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giving me the great opportunity to do my PhD studies in his group. Toni
created a lovely atmosphere in the QIT group and encouraged me to attend
many conferences and workshops. He has been very supportive of me, and gave
me a lot of freedom to perform my research as I liked.

I would also like to thank Stefano Pironio, who was my supervisor during my
master’s thesis, for welcoming me into the field. I am grateful for his mentoring
and for being an inspiration to start research in quantum information theory.

Many thanks go to Remik Augusiak and Jordi Tura, who played a special
role in my PhD. I worked closely with them on many projects, and they have
both taught me a lot about quantum information. I greatly appreciated their
mentorship, and I will miss the fun and humour that always accompanied our
collaborations.

I would like to further acknowledge my co-authors, namely Flavio Baccari,
Boris Bourdoncle, Joe Bowles, Jed Kaniewski, Ivan Šupić, Peter Wittek, Erik
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Abstract

The technological era that we live in is sometimes described as the Information
Age. Colossal amounts of data are generated every day and considerable effort
is put into creating technologies to process, store and transmit information
in a secure way. Quantum Information Science relies on quantum systems to
develop new information technologies by exploiting the non-classical properties
of those systems, such as entanglement or superposition. Quantum computing
has recently received substantial investment, and quantum random number
generators and cryptography systems are already available commercially.

Entanglement is one of the counter-intuitive, mysterious phenomena that
quantum theory is known to describe. Two entangled particles are such that,
even when they are spatially separated, their quantum state can only be de-
scribed for the system as a whole, and not as two independent quantum states.
This implies that when making measurements on entangled particles, particu-
lar correlations between the measurement outcomes may appear which cannot
be obtained with pre-shared classical information. Such correlations, termed
nonlocal, can be detected using mathematical objects called Bell inequalities,
that correspond to hyperplanes in the set of correlations obtained in a so-called
Bell scenario. Many Bell experiments were conducted in which violations of
Bell inequalities were measured, thus confirming the existence of nonlocality in
Nature.

The last decade has seen the development of a new paradigm in quantum
information theory, called the device-independent paradigm. The security and
success of a device-independent protocol relies on the observation of nonlocal
correlations in a Bell experiment. Moreover, the nature of Bell scenarios is
such that very few assumptions on the experimental apparatus are needed,
hence the name device-independent. In this framework, Bell inequalities serve
as certificates that guarantee properties and quantities such as the randomness
of a series of numbers or the security of a secret key shared between users. It
is even possible to certify which quantum state and measurements were used
in the experiment based solely on the correlations they produce: this task is
called self-testing.

The goal of this thesis is the study of Bell inequalities, both as fundamental
objects and as tools for device-independent protocols. We consider in par-
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ticular protocols for randomness certification, quantum key distribution and
self-testing.

In Chapter 3, we develop robust self-testing procedures for the chained Bell
inequalities, which also imply randomness certification. The chained Bell in-
equalities are a family of Bell inequalities that are relevant for a scenario with an
arbitrary number of measurement choices. In Chapter 4, we introduce a family
of Bell inequalities maximally violated by the maximally entangled states, valid
for a scenario with any number of measurement choices as well as any number
of measurement outcomes. We study the properties of these Bell inequalit-
ies in depth, and discuss through examples their applications to self-testing,
randomness certification and quantum key distribution. We also present an ex-
tension of our results to any number of parties, as well as experimental results
obtained in an international collaboration, where we measure violations of our
Bell inequalities for local dimension up to 15. In Chapter 5, we consider the
question of randomness certification from partially entangled states. We show,
through self-testing results, that maximal randomness can be certified from any
partially entangled state of two qubits, using the Clauser-Horne-Shimony-Holt
inequality and its tilted version.
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Resumen

La era tecnológica en la que vivimos en ocasiones es descrita como la Era de la
Información. Todos los d́ıas se generan cantidades colosales de datos y se pone
un gran esfuerzo en crear tecnoloǵıas para procesar, almacenar y transmitir esta
información de manera segura. La teoŕıa de la información cuántica se basa en
los sistemas cuánticos para desarrollar nuevas tecnoloǵıas de la información me-
diante la explotación de sus propiedades no clásicas, tales como el entrelazami-
ento o la superposición. La computación cuántica ha recibido recientemente
una inversión sustancial, y algunos sistemas de criptograf́ıa cuántica ya están
disponibles en el mercado.

El entrelazamiento es uno de los fenómenos contraintuitivos y misteriosos
descritos por la teoŕıa cuántica. Dos part́ıculas entrelazadas son tales que, in-
cluso cuando están separadas espacialmente, su estado cuántico solo se puede
describir como el de un sistema conjunto y no como dos estados cuánticos inde-
pendientes. Esto implica que al realizar medidas sobre part́ıculas entrelazadas,
pueden aparecer correlaciones particulares entre los resultados de las medi-
das que no se pueden obtener con información clásica precompartida. Dichas
correlaciones, denominadas no-locales, se pueden detectar utilizando objetos
matemáticos llamados desigualdades de Bell. En la actualidad un gran número
de experimentos de Bell han confirmado la existencia de no-localidad en la
naturaleza a través de la observación de violaciones de desigualdades de Bell.

La última década ha sido testigo del desarrollo de un nuevo paradigma en
la teoŕıa de la información cuántica, llamado el paradigma device-independent
(independiente de dispositivos). La seguridad y el éxito de un protocolo device-
independent se basan en la observación de correlaciones no-locales en un exper-
imento de Bell. La naturaleza de los escenarios de Bell es tal que se necesitan
muy pocas suposiciones sobre la implementación experimental, de ah́ı el nombre
device-independent. En este marco, las desigualdades de Bell sirven como cer-
tificados que garantizan propiedades y cantidades, como la seguridad de una
clave secreta compartida entre usuarios. Incluso se puede certificar qué estado
cuántico y qué medidas se utilizaron en un experimento, basándose únicamente
en las correlaciones que observadas: esta tarea se denomina self-testing (auto-
evaluación).

El objetivo de esta tesis es el estudio de las desigualdades de Bell, tanto
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como objetos fundamentales como como herramientas para protocolos device-
independent. En particular, consideramos protocolos para la certificación de
aleatoriedad, la distribución cuántica de claves secretas y el self-testing.

En el Caṕıtulo 3, desarrollamos protocolos robustos de self-testing para las
desigualdades de Bell encadenadas (que son relevantes para un escenario con
un número arbitrario de opciones de medición), lo que también implica una
certificación de aleatoriedad. En el Caṕıtulo 4, introducimos una familia de
desigualdades de Bell cuya violación máxima es obtenida con estados máximamente
entrelazados, válidas para un escenario con cualquier número de opciones de
medición, aśı como cualquier número de resultados por cada medición. Estu-
diamos en profundidad las propiedades de estas desigualdades de Bell y anal-
izamos a través de ejemplos sus aplicaciones para protocolos device-independent.
También presentamos una extensión de nuestros resultados a cualquier número
de partes, aśı como resultados experimentales obtenidos en una colaboración
internacional, donde medimos violaciones de nuestras desigualdades de Bell
hasta una dimensión local de 15. En el Caṕıtulo 5, consideramos la cuestión
de la certificación de aleatoriedad a partir de estados parcialmente entrelaza-
dos. Mostramos, a través de resultados de self-testing, que se puede certificar
una cantidad máxima de aleatoriedad a partir de cualquier estado parcialmente
entrelazado de dos qubits, utilizando la desigualdad de Clauser-Horne-Shimony-
Holt y su versión tilted.
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Resum

L’era tecnològica en què vivim és a vegades descrita com l’era de la inform-
ació. Cada dia es generen quantitats colossals de dades i s’està dedicant un
esforç considerable a la creació de tecnologies per processar, emmagatzemar
i transmetre informació de manera segura. La teoria quàntica de la inform-
ació es fonamenta en l’ús de sistemes quàntics per tal de desenvolupar noves
tecnologies de la informació que exploten les propietats no clàssiques d’aquests
sistemes, com ara l’entrellaçament o la superposició. La computació quàntica
ha rebut recentment inversions substancials, i criptosistemes quàntics es troben
ja disponibles comercialment.

L’entrellaçament és un dels fenòmens més contra-intutius i misteriosos que
descriu la teoria quàntica. Dos part́ıcules entrellaçades són tals que, fins i tot
quan es troben separades espacialment, el seu estat quàntic pot ser descrit
només prenent el sistema complet com una sola entitat, i no com dos estats
quàntics independents. Això implica que al mesurar part́ıcules entrellaçades,
certes correlacions entre els resultats de les mesures poden sorgir, i aquestes cor-
relacions no es podrien obtenir només amb informació clàssica pre-compartida.
Tals correlacions, denotades no-locals, es poden detectar mitjançant ens matemàtics
anomenats desigualtats de Bell. Al llarg de la història, s’han fet multitud
d’experiments de Bell en els quals s’ha observat la violació de desigualtats,
confirmant doncs l’existència de la no-localitat en la naturalesa.

L’última dècada ha estat testimoni del desenvolupament d’un nou paradigma
en la teoria quàntica de la informació, anomenat device-independent (independ-
ent del dispositiu). La seguretat i l’èxit d’un protocol device-independent es
fonamenta en l’observació de correlacions no-locals en la realització d’un exper-
iment de Bell. La naturalesa dels escenaris de Bell és tal que realment poques
hipòtesis sobre el funcionament dels aparells usats durant l’experiment són ne-
cessàries, donant lloc a la nomenclatura device-independent. En aquest marc
de treball, les desigualtats de Bell serveixen com a certificats que garanteixen
les propietats i les quantitats com ara la seguretat d’una clau secreta com-
partida entre usuaris. És fins i tot possible certificar quins estats quàntics i
mesures foren utilitzats en l’experiment, només a partir de les correlacions que
produeixen. Aquesta última tasca s’anomena self-testing (autoavaluació).

L’objectiu d’aquesta tesi és l’estudi de les desigualtats de Bell, tant des del
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punt de vista fundacional, com també com a eines per a protocols device-
independent. Considerem en particular protocols per a la certificació d’aleatorietat,
distribució quàntica de claus i self-testing.

En el Caṕıtol 3, desenvolupem protocols robusts de self-testing per a les
desigualtats de Bell encadenades, els quals també impliquen la certificació de
l’aleatorietat. Les desigualtats de Bell encadenades formen una famı́lia de
desigualtats que són d’especial rellevància per un escenari amb un nombre
arbitrari d’eleccions de mesures. En el Caṕıtol 4, presentem una famı́lia de
desigualtats de Bell que són màximalment violades per estats màximalment en-
trellaçats, les quals són vàlides en escenaris amb un nombre arbitrari d’eleccions
de mesures aix́ı com un nombre també arbitrari de resultats per a les mesures.
Estudiem les propietats d’aquestes desigualtats de Bell en profunditat, i discu-
tim a través d’exemples les seves aplicacions als protocols device-independent.
També presentem una extensió dels nostres resultats a un nombre de part́ıcules
arbitrari, aix́ı com resultats experimentals obtinguts en el marc d’una col-
laboració internacional, en la que mesurem les violacions de les nostres desigualtats
de Bell en sistemes on la dimensió local arriba fins a 15. En el Caṕıtol 5, con-
siderem la qüestió de la certificació de l’aleatorietat a partir d’estats parcialment
entrellaçats. Demostrem, a través de resultats de self-testing, que l’aleatorietat
màxima pot ésser certificada partint de qualsevol estat entrellaçat de dos bits
quàntics, emprant la desigualtat de Clauser-Horne-Shimony-Holt i la seva versió
obliqua.
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POVM - Projective Operator Valued Measure
QKD - Quantum Key Distribution
RHOM - Reversed Hong-Ou-Mandel
SDP - Semidefinite Programme
SFWM - Spontaneous Four-Wave Mixing
SOS - Sum-of-squares

1



2



1. Objectives and main results

The advent of Quantum Information Science is sometimes referred to as the
second quantum revolution, in the sense that quantum systems are now being
used as the building blocks for new technologies. What characterises these new
technologies is their ability to create, control and manipulate quantum systems
individually. The qubit, i.e. the quantum bit, is central to quantum information
science. In contrast, the first quantum revolution of the early twentieth century
was about the discovery of quantum mechanics and its novel set of rules. The
technologies that ensued contain quantum effects, but are based on ensembles
of quantum systems instead of individual ones. Examples include lasers and
transistors that have many applications in everyday life, for instance through
computers and medical devices.

A property that is at the heart of many quantum information protocols is
entanglement. With his work, John Bell put entanglement and its peculiar
properties on the front of the stage and in that sense, he played a role in
triggering the second quantum revolution [Asp04]. Bell inequalities establish
a clear frontier between classical and quantum behaviour by providing a way
to experimentally detect the distinctive correlations, termed nonlocal, that are
produced by making measurements on entangled particles.

Bell’s work came at a time when a common attitude among physicists was
to take the foundations and basic concepts of quantum mechanics as given
and focus on their applications instead. The 1964 article [Bel64] went mostly
unnoticed for a few years, but gained fame when experimental tests of non-
locality were performed [ADR82]. The story of Bell’s work shows that there
is great value in investigating fundamental problems. Nowadays, there is still
a significant dialogue between quantum information processing and quantum
foundations – problems motivated by the former often produce results that are
relevant to the latter, and vice-versa [dlT15].

Quantum information science is a young and very active field, pushed forward
by the efforts of physicists, mathematicians, computer scientists and engineers.
It aims at solving problems in the domain of information processing and trans-
mission using quantum systems, thus using the rules of quantum mechanics.
Subjects in quantum information science include quantum computation, crypto-
graphy, communication, quantum key distribution, random number generation,
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1. Objectives and main results

and more. Quantum computing has received a lot of attention lately, also from
the general public with famous “tech” companies investing into the field such as
IBM, Google and Microsoft [IBM, Goo, Mic]. Quantum cryptography is more
mature as a technology, and there exist companies that manufacture quantum
cryptography systems and quantum random number generators [IDQ, Qui].

A decade ago, a new paradigm started developing in quantum information
theory, called the device-independent paradigm. In the device-independent
paradigm, the success of information processing protocols rests on the obser-
vation of the nonlocal correlations produced by entangled states, which can be
achieved by measuring the violation of a Bell inequality. The security does not
require assumptions on the exact quantum state and measurements used in the
protocol – it is thus not necessary to control the apparatus perfectly [BCP+14].
Self-testing is a protocol very particular to the device-independent approach:
from the correlations produced by the apparatus, the goal is to certify which
quantum states and measurements were in fact employed.

Bell inequalities are central to the device-independent approach. We said
earlier that Bell’s work played a role in triggering the second quantum revolution
of the last decades, and we now observe that his work is still very much part of it.
We can see Bell inequalities as having two roles in quantum information science:
on the one hand, they are fundamental tools that allow for the demonstration
of nonlocal correlations in Nature [HBD+15], and on the other hand they can
be used as certificates in quantum information processing protocols.

This thesis is focused on device-independence, and Bell inequalities appear
throughout the text, sometimes as the main subject of our study, and sometimes
as the means to perform tasks such as self-testing, quantum key distribution
and randomness certification.

Motivation and results

Let us introduce the themes on which we worked, the questions that triggered
our research, and the contributions we were able to bring.

Chained Bell inequalities: self-testing and randomness certification

Self-testing is the task of certifying which states and measurements were used
in an experiment, based on the observed correlations only. Since the intro-
duction of self-testing in [MY04], a series of work has aimed to self-test differ-
ent quantum states and measurements in various scenarios (see, e.g. [MYS12,
BP15]). In particular, a procedure was recently designed to self-test all pure
bipartite quantum states [CGS17].
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The chained Bell inequalities were introduced in [Pea70]. They are the nat-
ural generalisation of the famous Clauser-Horne-Shimony-Holt (CHSH) Bell
inequalities [CHSH69] to a scenario with an arbitrary number of measurement
choices. They appear in several quantum information processing protocols,
for instance in [MPA11] for quantum key distribution and in [DPA13] for ran-
domness certification. The question of using the chained Bell inequalities for
self-testing arose naturally given the existing self-tests at the time of our work.
The measurements maximally violating the chained Bell inequalities are par-
ticularly interesting to self-test, especially given that measurement self-testing
remains less explored than state self-testing.

Our contributions

We built a robust self-testing procedure based on the chained Bell inequalities
valid for any number of measurement choices, thus showing that these inequal-
ities are useful for self-testing. The self-test certifies that when the maximal
quantum violation of the chained Bell inequalities is observed, measurements
equally spaced on the X-Z plane of the Bloch sphere were performed on the
maximally entangled state of two qubits. This means that our procedure al-
lows for the self-test of the whole X-Z plane of the Bloch sphere, in the limit of
an arbitrarily high number of measurements. We also studied the applications
of our result to randomness certification. In particular, our self-test completes
the proof of [DPA13] for the certification of two random bits from the maximally
entangled state of two qubits.

Bell inequalities tailored to maximally entangled states

The CHSH Bell expression possesses several attractive properties. Indeed,
it is tight (it corresponds to a facet of the polytope of classical correlations
[BCP+14]), and its maximal quantum violation is obtained by a maximally en-
tangled state on which mutually unbiased measurements [DEBZ10] are made.
The CHSH expression is designed for the simplest Bell scenario, i.e. for two
parties that have two measurements choices with two outcomes each. When
constructing Bell inequalities for more complicated scenarios, it turns out to
be very difficult to keep all of those properties in one Bell expression. For
instance, the Collins-Gisin-Linden-Massar-Popescu (CGLMP) Bell inequalities
[CGL+02] generalise CHSH to many measurement outcomes, and are maxim-
ally violated by partially entangled states [ADGL02, ZG08]. This result was a
surprise at the time it was found, and was even thought of as an anomaly in
the relation between nonlocality and entanglement.
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1. Objectives and main results

However, let us note that the CGLMP Bell inequalities were constructed with
the aim of nonlocality detection in mind, and techniques related to the set of
classical correlations were used. This means that we should not necessarily
be surprised that they do not conserve the quantum properties of CHSH. On
the other hand, they conserve the “classical” properties of CHSH, as they are
facets of the local polytope and have good noise resistance. Our goal was to
find generalisations of the CHSH inequality maximally violated by maximally
entangled states – since this is a quantum property, we used a method based
on a quantum framework.

Our contributions

We obtained a family of Bell inequalities valid for any number of measurement
choices and measurement outcomes that is maximally violated by the maximally
entangled state of two qudits. We studied the properties of this family of
inequalities and obtained analytical expressions for their different bounds. We
also discussed their applications to device-independent protocols, in particular
we performed self-testing of the maximally entangled two-qutrit state, using a
numerical method introduced in [YVB+14]. Then, we were able to generalise
most of our findings to any number of parties. We also considered a modification
of our inequalities in the particular case of two measurement choices and three
measurement outcomes, where we obtain a family of Bell inequalities maximally
violated by a family of partially entangled states – by changing a parameter
in the Bell expression, one changes the optimal state. Finally, we had the
opportunity to be part of an international collaboration led by the Quantum
Photonics group of the University of Bristol, UK, that developed a quantum
“chip” capable of generating and manipulating entangled bipartite qudit states
up to local dimension 15. Together, we were able to observe violations of our
Bell inequalities and perform self-testing and randomness certification.

Randomness from partially entangled states

Generating random numbers from the intrinsic randomness of quantum mechan-
ics is arguably one of the most attractive ideas in quantum information theory.
Pironio et al. showed that this task could be done in a device-independent way
in their work based on the CHSH Bell inequality [PAM+10]. In this frame-
work, an interesting question arises about the relation between randomness
and entanglement. As a first guess, it is natural to think that randomness
is a monotonous function of entanglement, where maximal randomness could
only be obtained when measuring maximally entangled states. This intuition
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was proven wrong in [AMP12], where the authors showed that one bit of local
randomness (i.e. when looking at the output of one user only) can be certified
from any partially entangled state of two qubits. When considering global ran-
domness (i.e. when looking at the outputs of both users), while two random
bits can be certified from the maximally entangled state [DPA13], the authors
of [AMP12] showed that arbitrarily close to this same quantity can be certified
from states with arbitrarily small entanglement. The case of reaching exactly
two random bits with all partially entangled states between these two extremal
cases was left as an open question, which we investigated.

Our contributions

We were able to show that two bits of global randomness can be certified from all
partially entangled state of two qubits. We followed two different approaches to
answer this question, and present both in this thesis. In the first one, we based
our work on a combination of two tilted CHSH inequalities from [AMP12] and
one CHSH inequality. The main challenge is that all three directions X, Y, and
Z of the Bloch sphere are used for this task, contrarily to the case of maximally
entangled states where a plane of the Bloch sphere suffices. We also considered
the question of local randomness certification using positive-operator valued
measurements (POVMs). In our second approach, we modified the Elegant Bell
inequality introduced in [Gis09] to obtain a tilted version optimal for partially
entangled states. Our second approach uses fewer measurement choices than
the first one, but works only for a range of partially entangled states.

Outline of the thesis

This thesis is organised as follows:

• Chapter 2 reviews the basic concepts and tools that are then used through-
out the thesis.

• Chapter 3 is devoted to the self-testing protocols that can be developed
based on the chained Bell inequalities and their applications to random-
ness certification. The chapter is based on [ŠASA16].

• Chapter 4 is dedicated to the construction and study of a family Bell
inequalities for maximally entangled states. Sections 4.1, 4.3 and 4.4
are based on [SAT+17] and [WPD+18]. Section 4.2 contains material to
be published, which is the result of a collaboration with Jordi Tura and
Remigiusz Augusiak.
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1. Objectives and main results

• Chapter 5 studies how randomness can be certified from partially en-
tangled states of two qubits. Section 5.1 is based on [WKB+19] and
Section 5.2 contains material to be published, which was obtained in col-
laboration with Erik Woodhead, Boris Bourdoncle and Antonio Aćın.
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2. Background

In this chapter, we introduce the concepts and tools that will be used in the
remainder of this thesis. We review the definitions of entanglement, nonlocality
and Bell inequalities, as well as methods for the characterisation of quantum
correlations. This leads us to the paradigm of device-independence, where the
success of information protocols is based on the violation of Bell inequalities,
which are central to this thesis. Expert readers may skip this chapter.

2.1. Entanglement

Entanglement has been a key concept of quantum physics for more than 80 years
- it was first used by Schrödinger following the publication of the famous EPR
paper in 1935 [EPR35]. The notion of entanglement captures the characteristic
of a composite system that cannot be thought of as two (or more) separated
subsytems - it has no classical counterpart and is considered to be one of the
“spooky” or counterintuitive features of quantum physics.

Formally, if we consider a system made of N subsystems described by a state
ρ acting on a Hilbert space H1⊗H2⊗ . . .⊗HN , it is said that ρ is separable if
it can be written as a convex combination of product states, i.e.

ρ =
∑

λ

pλρ
λ
1 ⊗ ρλ2 ⊗ . . .⊗ ρλN , (2.1)

where ρi acting on Hi is the quantum state of the ith subsystem, and all pλ
coefficients are non-negative pλ ≥ 0 and sum to one

∑
λ pλ = 1. If ρ cannot be

written as (2.1), then it is entangled.
An important feature of multi-particle entanglement is genuine multipartite

entanglement [GT09, BGLP11]. A quantum state is said to be genuine mul-
tipartite entangled when it cannot be decomposed as a convex combination of
biseparable states (states which are separable on at least one bipartition of the
parties). For example, in the case of three parties, a state ρbisep is said to be
biseparable if it admits the convex decomposition:

ρbisep =
∑

λ

p
12|3
λ ρλ1,2 ⊗ ρλ3 +

∑

λ

p
13|2
λ ρλ1,3 ⊗ ρλ2 +

∑

λ

p
23|1
λ ρλ2,3 ⊗ ρλ1 , (2.2)

9



2. Background

where the indices 1, 2, 3 denote the party or particle, and all coefficients are

non-negative p
ij|k
λ ≥ 0 and

∑
λ p

12|3
λ + p

13|2
λ + p

23|1
λ = 1. A state that cannot be

decomposed as (2.2) is genuine tripartite entangled.
There exist several entanglement measures to quantify the entanglement

present in a system. In the simplest case of pure bipartite states, the max-
imally entangled state is defined as:

|φ+
d 〉 =

1√
d

d−1∑

i=0

|ii〉. (2.3)

It is the only state that can be transformed deterministically to any other by
local operations assisted by classical communication (LOCC), and at the same
time, cannot be obtained from any other deterministically. For multipartite
states, there is no such state. Nevertheless, sets or classes of entanglement can
be defined (see for instance [dVSK13]), and different entanglement measures
will define different maximally entangled states [SSC+15]. Such a family of
multipartite states that are defined as maximally entangled according to several
measures are the Greenberger-Horne-Zeilinger (GHZ) states [GHZ89]. For three
parties the GHZ state simply reads: |GHZ〉 = (|000〉+|111〉)/

√
2. For N parties

and d dimensions, we consider the generalised GHZ state:

|GHZN,d〉 =
1√
d

d−1∑

i=0

|ii . . . i〉. (2.4)

The GHZ state is genuine multipartite entangled.

2.2. Nonlocality

Making measurements on entangled particles can yield very particular correl-
ations that cannot be explained classically. In 1964, a few decades after EPR,
John Bell designed a thought experiment to highlight this phenomenon called
nonlocality [Bel64]. The setup is often called Bell scenario or Bell experiment
[BCP+14].

2.2.1. Bell experiments and sets of correlations

In a Bell experiment, two parties A and B (often called Alice and Bob) receive
a share of a physical system from a source, on which they make measurements,
as pictured in Figure 2.1. To this end, they introduce inputs x, y ∈ {1, . . . ,m}
into their devices, and receive outputs a, b ∈ {0, . . . , d − 1}, respectively. For
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2.2. Nonlocality

Figure 2.1.: A bipartite Bell experiment. A source sends physical systems to
parties A and B, who perform measurements on their share of the
systems. To this end, they introduce inputs x and y in their devices,
which can be seen as black boxes, and receive ouputs a and b.

the Bell test to be valid, two assumptions must be respected: the parties cannot
communicate with each other (which can be enforced by making their meas-
urements spacelike separated events), and their inputs cannot be correlated to
the apparatus (which can be enforced by choosing them at random). There are
no further requirements on the users’ devices, which can be considered as black
boxes.

By repeating these measurements a large number of times, the users can
collect the statistics and estimate the conditional probabilities P (a, b|x, y) that
Alice and Bob obtain outcomes a and b upon performing the xth and yth meas-
urement, respectively. These probabilities are ordered into a vector, sometimes
called a behaviour :

~p := {P (a, b|x, y)}a,b,x,y ∈ R(md)2 . (2.5)

Importantly, the set of allowed vectors ~p varies depending on the physical theory
they obey, and different principles lead to different sets of correlations in R(md)2 ,
as pictured in Figure 2.2.

If the Bell experiment is well defined and Alice and Bob cannot communic-
ate with each other, the observed correlations should obey the no-signalling
principle. Mathematically :

d−1∑

b=0

P (ab|xy) =

d−1∑

b=0

P (ab|xy′) ∀a, x, y, y′

d−1∑

a=0

P (ab|xy) =

d−1∑

a=0

P (ab|x′y) ∀b, x, x′, y. (2.6)
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2. Background

Figure 2.2.: Representation of the sets of correlations ~p ∈ R(md)2 obtained from
a Bell experiment. The local set L as well as the no-signalling set
NS are convex polytopes, and the quantum set Q is simply convex.
Bell inequalities are hyperplanes: the continuous line represents a
facet Bell inequality, and the dashed line a tilted Bell inequality.

This means that P (a|x) = P (a|xy) = P (a|xy′), i.e. Alice’s local marginal
probabilites are independent of Bob’s input choice, and vice-versa. These cor-
relations form a convex polytope denoted NS [PR94].

Contained in this set is the set of quantum correlations Q, i.e. those obtained
by performing measurements on a quantum state, according to the Born rule.
It is formed by those ~p whose components can be written as

P (ab|xy) = tr (ρABMa|x ⊗Nb|y), (2.7)

where ρAB is a quantum state acting on a joint Hilbert space HA ⊗HB of un-
constrained dimension, and Ma|x and Nb|y are measurement operators defining,
respectively, Alice’s and Bob’s measurements. Ma|x denotes the operator yield-
ing outcome a given a measurement choice x on system A, and Nb|y denotes
the operator yielding outcome b given a measurement choice y on system B.

In general, the measurement operators are positive-operator valued measure
(POVM) elements satisfying Ma|x ≥ 0 and

∑d−1
a=0Ma|x = I, and similarly for

Bob’s operators. We can however assume that the measurement operators
are orthogonal projectors, by increasing the dimension of the Hilbert space
[NC11]. Their properties are then Ma|xMa′|x = δaa′Ma|x and

∑d−1
a=0Ma|x = I,

and similarly for Bob’s operators. Note that from the projection operators we
can build observables M =

∑
a=0maMa|x, with ma the eigenvalue associated

to projector Ma|x. Observables are usually defined as Hermitian, with real
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2.2. Nonlocality

eigenvalues ma (often chosen as −1 and +1 when d = 2). It is not always the
case in many-outcome scenarios, as we will see in Chapter 4 where we define
unitary but non-Hermitian observables with complex eigenvalues.

By increasing the dimension of the Hilbert space, it is also possible to purify
the state ρAB to a state |ψ〉AB so that the Born rule becomes P (ab|xy) =
〈ψ|Ma|x ⊗Nb|y|ψ〉.

Finally, if the Bell experiment can be explained by a local hidden variable
(LHV) model, ~p is said to be local and its elements can be written as

P (ab|xy) =

∫

Λ
dλq(λ)D(a|x, λ)D(b|y, λ), (2.8)

where the variables λ belong to a space Λ and q(λ) is their probability distribu-
tion. Here D(a|x, λ) and D(b|y, λ) are the local probability response functions
for Alice and Bob. They are denoted D as they can be taken to be deterministic
[Fin82], which means that they take values 0 or 1. This definition expresses that
the local outcomes of Alice and Bob can be fully explained by hidden variables
λ and their input x and y respectively, excluding any “influence” exerted by
the other party’s measurement. The local set L is a convex polytope.

Bell was the first to prove that not all quantum correlations admit an LHV
model, which establishes that L ⊂ Q. Also, there exist correlations that re-
spect the no-signalling principle but that are not quantum, such as the PR-box
[PR94]. This means that Q ⊂ NS. Correlations that do not belong to L, i.e.
cannot be written as (2.8) are called nonlocal.

2.2.2. Bell inequalities

Since L is a convex polytope, for each nonlocal behaviour ~p there exists a hyper-
plane separating it from L. Those hyperplanes correspond to Bell inequalities
[Fro81]. A Bell expression I is defined as a linear combination of the (md)2

joint probabilities:

I =
∑

abxy

kabxyP (ab|xy), (2.9)

where the coefficients kabxy are real numbers. It is sometimes more practical to
express Bell inequalities in terms of correlators or expectation values 〈AxBy〉
of Alice and Bob’s observables for measurements x and y, respectively. Defini-
tions of 〈AxBy〉 may vary according to the problem considered (see for instance
Chapter 4), but in general we have:

〈AxBy〉 =
∑

a,b

abP (ab|xy). (2.10)
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A Bell inequality I ≤ βC must be satisfied by all local correlations, where
βC = max~p∈L I is the classical bound, i.e. the maximum value of I achieved
by local probability distributions. The quantum or Tsirelson bound of I is
the maximum value βQ = max~p∈Q I of the Bell expression for quantum beha-
viours [Cir80]. A Bell expression I gives rise to a non-trivial Bell inequality,
i.e. one that is violated by quantum theory, if βC < βQ. Finally, one defines
the no-signalling bound βNS = max~p∈NS I as the maximum value of I over no-
signalling correlations. For most of the Bell inequalities that have been studied,
βNS > βQ > βC [Bel64, PR94, RTHH16].

As shown in Figure 2.2, Bell inequalities can correspond to facets of the local
polytope, which are faces of dimension dim(L)− 1. They are then called facet
or tight Bell inequalities. However, it is not necessary for Bell inequalities to be
facets. In the case where the coefficients of a Bell expression are modified such
that the resulting Bell inequality ceases to be tight, we refer to it as a tilted
Bell inequality.

2.2.3. Characterisation of quantum correlations and semidefinite
programming

The sets L and NS are polytopes, and can thus be described by a finite number
of extreme points or a finite number of linear inequalities. Deciding whether a
behaviour belongs to L or to NS thus amounts to finding all those vertices or
inequalities. Since Q is not a polytope, there is no such closed formulation to
determine whether a behaviour is quantum. How can we answer the question:
given a point ~p, do there exist a state ρAB and measurements Ma|x and Nb|y
that yield ~p through the Born rule?

This is a question that influences both foundations of quantum mechanics
and practical applications of nonlocality. On the fundamental side, there have
been attempts to characterise Q analytically, in particular to find information
principles which would allow to recover Q “from scratch” [PPK+09, NW10,
FSA+13, NGHA15]. In the remainder of this thesis, we will encounter several
examples of how the characterisation of Q is of practical interest in quantum
information protocols.

The Navascués-Pironio-Aćın hierarchy

Navascués, Pironio and Aćın introduced a hierarchy (often called the NPA
hierarchy) of necessary conditions that a quantum behaviour ~p ∈ Q must satisfy
[NPA07, NPA08]. Whenever correlations do not satisfy a condition of this
hierarchy, we can conclude that they lie outside the quantum set.
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Let us start from a behaviour ~p = {P (a, b|x, y)}a,b,x,y satisfying equation
(2.7). This means there exist a state ρAB and measurement operators Ma|x,
Nb|y (that we can take to be projectors since the dimension of the Hilbert space
is not constrained) that yield this behaviour. Instead of specifically ensuring
the product structure Ma|x ⊗ Nb|y, one can simply consider operators M̃a|x =

Ma|x ⊗ I and Ñb|y = I ⊗ Nb|y with the condition that these new operators on

Alice and Bob’s side should commute with each other [M̃a|x, Ñb|y] = 0. This
implies a first relaxation of the problem which defines a new set Qcomm that
contains the quantum set Q ⊆ Qcomm.

We can build a set S = {S1, . . . Sk} made of k different combinations of
operators M̃a|x, Ñb|y. For a given set S, a matrix Γ of size k × k can be
constructed, such that its elements are

Γij = tr
(
S†i Sjρ

)
. (2.11)

This matrix is Hermitian, positive semidefinite

Γ � 0, (2.12)

and must satisfy the following linear constraints (which reflect the properties
of operators M̃a|x and Ñb|y, for instance that M̃a|xM̃a′|x = δaa′M̃a|x, or the
commutation between Alice and Bob’s operators):

∑

i,j

cijΓij = 0 if
∑

i,j

cijS
†
i Sj = 0,

∑

i,j

cijΓij =
∑

ax,by

dax,byP (ab|xy) if
∑

i,j

cijS
†
i Sj =

∑

ax,by

dax,byMa|xNb|y.

(2.13)

These are the necessary conditions that form the NPA hierarchy: for a quantum
behaviour ~p, there always exists for each set S a matrix Γ satisfying the con-
straints above. This matrix is often called the moment matrix. For a given ~p
and set S, if no such matrix can be found, then ~p does not belong to Q. The
hierarchical structure resides in the choice of the set S. The first level of this
hierarchy means taking S(1) = {Ma|x} ∪ {Nb|y}, the set of projectors of Alice

and Bob. In general, we can define S(k) as the set of products of at most k
operators. This yields an infinity of conditions, and the hierarchy is complete:
a behaviour ~p satisfies every condition in the hierarchy if and only if it admits a
quantum representation. Note that a test performed at a given level is at least
as good as the previous ones.
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Figure 2.3.: Representation of the sets Qk of the NPA hierarchy in R
(md)2 that

approximate the quantum set Q.

As pictured in Figure 2.3, each condition in the hierarchy defines a set Qk in
R

(md)2 of all the behaviours compatible with the existence of the matrix Γ at
level k. We have that Q1 ⊇ Q2 ⊇ · · · ⊇ Qk · · · ⊇ Q. Each set Qk approximates
Q better than the previous one, and the hierarchy converges to the quantum
set1.

Semidefinite programming

What makes the NPA hierarchy particularly interesting is that the question of
whether a behaviour ~p belongs to a set Qk is in fact a semidefinite programme
(SDP). Semidefinite programming is a particular case of convex optimization,
and has the following standard form [BV04]:

minimize tr(CX)

subject to tr(AiX) = bi i = 1, ..., p

X � 0. (2.14)

Here, X,C,A1, ...Ap are all Hermitian n× n matrices. The name “semidefinite
program” comes from the constraint that the matrix X must be positive semi-
definite. The other constraints are linear. Membership to Qk indeed matches
the problem (2.14), as conditions (2.13) are linear, and condition (2.12) is char-
acteristic of semidefinite programming.

Coincidentally, there exist several methods and algorithms to solve SDPs
efficiently. Many problems involving the characterisation of quantum correl-

1Strictly speaking, Qk→∞ → Qcomm and it remains an open question whether Qcomm and Q
are the same [Tsi93].
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ations have thus been solved numerically through the NPA hierarchy. When
solving such problems in this thesis, we used programming languages Matlab
(with Yalmip toolbox [Lof04] and solvers Sedumi [SA18] and Mosek [ApS17])
and Python 3 (with Picos API [Pic18] and solver Mosek [ApS18], as well as the
Ncpol2sdpa library [Wit15]).

An example: the Tsirelson bound of a Bell inequality

One of the main applications of the NPA hierarchy consists in finding the
quantum or Tsirelson bound of a Bell inequality. Deriving this bound is a
hard task and was achieved analytically only for a few cases, since given a Bell
inequality, there is no procedure that guarantees finding its quantum bound.
Fortunately, using the NPA hierarchy, one can find upper bounds to βQ of a
given Bell expression I:

βQk = max~p I

s.t. ~p ∈ Qk. (2.15)

According to the level of the hierarchy used, we talk about upper bound βQk
of level k. If the set Qk coincides with Q at the point ~p considered, then the
obtained upper bound will be tight βQ = βQk . In practice, it is often the case
that the Tsirelson bound is found at a finite level, up to numerical precision.

Let us illustrate with a practical example, the Clauser-Horne-Shimony-Holt
(CHSH) inequality [CHSH69]:

ICHSH = 〈A1B1〉+ 〈A2B1〉+ 〈A1B2〉 − 〈A2B2〉 ≤ 2. (2.16)

This Bell inequality is often written using observables and correlators, thus we
keep this notation for simplicity (naturally, the problem can also be formulated
with projectors and probabilities). The correlators are here defined taking
a, b ∈ {−1,+1}:

〈AxBy〉 =
∑

ab

abP (ab|xy). (2.17)

In the particular case of CHSH, level 1 of the hierarchy is sufficient to obtain
the quantum bound 2

√
2, which was previously obtained analytically in [Cir80].

Level 1 means choosing S = {I, A1, A2, B1, B2}, and Γ is a 5× 5 matrix whose
entries are defined by expression (2.11):




tr (Iρ) tr (A1ρ) tr (A2ρ) tr (B1ρ) tr (B2ρ)
tr (A1ρ) tr (Iρ) tr (A1A2ρ) tr (A1B1ρ) tr (A1B2ρ)
tr (A2ρ) tr (A2A1ρ) tr (Iρ) tr (A2B1ρ) tr (A2B2ρ)
tr (B1ρ) tr (B1A1ρ) tr (B1A2ρ) tr (Iρ) tr (B1B2ρ)
tr (B2ρ) tr (B2A1ρ) tr (B2A2ρ) tr (B2B1ρ) tr (Iρ) .




(2.18)
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We simplified the expression above, using the hermiticity of observables Ai = A†i
and Bi = B†i , and their unitarity A2

i = B2
i = I. Problem (2.15) thus becomes:

max Γ2,4 + Γ2,5 + Γ3,4 − Γ3,5

s.t. Γ5×5 � 0,

Γii = 1 for i = 1, . . . 5, (2.19)

and yields βQ1 = 2
√

2 = βQ.

Tsirelson bounds and sum-of-squares decompositions

To conclude this section on quantum correlations, let us present a technique
to prove the quantum bound of a Bell inequality analytically. This technique
exploits the sum-of-squares (SOS) decompositions of operators, as explored in
[BP15].

For a positive semidefinite operator O, an SOS decomposition is a finite
collection of operators Pλ such that

O =
∑

λ

P †λPλ. (2.20)

When considering quantum behaviours, Bell expressions can be written as Bell
operators. Bell expression

∑
abxy kabxyP (ab|xy) translates straightforwardly to

its corresponding Bell operator B =
∑

abxy kabxyMa|x ⊗ Nb|y, where Ma|x and
Nb|y are the measurement operators of Alice and Bob as in (2.7). For the dis-
cussed purpose, the goal is to find SOS decomposition of shifted Bell operators
B̃ = βQI−B, where B is the Bell operator and βQ is the quantum bound of the
corresponding Bell expression. We expect that the operators Pλ will be poly-
nomials of Alice and Bob’s operators, and we say that the SOS decomposition
is of order k if these polynomials are at most of degree k. If B̃ can be written as
(2.20) it must be semidefinite positive, which proves that βQ provides an upper
bound to the Bell expression. Indeed, if B̃ � 0, then 〈ψ|B̃|ψ〉 ≥ 0 for any state
|ψ〉, which means that:

〈ψ|B|ψ〉 ≤ βQ. (2.21)

To show that the bound is tight and is thus the Tsirelson bound, one needs
only to supply a quantum realisation of that value.

2.2.4. Extension to the multipartite case

For simplicity, we have considered the case of only two parties so far, Alice and
Bob. In most of this thesis, the studied Bell scenarios are bipartite, except in
Chapter 4, where some of our results are extended to the multipartite case.
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All the concepts introduced in the previous subsections can be generalised to
many parties. Denoting ai the outcome of the ith party, and xi its input, the
behaviour resulting from an N -partite Bell experiment is:

~p = {P (a1, . . . , aN |x1, . . . , xN )}a1,...,aN ;x1,...,xN ∈ R(md)N . (2.22)

The no-signalling constraints become:
∑

ai

P (a1, . . . , ai, . . . , aN |x1, . . . , xi, . . . , xN ) =

∑

ai

P (a1, . . . , ai, . . . , aN |x1, . . . , x
′
i, . . . , xN ), (2.23)

for all xi, x
′
i and a1, . . . , ai−1, ai+1, . . . , aN and x1, . . . , xi−1, xi+1, . . . , xN and all

i. Quantum correlations are defined as:

P (~a|~x) = tr
(
ρN (Ma1

x1 ⊗ . . .⊗MaN
xN

)
)

(2.24)

for an N -partite quantum state ρN of generally unconstrained dimension and
measurement operators Mai

xi that define the measurement xi performed by the
ith party. Finally, correlations admitting an LHV model can be written as:

P (~a|~x) =

∫

Λ
dλq(λ)P (a1|x1, λ) . . . P (aN |xN , λ). (2.25)

The sets in R
(md)N retain their properties: they are all convex, and L and

NS are polytopes. The structure of multipartite correlations is however richer:
when N > 2, another set can be considered, consisting of correlations admitting
a hybrid local-nonlocal model. This means that across all bipartitions of the
parties, nonlocal correlations are allowed between the bipartitions, while inside
a bipartition the correlations are local. For three parties, this is written as:

P (a1a2a3|x1x2x3) =
3∑

k=1

rk

∫

Λ
dλqAiAj |Ak(λ)P (aiaj |xixjλ)P (ak|xkλ), (2.26)

where {i, j}∪{k} = {1, 2, 3} and rk ≥ 0,
∑
rk = 1. Correlations that cannot be

written in this way are called genuine multipartite nonlocal. For Bell inequalit-
ies, this defines an additional bound, which we call Svetlichny bound βS [Sve87],
and we have that βC ≤ βS . The concepts of genuine multipartite nonlocality
and genuine multipartite entanglement (see expression (2.2)) are connected, in
the sense that genuine multipartite entanglement is a necessary (but not suf-
ficient) condition to obtain genuine multipartite nonlocal correlations, in the
same way that entanglement is a necessary condition for nonlocality. Hence,
Svetlichny inequalities are detectors of genuine multipartite entanglement.
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2. Background

2.2.5. Experimental verifications

Since John Bell’s paper, nonlocality has been verified experimentally by a series
of experiments, starting in 1972 with Freedman and Clauser’s observation of
the violation of the CHSH inequality [FC72]. The experiment of Aspect and co-
workers in 1982 [ADR82] is often considered to be the first one to convincingly
demonstrate the existence of nonlocality. The biggest challenge in conducting
experimental Bell tests is the presence of loopholes, i.e. defects in the experiment
that allow for an LHV model to explain the violation of a Bell inequality. The
main ones are the detection efficiency, locality, and finite statistics loopholes
[BCP+14]. In 2015, three separate teams [HBD+15, GVW+15, SMSC+15] were
able to perform the first loophole-free Bell tests.

