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Summary 

Dual-curing processing is a method to prepare thermoset materials through two 

polymerization reactions carried out simultaneously or sequentially. In these processes, a firm 

understanding of reaction mechanisms enables the design of catalytic systems to control 

reaction kinetics and to impart sequentiality to the curing reactions. Material properties at 

different curing stages are dictated by the choice of monomers. Furthermore, by employing 

click-based approaches, eco-friendly and efficient dual-curing processes can be designed.  

In this thesis, a number of sequential dual-curing systems were prepared and characterized. 

Sequentiality was either intrinsic due to the monomers used or it was achieved by employing 

latent catalysts. The dual-curing systems were designed with an objective of improved 

physical and mechanical properties of the fully cured materials. The majority of the 

monomers were processable through click reactions, although a few processes did not strictly 

fit click criteria. In terms of the characterized properties, this did not pose any shortcoming. 

Due to the limited number of related publications, the thiol-epoxy reaction was investigated in 

more detail. Accurate phenomenological and mechanistic models of reaction kinetics were 

developed to study reaction kinetics in and out of dual-curing context.  

For reactive latency, a new family of photobase generators (PBGs) were developed. As the 

name implies, these PBGs liberated base catalysts upon UV irradiation. The possibility of 

thermal initiation of some of these PBGs was also demonstrated. Storage stabilities of 

uncured and partially-cured (i.e. intermediate) materials were significantly improved since 

PBGs allowed temporal control over curing stages.   

In some dual-curing systems, step-wise click polymerizations such as Michael additions were 

combined with chain-wise homopolymerizations such as acrylate photopolymerizations. In 

these systems, the initial step-growth proces delivered intermediate materials with desirable 

properties such as polymer network homogeneity, high gel point conversion, and low 

polymerization shrinkage. The chain-wise process was carried out as a second curing stage, at 

the end of which final materials were obtained with increased crosslinking density, hardness 

and Tg. In all dual-curing systems presented here, final materials had significantly improved 

properties compared to intermediate materials, regardless of the nature of the curing 

processes.  
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In one part of the project, a new set of catalyst comonomers were designed. These 

comonomers, which were also prepared using click-based procedures, had pendant allyl 

functionalities and wielded tertiary amine groups in their structure. The tertiary amines 

catalyzed a thiol-acrylate reaction carried out as a first curing stage in a dual-curing system. 

Later, as a second curing stage, the pendant allyl groups of the comonomers participated in 

thiol-ene polymerizations with the excess thiols initially present in the formulation, thereby 

getting incorporated into the final polymer network. 

The dual-curable materials developed here can be used in diverse applications ranging from 

high-performance adhesives, to rigid shape-memory materials. As a matter of fact, a 

preliminary demonstration of these two applications is provided. Prospectively, the materials 

presented here could benefit from a more detailed characterization in the context of specific 

applications. Without a doubt, such an effort would increase the possibility of successful 

commercialization of these formulations. 
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Resumen 

El curado dual es una metodología utilizada para preparar materiales termoestables mediante 

la combinación de dos procesos de polimerización que pueden tener lugar de forma 

simultánea o secuencial. Conocer en profundidad los mecanismos de reacción que rigen estos 

procesos es la herramienta clave para el diseño de sistemas catalíticos que permitan controlar 

la cinética de la reacción y conseguir la secuencialidad de las etapas de curado. Las 

propiedades del material en las diferentes etapas de curado están determinadas por la elección 

de los monómeros. Además, la utilización de reacciones de tipo click permite diseñar 

procesos de curado más ecológicos y eficientes. 

En esta Tesis, se prepararon y caracterizaron diferentes sistemas de curado secuenciales. La 

secuencialidad en el curado se consiguió con la selección adecuada de monómeros o mediante 

el empleo de catalizadores latentes. Los sistemas de curado dual se diseñaron también con el 

objetivo de mejorar las propiedades físicas y mecánicas de los materiales completamente 

curados. La mayoría de los monómeros fueron curados mediante reacciones de tipo click. 

Aunque algunas de las etapas de curado no se ajustaban estrictamente a los criterios aceptados 

para las reacciones click, esto no supuso un problema en cuanto a las propiedades de los 

materiales preparados.  

La cinética de reacción tiol-epoxi se investigó con más detalle, dado el número limitado de 

publicaciones existentes sobre este tema. Se desarrollaron modelos fenomenológicos y 

mecanísticos avanzados para estudiar la cinética de esta reacción dentro y fuera del contexto 

del curado dual. 

Para conseguir sistemas latentes, se desarrolló una nueva familia de fotobases latentes. Como 

su nombre indica, estas fotobases, tras ser irradiadas mediante luz UV, liberan una base que 

actúa como catalizador del curado. También se demostró la posibilidad de activar 

térmicamente las fotobases. La utilización de estas permitió el control temporal de las etapas 

de curado, aumentando significativamente la estabilidad durante el almacenamiento de los 

materiales no curados y parcialmente curados, después de la primera etapa. 
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En algunos sistemas duales, se combinaron polimerizaciones click por etapas tales como las 

adiciones de Michael con homopolimerizaciones en cadena tales como la fotopolimerización 

de acrilatos. En este tipo de sistemas, la polimerización por etapas en la primera etapa de 

curado permite obtener materiales intermedios con propiedades deseables tales como alta 

homogeneidad y conversión a la gelificación y baja contracción durante el curado. La 

polimerización en cadena que tiene lugar durante la segunda etapa de curado, permitió 

obtener materiales finales con mayor densidad de entrecruzamiento, dureza y temperatura de 

transición vítrea. Independientemente de la naturaleza de los procesos de curado utilizados, 

todos los materiales finales presentaron propiedades térmicas y mecánicas significativamente 

mejoradas en comparación con los materiales intermedios. 

En una parte de esta Tesis, se diseñó una nueva familia de comonómeros que actuaban 

simultáneamente como catalizadores. Estos comonómeros, que también se prepararon 

mediante procedimientos basados en la química click, tenían funcionalidades alílicas 

terminales y aminas terciarias en su estructura generadas durante su síntesis. Estas aminas 

actuaron como catalizadores de la primera etapa de curado tiol-acrilato en un sistema de 

curado dual. En la segunda etapa de curado, los grupos alilo terminales de los comonómeros 

reaccionaron con grupos tioles en exceso presentes en la formulación mediante una reacción 

tiol-eno fotoinducida. 

Los materiales preparados mediante curado dual en este trabajo se pueden utilizar en una 

amplia gama de aplicaciones avanzadas que van desde adhesivos de alto rendimiento hasta 

materiales con memoria de forma. Aunque en esta memoria solo se muestra una demostración 

preliminar de estas dos aplicaciones, un desarrollo exhaustivo de las mismas podría conducir 

potencialmente a la comercialización de algunos de los sistemas desarrollados. 
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Resum  

El curat dual és una metodologia utilitzada per preparar materials termoestables mitjançant la 

combinació de dos processos de polimerització que poden tenir lloc de forma simultània o 

seqüencial. Conèixer en profunditat els mecanismes de reacció que regeixen aquests 

processos és l'eina clau per al disseny de sistemes catalítics que permetin controlar la cinètica 

de la reacció i aconseguir la seqüencialitat de les etapes de curat. Les propietats del material 

en les diferents etapes de curat estan determinades per l'elecció dels monòmers. A més, la 

utilització de reaccions de tipus click permet dissenyar processos de curat més ecològics i 

eficients. 

En aquesta Tesi, es van preparar i caracteritzar diferents sistemes de curat seqüencials. La 

seqüencialitat en el curat es va aconseguir amb la selecció adequada de monòmers o 

mitjançant l'ús de catalitzadors latents. Els sistemes de curat dual es van dissenyar també amb 

l'objectiu de millorar les propietats físiques i mecàniques dels materials completament curats. 

La majoria dels monòmers van ser curats mitjançant reaccions de tipus click. Encara que 

algunes de les etapes de curat no s'ajustaven estrictament als criteris acceptats per les 

reaccions click, això no va suposar un problema pel que fa a les propietats dels materials 

preparats. 

La cinètica de reacció tiol-epoxi es va investigar amb més detall, atès el nombre limitat de 

publicacions existents sobre aquest tema. Es van desenvolupar models fenomenològics i 

mecanístics avançats per estudiar la cinètica d'aquesta reacció dins i fora del context del curat 

dual. 

Per aconseguir sistemes latents, es va desenvolupar una nova família de fotobases latents. 

Com el seu nom indica, aquestes fotobases, després de ser irradiades mitjançant llum UV, 

alliberen una base que actua com a catalitzador del curat. També es va demostrar la 

possibilitat d'activar tèrmicament les fotobases. La utilització d'aquestes va permetre el 

control temporal de les etapes de curat, augmentant significativament l'estabilitat durant 

l'emmagatzematge dels materials no curats i parcialment curats, després de la primera etapa. 
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En alguns sistemes duals, es van combinar polimeritzacions click per etapes com ara les 

addicions de Michael amb homopolimeritzacions en cadena tals com la fotopolimerització 

d'acrilats. En aquest tipus de sistemes, la polimerització per etapes en la primera etapa de 

curat permet obtenir materials intermedis amb propietats desitjables com ara alta 

homogeneïtat i conversió a la gelificació i baixa contracció durant el curat. La polimerització 

en cadena que té lloc durant la segona etapa de curat, va permetre obtenir materials finals amb 

major densitat d'entrecreuament, duresa i temperatura de transició vítria. Independentment de 

la naturalesa dels processos de curat utilitzats, tots els materials finals van presentar propietats 

tèrmiques i mecàniques significativament millorades en comparació amb els materials 

intermedis. 

En una part d'aquesta Tesi, es va dissenyar una nova família de comonòmers que actuaven 

simultàniament com a catalitzadors. Aquests comonòmers, que també es van preparar 

mitjançant procediments basats en la química click, tenien funcionalitats alíliques terminals i 

amines terciàries en la seva estructura generades durant la seva síntesi. Aquestes amines van 

actuar com a catalitzadors de la primera etapa de curat tiol-acrilat en un sistema de curat dual. 

En la segona etapa de curat, els grups al·lil terminals dels comonòmers van reaccionar amb 

grups tiols en excés presents en la formulació mitjançant una reacció tiol-è fotoinduïda. 

Els materials preparats mitjançant curat dual en aquest treball es poden utilitzar en una àmplia 

gamma d'aplicacions avançades que van des d’adhesius d'alt rendiment fins a materials amb 

memòria de forma. Encara que en aquesta memòria només es mostra una demostració 

preliminar d'aquestes dues aplicacions, un desenvolupament exhaustiu de les mateixes podria 

conduir potencialment a la comercialització d'alguns dels sistemes desenvolupats. 
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click reaction yields a conformable intermediate material (a). The rounded shape is fixed after 

homopolymerization of epoxy groups which were in excess in the original formulation (b-c-

d). The temporary shape can be programmed by heating up to T>Tg, holding the shape, then 

cooling down to T<Tg (e). Once heated above Tg, original shape is recovered (f). Figure taken 

from article 8. ........................................................................................................................... 43 
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1. Introduction  

1.1. The dual-curing philosophy 

Global plastic production has increased from 15 million tonnes in the sixties to 311 million 

tonnes in 2014 and is expected to triple by 2050, when it will account for 20% of global 

annual oil consumption [1]. Although thermoplastics constitute the majority, thermosetting 

resin production also shares the growth rate of the industry. An 2014 estimate of global 

annual thermoset production was 53 million tons [2].  

The first half of the 20th century witnessed the development of thermosets such as phenolic 

plastics produced by Baekeland in 1907, urea and melamine plastics produced by John and 

Henkel in 1918 and 1935, alkyds patented by Kienle in 1933, and epoxy resins patented by 

Schlack in 1933 [3]. These resin systems are still used globally in many industry areas and 

everyday life. Among the many thermoset technologies, dual-cure processing continues to 

attract attention due to its many advantages which will be outlined followingly.  

Dual-cure processing refers to a combination of two thermoset polymerization reactions 

taking place either simultaneously or sequentially. The two reactions may have different 

triggers such as heat or UV light. Depending on the choice of monomers and reaction types, 

covalently bound interpenetrating polymer networks (IPNs) can be obtained.  

There are several motivations behind dual-cure processing schemes. For instance, post-

polymerization of excess reactants in off-stoichiometric stepwise polymerizations is used to 

enhance the thermal and mechanical properties of thermosets [4–6]. In cases where UV or 

visible light photo-polymerization is employed, although fast cure can be achieved 

superficially, through-cure at deeper layers takes place more slowly [7]. Only a second stage 

of thermal polymerization would ensure full conversion of reactants in such a system. 

Similarly, for coatings that are cured by UV light, dual-curing formulations containing 

photoabsorbers can achieve complete, or at least sufficient cure in shadowed sections [8].  

As simultaneous dual-curing is only relevant for end-product properties, the majority of 

recent research is directed towards sequential dual-curing systems. Unlike a simultaneous 

dual-curing process, sequential dual-curing provides processing flexibility as long as the 

intermediate materials (i.e. after the first curing reaction) are non-reactive. Sequential dual-

curing methodology is developed from multi-stage (or B-stage) processing techniques. Multi-
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stage processing is well known from the early times of crosslinked polymers, with the 

development of Bakelite in the early 20th century [9]. Conventionally, a multi-stage 

thermoset refers to a one-pack adhesive, usually of epoxide origin, that can be partially pre-

cured after application to a substrate. The substrate can then be transported and/or further 

processed (e.g. in final assembly stage), and the full cure of adhesive could be initiated 

whenever desired by using appropriate stimuli (e.g. heat or UV light). The same processing 

technique is employed in composite industry as well [10,11]. A general representation of 

dual-curing processing is shown in Scheme 1.1 

 

Scheme 1.1 An exemplary dual-curing system. Monomer functionalities are 5,4, and 2 for green, dark 
blue and light blue, respectively. At curing stage 1, green polymerizes with light blue, leaving dark 
blue unreacted. At curing stage 2, there is both light blue-dark blue copolymerization and 
homopolymerization of each monomer. No unreacted species left at the end of the process. Adapted 
from [12]. 

In sequential dual-cure processing, the extent of both curing reactions and the intermediate 

material properties can be easily regulated by formulation composition. The material will 

have stable intermediate properties after the first curing stage. No further polymerization will 

take place unless the second reaction is triggered. This storage stability might be critical in 

certain applications. Certain applications require that the material be adhesive or flexible 

before it is fully employed at the final stage of application. Figure 1.1 shows a polymeric coil 

developed for a biomedical application. The material is flexible after the first curing stage 

which facilitates its intravenous deployment using a catheter.  
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Figure 1.1 Endovascular coils. Intermediate stage polymers are deployed from a catheter. Once strain-
free, the polymer recovers the original coil shape. At the physiological temperature (38ºC), the final 
curing reaction is triggered and the shape is fixed. Reproduced with permission from [13].  

