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“A mathematical theory is not to be considered complete until you have made it so clear that you can explain
it to the first man whom you meet on the street.”

David Hilbert (1862-1943)
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Introduction

All of the work presented in this thesis appeared while working on the following question.

Question. Which is the set of [2-Betti numbers arising from the lamplighter group I'?

This question was the initial problem of this thesis. Historically, M. Atiyah [7] introduced in 1976 these
particular numbers as homological invariants of a certain kind of homology (nowadays called [2-homology) in
order to study Riemannian manifolds M endowed with a free cocompact action of a countable discrete group
G. His motivation was to generalize the Atiyah-Singer Index Theorem to the noncompact setting.

The [2-Betti numbers can be defined purely in terms of the countable discrete group G. Given a subfield
K C C closed under complex conjugation, one can consider the group algebra K[G] and, more generally,
matrix algebras over K[G]. Each matrix operator T' € M,,(K[G]) can be thought of as a bounded operator
T : 1?(G)" — I>(G)™ acting on the left. It turns out that the projection pr onto ker(T) belongs to the group
von Neumann algebra N,,(G) of M,,(K|G]), which is in fact a finite von Neumann algebra, thus endowed with
a faithful positive trace Try;, (). The I2-Betti numbers are precisely those values that arise when computing
the traces of the projections pr, T € M, (K[G]).

Definition. A real positive number r is called an [2-Betti number arising from G, with coefficients in K, if for
some integer n > 1 there exists a matrix operator T' € M,,(K[G]) such that

Trw, o) (pr) =1,
where pr : [2(G)" — [2(G)"™ denotes the projection onto ker(T').

Atiyah computed several {>-Betti numbers in numerous examples, and all of them turned out to be rational,
thus giving rise to one of the original questions posted by Atiyah about {?-Betti numbers.

Question. Is it possible to obtain irrational values of [2-Betti numbers?

That question motivated a large number of research projects in which stronger statements were formulated
(and in some cases proved). One of the strongest versions of Atiyah’s original question is the so-called Strong
Atiyah Conjecture.

Strong Atiyah Conjecture. Is it true that the set of values of [2-Betti numbers is contained in the subgroup
of Q generated by all the elements ﬁ, where H ranges over the finite subgroups of G?

The lamplighter is precisely the first counterexample to the Strong Atiyah Conjecture, as proven by R. L.
Grigorchuk and A. Zuk [42], followed by W. Dicks and T. Schick [25]. More recently, the original Atiyah’s
question has been solved in the negative, and some authors, including Austin [8], Grabowski [40, 41] and
Pichot, Schick and Zuk [86] have found examples of groups having irrational values of [2-Betti numbers. In
particular, Grabowski shows in [41] that there are transcendental numbers that appear as [?>-Betti numbers of
the lamplighter group.

Nevertheless, the Strong Atiyah Conjecture is still open for the class of groups such that there exists an upper
bound on the orders of their finite subgroups. In particular it is open for torsion-free groups. For an extensive
study of Atiyah’s original question and strong versions of it, see |8 [40], 43} (52, [53], 66, [67, 69} [70, [71], [72] [74].

As already said, the initial problem of this thesis was to determine the set of I>-Betti numbers arising from
the lamplighter group I', denoted by C(T', K). This group is defined to be the semidirect product of Z copies
of the finite group Zs by Z, i.e.

I =2z; %,z

€L
whose automorphism p implementing the semidirect product is the well-known Bernoulli shift. A precursor
of our work here can be found in the paper [6] by Ara and Goodearl. In this article, the authors attack
this problem algebraically, by trying to uncover the structure of what is called the *-regular closure R gy of
the lamplighter group algebra KI'] inside U(T"), the algebra of (unbounded) affiliated operators of the group
von Neumann algebra A/(T') or, more algebraically, the classical ring of quotients of N/(I') (see Section [L.1.2).
The precise connection between the *-regular closure R xr) and the set of [2-Betti numbers C(I', K) has been
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provided recently by a result of Jaikin-Zapirain [53], which states that the rank function rkg, ., obtained
from rkﬂ by restriction on R ), is completely determined by its values on matrices over K[I']. Since R
is regular, this can be rephrased in the form

¢(Ko(Rkqry)) = 6(T', K),

where ¢ is the state on Ko(R k) induced by rkgr), and G(T', K) the subgroup of R generated by C(T', K).
As one of the main results in [6], the authors uncover a portion of the algebraic structure of R xr by studying
the #-regular closure R of a certain *-subalgebra A of K[I'] in U(G), and this study leads them to conclude
that G(T', K) must contain all the rational numbers, namely Q C G(T', K) [6, Corollary 6.14].

Our initial strategy in this work was to extend the work done by Ara and Goodearl, by considering an
increasing sequence of x-subalgebras A,, of K[I'] such that its inductive limit A, becomes ’big enough’ inside
K[I'). While working on this problem we realized that there was a natural way of thinking about these
"approximating’ x-subalgebras A,, in terms of a concrete dynamical system. The key observation was to realize
that the lamplighter group algebra, being a semidirect product of the abelian torsion group .., Zs by Z, can
be thought of as a Z-crossed product *-algebra

i€L

K = K[ Zo] %, Z= Cx(X) xr Z
i€Z

through the Fourier transform .7 : K[, , Zo] — Ck(X), where X = [],.,Z> is the Pontryagin dual of
the group @, ., Z», identified topologically with the Cantor set, Cx(X) denotes the set of locally constant
functions f : X — K, and T : X — X is the homeomorphism of X given by the Bernoulli shift. There
is a natural measure g on X, namely the usual product measure where we take the (%, %)—measure on each
component {0,1}, which is ergodic, full and T-invariant. This enables us to study the Z-crossed product
algebra Cx (X) X7 Z by giving ’u-approximations’ of the space X (see Section , which at the level of the
algebra correspond to the ’approximating’ x-subalgebras A,, given in K[I'] under the previous identification.
This construction is motivated by a construction given by Putnam [87] 8g].

In the group algebra K'[I'] one has a canonical Sylvester matrix rank function rk g rj, inherited from the one
existing in the x-regular ring U (I"). We can transfer rk g rj to a Sylvester matrix rank function on Cr (X)) x7Z by
pulling it back through the previous identification, and this gives rise to a T-invariant probability measure p on
X. With this observation we have been able to construct, from a fixed T-invariant, full and ergodic probability
measure and using the construction involving the ’approximating’ x-subalgebras of A = Cx (X) x1Z developed
in Chapter [2| a canonical faithful Sylvester matrix rank function rk 4 on A not only when K C C and T is the
Bernoulli shift, but in the more general setting of K being an arbitrary field and T an arbitrary homeomorphism
on a Cantor set X. As mentioned, this construction requires the existence of a T-invariant probability measure
1 on X which must be ergodic and full. The corresponding Sylvester matrix rank function rk4 turns out to be
unique with respect to the property that the rank of any characteristic function xy, being U C X any clopen
set, must equal the measure of U (these results are Theorem and Proposition [2.3.8). This rank function
on A = Ck(X) xr Z gives us a way to define ’[2-Betti numbers’ arising from the algebra A which, in the
particular case of the lamplighter group algebra, coincide with the [>-Betti numbers arising from T (see Section
3-2).

In Section we obtain some results on the structure of the compact convex set P(A) of Sylvester matrix
rank functions on A. We show in Theorem that, when X is a totally disconnected metrizable compact
space (not necessarily infinite) and T': X — X is any homeomorphism on X, then every rank function rk on
the crossed product algebra A = Ck(X) X7 Z is induced by some regular ring.

During the course of developing the construction given in Chapter [2, new work by Grabowski on the
searching of [?-betti numbers arising from the lamplighter group I' appeared [41]. In this article, the author
proved the existence of irrational /2-Betti numbers arising from I, exhibiting a concrete example in [41, Theorem
2]. Very roughly, his idea is to compute [>-Betti numbers by means of decomposing them as an infinite sum
of (normalized) dimensions of kernels of finite-dimensional operators (i.e. matrices), and then analyzing the
behavior of these finite-dimensional matrices by means of certain graphs in order to determine the global
behavior of the dimension of their kernels. We use these ideas in Section [3:2:2] but applied to our construction of
Chapter[2| In particular, our main Theorem gives a whole family of irrational (and even transcendental)
[2-Betti numbers arising from T.

!Here rk denotes the canonical rank function on U(T") defined through the trace trar(r), see Section m
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Another source of inspiration for the work of this thesis is the work of Elek [29]. To introduce it, we need
a historical motivation of the problem.

Murray and von Neumann [80, Theorem XII] proved a uniqueness result for approximately finite von
Neumann algebra factors of type I1;. This unique factor R (called the hyperfinite I1,-factor) plays a central
role in the theory of von Neumann algebras. Von Neumann also considered a purely algebraic analogue of this
situation, which we briefly explain here. For a field K, one considers the sequence

My(K) = My(K) = -+ — Mon(K) — -+
0,.

x
be a regular ring which admits a unique rank function rk. The completion of %nn Moyn (K) with respect to the
induced rank metric, denoted by Mg, is a complete regular ring with a unique rank function, again denoted
by rk, which is a continuous factor, i.e. a right and left self-injective ring where the set of values of the rank
function fills the unit interval [0, 1].

Tt is expected (see e.g. [28, 29], [30]) that the factor M g could play a role in algebra which is similar to the
role played by the unique hyperfinite factor R in the theory of operator algebras. In particular, Elek has shown
in [29] that, if " is the lamplighter group, then the continuous factor obtained by taking the rank completion
of the #-regular closure of C[I'] in the x-algebra U(T") is isomorphic to Mc.

This raises the question of what uniqueness properties the von Neumann factor M g has. As von Neumann
had already shown, M is isomorphic to the factor obtained from any factor sequence (p;);, that is,

with respect to the block-diagonal embeddings x +— <0x ) Its direct limit %n Msn (K) turns out to
2n n

Mg %@Mﬂ(K),

where (p;); is a sequence of positive integers converging to infinity and such that p; divides p;41 for all 4.

We address this question in Chapter [4] showing in Theorem that if B is an ultramatricial K-algebra
and rkp is a nondiscrete extremal pseudo-rank function on B, then the completion of B with respect to rkp is
necessarily isomorphic to M. We also derive a characterization of the factor Mg by a local approximation
property. Using the latter characterization, we prove in Theorem [£:2.2] that the completion of the algebras
A = Ck(X) x1 Z considered before with respect to the metric induced by the rank function rk 4 is exactly the
algebra M. This is connected with a result of Elek [29]

Elek and Jaikin-Zapirain have recently raised the question of whether, for any subfield K of C closed under

complex conjugation, and any countable amenable ICC-group G, the rank completion ﬁ?;[g] of the x-regular
closure of K[G] in U(G) is either of the form M, (D) or of the form Mp := D @ x Mg, where D is a division
ring with center K. In view of this question, it is natural to obtain uniqueness results in the more general
setting of D-rings over a division ring D, and also in the setting of rings with involution. We address these
questions in the final two sections of Chapter [d]

Contents of the thesis

This thesis consists on five chapters, the first one giving the preliminary background needed in order to follow
the other four chapters, which contain the innovative work of the thesis. We start Chapter [1| by providing a
brief introduction to von Neumann dimensions (whose values are, in a different context, also called [2-Betti
numbers), together with the statements of the Atiyah Conjectures, which concern the question of what kind
of values these dimensions can achieve.

We also introduce the notion of von Neumann regular and #-regular rings, which play a central role in
the next chapters. Many rings of this type carry a natural rank function, which can be used to construct a
dimension function over the set of finitely generated (right) projective modules over it. One of the simplest
examples one can think about this kind of rings are the matrix algebras over an arbitrary field, together with
the usual (normalized) rank of matrices. A not-so-trivial example is given by the algebra of (unbounded)
affiliated operators of a finite von Neumann algebra M. In section we study this example in detail, while
we will make use of it later on at this thesis, in Chapters [2|and [3] where it plays a key role.

An important notion introduced in this chapter is the notion of x-regular closure of a set inside a *-regular
ring. There is a whole theory in development concerning the study of the x-regular closure, initiated by Jaikin-
Zapirain in [53]. As mentioned above, there is a close connection between this construction and the possible



range of values that any Sylvester matrix rank function defined on it can achieve, which is crucial in motivating
the reason for studying it.

We end the first chapter by discussing a little bit the different (noncommutative) theories about localization
in noncommutative rings, ranging from the universal localization (which gives us the Ore localization in some
special cases) to other localization theories such as the rational closure and the division closure (see eg. [18,[20]).

In Chapter [2| we consider the crossed product x-algebra A := Cx(X) X7 Z induced by a homeomorphism
T : X — X on a totally disconnected, compact, metrizable space X. We also assume that X is a measurable
space with measure u, being p an ergodic, full T-invariant probability measure on X.

In Section we present a general construction of approximating A by a suitable subalgebra A(E,P) by
means of approximating the space X. We fix a nonempty clopen subset F of X, and a finite partition P of
the complement X\FE. Then A(E,P) is defined to be the unital x-subalgebra of A generated by the partial
isometries xzt, Z € P. From Propositionwe get that A(FE, P) can be realized as a partial crossed product
x-algebra, thus interpreting it as an approximation of our crossed product algebra .A. We show in Proposition
that A(E,P) is embeddable into a (possibly infinite) matrix product algebra.

By applying our construction to a decreasing sequence of nonempty clopen sets { E,, },, and taking compatible
partitions P,, of the complements X\ E,, (and provided that X be an infinite space), we construct a sequence
of approximating x-subalgebras .4,, which are embeddable into (possibly infinite) matrix product algebras R,
such that its limit Ao = ling A, is 'big enough’ inside A (see Proposition, and fits inside Roo = lim  R,,.
Since each matrix product algebra fR,, carries natural rank functions (satisfying certain compatibility relations
concerning the measure p on X), it is possible to define a rank function rkey_ on fRo., thus a Sylvester matrix
rank function rky__ on A..

This process enables us to embed the whole x-algebra A not into PR, itself, but into the rank completion
R,k of R, as we show in Theorem m The natural rank function rke,, induces a Sylvester matrix rank
function on A, which can be shown to be the unique Sylvester matrix rank function on A satisfying a certain
compatibility property with the measure y (Proposition [2.3.8). Moreover, using Theorem we can idenfity
Rk with the well-known von Neumann continuous factor M g, thus providing an embedding A «— Mg. It
turns out that M g is in fact also the rank completion of A. This result is comparable with a well-known result,
due to Murray, von Neumann and Connes (Theorem , which states similar results but in a C*-algebraic
setting. We give some flavour of it in Section 2.1}

We also study the relations between Sylvester matrix rank functions and probability measures on X. In
particular, Proposition reveals that one can reverse the above process, namely that if one starts with an
extremal and faithful Sylvester matrix rank function on A, one can construct an ergodic, full and T-invariant
probability measure on X, uniquely determined by exactly the same compatibility property as before.

After that, we devote subsection to study the structure of the compact convex set P(A) of Sylvester
matrix rank function on \A. Our main result in this subsection is Theorem which states that any
Sylvester matrix rank function rk on A is induced by a regular ring, namely that rk is obtained by pulling
back a rank function rkg defined on a regular ring S through a homomorphism A — S. This result does not
require X to be infinite.

To conclude, we initiate the study of the *-regular closure of A inside Mg in order to obtain information
about the possible numbers that the rank function rk 4 can achieve. We show that the above approximating
sequence of x-subalgebras A, of A gives rise to an approximating sequence of x-regular rings R,, of R in a
suitable sense, more specified in Propositions and In subsection we focus basically on uncover
a portion of the x-regular closures R, shedding some light on it in Proposition [2.4.21

In Chapter [3] we apply our whole machinery from Chapter [2]in order to study some group algebras arising
as Z-crossed product algebras, such as the lamplighter group algebra.

We first show how one can relate, in the particular case that K is a subfield of the complex numbers closed
under complex conjugation, the group algebra of some special crossed product groups G = H x,Z by means of
a Z-crossed product algebra through Fourier transform. It is well-known that when H is a countable, discrete
and torsion group, then its Pontryagin dual H becomes a totally disconnected, compact metrizable space. We
show in Proposition that, under further hypotheses on the field K, we can identify the group algebra of
H with the algebra of locally constant functions over H under Fourier transform. In these cases, we obtain an
identification

~

K[G) = K[H] %, 7= Cx(H) 1 Z,
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where T : H — H is induced by p : Z ~ H. We observe (Remark that the resulting explicit formulas
for the Fourier transform .% and its inverse .# ! remain valid in any field with involution (K,*) of arbitrary
characteristic p, provided that K satisfy the required hypotheses given in Proposition so the previous
identification K[G] = Ck(H) X Z remain valid if we replace K C C by any field with involution (K, x)
satisfying some additional hypotheses.

Going back to the case K C C, the canonical rank function rkgjg on K[G] inherited from U(G) (the
algebra of unbounded operators affiliated to the group von Neumann algebra N (G)) gives rise to a T-invariant
probability measure i on H , which coincides with the normalized Haar measure on H (Proposition .
Once more, this leads us to conclude that for an arbitrary field with involution (K, x) (satisfying the same
hypotheses as mentioned above), and by assuming ergodicity of fi, one can construct a canonical Sylvester
matrix rank function on K[G] by applying our construction from Chapter [2[to obtain a Sylvester matrix rank
function rk4 on A = C (H) x1 Z, and pulling it back through the Fourier transform .Z : K[G] — A, so we
have indeed reversed the process of finding a suitable rank function, starting with A4 and ending with K[G]. In
this setting, the Atiyah problem for our group algebra K[G](cf. Section can be translated to a problem
on computing ranks inside the Z-crossed product algebra. We also show in Theorem that, under the
identification of K[G] and A through .#, the *-regular closure R g|q) of the group algebra K[G] inside U(G)
(as defined for example in [6] 29], [53]) can be identified with our already defined x-regular closure R 4 of the
crossed product A = C K(f[ ) X7 Z inside its rank completion R,, thus giving an alternative way of interpreting
it in some cases of interest.

As a particular example, we apply our methods to study the lamplighter group algebra K[I'] in Section
As mentioned above, this algebra is important because, among other things, it gave the first counterexample
to the Strong Atiyah Conjecture, see for example [42], [25]. By using ideas of Grabowski [41] combined with
our relation with /2-Betti numbers and values of our canonical Sylvester rank function on A, we have been able
to find a whole class of irrational (and even transcendental) [2-Betti numbers arising from T', giving explicit
descriptions of the elements, inside matrix algebras over K[I'], that give rise to such values. This is the main
result of this section, Theorem [3.2.10

To end this chapter, we apply our methods to study the particular case of the odometer algebra Cx (X) xrZ
with X = [],c5{0, 1}, where T' is the automorphism X — X given by addition of (1,0, ...) with carry over, see
Section Although it is not possible in this case to realize this crossed product algebra as a group algebra
(simply because the crossed product algebra obtained here is simple, see [I7]), this example is interesting
in its own right because we have been able to completely determine the structure of its x-regular closure in
Theorem and thus giving a complete description of the set of I2-Betti numbers arising from the algebra
K[Z(2*)] %, Z in Theorem m This example has also been studied by Elek in [29], although in there the
author does not compute exactly the s-regular closure R 4; instead, he computes its rank completion, which
he shows that it must be isomorphic to the von-Neumann continuous factor Mg again. After studying this
particular odometer, we realized that the same techniques could also be used to study the general odometer
algebra O(m), and we do so in Section thus giving a complete description of its *-regular closure in Theorem
and completely determining the set of [?>-Betti numbers arising from the general odometer algebra O(m)
in Theorem In particular, it is worth mentioning that from this Theorem it follows that all the (positive
part of the) subgroups of Q containing 1 can appear as the set of [>-Betti numbers arising from some odometer
algebra.

Chapter [] concerns the characterization of the rank completion of some ultramatricial K-algebras, being
K an arbitrary field. As already mentioned, von Neumann had already shown (and was published later by
Halperin [44]) that when one completes any inductive limit of matrix algebras

1'%MW,(K)

constructed by means of a factor sequence (p;); (so that each p; is a positive integer dividing p;;1), the resulting
completion is always a continuous factor, and in fact isomorphic to the von-Neumann continuous factor Mg,
independently of the factor sequence chosen. We present in Theorem [4.2.2] a generalization of this result,
namely that whenever the rank completion of an ultramatricial K-algebra becomes a continuous factor (i.e.
when the rank function is nondiscrete and extremal), then this rank completion is necessarily isomorphic to
M. In fact, we also characterize such K-algebras by means of a local property.

We extend, in Section £.3] the previous result to D-rings, being D a division ring. The motivation for

—rk
doing so is, as explained, a recent question raised by Elek and Jaikin of whether the rank completion R;([G]
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of the group algebra of an ICC-group G (being in this case K a subfield of the complex numbers closed under
complex conjugation) is either of the form M, (D) or Mp := D @ Mg, being D a division ring with center
K. We have been able to extend condition (2) of Theorem but we have not found a reasonable analogue
of the local condition (3) in this setting. Theorem provides the main result of that section.

To conclude the chapter, we have considered the corresponding problem for x-algebras. Again, the mo-
tivation comes from the theory of group algebras: for K C C closed under complex conjugation and G a
countable discrete group, its group algebra K[G] can be endowed with a natural involution extending the one
from K, and the completion of the x-regular closure of K[G] inside U(G) is a #-regular ring containing K[G] as
a *-subalgebra. It is then desirable to obtain analogous results as in Theorem [.2.2] of whether the completion
of a standard ultramatricial x-algebra A gives back M again as x-algebras. The main results are collected
in Theorem where we have been able to extend condition (2) of Theorem and also condition (3)
although in a somewhat technical way. In the case, however, of K being a *-Pythagorean ﬁel(ﬂ, we can derive
a result which is completely analogous to Theorem and we present it in Corollary

The results of this chapter have been published in an article at the Canadian Journal of Mathematics (2018)

I5].

In the last chapter we change our topics from the previous chapters and we concentrate on the study of the
structure of KMS states over some particular C*-algebras, namely the ones arising from groupoids and actions
of groupoids on graphs.

A KMS state on a C*-algebra A can be thought of as a generalization of a tracial state, but the trace
condition is generalized in the presence of dynamics « : R ~ A. For a state ¢ on A, we say that ¢ satisfies the
KMS condition at inverse temperature 8 € [0, 00) with respect to the dynamics « if

P(zy) = Pp(yaipr)

for every y € A and analytic x € A, meaning that the function R — A, ¢ — «;(z) can be extended to the whole
complex plane C. The theme is that there is always a critical inverse temperature 8. below which there are
no KMSg states, and above 3. the structure of the KMS simplex reflects some of the underlying combinatorial
data.

This is in particular the case in our context, where C*-algebras associated to self-similar groupoids are
considered [63]. Roughly speaking, a self-similar action of a groupoid on a finite graph E consists of a discrete
groupoid G with unit space identified with the vertices of the graph, and a left action G ~ E* of the groupoid
on the path-space E* of E, with the property that for each element g € G and each path u € E* for which
g - i is defined, there is a unique element g|, € G such that

g- () = (g-1)(glu-v)

for any other path v € E*. This reflects the self-similarity of the action. In [63], the authors show that the
self-similar action can be used to transform an arbitrary trace on C*(G) into a new trace that extends to a KMS
state on the Toeplitz algebra T (G, E)(see subsection [5.1.2)), and that this transformation is an isomorphism of
the simplex of normalized traces Tr(C*(G)) onto the KMS-simplex of 7 (G, E'). This chapter is motivated by
the observation that this transformation can be considered as a self-mapping of the simplex Tr(C*(G)), and
so can be iterated. The main result of this chapter is Theorem which sheds some light on Tr(C*(G)).
We show that, under certain hypotheses, there exists a 'preferred’ trace defined over the groupoid C*-algebra
C*(G), which turns out to be the fixed point of the previous self-mapping Tr(C*(G)) — Tr(C*(G)), and that
it is precisely the unique trace that extends to a KMS state at the critical inverse temperature j., see Section
b1l

The main motivation for doing so was to observe that the lamplighter group I" can be thought of as a
self-similar group(oid) acting faithfully on a specific graph Er given by one vertex and two loops (see Section
5.3)), so the hypotheses of our main result applies, giving a ’preferred’ trace over C*(I') which coincides with
the canonical trace tr defined on C*(I") by the rule tr(ugy) = d4,¢, where e is the unit element of I', and § is the
Kronecker delta. This result is given in Proposition [5.3.1] This connection between the canonical trace over
K[I'l € C*(T") and KMS states over a bigger C*-algebra opens a possible analytical approach to attack the
problem of computing [2-Beti numbers arising from I', since they are defined to be the value of the trace on
the von Neumann group algebra extending the canonical trace tr on projections.

2A field with involution (K, *) is called *-Pythagorean if for any x,y € K, there always exists an element z € K such that
2z = x*x 4+ y*y.
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The results of this chapter have been published in an article at the Journal of Mathematical Analysis and
Applications (2018) [16].

Almost the entire work from this last chapter has been done during a research stay of four monthsﬂ at the
School of Mathematics and Applied Statistics from the University of Wollongong, New South Wales (Australia),
under the supervision of Professor Aidan Sims. The author would like to thank him and the people from the

department in general for their kind hospitality.

3The stay had been partitioned into two parts: the first part had a duration of two months and was conducted in 2016,
September-October; the second part also had a duration of two months, and was conducted in 2017, September-October.
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Chapter 1

Preliminaries

In this first chapter we will cover the basic notions and theory needed to follow the other chapters of the
thesis. We will start by providing a brief introduction about the von Neumann dimension (whose values are,
in different contexts, also called [?-Betti numbers), together with the statements of the Atiyah problem, which
concern about the question of what kind of values these dimensions can achieve.

We will also introduce the notion of von Neumann regular and *-regular rings, which play a central role in
the following chapters, especially Chapters and [d] Special rings of this type carry a natural rank function,
which can be used to construct a dimension function over the set of finitely generated (right) projective modules
over it. One of the simplest examples one can think about these kind of rings are the matrix algebras over an
arbitrary field, together with the usual rank of matrices. A not-so-trivial example is given by the algebra of
(unbounded) affiliated operators of a prefixed finite von Neumann algebra M. In section we study this
example in detail, while we will make use of it later on in Chapter

We end this chapter by discussing a little bit the different (noncommutative) theories about localization
and quasi-invertibility in noncommutative rings, ranging from classical theories to modern ones.

1.1 [? -Betti numbers and the Atiyah problem

When studying Riemannian manifolds M endowed with a free cocompact action G ~ M of a discrete countable
group G, Michael Atiyah introduced in 1976 [7] a certain kind of homology on M, which is nowadays called
12-homology. Atiyah’s main motivation was to generalize the Atiyah-Singer Index Theorem to the noncompact
setting. Due to its definition, we can apply different tools from functional analysis, for example the theory
of von Neumann algebras and Hilbert modules, in order to define a notion of dimension on the resulting
I2-homology. This new notion of dimension turned out to be a homological invariant.

Atiyah computed several values of dimensions of this kind, called [2-Betti numbers, in numerous examples,
and all of them turned out to be rational numbers. This gave rise to the following natural question.

Question 1.1.1 (Atiyah). Is it possible to obtain irrational values of (?>-Betti numbers?

That question was the beginning of what is now called the Atiyah Conjecture, sometimes also called the
Atiyah problem. Since then, this question has evolved, and different researchers on this topic asked more
concrete questions about the possible values of such numbers; the collection of all these questions are referred
to as the Atiyah problem. We will give an overview of the problem in Section [1.1.4]

We would like to define [2-Betti numbers from a historical point of view by first defining the classical Betti
numbers, followed by an equivalent definition of /2-Betti numbers that the one given by Atiyah. We refer the
reader to the original paper of Atiyah [7] and to Liick’s book [73] for different definitions of /2-Betti numbers
and their equivalence, together with an extensive theory and applications of them to the fields of geometry and
K-theory.



Chapter 1. Preliminaries The Atiyah problem

1.1.1 Classical Betti numbers

Let X be a finite CW-complex, and write X = Uk o X% where X* denotes the k' skeleton of X. So X*\ X*~1
consists exactly on the k-dimensional cells e}, ..., nk The Euler characteristic x(X) of X is defined to be the
alternating sum Zzzo(fl)knk. It generalizes the familiar formula vertices - edges + faces for polyhedra.

We put C(X) for the free Z-module with basis the k-cells {e},...,el }, that is Cr(X) = @+, ZelF. After
choosing a particular orientation on each k-dimensional cell, we get a chain complex

1 Ok
s = Ck+1(X) k+ Ck( ) RLEN C’kfl(X) —
where each connecting map is defined by d(ef) = Z{j.ek—leaek} €j€§_1, where ¢; is either 1 or —1 depending
ek
on the orientation chosen for the cell e;‘?*l. Therefore we can consider the k" homology group
Hy(X;Z) = ker(0k)/Im(9k+1),

which has the structure of an abelian group, or Z-module. The k*" Betti number Bk( ;C) of X is defined to
be the C-dimension of the complexification Hy(X;Z) ®z C, i.e. Br(X) = dimc(Hg(X;Z) ®7 C). Equivalently,
it is the rank of Hy(X;Z) as a Z-module.

Examples 1.1.2.

1) For the torus X = St x S!, one has Ho(X;Z) 2 Z, H|(X;Z) 2 Z®Z, Hy(X;Z) = Z and H,(X;Z) =0
for k > 3, so
Bo(X)=1, [(X)=2, B2(X)=1 and pr(X)=0fork > 3.

More generally, for the n-torus X = 7" = S1x "+ xS' one makes use of the Kiinneth’s formula

H(X;2)2 @ Hi(Sh2)@-- © Hy(Sh2)
it =k

to obtain the homology of X: it is given by Hy(X;Z) = 7 for 0 < k <n and 0 otherwise, so

Br(X) = (:) for 0 <k <n, and 0 otherwise.

2) For the n-sphere X = S™, one has Hyo(X,Z) 2 Z, H,(X;Z) = Z and the others are 0, so

Bo(X)=1, pp(X)=1 and 0 otherwise.

When tensoring Hy,(X;7Z) with C we are getting rid of the torsion part of the £ homology group, so the
Betti numbers do not take into account any torsion in the homology. Nevertheless, they are useful topological
invariants.

Theorem 1.1.3 (Properties of Betti numbers). Let X,Y be two finite connected CW-complexes.
(1) Homotopy invariance: if X,Y are homotopy equivalent, then Bi(X) = Br(Y).
(2) Euler-Poincaré formula: we have x(X) =Y ;_,(—1)*B,(X).
(8) Poincaré duality: if X = M is a closed manifold of dimension n, then (M) = Bn—r(M).
(4) Kiinneth’s formula: B (X xY) =3, Bi(X)B;(Y).

(5) Bo(X) =1
Proof. These are well-known results and their proofs can be found in any Algebraic Topology introductory
book. O

However, given an invariant for a finite CW-complex X, one can extract much more information by passing
to the universal cover X of X and defining an analogous invariant taking into account the action of the
fundamental group m = 71(X) on X. The [?>-Betti numbers arise from this principle applied to the classical
Betti numbers.
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1.1.2 Digression on group von Neumann algebras and Hilbert modules

Let G be a discrete countable group. For any subring R C C closed under complex conjugation, one can form
the group x-ring of G with coefficients in R, R[G], defined to be the set of finite R-combinations of elements
of G, i.e. consisting of formal finite sums Z'v a,vy with a, € R. The sum operation is defined pointwise, the
product is induced by the group multiplications (and distributive with respect to the sum), and the *-operation
is defined towards the rule (a,7)* =a;y %

One can also form the Hilbert space [?(G) consisting of all square-summable functions f : G — C with
obvious addition and scalar product, and inner product defined by (f, g)i2(a) = Z'y f(y)g(y)- It has a natural
basis, naturally identified with G, consisting of indicator functions &, € I?(G), defined to be 1 over the element
~ and 0 otherwise.

Observe that G acts faithfully on [?(G) by right and left multiplication, giving representations of G as
bounded operators on [2(G). We will denote these representations by p : G — B(I2(G)) and X : G — B(I*(G))
respectively. They are commonly called the right/left reqular representations of G respectively, and their actions

are given specifically by

(b(MH©B) = f(8) and  (A(1)F)(8) = f(y7'0), for f €1*(G), 6 €.

Note that either A or p extend to actions of R[G] on [?(G) preserving the x-operation, namely for an element
T € R[G], the adjoint operator of A(T') (resp. p(T)) is precisely A(T™*) (resp. p(T™*)), so we can actually identify
R[G] with the image of X (resp. the image of p) inside B(I*(G)).

We denote by N (G) the weak-completion of A\(C[G]) inside B(I(G)), which is called the group von Neumann
algebra of G. An equivalent algebraic definition can be given, as follows. For a G-equivariant bounded operator
T we mean a bounded operator on [2(G) such that T'(p(y)f) = p(y)T(f) for every f € I*(G) and v € G

(equivalently, p(vy) o T = T o p(y) for every v € G). Then N (G) consists exactly on the set of all G-equivariant

bounded operators, sometimes denoted also by B(I?(G))€.

An important property of the group von Neumann algebra is that it carries a canonical trace try(q) :
N(G) — C, defined through the inner product on I?(G) by

trae) (1) = (T(€e), e )iz (@)-

Note that for an element T'=3__ a,y € R[G] its trace is simply try(g)(T) = ac, the coefficient of the unit
element e € GG. In the next proposition we show that this trace is:

a) normal, in the sense of [84] Section 3.6]: for each bounded, monotone increasing net of self-adjoint
operators {1y }o in N(G) with strong limit 7' € N(G), the net {try(c)(Ta)}a converges to tryc)(T);

b) positive: tryq)(T*T) > 0 for every T € N (G);
¢) faithful: if try(g) (T*T) = 0 for some T' € N(G), then T = 0.

Proposition 1.1.4. The trace try (g is normal, faithful and positive. Therefore N(G) becomes a finite von
Neumann algebra. In fact N'(GQ) is a type I1; factor if and only if all nontrivial conjugacy classes of G are
infinite (that is, G is what is called an ICC group).

Proof. Note that, if {T},}, is a sequence of operators inside A\(C[G]) converging weakly to T € N (G), then by
definition trar () (Tn) = (Th(&e),&e)i2(q) RN (T'(&e),€e)i2(@) = trae)(T). Hence to prove the trace property
it is enough to prove it for elements from C[G], because for general operators T, S € N(G) just take two
sequences T,, = T, S,,, — S inside C[G], and then

trav(a) (TS) = lim lim trav (@) (TnSm) = lim lim tI‘N(G)(San) = tI‘_/\[(G)(ST).
By linearity of try(q), it is enough to prove the equality tra(q)(vd) = trar)(0y) for 7,6 € G; but this is
straightforward:
trare) (79) = (&45,8e) = 0y.6-1 = (5, &e) = trar(q) (7).

Hence try(g) is indeed a trace. Normality is proven in exactly the same way as the first computation of the
above argument. Let {T,}, be a bounded, monotone increasing net of self-adjoint operators in N(G) with

strong limit 7 € N(G), so that T, (f) = T(f) for every f € I*(G); then
tr () (Ta) = (Ta(€e), Eediziay = (T(Ee) ée)rz(e) = trae) (T),

3
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and try/() is normal. For positivity, note that for T € N(G), tra ) (T*T) = (T*T (&), &) = [|T(&)|[* > 0.
Finally, faithfulness follows from this last computation: T € N (G) satisfies try(c)(T*T) = 0 if and only if
T(&) =0, if and only if 0 = p(y"HT(&) = T(p(y1)é) = T(&y) for all v € G, if and only if T = 0.

The last statement can be found, for example, in [56, Section 8.6]. O

Remark 1.1.5. All the above statements can be easily extended to k x k matrices: the ring My (R[G]) acts
faithfully on [?(G)¥ in a natural way by letting a matrix act on a column by left multiplication, and then each
entry of M (R[G]) acts on [2(G) by the right or left regular representations p, \. We denote these extended
actions by pg, Az We can therefore identify My (R[G]) with its image A\, (My(R[G])) C B(I?(G)*). We will
denote by N3 (G) the weak-completion of My (C[G]) inside B(I2(G)*), which is easily seen to be equal to
M, (N(G)). The previous trace can be extended to a (unnormalized) trace in N (G) by setting, for a matrix

T = (Ti;) € Nk(G),

Trps ) (T Ztr/\/(c) i)

A finitely generated Hilbert (right) G-module will be any closed subspace V of [?(G)* for some k > 1,
invariant by the right action pj of My (C[G]), namely for v € V, pp(T)(v) € V for every T € M (C[G]). It is
enough to demand that pg(7y - e;;)(v) € V for every v € G and every matrix unit e;;.

For a Hilbert G-module V, we can decompose our Hilbert space as an orthogonal sum ?(G)¥ =V @ V+.
Let py : I?(G)* — 12(G)* be the corresponding projection onto V.

Lemma 1.1.6. py belongs to Ni(G).

Proof. Since V is invariant under py, so is V+. Therefore for f = fir + fy1 € I2(G)* and T € M;,(C[G]), we
have the decomposition pi(T)f = pr(T) fv + px(T)fyyr € V ® VL, hence

pv(pi(T)f) = pu(T) fv = px(T)pv (f)-

This says that py is a G-equivariant bounded operator, so it belongs to N (G). O

Definition 1.1.7. Let V < I2(G)* be a Hilbert G-module. We define its von Neumann dimension as the trace
of the projection py,
dim,n (V) = Trg (o) (pv)-

Examples 1.1.8.

1) For G a finite group, I?(G) = D,ccCE = CICI. If we restrict to the case when R = C, we have an
isomorphism of C-vector spaces C[G] = [*(G) given by v — &,. In this case B(I*(G)) = M|g|(C), and
N(G) = C[G] itself.

Take V < [?(G) a Hilbert G-module, and write {vy, ..., v, } for an orthonormal basis of V' (so dim¢(V) =
n). Write v; = > _4(vi, €4)&y. Since they form an orthonormal basis, we compute

1= <'Ui7'Ui> = Z ‘<Ui7§’y>|2'

veG

veG

Here the projection py : [*(G) — I*(G) is given by pv (f) = Y1 (f,vi)v; € V. By invariance of V, py
is a G-equivariant operator, so (pv(&),&y) = (p(7)pv (&), p(7)&e) = (pv (&), &e). Hence

di 1%
dim v (V) = i) () = (v(€,6) = g S v (6).6) = LSS ) = - G- “;gﬁ

yeG i=1veG
In conclusion, for finite G we recover the normalized dimension of V' as a C-vector space.

2) Take G to be an abelian group. One can define its Pontryagin dual @ which is the set of continuous
homomorphisms ¢ : G — T, also called characters. Wlth the compact convergence topology, it is well-
known that G becomes a topological abelian grou In fact, since G has the discrete topology, G is
compact, so it carries a normalized Haar measure pu.

IWe refer the reader to [35, Chapter 4] for more information about Pontryagin duality.
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Fourier transform gives an isomorphism between Hilbert spaces F : 12(G) — L2(G, p), &, — 7, where
7(¢) = ¢(v). Observe that F is unitary. This induces an isomorphism of operator algebras B(I%(G)) —
B(L2(G, 1)) given by conjugation by F, T — FTF*. Recall that L>(G, 1) C B(L(G, 1)) as an abelian
x-subalgebra, consisting of multiplication-by-f operators M : LQ(@7 ) — LZ(CA?, u) for f € Loo(@,u).
Under this identification, it turns out that FA(G)F* = L>(G, p).

The trace tr; g ) L=(G, 1) = N(G) — C becomes

trLoo((A;,u)(f) = <]:*Mf]:(56)7§e>l2(6') = <Mf]:(£e) (£€)>L2 (G.n) = /@f(¢)dﬂ(¢) for f € Loo((’i :U’)

In the particular case G = Z, we have G =T and the trace becomes

For any Borel subset 4/ C T, we can form a Hilbert Z-module V = Vi, = L?>(U, ) < L?(T, u) whose
projection is simply py = M,,, where x;; denotes the characteristic function of Y. Therefore its von
Neumann dimension is

dim, (V) =ty o ov) = [ vadi(z) = @)

So in this particular case every real number t € [0, 1] can occur as the von Neumann dimension of some
Hilbert Z-module.

1.1.3 Cellular >-Betti numbers

Let’s return to our previous setting. From now on X will be a CW-complex of finite type (meaning that each
skeleton X* is finite dimensional, but X itself may be infinite dimensional). Let p : X — X be its universal
covering, and put m = 71 (X) the fundamental group of X. We know that 7 acts on X by deck transformations,
so that X is the quotient of X under this action.

The action 7 ~ X induces an action of 7 on the Z-module Cr(X ) taking k-cells to k-cells ¥ s ¥ .y. With

this action, we can turn Cj(X) into a right Z[r]-module, where the boundary maps dj : (X) - Cr_1(X)
become Z[r]-homomorphisms. Hence we obtain a cellular Z[r]-chain complex

"_>Ck+1()z) Ok+1 C( )8_,”0]671()?)_)

Equivalently, one views Cj(X) as the free Z[r]-module generated by the (lifts under p of) k-cells of X, so
Ck(X) = Ck(X) ®7z Z[ﬂ].

Definition 1.1.9. We define the cellular [%-chain complex of X by

O (X) = Cu(X) @z (),
where we take the Z[r]-module structure on [2(7) given by the left action A : Z[x] — B(I?(7)).

If we pick a cellular basis for C(X) one obtain isomorphisms C( (X) = 12(7)¥ as right Z[r]-modules. This

induces the structure of a Hilbert m-module on C’,i )( X)), and the previous cellular Z[r]-chain complex becomes
a Hilbert chain complex

— O (X ) 28, oy 2 0@ (R)

that is, every map 89 = O, ®id is a bounded, m-equivariant operator between Hilbert m-modules. One can
therefore define the [%-homology groups H(Z) (X) = ker((‘?(2 )/Im (8,(331) Since we are modding out by the
closure of the image of the operator 6,(C +)1, this has the effect that H (2)( X) inherits the structure of a Hilbert

m-module, since it is in fact isometrically isomorphic to ker(a,?)) N Im(@,(jzl) .

5
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Definition 1.1.10. We define the k" [2-Betti number of X to be the von Neumann dimension of the k"
12-homology group,

2,5 . 2,3

2)(X) = dim,n (HP (X)).

Theorem 1.1.11 (Properties of /2-Betti numbers). Let X,Y be two finite connected CW-complezes, and let
XY be the corresponding universal coverings.

(1) Homotopy invariance: if X, Y are homotopy equivalent, then B(Q)( X) = 6(2) (Y)

(2) Euler-Poincaré formula: we have x(X) = >} _,(—1) B(Q)( X).

(8) Poincaré duality: if X = M a closed manifold of dimension n, then /J’I(f)( M) = ﬁ(Z) (M )
(4) Kiinneth’s formula: B,(CQ)()?;/Y) =itk 51(2) ()?)BJ(Q)(EN/)
(5) ﬁ((f)()z) = \71|’ where we use the convention that |71| =0if 7] =0

(6) Finite coverings: if X —'Y is a finite covering with d sheets, then ﬁ@)( X)=d- 6,(62) (Y).
Proof. |73, Theorem 1.35]. O

Observe that when 7 is a finite group, in view of Example 1),

5(X) = dimun (Y (X)) = L dime(H (X)) = Hﬁ’“( X)
and we recover the classical Betti numbers for the space X.

Historically, the I2-Betti numbers of the universal cover M — M of a closed Riemannian manifold M were
first defined by Atiyah in [7] in connection with his L2-Index Theorem, by using the heat kernel defined on
k-forms on M. We refer the reader to [73, Chapter 1] for the connection between Atiyah’s original definition
of [?-Betti numbers and our definition using cellular Hilbert chain complexes.

1.1.4 [>-Betti numbers for group rings and the Atiyah problem

Let G be again a discrete, countable group. In the particular case of matrix group rings My (K[G]), being K
a subfield of the complex numbers closed under complex conjugation, every matrix operator A € M (K[G])
gives rise to an [2-Betti number, in the following way: consider A as an operator A : [?(G)* — ?(G)* acting on
the left and take p4 € N%(G) to be the projection onto the kernel of A, which is a Hilbert G-module (so indeed
pa belongs to the von Neumann algebra N} (G)). Therefore one can consider the von Neumann dimension of
ker(A), which is simply the trace of the projection p4.

Definition 1.1.12. A real positive number r is called an [?-Betti number arising from G with coefficients in
K if for some integer k > 1, there exists a matrix operator A € My (K[G]) such that
dim, n (ker(A)) = Tras () (pa) =7

We denote the set of all [2-Betti numbers arising from G with coefficients in K by C(G, K). It should be noted
that this set is always a subsemigroup of (R*, +), for if A; € My, (K[G]) and Ay € My, (K|[G]) are two matrix

A0 > € My, +1,(K[G]) has von

operators such that dim, y(ker(A;)) = 1 and dim, y (ker(A43)) = r2, then 0 A
2

Neumann dimension r; + rs.

One of the main problems (following this line) is to actually compute the whole set C(G, K) for fixed G, K.
We are now ready to state the Atiyah Conjecture.

Conjecture 1.1.13 (The Atiyah Conjecture). Let A € My (Q[G]). Then dim,y(ker(A)) € Q.

It is now a well-known fact that this conjecture is false, see for example [§], [41]. However, while some
researchers were working on the conjecture before knowing that it was false, they proposed other refined
versions of it, and nowadays some of them are still open.
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Conjecture 1.1.14 (The Strong Atiyah Conjecture with coefficients in K). Let A € My(K[G]). Then
dim,, n (ker(A)) belongs to the subgroup of Q generated by all the elements \Tgl’ where H ranges over all the
finite subgroups of G.

In this generality, the Strong Atiyah Conjecture does not hold, as proven by R. I. Grigorchuk and A. Zuk
in [42], followed by W. Dicks and T. Schick (|25]). Nevertheless, the conjecture is still open for the class of
groups such that there exists an upper bound on the orders of their finite subgroups.

Conjecture 1.1.15 (The Strong Atiyah Conjecture with coefficients in K, refined). Let A € M (KI[G]).
Assume that there exists an upper bound for the orders of finite subgroups of G, and let lem(G) be the least

common multiple of such orders. Then dim,y(ker(A)) € mZ.

This version of the Strong Atiyah Conjecture has been verified in many cases, see for example [71].

We are not going to study these conjectures in full generality. In fact, in Chapter [3| we will exhibit some
positive real numbers (most of them irrational and even transcendental) that can appear in C(T', K), where T’
is the so-called lamplighter group, and K C C is any subfield of the complex numbers closed under complex
conjugation.

Actually, in the same chapter, we will define an analogous set (denoted by C(A)) consisting of positive real
numbers that can be achieved by taking ranks of matrices over A; we will explain all the details more carefully
in the subsequent chapters, but here A will denote a specific Z-crossed product *-algebra, endowed with a
‘natural’ rank function rk 4, which we will construct in Chapter 2] In fact, due to Proposition we will
deduce that C(A) and C(G, K) actually coincide in some cases of interest, hence giving an alternative way of
computing C(T', K).

1.2 Von Neumann regular rings, *-regular rings and rank functions

J. Von Neumann introduced the concept of regular rings in his study of rings of operators on Hilbert spaces (|77,
78,791, 180]), which lead him and F. J. Murray to the discovery of a new mathematical structure which possessed
a dimension function. This work led him to the discovery of a new structure with properties resembling those
of the lattice L,, that one can form by taking all the linear subspaces of an n-dimensional projective space.
Previously, K. Menger and G. Birkhoff ([75], [14]) already did this step: they characterized these lattices,
forming a class which we will denote by Ly, to be exactly the class of all complemented, modular, irreducible
lattices satisfying some chain condition, so any such a lattice is isomorphic to L,, for some finite n > 1. These
lattices were called projective geometries.

In his book [83], Von Neumann dropped this last assumption and added two weaker axioms (that the
chain condition already implies), namely the completeness property and a certain continuity condition. The
corresponding lattices satisfying such axioms but not satisfying the chain condition were called continuous ge-
ometries, which forms a class denoted by £.,. These new structures resemble the well-known finite dimensional
projective geometries L.

It turns out that one can construct a dimension function (uniquely determined by some normalization
conditions) on either projective or continuous geometries, and the surprise was that in this new setting, the
set of real numbers achieved from the dimension function constructed for a lattice L € L., was seen to fill
the whole interval [0, 1], rather than taking only a finite set of values {0, %, e ”T_l, 1}, which was already
the case for the lattices L,, € L. Such a dimension function can be constructed after defining the notion of
equidimensionality between elements z,y € L € L1 U L

x,y € L are said to be equidimensional if they have a common complement z € LE|

As its own definition suggests, z,y are equidimensional if and only if their dimensions are the same. We will
give the notion of a dimension function later on.

From now on we will follow von Neumann’s book [83] on continuous geometries. Just for completeness, we
state the definition given by von Neumann of his new axiomatization of lattices. For us, a continuous geometry
will be a lattice satisfying this definition, so the projective geometries are also included.

2See Definition d) for the definition of a complement.

7
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Definition 1.2.1. A lattice (L, <) is called complete, complemented, continuous, modular and irreducible (or
simply a continuous geometry) if the following axioms are satisfied:

a) Modularity: « < z implies (z Vy) Az=2a V (y A z) for every y € L.

b) Completeness: for every subset S C L, there exists an element \/ S € L which is a least upper bound for
S. Dually, there exists an element A S € L which is a greatest lower bound for S. We set 0 = A L and
1=\L.

We will also denote by S; V Ss the element \/(S; U S3), and dually for A.

c) Continuity: for every net {x, }o of elements of L satisfying either (i) o < 8 implies z, < zg or (ii) a < 3
implies £, > 3, then for every y € L

(Vizata) Ay =Vzatary) and  (Afoata) vy = Al{zata Vo).

d) Complementation: for every x € L there exists an element y € L satisfying zVy =1 and z Ay = 0. We
refer to such an element y as a complement of x.

e) Irreducibility: if x € L has a unique complement, then either z = 0 or 1.

As we have already mentioned, it is possible to define a normalized dimension function over L, namely a
map dim : L — [0, 1] satisfying the following properties:

a) dim(0) =0, dim(1) = 1.

b) Two elements z,y € L are equidimensional if and only if dim(x) = dim(y).
c) If z <y, then dim(z) < dim(y).

d) dim(z Ay) + dim(z V y) = dim(z) + dim(y) for every x,y € L.

Theorems 6.9 and 7.4 of [83] guarantees the existence and uniqueness of a dimension function defined over L.

It was well-known, before the work of von Neumann, that the lattice L, of an n-dimensional projective
space gives rise to a division algebra D sharing a close connection with L,, and in fact he proved that, for
n > 4, L, can be isomorphically identified with the lattice of all principal right ideals of M, (D) (|83, Part
I1, Chapter I]). This observation gave rise to the natural question of whether the same is true for the lattices
L € L, so one faces the problem of finding a ring R whose lattice of principal right ideals is isomorphic to L.
It turns out that this can be indeed achieved, provided that the ring R is regular. This was the beginning of a
whole new theory.

We will review the general theory of regular rings, *-regular rings and rank functions defined on them. The
major reference of this theory is Goodearl’s book [39], apart from von Neumann’s book [83].

A unital ring R is called a regular ring if for every element x € R there exists y € R such that x = zyx.
Note that, in this case, the element e = xy is an idempotent and generates the same (right) ideal as x. In fact,
a characterization for regular rings is that every finitely generated (right) ideal of R is generated by a single
idempotent (see [39, Theorem 1.1]). Regularity is closed under taking extensions, idealﬂ direct products,
matrices, direct limits, among others.

Two idempotents e, f € R are said to be equivalent, denoted by e ~ f, if there exists an isomorphism
eR = fR as right R-modules. Equivalently, e ~ f if there exist elements x € eRf, y € fRe such that e = xy
and f = yx. To see this equivalence, note first that if e = zy, f = yx for some elements = € eRf, y € fRe, then
one can define a right R-module homomorphism ¢ : eR — fR given by left multiplication by y, so ¢(«a) = ya.
It is clearly an isomorphism of R-modules with inverse given by left multiplication by =x.

Conversely, if we take an isomorphism of R-modules ¢ : eR — fR, then ¢(e) = fye for some y € R.
Analogously ¢~ !(f) = exf for some ¥ € R. Then the elements z = eZf, y = fye satisfy the required
properties, since

e=¢ p(e) = (fre) = eifge=ay, [=¢ "(o(f)=¢ '(eZf)= fyeif =ya.

3Since the definition of regularity on a unital ring does not concert the unit itself, the notion of a regular ideal is analogous:
for any element z of the ideal, there exists another element y, also in the ideal, such that z = zyx.
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Regular rings have a rich structure concerning projective modules and idempotents; as one can notice
directly from the definition, every element x € R gives rise to an idempotent, so we have (in principle) a huge
source of idempotents in R. We state some of the important results. For a finitely generated (right) projective
module P over R, we denote by L(Pg) the set of all finitely generated submodules of P, partially ordered by
inclusion, which becomes a complemented, modular lattice with operations

AVvB=A+B, AANB=ANB for A,B € L(Pg)

(39, Theorem 2.3], [83 Theorem 2.4 of Part II]). In the case P = R, since every finitely generated submodule
of R is a right ideal of R and R is regular, L(Rp) consists of all principal right ideals generated by a single
idempotent, that is L(Rgr) = {eR | e € R is idempotent }. If R is simple, it is in particular indecomposable (as
a ring), so by [83l Theorem 2.9 of Part II| L(Rg) is irreducible. In this case the lattice satisfies axioms a), b)
(for finite sets), d) and e).

We now introduce the notion of pseudo rank functions on a regular ring R. In fact they can also be defined
over any unital ring, but for now we are going to concentrate mainly in the regular case, because of their
connection with dimension functions.

Definition 1.2.2. A pseudo-rank function on a (regular) ring is a real-valued function rk : R — [0, 1] satisfying
the following properties:

a) rk(0) =0, rk(1) = 1.

b) rk(zy) < rk(z), rk(y) for every x,y € R.

c) If e, f are orthogonal idempotents, then rk(e + f) = rk(e) + rk(f).
If rk satisfies the additional property

d) rk(z) = 0 if and only if 2 = 0,
then rk is called a rank function on R.

For general properties of pseudo-rank functions over regular rings one can consult [39, Chapter 16]. We
summarize some of them into the following proposition.

Proposition 1.2.3. Let R be a regular ring and vk a pseudo-rank function on R.

(i) For elements x1,...,Tn,Y1,-sYm € R, if ;1R ® - - ® x, R is isomorphic, as a right R-module, to a
submodule of 1T R® -+ - ® yn R, then

n

Z rk(z;) < Z rk(y;).
j=1

i=1
If moreover it is isomorphic to the full right R-module y1 R @ - - - ® y, R, then we have equality above.
(ii) For any elements x,y € R, tk(z + y) < rk(z) + rk(y).

(iii) If u € R is a unit in R, then rk(x) = rk(ux) for every x € R. As a consequence tk(x) = 1 if x is itself a
unit. If moreover tk is a rank function, then the converse of this last statement holds, i.e. if rk(z) =1
for x € R, then x is itself a unit in R.

Proof. For (i) and (ii) see [39, Proposition 16.1].

(#it) Take v € R such that 1 = vu. Then rk(z) = rk(vuz) < rk(uz) < rk(z), so we have equality. If z € R
is itself a unit, so that 1 = yx for some unit y € R, then rk(x) = rk(yx) = rk(1) = 1. Now assume that rk is a
rank function, and consider an idempotent e € R such that R = eR. Then by (i), 1 = rk(x) = rk(e), so that
rk(l —e) = 1 —rk(e) = 0. Since rk is a rank function, we must have e = 1, so xR = R. Analogously we get
Rz = R, so x is a unit in R. O
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Every pseudo-rank function rk on a regular ring R defines a pseudo-rank metric d on R by the rule d(z,y) =
rk(z — y). If moreover rk is a rank function, then d is a metric. Note that we can always achieve the situation
where d is indeed a metric by factoring through the set of elements having zero rank, i.e. R — R/ker(rk).
Since the ring operations are continuous with respect to this metric, one can consider the completion R of R
with respect to d. R is again a regular ring, and rk can be extended continuously to a rank function rk on R
such that, with the new metric induced by rk, R is also complete, and coincides with the natural metric on
R inherited from the completion process. It turns out that the completion R is endowed with an additional
ring-theoretic structure, as stated in the next proposition.

Proposition 1.2.4 (Theorems 19.6 and 19.7 of [39]). Let R be a regular ring with a pseudo-rank function rk.
Then the rk-completion R of R is a regular, right and left self-injective ring. Moreover, rk extends uniquely to
a continuous rank function rk on R, and R is complete in the rk-metric.

The space of pseudo-rank functions P(R) on a regular ring R is a Choquet simplex ([39, Theorem 17.5]),
and the completion R of R with respect to rk € P(R) is a simple ring if and only if rk is an extreme point in
P(R) ([39, Theorem 19.14]).

Regular self-injective rings have a structure theory which somehow resembles the one classifying the factors
in the theory of von Neumann algebras. We would like to give a summary of this classification in the ring-
theoretic setting of regularity. From now on, R will be a regular, right self-injective ring. An idempotent e € R
is said to be abelian/directly finite if the corner eRe, which has e as unit, is an abelian/directly finite ringﬂ e
is called faithful if the only central idempotent orthogonal to e is 0.

I) Ris of Type I if there exists a faithful abelian idempotent e € R. It is of type Iy if R is directly finite,
and of type I, if it is purely inﬁniteﬂ

IT) R is of Type II if there are no nonzero abelian idempotents, but there exists a faithful directly finite
idempotent e € R. It is of type Iy if R is directly finite, and of type Il if it is purely infinite.

ITI) R is of Type I1I if there are no nonzero directly finite idempotents.

A characterization for Type Iy is given in [39, Theorem 10.24]: every direct product of matrix rings
H;ozl M, (Ry), where each Ry, is abelian, is of Type I, and conversely every Type I ring R is isomorphic to
a ring of this form. In general, R can be decomposed as a direct product of rings of each type purely.

Theorem 1.2.5 (Theorem 10.22, together with Theorems 10.13 and 10.21 of [39]). Any regular, right self-
injective ring R can be decomposed as

R = (le X Rloo) X (Rgf X RQOO) X R3

where Ry is of type Iy and R 15 of type I, Roy is of type Il and Raoo 1s of type 11, and Rs is of type
III.

In the special case that R admits a rank function, R becomes directly finite, for if x,y are elements of R
satisfying zy = 1, then 1 = rk(zy) < rk(z) < 1, so rk(z) = 1 and part (¢i¢) of Proposition tells us that
x is a unit in R. The relation zy = 1 then implies that y = 2~ is the inverse of z, so yz = 2 'z = 1. As a
consequence, if R is a regular, right self-injective ring admitting a rank function, then R can be decomposed
(following the notation above) as

R = le X Rgf.

As a particular case, due to Proposition any rank completion (R, 1k) of a regular ring R with pseudo-rank
function rk is directly finite, so can be decomposed as

Ezﬁlf X Rgf

A regular ring R is said to satisfy the comparability axiom if for every x,y € R, either xR is isomorphic to
a submodule of yR or the other way around. Notationally, either xR < yR or yR < xR. More generally, R
satisfies general comparability if for every xz,y € R there exists a central idempotent e € R such that exR < eyR
and (1 —e)yR < (1 —e)zR. It is clear that the comparability axiom implies general comparability (take, for
instance, either e = 0 or 1).