2.3. Device-independent protocols

The last decade has seen the development of a new approach for quantum
information protocols. This approach is based on Bell experiments, and is
called device-independent (DI).

2.3.1. The device-independent paradigm

The DI paradigm is motivated by the reduced number of assumptions in a
Bell scenario. The success of DI protocols rests on the observation of nonlocal
correlations, i.e. on the violation of a Bell inequality, and their validity depends
only on the few assumptions needed for the description of a Bell experiment
(see Section 2.2.1). Thus, the internal functioning of the users’ devices does not
need to be specified – they are just seen as “black boxes” producing a classical
output, given a classical input [BCP+14].

This makes the DI approach particularly interesting in a cryptographic con-
text, as security can still be proven even if the devices are not fully trusted.
It allows for imperfections in the implementation, contrarily to other quantum
based protocols in which the exact states and measurements are described,
which requires perfect experimental control.

The emergence of the DI paradigm has given a new role to nonlocality: it is
now a resource or certificate for quantum information processing, and not only a
foundational topic. Successful applications include DI randomness certification,
DI quantum key distribution, and self-testing, which we expose in the remainder
of this section.

20



2.3. Device-independent protocols

2.3.2. Randomness certification

Motivation

Random numbers are necessary for numerous and diverse applications, ranging
from cryptography and statistics to gambling and gaming [Rol15, Gen03, Gam].
There exist several approaches to generate random numbers. If the generation is
based on algorithms, then the numbers produced are called pseudorandom since
the process is deterministic [MN98]. Other generators are based on physical
phenomena, such as thermal noise in a resistor or atmospheric noise. Ultimately,
these phenomena also have a classical, i.e. deterministic explanation, hence the
numbers obtained are not “truly” random. A solution presents itself in the
results of quantum measurements, which contain intrinsic randomness. Various
quantum schemes were developed based on, for instance, the process of splitting
a beam of photons on a beamsplitter [JAW+00], and quantum random number
generators are now available commercially [IDQ].

It turns out that randomness can also be certified using quantum systems.
The certification of random numbers is a difficult question: one cannot unam-
biguously determine if a device is producing a random output just by looking
at this output. Statistical tests of randomness have been built for this purpose,
and the random numbers produced via many of the above mentioned methods
pass those tests. However, with nonlocality-based protocols, the certification
rests on the laws of quantum mechanics.

The intuition is the following: in a Bell scenario, the violation of a Bell
inequality implies that there must be some randomness in the outputs of the
experiment, and it turns out this amount of randomness can be quantified
as a function of the Bell inequality violation. The idea of nonlocality-based
randomness was first introduced by Colbeck in his PhD thesis supervised by
Kent [Col06, CK11] and was then formalised and quantified by Pironio et al.
in [PAM+10], which marked the beginning of DI randomness certification.

Formulation

Let Z be a random variable of alphabet Z associated to the probability dis-
tribution PZ . Its guessing probability corresponds to the best prediction one
could make for Z, and is thus defined as:

Pguess(Z) = maxz∈ZPZ(z). (2.27)

For a uniform distribution of alphabet size |Z| = d, the guessing probab-
ility is Pguess(Z) = 1/d, while for a distribution containing no randomness,
Pguess(Z) = 1. The min-entropy of Z is defined as Hmin(Z) = −log2Pguess(Z)
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2. Background

Figure 2.4.: An external observer or eavesdropper Eve is trying to guess Alice
and Bob’s outputs. Eve may have a system correlated to the users’
devices (which are also correlated with each other). Let us say she
wants to guess Alice’s outcome in particular: she makes measure-
ment z on her system, obtains outcome e, and succeeds when her
guess matches Alice’s outcome e = a. The maximal probability of
Eve making the right guess is the local guessing probability.

and is measured in bits. Since the guessing probability corresponds to the best
prediction, Hmin measures the “worst”, or minimal, entropy. It is equal to
0 when there is no randomness, while its maximal value for a distribution of
alphabet size d is Hmin(Z) = log2d.

In a Bell experiment, we consider the conditional guessing probability and
min-entropy of the outputs, for some given inputs x∗ and y∗. More precisely, we
denote the local guessing probability for Alice for a given input x∗ as P x

∗
guess =

maxaP (a|x∗), and similarly for Bob. The global guessing probability for Alice

and Bob for given inputs x∗, y∗ is denoted P x
∗,y∗

guess = maxabP (ab|x∗y∗). We
can see the guessing probability as a game in an adversarial setting, where an
eavesdropper Eve is trying to make the best possible guess about Alice and
Bob’s distributions. To do that, Eve should choose the outcome with highest
probability, which is exactly the guessing probability. Figure 2.4 represents the
guessing probability game.

The guessing probability can be quantified given the violation of a Bell in-
equality. Let us formulate the problem for the global guessing probability (the
local version ensues straightforwardly), for inputs x∗ and y∗:

P x
∗,y∗

guess = max~pmaxab P (ab|x∗y∗)
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such that I =
∑

abxy

kabxyP (ab|xy) = q,

~p ∈ Q, (2.28)

where q is the observed value of Bell expression I. The maximisation is done
over all possible behaviours ~p that belong to the quantum set and that could
give rise to value q of the Bell expression. This is the way the problem was
first formulated in [PAM+10]. The min-entropy as a function of the Bell in-
equality violation is however not necessarily convex –it was suggested to simply
take the convex hull when needed. Another solution is to consider all the
possible convex combinations over the outputs to define the guessing probab-
ility as

∑
αβ p

αβP (αβ|x∗y∗) with α, β = 0, . . . , d − 1 [BSS14]. By redefining

Pαβ(αβ|x∗y∗) = pαβP (αβ|x∗y∗), one has:

P x
∗,y∗

guess = max~pαβmaxαβ
∑

αβ

Pαβ(αβ|x∗y∗)

such that I =
∑

abxy

kabxyPαβ(ab|xy) = q,

∑

αβ

∑

ab

Pαβ(ab|xy) = 1,

~pαβ ∈ Q̃. (2.29)

The maximisation is done over vectors ~pαβ which are now unnormalised prob-
ability distributions from the redefinition of Pαβ. The behaviour ~pαβ must be
quantum, more precisely it must belong to the unnormalised quantum set Q̃.
The resulting function of the min-entropy versus the Bell inequality violation
is now convex. It turns out that this formulation also allows the certification
to be based on the full behaviour instead of a Bell inequality violation only
[NSPS14, BSS14], by changing one of the conditions:

P x
∗,y∗

guess = max~pαβmaxαβ
∑

αβ

Pαβ(αβ|x∗y∗)

such that
∑

αβ

~pαβ = ~̂p,

~pαβ ∈ Q̃, (2.30)

where ~̂p is the vector containing the observed frequencies P̂ (ab|xy) from the Bell
test. Using all the statistics yields at least as much randomness as considering
the violation of a Bell inequality only – variations of the problem including the
use of several Bell estimators were studied in [NSBSP18].
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2. Background

Figure 2.5.: Local min-entropy as a function of the value of the CHSH ex-
pression, obtained with the NPA hierarchy at level 2. The value
ICHSH = 2 is still compatible with an LHV model, hence no ran-
domness is guaranteed. The min-entropy increases monotonically
until the maximal quantum violation ICHSH = 2

√
2, where 1 bit

of local randomness is certified.

Problems (2.28), (2.29) and (2.30) can all be relaxed as SDPs using the NPA
hierarchy, and thus solved numerically. Indeed, conditions of the type ~p ∈ Q
can be relaxed using the NPA sets Qk. Let us show an example of the local
randomness certified by the CHSH inequality in Figure 2.5. Analytical bounds
on the randomness can also be found, as in [PAM+10], but were obtained only
in a few cases.

In this thesis, we focus on the certification of randomness as presented above –
however, this certification can be made in the context of a larger DI randomness
expansion protocol. The outline of such a protocol, as presented in [PM13],
would be :

• Bell experiment: Alice and Bob perform n measurements using their
devices, with inputs (x1, y1) . . . (xn, yn) and outputs (a1, b1) . . . (an, bn).

• Min-entropy evaluation: They estimate a Bell expression Î, and obtain
a bound on the min-entropy of their string of outputs as a function of the
Bell expression value: Hn

min ≥ f(Î , n). They can also obtain this bound

from the estimated behaviour ~̂p (i.e. from the full statistics).

• Randomness extraction: Alice and Bob process their string of outputs
into a smaller string, uniform and fully random with respect to an ad-
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2.3. Device-independent protocols

versary, and the length of the resulting string depends on the min-entropy
of their string of outputs Hn

min, estimated from the observed Bell violation.

State of the art

In the protocol we just outlined, different assumptions can be made to prove
security: for instance, whether the adversary possesses classical or quantum
side information. As argued in [PM13], it is reasonable to assume classical side
information when considering practical situations where the manufacturer of
the devices is trusted. In this case, the randomness extraction step is fully clas-
sical, but note that there exist extractors for quantum side information as well
[DPVR12]. In their recent work, Arnon-Friedman et al. present protocols that
are secure against quantum adversaries [AFDF+18]. Moreover, they address
the crucial i.i.d assumption that had often been used in DI protocols without
the existence of a result relating the general case to the i.i.d case. In their work,
they derive the so-called “entropy accumulation theorem” which characterises
the amount of entropy accumulated in a sequential process where each step
does not have to behave identically and independently. Then, they show how
this theorem can be applied to prove full security of DI protocols in the general
case (in the protocol above, to obtain bounds on the min-entropy of the whole
sequence of outputs Hn

min).

Note that the terminology randomness expansion is often used because the
protocol requires a small initial seed of randomness to generate the inputs to
the devices, since the first step of the protocol consists in performing a Bell
test. Then, a protocol is useful only if it produces more randomness than it
consumes, so its efficiency is measured by the ratio between the output string
and the initial seed (note that some randomness is also used in the extraction
step). It is however argued in [PM13] that in a practical DI scenario where
the manufacturer of the devices is considered honest, the initial seed does not
need to be private with respect to the adversary and can just consist of public
randomness –the terminology private randomness generation is then used.

When focusing on the quantification of the min-entropy without taking into
account the entire protocol (as we do in this thesis), the terminology random-
ness certification is often used. This approach consists in deriving min-entropy
bounds and studies the resources necessary for randomness. It answers ques-
tions such as: from which states is it possible to extract randomness and what
amount of it? For instance, from the singlet state |φ+〉 = (|00〉 + |11〉)/

√
2, 1

bit of local randomness can be certified using the CHSH inequality [PAM+10],
and 2 bits of global randomness by adding an extra measurement to the CHSH
setting, or by using the chained Bell inequalities [DPA13].
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2. Background

Figure 2.6.: One-time pad or Vernam cipher. Alice encodes her message using
a secret key that was pre-shared with Bob. She then sends the
encoded message on a public channel, which Bob decodes with the
same key. The scheme is only secure if the key is used once, hence
the name one-time pad.

Special scenarios have also been studied: for instance, Aćın et al. showed
that by applying POVMs, 2 bits of local randomness can be certified from the
singlet [APVW16]. Curchod et al. proved that by using sequential measure-
ments, any amount of local randomness can be certified from a pair of qubits
in a pure state [CJA+17]. In general, the relation between randomness, non-
locality and entanglement is not straightforward: for instance, Aćın, Massar
and Pironio showed that 1 bit of local randomness can be certified from any
partially entangled state of two qubits |ψθ〉 = cos(θ)|00〉 + sin(θ)|11〉, however
small the angle θ may be [AMP12].

2.3.3. Quantum key distribution

Motivation

A central problem in cryptography is the distribution of secret keys among
users. Distant users that possess pre-shared secret keys can use them to encrypt
the messages they send to each other. A simple encryption scheme, the one-time
pad or Vernam cipher, is explained in Figure 2.6. It turns out that quantum
systems can be employed for this task.

The intuition behind quantum key distribution (QKD) comes from the fol-
lowing fundamental observation: Eve cannot gain any information from the
qubits transmitted from Alice to Bob without disturbing their state [NC11].
QKD is a popular and relatively mature topic in quantum information theory –
it was performed over long distances in several experiments [SGG+02, LYL+17].
An example of a protocol is the famous BB84 [BB84].

All this is device dependent, but it turns out that QKD can also be done in
the DI framework [ABG+07, VV14, MA16]. In this section, we focus on a class
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of protocols studied in [MPA11], which we will be using in Chapter 4.

A class of QKD protocols

Let us give the outline of the protocol:

• Measurements: Alice and Bob make measurements on the copies of
bipartite quantum systems that are distributed to them. For a number
of rounds n, their inputs are set to fixed values, x = x∗ and y = y∗,
and the outcomes they obtain constitute their two versions of the raw
key ~a = (a1, a2, · · · , an) and ~b = (b1, b2, · · · , bn). For a small number of
rounds, which can be taken for instance as nest =

√
n, the inputs are

chosen uniformly at random so that they perform a proper Bell test.

• Bell estimation: The outputs of the nest rounds are used to estimate
the violation of a Bell inequality or the degree of nonlocality of their
correlations in general.

• Information reconciliation: Alice and Bob perform error-correction to
obtain identical secret keys, thus sacrificing part of their bits. This can
be done by Alice publishing a message about ~a which is then used by Bob
to correct his errors.

• Privacy amplification: Alice and Bob obtain a new, shorter key to
reduce the knowledge of Eve about their key even further. They can do
this by applying a two-universal hash function to their keys.

It is important to note that the type of the rounds in the first step is not
predetermined, so that an eavesdropper Eve cannot know if a given round will
be a key generation round or a Bell test round. The figure of merit for the
protocol is the asymptotic key generation rate K, which expresses the amount
of bits generated per round (in the ideal case, no finite size corrections). It can
be lower bounded as follows:

K ≥ I(Ax∗ : By∗)− χ(Ax∗ : E), (2.31)

This is the Devetak-Winter rate [DW05], where I(A : B) = H(A)−H(A|B) is
the mutual information between Alice and Bob, here for inputs x∗ and y∗. H
is the Shannon entropy, and χ(A : E) is the Holevo quantity between Alice and
the eavesdropper Eve, which can be expressed as χ(A : E) = H(A)−H(A|E).
Expression (2.31) thus becomesK ≥ H(Ax∗ |E)−H(Ax∗ |By∗) [Ren05]. A bound
on the key rate as a function of the CHSH inequality violation was found in
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[PAB+09]. This result is valid when restricting the eavesdropper to collective
attacks (i.e. assuming i.i.d actions of Eve on Alice and Bob’s systems). It was
recently extended to the general case by Arnon-Friedman et al. [AFDF+18].

Computing the conditional Shannon entropy H(A|E) as a function of a Bell
inequality violation is in general a difficult task, but this quantity can be lower-
bounded by the min-entropy Hmin(A|E), for which there exist numerical meth-
ods. This lower bound is not tight in general and some efficiency is likely to be
lost, but the key rate becomes easier to compute:

K ≥ Hx∗
min −H(Ax∗ |By∗). (2.32)

The first term is the local min-entropy of Alice for input x∗ and can be bounded
as a function of the Bell inequality violation estimated in the second step, as
explained in Section 2.3.2. It quantifies the amount of private randomness
in the string of outcomes of Alice, i.e. it expresses how secure the secret
key is with respect to an external observer. The second term is the con-
ditional Shannon entropy between Alice and Bob, defined as H(Ax∗ |By∗) =∑

a,b−P (ab|x∗y∗)logdP (a|bx∗y∗). It expresses the amount of bits necessary for
the error correction step [CK78], and is thus related to how well Alice and Bob’s
outcomes are correlated.

The key rate can be studied as a function of the visibility or the amount of
noise present in the quantum state used for the protocol. The critical visibility
is the value at which the key generation rate reaches 0: for instance it is close to
∼ 0.9 for the CHSH inequality [MPA11]. This makes the protocol comparable
to standard QKD in terms of noise robustness.

2.3.4. Self-testing

Motivation

Instead of using nonlocality to certify a quantity or property such as random-
ness, it is also possible to use the correlations produced by the black boxes of
a Bell test to certify what was exactly inside those black boxes: this is the aim
of self-testing. Self-testing was introduced by Mayers and Yao in [MY04], and
has received a lot of attention in the last few years.

Imagine a user who receives a “black box apparatus” that displays nonlocal
correlations from a provider. The provider claims that these boxes perform
some specific measurements on a given quantum state, and the user would like
to verify this claim and make sure the boxes work properly. This is particularly
relevant if the user does not trust the provider or does not want to rely on
the provider’s ability to prepare the devices, or simply wants to verify that
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the apparatus keeps functioning correctly over time. Self-testing is the DI
protocol the user has to follow to complete this goal. The self-tested states and
measurements can then be used for another quantum information protocol –
Mayers and Yao [MY04] suggested it for quantum key distribution.

Self-testing is also a goal in itself. On the foundational level, self-testing
gives us insight into the structure of the quantum set. Indeed, a nonlocal
behaviour ~p needs to demonstrate some form of “uniqueness” to be self-tested:
the correlations must point to a unique state and measurements (up to some
degrees of freedom as we will see below), otherwise they could also be explained
by a set of state and measurements which are not the ones that are supposed
to be self-tested. In particular, when considering a specific Bell inequality, its
maximal quantum violation should be unique for the Bell inequality to be useful
for self-testing. This is often the case, but not always (see [GKW+18]).

Definitions

Let us introduce the self-testing terminology. The reference experiment is the
specification of the black boxes (in our example, the claim made by the pro-
vider). It consists of the reference state |ψ〉 ∈ HA ⊗ HB and reference meas-
urements Ma|x, Nb|y . On the other hand, what is really happening inside the
black boxes is called the physical experiment. The physical state and measure-
ments are denoted {|ψ′〉,M ′a|x, N ′b|y}, with |ψ′〉 in a product Hilbert space of

unrestricted dimension H′A ⊗H′B.
The goal is to compare the reference and the physical experiment and certify

that they are physically equivalent. This notion of equivalence must allow for
local changes of basis, and also for additional degrees of freedom to be present
in the boxes. Mathematically, we require:

|ψ′〉 = UAA′ ⊗ UBB′ |ψ〉AB|ϕ〉A′B′
M ′a|x ⊗N ′b|y|ψ′〉 = UAA′ ⊗ UBB′

(
Ma|x ⊗Nb|y|ψ〉AB

)
|ϕ〉A′B′ , (2.33)

where UAA′ and UBB′ are arbitrary local unitaries and |ϕ〉A′B′ describe the local
states of the possible additional degrees of freedom of the physical experiment.
Here |ϕ〉A′B′ is often referred to as the junk state. The idea behind this “junk
state” is the following: it is not possible to have a single isolated qubit in
practice – if you measure the spin of the electron, the whole electron with its
wave function is also there. The physical state in the black boxes can thus
contain extra degrees of freedom, but those should be in tensor product with
the reference state.

The notion of equivalence we just described is contained in the concept of
local isometry, a map that preserves the inner product but does not have to

29



2. Background

preserve dimension, in our case a product isometry Φ = ΦA⊗ΦB : H′A⊗H′B →
HA ⊗HB ⊗H′A ⊗H′B. Thus, a self-testing protocol is successful if there exists
a local isometry relating the physical and reference experiments:

Φ
(
|ψ′〉

)
= |ψ〉|ϕ〉

Φ
(
M ′a|x ⊗N ′b|y|ψ′〉

)
=
(
Ma|x ⊗Nb|y|ψ〉

)
|ϕ〉. (2.34)

The existence of this isometry can be proven from the full statistics of a Bell
test, or from the maximal violation of a Bell inequality. The physical and
reference experiments must then yield the same vector of correlations ~p, or
the same maximal violation of a Bell inequality, which is a weaker necessary
condition.

In practice however, one does not expect to observe the exact maximal viol-
ation of a Bell inequality, or an exact behaviour. It turns out that self-testing
statements can still be formulated even if the observed correlations contain
some noise. For instance, if the observed value of the Bell expression is ε-close
to the maximal violation βQ, robust self-testing statements should be of the
form:

||Φ
(
|ψ′〉

)
− |ψ〉|ϕ〉|| ≤ f(ε)

||Φ
(
M ′a|x ⊗N ′b|y|ψ′〉

)
−
(
Ma|x ⊗Nb|y|ψ〉

)
|ϕ〉|| ≤ f ′(ε), (2.35)

where f and f ′ are functions of ε that vanish as ε→ 0.
Finally, note that we took the states to be pure and the measurements pro-

jective, as it is more convenient to work with those, and it is what is done in
most self-testing publications. This is possible because the dimension of the
Hilbert space in the black boxes is not constrained. To be more precise, if the
physical state ρA′B′ is not pure, then a purification |ψ′〉A′B′P can be taken where
HP is the purification space. The isometry should then be such that Φ ⊗ IP ,
with only the identity channel acting on the purification space.

An example: self-test based on the CHSH inequality

We present an example which will both clarify the above definitions and illus-
trate one of the methods to prove self-testing to the reader. This is the self-test
of the singlet based on the maximal violation of the CHSH inequality. The
reference experiment is the following:

|ψ〉 = |φ+〉 = |00〉+|11〉√
2

A1 = X, A2 = Z,

B1 = X+Z√
2
, B2 = X−Z√

2
, (2.36)

30



2.3. Device-independent protocols

|0〉A

|0〉B

|ψ′〉A′B′
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|ϕ〉A′B′ |ψ〉AB

Figure 2.7.: Swap gate isometry for self-testing. The Z ′A and Z ′B operations
are functions of the physical measurements, and should act like
controlled-Z gates on the physical state. Similarly, the X ′A and X ′B
should act like controlled-X gates. H is the standard one-qubit
Hadamard gate. At the end of the circuit, the reference state is
found in tensor product with the junk state.

where X and Z refer to the Pauli matrices, and the Ai and Bi are measurement
observables (the clearest notation for the CHSH case).

Figure 2.7 represents the self-testing isometry as a circuit. The circuit acts as
a swap gate between controlled ancillary systems and the state |ψ′〉 in the black
boxes: at the end of the circuit, the reference state has been “extracted” to the
ancillas and what is left in the boxes is the junk state |ϕ〉A′B′ . For the swap to
function, the gates in the circuit should act, respectively, as controlled-Z and
controlled-X gates on the physical state. This should happen perfectly in the
ideal case: hence, we can use the reference measurements as an intuition to
define the gates in terms of the physical measurements. We choose: Z ′A = A′2,
X ′A = A′1, Z ′B = (B′1 − B′2)/

√
2 and X ′B = (B′1 + B′2)/

√
2. One can verify that

the state after the action of the isometry is:

Φ
(
|ψ′〉

)
=

1

4

[
(I + Z ′A)(I + Z ′B)|ψ′〉A′B′ ⊗ |00〉AB

+X ′B(I + Z ′A)(I− Z ′B)|ψ′〉A′B′ ⊗ |01〉AB
+X ′A(I− Z ′A)(I + Z ′B)|ψ′〉A′B′ ⊗ |10〉AB
+X ′AX

′
B(I− Z ′A)(I− Z ′B)|ψ′〉A′B′ ⊗ |11〉AB

]
. (2.37)

We must show the right hand side of (2.37) is equal to the reference state in
tensor product with a junk state|ψ〉|ϕ〉. To this end we will use SOS decom-
positions (see equation (2.20)) of the shifted CHSH Bell operator B̃CHSH =
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2
√

2I− BCHSH . A decomposition of the first order can be written as:

B̃CHSH =
1√
2

[(
A1 −

B1 +B2√
2

)2

+

(
A2 −

B1 −B2√
2

)2
]
, (2.38)

where P 2
λ is used istead of P †λPλ since all the operators are hermitian. A second

order decomposition can be found:

B̃CHSH =
1

4
√

2

[
B2
CHSH + 2

(
A2
B1 +B2√

2
+A1

B1 −B2√
2

)2
]
. (2.39)

When the maximal violation 2
√

2 is observed, we have that 〈ψ′|B̃CHSH |ψ′〉 = 0.
Hence, each term of the SOS decomposition acting on the physical state must be
equal to 0 as well. More precisely, 〈ψ′|P †λPλ|ψ′〉 = 0, which implies Pλ|ψ′〉 = 0.
These relations can be used to prove that the isometry does indeed send the
physical state to the reference state in tensor product with a junk state. This is
a method that can be used for other any Bell operator, as long as appropriate
SOS decompositions can be found. From the decompositions (2.38) and (2.39),
the following relations can be found:

(Z ′A − Z ′B)|ψ′〉 = 0

(X ′A −X ′B)|ψ′〉 = 0

(X ′AZ
′
A + Z ′AX

′
A)|ψ′〉 = 0

(X ′BZ
′
B + Z ′BX

′
B)|ψ′〉 = 0. (2.40)

One can apply these relations to expression (2.37) and verify that they are
sufficient to prove that Φ (|ψ′〉) = |ψ〉|ϕ〉. This concludes the self-test of the

singlet state |ψ〉 = |φ+〉 = |00〉+|11〉√
2

. The self-test of the measurements can be

done in a similar fashion.

The SWAP method

It is not always easy to solve a self-testing problem analytically as in the CHSH
case. However, there exists a numerical approach called the SWAP method
which was proposed in [YVB+14, BNS+15] and which is based on the NPA
hierarchy. In particular, it allows one to lower bound the fidelity between the
reference and physical states given the violation of a Bell inequality. In more
precise terms, it solves an SDP which typically has the form:

F = min 〈ψ|ρswap|ψ〉 (2.41)

s.t. c ∈ Qk
I = q.
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2.3. Device-independent protocols

where ρswap is the physical state on which the swap operation S was applied,
and |ψ〉 is the reference state. This swapped state is defined as:

ρswap = trA′B′
[
Sρ′A′B′ ⊗ |00〉〈00|ABS†

]
(2.42)

with ρ′A′B′ = |ψ′〉〈ψ′|, and |00〉〈00|AB are ancillary states. The swap operation
S = SAA′ ⊗ SBB′ is composed of local unitaries SAA′ and SBB′ , so that the
operation S together with the introduction of the ancillary states constitute
the local isometry defining the self-test as in expression (2.34).

The idea is that S should be written in terms of the physical measurements
M ′a|x, N

′
b|y (proceeding, for instance as in Figure 2.7 and the CHSH example

provided). One can verify that the objective function F can then be written as a
sum of elements of an NPA moment matrix – for the corresponding scenario and
appropriate level of the hierarchy. This is expressed by the condition c ∈ Qk.
The letter q denotes the observed value of the Bell expression I. When the
maximal violation is observed, i.e. q = βQ, we expect to obtain a minimum
fidelity F = 1 (up to numerical precision) in order to conclude that the self-test
is successful. Note that it can happen that S is not a properly defined isometry
as it may contain some non-unitary operations: this can be fixed but introduces
extra conditions in problem (2.41) of the form ΓA � 0,ΓB � 0 where ΓA and
ΓB are so-called localising matrices.

To sum up, solving problem (2.41) amounts to finding the quantum state
that minimises its fidelity to the reference state while remaining compatible
with the experimentally observed correlations. Self-testing requires an almost
ideal experimental setting, as by being far from the maximal quantum violation
of a Bell inequality one will rapidly find orthogonal states yielding the same
observed statistics, thus rendering self-testing impossible. The SWAP method
provides however stronger bounds than most of the analytical methods.

State of the art

Mayers and Yao described in [MY04] a procedure to self-test the singlet state,
which was made robust by McKague et al. in [MYS12]. The SWAP method
gave better robustness bounds on this self-test, and also allowed for the self-test
of the partially entangled state of two qutrits |ψγ〉 = (|00〉+|11〉+|22〉)/(

√
2 + γ2),

with γ = (
√

11 −
√

3)/2, which is the state maximally violating the CGLMP
Bell inequality for 3 outcomes [CGL+02, ADGL02]. All partially entangled
two-qubit states were self-tested in [BP15] using the tilted CHSH inequalities
[AMP12]. Finally, it was shown by Coladangelo et al. [CGS17] that all pure
bipartite entangled states (of any dimension) can be self-tested.
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The multipartite case remains to be studied –an approach to self-test mul-
tipartite states by projection onto two systems was presented in [ŠCAA18].
Self-testing of graph states was achieved by McKague in [McK14]. The SWAP
method was also used for the self-test of some multipartite states, such as the
GHZ and W states [PVN14, WCY+14].

Self-testing scenarios that depart from the definitions given in this chapter
have also been studied. Kaniewski introduced in [Kan16] a new technique to
obtain self-testing bounds analytically which greatly improved the robustness
for the singlet and GHZ states. He also considered the question of measure-
ment self-testing, which is considerably less studied than state self-testing, in
[Kan17]. Bowles et al. used self-testing to construct a protocol that certi-
fies the entanglement of all bipartite entangled quantum states in a DI way
[BŠCA18a, BŠCA18b].

2.3.5. Experimental device-independent protocols

The implementation of DI quantum information protocols is not as mature as its
device dependent counterpart. On the one hand, there are the loopholes men-
tioned in Section 2.2.5. On the other hand, the presence of noise can quickly
affect the success of DI protocols: if the observed violation of the Bell inequality
is not high enough, the amount of randomness may be very small, or the key
generation rate null, depending on the robustness of the protocol. Reference
[MA16] contains a recent analysis of implementations for DIQKD, and proposals
to overcome those challenges. DI randomness certification was first performed
as a proof-of-concept in the initial paper of Pironio et al. [PAM+10]. Sev-
eral experiments followed: detection-loophole-free in [CMA+13], loophole-free
in [BKG+18], and using non-projective measurements in [GMG+18]. Refer-
ence [AM16] reviews approaches as well as implementations for DI randomness
certification.
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3. Chained Bell inequalities:
self-testing and randomness
certification

In this chapter we study how the chained Bell inequalities can be used to build
self-testing protocols. We mentioned in Chapter 2 that many of the known self-
tests are constructed from the maximal violation of a Bell inequality. Based on
geometrical considerations [FFW11, DPA13], one expects that there is a unique
way of producing the extremal correlations attaining the maximal quantum
violation of a Bell inequality, i.e. a unique state and measurements. This is not
always the case [GKW+18], but whenever it is, we say that the corresponding
Bell inequality is useful for self-testing. From a general perspective, it is an
interesting question to understand which Bell inequalities are useful for self-
testing and what are the states and measurements certified by them.

The chained Bell inequalities were introduced in [Pea70, BC90] for a bipartite
Bell scenario with an arbitrary number of measurements of two outputs each.
Their maximal quantum violation is given by the maximally entangled state
of two qubits, and measurements equally spaced on an equator of the Bloch
sphere [Weh06]. The singlet state has been self-tested through various schemes
[MY04, MYS12, MS13] – so, with our self-test, we provide an additional method.
The advantage of our approach over the previous results lies in the self-testing
of the measurements: in the limit of a large number of measurements, the
chained Bell inequalities allows us to self-test the entire plane of the Bloch
sphere spanned by the Pauli matrices X and Z. Our self-test also shows that
the maximal violation of the chained Bell inequalities is unique. This makes
them useful for randomness certification, following the results of [DPA13].

We start by introducing the chained Bell inequalities and we find SOS de-
compositions which allow us to prove self-testing for any number m of inputs.
We then study the robustness of the protocol, and show that randomness cer-
tification can be performed.
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3.1. The chained Bell inequalities

The chained Bell inequalities were introduced in [Pea70, BC90] to generalise
the well-known CHSH Bell inequality [CHSH69] to a larger number of meas-
urements per party, while keeping the number of outcomes to two. Keeping the
usual CHSH notation, let us denote by Ai and Bi (i = 1, . . . ,m) the measure-
ment observables of Alice and Bob, respectively, and assume that they all have
outcomes ±1. Then, the chained Bell inequality for m inputs reads

Imch =
m∑

i=1

(〈AiBi〉+ 〈Ai+1Bi〉) ≤ 2m− 2, (3.1)

where we denote Am+1 ≡ −A1. Notice that for m = 2 the above formula
reproduces the CHSH Bell inequality

〈A1B1〉+ 〈A2B1〉+ 〈A2B2〉 − 〈A1B2〉 ≤ 2. (3.2)

Importantly, in quantum theory the chained Bell inequality can be violated
by Alice and Bob if they perform measurements on an entangled quantum state.
The associated Bell operator is

Bm =

m∑

i=1

(Ai ⊗Bi +Ai+1 ⊗Bi) , (3.3)

where again Am+1 ≡ −A1. It was shown by Wehner [Weh06] that the Bell
operator is upper bounded by

Bmax
m = 2m cos

π

2m
. (3.4)

There exists a quantum realisation attaining this bound, hence Bmax
m is the

tight Tsirelson bound of the chained Bell inequality (3.1) βQ = Bmax
m . This

realisation is the following: the state is the maximally entangled state of two
qubits, or singlet,

|φ+〉 =
1√
2

(|00〉+ |11〉), (3.5)

and the measurements are

Ai = siX + ciZ, Bi = s′iX + c′iZ, (3.6)

where X and Z are the standard Pauli matrices and si = sinφi, ci = cosφi,
s′i = sinφ′i and c′i = cosφ′i, where φi = [(i − 1)π]/m and φ′i = [(2i − 1)π]/2m.
These are thus our reference state and measurements for the self-test, and the
measurements are represented in Figure 3.1.

36



3.2. Sum-of-squares decompositions

Figure 3.1.: Representation of the optimal measurements Ai and Bi on the XZ
plane of the Bloch sphere with i = 1, . . . ,m. The case of three
measurement choices (m = 3) is on the left, and the case of four
measurement choices (m = 4) is on the right. As m grows, the
distribution of measurements remains similar: A1 is always Z, and
X is given by Am/2+1 for even m and by B(m+1)/2 for odd m.

3.2. Sum-of-squares decompositions

We introduce SOS decompositions (see (2.20)) of the first and second order for
the shifted Bell operator B̃m = Bmax

m I − Bm. As seen in the CHSH example
of Section 2.3.4, these decompositions yield conditions on the state and meas-
urements maximally violating the Bell inequality which will allow us to prove
self-testing.

3.2.1. First order decompositions

Lemma 3.1. Let {|ψ′〉, A′i, B′i} be the state and the measurements maximally
violating the chained Bell inequality. Then, the corresponding shifted Bell op-
erator B̃m = Bmax

m I− Bm admits the following first-order SOS decomposition:

Bmax
m I− Bm = cos

π

2m

[
m∑

i=1

(
I−A′i ⊗

B′i +B′i−1

2 cos (π/2m)

)2

+
1

m

m∑

j=1

m−2∑

i=1

(
αiB

′
j + βiB

′
i+j + γiB

′
i+j+1

)2

 ,

(3.7)
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where we assume that B′m+j = −B′j and B′m = −B′0. The coefficients αi, βi,
and γi are given by

αi =
sin (π/m)

2 cos (π/2m)

√
1

sin (πi/m) sin [π(i+ 1)/m]
, (3.8)

βi =
−1

2 cos (π/2m)

√
sin [π(i+ 1)/m]

sin (πi/m)
, (3.9)

and

γi =
1

2 cos (π/2m)

√
sin (πi/m)

sin [π(i+ 1)/m]
= − 1

4βi cos2(π/2m)
(3.10)

with i = 1, . . . ,m− 2.

Let us clarify how the validity of SOS decomposition (3.7) can be verified.
First, one expands the first sum of the right-hand side and notices that apart
from the terms forming the shifted Bell operator Bmax

m I − Bm there are some
additional terms of the form B′kB

′
k+1. These are cancelled out by the same

terms appearing in the second sum on the right-hand side of equation (3.7).
The only trouble one has to face in reducing all the remaining terms to the
shifted Bell operator is to prove that the coefficient multiplying the identity
operator I is exactly 2m cos(π/2m). Let us now prove that this is indeed the
case. To this end, we write this coefficient as

∆ = cos
π

2m

[
m+

m

2 cos2(π/2m)
+ ∆α + ∆β + ∆γ

]
, (3.11)

where

∆ω =

m−2∑

i=1

ω2
i (3.12)

with ω = α, β, γ. Recall that the coefficients αi, βi and γi are defined in
equations (3.8), (3.9) and (3.10). Let us now compute each term ∆ω separately,
starting from ∆α. Exploiting equation (3.8) we can write

∆α = 1
4 cos2(π/2m)

∑m−2
i=1

[
sin2(π/m)

sin(iπ/m) sin[(i+1)π/m]

]

= sin(π/m)
4 cos2(π/2m)

∑m−2
i=1

[
cos(iπ/m)
sin(iπ/m) −

cos[(i+1)π/m]
sin[(i+1)π/m]

]

= sin(π/m)
4 cos2(π/2m)

∑m−2
i=1

[
cot
(
iπ
m

)
− cot

[
(i+1)π
m

]]
. (3.13)
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Now, we use the fact that

m−1∑

i=1

cot

(
πi

m

)
= 0, (3.14)

which implies that

m−2∑

i=1

cot(
iπ

m
) = cot(

π

m
),

m−2∑

i=1

cot(
(i+ 1)π

m
) = − cot(

π

m
). (3.15)

Substituting expression (3.15) into expression (3.13) one finds that

∆α =
cos(π/m)

2 cos2(π/2m)
. (3.16)

Let us then compute ∆β. Using equation (3.9), it can be explicitly written as

∆β =
1

4 cos2(π/2m)

[
m−2∑

i=1

sin[(i+ 1)π/m]

sin(iπ/m)

]
, (3.17)

which with the aid of the elementary trigonometric property that sin(x+ y) =
sinx cos y + cosx sin y, rewrites as

∆β =
1

4 cos2(π/2m)

[
(m− 2) cos(

π

m
) + sin(

π

m
)
m−2∑

i=1

cot(
iπ

m
)

]
. (3.18)

This, by virtue of (3.15), gives

∆β =
(m− 1) cos(π/m)

4 cos2(π/2m)
. (3.19)

Let us finally compute ∆γ . From (3.10) it can be written explicitly as

∆γ =
1

4 cos2(π/2m)

[
m−2∑

i=1

sin(iπ/m)

sin[(i+ 1)π/m]

]
. (3.20)

Writing then sin(iπ/m) = sin[(i+ 1− 1)π/m] and using again the above trigo-
nometric identity, one obtains

∆γ =
1

4 cos2(π/2m)

{
(m− 2) cos(

π

m
)− sin(

π

m
)

m−2∑

i=1

cot

[
(i+ 1)π

m

]}
, (3.21)
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which, taking into account equation (3.15), simplifies to

∆γ =
(m− 1) cos(π/m)

4 cos2(π/2m)
. (3.22)

Plugging expressions (3.16), (3.19) and (3.22) into (3.11) and using some ele-
mentary properties of the trigonometric functions, one eventually obtains ∆ =
2m cos(π/2m), as announced.

Note that the SOS decomposition (3.7) remains valid if in its second line we
omit the sum over j and fix j to be any number from {1, . . . ,m}. Also, the
transformations A′i → B′i and B′i → A′i+1 in the first parenthesis, and B′i → A′i
in the second one lead to a whole family of 2m SOS decompositions. Let us
finally mention that the above decomposition is a particular case of an SOS
decomposition for a more general Bell inequality which will be presented in
Chapter 4 together with an analytical method used to derive it. It turns out,
however, that none of these SOS decompositions is enough for self-testing. In
fact, we need an SOS decomposition of order 2, which we present below.

3.2.2. Second order decompositions

Lemma 3.2. Let {|ψ′〉, A′i, B′i} be the state and the measurements maximally
violating the chained Bell inequality. Then, the corresponding shifted Bell oper-
ator B̃m = Bmax

m I− Bm admits the following second-order SOS decomposition:

Bmax
m I− Bm

=
1

8m cos π
2m

{
2(Bmax

m I− Bm)2 +

m∑

i,j=1
j 6=i,i−1

[
A′i ⊗ (B′i +B′i−1)− (A′j +A′j+1)⊗B′j

]2

+
m∑

i=1

[(
A′i ⊗B′i −A′i+1 ⊗B′i+1

)2
+
(
A′i ⊗B′i−1 −A′i+1 ⊗B′i

)2]
}

+
1

2
cos
( π

2m

)m−2∑

i=1

[(
αiB

′
1 + βiB

′
i+1 + γiB

′
i+2

)2
+
(
αiA

′
1 + βiA

′
i+1 + γiA

′
i+2

)2]
,

(3.23)

where we used the notation A′m+1 = −A′1 and A′0 = −A′m, and the same for
Bob’s operators, and the αi, βi and γi are given in equations (3.8) – (3.10).

To verify the validity of the SOS decomposition (3.23) we follow a similar
argumentation as for the first order SOS. The first parenthesis on the right
hand side of (3.23) introduces terms that up to some multiplicative factors
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belong to the following set {I, A′iB′i, A′iB′i−1, A
′
iA
′
i+1, B

′
iB
′
i+1, A

′
iA
′
jB
′
kB
′
l}. The

terms A′iA
′
jB
′
kB
′
l are directly cancelled out by the same terms stemming from

the second and the third parenthesis. Then, the terms A′iA
′
i+1 and B′iB

′
i+1

enter with the coefficient 2/[8m cos(π/2m)] and, together with the same terms
resulting from the second parenthesis and entering with the coefficient (m −
2)/[8m cos(π/2m)], they are cancelled out by those resulting from the third line
of (3.23). The terms A′iB

′
i and A′iB

′
i−1 give rise to the shifted Bell operator,

and, finally, the identity operator I is multiplied by the following expression

1

8m cos(π/2m)

{[
8m2 cos2(

π

2m
) + 4m

]
+ 4m(m− 2) + 4m

}
+

m cos(π/m)

2 cos2(π/2m)

(3.24)

which after simplifications becomes 2m cos(π/2m). This is exactly the multi-
plicative factor of the identity operator in the shifted Bell operator.