In dual-curing formulations, processing and compounding is made much easier than in 

conventional prepolymer formulations. These prepolymers are produced in situ starting from 

a mixture of low molecular weight monomers, rather than large polymeric components. Dual-

cure processing takes this approach one step further by introducing tailor made chemistries 

that originate from different types of polymerization reactions in a single pot. As such, dual-

curing systems prove successful in a number of advanced, high added-value applications [13–

15].  

Two main requisites of sequential dual-cure processing are as follows:  

i. The two polymerization reactions must be compatible within themselves and each 

reaction must be selective to certain monomers. This ensures no undesired inhibition or 

reactivity effects;  

ii. They must be triggerable by different stimuli such as UV light or heat, or else they must 

have disparate reaction rates so as to allow selectivity of reactions (i.e. Reactions must 

take place at different temperatures and/or times)  

A variety of polymerization reactions fit these criteria. Among them, “click” polymerizations 

are of interest as they are orthogonal, selective, and efficient with virtually quantitative yields 

and take place in mild and solventless conditions [16,17]. To ensure stability of partially-

cured intermediate materials, the use of latent catalysts is common. These latent catalysts can 

be activated either photolytically or thermally depending on their chemistry. They are 

employed in base- or acid-catalyzed reactions or radical polymerization reactions, facilitating 

the design of one-pot dual-curing formulations with good storage stability of the monomer 

mix and also of intermediate materials [18–21]. Ionic liquids (i.e. Liquid curing agents 



4     Chapter 1 

composed of organic cations or anions) [22] or blocked species [23] are also used in storage 

stable dual-curing systems. In case the second curing stage is a thermally triggered reaction, 

the exothermicity of the first stage should be controlled carefully to avoid loss of intermediate 

storage stability [24]. This is also a concern relevant to quality control in composite 

processing [11]. Reader is directed to the book chapter by Ramis et al [25] for an excellent 

review of click-based dual curing systems and their applications. In another paper, reaction 

mechanisms and applications of acrylate based dual-curing systems are reviewed [12]. 

In dual-cure processing, the polymer network formation should be monitored carefully to 

ensure that properties develop as desired. The intermediate and final properties of dual-curing 

materials depend strongly on the network structure at the end of each polymerization stage. 

The key parameters are monomer functionality, structure and feed ratio. Relevant structural 

parameters are mass-average molecular weight, gel point con- version, cross-linking density, 

and gel fraction. By charcterizing the rheological or thermomechanical properties of partially 

or fully cured materials, these parameters can be determined. Network buildup in multistage 

processing has been studied using stochastic models in the past [26]. Recently, some criteria 

for designing dual-curing systems and preliminary network structure analysis was developed 

based on ideal network buildup models [5,27]. However, in certain cases, these idealized 

stepwise network buildup models fail to explain the complex structure-property relationships. 

A more profound understanding of the effects of monomer structure, functionality, and feed 

ratio on the intermediate and final properties is necessary [28].  

 

1.2. Click and non-click reactions in dual-curing systems 

Sharpless et al. first coined the word “click” to refer to a variety of chemical reactions that are 

orthogonal, selective, and highly efficient [16,17]. Click reactions have the following 

characteristics: (a) high yields; (b) regio and stereospecificity; (c) insensitivity to oxygen or 

water; (d) mild, solvent-free, or aqueous reaction conditions; (e) orthogonality with other 

common organic reactions; and (f) availability of a wide array of starting compounds [28,29]. 

The click chemistry concept made it possible to employ a modular construction approach, as 

opposed to conventional synthesis methods [29,30]. Most often, post-purification step is not 

needed thanks to high yields of reactions. In an extensive review, Tunca reported the 



Introduction      5 

 
 

combination of two or more orthogonal click processes to synthesize complex architectures 

[31].  

Click reactions can be carried out under mild and solvent-free conditions and therefore can be 

designed in an environmentally friendly manner. A large number of chemical functionalities 

show click behaviour with chemically and mechanistically distinct reaction pathways, so that 

they can be combined in dual curing methodologies. Some click reactions commonly used to 

prepare dual-curable materials are summarized in Scheme 1.2. 

 

Scheme 1.2 Some common click based polymerization reactions used in dual-curing systems 
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1.2.1. The Michael addition 

A versatile click reaction is the Michael addition and is commonly used in dual-curing 

systems. Michael addition is defined as the 1,4-addition (or conjugate addition) of resonance-

stabilized carbanions to activated double bonds [32]. Michael-type addition reactions are used 

widely in dual curing processes thanks to the variety of commercially available nucleophiles 

(Michael donors) and activated double-bond compounds (Michael acceptors). Typical 

Michael donors are amines, thiols, acetoacetates and phosphines. The group of Michael 

acceptors is more numerous and includes acrylates, acrylonitrile, acrylamides, maleimides, 

alkyl methacrylates, cyanoacrylates, and vinyl sulfones. A variety of basic and, especially, 

nucleophilic catalysts can be used to trigger Michael addition in a controlled way making it 

possible to combine Michael-type reactions in dual-curing systems with a variety of other 

reactions in a controlled and sequential way, that is, radical-induced polymerizations [32,33]. 

The general Michael reaction is shown in Scheme 1.3.  

 

Scheme 1.3 Michael reaction mechanism. The Michael donor (acetoacetate) is deprotonated by the 
base catalyst. The formed enolate anion attacks the acrylate double bond and regenerates the base. The 
formed adduct may undergo a second but slower Michael addition [34]. 
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Among the set of monomers used in dual curing systems, thiol monomers are arguably the 

most common. Thiols are clickable with a variety of coreactants under favorable reaction 

conditions. They can participate in thermal nucleophilic and radical UV-initiated reactions 

[35].  

Thiols impart good transparency to final materials and low polymerization shrinkage (and 

thus reduced internal stresses). On the other hand, the long carbon-sulfur bonds render thiol-

based polymers somewhat flexible. The C-S bond length is 1.8 A whereas a C-C bond lentgh 

is in the range 1.2-1.5 A. This limits the mechanical properties of the cured materials, such as 

hardness, modulus, and glass transition temperatures (Tg). Using higher functional or more 

rigid monomers (such as those wielding aromatic rings) is a strategy to compensate for this 

flexibility.   

Thiols can undergo Michael reactions as they are susceptible to deprotonation by a number of 

basic or nucleophilic species. In Scheme 1.4, thiol-acrylate Michael reaction is shown.  

 

Scheme 1.4 Thiol-Michael addition to activated olefins. The thiolate anion can either be produced 
through a basic (top) or nucleophilic (middle) mechanism.  
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The kinetics of thiol-Michael addition is a strong function of the solvent type, solvent 

polarity, nature (basic or nucleophilic) and concentration of catalyst [36]. It is not 

straightforward to predict optimum reaction conditions based solely on the pKa values of 

thiols and bases since basic and nucleophilic mechanisms might be operational 

simultaneously [33]. Strong bases and nucleophiles complicate the sample preparation 

process since the reaction starts too early and too fast. When weak nucleophiles are used an 

induction period can be achieved allowing a window of workability [37]. Latent catalysts also 

come in handy to prepare chemically stable dual-curing systems with thiols [38]. If the latent 

catalyst is photo-activated, there is a risk of concurrent radical formation. In this case, a 

radical scavenger would be needed to preserve stoichiometry [39]. 

Another common Michael type reaction encountered in dual curing systems is Aza-Michael 

reaction. The reaction mechanism is similar to that depicted in Scheme 1.3. As Michael donors, 

amines have some advantages in comparison to thiols or acetoacetates: (a) Amines are more 

available commercially; (b) catalysts are not required since amines can act as both 

nucleophiles and bases; (c) radicals or other active species are not formed during their 

polymerization; (d) the formation of tertiary amines during aza-Michael addition avoids the 

intrinsic oxygen inhibition of free-radical vinyl polymerizations and allows the curing to be 

performed without inert blanketing [40] and (e) these tertiary amines can act as co-initiator 

when type II photoinitiators (i.e. photoinitiators that require a co-initiator or synergist to 

produce initiating radicals) are used. A drawback of aza-Michael reactions is the lower 

reactivity of secondary amines, which may lead to incomplete double bond conversions. 

Nevertheless, subsequent photopolymerization of the unreacted Michael accceptor groups 

would lead to full conversion [41]. 

 

Scheme 1.5 Aza-Michael addition of a primary amine to an acrylate monomer. The resulting adduct 
(secondary amine) may undergo a second but slower aza-Michael reaction. 
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1.2.2.  Thiol-click reactions 

Thiols readily react with a variety of other substrates through mechanisms different than the 

Michael addition depicted in Scheme 1.4. A prominent click reaction of thiols commonly 

encountered in recent dual-curing systems is the thiol-epoxy reaction [5,42–45]. 

Conventionally, this reaction has been used in many biosynthetic and biomedical applications 

[35]. It also is the reaction of choice in polymer functionalization due to the hydroxyl groups 

it delivers which can undergo a second functionalization [46]. The reaction can be carried out 

without the use of solvents, under mild conditions, and with high yields. Scheme 1.6 depicts 

the mechanism of thiol-epoxy reaction catalyzed by triazabicyclodecene (TBD), a strong base. 

The formed hydroxyl group catalyzes epoxy ring opening, thereby imparting an auto-

acceleration effect. As a result, the reaction kinetics can be simulated using auto-catalytic 

models [47–49].  

 

Scheme 1.6 The base catalyzed thiol-epoxy reaction. Base deprotonates the thiol, producing the 
thiolate anion, which attacks the alpha-carbon of the epoxy ring. Chain transfer reactions regenerate 
the thiolate and the base.   

For temporal and spatial control of the reaction, photobase generators (PBG) attracted 

attention recently [35,50,51]. Many PBG chemistries exist, with different activation methods 

(including thermal activation). Catalytic species are liberated upon irradation of the PBG with 

light at appropriate wavelengths (or upon heating).  



10     Chapter 1 

Thiol-epoxy reaction proceeds to completion given that appropriate catalysts are used. A 

nucleophilic reaction route is also plausible as shown in Scheme 1.7. As a matter of fact, the 

mechanism of thiol-epoxy reactions is a promising research topic since the chemistries 

involved during the reaction steps are relatively more complex and less understood than other 

click schemes [35,52].  

The main difference between this process and the base-catalyzed reaction is the formation of 

the propagating thiolate (nucleophilic attack leading to formation of strong base + acid-base 

exchange, reaction a),  and the ion-pair / termination (reaction e) 

O

R

SR'
SR'

R

O

SHR' SR'SR'

R

O
SR'

R

OH

N N O

R

N N
+

R

O

N N
+

R

O
SHR' N N

+

R

OH
SR'

R-OH

R-OH

SR'

R

OH
N N

N N
+

R

OH

S R'

 

N N
+

R

OH
SR' N N

+

R

OH

S R'

 

+ +

a. Initiation

c. Ring-opening of the epoxide

d. Alkoxide/thiol acid-base proton exchange

+ +

e. Ion pair termination (nucleophilic displacement)

+

b. Ion pair formation

+

 

Scheme 1.7 Nucleophilic mechanism for thiol-epoxy reaction. A zwitterion is formed after 
nucleophilic ring opening of the epoxy (reaction a). An ion-pair formation (reaction b) seems a valid 
explanation for observed effect of catalyst amount on reaction kinetics, similar to ion-pairs formed 
during cationic homopolymerization of epoxy [53]. Thiolate propagation (reaction c) and regeneration 
(reaction d) are analogous to the base catalyzed mechanism. Termination of the ion-pair via a 
unimolecular mechanism (reaction e) regenerates the base. 
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Thiols also react with isocyanates in a click fashion to yield polythiourethanes with similar 

properties to polyurethanes [35]. This reaction proceeds through an anionic chain transfer-

propagation mechanism similar to thiol-ene radical polymerization as depicted in Scheme 1.8. 

The reaction takes place at milder conditions than alchol-isocyanate (polyurethane) reactions. 

The thiourethane product has desirable properties which find use in high refractive index 

materials [35]. The reaction is frequently employed in dual curing systems [54–56]. 

 

Scheme 1.8 The thiol-isocyanate click reaction. The thiolate anion is regenerated by proton transfer to 
the thiourethane product [35]. 

Thiols react through free radical mediated reactions as well. The so-called radical thiol-ene 

(and thiol-yne) reactions have remarkably fast kinetics, are robust, and afford products with 

high yields [12,35,57]. In these reactions, the polymer network evolution proceeds in a step-

growth fashion. Combining this advantage with the high reactivity of radicals generated, the 

radical thiol-ene reactions find use in numerous areas, including electronics, optics, and 

protective coatings. Both light and heat is used, in combination with suitable photoinitiators 

(PIs) and photosensitizers, to generate radicals. Activation by light facilitates temporal and 

spatial control over the reaction, wherein the irradiation wavelength, intensity and duration 

determine the rate and extent of reaction. Radical thiol-ene reactions are readily combined 

with other click reactions such as Michael additions or thiol-epoxy reaction to design efficient 

dual-curing systems [24,42–44,58]. The radical thiol-ene reaction steps are depicted in 

Scheme 1.9.    
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Scheme 1.9 Radical mediated thiol-ene (or –yne) reaction [59,60]. Once the PI is cleaved, thiyl 
radicals start forming at a high pace. The propagation reaction proceeds until quantitative conversion 
given that thiol groups and double bonds are in stoichiometry and no physical impediments at the 
molecular level. Possible radical termination schemes are also given.  

 

1.2.3.  Epoxy-amine click reaction 

As a matter of fact, the most common curing agent for epoxy resins are polyamines [53,61,62] 

. Epoxy groups readily react with amines at ambient conditions, without requiring added 

catalysts, to yield highly crosslinked thermosets. The hydroxyl groups formed during the 

reaction exert an autocatalytic effect [62]. In cases where amine groups are in stoichiometric 

defect, hydroxyl groups may react to form ether linkages [62,63]. Both primary and secondary 

amines can react with epoxides as shown in simplified form in Scheme 1.10. The actual 

reaction mechanism is fairly complicated due to the formation of multiple reactive and non-

reactive equilibrium complexes[53,64,65]. The reactions of these complexes are shown in 

Scheme 1.11. 
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Scheme 1.10 Simplified representation of the epoxy-amine reaction. The hydroxyl groups formed, as 
well as those already present in the reaction medium exert a catalytic effect.  

 

 

Scheme 1.11 Equilibrium complex formation in epoxy-amine polycondensation [64]. A1, A2, and A3 
are the primary, secondary, and tertiary amines, respectively. OH is the hydroxyl formed during the 
reaction; Cat is either OH or A1; ECat is an equilibrium complex; and Et is the ether group of the 
epoxy.  

