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Chapter 1

Introduction and statements of the
results

The averaging theory basically consists in replacing a vector field
' = F(t,x,e), with (t,z,¢) € R x R" X (—¢0, &),

by its average over the time or over an angular variable with the goal to obtain asymptotic
approximations to the solutions of the original system and to obtain periodic solutions.
Although this theory was originated in the 18th century, until 1928 it was not proved
rigorously by Fatou(see [30]).

The averaging theory for finding periodic solutions consists in providing sufficient con-
ditions for the existence of periodic solutions in a vector field by studying the equilibrium
points of its associated averaged system.

This theory becomes a classical tool for studying periodic solutions of nonlinear dif-
ferential systems, see for instance [28, 56, 64, 67, 86]. Moreover, remarkable contributions
to it were made by Krylov and Bogoliubov [45] in the 1930s and Bogoliubov [5] in 1945.
For a brief historical review, the interested reader is referred to [68, Appendix A].

In this work we will improve the averaging theory for finding periodic solutions. Then
we will propose a method for studying the stability of periodic solutions that are non
linearly hyperbolic. Finally, using these new results we present several applications of the
theory. In particular we shall apply the new theoretical result here presented to differential
systems that could not be studied with the classical results.

The system 2’ = F(t,z,0) is called the unperturbed system. Concerning the averaging
theory for finding limit cycles, two main hypotheses are usually assumed: (i) F' is T-
periodic in the first variable; and (i7) there exists a sub-manifold YW C R"™ such that each
solution of the unperturbed system with initial condition in W is T-periodic. Under these
hypotheses the averaging theory provides sufficient conditions for the existence of limit
cycles of 2/ = F(t,z,¢).

The classical averaging theorem for the existence of limit cycles can be stated as
follows. Consider the initial value problem

x = el (t,x) + 2F(t,x,e), x(0) = xo, (1.1)

and
y = 891(}’), Y(()) = Xo, (1'2>
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with x, y, and @g in some open 2 of R, ¢t € [0,00), € € [—€0, &]. We assume that Fy, F’
are T—periodic in the variable t, and we set

1

0) =5 [ Pty (1.3

Theorem 1. Assume that F;, ﬁ, D,Fi, D, Fi and Dmﬁ are continuous and bounded by
a constant M independent of € in [0, 00) X Q X [—¢&¢, €], and that y(t) € Q fort € [0,1/]¢]].
Then the following statements hold:

(a) Fort € [0,1/le|] we have x(t) —y(t) = O(g) as e — 0.

(b) If s is a singular point of system (1.2) and det Dygq(s) # 0, then there exists a T—
periodic solution p(t,e) for system (1.1) which is close to s and such that p(0,e) — s =
O(e) as e — 0.

(¢) The stability of the periodic solution p(t,e) is given by the stability of the singular
point.

For a proof of Theorem 1 see [81, Theorem 11.5], where it is stated on the ¢ € [0, )
but in fact following the proof the same result works for e € [—&g, g¢] as it is stated here.

In the last decade this theory has increased immensely. Several works have been
dedicated to extend the averaging theory to a wider class of differential systems. For
instance, in [11], taking advantage of the Brouwer degree theory, it was developed a
topological version of the first-order averaging method to study the existence of limit
cycles in continuous vector fields. Their stability properties were investigated in [7], and
in [54] topological version of the averaging method was extended at any order. The
averaging theory has also been considered in a discontinuous context. For instance, in
[54, 50], the averaging method was developed up to order 2 for discontinuous differential
system, and in [40, 52] the averaging method was extend at any order for a class of
discontinuous differential system.

The first result here presented (see Theorem 2) provides sufficient conditions to assure
the persistence of some zeros of smooth functions g : R® x R — R"™ having the form

g(z,¢) = go(2) + Zeigi(z) + Ok, (1.4)

The second one (see Theorem 5) provides sufficient conditions to assure the existence of
periodic solutions of the following differential system

k
¥ =F(t,z,e) = Fy(t,x) + Y _e'Fi(t,z) + O™, (t,2) €S' x D. (1.5)

=1

Here S' = R/T, for some T > 0, and the assumption ¢ € S! means that the system is
T-periodic in the variable t. As usual d;(g) = O (d(€)) means that there exists a constant
co > 0, which does not depends on &, such that [6;(g)| < ¢o|d2(g)| for € sufficiently small
(see [68]).

The problem of existence of periodic solutions in system (1.5) can often be reduced
to the problem of persistence of zeros of equation (1.4). Usually it is assumed that either

2
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g(z,0) vanishes in a submanifold of Z C D, or that the unperturbed differential system
x' = Fy(t, z) has a submanifold Z C D of T-periodic solutions. In both cases dim(Z) < n.

We assume that for some z* € Z, g(z*,0) = 0. We shall study the persistence of
this zero for the function (1.4), g(z,¢), assuming that |¢| # 0 is sufficiently small. By
persistence we mean the existence of continuous branches x(e) of simple zeros of g(z, )
(that is g(x(g),e) = 0) such that x(0) = z*. It is well known that if the n x n matrix
0.9(2*,0) (the Jacobian matrix of the function g with respect to the variable = evaluated at
x = z*) is nonsingular then, from a direct consequence of the Implicit Function Theorem,
there exists a unique smooth branch x(e) of zeros of g(x,¢) such that x(0) = z*. However
if the matrix 0,¢(z*,0) is singular (has non trivial kernel) we have to use the Lyapunov—
Schmidt reduction method to find branches of zeros of g (see, for instance, [23]). Here we
generalize some results from [8; 9, 51], providing a collection of functions f;, i =1,...,k,
each one called bifurcation function of order i, which control the persistence of zeros
contained in Z.

The problem of existence of periodic solutions of the differential system (1.5) goes
back to the works of Malkin [56] and Roseau [67]. They have studied the case k = 1.
Let z(t, z,€) denote the solution of system (1.5) such that z(0, z,¢) = z. In order to find
initial conditions z € D such that the solution x(t, z, €) is T-periodic we may consider the
function g(z,e) = z — (T, 2z, ), and then try to use the results previously obtained about
the persistence of zeros. Indeed, if Z C D is a submanifold of T-periodic solutions of the
unperturbed system z’ = Fy(t,z), then ¢g(z,0) vanishes on Z. When dim(Z) = n this
problem is studied at an arbitrary order of ¢, see [33, 53], even for nonsmooth systems.
When dim(Z) < n, this approach has already been used in [8], up to order 1, and in [9, 10],
up to order 2. In [51] this approach was used up to order 3 relaxing some hypotheses
assumed in those previous 3 works. In [34] assuming the same hypotheses of [8, 9, 10]
the authors studied this problem at an arbitrary order of €. Here, following the ideas
from [53, 51], we improve the results of [34] relaxing some hypotheses and developing the
method in a more general way.

In summary, we use the Lyapunov—Schmidt reduction method for studying the zeros
of functions like (1.4) when the Implicit Function Theorem cannot be directly applied.
Another useful tool that we shall use to deal with this problem is the Brouwer degree
theory (see Appendix B), which will allow to provide estimates for these zeros. Then we
apply these previous results for studying the periodic solutions of differential systems like
(1.5) through their bifurcation functions, provided by the higher order averaging theory.

The results are organized as follows. In Chapter 1 we present our main results on
averaging theory. In Chapter 2 we provide the proofs of the main results. Then we start
apply our results to study the periodic solutions of some relevant physical systems. In
Chapter 3 we study the Maxwell-Bloch system and a 3D polynomial differential system.
In Chapter 4 we study 17 differential systems, including the Fitzhugh-Nagumo system,
the Noose-Hover system, the Wang-Chen system and the Wei system. In Chapter 5 we
study the existence and stability of periodic solutions in the Lorenz differential system
and the Thomas differential system. In Chapter 6 we study the periodic solutions and
invariant tori in the generalized Van der Pol - Duffing differential system using Lyapunov
coefficients and averaging theory. Finally, in Chapter 7 we study the periodic solutions
in a hyperchaotic Lorenz differential system.

The results presented in Chapter 1, 2 and 3 were based on the published papers [17, 14]

3
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and the preprint [18] . The results presented in Chapter 4 are published in [13] and [15].
Chapter 5 contains results from [13] and [14]. The results in Chapter 6 are submited for
publication. The results in Chapter 7 are published in [16].

1.1 Statements of the main results

Before we state our main results we need some preliminary concepts and definitions.
Given p, ¢ and L positive integers, v; = (Vj1,...,7jp) € RP for j =1,..., L and Z € RP.
Let G : R? — R? be a sufficiently smooth function, then the L-th Frechet derivative of
G at 7 is denoted by 0LG(Z), it is a symmetric L-multilinear map, which applied to a
“product” of L p-dimensional vectors denoted as @le v; € RPE gives

L p - p —
orGY(z) orGa(z)
L= _
d G(Z>©’Yj = ( Z m’ml o YLipy ' Z m’ml YLip | -
7=1 1] 4eeey i, =1 B 5enes ir=1
(1.6)
The above expression is indeed the Gateaux derivative
= 0
orG(z = - G(z
(z) 9% Fron o CErIm A TRt |
= 3( . 0(0G@)M) 2 - - )’yL.
We take 9° as the identity operator.
1.1.1 The Lyapunov—Schmidt reduction method
We consider the function
k
g9(z,6) =Y e'gi(z) + O(eFH), (L.7)
i=0

where g; : D — R" is a C**! function, k > 1, fori = 0,1, ..., k, being D an open bounded
subset of R"™. For m < n, let V' be an open bounded subset of R and 5 : C1(V) — R*™™
a C**1 function, such that

Z = {20 = (0, 8(a) : @ € CUV)} C D. (1.8)

As usual Cl(V') denotes the closure of the set V.
As the main hypothesis we assume that

(H,) the function gy vanishes on the m—dimensional submanifold Z of D.

Using the Lyapunov—Schmidt reduction method we shall develop the bifurcation func-
tions of order 4, for ¢ = 1,2,... k, which control, for |¢| # 0 small enough, the ex-
istence of branches of zeros z(e) of (1.7) bifurcating from Z, that is from z(0) € Z.
With this purpose we introduce some notation. The functions 7 : R™ x R*™™ — R™

4
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and 7+ : R™ x R*™ — R"™ denote the projections onto the first m coordinates
and onto the last n — m coordinates, respectively. For a point z € D we also con-
sider z = (a,b) € R™ x R"™™. We define 9fmg;_;(2,) by following the notation (1.6),
taking p =n—m, ¢ = m, Z = f(a) and G : b — wg;_(a,b). Let S; be the set of
all I-tuples of non—negative integers (cy,co, -+ ,¢) satisfying ¢; + 2¢o + -+ + lgg = [,
L =c+c+- - +c¢, and S; is the set of all (i — 1)-tuples of non-negative integers
satisfying ¢; +2co+ -+ (i — )iy =4, I' =1 + o+ -+ - + ¢;—1. From (1.6) we define

D (g (@) - ()

o 0b;, ob;,
— g, (a,b) o o
m(’ml () (’mz(a)) (@b)=za

and

gt (a,h)

by, - Ob

(i (@) -+ (i (@) -+

i

(a2 (@) -+ (i <a>>”>

— 3L7rlg;il (a,b)

Ob;, - Ob

ir, (a’b):Za

For i =1,2,...,k we define the bifurcation functions f; : CI(V) — R™ of order i as

i l
1
file) = mgi(za) + Z Z 1l col2lez o gylle 0y ™Gt @ (1.9)
=1 5 j=1

= Zsifi(a)

where v; : V — R"™™ for ¢ =1,2,...,k, are defined recurrently as
(o) = —A'1g1(2,) and

i—1
o L :
yi(a) = 1AL (Z PTG s e L L 1N @w(a) ’

2

i—1 1 l
+;gcﬂ@!2!02--~cl!l'cl b g @ )
= I

(1.10)

o 1
with A, = - 90(z,).
We clarify that Sy = S = (), and when ¢; = 0, for some j, then the term 7; does not
appear in the “product” @;:1 v (o)
The next theorem is the first main result of this chapter. For sake of simplicity, we
take fo = 0.
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Theorem 2. Let A, denote the lower right corner of the (n —m) x (n — m) matriz of
the Jacobian matriz D go(z,). In additional to hypothesis (H,) we assume that

(1) for each o € CI(V'), det(A,) # 0,
(13) for somer € {1,...,k}, fi=fo=--+= fr_1 =0 and f, is not identically zero;

(i17) there exists a small parameter ¢g > 0 such that for each € € [—¢g, 0] there exists
a. €V satisfying F*(a., ) = 0; and

(iv) there exist a constant Py > 0 and a positive integer | < (k+r + 1)/2 such that
‘804]:k(aa;5)'05‘ ZP0|€|Z|04|, for aeV.