As for the first order SOS, we can construct another SOS decomposition from
(3.23) by applying the following transformations to it: A′i → B′i in all terms,
B′i → A′i+1 in the curly brackets and B′i → A′i in the remaining terms.

3.3. Self-test: the ideal case

We consider the ideal case, i.e. when the black boxes reach the maximal
quantum violation of the Bell inequality, and leave the study of the robust-
ness of our protocol for the following section.

3.3.1. Outline

Let us start with a summary of our self-testing procedure. The calculations
in the remainder of this chapter are rather heavy, but they are complete and
self-contained – we thus invite the reader to either follow them line by line or
to settle for this outline, which focuses on the intuition and refers the reader to
the most important results.

• Isometry: First, we write down the self-testing isometry. To this end,
we choose the swap circuit often used in self-testing. In this circuit, some
of the gates should be functions of the measurements of Alice and Bob,
and should act as controlled-Z and controlled-X in the ideal case. To
determine these gates, we look for combinations of the reference measure-
ments that correspond to the Pauli matrices X and Z. Then, we let the
gates be functions the physical measurements. This way, we know that in
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3. Chained Bell inequalities: self-testing and randomness certification

the ideal case when the reference and physical measurements match, the
circuit will perform a proper swap operation.

• Relations from the SOS decompositions: Then, we derive a series
of lemmas that give statements about the physical measurements acting
on the physical state, based only on the fact that the maximal viola-
tion of the chained Bell inequalities is observed. This is possible to do
through SOS decompositions (we refer the reader to the CHSH example
of Section 2.3.4). In fact, we know the kind of relations that we need to
prove self-testing, as we know the output of the isometry, and we look
for such relations. For example, we must prove that the X and Z gates
anticommute when acting on the physical state. It is with these necessary
relations in mind that we derived our second-order SOS decompositions.
Thus, the reference experiment is our inspiration.

• Self-testing theorem: Finally, in Theorem 3.6, we apply all the lemmas
in order to relate the output of the isometry to the reference state and
measurements. This concludes the self-test.

The outline of Section 3.4 on robust self-testing is very similar. The spirit is the
same, but the calculations are rendered more complicated by the assumption
that the maximal violation is not perfectly attained.

3.3.2. The isometry

Our isometry is presented in Figure 3.2 – it is the swap gate introduced in
Figure 2.7 of Section 2.3.4, with some modifications. We need gates that act
like controlled-Z and controlled-X on the physical state. To this end we choose:

X ′A =





A′m/2+1, m even

A′(m+1)/2 +A′(m+3)/2

2 cos(π/2m)
, m odd

, Z ′A = A′1 (3.25)

and

X ′B =





B′m/2 +B′m/2+1

2 cos(π/2m)
, m even

B′(m+1)/2, m odd

, Z ′B =
B′1 −B′m

2 cos(π/2m)
. (3.26)

Clearly, as all observables A′i and B′i are Hermitian and have eigenvalues ±1, Z ′A
and X ′A for even m and X ′B for odd m are unitary. However, the operators X ′A
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|0〉A

|0〉B

|ψ′〉A′B′

H

H

Z ′
A

Z̃B

H

H

X̃A

X̃B

|ϕ〉A′B′ |φ+〉AB

Figure 3.2.: The self-testing isometry, which is the swap gate adapted to our
case. Since all the gates must be unitary, X̃A, X̃B and Z̃B are
regularised (when needed) versions of X ′A, X ′B and Z ′B respectively.
At the output of the circuit the ancillary qubits are in the desired
reference state |φ+〉. We denote this isometry Φ, more precisely we
denote by Φ the unitary operation on all the qubits Φ(|ψ′〉|00〉).

for odd m, X ′B for even m and Z ′B might not be unitary in general, which would
in turn make the swap gate circuit non-unitary. To overcome this problem we
exploit the polar decomposition which says that one can write any operator
M as M = U |M | = |M |V where U and V are some unitary operators and
|M | =

√
M †M . Then, if say Z ′B is of full rank we define Z̃B = Z ′B/|Z ′B|, while

if it is rank deficient, we replace its zero eigenvalues by one and then use the
above construction; in other words, we define Z̃B = (Z ′B + P )/|Z ′B + P | with
P denoting the projector onto the kernel of Z ′B. We proceed similarly for X ′B
and X ′A when needed, thus defining X̃B and X̃A.

3.3.3. Relations from the sum-of-squares decompositions

In this section, we derive important relations from the SOS decompositions
(3.7) and (3.23), which will be necessary to prove self-testing. First, we show
in Lemma 3.3 that for any i = 1, . . . ,m, the identities

A′i ⊗
B′i +B′i−1

2 cos(π/2m)
|ψ′〉 = |ψ′〉, A′i +A′i+1

2 cos(π/2m)
⊗Bi|ψ′〉 = |ψ′〉 (3.27)

are satisfied, which imply in particular that

X ′A|ψ′〉 = X ′B|ψ′〉, Z ′A|ψ′〉 = Z ′B|ψ′〉. (3.28)
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Then, we prove in Lemma 3.4 that the operators X ′A and Z ′A anticommute
when acting on the physical state:

{X ′A, Z ′A}|ψ′〉 = 0. (3.29)

Finally, we prove relations that are necessary for the self-testing of the meas-
urements in Lemma 3.5.

Let us note that although the tilded operators are in general different than
X ′A, X ′B and Z ′B, it turns out that they act in the same way when applied to
|ψ′〉. Let us take the case of even m, where X ′B and Z ′B have to be regularised.
We have that:

X̃B|ψ′〉 = X ′B|ψ′〉, Z̃B|ψ′〉 = Z ′B|ψ′〉. (3.30)

This result is very important in order to apply the relations derived from the
SOS about operators X ′B and Z ′B to operators X̃B and Z̃B appearing in the
isometry. To prove these relations, let ‖ · ‖ stand for the vector norm defined
as ‖|ψ〉‖ =

√
〈ψ|ψ〉. Then, the following reasoning applies [BP15]

‖(X̃B −X ′B)|ψ′〉‖ = ‖(I− X̃†BX ′B)|ψ′〉‖ = ‖(I− |X ′B|)|ψ′〉‖
= ‖(I− |X ′AX ′B|)|ψ′〉‖ ≤ ‖(I−X ′AX ′B)|ψ′〉‖ = 0,

(3.31)

where the first and the second equalities stem from the fact that X̃B is unitary
and from its definition, respectively. The third equality is a consequence of the
fact that X ′A is unitary which implies that |X ′AX ′B| = |X ′B|, and, finally, the
inequality and the last equality follow from the operator inequality M ≤ |M |
and equation (3.28).

Before we proceed let us make some remarks about notation. We use sym-
bol C when we write a property or equation that is valid for both Alice and
Bob’s operators C = A,B. Note also that in some of the following expressions
operators might be indexed by any integer (not just from the set {1, . . . ,m}),
and in those cases we use the notation Cm+i = −Ci and C−i = −Cm−i. The
intuition for this notation can be found on the Bloch sphere representation of
the measurements (3.1), where we can see that if one would draw the next
measurement after Cm, and note it as Cm+1 it would be parallel to −C1, and
similarly for any Cm+i.

Lemma 3.3. Let {|ψ′〉, A′i, B′i} be the pure state and the measurements real-
ising the maximal quantum violation of the chained Bell inequalities. Then, the
following identities are true:

A′i|ψ′〉 =
B′i +B′i−1

2 cos(π/2m)
|ψ′〉 ≡ B′i−1,i|ψ′〉 (3.32)
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for i = 1, . . . ,m,
(αiCj + βiCi+j + γiCi+j+1)|ψ′〉 = 0 (3.33)

for i = 1, . . . ,m− 2, j = 1, . . . ,m and C = A′, B′, and

(A′iB
′
i −A′i+1B

′
i+1)|ψ′〉 = 0 (3.34)

(A′iB
′
i−1 −A′i+1B

′
i)|ψ′〉 = 0 (3.35)

for i = 1, . . . ,m.

Proof. From the fact that |ψ′〉 and A′i and B′i violate the chained Bell inequal-
ity maximally it follows that 〈ψ|(Bmax

m I − Bm)|ψ′〉 = 0. Now, the first SOS
decomposition (3.7) for the operator Bmax

m I−Bm implies equations (3.32) and
(3.33), while the second one implies equations (3.34) and (3.35)

Lemma 3.4. Let {|ψ′〉, A′i, B′i} be the pure state and the measurements real-
ising the maximal quantum violation of the chained Bell inequalities. Then, the
following relations are true:

{A′1, A′m
2

+1}|ψ′〉 = 0 (3.36)

for even m, and
{A′1, A′m+1

2

+A′m+3
2

}|ψ′〉 = 0 (3.37)

for odd m.

Proof. We prove the even and odd m cases separately.
Even number of measurements. Let us begin by noting that by setting

j = k − i with k = 1, . . . ,m in (3.33), one obtains

(αiCk−i + βiCk + γiCk+1)|ψ′〉 = 0. (3.38)

On the other hand, by shifting i → m − i − 1 and setting j = k + i + 1, we
arrive at

(αm−i−1Ck+i+1 + βm−i−1Ck+m + γm−i−1Ck+m+1)|ψ′〉 = 0, (3.39)

which, by noting that Ck+m = −Ck for any k = 1, . . . ,m− 1, αm−i−1 = αi and
βm−i−1 = −γi for any i = 1, . . . ,m− 2, can further be simplified to

(αiCk+i+1 + γiCk + βiCk+1)|ψ′〉 = 0. (3.40)

After summing equations (3.38) and (3.40) and performing some straightfor-
ward manipulations we finally obtain

(Ck−i + Ck+i+1)|ψ′〉 = ξiCk,k+1|ψ′〉, (3.41)
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3. Chained Bell inequalities: self-testing and randomness certification

where we denoted ξi = 2 cos[(2i+1)π/2m] and Ck,k+1 = (Ck+Ck+1)/[2 cos(π/2m)].
Finally, setting k = 0 in equation (3.40) and k = m in equation (3.38) and sub-
tracting the resulting equations one from another we have

(Ci+1 − Cm−i)|ψ′〉 = ξiC1,−m|ψ′〉, (3.42)

where we have denoted C1,−m = (C1 − Cm)/[2 cos(π/2m)].
Having all these auxiliary identities at hand, we are now in position to prove

equation (3.36). To this end, we first rewrite its left-hand side as

(A′1A
′
m
2

+1 +A′m
2

+1A
′
1)|ψ′〉 =

(
A′1B

′
m
2
,m
2

+1 +A′m
2

+1B
′
1,−m

)
|ψ′〉

=
1

ξm
2
−1

[
A′1(B′1 +B′m) +A′m

2
+1(B′m

2
−B′m

2
+1)
]
|ψ′〉,

(3.43)

where the first equality was obtained with the aid of the identity (3.32) for
i = m/2 + 1, while the second one follows from equations (3.41) and (3.42).
Then, the formulas (3.34) and (3.35) imply that

(A′1B
′
1 −A′j+1B

′
j+1)|ψ′〉 =

j∑

i=1

(A′iB
′
i −A′i+1B

′
i+1)|ψ′〉 = 0 (3.44)

and

(A′1B
′
m +A′j+1B

′
j)|ψ′〉 =

j∑

i=1

(A′iB
′
i−1 −A′i+1B

′
i)|ψ′〉 = 0 (3.45)

hold for any j = 1, . . . ,m. After setting j = m/2 in the latter identities and
inserting them into (3.43) we eventually obtain (3.36).

Odd number of measurements. Before passing to the anticommutation
relation (3.37), we need some auxiliary relations for the measurements A′i and
B′i. In order to derive the first one, we shift k → k − 1 in equation (3.40) and
add the resulting equation to equation (3.38), obtaining

(Ck+i + Ck−i)|ψ′〉 = −2
βi
αi
Ck −

γi
αi

(Ck−1 + Ck+1)|ψ′〉. (3.46)

Then, setting i = 1 and shifting j → j − 1 in (3.33) we arrive at

(Cj+1 + Cj−1)|ψ′〉 = 2 cos
( π
m

)
Cj |ψ′〉, (3.47)

which after being plugged into expression (3.46) gives rise to the following
identity

(Ck+i + Ck−i)|ψ′〉 = ζiCk|ψ′〉, (3.48)
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where ζi = 2 cos(iπ/m).
Then, by setting j = (m − 1)/2 in equations (3.44) and (3.45) and adding

the resulting equations we obtain

A′1(B′1 +B′m)|ψ′〉 = A′m+1
2

(B′m+1
2

−B′m−1
2

)|ψ′〉, (3.49)

which can be further simplified by using equation (3.48) with i = (m − 1)/2
and k = m, giving

A′1(B′1 +B′m)|ψ′〉 = ζm−1
2
A′m+1

2

B′m|ψ′〉. (3.50)

Analogously, by setting j = (m+1)/2 in equations (3.44) and (3.45) and adding
them, one obtains

A′1(B′1 +B′m)|ψ′〉 = A′m+3
2

(B′m+3
2

−B′m+1
2

)|ψ′〉, (3.51)

which, after application of equation (3.48) with i = (m− 1)/2 and k = m+ 1,
further simplifies to

A′1(B′1 +B′m)|ψ′〉 = −ζm−1
2
A′m+3

2

B′1|ψ′〉. (3.52)

Now, we can rewrite the left-hand side of the anticommutation relation (3.37)
as
{
A′1, A

′
m+1

2

+A′m+3
2

}
|ψ′〉 = 1

2 cos π
2m

[
A′1(B′m−1

2

+ 2B′m+1
2

+B′m+3
2

) +

(A′m+1
2

+Am+3
′ 2)(B′1 −B′m)

]
|ψ′〉

= 1
2 cos π

2m

[
A′1

(
B′m−1

2

+B′m+3
2

+ 2
B′1 +B′m
ζ(m−1)/2

)
+

(A′m+1
2

+A′m+3
2

)(B′1 −B′m)
]
|ψ′〉,

(3.53)

where first equality stems from equation (3.32) and to obtain the second one
we have utilised equation (3.48) with i = (m− 1)/2 and k = (m+ 1)/2. Then,
expressions (3.50) and (3.52) lead us to

{
A′1, A

′
m+1

2

+A′m+3
2

}
|ψ′〉 =

1

2 cos (π/2m)

(
A′1B

′
m−1

2

+A′1B
′
m+3

2

+

A′m+1
2

B′1 −A′m+3
2

B′m

)
|ψ′〉. (3.54)
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Exploiting once more (3.48) one obtains the following equalities

A′1|ψ′〉 =
1

ζm−1
2

(A′m+1
2

−A′m+3
2

)|ψ′〉, B′1|ψ′〉 =
1

ζm−1
2

(B′m+1
2

−B′m+3
2

)|ψ′〉,

(3.55)
and

B′m|ψ′〉 =
1

ζm−1
2

(B′m+1
2

−B′m−1
2

)|ψ′〉, (3.56)

whose application to equation (3.54) allows one to rewrite it as

{
A′1, A

′
m+1

2

+A′m+3
2

}
|ψ′〉 =

1

2ζm−1
2

cos π
2m

(
A′m+1

2

B′m−1
2

−A′m+3
2

B′m+1
2

+A′m+1
2

B′m+1
2

−A′m+3
2

B′m+3
2

)
|ψ′〉.

(3.57)

To complete the proof it suffices to make use of the equalities (3.34) and (3.35)
with j = (m+ 1)/2.

Lemma 3.5. Let {|ψ′〉, A′i, B′i} realise the maximal quantum violation of the
chained Bell inequality. Then, for even m:

A′i|ψ′〉 =
(
siA
′
m
2

+1 + ciA
′
1

)
|ψ′〉, (3.58)

B′i|ψ′〉 =
(
s′iB

′
m
2
,m
2

+1 + c′iB
′
1,−m

)
|ψ′〉, (3.59)

while for odd m:

A′i|ψ′〉 =
{
siA
′
m+1

2
,m+3

2

+ ciA
′
1

}
|ψ′〉, (3.60)

B′i|ψ′〉 =
{
s′iB

′
m+1

2

+ c′iB
′
1,−m

}
|ψ′〉, (3.61)

are valid for any i = 1, . . . ,m. Symbols si, ci, s
′
i and c′i are defined in equation

(3.6).

Proof. Even number of measurements. By setting k = 1+m/2 and shifting
i→ 1− i+m/2 in equation (3.48) one obtains

(Ci − C2−i)|ψ′〉 = ζm
2

+1−iCm
2

+1|ψ′〉. (3.62)

for i = 1, . . . ,m/2, where we have additionally exploited the fact that Cm+i =
−Ci and C−i = −Cm−i for any i. To prove equation (3.62) for i = m/2 +
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1, . . . ,m/2 one has to use (3.38) but coefficients αi, βi and γi are not defined
for i < 0. However, once (3.62) is derived for i < m/2 + 1, it is easy to note
that the cases when i > m/2 + 1 are already contained in the proof. This is
due to the fact that any expression obtained when i > m/2 + 1 is the same as
the expression proved for m+ 2− i < m/2 + 1.
On the other hand, fixing k = 1 and shifting i→ i−1 in (3.48), one can deduce
the following equality

(Ci + C2−i)|ψ′〉 = ζi−1C1|ψ′〉, (3.63)

with i = 2, . . .m. For i = 1, the equation is trivial. Adding equations (3.62)
and (3.63) and recalling that ζi = 2 cos(iπ/m) one obtains equation (3.58).

In order to prove the second identity (3.59), we fix k = m/2 and shift i →
m/2− i in equation (3.41) which leads us to

(Ci + Cm−i+1)|ψ′〉 = ξm
2
−iCm

2
,m
2

+1|ψ′〉. (3.64)

This equation is satisfied for all i = 1, . . . ,m, but it could formally be derived
only when i < m/2. The cases i = m/2,m/2+1 are trivially satisfied. Similarly
to the discussion following equation (3.62) it is easy to check that for every
i > m/2 + 1 equation (3.64) is the same as for the case m+ 1− i < m/2, which
has been formally proven.

Now we note that by shifting i → i − 1 in (3.42), one obtains the following
equation

(Ci − Cm−i+1)|ψ′〉 = ξi−1C1,−m|ψ′〉, (3.65)

which when combined with (3.64) directly implies (3.59), completing the proof.
Odd number of measurements. First in equation (3.41) we fix k =

(m+ 1)/2 and shift i→ (m+ 1)/2− i to get

(Ci + Cm+2−i)|ψ′〉 = ξm+1
2
−iCm+1

2
,m+3

2
|ψ′〉. (3.66)

This equation is consistent for all i = 1, . . . ,m, with the clarification exactly
the same as in the discussion following equation (3.64). Next step is to plug
k = 1 and i→ i− 1 in (3.48) which together with C2−i = −Cm+2−i gives

(Ci − Cm+2−i)|ψ′〉 = ζi−1C1|ψ′〉 (3.67)

By adding equations (3.66) and (3.67) and using some elementary trigonometric
identities we obtain (3.60). We proceed by fixing k = (m + 1)/2 and shifting
i→ (m+ 1)/2− i in (3.48) to obtain

(Ci + Cm+1−i)|ψ′〉 = ζm+1
2
−iCm+1

2
|ψ′〉, (3.68)
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satisfied for all i = 1, . . . ,m in the same way as equation (3.62). To get (3.61)
and complete the proof to equation (3.68) we add

(Ci − Cm+1−i)|ψ′〉 = ξi−1C1,−m|ψ′〉 (3.69)

which is obtained by shifting i→ i− 1 in (3.42).

3.3.4. Self-test

Equipped with the results of Section 3.3.3, we are ready to prove our first main
result: self-testing in the ideal case. We prove it for even m for clarity (the
proof for odd m can be done in an analogous way).

Theorem 3.6. Let {|ψ′〉, A′i, B′i} be the state and the measurements maximally
violating the chained Bell inequality (3.1). Then the unitary operation Φ defined
in Figure 3.2 is such that for any pair i, j = 1, . . . ,m

Φ(A′iB
′
j |ψ′〉|00〉) = |ϕ〉AiBj |φ+〉, (3.70)

Φ(A′i|ψ′〉|00〉) = |ϕ〉Ai|φ+〉, Φ(B′j |ψ′〉|00〉) = |ϕ〉Bj |φ+〉, (3.71)

Φ(|ψ′〉|00〉) = |ϕ〉|φ+〉, (3.72)

where |ϕ〉 is the junk state, |φ+〉 is the two-qubit maximally entangled state, and
Ai and Bi are given by expression (3.6).

Proof. Let us first consider equation (3.70). Owing to the linearity of Φ in both
Alice’s and Bob’s measurements and to the fact that for even m (see Lemma
3.5 in 3.3.3):

A′i|ψ′〉 =
(
siX

′
A + ciZ

′
A

)
|ψ′〉, B′i|ψ′〉 =

(
s′iX

′
B + c′iZ

′
B

)
|ψ′〉, (3.73)

the left-hand side of (3.70) can be rewritten as

Φ(A′iB
′
j |ψ′〉|00〉) = sis

′
jΦ(X ′AX

′
B|ψ′〉|00〉) + sic

′
jΦ(X ′AZ

′
B|ψ′〉|00〉)

+cis
′
jΦ(Z ′AX

′
B|ψ′〉|00〉) + cic

′
jΦ(Z ′AZ

′
B|ψ′〉|00〉).

(3.74)

Then, it follows from equations (3.28) and (3.29) that X ′AX
′
B|ψ′〉 = Z ′AZ

′
B|ψ′〉 =

|ψ′〉 and X ′AZ
′
B|ψ′〉 = −Z ′AX ′B|ψ′〉, and therefore we only need to check how

the map Φ applies to |ψ′〉 and X ′AZ
′
B|ψ′〉. In the first case, one has

Φ(|ψ′〉|00〉) =
1

4

[
(I + Z ′A)(I + Z̃B)|ψ′〉|00〉+X ′A(I− Z ′A)(I + Z̃B)|ψ′〉|10〉

+X̃B(I + Z ′A)(I− Z̃B)|ψ′〉|01〉+X ′AX̃B(I− Z ′A)(I− Z̃B)|ψ′〉|11〉
]
.

(3.75)
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Exploiting equations (3.28) and (3.30) to convert Z̃B to Z ′B and then Z ′B to
Z ′A, and the fact that Z ′A has eigenvalues ±1, meaning that (I + Z ′A) and
(I− Z ′A) are projectors onto orthogonal subspaces, one finds that the terms in
expression (3.75) containing the ancillary vectors |01〉 and |10〉 simply vanish,
and the whole expression simplifies to

Φ(|ψ′〉|00〉) =
1

4

[
(I + Z ′A)2|ψ′〉|00〉+X ′AX̃B(I− Z ′A)2|ψ′〉|11〉

]
. (3.76)

Using then the fact that (I± Z ′A)2 = 2(I± Z ′A), the anticommutation relation
(3.29) and the identities (3.28) and (3.30), we finally obtain

Φ(|ψ′〉|00〉) = |ϕ〉|φ+〉 (3.77)

with |ϕ〉 = (1/2
√

2)(I + Z ′A)2|ψ′〉, which is exactly (3.72).
In the second case, i.e., that of Φ(X ′AZ

′
B|ψ′〉|00〉), one has

Φ(X ′AZ
′
B|ψ′〉|00〉) =

1

4

[
(I + Z ′A)(I + Z̃B)X ′AZ

′
B|ψ′〉|00〉

+X ′A(I− Z ′A)(I + Z̃B)X ′AZ
′
B|ψ′〉|10〉

+X̃B(I + Z ′A)(I− Z̃B)X ′AZ
′
B|ψ′〉|01〉

+X ′AX̃B(I− Z ′A)(I− Z̃B)X ′AZ
′
B|ψ′〉|11〉

]
.

(3.78)

Exploiting the properties (3.28) and (3.30), the anticommutation relation (3.29),
and the fact that (I+Z ′A)(I−Z ′A) = 0, one can prove that the terms in (3.78)
containing kets |00〉 and |11〉 are zero, and the whole expression reduces to

Φ(X ′AZ
′
B|ψ′〉|00〉) =

1

4

[
(I + Z ′A)2|ψ′〉|10〉+X ′AZ

′
AX̃B(I− Z ′A)2|ψ′〉|01〉

]
.

(3.79)

By applying then equation (3.28) and the anticommutation relation (3.29) in
the second term of (3.79), one can rewrite it as

Φ(X ′AZ
′
B|ψ′〉|00〉) = |ϕ〉XAZB|φ+〉. (3.80)

After plugging equations (3.77) and (3.80) into equation (3.74) and using the
fact that the Pauli matrices X and Z anticommute and satisfy XAXB|φ+〉 =
ZAZB|φ+〉 = |φ+〉, we arrive at

Φ(A′iB
′
j |ψ′〉|00〉) = sis

′
i|ϕ〉XAXB|φ+〉+ sic

′
i|ϕ〉XAZB|φ+〉

+cis
′
i|ϕ〉ZAXB|φ+〉+ cic

′
i|ϕ〉ZAZB|φ+〉, (3.81)
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which by virtue of the formulas (3.6) is exactly equation (3.70).

Let us now prove equations (3.71). From the the linearity of Φ and equation
(3.73), we get

Φ(A′i|ψ′〉|00〉) = siΦ(X ′A|ψ′〉|00〉) + ciΦ(Z ′A|ψ′〉|00〉).

Following the same steps as above, one can prove the following relations

Φ(X ′A|ψ′〉|00〉) = |ϕ〉XA|φ+〉, Φ(Z ′A|ψ′〉|00〉) = |ϕ〉ZA|φ+〉, (3.82)

which when plugged into (3.82) leads, in virtue of (3.73), to the first part of
expression (3.71). The second part of the same equation can be proven in
exactly the same way.

Corollary. An important corollary following directly from Theorem 3.6 is that
the probability distribution {P (a, b|i, j)} with

P (a, b|i, j) = 〈ψ′|Ma|i ⊗Nb|j |ψ′〉 (3.83)

being the conditional probability of obtaining the outcomes a and b upon per-
forming the ith and jth measurement, respectively, is unique. In other words,
there is no other probability distribution maximally violating inequality (3.1)
different than the one above.

Let us also notice that in order to prove the uniqueness of correlations max-
imally violating the chained Bell inequality one needs only the conditions (3.71)
and (3.72); the conditions (3.70) are superfluous. This is because

〈ψ′|A′i ⊗B′j |ψ′〉 = (〈00|〈ψ′|A′i)Φ†Φ(B′j |ψ′〉|00〉)
= 〈φ+|Ai ⊗Bj |φ+〉, (3.84)

where the first equality follows from the fact that Φ is unitary and and second
from equations (3.71) and (3.72).

3.4. Robustness

For practical purposes, it is important to estimate the robustness of self-testing
procedures, since it is impossible to actually reach the maximal violation of
a Bell inequality in any realistic situation, due to experimental imperfections.
One expects, however, self-testing procedures to tolerate some deviations from
the ideal case, that is, if the violation of the given Bell inequality is close to its
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maximum quantum value, the state producing the violation must be close to
the state maximally violating this Bell inequality.

Here we study how robust is the above self-testing procedure based on the
chained Bell inequalities. Assuming that the physical state |ψ′〉 and the physical
measurements A′i and B′i violate the chained Bell inequality by Bmax

m − ε with
some sufficiently small ε > 0, we estimate the distance between |ψ′〉 and the
reference state, and how this distance is affected when physical measurements
are applied to it.

3.4.1. Approximate relations from the sum-of-squares
decompositions

Let us begin by noticing that now 〈ψ′|(Bmax
m I−Bm)|ψ′〉 = ε, and therefore the

exact relations (3.28), (3.29) and (3.30) do not hold anymore. In this section,
we derive their approximate versions. First, we show in Lemma 3.7 that

‖(X ′A −X ′B)|ψ′〉‖ ≤
√
ε1(m), ‖(Z ′A − Z ′B)|ψ′〉‖ ≤

√
ε1(m), (3.85)

where ε1 = ε/ cos(π/2m). Clearly, for any m, ε1(m) ≤
√

2 and ε1(m) → 0 for
ε → 0. Then, we find the following approximate anticommutation relations in
Lemma 3.8:

‖{X ′A, Z ′A}|ψ′〉‖ ≤
√

2ε1(m) +
1

ξm/2−1

(
4
√
ε1(m)

αm/2−1
+m

√
2ε2(m)

)
= ωev(m),

(3.86)
where ξi = 2 cos(2i + 1)π/2m, αi is defined in Lemma 3.1, and ε1 and ε2 are
given in Lemma 3.7. In what follows we drop the dependence of ε1 and ε2 on m.
Moreover, we can follow the same reasoning as in (3.31) to relate the operators
to their regularised versions:

‖(X̃ ′B −X ′B)|ψ′〉‖ ≤
√
ε1(m), ‖(Z̃ ′B − Z ′B)|ψ′〉‖ ≤

√
ε1(m). (3.87)

Let us begin with the approximate version of Lemma 3.3.

Lemma 3.7. Let |ψ′〉 and {A′i, B′i} be the state and the measurements violat-
ing the chained Bell inequality by Bmax

m − ε. Then, the following relations are
satisfied:

‖(A′i −B′i−1,i)|ψ′〉‖ ≤
√

ε

cos(π/2m)
≡ √ε1 (3.88)

for i = 1, . . . , n,

‖(αiB′j + βiB
′
i+j + γiB

′
i+j+1)|ψ′〉‖ ≤ √ε1 (3.89)
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3. Chained Bell inequalities: self-testing and randomness certification

for i = 1, . . . ,m− 2 and j = 1, . . . ,m, and

‖(A′i ⊗B′i −A′i+1 ⊗B′i+1)|ψ′〉‖ ≤
√

8m cos
π

2m
ε ≡ √mε2, (3.90)

‖(A′i ⊗B′i−1 −A′i+1 ⊗B′i)|ψ′〉‖ ≤
√
mε2 (3.91)

for i = 1, . . . ,m.

Proof. All equations follow directly from the SOS decompositions. When a
chained Bell inequality is violated by the amount 2m cos[π/2m] − ε, it follows
that

∑
i〈ψ′|P 2

i |ψ′〉 = ε and consequently ||Pi|ψ′〉|| ≤
√
ε for all i. The expres-

sions given by equations (3.88) and (3.89) are identified in the first degree SOS
decomposition (3.7) (note the explanation after the equation), while the ex-
pressions bounded in equations (3.90) and (3.91) are part of the second degree
SOS decomposition (3.23).

We can then prove the approximate version of Lemma 3.4 .

Lemma 3.8. Let {|ψ′〉, A′i, B′i} be the state and the measurements violating the
chained Bell inequality by Bmax

m − ε. Then, the following approximate anticom-
mutation relations are true

‖{A′1, A′m
2

+1}|ψ′〉‖ ≤
√

2ε1 +
1

ξm/2−1

(
4
√
ε1

αm/2−1
+m
√

2ε2

)
= ωev (3.92)

for even m, and

‖{A′1, A′m+1
2

+A′m+3
2

}|ψ′〉‖ ≤ 2
√
ε1m

( √
2

ζ(m−1)/2
+
√
m− 1

)
+
√
ε1(1 +

√
2)

+
3
√
ε1

cos π
2mα(m−1)/2ζ(m−1)/2

(
2 +

γ(m−1)/2

α1

)
= ωodd

(3.93)

for odd m. For any fixed m the right-hand sides of both inequalities vanish if
ε→ 0 and for sufficiently large m both functions scale quadratically with m.

Proof. The proof goes along the same lines as that of Lemma 3.4, however, at
each step we need to take into account the error stemming from the fact that
now the Bell inequality is not violated maximally. We prove the cases of even
and odd m separately.

Even number of measurements. We first need to prove the approximate
versions of the identities (3.41) and (3.42). By substituting j = k − i in (3.89)
we obtain

‖(αiCk−i + βiCk + γiCk+1)|ψ′〉‖ ≤ √ε1. (3.94)
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Then, by shifting i→ m− i− 1 and setting j = k + i+ 1 in (3.89), we have

‖(αiCk+i+1 + γiCk + βiCk+1)|ψ′〉‖ ≤ √ε1. (3.95)

Both inequalities imply

‖(Ck−i + Ck+i+1 − ξiCk,k+1)|ψ′〉‖ ≤ 2
√
ε1

αi
(3.96)

for any k = 1, . . . ,m and i = 1, . . . ,m − 2. The cases where i = m − 1 or
i = m are trivial because they represent the definition of Ck,k+1. Then, by
using (3.94) with k = m and (3.95) with k = 0, one can prove the following
inequality

‖(Ci+1 − Cm−i − ξiC1,−m)|ψ′〉‖ ≤ 2
√
ε1

αi
(3.97)

with i = 1, . . . ,m− 2. Now, one has

‖{A′1, A′m
2

+1}|ψ′〉‖ = ‖(A′1A′m
2

+1 +A′m
2

+1A
′
1)|ψ′〉‖

≤ ‖(A′1B′m
2
,m
2

+1 +A′m
2

+1B
′
1,−m)|ψ′〉‖+

√
2ε1,

(3.98)

which with the aid of (3.96) with k = m/2 and i = m/2 − 1 and (3.97) with
i = m/2− 1, can be further upper bounded as
∥∥∥{A′1, A′m

2
+1}|ψ′〉

∥∥∥ ≤ 1

ξm/2−1

∥∥∥
[
A′1(B′1 +B′m) +A′m

2
+1(B′m

2
−B′m

2
+1)
]
|ψ′〉

∥∥∥

+
1

ξm/2−1

4
√
ε1

αm/2−1

≤ 1

ξm/2−1

∥∥∥(A′1B
′
1 −A′m

2
+1B

′
m
2

+1)|ψ′〉
∥∥∥

+
1

ξm/2−1

∥∥∥(A′1B
′
m +A′m

2
+1B

′
m
2

)|ψ′〉
∥∥∥

+
1

ξm/2−1

4
√
ε1

αm/2−1
. (3.99)

To upper bound the above two terms, we will use approximate versions of
equations (3.44) and (3.45) First, it follows from the SOS decomposition that
for any j = 1, . . . ,m:

j∑

i=1

∥∥(A′iB
′
i −A′i+1B

′
i+1)|ψ′〉

∥∥2 ≤ mε2, (3.100)
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3. Chained Bell inequalities: self-testing and randomness certification

which by virtue of the triangle inequality for the norm and concavity of the
square root implies

∥∥(A′1B
′
1 −A′j+1B

′
j+1)|ψ′〉

∥∥ =

∥∥∥∥∥

j∑

i=1

(A′iB
′
i −A′i+1B

′
i+1)|ψ′〉

∥∥∥∥∥

≤
j∑

i=1

∥∥(A′iB
′
i −A′i+1B

′
i+1)|ψ′〉

∥∥

≤
√
j

√√√√
j∑

i=1

∥∥(A′iB
′
i −A′i+1B

′
i+1)|ψ′〉

∥∥2

≤
√
jmε2. (3.101)

Analogously, the SOS decomposition (3.23) implies that

j∑

i=1

∥∥(A′iB
′
i−1 −A′i+1B

′
i)|ψ′〉

∥∥2 ≤ √mε2, (3.102)

from which, by using similar arguments as above, one infers that

∥∥(A′1B
′
m +A′j+1B

′
j)|ψ′〉

∥∥ =

j∑

i=1

∥∥(A′iB
′
i−1 −A′i+1B

′
i)|ψ′〉

∥∥ ≤
√
jmε2.

(3.103)

Substituting j = m/2 and applying both inequalities (3.101) and (3.103) to
(3.99) one finally obtains (3.92).

Odd number of measurements. We first prove the following inequality

‖(Ck−i + Ck+i − ζiCk)|ψ′〉‖ ≤
(

2 +
γi
α1

) √
ε1

αi
(3.104)

for any i = 1, . . . ,m − 2. Then, from inequalities (3.101) and (3.103) with
j = (m−1)/2, and inequality (3.104) for i = (m−1)/2 and k = m, one obtains

∥∥∥
[
A′1(B′1 +B′m)− ζm−1

2
A′m+1

2

B′m

]
|ψ′〉

∥∥∥ ≤
√

2m(m− 1)ε2 + ε′,

(3.105)

where we denoted

ε′ =

√
ε1

α(m−1)/2

(
2 +

γ(m−1)/2

α1

)
. (3.106)
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Analogously, from inequalities (3.101) and (3.103) with j = (m + 1)/2 and
inequality (3.104) for i = (m− 1)/2 and k = m+ 1, one obtains

∥∥∥
[
A′1(B′1 +B′m) + ζm−1

2
A′m+3

2

B′m

]
|ψ′〉

∥∥∥ ≤
√

2m(m− 1)ε2 + ε′.

(3.107)

We can then upper bound

∥∥∥{A′1, A′m+1
2

+A′m+3
2

}|ψ′〉
∥∥∥ ≤ 1

2 cos( π
2m)

∥∥∥[A′1(B′m−1
2

+ 2B′m+1
2

+B′m+3
2

)

+(A′m+1
2

+A′m+3
2

)(B′1 −B′m)]|ψ′〉
∥∥∥

+
√
ε1(1 +

√
2)

≤ 1

2 cos( π
2m)

∥∥∥[A′1

(
B′m−1

2

+B′m+3
2

+ 2
B′1 +B′m
ζ(m−1)/2

)

+(A′m+1
2

+A′m+3
2

)(B′1 −B′m)]|ψ′〉
∥∥∥

+
√
ε1(1 +

√
2) +

ε′

2 cos(π/2m)ζ(m−1)/2

≤ 1

2 cos( π
2m)

∥∥∥
(
A′1B

′
m−1

2

+A′1B
′
m+3

2

+A′m+1
2

B′1 −A′m+3
2

B′m

)
|ψ′〉

∥∥∥

+
√
ε1(1 +

√
2) +

3ε′

2 cos(π/2m)ζ(m−1)/2

+2
√
ε1m(m− 1).

(3.108)

In the first inequality we used (3.88) twice in parallel (to exchange A′m+2 and
A′m+3 with corresponding B′s) and once more separately (to exchange A′1 with
B′1,−m). To get the second inequality we used (3.104) and for the final inequality
we used twice (3.107). Inequality (3.104) for k = 1 and i = (m− 1)/2 gives

∥∥∥[A′m+1
2

−A′m+3
2

− ζm−1
2
A′1]|ψ′〉

∥∥∥ ≤ ε′, (3.109)
∥∥∥[B′m+1

2

−B′m+3
2

− ζm−1
2
B′1]|ψ′〉

∥∥∥ ≤ ε′ (3.110)

while for k = m and i = (m− 1)/2
∥∥∥[B′m+1

2

−B′m−1
2

− ζm−1
2
B′m]|ψ′〉

∥∥∥ ≤ ε′. (3.111)
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These three inequalities when applied to (3.108) give
∥∥∥{A′1, A′m+1

2

+A′m+3
2

}|ψ′〉
∥∥∥

≤ 1

2 cos( π
2m)ζm−1

2

∥∥∥
(
A′m+1

2

B′m−1
2

−A′m+3
2

B′m+1
2

+A′m+1
2

B′m+1
2

−A′m+3
2

B′m+3
2

)
|ψ′〉

∥∥∥

+
√
ε1(1 +

√
2) +

3ε′

cos π
2mζ(m−1)/2

+ 2
√
ε1m(m− 1). (3.112)

To upper bound the norm appearing on the right-hand side we use inequalities
(3.90) and (3.91) with i = (m+ 1)/2 which leads us to

∥∥∥{A′1, A′m+1
2

+A′m+3
2

}|ψ′〉
∥∥∥ ≤ 2

√
ε1m

( √
2

ζ(m−1)/2
+
√
m− 1

)
+
√
ε1(1 +

√
2)

+
3
√
ε1

cos π
2mα(m−1)/2ζ(m−1)/2

(
2 +

γ(m−1)/2

α1

)
.

(3.113)

To complete the proof let us notice that both ωev and ωodd, defined in equa-
tions (3.92) and (3.93) respectively, vanish when ε→ 0. Furthermore, the term
dominating the scaling of ωev with m for large m is 4ε1/(ξm/2−1αm/2−1) =
2
√
ε/(sin2(π/2m)). It follows that for sufficiently largem the function 1/ sin2(π/2m)

behaves like (4/π2)m2 + 1/3 +O(1/m2) and therefore we can conclude that ωev

scales quadratically with m when m is large enough, and for small ε it be-
haves as

√
ε. After an analogous analysis one finds that ωodd exhibits the same

behaviour for small ε and sufficiently large m.

Let us now prove the approximate version of Lemma 3.5.

Lemma 3.9. Let |ψ′〉 and A′i, B
′
i be a state and measurements violating the

chained Bell inequalities by Bmax
m − ε. Then, for an even number of measure-

ments:
∥∥∥
(
A′i − siA′m

2
+1 − ciA′1

)
|ψ′〉

∥∥∥ ≤ gev(ε,m),
∥∥∥
(
B′i − s′iB′m

2
,m
2

+1 − c′iB′1,−m
)
|ψ′〉

∥∥∥ ≤ hev(ε,m), (3.114)

while for an odd number of measurements:
∥∥∥
(
A′i − siA′m+1

2
,m+3

2

− ciA′1
)
|ψ′〉

∥∥∥ ≤ godd(ε,m),
∥∥∥
(
B′i − s′iB′m+1

2

− c′iB′1,−m
)
|ψ′〉

∥∥∥ ≤ hodd(ε,m). (3.115)
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The functions gev, hev, godd and hodd vanish for ε → 0 and scale linearly with
m.

