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Introduction

Given an elliptic curve E over C, there exists a lattice Λ ⊆ C such that
the group E(C) of complex points on E is isomorphic to the complex analytic
group C/Λ. This link between elliptic curves and one-dimensional complex tori
is called the Uniformization Theorem, and one can explicitly find the curve
corresponding to a given lattice with the Weierstrass ℘-function, its derivative,
and the Eisenstein series.

Similarly, given an algebraic curve C of genus g, one associates to it a prin-
cipally polarized abelian variety J(C), the Jacobian of C. Over C, the Jaco-
bian J(C) is isomorphic to a g-dimensional complex torus Cg/Λ for a lattice Λ
of full rank in Cg.

This determines a map J from the set Mg of isomorphism classes of algebraic
curves of genus g to the set Ag of principally polarized abelian varieties of
dimension g, and one may wonder if there exists an explicit inverse to this map,
as in the case of elliptic curves. We call this the inverse Jacobian problem.

This problem has been solved for curves of genus 2 [37, 50] and genus 3
[1, 9, 16, 21, 48, 52, 53]. However, for genus g ≥ 4 there is the additional
obstruction that not all principally polarized abelian varieties are Jacobians of
curves, hence in order to solve the inverse Jacobian problem one needs to study
the image by J of Mg in Ag. The problem of describing J(Mg) is known as the
Riemann-Schottky problem. .

In this thesis we treat these two problems for two families of superelliptic
curves, that is, curves of the form yk =

∏l
i=1(x − αi). We focus on the family

of Picard curves, with (k, l) = (3, 4) and genus 3, where we solve the inverse
Jacobian problem, and the family of cyclic plane quintic curves (CPQ curves),
with (k, l) = (5, 5) and genus 6, where we solve both problems.

In Chapter 1 we first introduce some background on abelian varieties, Jaco-
bians of curves, and Riemann theta constants, and then we present an inverse
Jacobian algorithm for Picard curves. Note that Picard curves have genus 3,
hence there is no obstruction to the inverse Jacobian problem.

Since Picard curves are plane quartic curves, the inverse Jacobian problem
for Picard curves could be solved using the formulas for plane quartics given
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Introduction

in [52], but focusing on a smaller family of curves allows us to present a more
efficient solution for the family of interest.

This was originally done by Koike and Weng in [16], but their exposition
presents some mistakes that we address and correct here. This chapter is based
on joint work with Joan-Carles Lario, see also [21].

In Chapter 2 we present an inverse Jacobian algorithm for CPQ curves. We
follow a strategy analogous to the one in Chapter 1 for the case of Picard curves.

In Chapter 3 we address the Riemann-Schottky problem for CPQ curves,
that is, we characterize the principally polarized abelian varieties that are Ja-
cobians of CPQ curves. First we use a generalization of the classical theory of
complex multiplication due to Shimura [39] to study how the existence of the au-
tomorphism of CPQ curves (x, y) 7→ (x, exp(2πi/5)y) affects the structure of the
Jacobians. Then we solve a class number one problem for higher-dimensional
Hermitian lattices over Z[ζ5], which is key to solving the Riemann-Schottky
problem for CPQ curves.

Finally, in Chapter 4 we present one application for the above algorithms:
constructing curves such that their Jacobians have complex multiplication. This
has previously been done for genus 2 [51, 47] and genus 3 [1, 13, 16, 21, 53]. Here
we extend the methods of Kılıçer [12] to determine a complete list of CM-fields
whose ring of integers occurs as the endomorphism ring over C of the Jacobian
of a CPQ curve defined over Q.

In particular, this allows us to list conjectural models for all CPQ curves
over Q whose Jacobians have the maximal order of a degree-12 CM-field as
endomorphism ring over C. Our list contains the correct number of curves,
which are defined over Q and numerically correct up to high precision.
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1The family of Picard curves

A Picard curve over C is a genus-3 smooth, plane, projective curve given
by y3 = f(x) where f is a polynomial of degree 4. Such a curve has an auto-
morphism ρ of order 3 given by (x, y) 7→ (x, z3y) with z3 = exp

(
2πi
3

)
. It fixes

the points (t, 0) with f(t) = 0, the affine branch points of C. The curve C also
has a unique point at infinity, with projective coordinates (0 : 1 : 0), which is
also fixed by the automorphism ρ.

One can check that all isomorphisms between Picard curves are of the form

(x, y) 7→ (ax+ b, cy),

see Section 7.3 in Estrada [11, Appendix I] for details. Therefore, given a
Picard curve C, every ordering of the affine branch points of C gives rise to an
isomorphic Picard curve given by an equation of the form

y3 = x(x− 1)(x− λ)(x− µ) (1.1)

with the first affine branch point at (0, 0), the second at (0, 1), the third at (0, λ)
and the forth at (0, µ). We refer to the form (1.1) as a Legendre-Rosenhain
equation of a Picard curve.

In this chapter we present a method that, given the period matrix of the
Jacobian of a Picard curve, gives a numerical approximation of the equation
of the curve. This was initially done by Koike and Weng in [16], but their
exposition presents some gaps and mistakes that we fix in this chapter, see
Remarks 1.2.14, 1.3.8, and 1.4.2.

We start by introducing some concepts needed throughout this thesis in
Section 1.1, such as principally polarized abelian variety, the Jacobian of a
curve and the Riemann-Schottky problem.
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1 The family of Picard curves

In Section 1.2 we give a formula to approximate the x-coordinates of the
affine branch points of a Picard curve in terms of theta constants on its Jacobian,
see Theorem 1.2.13.

In Section 1.3 we develop an algorithm that given the Jacobian of a Picard
curve C returns the Legendre-Rosenhain equation of C, see Algorithm 1.3.9.
The main step of the algorithm is applying the formula in Theorem 1.2.13, so
we first identify the objects needed to apply said formula, such as the Riemann
constant and the images by the Abel-Jacobi map of the affine branch points.

Finally, in Section 1.4 we characterize the polarized abelian varieties that
arise as Jacobians of Picard curves, see Proposition 1.4.1, and in Section 1.5 we
give some details on the implementation of Algorithm 1.3.9 and show examples
of curves obtained using the algorithm.

This chapter is based on joint work with Joan-Carles Lario. In particular,
Theorem 1.2.13 and the examples in Section 1.5 appeared before up to minor
corrections in Joan-Carles Lario and Anna Somoza, A note on Picard curves of
CM-type, arXiv:1611.02582 [21].

1.1 Preliminaries on abelian varieties

In this section we review some notions that will be needed throughout this
thesis. We follow classical references such as Birkenhake-Lange [2], Lang [19],
Milne [24, 25] or Mumford [30].

1.1.1 Polarized abelian varieties

An abelian variety X over a field k is a complete irreducible group variety
defined over k, and it is smooth, projective and commutative. A homomorphism
of abelian varieties is a morphism that respects the group structure. It is an
isogeny if it is surjective and the abelian varieties have the same dimension.
We say that an abelian variety is absolutely simple if it has no non-zero proper
abelian subvarieties over the algebraic closure k of k.

Given an abelian variety X defined over k, we define the Picard group of X
as the group Pic(X) of isomorphism classes of line bundles on Xk. Given a line
bundle L on Xk, we define the map

φL : X(k)→ Pic(X)

x 7→ [T ∗xL ⊗ L−1],

where Tx stands for the translation by x on Xk and [L] stands for the isomor-
phism class of L in Pic(X). The map φL is a homomorphism, see Corollary 4
in Mumford [30, Section 2.6].
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Preliminaries on abelian varieties 1.1

We define Pic0(X) as the subgroup of Pic(X) consisting of classes of line
bundles L such that the map φL is zero. It is the group of k-points of an abelian
variety over k (see Section 2.8 in Mumford [30]), we call it the dual variety of X,
and denote it by X̂.

A homomorphism of abelian varieties f : X → Y induces a map
f∗ : Pic(Y ) → Pic(X) that maps Pic0(Y ) to Pic0(X), which gives us the dual
homomorphism f̂ : Ŷ → X̂.

We define a polarization on X as an isogeny λ = φL where L is an ample line
bundle on Xl for l ⊇ k a finite separable extension of the field of definition k.
It is called principal if it is an isomorphism. We say that a polarized abelian
variety (X,λ) is defined over k if both X and λ are defined over k.

Two polarized abelian varieties (X1, λ1) and (X2, λ2) are isomorphic if there
exists an isomorphism of abelian varieties f : X1 → X2 that is compatible with
the polarizations, meaning that it satisfies λ1 = f̂ ◦ λ2 ◦ f .

Given a polarization λ : X → X̂ and an endomorphism f ∈ End(X) ⊗ Q,
we define

f ′ := λ−1 ◦ f̂ ◦ λ. (1.2)

The map · ′ : End(X)⊗Q→ End(X)⊗Q given by f 7→ f ′ is an involution
on End(X)⊗Q, and we call it the Rosati involution determined by λ.

1.1.2 Polarized abelian varieties over C and complex tori

When considering an abelian variety X defined over C, the complex mani-
fold X(C) is (complex analytically isomorphic to) a polarizable complex torus,
that is, a complex vector space V modulo a lattice Λ of full rank that admits
a Riemann form. A Riemann form is an anti-symmetric form E : V × V → R
that is R-bilinear, satisfies E(Λ,Λ) ⊆ Z, such that for u, v ∈ V we have
E(iu, v) = E(iv, u), and such that the associated hermitian form

H(u, v) = E(iu, v) + iE(u, v) (1.3)

is positive definite. A polarization of an abelian variety X defined over C de-
termines a Riemann form E on the complex torus X(C), and the determinant
of E with respect to Λ is detE = 1 if and only if the polarization is principal.
For more details on how the two are related see [19, Section 3.4].

Given a principally polarized complex torus V/Λ of dimension g, we can
choose bases e1, . . . , eg of V and λ1, . . . , λ2g of Λ. Writing the latter in terms of
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1 The family of Picard curves

the former, λi =
∑g

j=1 lj,iej , defines a g × 2g matrix over C,

Π =

l1,1 · · · · · · l1,2g
...

...
lg,1 · · · · · · lg,2g

 , (1.4)

called a big period matrix of V/Λ, and we get V/Λ ∼= Cg/ΠZ2g. Moreover, the
form E is given with respect to the basis of Λ by the matrix
ME = (E(λi, λj))ij ∈ Z2g×2g. Analogously, the form H is given with respect to
the basis of V by the matrixMH = (H(ei, ej))ij ∈ Cg×g. These matrices satisfy
the relation

MH = 2i(ΠM−1
E

tΠ)−1. (1.5)

We say that the basis (λi)i is symplectic if the matrix ME of E with respect
to that basis is (

0 1g
−1g 0

)
. (1.6)

In that case, the vectors λg+1, . . . , λ2g form a basis of V and if we choose this
basis of V , then we obtain a big period matrix of the form (Ω,1g) with Ω ∈ Cg×g
symmetric and with positive definite imaginary part. We call the matrix Ω a
period matrix , and we define the Siegel upper-half space Hg to be the set of
matrices Ω ∈ Cg×g symmetric and with positive definite imaginary part.

We say that a principally polarized complex abelian variety X has period
matrix Ω ∈ Hg if X(C) is isomorphic to Cg/(ΩZg +Zg) and the Riemann form
determined by the polarization of X is given by the matrix (1.6).

A homomorphism between complex tori is a holomorphic map f from V/Λ
to V ′/Λ′ that respects the group structure. In particular, it lifts to a C-linear
map F : V → V ′ that satisfies F (Λ) ⊆ Λ′.

This gives the map

ρa : Hom(V/Λ, V ′/Λ′)→ Hom(V, V ′)

f 7→ F,

the analytic representation of Hom(V/Λ, V ′/Λ′); and considering the restriction
of F to the lattice we obtain the map

ρr : Hom(V/Λ, V ′/Λ′)→ Hom(Λ,Λ′)

f 7→ F |Λ,

the rational representation.

12



Preliminaries on abelian varieties 1.1

Let now Π ∈ Cg×2g and Π′ ∈ Cg′×2g′ be big period matrices of V/Λ and
V ′/Λ′ respectively. With respect to the chosen bases, the analytic representa-
tion ρa(f) is a g′ × g matrix over C, and the rational representation ρr(f) is a
2g′ × 2g matrix over Z. They are related by the equation

ρa(f)Π = Π′ρr(f). (1.7)

In the case where f : (V/Λ, E) → (V ′/Λ′, E′) is an isomorphism of prin-
cipally polarized abelian varieties we also have for all u, v ∈ Cg the equality
E(u, v) = E′(f(u), f(v)) =: f∗E′(u, v) . Assume now that the chosen bases are
symplectic, so that the abelian varieties have respectively Ω,Ω′ ∈ Hg as period
matrices. In terms of matrices, the relation f∗E′ = E becomes

tN

(
0 1g
−1g 0

)
N =

(
0 1g
−1g 0

)
, (1.8)

for N the matrix of ρr(f) with respect to symplectic bases of Λ and Λ′. We
define the symplectic group Sp2g(Z) as the group of matrices in Z2g×2g that
satisfy (1.8), so we have ρr(f) ∈ Sp2g(Z).

Let M be the transpose matrix of ρr(f) and consider the subdivision in
g × g blocks

M =

(
α β
γ δ

)
= tρr(f).

It follows from (1.7) and the symmetry of the period matrices that the matrix
of ρa(f) with respect to these bases for Λ and Λ′ is

t
(γΩ′ + δ) (1.9)

and the period matrices Ω,Ω′ are related by the equation

Ω = (αΩ′ + β)(γΩ′ + δ)−1 =: M(Ω′). (1.10)

In particular, this relation gives an action of Sp2g(Z) on Hg. For details, see
Section 8.2 in [2].

1.1.3 Jacobians and the Abel-Jacobi map

Let now C be a curve of genus g defined over a field k, that is, a smooth,
projective, geometrically irreducible algebraic curve over k of genus g. For
such a curve C, let Div(C) (respectively Div0(C)) be the set of divisors on Ck
(resp. degree-0 divisors on Ck), let Prin(C) be the set of principal divisors and
define Pic0(C) = Div0(C)/Prin(C).

13



1 The family of Picard curves

To the curve C over k one can associate in a natural way a principally
polarized abelian variety of dimension g over k, its Jacobian J(C). We have
J(C)(k) = Pic0(C), and denote by λC its natural polarization. Its dimension
is equal to the genus of C. Given a point P ∈ C(k), we define the Abel-Jacobi
map with base point P as the morphism of varieties over k given by

α : C → J(C)

Q 7→ [Q− P ],
(1.11)

and we extend it additively to divisors.
Given a morphism of curves ϕ : C → C ′, let J(C) and J(C ′) be respectively

the Jacobians of C and C ′. The morphism ϕ induces the homomorphisms
ϕ∗ : Div(C) → Div(C ′) given by [P ] 7→ [ϕ(P )], and ϕ∗ : Div(C ′) → Div(C)
given by [Q] 7→

∑
P∈ϕ−1(Q) eϕ(P )[P ], where eϕ(P ) is the order at P of the

function t ◦ ϕ for t a uniformizer at Q. These homomorphisms map degree-0
divisors to degree-0 divisors and principal divisors to principal divisors, so they
induce homomorphisms ϕ∗ : Pic0(C)→ Pic0(C ′) and ϕ∗ : Pic0(C ′)→ Pic0(C).

In particular, for α, α′ the Abel-Jacobi maps with base point P ∈ C and
ϕ(P ) ∈ C ′ respectively, the diagram

C
ϕ //

α
��

C ′

α′

��
J(C)

ϕ∗ // J(C ′)

(1.12)

commutes. Conversely, an isomorphism of Jacobians determines an isomorphism
between the corresponding curves, due to the following result:

Theorem 1.1.1 (Torelli, see Milne [25, Section 12]). Let C and C ′ be curves
over an algebraically closed field k, and let α, α′ be the Abel-Jacobi maps with
base point P ∈ C, ϕ(P ) ∈ C ′ respectively. Let ϕ : J(C) → J(C ′) be an
isomorphism of principally polarized abelian varieties.
(1) There exists an isomorphism ρ : C → C ′ that satisfies ϕ = ±ρ∗.
(2) Assume that the curves have genus ≥ 2. If C is not hyperelliptic, then the

map ρ and the sign ± are uniquely determined by ϕ. If C is hyperelliptic,
then the sign can be chosen arbitrarily, and ρ is uniquely determined by ϕ
and ±.

Torelli’s Theorem implies the injectivity of the map J , the Torelli map, from
the set of curves of genus g over k up to isomorphism to the set of isomorphism
classes of principally polarized abelian varieties of dimension g over k. This
motivates the Riemann-Schottky problem.

The Riemann-Schottky problem. Describe the image of J .

14



Preliminaries on abelian varieties 1.2

Our goal throughout this chapter is to give an inverse Jacobian algorithm
restricted to the family P of Picard curves. We present Algorithm 1.3.9 which,
givenX ∈ J(P), determines a curve C withX ∼= J(C). Moreover, in Section 1.4
we also give a characterization of the absolutely simple principally polarized
abelian varieties in J(P).

Proposition 1.1.2. Every Picard curve is non-hyperelliptic, that is, the canon-
ical map C → P2 is an embedding.

Proof. One computes that a basis of regular differentials for a Picard curve is(
dx

y2
,
xdx

y2
,
dx

y

)
.

It follows that the canonical map is the embedding (x : y : 1) : C → P2.

1.1.4 Jacobians and the Abel-Jacobi map over C

For a curve C defined over C, its Jacobian is also defined over C and therefore
isomorphic to a principally polarized complex torus. We now construct this torus
explicitly, as in Birkenhake-Lange [2, Section 11.1].

Let H0(ωC) be the complex vector space of regular differentials of C, and
let H0(ωC)∗ denote its dual. The homology H1(C,Z) of C injects into H0(ωC)∗

via the map H1(C,Z)→ H0(ωC)∗ given by γ 7→ (ω 7→
∫
γ ω), where the integral

is taken for a representative of the class γ ∈ H1(C,Z).
The image of H1(C,Z) in H0(ωC)∗ is a lattice of rank 2g in a complex vector

space of dimension g. The Jacobian of C is isomorphic to the g-dimensional
complex torus given by the quotient H0(ωC)∗/H1(C,Z), and the Riemann form
is given by the oriented intersection paring on H1(C,Z).

Theorem 1.1.3. (Abel-Jacobi, see [2, Theorem 11.1.3]) Let C be a curve and
let P ∈ C. The map

C → H0(ωC)∗/H1(C,Z),

Q 7→
{
ω 7→

∫ Q

P
ω

} (1.13)

induces a canonical isomorphism Pic0(C)→ H0(ωC)∗/H1(C,Z), which does not
depend on P .

When we identify J(C) with H0(ωC)∗/H1(C,Z), the map (1.13) is the Abel-
Jacobi map with base point P as in (1.11).

15



1 The family of Picard curves

1.2 A Thomae-like formula

In this section we present a formula that gives the x-coordinates of the affine
branch points of a Picard curve C given by a Legendre-Rosenhain equation
as a quotient of Riemann theta functions evaluated at certain points of the
Jacobian J(C). We start by defining these functions.

Definition 1.2.1. The Riemann theta function is the function θ : Cg×Hg → C
given by

θ(z,Ω) =
∑
n∈Zg

exp(πintΩn+ 2πintz).

Theorem 1.2.2 (Riemann’s Vanishing Theorem, see [29, Corollary 3.6]). Let C
be a curve over C of genus g, let J(C) be the Jacobian of C with period matrix
Ω ∈ Hg and let α be an Abel-Jacobi map of C. There is an element ∆ ∈ J(C),
called a Riemann constant with respect to α, such that the function θ( · ,Ω)
vanishes at z ∈ Cg if and only if there exist Q1, . . . , Qg−1 ∈ C that satisfy

z ≡ α(Q1 + · · ·+Qg−1)−∆ mod ΩZg + Zg.

Next we prove that ∆ is actually unique up to the choice of a base point for
the Abel-Jacobi map α. We will use the following lemma.

Lemma 1.2.3. Let Ω ∈ Hg and let Θ ⊆ Cg/(ΩZg + Zg) be the subset defined
by θ(z,Ω) = 0. Then the map

Cg/(ΩZg + Zg)→ {e+ Θ : e ∈ Cg/(ΩZg + Zg)}
x 7→ {z ∈ Cg/(ΩZg + Zg) : θ(z − x,Ω) = 0} = x+ Θ

is injective.

Proof. See the proof of Theorem II.3.10(b) in Mumford [29].

Proposition 1.2.4. Let C be a curve over C of genus g, let J(C) be the
Jacobian of C with period matrix Ω ∈ Hg, and let α be the Abel-Jacobi map
with base point P ∈ C. The Riemann constant ∆ with respect to α is uniquely
determined by Theorem 1.2.2 and satisfies

2∆ = α(κ)

for κ a canonical divisor of C.

Proof. For the first part of the statement, let ∆1,∆2 ∈ J(C) satisfy Theo-
rem 1.2.2, that is, the equality Θ = α(Symg−1C)−∆i. We have

Θ = α(Symg−1C)−∆1 = α(Symg−1C)−∆2 + ∆2 −∆1 = Θ + (∆2 −∆1)

16



A Thomae-like formula 1.2

thus it follows from Lemma 1.2.3 that ∆2 − ∆1 is zero, hence the Riemann
constant is unique.

For the second part, consider an effective divisor D =
∑g−1

i=1 Pi for Pi ∈ C.
By the Riemann-Roch Theorem, there exist g−1 points Q1, . . . , Qg−1 in C that
satisfy

κ−D ∼
g−1∑
i=1

Qi,

or equivalently, α(κ−D) = α(
∑g−1

i=1 Qi). We get

α(κ)− α(Symg−1C) ⊆ α(Symg−1C).

If we consider the translation −α(Symg−1C) ⊆ α(Symg−1C)−α(κ) and apply
to it the bijection on J(C) that maps a point x to −x, then we obtain

α(Symg−1C) ⊆ −α(Symg−1C) + α(κ),

hence the equality holds.
Observe now that the Riemann theta function is symmetric in z via the

map n 7→ −n. In consequence the set Θ is symmetric, and we obtain

α(Symg−1C)−∆ = −α(Symg−1C) + ∆ = α(Symg−1C)− α(κ) + ∆.

We conclude by the uniqueness of the Riemann constant that ∆ satisfies the
equality ∆ = α(κ)−∆ and the result follows.

Next we introduce a theorem of Siegel that relates the values of a function
on a curve C at a non-special divisor with a quotient of Riemann theta functions
evaluated at some points in the Jacobian.

Definition 1.2.5. We say that an effective divisor D of degree g is special if
there exists a regular differential ω with div(ω) ≥ D. Otherwise we call them
non-special (called general in Siegel [44, pg. 154]).

Theorem 1.2.6 (Theorem 11.3 in Siegel [44]). Let C be a curve of genus g
over C, and let φ be a function on C with

div(φ) =

m∑
i=1

Ai −
m∑
i=1

Bi.

Let P ∈ C and let ω be a basis of H0(ωC) for which the Jacobian J(C) has
period matrix Ω ∈ Hg. Let ∆ be the Riemann constant with respect to the
Abel-Jacobi α map with base point P .
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1 The family of Picard curves

Choose paths from the base point P to Ai and Bi that satisfy
m∑
i=1

∫ Ai

P
ω =

m∑
i=1

∫ Bi

P
ω.

Then, given an effective non-special divisor D = P1 + · · · + Pg of degree g
that satisfies Pj /∈ {Ai, Bi : 1 ≤ i ≤ m}, one has

φ(D) := φ(P1) . . . φ(Pg) = E
m∏
i=1

θ(
∑g

j=1

∫ Pj
P ω −

∫ Ai
P ω −∆,Ω)

θ(
∑g

j=1

∫ Pj
P ω −

∫ Bi
P ω −∆,Ω)

,

where E ∈ C× is independent of D, and the integrals from P to Pj take the
same paths both in the numerator and the denominator.

Observe that the integrals at which we are evaluating the Riemann theta
functions are representatives of the image by the Abel-Jacobi map of C with
base point P of the points in the divisor, see Section 1.1.4.

But if a point in J(C) is a torsion point, then we can write it as a rational
vector with respect to the basis of the lattice. In fact, the bijection

· : J(C)→ R2g/Z2g

Ωx1 + x2 7→ (x1, x2)

maps the m-torsion of J(C) to 1
mZ2g/Z2g.

In this section we are interested in computing the x-coordinates of the affine
branch points of a Picard curve C, so we will choose non-special divisors sup-
ported on these points. Note that for every affine branch point P of a Picard
curve, we have div(x − x(P )) = 3P − 3(0 : 1 : 0), so the image of P via the
Abel-Jacobi map with base point (0 : 1 : 0) is a 3-torsion point.