In fact, if a regular ring R satisfies the comparability axiom (or general comparability), we can also compare
finitely generated projective R-modules.

4A unital ring R is called directly finite if whenever one has xy = 1 for some z,y € R, then yz = 1.
5A ring R is called purely infinite if there are no directly finite central idempotents.

10
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Proposition 1.2.6 (Propositions 8.2 and 8.8 of [39]). Let R be a regular ring satisfying (1) the comparability
aziom or (2) general comparability, and let P,Q be two finitely generated projective (right) R-modules. Then

(i) If R satisfies (1), then P and Q are comparable, in the sense that either P < Q or Q < P.
(i1) If R satisfies (2), then there exists a central idempotent e € R such that eP < eQ and (1—e)Q < (1—e)P.

By [39, Theorem 9.14], every regular, right self-injective ring R satisfies general comparability. If moreover
R is simple, then R satisfies the comparability axiom, since in this case the only central idempotents of R are
0 and 1: if e € R is any central idempotent, then R = eR @ (1 — e)R, so R being simple implies that either
e=0or 1—e=0. In this case, if R carries a rank function rk, we can characterize equivalence of idempotents
in terms of the values of their ranks only.

Proposition 1.2.7. Let R be a regular ring satisfying the comparability axiom and admitting a rank function
rk. Then two idempotents e, f € R are equivalent if and only if tk(e) = rk(f). Moreover, rtk is the unique rank
function that R can admit.

In particular, this is the case when R is a simple, reqular, right and left self-injective ring.

Proof. By part (i) of Proposition if two idempotents are equivalent then they have the same rank.

Conversely, assume that rk(e) = rk(f). Since R satisfies the comparability axiom then either eR < fR
or fR S eR. We can assume without loss of generality that eR < fR. Take an injective right R-module
homomorphism ¢ : eR — fR. Then p(eR) = ¢(e)R, so eR = ¢(e)R as right R-modules. Take g € fR an
idempotent such that ¢(e)R = gR < fR. Then g := gf is an idempotent (¢> = gfgf = gf = g) such that
gf =9f =9, fg=1fg9f =9f =g,s0g < f. Moreover, gg = gfg =g and gg = gf = g, so gR = gR.
Therefore we obtain the decomposition

fR=gR® (f—g)R=¢(e)R&® (f —g)R.
By taking ranks and applying part (¢) of Proposition twice,
rk(e) = rk(f) = rk(¢(e)) + rk(f — g) = rk(e) +rk(f — g).

Hence rk(f — g) = 0. Since rk is a rank function, necessarily f = g, and we are done: eR = p(e)R = fR.

We have already observed that any regular ring R admitting a rank function rk is directly finite, so by [39,
Theorem 16.14] rk is the unique rank function that R can admit.

In the particular case that R is a simple, regular, right and left self-injective ring, by [39, Corollary 21.14],
there exists a (unique) rank function rk on R, so the proposition follows for R. O

Let now R be a regular, right and left self-injective, simple ring. By [39, Corollary 13.5], the lattice L(Rg)
satisfies all the axioms of a complemented, continuous, modular, irreducible, complete lattice, so one can apply
all the theory on continuous geometries to the lattice L(Rg). In particular, every rank function rk on R gives
rise to a normalized dimension function defined over L(Rg) by the rule

dim : L(Rgr) — [0,1], dim(eR) = rk(e).
We check the properties to be a normalized dimension function given after Definition [1.2.1
a) dim(0) =rk(0) = 0 and dim(R) = rk(1) = 1.
b) eR, fR € L(RpR) are equidimensional if and only if eR = fR, if and only if rk(e) = rk(f) by Proposition
if and only if dim(eR) = dim(fR).

c) If eR C fR, then fe = e and so dim(eR) = rk(e) = rk(fe) < rk(f) = dim(fR).
d) Let eR, fR € L(Rg). We must show that

dim(eR + fR) + dim(eR N fR) = dim(eR) + dim(fR).

Take g, h € R idempotents such that eR + fR = gR and eRN fR = hR. Let’s first assume that h = 0.
In this case eR @ fR = gR, and part (i) of Proposition [1.2.3] says

dim(eR) + dim(fR) = rk(e) + tk(f) = rk(g) = dim(¢gR) = dim(eR + fR).

11
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For the general case, take h € R an idempotent such that AR is a complement of hR in fR, that is
hR® hR = fR. Hence

dim(fR) = rk(f) = rk(h) + rk(h) = dim(hR) + rk(h) = dim(eR N fR) + rk(h).

But since Elj C fR, we compute {0} = hRNhR =hRNeRN fR=hRNeR, and also gR = eR + fR =
eR+hR+hR=eR+ hR=eR® hR. Therefore

dim(eR + fR) = dim(gR) = rk(g) = rk(e) + rk(h) = dim(eR) + rk(h).
Putting everything together,

dim(eR + fR) 4+ dim(eR N fR) = dim(eR) + dim(fR).

Therefore by [83] Theorems 7.3 and 7.4 of Part I] the range of rk can be

a)
b)

either a finite set of values of the form {0, %, vy "T_l, 1} for some natural number n > 1, or

the whole interval [0, 1].

The pseudo-rank function will be called discrete or continuous depending on whether its range takes a
discrete or a continuous set of values, respectively.

Examples 1.2.8.

1)

2)

The most common examples of regular rings with a discrete rank function are the finite-dimensional
matrix algebras R, = M, (K) over an arbitrary field K. It admits a unique rank function rk, = %,

where Rk is the usual rank defined over matrices. It is clear that the possible set of values for rk,, is the
finite set {0, %, vy "T_l, 1}. In fact, if we denote by e;; to be the standard matrix units in M, (K), then
for 1 < m < n one computes

rkn(ell + -+ emm) - n -

)

Rk(e11 + -+ emm) m
n

so every possible value for rk,, can be achieved.

The following example was due to von Neumann (cf. [82]), and gives an example of a continuous geometry.
For a field K, take the direct limit li_n>1M2n (K) of the sequence

My(K) — My(K) - Mg(K) — -+ = Man(K) — - -+
0,-

xT

factor Man (K) is, and admits a unique rank function rk defined on an element z = lim z,, to be rk(z) =

lim,, vk, (z,,), where rk,, = % is the usual normalized rank on My (K). The completion of @Mgn (K)

with respect to the induced rank metric, denoted here by M, is a complete regular ring with a unique
rank function, again denoted by rk, which is a continuous factor, i.e. a (right and left) self-injective
simple regular ring of type Iy, and the set of values of the rank function fills the unit interval [0, 1]. To
see this, note first that any dyadic rational number 57 with 0 < m < 2" can occur as the rank of some
element, for example take 2 = Id,,, ® Ogn_,,, € Mo (K). Since the dyadic rational numbers are dense in
[0, 1], the range of rk cannot be a finite set of the form {0, &, ..., 81, 1}; therefore in must be the whole

3 W7 ..
interval [0, 1].

with respect to the block-diagonal embeddings x — (Ox ) It is a regular ring since each matrix
271

Regular rings are also of great interest since every (pseudo-)rank function rk on R can be uniquely extended
to a (pseudo-)rank function on matrices over R (see e.g. [39, Corollary 16.10]). This is no longer true if we do
not assume R to be regular. The definition that seems to fit in the general setting is the notion of Sylvester
matrix rank functions.

12
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Definition 1.2.9. Let R be a unital ring. A Sylvester matriz rank function rk on R is a function that assigns
a nonnegative real number to each matrix over R and satisfies the following conditions:

a) rk(M) = 0if M is a zero matrix, and rk(1) = 1.

b) rk(M; M) < rk(My),rk(Ms) for any matrices My and My which can be multiplied.

c) rk (]\gl ]\2 ) = rk(M7) + rk(My) for matrices M; and Mo.
2

d) rk (J\éll %3) > rk(M7) + rk(Ms) for any matrices My, Mo and Ms of appropriate sizes.
2

For more theory about Sylvester matrix rank functions we refer the reader to [53] and [92], Part I, Chapter
7]. We summarize some of their properties in the following proposition.

Proposition 1.2.10. Let R be a unital ring and rk a Sylvester matrixz rank function on R.
(i) For any matrices A, B € M(R) of the same size, rk(A + B) < rk(A) +rk(B).

(ii) If A € GL,(R), then tk(A) = n. Moreover, tk(AB) = rk(B) for any matriz B that can be multiplied to
the right with A.

(iii) For any elements x,y € R, rk(zy) > rk(z) + rk(y) —
(iv) If e € R is a central idempotent, then rk(x) = rk(ex) + rk((1 — e)x) for every x € R.
. A+B 0 1 0 A 0
Proof. (i) k(A + B) = rk< . ) < > ( ) (1 0)) < 1k (0 B> — 1k(A) + 1k(B).
(ii) n = rk(Id,,) = tk(AA™1) < rk(A) < 1k(Id,,) = n, so tk(A) = n. Moreover,
rk(B) = rk(AflAB) <r1k(AB) < 1k(B).

(iii) tk(zy) + 1 = tk (”309 ?) = 1k ( (f _01> (g ;) (1y (1)) ) Both matrices (91“ _01> and (ly (1))

are invertible in Ms(R), so by (i¢) we obtain

rk(zy) +1 =1k (g i) > rk(z) + rk(y).

(iv) Fix e € R a central idempotent. Then the matrix ((16 ) 1= 6) is invertible in Ms(R) with inverse
(1 i . 7(167 e))’ so we have, using (i7),
B z 0) e —(1—-e)\(xz O e l1—e
rk(x)rk(o 0>rk<<1—e e ><0 0><—(1—e) e ))
ik exe ex(l—e) k(€ 0 — rk(ex) + k(1 — e)a) L
-t (I-—e)ze (1—e)x(l—c¢) — ™o (1—e)x —rer) Tt €.

We denote by P(R) the compact convex set of Sylvester matrix rank functions on R. Tt is well-known (see
for example [39, Proposition 16.20]) that, in case R is a regular ring, this space coincides with the space of
pseudo-rank functions on R.

As in the case of pseudo-rank functions on a regular ring, a Sylvester matrix rank function rk on a unital
ring R gives rise to a pseudo-metric by the rule d(z,y) = rk(z — y) for =,y € R. We call it faithful if its kernel
ker(rk), defined as the set of all element = € R with zero rank, is exactly {0}. In this case, d becomes a metric
on R.

We can always obtain a faithful Sylvester rank function by passing to the quotient R — R/ker(rk). The
ring operations are continuous with respect to this metric, so one can consider the completion R of R with
respect to d. It is routine to check that rk defines a new Sylvester rank function rk on R.

13
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1.2.1 x-regular rings and the x-regular closure

We now introduce the notion of a *-regular ring, and state some facts about them and their completions with
respect to a pseudo-rank function (see for instance [2, @]). A x-regular ring is a regular ring endowed with a
proper involution, that is, an involution * such that z*x = 0 implies x = 0.

The involution is called positive definite in case the condition

n
foxizo = x;=0foralll1<i<n
1=1

holds for each positive integer n. If R is a x-regular ring with positive definite involution, then M,,(R), endowed
with the x-transpose involution, is also a *-regular ring.

For #-regular rings, we have a strong property concerning idempotents generating principal right /left ideals
of R. In fact, if we demand these idempotents to be projections (i.e. elements e € R such that e = e = ¢e*),
then it turns out that there exist unique projections generating a given principal right /left ideal. More generally,
we have the following theorem.

Theorem 1.2.11. For a *-reqular ring R, the following hold:

(1) For each element © € R, there are unique projections e, f € R such that tR = eR and Rx = Rf;
moreover,

(2) there exists a unique element y € fRe such that xy = e and yx = f.

We will denote by LP(x) the projection e, called the left projection of x, and by RP(z) the projection f, called
the right projection of x. Moreover, the unique element y of part (2) is denoted by T, and called the relative
inverse of x.

Proof. Let’s prove (1). Since R is regular, there exists an element w € R such that (z*z)w(z*z) = z*z. In
this case z*z(wz*x — 1) =0, so
(wz*z — 1)* z*z(wr*z — 1) = 0.

Since the involution is proper, we must have z(wz*x — 1) = 0, or x = (zwz*)z. Applying * we also get
x* = z*(zw*z*). Consider e := zwz*. Note that

e? = zwrtrwr* = zwz* =e and ee* = zwrfrwirt = zwr* =e,

*

so e* = ee* = e, and e is a projection. It is clear that xR = eR, since x = ex. By applying the same
construction with x replaced by x*, we obtain a projection f such that z*R = fR. If we take * we obtain
Rx = Rf, as desired.

For the uniqueness part, suppose that there is another projection ¢’ € R such that eR = xR = ¢'R. In this
case we have e = ee’ and e’ = €’e, so e = e* = (ee’)* = e’e = ¢’. Analogously we get uniqueness for f.

For (2), since zR = eR and Rz = Rf, ex = x = zf, and we can write e = zz, f = wz for some z,w € R.
Note that e = €2 = xze = x(fze). Consider the element y = fze € fRe. By construction, it satisfies zy = e.
For the other equality, we compute

f—yz=f(f—yz)=wz(f —yz) = wxf —zyz) = w(z —ex) = 0.

Hence yx = f, as required. For uniqueness, suppose that 3y’ € fRe is another element such that xy = e,
y'z=f. Theny =vy'e=vy'zy = fy=uy. O

If e, f are projections in a sring R, then we say that e is *-equivalent to f, written e ~ f, in case there is
z € eRf such that e = zz* and f = z*z.

For any subset S C R of a x-regular ring, there exists a smallest *-regular subring, denoted by R (S, R) and
termed the *-regular closure of S in R, of R containing S ([6, Proposition 6.2], see also [72}, Proposition 3.1]).
In fact, R(S,R) = U,,>o Rn(S, R), where R, 1(S, R) is generated by R,,(S, R) and the relative inverses in R
of the elements of R,,(S, R), and R (S, R) is the x-subring of R generated by the set S. It was observed in [53]
that R,+1(S, R) can be described as the subring of R generated by the elements of R, (S, R) and the relative
inverses of the elements of the form z*x for € R, (S, R).

Some properties of the x-regular closure are given in the next lemma.

14
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Lemma 1.2.12. Let S be a unital *-subring of a x-regular ring R, and let R = R(S, R) be the x-regular closure
of S in R. Write also R,, = R, (S, R). The following holds.

i) R(R,R) =R = R(S,R).

ii) Let J be an ideal of S, and let I be the ideal of R generated by J. Then I =\, ~q Jn, where J, 1 is the
ideal of R,y1 generated by J,, which coincides with the ideal of R, generated by J, and the relative
inverses in R of the elements of J,,, and Jy = J.

Proof. The proofs are routine, but we include them for the convenience of the reader.

For part i), note that S C R C R. By definition R(S,R) C R, and for the other inclusion note that
R(S,R) is a x-regular subring of R containing S, so R C R(S,R). The other equality is proved analogously.

For part ii), observe that I = RJR and each J,+1 = Rp+1JnRnt1. Since each R,, C R,4+1, we have
In € g1

If a € I, we can write it as a finite combination a = Z;"Zl rjb;s; with r;,s; € R and b; € J. There
exists then an index ng > 0 such that r;,s; € R, for all j =1,...,m. Hence a = Zy;l r;b;5; € Ry J Ry, C
RnoIno—1Rng = Jngy, and we obtain the inclusion I C J,~ Jn-

Conversely, since each R,, C R, 11, -

Jn = Ran—an = Ran—l t th]Rl o Rn—an - RnJRn - RJR = 1.

The result follows. Note that if » € J,, and 7 is the quasi-inverse of r in S, then 7 € R, 1 and ¥ = 77 belongs
to the ideal of R, 11 generated by J,, that is, ¥ € J, 1. O

There is a whole theory in development concerning the study of the x-regular closure, initiated by Jaikin-
Zapirain in [53]. A very useful result connecting the x-regular closure and the possible values of any Sylvester
matrix rank function defined on it is given in the following proposition, which can be thought of as an analogue
of the classical Cramer’s rule (see Proposition [1.3.8).

Proposition 1.2.13 (Corollary 6.2 of [53]). Let S be a unital x-subring of a x-regular ring R, and let R =
R (S, R) be the x-regular closure of S in R.

Then for any matrices r1,...,7k € Mpxm(R), there exists a matriz M € M,«p(S) and matrices Ay, ..., Ay €
M, (S) such that, for any other square-matrices Ty, ..., Ty € M, (S) and any Sylvester matriz rank function

rk defined on 'R,
M

TyA + -+ TkAk) — tk(M).

In particular, any Sylvester matrix rank function on R is completely determined by its values on matrices over

S.

tk(Tyry + -+ 4+ Tyr) =1k (

1.2.2 The algebra of (unbounded) affiliated operators of a finite von Neumann
algebra

This will be our main example for the rest of the section. Let H be a Hilbert space. For an (unbounded)
operator we will understand a linear map 7' : dom(7T") — H, being dom(T) C H a (not necessarily closed)
subspace.

We can still define two operations on the set of (unbounded) operators, namely the usual sum and product
(composition) of operators, but with domains given by

T+ S :dom(T +S) —» H, with dom(T + 5) = dom(7T") N dom(S),
TS : dom(TS) — H, with dom(T'S) = S~ *(dom(T)).

When T : dom(T") — ran(T), being ran(T") := Im(T), is injective, we can still define an inverse operator for T,
with domain ran(T):
T~ :ran(T) — dom(T) C H.

We say that T : dom(T") — H is closed if the graph of T', defined by G(T') = {(z,Tz) | € dom(T)}, is
a closed subspace of H @ H. Note that, by the Closed Graph Theorem, if dom(7T) = H and T is a closed
operator, then 7' is bounded. So we are interested in studying those operators for which dom(7’) is a (possibly)
proper subspace of H. We call T' a densely defined operator if dom(7') is a dense subspace of H.

15



Chapter 1. Preliminaries The Atiyah problem

Definition 1.2.14. Let (M, tr) be a finite von Neumann algebra on #, that is a unital *-subalgebra of B(H)
closed under the weak (or even strong) operator topology, together with a faithful, normal tracial state tr.

We define U to be the set of (unbounded) operators T such that

a) T is a closed operator.
b) T is densely defined.

c) T is affiliated to M, meaning that for every bounded operator S commuting with all the operators of M,
we have ST C TS, i.e. the operator T'S extends the operator ST in the sense that dom(ST) C dom(7T'S)
and TS'dom(ST) =ST.

By [89, Note 2.11], U becomes a #-regular ring, which is in fact characterized algebraically to be the classical
ring of quotients of M (see [89], Proposition 2.8], also Section . In fact, all the projections p € U belong
to M itseliﬂ so it is possible to define a rank function on U by means of the trace tr: for an element u € U,
since U is *-regular, by Theorem there are unique projections p := LP(u),q := RP(u) € U such that
uld = pU and Uu = Uq. Hence p,q € M and they are equivalent, so they have the same trace tr(p) = tr(q).
We thus define the rank of u to be the value of this trace over the projections p, ¢:

rky(u) = tr(p) = tr(q).
Lemma 1.2.15. rky defines a rank function on U.

Proof. Clearly rk(0) = 0 and rk(1) = 1.

First, note that the rank function satisfies rk(u*) = rk(u) for every u € U. To see this, note that if p is the
unique projection in M satisfying uld = pl, then by applying * we get Uu* = Up, so by uniqueness of the
projection rk(u*) = tr(p) = rk(u).

Now for u, v € U write uvld = p'U and uld = pld for some projections p,p’ € M. Then pU = uvld C uld =
pU, so pp’ = p’. By taking * we obtain p'p = p’. Hence p’ < p, and tr(p’) < tr(p). We compute

rk(uv) = tr(p’) < tr(p) = rk(u).
By applying the same reasoning with the element v*u*, we obtain
rk(uv) = rk(v*u*) < rk(v*) = rk(v).

Now take e, f € U orthogonal idempotents, and let p, ¢, p be projections in U such that (e + f)U = DU,
ed = pU and fU = qUU. Then pU = (e + U = eld ® fU = pU & qUU. Define p V ¢ to be the least projection
which is greater than p and ¢; dually, define p A ¢ to be the greatest projection which is smaller than p and
g. On one hand, pU,qUd C (pV qU, so PU = pU & qd C (pV q)U and we get p < pV g. On the other
hand, since pld,qUd C pU, we have that p,q < p, so by definition p V ¢ < p and we obtain equality. Also
(p A g)U = pU N qUU = {0}, so necessarily p A ¢ = 0. Finally,

rk(e + f) = tr(p) = tr(p V q) = tr(p V q) + tr(p A q) = tr(p) + tr(q) = rk(e) + rk(f)

as required, were we have used the well-known fact that for finite von Neumann algebras, tr(pV q) +tr(pAq) =
tr(p) + tr(q) for any projections p,q € M.

To conclude, if u € U is such that rk(u) = 0, then by taking p the unique projection in U such that uld = pld
we get 0 = rk(u) = tr(p) = tr(p*p). Since tr is a faithful trace, p = 0, and so u = 0. O

Theorem 1.2.16. U becomes a *x-reqular, right and left self-injective ring. Also, U is complete in the rky-
metric.

If moreover M is a 11, factor, then U becomes a continuous factor, i.e. a self-injective, simple reqular ring
of type 117, and the set of values achieved by its rank function fills the unit interval [0,1].

Proof. We have already observed that the projections of U coincide with the projections of M. By [58, Theorem
6.5], the lattice of projections Proj(M) of M form a (not necessarily irreducible) continuous geometry; in
particular it is continuous. Since the algebra of (unbounded) affiliated operators of Ms(M) can be canonically

6This can be proved by using the polar decomposition of elements of 2/ and the spectral theorem for unbounded operators.
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identified with Mas(U), the lattice of projections Proj(Mz(U)) = Proj(Msz(M)) is continuous (apply the same
Theorem above, [58, Theorem 6.5]), hence by a theorem of Utumi ([97, Corollary 7.5]) the ring U is right and
left self-injective. Therefore U becomes a *-regular, right and left self-injective ring.

Let now {en}n>1 C U be central orthogonal idempotents, and note that they are in particular central
orthogonal projectionsﬂ Define the projections f,, :=e; +---+en, e :==\, -, e,. The weak continuity of the
trace gives -

rhy(fa) = tr(fn) = tr(e) = rky(e),
so by [39, Theorem 21.7 and Proposition 21.8], I/ is complete in the rky-metric.

For the last part of the theorem, we have commented that ¢/ can be also constructed as the classical ring
of quotients of M, and in fact it is true that its center Z(M) is the classical ring of quotients of the center of
M. If M is a I; factor, then Z(M) = C, and so Z(U) = C. By [39, Proposition 19.13 and Theorem 19.14],
this implies that U/ is a simple ring, and in fact due to the characterization of regular, right self-injective rings
(Theorem and the fact that U possesses a rank function, it can be decomposed as

M:ulf XUQf

where U is of type Iy and Uyy is of type I1y. Since M is assumed to be a II; factor, it necessarily implies
that U = Usy, so it is of type I1y. In particular, the set of values achieved by its rank function fills the unit
interval [0, 1]. O

1.3 Noncommutative localization of rings

In this last section we would like to discuss some techniques for inverting elements in a not necessarily com-
mutative ring R.

Classically, for a commutative ring R with unit 1 which is an integral domain we can construct its classical
ring of quotients Q(R), defined to be the set of equivalence classes ab~! of elements a,b € R, with b # 0,
and two classes albl_l, a2b2_1 being considered the same if and only if a1b = asb;. As a prototypical example,
Q(Z) = Q. The fact that R is commutative enables us to define natural operations of sum and product inside
Q(R), which turn it a commutative ring containing R via the embedding R — Q(R) given by a +— al™!.
Roughly speaking, we are just inverting all the elements of R that are not zero-divisors.

More generally, if one would like to invert a specific set of elements S C R, one must impose some conditions
on the set S in order to the inverses be well-defined. That is, one requires that the set S be multiplicative:
1€ 85,0¢ S, and closed under taking products. These conditions are natural since one want to construct a
new ring where the elements of S will become units, and units must be closed under multiplication. One can
then construct the localization of R with respect to S, denoted by RS™!, as defined to be the set of equivalence
classes as™! of elements a € R, s € S, and such that two classes a151_1, a285 1 are considered the same class if
and only if there exists an element ¢t € S satisfying t(a1s2 —aas1) = 0 (the presence of ¢ is necessary if one wants
to ensure transitivity of such equivalence). Again, the commutativity of R gives rise to well-defined operations
of sum and product on RS™!, turning it into a commutative ring with a natural morphism ¢ : R — RS~ given
by a — al~!, but this time not necessarily injective (its kernel consist of the elements a € R such that as = 0
for some element s € S, so one deduce that it is injective if and only if S does not contain zero-divisors). In
particular, any element of RS~! can be written in the form as~! with a € R,s € S.

The pair (RS~!, 1) is universal with respect to the property of inverting elements from S, that is, if one
has another morphism ¢ : R — T from R to another ring T such that all the elements of S become invertible
in T under ¢, one can then uniquely extend the morphism to another one defined over RS™!, 5: RS™! = T,
satisfying the usual commutation property ot = ¢.

When R is a domain, the previous construction Q(R) is a particular case of this one, taking the set S to
be the set of all elements of R that are not zero-divisors (which in such a case is clearly a multiplicative set).

That was a short overview about the topic of localizing elements in the commutative case. It is then
natural to try to extend these notions in the noncommutative setting, but things turn out to be much harder
to define because of the lack of commutativity. All the theory that we will discuss can be found extensively in
[18], 19, 20}, 64]. One can also take a look at [68] for noncommutative localization in the special case of group
rings.

"This is a general fact: if e € R is a central idempotent in a *-regular ring R, then the computation (e — ee*)(e — ee*)* =0
together with the fact that the involution is proper implies that e = ee® = e*, so e is also a projection.
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1.3.1 Universal localization

Let R be a (not necessarily commutative) ring with unit 1. Given a multiplicative set S C Bﬂ we aim to
construct a new ring containing the inverses of elements of S. This can be achieved by using a construction
with generators and relations, which yields a universal property for such a ring.

Theorem 1.3.1 (Proposition 9.2 of [64]). Following the foregoing notation, there exists a ring S™'R and
a S-inverting morphism ¢ : R — ST'R (all the elements of (S) are invertible inside S™'R) with the usual
universal property: given any morphism ¢ : R — T to another ring T such that ©(S) consists of invertible
elements in T, there exists a unique morphism g : SR — T such that pg oL = p.

As usual, the pair (S™!'R, () is unique up to unique isomorphism. This is called the universal localization of
R with respect to S. The construction is not so hard: one just add extra elements and relations to R in order
to achieve invertibility of elements of S.

One can easily deduce from this construction that it is very difficult to handle elements of S~' R in practice.
For instance, due to the noncommutativity of R, the elements of S™'R cannot be written in the simplified
form «(a)t(s)~! anymore; instead, they are sums of products of such elements, like

v(ar)u(s1) " e(ag)u(s2) ™+ u(s3) u(ag)u(sa) Tt —u(ss) 7!

and even the kernel of ¢ does not have an easy description anymore. Nevertheless, the universal localization
behaves nicely under taking quotients. Formally, we have the following

Proposition 1.3.2. Let I be a two-sided ideal of R, and let S~'I denote the two-sided ideal of S™' R generated

by the elements of 1(I). We have a natural isomorphism S™1R/S™1T = gil(R/I), where S denotes the image
of the set S under the quotient map 7 : R — R/I.

Proof. Since «(I) € S~1I, the map ¢ induces a well-defined morphism ¢; : R/I — S~*R/S~'I given by the
commutative diagram
R—*" 3SR

1k

R/IT —5 S~'R/S'].

It suffices to check that the pair (S~'R/S~'I,.s) is universal with respect to the set S. Solet ¢ : R/T — T

be a morphism such that the elements of $(S) become invertible in the ring 7. Consider the composition
¢ =pom: R— T, which satisfies that the elements of »(S) = 3(S) become invertible in 7. By the universal
property of the pair (ST'R,¢), there exists a unique morphism ¢g : S™'R — T such that ¢ = pg o t. Note
that the elements of S~ are in the kernel of ¢, since pg(1(a)) = p(a) = p(m(a)) = 0. Therefore ¢g factors
through the quotient morphism 7g, and gives a morphism @g : STR/S™'I — T satisfying ps = Pg o 7g.
Putting everything together, we get

POM =pPgOMgOL=pPgOLOT

so that o = @g 0. It is easily checked that @ is unique using the fact that ¢g is unique.

Hence the pair (S~'R/S~'I,.;) is universal, so isomorphic to (S~ (R/I),7) where 7 : R/T — S NR/I) is
the natural morphism given by Theorem for the ring R/I and the multiplicative set S. O

1.3.2 Classical rings of quotients: Ore localization

Although it is obviously important to have a universal way to formally invert elements of R, we have seen that
this construction is not so useful when trying to handle concrete elements from S~'R. In fact, it can happen
that the previous construction leads to the zero ring, even though one starts with a nonzero ring: take for
instance R to be My(K) for a fixed arbitrary field K, and S = {1, e11}, where ey is the 2 x 2 matrix

(10
611f00-

8We define multiplicative in the same manner as for the commutative case: 1 € S,0 ¢ S and closed under multiplication.
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Then in this case S™!'R gives back the zero ring. Further, and unlike the commutative case, in general S™'R
may not be a domain even if R is.

In this section we shall see that, by imposing some conditions on the set S, one ends up with a nice
localization ring, called the (right/left) ring of quotients, or sometimes the (right/left) Ore localization ring
when S consists of all the element that are not (right/left) zero-divisors. We would like to maintain the features
that one has in classical commutative localization.

Definition 1.3.3. Let R be aring, S a multiplicative subset of R. A ring R is called a (right) ring of quotients
if there exists a S-inverting morphism ¢ : R — R satisfying:

a) any element of R can be written of the form ¢(a)p(s)~! for a € R, s € S;
b) the kernel of ¢ consists of all the elements a € R such that as = 0 for some s € S.

One can also define the notion of left ring of quotients analogously.

Theorem 1.3.4 (Theorem 10.6 of [64]). A (right) ring of quotients for R with respect to S can be constructed
if and only if

(1) S is a right Ore set, meaning that for any elements a € R and s € S, aSNsR # (.

(2) S is right reversible, meaning that for any a € R, if sa = 0 for some s € S, then also as’ = 0 for some
s'es.

Moreover, if we denote by Q%(R) the ring obtained by this construction, there exists a S-inverting morphism
€: R — Q%(R) such that the pair (Q5(R), €) is universal in the sense of Theorem [1.3.1]

An analogous result holds by replacing right by left. As a direct consequence of Theorem we have
that if S is a right Ore set and right reversible (in this case one says that S is a right denominator set), then
there exists a unique isomorphism Q%(R) = S™!R.

Proof of Theorem[1.53.4, We will not prove it in full generality, we only aim to give the definition of the
operations sum and product of elements of Q%(R).

First of all, one defines Q% (R) to be the set of equivalence classes as™! of elements a € R, s € X, where
two classes alsl_l, a282_1 are considered the same if and only if there exist elements b;,by € R such that
s1b1 = s9bg € S and a1b; = asbs € R.

To define the sum, we use the fact that S is a right Ore set: for two classes ajs] L a8y ! take elements
b € R, by € S such that s = s1b; = s9by € S, so that

CL181_1 + CL282_1 = (albl)(slbl)_l + (a252)(82b2)_1 = (a1b1 + a2b2)8_1.

For multiplication, the same property for S is needed: given a18;17a2851, take elements as € R, s3 € S such
that §1a3 = a283, SO that
a1s7t - agsy t = (aas)(sgs3) L.

€ is then given by the natural morphism R — Q%(R), a — al™!. O

In the special case that S consists of all the elements that are neither left nor right zero-divisors, S is already
right and left reversible, so we only need to demand property (1) of Theorem in order to ensure existence
of a (right) ring of quotients. In this case, we denote it by QF,(R), also called the (right) Ore localization ring,
or (right) classical ring of quotients of R.

Moreover, if R is a domain and S = R\{0} is a (right) Ore set, then the construction Q%(R) leads us to
a division ring, and the natural morphism e : R — Q%(R) is an embedding of rings. Therefore we have been
able to embed R into a division ring.

1.3.3 Y-rational closure and division closure

In the previous section we have studied a way of embedding R into a division ring when R is a domain and
S = R\{0} is a (right) Ore set. In the general setting when R need not be a domain nor R\{0} a (right) Ore
set, the S-inverting morphisms are not enough to guarantee the existence, or even good approximations, of
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such an embedding into a division ring. We shall remedy this by adjoining to R not only the inverses of a set
of elements, but of a set of square matrices over R (see [1§]).

Let R be a ring, and take ¥ C M(R) = |J;—, M,(R) a set of square matrices over R. A morphism
¢ : R — T to another ring T is said to be X-invertible if every matrix of ¢(X) becomes invertible in 7. The
analogous concept for multiplicative sets in the case of matrices is the following.

Definition 1.3.5. X is called multiplicative if the following conditions are satisfied:

a) 1 € ¥, and whenever A, B belongs to 3, then (61 g) belongs to X too, for any matrix C of appropriate

size.

b) If A belongs to 3 and one applies permutations of rows and columns, then the resulting matrix still
belongs to X.

It is also possible to construct a universal localization of R but for matrices instead of elements S C R.

Theorem 1.3.6. Following the foregoing notation, there ewists a ring X" 'R and a L-inverting morphism
t: R — X7'R with the usual universal property: given any X-inverting morphism ¢ : R — T to another ring
T, there exists a unique morphism ¢x : X" 'R — T such that ¢ = ¢x o t.

This can be found in [I8, Chapter 7], and is a generalization of Theorem The pair (X! R, ) is unique
up to isomorphism, and it is called the universal 3X-inverting ring, or just the universal localization of R with
respect to X. We also have an analogue of Proposition [.3.2] as follows.

Proposition 1.3.7. Let I be a two-sided ideal of R, and let ¥~'I denote the two-sided ideal of X~ ' R generated

by the elements of L(I). We have a natural isomorphism X~ R/% 1] = i_l(R/I), where Y. denotes the image
of ¥ under the quotient map m: R — R/I.

Let ¢ : R — T be a X-invertible morphism. We define the X-rational closure of R in T, denoted by
Rats(R,T) to be the set of all entries of inverses of matrices from ¢(X). If ¥ is multiplicative, by [I8]
Theorem 7.1.2] Ratx(R,T) is a subring of T containing ¢(R).

When ¥ is the set of all square matrices over R that become invertible in 7" under a morphism ¢, we denote
the Y-rational closure of R in T by Rat(R,T), and simply call it the rational closure of R in T. It is always a
subring of T' containing ¢(R) by [18, Proposition 7.1.1 and Theorem 7.1.2].

A useful result when studying rational closures is Cramer’s rule.

Proposition 1.3.8 (Proposition 7.1.3 of [I8]). Let A be an n x n matriz over Rats(R,T). There exists an
integer m > 1 and invertible matrices P,Q € GLy1m(Rats(R,T)) such that

B:=PA®I1d,)Q isa(n+m)x (n+m) matriz with coefficients in ¢(R).

Another way of studying invertibility of elements is via the division closure of R. Let ¢ : R — T be a
morphism of rings. We define the division closure of R in T, denoted by D(R,T), to be the smallest subring of
T containing ¢(R) and closed under taking inverses of elements, when they exist in 7' (that is, if a € D(R,T)
is invertible in T with inverse a~!, then a=! € D(R, T)).

Lemma 1.3.9. If o : R — T is a morphism of rings, then:
i) D(D(R,T),T)=D(R,T) =D(R,D(R,T)).
it) Rat(Rat(R,T),T) = Rat(R,T) = Rat(R, Rat(R,T)).
i) D(R,T) C Rat(R,T).

Moreover, if T is x-regular, then the x-regular closure of R in T, denoted by R(R,T), contains the rational
closure Rat(R, Tf]

9See Section for more information about the *-regular closure of a *-subring of a *-regular ring.
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Proof. The proof of i) is immediate, and i) can be found in [68, Proposition 3.3|. For iii), take x € Rat(R,T)
which is invertible inside 7. By Cramer’s rule (Proposition [L.3.8), there exists an integer n > 1 and invertible
matrices P,Q € GL,11(Rat(R,T)) such that the matrix P(z @ Id,,)@ has entries in ¢(R). Therefore the
matrix Q@ (z7! @ 1d,,) P~! belongs, by definition, to M,,+1(Rat(R,T)), so

vt eld, =Q(Q Yzt ®1d,)P P € M, 1 (Rat(R,T)).

Hence 271 € Rat(R,T). This proves that the rational closure is closed under taking inverses of elements,
when they exist in 7. Since it already contains ¢(R), we deduce that D(R,T) C Rat(R,T) by definition of
the division closure.

To prove the final part, let € Rat(R,T). By definition, x is an entry of some invertible n X n matrix
A~ where A has entries in ¢(R). Since ¢(R) C R(R,T) and M, (R(R,T)) is regular, there exists a matrix
B € M,(R(R,T)) such that ABA = A. But inside M, (T), A is invertible with inverse A~!. Therefore
A=t = B € M,(R(R,T)). Since z was an entry of A~!, it follows that € R(R, T). O
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Chapter 2

Sylvester rank functions on Z-crossed
product x-algebras and an embedding
problem

This chapter, together with the next one, can be thought of as the core of this thesis. In this chapter we
concentrate on the study of certain crossed product x-algebras by means of a homeomorphism 7' : X — X
on a totally disconnected, compact, metrizable space X. We consider the crossed product A := Cg(X) X1 Z
induced by this homeomorphism and the possible Sylvester matrix rank functions that one can construct on
A by means of ergodic T-invariant probability measures pu on X.

We present a general construction of approximating A by a sequence of *-subalgebras A,, which are embed-
dable into (possibly infinite) matrix product algebras, motivated by a construction given by Putnam [87], [8].
This will enable us to embed the whole x-algebra A into M g, the well-known von Neumann continuous factor
over K (Theorems and also see Example or Chapter {4| Section for a detailed description
of Mx) and, since M admits a unique Sylvester matrix rank function rkus,, it can be restricted to a rank
function rk 4 over A. This process gives a way to obtain a unique Sylvester matrix rank function on A satisfying
a certain property (Proposition [2.3.8]).

To conclude, we initiate the study of the #-regular closure of A inside M g in order to obtain information
about the possible numbers that the rank function rk 4 can achieve. In Proposition we compute the rank
completion of this *-regular closure, which gives M g again.

2.1 Motivation coming from the theory of C'*-algebras

Here we collect some preliminary information on the relation between traces, measures and states. All this is
well-known, see for instance [85]. In this, and in the next chapters, when writing 'measure’ we will mean 'Borel
regular measure’.

Let G be a countable discrete group acting on a compact metrizable space X. In this section, we will denote
by C(X) the C*-algebra of complex-valued continuous functions on X. By a standard result (see e.g. [85]
Theorem 2.8]), the extreme points in the compact convex set of G-invariant probability measures on X are
precisely the ergodic invariant measures on X. By [85, Example 11.31], every G-invariant probability measure
uon X can be extended to a tracial statdﬂ 7 on the reduced crossed product C(X) X, G (using the conditional
expectation E onto C(X), see [85, Definition 9.18]). By [85, Theorem 15.22], if the G-action is free, then all
the tracial states on C(X) X, G are obtained this way.

We thus obtain the following well-known fact. Its proof is an easy adaptation of the proof of [85, Theorem
15.21].

LA tracial state on a unital C*-algebra B is a positive linear functional 7 : B — C such that 7(1) = 1 and 7(ab) = 7(ba) for all
a,beB.
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Theorem 2.1.1. Let p be a G-invariant probability measure on X. Assume that u is ergodic and almost
everywhere free (i.e. for each g € G\{e} the set of fized points of g has p-measure 0). If T is a tracial state on
C(X) 1, G such that 7(f) = [ fdu for all f € C(X), then necessarily T is induced by 1, that is

r(a) = 7(B(@) = | Pla)u
for all a € C(X) x, G, where E : C(X) x, G — C(X) is the canonical conditional expectation onto C(X).

Proof. Let a € C(X) %, G and £ > 0 be given. Since the reduced C*-algebra C'(X) x,. G is the completion of
the set of finite formal sums
> bgug, by € C(X)

g€G finite

with respect to the reduced norm ||- ||, we can find an element b = - . byu, such that [la—b||, < /3, where
F is a finite subset of G' containing the unit element e € G, and b, € C'(X). Recall that the product of two
element byu, and byuy, is defined via the action of G on C(X), that is

(bgug)(brun) = bgag(bn)ugn

where a, : C(X) — C(X) is given by a,(f)(z) = f(g ).

Now, since F' is a finite set and p is almost everywhere free, we can find an open subset U C X such that
w(U) = 1, and such that gx # « for all g € F\{e} and © € U. By regularity of the measure, there exists a
compact subset K of X such that K C U and u(U\K) < n?, where 7 is such that

g
3( Lgerier 70300)2)

Using the same argument as in [85, Lemma 15.18] and the compactness of K, we can find s1,..., s, € C(X)
such that |si(z)] =1 for all k=1,...,n and all z € X, and such that

0<n<

- sp(x)ag(sy)(x) =0 forall z € K and all g € F\{e}.

We now consider the map P : C(X) x, G = C(X) x, G defined by P(z) = L 371" | spxs}. Observe that, for
€ C(X)x, G, 7(P(x)) =13 r(spwsy) = L3, 7(x) = 7(x) since 7 is a tracial state and s}sj, = 1 for
all k&, so
7(a) = 7(E(a))| < |7(a = b)[ + [7(b) = 7(E(b))| + [(E(b) — E(a))]
< lla = bllr + [T (P (b)) — 7(E(®)| + [la — bl

< %6 + |7 (P(b) — E(b))|-

Therefore in order to prove the theorem it only suffices to check that [7(P(b) — E(b))| < £, because in that
case |7(a) — 7(E(a))| < € and so 7(a) = 7(E(a)) = [y E(a)dp, since E(a) € C(X).
We compute E(b) = beue = 2 30| spbeuesy, and

P(b) — E(b) = % Z Sk ( Z bgug)sz - % Z Sibettesy
k=1

k=1 geF
1o 1 o
= ﬁzsk< Z bgug)sz = Z (ﬁzskag(slt))bg“g
k=1 gEF\{e} gEF\{e} k=1

and thus, using the Cauchy-Schwartz inequality for EL we obtain

rPm-EE < Y |r(2 X (s bou,)
k=1

geF\{e}
< 30 (5 sl (5 o swenton)) ) i
geF\{e} k=1 —

2Recall that this inequality states that |7(xy)|? < 7(zz*)7(y*y) for any elements z,y in the C*-algebra.

24



Chapter 2. Sylvester rank functions on Ck (X) xr Z and an embedding problem The Atiyah problem

But now for each g € F\{e}, we have
(3 seo0) (32 ssns0) ) = [ 23 se@an(sir@)[an
k=1 k=1 X p=1

1 « . 2
- [0 du+/X\K\nk§_jlsk<x>ag<sk><x>\ dn < p(X\K) = 1— u(K) < .

It follows that |7(P(b) — E(b))| < (ZQEF\{e} T(beg)1/2)n < 5, as desired. O

The above ergodic measures induce extremal tracial states on C(X) x, G, as follows:

Proposition 2.1.2. For each ergodic and almost everywhere free G-invariant probability measure p on X, we
define ¢, to be the induced tracial state on C(X) %, G given by Theorem that is

<Pu(a)=/XE(a)du, a€C(X)x,G.

Then ¢, is extremal. Moreover, ¢, is a faithful state if and only if the support of p is X (that is, p(U) > 0
for all nonempty open subset U of X ).

Proof. Write ¢ := ¢,,. Suppose that ¢ = a7 + S for some tracial states 7, on C'(X) x, G and for nonnegative
numbers «, 3 such that o« + 8 = 1. Then if we denote by 7;| the restriction of 7; on C(X), by the Riesz
Representation Theorem there are unique G-invariant probability measures i; on X such that each 7;| is given
by

nl(f) = /X fdui, f e C(X),

and it follows that p = aug + Bus: indeed, for any continuous function f € C'(X), we have

/ Fdu = o(f) = an(f) + Bra(f) = o / fdus + 8 / Fdus = / Fd(op + Bpa),
X X X X

so by the uniqueness part of the Riesz Representation Theorem, u = auy + Susz. Since p is extremal ([85]
Theorem 2.8]) it follows that either & = 0 or @ = 1, or pu; = po . Thus either ¢ = 71 or ¢ = 75, or 71| = 72| are
given by integration against p. But if 71| = 7| are given by integration against y, then it follows from Theorem
that 71 = 73 is given by the formula 7;(a) = [, E(a)du = ¢(a). We have shown that ¢ is extremal in
Tr(C(X) %, G), the space of tracial states of C'(X) x, G, and so 71 = 75 = .

Let’s now prove the second part of the statement. If the support of p is not X, there exists a nonempty open
subset U of X such that p(U) = 0. Using Urysohn’s Lemma, we can find a nonzero and positive continuous
function f € C(X) with supp(f) C U. But then ¢(f) = [y fdu = fsupp(f) fdu =0, so ¢ is not faithful.

Conversely, if the support of p is X, then the restriction 7 of ¢ to C(X) is a faithful state (given by
integration against u). To see this, assume we have a continuous function f € C(X) such that 7(f*f) = 0 and
f # 0. Therefore f(x) # 0 for some point z € X, and since f is continuous we can find an open set U C X
such that |f(z)] > 0 on « € U. Now for any compact K C U, since f is continuous we can find a positive
constant Ax > 0 such that |f(z)|? > Ak for every z € K. Then

0=7(ff) = /X P> /K FPdp = MK,

so u(K) = 0. The regularity of the measure implies that u(U) = 0. This contradicts the fact that the
support of p is all of X, and so we have shown that 7 is faithful. Finally, since the conditional expectation
E: C(X) %, G — C(X) is faithful ([85, Proposition 9.16]), it follows that ¢ is a faithful state. O

One of our main motivations on writing down this theory comes from the following well-known theorem in
the theory of C*-algebras. Recall that the celebrated Murray-von Neumann Theorem ([80]) states that all the
hyperfinite I, factors on separable, infinite-dimensional Hilbert spaces are *-isomorphic.

We briefly present the typical model of such hyperfinite I; factor, denoted by Z.
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Following Example [1.2.82), consider the sequence M,(C) < My(C) < Ms(C) < --- with connecting

maps

z 0
©n : Mgn ((C) — Mgn+1((C), T — (0 Jj)

thought as a sequence of (finite-dimensional) C*-algebras together with *-homomorphisms. The maps ¢,, are
easily seen to be isometries, so the norm at each My (C) defines a norm on the inductive limit hgn M5~ (C) by
the rule |||z := lim,, ||y ||2n. We define the inductive limit C*-algebra Mz~ to be the enveloping C*-algebra
of lim  Man (C) with respect to the norm | - |2, i.e. we complete limg ~ Man (C) with respect to the metric
induced by the norm || - ||2e, so that Mae := lim ~ Man ((C)H'”Zm.

For each n > 1, let tr,, : Man(C) — C denote the normalized trace tr, = 2% Tr. They are tracial states
on My (C), and since tr,,11(pn(x)) = try(z) for & € Man(C), we get a unique tracial state on lim ~ Man (©)
which, by continuity, is extended to a unique tracial state 7 on Ms~. By using the GNS representation, we can
represent Mo as a set of operators acting on some Hilbert space H,; in other words, we can find a Hilbert
space H., a x-representation 7, : Mas < B(H.) and a cyclic vector &, € H, for m.(Ma) in such a way that
T becomes

T(m) = <7TT(CC)(£T)7 £T>HT .

We finally let Z be the von Neumann algebra generated by My inside B(H,), Z = 7, (Ma)". 7 then extends
to a normal tracial state 74 by the above formula, so that (%, 74) becomes a finite von Neumann algebra of
type I1,. Z is hyperfinite by construction, and it is fairly easy to see that & is indeed a factor.

Theorem 2.1.3. Let G be a countable discrete, amenable group acting on a compact metrizable space X . Let
1 be an ergodic, almost everywhere free G-invariant probability measure on X whose support is X, and let ¢,
be the corresponding extremal tracial state on A = C(X) X, G given by Theorem .

Then we can embed C(X) x, G — Z in such a way that @, extends to the unique tracial state 7. In
particular, for any clopen subset U of X,

T (xv) = pU).

Proof. Tt is well-known that any I factor comes equipped with a unique normal tracial state, so the trace 74
already constructed is the unique tracial state on Z.

We give a general result. Let A be a separable C*-algebra, and let ¢ be any faithful tracial state on A. Let
(Hyp, &y, my) be the associated GNS-representation, so m, : A — B(H,,) and

p(a) = (my(a)(&p), Ep)m, forae A

Then A = 7,(A) C m,(A)”, so A can be embedded in the von Neumann algebra generated by itself inside
B(H,). ¢ is an extremal tracial state if and only if m,(A)” is a factor (|76, Theorems 5.1.5 and 5.1.8]).
Moreover, if A is nuclear, then m,(A)" is injective ([I2]), hence hyperfinite by the equivalence given by Connes
in [22]. Since ¢ can be extended to a normal tracial state on 7, (A)”, it becomes a hyperfinite I1; factor, hence
isomorphic to Z.

Applying this result to A = C(X) x, G, since it is a separable nuclear C*-algebra (J[I2, Theorem 4.2.6])
and ¢, is extremal and faithful (Proposition , we can embed C(X) %, G into #Z, and moreover

pula) = (g, (a)(Ep,)s o)1, = T2(Tp,(a)  fora€ C(X) %, G.

For the final part, note first that xy € C(X) since U is clopen. If we identify C(X) %, G — Z%, then

T2(xv) = pu(xv) = /XXUdu = u(U). O

One can see that the factor appearing in the GNS construction above is simply the von Neumann crossed
product L (X, u) x G, known as the group measure construction in the literature.

We want to obtain analogous results in an algebraic setting: we want to replace traces by Sylvester rank
functions, and weak completions by rank completions. For this we will develop an internal construction, based
on the work of Putnam et al [87, [88].

26



Chapter 2. Sylvester rank functions on Ck (X) xr Z and an embedding problem The Atiyah problem

2.2 A first approximation for Z-crossed product x-algebras of the
form A = Cg(X) xrZ

We will concentrate on the most basic dynamical system, the one provided by a single homeomorphism 7": X —
X on a totally disconnected, compact metrizable space X. Recall that a probability measure p on X is ergodic
if for every T-invariant Borel subset E of X we have that either p(E) = 0 or u(E) = 1. uis said to be invariant
in case u(T(E)) = u(E) for every Borel subset E of X.

In what follows p will be an ergodic, T-invariant probability measure on X. We will also often assume that
w is full, that is, its support is the whole space Xﬂ

The following is a simple application of Rokhlin’s Lemma. We include a proof for the convenience of the
reader.

Lemma 2.2.1. Let p be an ergodic T-invariant probability measure on X, and take E to be a Borel subset of
X with positive measure. Consider the first return map rg: E — NU {oo}, defined by

re(r) =min{l > 0| T'(z) € E}

in case there is | > 0 such that T'(z) € E, and rg(z) = oo otherwise. For each k € N, consider Y}? =
r' ({k}), that is, the set of points of E that return to E for the first time after k iterations by T. Also let
Yoo = B\ | pen Y be the set of points of E that do not return to E. For each1 <1< k—1, we set Y= Tl(YkO).

Then we have that T(Ykl) = YklJrl for 0 <l < k—1, all the sets Ykl are mutually disjoint, and the set

k—1
Y=Y(E) =|]| ]

k>1 1=0

satisfies that p(Y) = 1. In particular, we get

k—1
DD uh) =D ku(y) =1.

k>1 1=0 E>1

Figure 2.1: A schematic for the sets Y} partitioning the set E (up to a set of measure
0) and the sets Y} partitioning the whole space X (up to a set of measure 0).

Proof. Note that each Y)? is given by the set ENT-Y(X\E)N---NT~*(X\E) N T~*(E), which are Borel
sets. Therefore Yo, = E\ | J,cy Y} is also Borel. Moreover, if we choose E to be a clopen set, then all the Y}
are also clopen sets, and Y. is a closed set.

31t is not true in general that an ergodic T-invariant measure is full. For instance, take 7' = Id and any one-point mass measure.
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We first prove that if Z is a Borel subset of X such that T'(Z) C Z, then either ;(Z) = 0 or p(Z) = 1. Take
Zo = ;>0 TV(Z) C Z. Then clearly T(Zy) = Zy since T(Z) C Z, so Zy is a T-invariant Borel set. Hence by
ergodicity of the measure either u(Zy) = 0 or u(Zy) = 1. But by invariance and the fact that 77(Z) C Z for
all j >0,

w(2\Z0) = u( | 2\17(2)) < 3 w(Z\19(2)) = 0,
=0 >0
so u(Z) = u(Zp) is either 0 or 1, as claimed.

We now show that different sets Y}/, Y}, are disjoint. Assume that we can find some element = € X in the
intersection Y; N Y}, that is, such that = = T'(y) = TV (y/) with y € Y2 and 0 < 1 < k-1, 3 € Y3 and
0 <!’ <k —1. We can assume without loss of generality that [ > I’. If | > I, y is such that 7"~V (y) = ¢/ € E,
so since y € Y}) we must have k < [ —1' < k — [’ — 1. This is absurd, so necessarily [ = I’. But in this case
y=1vy €Y2NYY. Thisis only possible for k = k’. This says that different sets Y, Ykl: are disjoint.

Let’s now prove that the T-translates of Y., are pairwise disjoint. Assume that we can find an element
x € TH(Yao) NTV (Yao) for some 0 < 1,1/, and assume without loss of generality that [ > I’. In this case, y € F
is such that 7'~%(y) = ¢/ € E, contradicting the fact that y € Yo.. Hence the claim follows.

Finally, let’s prove that the T-translates of Y., are pairwise disjoint with the sets Ykl. Take then an element
T eYINT (Yao),s0x =T y) =TV (2) withy € Y and 0 <1<k —1,2€ Yo. f I <, T"}(2) =y € E,
which is not possible since z € Yoo. If I =1/, z =y € Y, so T*(z) = T*(y) € E, which is again not possible
since z € Yoo If 1> 1/, k— (1—1') > 0, and so T*~(=1)(z) = T*(y) € E, a contradiction again. This says that
the sets TV (Yao) and Y} are disjoint.

We now consider

7= (row)u (L v = (Urow)ur

k>1 1=0

which is Borel. We observe that T'(Z) C Z. Indeed, it is clear that T(Y}!) C Z for 0 < [ < k — 1, and also,
T(YF™) C E C Z. Therefore by the preceding observation either ;(Z) = 0 or u(Z) = 1. But it cannot be
0, since it contains F, which has positive measure. Hence u(Z) = 1. Note now that, since p is a probability
measure,

12 [ T70)) = 3 a7 (Vo)) = 3 u(Vac)

520 5>0 7>0

which shows that u(Ys) = 0. It follows that

k—1
1= u(2) = n( [T/ (Vae) ) + (V) = pu(¥) = 32 3 ). 0

§>0 k>11=0

We briefly recall the general construction of the algebraic crossed product of an algebra A by Z. Let A be
an algebra and a: A — A an automorphism of A. This automorphism induces a natural action of the infinite
cyclic group Z on A by the rule

t"-a:=a"(a), acA.

In this manner, we can form the algebraic crossed product algebra A X, Z, consisting of formal finite sums
Y nez @nt™ where a,, € A and t is a symbol, with componentwise addition and product given by

(at™)(a't™) := a(t" - )" = aa™(a "™, a,d’ € A,n,m € Z.

If moreover A is endowed with an involution * providing the structure of a *-algebra and « is a *-isomorphism,
then A %, Z has also the structure of a x-algebra, with involution given by

(at™* :=t7T"a*=a "(a")t™", a€Anel.

For completeness, we also recall the definition of a partial algebraic crossed product by a Z-action. The
reader may consult [32] for more information.

28



Chapter 2. Sylvester rank functions on Ck (X) xr Z and an embedding problem The Atiyah problem

A partial action of Z on a x-algebra A is a pair ¢ = ({An}nez, {®n}nez) consisting of a collection of
self-adjoint two-sided ideals A,, of A and a collection of *-isomorphisms ¢, : A_,, — A,, such that

a) Ag = A and ¢y is the identity map.

b) ¢n 0 b C dpam, meaning that ¢, o ¢, is defined on the largest possible domain where the composition
makes sense and ¢y, ., extends it.

The partial algebraic crossed product of A by Z with respect to the partial action ¢, denoted by A x4 Z,
is defined to be the set of all finite formal sums ZnEZ a,0"™ with a, € A, and ¢ a symbol, with the usual
componentwise addition and the product defined by the rule

(@ 0™) (b 0™) := (P (n)bm)d" ™.
The involution is then defined through the rule
(and™)* :==¢_p(ay,)d™".

We now return to our previous setting on dynamical systems. From now on K will denote an arbitrary
field. From the space X we can construct the algebra of locally constant continuous functions Ck (X), that is,
the set of all functions f : X — K such that for any point = € X, there exists an open neighborhood U of «
such that f is constant on U. In fact, we can think of Cx(X) as the linear span of characteristic functions xy,
being U a clopen subset of X. To see this, note that we can form an open cover of our space X = U.

xEX x»
where each U, is an open neighborhood of x such that f is constant on each U,. Since our space X is compact,
X = U?:1 U,, for some finite collection Uy,,...,U,, . Now, f is constant on each U,,, so we can assume (by

collecting those U’s on which f takes the same value) that the U,, are disjoint, so X = | | | U,,. In this case
each Uy, is a clopen subset of X, and it is straightforward to see that

=Y dixu.,,
i=1

where )\; € K is the value of f on Ug,.
We can let our homeomorphism T act on Ck(X) by the automorphism given by the rule

T(f)(x) = f(T (=), fe€Ck(X),ze€X,

Therefore we can apply the algebraic crossed product construction to get the algebra C'x (X) x7Z. If moreover
K is endowed with an involution —, then Cx (X) has the structure of a x-algebra by the rule

(f)@) = fz), [feCr(X)zeX.
Hence Ck(X) X1 Z becomes a #-algebra too, because T is a x-automorphism of Ck (X):
T(f) (@) = (T (@) = f(T- (@) = T(f)(z) =T(f)"(x) for every f € C(X),z € X.

We start our construction by first approximating our space X, and then using this approximation to
construct a family of approximating algebras for Cx (X) xp Z. First, some definitions.

Definition 2.2.2. Let Y be a topological space, endowed with a probability measure u.

a) By a partition of Y we will understand a finite family P of nonempty, pairwise disjoint clopen subsets of
Y, such that Y = | |,.p Z.

Given two partitions Py, P2 of Y, we say that Ps is finer than P; (or P; is coarser than Ps), written
P1 3 Po, if every element Z € P is contained in a (unique) element Z’ € Py, that is Z C Z'.

b) By a quasi-partition of Y we will understand a finite or countable family 7 of nonempty, pairwise disjoint

clopen subsets of Y, such that Y = | |;.5 Z up to a set of measure 0, that is u(Y\ Lzep 7) =0.

