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Caminante, son tus huellas

el camino y nada más;

Caminante, no hay camino,

se hace camino al andar.

Al andar se hace el camino,

y al volver la vista atrás

se ve la senda que nunca

se ha de volver a pisar.

Caminante no hay camino

sino estelas en la mar.

Antonio Machado Ruiz
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Introduction

Non-negative integer-valued data (or count data) are intrinsically found in the nature of

many phenomena, and many models related to essential applications have been presented

in the literature in several contexts such as epidemiological or biomedical research, social

research, economic research, ecological research, among others. Since the beginning of

the last century, some renowned authors have proposed models of count data in many in-

teresting real-world processes. For instance, Tukey (1949) assumed a Poisson distribution

for the number of mutants in a bacterial sample, Fisher et al. (1922) modelled the number

of bacteria in soil samples with a Poisson distribution, Fisher and Mather (1936) used the

Binomial distribution in a linkage test with mice data, and Rao et al. (1973) considered

the Negative Binomial distribution for the number of different compounds identified in

water samples.

Since count data are present everywhere, the necessity of high-quality methods and

techniques to correctly model and analyse these data is indisputable. In this sense, many

comprehensive works can be found in the literature, where both, basic techniques and

more extended methods to investigate count data, have fully developed from different

perspectives. Since the forties, some of the most influential contributions to the analy-

sis of non-negative integer-valued data can be found in Fisher (1941) who presented a

detailed description of the Negative Binomial distribution, Kemp and Kemp (1965) who

introduced some relevant properties of the Hermite distribution, the works carried out by
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Johnson and Kotz (1969), Johnson and Kotz (1982) and Johnson et al. (1997) where an

extended review (moments, properties, methods of estimation, applications, among oth-

ers) of some of the standard and not-so-common discrete-valued data distributions were

presented, and Hinde (1982) who proposed an approach to estimate compound Poisson

regression models. Moreover, other interesting contributions can be found in D’Agostino

and Stephens (1986) who described, among others, the well-known Chi-squared test and

some other tests of goodness-of-fit for discrete distributions, Cox and Snell (1989) who

set out different approaches to analyse binary data, Karlis and Xekalaki (1999) who con-

sidered the problem of mixtures of Poisson distributions, Puig and Valero (2007) who

characterized count data distributions involving additivity and binomial subsampling, and

the work written by Hilbe (2011) where the negative binomial regression was studied in

detail. On the other hand, some works such as Mood (1950) and Cox and Hinkley (1974)

provided an introduction to the theory of statistics, including that theory related to count

data distributions.

Despite the vast amount of excellent-quality works dealing with the major concerns in

non-negative integer-valued data, and the enormous effort of every author who has con-

tributed to the better understanding and modelling of many count data phenomena, some

issues related to these data are not entirely solved yet. Among these issues, it is note-

worthy the well-documented problem of overdispersion which has been studied by many

authors. For instance, Cox (1983) examined the behaviour of maximum likelihood esti-

mators when slightly overdispersion is present in a simple model, Cameron and Trivedi

(1986) proposed regression-based tests for overdispersion in the Poisson model, Barron

(1992) described some appropriate methods of count data analysis when both, overdis-

persion and auto-correlation, are present, and finally Ganio and Schefer (1992) presented

some diagnostic tools for assessing overdispersion. Other essential works can be found in

Del Castillo and Pérez-Casany (1998) who introduced the weighted Poisson distribution

for fitting overdispersion in count data, Sellers et al. (2010) who reviewed the COM-

Poisson distribution, and Weiß and Schweer (2015) who proposed a method for detecting

overdispersion in INARCH(1) processes. On the other hand, the less familiar problem

of underdispersion has been considered by Del Castillo and Pérez-Casany (1998) who

also proposed the weighted Poisson distribution for fitting underdispersion in count data,
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Faddy and Bosch (2001) who modelled and analysed underdispersed data based on pure

birth processes, Sellers et al. (2010) who also considered the COM-Poisson distribution

when underdispersion occurs, and Weiß (2013) who presented integer-valued autoregres-

sive models for underdispersed counts.

Many authors are also concerned about other issues commonly found in count distri-

butions such as the inflation (or deflation), the truncation and the mixture of distributions,

even if data are time-dependent or not. Accordingly, inflated and deflated count distri-

butions have been studied, for example, by Greene (1994) where several modifications

of both, the Poisson and Binomial distributions, were presented in order to accommodate

zero-inflation, Böhning (1998) where several Zero-inflated Poisson models were reviewed

in detail, and Ridout et al. (2001) where a score test for evaluating a Zero-inflated Pois-

son regression model against zero-inflated negative binomial alternatives was proposed.

Additionally, David and Johnson (1952), Cohen (1954), Brass (1958), and Grogger and

Carson (1991) focused on truncated count distributions. These works studied, among

others, the Poisson and Negative Binomial truncated models, and some methods of pa-

rameter estimation. Mixtures of distributions of counts have been considered by Blis-

chke (1964, 1965) who described moment-based methods for estimating parameters of a

mixture of two Binomial distributions and a mixture of Normal distributions, Barndorff-

Nielsen (1965) who studied the identifiability of mixtures of exponential families, and

Karlis and Xekalaki (1998, 1999) who introduced improvements of the EM algorithm for

finite Poisson mixtures.

A further difficulty appears when dealing with count data correlated over time. The

analysis of count time series has been rapidly growing in the past year, and many authors

have been contributed to its constant improvement, introducing interesting works. Some

examples can be found in McKenzie (1985, 2003) who introduced the INAR(1) model,

Alzaid and Al-Osh (1990) and Du and Li (1991) who presented different INAR(p) mod-

els, Jung and Tremayne (2006) and Weiß (2008) who proposed comprehensive reviews

based on INAR models, Zucchini and MacDonald (2009) who described Hidden Markov

models for count time series, Moriña et al. (2011) who proposed an INAR(2) model for

hospital admissions considering seasonal effects, and Weiß and Puig (2015) who studied

the marginal distribution of compound Poisson INAR(1) models.
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Currently, researchers and data analysts are paying particular attention to data quality,

being one of the more critical issues in data analysis, and hence in count data analy-

sis. According to Oliveira et al. (2005), a formal definition of data quality comprises

different meanings and interpretations. A complete characterization of data quality may

cover concepts related to the accessibility, relevancy, believability, objectivity, and in-

terpretability of data (Oliveira et al. 2005). Without forgetting that all these items are

equally crucial for seeking to ensure quality data, this Ph.D. thesis is focused on the be-

lievability of data, and especially on the phenomenon of under-reporting. Formally, under-

reporting refers to some incident which is responsible for reporting less than the actual

level of count data, meaning that the believability of data significantly decreases when the

under-reporting is present. Some authors have dealt with this phenomenon. For example,

Winkelmann (1996) considered a Markov chain Monte Carlo-based methodology to study

under-reporting in worker absenteeism data, Rosenman et al. (2006) performed a capture-

recapture analysis in order to estimate the number of missed cases of work-related injury

and illness in Michigan, Park et al. (2011) evaluated the global magnitude of reported and

under-reported mesothelioma, Gamado et al. (2014) studied the effect of under-reporting

in epidemics through stochastic epidemic models, and Crowcroft et al. (2018) also used

capture-recapture methods to estimate the under-reporting of pertussis in Ontario.

Finally, several authors have focused their attention on different topics related to count

data: multivariate data (Shanbhag and Rajamannar 1974, Bishop et al. 1975, and Johnson

et al. 1997), spatiotemporal data (Bauer et al. 2016, and Neelon et al. 2013), over-

reported data (Hofman 2013) and missing values (Kaciroti et al. 2008, Al-Osh 2009, and

Mian and Paul 2016), among others.

When count data analysis is conducted, suitable techniques and methods should be

used if some of the above issues (overdispersion and underdispersion, inflation and de-

flation, truncation, data quality, etc.) might be present in data. Using inappropriate tech-

niques and/or ignoring the presence of some of the above matters, results can likely lead

to completely wrong and nonsense conclusions which, in extreme cases, can lead to dis-

proportionate consequences. Even though many authors have contributed to improving

methods for count data analysis, further work should be conducted for continually im-

proving the current techniques and providing more appropriate and realistic approaches.
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Accordingly, the present thesis is aimed at introducing novel methods and techniques

of count data analysis to deal with some of the issues that have been previously described.

In this sense, this thesis comprises different papers where novel methods have been pre-

sented. In particular, the first and second papers (Fernández-Fontelo et al. 2016, and

Fernández-Fontelo et al. submitted) are focused on the assessment of the under-reporting

phenomenon in count time series. Two realistic models are proposed on the basis of the

classical count time series models. Real-data applications within different contexts are

discussed to show the practicality of these models. The third paper (Fernández-Fontelo

et al. 2017) is based on a general model of count time series, which considers moderate

overdispersion, even if a series is non-stationary. This new model has been applied to the

analysis of data of fallen cattle registered at a local scale when series have low counts,

many zeros, and slightly overdispersion as part of a project commanded by the Ministry

of Agriculture, Food and Environment of Spain. In the fourth paper (Fernández-Fontelo

et al. 2018), an exact goodness-of-fit test is presented for detecting zero-inflation and

zero-deflation in count distributions within the biological dosimetry framework. This test

was firstly introduced by Rao and Chakravarti (1956) derived from the problems of oc-

cupancy, although we have taken to the biological dosimetry analysis the idea behind the

original test. This test is viewed as a complement to the always used u-test when data are

not overdispersed or underdispersed, but they may be zero-inflated or zero-deflated.

This thesis is organized as follows. Chapter 1 is an overall presentation of the method-

ological results of the papers, and also some of their applications to real-world data. A

detailed discussion of the importance of these results to improve count data analysis is also

included in this chapter. Chapter 2 proposes a definite conclusion based on the achieve-

ments of the thesis and some further research. Finally, Chapters 3, 4, 5 and 6 include the

manuscripts of the papers mentioned above.

The present thesis was founded by the grants MTM2012-31118, MTM2015-69493-R

from the Ministry of Economy and Competitiveness of Spain, MDM-2014-0445 “Marı́a

de Maeztu” Programme for Units of Excellence in R&D from the Ministry of Econ-

omy and Competitiveness of Spain, and the National Sciences and Engineering Research

Council from the Government of Canada.

14



15



CHAPTER 1

Overall presentation of the results and discussion

This chapter is aimed at presenting and discussing the primary results of the papers previ-

ously mentioned. In particular, the chapter consists of the following four sections: (1.1) a

section describing the new models of count time series for under-reporting data proposed

in Fernández-Fontelo et al. (2016) and Fernández-Fontelo et al. (submitted); (1.2) a sec-

tion introducing the HINAR(p) model proposed in Fernández-Fontelo et al. (2017); (1.3)

a section presenting an exact test for the Poisson distribution focused on the zero-inflation

and zero-deflation of data, which was firstly introduced by Rao and Chakravarti (1956)

and later on suggested by Fernández-Fontelo et al. (2018) in the biological dosimetry

context; and finally (1.4) a section discussing the primary results of the thesis, focusing

on the influence of these methods in the future count data analysis.

1.1

New models to analyse under-reported count data through INAR(1)-hidden

processes

The interest in count time series analysis has been rapidly increasing in the past years as

a result of the limited performance of the classical time series analysis when dealing with

discrete-valued time series, especially when these series have low counts and many zeros.
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These models have become more popular in the literature where many useful models have

been applied to different fields such as epidemiology and public health (Allard 1998,

Cardinal et al. 1999, and Moriña et al. 2011), finance (Brännäs and Hellström 2001,

Pedeli et al. 2011, and Weiß and Kim 2013), environment (Pavlopoulos and Karlis 2008),

among others.

Furthermore, many authors have considered trend and/or seasonal components of non-

stationary series as well as the problem of heterogeneity (Gourieroux and Jasiak 2004,

Monteiro et al. 2010, and Moriña et al. 2011). Unfortunately, although many series are

undoubtedly under-reported, this issue has not been considered yet in count time series

analysis. Some of the reasons which explain this under-reporting fact include the accuracy

of public health registers, political or economic interests and social issues and stigmas.

Accordingly, in this section, new models of count time series for under-reporting data

are briefly introduced. Full details can be found in Chapter 3 (Fernández-Fontelo et al.

2016) and Chapter 4 (Fernández-Fontelo et al. submitted).

1.1.1

The models

Let Xn be a hidden process following an INAR(1) model which satisfies the following

stochastic structure:

Xn = α ◦Xn−1 +Wn, (1.1)

where the parameter 0 < α < 1 is fixed, and the operator ◦ is the well-known binomial

thinning or binomial subsampling such that [α ◦Xn−1|Xn−1 = xn−1] =d

∑xn−1

i=1 {Bi(α)},

where {Bi(α)} is a sequence of independent and identically distributed Bernoulli(α) ran-

dom variables. This binomial thinning operator ensures the integer discreteness of the

series. The innovations of the model, that is, Wn, are independent and identically dis-

tributed following a Poisson(λ) distribution. The expectation and variance of Xn are

µX = E(Xn) = Var(Xn) = λ/(1 − α) = σ2
X , respectively. Additionally, if the pro-

cess Xn has a finite moment of order two, then every stationary INAR(1) model takes

the following auto-covariance function γX(k) = Cov(Xn, Xn+k) = αkσ2
X and hence, the

auto-correlation function of Xn is ρX(k) = γ(k)/γ(0) = αk (geometrically decreasing at
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rate α). See, for instance, McKenzie (2003) and Weiß (2008).