It was documented that the reaction is initiated by the equilibrium primary amine-epoxy 

complex [64]. However, the reactions between the primary and the secondary amine with a 

reactive epoxy-hydroxyl complex soon dominates the overall reaction kinetics. When the 

reaction temperature is within or below the Tg range of the fully-cured epoxy-amine polymer, 

the curing polymer vitrifies before reaching complete conversion.   
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1.2.4.  Other reactions in dual-curing processes  

Dual-curing schemes may also involve polymerization reactions that do not necessarily fit the 

click criteria. Mostly, these reactions require certain initiators and special conditions (such as 

high temperatures) to attain quantitative conversions of monomers. In the majority of times, 

these non-click procedures are employed as a second curing stage, after a self-limiting click 

reaction [25]. Preparation off-stoichimetric formulations with an excess of acrylates, 

methacrylates or epoxy groups is a commonly employed dual-curing method [4,5,41,66,67]. 

The excess functionality undergoes homopolymerization in the second stage, significantly 

increasing the crosslinking density of the final polymer, hence resulting in better physical and 

mechanical properties. Furthermore, if the intermediate materials (i.e. after the first curing 

stage) have storage stability, they can be shaped (if gelled), applied onto substrates as 

adhesives (if not gelled) and/or be transported to the site of final use where they could be fully 

cured by initiating the second curing stage. Two possible applications of this approach is 

illustrated in Figure 1.2. 

 

Figure 1.2 Dual-curing process of an off-stoichiometric thiol-epoxy system. Pipe joint repair 
(sequence a–b1–c1), and creation of spring-shaped materials (sequence a–b2–c2) and other complex 
shapes (d). The materials are easily deformed after the first curing stage. The second stage is triggered 
to fix the shape. Reproduced with permission from [5]. Published by The Royal Society of Chemistry. 
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The intermediate properties depend on the choice of monomer type, structure, functionality 

and feed ratio. Usually, a step-growth polymerization (first stage) precedes a chain-growth 

(second stage) polymerization, at the end of which complete cure is achieved. In these 

systems, a step-growth process delivers an intermediate material with desirable properties 

such as polymer network homogeneity, high capacity for mechanical dampening near its Tg, 

high gel point conversion, and low polymerization shrinkage. The second stage curing of such 

an intermediate would result in a significant increase in hardness and Tg, rendering it suitable 

for demanding applications.  

The two most common homopolymerizations encountered in dual-curing systems is 

acrylate/methacrylate free radical homopolymerization [41,68,69] and anionic epoxy 

homopolymerization [5,42,66,70,71]. The free radical homopolymerization of 

acrylates/methacrylates has been studied extensively [72–74] and the reaction mechanism is 

established as in Scheme 1.12.  

 

Scheme 1.12 The photolysis of the initiator yields two equally reactive radicals. The radicals initiate 
the chain by reacting with an acrylate monomer. The chain propagates by reaction with other 
monomers. Termination occurs when the propagating polymer reacts either with another growing 
polymeric radical or with a primary radical.  

Although the initial radical formation can be accomplished by thermal means [75], 

photoinitiation offers numerous advantages such as spatial and temporal control over the 

reaction, high reaction rates and low energy requirement [76]. In photoinitiated 

polymerizations, reaction kinetics are governed by parameters such as light intensity, and 
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irradiation duration, apart from intuitive parameters such as initiator concentration and 

initiation efficiency [59]. However, in these photocuring systems, formulators must be 

mindful about polymerization induced shrinkage which can reach up to 20% with certain 

monomers [77]. 

Similar to off-stoichiometric dual-curing systems based on vinyl functionality, epoxy-based 

dual curing-systems can be formulated with an excess of epoxy groups [5,66,78]. The second 

stage of such systems is usually an anionic epoxy homopolymerization. In certain epoxy 

systems, kinetics of both curing stages (i.e. copolymerization and homopolymerization) 

benefit from each other [78]. The anionic epoxy homopolymerization reaction is catalyzed by 

tertiary amines, some resulting in faster kinetics than others [79]. In Scheme 1.13, the epoxy 

homopolymerization is initiated by an imidazole.  
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Scheme 1.13 Anionic homopolymerization of epoxides using 1-methylimidazole as initiator. The 
reaction is initiated by the nucleophilic attack of the imidazole to the epoxy ring, propagation by the 
different alkoxide anions present in the system (b), alkoxide-hydroxyl proton exchange (c) and  two 
different termination or regeneration mechanisms (d), one by hydrogen abstraction (-elimination) and 
another one by nucleophilic displacement of the imidazole, each one with a clearly different effect in 
terms of network build-up. Scheme adapted from [5]. 
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This reaction can be used in dual-curing systems in which both reactions share the same 

initiator but have disparate reaction rates [5] or in systems inwhich the initiator is used only in 

the second curing stage [66]. In the latter case, a latent catalytic system might be necessary to 

achive sequentiality in curing.  

 

1.3. Approaches for the design of dual-curing systems 

1.3.1.  Dual-click procedures  

As click reactions are fairly robust, orthogonal and selective, two different click reactions can 

be safely combined in dual-curing systems to yield materials with superior final properties. In 

Scheme 1.14, an examplary dual-curing process consisting of two sequential click reactions is 

depicted. Depending on the reaction kinetics of the second cuirng stage, intermediate storage 

stability can be achieved. Some monomers might have more than one type of functional 

groups and can participate in both click stages.  

 

Scheme 1.14 A dual-curing process based on two orthogonal click reactions carried out sequentially. 
Click 1 is between blue and red monomers, with a functionality of 3 for both. Click 2 is between green 
and yellow monomers which have functionalities of 2 and 4, respectively. The final material consists 
of a polymer network with high crosslink density and no extractable content.  

A common dual-click procedure employs click thiol-ene with thiol-epoxy reaction. Carioscia 

et al [80] developed a thiol-ene/thiol-epoxy hybrid system with tailorable curing kinetics. The 

resulting materials had high crosslink density, high Tg and reduced polymerization induced 

shrinkage. By modifying composition of formulations, network development can be 

controlled as desired. In another paper, Carlborg et al [44] presented a photocured thiol-

ene/thiol-epoxy system with 24h of intermediate storage stability. The thiol-epoxy reaction 

was triggered by a photolatent base which, upon UV irradiation, liberated a tertiary amine 

capable of deprotonating the thiol. More recent papers investigate similar thiol-ene/thiol-

epoxy systems combining photoinitiated thiol-ene with thermally initiated thiol-epoxy 
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reaction [24,81]. Feature similar click characteristics to thiol-ene, the thiol-yne reaction has 

also been successfully combined with thiol-epoxy curing [58]. 

Other thiol-click chemistries were also employed in dual-curing processes. Chan et al used 

phosphine catalyzed nucleophilic thiol-ene with radical thiol-yne in a sequential fashion. They 

found that a wide selection of commercially available thiols are compatible with this 

procedure and the resulting materials may be suitable for biomedical applications [82]. Later, 

Peng et al published two papers about dual-curing systems in which Michael-type thiol-

acrylate reactions are combined with either radical thiol-allyl [83] or thiol-yne [84] reactions. 

They showed that both systems are promising in the field of holographic image patterning 

(See Figure 1.3). The two curing stages are easily separated in both systems, where the base 

catalyzed thiol-acrylate Michael reaction affords writable substrates with desirable properties.  

 

Figure 1.3 Holographic image patterning. (a) Original image used as a digital mask and (b) the 
directly patterned image on the stage 2 material composed of thiol/acrylate/alkyne. Reprinted 
(adapted) with permission from [84]. Copyright 2014 American Chemical Society. 

In another paper, nucleophile catalyzed thiol-acrylate Michael addition was combined with 

thiol-epoxy reaction in a simultaneous dual-curing process [48]. The resulting materials 

exhibited two different glass transitions at different temperatures. By employing thiols with 

different functionalities, the crosslink density of the networks could be controlled and a wide 

range of mechanical properties could be attained.  

Thiol-isocyanate click reaction has also been used in dual-curing procedures. Shin et al [55] 

showed the possiblity of carrying out base-catalyzed thiol-isocyanate with radical thiol-ene 

both sequentially and simultaneously depending on the catalytic system employed. When they 

used a PBG of a strong base, both reactions took place concurrently upon UV irradiation, 

whereas when a thermally active base catalyst was used, thiol-isocyanate reaction preceded 
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the photoinitiated thiol-ene reaction. They saw that the inclusion of a thiourethane network 

helped improve physical and mechanical properties due to additional hydrogen bonding in the 

final polymer. A similar improvement was observed by McNair et al [85] in a dual-curing 

system composed of a base catalyzed thiol-isocyanate reaction and a photoinitiated thiol-ene 

reaction, carried out sequentially. In a more recent paper, Perrot et al [54] combined thiol-

isocyanate and thiol-epoxy reactions, both catalyzed by a PBG of a strong base. Although the 

thiol-isocyanate reaction was complete in a matter of seconds, the thiol-epoxy reaction 

extended over several days leading to a post-consolidation of materials. They recorded 

enhanced mechanical properties due to increased hydrogen bonding, similar to previous dual-

curing systems with thiol-isocyanate coupling.  

 

1.3.2. Common click mechanism with different monomers 

Within the same click reaction, different monomers may exhibit different polymerization 

kinetics depending on their chemical structure. As it was previously shown by Chatani et al 

[27] that, compared to acrylates, vinyl sulfones react more rapidly with thiols through a 

Michael type mechanism, thanks to their greatly electron deficienct vinyl groups. Exploiting 

this property, they were used in combination with acrylates to design sequential dual Michael-

type click procedures [86]. This process afforded materials with triple shape memory 

properties based on the dual polymer network formed. Although the click reaction type and 

the catalyst were the same, the acrylate and vinyl sulfone monomers had drastically different 

reaction kinetics. Furthermore, by employing two different thiols (i.e. mercaptoacetate and 

mercaptopropionate) with different reactivities, the two curing stages were easily separated. 

The mercaptoacetate-vinyl sulfone Michael reaction took place easily at ambient temperature, 

followed by mercaptopropionate-acrylate Michael reaction at elevated temperatures. Both 

reactions were catalyzed by a time-controlled nucleophilic initiation system.  

Similarly, acrylates and methacrylates have very distinct reactivities with respect to the thiol-

Michael addition. Due to the pendant methyl group it posesses, a methacrylate is a poor 

Michael acceptor [32]. However, given a strong catalytic environment they can be 

incorporated into the addition reaction. As a matter of fact, Xi et al [38] used a photocaged 

superbase to carry out photoinitiated Michael addition of thiols to methacrylates, preceded by 
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a base catalyzed and thermally induced thiol-acrylate Michael addition. The photocaged base 

enabled efficient temporal and spatial control over the process.  

Another interesting idea is to use an in-situ catalyst/comonomer that could participate in the 

polymerization reaction. Higham et al [87] investigated the use of an in-situ synthesized allyl 

functional tertiary catalyst/comonomer in a Michael reaction of triacrylate and trithiol 

monomers. The in-situ synthesis of the catalyst/comonomer and the subsequent initiation of 

thiol-Michael reaction is given in Scheme 1.15. The idea was employed in the production of 

microfluidic devices via a soft lithography process [88] 

 

Scheme 1.15 Employing catalytic comonomers in dual-curing systems [88]. The catalyst/comonomer 
wields tertiary amine groups that deprotonate the thiol. PETA: Pentaerythritol triacylate; DEA: 
Diethanolamine; TMPTMP: Trimethylolpropane tris(3-mercaptopropionate). The formed thiolate may 
propagate the polymerization both with the catalyst/comonomer, and the triacrylate PETA.  

 

1.3.3.  Combination of a click reaction with acrylate homopolymerization 

The use of off-stoichiometric monomer mixtures is a widely adopted practice in dual-curing 

system design. The excess part of the monomers undergo homopolymerization reactions 

which significantly enhance final network properties. Often times, the first curing stage is a 

self-limiting click reaction between two multifunctional monomers and usually proceeds in a 

step-growth fashion. The subsequent homopolymerization of the excess monomer is a 

thermo- or photo-induced chain growth reaction. The inclusion of a step-growth polymer 

network  imparts network homogeneity,, high gel point conversion, and reduced 

polymerization shrinkage. On the other hand, the chain-wise polymer network that would 
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result from the second curing stage would have greatly increased crosslinking density, 

increased hardness, and higher Tg. Depending on the initial composition, the type and 

functionality of the monomers, intermediate materials (i.e. at the end of the first curing stage) 

can be gelled or not; final materials can be loosely or tightly crosslinked. This versatility can 

be exploited in custom-tailoring intermediate and final material properties with regards to 

application requirements.  

One of the off-stoichiometric dual-curing formulation was reported by Moszner et al [89] in 

mid-90s. Their procedure consisted of a Michael addition of multifunctional acetoacetates to 

multiacrylates, followed by radical homopolymerization of excess acrylate groups. They also 

tested formulations with added dimethacrylates which cured upon irradiation in the second 

stage and yielded materials with improved hardness. A few years later, they provided a more 

thorough characterization of the same dual-curable materials [90]. They documented that the 

added excess of vinyl monomers acts as a reactive diluent for the first curing stage and helps 

achieve higher conversion, homogeneity and crosslink density. Despite the potential of 

multifunctional acetoacetates in such dual-curing systems, the lower reactivity of the second 

hydrogen of the acetoacetate group poses limitations on crosslink density. In fact, 

Pietschmann et al [91] showed that chemical pre-treatment of the acetoacetate monomer with 

certain amines increases the reactivity. The formed enamine tautomeric structure is believed 

to be responsible for the enhanced reactivity.  

As mentioned previously, the versatile chemistry of thiols comes in handy in dual-curing 

systems with Michael-type networks. Nair et al published a number of papers about dual-

curing systems based on off-stoichiometric mixtures of thiols and acrylates, where acrylate 

groups were in excess [13,69,92].  The first stage was an orthogonal thiol-acrylate Michael 

addition followed by photoinitiated radical homopolymerization of acrylate groups at a later 

stage. Depending on the monomer types and the stoichiometry, they showed the possibility of 

obtaining materials having a wide range of properties. In some cases, they observed 20-fold 

increases in moduli, as well as drastic increases in Tg of their materials, after the second 

curing stage. Once the materials are characterized, they tested them as substrates for shape 

memory materials, impression materials and as optical materials to record refractive index 

patterns. In an elegant way, an off-stoichiometric thiol-acrylate system was used to fabricate 

wrinkles [93]. The first stage was thiol-acrylate radical reaction, followed by acrylate 

photopolymerization. By using photoabsorbers, the UV light could be constrained in a thin 
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skin layer. The intermediate materials were first strained in predetermined configurations after 

which they were UV cured (for very short durations) through photomasks to generate 

wrinkles in desired forms as shown in Figure 1.4. 

