states represent composite systems than can be correlated by
classical means, namely by allowing the parties to act with local opera-
tions assisted with classical communication (LOCC) [Wer89]. Physically,
this represents the possibility for Alice and Bob to have a source of ran-
domness that outputs an outcome i with probability pi and then, upon
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communicating to each other that a given outcome has occurred, prepare
locally the corresponding product state ρAi ⊗ ρBi . Notice that separable
states represent a convex subset of the set of allowed bipartite states
D(HAB). Any state that is not separable lies outside such subset and
is termed entangled. Entangled states are intuitively considered to be
correlated in a non-classical way. By its very definition, entanglement is
a a resource whose preparation requires more than an LOCC protocol,
such as a joint quantum interaction between the subsystems. For this
reason, entangled states constitute natural candidates to display quan-
tum features that can provide some advantage in quantum information
protocols.

2.2.2 Detection techniques

A very relevant question to ask is how to determine whether a given
quantum state is entangled. This is usually referred to as the separability
problem and despite many attempts, a general solution to it is yet to be
found. In fact, the separability problem has been shown to belong to the
NP-hard class [Gur03, Gha08]. Here we review some of the most common
and useful entanglement detection criteria, starting with the bipartite
scenario (for a geometrical representation of entanglement detection, see
Figure 2.3).

Let us suppose at first that the state of a composite two-particle
quantum system is known. By properly choosing a basis for each local
Hilbert space, the corresponding density matrix can then be expanded as

ρ =

dA∑

iA,jA=1

dB∑

iB ,jB=1

ρiAjA,iBjB |iA〉〈jA| ⊗ |iB〉〈jB| (2.21)

Detecting the entanglement of ρ corresponds to determining whether it
can be written as a convex combination of the form (2.20). A well known
technique to rule out such a possibility is the so-called PPT criterion
[Per96]. It is based on introducing the notion of the partial transposed
state with respect to one of the parties: more precisely, starting from
the decomposition (2.21), the partial transpose with respect to Alice is
defined as the matrix

ρTA =

dA∑

iA,jA=1

dB∑

iB ,jB=1

ρiAjA,iBjB |jA〉〈iA| ⊗ |iB〉〈jB| (2.22)

and similarly one can define ρTB by swapping the density matrix elements
on Bob’s side. One can show that any separable state has positive partial
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Separable

Entangled
PPT

tr(W⇢) < 0

tr(W⇢) � 0

Figure 2.3: Schematic bidimensional representation of the convex sets
of separable states, states with positive partial transpose (PPT states)
and of all quantum states. States falling outside the separable set are
entangled (represented in the orange regions). While every separable
state has a positive partial transpose, there are entangled PPT states
(light orange region), indicating that the PPT entanglement criterion
defines only an outer approximation to the separable set. Nevertheless,
any entangled state can be detected by means of an entanglement witness,
which geometrically represents a hyperplane separating the separable set
from the other states.

transpose (i.e. it is PPT) with respect to both parties, that is, both
ρTA and ρTB are positive semidefinite operators. Checking for a positive
partial transpose therefore serves as an entanglement detection technique,
since it is a necessary condition for separability. However, except for few
cases (namely the cases dA = dB = 2 and dA = 2, dB = 3), it is not a
sufficient condition, that is, there exist states whose entanglement can
not be detected by the PPT criterion [HHH01].

Many generalisations of the PPT criterion have been introduced over
the years, based on replacing the transpose map with other positive
but not completely positive maps [Bre06, CK07, Pia06, HH99]. Also
other separability criteria have been considered [CW03], but all of the
approaches known so far fail at detecting some entangled states .

A powerful algorithmic approach is the one of the symmetric extension
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method [DPS02]. It is based on the idea that one can associate to any
separable state (2.20) the so-called symmetric extension

ρ(ABB1) = ρ =
∑

i

piρ
A
i ⊗ ρBi ⊗ ρB1

i ,
∑

i

pi = 1 , pi ≥ 0 , (2.23)

with the following properties: a) it is PPT with respect to any partition,
b) its reduced state with respect to both B and B1 equals to ρ itself and
c) it is symmetric under exchange of B and B1. Given a known bipartite
state, asking whether it is compatible with such a symmetric extension
can be cast into an SDP, providing an efficient numerical method to
test for separability. Furthermore, the notion of symmetric extension
can be extended to any number of copies ABB1 . . . Bk of one party. By
proceeding in increasing order of k, one gets a hierarchy of more and more
stringent conditions for separability. Interestingly, it was shown [DPS04]
that such a hierarchy is capable of detecting any entangled state in the
asymptotic limit. In other words, this implies that a state is separable if
and only if its infinite symmetric extension ρ(ABB1...B∞) exists.

Notice that all the above methods have one thing in common: they
start from the assumption that the state ρ is known. An interesting en-
tanglement criterion that consists in measuring directly observable quan-
tities was firstly introduced in [HHH96]. It is based on measuring the
so-called entanglement witnesses, namely operators W that fulfil the fol-
lowing properties

tr (Wρ) ≥ 0 for all separable ρs,
tr (Wρ) < 0 for at least one entangled ρe (2.24)

Therefore, upon obtaining a negative expectation value for W, one can
immediately conclude that the observed state is entangled. Geometri-
cally, entanglement witnesses represent hyperplanes in the space of quan-
tum states, dividing the separable subspace from the rest. Interestingly,
because of the convexity of such space, one can prove that for any entan-
gled state there is at least one entanglement witness detecting it [HHH96].
This is nothing more than a consequence of the separating hyperplane the-
orem that is widely used in convex optimisation [BV04].

The fact that entanglement witnesses can be directly measured makes
them very appealing for experimental implementations. As we will see
in more detail in the next section, this is particularly true for the case of
multipartite entangled states.
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2.2.3 Multipartite notions of entanglement

So far we have restricted our considerations to the case of two-particle sys-
tems but many of the previous concepts straightforwardly extend to the
multipartite scenario. Consider an N -particle system shared by parties
A1, A2, . . . AN : a general quantum state is now represented by a density
matrix acting on the tensor product space H = HA1⊗. . .⊗HAN of single-
particle Hilbert spaces with local dimensions dAi . If one allows only for
LOCC operation between the parties, the most general state that can be
produced looks as follows

ρ =
∑

i

piρ
A1
i ⊗ ρA2

i ⊗ . . .⊗ ρANi ,
∑

i

pi = 1 , pi ≥ 0 . (2.25)

It is clear that such definition generalises the bipartite decomposition
(2.20) and hence the notion of separable state to the multipartite case.
However, the multipartite scenario exhibits a much richer entanglement
structure, which is captured by different levels of separability conditions.
There are many different notions of multipartite separability that can
be considered. For further purposes, here we focus on the concept of
k-separability, firstly introduced in [SU01], which aims at answering the
quantitative question: "How many particles in the state are genuinely
entangled?".

Physically, the idea is to extend the concept of LOCC operation to
cases in which some of the parties are allowed to group and produce
entangled states among themselves. More formally, let us define an Lk-
partition as a partition of the set of parties I = {1, . . . N} into L pairwise
disjoint non-empty subsets Al, such that by joining them one recovers
I and the size of each Al is at most k parties. We say that a state
is separable according to such partition, or Lk-separable, if it can be
decomposed in the following way

ρLk =
∑

i

piρ
Ai
i ⊗ . . . ρALi ,

∑

i

pi = 1 , pi ≥ 0 , (2.26)

where the ρAli denote arbitrary (possibly entangled) states among par-
ticles in the subset Al. Notice that for k = 1 we recover the case of
(2.25), which is often referred to as a fully separable state. It is then clear
that a state admitting a decomposition (2.26) for a given Lk-partition
can exhibit entanglement among at most k particles, which is the size of
the largest allowed subset. The concept of k-separable state follows by
allowing mixture between different Lk-partitions, so to obtain

ρ =
∑

S∈Sk

qsρS ,
∑

S∈Sk

qS = 1 , qS ≥ 0 , (2.27)
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where Sk is the set of all possible Lk-partitions of N parties and ρS is a
separable state of the form (2.26) according to the given partition. Mul-
tipartite states that do not admit a decomposition (2.27) for some value
k necessarily contain at least k+1 entangled particles. Equivalently, they
are commonly said to display an amount of entanglement depth of k+ 1.
Dividing states into different values of entanglement depth defines a hier-
archy of more and more entangled multipartite states, ranging from full
separability to having entanglement depth equal to N , which is usually
called genuine multipartite entanglement (GME).

Given its richer structure, detecting multipartite entanglement con-
stitutes both a more interesting and a more challenging question than in
the bipartite case. As a first attempt to rule out full separability, one
can for instance use the fact that a state of the form (2.25) is separable
across any bipartition. Hence, violating any bipartite criterion according
to some given partition can be used to detect multipartite entanglement.
The symmetric extension hierarchy has also been extended to the multi-
partite scenario [DPS05] and it has shown to be convergent to the fully
separable set of states. Moreover, criteria have been derived to detect
genuine multipartite entanglement as well [GS10]. However, the fact
that all these methods require the knowledge of the whole state becomes
even more problematic as the number of particles grows. Indeed, already
for the simplest case of an N -qubit state, a general density matrix ρ is
described by a 2N×2N matrix, thus requiring an exponentially increasing
amount of information to be handled.

Entanglement witnesses are therefore a very practical solution for en-
tanglement detection, especially when many particles are involved. Even
more importantly, any entanglement witness can be estimated by mea-
suring local observables only [GHB+02, Ter02], which makes their exper-
imental implementation particularly convenient. In fact, plenty of entan-
glement witnesses are known that are suited to detect entanglement for
many families of multipartite states [GT09].

Moreover, since the sets of k-separable states are also convex (cfr.
their definition (2.27)), from the separating hyperplane theorem we con-
clude that there exist witnesses suitable to detect multipartite entangle-
ment states that lie outside any of these sets. Indeed, general techniques
have been developed to derive witnesses testing against full separability
up to the strongest ones apt for GME detection [TG05a, JMG11, TG05b].
Other results have also adapted to the limits of realistic experimental im-
plementations, by deriving witnesses from the ground state energy of
local hamiltonians [TG06, TG05b] or nonlinear inequalities detecting en-
tanglement from collective spin measurements [TKGB09].
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2.2.4 Important classes of multipartite entangled states

Here we introduce some of the most important families of bipartite and
multipartite entangled states, both for their theoretical and experimental
relevance. For further purposes we focus on the qubit case, that is, when
all the local dimensions are equal to two, dAi = 2 for i = 1, . . . , N . Notice
however that all the states presented here can be generalised to higher
local dimensions as well.

Let us start with the prototypical maximally entangled bipartite state:

∣∣φ+
〉

=
1√
2

[|00〉+ |11〉] , (2.28)

usually referred to as Bell state. Interestingly, one can define a whole
basis for the two-qubit Hilbert space constituted by states that are local
unitary equivalent to the Bell state, i.e. states obtained by acting on |φ+〉
with tensor products of unitaries U1 ⊗U2. The resulting Bell basis reads
as follows

∣∣ψ±
〉

=
1√
2

[|01〉 ± |10〉] ,
∣∣φ±
〉

=
1√
2

[|00〉 ± |11〉] . (2.29)

The Bell state is the building block of most of the initial quantum infor-
mation protocols, starting with quantum cryptography [Eke91], telepor-
tation [BBC+93] and dense coding [BW92].

Historically, the first classes of multipartite states that have been stud-
ied can be considered as generalisations of some version of the Bell state
to its many-particle counterpart. A first example is the Greenberger-
Horne-Zeilinger (GHZ) state [GHZ89]

|GHZN 〉 =
1√
2

[
|0〉⊗N + |1〉⊗N

]
, (2.30)

which can be seen as the multipartite equivalent of the |φ+〉 state. GHZ
states have been extensively studied and find application in several pro-
tocols, some examples being quantum metrology [GLM04] and quantum
secret sharing [HBcvB99]. They have also been generated in experiments
by using many different platforms, ranging from photonic [WLH+18a]
to trapped ions [MSB+11] and superconducting circuits [SXL+17] imple-
mentations of up to 18, 12 and 10 qubits respectively.

On the other hand, the W state

|WN 〉 =
1√
N

[|0 . . . 01〉+ |0 . . . 10〉+ . . .+ |1 . . . 00〉] , (2.31)
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Figure 2.4: Some examples of graphs associated to the most studied graph
states: a) The linear cluster state, b) the star graph state, equivalent to
the GHZ state, c) the 2D cluster state.

can be seen as a generalisation of the |ψ+〉 state, and it is usually de-
scribed as the state of one excitation symmetrically distributed over all
the particles. W states are part of a larger family of multipartite states,
the Dicke states [Dic54], which are the symmetric states of k excitations
overN particles. Dicke states are experimentally interesting because their
entanglement is provably robust under decoherence effects [GBB08]. W
states have been generated both with photons [KST+07] and trapped
ions [HHR+05].

Lastly, let us introduce the family of graph states [HEB04]: consider
a graph G = (V,E), where V is the set of vertices of size |V | = N ,
and E is the set of edges connecting the vertices. Let then n(i) be the
neighbourhood of the vertex i, i.e., all vertices from V that are connected
to i by an edge. Now, to every vertex i we associate an operator

Gi = Xi ⊗
⊗

j∈n(i)

Zj , (2.32)

in which the X operator acts on site i, while the Z operators act on all
sites that belong to n(i) and X and Z represent two of the Pauli matrices

Z =

(
1 0
0 −1

)
, X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
. (2.33)

To each graph G we can associate a graph state |ψG〉 as the unique eigen-
state of all these operators Gi (i = 1, . . . , N) with eigenvalue one. The
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Gi’s are called stabilizing operators of |ψG〉 and they generate the 2N -
element commutative group of operators stabilizing |ψG〉, called stabilizer
group. An example of graph state is precisely the GHZ state. Indeed,
one can check that the state (2.30) is stabilized by the N commuting
operators G1 = X1 . . . XN and Gi = Z1Zi for i = 2, . . . N , which are lo-
cally unitary equivalent to the stabilizers associated to the star graph (see
Figure 2.4.a). Another relevant exponent of the graph-state family is the
so-called cluster state, which is associated to the 2D lattice graph, shown
in Figure 2.4.c, and is the building blocks for measurement based quan-
tum computation [RB01]. Remarkably, graph states appear as codewords
in some error correction codes as well [Got96].

Graph states are also interesting because they can be produced by
bipartite interactions: indeed, it can be shown that |ψG〉 is obtained by
applying to a product state [(|0〉 + |1〉)/

√
2]⊗N control-Z gates CZij =

(1i + Zi)(1j + Zj) between each pair i, j of connected qubits in G. Be-
cause of their practical interest, graph states have been experimentally
produced both using photons [LZG+07] and ions [LZJ+14].

2.3 Bell nonlocality

Nonlocality is a concept that was first introduced by Bell in 1964 [Bel64]
to close a debate regarding the completeness of quantum mechanics,
dating back to the Einstein-Podolski-Rosen (EPR) paradox presented
in [EPR35]. The authors of such a paradox argued that the postu-
lates of quantum theory had to be emergent properties of a more re-
fined theory involving some degrees of freedom that we are not in con-
trol of. Almost thirty years after, Bell made a quantitative statement
showing that quantum mechanics is capable of producing correlations
that are not reproducible by any such hidden variable theory satisfy-
ing the two reasonable principles of reality (any property of the sys-
tem is determined prior to its observation) and locality (particles do not
communicate faster than at the speed of light). The non-classicality of
these nonlocal correlations has been widely studied over the last decades
[BCP+14] and, although being introduced as a concept of fundamen-
tal interest, it is now a crucial ingredient in many quantum informa-
tion applications in the so-called device-independent scenario. More-
over, the existence of nonlocal correlations has been confirmed exper-
imentally both in bipartite [FC72, ADR82] and multipartite scenarios
[PBD+00, ZHW+15, LZJ+14]. More recently, a series of experiments
have achieved the first loophole-free Bell tests, thus confirming Bell’s
theorem without additional assumptions usually employed to overcome
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from the stabilizers of multipartite states
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SELF-TESTING WITH BELL INEQUALITIES 
The aim is to certify a state and the measurements performed on it in a device-independent way, i.e. by just looking at the correlations produced. 
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DERIVING BELL INEQUALITIES FROM STABILIZERS

THE METHOD
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Imagine we have access to a set of N independent “stabilizers” 
operators for our state

i = 1, . . . , N

Since we work with quibits, we can expand these operators in terms of 
tensor products of Pauli operators. In particular, we restrict to cases in 
which only real Paulis appear (one example are graph states). We define

and then for 

, so that {X̂1, Ẑ1} = 0X̂1 =
A

(1)
0 + A

(1)
1

2 sin µ
Ẑ1 =

A
(1)
0 � A

(1)
1

2 cos µ

j 6= 1

X̂j = A
(j)
0 Ẑj = A

(j)
1, X̂2

j = Ẑ2
j = 1jso that

Then we build the inequality corresponding to the following SOS

where we adopt the correlators picture A(i)
xi

= Mai=1
xi

� Mai=0
xi
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THE GHZ STATE

EXAMPLES

BGHZ = (N � 1)
h
hA(1)

0 A
(2)
0 . . . A

(N)
0 i + hA(1)

1 A
(2)
0 . . . A

(N)
0 i

i
+

NX

i=2

hA(1)
0 A

(i)
1 i �

NX

i=2

hA(1)
1 A

(i)
1 i
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BGHZ = (N � 1)
h
hA(1)

0 A
(2)
0 . . . A

(N)
0 i + hA(1)

1 A
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0 . . . A

(N)
0 i

i
+

NX

i=2

hA(1)
0 A
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1 i �

NX

i=2

hA(1)
1 A

(i)
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S1 = X1X2 . . . XN
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<latexit sha1_base64="c2soVT33ZPfa281LX+NkfQ4vJiI=">AAACAHicbVA9SwNBEN2LXzF+RS1tFoNgFe5E0EYI2lhGNB+YnMfeZhKX7H2wOyeEI42/wlYrO7H1n1j4X9w7r9DEBwOP92aYmefHUmi07U+rtLC4tLxSXq2srW9sblW3d9o6ShSHFo9kpLo+0yBFCC0UKKEbK2CBL6Hjjy8yv/MASosovMFJDG7ARqEYCs7QSHfXnqBn9NZzTAnqVWt23c5B54lTkBop0PSqX/1BxJMAQuSSad1z7BjdlCkUXMK00k80xIyP2Qh6hoYsAO2m+dVTepBohhGNQVEhaS7C74mUBVpPAt90Bgzv9ayXif95vQSHp24qwjhBCHm2CIWEfJHmSpg4gA6EAkSWXQ5UhJQzxRBBCco4N2Ji8qmYPJzZ7+dJ+6ju2HXn6rjWOC+SKZM9sk8OiUNOSINckiZpEU4UeSLP5MV6tF6tN+v9p7VkFTO75A+sj2/W8pVv</latexit><latexit sha1_base64="c2soVT33ZPfa281LX+NkfQ4vJiI=">AAACAHicbVA9SwNBEN2LXzF+RS1tFoNgFe5E0EYI2lhGNB+YnMfeZhKX7H2wOyeEI42/wlYrO7H1n1j4X9w7r9DEBwOP92aYmefHUmi07U+rtLC4tLxSXq2srW9sblW3d9o6ShSHFo9kpLo+0yBFCC0UKKEbK2CBL6Hjjy8yv/MASosovMFJDG7ARqEYCs7QSHfXnqBn9NZzTAnqVWt23c5B54lTkBop0PSqX/1BxJMAQuSSad1z7BjdlCkUXMK00k80xIyP2Qh6hoYsAO2m+dVTepBohhGNQVEhaS7C74mUBVpPAt90Bgzv9ayXif95vQSHp24qwjhBCHm2CIWEfJHmSpg4gA6EAkSWXQ5UhJQzxRBBCco4N2Ji8qmYPJzZ7+dJ+6ju2HXn6rjWOC+SKZM9sk8OiUNOSINckiZpEU4UeSLP5MV6tF6tN+v9p7VkFTO75A+sj2/W8pVv</latexit><latexit sha1_base64="c2soVT33ZPfa281LX+NkfQ4vJiI=">AAACAHicbVA9SwNBEN2LXzF+RS1tFoNgFe5E0EYI2lhGNB+YnMfeZhKX7H2wOyeEI42/wlYrO7H1n1j4X9w7r9DEBwOP92aYmefHUmi07U+rtLC4tLxSXq2srW9sblW3d9o6ShSHFo9kpLo+0yBFCC0UKKEbK2CBL6Hjjy8yv/MASosovMFJDG7ARqEYCs7QSHfXnqBn9NZzTAnqVWt23c5B54lTkBop0PSqX/1BxJMAQuSSad1z7BjdlCkUXMK00k80xIyP2Qh6hoYsAO2m+dVTepBohhGNQVEhaS7C74mUBVpPAt90Bgzv9ayXif95vQSHp24qwjhBCHm2CIWEfJHmSpg4gA6EAkSWXQ5UhJQzxRBBCco4N2Ji8qmYPJzZ7+dJ+6ju2HXn6rjWOC+SKZM9sk8OiUNOSINckiZpEU4UeSLP5MV6tF6tN+v9p7VkFTO75A+sj2/W8pVv</latexit><latexit sha1_base64="c2soVT33ZPfa281LX+NkfQ4vJiI=">AAACAHicbVA9SwNBEN2LXzF+RS1tFoNgFe5E0EYI2lhGNB+YnMfeZhKX7H2wOyeEI42/wlYrO7H1n1j4X9w7r9DEBwOP92aYmefHUmi07U+rtLC4tLxSXq2srW9sblW3d9o6ShSHFo9kpLo+0yBFCC0UKKEbK2CBL6Hjjy8yv/MASosovMFJDG7ARqEYCs7QSHfXnqBn9NZzTAnqVWt23c5B54lTkBop0PSqX/1BxJMAQuSSad1z7BjdlCkUXMK00k80xIyP2Qh6hoYsAO2m+dVTepBohhGNQVEhaS7C74mUBVpPAt90Bgzv9ayXif95vQSHp24qwjhBCHm2CIWEfJHmSpg4gA6EAkSWXQ5UhJQzxRBBCco4N2Ji8qmYPJzZ7+dJ+6ju2HXn6rjWOC+SKZM9sk8OiUNOSINckiZpEU4UeSLP5MV6tF6tN+v9p7VkFTO75A+sj2/W8pVv</latexit>

i = 2, . . . , N
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| i =
1p
2

⇥
|0i⌦N + |1i⌦N

⇤
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We set            ,                         and              ,   
so to obtain

↵2
1 = (N � 1) ↵2

i = 1µ =
⇡

4

GENERAL GRAPH STATES

Si = XiZN(i) i = 1, . . . , N

Setting           ,                      and              for            always leads to a valid 
and self-testing Bell inequality, which contains only a linear amount of terms

µ =
⇡

4
i 6= 1↵2

1 = |N(1)| ↵2
i = 1

| i = cos ✓|0i⌦N + sin ✓|1i⌦N

It is not a product 
of local operators!

PARTIALLY ENTANGLED GHZ

S1 = sin 2✓X1X2 . . . XN + cos 2✓Z1

Si = Z1Zi
<latexit sha1_base64="c2soVT33ZPfa281LX+NkfQ4vJiI=">AAACAHicbVA9SwNBEN2LXzF+RS1tFoNgFe5E0EYI2lhGNB+YnMfeZhKX7H2wOyeEI42/wlYrO7H1n1j4X9w7r9DEBwOP92aYmefHUmi07U+rtLC4tLxSXq2srW9sblW3d9o6ShSHFo9kpLo+0yBFCC0UKKEbK2CBL6Hjjy8yv/MASosovMFJDG7ARqEYCs7QSHfXnqBn9NZzTAnqVWt23c5B54lTkBop0PSqX/1BxJMAQuSSad1z7BjdlCkUXMK00k80xIyP2Qh6hoYsAO2m+dVTepBohhGNQVEhaS7C74mUBVpPAt90Bgzv9ayXif95vQSHp24qwjhBCHm2CIWEfJHmSpg4gA6EAkSWXQ5UhJQzxRBBCco4N2Ji8qmYPJzZ7+dJ+6ju2HXn6rjWOC+SKZM9sk8OiUNOSINckiZpEU4UeSLP5MV6tF6tN+v9p7VkFTO75A+sj2/W8pVv</latexit><latexit sha1_base64="c2soVT33ZPfa281LX+NkfQ4vJiI=">AAACAHicbVA9SwNBEN2LXzF+RS1tFoNgFe5E0EYI2lhGNB+YnMfeZhKX7H2wOyeEI42/wlYrO7H1n1j4X9w7r9DEBwOP92aYmefHUmi07U+rtLC4tLxSXq2srW9sblW3d9o6ShSHFo9kpLo+0yBFCC0UKKEbK2CBL6Hjjy8yv/MASosovMFJDG7ARqEYCs7QSHfXnqBn9NZzTAnqVWt23c5B54lTkBop0PSqX/1BxJMAQuSSad1z7BjdlCkUXMK00k80xIyP2Qh6hoYsAO2m+dVTepBohhGNQVEhaS7C74mUBVpPAt90Bgzv9ayXif95vQSHp24qwjhBCHm2CIWEfJHmSpg4gA6EAkSWXQ5UhJQzxRBBCco4N2Ji8qmYPJzZ7+dJ+6ju2HXn6rjWOC+SKZM9sk8OiUNOSINckiZpEU4UeSLP5MV6tF6tN+v9p7VkFTO75A+sj2/W8pVv</latexit><latexit sha1_base64="c2soVT33ZPfa281LX+NkfQ4vJiI=">AAACAHicbVA9SwNBEN2LXzF+RS1tFoNgFe5E0EYI2lhGNB+YnMfeZhKX7H2wOyeEI42/wlYrO7H1n1j4X9w7r9DEBwOP92aYmefHUmi07U+rtLC4tLxSXq2srW9sblW3d9o6ShSHFo9kpLo+0yBFCC0UKKEbK2CBL6Hjjy8yv/MASosovMFJDG7ARqEYCs7QSHfXnqBn9NZzTAnqVWt23c5B54lTkBop0PSqX/1BxJMAQuSSad1z7BjdlCkUXMK00k80xIyP2Qh6hoYsAO2m+dVTepBohhGNQVEhaS7C74mUBVpPAt90Bgzv9ayXif95vQSHp24qwjhBCHm2CIWEfJHmSpg4gA6EAkSWXQ5UhJQzxRBBCco4N2Ji8qmYPJzZ7+dJ+6ju2HXn6rjWOC+SKZM9sk8OiUNOSINckiZpEU4UeSLP5MV6tF6tN+v9p7VkFTO75A+sj2/W8pVv</latexit><latexit sha1_base64="c2soVT33ZPfa281LX+NkfQ4vJiI=">AAACAHicbVA9SwNBEN2LXzF+RS1tFoNgFe5E0EYI2lhGNB+YnMfeZhKX7H2wOyeEI42/wlYrO7H1n1j4X9w7r9DEBwOP92aYmefHUmi07U+rtLC4tLxSXq2srW9sblW3d9o6ShSHFo9kpLo+0yBFCC0UKKEbK2CBL6Hjjy8yv/MASosovMFJDG7ARqEYCs7QSHfXnqBn9NZzTAnqVWt23c5B54lTkBop0PSqX/1BxJMAQuSSad1z7BjdlCkUXMK00k80xIyP2Qh6hoYsAO2m+dVTepBohhGNQVEhaS7C74mUBVpPAt90Bgzv9ayXif95vQSHp24qwjhBCHm2CIWEfJHmSpg4gA6EAkSWXQ5UhJQzxRBBCco4N2Ji8qmYPJzZ7+dJ+6ju2HXn6rjWOC+SKZM9sk8OiUNOSINckiZpEU4UeSLP5MV6tF6tN+v9p7VkFTO75A+sj2/W8pVv</latexit>

i = 2, . . . , N
<latexit sha1_base64="aj4JLdcN146RKIR7YMQE4LnX4eM=">AAACA3icbVC7SgNBFJ2NrxgfWbW0GQyCRQi7QdBGCNpYSQTzgGQJs5ObOGR2dpm5K4SQ0q+w1cpObP0QC//F3XULTTzV4Zx7ueceP5LCoON8WoWV1bX1jeJmaWt7Z7ds7+23TRhrDi0eylB3fWZACgUtFCihG2lggS+h40+uUr/zANqIUN3hNAIvYGMlRoIzTKSBXRb0gtarfTkM0VTpzcCuODUnA10mbk4qJEdzYH/1hyGPA1DIJTOm5zoRejOmUXAJ81I/NhAxPmFj6CVUsQCMN8uCz+lxbBiGNAJNhaSZCL83ZiwwZhr4yWTA8N4seqn4n9eLcXTuzYSKYgTF00MoJGSHDNciaQToUGhAZGlyoEJRzjRDBC0o4zwR46SiUtKHu/j9MmnXa65Tc29PK43LvJkiOSRH5IS45Iw0yDVpkhbhJCZP5Jm8WI/Wq/Vmvf+MFqx854D8gfXxDTmMliY=</latexit><latexit sha1_base64="aj4JLdcN146RKIR7YMQE4LnX4eM=">AAACA3icbVC7SgNBFJ2NrxgfWbW0GQyCRQi7QdBGCNpYSQTzgGQJs5ObOGR2dpm5K4SQ0q+w1cpObP0QC//F3XULTTzV4Zx7ueceP5LCoON8WoWV1bX1jeJmaWt7Z7ds7+23TRhrDi0eylB3fWZACgUtFCihG2lggS+h40+uUr/zANqIUN3hNAIvYGMlRoIzTKSBXRb0gtarfTkM0VTpzcCuODUnA10mbk4qJEdzYH/1hyGPA1DIJTOm5zoRejOmUXAJ81I/NhAxPmFj6CVUsQCMN8uCz+lxbBiGNAJNhaSZCL83ZiwwZhr4yWTA8N4seqn4n9eLcXTuzYSKYgTF00MoJGSHDNciaQToUGhAZGlyoEJRzjRDBC0o4zwR46SiUtKHu/j9MmnXa65Tc29PK43LvJkiOSRH5IS45Iw0yDVpkhbhJCZP5Jm8WI/Wq/Vmvf+MFqx854D8gfXxDTmMliY=</latexit><latexit sha1_base64="aj4JLdcN146RKIR7YMQE4LnX4eM=">AAACA3icbVC7SgNBFJ2NrxgfWbW0GQyCRQi7QdBGCNpYSQTzgGQJs5ObOGR2dpm5K4SQ0q+w1cpObP0QC//F3XULTTzV4Zx7ueceP5LCoON8WoWV1bX1jeJmaWt7Z7ds7+23TRhrDi0eylB3fWZACgUtFCihG2lggS+h40+uUr/zANqIUN3hNAIvYGMlRoIzTKSBXRb0gtarfTkM0VTpzcCuODUnA10mbk4qJEdzYH/1hyGPA1DIJTOm5zoRejOmUXAJ81I/NhAxPmFj6CVUsQCMN8uCz+lxbBiGNAJNhaSZCL83ZiwwZhr4yWTA8N4seqn4n9eLcXTuzYSKYgTF00MoJGSHDNciaQToUGhAZGlyoEJRzjRDBC0o4zwR46SiUtKHu/j9MmnXa65Tc29PK43LvJkiOSRH5IS45Iw0yDVpkhbhJCZP5Jm8WI/Wq/Vmvf+MFqx854D8gfXxDTmMliY=</latexit><latexit sha1_base64="aj4JLdcN146RKIR7YMQE4LnX4eM=">AAACA3icbVC7SgNBFJ2NrxgfWbW0GQyCRQi7QdBGCNpYSQTzgGQJs5ObOGR2dpm5K4SQ0q+w1cpObP0QC//F3XULTTzV4Zx7ueceP5LCoON8WoWV1bX1jeJmaWt7Z7ds7+23TRhrDi0eylB3fWZACgUtFCihG2lggS+h40+uUr/zANqIUN3hNAIvYGMlRoIzTKSBXRb0gtarfTkM0VTpzcCuODUnA10mbk4qJEdzYH/1hyGPA1DIJTOm5zoRejOmUXAJ81I/NhAxPmFj6CVUsQCMN8uCz+lxbBiGNAJNhaSZCL83ZiwwZhr4yWTA8N4seqn4n9eLcXTuzYSKYgTF00MoJGSHDNciaQToUGhAZGlyoEJRzjRDBC0o4zwR46SiUtKHu/j9MmnXa65Tc29PK43LvJkiOSRH5IS45Iw0yDVpkhbhJCZP5Jm8WI/Wq/Vmvf+MFqx854D8gfXxDTmMliY=</latexit>

We set                               ,                          and              , so to 
obtain a Bell inequality violated for any 

↵2
i = 1↵2

1 = (N � 1)2 sin2 µ = sin2 2✓
<latexit sha1_base64="Q9GNBRVF9gzvEpF6fTWIZIEtKPg=">AAACE3icbVA9SwNBEN3z2/gVtbRwMQhW4S4I2ghBG0sFo4FcDHObSbJkb+/YnRPCkdKf4K+w1cpObP0BFv4X72IETXzVm/dmmJkXxEpact0PZ2Z2bn5hcWm5sLK6tr5R3Ny6tlFiBNZEpCJTD8CikhprJElhPTYIYaDwJuif5f7NHRorI31FgxibIXS17EgBlEmt4m6F+1bq20rqh8mQn/xUFZ96SDBsFUtu2R2BTxNvTEpsjItW8dNvRyIJUZNQYG3Dc2NqpmBICoXDgp9YjEH0oYuNjGoI0TbT0SNDvp9YoIjHaLhUfCTi74kUQmsHYZB1hkA9O+nl4n9eI6HOcTOVOk4ItcgXkVQ4WmSFkVlCyNvSIBHklyOXmgswQIRGchAiE5MsskKWhzf5/TS5rpQ9t+xdHpaqp+NkltgO22MHzGNHrMrO2QWrMcHu2SN7Ys/Og/PivDpv360zznhmm/2B8/4Fdmudcw==</latexit><latexit sha1_base64="Q9GNBRVF9gzvEpF6fTWIZIEtKPg=">AAACE3icbVA9SwNBEN3z2/gVtbRwMQhW4S4I2ghBG0sFo4FcDHObSbJkb+/YnRPCkdKf4K+w1cpObP0BFv4X72IETXzVm/dmmJkXxEpact0PZ2Z2bn5hcWm5sLK6tr5R3Ny6tlFiBNZEpCJTD8CikhprJElhPTYIYaDwJuif5f7NHRorI31FgxibIXS17EgBlEmt4m6F+1bq20rqh8mQn/xUFZ96SDBsFUtu2R2BTxNvTEpsjItW8dNvRyIJUZNQYG3Dc2NqpmBICoXDgp9YjEH0oYuNjGoI0TbT0SNDvp9YoIjHaLhUfCTi74kUQmsHYZB1hkA9O+nl4n9eI6HOcTOVOk4ItcgXkVQ4WmSFkVlCyNvSIBHklyOXmgswQIRGchAiE5MsskKWhzf5/TS5rpQ9t+xdHpaqp+NkltgO22MHzGNHrMrO2QWrMcHu2SN7Ys/Og/PivDpv360zznhmm/2B8/4Fdmudcw==</latexit><latexit sha1_base64="Q9GNBRVF9gzvEpF6fTWIZIEtKPg=">AAACE3icbVA9SwNBEN3z2/gVtbRwMQhW4S4I2ghBG0sFo4FcDHObSbJkb+/YnRPCkdKf4K+w1cpObP0BFv4X72IETXzVm/dmmJkXxEpact0PZ2Z2bn5hcWm5sLK6tr5R3Ny6tlFiBNZEpCJTD8CikhprJElhPTYIYaDwJuif5f7NHRorI31FgxibIXS17EgBlEmt4m6F+1bq20rqh8mQn/xUFZ96SDBsFUtu2R2BTxNvTEpsjItW8dNvRyIJUZNQYG3Dc2NqpmBICoXDgp9YjEH0oYuNjGoI0TbT0SNDvp9YoIjHaLhUfCTi74kUQmsHYZB1hkA9O+nl4n9eI6HOcTOVOk4ItcgXkVQ4WmSFkVlCyNvSIBHklyOXmgswQIRGchAiE5MsskKWhzf5/TS5rpQ9t+xdHpaqp+NkltgO22MHzGNHrMrO2QWrMcHu2SN7Ys/Og/PivDpv360zznhmm/2B8/4Fdmudcw==</latexit><latexit sha1_base64="Q9GNBRVF9gzvEpF6fTWIZIEtKPg=">AAACE3icbVA9SwNBEN3z2/gVtbRwMQhW4S4I2ghBG0sFo4FcDHObSbJkb+/YnRPCkdKf4K+w1cpObP0BFv4X72IETXzVm/dmmJkXxEpact0PZ2Z2bn5hcWm5sLK6tr5R3Ny6tlFiBNZEpCJTD8CikhprJElhPTYIYaDwJuif5f7NHRorI31FgxibIXS17EgBlEmt4m6F+1bq20rqh8mQn/xUFZ96SDBsFUtu2R2BTxNvTEpsjItW8dNvRyIJUZNQYG3Dc2NqpmBICoXDgp9YjEH0oYuNjGoI0TbT0SNDvp9YoIjHaLhUfCTi74kUQmsHYZB1hkA9O+nl4n9eI6HOcTOVOk4ItcgXkVQ4WmSFkVlCyNvSIBHklyOXmgswQIRGchAiE5MsskKWhzf5/TS5rpQ9t+xdHpaqp+NkltgO22MHzGNHrMrO2QWrMcHu2SN7Ys/Og/PivDpv360zznhmm/2B8/4Fdmudcw==</latexit>