Let Yn be an observed and potentially under-reported process, and In be a binary

process such that In is an indicator of whether the observation Yn is under-reported or

not. The process Yn satisfies:

Yn =

 Xn with probability 1− ω

q ◦Xn with probability ω,
(1.2)

where 0 < ω < 1 and 0 < q < 1. The definition in (1.2) means that, at time n, the

observed process Yn coincides with the hidden process Xn with probability 1 − ω, and

then the process is not under-reported (In = 0). Otherwise, the observed process Yn is

a binomial thinning of the hidden process Xn with probability ω, and then the process

is under-reported (In = 1). Parameters ω and q can be interpreted, respectively, as the

overall frequency and intensity of the under-reporting phenomenon. The closer to one

and zero are ω and q, the more frequent and intense is the under-reporting issue in data,

respectively.

According to the expression (1.2), we proposed two different models: (a) the “full

model” in Fernández-Fontelo et al. (submitted) which assumes a dependence structure

between the states of under-reporting through a binary discrete-time Markov chain (Zuc-

chini and MacDonald 2009); and (b) the “reduced model” in Fernández-Fontelo et al.

(2016) which considers independence between the states of under-reporting.

1.1.1.1

Properties and parameter estimation

Under stationarity, the marginal distribution of both models, the “full model” and the

“reduced model”, is a mixture of two Poisson distributions with parameters λ
1−α with

probability 1− ω, and qλ
1−α with probability ω. Accordingly, the expectation and variance

of Yn are E(Yn) = µX (1− ω(1− q)), and Var(Yn) = µ2
X (ω(1− ω)(1− q)2) + σ2

X(1−

ω(1− q2) + µXωq(1− q)), respectively.

The expression of the auto-correlation function (ACF) is slightly different depending

on the model. The ACF of the “full model” can be written as follows:

ρY (k) =
αk(1− ω(1− q))2 + λk2µXω(1− ω)(1− q)2 + (αλ2)

kω(1− ω)(1− q)2

µXω(1− ω)(1− q)2 + (1− ω(1− q))
, (1.3)
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where λ2 = 1 − p01/ω and p01 is the probability of going from the state of not under-

reporting to the state of under-reporting. It is important to highlight that when ω = p01 the

expression (1.3) results in the structure of the ACF of the “reduced model”. Full details

related to the computation and interpretation of the ACF of both models can be found in

the corresponding papers in Chapters 3 and 4.

In the previously mentioned chapters, the authors introduce two different methods for

estimating the parameters of the models: moment-based and likelihood-based methods.

The first one is mainly based on the marginal distribution of the process Yn (a mixture of

two Poisson distributions), and the theoretical expression of the ACF (1.3). The second

one is based on the likelihood function of the model which is computed using the forward

algorithm (see, for example, Zucchini and MacDonald 2009) since the direct computa-

tion of the likelihood function is not tractable. The proposed algorithms for estimating

parameters by the methods of moments and maximum likelihood are broadly described

in Chapters 3 and 4.

1.1.2

Applications to Public Health data

It is well-known that many public health issues are entirely under-reported, and those in-

clude diseases related to occupational or food exposures (Rosenman et al. 2006, Alfonso

et al. 2015, and Arendt et al. 2013), several sexually transmitted infections (Duron et

al. 2018), many social phenomenon regarding violence and abuses like gender-based vio-

lence (Watts and Zimmerman 2002, Gracia 2004, and Palermo 2014) and alcohol or drug

abuses (Holmes et al. 2012, and McGregor et al. 2003). As a result, their statistics are

profoundly mistaken, leading to underestimating their actual magnitudes.

To better estimate the scope of these issues and keep the under-reporting phenomenon

under control, the models proposed in this thesis have been applied to the following

datasets: (1) weekly new diagnosis of human papillomavirus between 2010 and 2014 in

Girona (Spain); (2) annual deaths by pleura and peritoneal mesotheliomas between 1968

and 2013 in Great Britain; (3) annual number of botulism cases between 1970 and 2013

in Canada; and (4) quarterly complaints of domestic violence against women recorded in

different judicial districts of Galicia (Spain) between 2007 and 2017.
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The new diagnoses per week of human papillomavirus in Girona are undoubtedly

under-reported since both, the frequency (ω̂ = 92.2%) and intensity (q̂ = 32.6%) of the

under-reporting phenomenon, are statistically significant. Although an average of 1.27

cases per week is observed within the period, a real average of 3.36 cases per week is

estimated. This last means that approximately 1 out of 3 (1.27/3.36, 38%) weekly new

diagnoses of human papillomavirus has been adequately diagnosed and officially recorded

in Girona from 2010 to 2014.

On the other hand, both series, the annual deaths by pleura and peritoneal mesothe-

liomas in Great Britain and the annual cases of botulism in Canada, are recorded in large

periods of time (1968-2013 and 1970-2013, respectively), where population rapidly in-

creased. As a result, positive trends are detected in these series, and then covariates related

to the annual population sizes in Great Britain and Canada are included in both series

models. In particular, the population sizes (N ) are considered in the models as covariates

through the following link-function: λ = eaN , where a is a parameter to be estimated,

and λ is the parameter of the Poisson distribution in equation (1.1). The phenomenon of

under-reporting is evident in both series which parameters of frequency (ω̂ = 93.0% and

ω̂ = 67.1%, respectively) and intensity (q̂ = 51.7% and q̂ = 31.7%, respectively) are also

statistically significant.

Finally, the phenomenon of under-reporting in gender-based violence data is studied

in 35 out of 45 judicial districts in Galicia (Spain) where the number of quarterly com-

plaints is officially record. Both, the frequencies and intensities of the under-reporting

phenomenon, are statistically significant in each judicial district, demonstrating a severe

lack of reporting in the number of complaints of gender-based abuse in Galicia. In par-

ticular, frequencies of under-reporting are unfortunately high in the 35 judicial districts

of Galicia, while the intensities of this issue are significantly higher in the rural judicial

districts compared with the urban judicial districts.

Further details can be found in Chapters 3 and 4 where the results of these examples

of application are described in detail as well as some relevant interpretations in the public

health context.
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1.2

The HINAR(p) model

The autoregressive moving average models (ARMA) are the most commonly used mod-

els when dealing with continuous time series, or even discrete time series which can be

appropriately approximated by a Normal distribution. Nevertheless, when series have low

counts and/or many zeros, these models are entirely inappropriate. In this regard, many

authors have proposed several alternatives to these models when series are non-negative

integer-valued and cannot be approximated to continuous time series.

The abovementioned INAR(1) model (1.1) was the first one proposed to deal with

low-valued count data with many zeros. However, some generalizations of this model

have been introduced by the literature in the past years. For instance, a natural extension

of the INAR(1) model is the INAR(p) model which was firstly introduced by Alzaid and

Al-Osh (1990), and later on, by Du and Li (1991). This INAR(p) process is restricted

to model both stationary and equidispersed time series. As a result, several authors have

proposed new models which consider overdispersed series (Jazi et al. 2012a, Jazi et al.

2012b, and Zhu and Joe 2006), or non-stationary series (Moriña et al. 2011). However, to

the best knowledge of the authors, nobody has proposed a version of the INAR(p) model

that would consider overdispersion and non-stationarity at once.

Accordingly, in this section, a more general INAR(p) model is presented. The HI-

NAR(p) model, which was firstly introduced in Fernández-Fontelo et al. (2017), con-

siders series with moderate overdispersion and also accommodates trend and seasonal

components of non-stationary series through representative covariates introduced in the

model.

This study can be found in Chapter 5.
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1.2.1

The model

Alzaid and Al-Osh (1990) and Du and Li (1991) introduced the following INAR(p) model

which is defined by the equation:

Xn = α1 ◦Xn−1 + α2 ◦Xn−2 + · · ·+ αp ◦Xn−p +Wn, (1.4)

where 0 < α1, α2, . . . , αp < 1 are fixed parameters and Wn is a sequence of indepen-

dent and identically distributed Poisson(λ) random variables (innovations). Notice that

when p = 1, this model results in the INAR(1) model introduced in (1.1). As mentioned

above, the binomial thinning operator [αj ◦Xn−j|Xn−j = xn−j] =d

∑xn−j

i=1 {Bi(αj)},

where {Bi(αj)} are independent and identically distributed random variables with P(Bj(αj) =

1) = αj , which ensures the discreteness of the series.

While Alzaid and Al-Osh (1990) assumed that the joint distribution of (α1◦Xn−1, α2◦

Xn−2, . . . , αp◦Xn−p), when p > 1, is conditional Multinomial, Du and Li (1991) imposed

conditional independence. The second approach is considered in our work because is

more tractable and interpretable in practice.

The novel extension of the conventional INAR(p) model proposed by Fernández-

Fontelo et al. (2017) (Chapter 5) takes the following expression:

Xn = α1(n) ◦Xn−1 + α2(n) ◦Xn−2 + · · ·+ αp(n) ◦Xn−p +Wn(a1(n), a2(n)), (1.5)

where the innovations follow a 2th-Hermite distribution with paramteres a1(n) and a2(n),

and the parameters of the model (including those of the 2th-Hermite distribution) can be

time-dependent. This model is called HINAR(p) where p ≥ 1.

A 2th-Hermite distribution originates from the following linear combination: Y =

X1 + 2X2, where X1 and X2 are two independent Poisson distributions with parameters

a1 and a2, respectively. The dispersion index of this distribution satisfies 1 ≤ δ ≤ 2, thus

the 2th-Hermite distribution is slightly overdispersed compared with the standard Poisson

distribution.

Parameters of the model (1.5) can be time-dependent by specifying appropriate link

functions with covariates related to trend and seasonal components. Particularly, trend

and seasonal covariates are accommodated in the model by a second-order trigonometric
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polynomial with a linear part. A suitable function is needed to link these covariates to

parameters. Accordingly, the chosen link function for parameters α1, α2, . . . , αp takes the

following expression:

logit(αj(n)) = log

(
αj(n)

1− αj(n)

)
= βj0 + βj1n+ βj2 sin

(
2πn

T1

)
+ βj3 cos

(
2πn

T1

)
+ βj4 sin

(
2πn

T2

)
+ βj5 cos

(
2πn

T2

)
, (1.6)

while the chosen link function for parameter a1 and a2 (2th-Hermite distribution) would

take the following:

aj(n) = exp

(
γj0 + γj1n+ γj2 sin

(
2πn

T1

)
+ γj3 cos

(
2πn

T1

)
+ γj4 sin

(
2πn

T2

)
+ γj5 cos

(
2πn

T2

))
,

(1.7)

In both functions, (1.6) and (1.7), parameters γj1 and βj1 capture the possible trend

effect, while the other parameters capture the seasonal components of periods T1 and T2.

In this work, it is considered that T1 = 52 weeks and T2 = 26 weeks due to the nature of

data.

Notice that both functions in expressions (1.6) and (1.7) fall in the corresponding

domain of the parameters 0 < α1, α2, . . . , αp < 1 and a1, a2 ≥ 0, respectively.

Notice also that when parameters are not time-dependent and the parameter a2 = 0,

the 2th-Hermite distribution results in the Poisson distribution with parameter a1. Hence,

the model in (1.5) becomes the model in (1.4). In other words, the HINAR(p) model

contains the conventional INAR(p) model.

Full details on model specification and properties can be found in Chapter 5.

1.2.1.1

Parameter estimation and forecasting

Parameters of the model Θ = (β1, β2, . . . , βl, γ1, γ2, . . . , γm) are estimated through the

maximum likelihood method.

The authors in Fernández-Fontelo et al. (2017) present the following expression of

the conditional probability density function (CPDF) of an HINAR(p) model like in (1.5).
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Given a sample {x1, x2, . . . , xN}, the CPDF of the HINAR(p) model is:

P (xn|xn−1, · · · , xn−p; Θ) = e−(a1(n)+a2(n))
m1∑
i1=0

(
xn−1
i1

)
αi11 (n) (1− α1(n))xn−1−i1

·
m2∑
i2=0

(
xn−2
i2

)
αi22 (n) (1− α2(n))xn−2−i2 · · · ·

·
mp∑
ip=0

(
xn−p
ip

)
αipp (n) (1− αp(n))xn−p−ip

[M2 ]∑
j=0

a1(n)M−2ja2(n)j

(M − 2j)!j!
,

(1.8)

where M = xn− i1− i2− · · · − ip, m1 = min(xn, xn−1), m2 = min(xn−2, xn− i1), · · · ,

mp = min(xn−p, xn − (i1 + · · ·+ ip−1)).