Given two quasi-partitions P1, Py of Y, we say that P, is finer than P, (or P; is coarser than Ps),
written P; 3 Pa, if every element Z € P is contained in a (unique) element 7 € P, that is Z C 7'

Note that, in the hypotheses of Lemma [2.2.1} the family {V}'} forms a quasi-partition of X.
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Definition 2.2.3. Consider the x-algebra A := Cx(X) xr Z. Let E be a nonempty clopen subset of X, and
let P be a partition of X\E. Define B := A(E,P) as the unital x-subalgebra of A generated by the partial
isometries xz - t for Z € P.

For example, inside B we can find all the characteristic functions xz = (xzt)(xzt)* € B, together with the
element x x\pt = > ,cp Xzt € B which can be thought of as an approximation for ¢ € A.

Our first goal is to express B as a partial algebraic crossed product by a Z-action. Let By = Cx(X)N B
(that is, the set of elements of B that have degree 0 in t), which is a commutative s-subalgebra of B. We first
give a complete description of By in terms of characteristic functions.

Lemma 2.2.4. The x-algebra By is linearly spanned by 1 and the projections of the form

XT-7(Z_)NT="+Y(Z_y1)N--NZoNT(Z1)N--NT5=1(Zs_1)> (2.2.1)

where Z_.,.... 2y, ..., Zs_1 € P, and r,s > 0.
Proof. Recall that for a clopen subset U of X, txpt~! = T(xv) = X1w)- We have

(Xzot)(Xz:t) - (Xzo i) (X 2z )™ - (X201)" = X2ZonT(Z0)n- -T2 (Z._1)

and
(xz_ )" (xz_, 1) (xz_,t) - (Xz_1t) = XT-r(Zz_)n--nT-1(Z_1)s
which shows that all the projections of the form (2.2.1)) belong to By.

Let F be the set of projections of the form (2.2.1) together with 0. Observe that the family F is closed
under products, for if we have two projections

XT=7(Z_p)NT ="+ Z_py1)N--NZoNT(Z1)N--NT5~ W (Zs 1) XT=7'(Z_ ,)nT-7'+1(Z" )N--NZLNT(Z)N--NT" =1(Z’, )

41 s/ —1

where Z_,., ..., Zo,..., Zs_1,2" .,.... 24, ... 2% _; € P,and 1,1’ s, s’ > 0 with for example » > r" and s > ¢, its
product is given by

XT—T(Z,T)O---HT—T'(Z_T/OZLT,)ﬂ»--ﬂ(ZoﬂZ{J)ﬂT(ZlﬁZ{)ﬂ---ﬁTS'—l(ZS/_lﬁZ;,il)ﬂ»--ﬂTs—l(Zs,l)'

Since P is a partition of X\ E, it is again of the form or zero. The other cases for different r, 7/, s, s’ are
similar.

Hence, to show the result, it is enough to prove that any product of generators a; - - a, of degree 0 in ¢
is of the above form (here each a; is either of the form yzt or of the form (xzt)* =t~ !yz, for Z € P). An
immediate observation is that if a1 ---a, is of degree 0, then n must be even. We will proceed to show the
result by induction on n.

Clearly the result is true for n = 2, so assume n > 2 is even and that each product of at most n — 2
generators of degree 0 in ¢ belongs to F. Define d(i) € Z by d(i) = deg,(ay - - - a;). Suppose, for instance, that
d(l) =1.

If there is 7 < n such that d(r) = 0, then since

0 = deg,(a1---an) = d(r) + deg,(ar11 - - an) = degy(ari1 - - an),

we can use induction to conclude that the products a; ---a, and a,41 - --a, belong to F, so since the set of
projections of the stated form is closed under products, we get the result.

Otherwise we must have d(r) > 0 for all » < n and since d(n) = 0 we must have that deg,(a,) = —1. Then
necessarily a; = xz,t and a,, = t71XZ2 for some Z, Zs € P, and thus

102+ Qp—1Gn = Xz, (tag - an_lt_l)xzz. (2.2.2)

By induction, the product as - - - a,—; belongs to F, and hence tas ---a,_1t~' either belongs to F or it is of
the form xr(z))n..nrs-1(z_ ), for Z1,...,Z; € P. Therefore, the product (2.2.2) is zero if Z1 # Z» and, if

71 = Zy, it belongs to F. In either case, aj ---a, belongs to F, as desired. The case where d(1) = —1 is
similar.

It then follows that B is the linear span of the given set of projections F. This concludes the proof of the
lemma. O
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We now consider the structure of B as a partial algebraic crossed product by Z on By. We claim that
we can write B = @ieZ Biti, where Bz = XX\(EUT(E)UMUTFl(E))BO and B_i = XX\(T—l(E)U...UT—i(E))BO for
i > 0. Let’s show this only for B; with ¢ > 0, being the other case analogous. Since an element of B is a linear
combination of products of generators aj - - - a,, being each a; either xzt or t7'xz (Z € P), it is enough to
show that if such a product has degree i in ¢, then it can be written as

ay - Qp = biti, with b; € By satisfying b; = XX\(EUmUTFl(E))bi-

We will show this by induction on i > 0. For i = 1, take a; to be a generator such that deg,(a;---a;—1) =0
and deg,(a1---aj—1a;) = 1. In this case a; = xzt for some Z € P, and the products a; ---aj_1,aj41 - an
both belong to By, so

a1 Qp = (al e aj—l)XZt(aj+l e an) = (al e aj—l)(ta/j-‘rl e antil)XZ . XX\Et

We observe that the claim is true in this case. Now assume that the result is true for i > 1, and take aq - - - a,, of
degree i+1int. As before, take a; to be a generator such that deg,(ay - --a;_1) = i and deg, (a1 - - - a;_1a;) = i+
1. In this case a; = xzt for some Z € P, the product a; - - - a;_1 is of the form b;t* with b; = XX\ (EU--uTi—1(E))bi
by induction hypothesis, and a; 1 - --a, € By. We compute

ay - ay = (a1 aj_1)xzt(aj41 - an) = 0t )xz - xx\mt(aji1 - an)
= XX\ (BU-UTi~ 1 (B)UT(E)) - XTi(2)bi (8T ajpn - - ant T ),
which is an element of the desired form. This concludes the induction, and the claim is proved.
Observe that if biti € B then b; = XX\(EUmUTi*l(E))bi fori > 0and b; = XX\(T*l(E)UmUT*i(E))bi for i <0,

and so _ _ _ _
bit' = bi(xx\gt)", b_it™" = b_i(tfl)(X\E)’ for positive 1.

In particular, it is true that Bit' = Bo(xx\gt)" and B_;t™" = By(t 'xx\g)" for i > 0.
Observation 2.2.5. One needs to be careful with the term x x\ gt because, although ¢ is invertible with inverse
t~1 = ¢, this is not true for Xx\get- As a consequence, equalities like
(xx\rt)" = (xx\6t)™ (xx\pt) 7

are no longer true and even meaningful for ¢ > j > 0. In the next lemma we summarize the basic arithmetics
that one can achieve with these powers.

From now on for i > 0, we will write (xx\gt)~* for the element (¢~'xx\g)*. We will also understand that
(xx\gt)° is 1.

Lemma 2.2.6. Fixzi > j > 0. We have the following rules:
i) (xx\et)' = (xet) ™ (o et) = (eost) (xost)' ™.
i) (xxst) ™ = Ooaet) ™ Oonst) ™ = (oast) ™ oo et) .

i) (xx\et)’" # (xxvst) ™ (xx\et) 7 # (xx\et) 7 (xx\gt)7 # (xx\gt)", but: we have the first equality
when multiplied (to the left) by the projection X x\(gu...uri+i-1(g)); we have the second equality when mul-
tiplied (to the left) by the projection x x\(r-i(E)u...uTi+i-1(E)); we have the third equality when multiplied
(to the left) by the projection X x\(r-i(B)u...uT-1(E))-

w) (xx\et) ™" # (xx\5t) " (xx\6t)” # (xx\£t) (Xx\£t) "7 # (xx\£t) ", but: we have the first equality
when multiplied (to the right) by the projection x x\(r-i(E)u...ur-1(E)); we have the second equality when
multiplied (to the right) by the projection xx\(r-i(g)u..uri+i-1(E)); we have the third equality when
multiplied (to the right) by the projection X x\(gu...uri+i—1(E))-

The proof of Lemma [2.2.6] is purely computational, so we will not write it down. From now on, we will
make use of it without any further reference.

Note that each B;, B_; is an ideal of By. Let us define the basic map of the partial action of Z on By as
conjugation by the approximation of ¢, x x\ gt:

o1: By — Bi, @1(b-1) = (xx\et)b-1(xx\£t)",
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which is a x-isomorphism between B_1 = xx\r-1(g)Bo and By = xx\gBo with inverse given by conjugation
by (xx\gt)™* =t 'xx\g. Note that since b_; € B_1, b_1 = xx\r-1(g)b-1. In general for i # 0 we have a
*-isomorphism ¢; from B_; onto B; which is given by conjugation by (xx\gt)’. Using these maps we build a
partial action ¢ of Z on By, and we get the following result.

Proposition 2.2.7. There is a canonical *x-isomorphism By X, Z = B given by

i€z i€z i€z
where b; € B; for i € Z. Recall that we are using the notation (xx\gt)" = (t"'xx\g)~" for i <0, and
(xx\gt)? =1.

Proof. Routine. The only nontrivial thing may be to check that the products are preserved. The key observation
here is that the product b;7"(b;) belongs to B;,; for any integer values of 4, j; this follows by a case-by-case
analysis using Lemma After that, a direct computation shows that the products are indeed preserved
under W:

U((:6:)(b505)) = W (ilp—i(b:)bj)dirj) = @i(p—i(bi)bj) (xx\ )"
= (xx\£t) (xx\£1) "bilxx\et)'bj (xx\£t) "' (Xx\£1)"
= b (b;) (xx\pt) ™ = 0T (b )t = W(bi6;) W (b;d;). 0
From Proposition we can deduce that we are approximating our crossed product *-algebra C (X)X Z
by a partial crossed product -algebra By x, Z, where By is obtained from Cx (X) by means of our nonempty

clopen set FE and the partition P of the complement X\ E.
We summarize in the next lemma the structure of the elements belonging to the ideals B;, i € Z, of By.

Lemma 2.2.8. A nonzero element b; € B; (i € Z) can be written as an orthogonal linear combination of
characteristic functions of nonempty sets of the following four different types:

() TNZ_y)n---nTYYZy_1), with Z; € P;

(I1) TN Z_N)N---NT3Z,_o)NT*"YE), for0<s<M and Z; € P;

(I11) T"(E)NT "N Z_pp1)n---nTM Y Zp—y), for0<r <N and Z; € P;

(IV) T7"(E)NT "N Z_ )N -NT 3 Z_o)NTHE), for0<r<N0<s<M and Z; € P;

for some N, M > 0, where if i <0 then N > —i and r > —i in (III) and (IV), and if i > 0 then M > i and
s >4 in (II) and (IV).

Proof. Due to Lemma [2.2.4] we can write a given b; € B; as a sum

bi=Xo+ Y Asxs
S

where the sets S are of the form , and Mg, As € K. Note that if i < 0 then we can take \g = 0 and all
the sets S as in having » > —i, and similarly if i > 0 we can take \g = 0 and all the sets S as in
having s > 1.

Take N to be the maximum value of the r’s while running through the sets S, and M to be the maximum
value of the s’s. The idea is to expand the element 1 as an orthogonal sum of characteristic functions using
the partition P, namely by using the relation

l=xg+ ZXZ-
ZeP

So for a fixed set S = T~ (Z_,)N---NT*YZ,_1) with 0 < r < N, we can decompose its characteristic
functions as an orthogonal sum as follows:

Xxs =1-Xxs=Xr-r-1(B)ns + Z XT=r=1(Z_p_1)NS"
ZeP
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By further expanding the set 7-""1(E) NS to the right, we will end up with a sum of terms of types (IIT) and
(IV); by expanding T-""1(Z_,_1) NS to both sides we will end up with a sum of terms of all types. Of course,
we discard the empty sets that appear in this process. Also, if one of the terms appearing in the expansion
of S coincides with another term appearing in the expansion of some other set S’, we simply collect them by
summing the corresponding coefficients. Proceeding in this way, we will end up with an orthogonal sum of the
desired form. O

2.2.1 A x-representation for B

We will assume for the rest of this section that u is an ergodic T-invariant full probability measure on X. We
first apply the previous considerations given in Lemma to the clopen set £, and we add into the picture
the partition P of X\ E. That is, we consider the coarsest quasi-partition P of X such that

a) PU{E} 2P and {Y}} X P, where {Y}} is the quasi-partition introduced above in Lemma [2.2.1} and

b) if Z e P and Z C Y for some k, then all its translates belong to the quasi-partition too, that is
T'(Z) € P forevery 1 <i<k—1.

P can be obtained by refining, using P U{E}, the quasi-partition {Y}'}. It turns out that all the characteristic
functions x-, with Z € P, belong to B.

Lemma 2.2.9. The quasi-partition P above consists exactly of all the nonempty subsets of X of the form
W=EnT Y Z)NT 3 Z)n---NnT " Z,_)nT*E) (2.2.3)
for some k and some Zy,Z5,...,Z,_1 € P and all its translates by T*, 0 < 1 < k — 1; that is, W consists on

the set of points x € E such that T(x) € Z1,T?*(x) € Zy,...,T*"Y(x) € Z),_1 and T*(z) € E again, so they
return to E for the first time after k iterations by T .

Figure 2.2: A schematic for the quasi-partition P, consisting of the sets W and their
translates.

Moreover, each characteristic function x5 belongs to B for any Z € P.

Proof. Let V denote the set of all the nonempty sets W of the form (2.2.3)), and let P’ be the family of all the
translates of all W € V. For W = ENT-YZ)N---NT kY Z,_1) N T *(E) € V we define |W| = k, the

length of W. We will prove that P’ = P. We first show:

(1) P’ is a quasi-partition of X. Clearly, the sets in P’ are mutually disjoint since P forms a partition of
X\FE, and the nonempty sets of V form, for a fixed length k, a partition of Y;? = r,'({k}). Indeed,

] w= || EnT ' 2Z)n---nT*N(Z))nTHE)
|%‘€_Vk Z1yees L1 EP

=En(X\TYE)N---n(X\T*HE)NNT*E) =Y.
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As a consequence, for a fixed 0 < | < k — 1, the T'-translates of the W € V having length k form a
partition of Y}! = T'(Y,?). Since the family {Y}'} forms a quasi-partition of X, this shows that P’ is a
quasi-partition of X, because by Lemma [2.2.1]

k—1 k—1
LI L] L] 7'om)y = || | | =Y(&B).
k>11=0

k>11=0 WeVv
W=k

(2) P’ refines P U {E} and the family {Y}'}. This is a direct consequence of part (1).

(3) For Z e P withz C Y for some k, then T(Z) € P’ for each 1 < i < k — 1. By construction, all the
sets Z € P’ with Z C Y} for some k are the W € V having length k. It is then clear that all its translates
T\ W)eP for 1 <i<k-—1.

This shows that P 3 P’. To show that P’ 3 P, we only have to check that if Y/ C Y, is a nonempty clopen
set such that for each 1 < i < k — 1 the translate T%(Y") is contained in one of the sets of the partition P,
then Y/ C W for some W € V. But this is clear, since if T%(Y’) C Z; for i = 1,...,k — 1 where Z; € P, and

TH(Y') C E, then Y/ C ENT-Y(Z) N -+ NT-*+1(Z,_1) N T~*(E). Hence P’ = P.
We now check that yw belongs to B. First observe that xg = 1 — (xx\gt)(xx\£t)" and xp-1(g) =

1 — (xx\£t)"(xx\£t) both belong to B. Now by Lemma [2.2.4, we have that X7-1(z,)n...ar-++1(z,_,) € B for
71,25, ..., Z_1 € P. Therefore

XW = XE " XT-1(Z)n--AT—*+1(Z,_1) * (t_IXX\E)k_lefl(E) (XX\Et)k_l € B.
Also, for 1 <1 < k — 1, observe that
(xxet) xw (™ 'xx\e)' = XX\(EUT(E)U---UT'-1(E)) * XTY (W) = XTL(W)>
and so 71wy € B too. O

Proposition 2.2.10. For each W € V, we have *-isomorphisms
xwBxw = K, BxwB= My (K).

Moreover, the element hyy := E}z/olfl X7i(w) 8 a unit in the two-sided ideal Bxw B, a central projection in
B, and
hwB = My (K).

In particular, xw is a minimal projection in B E|

Proof. Fix W € V. We will prove a more general statement, that is x7:w)Bxpiwy = K forall 0 <1 < [W|-1.

Write again B = @,;, Bit' = @,z Bo(xx\gt)’, 80 that xr1(w)Bxrwy = ez Boxrt w)(xx\et) X1t (w)-
For ¢ > 0, note that

Xt w) (X ED X7t (wy = X1 (w) © X\ (BU--uTi-1(B)E X7 (w)
= X7U (W) * XTH (W) * XX\(BU-.uTi~1(B)t"

= XTt(W) - XTH+i(W) - Xx\(BU--uTi+G- (E)t = 0,
Xriw) (" xx\ ) X wy = (XTZ(W)(XX\Et)iXTl(W)> =0.

Therefore XT’(W)BXTZ(W) = XTL(W)BO' Write now W = EN Tﬁl(Zl) N---N T*k“(Zk_l) N Tﬁk(E) with
k=|W|and Z1,...,Z;—1 € P. By Lemma [2.2.4] B, is linearly spanned by 1 and the projections of the form

P = XT-7(Z_)N--NZyNT(Z;)N---NTs=(Z,_,) with Z/—r’ ceey Z;—l € P and r,s > 0.
If s > I, we directly compute p - x71(w) = 0 since X7t (zp)nr(w) = 0. Ifo<s<l,

D XTvyw) = XT-7(2"_ )n--NZin---NT=(Z}) " XTHE)NT!=1(Z1)N--NTL=k+1(Z)_1)NT =k (E)-

4For an idempotent e in a ring R, we say that e is minimal if the ideal eR is simple as a right R-module.
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This is O for r > k — 1, and for r < k — 1, it can be either 0 or x7:(y) again, since P forms a partition of X\ E.
All these observations together imply that xp:wyBo = Kx7iw), 50 X7t w)Bxriwy = Kxriw) = K.
Now, by means of previous computations, it is straightforward to see that for general ¢, j € Z, we have

(xxet)xw(txx\g) for0<ij<[W[—1

] (2.2.4)
0 otherwise

(XX\Et)iXW(leX\E)j = {

We then consider ' 4
ei;i(W) == (xx\mt) 'xw(t 'xx\p), 0<id,j<|[W|-1.

Observe that ey(W) = (xx\gt)'xw(t 'xx\g)' = xmwy for 0 < I < |[W|—1. We claim that the set
{ei;(W)}o<ij<jw|-1 is a complete system of matrix units for Bxw B. Indeed, the defining relations for matrix
units are satisfied:

eij(W)er (W) = (XX\Et) XW(t_l)(X\E)j(XX\Et)kXW(t_lXX\E)l

= (xx\et) 't Xs (wynre (w) 'XX\(EU~~»UT'““XU=’€}*1(E))tk(t71XX\E)l

=0, O\ mt) t xrs oyt (0 v e) = 05 O st) xw (T xxg)! = 6 kea(W),

and to prove that hy = Z}Z)‘fl X1 (W) = Z;LVO'A e (W) is indeed a unit for Byw B, we first use (2.2.4)) to
write

BxwB = @ Bo(xx\st) xwBo(t™'xx\5) @ Bo(xx\st) xw(t 'xx\g)

i,JEZ 1,JEZ
W|-1 W|-1 W|-1

= P Boei;(W) = @ Boesi(W))ei;(W) = €D Kei (W
1,520 1,520 4,520

where we have used that Bye;; (W) = Ke;;(W). It is now clear that hy is a unit for By B. We thus get the
desired x-isomorphism by sending

where {e;;}o<i j</w|—1 is a complete system of matrix units for My (K).

For the second statement, since B = @, BO(XX\Et)., it is enough to show that hy commutes with all
the elements (yx\gt)" for i € Z. By applying the involution, we may assume without loss of generality that
¢ > 1. By induction, we may further assume that ¢ = 1. But for 0 <1 < |W| -1,

en(W)-xx\et = X1 (w) - Xxx\&t
_ Jxx\gt- 6171’171(W) if1<i< |W‘ -1 _ 61,171(W) fl1<i< |W| — 1
o otherwise o otherwise

- e W) #o<Ii<|W|— 2
XX\Et . ell(W) — (XX\Et)l+1XW(t IXX\E)l _ { l+1,l( ) | |

0 otherwise

so by summing up over ! and doing the change [ +1 =1, it is clear that hw - X x\pt = Xx\ gt - hw. The result
follows.

For the last part, simply observe that the family {e;;(W)}o<; j</w|-1 is also a complete system of matrix
units for the central factor hy B of B, so by [64, Theorem 17.5, see also Remark 17.6], there is an isomorphism
hw B = M|W‘(K) given by

W1
hwb e Y bijeyy, with bj = e;;(W) - b-e;1(W) € ey (W)Bey (W) = K
4,j=0
which is also a *-isomorphism. In fact, one should note that this x-isomorphism coincides with the x-

isomorphism given in (2.2.5), i.e. hy B = BxwB.

It is now straightforward to see that each xri(y) is a minimal projection in B. O
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As a consequence of Proposition [2.2.10] we obtain a *-homomorphism from the algebra B into an infinite
matrix product R := R(E, P) = [y oy Mjw/|(K) given by

m:B—=>R, w0 =(hw- bdw.
We will show below that this homomorphism is injective, but for that we need a preliminary lemma.
Lemma 2.2.11. Suppose that b € By, b # 0 can be written as a finite linear combination of the form
b= Auxu,
veld
where the U € U are nonempty disjoint clopen subsets of X, and Ay € K*. Then there exists a W € V such
that hyy - b # 0.

Proof. Fix one U € U. Since p is a full measure, x(U) > 0. Also by Lemma the T-translates of elements
in V form a quasi-partition of X, so there exists a W € V of length k > 1 such that U N T'(W) # () for some
0<I!<k-—1. But then

hw - Xunrt(w)b = Avxvari(wy # 0.
It follows that hy - b # 0. O

Before proving injectivity of 7, we are first interested in computing some images of monomials b;t’ of B
under 7. So take b;t* (vesp. b_;t=7) with b; € B; (vesp. b_; € B_;). By Lemma [2.2.4] we can write b; (resp.
b;) as a linear combination of characteristic functions of nonempty sets of the form

Wz _)NT2(Z _)n---nZynT YWz )n---nT7"(Z",), (2.2.6)

where 7,5 > 0. So from now on we will assume that each b; (resp. b;) is the characteristic function of a set of

the form (2.2.6). Note that since b; = XX\(EUT(E)U---UT/L'*l(E))bi (resp. b_; = XX\(T—l(E)UA..UT—j(E))b_j), we
can (and will) assume, by expanding these sets if necessary, that s > ¢ (resp. r > j).

Definition 2.2.12. Assume that W is in standard form (2.2.3)), i.e.
W=EnT Y Z)n---nT*YZ,_)nT *E)

for some k > 1 and some Z1, ..., Z,_1 € P. We say that a sequence (Z._,,...,Z},...,Z" ) of elements of P
occurs in W if there exists [ > 0 such that

ZH-I = Z;—la Zl+2 = Z;—Za LR Zl+s = Z(/)7 Zl+s+1 = Zl—la SERE) Zl+s+7“ = Z/—r
That is, if the sequence (Z._,,...,Z},...,Z",) occurs as a subsequence of (Z1, Za, ..., Z_1) displaced [ po-
sitions to the right. In this case we say that [ is an occurrence of (Z._4,...,2Z{,...,Z",) in W. Note that a
necessary condition for the sequence (Z._,,...,Zj,...,Z",) to be an occurrence is that s +r < k — 1.

Observe that, by definition, if we let S = T*~1(Z/_,)n---NZiN---NT~"(Z",) be given by (2.2.6), then I
is an occurrence of (Z._1,...,Z}, ..., Z",) in W if and only if s + 7 < k —1 and T"**(W) N S is nonempty, and
in this case necessarily T'*5(W) NS = T (W).

Lemma 2.2.13. Assume the above notation and that i,j > 0. We have:

i) If b; = xs with S of the form ([2.2.6)), then hy - bit' is nonzero if and only if (Z._|,..., Z},...,Z".)
occurs in W, and in this case we have

hw - biti = Z el+s,l+s—i(W)7
l

where | ranges over the set of occurrences of (Z._1,...,Z},...,Z",) in W.
ii) Suppose that b_; = xs with S also given by ([2.2.6). Then hy - b_;t=7 is nonzero if and only if
(Zl_1,. 024, ...,Z,) occurs in W, and in this case we have

hw -bojt™ = erps st (W),
1
where | ranges over the set of occurrences of (Z,_q,...,2Zy,...,Z",.) in W.
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Observe that in any case the formula is valid, that is

hw - bitt = Z€l+s,l+s—i(W) whenever i € Z,
1

where | ranges over the set of occurrences of (Z!_1,...,Z},...,Z",) in W.

Proof. i) This is a simple computation. Write b; = xg with S =T*"YZ/_)n---nzZ{n---NnT"(Z_,). We
compute hyy - bit? = 25:01 XTL(W)msti. By the observation preceding the lemma this sum equals ), XTLJrs(W)ti
where [ ranges over the set of occurrences of (Z!_4,...,2Z{,...,Z",) in W. Since s > i,

)H—s l+sti _ tl-‘rs

Xrirayt’ = (xxet) T xw (T xx\g) XX\ (-1 (B)u-ur—1—(m)) - Xwit ot

_ tl+s t—l—s+1’

XX\(T-L(E)U---UT—1=5(E)) " XW " XX\(T~1(E)U---UT—1=s+i(E))
= (xx\u5t) T xw (" xx\ ) T = erpsigs—i (W).
The result follows from this computation. The proof of i) is similar. O

There are two relatively special elements inside B that we are interested in computing their images under
7 for later use. These are the elements xg = 1 — (xx\gt)(xx\£t)" and x7r-1(5) = 1 — (xx\£t)" (xx\£t)-
Their images under 7 are easy to compute: for W € V, we have xw - xg = xw and x7iw) - xg = 0 for

1<I<|W|-1,50 hy - xE = Ziivol_l Xri(w) " XE = Xw = eoo(W) and
m(xe) = (e0o(W))w.
Also xpiwy - Xr-1(my = 0 for 0 <1 < [W/[ =2 and xpiwi-1(w) " X7-1(E) = XTIWI-1 ()5 SO hw = XT-1(B) =
S Xy Xy = Xriwi-wy = w1 w1 (W) and
m(xr-1(E)) = (ew|-1,jw|-1(W))w.

Proposition 2.2.14. With the above hypothesis and notation, we have that the map 7: B — R is injective.
Moreover, the socle of B is essential and coincides with the ideal generated by xw, for W € V, that is

soc(B) = €P BxwB = @ hwB = P My (K).

wev wev wev

Proof. For injectivity, it is enough to show that the ideal Py hw B is essential in B or, equivalently, that
for any nonzero element b € B, we can always find a W € V such that hy - b # 0. By writing b as a finite sum

b= bilxx\st)' = Y bit'

with each b; € B; and b_,, # 0 (where n € Z), it is enough to show that there exists a W € V such that
hw - b_, # 0. But this follows immediately from Lemmas and We obtain that 7 is injective, and
also that the ideal @y, o hw B is essential in B.

Now since each yy is a minimal projection by Proposition it follows that the ideal of B generated by
Xw is contained in the socle of B. This says that Py, oy Bxw B C soc(B). In particular, since hyw B = Bxw B
for any W € V, this shows that soc(B) is essential in B, and from the general fact that the socle is contained in
any essential ideal ([64, Chapter 3, Exercise 6.12]), we conclude that @y, .y Bxw B = soc(B), as required. [

There are some terms b;t* which are special, in the sense that b; is exactly of the form yg, with
S=T"YZ_)NT2(Z_,)N---NZ, (2.2.7)
that is s = ¢ and 7 = 0 in (2.2.6), and moreover we ask that
ENT (S NT " YE)=EnT YZ_)N---nTHZ)NT Y E) #0.

The set of clopen subsets S of X of this form will be denoted by W;.
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Similarly, a term b_;¢t™7 is special in case it is of the form x g/, with
S'=T"YZ )NT (2 5)Nn---NT(Z,), (2.2.8)
that is » = j and s = 0 in (2.2.6)), and moreover we ask that
ENS'NT7 Y E)y=ENT 2" )n---nT (2 ;)nT7~(E) #0.

The set of clopen subsets S” of X of this form will be denoted by W_;.
As a term of degree 0 in ¢ we will consider x g ur-1(s,), Where

Ss=eu( U 2) aad si=pu( | 2)

ZeP ZeP
ZNT~H(E)#0 T-YZ)NE#D

The corresponding clopen set Sy UT~1(S;) forms a set denoted by W.

Observation 2.2.15. It is clear that, for ¢ > 1, the set WW; is in bijection with the set of all W € V having
length ¢ + 1, through the map

S—W(S):=EnT {(S)NnT"YE).
The inverse map will be written as W — S(W), so that S(W(S)) =S and W(S(W)) = W.

Analogously, for j >, the same set of all W € V having length j + 1 is in bijection with WW_; through the
map

S s W(S):=ENS' NnT 7 YE).
Again, the inverse map will be also denoted by W — S/(W).

W) contains only the clopen So U T~1(S;) which, as a set, it is trivially in bijective correspondence with
the set consisting of the only clopen W € V with length 1, namely W = E N T~1(FE), if nonempty. We will
continue using the previous notation, namely W + S(W) := S UT~1(S;). Note that, by construction, the
element xg,ur-1(s,) serves as a unit between the special terms, in the sense that

XSoUT—1(S1) xst' = xst' = xst'- Xsour-1(s,) and  Xs,ur-1(s;) cxstT =yt = gt “ X SoUT—1(S1)>
for x5, xs’ special terms of degrees i,j > 1, respectively.

The special terms are exactly detected by the representation , as follows:

Lemma 2.2.16. With the previous notation,

i) Let bit' = xst' be a special term, as in (2.2.7). Then hy - bit' = e; o(W), where W = W(S). Moreover,
if W' # W is of length k for some k > 0, then the component of ex—1,0(W') in hy - bit' is 0.

i) Let b_jt™7 = xgt™7 be a special term, as in (2.2.8). Then hy - b_;t77 = eg j(W), where W = W (S").
Moreover, if W' # W is of length k for some k > 0, then the component of eg —1(W') in hy - b_;t™7
15 0.

i) Let by = Xg,ur-1(s,) be the special term of degree 0. Then hy - by = ego(W), where W = E N
T~YE) in case being nonempty. Moreover, if W # ENT~Y(E), then the components of eoo(W) and
eyw|—1,jw|—1(W) in hw - by are exactly 1.

Proof. We will only prove i), being the other ones analogous. Take W = W (S) = ENT~4(S)NT~""1(E), and
note that T'(W) NS =0 for 0 <1 <i— 1. For [ =i, it gives T*(W) NS = T*(W). Hence

hw - bit' = ZXTL(W)mSti =xriamt' = (xx\5t) xw = eio(W).
1=0

For the second part, it is enough to show that the product ey_1 —1(W’) (hW/ . biti)eoo(W’) is zero. This is a
straightforward computation:

k—1

ek_Lk_l(W/) (hW/ . biti>€00(W/) = XTk—l(W/) ( Z XTI(W’)ﬂSti>XW' = XTk_l(W’)ﬂTi(W’)ﬁSti'
1=0
But W = ENT~HS)NT~ " Y(E), so TF=Y(W"NT!(W')NS = (T W"NT~YE)) N (T*(W")NT E))NS =
TF=Y W) NTH(W' N W) which is empty for W’ # W. The result follows. O

38



Chapter 2. Sylvester rank functions on Ck (X) xr Z and an embedding problem The Atiyah problem

2.3 Sylvester matrix rank functions on A and their relation with
measures on X

In this section we will make use of our previous construction given in Definition 2:2.3] to give a more refined
approximation of our algebra A = Ck(X) xp Z. This will enable us to construct, from our measure p,
a Sylvester matrix rank function rk4 on A, unique with respect to a specific condition implemented by u
(Theorem and Proposition 2.3.8). As these results show, the resulting Sylvester matrix rank function is
always faithful and extremal in the convex set P(A)ﬂ In order for this to work, it is necessary to demand an
extra hypothesis to the space X: we need the condition that X be infinite.

We will also analyze the converse relation, namely how a faithful, extremal Sylvester matrix rank function
rk on A can be used to construct an ergodic, full T-invariant probability measure on X.

2.3.1 Approximation algebras

Throughout this section, T will denote a homeomorphism of an infinite, totally disconnected, compact metriz-
able space X, and p will denote a full ergodic T-invariant Borel probability measure on X. Note that this
implies that p is atomless, that is, pu({z}) = 0 for all z € X. To see this, assume first that z € X is not a
periodic point for T', and consider the Borel set B = {T"(x)},>0. Then

12 u(B) = p LT @)}) = 3 ndT @) = 3 s,

n>0 n>0 n>0

which implies p({z}) = 0. Now if z is a periodic point for T' of period n > 0, then B = {z,T(z),...,T""!(z)}
is a T-invariant closed set, and so X\ B is a T-invariant nonempty open set (since X is infinite). By ergodicity,
and since p is full, necessarily p(X\B) =1, and so

0= pu(B) = p({z}) + -+ u({T" " (2)}) = nu({z}),

implying p({z}) = 0, as claimed.

We now make our construction from Section to depend on a point y € X. We assume that {E,},>1
is a decreasing sequence of clopen sets of X such that (), En = {y}.

For each n > 1, let P,, be a partition of X \ E,, such that Pri1U{E, 1} is finer than P, U{E,}; so E, is
the disjoint union of E, ;1 and some of the sets in P, 1.

Figure 2.3: A schematic for the decreasing sequence { F,, }, and the partitions P,, of each
complement X\ F,,.

Hypothesis 2.3.1. We require that J,,», (P, U {E,}) generates the topology of X.

Recalling Lemma [2.2.9] each quasi-partition P,, consists of all the T-translates of the nonempty subsets of
X of the form
W=E,NnTYZ)n---nT " Z_)nT*E,)

for some k£ > 1 and some Z1, ..., Zy 1 € P,. We write V,, for the set of all the W € P,, of the above form. We
thus have P, = {T'(W) | W € V,,,0 <1 < |W| -1} for all n, by Lemmam

5We refer the reader to Section [1.2]for the definition of P(A).
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In these conditions, it follows that the quasi-partition P i1 constructed from the partition P, 1 U{E, 1}
is finer than the quasi-partition P,, constructed from the partition P, U {E,}. Indeed, let W’ € V,,;; and
write it as

W =E,anT Y Z)n---nT Yz, _)NnT ¥ E..) for Zy,..Z_, € Puir.

Since Ppy1 U{Ep41} is finer than P, U {E,}, there exist unique integers 1 < k; < --- < k, < k and unique
elements Z; € P, for 1 < j <k — 1 such that

Zi - Zl’ lecl—i—l c Zk1+1a ’
/ / Zkr-',-l - Zkr-i-l;
Zy C Zy, Ly vo © Ly +2, )
Zvo C© Zi, 42,
Ziy—1 C Ziy -1, Zty1 S Zky1, 7 g
1 & Zg_1.
and Z,, C Ep; and Z),, C Ep; k=1

Therefore
W Q(En NT~YZ)N---NT M+ Z, _)nT " (En))

N (E” NT ™ (Zrypr) N NT AT (7, )Tt (En))
a... (2.3.1)
AT (Ba VT (Zhos1) 1o N T (2 ) N T H40(E,) )

=WoN T~ " Wy)n---NT (W),

where each W; = E, NT™ (Zg,41)N---NT—Firathitl(Zz, _)yNTF+1tki(E,) belongs to V,,, and that they
are not necessarily distinct. From here, it is clear that for 0 <1 < k-1, T'(W') is contained in some translate
of some W;, and so P, is finer than P,,.

In this way, we construct a sequence of approximating algebras A,, := A(E,,P,) such that A, C A, 11
given by the embeddings ¢, (xz -t) = >_, Xz -t where the sum is over all the Z’ € P, contained in Z (since
Pr1 is finer than P,, for a given Z € P,, we can always find elements Z’ € P,,11 whose union is Z up to a
p-null set). By Proposition we have embeddings 7, : A, — R, where R,, = [[ oy, Mjw | (K), given
by ma(a) = (hw - a)w.

We build a generalized Bratteli diagram associated to such construction, such that each vertex receives a
finite number of edges, and we can order this set of edges in the same way as for the case of an essentially
minimal homeomorphism, see for instance [48] for the latter. The only difference is that there are a possibly
infinite number of vertices at each level, and that these vertices might emit in principle an infinite number of
edges. This can be done as follows.

The vertices at the level n of this generalized Bratteli diagram are the sets W € V,,, that is, the sets

W=E,NnTYZ)n---nT*YZ,_))nT"E,), (2.3.2)

where Z1, ..., Zx_1 € Py,. There is an arrow from a vertex W € V,, to a vertex W' € V,,,1 if W appears as a
segment of the sequence corresponding to W'; more precisely, if W equals to some W;, being

W CWonT M w)n---nTFW,)

as in (2.3.1). Equivalently, if W’ C T (W) or even W/ NT 3" (W) # () for some 0 < j" < |[W’'| — 1. If no such
j' exists, then there are no arrows from W to W’.
The edges ending at W’ are linearly ordered according to the integers j'. Thus, the set of arrows W — W’
is in bijective correspondence with the set J(W,W’) = {0 < j' < |[W'|—1| W’ C T~ (W)}. Clearly J(W, W’)
is always a finite set since W' has finite length and the W are disjoint, and each W’ receives at least one arrow.
An example of a diagram of this kind is as follows.
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En Wl W2 W3 W4 W5
N
N
\\\
1 2 NG
% 3 28 113 \1
N
N
N
\\
Entq Wi W; W3 Wi W3 W w7
\‘ , 1
En+2 Wlll WQN Wé/

Here, the relations between the sets W, W’ and W' appearing are

Wi C W,
Wy CWo N T 2(Ws) NT—5(Wy) N T~5(Ws),
Wi C Wa, W CWinT>(Wy) nT~ (W2,
Wi CWsNT3(Wa)NT~5(Ws), Wy CWNnT YW nT~owW)),
Wi CWsNT™3(W,), WY CWiNT3(WH NT2(W) nT=15(W3).
W W5 N T3 (Ws) N T~°(Ws),
Wi C Ws;
The corresponding lengths of the cited W, W’ and W are as follows:
Wil =1, [Wa|=2, [Ws|=3, [Wi=4, [W5]=3;
Wil=1, W3l =9, [Wil=2 [Wj=8, [W5=7[Wgl=9, [W7=3;
(WY = W3] = [Wg'| = 18.
Proposition 2.3.2. Following the above notation, we can embed each R, into R, 1 via the construction of

the generalized Bratteli diagram just mentioned.

Proof. Recall that R, = [l ey, Mjw|(K), Rpt1 = [lwrey,,, Miw(K). Since each W' receives a finite
number of arrows in the diagram, it will be sufficient to define the connecting maps j, : R,, = R, 41 on each
simple factor ow : M)y (K) — Ry11, because in this case each j, will be defined as

Jn R = Ruy1,  (aw)w = wa(aw) (finite sum on each W’'-component).
w

To get an insight of how we can define each ¢y, we make an observation: since P, is a quasi-partition of

X, we can decompose our space X via X = | |y oy ‘IV:VO‘A TZ(W’)EI, so by intersecting with T one gets

n+1
W’ -1
w=wnx= || || wnT'W)= |] | 77w (2.3.3)
W'eVpyi1 1=0 W' €Vni1 j/ €J(W,W")

up to a set of measure 0, so that for a fixed W' € V,,41, hw' - xw = Zj/eJ(W,W’) Xrs (wry-

We then define @y to send ego (W) to (Zj,eJ(W)W,) ejijr (W/)) . and more generally, oy is given by the

block diagonal x-homomorphism

ewleaW) = D empumrW)) .
j'eJ(W,W')

6This, of course, is true up to a set of measure zero.

41



Chapter 2. Sylvester rank functions on Ck (X) %7 Z and an embedding problem  The Atiyah problem

Pictorically, for a matrix M € My (K),
M 0
ow (M) = M € My ((K)
0 0
where we put M at each position j° € J(W,W’). Since every W € V,, always emits at least one arrow to

some W’ € V,, ;1 (this is clear since the translates of the W’ form a quasi-partition of X), the maps ¢ are
injective, and so j, is an embedding of x-algebras. O

By construction, we obtain commutative diagrams

LTL L’Il
o -An An+1 »An+2 e

Jnn anﬂ lﬂnm (2.34)
j In+1

In
mn f}{n+1 Dﬁ{n+2...

Set now R = @n(%n,jn) and A = 1i n(‘A"’L”) = Un21 A,.. Note that each fR,,, being an infinite
matrix product, is a regular ring (see Chapte Section for more information about regular rings), hence
so is its inductive limit 2R.,. Moreover, by the commutativity of the diagrams and the fact that each
mp, 18 injective, the algebra A, is obviously a *-subalgebra of R, through the limit map 7o : A — Roo-

A description of the algebra A, in terms of the crossed product is given as follows. For an open set U
of X, we denote by C. x(U) the ideal of C'x(X) generated by the characteristic functions xy, where V is a
clopen subset of X such that V C U.

Lemma 2.3.3. Let A, be the x-subalgebra of A = Cr(X) xr Z generated by Cx(X) and Ce k(X \{y})t.
Then we have A = A,.

Proof. Ao is generated, as a x-algebra, by 1 = xx € A and the partial isometries x 7t for every Z € |J,,~; Phn-
It is then clear that A, C A, because 1 = xx € Cx(X) and xzt € C. k(X \ {y})t for every Z € >, Pn
since y € E, for all n > 1.

For the other inclusion, we first check that C. k(X \ {y})t C Aw, so let C be a clopen subset of X such
that y ¢ C. Since C'is closed and y ¢ C, there exists an index ng > 1 such that E,,NC =0, and so E,NC =0
for n > ng (because E,, C E,, for n > ng). Since C is also open and {J,,5,,,(Pn U{E,}) generate the topology
of X, we can write C as a countable union C' = {J,, Z; for Z; € U, >,,, Pn- But C is also compact, so this
countable union is in fact finite, and we can further assume without loss of generality that the Z!s all belong
to the same Py, and thus are pairwise disjoint. Therefore C' = |_|f=1 Z;. But now we get that

S
xct = szit e Ay C A.

=1

This shows that C. x (X\{y})t C Aw. We next show that Cx(X) C A. Indeed, if C' is a clopen subset of
X and y ¢ C, then the above argument gives that xo = (xct)(xct)* belongs to Aw. If y € C then X\C is
a clopen set not containing y, so x x\¢ belongs to A. But then xc =1 — xx\¢ € Ax- This concludes the
proof. O

Remark 2.3.4. An analogue of the algebra A, appears in the theory of minimal Cantor systems, see e.g.
[87], [48], [37]. Let (X,¢) be a minimal Cantor system and take y € X. In these papers, the C*-subalgebra
A, of the C*-crossed product A = C(X) %, Z which is generated by C(X) and C(X \ {y})u, where u is the
canonical unitary in the crossed product implementing ¢, is considered. It is shown that A, is an AF—algebraﬂ

Although our algebra A, is (in general) not ultramatricial, we have shown in Lemma that A, = A,
a direct limit of algebras A,, which are subalgebras of infinite products of matrix algebras over K. This result
can be considered as a replacement of being just finite products of full matrix algebras over K.

7A C*-algebra is called an AF-algebra if it is an inductive limit of finite-dimensional C*-algebras.
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We may determine how big is the subalgebra A4, = A, inside the algebra 4 in some cases of interest,
namely in the case that our point y € X is a periodic point for 7. This is given in the next proposition.

Proposition 2.3.5. Let us assume the above notation. Suppose that y is a periodic point for T with period [.
Let I be the ideal of A generated by C. c(X\{y,T(y),...T""1(y)}). Then:

(i) I is also an ideal of Ao, and we have x-algebra isomorphisms
AT = My(K[s,s7Y),  Ax/I = My(K).

(i) There ezists some M > 0 such that for each n > M there is exactly one W, € V, of length | and
containing y, and such that the isomorphism hy, A, = M;(K) given during the proof of Proposition
coincides with the restriction of the projection map q : Asw — Aoo/I on hw, A,, that is the
following diagram commutes.

A — L A1
Jm (2.3.5)
hw, Ay —— M(K)

Moreover, hyy € I for all W € V,,, W # W,,, which means that hy is the zero matriz under the
composition As — Aso/I = M(K).

(iii) An/(INA,) 2 Ax/I =2 M(K) and (1 — hw,)A, =1N A, for everyn > M.

Proof. (i) It is clear that I C A, because the set X\{y,T(y),...,T""1(y)} is an invariant open subset of
X and so all elements of I are of the form > fitt where fi € Cox(X\{y,T(y),...,T" " (y)}) C

1=—m

Ck(X) C A, = A; hence if U; denotes the support of f;, which is a clopen subset of X, then
fit' = fi-xut' = filxut) (X wpt) - (Xr-mnt) € Ay = An.

Define a map ¥: A — M;(K|[t,t~!]) by sending

0 t
) 0 t 0 0
0 f Tl-1 y o0
(T (y)) 0 -
It can be verified that u¥(f)u~! = ¥(T(f)) by direct computation. It follows from the universal property

of the crossed product that there is a unique *-homomorphism ¥ : A — M;(K[t,t!]) extending the above
assignments. For an element f,t" € A with n > 0 we have

Oﬁx(l—ﬁ)

Fa(y)t" 0

0  Laime

\I’(fntn) =
fa(T™(y))t" 0

. O(l—ﬁ)xﬁ
0 Fu(T'H())t"

where 72 denotes the unique integer 0 < 7 < [—1 such that n = % modulo . We can analogously compute
it for n < 0. In fact, for an arbitrary element x = _, f,t" € A one can check that, for 0 <4,j <1-1,
the (4, j)-component of ¥(z) is given by

(W))is = 3 Fatr oy TEHD = (3 Futiap (T ) )17, (2:3.6)

nez neZ
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Observe that I C ker(¥) since every characteristic function xy, where V' C X is a clopen subset of X
and y,T(y),...,T'""(y) ¢ V, vanishes over this set, and so ¥(xya) = 0 for any a € A. Conversely, if
T =3y fut" € ker(¥), then for any 0 <i,j <1 -1

0= (\I/(Qf))i,j = Z fnl+(i7j)(Ti(y))tnl—"_(i_j),
nez

which means that each function f,, vanishes on the set {y, T'(y), ..., 7"~ *(y)}, so f, € I. Therefore x € I.
It is clear that the image of ¥ is given by the subalgebra

S i={X € My(K[t,t7']) | X;; € K[t',t7Jt" T for all 0 < i,j <1—1}.

That is, each entry is a polynomial in ¢, ¢~ of the form X;; = p;; (¢!, t=!)t' =7, where p;; (s, s~ ') € K[s,s™!].
We can construct a *-isomorphism between S; and the *-algebra M;(K[s,s~!]) by defining

U:S — Mi(K[s,57Y), X =(Xij)—Y = (Vi) with Y;; = p;j(s,s").

Putting everything together, we obtain a *-isomorphism A/I = S, = M;(K|[s,s"']), as desired.

Now, we restrict the map ¥ to As. Since I C Ay, the kernel of this restriction is again I, so we only
need to study its image. Take z = Y _, fut" € A, so x € Ay for some N > 1. We see from the
restrictions of the coefficients (see the paragraph just before Observation also Lemma [2.3.3)) that

Jn = Xx\(ExU--UTn—1(Ex) o and o = XX\ (11 (Bx)U-UT - (Ex)) f—n for n > 1, 50 by (2.3.6),
(U(@))ij = fimj (T ()t .
It follows from this that the image of A., under the composition W o ¥ is precisely M;(K).

Take M > 0 such that T(y), ..., T'"(y) ¢ Eur, so that T(y), ..., T'"(y) ¢ E,, for n > M, since E,, C Ey
in this case. From now on, fix n > M. In this case, there are unique sets Z1, ..., Z;_1 € P,, such that
T(y) € Z1,...,T""1(y) € Z,_;. Take then

W= B, NTHZ) 0 NT N Zi) N T7H(E,),

which is nonempty since y € W,,, and |W,,| = I. Note that W, is the unique satisfying these properties,
because if there is another W € V,, of length [ of the form

W=E,nTYZ)n---nT-*(zZ_)nTE,)
and containing y, then T(y) € Z1,...,T'"'(y) € Z]_,, so by uniqueness Z, = Z; for 0 < i <1 — 1, and
W =W,.

In order to prove the commutativity of the diagram it is enough to prove that, for 0 < i,j <[l —1, the
elements e;;(W,) € hw, A, C A correspond to the matrix units e;; under the composition A, —
Ao /I = M(K). By (i), we have the following correspondences under ¥:

(XX\Ent)i — (e + €11+ e—10-1-4),

(leX\En)j >t (egj+er i1t e—1—ji-1)s

XwW, F* €00,
so that B
ei;(Wa) = (xx\B. ) xw,, (t 'xx\ 5, ) s t' e N €ij
as we wanted to show. This proves the commutativity of the diagram . Therefore we obtain a
s-isomorphism A, /I = hw, A, given by e;;(W,) + 1 — ¢;;(W). For W € V,, with W # W, the

idempotents hy and hy, are orthogonal, and so hy is the zero matrix in hy, A, under the previous
x-isomorphism. That means hy € I, as required.

44



Chapter 2. Sylvester rank functions on Ck (X) xr Z and an embedding problem The Atiyah problem

(iii) Clearly 1 — hyw, € A,. Under Ay /I = hy, A, = M;(K), the element (1 — hyy,, ) + I corresponds to the
zero matrix, so 1 — hw,, € I too.

Define I, = (1 — hw, ).A,,. From the previous observation, I, C I N A,, and we aim to show the reverse
inclusion. Since Ay, is a central idempotent in A,,, we have a decomposition

An = (1 = hw,)An ® hw, Ap = I, ® hw, A,
so hw, A, = A, /I, through e;;(W,) — ¢;;(W,) + I,,. Since I,, C I N A, by the modular law be have
INA, =In(I, ®hw,An) =1, ® (hw, A, NI).
Now, we also have a commutative diagram

A, —— A

[

hyw, Ay —— A [Ty — Ao /I, ei; (W) > €3 (W) + I, > e5;(Wy) + 1.

But from (¢), the composition hw, A, = A,/I, = Ax/I, e;;(W,) — €;;(W,) + I is already a *-
isomorphism. This has two consequences: first, A, /I, = A, /I canonically, and second, hy, A, NI =
{0}, 80 I, =1TNA,. O

2.3.2 A rank function on A

We now study the possible rank functions that the x-algebras A.., A can admit. To start this study, we first
concentrate our attention on the approximating algebras A,, and the embeddings of them into the infinite
products of matrices 7, : A, — R, already constructed.

We define a rank function rkey, on Ry = [lwev, Myw|(K) by taking a concrete convex combination of the

normalized rank functions rky| = W on the matrix algebras My K)I Namely, we take ay = |[W|u(W),
where W € V,,, and then we define
rkoz, ( Z aw tkyw|(zw) for x = (zw)w € R,
wev,

Properties b), ¢) and d) of Definition [I.2.2]are straightforward to check, rkg, (0) = 0 clearly, and for the property
rkey, (1) = 1 it is enough to observe that, due to Lemma [2.2.9) we have

ooaw =YY kp(W)=p(X) =1

wev, k>1Wev,
W=k

So rkey, is indeed a rank function on R,, and a faithful one since aw # 0 for all W € V,,. Moreover,
the embeddings j,: R, — MR,4+1 are rank-preserving. To show this, we only have to prove that u(W) =
Ywrev, ., [JW, W) |u(W’), since then for z € R,

rkoy, ., (n(2) = D aws ki (u(@)we) = > OéW/(ZrkW/\(SOW(SUW)W/))

W'eVy,1 W’'eVy,i1 wev,
W/EV, 11 WEV, Wev, W’ eVnH
= > (X wwww >|) Rk(zw) = 3 w(W)|W]rkjw(@w) = rkoy, ().
WeV, W/eVap Wev,
But now suppose that W is as in (2.3.2). By virtue of (2.3.3), we can write
W = |_| |_| Tj/(W’) up to a set of measure 0.

W'eV,15/€eJ(W,W")

8Here Rk denotes the usual rank function of matrices M € Mw (K).
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From this the above equality follows by invariance of u:

= > Yoo ow@ W)= Y T (W)

W’'eV, 1 j'eJ(W,W) W’'eVy, 11

With this, we can define a faithful rank function over the inductive limit R, = hg(%n, Jn) by setting

n— 00

tksy _(z) = lim rky (x,) ifz= i 2, , € iﬁnﬂ
In the next lemma we show that we also have compatibility of our measure 1 and this new rank function
defined over R
Lemma 2.3.6. Let m,: A, — R, and 7o : Ass — R be the canonical inclusions. Then:
i) The equality ;1(Z) = tkm, (7 (Xxz)) holds for all Z € P, U{E,}. Moreover,

it) p(U) =rkm_ (oo (xv)) for all clopen subset U of X.

Proof. Let’s prove the first formula. For Z = E,,, by the computation done after Lemma [2.2.13] 7, (xg, ) =
(€00 (W))w, s0

o, (T(x,)) = Y awrkywi(eoo(W)) = S w(W) =p( || W) =u(En),

wev, wWev, wev,

where we have used that the sets {W }yev, forms a quasi-partition of £, see Lemma For Z € P, also
by Lemma [2.2.9 the set {Z N Whps ={ZN THW)} wev, isa quasi-partition of Z. Therefore if W is

0<I<[W-1
asin (2.3.2), then hw - xz = 3,7 5 €;;(W), so

thon, (T () = Y awrku (Y2 (W) = S wW)i| 2, = 2}
Wev, §iZ;=2 Wev,
' [W]-1
=Y Y wriwnzy= 3 Y wT'w)nz)
WevV, j:Z;=2 Wev, =0
|W|-1
(U U Tonnz)=uz)
wev, =0

As a consequence, j(Z) = rkn_ (Too(xz)) for all Z € J,,~1(Pn U{Ey,}). Since J,,~,(Pn U{E,}) generates
the topology of X, every clopen subset U of X can be written as a finite (disjoint) union of elements of the
partitions P, U {E,}, so we get that p(U) = rkn__ (7o (Xv7))- O

Using this rank function we will define rank functions over A, A. To this aim, we would like to embed
our whole algebra A inside R, but this is (in general) not possible. What we will do is to embed A inside
the rank completion R,k of R with respect to its rank function rky

From now on we will not write down explicitly the maps m,, 7« and j,, so we will identify

AnC AnJrl( An+2( NG Aoo( A
| [ s
%n( 9%n—&-lc %n+2C -G 9:{00( 9%rk

whenever convenient.

9In fact, for z € Ry, already, rkoy_ (jin,00 (z)) = rkay,, (¥) Where jn, oo denotes the canonical map Rn — Roo.
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Theorem 2.3.7. Let R, be the rank completion of the reqular rank ring R, with respect to the rank function
rkm . We denote by rkm, := rken_ the rank function on R, extended from l“kmoo- We then have an
embedding

A‘—)%rk

that induces a faithful Sylvester matriz rank function, denoted by k4, on A. In turn, the natural inclusion
Ao € A induces a faithful Sylvester matriz rank function, denoted by rk4_, on A.

——rk4 —rky
Moreover, we have A =A 7" =R

oo ?

Proof. The function rke_ is a faithful rank function on R, and in fact a faithful Sylvester matrix rank
function since R, is regular (and so it extends uniquely to matrices over R, of arbitrary size), so there is an
embedding of R, into its completion MR,y, which is a regular self-injective rkep_ -complete ring (Proposition
[1.2.4). This shows that A < Reo C Rk, and we will simply identify A C Roo (so we will omit the map
oo for notational convenience). Now we show that there is a natural embedding of A into R,y.

Observe that {xx\g,t}nen is a Cauchy sequence in Ry, because for n > m and using Lemma [2.3.6}
ot (Xx\ Bt = Xx\ 2 t) < Thov (B, 5,) = (B \En) < p(Em) —— pu({y}) =0.

Therefore, since R, is rkg,, -complete, we may consider the element u := lim,, x x\ g, t € Rrk- It is an invertible
element inside Ry with inverse lim,, ¢~y x\ g, , since

rkor, (1 — (xx\£,8) (" xx\£,)) = tka,, (X5,) = 1(En) —— 0,

n—oo

rkot,, (1= (7 x5, (Xx\ 5, 1) = thot, (Xr-1(5,)) = (T~ (Bn)) = u(En) —— 0.

n—oo

Moreover, the condition uycu™' = xr(c) = T(xc) is also satisfied for every clopen subset C of X, and so we
get that ufu=! = T(f) for every f € Cx(X). Indeed, in rank we have

ko, (x7(0) — (Xx\E, ) Xc (™ 'Xx\E,)) = kot (XT(C) — XT(C0) XX\ B, ) < Tkor, (XB,) = p(En) —— 0

n—oo

and so uycu ! = X1(C), as required. It follows from the universal property of the crossed product that there

is a unique homomorphism

‘I)A:CK(X) ><ITZ—>9{rk7 Zfiti’—)z'fiui for fiECK(X).

€L €L

This map clearly extends the injective homomorphism A., C Reo € Rk, To show that it is injective, it suffices
to check that a = "I  f;u’ is never 0 in R, whenever fy # 0 |E| and all f; € Cg(X). But if fo # 0, and C
denotes the support of fy, taking s big enough so that nu(E;) < u(C'), we have

rkoy,, (X x\(E.U--UTn-1(E,)) - Xo) = w(X \ (B U -+ UT" Y(E,) UCY))
=1—-uE,U---UT" HE,)UC®)
>1— (WEs) + -+ (T HES)) + u(C%)) = u(C) — nu(Eg) > 0

hence X x\(z,u...uTn-1(E.)) fo = Xx\(E.U-UT"1(E,)) - X fo # 0, and moreover

n n
XX\(ESU--.uTn—l(ES))(Z fiuz) = z:(XX\(ESu--.uTn—l(ES))fi)(XX\Eslf)Z e A, C A,
1=0 1=0

and this is nonzero because the map A, € Roo C Ry is injective.

We thus get the inclusions A, C A C Ry, where we identify « with t. Clearly rkey,, induce faithful
Sylvester matrix rank functions, given by restriction, on either A, and A.