✓ 6= 0
<latexit sha1_base64="Veepm4s/SzUY95op61n5iWNnqgA=">AAAB/3icbVA9TwJBEN3DL8Qv1NJmIzGxInfGREuijSUmAiZwIXPLABv29o7dORNyofBX2GplZ2z9KRb+F++QQsFXvbw3k3nzglhJS6776RRWVtfWN4qbpa3tnd298v5B00aJEdgQkYrMfQAWldTYIEkK72ODEAYKW8HoOvdbD2isjPQdTWL0Qxho2ZcCKJP8Dg2RgHc0jrnbLVfcqjsDXybenFTYHPVu+avTi0QSoiahwNq258bkp2BICoXTUiexGIMYwQDbGdUQovXTWegpP0ksUMRjNFwqPhPx90YKobWTMMgmQ6ChXfRy8T+vnVD/0k+ljhNCLfJDJBXODllhZNYG8p40SAR5cuRScwEGiNBIDkJkYpLVU8r68Ba/XybNs6rnVr3b80rtat5MkR2xY3bKPHbBauyG1VmDCTZmT+yZvTiPzqvz5rz/jBac+c4h+wPn4xur9JYD</latexit><latexit sha1_base64="Veepm4s/SzUY95op61n5iWNnqgA=">AAAB/3icbVA9TwJBEN3DL8Qv1NJmIzGxInfGREuijSUmAiZwIXPLABv29o7dORNyofBX2GplZ2z9KRb+F++QQsFXvbw3k3nzglhJS6776RRWVtfWN4qbpa3tnd298v5B00aJEdgQkYrMfQAWldTYIEkK72ODEAYKW8HoOvdbD2isjPQdTWL0Qxho2ZcCKJP8Dg2RgHc0jrnbLVfcqjsDXybenFTYHPVu+avTi0QSoiahwNq258bkp2BICoXTUiexGIMYwQDbGdUQovXTWegpP0ksUMRjNFwqPhPx90YKobWTMMgmQ6ChXfRy8T+vnVD/0k+ljhNCLfJDJBXODllhZNYG8p40SAR5cuRScwEGiNBIDkJkYpLVU8r68Ba/XybNs6rnVr3b80rtat5MkR2xY3bKPHbBauyG1VmDCTZmT+yZvTiPzqvz5rz/jBac+c4h+wPn4xur9JYD</latexit><latexit sha1_base64="Veepm4s/SzUY95op61n5iWNnqgA=">AAAB/3icbVA9TwJBEN3DL8Qv1NJmIzGxInfGREuijSUmAiZwIXPLABv29o7dORNyofBX2GplZ2z9KRb+F++QQsFXvbw3k3nzglhJS6776RRWVtfWN4qbpa3tnd298v5B00aJEdgQkYrMfQAWldTYIEkK72ODEAYKW8HoOvdbD2isjPQdTWL0Qxho2ZcCKJP8Dg2RgHc0jrnbLVfcqjsDXybenFTYHPVu+avTi0QSoiahwNq258bkp2BICoXTUiexGIMYwQDbGdUQovXTWegpP0ksUMRjNFwqPhPx90YKobWTMMgmQ6ChXfRy8T+vnVD/0k+ljhNCLfJDJBXODllhZNYG8p40SAR5cuRScwEGiNBIDkJkYpLVU8r68Ba/XybNs6rnVr3b80rtat5MkR2xY3bKPHbBauyG1VmDCTZmT+yZvTiPzqvz5rz/jBac+c4h+wPn4xur9JYD</latexit><latexit sha1_base64="Veepm4s/SzUY95op61n5iWNnqgA=">AAAB/3icbVA9TwJBEN3DL8Qv1NJmIzGxInfGREuijSUmAiZwIXPLABv29o7dORNyofBX2GplZ2z9KRb+F++QQsFXvbw3k3nzglhJS6776RRWVtfWN4qbpa3tnd298v5B00aJEdgQkYrMfQAWldTYIEkK72ODEAYKW8HoOvdbD2isjPQdTWL0Qxho2ZcCKJP8Dg2RgHc0jrnbLVfcqjsDXybenFTYHPVu+avTi0QSoiahwNq258bkp2BICoXTUiexGIMYwQDbGdUQovXTWegpP0ksUMRjNFwqPhPx90YKobWTMMgmQ6ChXfRy8T+vnVD/0k+ljhNCLfJDJBXODllhZNYG8p40SAR5cuRScwEGiNBIDkJkYpLVU8r68Ba/XybNs6rnVr3b80rtat5MkR2xY3bKPHbBauyG1VmDCTZmT+yZvTiPzqvz5rz/jBac+c4h+wPn4xur9JYD</latexit>

�C = 2(N � 1)
<latexit sha1_base64="sy0+6Sk8QB/NorIsc/8VRvI0yu0=">AAACBnicbVC7TgJBFJ3FF+ILsbSZSEywkOwSE21MiDRWBhN5JEDI3eGCE2YfmblrJITer7DVys7Y+hsW/ovLuoWipzo5597cc48bKmnItj+szNLyyupadj23sbm1vZPfLTRNEGmBDRGoQLddMKikjw2SpLAdagTPVdhyx7W537pDbWTg39AkxJ4HI18OpQCKpX6+0HWRoF/j57xSujp2jjjv54t22U7A/xInJUWWot7Pf3YHgYg89EkoMKbj2CH1pqBJCoWzXDcyGIIYwwg7MfXBQ9ObJtln/DAyQAEPUXOpeCLiz40peMZMPDee9IBuzaI3F//zOhENz3pT6YcRoS/mh0gqTA4ZoWVcCvKB1EgE8+TIpc8FaCBCLTkIEYtR3FIu7sNZ/P4vaVbKjl12rk+K1Yu0mSzbZwesxBx2yqrsktVZgwl2zx7ZE3u2HqwX69V6+x7NWOnOHvsF6/0L9euWag==</latexit><latexit sha1_base64="sy0+6Sk8QB/NorIsc/8VRvI0yu0=">AAACBnicbVC7TgJBFJ3FF+ILsbSZSEywkOwSE21MiDRWBhN5JEDI3eGCE2YfmblrJITer7DVys7Y+hsW/ovLuoWipzo5597cc48bKmnItj+szNLyyupadj23sbm1vZPfLTRNEGmBDRGoQLddMKikjw2SpLAdagTPVdhyx7W537pDbWTg39AkxJ4HI18OpQCKpX6+0HWRoF/j57xSujp2jjjv54t22U7A/xInJUWWot7Pf3YHgYg89EkoMKbj2CH1pqBJCoWzXDcyGIIYwwg7MfXBQ9ObJtln/DAyQAEPUXOpeCLiz40peMZMPDee9IBuzaI3F//zOhENz3pT6YcRoS/mh0gqTA4ZoWVcCvKB1EgE8+TIpc8FaCBCLTkIEYtR3FIu7sNZ/P4vaVbKjl12rk+K1Yu0mSzbZwesxBx2yqrsktVZgwl2zx7ZE3u2HqwX69V6+x7NWOnOHvsF6/0L9euWag==</latexit><latexit sha1_base64="sy0+6Sk8QB/NorIsc/8VRvI0yu0=">AAACBnicbVC7TgJBFJ3FF+ILsbSZSEywkOwSE21MiDRWBhN5JEDI3eGCE2YfmblrJITer7DVys7Y+hsW/ovLuoWipzo5597cc48bKmnItj+szNLyyupadj23sbm1vZPfLTRNEGmBDRGoQLddMKikjw2SpLAdagTPVdhyx7W537pDbWTg39AkxJ4HI18OpQCKpX6+0HWRoF/j57xSujp2jjjv54t22U7A/xInJUWWot7Pf3YHgYg89EkoMKbj2CH1pqBJCoWzXDcyGIIYwwg7MfXBQ9ObJtln/DAyQAEPUXOpeCLiz40peMZMPDee9IBuzaI3F//zOhENz3pT6YcRoS/mh0gqTA4ZoWVcCvKB1EgE8+TIpc8FaCBCLTkIEYtR3FIu7sNZ/P4vaVbKjl12rk+K1Yu0mSzbZwesxBx2yqrsktVZgwl2zx7ZE3u2HqwX69V6+x7NWOnOHvsF6/0L9euWag==</latexit><latexit sha1_base64="sy0+6Sk8QB/NorIsc/8VRvI0yu0=">AAACBnicbVC7TgJBFJ3FF+ILsbSZSEywkOwSE21MiDRWBhN5JEDI3eGCE2YfmblrJITer7DVys7Y+hsW/ovLuoWipzo5597cc48bKmnItj+szNLyyupadj23sbm1vZPfLTRNEGmBDRGoQLddMKikjw2SpLAdagTPVdhyx7W537pDbWTg39AkxJ4HI18OpQCKpX6+0HWRoF/j57xSujp2jjjv54t22U7A/xInJUWWot7Pf3YHgYg89EkoMKbj2CH1pqBJCoWzXDcyGIIYwwg7MfXBQ9ObJtln/DAyQAEPUXOpeCLiz40peMZMPDee9IBuzaI3F//zOhENz3pT6YcRoS/mh0gqTA4ZoWVcCvKB1EgE8+TIpc8FaCBCLTkIEYtR3FIu7sNZ/P4vaVbKjl12rk+K1Yu0mSzbZwesxBx2yqrsktVZgwl2zx7ZE3u2HqwX69V6+x7NWOnOHvsF6/0L9euWag==</latexit>

�Q = 2
p

2(N � 1)
<latexit sha1_base64="JT1rg+tfGRSZjlac27bW3Faapgo=">AAACDnicbVDLSgNBEJyNrxhfUW96GQxCPBh2g6AXIejFkyRgHpCE0DvpxCGzD2d6hbAE/AS/wquevIlXf8GD/+Im5qCJdSqquumuckMlDdn2p5VaWFxaXkmvZtbWNza3sts7NRNEWmBVBCrQDRcMKuljlSQpbIQawXMV1t3B5div36M2MvBvaBhi24O+L3tSACVSJ7vXcpGgU+HnvNgyd5ri4ih/fewccd7J5uyCPQGfJ86U5NgU5U72q9UNROShT0KBMU3HDqkdgyYpFI4yrchgCGIAfWwm1AcPTTueZBjxw8gABTxEzaXiExF/b8TgGTP03GTSA7o1s95Y/M9rRtQ7a8fSDyNCX4wPkVQ4OWSElkk5yLtSIxGMP0cufS5AAxFqyUGIRIyStjJJH85s+nlSKxYcu+BUTnKli2kzabbPDlieOeyUldgVK7MqE+yBPbFn9mI9Wq/Wm/X+M5qypju77A+sj2+dx5oY</latexit><latexit sha1_base64="JT1rg+tfGRSZjlac27bW3Faapgo=">AAACDnicbVDLSgNBEJyNrxhfUW96GQxCPBh2g6AXIejFkyRgHpCE0DvpxCGzD2d6hbAE/AS/wquevIlXf8GD/+Im5qCJdSqquumuckMlDdn2p5VaWFxaXkmvZtbWNza3sts7NRNEWmBVBCrQDRcMKuljlSQpbIQawXMV1t3B5div36M2MvBvaBhi24O+L3tSACVSJ7vXcpGgU+HnvNgyd5ri4ih/fewccd7J5uyCPQGfJ86U5NgU5U72q9UNROShT0KBMU3HDqkdgyYpFI4yrchgCGIAfWwm1AcPTTueZBjxw8gABTxEzaXiExF/b8TgGTP03GTSA7o1s95Y/M9rRtQ7a8fSDyNCX4wPkVQ4OWSElkk5yLtSIxGMP0cufS5AAxFqyUGIRIyStjJJH85s+nlSKxYcu+BUTnKli2kzabbPDlieOeyUldgVK7MqE+yBPbFn9mI9Wq/Wm/X+M5qypju77A+sj2+dx5oY</latexit><latexit sha1_base64="JT1rg+tfGRSZjlac27bW3Faapgo=">AAACDnicbVDLSgNBEJyNrxhfUW96GQxCPBh2g6AXIejFkyRgHpCE0DvpxCGzD2d6hbAE/AS/wquevIlXf8GD/+Im5qCJdSqquumuckMlDdn2p5VaWFxaXkmvZtbWNza3sts7NRNEWmBVBCrQDRcMKuljlSQpbIQawXMV1t3B5div36M2MvBvaBhi24O+L3tSACVSJ7vXcpGgU+HnvNgyd5ri4ih/fewccd7J5uyCPQGfJ86U5NgU5U72q9UNROShT0KBMU3HDqkdgyYpFI4yrchgCGIAfWwm1AcPTTueZBjxw8gABTxEzaXiExF/b8TgGTP03GTSA7o1s95Y/M9rRtQ7a8fSDyNCX4wPkVQ4OWSElkk5yLtSIxGMP0cufS5AAxFqyUGIRIyStjJJH85s+nlSKxYcu+BUTnKli2kzabbPDlieOeyUldgVK7MqE+yBPbFn9mI9Wq/Wm/X+M5qypju77A+sj2+dx5oY</latexit><latexit sha1_base64="JT1rg+tfGRSZjlac27bW3Faapgo=">AAACDnicbVDLSgNBEJyNrxhfUW96GQxCPBh2g6AXIejFkyRgHpCE0DvpxCGzD2d6hbAE/AS/wquevIlXf8GD/+Im5qCJdSqquumuckMlDdn2p5VaWFxaXkmvZtbWNza3sts7NRNEWmBVBCrQDRcMKuljlSQpbIQawXMV1t3B5div36M2MvBvaBhi24O+L3tSACVSJ7vXcpGgU+HnvNgyd5ri4ih/fewccd7J5uyCPQGfJ86U5NgU5U72q9UNROShT0KBMU3HDqkdgyYpFI4yrchgCGIAfWwm1AcPTTueZBjxw8gABTxEzaXiExF/b8TgGTP03GTSA7o1s95Y/M9rRtQ7a8fSDyNCX4wPkVQ4OWSElkk5yLtSIxGMP0cufS5AAxFqyUGIRIyStjJJH85s+nlSKxYcu+BUTnKli2kzabbPDlieOeyUldgVK7MqE+yBPbFn9mI9Wq/Wm/X+M5qypju77A+sj2+dx5oY</latexit>
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The other check to make is that the defined Bell inequality is not trivial
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In many cases this procedure works and the corresponding conditions for 
maximal violation can be used to prove self-testing
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Figure 2.5: Pictorial representation of the device-independent scenario in
a multipartite setting. Each of the N observers holds a black box (sup-
posedly containing a particle of a shared physical system) and interacts
with it by selecting an input xi, corresponding to the local measurement
choice, and by collecting an output ai.

experimental imperfections [HBD+15, GVW+15, SMSC+15].
Here we introduce the main concepts of the device-independent pic-

ture in the multipartite scenario, focusing on nonlocality as an entan-
glement detection method. After describing the geometrical characteri-
sation of local, quantum and post-quantum correlations, we explore the
various degrees of multipartite nonlocality. Lastly, we present a device-
independent certification technique known as self-testing and apply it to
a specific example.

2.3.1 The device-independent framework

The most general Bell scenario involves N spatially separated observers
A1, . . . , AN sharing a N -partite quantum state ρ. Each Ai is allowed
to perform on its local share of the system m possible d-outcome mea-
surements. We denote the measurements for party i as Mai

xi , where xi ∈
{0, . . . ,m − 1} denotes the measurement choice and ai ∈ {0, . . . , d − 1}
represents the possible output. Such a scenario is thus usually described
by the three (N,m, d) numbers, specifying number of parties, inputs and
outcomes.

By repeating their measurements sufficiently many times, the exper-
imenters can estimate the following conditional probabilities

p(a1, . . . , aN |x1, . . . , xN ) = tr (Ma1
x1 ⊗ . . .⊗MaN

xN
ρ) , (2.34)

where the Mai
xi are generic positive-operator valued measures (POVMs),

that is, positive semidefinite operators that satisfy
∑

ai
Mai
xi = 1. In the

modern approach to Bell nonlocality the above scenario is often inter-
preted in an operational way: the observers are considered to hold each
a black-box (supposedly) containing a particle of the quantum system
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and to interact with it at each round by providing some classical input
xi and by collecting the corresponding classical output ai. Importantly,
the parties are not allowed to communicate with each other after having
chosen the input and before having collected their output (see Figure
2.5). The observers then might be interested in inferring properties of
the underlying quantum system by simply looking at the correlations
(2.34) observed upon applying local measurements on the state. Sim-
ilarly, the parties could consider using the collected data to extract a
secure cryptographic key or exploiting one (or more) of the outcomes
ai as a source of random bits. All of the above applications, among
many others, have been extensively studied and the presented picture is
usually termed device-independent framework, since all the non-classical
properties of the system are inferred or exploited solely at the level of the
observed probabilities, without making any assumption on the physical
systems contained in the boxes.

According to Bell’s definition, introduced in [Bel64], the observed
correlations are referred to as local if they can be reproduced by the
following local hidden variable (LHV) model

p(a1, . . ., aN |x1, . . ., xN ) =
∑

λ

pλ

N∏

i=1

p(ai|xi, λ) . (2.35)

Similarly to the LOCC paradigm for states, presented in Section 2.2, an
LHV model represents the most general form of correlations that can
be produced by classical means. Physically, any local distribution can
be obtained by having a source of random numbers λ shared by the
observers, who then choose their outputs according to the local response
function p(ai|xi, λ), that depends solely on their input and the random
variable.

Interestingly, there is a very close connection between separable states
and local correlations. To see that, let us suppose that the state in
the boxes is separable: then, by (2.25) it follows that the conditional
probabilities can be decomposed as

p(a1, . . ., aN |x1, . . ., xN ) =
∑

λ

pλ tr(
⊗

i

Mai
xi

⊗

i

ρAiλ ) . (2.36)

Notice that the above equation coincides with that of a local model (2.35),
if we set each response functions to be p(ai|xi, λ) = tr(Mai

xi ρ
Ai
λ ).

Remarkably, there are quantum states that, upon choosing properly
some local measurements, are able to produce nonlocal correlations, that
is, correlations that cannot be described by any LHV model. This was
first shown by Bell [Bel64] and it’s the content of his famous theorem. By
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the previous reasoning, it also follows that states producing nonlocal cor-
relations are necessarily entangled. In other words, observing nonlocality
serves as a device-independent way of witnessing entanglement. Apart
from entanglement detection, nonlocality has also been shown to be a
resource for various device-independent cryptographic protocols, starting
with the first security proofs for randomness generation [PAM+10] and
key distribution [ABG+07], and for other more sophisticated forms of
device-independent certification, such as dimension witnessing [BPA+08]
and self-testing [MY04].

2.3.2 Geometrical approach

Finding ways of characterising the correlations that can be achieved by
LHV models and quantum theory has implications both from the prac-
tical and fundamental point of view. On the one hand, having a good
understanding of local correlations provides general tools to detect nonlo-
cality. On the other hand, characterising the set of quantum correlations
gives an idea of which limitations are imposed by quantum theory itself
on the realisation of quantum information protocols. To mathematically
characterise correlations in a Bell scenario, it is useful to adopt a geomet-
rical picture. To do so, let us arrange the probability distributions (2.34)
in a vector with (md)n components, each corresponding to a different
choice of inputs a1, . . . , aN and outputs x1, . . . , xN . We name any such
vector ~P .

The Local set

Let us start by studying local correlations in this framework: all vectors
~P obtained by varying over all possible LHV models (2.35) define a geo-
metrical set, the so-called local set, which we denote by L. By looking at
the definition of LHV model, it is easy to see that such a set is convex.
Moreover, it can be shown that L is actually a polytope. To do so, it
is enough to notice that any vector ~P ∈ L can be obtained as a convex
combination of deterministic strategies, that is, the combination in (2.35)
can be replaced by

p(a1, . . . , aN |x1, . . . , xN ) =
∑

λ

pλ
∏

i

D(ai|xi, λ) , pλ ≥ 0 ,
∑

λ

pλ = 1 ,

(2.37)
where D(ai|xi, λ) are deterministic functions that assign a fixed outcome
ai for each measurement, i.e. D(ai|xi, λ) = δai,λ(xi), such that ai = λ(xi),
being λ(·) a function from {0, . . . ,m− 1} to {0, . . . , d− 1} [BCP+14]. If
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we denote by ~Dλ the vector associated to a given deterministic strat-
egy

∏
iD(ai|xi, λ), equation (2.37) tells us that each local point can be

expressed as a convex combination of the various ~Dλ. Those determinis-
tic vectors are the vertices of the local polytope and can be enumerated
by counting the number of possible deterministic assignments of the d
outputs for each party as a function of m inputs, amounting to (d)mn.

From such a characterisation one derives a very general method to
detect if a given distribution is local or not. Indeed, this question is
equivalent to asking whether a given point ~P can be expressed as a convex
combination of the vertices ~Dλ, which is a feasibility problem that can be
addressed with linear programming [ZKBL99, KGanidZ+00]. Although
in principle it is possible to derive the local vertices for any Bell scenario,
their number grows exponentially with both the number of parties and
the number of inputs. Hence, the LP approach to nonlocality detection
is actually efficiently implementable only for cases with small values of
N and m.

Another useful nonlocality detection tool is provided by the fact that
any polytope admits a dual description in terms of a finite set of facets.
Those are linear inequalities in terms of the probabilities

B =
∑

a1,...aN

∑

x1,...xN

αa1,...aNx1,...xN
p(a1, . . . , aN |x1, . . . , xN ) ≥ βC (2.38)

which are satisfied by all local correlations. The facets of L are usually
referred to as Bell inequalities and the quantity βC is termed local bound.
Geometrically, a Bell inequality is a hyperplane separating the local set
from the its complement (cfr. Figure 2.6.a). Importantly, any nonlocal
distribution violates at least one Bell inequality, which can be seen again
as a consequence of the separating hyperplane theorem. Notice that to
define a valid Bell inequality one does not necessarily have to consider a
facet of the local polytope (see Figure 2.6.a). However, determining the
complete list of local facets provides a sufficient condition for nonlocality
detection in a given scenario. Recall that, as mentioned in Section 2.1.1,
given the knowledge of the vertices of a polytope, determining its com-
plete list of facets is known as the convex hull problem. For the case of the
local polytope, the convex hull problem cannot be solved efficiently for a
general scenario, given the exponential scaling of the vertices. Moreover,
it has been proven that determining whether a point ~P belongs to L is in
general NP-complete [AIIS04]. Despite no general and efficient nonlocal-
ity detection method can be found, many Bell inequalities are known that
can detect nonlocal correlations produced by quantum states, including
scenarios consisting of an arbitrary number of inputs, outputs or parties
[BCP+14].
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Figure 2.6: a) Schematic bidimensional representation of the sets of lo-
cal, quantum and no-signalling correlations. As shown in the picture, the
three sets are convex and the L and NS constitute polytopes. The dot-
ted lines highlights represent examples of Bell inequalities, one of them
coinciding with a facet of the local set. b) Pictorial representation of
the first two geometrical sets Qν resulting from the NPA hierarchy and
approximating the set of quantum correlations from outside. As shown
in the picture Qν ⊆ Qµ for any µ ≤ ν.

The quantum set

The set of quantum correlations Q is defined as the set of all vectors
~P that are obtained by the Born rule (2.34) for any choice of POVM
measurement operators Mai

xi and N -partite state ρ. When no restriction
is imposed on the dimensions of the local Hilbert spaces HAi , the set Q
turns out to be convex. Moreover, the state ρ can always be purified and
the POVM measurements can be substituted with projectors by means
of the Naimark extension [NC02]. In other words, any point in Q can be
obtained as

p(a1, . . . , aN |x1, . . . , xN ) = 〈ψ|
N⊗

i=1

Πai
xi |ψ〉 (2.39)

where |ψ〉 is an arbitrary N -partite pure state in any dimension and the
measurement operators Πai

xi are orthogonal projectors.
Finding a complete way of characterising the quantum set Q is a

very important question that remains still open in general. To date, the
most effective method to study the properties of quantum correlations
is based on a hierarchy of outer approximations to Q, first introduced
in [NPA07, NPA08]. Such a technique, very commonly referred to as
Navascués-Pironio-Acín (NPA) hierarchy, is based on the following con-
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struction: consider a set O, composed by some products of the mea-
surements operators {Πai

xi} or linear combinations of them. Instead of
imposing a tensor product structure as in (2.39), one defines valid mea-
surements operators as those satisfying the following properties

1) (Πai
xi)
† = Π

(ai)
xi for any i = 1, . . .N , xi = 0, . . .,m−1 and ai = 0, . . ., d−

1 ,

2) Π
(ai)
xi Π

(a′i)
xi = δai,a′iΠ

(ai)
xi for any i = 1, . . .N , xi = 0, . . .,m − 1 and

ai, a
′
i = 0, . . ., d− 1

3) [Π
(ai)
xi ,Π

(aj)
xj ] = 0 for any i 6= j, xi, xj = 0, . . .,m − 1 and ai, aj =

0, . . ., d− 1 .

By indexing the elements in the set as Oi with i = 1, . . .k, we introduce
the so-called moment matrix Γ as the k × k matrix whose entries are
defined by Γij = tr(ρO†iOj). For any choice of measurements and state,
it can be shown that Γ satisfies the following properties: i) it is positive
semidefinite, ii) its entries satisfy a series of linear constraints associated
to the properties 1)-3) of the measurement operators, iii) some of its
entries are associated to the observed probability distribution (2.39), iv)
some of its entries correspond to unobservable numbers (e.g. when Oi
and Oj involve non-commuting observables).

Based on these facts, one can define a hierarchy of tests to check
whether a given set of correlations has a quantum realisation. One first
defines the sets Oν composed of products of at most ν of the measure-
ment operators, and creates the corresponding Γ matrix using the set of
correlations and leaving the unknown entries as variables. Then one seeks
for values for these variables that could make the Γ positive semidefinite.
This problem constitutes a semidefinite program, hence it can be solved
efficiently by numerical methods. Notice that, because of the considera-
tions made above, for any distribution in Q it is possible to find values
that lead to a non-negative moment matrix. However, for a fixed level ν∗,
there might be some supra-quantum correlations (i.e. distributions that
do not admit any quantum realisations) that are also compatible with a
positive semidefinite Γ. It follows that the sets Qν of points compatible
with the SDP test at level ν constitute approximations to the quantum
set from outside. By increasing the value of ν, one gets a sequence of
stricter and stricter tests and hence better and better approximations to
Q (for a pictorial representation, see Figure 2.6.b).

The NPA hierarchy has been extensively used for various different
applications, ranging from the calculation of maximal quantum viola-
tions of Bell inequalities to estimating the amount of randomness that
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can be achieved in device-independent protocols. It also provides several
insights on the geometrical structure of the quantum set itself. Inter-
estingly, it was realised that the SDP hierarchy resulting from NPA is
nothing but an application in this context of the more general method
for polynomial optimisation over non-commuting variables introduced
in [PNA10, DLTW08]. Thus, one can see it as a generalisation of the
techniques for commuting variables introduced in Section 2.1.4.

The no-signalling set

From a more fundamental point of view, it is interesting to ask which
are the relevant physical principles that constrain the correlations that
can be achieved in a Bell scenarios. Clearly, a first unavoidable condition
that defines observed probabilities is that any distribution ~P has to be
normalised and composed by non-negative numbers, that is

p(a1, . . . , aN |x1, . . . , xN ) ≥ 0 , ∀ ai = 0, . . . , d−1 and xi = 0, . . . ,m−1
(2.40)

and
∑

a1,...,aN

p(a1, . . . , aN |x1, . . . , xN ) = 1 , ∀ xi = 0, . . . ,m− 1 . (2.41)

Given that the parties are not allowed to communicate during their in-
teraction with the boxes, another natural assumption is the no-signalling
condition

∑

ai

[p(a1, . . . , ai, . . . , aN |x1, . . . , xi, . . . , xN )

−p(a1, . . . , ai, . . . , aN |x1, . . . , x
′
i, . . . , xN )

]
= 0, (2.42)

for all xi, x′i, a1, . . . , ai−1, ai+1, . . . , aN and x1, . . . , xi−1, xi+1, . . . , xN and
all i = 1, . . . , N . From a physical point of view, it means that the choice
of measurement of the i-th party cannot influence the outcome of the
remaining measurements. The set NS of correlations satisfying those
three conditions is called the no-signalling set. It is easy to see that NS
is also a polytope, since it is defined by a finite amount of linear equalities
and inequalities. Moreover, the list of constraints in eqs. (2.40) to (2.42)
represents all the facets of the set.

Quantum correlations satisfy normalisation, non-negativity and no-
signalling by construction, and hence local correlations as well. However,
there are no-signalling correlations that can violate Bell inequalities more
than quantum correlations do, meaning that there are probabilities satis-
fying the non-signalling principle that do not have a quantum representa-
tion [PR94]. Therefore, the relations between the three sets introduced in
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this section can be summarised as P ⊂ Q ⊂ NS, where both inclusions
are strict (see Figure 2.6.a).

It is also useful to notice that correlations can be equivalently de-
scribed by a collection of expectation values, also referred to as corre-
lators. For further purposed, let us present them by restricting to case
of dichotomic measurements, namely when d = 2: in a generic (N,m, 2)
scenario, they read as
〈
M (i1)
xi1

. . .M (ik)
xik

〉
=

∑

a1,...,aN

(−1)
∑k
l=1 ail p(a1, . . . , aN |x1, . . . , xN ) (2.43)

with i1 < . . . < ik = 1, . . . , N , xil = 0, . . . ,m − 1 and k = 1, . . . , N (all
possible expectation values, ranging from the single-body to N -partite
ones are taken into account). The probability and correlator representa-
tions are related through the formula

p(a1, . . . , aN |x1, . . . , xN ) =

1

2N


1 +

N∑

k=1

∑

1≤i1<i2<...<ik≤N
(−1)

∑l
j=1 aij

〈
M (i1)
xi1

. . .M (ik)
xik

〉

 , (2.44)

where the above equation holds for any ai = 0, 1 and xi = 0, . . . ,m − 1.
Notice also that the equations (2.43,2.44) can be generalised to scenarios
with d > 2. The main advantage of the correlator picture is that it au-
tomatically incorporates the no-signalling and normalisation constraints,
thus reducing the number of variables that need to be considered. In
particular, this implies that the no-signalling set can be simply described
by the conditions of non-negativity of probabilities (2.40), expressed in
terms of correlators through (2.44). Notice also that, although we stated
all the definitions regarding quantum and local correlations in terms of
probabilities, everything can be reformulated in correlator form, by di-
rectly applying the Fourier transform (2.44).

Lastly, notice that the number of facets describing NS, i.e. the pos-
itivity constraints, grows as (dm)N , which prevents from having an effi-
cient characterisation of the no-signalling set for high values of N,m, d,
and especially in multipartite scenarios. In particular, enumerating the
no-signalling vertices is generally a hard task, and their complete list
is currently known only for few scenarios. Remarkably, they have been
completely characterised for the simplest cases of arbitrary number of
inputs and outputs, namely in the scenarios (2,m, 2) [JM05, BP05] and
(2, 2, d) [BLM+05]. On the contrary, in the multipartite case they can be
explicitly computed only in the (N, 2, 2) scenarios and for N ≤ 3 [PBS11].
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2.3.3 Multipartite notions of nonlocality

As for the case of entanglement, a relevant question to ask in the mul-
tipartite setting is how to quantify the amount of parties that share
genuinely nonlocal correlations. Several approaches have been proposed
to describe the types of nonlocality that can appear in such a scenario
[BBGP09, CGL15]. Following [CGL15], we choose here the notion of
k-producibility of nonlocality or nonlocality depth, which goes along the
lines developed to describe multipartite entanglement. To this end, recall
the definition of an Lk-partition of the set of parties I = {1, . . . , N} into
collection of subsets of Al of size at most k, introduced in Section 2.2.3.
Consider now correlations that admit the following decomposition

p(a1, . . . , aN |x1, . . . , xN ) =
∑

λ

p(λ)p1(aA1 |xA1 , λ) · . . . · pL(aAL |xAL , λ)

(2.45)
where aAi and xAi are vectors encoding the outcomes and measurements
choices corresponding to the observers belonging to Ai. One can see that
this is a natural generalisation of the notion of Lk-separable states (2.26)
to the device-independent framework.

Still, the form of correlations (2.45) is not yet the most general one
as mixtures of different Lk-partitions do not increase the nonlocality
depth of the resulting probability distribution. We then call correlations
{p(a|x)} k-producible if they can be written as a convex combination of
correlations that are k-producible with respect to different Lk-partitions,
i.e.,

p(a1, . . . , aN |x1, . . . , xN ) =
∑

S∈Sk

qSpS(a1, . . . , aN |x1, . . . , xN ) (2.46)

where Sk is the set of all Lk-partitions and pS(a1, . . . , aN |x1, . . . , xN )
are correlations that admit the decomposition (2.45) with respect to the
k-partition S.

Similarly to the connection between separable states and local cor-
relations, it is easy to see from (2.27) that correlations produced by ap-
plying local measurements on k-separable states are always k-producible.
Moreover, they admit a decomposition where correlations shared among
subgroups have quantum realisation by definition. Hence, ruling out a k-
producible description with quantum resources, i.e. with pi(aAi |xAi , λ) ∈
Q can be seen as a device-independent method to detect a given entan-
glement depth. However, given the absence of an exact characterisation
of the quantum set, techniques that approach k-producible correlations
with quantum nonlocal resources are currenlty based on numerical ap-
proximations [BGLP11, LRB+15, MBL+13].
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A sometimes more convenient choice to study k-producible models is
to allow for no-signalling resources, that is, to require the distributions
pi(aAi |xAi , λ) to satisfy the no-signalling condition (2.42). More general
resources can also be considered, but some of them are known to lead
to self-contradicting models while others can not easily be generalised to
partitions of size larger than 2 [GWAN12, BBGP13]. By taking the no-
signalling picture, we define the minimal k for which a distribution can
be expressed in the form (2.46) as its nonlocality depth k. Equivalently,
correlations whose nonlocality depth is k are generally referred to as gen-
uinely k-partite nonlocal or, simply, k-nonlocal [Sve87]. Let us notice
that in the particular case of k = 1, where each party forms a singleton
Ai = {Ai} (i = 1, . . . , N), one recovers the definition of local correlations
(2.35). Then, on the other extreme k = N , we have correlations in which
all parties share nonlocality and are thus called genuinely multipartite
nonlocal (GMNL).

Geometrically, the choice of no-signalling resources makes the k-producible
correlations form polytopes, denoted PN,k. Similarly to the local poly-
tope, vertices of these polytopes are product probability distributions of
the form

p(a|x) = p1(aA1 |xA1) · . . . · pL(aAL |xAL) (2.47)

with each pi(aAi |xAi) being a vertex of the corresponding |Ai|-partite
NS polytope (when |Ai| = 1, then pi(aAi |x) is simply a deterministic
vertex of the local polytope). It thus follows that the necessary ingredient
in order to construct all vertices of PN,k are the vertices of the p-partite
nonsignaling polytopes NSp for all p ≤ k, which is in general a very
demanding task. The facets constraining the PN,k polytopes can also be
interpreted as Bell-like inequalities. In this case, the violation of such
inequalities implies that a given distribution cannot be described by any
k-producible model. Hence, such inequalities are used to certify that the
correlations violating them are at least (k + 1)-nonlocal.

Despite the complexity of the problem prevents a complete charac-
terisation of the k-producible polytopes, many advancements have been
made in the context of deriving specific families of Bell inequalities. Apart
from considering inequalities that detect GMNL [Sve87, BBGL11], recent
efforts resulted in the construction of inequalities detecting a given non-
locality depth k [CGL15] or calculation of k-producible bounds (i.e. the
maximal value βk achiveable with correlations PN,k) for already known
Bell inequalities [BBGP09, LRB+15]. In such a way, one can estimate
the nonlocality depth by simply looking at the amount of the observed
inequality violation.

Lastly, notice that, with the aid of the formula (2.44), all the above
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definitions can be equivalently formulated in terms of correlators (2.43);
in particular, for a vertex the correlators (2.43) factorise whenever the
parties belong to different groups Ai.

2.3.4 Self-testing

Another relevant application of nonlocality is self-testing, first introduced
in [MY04], which can be seen as the most complete form of certifying the
quantum properties of a given system. Indeed, the aim of self-testing is to
completely characterise (up to uncontrollable symmetries) the state that
has been prepared and/or the measurement performed by simply looking
at the resulting probability distribution. Such a tool is particularly inter-
esting because it offers a way to guarantee that a given quantum device
is working properly without having to know the details of its internal
functioning, that is, in a device-independent way.

Self-testing is an interesting problem also from a fundamental point of
view and it can give important insights on the structure of the set of quan-
tum correlations. Geometrically, the fact that some correlation can be
uniquely related to a given state and measurements raises the question of
which properties of the points in Q identify them as correlations that can
be associated to a self-testing statement. A clear necessary condition is for
a point to be extremal, that is, not to be decomposable as a convex com-
bination of other vectors in the set. A feature that is known to be some-
times sufficient for self-testing is to exploit the fact that some correlations
violate maximally a Bell inequality [MY04, ŠASA16, BP15]. However,
there are also self-testing proofs that are based on the knowledge of the
whole probability distribution or parts of it [CGS17, McK11, ŠCAA18].
Moreover, there is evidence that for some points of the quantum set, the
maximal violation of a single Bell inequality is not enough to identify
their extremality [GKW+18]. From a more applied point of view, a rel-
evant question is to classify the quantum states that can be self-tested.
While in the bipartite case it is known that all states can be [CGS17], in
the multipartite scenario the problem is still open.

For the purposes of this thesis, we focus on the methods of state
and measurements self-testing based on the maximal violation of a Bell
inequality. Suppose then that one is interested in certifying a target
state |ψ〉 and some target measurements {Mai

xi }
ai=0,...,d−1
xi=0,...,m−1 for parties i =

1, . . . , N . Assume also that the resulting probability distribution achieves
the violation βQ for a given Bell inequality B of the form (2.38). A first
crucial step is to prove that such violation is indeed the maximal value
that can be obtained by quantum theory. To do so, one has to show that
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the maximal eigenvalue of the corresponding Bell operator

B̂ =
∑

a1,...aN

∑

x1,...xN

αa1,...aNx1,...xN
Πa1
x1 ⊗ . . .⊗ΠaN

xN
(2.48)

is bounded by βQ for any choice of local projectors Πai
xi in any Hilbert

space dimension. In other words, the shifted Bell operator (βQ1−B̂) has
to be positive semidefinite.

A very common way to prove that is to show that such operator is a
sum of squares (SOS), that is

(βQ1− B̂) =
∑

k

P†kPk (2.49)

where the Pk are polynomials in the Πai
xi variables. Indeed, any operator

of the form P†kPk is non-negative by construction and the condition (2.49)
directly implies that tr (B̂ρ) ≤ βQ for any choice of quantum state and
measurements.

Let us assume that one has observed some correlations obtaining a
violation βQ for the inequality B, produced by an unknown physical state
|ψ〉 (recall that in a device-independent framework the state can always be
assumed to be pure) and some unknown measurements {Nai

xi }
ai=0,...,d−1
xi=0,...,m−1

for parties i = 1, . . . , N . A self-testing statement consists in showing that
there exists a local isometry Φ = Φ1⊗ . . .ΦN connecting the physical and
the target state, namely

Φ [|φ〉] = |ψ〉 ⊗ |aux〉 (2.50)

and similarly for the measurements

Φ
[
(Na1

x1 ⊗ . . . NaN
xN

) |φ〉
]

= (Ma1
x1 ⊗ . . .MaN

xN
) |ψ〉 ⊗ |aux〉 (2.51)

where |aux〉 is some state encoding uncorrelated degrees of freedom and
the second equation holds for all ai = 0, . . . , d− 1 and xi = 0, . . . ,m− 1.
The physical interpretation of equations (2.50) and (2.51) is that the
physical state and measurements are indeed equivalent to the target ones,
up to some uncontrollable operations (the local isometries) that do not
change the resulting probability distribution. Notice that here we are
assuming that both the target state and measurements are real, since
otherwise they could not be distinguished from their complex conjugates
by looking at the correlations only.

For further purposes, we focus on a Bell inequality-based approach to
self-testing where the local isometry is constructed exploiting the condi-
tions resulting from the SOS decomposition of the shifted Bell operator.
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More precisely, notice that applying the operator (2.49) on a state |φ〉
maximally violating the inequality B gives exactly zero, which directly
implies the set of condition Pk |φ〉 = 0 for all terms in the decomposi-
tion. As we will see in an example in the next section, those equations
are sometimes enough to make a self-testing statement for both the state
and the measurements.