 

Figure 1.4 Wrinkle formation via photopatterning on a biaxially stretched specimen. Photolithography 
guides the alignment of the wrinkles perpendicular to the low stress regions of the thiol−ene elastomer. 
Corresponding photomasks are shown as inset. Reprinted (adapted) with permission from [93]. 
Copyright 2013 American Chemical Society. 

Binici et al designed an interesting dual-curing system for spherically propagating 

polymerizations [94]. The idea is based on an amine-catalyzed Michael addition of trithiol to 

triacrylate, the latter being present in excess, followed by photopolymerization of remaining 

triacrylate to yield spherical gels.   

Jian et al [95] designed a thiol-acrylate-epoxy ternary system where three different reactions 

occurred. The inclusion of a photobase generator (PBG) facilitated the simultaneous liberation 

of a strong base and the formation of radicals upon light irradiation. As a result, all three 

reactions took place concurrently: Thiol-acrylate Michael addition, radical thiol-acrylate 

(similar to radical thiol-ene), and base catalyzed thiol-epoxy. Due to the formation of radicals, 

some acrylate homopolymerization could not be discarded.  
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Matsushima et al [56] combined thiol-isocyanate, thiol-acrylate Michael and acrylate 

homopolymerization reactions to prepare materials with a ternary network structure. The first 

stage was the thiol-isocyanate coupling. Although the neat phosphine was not basic enough, 

the enolate anion formed by the reaction of the phosphine nucleophile with the acrylate 

successfully catalyzed the reaction. With slower kinetics, the thiol-acrylate Michael reaction 

was the second stage. The remaining excess acrylates were later homopolymerized using UV 

irradiation to yield the ultimate material. By changing the initial composition, a wide array of 

final properties could be achieved. Thiol-isocyanate coupling was also combined with 

methacrylate homopolymerization to fabricate well-defined surface topographies and 

functional geometric shapes [96]. The first curing stage was a base-catalyzed thiol-isocyanate 

click reaction, and the second stage was methacrylate UV homopolymerization facilitated by 

a photoinitiator and a photoabsorber. 

Using amines as Michael donors in lieu of thiols has attracted attention in the recent years. 

Since amines act as both nucleophiles and bases, no added catalyst is necessary. The reaction 

of amines to electron deficient vinyl groups is defined as aza-Michael addition (See Section 

1.2.1). Gonzalez et al [41] presented an efficient and eco-friendly procedure to cure off-

stoichiometric amine-acrylate mixtures. Their dual-curing process consisted of a self-limiting 

aza-Michael reaction of multifunctional amines and acrylates, followed by a photoinitiated 

radical homopolymerization of excess acrylates (See Scheme 1.16). The intermediate 

materials after the first curing stage were storage stable, and their properties (such as their 

gelling state) could be tailored as a function of monomer feed ratio. The addition of tertiary 

amines to the formulations, or their formation during aza-Michael reaction also helped 

overcome the oxygen inhibition problem in acrylate homopolymerization. Similar to other 

systems formulated with acrylate excess, the mechanical properties improved significantly 

after the photocuring stage.  
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Scheme 1.16 A dual-curing system consisting of a click aza-Michael reaction carried out at near-
ambient temperature, followed by photoinitiated acrylate homopolymerization. 

Retailleau et al [97] also employed aza-Michael reaction in their dual-curing system based on 

off-stoichiometric amine-acrylate mixtures. The particularity in their work was that they could 

be able to post-consolidate their cured materials through a second aza-Michael reaction.  

Interestingly, a homopolymerization process could be designed as a first curing stage as well. 

Lee et al [98] designed a thiol-allyl ether-methacrylate ternary system in which both step or 

chain-growth polymerizations took place. Upon UV irradiation, the formed thiyl radicals 

favored methacrylates rather than allyl ethers, since methacrylate double bonds have higher 

electron density. Furthermore, because vinyl radicals of methacrylates are more stable 
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(compared to acrylates) due to the methyl group, methacrylates underwent 

homopolymerization with chain transfer to thiol (at a lower rate than methacrylate 

homopolymerization). Only after a certain extent of methacrylate conversion that thiols were 

observed to start reacting with allyl ethers in a step growth fashion. 

 

1.3.4.   Combination of a click reaction with epoxy homopolymerization  

Epoxy resin systems have remarkable features such as good adhesion to various substrates, 

superior physical and mechanical properties, and resistance to solvents and chemicals. As 

such, they are employed frequently in dual-curing systems. An epoxy excess in dual-curing 

formulations can be homopolymerized at a later stage to enhance final material properties 

such as crosslink density and elastic modulus.  An interesting UV-thermal dual-curing system 

was developed by Sangermano et al [42]: Thiol-allyl-epoxy mixtures were first photocured 

(thiol-ene polymerization), then thermally treated to carry out epoxy homopolymerization. 

Since it was previously reported that the polysulfides that are formed by the thiol-ene reaction 

inhibited cationic epoxy polymerization [99], sequentiality was achieved. Once the UV-curing 

process is completed, the reaction mixture was heated above 100ºC to initiate epoxy 

homopolymerization which was catalyzed by the alklysulfonium salts formed in the first 

stage.  

Thiol-ene/epoxy IPNs were prepared through a dual UV-thermal process [100]. In this 

system, the thiol-ene and epoxy homopolymerization took place concurrently. A penta-allylic 

triamine curing agent was first reacted with thiols to afford polysulfides, which inhibited 

cationic polymerization but catalyzed anionic polymerization of epoxides. This anionic 

reaction was initiated by the exothermic heat of the thiol-ene UV curing. It was observed that 

the final toughness of the materials was proportional to the amount of polysulfides formed. In 

a different paper [43], a thiol-ene/epoxy system was dual-cured via a similar procedure. The 

first stage was UV-initiated thiol-ene reaction between an allyl functional hyperbranched 

polyester and a trithiol to form a flexible thiother intermediate material, which acted as a 

cationic thermal initiator for the subsequent epoxy homopolymerization. The hyperbranched 

polyester helped achieve higher Tgs than neat formulations.  

Recently, the dual-curing of an off-stoichiometric thiol-epoxy mixture was reported [5]. The 

procedure consisted of a click thiol-epoxy reaction catalyzed by a tertiary amine, followed by 
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anionic epoxy homopolymerization. As was documented by other researchers as well [53], the 

presence of proton donating thiol species throughout the first curing stage inhibited the 

anionic homopolymerization, thereby providing sequentiality. As a result, the intermediate 

materials had storage stability. By choosing different monomer feed ratios, intermediate 

properties could be controlled. As expected, the homopolymerization of the epoxy excess (i.e. 

enhanced thermomechanical properties greatly. The shape memory capabilities of these 

materials were documented in another paper [28].  

Besides the monomer feed ratio, the structure and functionality of the thiol used were shown 

impact significantly the material properties in this type of dual-curing systems [101,102].  

Similar to off-stoichiometric thiol-epoxy systems, one can formulate off-stoichiometric 

epoxy-amine systems [4,66,103] with the same motivation. As a matter of fact, off-

stoichiometric epoxy-amine systems should be a promising research area since polyamines 

are the most common curing agents for epoxy resins [104].  

 

1.3.5.  Combining photopolymerizations with sol-gel process 

Although they are not directly relevant to this thesis, it is worthwhile to mention hybrid 

organic-inorganic polymers that can be prepared via dual-curing procedures. Hybrid organic-

inorganic formulations have some advantages over conventional resin systems such as 

improved stratch/abrasion resistance, thermal resistance, and optical properties [25]. The dual-

curing procedure to fabricate these materials consists of a photoinitiated polymerization, 

followed by a thermal sol-gel reaction of alkoxyde precursors already present in the UV-

curable formulation [105]. The use of photolatent species for temporal control over the 

process has also been documented for such dual-curing hybrid systems [106]. An excellent 

review on hybrid organic-inorganic coatings is available from the same author. For epoxy 

based hybrid sol-gel systems, the reader is directed to the review by Serra et al [107]. The 

organic part of the formulation can be based on similar click chemistries reviewed previously 

in this section. The final material properties depend on the type and feed ratio of organic 

monomers, initiator and coupling agent content, type and amount of inorganic precursors, 

amount of water for the sol-gel process, and curing conditions such as pH, and schedule of 

irradiation and thermal treatment [25].  
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2. Research objective and scope 

Inspired by the aforementioned approaches, in this Ph.D. project, dual-curing thermosets 

involving various chemistries were prepared and characterized. A common objective was to 

design truly sequential curing processes so that the materials were storage stable, at least after 

the first curing stage. The dual-curing systems were designed so as to obtain significantly 

improved physical and mechanical properties after complete cure. Although the majority of 

monomers used were clickable, some non-click reactions were also employed as long as they 

served to achieve the objectives mentioned.  

The performance of different click (including copolymerizable monomer pairs thiol-

acrylate/methacrylate, thiol-epoxy, amine-epoxy, amine-acrylate, acetoacetate-acrylate) and 

non-click (epoxy homopolymerization and acrylate/methacrylate homopolymerization) 

chemistries in dual-curing formulations were assessed. Intermediate and final materials were 

characterized with respect to a set of physical, mechanical and chemical properties. As it 

merited special focus due to a limited number of related publications, the kinetics of thiol-

epoxy reaction was analyzed in and out of dual-curing context.  

For reactive latency, we have developed a novel family of photobase generators (PBGs). The 

photolytic and thermal activation kinetics of these PBGs were studied. We have used 

differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR) 

methods to monitor monomer conversions; thermomechanical analysis (TMA) (coupled with 

FTIR) for gel point measurements; thermogravimetric analysis (TGA) for thermal 

decomposition properties; DSC and dynamic mechanical analysis (DMA) for viscoelastic 

characterizations such as glass transition temperature (Tg) and alpha-relaxation temperature 

measurements; and proton nuclear magnetic resonance (1H-NMR) for chemical 

characterization of our materials. Throughout the Ph.D. project, eight research articles were 

published in esteemed journals (all from Q1) in the area of polymer science. In the next 

section, we present the post-prints of those articles in chronological order. Table 2.1 provides 

a timeline of these publications. 
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Table 2.1 Published articles during the PhD project 

Article Nº Article title Publish date 

1 Sequential curing of amine-acrylate-methacrylate mixtures 
based on selective aza-Michael addition followed by 
radical photopolymerization  

September 2016 

2 Sequential curing of thiol-acetoacetate-acrylate thermosets 
by latent Michael addition reactions  

February 2017 

3 Latent curing of epoxy-thiol thermosets  March 2017 

4 Analysis of the reaction mechanism of the thiol–epoxy 
addition initiated by nucleophilic tertiary amines  

August 2017 

5 Sequential dual curing by selective Michael addition and 
free radical polymerization of acetoacetate-acrylate-
methacrylate mixtures  

November 2017 

6 Curing kinetics and characterization of dual-curable thiol-
acrylate-epoxy thermosets with latent reactivity  

November 2017 

7 New allyl-functional catalytic comonomers for sequential 
thiol- Michael and radical thiol-ene reactions  

January 2018 

8 Preparation and characterization of dual-curable off-
stoichiometric amine-epoxy thermosets with latent 
reactivity  

May 2018 
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3. Global discussion and conclusions 

In this PhD thesis, several approaches for the design of dual-curing formulations were 

investigated using a variety of clickable monomers and catalytic systems. In general, it was 

aimed to establish control over two aspects of dual-curing formulations: Curing reaction 

kinetics and material properties.  

To study reaction kinetics, two methods of mathematical modeling were used: i) Phenological 

modeling (Articles 3 and 6), and ii) Mechanistic modeling (Article 4). The former method 

does not require knowledge about the reaction mechanisms. Experimental conversion data can 

be directly fitted to simple mathematical models and can be analyzed. Once the parameters of 

the model are determined, simulations can be run for extrapolated reaction conditions with 

acceptable accuracy. On the other hand, the latter method necessitates postulation of 

mechanistic hypotheses upon which differential rate expressions are written. Later, these 

expressions are tested against experimental data. Although this method provides more 

information about the reaction and therefore is more reliable for simulations, the regression 

procedure is more tedious. 

Among the different click reactions used in dual-curing systems, the mechanism of thiol-

epoxy reaction, especially the nucleophilic initiation mechanism, is relatively less studied. 

This motivated us for the kinetic studies carried out in articles 3, 4 and 6. In article 3, the 

model-free isoconversional methods confirmed the autocatalytic nature of the thiol-epoxy 

reaction catalyzed by the PBG: Activation energies were decreasing with conversion. 

A Kamal autocatalytic kinetic model, which was also phenomenologically-based, represented 

the curing satisfactorily and facilitated accurate simulations at temperatures fairly outside of 

the experimental range. In article 4, we attempted to improve upon the mechanistic model 

proposed by Loureiro et al [52], by including the effect of thiol availability on initiation rate, 

and the formation of a non-catalytic ion-pair between an activated epoxy and thiolate. The 

quality of fit to experimental data improved significantly, reinforcing the ion-pair formation 

hypothesis (See Figure 3.1). As a further attempt to increase accuracy of the model, the ion-

pair can be assumed a catalytic species as well.  



38    Chapter 3 

0.000

0.001

0.002

0.003

0.004

0.005

0.006

 d
x D

S
C
/d

t 
(1

/s
)

Exp.   Model
      DG174-1-0.5
      DG174-1-1
      DG174-1-2
      DG174-1-4

0 1000 2000 3000 4000

0.0

0.2

0.4

0.6

0.8

1.0

 time (s)

x D
S

C

 

(a) 

0.000

0.001

0.002

0.003

0.004

0.005

 d
x D

S
C
/d

t 
(1

/s
)

Exp.   Model
      DG174-1-0.5
      DG174-1-1
      DG174-1-2
      DG174-1-4

0 1000 2000 3000 4000

0.0

0.2

0.4

0.6

0.8

1.0

 time (s)

x D
S

C

 

 (b) 

Figure 3.1. Simple (a) vs. complex (b) kinetic model of thiol-epoxy click reaction. The inclusion of an 
ion-pair formation step in the reaction mechanism clearly improved the quality of fit and represented 
the effect of initiator content with higher accuracy. Note the peak reaction rates, especially of 
formulations with higher catalyst contents, significantly overestimated by the simple model. DG174 is 
epoxy resin with an equivalent weight of 174. Thiol part is Trimethylolpropane tris (3-
mercaptopropionate). The rightmost numbers indicate phr of catalyst (1-methyl imidazole). Figure 
taken from article 4. 
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Another kinetics related result was obtained in article 5. The addition of methacrylate mixture 

diluted the reaction medium, reducing the reaction rate of the first curing stage. This was an 

indirect confirmation of the pseudo-first order dependence of acetoacetate-acrylate Michael 

addition kinetics on acrlyate concentration as is documented in literature [32,34]. Without a 

doubt, our demonstration of these various kinetic methods for the analysis and control dual-

curing systems is encouraging for future research on new formulations.   