Therefore, it is convenient for us to rewrite Theorem 1.2.6 in terms of the
following modification of the Riemann theta function:

Definition 1.2.7. The Riemann theta function with (real) characteristic
x = (x1, x2) ∈ R2g is the function θ[x] : Cg ×Hg → C given by

θ[x](z,Ω) =
∑
n∈Zg

exp(πi t(n+ x1)Ω(n+ x1) + 2πi t(n+ x1)(z + x2)). (1.14)

It is a translate of the Riemann theta function as in Definition 1.2.1 times an
exponential factor:

θ[x](z,Ω) = exp(πixt1Ωx1 + 2πixt1(z + x2))θ(z + Ωx1 + x2,Ω). (1.15)

A Riemann theta constant is a Riemann theta function evaluated at z = 0. For
notational convenience, we denote it by θ[x](Ω) := θ[x](0,Ω).
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Proposition 1.2.8 (Mumford [29, pg. 123]). The Riemann theta constants
satisfy the following properties:
(1) They are symmetric with respect to x, that is

θ[x](Ω) = θ[−x](Ω) . (1.16)

(2) They are quasi-periodic, meaning that for m = (m1,m2) ∈ Z2g one has

θ[x+m](Ω) = exp(2πix1m2)θ[x](Ω) . (1.17)

Note that, due to the quasi-periodicity of the Riemann theta constants, the
domain for the characteristics is R2g, rather than R2g/Z2g. Therefore we fix a
representative for such elements. We define the map ·̃ : R2g/Z2g → [0, 1)2g that
maps a class in R2g/Z2g to its representative with entries in [0, 1).

For convenience, if the domain is clear we denote any composition of the
maps

C
α // J(C)

· // R2g/Z2g ·̃ // [0, 1)2g

by the last one. For example, for P ∈ C we write P̃ instead of α̃(P ). Moreover,
given a divisor D =

∑
nPP we define D̃ :=

∑
nP P̃ ∈ R2g.

Warning 1.2.9. Note that with our definition of D̃, for most divisors D we
have D̃ 6= α̃(D).

We can now rewrite Theorem 1.2.6 in terms of Riemann theta constants:

Corollary 1.2.10. With the notation in Theorem 1.2.6, let ai (resp. bi) be the
element in R2g that satisfies

∫ Ai
P ω = Ω(ai)1+(ai)2 (resp.

∫ Bi
P ω = Ω(bi)1+(bi)2).

We obtain

φ(D) = E′
m∏
i=1

θ
[∑g

j=1 P̃j − ai − ∆̃
]

(Ω)

θ
[∑g

j=1 P̃j − bi − ∆̃
]

(Ω)
,

where E′ ∈ C× is also independent of D.

Proof. Observe that the exponential factor in (1.15) for Riemann theta con-
stants (that is, z = 0) can be written as exp(πiB(x, x)) where B is the sym-
metric bilinear form given by

B(u, v) = tu

(
Ω 1g
1g 0

)
v.

Let Q(u) = B(u, u) and let c =
(∑g

j=1 P̃j

)
− ∆̃. For j = 1, . . . , g let xj = P̃j

and choose a path from P to Pj that satisfies
∫ Pj
P ω = Ω(xj)1 + (xj)2 ∈ Cg.
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1 The family of Picard curves

Let E′ ∈ C× be defined by

E
m∏
i=1

θ
((∑g

j=1

∫ Pj
P ω

)
−
∫ Ai
P ω −∆,Ω

)
θ
((∑g

j=1

∫ Pj
P ω

)
−
∫ Bi
P ω −∆,Ω

) = E′
m∏
i=1

θ
[(∑g

j=1 P̃j

)
− ai − ∆̃

]
(Ω)

θ
[(∑g

j=1 P̃j

)
− bi − ∆̃

]
(Ω)

.

We want to prove that E′ does not depend on D =
∑g

j=1 Pj . By (1.15) we
get

E

E′
= exp

(
πi

m∑
i=1

(Q(c− ai)−Q(c− bi))

)
,

so it suffices to show that
∑m

i=1(Q(c− ai)−Q(c− bi)) does not depend on D.
We have

m∑
i=1

(Q(c− ai)−Q(c− bi)) =
m∑
i=1

(Q(ai)−Q(bi)− 2B(c, ai − bi))

=
m∑
i=1

Q (ai)−
m∑
i=1

Q (bi)− 2B

(
c,

m∑
i=1

(ai − bi)

)
,

but we know
m∑
i=1

∫ Ai

P
ω =

m∑
i=1

∫ Bi

P
ω.

so in terms of characteristics we obtain
∑m

i=1(ai − bi) = 0 and then it follows
that

m∑
i=1

(Q(c− ai)−Q(c− bi)) =
m∑
i=1

Q (ai)−
m∑
i=1

Q (bi)

does not depend on D.

Lemma 1.2.11. Let C be a Picard curve over C given by a Legendre-Rosenhain
equation, and denote P0 = (0, 0) and P∞ = (0 : 1 : 0). Let α be the Abel-
Jacobi map with base point P∞, let Ω ∈ H3 be a period matrix of J(C) and
let ∆ ∈ J(C) be the Riemann constant with respect to α. Then, for every
effective non-special divisor D = R1 + R2 + R3 of degree 3 with Ri 6= P0, P∞,
we have

x(R1)x(R2)x(R3) = E′ ε(D)

(
θ[D̃ − P̃0 − ∆̃](Ω)

θ[D̃ − ∆̃](Ω)

)3

,

with ε(D) = exp(6πi(D̃ − P̃0 − ∆̃)1(P̃0)2) and E′ ∈ C× independent of D.
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Proof. Let ω be the basis of holomorphic differentials for which J(C) has period
matrix Ω. The divisor of the function x on C is div(x) = 3P0 − 3P∞, so in
order to apply Corollary 1.2.10 for φ = x and P = P∞, we choose three times
the zero path from P∞ to itself, the path γ1 from P∞ to P0 that for a1 = P̃0

satisfies ∫
γ1

ω = Ω(a1)1 + (a1)2 ∈ C3,

and paths γ2, γ3 from P∞ to P0 that satisfy

3∑
k=1

∫
γk

ω = 0 in C3. (1.18)

Let a2, a3 be the elements in R6 that satisfy∫
γk

ω = Ω(ak)1 + (ak)2 for k = 2, 3.

Then, by Corollary 1.2.10, we have

φ(D) = E′
3∏

k=1

θ[D̃ − ak − ∆̃](Ω)

θ[D̃ − ∆̃](Ω)
(1.19)

for some constant E′ ∈ C× independent of D. Note that for k = 1, 2, 3 we have

P0 = (ak modZ6),

so the differences ai − aj for i 6= j are integer vectors. Applying the quasi-
periodicity property (1.17), equation (1.19) becomes

φ(D) = E′
exp(2πi(D̃ − P̃0 − ∆̃)1(a1 − a2 + a1 − a3)2) θ[D̃ − P̃0 − ∆̃](Ω)3

θ[D̃ − ∆̃](Ω)3
.

But it follows from (1.18) that the sum a1 + a2 + a3 is zero, so we obtain
a1 − a2 + a1 − a3 = 3a1 = 3P̃0 and the statement follows.

The final piece is to choose the right divisors and prove that they are
non-special.

Lemma 1.2.12 (Koike-Weng [16, pg. 506]). Let C be a Picard curve and let B
be the set of affine branch points of C. If P,Q ∈ B are distinct, then the
divisor P + 2Q is non-special.

Now we have all the components to give a formula for the x-coordinates
of the affine branch points of a Picard curve given by a Legendre-Rosenhain
equation in terms of quotients of Riemann theta constants.
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1 The family of Picard curves

Theorem 1.2.13. Let C be a Picard curve over C given by the Legendre-
Rosenhain equation y3 = x(x− 1)(x−λ)(x−µ), let Ω ∈ H6 be a period matrix
of the Jacobian J(C), let α be the Abel-Jacobi map with base point (0 : 1 : 0),
and let ∆ be the Riemann constant with respect to α. Let Pt = (t, 0) for
t ∈ {0, 1, λ, µ} and let η ∈ {λ, µ}. Then we have

η = εη

(
θ[P̃1 + 2P̃η − P̃0 − ∆̃](Ω)

θ[2P̃1 + P̃η − P̃0 − ∆̃](Ω)

)3

, (1.20)

with εη = exp(6πi((P̃η − P̃1)1(P̃0)2 + (P̃1 + 2P̃η − ∆̃)1(2∆̃− 3(P̃1 + P̃η))2)).

Proof. We apply Lemma 1.2.11 to the divisorsD1 = P1+2Pη andD2 = 2P1+Pη,
which are non-special by Lemma 1.2.12. We get

η =
x(P1)x(Pη)

2

x(P1)2x(Pη)
=

E′ε(D1)

(
θ[P̃1 + 2P̃η − P̃0 − ∆̃](Ω)

θ[P̃1 + 2P̃η − ∆̃](Ω)

)3

E′ε(D2)

(
θ[2P̃1 + P̃η − P̃0 − ∆̃](Ω)

θ[2P̃1 + P̃η − ∆̃](Ω)

)3

=
ε(D1)

ε(D2)

(
θ[P̃1 + 2P̃η − P̃0 − ∆̃](Ω)

θ[P̃1 + 2P̃η − ∆̃](Ω)

θ[2P̃1 + P̃η − ∆̃](Ω)

θ[2P̃1 + P̃η − P̃0 − ∆̃](Ω)

)3

.

(1.21)

In order to simplify the formula we apply the symmetry (1.16) and quasi-
periodicity (1.17) of the Riemann theta constants to obtain

θ[D̃2 − ∆̃](Ω) = θ[−D̃2 + ∆̃](Ω)

= θ[D̃1 − ∆̃ + (2∆̃ + 3(P̃1 + P̃η))](Ω)

= exp
(

2πi(D̃1 − ∆̃)1(2∆̃− 3(P̃1 + P̃η))2

)
θ[D̃1 − ∆̃](Ω)

so that the formula (1.21) becomes

η = εη

(
θ[P̃1 + 2P̃η − P̃0 − ∆̃](Ω)

θ[2P̃1 + P̃η − P̃0 − ∆̃](Ω)

)3

,

with

εη =
ε(D1)

ε(D2)
exp(2πi(D̃1 − ∆̃)1(2∆̃− 3(P̃1 + P̃η))2)3

=
exp(6πi(P̃1 + 2P̃η − P̃0 − ∆̃)1(P̃0)2)

exp(6πi(2P̃1 + P̃η − P̃0 − ∆̃)1(P̃0)2)
exp(6πi(D̃1 − ∆̃)1(2∆̃− 3(P̃1 + P̃η))2)

= exp(6πi((P̃η − P̃1)1(P̃0)2 + (P̃1 + 2P̃η − ∆̃)1(2∆̃− 3(P̃1 + P̃η))2))

as desired.
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The inverse Jacobian algorithm 1.3

Remark 1.2.14. Compare the formula for η given in Theorem 1.2.13 with
the ones given by Koike-Weng [16, Eq. 9]. The formulas in [16] are the same
as (1.20) replacing εη by 1, hence in general they do not hold due to the absence
of the precise root of unity.

However, if we follow the original work by Picard [35, p. 131] where he
constructs the period matrix of a Picard curve given by a Legendre-Rosenhain
equation in a specific way (see also Shiga [38, Proposition I-3]), then we obtain
that the factors ελ and εµ are 1, so in that case the formulas in [16] remain
correct.

But if Ω is not specifically constructed in that way, then we have to either
be lucky (and get ελ = εµ = 1) or use the formula for εη.

1.3 The inverse Jacobian algorithm

In this section we present an algorithm that, given the period matrix of the
Jacobian of a Picard curve C and the rational representation of the automor-
phism ρ∗ induced by ρ(x, y) = (x, z3y), returns a numerical approximation of
the x-coordinates of the affine branch points of C.

The main step of the algorithm uses Theorem 1.2.13. To apply that theorem
we need to know the Riemann constant of C with respect to the Abel-Jacobi
map α with base point (0 : 1 : 0) and the image by α of the affine branch points
on J(C).

We start by characterizing the Riemann constant of a Picard curve. We will
do so by using both its uniqueness and the fact that the base point for α is fixed
by the automorphism ρ.

First we show how a change of symplectic bases affects a Riemann theta
function with characteristics.

Definition 1.3.1. For M =

(
α β
γ δ

)
∈ Sp2g(Z) and c ∈ R2g we define

M [c] := tM−1c+
1

2

(
(γ tδ)0

(α tβ)0

)
,

where X0 stands for the diagonal of the matrix X.
Note that the class N [c] modZ2g depends only on the class of c modZ2g,

so we denote it by N [c modZ2g]. Moreover, for x ∈ J(C) we denote the point
that satisfies the equality N [x] = N [x] by N [x] ∈ J(C) .

Proposition 1.3.2 (Proposition 8.6.1 in Birkenhake-Lange [2]). For a period
matrix Ω ∈ Hg, a characteristic c ∈ R2g and a symplectic matrix

M =

(
α β
γ δ

)
∈ Sp2g(Z),
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1 The family of Picard curves

there exists a function κ(M,Ω, c, ·) : Cg → C× that satisfies for all v ∈ Cg the
equality

θ[M [c]](
t
(γΩ + δ)−1v,M(Ω)) = κ(M,Ω, c, v)θ[c](v,Ω).

Remark 1.3.3. The factor κ(M,Ω, c, v) ∈ C× is given explicitly in Birkenhake-
Lange [2, Proposition 8.6.1].

Proposition 1.3.4. Let C,C ′ be curves with equal genus g, let ϕ : C → C ′

be an isomorphism of curves, and let ϕ∗ : J(C) → J(C ′) be the induced iso-
morphism on the Jacobians with period matrices Ω,Ω′ ∈ Hg respectively. De-
fine N := tρr(ϕ∗). Let P ∈ C, let α be the Abel-Jacobi map with base point P ,
and let α′ be the Abel-Jacobi map with base point ϕ(P ).

Let also ∆ (resp. ∆′) be the Riemann constant of C (resp. C ′) with respect
to α (resp. α′). The Riemann constants satisfy

N [∆′] = ∆.

Proof. Recall that, given a curve C and an Abel-Jacobi map α of C, the Rie-
mann constant ∆ is determined by Theorem 1.2.2, hence it satisfies

α(Symg−1C) =
{
x ∈ J(C) : θ[−∆̃](x,Ω) = 0

}
. (1.22)

To prove the proposition, we will use that the Riemann constant is uniquely
defined by (1.22) (see Proposition 1.2.4). We start by applying the isomor-
phism ϕ−1

∗ to both sides of (1.22) in the case of the curve C ′. We obtain

ϕ−1
∗ α′(Symg−1C ′) =

{
y ∈ J(C) : θ[−∆̃′](ϕ∗(y),Ω′) = 0

}
. (1.23)

Consider the subdivision in g × g blocks of the transpose of ρr(ϕ∗)

N =

(
α β
γ δ

)
∈ Sp2g(Z),

and recall that then the analytical representation of ϕ∗ is t(γΩ+δ) and the period
matrices satisfy the equality N(Ω′) = Ω, see (1.9) and (1.10) respectively.

Let y0 ∈ Cg be a representative of y ∈ J(C), that is, an element satisfying
y = (y0 mod ΩZg+Zg), thus also ϕ∗(y) = (t(γΩ + δ)y0 mod Ω′Zg+Zg). Then,
by the theta transformation formula by N given in Proposition 1.3.2, we get

θ[−∆̃′](t(γΩ + δ)y0,Ω
′) =

= κ(N,Ω′,∆′, t(γΩ + δ)y0)−1θ[−N [∆̃′]](
t
(γΩ + δ)−1 t(γΩ + δ)y0, N(Ω′))

= κ(N,Ω′,∆′, t(γΩ + δ)y0)−1θ[−N [∆̃′]](y0,Ω).
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Recall that by definition of ϕ∗ we have ϕ∗ ◦α = α′ ◦ϕ. Therefore we obtain

ϕ−1
∗ α′(Symg−1C ′) = α(Symg−1C),

and the equality of sets (1.23) becomes

α(Symg−1C) =
{
y ∈ J(C) : θ[−N [∆̃′]](y,Ω) = 0

}
.

We conclude N [∆′] = ∆ by the uniqueness of the Riemann constant.

Now we can characterize the Riemann constant of a Picard curve with re-
spect to the Abel-Jacobi map with base point (0 : 1 : 0).

Corollary 1.3.5. Let C be a Picard curve, let ρ be the automorphism of C
given by (x, y) 7→ (x, z3y). The Riemann constant with respect to the Abel-
Jacobi map with base point P∞ = (0 : 1 : 0) is the only point ∆ ∈ J(C)
with
(1) ∆ ∈ J(C)[2], and
(2) tρr(ρ∗)[∆] = ∆.

Proof. By Proposition 1.2.4 we have 2∆ = α(κ) for κ a canonical divisor, and
the computation div(dx/y2) = 4P∞ shows α(κ) = 0, which proves (1). More-
over, since P∞ is fixed by ρ, we obtain by Proposition 1.3.4 that the point ∆
satisfies (2).

To prove that it is the only point that satisfies (1) and (2), assume that
there exist ∆1,∆2 ∈ J(C) that satisfy (1) and (2). By (2) we have

∆1 −∆2 = tρr(ρ∗)[∆
1]− tρr(ρ∗)[∆

2] = ρr(ρ∗)
−1(∆1 −∆2),

thus ∆1−∆2 is an element of J(C)[1−ρ2
∗] ⊆ J(C)[3]. But by (1), the difference

∆1 −∆2 is also a 2-torsion point, hence we conclude ∆1 −∆2 = 0.

Next, we identify the images on J(C) of the affine branch points of C.

Theorem 1.3.6. Let J(C) be the Jacobian of a Picard curve C, let ρ∗ be the
automorphism of J(C) induced by the curve automorphism ρ(x, y) = (x, z3y).
Let B be the set of affine branch points of C, let α be the Abel-Jacobi map with
base point P∞ = (0 : 1 : 0), let ∆ be the Riemann constant with respect to α
and define

Θ3 := {x ∈ J(C)[1− ρ∗] : θ[x+ ∆](Ω) = 0} .

Then α(B) and −α(B) are the only subsets T ⊆ J(C) of four elements such
that:
(i) the sum

∑
x∈T x is zero,

(ii) T is a set of generators of J(C)[1− ρ∗], and
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1 The family of Picard curves

(iii) the set O(T ) := {
∑

x∈T axx : a ∈ Z4
≥0,
∑

x∈T ax ≤ 2} satisfies

O(T ) = Θ3.

Proof. We first show that α(B) and −α(B) satisfy (i)–(iii), and then we prove
that these are the only possibilities.

That α(B) satisfies (i) follows from div(y) =
∑

P∈B P − 4P∞. That α(B)
satisfies (ii) is proven by Koike and Weng in [16, Remark 8]. Next we prove
that α(B) satisfies (iii). On the one hand, given Q1, Q2 ∈ B ∪ {P∞} we have
α(Q1 + Q2) ∈ Θ3 by Riemann’s Vanishing Theorem 1.2.2, and since we have
α(P∞) = 0, this implies{∑

P∈B
aPα(P ) : a ∈ ZB≥0,

∑
P∈B

aP ≤ 2

}
⊆ Θ3.

On the other hand let x ∈ Θ3. Since x satisfies θ[x + ∆](Ω) = 0, by
Riemann’s Vanishing Theorem 1.2.2 there exist Q1, Q2 ∈ C such that we have
x = α(Q1 +Q2). Moreover, since x is a (1− ρ∗)-torsion point, we get

α(Q1 +Q2) = ρ∗(α(Q1 +Q2)) = α(ρ(Q1) + ρ(Q2)),

hence there exists a function h on C such that div(h) = ρ(Q1)+ρ(Q2)−Q1−Q2.
We conclude that h is constant, since otherwise it has degree at most 2, hence
the curve would be hyperelliptic, contradicting Proposition 1.1.2. Therefore we
have ρ(Q1) + ρ(Q2) = Q1 + Q2, but since ρ has order 3, the cardinality of the
orbit of Qi has length 3 or 1, thus we obtain ρ(Qi) = Qi. Therefore Q1 and Q2

are branch points, so the other inclusion holds.
It is clear that −α(B) satisfies (i) and (ii). To see that it satisfies (iii), it is

enough to prove that Θ3 is invariant under the map x 7→ −x. But this follows
from the symmetry θ[−x](Ω) = θ[x](Ω) of the Riemann theta constants.

Next we prove that α(B) and −α(B) are, in fact, all the subsets that sat-
isfy (i)–(iii).

Let B denote an ordering of α(B). Given a sequence T = (t1, t2, t3, t4)
in J(C)4 such that the set {t1, t2, t3, t4} has 4 elements and satisfies (i)–(iii), we
define the map γ[T ] : F3

3 → J(C)[1− ρ∗] given by r 7→
∑3

i=1 riti. By Remark 8
in Koike-Weng [16] we have #J(C)[1 − ρ∗] ∼= (Z/3Z)3, thus it follows from (i)
and (ii) that γ[T ] is a bijection.

Consider the diagram

F3
3

M(T ) //

γ[T ] %%

F3
3

γ[B]yy
J(C)[1− ρ∗]
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where M(T ) is the unique invertible matrix in F3×3
3 that makes the diagram

commutative. Note that choosing a matrix M(T ) determines T uniquely.
Let e1, e2, e3 be the standard basis vectors of F3

3, and let e4 = −e1− e2− e3,
so for i = 1, . . . , 4 we have γ[T ](ei) = ti. Consider

O0 =

{
4∑
i=1

aiei : a ∈ Z4
≥0,

4∑
i=1

ai ≤ 2

}
⊆ F3

3.

One can check #O0 = 15, and moreover we have γ[T ](O0) = O({t1, t2, t3, t4}).
If the set of elements of T satisfies (iii), then we have

γ[T ](O0) = O({t1, t2, t3, t4}) = Θ3 = γ[B](O0),

and thus O0 is stable under M(T ).
We checked with SageMath [49] that there are exactly 48 invertible matrices

in F3×3
3 that map O0 to itself. Since a matrix M(T ) determines T uniquely,

there are 48 sequences T ∈ J(C)4 that satisfy (i)–(iii). However, if we vary σ in
the symmetric group of 4 letters and s ∈ {±1}, then sσ(B) gives 48 sequences,
which are different. We conclude that α(B) and −α(B) are the only subsets
of J(C) with 4 elements that satisfy (i)–(iii).

From the proof above we obtain the following result.

Corollary 1.3.7. With the notation in Theorem 1.3.6, we get

#Θ3 = 15.

Remark 1.3.8. With Theorem 1.3.6, we make precise the idea hinted at Corol-
lary 11 in Koike-Weng [16]. There, they claim the existence of a 4-element set
that satisfies (i) and (ii), prove that α(B) does satisfy (i) and (ii), and assume
without further comments that when one finds such a set, it is α(B).

This is problematic not only because they disregard the case where the set
is −α(B) but specially because they do not consider (iii) at all, but there exist
4-element sets in J(C) that satisfy (i) and (ii) which are not α(B) or even −α(B).

In fact, there are # GL3(F3) = 11232 possible sequences T ∈ J(C)4 that
satisfy (i) and (ii), hence the probability of finding one that corresponds to a
permutation of B is 1/468 ≈ 0.002.

We have now all the tools to state the algorithm.

Algorithm 1.3.9
Input: The Jacobian of a Picard curve C, given by a period matrix Ω ∈ H3, and

ρ∗ the automorphism on the Jacobian induced by the curve automorphism
ρ(x, y) = (x, z3y), given by its rational representation N ∈ Z6×6.
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1 The family of Picard curves

Output: The complex values λ and µ in a Legendre-Rosenhain equation
y3 = x(x− 1)(x− λ)(x− µ) of the Picard curve C.

1. Let D be the unique solution of N [D] = D in 1
2Z

6/Z6.
2. Compute the set

Θ3 =

{
x ∈ 1

3
Z6/Z6 : Nx = x and θ[x+D](Ω) = 0

}
of cardinality 15.

3. Let T = {t1, t2, t3, t4} ⊆ Θ3 be a 4-element set that satisfies
i.
∑4

i=1 t = 0,
ii. {t1, t2, t3} are linearly independent, and
iii. {

∑4
i=1 aiti : (ai)i ∈ Z4

≥0,
∑4

i=1 ai ≤ 3} = Θ3.
4. Compute

ελ = exp(6πi((t̃3 − t̃2)1(t̃1)2 + (t̃2 + 2t̃3 − D̃)1(2D̃ − 3(t̃2 + t̃3))2)),

εµ = exp(6πi((t̃4 − t̃2)1(t̃1)2 + (t̃2 + 2t̃4 − D̃)1(2D̃ − 3(t̃2 + t̃4))2)),

and

λ = ελ

(
θ[t̃2 + 2t̃3 − t̃1 − D̃](Ω)

θ[2t̃2 + t̃3 − t̃1 − D̃](Ω)

)3

,

µ = εµ

(
θ[t̃2 + 2t̃4 − t̃1 − D̃](Ω)

θ[2t̃2 + t̃4 − t̃1 − D̃](Ω)

)3

.

5. Return λ and µ.

Warning 1.3.10. Algorithm 1.3.9 is a mathematical algorithm, but, because
it involves infinite sums, complex numbers and exponentials, it cannot be run
on a Turing machine or a physical computer. To do so one needs to truncate
the sum on the Riemann theta constants, approximate complex numbers and
keep track of the error propagation. For more details on how to do this see
Section 1.5.