Proof. We will follow the proof of Lemma 3.5. We can write

∥∥∥
(
A′i − siA′m

2
+1 − ciA′1

)
|ψ′〉

∥∥∥

=
1

2

∥∥∥
(
A′i −A′2−i − ζm2 +1−iA

′
m
2

+1 +A′i +A′2−i − ζi−1A
′
1

)
|ψ′〉

∥∥∥

≤ 1

2

∥∥∥
(
A′i −A′2−i − ζm2 +1−iA

′
m
2

+1

)
|ψ′〉

∥∥∥ +
1

2

∥∥(A′i +A′2−i − ζi−1A
′
1

)
|ψ′〉

∥∥

≤
(

1 +
γ|m

2
+1−i|

2α1

) √
ε1

α|m
2

+1−i|
+

(
1 +

γi−1

2α1

) √
ε1

αi−1
= gev. (3.116)

The equality is just the rewritten pair of equations (3.62) and (3.63), and the
first inequality is the triangle inequality followed by the bounds from equation
(3.104). The absolute value appearing in γ|m

2
+1−i| and α|m

2
+1−i| is justified in

the discussion after equation (3.62). Note that this bound cannot be applied
to the cases when i = 1,m/2 + 1,m because for these cases the coefficients αi
and γi are not defined. The cases i = 1,m/2 + 1 are trivial statements and
gev = 0, while for the case i = m the norm

∥∥(A′i +A′2−i − ζi−1A
′
1

)
|ψ′〉

∥∥ ≤√
ε1/α1 is obtained by fixing j = m and i = 1 in (3.89), so gev = (1 +

γ|m
2

+1−i|/2α1)(
√
ε1/α|m

2
+1−i|) +

√
ε1/α1/2. Similarly it can be shown that:

∥∥∥
(
B′i − s′iB′m

2
,m
2

+1 − c′iB′1,−m
)
|ψ′〉

∥∥∥

=
1

2

∥∥∥
(
B′i −B′1−i − ξm2 −iB

′
m
2
,m
2

+1 +B′i +B′1−i − ξi−1B
′
1,−m

)
|ψ′〉

∥∥∥

≤ 1

2

∥∥∥
(
B′i −B′1−i − ξm2 −iB

′
m
2
,m
2

+1

)
|ψ′〉

∥∥∥ +
1

2

∥∥(B′i +B′1−i − ξi−1B
′
1,−m

)
|ψ′〉

∥∥

≤ √ε1

(
1

αi−1
+

1

α̃m
2
−i

)
= hev, (3.117)

where in the last inequality we used already established bounds given in equa-
tions (3.96) and (3.97) and we introduced notation α̃m/2−i which is equal
to αm/2−i when m/2 > i, and to αi−1−m/2 otherwise (for the clarification
see the text following equation (3.64)). Similarly to the previous case the
bound is properly defined unless i ∈ {1,m,m/2,m/2 + 1}. For the cases
i = 1,m the norm ‖(B′i + B′1−i − ξi−1B

′
1,−m)|ψ′〉‖ is trivial, thus equal to 0,

so we have hev =
√
ε1/α̃m/2−i. Similarly when i = m/2,m/2 + 1, the norm

‖(B′i − B′1−i − ξm
2
−iB

′
m
2
,m
2

+1)|ψ′〉‖ is equal to 0, causing hev to be equal to
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√
ε1/αi−1. By repeating an analogue procedure it is straightforward to obtain

bounds for the case when the number of inputs is odd:

godd =
√
ε1

(
1

α̃m+1
2 −i

+
(

1 + γi−1

2α1

)
1

αi−1

)
, (3.118)

hodd =
√
ε1

(
1

αi−1
+
(

1 +
γ|m+1

2 −i|
2α1

)
1

α|m+1
2 −i|

)
. (3.119)

Similarly to the case when the number of inputs is even, for i = 1,m the
expression for godd is estimated to be

√
ε1/α̃m+1

2
−i and for i = (m+ 1)/2, (m+

3)/2 it reduces to
[√
ε1/αi−1

]
(1 + γi−1/(2α1)). Also, for i = (m + 1)/2 we

have hodd =
√
ε1/αi−1, and for i = 1,m we estimate hodd = [

√
ε1/α|m+1

2
−i|](1 +

γ|m+1
2
−i|/(2α1)).

In the worst case functions gev,hev,godd and hodd behave as sin−1(π/m) when
m is sufficiently large. Linear scaling with respect to n of the aforementioned
functions when m is sufficiently large can be confirmed by considering the be-
haviour of function sin−1(π/m) when m is large enough.

Finally, in the robust case, we need an extra lemma to take into account the
normalisation of the junk state |ϕ〉.

Lemma 3.10. Let |ϕ〉 be the state of the additional degrees of freedom from
Theorem 3.6 and |ϕ′〉 the state defined in (3.131). Then,

‖|ϕ〉 − |ϕ′〉‖ ≤
(

1

2
+
√

2

)√
ε1 +

ω′

4
, (3.120)

where ω′ ≡ ωev for even m and ω′ ≡ ωodd for odd m.

Proof. Let us notice that ‖|ϕ〉−|ϕ′〉‖ = ‖|ϕ′〉‖−1 and then by using the explicit
form of |ϕ′〉 and the inequalities (3.85) and (3.87), we can write

‖|ϕ′〉‖ ≤ 1

2
√

2

(
‖(I + Z ′A)(I + Z ′B)|ψ′〉‖+ 2

√
ε1

)

≤ 1

2
√

2

[
‖(I + Z ′A)2|ψ′〉‖+ 4

√
ε1

]

=
1√
2
‖(I + Z ′A)|ψ′〉‖+

√
2ε1. (3.121)

Now we want to estimate ||ψ′〉Z ′A|ψ′〉|. For this we will proceed as in [MYS12].
Note that due to the unitarity of Z ′A and equations (3.85) and (3.86), we can
write ‖ (Z ′AX

′
B +X ′AZ

′
A)|ψ′〉‖ = ‖ (Z ′AX

′
B −Z ′AX ′A +Z ′AX

′
A +X ′AZ

′
A)|ψ′〉‖ ≤
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√
ε1 + ω′. The norm will not change if we multiply the expression in brackets

by some unitary operator. This means that |〈ψ′|Z ′A|ψ′〉+ 〈ψ′|X ′BX ′AZ ′A|ψ′〉| ≤√
ε1 + ω′. We can put the same bound for the complex conjugated expression

|〈ψ′|Z ′A|ψ′〉+ 〈ψ′|X ′BZ ′AX ′A|ψ′〉| ≤
√
ε1 + ω′. (3.122)

On the other hand, using the unitarity of 〈ψ′|Z ′A and result (3.85), we can write

|〈ψ′|Z ′A|ψ′〉 − 〈ψ′|X ′BZ ′AX ′A|ψ′〉| ≤
√
ε1. (3.123)

Finally, if we sum equations (3.122) and (3.123) we get

|〈ψ′|Z ′A|ψ′〉| ≤
√
ε1 + ω′/2. (3.124)

If we plug this result in (3.121) we will get

‖ |ϕ′〉‖ ≤
√
〈ψ′|(I + Z ′A)|ψ′〉+

√
2ε1

≤
√

1 +
√
ε1 + ω′/2 +

√
2ε1

≤ 1 + (1
2 +
√

2)
√
ε1 + ω′

4 (3.125)

This estimation concludes the proof, since it is straightforward to check that
the expression (3.120) is satisfied.

3.4.2. Robust self-test

Equipped with the results of Section 3.4.1, we can state and prove our second
main result. For simplicity and clearness we give bounds for the case when
the number of measurements is even; the bounds for in the odd m case can be
determined in an analogous way.

Theorem 3.11. Let {|ψ′〉, A′i, B′i} be a state and measurements giving a viola-
tion of the chained Bell inequality of Bmax

m − ε. Then,

‖Φ(A′iB
′
j |ψ′〉|00〉)− |ϕ〉AiBj |φ+〉‖ ≤ fij(ε,m), (3.126)

‖Φ(A′i|ψ′〉|00〉)− |ϕ〉Ai|φ+〉‖ ≤ fAi(ε,m), (3.127)

‖Φ(B′j |ψ′〉|00〉)− |ϕ〉Bj |φ+〉‖ ≤ fBj (ε,m), (3.128)

‖Φ(|ψ′〉|00〉)− |ϕ〉|φ+〉‖ ≤ f(ε,m), (3.129)

where i, j = 1, . . . ,m, Φ is the unitary transformation defined in Figure 3.2,
|ϕ〉 = (1/N)(I + Z ′A)(I + Z̃ ′B)|ψ′〉 with N denoting the length of |ϕ〉. The
functions f(ε,m), fBj (ε,m), fAi(ε,m) and fij(ε,m) vanish as ε → 0 and for
sufficiently large m scale with m as m2.
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Proof. As the norm N of |ϕ〉 cannot be computed exactly, it turns out that to
prove this theorem it is more convenient to first estimate the following distance

‖Φ(A′iB
′
j |ψ′〉|00〉)− |ϕ′〉AiBj |φ+〉‖ (3.130)

with

|ϕ′〉 =
1

2
√

2
(I + Z ′A)(I + Z̃ ′B)|ψ′〉. (3.131)

and then show that the error we have by doing so is small for sufficiently small
ε.

From now on we will mainly follow the steps of the proof of Theorem 3.6
replacing the identities by the corresponding inequalities. First, let us notice
that for any i = 1, . . . ,m (see 3.4.1 for the proof):

‖[A′i − (siX
′
A + ciZ

′
A)]|ψ′〉‖ ≤ gev, ‖[B′i − (s′iX

′
B + c′iZ

′
B)]|ψ′〉‖ ≤ hev,

(3.132)

where gev and hev are given in Lemma 3.9 of the Appendix. Denoting by Ai
and Bi the operators appearing in the parentheses in (3.132), we can write

‖Φ(A′iB
′
j |ψ′〉|00〉)− |ϕ′〉AiBj |φ+〉‖ ≤ ‖Φ(A′iB

′
j |ψ′〉|00〉)− Φ(AiBj |ψ′〉|00〉)‖

+‖Φ(AiBj |ψ′〉|00〉)− |ϕ′〉AiBj |φ+〉‖,
(3.133)

and, by further exploitation of the fact that Φ is unitary, the first norm can be
upper bounded as

‖Φ(A′iB
′
j |ψ′〉|00〉)− Φ(AiBj |ψ′〉|00〉)‖ ≤ ‖(A′iB′j −AiBj)|ψ′〉‖

≤ ‖(A′i −Ai)|ψ′〉‖+ ‖(B′j −Bj)|ψ′〉‖
≤ gev + hev, (3.134)

where to obtain the second inequality we have used the standard trick of adding
and subtracting the term A′iBj |ψ′〉, the triangle inequality for the norm, and
the fact that Ai is unitary and that the spectral radius of Bj is not larger than
one. The third inequality in (3.134) stems directly from (3.132). In the cases
when A′i or B′j are equal to the identity operator I, the above bound is replaced
by hev and gev, respectively, while in the case A′i = B′j = I, this distance is
simply zero.

Let us then concentrate on the second norm of the right-hand side of (3.133).
Exploiting the explicit forms of the operators Ai and Bi and the measurements
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Ai and Bi, one has

‖Φ(AiBj |ψ′〉|00〉)− |ϕ′〉AiBj |φ+〉‖ ≤ ‖Φ(X ′AX
′
B|ψ′〉|00〉)− |ϕ′〉XAXB|φ+〉‖

+‖Φ(X ′AZ
′
B|ψ′〉|00〉)− |ϕ′〉XAZB|φ+〉‖

+‖Φ(Z ′AX
′
B|ψ′〉|00〉)− |ϕ′〉ZAXB|φ+〉‖

+‖Φ(Z ′AZ
′
B|ψ′〉|00〉)− |ϕ′〉ZAZB|φ+〉‖.

(3.135)

Let us consider the first and the last norm on the right-hand side of this in-
equality. With the aid of inequalities (3.85) and the fact that XAXB|φ+〉 =
ZAZB|φ+〉 = |φ+〉, both can be upper bounded by

√
ε1+‖Φ(|ψ′〉|00〉)−|ϕ′〉|φ+〉‖.

Then, from the definition of the unitary operation Φ and the state |ϕ′〉 it follows
that the latter norm can be upper bounded as

‖Φ(|ψ′〉|00〉)− |ϕ′〉|φ+〉‖ ≤ 1

4

(
‖XA(I− ZA)(I + Z̃B)|ψ′〉‖

+‖X̃B(I + ZA)(I− Z̃B)|ψ′〉‖
+‖XAX̃B(I− ZA)(I− Z̃B)|ψ′〉 − |ϕ′〉‖

)
.

(3.136)

To upper bound the first two norms in (3.136), we first exploit inequalities (3.85)
and (3.87) which allow us to “convert” Z̃B to ZB and then ZB to ZA introducing
an error of 8

√
ε1, and then we use the fact that (I+Z ′A)(I−Z ′A) = 0. To upper

bound the last norm in (3.136), we first use the anticommutation relation (3.86)
which leads us to

‖XAX̃B(I− ZA)(I− Z̃B)|ψ′〉 − |ϕ′〉‖
≤ 2ωev(m) + 2‖XAX̃B(I− Z̃B)|ψ′〉 − (I + Z̃B)|ψ′〉‖. (3.137)

One then uses again inequalities (3.85) and (3.87) in order to “convert” Z̃B to
ZB and then ZB to ZA. This gives

‖XAX̃B(I− ZA)(I− Z̃B)|ψ′〉 − |ϕ′〉‖
≤ 2ωev(m) + 8

√
ε1 + 2‖XAX̃B(I− ZA)|ψ′〉 − (I + ZA)|ψ′〉‖. (3.138)

After applying (3.86) and then (3.85) and (3.87), one finally arrives at

‖XAX̃B(I− ZA)(I− Z̃B)|ψ′〉 − |ϕ′〉‖ ≤ 4ωev(m) + 16
√
ε1. (3.139)

Taking all this into account, we have that

‖Φ(|ψ′〉|00〉)− |ϕ′〉|φ+〉‖ ≤ 6
√
ε1 + ωev(m). (3.140)
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Let us now pass to the second norm in (3.135) and notice that by using
inequality (3.85) and the fact that ZB|φ+〉 = ZA|φ+〉, it can be upper bounded
in the following way

‖Φ(X ′AZ
′
B|ψ′〉|00〉)− |ϕ′〉XAZB|φ+〉‖

≤ √ε1 +
1

4

(
‖(I + Z ′A)(I + Z̃B)X ′AZ

′
A|ψ′〉‖

+ ‖X ′AX̃B(I + Z ′A)(I + Z̃B)X ′AZ
′
A|ψ′〉‖

+ ‖X ′A(I− Z ′A)(I + Z̃B)X ′AZ
′
A|ψ′〉 − |ϕ′〉‖

+‖X̃B(I + Z ′A)(I− Z̃B)X ′AZ
′
A|ψ′〉+ |ϕ′〉‖

)
. (3.141)

Let us consider the first two norms appearing on the right-hand side of (3.141).
Exploiting the anticommutation relation (3.86) and then inequalities (3.85)
and (3.87) to convert Z̃B to ZA, we can bound each of these norms by 4

√
ε1 +

2ωev(m). Using then the inequality (3.86), the third term is not larger than
2ωev(m). To bound the fourth term in (3.141), let us use the fact that ‖I +
Z ′A‖ ≤ 2 to write

‖X̃B(I + Z ′A)(I− Z̃B)X ′AZ
′
A|ψ′〉 − |ϕ′〉‖

≤ 2‖X̃B(I− Z̃B)X ′AZ
′
A|ψ′〉 − (I + Z̃B)|ψ′〉‖. (3.142)

Subsequent use of inequalities (3.85) and (3.87) to Z̃B and X̃B gives

‖X̃B(I + Z ′A)(I− Z̃B)X ′AZ
′
A|ψ′〉 − |ϕ′〉‖

≤ 16
√
ε1 + 2‖X ′AZ ′A(I− Z ′A)X ′A|ψ′〉 − (I + Z ′A)|ψ′〉‖, (3.143)

which after a double application of (3.86) yields

‖X̃B(I + Z ′A)(I− Z̃B)X ′AZ
′
A|ψ′〉 − |ϕ′〉‖ ≤ 16

√
ε1 + 2ωev(m). (3.144)

This together with previous estimations finally implies that

‖Φ(X ′AZ
′
A|ψ′〉|00〉)− |ϕ′〉XAZB|φ+〉‖ ≤ 7

√
ε1 + 2ωev(m). (3.145)

In a fully analogous way one can estimate the third term on the right-hand side
of (3.135)

‖Φ(Z ′AX
′
B|ψ′〉|00〉)− |ϕ′〉ZAXB|φ+〉‖ ≤ 7

√
ε1 + 2ωev(m). (3.146)

By plugging all these terms into (3.135) and then the resulting inequality to-
gether with (3.134) into (3.133), one obtains

‖Φ(A′iB
′
j |ψ′〉|00〉)− |ϕ′〉AiBj |φ+〉‖ ≤ 28

√
ε1 + 6ωev(m) + gev + hev. (3.147)
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The terms from (3.127) can be treated in almost exactly the same way, giving

‖Φ(A′i|ψ′〉|00〉)− |ϕ′〉Ai|φ+〉‖ ≤ 12
√
ε1 + 3ωev(m) + gev, (3.148)

while the estimation of the corresponding expression from (3.127) follows from
the application of inequality (3.85) to (3.148), meaning that an additional error
of
√
ε1 has to be taken into account, which gives

‖Φ(B′j |ψ′〉|00〉)− |ϕ′〉Bj |φ+〉‖ ≤ 13
√
ε1 + 3ωev(m) + hev. (3.149)

Finally, the case of A′i = B′j = I has already been derived in (3.140).
The distance between the normalized state |ϕ〉 and the unnormalized one |ϕ′〉

is estimated in Lemma 3.10 to be

‖|ϕ〉 − |ϕ′〉‖ ≤
(

1

2
+
√

2

)√
ε1 + ω′, (3.150)

where ω′ is equal to ωev for an even number of inputs.
In order to obtain inequalities (3.126) and complete the proof we use the

triangle inequality for the vector norm to write

‖Φ(A′iB
′
j |ψ′〉|00〉)− |ϕ〉AiBj |φ+〉‖ ≤ ‖Φ(A′iB

′
j |ψ′〉|00〉)− |ϕ′〉AiBj |φ+〉‖

+‖|ϕ〉 − |ϕ′〉‖, (3.151)

and then apply the previously determined inequalities (3.140), (3.147), (3.148),
(3.149) and (3.150). All terms contributing to the functions f(ε,m), fBj (ε,m),
fAi(ε,m) and fij(ε,m) scale at most as O(m2√ε). The more detailed analysis
of the asymptotic behaviour of different contributions is discussed in Lemmas
3.8 and 3.9.

Let us remark here that we have not checked whether the bounds (3.126)–
(3.129) are optimal both in the distance from the maximal quantum violation
ε and the number of measurements m. Thus, it is still possible that these
robustness bounds scale better than quadratically with the number of measure-
ments. However, in order to determine such tighter bounds one would need in
particular to optimise the above method over all SOS decompositions, which is
certainly a difficult task.

3.5. Applications: randomness

It was shown in [DPA13] that by exploiting the symmetries of the chained
Bell inequalities, two bits of global randomness can be certified when the max-
imum quantum violation of these inequalities is achieved, provided this maximal
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quantum violation is unique. This latter assumption had not been proven – with
our results, we confirm that the maximal quantum violation is indeed unique
and we complete the proof of [DPA13].

Let us now provide an alternative way of certifying two bits of perfect ran-
domness with the aid of the chained Bell inequalities. For this purpose, we
consider the following modification of the chained Bell inequality for m inputs:

Îmch := Imch + 〈A1Bm+1〉 ≤ 2m− 1 (3.152)

in which Alice, as before, can measure one of m observables Ai while Bob has
m+ 1 observables Bi at his disposal, where m is assumed to be even. It is not
difficult to see that the maximal quantum violation of this inequality amounts
to B̂max

m = Bmax
m + 1.

Let us now assume that |ψ′〉 and A′i and B′i are the state and the measure-
ments maximally violating (3.152). Denoting then by B̂m = Bm + A′1 ⊗ B′m+1

the corresponding Bell operator, one has 〈ψ|(B̂max
m I− B̂m)|ψ〉 = 0, which, ow-

ing to the fact that |ψ〉 also violates maximally the chained Bell inequality and
that Bmax

m is its maximal quantum violation, simplifies to 0 = 〈ψ|(I − A′1 ⊗
B′m+1)|ψ〉 = (1/2)〈ψ|(I−A′1 ⊗B′m+1)2|ψ〉, where the second equality is a con-
sequence of the fact that A′1 and B′m+1 are unitary and hermitian. This implies
that

A′1|ψ〉 = B′m+1|ψ〉. (3.153)

This property implies in particular that 〈B′m+1〉 = 〈A′1〉, which, taking into
account the fact that for the maximal quantum violation of the chained Bell in-
equality 〈A′i〉 = 0 for any i = 1, . . . ,m, implies 〈B′m+1〉 = 0. In a quite analogous
way we can now prove that the expectation value 〈A′m/2+1B

′
m+1〉 = 〈ψ|A′m/2+1⊗

B′m+1|ψ〉 vanishes. Exploiting (3.153), we can rewrite it as 〈ψ|A′m/2+1⊗B′m+1|ψ〉 =

〈ψ|A′m/2+1A
′
1|ψ〉. Then, due to the fact that the expectation value 〈ψ|A′m/2+1⊗

B′m+1|ψ〉 is real and both operators A′m/2+1 and B′m+1 are hermitian, which

means that 〈ψ|A′m/2+1A
′
1|ψ〉 = 〈ψ|A′1A′m/2+1|ψ〉, this can be further rewritten

as

〈A′m/2+1B
′
m+1〉 =

1

2
〈ψ|{A′1, A′m

2
+1}|ψ〉. (3.154)

We have already proven that if |ψ′〉 and A′i and B′i violate maximally the chained
Bell inequality, then {A′1, A′m/2+1}|ψ〉 = 0 which implies that 〈A′m/2+1B

′
m+1〉 =

0, which together with 〈A′1〉 = 〈B′m+1〉 = 0 mean finally that

P (a, b|x =
m

2
+ 1, y = m+ 1) =

1

4
(3.155)
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with a, b = 0, 1. All this proves that any probability distribution P (a, b|i, j) with
i = 1, . . . ,m and j = 1, . . . ,m + 1 maximally violating the modified chained
Bell inequality (3.152) is such that all outcomes of the pair of measurements
A′m/2+1, B

′
m+1 are equiprobable (3.155) and thus perfectly random, meaning

that (3.152) certifies two bits of perfect randomness.
The intuition behind the above approach is very simple. At the maximal

quantum violation of (3.152) the measurement B′m+1 must be “parallel” to
A′1 (see (3.153)). Therefore it is “orthogonal” to A′m/2+1 as the latter is or-

thogonal to A′1, meaning that 〈A′m/2+1B
′
m+1〉 = 0 which is basically what we

need. It is worth noticing that in the even m case all pairs A′1+i, A
′
m/2+i with

i = 1, . . . ,m/2−1 of Alice’s observables are orthogonal, and therefore our argu-
ment can be extended to any pair A′m/2+i, B

′
m+1, that is, 〈A′m/2+i, B

′
m+1〉 = 0

provided the Bell inequality Imch + 〈Am/2+iBm+1〉 ≤ 2m − 1 is maximally viol-
ated. Unfortunately, this approach does not work in the odd m case as no pair
of observables at Alice’s or Bob’s sides are orthogonal.

3.6. Discussion

We developed a scheme for self-testing the maximally entangled state of two
qubits using the chained Bell inequalities. Our results hold for any number of
inputs, which allows for the self-test of measurements on the whole XZ plane
of the Bloch sphere – this is particularly interesting since self-testing of meas-
urements has not been studied extensively. Some of the previous self-testing
techniques found an application for blind quantum computation protocols (see
[RUV13, BFK09]). The fact that the chained Bell inequalities involve and cer-
tify a quite large class of measurements makes this self-testing protocol a good
candidate for some future application in blind quantum computation processes.
Beyond their interest as a protocol in quantum information processing, our res-
ults also have fundamental implications, since they prove the uniqueness of the
maximal violation of the chained Bell inequalities. In [DPA13], this property
was assumed to be true to argue maximal randomness certification in Bell tests:
with our proof, their results are now confirmed.

When increasing the number of measurements, the robustness of our protocol
diminishes. An interesting open question is to see whether it is possible to
improve this scaling. Another open question concerns chained Bell inequalities
with more outcomes: can they also be useful for self-testing? We partially
address this question in Chapter 4, where we construct Bell inequalities for any
number of inputs and outputs that reduce to the chained Bell inequalities when
the number of outputs is set to two.
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4. Bell inequalities tailored to
maximally entangled states

In this chapter, we introduce Bell inequalities valid for an arbitrary number of
measurements and outcomes, whose maximal quantum violation is attained by
the maximally entangled states

|φ+
d 〉 =

1√
d

d−1∑

i=0

|ii〉. (4.1)

Quantum theory is a key ingredient in how we construct these Bell inequalities,
which is the main novelty of our approach. Indeed, since Bell inequalities were
first developed to detect nonlocality, the standard approach for their construc-
tion was to derive constraints satisfied by local models – i.e. using techniques
in convex geometry, as the local set is a polytope. In our method on the other
hand, we start from quantum theory and exploit the symmetries and perfect
correlations of maximally entangled states, as well as SOS decompositions of
Bell operators.

Very importantly, we are able to compute analytically the quantum, clas-
sical and no-signalling bounds of our Bell expressions. We also discuss their
applications to device-independent protocols. Maximal violation by the max-
imally entangled state is a desirable property, since these states have particular
features such as perfect correlations between outcomes of local measurements
in the same bases, and therefore many quantum information protocols rely on
them.

We start with our main results, which concern the bipartite case. We detail
the method that leads to our Bell expressions and we study their properties.
We then present an extension of our results to the multipartite case, where the
optimal states are now the generalised GHZ states (2.4). We also discuss a
modification of our Bell expressions for the case of three outcomes, which leads
to a class of Bell inequalities suited to partially entangled states. Finally, we
present the results of an experimental collaboration in which we participated.
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4.1. The bipartite case

As we just mentioned, Bell inequalities were at first developed to detect nonloc-
ality, and they have been constructed accordingly. Facet (or tight) Bell inequal-
ities such as the CHSH inequalities [CHSH69] and the Collins-Gisin-Linden-
Massar-Popescu (CGLMP) inequalities [CGL+02] provide necessary and suffi-
cient criteria to detect the nonlocality of given correlations. In the DI setting
however, Bell inequalities have acquired a new role as certificates of quantum
properties. The existing Bell inequalities, built with nonlocality detection as a
goal, are not necessarily optimal for inferring specific quantum properties in the
DI setting. For instance, in a scenario where two binary measurements are per-
formed on two entangled subsystems, certain “non-facet” Bell inequalities are
better certificates of randomness than CHSH when the two quantum systems
are partially entangled [AMP12].

In the case where only two measurements are made on each subsystem, all
facet Bell inequalities are known for a small number of outputs and they are
of the CGLMP form [CGL+02]. However, they are not maximally violated by
the maximally entangled states of two qudits, except in the case of two meas-
urement outcomes corresponding to the CHSH inequality – this was at first
considered an “anomaly” in the relation between nonlocality and entanglement
[ADGL02, ZG08]. For instance, in the case of three outcomes, the state max-
imally violating the CGLMP inequality is |ψγ〉 = (|00〉+ |11〉+ |22〉)/(

√
2 + γ2)

with γ = (
√

11−
√

3)/2.

Our aim is to introduce a family of Bell expressions, whose maximal quantum
value is attained by the two-qudit maximally entangled state |φ+

d 〉, in a general
Bell scenario of m inputs and d outputs. In the particular case of two measure-
ments, CHSH is the simplest example of a Bell inequality with this property,
but others are known [SLK06, LCL07, dV15] (see also results for many settings
[JLL+08, LLD09, LRY+10]). Our construction works, however, for arbitrary
numbers of measurements and outcomes, and, crucially, all three quantum, clas-
sical, and no-signalling bounds can be computed analytically as functions of m
and d. Since we are not using local constraints in our construction we should
not expect our Bell inequalities to be tight, and indeed they are not.

4.1.1. Class of Bell expressions

We start our construction from the premise that the maximal quantum values of
the Bell expressions we wish to derive are obtained when Alice and Bob perform
what we call the optimal CGLMP measurements. The resulting probabilities
possess symmetries, which we exploit.
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Optimal measurements and symmetries

The measurements that we call optimal CGLMP measurements were first in-
troduced in [KGZ+00] and generalised to an arbitrary number of inputs in
[BKP06], where a many-input generalisation of the CGLMP inequalities was
introduced, called the Barrett-Kent-Pironio (BKP) inequalities. This choice of
optimal measurements stems from the fact that they generalise the ideal CHSH
measurements (d = 2) to arbitrary dimensions. They also lead to non-local
correlations that are most robust to noise [KGZ+00] or that give a stronger
statistical test for m = 2 [AGG05]. The eigenvectors characterising Alice’s
measurement x are given by

|ax〉 =
1√
d

d−1∑

q=0

exp
(2πi

d
q(a− θx)

)
|q〉, (4.2)

and those characterising Bob’s measurement y are given by

|by〉 =
1√
d

d−1∑

q=0

exp
(
− 2πi

d
q(b− ζy)

)
|q〉, (4.3)

with the phases θx = (x− 1/2)/m and ζy = y/m for x, y = 1, . . . ,m. They can
be understood as applying a variable phase and performing a Fourier transform.
When applying the optimal CGLMP measurements on a normalised state of
the form |ψ〉 =

∑d−1
q=0 γq|qq〉, we obtain the probabilities

P (a, b|x, y) =

∣∣∣∣∣∣
1

d

d−1∑

q=0

γq exp

(
2πi

d
q(a− b− θx + ζy)

)∣∣∣∣∣∣

2

. (4.4)

Let us study the symmetries of these probabilities. One can observe that ex-
pression (4.4) depends only on the difference a− b = k mod d and not on a and
b separately. Defining:

P (Ax = By + k) =

d−1∑

j=0

P (j + k mod d, j|x, y), (4.5)

where the addition is modulo d, this first symmetry means that

P (Ax = By + k) = dP (k, 0|x, y). (4.6)

That is, all the terms P (Ax = By + k) computed for those measurements and
state have identical subterms P (j + k mod d, j|x, y). If we impose that our
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Bell expressions respect this symmetry, the probabilities P (j+ k mod d, j|x, y)
should be treated equally for all j, i.e., the Bell expressions should be linear
combinations of P (Ax = By + k). Moreover, using the values of the phases
θx and ζy, one can verify straightforwardly that expression (4.4) has the same
value if x = y and a− b = k, and if x = y + 1 and a− b = −k. Thus :

P (Ai = Bi + k) = P (Bi = Ai+1 + k), (4.7)

for i = 1, . . . ,m. Note that if one wishes to write Am+1 = A1, the symmetry is
not valid anymore and requires the definition Am+1 = A1 +1, which we impose.
Taking into account all symmetries, a generic form for our Bell expressions is

Im,d =

bd/2c−1∑

k=0

(αkPk − βkQk) , (4.8)

where

Pk =
m∑

i=1

[P (Ai = Bi + k) + P (Bi = Ai+1 + k)],

Qk =

m∑

i=1

[P (Ai = Bi − k − 1) + P (Bi = Ai+1 − k − 1)], (4.9)

with Am+1 = A1 + 1. To sum up, all terms who have the same value when
evaluated as (4.4) appear with the same coefficient αk or βk in the Bell expres-
sion, thus forming “blocks” Pk and Qk. Different blocks have different values
and are multiplied by different coefficients: the parameters αk and βk are our
degrees of freedom. If we take e.g., αk = βk = 1 − 2k/(d − 1) for m = 2, we
recover the CGLMP Bell inequalities.

Generalised correlators

To exploit the symmetries inherent in Bell inequalities, we often write them
in terms of correlators instead of probabilities. As we consider an arbitrary
number of outcomes, we appeal to the notion of generalised correlators (see,
for instance, [LLD09] and [BBB+12] for other options). These are complex
numbers that are defined through the two-dimensional Fourier transform of the
probabilities P (a, b|x, y):

〈AkxBl
y〉 =

d−1∑

a,b=0

ωak+blP (a, b|x, y), (4.10)
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where ω = exp(2πi/d), k, l ∈ {0, . . . , d − 1}, and {Akx}k and {Bl
y}l can be

thought of as generalised observables, or measurements with outcomes labelled
by roots of unity ωj (j = 0, . . . , d− 1). For quantum correlations ~p, the correl-
ators 〈AkxBl

y〉 are average values of the tensor product of the operators

Akx =

d−1∑

a=0

ωakMa|x and Bl
y =

d−1∑

b=0

ωblNb|y (4.11)

on the state |ψ〉. These operators are unitary, their eigenvalues are the roots
of unity, and they satisfy (Akx)† = Ad−kx and (Bl

y)
† = Bd−l

y for any k, l. The
inverse transformation gives:

P (a, b|x, y) =
1

d2

d−1∑

k,l=0

ω−(ak+bl)〈AkxBl
y〉. (4.12)

For the P (Ax = By + k), we have:

P (Ax = By + k) =
1

d

d−1∑

l=0

ω−kl〈AlxBd−l
y 〉. (4.13)

Using these generalised observables, the optimal CGLMP measurements can be
written as:

Ax = U †xFΩF †Ux, By = VyF
†ΩFV †y , (4.14)

where Ω = diag[1, ω, ω2, . . . , ωd−1], with ω = exp(2πi/d), and F is the d × d
discrete Fourier transform matrix given by

Fd =
1√
d

d−1∑

i,j=0

ωij |i〉〈j|. (4.15)

Then, Ux and Vx are unitary operations defining Alice’s and Bob’s measure-
ments and read explicitly

Ux =

d−1∑

j=0

ωjθx |j〉〈j|, Vy =

d−1∑

j=0

ωjζy |j〉〈j|, (4.16)

with the same phases as above: θx = (x − 1/2)/m and ζy = y/m for x, y =
1, . . . ,m.
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Now, exploiting these definitions, in particular equation (4.13), we can rewrite
Bell expression (4.8) as

Ĩm,d =
m∑

i=1

d−1∑

l=1

〈AliB̄l
i〉, (4.17)

where, for clarity, the change of variables

B̄l
i = alB

d−l
i + a∗lB

d−l
i−1, (4.18)

with al =
∑bd/2c−1

k=0 (αkω
−kl − βkω(k+1)l) was introduced on Bob’s side. Due

to the convention Am+1 = A1 + 1, the term B̄l
1 is defined as B̄l

1 = alB
d−l
1 +

a∗l ω
lBd−l

m . For simplicity, in (4.17) we ignored the irrelevant scalar term corres-
ponding to l = 0 and rescaled the expression by a factor d. Below we denote
the classical, quantum and no-signalling bound of Ĩm,d by β̃C , β̃Q and β̃NS ,
respectively, and those of Im,d without the tilde.

Derivation of coefficients αk and βk

Our aim now is to fix the free parameters αk and βk according to the quantum
property we need: maximal violation by the maximally entangled state |φ+

d 〉.
At this point, it is instructive to look at the specific example of the CHSH Bell
expression, as we will want our general expression to reduce to CHSH when
m = 2, d = 2. In the notation (4.17) the CHSH Bell expression 〈A1B1〉 +
〈A1B2〉+ 〈A2B1〉 − 〈A2B2〉 reads

Ĩ2,2 = 〈A1B̄1〉+ 〈A2B̄2〉, (4.19)

where B̄1 = (B1 + B2)/
√

2, B̄2 = (B1 − B2)/
√

2. Then, for the optimal meas-
urements leading to the Tsirelson bound of Ĩ2,2, we have B̄1 = A∗1 and B̄2 = A∗2.
This reflects the property that for the maximally entangled state

A⊗B|φ+
d 〉 = 1⊗ABT |φ+

d 〉, ∀A,B. (4.20)

This condition implies that a measurement by Alice is perfectly correlated with
its complex conjugate by Bob. Our intuition to derive Bell inequalities detecting
maximal entanglement is to impose this property for any m and d: we choose
the parameters αk and βk such that conditions

B̄l
i = (Ali)

∗ (4.21)

hold for l = 1, . . . , d− 1 and i = 1, . . . ,m with the initial operators {Ma|x} and
{Nb|y} being the optimal CGLMP operators. Conditions (4.21) give rise to a
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set of linear equations for αk and βk which yields

αk =
1

2d
tan

( π

2m

)[
g(k)− g

(⌊
d

2

⌋)]
, (4.22)

βk =
1

2d
tan

( π

2m

)[
g

(
k + 1− 1

m

)
+ g

(⌊
d

2

⌋)]
(4.23)

with g(x) = cot(π(x + 1/2m)/d). Let us go over the derivation of these coef-
ficients (4.22) and (4.23) in detail. First, note that the amount of conditions
(4.21) can be reduced, as those that hold for l = 1, . . . , bd/2c are the same as
those that hold for l = bd/2c+ 1, . . . , d− 1. Indeed,

Ad−lx = (Alx)†, (4.24)

B̄d−l
y = (B̄l

y)
†. (4.25)

Recall that the barred quantities B̄l
i are defined as

B̄l
i = alB

d−l
i + a∗lB

d−l
i−1 (4.26)

for i = 2, . . . ,m and B̄l
1 = alB

d−l
1 + a∗l ω

lBd−l
m , and the numbers al are given by

al =

bd/2c−1∑

k=0

[
αkω

−kl − βkω(k+1)l
]
. (4.27)

Notice that al = a∗d−l. Let us notice in passing that the properties (4.24) and
(4.25) imply that the Bell expression we consider, i.e.,

Ĩm,d =

m∑

i=1

d−1∑

l=1

〈AliB̄l
i〉 (4.28)

is real. This is because the sum in (4.28) can be split into two sums: for
l = 1, . . . , bd/2c and l = bd/2c+1, . . . , d−1 for odd d, and for l = 1, . . . , d/2−1
and l = d/2 + 1, . . . , d − 1 (plus a single term corresponding to l = d/2 which
is always real) for even d. Now, due to equations (4.24) and (4.25) one realises
that all terms in the second sum are complex conjugations of those in the first
sum.

In order to solve the system (4.21) one has to find explicit forms of Alx and Bl
y

for the CGLMP measurements. Introducing equations (4.15) and (4.16) into
(4.14), one obtains

Alx = ω−(d−l)θx
l−1∑

n=0

|d− l + n〉〈n|+ ωlθx
d−1∑

n=l

|n− l〉〈n| (4.29)
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and

Bl
y = ω−(d−l)ζy

l−1∑

n=0

|n〉〈d− l + n|+ ωlζy
d−1∑

n=l

|n〉〈n− l|. (4.30)

Then, one combines these formulas with equations (4.26) and (4.21), and com-
pares the matrix elements, which yields the following system of equations

alω
−lζi + a∗l ω

−lζi−1 = ω−lθi

alω
(d−l)ζi + a∗l ω

(d−l)ζi−1 = ω(d−l)θi , (4.31)

with i = 1, . . . ,m and l = 1, . . . , bd/2c, where it is assumed that ζ0 = 0. Simple
algebra implies finally that

al =
ω

2l−d
4m

2 cos(π/2m)
(l = 1, . . . , bd/2c). (4.32)

Having determined al, one can turn to the system (4.27). It consists of
bd/2c equations containing 2bd/2c variables, meaning that it cannot be uniquely
solved, and, in particular, the solutions will be generally complex. To handle
the latter problem we use complex conjugation to equip system (4.27) with
bd/2c additional equations

bd/2c−1∑

k=0

[
αkω

kl − βkω−(k+1)l
]

= a∗l . (4.33)

for l = 1, . . . , bd/2c. Now, both systems (4.27) and (4.33) can be condensed
into the following single one

bd/2c−1∑

k=0

[
αkω

−kl − βkω(k+1)l
]

= cl, (4.34)

in which cl = al for l = 1, . . . , bd/2c and cl = c∗−l for l = −bd/2c, . . . ,−1. In
what follows we solve (4.34) for even and odd d separately.

Odd d. We begin by noting that in this case, the system (4.34) consists of
d − 1 equations and involves the same number of variables, and therefore one
expects it to have a unique solution. To find it, we denote the set J := {−(d−
1)/2, . . . ,−1, 1, . . . , (d− 1)/2} and note that for any pair k, n ∈ {0, . . . , bd/2c−
1}, the following identity holds:

∑

l∈J
ω−lkωln =

∑

l∈J∪{0}

ω−lkωln − 1 = dδn,k − 1. (4.35)
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We then multiply (4.34) by ωnl for some n ∈ {0, . . . , bd/2c − 1} and add the
resulting equations over l ∈ J , which by virtue of equation (4.35) gives

αn =
1

d
S +

1

d

∑

l∈J
clω

nl (n = 0, . . . , bd/2c − 1), (4.36)

where we have denoted

S =

bd/2c−1∑

k=0

(αk − βk). (4.37)

The coefficients βn can be determined in an analogous way and we obtain:

βn = −1

d
S − 1

d

∑

l∈J
clω
−(n+1)l (n = 0, . . . , bd/2c − 1). (4.38)

To fully determine αn and βn, it is in fact enough to compute the sum in
equation (4.36) as the second one and S can be obtained from it by replacing
n by −(n + 1) and bd/2c, respectively. To compute this sum, we first express
it as

∑

l∈J
clω

nl =
1

cos(π/2m)

bd/2c∑

l=1

Re
(
ω(2l−d)/4mωnl

)

=
1

cos(π/2m)


cos

( π

2m

) bd/2c∑

l=1

cos

(
2πl

d
ξ

)
+ sin

( π

2m

) bd/2c∑

l=1

sin

(
2πl

d
ξ

)


(4.39)

where we have denoted ξ = n + 1/2m. Using the Euler representations of the
cosine and sine functions the above two sums can be computed and they read

bd/2c∑

l=1

cos

(
2πl

d
ξ

)
=

1

2

[
sin(πξ)

sin(πξ/d)
− 1

]
(4.40)

and
bd/2c∑

l=1

sin

(
2πl

d
ξ

)
=

1

2

[
cot

(
πξ

d

)
− cos(πξ)

sin(πξ/d)

]
. (4.41)

Introducing them into equation (4.39) and with the aid of some trigonometric
formulas, one obtains

∑

l∈J
clω

nl =
1

2

{
sin(πξ)

sin(πξ/d)
− 1 + tan

( π

2m

)[
cot

(
πξ

d

)
− cos(πξ)

sin(πξ/d)

]}

=
1

2

{
tan

( π

2m

)
cot

[
π

d

(
n+

1

2m

)]
− 1

}
. (4.42)
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By replacing n with −(n + 1) in the above formula we then arrive at the ex-
pression for the sum in equation (4.38), that is,

∑

l∈J
clω
−(n+1)l = −1

2

{
tan

( π

2m

)
cot

[
π

d

(
n+ 1− 1

2m

)]
+ 1

}
. (4.43)

Finally, setting n = bd/2c = (d− 1)/2 in (4.42) one obtains a formula for S:

S =
1

2

{
1− tan

( π

2m

)
cot

[
π

d

(⌊
d

2

⌋
+

1

2m

)]}
. (4.44)

Substituting equations (4.42), (4.43), and (4.44) into (4.36) and (4.38), we
eventually obtain the coefficients αn and βn in the following form

αn =
1

2d
tan

( π

2m

){
cot

[
π

d

(
n+

1

2m

)]
− cot

[
π

d

(⌊
d

2

⌋
+

1

2m

)]}
(4.45)

and

βn =
1

2d
tan

( π

2m

){
cot

[
π

d

(
n+ 1− 1

2m

)]
+ cot

[
π

d

(⌊
d

2

⌋
+

1

2m

)]}
.

(4.46)
with n = 1, . . . , bd/2c. As in expressions (4.22) and (4.23), the coefficients can
be expressed using the function g(x) = cot(πd (x+ 1

2m)).

Even d. In this case, one can solve the system (4.34) analogously. The differ-
ence is, however, that (4.34) is the same equation for l = −d/2 and l = d/2, and
therefore the system consists of d − 1 equations for d variables. A non-unique
solution is then expected.

Denoting Je = {−(d−1)/2, . . . ,−1, 1, . . . , d/2} and following the same meth-
odology as above with the set J replaced by Je one arrives at αn and βn given
by

αn =
1

2d

{
tan

( π

2m

)
cot

[
π

d

(
n+

1

2m

)]
− 1

}
+

1

d
S (4.47)

and

βn =
1

2d

{
tan

( π

2m

)
cot

[
π

d

(
n+ 1− 1

2m

)]
+ 1

}
− 1

d
S, (4.48)

where S is given by the same formula as in (4.37). Here, the quantity S (or,
equivalently, one of the variables αn or βn) cannot be uniquely determined. We
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fix it in such a way that the resulting αn and βn are given by the same formulas
as those in the odd d case, that is,

S =
1

2

{
1− tan

( π

2m

)
cot

[
π

d

(⌊
d

2

⌋
+

1

2m

)]}
. (4.49)

As a consequence the coefficients αn and βn are given by equations (4.22) and
(4.23), both in the odd and even d cases.