Note that for each n > 1, A,, is dense in R,, with respect to the rkg -metric, because by Proposition [2.2.14]
soc(A,) = Dy, Mjw|(K), which is dense in R,, = [y, Mjw|(K). To see this, note that for an element

10See Section specifically the paragraph preceding Proposition
1\We can reduce to this case by multiplying to the right the element a by a suitable power of w.
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x € R, we can consider the sequence of elements {xy}r>1 defined by z = (ZWGW hw>x € soc(A,). A

W<k
simple computation, using Lemmas and [2.2.1] gives
|W|—1
I‘kmn(z - xk) < I‘kmn (1 - Z hw> = I‘km (XX - Z Z XT! W))
Wev, Wev, 1=0
W<k W<k
(Wi-1
_ l —
=u( I U ') = > Wlw) —0,
Wev, =0 Wev,
|W|>k W |>k

SO Tj ﬁ) x in rank. It follows that A is dense in PR, and hence in R,y with respect to the rkg , -metric, so
k —rk
we also get that A A = A = Ry O

It follows that the rank function rke;,, on Rk restricts to a faithful Sylvester matrix rank function on A4
such that rk4(xv) = p(U) for each clopen subset U of X (2.3.6). We now investigate the uniqueness of this
rank function, first over R, and then over A itself, in the next proposition.

Proposition 2.3.8. Following the above notation,

(i) the rank function rkey__ is a faithful Sylvester matriz rank function on R, and it is uniquely determined
by the following property: for every clopen subset U of X, rkey__ (oo (xv)) = p(U).

(ii) the rank function vk from Theorem is a faithful Sylvester matriz rank function on A, and it is
uniquely determined by the same property as in (i), that is, for every clopen subset U of X, tka(xv) =

n(U).
Moreover, tkoy | € 0.P(Reo) and rka € 9.P(A)]

Proof. We first prove (i). As we have already mentioned in the proof of Theorem rk; . is a faithful
Sylvester matrix rank function on R, because of regularity of the ring. Hence to prove uniqueness of the
Sylvester matrix rank function it suffices to check that if IV is another Sylvester matrix rank function on R,
satisfying the required compatibility of the measure, then the restriction of IV to R is rkm_

Since Ry = h%mn R,, given n > 1 we consider the restriction N, of N to fR,, which is a pseudo-rank
function on R,, so that N = lim,, N,,. Since R, = HWGV" Mw|(K), the restriction of N,, on each simple
factor M|y |(kK), denoted by N,|w is an unnormalized pseudo-rank function on My |(K) for each W € V,,.
Since there exists a unique normalized (pseudo-)rank function on My (K) (which we denoted by k), there
must exists a positive constant Sy such that N,|w = Bw rkjw|. More generally, consider any finite subset

S C{W eV,}. Then (ZWGS hw> = @Pwes Mjw|(K). Take the restriction of N,, to Py cg Mjw|(K),

Npls, which turns out to be again an unnormalized pseudo-rank function on @y cg Mw|(K). Hence it can
be written as a combination of the unique normalized rank functions on each simple factor My |(K), i.e.

Npls = Z Bw tkjy | for some By > 0 satisfying Z Bs = Z Ny (hw).
wes wes wes

For a fixed W’ € S, we would like to compute the factor By . To this aim, consider the element x = (xw )w €
®WES M‘W|(K) given by Tw = 5W,W’hW’- Then

Bw+ = Nuls(x (( Z hw) ) = Np(hw) = aw:.
wes
We have used the required compatibility property of the measures to compute each N, (hy-), as follows:

W'|—1
() = Ny ( Z ¢33 (W) = [W'[Na(eon (")) = [W/[No(xw) = [W (W) = an.

12For a compact convex set A, the notation d.A refers to the set of extreme points of A.
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Finally, for an arbitrary element = € R,,, we compute

Nn((WZG:ShW>a:) = Nn|s(<Wz€:ShW)x> Z aw rkjw | (zw) = rke, (( Z hw> )

wes

This says that N, and rke, coincide on @y, g Mjw (k).
Now fix k& > 1, and consider the finite set S, = {W € V,, | |W| < k}. For x € R,,, we have the estimate

INo(@) = tkon, (@)] < |Nua) = Na (32 b)) |+ ko, (2 hw)a) = vk, (@)
wesy wesS
<N, (1 Z hw) + rko, (1 — Z hw>

WeSk WeS
IW|-1 W|-1
Nn(XX >y XTL(W)> + ks, (XX* >N XTL(W))
WwWeS, 1=0 WeS, 1=0
(W1
=2 “( ) -
o UL o) =2 30 win) o
Wev, Wev,
Wi>k [W[>k

where we have used part (i) of Proposition m 11.2.10[ for the second inequality, and the limit tends to zero by
Lemma 2 Therefore N, = rkg, for all n > 1, and so N = lim,, N,, = lim,, rkey, = rkey__

(i) Let N be a Sylvester matrix rank function on A such that N(xy) = u(U) for every clopen subset U of
X. We first check that the restriction N,, of N on A,, equals the restriction rk 4, of rk4 on A,,. Since for any
finite subset S C {W € V,,} we have the identification (ZWeS hW)An = @DweshwAn = Dyes Miw | (K),
it follows from the same arguments as in (i) that N,(a) = rk g, (a) for every a € A,, and so the restriction
Noo of N on Ay coincides with rk4__

Now, to show that N =rky4 on A, it sufﬁces to check that for each algebra generator a of A and for each
€ > 0 thereis b € A, such that N(a—b) < § and rk4(a—b) < 5, since in this case we would have the estimate

IN(a) - rka(a)] < [N(a) = N(b)| + | tka(a) = ka(b)] < N(a—b) +rka(a—b) < ¢

for all € > 0, by using again part (i) of Proposition [1.2.10|for the second inequality, and consequently N = rk4
on A. This is clear for a € Cx(X) since Cx(X) C A, and it is also clear for ¢, because x x\g,t € A, and

N(t = xx\5,t) < N(xg,) = m(En) —— 0, 1kalt = xx\g,t) < rka(xs,) = p(En) —— 0.

n— oo n— 00

To show that N and rky4 coincide on matrices over A, consider a concrete matrix algebra M;(A). The same
argument as above works exactly the same in this case, we sketch it for convenience. For a finite subset
S C{W € V,}, consider the element

ZWGSh’
Hg = l €M1(A)

ZWGS h

We have the identification Hg - M;(A,) = ((ZWGS hw)A ) Bres Mi(hwAy) = Byes Mi(K) @
My |(K), so the restriction of N on M;(A,) coincides with the restriction of rk4 on M;(A;), and hence they
coincide on M;(Ay) = lim M;(A,,). As before, to show that N =1k 4 on M;(.A), we only need to check that
for each algebra generator A of M;(A) and for each € > 0 there is B € M;(A) such that N(A — B) < § and
tk4(A — B) < 5. This is clear for a € M;(Ck (X)) since Cx(X) C A, and it is also clear for ¢ - Id;, because
XX\Ent . Idl S M[(An) and

N(t-1d; — xx\g,t-1d;) <1-N(xg,) =1 p(E,) —— 0,

n—00

I‘kA(t . Idl - XX\Ent . Idl) S l- I‘kA(XEn) =1 /J,(En) — 0.

n—oo
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Let’s show that rk 4 is extremal. Suppose we have a convex combination rk4 = alN7 + N3, where N; and
N, are Sylvester matrix rank functions on A. Assume that o # 0,1. We first show that each Sylvester matrix
rank function N; induces a T-invariant probability measure p; on X . For this, we will use an argument similar
to the one given in [90, Lemma 5.1]. We define premeasures [i; over the algebra of clopen sets K of X, by the
rule

fi; K —[0,1], 7(U) = Ni(xv)-
Indeed, @;(0) = N;(0) = 0, and if {U,, }»>1 is a sequence of disjoint clopen sets of X such that its union U is
also clopen, then U is compact, and therefore it can be written as U = U,, U --- U U, for some clopen U,,,

and
m

7 (U) = Ni(xv) = ZNz‘(XUni) = Zﬁi(Un)-

i=1 n>1

So each [, is a premeasure, and by [34] Theorem 1.14] they can be uniquely extended to measures u; on the
Borel o-algebra of X, and it is straightforward to show that each p; is a T-invariant probability measure on
X.

Now, we necessarily have the equality p = apuy + Bus since

w(U) =rkn,, (xv) = aN1(xv) + BN2(xv) = ap1(U) + Bu2(U)  for every U € K.

Since p is extremal ([85, Theorem 2.8]) and a # 0,1, we obtain that u; = pe = p. This says that N; are
Sylvester matrix rank functions on A satisfying N;(xv) = w:(U) = p(U) for each U € K. By the uniqueness
property of part (ii), we get that N; = rk 4. It follows that rk 4 is extremal.

To show that rk,_ is extremal, suppose again that we have a convex combination rke_ = aN; + SNa,
where N7 and N, are pseudo-rank functions on fR.,. Assume that o # 0,1. Then it is clear that each N;
is continuous with respect to rke;__, denoted by N; << rke;__, in the sense of [39, Definition on page 287],
and therefore by [39, Proposition 19.12], N; extend to continuous pseudo-rank functions N; on R,y such that
rkey,, = aN; + BN,. Since we have an identification A4 C Ry given by Theorem the argument above
can be used to show that rk,__ € 9.P(Reo). O

We can exactly compute the rank completion R,k of R (and of A): it is the well-known von Neumann
continuous factor Mg, which is defined as the completion of h_n}n Mon (K) with respect to its unique rank
function (see Example [1.2.8]2) or Chapter [ for details). Moreover, when the involution x on K is positive
definite, we can deduce from Theorem that there is a *-isomorphism between R, and M g, where the
latter has the involution induced from the *-transpose involution on each matrix algebra Ma»(K). The above
of course applies when K is a subfield of C which is invariant under complex conjugation. This generalizes a
result of Elek [29].

Theorem 2.3.9. There is an isomorphism of algebras R, = Mg, the von Neumann continuous factor over
K. Moreover, if (K,x) is a field with positive definite involution, then R,y is a x-regular ring in a natural way,
and Ry =2 Mg as x-algebras over K.

Proof. Since rkey__ is extremal (Proposition , it follows from [39, Theorem 19.14] that PR, = @rkm“’
is a simple ring. So Rk is a continuous factor in the sense of Definition that is, a simple, (right and
left) self-injective regular ring of type I1;. Moreover, there is a countably dimensional dense subalgebra of
Rk, namely A, and clearly condition (3) in Theorem is satisfied (because it is satisfied for the dense
subalgebra R, of R,x). It follows that R,x = Mg, the von Neumann continuous factor.

Now assume that (K,*) is a field with positive definite involution. Then each R, = [[y oy, Mjw (K)
is a xregular ring, where each factor My, (K) of PR, has the *-transpose involution, and the connecting
maps jn: R, — Ryq1 are given by block-diagonal maps (see Proposition [2.3.2), so in particular are x-
homomorphisms. Therefore R, is a x-regular ring, and by [45, Proposition 1], the completion R,y of R
is also a *-regular ring. One can easily show that A sits inside R,k as a *-subalgebra, i.e. that the homomor-
phism defined in the proof of Proposition [2.3.7]

D: A — Ry, Zfiti — Zflul

1€Z i€ZL

preserves the involution.
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Now the local condition (3) in Theorem is actually somewhat more difficult to check in this case.
Given positive integers n, k, if we define S, = {W €V, | [W]| < k}, we have the estimate

rkos,, (1 - WEES hW) - WEGV W (W) ——0
k n
[W|>k

as we have showed in the proof of Proposition Therefore there exists k, such that rke,, (1 — Hy,) < 5,
being H,, the projection ZWeSk hw € R,. We approximate R, by the unital *-subalgebras

R, = H,R, @ (1 — H,)K.

Since H,R,, = (ZWGSM hw)i}{n = ®W€Skn M| (K), these algebras are *-isomorphic to standard ma-

tricial *-algebras. Although the sequence of projections (jn,oo(H,)) is not increasing, there are unital *-
homomorphisms jy, ,,,: R, — R}, for n < m, defined by

j;,m(an +(1—Hy)N) = Hpy - nm(Hpz + (1 — Hy)A) + (1 — Hp ) A,

for z € R, and A € K. Here j, m: Ry, — Ry, is the natural x-homomorphism. Moreover, since each j, p,
is given by block-diagonal maps, so are the j;, ,,. Observe that (9, j;, ,,+1) is not a directed system, but for
z=Huyx+ (1 — Hp)\ € R], and all m > n, we have the estimate

tkor,, (Jn,m (2) = G (2)) = rkor,, (1= Hin)jnm(2) = (1 = Hm)A) < vkow, (1= Hin) < o

71‘1{9{&

and we obtain that condition (3) in Theorem holds. This theorem then gives that R, = R is
x-isomorphic to M g, as desired. O

Consequently, the proof of the implication (2) = (3) in Theorem can be adapted to the present setting,
4.4.6

Theorem [2.3.7 and Proposition [2.3.8] state that, given an ergodic, full and T-invariant probability measure
w1 on X, one can construct an extremal faithful Sylvester matrix rank function rk4 on A, unique with respect
to the property that

tka(xv) = p(U)  for every clopen subset U of X.

In the next proposition we prove that the converse of this construction can also be made.

Proposition 2.3.10. Let rk be an extremal faithful Sylvester matriz rank function on A. Then there exists
an ergodic, full and T-invariant probability measure py. on X, uniquely determined by the property that

e (U) =1k(xy)  for every clopen subset U of X.

Proof. 1t is clear that rk induces a finitely additive probability measure on the algebra of clopen subsets of X
by the rule
I, (U) =tk(xy)  for every clopen subset U of X,

which, by the same argument as in the proof of Proposition 2.3.8 can be uniquely extended to a Borel
probability measure u, on X. It is clearly T-invariant since, for U C X a clopen set,

1 (T(U)) = rk(xr(w)) = rk(txut™") = tk(xv) = purc(U).

By [91l Theorem 2.18], p, is regular. We now show that p, is an ergodic measure. Suppose that it is not
ergodic. Then there is a Borel subset B of X such that o := u(B) € (0,1). By regularity of the measure,
and since the clopen subsets of X form a basis for the topology, there are nonempty clopen subsets {U;};>1 in
X such that p(BAU;) < 2—11 for all i > 1. In particular each p(B\U;), un(Us\B) < <, and

21

lim pu(U;) = Zliglo (Mrk(Ui\B)+Mrk(UiﬁB)> = Zliglo wr(U;NB) = lim (Mrk(UiﬁB)+Mrk(B\Ui)) = ik (B).

1—>00 i—00

We then define

Ny (M) =a ! lim tk(xyy,M) and No(M)=(1—a) ' lim rk(xx\v, M)
1—00

i—00
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for every matrix M over A. Note that

Ni(1) = o " lim tk(xp,) = o' lim pw(U;) =1,
1—> 00

11— 00

Ny(1)=(1—-a)™! zlgglo rk(xx\p,) = (1 —a)™! zlgglo e (X\U;) =1,

and since rk is a Sylvester matrix rank function, it is straightforward to check that each N, satisfies properties
b), ¢) and d) of Definition for being Sylvester matrix rank functions. To see that they are distinct Sylvester
matrix rank functions, take j > 1 such that p(BAU;) < imin{a, 1 — a}; then

Ni(xv,) = o™ lim p(U;NU;) = o' lim w(U; NU; N B) = o™ u(U; N B) = o (u(B) — n(B\U;)) > %
Noxer,) = (1—0) ™ Tim u((X\U) N0;) = (1 —a) ™ Tim p((X\B)A(X\U)NT;) < (1)~ u(B\D}) < 3.

Since rk = N7 + (1 — ) No, this contradicts the fact that rk is extremal in P(.A).

For the fullness of the measure, suppose that V' is a nonempty open subset of X such that p, (V) =0. We
can find a nonempty clopen subset U C V, so in particular rk(xy) = ek (U) < (V) = 0; this contradicts
the fact that rk is faithful. O

2.3.3 The space P(A)

In this section we obtain some results on the structure of the compact convex set P(A) of Sylvester matrix rank
functions on A. Recall that A = Ck(X) xp Z with T' a homeomorphism of a totally disconnected, metric,
compact space X, not necessarily infinite throughout this section.

Let R be a unital ring. Following [52], we denote by P, (R) the set of all Sylvester matrix rank functions
rk on R that are induced by some regular ring, that is, rk € P.,(R) if and only if there is a regular rank ring
(S,rkg) and a ring homomorphism ¢: R — S such that rk(A4) = rkg(¢(A)) for every matrix A over R.

We first investigate the relation between Sylvester matrix rank functions on Cx (X) and Borel probability
measures on X.

Lemma 2.3.11. There is a natural identification P(Cx (X)) = M(X), where M(X) denotes the compact
convex set of probability measures on X. Under this identification, the set M”*(X) of T-invariant probability
measures corresponds to the set PZ(Cx (X)) of T-invariant Sylvester matriz rank functions on Cr(X).

Proof. Note that R = Ck(X) is a commutative von Neumann regular ring for each field K. Hence the set
P(R) coincides with the set of pseudo-rank functions on R (see Section for the definition and properties of
pseudo-rank functions on regular rings). Now it is clear that a pseudo-rank function rk on R induces a finitely
additive probability measure on the algebra of clopen subsets of X by the rule

0 (U) =tk(xy) for every clopen subset U of X,

which by the same argument as in the proof of Proposition[2.3.8] can be uniquely extended to a Borel probability
measure [ on X.

Conversely, any Borel probability measure ;4 induces a pseudo-rank function rk, on R, as follows. As we
have already observed at the beginning of Section [2.2] after Lemma [2:2.T] each element a € R can be written
in the form a = Y. | A\ixv,, where \; € K and {U;} forms a partition of X, where each U; is a clopen subset

of X. We define
rku(a) = > p(U).
’L}\17$O

Let’s check that it is indeed a pseudo-rank function on R. Clearly rk,(0) = 0 and rk,(1) = 1. If a =
S Aixus, b = E;":l nixv, with {U;},{V;} partitions of X consisting of clopen sets, and A;,n; € K, then
ab = Zi,j AinjXvinv;, and so

dlab) = S S a@nV) < Y S pwinvi) = 3 (i) = k(a).

l)\1750J7]7;$0 1>\1;£0 ] ’L>\7;$0
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Symmetrically we get rk,(ab) < rk,(b). To conclude, take a = xy and b = xy two orthogonal idempotents of
R, so U,V are disjoint clopen subsets of X. Then

tku(a +b) = u(U) + (V) = rk, (a) + 1k, (0)

as required.

In this way, we obtain a canonical identification between P(R) and M (X), since it is easily checked that
rky,, = rk and piy, = p. Now if p is T-invariant and a = Y. | Aixy, is an element of Ck (X) with {U;} a
partition of X consisting of clopen sets, then T'(a) = 31" | Xixr(v,) and

tky(T(a)) = Y w(T(U)) = Y p(Ui) = rky(a).
: ;70 : ;70
Hence 1k, is T-invariant. Conversely, if rk is a T-invariant Sylvester matrix rank function, then
k(T (U)) = tk(x7@y) = k(T (xv)) = tk(xv) = p(U)  for every clopen set U.
Since the extension to a Borel probability measure is unique, we conclude that p is also T-invariant. O

Proposition 2.3.12. Continue with the above notation. For each p € 0. M%(X) there exists tk € 9,P(A) N
Preg(A) such that tk(xv) = p(U) for all clopen subset U of X.

Proof. Note that, by [85] Theorem 2.8], 9. MZ%(X) is the set of ergodic T-invariant Borel probability measures
on X. Now if u € 9. M?%(X), then following the first observations given at the beginning of Section [2.3.1}

a) either there is a periodic point z € X of T, of period I > 1, such that p({z}) = %, and the support of p
is the orbit O(x) of z, or

b) X is atomless and the action is essentially free, in the sense that the set of periodic points is a y-null set
(see [61, Remark 2.3]).

In the former case, we follow the idea given in the proof of Proposition We construct a map p: A —
M;(K) by the rules

0 0 1
f(x) . 0 1 0 0
feCk(X), f— fT(e) . , t = u.
' I=1(, o0
0 f(T(2)) 0 Lo

It can be verified that up(f)u=t = p(T(f)) by direct computation. It follows from the universal property
of the crossed product that there is a unique algebra homomorphism p : A — M;(K) extending the above
Rk

assignments. M;(K) is a regular rank ring, with unique normalized rank function ==, so it induces a Sylvester

matrix rank function on A by rk(a) = w for a € A. If U is a clopen subset of X,

-1
() = XD _ L5 19y € 0) = 3w 0 (T @) = w(),

j=0
and since p is an ergodic measure, rk is extremal by the same arguments as in the proof of Proposition It
is not difficult to see, using the previous computation, that the restriction of rk on Cx (X)) gives the Sylvester
matrix rank function rk,, constructed in Lemma Therefore rk € 9.P(A) N Preg(A).

In the latter case, we may restrict to the closed subspace X’ := supp(p) of X, which is an infinite, totally
disconnected, compact metric space. Since p is T-invariant, T restricts to a homeomorphism of X’ and the
restriction of y to X’ is a full ergodic T-invariant probability measure. It follows from Theorem and
Proposition [2.3.8| that there is rk € 9. P(A’) N Preg(A’), where A" := Ck(X') %7 Z, such that rk induces 1k,
on Ck(X). Considering the canonical projection

P CK(X) X 1 — CK(X/) X Z7
we see that rky = rkoP € 0.P(A) N Preg(A), as desired. It is straightforward to check that rk 4 satisfies the
desired compatibility property with the measure p. O
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Remark 2.3.13. In the case where u € 9. M Z(X ) is a measure concentrated in the orbit of a periodic point,
we cannot expect neither uniqueness of the extremal Sylvester matrix rank function on A extending rk, nor
regularity of all the extensions, essentially because of the appearance of isotropy.

Consider, for example, the case of a fixed point X = {x}, with associated measure p satisfying p({z}) = 1,
and K being any field of characteristic different from 2. We obtain an extremal Sylvester matrix rank function
rk’ by pulling back the unique Sylvester matrix rank function on K via the homomorphism

A= K[t — K[t t '/t —a) 2K,

the first isomorphism given by f — f(z), t — ¢, and a € K\{0,1}. This Sylvester matrix rank function induces
the same measure 4 as in Proposition [2.3.12 but the rank functions are clearly different, since rk’(t — 1) = 1
and rk(t — 1) = 0. This shows the nonuniqueness statement above.

To continue, we need the following result from [54].
Proposition 2.3.14. Let A = K[t,t7']. Then P(A) = Poe(A).

Theorem 2.3.15. Let T be a homeomorphism on a totally disconnected compact metric space X and let
PZ(Ck (X)) = M%(X) be the space of T-invariant measures on X, which we identify with the set of T-invariant
Sylvester matriz rank functions on Ck(X). Set, as before, A = Cx(X) xr Z. Then we have P(A) = Preg(A).

Proof. By [53], Proposition 5.9], it suffices to show that all extremal Sylvester matrix rank functions on A are
regular. Let rk € 0.P(A), and let p,x be the ergodic, full, T-invariant probability measure on X given by
Proposition

Assume first that u, is a measure concentrated in the orbit of a periodic point x, of period [. In this case, rk
induces an extremal Sylvester matrix rank function on O (O(x)) X1 Z, which is *-isomorphic to M;(K[t!,t7!])
via the map

0 ¢
f(z) 0 t 0 0

0 F(T (@) 0
0 t 0
and so, by Proposition [2.3.14] rk is a regular Sylvester matrix rank function.
If the support of p,y is infinite then, since p, is an ergodic T-invariant measure, the arguments in Propo-

sition [2.3.12| apply to give that rk € Pyeg(A).
Thus in any case we get that rk € Pys(.A), and the proof is complete. O

2.4 The *-regular closure R 4

We continue with our setting, assuming now that (K, x) is a x-field with positive definite involution. Since
we have endowed the algebra A4 = Ck(X) x7 X with a unique Sylvester matrix rank function rk4 such that
tka(xv) = pu(U) for every clopen subset U of X (Proposition [2.3.8), it is natural to ask which is the set of
positive real numbers reached by such a rank function. In other words, it would be interesting to determine
exactly the set

C(A) =1k ( [j Mi(A)) C R*.

As in Definition this always has the structure of a semigroup, inherited from (R, +).

We will see in Section that, in the particular case of some group algebras K[G], this set is exactly
the set of [2-Betti numbers arising from the canonical rank function inherited from U(G), the classical ring
of quotients of the von Neumann algebra N (G) of the group Gﬁ In fact, we will prove that the x-regular
closure R4 := R(A,R,x) of A in the x-regular ring R, corresponds exactly to the s-regular closure of the
group algebra K[G] inside the x-regular ring U(G).

13See Sections and for a survey on group von Neumann algebras.
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With the aim of computing C(A), we follow the same strategy as in [6], so we aim to study the *-regular
closure R 4. The reason for this is given by the following proposition, which is motivated by Proposition|1.2.13

Proposition 2.4.1. With the foregoing notation, the subgroup of (R,+) generated by C(A) coincides with the
subgroup of (R, +) generated by the set

rkr (Ra) = {rkr () | € R},

where kg, is the restriction of tke,, to Ra. Equivalently, it coincides with the image of the state

¢:Ko(Ra) =R, [p]—[q] —rkr,(p) —rkr,(q).

Proof. We write &7 for the subgroup of (R, +) generated by C(.A), and S for the subgroup of (R, +) generated
by rkz ,(R.4). By Proposition we clearly have S; C S7.

For the other inclusion note first that, since R 4 is a *-regular ring with positive definite involution, each
matrix algebra M, (R _4) is #-regular too; hence for each A € M, (R 4) there exists a projection P € M,,(R4)
such that rkg,(A) = rkg,(P) (recall Theorem [1.2.11). We conclude that C(A) is contained in the set of
positive real numbers of the form rkg ,(P), where P ranges over projections in matrices over R 4. Now each
such projection P is equivalent to a diagonal one ([39, Proposition 2.10]), that is, one of the form

P1

P2 for some projections p1,...,p € R4,

Pr

so that rkg ,(P) = rkg,(p1) + - - - + kg, (pr) € S2, and &1 C So.
The last part of the proposition follows easily from the first one, since ¢(Ko(R 4)) = Sa. O

The first thing we notice is that we can completely determine the rank completion of R 4 thanks to Theorem

237

.y . . -tk .
Proposition 2.4.2. With the above notation, RAr "4 > My, where rkr , denotes the Sylvester matriz rank
function of R 4 inherited from the regular ring Ry.

Proof. Since A C R4 C R,k and Zrkﬂ = Rk = Mg due to Theorem , the result follows. O

We will make use of our sequence {A,,},>1 of approximating algebras to approximate R 4 in a suitable
way.

In our present setting, the rings R,, Ro, and R,k become *-regular and all the connecting maps in the
commutative diagram below become *-homomorphisms.

At Ao bntl Ao ..C AC
f;n Pnﬂ \{7%4& Fm (2.4.1)
jn jn+1
R, C Rpa1C RpaoC - R C Rk

We can then consider the x-regular closure of A, inside 2R,,, which we will denote by R, = R(An,R,).
Similarly we let Roo = R(Aoo, Roo)-

Proposition 2.4.3. We have inclusions R, C Rp41, and moreover | J,,~,; Rn = Roo. Therefore the diagram
(2.4.1) extends to a commutative diagram B

C ApinC Apiof A

C
C

(2.4.2)

b
—3

e

T
TC Rn+1c 7—{‘/n—i-2c o0
mn( mn-‘rlc E)C{n-"-2( -G 4 9:{00( mrk

35



Chapter 2. Sylvester rank functions on Ck (X) %7 Z and an embedding problem  The Atiyah problem

Proof. Since A, C A,x1NR, C Rur1 NR, C Ry, and Rq NR, is xregular, we have by definition that
Rn € Rps1 NR, C Ryai, since R, is the smallest *-regular subring of %R, containing A,,. In particular,
this shows the commutativity of the left sides of the diagram. The proof for the right sides is similar: A, C
ANRyp CRANRw € Roo, and since R4 N R, is x-regular, again we have R, € R4 N Roo C R4-

For the second part, note that each A, C R,, € J,,»; Rn € R, hence Ax € ;51 Rn € Reo. It is
easy to check, using that R,, C R,,41, that {J,~, R, is «regular, so by definition Ro C J,;»; Rn- The other
inclusion is trivial because each R,, C R, so the equality follows. B O

The following lemma gives some examples of elements that appear inside R 4.
Lemma 2.4.4. Take p(x) = Ao + Mz + -+ + Mz? € K[z] a polynomial with \g # 0. Then p(t) € A is
invertible in R 4.

Moreover, R 4 contains a copy of the rational function field K(u), so that K(u) C RAE

Proof. Inside Ry, we know that v = lim, 7,(xx\g,t), where the limit is taken with respect to the rkey,, -
metric (see Theorem [2.3.7). Hence p(u) = lim, 7,(p(xx\£g,t)). Note that, under 7, : A, — R, C Ry,
Tn(Xx\E,t) = (hw - Xx\&,t)wev, . We compute
hw - xx\E,t = (e0(W) + -+ + ewi-1,jw|-1(W))xx\g,t = e10(W) + - + ejw -1 jw|-2(W) =: uw,
S0
Tn(P(Xx\ B, 1)) = Ao Idw +A1uw + - + Aufy.

These are all lower triangular matrices inside each simple factor M|y (K), and since \g # 0, they are invertible.
Hence 7, (p(xx\E,t)) is invertible inside R,, C Ry, and so is its limit lim,, 7, (p(X x\ £, 1)) = p(u).

Since u is clearly invertible in R 4, it follows that K (u) C R 4: for polynomials p(u) = Ao+ Aju+- - -+ AP
and q(u) = u'(po + pru + -+ + pru”) with Ns, p’'s € K and po # 0, we have

p(w)gu) ™t =u""(Ng + Mu+--- + /\kuk)(uo +pu -+ ) e Ry O

In what follows we will measure what is the difference between R, and R4 in the case where y is a
periodic point (cf. Proposition [2.3.5)), and we will uncover the structure of this difference. We start with an
easy proposition concerning the structure of R.

Proposition 2.4.5. Let us assume the above notation and the one from Proposition[2.3.5, so I denotes the

ideal of A generated by Coc(X\{y, T(), ..., T""*(y)}). Let I = RooIRoo be the ideal of Roo generated by I.
Then:

(i) I = Upsar(1 = hw, )Ran, and there is a x-isomorphism
Roo /T = M(K).
(i) If R denotes the x-subalgebra of R 4 generated by .7, hw,, Ay and K[t t~1], then I is also an ideal of R,
A is contained in R, and there is a x-isomorphism
R/T = My(K[t, t71).
Note that, since the ideal Iis already #-regular and the quotient R/f is not x-regular but ’almost’, the

x-subalgebra R is not the x-regular closure R 4, but ’almost’. We will see later how one should modify R in
order to obtain the whole R 4. First, we prove Proposition [2.4.5

Proof. (i) Forn > M,let I, =INA, = (1 - hw,)A, and fn =R, I, R, the ideal of R,, generated by I,,.
Claim 1: T = Unsn I,.

Clearly each fn =R I, Ry, C RoclRo = f, SO UnZM fn - I. For the other inclusion, first recall that
ICAy. Ifael= RooIR oo, we can write it as a finite combination a = Z;":l ribjs; with r;,8; € Roo
and b; € I C A. There exists then an index ny > M such that r;,s; € R,, and b; € I N A, for all
j=1,...,m. Therefore a = 37" | 7;b;5; € RuyIngRn, = In,, and we obtain the inclusion I C {J, 5 s In-

14Recall that under the injection A < Ry, ¢ is identified with wu.

96



Chapter 2. Sylvester rank functions on Ck (X) xr Z and an embedding problem The Atiyah problem

Claim 2: I, = (1 — hw, )R-
Since I, = (1 — hw,, )A,, and taking into account that (1 — A, ) is central in R,,, we compute
Iy = RuIu Ry = Ru(1 — hyw, ) Ay R = Ru(1 = hw, )R = (1 — hw, )R,
as required.
Using Claims 1 and 2, I = Unsar I, = Unsar(1 = hw, )R
Claim 3: For m >n > M, Rn/fn = Rm/fm = M;(K) canonically, through the maps
ei; (Wy) + I, — ei; (W) + I, — €ij-
To see this, note first that since A,, C R,, C R, and hw, A, = hw, R, = M;(K), we have hyy, R, = M;(K)
through e;;(W,,) — e;;. Now each hyy, is a central idempotent in R,,, so we again have decompositions

Rn=(1—hw, )Rn®hw,Rn =1L ®hw, Ra.

Hence ’Rn/fn > hw,Rn = Mi(K) = hw, Ry = Rm/fm through the cited maps e;;(W,,) + I, — eij —
€ij(Wm)+In. Note that the x-isomorphism R, /I, = R, /I, is induced by the restriction map R, — R,
which sends e;;(W,,) to e;;(W,,)+ terms inside I,,.

Now fix n > M, and consider the composition R, — Ro — Roo/f Since fn C T, we can factor this
*-homomorphism through the quotient R,,/I,, to get a x-homomorphism
Rn/In = Roo)I, r+1I,—r+1.

From the last claim it follows easily that, for n,m > M, the diagram

R/l — Roo/T

7

is commutative. This proves surjectivity of Rn/fn — Roo/:f, as follows. For r € Roo = U,;51 R, 7 € Ry, for
some ng > M, and so P+l = hw, r+ (1- hWnO)rJrIN: hWnOrJrIN. Then hw, 7+ fno € ’Rno/INn0 = Rn/INn,
and using the previous diagram we are done.

Injectivity is easy: since Rn/:f = M;(K) is simple, it is enough to show that the element hy, does not lie
inside I. But if hy, € (1 — hw, ) Rn, for some ng > M, then hy, = (1 — hw, )hw,, and so hw, hw, = 0.
This is a contradiction, since (in general) for n > m > M, W,, C W,,,, and hw, hw,, = hw, .

From this we obtain the desired #-isomorphism R ../ = Rn/ I, = M, (K).
(ii) We first show that I is stable under multiplication by elements of K[t, ¢ ].
Claim 4: tI = I.
Take a € (1 — hw, )R, for some n > M. Note that it is enough to show that t(1 — Ay, ) € I, because in
this case ta = t(1 — hy, )a € I, and we would have shown the inclusion ¢J C I. But
tH(1 = hw, ) = XX\ (W UT (W)U UTH 1 (W) = XX\ (T(W,)UT2 (W)U UTE (W)
and X x\(r(w, )ur2(Wy)u-uT (W) € Ce & (X\{y}), so by Lemma [2.3.3| we deduce that t(1 — hw,,) € A,
hence t(1 — hw,) € I. To prove the other inclusion ¢~ 17 c I the same trick applies: write
T 1 = hw,) =t (e, — (bw, — xw)) + 7 (xe, — xw,)
=t "xx\m, (Xx\8, — (hw, = xw,)) +t " X \W,-
The first term already belongs to I because leX\En € Aw, and since xg, \w, € CC,K(XN\{ZJ}), Lemma
applies again to deduce that t‘le”\Wn € A too. Therefore t71(1 — hy,) € I, and t~la =
(1 —hw,)acl
In conclusion tI = I, , as claimed.
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As a consequence p(t):f e p(t) C I for every Laurent polynomial in ¢, and so I is an ideal of R.

Claim 5: I is a proper ideal of R.
This follows from the fact that rk4(1 — hyw,,) < 1 for all n > M.

Claim 6: A C R.

Assume that hyw, A, C R for some n > M. Under the quotient map Ao — Ao/I = M;(K) we know
(see the proof of Proposition [2.3.5(ii)) that the matrix units e;;(W,) correspond to the matrix units e;;,
hence the differences eij(WnH) — eij(Wn) correspond to 0 inside A, /I, and so they belong to the ideal
ICICRforal0< i,j <1—1. Since e;;(W,,) € hw, A, C R already, we deduce that e;;(W,+1) € R
too, and so the whole algebra hyw, , A,y lives inside R. An induction then says that hw, A, C R for all
n > M. Hence, B
A, = (1 — hWn)An D hW,LAn CcI+ hWnAn CR

for n > M, so Ay, C R. In particular (see Lemma Ck(X) C R, and since K[t,t~!] C R already, we
obtain A = Cx(X) X7 Z C R, as claimed.

We consider the quotient R/I. Since 1 — hy,, € I, we get that the family {ei; (W) + f}0§i7j§1_1 is

a complete system of matrix units for R /I, hence by [64, Theorem 17.5, see also Remark 17.6], there is
an isomorphism R /I = M;(T), being T the centralizer of the family {e;;(Was) + I}o<ij<i—1 in R/I. The
isomorphism is given by

-1 -1

S Z sijeij(WM), with Sij = Zeki(W]w) - S ejk(WM) eT

4,j=0 k=0
which is also a #-isomorphism. We thus only need to prove that 7' = K[t,¢~!]. The inclusion K[t',¢~!] C T is
clear, since e;;(War) = (Xx\ By ) Xwar (T XX\ BN )T = X1i (W)t ™7, and so

tleij(War) — ey (W)t = (XTitt (Way) — XTi(WM))ti_jH el

due to the fact that y is a periodic point of period I. Therefore R/I = My(T) 2 M;(K[t!,t™!]). In order to
prove equality, we only need to check that the element ¢t € R belongs to M;(K|[t!,t+!]) under the previous
isomorphism. But this is easy:

0
1 0 0
N -t = N
t + I = thWM + I = Zte“(WM) + I = ZeHl’i(WM) + tleo_’lfl(WM) + I —
i=0 i=0
0 10
So we obtain the desired #-isomorphism R /I = M;(K|[t!,¢t~!]). O

To continue, we need a couple of technical lemmas, together with a definition.

Definition 2.4.6. Let R be a nonunital ring. We say that a family £ C R of idempotents is a left local unit
for R if for every rq,...,7,, € R there exists an idempotent e € F such that

er; =r; foralll<i<n.
The concept of right local unit is defined analogously.

Note that, in the case that R is a ring endowed with an involution * and F is a left local unit for R, then
E*={e*|ec E} is a right local unit for R.
Recall that I is the ideal of R generated by I. We write Sy for the x-subalgebra of R 4 generated by
I hw,, Ay and K( t It may be the case that I is not an ideal of Sy anymore; nevertheless, we have the
following result.

15Compare with R from Proposition
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Lemma 2.4.7. Denote by I, the ideal of Sy generated by :f, and consider
E = {p(t")"'(1 — hw,)p(t") € To | p(t) € K[t\{0},n > M}.
Then E is a left local unit for I,.

Proof. Note that every element of Ij is a sum of elements of the form
pi()ar () eiy iy War) -+ s (0)as(8) " es, g (War)Ps1 ()51 (H) 7 (1 — hw, )y, (2.4.3)

where pi, g € K[t]\{0}, 0 <'ik,jr <1 —1,n> M and y € Sp. In fact, since I is stable under multiplication
by K[t,t~1] (see the proof of Proposition [2.4.5), the product psy1(£)(1 — hy, ) belongs to I, so we can assume
that peyq(t) = 1.

Claim: each element of the form (2.4.3) can be further written as a sum of elements of the form
q(t")™'(1 = hw, )y for some q € K[t']\{0},n > M and § € Sp.

Since the field extension K (t)/K (t) has degree [, with basis {1,t,...,t/71}, we can write qs11(t)"! as

N

gs1(t) ! = Ztigi(tl)fl

=0

for some N > 0 and polynomials g; € K[t']\{0}. Therefore we can assume, without loss of generality, that
@s41 is a polynomial in #'.

Now recall that, modulo the ideal I , the matrix units e;;(Wys) commute with the element t!, since
theij(War) — e (Wan)th = (Xposiwy) — Xrs w7 € T C T

As a consequence b, 1= qqi1(t)eq. ;. (War)—ei. ;. (War)gss1(t') belongs to I, so there exists an integer ny, > M
such that by = (1 — hyw,, )bs; therefore

€ivie W) asr1(t) ™ = o1 () Yes, 5. (War) = qosr () 711 = hw, )bsqsr (B) 7,
so that
pr(Oar () ey (War) -+ ps()as (1) e, . (War)gse1 ()7 (1 = hw, )y =

prOa () ey i (War) -+ ps(t)as (1) qera (1) ea, 5, (War) (1 = hw, )y
+ 1) qr(t) " e,y (War) -+ ps(£)qs (1) " qogr () 711 = hw, )bsqsra (1) (1 — R, ).

Since ¢;, j,(War) € Rv € Ry, and 1 — hyy, is central in R,,, the first term becomes
pr(B)q(t) ey g W) -+ pa()@s ()~ (1 = hw, )y

with g5 = ¢s¢s+1 € K[t]\{0} and 3’ = e;, ;. (Wn)y € So, and the second term becomes
p1®)a(t) " eiy gy (War) - ps (D8 ()7 (1 — b, )y”

with now 4 = byqes1(t!)"1(1 — hy, )y € So. Again, due to the fact that K[t,t=1] C I, we can assume that
ps = 1 in each of these terms. Now an induction, repeating exactly the same steps, shows the claim.

Therefore each element x € Iy can be written as a sum of element of the form ¢(¢')~!(1 — hy, )y for some
g € K[t[\{0}, n > M and y € Sp.

Let now 1, ...,x, € Iy. By the above, we can assume that each z; is a monomial of the form ¢;(#')~1(1 —
hw,,, )i, with ¢; € K[t'|\{0}, n; > M and y; € Sp. Consider the polynomial ¢ := ¢ ---¢, € K[t']\{0}. We
see that, for each 1 < < n, the result of multiplying x; by ¢ to the left is always an element of the form z;y;,
where 7; € I. Therefore there exists N > M such that (1—hw, )q(t")z; = q(t!)x; for all 1 < i < n. The lemma
follows by taking the idempotent e = q(t') ™1 (1 — hy, )q(t!). O
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As a consequence of Lemma the ideal Iy must be a proper ideal of Sy. To see this, assume that
1 € Ip, so that there exists e = p(t!)~ (1 — hw, )p(#!) satisfying e = 1. But this is absurd since then
1 =rkg,(e) =1ka(l — hw,) < 1.

At this moment we could argue as in the proof of Proposition and compute the quotient Sy/Io. It
turns out that this quotient is *-isomorphic to M;(K (#')), which is a *-regular ring. The problem we encounter
here is that, in general, the ideal Iy might not be *regular. To fix this problem, we consider I; to be the
nonunital subalgebra of R 4 generated by Iy and the relative inverses & of elements x € Iy. Note that it is in
fact a x-subalgebra, since we always have the equality z* = Z*, and I, is *-closed.

From now on, we let & to be the set of all the left projections LP(q(t!)~1(1 — hw, )q(t!)), for n > M and
q(t) € K[t]\{0}. So for each p € Z, there is an idempotent e € E such that p = LP(e); in particular ep = p
and pe = e. Note that & C I;.

Lemma 2.4.8. The following statements hold:
i) The set & is a local unit for I.

i) If S denotes the x-subalgebra of R 4 generated by I, hy,, Ay and K(t), then I, is a proper ideal of S,
and there is a *-isomorphism B
S1/T, = My(K(th)).

Proof. For i), let x1,...,x, € I;. We can assume that each x; is a monomial of one of the following forms:

(I) r7g--- withr € Ig;
(II) Tire - - With’l’iETo.

Consider the sets B
J1 ={r € Ip | r appears as a first term in one of the z;},

Jo = {r* € Iy | 7 appears as a first term in one of the x;},

so that J = J; U Js is a finite subset of Iy. By Lemma there exists an idempotent e € E such that er =1
for all r € J. Take p = LP(e) € &, so pe = e and ep = p.

For J;: for an element r € J;, we compute pr = per = er = r.

For .Jo: for an element r € I such that r* € J,, we compute pr* = per* = er* = r*, so by taking * we

conclude that rp = r. Multiplying to the left by the relative inverse 7, we get (7r)p = 7r, which is a projection.
Hence 7r = (7r)* = (Frp)* = prr, and
pr=prrr =rrr =T.
We conclude that pz; = z; for all 1 <i <n. Since p is a projection, part i) follows.

Now ii). By i), it is immediate to check that I; C Sy is proper. To show that it is an ideal, it is enough to
show that p(t)I1,I1p(t) C I, for all p(t) € K(t) and that e;j(War)I1,I1e;;(War) C I for all 0 < i,j <1—1.
By taking *, we only need to show that p(¢)I1,e;;(War)I1 C I.

Let p(t) € K(t) and a € I;. We can assume that a is a monomial of the previous forms (I), (II). If a = ra’
for some r € Iy and o’ € I, then

p(t)a=p(t)ra’ € I,.
~
€lo
If a = 7a’ for r € Iy and o’ € Iy, then consider p € & such that pr = 7 and e € E such that p = LP(e), so
that ep = p and pe = e. Then

p(t)a = p(t)yra’ = p(t)pra’ = p(t)epra’ = p(t)ea € Iy,
—~—
€lg

as required. Similar computations can be used to show that e;;(Wps)I1 C ;.

Finally, by using exactly the same argument as in the proof of Proposition 2:4.5 we obtain the desired
s-isomorphism Sy /11 = M;(K(t')). O
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We are now ready to determine the x-regular closure R 4.

Proposition 2.4.9. Following the previous assumptions and caveats, we define I, to be the nonunital subal-
gebra of R4 generated by 1,1 and the relative inverses of elements of I,,—1, starting from the previous Io.
Let also S,, be the x-subalgebra of R 4 generated by I,,, hyw,, Ay and K(t). Then:

(i) I, admits the set & as a local unit;
(ii) I,, is a proper ideal of S,,, and S, /I, = M;(K(t')) for all n > 0;
(iii) Ioso = Un>o 1, is a proper x-reqular ideal of R4, and R4/Toc = M(K(t)).

Proof. Note first that each I,, is also a x-subalgebra of R 4.

(i) and (ii) follows easily by induction, taking into account that the same arguments from the proof of
Lemma apply here to obtain the results.

For (iii), let So, be the x-subalgebra of R 4 generated by I, hw,, Aar and K (t). Clearly I, C S, is proper,
since 1 ¢ I, for any n > 0. To prove that I, is an ideal of S, we only need to show that K (t)Is C I and
that €;;(War)loo C Ioo for all 0 < i,j <1 — 1. For the first inclusion, take p(t) € K(t) and a € I. Then
a € I,, for some n > 0, so by (i) we have p(t)a € I,, C I,. The second inclusion is obtained analogously.

To show that I, is *-regular, take « € I,. Then x € I,, for some n > 0, and its relative inverse Z belongs
to 7n+1 C Io. Since I is #-closed, we conclude that I is x-regular.

Therefore I, is a *-regular ideal of S, and, just as before, its quotient S.. /1o is *-isomorphic to M; (K (t')),
which is #-regular. It follows from [39, Lemma 1.3] that Sy is *-regular. Since A C Soc C R4, we obtain that
Soo = R4- O

In conclusion, in the case that there exists a periodic point y € X of finite period [, we have been able to
determine part of the ideal structure of the x-regular closure R 4: for each such point y € X one can apply the
above process to construct a maximal ideal I, of R 4, thus proving that, in particular, R 4 is not simple. In
fact, the construction of the ideal I, not only depends on the periodic point 4 € X, but on the whole orbit
O(y) = {y,T(y),...,T""1(y)}, and in addition any other periodic point = € X not belonging to the orbit O(y)
will give rise to a different maximal ideal 70071. It is therefore reasonable to think that, in order to uncover the
whole structure of R 4 in the case of the existence of a periodic point, it is crucial to understand the structure
of the ideal(s) I, and in particular the structure of R, = U,,>1 Rn, which in turn can be studied by studying
their pieces R,,. Therefore, in the next section we will concentrate on uncovering a part of the structure of the
x-regular closure R, for a fixed n.

2.4.1 Localization

We return to the general setting we had in Section with the extra hypothesis that K is now a field with a
positive definite involution *. We fix a clopen subset E of X and a partition P of X \ E. Recall from Section
that we denote by B the unital *-subalgebra of A generated by the partial isometries {xzt}zcp, and we
write B = ,,, B;t', with the restrictions already indicated, that is

B; = xx\(eur(g)u..uri-1(eyBo  and  B_; = xx\(r-1(g)u..ur—i(g)Bo  fori>0.

We also write 7 for the canonical map 7: B — 9 given by 7(b) = (hw - b)w, where R = [y}, cyy Mjw|(K).
We now pass to power series. We aim to follow the same steps as in [6, Section 7] to study the x-regular
closure Rg = R(B, SR)E However, the situation here is much more involved.
The first step is to consider, from B, a skew power series ring By|[[t; T']] by considering infinite sums

Zbi(xX\Et)i = Z b;t', where b; € B; for all i > 0.
i>0 i>0

Similarly we can consider By[[t~!;T~!]]. Now, given a W € V, only a finite number of terms in the infinite
sum Y .., b;t" can be nonzero in the factor corresponding to W, since by Lemma and for 7 > 0,

hw - (xx\5t)" = (W) + i1 1 (W) + -+ + eqw—1,;wi—1—:(W),

16Note that, in the notation used in Section Rp = Ry in case B is one of the x-subalgebras A,
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and it is exactly zero for i > |W|. We have a similar situation for By[[t~!;T~!]]. Therefore we obtain
representations

o Bo[[T) =R, b (hw-b)w and 7 :Bo[[t 5T =R, b= (hw dw

by lower (resp. upper) triangular matrices, extending the canonical one 7 : B — . We will be mainly
interested in the first one 7.
We have the following key property.

Lemma 2.4.10. Let x = Y, bit" € Bo[[t; T]. Then x is invertible in Bo[[t; T if and only if by is invertible
in By. Analogously for the elements of Bo[[t~!, T~1]].

Proof. Assume first that z =3, b;t' is invertible in By|[[t; T]]. There exists y = Zizogﬂfi in Byl[t; T]] such
that zy = yx = 1. In particular, bogo =1, and so bq is invertible in By.

Conversely, assume that by is invertible in By. We can then assume that by = 1, so that x = 1 — y, where
the order of y in t is greater or equal to 1. We then have

==y =1ty Yt € B[l T,
hence z is invertible in By[[t; T7). O

As we already mentioned in the previous paragraph, we are going to uncover some structure of the x-regular
closure of 7(B) = B inside R, Rpg. For this purpose, we have the following definitions.

Definition 2.4.11. Recalling that B = @,, Bit’,

a) we denote by B, the set of elements of B supported in nonnegative degrees in ¢, that is By = @izo B;tt.
Clearly B C Bol[t; T]]. The division closurd""| of B, in Bo[[t; T]] will be denoted by D..

b) weset B_ =P, B_;t7%. Again, it is clear that B_ C By[[t~*,T~!]], and we denote by D_ the division
closure of B_ in By[[t~1; T~1]].

Note that B_ N By = By, and we have decompositions B = B_ @ (B /By) = (B-/By) @ B+ as vector spaces.

In order to study the division closures Dy, D_, we need the following known lemma.

Lemma 2.4.12 (cf. [60]). Let S be a unital x-subalgebra of Cx(X) generated by a family of characteristic
functions of the form {xc}c, where C are clopen subsets of X. Then S is a x-regular ring, and every nonzero
element of S can be expressed in the form

n

Z AiXKiv

i=1

where \; € K* for all 1 <i <n, and {K;}}_; are mutually disjoint clopen subsets of X such that xx, € S for
all1 <i<n.

In particular, the x-subalgebra By of B is x-regular.

Proof. If a = 3" | N\iXK, is as in the statement, then

(2": )\iXKi) (i AflxKi) (z”: )\iXKi) = (Zn: XKi> (i: )\iXKi) = 2”: AiX K
i=1 i=1 i=1 i=1 i=1 i=1

hencea =Y, A;lxKi is the relative inverse of a, so that S is *-regular.

It remains to show that each element of S can be written in the stated form. It is clear that each element of
S is a K-linear combination of functions of the form xy,,, where L; is a clopen subset of X and xr, € S, since
every product xc, Xc, - - - Xo, belongs to S and equals xp,, where L = C; N--- N C} is clopen. Therefore, every
nonzero element a of S can be written as a = Y ;" | \ixr,, with {L;} clopen subsets of X such that x, € S.
We now show that this sum can be chosen to be an orthogonal sum. This is done by induction on n.

17See Section for the definition of the division closure.
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The result is clear for n = 1, so assume that n > 1, that a = Z?:Jrll Aixr, with {L;} clopen subsets of X

such that xr, € S, and that 3/, \ixr, = >_7_; ujXxk, where now {K} are mutually disjoint clopen subets
of X such that xx, € S. We compute

m

m m m
a= ZM;‘XKJ- + At 1XLpyy = Z(/Jj + At 1) XK ALy T ZMjXKj\Ln_H + Z An1X Lo 1 \K; -
i=1 j=1 j=1 J=1

The clopen sets {K; N Lyt1}; U{Kj\Lpt1}; U{Ln1+1\K,}; are clearly disjoint. Moreover,

XKjﬁLTH,l = XKj : XL7H,1 S 37 XKj\L,Hrl = XKj - XKjﬂLn+1 S 87 a‘nd XLTH,l\Kj = XLnJrl - XLn+1ﬁKj S 87

so all of their characteristic functions belong to S. This completes the induction step. One should compare
this idea with the idea used in Lemma [2.2.§] of expanding the corresponding sets by using suitable partitions
of X.

Now, the fact that By is a x-regular ring follows from the fact that, due to Lemma [2.2.4] it is generated a
family of characteristic functions of the above form. O

Proposition 2.4.13. With the preceding notation, we have:
(i) Dy coincides with the rational closurﬁ of By in By[[t; T)], and similarly for D_ and B_.
(ii) 7 (Dy) is the division closure of m(By) in .
(iii) 7+ (D) C Rp, and similarly, m_(D_) C Rp.
(iv) 7y (Dy)" =7 (D-).

Proof. (i) This is a standard observation (see e.g. [3, Observation 1.18]), which we reproduce here for the
convenience of the reader. We will only deal with the case for D, being the other one analogous.

It is always true (part i) of Lemma that the division closure is contained inside the rational
closure, so we only need to prove the reverse inclusion. Let x be an element of the rational closure of
B in Byl[[t; T, so that z is an entry of some square matrix A~! invertible over By[[t; T]], whose inverse
A has entries inside By. Writing A = Y7, A;t*, we obtain that Ay is an invertible matrix over By.
Multiplying by Ay ! we can thus assume that the constant term in the above infinite sum is the identity
matrix. With this assumption we obtain, using Lemma [2.4.10] that all the diagonal entries of A are
invertible in B, and since D, is inversion closed, they are also invertible in D,

Now, by applying to A a sequence of elementary row transformations, we may further assume that A is

a diagonal matrix. Hence A is invertible over D, , which in particular implies that its inverse A~! has
entries inside Dy, and so z € D,..

(ii) Recall that 7 is an injective homomorphism from Byl[[t; T']] into k. We first show that w1 (Bol[[t; T]) is
division closed in fA.
For this, let z = Y",., b;t" be an element in By[[t; T]] such that 7 (z) is invertible in . Observe that
each component of 74 (x) is an invertible matrix, with diagonal coming exclusively from elements of Bj.
It follows that 7 (by) = m(by) must be invertible in . But since By is regular (Lemma [2.4.12), there
exists 50 in By such that bogobo = by. Applying 7 and taking into account that 7(bg) is invertible in R,
we get that m(by)~! = m(bo), and so b is in fact invertible in By. It follows from Lemma that z is
invertible in By[[t; T]], as required.
Now we use the following general fact: if R C S C T are unital embeddings of unital rings, and § is
division closed in T, then the division closure of R in T equals the division closure of R in S, that is
D(R,T) = D(R, S)E Using this and the fact just proved that m (By[[t; T]]) is division closed in R, we
deduce that

D(my(B4),R) = D(my(By), w4 (Bo[[t; T])) = 74 (D (B4, Bo[[t; T])) = 74 (D+),

as desired.

18See Section for the definition of the rational closure.
19The proof of this general fact is straightforward and left as an easy exercise.
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(iii) By (i7), we have that 7 (D;) = D(r4(B4),R) which is contained in the division closure of w(B) in
R, D(n(B),M). This last one is contained in Rpg, by Lemma [1.3.9] Hence 74 (Ds) C Rp. Similarly
m_(D_) C Rp.

(iv) First observe that my (By)* = 7_(B_) and my (Bo[[t; T]])* = 7—(Bo[[t~,T~]]). The reason is that, for
x =50 bit" € Bo[[t; T]] (vesp. € B, ), we have

Ty (2) =7 (Zt—ib;) = ( ZT—i(b;)t—i).
i>0 i>0

The element b is computed in the x-algebra By. Also, by the description of B as a partial crossed product
(Proposition [2.2.7), it follows that T—*(b;) € B_; and so Y-, T~ (b;)t~* € Bo[[t~'; T~ '] (vesp. € B-).

Conversely, for x = Y_,o b_it ™" € By[[t*; T~ ] (vesp. € B_), analogous arguments show that 7_(z) €
7y (Bo[[t; T]))* (resp. € my(B4)*), , and so the observation follows.

Now,
74 (D) = Dy (By)" my (Bollt: T))*) = Dl (B-),m_(Bollt™ T ) = m_(D-). 0

We have two subalgebras 71 (Dy) and 7_(D_) = 74 (D4)* of Rg. We will write ® for the *-subalgebra of
R generated by 7 (D), which coincides with the subalgebra generated by 71 (D) and 7_(D_). Intuitively,
we obtain © by adjoining inverses of elements of By and B_.

Consider now a certain subset S|[t; T]] of By[[t; T]], namely the set of those elements

D bilxxgt) =Y bit!

i>0 i>0

such that each b; € B; belongs to span{yxs | S € Wllfl} The subset S[[t;T]] is always a linear subspace of
Bol[t; T]], but it might not be a subalgebra. We will, however, see in the next chapter, Section that in
the special case of A being the lamplighter group algebra, S[[t; T]] is indeed an algebra, and even an integral
domain.

However, S[[t; T]] certainly is a subalgebra of By[[t; T]] when it is endowed with the multiplicative structure
given by the Hadamard product ®, which is defined by

(Zbit’) ® (Zb;tj) A
i>0 7>0 i>0

Observation 2.4.14. Each b; belongs to the linear span of all the xg with S € W;, hence they can be written
as b, = ZSeWi Asxs for Ag € K. Let b;, b. be two given elements of this form:

1
bi= > Asxs, V= > psxs
Sew; S'eWw;

Since the sets S € W; are of the form T*=*(Z!_YNT=2(Z!_,)N---NZ} fori > 0 or SqUT~*(S;) in case i = 0,
we see that for S, 5" € W;, SN S’ = 0 if they are different, hence xsns: = ds,s/xs. Therefore the Hadamard
product of S[[t;T]] can be written as

(Dot o (Souher) =S e =3 (D2 Asmsxs)t'
i>0 7>0 i>0 >0 Sew;
In fact, we can also define an involution ~on S[[t; T given by

Z( Z )\SXS)ti = Z( Z TSXS)ti~

>0  Sew; >0  Sew;

These operations turn S[[t;T]] into a commutative #-algebra (S[[t;T]],®, ). Observe that S[[t;T]] is a *-
regular algebra by Lemma We show that it can be identified with the center of the algebra R, and also
with a certain corner of R. To do so, we first fix some notation: we will denote the projections 7(x¢) € R by
pe for any clopen C' C X.

20Recall that these are the sets of the form (2.2.7)), together with the set So U T—1(S1).
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v
Proposition 2.4.15. We have an isomorphism of x-algebras S[[t; T]] = Z(R), the center of R. In particular,
we have a x-isomorphism S[[t; T|] = peRpr given by d — U (d)pg for d € S[[t; T]).