Proof of Algorithm 1.3.9. Let ∆ ∈ J(C) be the Riemann constant with respect
to P∞ = (0 : 1 : 0) and let B be the set of affine branch points of C. By
Corollary 1.3.5, the point ∆ is the only one that satisfies N [∆] = ∆ and is a
2-torsion point, that is, it satisfies ∆ ∈ 1

2Z
6/Z6. We conclude D = ∆.

By Theorem 1.3.6, the sequence (t1, t2, t3, t4) is an ordering of either α(B)
or −α(B). In the former case, the values λ, µ obtained in Step 4 are the
x-coordinates of the affine branch points different from (0, 0) and (0, 1). A
quasi-periodicity argument similar to those in the proofs of Lemma 1.2.11 or
Theorem 1.2.13 yields that in the latter case that holds too.
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The Torelli locus of Picard curves 1.4

As a consequence of the proof we obtain the following result.

Corollary 1.3.11. If the automorphism given in the input of Algorithm 1.3.9
is ρ2
∗, then the output is also correct.

Proof. Note that the automorphism in the input only plays a role in Steps 1
and 2 of Algorithm 1.3.9, to determine the Riemann constant and the
(1− ρ∗)-torsion points in J(C).

Note that both ρ and ρ2 fix the branch points on C. Therefore, by Propo-
sition 1.3.4 the Riemann constant satisfies tρr(ρ

2
∗)[∆] = ∆. It follows that,

for M =
t
ρr(ρ

2
∗), the characteristic D in Step 1 satisfies M [D] = D. We also

get {
x ∈ 1

3
Z6/Z6 : Mx = N2x = x and θ[x+D](Ω) = 0

}
= Θ3.

1.4 The Torelli locus of Picard curves

In the previous section we have seen how to reconstruct a Picard curve from
its Jacobian. The following theorem characterizes the abelian varieties that
arise as the Jacobian of a Picard curve. It is a variation of Lemma 1 in [16], see
Remark 1.4.2.

Proposition 1.4.1 (based on work of Koike-Weng and Estrada). Let X be
a simple principally polarized abelian variety of dimension 3 defined over an
algebraically closed field k. If X has an automorphism ϕ of order 3, then we
have X ∈ J(P). Furthermore, for the curve automorphism ρ(x, y) = (x, z3y),
we get 〈ϕ〉 = 〈ρ∗〉

Proof. Let X be a simple principally polarized abelian variety of dimension 3
with an automorphism ϕ of order 3. By Oort-Ueno [33], every simple principally
polarized abelian variety of dimension ≤ 3 over an algebraically closed field is
the Jacobian of a curve, so let C be a curve with X ∼= J(C).

By Torelli’s Theorem 1.1.1, there is some non-trivial automorphism ν of C
that satisfies ϕ = ±ν∗. Then the automorphism η = ν4 satisfies η∗ = (ν4)∗ =
(±ν)4

∗ = ϕ4 = ϕ, hence by the uniqueness in Torelli’s Theorem 1.1.1 we obtain
that η has order 3.

We conclude that the automorphism η has order 3, so the degree of the
map π : C → C/〈η〉 is also 3, and by the Riemann-Hurwitz formula one obtains
that C/〈η〉 has either genus 0 or 1. But X is simple, so the curve C/〈η〉 is
isomorphic to P1 and π has 5 ramification points.

Then k(C)/k(C/〈η〉) is a Kummer extension of degree 3, hence C is given by
an equation of the form y3 = h(x). By Lemma 7.3 in Estrada [11, Appendix I],
we obtain a model for C given by y3 = f(x) where f has degree 4 and distinct
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1 The family of Picard curves

roots and η is either the automorphism ρ given by (x, y) 7→ (x, z3y) or its
square.

Remark 1.4.2. While the idea behind the proof is the same in Proposition 1.4.1
and in [16, Lemma 1], the assumptions in [16] are in a way more restrictive,
as Koike and Weng focus on maximal CM Picard curves (see page 33 for a
definition). Moreover, the proof in [16] has a gap, which is fixed exactly by our
reference to Estrada [11, Appendix I].

It follows from Proposition 1.4.1 that one can think of the input in Algo-
rithm 1.3.9 as just a principally polarized abelian threefold with an order-3
automorphism.

1.5 Implementation and some CM examples

In this section we give some indications on how to implement Algorithm 1.3.9
so that it can run in a physical computer. In practice, in the implementa-
tion [45] we truncate the sums of the Riemann theta constants at some hyper-
cube [−B,B]3 ⊆ Z3 and use high precision floating point numbers and several
checks through the implementation to make sure that the output is coherent.

If one of the checks fails or the final computation does not make sense, then
we run the algorithm again for a larger bound B ∈ Z. Alternatively, one could
use interval arithmetic to keep track of the error propagation.

We use the following algorithm to truncate the Riemann theta constants:

Algorithm 1.5.1
Input: A real number b ∈ (0, 1), a period matrix Ω ∈ Hg to arbitrary precision,

and a characteristic c ∈ ([0, 1) ∩Q)2g.
Output: An approximation θb[c](Ω) of θ[c](Ω) that satisfies

|θ[c](Ω)− θb[c](Ω)| < b.

1. Compute B ∈ Z that satisfies

B >

√
− ln b+ g ln(1− e−πλ(Ω))− (g + 1) ln 2− ln g

πλ(Ω)
,

where λ(Ω) is the smallest eigenvalue of the imaginary part of Ω.
2. Let b′ = (2B + 1)−gb/2 and for n ∈ [−B,B]g compute xn that satisfies

| exp(πi t(n+ c1)Ω(n+ c1) + 2πi t(n+ c1)c2)− xn| < b′.

3. Return θb[c](Ω) =
∑

n∈[−B,B]g xn.
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Implementation and some CM examples 1.5

Proof. We will bound |θb[c](Ω)− θ[c](Ω)|. Let X and Y be respectively the real
and imaginary part of Ω, so that we write Ω = X + iY . Every term in the sum
θ[c](Ω) consists of an oscillatory factor F with |F | = 1 and a real exponential
factor, hence we obtain

| exp(πi t(n+ c1)Ω(n+ c1) + 2πi t(n+ c1)c2)| = exp(−π t(n+ c1)Y (n+ c1))

but since Y is symmetric and positive definite we get

| exp(πi t(n+ c1)Ω(n+ c1) + 2πi t(n+ c1)c2)| ≤ exp(−πλ(Ω)||n+ c1||2),

and, for Q = exp(−πλ(Ω)) we have

|θ[c](Ω)− θb[c](Ω)|

≤ (2B + 1)gb′ +
∑

n∈Zg\[−B,B]g

| exp(πi t(n+ c1)Ω(n+ c1) + 2πi t(n+ c1)c2)|

≤ b

2
+

∑
n∈Zg\[−B,B]g

Q||n+c1||2

Note that for n ∈ Z and c ∈ [0, 1) we have

(n+ c)2 ≥

{
n2 if n ≥ 0,

(n+ 1)2 if n ≤ −1.
(1.24)

Then, in order to bound the sum above, we deal with each “quadrant” of Zg
separately. Using the lowerbound in (1.24) we obtain that the sum at each
“quadrant” is bounded by ∑

n1≥B

∑
n2≥0

· · ·
∑
ng≥0

g∏
j=1

Qn
2
j ,

and we obtain

|θ[c](Ω)− θb[c](Ω)| ≤ b

2
+ 2gg

∑
n1≥B

∑
n2≥0

· · ·
∑
ng≥0

g∏
j=1

Qn
2
j

≤ b

2
+ 2gg

∑
n1≥B

Qn
2
1

∑
n2≥0

Qn
2
2

 · · ·
∑
ng≥0

Qn
2
g

 .

(1.25)
If we now apply the bound∑

m≥M
Qm

2 ≤
∑

m≥M2

Qm =
QM

2

1−Q
if |Q| < 1
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1 The family of Picard curves

to (1.25), then we obtain

|θ[c](Ω)− θb[c](Ω)| ≤ b

2
+ 2gg

QB
2

(1−Q)g
,

which for B as in the statement implies |θ[c](Ω)− θb[c](Ω)| < b.

Then one replaces Step 2 in Algorithm 1.3.9 by the following substeps:
i. For b = 2−5 compute

Θ3,b =

{
x ∈ 1

3
Z6/Z6 : Nx = x and θb[x+D](Ω) < b

}
.

ii. If Θ3,b has more than 15 points, then square b and repeat steps i and ii.

By Algorithm 1.5.1 we have

Θ3 ⊆ Θ3,b,

and for small enough b > 0 we obtain the equality. By Corollary 1.3.7, we obtain
#Θ3,b = 15 in a finite number of steps.

For efficiency, we would like the smallest eigenvalue of the imaginary part
of Ω to be as big as possible, due to its role in the computation of B in Al-
gorithm 1.5.1. Since the isomorphism class of a principally polarized abelian
variety only depends on the orbit of Ω under the action of Sp2g(Z), this can be
achieved by choosing a representative in a certain fundamental domain of Hg.
For this we use the implementation due to Kılıçer–Streng [14] of Algorithm 2
in Labrande-Thomé [18, Section 4.1] on our period matrix before applying Al-
gorithm 1.3.9.

Remark 1.5.2. This was enough to obtain the examples given in this sec-
tion, but it might take too long for other cases. Alternatively, one could use
Labrande’s method [17], which computes Riemann theta functions with charac-
teristics in quasi-linear time.

After numerically approximating the x-coordinates of the branch points of
a Picard curve with Algorithm 1.3.9, we obtain a polynomial

f(x) = x(x− 1)(x− λ)(x− µ) ∈ C[x]

up to some precision, while maybe the curve is actually isomorphic to y3 = h(x)
for a certain polynomial h over a number field.

Given the quartic polynomial

p(x) = x4 + g2x
2 + g3x+ g4 with g2 6= 0
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Implementation and some CM examples 1.5

we define the absolute invariants of p as

j1 =
g2

3

g3
2

, j2 =
g4

g2
2

.

In order to find h from f we compute the absolute invariants of C by com-
puting j1 and j2 for an isomorphic curve of the form y3 = x4 + g2x

2 + g3x+ g4.
We then recognize j1 and j2 as algebraic numbers and reconstruct h from the
exact absolute invariants, obtaining

y3 = h(x) = x4 + j1x
2 + j2

1x+ j2
1j2.

Note that in order to be able to recognize j1 and j2 as algebraic numbers we
have to compute λ and µ with enough precision.

Next we include a list of Picard curves computed with our algorithm. We
define a maximal CM Picard curve as a Picard curve such that its Jacobian has
endomorphism ring isomorphic to the maximal order of a sextic number field K.
Since ρ∗ is an automorphism of order 3, the field K contains a primitive 3rd root
of unity ζ3 ∈ K. In fact, the fieldK is determined by a totally real cubic fieldK0

that satisfies K = K0(ζ3).
In Section 4.1 we explain how to obtain, for a given sextic field K = K0(ζ3),

a complete list of period matrices of principally polarized abelian varieties with
endomorphism ring isomorphic to OK , together with the rational representation
of the corresponding order-3 automorphism ϕ.

Using Algorithm 1.3.9 on the resulting list of pairs (Ω, N), we computed
numerical approximations of some maximal CM curves. Here we present the
resulting Picard curves which are numerically close (and conjecturally equal) to
the maximal CM curves. In Chapter 4 we will see that, in particular, this list
contains conjectural models for all Picard curves defined over Q with maximal
CM over C. The curves (1)–(5) also appear in [16, Section 6.1].

We obtained the following curves:

(1) y3 = x4 − x, with K0 defined by ν3 − 3ν − 1.
(2) y3 = x4 − 2 · 72 x2 + 23 · 72 x− 73, with K0 defined by ν3 − ν2 − 2ν + 1.
(3) y3 = x4 − 2 · 72 · 13x2 + 23 · 5 · 13 · 47x − 52 · 132 · 31, with K0 defined by
ν3 − ν2 − 4ν − 1.
(4) y3 = x4 − 2 · 7 · 31 · 73x2 + 211 · 31 · 47x− 7 · 312 · 11593, with K0 defined
by ν3 + ν2 − 10ν − 8.
(5) y3 = x4− 2 · 7 · 432 · 223x2 + 27 · 11 · 41 · 432 · 59x− 112 · 433 · 419 · 431, with
K0 defined by ν3 − ν2 − 14ν − 8.
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1 The family of Picard curves

(6) y3 = x4 − 2 · 32 · 52 · 72 x2 + 29 · 72 · 71x− 32 · 5 · 73 · 2621, with K0 defined
by ν3 − 21ν − 28.
(7) y3 = x4 − 22 · 32 · 72 · 37x2 + 5 · 72 · 149 · 257x− 2 · 32 · 52 · 73 · 2683, with
K0 defined by ν3 − 21ν + 35.
(8) y3 = x4−2 ·32 ·52 ·7 ·11 ·13x2 +27 ·11 ·13 ·59 ·149x−32 ·5 ·7 ·132 ·17 ·17669,
with K0 defined by ν3 − 39ν + 26.
(9) For K0 defined by ν3 − ν2 − 6ν + 7, and w3 = 19,

y3 = x4 + (10w2− 2w− 70)x2 + (96w2− 7w− 496)x+ (235w2− 215w− 1101).

(10) For K0 defined by ν3 − ν2 − 12ν − 11, and w3 = 37,

y3 = x4 + (−2366w2 + 490w + 24626)x2 + (−257958w2 − 686928w

+ 5152928)x+ (1226851w2 − 56922233w + 176054907).

(11) For K0 defined by ν3 − 109ν − 436, and w3 = 109,

y3 = x4 +
(
1115888872w2 − 4007074778w − 6321528472

)
x2

+
(
−39141169182336w2 + 294349080537984w − 512926132238464

)
x

+ 816342009554519305w2 − 9276324622428605048w

+ 25684086855493144296.

(12) For K0 defined by ν3 − ν2 − 42ν − 80, and w3 = 127,

y3 = x4 +
(
−92075757704w2 + 319193013538w + 721950578888

)
x2

+
(
− 49404281036538240w2 − 182817463505393280w+

2167183294305193600
)
x+ 21690511027003736433025w2−

118803029086722205449800w + 49134882128483485627800.

(13) For K0 defined by v3 − 61v − 183, we have four curves. The first one is
defined over Q.

y3 = x4 − 2 · 3 · 7 · 612 · 1289x2 + 23 · 37 · 11 · 41 · 53 · 612 x

− 32 · 7 · 112 · 613 · 419 · 4663

y3 = x4 +
(
89264v2 − 547484v − 4059720

)
x2 +

(
− 29558196v2 + 49526073v

+ 772138494
)
x+ 88325678v2 − 16281030326v − 72348132021

(14) For K0 defined by v3 − v2 − 22v − 5, similarly one gets:

y3 = x4 + 2 · 7 · 67 · 179x2 + 23 · 33 · 5 · 67 · 137x+ 52 · 7 · 672 · 71 · 89

y3 = x4 +
(
12222v2 − 263088v − 1290744

)
x2 +

(
− 19721880v2 + 232016400v

+ 1277237160
)
x+ 11453819175v2 − 62791404525v − 447679991475 .
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2The family of cyclic plane
quintic curves

A cyclic plane quintic curve (from now on CPQ curve) over C is a genus-6
smooth, plane, projective curve given by the equation Y 5 = f(X,Z) where
f is a homogeneous polynomial of degree 5 with distinct roots. Such a curve
has an automorphism ρ of order 5 given by (X : Y : Z) 7→ (X : z5Y : Z),
with z5 = exp(2πi/5). It fixes the points (α : 0 : β) with f(α, β) = 0, the
branch points of C.

The isomorphisms between CPQ curves are of the form

(X : Y : Z) 7→ (aX + bZ : Y : cX + dZ).

Therefore, every ordering of the branch points gives rise to an isomorphic
model with the three first branch points at (0 : 0 : 1), (1 : 0 : 1) and (1 : 0 : 0).
In that case, if we consider the patch Z 6= 0 and define the affine coordinates
x = X/Z and y = Y/Z, then a CPQ curve is determined by the x-coordinates
of the remaining branch points (λ, 0) and (µ, 0) as

y5 = x(x− 1)(x− λ)(x− µ).

We refer to this form as a Legendre-Rosenhain equation of a CPQ curve.
In this chapter we present a method that, given the period matrix of the

Jacobian of a CPQ curve, computes a numerical approximation of the equation
of the curve. We follow the general idea of the algorithm for Picard curves
presented in Chapter 1, and we highlight the similarities and differences between
both cases.

The structure of the chapter runs parallel to that of Chapter 1. In Sec-
tion 2.1, we give a formula to approximate the x-coordinates of the branch
points of a CPQ curve in terms of quotients of Riemann theta constants on its
Jacobian, see Theorem 2.1.7.
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2 The family of cyclic plane quintic curves

In Section 2.2, we show how to identify the points in the Jacobian needed
to apply said formula, such as the Riemann constant and the images by the
Abel-Jacobi map of the branch points, see Theorem 2.2.4. We also give an
inverse Jacobian algorithm for CPQ curves, that is, an algorithm that given the
Jacobian of a CPQ curve C returns the x-coordinates of the branch points of C,
see Algorithm 2.2.6.

Finally, in Section 2.3 we discuss how to obtain exact models from the ap-
proximations given by the algorithm, and we show some interesting examples
of curves obtained using it.

2.1 A Thomae-like formula

The goal of this section is to prove a result for CPQ curves analogous to
Theorem 1.2.13, that is, a formula that gives the x-coordinates of the branch
points as quotients of Riemann theta constants on the Jacobian using Siegel’s
Theorem 1.2.6. To do so, we start by identifying a family of non-special divisors.

Definition 2.1.1. Let C be a curve, and let ω be a regular differential of C.
Given a point P , a local parameter u at P and a non-negative integer n, we
define the n-th derivative of ω at P with respect to u to be the complex number

∂nuω(P ) = n! an,

for ω =
∑

k≥0 aku
k du ∈ OP (C)du ∼= C[[u]]du the series of ω at the local

ring OP (C).

Example 2.1.2. Let C be a CPQ curve with equation

y5 = x4 − 6x3 + 11x2 − 6x.

At the point P = (0, 0) the function y is a local parameter, and we can
write x as

x =
1

6
(−y5 + x4 − 6x3 + 11x2)

If we substitute this equation into itself recursively, then we obtain x as a
power series in y,

x = −1

6
y5 +

11

216
y10 − 103

3888
y15 + . . . .

Consider now the regular differential ω = dx/y2. We have

ω =
dx

y2
= (−5

6
y2 +

55

108
y7 − 515

1296
y12 + . . . )dy.
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Therefore, the zero derivative of ω at P with respect to y is

∂0
yω(P ) = 0,

and the second derivative of ω at P with respect to y is

∂2
yω(P ) = −5

3
.

The following proposition characterizes non-special divisors.

Proposition 2.1.3 (Siegel [44, pg. 154]). Let C be a curve and let ω1, . . . , ωg
be a basis of regular differentials of C.

Given a point P and a positive integer nP , consider the g × nP matrix
W (P, nP ) given by the first nP derivatives of the differentials relative to a local
parameter u at the point, that is

W (P, nP ) =
(
∂juωi(P )

)
1≤i≤g

0≤j≤nP−1
∈ Cg×nP .

Given D =
∑
nPP an effective degree-g divisor, we define the g × g matrix

W (D) as the concatenation of the matrices W (P, nP ) for the points P in D.
The divisor D is non-special if and only if the matrixW (D) is invertible.
In order to apply this result to the case of CPQ curves we need to choose a

basis of regular differentials.

Proposition 2.1.4. Let l be a prime and let C be a curve given by an equation

Y l = F (X,Z) =
l∏

i=1

(αiX − βiZ)

such that all the branch points Pi = (βi : 0 : αi) for i = 1, . . . , l are distinct.
Let g be the genus of C, which satisfies g = 1

2(l− 1)(l− 2). Consider the affine
coordinates x = X/Z and y = Y/Z. The differentials(

xiyjdx

yl−1
: i, j ≥ 0, i+ j ≤ l − 3

)
form a basis of the space of holomorphic differentials H0(ωC) of C.

Proof. Following [8, Section 2.9], we define the Newton polygon N (C) of a
plane curve C given by the equation G(x, y) = 0 as the convex hull of all points
(i, j) ∈ Z2 for which the coefficient of xiyj in G is non-zero.

For each interior integer point (i, j) ∈ N (C), one may construct a differential

ω =
xi−1yj−1dx

∂yG(x, y)
.
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2 The family of cyclic plane quintic curves

We obtain g differentials, and they are all holomorphic and linearly independent
(see [8, paragraph after Equation (2.52)]).

In the case at hand we have G(x, y) = yl − F (x, 1), hence the Newton
polygon N (C) is contained in the triangle T of vertices (0, l), (l, 0) and (0, 0)
and contains all the interior points of T . The result follows.

Corollary 2.1.5. Given a CPQ curve C, the differentials(
dx

y4
,
xdx

y4
,
x2dx

y4
,
dx

y3
,
xdx

y3
,
dx

y2

)
form a basis of the space of holomorphic differentials H0(ωC).

This result allows us to prove that our chosen divisors are non-special.

Proposition 2.1.6. Let C be a CPQ curve and let B be the set of branch points
of the curve C. Let P,Q,R ∈ B be distinct. Then the divisor P + 2Q + 3R is
non-special.

Proof. Consider the basis of differentials in Corollary 2.1.5 and compute the
matrix W (P + 2Q+ 3R) as defined in Proposition 2.1.3. One checks that it has
maximal rank, hence by Proposition 2.1.3 the divisor is non-special.

We can now state a formula that gives the x-coordinates of the branch points
of a CPQ curve in terms of quotients of Riemann theta constants.

Theorem 2.1.7. Let C be a CPQ curve over C given by a Legendre-Rosenhain
equation

Y 5 = X(X − Z)(X − λZ)(X − µZ)Z,

and consider the points Pt = (t : 0 : 1) for t ∈ {0, 1, λ, µ} and P∞ = (1 : 0 : 0).
Let J(C) be the Jacobian of C with period matrix Ω ∈ H6, let α be the Abel-
Jacobi map with base point P∞, let ∆ be the Riemann constant with respect
to α, and let {η, ν} = {λ, µ}. We have

η = εη

(
θ[P̃1 + 2P̃η + 3P̃ν − P̃0 − ∆̃](Ω)

θ[P̃1 + 2P̃η + 3P̃ν − ∆̃](Ω)

θ[2P̃1 + P̃η + 3P̃ν − ∆̃](Ω)

θ[2P̃1 + P̃η + 3P̃ν − P̃0 − ∆̃](Ω)

)5

,

where εη = exp(10πi((P̃η − P̃1)1(P̃0)2)) .

Proof. Let ω be the basis of holomorphic differentials for which J(C) has period
matrix Ω. The divisor of the function x is div(x) = 5P0 − 5P∞. Then, in order
to apply Corollary 1.2.10 for φ = x and P = P∞, we choose five times the zero
path from P∞ to itself; the path γ1 from P∞ to P0 that for a1 = P̃0 satisfies∫

γ1

ω = Ω(a1)1 + (a1)2 ∈ C6;
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and, for k = 2, . . . , 5, some paths γk from P∞ to P0 that satisfy

5∑
k=1

∫
γk

ω = 0 in C6.

For k = 2, . . . , 5 we denote by ak be the element in R12 that satisfies∫
γk

ω = Ω(ak)1 + (ak)2.

By Corollary 1.2.10, given an effective divisor D of degree 6 we have

φ(D) = E′
5∏

k=1

θ[D̃ − ak − ∆̃](Ω)

θ[D̃ − ∆̃](Ω)
(2.1)

for some constant E′ independent of D.
Consider now the divisors Dη = P1 + 2Pη + 3Pν and D1 = 2P1 + Pη + 3Pν ,

which are general because of Proposition 2.1.6, and divide the corresponding
equalities given by (2.1). We obtain

η =
φ(Pη)

φ(P1)
=
φ(Dη)

φ(D1)
(2.2)

=
5∏

k=0

(
θ[P̃1 + 2P̃η + 3P̃ν − ak − ∆̃](Ω)

θ[P̃1 + 2P̃η + 3P̃ν − ∆̃](Ω)

θ[2P̃1 + P̃η + 3P̃ν − ∆̃](Ω)

θ[2P̃1 + P̃η + 3P̃ν − ak − ∆̃](Ω)

)
.

The result then follows from applying the quasi-periodicity property of the Rie-
mann theta constants to the equation (2.2), as we did in the proof of Theo-
rem 1.2.13.

2.2 The inverse Jacobian algorithm

The end goal of this section is to provide an algorithm that, given a period
matrix of the Jacobian of a CPQ curve and the rational representation of its in-
duced automorphism ρ∗, returns a numerical approximation of the x-coordinates
of the branch points of C.

The main step in the algorithm is based on Theorem 2.1.7. To apply that
theorem we need to identify the Riemann constant of C with respect to an
Abel-Jacobi map α with a branch point as base point and the image by α of
the branch points on J(C).

We start by characterizing the Riemann constant of a CPQ curve.
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2 The family of cyclic plane quintic curves

Corollary 2.2.1. Let C be a CPQ curve, let ρ be the automorphism given by
(x, y) 7→ (x, z5y). Let α be an Abel-Jacobi map with a branch point as base
point. The Riemann constant with respect to α is the only point ∆ ∈ J(C)
with
(1) ∆ ∈ J(C)[2], and
(2) tρr(ρ∗)[∆] = ∆.