Ĩm,d and Im,d. It is finally worth mentioning that the values of the two Bell
expressions—in terms of probabilities Im,d and in terms of generalised correlat-

ors Ĩm,d —are related in the following way:

Ĩm,d = dIm,d − 2mS, (4.50)

where S is given by equation (4.49).

Special cases. Let us now consider two special cases of d = 2 and any m, and
m = 2 and any d. In the first one, the Bell expression in the probability form
simplifies to

Im,2 = α0P0 − β0Q0 (4.51)

where

P0 =

m∑

i=1

[P (Ai = Bi) + P (Bi = Ai+1)],

Q0 =

m∑

i=1

[P (Ai = Bi − 1) + P (Bi = Ai+1 − 1)] (4.52)

and

α0 =
1

2 cos(π/2m)
, β0 = 0. (4.53)

Moreover, there is a unique coefficient a1 and it simplifies to 1/[2 cos(π/2m)],
so that in the correlator form our Bell expression for d = 2 becomes

Ĩm,2 =
1

2 cos(π/2m)

[
〈A1B1〉 − 〈A1Bm〉+

m∑

i=2

(〈AiBi〉+ 〈AiBi−1〉)
]
, (4.54)

This is the well-known chained Bell inequality [Pea70, BC90] that we studied
in Chapter 3.
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In the second case, i.e., that of m = 2 and any d, the Bell expression I2,d in
the probability form is given by:

I2,d =

bd/2c−1∑

k=0

(αkPk − βkQk) , (4.55)

with the expressions Pk and Qk simplifying to

Pk = P (A1 = B1 +k)+P (B1 = A2 +k)+P (A2 = B2 +k)+P (B2 = A1 +k+1)
(4.56)

and

Qk = P (A1 = B1−k−1)+P (B1 = A2−k−1)+P (A2 = B2−k−1)+P (B2 = A1−k),
(4.57)

where we have exploited the convention that A3 = A1+1. Then, the coefficients
αk and βk are given by

αk =
1

2d

[
g(k) + (−1)d tan

( π
4d

)]
, βk =

1

2d

[
g (k + 1/2)− (−1)d tan

( π
4d

)]
,

(4.58)
with g(k) = cot[π(k + 1/4)/d]. On the other hand, in the correlator form one
obtains

Ĩ2,d =
d−1∑

l=1

[
al〈Al1Bd−l

1 〉+ a∗l ω
l〈Al1Bd−l

2 〉+ al〈Al2Bd−l
2 〉+ a∗l 〈Al2Bd−l

1 〉
]
, (4.59)

where al = ω(2l−d)/8/
√

2. It should be noted that this Bell inequality was
previously studied in [SLK06] and [dV15], and, in particular in [dV15] and
[LCL07] the maximal quantum violation was found using two different methods.

Conclusion

To sum up, our class of Bell expressions is given by Im,d (4.8) or equivalently

by Ĩm,d (4.17), with coefficients (4.22) and (4.23). We arrived at this result by
writing the most general Bell expression satisfying the symmetry of correlations
stemming from CGLMP measurements, re-writing these Bell expressions in
the simple form (4.17) through a change of variable on Bob’s side, and then
imposing the conditions (4.21) that take into account the symmetries of the
maximally entangled state, as CHSH does for two binary measurements.
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4.1.2. Properties of the Bell expressions

Our Bell expressions Ĩm,d have the following classical, quantum, and no-signalling
bounds:

β̃C = (1/2) tan (π/2m) {(2m− 1)g(0)− g(1− 1/m)} −m, (4.60)

β̃Q = m(d− 1), (4.61)

β̃NS = m tan (π/2m) g(0)−m, (4.62)

with g(x) = cot(π(x+ 1/2m)/d). Given these values, we start by showing that
β̃C < β̃Q < β̃NS for any m and d, and we study their scaling for large values
of m and d. Then, we present the detailed proofs of these three bounds, in
Theorems 4.3, 4.6, and 4.7.

Ratios between the bounds

First, we have that the quantum bound is always higher than the classical
bound, i.e. β̃Q > β̃C for any m, d ≥ 2. This means that all our Bell inequalities
are nontrivial.

Lemma 4.1. For any m, d ≥ 2, the quantum bound of Ĩm,d is strictly larger
than the classical one, that is,

β̃Q/β̃C > 1. (4.63)

Proof. We prove that β̃Q − β̃C > 0, which is equivalent to (4.63) since both
bounds are larger than 0. This inequality can be written as:

2md cot
( π

2m

)
−2m cot

( π

2dm

)
+cot

( π

2dm

)
+cot

(
π

d

(
1− 1

2m

))
> 0. (4.64)

If we define a = 1/d and x = π/2m, it becomes:

ax cot(a(π − x)) + a(x− π) cot(ax) + π cot(x) > 0, (4.65)

for 0 < a ≤ 1/2 and 0 < x ≤ π/4. Since the first term is positive for these
intervals, it suffices to show that

u(a, x) = a(x− π) cot(ax) + π cot(x) > 0. (4.66)

Clearly, u(a, x) ≥ mina(u(a, x)). This minimum corresponds to the limit a→ 0,
since the derivative ∂u(a, x)/∂a of u(a, x) with respect to a is strictly positive
on the considered intervals of a and x. Indeed, it holds that

∂u(a, x)

∂a
= (x− π) cot(ax)− ax(x− π)

sin2(ax)
, (4.67)
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which can be rewritten as

∂u(a, x)

∂a
=

π − x
2 sin2(ax)

[2ax− sin(2ax)] . (4.68)

Now, due to the fact that y > sin y for 0 < y ≤ π/8, one has that 2ax > sin(2ax)
for 0 < a ≤ 1/2 and 0 < x ≤ π/4, and therefore the right-hand side of equation
(4.68) is strictly positive within the above intervals. Now, computing the limit
of u(a, x) when a→ 0, one obtains

lim
a→0

u(a, x) = 1− π

x
+ π cot(x). (4.69)

It can be verified straightforwardly that this expression is strictly positive in the
interval 0 < x ≤ π/4, by comparing the two functions π cot(x) and π

x − 1, and
noticing that the former upper bounds the latter in the interval 0 < x ≤ π/4.
Indeed, at x = π/4, we have that π cot(π/4) > 3, and in this interval, both
their derivatives are negative, with the derivative of the first function smaller
than the derivative of the second one. Thus, u(a, x) > 0.

Moreover, we have that the no-signalling bound is always strictly larger than
the quantum bound, i.e. β̃NS > β̃Q for any m, d ≥ 2. Indeed:

Lemma 4.2. For any m, d ≥ 2, the no-signalling bound of Ĩm,d is strictly larger
than the quantum one, that is,

β̃NS/β̃Q > 1. (4.70)

Proof. Writing the ratio explicitely as β̃NS/β̃Q = 1
d−1(tan

(
π

2m

)
cot
(

π
2dm

)
− 1),

it follows that it is enough to show that tan(π/2m) cot(π/2dm) > d. Let us
prove a slightly simpler inequality:

tan(π/2m) > d tan(π/2dm). (4.71)

To this end, we show that tan(ax) > a tan(x) for any 0 < x ≤ π/2a and
any integer a ≥ 2. We notice that for x = 0, tan(0) = a tan(0), and that
[tan(ax)]′ ≥ [a tan(x)]′ ≥ 0, meaning that both tan(ax) and a tan(x) are mono-
tonically increasing functions and that the former grows faster than the latter.
The inequality for the derivatives holds true because cos(x) is a monotonically
decreasing function for 0 ≤ x ≤ π/2a which implies that cos(x) ≥ cos(ax).
To complete the proof we note that tan(π/2m) = tan[d(π/2dm)] and using
x = π/2dm and a = d, one can exploit the above inequality to obtain (4.71).
This finally implies equation (4.70).
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Scaling of the bounds

Let us continue our study of the ratios between the bounds of our Bell expres-
sions by considering their asymptotic behaviour for large numbers of inputs m
and outputs d. This can be of interest when studying applications in device-
independent protocols, for instance. Let us start with the quantity:

β̃Q

β̃C
=

2m(d− 1)

tan
(
π

2m

) [
(2m− 1) cot

(
π

2dm

)
− cot

(
π
d (1− 1

2m)
)]
− 2m

(4.72)

which is the ratio between the quantum and classical bounds. We also consider
the ratio between the no-signalling and quantum bounds, which is:

β̃NS

β̃Q
=

tan
(
π

2m

)
cot
(

π
2dm

)
− 1

d− 1
. (4.73)

To observe the behaviour of these quantities for high number of inputs m and
outputs d, we can use the Taylor series expansion in two variables, 1/m and
1/d, and keep the dominant terms. We obtain:

β̃Q

β̃C
= 1 +

1

2m
− π2 − 6

12m2
+ · · · (4.74)

β̃NS

β̃Q
= 1 +

π2/12− π2/12d2

m2
+ · · · (4.75)

Thus, when the parameters m and d are of the same order and both very large,
i.e. m = Θ(d), both ratios tend to 1. It is interesting to consider how fast
the bounds tend towards each other: since the ratio between the no-signalling
and quantum bounds lacks a term in 1/m, it is clear that the quantum bound
approaches the no-signalling bound faster than the classical bound approaches
the quantum bound.

If we fix the number of outputs d and consider the limit of a large number of
inputs m, the ratios still tend to 1. However, if we fix m and consider the limit
of large d, both ratios tend to constants which are a bit bigger than 1. They
are :

lim
d→∞

β̃Q/β̃C =
(2m− 1)π cot (π/2m)

4m(m− 1)
(4.76)

lim
d→∞

β̃NS/β̃Q =
2

π
m tan

( π

2m

)
. (4.77)

It is worth mentioning that both functions of m appearing on the right-hand
sides of the above formulas attain their maxima for m = 2 which are 4/π and
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4. Bell inequalities tailored to maximally entangled states

3π/8, respectively. To give the reader more insight, we present in Tables A.1
and A.2 the numerical values of these ratios for low values of m and d (all
Tables can be found in Appendix A).

Classical bound of the inequalities

We are now ready to move on to the proofs of the bounds of our Bell expressions.
We start with the classical bound. As announced (4.60), we have:

Theorem 4.3. The classical bound of Ĩm,d is given by

β̃C = (1/2) tan (π/2m) {(2m− 1)g(0)− g(1− 1/m)} −m, (4.78)

with g(x) = cot(π(x+ 1/2m)/d).

In order to prove this bound, let us simplify the form of the problem. We
start with our Bell expression in the probability form Im,d and note that we
can rewrite it as:

Im,d =

d−1∑

k=0

αk

m∑

i=1

[P (Ai = Bi + k) + P (Bi = Ai+1 + k)], (4.79)

with Am+1 = A1 + 1. This is possible because of the form (4.22) and (4.23) of
coefficients αk and βk. Indeed, since αk = −βd−k−1, the terms of the sum which
were attached to the βk coefficients can be shifted to indices k = bd/2c, . . . , d−1
and now associated to an αk. In the odd case, we should in principle impose
that the term k = bd/2c disappears, but it happens naturally since αbd/2c = 0.

As mentioned in Chapter 2, finding the classical bound of a Bell expres-
sion reduces to computing the optimal deterministic strategy. Following this
assumption of determinism, we describe the difference between the outcomes as-
sociated to Ax and By by assigning one value q such that P (Ax = By+k) = δkq.
As q depends on inputs x and y but not all pairs of Ax and By appear in the
Bell expression, we thus define 2m variables qi ∈ {0, 1 . . . , d− 1} such that:

A1 −B1 = q1,

B1 −A2 = q2,

A2 −B2 = q3,
...

Am −Bm = q2m−1,

Bm −A1 = q2m + 1. (4.80)
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4.1. The bipartite case

Due to the chained character of these equations, q2m must obey a superselection
rule involving the other qi’s, which is

q2m = −1−
2m−1∑

i=1

qi, (4.81)

where the sum is modulo d. Since the dependence of the coefficients αk on k
is only through the cotangent function, we can further simplify the problem of
finding the classical bound, thus rephrasing Theorem 4.3:

Theorem 4.3. Let

α̂k := cot

[
π

d

(
k +

1

2m

)]
,

and let

β̂C := max
0≤q1,...,q2m−1<d

(
2m−1∑

i=1

α̂qi + α̂−1−
∑2m−1
i=1 qi mod d

)
. (4.82)

Then, β̂C = (2m− 1)α̂0 + α̂d−1.

This means that the optimal deterministic strategy is to set to one 2m − 1
of the terms P (Ax = By + z) multiplied by α0 and a single term multiplied by

β0, and the remaining terms to zero. To recover expression β̃C from β̂C , one
needs to reintroduce the constant factors appearing in the definition of αk and
use equation (4.50). To prove the theorem, we first demonstrate two lemmas.
We will be assuming that m ≥ 2 and d ≥ 2. Although these are not tight
conditions to prove our results, they are in any case satisfied by the definition
of a Bell test.

Lemma 4.4. Let g(x) = cot[π(x+ 1
2m)/d]. For all x, y satisfying 0 ≤ x < y <

d− 1
2m , we have

(1 + 2mx)g(x) > (1 + 2my)g(y). (4.83)

Proof. Let us consider the function f(z) = z cot z, which is strictly decreasing
in the interval 0 < z < π. This can be shown for instance by noting that f is
holomorphic and by studying the sign of the coefficients of its Laurent series in
a ball of radius π centered at z = 0. Thus, for every c ∈ (0, π), f(c) > f(z) for
all c < z < π. In particular, we can pick c = π

2dm(1 + 2mx) so that:

π

2dm
(1 + 2mx) cot

( π

2dm
(1 + 2mx)

)
> zf(z), (4.84)
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4. Bell inequalities tailored to maximally entangled states

for π
2dm(1 + 2mx) < z < π. By introducing the change of variables z = π

2dm(1 +
2my), equation (4.83) follows. Note that for integer values of x and y, namely
k and l, Lemma 4.4 becomes:

(1 + 2mk)α̂k > (1 + 2ml)α̂l, ∀0 ≤ k < l < d. (4.85)

Lemma 4.5. For integer indices k, l, p such that 0 < k, l < d and 0 ≤ p < d,
we have:

α̂0 + α̂p > α̂k + α̂l. (4.86)

Proof. Because all the α’s are ordered α̂0 > α̂1 > α̂2 > · · · > α̂d−1, we have
that α̂0 + α̂p ≥ α̂0 + α̂d−1 and α̂1 + α̂1 ≥ α̂k + α̂l. Hence, it suffices to prove
that

α̂0 + α̂d−1 > 2α̂1. (4.87)

Let us rewrite this inequality using function g. To this end, we note that the
symmetry of the function cot(x) = − cot(−x) translates to g(x) in the following
manner: g(x) = −g(−x − 1/m). Thus, in order to prove (4.87), we need to
show:

g(0) > 2g(1) + g(1− 1/m). (4.88)

Using Lemma 4.4 twice, we can express that:

g(0) > (2m− 1)g(1− 1/m) > g(1− 1/m) + 2(m− 1)
(1 + 2m)

(2m− 1)
g(1). (4.89)

To obtain the second inequality, one of the 2m − 1 terms was isolated, and
Lemma 4.4 was applied only on the remaining 2(m− 1) terms. The minimum
of 2(m− 1)(1 + 2m)/(2m− 1) is found for m = 2 and it is equal to 10/3. Since
g(1) is positive, and 10/3 > 2, we can conclude that g(0) > g(1− 1/m) + 2g(1),
which is exactly relation (4.88).

Proof of Theorem 4.3. To demonstrate the theorem, we employ a dynamic pro-
gramming procedure which allows us to rewrite equation (4.82) as a chain of
maximisations, each over a single variable. Let us first define

h(x) = max
0≤y<d

(α̂y + α̂−1−x−y) , (4.90)

where the indices are taken to be modulo d. As a direct consequence of Lemma
4.5, h(x) = α̂0 + α̂−1−x. Indeed, the lemma implies that α̂0 + α̂−1−x > α̂y +
α̂−1−x−y if y > 0 and x 6= d− 1− y. For the cases where y = 0 or x = d− 1− y,
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4.1. The bipartite case

the maximum is directly attained. This allows us to write the classical bound
as:

β̂C = max
q1

(
α̂q1 + max

q2

(
α̂q2 + . . .+ max

q2m−2

(
α̂q2m−2 + h

(
2m−2∑

i=1

qi

))
. . .

))
.

(4.91)
Using the properties of h, we find that

max
qk

[
α̂qk + h

(
k∑

i=1

qi

)]
= α̂0 + h

(
k−1∑

i=1

qi

)
(4.92)

for all k. By applying this step 2(m− 1) times to expression (4.91), we obtain:

β̂C = (2m− 2)α̂0 + h(0) = (2m− 1)α̂0 + α̂−1. (4.93)

Importantly, the resulting Bell inequality Ĩm,d ≤ β̃C is violated by quantum

theory – one can reach the value Ĩm,d = m(d − 1) by applying the CGLMP
measurements on |φ+

d 〉. This is seen by using (4.21), the unitarity of Aki , and the
symmetries of the maximally entangled states (4.20). Then, all the correlators
in (4.17) equal one, yielding the quantum violation of m(d− 1). As announced
in (4.61), this violation is optimal and defines the tight Tsirelson bound of Ĩm,d.
We prove this result below.

Tsirelson bound of the inequalities

Theorem 4.6. The Tsirelson bound of Ĩm,d is given by

β̃Q = m(d− 1). (4.94)

Proof. We give an SOS decomposition to prove the maximal quantum violation
of Ĩm,d (see expression (2.20)). Concretely, we show that the identity

β̃Q1− B =
1

2

m∑

i=1

d−1∑

k=1

P †ikPik +
1

2

m−2∑

i=1

d−1∑

k=1

T †ikTik, (4.95)

is valid independently of the choice of Aki and Bk
i . The operators are thus not

specified. Here, Pik = 1⊗ B̄k
i − (Aki )

† ⊗ 1, and

Tik = µi,kB
d−k
2 + νi,kB

d−k
i+2 + τi,kB

d−k
i+3 , (4.96)
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where the coefficients µik, νik and τik are given by

µi,k =
ω(i+1)(d−2k)/2m

2 cos(π/2m)

sin(π/m)√
sin(πi/m) sin [π(i+ 1)/m]

,

νi,k = − ω(d−2k)/2m

2 cos(π/2m)

√
sin [π(i+ 1)/m]

sin(πi/m)
,

τi,k =
1

2 cos(π/2m)

√
sin(πi/m)

sin [π(i+ 1)/m]
= − ω(d−2k)/2m

4 cos2(π/2m)
ν−1
ik , (4.97)

for i = 1, . . . ,m−3 and k = 1, . . . , d−1, while for i = m−2 and k = 1, . . . , d−1
they are given by

µm−2,k = − ω−(d−2k)/2m

2
√

2 cos(π/2m)
√

cos(π/m)
,

νm−2,k = − ωkω(d−2k)/2m

2
√

2 cos(π/2m)
√

cos(π/m)
,

τm−2,k =

√
cos(π/m)√

2 cos(π/2m)
. (4.98)

Now, in order to check the validity of the SOS decomposition (4.95) let us first
introduce the explicit form of Pik into the first term of the right-hand side of
(4.95), which gives

m∑

i=1

d−1∑

k=1

P †ikPik = β̃Q1− 2B + 1⊗
m∑

i=1

d−1∑

k=1

(B̄k
i )†(B̄k

i ), (4.99)

where we have used the fact that the Bell operator B is Hermitian. Let us
then introduce the explicit form of the operators Tik into the last term of the
right-hand side of (4.95), which, after some algebra, leads us to

m−2∑

i=1

d−1∑

k=1

T †ikTik

=

m−2∑

i=1

d−1∑

k=1

(
|µi,k|2 + |νi,k|2 + |τi,k|2

)
1

+

d−1∑

k=1

[
µ∗1,kν1,k(B

d−k
2 )†(Bd−k

3 ) + µ1,kν
∗
1,k(B

d−k
3 )†(Bd−k

2 )
]
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+

d−1∑

k=1

[
µ∗m−2,kτm−2,k(B

d−k
2 )†(Bd−k

1 ) + µm−2,kτ
∗
m−2,k(B

d−k
1 )†(Bd−k

2 )
]

+
m−3∑

i=1

d−1∑

k=1

[
(µ∗i,kτi,k + µ∗i+1,kνi+1,k)(B

d−k
2 )†(Bd−k

i+3 )

+(µi,kτ
∗
i,k + µi+1,kν

∗
i+1,k)(B

d−k
i+3 )†(Bd−k

2 )
]

+

m−2∑

i=1

d−1∑

k=1

[
ν∗i,kτi,k(B

d−k
i+2 )†(Bd−k

i+3 ) + νi,kτ
∗
i,k(B

d−k
i+3 )†(Bd−k

i+2 )
]
. (4.100)

Now, it follows from equations (4.154) and (4.155) that µ∗i,kτi,k+µ∗i+1,kνi+1,k = 0
for i = 1, . . . ,m− 3 and k = 1, . . . , d− 1, which means that the fourth and fifth
lines in the above vanish. Then, one notices that µ∗1,kν1,k = µm−2,kτ

∗
m−2,k =

ν∗i,kτi,k = −a2
k for i = 1, . . . ,m − 3 and k = 1, . . . , d − 1, and νm−2,kτ

∗
m−2,k =

−ωk(a∗k)2 for k = 1, . . . , d−1, where, as before, ak = ω−(d−2k)/4m/[2 cos(π/2m)].
Therefore, the remaining terms on the right-hand side of (4.100) can be wrapped
up as

m−2∑

i=1

d−1∑

k=1

T †ikTik =
m−2∑

i=1

d−1∑

k=1

(
|µik|2 + |νik|2 + |τik|2

)
1

−
m−1∑

i=1

d−1∑

k=1

[
a2
k(B

d−k
i )†(Bd−k

i+1 ) + (a∗k)
2(Bd−k

i+1 )†(Bd−k
i )

]

−
d−1∑

k=1

[
ωk(a∗k)

2(Bd−k
1 )†(Bd−k

m ) + ω−ka2
k(B

d−k
m )†(Bd−k

1 )
]
.

(4.101)

By substituting equations (4.99) and (4.101) into (4.95) and exploiting the
explicit form of the operators B̄k

i , one obtains

1

2

m∑

i=1

d−1∑

k=1

P †ikPik +
1

2

m−2∑

i=1

d−1∑

k=1

T †ikTik

=
1

2
β̃Q1− B +

d−1∑

k=1

[
m|ak|2 +

1

2

m−2∑

i=1

(
|µi,k|2 + |νi,k|2 + |τi,k|2

)
]
1.

(4.102)

One can then verify that the last two terms in the above formula amount to
(1/2)β̃Q = (1/2)m(d− 1), which completes the proof.
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Before moving on to the no-signalling bound, let us elaborate on how the
SOS works in the case of two measurements, m = 2. In fact, this gives us a
motivation for the choice of conditions (4.21) that led to the coefficients αk
and βk. For m = 2, the second part of the SOS decomposition (4.95) vanishes.
For the optimal CGLMP measurements both sides of (4.95) must yield zero
when applied to |φ+

d 〉, which stems from conditions (4.20) and (4.21). This
allows one to grasp the intuition behind conditions (4.21), i.e., they allow one
to construct in a quite direct way an SOS decomposition (4.95), in which all
operators Pik are polynomials of the measurement operators Aki and Bk

i of order
one, significantly facilitating the computation of the Tsirelson bound. For the
CHSH Bell inequality, one observes the same effect, as these same properties
of the optimal state and measurements allow the Bell operator BCHSH = A1 ⊗
B1 +A1 ⊗B2 +A2 ⊗B1 −A2 ⊗B2 to have the decomposition:

2
√

21− BCHSH = (P †1P1 + P †2P2)/
√

2, (4.103)

with P1 = (1/
√

2)1 ⊗ (B1 + B2) − A1 ⊗ 1, and P2 = (1/
√

2)1 ⊗ (B1 − B2) −
A2 ⊗ 1. Thus, our construction generalises this quantum aspect of the CHSH
Bell operator. For larger number of measurements, m > 2, the first part of the
SOS decomposition is not enough and one has to add “by hand” the extra term
in which all Tik’s are also of order one in Bk

i .

No-signalling bound of the inequalities

As announced in (4.62), we have:

Theorem 4.7. The no-signalling bound of Ĩm,d is given by

β̃NS = m tan (π/2m) g(0)−m, (4.104)

with g(x) = cot(π(x+ 1/2m)/d).

Proof. As for the classical bound of our inequalities, we start from the Bell
expression written as in (4.79):

Im,d =
d−1∑

k=0

αk

m∑

i=1

[P (Ai = Bi + k) + P (Bi = Ai+1 + k)], (4.105)

with Am+1 = A1 + 1. Following considerations from the proof the classical
bound, it is clear that the coefficient α0 is the largest of the sum. Thus, the
algebraic bound of the Bell expression Im,d is 2mα0. We now show that there
exists a no-signalling behaviour that reaches the algebraic bound, which is thus

90



4.1. The bipartite case

also the no-signalling bound. Let us recall the no-signalling conditions for a
probability distribution:

∑

b

P (Ax = a,By = b) =
∑

b

P (Ax = a,By′ = b) ∀a, x, y, y′

∑

a

P (Ax = a,By = b) =
∑

a

P (Ax′ = a,By = b) ∀b, y, x, x′, (4.106)

which were introduced in Chapter 2. The behaviour that we present is the
following. For inputs x and y such that x = y or x = y + 1:

P (Ay = a,By = b) = P (Ay+1 = a,By = b) =

{
1/d if a = b
0 if a 6= b.

(4.107)

There is a special case for x = 1 and y = m:

P (A1 = a,Bm = b) =

{
1/d if a = b− 1
0 if a 6= b− 1,

(4.108)

where the addition is modulo d. For all the other input combinations (i.e. the
ones not appearing in the inequalities), we have:

P (Ax = a,By = b) = 1/d2 ∀a, b. (4.109)

One can verify that this distribution satisfies conditions (4.106). Thus, the no-
signalling bound of Im,d is βNS = 2mα0. To obtain the value β̃NS of (4.104),
it suffices to write explicitly 2mα0 and to use relation (4.50).

4.1.3. Applications to device-independent protocols

Now that we have thoroughly studied the properties of our Bell inequalities,
let us discuss their applications to DI protocols. We proceed by considering
examples.

Self-testing

A natural application of our Bell inequalities is self-testing. We apply the
numerical SWAP method presented in Section 2.3.4 to Ĩm,d for the simplest
case m = 2 and d = 3. The results are plotted in Figure 4.1, and show
that one can self-test the maximally entangled state of two qutrits |φ+

3 〉 =
(|00〉+ |11〉+ |22〉)/

√
3 with our inequalities.

An open question is whether one can generalise this result to any dimension
(or at least higher dimension). The behaviour ~p maximally violating Ĩm,d would
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Figure 4.1.: Minimum fidelity of the physical state to the reference state |φ+
3 〉,

as a function of the violation of Ĩ3,2. At the maximal violation 4,
the fidelity is equal to 1, meaning that the quantum state used in
the Bell experiment must be maximally entangled. The numerical
method that we used does not yield a positive lower bound on the
fidelity below Ĩ3,2 ≈ 3.79 (for comparison, the classical bound is

Ĩ3,2 ≤ (1 + 3
√

3)/2 ≈ 3.01).

then be proven to be unique in the general case, and our inequalities could find
applications in DI random number generation protocols. Indeed, our inequalit-
ies possess enough symmetries so that the method of [DPA13] could be applied
to guarantee a dit of perfect randomness. This, by increasing the dimension d,
would eventually result in unbounded randomness expansion.

Device-independent quantum key distribution

Our inequalities could also find applications in DIQKD. An advantage that our
inequalities have over CGLMP in that scenario [HP13] is that, as said before,
the maximal violation is obtained for the maximally entangled state. This
state can produce perfect correlations between the users, which reduces the
error-correcting phase of the protocol and can lead to better key generation
rates.

Let us study an example: we follow the protocol presented in Section 2.3.3,
for the simple scenario of m = 2 and d = 3. Alice and Bob test the violation
of a Bell inequality (CGLMP for three outcomes, or ours, I2,3) to certify the
security of their outcomes. To generate the key, Alice uses her first setting A1

and Bob a third measurement B3 which is chosen to be the same as A1 (defined
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in expression (4.14)). A bound on the key rate can then be computed according
to formula (2.32)

K ≥ Hx∗=1
min −H(A1|B3). (4.110)

The local guessing probability for the first setting is found to be equal to 1/3
in both cases at the maximal violation, which means that the min-entropy
is H1

min = 1 if we measure in trits (i.e. Hmin = −log3Pguess). The second
term gives for our inequalities H(A1|B3) = 0, since the state is the maximally
entangled state and the correlations are thus perfect. A numerical optimisation
on the measurement B3 shows that there is no better choice for the CGLMP
case than to indeed set B3 to be the same as A1. This second term is larger
than zero H(A1|B3) = 0.0618 for CGLMP, since the optimal state is |ψγ〉 =

(|00〉 + γ|11〉 + |22〉)/
√

2 + γ2, with γ = (
√

11 −
√

3)/2. We thus find the
following bounds on the key rates, in the ideal case:

KI2,3 ≥ 1, (4.111)

KCGLMP ≥ 0.9382, (4.112)

i.e. our inequality guarantees a key rate of 1 trit or 1.58 bits, while CGLMP
guarantees a key rate of 0.9382 trits, or 1.49 bits.

Let us now consider the effect of white noise on this example. The noise is
described by parameter η, and affects the optimal state |ψ〉 as:

ρ′ = (1− η)|ψ〉〈ψ|+ η
I
d2
, (4.113)

which leads to a non-maximal violation of the Bell inequality. The results are
shown in Figure 4.2. Up until a noise level of η ≈ 0.0428, i.e. 4.3 percent,
our inequality leads to a higher key rate than CGLMP. Around η ≈ 0.102, the
key rate has fallen to 0 for both inequalities. Note that our bounds on the
guessing probability were obtained numerically, thus this method is limited to
simple scenarios. Proving such bounds analytically remains an open question,
both for CGLMP and for our inequalities. Nevertheless, we can make some
conjectures about the general case.

In particular, when the maximal violation is observed without any noise, we
expect to find Hx∗

min = 1. This conjecture allows us to directly connect the key
rate to the quantum mutual information I(A : B):

Kη=0 ≥ Hx∗
min −H(Ax∗ |By∗) = H(Ax∗)−H(Ax∗ |By∗) ≡ I(Ax∗ : By∗). (4.114)

One can compute the mutual information for the case when projective meas-
urements are applied on a bipartite pure state |ψAB〉. It is straightforward to
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Figure 4.2.: Asymptotic key rate K as a function of the white noise η. The red
curve corresponds to the key rate certified with our inequality I2,3,
while the blue dashed curve corresponds to key rate with CGLMP.
On the top right, the difference between the two key rates is plotted
as a function of the white noise η.

see that the mutual information is upper bounded by the entanglement entropy
of the state, I(A : B) ≤ E(|ψAB〉). For a state ρAB = |ψAB〉〈ψAB|, the entropy
of entanglement [Bru02] is defined as

E(|ψAB〉) = −Tr(ρAlogρA) = −Tr(ρBlogρB), (4.115)

with the reduced density matrices ρA = TrB(ρAB) and ρB = TrA(ρAB) (here
we use logarithm to base d). The bound is tight, i.e. I(A : B) = E(|ψAB〉),
when the measurements are performed in the Schmidt basis of the state, which
corresponds to the best possible choice of measurements x∗, y∗ to generate a
secret key, given that state. Note that implementing these Schmidt basis meas-
urements in the protocol may not be possible, depending on the Bell inequality
used and its own optimal measurements. In [ZG08], the authors investigated
numerically the states that maximally violate the CGLMP inequalities, and
they found that their entanglement entropy decreases as a function of d. On
the other hand, the entanglement entropy of the maximally entangled state is
equal to 1 and independent of the dimension. Since this quantity upper bounds
the mutual information, these results indicate that the key rate for η = 0 would
decrease monotonically with d for the CGLMP optimal states, while our key
rate would remain equal to 1.

In conclusion, we can conjecture in the noiseless case that the advantage of
our inequality over CGLMP grows with the dimension of the systems used for
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DIQKD. Moreover, note that maximally entangled states can be much simpler
to prepare experimentally than fine-tuned partially entangled states such as the
ones maximally violating CGLMP, depending on the setup. However, we are
aware that these observations are only preliminary – it would be interesting to
confirm these conjectures in a future work focused on DIQKD.

4.1.4. Discussion: structure of the quantum set

There is an aspect of our results that is linked to the fundamental question of
the study of the set of quantum correlations. Indeed, a feature of our inequal-
ities worth highlighting is that their Tsirelson bound corresponds to the bound
obtained using the NPA hierarchy at the first level Q1. This is a rare property,
which has been previously observed only for XOR games (see, e.g., [Weh06])
and follows from our SOS decomposition (see (4.95)). Indeed, the degree of an
optimal SOS decomposition for a Bell operator is directly linked to the level
of the NPA hierarchy at which the quantum bound is obtained [PNA10]. An
SOS of degree one, as in our case, corresponds to the first level Q1. This means
that the boundaries of the sets Q and Q1 intersect at the maximal violation
of our inequalities. This observation along with the results of [dV15] seem to
suggest that the boundaries of Q and Q1 intersect at points that correspond
to the maximal violation of Bell inequalities attained by maximally entangled
states. Note, however, that the opposite implication is not true. That is, there
exist Bell inequalities whose maximal violation by the maximally entangled
state does not correspond to the intersection of Q and Q1 [LLD09]. The above
property, if proven in general, could be used to characterise Q1.

4.2. Extension to the multipartite case

In this section, we present the extension of our results to the case of N parties.
The form of the Bell expressions can be generalised in a quite straightforward
way, using a procedure from [AGCA12]. The state maximally violating the Bell
expression becomes the generalised N -partite GHZ state (2.4):

|GHZN,d〉 =
1√
d

d−1∑

i=0

|ii . . . i〉. (4.116)

The quantum, no-signalling, and Svetlichny bounds can be obtained analytic-
ally as a function of N , m and d. However, the optimisation problem for the
classical bound becomes much harder to solve – we provide the value of the
classical bound for a few values of N , m, d only.
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4. Bell inequalities tailored to maximally entangled states

4.2.1. Generalisation of the Bell expressions

Aolita et al. introduced a generalisation of the CGLMP/BKP expressions for
many parties in [AGCA12]. Their Bell inequalities can be rewritten in the
following form:

IAGCA =

bd/2c−1∑

k=0

[(
1− 2k

d− 1

)(
PNk −QN

k

)]
(4.117)

where PNk and QN
k are expressions given explicitly by

PNk =
m∑

x̃1,...,x̃N−1=1

[
P (Xx̃1,...,x̃N−1 = k) + P (X x̃1,...,x̃N−1 = k)

]

QN
k =

m∑

x̃1,...,x̃N−1=1

[
P (Xx̃1,...,x̃N−1 = −k − 1) + P (X x̃1,...,x̃N−1 = −k − 1)

]
,

(4.118)

where X and X are linear combinations of A
(j)
xj defined as

Xx̃1,...,x̃N−1 =
N∑

j=1

(−1)j−1A
(j)
x̃j−1+x̃j−1 (4.119)

where (j) denotes the jth party and xj = x̃j−1 + x̃j − 1 is the measurement
input, with the convention that x̃0 = x̃N = 1, so that the first and last inputs
are x1 = x̃1 and xN = x̃N−1. Similarly:

X x̃1,...,x̃N−1 =
N∑

j=1

(−1)jA
(j)
x̃j−1+x̃j−1 (4.120)

with x̃0 = 2 and x̃N = 1, so that the first and last inputs are x1 = x̃1 + 1 and
xN = x̃N−1. Also, as in the bipartite case, there is the convention that if the
index x̃ > m, it is replaced by x̃ −m and a term +1 is added to the sum. As
an example, in the particular case N = 3 the above formulas simplify to

Xx̃1,x̃2 = A
(1)
x̃1
−A(2)

x̃1+x̃2−1 +A
(3)
x̃2
,

X x̃1,x̃2 = −A(1)
x̃1+1 +A

(2)
x̃1+x̃2−1 −A

(3)
x̃2
.

(4.121)
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Thus the expressions P (Xx̃1,x̃2 = k) are:

P (Xx̃1,x̃2 = k) = P (A
(1)
x̃1
−A(2)

x̃1+x̃2−1 +A
(3)
x̃2

= k)

=
d−1∑

j1,j2=0

P (j1, j2, (k − j1 + j2 mod d)|x̃1, (x̃1 + x̃2 − 1), x̃2),

(4.122)

following the same definition of equation (4.5) as in the bipartite case, which
can be extended to N parties straightforwardly.

Optimal CGLMP measurements for more parties

The authors of [AGCA12] find that, in the limit of a high number of inputs m→
∞, the maximal violation of their inequalities is attained by the generalised
GHZ state |GHZN,d〉 with the following optimal observables:

A(1)
x = UxFdΩdF

†
dU
†
x,

A(2)
x = VxF

†
dΩdFdV

†
x ,

A(3)
x = WxFdΩdF

†
dW

†
x

...

A(N−1)
x =

{
WxFdΩdF

†
dW

†
x , N even

W †xF
†
dΩdFdWx, N odd

A(N)
x =

{
W †xF

†
dΩdFdWx, N even

WxFdΩdF
†
dW

†
x , N odd

(4.123)

with

Fd =
1√
d

d−1∑

i,j=0

ωij |i〉〈j|, Ωd = diag[1, ω, . . . , ωd−1] (4.124)

and

Ux =

d−1∑

j=0

ω−jθU (x)|j〉〈j|, Vx =

d−1∑

j=0

ωjθV (x)|j〉〈j|, Wx =

d−1∑

j=0

ω−jθW (x)|j〉〈j|,

(4.125)
with θU (x) = (x − 1/2)/m, θV (x) = x/m, and θW (x) = (x − 1)/m. Note
that we have used directly the generalised observables notation introduced in
Section 4.1. For the case N = 2 these measurements reproduce the optimal
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4. Bell inequalities tailored to maximally entangled states

CGLMP observables, so we will use them to construct the generalisation our
Bell inequalities. Moreover, for these measurements and the state |GHZN,d〉,
all the probabilities appearing in both PNk and QN

k are equal, that is,

P (Xx̃1,...,x̃N−1 = k) = P (X x̃1,...,x̃N−1 = k) (4.126)

and

P (Xx̃1,...,x̃N−1 = −k − 1) = P (X x̃1,...,x̃N−1 = −k − 1) (4.127)

for all sequences x̃1, . . . , x̃N−1 with x̃i = 1, . . . ,m. As in the bipartite case, this
symmetry will be respected by the generic form of our Bell expressions.

Generalised correlators for many parties

Before going further, let us give the definition of the generalised correlators
(4.10) for N parties, where (i) denotes the party:

〈A(1)k1
x1 . . . A(N)kN

xN
〉 =

∑

a1...aN

ωk·aP (a1, . . . , aN |x1, . . . , xN ), (4.128)

for ki = 0, . . . , d − 1 ∀i, and where ω = exp(2πi/d) and k · a = a1k1 + · · · +
aNkN . Recall from the bipartite case that one can think of {A(i)ki

xi }ki as an
observable representation of a d-outcome measurement with outcomes labelled

by 1, ω, . . . , ωd−1; in particular, for quantum correlations, A
(i)ki
xi are unitary

operators with eigenvalues 1, ω, . . . , ωd−1. The inverse transformation gives

P (a1, . . . , aN |x1, . . . , xN ) =
1

dN

∑

k1...kN

ω−(a·k)〈A(1)k1
x1 . . . A(N)kN

xN
〉. (4.129)

For 3 parties

For clarity, let us first present our construction in the case of three parties
(N = 3). We use the PNk and QN

k of Aolita et al. as the generalisation of the
bipartite Pk and Qk of equation (4.9). We thus start from the generic Bell
expression:

I3,m,d =

bd/2c−1∑

k=0

(
αkP3

k − βkQ3
k

)
, (4.130)
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where we recall that P3
k and Q3

k are given by

P3
k =

m∑

x̃1,x̃2=1

[
P (A

(1)
x̃1
−A(2)

x̃1+x̃2−1 +A
(3)
x̃2

= k) + P (A
(2)
x̃1+x̃2−1 −A

(1)
x̃1+1 −A

(3)
x̃2

= k)
]
,

Q3
k =

m∑

x̃1,x̃2=1

[
P (A

(1)
x̃1
−A(2)

x̃1+x̃2−1 +A
(3)
x̃2

= −k − 1)

+ P (A
(2)
x̃1+x̃2−1 −A

(1)
x̃1+1 −A

(3)
x̃2

= −k − 1)
]
,

(4.131)

while αk and βk are our degrees of freedom. For instance, for αk = βk = [1 −
2k/(d− 1)], (4.130) reproduces the Bell inequalities (4.117) of Aolita et al. We
now want to exploit these degrees of freedom in order to obtain Bell inequalities
maximally violated by |GHZ3,d〉. Let us use the generalised correlators (4.128)
to rewrite the generic Bell expression:

Ĩ3,m,d =
m∑

x̃1,x̃2=1

d−1∑

l=1

〈Ā(1)l
x̃1

(A
(2)
x̃1+x̃2−1)−lA

(3)l
x̃2
〉, (4.132)

where the new variables Ā
(1)l
x̃1

are defined as

Ā
(1)l
x̃1

= alA
(1)l
x̃1

+ a∗lA
(1)l
x̃1+1 (4.133)

with

al =

bd/2c−1∑

k=0

(
αkω

−lk − βkωl(k+1)
)
. (4.134)

Note here that as, due to the definition, A
(1)l
m+1 = ωlA

(1)l
1 , and therefore in the

case of x̃ = m, equation (4.133) reads Ā
(1)l
m = alA

(1)l
m + a∗l ω

−lA
(1)l
1 . Let us

also notice that the term in (4.132) corresponding to l = 0 is a constant and
therefore it is not included in the new Bell expression Ĩ3,m,d, which we also
rescaled by a factor d.