Given the expression (1.8), the likelihood function can be efficiently computed.

All details of the proof can be found in Chapter 5.

Different predictions are considered: (1) the average behaviour of the series; and (2)

the k-time-ahead distribution when dealing with an HINAR(1) (case p = 1). On the one

hand, to forecast the average behaviour of the series, an extension of the methodology

described in Moriña et al. (2011) is applied. On the other hand, to forecast the k-time-

ahead distribution, the following new result is introduced.

Given n observations x1, x2, . . . , xn, to make predictions at k time-ahead based on the

HINAR(1) model, the distribution of Xn+k is required.

Easily, the distribution ofXn+2 can be obtained by replacing in the expressionXn+2 =

α(n + 2) ◦ Xn+1 + W (a1(n + 2), a2(n + 2)) by Xn+1 = α(n + 1) ◦ Xn + W (a1(n +

1), a2(n+ 1)). That is,

Xn+2 = (α(n+ 1)α(n+ 2)) ◦Xn +W (α(n+ 2)(a1(n+ 1) + 2(1− α(n+ 2))a2(n+ 1))

+ a1(n+ 2), α2(n+ 2)a2(n+ 1) + a2(n+ 2)), (1.9)

because of the property of clousure under convolution of the Hermite distribution. Notice

that the distribution of Xn+2 is determined through the last observed value of the series

Xn.

When k > 2, the previous recursive procedure can be extended leading to the follow-

ing result:

Xn+k = f(n+ k) ◦Xn +W (c(n+ k), d(n+ k)) , k = 1, 2, ... (1.10)
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where

f(n+ k) =
k∏
i=1

α(n+ i) (1.11)

and

c(n+ k) = α(n+ k)(c(n+ k − 1) + 2d(n+ k − 1)(1− α(n+ k))) (1.12)

+ a1(n+ k)

d(n+ k) = α2(n+ k)d(n+ k − 1) + a2(n+ k) , k = 2, 3, ..., (1.13)

where c(n + 1) = a1(n + 1) and d(n + 1) = a2(n + 1). As before, this result

can be obtained because of the property of clousure under convolution of the Hermite

distribution.

By replacing parameters in equations (1.10), (1.11), (1.12) and (1.13) by their maxi-

mum likelihood estimates, regions of prediction of size 1− α can be estimated.

See Chapter 5 for a detailed description.

1.2.2

Application to dairy and beef cattle data

The analysis of fallen stock data of cattle has been shown to be a good potential indicator

of animal health surveillance (Alba et al. 2015). When the baseline patterns of mortality

are described and estimated, a suspected outbreak peak can be detected. This unusual

event can be strongly related to some animal health issues.

Many authors have studied animal mortality data from large populations using dif-

ferent approaches such as classical time series analysis (Alba et al. 2015), or survival

analysis (Tapprest et al. 2017), among others. However, in many cases, these fallen stock

data of cattle should not only be studied at a large scale, but also at a local scale because

an outbreak may also occur at a smaller geographical level. Unfortunately, when data are

analysed at a large scale, outbreaks at local scales could be completely invisible.

Sometimes, mortality data of cattle collected at a local scale have low values with

many zeros. In these situations, for instance, the classical time series analysis is inappro-

priate, leading to nonsense results.

To accurately describe and estimate the baseline patterns of fallen stock data of cattle

at a local scale, the HINAR(p) model is proposed. This model allows accommodating
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overdispersed series with low counts and many zeros. In particular, two different series

are modelled: (1) a series of fallen stock in a small beef cattle population in Spain between

2007 and 2011; and (2) a series of fallen stock in a small dairy cattle population in Spain

between 2007 and 2011.

Both series of beef and dairy cattle are slightly overdispersed with empirical disper-

sion indices of 1.93 and 1.77, respectively. Additionally, series of beef and dairy cattle

range from 0 to 9 and 0 to 7, respectively. Hence, the HINAR(p) model seems to be an

appropriate novel alternative for modelling these series.

The series of beef cattle is modelled by means of an HINAR(1) model with α1(n) =

α1, and a decreasing trend included in the Hermite parameter a1 through the link function

a1(n) = exp(γ1n). In particular, the maximum likelihood estimates of the parameters are

α̂1 = 0.104, γ̂1 = −0.004 and â2 = 0.306.

On the other hand, the series of dairy cattle is modelled using an HINAR(1) model,

where annual seasonality is included in both parameters α1 and a2 through the following

link functions: logit (α1(n)) = β0+β2sin(2πn/52) and a2(n) = exp(γ0+γ3cos(2πn/52)).

The maximum likelihood estimates of these parameters are β̂0 = −3, 894, β̂2 = −3.304,

â1 = 0.388, γ̂0 = −1.540 and γ̂3 = 0.698. In both models, the parameters are statistically

significant.

Additionally, these models are selected based on several criteria described in Chapter

5.

1.3

The CR-test for the Poisson model

The goal in biological dosimetry is to estimate the dose of radiation that a suspected irra-

diated individual has received by using chromosome damage in peripheral lymphocytes

as biomarkers of exposure (i.e. dicentric chromosome aberrations with/without rings). In

particular, these doses of radiation are estimated through the response calibration curves

which are created by exposure of human blood cells to different and appropriate radiation

doses.

A suspected irradiated individual can be exposed to whole or partial body irradiation.
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Commonly, in whole body irradiation (WBI) under low-linear energy transfer (LET) radi-

ation exposures, the number of observed dicentrics per cell (chromosome aberrations) is

Poisson distributed, whose rate depends on the dose considering a linear-quadratic func-

tion with identity link. However, in partial body irradiation (PBI), which occurs when

only a fraction of the body is irradiated to an homogeneous dose, the Poisson distribution

is completely inappropriate.

When PBI occurs, the number of observed cells is a mixture of a Poisson distribution

and structural zeros, that is, a Zero-inflated Poisson distribution. The distribution of the

number of chromosome aberrations of the non-irradiated scored cells provides an excess

of zeros, comparing with the distribution of those aberrations producing in an homoge-

neous WBI. As a result, the distribution of the number of chromosome aberrations under

PBI exposures is always overdispersed and zero-inflated.

According to the recommendation of the International Atomic Energy Agency (IAEA

2011), the well-known u-test should be used to detect PBI. This test determines whether

the ratio of the sample variance to the sample mean (the sample dispersion index) is sig-

nificantly different from 1 (dispersion index of the Poisson distribution). The u-test only

studies the dispersion of the data, indicating PBI exposure when these data are overdis-

persed (dispersion index > 1). Nevertheless, other features of the data such as the zero-

inflation can lead to rejection of the hypothesis of WBI, when the u-test does not reject

this hypothesis. In other words, WBI exposures can be rejected due to the overdispersion

and/or the zero-inflation of the data.

It is important to remark that there are other possible causes, apart from PBI, pro-

ducing overdispersion and zero-inflation in data. For instance, this is the case for whole

body low-LET-irradiation from different doses (heterogeneous exposures), which can be

modelled using a mixed-Poisson distribution. On the other hand, when whole body high-

LET-irradiation occurs, data can be overdispersed and/or zero-inflated. As a result, these

data can be modelled through a Compound Poisson distribution.

In this thesis, we suggest using an exact zero-inflation goodness-of-fit test for the

Poisson distribution in the biological dosimetry context. This test, that the authors term

CR-test, was firstly proposed by Rao and Chakravarti (1956) based on the theory of the

occupancy problems. Additionally, to demonstrate the usefulness and necessity of this
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test in biological dosimetry, five examples based on both, in vitro and in vivo data, are

described and discussed.

1.3.1

The test

In Rao and Chakravarti (1956), the authors proposed the CR-test for the Poisson distribu-

tion based on the following experiment within the occupancy problems: consider n boxes

and S balls. Balls are randomly distributed between boxes with the same probability, that

is, 1/n. The authors were interested in the random variable N0 which denotes the number

of empty boxes. As a result, in the previously mentioned article, an exact expression for

computing these probabilities are presented and demonstrated in detail.

In this thesis, the authors translate the idea behind the previous experiment to the

biological dosimetry framework. Accordingly, consider that X = (X1, X2, . . . , Xn) is a

dosimetry sample where Xj is the number of aberrations (dicentrics with/without rings)

found in the cell j for j = 1, . . . , n. Then, S =
∑n

j=1Xj is the total number of aberrations

found in a sample of cells. Dicentrics are randomly distributed between cells with the

same probability, that is, 1/n. The random variable N0 denotes the number of cells free

of aberrations.

As commented above, deviations from the Poisson distribution can lead, for instance,

to rejection of the hypothesis of WBI in low-LET exposures. One of these departures

comes from the excess number of zeros (zero-inflation) which is frequently found in PBI

exposures. The CR-test is especially focused on the random variable N0 (number of cells

free of aberrations), taking also into account the number of scored cells n and observed

aberrations S. This test contrasts the null hypothesis H0 : Data are Poisson distributed,

against the alternative H1 : Data are zero-inflated. The exact p-value of this test can be

computed by means of the following expression:

P (N0 ≥ n0) =
n∑

i=n0

n∑
j=i

(−1)j−i
(
n

j

)(
j

i

)(
1− j

n

)S
=

n∑
i=n0

(−1)i−n0

(n0 − 1)!(j − n0)!

(
n

i

)(
1− i

n

)S
, (1.14)

where n0 is the number of observed cells free of aberrations. The CR-test is especially
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interesting because it allows the researchers to detect the problem of zero-inflation in the

data, which cannot be detected through the u-test (just testing overdispersion). Addition-

ally, it is important to highlight that this exact test can be seen as to complement the

widely used u-test, being especially useful in scenarios where the overdispersion is not

present but the number of zeros is completely anomalous.

Moreover, when dealing with large values of n and S, exact computations based on the

CR-test can be tedious since the factorial numbers intensify the calculation of the expres-

sion (1.14). As a result, in Chapter 6 an asymptotic approach of the CR-test is proposed.

This asymptotic test is essentially the normalised version of the random variable N0.

Full details can be found in Chapter 6. Also, in this chapter, a version of the CR-test

for studying zero-deflation is proposed.

1.3.2

Examples of application

Several examples of application are studied to show the usefulness of the CR-test for

detecting PBI exposures.

Two cases of in vitro samples exposed to WBI at 10 Gy (Sasaki 2003) and at 0.25 Gy

(IAEA 2011) are analysed.

The first example consists of n = 200 cells, S = 705 aberrations and n0 = 3 cells

free of aberrations. As a result, these samples of aberrations seem to be underdispersed

(dispersion index of 0.892) and zero-deflated (index zi = −0.191 < 0, introduced by Puig

and Valero 2006). However, while the CR-test (p-value = 0.147) shows that the sample

is not zero-deflated, the u-test (p-value = 0.044) shows that the data are underdispersed.

This last is because the distribution of the number of aberrations is complex, since the

samples were exposed to a high dose, and some mechanism behind those distributions

produces underdispersion, but not zero-deflation.

The second example consists of n = 2008 cells, S = 22 aberrations and n0 = 1987

cells free of aberrations. Although slightly overdispersion is detected (dispersion index of

1.081), the zero-inflation is clearly not significant (zi = 0.04 ≈ 0). Finally, while the CR-

test leads to non-rejection of the Poisson hypothesis (p-value = 0.109), the u-test leads to

a significant overdispersion (0.005). This result agrees with the fact that the samples were
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exposed to WBI at a relatively low dose.

The other examples are based on in vivo data collected in different radioactive acci-

dents.

The first one is based on the data from one of the workers involved in the Tokaimura

(Japan) criticality accident (Hayata et al. 2001). A total of n = 175 cells are studied,

identifying S = 537 aberrations (dicentrics plus rings) and n0 = 14 cells free of aberra-

tions. Both, the sample dispersion index (1.05) and the index zi = 0.177 > 0, show that

the sample can be overdispersed and zero-inflated. However, the u-test finally shows that

the data are not overdispersed (p-value = 0.329), but the CR-test indicates that the data

are zero-inflated (p-value = 0.022). This last means that the zero-inflation is detected

(and not the overdispersion) because the CR-test is more sensitive to the changes in the

frequency of zeros of the sample than the u-test, which is not as precise as the CR-test.

As a result, the hypothesis of PBI has to be rejected since it can only be accepted when

both tests, u and CR, agree. Of course, the WBI hypothesis is also rejected because the

data are not Poisson distributed due to the unusual number of zeros in the samples.

The second one is based on the data from one of the workers affected in the radiation

accident in Stamboliyski (Bulgaria) (Grégorie et al. 2013). After the accident, blood sam-

ples were taken and sent to the Institut de Radioprotection et de Sûreté Nucléaire (IRSN,

Paris), and to the National Centre of Radiobiology and Radiation Protection (NCRRP,

Bulgaria). However, for one of the exposed workers, contradictory results were provided.