To obtain sequentiality in our curing reactions, we either exploited the intrinsic reaction 

kinetics and the selectivity of reactions, or employed latent catalysts. As an example to the 

former strategy, using methacrylates in Michael-type reactions in mixtures of acrylates and 

thiols (or amines for Aza-Michael) facilitated easy separation of the two curing steps. The 

pendant methyl group of a methacrylate reduces the electron deficiency of the vinyl bond, 

thus making them poor Michael acceptors. As a result, methacrylates could be incorporated 

into dual-curing polymer networks at different (usually later) stages, either through a heavily 

catalyzed Michael addition (see article 7), or homopolymerization (see articles 1 and 5). In 

Figure 3.2, the FTIR spectra of the dual-curing process of the acetoacetate-acrylate-

methacrylate formulation (from article 5) is given. As can be seen, the first curing stage was 

selective towards acrylates. The same selectivity is observed with Michael donors such as 

acetoacetates. Compared to thiols, the deprotonation of an acetoacetate hydrogen is more 

difficult. Therefore, an acetoacetate will be left unreacted during reaction of thiols with a 

given Michael acceptor (See article 2).  

 

Figure 3.2 FTIR spectra obtained during dual-curing of acetoacetate-acrylate-methacrylate mixture. 
Black spectra were taken during acetoacetate-acrylate Michael reaction (Stage 1), red spectra were 
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taken during radical photopolymerization. The unchanging bands around 1300cm-1 suggest no 
methacrylate reaction was observed during stage 1. Figure taken from article 5. 

We have prepared tetraphenyl borate salts of certain bases as photobase generators (PBGs) 

and used them in a number of dual-curing systems. We observed that reaction kinetics are 

governed not only by the strength of the liberated base, but also by the conditions of 

photobase activation, such as UV irradiation intensity or duration. We showed that these PBG 

salts are activated also by heating (See articles 3, 8, and Figure 3.3). The use of PBGs gave 

intermediate materials storage stabilities ranging from several days (article 6) to weeks 

(articles 2, 3, and 8). In some cases, vitrification of materials also contributed to storage 

stability (such as in article 8).  

 

Figure 3.3 DSC conversions of thiol-epoxy reactions catalyzed differently. As can be seen, the 
reaction onset temperature decreases with the order non-catalyzed<thermally-activated PB<UV-
activated PB<neat base (TBD). PB stands for photobase generator. Numbers after catalysts represent 
weight percentages based on total solids. UV irradiation was continued for 15 min. at an intensity of 
36 mW/cm2. Figure taken from Article 3. 

Material properties greatly varied over curing stages. In general, monomers with higher 

functionalities and wielding rigid structures (such as aromatic rings) resulted in significantly 

enhanced mechanical properties. However, in cases where mobility restrictions impeded 

complete conversions, less bulky and lower functional monomers were used as reactive 

diluents (such as HEMA in article 5) to ultimately improve viscoleastic properties (not 

through an increase in crosslink density, but by the introduction of more rigid structures into 
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the polymer network). Second stage homopolymerizations (of excess monomers) increased 

final crosslink density and Tgs several-fold. On the other hand, these stages yielded more 

heterogeneous polymer networks, typical of chain-wise polymerizations (see articles 1, 5, 8, 

and Figure 3.4 ).   

 

Figure 3.4 Tan delta curves of dual-cured amine-acrylate-methacrylate mixtures. α-relaxation 
temperatures and breadth of relaxations increase with increasing methacrylate (i.e. Stage 2 
homopolymer network) content. Formulations are coded as xMA_yAc where x and y stand for weight 
percentages of poly(methacrylate) and poly(aminoester) networks, respectively. Broader relaxations of 
methacrylate-rich materials point to more heterogeneous polymer networks. Figure taken from article 
1. 

The possibility of catalytic comonomer preparation using click procedures was demonstrated 

in article 7. As this method provides almost complete freedom over the resulting monomer 

structures, it amplifies the achievable range of intermediate and final material properties. 

Furthermore, thiol-Michael reaction could be carried out at very different rates depending on 

the catalytic species involved. It was observed that the molecular structure of the catalyst 

(which governs steric hindrance effects on catalytic groups) has a greater influence (rather 

than catalyst concentration) on the overall reaction kinetics. When less hindered catalytic 

groups were employed, it was possible to react even methacrylates with thiols through fast 

Michael additions (See Figure 3.5) 

As no added catalysts are necessary, high purity products can be obtrained for demanding 

applications such as optical materials, given that the curing stages are of true click nature and 

no extractable material remains at the end of the process.  
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Figure 3.5 Michael reaction kinetics of tricyclo[5.2.1.02,6]decanedimethanol diacrylate (TCDDA) and 
triethylene glycol dimethacrylate (TEGDMA) with various allyl functional catalyst/comonomers. As 
catalyst/comonomers AGE5 and DAA4 wielded less sterically hindered tertiary amine groups (see 
article 7), they could react even with methacrylates at remarkably fast rates. 

Interestingly, even though some procedures did not fit the “click” criteria exhaustively, no 

extractables were present in final materials (see article 1). This shows the robustness of dual-

curing procedures: A click stage at some point during the process might offset some stages 

that are non-click, per se. The materials developed can be used in diverse applications ranging 

from soft coatings for delicate substrates (e.g. Article 7) and adhesives (e.g. non-gelled 

intermediate materials in Article 8), to rigid shape-memory materials (e.g. gelled intermediate 

materials in Article 8). A shape-memory material based on an off-stoichiometric epoxy-amine 

formulation is shown in Figure 3.6. The next logical step would be a more detailed 

characterization of these materials with regards to specific application scenarios. Such an 

effort would surely increase the likelihood of commercialization of these promising 

formulations. 

 



Global discussion and conclusions      43 

 
 

 

Figure 3.6 Preparation and testing of a shape memory polymer. The first stage amine-epoxy click 
reaction yields a conformable intermediate material (a). The rounded shape is fixed after 
homopolymerization of epoxy groups which were in excess in the original formulation (b-c-d). The 
temporary shape can be programmed by heating up to T>Tg, holding the shape, then cooling down to 
T<Tg (e). Once heated above Tg, original shape is recovered (f). Figure taken from article 8.
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Analysis of the reaction mechanism of the
thiol–epoxy addition initiated by nucleophilic
tertiary amines

Ali Osman Konuray, Xavier Fernández-Francos * and Xavier Ramis

A kinetic model for thiol–epoxy crosslinking initiated by tertiary amines has been proposed. The kinetic

model is based on mechanistic considerations and it features the effect of the initiator, hydroxyl content,

and thiol–epoxy ratios. The results of the kinetic model have been compared with data from the curing of

off-stoichiometric formulations of diglycidyl ether of bisphenol A (DGEBA) crosslinked with trimethylol-

propane tris(3-mercaptopropionate) (S3) using 1-methylimidazole (1MI) as the initiator. The model

has been validated by fitting the kinetic parameters to the experimental data under a variety of reaction

conditions. In spite of the experimental uncertainty and model assumptions, the main features of the

curing kinetics are correctly described and the reaction rates are quantitatively reproduced.

1 Introduction

Base-catalyzed thiol–epoxy polymerization is of industrial
relevance in the area of adhesives, high performance coatings
and composites.1 A remarkable feature of thiol–epoxy conden-
sation is that it can be categorized as a click reaction, which
means that it is selective, leaves no by-products and it takes
place quantitatively and under mild reactive conditions. Thus,
it is possible to use it not only in conventional reactive formu-
lations but also in dual-curable systems with a controlled
curing sequence such as thiol–ene/thiol–epoxy,2–5 off-stoichio-
metric thiol–epoxy systems,6 or even in combination with in-
organic network precursors in hybrid systems.7 Thiol–epoxy
thermosets are highly transparent, which is favorable for their
application as clearcoats8 and generally highly flexible,9 but
this latter feature is also a drawback because their low Tg can
limit their use in more temperature-demanding applications.10

In order to enhance the thermal–mechanical characteristics of
thiol–epoxy, different strategies can be adopted, such as the
use of more rigid and functional epoxy resins10 and the devel-
opment of novel highly-functional thiol crosslinkers11 in
stoichiometric thiol–epoxy systems, or the use of excess epoxy
in off-stoichiometric thiol–epoxy systems.6 Another severe
drawback is the fact that the most commonly used catalysts for
the thiol–epoxy addition, namely, basic tertiary amines are not
latent and therefore, it makes difficult the handling and

control of the processing of thiol–epoxy formulations once pre-
pared.2,9 Therefore, research efforts are directed towards the
exploration of catalytic systems with thermal latency9 or the
development of photolatent bases.7,8,12,13 Remarkably, some of
these photolatent bases have been shown to be activated by
both UV-light and temperature,14 which turns them into
highly versatile catalytic systems. Another interesting research
line is the use of tertiary amines with poor basicity but with
nucleophilic characteristics6,15 that are not latent but with
sufficiently slow activation and a strong auto-accelerating
effect so as to permit safe formulation preparation and
manipulation as well as complete curing at low temperature in
short times.

The curing mechanism of the base-catalyzed thiol–epoxy
condensation is assumed to be a simple nucleophilic addition
between thiolate and epoxy groups.2 In the presence of
sufficiently strong bases, an acid–base proton exchange leads
to the deprotonation of the thiol, producing a thiolate anion
that is nucleophilic enough to attack the epoxy ring. The thiol–
epoxy reaction is strongly autocatalytic due to the formation of
hydroxyl groups that facilitate the ring-opening of the epoxy
group.16 The reaction mechanism can become more complex
in the presence of nucleophilic tertiary amine catalysts, such
as benzyldimethylamine (BDMA) and 1-methylimidazole
(1MI), which lead to a very slow initiation process followed by
a strong autoacceleration up to the completion of the curing
process.6,15 Loureiro et al. proposed a reaction mechanism to
describe the curing kinetics of thiol–epoxy addition catalyzed
by a tertiary amine, BDMA with poor basicity but a nucleo-
philic characteristic.15 In a recent study, we have described the
dual-curing process of off-stoichiometric thiol–epoxy formu-
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lations containing excess epoxy groups.6 We observed that the
thiol–epoxy reaction took place very quickly and with a sharp
autocatalytic profile, followed at higher temperatures or longer
curing times by a slower epoxy homopolymerization process.
Although some of these kinetic features can be interpreted in
terms of the proposed reaction mechanism,15 it should be
modified in order to take into account properly the effect of
initiation/termination reactions and the effect of the decreas-
ing thiol group content.

The aim of this paper is to develop a consistent kinetic
model, based on the consideration of the reaction mechanism,
capable of capturing the kinetic behaviour during the curing
of stoichiometric thiol–epoxy formulations and the first stage
of the curing of off-stoichiometric thiol–epoxy formulations.
The effect of the thiol–epoxy ratio and the catalyst content will
be taken into consideration. The model will be validated
experimentally using kinetic data obtained using differential
scanning calorimetry.

2 Theoretical

A reaction scheme based on the model of Loureiro et al.15 is
shown in Scheme 1, using 1MI as the initiator. In that work,
the authors analyzed the curing process of stoichiometric
thiol–epoxy formulations using a mechanism-based kinetic
model and obtained a reasonable fitting under a wide range of
temperatures, catalyst concentrations and curing histories.
The active propagating species, the thiolate anion, was pro-
duced after nucleophilic addition of BDMA to the epoxy ring
and subsequent proton exchange with a thiol group. The effect
of the added catalytic hydroxyl groups on the reaction was also
analyzed, but it was found that their effect was less important
than that of the generated hydroxyl groups by the thiol–epoxy
addition. The authors included the effect of termination reac-
tions2,15 and used it to determine the amount of thiolate
anions under pseudo-steady state conditions. However, this

was an important shortcoming of their model because, even-
tually, the active thiolate species should be controlled by the
available thiol in the reaction medium, not by the amount of
epoxy and reaction products. In the work of Jin et al.16 one can
also see that the catalytic effect of the added hydroxyl groups
(i.e. coming from the epoxy oligomer itself ) is less relevant
than the autocatalytic effect of the hydroxyl groups generated
in the course of the reaction.

In the general reaction scheme we propose that the
initiation takes place by the nucleophilic attack of 1MI to the
epoxy ring (Scheme 1a), leading to the formation of a zwitter-
ion. Contrary to what is stated for common tertiary amines,17

the formation of epoxy–imidazole adducts, including zwitter-
ionic species was convincingly argued by Heise and Martin.18,19

Indeed, epoxy–imidazole adducts are used as curing agents.20

The nucleophilic addition of imidazoles to epoxy groups is
catalyzed by proton donors,21 in a similar way to common
epoxy–amine systems17 and nucleophilic addition to epoxy
groups in general. This was also suggested by the autocatalytic
character of the adduct formation between 2,4-unsubstituted
imidazoles and epoxides.18,19 In fact, Rozenberg showed that
the epoxy homopolymerization could not be initiated by ter-
tiary amines in the absence of proton donors or other catalytic
impurities.17

In the presence of thiol groups, a proton exchange would
take place leading to the formation of a thiolate anion and a
β-hydroxylimidazolium cation.15 The pK of the alcohol–alko-
xide equilibrium is much higher than that of the thiol–thiolate
equilibrium, and therefore, this exchange should be non-
reversible from a practical point of view. However, the pK of
the zwitterion system should be lower than that of a common
alkoxide due to the stabilization caused by the electron with-
drawing effect of the ammonium substituent and possible
resonance within the imidazolium ring, in a similar way to the
pK of the carboxylic acid proton in amino-acids. Nevertheless,
depending on the relative acidity/basicity of the different
species, this exchange might be considered almost non-revers-
ible as well. Note that this β-hydroxylimidazolium cation
should also have a catalytic effect on the nucleophilic addition
to epoxy groups in the presence of both a positive charge and
a hydroxyl group.

When the thiolate attack to the epoxy ring takes place
(Scheme 1b), an alkoxide anion would be formed, but then fast
proton transfer would take place from either a thiol group
(Scheme 1c) or the β-hydroxylimidazolium cation, both with a
lower pK than an alkoxide, to produce a β-hydroxythioether, the
reaction product. The thiol/zwitterion equilibrium should lead
to the formation of a thiolate anion that would propagate the
reaction. The thiolate addition is also catalyzed by proton
donors such as hydroxyl groups, resulting in a strongly auto-
catalyzed polymerization, as illustrated by Jin et al.16 This auto-
catalysis is explained by the fact that thiol groups have a negli-
gible effect on proton donors22 and the reaction medium evolves
from a thiol-rich environment to a hydroxyl-rich environment.