Now, to fix our free parameters αk and βk (k = 0, . . . , bd/2c − 1) we require
that for the optimal observables (4.123) the following conditions

Ā
(1)l
x̃1
⊗ (A

(2)
x̃1+x̃2−1)−l ⊗A(3)l

x̃2
|GHZ3,d〉 = |GHZ3,d〉 (4.135)

are satisfied for all x̃1, x̃2 = 1, . . . ,m. In other words, we want to find such

αk and βk that the resulting operator Ā
(1)l
x̃1
⊗ (A

(2)
x̃1+x̃2−1)−l ⊗ A

(3)l
x̃2

stabilises
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the GHZ state, meaning that the GHZ state is its eigenstate with eigenvalue
one. This condition is analogous to condition (4.21) of the bipartite case. To
solve the above equations we need the explicit forms of the lth powers of the
measurements (4.123). After some algebra one finds that

A
(1)l
x̃1

= ω−(d−l)θU (x̃1)
l−1∑

n=0

|d− l + n〉〈n|+ ωlθU (x̃1)
d−1∑

n=l

|n− l〉〈n|, (4.136)

(A
(2)
x̃2

)−l = (A
(2)l
x̃2

)† = ω(d−l)θV (x̃2)
l−1∑

n=0

|d− l + n〉〈n|+ ω−lθV (x̃2)
d−1∑

n=l

|n− l〉〈n|,

(4.137)
and

A
(3)l
x̃3

= ω−(d−l)θW (x̃3)
l−1∑

n=0

|d− l + n〉〈n|+ ωlθW (x̃3)
d−1∑

n=l

|n− l〉〈n|. (4.138)

By plugging (4.136), (4.137) and (4.138) into the conditions (4.135), one obtains
the following system of linear equations for the coefficients al:

{
alω
−l/2m + a∗l ω

l/2m = 1

alω
(l−k)/2m + a∗l ω

−(d−l)/2m = 1
(4.139)

with l = 1, . . . , bd/2c. This system can be directly solved, giving

al =
ω

2l−d
4m

2 cos(π/2m)
(l = 1, . . . , bd/2c). (4.140)

We have arrived to exactly the same system (4.32) as in the bipartite case. We
can thus follow the same procedure and obtain the same coefficients

αk =
1

2d
tan

( π

2m

)
[g(k)− g(bd/2c)] (4.141)

βk =
1

2d
tan

( π

2m

)
[g(k + 1− 1/m) + g(bd/2c)] (4.142)

valid for odd and even d, with k = 1, . . . , bd/2c and g(x) := cot[π(x+1/2m)/d].
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For any number of parties

Calculations for any number N of parties follow the same spirit. Our generic
Bell expression becomes:

IN,m,d =

bd/2c∑

k=0

(αkPNk − βkQN
k ), (4.143)

in which PNk and QN
k were defined in (4.118), following Aolita et al. As in the

case of two and three parties, we can rewrite IN,m,d in terms of the complex
correlators as

ĨN,m,d =
m∑

x̃1,...,x̃N−1=1

d−1∑

l=1

〈
N∏

i=1

(A
(i)
x̃i−1+x̃i−1)(−1)i−1l

〉
, (4.144)

where x̃0 = 1, x̃N = 1, and A
(1)
x̃1

= Ā
(1)
x̃1

. The variables Ā
(1)l
x̃1

are, as before,

combinations of A
(1)l
x̃1

and A
(1)l
x̃1+1 given by

Ā
(1)l
x̃1

= alA
(1)l
x̃1

+ a∗lA
(1)l
x̃1+1 (4.145)

with al defined as in (4.134). Notice that the term corresponding to l = 0 is
only a constant that was removed from the new Bell expression ĨN,m,d, which
we also rescaled by a factor of d.

The above form of the Bell expression suggests the conditions one needs to
impose on the variables αk and βk in order to obtain a Bell inequality maxim-
ally violated by the N -partite GHZ state |GHZN,d〉. As before, we want the
operator appearing in the Bell expression to stabilise the GHZ state. Namely,
the following system of equations

N⊗

i=1

(A
(i)
x̃i−1+x̃i−1)(−1)i−1l|GHZN,d〉 = |GHZN,d〉, (4.146)

with the same conventions as for (4.144), should hold for any choice of x̃i and
l with the measurements being given in (4.123). We find the same system of
equations for al as we obtained in the bipartite and tripartite case (4.139) with
its solution given in (4.140). Thus, our Bell inequalities for any number of
parties are determined through the same coefficients αk and βk as in the cases
N = 2, 3. Note that to go from IN,m,d to ĨN,m,d one can use:

ĨN,m,d = dIN,m,d − 2mN−1S, (4.147)

where S =
∑

k(αk − βk) and is thus given by equation (4.44).
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Conclusion

To conclude, for N parties, our Bell inequalities are given in probability form
IN,m,d by equation (4.143) and in correlators form ĨN,m,d by equation (4.144),
with coefficients αk (4.141) and βk (4.142) being the same as in the bipartite
case. To obtain them, we followed the approach of [AGCA12] to get the gen-
eralisation of the CGLMP measurements as well as a generic Bell expression.
We then imposed that the GHZ state should be “stabilised” under our Bell
expression, and proceeded from this condition as in the bipartite case.

4.2.2. Properties of the Bell expressions

Here we will characterise our class of Bell inequalities. We obtain analytically
and prove the Svetlichny quantum, and no-signalling bounds, proving thereby
that the maximal quantum violation is indeed attained with the state |GHZN,d〉.
The case of the classical bound is more complicated, so we leave it for last. We
denote these bounds, respectively, β̃N,m,dS , β̃N,m,dQ , β̃N,m,dNS , β̃N,m,dC for ĨN,m,d,
and the ones for IN,m,d are denoted without the tilde, and can be obtained via
equation (4.147).

Svetlichny bound

We start by considering a hybrid local-nonlocal model introduced in Section
2.2.4, which leads to a bound particular to the multipartite case where local
correlations are shared inside any bipartition of the system, while between bi-
partition nonlocal correlations are allowed.

Theorem 4.8. The Svetlichny bound of ĨN,m,d is given by β̃N,m,dS = mN−2β̃2,m,d
C ,

where β̃2,m,d
C is the classical bound of the Bell inequality in the bipartite case

and is given by (4.78).

Proof. Let us follow the same outline as in the proof of [AGCA12]. To this end,
we decompose the variables in equations (4.119) and (4.120) as

Xx̃ = A
(1)
x̃1
−X ′x̃1,x̃′ , X x̃ = −A(1)

x̃1+1 +X ′x̃1,x̃′ , (4.148)

where x̃′ = x̃2, . . . , x̃N−1. This isolates the first party A(1). With this notation,
our Bell expression IN,m,d can be rewritten as

bd/2c∑

k=0

(αkPNk − βkQN
k ) =

∑

x̃′

I x̃
′

2,m,d, (4.149)
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where I x̃
′

2,m,d are bipartite Bell expression between the variables of the first party
and joint variables involving the remaining parties

I x̃
′

2,m,d =

bd/2c∑

k=0

m∑

x̃1=1

{
αk

[
P (A

(1)
x̃1
−Xx̃1,x̃

′ = k) + P (−A(1)
x̃1+1 +Xx̃1,x̃

′ = k)
]

−βk
[
P (A

(1)
x̃1
−Xx̃1,x̃

′ = −k − 1) + P (−A(1)
x̃1+1 +Xx̃1,x̃

′ = −k − 1)
]}

.

(4.150)

Each I x̃
′

2,m,d has the local bound β2,m,d
C and there are mN−2 terms in

∑
x̃′ I

x̃′

2,m,d.
Thus, for any correlations ~p which are bilocal with respect to the bipartition
A(1)|A(2) . . . A(N), IN,m,d ≤ mN−2β2,m,d

C . One can then follow the argumenta-
tion of [AGCA12] which holds for our Bell expressions and use their symmetries
to show that this remains valid for any bipartition. Thus, the Svetlichny bound
of the Bell expression IN,m,d is mN−2β2,m,d

C , and the same relation is valid for

ĨN,m,d and β̃2,m,d
C .

Let us notice that for the case N = 3 and m = 2 the bound β̃3,2,d
S is also satur-

ated by fully product probability distribution P (1)(a1|x1)P (2)(a2|x2)P (3)(a3|x3)
such that P (i)(0|xi) = 1 for all xi and i. So, in this case the Svetlichny and
classical bound coincide. In general, however, this is not true.

Quantum bound

Theorem 4.9. The quantum bound of ĨN,m,d is β̃N,m,dQ = mN−1(d− 1).

Proof. As in the bipartite case, we find an SOS decomposition of the shifted
Bell operator β̃N,m,dQ I − B. Let us start from the simpler case of m = 2 and
introduce the following operators

P kx̃1,...,x̃N−1
= I−

N⊗

i=1

(A
(i)
x̃i−1+x̃i−1)(−1)i−1k, (4.151)

with the usual conventions x̃0 = 1, x̃N = 1, and A
(1)
x̃1

= Ā
(1)
x̃1

. Then, the sum of
squares in this case reads

β̃N,2,dQ I− B =
1

2

2∑

x̃1,...,x̃N−1=1

d−1∑

k=1

(
P kx̃1,...,x̃N−1

)†
P kx̃1,...,x̃N−1

. (4.152)
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In the case of arbitrary number of measurements, the above sum of squares
needs to be slightly modified. Introducing the following operators

T kx = µ∗x,kA
(1)k
2 + ν∗x,kA

(1)k
x+2 + τx,kA

(1)k
x+3 (4.153)

for x = 1, . . . ,m− 2 and k = 1, . . . , d− 1, where the coefficients are defined as

µx,k =
ω(x+1)(d−2k)/2m

2 cos(π/2m)

sin(π/m)√
sin(πx/m) sin [π(x+ 1)/m]

,

νx,k = − ω(d−2k)/2m

2 cos(π/2m)

√
sin [π(x+ 1)/m]

sin(πx/m)
,

τx,k =
1

2 cos(π/2m)

√
sin(πx/m)

sin [π(x+ 1)/m]
= − ω(d−2k)/2m

4 cos2(π/2m)
ν−1
x,k,(4.154)

for i = 1, . . . ,m−3 and k = 1, . . . , d−1, while for i = m−2 and k = 1, . . . , d−1
they are given by

µm−2,k = − ω−(d−2k)/2m

2
√

2 cos(π/2m)
√

cos(π/m)
,

νm−2,k = − ωkω(d−2k)/2m

2
√

2 cos(π/2m)
√

cos(π/m)
,

τm−2,k =

√
cos(π/m)√

2 cos(π/2m)
. (4.155)

Then, the sum of square is given by

β̃N,m,dQ I−B =
1

2

m∑

x̃1,...,x̃N−1=1

d−1∑

k=1

(
P kx̃1,...,x̃N−1

)†
P kx̃1,...,x̃N−1

+
mN−2

2

m−2∑

x=1

d−1∑

k=1

(
T kx

)†
T kx .

(4.156)
To conclude the proof, let us notice that for the state |GHZN,d〉 and the meas-

urements (4.123) the value of ĨN,m,d is mN−1(d − 1), which follows from the
fact that in this setting, every correlator under the sum equals one. The bound
β̃N,m,dQ is thus tight.

No-signalling bound

Theorem 4.10. The no-signalling bound of ĨN,m,d is given by β̃N,m,dNS = mN−2β̃2,m,d
NS ,

where β̃2,m,d
NS is the no-signalling bound of the Bell inequality in the bipartite case

and is given by (4.104).
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Proof. We proceed as in the proof of the bipartite case. Let us start with our
Bell expression in the probability form IN,m,d and rewrite it as

IN,m,d =
d−1∑

k=0

αkPNk , (4.157)

where PNk is given in equation (4.118) and αk = −βd−1−k for k = bd/2c, . . . , d−1
(notice that in the odd d case αbd/2c = βbd/2c = 0). As shown Section 4.1.2, the
coefficients are such that α0 ≥ αk for any 0 ≤ k ≤ d− 1. The algebraic bound
of IN,m,d clearly follows, as it corresponds to putting all the terms in PN0 equal
to 1:

IN,m,d ≤ 2mN−1α0. (4.158)

The algebraic bound is also the no-signalling bound, as there exists a no-
signalling probability distribution for which this inequality is saturated. We
now give this distribution. For the following measurement choices, it is defined
as

P (a1, . . . , aN |x̃1, x̃1 + x̃2 − 1, . . . , x̃N−2 + x̃N−1 − 1, x̃N−1)

=





1

dN−1
, when

N∑

i=1

(−1)i−1ai = f(x̃1, . . . , x̃N−1)

0, otherwise

, (4.159)

where whenever x̃i−1 + x̃i − 1 > m for some i = 2, . . . , N − 1 it is replaced by
x̃i−1 + x̃i − 1−m, and the function f is defined as

f(x̃1, . . . , x̃N−1) =

N−2∑

i=1

(−1)i+1H(x̃i−1 + x̃i −m− 2). (4.160)

Here, H is the discrete Heaviside step function, defined as H(x) = 1 if x ≥ 0
and H(x) = 0 otherwise. This function f is introduced to take into account

the definition A
(j)
m+k = A

(j)
k + 1, which modifies the condition defining the

probabilities in the Bell expression when the measurement index goes over m.
Indeed, looking at the expression (4.118), one sees that if for all i = 1, . . . , N−2,
x̃i+x̃i+1−1 ≤ m, then f = 0, but if for some j’s, x̃j+x̃j+1−1 > m, then f could
be different than 0. In the same way one has, for the following measurement
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choices:

P (a1, . . . , aN |x̃1 + 1, x̃1 + x̃2 − 1, . . . , x̃N−2 + x̃N−1 − 1, x̃N−1)

=





1

dN−1
,

N∑

i=1

(−1)i−1ai = f̃(x̃1, . . . , x̃N−1)

0, otherwise

, (4.161)

where, if x̃1 + 1 > m or x̃i−1 + x̃i− 1 > m for some i = 2, . . . , N − 1 we replace
it by, respectively, x̃1 +1−m or x̃i−1 + x̃i−1−m, and the function f̃ is defined
in the same way as f , but also takes into account that x̃1 +1 can be larger than
m. Thus

f̃(x̃1, . . . , x̃N−1) = −H(x̃1 −m) + f(x̃1, . . . , x̃N−1). (4.162)

For all the remaining choices of measurements we assume the distribution

P (a1, . . . , aN |x1 . . . xN ) =
1

dN
. (4.163)

Let us now recall the no-signalling principle for many parties. For the distribu-
tion of elements P (a1, · · · , aN |x1 · · ·xN ), the marginal P (ai1 , · · · , aik |xi1 , · · · , xik)
for any subset {i1, · · · , ik} of the N parties should be independent of the meas-
urement settings of the remaining N − k parties:

P (ai1 , · · · , aik |x1, · · · , xN ) = P (ai1 , · · · , aik |xi1 , · · · , xik). (4.164)

One can verify that the distribution presented above obeys the no-signalling
principle. Tracing out a single subsystem one always obtains a maximally ran-
dom probability distribution. Thus, since the bipartite no-signalling bound of
I2,m,d was β2,m,d

NS = 2mα0, we have that βN,m,dNS = mN−2β2,m,d
NS , and this relation

remains valid for ĨN,m,d and β̃N,m,dNS .

Classical bound

Let us start with our Bell expression in probability form, rewritten as in equa-
tion (4.157)

IN,m,d =

d−1∑

k=0

αkPNk , (4.165)

where, we recall:

PNk =
∑

x̃

[
P (Xx̃ = k) + P (X x̃ = k)

]
. (4.166)
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As in the bipartite case, we want to find the best deterministic strategy, i.e.
distribute 0s and 1s so as to have the highest value of IN,m,d. This means
assigning variables that we denote q and r to combinations of variables Xx̃ =
q(x̃) and X x̃ = r(x̃). The optimisation is then done over these variables q, r:

max IN,m,d = maxq,r

d−1∑

k=0

αk
∑

x̃

(δ(q(x̃), k) + δ(r(x̃), k)), (4.167)

where δ is the Dirac delta. This is what we had done in the bipartite case
in equation (4.80), with a slightly different notation. In the bipartite case,
these variables had to obey a superselection rule (4.81) (i.e. we had removed
linear dependencies between the variables). The problem of removing the linear
dependencies means finding s, g(x), h(x) such that

s+
m∑

x=1

[g(x)q(x) + h(x)r(x)] = 0 mod d. (4.168)

In the current notation, rule (4.81) then reads:

m∑

x=1

[q(x) + r(x)] ≡ −1 mod d. (4.169)

For N parties, finding this rule is not so straightforward. The problem we
have to solve is to find all s, g(x̃), h(x̃) ∈ Zd such that

s+
∑

x̃

[g(x̃)q(x̃) + h(x̃)r(x̃)] ≡ 0 mod d. (4.170)

We note that the above equation can be expanded as

s+
N∑

j=1

∑

x̃

[
g(x̃)(−1)j−1A

(j)
x̃j−1+x̃j−1 + h(x̃)(−1)jA

(j)
x̃′j−1+x̃′j−1

]
≡ 0 mod d,

(4.171)
where we recall that x̃0 = x̃N = 1 but x̃′0 = 2 and x̃′N = 1 (see (4.119) and
(4.120)), hence the x̃′i notation. We observe that x̃j−1 + x̃j − 1 = x̃′j−1 + x̃′j − 1
if 1 < j < N , and that for j = N we get x̃j−1 + x̃j − 1 = x̃′j−1 + x̃′j − 1 = x̃N−1.
Therefore, this gives the set of equations that make the coefficient in front of

A
(N)
x̃N−1

congruent to 0 mod d:

∑

x̃:x̃N−1=k

[g(x̃)− h(x̃)] ≡ 0 mod d, 1 ≤ k ≤ m. (4.172)
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Similarly, for 1 < j < N , we make the coefficient in front of A
(j)
k congruent to

0 mod d:
∑

x̃:x̃j−1=k+1−x̃j

[g(x̃)− h(x̃)] ≡ 0 mod d, 1 ≤ k ≤ m. (4.173)

For the case j = 1 we note that x̃0 + x̃1 − 1 = x̃1 and x̃′0 + x̃′1 − 1 = x̃1 + 1.

Hence, the coefficient that accompanies A
(1)
x̃1

is

∑

x̃:x̃1=k

[g(k; x̃2 . . . x̃N−1)− h(k − 1; x̃2 . . . x̃N−1)] ≡ 0 mod d, 1 ≤ k ≤ m.

(4.174)
Finally, we have an equation for the constant term. Here we have to take

into consideration that A
(j)
m+k = A

(j)
k + 1 if k > 0. Note also that we only

need to consider k < m because of the form of the inequality. Let us de-
note by Cx̃,j , C

′
x̃,j ∈ {0, 1} the constant picked by exceeding the value of m

in the measurement settings: A
(j)
x̃j−1+x̃j−1 = A

(j)
x̃j−1+x̃j−1 mod ′m + Cx̃,j and

A
(j)
x̃′j−1+x̃′j−1

= A
(j)
x̃′j−1+x̃′j−1 mod ′m +C ′x̃,j , where mod ′ means that the modulo

is taken from 1 to m instead of 0 to m− 1.

a+
N∑

j=1

∑

x̃

(−1)j+1[g(x̃)Cx̃,j − h(x̃)C ′x̃,j ] ≡ 0 mod d (4.175)

Note that Cx̃,j = C ′x̃,j if j > 1, which, combined to the above equations leads
to

a+
∑

x̃

(g(x̃)Cx̃,1 − h(x̃)C ′x̃,1) +
∑

x̃

(g(x̃)− h(x̃))
N∑

j=2

Cx̃,j(−1)j+1 ≡ 0 mod d

(4.176)
The conditions we just derived can be used to solve the optimisation problem

of the classical bound for a few cases, which we did with Mathematica [Wol14].
A few analytical values are presented in Table A.3, and a comparison of the
numerical values for the Svetlichny and the classical bounds for a few cases is
reported in Table A.4 (all tables can be found in Appendix A). We leave the
general case as an open question.

4.2.3. Discussion

In this section, we generalised our bipartite inequalities to any number of parties
N and studied the bounds of the resulting inequalities. Proving the Tsirelson
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bound meant finding a generalisation of our SOS to many parties. Let us note
the important point that the bounds of IN,m,d are all related to the bounds of
I2,m,d by the factor mN−2 (the Svetlichny bound being related to the bipartite
classical bound by this factor). We became aware that the authors of [BBB+12]
found that, if one generalises a Bell inequality to more parties by following the
procedure of [AGCA12] as we did, this relation between the bounds would
hold (more precisely, they showed it for the Tsirelson bound and the Svetlichny
bound). One can thus apply directly the results of [BBB+12] to get an alternat-
ive proof of the Theorems 4.8 and 4.9 above. This relation between the bounds
means that the results about their relative scaling from Section 4.1.2 also hold
for many parties. As an open question, it would be interesting to see whether a
general expression could be found for the classical bound, valid for any N , m,
d.

4.3. A class of Bell inequalities for partially entangled
states

Let us recall the generic bipartite Bell expressions of equation (4.8):

Im,d =

bd/2c−1∑

k=0

(αkPk − βkQk) ,

and recall that this expression yields our inequalities for some specific values of
the coefficients αk, βk, while it yields the CGLMP/BKP inequalities for other
values of those coefficients. Knowing that these different Bell inequalities are
maximally violated by different entangled states, it is natural to ask whether we
could find a general relation between coefficients αk, βk and the corresponding
optimal state. We first answer this question in the particular case of two parties,
two inputs and three outputs.

4.3.1. The Bell expressions

For N = 2, m = 2 and d = 3, (4.8) gives a class of Bell inequalities involving
two parameters α0P0 − β0Q0 ≤ βC . However, we can always divide the whole
expression by one of them, say α0 (provided that it is positive), reducing the
number of free parameters to one. As a result we obtain the following class of
Bell inequalities

J2,2,3(ξ) = P (A1 = B1) + P (A2 = B2) + P (A1 = B2 − 1) + P (A2 = B1)
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− ξ[P (A1 = B1 − 1) + P (A2 = B2 − 1) + P (A1 = B2) + P (A2 = B1 + 1)]

(4.177)

parametrised by a single parameter which we denote ξ and which is defined in
terms of the coefficients as ξ = β0/α0. It turns out that the classical bound of
these inequalities can be found by looking for the local deterministic strategy
that maximises J2,2,3(ξ):

β2,2,3
C (ξ) =




−4ξ, if ξ ≤ −1,
3− ξ, if − 1 ≤ ξ ≤ 1,
2, if ξ ≥ 1.

(4.178)

Moreover, numerical tests using the NPA hierarchy (see Section 2.2.3) indicate
that for ξ ≤ −1, the Bell inequality (4.177) is trivial, meaning that its maximal
quantum violation equals its classical bound. Consequently, in what follows we
will concentrate on the case ξ > −1. It is then not difficult to see that for ξ = 1
the class (4.177) reproduces the well-known CGLMP Bell inequality, which is
known to be maximally violated by the partially entangled state [ADGL02]:

|ψγ〉 =
1√

2 + γ2
(|00〉+ γ|11〉+ |22〉) (4.179)

with γ = (
√

11−
√

3)/2, whereas for ξ = (
√

3− 1)/2 it gives our Bell inequality
I2,3 from Section 4.1. In both cases the optimal CGLMP observables are used
to get the maximal quantum violation.

The question we want to answer now is whether by changing ξ between the
above two values we can obtain Bell inequalities maximally violated by partially
entangled states (4.179) for various values of γ. To answer this question let us
first take the optimal CGLMP measurements and the state |ψγ〉 and compute
the value of the Bell expression (4.177). This gives us the following function of
ξ and γ:

J (ξ, γ) =
4[3 + γ(2

√
3 + γ − ξγ)]

3(2 + γ2)
. (4.180)

To find its maximal value for a fixed ξ, we need to satisfy the following condition
∂J (ξ, γ)/∂γ = 0. Solving this equation is equivalent to finding the root of a
second degree polynomial in γ, and the extremum is found to be

γ+(ξ) = [(4ξ2 + 4ξ + 25)1/2 − 2ξ − 1]/2
√

3, (4.181)

for which the maximal value of (4.180) for a fixed ξ is

Jmax(ξ) =
1

3

[
5− 2ξ +

√
25 + 4(ξ + 1)ξ

]
. (4.182)
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Of course, the above derivation is not a proof that this is the quantum bound
of the Bell expression (4.177), however, based on our numerical study we con-
jecture this to be the case. Notice first that for ξ = 1 and ξ = (

√
3− 1)/2, the

expression (4.182) reproduces the maximal quantum violations of the CGLMP
and of our Bell inequalities. Then, we tested our conjecture numerically for
other values of ξ by using the NPA hierarchy (see Section 2.2.3 for details).
We employed this technique for values of ξ ∈ [−0.99, 100] with the step 0.01,
and for all these values of ξ the value obtained agrees with (4.182) up to solver
precision 10−8, which is a strong implication that it is the maximal quantum
violation of the corresponding inequality. Note that for ξ ∈ [−0.99, 42], the
level 1 +AB of the hierarchy was sufficient, while for ξ ∈ [42, 100] we used the
level 2, except for a small amount of values in the interval [85, 100] for which
the level 2 + AAB was necessary. To conclude, let us also write the class of
inequalities (4.177) in the correlator form

J2,2,3(ξ) = a(ξ)〈A1B1〉+ a∗(ξ)ω〈A1B2〉+ a(ξ)〈A2B2〉+ a∗(ξ)〈A2B1〉+ c.c.

= 2Re
[
〈A1B̄1〉+ 〈A2B̄2〉

]
(4.183)

where a(ξ) = 1− ξω with ω = exp(2πi/3), , and B̄1 = a(ξ)B1 + a∗(ξ)ωB2 and
B̄2 = a(ξ)B2 + a∗(ξ)B1.

4.3.2. Extension to more parties

The extension of the last section to more parties turns out to be straightforward,
and we study it for N = 3 and N = 4. We follow the same procedure: we start
from the N -partite version of (4.8), expression (4.143) and divide it by one the
parameters so that there is only one that remains:

J3,2,3(ξ) = P(3)
0 − ξQ

(3)
0 , (4.184)

J4,2,3(ξ) = P(4)
0 − ξQ

(4)
0 . (4.185)

We can perform an optimisation to conjecture the classical bound of these
inequalities:

β3,2,3
C (ξ) =




−8ξ, if ξ ≤ −1,
2(3− ξ), if − 1 ≤ ξ ≤ 1,
4, if ξ ≥ 1.

(4.186)

β4,2,3
C (ξ) =




−16ξ, if ξ ≤ −10/11,
10− 5ξ, if − 10/11 ≤ ξ ≤ 2/5,
8, if ξ ≥ 2/5.

(4.187)
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Let us now consider the following states, partially entangled GHZ states:

|GHZ(3)
γ 〉 =

1√
2 + γ2

(|000〉+ γ|111〉+ |222〉), (4.188)

|GHZ(4)
γ 〉 =

1√
2 + γ2

(|0000〉+ γ|1111〉+ |2222〉). (4.189)

As in the section above, we compute the values J (3)(ξ, γ) and J (4)(ξ, γ) of
the Bell expressions for the corresponding partially entangled GHZ states and
the CGLMP measurements (4.123), then find the value of γ(ξ) by solving
∂J (ξ, γ)/∂γ = 0. We obtain that:

γ(3)(ξ) = γ(4)(ξ) =

√
4ξ2 + 4ξ + 25− 2ξ − 1

2
√

3
, (4.190)

which is the same value as for N = 2. Entering (4.190) into the values of the
Bell expressions, we get:

J (3)
max(ξ) = 2(1 + 2ξ +

√
25 + 4(ξ + 1)ξ), (4.191)

J (4)
max(ξ) = 4(1 + 2ξ +

√
25 + 4(ξ + 1)ξ). (4.192)

We conjecture that (4.191) and (4.192) are the maximal quantum violations of
J3,2,3(ξ) and J4,2,3(ξ), respectively. To support this conjecture, we use the NPA
hierarchy as above. With the change of scenario, it takes significantly more
time to solve each SDP, so we do not check as many values of ξ as in the section
above. For N = 3, we checked values of ξ ∈ [−1, 5] with step 0.1 and found
that the values agreed up to 10−7 or lower. For N = 4, we checked values of
ξ ∈ [−1, 2] with step 0.5 and found that the values agreed up to 10−8 or lower.

4.3.3. Open questions

We conjectured that the class of Bell inequalities J2,2,3(ξ) is maximally violated
by a class of partially entangled states |ψγ(ξ)〉 with the parameter γ a function
of ξ. Results of this kind could be very useful in experiments: imagine for
instance a setup where a specific state |ψγ〉 is the easiest to produce – the
most adequate Bell inequality J2,2,3(ξ(γ)) could then be chosen to analyse the
results. We generalised our conjecture to three and four parties. Note that
we also studied but did not include here the case of J2,2,4(ξ). We were able
to find some results, but the mathematical expressions became complicated
and the numerical evidence less straightforward. It would be interesting to see
whether our conjectures could be proven analytically, perhaps by finding an SOS
decomposition for J2,2,3(ξ), which might then shed light on higher dimensional
cases.
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4.4. Experimental realisation

A team of researchers from the Technical University of Denmark and the Uni-
versity of Bristol, UK, recently developed a quantum device based on integrated
photonics, a “quantum chip”. This device is able to generate multidimensional
entanglement as well as to manipulate and measure it, fully on-chip. The gener-
ated qudits are path-encoded, by having each photon exist over d spatial modes
simultaneously, and entanglement is produced by a coherent and controllable
excitation of an array of d identical photon-pair sources. The device is able to
generate and manipulate entangled states of two photons of local dimension up
to 15. Projective measurements can be performed, as universal operations on
path-encoded qudits are possible in linear-optics for any dimension.

This device was used to demonstrate quantum processing applications, in
particular high-dimensional ones which were not experimentally explored be-
fore. Among these applications, violations of the CGLMP inequalities and of
our inequalities were measured, leading to self-testing and randomness expan-
sion for some values of d. We first present the experimental setup in more
details, and we then explain our contribution to the study. Note that several
concepts in the description of the setup were not covered in Chapter 2 – we
thus refer the reader to [GK04, OPSV13] if needed.

4.4.1. The setup

Entangled path-encoded qubits can be generated by coherently pumping two
spontaneous parametric down conversion [SPL+12, COP+16] or spontaneous
four-wave mixing (SFWM) photon-pair sources [SBO+13, WBV+16]. The ap-
proach can be generalized to qudits via the generation of photons entangled over
d spatial modes by coherently pumping d sources [SPL+12, KHLZ17]. However,
scaling this approach to high dimensions has represented a significant challenge,
due to the need of a stable and scalable technology able to coherently embed
large arrays of identical photon sources and to precisely control qudit states in
large optical interferometers.

Silicon quantum photonics, offering intrinsic stability [SBO+13, BST16], high
precision [WPS+17, PGS+17] and dense integration [HSP+17, STY+13], can
provide a natural solution. A large-scale silicon quantum photonic circuit was
devised to implement the scheme, as shown in Figure 4.3 and Figure 4.4. A
total of 16 SFWM sources are coherently pumped, generating a photon-pair
in a superposition across the array. As both the photons must originate from
the same source, the bipartite state created is

∑d−1
k=0 ck|1〉i,k|1〉s,k where |1〉i,k

(|1〉s,k) indicates the Fock state of the idler (signal) photon being in its k-th
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Figure 4.3.: Circuit diagram. The device monolithically integrates 16
SFWM photon-pair sources, 93 thermo-optical phase-shifters, 122
multimode interferometers (MMI) beamsplitter, 256 waveguide-
crossers and 64 optical grating couplers. A photon pair is gen-
erated by SFWM in superposition across 16 optical modes, produ-
cing a tunable multidimensional bipartite entangled state. The two
photons, signal and idler, are separated by an array of asymmetric
MZI filters and routed by a network of crossers, allowing the local
manipulation of the state by linear-optical circuits. Using trian-
gular networks of MZIs, arbitrary local projective measurements
are performed. The inset represents a general schematic for uni-
versal generation and manipulation of bipartite multidimensional
entangled states.

Figure 4.4.: Photograph of the device. Silicon waveguides and 16 SFWM
sources can be observed as black lines. Gold wires allow the elec-
tronic access of each phase-shifter.
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spatial mode and ck represents the complex amplitude in each mode (with∑ |ck|2 = 1). The mapping between the Fock state of each photon and the
logical state is the following: we say that the qudit state is |k〉 (k = 0, . . . , d−1)
if the associated photon is in its k-th optical mode. This yields an arbitrary
multidimensional entangled state:

|ψd〉 =
d−1∑

k=0

ck|k〉i|k〉s, (4.193)

where the coefficients ck can be arbitrarily chosen by controlling the pump
distribution over the d sources and the relative phase on each mode. This is
achieved using a network of Mach-Zehnder interferometers (MZIs) at the in-
put and phase-shifters on each mode, as shown in Figure 4.3. In particular,
maximally entangled states |φ+

d 〉 =
∑d−1

k=0|k〉i|k〉s/
√
d can be obtained with a

uniform excitation of the sources. The two non-degenerate photons are de-
terministically separated using asymmetric MZI filters and routed by a net-
work of waveguide crossings, grouping the signal photon into the top modes
and the idler photon into the bottom ones (see Figure 4.3). The state of each
qudit can then be locally manipulated and measured. Linear-optical circuits
enable the implementation of any local unitary transformation Ûd in dimension
d [RZBB94, CHM+16, CHS+15]. Here a triangular network of MZIs and phase-
shifters are used, as shown in Figure 4.3, which allows arbitrary local projective
measurements to be performed.

The 16 photon-pair sources are designed to be identical. Two-photon reversed
Hong-Ou-Mandel (RHOM) interference is used to verify their performance,
where the fringe visibility gives an estimate of the sources’ indistinguishab-
ility [SBO+13]. RHOM interference is tested between all the possible pairs
of the 16 sources, performing

(
16
2

)
= 120 quantum interference experiments

and evaluating the corresponding visibilities. The pair of sources used for each
interference experiment is selected each time by reconfiguring the interferomet-
ric network. Approximately a 2kHz photon-pair detection rate is observed in
typical measurement conditions. In Figure 4.5 the measured visibilities are re-
ported. In all cases, a visibility of at least 0.90 was obtained, and more than
80% cases presented at least 0.98 visibility. These results show a state-of-the-
art degree of source indistinguishability in all 120 RHOM experiments, leading
to the generation of high quality entangled qudit states.

Each of the MZIs and phase-shifters can be rapidly reconfigured (kHz rate)
with high precision [BST16, HSP+17]. The quality of the qudit projectors is
characterised by the classical statistical fidelity, which quantifies the output
distribution obtained preparing and measuring a qudit on a fixed basis. As re-
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4. Bell inequalities tailored to maximally entangled states

Figure 4.5.: Visibilities for the two-photon RHOM experiments to test sources’
indistinguishability. The inset shows the histogram of all 120 meas-
ured visibilities, with a mean value of 0.984± 0.025.

Figure 4.6.: Statistical fidelity for d-dimensional projectors, in both the com-
putational Ẑ-basis and the Fourier F̂ -basis. The inset shows the
measured distribution for the 16-dimensional projector in the Ẑ-
basis.
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4.4. Experimental realisation

ported in Figure 4.6, the fidelity of projectors was measured in dimension d = 2
to 16 in both the computational basis Ẑ = |k〉〈k|, and in the Fourier-transform
basis F̂ = |`〉〈`|, where |`〉 =

∑d−1
k=0 e

2πik`/d|k〉/
√
d and k, ` = 0, . . . , d − 1. For

d = 8 fidelities of 98% are observed in the Ẑ-basis and 97% in the F̂ -basis, while
for d = 16 fidelities of 97% in the Ẑ-basis and 85% in the F̂ -basis. The resid-
ual imperfections are mainly due to thermal cross-talk between phase-shifters
(higher in the F̂ -basis), which can be mitigated using optimised designs for the
heaters [HSP+17] or ad-hoc characterisation techniques [CHS+15, PGS+17].

Due to a fabrication imperfection in the routing circuit one of the modes
(triangle label in Figure 4.3) for the idler photon presents an additional 10 dB
loss. For simplicity this lossy mode is excluded in the experiment, so we study
multidimensional entanglement for dimension up to 15.

4.4.2. Experimental values for our inequalities and applications

The setup presented above was used to measure violations of the CGLMP
inequalities as well as our Bell inequalities (4.17) for 2 inputs i.e. Ĩ2,2,d, that
we denote:

Ĩd =
2∑

i=1

d−1∑

l=1

〈AliB̄l
i〉, (4.194)

for d = 2, . . . , 8. The maximally entangled state of dimension d and the optimal
CGLMP measurements of Section 4.1.1 were used in both cases. The observed
values are reported in Table A.5 (all Tables can be found in Appendix A). For
both Bell inequalities and for all d considered, the classical bound is violated. In
particular for our inequalities, in dimensions 2–4 a strong violation is observed,
closely approaching the Tsirelson bound. Also for CGLMP, strong violations of
LHV models are observed (it is not expected to closely approach the Tsirelson
bound, as the state is not optimal for CGLMP).

For more details, the experimental values of the generalised correlators Re[〈AliB̄l
i〉]

that enter into the computation of the values of our Bell inequalities are presen-
ted in Figure 4.7. Figure 4.8 plots the values of Ĩd from Table A.5, together
with the quantum and classical bounds.

Self-testing

Let us use these observed values along with the SWAP method (which was
presented in Section 2.3.4) to perform self-testing. Recall that it was shown in
[YVB+14] that the state maximally violating CGLMP, |ψγ〉 with γ = (

√
11 −√

3)/2 could be self-tested using this method. Also, we’ve shown in Section
4.1.3 that the maximally entangled state of two qutrits could be self-tested

117



4. Bell inequalities tailored to maximally entangled states

Figure 4.7.: Measured values of the 2(d−1) correlators Re[〈AliB̄l
i〉] from expres-

sion Ĩd. Dashed boxes refers to theoretical values and errors are
estimated from photon Poissonian statistics.

Figure 4.8.: The red points are experimentally measured values of Ĩd. The
dashed line corresponds to the classical (or LHV) bound βC , and
the solid line is the Tsirelson bound βQ. The dotted line represents
the threshold above which more than 1 global random bit can be
certified.
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Figure 4.9.: Minimum fidelity between the physical state and the reference state
|ψγ〉 for three values of γ, as a function of the violation of the corres-

ponding Bell expression J2,2,3(ξ) (which includes CGLMP and Ĩ3).
From left to right, γ = 0.7923, γ = 0.9 and γ = 1. At the maximal
violation, the fidelity is equal to 1, meaning that the quantum state
used in the Bell experiment must be equal to the reference state.
For lower violations, the fidelity decreases. The self-tested fidelities
for the violations measured experimentally are depicted as points
in the figure, with error bars estimated from photon Poissonian
statistics.

from the maximal violation of Ĩ3. Here we applied this method to another state
of the class |ψγ〉, with the value γ = 0.9. For this, we used the Bell inequality
J2,2,3(ξ) for partially entangled states presented in Section 4.3. This indicates
that more states of the form |ψγ〉 might be self-tested using their corresponding
J2,2,3(ξ). All three fidelity curves are represented in Figure 4.9.

We then used measured violations of CGLMP, Ĩ3, and J2,2,3(ξ) to compute
corresponding experimental self-testing fidelities. These violations were ob-
tained by performing optimal CGLMP measurements on the |ψγ〉 with adequate
γ. Complete results with robustness are displayed in Figure 4.9, as well as in
Tables A.6 and A.7. To conclude, we remark that the certification of high
fidelities in a self-testing context is only achievable in the presence of near-
ideal experimental correlations – here, the measured self-tested fidelities are
comparable with the reported values obtained from full tomographies in other
experimental approaches [ALM+11, KRR+17].

Randomness expansion

We also study the randomness that can be certified with our experimental
observations. We consider the global randomness (using both Alice and Bob’s
outputs). Let us note that it is a particularly demanding task to generate
randomness efficiently – to generate more than 1 bit of randomness per output
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4. Bell inequalities tailored to maximally entangled states

Figure 4.10.: Global randomness Hx,y
min certified per round, based on the ob-

served violation of Ĩd (see Table A.5) for different values of d.
Above the dashed line more than 1 private random bits are gen-
erated. Error bars are given by Poissonian statistics.

symbol, i.e. to achieve Hx,y
min > n with n the number of rounds. In that regime

randomness expansion is naturally achieved as more than one private random
bit is obtained per round. We saw in Section 2.3.2 that this was only possible
for qubits using special scenarios with non-projective measurements [APVW16]
or with sequences of measurements [CJA+17]. In contrast, multidimensional
entangled states provide a natural route to certify more randomness, based
on projective measurements, where up to n log2 d bit of randomness can be
expected in the ideal case. The necessary Bell inequality violation so that
Hx,y

min > n is pictured in Figure 4.8.
Our results are presented in Figure 4.10 and Table A.8. Note that we take

the worst-case min-entropy among the different pairs of inputs. The largest
amount of randomness is obtained for d = 4, where Hx,y

min = 1.82± 0.35 random
bits. The amount of certified randomness is low for higher dimensions, since
the fully device-independent framework is sensitive to noise.

4.5. Discussion

In this chapter, we introduced Bell expressions valid for any number m of meas-
urement choices and any number d of measurement outcomes that are maxim-
ally violated by the maximally entangled states. We studied their properties
and applied a numerical method to self-test the maximally entangled state of
two qutrits. We then presented a generalisation of the Bell expressions to any
number of parties which are maximally violated by generalised GHZ states.
We also studied a class of Bell inequalities for three outcomes which covers our
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4.5. Discussion

Bell expressions as well as the CGLMP ones, and whose quantum bound, we
conjecture, is attained by a class of partially entagled states of two qutrits. Fi-
nally, we presented our experimental collaboration where violations of our Bell
expressions were observed which allowed for state self-testing and randomness
expansion in a few scenarios.

Several questions remain open, and perhaps the main one concerns self-
testing: can we prove it in other scenarios, perhaps for any number of outputs,
and further, for any number of inputs and any number of parties? Also, can we
find an analytical proof that the Bell inequalities J2,2,3(ξ) are indeed maximally
violated by states |ψγ(ξ)〉, and perhaps a generalisation to a higher number of
outputs? More generally, can we use elements of our method to derive other Bell
inequalities with desirable quantum properties? It would also be interesting to
study the DIQKD properties of our Bell inequalities further.
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5. Randomness from partially
entangled states

The device-independent approach does not exclude considerations about the
states and measurements in a Bell test, even though the results are independent
of those states and measurements. For instance, one can take an entangled state
and wonder: how much randomness can be certified from this state? Or: which
measurements should be applied onto this state to produce correlations which
will guarantee a maximal amount of randomness? In this context, entanglement
can be seen as a resource to produce randomness, which, of course, remains
certified by the correlations only.

In [AMP12], the authors showed that 1 bit of local randomness could be
certified from any partially entangled state of two qubits:

|ψθ〉 = cos(θ/2)|00〉+ sin(θ/2)|11〉, (5.1)

where θ ∈]0, π/2]. The certification was based on the maximal violation of Iβ, a
tilted CHSH expression they introduced. When considering global randomness
however, they only proved that when θ → 0, arbitrarily close to 2 bits of
randomness could be certified. This last state is almost separable. On the other
side of the entanglement scale, we know that 2 bits of global randomness can
be certified from the maximally entangled state |φ+〉, as discussed in Chapter
3. What about all the states in between those extremes?

In this chapter, we answer this question and show how 2 bits of global ran-
domness can be certified from any partially entangled state of two qubits, i.e.
any θ ∈]0, π/2]. We first present an approach based on a combination of two
Iβ and one CHSH expression. We also prove that, when considering POVMs, 2
bits of local randomness can be certified from these states. We then present a
second approach where we introduce a modification of the Elegant Bell inequal-
ity [Gis09], for which we find an SOS decomposition as well as a self-testing
procedure in the ideal case. This approach requires less measurement inputs
than the first one, but is only valid for a certain range of entangled states.
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5. Randomness from partially entangled states

5.1. An approach based on the tilted CHSH inequality

Let us start with our first approach which is valid for any state |ψθ〉 with
0 < θ ≤ π/2. We first present the scenario, in which Alice and Bob observe
the maximal violation of two tilted CHSH inequalities Iβ, and a non-maximal
violation of a CHSH inequality. We then show how these conditions guarantee
(or self-test) a certain form of the measurements of Alice and Bob as well as
the state, and how randomness certification (both global and local) ensues.