Proof. Recalling Observation [2.2.15] the set W; is in bijection with the set of all the W &€ V having length
i+ 1, so we can write an element Y, bt € S[[t; T]] as

Zbiti = Z ( Z AsXs)ti = Z (Aswyxs))t VI
>0 i>0 Sew; Wwev

By writing R = [ [ cy Mjw|(K), we have Z(R) =[]y K. We define a map ¥ : S[[t; T|] — Z(R) by

> ( > /\sXs>ti =Y Csamxsaw)t!" = sy - )

>0  SeW; wev

That is, the W-component of the vector ¥ ( Zizo ( D sew, /\5XS) ti) is given by the diagonal matrix Agy)-hw

It is straightforward to check that it is indeed an isomorphism of *-algebras. Since Z(R) = ppRpg trivially,
through the map (Aw - hw)w — (Aw - eqo(W))w (see the computations following Lemma [2.2.13)), the result
follows. -

Our next step is to prove the following formulas, which will be useful later.
Lemma 2.4.16. For A, B € S[[t;T]], the following formulas hold inside R:
pe -7+ (A)" - pr-i(p) - 7(B) -pg = Y(A® B)pg,
pr-1(m) - T+ (A) - pE - T4 (B)* - pr-1g) = Y(A © B)pr-1(p).-

Proof. We only prove the first formula, being the second one analogous. It is enough to check it for a fixed
component W € V., that is, it is enough to prove the equality

hw - pg - 74 (A)* - pr-1(g) - 74 (B) - pp = Y(A© B)hw - pr

for a fixed W € V. Write A =3, (ZSeWi )\Sx5>ti and B=3", (Zs'ewj US/XS/)tj. We first compute,
for a fixed S € W, and by using Lemma [2.2.16] the terms

eiw|—1w—1(W) - (hw - xst") - eao(W) = Swrws)eio(W) = dww (syeqw|—1.0(W) ]

Therefore
hwpg -7 (A)" - pr-1(m) - 74+ (B) - pE

= epo(W) - (Z Z Ashw 'Xsti)* ejw|-1,)w|-1(W) - (Z Z s hw 'XS’tj> “ego(W)

i>0 SEW; >0 S'EW;
= ego(W) - Asowyeiwi-1,0M))" - ejwi—1,;w—1(W) - (msewyepw)-1,0(W)) - eoo (W)
= Asaw)tswyeoo(W) = U(A® B)hw - pE,

so the result follows. O
In fact, these formulas can be generalized. In order to do this, we first need to define an idempotent map
P Bo[[t: 7)) — S[[t: 7]
as follows.

Lemma 2.4.17. With the above notation, there exists an idempotent linear map P : By[[t; T]] — S[[t; T]] such
that for each x € By[[t; T)], we have

pr-1(g) - T4+ (%) - pE = pr1(B) - T+ (P(%)) - pE.
2INote that the condition dw,w(s) already encodes the fact that the term is 0 if [W| # 4+ 1.
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Proof. For i > 1, let V; be the linear subspace of B; given by span{xc | C € W;}, and let V/ be the linear
subspace of BB; spanned by all the projections y¢, where

(¥) C'is a nonempty clopen subset of X of the form (2.2.6) with either s > ¢ or r > 0.
Claim 1: B, =V, +V/.

As observed after (2.2.6), B; is spanned by all the functions x¢, where C is a clopen subset of X of the
form (2.2.6) with s > 4. If s >4 or r > 0, then C is of the form (), so that xc € V. So we can assume

that s = i and r = 0. Furthermore, if T%(E) N C N T~!(E) is nonempty, then C € W, and so x¢ € V;. So
we can further assume that T*(E)NC NT~1(E) = 0.

We can then write
¢=(rwnc)u( Jr@nc)
ZeP

If T*(E)N C = (), then x¢ is a sum of terms of the form (x), so that xo € V/. If T/(E) N C # (), we can
further decompose C' as

c=(rmneju(Urenc)

ZeP
= (') nCenT Y )(Z|€|PTZ EyncnT! ))u(zlzlpTi(Z)ﬂC)
(|_|T1 yncnT! ))u(UTi(Z)ﬁC)
ZeP Z€eP

using that T*(E) N C NT~1(E) = (). Note that for each Z € P, either C N T~1(Z) is empty or it is of the
form (x); in the latter case we can write T"(E)NCNT~1(Z) as

T"(E)mCmT—l(Z):(CmT )\( |_| T(Z)nCNT~ (Z))

if nonempty. Therefore x¢ is a linear combination of terms of the form (%), and thus x¢ € V/.
Claim 2: V; nV/ = {0}.
Assume that b € V; N V/. Then we can write b = ZCeWi Acxc, with A¢ € K. Since b € V; we have
= ( Z XTi(E)memTfl(E))b = ( Z XTi(E)mC/mTfl(E)) ( Z AcXc) Z ACXTi(E)nCnT-1(E)
cC’ew; Cc’ew; cew; cew;

But now observe that {x7i(m)ncnr-1(E)}cew, is a family of mutually orthogonal nonzero projections, so
we get that A\c = 0 for all C € W;, and so b=10

Therefore B; = V; @ V/ for i > 1. In the base case i = 0, we need to distinguish between two different cases,
depending on whether the intersection £ N T~!(E) is empty or not. Recall that the special term of degree 0
is given by xgs,ur-1(s,), where

SO:EU( U Z) and SleU( U Z).

ZeP ZePp
ZNT~H(E)#0 T-YZ)NE#D

ENT '(E) = 0: In this case, we take V{ to be any linear subspace of By complementing K - xg,ur-1(s,) and
containing the family of pairwise orthogonal projections x znr-1(z), for Z, Z" € ‘P satisfying ZNT~YE) =
0 and T-*(Z') N E = () (observe that this family is orthogonal to the element xg,ur-1(s,)), SO that
By = K - xsour-1(s,) @ Vj-

ENT7Y(E) # 0: Define here V{ to be the linear subspace of By spanned by all the projections x¢, where
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(x) C is a nonempty clopen subset of X of the form (2.2.6),

and let Vo = K - xpnr-1(g)- Analogous computations as in the case for 7 > 1 show that there is a
decomposition By = Vo @ Vj. In particular, Vj has codimension 1. If we show that xg,u7r-1(s,) ¢ Vg then,
since K - X g,ur-1(s,) has dimension 1, we necessarily obtain the decomposition By = K - xg,ur-1(s)) eVy.

But if xg,ur-1(s,) € Vg, we could write it as

XSoUT—1(S;) = Z Z )\r,s,ZiXT*"(Z_T)O--ﬂT*l(Z_l)mZOW--ﬂTS*l(ZS_l)~

r,s>0some Z;

Multiplying by X pn7r-1(r) we would get X pnr-1(E) = XENT-1(E) " XSouT-1(s;) = 0, a contradiction.
Hence xg,ur-1(s;) ¢ Vo, and we have the desired decomposition.

We can now define P as the projection onto the first component in the decomposition

Bollt: 7)) = S[i: 71 & ([ vit)-

i>0

We check the last condition in the statement. Take x € Bo[[t; T], # = >_,5( bit’. We can write it as

x = P(x)+ Z Z Aexot!

>0 C as in ()

in the case ENT1(E) # (0, and as

T = P(l‘) + Z Aexo + Z Z )\0Xcti

some C' i>1 C as in (*)
xc€Vy

if ENT~Y(E) = 0. Note that in the latter case, pr—1(g) - xc¢ - pp = 0 for all xc € V{; hence to prove the
formula it is enough to check that, for a fixed W = ENT~Y(Z,)n---NT~*(Z,_1)NT~*(E) € V, and C of
the form (x), then hy - pr-1(p) - xct' - pg = 0. We compute

hw - pr—1(g) - XCt' - PE = X101 (W) -1 (BynonTi ()t
This is zero in case C' is of the form (x), since either C C T*(X\E) or C C T~*(X\E). The result follows. [J

We can now generalize the formulas in Lemma [2.4.16]

Lemma 2.4.18. For z,y € By[[t; T)], the following formulas hold:

pE ()" - pr-1p) T4 (y) - pE = V(P(z) © P(y))pE,

pr-1(p) - T4(x) - pE - T (Y)" - pr-1(p) = Y(P(2) © P(y))pr-1(8)-

Proof. By Lemma [2.4.17| we have pp-1(g) - 74 (2) - pg = pr-1(p) - 7+ (P(z)) - pg for all 2 € Bo[[t; T]]. Taking
the involution on both sides, we get that pg - 71 (2)* - pr—1(g) = pe - 74 (P(2))* - pr—1(g) for all x € By[[t; T]].

Now we obtain form Lemma 2.4.16|

pE 7+(2)" - pr-1py T+ (Y) - pE = pE T (P(2)" pryp) 7+ (PY)) - pE = ¥ (P(2) © P(y))pE,

as desired. O

Recall that S[¢; T]] is a unital *-regular commutative algebra under the product ®. The unit is of course
the element e = Y.~ (3 ey, Xc)t'. We obtain:
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Proposition 2.4.19. Take s =Y, p Xzt = Xx\pt € Bit. Thenu:= (1—5)" ' =1+s+s>+--- € Bo[[t; T]]
satisfies that P(u) = e, where e is the unit element of (S[[t; T]],®). We have the formulas

pE T (w)" - pr-vp) T4 (2)  pE = Y(P(2))pE,
pr-1y(g) T+ () - pE - T (W) provm) = V(P(2))pr-1(p)
for all x € By[[t; T]]. In particular, inside Rp, the ideal generated by pg coincides with the ideal generated by
Pr-1(E)-
Proof. We first note that

s'= (xx\pt)' = XX\(EU---uTi—l(E))ti = Z XZOOT(Zl)ﬁ--ﬂTi—l(Zi,l)ti
Zo,Zl,...,Zi_1E’P

for i > 1. Tt follows from this formula and the computations done in Lemma [2.4.17|that P(s®) = Y cew, Xat'
To compute P(1), we first observe that

1= Xsour-1(51) T XX\SonX\T-1(5;) = XSouT-1(5;) + Z Z XznT-1(2")-
ZeP Z'eP
ZNT~Y(E)=0T-'(Z")nE=0

By definition, the second part of this expression belongs to the complement Vj, so that P(1) = xg,ur-1(s,)-
Putting everything together, it is clear that P(u) = e. Now the desired formulas follow from Lemma [2.4.18
In particular, we have

pE -4 (u)" - pr—ypy - T4 (u) - pp = V(P(u)pe = Y(e)pr = pE,

pr-1(m) T (u) - pE - m(w)" - pr-ymy = V(P (u)pr-1(p) = Y(e)pr-1(8) = Pr-1(8)-
One deduces from this that the ideal generated by pg coincides with the ideal generated by pr-1(g) inside
Rz. O

We now define a x-algebra Q which is similar to the one defined in [6, Lemma 6.10].

Definition 2.4.20. With the above notation, we define the x-algebra Q as the x-regular closure of P(D,)

in the x-regular algebra (S[[t;T]],®, ). In other words, Q is the smallest *-regular subalgebra of S[[t;T]]
containing P(D.).

This x-algebra uncovers a portion of Rz, as follows:
Proposition 2.4.21. We have an embedding V(Q)pr C ppRppr. In particular, ¥V(Q)pg C Rp.

Proof. Let x € Dy. Due to Lemma[2.4.18 we obtain
Y(P(z))pe = V(P(u) © P(z)) = pp -7 (W)" - pr-1(m) - 7+ (2) - pE-

By Proposition we have that 7, (D;) C Rp, so all the factors of the right hand side of the above
equality belong to Rp. It follows that W(P(x))pr € peRspE, and so V(P(D4)) € peRspE-

By Proposition the map d — ¥ (d)pg defines a x-isomorphism from S[[t; T]] onto pRpg. It follows
that ¥(Q)pg is the *-regular closure of ¥(P(D))pg in pgRpg. Since Y(P(D,))pr C peRiepr and prRiepE
is #-regular, we obtain that U(Q)pr C pgRgpg. This show the result. O

Observe that it is not clear whether P(D,) is a subalgebra of S[[t;T]]. Nevertheless, this is not relevant
for our result.

Remark 2.4.22. At this point we may define a x-subalgebra £ of Ry as the x-subalgebra of Rz generated by
D and U (Q)pr. However, we believe that in general this algebra will be smaller than Rz (equivalently, will
not be regular). It seems that in order to advance in the understanding of Rz we need to study their ideals.

68



Chapter 3

Special cases: the lamplighter group
algebra and the odometer algebra

In this chapter we are going to apply our construction from Chapter [2[in order to study some group algebras
arising as Z-crossed product algebras, such as the lamplighter group algebra and the odometer algebra. From
now on, (K, *) will denote a field with positive definite involution.

First of all, we will show how one can relate the group algebra of some special groups G by means of a
Z-crossed product algebra through Fourier transform, sometimes called Pontryagin duality (Proposition .
In this setting, the Atiyah problem for our group algebra (see Section will be translated to a problem on
computing ranks inside the Z-crossed product algebra.

After that, we will apply our methods in order to study the lamplighter group algebra K[I']. This algebra
is important because, among other things, it gave the first counterexample to the Strong Atiyah Conjecture
(Conjecture [1.1.14), see for example [42], [25]. One of our main results in that section is Theorem
which gives a class of irrational (and even transcendental) numbers that appear as von Neumann dimensions
of elements of matrix algebras over K[I'].

To end this chapter, we study the case of the 2-odometer algebra C (X) 37 Z with X = [[,.{0, 1}, where
T is the automorphism X — X given by addition of (1,0, ...) with carry over. In this case, it is not possible to
realize this crossed product algebra as a group algebra since the crossed product algebra is simple (cf. [17]),
but this example is interesting in its own right because the dynamical system defining it is a minimal one,
hence we have been able to completely determine the structure of its *-regular closure in Theorem and
thus giving a complete description of the set of [>-Betti numbers arising from the algebra K[Z(2°°)] x, Z in
Theorem More generally, we also study the case of the -odometer algebra, being @ = (n;); a sequence
of natural numbers n; > 2, and thus determining its *-regular closure in Theorem and its set of [2-Betti
numbers in Theorem The general m-odometer algebra has been widely studied, see for instance [24)
Chapter VIII4], [87] for C*-algebraic versions of it.

3.1 Relating our construction with some group algebras and the
Atiyah problem

Let G be a countable, discrete group, and let K be, throughout this section, a subfield of C closed under
complex conjugation. We first recall some constructions explained in Chapter Consider K[G] the group
algebra of G. We denote by NV (G) the von Neumann algebra of G and by U(G) the classical ring of quotients
of N(G) (Sections and [1.2.2). We have inclusions A C NV(G) C U(G).

U(G) is a *-regular ring possessing a rank function rky ) (Lemma , so the algebra K[G] becomes
also a rank ring (but not regular) when endowed with the rank function inherited from U(G), which we will
denote by rkg(g. We briefly recall how one can construct the rank function rky ), and more generally its
extension to M, (U(G)).

The von Neumann algebra A/ (G) carries a natural normal, faithful and positive trace tr (@) (Proposition
[[.1.4). Since U (G) is *-regular, for every element u € U(G) there exist unique projections LP(u), RP(u) € U(G)
such that ulf(G) = LP(u) - U(G) and U(G)u = U(G) - RP(u) (Theorem [[.2.11)). Both LP(u), RP(u) belong
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to the von Neumann algebra N/ (G), so we define the rank function rky ) by the rule

rky(a) (1) = try(a) (LP(u)) = try(e) (RP(u)).

All of this can be extended to k x k matrices (cf. Remark [1.1.5]), so we obtain a unique Sylvester matrix rank
function Rk () over matrix algebras Ui (G) = My (U(G)) extending canonically rky (), so that

Rky(q)(U) == T, o) (LP(U)) = Trp, (o) (RP(U))

for any matrix U € Uy (G), where LP(U) and RP(U) are the left and right projections of U inside Uy (G),
respectively. In particular, we obtain a Sylvester matrix rank function Rkgg) over K[G] by restricting the
previous Sylvester matrix rank function Rk ) on each matrix algebra M (K[G]) C Ux(G). We will see in
the next subsection that, when the group algebra can be identified with a Z-crossed product algebra, this
Sylvester matrix rank function coincides with the Sylvester matrix rank function given in Theorem [2.3.7] when
considering a suitable measure p on a suitably constructed totally disconnected, metrizable compact space X.

Recall Definition[1.1.12} a real positive number r is called an I2-Betti number arising from G with coefficients
in K if for some k > 1, there exists a matrix operator A € My (K[G]) such that

dim, y (ker(A4)) = Trp, (@) (pa) =,

where pa € Ny (G) denotes the orthogonal projection onto the kernel of A. Equivalently, one can also compute
the von Neumann dimension by the formula

dim,n (ker(A4)) = k — Rkgg)(4).
We denote by C(G, K) the set of all [2.-Betti numbers arising from G with coefficients in K, so that

(6. K) = Ry (U M(KIG)) < B

Since U(G) is *-regular (Theorem [1.2.16), we can consider the x-regular closure of the group algebra K [G]
inside U(G), denoted by Ri(q = R(KI[G],U(G)). It will help us later on when studying the set C(G, K),
see Proposition the same proof in this context states that the subgroup of (R, +) generated by C(G, K)
coincides with the subgroup of (R, +) generated by the set

Rlya)(Riia)) = {Rkue) (1) | 7 € Ria}-

3.1.1 Some group algebras arising as Z-crossed product algebras

We can use our given construction to study K [G] in some special cases of interest by using Pontryagin duality,
as follows. For a topological, second countable, locally compact abelian group H one can define its Pontryagin
dual H, which is the set of continuous homomorphisms ¢ : H — T, also called characters. With the compact
convergence topology, it is well-known that H becomes a topological, metrizable, locally compact abelian group.
If H is a countable discrete group then H is compact, and if moreover H is a torsion group then H is totally
disconnected. We refer the reader to [35, Chapter 4] for more information about Pontryagin duality and the
proofs of all these statements.

Suppose now that H is a countable discrete, torsion abelian group, and that Z acts on H by automorphisms
via p: Z ~ H. We write G for the semi-direct product group H x,Z, so G is generated by ¢ (the generator of
the Z-part) and by any set S consisting of generators of Hﬂ We also denote by p: Z ~ K[H] the action on
the group algebra K[H] which extends p by linearity.

This action p induces an action p of Z on H by continuous functions, defined by
p(n)(@)(h) := ¢(p(—n)(h))

forn e Z, ¢ € Hand he H , where now H becomes a totally disconnected, compact metrizable space. In
particular, if we put T := p(1), then the action p is generated by 7', in the sense that

p(n)(¢p) =T"(¢) for any ¢ € Hand n € Z.

Note that T : H — H defines a homeomorphism of the space H.

IThis crossed product construction can be generalized by replacing Z with any other countable discrete group A, as in [8]
Section 2|. However, we will stick into the A = Z case for our purposes.
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Proposition 3.1.1. Let O C N be the set O = {n € N| there exists an element g € H of order n}. Assume
that, for any n € O, K contains all the n**-roots of unity. We will denote by &, a primitive one.
Then we can identify the group algebra K[G] = K[H| x5 Z with Cx (H) x1 Z via the Fourier transform

Z : K[H] — Cx(H)

by sending an element h € H of order n to the element

—n—1

XUhn.o + aXUh,l +eee aijh,_j et gn XUn,n—1

where each Uy, j = {¢ € H | ¢(h) = &1}, and Xu,.; denotes the characteristic function of the clopen Uy, ;, and

~

then extending it to a map K[H] x;Z — Cg(H) x1 Z by sending t to the generator of Z, also denoted by t,
on the Z-crossed product.

See [§], also [40] where the author states an analogous result but in the realm of measured groupoids. Before
giving the proof, it is instructive to look at a specific example; in fact, this example was the motivation of most
of the constructions and results presented in this thesis. This is an example that Elek also studied in [29].

Example 3.1.2. The lamplighter group IT' is defined to be the wreath product of the finite group of two

elements Zy by Z. In other words,
r=212=(@P2z) 2
i€z

where the semidirect product is taken with respect to the Bernoulli shift, that is o : Z ~ €, ., Z> is defined

by the rule

i€l
on)(a); = ajyn for a=(a;); € @Zg.
i€
In terms of generators and relations, if we denote by ¢ the generator corresponding to Z, by a; the generator

corresponding to the i*" copy of Zy, and by 1 the unit element of ', we have the relations a? = 1, a;a; = a;a;
and ta;t~' = a;_, for any 4,j € Z. Notationally, we have the following presentation for I':

I'= <t, {ai}iez | af, a;a;a;0;5, taitflai_l for 1,] € Z>
Now the Fourier transform gives a *-isomorphism

where here X = [],.,{0,1} is the Cantor set and T is the shift map, namely 7'(x); = x;41 for € X. The
isomorphism is given by the identifications

1+a;

L= xx, t—=t, a—=Xxu,— X7 <0r equivalently — XUi)

where U; = {x € X | #; = 0} and U; is its complement in X. Note that, in particular, the elements e; = HT“
are idempotents in K[T'], and so are f; = 1 —e;. They correspond to the characteristic functions of the clopen
sets consisting of all the elements in X having a 0 (resp. a 1) at the i*" component.

Proof of Proposition[3.1.11 Write p for the counting measure of H. Then the Fourier transform .# : K[H] —
Ck(H) is defined by the formula

Z(1)(6) = /H FBTdu(h), | e KH].6c .

In fact, .Z is defined even for functions f € L'(H, ), and in such a case its range lies in Co(H) (see [35)
Proposition 4.13]). However, in our situation, for a given element h € H we think of it as a function in
L*(H, i) by the usual Kronecker delta function h(g) = 6p, 4; we have
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and it is straightforward to check that indeed % (h) = xv, , + - + anileh,n_l, so & : K|H] = Ck(H ) is
well-defined. It is well-known that the Fourier transform respects the corresponding products and involutions,
and by [35, Theorem 4.21] there exists a unique suitably normalized Haar measure i on H (in fact, since H
is discrete and p is the counting measure, zi corresponds to the normalized Haar measure, so that ﬂ(f[ )=1)
such that % defines a unitary isomorphism

F L*(H, p) — L*(H, )

whose inverse map .# ~! is given by integration agains fi:
m= [ Fousmdo). el nen.

To conclude the proof, it is enough to check that F ! : CK(ﬁ) — K[H] is also well-defined. Take then
f=xv € Ck(H) and fix an h € H with order n. We compute

77 o)) = [ oo Z/m Zf” U ATy,

We only need to check that this computation gives 0 for all but finitely many h’s. Now, the clopen sets Uy ;
form a subbasis for the topology of H, i.e. the sets

U(Qlﬂl?-u;gz,iz,) = Ugl,il n---N ng,iz> gt € H, 0<4< O(Qt) -1, 1<t

generate the topology of ﬁ', where o(g) stands for the order of g. For a clopen U C ﬁ, it is immediate to see
that U can be written as a finite disjoint union of sets of the previous form, so it is enough to restrict our

attention to the case when U = Uy, ;, N---N Uy, ;,. Much more, since .# ! is a homomorphism,

T xv) =7 (v, ) T (X, )

so we may further assume that U = U, ; for some g € H and 0 < ¢ < o(g) — 1. We need to describe the values
w(UNU;) = [i(Ug,iNUp ;). Write m = o(g) and recall that n = o(h), sothat 0 <¢<m—1land0<j <n-1L1.
We can further assume that ¢ = 0. To see this, we first define a character on the finite group (g) by the rule

bg:(9) =T, ¢4(9) =&m

Since T is a divisible group, it is injective in the category of abelian groups, so the previous character extends
to a character on I, which we still denote by ¢,. In this situation, by using left invariance of the Haar measure
1, we get

i(Ug,i NUnj) = i@y - (Ugi NUn;)) = iUgo N Uh N (mod n))s

so the effect of ‘'moving’ the set Uy ;NU}, ; by 5; results in an overall shift in j by a fixed amount N, depending
only on ¢4 and 7. Therefore

a N
FHxu, ) Zﬁj' Ug,o NUh,j+N (mod n)) = Zﬁ (Ug0 NUnj) = &, F ~Hxw,o) ().

So from now on we will assume that U = Uy .
Consider now the finite group (g) N (h), which is generated by some power of the element h, so we write

(g) N (h) = (h*) for some 1 < k < n and k dividing n.

Note that in this case, the intersection U, o N Uy ; is empty if j ¢ 7Z; hence

F " (xv,.0)( 25 (Ug,0 N Up,zj).
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We can then define a (well-defined) character on the finite group (g, h) by the rules
Gg,n : (g, h) > T, bgn(h) =&r, dgnlg) =1

Again, ¢4 ), extends to a character on H, still denoted by ¢, 5. By further using the left invariance of i,

A(Ugo N Un i) = i(Syp - (Ugo NUn,nj)) = iUy NUpp) forevery 0<j < k—1,

so we end up with
F 7 (XU,0)(h) = i(Ug,0 N Up o) - foj-

This gives 11(Ug,0NUp o) for k =1, and zero otherwise. Since there are only finitely many values of h satisfying
h € {g), the result follows.

Note that for h € (g), Ug o NUp,0 = Uy, and the value of its measure can be explicitly computed to be %
by using again left invariance of zi. Hence we obtain an explicit formula for .# _1(XU910), namely

_ 1 _
F 1(XUg,o)=E(e+g+---+gm b

and more generally
1 : .
F (v, = (et gt V) for 0<i<m— 1.

The extension of .Z to the respective crossed products is straightforward once we observe that the diagram

p(l{ T, T(f)(z)=f(T~"(z))

commutes. For this, it is enough to show that T'(Up, ;) = Up(ny,i for a fixed h € H of order n, and 0 <7 <n—1.
But this is easy:

T(Uni) = {T(¢) € H | ¢(h) =&} = {# € H | 6(p(h) = &} = Up(ny
Hence .7 extends to a *-isomorphism .# : K[H| x5 Z — Ck(H) x1 Z. O

Remark 3.1.3. Certainly, in the case K = C there is no need to involve the whole machinery used during the
course of the proof of Proposition The reason for working on the proof as explicitly as stated is that the
resulting formulas for .%,.% ! remain valid in any field with involution of arbitrary characteristic p, provided
that p does not divide any of the natural numbers n € O, that K contains all the n''-roots of unity for any
n € O, and that one interprets £, as &, ' in the corresponding field. Of course, in this general setting one
needs to prove by hand that indeed the two maps .%,.% ~! defined this way are *-isomorphisms, inverse of each
other, but it is a matter of computation to check that this is indeed the case.

Recall that we have a rank function rkg(g on K[G] given by the restriction of the rank function naturally
arising from U (G), which we denoted by rkg(g). Our question now is whether we can find a measure i on

the space H such that, when applying the construction given in Section we end up with a rank function
tky on A = Ck(H) 7 Z that coincides with rkg(g) under the Fourier transform .7. The answer to this

question is affirmative, and in fact i coincides with the normalized Haar measure on as we show in the
next proposition.

Proposition 3.1.4. Let K C C be a subfield of C closed under complex conjugation and containing all the n'®
roots of unity for every n € O. Then from rkq) we can construct a full, T-invariant probability measure [i
on H which coincides with the normalized Haar measure on H.

If moreover tki (g is extremal in P(K[G]), then [i is ergodic, and when applying the construction given

in Section to I we end up with a Sylvester matriz rank function rky on A = CK(fAI) X Z such that
tkg(g) = tkaoZ.

2This is the reason for keeping the notation 7i for such a measure.
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Proof. We first define a finitely additive probability measure 7i ¢ on the algebra K of clopen subsets of H by
the rule ~
Prie)(U) = ki) (ZY(xv)) for every clopen subset U of H

which, by the same argument as in the proof of Proposition [2.3.8) can be uniquely extended to a Borel
probability measure px(c) on H. Invariance of ug g follows from the fact that ¢ is an invertible element:

ke (TU)) = ke (F~ (xrw)))
= rkK[G] (ty_l(XU)t_l)
= kg (F ' (xv)) = pr(e(U)  for every clopen U C X.
The fullness of the measure is easy: let U C Hbea nonempty open subset with null measure, and consider
V C U anonempty clopen subset of H. Then rkxg)(Z ~(xv)) = pkie (V) < pkie(U) = 0, which contradicts
the fact that rkxq is a rank function on K[G].

If moreover rkg g is extremal, then again an argument similar to the one given in the proof of Proposition

2.3.10| proves that px(q is ergodic. In this case, pux(g) gives rise to a rank function rk4 on A = C’K(ﬁ) X7 7
such that R
tka(xv) = pxia(U) = tkgq (Z Y(xv)) for every clopen subset U of H.

By the uniqueness part of Proposition [2.3.8] this implies that rkx(g) = rk4 0%, as required.

Finally, to prove that jixg) coincides with the normalized Haar measure ji on H , just note that for any
clopen U C H, #~1(xy) is a projection in K[G], so its rank coincides with its trace, and we obtain

a1 (U) = rkge (F Hxv)) = trK[G]( “(xv))
=7 o)) = [ (@)@ = [ dalo) = ) 0
Remarks 3.1.5.

1) Proposition can be thought of as a particular case of the one considered in [8, Section 2|. Let us
briefly summarize its content in our context.

The homeomorphism 7' : H — H can be extended to a - automorphism of the commutative x-algebra
L (H 1i) consisting of (classes of) bounded measurable functions f : H — C, also denoted by T, via

T(f)(z) == f(T"(x)), feL=(H,R)zel.

Therefore we can construct the algebraic crossed product L‘X’(ﬁ Sl A We will denote by t the
symbol corresponding to the Z-generator, so elements from L (H, i) x7 Z will be formal finite sums

N fat" fu € LO(H, ).

neZ

Let L2(H, i) denote the Hilbert space of (classes of) measurable functions ¢ : H — C with finite 2-norm,

that is
lgll2 == / l9(@)2di(z) < o

with the usual scalar product (g, h)s := [5 g( )h(z)dfi(x), and consider H = 1%(Z, Lz(fI,ﬁ)) the Hilbert
space of LQ(}AI , )-valued functions on Z; so a general element in A can be written as an infinite sum

> gmt™,  gm € L*(H,f),
meZ
and satisfies the finiteness condition Y-, ; ||gm||3 < co. The scalar product in H is given by

<zgmtmzhtm z/gm o @)dii(2).

mEeEZ

3See Section for the construction of the algebraic crossed product.
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Observe that LOO(I?I , 1) X7 Z acts faithfully on H by left multiplication, giving a representation A of
L>®(H, i) xr Z as bounded operators on H. Specifically, the representation A : L (H, 1) X1 Z — B(H)

is given by

A 2t ) (X gnt™) = 32 (D0 ST (g™ ™) € BOH),  for fu € L¥(H, ), g € L2, 1),
nez meEZL meZ n€EZ
finite finite

where again, for an element g € L2(H, i), T(g) € L2(H, Ji) is defined by T'(g)(z) := g(T~(z)) for z € H.

We denote by N (T) to be the weak-completion of A(L(H,fi) x7 Z) inside B(H). We have a canonical
trace on L*°(H, [i) X7 Z, defined on an element f =3 _, fut" by

6 iy en ) = iy id )y = /H fol@)di(z),

which extends to a normal, positive, faithful trace over N(T') denoted by trarry. The identification

F ~ ~
K[G] 2 Cx(H) xp Z C L*(H, 1) 7 Z extends to a trace-preserving isomorphism of von Neumann

algebras Z,n : N(G) S N(T), which in turn extends to a rank-preserving isomorphism between the
respective algebras of affiliated operators, making the diagram

UG) ———U(T)
Ul Ul
N(G) —— N(T)

commutative, where U (G) (respectively, U(T)) is the algebra of (unbounded) affiliated operators of N (G)
(respectively, N'(T)).

The construction N (T') is also know in the literature as the group-measure space von Neumann algebra.

2) An important observation is that, once we have proven that the measure i on His T-invariant, this
property does not depend on the base field K anymore. So, by assuming now that K is any field with
involution of arbitrary characteristic p (with p not dividing any natural number n € @) and containing
all the n' roots of unity for any n € O, and by assuming ergodicity of Ji, we can apply our construction
from Chapter [2| (specifically, Theorem to obtain a canonical Sylvester matrix rank function on
K|[G], by simply defining rk (g = rk4 o.%.

We can use Proposition to prove that, in certain cases, the x-regular closure of the group algebra K[G|
inside U (G), which we denoted by R /¢, can be identified with R 4, the *-regular closure of A inside the rank
completion R, of A with respect to its rank function rk 4.

Theorem 3.1.6. Consider the same notation and hypotheses as in Proposition and assume that rkk(q
is extremal in P(K[G]).

Then we obtain a x-isomorphism Ry (q) = Ra. In fact, we have commutative diagrams as followsﬂ

AC R AC Rk
IR IR (3.1.1)
K[G]C—> RK[G]C—> U(G)

Moreover, the rank completion of Ry(q) with respect to tki(q) is *-isomorphic to My, the von Neumann
continuous factor over K.

Proof. Recall from Theorem that PR, can also be obtained by completing A with respect to its rank
k4. Now since U(G) is complete with respect to the rky)-metric (see Theorem [1.2.16)), Proposition

4Recall Proposition
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gives that the completion PR, of A with respect to rk4 also fits inside U(G), making the previous diagram
commutative. In turn, since R,y is itself *-regular, we see that

Riie) = RIK[GL,U(G)) = R(A, Rw) = Ra,

as required. The last part follows from Theorem [2.3.9 O

3.2 The lamplighter group algebra

In this section we are going to concentrate on the study of the group algebra of the lamplighter group I'. We
will work mainly with the presentation of I" given in Example 2), so I is generated by {a;};cz and ¢, with
relations af =1,a;a; = aja; and ta;t™! = a;_, for every i,j € Z.

In this case, the hypotheses given in Remark translates to the fact that the caracteristic of our field
K has to be different from 2. Then the Fourier transform gives a *-isomorphism

— 1lta;
Z K[ — Cr(X) xr Z, {ei Tz T
t—t

where X = [];.,{0,1} is the Cantor set, T the shift map defined by T'(z); = x4, for x € X, and U; is the
clopen set consisting of all points 2 € X having a 0 at the i* component.

We will follow the same notation as in [40, Section 3|: given e_g, ..., € {0, 1}, the cylinder set {z = (x;) €
X |2_p =€_p,...,2; = €} will be denoted by [e_r--- € ---€]. So for example Uy = [0], and the characteristic
function xjo is identified with the projection eg under .7; also, x[o11) is identified with e_; fo f1.

It is then clear that a basis for the topology of X is given by the collection of clopen sets consisting of all
the cylinder sets, that is

{le—k - “€p 61}}@6{0,1}-
k>0

We have a natural measure p on X given by the usual product measure, where we take the (3, 3)-measure

on each component {0,1}. It is well-known (cf. [59, Example 3.1]) that p is an ergodic, full and shift-invariant
probability measure on X. In fact, note that under the Fourier transform, we have

P = (Y (L (1 iy

and so, since its rank in K[I'] coincides with its trace in K[I'] (it is a projection), we obtain the equality

ey (%~ (X)) = 1R ((1 + (—12)6*’“a—k) o (1 + (—21)“@0) (%))
1

:W:“([G—k“fo---q]).

It follows from Proposition that rk ) 0.# ~! coincides with the Sylvester matrix rank function rk 4, where
A = Cx(X) x1 Z, obtained from p by applying the construction from Section [2.3.2P| In particular, the set of
[2-Betti numbers arising from I' with coefficients in K can be also computed by means of rk 4,

C(T, K) = rk4 (DMi(A)> = C(A).

From now on we will identify K[I'] & Ck (X) 7 Z. We can then apply our constructions from Chapter[2]to
study K[T']. We take E, = [1...1...1] (with 2n + 1 one’s) for the sequence of clopen sets, whose intersection
gives the point y = (..., 1,1,1,1,1,...) € X which is a fixed point for the shift map T ﬂ We take the partitions
Py, of the complements X\ E,, to be the obvious ones, namely

P, ={[00...0...00],[00...0...01],...,[01...1...11]}.

50f course this has to be the case, since pu as taken is exactly the normalized Haar measure of the group X = Hiez Zsa.
61t can also be done by taking an even number of one’s at each level n; we are taking an odd number for comfort.
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We will follow the notation of Section write A,, := A(E,,P,) for the unital x-subalgebra of A =
Ck (X) x7 Z generated by the partial isometries yzt for Z € P,,. It is easily seen that 4,, coincides with the
unital *-subalgebra of A generated by the partial isometries s; = e;t for ¢ = —n, ..., n, where recall that each

e; is the projection in K|I'] given by 12‘“ (equivalently, the characteristic function of the clopen set [0;]), and

we put f; =1— eﬂ Indeed,
e;t = Z X[e,n“.eio...en]t

[e—n...€0...€n]EPY
EiZO

and if Z=[e_,...€...€,] with some ¢; = 0, then

—
j——

Xat = (fonen) - (foimnyegi—1)(€t) (firr€irr) - (fot1€ni1)

where
— e; ife; =0 — e; ife;_1=0
e =cifi+(1—e)ej=1"7 : and  fie; =¢;_1f; +(1—¢j_1)ej =14 7 ’ -
fie; =€ fi + (1 —€j)e; {fj e, =1 fiej =¢j—1fi+ (1 —€j-1)e; {fj if ;=1

Note that each e; belongs to the corresponding *-subalgebra, since e; = (e;t)(e;t)* and e,1 = (ent)*(ent).
We have, for each n > 1, inclusions A,, C A,,41 which correspond to the embeddings ¢,, from Section
The quasi-partition P,, consists here of the translates of the sets W € V,, which are either

Wo=FE,NT Y(E,)=[11...1...111]  of length 1 (there are 2n + 2 one’s)
or

Wi =E,NT Y Z)n---nT " YZ)NT " NZ_,)nT " *E,)
=[11...1...11011...1...11] of length 2n + 2 (there are 4n + 2 one’s, and a zero)

with each Z; = [11...0;...11] having all one’s and a zero in the i*® position, or of the form
W (s, %, ..,%,%) =[11...1...110 % *--- % %011...1...11]  of length (2n + 3) +1{

where here [ > 0 is the number of *, and each * can be either a zero or a one, but with at most 2n consecutive
one’s (if there were 2n + 1 consecutive one’s, then we would end inside F,, again).

In this particular case it can be checked by hand that indeed P,, forms a quasi-partition of X, namely that

ST k(W) =1.

k>1Wev,
W=k

First, a definition. From now on we will write m = 2n + 1.

Definition 3.2.1. For k > 0 an integer, we define the k" m-acci number, denoted by Fib,, (k), recursively by
setting

Fib,,(0) =0 , Fib,(1) =Fib,,(2)=1 , Fib,(3)=2 ,---, Fib,(m—1)=2m""

and for r > 0,
Fib,,(m + 7) = Fiby,(m + 7 — 1) + - - - + Fiby, (1) |

Lemma 3.2.2. For k > 2, Fib,, (k) is exactly the number of possible sequences (€1, ...,€;) of length | = k — 2
that one can construct with zeroes and ones, but having at most m — 1 consecutive one’s.

Proof. For 2 < k <m — 1 the result is clear. For k > m a simple combinatorics argument gives the result. O

7Compare with [6], where the authors study the algebra Aj.
8This sequence is also known in the literature as the m-step Fibonacci sequence.
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Hence in our particular case,
SN ku(W) = u(Wo) + 2n+ 2)u(Wh) + > 2n + 34+ Du(W (e, ....a))
k>1Wev, 120 (e1,...,e1) with e;€{0,1}
\lek and at most 2n
consecutive one’s
1 1 (m -+ k)Fiby, (k)
= om+1 + 22m Z 2k '
E>1

This sum can be computed to be 1 by using the next lemma

Lemma 3.2.3. We have:
=\ kFib,, (k
bon(k) _ gom (m+1)2m

> Fib,(k .
Z 1 ( ) -9 17 Z 2k —

2k
k=1 k=1
Indeed, by using these summation rules
F1b k:Flb
>3 ) = i g Y o - et
E>1Wev, k>1 E>1
W=k
1 gm—1 1 9m m—1 m+1 m+1
= ol T 227771 T 52m (27" = (m+1)2"77) = om+1 ( T om+t1 ) =1L
Proof of Lemma[3.2.3. The proofs are not difficult but the computations can become a little bit tough. Let
compute the first one, so put K = > 7, Flb”‘(k) We will use the recurrence relation for the Fib,, (k). First
note that the first term equals %() =3 and for 2<k <m—1, Hbm®) _ 2;2 . Also
Fib,,(m) = Fib,,(m — 1) +--- + Fib,,,(0) = 2™ 3 4 ... £ 24+ 14+ 14+ 0 = 2" 2,
SO FibQ’"m(m) = % too. Putting everything together, > 7" %k(k) = mTH. In general, for 2 < r < m, S, =
Y ko1 Fibé’,;(k) = L. We can decompose the initial sum as
" Fib,, (k) <= Fib,,(m + k) m+1 1 Fib,,(m + k — 1)
K = ok + Z om+k = Z 27 ( Z om-+k—i )
k=1 k=1 i=1 k=1
m—2
m+1 1 Fib,,(m + k — 1
—4+§m(; )+ g (K- ) + 3
m—2 00 .
m+1 1 Fib,,(m +k —i 1 1
4 + ‘ 22(2 2m+k 7 )+(2m 1 m) om
i=1 k=1
Butfor 1 <i<m—2,K=2S,_;i+> 0, Flb;é’fj’f ) 5o
m+1 =1 1 1 1 m+1 &1 S 1
o2 S ) s (e e -2 (B (S5 )
4 + ; 20 s + 2m—1 + 2m 2m 4 + ; 2t p 2t + 2m

moLl—_1-1L and

We compute )", 5 57>
Sy 1= m—itl m-1 1
. 91 - 4 2i - 4 2m’
=1 =1

where we have used the sum Z?zl jad = z((11:$m)’;) — " for real z # 1. Putting everything together

m+1 1 m—1

PR S PO

4 + 2m 4
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so the result K = 2™~! follows. For the second sum, put J =Y -, kFiz;”(k). As before, Flbg(l) = 5 and for

2<k<m, %}f’(k) = "“‘2;7,;2 = % Putting everything together, >} kFﬂ;;j(k) =i4+yp k= %mﬁ_ In

i 2 . ..
general, for 2 <7 < m, N, := Y, BibmlE) — 1 4 s~k _ 14142 We decompose the initial sum as

k:Flb = (m+k)Fib,(m+k) mP4+m+2 = (m+k)Fib,(m + k)
J = Z + Z om+k = 8 + Z om+k :
k=1 k=1

Let’s analize the second sum. We have

(m + k)Fiby,(m+ k) = (m + k)Fib,, (m + k — 4)
om+k - Z om+k
i=1
" (m4k—0)Fiby,(m+k—i) <= iFib,,(m 4+ k —1)
- Z om+k T Z om+k
i=1 i=1
S0
2. (m + k)Fib,, (m + k) B "1 K (m+k—i)Fib,(m+k—i Flbm (m+k—1)
Z om+k - i ( Z om+k—i ) ( om+k—i )
k=1 i=1 k=1
m—2 oo N . 0o .
1 (m+k — i)Fib,,(m + k — ) 1 (k+ 1)F1b (k ) 1 kFib,, (k)
- ?(Z om+k—i ) T oot (Z ok t1 ) 271(2 ok )
i=1 k=1 k=1 k=1
m—2 . o) . 00
) Fib,,(m + k — 1) m—1 Fib,,(k+ 1) m Fib,, (k)
+ g(Z i) g (2 i) Fam (2 )
i=1 k=1 k=1 k=1
But for 1 < i < m—2,J = Nyp_y + > 1oy (m+k72513,§1(,;m+k7i) and 2m~1 = Y% Fib;;,(k) = Spm—i +
oo Fib,, (m+k—1) SO
k=1 om+k—1i )
= (m + k)Fiby, (m + k) W | = Npei (N i\ = iSp_i  m
Z JtE (X)X S () - e
=1 i=1 i=1 i=1 i=1
We use the sums Y7, jo/ = x((ll:;gz) — ”fﬁ;l DY (1J(rf)(zl)f ) 2(71%1; — 21 " (for real 7 # 1) to
compute
1 1 ) n+2 L 42 6 + 4n +n?
2p=lgr Ly= e Lyp=0t g
i=1 =1 =1
miQNm,i71m72(m71)2+(m71)+27m —-3m+6 1
20 84 21 B 8 am—1’
i=1 =1
m2szZ m1, el 1,022 m 1 n
20 4 ( ?)71( 7):57 gm—1 ~ m

Putting everything together,

i (m + k)Fiby, (m + k) _ (17L)J+(27m+2)2mflim2+m+2+1

om+k om om 8 2
k=1
and finally
1 m+1
J=(1-5;)J+ .
so the result J = 22™ — (m + 1)2™~! follows. O
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The representations m, : A, — R,, x — (hw - )w can be explicitly computed:

a) for W =Wy, we write

qo,w = X[11...1...111]5
b) for W = W; and 0 < i < m, we write
Gi,w = XTiw) = t'qowt™"  with go.w = X[11...1..11011...1..11];
c) for W =W(eq,...,e) and 0 < i <m+1+ 1, we write
qi,w = XTi(W) = t'gowt™"  with gow = X[11...1...110€; ...¢,011...1...11] -

The elements ¢; v belong to the *-subalgebra A,,, and in fact

Wi-1

hw = Z gi,w  (cf. Proposition [2.2.10).
i=0

Therefore here each R, = K x [[,+, Mm+k(K)Fibm(k). Moreover, by Theorem , we can identify R g =
R 4, and in fact the x-regular closure of each A,, inside U(T") coincides with R, i.e. R, = R(A,,U(T)), and
the same for Ao, Roo = R(Ax,U(T)), where we adapt the notation of Chapter 2| Section In particular,
Theorem applies in this case to give the following result, already proved by Elek in [29] in this particular
case of the lamplighter group I' and K = C.

Proposition 3.2.4. Take R,k to be the rank completion of Rkry inside U(I") with respect to rkyry. Then
Rk & My as x-algebras over K, where Mg denotes the von Neumann continuous factor over K.

Proof. Since Ry r) = R4 and the respective ranks coincide due to Theorem [3.1.6, the result follows by the
same proof as in Theorem [2.3.9} O

3.2.1 The algebra of special terms for the lamplighter group algebra

We now interpret the results in Section [2:4.1] for the example of the lamplighter group algebra. In particular,
as promised in Section we show that the corresponding algebra of special terms S, [[¢; T]] is an integral
domain. Our notation here is a little bit different from that section: we put A, o[[t; T]] to denote the set of
infinite sums

Zbi(XX\Ent)i = Zbiti, where b; € A, i = Xx\(E,U--UT 1 (B,))An,0
i>0 i>0

with A, 0 = Cx(X) N .A,. We then have a representation of A, o[[t;T]] extending m,, which we will also
denote by m,, so

Tt Anolt; T = Ry a—= (hw - a)w.

We write S,[[t; T]] to denote the subset of A, o[[t; T]] consisting of those elements >, bi(xx\,t)" such
that each b; belongs to span{xs | S € W;}. These are easy to describe here: the special term of degree 0 is
given by

—— ——
2n

So=T7'(S)=[1...1...11] +— xg, = fnJrl"'fO"'fnlfnﬂ

the special one of degree i = 2n + 1 is

S = [11...21...101...;...11] e X5 = foanfosnti foon- fonot€nfontr - oo faoi fus
n 2n

9Note that in this particular case the sets So and T—1(S7) defining the special element of degree 0 coincide, giving the set
[1...1...11].
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and with degree ¢ > 2n + 2, we have the elements

S=1[11...1...10%%---%xx01...1...11]
—_—

—_—
2n i~ (2n+2) he

!

XS = fon—it1fon—iv2 - foiv1 - foignlitni1® —iqma2 - ¥ onore—nfongr - for o faoifa

with *; € {e;, f;} with no more than 2n + 1 consecutive f’s. As remarked in Section [2.4.1] the set S, [[t; T] is
always a linear subspace of A,, o[[t; T']], but in general is not a subalgebra. Nevertheless, the next lemma shows
that the lamplighter algebra has some special properties that are reflected in S, [[t; T]].

Lemma 3.2.5. In this particular case of the lamplighter group algebra, the space S, [[t; T]] becomes a subalgebra
of Anolt;T]], and even an integral domain.

Proof. First one should note that the special term of degree 0 becomes the unit element in S, [[¢; T].

We show that if S € W;, S € W, then SNT(S") € W,y (here i,j > 2n + 2, the other cases can be also
checked in a similar way). We have

Xs = f7n7i+1 ce f7i+1 ce f7i+n67i+n+1a7i+n+2 ce afn71€7nffn+1 ce fo ce fn,

Xsr = f7n7j+1 ce f7j+1 ce f7j+nefj+n+1b7j+n+2 ce bfnflefnf7n+l ce fo t fn»

with a;, b; € {e;, fi} with no more than 2n 4+ 1 consecutive f’s, so that

xst' - xsit! = Xsarisnt' ™ = fon—jist o fojmit1 S jmitnCej—itnt1b—j—itmi2  D_pii1€

fem—igr o foif i ittt 10— ignt2  Gep—1€—nfont1 - fo o [

Now it is clear that SNT*(S’) € W,4;. This shows that S, [[t; T] is a subalgebra of A,, o[[t; T]]. To show that
S,[[t; T)] is a domain, consider two nonzero elements a,b € S,[[t;T]] , and let yst’ and xs/t/ be terms in the
support of a and b respectively, of smallest degree. By the computation above xst* - x5/t = xgnri(snt'™7 is a
nonzero term of smallest degree in ab. This shows that ab # 0. Note that the special term xg,u7r-1(s,) is the
unit of the algebra S, [[t; T]].

Define S,[t;T] C S,[[t;T]] the set of elements of S, [[t; 7] with finite support, i.e. of the form . b;t’
with b; belonging to the linear span of the special elements of degree i, and r > 0.

Proposition 3.2.6. S,[t;T] is a free K-algebra with infinite generators, and S,[[t;T]] is a free power series
K-algebra with infinite generators.

Proof. A special term

fon—it1 foit1 foifnCoitni10—itnt2 Gen—1€—nfoni1 - fo fal"

is said to be pure if there are no more than 2n — 1 consecutive f’s in the a_;,42---a_,—1 part. Denote by
P., the set of pure elements. We then have that every special term xgt* can be written uniquely as a product
of pure terms, so we obtain an isomorphism

K{{zy | b€ Pu)) Sul[t; T]l, @b, 1 xs,
which restricts to an isomorphism K(zp | b € P,) = S,[t;T], where Sy = [1...1...11] corresponds to the
special term of degree 0. O
Examples with the first two levels of the lamplighter

In this small subsection we will present two examples concerning the structure of the algebras S, [[¢;T]] or,
more generally, of the algebra Sg[[t;T]] defined as in [2.4.1"")

10Note, however, that the notation used in that section is different from the one we are using now: in the new one we are
emphasizing the clopen £ C X.
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As our first example, we take £/ = [11] and the obvious partition P of the complement X\ £, namely
P ={]00], [01], [10]}. The quasi-partition P consists of the T-translates of the sets

] either [111] of length 1, or
| [110%110%21 - .- 0% 11] of length k = ky 4 -- - + k, + (r + 1), with 7 > 1 and each k; > 1

where 0% denotes 0---0 k; times. Indeed,
i+ +k+(r+1) 1 3Ir+1
Z Z Wn(W 23 + Z Z 9k1+--+kq+(r+3) -3 + Z or+3 L,
k>1 \%E—Vk 1k, k >1

where we have used the formulas 37, -, k2" = 7557 and 3,5, 2% = 7%, valid for all real values z € (~1,1).

It is easily seen that the unital x-subalgebra Ag generated by 1 and the elements xzt with Z € P is the
same as the x-subalgebra generated by 1 and the partial isometries e_1¢ and egt.

The special elements are as follows: the special term of degree 0 is given by
So=[] <= xs=fo
and with degree i = k1 + -+ + k. + 7 > 2, we have the elements
§=[10%10"1--.0"1] «—  flieiy1 [k, 16k e 1fol’

with » > 1, kq, ...,k > 1. A pure term here is one of the form

Xporygt* ™ = forre k- ey fot* !

for k£ > 1. Therefore, each pure term is parametrized by a positive integer, so here
Spllt: TN = K(({zr}e2)),  xporyt™ ' = zrpa.

For example, the term X(jgri10521...0tr 1yt T F#" corresponds to the monomial @y, 41 ---xg, 41 (note the
noncommutativity of the variables), which has degree k1 +- - - +k, +r with respect to the graded homomorphism
deg : Sg([t; T]] — Z* such that deg(xy) = k for k > 2.

Let s do the next case E = [111], which is the first of our levels commented at the beginning of Subsection
The partition P of the complement X\FE is again the obvious one, so the quasi-partition P consists of
the T translates of the sets

either [1111] of length 1, or

W= (1110571 0k 110571 0 1L 10%/111] of length
k=>", (Z; 1k§)+n) +n+1, withn > 1, each r; > 1 and each k() > 1.

Here the unital x-subalgebra Apg generated by 1 and the elements xz¢ with Z € P is the same as the *-
subalgebra generated by 1 and the partial isometries e_;t, ept and e;t.

The special elements are as follows: the special term of degree 0 is given by Sy = [11], and with degree
1= (Z] 1 k‘j(z) + Ti) + n > 3 we have the elements

S = (110" 1. 0P 110971 0k 11 1077'11]
with n > 1, r; > 1 and l-c](-i) > 1. A pure term here is one of the form

byt otk 1
X[110¥110k21-0kr 1]t TR

for r > 1 and kq,...,k. > 1. Therefore, each pure term is parametrized by a sequence of positive integers
E = (k1,....kr) € U, (ZT)", so that

thntr41

Se([t;T]] = K<<{x7};’€UT21(Z+)T>>a X[110%1 101@»21,,‘0“11]15’“*' = Tk, k)

with Fiby(k — 2) elements of degree k = k1 + -+ -+ k. + 7+ 1. The nonpure terms in the above step (i.e. taking
E = [11]) correspond to the pure terms in the present step.
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3.2.2 Some computations of />-Betti numbers

We will now focus on computing some [?-Betti numbers of elements from matrix algebras over K|[I']. Our goal
is to obtain elements that give rise to irrational values. We will use ideas from [41], although applied to our
construction.

Recall that, in the case of the lamplighter group algebra, we have K[I'] 2 A = Cx(X) xr Z with T being
the Bernoulli shift map, and moreover the Sylvester matrix rank functions rkg ) and rk4 coincide under
this identiﬁcationE Therefore, given a matrix element A € M;(K[I']), one can compute its von Neumann
dimension by the formula

dim, y (ker(A4)) =1 —rka(A)
where rk 4(A) is the value of the Sylvester matrix rank function rk on the matrix A.

We will take advantage of our construction done in the previous chapter: we have a faithful representation
g Ap — Rp with Ag = A(E, P) and Re = [ [y ey, Mjw|(K) for each choice of a clopen set 2 C X together
with a partition P of its complement X\E. We extend this representation to a faithful representation, also
denoted by 7, over matrix algebras g : Mj(Ag) & Mj(K)® Ag — M;(Rg) = HWGVE M (K) ® My, (K)
in the canonical way. Hence, rk4 can be computed over elements in M;(Ag) to be

rka(A) = > [W[p(W) Rk (rp(A)w) = > p(W)Rk(re(A)w)
WeVe WeVg

where Rkjyy| is the canonical extension of rkjy, from My (K) to M;(K) ® Mw|(K), and Rk is the usual
rank of matrices. We then obtain the following proposition, which will be useful later on when computing von
Neumann dimensions of elements A € M;(K|T']).

Proposition 3.2.7. With the above notation, for a given element A € M;(Ag), we have the formula

dim,y (ker(A)) = > dim(ker(mp(A)w))u(W).

WeVg

Proof. It is just a matter of computation: noting that Rk(ng(A)) = |W|l — dim(ker(7g(A)w)), we have

dim, v (ker(A)) =1 — kg (A) =1— > u(W)Rk(rg(4)w)
WeVg

== (1) Wlaw) = > dim(ker(mp(A)w)u(W))

WwevVg wevVg

= Z dim(ker(mz(A)w))w(W). -
WeVg

Fix {e;;}o<i j<i—1 to be a full system of matrix units for M;(K), so that for a fixed W € Vg, the family
{eij @eirj/ (W)} o<ij<i—1 is a full system of matrix units for M;(K) ® My |(K). In particular,
0<4’,j' <|W|-1
w|-1
(e ® Dw = Z eij @ ey (W) = eij @ hw.
i'=0
Let now M;(K) ® Myy|(K) act on the K-vector space K! ® KW, with K-basis {e; ® ey (W)} o<i<i—1 , by

0<i’ <|[W|—1
multiplication to the right, that is

(€ij @ eirjr (W) - (ea @ ep(W)) = 05,001 pei @ i (W).

There is a canonical scalar product on K! @ KWI given by the bilinear form with matrix the identity matrix
associated to the previous basis for K! @ KW, namely
(e; @ ey (W), e; ® 6j/(W)> =0; ;05 5.

" Recall that rk4 is the unique Sylvester matrix rank function associated to the normalized Haar measure on X = HieZ Za, see

Proposition
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Lemma 3.2.8. The entry of mg(A)w corresponding to the e;; ® e;j (W) component is given by
(me(A)w - (e; ® e/ (W)), e ® e (W)).
Proof. Trivial. O

One can then think of the matrix 7 (A)w as the adjacency-labeled matrix of an edge-labeled graph F 4 (W),
where we have an arrow from (ej, e; (W)) to (e;, e (W)) of label

djin.i) = (Te(ADw - (65 @ ejr (W), e ® ey (W)).

Here adjacency-labeled matrix means that the entry of g (A)w corresponding to the e;; ® e;7;- (W) component
is exactly d; ;) (i,i7), in accordance with Lemma
There is an example of such a graph in Figure [3.1] corresponding to the matrix

TE(A)w = diex @ ea1 (W) + daej—21-2 @ e21(W) + dzej—1,1-2 ® eaa(W) + dyeaz @ ey |2, jw|—2(W).

6()(W) 61(W) 62(W) e €‘W|_2(W) 6‘W|_1(W)
€o [ ] [ ] [ ] [ ] [
€1 ° . ° ° °
@
€9 ° ° L ° cee ° °
do
€l—2 L] oe— 0 cee [ °

g

€l—1 ° °

Figure 3.1: An example of a graph E4 (V)

If we denote by G4 (W) the set consisting of the connected components of the graph E4 (W), and by Ac
(C € G(W)) the corresponding adjacency-labeled matrix, then the matrix 7g(A)w is similar to the block-
diagonal matrix

Ac,
Ae, ., where GA(W) = {C4,...,C,}.
Ac.
As a consequence, we have the formula
dim(ker(rg(A)w)) = Y dim(ker(Ac)), (3.2.1)

CeGa(W)

which we will use throughout in computing dimensions of kernels.
The following lemma is an adaptation of [41l, Lemma 20] to our notation.

Lemma 3.2.9 (Flow Lemma at each vertex e; ®ey (W)). An element o =3, . Aj e ®@ej (W) € K'@ KW
belongs to the kernel of the matriz mg(A)w if and only if, for every vertez e; ® e; (W),

> AGindGan i = 0.