Then, for |e| # 0 sufficiently small, there exists z(g) such that g(z(g),e) = 0 with |1t z(g)—

2, = O(e) and |7 z() — 7 z,.| = O(eF+H17).

In the next corollary we present a classical result in the literature, which is a direct
consequence of Theorem 2.

Corollary 3. In addiction to hypothesis (H,), assume that fi = fo = = fr.1 =0
and that for each a € CL(V'), det(A,) # 0. If there ezists a* € V' such that fr(a*) =0
and det (D fi(a*)) # 0, then there exists a branch of zeros z(e) with g(z(¢),e) = 0 and
|2(€) = Zar| = O(e).

Theorem 2 and Corollary 3 are proved in Section 2.1.
1.1.2 Continuation of periodic solutions
We consider the following C**! differential system

k
= Fy(t,z) + Zsiﬂ(t,m) + O, (t,2,6) €S x D x (—¢0, £0). (1.11)

i=1

Here D C R" is an open and bounded set, €y > 0, and the prime denotes derivative with
respect to the time . We denote the right-hand side of equation (1.11) by F(t,z,¢). We
say that the differential system (1.11) is in the normal form for applying the averaging
theory. Given z € D we denote by z(t, z,€) the solution of the differential system (1.11)
such that (0, z,e) = z. As our basic hypothesis we assume that:

(H) There exists a manifold W C D such that, for each z € W, the solution z(t, z,0) of
the unperturbed system is T-periodic.

Thus we have the following result.

Lemma 4 (Fundamental Lemma). Let x(t, 2,¢) be the solution of the C*™1 T-periodic
differential system (1.11) such that x(0,z,e) = z. Then the equality

k

x(t,z,e) = x(t, 2,0) + Zs

=1

iyi(t> Z)
1!

+ O(eF) (1.12)

6
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holds for (t,z) € S* x D. Here the functions y; for 1 < i <k, are given recursively as

y1(t, 2) :Y(t,z)/o Y (s,2) ' Fy(s, (s, 2,0))ds,

yi(t, z) =il Y(t, z)/o Y(s,2)™ (E(s,x(s,z,()))

1—1
+ ; TG Ty "' Fy(s, x(s,z,0)) 9%(5, 2)

i—1 l
1 L b;
+ Z; bare 0 Fi-i(se(s,2,0)) O yils,2) J)ds,
=1 S j=1

where Y (t,2) is a fundamental matriz solution of the linear differential system y =
0. Fo(t, x(t, 2,0))y, being O, Fy(t, x) the Jacobian matriz of the function Fy(t,x).

From hypothesis (H) we see that there exists an open set U; C D and £; > 0 such
that, for each z € U} and ¢ € [—&y,¢1], the solution z(t, z,¢) is defined on the interval
[O,t(z7a)>, with t(z,a) >T.

A displacement function d : Uy X (—e1,€1) — R™ can be defined as d(z,¢) = x(T, z,¢) —
z. Notice that a solution (z*,¢*) of the equation d(z,e) = 0 corresponds to a T-periodic
solution of the differential system (1.11) with e = £* and initial condition z*. From (1.12),
the displacement function reads

k
d(z,e) = 2(T, 2,0) —z+zaw +O(e"). (1.13)

=1

The equation d(z,e) = 0 is equivalent to
g(z,6) S Y (T, 2) " d(z,€) = 0, (1.14)
and from (1.13) equation (1.14) writes

9(z,€) = go(2) + Z e'gi(2) + O("),

where go(2) = Y(T,2)"! (z(T, 2,0) — z) and

-1 yi<T7 Z)

gi(2) =Y(T, z) o i=1,2...k, (1.15)

are usually called the averaged function of order i. By abuse of notation, the function
go is called the averaged function of order 0. Notice that go(z) = 0 if, and only if, the
solution z(t, z,0) of the unperturbed system is T—periodic. Therefore, from hypothesis
(H), go(z) = 0 for every z € Z.

The averaging theory for finding periodic solutions consists in providing sufficient
conditions for the existence of periodic solutions of system (1.11) by studying the solutions
of equation (1.14).

In [17] it was assumed that go #Z 0. Here we assume that g, # 0 is the first nonvanishing
averaged function, where 0 < s < k. As our main hypotheses we assume that

7
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(H) Let gs # 0, for 0 < s < k, be the first nonvanishing averaged function. Assume
that there exist m < m, V an open bounded subset of R™, and a C**! function
B:V — R*"™ such that Z = {2, = (a, () : @ € V} C D, and g,(z,) = 0 for
every o € V.

Notice that (H) implies (H). Indeed, if s = 0, then (H) holds by taking Z = W.
Otherwise (H) holds by taking Z = D.
From hypothesis (H) and Lemma 4 equation (1.13) is equivalente to

h(z,e) = g(z;a) = g:(2) + Zaigeri(z) + O = 0. (1.16)

From Theorem 2 the bifurcation functions corresponding to equation (1.16) are

l

: 1
fz(a) = 7Tg8+’i(2a) + Z Z C1' C2|2|62 L. Cl'l'cl b ﬂ-gs+l l Za @ (117>
=1 5, 1 Cyl 4! :

Fi3(a,€) Zé fila (1.18)
where v; : V. — R"™™ fori=1,2,...,k — s, are defined recurrently as

mnl(a) == A ' gsr1(2)  and

1
, —— AL
'71(04) Z.Aa (Z 01!62!2!02 ---Ci_ll(i— 1)[01 13,, 7T gs Za @7]
S/

i

i—1 }
1 L1 o
T Z Z eyl cpl2le2 .o lle Oy 7 Goti-1(%a) OVJ‘(@) ]> 5
=1 5

j=1

1
with A, = 079,

In what follows we shall state a slightly improvement of Theorem B from [17], which
is suitable to a wider range of applications.

Theorem 5. Assume hypothesis (H) holds. Consider the Jacobian matriz

A, T,
8gs(zo¢) = <Ba Aa) 3

where Ny = 0,795(20), Ta = O79s(2a), Ba = 0amtgs(2a) and Ay = Opmtgs(za). In
additional to hypothesis (H) we suppose that

(1) for each a € V, det(A,) # 0;
(13) for somer € {0,....,k—s}, fi=fao=---= fr_1 =0 and f, is not identically zero;

(i17) there exists € > 0 such that for each € € (—2,€) there exists a. € V satisfying
FF=s(ac,e) = 0; and
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(iv) there exist a constant Py > 0 and a positive integer | < (k — s+ r+1)/2 such that

‘8a]:k_s(a5,6) al > Pylét|al,  for a€V.

Then for |e| # 0 sufficiently small there exists a T-periodic solution p(t,e) of system
(1.11) such that |7 p(0,€) — 7 24| = O(* 1Y), and |7t (0,¢) — 24| = O(e).

In the next corollary we present a classical result in the literature, which is a direct
consequence of Corollary 3.

Corollary 6. In addiction to hypothesis (H) we assume that f; = fo =+ = f,_1 =0,
r =k —s and that for each a € Cl(V), det(A,) # 0. If there exists a* € V' such that
fr(a*) =0 and det (D f,(a*)) # 0, then there exists a T-periodic solution ¢(t,c) of (1.11)
such that |p(0,e) — zo+| = O(e).

Lemma 4, Theorem 5 and Corollary 6 are proved in Section 2.2.

It is worth to emphasize that Theorem 5 is still true when m = n. In fact, assuming
that V is an open subset of R" then Z = CI(V') C D and the projections m and 7+ become
the identity and the null operator respectively. Moreover, in this case the bifurcation
functions f; : V. — R" for i = 1,2,...,k, are the averaged functions f;(a) = g;(«)
defined in (1.15). Consider m = n, z, = a € Z and the hypothesis (). Thus the
result of Theorem 5 holds without any assumption about A,. Thus we have the following
corollary, which recover the main result from [53].

Corollary 7. Assume that gs = 0. If there exists z* € Q such that gs1(2*) = 0 and
Dgsi1(2*) # 0, then there exists a T-periodic solution z(t, z(g),e) for system (1.11) such
that z(0) = z*.

Now we use functions a(e), v; and f; to study the stability of the periodic solution
ot €).

1.2 Stability of the periodic solutions

A fundamental notion in qualitative theory of differential equations is the hyperbolicity.
Here a constant matrix will be called hyperbolic if its eigenvalues lie out of the unitary
circle of the complex plane, in which case its indezr is the number of eigenvalues outside
the unitary circle.

Consider a matrix function A(e) = Ay + €A, + - -+ + ¥ A, depending on a parameter
e. If Ay is hyperbolic of index i, then one can see that for e > 0 sufficiently small A(e)
will be hyperbolic with the same index i.

If Ay is not hyperbolic the placement of the eigenvalues of A(e) may be hard to
determine. To deal with this problem we use a method introduced by Murdock and
Robinson in [62, 61]. The matrix A(e) is called k-hyperbolic of index i if for every smooth
matrix function B(g) there exists an g9 > 0 such that A(g) +&*B(e) is hyperbolic of index
1 for all € in the interval 0 < € < g.

The stability properties of the periodic solution ¢(t,e) will be provided using the
k-determined hyperbolicity method, as it was presented in [60, Chapter 3].

9
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For |e| # 0 sufficiently small let p(t,¢) = z(¢, 2(¢),e) be a T—periodic solution of the
differential system (1.11) given by Theorem 5 such that z(0) = z,+ € Z. The Poincaré
Map related to o(t, ) is given by

(z,6) = (T, 2,6) = z + d(z, €). (1.19)

Clearly z(e) is a fixed point of II(+, €). It is well known that the stability of the fixed point
z(e) of the Poincaré map I1(-, ) yields the stability of the T-periodic solution ¢(t, ). More
specifically, if the norm of each eigenvalue of 9,11(z(¢), ) is less than 1, then the periodic
solution ¢(t, ) is stable. On the other hand, if there exists an eigenvalue of 0,11(z(¢), ¢)
with norm greater than 1, then the periodic solution ¢(t,¢) is unstable. From (1.19),
our goal in is to show how the power series of z(¢) around € = 0 can be used to provide
the stability of the T'—periodic solutions z(t, z(¢),e) provided in Theorem 5. As these
solutions are essentially non-hyperbolic, due to existence of a continuum of zeros of the
first coefficient function of (1.16), the question about its stability can be reduced to the
study of the k-determined hyperbolicity of the Jacobian matrix 0,d(z(¢),¢).

For the sake of further applications the first result of this section is to write the formal
power series of the initial condition z(e) = ¢(0,¢) around ¢ = 0, where p(t,¢) is the
T—periodic solution provided in Theorem 5.

The next result reveals how the higher order averaged functions can be used for de-
termining the stability of the periodic solution x(t, z(¢), €).

Lemma 8. Let a. be the one given in hypothesis (iii) of Theorem 5 and let x(t, z(¢),€) =
o(t, ) be the periodic solution of the differential system (1.11) provided in Theorem 5. If

a. =ag+eag + -+ ay_ + O(eFTETI), (1.20)

with a; € R™ for all 0 < i < k—s—1. Then we can write initial condition of the periodic
orbit as

2(e) = Z e (ai, B;) + O(F 5711, (1.21)

IN L

where By = B(ap) and for all1 <i <k —s—1,

i 1 J ! s
B = ila0) + D037 e a0) (st (1.22)
L 2 T2l ]

s=1

The next result provides the Taylor expansion at € = 0 of the Jacobian matrix of the
displacement function (1.13) evaluated at z(g) = ¢(0,¢), where ¢(t,¢) is the T-periodic
function provided in Theorem 5.