5.1.1. Scenario and intuition

Let us write the density operator ψθ = |ψθ〉〈ψθ| associated to |ψθ〉 as

ψθ =
1

4

[
I⊗ I + cos(θ)

(
I⊗ Z + Z ⊗ I

)
+ sin(θ)

(
X ⊗X − Y ⊗ Y

)
+ Z ⊗ Z

]

(5.2)

This notation allows us to get some intuition on how to proceed. Indeed, Alice
and Bob will need to do measurements in the X-Y plane of the Bloch sphere
in order to generate the two bits of randomness, as the symmetry in the Z
direction is broken, compared to the case of the maximally entangled state
(putting θ = π/2 in (5.2)). On the other hand, there will be a tendency for
the maximum of a Bell inequality to be attained with at least some of the
measurements having a component along the Z axis since the terms involving
Z are larger in magnitude than those involving X and Y . Thus, we look for a
scheme that involves measurements spanning all three dimensions of the Bloch
sphere.

In the scheme we consider here, Alice performs three measurementsA1, A2, A3

and Bob performs seven measurements B1, . . . , B7 on a state that is a priori
unknown but intended to be |ψθ〉 in some basis for some θ ∈ ]0, π2 ]. They check
that the correlations they obtain satisfy the conditions

Iβ = 2
√

2
√

1 + β2/4 , (5.3)

Jβ = 2
√

2
√

1 + β2/4 , (5.4)

ICHSH = 2
√

2 sin(θ) , (5.5)

〈A3B7〉 = − sin(θ) , (5.6)

where

Iβ = β〈A1〉+ 〈A1B1〉+ 〈A1B2〉+ 〈A2B1〉 − 〈A2B2〉 , (5.7)

Jβ = β〈A1〉+ 〈A1B3〉+ 〈A1B4〉+ 〈A3B3〉 − 〈A3B4〉. (5.8)
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5.1. An approach based on the tilted CHSH inequality

are tilted CHSH expressions of the kind introduced in [AMP12], more precisely
they correspond to Iαβ with α = 1. We set:

β =
2 cos(θ)√
1 + sin(θ)2

. (5.9)

The third Bell expression

ICHSH = 〈A2B5〉+ 〈A2B6〉+ 〈A3B5〉 − 〈A3B6〉 (5.10)

is an ordinary CHSH expression.

The idea of our proof is the following: the maximal violation of the tilted
CHSH expressions Iβ and Jβ implies that A1 = Z (up to local isometries),
and that A2 and A3 are on the X-Y plane of the Bloch sphere. Then, the
violation of the CHSH expression ICHSH = 2

√
2 sin(θ) requires A2 and A3 to

be orthogonal on the Bloch sphere, i.e. A2 = X and A3 = Y . The final
condition 〈A3B7〉 = − sin(θ) requires that B7 = Y . Then, the randomness
can be certified by Alice and Bob performing their measurements A2 = X and
B7 = Y . Bob’s other measurements B1, · · ·B6 are combinations of X and Z.
What we just described is our reference experiment, and in the remainder of
this chapter we will prove the equivalence with the physical experiment given
conditions (5.3) – (5.6).

5.1.2. Self-test based on Iβ

We now study how conditions (5.3) and (5.4) imply a certain form of the state
and measurements used to obtain them. This is in fact a self-testing statement
– note however that we do not introduce an explicit isometry. Let us rewrite
the tilted CHSH expression introduced in [AMP12] as:

Iβ = β〈A〉+ 〈AB〉+ 〈AB′〉+ 〈A′B〉 − 〈A′B′〉 , (5.11)

with measurement operators A, A′ for Alice, and B, B′ for Bob acting on
Hilbert spaces HA and HB. For 0 ≤ β < 2, Iβ satisfies the quantum bound

Iβ ≤ 2
√

2
√

1 + β2/4 (5.12)

which is strictly higher than the local bound Iβ ≤ |β|+ 2. The quantum bound
is tight and can be attained if Alice and Bob measure

A = Z , A′ = X (5.13)
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and

B = cos
(µβ

2

)
Z + sin

(µβ
2

)
X , (5.14)

B′ = cos
(µβ

2

)
Z − sin

(µβ
2

)
X (5.15)

on the two-qubit pure state

|ψβ〉 = cos
( θβ

2

)
|00〉+ sin

( θβ
2

)
|11〉 , (5.16)

where µβ and θβ are related to β by

sin(θβ) =

√
1− β2/4

1 + β2/4
, cos(θβ) =

√
2β2/4

1 + β2/4
, (5.17)

sin
(µβ

2

)
=

√
1− β2/4

2
, cos

(µβ
2

)
=

√
1 + β2/4

2
. (5.18)

Inversely, β and µβ are related to θβ by

β =
2 cos(θβ)√
1 + sin(θβ)2

, tan
(µβ

2

)
= sin(θβ) . (5.19)

This tells us what value of β to choose and what measurements to do on Bob’s
side if we’re aiming to identify a state for some given angle θβ.

We have the following:

Lemma 5.1. If the maximal quantum violation βQ = 2
√

2
√

1 + β2/4 of Iβ is
observed, then there exists a choice of local basis in which the physical state has
the form

ρ = ψβ ⊗ σjunk , (5.20)

where ψβ = |ψβ〉〈ψβ| is the pure qubit state of equation (5.16), σjunk is the
“junk” state, and Alice’s measurements are

A = Z ⊗ I ⊕ A⊥ , (5.21)

A′ = X ⊗ I ⊕ A′⊥ , (5.22)

where Z⊗I and X⊗I act only on the support of the marginal state ρA = TrB[ρ]
on Alice’s side and A⊥ and A′⊥ act only on its orthogonal complement in Alice’s
Hilbert space HA.

The result is relatively straightforward, given the derivation of the quantum
upper bound for the more general family of Iβα expressions done in [AMP12].
We prove it in details for the special case Iβ in Appendix B, in order to make
our claims precise. Note also that a self-testing procedure was provided for Iβ
in [BP15].
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5.1. An approach based on the tilted CHSH inequality

5.1.3. Global randomness certification

We are now able to prove our main result:

Theorem 5.2. In a Bell test where Alice makes three dichotomic measurements
and Bob makes seven dichotomic measurements, if conditions (5.3)–(5.6) are
satisfied, then the global guessing probability for inputs x∗ = 2, y∗ = 7 is bounded
by:

P 2,7
guess ≤ 1/4. (5.23)

This means that two bits of global randomness are certified.

Proof. From Lemma 5.1 and Appendix B, we know that if the first condition
(5.3) is met, we can infer that, in a suitable choice of basis, the underlying
quantum state has the form

ρ = ψθ ⊗ σjunk, (5.24)

and that the measurements A1 and A2 on Alice’s side are

A1 = Z ⊗ I , (5.25)

A2 = X ⊗ I . (5.26)

Note that here and in the rest of the derivation, we restrict our attention to
the part of the Hilbert space containing ρ, i.e., we take Alice’s and Bob’s
marginals ρA and ρB to be of full rank. The second condition (5.4), i.e.
Jβ = 2

√
2
√

1 + β2/4 allows us to make an analogous claim for the state and
measurements A1 and A3. However, we have already chosen a specific basis for
our claims (5.24) – (5.26), which means that we cannot express A3 as we wish.
We will show that A3 has the form A3 = Y ⊗ AY . What we know from the
self-test is that A3 must be related to A1 by

{A1, A3} = 0 (5.27)

regardless of the choice of basis. If we write:

A3 = I⊗AI +X ⊗AX + Y ⊗AY + Z ⊗AZ , (5.28)

imposing then (5.27) with A1 = Z ⊗ I forces AI = AZ = 0. Requiring in
addition that A3

2 = I ⊗ I, we find that the measurement A3 must have the
form

A3 = X ⊗AX + Y ⊗AY (5.29)
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with

AX
2 +AY

2 = I , (5.30)

[AX , AY ] = 0 . (5.31)

We now study the third condition (5.5), i.e. ICHSH = 2
√

2 sin(θ), and show
that it implies AX = 0. Writing

Bi = I⊗B(i)
I

+X ⊗B(i)
X + Y ⊗B(i)

Y + Z ⊗B(i)
Z , (5.32)

with i ∈ {5, 6} for the measurements in ICHSH on Bob’s side, the condition
Bi

2 = I⊗ I implies that

B
(i)
I

2
+B

(i)
X

2
+B

(i)
Y

2
+B

(i)
Z

2
= I . (5.33)

Note that, for the part in the X-Y plane, (5.33) implies

B
(i)
X

2
+B

(i)
Y

2
≤ I . (5.34)

Let us express ICHSH with this notation. Using the expression (5.2) for ψθ in
the Pauli basis and the fact that the Pauli operators are traceless, we get

〈A3B5〉 = Tr
[
A3B5 (ψθ ⊗ σjunk)

]

= sin(θ)
(
〈AX ⊗B(5)

X 〉junk − 〈AY ⊗B(5)
Y 〉junk

)
(5.35)

and, similarly,

〈A3B6〉 = sin(θ)
(
〈AX ⊗B(6)

X 〉 − 〈AY ⊗B
(6)
Y 〉
)
, (5.36)

〈A2B5〉 = sin(θ) 〈I⊗B(5)
X 〉 , (5.37)

〈A2B6〉 = sin(θ) 〈I⊗B(6)
X 〉 . (5.38)

The condition ICHSH = 2
√

2 sin(θ) thus translates to

〈I⊗B(5)
X 〉+〈I⊗B

(6)
X 〉+〈AX⊗B

(5)
X 〉−〈AY⊗B

(5)
Y 〉−〈AX⊗B

(6)
X 〉+〈AY⊗B

(6)
Y 〉 = 2

√
2

(5.39)
Since I, AX and AY commute, we can co-diagonalise them. Using also that
AX

2 +AY
2 = I, we write

I =
∑

k

|k〉〈k| , (5.40)

AX =
∑

k

xk|k〉〈k| , AY =
∑

k

yk|k〉〈k| (5.41)
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with xk
2 + yk

2 = 1, ∀k. Using this we have, for example,

〈AX ⊗B(5)
X 〉 =

∑

k

xk Tr
[(
|k〉〈k| ⊗B(5)

X

)
σjunk

]

=
∑

k

xk〈B(5)
X 〉k (5.42)

and similar expressions for the other terms on the left side of (5.39), where the
expectation values 〈 · 〉k = Tr[ · σk] are evaluated on the states

σk = TrAjunk

[(
|k〉〈k| ⊗ I

)
σjunk

]
(5.43)

on the “junk” part of the Hilbert space on Bob’s side. Note that their norms
satisfy ∑

k

‖σk‖2 =
∑

k

Tr[σk] = 1 . (5.44)

Using this followed by a few applications of the Cauchy-Schwarz inequality to
the left side of (5.39) gives

〈I⊗B(5)
X 〉+ 〈I⊗B(6)

X 〉+ 〈AX ⊗B(5)
X 〉 − 〈AY ⊗B

(5)
Y 〉 − 〈AX ⊗B

(6)
X 〉+ 〈AY ⊗B(6)

Y 〉
=
∑

k

[
(1 + xk)〈B(5)

X 〉k − yk〈B
(5)
Y 〉k + (1− xk)〈B(6)

X 〉k + yk〈B(6)
Y 〉k

]

≤
∑

k

(√
2(1 + xk)

√
〈B(5)

X 〉k
2

+ 〈B(5)
Y 〉k

2
+
√

2(1− xk)
√
〈B(6)

X 〉k
2

+ 〈B(6)
Y 〉k

2
)

≤
∑

k

(√
2(1 + xk) ‖σk‖2 +

√
2(1− xk) ‖σk‖2

)

≤
∑

k

2
√

2 ‖σk‖2

= 2
√

2, (5.45)

where we used that xk
2 + yk

2 = 1 to get to the third expression and that
〈B〉k ≤

√
〈B2〉k ‖σk‖ and

〈
B

(i)
X

2
+B

(i)
Y

2〉
k
≤ 〈I〉k = ‖σk‖2 (5.46)

to get to the fourth. Finally, the condition that (5.39) holds implies that all
the inequalities used to get to the last line of (5.45) are actually equalities. In
particular, the vectors

(√
2(1 + xk),

√
2(1− xk)

)
and

(
‖σk‖2, ‖σk‖2

)
in the

last application of the Cauchy-Schwarz inequality are collinear, which is only
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possible if xk = 0 for all k. In other words, AX = 0, and we conclude that
Alice’s third measurement must be of the form

A3 = Y ⊗AY (5.47)

with AY
2 = I.

Finally, we apply the last condition 〈A3B7〉 = − sin(θ) to show that the
probabilities of the possible outcomes when Alice and Bob jointly measure A2

and B7 are all 1/4. This amounts to showing that 〈A2〉 = 〈B7〉 = 〈A2B7〉 = 0.
Using the form ρ = ψθ ⊗ σjunk of the state and (5.2) for ψθ in the Pauli basis,
for A2 = X ⊗ I we quickly obtain that 〈A2〉 = 0. For the terms involving B7,
we can write B7 as we did for B5 and B6 and obtain the same properties as in
(5.34), i.e.,

B7 = I⊗B(7)
I

+X ⊗B(7)
X + Y ⊗B(7)

Y + Z ⊗B(7)
Z (5.48)

with

B
(7)
I

2
+B

(7)
X

2
+B

(7)
Y

2
+B

(7)
Z

2
= I . (5.49)

Let us compute |〈A3B7〉|:

|〈A3B7〉| =
∣∣〈Y ⊗ Y 〉ψθ〈AY ⊗B

(7)
Y 〉junk

∣∣

= |sin(θ)|
∣∣〈AY ⊗B(7)

Y 〉
∣∣

≤ |sin(θ)|
√
〈B(7)

Y

2
〉
√
〈AY 2〉

= |sin(θ)|
√
〈B(7) 2

Y 〉 . (5.50)

Applying now the condition 〈A3B7〉 = − sin(θ), we conclude that
〈
B

(7)
Y

2〉
= 1.

It follows from (5.49) that
〈
B

(7)
I

2〉
=
〈
B

(7)
X

2〉
=
〈
B

(7)
Z

2〉
= 0. This allows us to

compute 〈B7〉 and 〈A2B7〉.

|〈B7〉| =
∣∣∣〈I⊗ I〉ψθ〈I⊗B

(7)
I
〉junk + 〈I⊗ Z〉ψθ〈I⊗B

(7)
Z 〉junk

∣∣∣

≤
∣∣〈I⊗B(7)

I
〉
∣∣+ cos(θ)

∣∣〈I⊗B(7)
Z 〉
∣∣

≤
√〈

B
(7)
I

2〉
+ cos(θ)

√〈
B

(7)
Z

2〉

= 0 . (5.51)
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Moreover,

|〈A2B7〉| =
∣∣〈X ⊗X〉ψθ〈I⊗B

(7)
X 〉junk

∣∣

= sin(θ)
∣∣〈I⊗B(7)

X 〉
∣∣

≤ sin(θ)

√〈
B

(7)
X

2〉

= 0 . (5.52)

We thus find, for all quantum realisations compatible with the four conditions
(5.3)–(5.6) stated at the beginning, that

P (ab|27) ≤ 1

4

(
1 + |〈A2〉|+ |〈B7〉|+ |〈A2B7〉|

)
=

1

4
, (5.53)

for a, b ∈ {0, 1}, which means that P 2,7
guess ≤ 1/4, and proves that two bits of

global randomness are certified when performing measurements A2 and B7.

5.1.4. Local randomness certification with POVMs

When considering POVMs instead of projective measurements, it is possible to
extract up to 2 local random bits from a two-qubit state as shown in [APVW16],
and theoretically, up to 4 global random bits, although no scheme has yet been
provided achieving this value. This is twice as much as what can be obtained
with projective measurements. These values are explained by the fact that a
POVM acting on a space of dimension 2 can always be decomposed as a convex
sum of POVMs of at most 4 outputs, which means at most 2 local bits, and 4
global bits if a POVM is used on each side. In [APVW16], the state considered
for randomness extraction is maximally entangled. Here, we adapt their proof
to our case and show that two bits of local randomness can be certified from
any partially entangled state |ψθ〉 with θ ∈]0, π/2].

Bob’s extra measurement

Let us suppose that Alice and Bob perform a Bell experiment just like the
scenario above, with measurements A1, A2, A3 and B1, . . . , B6 obeying relations
(5.3)–(5.5), which allow them to make statements as derived above. In the
present scenario, we wish to change Bob’s ideal operator B7 so that it is a
POVM – thus, the condition (5.6) involving the extra operator B7 has to be
modified.

More precisely, the ideal measurement B7 will be replaced by a four-outcome
POVM and used to generate the randomness. If Alice and Bob share the
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partially entangled state |ψθ〉 then Bob has access to the marginal state

ψB
θ = 1

2

(
I + cos(θ)Z

)
. (5.54)

In order to certify two random bits by making measurements on this state,
Bob’s POVM will have to be extremal in the set of qubit measurements, i.e. it
must not be possible to express it as a convex sum of POVMs other than itself.
Fortunately it is relatively easy to derive POVMs satisfying these requirements.
Any rank-one POVM Rid = {Rid

b } with elements of the form

Rid
b = αbφb, (5.55)

with αb > 0 is extremal provided that the pure states φb are linearly independ-
ent. An example of such a POVM is given by

Rid
1 =

1

4 + 4 cos(θ)

(
I + Z

)
(5.56)

and, for b ∈ {2, 3, 4},

Rid
b =

3 + 4 cos(θ)

12 + 12 cos(θ)

(
I + cos(λ)Z + sin(λ)(cos(µb)X + sin(µb)Y )

)
(5.57)

with cos(λ) = −1/(3 + 4 cos(θ)), and for angles µb = (0◦, 120◦, 240◦).
The randomness certification we wish to show is based on the fact that we

can reconstruct a POVM performed by Bob, such as {Rid
b }, from its correlations

with Pauli measurements on Alice’s side on the state |ψθ〉. Writing our ideal
POVM {Rid

b } as
Rid
b = rµb σµ (5.58)

in the identity and Pauli basis {σµ} = {I, X, Y, Z}, where we use implicit
summation over the repeated index µ, we get

〈σµ ⊗Rid
b 〉ψθ = rbµ = ηµνr

ν
b (5.59)

where ηµν = 〈σµ ⊗ σν〉ψθ . For θ 6= 0 one can verify that the ηµνs make up
the components of an invertible matrix (e.g., its determinant is − sin(θ)4). The
conditions (5.59) thus uniquely identify the POVM elements Rid

b .
Let us go back to the device-independent setting where the actual measure-

ment B7, which we denote B7 = {Rb}, is unknown. Condition (5.6) can be
replaced by Alice and Bob checking that the local and two-body statistics are
compatible with the ideal qubit POVM {Rid

b }, i.e., compatible with (5.59):

〈Aµ ⊗Rb〉Ψ = 〈σµ ⊗Rid
b 〉ψθ = rbµ (5.60)
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where Aµ = (I⊗ I, X ⊗ I, Y ⊗AY , Z ⊗ I) are the identity and Alice’s measure-
ments. In what follows, it will be useful to note that these can all be expressed
together as

Aµ = σµ ⊗A+ + σ∗µ ⊗A− (5.61)

where A± are the positive and negative parts of AY , such that IA′ = A+ +A−
and AY = A+ −A−, and σ∗µ is the complex conjugate of σµ.

2 bits of local randomness

The condition (5.60) gives sufficient information about the measurement {Rb}
to show that it yields a uniformly random outcome. Let us model the problem
explicitly in the adversarial picture and suppose that Alice and Bob share a
purification |Ψ〉 = |ψθ〉 ⊗ |χ〉A′B′E of the state identified by the Bell test with
the eavesdropper Eve, who attempts to guess Bob’s outcome. The associated
guessing probability is:

Pguess(B7|E) =
∑

b

Tr
[
ΨBB′E(Rb ⊗Πe=b)

]
(5.62)

where {Πe} is a four-outcome POVM performed by Eve. Inserting IA′ = A+ +
A− we can rewrite the guessing probability as

Pguess(B7|E) =
∑

ab

Tr
[
ΨA′BB′E(Aa ⊗Rb ⊗Πb)

]

=
∑

ab

pab Tr
[
ψB
θ Rb|ab

]
, (5.63)

a ∈ {±}, where in the second line we introduced probabilities pae and POVM
elements Rb|ae on the ‘B’ system defined by

pae = Tr
[
(Aa ⊗ IBB′ ⊗Πe)(IB ⊗ χA′B′E)

]
, (5.64)

paeRb|ae = TrA′B′E

[
(A± ⊗Rb ⊗Πe)(IB ⊗ χA′B′E)

]
. (5.65)

For pae 6= 0 we can see that the Rb|aes defined this way form a POVM. Expand-
ing Rb as

Rb = σµ ⊗Rµb , (5.66)

we can identify the Rb|aes by

paeRb|ae = σµ〈Aa ⊗Rµb ⊗Πe〉A′B′E . (5.67)
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At this point we consider what we learn from the constraint 〈Aµ ⊗ Rb〉 = rbµ.
Multipying both sides by σµ = ηµν where (ηµν) is the matrix inverse of (ηµν)
and then substituting in (5.66) we get

Rid
b = σµ〈Aµ ⊗Rb〉

= σµ〈σµ ⊗ σν〉ψθ〈A+ ⊗Rνb 〉A′B′ + σµ〈σ∗µ ⊗ σν〉ψθ〈A− ⊗Rνb 〉A′B′
= σµ〈A+ ⊗Rµb 〉A′B′ + σ∗µ〈A− ⊗Rµb 〉A′B′
=
∑

e

p+eRb|+e +
∑

e

p−eR
∗
b|−e , (5.68)

where we used that σ∗µ = ±σµ in the same way as σµ and, in the last line, R∗b|−e
is the complex conjugate of Rb|−e. Comparing the first and last lines and using

that {Rid
b } is supposed to be extremal, we conclude

Rb|+e = Rid
b and Rb|−e = Rid ∗

b (5.69)

(if pab = 0, we can set Rb|ae to whatever we want). Using this in (5.63), we
finally find

Pguess(B7|E) =
∑

b

p+b Tr
[
ψB
θ R

id
b

]
+
∑

b

p−b Tr
[
ψB
θ R

id ∗
b

]

= 1/4 (5.70)

for the local guessing probability, which means 2 random bits.

5.1.5. Discussion

To sum up, we found a scheme that certifies two bits of global randomness from
any partially entangled state of two qubits, thus closing the open question of
[AMP12]. We also showed how an adaptation of our scheme could certify two
bits of local randomness by replacing the seventh measurement of Bob by an
extremal four-outcome POVM. This scheme has the advantage of being valid
for any angle θ describing |ψθ〉. It may however not be optimal in terms of
number of measurement choices. Finally, let us note that our result can also be
seen as a self-test based on the combination of three Bell inequalities.

5.2. An approach based on the tilted Elegant inequality

In this section, we present a second approach to the question, in which we
introduce a modified version of the so-called Elegant Bell inequality, which is
valid for three measurement choices on Alice’s side and four on Bob’s side, with
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two outcomes per each measurement. We then find a tight quantum bound on
those tilted Elegant inequalities valid when only qubit systems are considered.
The corresponding qubit strategy is such that Alice makes measurements X, Y ,
and Z on the state |ψθ〉, similarly to the optimal strategy of Section 5.1. When
measurements are not limited to qubits, the quantum bound remains valid for
a range of angles θ, which we show by providing an SOS decomposition to the
shifted Bell operator. Using this SOS decomposition, we propose a self-testing
procedure for Alice’s measurements and the state. Outside of this range of θ,
the situation remains unknown.

5.2.1. Elegant Bell inequality and its modification

In [Gis09], Gisin describes a Bell inequality with the interesting property that
it is violated with qubit measurements using all three dimensions of the Bloch
sphere. As argued in Section 5.1.1, this makes the Bell expression a good
starting point for randomness certification from states |ψθ〉. It is called the
elegant Bell inequality:

Sel = 〈A1(B1 +B2 −B3 −B4)〉+ 〈A2(B1 −B2 +B3 −B4)〉
+〈A3(B1 −B2 −B3 +B4)〉

≤ 6. (5.71)

Its Tsirelson bound was shown to be βQ = 4
√

3 in [APVW16]. It can be
attained by performing the measurements A1 = X, A2 = Y , A3 = Z, and

B1 =
1√
3

(X − Y + Z) , (5.72a)

B2 =
1√
3

(X + Y − Z) , (5.72b)

B3 =
1√
3

(−X − Y − Z) , (5.72c)

B4 =
1√
3

(−X + Y + Z) (5.72d)

on the maximally entangled state |φ+〉 = 1√
2

(
|00〉+ |11〉

)
. We introduce a titled

version of the Elegant Bell inequality, identified by the family of Bell expressions

Sα,β = α〈A3〉+ 〈A1(B1 +B2 −B3 −B4)〉+ 〈A2(B1 −B2 +B3 −B4)〉
+β〈A3(B1 −B2 −B3 +B4)〉. (5.73)
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This depends on free parameters α and β. For α, β ≥ 0, we can see that Sα,β
has the classical bound:

βα,βC =

{
α+ 2β + 4 if β ≤ 2,

α+ 4β if β ≥ 2.
(5.74)

5.2.2. Limitation to qubits

Let us constrain the dimension of our problem and consider only two-qubit
states. Measurements are then described in the basis {I, X, Y, Z}. We first give
a quantum strategy, and then show that it is the optimal one for qubits.

Qubit strategy

Recall the expression (5.2) for the density operator ψθ = |ψθ〉〈ψθ|:

ψθ =
1

4

[
I⊗ I+ cos θ

(
I⊗Z +Z ⊗ I

)
+ sin θ

(
X ⊗X − Y ⊗ Y

)
+Z ⊗Z

]
(5.75)

This expression is important to keep in mind, as it brings simplifications when
computing the expectation value Tr[Sα,β ψθ], where Sα,β denotes the Bell op-
erator corresponding to Sα,β. We compute it for the choice of measurements:
A1 = X, A2 = Y , A3 = Z, and

B1 =
1√
2

sin(µ)(X − Y ) + cos(µ)Z , (5.76)

B2 =
1√
2

sin(µ)(X + Y )− cos(µ)Z , (5.77)

B3 =
1√
2

sin(µ)(−X − Y )− cos(µ)Z , (5.78)

B4 =
1√
2

sin(µ)(−X + Y ) + cos(µ)Z. (5.79)

Compared to the optimal measurements for the non-modified Elegant Bell in-
equality, a free parameter µ was introduced in Bob’s measurement. The result,
depending on θ and µ, is:

Sα,β = α cos(θ) + 4
√

2 sin(µ) sin(θ) + 4β cos(µ) . (5.80)

Note that if we choose cos(θ) = 1 (the special case of the separable state),
then the maximal value of (5.80) is limited to α+ 4β. This coincides with the
classical bound (5.74) only for β ≥ 2, which tells us that we will need to use

136



5.2. An approach based on the tilted Elegant inequality

values approaching or exceeding β = 2 if we hope to cover states close to the
separable state.

Maximising (5.80) over both θ and µ, we find

Sα,β =

√
1

2
(2 + β2)(32 + α2), (5.81)

provided that the parameters satisfy αβ ≤ 8. This optimum is obtained when

cos(µ) = β

√
32 + α2

32(2 + β2)
, cos(θ) = α

√
2 + β2

2(32 + α2)
. (5.82)

The constraint αβ ≤ 8 comes from requiring cos(µ) ≤ 1, cos(θ) ≤ 1. The
relations above invert to

α =
√

32
sin(µ)

tan(θ)
, β =

√
2

sin(θ)

tan(µ)
. (5.83)

Bound for qubit measurements

Let us set β ≥ 2, and show that the quantum expectation value (5.81) is the
maximum that can be attained using only qubit measurements.

Lemma 5.3. When restricting the dimension of the state in the Bell test to
2× 2, i.e. two-qubit states, the maximal quantum value of Bell expression Sα,β
is

β
(2×2)
Q =

√
1

2
(2 + β2)(32 + α2), (5.84)

with αβ ≤ 8 and β ≥ 2.

Proof. To answer this question, we relate Sα,β to the family of tilted CHSH
expressions Iαβ from [AMP12] (note that Iα=1

β = Iβ is the expression that was
used in Section 5.1). The expression

Iαβ = α〈A1〉+ β
〈
A1(B1 +B2)

〉
+
〈
A2(B1 −B2)

〉
(5.85)

has the quantum upper bound

Iαβ ≤
√

(1 + β2)(4 + α2) (5.86)

(at least) for |β| ≥ 1 and |αβ| ≤ 2. If we introduce a constant γ in front of the
last term, i.e., we consider

Iαβ,γ = α〈A1〉+ β
〈
A1(B1 +B2)

〉
+ γ
〈
A2(B1 −B2)

〉
, (5.87)

137



5. Randomness from partially entangled states

then the upper bound changes to

Iαβ,γ ≤
√

(γ2 + β2)(4 + α2/γ2) (5.88)

for |β| ≥ |γ| and |αβ| ≤ 2γ2. The tilted elegant Bell expression Sα,β can be
written in a way that looks like the sum of two Iαβ expressions:

Sα,β = α〈A3〉+ β
〈
A3(B1 +B4)

〉
+
〈
(A1 +A2)(B1 −B4)

〉

− β
〈
A3(B2 +B3)

〉
+
〈
(A1 −A2)(B2 −B3)

〉
. (5.89)

Note that the terms A1 +A2 and A1 −A2 satisfy

(A1 +A2)2 + (A1 −A2)2 = 4I . (5.90)

Given our hypothesis about the dimension of the problem, there are only two
cases we need to consider: either one or both of A1 and A2 are the identity or
both A1 and A2 are Pauli-type, i.e., A1 = a1 ·σ and A2 = a2 ·σ for vectors a1

and a2 of norm 1, and σ = (X,Y, Z).
Let us start with the first possibility. Without loss of generality, suppose

A2 = I. The cases A2 = −I and A1 = ±I are equivalent up to relabelling of
inputs and outputs. Sα,β becomes

Sα,β = α〈A3〉+ β
〈
A3(B1 +B4)

〉
+
〈
(A1 + I)(B1 −B4)

〉

− β
〈
A3(B2 +B3)

〉
+
〈
(A1 − I)(B2 −B3)

〉
. (5.91)

For any given state and measurement operators, we can view this as an average

Sα,β =
1

2
S1 +

1

2
S2 (5.92)

of two terms, with

S1 = α〈A3〉+ β
〈
A3(B1 +B4)

〉
+ 2
〈
A1(B1 −B4)

〉

− β
〈
A3(B2 +B3)

〉
− 2
〈
I(B2 −B3)

〉
(5.93)

and

S2 = α〈A3〉+ β
〈
A3(B1 +B4)

〉
+ 2
〈
I(B1 −B4)

〉

− β
〈
A3(B2 +B3)

〉
+ 2
〈
A1(B2 −B3)

〉
. (5.94)

If we can find an upper bound for S1 and S2 then we will have an upper bound
for Sα,β. S1 is just the sum of an Iαβ,γ expression with γ = 2 (on the first
line) and remaining terms involving only B2 and B3 and only one nontrivial
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measurement on Alice’s side (the second line). Using (5.88), S1 is therefore
bounded by

S1 ≤
√

4 + β2
√

4 + α2/4 + 2β . (5.95)

The upper bound for S2 is the same, so we arrive at the upper bound

Sα,β ≤
√

4 + β2
√

4 + α2/4 + 2β . (5.96)

Applying the Cauchy-Schwarz inequality (ax+yb ≤
√
a2 + b2

√
x2 + y2) on the

right-hand side finally gets us

Sα,β ≤
√

4 + β2 + β2
√

4 + α2/4 + 22

=

√
1

2
(2 + β2)(32 + α2) , (5.97)

which is the same as (5.84).

For the second possibility, i.e. for Pauli-type A1 and A2, we can define

A1 +A2 = 2 cos(λ)A+ , A1 −A2 = 2 sin(λ)A− (5.98)

for some angle λ and dichotomic and normalised A±. Inserted in the expression
for Sα,β, this gives

Sα,β = α cos(λ)2〈A3〉+ β
〈
A3(B1 +B4)

〉
+ 2 cos(λ)

〈
A+(B1 −B4)

〉

+ α sin(λ)2〈A3〉 − β
〈
A3(B2 +B3)

〉
+ 2 sin(λ)

〈
A−(B2 −B3)

〉
, (5.99)

where we have split the first term α〈A3〉 into α cos(λ)2〈A3〉 + α sin(λ)2〈A3〉.
Since we are interested in the range β ≥ 2, the condition |β| ≥ |γ| associated
with the rescaled expression Iαβ,γ above is satisfied for both γ = 2 cos(λ) and

γ = 2 sin(λ). Likewise, the condition |αβ| ≤ 2γ2 reduces here to |αβ| ≤ 8,
which was exactly our constraint. Applying then the upper bound (5.88), we
are able to recover (5.84):

Sα,β ≤
√

4 cos(λ)2 + β2
√

4 + α2 cos(λ)2/4 +
√

4 sin(λ)2 + β2
√

4 + α2 sin(λ)2/4

≤
√

4 + 2β2
√

8 + α2/4

=

√
1

2
(2 + β2)(32 + α2) . (5.100)
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5.2.3. Sum-of-squares decomposition and Tsirelson bound for a
range of partially entangled states

We ran numerical tests based on the NPA hierarchy (see Section 2.2.3) and
found that while the quantum maximal violation of Sα,β corresponds to the
qubit bound (5.84) for certain ranges of α and β, it is not the case for all values.
Here, we show that the Tsirelson bound of Sα,β is indeed the qubit bound (5.84)
for a certain range of parameters, by providing an SOS decomposition of the
shifted Bell operator. Parameters α, β and µ, θ are related to each other by
relations (5.82) and (5.83). In what follows, we mostly state our results in terms
of µ and θ since they relate to the ideal state and measurements and thus have
more physical meaning. Our result covers partially entangled states |ψθ〉 with
θ & 1.23096 radians (or about 70.52878 degrees).

Theorem 5.4. The Tsirelson bound of Bell expression Sα,β is

βQ =

√
1

2
(2 + β2)(32 + α2), (5.101)

provided that

| cos(θ)| ≤ 1/3, (5.102)

tan(µ)2 ≤ 1√
2

(
1 + cos(θ)

)(
1− 3 cos(θ)

)(√
2 sin(θ)− cos(θ)

)
1

sin(θ) (5.103)

for α =
√

32 sin(µ)/ tan(θ) and β =
√

2 sin(θ)/ tan(µ).

Proof. We give an SOS decomposition of the shifted Bell operator. Substituting
α and β in terms of µ and θ, this means finding a decomposition for the operator:

S̃α,β = βQI− Sα,β =
√

32
(
1− cos(µ)2 cos(θ)2

)
I−
√

32 sin(µ)2 cos(θ)A3

− sin(µ) sin(θ)A1(B1 +B2 −B3 −B4)

− sin(µ) sin(θ)A2(B1 −B2 +B3 −B4)

−
√

2 cos(µ) sin(θ)2A3(B1 −B2 −B3 +B4) . (5.104)

Our decomposition is of the form:

S̃α,β =
∣∣P++

1

∣∣2 +
∣∣P++

2

∣∣2 +
∣∣P++

4

∣∣2 +
∣∣P+−

1

∣∣2 +
∣∣P+−

2

∣∣2 +
∣∣P+−

3

∣∣2

+
∣∣P−+

1

∣∣2 +
∣∣P−+

2

∣∣2 +
∣∣P−+

3

∣∣2 +
∣∣P−−1

∣∣2 +
∣∣P−−2

∣∣2 +
∣∣P−−3

∣∣2 (5.105)
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where we denote |P |2 = P †P , and where the P±±
′

k s are twelve Hermitian oper-
ators of the form

P++
1 = α11R

++
1 , (5.106a)

P++
2 = α2∗R

++
1 + α2∗R

++
2 , (5.106b)

P++
4 = α41R

++
1 + α42R

++
2 + α44R

++
4 , (5.106c)

P+−
1 = β11R

+−
1 , (5.107a)

P+−
2 = β2∗R

+−
1 + β2∗R

+−
2 , (5.107b)

P+−
3 = β32R

+−
2 + β33R

+−
3 , (5.107c)

P−+
1 = β11R

−+
1 , (5.108a)

P−+
2 = β2∗R

−+
1 + β2∗R

−+
2 , (5.108b)

P−+
3 = β32R

−+
2 + β33R

−+
3 , (5.108c)

P−−1 = γ11R
−−
1 , (5.109a)

P−−2 = γ21R
−−
1 + γ22R

−−
2 , (5.109b)

P−−3 = γ32R
−−
2 + γ33R

−−
3 . (5.109c)

The operators R±±
′

k appearing in (5.106), (5.107), (5.108), and (5.109) are given
by

R++
1 = 4 cos(µ)I−A3(B1 −B2 −B3 +B4) , (5.110a)

R++
2 = 4 cos(µ)A3 − (B1 −B2 −B3 +B4) , (5.110b)

R++
3 = A1(B1 +B2 −B3 −B4)−A2(B1 −B2 +B3 −B4) , (5.110c)

R++
4 = 4

√
2 sin(µ)I− 4

√
2 sin(µ) cos(θ)A3

− sin(θ)A1(B1 +B2 −B3 −B4)

− sin(θ)A2(B1 −B2 +B3 −B4) , (5.110d)

R+−
1 = 4

√
2 cos(µ) sin(µ)A2

− 2 cos(µ) sin(θ)(B1 −B2 +B3 −B4)

−
√

2 sin(µ) cos(θ)A2(B1 −B2 −B3 +B4) , (5.111a)

R+−
2 =

√
2 cos(µ) cos(θ)(B1 −B2 +B3 −B4)

− sin(µ) sin(θ)A2(B1 −B2 −B3 +B4)

−
√

2 cos(µ)A3(B1 −B2 +B3 −B4) , (5.111b)
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R+−
3 = A1(B1 +B2 +B3 +B4) , (5.111c)

R−+
1 = 4

√
2 cos(µ) sin(µ)A1

− 2 cos(µ) sin(θ)(B1 +B2 −B3 −B4)

−
√

2 sin(µ) cos(θ)A1(B1 −B2 −B3 +B4) , (5.112a)

R−+
2 =

√
2 cos(µ) cos(θ)(B1 +B2 −B3 −B4)

− sin(µ) sin(θ)A1(B1 −B2 −B3 +B4)

−
√

2 cos(µ)A3(B1 +B2 −B3 −B4) , (5.112b)

R−+
3 = A2(B1 +B2 +B3 +B4) , (5.112c)

R−−1 = B1 +B2 +B3 +B4 , (5.113a)

R−−2 = A1(B1 −B2 +B3 −B4) +A2(B1 +B2 −B3 −B4) , (5.113b)

R−−3 = A3(B1 +B2 +B3 +B4) . (5.113c)

They are all linearly independent and have the property that R±±
′

k |ψ〉 = 0 when
|ψ〉 = cos(θ/2)|00〉 + sin(θ/2)|11〉 and when the ideal measurements are used
(A1 = X, A2 = Y , A3 = Z, and By as given in (5.76) - (5.79)). Note that one

of them, R++
3 , is unused in the SOS. The R±±

′

k are grouped above according to
whether or not they change sign under the transformations

T1 :





A1 7→ −A1

B1 7→ −B2

B2 7→ −B1

B3 7→ −B4

B4 7→ −B3

, T2 :





A2 7→ −A2

B1 7→ −B3

B2 7→ −B4

B3 7→ −B1

B4 7→ −B2

. (5.114)

Specifically, the R++
k s are unchanged by both transformations, the R−+

k s change
sign under T1 only, the R+−

k s change sign under T2 only, and the R−−k s change
sign under both transformations.

The coefficients appearing in the expressions (5.106), (5.107), (5.108), and
(5.109) for the SOS operators P±±

′

k are

α11 =
21/4

4

1

cos(µ)

√
2 cos(µ)2 sin(θ)2 − cos(2µ)

(
cos(θ)2 + 2 cos(θ)

)
− 1 , (5.115)

α2∗ =
21/4

4

√(
1− tan(µ)2

)
cos(θ) , (5.116)
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α41 =
21/4

4
, (5.117)

α42 = −21/4

4

(
1− tan(µ)2

)
cos(θ) , (5.118)

α44 =
1

4 21/4
tan(µ) , (5.119)

β11 =
1

4 23/4

1

cos(µ)

√
1− tan(µ)2 − cos(θ)

(√
2 sin(θ)− cos(θ)

)
, (5.120)

β2∗ =
1

4
√

2

1

cos(µ)

√
sin(θ) cos(θ) , (5.121)

β32 =
1

4
√

2

1

cos(µ)

√
sin(θ)

(√
2 sin(θ)− cos(θ)

)
, (5.122)

β33 = −1

4
tan(µ)

sin(θ)√
sin(θ)

(√
2 sin(θ)− cos(θ)

) , (5.123)

γ11 =
21/4

4

√
(
1 + cos(θ)

)(
1− 3 cos(θ)

)
−
√

2
tan(µ)2 sin(θ)√
2 sin(θ)− cos(θ)

, (5.124)

γ21 =
21/4

4

√
cos(θ)

(
1 + cos(θ)

)
, (5.125)

γ22 =
1

4 21/4
tan(µ) sin(θ)

√
cos(θ)

1 + cos(θ)
, (5.126)

γ32 =
1

4 21/4
tan(µ)

sin(θ)√
1 + cos(θ)

, (5.127)

γ33 =
21/4

4

√
1 + cos(θ) . (5.128)

With these coefficients, the SOS decomposition (5.105) expands to the shifted
Bell operator (5.104) as long as the coefficients above are real, i.e., when the
expressions appearing under the various square roots are nonnegative. This
condition is the one that restricts our range of angles θ, µ. A first restriction
is that sin(θ) and cos(θ) are nonnegative. This is not a problem since it corres-
ponds to the convention of taking θ in the range [0, π/2], which we already did.
Expression (5.122) for β32 means that

√
2 sin(θ)−cos(θ) should be nonnegative;

together with the expression (5.124) for γ11 this implies that we are limited to
values of µ satisfying

tan(µ)2 ≤ 1√
2

(
1 + cos(θ)

)(
1− 3 cos(θ)

)(√
2 sin(θ)− cos(θ)

) 1

sin(θ)
. (5.129)
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Finally, the right-hand side of (5.129) must be nonnegative in order for (5.129)
to be feasible, which requires that 1 − 3 cos(θ) ≥ 0 ⇒ cos(θ) ≤ 1/3. We have
thus recovered conditions (5.102) and (5.103) of the statement of the theorem.
Note that other expressions also imply constraints on µ (for example, expression
(5.116) for α2∗ requires |tan(µ)| ≤ 1), but these are less restrictive than (5.129).

To conclude the proof, let us notice that the bound βQ is tight, as it is
attained by the qubit strategy presented in Section 5.2.2.