Proof. Let P0 ∈ B be the base point of the Abel-Jacobi map α. By Proposi-
tion 1.2.4 the Riemann constant satisfies 2∆ = α(κ) for κ a canonical divisor.
Since we have

div

(
(x− x(P0))2dx

y4

)
= 10P0,

we conclude that ∆ is a 2-torsion point, that is, the point ∆ satisfies (1). More-
over, by Proposition 1.3.4 we have ∆ = ρr(ρ∗)[∆

′] for ∆′ the Riemann constant
with respect to ρ(P0). But since P0 is fixed by ρ, the point ∆ satisfies (2).

To prove that it is the only point that satisfies (1) and (2), assume that
there exist ∆1,∆2 ∈ J(C) that satisfy (1) and (2). By (2) we have

∆1 −∆2 = tρr(ρ∗)[∆
1]− tρr(ρ∗)[∆

2] = ρr(ρ∗)
−1(∆1 −∆2),

thus ∆1−∆2 is an element of J(C)[1−ρ4
∗] ⊆ J(C)[5]. But by (1), the difference

∆1 −∆2 is also a 2-torsion point, hence we conclude ∆1 −∆2 = 0.

Next we are interested in identifying the images of the branch points in the
Jacobian. We aim to state a theorem analogous to Theorem 1.3.6 for CPQ
curves, hence we start by studying the (1− ρ∗)-torsion of the Jacobian.

Proposition 2.2.2. Let l be a prime, let C be a curve given by an equation

Y l = F (X,Z) =

l∏
i=1

(αiX − βiZ)

such that all the branch points Pi = (βi : 0 : αi) for i = 1, . . . , l are distinct,
and let B be the set of branch points. Let ρ be the automorphism of C given
by ρ(X : Y : Z) = (X : zlY : Z) with zl = exp(2πi/l). We have

J(C)[1− ρ∗] = 〈[Pi − Pl] : 1 ≤ i < l〉,

where all the points [Pi − Pl] are distinct and satisfy
∑l−1

i=1[Pi − Pl] = 0.

One of the steps in the proof is to compute #J(C)[1 − ρ∗] = deg(1 − ρ∗).
To do so, we use the following lemma.
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Lemma 2.2.3 (Birkenhake-Lange [2, Section 5.1]). Let X = V/Λ be an abelian
variety over C, and let f ∈ End(X) be an endomorphism with characteristic
polynomial P rf (t) := det(t idΛ−ρr(f)). Then for all n ∈ Z we have

deg(n− f) = P rf (n).

Proof of Proposition 2.2.2. Let B = {Pi : 1 ≤ i ≤ l} be the set of branch points
of C, define the group D := {D ∈ Div0(C) : Supp(D) ⊆ B} ∼= Zl−1, and
consider the map

Ψ : D → Pic0(C)[1− ρ∗] = J(C)[1− ρ∗],
D 7→ [D].

We start by computing the kernel of Ψ. Let D ∈ D be a principal divisor,
say D = div(h). Then h satisfies

div(h ◦ ρ) = ρ∗D = D = div(h),

so we get h ◦ ρ = c · h for some c ∈ C×. Actually, we obtain c = zml for
some m ∈ Z/lZ.

Consider now x = X/Z and y = Y/Z, define the function

g =
Y

αlX − βlZ
=

y

αlx− βl
,

and note that it satisfies gm ◦ ρ = zml g
m and div(g) =

∑
P∈B P − lPl ∈ D.

It follows that the function h/gm ∈ C(x)[y]/(yl − F (x, 1)) satisfies

h

gm
◦ ρ =

h

gm
,

so that we actually have h/gm ∈ C(x) and we can write h = gmf for some
function f ∈ C(x) whose divisor is also in D.

Since the function f only depends on x, the morphism f : C → P1 factors
through C/〈ρ〉. Thus the divisor of f is the pullback by π : C → C/〈ρ〉 of a
function f ′ on P1 of degree l and which is ramified at the branch points of C.

We conclude

D = div(h) = m div(g) + π∗ div(f ′) = m div(g) + l ·D′ for some D′ ∈ D,

and therefore we obtain

ker Ψ ⊆ lD + Zdiv(g). (2.3)
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2 The family of cyclic plane quintic curves

Clearly we have div(g) ∈ ker Ψ. Moreover, for k = 1, . . . , l, the function

φk =
αkX − βkZ
αlX − βlZ

has divisor div φk = lPk − lPl, so we obtain lD ⊆ ker Ψ; and the equality in
(2.3) holds.

Altogether we obtain Im Ψ ∼= D/ ker Ψ ∼= (Z/lZ)l−1/〈(1, . . . , 1)〉, so Im Ψ
has ll−2 elements.

Since the minimal polynomial of the automorphism ρ∗ is the cyclotomic
polynomial

∏l−1
k=1(x − zkl ) ∈ Q[x], which is irreducible, and its characteristic

polynomial has degree 2g = (l − 1)(l − 2), we get

P rf (t) =

l−1∏
k=1

(x− zkl )l−2 ∈ Q[x].

Then by Lemma 2.2.3 we obtain

deg(1− ρ∗) =

l−1∏
k=1

(1− zkl )l−2 = ll−2.

It follows that J(C)[1−ρ∗] has ll−2 elements, so we conclude that Ψ is surjective
and the result follows.

We can now prove the theorem that allows us to identify the image of the
branch points in the Jacobian.

Theorem 2.2.4. Let J(C) be the Jacobian of a CPQ curve C with period
matrix Ω ∈ H6, let ρ∗ be the automorphism on J(C) induced by the curve
automorphism ρ(x, y) = (x, z5y) and let B be the set of branch points of C.
Let ∆ be the only point in J(C)[2] that satisfies ρr(ρ∗)[∆] = ∆ and define

Θ5 := {x ∈ J(C)[1− ρ∗] : θ[x+ ∆](Ω) = 0} .

Then there exists a subset T ⊆ J(C) of four elements such that:
(i) the sum

∑
x∈T x is zero,

(ii) T is a set of generators of J(C)[1− ρ∗], and
(iii) the set O(T ) := {

∑
x∈T axx : a ∈ Z4

≥0,
∑

x∈T ax ≤ 5} satisfies

O(T ) = Θ5.

Furthermore, for every such subset there exists κ ∈ F×5 and Q ∈ B for which T
satisfies

T = {κ[P −Q] : P ∈ B\{Q}}.
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Proof. Let Q ∈ B and let SQ denote the set {[P −Q] : P ∈ B\{Q}}
We start by proving that SQ satisfies (i)–(iii), and then we prove so for

κSQ with κ ∈ F×5 . Finally we prove that the sets κSQ as κ ranges over F×5
and Q over B are the only 4-element sets in J(C) that satisfy (i)–(iii). We
assume without loss of generality that Q is an affine point (because no statement
depends on the model).

That SQ satisfies (i) follows from

div

(
y

x− x(Q)

)
=
∑
P∈B

P − 5Q.

That SQ satisfies (ii) follows from Proposition 2.2.2.
Next we prove that SQ satisfies (iii). Let α be the Abel-Jacobi map with

a branch point P ′ ∈ B as base point so by Corollary 2.2.1 the point ∆ is the
Riemann constant with respect to α.

Given Q1, . . . , Q5 ∈ B, we have α(Q1 + · · · + Q5) ∈ Θ5 by the Riemann
Vanishing Theorem 1.2.2. We also have 5α(Q) = 0, since the divisor of the
function (x− x(Q))/(x− x(P ′)) is 5Q− 5P ′. Therefore we write

α(Q1 −Q) + · · ·+ α(Q5 −Q) = α(Q1 + · · ·+Q5) ∈ Θ5,

which by definition of O(SQ) implies

O(SQ) ⊆ Θ5. (2.4)

To prove that it is actually an equality, we show that the sets have the same
cardinality.

First we give a lower-bound for #Θ5 via computing #O(SQ). Given a
sequence T = (t1, t2, t3, t4) such that the set {t1, t2, t3, t4} has 4 elements and
satisfies (i)–(ii), we define the map γ[T ] : F3

5 → J(C)[1− ρ∗] that maps r ∈ F3
5

to the sum
∑3

i=1 riti ∈ J(C)[1− ρ∗]. Note that γ[T ] is a bijection.
Let e1, e2, e3 be the standard basis vectors of F3

5, and let e4 = −e1− e2− e3,
so for i = 1, . . . , 4 we have γ[T ](ei) = ti. Consider

O0 =

{
4∑
i=1

aiei : a ∈ Z4
≥0,

4∑
i=1

ai ≤ 5

}
⊆ F3

5.

One can check #O0 = 101, and moreover we have γ[T ](O0) = O({t1, . . . , t4}).
In particular, we obtain #O(SQ) = 101 and thus by (2.4) we get

#Θ5 ≥ 101. (2.5)

Next we give an upper-bound for #Θ5. By Proposition 2.1.6 the divisors
3P + 2Q+ R with P,Q,R distinct branch points are non-special, that is, they
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2 The family of cyclic plane quintic curves

satisfy degD = g and dimL(κ − D) = 0. Therefore by the Riemann-Roch
Theorem they are the only effective divisor in their class. In particular, if P,Q,R
are different from P ′ then we have α(3P +2Q+R) 6= α(Q1 + · · ·+Q5) for every
Q1, . . . , Q5 ∈ C, so by Riemann’s Vanishing Theorem 1.2.2 we obtain that
θ[3P + 2Q+R−∆](Ω) is non-zero.

There are 24 such divisors with {P,Q,R} 63 P ′, which in turn determine
24 distinct divisor classes, hence we conclude

# {x ∈ J(C)[1− ρ∗] : θ[x+ ∆](Ω) 6= 0} ≥ 24. (2.6)

Since by Proposition 2.2.2 we have #J(C)[1−ρ∗] = 125, it follows that both
(2.5) and (2.6) are equalities and therefore SQ satisfies (iii).

Next we consider the sets κSQ with κ ∈ F×5 . It is clear that κSQ also satisfies
(i)–(ii). We checked with Magma [3] that O0 is invariant under the map x 7→ κx
for κ ∈ F×5 , and we have the equality

γ[κT ](O0) = γ[T ](κO),

so it follows that (iii) also holds for κSQ.
Finally, we prove that the 4-element sets κSQ for κ ∈ F×5 and Q ∈ B are

the only 4-element sets in J(C) that satisfy (i)–(iii). To do so, let B denote
an ordering of SP ′ = α(B)\{0}, consider a sequence T = (t1, t2, t3, t4) ∈ J(C)4

such that the set {t1, t2, t3, t4} has 4 elements and satisfies (i)–(iii), and let γ[T ]
be the bijection defined above. Consider the diagram

F3
5

M(T ) //

γ[T ] %%

F3
5

γ[B]yy
J(C)[1− ρ∗]

where M(T ) is the unique invertible matrix in F3×3
5 that makes the diagram

commutative. Note that choosing a matrix M(T ) determines T uniquely.
If the set of elements of T satisfies (iii), then we get

γ[T ](O0) = O({t1, t2, t3, t4}) = Θ5 = γ[B](O0),

and thus O0 is stable under M(T ).
We checked with Magma [3] that there are exactly 480 invertible matrices

in F3×3
5 that mapO0 to itself. Since a matrixM(T ) determines T uniquely, there

are 480 sequences T ∈ J(C)4 that satisfy (i)–(iii). However, if we vary κ ∈ F×5 ,
the point Q ∈ B, and the labeling of the elements in SQ we get 480 sequences,
and they are different by the equality in (2.3), see proof of Proposition 2.2.2.
We conclude that κSQ for κ ∈ F×5 and Q ∈ B are the only 4-element subsets of
J(C) that satisfy (i)–(iii).
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From the proof above we obtain the following result.

Corollary 2.2.5. With the notation in Theorem 1.3.6, we get

#Θ5 = 101.

We have now all the tools to give the inverse Jacobian algorithm.

Algorithm 2.2.6
Input: The Jacobian of a CPQ curve C, given by a period matrix Ω ∈ H6, and

ρ∗ the automorphism on the Jacobian induced by the curve automorphism
ρ(x, y) = (x, z5y), given by its rational representation N ∈ Z12×12.

Output: Two pairs (l,m) of which at least one is the pair (λ, µ) in a Legendre-
Rosenhain equation y5 = x(x− 1)(x− λ)(x− µ) of the CPQ curve C.

1. Let D be the unique solution of N [D] = D in 1
2Z

12/Z12.
2. Compute

Θ5 =

{
1

5
Z12/Z12 : Nx = x and θ[x+D](Ω) = 0

}
.

3. Let X = {x1, x2, x3, x4} ⊆ Θ5 be a 4-element set that satisfies
i.
∑

x∈X x = 0,
ii. {x1, x2, x3} are linearly independent, and
iii. {

∑
x∈X axx : a ∈ ZX≥0,

∑
x∈X ax ≤ 5} = Θ5.

4. For each T = {t1, t2, t3, t4} ∈ {X, 2X} compute

εl = exp(10πi((t̃3 − t̃2)1(t̃1)2)),

εm = exp(10πi((t̃4 − t̃2)1(t̃1)2),

and

lT = εl

(
θ[t̃2 + 2t̃3 + 3t̃4 − t̃1 − D̃](Ω)

θ[t̃2 + 2t̃3 + 3t̃4 − D̃](Ω)

θ[2t̃2 + t̃3 + 3t̃4 − D̃](Ω)

θ[2t̃2 + t̃3 + 3t̃4 − t̃1 − D̃](Ω)

)5

,

mT = εm

(
θ[t̃2 + 2t̃4 + 3t̃3 − t̃1 − D̃](Ω)

θ[t̃2 + 2t̃4 + 3t̃3 − D̃](Ω)

θ[2t̃2 + t̃4 + 3t̃3 − D̃](Ω)

θ[2t̃2 + t̃4 + 3t̃3 − t̃1 − D̃](Ω)

)5

.

5. Return (lX ,mX) and (l2X ,m2X).

Warning 2.2.7. As we already saw in the case of Picard curves, Algorithm 2.2.6
is a mathematical algorithm but, since it involves infinite sums, complex num-
bers and exponentials, it cannot be run on a Turing machine or a physical
computer. To do so one needs to truncate the sum on the Riemann theta con-
stants, approximate complex numbers and keep track of the error propagation,
see Section 1.5 for more details on how to do that.
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2 The family of cyclic plane quintic curves

After applying the algorithm, we obtain two candidates for the approxima-
tions of λ and µ. One may then use an algorithm to check which results are
correct.

Let (l,m) be one of the pairs from the output, let C be the associated
Legendre-Rosenhain equation and let Ω′ ∈ H6 satisfy J(C) ∼= C6/Ω′Z6 +Z6. If
the pair (l,m) is an approximation of (λ, µ), then there exists an isomorphism
between C6/ΩZ6 + Z6 and C6/Ω′Z6 + Z6.

One could find such an isomorphism using methods like the numerical com-
putation of homomorphisms in Costa-Mascot-Sijsling-Voight [7].

Remark 2.2.8. In all the cases where we have applied Algorithm 2.2.6 (see
Section 2.3), both pairs (lX ,mX) and (l2X ,m2X) yielded isomorphic curves.

Proof of Algorithm 2.2.6. Let B be the set of branch points of C. By Theo-
rem 2.2.4, the set X in Step 3 is equal to {κ[P − P∞] : P ∈ B\{P∞}} for a cer-
tain κ ∈ F×5 and P∞ ∈ B. We assume without loss of generality P∞ = (1 : 0 : 0),
and that C is given by a Legendre-Rosenhain equation. Let α be the Abel-Jacobi
map with base point P∞. Then we obtain

α(B)\{0} ∈ {X, 2X,−X,−2X}.

Let ∆ ∈ J(C) be the Riemann constant ∆ with respect to P∞. By Corol-
lary 2.2.1, the Riemann constant ∆ is the only point in J(C) that is a 2-torsion
point, hence satisfies ∆ ∈ 1

2Z
12/Z12, and also satisfies N [∆] = ∆. We conclude

D = ∆ and by Theorem 2.1.7, the pair (lT ,mT ) as in Step 6 is the pair (λ, µ)
for some T ∈ {X, 2X,−X,−2X}.

Furthermore, since the Riemann theta constants are symmetric and quasi-
periodic, the values of l and m do not change if we replace t̃i by −t̃i, thus we
only need to consider T ∈ {X, 2X}, which completes the proof.

As a consequence of the proof we obtain the following result.

Corollary 2.2.9. If the automorphism given in the input on Algorithm 2.2.6
is ρk∗ for some k ∈ {2, 3, 4}, then the output is also correct.

Proof. Note that the automorphism in the input only plays a role in Steps 1
and 2 of Algorithm 1.3.9, to determine the Riemann constant and the
(1− ρ∗)-torsion points in J(C).

Let k ∈ {2, 3, 4} and let α be an Abel-Jacobi map with a branch point as base
point. Note that ρk fixes the branch points on C. Therefore, by Proposition 1.3.4
the Riemann constant with respect to α satisfies tρr(ρk∗)[∆] = ∆. It follows that,
for M =

t
ρr(ρ

k
∗), the characteristic D in Step 1 satisfies M [D] = D. We also

get {
x ∈ 1

5
Z12/Z12 : Mx = Nkx = x and θ[x+D](Ω) = 0

}
= Θ5.
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2.3 Some CM examples

As in the Picard case (see Section 1.5), after numerically approximating the
x-coordinates of the branch points of a CPQ curve with Algorithm 2.2.6, we
obtain a polynomial

f(x) = x(x− 1)(x− λ)(x− µ) ∈ C[x]

up to some precision. However, the curve may actually be isomorphic to
y5 = h(x) for a certain polynomial h over a number field.

In this case, in order to find h from f we use the invariants of quintic binary
forms, recognize them as algebraic numbers and reconstruct h from the exact
invariants. This was originally done by Clebsch in [6] and recently implemented
by Noordsij in [32, 31].

Note that in order to be able to recognize the invariants as algebraic numbers
we have to compute λ and µ with enough precision.

Next we include a list of CPQ curves computed with our algorithm. Anal-
ogously to what we saw for Picard curves in Section 1.5, we define a maximal
CM CPQ curve as a CPQ curve such that its Jacobian has endomorphism ring
isomorphic to the maximal order of a degree-12 number field K. We will see
in Chapter 4 that K contains a primitive 5th root of unity ζ5 ∈ K, and is
determined by a totally real cubic field K0 that satisfies K = K0(ζ5).

For details on how to obtain period matrices for the Jacobians of maximal
CM CPQ curves and the corresponding automorphism from the field K see
Section 4.1.

Using Algorithm 2.2.6 we computed numerical approximations of some max-
imal CM curves. Here we present the resulting CPQ curves which are numeri-
cally close (and conjecturally equal) to the maximal CM curves. In Chapter 4
we will see that, in particular, this list contains conjectural models for all CPQ
curves defined over Q with maximal CM over C.

We obtained the following curves:

(1) y5 = x4 − 24x3 + 3x2 + x with K0 defined by x3 − 3x− 1.
(2) y5 = x4 − 7x2 + 7x with K0 defined by x3 − x2 − 2x+ 1.
(3) y5 = x4 − 390x2 + 13000x+ 257725 with K0 defined by x3 − x2 − 4x− 1.
(4) y5 = x4 + 1290x2 + 35000x+ 228525 with K0 defined by x3 − 12x− 14.

47





3Moduli of abelian varieties
with generalized CM-type

The goal for this chapter is to characterize the Jacobians of CPQ curves
among the principally polarized abelian varieties of dimension 6, as an analo-
gous result to Proposition 1.4.1 for Picard curves, which said that all simple
principally polarized abelian threefolds over an algebraically closed field with
order-3 automorphisms are Jacobians of Picard curves.

But when considering the case of CPQ curves, we have to take into account
that not all principally polarized abelian varieties of dimension 6 are Jacobians of
curves. Fortunately, the existence of the automorphism of CPQ curves given by
(x, y) 7→ (x, exp(2πi/5)y) and the corresponding automorphism on the Jacobian
set some conditions on the structure of the Jacobian. We will show that these
conditions are enough to determine a moduli space with the same dimension as
the family of CPQ curves, and that said moduli space is connected. This will
allow us to give a result analogous to Proposition 1.4.1, see Theorem 3.5.3.

In Sections 3.1 and 3.2 we introduce a generalization of the classical
CM-theory due to Shimura to define the moduli space of principally polar-
ized abelian varieties with given generalized CM-type. We follow [39], and also
Birkenhake-Lange [2, Section 9.6].

We apply this theory in Section 3.3 to study the Jacobians of CPQ curves.
We explicitly construct the complex torus and polarization, and study the struc-
ture of Z[ρ∗] ⊆ End(J(C)) for ρ∗ the automorphism of the Jacobian induced
by ρ(x, y) = (x, z5y) with z5 = exp(2πi/5). We show that the moduli space of
principally polarized abelian varieties with the generalized CM-type Z induced
by ρ∗ has dimension 2, as does the family of CPQ curves.

In Section 3.4 we introduce the concept of polarized OK-lattice and explain
how the equivalence classes of certain polarized OK-lattices relate to the con-
nected components of the moduli space of principally polarized abelian varieties
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with generalized CM-type Z. Using this relation we then prove, among other
things, that the moduli space given in Section 3.3 is connected.

Finally, in Section 3.5 we put all the pieces together to prove the result
analogous to Proposition 1.4.1, see Theorem 3.5.3.

3.1 CM-fields and m-CM-types

A CM-field is a totally imaginary quadratic extension K of a totally real
number field K+. The non-trivial element κ of Aut(K/K+) satisfies φ◦κ = ·◦φ
for every embedding φ : K ↪→ C, where · stands for the complex conjugation
in C. We call κ complex conjugation and denote it also by ·.

LetK be a CM-field of degree 2e. Anm-CM-type ofK is a multiset Ψ whose
elements are elements of Hom(K,C) and such that for every homomorphism
φ : K → C we have multΨ(φ) + multΨ(φ) = m. We get #Ψ = em. To it, we
associate the representation

ρΨ = ⊕
φ∈Ψ

φ

of dimension em over C.

Definition 3.1.1. With the notation above, a polarized abelian variety with
m-CM-type (K,Ψ) is a triple (X,E, ι) with:

. X ∼= Cem/Λ a complex torus of dimension em,

. E a Riemann form, and

. ι : K ↪→ End(X)⊗Q an embedding such that
– the analytic representation ρa◦ι and the representation ρΨ are equiv-

alent, and
– the Rosati involution on End(X)⊗Q with respect to the polarization

given by the Riemann form E extends the complex conjugation on
K via ι.

Two polarized abelian varieties (X,E, ι) and (X ′, E′, ι′) with m-CM-type
(K,Ψ) are isomorphic if there exists an isomorphism f : X → X ′ that satisfies
f∗E′ = E and f ◦ ι(a) = ι′(a) ◦ f for all a ∈ K.

Choose Φ = (φ1, . . . , φe) a sequence of e embeddings K → C such that
{φ1, φ1, . . . , φe, φe} is the set of all 2e embeddings. Then, by abuse of nota-
tion, an m-CM-type is a list (r, s) = ((r1, . . . , re), (s1, . . . , se)) of non-negative
integers with ri + si = m for all i = 1, . . . , e via taking ri = mult(φi) and
si = mult(φi). In this case we denote the m-CM-type by (r, s), and the associ-
ated representation is given by

ρr,s(a) = diag(φ1(a)1r1 , φ1(a)1s1 , . . . , φe(a)1re , φe(a)1se). (3.1)
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The choice of Φ also determines an embedding  : (K ⊗Q R)m → C2em,
given by

a 7→ (a) =


φ1(a)

φ1(a)
...

φe(a)

φe(a)

 ,

and it allows us to define a parametrization of the family of polarized abelian
varieties with m-CM-type (r, s) as follows:

Let Hr,s be the set of matrices Z ∈ Cr×s such that 1s −
t
ZZ is positive

definite, which we write as 1s−
t
ZZ > 0. Let Υ(r, s) be the set of pairs (M, T )

such that:
. M is a free Z-submodule of Km of rank 2em,
. T is an m×m antihermitian matrix over K,
. the alternating bilinear formM×M→ Q given by (a, b) 7→ trK/Q(taTb)

is integer-valued,
. T has signature (r, s), that is, for every ν = 1, . . . , e there exists an in-

vertible matrix Wν ∈ Cm×m that satisfies

φν(T ) =
t
Wν

(
i1rν 0

0 −i1sν

)
Wν . (3.2)

Remark 3.1.2. One can check that 1r −Z
t
Z = (1r +Z(1s −

t
ZZ)−1 tZ)−1 is

also a positive-definite matrix. In particular, the map Z 7→ t
Z gives a bijection

between Hr,s and Hs,r.
Remark 3.1.3. If rs = 0 we get Hr,s = {0}, a space with a single point.

The choice of an m-CM-type (K,Φ, r, s) determines the product
Hr,s := Hr1,s1 × · · · × Hre,se . In Section 3.2 we show how to associate a polar-
ized abelian variety with m-CM-type (K,Φ, r, s) to every element Z ∈ Hr,s and
(M, T ) ∈ Υ(r, s) and vice versa.