Lemma 9. We assume that system (1.11) satisfies the hypotheses of Theorem 5 having
the T-periodic solution p(t,c). Moreover, let z(e) = ¢(0,¢) and a. from statement (iii)
of Theorem 5 written in the form (1.20). Thus the Jacobian matriz of displacement map
(1.13) at z = z(e) can be written as

0.d(z(e),e) = 5 A(e) + O(eF11),

10
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where A(e) = Ag+ A1+ -+ Ay, where A; is ann x n constant matriz for all
0<j<k—s—1. More precisely, we have Ay = 0ys(T, zy) and

J i

_ 1 1 I+1 b
4=2 G—i) ; bl (i — 1y 0 Yerimi(Tiz0) O (=)™

=0 u=1

for1<j<k—s—1, with z; = (o, 3;) gwen in (1.21) and l as in Theorem 5.

Consequently the Jacobian matrix of the Poincaré map becomes
DII(z,€) = M(e) + O(eF=1+1), (1.23)

with M(e) = Id + €®A(e). Now we can present our result on the stability of the non-
hyperbolic T-periodic solution z(t, z(¢), ) provided in Theorem 5.

Theorem 10. We assume that system (1.11) has a T-periodic solution x(t, z(¢),€) as
stated in Lemma 9, and that the Jacobian matriz of the Poincaré map at z(€) has the
form (1.23) with M () hyperbolic for |e| sufficiently small. If there exists a matriz T (e)
such that T'(e)"*M ()T (e) = A(e), where

)\1(5)
Ale) = K ) =" N+ A

An(e)

with ry < ry < --- <1r; < R=Fk—1+1 rational numbers, and Ay,...,\; diagonal
matrices. Then there exists an €9 > 0 such that for 0 < € < gy the eigenvalues of the
Jacobian matriz DI1(z,€) are approzimately equal to \;(g) with error O(e®). Consequently
the matrices M () and DII(z,e) have the same hyperbolicity type.

The result of Theorem 10 is strongly related with the Theorem 3.7.7 of [60]. Obtaining
the matrix 7'(¢) may be the main difficulty of applying Theorem 10. In some cases it may
be necessary a sequence of linear transformations and normalization in order to obtain
T(e), see [60, Section 3.7]. This task always comes down to the solution of a homological

equation such as
LU; = K; — B,

where
L =Ly :gl(n) — gl(n),

K; is known at the jth stage of the calculation, and B; and U; are to be determined
and Ly is the Lie operator, i.e. LyX = [X,Y] = XY — Y X. In this work we shall
use Theorem 5 to study the Hopf or the zero—Hopf bifurcation in some three dimensional
systems. Moreover Corollary 19 in Appendix 2.7 provides sufficient conditions for the
existence of the matrix T'(¢). This will allow to use Theorem 10 for studying the stability
of the bifurcated periodic orbits detected by Theorem 5.

Finally we shall show that the hypotheses of Lemma 8 are not very restrictive. We
shall provide the expressions of the /s in Lemma 8 in terms of the bifurcation functions
(1.17).

11
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Proposition 11. Assume that 0 < r < k is the first subindezx such that f.(a) Z 0 as
given by hypothesis (ii) of Theorem 5. If there exist a* € V- C R™ such that f.(a*) =0
and det (Of,(a*)) # 0. Then there exists a unique a. € V' such that:

(a) ac = ag +eay + -+ + efay + O(eF) with o; € R™ for all 1 < i < k satisfying
F*a.,e) =0, and

(b) where the coefficients are ag = o, ay = —D f.(a*) L frp1 (@) and for2 <i<k-—1

_Df'f *\—1 1 (]/
@i 2! (o) (;01!02!2!62---0 l(l—l'czlf @a

k3

+ZZCI|CQ|2|CQ. clllcz l+r @O‘ >
l

Proposition 11 is particularly useful to study the stability of the periodic orbits de-
tected by Corollary 6. This result will be applied several times in this work. Thus we
present now a reformulation of Corollary 6 and Theorem 10 that will be used in the
applications presented in the next chapters.

Theorem 12. Let s € R such that s is the first subindex such that g5 Z 0. In addition
to hypothesis (H) assume that

(i) the averaged function gs vanishes on the manifold (1.8). That is gs(za) = 0 for all
aeV, and

(77) the Jacobian matriz

A, T,
Dgs(za) - (Ba Aa> )

where Ay = Dymgs(2a), o = wags(z&), By = D,mtg4(24) and Ay = Dyrtgs(za),
satisfies that det(A,) # 0 for alla € V.

We define the functions

fl (Oé) = - FaAglﬂ-Lgs-&-l(Za) + TTGs+1 (Za)7

1 1 827T s 87T s
fof@) =5Tam(@) + 5755 (2a)71(@)” + 0 (20) (@) + Tgasa(za).
nla) == A7 gei(za), (1.24)
-1 827TLQs 2 aﬂ-Lgerl 1
12(0) = = AL | T (za)m (@) + 27 za) (@) + 2t gaa(a) ).

Then the following statements hold.

(a) If there exists o € V such that fi(a*) = 0 and det (Dfi(a*)) # 0, for || # 0
sufficiently small there is an initial condition z(¢) € U such that z(0) = z4« and the
solution x(t, z(¢),e) of system (1.11) is T-periodic.

12
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(b) Assume that f; = 0. If there exists a* € V such that fo(a*) = 0 and det (D fo(a™)) #
0, for |e| # 0 sufficiently small there is an initial condition z(e) € U such that
2(0) = zo+ and the solution x(t,z(e),e) of system (1.11) is T-periodic.

The next result provides the stability type of the periodic solutions detected by The-
orem 12(a). Here diagonalizable means that the matrix has n distinct eigenvalues.

Theorem 13. Consider s, 'y, Ay, f1 and fo as defined in Theorem 12 and the Jacobian
matrices Dys(T, 2) = (pij(2)) and Dys1(T, z) = (¢ij(2)). Assume that there exists a* € V
such that fi(a*) =0 and det (D fi(a*)) # 0. We define the matriz function

Ae) = Ag + €Ay, (1.25)
where
Ao =Dys(T, 2o+ ), (1.26)
A1 = (Dpij(zar)-21 + 6ij(7a)) , (1.27)
21 = (=Dfi(e)  fo(a®), DB(@”) (=D fi(e*) ™ fo(@?)) +m(a?)) . (1.28)

We assume that A(e) satisfies the following statements:

(s1) Ag is diagonalizable and s > 0, or Id + Ay is diagonalizable and s = 0; and
(s9) Id+ %Ay + &5 Ay is hyperbolic for all € sufficiently small.

Thus the Poincaré map of the periodic solution z(t, z(g),€) is s + 2—hyperbolic.

In other words this last result says that the hyperbolicity of the z(¢,z(g),e) can be
investigated using the \;(¢) + O(e%%?), where \y,(g) are the eigenvalues of Id + e*Aq +
5Tt A,. In the next chapter we prove the results here presented.
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Chapter 2

Proofs of the main results

2.1 Proof of Theorem 2 and Corollary 3

A useful tool to study the zeros of a function is the Brouwer degree (see the Appendix B
for some of their properties). Let g € C*(D), CI(V) C D and Z, = {z € V : g(z) = 0}.
We also assume that J,(z) # 0 for all z € Z,, where J,(z) is the Jacobian determinant of
g at z. Then if V' is bounded the set Z, is formed by a finite number of isolated points.
The Brouwer degree of g at 0 is

5(g,V,0) Z sign (J (2.1)
z2€Zy
One of the main properties of the Brouwer degree is: “if d(f,V,0) # 0 then there
exists xy € V such that f(xg) = 07 (see item (i) of Theorem 20 from Appendix B).
The next result is a key lemma for proving Theorem 2.

Lemma 14. Let V' be an open bounded subset of R™. Consider the continuous functions
fi:C(V) =R, i=0,1,--- K, and f,g,7: CI(V) X [—&¢, 0] = R" given by

9(z.€) = fol@) + efi(x) + - + " fu(x) and f(z,€) = g(x,e) + " r(z,e).

Let V. C V, R = max{|r(z,¢)| : (x,e) € CI(V) X [—eg,e0]} and assume that |g(z,e)| >
R|e|* for all x € OV. and € € [—¢&g,e0) \ {0}. Then for each e € [—&q, 0] \ {0} we have
dp (f('>5>7 Ve, O) =dp (g('>5>7 Ve, O)

Proof. For a fixed € € [—¢g¢,&0] \ {0}, consider a continuous homotopy between ¢(-, )
and f(-,€) given by g;(z,e) = g(x,e) + t (f(x,e) — g(x,€)) = g(x, &) + te"r(x,e). We
claim that 0 & ¢;(0V., ) for every t € [0,1]. As usual OV, denotes the boundary of the
set V.. Indeed, assuming that 0 € g;_(0VL,¢), for some ¢. € [0,1], we may find z. € IV
such that g;_(z.,€) = 0 and, consequently, g(z.,¢) = —t.e"'r(z.,e). Thus |g(x.,e)| <
R|e|**!) which contradicts the hypothesis |g(z.,<)| > R|e|**!. From Theorem 20 (iii)
we conclude that dg(g(-,¢), V., 0) is constant for ¢ € [0,1] and then dp (f(-,¢),V:,0) =
d£3<g<'7€)7v270)' [

Lemma 14 provides a stratagem to track zeros of the perturbed function f(z,¢) using
a shrinking neighborhood around the zeros of g(x,¢) that preserves its Brouwer degree.
The way how it works can be blurry at the first moment, so to make it clear we present
the following example:

15
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Example 1. Consider the real function f(z,e) = g(x,e)+&%r(z,e) with (z,e) € [—1, 1] x
[—c0, 0], g(z,e) = 2* — ex, and |r(z,e)| < 1/5. The function g(x,e) has two zeros
a=0 and a. = €. Taking V. = (£/2, 3¢/2) we have that, for |e| # 0 sufficiently small,
a. € V. and dg (g(+,€),V:,0) = 1 (see Definition (2.1)). Furthermore OV. = {¢/2, 3¢/2},
lg(e/2,¢)| = €%/4, and |g(3¢/2,¢)| = 3e?/4. Thus |g(z,€)| > €2/5 > e2max{|r(z,¢)| :
(x,e) € 0,1] X [—¢eq,e0]}. Therefore, from Lemma 14 we know that dg (f(-,€),V:,0) =1
From the properties of the Brouwer degree we conclude that there exists a. € V. such that

flag,e) =0.

Now we recall the Fad di Bruno’s Formula (see [43]) about the [** derivative of a
composite function.
Faa di Bruno’s Formula Ifu and v are functions with a sufficient number of derivatives,

then
! -3 frp ) O
an byl byl20b2 - .- 1100 S~
where S; is the set of all lftuples of non—negative integers (by, by, -+ , b)) which are solu-

tions of the equation by + 2by + -+ -+ 1by =1 and L = by + by + --- + b;.
The remainder of this section consists in the proof of Theorem 2, which is divided in
several claims, and the proof Corollary 3.

Proof of Theorem 2. We consider g = (rg,71g), g = (7g;, 7 g;) for i = 0,1,2,...,k,
and z = (a,b) € R™ x R"™ for z € D. So

Omgo o go

—(Zoz> (Za)
0 0 0b
F (20 0)=Dgolza) = | |

da ° ap e
O go

We write A, =

50 (24). From hypotheses, 7tg(a, B(a),0) = 7t go(z4) = 0, and

det 87TLg(a,ﬂ(a),0) — det aﬂ_{qo(z&) = det (A,) # 0.
(% )= et (7

Thus applying the Implicit Function Theorem it follows that there exists an open neigh-
borhood U x (—¢1,¢;) of C1I(V) x {0} with &; < €¢, and a C**! function 3 : U x (—e1,£1) —
R"™™ such that 7+g(a, 5(a,¢),c) = 0 for each (a,e) € U x (—¢y,¢1), and B(a,0) = B(a)
for every a € CI(V).

The rest of the proof is divided in the following claims.

Claim 1. The equality (0°8/0¢")(a, 0) = 7i(a) holds fori=1,2,... k.

Firstly it is easy to check that (03/0¢)(a,0) = Y1(). Now for some fixed i €
{1,2,...,k} we assume by induction hypothesis that (0°5/0¢°)(c,0) = 7s(a) for s =
1,...,2— 1. In what follows we prove the claim for s = i. Consider

tg(a, Bla,e),e Zew gi(e, B(av,€)) + O(F1) = 0,

16
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Expanding each function ¢ s 7tg; (a, B(a, 5)) in Taylor series we obtain

k 7 1
m*g(a, B(a,e),e) = Z <gi %%WL%_Z (v, B, €)) _0> (2.2)
‘ =0 =

Applying the Faa di Bruno’s formula we obtain
[! L _
o =2 g O 7 91 (0 Bl 0)) - (23)
Sy

Lo
8_6]5(0470) J> :

o | —
57 it (o Bl £))

e=!