7,3’
Proof. Trivial; see the proof of [41, Lemma 20]. O

To see how exactly the Flow Lemma works explicitly, we refer the reader to the appendix given in
[41], where some applications of it in concrete examples are described.
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We are now ready to give examples of elements A € M;(A) with irrational von Neumann dimension. We
apply our construction from Chapter [2| with the clopen subset E = [11] and the obvious partition P of the
complement X\ E which already appeared in the previous section. Recall that the quasi-partition P consists
of the T-translates of the sets

] either [111] of length 1, or
© | [110%110%21--- 0% 11] of length k = ky + --- + k, + (7 + 1), with 7 > 1 and each k; > 1

where 0% denotes 0---0 k; times.
Our main result of this section is the following:

Theorem 3.2.10. Fizn > 0. For 0 <i <mn, takep;(z) = ap;+a1,;x+- - +am, ™ polynomials with positive
integer coefficients of degrees at least 1, and dy,...,d, > 2 natural numbers. Then there ezists an element A
inside some matriz algebra over Ag such that

1

dimyy (ker(4)) = @0 + kz 2P0 (k) o1 (R)dE+ -t pn (R)dE (322)
>2

where qo,q1 are nonzero rational numbers. We get a bunch of irrational and transcendental 12-Betti numbers.

Proof. Since the proof of the theorem is quite technical and complicated, we will start by giving some examples
of elements A whose von Neumann dimension behaves as before, first by just considering a single polynomial
p(k) and then by considering p(k)d*. After that, we will present an explicit element having von Neumann
dimension as in .

We start by giving a concrete example, p(r) = 2 + 2 + z2. Consider the element from M;o(Ag) given by

—X[Og]t_l 0 0 0 0 _X[Ql] X[Olo]t_l 0 0 0
—X[0] —X[Og]t_l 0 0 0 0 0 0 0 0
0 —X[10] —X[o0t 0 0 0 0 0 0 0
0 0 —X[01] *X[0@t71 0 0 0 0 0 0
s 0 0 0 o —Xpgtt 0 0 0 0 0
0 0 0 0 —X[10] —X[oo]t 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 _X[Qlo]tz 0 0 0 0 0 _X[QO]t 0 0
0 0 0 0 0 0 —Xxowt  Xo  —Xpot O
0 0 0 0 0 0 0 0 —xpy O

+ (X[00] + X1007) - (Id10 — €66 — €99)

or, in a more concise way, we write
A=—xpot™" €00 — X[ - €10 — X0t - €11

— X[10] - €21 — X[o0]? - €22 — X][o1] - €32

— Xjoojt "+ €33 — X[o] - €43 — X[og)t ' - €44
— X[10] * €54 — X[oo] - €55 — X[01] * €05

- X@lo]’52 -er1 — Xjoo)t - €77 + X[o] - €87

— Xjoo]t - €8s — X[o1] * €98

- X[o;o]t -ege + X[o;o]t_1 €06

+ (X[00] + X[100)) - (Id10 — €66 — €99)-

For this element, and if we take W = [111], we observe that 7z (A)w equals the zero 10 x 10 matrix, so its
kernel has dimension 10. Figure gives the prototypical graph E4(W) that appears in the case one takes a
W of the second form [110¥110%21...0%11] with length k = k1 + -+ + k. + (r + 1).

Here we have four different types of connected components C for the graph, namely

a) C1, given by the graphs with only one vertex
L]

Note that in this case dim(ker(Ac¢, )) = 1, and we have 10+ (2k; —1)+(94+2ko—1)+- - - +(94+2k, —1)+10 =
11+ 8r +2(k1 + -+ - + k) connected components of this kind.
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QO [ o . e . e @L— — - b— @ o
e1 : R R °
—1 @H —1 —1
es le — > e °
es T o
-1 -1 -1
13 (2
eq oi——— - i—— o °
-1 u\H -1
1 /ﬁ -1 -1
€5 e ———— - —— @ L]
-1
€6 [ ] [ ] [ ]
-1 -1 -1 Q
(&rd 1 e —— - —— @ [ ]
—1 /ﬁ —1 —1 @
es e ———...——e °
HL
€9 o [ ] [ ]

Figure 3.2: The graph E.(W) for a W = [110¥110%21 .- 0% 11] of length k. Each loop should be labeled with a H_M_

2Tt should be mentioned here that this example is similar to the one given in [41], although some differences are present: apart from the fact that the element is not the same, our
construction realizes the ’levels’ e; as a result of allowing matrix elements over the algebra Ag.
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b) Cs, gi by th h

) Ca, given by the grap Q_1@ 1 Q_1Q
@71@71 -1 1*1@
M4 PY [ ]

If we apply Lemma to this graph, we get that dim(ker(A¢,)) = 1. We only have one connected
component of this kind.

c) Cs, given by the graphs

Sie

1Q71

... — [ ]
(1
-1 -1

D0

ei—— O
L

These graphs are the key part of the element A, since they will give rise to the irrationality of the value of
its von Neumann dimension. Again, by Lemma [3.2.9] it is easy to compute the dimension of the kernel:

dim(ker(Ac,)) = { 1 otherwise } =1+ 5ki+11k?*1'

We have » — 1 connected components of this kind.

d) Cy finally, given by the graph

) ()

()

@1

GLQ S Lo .
for k. > 2 for k., =1
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Once more, by virtue of Lemma [3.2.9] we get

. 1 ifk, =1
dim(ker(Ac,)) = { 0 otherwise } = Ok,.1-

Again, we only have one connected component of this kind.

By making use of the formula (3.2.1)) and Proposition [3.2.7} we compute
dim,y (ker(4)) = > dim(ker(rg(A)w)u(W) = > > dim(ker(Ac))u(W)
wev WeVCeGa(W)
1148 +2(ky + -+ k) + 14 (Opype—1 + -+ 0 k2 1) + (1 —1) + 0,1

10
273 . Z Z k14 +kr+(r+3)

r2lky,...kp2>1

10 11149 1dr 281 1 1 1 1
g*gz o T3 ?+§Z§(272k1+kf+2+'”+ > 42kr71+k3_1+2)+822r+1

r>1 r>1 >1 k1 >2 p1>2 r>1
_ 10,37 1195 1
g g B1k+2 T 16 16 k2+ki2

8 8 > 2 16 16 > 2

that is,

95 1
dimyy (ker(4)) = 7o+ > s 5 941467524 ..
k>2

which is an irrational number (its binary expansion is clearly nonperiodic).
Having this example in mind, we now construct an element A with von Neumann dimension of the form

1
q +q Z IOR
k>2

where g, g1 are nonzero rational numbers, and p(x) = ag + a1z + - - - + a,z"™ is a degree n > 2 polynomial with
positive integer coefficients. We consider the element from M3, 4(Ag) given by

A=~ xpot ™" e — X[ - €10 — X[og]f1 e
— X[10] * €21 — X[oo]t " €22

— X[o1] - €32 — (a1 — 1)X[01] - €02
n—2

+ Z ( — Xjoo)t " - €36,3i — X[0] - €3i+1,3i
i=1

-1
— X[oojt " €3i+1,3i+1 — X[10] * €3i+2,3i+1

— X[00]? - €3i+2,3i+2 — X[01] * €3i+3,3i+2 — Gi+1X[01] * 60,3i+2)

— Xjoo)t "+ €3n—3,3n—3 — X[0] * €3n—2,3n—3

— X0t "+ €3n—2,3n—2 — X[10] * €3n—1,3n—2

— X[o0]t * €3n—1,3n—1 — GnX[01] * €0,3n—1

- X[glo]t2 *€3n+1,1 — X[go]t €3n+1,3n+1 T X[0] * €3n+2,3n+1
— X[00] * €3n+2,3n+2 — X[01] * €3n+3,3n+2

— X[010]t * €3n+2,3n + X[o10]t " - €0,3n

+ (1001 + X1100]) (Id3n14 — 30,30 — €3n43.3n13) -

Again, if we take W = [111], 7(A)w gives the zero (3n + 4) x (3n + 4) matrix, so its kernel has dimension
3n+4. For a W = [110%110%21 ... 0%"11] of length k = ky + -+ -+ k, + (r + 1), its graph E4 (W) has again four
different types of connected components C, namely

a) C1, given by the graphs with only one vertex

In this case dim(ker(A¢,)) =1, and we have 3n +4+ (2k; — 1)+ Bn+3+ 2k — 1)+ -+ Bn+ 3+
2k, —1)+3n+4=3n+5+3n+2)r+ 2(k1 + - -- + k) connected components of this kind.
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b) Cs, given by the graph

(2.,C) ()l

S L

lfl

Applying Lemma to this graph, we get dim(ker(Ac,)) = 1. We only have one connected component
of this kind.

c) Cs, given by the graphs

el
(L)
el

1Q—1

lfl

Again, these graphs will be the key point of the element A, giving rise to the irrationality of the value
dim, y(ker(A4)). Lemma applied to these graphs tells us that

dlm(ker(AC:s)) = { 1 i p( ) othel?wise } =1+ 5k¢+1,1?(ki)—ki—ao—1-

We have r — 1 connected components of this kind.
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d) Finally Cy, given by the graph

() ()

1
T
° ° —(a1—-1)
-1 -1 —1
1
e
[ ] [ ]
[ ] [ ]
—1 -1 -1
o
[ ] [ ]
—1 -1 -1 Ca,
1
oo .
[ ] [ ]

for k, =1

for k, > 2

By Lemma we get dim(ker(Ac,)) = 0 unless our polynomial is of the form p(x) = ag + = + 22 (that
isn =2 and a; = ay = 1), in such a case we get

. 1 itk =1
dim(ker(Ac,)) = { 0 otherwise } = Ok

We only have one connected component of this type.

We restrict our attention to the case where p(z) is not of the form p(x) = ag + = + 2, since this particular
case was already handled in the preceding example. Due to (3.2.1) and Proposition [3.2.7] we get

dim, y (ker(4)) = > dim(ker(rg(A)w =Y Y dim(ker(Ac))u(W)

wev WevCeGa(W)

3n+4 (Bn+5)+@Bn+2)r+2(ki+---+k)+1
+2 Z ok1 Tkt (r+3)

r>1 k... ,kr>

(r = 1) + Ok, p(kn)—k1—ao—1 + Ok p(ky 1) —kr 1 —ao—1
+ Z Z k1t +kp+(r+3)
r>1 ke, ke >1

3n 44 1 (3n+5)+(3n—|—7)T 9ao+1 1 1 1
-3 +§Z o T3 Z?<ZW+W+ 2 2”(’““1))

r>1 r>1 k1>2 kp_1>2
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3n+4 9n-4+19 200+! 1 12n+23 2w+l 1
8 8 8 20 (k) 8 8 2p(k)
E>2 E>2
that is,
12n +23 a0+l 1
dim, y (ker(A)) = — -

s g 99 (R
E>2

which is an irrational number since the degree of the polynomial is at least 2, so the binary expansion of the
value is nonperiodic.
Let’s do a step further: we now construct an element A with von Neumann dimension of the form

1
G0 + q1 Z Shrp(R)
k>1

where again qo, q1 are nonzero rational numbers, p(z) is a polynomial satisfying the same conditions as before
(but we consider here that its degree is at least 1), and d > 2 is a natural number. We consider the element
from Ms,45(Ag) given by

A = —dxqg) - o1 — Xjo0)t - €00
— aoX[o1] - €10 — dxpogt " - €11
— X[ - €21 — dx(og)t " - €2
— dX[10] - €32 — X[oo)t - €33

— X[o1] - €43 — @1X]o1] - €13
n—2

+ Z ( — Xjoolt " - €3i41,3i41 — X[o] * €3i42,3i41
i=1

- X[og]t_1 ©€3i+2,3i+2 — X[10] * €3i+3,3i+2
— X[00]? - €3i+3,3i+3 = X[01] * €3i+4,3i+3 — Gi+1X[01] * 61,3i+3)
— Xpoo]t "+ €3n-2,3n—2 — X([0] * €3n—1,3n—2
— X0t " €3n—1,3n—1 — X[10] * €3n,3n—1
= X[o0]t * €3n,3n — AnX[01] * €1,3n
— X[010] £ €3n+42,2 — X[Qo]t * €3n+2,3n+2 T X[0] * €3n+3,3n+2
— X[00]? - €3n+3,3n+3 — X[01] * €3n-+4,3n+3
— X[o10]t * €3n+3,3n+1 + X[o10]t " - €1,3n+1

+ (X[00) + X[100]) (Id3n45 — €3n+1,3n+1 — €3n44,3n+4) -

For W = [111], n(A)w gives the zero (3n + 5) x (3n + 5) matrix, so its kernel has dimension 3n + 5. For a
W = [110%110%21 ... 0% 11] of length k = ky +- - - + k.. + (r — 1), its graph E4(W) has again four different types
of connected components C, namely

a) C1, given by the graphs with only one vertex

Here dim(ker(A¢,)) = 1, and we have (3n+5)+ (2k; — 1)+ (3n+3+2k2)+- - -+ (3n+3+2k,.)+(3n+5) =
3n+6+ (3n+3)r +2(ky + -+ + k) connected components of this type.
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b) Cs, given by the graph

=0

oo
i

We get, using Lemma [3.2.9] dim(ker(A¢,)) = 1. We only have one connected component of this type.

c) Cs, given by the graphs

o [ ] °
—d —d —d —d
Grd @
° [ ] °
—d —d —d —d

Lemma applied to these graphs gives
i ) — Ngki
dim (ker(Ac, )) = { 2 if ki1 = p(k;)d™ — 1 } O R

1 otherwise

We have r — 1 connected components of this kind.
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d) Finally C4, given by the graph

I
—
|
—

-1 -1

=21

|
Qu

)Ty e ) @@93
) e e )5 e o) )
) ey e ) Q D)) )

._.
|
1<%

—

I
—_

=
[y

¢
¢

=
L

|
A

I
—

I
—
I
—

el
) .@H.Q
el

| =
—

for k, > 2 for k, =1

We have here dim(ker(A¢,)) = 0 again by using Lemma for every possible value of k.. We only
have one connected component of this type.

Due to and Proposition we get
dim, y (ker(4)) = > dim(ker(rp(A)w)p(W) = > _ > dim(ker(Ac))u(W)

wev WevVCceGa(W)

_3n45 (3n+6) + (3n+3)r +2(ky + - + k) + 1
=T Z Z okt kot (7 +3)

r2lky,.. ke 21

n Z Z (r—1)+ 5k27p(k1)d’“1 -1t Jkr,p(kr,l)d’%fl—l
ok1+- kot (r+3)
r>1ky,.. kp>1

_ 3n+5+lz(3n+6)+(3n+8)r

8 8 27

r>1
2 1 1 1

*3 > 27( > rpena T 2. 2k7_1+17(’fr71)dkr*1)

r>1 k1 >2 kpo1>2
n+5 9n+22 2 1 12n+27 2 1
-8 + ) + 8 Z ok+p(k)dr ;) 8 Z 9k+p(k)d¥
E>1 E>1
that is,

. 12n+27 1 1

dlmvN(ker(A)) = T + Z kz>l W

which is an irrational number, and even transcendental (see e.g. [95]).

93



Chapter 3. Special cases: the lamplighter and the odometer algebras The Atiyah problem

After these examples one can derive the pattern in order to obtain an exponent of the form
po(k) +p1(k)ds + - + p,(k)dE

by simply adding more levels, i.e. by considering matrices of higher dimension, and gluing the corresponding
graphs in an appropriate way. We write down the corresponding element that gives rise to such a pattern.
If we let N = mg + ---+ m, to be the sum of the degrees of the previous polynomials, then the element A
realizing the preceding pattern belongs to M3nin45(Ag), and is given explicitly by

A=—xpot " e — X - €21 — Xpoot - €22

— X[10] - €32 — X[oo]? - €33 — X]o1] - €43 — (al,o - 1)X[91] " €03

m02

-1 —1
+ § , (— Xjoot " - €3j+1,3j+1 — X[q] * €3j+2,3j+1 — X[og]t - €3j+2,35+2

— X[10] * €35+3,35+2 — X@o]t * €3543,3543

1%% polynomial

— X[01] * €3j+4,3j+3 — @j+1,0X[01] * 60,3j+3>

-1 ~1
— Xjog)t  * €3me—2,3mo—2 — X[0] * €3mo—1,3mo—2 — X[00]  * €3mo—1,3mo—1

— X[10] * €3mo,3mo—1 — X[00]T * €3mg,3mo — Amo,0X[01] * €0,3mo
— X[01] * €3mo+2,1

- d1X[1@ " €3mo+1,3mo+2 — X[00]T * €3mo+1,3mo+1 — 0,1X[01] * €0,3mo+1
-1

— d1X[0g)t” " * €3mo+2.3mo+2 — X[0] * €3mo+3,3mo+2
-1

— diX[oo)t” " * €3mo+3,3mo+3 — d1X([10] * €3mo-+4,3mo+3

- X@o]t * €3mo+4,3mo+4 — X[01] * €3mo+5,3mo+4 — 41,1X[01] * €0,3mo+4

mi—2

+ E ( - X[oo * €3mo+35+2,3mo+35+2 — X[0] * €3mo+35+3,3mo+35+2

- X[o@t * €3mo+35+3,3mo+35+3 — X[10] * €3mo+35+4,3mo+35+3

— X[00]? * €3mo+3j+4,3mo+3j+4 — X[01] * €3mo+3j+5,3mo+35+4

ond polynomial

— Qj+1,1X[01] 60,3mo+3j+4)
—1
— X[00]t " * €3(mo+m1)—1,3(mo+m1)—1 — X[0] * €3(mo+m1),3(mo-+mi)—1

- X[OQ]t_l " €3(mo+m1),3(mo+m1) — X[10] * €3(mo+m1)+1,3(mo+m1)

= X[00]? * €3(mo+m1)+1,3(mo+m1)+1 — Gmy,1X[01] * €0,3(mo+mi)+1

— X[01] * €3(mo+m1)+3,1

— X[01] * €3(N—mp)+2,1

— dpX[10] " €3(N—myp)+n,3(N—my)+ntl — X[oo]f " €3(N —mn)+n,3(N—mn)+n
— a0, X[01] * €0,3(N—my)4n — dnXoo]t " €3(N— mn)-l-n-l-l 3(N—my)+ntl

— X[0] * €3(N—mp)+n+2,3(N—my)+n+l — an[og]t *C3(N —my,)+n+2,3(N—my,)+n+2

nt" polynomial

- an[lQ] " €3(N—my)+n+3,3(N—my)+n+2 — X[00]t * €3(N—my)+n+3,3(N—my)+n+3
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— X[01] * €3(N—mp)+n+4,3(N—mp)+n+3 — A1,nX[01] * €0,3(N—m,)+n+3

My —2

+ Z ( X[00] " " €3(N—my)+3j+n+1,3(N—mp)+3j+n+1

= X[0] " €3(N —m)+3j+n+2,3(N—mp)+3j+n+1
— Xl00t "+ €3(N o )+8j+nt2,3(N—mn)+ 32
— X[10] T €3(N—mp)+3j+n+3,3(N—mp)+3j+n+2
= X[00]F * €3(N —m)+3j+n+3,3(N—m,)+3j+n+3

1

— X[01] * €3(N—mp)+3j+n+4,3(N—my)+3j+n+3

— Aj+1,nX[01] 60,3(N—mn)+3j+n+3>

- X[og]f1 €3N +n—2,3N+n—2 — X[0] ' €3N+n—1,3N+n—2
- X[og]t_1 "€3N+n—1,3N+n—1 — X[10] - €3N+n,3N+n—1
= X[00]? - €3N+n,3N+n = Gm, nX[01] * €0,3N+n

- X[glo]t2 “E3N+n+2,1

+ X[o;o]t_1  €0,3N+n+1

— X[010]t * €3N +n+3,3N+n+1
— X[00]t - €3N+n+2,3N+n+2 T X[0] - E3N+n+3,3N+n+2
— X[00]¢ * €3N+n+3,3N+n+3 — X[01] * E3N+n+4,3N+n+3

+ (X[00) + X[100]) d3N4n+5 — €00 — €3N+n+1,3N+n+1 — €3N -+nt+4,3N-+n+4) -

ntt polynomial

last graph

The elements in between connect the different polynomials p;, and the contributions (monomials) of the poly-
nomials (that is, the sum po(k) + p1(k)df + - - 4 pn(k)dl) are accumulated in the x[o1] - €0 component. A

simplified schematic of a prototypical graph appearing here is as follows.

st polynomial

nt" polynomial

e<— o
o<i— @

o{—@0<— @
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Using the same procedure as before, a straightforward (but quite tedious) computation allows us to conclude
the proof. We leave the details to the reader. O

To conclude this section, it is interesting to compute some rational values. In [25], the authors computed
the von Neumann dimension of the element defined, in our notation from Chapterl, by ept+t ey = Xx\Eot+
t~x X\E,> Which belongs to Ag. We will compute, in general, the von Neumann dimension of the element

= Xx\E, !+t~ XX\Ena belonging to the x-subalgebra A,,. Under m,,, we obtain the element

(0, (bt + gy T2 i+ 1)
inside Ry, = K X [[157 My (K)FP7*) | where recall m = 2n + 1, and ¢, is the r x 7 matrix given by

0 0
1 0

)
—
o

It is then straightforward to show that

1 if kis even

im(ker (¢4 +x)) {0 otherwise

so by Proposition

dim, v (ker(a,)) = Z dim(ker(mp, (an)w))u(W)
WGV’VL
1 . . Fib,, (k) 1 Fib,, (2k)
gmti T Zdlm(ker(tm% RZo)) omtk — gmil T Z o2m+t2k
k>1 k>1

This sum can be computed by using the next lemma.
Lemma 3.2.11. We have
Z Fib,,(2k) 2™ —1 Z Fib,,(2k + 1) _ gm-1 2 4 2m+2 _gm+l

2k B +27 2k+1 +2
= 2 1+2m = 2 1+2m

Fiby (k) Fiby (2k Fiby (2k+1
Proof. Put K = 3o, 225 Keven = 30y 2282 Koqa = o 082, so that K = Keven + Kodd-
We already know from Lemma 3.2.3 that K = 2™~1. Once again we will use the recurrence relation for the

Fib,, (k). First note that for 1 < k < n, F‘b22£2k) = 222;2 = i, so for 1 < r < n we have that S&¥*" :=

et F“’;S“ 7+ Similarly, the first term of the second sum is %m(l) = %, and for 1 <k <n, % =
22k—1

_ 1
52FFT — 3 since

Flbm<m>:F1bm(m )+ +F1b ( )—Qm_3+...+2_~_1+1+022m—2’

Fibyy, (2k+1
so for 0 < r <n we have that S°4d := 3"} 1b22k+1+ ) — =i4r-ri2

We can decompose the initial sum as

Fib,, (2k) =Fib,(m+2k+1) n =1 Fib,,(m + 2k +1 — i)
Keven = Z gk T Z om+2k+1 =37 Z 2i ( Z om+2k+1—i )
k=1 k=0 i=1 k>0

N o= 1 Fib,, (m + 2k + 1 — 2i) | Fiby,(m 42k +1 —2i — 1)
1 + Z 92i ( Z om+2k-+1—2i ) T Z 92i+1 (Z om+2k+1—2i—1 )

i=1 k>0 i=0 k>0
n—1 . . n—1 . .
n 1 Fib,,2(n+k+1—1)) Keven 1 Fib,,2(n+k—14) + 1) Koaa
3 ™ ﬁ(Z 92(n+k-+1—1) ) + 22n + Z 92i+1 (Z 22(n+k—i)+1 ) + 22n+1"

i=1 k>0 i=0 k>0
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But for 1 <7 <n-—1, Zkgo% = Keven — 5S¢ and for 0 <i <n-—1, Z;QOW =

n—?
Kodd — S?L[idl SO

i

n—1 n—1
n 1 . 1 1 1
Keven = Z + E 92i (Keven - szvfi ) + 92n Keven + § 92i+1 (Kodd - Sgcldlfz) + 92n+1 Kodd
=1 =0

n N1 - 1 LB 1 geven 7l godd
:Z+(Zﬁ_222i+1)[(even+(Zpiﬂ)K_(Z 92i +Z 92i+1 )
i=1 =0 =0 =1 =0

no 1 _ 1 1 n 1 _ 2 1
We compute Y "y 5r = 3 — 359, Di—o 3771 = 5 — oz and

n—1 n—1 . n—1 n—1 .
Seven 1 &~n—i n 1 1 Sedd . 1 & n+1—i n 1 1
n—i _ L 4 :7_,1_7), s VA N o ,(1_ )
S =i i gl ) X mi g m =gt g

i=1 i=1 i=0 i=0

where we have used the sum Z}:ll jad = m((lf_f:);l) - (n;_llwn for real x # 1. Putting everything together,

n 1 1 2 1 n
Keven:777<1+W)Keven+(f )Kff

13 3 6-22n 4’
so the result Keyen = %K follows. Since K = Keven + Kodd, Koda also gives the stated value. =
To conclude,
dim, v (ker(a,)) = % + 22% even = 2m+2 1t §2n+3-

Note that, for n = 0, dim,y(ker(ag)) = %, and we recover the result given by Dicks and Schick. Also, as

n — oo, this value tends to zero, as expected since a,, — t + ¢! in rank, which is invertible inside QR,.

3.3 The odometer algebra

In this section we concentrate in studying the odometer algebra. We first recall how it is defined.

Let X be the compact space X = [[,.y{0,1} and let T" be the homeomorphism X — X given by the
odometer, namely for z = (x;); € X, T is given by

(1,29, 23, ...) if x1 =0,
T(x)=x+(1,0,...) =4 (0,...,0,1,40,...) ifx;=--=z,=1and z,11 =0,
(0,0, ...) if & = (1),;.

Note that the odometer action is just adding (1,0, ...) with respect to the binary arithmetics.

Let (K, %) be any field with a positive definite involution . We consider again the x-algebra A = Cx (X ) xr
Z. We will show that A is isomorphic to the *-algebra P considered in [29] Section 5]. For our convenience,
we are going to denote such a x-algebra by POf. In that paper, only the case K = C is considered.

We first recall some definitions from [29].

Definition 3.3.1. A function P :Z x Z — K is said to be a periodic operator if there exists some n > 1 such
that

a) P(z,y) =0if |x —y| > 2", and
b) P(x,y) = P(x + 2™,y +2").

We call the value 2™ the period of P. The set of periodic operators POk is a x-subalgebra of the K-algebra
of row-and-column finite matrices with coefficients in K, which is endowed with the *-transpose involution.

Let J be the periodic operator defined by J(z + 1,2) = 1 for all € Z and J(y,z) = 0if y # = + 1. We
now show that A is *-isomorphic to PO
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Proposition 3.3.2. There is a *-isomorphism ¢ : A — PO which sends Ck (X) to the diagonal x-subalgebra
A of POk and the generator t of Z to the operator J.

Proof. For n >0, and 0 <[ < 2™ — 1, consider the representation of [ in binary expression, say | = €; + 2¢e5 +
-+ 277 le, and the corresponding basic clopen subset

Ung=le1e2- €] ={z € X |z; =¢ for 1 <i<n},

and the set of projections e,; = xv, , in Cx(X) given by the characteristic functions on these clopen sets U, ;.
Note that they satisfy

E eng =1, €n, = €nt1,]l + Enil,iton

for every n > 0. The algebra Ci(X) is then a commutative ultramatricial algebra with a binary tree as a
Bratteli diagram. We define a map
(p:CK(X)—>A, en,l»—>dn,l
where d,,; is the diagonal periodic operator of period 2" defined by d,;(I,1) = 1 and d,, ;(k, k) = 0 for k # [
and 0 < k < 2™ — 1. It is easily checked that ¢ provides a *-isomorphism from Ck(X) to A. Let’s show that
it can be extended to a *-isomorphism A — POk.
Note that
ten it = 15)<Un,lt_1 = XT(Un.1) = XUn.(141) mod 2n = En,(I+1) mod 27~
Moreover, we also have that
JdntJ ™" = dp (141) mod 20

foralln > 0and 0 <[ < 2" —1. It follows that we can extend ¢ to a x-isomorphism ¢ : A — POk by sending
tto J. O]

When K is a subfield of C closed under complex conjugation and containing all the 2"*" roots of unity for
all n > 0, the algebra A is isomorphic to the algebra P considered in [29, Section 5]. Since Elek works with
K = C, we have no need to change our notation here since our algebra POk coincides in this case with his
algebra P.

In fact, if K is a field of characteristic different from 2 and containing all the 2"*" roots of unity for all
n > 0, we can give a description of C'x (X) as the group algebra of a concrete group, namely the Priifer 2-group
7(2%°). This group can be defined as the subgroup of the complex numbers that are 2" roots of 1 for some
n > 0, that is,

Z(2®) = {z € C| z*" =1 for some n > 1}.
In terms of generators and relations, if we denote by 1 the unit element of Z(2*°) and by g,, a primitive 27"
root of unity, we have the following presentation for Z(2°°):

<{gn}n21 ‘ 9% = 1a93¢+1 = gn forn > 1).

Take now a collection {20 },>1 of primitive 2" roots of unity in K such that §§n+1 = &9n. The Pontryagin
dual of the Priifer 2-group Z(2°°) can be identified with the group [] X (whose operation is addition
by carry-over) by means of

zEN

11 2 S 2(2%), 2= (a1,a5,...) = 6, where  ,(gn) = gut2ext 42"
€N

Under this identification, it is clear that the clopen subset U,, ; = {¢ € ZT2\°°) | #(gn) = €4} corresponds to
the clopen Uy, ; = [e1€2---€,) = {z € X | z; = ¢ for 1 <i<n}, where l =€, +---+2"" ¢,

We now cousider the group algebra K[Z(2°)]. By Fourier transformE the homeomorphism 7 : X — X
given by carry-over induces a Z-action on K[Z(2°)] by means of the diagram

K[Z(2%)] -2 Cx(X)

p(l)J( JT, T(f)(z)=F(T""(z))
K[Z(2%)] -2 Cx (X)
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That is, Z acts on K[Z(2°)] by automorphisms by the rule

p: L~ K[Z(27)],  p(1)(gn) = E2ngn-

In the next proposition we show that the group algebra K[Z(2°°)] is #-isomorphic to the %-subalgebra A of
diagonal periodic operators, and the Z-crossed product K[Z(2°°)] x, Z is *-isomorphic to the whole *-algebra
POk, hence #-isomorphic to Ck (X) X1 Z by Proposition [3.3.2]

Proposition 3.3.3. Let K be a field of characteristic different from 2 and containing all the 2™ roots of

unity for all n > 0. There exists then a x-isomorphism ¢ : K[Z(2%°)] — A which extends to a *-isomorphism
P K[Z(2%)] x, Z — POk by sending the generator t of Z to the periodic operator J.

Proof. This is a direct consequence of Proposition [3.1.1f we have *-isomorphisms
¥ K[Z(2%°)] -2 Cr(X) = A
which we know that extend to *-isomorphisms on the respective crossed products
b K[Z(2)] %, Z 25 Cx(X) xp Z =5 POK. O
Remarks 3.3.4.

1) An alternative proof for Proposition is given in [29, Lemma 5.2]: the author defines, for each n > 0
and 0 <1 < 2™ — 1, the diagonal periodic operator E, ; by

—xl
En,l (1'7 SL‘) = €2n P

hence establishing a *-isomorphism ¢ : K[Z(2%)] — A by sending g, — E, 1. This coincides with our
given isomorphism. Also,
JEn J " =& Eny

for all n >0 and 0 <1 < 2™ — 1, so ¢ extends to a #-isomorphism v : A — POg by sending ¢ to J.

2) It is worth mentioning that in this particular example it is not possible to realize the corresponding
algebra K[Z(2°°)] x,Z as a group algebra K[G], simply because the crossed product is a simple algebra,
as mentioned at the beginning of this chapter. Nevertheless, it is an interesting example because we are
able to use the whole machinery from Chapter [2] in order to fully study it, giving for example explicit
descriptions concerning its *-regular close and the set of [?>-Betti numbers arising from it (see the next

subsections and [3.3.2)).

The problem we encounter here is that, since the odometer algebra cannot be realized as a group algebra,
there is no canonical rank function on it even if K = C. Let’s try to analyze the situation. In this discussion,
we let K = C.

What we have is a canonical T-invariant Sylvester matrix rank function rkgz2~) on the group algebra
K[Z(2%)] (the one inherited from U(Z(2°°))) which, under .#, gives a T-invariant Sylvester matrix rank
function rke, (x) on Cx(X). By Lemma rko, (x) corresponds to a T-invariant probability measure
pon X, and in fact it is easy to compute its value on any clopen set of the form U, ; = [e1€e2- - - €,], where
l= €1+ - +2n_1€n:

1(Uny) =tz (F (xu,,)) = trrzeey (F (xu,.))

1 9n 1)) on_ 1
= trg(z(2)] (27(6+§§ngn o g2 2 1)) = 5

One observes that p coincides with the usual product measure, where we take the (%, 3)-measure on each
component {0,1}. Tt is well-known (cf. [24} Section VIII.4]) that u is an ergodic, full and T-invariant probability
measure on X, which in turn coincides with the Haar measure 1 on X = Z/(Q\OO) Hence we can apply our
construction from Chapter 2| (specifically, Theorem , to obtain a canonical Sylvester matrix rank function
tkg on A = Ck(X) X7 Z, therefore a canonical Sylvester matrix rank function on K[Z(2°)] %, Z by pulling
back rk 4 under .%.

This observation enables us to construct, for any field K of characteristic different from 2 and containing
all the 2" roots of unity for all n > 0, a canonical Sylvester matrix rank function on K[Z(2°)] x,Z by pulling
back rk 4 under .%.
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3.3.1 The *-regular closure R 4

In his article [29], Elek computed the rank completion ﬁ?;m of the x-regular closure of the lamplighter group
algebra for the case K = C by first computing the rank completion of the x-regular closure of the odometer
algebra and then showing that these two must be isomorphic, by a famous theorem of Ornstein and Weiss. We
have been able to exactly compute the *-regular closure of the odometer algebra A = K[Z(2%°)] %, Z in the
case K being any field of characteristic different from 2 and containing all the 2"*" roots of unity for all n > 0.

First of all, we first show that our -regular closure R 4 as defined can be identified with his x-regular
closure defined in [29] Section 2] for crossed product algebras in the case K = C, the field of complex numbers.
His definition uses the Murray-von Neumann construction for group-measure spaces, as defined in Remark
2). So here X = [[,.y1{0,1}.

We denote by A the left-regular representation \ : L= (X, 1) x7 Z — B(H), where H = 12(Z, L*>(X, 1i)).
Note that A = Cx(X) x7 Z C L™(X, 1) X7 Z. We denote by N(A) the weak-completion of A\(A) inside
B(H), which coincides with the weak-completion of A\(L*(X, 1) X7 Z), denoted by N (T'). One obtains in this
way a diagram

AC R AC Rrk
N
L>(X, 1) 1 Z—— Rr—— U(T)
where U(T') is the algebra of (unbounded) affiliated operators of N'(T'), rkyr) is its canonical rank function,

— 1k
and Rp := ./\/‘(T)r “ " The rank function rky(Ty, when restricted to A, coincides with rk 4 by the uniqueness
part of Proposition [2.3.8] since for any clopen subset U of X

tky ) (XU) = trpee(x,m)xpz(XU) = /XXUdﬁ(m) = u(U).

So an argument similar to the one given in the proof of Proposition [3.1.6] extends the above diagram to a
commutative one
AC 7 R_AC mrk

N 12

We are now ready to compute R 4 for a general field K satisfying the above hypotheses. We will follow the
same notation as introduced in Section for the case of the lamplighter group algebra. We take E,, = [11...1]
(with n one’s) for the sequence of clopen sets, whose intersection gives the point y = (1,1,1,...) € X. We take
the partitions P, of the complements X\ E,, to be the obvious ones, namely

P, ={]00---00],[10---00],...,[11---10]}.

The unital *-subalgebra A,, is then generated by the partial isometries xzt for Z € P,,.

The quasi-partition P,, is really simple in this case: write Zno =100---00], and Z,,; = T"(Zy o) for 1 <
2" — 2. Note that these clopen sets form exactly the partition P,,, and that T(E,) = Z,, 0, T(Zp2n—2) =
Therefore there is only one possible W € V,,, which is of length 2" and given by

W=E,NT Y Zno) T 2(Zp1) - NT 2" Y Zpon_ o) NT 2 (E,) = E,.

1<
E,.

Clearly,

DD k(W) =2"u(B,) =1
k>1Wev,
|W |=k

as we already know.

The representations 7, : A, < R,z — (hw - )y become *-isomorphisms, with R,, = Man (K). Indeed,
for W = E,, we have eqo(W) = xg,, and for 1 < i < 2" — 1, ex(W) = xri(g,) = Xz,,.,- Therefore
hp = Zf:gl ei;(W) = xx = 1. The embeddings ¢,, : A,, — A, 1 become the block-diagonal embeddings

n

Mon (K) — Mans1(K), x> <g 2)
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so that A, = @ A, = hg Msn (K). Note that A is already x-regular; the problem is that it does not
contain A, in fact it is contained in A. Roughly speaking, what we need to adjoin to A, in order to get the
whole algebra A is the part corresponding to the generator of Z, namely the element ¢. This is what we are
going to do next.

Definition 3.3.5. For every n > 1, let A,,(¢) be the unital *-subalgebra of A generated by .4,, and t.
We can completely characterize these x-subalgebras.
Proposition 3.3.6. There exists a x-isomorphism A, (t) = Man (K[t?" t7%"]).

Proof. Write eg.l) =e;;(Ep) € A, for 0 <i,j <2" — 1. These form a complete system of matrix units inside
A, (t), so by [64, Theorem 17 5, see also Remark 17.6], there is an isomorphism A,,(¢) 2 Mz (T'), being T the

centralizer of the family {e }0<m<2" 1 in A, (t). The isomorphism is given by

~1
a— Z aijegy)7 with a; Z ekZ ca- e]k eT
i,j=0

which is also a *-isomorphism. We thus only need to prove that T = K[t?",t~2"]. The inclusion K[t?",¢t=2"] C
T is clear, since

12" et = 12ty Y = tiygan gt = txp,t T = el

Therefore A, (t) = Mo (T) D Myn (K [t?",t72"]). In order to prove equality, we only need to check that the
element t € A, (t) belongs to Man (K [t?",t=2"]) under the previous isomorphism. But this is easy:

on_q on_g
t= Z tef} Z €z+1 i t2neon2)n | € Man (K[, 67%7]).
Henceforth we obtain the desired *-isomorphism. O

The obvious inclusion map A, (t) — A,;1(t) translates to an embedding from M. (K[t?",t72"]) to
Monia (K[t2"172"]) given by

0, t2"“1d2n>

on
€ij > €jj + €iqon jyon, 17 Idon — <Id 0
271 271,

Corollary 3.3.7. A is x-isomorphic to the direct limit lgl Mon (K[t?" ,t72"]) with respect to the previous
embeddings.

Proof. First one should note that the x-subalgebra of A generated by ¢t and A is A itself, since Cx (X) C A

by Lemma Now each Anng Vé}Ln(t), s0 Ase = 1i : A, C hﬂn A, (t). But t € hgn A, (t) too, so
A=lim Ay(t) = lim M- (K[t*",t72"]) by Proposition above. O

We are now ready to compute R 4.
Theorem 3.3.8. There is a x-isomorphism R 4 = hﬂn Mo (K (t2")), where we specify the transition maps

Mon (K (t2")) < Myas: (K(t2"")) during the course of the proof.

Proof. We have embeddings A, (t) — A < R4 — R By Lemma the field of fractions of the
Laurent polynomials K[t?" t=2"] C A, (t), which is K (t*"), sits inside R 4. Hence there is, for each n > 1, a
commutative diagram

A () Mon (K (12"))—— R4
I

A1 () Mynia (K12 ) —— R4
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The embedding A, (t) < A, +1(t) extends uniquely to a *-homomorphism
Mo (K (£2")) = Mynsr (K(£2" ).

This is straightforward to see, once we prove that for any nonzero element ¢(t) € K[t?",¢=2"], the corresponding
matrix in Mani1 (K[t2",¢72""']) becomes invertible in Man+1 (K (12" )). By multiplying with a suitable power
of t*2" | it is sufficient to consider the case when q(t) = X\g + Ait? 4 - + Agpy1 (t27)?" ! with A\ # 0. But

2r
Idgn Oy 0,. #""'Idon 0,. "' Idgn 0,.
t A A <ot Aoy Aoy
a(t) = Ao (OQn 1012,1)4r L (Idzn 0, )7 Tl 0, e g
02n t2n+11d2n ? on+1 Idgn 0277. -
and (Idgn 0,. ) =t (02n Id%), so if we define

+ )\4(t2n+1)2 R )\zr(tTH)T c K[t2n+l7t_2n+l]7
+ )\5@2”“)2 R )\2r+1(t2n+l)T c K[t2n+l7t

(even (t) = Ao + )\2t2n+1
Goad(t) := A1 + A2

_on+1
S

then ¢(t) is mapped to the matrix

<qeven (t)IdQ" Qodd (t)t2n+ ' Id2" >
Godd (t)IdQ" Geven (t)IdQ"

which is invertible in Mya1 (K(t2""")) with inverse

1 ( Geven (t)IdQ" _QOdd(t)thJrlIdQ") )
Geven (t)2 - t2n+l(IOdd (t)Q —dodd (t)IdQ" Geven (t)IdQ”
Notice that this matrix is well-defined since the polynomial geyen (t)2 2t

so is invertible in K (t2"").

Therefore the previous commutative diagrams extend to commutative diagrams

A (1) Mo (K (")) R

M

|
A1 () Maynia (K (12")) —— R4

m

A(—> hg’ln MQ?L (K(th))C—> RA

t2n+1 Id2n> i
02n

goaa (t)? has nonzero constant term,

But lim = Man (K (t*")) is already *-regular since each factor My. (K (t2")) is, and contains also A, so R4 =

lig Mo (K (£*")) as required.

O

In particular, since ling Man (K(t*")) has a unique rank function rk, the rank function rkz , on R 4 is also

unique, and they agree under the previous *-isomorphism.

3.3.2 Determining C(.A)

In this last subsection we are going to compute explicitly the set C(A) consisting of all positive real values that

the Sylvester matrix rank function rk 4 can achieve. First, let

C(R4) =k, (fj Mi(RA)) CR*

i=1

and note that C(A) C C(R.).
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Theorem 3.3.9. C(A) = C(R4) = Z[3]".

Proof. The argument is similar to the one given in the proof of Proposition Since R 4 is a x-regular
ring with positive definite involution, each matrix algebra M;(R 4) is also a x-regular ring. Hence for each
A € M;(R.4), there exists a projection P € M;(R4) such that rkg,(A) = rkg,(P) (recall Theorem [L.2.11).
We conclude that C(R 4) is equal to the set of positive real numbers of the form rkg , (P), where P ranges over
projections in matrices over R 4.

Now each such projection P is equivalent to a diagonal one ([39, Proposition 2.10]), that is, one of the form

P1

P2 for some projections p1, ..., pr € R4,

br

so that rkg ,(P) = rkg,(p1) + - - - + kg, (pr). But since R 4 = ling ~ Man (K (t*")), the set of ranks of elements
in R4 is exactly Z[3] *N[0,1]. Therefore rkg ,(P) € Z[%]Jr. This proves the inclusions

e ceracali]”

The inclusion Z 1] " C C(A) is straightforward, since

_m—|—1

rkA(e(()g)—i—-n—l—efﬁ,)n) for0<m<2™—1. O

3.4 The general odometer algebra

In this section we concentrate in studying the generalized odometer algebra. We first recall how it is defined.

Fix a sequence of natural numbers 7o = (n;);en satisfying n; > 2 for all ¢ € N, and consider X; to be the
finite space {0, 1,...,n; —1}. We can thus form the compact space X = [];.y Xi. Let T' be the homeomorphism
X — X given by the odometer, namely for x = (z;); € X, T is defined by

(IE1+17I’2,I3,...> ifLEl?énl*l,
T(z)=z+(1,0,..) =< (0,...,0, Zpms1 + L, Zma2,...) fxy=n1—1,...2m =nmym —1and Ty # 1 — 1,
(070, ) if x = (’n, — 1)z

Note that the odometer action is just addition of (1,0, ...) by carry-over.

Let (K, *) be any field with a positive definite involution x. We consider again the crossed product x-algebra
Om) := Ck(X)xrZ. We can define a measure p on X by taking the usual product measure, where we consider
the measure on each component X, assigning mass ni on each point in X;. It is well-known (e.g. [24], Section
VIIL4]) that 4 is an ergodic, full and T-invariant probability measure on X, which in turn coincides with the
Haar measure fi on X if we consider X as an abelian group with operation given again by carry-over. Hence
we can apply our construction from Chapter [2] (specifically, Theorem [2.3.7), to obtain a canonical Sylvester
matrix rank function rkp gy on O(n).

3.4.1 The *-regular closure Rogm)

By using similar techniques from the last two sections, we have been able to exactly compute the x-regular
closure R of the generalized odometer algebra O(m). We will follow exactly the same steps as in the
previous section.

First, define new integers p,, = ny ---n,, for m € N. At each level m > 1, we take E,, = [00...0] (with m
zero’s) for the sequence of clopen sets, whose intersection gives the point y = (0,0,0,...) € X. We take the
partitions P,, of the complements X\ F,, to be the obvious ones, namely

P ={[10---0],...;[(ny —1)0---0], ..., [(n1 — D)(n2 = 1) -+ - (ny, — D]}

The unital *-subalgebra O(n),, is then generated by the partial isometries x zt for Z € P,,.
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The quasi-partition P, is really simple again: write Z,, o = [10---0], and Z,,; = T"(Zpm,) for 1 <
Pm —2. Note that these clopen sets form exactly the partition P,,, and that T(E,,) = Z.0, T(Zm,p,.—2) =
Therefore there is only one possible W € V,,,, which is of length p,, and given by

l <
E,.
W =EnNT  (Zmo) NT*(Zma) N NT PN Z gy 0) NT P (Epy) = Epy.

Clearly,

D> k(W) = pup(Ep) =1

k>1WEV,,
|W|=k
as we already know.
The representations 7, : O(R)m — R,z — (hw - ) become s-isomorphisms, with R,, = M,  (K).
Indeed, for W = E,,, we have ego(W) = xg,,, and for 1 <i < p,,, — 1, e;;(W) = X71i(E,.) = XZn.._.- Lherefore

hg, = f;”ofl e;i(W) = xx = 1. The embeddings ¢, : O(R);, < O(M);my1 become the block-diagonal
embeddings
x 0
My, (K) = My, (), e | 00
0 z

so that O(M) e = lim O@)m = lim M, .. (K). Note that O() is already x-regular; the problem again is
that it does not contain O(7), in fact it is contained in O(7). We need to adjoin to O(7)s the element ¢ in
order to get the whole algebra O(m). This is what we are going to do next.

Definition 3.4.1. For every m > 1, we denote by O(%), () to be the unital *-subalgebra of O(7) generated
by O(7)., and t.

We can completely characterize these x-subalgebras.

Proposition 3.4.2. There exists a x-isomorphism O(7)m,(t) = M, (K[t t7Pm]).

Proof. The proof is exactly the same as in Proposition The elements el(.m) = eij(En) € O@)m, for
0 < 4,57 < pm — 1, form a complete system of matrix units inside O(7),,(t), so there is an isomorphism
OM)m(t) = M,,,(T), being T' the centralizer of the family {egn)}ogi,jgpm—l in O(@)m(t). The isomorphism
is given explicitly by
Pm—1 Pm—1
a+— Z aijegn), with a;; = Z em -a- ejk) eT
i,j=0

which is also a x-isomorphism. We only need to prove that T'= K[tP™, ¢t Pm]. Since

tpm.el(.;n)t_pnl — tpmtiXEmt_jt_pnl — tlepm (Em)t_] — tZXE t~ J — eg;n)

and
Pm—1 P —2
t = Z te(m) Z eg:_nl)l _,_tpme(m) L EM, (K[t ),
=0
we deduce that T'= K[tP™,t7Pm], so we obtain the desired *-isomorphism. O

The obvious inclusion map O()y, (t) < O(T)m+1(t) translates to an embedding from M, (K[tPm, t=Pm])

to My, ., (K[tPm+1 t~Pmi1]) given by
Opm 0p7n tpmd—l Idpm
ot 1—1 Id,, Pm _— Pm
€ij — Z Cithpm,j+hpms " 1dp,, = : )
k=0 .
s Opnl
Opm Id,, Oan
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Corollary 3.4.3. O(n) is x-isomorphic to the direct limit lim M, (K [tPm, t—Pm]) with respect to the previous
embeddings.

Proof. First one should note that the x-subalgebra of O(m) generated by ¢t and O(11) o, = lim OM)m(t) is O(m)
itself, since Cx(X) C O(N)x by Lemma Now each O()y, € O@)m(t), so0 O(M)se = ligm(Q(ﬁ)m C
lim O@)m(t). But t € lim O(@)m(t) too, so O(m) = lim OM)m(t) = lim M, (K[tPm t~Pm]) by Propo-
sition 3.4.2] above. O

We are now ready to compute Ro)-

Theorem 3.4.4. There is a x-isomorphism Rom) = hﬂm M, (K(tP™)), where we specify the transition maps
M, (K(tPm)) — M, ., (K(tPm+)) during the course of the proof.

Pm+1

Proof. We have embeddings O (%), (t) — O(n) — Rom) — Rik- By Lemma|2.4.4 the field of fractions of the
Laurent polynomials K [tPm,t7Pm] C O(7).,(t), which is K (tP™), sits inside Ro). Hence there is, for each
m > 1, a commutative diagram

O@)m () ——— My, (K(t"))——— Rom)
I

O@)mt1(t)—— Mp,,,, (K (tPm+1))—— Rom)

Pm+1
The embedding O (7)), (t) < O(7)m+1(t) extends uniquely to a x-homomorphism
Mp'm (K(tpm)) — M

Pm+1

(K (7).

This is straightforward to see, once we prove that for any nonzero element ¢(t) € K[tP™, ¢t Pm], the corre-
sponding matrix in M, (K[tPm+1,t~Pm+1]) becomes invertible in M, (K (t’=+)). By multiplying with a
suitable power of t¥P=, it is sufficient to consider the case when q(t) = Ao + AitP™ + -+« + Agyy,, (P ) Bt

with Ao # 0. But

qo(t)Id,,, Unppr—1 (BP0 Idy, -0 g (B)tPIdy,
© @ (H)Id,,, qo(t)Id,,, s qo(t)tPmrId,,
q . . . .
qnm+171(t):[dpm qnm+1*2(t)1dpm e qo(t):[dpm

where
qO(t) = Ao + >‘"m-¢—1tperl +eee )\kn‘m+1 (tpm+l)k € K[tpm+17t7pm+l]a
q(t) == N\ + )\nm+1+itpm+1 Ly )‘(k—l)nm+1+i(tpm+l)k71 € K[tPm+1 t7Pm+1] for 1 < < myyqq1 — 1,

which is an invertible matrix in M, (K (tPm+1)) since its determinant is of the form

Pm+1
/\gm#—l 4t (polynomial in t),

so invertible in K (tPm+1) because Ag # 0.
Therefore the previous commutative diagrams extend to commutative diagrams

O[@)m () ——— My, (K (")) ——— Rom)

m N

I
(K (tPm+1))—— Rom)

N

Pm+1

O()m 1 () —— M
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But lim M, (K (tPm)) is already *-regular since each factor M, (K (tP™)) is, and contains also A, so Rom) =
lim M, (K (tP™)) as required. O

In particular, since hﬂm Mp,, (K (tP™)) has a unique rank function rk, the rank function rkg, ., on Rogm)
is also unique, and they agree under the previous *-isomorphism.

3.4.2 Determining C(O(n))

In this last subsection we are going to compute explicitly the set C(O(m)) consisting of all positive real values
that the Sylvester matrix rank function rko) can achieve. First, let

C(Rowm)) i= kR, ( U Mi(R@(ﬁ))> c R+
=1

and note that C(O(n)) € C(Rom))-
First, we need some preliminary definitions.

Definition 3.4.5. For each sequence @i = (ny,na,...) of positive integers n; > 2, one may associate to it the

supernatural number
i>1 qeP

where P = {q1, g2, ...} is the set of prime numbers ordered with respect to its natural order, and each ¢4(n) €
{0} UNU {oc}.

As in [65], Definition 7.4.2], from any supernatural number n one can construct an additive subgroup of Q,

denoted by Z(n), consisting of those fractions ¢ with a € Z, and b € Z\{0} being of the form

b= H qsq(b)7

where €,(b) < g,(n) for all ¢ € P, and ¢,(b) = 0 for all but finitely many ¢’s.

If n comes from a sequence @ = (ny,ns, ...) as above, Z(n) is exactly the additive subgroup of Q consisting

of those fractions of the form a

——, wherea € Z, and r € N.
Ny Ny

Theorem 3.4.6. C(O(n)) = C(Rom)) = Z(n)*.

Proof. As in the proof of Theorem [3.3.9, C(Rom)) is equal to the set of positive real numbers of the form
kR o (P), where P ranges over projections in matrices over Ro). Each such projection P is equivalent to
a diagonal one, so it is of the form

D1

P2 for some projections p1, ..., pr € Rowm),

br

so that tkr, ., (P) = ko, (P1) + -+ - + kR, (Pr)- But since Rogm) = lim My, (K(tP™)), the set of ranks
of elements in Rom) is exactly Z(n)* N[0, 1]. Therefore rkg,, ., (P) € Z(n)*. This proves the inclusions

C(O@)) € C(Rowm) € Z(n)".
The inclusion Z(n)™ C C(O(n)) is straightforward, since

[+1
FkC’)(ﬁ)(e&n)+~~+el(lm)):pL for0<I<p, — 1. O
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Chapter 4

(GGeneralizing a result of von Neumann

This chapter concerns about the characterization of the rank completion of some ultramatricial K-algebras,
being K an arbitrary field. We show in Theorem [£:2.2] that, whenever the rank completion of an ultramatricial
K-algebra becomes a separable continuous factor (i.e. a continuous factor Q containing a dense subalgebra,
with respect to its rank metric, of countable K-dimension), then its rank completion is isomorphic to a well-
known continuous ring, know as the von Neumann continuous factor, and denoted by M g. We also characterize
such K-algebras by means of a local property.

We extend, in Sectionsand the previous result to D-rings (being D a division ring) and ultramatricial
x-algebras (when K is a field endowed with a positive definite involution). We have not found a reasonable
analogue of the local condition in the case of D-rings, but we have succeeded, in a some technical way, for the
case of fields with involution.

Throughout all this chapter we will not make use of the same notations used in the previous chapters, in
the sense that A will not stand for any Z-crossed product algebra anymore, just like B will not stand for any
approximation algebra neither. In terms of notation, this chapter is independent of the other previous ones.

4.1 Introduction

Murray and von Neumann showed in [80, Theorem XII| a uniqueness result for approximately finite von
Neumann algebra factors of type ;. This unique factor R is called the hyperfinite II;-factor and plays an
important role in the theory of von Neumann algebras. It was shown later by Connes [21] that the factor R
is characterized, among I1;-factors, by various other properties, such as self-injectivity (in the operator space
sense), semidiscreteness or Property P. It is in particular known (e.g. [94, Theorem 3.8.2]) that, for an infinite
countable discrete group I" whose nontrivial conjugacy classes are all infinite (termed ICC-groups), the group
von Neumann algebra A/(T') is isomorphic to R if and only if T' is an amenable group.

Von Neumann also considered a purely algebraic analogue of the above situation, namely the example we
?}?Ze;el(rllugr}:js)ter Example 2). We briefly recall it. For a field K, take the direct limit hgqn Mon (K) of

My(K) = My(K) = -+ — Mon(K) — -+ -
0,

). It is a (von Neumann) regular ring which
x

with respect to the block-diagonal embeddings x <0m
2TL

admits a unique rank function rk defined on an element z = limy ,, to be rk(z) = limy, rky (2 ), where rk, = R

is the usual normalized rank on Mas» (K). The completion of lim  Man (K) with respect to the induced rank
metric, denoted by Mk, is a complete regular ring with a unique rank function, again denoted by rk, which
is a continuous factor, i.e., a right and left self-injective ring where the set of values of the rank function fills
the unit interval [0, 1].

There are recent evidences [28], 29, [30] that the factor M g could play a role in algebra which is similar to
the role played by the unique hyperfinite factor R in the theory of operator algebras. In particular, Elek has
shown in [29] that, if I' = Z/2ZZ is the lamplighter group, then the continuous factor ¢(I") obtained by taking
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the rank completion of the s-regular closure of C[I'] in the x-algebra U(I") of unbounded operators affiliated to
N (), is isomorphic to Mc.

This raises the question of what uniqueness properties the von Neumann factor M i has, and whether we
can formulate similar characterizations to those in the seminal paper by Connes [2I]. As von Neumann had
already shown (and was published later by Halperin [44]), Mk is isomorphic to the factor obtained from any
factor sequence (p;);, that is,

M = Ty M, (K),

where (p;); is a sequence of positive integers converging to infinity and such that p; divides p;1 for all 4. Here
the direct limit is taken with respect to the block-diagonal embeddings

x 0
(K)? T = 9
0 x

and the completion is taken with respect to the unique rank function on the direct limit rk, defined as before.

The purpose of this chapter is to obtain stronger uniqueness properties of the factor M. Specifically, we
show that if B is an ultramatricial K-algebra and rkg is a nondiscrete extremal pseudo-rank function on B, then
the completion of B with respect to rkp is necessarily isomorphic to M. We also derive a characterization of
the factor M g by a local approximation property (see Theorem . This was used in Chapters [2| and to
generalize Elek’s result to arbitrary fields K of characteristic # 2, using a concrete approximation of the group
algebra K[I'] by matricial algebras. It is also worth to mention that, as a consequence of our result and [38,
Theorem 2.8], one obtains that the center of an algebra Q satisfying properties (ii) or (iii) in Theorem is
the base field K.

Elek and Jaikin-Zapirain have recently raised the question of whether, for any subfield K of C closed under

M, (K) — M

Pi+1

complex conjugation, and any countable amenable ICC-group G, the rank completion ﬁ?;[c] of the x-regular
closure of K[G] in U(G) is either of the form M, (D) or of the form Mp := D ® x M, where D is a division
ring with center K. In view of this question, it is natural to obtain uniqueness results in the slightly more
general setting of D-rings over a division ring D, and also in the setting of rings with involution, since in
the above situation, the algebras have a natural involution which is essential even to define the corresponding
completions. We address these questions in the final two sections.

4.2 Von Neumann’s continuous factor

For a field K, a matricial K-algebra is a K-algebra which is isomorphic to an algebra of the form
M, (K) X My, (K) X -+ x M,, (K)

for some positive integers ny, na, ..., ng. An ultramatricial K-algebra is an algebra which is isomorphic to a direct
limit hgn A, of a sequence of matricial K-algebras A,, and unital algebra homomorphisms ¢, : A, — A,11.