5.2.4. Self-testing in the ideal case

Armed with the SOS decomposition just derived, we show that the maximal
violation of the elegant Bell inequality Sα,β, provided an assumption on the
regularisation of the observables, self-tests the partially entangled state |ψθ〉 =
cos(θ/2)|00〉+sin(θ/2)|11〉 and the measurements X,Y, Z on Alice’s side (as we
saw, the three directions of the Bloch sphere are needed here for randomness
certification). We present the self-test in the ideal case only. Note that it is valid
only for the range (5.102) of angles θ. In this section, we adopt the self-testing
notation introduced previously where A′i, B

′
i denote the physical measurements,

while Ai, Bi denote the reference measurements.

Isometry and SOS relations

There is a subtlety in this self-test which has not appeared in the other self-tests
in this thesis. Indeed, self-testing the observable A2 = Y up to local isometries
only is not possible, and one has to add complex conjugation to the notion of
equivalence between the physical and reference measurements. This is because
quantum behaviours ~p are invariant under complex conjugation of the state
and measurements. Hence, only a mixture of A2 = Y and A2 = Y ∗ can be
self-tested. This question was studied for instance in [MM11], [ABB+17] and
[BŠCA18b]. We proceed as in [BŠCA18b] and adapt their isometry to our case
in Figure 5.1.

We choose for the gates of the circuit to be X ′A = A′1, Y ′A = A′2, and Z ′A = A′3.
On Bob’s side the expressions are more complex:

X ′B =
B′1 +B′2 −B′3 −B′4

2
√

2 sinµ
, (5.130)

Y ′B =
−B′1 +B′2 −B′3 +B′4

2
√

2 sinµ
, (5.131)

Z ′B =
B′1 −B′2 −B′3 +B′4

4 cosµ
. (5.132)
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|0〉1

|0〉2

|0〉3

|0〉4

|ψ′〉A′B′

H

H

H

H

Z ′
A

Z̃B

H

H

X ′
A

X̃B

iY ′
AX

′
A

iỸBX̃B

H

H

|ψθ〉23 ⊗ |ϕ〉14A′B′

Figure 5.1.: Isometry Φ for our self-test, adapted from the initial swap gate in
order to self-test observable Y . Two auxiliary systems are now used
on each side. The new systems act as control spaces for possible
complex conjugation or transposition. The gates of the circuit are
functions of Alice and Bob’s physical operators A′x, B′y. At the end
of the circuit, we find the junk state |ϕ〉 in tensor product with the
reference state |ψθ〉.
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One can verify that in the ideal case, those operators are indeed Pauli matrices
X,Y, Z. On Alice’s side, the operations are unitary, but on Bob’s side they
need to be regularised: we denote the regularised observables X̃B, ỸB and Z̃B
(see Section 3.3.2). We assume that they act on the physical state like the
non-regularised observables, i.e. X̃B|ψ′〉 = X ′B|ψ′〉, and the same for ỸB and
Z̃B, and we leave the proof of this assumption as an open question. For clarity,
since there is an exact correspondence between Alice’s measurements and the
gates, we will use the operators A′i directly.

From SOS decomposition (5.105), when the maximal violation of Sα,β is
observed, several relations can be derived. The following holds:

R++
1 |ψ′〉 = 0⇔ (I−A′3Z̃B)|ψ′〉 = 0, (5.133)

R++
4 |ψ′〉 = 0⇔

(
2I− 2 cos(θ)A′3 − sin(θ)A′1X̃B + sin(θ)A′2ỸB

)
|ψ′〉 = 0,

(5.134)

R+−
1 |ψ′〉 = 0⇔ (A′2 + sin(θ)ỸB − cos(θ)A′2Z̃B)|ψ′〉 = 0, (5.135)

R+−
2 |ψ′〉 = 0⇔

(
− cos(θ)ỸB − sin(θ)A′2Z̃B +A′3ỸB

)
|ψ′〉 = 0, (5.136)

R−+
1 |ψ′〉 = 0⇔ (A′1 − sin(θ)X̃B − cos(θ)A′1Z̃B)|ψ′〉 = 0, (5.137)

R−+
2 |ψ′〉 = 0⇔

(
cos(θ)X̃B − sin(θ)A′1Z̃B −A′3X̃B

)
|ψ′〉 = 0, (5.138)

R−−2 |ψ′〉 = 0⇔
(
−A′1ỸB +A′2X̃B)|ψ′〉 = 0. (5.139)

Moreover, note that we will be using the fact that M2 = I for M unitary and
hermitian, which is the case for A′1, A

′
2, A

′
3, and the regularised X̃B, ỸB and Z̃B.

It implies in particular (I +M)(I +M) = 2(I +M) and (I +M)(I−M) = 0.
We also remind that operators on Alice’s side commute with operators on Bob’s
side. Writing c = cos(θ/2) and s = sin(θ/2), these relations imply:

(5.133)⇒ A′3|ψ′〉 = Z̃B|ψ′〉, (5.140)

s× (5.135)− c× (5.136)⇒ sA′2(I +A′3)|ψ′〉 = −cỸB(I−A′3)|ψ′〉, (5.141)

s× (5.137)− c× (5.138)⇒ sA′1(I +A′3)|ψ′〉 = cX̃B(I−A′3)|ψ′〉, (5.142)

(5.139)⇒ A′2A
′
1|ψ′〉 = ỸBX̃B|ψ′〉, (5.143)

ỸB × (5.134)− 2 sin(θ)× (5.135) + 2 cos(θ)× (5.136)⇒ A′2A
′
1|ψ′〉 = −A′1A′2|ψ′〉,

(5.144)

ỸB × (5.134)− 2 sin(θ)× (5.137) + 2 cos(θ)× (5.138)⇒ ỸBX̃B|ψ′〉 = −X̃BỸB|ψ′〉.
(5.145)

As we will only show self-testing of the measurements of Alice, what we need
to prove is the following:

Φ
(
(A′i ⊗ I)|ψ′〉A′B′ |0000〉1234

)
= (Ai ⊗ I)|ψθ〉23 ⊗ |ϕ〉14A′B′ , (5.146)

146



5.2. An approach based on the tilted Elegant inequality

with i = 1, 2, 3 and |ϕ〉 the junk state. To do so, let us expand the action of
the isometry from Figure 5.1 on the physical state:

Φ
(
(A′i ⊗ I)|ψ′〉A′B′ |0000〉1234

)
=

1

16

[(
|00〉14(I + iỸBX̃B)(I + iA′2A

′
1)︸ ︷︷ ︸

T1

+ |01〉14(I− iỸBX̃B)(I + iA′2A
′
1)︸ ︷︷ ︸

T2

+ |10〉14(I + iỸBX̃B)(I− iA′2A′1)︸ ︷︷ ︸
T3

+ |11〉14(I− iỸBX̃B)(I− iA′2A′1)︸ ︷︷ ︸
T4

)

⊗
(

(I +A′3)(I + Z̃B)A′i|ψ′〉A′B′ |00〉23︸ ︷︷ ︸
V1

+ X̃B(I +A′3)(I− Z̃B)A′i|ψ′〉A′B′ |01〉23︸ ︷︷ ︸
V2

+A′1(I−A′3)(I + Z̃B)A′i|ψ′〉A′B′ |10〉23︸ ︷︷ ︸
V3

+A′1X̃B(I−A′3)(I− Z̃B)A′i|ψ′〉A′B′ |11〉23︸ ︷︷ ︸
V4

)]
.

(5.147)

Self-testing of the state |ψθ〉
For state self-testing, we need to prove (5.146) with A′i = Ai = I. Equation
(5.140) implies that the terms V2 and V3 are zero. Using equation (5.142), we
get:

V1 + V4 = 2(I +A′3)|ψ′〉|00〉+ 2
s

c
(I +A′3)|ψ′〉|11〉. (5.148)

Letting the junk state be |ϕ〉 = 1
8c [T1 + T2 + T3 + T4](I +A′3)|ψ′〉, this proves:

Φ
(
|ψ′〉|0000〉

)
= |ϕ〉 ⊗ |ψθ〉. (5.149)

The expression for the junk state |ϕ〉 can be simplified. Indeed, using (5.141),
(5.142) and (5.145) on X̃BỸB(I +A′3)|ψ′〉, we show that:

ỸBX̃B(I +A′3)|ψ′〉 = A′2A
′
1(I +A′3)|ψ′〉, (5.150)

and, using (5.141) and (5.142) on X̃BỸBA
′
2A
′
1(I +A′3)|ψ′〉, that:

ỸBX̃BA
′
2A
′
1(I +A′3)|ψ′〉 = −(I +A′3)|ψ′〉. (5.151)

Developing [T1 + T2 + T3 + T4](I +A′3)|ψ′〉, we thus obtain:

|ϕ〉 =
1

4c

(
|00〉(I + iA′2A

′
1) + |11〉(I− iA′2A′1)

)
(I +A′3)|ψ′〉. (5.152)
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Self-testing of X (Ai = A1)

When i = 1 in (5.146), equations (5.140) and (5.142) imply that the terms V1

and V4 are zero. Using the same relations, we get:

V2 + V3 = 2
s

c
(I +A′3)|ψ′〉|01〉+ 2(I +A′3)|ψ′〉|10〉 (5.153)

=
2

c
(s(I +A′3)|ψ′〉|01〉+ c(I +A′3)|ψ′〉|10〉) (5.154)

=
2

c
(I +A′3)|ψ′〉(X ⊗ I)|ψθ〉. (5.155)

This proves:
Φ
(
(A′1 ⊗ I)|ψ′〉|0000〉

)
= |ϕ〉(X ⊗ I)|ψθ〉 (5.156)

and concludes the self-testing of X on Alice’s side.

Self-testing of Z (Ai = A3)

When i = 3 in (5.146), since A′3(I − A′3) = A′3 − I, the terms V2 and V3 are
zero. Equations (5.140) and (5.142) imply:

V1 + V4 = 2(I +A′3)|ψ′〉|00〉 − 2A′1X̃B(I−A′3)|ψ′〉|11〉 (5.157)

=
2

c
(c(I +A′3)|ψ′〉|00〉 − s(I +A′3)|ψ′〉|11〉) (5.158)

=
2

c
(I +A′3)|ψ′〉(Z ⊗ I)|ψθ〉. (5.159)

This proves:
Φ
(
(A′3 ⊗ I)|ψ′〉|0000〉

)
= |ϕ〉(Z ⊗ I)|ψθ〉 (5.160)

and concludes the self-testing of Z on Alice’s side.

Self-testing of Y (Ai = A2)

When i = 2 in (5.146), equations (5.140) and (5.141) imply that the terms
V1 and V4 are zero. The rest needs to be developed. Using equations (5.140),
(5.141), (5.142) and (5.145) we get:

V2 + V3 = −2
s

c
X̃BỸB(I +A′3)|ψ′〉|01〉+ 2X̃BỸB(I +A′3)|ψ′〉|10〉 (5.161)

=
2

c
(c|10〉 − s|01〉)X̃BỸB(I +A′3)|ψ′〉. (5.162)

Using equations (5.150) and (5.145), we prove that:

A′2A
′
1X̃BỸB(I +A′3)|ψ′〉 = (I +A′3)|ψ′〉. (5.163)
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This implies:

T2(V2 + V3) = |01〉2
c

(c|10〉 − s|01〉)(X̃BỸB + iA′2A
′
1X̃BỸB − iI +A′2A

′
1)(I +A′3)|ψ′〉

= 0. (5.164)

We get similarly:
T3(V2 + V3) = 0. (5.165)

Finally,

T1(V2 + V3) = |00〉2
c

(c|10〉 − s|01〉)(X̃BỸB + iA′2A
′
1X̃BỸB + iI−A′2A′1)(I +A′3)|ψ′〉

= |00〉2
c

(c|10〉 − s|01〉)(−2A′2A
′
1 + 2iI)(I +A′3)|ψ′〉 (5.166)

and

T4(V2 + V3) = |11〉2
c

(c|10〉 − s|01〉)(X̃BỸB − iA′2A′1X̃BỸB − iI−A′2A′1)(I +A′3)|ψ′〉

= |11〉2
c

(c|10〉 − s|01〉)(−2A′2A
′
1 − 2iI)(I +A′3)|ψ′〉 (5.167)

which implies

Φ
(
(A′2 ⊗ I)|ψ′〉|0000〉

)
=

2

c
(c|10〉 − s|01〉)

(
|00〉(−2A′2A

′
1 + 2iI)

+ |11〉(−2A′2A
′
1 − 2iI)

)
(I +A′3)|ψ′〉

= Z1|ϕ〉(Y ⊗ I)|ψθ〉 (5.168)

where Z1 is the Pauli-Z gate applied on Alice’s first ancillary qubit (as numbered
in Figure 5.1), and recalling expression (5.152) for the junk state |ϕ〉. This
concludes the self-testing of Y on Alice’s side: according to the outcome of the
Z measurement on the junk state, either Y or Y ∗ is measured on the reference
state. This is the best that can be done in terms of self-testing measurement
Y [BŠCA18b].

5.2.5. Randomness and discussion

To sum up, we presented a modification of the Elegant Bell inequality and we
could prove that it is maximally violated by the partiallly entangled states of
two qubits |ψθ〉, for a range of θ & 1.23096 radians. We did so by providing
an explicit SOS decomposition, the level of which is 1 + AB (order 1 in oper-
ators of Alice and Bob, plus products of A and B). Note that our numerical
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tests indicate that this Tsirelson bound is valid for a larger range of θ than
the one proven by the SOS decompositions. It may in principle be possible to
find an SOS decomposition to cover a larger range of angles, however it would
definitely not cover the whole range of θ, since we also found numerically that
for some values of θ the maximal quantum violation is attained by systems of
local dimension 4. Also, we believe that finding such an SOS decomposition
would require a larger order, and obtaining level 1 + AB was already a quite
large problem. In fact, we used methods similar to [BP15] and [WBA18] for
its derivation. In a few words, the idea is to write the general form of a can-
didate SOS decomposition in terms of unknown parameters with the help of
the symmetries of the problem, assert that the decomposition should expand to
the shifted Bell operator, and then look for parameters for which the assertion
becomes true.

Then, we used our SOS decomposition to prove self-testing of state |ψθ〉 and of
measurements X,Y, Z on Alice’s side, provided that the regularised observables
act on the state as the non-regularised ones. Our result could in principle be
used to perform randomness certification. We do not do it here, but the method
would be similar to Section 5.1, adding an extra measurement B5 on Bob’s side
aligned with A2 = Y , which would then be used along Alice’s measurement
A1 = X to produce randomness.

5.3. Discussion

In this chapter, we were able to answer the open question of [AMP12] and
certify two bits of global randomness from any partially entangled two-qubit
state. We presented our scheme and a modification of it that certifies maximal
local randomness using a POVM, as well as a second approach that we followed
to answer the question which works for a range of partially entangled states.

These results complete our picture of the relations between nonlocality, en-
tanglement and randomness, as pictured in Table 5.1. We proved that maximal
randomness could be obtained from any level of two-qubit entanglement – in
principle, all entangled two-qubit states could be seen as equally good resources
for random number generation. However, this statement is slightly risky, as it
is important to keep in mind that other factors may intervene. For instance, us-
ing the maximally entangled state requires less measurements choices from the
users [DPA13]. Also, we expect that if we were to analyse the noise robustness
of our scheme, it would decrease as the amount of entanglement decreases.

It could be interesting to study whether procedures with less measurements
could be designed. In this sense, our second approach is interesting as it uses less
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|φ+〉 |ψθ〉

Local
PROJ 1 bit

[PAM+10]
1 bit [AMP12]

POVM 2 bits
[APVW16]

2 bits (our work)

Global
PROJ 2 bits

[AMP12]
2 bits (our work)

POVM 2.8997 bits
[APVW16]

–

Table 5.1.: Summary of known results on randomness certified from two-qubit
states. The best known lower bounds on the randomness are repres-
ented for the maximally entangled state and for partially entangled
states (for the entire range of θ), as well as for both local and global
randomness, considering projective measurements or POVMs. Our
work solved the two cases that are highlighted in green. The bounds
that are underlined correspond to the maximal possible amount of
randomness – finding a scheme that certifies global randomness with
POVMs is still an open question, both for |φ+〉 and |ψθ〉.

measurements than the first one. A more general open question concerns global
randomness certification with POVMs – can a scheme be found that guarantees
4 bits of local randomness from two-qubit states? As shown in Table 5.1, this
has not been achieved so far with the maximally entangled state, which would
be a good point to start from before considering partially entangled states.
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6. Overview and outlook

This thesis is dedicated to device-independent protocols, and more specifically,
to the Bell inequalities on which the success of these protocols rests. We have
studied methods for constructing Bell expressions, analysed their properties
and examined their applications to protocols such as quantum key distribution,
self-testing, and randomness certification. We started with the chained Bell
inequalities, then examined the CGLMP/BKP expressions and designed our
own family of Bell inequalities, which we had the opportunity to see tested in
an experiment. Later, we studied the tilted CHSH expressions, and found a
modified version of the Elegant Bell inequality. We used a variety of techniques
in this thesis, numerical as well as analytical, such as the SWAP method and
sum-of-squares decompositions. Our results also highlight connexions between
different device-independent protocols, for instance how some self-testing proofs
can help certify randomness. In this chapter, we summarise our results and
discuss open questions and directions for future research.

Chained Bell inequalities: self-testing and randomness
certification

In Chapter 3, we designed robust self-testing protocols based on the chained
Bell inequalities. The self-test of the measurements is particularly interesting,
as the optimal measurements of the chained Bell inequalities span the whole
X-Z plane of the Bloch sphere in the limit of a large number of inputs. Our
proofs rely on SOS decompositions of first and second order. By proving that
the chained Bell inequalities are useful for self-testing, we showed that their
maximal violation is unique, up to the self-testing notion of equivalence. This
result completed the proof of [DPA13] for certifying two global random bits from
the singlet state. We also gave an alternative proof of the latter statement.

Our protocol could be improved by finding better robustness bounds, in
particular by improving the scaling with the number of inputs. A potential
approach could follow the work of [Kan16], whose recently introduced (or “re-
vived”) formalism has provided excellent robustness bounds. Also, it would
be interesting to see if our protocols can be generalised to a scenario for many
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6. Overview and outlook

outputs. Candidate Bell inequalities would be the BKP inequalities [BKP06]
and our family of Bell inequalities from Chapter 4, since they both reduce to
the chained Bell inequalities when the number of outputs is set to two.

Bell inequalities tailored to maximally entangled states

In Chapter 4, we employed a method to derive adequate Bell inequalities based
on the desired optimal quantum realisation (here, maximally entangled states).
Our family of Bell inequalities is remarkable as it is valid for any number of
inputs and outputs, and, moreover, its classical, quantum and no-signalling
bounds can all be proven and obtained as analytical functions of the number
of inputs and outputs. Our proof for the quantum bound rests on an SOS
decomposition of order one. We argued how our Bell inequalities could be used
for self-testing, randomness certification and quantum key distribution, giving
examples for the case of three outcomes. In the case of self-testing, we used the
numerical SWAP method from [YVB+14]. We then presented a generalisation
of our family of Bell inequalities to many parties and studied their properties.
We also considered the question of modifying our Bell inequality in the special
case of two inputs and three outputs, in order to obtain a family of Bell inequal-
ities suited to a class of partially entangled states of two qutrits. Finally, we
presented the results of our experimental collaboration where violations of our
inequalities were measured and self-testing and randomness certification were
performed.

In the future, we are expecting to prolong this experimental collaboration in
order to test the multipartite version of our Bell inequalities. We believe that
one of the clearest open questions concerns self-testing: can analytical proced-
ures be designed that would be valid for a general scenario? Such a self-testing
result would imply randomness certification by proving that the maximal viol-
ation is unique – this is a necessary condition to apply the method of [DPA13]
for which our Bell inequalities possess enough symmetries. We also briefly con-
sidered how our Bell expressions could be used for quantum key distribution,
and we believe that a complete work on DIQKD from high dimensional states
could be very interesting. Finally, we find particularly appealing the idea of
having general Bell expressions tailored to classes of entangled states, so that,
according to what state can be best generated in a given experimental setup,
the optimal Bell expression could easily be selected. This idea would require
expanding the preliminary work that we did for qutrit states.
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Randomness from partially entangled states

In Chapter 5, we answered an open question from [AMP12] and showed that
maximal randomness could be certified from any partially entangled state of
two qubits: more specifically, two bits of global randomness with projective
measurements and two bits of local randomness with POVMs. Our results
complete the picture on the relation between randomness and entanglement
for qubits. To that end, we used a CHSH inequality in combination with two
tilted CHSH inequalities from which we could derive self-testing statements.
We also presented a second approach to the question, which employs fewer
measurements choices. We found a tilted version of the Elegant Bell inequality
and showed that it is maximally violated by partially entangled states, for a
certain range of those states. We did this by providing an SOS decomposition
of the Bell operator of level 1+AB, and we used this decomposition to propose
a self-testing procedure for the validity range of our results.

Although we showed that, if entanglement is seen as a resource to produce
random numbers, any amount of qubit entanglement is equivalent, it is import-
ant to note that different resources are required to produce this randomness. For
instance, more measurement choices are needed for partially entangled states
than for the maximally entangled state. In future work, it would be interesting
to find the minimal amount of measurement choices that are necessary, as well
as to analyse the resistance to noise of our schemes. This may complete our view
of the relation between entanglement and randomness, as states more weakly
entangled may have lower resistance to noise, or may require more measurement
choices than states containing more entanglement. In general, randomness in
quantum information remains a perplexing subject that deserves being studied
further in various scenarios (also in scenarios different from the standard Bell
test). An interesting question concerns the certification of randomness using
higher-dimensional states, as we commented in the results of Chapter 4. Also,
we still lack a scheme to certify the maximal amount of global randomness from
qubits using POVMs (four bits), which is a question worth investigating.
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A. Tables

H
HHH

HHd
m

2 3 4 5 6

2 1.414 1.299 1.232 1.189 1.159

3 1.291 1.214 1.167 1.137 1.116

4 1.252 1.186 1.146 1.120 1.102

5 1.233 1.173 1.136 1.112 1.095

6 1.222 1.165 1.130 1.107 1.091

Table A.1.: Numerical values of the ratio β̃Q/β̃C between the quantum and

classical bounds of Ĩm,d for low number of inputs m and outputs d.
For m = d = 2, one recovers the well-known CHSH

√
2 ratio.

HHH
HHHd

m
2 3 4 5 6

2 1.414 1.155 1.082 1.051 1.035

3 1.366 1.137 1.073 1.046 1.031

4 1.342 1.128 1.069 1.043 1.029

5 1.328 1.123 1.066 1.041 1.028

6 1.319 1.120 1.064 1.040 1.027

Table A.2.: Numerical values of the ratio β̃NS/β̃Q between the no-signalling and

quantum bounds of Ĩm,d for low number of inputs m and outputs
d. For m = d = 2, one recovers the well-known CHSH

√
2 ratio.
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A. Tables

d = 2 d = 3 d = 4

β3,3,d
C 13/

√
3 1

6
√

3
(13 cot( π18) −10+17

√
2+14

√
6

4
√

3

−17 tan(π9 )− 4 tan(2π
9 ))

β4,2,d
C

5
2(cot(π8 ) 10√

3
+ 5

6(−3 +
√

3) 1
8(10 cot( π16)− 5 cot(3π

16 )

+ tan(π8 )) +16 tan( π16) + tan(3π
16 ))

β4,3,d
C 35/

√
3 1

6
√

3
(7(5 cot( π18) /

−7 tan(π9 )− 2 tan(2π
9 )))

Table A.3.: Analytical expression of the classical bound of IN,m,d, for a few
values of N , m, d. For N = 4, m = 3 and d = 4, we did not obtain
the value as the problem was computationally expensive.

d = 2 d = 3 d = 4

β3,2,d
C 4.2426 3.0416 3.5953

β3,2,d
S 4.2426 3.0416 3.5953

β3,3,d
C 7.5056 6.1760 6.9765

β3,3,d
S 8.6603 7.3132 8.1115

β4,2,d
C 7.0711 4.7169 5.8301

β4,2,d
S 8.4853 6.0829 7.1905

β4,3,d
C 20.2073 16.2537 /

β4,3,d
S 25.9808 21.9394 24.3345

Table A.4.: Numerical values of the Svetlichny and the classical bound of IN,m,d,
for a few values of N , m, d. When N = 3, m = 2, the two bounds
are the same. For N = 4, m = 3 and d = 4, we did not obtain the
value as the problem was computationally expensive.
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d CGLMP Ĩd

2 (2) 2.810±0.014 {2.828} (1.414) 1.987±0.010 {2}

3 (2) 2.845±0.012 {2.873} (3.098) 3.978±0.015 {4}

4 (2) 2.867±0.014 {2.896} (4.793) 5.978±0.032 {6}

5 (2) 2.763±0.014 {2.910} (6.489) 7.652±0.031 {8}

6 (2) 2.629±0.010 {2.920} (8.187) 8.883±0.029 {10}

7 (2) 2.532±0.013 {2.927} (9.884) 10.645±0.029 {12}

8 (2) 2.650±0.012 {2.932} (11.581) 12.740±0.044 {14}

Table A.5.: Experimental values of CGLMP and Ĩd for d = 2, . . . 8, given with
experimental errors. Values in (*) refer to the classical bound; those
in {*} refer to theoretical bounds for d-dimensional maximally en-
tangled states (for Ĩd, this means the Tsirelson bound). Errors are
given by photon Poissonian noise.
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A. Tables

γ = 0.7923 γ = 0.9 γ = 1

J2,2,3(ξ) Min. fidelity J2,2,3(ξ) Min. fidelity J2,2,3(ξ) Min. fidelity

2.9149 1 3.0392 1 3.1547 1

2.9049 0.8193 3.0292 0.8189 3.1440 0.7992

2.8949 0.6638 3.0192 0.6615 3.1340 0.6372

2.8849 0.5319 3.0092 0.5273 3.1240 0.4993

2.8749 0.4207 2.9992 0.4138 3.1140 0.3823

2.8649 0.3276 2.9892 0.3187 3.1040 0.2871

2.8549 0.2500 2.9792 0.2398 3.0940 0.2082

2.8449 0.1858 2.9692 0.1748 3.0840 0.1446

2.8349 0.1334 2.9592 0.1223 3.0740 0.0945

2.8249 0.0914 2.9492 0.0807 3.0640 0.0564

2.8149 0.0585 2.9392 0.0488 3.0540 0.0289

Table A.6.: Minimum fidelity between the physical states in the black boxes and
the states |ψ0.7923〉, |ψ0.9〉 and |ψ1〉 respectively, versus the violation

of the corresponding J2,2,3(ξ) with ξ = 1, ξ = 0.6451, and ξ =
√

3−1
2

respectively. At the maximal violation, the fidelity is equal to 1,
meaning that the quantum state used in the Bell experiment must
be equal to the reference state. For lower violations, the fidelity
decreases. This data is used to plot the fidelity curves in Figure
4.9.
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γ = 0.7923 γ = 0.9 γ = 1

J2,2,3(ξ) Min. fidelity J2,2,3(ξ) Min. fidelity J2,2,3(ξ) Min. fidelity

2.904 0.8051 3.036 0.9394 3.1507 0.9212

2.896 0.6804 3.030 0.8323 3.1420 0.7992

2.888 0.5711 3.024 0.7339 3.1333 0.6372

Table A.7.: Minimum fidelity between the physical states in the black boxes and
the states |ψ0.7923〉, |ψ0.9〉 and |ψ1〉 respectively, for experimentally
observed values of the violation of the corresponding J2,2,3(ξ) with

ξ = 1, ξ = 0.6451, and ξ =
√

3−1
2 respectively. This data is used to

plot the data points and error bars in Figure 4.9.
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A. Tables

Global randomness

d lower value mean value higher value

2 0.8903 0.9687 1.0992

3 1.3308 1.4412 1.6130

4 1.5922 1.8227 2.1400

5 0.9500 1.0036 1.0606

6 0.3085 0.3284 0.3490

7 0.2835 0.3001 0.3172

8 0.4417 0.4707 0.5008

d = 3, γ = 0.9 1.4566 1.5415 1.6693

d = 3, γ = 0.7923 1.3981 1.4708 1.5651

Table A.8.: Global randomness Hx,y
min certified per round, based on the observed

violation of Ĩd for different values of d. The lower (higher) values
correspond to -(+)1σ confidence interval for the Bell value, calcu-
lated using Poissonian photon statistics. This data is used to plot
Figure 4.10. We also report the certified randomness based on the
observed values of J2,2,3(ξ), obtained with partially entangled qutrit
states |ψγ〉.
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B. Self-test based on the tilted CHSH
expression

In this Appendix, we prove in details Lemma 5.1. We proceed by proving pro-
gressively more general self-testing results, first restricting to projective meas-
urements on a bipartite pure qubit state, then generalising to arbitrary dimen-
sion using the Jordan lemma, then explicitly allowing for an underlying mixed
state and non-projective measurements. The proof is inspired from the results
of [AMP12]. See also [BP15] for a self-test of Iβ based on SOS decompositions.

Qubit systems

The most general two-qubit pure state |ψ〉 has the form

|ψ〉 = cos
(
θ
2

)
|00〉+ sin

(
θ
2

)
|11〉 , (B.1)

for 0 ≤ θ ≤ π/2, in its Schmidt decomposition, while the most general projective
measurements worth considering are

A = a · σ , B = b · σ , (B.2)

A′ = a′ · σ , B′ = b′ · σ (B.3)

with σ = {X,Y, Z} and ‖a‖ = ‖a′‖ = ‖b‖ = ‖b′‖ = 1, since we can’t exceed
the classical bound if any of the measurements are ±I. Recall also how the
density operator of state (B.1) can be written in terms of the Pauli operators
X, Y , Z:

ψ =
1

4

[
I⊗ I + cos(θ)

(
I⊗ Z + Z ⊗ I

)
+ sin(θ)

(
X ⊗X − Y ⊗ Y

)
+ Z ⊗ Z

]

(B.4)

Let us write the expectation value of Iβ as

Iβ = β cos(θ)az + ICHSH (B.5)

where

ICHSH =
〈
A(B +B′) +A′(B −B′)

〉
= a ·T(b+ b′) + a′ ·T(b− b′), (B.6)
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B. Self-test based on the tilted CHSH expression

and

T =




sin(θ) 0 0

0 − sin(θ) 0

0 0 1



. (B.7)

Substituting now

b+ b′ = 2 cos
(µ

2

)
b+ , b− b′ = 2 sin

(µ
2

)
b− , (B.8)

where b± are normalised and orthogonal and we take cos
(µ

2

)
, sin

(µ
2

)
≥ 0,

ICHSH = 2 cos
(µ

2

)
a ·Tb+ + 2 sin

(µ
2

)
a′ ·Tb−

≤ 2 cos
(µ

2

)
‖Tb+‖+ 2 sin

(µ
2

)
‖Tb−‖

≤ 2
√
‖Tb+‖2 + ‖Tb−‖2

= 2

√
Tr
[
T2
(
b+b

T
+ + b−b

T
−
)]

≤ 2
√

1 + sin(θ)2 , (B.9)

where the last line follows from the Von Neumann trace inequality. This in-
equality says that for A and B Hermitian operators, the trace of their product
respects

Tr[AB] ≤
∑

k

akbk (B.10)

where ak and bk are the eigenvalues of A and B ordered from largest to smallest.
Equality is attained if and only if there is a basis in which A and B are both
diagonal and the ordering of their eigenvalues by magnitude match. Using (B.9)
in (B.5):

Iβ ≤ β cos(θ)az + 2
√

1 + sin(θ)2

≤ β cos(θ) + 2
√

1 + sin(θ)2

≤ 2
√

2
√

1 + β2/4 . (B.11)

In order to attain the quantum bound Iβ = 2
√

2
√

1 + β2/4, all of the in-
equalities used to get from (B.5) to (B.11) must hold with equality. Working
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backwards, we extract that

2 cos(θ) = β
√

1 + sin(θ)2 , (B.12)

a = 1z , (B.13)

b+ = 1z , (B.14)

b− = cos(ϕ)1x − sin(ϕ)1y , (B.15)

a′ = cos(ϕ)1x + sin(ϕ)1y , (B.16)

cos
(µ

2

)
sin(θ) = sin

(µ
2

)
. (B.17)

Under the conventions β > 0 and 0 ≤ θβ,
µβ
2 ≤ π

2 that we are working with,
these imply the relations (5.17) and (5.18) for θβ and µβ given in the main
text. The remaining undetermined parameter ϕ can be set to 0 e.g. with the
phase changes |1〉A 7→ eiϕ|1〉A and |1〉B 7→ e−iϕ|1〉B, under which the Schmidt
decomposition is invariant.

In the derivation above we started by expressing a general two-qubit state
|ψ〉 in its Schmidt decomposition and have shown that, if the quantum bound
is attained, the measurements must satisfy

A1 = Z , (B.18)

A2 = cos(ϕ)X + sin(ϕ)Y , (B.19)

B1 +B2 ∝ Z , (B.20)

B1 −B2 ∝ cos(ϕ)X − sin(ϕ)Y (B.21)

with respect to the Schmidt basis. It is important to note that the converse
also holds: if the quantum bound is attained with measurements satisfying these

conditions then the state must be exactly |ψβ〉 = cos
( θβ

2

)
|00〉+ sin

( θβ
2

)
|11〉. So

the reasoning can be done this way: if the quantum bound is attained with
qubits then there is a choice of bases in which A1 = Z, A2 = X, B1 +B2 ∝ Z,
and B1 −B2 ∝ X, and this then determines that the state is |ψβ〉 with respect
to that choice of the bases.

Arbitrary dimension

According to the Jordan lemma the measurement operators A, A′ and B, B′

can be block diagonalised in their respective Hilbert spaces into blocks no larger
than 2× 2. We express the block diagonalisation as

A =
∑

j

Aj ⊗ |j〉〈j| ⊕ A⊥ , (B.22)
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B. Self-test based on the tilted CHSH expression

A′ =
∑

j

A′j ⊗ |j〉〈j| ⊕ A′⊥ , (B.23)

B =
∑

k

Bk ⊗ |k〉〈k| ⊕ B⊥ , (B.24)

B′ =
∑

k

B′k ⊗ |k〉〈k| ⊕ B′⊥ , (B.25)

where Aj , A
′
j , Bk, and B′k are 2 × 2 operators and the operators with the ‘⊥’

subscript collectively denote any 1×1 blocks. Note that this implies [A⊥, A
′
⊥] =

0 and [B⊥, B
′
⊥] = 0. With respect to this splitting of the Hilbert space we can

express an arbitrary pure state as

|Ψ〉 =
⊕

mn

√
pmn|ψmn〉 (B.26)

where the indices m,n ∈ {2,⊥} indicate whether the state is in the subspace
containing the 2 × 2 or 1 × 1 blocks in HA and HB. The expectation value of
Iβ splits accordingly as

Iβ =
∑

mn

pmnI
(mn)
β . (B.27)

In order to attain the quantum bound Iβ = 2
√

2
√

1 + β2/4 we must have

I
(mn)
β = 2

√
2
√

1 + β2/4 for each m,n for which pmn 6= 0. However, except for

(m,n) = (2, 2), I
(mn)
β is limited to the classical bound since the measurements

on Alice’s and/or Bob’s side commute in the corresponding subspace. Thus, all
of the support of |Ψ〉 must be in the subspace of HA⊗HB containing the 2× 2
blocks on both sides.

With respect to the 2× 2 blocks, the state can be expressed as

|Ψ〉 =
∑

jk

√
qjk|φjk〉|j〉|k〉 (B.28)

and the value of Iβ, accordingly,

Iβ =
∑

jk

qjk〈φjk|
(
Aj(Bk +B′k) +A′j(Bk −B′k)

)
|φjk〉 ,

=
∑

jk

qjkI
(jk)
β . (B.29)

Again, in order to attain the quantum bound, for each contribution (j, k) either

we must have I
(jk)
β = 2

√
2
√

1 + β2/4 or qjk = 0. We can first get rid of the
parts of Alice’s and Bob’s Hilbert spaces that don’t contain |Ψ〉: if there are
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any js such that qjk = 0,∀k or any ks such that qjk = 0, ∀j then we absorb the
corresponding blocks Aj ⊗ |j〉〈j| and A′j ⊗ |j〉〈j| or Bk ⊗ |k〉〈k| and B′k ⊗ |k〉〈k|
respectively into A⊥ and A′⊥ or B⊥ and B′⊥. For the remaining blocks, for each
j there is at least one k and for each k at least one j such that qjk 6= 0 and we

must have I
(jk)
β = 2

√
2
√

1 + β2/4. Following the remark at the end of the last
subsection, there is a choice of bases in which, for all the remaining j and k,

Aj = Z , A′j = X , (B.30)

and

Bk +B′k = 2 cos
(µβ

2

)
Z , (B.31)

Bk −B′k = 2 sin
(µβ

2

)
X . (B.32)

This in turn implies |ψjk〉 = |ψβ〉 for all the remaining j, k for which qjk 6= 0.
We can also choose to set |ψjk〉 for the others since if qjk = 0 then

√
qjk|ψjk〉 = 0

regardless of what |ψjk〉 is. We thus obtain that the state and measurements,
in a suitable choice of the bases, are

|Ψ〉 = |ψβ〉 ⊗ |junk〉 , (B.33)

with |junk〉 =
∑

jk
√
qjk|j〉|k〉, and

A = Z ⊗ I ⊕ A⊥ , (B.34)

A′ = X ⊗ I ⊕ A′⊥ , (B.35)

B =
(

cos
(µβ

2

)
Z + sin

(µβ
2

)
X
)
⊗ I ⊕ B⊥ , (B.36)

B′ =
(

cos
(µβ

2

)
Z − sin

(µβ
2

)
X
)
⊗ I ⊕ B′⊥ , (B.37)

where only the first terms (. . .)⊗ I act on the parts of HA and HB containing
|Ψ〉.

Mixed states

The derivation up to this point easily adapts to allow for mixed states, since
an arbitrary mixed state can be expressed as a convex sum

ρ =
∑

s

psΨs (B.38)

of pure states. In order to attain the quantum bound for Iβ, it must be attained
with each pure state |Ψs〉. Following the reasoning of the previous subsection,
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B. Self-test based on the tilted CHSH expression

we deduce that all the |Ψs〉 are in the subspace of HA⊗HB containing the 2×2
measurement operator blocks and have the form

|Ψs〉 =
∑

jk

√
qsjk|φsjk〉|j〉|k〉 . (B.39)

The only difference is that we only discard the blocks j for which qsjk = 0,∀k, s
and k for which qsjk = 0,∀j, s. We then obtain

|Ψs〉 = |ψβ〉 ⊗ |junks〉 (B.40)

and, in turn,

ρ = ψβ ⊗ σjunk , (B.41)

where σjunk is a (not necessarily pure) state

σjunk =
∑

s

ps |junks〉〈junks| . (B.42)

General measurements

In general, measurements with only two outcomes can be expressed as convex
sums of projective measurements. For the measurement operators we may write

A =
∑

j

pjAj , A′ =
∑

j

pjA
′
j , (B.43)

B =
∑

k

qkBk , B′ =
∑

k

qkB
′
k , (B.44)

with Aj
2 = A′j

2 = IA and Bk
2 = B′k

2 = IB. Iβ then decomposes as

Iβ =
∑

jk

pjqk I
(jk)
β (B.45)

with

I
(jk)
β =

〈
βAj +AjBk +AjB

′
k +A′jBk −A′jB′k

〉
. (B.46)

If the quantum bound is attained then all the I
(jk)
β s have to attain it individu-

ally. In particular, for i = j = 1, the results of the previous subsections imply
that there is a choice of the bases in which the underlying state is

ρ = ψβ ⊗ σjunk (B.47)
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and

A1 = Z ⊗ I ⊕ A
(1)
⊥ , (B.48)

A′1 = X ⊗ I ⊕ A′
(1)
⊥ , (B.49)

B1 =
(

cos
(µβ

2

)
Z + sin

(µβ
2

)
X
)
⊗ I ⊕ B

(1)
⊥ , (B.50)

B′1 =
(

cos
(µβ

2

)
Z − sin

(µβ
2

)
X
)
⊗ I ⊕ B′

(1)
⊥ . (B.51)

Consider now I
(j1)
β for j 6= 1. We can write it as

I
(j1)
β =

〈
Aj
(
βI +B1 +B′1

)〉
+
〈
A′j
(
B1 −B′1

)〉

= Tr
[
Aj (ρ̃+ ⊗ σA)

]
+ Tr

[
A′j (ρ̃− ⊗ σA)

]
(B.52)

where

ρ̃+ =
(
β
2 + cos

(µβ
2

)
cos(θβ)

)
I +

(
β
2 cos(θβ) + cos

(µβ
2

))
Z , (B.53)

ρ̃− = sin
(µβ

2

)
sin(θβ)X , (B.54)

and σA is the marginal of σjunk on Alice’s side. Using the relations (5.17) and
(5.18) for θβ and µβ in terms of β (from the main text),

ρ̃+ ⊗ σA =
1

2

[
2β I +

√
2
(
1 + 3β2/4

)
√

1 + β2/4
Z

]
⊗ σA , (B.55)

ρ̃− ⊗ σA =
1

2

√
2
(
1− β2/4

)
√

1 + β2/4
X ⊗ σA . (B.56)

In order for the traces in (B.52) to reach their maximal values, Aj and A′j must
be diagonal in the same bases as the operators ρ̃+ ⊗ σA and ρ̃− ⊗ σA that they
are multiplied with. Note that ρ̃+ in (B.55) has a negative eigenvalue for β < 2;
a little algebra shows that

√
2
(
1 + 3β2/4

)
√

1 + β2
> 2β (B.57)

rearranges to and is implied by (1− β2/4)2 > 0. We can thus infer that

Aj = Z ⊗ I ⊕ A
(j)
⊥ , A′j = X ⊗ I ⊕ A′

(j)
⊥ (B.58)

for all j, and that A and A′ have the form

A = Z ⊗ I ⊕ A⊥ , A′ = X ⊗ I ⊕ A′⊥ (B.59)
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where A⊥ =
∑

j pjA
(j)
⊥ and A′⊥ =

∑
j pjA

′(j)
⊥ are bounded between −I and I.

Applying the same approach to I
(1k)
β for k 6= 1 we can similarly deduce that

B =
(

cos
(µβ

2

)
Z + sin

(µβ
2

)
X
)
⊗ I ⊕ B⊥ , (B.60)

B′ =
(

cos
(µβ

2

)
Z − sin

(µβ
2

)
X
)
⊗ I ⊕ B′⊥ (B.61)

with B⊥ =
∑

k qkB
(k)
⊥ and B′⊥ =

∑
k qkB

′(k)
⊥ .

This concludes our proof of Lemma 5.1 for progressively more general cases.
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[AMP12] A. Aćın, S. Massar, and S. Pironio. Randomness versus nonlocality
and entanglement. Phys. Rev. Lett., 108:100402, 2012.

171



Bibliography

[ApS17] MOSEK ApS. The MOSEK optimization toolbox for MATLAB
manual. Version 8.1., 2017.

[ApS18] MOSEK ApS. The MOSEK Optimization Suite. Version 8.1.,
2018.
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[ŠASA16] I. Šupić, R. Augusiak, A. Salavrakos, and A. Aćın. Self-testing
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