While the IRSN concluded that the individual was totally irradiated, the NCRRP con-

cluded that that individual was partially irradiated. After the analysis of the data through

the CR-test, data from ISRN seem to be useless due to some problems during the experi-

ment (underdispersion is detected). Nevertheless, data from NCRRP is overdispersed, but

not zero-inflated. This result leads to rejection of the WBI and PBI exposures, suspect-

ing that the distribution of the data could be a mixture of Poisson distributions since the

individual could be exposed to different radiation doses.

The last example is based on a 75-aged man patient exposed to Thorotrast (Sasaki et

al. 1987). The data consist of n = 500 cells, S = 15 aberrations, and n0 = 486 cells

free of aberrations. These samples seem to be slightly overdispersed (dispersion index of

1.1) and zero-inflated (zi = 0.177 > 0). As a result, the p-value of the CR-test indicates
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that the data are not zero-inflated (p-value = 0.191), but the p-value of the u-test indicates

that the data are overdispersed. This last leads to rejection of both, the hypothesis of WBI

and PBI. In other words, the overdispersion of these samples can be explained because

this patient could be exposed to different doses of radiation, and a mixture of Poisson

distributions is more appropriate for these data than the Poisson or Zero-inflated Poisson

distributions.

A user-friendly Shiny application based on R language has been built to make avail-

able the use of the CR-test to all researchers. The app can be found through the link

http://asapps.bcamath.org:5053.

1.4

Discussion

This thesis is aimed at providing innovative methods to deal with some of the most rel-

evant issues in count data analysis. In particular, our primary objectives consist of: (1)

dealing with the problem of under-reporting in count time series (Chapters 3 and 4); (2) in-

troducing a new model of count time series which allows both, time-dependent parameters

and moderate overdispersed data (Chapter 5); and (3) suggesting a test of goodness-of-fit

which was firstly introduced by Rao and Chakravarti (1956) on the basis of the occupancy

problems. This test is presented in the biological dosimetry framework (Chapter 6).

The models introduced in Chapters 3 and 4 allow the accommodation of under-reporting

in count time series in very flexible ways. The INAR(1) structure for the underlying pro-

cess as well as the different structures between the states of under-reporting (independence

and dependence through a binary Markov chain) allow a natural interpretation of all the

parameters, being general enough to suit many real phenomena.

These models quantify the phenomenon of under-reporting through the parameters of

frequency ω and intensity q. Additionally, when the states of under-reporting are corre-

lated, the parameter p01 plays a part in this quantification.

The usefulness of these models is demonstrated in the context of public health. Several

examples based on real data are studied in detail in Chapters 3 and 4. Although these

models were initially designed to deal with stationary series, the results of some of these
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examples show that they can be extended to other scenarios where trends are relevant.

As a result, these trends were considered in the model through appropriate covariates in

the innovations of the latent process, that is, the INAR(1) model. These models could

also be generalized to describe more complex scenarios where both, covariates of trend

and seasonality, are included in the models. Besides, the application to gender-based

violence data shows that the phenomenon of under-reporting behaves completely different

depending on the area where the data were collected (urban or rural), the average income

per month, the poverty risk, among others.

The INAR(1) model was naturally extended to the INAR(p) model by Alzaid and Al-

Osh (1990) and Du and Li (1991). During the past years, the INAR(p) model has been

studied in detail and applied to different scenarios. The HINAR(p) model, proposed in

Chapter 5, is a natural generalization of the simpler INAR(p) with Poisson innovations,

allowing both, time-dependent parameters and slightly overdispersed data. Moreover,

this new model deals with many count time series with low values and many zeros. These

reasons make the HINAR(p) model more versatile than the simpler INAR(p) model.

The HINAR(p) model has been motivated by the study of outbreaks in mortality data

collected in beef and dairy cattle farms at small levels. A mortality outbreak can be

recorded in a wide geographical area or can be more localised in a small area. However,

when such data are only studied at large scales, these outbreaks localised at small areas

are overlooked. As a result, the HINAR(p) models are more appropriate than the classical

ARMA models when dealing with data at a local scale. This HINAR(p) model allows

describing the profiles of the series at local areas.

Completely different models are found depending on whether the mortality data were

collected in beef or dairy cattle farms. While the series of beef have been fitted using an

HINAR(1) model with a decreasing trend included in the innovations, the series of dairy

cattle has been adjusted using an HINAR(1) model with an annual seasonality included in

the α-parameter, and also in the innovations. These models have been selected based on

different criteria, and their validations are performed through static and dynamic cross-

validations based on the crude residuals.

Chapter 6 presents a test for the Poisson distribution which has been built based on

the occupancy problems (Rao and Chakravarti 1956). The idea behind this test (CR-test)
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is translated into the biological dosimetry framework.

When radiation exposure occurs, biological dosimetry practitioners aim to identify

the proportion of undamaged lymphocytes coming from the bone marrow and to know

what the minimum of these undamaged lymphocytes is necessary to recover from over-

exposure. This last cannot be directly achieved via goodness-of-fit tests for the Poisson

distribution, but reasonably they are relevant to provide a correct diagnosis for those over-

exposed individuals.

The CR-test is proposed as a complement of the classical u-test to study the possible

zero-inflation and zero-deflation in scored sample cells, and thus to identify exposure

patterns (i.e. whole or partial body irradiation). Additionally, a reasonable approximation

of this exact test is presented, especially when dealing with large sample sizes.

Several examples of applications based on both, in vitro and in vivo data, are thor-

oughly studied. Discrepancies between results from the CR-test and the u-test are found,

showing that the CR-test can correctly work as a complement of the u-test in different

data sets.
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CHAPTER 2

Conclusions and further research

Despite the large number of novelty methodologies introduced in the past years to cope

with count data, many issues in this field remain to be addressed. Necessarily, the re-

searchers should be mainly focused on these issues to develop valuable tools and tech-

niques to deal with them, and finally be able to provide better-quality analysis results.

Accordingly, the primary objective of this Ph.D. thesis consists of introducing inno-

vative methodologies to understand some of the most frequent phenomena in count data.

Moreover, this work does not only show the theory behind these methodologies, but also

analyses real-world examples demonstrating that these new methods can work better than

those previously known.

The methodologies proposed in this thesis can be considered small but relevant signs

of progress in count data analysis. They allow studying several issues of count data from

entirely different points of view, showing especially good results when dealing with some

real-world problems in the public health and biological dosimetry frameworks. How-

ever, considerably more efforts have to keep doing to improve the existing techniques

and tools continually, and thus being able to understand, shortly, many of the currently

under-studied phenomena in count data.

The present research can be extended in different promising ways.
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Firstly, new models of count time series to cope with under-reporting data could be

studied by considering different latent processes. These new models could combine gen-

eralized or random thinning operators, and a wide range of appropriate distributions for

the innovations of the process (Zhu and Joe 2006, and Zhu and Joe 2010). Moreover, time-

dependent parameters could be included in these models when series are non-stationary.

These promising generalizations can provide relevant and interesting works since the

under-reporting in public health data is, unfortunately, one of the most frequent causes

of poor statistics.

From a public health point of view, almost all the diseases in the world are under-

reported for different reasons. This issue under-estimates the magnitude of these diseases

in the entire world, motivating the use of inappropriate public health policies.

Then, many of the recent count time series models are not included yet in any common-

used software. In this sense, a complete R package considering both, some of the simpler

models and those proposed in this thesis, could be built using a user-friendly environment.

This package would be a useful tool for all the researchers who are not especially familiar

with complex programming languages.

Finally, considerably more sophisticated models and methodologies could be intro-

duced by exploring new thinning operators as well as extending those existing. For ex-

ample, considering new versions of the generalized thining operators introduced by Zhu

and Joe (2010), and extending them to INAR(p) models. Additionally, it would be inter-

esting to introduce a count time series model with an AR(1) structure allowing negative

correlation. From an epidemiological point of view, this kind of model could provide very

interesting results in the area, helping the researchers to understand better the phenomena

where the temporal correlation structure is kind of negative, and also accurately estimate

it.
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CHAPTER 3

Under-reported data analysis with INAR-hidden Markov

chains

This chapter corresponds to the contents of: Fernández-Fontelo, A., Cabaña, A., Puig, P.

and Moriña, D. (2016). Under-reported data analysis with INAR-hidden Markov chains.

Statistics in Medicine; 35(26): 4875-4890. This paper is available through the link:

https://onlinelibrary.wiley.com/doi/10.1002/sim.7026
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CHAPTER 4

Count time series models with under-reported data for

gender-based violence in Galicia (Spain)

This chapter corresponds to the contents of Fernández-Fontelo et al. (submitted).

Abstract

Under-reporting in gender-based violence data is a worldwide problem leading to un-

derestimation of the magnitude of this social scourge. This problem can degrade the

data quality, providing poor and biased results which lead society to misunderstand the

actual scope of this social issue. The present work proposes time series models for under-

reported counts based on a latent INAR(1) time series with Poisson distributed innova-

tions and a latent under-reporting binary state that is a first order Markov chain. The most

relevant theoretical properties of the models are derived, and the method of moments and

maximum likelihood are presented for parameter estimation. The new time series mod-

els are applied to quarterly complaints of domestic violence against women recorded in

each judicial districts of Galicia (Spain) between 2007 and 2017. The models allow for

quantifying of the amount of under-reporting. A comprehensive discussion is presented,
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studying how the frequency and intensity of under-reporting relates to socio-economic

indicators of the provinces of Galicia.

4.1

Introduction

Gender-based violence is a worldwide problem representing an important violation of

women’s rights and also constituting a risk factor for developing many physical, physio-

logical and mental health problems. Besides, this is not only a problem of gender inequal-

ities reflected in societies around the world, but also serves for demonstrating the con-

trol exercised from man over women (i.e., intimate partners often use domestic violence

to demonstrate their superiority in households or relationships) (Watts and Zimmerman

2002). The latter is a sign of serious behavioral problems and/or possible mental disorders

of those individuals who want to exert control over women using violence. Accordingly,

Gracia (2004) defined domestic violence against women as an important problem of pub-

lic health, although, unfortunately, most of the corresponding journals and media do not

handle it as an actual problem of public health.

The Spanish newspaper El Pais published in 2015 that 12.5% of 16-aged Spanish

women have been gender-based victims in their lifetimes. 45% of them have gone to the

doctor or social services, almost once during the traumatic period, and 29% of them have

visited a professional such as a psychologist or psychiatrist.

According to the Article 1 of the Declaration on the Elimination of Violence against

Women by the United Nations, violence against women is “any act of gender-based vi-

olence that results in, or is likely to result in, physical, sexual or psychological harm or

suffering to women.” (United Nations 1993).

One of the main worldwide issues when dealing with gender-based violence is that the

number of official recorded cases seems to be far from the actual number of cases (due

to under-reporting), since many victims do not provide information about their condition.

This means that, in the entire world, official prevalences of gender-based violence victims

do not estimate accurately the actual scope of the problem. This suggests that, as a society,

we are not tackling very well with the problem of violence against women (World Health
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Organization, 2002). On this matter, Gracia (2004) also introduced the concept of the

“iceberg” of domestic violence. This is essentially that the official number of cases of

violence against women is just the tip of the iceberg, being hidden in the water most of the

cases which are not visible yet to the society. Additionally, there are many reasons why

cases are not reported such as economical dependency, fear of shame and stigma, cultural

beliefs, etc. (Palermo et al. 2014).

The same Spanish newspaper El Pais also published in 2015 that 67.8% of the gender-

based violence victims had never reported their condition to the police. Furthermore,

44.8% of these underlying cases played down the problem believing that domestic vio-

lence is normal, 26.2% of them felt worried for possible reprisals, and 21% of them felt

embarrassed with their condition. Surprisingly, 24.3% of these victims did not break up

the relationship with their batterer.

In order to deal with the problem of under-reporting in gender-based violence, ap-

propriate techniques for quantifying the under-reported cases and estimating the actual

number of victims should be introduced and studied. It is important to point out that an

accurate information of the number of invisible cases of domestic violence is one of the

most important things for estimating the actual magnitude of the problem, and making

completely visible the hidden part of the “iceberg”. In addition, a good understanding of

the problem allows the governments to make more accurate official awareness campaigns

trying to avoid the phenomenon of under-reporting, and giving women a voice.

In this sense, some works in the literature deal with the problem of under-reporting in

domestic violence data using different approaches. For example, Palermo et al. (2014)

provide bounds for under-estimation of gender-based violence by analysing demographic

and health survey data in 24 countries between 2004 and 2011, Wirtz et al. (2013) develop

a screening tool to identify female survivors of gender-based violence in a humanitarian

setting, or Du et al. (1991), who demonstrate a significant change in help-seeking rates

of intimate partner violence data in Canada comparing data recorded in 1993 with data

recording in 1999, and showing an increasing number of help-seeking rates in this period.

The goal of the present work is to deal with the problem of under-reporting in gender-

based violence data in order to estimate the actual number of victims of domestic violence

by means of a new model of count time series. This model is an extension of the model in
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Fernández-Fontelo et al. (2016), consisting of a latent process {Xn : n = 1, . . . , N}, and

an observed process {Zn : n = 1, . . . , N}. The assumption of independence between the

successive states of under-reporting is relaxed in this new model.