Let K be a field. Write M = M for the rank completion of the direct limit lim = Man (K) with respect
to its unique rank function. Von Neumann proved a uniqueness property for M. We are going to extend it to
ultramatricial algebras. The proof follows the steps in the paper by Halperin [44] (based on von Neumann’s
proof), but our proof is considerably more involved. Indeed, we will obtain a uniqueness result for the class of
continuous factors which have a local matricial structure.

Definition 4.2.1. By a continuous factor we understand a simple, regular, (right and left) self-injective ring
Q of type Iy (see Section for the definition of the types and for a survey of the structure theory of regular
self-injective rings).

It follows from Proposition that Q admits a unique rank function, denoted here by rkg, and that Q
is complete in the rko-metric. Therefore, as we have already explained in Section the range of rkg can be
either a finite set of values of the form {0,%,...,2=1 1} for some natural number n > 1, or the whole interval
[0,1]. In fact, since Q is complete of type Iy, it follows easily that rko(Q) = [0, 1] indeed.

The adjective “continuous” used here refers to the fact that rkg takes a “continuous” set of values, in contrast
to the algebra of finite matrices (type I,,), where the rank function takes only a finite number of values (see
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Example 1)). Note however that any regular self-injective ring R is a right (left) continuous regular ring,
in the technical sense that the lattice of principal right (left) ideals L(Rpg) is continuous, see [39, Corollary
13.5]. However, the latter property will play no explicit role in the present chapter.

Since Q is a simple ring, the discussion following Proposition [1.2.6] asserts that Q satisfies the comparability
axiom. We shall use this property thoroughly without explicitly mentioning it.

We will show the following result, among others.

Theorem 4.2.2. Let Q be a continuous factor, and assume that there ezists a dense K-subalgebra (with respect
to the rkg-metric topology) Qo C Q of countable K -dimension. Then the following are equivalent:

(1) Q= M.

(2) Q = B for a certain ultramatricial K -algebra B, where the completion of B is taken with respect to the
metric induced by an extremal pseudo-rank function on B.

(8) For anye >0 and x4, ...,x, € Q, there exists a matricial K-subalgebra A of Q and elements yq,...,y, € A
such that
rko(z; —yi) <e fori=1,... k.

The implication (1) = (2) is trivial, since M is already the completion of the ultramatricial K-algebra
@n Mon (K) with respect to its unique rank function, which is extremal.

For (2) = (3),if B= lim A, with respect to unital algebra homomorphisms ¢,, : A,, — A,,+1, then
for every € > 0 and elements 1, ..., z,, € Q there are elements y1, ..., y, € ligm A, being close to the x; up to
€ in rank, that is

rko(z; — i) <e fori=1,.. k.
Since y1,...,yn € lim A, there exists an integer N > 1 such that Ay contains all of them. But Ay is
already a matricial?—subalgebra of Q, so the implication is proved.

The hard implication is (3) == (1). For its proof, we will use a method similar to the one used in [44].
However the technical complications are much higher here.

We first prove a lemma, and show that the implication (3) = (1) holds assuming that the hypotheses of
the lemma are satisfied. After this is done, we will show how to construct (using (3)) the sequences, algebras,
and homomorphisms appearing in the lemma.

First, let’s fix some notation. Given a factor sequence (p;);, the natural block-diagonal embeddings

x 0

M, (K) — M,

Pi+1

0 x
will be denoted by 7;y1,:. If j >4, the map v;;: M, (K) — M, (K) will denote the composition

Vi = V5,5—1° """ © Yitlis

and the map voo,i: Mp, (K) — lim M, _(K) will stand for the canonical map into the direct limit. By [44],
there is an isomorphism M = h%mn M, (K), where the completion is taken with respect to the unique rank
function on the direct limit. We henceforth will identify M = M g with the algebra lim M, (K.

Notation 4.2.3. Finally, for (X,d) a metric space, A,Y subsets of X and € > 0, we write A C. Y in case
each element of A can be approximated by an element of Y up to € with respect to the metric d, that is, for
each a € A there exists an element y € Y such that d(z,y) < e.

Lemma 4.2.4. Let Q be a continuous factor with unique rank function rkg. Assume that there exists a dense
K -subalgebra Qg of Q of countable dimension, and let {x,}, be a K-basis of Q.

Let 6 € (0,1) be a real number. Assume further that we have constructed two strictly increasing sequences
(¢:)i and (p;); of natural numbers such that p; divides p;+1 and satisfying

PL~ ...~ Pi~ Pivr oo im Pi —
a) 1>50 > >8> > >0, lim ¢+ =0 and

109



Chapter 4. Generalizing a result of von Neumann The Atiyah problem

b) M—0<%(%— )foriZO.

qi41

We also demand py = qo = 1. Moreover, suppose that there ezists a sequence of positive numbers g; < % -0,
and matricial K-subalgebras A; C Q together with algebra homomorphisms p; : My, (K) — Q satisfying the
following properties:

i) tka(pi(1)) = L= for all i.

ii) For each i and each x € p;(1)Aip;(1), there exists y € My, .,
pi
tko (2 — pit1(y)) < P 0.

?

(K) such that

iii) For each z € M, (K), we have

ko (pi(2) = pir1(vit1.i(2))) < % -

i’U) Span{xh 7x’L} gsi ‘A’L
Then there exists an isomorphism 1 : M — eQe, with e € Q an idempotent such that rkg(e) = 6.

Proof. For j > i > 1, we have the following diagram

Yi+1,i
Mpi (K) 7 Mpi+1 (K

S |

Q = Q = = Q =

which may be, in general, not commutative. We are going to construct a "limit" version of it which indeed
commutes. Fix a positive integer ¢ > 1 and write §; = % — 6. Note that by b), 6; < %(51-,1 < 27% For
z € M, (K), we consider the sequence in Q given by {p;(v;.:(2))};>i. It is a simple computation to show,
using i), that for h > j > i we have

) Yi42,i4+1 Yi,i—1

h-1
rko(pn(hi(2))=p; (134(2)) = tko | Y prr1(ver14(2) = pr (i (2))
h= (4.2.1)
h—1 h—1 h—1
< > tko(prt1(Ve+1,:(2) — pr(,i(2))) < Z O < Z 27k < 279! e 0.
k=3 k=j k=3

As a consequence, the sequence {p;(7;,i(2))};>: is Cauchy in Q, so convergent. We can therefore define algebra
homomorphisms v, : M,, (K) — Q by

Wilz) = limp;(75.4(2)) € Q.
Now the previous diagram with the p’s replaced with the t’s commute, as the following computation shows:
Yip1(Vitr4(2)) = lim i (Vi1 (Yiv1,i(2))) = lim p; (75,i(2)) = i (2).
So the maps {¢,;}; give a well-defined algebra homomorphism 1 : lim = M), (K) — Q, defined by

Y (Vo0,i(2)) = i(2)  for z € M, (K).

Let’s extend it to the rank completion of hﬂn M, (K). Denote by {ex 1<k i<p; the standard matrix units of
M,,(K). By 1) and the fact that the ey are mutually orthogonal equivalent idempotents, their images p;(exx)
all have the same rank in Q, which equals rko(p;(exr)) = %as the following computation shows:

Di
— =rtko(pi(1)) = tko(pi(e11)) + - - - +rka(pi(ep,p;)) = pi - tko(pi(exr))

3
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Now for z € M), (K), if we denote by rk,, = R;pi the unique rank function on M, (K), there exist invertible

i

matrices P,Q € M, (K) such that PzQ =Idy ®0,,_n = e11 + - -- + enn, being N the usual matrix rank of
z. By applying p; and taking into account that the P, Q) are invertible,

Rloi(2) _ Py (o) = B k(i (2))-

tko(pi(2)) = rko(pi(P2Q)) = rko(pi(en)) + -+~ +rkolpilenn)) = — - ” ”

Therefore

. . Dy
1k (e (4))) = im ko (134(2)) = lim 22 - tepg(2c(2)) = - (e (2).
j
It follows that rkg(¥(z)) = 60 - tkyq(x) for every = € lim M), (K), and thus ¢ can be extended to a unital
algebra homomorphism ¢ : M — eQe, where e := (1) = h_n;n pn(1), which also satisfies the identity
tko(¥(2)) = 6 - tkpm(2) for all z € M. In particular, rkg(e) = 6.
Clearly, the previous identity shows that v is injective, for if © € M is such that ¥ (x) = 0,

0 =rko(¢(x)) =0 rkm(z),

so x = 0 since rkyy is a rank function. To prove surjectivity onto eQe, let x € Q and fix n > 0. Take ¢ large
enough so that

b di<d rkele—pi(1) <
and such that there exists an element = € span{z, ..., z;} satisfying rko(z —7) < 7§ (this is possible due to the
fact that {x,}, is a K-basis for the dense subalgebra Qo). By iv), there exists y € A; so that rko(7 —y) < 7§;
hence rko(z —y) < . We thus have, on one hand,

g <

rko(exe — pi(1)ypi(1)) < rkg(ewe — expi(1)) + rko(expi(1) — eypi(1)) + rko(eypi(1) — pi(Lypi(1))

31
< rale — pi(1)) + rko(w ~ ) + rkole — pi(1)) < 2.
On the other hand, since p;(1)yp;(1) € pi(1).A;pi(1), it follows from ii) that there exists z € M, (K) such

that
rko(pi(1)ypi(1) — piv1(2)) < d;.
Also, for i +1 < h, we get from (4.2.1))

h—1 h—i—2
tko(pn(yni1(2)) = pita(2)) < Z Ok < dit1 Z 27k <261 < 05,
k=i+1 k=0
and so letting h — oo leads to
er(¢(70®,i+1(z)) - pl-‘rl(z)) < (52 < g .

Using the above inequalities, we obtain

rkg(ere — Y(Veo,i+1(2))) <rkolexe — pi(1)ypi(1)) + rko(pi(Lypi(1) — pit1(2))
3n . n  n

+1ko(pit1(2) = V(Voc,it1(2))) < 5 + 5 + 5=

Now, by choosing a decreasing sequence of positive numbers 7, — 0, it follows that for each n there exists
wy, € M satisfying rkg(exe — ¢ (wy)) < 1y, so that lim, ¥ (w,) = exe in Q. But by using the relation between
the ranks of M and Q, we compute

rk (W — Wey) = o=t ko (V(wy) — Y(wy,)) — 0,

n,m—00

so we conclude that {w,}, is a Cauchy sequence in M, hence convergent to some w € M satisfying ¥ (w) =
lim,, ¢¥)(w,) = exe. This shows that ¢ is surjective, proving the lemma. O

We now show how Theorem [:2.2] follows from Lemma [£.2.4] assuming we are able to show that the
hypotheses of that lemma are satisfied. This indeed follows as in [44].
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Proof of the implication (3) = (1) of Theorem[{.2.4 Take § = 1/2 and apply Lemma to obtain an
isomorphism ¢ : M — eQe, where rko(e) = 1/2. Since rtkg(e) = 1 = rko(1 — ¢), Proposition says
that e and 1 — e are equivalent idempotents in Q, so that there exist elements x,y € Q such that xy = e and
eae eay

, and
rae Toy

yz =1 — e. We now obtain an isomorphism of K-algebras Q = My(eQe) by the rule a —
this gives rise to a chain of isomorphisms

M = My(M) = My(eQe) = Q,
where the first one is given by extending to the respective rank completions the isomorphism h_n)1n Mon (K) —

Mg(hgn Mon (K)), x — (‘g 2) This proves the theorem. O

It remains to show that the hypotheses of Lemma are satisfied. We need a preliminary lemma, which
might be of independent interest.
Lemma 4.2.5. Let p be a positive integer. Then there exists a constant K(p), depending only on p, such that
i) for any field K,
i1) any e > 0,
iii) any pair A C B where B is a unital K-algebra and A is a unital regular K -subalgebra of B,
i) any pseudo-rank function rk on B, and

v) any algebra homomorphism p : M,(K) — B such that

{p(eij)hicij<p S A
with respect to the rk-metric (where e;; denote the canonical matriz units in M,(K)),

there exists an algebra homomorphism 1 : My(K) — A which is close to p in rank, namely
rk(p(eij) — ¥(ei;)) < K(p)e for1<i,j<p.

Proof. We proceed by induction on p. Let p =1, and let K, e, A, B,rk and p: K — B be as in the statement.
Then p(1) is an idempotent in B and, by assumption, there is € A such that rk(p(1) — 2) < . By [39,
Lemma 19.3], there exists an idempotent g € A such that z — g € A(x — 2?), so tk(z — g) < rk(z — 2?). It
follows that

wk(p(1) — g) < rk(p(1) — @) + 1k(z — g) < rk(p(1) — 2) + rk(z — 2?)
< 1k(p(1) — ) + k(z — p(1)) + 1k(p(1)?2 — wp(1)) + rk(wp(1) — 22) < Ark(p(1) — 7) < 4.
Therefore we can take K (1) = 4, and define ¢ : K — A by ¥(1) = g.
Now assume that p > 2 and that there is a constant K (p— 1) satisfying the property corresponding to p— 1.
Let K,e, A, B,rk and p : M,(K) — B be as in the statement. We identify M,_;(K) with the subalgebra of

M,(K) generated by e;; with 1 <i,j < p — 1. By the induction hypothesis, there is a set of (p — 1) x (p — 1)
matrix units z;; € A (so that z;jzr = §pzy for 1 < 4,7, k,1 < p— 1) satisfying

rk(p(ei;) —xij) < K(p—1)e forall 1 <4,j<p-—1.

Also by hypothesis, there are z1,,2p1 € A such that rk(p(e1p) —21p) < € and rk(p(ep1) — 2p1) < €. Structurally,

T11 T1,p—1 Z1p
x (4.2.2)

Tp-11 "0 Tp-ip-1 | X

Zp1 X X X
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Our first task is to modify 21, and zj; in order to obtain new elements 2}, and z,,; such that
21,1 = 0= z152, for 1<i<p-1, (4.2.3)

with suitable bounds on the ranks. To get the desired elements, we proceed by induction on i. We will only
prove the result for the position (1,p). The element in the position (p,1) is built in a similar way.

We start with ¢ = 1. We use that A is regular to obtain an idempotent ¢g; € A such that
Z1p$€11¢4 =g A
Note that
tk(g1) = rk(z1pz11) = k(21711 — pleip)plein))

< tk(zpe1 — plerp)enn) + tk(plery)en — pler)plen)) < e+ K(p— e = (K(p— 1) + 1)e.

Now take z(}) := (1 — g1)z1p. Since z1,711 € 1A and ¢; is an idempotent, g121,211 = 21p%11, SO We get that

1p
(1)

le Tr11 = (1 — gl)zlpmu = 0 and that

tk(z]}) — plery)) = rk(z1, — g1, — plery)) < 1k(z1, — plery)) +1k(g1) < (K(p—1) +2)e.

Suppose that, for 1 <i—1 < p— 1, we have constructed elements z&), .. z& Yin A such that z% ):1:]1 =0 for
all fixed 1 <l<i—1landalll1<j<I, and

k(20 — plerp)) < (271 = DE(p—1) + 207 Y)e.

(4,

Let’s construct zy,:

of g;_1 given by

take an idempotent ¢g;_1 € A such that le Dy A = gi—1A. We have the bound in rank

tk(gio1) = tk(z\0 V) = tk(z\0 Vg — pley)plein))
< rk(z§p Yoy — pleip)zin) +rk(plerp)zin — pleip)plein)) < (Qi_lK(p -1)+ 2i_1)€-

1) (i-1)

Define z( 0, =(1-g 1)2( . Since z(i_l)mil € g;_1A and g;_1 is an idempotent, gi,lzﬁ)— Tl = 2y, T,

1p 1p
so we get that z( ):cll =(1-gi- 1)z§p l)xﬂ = 0 and that

rk(2{) — plerp)) = tk(z{h " — gimaz{s ™V — plery))

< k(27 = plery)) + tk(gi-1) < (2 = DK (p — 1) + 27)e.

After all these constructions, we simply take 2], = 28';_1), and the element 2/, := 22~V built in a similar

pl = “pl
fashion. These elements 27, z;,; € A satisfy (4.2.3) and are such that
max{rk(=), — plerp)), tk(zly — plept)} < (21 — DK (p— 1) + 27z, (12.4)

The next step is to convert z’lp and z;ﬂ into mutually quasi-inverse elements in A, so that the new products
21,%p1 and 2,21, become idempotents. Indeed, we will also replace in addition our original elements x1;, x;1,
for 1 <i < p—1, by another elements y1;,y;1, for 1 <14 < p, in order to get a coherent family of partial matrix
units, i.e. elements satisfying

Y1iYj1 = (5i,jy11 for 1 < 1,7 < p. (425)
For this we will use [39, Lemma 19.3] and its proof. Consider the element x; := x1,2,2,,711 € A, and note
that
rk(z); — plenr)) = rk(z1121,2, 711 — plerr)pleip)plepr)plenn))
< 2rk(z11 — p(enn)) +rk(zy, — plerp)) + k(2,1 — plept))
<2K(p—De+2(2*'—1DK(p—-1)+2"")e= (K(p— 1)+ 1)2P,

113



Chapter 4. Generalizing a result of von Neumann The Atiyah problem

where we have used the bound given by the induction hypothesis and (4.2.4). Therefore, we get
rk(ahy — (211)%) <rk(aly — plen)) + rk(p(enn)? — 24y p(enn))
+rk(zfyplen) — (211)%) < 3(K(p — 1) +1)2%.

Now using [39, Lemma 19.3| and its proof, we can find an idempotent g € A such that g € 27,4 N Az},
2y, — g € A(x), — (#4,)?) and x},g9 = g. Tt follows that gz),g = g, and since x112},711 = 2};, we also obtain
119 = g = 911, S0 g < x11. Therefore

— / _ / / . / /
9= 92119 = 9X1121p%2p1 0119 = GZ1p%p19-

Set
yi1 =g < 211, Y ::gm}i for2<i<p-1, Ya :=$i1g for2<i<p-1.
Yip == 921, Yp1 = 219
Note that, with these definitions, (4.2.5) is satisfied:
Yip¥Yi1 = gzépzf‘lg =0 and YY1 = gxlixf'lg =0;92119 = dijyn for 1<i,j<p—1.
Y1pYpl = 9Z1p2p19 = g = Y11 Y1iYp1 = 9212519 = 0

Hence the elements yy;,y;1 for 1 < ¢, < p form a coherent family of partial matrix units. If we define
Yij = ynyr, for 1 <4,j < p, we obtain that {y;;} forms a system of p x p matrix units in A:
Yij Ukl = Y ¥1Yk1yu = 05 kY1 Y1 = 05.xYil-
Therefore we can define an algebra homomorphism ¢ : M, (K) — A by the rule ¥ (e;;) = yi;.
Let’s now check that v is close to p in rank. We have the estimate
rk(y11 — p(ein)) < rk(yin — 24;) + k(2 — p(enr))
<rk(ahy = (21,)?) + k(2 — plen))
<3(K(p—1)+1)2Pc+ (K(p—1)+1)2Pc = (K(p — 1) + 1)2P 2.
Using this inequality and (4.2.4), we obtain

rk(y1p — ple1p)) = 1k(g21, — ple1r)p(ep))
< rk(g21, — plenn)z1,) + rk(p(err)2y, — pleir)p(eip))
< k(g — plen)) + 1k(=4, — plery)) < (K(p— 1) + 1) + (227 — DK (p— 1) +271)e
= (2P 207 =K (p—1) +2°T2 4207 e,
Similar computations give that rk(y,1 — p(ep1)) < ((2P72 + 2P71 — 1)K (p — 1) + 2PF2 + 2P~ 1)e. For
2 <i<p-—1, we compute a bound for the other matrix units using the induction hypothesis:
rk(y1i — p(e1i)) = rk(ga1i — plerr)plers))
< rk(gz1i — plern)ws) + rk(p(exr) i — plerr)plers))
< k(g — p(e1r)) + rk(z1; — plers)) < (K(p—1) +1)2° e + K(p — 1)e
= (2" + 1)K(p—1) +2°F2)e.

Similarly rk(y; — p(en)) < ((2P72 + 1)K (p — 1) 4+ 2P72?)e. Putting everything together, we get the common
upper bound

max {rk(yy; — plers)) rk(yin — plen))} < (2774277 = DK(p—1) + 2777 + 277 )e.
SUSp

Finally for any 1 <1,j < p,
tk(yi; — pleij)) = rk(yiryi; — plein)plery))

< rk(yiiy; — yiplers)) + rk(yiapler;) — plein)pleis))
< (2P 420 —2)K(p— 1) +2PT3 4+ 2P)e.

This concludes the proof, if we take K(p) := (2P73 + 2P —2)K(p — 1) + 2P*3 4 2P, O
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We now show that the hypotheses of Lemma are indeed satisfied (assuming condition (3) in Theorem
4.2.2)). This is obtained from the next Lemma by applying induction (starting with pg = go = 1 and Ay = K).

Lemma 4.2.6. Let Q be a continuous factor with unique rank function rkg. Assume that there exists a dense
K -subalgebra Qg of Q of countable K-dimension, and let {x,}, be a K-basis of Qp. Assume that Q satisfies
condition (3) in Theorem[{.2.3, and let 6 € (0,1).

Let p be a positive integer such that there exist an algebra homomorphism p : M,(K) — Q, a matricial
K -subalgebra A C Q, a positive integer m and € > 0 such that

i) tko(p(1)) = £ > 0 for some positive integer q.

“) {p(eij) | iaj - 1a ~~~ap} Ce A; and Span{xl, ~~->$m} Ce A.

iii) € < W (% - 9), where K(p) is the constant introduced in Lemma |4.2.5

Then there exist positive integers p',g,q , with p = gp, a real number ¢ > 0, an algebra homomorphism
p My (K) — Q and a matricial K -subalgebra A" C Q such that the following conditions hold:

1) rko(p'(1)) = Z.
2)
O<]i:—9<1(8—9).
q 2\q
3) For each x € p(1)Ap(1), there exists y € My (K) such that

ﬁdw—#@»<§—&

4) For each z € My(K), we have

p
tho(p(2) =/ (1) < =0,
z 0
where vy : M,(K) — My (K) is the canonical unital homomorphism sending z to g
0 z

5) {p/(egj) | Z?] = 15"'7p/} ge’ A/’ and span{zl,...,mm,xm_,_l} gE/ A/) where {e;] | Z?] = 17"'7p/} denote
the canonical matriz units in M, (K).

1 ’
6) e < W(%—Q)

Proof. We denote by e;;, for 1 <4,j < p, the canonical matrix units in M,(K). Set f’ := p(e11), which is an
idempotent in Q. By 4) and the fact that the ey, are mutually orthogonal equivalent idempotents,

1

rko(f') = rko(p(en)) = %(rkg(p(eu)) + o+ rko(p(epp))) = 7

Because of ii) we can apply Lemma to obtain an algebra homomorphism ¢ : M,(K) — A such that
rko(p(ei;) — ¥(eij)) < K(p)e for all 1 <i,j <p.
Set f =(ey1) which is an idempotent in 4, and observe that

tko(f — f') < K(p)e. (4.2.6)

Since A is matricial, A=A, ®--- DA, 2 M, (K) X --- x M, (K) for some positive integers n, ..., n,, S0 we
can write

f=h+

for some k < r, where fi,..., fr are nonzero mutually orthogonal idempotents belonging to different simple
factors A; of A, i.e. each f; € A; is isomorphic to an idempotent in M, (K). We consider, for each 1 <i < k,
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Chapter 4. Generalizing a result of von Neumann The Atiyah problem

a set of matrix units {fﬂ t<ji<r, inside f;Af; = fiA; fl such that each f” is a minimal idempotent in A;,
and such that

Zf](;.) = f;, the unit of the corner fiA;f;.
=1

We can think of this decomposition of f using matrices, as follows:

1 k
1(1) ) 1(1) o0
I o ol S 5 R I
0 o fnn 0 U f"'k"'k
0 0 0

with maybe some zero matrices in between the f;’s. Note that, since the f](;-) are all equivalent inside f; Af;,

k

k k
tko(f) = rko(fi) = Zrkg =3 " rirko(fY),
=1

=1 =1 j=1

so that by [39, Lemma 19.1] and (4.2.6) we get the bound
B —Zn ko(f{1)] = Irka(f") —rko(f)] < rka(f — I') < K(p)e (427)

We now approximate each real number er( ) by a rational number ’; L. Concretely, we set

1
")

and take positive integers p;, ¢; such that 0 < rkg( fl(?) — % < 4. By taking common denominator, we may

assume that ¢; = ¢/ for all i = 1,..., k. Let o/ be such that 1, = Zf 1T zt, and observe that, by using i4i) and

[27), we have

p _p

L 2] < p| o= ko] + 4| ko)~

q

k k
1 i
i=1 =1

k
pe+p(2n)6<fp/q o)+ 8(p/q—) %(p/q—)

i=1

(1) Di
tko(f11) — ?

So in particular

g_ﬁ <%<§_9), (4.2.8)

a/
What we have now is an approximation of rkg(f) given by rational numbers, induces by the approximations

of each er( ) by , in such a way that

1 1

= =1ko(f) = rirko(fY) + -+ mirko(fY) and =Bl B

q @ q q
are close enough. The problem we encounter now is that o/ may not be an integer like q We remedy this
situation by approximating the whole fraction £ by another rational one close enough to £ while maintaining

the same proportions between the fractions r; q’ in the expansion of . We take
riD; ! a/:r. . . / a/ .
A = Tld e Pild (13 _9> _ap (13 —9).
/o 7 p/a’ pq \q

Tt is possible that f; coincides with the unit of the simple factor A;, but in general it may not be the case, so we should
consider the corner f; Af; = M, (K), which is isomorphic to a corner of the full matrix algebra M, (K).
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Chapter 4. Generalizing a result of von Neumann The Atiyah problem

and note that Zle A; = 1. Moreover, each \; and ¢; (and of course %) does not depend on replacing p; and
¢ by p;N and ¢’ N respectively, for any integer N > 1, so we can assume that p; and ¢’ are arbitrarily large.
Taking p; large enough, we claim that we can find nonnegative integers p}, for 1 < i < k, such that

S5e; _pi p;  6gy
8 ¢ ¢ 8 ( )

for i = 1,..., k. Indeed, we can choose ¢’ big enough so that %‘1/ > 1 and thus there is a positive integer N in

the open interval (56"'57/ , 66"8‘1/

). We want to estimate

659 _ P (ﬁ/) (9 - 9). (4.2.10)

8 8\ p q

By using (4.2.8), we obtain a lower bound for 27, namely

-0 (-0 -9 <0<

so applying this lower bound to (4.2.10) we get

eiq p;8 6
6——= = =p; i -
g “VgyTabi<P

6

This says that N < 6%‘1/ < p;, SO we can write N = p; — p} for some nonnegative integer p;, which satisfies

/ !
€iq €iq

8 8’
We thus see that (4.2.9) holds. Multiplying these inequalities by r; and summing over i, we obtain

k
5 (p 1 P 3/p
—7—9)<——< ri—l)<—(——0).
8p \q o ; ¢/ 4p\gq
Hence, setting g = Zle rip; and p’ = pg, we get

5(p p p 3

2(E-0)<Z-T<2(B-0)

8(q o ¢  4\q

Finally, using (4.2.8)), we end up with

b <pi—p;<6

;(§_Q)<§_Z:<;(§—9), (4.2.11)

Therefore p’, ¢’ are the integers we are looking for. Our next task is to construct a system of p’ X p’ matrix units
inside Q in order to define an algebra homomorphism p’ : M,y (K) — Q satisfying the required properties.
Now, since rkg takes all the values of the interval [0,1], there exists an idempotent e in Q such that

rkg(e) = %, and the inequality Z—% < er(fl(?) can be thought of as
v} -ko(e) < rko(/1y).
We can now apply the comparability property to the projective Q-modules (¢Q): and fl(? @ to conclude that

cither €Q® @0 <0 o fP9<e0s ™ @eQ.

But due to the previous relation with the ranks, the second option is impossible (recall part (i) of Proposition

1.2.3). Hence we obtain the comparison eQ® . GeQ < fl(?Q, that is (eQ)pé is isomorphic, as a right
O-module, to a submodule of fl(i)Q. Write ¢ for the map realizing this isomorphism. For each | = 1,...,pl,
define the injective Q@-module homomorphism ¢; : eQ — (eQ)p; by sending an element z € eQ to the vector
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Chapter 4. Generalizing a result of von Neumann The Atiyah problem

in (eQ)? having z at the I*M position and 0 otherwise. Consider the compositions ¢ oy : eQ — fi Q,
which are right @-module homomorphisms. In fact, if We denote by x ) the i image of e under ¢ o ¢;, then this
composition consists exactly of left multiplication by a:l , 80 eQ = )Q Take now e A{ ) to be an idempotent

generating the right 1dea1 , )Q so that :1:( Q= 411‘) Q< fl(i) Q. Thls, together with the previous isomorphism,

implies that eQ = el Q, so the idempotents e, éfi) are all equivalent. In particular, the rank of all these

idempotents are the same, and equal to rkg(e) = i, and all the éf) are equivalent to é{ll), so there exist

elements xEl € 61 Qel ,A{Z 1) e gl )Q%l) such that

~1) _ ~(14) ~(3,1) i) _ ~(4,1) ~(1Z)
€1 = Tayn Yury G =Y Tan:

Consider el(i) = fl(?éi)fl(? = %i)f(l These are new idempotents with the property that e, @) < f11 , and their
ranks are the same as e:

rko(e) = tko (") = tko(e{”e”) < rko(ef”) < rko (@) = rko(e).

() ~(i,1) (1)

(1,9) (1)~(1 1)f and y(l A = f1i Yoy S we compute

Moreover, if we let Ty = T

L), (i1 1 ~(1 ~(3,1) (1 D~(1) (1 1
st = AYFCD AV Y = AV A =,

(l D 1) (i,1) £(1)=(1,0) ( ) (1) (3) ¢(3) _ ()
YaonTan = (11)f1 T(1,0) =fire il =€,
so all the e(i) are equivalent to e} (1) through the explicit equivalence already showed. Also, since each 6l(i) <f 1(?,

we have decompositions of f11) Q given by
e’ Qe (i —e")Q =10

This 1mphes that the e(z) . e( ,) are mutually orthogonal idempotents in f(z) Q. Indeed, note first that for I # m,

()Q neldQ = {0}, since if = is an element of the intersection, z = e( )y =z = o(u(e)y) = d(tm(e)z)

for some 3,z € Q, 50 y(e)y = tm(e)z. But the (e), 1m(e) are orthogonal idempotents inside (eQ)?:, so

u(e)y = u(e)im(e)z = 0, and = 0. This, together with the prev1ous decompositions of the right Q-module
fl(l), implies that egn)Q is a submodule of the complement ( f11 (l))Q and so the idempotents e,(n), el(l) are
indeed orthogonal.

We summarize what we have so far.

a) We had a decomposition in orthogonal idempotents f = fi +-- -+ fx, so we can think the corner fQf as

f[1Qfi f1iQfr -+ [1Qfk

LQfit [2Rf - [2Qfk
fQf = . . : .

kafl kafz kafk

b) Each f; can be further decomposed in orthogonal idempotents f; = ( )

corners f; Qf; as

4+ 4 f ri1:» SO We can think the

f%@@ﬁ fggﬁf ~-fggﬁ%
5 Qf] Qf] 5 erj-r-

fQf = I
7"”“1 Qf(j) 7'17"1 Qf22 T 7"17"1 Qf(yj")"a
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Chapter 4. Generalizing a result of von Neumann The Atiyah problem

that is,
k k
ey o pYerih ey - Yo
for = : - :
k k 1 k k k k
mery o nYerth mery - Y er

Having all these results at hand, we are now going to construct a set of matrix units inside the corner fQ f
(recall f =1(e11) was the idempotent approximating f/ = p(e11)).

: (1,1) () (59) @) (1) o (L9)
For 1 < i < kand 1 <1 < pj, define h(1,1),(1,1) = e, h(171)7(17l) =, h(l,l),(l,l) =z and
(1,1) o, (51)
h(1,1),(1,1) =Yy, S0 that
(1,1) (1) (i,1) (i,0) (61 (1,4)
h(l,l),(l,l) - h(l,l),(l,l) 'h(l,l),(l,l)v h(l,l),(l,l) - h(l,l),(l,l) ’ h(l,l),(l,l)'
In particular,
(1,1) (1,4) (i,i) 1 (1,9) (i,7) (i,1) (1,1) 4 (i1)
h(1,1),(1,1) ’ h(1,1),(1,z) 'h(l,l),(l,l) - h(1,1),(1,z)7 h(l,l),(l,l) ’ h(1,1),(l,1) 'h(1,1),(1,1) - h(l,l),(l,l)'

All the idempotents el(i) belong to fﬁ) Qfl(?. How can we move them between different corners f;;)? We
knpw th@t all the fj(;) are eguiyalent to fl(?, the equivalence given by the matrix units f;? and fl(;-), namely
fj(;») = f](i)fl(;) and f1 = fl(;)fﬁ). Therefore we can define, for 1 <i <k, 1 <j <7 and 1 <1< pl,

G ) (D) 1) (L) (@)
hi,an = Fr b e ha) e = han,an i

This is a coherent family of g X g partial matrix units (recall that g = Zle ripl), since for 1 < 4y,iy < k,
L<j1 <1y, 1<ga Sy, 1< < pjypand 1<y < i,

(1,i2) Cpliny1) _ p(Liz) _f(i2) _f(il) . plinD)
(17j2)7(15l2) (jhl)v(ll:l) (171)a(1:l2) 152 Jil (171)1(1171)
_ (1yi1) (i1,1) _ (1,1)
= 5i1,i25j17j2h(1711)7(17l2) ’ h(ll,l),(ll,l) = 5711,1'25j1,j25l1,12h(1,1)7(171)

Therefore, the elements

(i1,12) . plin,1) (1,32)

(J1,92),(1,l2) 7 "°(41,1),(11,1) " (L,52),(1,12)
form a system of g x g matrix units inside fQf, and we can now define an algebra homomorphism p’: M, (K) =
M,(K)® My(K) — Q by the rule

(7; 7i ) _ (7:171- )
P/ (eij & e(jll,jz),(ll,lz)) = 1/)(6i1)h(j1,jz),(lhlz))%/’(elj) )

where {6811 ;22)) (In1) ) 18 @ complete system of matrix units in My (K). In order to show that it is well-defined,
it is only required to check that the images of the matrix units e;; ® 6811322)) (1.12) satisfies the corresponding

matrix units relations, but this is a matter of computation:

(11,i2) (41,i5) _ (i1,i2) (#1+15)
P(ei®eiy i an) P (Crir ® €G5 a) = V(G5 a1 Y€1) - $lerhG i g ¥ (er)
_ (i1i2) (41+3) _ (i1,i3)

= e 5 sy Gy Y€1) = Giasit O gy Oty Y en)hi 5 o, gy ¥ er7)

— (.. (i17i/2)
= 010, 0j,31 O,y P (eig @ €32 a1y py)

It remains to verify properties 1)-6).
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Inside M,/ (K) = M,(K) ® M,(K),

o
E05) 3 9 UL

SO
Pk m
pl(l) = Z Z . Zw(ekl)hgj’;) (@, l)w(elk)-

The idempotents w(ekl)h( " N, l)w(elk) are all pairwise orthogonal, and equivalent to eg ), through the

. (3.3
equivalences

(4,3) _ (i,1) (1,7)
w(em)h Gai),(, l)w(elk> = ("/}(ekl)h( 1),(, 1)) (h(l)j)7(17l)w(elk))a
1 il
e = (hgm a, l)w(elk)) (Wekl)hgj,l%,(l,l))'

Therefore if we take ranks, we obtain

p ok J p k ;
tko(p' (1)) = 37D DDtk (Wlex) ) qplen)) = 30D D0 rkaler”) = pgrkoler”) = Z

as desired.

This follows from (4.2.11]).
Let = € p(1)Ap(1). Then we can write

T

P
= Y plear) ' plera)a’ plews) f'plers)

a,b=1
for some 2’ € A. Now by i) we can approximate each p(e14), p(ep1) by an element of A up to € in rank:
rko(p(e1q) — 1a), tko(p(ep1) —ap1) <&  for some  x14,2p1 € A.

Thus we can consider the element

P
= Z (€a1) fr1a2’ 1 f Y(e1p) €
— _/_/

- zabef-Af

so that

rtko(z —7) < rko(p(ear) f plera)’ plest) f'plews) — Y(ear) friar’ zp1 f1o(ers))

1

IN

Rl £
M= 7 [M-

(tkalplea) = wlear)) + tkalplen) = dlew)) +2rka(f — f')

+rko(p(era) — x1a) + rko(p(epr) — xb1)> < p*(4K(p) + 2)e < 5p*K (p)e,

using K (p) > 4 for the last inequality. Now if we recall that fAf = M, (K) x --- x M,, (K), we can
write each x4, € fAS in the form

Ty = Z Z a,b (Uf(’t)
=1 j,57'=1
for some scalars A(a, b);?, € K. Take the element

D;

zp:eab®(zz>\ab (Z ) € My (K).

a,b=1 i=1 j,j’'=1 =

120



Chapter 4. Generalizing a result of von Neumann The Atiyah problem

Denoting

Chijr = ZZ%/J ca)Ma, D)) 11 duiy = i) (en),
a=1j=1

we can rewrite

T4

P ] Pk
= Z Z Cbij’fﬁ)dbij/v Z Z Cbij (Z h(i 21)) (1 z))dbij’)

b=1 i=1 j/'=1 b=1 i=1 j/'=1
so that
SR G T ) 6 )
rko(7 — <> D> ke (Cbiﬂ“ (fﬁ = _haha, l))dbw ) < PZ“ rkg ( DL l))
b=1 =1 j'=1 =1 =1

Taking into account that all the idempotents h'" (1 1) Wy = ( ) are pairwise orthogonal and Zz 1 el ) < f11 )

the rank of the difference f11 - fl 1 el(l) is the difference of the ranks, so
Pl 4 A o
ko (£7 - Zel ') = rialfiY) = Y rkaef?) = rko(£17) - .
=1
Hence the previous computation gives
() _ P p’ : @y 1 p_ v
rko(Z — p/ <er,(er i 1) pzrzer p(Zrier( 1;)—5)—#(5—?)
i=1
Using (4.2.7) and (4.2.11)), we get
~ T(p L (p “(p 43 (p
ko(F — o/ K 7(7f9)<7(7f9) 7(7f0><f<7f9).
tko(¥ = p'(y)) < PE(p)e+ g (| STV +54 <&y
Putting everything together,
~ ~ 43 5 43 D
ko(z—p'(y)) < tko(z—7) +1ko(F—p'(y)) < 5pK 7(,,9) 7(,,9) ( 9):779
rko(z—p'(y)) < rko(z—2) +1ko(T—p'(y)) <5p"K(p)e+ 2 18y By il

as required.

Suppose now that = = p(z) for some z = Ei,bzlﬂabeab € M,(K), with pue € K. Then we can see
that, using the same construction of y given in 3), we obtain that )\(a,b);?/ = pgp for all 1 < i < k,
1 < 4,5 <r;. Therefore here

T4

y= i €ab ® (Z Z: uab(ge&?/),(z,z)))

ab=1 i=1j.j'=1
,, SRy Lo &
= ( > “abeab> ® (Z > Zeé’,?'),(z,l)) (Z oD e l)) ()
ab=1 i=1 4.5 =1 =1 i=1 4.5 =1 1=1

since Zz 1 Z i ( le eEZ z)) (l l)> is the unit of My (K).

and 6) To conclude the proof, just take £’ > 0 satisfying &’ < W (p—: - 9) and, using condition (3)

in Theorem consider a matricial K-subalgebra A" such that {p'(e};) | i,j = 1,...,p'} Cor A’ and
span{xy, ...7xm,xm+1} C. A O
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4.3 D-rings

Let D be a division ring. A D-ring is a unital ring R together with a unital ring homomorphism ¢: D — R.
If (Ry,t1) and (Ra, o) are D-rings, a D-ring homomorphism ¢ : Ry — Ry is a ring homomorphism such that
to = @oty. A matricial D-ring is a D-ring A which is isomorphic, as a D-ring, to a finite direct product

My, (D) x -+ x My, (D),

where the structure of D-ring of the latter is the canonical one, i.e. viewing d € D inside the matrix product as
the element (d1d,,,, ...,d1d, ). A D-ring A is an ultramatricial D-ringif it is isomorphic, as a D-ring, to a direct
limit hénn A, of a sequence (A, ¢,) of matricial D-rings A,, and D-ring homomorphisms ¢, : A, — An11-

We now consider a generalization of Theorem [£.2.2] to D-rings. We have not found a reasonable analogue
of the local condition (3) in this setting, but we are able to extend condition (2). The reason we consider this
generalization is the question raised by Elek and Jaikin-Zapirain of whether the completion of the x-regular
closure of the group algebra of a countable amenable ICC-group is isomorphic to either M, (D), n > 1, or to
M p, for some division ring D. Here M p stands for the completion of li lg Myn (D) with respect to its unique
rank function rk, which will be denoted inside the completion by rk,,.

Throughout this section, D will denote a division ring, and K will stand for the center of D. We start with
a simple lemma, concerning the D-ring D @ x M k. Here 1 : D — D Qg M is given by d — d ® 1. Note that,
even though lim My« (D) = lg (D ®x Maon(K)) =2 D @k (%n My (K)), it may happen that Mp is not
isomorphic to ® x Mk, so a priori we cannot infer anything about the possible rank functions on D® g M k.

Lemma 4.3.1. There is a unique rank function rkg on the (possibly nonregular) simple D-ring D ® x Mg,
and D Q@ (%ﬂn Mon (K)) = h_r)nn Msn (D) is dense in D @ My with respect to the rkg-metric.

Proof. The ring D ® x M is simple by [19, Corollary 7.1.3].
We denote by rky, the unique rank function on M. Let © = Ele d;®x; € DR Mg. Since z; € Mg,

we can take elements {z;  }m C li 13 Msn (K) approximating z; in rank, that is rkag, (z; — i m) 2 0. For
each m, set

T .7Zd ®mlm€D®K(lgM2n( )) = lim Myn (D).
i=1 n

Then, for any rank function S on D ® x Mg, we have
k
1S(x) — S(zm)| < S(z — am) < Z — Tim))

k k
Z ((di ® (1@ (@i — wi;m))) < 25(1 ® (@i — Ti;m))-

The function S(1 ® —) defines a rank function on Mg, so by uniqueness we must have S(1 ® —) = rkaq, (—).
Therefore

|S(z) — S(zm)| <ZrkMK —Tim) < rrllax {rlpg (25 — 2im)} 30
=1 o+
This ensures that S(x) is completely determined by the values of S over lim  Man (D). Since the restriction S|
of S over this ring gives again a rank function, by uniqueness of the rank function rk on hgnn Msn (D) we must
have S| = rk. This tells us that
S(z) = limrkp(a,).
m

This shows at once that there is a unique rank function, which will be denoted by rkg, on D @ x M, and
that D ®k (h_H)ln Myn(K)) = lim = Man (D) is dense in D ® x M g with respect to the rkg-metric. O

Theorem 4.3.2. Let A be an ultramatricial D-ring, and let tkyq be an extremal pseudo-rank function on A
such that the completion Q of A with respect to rk4 is a continuous factor. Then there is an isomorphism of
D-rings Q = Mp.
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Proof. We can assume that A = lign(/ln, ©n), where each A,, is a matricial D-ring
Ap =My, (D) x -+ X My, (D)

with the canonical structure of D-rings, and each map ¢,,: A,, — A, 11 is an injective morphism of D-rings.
Write B,, = C4, (D) for the centralizer of D in A,,, i.e. all the elements of A,, that commute with D. It
can be explicitly computed in this case, giving

Bn = CA” (D) = CMml(D)(D) X o CMan (D)(D) = Z\fm1 (K) X -+ X Mmm (K)
since each Chy,, (p)(D) = My, (K) because K is the center of D. Hence each B, is a matricial K-algebra, and
D& By = D &g (Mg (K) X -+ % My, (K)) = (D @5 My, (K)) X -+ x (D @c My, (K)) = Ay

Moreover, we have ¢, (B,) C B,y for all n > 1, so we obtain an inductive limit of matricial K-algebras
B = @n(Bn, (¢n)|B,), which is such that

D®KB=D®K(li_Ingn)%li_I)HD@KBngﬁ_H)lAn:A.

From now on we will simply identify A = D® k3. Now, since B C A, we have an induced map P(A) — P(B)
sending (pseudo-)rank functions of A to (pseudo-)rank functions of B given by restriction on B. In fact, using
that each factor M,,(K), M,,(D) has a unique rank function, compatible with respect to the isomorphism
M,,(D) 2 D®k M,,(K), it is clear that each rank function on B,, can be uniquely extended to a rank function
on A,, and therefore each rank function on B extends uniquely to a rank function on A. This shows that
the previous map P(A) — P(B) is bijective, and it is straightforward to show that it is in fact an affine
homeomorphism. Consequently, the restriction rkp of k4 to B is also an extremal pseudo-rank function on B.

Moreover, since rk 4(A) = rk 4(B), it follows that rk 4(3) is a dense subset of the unit interval, which implies
that the completion Qp of B in the rkg-metric is a continuous factor over K. We can then apply Theorem
to Qp, to conclude that there is an algebra isomorphism v’ : Mg — Qpg, which induces naturally an
isomorphism of D-rings

P:=idp @V : D ®x Mg — D @5 Op.
Observe that D ® ¢ Qg can be realized as a subset of Q, since for an element d ® x € D ®k Qp, there exists
a sequence {x,,},» C B approximating z in rank. Hence, the sequence of elements d ® x,, € D @ B = A is
Cauchy in rank:

’
m,m

tkA(d @ xy, —d @ ) =1k ((d @ 1)1 Q@ (, — ) < 1kB(Ty — Tpr) = 0,
so convergent inside Q, where we identify its limit to be the previous element d ® x, but inside Q. Since
A=DerBC DRk 9 C Q,

it follows that ¢(D ®x Mk) = D ®k Qp is dense in Q. By Lemma {.3.1} (D ® (lim  Mon (K))) is dense
in (D @K M) with respect to the restriction of rkg to it, therefore ¥)(D ®x (hﬂn My (K))) is dense in Q.
Hence, the restriction of ¥ to D ® (h_n}n Mon (K)) = lim ~ Man (D) gives a rank-preserving isomorphism of D-
rings from hﬂn Moy (D) onto a dense D-subring of Q, and thus it can be uniquely extended to an isomorphism
from M p onto Q. O

4.4 Fields with involution

In this section, we will consider the corresponding problem for x-algebras. Again, the motivation comes from
the theory of group algebras. If K is a subfield of C closed under complex conjugation, and G is a countable
discrete group, then there is a natural involution on the group algebra K[G], and the completion of the *-regular
closure of K[G] in U(G) is a x-regular ring containing K[G] as a x-subalgebra. It would be thus desirable to
find conditions under which this completion is *-isomorphic to M g, where M g is endowed with the involution
induced from the involution on hﬂn Mon (K), which is in turn obtained by endowing each algebra Man (K)
with the x-transpose involution.
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Chapter 4. Generalizing a result of von Neumann The Atiyah problem

We will work with *-algebras over a field with positive definite involution (F, ). The involution on M, (F)
will always be the x-transpose involution.
A x-algebra A is standard matricial if

A=M, (F)x - x M, (F)

for some positive integers ny, ..., n;.
Let A= M,,(F) XXM, (F), B=M4,(F)x--x M, (F) be two standard matricial x-algebras. A
standard map between A and B is a block-diagonal x-homomorphism ® : A — B, i.e. of the form

A1 Al
Al st
A1 Al
(Al,...,A',-)*—) ) ey

For more information, see [2], p.232].

A standard ultramatricial *-algebra is a direct limit of a sequence A; & A, % As &) .-+ of standard
matricial *-algebras A, and standard maps ®,: A, — A,r1. An ultramatricial x-algebra is a *-algebra
which is x-isomorphic to the direct limit of a sequence of standard matricial *-algebras A, and *-algebra
homomorphisms ®,,: A, — A,11.

Let A be a x-algebra which is x-isomorphic to a standard matricial algebra, through a *-isomorphism

v A— My, (F) x - x M, (F).

We say that a projection (i.e. a self-adjoint idempotent) p in A is standard (with respect to ) in case that for
each 1 <4 < r, the i*h component v(p); of ¢(p) is a diagonal projection in M,,, (F).

Recall that two idempotents e, f in a ring R are equivalent, written e ~ f, if there are elements x € eRf
and y € fRe such that e = zy and f = yz. If moreover e, f are projections of a x-ring R, then we say that e
is *-equivalent to f, written e ~ f, in case there is an element z € eRf such that e = zz* and f = z*z. Due
to Theorem in a x-regular ring, for every element x € R there exist unique projections e = LP(x) and
f = RP(x), called the left and the right projections of x, such that xR = eR and Rx = Rf. Furthermore,
there exists a unique element y € fRe, termed the relative inverse of x, such that xy = e and yx = f. It is
denoted simply by 7.

Definition 4.4.1. A x-regular ring R satisfies the condition LP ~ RP in case the x-equivalence LP(z) ~ RP(x)
holds for each z € R.

Observe that R satisfies LP ~ RP if and only if equivalent projections of R are x-equivalent (2, Lemma
1.1]). In general this condition is not satisfied for a -regular ring, but many x-regular rings satisfy it. It is
worth to mention that for a field F with positive definite involution, M, (F) satisfies LP ~ RP for all n > 1 if
and only if F is *-Pythagorean [47, Theorem 4.9] (see also [46, Theorem 4.5], [2, Theorem 1.12]).

The following result is relevant for our purposes.

Theorem 4.4.2 (Theorem 3.5 of [2]). Let (F, ) be a field with positive definite involution, let A be a standard
ultramatricial x-algebra, and let rk be a pseudo-rank function on A. Then the type II part of the rank completion
of A is a *-regular ring satisfying LP ~ RP.

As a consequence of this result, the -algebra M p always satisfies LP ~ RP, independently of whether the
field F is x-Pythagorean or not. Hence, if we want to find an analogue of Theorem we need to find a
condition that guarantees the fulfillment of the property LP ~ RP on Q.

We collect, for the convenience of the reader, some properties of a pseudo-rank function on a *-regular ring.
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Chapter 4. Generalizing a result of von Neumann The Atiyah problem

Lemma 4.4.3. Let vk be a pseudo-rank function on a x-regular ring R. The following hold:
i) The involution is isometric, that is, tk(r*) = rk(r) for each r € R.
it) tk(T —35) < 3rk(r —s) for all r,s € R.
iii) Tk(LP(r) — LP(s)) < 4rk(r — s), and rk(RP(r) — RP(s)) < 4rk(r — s) for all v, s € R.
w) Suppose that 1, eq, f1, f2 are projections in R such that fi ~ fo and tk(e; — f;) < & for i =1,2. Then
there exist subprojections e; < e; such that €| ~ ¢}, and rk(e; — e}) < be fori=1,2.

Proof. (a) See the proof of Proposition 1 in [45], or [52, Proposition 5.11].

(b) In [1I0, p.310], it is shown that rk(7 —3) < 19rk(r — s), and the authors comment that K. R. Goodearl
has reduced 19 to 5. Here we show that indeed it can be reduced to 3.

Let e =r7, f =7r, g = s5 and h = 3s. We claim that the element r*r + (1 — f) is invertible in R. Since
R is x-regular, it follows that Rr*r = Rf (see the proof of Theorem . Take x € R such that zr*r = f,
and we can further assume that fz = z. Then r*rax* = f too. We compute:

(rr+@=NA=f)+fa")=rrQ = f)+rirfa" +(1-f)=f+1-f)=1
since r*rf = r*r. The claim now follows. Analogously, we find that the element ss* 4+ (1 — g) is invertible in
R.
Hence, using that r*e = r* and hs* = s*, we get
k(7 —35) =rk((r*r+ (1= f))F-35)(ss*+ (1 —g))) =rk(r*ss* +r*(1 — g) —r*rs* — (1 — f)s¥)
<rk(r*ss* —r*rs*) +rk(r*(1 —g) — (1 — f)s*) =rk(r — s) + rk(r* — s*) + rk(fs* — r*g)
=21k(r — s) + rk(f(s" —7%)g) < 3rk(r — s),
as required.
(c) Using (b), we get
tk(RP(r) — RP(s)) = tk(7r — 5s) < 1tk((F — 5)r) + tk(3(r — s)) < 3rk(r — s) + rk(r — s) = 4rk(r — s).
The proof for LP is similar.
(d) We follow the idea in [2, proof of Lemma 2.6]. Since f; ~ fa, there exists a partial isometry w € fiRfa

such that f; = ww* and fo = w*w. Consider the self-adjoint element a = e; — eyww*e; and set p; := LP(a).
Since it is self-adjoint, we have LP(a) = RP(a*) = RP(a), and p; < e; because e;a = ae; = a. Then

tk(p1) = rk(a) = rk(e; —e1 fre1) <rk(e; — f1) <e.

Set p} :=e; —p1. Then rk(e; —p)) = rk(p1) < e and, since pjap] = (e1 —p1)ale; —p1) = 0, if we set w’ := plw
we realize that
w'(w')" = plww’py = pleipy = py.
Now observe that (w')*w’ = w*pjw < w*w = fa. Consider the elements
b=ey—ea(w) wes, ey = LP(b) = RP(b*) = RP(b).

We have e < ey because esb = beg = b, and we can also give an estimate of its rank:

tk(es) = N(b) = rk(es — ea(w')*w'es) < rk(ex — (w')*w’) < rk(ex — f2) + rk(w*w — w*pjw)
<e+rk(w* frw — w'plw) <e+rk(fi —p)) <e+rk(f1 —e1) +rk(e; — p)) < 3e.

Set e, = e5 — e}j. As before, since ejbel, = (ea — e4)b(es — ef) = 0, if set set w” := w'e), we get
(W) w" = eh(w') w'ey = ehesey, = €
and rk(ey — eb) = rk(el) < 3e. Write e} = w”(w”)*. Then ¢} <e; for i = 1,2, €} ~ €}, and
tk(e; — €}) = rk(e; — p) +1k(p] — €}) < e +rk(w'(w')" — w” (w")*) = e + k(W' fo(w')* — w'eh(w')*)
<e+rk(fa—eh) <e+rk(fa —ea) +rk(es —€)) < be. O
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Lemma 4.4.4. Let R be a *-reqular ring, and assume that R is complete with respect to a rank function
rk. Then R satisfies LP ~ RP if and only if, given equivalent projections p,q € R and € > 0, there exist
x-equivalent subprojections p' < p and ¢’ < q such that tk(p —p') < e, tk(q — ¢') < e.

Proof. The “only if” direction follows trivially from [2, Lemma 1.1].
For the “if” direction, suppose that p and ¢ are equivalent projections of R. By hypothesis, there are
x-equivalent subprojections p; < p and ¢; < ¢ such that

tk(py —p) <271, rk(q —q) <27%

Set p| := p—p1 and ¢} := ¢ — ¢;. We obtain decompositions pR = pjR ® p1R and ¢R = ¢; R ® ¢1 R. Since
p ~ q and p; ~ q1, we have isomorphisms pR = ¢R and p1R = ¢; R, so by [39, Theorems 19.7 and 4.14] we
obtain an isomorphism pj R = ¢} R which gives rise to an equivalence p] ~ ¢}. By hypothesis, there are again
x-equivalent subprojections po < p} and g2 < ¢} such that

rk(p — (p1 + p2)) = tk(p} — p2) <272, k(g — (q1 + q2)) = rk(q) — q2) <272

Note that p1,ps are orthogonal projections, such like g1, ¢2. By applying the same procedure, we can induc-
tively construct a sequence {p,}, of pairwise orthogonal subprojections of p, and {g,}, pairwise orthogonal
subprojections of ¢ such that p, < p— Z?;ll Dis Gn < q — Z?;ll G, Pr ~ @y and

rk (p — zn:pl) <27 rk (q — zn:qz) <2™"
i=1 i—

for every n > 1. In particular, p = lim,, >, p; and ¢ = lim,, Y ;- ; ¢;- Let w,, € p,Rg, be partial isometries
realizing the equivalences p,, ~ g, S0 p,, = wpw), and g, = w}wy,. Then for n > m,

n m n n n 1—1 n
rk (sz - ij) < Z rk(w;) < Z rk(p;) < Z rk (p — ij) < Z 9l gmmHL
i=1 j=1 i=m-+1 i=m+1 i=m+1 j=1 i=m—+1

It follows that the sequence {> .-, w;},, converges to an element w € R, and moreover

n n * n n n
(Zwi) (ng) = w;giq;w; = szwf = Zpi = p.
1 i=1 i=1

i=1 j=1 ij=

Hence ww* = p. Similarly we obtain w*w = ¢. Therefore R satisfies condition LP ~ RP (by [2, Lemma
1.1]). O

In order to state the local condition in our main result of this section, we need the following somewhat
technical definition.

Definition 4.4.5. Let R be a unital x-regular ring with a pseudo-rank function rk, and let A be a unital
x-subalgebra which is x-isomorphic to a standard matricial *-algebra. We say that a projection p € A is
hereditarily quasi-standard if

a) p is x-equivalent in A to a standard projection of A, and

b) for each subprojection p’ < p, p’ € A, and each € > 0 there exists a unital *x-subalgebra A’ of R and a
projection p” € A’ satisfying the following properties:

1) A’ is x-isomorphic to a standard matricial x-algebra,

2) p” is x-equivalent in A’ to a standard projection of A’,

)
3) p” <p' and rk(p/ —p") < &, and
4) ACA.

We can now state the following analogue of Theorem [£.2.2] By a continuous *-factor over F' we mean a
x-regular ring @ which is a x-algebra over F', and which is a continuous factor in the sense of Definition [4.2.1
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Theorem 4.4.6. Let (F,x) be a field with positive definite involution. Let Q be a continuous x-factor over
F, and assume that there exists a dense F-subalgebra (with respect to the rkg-metric topology) Qo C Q of
countable F-dimension. The following are equivalent:

(1) Q= Mg as *-algebras.

(2) Q is isomorphic, as a x-algebra, to B for a certain standard ultramatricial x-algebra B, where the com-
pletion of B is taken with respect to the metric induced by an extremal pseudo-rank function on B.

(8) For every € > 0, elements x1,...,x, € Q, and projections p1,ps € Q, there exist a x-subalgebra A of
Q which is *-isomorphic to a standard matricial *-algebra, elements y1,...,y, € A, and hereditarily
quasi-standard projections q1,qs € A such that

tko(p; —¢;) <e forj=1,2, and rko(z; —yi) <e  for1<i<nm.

Proof. Clearly (1) = (2), since My is already the completion of the standard ultramatricial *-algebra
@n Myn (F) with respect to its unique rank function, which is extremal.

Let’s prove (2) = (3). Write B = lim B, as a direct limit of a sequence of standard matricial x-algebras
B, and standard maps ®,: B, — B,;1. Write ®;i: B, — B; for the composition maps ®;_; 0 --- o ®; for
i < j, and write 6,: B; — B = Q for the canonical map. We identify Q with B.

We will show that the desired *-subalgebra A satisfying the required conditions is of the form 6;(B;). Note
that these %-subalgebras are indeed *-isomorphic to B;, which are standard matricial *-algebras.