Substituting (2.3) in (2.2) we get

oo Tl =34 (ZZWW. O o Fo.0)

l

& b; k1

Since the previous equation is equal to zero for |e| sufficiently small, the coefficients of
cach power of ¢ vanish. Then for 0 < i < k and (a,e) € U x (—&1,€1) we have

l
1 3_
Zzbﬂb2'2'b2- bmba” gi-t (o, Fle 0) Qa_ﬁo‘o =0

This equation can be rewritten as

l
o
0= 22511521211)2. bmbzaﬁgi t (@ (e, 0) Q(‘?_

1 Y

+XS; AT Ty -0y 7 go (o, B(a, 0)) @a_ (2.4)
1. | o

+ 50 g0 (@, B(e,0) e —=B(a,0).

Here S! is the set of all (i — 1)-tuples of non—negative integers satisfying by + 2by + - - - +
(1t —1)bj—y =i, I' =by + by + - - - + b;_;. Finally using the induction hypothesis equation
(2.4) becomes

@(O" = —ilAL! Z byl ba12102 -+ by 1(i — 1)1 18 7 go(%a @W
7=1
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i—1 .
1 L1
—l—ZZ by byl21b2 . b'llba T Gi-1(%a @ )_% ).
l

This concludes the proof of Claim 1.
Claim 2. Let § : U x (—e1,21) — R™ be the C**L function defined as

5(0[, 6) = 7T-g(OQ B(aa 6)7 6)‘
Then the equality (0'6/0")(a,0) = il fi() holds fori=1,2,... k.
From (1.7) the function ¢ reads

Zsjﬂgg a,€)) + O(e").

So computing its ith-derivative in the variable € for 0 <1 < k we get

Taking e = 0 and [ =7 — j we obtain

96 i'O'rgi, —
@(O@O) l' Ol ( 76<aa5))

=1

T ilrg(za).
e=0

Finally using the Faa di Brunno’s formula and Claim 1 we have

l

Ll l! o
) - Z ﬁ Z c1lep!21e Cllllcz afﬂ—gi_l(’za) @’Ys(a) °+ Z!?Tgi(za)
=1 S Co.L.72 ... ClaL

s=1
=ilfi(a).
This concludes the proof of Claim 2.

Using Claim 2 the function d(a, ) can be expanded in power series of ¢ as
)
dane) =) 555(0,0) + O = Fi(ae) + O™,

and, from hypothesis (ii), we have

~ d(a,e)

da,e) = = G*(a,e) + O, (2.5)

or
where G¥(a, ) = fo(a) + efry1(a) + ...+ ¥ fr(a). Obviously the equations (a,e) =0
and d(a, ) = 0 are equivalent for € # 0.

Denote R(go) = max{|d(a,e) — G¥(av,&)| : (a,e) € CUV) X [—e0,e0]}. From the
continuity of the functions 0 and G* and from the compactness of the set CL(V) x [—eo, 0]

we know that R(g9) < oo and R(0) = 0. In order to study the zeros of §(«a,e) we use
Lemma 14 for proving the following claim.
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Claim 3. Consider a. € V as in hypothesis (iii) and ¢ € [—eg,&0]. Then there exist
g0 > 0 sufficiently small and for each € € [—eg,&0] a neighborhood V. C V' of a. such
that |G*(@, €)| > R(eo)|e* | for all @ € V.. Moreover V. = B(a., Qle|*™17) for some
Q > 0.

The parameter £y > 0 will be chosen later on. Given e € [—¢g, g¢] since G¥(a, €) is a
C*+1 function with, k > 1, we have that

G (ac + h,e) = .G"(az, e)h + p(h),  p(h) = O(|h]?), (2.6)

for every h € R™ such that [a., a. +h] C V. Moreover the hypotheses (i) and (iv) imply
that

026" (az,€) - a| > Pole|"|a| for a€V. (2.7)
Combining expressions (2.6) and (2.7) we obtain the following inequality
94+ .2l 2 (70— ) e, (2.)

Take V. = Bla.,Qle[***"Y) ¢ V. A point a. € 9V, reads @. = a. + h., where
h. = uQle[F*1 =t € R™ and |u| = 1. Moreover since p(h) = O(|h|*) we get

r—11P h€ r— — r+1—
‘€| l| |<h |>| — |€’ lO(Q‘€|k+1 l) — O(Q’F;‘kFF +1 21).
From hypothesis (iii) we have that k+r+1—2/ > 0. So in particular O(Q|e|**"+1-2) =
O(Q). Thus from definition of the symbol O there exists ¢y > 0, which does not depend
on ¢ and Q, such that |e|"7![p(h.)|/|h:] < coQ. So the inequality (2.8) reads

G (ae + he,€)] = (Po — Qeo) Qe[

Note that the polynomial P(Q) = (Fy — Qco) @ is positive for 0 < @ < Py/co and reach
its maximum at Q* = Py/(2cp). Moreover P(Q*) = P?/(4c). Since R(0) = 0, there
exists g9 > 0 small enough in order that R(go) < Pg/(4co) = P(Q*). Consequently taking
Q = Q* it follows that |G*(@,€)| > R(go)|e" "] for all @ € OV, and € € [—&g, o). This
concludes the proof of the claim.

Applying Lemma 14 for ¢ = 4, as it is defined in (2.5), K =
Bla., Q|e|*1~!) we conclude that dB(g(-,s),VE,O) dB(gk( - e), Ve,

k—r, and V. =
= 0
denoting z(g) = (a(e), B(ale), €)) it follows that g(z(¢), ) =

) # 0. Finally,

If z,, = (ae,f(a.)), then |m2(e) — w24, | = |a(e) — a| = (’) (e"171) and, since J is
Lipschitz,
72(6) — 72| = [Blale). ) — Blas, 0)] < Li(a(e), ) ~ (., 0)] = O(e).
This concludes the proof of Theorem 2. O

Proof of Corollary 3. The basic idea of the proof is to show that F*(«) satisfies all the
hypotheses of Theorem 2. From the hypotheses F*(a,e) = ¥ fi(a), and Dfp(a*) =
e %0, F*(a*, €) is a homeomorphism on R™. Thus there exist constants b, ¢ > 0 such that

1
bla| < |Jfi(a®).af = g—k@afk(a*,e).a

< dal,
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for all @ € R™. Therefore b|e*||a] < |0.F"(a* ¢).al < ¢|e¥||al, which implies that
F*(a*) satisfies hypothesis (7ii) of Theorem 2, with [ = r = k. Indeed (k +7 +1)/2 =
k+1/2 > k = [. Hence the proof follows directly from Theorem 2. O

2.2 Proof of Lema 4, Theorem 5 and Collorary 6

Proof of Lemma 4. The solution x(t, z, ) can be written as

k t
x(t,z,e) = 2z + Z ei/ Fi(s,z(s,2,¢))ds + O(e"™), and
i=0 70 (2.9)

t
x(t,z,0) =z —i—/ Fo(s,z(s, z,0))ds.
0

Moreover the result on the differentiable dependence on parameters implies that ¢ +—
x(t, z,€) is a C**! map. So for i = 0,1,...,k — 1 we compute the Taylor expansion of
Fi(t,z(t, z,¢)) around € = 0 and we have

k=i g !
Fi(t,z(t,z,¢)) = F; (t,z(t,2,0)) + Z % <%Fl~(t, x(t, z, 5))) + O(eF ). (2.10)

Using the Faa di Bruno’s formula to compute the [-derivatives of Fj(t,z(t, z,¢)) in the
variable € we get

o' i Ly l
del Ei(t,z(t,z,¢€))| = ; bl!b2!2!b2'~bz!l'bla it z(t,2,0)) @ (2.11)
e=0 l j=1
where
oI
yj(t,Z) = (@m(t,z,e)) . (212)
Substituting (2.11) in (2.10) the Taylor expansion of Fi(s,z(t, z,€)) becomes
Fi(s,z(s,z,¢)) = F;(s,x(s,20))
k—i 1
£
+ OLF, (s, 2(s,2,0
I
D yjls,2) + O,
j=1
for:=0,1,...,k — 1. Furthermore for i = k we have
Fi(s,x(s,2,¢€)) = Fi (s,2(s,2,0)) + O(e). (2.14)
From (2.9), (2.13), and (2.14) we get the following equation
k t
x(t,z,e) = 2+ Q(t, z,¢) + Z z—:i/ Fi(s,x(s,2,0))ds + O(e*), (2.15)
i=0 70
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where

k—1 %

i ' 1 :
Wz =2 e /0 B 0 (s (2 0) @

i=1 I=1 S

Finally from (2.15)

ot z,¢) = /0 Fo(t, z(s, 2, 0) ds+$5 </OtFZ-(s,w(s,z,0))

l
1
S i 0) Ol
J=1

l
t
+e / Fy (s, 2(s,2,0)) + k“/ R(s,x(s,2,¢),e)ds + O(eF1).
0

Now using this last expression of z(t, z,¢) we conclude that the functions y;(t,2),
defined in (2.12) for ¢ = 1,2,...,k — 1, can be computed recurrently from the following
integral equation

az‘
yilt, 2) = (8;(752'5))
e=0 .
t v 1
= 4! Fi(s,z(s,2,0)) +
/0< (s,2(s,2,0)) Zzlblubﬂ!bg...blu]bz

!
8Elsx820 @

(2.16)
= /O (A(s)yi(s, Z) + Bz(s)) dS:

A(s) = 0Fy(s,xz(s,z,0)),
. 1 .
Bi(s) = z!(F(s x(s, z,0)) —1—2 by bl 21 by 3 1(i — 1)1 -0" Fo(s, (s, 2,0))

@yj (s,2)b —I—ZZ b1'b2‘2‘b2' i OFFi_i(s,2(s, 2,0))
@yj(sjz)bj)
j=1

The integral equation (2.16) is equivalent to the Cauchy problem

%yi(t, z) = A(t)yi(t, z) + Bi(t), with y;(0,2) =0,
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which has a unique solution given by

yi(t, z) = Y(t,z)/ Y (s,2) ' Bi(s)ds

0

= i1Y(t,2) /OtY(s,z)_l(Fi(s,x(s,z,O))

i—1
]_ I/ b
+ 2 s 0 Fols 2(5,2,0)) @lyxs,z) :
S j=
i—1 l
1 '’ b;
2.2 s Bl (s, 2, 0) O wils:2) J>d8-
=1 S j=1
Since .
x(t,z,0) =z +/ Fo(t,z(s, z,0))ds,
0
we obtain
: Vit 2) k+1
x(t, z,e) = x(t, 2,0) +Z€l Gt O(e"th).
i=1
This concludes the proof of the lemma n

Proof of Theorem 5. Let z(-,z,¢) : [0,t(..) — R™ denote the solution of system (1.11)
such that (0, z,¢) = z. By Theorem 8.3 of [1] there exists a neighborhood U of z and
ey sufficiently small such that ¢.. > T for all (z,e) € U x (—e1,61). Let h(z,¢) :
U x (—¢1,e1) — R™ be the displacement function defined as

h(z,e) = x(T, z,¢e) — z. (2.17)

Clearly z(-,%,2) for some (Z,2) € U x (—¢1,¢1) is a T-periodic solution of system (1.11)
if and only if h(Z,2) = 0. Studying the zeros of (2.17) is equivalent to study the zeros of

g(z,6) = Y(T,2) " h(z,¢). (2.18)
From Lemma 4 we have
Lt 2)
x(t, z,e) = x(t, z,0) + Zel . 2'7 + O(eF ), (2.19)
i=1

for all (¢,2) € S* x D, where y; is defined in (1.12). Hence substituting (2.19) into (2.18)
it follows that

g(z,e) = Zeigi(z) + O(eF ),

where go(2) = Y (¢, 2) (z(t,2,0) — 2) and for s = 1,2,..., k the function g; is defined in
(1.15).
From hypothesis (#) we know that gs(z) vanishes on the manifold Z. Moreover we

have g(z,€) = €* Y52 €'geyi + O("51). Then we consider the function

h(z,e) = igigs+i(z) Oy = (zf). (2.20)
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The result follows from identifying (2.20) with (1.7), noticing that function (2.20) satisfies
hypothesis (H,) and applying Theorem 2. O

Proof of Corollary 6. The result follows directly from Corollary 3 applied to the function
(1.18). O

2.3 Proof of Lemmas 8 and 9

Proof of Lemma 8. The proof of Theorem 5 has been obtained basically applying Theo-
rem 2 to the function

9(275) = 98<z) + 5gs+1(z) + 5295+2(Z) +..