Let Xn be a latent process of actual counts that follow a stationary Integer-Valued Au-

toRegressive model of order 1 (INAR(1)) with Poisson distributed innovations satisfying

the stochastic structure:

Xn = α ◦Xn−1 +Wn, Wn ∼ Poisson(λ), (4.1)

where the parameter α ∈ (0, 1) and the operator ◦ is the well-known binomial thin-

ning or binomial subsampling, such that [α ◦ Xn−1|Xn−1 = xn−1] =d

∑xn−1
i=1 Bi(α)

where {Bi(α)} is a sequence of independent and identically distributed Bernoulli(α)

random variables. The expectation and variance of the binomial thinning operator are

E (α ◦Xn−1|Xn−1 = xn−1) = αxn−1 and Var (α ◦Xn−1|Xn−1 = xn−1) = α(1−α)xn−1,

respectively (Steutel and Van Harn 1979).

The INAR(1) process is an homogeneous Markov chain with the following conditional

probability density function:

P(Xn = xn|Xn−1 = xn−1) =

min(xn,xn−1)∑
j=0

(
xn−1
j

)
αj(1− α)xn−1−jP(Wn = xn − j).

(4.2)

The expression (4.1) has a unique stationary solution depending on the distribution

of the innovations. When Wn are independent Poisson(λ), the marginal distribution of

Xn is also Poisson with µX = E(Xn) = λ/(1 − α) = Var(Xn) = σ2
X . Furthermore,

if Xn have finite second order moments, the auto-covariance function of every stationary

INAR(1) model is γX(k) = Cov(Xn, Xn+k) = αkσ2
X and hence, the auto-correlation

function (ACF) of Xn is ρX(k) = γ(k)/γ(0) = αk, which is geometrically decreasing at

rate α.

The INAR(1) model was firstly introduced by McKenzie (1985) and later on by Al-

Osh and Alzaid (1987). Several higher-order versions of this model, such as INAR(p) with

Poisson or other distributed innovations, were introduced by Al-Osh and Alzaid (1990)

and Du and Li (1991). Jazi et al. (2012a), Zhu and Joe (2006) and Zhu and Joe (2010)

proposed extended versions of the INAR(1) model assuming different discrete probability
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laws in the innovations, and/or introducing new thinning operators. Additionally, Moriña

et al. (2011) and Zhu and Joe (2006) proposed extensions for these model when series are

non-stationary by introducing seasonal covariates and trends in the models. Other authors

such as Freeland and McCabe (2004) proposed forecasting methods based on integer-

valued time series processes. Several interesting reviews of these models can be found in

Weiß (2008), Fokianos (2011) and Scotto et al. (2015).

The remainder of this paper is organized as follows. The quarterly count data for the

number of complaints of domestic violence in regions of Galicia are described in Section

4.2. The models for under-reported counts and their probabilistic properties are presented

in Section 4.3. Parameter estimation via the moment-based method and the maximum

likelihood method are introduced in Section 4.4. The results of the models fitted to the

Galicia data are presented in Section 4.5; the models are validated and latent processes are

reconstructed using well-known techniques of integer-valued time series models. Section

4.6 is devoted to draw some general conclusions.

4.2

Data description

The data we use to illustrate the usage of the proposed models are based on the quarterly

number of complaints of domestic violence against women between 2007 and 2017 from

the 45 judicial districts which constitute the 4 provinces (14 from A Coruña, 9 from Lugo,

9 from Ourense and 13 from Pontevedra) of the autonomous community of Galicia 1 in

Spain. The judicial districts in Spain are essentially territorial units devoted for admin-

istering justice. At least, they have to be formed of one municipality within the same

province of the autonomous community.

Different ways for reporting the gender-based maltreatment are available. This abuse

can be directly reported by the victim or friend/family member, by the police when an

official report is presented by the victim (i.e., a report describing physical lesions), or, also,

by the social services when they have relevant information related to this maltreatment.

All these ways for reporting maltreatment against women allow the victims to officially

1In Galicia, the official languages are Galician and Castilian Spanish
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record the abuse in form of complaints. The data on gender-based violence complaints in

Galicia are completely open and available to all citizens from La Delegación del Gobierno

de España para la Violencia de Género and El Consejo General del Poder Judicial de

España 2.
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Figure 4.1: Time series plots for the number of quarterly complaints of gender-based

violence between 2007 and 2017 in the 45 judicial districts of Galicia (Spain).

Figure 4.1 shows the quarterly series of complaints of domestic violence against

women recorded between 2007 and 2017 in the 45 judicial districts of Galicia (n = 43

quarters). The series with larger counts belong to the main cities of Galicia, where pop-

2http://estadisticasviolenciagenero.msssi.gob.es and http://www.

poderjudicial.es/cgpj/es/Temas/Violencia-domestica-y-de-genero/

Actividad-del-Observatorio/Datos-estadisticos
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ulation is much larger than in the other areas (Vigo, A Coruña, Santiago de Compostela,

Lugo, Pontevedra, Ferrol and Ourense). Excluding these series, in general, the number of

complaints quarterly recorded in Galicia presents relatively low counts over the period of

study (between 0 and 87 per quarter).

Figure 4.2 shows the distributions of the averages (left) and dispersion indeces (right)

of the registered complaints in the judicial districts of Galicia.

One of the main goals of the present work consists on studying and quantifying the

under-reporting in series of complaints of gender-based violence. Count data are generally

over-dispersed relative to Poisson, that is, the dispersion index, defined as the variance to

mean ratio, exceeds 1. Over-dispersion can occur because of under-reporting if the counts

from the under-reporting states and non-under-reporting states are Poisson with different

means, or because observed data are a mixture of Poisson distributions based on a latent

variable that causes heterogeneity.
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Figure 4.2: The boxplot on the left shows the average number of quarterly complaints

over judicial districts of Galicia. The boxplot on the right shows the dispersion indices of

number of quarterly complaints over judicial districts of Galicia.

Figure 4.2 (right) shows that nearly all dispersion indices of the series corresponding

to the 45 judicial districts of Galicia are greater than 1, that is, most of the series are over-

dispersed. In order to be able to identify the under-reporting issue, 10 judicial districts

with dispersion indices near 1 or with low counts were removed.
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A total of 35 out of 45 judicial districts (77.8%) are used for the analysis of under-

reporting of complaints of gender-based violence (71.4% from A Coruña, 60.0% from

Lugo, 60.0% from Ourense and 100% from Pontevedra). In other words, a total of 58510

complaints of domestic violence against women were officially registered between 2007

and 2017 among the 45 judicial districts of Galicia. After removing 10 out of 45 (22.2%)

judicial districts, a total of 56173 complaints remain.

Full and detailed results are presented and discussed in Section 4.5.

4.3

Model specification

In this section, theoretical details and properties are given for a new time series model for

under-reported counts. The model assumes a latent process of actual counts that follow an

INAR(1) (temporal dependence), and an under-reporting binary state process. The states

of under-reporting are assumed to follow a first order Markov chain.

4.3.1

The model and its nested models

Consider a latent INAR(1) process {Xn : n = 1, . . . , N} satisfying (4.1). Let {Zn :

n = 1, . . . , N} be an observed and potentially under-reported process, and {In : n =

1, . . . , N} be a binary process such that In is an indicator of whether the observation Zn

is under-reported or not. The process Zn satisfies:

Zn =

 Xn if In = 0,

q ◦Xn if In = 1,
(4.3)

where q ∈ (0, 1). The model in the expression (4.3), named under-reported count process

model (UCPM), means that if the observed Zn is equal to Xn, then there is no under-

reporting at time n (In = 0). On the other hand, if Zn is a binomial thinning of Xn (i.e.,

q ◦ Xn), then the process is under-reported at time n (In = 1). The overall frequency of

being under-reported over time is P(In = 1) = ω, while the parameter q represents the

overall intensity of the under-reporting.
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Consider the situation that the states of under-reporting In are serially dependent. As a

simple plausible model, we assume they follow a binary discrete-time Markov chain (Zuc-

chini and MacDonald 2009), in which every state results in a success (under-reporting) or

failure (no under-reporting). A binary discrete-time Markov chain depends on the tran-

sition probabilities, that is, the probabilities of going from one state (under-reporting or

no under-reporting) at time n− 1 to other state (under-reporting or no under-reporting) at

time n. In this case, the transition probabilities P(In = j|In−1 = i) = pij for i, j = 0, 1,

lead to the transition probability matrix: P =

 p00 p01

p10 p11

. For instance, the parameter

p01 of the transition probability matrix is the probability of going from the state of no

under-reporting at time n− 1 to the state of under-reporting at time n. Under stationarity,

we have ΩP = Ω where Ω = (1 − ω, ω). Therefore, P can be simplified in terms of

ω and one other parameter, for example p01; this leads to the following re-parametrized

matrix:

P =

 P(In = 0|In−1 = 0) P(In = 1|In−1 = 0)

P(In = 0|In−1 = 1) P(In = 1|In−1 = 1)

 =

 1− p01 p01

p01
1−ω
ω

1− p01 1−ωω

 .
(4.4)

Together, equations (4.1)–(4.4) specify a times series model of under-reported counts

based on a latent INAR(1) times series Xn with Poisson distributed innovations and a

latent under-reporting process In that is a binary first order Markov chain. We refer to

this as the full model with five parameters α, λ, q, ω, p01. We also consider three nested

models with fewer parameters.

(M4a) If In is an independent sequence with P(In = 1) = ω for all n, then ω = p01 = p11

and the simpler model introduced in Fernández-Fontelo et a. (2016) is obtained.

This nested model has four parameters α, λ, q, ω.

(M4b) If Xn in (4.1) is an independent sequence with α = 0, then the serial dependence in

the observed counts Zn comes only from the Markov dependence in In. This nested

model has four parameters λ, q, ω, p01.

(M3) If both In and Xn are independent sequences so that there is no serial dependence

in the observed counts Zn, then Zn is a mixture of two Poisson distributions. The

resulting nested model has three parameters λ, q, ω,
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4.3.2

Model properties

The expectation and variance of the process Zn are E(Zn) = µX(1 − ω(1 − q)) and

Var(Zn) = µ2
Xω(1− ω)(1− q)2 + µX(1− ω(1− q)), respectively, coinciding with those

of the model of Fernández-Fontelo et al. (2016). The expression of the ACF is presented

in the following proposition, whose proof is given in the Appendix B.

Proposition 1 The ACF of the observed and under-reported process Zn is for positive

integers k:

ρZ(k) =
αk(1− ω(1− q))2 + λk2µXω(1− ω)(1− q)2 + (αλ2)

kω(1− ω)(1− q)2

µXω(1− ω)(1− q)2 + (1− ω(1− q))
,

(4.5)

where λ2 = 1− p01/ω is the second eigenvalue of P given in (4.4).

From the equation (4.5), when α > |λ2|, the ACF decreases geometrically at rate α.

However, when α < |λ2| and λ2 > 0 (higher chance of remaining in the same state of

under-reporting), the ACF decreases geometrically at rate λ2. Finally, when α < |λ2| and

λ2 < 0 (higher chance to change the state of under-reporting), the absolute value of the

ACF decreases geometrically at rate |λ2|. Note that when p01 = ω, the expression (4.5)

results in the ACF of nested model M4a, as given in Fernández-Fontelo et al. (2016).

Under stationarity, the marginal distribution of Zn is a mixture of two Poisson distri-

butions such that:

Zn ∼

Poisson
(

λ
1−α

)
, probability 1− ω,

Poisson
(
qλ
1−α

)
, probability ω.

(4.6)

Notice that when q = 0, that is, the overall intensity of the under-reporting is maxi-

mum, the distribution of the observed process Zn would be a Zero-inflated Poisson distri-

bution. Several works in the literature deal with INAR models with innovations following

a Zero-inflated Poisson (i.e. Jazi et al. 2012a).
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4.4

Model estimation

In this section, two different methods for estimating the parameters of the full model and

its nested models are presented: a simpler one based on the method of moments, and

another based on the log-likelihood function. The method of moments is computed using

moments related to the marginal distribution of the observed process Zn (mixture of two

Poisson distributions), and also the expression of the auto-correlation function (4.5) of

Zn. The likelihood function of Zn is not directly tractable, and the forward algorithm for

hidden Markov chains (HMC) is used for its computation.

4.4.1

Moments-based estimation

Based on the marginal distribution of Zn in expression (4.6), a moment-based method for

computing point estimates of parameters can be used. Additionally, parametric bootstrap

is proposed in order to compute the corresponding 90% confidence limits of parameters.

The bias-corrected and accelerated bootstrap method (BCa) for computing bootstrap con-

fidence intervals is considered (Efron and Tibshirani 1986, and DiCiccio and Efron 1996).