Lastly, let us stress that in order to apply self-testing protocols in
practical situations, one is actually interested in a more quantitative
statement than those provided by equation (2.50) and (2.51). In par-
ticular, it is for instance more convenient to be able to bound the fidelity
between the target and the physical state

Θ(φ→ ψ) = max
Φ1,...,ΦN

|〈ψ| [(Φ1 ⊗ . . .⊗ ΦN ) |φ〉] |2 (2.52)

as a function of the observed Bell inequality violation βobs, also in cases
where it is not maximal. Here we revise a useful technique to obtain such
bounds, first introduced in [Kan16]. For this purpose, we notice that the
fidelity in (2.52) can equivalently be written as

〈φ|
[
(Φ†1 ⊗ . . .⊗ Φ†N )(|ψ〉 〈ψ|)

]
|φ〉 (2.53)

where Φ†i are dual maps of the quantum channels Φi. Now, proving for
some particular channels Φi an operator inequality

K := (Φ†1 ⊗ . . .⊗ Φ†N )(|ψ〉 〈ψ|) ≥ sB̂ + µ1 (2.54)

with for some s, µ ∈ R, where B̂ is constructed from any possible local
observables, would imply the following inequality for the fidelity

Θ(φ→ ψ) ≥ sβobs + µ. (2.55)

Proving an operator inequality (2.54) for arbitrary local observables in B̂
is certainly a formidable task. However, (2.55) provides a simple bound
that can at least be estimated numerically and even proven analytically
for some of the simplest Bell scenarios and corresponding inequalities.

2.3.5 A simple example: CHSH

Let us study in more detail the simplest Bell scenario, namely the N =
m = d = 2 case. For convenience we call the two parties Alice and Bob,
denote their projectors Ma

x and N b
y with x, y, a, b = 0, 1 and adopt the

correlators picture, denoting by Ax = M1
x − M0

x and By = N1
y − N0

y

the corresponding hermitian operators. Notice that in such a dichotomic
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Figure 2.7: A circuit representation of the SWAP isometry. The isometry
can be viewed as a unitary with each branch acting on the i-th particle
of |φ〉 and one ancillary qubit in the state |+〉. On the right-hand-side,
the explicit form of each of the two unitaries ΦA and ΦB, constructed as
a function of the local operators Xi,Zi.

measurement scenario, those operators always square to identity, that
is A2

x = B2
y = 1 for all x, y = 0, 1. In the considered scenario, a very

well-known Bell inequality is the Clauser-Horne-Shimony-Holt (CHSH)
[CHSH69], which reads

BCHSH = 〈A0B0〉+ 〈A0B1〉+ 〈A1B0〉 − 〈A1B1〉 ≤ 2 , (2.56)

where recall that the two-body correlators are defined as 〈AxBy〉 = p(a =
b|xy)−p(a 6= b|xy). Interestingly, it can be shown that CHSH is the only
relevant Bell inequality in the considered scenario, that is, all the facets
of the local polytope correspond to (2.56) up to relabellings of parties,
inputs and outputs.

The maximal quantum violation of CHSH amounts to βQ = 2
√

2
and it is achieved by the maximally entangled two-qubit state |φ+〉 and
with Alice’s and Bob’s measurements being Ax = (X + (−1)xZ)/

√
2 and

B0 = X,B1 = Z respectively. The fact that no value higher than 2
√

2 can
be achieved by quantum theory can be proved by writing the following
SOS decomposition

(2
√

21− BCHSH) =
1√
2

[
1− A0 +A1√

2
B0

]2

+
1√
2

[
1− A0 −A1√

2
B1

]2

(2.57)
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We notice that when acting on the state |φ〉 maximally violating the
CHSH inequality, the right-hand-side of (2.57) must vanish. Therefore,
if we define the following operators

XA =
A0 +A1

2
, ZA =

A0 −A1

2
, (2.58)

XB = B0 ZB = B1 . (2.59)

the following conditions hold

(ZB − ZA) |φ〉 = 0 ,

(XB − XA) |φ〉 = 0 .
(2.60)

Moreover, {XA,ZA} = 0 holds by construction of the operators, which,
combined with (2.60) implies that XB and ZB, when applied on |φ〉,
anticommute as well. Similarly, Bob’s operators satisfy X2

B = Z2
B =

1, hence Alice’s ones square to identity when acting on |φ〉. Now, as
a last step to prove that the maximal violation of CHSH self-tests the
maximally entangled two-qubit state, we apply the SWAP gate [MYS12]
(represented in Figure 2.7)

ΦSWAP (|φ〉 |+〉⊗2) = Z+
AZ

+
B |φ〉 |00〉+ Z+

AXBZ
−
B |φ〉 |01〉

+XAZ−AZ
+
B |φ〉 |10〉+ XAZ−AXBZ

−
B |φ〉 |11〉(2.61)

where we have defined the two orthogonal projectors Z±i = 1±Zi
2 . Then,

by making use of the properties (2.60), we first notice that the second
term in the sum vanishes, indeed

Z+
AXBZ

−
B |φ〉 |01〉 = Z+

AZ
−
AXB |φ〉 |01〉 = 0 (2.62)

and, by applying the same argument, the third term is zero as well. To
conclude, we focus on the last term, which becomes

XAZ−AXBZ
−
B |φ〉 |11〉 = XAZ−AZ

+
BXB |φ〉 |11〉

= XAZ−AZ
+
BXA |φ〉 |11〉 = Z+

AZ
+
B |φ〉 |11〉 (2.63)

where we have also used that X2
A |φ〉 = |φ〉. This concludes the proof,

since we have shown that there is an isometry connecting |φ〉 with the
maximally entangled state, namely

ΦSWAP (|φ〉 |+〉⊗2) =
1√
2

(|00〉+ |11〉)⊗ |aux〉 (2.64)
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where |aux〉 =
√

2Z+
AZ

+
B |ψ〉. By using a similar argument, it is also

possible to show that

ΦSWAP ((Ax ⊗B0) |φ〉 ⊗ |00〉) =

(
(X + (−1)xZ)

2
⊗X

) ∣∣φ+
〉
⊗ |aux〉 ,

ΦSWAP ((Ax ⊗B1) |φ〉 ⊗ |00〉) =

(
(X + (−1)xZ)

2
⊗ Z

) ∣∣φ+
〉
⊗ |aux〉 .

(2.65)



Chapter 3

Efficient Device-Independent
Entanglement Detection for
Multipartite Systems

Entanglement is one of the most studied properties of quantum mechan-
ics for its application in quantum information protocols. Nevertheless,
detecting its presence in large multipartite states continues to be a great
challenge both from the theoretical and the experimental point of view.
Most of the known methods either have computational costs that scale
inefficiently with the number of particles or require more information
on the state than what is attainable in everyday experiments. In this
Chapter we introduce a new technique for entanglement detection that
provides several important advantages in these respects. First, it scales
efficiently with the number of particles, thus allowing for application to
systems composed by up to few tens of particles. Second, it needs only the
knowledge of a subset of all possible measurements on the state, therefore
being apt for experimental implementation. Moreover, since it is based
on the detection of nonlocality, our method is device independent. We
report several examples of its implementation for well-known multipartite
states, showing that the introduced technique has a promising range of
applications. The results of this Chapter are based on the original work
published in [BCWA17].

3.1 Introduction

As we argued in Section 2.2, entanglement is the key ingredient for several
quantum information protocols. Hence, developing techniques to detect
its presence in quantum states is a task of crucial importance that has
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attracted a lot of research effort.
Recall that the most general way to detect entanglement in a given

system consists of reconstructing its quantum state using tomography
and then applying any entanglement criterion to the resulting state.
This, however, is costly both from an experimental and a theoretical
perspective. First, determining the state of large quantum systems is im-
practical in experiments, given that quantum tomography implies mea-
suring a number of observables that increases exponentially with the
number of systems, e.g., 3N observables even in the simplest case of
N qubits [HHR+05]. Second, determining whether an arbitrary state is
entangled is known to be a hard problem – the computational resources
of the most efficient known algorithm, namely the symmetric extension,
scale exponentially with N [BC12]. Because of these problems, it is
very desirable to develop entanglement detection techniques with more
accessible experimental and computational requirements.

One possible approach is to make use of entanglement witnesses. Re-
call that these are criteria for detecting entanglement that require mea-
suring only some expectation values of local observables. In particular,
attempts have been made to derive witnesses that adapt to the limited
amount of information that is usually available in a typical experiment.
For instance, one can consider witnesses involving only two-body correla-
tors [TG06] or a few global measurements [LPV+14, VAET14]. Nonethe-
less, entanglement witnesses constitute a method that lacks generality,
given that the known methods are generally tailored to detect very spe-
cific states. There are techniques capable of deriving a witness for any
generic entangled state, which can also be constrained to the available
set of data [JMG11], or adapted to require the minimal amount of mea-
surements on the system [KSK+16]. However, they always involve an op-
timisation procedure that runs on an exponentially increasing number of
parameters. A method to detect metrologically useful (hence entangled)
states based on a couple of measurements has recently been proposed
[AKGT17]. However, these states represent only a subset of all entangled
states.

A qualitatively different approach to entanglement detection is based
on Bell nonlocality (cfr. Section 2.3). Indeed, the presence of nonlocality
provides a certificate of the entanglement in the state. Moreover, it has
the advantage that it can be assessed in a device-independent manner, i.e.
without making any assumption on the actual experimental implementa-
tion. The easiest way to detect nonlocality is by means of the violation of
a Bell inequality. However, in analogy with the entanglement case, each
inequality is usually violated by a very specific class of states. In the
general case, verifying whether a set of observed correlations is nonlocal
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can be done via linear programming. Nonetheless, the number of vari-
ables involved again grows exponentially with the number of particles,
e.g. as 4N already for the simplest scenarios where only two dichotomic
measurements per party are applied.

To summarise, the methods to detect entanglement known so far are
either not general or too costly, from a computational and/or experimen-
tal viewpoint, to be applied to large systems.

In this Chapter we present a novel technique for device-independent
entanglement detection that is efficient both experimentally and compu-
tationally. On the one hand, it requires the knowledge of a subset of all
possible measurements, most of them consisting of few-body correlation
functions, which makes it suitable for practical implementations. On the
other hand, it can be applied to any set of observed correlations and
can be implemented by semidefinite programming involving a number of
variables that grows polynomially with N .

Of course, all these nice properties become possible only because our
method for entanglement detection is a relaxation of the initial hard
problem. However, and despite being a relaxation, we demonstrate the
power of our approach by showing how it can be successfully applied to
several physically relevant examples for systems of up to 29 qubits.

3.2 Relaxing the nonlocality detection problem

Recall that in a general (N,m, d) Bell scenario we have N observers
sharing a multipartite quantum state ρ, each performing one out of
m possible local measurements Mai

xi , where xi = {0, . . . ,m − 1} and
ai = {0, . . . , d − 1}. The object of interest is the resulting probability
distribution

p(a1, . . . , aN |x1, . . . , xN ) = tr (Ma1
x1 ⊗MaN

xN
ρ) , (3.1)

which can be estimated by performing the presented experiment suffi-
ciently many times. Since in the following we often restrict our con-
siderations to dichotomic measurements, it is convenient to adopt the
correlator picture: recall from their definition (2.43), which we rewrite as

〈M (i1)
xi1

. . .M (ik)
xik
〉 =

∑

ai1 ,...,aik

(−1)
∑k
l=1 ailp(ai1 . . ., aik |xi1 , . . ., xik) (3.2)

where 0 ≤ i1 < . . . < ik < N , xij ∈ {0,m − 1} and 1 ≤ k ≤ N and we
have defined the marginal distributions

p(ai1 , . . ., aik |xi1 , . . .xik) = tr(M
ai1
xi1
⊗ . . .⊗Maik

xik
ρi1,...,ik) (3.3)
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where 0 ≤ i1 < . . . < ik < N , 1 ≤ k ≤ N and ρi1,...,ik is the reduced
state of ρN corresponding to the considered subset of parties. Notice that
marginals can equivalently be obtained from the full distribution (3.1) by
summing over the remaining outcomes. The value of k represents the
order of the correlators: for instance, expectation values 〈M (i1)

xi1
M

(i2)
xi2
〉

are of order two. Correlators of order N are often referred to as full-
body correlators. In scenarios involving only dichotomic measurements,
correlators encode all the information in the observed distribution. When
working with correlators, it is also useful to introduce the measurement
operators in the expectation value form, namely by using the notation
M

(i)
xi = M1

xi −M0
xi . With this definition, it is easy to see that

〈M (i1)
xi1

. . .M (ik)
xik
〉 = tr (M (i1)

xi1
⊗ . . .⊗M (ik)

xik
ρi1,...,ik). (3.4)

As explained in Section 2.3, nonlocal correlations can be produced
only by entangled states. Here, we will precisely be interested in studying
nonlocality as a device-independent entanglement detection method. In
particular, in the following Section we will present a relaxation of the
nonlocality detection problem and show how it defines a general and
efficient method to check if a given state is entangled.

3.2.1 The SDP method

Our method is based on the following reasoning (discussed in detail be-
low):

1. If a quantum state ρN is separable, local measurements performed
on it produce local correlations (i.e. correlations admitting a local
model).

2. Any local correlations can be realised by performing commuting
local measurements on a quantum state.

3. Correlations produced by commuting local measurements define a
positive moment matrix with constraints associated to the commu-
tation of all the measurements.

4. Our method consists in checking if the observed correlations are
consistent with such a positive moment matrix. In the negative case
the state ρN producing the correlations is proven to be entangled.

Let us now explain all these points in detail. First, recall from Section
2.3.1 that, given a separable quantum state (2.25), any set of conditional
probability distributions obtained after performing local measurements
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on it admits a decomposition in terms of a LHV model (2.35). By this
reasoning, whenever the set of observed distributions (3.1) is nonlocal,
we can conclude that the shared state is entangled. Moreover, since non-
locality is a property that can be assessed at the level of the probability
distribution, it can be seen as a device-independent way of detecting en-
tanglement. For the sake of brevity, throughout the rest of the paper we
therefore refer to our method as a nonlocality detection one.

The second ingredient is that any local set of probability distributions
has a quantum realisation in terms of local commuting measurements
applied to a quantum state [Fin82]. In order to see it more explicitly,
recall that any local distribution can be rewritten as a convex combination
of deterministic strategies, namely

p(a1, . . ., aN |x1, . . ., xN ) =
∑

λ

qλ

N∏

i=1

D(ai|xi, λ) (3.5)

where D(ai|xi, λ) are deterministic functions that give a fixed outcome
a for each measurement. It is easy to see that any such decomposition
can be reproduced by choosing the multipartite state ρ =

∑
λ qλ|λ〉〈λ|⊗N

and measurement operators of the form Mai
xi =

∑
λ′ D(ai|xi, λ′)|λ′〉〈λ′|.

In particular, [M
(i)
xi ,M

(i)
x′i

] = 0 ∀ i, xi, and x′i.
The last step consists in using a modified version of the NPA hierarchy

(cfr. Section 2.3.2), that takes into account the commutativity of the local
measurements to test if the observed probability distribution is local (a
similar idea was introduced in the context of quantum steering [KSC+15]
– see also [CS17]). The NPA hierarchy consists of a sequence of tests
aimed at certifying if a given set of probability distributions has a quan-
tum realisation (3.1). In NPA one imposes the commutativity of the
measurements between the distant parties. Now, we impose the extra
constraints that the local measurements on each party also commute.

The resulting SDP hierarchy is nothing but an application in this
context of the more general method for polynomial optimisation over
noncommuting variables introduced in [PNA10], see also [DLTW08]. As
we stressed in Section 2.3.2, by imposing commutativity of all the vari-
ables this general hierarchy reduces to the well-known Lasserre hierarchy,
namely the relaxation for polynomial optimisation of commuting vari-
ables presented in Section 2.1.4. Indeed, an alternative interpretation
of our method can be found by connecting it to the moment problem,
which is at the hearth of Lasserre’s relaxation. More precisely, as proven
by Fine in [Fin82], a set of correlation is local if and only if it can be
reproduced by a joint probability distribution involving all the local mea-
surements (including pairs of potentially incompatible ones). Hence, the
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SDP relaxation we propose can be seen as an instance of the truncated
moment problem (cfr. Section 2.1.4), namely as a test of compatibility
of the observed moments, in the variables M (i)

xi , with a joint probability
distribution. Let us also mention that a use of this relaxation technique
to describe local correlations was also proposed in [SG11]. However, to
the best of our knowledge, no systematic analysis of its application to
multipartite scenarios has been considered thus far.

3.2.2 Details and convergence of the hierarchy

It is convenient for what follows to recall the main ingredients of the
NPA hierarchy. Consider a set O, composed by some products of the
measurements operators {Mai

xi } or linear combinations of them. By in-
dexing the elements in the set as Oi with i = 1, . . .k, we introduce the
so-called moment matrix Γ as the k× k matrix whose entries are defined
by Γij = tr(ρNO†iOj). For any choice of measurements and state, it
can be shown that Γ satisfies the following properties: i) it is positive
semidefinite, ii) its entries satisfy a series of linear constraints associated
to the commutation relations among measurement operators by different
parties and the fact that they correspond to projectors, iii) some of its
entries can be computed from the observed probability distribution (3.1),
iv) some of its entries correspond to unobservable numbers (e.g. when Oi
and Oj involve noncommuting observables).

Based on these facts one can define a hierarchy of tests to check
whether a given set of correlations has a quantum realisation. One first
defines the sets Oν composed of products of at most ν of the measure-
ment operators, and creates the corresponding Γ matrix using the set of
correlations and leaving the unassigned entries as variables. Then one
seeks for values for these variables that could make the Γ positive. This
problem constitutes a SDP, hence it can be efficiently solved numerically.
If no such values are found this means that the set of correlations used
does not have a quantum realisation. By increasing the value of ν, one
gets a sequence of stricter and stricter ways of testing the belonging of a
distribution to the quantum set.

We can now use the same idea to define a hierarchy of conditions to
test whether a given set of correlations has a quantum realisation with
commuting measurements. To do so we simply impose additional linear
constraints on the entries of the moment matrix resulting from assuming
that the local measurements also commute (for a more detailed discussion,
see Appendix A.1). Thus, given a set of observed probability distributions
one can use them to build an NPA-type matrix with the additional linear
constraints associated to the local commutation relations, and run an
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SDP to check its positivity to certify if the considered set of correlations
can not be obtained by measuring a separable state.

Interestingly, the convergence of this hierarchy follows from the re-
sults in [NPA08, PNA10]. Roughly speaking, one can say that since the
NPA hierarchy is proven to converge to the set of quantum correlations,
our method provides a hierarchy that converges to the set of quantum
correlations with commuting measurements, which we have shown to be
equivalent to the set of local correlations 1. Therefore, any nonlocal cor-
relation would fail the SDP test at a finite step of the sequence given by
the Oν .

Moreover, the commutativity of all the measurements implies that
the total number of variables that can be involved in the SDP test is
finite. The reason is that the longest non-trivial product of the operators
that can appear in the moment matrix consists of the products of all
the different Mai

xi . Hence, the number of variables in the moment matrix
stops growing after the first step at which this product appears. This
also implies that the convergence of the hierarchy is met at a finite step
as well, namely coinciding to the level ν ′ at which the longest non-trivial
products appear in the list of operators Oν′ . Indeed, it is easy to see
that for µ > ν ′, there cannot appear new operators in the generating
set, i.e. Oµ = Oν′ . Of course, the aforementioned levels depend on the
numbers (N,m, d) defining the scenario and it is, in general, high. Indeed,
according to the Collins-Gisin representation [CG04], one has Nm(d−1)
independent measurement operators Mai

xi . Therefore, the product of all
of them would first appear in the moment matrix at level dNm(d−1)

2 e.
Consequently, convergence is assured at level ν ′ = Nm(d− 1).

To conclude, we stress that, depending on the level of the hierarchy,
one might not need knowledge of the full probability distribution. Indeed,
by looking at (3.3), it is evident that to define a marginal distribution
involving k parties, one requires the product of k measurements Mai

xi .
Now, given that the operators of the set Oν contain products of at most
ν measurement operators, the terms in the moment matrix at level ν can
only coincide with the marginals of the observed distribution of up to
k = 2ν parties. Therefore, in the multipartite setting, fixing the level of
the hierarchy is also a way to limit the order of the marginals that can
be assigned in the moment matrix.

1A more formal way to see it is to notice that we are restricting the projective
algebra of NPA by the commutation condition. Then, given that the original algebra
already meets the Archimedean condition, the convergence holds for the commuting
case as well.
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3.2.3 Simple example

After presenting the general idea of the method, it is convenient to illus-
trate it with a concrete example. In what follows, we present the explicit
form of the moment matrix for the bipartite case, two dichotomic mea-
surements per party and level ν = 2 of the hierarchy. For the sake of
simplicity, we rename the expectation value operators for the two parties
as Ax and By, with x, y = 0, 1. In this scenario, the set of operators reads
as O2 = {1,A0,A1,B0,B1,A0A1,A0B0,A0B1,A1B0,A1B1,B0B1}. The
corresponding moment matrix is

Γ =




1 〈A0〉 〈A1〉 〈B0〉 〈B1〉 v1 〈A0B0〉 〈A0B1〉 〈A1B0〉 〈A1B1〉 v2

〈A0〉 1 v1 〈A0B0〉 〈A0B1〉 〈A1〉 〈B0〉 〈B1〉 v3 v4 v5

〈A1〉 v∗1 1 〈A1B0〉 〈A1B1〉 v6 v∗3 v∗4 〈B0〉 〈B1〉 v7

〈B0〉 〈A0B0〉 〈A1B0〉 1 v2 v3 〈A0〉 v5 〈A1〉 v7 〈B1〉
〈B1〉 〈A0B1〉 〈A1B1〉 v∗2 1 v4 v∗5 〈A0〉 v∗7 〈A1〉 v8

v∗1 〈A1〉 v∗6 v∗3 v∗4 1 〈A1B0〉 〈A1B1〉 v9 v10 v11

〈A0B0〉 〈B0〉 v3 〈A0〉 v5 〈A1B0〉 1 v2 v1 v12 〈A0B1〉
〈A0B1〉 〈B1〉 v4 v∗5 〈A0〉 〈A1B1〉 v∗2 1 v13 v1 v14

〈A1B0〉 v∗3 〈B0〉 〈A1〉 v7 v∗9 v∗1 v∗13 1 v2 〈A1B1〉
〈A1B1〉 v∗4 〈B1〉 v∗7 〈A1〉 v∗10 v∗12 v∗1 v∗2 1 v15

v∗2 v∗5 v∗7 〈B1〉 v∗8 v∗11 〈A0B1〉 v∗14 〈A1B1〉 v∗15 1




(3.6)
where we define the following unassigned variables

v1 = 〈A0A1〉 , v2 = 〈B0B1〉 , v3 = 〈A0A1B0〉 ,
v4 = 〈A0A1B1〉 , v5 = 〈A0B0B1〉 , v6 = 〈A1A0A1〉 ,
v7 = 〈A1B0B1〉 , v8 = 〈B1B0B1〉 , v9 = 〈A1A0A1B0〉 ,

v10 = 〈A1A0A1B1〉 , v11 = 〈A1A0B0B1〉 , v12 = 〈A0A1B0B1〉 ,
v13 = 〈A0A1B1B0〉 , v14 = 〈A0B1B0B1〉 , v15 = 〈A1B1B0B1〉 .

(3.7)
Now, if we further impose commutativity of all the measurements,

namely [A0,A1] = 0, [B0,B1] = 0, the corresponding linear constraints
reduce the number of variables. Explicitly, one gets v∗i = vi for any
i = 1, . . ., 15, and also

v6 = 〈A0〉 , v8 = 〈B0〉 , v9 = v14 = 〈A0B0〉 ,
v10 = 〈A0B1〉 , v15 = 〈A1B0〉 , v11 = v12 = v13 .

(3.8)

For a visual representation, the variables that become identical be-
cause of the commutativity constraints are represented by the same color
in (3.6). Let us notice that the above matrix can be seen as the equiva-
lent of (2.16), expressed in terms of the four dichotomic random variables
{A0,A1,B0,B1}.

For any set of observed correlations {〈Ax〉, 〈By〉, 〈AxBy〉}, testing whether
it is local can be done in the following steps: assigning the values to the
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entries of Γ that can be derived from the observed correlations and leav-
ing the remaining terms as variables, then checking whether there is an
assignment for such variables such that the matrix is positive semidefinite.

For instance, it is possible to check that any set of correlations that
violates the well-known CHSH inequality (2.56) is incompatible with a
positive semidefinite matrix (3.6). We stress that a necessary condition
to produce correlations that violate CHSH is that the measurements per-
formed by each party does not commute with each other. This shows
how the commutativity constraints imposed in the SDP test are crucial
for the detection of the nonlocality of the observed correlations.

To conclude, we recall that, in this particular scenario, any set of
nonlocal correlations has to violate the CHSH inequality, or symmetrical
equivalent of it (cfr. Section 2.3.5). Therefore, it turns out that in this
case the second level of the hierarchy is already capable of detecting any
nonlocal correlation. That is, even if in this scenario the hierarchy is
expected to converge at level ν ′ = 4, the second level happens already to
be tight to the local set.

3.2.4 Geometrical interpretation

Before presenting the applications of our method, we analyse it in a ge-
ometrical perspective, schematically represented in Figure 3.1. Recall
that the set of local correlations L defines a polytope, i.e. a convex set
with a finite number of extremal points. Such points coincide with the
deterministic strategies D(ai|xi, λ) introduced in (3.5) and can be easily
defined for any multipartite scenario. As represented in Figure 3.1, the
set of quantum correlations Q is strictly bigger than the local set. All
the points lying outside the set L represent nonlocal correlations.

Determining whether some observed correlations are nonlocal corre-
sponds to checking whether they are associated to a point outside the
local set. A very simple way to detect nonlocality is by means of Bell
inequalities. However, there can be nonlocal correlations that are not
detected by a given inequality, meaning that they fall on the same side
of the hyperplane as local correlations.

On the other hand, a very general technique to check if a point be-
longs to the local set consists in determining if it can be decomposed
as a convex combination of its vertices [ZKBL99]. Such a question is a
typical instance of a linear programming problem, for which there exist
algorithms that run in a time that is polynomial in the number of vari-
ables (cfr. Section 2.1.1). Nevertheless, finding a convex decomposition
in the multipartite scenario is generally an intractable problem because
the number of deterministic strategies grows as dmN . Already in the
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simplest cases in which each party measures only m = 2, 3 dichotomic
measurements, the best approach currently known stops at N = 11 and
N = 7 respectively [GGH+14].

Coming back to the SDP method presented in the previous section,
we can now show how the technique can help in overcoming the limita-
tions imposed on the linear program. Let us define the family of sets
Lν as the ones composed by the correlations that are compatible with
the moment matrix Γ defined by the observables Oν and the additional
constraints of commuting measurements. Given that any local distribu-
tion has a quantum representation with commuting measurements, the
series L1 ⊇ L2 ⊇ . . . ⊇ L defines a hierarchy of sets approximating better
and better the local set from outside. In Figure 3.1 we show a schematic
representation of the first levels of approximations.

Interestingly, it can be seen that the first level of the hierarchy is
not capable of detecting any nonlocal correlations. A simple way to
understand it is that, in the moment matrix generated by O1, imposing
commutativity of the local measurement does not result in any additional
constraint in the entries. A clear example is given by the N = 2 case pre-
sented in the previous section. The moment matrix corresponding to the
first level can be identified with the 5× 5 top-left corner of (3.6). There,
the only modification imposed by local commutativity is the condition
for the matrix to be real, which can always be assumed when working
with quantum correlations. Therefore, we can say that L1 = Q1, mean-
ing that the first level of our relaxation coincides with the first level of
the original NPA, thus resulting in an approximation of the quantum set
from outside.

Since we are interested in focusing on the first non-trivial level that
allows for nonlocality detection, we then consider L2. We notice that, at
this level of the hierarchy, specifying the entries Γij = tr(O†iOjρ) requires
knowledge of up-to-four-body correlators. Moreover, the amount of terms
in the set O2 scales as the number of possible pairs of measurementsMai

xi ,
that is, as N2m2d2. This implies that the size of the moment matrix
scales only quadratically with the number of parties and measurements,
which is much more efficient compared to the exponential dependence
dmN of the linear program. Moreover, since the elements in the moment
matrix involve at most four operators, this implies that the number of
measurements to be estimated experimentally scales as N4m4d4.

As mentioned before, checking whether a set of observed correlations
belongs to L2 constitutes a SDP feasibility problem. Since we are ad-
dressing approximations of the local set, there will be nonlocal correla-
tions that will fall inside L2 and that will not be distinguishable from
the local correlations. Therefore, our technique can provide only neces-
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Q

Bell-like
inequality

Figure 3.1: Pictorial representation of the sets of correlations, together
with our approach to detection of multipartite nonlocality. The L and Q
sets delimit the local and quantum correlations respectively. As discussed
here, the first forms a polytope, namely a convex set delimited by a finite
amount of extremal points, while the second, despite still being convex, is
not a polytope. The light orange sets are the first representatives of the
hierarchy L1 ⊇ L2 ⊇ . . . ⊇ L approximating the local set from outside.
It can be seen that some of the quantum correlations lie outside the L2,
meaning that they are detected as nonlocal from the SDP relaxation at
the second level. The dotted line shows a Bell-like inequality that can be
obtained by the corresponding dual problem.

sary conditions for nonlocality. Nonetheless, we are able to find several
examples in which this method is able to successfully detect nonlocal cor-
relations arising from various relevant states, proving that it is not only
scalable, but also a powerful method despite being a relaxation.

3.3 Applications

The goal of this section is to show that the presented SDP relaxation
can be successfully employed for detection of the nonlocality arising from
a broad range of quantum states. We focus particularly on exploring
the efficient scaling of the method in terms of number of particles. To
generate the SDP relaxations, we use the software Ncpol2sdpa [Wit15],
and we solve the SDPs with Mosek [Mos].
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We collect evidence that, from a computational point of view, the
main limiting factor of the technique is not time but the amount of mem-
ory required to store the moment matrix. Indeed, the longest time that
is taken to run one of the codes amounts to approximately 9 h 2. Despite
the memory limitation, the SDP technique allows us to consider multipar-
tite scenarios that cannot be dealt with in the standard linear program
approach to check locality. Indeed, for the scenarios with m = 2, 3, we
are able to detect nonlocality for systems of up to N = 29 and N = 15
respectively, thus overcoming the current limits of [GGH+14].

In the following sections, we list the examples of states we consider.
Given that we study cases with dichotomic measurements only, we present
them in the expectation value form {M (i)

xi }.

3.3.1 W state

As a first case, we analyse the Dicke state with a single excitation, also
known as the W state (2.31). Let us consider the simplest scenario of
m = 2 dichotomic measurements per party, where each observer performs
the same two measurements; that is, M (i)

0 = X and M (i)
1 = Z for all i =

1, . . ., N . We are able to show that the obtained probability distribution
is detected as nonlocal at level L2 for N ≤ 29. We recall that in this
scenario the complexity of this test scales as O(N4), in terms of both
elements to assign in the moment matrix and measurements to implement
experimentally.

We also study the robustness of our technique to white noise,

ρN (p) = (1− p)|WN 〉〈WN |+ p
1N

2N
(3.9)

where 0 ≤ p ≤ 1 and 1N represents the identity operator acting on the
space of N qubits. We estimate numerically the maximal value of p,
referred to as pmax, for which the given correlations are still nonlocal
according to the SDP criterion. Figure 3.2 reports the resulting values
as a function of the number of parties. While the robustness to noise de-
creases with the number of parties, the method tolerates realistic amounts
of noise, always larger than 6%, for all the tested configurations.

Finally, in order to study the robustness of the proposed test with
respect to the choice of measurements, we also consider a situation where
the parties are not able to fully align their measurements and choose
randomly two orthogonal measurements [WLB11]. More precisely, we
assume that M (i)

0 = ~x
(i)
0 · ~σ and M (i)

1 = ~x
(i)
1 · ~σ, where ~σ = (X,Y, Z) and

2The code used is available under an open source license at https://github.com/
FlavioBaccari/Hierarchy-for-nonlocality-detection

https://github.com/FlavioBaccari/Hierarchy-for-nonlocality-detection
https://github.com/FlavioBaccari/Hierarchy-for-nonlocality-detection
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Figure 3.2: Robustness of nonlocality to white noise in the case of the W
state, reported as a function of N .

~x
(i)
0 , ~x

(i)
1 are vectors chosen uniformly at random, with the only constraint

of being orthogonal; namely ~x(i)
0 ·~x

(i)
1 = 0 for all i = 1, . . ., N . We calculate

numerically the probability pNL for the corresponding correlations to be
detected as nonlocal at the second level of the relaxation. To estimate
pNL, we compute the fraction NNL/Nr of NNL nonlocal distributions
obtained over a total of Nr = 1000 rounds. The corresponding results
are reported in the following table as a function of N .

N pNL N pNL
3 50.2 % 7 21.0 %
4 44.4 % 8 12.8 %
5 38.4 % 9 6.3 %
6 28.8 % 10 2.7 %

The results for random measurements also exemplify one of the ad-
vantages of our approach with respect to previous entanglement detection
schemes. Given some observed correlations, our test can be run and it
sometimes detects whether the correlations are nonlocal and therefore
come from an entangled state. To our understanding, reaching similar
conclusions using entanglement witnesses or other entanglement criteria
is much harder, as they require solving optimisation problems involving
N -qubit mixed states.
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Figure 3.3: Robustness of nonlocality to white noise in the case of the
GHZ state and 2 dichotomic measurements per party, reported as a
function of N .

3.3.2 GHZ state

Another well-studied multipartite state is the GHZ state (2.30). Contrar-
ily to the W state, such a state is not suited for detection of nonlocality
with few-body correlations because all the k-body distributions arising
from measurements on (2.30) are the same as those obtained by measur-
ing the separable mixed state 1

2(|0〉〈0|⊗k + |1〉〈1|⊗k). Therefore, in order
to apply our nonlocality detection method to the GHZ state we need to
involve at least one full-body term.

The solutions we present are inspired by the self-testing scheme for
graph states introduced in [McK11]: the first scenario involves m = 3

dichotomic measurements per party; namely M
(i)
0 = X, M (i)

1 = D =
1√
2
(X+Z) andM (i)

2 = Z for all i = 1, . . ., N . To introduce full-body cor-

relators in the SDP we define the set Omix = {O2, 〈M (1)
0 M

(2)
0 . . .M

(N)
0 〉,

〈M (1)
1 M

(2)
0 . . .M

(N)
0 〉}. The moment matrix corresponding to such set

represents a mixed level of the relaxation, containing also two full-body
correlators in the entries. However, since the number of added columns
and rows is fixed to 2 for any N , this level is basically equivalent to level
L2. Therefore, we preserve the efficient O(N4) scaling with the num-
ber of parties of elements in the moment matrix and measurements to
implement.

By numerically solving the SDP associated to this mixed level of the
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hierarchy we are able to confirm nonlocality of the correlations arising
from the GHZ state and the given measurement for up toN ≤ 15 parties.
Moreover, we check that the number of full-body values that is necessary
to assign is constant for any of the considered N , coinciding with the
two correlators 〈M (1)

0 M
(2)
0 . . .M

(N)
0 〉 and 〈M (1)

1 M
(2)
0 . . .M

(N)
0 〉 . Lastly, we

estimate that the robustness to noise in this case does not depend on N
and it amounts to pmax ≈ 0.17.

As a second scenario, we also notice that one can produce nonlocal
correlations from the GHZ at the level Omix by considering m = 2

measurement choices only. Indeed, if ones considersM (i)
0 = X,M (i)

1 = D,
the resulting correlations are detected as nonlocal for any N ≤ 28 (the
fact that we are not able to reach N = 29 is due to the mixed level of the
relaxations, which results in a bigger matrix compared the scenario for
the W state). Figure 3.3 shows the corresponding robustness to noise,
computed in the same way as for the W state. For both configurations,
the noise robustness of our scheme in detecting GHZ states seems to
saturate for large N even if the computational (and experimental) effort
scales polynomially.

3.3.3 Graph states

Graph states constitute another important family of multipartite entan-
gled states (cfr. Section 2.2.4). Recall that GHZ state is also a graph
state, associated to the so-called star graph. However, due to its partic-
ular relevance in quantum information theory, we prefer to treat its case
in the previous section. Here we consider some other exemplary graph
states such as the 1D and 2D cluster states and the loop graph state
illustrated in Figure 3.4. Inspired by the self-testing scheme in [McK11],
we consider that each party applies three measurements given by X,Z
and D. We are able to detect nonlocality in the obtained correlations at
level L2 for states involving up to N = 15 qubits. Again, the method at
this level scales as N4.

Interestingly, our approach for the detection of nonlocal correlations
generated by graph states shows to be qualitatively different from McK-
ague’s scheme in [McK11]. While the latter requires correlators of an
order that depends on the connectivity of the graph (namely, equal to 1
plus the maximal number of neighbours that each vertex has), our method
seems - at least in some cases - to be independent of it. Indeed, we are
able to detect nonlocality with four-body correlators in 2D cluster states,
whose connectivity would imply five-body correlators for the self-testing
scheme.
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Figure 3.4: Representatives of the graphs associated to the classes of
states that have been studied with the SDP method: a) Linear graph
states. b) Loop graph states. c) 2D cluster states.

3.3.4 Explicit Bell inequalities

Another nice property of our nonlocality criterion comes from the fact
that, as it can be put in a SDP form, it immediately provides a method
to find experimentally friendly Bell inequalities involving a subset of all
possible measurements. In fact, it turns out that the the SDP proposed
in Sec. 3.2.1 has a dual formulation that can be interpreted as the op-
timisation of a linear function of the correlations that can be seen as a
Bell-like functional, i.e. a functional that has a nontrivial bound for all
correlations in Lk [NPA08] (see Appendix A.1 for details). Thus, if a
set of correlations is found to be nonlocal, then the solution of the SDP
provides a Bell inequality that is satisfied by correlations in Lν and that
is violated by the tested correlations. Importantly, this Bell inequality
can further be used to test other sets of correlations.

By using the two sets of correlations obtained by measuring 3 di-
chotomic observables per party in the GHZ state we are able to find the
following Bell inequality:

I3
mix =

N∑

i=2

〈M (1)
1 M

(i)
2 〉 −

N∑

i=2

〈M (1)
0 M

(i)
2 〉+ (N − 1)〈M (1)

0 M
(2)
0 . . .M

(N)
0 〉

+ (N − 1)〈M (1)
1 M

(2)
0 . . .M

(N)
0 〉 ≤ 2(N − 1) (3.10)
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Numerically, we could certify the validity of this inequality for up
to N ≤ 15. Moreover, in principle the bound of βC = 2(N − 1) is only
guaranteed to be satisfied by correlations in Lmix. However, motivated by
the obtained numerical insight, we could prove that this bound actually
coincides with the true local bound, and therefore, (3.10) is a valid Bell
inequality for all N (for all the analytical proofs regarding this section,
see Appendix A.1). This shows that, at least in this instance, the Lmix
defined by the SDP relaxation associated to Omix is tight to the local set.