That is we find functions a(e) and B(a,e) such that z,.) = (a(e), B(a(e),€)) satisfies
9(Za(e),€) = 0 for |e| # sufficiently small. Defining k = k — s whe have from Claim 1 that

Bla,e) = Bla) + em(@) + - + () + O+, (2.21)

Furthermore we have that a(e) = a. + O(sE_ZJFI), and by hypothesis a, = ag+ecaq +---+
ef=lar , + O(eF1*1) thus we can write

a(e) = ag +eaq + - + ¥ lag_, + O(FH), (2.22)

Substituting (2.22) in (2.21) and expanding the result in power series of € around € = 0
we have

Bla(e),e) = o+ by + -+ + O(FHY),

where the coefficients 3; up to order k& — 1 can be calculated as 5y = B(a(0),0) = B(ay)
and for 0 <i <k —1 — 1 we obtain

4, @'ZZO D)0 L ale)) + 0@)

7=0 ¢=0

;(Zm +Z( ~ )dg”%( ()>+0(5)>

taking [ =4 — j and using the Fad di Bruno’s forumla in the above equation we have

B ) + Y o TR ) O (@)

=1 S s=1

e=0

)

e=0

Finally, from equation (2.22) we have that a(0) = ap and a(®)(0) = sla,, then using it in
the above equation we obtain (1.22). This completes the proof. O

Proof of Lemma 9. We define yo(7T', z) = 2¢(T, z) — z and let s be the first index such that
gs(2) # 0. Then the displacement map (1.13) writes

—Ysi(T2)
d(z,e) =) 2220 4 O,
2 G
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At z = z(e) this function has the Jacobian matrix

gi

. !8zys+i(T> Z(S)) + O(€k+1)'

From Lemma 8 we have that z(¢) = Zf:_(f 2+ O(eF51). Thus we calculate the first

k — s — [ coefficient of the Taylor expansion of the function

azys-‘ri(Ta Z({;‘)) + O(gk_s+1)a

— (s +1i)!

&’ - e k—s—j+1

e
ni ( ) ) Gyl 2(0))) + OC)

dEJ n 5:0.

When ¢ = 0 the only non-vanishing terms in the above equation will be those satisfying
i = n, then we have

Lode(ehe) = Y e O 1)), (2.23)

n=0
Using the Faa di Bruno’s Formula we have that

i

d' 1 (u) (y\ P
d ; (azys-i-n(T z\& Z bl ) Zaz ys-i—n(Ta Z<E)) UC? (Z (6)) a:O.
We use the above equation in (2.23) taking ¢ = j — n obtaining
_ d’
AJ = @azd(z(e),e) o
j i
I+1 L. ' bu
Z I(j —i)! Z b!- b (i —1)b 02" Ysrj-i(T, 20) 9 (ulzy)™ .
Finally we take A; = j !Xj, this completes the proof. O]

2.4 Proof of Theorem 10

Before the proof we present some results about k—determined hyperbolicity, for more
details see [60, Chapter 3]. Suppose that

A\:A0+€A1+"'+€kz4k
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is hyperbolic for all € > 0. The aim of this section is to present results that help to
determine under what circumstances we can say that any smooth matrix A(e) having A
as its k—jet will be hyperbolic with the same hyperbolicity type of A.

We assume that A(e) is diagonalizable in the following sense. There exists a fractional
power series T'(¢), which in general contains positive and negative fractional powers of ¢,
such that

B(e) =T(e) " A(e)T(¢) (2.24)

is diagonal and is a fractional power series in ¢ containing only positive fractional powers.
Notice that since A(e) and B(e) in (2.24) are similar for € > 0, they will be of the same
hyperbolicity type. We suppose that B(e) has been computed up to some fractional order,
and that this portion B() of B(e) is hyperbolic and diagonal. The next theorem implies
that A() is hyperbolic, with the same stability type as B(e).

Theorem 15 ([60, Theorem 3.7.7]). Suppose that C(g) and D(g) are continuous matriz-
valued functions defined for € > 0, and that

C(e) = A(e) + % D(e), (2.25)
where
Ai(e)
Ae) = _ =e"A;+ - F A
e
Here ry < ry < --- < r; < R rational numbers, and Ay, ..., \; diagonal matrices. Then

there exists an g > 0 such that for 0 < e < gy the eigenvalues of C(g) are approzimately
equal to the diagonal entries \;(€) of A(g), with error O(e®). Consequently the matrices
A(e) and C(e) have the same hyperbolicity type.

Proof of Theorem 10. Theorem 10 is obtaining directly from applying Theorem 15 to the
Jacobian matrix of the Poincaré map (1.23), identifying A(e) with M(e). O

2.5 Proof of Proposition 11

The following result will be used for proving Proposition 11.

Lemma 16. Let u: R™ x [0,g0] — R" be a function of class C* such that
u(z,e) = up(w) + euy(z) + - - - + "up(x) + O("H1).

Assume that there exists a function v : R — R" of class C* satisfying u(v(e),e) = 0 for
le| > 0 sufficiently small and that the Jacobian matriz Oug(v(0)) is invertible. Then

gk

v(e) =v(0) + E1)(1)(0) 4ot HU(k)(o) + O,
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where  the  Taylor’s  coefficients of w(e) are written  recursively  as

v (0) = Dug(v(0)) " uy (v(0)) and for 2 <i <k,

U(Z) (0) - — DU()(’U(O))—l (Z Cl[ ol Cl' '(Z — 1)[(:1-71 uéll)@}([))) @’U(j) (O)Cj
S/ 104l i—1" :

!
uP @) ()%
+ZZC1'02'2'62- el u; (v (O»@U] (0) >
l

J=1

Proof. For ¢ > sufficiently small we have by hypothesis that u(v(g),e) = 0, then for
1 < i <k we obtain

jg Z Z < ) %uj(v(g)) +0(e) =

7=0 ¢=0

Taking ¢ =0, [ =7 — 7 and using the Fad di Bruno’s Formula we have

il d )
0= Zl,dluzl 0) + i (0(0))

d il d |
=un(0(0) + D 5 uia(0(0) + ilug(0(0))
=1
-y i u“’)(v(()))@v@(o)“‘f
eyl epl2lez ey (i — 1)lei- 0 /
f J=
i—1 il 9 l
; (4) : ()¢
+ il Dug (1(0))0” (0) + (;;CI!CQW_,-q!l!qui_l<v<o>>9w (0) )
—0 S, -

+ ilu; (v(0)).
Then we isolate v(V(0) obtaining

v (0) = —Dug(v(0)) (Z o Ci! = I/)<U<O>) @U(j)(o)

i

i—1 , .
7! o

B e Q0 i)

=0 S

J=1

]

Proof of Proposition 11. Statement (a) follows directly from the Implicit Function Theo-
rem. The proof of statement (b) is simply to define the function

u(a,e) = F**(a,¢) Zefl

where u;(a) = fi(«) for all 0 < i < k — s are given in (1.17). Then from statement (a)
we have u(ae,e) = 0 and by hypothesis we know that dug(ayg) is invertible. Thus we
apply Lemma 16 to u(«, €) taking v(e) = a., obtaining the functions shown in statement

(b). O
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2.6 Proof of Theorems 12 and 13

Proof of Theorem 12. Theorem 12 is just a reformulation of Corollary 6 where the bifur-
cation functions f; and f; were explicitly given. m

Proof of Theorem 13. Consider system (1.11) with k = s + 2 satisfying the hypothesis of
Theorem 13. Then from (1.16) we have that the displacement function is equivalent to

h(z,€) = gs(2) + £gs11(2) + O(?).
From (1.18) the bifurcation function in this case becomes
Fa,e) = fila) +efol).

By hypothesis f(a*) = 0 and Df;(a*) # 0, thus from the Implicit Function Theorem
there exists

a. = o +ea; + O(£%),

satisfying F2(a,e) = 0 with ay = —Df;(a*)"! fa(a*). Furthermore from Lemma 8 we
have that

z2(e) = (o, B(a")) + e 21 + O(€7),

with 27 given by (1.28). Finally from Lemma 9 the Jacobian matrix of the displacement
function of system writes

0.d(z(g)) = e*Ag + 5T A, + O(e°1?),

with Ag and A; given in (1.26) and (1.27) respectively. Consequently the Jacobian of
the Poincaré map (1.19) at z(¢) becomes DII(z(¢),e) = M(e) + O(e¥72), with M(e) =
Id+e%A; + 51 AL

Now we have to consider two cases, s = 0 and s > 0. If s = 0 then we have
M(e) = Id+ Ay + €Ay, by hypothesis (i) of Theorem 12 we have det(A4y) = 0. Thus we
observe that Id + Ag is non-hyperbolic. Indeed let v be an eigenvector of Aj associated
with the eigenvalue 0. We have (Id + Agp)v = v, thus 1 is an eigenvalue of Id + Ay.
Consequently Id+ Ag is non-hyperbolic. By hypothesis Id + Ag is diagonalizable, and by
Corollary 19 there exists a matrix T'(g) such that T'(e) "' M (e)T'(g) = €™ A+ Ay +O(&?)
with T'(e)"'M(e)T(g) = €™ Ay + €™ A,. Then the result follows from applying Theorem
15. If s > 0 we study the jet Ag + €A; separately. By hypothesis we Ay diagonal and
using Corollary 19 there exists T'(¢) such that T'(e)™! (Ag +eA;) T(e) = €Ay + €™ As.
Thus we have T'(e) ' M (e)T(¢) = Id+¢e*T" Ay +&5T2 1A, and the result follows applying
Theorem 15. [

2.7 Appendix A: k-determined hyperbolicity

To find the matrix 7'(¢) is fundamental for applying Theorem 10. Here we show sufficient
conditions for the existence of a such matrix.
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Definition 1. A linear transformation L : V. — V s said to be in real semisimple
canonical form if V is a real vector space and L is block-diagonalizable in the form

"\ _
aq —51
51 aq

ay —515
N ﬁt ay i

The task for putting the matrix series

A(&):A0+€A1+62A2+...

into the form (2.25) is related with putting A(e) in its normal form. This always comes
down to the solution of a homological equation such as

EUJ‘ - Kj - Bj,

where

L =1Ly, : gln) = gl(n),

K; is known at the jth stage of the calculation, and B; and U; are to be determined.
Here gl(n) is the set of all invertible n x n real matrices.

Definition 2. A matriz series A(e) is in semisimple normal form (to order k, or to all
orders) if and only if

1) the leading term Ay is semisimple; and

2) each term A; (for j <k, or for all j) commutes with the leading term: [A;, Ag] =0,
or Aj € kerL.

Notice that only the leading term is required to be semisimple.

Consider A, diagonal (real or complex), it is easy to describe the normal form if we
assume that all repeated eigenvalues are placed right next to each other in the diagonal.
If Ay contains a string of equal eigenvalues in its diagonal, the smallest submatrix of A
containing this diagonal string will be called the block subtended by the string. Then if r
and s are integers such that the (r, s) position in Ag lies in a block subtended by a string,
if follows that A\, = A, and therefore LE,.; = 0. Here E,, is the element of the canonical
basis of gl(n).

Theorem 17. If Ay is an n X n diagonal matriz, with equal eigenvalues adjacent, then
ker (L) is the set of block diagonal n x n, with blocks subtended by the strings of equal
eigenvalues of Ag. A matrix series with Agy as leading term is in semisimple normal form
(up to degree k) if and only if the remaining terms (up to order k) are in this block
diagonal form.
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Theorem 18. Suppose that
A(€> :A0+€A1+82A2+...
s a real matriz series in which Ag is semisimple and is in real semisimple canonical form.