As the reaction proceeds, the increasing number of initiat-
ing species would also lead to an increasing rate of nucleo-

Scheme 1 Reaction mechanism of the thiol–epoxy reaction initiated
by 1MI.
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philic displacement of the initiator and regeneration
(Scheme 1d). Thiolate anions are highly nucleophilic23 and
far less basic than alkoxide anions, and therefore, initiator
regeneration by β-elimination as observed for the anionic
homopolymerization of epoxides21,24,25 would not occur.

According to Scheme 1a, when thiol groups are depleted,
the equilibrium would shift to the zwitterion form rather than
to the thiolate form. If the equilibrium constant is high
enough, this equilibrium would shift in a rather abrupt
manner, thereby explaining the observed sharp decrease in the
reaction rate upon reaching a complete thiol conversion in the
off-stoichiometric thiol–epoxy formulations.6 In the absence of
thiol groups, the initiation would continue in the presence of
the remaining epoxy groups but it would produce only the
zwitterionic active species. It should also be noted that,
because this zwitterion should be less reactive than a common
alkoxide, propagation of the epoxy homopolymerization would
not take place just at the end of the thiol–epoxy addition, or
else at a very slow rate in comparison.6 This is also supported
by the previous results of Heise and Martin, reported on their
study of epoxy systems catalyzed by imidazoles,18,19 who
observed a clear separation between the epoxy-adduct for-
mation and the epoxy homopolymerization, and stated that
the adduct species formed was “dormant” before homopoly-
merization of the excess of epoxy groups started.

Some more mechanistic considerations can be made if we
analyze a similar polymerization process, the nucleophile-cata-
lyzed phenol–epoxy polymerization. The overall reaction
mechanism23,26–29 is similar to that shown in Scheme 1. It is
of particular relevance to the fact that, in off-stoichiometric
phenol–epoxy formulations, the phenol–epoxy reaction takes
place first, and once phenol groups are exhausted, homopoly-
merization of excess epoxy groups can take place,23 like in
thiol–epoxy systems.6 However, a fundamental difference is
that the phenol–epoxy reaction is much slower due to the
stability and lower nucleophilicity of the phenolate anion,
making the separation between phenol–epoxy and epoxy
homopolymerization less clear.23,26,28 In addition, the phenol–
epoxy reaction is not generally autocatalytic (or only moderate
due to the slow nucleophilic initiation step), and the reaction
mechanism is usually analyzed in terms of the formation of
stable ion pairs between the phenoxide and a mobile counter-
ion that propagates the reaction.26–29

Based on the above considerations, we wondered whether
the formation of ion pairs is relevant in nucleophile-catalyzed
thiol–epoxy reactions. We propose that some more reactions
could be added to those already shown in Scheme 1. To begin
with, Scheme 2a shows the hypothetical formation of an ion
pair between the β-hydroxylimidazolium and the thiolate. We
have illustrated this as an equilibrium because it is acknowl-
edged that the formation and the activity of ion pairs are
largely dependent on the possible solvent-ion and solvent-ion
pair interactions and the ion concentration,30 and the sur-
rounding environment, with nucleophilic and electrophilic
sites, should allow for the presence of “naked” or, rather, non-
ion pair forming ions. The propagation of the reaction by this

ion pair is illustrated in Scheme 2b, although it is unclear
whether this nucleophilic addition should take place on epoxy
rings activated by proton donors, like nucleophilic amine–
epoxy addition, or else an internal activation with the
β-hydroxylimidazolium cation takes place, in line with the
mechanism proposed for amine-catalyzed phenol–epoxy reac-
tions.29 Finally, Scheme 2c shows a possible termination reac-
tion by nucleophilic displacement within the ion pair.

The reactivity of ion pairs is complex but it is acknowledged
that, in many cases, the presence of ion pairs decreases signifi-
cantly the rate of ionic polymerization in comparison with free
ion systems.30 Rozenberg showed that alkali ions played a
complex role in the anionic polymerization of epoxides.17 On
the one hand, they could have a positive effect in the activation
of the epoxy ring, like proton donors. However, their inter-
action with propagating alkoxide ions leading to the formation
of ion pairs would decrease the propagation rate in compari-
son with the free alkoxide ions, an effect that was more rele-
vant with increasing size of the alkali ion.17 Ooi et al.24 tested
the effect of tetramethyl ammonium chloride (TMAC) on the
anionic homopolymerization of epoxides initiated by imid-
azoles,24 but no effect on the reaction rate could be observed.
Given the above considerations,17,30 the propagation of the
reaction by this ion pair is supposed to be considerably slower
than by the free thiolate anions, and therefore, it might be
ruled out from a practical point of view.

The occurrence of the termination reaction proposed in
Scheme 2c looks reasonable given the high nucleophilicity of
the thiolate anion and the close presence of an electrophilic
site within the ion pair, leading to the β-hydroxythioether reac-
tion product and a regenerated imidazole. This reaction, from
a kinetic point of view, would be unimolecular, in a similar
way to what has been proposed for tertiary amine regeneration
in other studies.31–34 In addition, if ion pairs are present in a
significant amount in the course of the reaction, this termi-
nation mechanism would be presumably more frequent than
the bimolecular termination reaction between free ions
proposed in Scheme 1d.15

Scheme 2 Alternative mechanism steps occurring in the thiol–epoxy
reaction initiated by 1MI.
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Taking into account all these considerations, different reac-
tion mechanisms based on the reactions shown in Schemes 1
and 2 will be elaborated and their validity will be analyzed by
considering their ability to reproduce the experimental results.

3 Materials and methods
3.1 Materials

Diglycidyl ether of bisphenol A (DGEBA) with an epoxy equi-
valent weight of 172–176 g per eq. (Aldrich), 184–190 g per eq.
(Hexion) and 190–210 g per eq. (Huntsman) were dried at
80 °C under vacuum for 2 hours and stored in a desiccator
prior to use. These three resins have been coded as DG174,
DG187 and DG200, respectively, where the numbers indicate
the assumed equivalent weight of the epoxy resin.
Trimethylolpropane tris(3-mercaptopropionate) (S3) and
1-methylimidazole (1MI) from Sigma Aldrich were used as
received.

A set of mixtures using DG174 as an epoxy resin and with
different ratios r of thiol groups with respect to epoxy groups
were prepared, adding 1 phr (parts per hundred of the total
mixture) of 1MI with respect to the total mixture as catalyst. A
different set of stoichiometric thiol–epoxy mixtures using
DG174 was prepared, adding different proportions of 1MI.
Finally, stoichiometric samples with 1 phr of 1MI and chan-
ging the epoxy resin were also prepared. The samples were
quickly stirred using a spatula and analyzed immediately.
Table 1 shows the compositions of the different formulations.
The formulations have been coded as DGyyy-r-x where
yyy is the epoxy equivalent weight of the epoxy resin, r is the
thiol : epoxy equivalent ratio and x is the 1MI added in phr. It
should be mentioned that the thiol equivalent weight was
assumed to be the theoretical value of 132.85 g per eq. for the
calculation of the composition, although the supplier reports a
purity of 98% for this product.

3.2 Characterization techniques

A differential scanning calorimeter Mettler DSC821e calibrated
with indium standards was used to study the isothermal

curing of the different formulations at 60 °C. Samples of ca.
5–10 mg were placed inside an aluminum pan with a pierced
lid and were inserted into a preheated oven before analysis,
under a nitrogen atmosphere.

The calorimetric degree of conversion was determined as
x = Δh/Δhtotal, where Δh is the reaction heat released up to a
time t and Δhtotal is the total reaction heat evolved. The calori-
metric reaction rate was determined as dx/dt = (dh/dt )/Δhtotal,
where dh/dt is the heat flow. Taking into account the thiol–
epoxy ratio r of the different formulations, an approximate
conversion of epoxy groups, xe,DSC, was calculated from the
experimental DSC data as:

xe;DSC � r � x r , 1
xe;DSC � x r � 1

A rate of conversion of epoxy groups dxe,DSC/dt could also
be estimated from the calorimetric data as:

dxe;DSC
dt

� r � dx
dt

r , 1

dxe;DSC
dt

� dx
dt

r � 1

3.3 Kinetic modelling

Basic model. Following the work of Loureiro et al.,15 a basic
set of reactions based on the reaction mechanism in Scheme 1
has been defined:

Iþ E ! IE*

IE* þ SH �!fast IEHþ þ S�

S� þ E ! SE�

SE� þ SH �!fast SEHþ S�

IEHþ þ S� ! Iþ SEH

where I is the initiator, E is the epoxy ring, IE* is the zwitterion
formed after initiation, SH is a thiol group, IEH+ is the
hydroxyl-ammonium cationic species formed by proton trans-
fer from the thiol group, S− is the propagating thiolate anion,
SE− is the alkoxide formed after thiolate addition, and SEH is
the reaction product of the thiol–epoxy addition.

Table 1 Notation and composition of the formulations studied in this work, in weight fraction (wt%). The calculation of the initial concentration of
epoxy groups (ee per kg), and hydroxyl groups coming from DGEBA (eqOHDG per kg), the amount of initiator groups per epoxy equivalent (eq1MI
per ee), and the thiol : epoxy molar ratio (r) is also included

Formulation r wt% 1MI wt% DGEBA wt% S3 ee per kg eqOHDG per kg eq1MI per ee

DG174-1-1 1 0.99 56.18 42.83 3.227 0.0454 0.0375
DG174-0.75-1 0.75 0.99 62.99 36.02 3.618 0.0510 0.0334
DG174-0.5-1 0.5 0.99 71.68 27.33 4.118 0.0580 0.0293
DG174-0.25-1 0.25 0.99 83.16 15.85 4.778 0.0673 0.0253
DG174-1.33-1 1.33 0.99 49.06 49.95 2.820 0.0397 0.0428
DG174-2-1 2 0.99 39.21 59.80 2.252 0.0317 0.0536
DG174-4-1 4 0.99 24.42 74.59 1.404 0.0198 0.0860
DG174-1-0.5 1 0.50 56.45 43.05 3.243 0.0457 0.0187
DG174-1-2 1 1.96 55.63 42.41 3.195 0.0450 0.0748
DG174-1-4 1 3.85 54.55 41.60 3.134 0.0441 0.1497
DG187-1-1 1 0.99 57.89 41.12 3.095 0.1853 0.0390
DG200-1-1 1 0.99 59.49 39.52 2.975 0.3142 0.0406
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The initiation step leading to the formation of the zwitter-
ion IE* and the thiolate addition to the epoxy ring can be cata-
lyzed by proton donors, such as hydroxyl groups already
present or formed in the course of the reaction.16,21

Loureiro et al. modelled this catalytic effect by assuming
the formation of an epoxy–hydroxyl equilibrium complex prior
to the nucleophilic addition,15 following other studies.35,36

The effect of equilibrium complexes is a common issue in
reacting systems such as epoxy–amine.17,37–40 However,
hydroxyl-catalyzed nucleophilic addition of amines to epoxy
groups is commonly modelled in a more simplified way by not
considering the presence of such complexes: a trimolecular
reaction between epoxy, amine and the catalytic hydroxyl
group is assumed instead.41,42 Jin et al. modelled the base-
catalyzed curing of thiol–epoxy formulations using pheno-
menological models and interpreted the fitted parameters
quite convincingly assuming a simplified version of the cata-
lyzed nucleophilic addition,16 like in epoxy–amine systems.
This interpretation should be safe if the epoxy–hydroxyl equili-
brium constant was low enough, leading to a reduced error.36

However, in the present case the system is more complex since
we have performed nucleophilic addition of both the initiator
and the thiolate to the epoxy groups. The presence of catalytic
impurities in the reagents as well as the absorption of some
humidity from the environment during preparation could make
it difficult to identify all the possible intermediate complexes.
In such situations, the effect of impurities is taken into con-
sideration in a simplified manner.17 Therefore, for the sake of
simplicity, in the present model we assume that this somewhat
inaccurate representation of the catalytic effect of hydroxyl
groups provides a reasonable description of the effect.

Therefore, the basic reaction mechanism can be represented
as follows in terms of rate equations (basic kinetic model):

d½I�
dt

¼ �ki � ½I� � ½E� þ kt � ½S�� � ½IEHþ�

d½IE�total
dt

¼ �d½I�
dt

d½E�
dt

¼ �ki � ½I� � ½E� � kp � ½S�� � ½E�

d½SH�total
dt

¼ �kp � ½S�� � ½E� � kt � ½S�� � ½IEHþ�

d½SEH�
dt

¼ �d½SH�total
dt

Note that the total number of thiol/thiolate species is
defined as [SH]total = [SH] + [S−] and that the total amount of
potentially active species is defined as [IE]total = [IE*] + [IEH+].
In the course of the reaction, while [SH]total > [IE]total, the
number of active propagating species is [S−] = [IEH+] = [IE]total,
and [IE*] ≈ 0. However, when the reaction reaches completion,
it may be that [SH]total < [IE]total, so that [S−] = [IEH+] = [SH]total
and [IE*] = [IE]total − [SH]total.

In order to take into account the effect of the catalytic
groups already coming from the reagents or hypothetical

impurities, as well as the formed hydroxyl groups by reaction,
we have defined the initiation and propagation constants, ki
and kp, as follows:

ki ¼ ki;DG � ½OH�DG þ ki;SH � ½SH�0 þ ki;cat � ð½SEH� þ ½IEHþ�Þ

kp ¼ kp;DG � ½OH�DG þ kp;SH � ½SH�0 þ kp;cat � ð½SEH� þ ½IEHþ�Þ

The different contributions to the initiation constant come
from the presence of hydroxyl groups in the oligomeric struc-
ture of DGEBA, [OH]DG, impurities contained in the thiol
crosslinking agent that are assumed to be proportional to the
initial concentration of thiol groups [SH]0, and catalytic
species formed in the course of the reaction, [SEH] + [IEH+].
The contribution of the hydroxyl–thioether and the hydroxyl-
ammonium cation should be different but, for the sake of
simplicity, we have grouped them together.

It is quite common to model reaction kinetics using
normalized concentrations rather than real concentrations,34,42

so that the normalized concentration of a species A can be cal-
culated with respect to the initial concentration of epoxy
groups, so that a = [A]/[E]0. This makes it possible to define a
set of kinetic reactions in terms of the normalized species, but
the kinetic constants need to be redefined.34,42 The details of
such transformations are shown in the Appendix.