3.2 Polarized abelian varieties with given m-CM-type

Our goal in this section is to give a correspondence between the set of polar-
ized abelian varieties with m-CM-type (K,Φ, r, s) and the space Hr,s×Υ(r, s).

We first construct a polarized abelian variety with m-CM-type (K,Φ, r, s)
and then prove that every such polarized abelian variety can be obtained through
that construction.

This result for CM-fields is a particular case of the results in Shimura [39].
It is also explained in Birkenhake-Lange [2, Section 9.6], where some proofs for
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this case are left to the reader. We present them here for completeness, as we
will use them in Section 3.3.

Fix a pair (M, T ) ∈ Υ(r, s), matricesW1, . . . ,We as in (3.2), and an element
Z = (Z1, . . . , Ze) ∈ Hr,s. We start by constructing a complex torus.

Consider the complex vector space homomorphism Γ : C2em → Cem given
by the block diagonal matrix

Γ = diag(Γ1, . . . ,Γe) with Γν =

(
(1rν Zν)Wν 0

0 (tZν 1sν )Wν

)
∈ Cm×2m.

(3.3)

Remark 3.2.1. If we have rν = 0 or sν = 0, then we get Γν = (0 Wν) or
Γν = (Wν 0), respectively.

Lemma 3.2.2. Γ restricted to ((K⊗QR)m) ⊆ C2em is an isomorphism of real
vector spaces.

Proof. This is a particular case of Lemma 9.6.2 in Birkenhake-Lange [2]; we
write the details of the proof for completeness. We proceed to prove it by
blocks, hence assume e = 1 and omit the subindices.

Consider the map π : Cm → Cm given by

x 7→ π(x) =

(
1r Z
t
Z 1s

)
Wx.

Since W is non-singular by definition and the matrix(
1r Z
t
Z 1s

)(
1r −Z
− t
Z 1s

)
=

(
1r − Z

t
Z 0

0 1s −
t
ZZ

)
is positive definite, thus non-singular, the map π is a C-isomorphism. Moreover,

let κ : Cm → C2m be given by κ(x) =

(
x
x

)
and η : Cr+s → Cr+s be given by

η

(
x
y

)
=

(
x
y

)
. Then, as κ ◦ φ is the map , the statement follows from the

equality π = η ◦ Γ ◦ κ.

We conclude that the image (Γ ◦ )(M) is a lattice in Cem and the quotient
X := Cem/(Γ ◦ )(M) is a complex torus.

Next, we determine the polarization of X by determining a hermitian form.
We define the map H : Cem × Cem → C as H(x, y) = 2 tx diag(H1, . . . ,He)y
with

Hν =

(
(1rν − Zν

tZν)−1 0

0 (1sν −
t
ZνZν)−1

)
∈ Cm×m, (3.4)
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which is positive definite and hermitian by definition. To see that it defines
a polarization we need to see that the associated alternating form E = ImH
is integer-valued on the lattice (Γ ◦ )(M). Given a linear map f : A → B
and a real bilinear form E : B × B → R, we define the real bilinear form
f∗E := E(f(·), f(·)) : A×A→ R.

Lemma 3.2.3. For all a,b ∈ (K ⊗ R)m we have

((Γ ◦ )∗E)(a,b) = trK⊗R/R(taTb).

Proof. This is a particular case of Lemma 9.6.3 in Birkenhake-Lange [2]; we
write the details of the proof for completeness. As before, we proceed to prove
it by blocks, hence assume e = 1 and omit the subindices.

On the one hand we have

(Γ◦)∗E(a,b) = 2 Im
(
t(a) tΓHΓ(b)

)

= 2 Im

 t(
φ(a)

φ(a)

)
t
W

(
1r
tZ

)
0

0 tW

(
Z
1s

)


(
(1r − Z tZ)−1 0

0 (1s −
t
ZZ)−1

)(
(1r Z)W 0

0 (
t
Z 1s)W

)(
φ(b)

φ(b)

)
= 2 Im

(
tφ(a)

t
W

(
1r
tZ

)
(1r − Z tZ)−1(1r Z)Wφ(b)

+
t
φ(a) tW

(
Z
1s

)
(1s −

t
ZZ)−1(

t
Z 1s)Wφ(b)

)
= 2 Im

(
tφ(a)

t
W

(
1r
tZ

)
(1r − Z tZ)−1(1r Z)Wφ(b)

− tφ(a)
t
W

(
Z
1s

)
(1s − tZZ)−1(tZ 1s)Wφ(b)

)
= 2 Im

(
tφ(a)

t
W

((
1r
tZ

)
(1r − Z tZ)−1(1r Z)

−
(
Z
1s

)
(1s − tZZ)−1(tZ 1s)

)
Wφ(b)

)
= 2 Im

(
tφ(a)

t
W

(
1r 0
0 −1s

)
Wφ(b)

)
= 2 Im

(
i tφ(a)φ(T )φ(b)

)
= 2 Reφ

(taTb) .
53



3 Moduli of abelian varieties with generalized CM-type

And on the other hand we get

trK⊗R/R(taTb) = φ(taTb) + φ(taTb) = 2 Reφ(taTb).

Lastly we determine an embedding K ↪→ End(X)⊗Q. Let O be the order
{α ∈ K : αM ⊆ M}. Note that O acts on M via a natural action, which
induces an R-linear action on the lattice (Γ ◦ )(M) in Cem. This gives an
embedding O ↪→ End(X) which extends to an embedding

ι : K ↪→ End(X)⊗Q.

We now have all the elements needed to determine a polarized abelian variety
with m-CM-type, so we can state the result.

Proposition 3.2.4. Let (M, T ) ∈ Υ(r, s) and Z ∈ Hr,s. The triple (X, ImH, ι)
as defined above is a polarized abelian variety with m-CM-type (K,Φ, r, s).

Proof. This is a particular case of Lemma 9.6.4 in Birkenhake-Lange [2]; we
write the details of the proof for completeness.

We need to prove that the analytic representation ρa ◦ ι is equivalent to the
representation ρr,s defined in (3.1) and that the Rosati involution on End(X)⊗Q
with respect to the polarization extends the complex conjugation via ι.

The equivalence of representations follows from the equality

ρr,s(a)(Γ ◦ )(b) = (Γ ◦ )(ab).

As before, we proceed to prove it by blocks, hence assume e = 1 and omit the
subindices.

We have

ρr,s(a)(Γ ◦ )(b) =

(
φ(a)1r 0

0 φ(a)1s

)(
(1r Z)W 0

0 (tZ 1s)W

)(
φ(b)

φ(b)

)
=

(
(1r Z)W 0

0 (tZ 1s)W

)(
φ(a)1m 0

0 φ(a)1m

)(
φ(b)

φ(b)

)
= (Γ ◦ )(ab),

so the equality holds.
That the Rosati involution on End(X)⊗Q with respect to the polarization

extends the complex conjugation on K via ι is a consequence of the definition
of ι as the unique extension of the natural action of K onM⊗Q.

This construction defines a map A from Hr,s ×Υ(r, s) to the set of isomor-
phism classes of polarized abelian varieties with m-CM-type (K,Φ, r, s) given
by A(Z,M, T ) = (X, ImH, ι). The next proposition shows that the map is
surjective.

54



Polarized abelian varieties with given m-CM-type 3.2

Proposition 3.2.5 (Shimura [39], see Birkenhake-Lange [2, Proposition 9.6.5]).
Every polarized abelian variety (X,E, ι) with m-CM-type (K,Φ, r, s) is isomor-
phic to A(Z,M, T ) for some Z ∈ Hr,s and (M, T ) ∈ Υ(r, s).

Proof. We give the proof since it is omitted in Birkenhake-Lange [2] and because
we will use it in Section 3.3.

Let the triple (X = V/Λ, E, ι) be a polarized abelian variety with
m-CM-type (K,Φ, r, s). There exists a basis of V such that, for all a ∈ K,
the analytic representation of ι(a) is the diagonal matrix ρr,s(a). We identify V
with Cem via this choice. Since Λ ⊗ Q ⊆ Cem is a vector space over K of
dimension m via ρr,s, we choose a basis b1, . . . , bm ∈ Λ ⊗ Q and consider the
isomorphism η : Km → Λ ⊗ Q given by this basis. Then M = η−1(Λ) is a
Z-module of rank 2em in Km.

Next, consider the maps πij : K → Q given by a 7→ E(abi, bj) for all
1 ≤ i, j ≤ m. These are Q-linear maps, hence there exist tij ∈ K such that
E(abi, bj) = tr(atij) holds for all a ∈ K. The matrix T = (tij)ij ∈ Km×m

satisfies

η∗E(a,b) = tr(taTb) ∈ Z (3.5)

for all a,b ∈ M. Shimura also proves that T is antihermitian and has signa-
ture (r, s) as a consequence of E being a Riemann form. For details see [39,
pp. 158–160]. Let Wν for ν = 1, . . . , e be arbitrary matrices satisfying (3.2).

We have then a pair (M, T ) ∈ Υ(r, s). We only need to find Z ∈ Hr,s such
that (X,E, ι) is isomorphic to A(Z,M, T ).

A vector b ∈ Cem can be written as

b =


u1

v1

...
ue

ve


with uν ∈ Crν and vν ∈ Csν for every ν = 1, . . . , e.

Consider such subdivision for the basis b1, . . . , bm of Λ ⊗ Q. We define the
matrices

Uν =
(
uν1 · · · uνm

)
∈ Crν×m, Vν =

(
vν1 · · · vνm

)
∈ Csν×m,

Xν =

(
Uν 0
0 Vν

)
∈ Cm×2m
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3 Moduli of abelian varieties with generalized CM-type

and write (
Uν 0
0 Vν

)(
W
−1
ν 0
0 W−1

ν

)
=

(
Aν Bν 0 0
0 0 Cν Dν

)
, (3.6)

where we have Aν ∈ Crν×rν , Bν ∈ Crν×sν , Cν ∈ Csν×rν , and Dν ∈ Csν×sν .
Shimura proves that the matrices Aν and Dν are invertible and satisfy

A−1
ν Bν =

t
(D−1

ν Cν). This follows from the same reasoning that gives the signa-
ture of T , see [39, (30) and the paragraph after]. Since it is not relevant for the
use of the construction we omit the details here.

We define Zν = A−1
ν Bν =

t
(D−1

ν Cν) ∈ Crν×sν and change the basis of V
by the matrix diag(A−1

1 , D−1
1 , . . . , A−1

e , D−1
e ), so that without loss of generality

(3.6) becomes(
Uν 0
0 Vν

)(
W
−1
ν 0
0 W−1

ν

)
=

(
1rν Zν 0 0
0 0 tZν 1sν

)
∈ Cm×2m,

or equivalently,

Xν =

(
Uν 0
0 Vν

)
=

(
(1rν Zν)Wν 0

0 (tZν 1sν )Wν

)
∈ Cm×2m,

that is, with this basis the matrix Xν is the ν-component of Γ as defined in (3.3).
Then, for all a ∈ (K ⊗ R)m we have

η(a) =
m∑
i=1

ρr,s(ai)bi

=

m∑
i=1


φ1(ai)u

1
i

φ1(ai)v
1
i

...
φe(ai)u

e
i

φe(ai)v
e
i

 =


U1 0 · · · 0 0
0 V1 · · · 0 0
...

...
. . .

...
...

0 0 · · · Ue 0
0 0 · · · 0 Ve




φ1(a)

φ1(a)
...

φe(a)

φe(a)

 = (Γ ◦ )(a),

hence we obtain η = Γ ◦ . We claim that Z = (Z1, . . . , Ze) is in Hr,s and the
triple (X,H, ι) is isomorphic to A(Z,M, T ).

In order to prove 1s−
t
ZZ > 0, and hence Z ∈ Hr,s, we will use the definition

of H in (3.4) and its positive-definiteness. Let µ1, . . . , µ2em ∈ M be a Z-basis
and let xi = η(µi) be the corresponding basis of Λ. The matrices of H and E
satisfy the equality MH = 2i(ΠM−1

E
tΠ)−1 (see (1.5)) where Π is the big period

matrix (see (1.4)) of the complex torus with respect to the chosen bases, so we
start by computing Π and ME .
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The period matrix Π has as columns the vectors xi = η(µi) = Γ(µi),
hence we write Π = ΓM with M = ((µi))i ∈ C2em×2em. The matrix of E is
ME = (E(xi, xj))i,j ∈ Z2em×2em so we compute

E(xi, xj) = η∗E(µi, µj)

= tr(tµiTµj) =
e∑
j=1

(tφj(µi)φj(T )φj(µj) +
t
φj(µi)φj(T )φj(µj))

= t(µi) diag(φ1(T ), φ1(T ), . . . , φe(T ), φe(T ))(µj)

= t(µi) diag(φ1(T ), φ1(T ), . . . , φe(T ), φe(T ))(µj),

hence we obtain

ME = tM diag(φ1(T ), φ1(T ), . . . , φe(T ), φe(T ))M. (3.7)

We can now compute MH . It is again enough to compute MH by blocks,
hence we assume e = 1 and omit the subindices. Altogether it gives us

MH = 2i(ΠM−1
E

tΠ)−1 = 2i[(ΓM)(M
−1

diag(φ(T ), φ(T ))−1 tM−1) t(ΓM)]−1

= 2i(Γ diag(φ(T ), φ(T ))−1 tΓ)−1

= 2i

((1r Z)W 0

0 (
t
Z 1s)W

)(
φ(T )−1 0

0 φ(T )
−1

)
t
W

(
1r
tZ

)
0

0 tW

(
Z
1s

)


−1

= 2

(1r Z 0 0

0 0
t
Z 1s

)
1r 0 0 0
0 −1s 0 0
0 0 −1r 0
0 0 0 1s



1r 0
tZ 0
0 Z
0 1s



−1

= 2

(
1r − Z tZ 0

0 1s −
t
ZZ

)−1

,

and since H is positive definite and hermitian by definition, we obtain Z ∈ Hr,s.
It follows that (X,H, ι) is isomorphic to A(Z,M, T ) by construction.

Observe that the equality (3.7) implies the following result.

Corollary 3.2.6. The pair (M, T ) ∈ Υ(r, s) determines whether the polariza-
tion of A(Z,M, T ) is principal.
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3.3 The endomorphism structure of the Jacobian of a
CPQ curve

As we have seen in Chapter 2, every CPQ curve can be given by a Legendre-
Rosenhain equation

y5 = x(x− 1)(x− λ)(x− µ)

with λ, µ ∈ C\{0, 1} distinct, and has an order-5 automorphism ρ given
by ρ(x, y) = (x, z5y).

In this section we give the Jacobian J(C) of a CPQ curve C following the
explicit construction explained in Section 1.1, together with its Riemann form,
and we study the structure of the subring Z[ρ∗] ⊆ End(J(C)).

First we choose a Z-basis for H1(C,Z). Note that the curve is a 5-cover
of the projective line and the automorphism ρ cycles through the different
sheets. Therefore, by studying the intersections in the x-plane of the paths
in the Q(ζ5)-basis of H1(C,Z)⊗Q appearing in Figure 3.1, we obtain the whole
intersection matrix.

Take the paths b1, b2, b3 appearing in Figure 3.1 and consider the paths
ρjbi := ρj ◦ bi for i = 1, 2, 3 and j = 1, . . . , 4. We claim that

γ = (b1, ρb1, ρ
2b1, ρ

3b1, b2, ρb2, ρ
2b2, ρ

3b2, b3, ρb3, ρ
2b3, ρ

3b3) (3.8)

is a Z-basis of H1(C,Z).
Recall J(C) = H0(ωC)∗/H1(C,Z), and that the principal polarization at-

tached to J(C) is given by the oriented intersection pairing. We compute the
oriented intersection between the paths in (3.8).

See for example the intersections corresponding to b1. We can see in Fig-
ure 3.1 that the solid part of the path intersects b2 and b3 on the same sheet,
and the dashed part crosses all three paths in the solid sheet. Therefore, the
path b1 intersects once the paths b2, b3, ρb1, ρb2 and ρb3. The intersection sign
is positive (resp. negative) if the angle going from the first path to the second is
counterclockwise (resp. clockwise). For example, the five intersections E(b1, ·)
listed here are +1,+1,−1,−1 and −1 respectively.

Working analogously for the other paths, we obtain the matrix of E with
respect to γ

E0 =

 A B B
− tB A B
− tB − tB A

 ,

with

A =


0 −1 0 0
1 0 −1 0
0 1 0 −1
0 0 1 0

 , B =


1 −1 0 0
0 1 −1 0
0 0 1 −1
0 0 0 1


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0 λ

1

µ

b1

b3

b2

Figure 3.1: Representation on the x-plane of a Q(ζ5)-basis of
H1(C,Z) ⊗ Q given by {b1, b2, b3}. The solid black lines are
branch cuts, which intersect at∞. Crossing a branch cut clock-
wise around one affine branch point corresponds to switching to
the next sheet, and it is represented by a change on the pat-
tern of the path. Therefore circles indicate intersections on C
and squares indicate intersections on the x-plane that are not
intersections on C.
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and since the determinant of E0 is detE0 = 1, the choice (3.8) is indeed a
Z-basis of H1(C,Z). This basis, together with the basis of H0(ωC) given in
Corollary 2.1.5, determines a big period matrix

Π =


∫
b1

dx
y4

· · ·
∫
ρ3b3

dx
y4

...
...∫

b1
xdx
y2

· · ·
∫
ρ3b3

xdx
y2

 ,

so that J(C) ∼= C6/ΠZ12.
Finally, we want to compute the analytic representation with respect to

these bases of the automorphism ρ∗ of the Jacobian induced by ρ.
The automorphism ρ induces a morphism ρ∗ : H0(ωC)→ H0(ωC) given by

ρ∗(fdg) = (f ◦ ρ)d(g ◦ ρ).

The morphism ρ∗ acts on the basis chosen in Corollary 2.1.5 of H0(ωc) as
ρ∗(xiy−jdx) = z−j5 xiy−jdx, that is, as the diagonal matrix

A = diag(z5, z5, z5, z
2
5 , z

2
5 , z

3
5).

This basis has a dual basis of H0(ωC)∗, and one can prove that ρ∗ with
respect to this dual basis acts as tA = A by using the definitions of α and ρ∗,
so we get ρa(ρ∗) = A. We define the embedding ι : Q(ζ5)→ End(J(C))⊗Q by
taking ι(ζ5) = ρ∗.

Proposition 3.3.1. Let C be a CPQ curve. Let φ1, φ2 : Q(ζ5) → C be
the embeddings given by φ1(ζ5) = z5 and φ2(ζ5) = z2

5 respectively, and let
ι : Q(ζ5) → End(J(C)) ⊗ Q be the embedding that maps ζ5 to ρ∗. Then
(J(C), λC , ι) has 3-CM-type Z = (Q(ζ5), (φ1, φ2), (3, 2), (0, 1)).

Proof. We just saw that ρZ and ρa ◦ ι are equivalent representations, since they
map ζ5 to the same diagonal matrix.

All that is left to do is prove that the Rosati involution on End(J(C))⊗Q
with respect to the polarization λC extends complex multiplication on Q(ζ5)
via ι.

Let α be an Abel-Jacobi map with a branch point as base point, hence fixed
by ρ. Recall the diagram (1.12) that relates an automorphism of a curve ρ with
its induced automorphism ρ∗ on the Jacobian,

C
ρ //

α
��

C

α
��

J(C)
ρ∗ // J(C).

(3.9)
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If we apply the functor Pic0 to the diagram, then we obtain

Pic0(C) = J(C) Pic0(C) = J(C)
ρ∗oo

Pic0(J(C)) = Ĵ(C)

α∗

OO

Pic0(J(C)) = Ĵ(C),

α∗

OO

ρ̂∗oo

(3.10)

where α∗ is the inverse of the polarization λC of J(C), see Proposition 11.3.5
in Birkenhake-Lange [2]. Therefore ρ∗ and ρ∗ are dual to each other, in the
sense that they satisfy ρ̂∗ = λCρ

∗λ−1
C , and by definition of the Rosati involution

(see (1.2)) we obtain ρ′∗ = ρ∗.
Since we have ρ∗ρ∗ = 1, we conclude that ι(ζ5)′ = ρ′∗ = ρ−1

∗ = ι(ζ5) holds.
Thus the statement follows.

We have proven that (J(C), λC , ι) has 3-CM-type Z, so by Proposition 3.2.5
there exists a pair (M, T ) ∈ Υ(Z) such that the triple (J(C), λC , ι) is of the
form A(Z,M, T ) for some Z ∈ HZ. The constructive proof of that proposition
gives us the recipe to find that pair (M, T ).

The dual of the C-basis of H0(ωC) given in Corollary 2.1.5 already satisfies
ρa ◦ ι = ρr,s, and we choose {bi}3i=1 as a Q(ζ5)-basis of H1(C,Z) ⊗ Q. We
obtainM = η−1(H1(C,Z)) = O3

K .
Next we want to find a matrix T ∈ Q(ζ5)3×3 that satisfies

E(abi, bj) = tr(atij) (3.11)

for all a ∈ Q(ζ5). For every i, j = 1, . . . , 3 consider the condition (3.11) for
a ∈ {ζk5 : 1 ≤ k ≤ 4}. This gives a linear system whose solution determines tij
uniquely, and we obtain

T =
1

5

 ζ5 − ζ4
5 1− ζ4

5 1− ζ4
5

−1 + ζ5 ζ5 − ζ4
5 1− ζ4

5

−1 + ζ5 −1 + ζ5 ζ5 − ζ4
5

 . (3.12)

We double-check that T has signature ((3, 2), (0, 1)), which is consistent with
Proposition 3.3.1.

We conclude that for every CPQ curve C there exists Z ∈ HZ such that the
triple (J(C), λC , ι) is of the form A(Z,M, T ).

3.4 Equivalence of polarized lattices

We have seen in Corollary 3.2.6 that the pair (M, T ) in Υ(r, s) deter-
mines whether the polarization of a polarized abelian variety with m-CM-type
(K,Φ, r, s) is principal.
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3 Moduli of abelian varieties with generalized CM-type

In this section we characterize the pairs that determine principal polariza-
tions with the end goal of identifying the preimage of the set of principally
polarized abelian varieties with 3-CM-type Z and an order-5 automorphism by
the map A defined in Section 3.2.

We start by presenting the concept of equivalent pairs (M, T ) ∈ Υ(r, s) and
how it relates to the map A.

Definition 3.4.1. Let (K,Φ, r, s) be an m-CM-type. We say that two pairs
(M1, T1) and (M2, T2) in Υ(r, s) are equivalent if there exists U ∈ GLm(K)
that satisfies

U(M1, T1) := (UM1,
tU−1T1U

−1
) = (M2, T2).

Example 3.4.2. Consider the 3-CM-type Z and define M = O3
K and T as

in (3.12). The matrix

U =

1 ζ3
5 −ζ3

5 − ζ5 − 1
0 −ζ3

5 − ζ2
5 − ζ5 − 1 1

0 ζ5 + 1 0


determines the equivalent pair (M0, T0) = U(M, T ) withM0 = O3

K and

T0 = diag

(
1

5
ζ3

5 +
1

5
ζ2

5 +
2

5
ζ5 +

1

5
,
1

5
ζ3

5 +
1

5
ζ2

5 +
2

5
ζ5 +

1

5
,−1

5
ζ3

5 +
1

5
ζ2

5

)
.

Proposition 3.4.3 (Proposition 4 in Shimura [39]). Let (K,Φ, r, s) be an
m-CM-type. Given two pairs (M, T ), (M′, T ′) ∈ Υ(r, s) and two elements
Z,Z ′ ∈ Hr,s, the polarized abelian varieties A(Z,M, T ) and A(Z ′,M′, T ′) are
isomorphic only if (M, T ) and (M′, T ′) are equivalent.

Conversely, if the pairs (M, T ), (M′, T ′) ∈ Υ(r, s) are equivalent, then for
every Z ∈ Hr,s there exists Z ′ ∈ Hr,s such that the triple A(Z,M, T ) is isomor-
phic to A(Z ′,M′, T ′).

Remark 3.4.4. If we consider the set Υ(r, s) as a discrete topological space,
then the map A coinduces a topology on the set of polarized abelian varieties
with 3-CM-type Z. Moreover, it follows from Proposition 3.4.3 that the topo-
logical subspace of principally polarized abelian varieties with 3-CM-type Z has
as many connected components as equivalence classes of pairs (M, T ) ∈ Υ(Z)
determining principal polarizations.

In this section we present the majority of the original work in this chapter.
We will prove the following theorem, which is key for the proof of the main
result of the chapter.
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Theorem 3.4.5. Let φ1, φ2 : Q(ζ5)→ C be the embeddings that map ζ5 to z5

and z2
5 respectively, and let Z be the 3-CM-type (Q(ζ5), (φ1, φ2), (3, 2), (0, 1)).

Let Z ∈ HZ, and consider a pair (M, T ) ∈ Υ(Z) such that ζ5M ⊆ M. Then
the polarization of A(Z,M, T ) is principal if and only if the pair (M, T ) is
equivalent to (M0, T0).