Let
o -

12 1/2
—i/2 )2

12 1/2
I —i/2 /2

and let
A'(e) =Sr(A(e)) = Ay + Al + .. ..

Then it is possible to choose a semisimple normal form
B'(e) = Ay +¢eBi + ...
for the complex series B'(€) such that the series
B(e) =S;'(B'(e)) = Ag +eBy + ...
s a real matrix series in normal form with respect to Ag.

Corollary 19. If Ay is a semisimple matriz in real semisimple canonical form, and if all
of the 1 x 1 and 2 x 2 diagonal blocks are distinct, then the semisimple normal form will
be in real semisimple canonical form with the same block sizes.

2.8 Appendix B: Bifurcation functions up to order 5.

In this appendix we develop the recurrences given by Theorems 2 and 5 for computing
explicitly the expressions of the bifurcation functions and the averaged functions up to
order 5. As far as we know we are the first to provide these expressions.

From the recurrences (1.9) and (1.10) we explicitly develop the expressions of the
bifurcation functions f; : V' — R™, for ¢ = 1,2, .., 5, as stated in Theorem 2. Recall that
[y = (0mgo/0b)(z4). So

fila) =Lami(a) + 791 (2a),
Yi(e) == A T g1(za),
1 1 0%mgq

faf) =5Tarn(0) + 2 208 ()7 + 20 o) (0) + (),

32 1 o 1
() == A, ( S (za)m(a)? + 25 B () + 27%92(@)) ,
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1 1837Tg0
fs(a) —éra%(a) ST
10%*mg, s  1omg o ga

—+ 5 b2 (Za)’Yl(a) + 5 ab (Za)'YQ(Oé) + W(Z'Q)’yl(&)

+ 7[_.93(204)7

Prtgo 2L go

73(a)=—A;1< S (@) + 3522 () (0) © 7a(0)

1 0%mgo
(Za) 71 (@) + 5 b2

(za)71() © 72(a)

Prtg s SOThg Ort g,

+ 3W(Z‘I)%<a) 2, (2a)72(@) + 6w(%)%(0¢)

+ 67Tlg3(04)> ,

1 1 d'rg 1 Png

fa(a) :ﬂra%(@) + ﬁa—bﬁ(za)%(a)‘* + Za—bgo(za)%(a)z ® 72(@)

19w gq s 10%mg

+ gw(za)%(a) + gw(za)%(a) ® 73(a)
1 Prqgy ;s 10%7mqy 10mrgy

+ gw(za)%(a) + §W(za)%(a) © 72(a) + 6 ob (za)73()
10%mgs 10mgs

(za)m(0)* + 5

2 b (Za)’VQ(CY) + %(Z@)”yl(a) + 7Tg4(2a)7

2 ob?
[ Ot 9t Ot
Ya(a) = — Aal < 86490 (Za>71(04)4 +3 86290 (Za)72(04)2 + 48—()290(%)71(04) © y3(a)

83 1 B 1 82 1
22 (am (@) ©9a(0) + 475 o ra0) + 127 (o) (@) ©92(0)

ob?
Prtg Ot g
ob3 ob

+6

(za)ra(@) + 120722 (o o)?

(Zoz)71<05)3 + 12 ab

+4

ortgs

W@a)%(@) )

1 1 9*ng 1 9*mgo
—mra%(a) + EW<Z°‘>72(Q> © () + ﬂw(%)%(oﬁ ® (@)

1 P3mgo 1 &gy

g abS (%)71(04) © 72(0[)2 + E abg (ZCY)’YI(O(>2 ®© 73(06)
1 d*rgy

LD 0 ©20(0) + 1o T o)

120 9B
1 Orgy 10*mg, 2, 10°1g)
3735 ) 1(0) + g7 (2a)32(0) + £ (za)m (@) © 73(a)

1037mq 1 d'rgy

Loy 2 Lo 4 18792
1 o0 (za)1()” © 72(0) + o7 o0 (za)m1(a) 5o (2a)73()
10%mgs

1 8371'92 3
5 (2a)n(0) ©72(0) + mgs(za) + £ (2a)n(0)
10
7 o )alcr) +

1 67, , | Omgs
2y §W(Za)%(0¢) + b (za)n1 ()
+7Tg5(za)7

+24

fs(@)
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82 1 82 1
() = = A (10 S (Fa)2(0) ©7(a) + 52 () (@) © 1 (e)
Pty Pty
+ 15T30(za)71(a) © (@) + 10~ % (2a) 11 (@) © y3(c)
Nt Pt
10752 () (@) © a(a) + a—bﬁ%zam(af
ort g Prtg 0?rtg,
5 () + 155D a(0)? + 20522 (o) (@) © 5(e)
9Pl 9t
#3052 (@) © () + 5 (za) ()
Ont 2L
20752 (20)75(0) + 607557 (20)71 () © ()
837TL92 3 871' gs
+20W(za)%(a) + 60 50 (za) V2 (@)
27TL93 ) 87TL94
+60W(za)%(a) + IZOT(ZQ)%(@) )
The averaged functions, as stated in Theorem 5, are computed as follows:

yi<T7 Z)
il

6i(:) = Y(T,2) "

So from the recurrence (1.12) we explicitly develop the expressions of y;, fori = 0,1, ...

yo(t, 2) =x(t, z,0) — z,
n(t2) =Y (£, 2) /0 Y (7, =)Ly (r, 2(7, 2,0))dr.

2F5(1,2(7,2,0)) + Qai(T (7, 2,0))y1 (7, 2)

ya(t, 2) :Y(t,z)/o Y(7,2)7" o

0*F,
+ W(Ta x<7—7 Z, 0))y1(7-7 2)2] dT>

6F5(T, x(T,2,0)) + 688—2(7' x(7r,x,0))y1 (T, 2)

ys(t, 2) —Y(t,z)/o Y(7,2)7"

0*F, ) OF,
+ BW(T, x(7,2,0))y1 (7, 2)* + 3%(7, z(7,2,0))y2(T, 2)

) PF,
35 (1 (72, 0 (1,2) © (7, 2) + 5 (7, (r, 2, 0, 2)° | dr,

. (T7 x(Ta Z, 0)):91(7-7 Z)

24Fy(1,2(7,2,0)) + 2488—};

ya(t, 2) :Y(t,z)/o Y(r,2)™"

82F2 2 OF;
+ 12— (1, 2(7, 2,001 (7, 2)" + 125=(7, (7, 2, 0))y2(, 2)
82F 83F
125 (7, (72, 0 (7, 2) © (7, 2) + 45 (7, 0(7, 2, 0))a (7, 2)°
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0F, 0?Fy
+ 4%(7,3:(7, 2,0))ys(7,2) + 3 52 (7, 2(7, 2,0))ya(T, 2)°
O F,
+ 4#(7, 2(7,2,0))y1(7, 2) © ys(7, 2)
PF N*F,
+6—— (T, 2(7, 2,0)1(7, 2)* © y2(7, 2) + (T, 2(7, 2,0))y (7, 2)* | dr,
Ox Ox
t
E
ys(t, z) =Y (t, z)/ Y (7,2)" | 120F5(7, 2(T, 2,0)) + 120%(7, z(7,x,0))y. (T, 2)
0
+ GOW(T, x(7,2,0))y1 (7, 2)* + 6()%(7, x(7,2,0))y2(T, 2)
O F. O3 F
+ 60%22(7, (7, 2,01 (7, 2) © ya(T, 2) + zo%j@, 2(7,2,0))y (1, 2)?
OF. O*F
+ 208—;(7, (7, 2,0))y3(7, 2) + 20 81’21 (r,2(7,2,0))y1 (7, 2) © ys(, 2)
O0*Fy 5 P F 9
+ 15W(7,:p(7,z,0))y2(7, 2)°+30 e (1,2(7,2,0))y1(T, 2)° © ya(T, 2)
NF OF,
+ 5W(T, z(7, 2,0))y1 (1, 2)* + 5%(7', z(7, 2,0))ys(T, 2)
0?F
+ 1OW(T, z(7,2,0))y1 (7, 2) © y3(T, 2)
0*F,
+ 5%20(7', x(7,2,0))y1(7, 2) © ya(T, 2)
P F
+ 15%30(7, z(7,2,0))y1 (T, 2) ® ya(T, 2)?
P F
+ 106730(7, z(7,2,0))y1 (7, 2)* © ys(7, 2)
M F P F
+ 106740(7, o(7,2,0)y1 (T, 2)> © yo (1, 2) + 6x50 (7, 2(7, 2,0)) 1 (7, 2)° | dT.

2.9 Appendix C: Basic results on the Brouwer degree

In this appendix we follow the Browder’s paper [6], and we present the existence and
uniqueness result from the degree theory in finite dimensional spaces.

Theorem 20. Let X = R" =Y for a given positive integer n. For bounded open subsets
V of X, consider continuous mappings f : CI(V) — Y, and points yo in Y such that yq
does not lie in f(OV) (as usual OV denotes the boundary of V). Then to each such triple
(f,V,yo), there corresponds an integer d(f,V,yo) having the following three properties.

(i) If d(f,V,yo) # 0, then yo € f(V). If fo is the identity map of X onto Y, then for
every bounded open set V and yo € V', we have

d (fO V’V’ yO) = =x1.
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(ii) (Additivity) If f : Cl(V) = Y is a continuous map with V' a bounded open set in X,
and Vy and Vs, are a pair of disjoint open subsets of V' such that

yo & F(CIV\(VLUV2)),

then
d (fo,Viyo) = d(fo, Vi,v0) +d (fo, Vi, o).

(#i) (Invariance under homotopy) Let V' be a bounded open set in X, and consider a
continuous homotopy {f; : 0 <t < 1} of maps of C(V) into Y. Let {y, : 0 <t < 1}
be a continuous curve in'Y such that y; & f;(OV) for anyt € [0,1]. Then d(fi,V,y;)

is constant in t on [0,1].

Moreover the degree function d(f,V,yo) is uniquely determined by the three above condi-

tions.
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Chapter 3

Maxwell -Bloch and a 3D polynomial
differential system

In this chapter we start a sequence of applications of the theoretical results presented
in Chapter 1 and proved in Chapter 2. Here we study two differential systems. First
we study the zero-Hopf bifurcation in the Maxwell-Bloch system, a three dimensional
polynomial differential system. The computations in this chapter will be done step by
step. And the proofs will be presented just after the theorems. The reason is that we
want to clarify, for instance, how Theorem 12 and 13 are connected in order to provide the
existence and stability of the periodic solution of the Maxwell-Bloch system. Most of the
results presented in the following chapter will be done using Theorem 12 and 13. For these
reason we present in Section 3.2 a system for which the classical averaging method and
also Theorem 12 does not provide information about periodic solutions, for this reason in
this case Theorem 13 will be necessary. This results are published in [17].

3.1 Maxwell-Bloch system

In nonlinear optics the Maxwell-Bloch equations are used to describe laser systems. For
instance in [2] these equations were obtained by coupling the Maxwell equations with the
Bloch equation (a linear Schrédinger like equation which describes the evolution of atoms
resonantly coupled to the laser field). Recently in [48] it was identified weak foci and
centers in the Maxwell-Bloch system which can be written as

u=—au+wv,
0 =—bv+ uw, (3.1)
w=—c(w—0) — 4duwv.

For ¢ = 0 the differential system (3.1) has a singular line {(u,v,w)|lu = 0,v = 0}; for
¢ # 0 and ac(d — ab) < 0 the differential system (3.1) has one equilibrium py = (0,0, §);
and for ¢ # 0 and ac(d — ab) > 0 the differential system (3.1) has three equilibria py =
(:I: u*, vt w*) and pg where

o — c(é—ab)’v _. C(a_ab),w*:ab.
4a 4a
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Using the above strategy we shall prove the following result.

Proposition 21. Let w € (0, 00), (a,b,¢) = (ag — bie + ase?, —ag+bie +bse?, cie+ c2e?)
and § = —a} — w? with ag(az + bz) > 0, ¢; # 0 and € a small parameter. Then for || #
0 sufficiently small the Mazwell-Bloch differential system (3.1) has an isolated periodic
solution p(t,e) = (u(t,e), v(t,e), w(t,e)) such that

2
u(t,e) =cw 2az +ba) sint + O(g?),
Qo
2
v(t,e) =cw M(ao sint 4+ wcost) + O(e%), and (3.2)
Qo
4ew? b
w(t,e) =0 — ¢ W + O(?).
1

Proof. Applying the change of variables (u,v,w) = (¢V,e(agV 4+ wU),d + W), the dif-
ferential system (3.1) reads

U= —wV + = (VIV = 2aoh,V — bwl) + €2<M ~baU),
w w

V =wU +ebV — 2a,V, (3.3)
W =e(—aW —4V(a)V +wlU)) — %c,.