Complex model. A complex kinetic model has also been
defined on the basis of the additional mechanistic consider-
ations in the presence of ion-pairs discussed in the preceding
section, wherein the formation of an ion-pair is considered as
shown in Scheme 2a. It is hypothesized that this ion-pair would
not propagate the reaction (it should have a considerably lower
reaction rate than free thiolate ions), so that that reaction
shown in Scheme 2b is not included in the model. It is
assumed that the termination reaction by an internal rearrange-
ment of the ion-pair as shown in Scheme 2c takes place. For the
sake of simplicity, the termination by the bimolecular mechan-
ism shown in Scheme 1d is not taken into consideration. This
kinetic model is represented by the following set of reactions:

Iþ E ! IE*

IE* þ SH �!fast IEHþ þ S�

IEHþ þ S�⇄ IEHþS�

S� þ E ! SE�

SE� þ SH �!fast SEHþ S�

IEHþS� ! Iþ SEH

where IEH+S− is the thiolate–hydroxylammonium complex ion-
pair. Note that, from the kinetics point of view, the termin-
ation reaction should be regarded as a uni-molecular reaction.
This reaction mechanism is represented by the following set of
rate equations and an equilibrium:

d½I�
dt

¼ �ki � ½I� � ½E� þ kt;IP � ½IEHþS��
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d½IE�total
dt

¼ �d½I�
dt

d½E�
dt

¼ �ki � ½I� � ½E� � kp � ½S�� � ½E�

d½SH�total
dt

¼ �kp � ½S�� � ½E� � kt;IP � ½IEHþS��

d½SEH�
dt

¼ �d½SH�total
dt

keq;IP ¼ ½IEHþS��
½S�� � ½IEHþ�

In this set of reactions, we define:

½IE�total ¼ ½IE*� þ ½IEHþ� þ ½IEHþS��

½SH�total ¼ ½SH� þ ½S��total ¼ ½SH� þ ½S�� þ ½IEHþS��

Also, one should consider that:

½S��total ¼ ½S�� þ ½IEHþS�� ¼ ½IEHþ� þ ½IEHþS��

In the course of the reaction, while [SH]total > [IE]total, the
number of active propagating species is [S−]total = [IE]total with
[IE*] = 0. When the reaction reaches completion, it may be that
[SH]total < [IE]total, so that [S−]total = [SH]total and [IE*] = [IE]total
− [SH]total. The real amount of propagating thiolate and
ion-pair species, [S−] and [IEH+S−], are found by solving the
equilibrium in any case.

In order to take into account the catalytic effect of the
different species on the initiation and propagation rates, the
initiation and propagation constants are defined exactly the
same way as before. As in the previous model, the reaction
kinetics is also analyzed making use of normalized concen-
trations of the different species (see Appendix).

Model-fitting of experimental data. The conversion of epoxy
groups xe can be defined as:

xe ¼ 1� e

where e is the normalized concentration of epoxy groups
(see the Appendix) and can take a value from 1 (no epoxy
groups reacted) to 0 (completely reacted). Assuming that the
heat evolved by the ring-opening of the epoxy group is similar
in both the initiation and propagation, and in order to make
comparison with experimental DSC results meaningful, one can
calculate xe,DSC from the results of the kinetic model as:

xe;DSC � r � xe
xe;max

r , 1

xe;DSC � xe
xe;max

r � 1
;

where xe,max is the maximum epoxy conversion calculated by
the kinetic model. The rate dxe,DSC/dt can also be determined
from the results of the kinetic model as:

dxe;DSC
dt

� r � �de=dt
xe;max

r , 1

dxe;DSC
dt

� �de=dt
xe;max

r � 1
;

where de/dt is the normalized reaction rate of epoxy groups (see
the Appendix).

The integration is performed simultaneously for all the
compositions indicated in Table 1 and the kinetic constants
and equilibrium constants, ki,DG, ki,SH, ki,cat, kp,DG, kp,SH, kp,cat,
kt, keq,IP and kt,IP are fitted using a nonlinear regression pro-
cedure with the following minimization function:

error ¼
X
i

X
xe;DSC

tx;i;exp � tx;i;mod
�� ��

where tx,i,exp is the experimental time and tx,i,mod is the time
predicted by the kinetic model, for each experiment i, and at
certain degrees of conversion xe,DSC. The whole conversion
curves are integrated in each iteration step, using a 4th order
Runge–Kutta method. Approximate starting values for the
different constants have been set by trial and error and visual com-
parison with experimental curves. The built-in GRG non-linear
solver in the Excel™ software has been used to fit the parameters.

4 Results and discussion
4.1 Experimental results

Fig. 1 shows the experimental rate curves that were obtained
from the isothermal curing at 60 °C for all the formulations. If
one compares these results with those reported by Jin et al.,16

some relevant differences between commonly used basic cata-
lysts and nucleophilic catalysts can be highlighted. In base-

Fig. 1 Experimental rate curves illustrating the effect of the thiol–
epoxy ratio (top graph), initiator content (middle graph) and epoxy equi-
valent weight (bottom graph).
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catalyzed thiol–epoxy reactions, the reaction starts immediately
after the reagents are mixed and, because of the strong auto-
catalysis of the reaction, it can become difficult to control. Note
that in a recent study by Jin et al.16 the authors used DBU as
the base catalyst in a concentration of just 0.17% with respect
to the concentration of thiol groups. In contrast, Fig. 1 shows
that the reaction onset is delayed using a nucleophilic initiator
such as 1MI, as observed in the studies of Loureiro et al.15 and
our recent study on dual-curable off-stoichiometric thiol–epoxy
formulations.6 This may not be regarded as a truly latent
behavior, but nevertheless it suggests it is safer to prepare and
control their curing process using nucleophilic initiators
rather than basic catalysts, which could be highly useful in
terms of processing. This is a similar phenomenon to what
has been reported for Michael addition reactions using
specific nucleophilic catalysts.43,44

A closer examination of Fig. 1 reveals a number of significant
features of nucleophile-initiated thiol–epoxy reactions. In the top
graph, the effect of the thiol–epoxy ratio r is illustrated. At lower
thiol–epoxy ratios, the curve starts earlier because of the increas-
ing concentration of epoxy groups and a subsequent enhance-
ment in the rate of the initiation step, consisting of the nucleo-
philic addition of 1MI to the epoxy ring. An additional accelerat-
ing effect coming from the increasing concentration of the
initial catalytic hydroxyl groups present in the formulation (see
Table 1) is also expected. The formulations with thiol–epoxy
ratios lower than 1 also show a strong autoacceleration just
before a sharp decrease in the reaction rate that coincides with
the exhaustion of the available thiol groups, in agreement with
previously reported data.6 The formulations with a thiol–epoxy
ratio higher than one show a slower activation and reaction rate
due to the decrease in the concentration of the available epoxy
groups and catalytic hydroxyl groups coming from the structure
of DG174 (see Table 1). In all the formulations with r < 1, at the
end of the reaction there remain unreacted epoxy groups, while
at r ≥ 1, a complete conversion of epoxy groups is achieved.

In the middle graph, the effect of the initiator content is
shown for stoichiometric formulations using DG174 as epoxy
resin. As expected, there is a clear trend of the decreasing reac-
tion onset and increasing reaction rate with increasing initiator
content. However, the effect is not apparently proportional to
the initiator content (see Table 1). The bottom graph shows the
effect of increasing the epoxy equivalent weight of the DGEBA
and, with this, the content in catalytic hydroxyl groups coming
from the oligomeric structure of DGEBA. The effect is appar-
ently complex. It can be observed that increasing the epoxy equi-
valent weight leads to an earlier initiation of the reaction in
spite of the decreasing concentration of epoxy groups in the for-
mulation, because of the increasing concentration of oligomeric
hydroxyl groups (see Table 1). The difference between the for-
mulations containing DG187 and DG200 is not very significant,
possibly because of this trade-off.

All these observations illustrate the complexity of the
nucleophile-initiated thiol–epoxy addition. The basic and
complex models, based on mechanistic considerations, are
tested and their validity is discussed.

4.2 Analysis of the kinetic models

First of all, we analyze the validity of the basic kinetic model
inspired by the mechanism proposed by Loureiro et al.15 The
fitted parameters are shown in Table 2. The experimental data
and model predictions are compared in Fig. 2 for the effect of
the thiol–epoxy ratio, in Fig. 3 for the effect of the catalyst
content and in Fig. 4 for the effect of the epoxy equivalent
weight. As can be seen in the figures, the model is capable of
reproducing, at least from a qualitative point of view, the
expected behaviour in terms of reaction rate and reaction
onset: it includes both the effect of the nucleophilic initiation
and the exhaustion of thiol groups in formulations with r < 1,
and takes into consideration the autocatalytic behaviour of the
reaction. The average error is 60.5 seconds, as seen in Table 2,
although individual errors are quite substantial in some cases.
The model produces an exceedingly high delay in the pre-
dicted reaction of formulations with r < 1 (Fig. 2) and overesti-
mates the effect of the thiol–epoxy ratio r (Fig. 2) on the peak
reaction rate. The effect of the catalyst content on the overall
reaction time is well predicted, but it overestimates its effect
on the peak reaction rate (Fig. 3). The kinetic model predicts
quite well the effect of the epoxy equivalent weight (Fig. 4), but

Table 2 Kinetic constants and error obtained after fitting of the experi-
mental data to the different models

Basic Complex

ki,DG (M−2 s−1) 5.725 × 10−4 5.460 × 10−4

ki,SH (M−2 s−1) 1.729 × 10−6 1.608 × 10−6

ki,cat (M
−2 s−1) 1.962 × 10−3 3.652 × 10−3

kp,DG (M−2 s−1) 3.712 × 10−4 9.462 × 10−4

kp,SH (M−2 s−1) 7.727 × 10−5 7.272 × 10−6

kp,cat (M
−2 s−1) 2.386 × 10−2 3.200 × 10−2

kt (M
−1 s−1) 3.712 × 10−2 0

keq,IP (M
−1) 0 13.41

kt,IP (s
−1) 0 8.950 × 10−3

Error (s) 60.5 50.2

Fig. 2 Comparison between the predictions of the basic kinetic model
and the experimental data, the effect of the thiol–epoxy ratio, using the
parameters in Table 2.
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the reaction rates are overestimated in the case of the DG174-
1-1 and DG200-1-1 formulations. Although valid as a first
approximation, this model does not accurately reproduce the
shape of the different curing processes. Therefore, the under-
lying reaction mechanism must be different from that rep-
resented in this kinetic model.

In order to improve the quality of the fitting, the complex
model, based on other mechanistic considerations, was tested.
Fig. 5 shows the effect of the thiol–epoxy ratio, Fig. 6 shows the
effect of the initiator content and Fig. 7 shows the effect of the
epoxy equivalent weight. The fitted kinetic parameters and the
error are shown in Table 2. The error of the adjustment is lower,
only 50.2 seconds, and an inspection of the curves confirms
that the quality of the fitting process is much better. Indeed,
Fig. 5 shows that the effect of the thiol–epoxy ratio on the reac-
tion rate is little overestimated, differences being most notice-
able at the lowest thiol–epoxy ratios, 0.5 and, especially, 0.25.
Although the model still predicts a slower initiation in these

Fig. 4 Comparison between the predictions of the basic kinetic model
and the experimental data, the effect of the DGEBA epoxy equivalent
weight, using the parameters in Table 2.

Fig. 3 Comparison between the predictions of the basic kinetic model
and the experimental data, the effect of the initiator content, using the
parameters in Table 2.

Fig. 5 Comparison between the predictions of the complex kinetic
model and the experimental data, the effect of the thiol-epoxy ratio,
using the parameters in Table 2.

Fig. 6 Comparison between the predictions of the complex kinetic
model and the experimental data, the effect of the initiator content,
using the parameters in Table 2.

Fig. 7 Comparison between the predictions of the complex kinetic
model and the experimental data, the effect of the DGEBA epoxy equi-
valent weight, using the parameters in Table 2.
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active species promotes the formation of the ion-pair, to the
detriment of the free thiolate anion propagating the reaction.
Thus, it is no surprise that the ion-pair concentration becomes
larger than the concentration of free thiolate. When Fig. 8 and 9
are compared, it can be observed that the maximum concen-
tration of thiolate anions is slightly more than double when 4
phr of 1MI are used in comparison with 1 phr of 1MI. Another
relevant difference between both figures is that the initiation
rate contributes more heavily to the overall reaction rate in the
presence of 4 phr of 1MI, which could be expected. At the end
of the reaction process, as the thiol groups are exhausted,
there is a non-negligible amount of the zwitterion formed.

Finally, Fig. 10 shows the evolution of the different species
and rates for the off-stoichiometric DG174-0.5-1 formulation.
The model predicts that, due to the exhaustion of thiol groups,
the concentration of the free thiolate and ion-pair decreases
sharply. However, because there is a significant excess of epoxy

groups, this takes place near the peak in the reaction rate,
leading to a sharp decrease in the overall reaction rate
altogether. At this point, the amount of the zwitterion starts to
increase as well. However, because of the presence of the
remaining epoxy groups and the high concentration of cata-
lytic hydroxyl groups formed in the course of the reaction, the
initiation continues at a fast rate and leads to a depletion of
initiator species and the formation of the maximum possible
amount of the zwitterion. This zwitterion is the species that
would start the propagation of the epoxy homopolymerization,
but this species would be more stable and less active than
other alkoxide anions, as commented above. According to
Heise and Martin, the adduct formation would reach com-
pletion before the homopolymerization process starts.18,19

According to the model, this species would be ready at the end
of the thiol epoxy process, so that the homopolymerization
process would eventually start if one waited for long enough or
increased the temperature.6 It should be noted that for the
curing of a formulation with excess thiol groups (results not
shown), throughout the whole curing process and at the end
of it there would not be any traces of this zwitterion species.

In the light of these results, it appears that the hypotheses
behind the proposed complex kinetic model, involving the
presence of the non-reactive ion-pair in the reaction medium,
become quite realistic. The main features of the curing
process and the rates and reaction onsets are well reproduced
by the model. The effect of the composition on the reaction
rate is also accounted for by the model. Indeed, if one com-
pares the values of ki,DG, ki,SH, kp,DG and kp,SH as in Table 2,
and considering the way these constants were defined (see
section 3.3), it can be deduced that the effect of catalytic impu-
rities in the thiol monomer (i.e. hydroxyl groups) on the
initiation and propagation rate constants is indeed lower than
that of the epoxy monomer, but not negligible. The values of
ki,cat and kp,cat also indicate that the catalytic effect of the reac-
tion product is significantly stronger, in agreement with the
results of Loureiro et al.15 The model still overestimates the
reaction onset in formulations with thiol–epoxy ratios lower
than one, but this might be a consequence of both inaccura-
cies inherent to the reaction mechanism and experimental
error caused by the fast initiation of these formulations. In any
case, assuming that the distribution of reactive species pro-
duced by this model is right, it could be used to analyze the
crosslinking process of stoichiometric or off-stoichiometric
thiol–epoxy formulations, rather than relying only on ideal
step-wise assumptions.6 In addition, the model could be
extended to study the reaction processes of thiol–epoxy
systems initiated by other nucleophilic tertiary amines,15 but
obviously the values of the model constants would be
different, especially those connected with the amine structure
and reactivity such as the initiation and termination rate con-
stants as well as the ion-pair equilibrium constant.