The end goal is then to prove that the pair (M0, T0) defined in Exam-
ple 3.4.2 is the only pair in Υ(Z) up to equivalence such that the abelian varieties
A( · ,M0, T0) are principally polarized and such that ι(ζ5) is an endomorphism
of the abelian variety. We focus on the algebraic structure of (M, T ) letting
go of its relation to m-CM-types as much as possible. We use some results by
Shimura [40] to define and characterize these pairs.

LetK be a CM-field of degree 2e, letK+ be its maximal totally real subfield,
and let m be a positive integer. An OK-lattice M in Km is a finitely generated
OK-module in Km that spans Km over OK .

We also define a polarized OK-lattice to be a pair (M, T ) with M an
OK-lattice and T ∈ Km×m an antihermitian matrix such that the alternating
bilinear form

E :M×M→ Q
(u, v) 7→ trK/Q(tuTv)

satisfies E(M,M) ⊆ Z. We say that it is principally polarized if the matrix of
E with respect to a basis ofM has determinant 1.

Two polarized OK-lattices (M1, T1) and (M2, T2) are equivalent if there
exists U ∈ GLm(K) that satisfies

U(M1, T1) := (UM1,
tU−1T1U

−1
) = (M2, T2).

We denote it by (M1, T1) ∼ (M2, T2)

Our goal is to characterize principally polarized OK-lattices and study their
equivalence classes.

We define the trace dual as

M∨ = {α ∈ Km : tr(tαM) ⊆ Z}.

Proposition 3.4.6 (2.15 in Shimura [40]). LetM be an OK-lattice in Km and
consider c ∈ K, α ∈ Km×m and σ ∈ Aut(K). The trace dual satisfies:
(1) (cM)∨ = c−1M∨,
(2) (αM)∨ = tα−1M∨,
(3) (Mσ)∨ = (M∨)σ.
We define the different of K as the inverse as a fractional ideal of the trace

dual of the ring of integers D−1
K = O∨K .
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3 Moduli of abelian varieties with generalized CM-type

Proposition 3.4.7. A polarized OK-lattice (M, T ) is principally polarized if
and only if it satisfies

tTM =M∨.

Proof. Let b1, . . . , b2em be a Q-basis of V = Km, and let b∗1, . . . , b∗2em be the
corresponding dual basis of V ∗ = Hom(V,Q). They satisfy b∗i bj = δij for all
i, j = 1, . . . , 2em. Consider also the Q-bilinear form

trK/Q : V × V → Q
(u, v) 7→ trK/Q(tuv).

It defines an isomorphism φ : V → V ∗ given by u 7→ trK/Q(tu · ), hence we
can define a new Q-basis of V as b∨i = φ−1(b∗i ), which satisfies trK/Q(b∨i bj) = δij .

Assume now that (bi)i is a basis of M. It follows that (b∨i )i is a basis of
M∨, and since (M, T ) is a polarized OK-lattice, we also have tTM ⊆ M∨.
Moreover, the index [M∨ : tTM] is equal to the determinant of E for the basis
(bi)i ofM, so the equality holds if and only if the determinant is 1.

Given L and M two OK-lattices in Km for m ∈ Z>0, we define the ideal
index ofM in L as the fractional OK-ideal

[L/M]K = (det(α) : α ∈ Km×m such that αL ⊆M).

Whenever the field is clear by context, we leave the subindex out of the notation.

Proposition 3.4.8 (2.15 in Shimura [40]). Let L,M,N be OK-lattices in Km,
let α ∈ GLm(K), and let σ ∈ Aut(K). Then we have
(1) [L/M][M/N ] = [L/N ],
(2) [L/αL] = det(α)OK , and
(3) If we have L ⊇ M and there exists an OK-ideal b that satisfies L/M ∼=
OK/b, then the ideal index ofM in L is [L/M] = b.

Using the concepts introduced, we characterize now principally polarized
OK-lattices.

Proposition 3.4.9. Let K be a CM-field with class number 1 and let K+ be
its maximal totally real subfield. Let DK be the different of K and assume that
there exists δ ∈ K generating DK such that δ = −δ. Every principally polarized
OK-lattice (M, T ) satisfies

NK/K+([OmK/M]) = (det(δT )−1)OK+ .

In order to prove Proposition 3.4.9 we need the following result.
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Lemma 3.4.10. Let K be a number field with class number 1, let m be a
positive integer, and letM be a OK-lattice in Km. There exists γ ∈ GLm(K)
that satisfies

M = γOmK .

Proof. It follows from the fact that K has class number one and the structure
theorem of finitely generated modules over PIDs.

Proof of Proposition 3.4.9. Consider the equality

[OmK/
tTM] = [OmK/M][M/ tTM]. (3.13)

Then we directly have

[M/ tTM] = (detT )OK .

By Lemma 3.4.10 there exists γ ∈ GLm(K) that satisfies M = γOmK , and
hence we get

[OmK/M] = (det γ)OK .

Moreover, it follows from Proposition 3.4.7 that if (M, T ) is principally
polarized, then it satisfies tTM = M∨. By definition of the different ideal we
have (OmK)∨ = (D−1

K )m = δ−1OmK .
Therefore, if (M, T ) is principally polarized, then we have

[OmK/
tTM] = [OmK/M

∨
] = [OmK/M∨] = [OmK/

tγ−1(OmK)∨]

= [OmK/δ−1 tγ−1OmK ] = det(δγ)−1OK = det(δγ)
−1OK

Altogether, (3.13) gives that if (M, T ) is principally polarized, then we ob-
tain

det(δγ)
−1OK = (det γ)OK · (detT )OK ,

or equivalently

(det γ)(det γ)OK = det(δT )
−1OK = det(δT )−1OK .

We conclude

NK/K+([OmK/M]) = NK/K+((det γ)OK)

= (det γ)(det γ)OK+ = (det(δT )−1)OK+ .

Remark 3.4.11. The assumption thatK has class number one is not necessary
in Proposition 3.4.9, but it does simplify the proof and it is enough for our case
K = Q(ζ5). One could also justify the equality by proving it locally for all
primes p ∈ OK .
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3 Moduli of abelian varieties with generalized CM-type

In the situation above we define the matrix S = δT , which is hermitian. We
say that a hermitian matrix S∈GLm(K) has signature ((r1, . . . , re), (s1, . . . , se))
if for every ν = 1, . . . , e, the matrix φν(S) has rν positive eigenvalues and sν
negative ones. In the case above we obtain that the signature of S is completely
determined by the signature of T and the image by φν of δ. The following
result characterizes the equivalence between hermitian matrices with the same
signature.

Theorem 3.4.12 (Shimura). Let K be a CM-field, let K+ be its maximal
totally real subfield and letm be an odd positive integer. If S1, S2 ∈ GLm(K) are
hermitian matrices with equal signature, then there exist a matrix U ∈ GLm(K),
and a constant c ∈ (K+)>>0 that satisfy cS2 = tUS1U .

Proof. This is a special case of Proposition 5.9 in Shimura [40]. The notation
in [40] is introduced in paragraphs 5.0 and 5.7, and it is very different from ours.
For reference, we now say how it is related.

The condition “Jλ(V,Φ) = Jλ(V,Φ′) for 1 ≤ λ ≤ t” translates to the signa-
ture equality condition. The fact that in our case K is a CM-field means that
this signature equality holds for all embeddings of K into C, that is, for “t = r”
in Shimura’s notation.

Then [40, Proposition 5.9] states exactly that there exist U ∈ GLm(K)
and c ∈ (K+)× such that cS2 = tUS1U . In the proof of Proposition 5.9
in [40], Shimura concludes that the constant c in the statement satisfies “c ≡ 1
(mod

∏t
λ=1 p∞λ

)”, which in our setting translates to c being totally positive.

Proposition 3.4.13. Let K = Q(ζ5) and let (M, T ) be a principally polarized
OK-lattice with sign(T ) = ((3, 2), (0, 1)). There exists an OK-lattice M′ that
satisfies

(M, T ) ∼ (M′, T0)

for T0 as defined in Example 3.4.2.
In order to prove the proposition we need the following easy lemmas, which

can be easily proven with SageMath [49].

Lemma 3.4.14. Let K = Q(ζ5) and K+ = Q(ζ5 + ζ−1
5 ). We have

(O×
K+)>>0 = NK/K+(O×K) ⊆ NK/K+(K×).

Lemma 3.4.15. The element δ = −4ζ3
5 + 2ζ2

5 − 2ζ5 − 1 is a generator of DK
that satisfies δ = −δ.

Proof of Proposition 3.4.13. Let δ be as in Lemma 3.4.15, and define S = δT
and S0 = δT0.
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By Lemma 3.4.10 there exists γ ∈ GL3(K) such thatM = γO3
K , hence we

can assume without loss of generality M = O3
K , and by Proposition 3.4.8 we

get detS ∈ O×
K+ .

Moreover, by Theorem 3.4.12 there exist α ∈ GL3(K) and c ∈ (K+)>>0

that satisfy
tαSα = cS0. (3.14)

Taking determinants of (3.14) we obtain

NK/K+(detα) detS = c3 detS0, (3.15)

so for u = detS/detS0 and β = c
detαα we get

tβSβ =
c2

NK/K+(detα)
tαSα =

c3

NK/K+(detα)
S0 = uS0. (3.16)

If we apply Proposition 3.4.9 to the principally polarized OK-lattice (M, T ),
then we obtain detS ∈ O×

K+ , and we can compute detS0 ∈ O×K+ , thus we have
u = detS/ detS0 ∈ O×K+ . Moreover, the unit u is totally positive, because S
and S0 have the same signature. Then it follows from Lemma 3.4.14 that there
exists an element d ∈ K× which satisfies u = NK/K+(d), so by taking γ = β/d
we get tγSγ = S0. We conclude that (M, T ) is equivalent to (γ−1M, T0).

Definition 3.4.16. Let S ∈ GLm(K) be a hermitian matrix, and letM be an
OK-lattice.

. The S-norm ofM is the fractional OK+-ideal µS(M) = (tuSu : u ∈M).

. The S-scale ofM is the fractional OK-ideal µS0 (M) = (tuSv : u, v ∈M).

. An OK-lattice is S-maximal if it is inclusion-maximal among those with
the same S-norm.

. We define the group of matrices G(S) = {V ∈ GLm(K) : tV SV = S}.

Theorem 3.4.17. Let K be a CM-field, let K+ be its maximal totally real
subfield and assume that their class numbers hK , hK+ are equal. Let m be an
odd positive integer, let S ∈ GLm(K) be a hermitian matrix and assume that
there exists an embedding φ : K → C with respect to which the signature of S
is neither (m, 0) nor (0,m). Then for every S-maximal OK-lattice L in Km,
the G(S)-orbit of L consists of all the S-maximal OK-latticesM with the same
S-norm.

Proof. In [40], Shimura introduces the concept of genus of OK-lattices with
respect to G(S) as a local version of class with respect to G(S). Given a non-
zero prime ideal p in OK+ we denote byK+

p the completition ofK+ with respect
to p, and we write Kp = K ⊗ K+

p and Lp = OK+
p
L. With this notation, two
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3 Moduli of abelian varieties with generalized CM-type

OK-lattices belong to the same genus with respect to G(S) if for every p there
exists a matrix U ∈ Gp(S) = {V ∈ GL3(Kp) : tV SV = S} such that ULp =Mp.

By [40, Proposition 5.24(i)] we have that, since the respective class num-
bers of K and K+ are equal, every genus with respect to G(S) consists of a
single class. Moreover, by [40, Proposition 5.25(iv)] the genus of an S-maximal
OK-lattice L with respect to G(S) is the set of all S-maximal OK-lattices M
with the same S-norm, which completes the proof.

We will use the following two easy lemmas, whose proofs are in Shimura [40].

Lemma 3.4.18 (Proposition 2.11 in Shimura [40]). Let K be a CM-field,
let K+ be its maximal totally real subfield, let m be a positive integer and
let DK/K+ be the relative different of K/K+. LetM be an OK-lattice in Km

and let S ∈ GLm(K) be a hermitian matrix. The S-norm µS(M) and S-scale
µS0 (M) ofM satisfy the inclusions

µS(M)OK ⊆ µS0 (M) ⊆ D−1
K/K+µ

S(M).

Lemma 3.4.19 (Proposition 2.14 in Shimura [40]). Let M be an OK-lattice
inKm and let S ∈ GLm(K) be a hermitian matrix. There exists an S-maximal
OK-lattice L that containsM.

Proposition 3.4.20. Let K = Q(ζ5) and let δ be as in Lemma 3.4.15. Let
(M, T ) be a principally polarized OK-lattice and let S = δT . Then we have

µS0 (M) = OK and µS(M) = OK+ .

Moreover let M′ %M be an S-maximal OK-lattice with µS(M′) = µS(M).
Then we have

µS0 (M′) = (ζ5 − 1)−1OK .

Proof. We start by computing the S-scale of M. Since (M, T ) is principally
polarized, given u, v ∈M we have

trK/Q(r tuTv) ∈ Z for all r ∈ OK .

In consequence we get tuTv ∈ O∨K = δ−1OK , hence tuSv ∈ OK holds. Con-
versely, we want to show that there exist u, v ∈ M that satisfy tuSv = 1.
By Lemma 3.4.10 we assume without loss of generality M = O3

K , so we have
S ∈ O3×3

K , and by Proposition 3.4.9 the matrix S has determinant detS ∈ O×
K+ .

Then, for v = t(1, 0, 0) and u =
t
S−1 t(1, 0, 0) ∈M we have tuSv = 1.

We compute now the S-norm of M. The different of K/K+ is the prime
ideal p = (ζ5 − 1)OK , hence by Lemma 3.4.18 we have

p ⊆ µS(M)OK ⊆ OK .
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But µS(M) is an OK+-ideal, and
√

5OK+ ramifies in K/K+ into p2, so we
conclude µS(M) = OK+ .

For the second part of the statement consider again Lemma 3.4.18 forM′.
By assumption we have µS(M′) = µS(M) = OK+ , hence we obtain

OK ⊆ µS0 (M′) ⊆ p−1. (3.17)

We haveM′ % O3
K , hence given an element

u = (u1, u2, u3) ∈M′\O3
K ,

we assume without loss of generality u1 6∈OK . Take also v = S
−1 t(1, 0, 0) ∈ M′.

Then we have

µS0 (M′) 3 tuSv = (u1, u2, u3)SS−1

1
0
0

 = u1 6∈ OK ,

thus we obtain µS0 (M′) % OK . The result then follows from (3.17), since p is a
prime ideal.

Using the properties above and SageMath [49] we have found that,
for p = DK/K+ = (ζ5 − 1)OK and S0 = δT0, the OK-lattice

L = O3
K + p−1(1, 2, 0) (3.18)

is an S0-maximal OK-lattice with S0-norm OK+ strictly containing M0, thus
M0 is not S0-maximal. Therefore we cannot use Theorem 3.4.17 directly on
M0, but we use it on L.
Proposition 3.4.21. Let K = Q(ζ5), let (M, T ) be a principally polarized
OK-lattice with sign(T ) = ((3, 2), (0, 1)) and let L be as in (3.18). Then there
exists an OK-lattice M′ in K3 that satisfies (M, T ) ∼ (M′, T0), M′ ⊆ L
and L/M′ ∼= OK/p.

Proof. By Proposition 3.4.13 we can assume T = T0. Let δ be as defined in
Lemma 3.4.15, and define the hermitian matrix S0 = δT0. By Lemma 3.4.19
there exists N ⊇ M S0-maximal with S0-norm µS0(N ) = µS0(M), which by
Proposition 3.4.20 satisfies µS0(M) = OK+ .

Since both N and L are S0-maximal OK-lattices with S0-norm OK+ , we
have by Theorem 3.4.17 that they are in the same G(S0)-orbit. Therefore there
exists γ ∈ G(S0) such that γN = L.

ForM′ = γM we have (M, S0) ∼ (M′, S0), andM′ satisfiesM′ ⊆ L and
µS0(M′) = OK+ . Next we prove L/M′ ∼= OK/p.
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By Proposition 3.4.20 we have µS0 (L) = p−1, which implies pL ⊆M′, hence
the quotient L/M′ is an (OK/p)-module. Therefore, since p is prime, it is
enough to show [L/M′] = p or, equivalently, NK/K+([L/M′]) =

√
5OK+ . We

have
NK/K+([L/M′]) = NK/K+([L/O3

K ]) NK/K+([O3
K/M′]),

and since (M′, S0) is principally polarized, by Proposition 3.4.9 we have
NK/K+([O3

K/M′]) = OK+ . The equality NK/K+([L/O3
K ]) =

√
5OK+ holds

by Proposition 3.4.8.(2), since we have L = LO3
K for the matrix

L =

 −3
5ζ

3
5 − 1

5ζ
2
5 + 1

5ζ5 − 2
5 −1

5ζ
3
5 − 2

5ζ
2
5 + 2

5ζ5 + 1
5 0

0 1 0
0 0 1


and we compute detL =

√
5. This completes the proof.

Using Script 1 in [46] we computed all OK-lattices M such that L/M is
isomorphic to OK/p, and we obtained 6 different OK-lattices.

By Lemma 3.4.10, for every OK-latticeM there exists γ ∈ GL3(K) that sat-
isfiesM = γOK , so we computed the equivalent pair γ−1(M, T0) = (M0, TM).

Then, for every OK-lattice that we obtained with Script 1 we managed to
find α ∈ GL3(OK) that satisfies tαTMα = T0. For the explicit computations
see Script 2 in [46].

We conclude that all polarized OK-lattices (M, T0) such that L/M is iso-
morphic to OK/p are equivalent to (M0, T0), so we can now prove the main
theorem of this section.

Proof of Theorem 3.4.5. By Example 3.4.2 the pair (M0, T0) is equivalent to a
pair (M1, T1) ∈ Υ(Z) that we obtained in Section 3.3 from a Riemann form
with determinant 1.

Therefore, by Proposition 3.4.3, if (M, T ) ∈ Υ(Z) is equivalent to the
pair (M0, T0) ∼ (M1, T1), then the polarized abelian varieties A(Z,M, T ) for
Z ∈ HZ are principally polarized.

For the other implication let (M, T ) ∈ Υ(Z) such that ζ5M⊆M. Then the
pair (M, T ) is a polarized OK-lattice whose hermitian matrix T has signature
((3, 2), (0, 1)). If A(Z,M, T ) is principally polarized, then (M, T ) is principally
polarized as a polarized OK-lattice.

Therefore it follows from Proposition 3.4.21 that there exists an equivalent
pair (M′, T0) with M′ ⊆ L and L/M′ ∼= OK/p. But we have seen that there
are only 6 possibilities for such M′ and they all satisfy (M′, T0) ∼ (M0, T0),
hence the result follows.
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3.5 The Torelli locus of CPQ curves

In this section we solve the Riemann-Schottky problem for CPQ curves and
give a result analogous to Proposition 1.4.1 for the family S of CPQ curves.

In Proposition 1.4.1 we focused on principally polarized abelian threefolds,
which all are Jacobians of curves, so we only needed to prove that the curves
were Picard curves. The main obstacle to obtain an analogous result for CPQ
curves is that, since CPQ curves have genus 6, their Jacobians have dimension
6, but when considering 6-dimensional principally polarized abelian varieties,
not all of them are Jacobians of curves.

However, we have seen in Proposition 3.3.1 that Jacobians of CPQ curves
have 3-CM-type

Z = (Q(ζ5), (φ1, φ2), (3, 2), (0, 1)) with φi : Q(ζ5)→ C given by φi(ζ5) = zi5.
(3.19)

Therefore we focus on the set of principally polarized abelian varieties with
3-CM-type Z and order-5 automorphisms. Let M0 = O3

K and consider T0 as
in Example 3.4.2. Let A6 be the smooth algebraic variety as in [28], which has
complex points

A6(C) = Sp12(Z)\H6,

and let AZ ⊆ A6 be the image of HZ by the map

HZ → Sp12(Z)\H6,

Z 7→ (the class of a period matrix Ω of A(Z,M0, T0)).

Let M6 be the moduli space of genus-6 curves. We define the open Torelli
locus T◦6 as the image J(M6) ⊆ A6 of M6 by the Torelli map J , and we call its
Zariski closure T6 = T◦6 the Torelli locus. The points X ∈ T6\T◦6 correspond
to decomposable principally polarized abelian varieties. For more details, see
Section 1 in Moonen-Oort [28].

In order to prove our result, we need to assume the following conjecture.

Conjecture 3.5.1. The set AZ is an algebraic subset of the variety A6, that is,
a Zariski-closed subset.

Remark 3.5.2. We are convinced that this follows from the basics of Shimura
varieties. However, since we are not familiar enough with the theory and due
to time restrictions we have not been able to prove the conjecture yet.
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3 Moduli of abelian varieties with generalized CM-type

Theorem 3.5.3. Assume that Conjecture 3.5.1 holds and let X be a simple
principally polarized abelian variety of dimension 6 over C. The following are
equivalent:
(1) The principally polarized abelian variety X has an automorphism ϕ of or-

der 5 such that the eigenvalues of ρa(ϕ) are z5, z2
5 and z3

5 with multiplicity
3, 2 and 1 respectively.

(2) There exists a cyclic plane quintic curve C that satisfies X ∼= J(C) and
for ρ ∈ Aut(C) given by ρ(x, y) = (x, ζ5y), we get ϕ = ρ∗.

For the last step of the proof we will need the following result:

Lemma 3.5.4. If C is a curve given by y5 = f(x) where the x-map C → P1 has
5 ramification points, then C is isomorphic to a curve with one of the following
forms:
(1) y5 = x(x− 1)(x− λ)(x− µ),
(2) y5 = x3(x− 1)(x− λ)(x− µ), or
(3) y5 = x2(x− 1)2(x− λ)(x− µ).

Moreover if ρ is the automorphism of C given by ρ(x, y) = (x, z5y), then the
eigenvalues of ρa(ρ∗) are in each case
(1) z5, z

2
5 and z3

5 with multiplicity 3, 2 and 1 respectively;
(2) z5, z

2
5 , z

3
5 and z4

5 with multiplicity 2, 2, 1 and 1 respectively; or
(3) z5, z

2
5 , z

3
5 and z4

5 with multiplicity 2, 1, 2 and 1 respectively.

Proof. Let C be given by

y5 = f(x) := (x− a1)e1(x− a2)e2(x− a3)e3(x− a4)e4(x− a5)e5 ,

for ai ∈ C, ei ∈ Z≥0 and ai 6= aj if i 6= j.
Since the curve is ramified exactly at the points (ai, 0), we have

ei 6≡ 0 (mod 5) and
5∑
i=1

ei ≡ 0 (mod 5).

Furthermore, we only need to consider the class ei = (ei mod 5), and the
polynomials fk with k 6≡ 0 (mod 5) all give the same curve, thus we can consider
the vector (e1, e2, e3, e4, e5) ∈ (Z/5Z)5 up to multiplication by (Z/5Z)×.

With these conditions we obtain three possible exponent vectors, which are
precisely (1, 1, 1, 1, 1), (1, 1, 1, 3, 4) and (1, 1, 2, 2, 4). We can then consider an
isomorphic curve where the points with larger exponents are at (1 : 0 : 0),
(0 : 0 : 1) and (1 : 0 : 1), thus obtaining the models in the statement.

The first case corresponds to the family of CPQ curves, so we have already
computed the eigenvalues of ρa(ρ∗) in that case. For the remaining two cases
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we computed a basis of differentials using the algcurves library [8] in Maple [27].
We obtained respectively the bases(

dx

y
,
xdx

y2
,
xdx

y3
,
x2dx

y3
,
x2dx

y4
,
x3dx

y4

)
and (

dx

y
,
dx

y2
,
xdx

y2
,
x(x− 1)dx

y3
,
x(x− 1)dx

y4
,
x(x2 − 1)dx

y4

)
.

Then we computed the eigenvalues of ρa(ρ∗) by considering the action of ρ∗ on
the basis of H0(ωC) for each case, as we did for CPQ curves in Section 3.3.

We prove now the main result of the chapter.

Proof of Theorem 3.5.3. That (2) implies (1) follows from Proposition 3.3.1.
We will now prove the converse.

Suppose that X satisfies (1) and let Z be the 3-CM-type defined in (3.19).
We start by proving that X is in AZ. Then we show that AZ is an irreducible
subvariety of the Torelli locus, hence there exists C ∈ M6 whose Jacobian is
isomorphic to X, and finally we prove that C is a CPQ curve.

Let λ be the principal polarization of X and consider the embedding
ι : Q(ζ5) → C given by ι(ζ5) = ϕ. As ϕ is an automorphism of the princi-
pally polarized abelian variety X, it satisfies λ = ϕ̂ ◦ λ ◦ ϕ. We obtain

ι(ζ5)′ = ϕ′ = λ−1 ◦ ϕ̂ ◦ λ = ϕ−1 = ι(ζ5)−1 = ι(ζ5),

thus the Rosati involution on End(X) ⊗ Q with respect to the polarization λ
extends the complex conjugation on K via ι.

Then the triple (X,λ, ι) has 3-CM-type Z, hence by Proposition 3.2.5 there
exist (M, T ) ∈ Υ(Z) and Z ∈ HZ that satisfy A(Z,M, T ) ∼= (X,λ, ι). Since we
have ι(ζ5) = ϕ ∈ End(X), the latticeM satisfies ζ5M⊆M.