In order to apply the strategy described above we must write the differential system
(3.3) in the standard form (1.11). To this end we proceed as usual. First we consider
the cylindrical change of variables (U,V,W) = (rcosf,rsinf,w), where r > 0; after
checking that § = w + O(e) # 0, for |e| # 0 sufficiently small, we take 6 as the new
independent variable. Therefore the differential system (3.3) becomes equivalent to the
non-autonomous differential system

dz (7 w\ 2 3
i (0., 6’) =cF1(0,2)+e°F5(0,2) + O(e”), (3.4)

where z = (r,w) € R x R and 6 € S*. Moreover

r

Fi(0,z2) = <ﬁ((w — 2a0b;) sin(26) — 2byw cos(26)),

(crw + 47 sin O(w cos 0 + ag sin b)) )
w )

3.5
Fy(0,z2) = 2—14 (2bw cos B + (2agby — w) sin 8) (2byw cos(26) + (2aobs (3:5)
w
—w)sin(26)) + rw? ((az — ba)(w cos(260) + agsin(26)) — (as + bs)),
(2bjw cos 0 + (2apby — w) sin )

w?

(clw + 4r? sin 0 (w cos 6 + ag sin 0))) )
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For the differential system (3.4) we have that Fy(0,2) = 0. Then z(0,2,0) = (r,w) is
the solution to the unperturbed system, and Y (¢, z) = Id is its corresponding fundamental
matrix. In this case the averaged functions reads

21 (2a91? + c;w
g(z)= |0,— = 1 )>’
w
7r(3aor? + ciw — 2(ag + by)w?) 7w
g2(2) = ( 57 ) ] ((2agb; — w)(6agr? + cyw) (3.6)

+2¢17(2a0r? + crw)w + 2((2by + ¢1)r? — CQM)W2)> .

Now we are going to use Theorem 12 taking s = 1. To do this we define the function
h(z,e) = g(z,¢)/e, where now h(z,e) = ¢1(2) + €g2(2) + O(e?). Note that the averaged
function ¢;(z) vanishes on the manifold

~ 200002
Z:{za:(a,— aoa):a>0}.
C1

Furthermore A, = —(2m¢;)/w is the lower right corner of the Jacobian matrix Dgi(2q)
for all z, € Z. Computing then the bifurcation function f; (see (1.24)) we get

ra(aga® — 2(as + ba)w?)

Solving the equation fi(a) = 0 we find
2
o = wy | 22t b))
Qo

Moreover fi(ag) = 2m(ay + by)/w. So it is clear that hypotheses of Theorem 12(a) are
fulfilled with s = 1. Thus for |e| # 0 sufficiently small it follows that there exists

2e) = |y [A2tte) Allatb)) g0 (3.7)

Qo 1

such that h(z(e),e) = g(z2(¢),e)/e = 0 for every || # 0 sufficiently small. Therefore
we conclude that there exists a 2m-periodic solution periodic (r(6, ), w(f,¢)) of the non-
autonomous differential system (3.4) satisfying (r(6,0),w(0,0)) = z(0). Since 0(t) =
wt + O(e), this proof ends by going back through the cylindrical coordinate change of
variables and then doing (u,v, z) = &(V,agV + wU, W) . O

3.1.1 Stability

We have seen that the averaged functions (3.6) up to order 2 were sufficient for detecting
the existence of a periodic solution of the differential system (3.1). Now we show that
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the higher order averaged functions may play an important role for studying the stability
of the periodic solution ¢(t,e) provided by Theorem 12(a). Instead of applying Theorem
(13) directly we are going to show why this result is realy necessary.

Clearly the stability of the periodic solution ¢(t, ) can be derived from the eigenvalues
of the Jacobian matrix of the displacement function D,h(z(¢),e) evaluated at z(e) =
©(0,¢). From equation (3.7) we can write z(g) = 29 + O(g?). Moreover since in this case

Y(t,z) = Id then D,h(z(¢),e) = eDg1(z0) + O(e), where

0 0
D = 2 .
a1(z0) <—87T\/ 2ap(ag +by) — WCI)
w

So a first approximation of the eigenvalues Ay of the Jacobian matrix D,h(z(¢), ) is given

by
21y

Ay =0(?), A =—¢ + O(£?). (3.8)

w

Clearly the stability of the periodic solution ¢(¢,¢) cannot be completely described by
these expressions. Now we show how the higher order bifurcation functions and averaging
functions can be used for doing a better analyses of the stability of the periodic solution.

We recall that, after some changes of coordinates, the differential system (3.1) can be
transformed into the standard form (3.4). Expanding it in power series of € up to order
3, the differential system (3.4) becomes

d
d_; =cFi(0,2) + e F(0,2) + 2 F3(0, 2) + O(eY),

where F and F; are given in (3.5) and

F3(0,z2) = (%( — 3(aghy — w) (Bagr® + ciw) — 2¢17m(2aor® + cw)w + (4aghy (as

+ bg) - 3<2b1 + 01)7’2 — 2((12 + bg - 02)w)w2>,

127T = <127Tw (ag (67‘4 — 16blclr2) + 2apc1w (77‘2 — 2b101) + 30%102)

w

— 2w? (w (6a0(a201 — 2bycy — bacy) 4 6b2c; — 9r?(4by 4 3¢;) + 87r20?)
+aor? (36ag(as — by) + 108b7 + 36bic; + 2 (87% — 3) ¢ — 45r%) + Geow?)

+ 247‘[‘&)3 (r2(2a0(a2 + b2 + Cz) — 61(261 + Cl)) + chczw)

— 9(w — 2ab1)* (10agr® 4 c1w) + 24r*w*(cs — 2a2)> :

From (1.15) and (1.17) we compute the third averaged function and the second bifurcation
function, respectively, as

r
gg(Z) = (m (w2 (4@0()1(&2 + bg) — 22’(@2 + b2 - C2) — 37’2(2b1 + Cl))

—3(2apby — 2) (5@07“2 + clz) — 2w (2@07"2 + clz)) ,

38



Mazwell -Bloch and a 3D polynomial differential system

1275 (127rw (a% (6r4 — 16b101r2) + 2apc12 (77"2 — 2blcl) + 36%22)

—2uw? (z (6ao(a201 — 2b1cy — bacy) + 6b3c; — 9r?(4by + 3¢p) + 87?2051")
+aor® (36aq(az — by) + 108b7 + 36bycy + 2 (8n% — 3) ¢f — 45r7)
+6¢22%) 4 247w’ (1*(2a0(as + by + c2) — €1(2b1 + ¢1)) + 2¢1¢22)

—9(z — 2agb1)” (10agr® + ¢12) + 24r°w*(c2 — 2a2)) ) ,

and

fala) = =25 (10agr® (bicy +7°) + w? (1r?(2b1 + 1) — 4ag(ag + by) (brer +17)))
2 == .

4eqwd

So F(a,e) = efi(a) + &2 fo(a). As shown in the previous subsection a. = « is a simple
root of the function f;(«). Using the Implicit Function Theorem we find a branch of zeros
of the equation F?(a, ) = 0 having the form a = a. = ag + ca; + O(e?), where

o =

a9 + bg (8(1%()101 + w2(16a0(a2 + bg) + Cl(2b1 + Cl))>

2a0 2|ag|crw

Note that @. satisfies the hypotheses (iii) and (iv) of Theorem 5 for s = 1, [ = 1 and
k = 2. Using the relation |rz(e) — 725.| = |a(e) — @.| = O(e?), provided by Theorem 5,
we write a(g) = ap + ca; + O(e?). From Claim 11 of the proof of Theorem 5 we get
Blale),e) =B (ale)) +em(ale)) + O(?)
=B(ap + s + O(?)) + evi(an + car + O(e%)) + O(2).

Expanding 3(a(e),€) in powers series of € we have 3(a(e),e) = By + e81 + O(g?), where

60 _ (CL2 + bQ)(,dQ7
C1
6 _4(&2 + bg) (60,(2)6161 —+ (16&0(@2 + bg) + C1 (2b1 + cl))w2)
1 — P .

Finally we obtain z(¢) = (a(e), B(ale),€)) = 2o + 21 + O(?), with 25 = (ap, fy) and
z = (ozl, 61). Then we compute the Jacobian matrix of the displacement function (1.13)
evaluated at z(e) as

D.h(z(e),e) = eD.gi(z(¢)) + 62D292(2(€)) O(e’)
=eD,q (zo + ez 4+ O(?) +€2D.gy (zo +ez+0O(e )) + O(e%)
=¢eD.g1(20) +¢ ( zgl(ZO)Zl + DZQQ(ZO)) O(e )
Let D.g1(z0) = (pij),,, and D.ga(20) = (gi;),, , then expanding D.h(z(e), ) in Taylor
series around € = 0 we have D, h(z(g),e) = eA; + e2Ay + O(e?) with A; = D,g1(20) and

Ay = (szij(zo)-21 + qij(zo))2X2. Therefore we may improve the approximation (3.8) of
the eigenvalues A1 of D.h(z(¢),¢) as

A :&M + O, (3.9)
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A_=—¢

2017T . 52 2 ((Zoblcl + UJ(C%W — CQCL)))

- — + O(e%). (3.10)

Note that we have approximations for the eigenvalues A\+. Then the only remaining
question is: Can we use the approximations (3.9) and (3.10) to study the eigenvalues of
the full matrix D,h(z(¢),e)? In general we cannot proceed in this way. The problem is
that the 2 — jet Ag + €A; may be insufficient for recovering the information about the
eigenvalues of the full matrix D,h(z(g),e). This problem appears for instance in the works
of Murdock and Robinson [62] and Murdock [59]. Next we present an example where this
problem emerges.

Example 2. Consider the matriz A(e) = Ay + Ay + 2R where

00 -1 0 0 a?
A0—<1 0), Al_(() _1) and R_<0 0).

Let A\ and Xg be the eigenvalues of Ag + €Ay. Writing the Taylor series of these
eigenvalues at € = 0 we obtain \; = —e + O(&3) and Ny = —e + O(&?). Conversely com-
puting the Taylor series of the eigenvalues of the full matriz A(e) we have the eigenvalues
A = (=1+a)e+O() and A3 = —(1 +a)e + O(e®). As we can see the hyperbolicity of
the matriz A(e) depends on a. Thus the hyperbolicity of the matriz A(e) cannot be studied
using only Ay and A;.

The problem in Example 2 is that the matrix A(g) is not 2 — hyperbolic. Thus in order
to study the eigenvalues of the matrix D,h(z(¢),e) we need to verify the hypotheses of
Theorem 12. Hence using Theorem 12 we can deduce the following statements about the
stability of the periodic solution ¢(t,e) = x(t,2(g),e). Recall that from the hypotheses
of Proposition 21, ag(as + b2) > 0. So

(a) If ec; < 0 the solution ¢(t,e) has at least one unstable direction.
(b) If ay+bs > 0 and ag > 0, then the solution (¢, €) has at least one unstable direction.
(c) If ag+by <0, ec; > 0 and ag < 0, then the solution ¢(t,€) is asymptotically stable.

Figures 3.1 illustrate the behavior of the Maxwell-Block system (3.1) satisfying the
hypotheses of Proposition 21 with ag = —1, ao = =2, by =1, by = =2, ¢ = 2, ¢5 = 1,
w=1ande=1/25.

3.2 Birth of a limit cycle in a 3D polynomial system
Consider the following 3D autonomous polynomial differential system

u=-v+e (v —u—uw’—m’),
b=u+e(mu’—1), (3.11)

W =W — EU.

In the next proposition as an application of Theorem 5 we provide sufficient conditions
for the existence of an isolated periodic solution for the differential system (3.11).
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I I I
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Figure 3.1: (A) Transversal section with u = 0 and v > 0. (B) Solution starting at (0, ew?(2(ag+
by)/ag)'/?, 5 — 4ew?(ag + by) /c1) being attracted by the limit cycle (3.2).