It is also easy to show that (3.10) is violated by the GHZ state and
the previously introduced choice of measurements. In particular, the
value reached is I3

GHZ = (1 +
√

2)(N − 1) for any N . Given that both
the local bound and the violation scale linearly with N , the robustness
of nonlocality to white noise is constant and amounts to pmax =

√
2−1√
2+1
≈

0.174. We note that this results is in agreement with what is achieved
numerically with the SDP for up to N = 15.

Similarly, we also find the following Bell inequality by using the set
of correlations involving only two measurements per party described for
the GHZ state:

I2
mix =

N∑

i=2

〈M (1)
1 M

(i)
1 〉 −

N∑

i=2

〈M (1)
0 M

(i)
1 〉+ (N − 1)〈M (1)

0 M
(2)
0 . . .M

(N)
0 〉

+ (N − 1)〈M (1)
1 M

(2)
0 . . .M

(N)
0 〉 ≤ 2(N − 1) (3.11)

Once more, although this inequality is found numerically for up toN ≤ 28
we prove that it is valid for any N . Moreover the bound βC = 2(N−1) is
not only valid for correlation in Lmix but for any local set of correlations.
The GHZ state and the given measurements result in a violation of
I2
GHZ = 3+

√
2

2 . Given that in this case the relative violation is lower, we
also have a lower robustness to noise, coinciding with pmax =

√
2−1√
2+3
≈ 0.09

for any N . We notice that this value is different from the ones reported in
Figure 3.3. The reason is that, to derive inequality (3.11) from the dual,
we restrict to assigning only the values of the two-body correlations and
the two full-body ones. On the other hand, the results in Figure 3.3 also
take into account the assignment of the three- and four-body correlators,
showing that this additional knowledge helps in improving the robustness
to noise.

As a final remark, we stress that the measurement settings considered
to derive an inequality from the dual might not be the optimal ones.
For instance, we are able to identify different measurement choices for
the case of (3.11) that lead to a higher violation of such an inequality,



62 Efficient DI Multipartite Entanglement Detection

hence resulting also in a better robustness to noise (see Appendix A.1 for
details).

3.4 Discussion

In this Chapter we introduced a technique for efficient device-independent
entanglement detection for multipartite quantum systems. It relies on a
hierarchy of necessary conditions for nonlocality in the observed correla-
tions. By focusing on the second level of the hierarchy, we consider a test
that requires knowledge of up to four-body correlators only. We show that
it can be successfully applied to detect entanglement of many physically
relevant states, such as the W , the GHZ and the graph states. Besides
being suitable for experimental implementation, our technique also has
an efficient scaling in terms of computational requirements, given that
the number of variables involved grows polynomially with N . This al-
lows us to overcome the limitation of the currently known methods and
to detect entanglement for states of up to few tens of particles. Moreover,
the proposed technique has a completely general approach and it can be
applied to any set of observed correlations. This makes it particularly
relevant for the detection of new classes of multipartite entangled states.

We note that our techniques can also be used as a semidefinite con-
straints to impose locality. Consider, for instance, a linear function f of
the observed correlations. One could find an upper bound on the value of
this function over local correlations by maximising it under the constraint
that the moment matrix Γ is positive semidefinite. A particular example
could be to take f to be a Bell polynomial. Thus this approach would
find a bound f ≤ βC satisfied by all local correlations.

As a future question in this direction, it would be interesting to study
how accurate is the approximation of the local set of correlations provided
by the second level of the hierarchy. In some of the scenario that we
consider the approximation is actually tight, but this is not generally the
case. A possible approach could be to compare the local bound of some
known Bell inequalities with that resulting from the hierarchy.

Furthermore, we notice that the second level of the hierarchy also
has an efficient scaling with the number of measurements performed by
the parties. This would allow us to inquire whether an increasing num-
ber of measurement choices can provide an advantage for entanglement
detection in multipartite systems.

Lastly, we believe that the present techniques can be readily applied in
current state-of-the-art experiments. For instance, experiments composed
by up to 7 ions have demonstrated nonlocality using an exponentially
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increasing number of full correlators [LZJ+14]. Moreover, recent exper-
iments have produced GHZ-like states in systems composed by 14 ions
[MSB+11] and 10 photons [WCL+16, CLY+17] with visibilities within
the range required to observe a violation of the Bell inequalities presented
here. We notice, however, that the measurements required to certify the
presence of nonlocal correlations using our approach are different from
the ones reported in these works.
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Chapter 4

Detecting nonlocality depth
in many-body systems

In this Chapter we address the question of quantifying the number of
particles genuinely sharing nonlocal correlations in a multipartite sys-
tem with the knowledge of two-body correlators only. More precisely, we
adapt the techniques introduced in [TAS+14] to the problem of detection
of nonlocality depth. These techniques are particularly relevant because
they opened the way for the experimental detection of nonlocal correla-
tions with trusted collective measurements in many-body systems such as
Bose-Einstein condensates or thermal ensembles composed of thousands
of particles [SBA+16, EKHK17].

We introduce a general framework allowing to derive Bell-like inequal-
ities for nonlocality depth from symmetric two-body correlators. We
characterize all such Bell-like inequalities for a finite number of parties
and we show that they reveal Bell correlation depth k ≤ 6 in arbitrarily
large systems. We then show how Bell correlation depth can be esti-
mated using quantities that are within reach in current experiments. On
one hand, we use the standard multipartite Bell inequalities such the
Mermin and Svetlichny ones to derive Bell correlations witnesses of any
depth that involve only two collective measurements, one of which being
the parity measurement. On the other hand, we show that our two-
body Bell inequalities can be turned into witnesses of depth k ≤ 6 that
require measuring total spin components in certain directions. Interest-
ingly, such a witness is violated by existing data from an ensemble of
480 atoms. The results of this Chapter are based on the original work
published in [BTF+18].
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4.1 Introduction

As argued in Section 2.3.1, local measurements on composite quantum
systems may lead to nonlocal correlations that cannot be explained by any
local realistic theory such as classical physics. More importantly, in recent
years it has been understood that nonlocality is a powerful resource for
device-independent applications that have no classical analogue, with the
most prominent examples being device-independent quantum key distri-
bution, device-independent entanglement detection, generation and am-
plification of randomness or self-testing.

However, to be able to fully exploit nonlocality as a resource, one first
needs efficient methods to detect it in the composite quantum systems
that can exhibit it. Since these systems can produce nonlocality upon
measurement, i.e. statistics violating a Bell inequality, we say that their
state is Bell correlated. Bell inequalities are naturally the most com-
mon tool of revealing both nonlocal statistics and Bell correlated states.
Considerable amount of effort has been devoted to introduce various con-
structions of Bell inequalities. Still, the problem of nonlocality detection
is much less advanced in the multipartite case than in the bipartite one.
There are two main reasons for that: (i) the mathematical complexity of
finding all Bell inequalities grows double exponentially with the number
of parties, (ii) the experimental verification of nonlocality is much more
demanding in the multipartite case, since individual settings assignment
for each party is needed to test a Bell inequality. Moreover, most of the
known multipartite Bell inequalities involve a large number of full-body
correlation measurements and are thus difficult to estimate experimen-
tally (see Ref. [WW01, ZB02]). Therefore, such inequalities are not suited
to detect nonlocal correlations in many-body systems in which only a few
collective measurements can be applied and one typically has access only
to two-body correlations.

One of the ways to tackle these difficulties in the multipartite case is
to consider Bell inequality involving only two-body correlators [TAS+14].
This reduces the mathematical complexity of the problem and allows
one to demonstrate that these inequalities are powerful enough to reveal
nonlocality in composite quantum systems with an arbitrary number of
particles [TAS+15, TSV+14, WSF+17]. Moreover, these inequalities can
be used to derive Bell correlation witnesses expressed in terms of just
low order moments of a small number of collective spin measurements,
which are routinely measured in certain many-body quantum systems (see
Refs. [HSP10, ERIR+08]). This makes these witnesses very practical and
allowed for testing them in two experiments recently reporting on Bell
correlations in many-body states consisting of 480 atoms [SBA+16] in a
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Bose-Einstein condensate and 5 · 105 particles [EKHK17] in a thermal
ensemble.

However, the violation of these Bell inequalities and the corresponding
witnesses only signals the presence of some kind of Bell correlations. In
fact, it is unable to provide information regarding how many particles
share genuine Bell correlations. This naturally raises the question of how
to reveal the depth of non-locality in many-body systems. At first sight,
the problem is challenging. Known Bell inequalities for genuine non-
locality not only use expectation values involving all parties, they also
require the ability to perform a different measurement on each party.
Furthermore, the number of measurement settings scales exponentially
with the number of parties.

The main aim of this Chapter is to address this question. We first
introduce a general framework to study the problem of revealing the non-
locality depth in multi-partite systems using two-body correlations only,
hence guaranteeing that no high-order moment will be necessary at the
level of the witness. The problem of detection of genuine nonlocality in
this context is fully characterised for a relatively small number of parties,
providing lists of Bell-like inequalities that do the job. Moreover, we
give a Bell-like inequality detecting the nonlocality depth from 1 to 7
for any number of parties. We then turn to the question of witnessing
Bell correlations depth in many-body systems. First, building on the
Mermin and Svetlichny inequalities [Mer90, Sve87], we show that the
nonlocality depth of any multipartite system can be tested via a Bell
correlation witness, using only two trusted collective measurements. This
gives access to genuine Bell correlations in many-body systems where one
high-order measurement can be performed. Lastly, we derive witnesses
corresponding to the two-body Bell inequalities we found and we apply
them to detect the Bell correlations depth of a Bose-Einstein condensate
with 480 atoms.

4.2 General framework and main results

The main objective of this Chapter is to provide efficient tools to assess
the nonlocality depth of multipartite systems. In the following, we restrict
the study to the (N, 2, 2) Bell scenario, namely the case of N observers
performing each two local measurements with dichotomic outputs (see
Section 2.3.1 for more details). As we explained in Section 2.3.3, to
study nonlocality depth in full generality one needs to characterise the
polytopes of k-producible correlations, denoted PN,k, for any number of
particles N and nonlocality depth k. However, to successfully address
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this problem, one needs to overcome two major obstacles.
First, despite the general form of the vertices of PN,k (cfr. Equation

(2.47)), constructing them in practice requires previous knowledge about
all the vertices of the no-signaling polytopes NSp for p ≤ k, whose de-
termination is already a formidable task. Indeed, while the facets of the
no-signaling polytopes are easy to enumerate for any number of particles,
recall that its complete list of vertices has been derived only in the sim-
plest scenarios of N = 2, 3 [PBS11]. It should also be mentioned that in
[Fri12] a polyhedral duality between Bell inequalities and the vertices of
the nonsignaling polytope in the (N, 2, 2) scenario was established, thus
proving that finding all vertices of NSp is equivalent to find all tight Bell
inequalities in Pp. The difficulty in finding all Bell inequalities in a given
scenario was already observed by Pitowsky in 1989 [Pit89], and it was
later proven to be NP-hard even in a bipartite setting [BFL91].

Second, suppose one could actually list all the extremal points of PN,k.
The size of this list would grow exponentially as a function of N : simply
consider the Lk-partition consisting of the maximal amount of subsets of
size k (plus a smaller subset if k does not divide N). Then, by denoting
vk the number of vertices of NSk, we see from (2.47) that the number
of vertices of PN,k will grow as O(v

bN/kc
k ). This exponential growth with

N already renders any effort to derive a complete list of Bell inequalities
for nonlocality depth for large values of N futile.

To overcome these difficulties, we restrict our analysis to the scenario
of symmetric two-body correlations, firstly introduced in [TAS+14]. That
is, instead of working with the full probability distribution
p(a1, . . . , aN |x1, . . . , xN ), we imagine that the only accessible information
consists of the following one- and two-body expectation values

〈M (i)
x 〉, 〈M (i)

x M (j)
y 〉 (4.1)

with i 6= j = 1, . . . , N and x, y = 0, 1 (cfr. Equation (2.43)). Such an
assumption is particularly relevant for experimental applications, since
those quantities can be efficiently estimated with just a polynomial amount
of measurements. In addition, this allows us to answer a fundamental
question: whether two-body correlators; i.e., the minimal amount of in-
formation needed to detect nonlocality in a quantum system, are enough
to reveal nonlocality depth in a multipartite system. Moreover, we look
for Bell inequalities that are invariant under an exchange of any pair of
parties, meaning that they are function of the symmetrised quantities

Sx :=

N∑

i=1

〈M (i)
x 〉, Sxy :=

N∑

i,j=1
i 6=j

〈M (i)
x M (j)

y 〉 (4.2)
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with x, y = 0, 1. Mathematically, this implies that instead of studying
the full PN,k polytope, we want to characterise its projection P2,S

N,k onto
the lower-dimensional space of symmetric one- and two-body correlators,
spanned by the five quantities (4.2).

Therefore, we look for a complete characterisation of the symmet-
ric two-body Bell inequalities that detect nonlocality depth, whose most
general form is

I := αS0 + βS1 +
γ

2
S00 + δS01 +

ε

2
S11 + βk ≥ 0, (4.3)

with
βk = −min

P2,S
N,k

I, (4.4)

where the minimum is taken over all correlations belonging to P2,S
N,k.

Recall that the case of k = 1 recovers the study of the local polytope,
whose complete list of Bell inequalities is unknown already for N ≥ 4.
Interestingly, it turns out that restricting to its symmetric two-body pro-
jection dramatically simplifies the problem, as was extensively shown in
[TAS+14, TAS+15]. More precisely, such a projection makes it possible
to derive all the facets of the local polytope for scenarios with tens of
particles, and also to obtain classes of inequalities valid for any N .

Here we take a step forward and look at the cases corresponding to
k > 1. Remarkably, we see that many simplifications can be carried out
in the generic nonlocality depth case as well. The rest of the Section
is devoted to briefly summarise our results, as well as their applications
to the study of correlations in many-body systems, while leaving the in-
depth presentation to the Sections 4.2, 4.3.2 and 4.5.

Result 1. The vertices of the polytopes P2,S
N,k can be computed efficiently

as functions of the vertices of the projected no-signaling polytopes NS2,S
p

of p ≤ k parties. For a fixed value of k, the number of vertices scales
polynomially with N .

Recall the first obstacle stated above, regarding the complexity of
finding the vertices of NSN for a general N . Our first result implies that,
in order to study nonlocality depth with symmetric two-body correlators,
it is not necessary to find all the vertices of NSN , and it is sufficient to
find the vertices of its projection to the two-body symmetric subspace,
NS2,S

N .
Note, however, that determining the projection of a polytope is not

a simple task, especially if the original polytope is described in terms
of inequalities, which is the case for NSN . The general procedure to
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find such a projection relies on the Fourier-Motzkin elimination method
(see Sec. 2.1.2), which has an exponential scaling with the number of
components that need to be projected out (note that the number of cor-
relators involving more than 2 parties already scales exponentially with
N , therefore yielding an overall doubly-exponential scaling). Indeed, the
NSN polytope is parametrised by the correlators (2.43), and there are
3N − 1 of them, while NS2,S

N is embedded in a five-dimensional space for
any N (cfr. Eq. (4.3)); therefore, applying Fourier-Motzkin is basically
impractical for any N > 2.

Nonetheless, in Section 4.2 we show that the structure of the no-
signaling polytope can be exploited to dramatically reduce the complexity
of the problem. In particular, we divide the projection operation into
two steps: first, the symmetrisation one, which yields the polytope NSS ,
parametrised by the symmetric correlators (4.2) of any order; second, the
projection onto the two-body space NS2,S , which consists in removing
all the symmetric correlators of order higher than two. By following this
procedure, we arrive at our second result, which is the technical key point
of this work:

Result 2. The facets of the NSSN polytopes can be efficiently obtained for
any N . Then, the projection operation to get the desired NS2,S

N polytopes
involve projecting out a number of components that scales only as O(N2).

Combining the two results, we are able to make several advancements
in the problem of detecting nonlocality depth in multipartite systems.
Thanks to Result 2, we are able to obtain the complete list of vertices
of the NS2,S

N polytopes for up to N = 6 parties. This allows us to
characterise the vertices of the polytopes of k-producible correlations of
a nonlocality depth of k ≤ 6. Because of the exponential reduction with
respect to Result 1, it is then possible to obtain all the Bell inequalities
detecting such nonlocality depths for systems of N ≤ 15 particles. In
Section 4.3.2 we present the main findings regarding those inequalities,
among others the possibility of efficiently detecting GMNL up to 7 parties.

Moreover, we study a class of Bell inequalities, valid for any N , whose
k-producible bound βk varies with k and is violated by quantum corre-
lations for sufficiently large N if k ≤ 6. This leads to our third result,
namely:

Result 3. Nonlocality depth, for values of at least k ≤ 6, can be detected
with symmetric two-body correlators in systems composed of any number
of particles.

Up to now, all the results we have presented are purely device-independent.
Therefore, if one were capable to perform a loophole-free Bell test among
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the involved parties, one would be able to certify the aforementioned non-
locality depth of the correlations being produced. However, two-body
permutationally invariant Bell inequalities have the extra feature that
they can be indirectly measured via trusted collective observables and
second moments thereof [TAS+14]. In Section 4.5 we turn our attention
towards the application of our findings to the study of many-body sys-
tems. Importantly, in such scenario, the only information accessible is
often represented by collective observables, which are enough to estimate
the expectation values of (4.2).

Hence, at the price of introducing an additional assumption on the
measurements performed, one can turn any Bell inequality into a correla-
tion witness [SBA+16]. The violation of such witness can be interpreted
as a detection of a state displaying Bell correlation depth k, i.e. an en-
tangled state capable of producing k-nonlocal correlations.

Notice that thus far Bell correlations witnesses have been studied
only in the context of two-body inequalities detecting standard nonlocal
correlations. We first consider their application to already known full-
body Bell inequalities capable of distinguishing nonlocality depth, such as
the Mermin [Mer90] and Svetlichny inequalities [Sve87]. In Section 4.5.1
we show that, although being composed by an exponentially large number
of terms, such inequalities can be related to witnesses involving only two
collective measurements. The ability to detect the ultimate depth of
nonlocal correlations, GMNL, from collective observables only, comes at
the price that one of these collective observables, however, consists in a
parity measurement, which becomes technologically demanding in large
systems. This motivates us to turn our attention to the two-body Bell
inequalities introduced here. In particular, we connect the class of Bell
inequalities studied in Section 4.3.2 to witnesses related to the squeezing
parameter in a many-body state and we show that

Result 4. Entangled k-nonlocal states, for values of at least k ≤ 6, can
be detected in many-body systems of in principle any number of particles.

To conclude, we apply this witness to already available experimental
data from a Bose-Einstein condensate of few hundreds of atoms. We
devote the rest of the Chapter to present our results in detail.

4.3 Characterising the sets of k-producible cor-
relations with two-body correlators

Our aim in this section is the characterisation of the symmetric two-
body polytopes of k-producible correlations P2,S

N,k. To this end, we also
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determine the vertices of the projections of the no-signaling polytopes
onto two-body symmetric correlations NS2,S

N for small values of N .

4.3.1 Characterisation of the vertices of the k-producible
two-body symmetric polytopes

Here we introduce a general description of all the vertices of the projected
P2,S
N,k polytopes. This description assumes previous knowledge of all the

vertices of the symmetrised p-partite no-signaling polytope NS2,S
p for

each p ≤ k.
Let us introduce the following notation. Let np be the number of

vertices of NS2,S
p , with 1 ≤ p ≤ k. We want to compute the values of

that the correlators (4.2) take in the i-th vertex, with 1 ≤ i ≤ np. Let
~S(p, i) denote the five-dimensional vector

~S(p, i) = (S0(p, i), S1(p, i), S00(p, i), S01(p, i), S11(p, i)) (4.5)

of one- and two-body symmetric expectation values for the i-th vertex
of NS2,S

p . We denote by {~S(p, i)}p,i the list of all such five-dimensional
vectors (4.5).

Each vertex of the two-body symmetric polytope of k-producible cor-
relations P2,S

N,k, can be obtained as a projection of a vertex (2.47) onto the
two-body symmetric subspace (cfr. Sec. 2.1.2). Interestingly, it can be
parametrised by the populations ξp,i with p = 1, . . . , k and i = 1, . . . , np,
representing the number of p-partite subgroups Al in the k-partition of
the set {A1, . . . , AN} (cfr. Sec. 2.3.3) that are adopting the same “strat-
egy" from the list {~S(p, i)}p,i. Indeed, since we are addressing permuta-
tionally invariant quantities, these are insensitive to the assignment of a
strategy to a specific group of parties, hence the only relevant informa-
tion is about the number of parties adopting each given set of correlations
[TAS+14, TAS+15].

Recall that parties are divided into subsets of size at most k, and
each subset of size p chooses one out of np strategies. Therefore, the
populations ξp,i, weighted by p, form a partition of N , that is, ξp,i are
integer numbers satisfying the conditions ξp,i ≥ 0 and

k∑

p=1

np∑

i=1

p ξp,i = N. (4.6)

By running over all populations ξp,i obeying (4.6), one spans the whole
set of vertices of the polytope P2,S

N,k. Moreover, denoting by ~ξ the vector
with components ξp,i, the symmetrised one- and two-body expectation
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Figure 4.1: A possible Lk-partition corresponding to a vertex of P2,S
N,k, for

N = 22, k = 3 and L = 12. Here we have taken a 123-partition consisting
of 5 subsets of size 1, 4 subsets of size 2 and 3 subsets of size 3. Each
of the 5 parties that are alone can choose one out of the n1 = 4 possible
local deterministic strategies. Counting how many particles choose the
i-th strategy, where 1 ≤ i ≤ n1, determines ξ1,i. Each pair of particles
highlighted in yellow can choose one out of the n2 possible vertices of
NS2 and each triplet of particles highlighted in gray can choose one out
of the n3 PR-boxes highlighted in gray. The remaining coordinates of ~ξ
are obtained analogously by counting. See Appendix B.1 for a detailed
explanation on how to obtain the values (4.7) and (4.8) from ~ξ.

values for the vertices of P2,S
N,k can be expressed as

Sx(~ξ) =
k∑

p=1

np∑

i=1

ξp,iSx(p, i) (4.7)

and

Sxy(~ξ) =

k∑

p=1

np∑

i=1

ξp,iSxy(p, i) +

k∑

p=1

np∑

i=1

ξp,i(ξp,i − 1)Sx(p, i)Sy(p, i)

+
∑

{p,i}6={q,j}

ξp,iξq,jSx(p, i)Sy(q, j), (4.8)

where we used the fact that 〈M (i)
x M

(j)
y 〉 = 〈M (i)

x 〉〈M (j)
y 〉 whenever the

parties i and j belong to different groups, and {p, i} 6= {q, j} means that
p 6= q or i 6= j (cfr. Appendix B.1 for the details of the calculation and
Fig. 4.1 for a pictorial representation).
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Hence, from (4.7) and (4.8) we can see that all the vertices of the P2,S
N,k

can be directly computed as a function of the vertices of the projected no-
signaling polytopes. In particular, we now prove that since their number
is entirely encoded in the population vector ~ξ, it grows only as O(Nk).

Let k ≤ N be a constant, np be the number of vertices of NS2,S
p , and

n′ = maxp np. Let us then define

λp = p
∑

i=1,...,np

ξp,i. (4.9)

and group the components of λp into a vector ~λ. Observe that ~λ forms
a partition of N in k elements, where the p-th element is a multiple of
p. Let us denote this fact as ~λ `′k N . For a given p between 1 and k,
we have to choose how many ways there are to partition λp/p into np
possibly empty subsets. This is given by

(
λp/p+ np − 1

np − 1

)
(4.10)

ways. Therefore, the total number of partitions satisfying (4.6) is given
by

∑

~λ`′kN

k∏

p=1

(
λp/p+ np − 1

np − 1

)
. (4.11)

Now we are going to give an upper bound to (4.11) just to show a poly-
nomial scaling in k. Since λp/p ≤ N and np ≤ n′, we have the bound

∑

~λ`′kN

k∏

p=1

(
λp/p+ np − 1

np − 1

)
≤
∑

~λ`′kN

(
N + n′ − 1

n′ − 1

)k

≤
(
N + k − 1

k − 1

)(
N + n′ − 1

n′ − 1

)k
= O(N ζn′k),

(4.12)

where ζ > 1 is some constant. Note that
(
N+k−1
k−1

)
counts the number

of partitions of N into k possibly empty subsets, which is clearly greater
than the number of partitions of N into k possibly empty subsets satis-
fying the extra condition of λp being divisible by p. Since n′ is constant
because k is constant, the overall scaling is polynomial in N .

Therefore, given that the expressions (4.7) and (4.8) allow us to com-
pute efficiently the vertices of the P2,S

N,k, the only remaining difficulty is
to obtain the lists {~S(p, i)}p,i of vertices of the projected no-signaling
polytopes, which we address in Section 4.3.2.
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4.3.2 Projecting the nonsignaling polytopes

In order to generate the vertices of the symmetric two-body polytope
of k-producible correlations P2,S

N,k, we need to know the vertices of the
nonsignaling polytope NSp in the two-body symmetric space for 2 ≤
p ≤ k parties. To this aim, we need to determine its projection NS2,S

p

onto the two-body symmetric space spanned by (4.2) for any p = 2, . . . , k.
As already mentioned, the vertices of NSp for p > 3 are unknown and

difficult to determine. On the contrary, its facets are easy to describe by
the positivity constraints, which in the correlators picture can be stated
as ( cfr. Eq. (2.40) and (2.44) ):

p∑

k=1

∑

1≤i1<...<ik≤p
(−1)

∑k
l=1 ail

〈
M (i1)
xi1

. . .M (ik)
xik

〉
+ 1 ≥ 0, (4.13)

for all the possible outcomes ai1 , . . . , aiN = 0, 1 and measurement choices
x1, . . . , xN = 0, 1.

Recall that the default approach to find the projections NS2,S
p onto

the two-body symmetric space, namely the Fourier-Motzkin procedure
(see Section 2.1.2), becomes impractical already for p = 3, due to ex-
ponential number of components to project out. Nevertheless, in what
follows we show how to overcome this difficulty by making use of the prop-
erties of the NSp set with respect to the projection we are interested to
perform.

To this end, let us denote by V2 the subspace spanned by one- and
two-body expectation values (4.1) and by Vsym the subspace spanned by
the symmetrised correlators of any order:

Sx1...xl =

p∑

i1 6=... 6=il=1

〈
M (i1)
x1 . . .M (il)

xl

〉
(4.14)

with xi = 0, 1 and l = 1, . . . , p. We then define π2, πsym as the linear
projections onto the V2 and Vsym respectively; that is, π2 discards all
correlators that involve more than 2 parties and πsym sums all the per-
mutations of the correlators of a given order. We will use the fact that,
in this notation, the projection we want to compute can be divided into
two intermediate steps as P = π2 ◦ πsym = πsym ◦ π2, where the order in
which the projections π2 and πsym are applied to NSp does not change
the result. In other words, the following diagram is commutative:
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Figure 4.2: A cartoon picture illustrating the cases when projection and
intersection of a polytope with a hyperplane are the same operation (left)
and the generic case in which the intersection of a polytope with a hyper-
plane is strictly contained into its projection onto the same hyperplane
(right).

NSp NS2
p

NSSp NS2,S
p

π2

πsym πsym

π2

This property follows from the fact that each coordinate of NSp partici-
pates solely in one coordinate of NS2,S

p (cfr. Eq. (4.2)).
We therefore choose to perform the projection as P = π2 ◦ πsym, hence

first computing the symmetrised polytope NSSp and then projecting it
onto the two-body space. At this stage is then crucial noting that the
no-signaling set is invariant under parties permutation. We now prove
that this implies a very useful result, namely that the projection of this
set onto Vsym coincides with the intersection between NSp and Vsym, an
idea which we illustrate in Fig. 4.2, i.e.

intsym(NSp) = πsym(NSp). (4.15)

Let us first recall what we mean by the intersection. To do so, consider
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the coordinates

T j1...jlx1...xl
=




p∑

i1 6=... 6=il=1


 〈M (j1)

x1 . . .M (jl)
xl

〉
− Sx1...xl . (4.16)

Taken together with the symmetrised S, these correlators provide an
over-complete parametrisation of the no-signaling probability space: any
correlator 〈M (j1)

x1 . . .M
(jl)
xl

〉
can be recovered from the corresponding T

and S variables. Moreover, these coordinates conveniently identify the
subspaces that we are interested in: the symmetric subspace is spanned
by the S variables, while its orthogonal complement by the T variables.
In other words, all correlations in the symmetric subspace have all T
components equal to zero (however, the variables themselves before pro-
jection need not to be zero). Moreover, the one- and two-body space has
all S and T parameters equal to 0 for l > 2.

Using the above notation, we define intsym(NSp) as the set that con-
tains all no-signaling correlations for which all the variables T j1...jlx1...xl = 0
(cfr. Section 2.1.2 for a more formal introduction to projection and inter-
section). Now, if a vertex v of NSp (which may have both non-zero S and
T components) leads to an extremal vertex after projection onto Vsym,
then all images vα = τα(v) of v under the party permutations {τα}α are
also in NSp, and lead to the same point in Vsym after projection. This
follows directly from the invariance of NSp under party permutations.
Then, the convex combination of these points v ∝ ∑α vα also gives rise
to the same extremal point in Vsym. However, a direct computation shows
that the point v already belongs to the symmetric subspace, because all
of its T variables are zero. Hence, all extremal points of the projection
of NSp onto the symmetric subspace belong to the intersection of the
no-signaling polytope with the symmetric subspace, and we can replace
the projection operation πsym by the intersection.

The main advantage of this approach is that the facets of the in-
tersection of a polytope can be efficiently computed from the facets of
the original one. Therefore, we only need to apply the Fourier-Motzkin
method to perform the projection of NSSp onto the two-body space V2.
In this case the number of variables to discard does not grow exponen-
tially with N . Indeed, the number of symmetric correlators Sx1...xl with
xj = 0, 1 and l = 1, . . . , p scales as (1/2)(p + 1)(p + 2) − 1 and, since
one has to discard all the terms with l > 2, we need to eliminate only
(1/2)(p+ 1)(p+ 2)− 6 ≈ O(p2) terms.

This simplification allows us to obtain the complete list of vertices
of the NS2,S

N polytopes for N ≤ 6 particles, thus improving significantly
over the already known results. For the N = 2, 3, 4 cases the lists of
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vertices are presented in Tables B.2–B.4 in Appendix B.1, whereas in
the case N = 5, 6 the list contains more than a hundred vertices and
therefore we could not present it here. In the next section we implement
these findings to construct Bell-like inequalities detecting k-nonlocality
in multipartite correlations.

4.4 Bell-like inequalities for nonlocality depth from
two-body correlations

We are now ready to demonstrate that two-body Bell-like inequalities
are capable of witnessing nonlocality depth in multipartite correlations.
First of all, we remind that, by following the procedure given in Section
4.3.1, we are able to construct the list of vertices of the k-nonlocal two-
body symmetric polytopes for any number of parties N and producibility
k ≤ 6. By solving the convex hull problem, such lists allow us to derive
the corresponding complete set of facets of the k-nonlocal polytopes (cfr.
Section 2.1.1). To do so, we use the dual description method software
CDD [Fuk97], and, thanks to both the low dimension of the space and
the polynomial scaling of the k-producible vertices, we are able to do that
for scenarios involving up to N = 15 parties.

In particular, since these inequalities can test against k-producibility
with k ≤ 6, we can identify all the symmetric two-body inequalities that
detect genuine multipartite nonlocality (GMNL) for systems of N ≤ 7
particles (see Appendix B.5 for the complete lists). Interestingly, we find
that no inequality of such kind can be violated by quantum mechanics
in the tripartite case. That is, symmetric two-body correlations provide
not enough information to detect GMNL in three-partite quantum states.
This is no longer the case for four parties; indeed, the following facet

I4
GMNL := −12S0 + 9S1 + 3S00 − 6S01 +

1

2
S11 + 42 ≥ 0 (4.17)

detects GMNL and is violated by quantum mechanics with a ratio (βQ−
β3)/β3 of at least 1.3%, where βQ is the maximal quantum value of the
corresponding Bell expression.

Interestingly, our lists of inequalities sometimes contain also the Bell
expressions introduced already in [TAS+14, TAS+15], thus showing that
such classes are actually capable of detecting a nonlocality depth higher
than two. In particular, we can find inequalities that test against any
k-producibility for k ≤ 5 that belong to the class (91) introduced in Ref.
[TAS+15]. This class is particularly interesting since it was shown to
be violated by Dicke states. Moreover, among the facets of the GMNL
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Figure 4.3: Plot of the quantum violation (βQ − β1)/2N (black line) of
the inequality (4.19) obtainable by following the procedure in [TAS+15].
The violation is compared with the - appropriately rescaled - k-producible
bounds (βk − β1)/2N for the same inequality (coloured lines) for values
k = 4, 5, 6. Recall that the bounds for k ≤ 3 coincide with the local one,
hence they are not shown in the plot.

polytope for N = 5, we find the following inequality

IW = 28S0 + 28S1 + 2S00 + 9S01 + 2S11 + 116 ≥ 0, (4.18)

which has a very similar structure to class (91) of Ref. [TAS+15]. Indeed,
it can be shown that it is possible to violate such inequality with the five-
partite Dicke state with one excitation, also known as the W state.

Lastly, we notice that the Bell expression (6) from Ref. [TAS+14],
which for the sake of completeness we state here as,

I := 2S0 +
1

2
S00 + S01 +

1

2
S11 (4.19)

appears in our lists sometimes as well, with a classical bound that clearly
depends on degree of nonlocality depth that one is interested to detect.
This is a particularly useful feature, since it implies that by the use of
a single inequality one can infer the nonlocality depth by the amount
of the quantum violation that is observed. Due to this property and
also its relevance for experimental implementation (see Refs. [SBA+16,
EKHK17]), we focus on this last inequality and determine its βk for
k = 2, . . . , 6 and any number of parties (see Appendix B.1 for the details
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of the calculations). In particular, we first obtain that for the simplest
cases of k = 2, 3, the k-producible bound coincides with the local, i.e.
βk = 2N , meaning that the violation of such inequality actually detects
already a nonlocality depth of at least 4. Then, for the higher values of
k, we are able show that the bound takes the following simple form

βk = 2N +
1

2
+ αkN. (4.20)

where the parameter αk encodes the dependence on the nonlocality depth.
More explicitly, we obtain α4 = 2/49, α5 = 8/121 and α6 = 1/12.

After having introduced k-producible bounds for inequality (4.19), it
is important to show that they can be used in practice to witness the
nonlocality depth that could be displayed by quantum states. First of
all, we have to show that the different bounds βk can be violated by
correlations obtained by properly choosing a quantum state and some
local measurements. This can be done in a scalable way by following the
procedure in [TAS+14] and constructing the permutationally invariant
Bell operator corresponding to the expression (4.19). Notice that to do so
we assume for simplicity that each party performs the same measurements

M
(i)
0 = cos(θ)Zi + sin(θ)Xi, M

(i)
1 = cos(φ)Zi + sin(φ)Xi, (4.21)

where θ, φ ∈ [0, 2π), and X and Z are the standard Pauli matrices.
Then, by computing the minimal eigenvalue of the resulting Bell op-
erator B(θ, φ) and optimizing over the choice of angles, one obtains the
maximal quantum violation of (4.19) attainable with same measurements
settings on each site. By performing these numerical checks, whose re-
sults are compared in Figure 4.3, it is possible to show that the bound
βk for k ≤ 3 starts being violated for N = 5 parties, while for the higher
cases k = 4, 5 the violation appears from N = 9 and N = 11 respectively.
Moreover, if we take into account the analytical class of states introduced
in Ref. [TAS+15] (cfr. Section 5.2), we can show that for a high enough
number of parties it violates all the bounds that we have just derived.
Indeed, let us recall that this class of states can achieve a relative viola-
tion (βQ − β1)/β1 of (4.19) that tends to −1/4 when N →∞. By using
this result, it is easy to show that βQ exceeds βk for any k ≤ 6, at least in
the asymptotic limit, confirming the numerical evidence shown in Figure
4.3. To conclude, in the following Section we also present how to apply
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our results to an experimental setting.

4.5 Experimental witnessing of k-body Bell cor-
relations

The inequalities introduced in the previous sections provide efficient tools
to study the nonlocality depth of correlations produced by multipartite
states. In fact, being based on two-body correlations only, they require
at most performing O(N2) measurements. This makes these inequalities
particularly amenable for currently available photonic and atomic systems
composed of few tens of particles [WLH+18a, SXL+17, FMM+18].

Moreover, as already noticed in [TAS+14, SBA+16], the symmetrised
one- and two-body correlators (4.2) can be estimated by means of collec-
tive measurements. Recall, however, that this connection can be estab-
lished only if one makes the additional assumption that the measurements
performed locally correspond indeed to spin projections along some di-
rection. Although not providing a fully device-independent test, inequal-
ities of the form (4.3) can still be turned into witnesses that quantify
the amount of Bell correlations exhibited by a many-body system. More
precisely, violating such witnesses has to be interpreted as a detection
of Bell correlations depth in the state. In other words, they constitute
Bell correlations witnesses for depth k that certify the presence of an en-
tangled state that could display nonlocal correlations of depth k + 1, if
the single particles were brought far apart from each other and addressed
separately.

In the following subsections, we study in more detail the available
methods to quantify Bell correlations depth in a many-body state. First
of all, we derive the witness corresponding to already known full-body in-
equalities capable of detecting nonlocality depth, such as the Mermin and
Svetlichny Bell inequalities. Interestingly, we show that such a witness
can actually be estimated by collective spin measurements along two di-
rections only, although requiring a parity measurement that becomes too
demanding for large systems. This shows how the two-body Bell inequal-
ities introduced in this Chapter can provide a real advantage in terms of
experimental feasibility. In order to exemplify such advantage, we derive
the witness associated to inequality (4.19) and, by making use of already
available data, show how it can be applied to detect Bell correlations
depth in a BEC composed of hundreds of particles.
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4.5.1 Witnessing genuine non-locality from Svetlichny and
Mermin inequalities

The Mermin and Svetlichny Bell expressions are known to be suitable for
the detection of non-locality depth in multipartite systems [BBGP09].
They thus suit very well our investigations. We here show the form of
the corresponding witnesses for non-locality depth. Let us begin with the
Svetlichny Bell expressions written in the following form [BBS+13]:

ISvet
N = 2−N/2


 ∑

x|s=0 (mod 2)

(−1)s/2Ex +
∑

x|s=1 (mod 2)

(−1)(s−1)/2Ex


 ,

(4.22)
where s =

∑
i xi is the sum of all parties’ settings (recall that xi ∈ {0, 1}),

x|s = i (mod 2) means that the summation is over those x’s for which s
is even for i = 0 or odd for i = 1, and, finally,

Ex =
〈
M (1)
x1 . . .M

(N)
xN

〉
(4.23)

is a short-hand notation for an N -partite correlator. Using the same
notation, we also introduce the Mermin Bell expression [Mer90], namely

IMermin
N = 2−(N−1)/2


 ∑

x|s=0 (mod 2)

(−1)s/2Ex


 , (4.24)

For both the above inequalities, the k-producible bounds βk can be ex-
plicitly computed and they can be used to reveal different nonlocality
depth from observed correlations (cfr. Appendix B.3.3 for more details).
In particular, the (N−1)-nonlocal bound is always smaller than the max-
imal quantum violation βQ, meaning that these inequalities can detect
genuine multipartite nonlocality for any number of particles. The draw-
back is that the sums in Eq. (4.22) and (4.24) involve 2N terms in total.
This makes the Svetlichny and Mermin inequalities very difficult to test
in systems with a large number of parties. Nevertheless, in the following
we show that if one is willing to assume that the measurements are well
calibrated spin projections, then one can derive a witness that involves
only collective measurement in two directions.