Point estimates based on the method of moments are obtained as follows:

1. Based on an appropriate method like the Expectation-Maximisation (EM-algorithm)

(Zucchini and MacDonald 2009), the marginal distribution of Zn can be fitted, ob-

taining the estimates ω̂, θ̂1 = λ̂/(1 − α̂) and θ̂2 = q̂λ̂/(1 − α̂). It is then straight-

forward to estimate the overall intensity of the under-reporting as q̂ = θ̂2/θ̂1.

2. The parameter α is estimated using the theoretical expression of the auto-correlation

function (ACF) of Zn in (4.5) as follows. The expression of the ACF can be written

as:

ρZ(k) = C1α
k + C2λ

k
2

(
µX + αk

)
(4.7)

where

C1 =
(1− ω(1− q))2

µXω(1− ω)(1− q)2 + (1− ω(1− q))
, C2 =

ω(1− ω)(1− q)2

µXω(1− ω)(1− q)2 + (1− ω(1− q))
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are completely determined by replacing parameters by their moment-based esti-

mates obtained in the step 1. Notice that µ̂X = σ̂2
X = θ̂1. Replacing in equa-

tion (4.7) by the two first coefficients of the empirical ACF, that is, ρZ(1) and

ρZ(2), a system of two equations, which depends on α and λ2, has to be solved.

This system leads to the following fourth-degree equation: Aα4 + Bα3 + Dα2 +

Eα + F = 0, where A = C1(C1 + C2), B = 2C1(C2µX − ρZ(1)), D =

C1µX (C2µX + C1) − C2ρZ(2) + ρ2Z(1), E = −2µX (C1ρZ(1) + C2ρZ(2)) and

F = µX (ρ2Z(1)− C2µXρZ(2)). The coefficients A and E are always positive and

negative respectively, while the coefficients B, D and F can be positive or nega-

tive. From a general point of view, this equation can have a minimum of 0 and a

maximum of 4 real positive roots, depending on the signs of the coefficients B, D

and F . Empirically, focusing on the gender-based violence data, this equation has

always two positive real roots within (0, 1). This means that there are two latent

dependent processes that contribute to the ACF of the observed process Zn. Hence,

the parameter α might not be completely identifiable based on ρZ(1) and ρZ(2),

being needed higher serial correlations such as ρZ(3) and ρZ(4). That is, the bet-

ter estimate of α corresponds to the positive real root of the equation (4.7) which

provides the theoretical coefficients ρ(3) and ρ(4) closer to the empirical ones.

3. Finally, the parameter λ can be directly obtained through λ̂ = θ̂1(1− α̂).

If α̂ becomes 0, then nested model M4b is obtained. For nested model M4a, slight

changes in the previous method of moments provide the moment-based estimates. Ac-

cordingly, when independence is considered between the states of under-reporting, pa-

rameters (α, λ, ω, q) can be estimated modifying step 2. in the following way:

2′. The parameter α can be estimated in different ways. The first one is based on the

theoretical expression of the ACF which is that one in the expression (4.5) when

λ2 = 0. Taking the first empirical coefficient of the ACF, and replacing the param-

eters ω and q by their moment-based estimates obtained in the previous step 1, α is

directly estimated. The second way for estimating the parameter α consists of using

the two first empirical coefficients of the ACF such that α̂ = ρ̂(2)/ρ̂(1). This model

implies that the ACF is positive and decreasing in the first few lags, and hence α̂ is
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in (0,1).

For nested model M3, the parameteres (λ, ω, q) are directly obtained by fitting a mix-

ture of two Poisson distributions by means, for instance, of the EM-algorithm (similarly

as in the step 1).

In order to provide estimates of the standard errors of the moment-based estimates of

the model parameters, 90% confidence limits based on the bias-corrected and accelerated

bootstrap method (BCa) are computed (Efron and Tibshirani 1986, and DiCiccio and

Efron 1996).

Additionally, the moment-based estimates are useful as initial values for the algorithm

that numerically maximises the log-likelihood function of the model.

4.4.2

Maximum likelihood method

The parameters of the model can be estimated by maximum likelihood using the method-

ology for hidden Markov chains. Consider a realization (Z1 = z1, Z2 = z2, . . . , ZN =

zN) or Z1:N = z1:N , a latent process (X1 = x1, X2 = x2, . . . , XN = xN) or X1:N =

x1:N , and a correlation structure between the states of under-reporting (I1 = i1, I2 =

i2, . . . , IN = iN) or I1:N = i1:N based on a binary discrete-time Markov chain. The

likelihood function takes the expression:

P(Z1:N = z1:N ) =
∑
x1:N

P
[{
X1 = x1, . . . , XN = xN

}
,
{
Z1 = z1, . . . , ZN = zN

}]
=

∑
x1:N ,i1:N

P
[{
Z1 = z1, . . . , ZN = zN

}∣∣∣{X1 = x1, . . . , XN = xN
}
,
{
I1 = i1, . . . , IN = iN

}]
P
[{
X1 = x1, . . . , XN = xN

}
,
{
I1 = i1, . . . , IN = iN

}]
. (4.8)

The direct computation of this function (4.8) is untractable. Some indirect method

should be used for computing (4.8). Different recursive methods can be used for this

purpose (Zucchini and MacDonald 2009) and we introduce the notation z1:j,x1:j, i1:j for

the first j elements. The choice in this work is the well-known forward algorithm which

is based on the forward probabilities:
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γn (z1:n, xn, in) = P (Z1:n = z1:n, Xn = xn, In = in) (4.9)

=
∑

xn−1,in−1

P(Xn = xn, In = in, Xn−1 = xn−1, In−1 = in−1,Z1:n = z1:n)

=
∑

xn−1,in−1

P (Zn = zn|Z1:n−1 = z1:n−1, Xn = xn, Xn−1 = xn−1, In = in, In−1 = in−1)

× P (Z1:n−1 = z1:n−1, Xn = xn, Xn−1 = xn−1, In = in, In−1 = in−1)

=
∑

xn−1,in−1

P (Zn = zn|Xn = xn, In = in)

× P (Xn = xn, In = in|Z1:n−1 = z1:n−1, Xn−1 = xn−1, In−1 = in−1)

× P (Z1:n−1 = z1:n−1, Xn−1 = xn−1, In−1 = in−1)

=
∑

xn−1,in−1

P (Zn = zn|Xn = xn, In = in)

× P (Xn = xn, In = in|Z1:n−1 = z1:n−1, Xn−1 = xn−1, In−1 = in−1)

× γn−1 (z1:n−1, xn−1, in−1) .

Since the processes Xn and In are mutually independent, then:

γn (z1:n, xn, in) =
∑

xn−1,in−1

P (Zn = zn|Xn = xn, In = in) P (Xn = xn|Xn−1 = xn−1)

× P (In = in|In−1 = in−1) γn−1 (z1:n−1, xn−1, in−1) , (4.10)

where P(Xn = xn|Xn−1 = xn−1), which is the conditional probability density function

of an INAR(1) model with Poisson(λ) innovations, are the transition probabilities of the

model following expression (4.2). On the other hand, P(In = in|In−1 = in−1) comes

from the transition probability matrix P in (4.4), and P(Zn = zn|Xn = xn, In = in),

which are the emission probabilities, take the following expression:

P(Zn = zn|Xn = xn, In = in) =



0 if xn < zn

0 if in = 0, xn > zn

1 if in = 0, xn = zn(
xn
zn

)
qzn(1− q)xn−zn if in = 1, xn ≥ zn

(4.11)
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According to equation (4.10), the likelihood function of the process Zn can be com-

puted recursively through:

P(Z1:N = z1:N) = P (Z1 = z1, Z2 = z2, . . . , ZN = zN) =
∞∑

xN=zN

γN (z1:N , xN , iN) ,

(4.12)

starting from γ1(z1, x1, i1) = P (X1 = x1) P (Z1 = z1|X1 = x1) P (I1 = i1), and

P (X1 = x1) = e−ννx1/x1! with ν = λ/(1 − α). On the other hand, it is assumed that

P(I1 = 0) = 1 and P(I1 = 1) = 0, that is, it is assumed that at time n = 1, the process is

not under-reported.

Slight modifications in the expression of the forward probabilities (4.10) are needed

for the nested models. For instance, for nested model M4a with parameter vector (α, λ, ω, q),

the forward probabilities take the expression:

γn (z1:n, xn) =
∑
xn−1

P (Zn = zn|Xn = xn) P (Xn = xn|Xn−1 = xn−1) γn−1 (z1:n−1, xn−1) .

(4.13)

The transition probabilities remain invariant taking the expression (4.2), but the emis-

sion probabilities are simplified as follows:

P(Zn = zn|Xn = xn) =


0 if xn < zn

(1− ω) + ωqxn if xn = zn

ω
(
xn
zn

)
qzn(1− q)xn−zn if xn > zn

(4.14)

Full details can be found in Fernández-Fontelo et al. (2016).

For nested model M3, the forward probabilities are computed according to (4.13), with

the same emission probabilities in expression (4.14), but now the transition probabilities

are computed using a Poisson distribution with parameter λ.

For nested model M4b with parameter vector (λ, ω, q, p01), the forward probabilities

can be computed according to (4.10) with the emission probabilities in (4.11), but the

transition probabilities are computed using a Poisson distribution with parameter λ.

Notice also that the full model is a Hidden Markov chain with an infinite number of

states, since the actual counts are always considered equal or greater than those observed

over that period, that is, xn ≥ zn for all n. Empirically, expression (4.12) can be solved
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by specifying and upper threshold, that is, P(Z1:N = z1:N) =
∑T

xn=zn
γn (z1:n, xn, in),

where T can be three times the maximum value of the observed series, that is, T =

3 max (Zn).

4.4.3

Goodness-of-fit and reconstruction of the latent process

In this section, the mid-pseudo residuals and the Viterbi algorithm are described, for the

sake of completeness. The mid-pseudo residuals are widely used for validating Hidden

Markov Chains (HMC) models, while the Viterbi algorithm, which is also commonly

used in HMC contextes, is used for reconstructing the most probable sequence of states

(actual number of complaints) (Zucchini and MacDonald 2009).

The normal pseudo-residuals (also called quantile residuals by Dunn and Smyth 1996)

are used for assessing the general fit of a model, and also for detecting outliers. They are

a case of the well-known Cox-Snell residuals (Cox and Snell 1968). In continuous cases,

they are computed based on the following probability: vn = Φ−1(P(Zn ≤ zn|Z1 =

z1, . . . , Zn−1 = zn−1, Zn+1 = zn+1, . . . , ZN = zN)) = Φ−1 (un). If the model is valid,

these residuals are realizations of a standard normal distribution. However, in discrete

cases, the so-called pseudo-residual segments [v−n , v
+
n ] are needed, which are built as fol-

lows:

v−n = Φ−1 (P (Zn < zn|Z1 = z1, . . . , Zn−1 = zn−1, Zn+1 = zn+1, . . . , ZN = zN))

= Φ−1
(
u−n
)
, (4.15)

v+n = Φ−1 (P (Zn ≤ Zn|Z1 = z1, . . . , Zn−1 = zn−1, Zn+1 = zn+1, . . . , ZN = zN))

= Φ−1
(
u+n
)
, (4.16)

where

P (Zn = zn|Z1 = z1, . . . , Zn−1 = zn−1, Zn+1 = zn+1, . . . , ZN = zN) =

=
P (Z1 = z1, . . . , Zn−1 = zn−1, Zn = zn, Zn+1 = zn+1, . . . , ZN = zN)

P (Z1 = z1, . . . , Zn−1 = zn−1, Zn+1 = zn+1, . . . , ZN = zN)
. (4.17)

These probabilities are computed using the forward algorithm described in equation

(4.10), evaluating the likelihood function at the maximum likelihood estimators of the

parameters.
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In discrete cases, it is complicated to check the normality of the normal-pseudo resid-

uals segments. Accordingly, the mid-pseudo residuals can be calculated from the normal-

pseudo residuals segments in the following way:

vmn = Φ−1
(
u−n + u+n

2

)
. (4.18)

As in the continuous time series case, if a model is valid, the mid-pseudo residuals

are realizations of the standard normal distribution. Notice that when zn = 0 the lower

pseudo-residual segment is not defined. In this cases, when computing this segment, the

lower limit can be replaced by a standard normal quantile of a probability very close to 0.

For instance, v−n = 6.3613 (p = 10−10). In addition, this is not relevant when computing

the mid-pseudo residuals since u−n = 0, and then vmn = Φ−1 (u+n /2).

Other methods can be used for checking the assessment of these model based on

HMC. A comprehensive review can be found in Zucchini and MacDonald (2009).

The Viterbi algorithm (Viterbi 1967, and Forney 1973) is a common method used

in HMC contexts to determine the most likely sequence of latent states. After models

are validated, this method allows us to reconstruct the most likely sequence of the latent

states.