We acknowledge that the model has some inaccuracies and
simplifications that might be addressed in future studies.
Whether the termination is a unimolecular rearrangement of
the ion-pair or a bimolecular reaction between free thiolate

Fig. 9 Comparison of the normalized concentration of species I, IE*,
free IEH+ or S− and the IEH+S− ion-pair (top) and the rate of initiation,
termination and propagation reactions (bottom) predicted by the
complex model for the curing of the DG174-1-4 system.

Fig. 10 Comparison of the normalized concentration of species I, IE*,
free IEH+ or S− and the IEH+S− ion-pair (top) and the rate of initiation,
termination and propagation reactions (bottom) predicted by the
complex model for the curing of the DG174-0.5-1 system.
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and hydroxylammonium cation species makes no practical
difference. We assumed that the propagation by means of the
ion-pair species was negligible for the sake of simplicity, but
one might consider some reactivity of the ion-pair towards
propagation. The initiating mechanism based on the nucleo-
philic attack of the imidazole to the epoxy ring should be re-
analyzed. Nucleophilic addition of amines to epoxy groups can
be quite complex, as reported for epoxy–amine systems.35–38,40

The formation of multiple equilibrium complexes complicates
significantly the apparently simple autocatalytic epoxy–amine
addition. When several equilibrium complexes, some of which
are active, are present at the same time, the real amount of
active species is reduced and, if this effect is neglected, the
reaction rate is overestimated.40 A similar consequence could
be expected for the initiation step between the imidazole and
the epoxy ring. The initiation step in epoxy–imidazole systems
is highly sensitive to the chemical environment, not only due
to the presence of catalytic species17,21 but also to the for-
mation of unreactive complexes in the presence of poly-
ethers,45 like in epoxy–amine systems.40 Nevertheless, in the
absence of more detailed experimental information (i.e. the
individual determination of some rate or equilibrium con-
stants), the inclusion of a larger number of fitting parameters
would complicate the interpretation of the results. We already
tested the effect of the epoxy–hydroxyl complexes, but we
found that the complex equilibrium constant was very low
(results not shown), so that our simplification of the catalytic
effect could be considered as a safe one, in line with the
results of Jin et al.16 and in agreement with the reasoning of
Flammersheim,36 although this might also be a side conse-
quence of the mathematical fitting process. In multiple non-
linear regression modelling of complex processes there could
be more than one solution, given that the optimum point
might be within a flat hollow rather than a deep valley of the
solution space,37 or else a number of local minima with a
similar error could be easily found. In order to refine the pro-
posed model, taking into account the above considerations,
more experimental work should be carried out in order to
investigate in more depth the effect of the chemical environ-
ment on the initiation step and the role of the ion-pair equili-
brium complex, as well as the effect of temperature on the
different kinetic parameters, so as to produce a more consist-
ent model and a more meaningful set of kinetic parameters.

5 Conclusions

The thiol–epoxy addition reaction initiated by tertiary amines
has been analyzed from theoretical and experimental points of
view. DGEBA and S3 have been used as epoxy and thiol com-
pounds, and 1MI has been used as the nucleophilic tertiary
amine initiator. The effects of the thiol–epoxy ratio, epoxy
equivalent weight and initiator content have been taken into
consideration.

The reaction takes place earlier in formulations richer in
epoxy monomers because of the initiation by the nucleophilic

attack of the tertiary amine to the epoxy group and the contri-
bution of catalytic hydroxyl groups in the epoxy oligomer. The
end of the reaction is sharp in formulations with excess of
epoxy groups due to the exhaustion of thiol groups and trans-
fer of the thiolate active species to a less active zwitterion
species that would propagate the homopolymerization of the
excess epoxy groups. Increasing the initiator content does not
increase proportionally the propagation and initiation rates.
The use of epoxy monomers with higher epoxy equivalent
weights leads to faster reactions because of the catalytic effect
of the hydroxylic epoxy oligomers, in spite of the reduced con-
centration of epoxy groups.

A kinetic model based on an approximate reaction mechan-
ism for the thiol–epoxy reaction initiated by tertiary amines
has been defined. This model satisfactorily reproduces all the
phenomena associated with the curing process of stoichio-
metric and off-stoichiometric thiol–epoxy mixtures initiated by
1MI, and it is hypothesized it could be extended, with
obviously different values of the parameters, to thiol–epoxy
systems initiated by other nucleophilic tertiary amines. A com-
plete validation of the model would require, however, the ana-
lysis of the effect of different curing temperatures under iso-
thermal and nonisothermal reaction conditions, producing a
more consistent and meaningful set of kinetic parameters.

One of the most remarkable features of the model is the
assumption of the presence of a less-reactive ion-pair complex
in equilibrium with free thiolate and cationic species, making
it possible to predict correctly the effect of changing the
initiator content and thiol–epoxy ratio on the reaction rate.
However, the understanding of the exact role of the ion-pair in
the reaction medium in terms of reactivity requires further
investigation. The model also attempts, in a simplified way, to
describe separately the catalytic effects of hydroxyl groups and
other impurities present in the epoxy resin and in the thiol
crosslinker, and the hydroxyl groups present in the reaction
product. However, it is acknowledged that the model is not
accurate enough in that respect. Among other issues, one
should consider the formation of different active and non-
active complexes depending on the presence of different cata-
lytic or deactivating species. Proper elucidation of the
initiation step, which is crucial for the understanding of the
reactivity of these systems, remains therefore a pending task.
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Appendix
Basic kinetic model

In terms of the normalized concentration of the different
species, the basic set of rate equations transforms into:

di
dt

¼ �k′i � i � eþ k′t � s� � iehþ
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cases, the adjustment is significantly better. Fig. 6 shows that
the effect of the catalyst content is now nicely predicted by the
model. The effect of the epoxy equivalent weight is also quite
well reproduced, as shown in Fig. 7, with some discrepancies in
the case of the intermediate DG187-1-1 formulation.

An indirect confirmation of these results could be made
from a comparison between the rate constants obtained and
those found in the literature. Unfortunately, the adjustment
procedure in the work of Loureiro et al.15 makes it difficult to
compare their results with ours. Therefore, the only data we
can use are from the work of Jin et al.16 These authors fitted
the experimental data to a phenomenological Kamal model,
with dx/dt = (k1 + k2·x

m)·(1 − x)n, and interpreted the para-
meters in terms of the reaction mechanism. For a stoichio-
metric formulation using a trifunctional thiol and an epoxy
monomer of a low epoxy equivalent weight (180 g mol−1),
cured at 60 °C with 0.17 mol% of DBU, they obtained k1 = 0.77
× 10–5 s−1, k2 = 0.65 × 10–3 s−1, and m = n = 1. The values of the
m and n parameters, which were about the same at all temp-
eratures, were in excellent agreement with a base-catalyzed
reaction mechanism, with the same assumptions that we
made in this work concerning the activation of the epoxy ring
by proton donors. Assuming that strong bases such as DBU
produce the maximum amount of active species from the very
beginning, and that an ion-pair such as the one in this work
would not be formed (or present much weaker interactions),
their value of k2 should be equivalent to our value of
kp,cat·[E0]

2·i, for an equivalent thiol–epoxy formulation. The value
of i should be the molar concentration of DBU the authors
used in their work,16 0.0017 mol DBU per mol of SH groups.
The calculated value of k’p,cat·i0 is equal to 0.75 × 10–3 s−1, only
15% higher than k2. While k1 should be equivalent to
(kp,DG·ohDG + kp,SH·sh0)·[E0]

2·i, our calculation yields a value
of 10–6 s−1, which is about 8 times lower. Comparison of k2
with kp,cat·[E0]

2·i should be more reliable because of the strong
autocatalytic component of the reaction, which is due to the
generation of a hydroxyl group per each epoxy/thiol group
reacted. However, comparison between k1 and (kp,DG·ohDG +
kp,SH·sh0)·[E0]

2·i depends largely on the presence of catalytic
impurities in the reaction medium, often coming from the use
of industrial grade products. It should be considered that the
results from our analysis are obtained from a numerical fitting
of the data to a model with a significant number of para-
meters, which may involve uncertainties stemming from the
numerical method. Added uncertainty comes from the fact
that the reaction starts by nucleophilic attack of 1MI to the
epoxy ring, which is highly sensitive to catalytic groups and
impurities present in the system, and this might conceal the
effect of such impurities on the propagation rate.

At this point, it is also good to analyze the distribution of the
relevant species (other than epoxy and thiol groups) in the course
of the reaction, and the contribution of the different rates of
initiation, propagation and termination to the overall reaction rate.

Fig. 8 shows the situation for the DG174-1-1 formulation. It
is noteworthy that, as the reaction starts, the growing concen-
tration of free thiolate anions does not start the reaction

immediately. When the propagation rate starts to increase, an
increase in the concentration of active species is noted, but
this is offset by the formation of the ion-pair, which moderates
the amount of free thiolate propagating the reaction. The
amount of active species reaches a maximum around the
maximum propagation rate because the decreasing concen-
tration of the epoxy groups and initiator I leads to a decreasing
initiation rate. At this point, about 75% of the initiator has
been converted into IEH+ species (free and ion-pair). In conse-
quence, the concentration of the free initiator starts to increase
again. A change in the trend is observed once the concen-
tration of the thiol groups falls below a certain threshold, so
that the amount of active species is no longer controlled by the
total reacted initiator but by the availability of the thiol groups
to produce free thiolate anions. At this point, the concen-
tration of the inactive (or rather less active) zwitterion IE*,
which was 0 (or nearly) because of the presence of a sufficient
amount of thiol groups leading to a fast proton transfer to
produce thiolates, starts to increase as well. The absence of the
zwitterion IE*, in addition to its low reactivity, justifies the
absence of epoxy homopolymerization, so that in the presence
of thiol groups only the thiol–epoxy addition takes place. At the
end of the process a significant amount of the unreacted
initiator I remains, which is in good agreement with the experi-
mental results of Loureiro et al.,15 who showed that, at the end
of the thiol–epoxy addition, there was a significant amount of
the unreacted initiator in the SEC traces of the reaction product.
Throughout the curing process the contribution of the initiation
and termination reactions to the reaction rate is very small in
comparison with the propagation, due to the small concen-
tration of the initiator and active species available.

Fig. 9 shows the same results but for the DG174-1-4 system,
with four times more catalyst. The shape of the curves is pretty
much the same as in the previous case, but there is a relevant
difference in the relative contribution of the free IEH+ or thio-
late species and the ion-pair. The larger concentration of total

Fig. 8 Comparison of the normalized concentration of species I, IE*,
free IEH+ or S− and the IEH+S− ion-pair (top) and the rate of initiation,
termination and propagation reactions (bottom) predicted by the
complex model for the curing of the DG174-1-1 system.
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dietotal
dt

¼ � di
dt

de
dt

¼ �k′i � i � e� k′p � s� � e

dshtotal
dt

¼ �k′p � s� � e� k′t � s� � iehþ

dseh
dt

¼ k′p � s� � eþ k′t � s� � iehþ

where

shtotal ¼ shþ s�

ietotal ¼ ie*þ iehþ

The number of propagating species is calculated as:

shtotal > ietotal ) s� ¼ ietotal
ie* ¼ 0

�

shtotal , ietotal ) s� ¼ shtotal
ie* ¼ ietotal � shtotal

�

Because of the normalization process, the kinetic and equi-
librium constants are now expressed as:

k′i ¼ ðki;DG � ohDG þ ki;SH � sh0 þ ki;cat � ðsehþ iehþÞÞ � ½E�02

k′p ¼ ðkp;DG � ohDG þ kp;SH � sh0 þ kp;cat � ðsehþ iehþÞÞ � ½E�02

k′t ¼ kt � ½E�0

An implicit assumption here is that the volume changes
during curing are negligible. If one were to consider the
volume changes, the expressions should be modified in a con-
venient way.34

Complex kinetic model

In terms of normalized concentrations, the rate and equili-
brium expressions of the complex model take the following
form:

di
dt

¼ �k′i � i � eþ k′t;IP � iehþs�

dietotal
dt

¼ � di
dt

de
dt

¼ �k′i � i � e� k′p � s� � e

dshtotal
dt

¼ �k′p � s� � e� k′t;IP � iehþs�

dseh
dt

¼ �dshtotal
dt

k′eq;IP ¼ iehþs�

s� � iehþ ¼ iehþs�

ðs�Þ2

In this set of reactions, we define:

ietotal ¼ ie*þ iehþ þ iehþs�

shtotal ¼ shþ s�total ¼ shþ s� þ iehþs�

One should also consider that:

s�total ¼ s� þ iehþs� ¼ iehþ þ iehþs�

The number of potentially active species is determined as:

shtotal > ietotal ) s�total ¼ ietotal
ie* ¼ 0

�

shtotal , ietotal ) s�total ¼ shtotal
ie* ¼ ietotal � shtotal

�

Having determined s−total, the ion-pair equilibrium is
solved as:

k′eq;IP ¼ iehþs�

ðs�Þ2 ¼ iehþs�

ðs�total � iehþs�Þ2

The normalized propagation and initiation constants
k′i and k′p are defined in the same way as in the basic model.
The equilibrium and termination constants of the ion-pair are
defined as:

k′eq;IP ¼ keq;IP � ½E�0
k′t;IP ¼ kt;IP

Initial concentration of reactive species

Taking into account the weight fraction of each component
specified in Table 1, the initial concentrations of the epoxy
and initiator groups were calculated as:

½E�0 ¼
wDG

eqDG
� ρ ½I�0 ¼

wMI

eqMI
� ρ

where wDG and wMI are the weight fractions of the epoxy
monomer and initiator in the mixture (the values in Table 1
divided by 100), and eqMI is the equivalent weight of 1MI and
assumed to be 82 g mol−1. The density ρ has been estimated
from the composition of the formulations and the density of
the pure compounds at room temperature assuming the addi-
tivity of volumes and correcting the density to the curing temp-
erature using the approximation of Van Krevelen for oligomers
or polymers above their glass transition temperature.34,46

With [E]0 and [I]0, one can determine the initial normalized
concentrations for the integration of the rate equations:

e0 ¼ 1 sh0 ¼ shtotal;0 ¼ r � f SH i0 ¼ ½I�0=½E�0 ietotal;0 ¼ 0

seh0 ¼ 0

In the expression for the normalized initial concentration
of thiol groups sh0, r is the theoretical thiol–epoxy ratio used
for the calculation of the mixture composition, and fSH rep-
resents the purity of the thiol monomer and takes a value of 1
for a perfectly pure reagent, but in this case takes a value of
0.98 according to the product specifications.
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The initial amount of hydroxyl groups coming from
DGEBA, ohDG is approximately calculated from the epoxy equi-
valent weight, eqDG, as:

ohDG ¼ 1
2
� 2 � eqDG � 340

284

The initial concentration of all the other species in the
basic or complex models is initially equal to 0.
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