First of all, let us compute the Bell operators corresponding to (4.22)
and (4.24) when one sets the measurement to be the ones leading to the
maximal quantum violation. Interestingly, both inequalities lead to the
same operator, namely

BSvetlichny
N = BMermin

N = 2(N−1)/2
(
|0〉〈1|⊗N + |1〉〈0|⊗N

)
. (4.25)
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We can thus derive a common witness with which the nonlocality depth
of any multipartite system can be evaluated. In particular, one can prove
that the above operator can be bounded in the following way

BSvet
N ≥

√
2
N−1 [

X1 . . . XN + 4J2
z −N2

1
]
,

where we have defined the collective spin operator Jz =
∑N

i=1 Zi. Com-
bining the k-nonlocal bounds of the Svetlichny and Mermin Bell expres-
sions then allows us to write the following witness of Bell correlations
depth:

〈BN 〉 =
√

2
N−1 〈

X1 . . . XN + 4J2
z −N2

1
〉
≤ 2(N−dN

k
e)/2. (4.26)

Ineq. (4.26) shows that two settings are enough to conclude about the
Bell correlation depth of a given state, that is, to test the capability of
a state to violate a Svetlichny/Mermin bound for k-nonlocality. This
provides a way to detect various depths of Bell correlations with just
two measurement settings and no individual addressing of the parties. In
particular, since the GHZ state (2.30) saturates all the inequalities we
used in this section, the operator BN is able to detect that GHZ states
are genuinely Bell correlated.

Still, this scheme involves one parity measurement: the N -body term
in the x direction. It is worth noticing that the evaluation of this term
does not require an estimation of all the moment of the spin operator
Jx =

∑
iXi in the x direction (which would require a gigantic amount of

statistics to be evaluated properly whenever N � 1). Rather, this term
corresponds to the parity of the spin operator Jx, i.e. a binary quantity,
and can thus be evaluated efficiently. However, an extreme resolution
is required to estimate this quantity; failure to distinguish between two
successive values of Jx can entirely randomise its parity.

The next section aims at detecting the nonlocality depth of multi-
partite states with two-body correlators only.

4.5.2 Witnessing with two-body correlations only

In the same spirit as [TAS+14, SBA+16, WSF+17], we derive a witness
for Bell correlations of depth k from the expression I+βk ≥ 0, where I is
defined in Eq. (4.19). We assume that M (i)

0 and M (i)
1 are spin projection

measurements on the ith party, along directions n and m, respectively.
This allows us to write M (i)

0 = σ(i) · n and M (i)
1 = σ(i) ·m, where σ(i)

is the vector of Pauli matrices acting on the ith party, and to express
all correlators appearing in the Bell inequality as measurements of the
collective spin operator Jn = (1/2)

∑N
i=1 σ

(i) · n. With the substitution



84 Detecting nonlocality depth in many-body systems

���� ���� ���� ���� ���� ����
���

���

���

���

���

���

���� �������� �

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
ζ ��

�=� �=�
�=�

�=�����
���� �����

�������

�����������
� �� ��� ���

�����

���� ������
��� ���������

�

�

�

��

Figure 4.4: Quantification of the Bell correlation depth in a BEC
with inequality (4.28) and connection to spin squeezing and
entanglement. Black: the data reported in Ref. [SBA+16] expressed
in terms of the Rabi contrast Cb and the squeezed second moment ζ2

a,
with 1σ error bars. The number of particles is N = 480. Blue shaded
region: Bell correlations detected by violation of inequality (4.28) for
k = 1. Red shaded region: entanglement witnessed by spin squeezing
[WBIH94, SDCZ01]. Red lines: limits on ζ2

a below which there is at least
(k + 1)-particle entanglement [SM01], increasing in powers of two up to
k = 256. Blue lines: limits on ζ2

a below which there are Bell correlations
of depth at least k + 1, for k = 1, . . . , 6.

m = 2(a · n)a − n we arrive at the inequality (see Ref. [SBA+16] for
details).

−
∣∣∣∣
〈
Jn
N/2

〉∣∣∣∣+ (a · n)2

〈
J2
a

N/4

〉
− (a · n)2 +

βk
2N
≥ 0, (4.27)

which is satisfied by all states with Bell correlations of depth at most k.
In other words, the violation of Ineq. (4.27) witnesses that the state of
the system contains Bell correlations of depth (at least) (k + 1).

It is now convenient to define the spin contrast Cn = 〈2Jn/N〉 and
the scaled second moment ζ2

a = 〈4J2
a/N〉. Furthermore, we express n =

a cos(θ) + b sin(θ) cos(φ) + c sin(θ) sin(φ), with the ortho-normal vectors
a, b and c = a × b with × denoting the vector product. With these



4.6 Discussion 85

definitions, one can obtain the witness [SBA+16]

ζ2
a ≥

2− βk/(2N)−
√

[βk/(2N)]2 − C2
b

2
, (4.28)

which involves the measurements of ζa and Cb, for the two orthogonal
directions a and b. The violation of Ineq. (4.28), for a given βk, witnesses
that the state contains Bell correlations with a depth of (at least) k + 1.

An interesting comparison is made with the Wineland spin-squeezing
criterion
[WBIH94], according to which entanglement is present if ζ2

a < C2
b [SBA+16].

This criterion was also shown to be able to quantify the degree of entan-
glement in the state [SM01], (k + 1)-particle entanglement is witnessed
by measuring values of ζ2

a below some threshold, see Fig. 4.4 (red lines).
In Fig. 4.4 we plot the bounds given by Eq. (4.28), for k = 1, . . . , 6,
together with the entanglement bound obtained from the Wineland cri-
terion [SM01], and the experimental point measured in Ref. [SBA+16]. A
statistical analysis on the probability distribution estimated experimen-
tally [SBA+16] gives likelihoods of 99.9%, 97.5%, 90.3% and 80.8% for
1/2/3-, 4-, 5- and 6-body nonlocality respectively. This likelihood can be
interpreted as, for example, a p-value of 1− 80.8% = 19.2% for rejecting
the hypothesis: The experimental data were generated by a state that has
no 6-body nonlocality, in the presence of Gaussian noise.

4.6 Discussion

In this Chapter we studied the problem of finding efficient ways to detect
the nonlocality depth of quantum correlations. Nonlocality depth is a
relevant concept in the study of multipartite systems, because it contains
the information of how many particles share genuine Bell correlations in
their state. In analogy to the case of nonlocality, detecting nonlocality
depth is a computationally very demanding problem.

We first exploit the framework of two-body symmetric correlations
introduced in [TAS+14], to provide means of certifying nonlocality depth
in many-body physics that meet the requirements of current experiments.
By developing a general framework to describe the set of correlations of
a given nonlocality depth, we are able to show that two-body symmetric
correlations are enough to distinguish such depth. We do so by completely
characterising the set of Bell inequalities that detect k−nonlocality with
respect to no-signaling resources for values of k ≤ 6 and a fixed number
of particle N ≤ 15. Remarkably, we also show that detecting nonlocality
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depth can be done efficiently for any fixed k, that is, involving a polyno-
mial amount of computational resources. Moreover, we take an explicit
example of inequality and show that it can be used to witness the depth
of Bell correlations for any number of parties.

Lastly, we comment on the practical application of our techniques to
large many-body states. As a initial comparison, we turn to the known
Bell inequalities such as the Mermin or Svetlichny one, that allow for
detection of nonlocality depth in multipartite quantum states. We show
that, if the measurements are trusted, such inequalities can be used to
derive witnesses that can reveal genuine Bell correlations with two collec-
tive measurements in systems where many-body correlation functions can
be evaluated. This approach, however, utilises the parity measurement
which becomes too demanding for large systems, showing also that the
approach based on two-body correlations introduces a significant advan-
tage over the other methods. We therefore illustrate how our two-body
Bell inequality is associated to a witness that can be successfully applied
to already available experimental data from a Bose-Einstein condensate.

Our results pave the way to a more refined study of Bell correlations
in many-body systems, by presenting the first available techniques to de-
termine the amount of particles sharing Bell correlations in these systems.
Moreover, we stress that our results can already be applied to experimen-
tally detect in a Bell test genuine multipartite nonlocality for systems of
size up to N = 7. In particular, since the inequalities that we introduce
consist only of two-body correlators, such detection would require only
an O(N2) amount of measurements, contrarily to already known inequal-
ities, such as Mermin’s, that involve measuring an exponential amount of
correlators.

As a future direction to investigate, it would be interesting to derive
inequalities that test for higher nonlocality depth than 6, as it is already
possible to do in the case of entanglement. In particular, a more ambitious
direction would be to find ways to assess genuine Bell correlations in
systems of hundreds of particles without relying on parity measurements.
This would give a convenient way to prove that all the particles in the
system are genuinely sharing Bell correlations.

As it is argued in the previous sections, the main challenge for these
purposes consists in characterising the no-signalling set of multipartite
correlations in the subspace of two-body permutationally invariant cor-
relators. We are able to do so only for the cases of low number of parties,
while a general and efficient method is still missing. Therefore, a more
technical but still interesting question would be to find such a general
characterisation.



Chapter 5

Scalable Bell inequalities for
qubit graph states and robust
self-testing

Bell inequalities constitute a key tool in quantum information theory:
they not only allow one to reveal nonlocality in composite quantum sys-
tems, but, more importantly, they can be used to certify relevant prop-
erties thereof. In this Chapter we provide a general construction of Bell
inequalities that are maximally violated by the multiqubit graph states
and can be used for their robust self-testing. Apart from their theo-
retical relevance, our inequalities present two main advantages from an
experimental viewpoint: (i) they present a significant reduction of the
experimental effort needed to violate them, as the number of correlations
they contain scales only linearly with the number of observers; (ii) they
allows us to derive robust fidelity bounds for the self-testing of graph
states that can be realistically met by present experimental data. We
also discuss possible generalisations of our approach to entangled states
whose stabilizers are not tensor products of Pauli matrices. The results
of this Chapter are based on the original work published in [BAŠ+18].

5.1 Introduction

A very relevant application of Bell nonlocality is self-testing: as discussed
in Section 2.3.4, it can be seen as a way of certifying both the state pro-
duced and the local measurements performed by some given quantum
devices, by simply looking at the resulting correlations. Such a tool is par-
ticularly interesting because it offers a way to guarantee that a quantum
device is working properly without the need of knowing its internal func-
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tioning. It thus consitutes a form of device-independent certification that
can be useful for various quantum information protocols. In fact, since
its introduction in [MY04], self-testing has been studied in many con-
texts, showing to be applicable to multipartite states [McK11, ŠCAA18]
and any number of measurements as well [ŠASA16]. Moreover, exten-
sions to several different scenarios have also been considered, such as
steering [ŠH16], the prepare-and measure framework [TKV+18], net-
works [BŠCA18a, BŠCA18b] and the certification of quantum channels
[SBWS18].

From an implementation perspective, a relevant challenge is to design
self-testing strategies that can be applied to realistic situations. Since
recent experiments are capable of addressing already tens of particles
[WLH+18b, FMM+18] a crucial ingredient for a certifying strategy is to
present an efficient scaling in terms of the required resources. Indeed,
any method that is based on the full information about either the state
or the observed correlations is bound to become intractable already for
medium-large systems, since such information scales exponentially with
the number of particles involved.

Interestingly, it has already been shown that nonlocality can be as-
sessed with the knowledge of few-body correlations only. As extensively
discussed in Chapter 3 and 4, restricting to such partial information is
not only appealing for experimental implementations, but it also allows
one to devise scalable methods for nonlocality detection in multipartite
systems. Moreover, in Chapter 4 we showed that few-body correlations
are even enough to make quantitative statements about the nature of
nonlocality in many-body systems, such as the estimation of how many
particles genuinely share nonlocal correlations among each other. All
the above-mentioned techniques require either performing a polynomial
scaling number of measurements or the estimation of few collective mea-
surements only. Remarkably, these simplifications already openend the
way to the first experimental detections of Bell correlations in many-
body systems of hundreds [SBA+16] and hundreds of thousands of atoms
[EKHK17].

Since nonlocality is a necessary ingredient for self-testing of multipar-
tite states, a relevant question to ask is which classes of such states can
be self-tested using a polynomial amount of information about the ob-
served correlations. In this Chapter we address this question by focusing
on graph states, one of the most representative families of multipartite
entangled states that include, e.g., GHZ and cluster states. We intro-
duce the first scalable self-testing method for graph states based on Bell
inequalities. This implies introducing a new family of Bell inequalities
maximally violated by graph states whose violation, contrary to previous
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constructions [GTHB05, TGB06, GC08], can be estimated by measuring
a number of correlations that scales linearly with the particle number.
While other works have already proven self-testing for these states with
a similar amount of information [McK11, ŠCAA18] the novelty of our
result is the connection to the violation of Bell inequalities. This, via
the techniques of [Kan16], allows us to make our self-testing statements
robust, which is crucial for their experimental implementation.

To construct our Bell inequalities we do not follow the standard ap-
proach based on the geometry of the set of correlations admitting local-
hidden-variable models. Instead, we exploit the quantum properties of
the states and measurements to be certified. A similar approach was used
in [SAT+17, KŠT+18] to derive bipartite Bell inequalities maximally vio-
lated by maximally entangled states. Remarkably, our method is the first
that can systematically derive self-testing inequalities tailored to multi-
partite states of arbitrary number of particles, based on the knowledge
of their stabilizers only. Furthermore, the range of application of our
techniques is not limited to the case of graph states, as we demonstrate
by deriving Bell inequalities useful for the self-testing of the partially
entangled GHZ state.

5.2 CHSH-like Bell inequalities for graph states

Before presenting our results, we first set up the scenario and recall the
relevant notation and terminology. We consider the simplest N -partite
Bell scenario, referred to as (N, 2, 2) scenario, in which N distant ob-
servers share some N -partite quantum state |ψ〉. On their share of
the state, observer i measures one of two dichotomic observables: for
further convenience we represent them in the expectation value form
M

(i)
xi = M0

xi −M1
xi with xi = 0, 1 and i = 1, . . . , N , so to have operators

whose outcomes are ±1 (in the few-party case we will also denote the
observables by Ai, Bi etc.). The correlations obtained in this experiment
are described by a collection of expectation values

〈M (i1)
xi1

. . .M (ik)
xik
〉 = 〈ψ|M (i1)

xi1
⊗ . . .⊗M (ik)

xik
|ψ〉 (5.1)

which are usually referred to as correlators and we arrange them for our
convenience in a vector ~c.

Since we are interested in defining Bell inequalities for multi-qubit
graph states, let us recall how these states are defined, following what
we outlined in Section 2.2.4. Consider a graph G = (V,E), where V is
the set of vertices of size |V | = N , and E is the set of edges connecting
the vertices. Let then n(i) be the neighbourhood of the vertex i, i.e., all
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vertices from V that are connected with i by an edge. Now, to every
vertex i we associate an operator

Gi = Xi ⊗
⊗

j∈n(i)

Zj , (5.2)

in which the X operator acts on site i, while the Z operators act on all
sites that belong to n(i). Then, the graph state |ψG〉 associated to G is
defined as the unique eigenstate of all these operators Gi (i = 1, . . . , N)
with eigenvalue one. The Gi’s are called stabilizing operators of |ψG〉 and
they generate the 2N -element commutative group of operators stabilizing
|ψG〉, called stabilizer group.

The simplest example of a graph state, corresponding to the two-
vertex complete graph up to local unitary equivalence, is precisely the
maximally entangled state of two qubits |φ+〉 presented in (2.28). Recall
that, as shown in Section 2.3.5, the maximally entangled two-qubit state
is the one achieving the maximal violation of the CHSH inequality

ICHSH := 〈(A0 +A1)B0〉+ 〈(A0 −A1)B1〉 ≤ 2, (5.3)

Interestingly, there is a direct relation between the stabilizing operators
of |φ+〉 and the maximal quantum violation of the CHSH Bell inequality.
Precisely, the observables realising the maximal quantum violation of
the CHSH Bell inequality can be combined to obtain (A0 + A1)⊗ B0 =√

2X1 ⊗X2 and (A0 − A1) ⊗ B1 =
√

2Z1 ⊗ Z2, which constitute, up to
a constant factor, the stabilizing operators of |φ+〉. This is exactly the
relation that we exploit below to construct Bell inequalities for graph
states. In fact, these inequalities can be seen as a generalisation of the
CHSH Bell inequality to the multipartite case. As we explain later, this
connection allows to generalise the techniques used to self-test the |φ+〉
state from the maximal violation of CHSH to a self-testing statement for
any graph state.

First, let us introduce the new family of Bell inequalities maximally
violated by the graph states. Given a graph G we enumerate its vertices,
for further convenience, so that the first one has the largest neighbour-
hood, that is, |n(1)| = maxi |n(i)| ≡ nmax. If there are more vertices with
maximal neighbourhood in G, we choose any of them as the first vertex.

Then, to every stabilizing operator Gi corresponding to the graph G
we associate an expectation value in which the respective operators are
replaced by quantum dichotomic observables or combinations thereof.
More precisely, at the first site X1 and Z1 are replaced by, respectively,
M

(1)
0 + M

(1)
1 and M (1)

0 −M (1)
1 , whereas for the remaining observers, Xj
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and Zj are replaced simply by M
(j)
0 and M

(j)
1 . Finally, if there is an

identity at any position in Gi we leave it as it is.
We then add the obtained correlators, multiplying the first one by

nmax, and obtain the following Bell inequality

IG : = nmax

〈
(M

(1)
0 +M

(1)
1 )

∏

i∈n(1)

M
(i)
1

〉

+
∑

i∈n(1)

〈
(M

(1)
0 −M (1)

1 )M
(i)
0

∏

j∈n(i)\{1}

M
(j)
1

〉

+
∑

i/∈n(1)∪{1}

〈
M

(i)
0

∏

j∈n(i)

M
(j)
1

〉
≤ βCG . (5.4)

Notice that IG coincides with the CHSH Bell expression for N = 2. Simi-
larly, for higher N it can be seen as a sum of nmax CHSH Bell expressions
between the first party and some joint measurements on the parties cor-
responding to the neighbouring vertices, plus some number of correlators
in which the first observer does not appear. This simple structure makes
our Bell inequalities extremely easy to characterise. In fact, as shown be-
low, their maximal classical and quantum values can even be computed
by hand.

Fact 1. For a given graph G, the classical bound of the corresponding
Bell inequality (5.4) is βCG = N + nmax − 1.

Proof. We start by noting that (5.4) consists of a single term containing
M

(1)
0 +M

(1)
1 appearing with weight nmax, and nmax different terms con-

taining M (1)
0 −M (1)

1 . Now, for any local deterministic correlations that
assign ±1 to all observables M (j)

xj , these two combinations are either zero
or two and if one equals two, the other vanishes. Thus, the contribution
from these terms to the classical bound is exactly 2nmax. Then, the max-
imal value of the remaining correlators in (5.4) over local deterministic
strategies is N − nmax − 1, which together with the first contribution
results in βCG = N + nmax − 1.

Fact 2. For a given graph G, the maximal quantum violation of (5.4) is
βQG = (2

√
2− 1)nmax +N − 1.

Proof. We first demonstrate that βQG upper bounds the maximal quantum
value of (5.4) and then provide an explicit quantum strategy achieving
this bound.
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Let us consider dichotomic observables M (i)
xi for each observer and

construct from them the Bell operator corresponding to the Bell expres-
sion IG,

BG : = nmax(M
(1)
0 +M

(1)
1 )⊗

⊗

i∈N(1)

M
(i)
1

+
∑

i∈N(1)

(M
(1)
0 −M (1)

1 )⊗M (i)
0 ⊗

⊗

j∈N(i)\{1}

M
(j)
1

+
∑

i/∈N(1)∪{1}

M
(i)
0 ⊗

⊗

j∈N(i)

M
(j)
1 , (5.5)

By direct checking it is not difficult to see that the shifted Bell operator
βQG1− BG can be decomposed into the following sum of squares

βQG1− BG =
nmax√

2
(1− P1)2 +

1√
2

∑

i∈N(1)

(1− Pi)2

+
1

2

∑

i/∈N(1)∪{1}

(1− Pi)2 , (5.6)

where Pi are operators defined as

P1 =
M

(1)
0 +M

(1)
1√

2
⊗
⊗

i∈N(1)

M
(i)
1 , (5.7)

Pi =
M

(1)
0 −M (1)

1√
2

⊗M (i)
0 ⊗

⊗

j∈N(i)\{1}

M
(j)
1 (5.8)

for i ∈ N(1), and, finally,

Pi = M
(i)
0 ⊗

⊗

j∈N(i)

M
(j)
1 (5.9)

for i /∈ N(1) ∪ {1}. This immediately implies that βQG1 − BG � 0, and
since the decomposition (5.6) holds true for any choice of local observables
M

(i)
xi , we have that βQG upper bounds the maximal quantum value of IG,

that is,
max
QN

IG ≤ βQG . (5.10)

To prove that (5.10) turns into an equality, let us consider the following
observables

M
(1)
0 =

1√
2

(X + Z), M
(1)
1 =

1√
2

(X − Z) (5.11)
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for the first observer and M (i)
0 = X and M (i)

1 = Z for i = 2, . . . , N . By a
direct check one sees that for these observables and the graph state |ψG〉
the value of IG is exactly βQG , which completes the proof.

A few comments are in order. First, it follows that for any graph
G, our Bell inequalities are non-trivial, i.e., the maximal quantum viola-
tion βQG is always strictly bigger than the local bound βCG . Second, it is
also interesting to compare our inequalities to previous constructions of
Bell inequalities for graph states. The most general one was introduced
in [GTHB05] and then modified in [TGB06] to allow for two measure-
ments at all sites. One of the key properties of the inequalities of Refs.
[GTHB05, TGB06] is that the ratio between their maximal quantum and
classical values is exponential in N , making them robust against exper-
imental imperfections. However, this last feature is only possible due
to the fact that the amount of expectation values they contain grows
exponentially with N , which certainly makes them highly impractical
for experiments involving large number of parties. In contrast, our Bell
inequalities have a much simpler structure. In particular, they require
measuring only N − nmax − 1 expectation values, which results in an
exponential reduction in the experimental effort needed to violate them.
The price to pay is, however, that the ratio βQG/β

C
G tends to a constant

for large N (also when nmax depends on N).

5.3 Two examples

Let us now illustrate our construction with two examples. The first
one concerns the star graph presented in Fig. 5.1.a. For this graph
|n(1)| = nmax = N − 1 and the stabilizing operators are of the form:
G1 = X1Z2 . . . ZN for the first vertex and Gi = XiZ1 with i = 2, . . . , N
for the remaining ones. For our convenience, we apply the Hadamard
gate to all the vertices but the first one, which gives us an equivalent
set of operators: G′1 = X1 . . . XN and G′i = Z1Zi with i = 2, . . . , N . It
follows that they stabilise the N -qubit GHZ state

|GHZN 〉 =
1√
2

(|0〉⊗N + |1〉⊗N ). (5.12)

Let us then associate expectation values to eachG′i. As the first vertex
is the one with the largest neighbourhood, we make the assignments

G′1 → 〈(M (1)
0 +M

(1)
1 )M

(2)
0 . . .M

(N)
0 〉

G′i → 〈(M (1)
0 −M (1)

1 )M
(i)
1 〉 (i = 2, . . . , N) (5.13)
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Figure 5.1: Two examples of graphs: (a) the star graph and (b) the ring
graph.

which leads us to the following Bell inequality

INGHZ = (N − 1)
[
〈M (1)

0 M
(2)
0 . . .M

(N)
0 〉+ 〈M (1)

1 M
(2)
0 . . .M

(N)
0 〉)

]

+
N∑

i=2

(〈M (1)
0 M

(i)
1 〉 − 〈M

(1)
1 M

(i)
1 〉) ≤ 2(N − 1). (5.14)

Notice that this inequality coincides with Eq. (3.11), which we found
numerically from the dual SDP of the nonlocality detection method pre-
sented in Chapter 3. Interestingly, this inequality can be interpreted as
a sum of N − 1 CHSH Bell inequalities between the first observer and
the remaining ones; for N = 2 it reproduces the CHSH inequality. It
follows from Fact 2 that βQGHZ = 2

√
2(N − 1) and it is achieved by the

GHZ state (5.12). It should be noticed that contrary to the well-known
Mermin Bell inequality [Mer90] which is also maximally violated by this
state, our inequality contains a number of correlators that scales linearly
with N . Moreover, only two of them are N -body and they involve two
different measurements choices only for the first party. All this makes our
inequality for the GHZ state more advantageous from the experimental
point of view.

As a second example we consider the ring graph presented in Fig.
5.1, for which the stabilizing operators are Gi = Zi−1XiZi+1 with i =
1, . . . , N , where we use the convention that Z0 ≡ ZN and ZN+1 ≡ Z1.

As every vertex in this graph has neighbourhood of the same size, i.e.,
n(i) = nmax = 2 (i = 1, . . . , N), we choose the first vertex to be the one
at which we introduce combinations of observables. Thus, following our
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recipe,

GN → 〈M (N−1)
1 M

(N)
0 (M

(1)
0 −M (1)

1 )〉
G1 → 〈M (N)

1 (M
(1)
0 +M

(1)
1 )M

(2)
1 〉

G2 → 〈(M (1)
0 −M (1)

1 )M
(2)
0 M

(3)
1 〉 (5.15)

and Gi → 〈M (i−1)
1 M

(i)
0 M

(i+1)
1 〉 for i = 3, . . . , N − 1. These expectation

values give rise to the following Bell inequality

Iring := 2〈M (N)
1 (M

(1)
0 +M

(1)
1 )M

(2)
1 〉+ 〈(M (1)

0 −M (1)
1 )M

(2)
0 M

(3)
1 〉

+〈M (N−1)
1 M

(N)
0 (M

(1)
0 −M (1)

1 )〉

+

N−1∑

i=3

〈M (i−1)
1 M

(i)
0 M

(i+1)
1 〉 ≤ N + 1, (5.16)

whose classical bound stems directly from Fact 1, while, according to
Fact 2, its maximal quantum violation is N + 4

√
2− 3 and is achieved by

the so-called N -qubit ring cluster state stabilized by the above Gi. Re-
markably, this Bell inequality contains only three-body nearest-neighbour
correlators, i.e., correlators of minimal length able to detect nonlocality
of the ring state. Indeed, as proven in Ref. [GHG10], one cannot detect
entanglement of graph states only from their two-body marginals as they
are compatible with separable states.

Lastly, notice that in this second example the ratio βQG/β
C
G tends to 1

in the limit of largeN , making the violation very sensitive to experimental
errors for big systems. This issue can be fixed by properly modifying the
inequality with the addition of substitutions Xj , Zj → (M

(j)
0 ± M

(j)
1 )

on other vertices j whose neighbourhood doesn’t overlap with n(1) (see
Appendix C.1 for a detailed explanation of the generalised method).

5.4 Robust self-testing

Apart from being convenient from the experimental point of view, the
introduced Bell inequalities also find applications in self-testing. To re-
call the task of self-testing, imagine a quantum device that performs a
Bell test with some quantum state |ψ̄〉 and quantum observables M̄ (i)

xi ,
producing correlations ~c. The aim of self-testing is to reveal the structure
of the system {|ψ̄〉, M̄ (i)

xi } from the properties of the observed correlations
~c. In particular, here we focus on self-testing through Bell violations,
which, as explained in Section 2.3.4, consists in making self-testing state-
ments based solely on the fact that the correlations ~c achieve the maximal
quantum violation of a given Bell inequality.
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More specifically, we can prove the following fact:

Fact 3. Given a graph G, if the corresponding Bell inequality (5.4) is
violated maximally by a state |ψ〉 and observables M̄ (i)

j , then the following
holds true:

Φ[(M̄
(i1)
ki1
⊗ . . .⊗ M̄ (i1)

ki1
) |ψ〉] = (M

(i1)
ki1
⊗ . . .⊗M (i1)

ki1
) |ψG〉 ⊗ |aux〉, (5.17)

where Φ = Φ1 ⊗ . . .⊗ ΦN with Φi being the SWAP isometry represented
in Fig. 2.7, |aux〉 is some state encoding uncorrelated degrees of freedom,

M
(1)
j =

1√
2

[X + (−1)jZ] (5.18)

and
M

(i)
0 = X, M

(i)
1 = Z (i = 2, . . . , N). (5.19)

Proof. The proof is in Appendix C.2.

It should be noticed here that, compared to other self-testing methods
for graph states, we present the first method that exploits the maximal
violation of a multipartite Bell inequality. Moreover, with the aid of the
approach developed in [Kan16] our Bell inequalities allow one to make
robust self-testing statements.

Let us recall the main ingredients of the method, as outlined in Sec-
tion 2.3.4: suppose that, upon performing measurements on an unknown
quantum state ρN , one has observed a value βobs for the violation of the
inequality (5.4) for a given graph G. Our aim is to derive a lower bound
on the fidelity of the following form

Θ(ρN → ψG) ≥ sβobs + µ , (5.20)

for some s, µ ∈ R and where Θ(ρN → ψG) is the fidelity between the
measured state and the target graph state |ψG〉 as defined in Eq. (2.52).
To this end, recall that it is enough to prove the operator inequality

K := (Φ†1 ⊗ . . .⊗ Φ†N )(|ψ〉 〈ψ|) ≥ sB̂G + µ1 (5.21)

where B̂G is the Bell operator corresponding to the inequality (5.4) and
constructed from any possible choice of dichotomic observables M (i)

xi .
Proving such an operator inequality for arbitrary local observables in
BG is certainly a formidable task. However, due to the fact that here
we consider the simplest Bell scenario involving two dichotomic measure-
ments per site, one can exploit Jordan’s lemma, which, as explained in



5.4 Robust self-testing 97

[Kan16], reduces the problem to basically an N -qubit space. That is, the
local observables M (i)

xi can now be parametrised as

M (1)
x1 = cosα1X + (−1)x1 sinα1 Z, (5.22)

and
M (i)
xi = cosαiH + (−1)xi sinαi V (5.23)

for i = 2, . . . , N , where H = (X + Z)/
√

2, σV = (X − Z)/
√

2 and
αi ∈ [0, π/2]. This gives rise to a Bell operator BG(~α) that now depends
on the angles αi. Let us then consider particular quantum channels

Φi(αi)[ρ] =
1 + g(αi)

2
ρ+

1− g(αi)

2
Γi(αi)ρΓi(αi) , (5.24)

where the dependence on the measurement angle is encoded in the func-
tion g(x) = (1 +

√
2)(sinx + cosx − 1) together with the definition of

Γ(x) = Na
i if x ≤ π/4 and Γ(x) = N b

i if x > π/4. Lastly, we define
Na,b

1 = X,Z and Na,b
i = H,V for i = 2, . . . N .

We now want to prove that for all possible choices of αi, the following
inequality is satisfied

K(α1, . . . , αN ) ≥ sBG(α1, . . . , αN ) + µ1 (5.25)

for some choice of s, µ ∈ R, which, as exampled earlier, would imply an
inequality for the extractability.

To analyse the robustness of our self-testing method for graph states,
we have performed numerical tests to derive bounds of the kind (5.25)
for the inequality for the GHZ state and the ring cluster state for val-
ues of N ≤ 7. The applied procedure works as follows: given a fixed
s, estimate the corresponding µ by numerically computing the minimal
eigenvalue of the operator K+sBG and minimising over all the angles αi.
Notice that to have a fidelity bound that leads to fidelity 1 at the point
of maximal violation, the inequality (5.25) has to become tight for the
measurements angles leading to the maximal violation, that is αi = π/4
for all i = 1, . . . , N . As a second step, we therefore estimated numerically
the minimum value of s for which the corresponding bound still satisfied
such a property. This led to linear bounds with the optimal slope.

In fact, the numerical results in Fig. 5.2 show that the fidelity between
the state |ψ〉 violating our inequalities for two exemplary graphs and the
corresponding graph state |ψG〉 is a linear function of the value βobs for
the observed violation.
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Figure 5.2: Fidelity with the target graph state, numerically estimated
as a function of the relative observed violation (β−βC)/(βQ−βC) of the
corresponding Bell inequalities (5.14) and (5.16) constructed with our
method. The plots show the case of a GHZ state (left) and ring graph
state (right) of N = 3, . . . , 7 particles. The bounds are plotted until
the highest value of fidelity with a separable N -partite state, taken from
[MMV07]. Indeed, after that threshold, the device-independent fidelity
estimation would not witness any non-classicality in the state.

5.5 Generalisation of the method

Interestingly, our construction can be generalised so to work in cases
where the stabilizer operators are not products of Pauli operators. To
give an example, let us consider the partially entangled GHZ state

|GHZN (θ)〉 = cos θ |0〉⊗N + sin θ |1〉⊗N , (5.26)

with θ ∈ (0, π/4], whose generators of the stabilizer group can be chosen
to be

G1(θ) = sin 2θX1X2 . . . XN + cos 2θZ1 ,

Gi = Z1Zi , i = 2, . . . , N.
(5.27)

The partially entangled GHZ state is not a graph state and, indeed,
contrarily to the case of graph states, the operator G1(θ) can not be
decomposed as a product of local Pauli operators. In fact, although
G1(θ) is unitary, it can not even be expressed as a product of generic
local unitaries U (1) ⊗ . . . ⊗ U (N). One can see that by computing its
action on the GHZ state (5.12), leading to

G1(θ) |GHZN 〉 =
sin 2θ + cos 2θ√

2
|0〉⊗N +

sin 2θ − cos 2θ√
2

|1〉⊗N , (5.28)

which, being another partially entangled GHZ state, is locally-unitary-
inequivalent to the maximally entangled GHZ state.
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To construct a Bell inequality maximally violated by (5.26), we inter-
pret the previous construction for graph states as a special instance of a
more general method. The idea is to associate, as before, an expectation
value to each stabilizing operator Gi: for the first party we substitute

X1 →
M

(1)
0 +M

(1)
1

2 sinµ
, Z1 →

M
(1)
0 −M (1)

1

2 cosµ
, (5.29)

whereas at the remaining sites we traditionally set Xi →M
(i)
0 and Zi →

M
(i)
1 . Having in mind its application to self-testing, we want to obtain a

Bell inequality whose associated shifted Bell operator can be decomposed
as

βQ1− B =
N∑

i=1

α2
i (1− Gi)2 , (5.30)

where the αi’s are generic real numbers and the operators Gi are polyno-
mials in the measurements operators M (i)

xi , obtained from the expression
of the stabilizers Gi upon applying the substitutions considered above. In
order to derive a valid Bell inequality from (5.30), one has to make sure
that the resulting Bell operator corresponds to an inequality that does
not contain expectation values that are not measurable, such as terms like
〈M (i)

0 M
(i)
1 〉. To do so, one can optimize over the N + 1 free parameters

constituted by the coefficients αi and the angle µ appearing in (5.29).

Remarkably, the outlined procedure is precisely a generalisation of
the method we used to derive our inequalities for graph states. To see
that, notice that if one takes as stabilizers those in Eq. (5.2), by setting
µ = π/4 the corresponding operators Gi coincide with the Pi ones that
we introduced in Eqs. (5.7 – 5.9). Moreover, the SOS (5.30) recovers the
decomposition for the inequality IG, presented in Eq. (5.6), if one chooses
as coefficients α1 = nmax/

√
2, αi = 1/

√
2 for i ∈ N(1) and αi = 1/2 for

the rest.

Let us now show how the same procedure can also be applied to the
case of the partially entangled GHZ state. As we prove in Appendix C.2,
we obtain a valid Bell operator from the SOS decomposition from (5.30)
by choosing the angle µ such that 2 sin2 µ = sin2 2θ and the coefficients
as α2

1 =
√

2(N − 1) and α2
2 = . . . = α2

N =
√

2. The corresponding Bell
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inequality reads as follows

Iθ := (N − 1)〈(A(1)
0 +A

(1)
1 )A

(2)
0 . . . A

(N)
0 〉

+(N − 1)
cos 2θ√

1 + cos2 2θ
(〈A(1)

0 〉 − 〈A
(1)
1 〉)

+
1√

1 + cos2 2θ

N∑

i=2

〈(A(1)
0 −A

(1)
1 )A

(i)
1 〉 ≤ βC , (5.31)

where the classical bound amounts to

βC(θ) = 2(N − 1)
1 + cos 2θ√
1 + cos2 2θ

. (5.32)

and the corresponding maximal quantum violation, achieved by the par-
tially entangled GHZ state, to

βQ = 2
√

2(N − 1) (5.33)

for all values of θ ∈ (0, π/4]. Moreover, in Appendix C.2 we prove that
this inequality can be used to self-test the partially entangled GHZ state
for any θ ∈ (0, π/4] and any number of particles N . Noticeably, the case
θ = π/4 recovers the inequality (5.14) for the GHZ state. Let us also
notice that for N = 2 we obtain a Bell inequality maximally violated by
any pure entangled state, which is inequivalent to the well-known tilted
CHSH Bell inequality [AMP12, BP15].

5.6 Discussion

We have introduced a family of Bell inequalities that are maximally vi-
olated by the graph states and are scalable from an experimental point
of view. That is, contrary to the previous constructions of Bell inequali-
ties for graph states, the number of expectation values they contain grows
only linearly in the number of parties. Furthermore, the extremely simple
structure of our Bell inequalities makes them easily applicable to robust
self-testing.

Our considerations provoke further questions. First, it would be in-
teresting to see whether the approach presented here can be generally ap-
plied to entangled states stabilized by operators that are not just products
of Pauli matrices. Here we showed that such generalisation is possible for
partially entangled GHZ states. Second, it would be of interest to in-
vestigate whether this approach can be exploited for multipartite states
of higher local dimensions; in particular, the multiqudit graph states,
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for which no Bell inequalities are known. Let us also mention that an-
other method to derive Bell inequalities from stabilizing formalism was
presented in [SBWS18]. One could explore possible connections between
both approaches.
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Chapter 6

Verification of Quantum
Optimizers

Solving optimisation problems encoded in the ground state of classical-
spin systems is a focus area for existing quantum computing devices.
Their outputs provide upper bounds to the unknown ground-state energy.
To certify these bounds, they are compared to those obtained by classical
methods. However, even if the quantum bound beats any classical bound,
this says little about how close it is to the actual solution. In this Chapter,
we consider relaxations to the ground-state problem based on semidefi-
nite programming to benchmark quantum optimisers. These relaxations
are radically more informative because they provide lower bounds to the
ground-state energy. The method also provides upper bounds with little
additional cost. We verify the output of a D-Wave 2000Q device and iden-
tify instances where our method provides the exact ground state, while
the annealer gives a configuration of higher energy. This new tool pro-
vides a scalable certification of existing and near-future quantum devices
for combinatorial optimisation. The results of this Chapter are based on
the original work published in [BGWA18].