The idea behind the Viterbi algorithm is to provide the latent chain X∗ = (X∗1 =

x∗1, X
∗
2 = x∗2, . . . , X

∗
N = x∗N) that maximises the likelihood function of the latent pro-

cess (X1 = x1, X2 = x2, . . . , XN = xN) given the observed series (Z1 = z1, Z2 =

z2, . . . , ZN = zN), assuming also that the parameters of the model are completely known

(those computed by the maximisation of the likelihood function). That is:

X∗ = (X∗1 = x∗1, X
∗
2 = x∗2, . . . , X

∗
N = x∗N)

= argmaxz1:N P(X1 = x1, X2 = x2, . . . , XN = xN |Z1 = z1, Z2 = z2, . . . , ZN = zN)

= argmaxz1:N P(X1 = x1, X2 = x2, . . . , XN = xN , Z1 = z1, Z2 = z2, . . . , ZN = zN),

(4.19)

because the probabilities P(X1 = x1, X2 = x2, . . . , XN = xN |Z1 = z1, Z2 = z2, . . . , ZN =

zN) and P(X1 = x1, X2 = x2, . . . , XN = xN , Z1 = z1, Z2 = z2, . . . , ZN = zN) are pro-

portional since the probability P(Z1 = z1, Z2 = z2, . . . , ZN = zN) does not depend on

the latent process (X1 = x1, X2 = x2, . . . , XN = xN).
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4.5

Results for Galicia data

4.5.1

Under-reporting analysis in gender-based violence

The autonomous community of Galicia (Spain) is made up of 45 judicial districts within

the 4 provinces (14 from A Coruña, 9 from Lugo, 9 from Ourense and 13 from Ponteve-

dra). Each judicial district provides an official series of the number of quarterly com-

plaints of gender violence against women from 2007 to 2017. Before analysing the com-

plaints data using the models in Sections 4.3 and 4.4, series coming from these judicial

districts are conveniently described and explored by using some descriptive statistics such

as the dispersion index (ratio between the sample variance and sample mean) (Figure 4.2).

Accordingly, 8 out of 45 series (18%) are removed from the further analysis because

they show dispersion indices very close to 1 (Noia (A Coruña), Muros (A Coruña), Be-

cerreá (Lugo), Sarria (Lugo), Ortigueira (A Coruña), Bande (Ourense), Xinzo de Limia

(Ourense) and Ribadavia (Ourense)). Additionally, the series of the judicial districts of

Villalba (Lugo), Viveiro (Lugo), Carballiño (Ourense) and Arzúa (A Coruña). Also the

series of Villalba (Lugo) and Arzúa (A Coruña) are removed because the low counts mean

that the model and its nested versions are not well estimated.

For the remaining 35 series included in the analysis of under-reporting, two different

methods introduced in Section 4.4 are considered for estimating parameters of the full

model and its nested models. In these 35 regions, there are 56173 complaints out of

58510 (96.01%) recorded between 2007 and 2017.

For the method of moments, the full model, nested model M4a and nested model M3

are fitted. For those series for which the under-reporting is quantified using the method

of moments, the criteria for selecting the best model are: (a) the empirical ACF of the

series and, (b) the empirical standard errors of the parameters computed using parametric

bootstrap. When the series has insignificant serial correlation of small lags, the mixture

of two Poisson distributions is directly selected. Otherwise, the choice between the full

model and nested model M4a depends on which leads to smaller empirical standard errors.
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For computing these empirical standard errors, 99 repetitions of 99 parametric bootstrap

samples are generated, and the averages of the empirical bootstrap standard errors are

provided for each parameter (italic results in Table 4.1).The BCa confidence limits are

constructed based on 999 bootstrap samples.

The second method for quantifying the under-reporting in the complaints data is the

method of maximum likelihood, introduced in Section (4.4.2). Generally, both meth-

ods can be used for studying the under-reporting in the series included in this analysis.

However, in some cases, the maximum likelihood method is computationally intensive

and slow (especially when counts are very large) and parameter estimates based on the

method of moments are reported. When both methods provide sensible results, parame-

ter estimates based on the method of maximum likelihood are reported. The best model

among the four under consideration is selected by means of the Akaike Information Cri-

terion (AIC), and the Bayesian Information Criterion (BIC).

Tables 4.1, 4.2 and 4.3 show the moment-based and maximum likelihood estimates

of the 35 series considered in the analysis. A total of 19 out of 35 series (54.3%) are

modelled based on nested model M3 or the mixture of two Poisson distributions, 3 out of

35 (8.6%) are based on the nested model, 7 out of 35 (20.0%) are based on the full model,

and 6 out of 35 (17.1%) are based on the nested model M4b.

From a different point of view, Table 4.4 shows the proportions of each model in every

province of Galicia (A Coruña, Lugo, Ourense and Pontevedra).

Figure 4.3 show the distribution of the estimated overall frequencies ω̂ (top) and the

estimated intensities q̂ (bottom) of the under-reporting in quarterly complaint of domestic

violence against women in the 45 judicial districts of Galicia. The areas in green are those

not included in the analysis.

Figure 4.4 shows the distribution of the models in Tables 4.1, 4.2 and 4.3 in each of

the 45 judicial districts in Galicia.
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Table 4.1: Moment-based estimates for series with large counts and 90% BCa confidence

intervals.

α λ ω q p01

A Coruña 0.322 182.087 0.256 0.535 0.143

(A Coruña) (0.078, 0.602) (109.690, 247.802) (0.140, 0.501) (0.509, 0.565) (0.052, 0.263)

0.161 43.179 0.103 0.021 0.069

Ferrol 0.516 48.536 0.609 0.608 0.178

(A Coruña) (0.067, 0.723) (27.790, 93.696) (0.379, 0.949) (0.567, 0.678) (0.046, 0.381)

0.205 20.382 0.172 0.032 0.101

Santiago C. - 69.330 0.475 0.560 -

(A Coruña) - (66.622, 73.068) (0.339, 0.604) (0.518, 0.596) -

- 1.960 0.079 0.025 -

Ribeira - 42.740 0.364 0.548 -

(A Coruña) - (40.575, 45.317) (0.234, 0.512) (0.495, 0.618) -

- 1.483 0.084 0.036 -

Lugo - 128.155 0.885 0.522 -

(Lugo) - (120.383, 142.000) (0.837, 0.977) (0.465, 0.558) -

- 7.324 0.056 0.040 -

Ourense - 130.675 0.739 0.579 -

(Ourense) - (125.268, 137.082) (0.606, 0.835) (0.547, 0.614) -

- 3.658 0.067 0.020 -

Cambados 0.355 40.997 0.873 0.570 0.566

(Pontevedra) (0.187, 0.815) (10.580, 54.021) (0.730, 0.973) (0.511, 0.736) (0.264, 0.856)

0.159 10.565 0.100 0.067 0.169

Pontevedra - 67.119 0.397 0.485 -

(Pontevedra) - (64.403, 70.000) (0.291, 0.534) (0.447, 0.525) -

- 1.685 0.075 0.024 -

Vigo 0.237 232.486 0.263 0.749 0.201

(Pontevedra) (0.090, 0.554) (135.721, 276.663) (0.140, 0.428) (0.720, 0.781) (0.098, 0.349)

0.119 36.372 0.084 0.019 0.073

Vilagarcia A. - 36.718 0.472 0.509 -

(Pontevedra) - (34.051, 39.020) (0.330, 0.602) (0.456, 0.566) -

- 1.540 0.085 0.033 -

Ponteareas - 43.613 0.648 0.624 -

(Pontevedra) - (39.908, 48.609) (0.478, 0.817) (0.565, 0.679) -

- 2.582 0.102 0.037 -
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Table 4.2: Maximum likelihood estimates for series without large counts, and 90% confi-

dence intervals (part I).

α λ ω q p01 AIC/BIC

Ordes - 14.366 0.774 0.562 0.305 241.183

(A Coruña) - (11.716, 17.016) (0.674, 0.874) (0.457, 0.667) (0.020, 0.590) 248.228

Padrón - 13.830 0.573 0.531 - 255.993

(A Coruña) - (10.733, 16.926) (0.240, 0.906) (0.434, 0.629) - 261.276

Negreira - 9.707 0.637 0.505 - 228.144

(A Coruña) - (6.849, 12.565) (0.272, 1.000) (0.386, 0.624) - 233.428

Carcubión - 16.054 0.875 0.546 - 238.872

(A Coruña) - (10.593, 21.515) (0.679, 1.000) (0.385, 0.706) - 244.156

Carballo - 29.916 0.758 0.529 - 286.954

(A Coruña) - (25.830, 34.002) (0.613, 0.903) (0.460, 0.598) - 292.238

Betanzos - 35.957 0.689 0.566 0.356 322.630

(A Coruña) - (6.391, 65.523) (0.454, 0.924) (0.503, 0.628) (0.074, 0.644) 329.675

Fonsagrada - 2.835 0.705 0.208 0.276 136.386

(Lugo) - (1.776, 3.894) (0.416, 0.994) (0.095, 0.321) (0.041, 0.511) 143.431

Chantada - 13.406 0.859 0.394 0.478 228.231

(Lugo) - (9.876, 16.936) (0.690, 1.000) (0.300, 0.493) (0.082, 0.874) 235.276

Mondoñedo - 27.805 0.976 0.360 - 238.253

(Lugo) - (18.714, 36.896) (0.938, 1.000) (0.240, 0.482) - 243.536

Monfor. L. - 13.798 0.105 0.324 - 260.468

(Lugo) - (12.716, 14.880) (0.005, 0.205) (0.138, 0.509) - 265.752

Viveiro - 20.775 0.121 0.545 - 275.563

(Lugo) - (18.986, 22.563) (-0.084, 0.327) (0.282, 0.809) - 280.847

Barco V. - 16.917 0.665 0.466 0.232 249.175

(Ourense) - (14.715, 19.119) (0.394, 0.936) (0.392, 0.540) (0.033, 0.431) 256.220

Verin - 17.170 0.243 0.475 - 281.182

(Ourense) - (15.504, 18.837) (0.058, 0.429) (0.340, 0.610) - 286.090

Puebla T. - 6.953 0.852 0.298 - 177.652

(Ourense) - (4.462, 9.444) (0.717, 0.988) (0.190, 0.405) - 182.935

Carballiño 0.396 5.974 0.078 0.263 - 242.095

(Ourense) (0.228, 0.564) (4.295, 7.653) (-0.003, 0.159) (0.079, 0.447) - 249.140

Celanova - 4.465 0.427 0.390 - 190.579

(Ourense) - (2.982, 5.948) (-0.041, 0.895) (0.154, 0.625) - 195.862

Caldas R. - 23.200 0.681 0.524 0.311 280.961

(Pontevedra) - (20.173, 26.226) (0.433, 0.929) (0.453, 0.595) (0.038, 0.584) 288.006

Porriño 0.372 21.456 0.917 0.634 0.427 284.719

(Pontevedra) (0.063, 0.681) (10.363, 32.549) (0.769, 1.000) (0.521, 0.747) (0.024, 0.830) 293.525
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Table 4.3: Maximum likelihood estimates for series without large counts, and 90% confi-

dence intervals (part II).

α λ ω q p01 AIC/BIC

Redondela 0.611 7.749 0.559 0.497 0.271 273.958

(Pontevedra) (0.419, 0.803) (3.701, 11.800) (0.309, 0.809) (0.415, 0.579) (0.093, 0.449) 282.764

Lalin 0.724 5.347 0.823 0.424 - 253.235

(Pontevedra) (0.494, 0.954) (0.625, 10.069) (0.716, 0.930) (0.355, 0.493) - 260.280

Cangas M. 0.502 16.217 0.488 0.527 - 348.936

(Pontevedra) (0.333, 0.671) (10.625, 21.810) (0.346, 0.616) (0.478, 0.576) - 355.981

Tui 0.487 11.960 0.766 0.405 0.346 284.252

(Pontevedra) (0.214, 0.760) (5.014, 18.906) (0.555, 0.977) (0.333, 0.477) (0.106, 0.586) 293.059

A Estrada - 11.085 0.213 0.402 - 244.782

(Pontevedra) - (9.851, 12.319) (0.037, 0.388) (0.232, 0.572) - 250.065

Marin - 23.893 0.783 0.594 - 292.212

(Pontevedra) - (14.940, 32.847) (0.389, 1.000) (0.452, 0.737) - 297.495

.

Figure 4.3: The map (left) shows the estimated overall under-reporting frequency in each

judicial district of Galicia. The map (right) shows the estimated overall under-reporting

intensity in each judicial district of Galicia. In both figures, the darker is the area, the more

frequent (ω closer to 1) and intense (q closer to 0) is the phenomenon of under-reporting.

The light brown corresponds to the removed areas (10 series).
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Table 4.4: Distribution of the models in Tables 4.1, 4.2 and 4.3 among the provinces of

Galicia.