By Theorem 3.4.5 the pair (M, T ) is equivalent to (M0, T0), so it follows
from Proposition 3.4.3 that there exists Z ′ ∈ HZ such that A(Z ′,M0, T0) is
isomorphic to A(Z,M, T ) ∼= (X,λ, ι). We conclude that the class of X is in AZ.

Next we prove that AZ is an irreducible subvariety of the Torelli locus. On
the one hand, the complex manifold HZ = H3,0×H2,1

∼= H2,1 is irreducible and
has dimension 2, hence if AZ is an algebraic subset of A6, then it is an irreducible
closed subvariety of A6. On the other hand, the family of CPQ curves S ⊆ M6

also has dimension 2, as can be seen from the Legendre-Rosenhain equation
y5 = x(x − 1)(x − λ)(x − µ). The closure S of its image J(S) by the Torelli
map is then a dimension-2 closed subvariety, and since by Proposition 3.3.1 we
have J(S) ⊆ AZ, we get that S is also contained in AZ.
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3 Moduli of abelian varieties with generalized CM-type

It follows that S is a closed irreducible subvariety of the irreducible vari-
ety AZ. Therefore, by definition of dimension (see Definition 2.48 in Milne [26]),
we obtain S = AZ.

We conclude that the class of X is in S ⊆ T6 and, as X is simple, it is in
fact in T◦6, so there is a curve C that satisfies J(C) ∼= X.

Finally we prove that C is a CPQ curve and ϕ = ρ∗.
By Torelli’s Theorem 1.1.1, there is some non-trivial ν ∈ Aut(C) such that

ϕ = ±ν∗. Then the automorphism η = ν6 satisfies η∗ = (ν6)∗ = (±ν)6
∗ =

ϕ6 = ϕ, hence by the uniqueness in Torelli’s Theorem 1.1.1 we get that η has
order 5.

It follows that the projection π : C → C/〈η〉 is a cyclic Galois covering map
of degree 5, hence all the ramification indices of π are either 1 or 5. Therefore
by the Riemann-Hurwitz formula one obtains that C/〈η〉 has either genus 0 or
2. But X is simple, so the curve C/〈η〉 is isomorphic to P1 and the map π has
5 ramification points.

Then k(C)/k(C/〈η〉) is a Kummer extension of degree 5, hence C is given
by an equation of the form y5 = f(x), the x-map π has 5 ramification points,
and η is a power of the automorphism ρ given by (x, y) 7→ (x, z5y). We conclude
by Lemma 3.5.4 that, as the eigenvalues of ρa(ϕ) are z5, z2

5 and z3
5 with multi-

plicity 3, 2 and 1 respectively, the curve C is isomorphic to a curve of the form
y5 = x(x− 1)(x−λ)(x−µ), that is, the curve C is a CPQ curve, and η is equal
to ρ.

It follows from Theorem 3.5.3 that if Conjecture 3.5.1 holds, then one can
think of the input in Algorithm 2.2.6 as just a principally polarized abelian vari-
ety of dimension 6 with an order-5 automorphism whose analytic representation
has the right eigenvalues.
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4CM cyclic plane quintic
curves defined over Q

In this chapter we give a complete list of CM-fields whose ring of integers
occurs as the endomorphism ring over C of the Jacobian of a CPQ curve defined
over Q with complex multiplication (CM). We do so by extending the methods
for genus 2 and 3 due to Kılıçer [12], see also [15].

In Section 4.1 we define what a polarized abelian variety (or a curve) with
complex multiplication is as a particular case of the polarized abelian varieties
with m-CM-type that we defined in Chapter 3.

In Section 4.2 we define what the CM class number of a CM-field is, and its
relation with the field of moduli of the polarized abelian variety. We also show
as a direct consequence of Theorem 4.3.1 in Kılıçer [12] that the list of heuristic
models of maximal CM Picard curves over Q in Section 1.5 is complete.

Finally, in Section 4.3 we focus on the case of CPQ curves, and prove that
the fields appearing in the list in Section 2.3 are the only possible CM-fields by
which a CPQ curve defined over Q can have maximal CM over C.

4.1 CM-types

Let K be a CM-field. Throughout this chapter we refer to 1-CM-types
as just CM-types, that is, sets Φ ⊆ Hom(K,C) such that for every complex
conjugate pair of homomorphisms φ, φ, exactly one belongs to Φ. For details,
see Shimura [42, Chapter II].

Definition 4.1.1. Let k be a proper CM-subfield of K with CM-type Φk. The
CM-type of K induced by Φk is

Φ = {φ ∈ Hom(K,C) : φ|k ∈ Φk}.
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4 CM cyclic plane quintic curves defined over Q

A CM-type Φ of K is primitive if it is not induced by any CM-type of any
proper CM-subfield.

Definition 4.1.2. The reflex field Kr of a CM-type (K,Φ) is

Kr = Q

∑
φ∈Φ

φ(x) : x ∈ K


 ⊆ C.

Let now L be the normal closure of the extension K/Q and let Φ0 be the
CM-type of L induced by Φ. If we take N ⊆ C the unique subfield of C
isomorphic to L, then we can see the elements in Φ0 as homomorphisms (hence
isomorphisms) from L to N . In this setting we define the reflex CM-type.

Definition 4.1.3. The reflex CM-type Φr of a CM-type (K,Φ) is

Φr = {φ−1|Kr : φ ∈ Φ0}.

The CM-type (Kr,Φr) is called the reflex of (K,Φ).

Lemma 4.1.4 (Shimura, see [42, pg. 63]). Let (K,Φ) be a primitive CM-type.
Then the reflex type of its reflex type (Kr,Φr) coincides with (K,Φ).

Definition 4.1.5. The type norm of a CM-type (K,Φ) is the multiplicative
map

NΦ : K → Kr

x 7→
∏
φ∈Φ

φ(x).

In this context, following Definition 3.1.1 we obtain that a polarized abelian
variety with complex multiplication (CM) by (K,Φ) is a triple (X,λ, ι) where:

. X is an abelian variety over C of dimension g,

. λ is a polarization of X, and

. ι is a ring homomorphism ι : K ↪→ End(X)⊗Q such that:
– the analytic representation ρa ◦ ι is equivalent to the representation
ρΦ = diag(φ1, . . . , φg), and

– the Rosati involution on End(X) ⊗ Q with respect to the polariza-
tion λ extends the complex conjugation on K via ι.

We say that it has CM by an order O ⊆ K if ι−1(End(X)) = O.
Lemma 4.1.6 (Theorem 1.3.5 in Lang [19]). A polarized abelian variety with
CM-type (K,Φ) is absolutely simple if and only if Φ is primitive.

In Sections 1.5 and 2.3 we defined a maximal CM Picard curve (respectively
CPQ curve) to be a Picard curve (resp. CPQ curve) such that its Jacobian
has endomorphism ring isomorphic to the maximal order of some sextic field K
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(resp. a degree-12 field). The following result shows that then its Jacobian is a
principally polarized abelian varieties with complex multiplication.

Proposition 4.1.7. If C is a maximal CM Picard curve (respectively CPQ
curve), then there exist a primitive CM-type (K,Φ) and an embedding
ι : K → End(J(C))⊗Q such that (J(C), λC , ι) is a principally polarized abelian
variety with CM by OK .

Proof. Assume C is a maximal CM Picard (respectively CPQ) curve. Then
there exists a sextic (resp. degree-12) field K that satisfies End(J(C)) ∼= OK .
In particular, the field K contains a primitive third root of unity ζ3 ∈ K (resp.
a primitive fifth root of unity ζ5 ∈ K), which corresponds via the isomorphism
to the automorphism ρ∗.

We define ι : K → End(J(C)⊗Q to be the extension of the ring isomorphism
OK → End(J(C)) and Φ to be a CM-type such that ρa ◦ ι is equivalent to ρΦ.

As J(C) is absolutely simple, by Lemma 4.1.6, the CM-type Φ is primitive.
Moreover, the field K is a CM-field and the Rosati involution on End(J(C))⊗Q
with respect to λC extends the complex conjugation on K via ι, see for example
Lemma 1.3.5.4 in Chai-Conrad-Oort [4].

In the case of (1-)CM-types, the moduli space Hr,s contains only one point,
thus one can find the corresponding period matrix following the construction due
to Shimura that we gave in Section 3.2. For example, given a CM-type (K,Φ),
Van Wamelen’s method lists all pairs (M, T ) ∈ Υ(Φ) as defined in Section 3.1
and then computes all the period matrices of principally polarized abelian va-
rieties with complex multiplication by OK following the construction in Sec-
tion 3.2, see [51] for details.

If we apply Van Wamelen’s method to a primitive CM-type (K,Φ) where
K is a sextic CM-field containing a primitive third root of unity ζ3 ∈ K, then we
obtain a list of period matrices corresponding to principally polarized abelian
threefolds with CM by OK with a order-3 automorphism ι(ζ3). Hence by Propo-
sition 1.4.1 they correspond to Jacobians of Picard curves. Obtaining the ra-
tional representation of ι(ζ3) with Van Wamelen’s is then a matter of keeping
track of the changes of basis throughout the algorithm.

4.2 The CM class number

In this section we introduce the concept of the field of moduli of a polarized
abelian variety, which is closely related to the field of definition, and we see how
it relates to the CM-field in the case of polarized abelian varieties with CM.
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4 CM cyclic plane quintic curves defined over Q

Theorem 4.2.1 (Shimura, see [41, pp. 130–131]). Let (X,λ) be a polarized
abelian variety over C, let K be a number field and let ι : OK → End(X) be an
embedding. There exists a unique field k ⊆ C such that for every σ ∈ Aut(C),
the restriction of σ to k is the identity if and only if there exists an isomorphism
f : X → σX that satisfies f∨ ◦ σλ ◦ f = λ and f ◦ ι(a) = σι(a) ◦ f for all
a ∈ OK .

The field k in Theorem 4.2.1 is called the field of moduli of (X,λ, ι).
In particular, if a polarized abelian variety (X,λ, ι) is defined over Q, then

its field of moduli is Q. The following results give conditions on the field of
moduli for polarized abelian varieties with CM.

Proposition 4.2.2 (Shimura [41, Proposition 5.17]). Let (K,Φ) and (Kr,Φr)
be respectively a primitive CM-type and its reflex. Let (X,λ, ι) be a polarized
abelian variety of CM-type (K,Φ). Let F be a subfield of K, ι|F be the restric-
tion of λ to F and MF be the field of moduli of (X,λ, ι|F ). Then the following
assertions hold:
(1) the field MFK

r is the field of moduli of (X,λ, ι),
(2) the reflex field Kr is normal over MF ∩Kr,
(3) the field MFK

r is normal over MF , and
(4) the group Gal(MFK

r/MF ) is isomorphic to a subgroup of Aut(K/F ).

Theorem 4.2.3 (Shimura-Taniyama [43, Main theorem 1]). Let (K,Φ) be a
primitive CM-type and let (Kr,Φr) be its reflex CM-type. Let (X,λ, ι) be a
polarized abelian variety of type (K,Φ) with CM by OK , and let M be the
field of moduli of (X,λ, ι|Q). Then MKr is the unramified class field over Kr

corresponding to the ideal group

I0(Φr) := {b ∈ IKr : ∃α ∈ K× such that NΦr(b) = (α), NK/Q(b) = αα}.

Observe that if M is a subfield of Kr, then IKr

/
I0(Φr) is trivial. In this

context, the quotient IKr

/
I0(Φr) is called the CM class group of (K,Φ) and

when it is trivial we say that K has CM class number one.

Proposition 4.2.4. Let (X,λ) be an absolutely simple polarized abelian vari-
ety defined over Q with CM by OK . Then K has CM class number one and is
normal over Q.

Proof. Since (X,λ) is defined over Q we haveMQ = Q, by Proposition 4.2.2.(2),
the field Kr is normal over Q. We also have that, by Proposition 4.2.2.(4), the
group Gal(Kr/Q) is isomorphic to a subgroup of Aut(K/Q), hence we obtain

[Kr : Q] = # Gal(Kr/Q) ≤ # Aut(K/Q) = [K : Q].

By Lemma 4.1.6, since X is absolutely simple we have that its CM-type Φ
is primitive, so by Lemma 4.1.4 we get Krr = K, and since Kr is normal we
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p(x) hK h∗K
(1) x3 − 3x− 1 1 1
(2) x3 − x2 − 2x+ 1 1 1
(3) x3 − x2 − 4x− 1 1 1
(4) x3 + x2 − 10x− 8 1 1
(5) x3 − x2 − 14x− 8 1 1
(6) x3 − 21x− 28 3 1
(7) x3 − 21x+ 35 3 1
(8) x3 − 39x+ 26 3 1
(13) x3 − 61x− 183 4 4
(14) x3 − x2 − 22x− 5 4 4

Table 4.1: List of CM class number one sextic CM-fields K
containing a primitive third root of unity ζ3 ∈ K. We write
K = K0(ζ3) for K0 the splitting field of p(x), and indicate
the class number hK of K and its relative class number h∗K :=
hK/hK0 . The number in the first column indicates which curves
in Section 1.5 are heuristic models for the Picard curves with
maximal CM by K.

obtain that Krr is isomorphic to a subfield of Kr. Altogether it gives us that
K is isomorphic to Kr and therefore K is normal over Q.

Lastly, by Proposition 4.2.2.(1) we have that the field of moduli of (X,λ, ι)
is Kr, so it follows that K has CM class number one.

Proposition 4.2.4 characterizes the CM-fields whose maximal order may oc-
cur as the endomorphism ring of a polarized abelian variety with CM.

Kılıçer studies in [12] the CM class number one fields that correspond to
principally polarized abelian varieties of dimension 2 and 3. In particular, Ta-
ble 3.1 in [12] includes a complete list of CM-fields whose ring of integers is the
endomorphism ring of the Jacobian of a Picard curve.

Corollary 4.2.5 (See also Theorem 4.3.1 in Kılıçer [12]). Let C be a Picard
curve defined over Q with CM by OK for a sextic CM-field K. The field K is
isomorphic to K0(ζ3), where ζ3 is a primitive third root of unity and K0 is the
splitting field of a polynomial p(x) from Table 4.1.

Proof. Let C be a Picard curve with CM by the ring of integers of a sextic CM-
field K. Recall that C has an automorphism given by ρ(x, y) = (x, z3y) that
induces an automorphism ρ∗ in the Jacobian. It follows that the fieldK contains
a primitive third root of unity, and thus k = Q(ζ3) is a quadratic CM-subfield
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whose discriminant has absolute value 3. The list in Table 4.1 contains all CM
class number one cyclic sextic CM-fields of Table 3.1 in [12] with dk = 3.

It follows that the list in Section 1.5 contains heuristic models for all Picard
curves with maximal CM that have a model over Q. In the cases (13) and (14)
we also list heuristic models defined overK0 for three other Picard curves, which
by Theorem 4.3.1 in Kılıçer [12] exist and have field of moduli K0.

Remark 4.2.6. Park and Kwon [34, Table 3] give a complete list of all imagi-
nary abelian sextic number fields K with class number hK ≤ 11. In particular,
those with an imaginary quadratic subfield of conductor 3 contain a third root
of unity, and thus occur as CM-fields of Picard curves.

Table 3 in [34] includes four fields with CM class number bigger than 1, for
which we also applied Van Wamelen’s method and obtained heuristic models
for the corresponding Picard curves with maximal CM, see cases (9)–(12) in
Section 1.5.

4.3 CM class number one fields for CPQ curves

The goal for this section is to give a result analogous to Corollary 4.2.5 in
the case of CPQ curves, that is, we want to find all fields whose maximal order
may occur as the endomorphism ring over C of the Jacobian of a CPQ curve
with CM and defined over Q.

By Proposition 4.2.4 we only need to look for CM class number one CM-fields
that are Galois over Q. We will prove the following result.

Theorem 4.3.1. Let C be a CPQ curve defined over Q with CM by the ring of
integers of a degree-12 CM-field K. Then the field K is isomorphic to K0(ζ5),
where ζ5 is a primitive fifth root of unity and K0 is the splitting field of a
polynomial p(x) from Table 4.2.

We start by listing the possible Galois groups of degree-12 Galois number
fields containing a primitive fifth root of unity. Then we give a sufficient con-
dition for such a field to have CM class number one and finally we study the
necessary conditions for that to happen for each occurring Galois group.

Proposition 4.3.2. Let n be a positive integer, and consider the group given
by the presentation

Q4n = 〈s, t : s2n = 1, sn = t2, sts = t〉.

The group Q4n has order 4n.

Proof. See pp. 347–348 in [36].
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p(x) hK h∗K
(1) x3 − x2 − 2x+ 1 1 1
(2) x3 − 3x− 1 1 1
(3) x3 − x2 − 4x− 1 4 4
(4) x3 − 12x− 14 4 4

Table 4.2: List of CM class number one CM-fields K of de-
gree 12 containing a primitive fifth root of unity ζ5 ∈ K. We
write K = F (ζ5) for F the splitting field of p(x), and indi-
cate the class number hK of K and its relative class number
h∗K := hK/hK+ . The number in the first column indicates
which curve in Section 2.3 is an heuristic model for the CPQ
curve defined over Q with maximal CM by K over C.

A group isomorphic to Q4n as defined in Proposition 4.3.2 is called a dicyclic
group of order 4n.

Definition 4.3.3. Let N and H be two groups, and let ϕ : H → Aut(N) be a
group homomorphism. The semidirect product N oH of N and H with respect
to ϕ is the Cartesian product N ×H together with the operation

(n, h)(n′, h′) = (nϕ(h)(n′), hh′).

Proposition 4.3.4. IfK is a degree-12 Galois number field containing a quartic
cyclic number field k, then the Galois group of K is a cyclic or dicyclic group
of order 12.

Proof. Let G = Gal(K/Q), and let H = Gal(K/k), which has order 3. We have

G/H ' Gal(k/Q) = C4,

and by the Schur-Zassenhaus theorem, we obtain

G = H oG/H ' C3 o C4.

Let g and h be generators of C3 and C4 respectively. Since C3 has two pos-
sible automorphisms, the trivial one and the one given by g 7→ g2, the group
homomorphisms in Hom(C4,Aut(C3)) are

ϕ1 : C4 → Aut(C3)

h 7→ (g 7→ g),
and

ϕ2 : C4 → Aut(C3)

h 7→ (g 7→ g2).

We obtain that the semidirect product of C4 and C3 with respect to ϕ1 is
actually the direct product, and thus a cyclic group of order 12.

81



4 CM cyclic plane quintic curves defined over Q

Consider now the semidirect product of C4 and C3 with respect to ϕ2.
Let s = (g, h2) ∈ C3 × C4 and t = (1, h) ∈ C3 × C4. Note that s2 = (g2, 1) has
order 3 and t has order 4. Moreover they satisfy

s3 = (g, h2)(g, h2)(g, h2) = (g2, 1)(g, h2) = (1, h2) = (1, h)(1, h) = t2,

thus we obtain s6 = t4 = 1; and also

sts = (g, h2)(1, h)(g, h2) = (g, h3)(g, h2) = (1, h) = t.

We conclude that the semidirect product of C4 and C3 with respect to ϕ2 is a
dicyclic group of order 12.

As we proved in Proposition 3.3.1, the Jacobians of CPQ curves have
3-CM-type Z = (Q(ζ5), (φ1, φ2), (3, 2), (0, 1)), where φk : K → C maps ζ5 to
zk5 = exp(2πik/5). This has to be taken into account when considering possible
CM-types for the Jacobian of a CPQ curve, since it introduces some restrictions.

Definition 4.3.5. Let k be a proper CM-subfield of a CM-field K. We say
that a CM-type (K,Φ) restricts to an m-CM-type (k,Ψ) if the fields satisfy
m = [K : k] and for every ψ ∈ Hom(k,C) we have

multΨ(ψ) = #{φ ∈ Φ : φ|k = ψ}.

Definition 4.3.6. We say that a CM-type (K,Φ) is CPQ-compatible if K is a
degree-12 CM-field containing a primitive fifth root of unity ζ5 ∈ K such that
Φ restricts to the m-CM-type Z on the subfield Q(ζ5) ⊆ K.

Corollary 4.3.7. IfK Galois overQ and (K,Φ) is a CPQ-compatible CM-type,
then the CM-type Φ is primitive.

Proof. If (K,Φ) is a CPQ-compatible CM-type, then K contains a fifth root of
unity ζ5 ∈ K. It follows that the subfield k = Q(ζ5) ⊆ K is a cyclic quartic
number field and since by assumption K is Galois over Q, it follows that it
is cyclic or dicyclic. In particular, in either case the only proper CM-subfield
of K is k = Q(ζ5), see Figures 4.1 and 4.2. If Φ was induced, its restriction
to k without multiplicity would be a CM-type of k. However, since (K,Φ) is
CPQ-compatible, the restriction of Φ to k is the 3-CM-type Z, which is not a
CM-type when considered without multiplicity.
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K

K+

k

F

k+

Q

↔

1

〈s6〉

〈s4〉

〈s3〉

〈s2〉

〈s〉

Figure 4.1: Lattices of subfields and subgroups for a cyclic field
K of degree 12.

4.3.1 Sufficient condition for CM class number one

Let K be a CM-field with maximal totally real subfield K+. In this section
we give a sufficient condition for a CPQ-compatible CM-type (K,Φ) to have
CM class number one. We denote the class number of K by hK and define its
relative class number h∗K := hK/hK+ .

We will prove the following result.

Proposition 4.3.8. Let K be a Galois degree-12 CM-field containing a primi-
tive fifth root of unity ζ5 ∈ K, let K+ be its maximal totally real subfield and
let Φ be a primitive CM-type. Let tK be the number of primes in K+ that
ramify in K.

If the relative class number of K is h∗K = 2tK−1, then K has CM class
number one.

To prove this proposition we start with a result by Kılıçer that given a
CM-field K with group of roots of unity WK and Hasse unit index
QK := [O×K : WKO×K+ ] = 1, writes the relative class number h∗K in terms
of tK and the index [IK : IHKPK ] for H = Gal(K/K+). Then we prove that this
applies to our case because our CM-fields have QK = 1, and finally we prove
that if we have IK = IHKPK , then the CM-field has CM class number one.

Lemma 4.3.9 (Lemma 2.2.2 in Kılıçer [12]). LetK be a CM-field with maximal
totally real subfield K+, and let tK be the number of primes in K+ that ramify
in K. If the Hasse unit index QK of K is one, then we have

h∗K = 2tK−1[IK : IHKPK ].
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K

K+

k

F1 F2 F3

k+

Q

↔

1

〈s3〉

〈s2〉

〈t〉 〈st〉 〈s2t〉

〈s〉

〈s, t〉

Figure 4.2: Lattices of subfields and subgroups for a dicyclic
field K of degree 12.

Lemma 4.3.10. Let K be a degree-12 CM-field containing a primitive fifth
root of unity ζ5 ∈ K, let K+ be its maximal totally real subfield and let tK be
the number of primes in K+ that ramify in K. The relative class number of K
is

h∗K = 2tK−1[IK : IHKPK ].

Proof. Louboutin, Okazaki and Olivier [22] state in Theorem 5(i) that two
CM-fields k ⊆ K for which [K : k] is odd have the same Hasse unit index.

In the case at hand, we have by assumption Q(ζ5) ⊆ K with [K : Q(ζ5)] = 3,
and thus we obtain QK = QQ(ζ5). One computes that the Hasse unit index
for Q(ζ5) is QQ(ζ5) = 1. Then the result follows from Lemma 4.3.9.

Proof of Proposition 4.3.8. Since K is Galois over Q and the CM-type is prim-
itive, we identify the CM-field K with its reflex field Kr via an isomorphism
and assume h∗K = 2tK−1. By Lemma 4.3.10 we have that IK = IHKPK .

For any b ∈ IK+ we have NΦr(b) = (NK+/Q(b)), where NK+/Q(b) ∈ Q×,
hence we obtain the inclusion IK+PK ⊆ I0(Φr). Considering the exact sequence

1→ IK+ → IHK →
⊕

p prime of K+

Z/eK/K+(p)Z→ 1

we see that the elements in IHK /IK+ are represented by the products of primes
in K that are ramified in K/K+. For any such prime P, let p = P ∩K+ and
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pZ = P ∩Q. We obtain

NΦr(P)2 = NΦr(pOK) = NK+/Q(p)OK , (4.1)

where NK+/Q(p) = p
fK+/Q(p). We have the subfield lattice

K

Q(ζ5) K+

Q(
√

5)

Q

hence the rational prime p over which P lies is ramified in Q(ζ5)/Q (see also
Proposition 4.8(ii) in [20, II]), so we conclude that p = 5 and by (4.1) we get

NΦr(P) =
√
NK+/Q(p)OK = (π), where π =



√
5 for fK+/Q(p) = 1,

5 for fK+/Q(p) = 2,

5
√

5 for fK+/Q(p) = 3,

53 for fK+/Q(p) = 6,

where indeed in all cases we have NK/Q(P) = ππ. We conclude

IK = IHKPK ⊆ I0(Φr)

and the statement follows.

In the following sections we prove the converse result for the different Galois
group possibilities.