6.1 Introduction

Classical Ising models are among the most paradigmatic and widely stud-
ied models in statistical physics. They are capable of describing an im-
mense variety of interesting physics, ranging from ferromagnetic to frus-
trated and glassy phases. Moreover, they are important in fields as diverse
as risk assessment in finance, logistics, machine learning [KFGT07], and
image de-noising [BD94] because the solution of many optimisation and
decision problems, such as partitioning, covering, and satisfiability can
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be encoded in the ground state of such models [Luc14]. Their general-
ity and the exponentially growing spaces of spin configurations, however,
preclude the existence of any efficient general purpose algorithm to obtain
the ground state. It is hence no surprise that a wealth of approximate
but more scalable classical techniques for the energy minimisation in such
models have been developed.

Recently, novel approaches that leverage the power of near-term quan-
tum devices such as quantum annealers, variational quantum eigensolvers
[PMS+14], variational circuits [FGG14, Cro18] or networks of degener-
ate optical parametric oscillators [QNN17], are proposed for performing
such tasks [DBI+16][CH16][MK18]. Their quality is usually benchmarked
against some of the most scalable classical approaches, e.g., simulated
annealing [KGV83] or variational ansatz classes based on tensor-network
states. All of these methods share one common feature: they only pro-
vide upper bounds on the ground-state energy. Even when the quantum
method beats all classical ones, there is no guarantee that the upper
bound of the quantum device is actually close to the true ground-state
energy. To overcome this limitation, it is important to develop schemes
that provide reliable lower bounds to the ground-state energy of spin
problems, against which the results of quantum devices, and also classi-
cal variational methods, can be compared.

Here we tackle this issue by leveraging the relaxations of polyno-
mial optimisation problems through semidefinite programming (SDP)
presented in Section 2.1.4. The proposed method provides lower bounds
on the ground-state energy by optimizing over a larger set than the
physical spin configurations. We improve the scalability of this type
of relaxation, by introducing a method known as the chordal exten-
sion [WKKM06, Las06], which allows us to exploit the physical locality
and sparsity structure present in relevant problem instances. All in all,
this yields an increasingly precise hierarchy of rigorous lower – in fact also
upper – bounds on the ground state energy. Combining these bounds in
a branch-and-bound (BB) scheme (see for instance [RRW08] for a recent
summary of these techniques), we obtain a scalable and flexible method
for the computation of certified ground state energies and configurations.

How can one find the lowest energy configuration among the more
than 10360 possible configurations of a typical Ising model with, say
35 × 35 sites? The key is to compute a converging series of upper and
lower bounds on the ground state energy and use these bounds to dras-
tically reduce the search space that needs to be explored. Configurations
that fall outside the band between the bounds no longer need to be ex-
plored. This is precisely the strategy of the BB approach (see from Fig-
ure 6.1). Obtaining good lower bounds is the non-trivial part and several
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Figure 6.1: Example of sequences of upper and lower bounds obtained
with our method for a 2D Ising model of lattice size 15× 15. Due to the
combinations of bounds from below and above, our approach ultimately
converges and gives an exact and certified solution for the ground-state
energy and configuration. Although the complexity of the general Ising
problem implies that one has to run an exponential number of steps to
achieve convergence, in many cases it is reached in polynomial time. Here
this happens after less than 20 steps, instead of having to explore all of
the 2225 configurations.

proposals have been considered through the last years: one can gener-
ally divide them into techniques based on a linear-programming relax-
ation [LJRR04] and ones based on semidefinite programming [RRW08].
The former approaches are known to perform better for very sparse
graphs, such as 2D square lattices and planar graphs, but it is gener-
ally hard to adapt them to deal efficiently with more general problems.
On the other hand, the SDP method introduced in [RRW08] applies to
general graphs and is always polynomial in the system size (per step),
but does not outperform linear programming for very sparse graphs. The
chordal branch-and-bound (CBB) method we propose keeps the polyno-
mial dependence on the size, while being both more efficient than the BB
approach from [RRW08] for sparse instances and readily applicable to less
sparse Ising models. It is therefore a good candidate for the verification
of current and near future quantum optimisation devices.

Due to the combinations of bounds from below and above, any BB
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technique ultimately converges to the lowest achievable energy and out-
puts a corresponding configuration that achieves it. It thereby gives an
exact and certified solution to the ground state problem. Although the
complexity of the problem implies that, at least in some cases, one has
to run an exponential amount of steps to achieve convergence, in many
scenarios convergence is reached after a polynomial number of steps and
then the method is efficient (the complexity per step and number of re-
quired steps can be tuned by adjusting the level of the relaxation, as
we will see later). Even in cases where convergence cannot be achieved
with the available computational resources, the obtained lower and upper
bounds still imply an interval in which the true ground state energy must
provably lie. This fundamentally differentiates both BB and CBB from
techniques such as simulated annealing or variational methods, which
can reach larger system sizes, but provide not strong certificate for the
solutions they propose.

6.2 Preliminaries

Before describing the techniques we combine in more detail, we first intro-
duce the relevant concept and notation on classical Ising models. More-
over, we review what is known about the complexity of the ground state
problem and point out the consequences this has for the benchmarking
of quantum optimizers.

6.2.1 Setting and notation

We consider classical spin systems whose configurations ~σ := (σ1, . . . , σN )
are vectors of N spin variables σi ∈ {−1, 1} to each of which a Hamilto-
nianH assigns an energyH(~σ). We are mostly interested in Hamiltonians
of Ising type, that can be written in the form

H(~σ) = −
∑

1≤i<j≤N
Jijσiσj +

N∑

i=1

hiσi, (6.1)

with couplings Jij and local fields hi, but the method we develop is more
general and can also be applied to Hamiltonians that are higher order
polynomials of the σi and couple three or more spins in a single term.

Many spin models of interest in physics and beyond are characterised
by a locality structure, i.e., not all the spins interact with each other so
that some Jij are zero. Such locality of interactions implies a sparsity of
the resulting Hamiltonian and hence optimisation problem. This locality
and sparsity can be most efficiently captured in the language of graph
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theory: we define the interaction (hyper-)graph as the graph G := (V, E)
whose vertex set V := {1, . . . , N} is the set of indices of the spin variables
and whose (hyper-)edge set E is the set of all pairs (or larger subsets) of
indices for which the Hamiltonian contains an interaction, i.e., in the
above example {i, j} ∈ E ⇐⇒ Jij 6= 0. More important for us is the
dependency graph G := (V, D), which is a related concept but always
a graph and not a hyper-graph, namely the one that contains an edge
for any pair of indices of spin variables that appear together in the same
Hamiltonian term. For the example Hamiltonian (6.1) G and G are iden-
tical, but in general one obtains G by replacing every hyper-edge in G by
a clique, that is a fully connected subgraph. Typical examples of interac-
tion and dependency graphs are regular cubic grids, such as for example
in the 1D and 2D Ising model.

Among all the configurations of such a system there are those that
achieve the minimal possible energy, also known as the ground state en-
ergy and defined as

Eg := min
~σ∈{−1,1}N

H(~σ). (6.2)

If only one configuration achieves energy Eg we call this configuration the
ground state and say that it is unique, otherwise we call the collection of
all configurations with energy Eg the ground state space. For our pur-
poses, solving the ground state problem for a given Hamiltonian means
finding Eg and outputting a configuration that achieves it. Obviously,
the ground state problem is an optimisation problem that can, in princi-
ple, be solved by brute force, by simply computing H(~σ) for all possible
configurations σ. This however quickly becomes infeasible as the number
of configurations grows like 2N , restricting this approach to systems of
size roughly N / 20.

Therefore, several methods have been proposed to solve the ground
state problem more efficiently. However, as we will see in the next Sec-
tion, several results have been obtained regarding the complexity of such
problem, implying that no efficient method can be found to compute the
ground state of a general Ising model.

6.2.2 Complexity of finding Ising ground states

There is a wealth of results on the worst case complexity of finding the
ground state of various Ising models [GJR87]. Thereby “worst case com-
plexity” is the complexity of the hardest instances within a class of fam-
ilies of problems of increasing size. How hard it is to solve the ground-
state problem of such a family varies with the interaction graph and can
crucially depend on seemingly unimportant details. We consider Hamil-
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tonians that are polynomials (with fixed finite degree and finite precision
coefficients) in the spin variables (such as those given in (6.1)) and inter-
action (hyper-)graph G := (V, E). The size of a problem is the number of
vertices N := |V|. We say that an Ising model of the form (6.1) has no
fields if hi = 0 for all i, we say it has an external field if all hi = h for
all i and some h, and we say it has on-site fields if all hi can be chosen
independently.

Finding the ground state of Hamiltonians of the form (6.1) for ar-
bitrary graphs is in general NP-hard [Bar82], even without any fields.
This is still true for Jij ∈ {−1, 0, 1} and G a finite 3D cubic grid graph
and even for G a cubic two-layer 2D grid [Bar82]. In contrast, for planar
graphs G and without local fields, the ground state can be found effi-
ciently even without the restriction Jij ∈ {−1, 0, 1} [GJR87]. With the
restriction Jij ∈ {−1, 0, 1} this even holds for toroidal graphs (grids on
a torus, i.e., systems with periodic boundary conditions) [GJR87]. Simi-
larly, if Jij ≥ 0, then even some systems with local fields can be solved in
polynomial time [GJR87]. On the other hand, for general planar graphs
with interactions Jij = −1 and uniform external field hi = 1, finding the
ground state is again NP-hard [Bar82]. Ref. [GJR87] contains a list of
further concrete models whose complexity is either known to be in P or
proven to be NP-hard.

These hardness results are typically obtained by reducing the ground
state problem to the so-called max-cut problem, which is known to the
NP-hard. The polynomial time algorithms to solve the other families of
systems, in turn, work by finding perfect matchings [Bar82] or rely on
so-called max-flow/min-cut methods [GJR87].

6.3 The chordal branch and bound method

Here we describe the relaxation of the ground state problem that we use
to obtain both lower and upper bounds on the ground state energy and
how sparsity can be exploited by means of the chordal extension. We then
show how the combination of lower and upper bounds can be exploited in
a branch and bound algorithm to converge to exact ground state energy.
Lastly, we explain in detail how to combine all these ingredients to obtain
the proposed chordal branch and bound method.

6.3.1 Main Ingredients

In this section we describe in detail the methods we build upon and the
resulting chordal branch and bound algorithm. We begin by introducing



6.3 The chordal branch and bound method 109

additional notation. A state of an N spin system is a probability dis-
tribution P over the set of configurations {−1, 1}N . For every function
f : {−1, 1}N → R we can then define its expectation value in the state
P as

〈f〉P =
∑

~σ∈{−1,1}N
f(~σ)P (~σ). (6.3)

We call any state P that is supported only on the ground state space of
a model a ground state and such P are manifestly those that achieve the
minimal possible expectation value for the Hamiltonian, i.e, minP 〈H〉P =
Eg.

A hierarchy of SDP relaxations for the lower and upper bound

Computing the minimal energy of (6.1) can be seen as a degree-two poly-
nomial minimisation problem in the spin variables, where their dichotomy
can be imposed by adding the linear constraints σ2

i = 1. Hence, to ob-
tain a lower bound on the ground-state energy we exploit the method
pioneered by Lasserre (see Section 2.1.4 for more details) that introduces
a hierarchy of relaxation for constrained polynomial optimisation prob-
lems. Recall that the key observation to derive Lasserre’s hierarchy is
to notice that the minimisation of the polynomial H(~σ) is equivalent to
the minimisation of its expectation value 〈H〉P over any valid probability
distribution P (~σ) on the spin variables. In a more physical language,
those distributions represent exactly all valid states of a spin system.

Let us briefly revise the general method by using the notation here,
instead of introducing it in the more typical framework of polynomial
optimisation. Recall that, given a vector ~x := (xα)kα=1 of monomials
of the spin variables, the corresponding moment matrix Γ(P ) is defined
as the k × k matrix of expectation values Γαβ(P ) := 〈xα xβ〉P . Notice
that, in the scenario we are considering, there is no need to introduce
localising matrices. Indeed, all the relevant constrains can be captured
inside the moment matrix. Physically, these constraints reflect the two
basic properties of classical spin variables of taking dichotomic values
σi ∈ {−1, 1} and commuting with each other. For instance, it is not hard
to see that these properties imply conditions on the expectation values
such as, for example, 〈σiσjσi〉P = 〈σj〉P .

We can now generalise this concept and think of any real symmetric
k×k matrix as an assignment to expectation values of monomials xα xβ ,
that need not necessarily be achievable by any physical state P . If the
vector ~x contains at least a suitable subset of polynomials of spin vari-
ables, one can further compute the expectation value of the Hamiltonian
from the entries of the moment matrix in the sense that there is a matrix
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h (depending on the Jij and hi in case the Hamiltonian is of the form in
(6.1)), such that for any physical state P it holds that 〈H〉P = tr(hΓ(P )).
If this is the case, one can relax the ground state problem by computing
the energy in this way and optimizing over all matrices Γ that are posi-
tive semidefinite and fulfil the above mentioned linear constraints, rather
than over those that can actually arise from a physical state P .

Recall that a systematic way of constructing a hierarchy of such re-
laxations is as follows: Let ~x(ν) be the vector of all monomials of spin
variables of degree up to ν. Then (for any sufficiently large ν so that
h, implicitly defined via ∀P : 〈H〉P = tr(hΓ(P )), exists), the minimum
achievable in the minimisation problem

E(ν)
g = min

Γ(ν)
tr(hΓ(ν))

s.t. Γ(ν) � 0, (6.4)
tr(FmΓ(ν)) = 0 , ∀m ∈ {1, . . . , k} .

Notice that the above equation is the equivalent of (2.19), where the
Fm represent the afore-mentioned linear constrains that replace the use
of localising matrices. As argued in Section 2.1.4, the hierarchy (6.4)
leads to a convergent series E(1)

g ≤ E
(2)
g ≤ . . . ≤ Eg of lower bounds to

the ground state energy of H.
Lastly, let us illustrate this relaxation with an example. If we are

working at level ν = 2 for a system of N = 3 spins, the corresponding Γ
matrix takes the following form:

Γ(2) =




1 〈σ1〉 〈σ2〉 〈σ3〉 〈σ1σ2〉 〈σ1σ3〉 〈σ2σ3〉
〈σ1〉 1 〈σ1σ2〉 〈σ1σ3〉 〈σ2〉 〈σ3〉 〈σ1σ2σ3〉
〈σ2〉 〈σ1σ2〉 1 〈σ2σ3〉 〈σ1〉 〈σ1σ2σ3〉 〈σ3〉
〈σ3〉 〈σ1σ3〉 〈σ2σ3〉 1 〈σ1σ2σ3〉 〈σ1〉 〈σ2〉
〈σ1σ2〉 〈σ2〉 〈σ2〉 〈σ1σ2σ3〉 1 〈σ2σ3〉 〈σ1σ3〉
〈σ1σ3〉 〈σ3〉 〈σ1σ2σ3〉 〈σ1〉 〈σ2σ3〉 1 〈σ1σ2〉
〈σ2σ3〉 〈σ1σ2σ3〉 〈σ3〉 〈σ2〉 〈σ1σ3〉 〈σ1σ2〉 1




(6.5)
The expectation value of any Hamiltonian of the form given in (6.1)

can be expressed as a function of the entries of Γ(2) as 〈H〉 = J12Γ
(2)
15 +

J13Γ
(2)
16 + J23Γ

(2)
17 + h1Γ

(2)
12 + h2Γ

(2)
13 + h3Γ

(2)
14 . Similarly, one can see how

the linear constraints Fm on the entries reflect the properties of the spin
variables. Dichotomy directly imposes the conditions Γ

(2)
ii = 1 on the

diagonal variables and, combined with commutations, allows to identify
some of the entries, such as for example Γ

(2)
13 = Γ

(2)
25 .

Let us also mention that Lassere himself first explored the applica-
tion of such a relaxation to the ground state energy problem, expressed
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in terms of its max-cut equivalent [Las01a]. Hence, the result hierarchy
relies on 0−1 variables, instead of ±1 ones. Furthermore, as a comparison
with previous branch-and-bound methods, notice that the one introduced
in Ref. [RRW08] exploits a lower bound method that is almost equiva-
lent to the first level of the relaxation (6.4), with the addition of some
hand crafted linear constraints. Indeed, the mentioned relaxation can be
obtained by considering a moment matrix generated by the set of mono-
mials composed of the spin variables only, without the identity operator.
Hence, it results in the first level of the Lasserre hierarchy, diminished
by the absence of one (the first) row of the matrix. In contrast, the hier-
archy discussed here allows to systematically construct an infinite family
of increasingly precise relaxations that yield better and better bounds at
an increasing computational cost.

Lastly, let us comment that from the solution of the considered re-
laxation one can also extract a spin configuration with no additional
computational cost. Let Γ∗ be the optimal solution to the SDP. We
can associate to it a configuration ~σ∗ by taking the sign of the entries
in that matrix that correspond to the expectation values 〈σi〉, namely
set σ∗i := sign(Γ∗1,i+1). The energy of that configuration H(~σ∗) clearly
provides an upper bound to the ground-state energy.

Exploiting sparsity via the chordal extension

Recall that, depending on the kind of system considered, the optimi-
sation problem defined by the Hamiltonian (6.1) can be sparse. As is
shown in Refs. [WKKM06, Las06], one can exploit this sparsity to derive
a more scalable relaxation than (6.4). Intuitively, the idea behind the
modification is the following: for any pair of non-interacting spins i, j,
the corresponding two-body expectation value 〈σiσj〉P is not needed for
the computation of the energy. Thus, a moment matrix with all two-
body correlations is including some potentially unnecessary information.
Hence, finding the minimal amount of such information that is sufficient
to perform the optimisation of the energy, helps define a more efficient
relaxation.

The method works as follows: take the dependency graph G of the
problem and check if it is chordal. A graph is said to be chordal if all its
cycles of four or more vertices have a chord, i.e. an edge that is not part
of the cycle but connects two vertices of the cycle. If G is not chordal,
construct a so-called chordal extension GC of G by suitably adding edges
until the graph is chordal (see Figure 6.2 for an example). The chordal
extension of a graph is not unique, but a chordal extension can always be
found, simply because any fully connected graph is chordal. The challenge
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Figure 6.2: a) An example of graph G that is not chordal, together with
an option of edges to add (shown in red) in order to obtain a chordal
extension GC . The new edges are chosen to “break” the larger cycles,
such as for example the cycle {1, 5, 9, 8}. b) The graph GC and its cor-
responding maximal cliques Cl, shown in the different colors. In this
example, the graph has nc = 6 cliques, out of them two are composed of
4 vertices, while the remaining ones consist of 3 vertices each. The GC is
much sparser than a fully connected graph.

is to find a chordal extension that is still relatively sparse. A general poly-
time technique to find good chordal extensions that worked well for all
the cases studied in this Chapter is to compute an approximate minimum
degree ordering of the graph nodes, followed by Cholesky factorisation of
a positive semidefinite matrix with the associated sparsity pattern [VA15].

Once a specific chordal extension GC is constructed, it will contain a
number of nC maximal cliques Cl ⊂ V. A clique, that is a fully connected
subgraph, is maximal if it cannot be extended by including any other
adjacent vertex. Since the graph G represents a sparse Hamiltonian, and
GC is obtained from G by simply adding some edges, the function (6.1)
can be decomposed into a sum H =

∑
lHCl of terms that each contain

only variables contained in a given maximal clique Cl.

One can then modify the optimisation problem in (6.4) as follows:
replace the big Γ(ν) matrix by a direct sum of smaller matrices Γ

(ν)
l ,

one for each clique, constructed from the spin variables belonging to the
clique Cl. Some spin variables appear in more than one clique, which can
be captured with additional linear constraints that involve variables of
the blocks Γ

(ν)
l . Writing this explicitly, the chordal version of the SDP

relaxation then reads
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min
Γ
(ν)
l

∑

n

tr(hnΓ(ν)
n )

s.t. Γ
(ν)
l � 0, ∀ l = 1, . . . nC , (6.6)

tr(Fm,lΓ
(ν)
l ) = 0 m = 1, . . ., kl , l = 1, . . . nC ,∑

n

tr((Gl,n)Γ(ν)
n ) = 0 l = 1, . . ., k ,

where the Fm,l are the intra-block constraints coming from the prop-
erties of the spin variables, while the Gl,n correspond to the constraints
identifying expectation values belonging to different blocks. Interestingly,
this relaxation still converges to the exact result, as was shown in [Las06].
Depending on the sparsity of the graph G (and its chordal extension GC),
substituting the original optimisation relaxation (6.4) by (6.6) leads to
a substantial simplification and improved scaling in runtime and mem-
ory. In practical applications, the latter are typically dominated by the
the largest block, i.e., the largest maximal clique in GC . Moreover, the
block-structure can be exploited to have a more finely tuned control of
the lower bound precision, essentially by replacing a general hierarchy
level ν by a moment matrix with block-dependent levels νl. This allows
to define hybrid levels where, for instance, smaller blocks are generated at
higher values of νl, thus improving the quality of the lower bound without
significantly affecting the scalability of the SDP.

Let us illustrate how this chordal extended relaxation works in prac-
tice, by going back to the three spins example introduced in the previous
subsection. Imagine one wants to solve the 1D Ising model with Hamil-
tonian H =

∑2
i=1 Ji,i+1σiσi+1. The corresponding dependency graph

G is already chordal and is composed of two cliques C1 = σ1, σ2 and
C2 = σ2, σ3. Then, for a relaxation at level ν = 2 the matrix (6.5) can
be substituted by the two blocks:

Γ
(2)
C1

=




1 〈σ1〉 〈σ2〉 〈σ1σ2〉
〈σ1〉 1 〈σ1σ2〉 〈σ2〉
〈σ2〉 〈σ1σ2〉 1 〈σ1〉
〈σ1σ2〉 〈σ2〉 〈σ1〉 1


 (6.7)

Γ
(2)
C2

=




1 〈σ2〉 〈σ3〉 〈σ2σ3〉
〈σ2〉 1 〈σ2σ3〉 〈σ3〉
〈σ3〉 〈σ2σ3〉 1 〈σ2〉
〈σ2σ3〉 〈σ3〉 〈σ2〉 1


 (6.8)

The constraints Gl,n derive from that the variable σ2 belongs to both
cliques, hence many expectation values appear in both blocks. Some of
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the unnecessary expectation values in (6.5), such as 〈σ1σ3〉 and 〈σ1σ2σ3〉
no longer appear in the two smaller blocks Γ

(2)
C1

and Γ
(2)
C2

. Such a simpli-
fication is particularly useful because it reduces the number of variables
involved in the SDP. Although the Gl,n constraints do not allow to split
the problem into nC independent ones, one can still see that the scaling
of the computational effort is dominated by the size of the largest block
alone.

Branch and bound techniques to solve the ground state energy
problem

The state-of-the-art techniques to compute exact solutions to the ground
state problem rely on the BB method. This is a general iteration strat-
egy that has been applied in several different ways (see, for instance,
Ref. [RRW08] for a review). However, all different applications build
upon three main ingredients:

1. Lower bound : a method to find a lower bound to the ground state
energy. This generally implies the use of some relaxation of the
ground state energy problem.

2. Upper bound : some heuristics that gets a spin configuration that
constitutes an approximation from above to the ground state en-
ergy. A simple example would be classical annealing. As mentioned
before, we use a procedure to extract a spin configuration directly
from the solution of the SDP relaxation.

3. Branching procedure: a branching consist in dividing the original
problem into two sub-problems that corresponds to the opposite
cases of a dichotomic choice. In the ground state search, it can be
done by choosing a vertex i and considering the two sub-sets of spin
configurations that have σi = ±1 fixed. Solving the ground state
problem in both of the sub-cases can be cast as another ground
state problem for a modified graph where the vertex i has been
removed and the couplings have been modified accordingly. Then,
clearly, the solution of the original ground state energy is just the
minimum between the solutions of the two sub-cases.

The trick is now to use the upper and lower bounds to reduce the num-
ber of branches to explore. The BB procedure does that as follows: (i)
start with the original graph and compute a lower and upper bound zL, zU
to the ground-state energy; (ii) if the bounds differ, choose a branching
and compute lower and upper bounds for the two subcases; (iii) keep
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track of the best upper bound z̄U encountered so far and discard all the
explored branches in which the lower bound is higher than z̄U ; (iv) from
the reduced list of branches, pick the one corresponding to the lowest zL,
if it still differs from the best upper bound z̄U , go back to point (ii) and
perform another branching; (v) keep repeating until the lowest zL and
the best upper bound z̄U coincide.

6.3.2 Details of the method

We now describe in detail the three ingredients of our chordal branch
and bound (CBB) strategy: the lower bound, the upper bound, and the
branching rule.

Lower bound

The cheapest method to get a bound on the ground-state energy from
below would be to use the relaxation in (6.6) at its lowest level, namely
ν = 1. However, in practical applications this leads to a lower bound
that can be more than 10 % away from the corresponding upper bound.
As already mentioned in Ref. [RRW08], having such a big initial gap
slows down the convergence of the branch and bound, making it very
difficult to reach a point in the branching where the lower bound is high
enough to start excluding the first branches. This problem is overcome
by tightening the relaxation, which can be done in several ways.

The option considered in Ref. [RRW08] was to tighten the relaxation
at level 1 by adding hand crafted linear inequalities, so-called triangle in-
equalities, between entries of the matrix corresponding to the two-body
correlations 〈σiσj〉 of triples of spin variables. Since the amount of all
these possible constraints scales as N3, usually only part of them is intro-
duced. In our CBB we can exploit the structure of the problem to obtain
more systematic efficient improvements.

The chordal extension reduces the amount of meaningful constraints
that can be added. Indeed, the resulting block structure implies that
the only two-body expectation values 〈σiσj〉 that appear in the moment
matrices correspond to spins i, j belonging to the same block. Hence,
all the triangle inequalities that can actually be imposed have to involve
triples i, j, k that appear in the same clique.

The numerical effort for one step in the CBB method is mostly deter-
mined by the largest block in the moment matrix. Therefore, we choose
to take a hybrid approach, introducing an intermediate level with ν = 2

for all the blocks Γ
(ν)
l involving less than nt variables, while keeping all

the bigger blocks at level 1. Taking such a hybrid level yields a significant
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improvement in the initial lower-upper bound gap already for smaller val-
ues of nt. In fact, we have checked numerically that this devises a test
that corresponds at least to the case of level 1 plus the addition of all
triangle inequalities between variables in the smaller blocks.

Moreover, we also allow for additional triangle constraints between
two-body correlations belonging to bigger blocks. In particular, we add
them in an iterative way, as shown in Ref. [RRW08], until the improve-
ment on the lower bound is smaller than some numerical precision. In
most cases we tested, there was actually no need to introduce these ad-
ditional constraints.

Upper bound

For the upper bound one needs a good guess for a spin configuration that
is close to the ground-state energy. Here we develop an improvement over
the method proposed in Ref. [RRW08]. A nice feature of the method is
that it extracts an upper bound directly from the moment matrix that
is obtained by solving the SDP to get the lower bound. Intuitively, this
can be seen as a way to obtain the spin configurations “closest” to the
optimal (but typically unphysical) solution achieved by the relaxation.

Recall from Section 6.3.1 that the method we use has a very simple
interpretation: take the moment matrices Γ

∗(ν)
l , obtained from the solu-

tion of the SDP (6.6), and construct the configuration ~σ∗ where each spin
σ∗i is aligned according to the sign of the entry corresponding to the ex-
pectation value 〈σi〉. For the sake of comparison with Ref. [RRW08], let
us explain its interpretation in more detail: recall that each matrix Γ

∗(ν)
l

always contains as a sub-matrix Γ
∗(1)
l , involving the variables occurring

already at level 1, namely that generated by the set of variables {1, Cl}.
Γ
∗(1)
l is a (nl + 1)× (nl + 1) matrix, where nl stands form the number of

spins contained in the clique Cl (compare also the examples in Eqs. (6.7)
and (6.8)).

Because they are positive semidefinite, these matrices can be identified
with a collection of vectors {vl,0, vl,1, . . . , vl,nl} in a m−dimensional space
Rm that reproduce their entries by the scalar product Γ

∗(1)
l,ij = vl,i · vl,j .

A way to obtain such vectors is to perform a Cholesky decomposition
of the moment matrices Γ

∗(1)
l = BT

l Bl and reduce the columns of the
resulting Bl up to the point where Γ

∗(1)
l can still be recovered to the

desired numerical precision.
Inspired by a similar argument used in Ref. [NPA08], we interpret the

first vector vl,0 of each block as a representation of a state of the spin
systems, while the remaining vectors represent the spin variables in the
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clique Cl. Indeed, one can see that the first row of the moment matrices
recovers the spin expectation values Γ

∗(1)
l,0j = vl,0 · vl,j = 〈σj〉. Now we can

define a spin configuration for the clique Cl from the sign of these scalar
products, i.e., we set the variables of the jth spin in the lth subset to be
sign(vl,0 · vl,j).

This method is different from what had been done in earlier ap-
proaches. In Ref.
[RRW08], the moment matrix is missing the first row and column vector,
and thus exactly the entries we need. In this case, a configuration had
to be extracted via the sign(vr · vl,j) of inner products between vl,j and
randomly chosen vectors vr. Constructing spin configurations via ran-
dom vectors in this way is incompatible with the chordal extension, let
us explain why: since the cliques of a graph overlap on some vertices,
it will happen that the same spin index appears in more than one list
I l. However, given that the aim is to extract a complete and consistent
spin configuration ~σ∗ = {σ∗1, . . . , σ∗n}, one must avoid having conflicting
assignments for any of the spin variables. If one takes the randomised
construction from Ref. [RRW08], such inconsistencies will appear, even
if the random vectors vr are taken to be the same for each block. On the
contrary, since we essentially set each deterministic guess to be the sign
of a one-body expectation values, our method ensures consistency.

To conclude, once a valid spin configuration ~σ∗ has been extracted, we
simply set the upper bound to be its corresponding energy H(~σ∗). Sur-
prisingly, we noticed that by following this procedure, the exact ground
states is usually recovered very soon in the branching (see Fig. 6.1 for an
example). It then takes additional time to find a matching lower bound
to verify that this is indeed the lowest achievable energy. This makes us
believe that the outlined procedure is very efficient in finding the optimal
deterministic configuration.

Branching rule

Here we follow the same method outlined in [RRW08], but with a different
choice of branching procedure. Indeed, the authors in [RRW08] choose
the dichotomic choice to be the relative alignment of a pair of connected
spins. That is, given a choice of indices i, j, the two branches correspond
to the two cases σi ± σj = 0. However, as mentioned before, we prefer
to branch on the value of the single spin, by choosing between the two
values σi = ±1. The reason for this is that, in the latter case the number
of possible branching steps depends only on the number N of spins in
the system. On the contrary, the former method involves an amount of
branching choices that depends on the number of edges in the dependency
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graph G, which can be much higher, often as high as N2.
Finally there is the question of which spin i to choose for the next

branching. The way we do this here, is based on the corresponding ex-
pectation value 〈σi〉 recovered from the moment matrices Γ

(ν)
l obtained

by solving the SDP. The intuition is the following: spins with an expecta-
tion value close to zero are “difficult” choices, because flipping the value
of such a spin is likely to lead to a slight change in the energy of the
system; conversely, expectation values very close to ±1 are identified as
“easy” choices, because flip such a spin is likely to lead to a significant
change in the energy of the system. We set the branching rule to “easy-
first”, that is, at the end of each optimisation round, the next branching
is performed on the most deterministic spin in the Γ

(ν)
l .

6.4 Benchmarking the CBB

We now describe the results that we could obtain by benchmarking the
CBB method with other classical and quantum algorithms. We start with
a comparison of the standard SDP-based BB methods and CBB and then
move on to the more interesting problem of verifying the results of two
kinds of energy minimisations performed on an actual quantum annealing
device. To do so, we also show how the results obtained by CBB can be
used to study the phase transition in a 2D triangular ferromagnetic Ising
model with local disorder. The numerical minimisation with CBB and BB
was run on a workstation with an Intel Xeon E5-1650v4 processor with six
physical cores clocked at 3.60 GHz base frequency and 128 GByte RAM.
Due to the polynomial scaling of the method, much larger system sizes
can be reached with more powerful hardware. The sparse semidefinite
relaxations were generated by Ncpol2sdpa [Wit15], and the semidefinite
programs were solved by Mosek [Mos]. The code for the experiments is
available under an open source license 1.

6.4.1 Ising model on a 2D square lattice

As a first test we compare the performance of the CBB method with a
sparse Ising problem in the two cases of exploiting and not exploiting
the chordal extension trick. In the absence of chordal extension, our BB
method is comparable to the one introduced in [RRW08] (for details,
see Section 6.3). As a benchmark of a sparse instance, we consider the
standard 2D ferromagnetic Ising model in a statically disordered magnetic
field (quenched disorder). Such a model is represented by the following

1https://gitlab.com/FBaccari/Chordal_BB

https://gitlab.com/FBaccari/Chordal_BB
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Figure 6.3: Time comparison, as a function of the linear lattice size L =√
N , between a standard SDP-based branch and bound (BB) algorithm

and the one augmented with the chordal extension (CBB). The problem
is finding the ground state energy for a 2D Ising ferromagnetic model
with random Gaussian magnetic field, close to the phase transition at
σ = 1.5, i.e. where the ground state is already partially disordered. The
time estimation was averaged over 100 disorder realisations, except for the
largest system size, where the averaging was reduced to 10 samples. Due
to the large amount of disorder averaging, we limit ourselves to system
sizes L ≤ 15, far below the maximum sizes we can tackle on our hardware.
The comparison is shown in a linear scale and double logarithmic in the
inset. The dashed lines in the inset are power laws of the form L10 and
L6, demonstrating the claimed polynomial scaling of the runtime N5 for
BB vs. N3 for CBB.

Hamiltonian

H(~σ) = −
∑

〈i,j〉

σiσj +

N∑

i=1

hiσi , (6.9)

where the first sum runs over all pairs of connected spins 〈i, j〉 in a square
lattice. The local fields hi are drawn randomly from a Gaussian distribu-
tion with zero mean and variance σ for each site i. As a function of the
disorder strength σ, the model undergoes a phase transition from a fer-
romagnetic ground state (in which all states are aligned with each other)
to a disordered phase (in which, for extremely large disorder, the spins
are aligned with the local magnetic fields). For this model it is known
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that the ground state can in principle be found in polynomial time (for
details see Section 6.2.2).

Indeed, the non-chordal BB method is able to do that, but, especially
in the interesting region close to the phase transition, fast growing mem-
ory requirements and runtime make the method impractical for systems
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the following: spins with an expectation value close to
zero are “di�cult” choices, where flipping the value of
the spin is likely to lead to a slight change in the en-
ergy of the system; conversely, expectations values very
close to ±1 are identified as “easy” choices, where a flip
is likely to lead to a significant change in the energy of
the system. Then, two possible branching rules could be
easy-first or di�cult-first. That is, at the end of each
optimisation round, the next branching is performed ei-
ther on the most deterministic spin in the Ml or on the
least deterministic one. We expect the choice of the most
e↵ective branching rule to depend on the system under
consideration. [Christian: Would be nice if we could try
this out in the applications we want to present in the
next section.]

IV. RESULTS

To exemplify the power of our method we apply it
. . . [Christian: With Peter we thought about which ap-
plications we should put. We think the following could
be nice:

• Standard plain vanilla 2D Ising with open bound-
ary conditions. This is known to be poly time solv-
able. Show here that the method actually always
find a deterministic ground state in poly time for
random assignments and that it outperforms stan-
dard branch and bound.

• The image regcognition problem of Pater, which is
again essentially 2D Ising, but we can put some
nice plots and make the connection to ML (this is
a bit dishonest as the problem sizes we can tackle
on a desktop computer are actually too small to
compete with the paper that Peter used as a basis)

• 2D Ising on some non-planar graph where the prob-
lem is known to be NP hard in worst case. I sug-
gest to again throw the algorithm at random as-
signbemts. If it solves these in poly time, then
great (remember: the chordal SDP always runs in
poly time for a foxed level ⌫, but the branch and
bound can run in super poly time if the bounds
one gets from a given level are not tight enough
to weed out su�ciently many branches early on.).
If not we should be at least able get some bounds
and moreover for system sizes that are comparable
to those Dwave can do on their chip (it is a pain
in the ass for them to implement closed bound-
ary conditions). We can pitch that as good candi-
dates for future experiments as this would then be
an actually hard problem for which nevertheless on
can compare the Dwave machine’s output so some
lower bound and not just to upper bounds obtained
by classical simmulated annealing, which is already
shit even for planar graphs for which exact solutions
can be found in poly time.

D-Wave B&B
0 -905.9085514300375 -905.908551430
1 -889.9404593699263 -902.183420652
2 -928.4194048119439 -935.19413858
3 -899.6958288124295 -908.78734858
4 -924.379542441648 -925.3916095276
5 -977.0473655112282 -977.047365511
6 -908.0985152444642 -913.750935211
7 -910.2831251861298 -913.93555353
8 -896.1940978678036 -915.306369586
9 -914.3258482669878 -914.3258482

TABLE I. Comparison of the lowest energy value for a disor-
dered phase at � = 1.5 on a triangular lattice on a 2040-
qubit quantum annealer and the branch-and-bound algo-
rithm. [PW: What’s the first column anyway?]

]

A. Verifying the solution of a quantum annealer

Triangular lattice

We used a D-Wave 2000Q quantum annealer with 2040
functional qubits, that is, the chip had 8 faulty qubits and
the corresponding couplings removed from a full-yield
16 ⇥ 16 Chimera graph. We used the virtual full-yield
Chimera graph abstraction to ensure consistent embed-
dings and improve the quality of the results. The cou-
pling strengths were autoscaled to the interval [�1, 1],
and the logical qubits used a coupling strength of �2
to hold a chain of physical spins together. The minor
embedding was a heuristic method, with the short chain
length of 7, which is the one for which we present the
results. We also tried chains up to length 22, without
significant change in the results, showing that the scal-
ing in the couplings ensures that the chains do not break.
For each data point, we sampled a thousand data points
and chose the one with the lowest energy as the optimum.
The flux bias of the qubits was not o↵set. The results
are summarized in Table I.