A Coruña Lugo Ourense Pontevedra (Subtotal)

M3: Poisson Mixture 6 (31.5%) 4 (21.1%) 4 (21.1%) 5 (26.3%) 19

(60.0%) (66.7%) (66.7%) (38.5%) (54.3%)

M4a 0 (0.0%) 0 (0.0%) 1 (33.3%) 2 (67.7%) 3

(0.0%) (0.0%) (16.7%) (15.4%) (8.6%)

full model 2 (28.6%) 0 (0.0%) 0 (0.0%) 5 (71.4%) 7

(20.0%) (0.0%) (0.0%) (38.5%) (20.0%)

M4b 2 (33.3%) 2 (33.3%) 1 (16.7%) 1 (16.7%) 6

(20.0%) (33.3%) (16.7%) (7.7%) (17.2%)

(Subtotal) 10 (28.6%) 6 (17.1%) 6 (17.1%) 13 (37.2%) 35

(100%)

.

Figure 4.4: The map shows the distribution of the models of Tables 4.1, 4.2 and 4.3. Blue

corresponds to nested model M3 with mixtures of Poisson distributions. Gray corresponds

to nested model M4a. Red corresponds to the full model. Green corresponds to nested

model M4b. Light brown corresponds to regions that have been removed from the analysis

of under-reporting.
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Figure 4.5: ACF and PACF of the mid-pseudo residuals for validating models of

Lalin (Pontevedra), Redondela (Pontevedra), Puebla de Trives (Ourense) and Ordes (A

Coruña).

4.5.2

Validation of models and latent process reconstruction

According to Section 4.4.3, the goodness of fit of the models presented in Tables 4.1, 4.2

and 4.3 can be assessed by exploring how its mid-pseudo residuals behave. The model

with mid-pseudo residuals like white noise is considered a good-fitting model for the

data. In order to explore how these models fit the complaints data, an example in Tables

4.2 and 4.3 (maximum likelihood method) of each of the four models is selected: (a) a

mixture of two Poisson distributions through the series of Puebla de Trives, (Ourense);

(b) nested model M4a thorugh the series of Lalin (Pontevedra); (c) full model through the

series of Redondela (Pontevedra); and (d) nested model M4b through the series of Ordes

(A Coruña). Figure 4.5 shows both the empirical ACF and PACF of the mid-pseudo

residuals coming from those models. Residuals of these models behave like white noise,

since non-interesting patterns are detected in Figure 4.5.

Latent series from Puebla de Trives (Ourense), Lalin (Pontevedra), Redondela (Pon-

tevedra) and Ordes (A Coruña) are also reconstructed using the Viterbi (see Section 4.4.3).

Results are provided in Figure 4.6.
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4.5.3

Interpretations

1

In Galicia, the urban areas are essentially located in the provinces of A Coruña and

Pontevedra, where there are the largest cities in the community: Vigo (292986 people),

A Coruña (244099 people), Santiago de Compostela (96459 people), Pontevedra (82671

people) and Ferrol (67569 people). On average, these provinces have younger popu-

lation with ages of 46.46 and 45 in A Coruña and Pontevedra respectively, and lower

ageing rates. In fact, in A Coruña there are 1.5 times more people over 65 than children,

while in Pontevedra there are 1.25 times more people over 65 than children. Curiously, al-

though A Coruña is the province of Galicia with the lowest poverty risk rate (13.39%) and

the highest average salary (2095 euros per month), Pontevedra is one of those provinces

(jointly with Ourense) where the poverty risk rate is higher (19.01%), and the average

salary is lower (1970 euros per month). However, the phenomenon of under-reporting in

Ourense seems to be more intense rather than in Pontevedra. Additionally, both provinces

(A Coruña and Pontevedra) have the lowest percentages of people who are illiterate or do

not finish their primary studies (10.95% A Coruña and 9.44% Pontevedra), and the high-

est percentage of people who achieve superior studies (undergraduates, master, doctorate,

. . . ) (15.37% A Coruña and 13.17% Pontevedra).

According to the results in Tables 4.1, 4.2, 4.3 and 4.4, models with temporal de-

pendence, that is, with α 6= 0 (9 out of 10) and/or a correlation structure between the

states of under-reporting (10 out of 13) are essentially selected for modelling the series

of A Coruña and Pontevedra. The distributions of the estimated frequencies (ω̂) of the

judicial districts of both provinces are more homogeneous, showing coefficients of varia-

tion of 31.9% (A Coruña) and 37.8% (Pontevedra). The median estimated frequency of

under-reporting is 0.623 in A Coruña and 0.648 in Pontevedra. The median estimated

intensity (q̂) is 0.547 in A Coruña and 0.524 in Pontevedra. These are those ones closer to

one, meaning that the under-reporting in these provinces is less intense than in Lugo and

Ourense.
1Statistics in this subsection were provided by Instituto Galego de Estatı́stica, based on the year 2016.
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On the other hand, the rural areas in Galicia are located in the provinces of Ourense

and Lugo, which their main cities are Ourense (105636 people) and Lugo (97995 people).

On average, these provinces have older people (50.20 years in Ourense) and (49.52 years

in Lugo), and higher rates of older people. In fact, in Ourense there are 2.34 times more

people older than 65 than children, while in Lugo there are 2.15 times more people older

than 65 than children. The province of Ourense is that one where the average income is

the lowest in Galicia (1817 euros per month), and the poverty risk rate is the highest in the

community (19.35%). Additionally, both provinces are those ones where the percentages

of people who are illiterate or do not finish their primary studies are the highest (13.66%

in Ourense and 14.70% in Lugo), but the percentages of people who obtain advanced

studies are the lowest (11.55% in Ourense and 11.87% in Lugo).

Series of these provinces are mainly modelled by a mixture of Poisson distributions (8

out of 12). That is, generally, neither the temporal dependence, nor the dependence struc-

ture between the states of under-reporting are significant in the judicial districts within

these provinces. The distributions of the estimated frequencies (ω̂) in these provinces are

more heterogeneous, showing coefficients of variation of 60.4% and 64.7% in Ourense

and Lugo, respectively. The median estimated frequency of under-reporting in Ourense is

0.546, while in Lugo it is 0.782, which is the highest one. The median estimated inten-

sity (q̂) in Ourense is 0.428, while in Lugo is 0.377. These are those ones closer to zero,

meaning that the under-reporting is more intense in these provinces.

To conclude, among the 4 provinces of Galicia there are no differences in the fre-

quency of under-reporting according to whether the area is urban or not, whether there

are more older or younger people, or whether the percentage of illiterate people or people

who do not finish their primary studies is higher or lower. It seems that the frequency of

under-reporting is quite higher in the entire community. In fact, the province whose fre-

quency of under-reporting is the lowest is Ourense which is a rural area, with the lowest

average income per month, the highest poverty risk ratio and the highest ageing rate. How-

ever, there is a remarkable difference between the intensities of under-reporting between

those urban and rural provinces. The under-reporting seems to be much more intense in

those rural area which the percentages of older people are higher and the percentages of

illiterate people or people who do not finish their primary studies are also higher.
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Figure 4.6: Figure shows the most likely sequences of states (number of quarterly com-

plaints) (dark line) in the observed series (dotted line) in Lalin (Pontevedra), Redondela

(Pontevedra), Puebla de Trives (Ourense) and Ordes (A Coruña).

4.6

Discussion

The methodology in this article can be used for detecting and quantifying the under-

reporting in series of counts based on an INAR(1) model with Poisson distributed inno-

vations and a latent under-reporting binary state that is a first order Markov chain.

The phenomenon of under-reporting in cases of gender-based violence is a world-

wide problem exposed by many authors (Watts and Zimmerman 2002, Gracia 2004, and

Palermo et al. 2014), and also relevant institutions (United Nations 1993, and WHO

2002). This lack of information provides poor and completely biased statistics, leading

to undervalue the magnitude of this social scourge, which sadly affects the entire world

population.

The goal of the present work consists of demonstrating how this phenomenon of

under-reporting in cases of violence against women affects both rural and urban areas, and

also providing to the scientific community with a new model which properly quantifies

this phenomenon in both areas. This new model could be a useful tool for easily detect-
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ing the under-reporting in official cases of domestic violence against women through the

number of official complaints, but also for other type of data related to this social issue.

In the supplemental material is included an R code which computes the moment-based

estimates for each version of the model (4.3). This code also computes the parametric

bootstrap confidence intervals based on the bias-corrected and accelerated method (BCa)

of the models parameters (999 bootstrap samples).

Additionally, R code files are provided for computing the likelihood functions of the

full and nested M4b models. An R function calling C codes is used, since the compu-

tation of their likelihood functions in the recursive forward algorithm involves several

loops. However, for nested models M4a and M3, a standalone function in R is sufficient

for computing the likelihood functions. Numerical optimization of the log-likelihood is

carried out with a quasi-Newton method.

Finally, R code files are provided for computing the mid-pseudo residuals and the

Viterbi algorithm. There are packages in R which computes the Viterbi algorithm when

dealing with HMC with a finite number of latent states (i.e. HMM package). However,

the model introduced in this work is a HMC with an infinite number of states, and hence

specific codes in R are provided.

Appendix B: Proof of the Proposition 2

The following is the proof of the Proposition (4.5):

Proof: For k 6= 0:

E (Zn, Zn+k) = E (Xn(1− In)Xn+k(1− In+k)) + E (Xn(1− In)q ◦Xn+kIn+k)

+ E (Xn+k(1− In+k)q ◦XnIn) + E (q ◦Xnq ◦Xn+kInIn+k) .

Since processes {Xn} and {In} are mutually independent, but the states of under-reporting

{I1, I2, . . . , Ik, . . . } are dependent, each of the previous terms can be computed in the

same way than the following one:

E (Xn(1− In)Xn+k(1− In+k)) = E(XnXn+k)P(In = 0, In+k = 0),
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where P(In = 0, In+k = 0) = P(In+k = 0|In = 0)P(In = 0) and P(In = 0) = 1 − ω.

The probability P(In+k = 0|In = 0) = p
(k)
00 comes from the k-step transition probability

matrix, that is, P k. This is the probability of going from the state of no under-reporting

to the state of no under-reporting in k steps. Notice that from the equation (4.4), the

probability p(k)00 = (1− p(k)01 ).

On the other hand, the transition probability matrix P can be represented in terms

of its eigenvalues (Karlin and Taylor 1981). It is straightforward to see that the first

eigenvalue of this matrix is 1, and the second eigenvalue is a real number denoted as

λ2 = 1 − p01/ω. In this sense, the transition probability matrix P can be written as

P = W

 1 0

0 λ2

W−1, where the matrix W =

 1 1

1 −1−ω
ω

 has the first and

second eigenvectors of the matrix P . This representation allows us to write P k in terms

of λk2 = 1− p(k)01 /ω. Accordingly:

E (Xn(1− In)Xn+k(1− In+k)) = E(XnXn+k)(1− ω) (1− ω(1− λk2)),

E (Xn(1− In)q ◦Xn+kIn+k)) = E(XnXn+k) qω(1− ω)(1− λk2),

E (q ◦Xnq ◦Xn+kInIn+k) = E(XnXn+k) q
2ω
(
1− (1− ω)(1− λk2)

)
,

and making some computations:

E (ZnZn+k) = E (XnXn+k)
(
1− ω(1− q2)− ω(1− ω)(1− q)2(1− λk2)

)
, (4.20)

where E(XnXn+k) = Cov(Xn, Xn+k) + E(Xn)E(Xn+k) = αkσ2
X + µ2

X . Hence, the
auto-covariance function is:

γZ(k) =
(
αkσ2

X + µ2
X

) (
1− ω(1− q2)− ω(1− ω)(1− q)2(1− λk2)

)
− µ2

X(1− ω(1− q))2

=
(
αkσ2

X + µ2
X

)
(1− ω(1− q))2 +

(
αkσ2

X + µ2
X

)
λk2ω(1− ω)(1− q)2 − µ2

X(1− ω(1− q))2

= αkσ2
X(1− ω(1− q))2 + λk2µ

2
Xω(1− ω)(1− q)2 + (αλ2)

kσ2
Xω(1− ω)(1− q)2. (4.21)

The conclusion follows because γZ(0) = Var(Zn) and ρZ(k) = γZ(k)/γZ(0). �
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CHAPTER 5

Integer-valued AR processes with Hermite innovations

and time-varying parameters: An application to bovine

fallen stock surveillance at a local scale

This chapter corresponds to the contents of: Fernández-Fontelo, A., Fontdecaba, S., Alba,

A. and Puig, P. (2017). Integer-valued AR processes with Hermite innovations and time-

varying parameters: An application to bovine fallen stock surveillance at a local scale.

Statistical Modelling; 17(3): 172-195. This paper is available through the link:

http://journals.sagepub.com/doi/10.1177/1471082X16683113
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CHAPTER 6

An exact goodness-of-fit test based on the occupancy

problems to study zero-inflation and zero-deflation in

biological dosimetry data

This chapter corresponds to the contents of: Fernández-Fontelo, A., Puig, P., Ainsbury,

E.A. and Higueras, M. (2018). An exact goodness-of-fit test based on the occupancy

problems to study zero-inflation and zero-deflation in biological dosimetry data. Radia-

tion Protection Dosimetry: 1-10. This paper is available through the link:

https://academic.oup.com/rpd/article-abstract/179/4/317/

4802349?redirectedFrom=fulltext
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