4.3.2 Cyclic degree-12 CM-fields

Throughout this section, we assume K to be a cyclic degree-12 CM-field
containing a primitive fifth root of unity ζ5 ∈ K and denote its maximal totally
real subfield by K+.

We will prove that if K has CM class number one, then its relative class
number h∗K is 2tK−1. To do so we show that there is a unique CPQ-compatible
CM-type up to the choice of an isomorphism between K and its reflex field Kr.
That way we can use a concrete CM-type to prove that we have IK = IHKPK
using the type norm (see Definition 4.1.5).
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Proposition 4.3.11. Let (K,Φ) be a cyclic CPQ-compatible CM-type for a
primitive fifth root of unity ζ5 ∈ K and let s be a generator of Gal(K/Q) that
maps ζ5 to ζ2

5 . There is an embedding σ : K ↪→ C such that if we identifyK with
its reflex field Kr via σ, then Φ is {id, s, s3, s4, s5, s8}. The reflex CM-type Φr

is {id, s4, s7, s8, s9, s11}.

Proof. Let s be a generator of Gal(K/Q) that satisfies s(ζ5) = ζ2
5 . The image

of ζ5 by the k-th power of s is ζ2k
5 and thus it only depends on the class of k

modulo 4.
If we consider an embedding σ : K → C that satisfies σ(ζ5) = z5, then there

is a set N ⊆ Z/12Z such that the CM-type consists of embeddings of the form
σ ◦ sk for k ∈ N . Since Φ restricts to the 3-CM-type Z, the subset N contains
all k ∈ Z/12Z that satisfy k ≡ 0 (mod 4), one that satisfies k ≡ 3 (mod 4) and
two that satisfy k ≡ 1 (mod 4).

Moreover, by definition, the CM-type Φ does not contain a complex conju-
gate pair, so the value k ∈ N with k ≡ 3 (mod 4) determines the those with
k ≡ 1 (mod 4). Therefore there are three possible index sets:

Ni = {0, 4, 8, 3 + 4i, 1 + 4i, 5 + 4i}, i ∈ {0, 1, 2}.

It follows that, if we identify K with its reflex field Kr with the embed-
ding σ ◦ s−4i, then we get Φ as in the statement of the proposition. Fi-
nally, since K is normal and Φ is primitive, the reflex CM-type is therefore
Φr = {id, s4, s7, s8, s9, s11}.

Notation 4.3.12. For an arbitrary field F , an ideal b ⊆ F and g an automor-
phism of F , we denote by gb the image by g of b, so we have grb = g(rb). We
extend this notation to the group ring Z[Aut(F )].

Proposition 4.3.13. Let (K,Φ) be a cyclic CPQ-compatible CM-type, let K+

be the maximal totally real subfield of K and let tK be the number of primes
in K+ that ramify in K. If K has CM class number one, then the relative class
number of K is h∗K = 2tK−1.

Proof. Let (K,Φ) be a cyclic CPQ-compatible CM-type. It follows from
Lemma 4.3.10 that the relative class number is h∗K = 2tK−1[IK : IHKPK ], so
we only need to prove [IK : IHKPK ] = 1 when K has CM class number one, that
is, when we have I0(Φr) = IKr .

We will start by proving that for any b ∈ IK the fractional ideal 1−s6b is
principal and generated by an element α ∈ K× that satisfies αα = 1. Then we
will use Hilbert’s Theorem 90 to prove that the ideal b is in IHKPK .

Let ζ5 ∈ K be the primitive fifth root of unity for which the CM-type (K,Φ)
is CPQ-compatible, and let k = Q(ζ5). Identify K with its reflex field Kr via
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the embedding given in Proposition 4.3.11, so we have Φ = {id, s, s3, s4, s5, s8}
for s a generator of Gal(K/Q) that maps ζ5 to ζ2

5 . For any b ∈ IK we can check
by writing it out that we obtain

NΦr(
−1+s+s5−s6b)

/
NK/k(

s−s3b) = 1−s6b.

By assumption we have I0(Φr) = IKr , so the ideal NΦr(
−1+s+s5−s6b) is

generated by an element β ∈ K× with ββ = NK/Q(−1+s+s5−s6b) = 1.
The ideal NK/k(

s−s3b) ∈ Ik is also principal, since it is a fractional ideal of
the class number one field k. Choose a generator γ ∈ k×. By cancellation, it
satisfies

(γγ) = NK/k(
s−s3b)NK/k(s−s

3b) = (1).

But since we have seen that all totally positive units in k+ are norms of elements
of O×k (see Lemma 3.4.14), we change γ so that it satisfies γγ = 1.

Altogether we have that 1−s6b is a principal ideal generated by an element
α = (β/γ) such that αα = 1. It follows from Hilbert’s Theorem 90 [10] that
there exists an element δ ∈ K× with α = δδ−1. In consequence, we obtain
δb = δb ∈ IHK so we write b = δb

(
1
δ

)
∈ IHKPK and thus we obtain the equality

IK = IHKPK .

4.3.3 Dicyclic degree-12 CM-fields

In this section we consider the remaining case, that is, we assume that K is
a degree-12 CM-field containing a fifth root of unity and whose Galois group is
a dicyclic group of order 12. In particular there are elements s, t ∈ Gal(K/Q)
that satisfy Gal(K/Q) = 〈s, t : s6 = 1, s3 = t2, sts = t〉.

We will prove also in this case that if the field K has relative class number
h∗K = 2tK−1, then it also has CM class number one.

To do so we follow the same strategy as in Section 4.3.2. First we deter-
mine the unique CPQ-compatible CM-type Φ up to the choice of an embedding
σ : K ↪→ C and then we use that to prove IK = IHKPK using the type norm of
the reflex type Φr.

Lemma 4.3.14. If (K,Φ) is a dicyclic CPQ-compatible CM-type for a primitive
fifth root of unity ζ5 ∈ K, then there exist generators s and t of Gal(K/Q) that
map ζ5 to ζ4

5 and ζ2
5 respectively, and satisfy the relations ts = s5t, t2 = s3 and

s6 = 1.

Proof. Let s, t ∈ Gal(K/Q) satisfy Gal(K/Q) = 〈s, t : s6 = 1, s3 = t2, sts = t〉.
The automorphism s maps ζ5 to ζ4

5 because it has order 2 in 〈s, t〉/〈s2〉
(see Figure 4.2) and the map given by ζ5 7→ ζ4

5 is the only order-2 element in
Gal(Q(ζ5)/Q).
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Analogously, the automorphism t has order 4 in 〈s, t〉/〈s2〉 so, changing t to
t−1 if necessary, we get that it maps ζ5 to ζ2

5 .

Proposition 4.3.15. Let (K,Φ) be a dicyclic CPQ-compatible CM-type for a
primitive fifth root of unity ζ5 ∈ K and let s and t be generators of Gal(K/Q)
as in Lemma 4.3.14. Then there is an embedding σ : K ↪→ C such that if we
identifyK with its reflex fieldKr via σ, then Φ is {id, s2, s4, t, st, s2t}. Moreover,
the reflex CM-type Φr is {id, s2, s4, s3t, s4t, s5t}.

Proof. Let s and t be generators of Gal(K/Q) as in Lemma 4.3.14. We can
write the Galois group of K as

Gal(K/Q) = {sitj : 0 ≤ i ≤ 5, j ∈ {0, 1}}

together with the relations ts = s5t, t2 = s3 and s6 = 1.
If we consider an embedding σ : K → C that satisfies σ(ζ5) = z5, then there

exists a subset P ⊆ Gal(K/Q) such that the CM-type consists of embeddings of
the form σ◦sitj for sitj ∈ P . Since Φ restricts to the 3-CM-type Z, the subset P
contains all automorphism that map ζ5 to itself, one that maps ζ5 to ζ3

5 and
two that map ζ5 to ζ2

5 .
Moreover, by definition, the CM-type does not contain a complex conjugate

pair, so the automorphism in P mapping ζ5 to ζ3
5 determines those mapping ζ5

to ζ2
5 .
Since the group 〈s2〉 fixes Q(ζ5) (see Figure 4.2) we get 〈s2〉 ⊆ P . Further-

more, the automorphism t maps ζ5 to ζ2
5 and s3 is the complex conjugation

in K, hence only one automorphism in the subgroup 〈s2〉s3t = 〈s2〉st is in P ,
and it determines the remaining two automorphisms.

Altogether, we obtain that there are 3 possible subsets P ⊆ Gal(K/Q):

Pi = {id, s2, s4, s2it, s1+2it, s2+2it}, i ∈ {0, 1, 2}.

It follows that, if we identify K with its reflex field Kr via the embedding
σ◦s−2i, then we get that Φ is P0. Lastly, sinceK is normal and Φ is primitive by
Remark 4.3.7, we can compute the reflex CM-type Φr = {id, s2, s4, s3t, s4t, s5t}.

Proposition 4.3.16. Let (K,Φ) be a dicyclic CPQ-compatible CM-type, let
K+ be its maximal totally real subfield and let tK be the number of primes in
K+ that ramify in K. If K has CM class number one, then the relative class
number of K is h∗K = 2tK−1.

Proof. Let (K,Φ) be a dicyclic CPQ-compatible CM-type. It follows from
Lemma 4.3.10 that the relative class number is h∗K = 2tK−1[IK : IHKPK ], so
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we only need to prove [IK : IHKPK ] = 1 when the CM-field K has CM class
number one, that is, when we have I0(Φr) = IKr .

We will start by proving that for any b ∈ IK the fractional ideal 1−s3b is
principal and generated by an element α ∈ K× that satisfies αα = 1. Then we
can use Hilbert’s Theorem 90 to prove that the ideal b is in IHKPK .

Let ζ5 ∈ K be the primitive fifth root of unity for which (K,Φ) is
CPQ-compatible, and let k = Q(ζ5). Identify K with its reflex field Kr via
the embedding given in Proposition 4.3.15, so we have Φ = {id, s2, s4, t, st, s2t}
for s and t generators of Gal(K/Q) as in Lemma 4.3.14. For any ideal b ∈ IK
we can check by writing it out that we obtain

NΦr(
t−s5tb)

/
NK/k(

t−stb) = 1−s3b.

By an argument analogous to the one in the proof of Proposition 4.3.13,
there exists α ∈ K× that satisfies 1−s3b = (α) and αα = 1, hence, by Hilbert’s
Theorem 90 [10], there exists an element δ ∈ K× with α = δδ−1. In consequence,
b = δb

(
1
δ

)
∈ IHKPK and thus IK = IHKPK .

4.3.4 Final results

The following theorem summarizes all the results above.

Theorem 4.3.17. Let (K,Φ) be a Galois CPQ-compatible CM-type for a prim-
itive fifth root of unity ζ5 ∈ K, let K+ be the maximal totally real subfield of
K and let Φ be a primitive CM-type. Let tK be the number of primes in K+

that ramify in K. The relative class number h∗K of K is 2tK−1 if and only if K
has CM class number one.

Proof. One implication corresponds to Proposition 4.3.8. For the converse, note
that by Proposition 4.3.4 the field K has a cyclic or dicyclic Galois group. Then,
Propositions 4.3.13 and 4.3.16 are enough to prove the statement.

With this result we can now prove Theorem 4.3.1.

Proof of Theorem 4.3.1. By Theorem 4.3.17, the field K has CM class number
one if and only if its relative class number is h∗K = 2tK−1 where tK is the
number of primes in the maximal totally real subfield K+ that ramify in K.
But since

√
5 is the only ramified prime in Q(ζ5)/Q(

√
5), all ramified primes in

K/K+ lie above 5 (see Proposition 4.8(ii) in [20, II]) and we get tK ≤ 3, hence
we obtain h∗K ≤ 4.

Recall that by Proposition 4.3.4 the field K has a cyclic or dicyclic Galois
group, so we look at each case separately.

On the one hand, Chang and Kwon [5] list all imaginary cyclic number fields
of even degree with relative class number (with respect to their maximal totally
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real subfields) less than or equal to 4, see [5, Table I]. In particular, we are
interested in those that are degree-12 CM-fields containing a quartic field with
conductor 5, that is, containing Q(ζ5), which are the fields (1)–(3) in Table 4.2.

On the other hand, Louboutin and Park [23] prove that the minimum relative
class number of dicyclic CM-fields is 4, and list all such CM-fields (see Theorem 1
in [23]). In particular, we are again interested in those degree-12 CM-fields
containing a quartic field with conductor 5, that is, containing Q(ζ5), which is
exactly case (4) in Table 4.2.

Using the methods due to Kılıçer [12, Chapter 4] and Theorem 3.5.3, one
can prove that if Conjecture 3.5.1 holds, then for every field K in Table 4.2
there exists a unique CPQ curve with maximal CM by K and defined over Q.

The curves in Section 2.3 are heuristic models for those curves, which we
obtained by applying Algorithm 2.2.6 to the period matrices obtained through
Van Wamelen’s method, see Section 4.1 for details.
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Samenvatting

Voor elke elliptische kromme E over C bestaat er een rooster Λ ⊆ C, zodanig
dat de groep E(C) van complexe punten op E isomorf is met de complex analy-
tische groep C/Λ. Dit verband tussen elliptische krommen en één-dimensionale
complexe tori heet de Uniformisatiestelling, en de constructie in omgekeerde
richting (van roosters naar krommen) kan expliciet worden beschreven met de
Weierstrass ℘-functie, zijn afgeleide, en de Eisenstein-reeksen.

Algemener kennen we aan een algebraïsche kromme C van geslacht g een
hoofdgepolariseerde abelse variëteit J(C) toe, de Jacobiaan van C. Over C is de
Jacobiaan J(C) isomorf met een g-dimensionale complexe torus Cg/Λ voor een
rooster Λ van volledige rang in Cg.

Dit bepaalt een afbeelding J van de verzamelingMg van isomorfieklassen van
algebraïsche krommen van geslacht g naar de verzameling Ag van g-dimensionale
hoofdgepolariseerde abelse variëteiten. We kunnen ons afvragen of er een ex-
pliciete inverse afbeelding bestaat, zoals het geval is voor elliptische krommen.
Dit is het inverse-Jacobiaan-probleem.

Dit probleem is opgelost voor krommen van geslacht 2 [37, 50] en geslacht
3 [1, 9, 16, 21, 48, 52, 53]. Voor geslacht ≥ 4 is er echter de extra obstructie
dat niet alle hoofdgepolariseerde abelse variëteiten Jacobianen van krommen
zijn, dus om het inverse-Jacobiaan-probleem op te lossen moeten we in dit geval
het beeld van Mg in Ag onder J bestuderen. Het beschrijven van J(Mg) staat
bekend als het Riemann-Schottky-probleem.

In dit proefschrift behandelen we deze twee problemen voor twee families van
superelliptische krommen, dat wil zeggen, krommen gegeven door
yk =

∏l
i=1(x − αi). We richten ons op de familie van Picard-krommen, met

(k, l) = (3, 4) en van geslacht 3, waarvoor we het inverse-Jacobiaan-probleem op-
lossen en de familie van cyclische vlakke vijfdegraads krommen (CPQ-krommen),
met (k, l) = (5, 5) en van geslacht 6, waarvoor we beide problemen oplossen.

In Hoofdstuk 1 introduceren we eerst achtergrondkennis over abelse vari-
eteiten, Jacobianen van krommen en Riemann theta constanten. Daarna ge-
ven we een inverse-Jacobiaan-algoritme voor Picard-krommen. Merk op dat
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Picard-krommen geslacht 3 hebben, en er dus geen obstructie voor het inverse-
Jacobiaan-probleem is.

Picard-krommen zijn een speciaal geval van vlakke vierdegraads krommen,
dus het inverse-Jacobiaan-probleem voor Picard-krommen kan worden opgelost
met behulp van de formules voor vlakke vierdegraads krommen gegeven in [52],
maar de beperking tot een kleinere familie van krommen zorgt ervoor dat we
een efficiëntere oplossing voor deze familie kunnen geven.

Dit is oorspronkelijk gedaan door Koike en Weng in [16], maar hun uit-
eenzetting bevat een aantal fouten die we hier aankaarten en corrigeren. Dit
hoofdstuk is gebaseerd op gezamenlijk werk met Joan-Carles Lario, zie ook [21].

In Hoofdstuk 2 geven we een inverse-Jacobiaan-algoritme voor CPQ-
krommen. We volgen een strategie analoog aan die in Hoofdstuk 1 voor het
geval van Picard-krommen.

In Hoofdstuk 3 pakken we het Riemann-Schottky-probleem voor CPQ-
krommen aan, dat wil zeggen dat we de hoofdgepolariseerde abelse variëteiten
die Jacobianen van CPQ-krommen zijn classificeren. Eerst gebruiken we Shi-
mura’s algemene vorm van de theorie van complexe vermenigvuldiging, zie [39],
om te bestuderen hoe het bestaan van het automorfisme (x, y) 7→ (x, z5y)
met z5 = exp(2πi/5) van een CPQ-kromme de structuur van de Jacobiaan
beïnvloedt. Vervolgens lossen we een klassengetal-één-probleem voor hoger-
dimensionale Hermitese roosters over Z[ζ5] op, wat cruciaal is voor het oplossen
van het Riemann-Schottky-probleem voor CPQ-krommen.

Tot slot geven we in Hoofdstuk 4 een toepassing van bovenstaande algorit-
mes: het construeren van krommen waarvan de Jacobianen complexe vermenig-
vuldiging toestaan. Dit is eerder gedaan voor geslacht 2 [51, 47] en geslacht 3
[1, 13, 16, 21, 53]. Hier breiden we methoden van Kılıçer [12] uit om een complete
lijst van CM-lichamen te bepalen waarvan de ringen van gehelen voorkomen als
endomorfismering over C van de Jacobiaan van een CPQ-kromme over Q.

In het bijzonder geeft dit ons de mogelijkheid om een lijst te geven met ver-
moedelijke modellen voor alle CPQ-krommen over Q waarvan de Jacobianen de
maximale orde van een CM lichaam van graad 12 als endomorfismering over C
hebben. Onze lijst bevat het juiste aantal krommen, die gedefinieerd zijn over Q
en numeriek correct met hoge nauwkeurigheid.
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Resumen

Dada una curva elíptica E sobre C, existe una red Λ ⊆ C tal que el grupo
E(C) de puntos complejos en E es isomorfo al grupo analítico complejo C/Λ.
Esta connexión entre curvas elípticas y toros de dimensión 1 se conoce como
el Teorema de la Uniformización de Riemann, y es posible encontrar de forma
explícita la curva correspondiente a una cierta red mediante la función ℘ de
Weierstrass, su derivada, y las series de Eisenstein.

De forma similar, dada una curva algebraica C de género g, podemos defi-
nir una variedad abeliana principalmente polarizada J(C), la Jacobiana de C.
Sobre C, la Jacobiana J(C) es isomórfa a un toro complejo g-dimensional Cg/Λ
para una red Λ de rango completo en Cg.

Esto determina una función J del conjunto Mg de clases de isomorfismo de
curvas algebraicas de género g al conjunto Ag de variedades abelianas princi-
palmente polarizadas de dimensión g, y nos preguntamos si existe una función
inversa explícita, como en el caso de las curvas elípticas. Se trata del problema
de la Jacobiana inversa.

Este problema ha sido resuelto para curvas de género 2 [37, 50] y género 3
[1, 9, 16, 21, 48, 52, 53]. Sin embargo, para género g ≥ 4, tenemos el obstáculo
añadido de que no todas las variedades abelianas principalmente polarizadas
son Jacobianas de curvas, por lo que para resolver el problema de la Jacobiana
inversa tenemos que estudiar la imagen vía J de Mg en Ag. El problema de
describir J(Mg) se conoce como el problema de Riemann-Schottky.

En esta tesis tratamos estos dos problemas para dos familias de curvas su-
perelípticas, es decir, curvas de la forma yk =

∏l
i=1(x−αi). Nos centramos en la

familia de curvas de Picard, con (k, l) = (3, 4) y género 3, donde solucionamos
el problema de la Jacobiana inversa, y la família de las curvas cíclicas quínti-
cas planas (curvas CPQ), con (k, l) = (5, 5) y género 6, para la que resolvemos
ambos problemas.

En el Capítulo 1 introducimos algunos preliminares de variedades abelianas,
Jacobianas de curvas y constantes teta de Riemann, y a continuación presen-
tamos un algoritmo de Jacobiana inversa para las curvas de Picard. Dado que
las curvas de Picard tienen género 3, no hay obstrucción al problema de la
Jacobiana inversa.
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Dado que las curvas de Picard son curvas cuárticas planas, el problema de
la Jacobiana inversa se resolvería con las ideas para el problema de la Jacobiana
inversa para cuárticas planas que encontramos en [52]. Sin embargo, concentrar-
nos en una familia más reducida de curvas nos permite presentar una solución
más eficiente para la familia en cuestión.

Esto lo hicieron originalmente Koike y Weng en [16], pero su exposición
presenta algunos errores que corregimos aquí. El capítulo está basado en una
colaboración con Joan-Carles Lario, véase también [21].

En el Capítulo 2 presentamos un algoritmo de la Jacobiana inversa para las
curvas CPQ. Seguimos una estrategia análoga a la del Capítulo 1 para el caso
de curvas de Picard.

En el Capítulo 3 lidiamos con en el problema de Riemann-Schottky pa-
ra curvas CPQ, es decir, caracterizamos las variedades abelianas principalmente
polarizadas que son Jacobianas de curvas CPQ. Primero usamos una generaliza-
ción de la teoría clásica de multiplicación compleja de Shimura [39] para estudiar
cómo la existencia del automorfismo de curvas CPQ (x, y) 7→ (x, exp(2πi/5)y)
afecta la estructura de las Jacobianas. A continuación resolvemos un problema
de número de clases 1 para redes hermíticas de dimensión superior sobre Z[ζ5].

Finalmente, en el Capítulo 4 presentamos una aplicación de los algoritmos
anteriores: construir curvas cuyas Jacobianas tengan multiplicación compleja
(CM). Esto se ha hecho anteriormente para género 2 [51, 47] y género 3 [1, 13,
16, 21, 53]. Aquí extendemos los métodos de Kılıçer [12] para determinar una
lista completa de cuerpos CM cuyo anillo de enteros se da como el anillo de
endomorfismos sobre C de la Jacobiana de una curva CPQ sobre Q.

En particular, ésto nos permite listar modelos conjeturales para todas las
curvas CPQ sobre Q cuyas Jacobianas tienen el orden maximal de un cuerpo
CM de grado 12 como anillo de endomorfismos sobre C. Nuestra lista contiene el
número previsto de curvas, y éstas están definidas sobre Q y son numéricamente
correctas hasta un cierto grado de precisión.

102



Acknowledgements

I would like to take this opportunity to thank all the people that have
accompanied me during these years.

First and foremost, I would like to thank my supervisors.
Joan-Carles, I discovered what research means by your side, when in the

early days of this project, with a different title and a different goal, we waited
with excitement for the results of our computations only to get unexpected
results over and over again. Little did we know back then that those weird
results where the first hints of what this thesis would become. Thank you for
infecting me with your enthusiasm and curiosity about mathematics.

Marco, thank you for your patience and guidance. You have taught me how
to see the bigger picture mathematically, greatly influencing both my talks and
the exposition of this same thesis. Your thoroughness and kindness has helped
me grow both as a mathematician and as a person.

And to my promotor, Peter, thank you for always having your door open
for me.

Thanks to all current and former members of the MI for welcoming me
to Leiden and making the department such a lovely place to work. A special
thank-you goes to Rosa, for the translation of the Samenvatting.

I would also like to thank Pili, my former officemate in Barcelona and friend,
for making me realize that my feelings and worries during my studies were the
norm, and not the exception. I look forward to our celebratory trip to Mexico
after you graduate.

Thanks also to the members of the committee for your feedback on the
thesis.

A la meva artista Vanessa, gràcies per fer possible aquesta portada i per
tota la resta, que no sé posar per escrit.

A mis padres Manuel y Begoña y mi hermana Maite, gracias de todo corazón
por apoyarme siempre en todo lo que hago, incluso cuando no lo entendéis.

Y por último, gracias Jose por los preciosos dibujos que llenan la portada,
pero sobretodo por estar a mi lado a cada paso, incluso cuando el camino llevaba
a un nuevo país, y por todos los pasos que están por venir.

103





Curriculum vitae

Anna Somoza Henares was born in L’Hospitalet del Llobregat on 10th De-
cember 1991.

In 2009 se obtained her secondary school diploma at Escola Mestral, in
Sant Feliu del Llobregat. Afterwards, she started her Mathematics degree at
Universitat Politècnica de Catalunya, Barcelona, and she obtained her diploma
in 2013.

In 2014 she graduated from the Master in Applied Mathematics and Math-
ematical Engineering, also at Universitat Politècnica de Catalunya, after de-
fending her masters’ thesis The Sato-Tate conjecture for a Picard curve with
Complex Multiplication under the supervision of Joan-Carles Lario.

In 2015 she started her PhD studies between Universitat Politècnica de
Catalunya and Universiteit Leiden under the supervision of Joan-Carles Lario,
Peter Stevenhagen and Marco Streng, which lead to the thesis you are now
reading.

She has been working as a postdoc at Max Planck Instiute für Mathematik
since September 2018.

105