V. DISCUSSION AND FURTHER POSSIBLE
IMPROVEMENTS

VI. CONCLUSION

In this work we propose the chordal branch and
bound method, which improves upon the state-of-the-art
method for finding ground states of spin model in sev-
eral ways. Most importantly, by leveraging the chordal
extension, we are able to. . .
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Figure 6.4: Left: Comparison of the lowest energy value for a disordered
phase at σ = 1.5 on a triangular lattice on a 2040-qubit quantum annealer
and the chordal branch and bound algorithm. Right: comparison of
the corresponding ground state spin configuration for the case where the
lowest energy was not achieved. Yellow spins are +1 and black one −1.
It can be seen clearly that, even when the two energies are close, the
corresponding spin configurations can be very different. This shows that
the excited state that the D-Wave quantum annealer returns, does not
necessarily resemble the globally optimal solution.

grammable) to obtain directly comparable results. We observe that for
most disorder realisations, we can verify by CBB that the quantum an-
nealer is able to find the exact ground state energy. This is true even
for intermediate disorder strength, where the ground state spin pattern
shows macroscopic islands of aligned spins whose precise shape and posi-
tions depends non-trivially on the disorder realisation around σ = 1.5. It
does that typically in a very short time. However, there are also cases in
which, even after 1000 repetitions, the lowest energy found by the quan-
tum annealer is still higher than the exact value computed with CBB.
Here, the optimal spin configuration found by the quantum annealer typi-
cally differs markedly from the true ground state, which shows that it gets
stuck in local minima and emphasises the importance for exact methods
such as CBB for comparison and benchmarking. We summarise results
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of simulations in this interesting regime of intermediate disorder strength
in Figure 6.4.

6.4.3 Analysis of the phase transition in the ferromagnetic
disordered Ising model in a 2D triangular lattice

Here we use the CBB method to study in more detail the 2D triangular
Ising model used to benchmark the solution of the D-wave quantum an-
nealer. Recall that we considered a ferromagnetic model in a statically
disordered magnetic field, represented by Hamiltonian (6.9), where now
the first sum runs over all pairs of connected spins 〈i, j〉 in the triangular
lattice. The phase transition can be detected by estimating the ground
state magnetisation

m =
|∑N

i=1 σ
(g)
i |

N
, (6.10)

where ~σ(g) is the ground state configuration. Clearly, a ferromagnetic
ground states is fully magnetised, hence it is characterised by m = 1. On
the other hand, a disordered phase corresponds to m ≈ 0 (notice that,
because of finite size effects, one can never reach an exactly zero value in
numerical tests ).

We analysed the phase transition by computing the ground state en-
ergy for the model with the CBB method and estimating its magnetisa-
tion m as a function of the disorder strength σ. For each value of σ, the
results were averaged over 100 samples. Figure 6.5 shows the obtained
magnetisation curves, for two different linear lattice sizes L = 15, 20.

6.4.4 Verifying solutions for a Chimera graph

Lastly, we consider the application of CBB to a denser graph. For this
purpose we choose the Chimera architecture [BHJ+14], which is the nat-
ural graph on the D-wave 2000Q hardware. The corresponding graph
is composed of K4,4 fully connected bipartite unit cells, consisting of 8
spins – 4 horizontal and 4 vertical – with edges between each horizon-
tal/vertical pair. These unit cells are arranged to form a 2D square lattice
of size L and a total number of N = 8L2 spins. Because of the in-cell
connectivity, such a graph is clearly non-planar and thus has the poten-
tial to encode NP-hard Ising models. We consider again a ferromagnetic
model with a disordered magnetic field and we find that even though
the Chimera graph is non-planar and denser than 2D rectangular and
triangular lattice, using the chordal extension still gives a remarkable
advantage, allowing us to compute the ground state energy for system
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Figure 6.5: Average magnetisation m of the ground state of the ferro-
magnetic Ising model with disordered magnetic field, as a function of the
disorder strength σ, for a 2D triangular lattice of linear size L. The plot
shows the cases L = 15 (blue) and L = 20 (red). The phase transition
could be pinned-down more precisely by means of a finite size scaling
analysis. For our purposes here it is sufficient to know that in the range
σ ∈ [1, 3], the ground states has non-trivial spin patterns.

sizes of L = 9, compared to just L = 5 (on the same hardware) for an
SDP-based BB method without the chordal extension.

Let us stress that, although the D-Wave 2000Q quantum annealer is
currently implementing a Chimera graph with 2040 functional physical
qubits, they are seldom actually used as logical spins. Most recent studies
encode each K4,4 cell as a single logical spin, in order to suppress errors
due to the finite size and qubit quality of the system [MK18]. This
results in effectively solving Ising models on a 2D square lattice which,
being planar, is actually proven to be polynomially solvable (see also
Section 6.2.2). On the contrary, our numerical test was performed on the
actual Chimera graph. This opens up the way to benchmarking future
annealing devices, once their physical qubit quality has improved to a
point that makes the individual spins useful, in the much more interesting
regime of non-planar graphs.
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6.5 Discussion and possible improvements

Designing methods to certify the output of quantum optimisers is crucial
for their development. In this Chapter we introduced the chordal branch-
and-bound (CBB) method that uses a hierarchy of efficiently computable
upper and lower bounds on the ground-state energy of classical spin sys-
tems and exploits the physical locality structure of relevant Hamiltonians.
Our numerical results show that the iterative branch-and-bound process
often converges, providing an exact and certified value for the ground-
state energy, together with a ground-state configuration. The favourable
scaling in memory and runtime of our method, compared to methods
that do not use the chordal extension, enables the verification of current
and near-future quantum optimisers, such as the D-Wave quantum an-
nealer [LPS+14], degenerate optical parametric oscillators [QNN17], and
variational circuits [FGG14, Cro18].

Notice that there is some extent of freedom in the way we implemented
our CBB method. Given the huge difference in complexity that can be
exhibited by various instances of the Ising model, we expect the optimal
choice to be model dependent. Let us briefly discuss which modifications
we imagine to be most useful for practical applications.

We start by recalling that, in order to accelerate the convergence
process and to keep memory requirements low, it is crucial to reduce the
initial lower-upper bound gap as much as possible and as early as possible.
One way to do that is to modify the hybrid hierarchy level introduced
above. In our applications, it was always enough to set the threshold
to at most nt = 7. However, such value can be significantly increased
without affecting too much the scalability of the CBB. Indeed, the main
bottleneck of our method is the memory required to solve the largest
SDP. This depends mainly on the block l∗ leading to the largest matrix
Γ

(ν)
l∗ . Therefore, as long as increasing the level of the smaller blocks does

not lead to bigger matrices that the one for the largest clique, the SDP
will still have the same memory requirements – although the solving time
will clearly increase.

Other branching rules can be also be adopted. For instance, one can
replace the “easy-first” approach with a “difficult-first”. In this case, one
picks the next branching from the least deterministic spin in the Γ

(ν)
l We

expect the choice of the most effective branching rule to depend on the
system under consideration.

Lastly, there are instances in which CBB does not outperform other
methods. This is true for specific cases of very sparse problems, where
linear-programming relaxations were shown to work very well [LJRR04],
or some hand-crafted models for which exact polynomial algorithms are
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known [MKT17]. Nevertheless, it would still be interesting to see if one
could combine the construction based on the chordal extension with those
methods and provide some further advantage.
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Chapter 7

Conclusions and outlook

Certifying operational properties of many-body systems is a crucial prob-
lem for the development of quantum technologies. Importantly, any cer-
tification protocol that aims at applying to large scale scenarios has to
fulfil scalability requirements that are two-fold. From the computational
point of view, it has to be based on a numerical test whose memory and
time requirements are polynomial in the number of particles in the state.
Similarly, it must require an amount of information that can be estimated
experimentally with a polynomial effort too.

The device-independent framework, based on the detection of nonlo-
cality, a property that can be assessed by simply looking at correlations, is
particularly appealing for certifying purposes. Indeed, it provides meth-
ods to characterise properties of a quantum device without having to
know the details of its internal functioning. In this thesis, we studied
scalable device-independent methods for the certification of several op-
erational features of multipartite systems. Moreover, we extended tech-
niques we developed for nonlocality detection so to address a completely
different framework, namely that of computing the ground state energy
of a classical spin system.

In this Chapter we briefly revise the scenarios and applications we
considered and discuss possible future lines of investigation for each of
them.

Device-independent detection of entanglement. We have stud-
ied a relaxation of the nonlocality detection problems in terms of an SDP.
Such a relaxation allows one to define a numerical device-independent test
for entanglement in a multipartite system that is scalable both from the
computational and the experimental point of view. Indeed, the related
SDP involves a polynomial amount of variables in the size of the system
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and it requires the knowledge of few-body correlations only. We have also
shown that the propose method, despite being a relaxation, successfully
detects entanglement in several physically relevant families of multipar-
tite states.

An interesting question to address would be whether the SDP test can
be used to provide also quantitative statements about the entanglement
in the system. This would require to study relaxations of the nonlocality
depth detection problem, which would give information on how many
particles in the system are really entangled among each other.

Alternatively, it would also be relevant to analyse the proposed method
in more detail. Notice, for instance, that if one is interested in knowing
whether a given state is entangled, one has to generate correlations to
feed the SDP. This requires making a specific choice of local measure-
ments to perform and it clearly affects the results of the test: in other
words, depending on which measurements one considers, the same entan-
gled state might be detected or not by the SDP condition. Therefore,
if we aim at applying our method to realistic scenarios, studying good
strategies to generate correlations that allow for successful entanglement
detection is of vital interest.

Lastly, it would be worth exploring the possibility of applying the
introduced entanglement detection techniques to real data coming from
an experiment.

Detecting nonlocality depth in many-body systems. We have
studied the problem of detecting nonlocality depth in many-body sys-
tems, namely quantifying how many particles genuinely share nonlocal
correlations, with the limited knowledge of two-body correlators. We have
shown that, upon considering permutationally invariant correlations, the
problem drastically simplifies: more precisely, any fixed nonlocality depth
can be detected with a test that is polynomial in the number of particles.
Moreover, we have introduced a Bell inequality that can discriminate val-
ues of nonlocality depth of k ≤ 6 for systems of any size and we have
applied it to experimental data from a Bose-Einstein condensate com-
posed of several hundreds of particles.

Given these results, a natural question that comes in mind is whether
two-body correlations are enough to detect any value of nonlocality depth,
including genuine nonlocal correlations. While we know that this is the
case for systems of up to N = 7 particles, the problem is still open
in the case of arbitrarily large systems. To answer such question one
should know the projection of the no-signaling polytope in the two-body
symmetric space for scenarios of any number of particles, a problem we
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conjecture being too hard to be solved in general. Nevertheless, it would
be interesting to see whether considering relaxations of the problem could
be of any help.

On the other hand, it would also be of interest to classify families
of multipartite states whose nonlocality depth can be detected in the
considered two-body framework. We know from previous works that
spin-squeezed states and Dicke states are good candidates for standard
nonlocality detection, but inequalities that discriminate values of non-
locality depth for Dicke states of any number of particles are yet to be
found.

Scalable self-testing based on Bell inequalities. We have intro-
duced a general strategy to derive self-testing Bell inequalities maximally
violated by graph states, one of the most paradigmatic families of multi-
partite states. We have also shown that the violation of these inequalities
can be used to bound the fidelity between the measured state and the
graph state of interest. Compared to previously known inequalities for
graph states, ours are the first to be associated to a self-testing statement
and they are also the most scalable ones, since they are composed of a
number of terms that scales linearly with the system size.

From an experimental point of view, the introduced Bell inequalities
constitute a promising certification tool that can be readily used in any
setup that is currently generating graph states. Thus, it would be inter-
esting to explore this possibility, which would be the first application of
device-independent fidelity bounds to experimental data. The main ob-
stacle to face is that, for the current bounds to be meaningful, the state
has to be produced with a very high fidelity (about 90 − 95%), which
is a very strict requirement for the state-of-the-art methods to gener-
ate graph states. A way to cope with this problem would be to look for
device-independent bounds for our Bell inequalities that are more resilient
to experimental imperfections.

From a more theoretical point of view, it would also be interesting to
explore generalisations of our method to self-test other classes of multi-
partite states. Indeed, as we have shown with the example of the partially
entangled GHZ state, one can interpret our techniques as a way to derive
inequalities associated to the stabilizers of a generic multipartite state.
The range of applicability of such techniques is yet a very open ques-
tion. Apart from self-testing of states and measurements, a promising
direction to investigate is the extension of our method to the device-
independent certification of other quantum information protocols. Two
promising examples we can think of are quantum computing and quan-
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tum error correction. In fact, a representative model of universal quantum
computation is constituted by measurement-based quantum computing
[RB01], whose building block is the cluster state, precisely a graph state.
Similarly, many quantum error correction protocols can be interpreted
by means of a stabilizer formalism. Hence, both the outlined scenarios
present connections to our method that might be worth exploring further.

Verification of Quantum Optimizers. We have introduced the
chordal branch-and-bound method, a scalable numerical tool to compute
a convergent series of upper and lower bounds to the ground state energy
of any classical spin model. Even though the complexity of the problem
implies that for some models the convergence will be met in exponential
time, CBB is guaranteed to output with polynomial effort a confidence
region enclosing the exact solution.

Our method constitutes a very promising tool to verify the solu-
tions provided by newly developed quantum optimizers. We have already
shown an application to the D-Wave quantum annealer, which allowed
us to detect instances where the device got stuck in a local minimum.
On a related note, it would be interesting to study whether CBB could
be used to certify the quality of a given quantum optimisation method.
For instance, one could use our method to check whether a quantum de-
vice reaches the exact solution for small system sizes and then leave the
large instances to the quantum algorithm only, while checking the valid-
ity of the output through the confidence region that CBB provides in an
efficient way.

A direction worth exploring is also a further comparison to other
branch-and-bound methods, especially those based on linear program-
ming, that have been shown to be very scalable for some specific ex-
amples of sparse Ising models. In particular, it would be interesting to
see whether the techniques involved in CBB can be combined with in-
sights coming from these methods, in order to obtain even more efficient
certification algorithms for the classical ground state energy problem.

Lastly, it would be very interesting to study whether a method similar
to CBB can be used to derive a convergent series of lower and upper and
bounds to the ground state energy of quantum Ising models.
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Appendix of Chapter 3

A.1 Details of the method

Here, we present in more detail the SDP relaxation associated to quantum
realisations with commuting measurements. In order to be consistent
with the examples presented in the main text, we express it in terms of
correlators, but we stress that a formulation in terms of projector and
probabilities for higher numbers of outcomes is straightforward.

Let us consider that the N observers Ai are allowed to perform m
dichotomic measurements each. We can therefore define the expectation
value operators M (i)

xi = M1
xi −M0

xi in terms of measurements Mai
xi , so to

reproduce the correlators (3.4).
For any quantum realisation of such operators, it is possible to show

that they satisfy the following properties:

i) (M
(i)
xi )† = M

(i)
xi for any i = 1, . . .N and xi = 1, . . .,m,

ii) (M
(i)
xi )2 = 1 for any i = 1, . . .N and xi = 1, . . .,m,

iii) [M
(i)
xi ,M

(j)
xj ] = 0 for any i 6= j and xi, xj = 1, . . .,m.

Now, let us consider that the sets Oν we introduce in section 3.2.1
consist exactly of all the products of the {M (i)

xi } up to order ν. Then, by
indexing the operators in the sets as Oi for i = 1, . . ., k, we define the
k × k moment matrix as follows

Γij = tr(ρNO†iOj)

where ρN is a generic N-partite quantum state. As it was shown
in [NPA07, NPA08], for any set of quantum correlations P , the properties



132 Appendix of Chapter 3

i)-iii) and the fact that the associated ρN is a proper quantum state reflect
into the following properties of the moment matrix:

• Γ† = Γ,

• Γ � 0,

• the entries of the matrix are constrained by some linear equations
of the form

∑

i,j

(Fm)ijΓij = gm(P ) m = 1, . . ., l

where (Fm)ij are some coefficients and the gm(P ) can depend on
the values of the correlators composing the P vector, as such

gm(P ) = (gm)0 +

N∑

k=1

∑

i1<...<ik
i1,...,ij

(gm)i1,...,ikj1,...jk
〈M (i1)

j1
. . .M

(ik)
jk
〉

Up to this point, the method we describe coincides with the NPA hier-
archy [NPA07, NPA08], which is used to check whether a set of observed
correlations is compatible with a quantum realisation. In order to define
a hierarchy to test for local hidden variables realisation, we introduce the
additional condition that all the measurements for the same party have
to also be commuting, namely

iv) [M
(i)
xi ,M

(i)
yi ] = 0 for any i = 1, . . ., N and xi 6= yi = 1, . . .,m.

It can be seen that property iv) implies a second set of linear con-
straints on the Γ matrix, which we identify as

∑

i,j

(F ′m)ijΓij = g′m(P ) m = 1, . . ., l′

To make it clearer, we show an example of linear constraint that can
come only if we impose condition iv). Let us consider the following four
operators: Ok = M

(i)
xi M

(i)
yi , Ol = M

(i)
xi M

(j)
xj , On = M

(i)
yi and Om = M

(j)
xj .

It is easy to see that, by exploiting i)-iii) plus iv), Γkl = Γnm for any
choice of xi, yi, xj = 1, . . .,m and i, j = 1, . . ., N .

Now, for any chosen Oν , we can test whether an observed distribution
P is compatible with a local model via the following SDP
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maximise λ,

subject to Γ− λ1 � 0,
∑

i,j

(Fm)ijΓij = gm(P ) m = 1, . . ., l , (A.1)

∑

i,j

(F ′m)ijΓij = g′m(P ) m = 1, . . ., l′ ,

which is the primal form of the problem. A solution λ∗min < 0 implies that
it is not possible to find a semidefinite positive moment matrix satisfying
the given linear constraints. Therefore P has no quantum realisation with
commuting measurements and we conclude it is nonlocal. We notice
that by increasing the value of ν we get a sequence of more and more
stringent tests for nonlocality. Indeed, the linear constraints for the level
ν are always a subset of the ones coming from ν + 1. Moreover, in
analogy with the NPA hierarchy, the series of tests is convergent; hence
any nonlocal correlation will give a negative solution λ∗min at a finite step
of the sequence.

Interestingly, we can also study the dual form of the SDP problem,
which reads as follows:

minimise G(P ) =
∑

k

ykgk(P ) +
∑

k

y′kg
′
k(P ),

subject to
∑

k

ykF
T
k +

∑

k

y′kF
′T
k � 0, (A.2)

∑

k

yktr(F Tk ) +
∑

k

y′ktr(F ′
T
k ) = 1.

Thanks to the strong duality of the problem, a negative solution for the
primal implies also G(P ) = λ∗min < 0. Since any point in Lν satisfies the
SDP condition at level ν with G(P ) ≥ 0, we can interpret G(P ) as a Bell-
like inequality separating the Lν from the rest of the correlations. Indeed,
since gk(P ) and g′k(P ) are linear in terms of the probability distribution,
we derive that G(P ) ≥ 0 defines also a linear inequality for P . Violation
of such an inequality directly implies nonlocality.

A.2 Proof of local bound and quantum violation
for the inequalities

We start by proving the local bounds for the inequalities introduced
in the main text. To do so, we remind the reader that to derive the
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maximal value attained by local correlations it is enough to maximise
over the vertices of the local set. In the correlator space, the deterministic
local strategies (DLS) take the form

〈M (i1)
j1

. . .M
(ik)
jk
〉 = 〈M (i1)

j1
〉. . .〈M (ik)

jk
〉 (A.3)

where each M
(i)
xi term can take only 1 and −1 values. By using this

property, inequality (3.10) becomes

I3
mix(DLS) = (N − 1)

[
〈M (1)

1 〉+ 〈M (1)
0 〉
]
T0

+
[
〈M (1)

1 〉 − 〈M
(1)
0 〉
]
T2

(A.4)

where T0 = 〈M (2)
0 〉. . .〈M

(N)
0 〉 and T2 =

∑N
i=2〈M

(i)
2 〉. For any number of

parties N , we have that T0 ≤ 1 and T2 ≤ N − 1; therefore

I3
mix(DLS) ≤ 2(N − 1)〈M (1)

1 〉 ≤ 2(N − 1) (A.5)

Similarly, for any deterministic strategy, inequality (3.11) takes the from

I2
mix(DLS) = (N − 1)

[
〈M (1)

1 〉+ 〈M (1)
0 〉
]
T0

+
[
〈M (1)

1 〉 − 〈M
(1)
0 〉
]
T1

(A.6)

where T1 =
∑N

i=2〈M
(i)
1 〉. As for before, we can use the argument that

T0 ≤ 1 and T1 ≤ N − 1 to conclude

I2
mix(DLS) ≤ 2(N − 1)〈M (1)

1 〉 ≤ 2(N − 1) (A.7)

Regarding the quantum violation, we recall that the scenario we con-
sider is |ψ〉 = |GHZN 〉 = 1√

2
(|0〉⊗N + |1〉⊗N ) with measurements choices

M
(i)
0 = X, M (i)

1 = D = 1√
2
(X + Z) and M (i)

2 = Z for all i = 1, . . ., N .
It is easy to check that, for a GHZ state of any number of parties, the
following is true
• 〈XiXj〉 = 〈XiZj〉 = 0 for any i 6= j = 1, . . ., N .

• 〈ZiZj〉 = 1 and therefore 〈DiZj〉 = 1√
2
and 〈DiDj〉 = 1

2 for any
i 6= j = 1, . . ., N .

• 〈X1X2. . .XN 〉 = 1 and 〈Z1X2. . .XN 〉 = 0, therefore 〈D1X2. . .XN 〉 =
1√
2
for any N .
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By using the properties listed above, one can check that

〈I3
mix〉GHZN = (1 +

√
2)(N − 1) ≈ 2.41(N − 1) (A.8)

and, similarly, that

〈I2
mix〉GHZN =

3 +
√

2

2
(N − 1) ≈ 2.21(N − 1) (A.9)

Moreover, we notice that by changing the measurement setting, one can
achieve a higher violation of I2

mix. Indeed, it is easy to see that by
choosingM (1)

0 = 1√
2
(X+Z),M (1)

1 = 1√
2
(X−Z) andM (i)

0 = X,M (i)
1 = Z

for i = 2, . . ., N , the resulting violation is

〈I2
mix〉GHZN = 2

√
2(N − 1) ≈ 2.83(N − 1) (A.10)

To conclude, we proceed with the analysis of the robustness to noise.
We recall that this implies considering the noisy version of the GHZ
state; namely

ρN (p) = (1− p)ρGHZN + p
1N

2N
(A.11)

where 0 ≤ p ≤ 1 represent the amount of white noise added to the state.
It can be easily seen that the noise affects the values of the correlators
for the GHZ state in the following way

〈σ(i1). . .σ(ik)〉ρN = (1− p)〈σ(i1). . .σ(ik)〉GHZN (A.12)

for any σ ∈ {X,Y, Z} and 1 ≤ k ≤ N . Therefore we can consider the
noise as a simple damping factor in the violation of the inequalities. By
using this fact, we get that I3

mix is violated as long as (1−p)(1+
√

2)(N−
1) > 2(N − 1); hence

pmax(I3
mix) =

√
2− 1√
2 + 1

≈ 0.17 (A.13)

By the same argument, we analyse I2
mix for the two measurements

settings that we introduce. For the first one, the inequality is violated as
long as (1− p)3+

√
2

2 (N − 1) > 2(N − 1) and, therefore,

pmax(I2
mix) =

√
2− 1√
2 + 3

≈ 0.09 (A.14)

while for the second one, the violation is preserved for (1−p)2
√

2(N−1) >
2(N − 1); hence
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p′max(I2
mix) = 1−

√
2

2
≈ 0.29 (A.15)

Clearly, we see that for the second setting a higher violation results also
in a significantly higher robustness to noise.



Appendix B

Appendix of Chapter 4

B.1 Projecting the vertices of the k-producible
polytopes

Here we show in more detail how to explicitly project the vertices of the k-
producible polytopes and obtain the expressions in (4.7) and in (4.8). Let
us start by recalling that, for any fixed Lk-partition, the corresponding
vertices of the PN,k factorise in the following way

p(a|x) = p1(aA1 |xA1) · . . . · pL(aAL |xAL) (B.1)

where each ps(aAs |xAs) being a vertex of the corresponding |As|-partite
nonsignaling polytope. As explained in Section 2.1.2, the vertices of
the projected polytope P2,S

N,k can be obtained directly by projecting the
original vertices into the two-body symmetric space. In other words, we
simply have to compute the symmetric correlators (4.2) as function of
(B.1). Let us start by evaluating the one-body correlators as follows

Sx =

N∑

i=1

〈M (i)
x 〉 =

∑

As

∑

i∈As

〈M (i)
x 〉 =

k∑

p=1

∑

As
s.t.|As|=p

∑

i∈As

〈M (i)
x 〉 (B.2)

where we have first divided the summation into parties belonging to
the same partition As and then further grouped the partitions of same
size. Notice now that

∑

i∈As

〈M (i)
x 〉 = Sx(ps(aAs |xAs)) (B.3)

where we denote by Sx(ps(aAs |xAs)) the one-body components of the
vector in the symmetric two-body space, obtained by projecting the ver-
tex ps(aAs |xAs)) only. Notice that the list of extremal points resulting
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from the projection of the vertices of the p-partite no-signaling polytope
coincides with the vertices of the projected set NS2,S

p . Hence we can
rewrite (B.2) as

Sx =
k∑

p=1

∑

As
s.t.|As|=p

Sx(p, iAs) (B.4)

where we have now adopted the notation in (4.5) for the vector denoting
a given vertex of the projected no-signaling polytope and iAs = 1, . . . , np
can run over all the possible choices of vertices. Now, to list all the ex-
tremal points of P2,S

N,k, we have to consider all the possible Lk-partitions
of N parties. Notice, however, that the expression in (B.4) is now invari-
ant under permutation of parties, since it is a function of the symmetric
Sx terms only. This property allows for further simplifications: indeed, it
implies that the vertices components Sx are sensitive only to how many
partitions of same size p are associated to the same projected vertex
Sx(p, i), while being insensitive to which specific parties belong to such
partitions. Therefore, we introduce the concept of populations ξp,i, which
are integer numbers counting how many, among the partitions of size p,
are associated to the same vertex Sx(p, i). Clearly, if multiplied by p,
the population have to sum to the actual number of parties belonging to
these partitions. Moreover, if we sum over the different sizes, we obtain
the total number of particles. These conditions can be summarised by
the following equation

k∑

p=1

np∑

i=1

p ξp,i = N. (B.5)

and (B.4) can now be restated as

Sx =

k∑

p=1

np∑

i=1

ξp,iSx(p, i) (B.6)

In this formalism, running over all the choices of population satisfying
(B.5) corresponds to listing all the non-equivalent choices of Lk-partitions.

Now that the one-body terms have been computed, we use a similar
argument to compute the two-body components as function of the popu-
lation and the projected components Sxy(p, i). Following from (4.2), we
have

Sxy =
N∑

i,j=1
i 6=j

〈M (i)
x M (j)

y 〉 =
∑

As

∑

i,j∈As
i 6=j

〈M (i)
x M (j)

y 〉+
∑

As,At
s 6=t

〈M (i)
x 〉〈M (j)

y 〉

(B.7)
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Figure B.1: An example withN = 22, and the 3-partition into n1 = 5 sets
of size 1, n2 = 4 of size 2 and n3 = 3 of size 3. The first sum in Eq. (B.9)
corresponds to the value of Sxy that comes from the two-body correlators
〈M (i)

x M
(j)
y 〉 within each set (i.e., i, j ∈ Al for some l). For the 1-body

boxes, these values are clearly zero, and for larger boxes, they correspond
to the two-body marginals of the corresponding Popescu-Rohrlich box
(PR-box). Therefore, once symmetrised, the contribution of the box in-
volving p parties using the i-th strategy is Sxy(p, i). The second sum in
Eq. (B.9) counts those two-body correlators 〈M (i)

x M
(j)
y 〉 in which i ∈ Ak,

j ∈ Al, k 6= l and |Ak| = |Al| = p. These correlations are represented by
the blue, red and yellow lines. Because they are correlations coming from
different PR-boxes, the locality assumption guarantees the factorisation
〈M (i)

x M
(j)
y 〉 = 〈M (i)

x 〉〈M (j)
y 〉, yielding the term Sx(p, i)Sy(p, i) once sym-

metrised. The factor ξp,i(ξp,i − 1) is given by the fact that Sxy is defined
as the sum for all i 6= j, therefore containing repetitions. Finally, the
last sum in Eq. (B.9) is given by all two-body correlators 〈M (i)

x M
(j)
y 〉 in

which i ∈ Ak, j ∈ Al, and |Ak| = p, |Al| = q with p 6= q, i.e., two-body
correlations connecting PR-boxes of different size. Here the locality as-
sumption also enables a factorisation which amounts to Sx(p, i)Sy(q, j)
once symmetrised, weighted by the number of occurrences ξp,iξq,j . These
correspond to the purple, green and orange lines in the figure.

where we have used that, because of the factorisation (B.1), the two-body
expectation values factorise as well when i, j belong to different partitions.
Similarly to the one-body case, we then group partitions of same sizes
and substitute the sum over parties with the symmetrised correlator, so
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to get

Sxy =

k∑

p=1

∑

As
s.t.|As|=p

Sxy(p, iAs)

+

k∑

p=1

∑

As,At
s.t.|As|=|At|=p

s 6=t

Sx(p, iAs)Sy(p, iAt)

+

k∑

p,q=1
p 6=q

∑

As,At
s.t.|As|=p
|At|=q

Sx(p, iAs)Sy(q, iAt) (B.8)

Notice that we have divided the second sum in (B.7) into the case where
the two partitions As,At are of same or different size. Lastly, we replace
the sum over different vertices (B.1) and all the Lk-partitions with the
sum over population and we arrive at

Sxy(~ξ) =
k∑

p=1

np∑

i=1

ξp,iSxy(p, i) +
k∑

p=1

np∑

i=1

ξp,i(ξp,i − 1)Sx(p, i)Sy(p, i)

+
∑

{p,i}6={q,j}

ξp,iξq,jSx(p, i)Sy(q, j), (B.9)

B.2 Vertices of the projected nonsignaling poly-
topes of N = 2, 3, 4 particles

Here we attach tables with vertices for the projections NS2,S
N of the

nonsignaling polytopes NSN onto the symmetric two-body subspace for
2 ≤ N ≤ 4 (Tables B.2–B.4). For completeness we also attach the ta-
ble containing the deterministic values of single-body correlations (Table
B.1). We omit the cases N = 5, 6 because the lists of vertices are too
long to present it here.

Notice that, for the smallestNs, the lists of vertices of the no-signaling
polytopes are known. For N = 2, the only nonlocal vertices belong to
the equivalence class of the so-called PR-box [PR94]. For N = 3, the
list of the 46 equivalence classes was derived in [PBS11]. Therefore,
for these scenarios, the projection can be performed straightforwardly
through the vertex representation (cfr. Section 2.1.2). The resulting
extremal points are shown in Table B.2 and B.3 in (the vertices that
are shared with the local polytope are omitted). For the bipartite case,
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N = 2, the 4 non-trivial vertices belong obviously to a single equivalence
class, corresponding to the projection of the PR-box. Interestingly, there
is also only one relevant class for the tripartite case, corresponding to the
projection of the class number 29 of [PR94], which is one of the two that
violate maximally the Guess-Your-Neighbour-Input inequality [ABB+10].
For higher values of N the number of equivalence classes starts growing,
as it can already be seen for the vertices of N = 4 in Table B.4.

S0 S1 S00 S01 S11

ξ1,1 1 1 0 0 0

ξ1,2 1 -1 0 0 0

ξ1,3 -1 1 0 0 0

ξ1,4 -1 -1 0 0 0

Table B.1: List of the values of the one- and two-body symmetric ex-
pectation values for deterministic local strategies. In this case S0 and S1

contain consist of one expectation value, while Sxy are simply zero.

S0 S0 S00 S01 S11

ξ2,1 0 0 2 2 -2
ξ2,1 0 0 -2 2 2
ξ2,3 0 0 2 -2 -2
ξ2,4 0 0 -2 -2 2

Table B.2: List of the vertices of NS2,S
2 . In the first column we also add

the corresponding populations.

B.3 Deriving the inequality for k-nonlocality for
any number of parties

In what follows we explicitly compute k-producible bounds βk [cfr.
Eq. (4.4)] for different k’s for the two-body Bell expression (4.19). We
begin with fully general considerations and later we focus on a few values
of k and compute βk case by case. Let us start by noting that, since the
sets P2,S

N,k are polytopes, it is enough to perform the above minimisation
over their vertices. Hence, by making use of Eqs. (4.7) and (B.9), the
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S0 S0 S00 S01 S11

ξ3,1 -1 -1 6 -2 -2
ξ3,2 -1 -1 -2 -2 6
ξ3,3 -1 1 6 2 -2
ξ3,4 -1 1 -2 2 6
ξ3,5 1 -1 6 2 -2
ξ3,6 1 -1 -2 2 6
ξ3,7 1 1 6 -2 -2
ξ3,8 1 1 -2 -2 6

Table B.3: List of the vertices of NS2,S
3 . In the first column we also add

the corresponding populations.

S0 S0 S00 S01 S11

ξ4,1 -2 -2 12 0 0
ξ4,2 -2 -2 0 0 12
ξ4,3 -2 2 12 0 0
ξ4,4 -2 2 0 0 12
ξ4,5 2 -2 12 0 0
ξ4,6 2 -2 0 0 12
ξ4,7 2 2 12 0 0
ξ4,8 2 2 0 0 12
ξ4,9 0 0 12 -4 -4
ξ4,10 0 0 -4 -4 12
ξ4,11 0 0 12 4 -4
ξ4,12 0 0 -4 4 12
ξ4,13

−20
7

−4
7

36
7

−12
7

−12
7

ξ4,14
−20

7
−4
7

−12
7

−12
7

36
7

ξ4,15
−20

7
4
7

36
7

12
7

−12
7

ξ4,16
−20

7
4
7

−12
7

12
7

36
7

ξ4,17
20
7

−4
7

36
7

12
7

−12
7

ξ4,18
20
7

−4
7

−12
7

12
7

36
7

ξ4,19
20
7

4
7

36
7

−12
7

−12
7

ξ4,20
20
7

4
7

−12
7

−12
7

36
7

Table B.4: List of the vertices of NS2,S
4 . In the first column we also

present the associated populations.
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expression I in Eq. (4.19) for all vertices of P2,S
N,k can be written as

I(~S(~ξ)) =
k∑

p=1

np∑

i=1

ξp,iI(~S(p, i)) +
1

2

k∑

p=1

np∑

i=1

ξp,i [ξp,i − 1] I(~S(p, i), ~S(p, i))+

+
1

2

∑

{p,i}6={q,j}

ξp,iξq,jI(~S(p, i), ~S(q, j)), (B.10)

where we have defined the following cross-terms

I(~S(p, i), ~S(q, j)) = [S0(p, i) + S1(p, i)] [S0(q, j) + S1(q, j)] . (B.11)

When the vectors ~S(p, i) are known, the expression (B.10) takes the
form of a polynomial of degree two in terms of the populations ξp,i. By
grouping together the linear and quadratic terms, we get

I(~S(~ξ)) =
k∑

p=1

np∑

i=1

ξp,i

[
I(~S(p, i))− 1

2
I(~S(p, i), ~S(p, i))

]
+

1

2

k∑

p,q=1

np∑

i,j=1

ξp,iξq,jI(~S(p, i), ~S(q, j)) (B.12)

Then, by substituting the explicit form of the cross-term (B.11), one
arrives at

I(~S(~ξ)) =
k∑

p=1

np∑

i=1

ξp,i

{
I(~S(p, i))− 1

2
[S0(p, i) + S1(p, i)]2

}
+

1

2





k∑

p=1

np∑

i=1

ξp,i[S0(p, i) + S1(p, i)]





2

. (B.13)

With the above expression at hand we can now seek the k-producibility
bounds βk for I. Our approach is the following. Instead of minimising
the expression I for all k-producible correlations, we will rather consider
a particular value of βk and prove that the inequality I + βk ≥ 0 holds
for all integer values of ξp,i ≥ 0 for p = 1, . . . , k and i = 1, . . . , np such
that the condition (4.6) holds.
B.3.1 Cases k = 2 and k = 3

We will first consider the simplest cases of k = 2, 3 and show that for
them βkC = 2N is the correct classical bound. In other words, below we
demonstrate the following inequality

2S0 +
1

2
S00 + S01 +

1

2
S11 + 2N ≥ 0 (B.14)
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is satisfied for all correlations belonging to P2,S
N,k for k = 2, 3 and any N .

To this end, we use Eqs. (B.13) and (4.6) to write down the following
expression

I(~S(~ξ)) + 2N =

k∑

p=1

np∑

i=1

ξp,i

{
I(~S(p, i)) + 2p− 1

2
[S0(p, i) + S1(p, i)]2

}
+

1

2





k∑

p=1

np∑

i=1

ξp,i[S0(p, i) + S1(p, i)]





2

. (B.15)

Then, plugging in the explicit values of the one- and two-body symmetric
expectation values for p = 1, 2, 3 collected in Tables B.1–B.3, the above
further rewrites as

I(~S(~ξ)) + 2N = 2
[
(ξ1,1 − ξ1,4 − ξ3,1 − ξ3,2 + ξ3,7 + ξ3,8)2 + ξ1,1 + 2ξ1,2 − ξ1,4

]

+2 [3 (ξ2,1 + ξ2,2) + ξ2,3 + ξ2,4]

+2 [(ξ3,1 + ξ3,2) + 4 (ξ3,3 + ξ3,4)

+6 (ξ3,5 + ξ3,6) + 3 (ξ3,7 + ξ3,8)] . (B.16)

With the following substitutions

X = 2 (ξ1,1 − ξ1,4) ,

Y = 2 (−ξ3,1 − ξ3,2 + ξ3,7 + ξ3,8) ,

P(~ξ) = 2 [ξ1,2 + 3 (ξ2,1 + ξ2,2) + ξ2,3 + ξ2,4 + 2 (ξ3,1 + ξ3,2)

+4 (ξ3,3 + ξ3,4) + 6 (ξ3,5 + ξ3,6) + 2 (ξ3,7 + ξ3,8)] , (B.17)

we can bring the expression (B.16) into the following simple form

I(~S(~ξ)) + 2N =
1

2
(X + Y)2 + X + Y + P(~ξ)

= 2Z(Z + 1) + P(~ξ), (B.18)

where Z = (X+Y/2). We then notice that all ξp,i ≥ 0, which immediately
implies that P(~ξ) ≥ 0 for all configurations of populations. Thus, we are
left with the term Z(Z + 1), which is negative only when −1 < Z < 0.
However, due to the fact that Z is a linear combination of integers with
integer coefficients, it cannot take such values. Thus, Z(Z + 1) ≥ 0,
which completes the proof.