For a given € > 0 and elements x1,...,z, € Q, there are elements y1,...,y, € B = h%mn B,, being close to
the x; up to ¢ in rank, that is

tko(z; —y;) <e fori=1,..,k

Since y1,...,Yyn € lign B, there exists an integer N > 1 such that 65 (By) contains all of them. Now the
projections. Note that, since the algebras of the form 6;(B;) form an increasing sequence, it is enough to deal
with a single projection, since if we can find, for ¢ = 1, 2, hereditarily quasi-standard projections ¢; satisfying
the required properties and belonging to some 6y, (By;,), then Ox(By), On,(Bn,) C 0 (Ba) for M > N, N,
and the required *-subalgebra A could be chosen to be 0y (Bay).

Let then p be a projection in Q and let ¢ > 0. There exists an integer ¢ > 1 and an element = € B;
such that rkg(p — 0;(2)) < §. Write p’ := LP(z) € B;. We first claim that 6;(p') = 6;(LP(x)) = LP(6;(x)).
To prove this, by uniqueness of the projection LP, it is enough to prove that 6;(p’) is a projection satisfying
0;(p")B = 6;(x)B. But this is easy: 6;(p’) is clearly a projection since the 6;’s are x-homomorphisms, and if Z
is the relative inverse of x, then

0i(x) = 0:(p'x) = 0:(p")0:i(x), 0:i(p") = 0:(2T) = 0;(2)0:(T).

This proves the equality of B-modules 6;(p’)B = 6;(x)B, as required.
Therefore 0;(p') = LP(6;(z))] Now, using Lemma [£.4.3] we can estimate

€
tko(p = 0:(p")) = rko(LP(p) — 6:(LP(2))) = rko(LP(p) — LP(0;(2))) < 4rko(p — bi(x)) < 3,
so that rko(p — 0;(p')) < 5.
Since B; is standard matricial, it is of the form M,,, (F)x---x M, (F') for some positive integers my, ..., m.
Each component p/; of p’ € B; is a projection inside M, (F), so there exists an invertible matrix z; € M,,, (F)

such that xjp;x;1 is diagonal, hence a standard projection g; inside M,, (F). We then observe that the
elements x = (v;p});,y = (w;lgj)j € B; define an equivalence between the projections p’ and g = (g;);, since
Ty = (xjp;xjflgj)j = (gj); = g and yx = (x;lgjxjp;)j = (p}); = p'. By the proof of [2, Theorem 3.5, there
are j > ¢ and projections p, g € B, such that p < ®;;(p’), g < ®,;(g) with g a standard projection, P~ g, and
moreover

rko(0i(p) = 0;(P)) < 5 and  rko(fi(g) — 0;(9)) <

ol ™
ol ™

?Note that this is general, i.e. if f : A — B is a *-homomorphism between two *-regular rings, then for any element = € A,
one has the equality f(LP(z)) = LP(f(z)). The same holds for RP.
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As a consequence, p is *-equivalent to a standard projection in B;, and

rtko(p —0;(5)) < rkal(p — 6:(0)) + rko(6:(p) — 6,(7) < 5 + 5 = <.

Take A := 6,(B,) and q := 6,(p). To conclude, we need to show that ¢ is indeed a hereditarily quasi-standard
projection. Clearly, property a) in Definition is satisfied. To show property b), take a subprojection
q¢ = 06;(p') of ¢ = 0;(p), where p’ is a subprojection of p, and 6 > 0. We then use the same argument as
above but now applied to the projection p’ of B, and to 6 > 0 to obtain k& > j and a projection 6 (p”) in the
x-subalgebra 6 (By,) such that the pair (6 (p"),0x(By)) satisfies properties 1) - 4) in Definition [.4.5] (with &
replaced with 4).

Finally we prove (3) = (1). We first show that Q satisfies LP ~ RP. Let p;,ps be equivalent projections
of @ and € > 0. We will apply Lemma[4.4.4

Since pi,p2 are equivalent projections, we can choose z € p;Qps and y € p2Op; such that zy = p; and
yx = pa. Observe that, by uniqueness, necessarily y = T, the relative inverse of = in Q. Using (3), we can find
a #-subalgebra A of Q, which is *-isomorphic to a standard matricial *-algebra, hereditarily quasi-standard
projections q;, g2 € A such that rko(p; — ¢;) < € and g; X e; in A for some standard projections ey, es € A,
and an element z; € A such that rkg(z — x1) < €.

Now set 2} := 12192 € A, and note that we have the estimate

rko(x — x7) < rko(prepz — pr12g2) + rko(p1rge — q1q) + tko(q1rg2 — 12142)
<rtko(p2 — q2) +rko(p1 — 1) + rko(z —21) Se+e+e=3e

It follows from part 4i7) of Lemma that, with ¢} := LP(z}) € A and ¢§ := RP(z}) € A,
tko(pi — q)) < 4drko(x —}) <12 fori=1,2.

Observe that ¢ = LP(z}) ~ RP(z}) = ¢4 (so they have the same rank), that ¢/ < ¢;, and the complement of
g/ in ¢; is "small” in rank:

tko(qi — q') < rko(qi — pi) +1ko(pi — ¢') < e+ 12 = 13e.
We still need to modify the projections ¢/ in order to get *-equivalence of these, rather than just equivalence.

Since ¢; X e, in A, there exist partial isometries w; € ¢;Ae; such that w;w} = ¢; and wfw; = e;. Then

e .= wiq/'w; are equivalent projections in A such that e/ < e;, and moreover

rko(e; — 6;’) = rko(w; giw; — wfqglwz’) <rko(q; — ql/") < 13e.
A schematic for our actual situation is as follows.

er > ¢f

*

¢ < a
2 ¢

1" 1
g2 < g X e = €9

We now use the fact that A is (x-isomorphic to) a standard matricial x-algebra: the restriction of rkg to A
is a convex combination of the normalized rank functions on the different simple factors of A, so the above
information enables us to build standard projections e} < e; such that e} i, eh, and
tko(e; —€}) <13e  fori=1,2.
This in turn gives us projections ¢} < ¢; (through the x-equivalences ¢; ~ e;) such that ¢} ~ ¢ and
rko(q; —q}) <13e  fori=1,2.
The last step is to transfer these to py, pa. For this, observe that

rko(pi — ¢;) < tko(pi — @) +tko(g; — q;) < € +13e = 14e.
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Since moreover ¢} and ¢} are x-equivalent, it follows from part iv) of Lemma that there exist projections
pi < p; in Q such that p| <~ p) and
tko(pi — p)) < 5 - 14e = 70e.
We can now apply Lemma m to conclude that Q satisfies LP ~ RP.
Now (1) is shown by using the same method employed in Section The first thing to notice here is that
exactly the same proof given in [44], showing that there is an isomorphism M p = lim M, (F) for any factor

sequence (p;);, works for fields with positive definite involution, provided that one replaces ’idempotents’ by
'projections’, and "homomorphisms’ by "x-homomorphisms’. We henceforth will identify M g with the x-algebra
i 11, (F).

We only need to prove a variant of Lemma with #-algebra homomorphisms p; : My, (F') — Q instead
of just algebra homomorphisms. For this, new versions of Lemmas and are required, as follows.

Lemma 4.4.7 (x-version of Lemma |4.2.5). Let p be a positive integer. Then there exists a constant K*(p),
depending only on p, such that

i) for any field with involution (F,x),

i1) any e > 0,
iii) any pair A C B where B is a unital x-algebra over F and A is a unital x-regular subalgebra of B,
iv) any pseudo-rank function tk on B such that tk(b*) = rk(b) for all b € B, and

v) any *-algebra homomorphism p : M,(F) — B such that
{p(eij) h<ijep S A
with respect to the rk-metric (where e;; denote the canonical matriz units in My(K)),

there exists a x-algebra homomorphism ¢ : M,(F) — A which is close to p in rank, namely
tk(p(eij) — ¥(eij)) < K*(p)e  for1 <i,j <p.

If, in addition, we are given a projection f € A such that tk(p(ei1) — f) < &, then the map ¢ can be built with
the additional property that ¥ (e11) < f.

Proof of Lemma [{.4.7. The proof follows the same steps as the proof of Lemma [£.2.5] There is only an
additional degree of approximation due to the fact that we need projections instead of idempotents. Proceeding
by induction on p, just as in the proof of Lemma[4.2.5 we start with -matrix units {z;} for 1 <i,j <p—1,
so that z}; = xj; for all 4, j, and we have to define new elements yy;, for i = 1,...,p, so that the family
Yij = Y1y, 1 < 4,5 < p, is the desired new family of *-matrix units. To this end, one only needs to replace
the idempotents g; found in that proof by the projections LP(g;). Using Lemma one can easily control
the corresponding ranks.

The last part is proven by the same kind of induction, starting with (1) = f for the case p = 1. O

Lemma 4.4.8 (x-version of Lemma [{.2.6). Assume that Q satisfies condition (3) in Theorem [{.{.6 Let
0 € (0,1), and let {x,}n be an F-basis of Q.

Let p be a positive integer such that there exist a x-algebra homomorphism p : M,(F) — Q, a *-subalgebra
A C Q which is x-isomorphic to a standard matricial x-algebra, a hereditarily quasi-standard projection g € A,
a positive integer m and € > 0 such that

i) tko(p(1)) = % > 0 for some positive integer q.
i) tko(p(e11) — g) < e, where {e;; | i,j =1,...,p} are the canonical matric units of M,(F).

iii) {p(esg) | 1,5 =1,...,p} Co A, and span{a1, ...z} C. A.

) e < W (% - 9), where K*(p) is the constant introduced in Lemma|{.4.7
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Then there exist positive integers p',t,q', with p' = tp, a real number ¢ > 0, a *-algebra homomorphism
P My(F) — Q, a *-subalgebra A’ C Q, which is x-isomorphic to a standard matricial *-algebra and a
hereditarily quasi-standard projection g’ € A’ such that the following conditions hold:

1) rko(p'(1)) = 2.

2)

I lip
0< 7 —-0< 2(q —0).
3) For each x € p(1)Ap(1) there exists y € My (F) such that

tholw = p/(y) < 6.

4) For each z € M,(F), we have
tho(p(2) = #/(4())) < =6,

where v : M,(F) — M, (F) is the canonical unital *-homomorphism sending z to

0 z
5) tko(p'(€11) — g') < &', where {e;; | i,j =1,...,p'} are the canonical matriz units of My (F).

6) {p'(e;;) |4, =1,...,p'} Ce A', and span{z1, ..., Tm, i1} Cor A’

1 ’
1) & < ety (3 0):

Proof of Lemma [{.4.8 The proof is very similar to the proof of Lemma [4.2.6] so we will only indicate the
points where the proof has to be modified.

We denote by e;;, for 1 < i, j < p, the canonical matrix units in M,(F"). Note that e}; = e;; for all 4, j. Set
f" = p(e11), which is a projection in Q. By i),

1

tko(f') =rko(p(err)) = %(rkg(p(eu)) + -+ rko(plepp))) = <

By hypothesis, there is a hereditarily quasi-standard projection g in the %-subalgebra A such that rkgo(f' —g) <
e. Now because of 7ii) we can apply Lemma to obtain a x-algebra homomorphism 1 : M, (F) — A such
that ¢(e11) < g and rko(p(ei;) — ¥(es5)) < K*(p)e for all 1 < 4,5 <p.

Due to condition b) in Definition there exists another *-subalgebra A’ of Q which is *-isomorphic
to a standard matricial *-algebra and contains A, and a projection f € A’, which is *-equivalent in A’ to a
standard projection of A’, such that f < (e11) and rko(v(e11) — f) < K*(p)e — u, where

= max{rko(p(ei;) —(ei;)) | 1 <d,5 < p}.

Now, by setting ¥'(e;;) = ¥(ei1) fio(e1;), we obtain that ¢’ is a x-algebra homomorphism M,(F) — A’, and
that

rko(p(eij) — ' (ei)) < tka(pleis) —b(eiz)) +rko(¥(en)(enn)y(ers) — v(ein) fers))
<rko(p(eij) — ¥(eij)) +rko((enn) — f) < p+ (K*(p)e — p) = K*(p)e,

so that, after changing notation, we may assume that f = 1(e;1), and that f is x-equivalent in 4 to a standard
projection of A.
Since A is a standard matricial x-algebra, we can write

f=Fitet T

where f1, ..., fr are nonzero mutually orthogonal projections belonging to different simple factors of A. Since
f is #-equivalent in A to a standard projection, there exists, for each 1 < ¢ < k, a set of x-matrix units
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{ f;li)}lg ji<r, inside f; Af; such that each fj(;.) is a minimal projection in the simple factor to which f; belongs,
and such that .
Z fj(;.) = f;, the unit of the corner f; Af;.
j=1
Now the proof follows the same steps as the one of Lemma The idempotent e built in that proof
can be replaced now by a projection since Q is -regular and, since Q satisfies LP ~ RP, we can construct Dl

mutually orthogonal subprojections of fl(?. Using this and the fact that ( f](li))* = fl(ji) for all ¢, 4,1, one builds
a system of matrix units inside fQf

{2 T R ES URAES LS ES TS TS S VAES TS =S TS VIS S TS TV ¥

satisfying all the conditions stated in the proof of Lemma and in addition

(h(i17i2) (2,11)

(J’1’j2),(u1au2)) = M2.g1) s (u2,ur)

for all allowable indices.
We can now define a s-algebra homomorphism p' : M/ (F) = M,(F) ® M, (F) — Q by the rule

(i1,i2) _ (i1,i2)
P e ® e(jiyjz)a(uhuz)) = (e o) () P €15) 5
(i1,i2)

(J1,92),(
is done in the same way, using condition (3), as in the proof of Lemma [4.2.6 O

where {e w“ uz)} is a complete system of *-matrix units in M;(F'). The verification of properties 1) - 7)

Lemma 4.4.9 (x-version of Lemma[4.2.4). Let 6 € (0,1), and let {x,,},, be an F-basis of Qo. Assume that we
have constructed two strictly increasing sequences (q;); and (p;); of natural numbers such that each p; divides
Pi+1 and satisfying

P Pi Pit1 im.: Pi _
a) 1>5 > > B> PS>0, limy o0 B =0 and

b) M70<%(”—279) fori>0.

qi+1 q

We also demand py = qo = 1. Suppose further that there exists a sequence of positive numbers €; < % -0
and *-subalgebras A; C Q which are x-isomorphic to standard matricial x-algebras, together with x-algebra
homomorphisms p; : My, (F) — Q satisfying the following properties:

i) tko(pi(1)) = £ for all i.
ii) For each i and each x € p;(1)A;p;(1), there exists y € My, +1(F) such that

Dbi
tho(z — pisa(y)) < = 0.

K2

iii) For each z € M,,(F), we have

tko(pi(2) — pir1(Viv1,i(2))) < % — 0.

iv) span{xy,...,z;} C., A;.
Then there exists a x-isomorphism ¢ : Mp — pQp, with p € Q a projection such that rkgo(p) = 6.

Proof. Again, the proof is very similar to the proof of Lemma [4.2.4] so we will only indicate the points where
the proof has to be modified.

Using #44), it is easy to show that the sequence {p;(7;:(2))};>i is Cauchy in Q, so convergent. The algebra
homomorphisms ; : My, (F) — Q defined by

Yi(z) = fim p; (75,4(2))
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turn out to be x-algebra homomorphisms (since the involution is isometric by part i) of Lemma [4.4.3]) com-
muting with the +’s, so we get a *-algebra homomorphism 1 : %nn M, (F)— Q defined by

$(Vo0,i(2)) = Yi(2)  for z € My, (F).

Following the same steps as in the proof of Lemma [4.2.4] we obtain that rkgo(¢(z)) = 6 - rka.(2) for all
T € @n M, (F), so 9 can be extended to a unital *-algebra homomorphism ¢ : Mp — pQp, where p :=

(1) = lim, p, (1), which also satisfies the identity rkg(¢(2)) = 0 - tkpm(2) for all z € Mp. In particular,
rko(p) = 6. Injectivity and surjectivity of ¢ follows exactly as in the proof of Lemma O

Now take 6 = 1. Lemmaenables us to build the sequence of *-algebra homomorphisms p; : M, (F') —
Q satisfying the properties stated in Lemma [4.4.9] so we obtain a *-isomorphism ¢ : Mprp — pQp, where
rko(p) = % In particular, rkg(p) = % =1kg(1 — p), so p ~ 1 — p. Since Q satisfies LP ~ RP, p ~ 1 — p, so
that there exists a partial isometry w € pQ(1 — p) such that p = ww* and 1 — p = w*w. We then obtain a

pap  paw*

*-isomorphism Q = M, (pQp) by the rule o — (wap wow*

) , and this gives rise to a chain of *-isomorphisms

Mp = My(Mp) = My (pQp) = Q,

where the first one is given by extending to the respective rank completions the #-isomorphism @n Mon (F) —

T

2) This proves the theorem. O

In case the base field with involution (F,*) is x-Pythagorean, we can derive a result which is completely
analogous to Theorem as follows.

Corollary 4.4.10. Let (F,x) be a x-Pythagorean field with positive definite involution. Let Q be a continuous
x-factor over F, and assume that there exists a dense F-subalgebra (with respect to the rkg-metric topology)
Qo C Q of countable F-dimension. Then the following are equivalent:

(1) Q= Mp as *-algebras.

(2) Q is isomorphic, as a x-algebra, to B for a certain ultramatricial x-algebra B, where the completion of B
is taken with respect to the metric induced by an extremal pseudo-rank function on B.

(8) For every e > 0 and elements 1, ...,x, € Q, there exist a matricial x-subalgebra A of Q, and elements
Y1, ooy Y € A such that
rko(z; —yi) <e fori=1,.. k.

Proof. This follows from Theorem , by using the fact that M, (F) satisfies LP ~ RP for all n > 1 (|47,
Theorem 4.9]) and |2, Proposition 3.3|. Note that, since M, (F) satisfies LP ~ RP for all n > 1, every projection
of a standard matricial *-algebra is hereditarily quasi-standard. O
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Chapter 5

KMS states on groupoids over graph
algebras

In this last chapter we change our topics from the previous chapters and we concentrate on the study of the
structure of KMS states over some particular C*-algebras, namely the ones arising from groupoids and actions
of groupoids on graphs. We will not review all the theory of C*-algebras needed, the reader may consult
[26], 53], 56, [76], 84] for an extensive source of this theory.

The main result of this chapter is Theorem [5.2.1] which leads some light on the structure of the simplex of
normalized traces of the groupoid C*-algebra C*(G).

Almost the entire work from this chapter has been done during a research stay of four monthsﬂ at the School
of Mathematics and Applied Statistics from the University of Wollongong, New South Wales (Australia), under
the co-supervision of the Professor Aidan Sims. The author would like to thank him and the people from the
department in general for their kind hospitality.

5.1 Introduction and preliminaries

There has been a lot of recent interest in the structure of KMS states for the natural gauge actions on C*-
algebras associated to algebraic and combinatorial objects (see, for example, [11 [15] 23], 33| [49] 50, 511, 57 96]).
The theme is that there is a critical inverse temperature . below which the system admits no KMS states,
and above this critical inverse temperature the structure of the KMS simplex reflects some of the underlying
combinatorial data. For example, for C*-algebras of strongly-connected finite directed graphs, the critical
inverse temperature is the logarithm of the spectral radius of the graph, there is a unique KMS state at this
inverse temperature, and at supercritical inverse temperatures the extreme KMS states are parametrized by
the vertices of the graph [3I] [49].

A particularly striking instance of this phenomenon appeared recently in the context of C*-algebras asso-
ciated to self-similar groups [81] [62] and, more generally, self-similar actions of groupoids on graphs in a recent
work by Laca, Raeburn, Ramagge and Whittaker [63]. Roughly speaking, a self-similar action of a groupoid
on a finite directed graph E consists of a discrete groupoid G with unit space identified with E° and a left
action of G on the path-space of E with the property that for each groupoid element g and each path p for
which ¢ - p is defined, there is a unique groupoid element g|,, such that

g-(uv) =(g-p)(glp-v) for any other path v.

In [63], the authors first show that at supercritical inverse temperatures, the KMS states on the Toeplitz
algebra T (G, F) of the self-similar action are determined by their restrictions to the embedded copy of C*(G).
They then show that the self-similar action can be used to transform an arbitrary trace on C*(G) into a
new trace on the same C*-algebra that extends to a KMS state on the Toeplitz algebra 7 (G, F), and that
this transformation is an isomorphism of the trace simplex of C*(G) onto the KMS-simplex of 7 (G, E). The
transformation is quite natural: given a trace 7 on C*(G) and given g € G, the value of the transformed trace

IThe stay had been partitioned into two parts: the first part had a duration of two months and was conducted in 2016,
September-October; the second part also had a duration of two months, and was conducted in 2017, September-October.
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at the generator uy, € C*(G) is a weighted infinite sum of the values of the original trace on restrictions g|,, of
g such that g - u = p; so the transformed trace at u, reflects the proportion — as measured by the initial trace
— of the path-space of E that is fixed by g. Building on this analysis, Laca, Raeburn, Ramagge and Whittaker
proved that if F is strongly connected and the self-similar action satisfies an appropriate finite-state condition,
then 7 (G, E) admits a unique KMS state at the critical inverse temperature and this is the only state that
factors through the quotient O(G, E) determined by the Cuntz—Krieger relations for E. So the KMS structure
picks out a "preferred trace” on the groupoid C*-algebra C*(G), namely the restriction of the above mentioned
KMS state. Some enlightening examples of this are discussed in [63], Section 9.

This chapter is motivated by the observation that, for a fixed inverse temperature 5 > ., the transformation
described in the preceding paragraph is a self-mapping xg of the simplex of normalized traces of C*(G), and
so can be iterated. This raises a natural question: for which initial traces 7 and at which supercritical inverse
temperatures 8 does the sequence {x}(7)},>1 converge, and what information about the self-similar action
do the limit traces — that is, the fixed points for xs — encode? Our main result, Theorem gives a very
satisfactory answer to this question: the hypotheses of [63] (namely that E is strongly connected and the
action G ~ E satisfies the finite-state condition) seem to be exactly the hypotheses needed to guarantee that
Xg admits a unique fixed point for every supercritical 3, that this fixed point is a universal attractor for xg,
and that it is precisely the preferred trace that extends to a KMS state at the critical inverse temperature.

After this introduction, we would like to devote the rest of the section to give some preliminary definitions
and results concerning self-similar actions of groupoids on graphs and KMS states on C*-algebras.

5.1.1 A survey on KMS states

Consider a C*-algebra A together with a strongly continuous homomorphism « : R — Aut(A). An element
x € A is called analytic if the function ¢ — oy () extends to an analytic function from C to A. The set A% of
analytic elements is a dense *-subalgebra of A (see for example [84) Chapter 8]).

Definition 5.1.1. We say that a stateﬂ ¢ of A satisfies the Kubo-Martin—Schwinger (KMS) condition at
inverse temperature 8 € [0, 00) with respect to « if it satisfies

d(ry) = ¢(yap(z)) for all analytic z € A and all y € A.

We call such a ¢ a KMSg state for (A, «). For § =0 we also required a-invariance of ¢, that is ¢ o oy = ¢ for
all t € R.

Note that this condition generalizes the trace condition in the presence of the dynamics «, but part of it
is twisted by « along ’imaginary time’. In statistical mechanics, the dynamics « describes the time evolution
of a system, and the KMS condition is considered to be a condition characterizing the state of the system at
thermal equilibrium.

It is well-known that a state ¢ is KMSg if and only if there exists a set S of analytic elements such that
span S is an a-invariant dense subspace of A, and ¢ satisfies the KMS condition at all z,y € S (cf. [84]
Proposition 8.12.3]).

Proposition 5.1.2. If ¢ is a KMSp state, then ¢ is a-invariant.
Proof. See [84], Proposition 8.12.4]. O
Examples 5.1.3.

1) Let A = M,,(C) a finite-dimensional C*-algebra, with canonical trace Tr. For each positive matrix a € A,

define the state
Tr(ax)

Tr(a) -

ba: A= C, gq(z) =

Since any x-automorphism of A is given by conjugation with some unitary in A, any time evolution
a : R — Aut(A) arises as ay(z) = e ze H for some self-adjoint matrix H € A (also called a
Hamiltonian). We show that ¢, is a KMSg state with respect to « if and only if a = e .

2That is, a positive linear functional of A of norm 1.
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Clearly if a = e PH,

Tr(e PHye BHzelfH)  Tr(e PHgy)

d)a(yaiﬁ (-T)) = TI‘(CL) = TI‘(CL) = ¢a($y)7

50 ¢, is a KMSg state. Conversely, if ¢, (zy) = ¢q(yass(x)) for all positive matrix € A and all matrix
y € A, we have
Tr((ax — e HaePMa)y) = Te(a)(¢a(ry) — Palyais(x))) =0

for all matrix y € A. Hence az = e #" 2efH ¢ for all positive matrix « € A. Equivalently, e’# a commutes
with all positive matrix 2 € A, and hence commutes with any element in A. Therefore e#a must be a
multiple of the identity matrix Id,,, i.e. a = Ae ?# for A € C\{0}. Noticing that ¢,, = ¢, for any u # 0,
we can assume that a = e #¥ | as required.

2) Recall the construction of the hyperfinite 11; factor # preceding Theorem we have the sequence
of C*-algebras Ms(C) — My(C) — Mg(C) < --- with connecting maps

®n * Mzn (C) — M2n+1 ((C), T +— (g 2) .

The norm at each Man (C) defines a norm || - |2 on the inductive limit. Its completion lim  Man ((C)”.HZOC
is sometimes called the Fermion algebra, and is denoted by Ms~. We can also view each Msn(C) =

QP Ms(C), s0 that My~ = @y M(C) 2.

For a fixed sequence {in }n>1 in RT, we can define a dynamics a : R — Aut(Mae ), uniquely characterized
by the fact that for each ¢ € R, the dynamics oy is given on each simple factor Man(C) by conjugation

with the element v} = @ _, (é ,ﬁt)’ that is

Qi . Mzn (C) — M2n ((C)7 A — U?Auit

We show that there exists KMSg states for every value of 5. Recall that we have a unique tracial state
7 on Ms, obtained by extending by continuity the tracial state tr on the inductive limit hgn Masn (C),

where each tr,, : Mon(C) — C is the normalized tracial state tr,, = 2% Tr. 7 is an example of a KMS,
state.

Now fix 8 > 0, and consider the sequence of matrices
n 2/‘5 0
ho=@) | e, | € Man(C).

k=1 1+H€

We define a state on Maon (C) by ¢,(A) = tr,(h,A). It is straightforward to see that it gives rise, by
continuity, to a KMSg state ¢ : My~ — C with respect to a.

5.1.2 A survey on self-similar groupoids

A groupoid is a countable small category G with inverses. Equivalently, a groupoid can be seen as a group
where the operation is no longer defined for all the elements of G. In this chapter, we will use d and c for the
domain and codomain maps G — G©) to distinguish them from the range and source maps on directed graphs,
where G(©) denotes the set of objects. We also write G®) = {(g,h) | d(g) = c(h)} for the set of composable
elements g,h € G, so gh is defined if and only if (g, h) € G). For u € GO, we write

Gu={9€Gldlg)=u} and G"“={geG|clg)=u}.
Consider a finite directed graph E = (E°, E',r,s). For n > 2, write E" for the paths of length n in E,
that is E" = {ejea...e, | €; € Bl r(eir1) = s(e;)}. We write E* := U, £ We can visualize the set £* as

indexing the vertices of a forest T'= T given by

T°=E* and T'={(u,pe) € E*|puc E* ec E" and s(u) = r(e)}.
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Example 5.1.4. For the graph FE given by

we have the forest T given by

U1 v2 U3

31 32 41 42

232 311 312 323 411 412 423

Throughout this chapter, we write Ag for the adjacency matrix of a directed graph F, that is the integer
|E°| x |E°| matrix with entries Ag(v,w) = [vElw| for v,w € E°.

We are interested in self-similar actions of groupoids on directed graphs E as introduced and studied in
[63]. To describe these, first recall that a partial isomorphism of the forest Tr corresponding to a directed
graph E as above consists of a pair (v,w) € E° x E® and a bijection g : vE* — wE* such that

a) glypr : vEF — wE* is bijective for k > 1.
b) g(pe) € g(p)E! for p € vE* and e € E! with r(e) = s(u).

It turns out that the set of partial isomorphisms, denoted by PIso(Tg), can be endowed with a groupoid
structure, as the following propositions shows.

Proposition 5.1.5 (Proposition 3.2 of [63]). The set of partial isomorphisms of Tr forms a groupoid, with

(i) unit space E°, where the identify morphisms are the partial isomorphisms id, : vE* — vE* given by the
identity map on vE* for every v € EY,

(ii) the inverse of a partial isomorphism g : vE* — wE* is the standard inverse map g~ : wE* — vE*, and
(iii) the groupoid multiplication given by composition of maps.

We define the domain and codomain maps d, ¢ : PIso(Tg) — E° by d(g) = v and ¢(g) = w for g a partial
isomorphism g : vE* — wE*.

Definition 5.1.6. Let E be a directed graph, and let G be a groupoid with unit space E°. A faithful action
of G on T is an injective groupoid homomorphism 6 : G — Plso(Tg) that is the identity map on unit spaces.
We write ¢ - 4 rather than 6,(u) for g € G and p € E* with d(g) = r(p). The action 0 is self-similar if for each
g € G and p € d(g)E* there exists g, € G such that d(g|,) = s(u) and

g- () = (g-W)(gly-v) forall v € s(u)E". (5.1.1)

We also say that 6 is finite-state if for every element g € G, the set {g|, | © € d(g)E*} is a finite subset of G.
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The faithfulness condition ensures that for each g € G and p € d(g)E*, there is a unique element g|, € G
satisfying (5.1.1). Throughout this chapter, we will write G ~ E to indicate that the groupoid G acts faithfully
on the directed graph FE.

By Proposition 3.6 of [63], self-similar groupoid actions have the following properties, which we will use
without comment henceforth: for g,h € G, p € d(g)E*, and v € s(u)E*,

a) gl = (9lu)lv,

b) idy ) lu = ids (s

¢) if (g,h) € G, then (g|p.p, hl,) € G2, and (gh)|, = g|npuhl,, and

d) (g7 = (glg=1) 7"

Example 5.1.7. Consider the same graph F as in Example [5.1.4] We define two partial isomorphisms of T},
{a, b}, by the rules

a-1=3, al1=a
a-2=2, als=1id,,
b-3=4, bzs=a

that is, a : v E* — voE* and b : vo E* — vz E* are defined recursively by a - (1) = 3(a - p) for all y € v1 E*
and a - (2n) = 2p for all p € voE*, and b- (3p) = 4(a - p) for all p € v1 E*. It is then easily verified that the
subgroupoid G of Plso(Tg) generated by the set of partial isomorphisms {a, b,id,, ,id,,,id,, } is self-similar
and acts faithfully on E.

5.1.3 The Toeplitz C*-algebra of a self-similar groupoid

The Toeplitz algebra of a self-similar action G ~ FE is defined in [63] as follows (see also [36]). A Toeplitz
representation (v,q,t) of (G,E) in a unital C*-algebra B is a triple of maps v : § — B, ¢ : E° — B,
t: E' — B such that

a) (g,t) is a Toeplitz—Cuntz—Krieger family in B, that is
(V) {qv}vero is a family of pairwise orthogonal projections,
(E) tes(e) = Gr(e)te = te for all edges e € E',

(TCK1) tity = e rqs(e) for all e, f € E', and

(TCK2) {tct;}ecp is a family of pairwise orthogonal projections satisfying t.t7 < g, for every e € El,
and it is also required that } o quw = 1B;

b) {vy : g € G} is a family of partial isometries on B satisfying vyvn = da(g),i(n)vgn and vy—1 = vy for all
g,h € G, and v, = ¢y, for w € GO = EY;

¢) Vgte = Oa(g),r(e)tg-ey), for g € G and e € E'; and

d) vy = ba(g)wlg-wy for all g € G and w € E°.

Definition 5.1.8. Standard arguments show that there exists a universal C*-algebra T (G, E) generated by a
Toeplitz representation {u,p, s}; we call it the Toeplitz algebra of the self-similar action G ~ E.

‘We have
T(G. E) = span{s,uys; | p.v € B*,g € G2}

by [63 Proposition 4.5]. The argument of the paragraph following the statement of [63, Theorem 6.1] applied
with 7, replaced by a faithful representation of C*(G) shows that there is an embedding

C*(G) = T(G.B) via 8, u,.

We also find a copy of the Toeplitz algebra 7 C*(E) considered in [49], which is the C*-subalgebra of 7 (G, E)
generated by the universal Toeplitz-Cuntz-Krieger family (p, s).

Definition 5.1.9. Following [63], Proposition 4.7], the Cuntz—Pimsner algebra of (G, E), denoted O(G, E), is
defined to be the quotient of 7(G, E) by the ideal I generated by {p, — > ., p Sesi | v € E°}.

Note that 1og ) = > ,cpn Sus;, for any n > 1.
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5.1.4 Dynamics on 7 (G, F) and O(G, E)

The universal property of 7 (G, E) yields a strongly continuous gauge action + : T — Aut(7 (G, E)) such that

V= (ug) =Ug, 7z (QU) = Qu, and V= (te) = zte

forallt € R,g € G,v € EY and e € E'. It gives rise to a dynamics o : R — Aut(7 (G, E)) via 04 = i for
t € R. Note that, since each p, — > ., g1 ses; is fixed by o, the dynamics o descends to a dynamics, also
denoted by o, on O(G, E).

5.2 A fixed-point theorem, and the preferred trace on C*(G)

As we have already explained at the beginning of this chapter, recent results of Laca, Raeburn, Ramagge and
Whittaker [63] show that any self-similar action of a groupoid on a graph G ~ F determines a 1-parameter
family of self-mappings of the trace space of the groupoid C*-algebra C*(G). More specifically, if we let p(Ag)
denote the spectral radius of the adjacency matrix Ag, then Proposition 5.1 of [63] shows that there are no
KMSg states for (7(G, E), o) for § < log p(Ag), and in [63, Theorem 6.1], given a trace 7 € Tr(C*(G)), the
authors show that for 5 > log p(Ag), the series

Z2(B,7) = ey Tlug)
k=0 pEEk

converges to a positive real number, and that there is a KMSgs state g, on the Toeplitz algebra 7(G, E)
given by

00
\PB,T(SMuQS;) = 6u,ye_ﬁ‘#‘z(ﬁ’7)_lz€_5k( Z T(”g\;))' (5.2.1)
k=0 Aes(p)EF
g- A=A

They show that the map 7 +— Wg ; is a homeomorphism from the simplex of tracial states of C*(G) to the
KMSg-simplex of T (G, E). In particular, it is easy to see that the map

7= Ug oo (g) (5.2.2)

determines a self-mapping x5 : Tr(C*(G)) — Tr(C*(G)). We investigate the fixed points for these self-mappings
parametrized by 8 > log p(Ag), under the same hypotheses that Laca et al. used to prove that 7 (G, E') admits
a unique KMS,,, ,4,) state. We prove that for any supercritical value of the parameter 3, the associated
self-mapping admits a unique fixed point, which is in fact a universal attractor. This fixed point is precisely
the trace that extends to a KMS,qg (4, state on T(G, E).

Our main theorem is the following; its proof occupies the remainder of the section.

Theorem 5.2.1. Let E be a finite strongly connected gmplﬂ suppose that G ~ E is a faithful self-similar
action of a groupoid G on E, and suppose that 5 > log p(Ag). If G ~ E is finite state, then

(1) the map xs : Tr(C*(G)) — Tr(C*(G)) of has a unique fized point 6;
(2) for any T € Tr(C*(G)) we have xj(7) % 0;
(3) 0 is the unique trace on C*(G) that extends to a KMSiog p(a,) State of T(G, E).

We start with a straightforward observation about the map xg of (5.2.2).

Lemma 5.2.2. Let G ~ E be a faithful self-similar action of a groupoid G on a finite strongly connected graph
E, and suppose that B > log p(Ag). Then the map xgp is weak*-continuous. Moreover, if T € Tr(C*(G)) is
such that the sequence {X}3(7)}n>1 weak”-converges to some 0, then 6 € Tr(C*(G)) and x5(0) = 0.

3This means that every vertex is reachable from every other vertex. Equivalently, Ag is an irreducible matrix, i.e. for each
pair of indices i, j there exists a power of Ag such that the (i, j)-component of it is strictly positive, that is (4%); ; > 0 for some
integer £ > 1.
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Proof. The map Tr(C*(G)) — KMS(T(G, E)), T — ¥g,, is a homeomorphism and hence continuous, and
restriction of states to a subalgebra is clearly continuous, so x : Tr(C*(G)) — Tr(C*(G)) is continuous. Hence

if x3(7) N 0, then 6 € Tr(C*(G)) because the trace simplex of a unital C*-algebra is weak*-compact, and then
x(0) = xp(lim, x3(7)) = limy, X"+1( )=16. O

Proposition 5.2.3. Let G ~ E be a faithful self-similar action of a groupoid G on a finite graph E, and fix
B >logp(Ag). Let xp : Tr(C*(G)) — Tr(C*(G)) be the map (5.2.2). For 7 € Tr(C*(G)), define

N(B,7) = e’ (1=2Z(8,7)7").
(i) If T € Tr(C*(G)) is a fized point for x s, then for each g € G, we have

N(B,7)"7(ug) = Z 7(ug),) for alln > 1. (5.2.3)

HEE™|g-u=p

(ii) If E is strongly connected with adjacency matriz Ag, and 7 € Tr(C*(G)) satisfies (5.2.3)), then m =
(7(uy))vepo is the Perron—Frobenius eigenvector of AEEL and N(B,7) = p(Ag).

Proof. (i) For each g € G we have

r(ug) = xs()(g) = Z(B,7) Y e (Y ()
k=0

neEr
g-n=n
=Z(B,7) ! [T(ug) +e P Zefﬁ]‘( Z T(ugu))} .
k=0 peEF+
g h=n

Note that the map (e,v) ~ ev is a bijection between the sets {(e,v) € E' x E¥ | s(e) = r(v), g-e =
eand gl.-v=v} and {u € E¥*! | g u = pu}, so the definition of ¥p . yields

) = 26,7 () + 3 (26,0 e (Y )

ecE?! k=0 vEs(e)E*
g-e=e gle-v=v
Z(B, 1) Z Vs - (sctg), 55)- (5.2.4)
ecE!
g-e=e

We have Wg ;(Sctig) 55) = Os(e).e(9)0s(e) ()€ " Up,r(Ug.) = e Pxa(T)(ug),); applying this and rearranging

gives
e’ (1—2(B,7) = > xs(r = > (ug,)-

ecE! ecE!
g-e=e g-e=e

Statement (i) now follows from an induction on n.
(ii) Using (5.2.3) for 7 with n = 1 at the first step, we see that for v € E°,

My = N(BaT)il Z T(us(E)) = N(ﬂa’r)il Z AE(’U,’LU)T(UU,) = N(ﬁ;T)il(AEm)ir

ecvE! we ko

Hence, since 1 = 7(1) = > po 7., the vector m is a unimodular nonnegative eigenvector for the irreducible
matrix Ag and has eigenvalue N (8, 7). So the Perron-Frobenius theorem [93] Theorem 1.6] shows that m is
the Perron—Frobenius eigenvector, and N(3,7) = p(Ag). O

We now turn our attention to the situation where E is strongly connected and G ~ F is finite-state, and
aim to show that xs admits a unique fixed point. The strategy is to show that if C*(G) admits a trace 6

satisfying (5.2.3), then for any other trace 7 we have x(7) = 6. From this it will follow first that x% admits
at most one fixed point, and second that a trace ¢ is a fixed point for xg if and only if it satisfies 1- We
start with an easy result from Perron—Frobenius theory.

4That is, the unique unimodular eigenvector whose components are strictly positive.
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Lemma 5.2.4. Let A € M,(R) be an irreducible matriz, and take 8 > log p(A).

i) The matriz I — e P A is invertible, and A,y := (I — e P A)™! is primitive; indeed, every entry of A,n is
strictly positive.

ii) Let m* be the Perron—Frobenius eigenvector of A. Then m*”

Ayn, and p(Ayn) = (1 — e Pp(A)~"

is also the Perron—Frobenius eigenvector of

Proof. The proof of ) is easy. The matrix I —e~# A is invertible because e > p(A), and so e’ does not belong
to the spectrum of A. As in, for example, [27, Section VIL.3.1], we have

Ayny =T —ePA)~1 = Ze_kﬁAk.
k=0

Fix two indices 1 < 4,7 < n. Since A is irreducible, we have (Ak)m- > 0 for some k = k; ; > 0, and since
Aé,j >0 for all [ > 1, we deduce that (A,n);; > e *¥(A%); ; > 0.

For ii), we compute A vm?4 = (I — e PA)mA = (1 — e Pp(A))mA. Multiplying through by (1 —
e Bp(A))~1A,N shows that m? is a positive eigenvector of m* with eigenvalue (1 — e ?p(A))~!, so the
result follows from uniqueness of the Perron—Frobenius eigenvector of A,y (cf. [93, Theorem 1.6]). O

Notation 5.2.5. Henceforth, given a self-similar %ction G ~ FE of a groupoid G on a finite graph E and a
trace 7 € Tr(C*(G)), we will denote by 27 € [0,1]¥ the vector

" = (T(“”))veEO'
Proposition 5.2.6. Let G ~ E be a faithful self-similar action of a groupoid G on a finite strongly connected
graph E. Fiz 3 > logp(Ag), and let A,y = (I — e PAp)~L. Let x5 : Tr(C*(G)) — Tr(C*(G)) be the map
(5.2.2). Fix 7 € Te(C*(G)). Then
gX5(T) = ||AnyzT || P AT 2T (5.2.5)

v

Proof. For v € E°, the definition of yg gives

22X — xs(T)(uy) = Z(B,7) " Zeiﬁk< Z T(“s(u)))
k=0

nevEk

=2Z(B,7) " Ze_ﬁk Z AR (0, w)T (U )
k=0

weE°

=Z(B,7) 1> e H(ARaT)y = Z(B,7) 7 (AunaT)o,
k=0

so an induction gives xX8(7) = Z(B,x (1)t Z(B,7) T Alya”. Since both #X4(") and 27 have unit
1-norm, we have Z(J3, Xg_l(T))’l - Z(B, 1)t = ||Any27 |7, and the result follows. O

Our next result shows that for any 7 € Tr(C*(G)), the sequence zX(™) converges exponentially fast to the
Perron—Frobenius eigenvector of Ag.

Theorem 5.2.7. Let G ~ E be a faithful self-similar action of a groupoid G on a finite strongly connected
graph E. Fiz 8 > log p(Ag), and let Ayn := (I —e PAg)~! and m = m” be the Perron—Frobenius eigenvector
of Ag. Let xg : Tr(C*(G)) — Tr(C*(G)) be the map (5.2.2). Fiz 7 € Tr(C*(G)). Then () DB
exponentially fast and Z (B, xj5(7)) 5 p(Ayn) exponentially fast.

Proof. Since E is strongly connected, Lemma shows that m is the (right) Perron-Frobenius eigenvector

of Ayn := (I —e PAg)~1. Write m for the left Perron-Frobenius eigenvector of A,y such that m-m = 1. Let

r:=m-z". Then r > 0 because every entry of m is strictly positive, and =7 is a nonnegative nonzero vector.
Proposition [5.2.6] implies that

X5(r) p(Ayn)"

Ty v = m [(p(AUN)_"AZNxT —rm) + (r— | (p(Aun) " Afya”) Hl)mv}. (5.2.6)
v 1
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By |93, Theorem 1.2], there exist a real number 0 < A < 1, a positive constant C, and an integer s > 0 such
that for large n we have

p(Aun) ™ (AlN)ij — (m-m");; < Cn®A™  for all indices 1, j.

Moreover, since Cn®(\ /A)™ — 0 for any 0 < M < XA < 1, we can assume that C = 1 and s = 0. So for large n,
we have

|p(AvN)7”(AZNmT)U — rmv| < \".

Since v € E° was arbitrary, by summing up over all the vertices we deduce that
|p(Aon) T ATy [l — 7| < [EOA™
Hence p(AUN)’”HAZN:UTHl X r exponentially fast. Making this approximation twice in (5.2.6), we obtain

x5 (7)
v - mv|

0
A+IED

<
p(Aun) [ A7l

which converges exponentially fast to 0. Hence zX#(") — m exponentially fast.
For the second statement, using Proposition [5.2.6] at the third equality, we calculate

Z(8, x3(7) Ze > XET) (wau)

HEEF
JAp% el _ p(Awn) "D AT ]|
IA5nele — p(Aon) Ay,

= [Auna5 | = p(Aun).

We saw that p(A,y)~ "1 ||AZIJ{[1$T||1 converges to r > 0 exponentially fast, so the ratio

p(Aun )*”*“HA"“wTHl
p(Aun) || AnyaT ||,

converges exponentially fast to 1. O

The following estimate is needed for our key technical result, Theorem [5.2.9

Lemma 5.2.8. Let G ~ E be a faithful finite-state self-similar action of a groupoid G on a finite strongly
connected graph E. Fiz 3 > log p(Ag), and let A, := (I — e PAg)~" and m = m® be the Perron—Frobenius
eigenvector of Agp. For g€ G\ E°, v € E°, and k > 0, define

Gy(v) :={pedgE" |g-p=pn} and Fy):={pegi)|gl,=ur}
Then for g € G, we have the estimate
e 1GE )\ Fy(0)Imy < p(Aun)magg).
k= veEEC

Proof. The argument of [63, Lemma 8.7] shows that there exists k = k(g) > 0 such that

S 1G24 () \ FrE @)l < (o(AR)KD — 1)mag,

veEEO

for all n > 0. For each k € N we also have

D 1Gs @) my < d(g)EFvlmy, = (Afm)agg) = p(Ap) magg).
veEE° vEE?
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Combining these estimates and using Lemma [5.2.4] i7) at the final step, we obtain

Zefﬁk Z ng \]—"’C Ym, = Z —hRk Z |gk \]-‘k 0)|my + e k@) Z |Q§(9)(v)\}"§(9)(v)|mv

vEEO k#k(g) veEED vEEO
> e p(Ap)rmaggy + e 9 (p(Ap)9) — 1)my(y,
Ktk (g)
<D e p(Ar) magg) = p(Avn)magg). =

We are now ready to prove a converse to Proposition 1), under the hypotheses that E is strongly
connected and the action of G on FE is finite-state.

Theorem 5.2.9. Let G ~ E be a faithful finite-state self-similar action of a groupoid G on a finite strongly
connected graph E. Fixz 8 > logp(Ag). Let xg : Tr(C*(G)) — Tr(C*(G)) be the map (5.2.2). Suppose that

0 € Tr(C*(G)) satisfies (5.2.3). Then for any T € Tr(C*(G)), we have xj3(7) Y 0. In particular, 0 is a fized
point for xga.
Proof. We will prove that for each g € G there are constants 0 < A < 1 and K, D > 0 such that

IX5(T)(ug) = O(ug)| < (nK + D)A"timgqq)

for all n > 0. Since (nK + D)KA"' % 0 exponentially fast in n, the first statement will then follow from an
S-argument, since span{ug}4eg is a dense subset for C*(G).
To simplify notation, define 7o := 7 and 7, := xj3(7) for n > 1. For g € G and n > 0, let
An(g) = Tn(ug) — 0(uy).

Fix g € G; note that, if ¢(g) # d(g), then 7,(uy) = 6(uy) = 0 by [63l Proposition 7.2], so we may assume that
c(g) = d(g). Since the action is finite-state, the set {g|, | 4 € d(g)E*} is finite. By Lemma [5.2.8} there is a
constant a < 1 such that

Ze_ﬁk Z k|u(U) \ f§|u(v)|mv < ap(AuN)mag),) (5.2.7)

veEO
for all p € E*. Also, since 0 satisfies (5.2.3), we have
O(ug) = N(B,0)"* Z O(ug),) for all k > 0.

pneE®
g n=p

Consequently,

26_5’“ > Olug,) = D e EN(B0)*6(ug) = (1—e " N(B,0)) " 0(u,).
k=0

pEEF
g-pn=p

Since N(3,0) = e?(1 — Z(3,0)~ ") by definition, we can rearrange to obtain

O(ug) = Ze*’@k Z 0( ug|u

peEE"
9 R=p

Using this, and applying the definition of x5 at the third equality, we calculate

Ant1(9) = s (ug) — 0(ug) = xp(7a)(ug) = Z(8,0)71 Y e > O(uy,)

k=0 nEEF
g-p=p
EZ Y Z Y
Z(B, )" e Tn ug‘# e ( ugh
ueE* weEEF
= Gn=p
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Since the sums are absolutely convergent, we can rewrite each 6(ug,) as 7,(ug|,) — An(gl,) and rearrange to
obtain

Anii(9) = (Z(B,7) 7 = 28,07 Y e (3 alug,)) + Z(8.0) Ze‘“ > Aalgh)- (528)
k=0

neEkr ueE"
g-p=p g-n=p

Now, 6 satisfies (5.2.3), so Proposition [5.2.3{(ii) combined with the definition of N (8, #) imply that Z(8, 6) =
(1—e PN(B, 9))71 =(1- e’Bp(A))fl, and then Lemma i1) gives Z(3,0) = p(Ayn). Also, by definition
of x 3, we have

Ze*Bk Z Tn(Ug),) = Z(B, Tn) Tnt1(ug).

ueE*
g-p=p

Making these substitutions in ([5.2.8), we obtain

AnJrl( ) ( (B,Tn) _p(AvN) ) (ﬁan)Tn+l(ug +p Zei'gk Z A g|#

;LEE"
g-p=p

With GF(v) and F,(v) defined as in Lemma [5.2.8} the preceding expression for A, 41(g) becomes
Ant1(g) = (Z(8,7) " = p(Aun) ™) Z(B, ) Tas1(ug)

Ze—ﬁ’fz( S A+ Y Al). P

vEE?  peGE()\Ff(v) HEFE(v)
The Cauchy-Schwarz inequality implies that for any h € G,

[Trg1 (un)[? = |71 (i) )P < Topr (uhun)7(w gy tegny) = Tog 1 (Wagn) ) Tt (te(n))-

Since our fixed ¢ satisfies d(g) = c(g), taking square roots in the preceding estimate gives |7,11(ug)| <
Tn+1(Ua(g)). Applying this combined with the triangle inequality to the right-hand side of (5.2.9), we obtain

|Ant1(9)| < |Z ﬂan)71 — p(Ayn) 71|Z ﬂan)Tn+1(ud(g))

Ze*ﬁ’“Z( S A+ Y (Al]),

vEEY  pueGk(v)\Fk(v) pEFE(v)
which, using that g|, = v for 4 € F} (v), becomes

|An+1(g)| S ‘Z B)Tn)_l _p(A _1‘Z ﬁan)Tn—i-l(ud(g))

Ze—ﬁ’“z S Al

vEES peGE (vV)\Fy (v)

Ze‘ﬁ’“z PORENIC

vEEY peFk(v)
Since (Z(ﬁaTn)_l - p<AvN)_1)Z(BaTn) = p(AvN)_l (p(AvN> - Z(ﬁan))a we obtain

[Ant1(9)] < p(A, )‘1!p(AvN) = Z(B,70) Tt (a(g))

Ze—ﬁ’“z S Al

vEES peGE (v)\Fy (v)

o) Y e AL ()]

pued(g)E*
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By Theorem there are positive constants Ao, K7 and Ky with A\g < 1 such that [p(A,n) — Z(8, )| <
K13 for all n > 0 and |A,,(v)] = |0 (uy) — my| < K2AJ for all v € E® and n > 0. Thus we obtain

|Ant1(9)] < K1 p(Ay )_lTnJrl(ud( )

Ze-ﬁkz S Al
vEEY peGk (v)\Fk(v)

+ KQ)\S’,D(A»UN)71 Z e Plul,
pned(g)E*

Theorem 3.1(a) of [49] shows that 3 ;) p- e~ Plul converges, and since the entries of the Perron—Frobenius
eigenvector m are strictly positive, [ := max,epgo{m, '} is finite. So K := p(A ymax{Ki, K>} cp. € —Bluly
satisfies

|An+1 >| < K)‘Omd(g) + P Ze_ﬂk Z Z ’An(g|ﬂ)‘ (5'2'10)

vEEY peGy (v)\F§ (v)

Since both ¢ and the constant « of (5.2.7) are less than 1, the quantity A := max{Ag, a} is less than 1. Let
D :=lmax,ca(g)p-{|7(ug), )| +10(ug), )|} Wthh is finite because G ~ E is finite state. Let g|g+ := {g]u | we
E*} C G. We will prove by induction that |AR(h)] < (K + D)Xty
The base case n = 0 is trivial because each |Ag(h)| = |7(un) — O(up)| < |T(U,h)| + |6(up)| < DI~ 1 <
DX 'my(). Now suppose as an inductive hypothesis that [A, (k)| < (nK + D)/\” Ymg for all h € g|p-,
and fix h € g|g=. Applylng the inductive hypothesis on the right-hand side of m, and then using that

h|g+ C g|g+ and invoking (5 gives

[Ani1(h)| < KX\gmgpny + (nK + D)/\n71 Z e Pk Z Z My(hl,)
vEEC veGE (v)\FF (v)

= KXgmagny + (nK + D)X p(Aun) ™D e N " GE(w) \ Ff (v)|m,

vEE?
< K)\gmd(h) + (nK + D))\”flamd(h),

and since A\g, @ < A we deduce that
|Ant1(R)] < (0 + 1)K + D)A" maqp).-

The claim follows by induction, and in particular we have |A,(g)] < (RK 4+ D)A""tmy(, for all n > 0, as
claimed. This proves the first statement.

The second statement follows immediately from Lemma [5.2.2 O

Proof of Theorem[5.2-1 (1) Let m = m® be the Perron-Frobenius eigenvector of Ag. For v € G0 = E°, let
¢y :=m,. Fix g € G\ E°. By [63, Proposition 8.2], the sequence

(rtae)™ X [{me B lg-p =gl =v}m,)

veE0

converges to some ¢y € [0, mg(g)]- By [63, Theorem 8.3], there is a KMS)qq (4, state ¢ of T(G, E) that factors
through (O(G, F)). This ¢ satisfies

p(Ag)~IMe, if p=wv and d(g) = c(g) = s(p)
0 otherwise ’

b(suugs,) = {

In particular, 6 := (g) belongs to Tr(C*(G)). We claim that 6 is a fixed point for x 5. By the final statement
of Theorem , it suffices to show that 6 satisfies (5.2.3). Proposition 8.1 of [63] shows that 2 = (6(u,))

veEEO
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is equal to m. Using this, we see that

Z(B,0) = Z Ze‘ﬁk Z O(ug()) = Z Ze‘ﬁk Z AR (v, w) M

veEO k=0 y,Gka veEEY k=0 weE0
= 3 D e tHAbm)y = 3 e p(Ap)t Y- my = (1 e Pp(Ar)
vEEO k=0 k=0 veEE°

Hence N(3,0) = e’(1— Z(B,0)") = p(Ag). Since log,p) = > pemo Po = D ecp SeSs, We have

a(ug) = ¢(Ug) = Z w(ugses:) = Z 5d(g),r(e)w(sg'€ug|e82)

e€E1 e€E1

= Sa(g).r(e)0g-c.eVd(gle).s(e) Oe(gl.) s(e) P(AR) 1 O(ug),) = N(B,0)™" Y 0(uy),).

eeE1 ecE!
g-e=e

Now an easy induction shows that 6 satisfies relation (5.2.3)).
It remains to prove that 6 is the unique fixed point for xg. For this, suppose that ¢’ is a fixed point for xg,

*

so x3(0) % ¢'. Since 0 satisfies (5.2.3), Theorem [5.2.9shows that X5(0") EN 0,500 =0.

(2) This follows immediately from Theorem [5.2.9] because 0 satisfies (5.2.3).

(3) The trace 6 of part (1) extends to a KMS,g ,4,) state of T(G, E) by construction. If ¢ is any
KMSog p(a5) state of T(G, E), then it restricts to a KMS),g 5(4,) state of the C*-subalgebra 7 C*(E), so it
follows from [49, Theorem 4.3(a)] that ¢ agrees with ¢ on 7TC*(E), and in particular (¢(uy))yepo is equal
to the Perron-Frobenius eigenvector m¥. So [63, Proposition 8.1] shows that ¢ factors through O(G, E).
By construction, v also factors through O(G, F). By [63, Theorem 8.3(2)], there is a unique KMS state on
O(G, E), and we deduce that ¢ = 9. In particular, ¢|c«(g) = ¢

o+(g) = 0- O

5.3 The lamplighter group as a self-similar group(oid)

To conclude this chapter, we would like to connect the study already made in Chapter [3] of the lamplighter
group, which is given by the wreath product I' = Z5 { Z, see Example
Let Er be the finite graph given by one vertex v and two loops 0, 1 around v, namely

(e

Its forest T'g,. is easy to describe:

000 001 010 011 100 101 110
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Since the graph Er contains only one vertex, the set of partial isomorphisms Plso(Tg.) forms not even a
groupoid, but a group under composition of maps. We define two (partial) isomorphisms a,b : vE* — vE*
recursively by the rules

{a~<om=1<b~u>, o {b~<0m:o<b~m,
a-(1p)=0(a-p) b-(1p) =1(a - p)

for all paths « € vE*. By a theorem of Grigorchuk and Zuk [42, Theorem 2|, the subgroup Gg, of Plso(Tg,.)
generated by {a,b} is isomorphic to the lamplighter group T', through the isomorphism

Gp. =T, b law ag, bt
In particular, T" is a self-similar group(oid) which acts faithfully on Er. Note that Ag = (2) here, so p(Ag) = 2.

Proposition 5.3.1. For I the lamplighter group, the trace 8 from Theorem M(B) equals the canonical trace
trr defined on C*(I") by the rule tr(uy) = 4., where e is the unit element of I', and ¢ is the Kronecker delta.

Proof. By a reformulation, in our notation, of the proof of [42, Proposition 9], we deduce that for an element
g € T different from the identity element, there exists an integer ng > 1 such that

\F’gm“| < (2™ —1)*  forany k >0,
where I'y = {§z € E™ | g - p = p}. Therefore by [63, Proposition 8.2,

cg =lim27"0{p € B [ g p=p, gly = v} <lim27*"0 g™ <lim(1 - 27")" = 0.

Of course, for g = e € I', c. = lim, 27"|E™| = 1. This tells us precisely that 6(uy) = ¢y = 04, = trr(ug) for all
g € I, as required. O

Recall from Section that the canonical trace trp over the group algebra C[I'] can be extended to a
trace over k x k matrices My (C[I']), and this in turn extends to a normal, faithful and positive trace over the
von Neumann algebra N (T') of M (C[I]) inside B(I*(T')) (see Proposition .

Since the von Neumann dimension of an element T' € M} (C[I']) is defined to be the trace of the projection
onto its kernel (Definition [1.1.7), Proposition opens a possible analytical approach to attack the problem
of computing [?-Betti numbers arising from T, by trying to study the role of the unique KMS),, > state that its
restriction gives back the trace trr.
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