B.3.2 The case k = 4

We now address the first case in which the bound βk is different than
the local bound of the Bell inequality. First of all, we notice that the
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bipartite nonsignaling populations ξ2,i enter the expression (B.15) only
in the linear part and, since their coefficient are always positive, we know
that they never contribute to the violation of the local bound. Thus, the
expression I(~S(~x)) + 2N without these terms reads explicitly

1

2

(
X + Y + Y ′ +W +W ′

)2
+ 2 (ξ1,1 + 2ξ1,2 − ξ1,4)

+2 [(ξ3,1 + ξ3,2) + 4 (ξ3,3 + ξ3,4) + 6 (ξ3,5 + ξ3,6) + 3 (ξ3,7 + ξ3,8)]

+2 [ξ4,1 + ξ4,2 + 5 (ξ4,3 + ξ4,4) + 9 (ξ4,5 + ξ4,6) + 5 (ξ4,7 + ξ4,8)]

+8 [ξ4,9 + ξ4,10 + 2 (ξ4,11 + ξ4,12)]

+
8

49
[−22 (ξ4,13 + ξ4,14) + 19 (ξ4,15 + ξ4,16)

+89 (ξ4,17 + ξ4,18) + 48 (ξ4,19 + ξ4,20)] , (B.19)

where X and Y are defined above and Y ′, W and W ′ are given by

Y ′ = 4 (−ξ4,1 − ξ4,2 + ξ4,7 + ξ4,8) ,

W =
24

7
(−ξ4,13 − ξ4,14 + ξ4,19 + ξ4,20) ,

W ′ =
16

7
(−ξ4,15 − ξ4,16 + ξ4,17 + ξ4,18) . (B.20)

Then, we can simplify this expression

1

2

(
X + Y + Y ′ +W +W ′

)2
+X+Y+Y ′+W+W ′+P̃(~ξ)− 8

49
(ξ4,13 + ξ4,14) ,

(B.21)
where

P̃(~ξ) = 4ξ2,2 + 4 [ξ3,1 + ξ3,2 + 2 (ξ3,3 + ξ3,4) + 3 (ξ3,5 + ξ3,6) + ξ3,7 + ξ3,8]

+2 [3 (ξ4,1 + ξ4,2) + 5 (ξ4,3 + ξ4,4) + 9 (ξ4,5 + ξ4,6) + 3 (ξ4,7 + ξ4,8)]

+8 [ξ4,9 + ξ4,10 + 2 (ξ4,11 + ξ4,12)]

+
8

49
[33 (ξ4,15 + ξ4,16) + 75 (ξ4,17 + ξ4,18) + 27 (ξ4,19 + ξ4,20)](B.22)

is a polynomial that is positive for all configurations of populations ξp,i.
Let us now show that the expression in (B.22) is always greater or equal
to −2N/49− 1/2. In other words, we want to prove that

1

2

(
X + Y + Y ′ +W +W ′

)2
+ X + Y + Y ′ +W +W ′ + P̃(~ξ)

− 8

49
(ξ4,13 + ξ4,14) +

1

2
+

2

49
N ≥ 0, (B.23)

for any ξp,i. To this end, we can exploit (4.6) in order to express N in
terms of the populations, which allows us to see that 2N ≥ 8(ξ4,13+ξ4,14),
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implying that (B.23) holds true. As a result, the bound for k = 4 amounts
to

β4
C =

(
2 +

2

49

)
N +

1

2
. (B.24)

B.3.3 Cases k = 5, 6

Based on the previous results our guess is that for any 3 < k < N , the
bound for k-producible correlations is given by

βkC = 2N +
1

2
+ αkN. (B.25)

In what follows we estimate the correction to the linear dependence on
N , that is, αk for k = 5, 6, and leave the general case of any k as an open
problem. To this aim, we follow the approach used in the case k = 4.
More precisely, by substituting βkC given in (B.25) into I+βkC , we obtain

I(~S(~ξ)) + βkC =

k∑

p=1

np∑

i=1

ξp,i

[
I(~S(p, i)) + (2 + αk) p−

1

2
[S0(p, i) + S1(p, i)]2

]

+
1

2





k∑

p=1

np∑

i=1

ξp,i [S0(p, i) + S1(p, i)]





2

+
1

2

=

k∑

p=1

np∑

i=1

ξp,i

{
I6(~S(p, i)) + (2 + αk) p

−1

2
[S0(p, i) + S1(p, i)]2 − [S0(p, i) + S1(p, i)]

}

+
1

2





k∑

p=1

np∑

i=1

ξp,i [S0(p, i) + S1(p, i)] + 1





2

. (B.26)

As the last term in this expression is always nonnegative, to study the
positivity of I(~S(~ξ)) +β

(k)
C , we can restrict our attention to the following

function

Ω(~ξ) =

k∑

p=1

np∑

i=1

ξp,i

{
I(~S(p, i)) + (2 + αk) p

−1

2
[S0(p, i) + S1(p, i)]2 − [S0(p, i) + S1(p, i)]

}
.

(B.27)
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As it is a linear function in the populations which are all nonnegative, its
minimum is reached for the population ξ∗ standing in front the expression
that takes the minimal value over all choices of the vertices. In other
words, we can lower bound Ω(~x) as

Ω(~ξ) ≥ ξ∗(p∗αk +mk), (B.28)

where p∗ is the number of parties corresponding to x∗ and mk is defined
as

mk = min
p=1,...,k

min
i=1,...,np

{
I(~S(p, i)) + 2p− 1

2
[S0(p, i) + S1(p, i)]2

−[S0(p, i) + S1(p, i)]} . (B.29)

Thus, we simply need to compute mk and the value αk we are looking
for can be taken as αk = mk/k as for it Ω(~ξ) ≥ 0 for any N .

To this end, we perform the minimisation in (B.29) by evaluating the
right-hand side on each vertex of the projected five- and six-partite no-
signaling polytope. We obtain m5 = 40/121 and m6 = 1/2, implying
that the modified bounds amount to

β5
C =

(
2 +

8

121

)
N +

1

2
, (B.30)

and
β6
C =

(
2 +

1

12

)
N +

1

2
, (B.31)

respectively.

B.4 Estimating the Svetlichny and Mermin op-
erators with collective spin measurements

Here we show the details on the derivation of the witnessed for the
Mermin and Svetlichny inequalities in (4.24) and (4.22). Their fully local
β1, the k-nonlocal betak, the quantum βQ and the nonsignaling bounds
are given in Table B.5 and B.6.

local βC k-nonlocal βk quantum βQ nonsignaling βNS

2
1−(−1)N

4 2(N−2b dN/ke
2
c)/2 2(N−1)/2 2N/2

Table B.5: The local βC , k-nonlocal βk, quantum βQ and nonsignaling
bounds for the Svetlichny Bell expression.
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local βC k-nonlocal βk quantum βQ nonsignaling βNS

2
1+(−1)N

4 2(N−2b dN/ke+1
2

c+1)/2 2(N−1)/2 2(N−1)/2

Table B.6: The local βC , k-nonlocal βk, quantum βQ and nonsignaling
bounds for the Mermin Bell expression.

Generally, the bounds for these inequalities are expressed in terms of
the number of groups m in which the N parties are splitted. Noticing
that N , m and k are related by the relation m + k − 1 ≤ N ≤ mk
allows one to express the bound as a function of the nonlocality depth k
(resulting in the bound in the table above). The fact that these bounds
can be achieved with a model in which bN/kc groups contain exactly k
parties implies that the resulting bounds are tight [BBGP09]. As the
quantum bound is larger than the (N − 1)-nonlocal bound, the Mermin
and Svetlichny expressions can reveal genuine multipartite nonlocality. .

The measurement settings maximising the quantum value of the Svetlichny
inequality, for a |GHZ+

N 〉 state,
∣∣GHZ±N

〉
= (|0〉⊗N ± |1〉⊗N )/

√
2, are

M
(i)
j = cos(φj)X + sin(φj)Y , φj = − π

4N
+ j

π

2
(B.32)

with j ∈ 0, 1,. By substituting in the inequality (4.22), we find that the
Svetlichny operator takes the following very simple form

BSvet
N = 2(N−1)/2

(
|0〉〈1|⊗N + |1〉〈0|⊗N

)
. (B.33)

If the mean value of this operator tr(ρBSvet
N ) is larger than the k-nonlocal

bound given in the table above, we conclude that the state ρ has the ca-
pability to violate a Svetlichny inequality with the corresponding bound,
that is, ρ is (k + 1)-Bell correlated. Similarly, to maximally violate the
Mermin inequality with a GHZ state, we choose M (i)

0 = X and M (i)
1 = Y

for each party i = 1, . . . N , and for them the Bell operator reduces indeed
to the same Bell operator as before, that is,

BMermin
N = 2(N−1)/2

(
|0〉〈1|⊗N + |1〉〈0|⊗N

)
. (B.34)

In order to state our bound in (4.26), we first need to prove that the
following operator

χN =|GHZ+
N 〉〈GHZ+

N | − |GHZ−N 〉〈GHZ−N | −X1 . . . XN︸ ︷︷ ︸
N times

−
N∑

m 6=n
ZmZn +N(N − 1)1 (B.35)
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is positive semi-definite, where Xi/Zi stands for the Pauli matrix X/Z
acting on site i. The proof can be derived in various ways from [TG05a],
this reference focusing on genuine entanglement detection.

To this aim, let us assume for simplicity N to be even and consider the
GHZ state |GHZ+

N 〉, and the following set of states obtained by flipping
k of its spins with k = 1, . . . , N/2, that is

Xi1 |GHZ+〉,
Xi1Xi2 |GHZ+〉, i1 6= i2

...
Xi1Xi2 . . . XiN/2−1

|GHZ+〉, i1 6= i2 6= . . . 6= iN/2−1

Xi1Xi2 . . . XiN/2 |GHZ+〉, i1 6= i2 6= . . . 6= iN/2 (B.36)

where i` = 1, . . . , N for ` = 1, . . . , N/2. Notice that in each "line" of Eq.
(B.36) there are CkN =

(
N
k

)
(k = 1, . . . , N/2−1) orthogonal states except

for the last one in which the number of orthogonal vectors is CN/2N /2. We
then construct an analogous set of vectors with |GHZ−N 〉, which altogether
gives us a set of

2

N/2−1∑

k=0

CkN + C
N/2
N =

N∑

k=0

CkN = 2N

orthonormal vectors forming a basis in (C2)⊗N . Let us now show that
the operator χN is diagonal in this basis. For this purpose, we notice
that XZX = −Z and therefore (see also Ref. [SG01])

〈GHZ±N |(Xi1Xi2 . . . Xi`) (ZmZn) (Xi1Xi2 . . . Xi`)|GHZ±N 〉
= (−1)λm,n tr

(
ZmZn|GHZ±N 〉〈GHZ±N |

)
= (−1)λm,n ,

where ` = 1, . . . , N/2, m 6= n, and λm,n = 0 if both qubits m and n are
flipped or neither of them, and λm,n = −1 if only one of them is flipped.
We also notice that for the parity operator one has

〈GHZ±N |(Xi1Xi2 . . . Xi`) (X1 . . . XN ) (Xi1Xi2 . . . Xi`)|GHZ±N 〉 = ±1.

All this means that the operator χN is diagonal in the above ba-
sis. Furthermore, the maximal eigenvalue of X1 . . . XN +

∑N
m6=n ZmZn is

N(N − 1) + 1 and the corresponding eigenstate is |GHZ+
N 〉. Then, the

other GHZ state |GHZ−N 〉 corresponds to the eigenvalue N(N − 1) − 1
and all the other elements of the above basis vectors eigenvectors with
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eigenvalues smaller or equal to N(N − 1)− 1. As a result, all eigenvalues
of χN are non-negative, and hence

BSvet
N = BMermin

N =
√

2
N−1 (|GHZ+

N 〉〈GHZ+
N | − |GHZ−N 〉〈GHZ−N |

)

≥
√

2
N−1[

X1 . . . XN +
∑N

m6=n ZmZn −N(N − 1)1
]
.(B.37)

It is not difficult to see that the same reasoning holds for odd N (in this
case, the basis is formed with all possible spin flips of (N − 1)/2 spins),
and consequently the above bound is valid for any N . Noticing then that∑N

m6=n ZmZn = 4S2
z + N1, where Jz = (1/2)

∑N
i=1 Zi is the total spin

component along the z axis, we arrive at the following operator bound
for the Svetlichny and Mermin Bell operators

BSvet
N = BMermin

N =
√

2
N−1 (|GHZ+

N 〉〈GHZ+
N | − |GHZ−N 〉〈GHZ−N |

)

≥
√

2
N−1 [

X1 . . . XN + 4J2
z −N2

1
]
. (B.38)

Combining the k-nonlocal bounds of the Svetlichny and Mermin Bell ex-
pressions then allows us to write the following witness of Bell correlations
depth:

〈BN 〉 =
√

2
N−1 〈

X1 . . . XN + 4J2
z −N2

1
〉
≤ 2(N−dN

k
e)/2. (B.39)

B.5 Complete list of facets for the GMNL poly-
topes

Here we present the complete list of facets for the polytopes that test for
genuine multipartite nonlocality for N = 3, 4, 5. We omit the N = 6, 7
cases since the amount of inequalities starts becoming too long to be
contained in one page. The inequalities are sorted in equivalence classes,
under symmetry operations such as outcome/input swapping, in the same
fashion as in [TAS+14].
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βC α β γ δ ε

1 0 0 1 0 0
12 -3 1 3 - 3

2 -2
6 -2 -2 0 1 0
3 0 0 0 -1 1
3 0 -2 0 0 1
3 0 0 -1 0 0

Table B.7: List of the facets of the symmetric two-body polytope of 2-
producible correlations for N = 3

βC α β γ δ ε

2 1 0 1 0 0
42 12 3 6 2 -3
42 -12 9 6 -6 1
20 -5 3 4 -3 0
30 -6 3 6 -4 -1
12 0 0 3 1 -1
12 3 3 1 2 1
6 -3 0 1 0 0
8 -3 -1 2 1 0
6 0 0 1 -1 0
8 0 2 1 1 1
12 -3 -3 0 1 0
6 0 0 -1 0 0

Table B.8: List of the facets of the symmetric two-body polytope of 3-
producible correlations for N = 4
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βC α β γ δ ε

30 -4 10 1 -2 3
40 -8 12 1 -3 3
116 28 -28 4 -9 4
134 -36 30 8 -11 4
452 -120 104 25 -37 15
562 -144 136 27 -45 22
112 28 -28 5 -9 5
116 28 -28 5 -10 5
380 -92 84 21 -34 13
36 -4 8 4 -3 2
380 -92 84 20 -33 12
320 -76 68 20 -29 10
200 -52 44 12 -17 6
16 -2 4 2 -1 1
110 -30 24 7 -9 3
20 4 -4 0 -1 0
410 -120 72 40 -30 3
170 -60 24 20 -10 1
8 0 0 2 1 0
20 0 0 3 3 1
20 -2 8 0 -1 3
20 0 4 1 -2 3
50 0 12 4 -4 5
40 -4 12 2 -3 4
80 4 12 9 -8 7
34 2 6 4 -3 3
4 2 0 1 0 0
10 -4 0 1 0 0
220 60 12 20 5 -8
120 20 -4 20 -5 -6
400 -60 36 60 -45 2
20 4 2 3 2 0
20 -4 -4 1 2 1
80 8 20 -2 5 10
40 -12 -6 5 3 0
2 0 0 0 0 1
10 0 0 -1 0 0

Table B.9: List of the facets of the symmetric two-body polytope of 4-
producible correlations for N = 5
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Appendix of Chapter 5

C.1 Increasing the quantum violation

Here we explain in more detail how our Bell inequalities can be modified
to allow for higher ratios βQG/β

C
G .

Given a Bell inequality (5.4) corresponding to a graph G, consider
a vertex j ∈ V that neither belongs to n(1) nor it shares a neighbour
with the first vertex. Then one can apply a second substitution Xj →
M

(j)
0 + M

(j)
1 and Zj → M

(j)
0 −M (j)

1 at that vertex. This gives us the
following Bell inequality

IG : = nmax

〈
(M

(1)
0 +M

(1)
1 )

∏

i∈n(1)

M
(i)
1

〉

+
∑

i∈n(1)

〈
(M

(1)
0 −M (1)

1 )M
(i)
0

∏

j∈n(i)\{1}

M
(j)
1

〉

+nj

〈
(M

(j)
0 +M

(j)
1 )

∏

i∈n(j)

M
(j)
1

〉

+
∑

i∈n(j)

〈
(M

(j)
0 −M (j)

1 )M
(i)
0

∏

k∈n(i)\{j}

M
(k)
1

〉

+
∑

i/∈n(1)∪{1}∪n(j)∪{j}

〈
M

(i)
0

∏

k∈n(i)

M
(j)
1

〉
≤ βCG , (C.1)

for which, as before, it is not difficult to analytically compute the maximal
quantum and classical values. They read

β
(2)
G,Q = N + nmax + n(j)− 2 (C.2)
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1

2

3

4

N � 1

N

N � 2

Figure C.1: Pictorial representation of the method to generate Bell in-
equalities with higher quantum violation, taking the ring graph state.
The vertices coloured in yellow are the ones for which the substitution
Xj →M

(j)
0 +M

(j)
1 and Zj →M

(j)
0 −M (j)

1 is applied.

and

β
(2)
G,C = (2

√
2− 1)[nmax + n(j)] +N − 2, (C.3)

respectively, where the superscript indicates the fact we have played our
trick with two sites. It then follows that β(2)

G,Q/β
(2)
G,C ≥ βQG/β

C
G for any

graph G.

We can repeat the same procedure with any other vertex which does
not belong to n(1) nor n(j) and does not share any neighbour with nei-
ther vertex 1 nor j. In such a way we can increase the ratio again. This
clearly comes at the cost of increasing the number of expectation values
appearing in the Bell expression. Notice, however, that their linear scal-
ing with N is preserved even in the case in which the above mentioned
substitution is applied to any available vertex. Indeed, consider the ex-
tremal case in which the replacement with M (i)

0 ±M
(i)
1 appears for some

party i in all the terms in the sum in (5.4). Since such terms correspond
to the N generators Gi of the stabilizer group, the resulting amount of
correlators is exactly 2N . One can use a similar argument to see that the
ratio βQG/β

C
G is always bounded and cannot exceed

√
2.

As an illustrative example let us turn back to the inequality (5.16) for
the ring graph state. To improve the quantum-classical ratio, our meth-
ods tells us to choose a vertex whose neighbourhood does not intersect
with n(1)∪{1}. As a candidate to apply the second substitution we take



C.2 Proof of the self-testing statement for graph states 155

vertex 4 so to obtain the following Bell inequality

I
(2)
ring := 2〈M (N)

1 (M
(1)
0 +M

(1)
1 )M

(2)
1 〉+ 〈(M (1)

0 −M (1)
1 )M

(2)
0 M

(3)
1 〉

+〈M (N−1)
1 M

(N)
0 (M

(1)
0 −M (1)

1 )〉+ 2〈M (3)
1 (M

(4)
0 +M

(4)
1 )M

(5)
1 〉+

〈(M (4)
0 −M (4)

1 )M
(5)
0 M

(6)
1 〉+ 〈M (2)

1 M
(3)
0 (M

(4)
0 −M (4)

1 )〉

+

N−1∑

i=6

〈M (i−1)
1 M

(i)
0 M

(i+1)
1 〉 ≤ N + 2, (C.4)

with a corresponding quantum violation of β(2)
Q = N − 6 + 8

√
2. Let

us then notice that we can repeat our trick for all vertices 3i + 1 for
i = 1, . . . , bN/3c as each pair of them does not belong to each others’
neighbourhoods nor shares a common vertex (see Figure C.1 for a picto-
rial representation). Thus we can generate a series of bN/3c Bell inequal-
ities whose classical and quantum values can easily be computed and are
given by

βCk = N + k, βQk = N + (4
√

2− 3)k (C.5)

with k = 1, . . . , bN/3c. The sequence satisfies βQk+1/β
C
k+1 > βQk /β

C
k for

any k and the ratio attains its maximal value for N = 3L, k = L,
amounting to exactly βQN/β

C
N =

√
2. The resulting inequality read as

follows

Imax
ring :=

L∑

i=1

2〈M (3i)
1 (M

(3i+1)
0 +M

(3i+1)
1 )M

(3i+2)
1 〉

+〈(M (3i+1)
0 −M (3i+1)

1 )M
(3i+2)
0 M

(3i+3)
1 〉

+〈M (3i−1)
1 M

(3i)
0 (M

(3i+1)
0 −M (3i+1)

1 )〉. (C.6)

C.2 Proof of the self-testing statement for graph
states

In this section we provide the proof of Fact 3. Before proving this fact, we
need some preparation. Let us consider a graph G and the corresponding
graph state |ψG〉. Let us also assume that the Bell inequality (5.4) asso-
ciated to this graph is maximally violated by a state |ψ〉 and observables
M̄

(i)
j . We then consider the following operators

X′1 =
1√
2

(
M̄

(1)
0 + M̄

(1)
1

)
, Z′1 =

1√
2

(
M̄

(1)
0 − M̄ (1)

1

)
, (C.7)
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and X1 = X′1/|X′1| and Z1 = Z′1/|Z′1|. We also denote Xi = M̄
(i)
0 and

Zi = M̄
(i)
1 for i = 2, . . . , N . It is not difficult to check that all the

operators Xi and Zi with i = 1, . . . , N are unitary; for i = 2, . . . , N

this follows from the fact that M (i)
j are Hermitian and have eigenvalues

±1, whereas for i = 1 it stems from the polar decomposition (see, e.g.,
Ref. [ŠASA16]). Let us finally choose as isometry the so-called SWAP
isometry, as defined in Section 2.3.4, whose output reads as follows

Φ
(
|+〉⊗N ⊗ |ψ〉

)
=

∑

τ∈{0,1}N
|τ〉 ⊗




N⊗

j=1

Xτjj Z
(τj)
j


 |ψ〉 , (C.8)

where Xi and Zi are those defined above and we have also defined Z(τj)
i =

[1 + (−1)τjZj ]/2, while the summation is over all N -element sequences
(τ1, . . . , τN ) with each τi ∈ {0, 1}. Notice that the action of this isometry
is to perform a unitary operation Φ = Φ1⊗ . . .⊗ΦN on the state |+〉⊗N⊗
|ψ〉, where each unitary Φi acts on the i-th particle of |ψ〉 and one of the
qubits in the state |+〉. A visual representation of a local branch of the
isometry Φi is shown in Fig. 2.7.

We are now ready to prove Fact 3.

Proof. For the sake of simplicity let us assume that 2 ∈ n(1) (notice that
this can always be done by relabelling the vertices). Let us also notice
that, as shown in Ref. [BP15], one has X1 |ψ〉 = X′1 |ψ〉 and Z1 |ψ〉 =
Z′1 |ψ〉, and so in what follows we will denote the operators in Eq. (C.7)
by X1 and Z1, respectively.

The first step of our proof is to show that X1 and Z1 as well as Xi
and Zi with i = 2, . . . , N anticommute when acting on |ψ〉, that is,

(XiZi + ZiXi) |ψ〉 = 0 (i = 1, . . . , N). (C.9)

To prove that (C.9) holds true for i = 1 it suffices to use the definitions
(C.7). Then, to prove (C.9) for the rest of vertices, let us first consider
the case i ∈ n(1). For these vertices, the sum of squares decomposition
(5.6), implies the following relations

X1 |ψ〉 =
⊗

i∈n(1)

Zi |ψ〉 ,

Z1 |ψ〉 = X2 ⊗


 ⊗

i∈n(m)\{1}

Zi


 |ψ〉 , (C.10)
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which can equivalently be stated as

X1 ⊗


 ⊗

i∈n(1)\{m}

Zi


 |ψ〉 = Zm |ψ〉 , (C.11)

Z1 ⊗


 ⊗

i∈n(m)\{1}

Zi


 |ψ〉 = Xm |ψ〉 , (C.12)

where m ∈ N(1). By plugging Eqs. (C.11) and (C.12) into Eq. (C.9) we
have

(XmZm + ZmXm) |ψ〉 =


(Z1X1 + X1Z1)⊗

⊗

i∈n(1,m)

Zi


 |ψ〉 = 0 (C.13)

where n(1,m) stands for the neighbours of the first and the mth vertex
(excluding these two vertices). Due to the fact that, as proven before, X1

and Z1 anticommute, the right-hand side of the above relation vanishes
which gives us (C.9) for all i ∈ n(1).

Let us then prove the anticommutation relation (C.9) for all vertices
that are not in n(1) but are neighbours of those belonging to n(1). Con-
sider a vertex j /∈ n(1), which is a neighbour of a vertex k ∈ n(1). For it
the decomposition (5.6) implies the following relations

Xj |ψ〉 =


Zk ⊗

⊗

i∈n(j)\{k}

Zi


 |ψ〉 (C.14)

and

Zj |ψ〉 =


Xk ⊗

⊗

i∈n(k)\{j}

Zi


 |ψ〉 , (C.15)

from which one obtains

(XjZj + ZjXj) |ψ〉 =


(ZkXk + XkZk)⊗

⊗

i∈n(j,k)

Zi


 |ψ〉

= 0, (C.16)

where the last equality stems from the anticommutation relation for Xk
and Zk.

Noting that there are no isolated vertices in the graph, we can repeat
the above procedure until (C.9) is proven for all vertices.
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Having the anticommutation relations (C.9) for all vertices of the
graph, the remainder of the proof is exactly the same as that of Theorem
4 in Ref. [ŠCAA18] (see Appendix F therein). However, for completeness
we present it here.

Let us go back to the action of the unitary operation Φ = Φ1⊗. . .⊗ΦN

on the state |+〉⊗N ⊗ |ψ〉. Let us consider a particular term from output
state given in (C.8), corresponding to the sequence τ which has k > 0
ones at the positions j1, . . . , jk:

|τ〉 ⊗


 ⊗

j /∈J(τ)

Z(0)
j


⊗


 ⊗

j∈J(τ)

XjZ
(1)
j


 |ψ〉 , (C.17)

where J(τ) = {j1, . . . , jk}. Also, for τ let us denote by n(τ) the num-
ber of edges connecting vertices denoted by labels j ∈ J(τ) (without
counting the same edge twice). Consider then one of the vertices from
J(τ), denoted by j1, and let the number of its neighbours in J(τ) be
n̄(j1), i.e., n̄(j1) = |J(τ) ∩ n(j1)|. Due to the anticommutation relation
{Xj1 ,Zj1} |ψ〉 = 0, the expression (C.17) can be rewritten as

|τ〉 ⊗


 ⊗

j /∈J(τ)

Z(0)
j


⊗


 ⊗

j∈J(τ)\{j1}

XjZ
(1)
j


⊗ Xj1Z

(1)
j1
|ψ〉

= (−1)n̄(j1) |τ〉 ⊗


 ⊗

j /∈J(τ)

Z(0)
j




⊗


 ⊗

j∈J(τ)\{j1}

XjZ
(1)
j


⊗ Z(0)

j1
|ψ〉 , (C.18)

where we have also used the following relation

Xi |ψ〉 =
⊗

j∈N(i)

Zj |ψ〉 , (C.19)

that stems from the sum of squares decomposition (5.6) and the fact that
Z(1)
j Zj = −Z(1)

j . By using the anticommutation relations (C.9) as well as
the relations (C.14), in a similar way we can get rid of all the operators
Xj appearing in (C.17). This allows us to rewrite (C.17) as

(−1)n(τ) |τ〉 ⊗




N⊗

j=1

Z(0)
j


 |ψ〉 . (C.20)
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After plugging the above into Eq. (C.8), one obtains

Φ
(
|+〉⊗N ⊗ |ψ〉

)
=

=
∑

τ∈{0,1}N
(−1)n(τ) |τ〉 ⊗




N⊗

j=1

Z(0)
j


 |ψ〉

= |ψG〉 ⊗ |aux〉 ,

(C.21)

where we used the expression for a graph state in the computational basis

|ψG〉 =
1
√

2
N

∑

τ∈{0,1}N
(−1)n(τ) |τ〉 .

This completes the proof. The proof for self-testing of measurements goes
along the same lines as the one for the state (see for example Appendix
E of [ŠCAA18]).

C.3 Self-testing the partially entangled GHZ state
from its stabilizers

Here we look at the method used to derive Bell inequalities for graph
states as a more general strategy, so to apply it to other states as well.
We will show how to do it for the partially entangled GHZ state (5.26).
Recall that for this state it is possible to define N independent stabilizing
operators:

G1 = sin 2θX1X2 . . . XN + cos 2θZ1 (C.22)

for the first site, and
Gi = Z1Zi (C.23)

for sites i = 2, . . . , N . Indeed, one can verify that Gi|GHZN (θ)〉 =
|GHZN (θ)〉 for any θ ∈ [0, π/4] and i = 1, . . . , N .

We will start by showing how to generalise the self-testing method
introduced in Appendix C.2 for the graph states and then building on that
we will derive Bell inequalities for the partially entangled GHZ states.
Self-testing proof

Let us begin by making the following substitutions

X′1 =
M

(1)
0 +M

(1)
1

2 sinµ
, Z′1 =

M
(1)
0 −M (1)

1

2 cosµ
, (C.24)

with their regularized versions being X1 = X′1/|X′1|, Z1 = Z′1/|Z′1| and
Xi = M

(i)
0 , Zi = M

(i)
1 for i = 2, . . . , N . Notice that the operators for the
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first observer anticommute by construction, while all the remaining ones
square to identity, that is, X2

i = Z2
i = 1.

Suppose now that we are given a Bell expression I whose maximal
quantum value βQ is achieved by a state |ψ〉. Let us assume, more-
over, that the corresponding Bell operator B admits the following sum of
squares

c(βQ1− B) =
N∑

i=1

α2
i (1− G̃i)2, (C.25)

where we identify with G̃i the stabilizer operators with the substituted
operators Xi,Zi (cfr. Eq. (5.30)). Such a decomposition would imply
that the state |ψ〉 satisfies the stabilizing conditions

G̃i |ψ〉 = |ψ〉 (C.26)

with i = 1, . . . , N .
We now proceed to show that, with any choice of operators of the

kind of (C.24), the above two equations suffice to self-test the partially
entangled GHZ state for any θ ∈ (0, π/4].

First, let us see how the stabilizing conditions allow to prove that all
the pairs Xi,Zi anticommute and square to identity when acting on the
state.

Let us begin with X1 and Z1. First, from the definitions (C.24) we
directly see that

{X1,Z1} = 0. (C.27)

Then, from the conditions (C.26) and the fact that Z2
i = 1 for any i =

2, . . . , N we immediately obtain Z1 |ψ〉 = Zi |ψ〉, which implies that

Z2
1 |ψ〉 = Z1Zi |ψ〉 = S̃i |ψ〉 = |ψ〉 , (C.28)

and, as a result, that G̃2
i |ψ〉 = |ψ〉. To finally prove that X2

i = 1, we
rewrite (C.24) as

X1 =
1

sin 2θ
(G̃1 − cos 2θZ1)X1, (C.29)

where X1 = X2 . . .XN . Due to the fact that X2
1 = 1, we then have

X2
1 =

1

sin2 2θ

[
G̃2

1 − cos 2θ{G̃1,Z1}+ cos2 2θZ2
1

]
. (C.30)

From the very definition of G̃1 we can rewrite the anticommutator ap-
pearing in the above as

{G̃1,Z1} = sin 2θ{X1,Z1}X1 + 2 cos 2θZ2
1

= 2 cos 2θZ2
1, (C.31)
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where the second equality stems from the anticommutation relation (C.27).
The identity (C.31) allows us to simplify Eq. (C.30) as

X2
1 =

1

sin2 2θ

(
G̃2

1 − cos2 2θZ2
1

)
, (C.32)

which, due to the fact that G̃2
1 |ψ〉 = Z2

1 |ψ〉 = |ψ〉, directly implies that
X2

1 |ψ〉 = |ψ〉.
Let us now turn to the operators Xi and Zi for the remaining sites

i = 2, . . . , N . We have already noticed that X2
i = Z2

i = 1, so in what
follows we prove that they anticommute. With the aid of Eq. (C.22) we
can express Xi as

Xi =
1

sin 2θ
Xi
(
G̃1 − cos 2θZ1

)
, (C.33)

where Xi = X1 . . .Xi−1Xi+1 . . .XN . This, after some straightforward ma-
noeuvres, allows us to write

{Xi,Zi} |ψ〉 =
1

sin 2θ
Xi
[
{S̃1,Z1} − 2 cos 2θZ2

1

]
|ψ〉 (C.34)

To see that the right-hand side of the above equation vanishes it suffices
to use Eq. (C.31).

We have thus established that

{Xi,Zi} |ψ〉 = 0 (C.35)

as well as dix2
i |ψ〉 = diz2

i |ψ〉 = |ψ〉 for all i = 1, . . . , N . Let us now
use them to prove our self-testing statement with the isometry Φ = Φ1⊗
. . .⊗ΦN with each Φi traditionally defined as in Fig. 5.1. As above, each
operator Φi acts on one of the particles of state |ψ〉 and a qubit state |+〉,
giving

Φ
(
|+〉⊗N ⊗ |ψ〉

)
=

∑

τ∈{0,1}N
|τ〉 ⊗




N⊗

j=1

Xτjj Z
(τj)
j


 |ψ〉 , (C.36)

Let us first show that all terms in (C.36) except for τ = (0, . . . , 0)
and τ = (1, . . . , 1) vanish. To this end, consider a sequence τ in which
τm = 0 and τn = 1 for some m 6= n. For such a sequence we can rewrite
the corresponding term in (C.36) as


 ⊗

j 6=m,n
Xτjj Z

(τj)
j


⊗ Z(0)

m XnZ(1)
n |ψ〉

=


 ⊗

j 6=j1,j2

Xτjj Z
(τj)
j


⊗ XnZ

(1)
1 Z(0)

1 |ψ〉 , (C.37)
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where we used the anticommutation relation for Xn and Zn as well as the
fact that Zi |ψ〉 = Z1 |ψ〉 for i = 2, . . . , N . Noticing then that Z(1)

1 Z(0)
1 = 0

as both Z(i)
1 are unnormalised projections onto orthogonal subspaces, we

see that (C.37) amounts to zero.
Hence, the expression (C.36) reduces to the following two terms

Φ
(
|+〉⊗N ⊗ |ψ〉

)
= |0〉⊗N ⊗

(
Z(0)

1 . . .Z(0)
N

)
|ψ〉

+ |1〉⊗N ⊗
(
X1Z−1 . . .XNZ

−
N

)
|ψ〉

= |0〉⊗N ⊗ (Z(0)
1 )N |ψ〉+ |1〉⊗N ⊗

[
X1(Z(1)

1 )NX2 . . .XN
]
|ψ〉

= |0〉⊗N ⊗ Z(0)
1 |ψ〉+ |1〉⊗N ⊗

[
Z(0)

1 X1 . . .XN
]
|ψ〉 , (C.38)

where to obtain the second equality we exploited conditions (C.26) for
all i = 2, . . . , N , whereas the second equality follows from the fact that
[Z(j)

1 ]2 |ψ〉 = Z(j)
1 |ψ〉 for j = 0, 1 and the anticommutation relation (C.27).

Using then (C.22), the above can be rewritten as

Φ
(
|+〉⊗N ⊗ |ψ〉

)
=

1

sin 2θ

[
sin 2θ |0〉⊗N ⊗ Z(0)

1 |ψ〉

+ |1〉⊗N ⊗ (Z(0)
1 G̃1 − cos 2θZ(0)

1 Z1) |ψ〉
]

=
1

sin 2θ

[
sin 2θ |0〉⊗N + (1− cos 2θ) |1〉⊗N

]
⊗ Z(0)

1 |ψ〉
= |aux〉 ⊗ |GHZN (θ)〉 , (C.39)

where |aux〉 = (1/ cos θ)Z(0)
1 |ψ〉. To obtain the second equality we used

the facts that G̃1 stabilizes |ψ〉 and that Z(0)
1 Z1 = Z(0)

1 , while the last one
is a consequence of the two well-known trigonometric relations sin 2θ =
2 sin θ cos θ and 1 − cos 2θ = 2 sin2 θ. This completes our self-testing
statement.

Deriving the Bell inequality

Notice how the previous self-testing argument justifies the choice (C.25)
for a SOS decomposition. Now, what is left to show is that (C.25) (cfr.
Eq. (5.30)) can indeed be satisfied and thus give rise to a non-trivial Bell
inequality. We see that this can be done by choosing the free angle µ and
the αi parameters accordingly. To do so, let us first compute the square
of the stabilizing operators

G̃2
1 =

1

2

(
sin2 2θ

sin2 µ
+

cos2 2θ

cos2 µ

)
1

+
1

4

(
sin2 2θ

sin2 µ
− cos2 2θ

cos2 µ

)
{M (1)

0 ,M
(1)
1 } (C.40)
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and
G̃2
i =

1

2 cos2 µ
1− 1

4 cos2 µ
{M (1)

0 ,M
(1)
1 } (C.41)

for i = 2, . . . , N . With these identities the sum of squares (C.25) can be
expanded as

N∑

i=1

α2
i (1− G̃i)2 =

N∑

i=1

α2
i1− 2

N∑

i=1

α2
i G̃i

+
1

2

[(
sin2 2θ

sin2 µ
+

cos2 2θ

cos2 µ

)
α2

1 +
1

cos2 µ

N∑

i=2

α2
i

]
1

+
1

4

[(
sin2 2θ

sin2 µ
− cos2 2θ

cos2 µ

)
α2

1 −
1

cos2 µ

N∑

i=2

α2
i

]
{M (1)

0 ,M
(1)
1 }.(C.42)

Now, we want the term standing in front of the anticommutator to vanish.
This can be done by setting: α2

1 =
√

2(N − 1) and α2
2 = . . . = α2

N =
√

2
and the angle µ so that 2 sin2 µ = sin2 2θ. This gives

N∑

i=1

α2
i (1− G̃i)2 = 2

{
2
√

2(N − 1)1−
[

(N − 1)
√

2G̃1 +
√

2
N∑

i=2

G̃i

]}
,

(C.43)
where we keep the

√
2 factor inside the curly brackets for further conve-

nience. We can thus identify βQ = 2
√

2(N − 1) and the remaining terms
appearing on the left-hand side of the above as the Bell operator

B = (N − 1)
√

2G̃1 +
√

2
N∑

i=2

G̃i. (C.44)

This, after substituting the expressions of the operators Xi,Zi in terms
of arbitrary observables for all i, leads us to the following Bell inequality

Iθ := (N − 1)〈(M (1)
0 +M

(1)
1 )M

(2)
0 . . .M

(N)
0 〉

+(N − 1)
cos 2θ√

1 + cos2 2θ
(〈M (1)

0 〉 − 〈M
(1)
1 〉)

+
1√

1 + cos2 2θ

N∑

i=2

〈(M (1)
0 −M (1)

1 )M
(i)
1 〉 ≤ βC , (C.45)

where βC is the classical bound that we compute below. For this purpose,
we can optimize Iθ over all the deterministic strategies corresponding to
the different choices M (i)

xi = ±1. Given the simple form of the inequality,
we can divide into the two subcases M (1)

0 = ±M (1)
1 and notice that the
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maximum is attained in the case in which the observables of the first
party take opposite signs, which results in

βC(θ) = 2(N − 1)
1 + cos 2θ√
1 + cos2 2θ

. (C.46)

Notice that βC(π/4) = 2(N−1) and we recover the limit case of the GHZ
state and inequality (5.14), while for θ = 0 one has βC(0) = 2

√
2(N −

1) and there is obviously no quantum violation. Moreover one can see
that βC(θ) is a decreasing function of θ in the considered interval. This
implies that (C.45) is violated for any value of θ in the given interval.
Interestingly, in the case N = 2 we obtain a self-testing inequality for
the partially entangled two-qubit state that is inequivalent to the known
tilted CHSH [AMP12, BP15] .
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