Proposition 22. For |e| > 0 sufficiently small system (3.11) has an isolated periodic
solution ¢(t,e) = (u(t,e), v(t, ), w(t,e)) such that

u(t,e) =V/8¢ cost + O(e),
v(t,e) =V8e sint + O(e), and
w(t,e) =0(e).

Proof. Writing the differential system (3.11) in the cylindrical coordinates (u,v,w) =
(rcosf,rsinf, w) we get

T :Z (r® + 7r?(r(7 sin(46) + 2 cos(26) + cos(40)) — 3 cos § — cos(36)) — 4sinb),

0 =1+ 43 (r*(sin @ + sin(30) — rsin(46) + 7r cos(46) + 37r) — 4 cos ),
r

W =w — €r cos 0.

Since 6 # 0 for le| # 0 sufficiently small we can take 6 as the new independent variable.

So

_d’f’ = €F11(9, Z) + €2F21(9, Z) + Ol<€3),

de

o (3.12)
@ = w+EF12(9,Z> +€2F22(9, Z) +02(€3),

where z = (r,w) € R? and

1
Fi1(0,z2) =2 (r® ++ 7?(r(7 sin(46) + 2 cos(26) + cos(40)) — 3 cos 6 — cos(36))
— 4sin 0),

Fi2(0, 2) :_Tl (4cosf (r* — w) + r*w(sin @ + sin(36) — rsin(46) + mr cos(46)
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+ 377)),

Fy(0,z) _1__6}”( —4sin 6 +r° + r*(—3 cos 0 — cos(30) + r(m sin(46)

+ 2 cos(26) + cos(46)))) (*(sin 6 + sin(36) — rsin(46) + 7r cos(46)
+ 3mr) — 4 cosb),

1
Fy(0,2) = 162 (r*(sin @ + sin(30) — rsin(46) + 7r cos(46) + 3mr) — 4 cos §)
r

(4cosf (r* — w) + r’w(sin @ + sin(36) — r sin(46) + mr cos(46)
+ 37Tr).
The differential system (3.12) is 27-periodic in the variable 6 and it is written in
the standard form (1.11) with Fy(6,2) = (0,2), Fi(6,2) = (Fi1(6,2), Fi2(0,2)) and

Fy(0,z) = (Fx(0,2), F2(6,2)). Moreover the solution of the unperturbed differential
system (3.12).—o for an initial condition zq = (79, wp) is given by

D0, z) = (ro, woee).

Consider the set Z C R? such that Z = {(c,0) : a > 0}. Clearly for each 2, € Z, the
averaged equation go(z) = Y(T,2)'®(T, z,) — z satisfies the hypothesis H with

0P 1 0
V6.2 =G = (o o)

the fundamental matrix of the unperturbed system (3.12).—g. Now in order to compute
the bifurcation functions (1.17) for the differential system (3.12) we first calculate

Y0(0,2) =Y (0,2)7! (O, (e — 1)w)7

yi1(0,2) =Y (0,2)" (i—g (—36sin 6 — 4sin(30) + 67r sin®(20) + 3rsin(46))

1 2

P (12 (0r® — 4) + 24 cos b (r’sinf + 2)) , %(cos@ — sin )
elr ew , 5

— —(w((36m0 — 3)r —— (48sind + r*(12 cos
48( (3670 — 3)r + 16) + 24) + I (48sinf + r*(12cos §

+ 4 cos(30) — 3r(msin(40) + cos(49)))) :

—mr(3r +4) e "
4 T 40

Y2 (2, 2) = Y (2, z)l( (((3 = 2m)r — 6)r* + 10)

N %(ﬁ((m +157) — 3)r +6) — 10)) :
and from (1.15)

(2
y2m2) =012 (3.13)

7!

gi(z2) =Y (2w, 2)

So the bifurcation functions (1.17) corresponding to the functions (3.13) become
file) = —, fola) =maBa+4), and F(a,e)=cfi(a)+ e fao(a). (3.14)
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Now we must check that the function (3.14) satisfies the hypotheses for applying
Theorem 5. So det(A,) = |Dw7rlgo(za) =1—e2"#£0, and for a. = V92 + 8¢ + 3¢ we
have that

Fa.,e) =0 and |0,F(as,e)| > &? <8 — |9 +3v/e(8 + 95)!) :

Thus it is easy to find Py > 0 satisfying |0,F>(a.,€)| > €2Py. Hence, using the notation
of Theorem 5, we have s =1, k =2, =2, and (k+r+1)/2 =2 = 1. So we can apply
Theorem 5 in order to prove the existence of an isolated periodic solution (r(,¢), z(6,¢))
of the differential system (3.12) such that

r(0,6) = V92 + 8 + 3 + O(e) = V8 + O(e) and w(0,g) = O(e).

Since 0(t) = t + O(g), this proof ends by going back through the cylindrical coordinate
change of variables. O]
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Chapter 4

Fitzhugh-Nagumo and Quadratic
chaotic systems

In this chapter we use Theorem 12 for studying the periodic solutions of seventeen differ-
ential systems. First we study the Fitzhugh-Nagumo system, which is related with nerve
impulses in mathematical biology. The averaged equation related with this system has
a continuum of zeros and we will use the method developed in Chapter 1 to detect the
periodic solutions bifurcating from singular points in this set of zeros.

Furthermore we use Theorem 12 for studying the zero-Hopf and the Hopf bifurcation
of other sixteen 3-dimensional differential systems that was provided by Jafari et al [41]
in 2013. These systems has equilibria only for a certain choice of the parameter a, and we
show that under some conditions a periodic solution emerges in these systems when the
equilibria disappear. Moreover we show graphically that the periodic orbit which is born
in such bifurcations is the origin of a period doubling cascade which originate the chaotic
motion in those differential systems. Here we use the classical averaging theory, and the
new results in this theory here developed to illustrated how the averaging theory is useful
for studying the periodic orbits which bifurcate from a zero-Hopf equilibrium point, or
from a Hopf bifurcation. The results here presented were published in [13] and [15].

4.1 Application to Fitzhugh-Nagumo system

The Fitzhugh-Nagumo arise in mathematical biology as a model of the transmission of
electrical impulses through a nerve axon. The Fitzhugh—Nagumo equations consist in a
simplified version of the Hodgkin—Huxley equations which are described using a non—linear
diffusion equation coupled to an ordinary differential equation

Up = Uy — f(u) —v, vy =06(u—v), (4.1)

where f(u) =u(u—1)(u—a), 0 < a < 1/21is a constant, § > 0 and v > 0 are parameters.
In [38] it was stated that a single nerve impulse appears to tend as ¢ increases to a traveling
wave, i.e. a bounded solution (u,v)(z,t) = (u,v)(§) where £ = x + ct. Hence one is lead
to seek for solutions of (4.1) not identically zero of the form (u,v) = (u(£),v(£)) for some
¢ # 0. Substitution into (4.1) gives a set of ordinary differential equations which, after
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the introduction of the variables x = u, y = v and z = @ take the form

y =b(x — dy), (4.2)
Z=x(x—1)(z—a)+y+cz,

where the dot denotes the derivative with respect to ¢ and (a, b, ¢,d) € R?* are parameters.
For a detailed study concerning traveling waves in (4.1) see [32]. Hereafter the differential
system (4.2) will be called Fitzhugh-Nagumo differential system.

Proposition 23. There are two parameter families of the Fitzhugh-Nagumo differential
systems for which the origin of coordinates is a zero-Hopf equilibrium point, both families
are 2—parametric. Namely

(i) forad+1=0, bd —c =0 and d(1 — b*d®) > 0; and
(i1) forb=c=0 and a < 0.
Proof. A proof of this proposition can be obtained in [29]. O

1 1 —b%d?
Theorem 24. Let a = — +are+ase?, c=bd+ coe? and w = — Assume that

d(1 —=0*d®) >0, (d —1)a1b # 0 and € # 0 sufficiently small. Then the Fitzhugh-Nagumo
differential system (4.2) has a zero—Hopf bifurcation in the equilibrium point at the origin
of coordinates, and the periodic orbit

x(t,e) =0(e?),

y(t7 5) 20(52)7 (43>
z(t, ) zsdaidl + O(g?),

born at this equilibrium when ¢ = 0.
Moreover, if

7d4+/(d—191)(d+1)+7 a2bd3(24b2d%—13 . )
(a) b+ ﬂ:\/ 12d3(d+1) and ¢y # W. Then the Fithugh—Nagumo differ-

ential system (4.2) has four periodic solutions emerging from the origin.

Theorem 24 is proved using Theorem 1 and 12. Theorem 24 is proved in section 4.3.1.

Euzébio et al. studied the zero-Hopf bifurcations of system (4.2) using the classical
averaging theory (see Theorem 11 of [29]). Considering the two parameter families of
zero—Hopf equilibria stated in Proposition 23(i) the authors of [29] find using the first
order averaging method, a periodic solution bifurcating from the origin of the system
different from the periodic solution (4.3), because in Theorem 5 of [29] the order of the
periodic solution in the three variables (z,y,2) is O(¢) while in our case is O(e?) for x
and y, and O(e) for z. Moreover using second order averaging theory the authors of [29]
in Theorem 6 [29] find one additional periodic solution bifurcating from the origin, while
using our Theorem 24 we find four periodic solutions.
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4.2 Application to a catalogue of quadratic chaotic
systems

In general the equilibria of a chaotic nonlinear system play an important role in its dy-
namics. In fact one of the most important methods for obtaining 3-dimensional chaotic
systems is the Shilnikov’s method [73], which using a homoclinic orbit from the intersec-
tion of the stable and unstable manifolds of a saddle-focus equilibrium point with specified
eigenvalues, provides the existence of a horseshoe in the neighborhood of this orbit and,
consequently the existence of chaotic motion.

However some particularly important natural phenomena are described by nonlinear
systems having no equilibria. Such as, the Noose-Hover oscillator [66], the Wei system
[84] and the Wang—Chen system [82]. These nonlinear systems present chaotic behavior
that cannot be detected by the Shilnikov’s method.

The increasing interest in finding examples of simple chaotic flows without equilibria
have been motivating many researchers in recent times, see for instance [41, 65, 80, 84,
85]. The theoretical and practical importance of these systems converted this subject in
a new attractive research direction. Although there is still little knowledge about the
characteristics of such systems.

In this section we shall study the existence of zero-Hopf bifurcations in 3-dimensional
systems, and graphically we will show that such bifurcations sometimes are the starting
bifurcation of a route to chaos. In general a zero-Hopf bifurcation is a codimension-two
bifurcation of a 3-dimensional autonomous differential equation with a zero-Hopf equilib-
rium, and a zero-Hopf equilibrium of a 3-dimensional autonomous differential equation is
an equilibrium point having two purely conjugate imaginary eigenvalues and a zero eigen-
value. Due to the lack of a general theory describing all the possible kinds of bifurcations
that an unfolding of a zero-Hopf bifurcation can produce, most of the systems exhibit-
ing these kind of bifurcations must be studied directly. Here we use averaging theory
for detecting periodic solutions bifurcating from a zero-Hopf equilibrium. Furthermore
using Theorem 12 we were able to detect periodic solutions in very degenerate cases, for
instance when the first averaged equation has a continuum of zeros.

In 2013 Jafari et al. [41] have reported a catalogue of seventeen elementary three di-
mensional chaotic flows. This catalogue contains most of the elementary examples known
of such systems and it includes the systems of the Noose-Hoover oscillator, the Wei system
and the Wang-Chen system, listed there as system (4.4), (4.5) and (4.6), respectively. In
[41] the authors used their own custom software to search for the algebraically simplest
three-dimensional chaotic systems with quadratic nonlinearities and no equilibria. The
search was inspired by the observation that each of the previously known examples of
such systems contains a constant term (here represented by a), and that if the constant
is set to zero, the resulting system is non-hyperbolic (the equilibria have eigenvalues with
real part equal to zero). The method used to find these systems is that proposed in [76].

We consider the differential systems

T =y, T =—y, T =y,
y=—x— zy, (4.4) Yy =x+z, (4.5) Y =2z, (4.6)
2 =y? —a. 2 =2y + z2z — a. 2 =012%+1.12z —y + a.
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z=-0.1y +a, T =2y, T =y,

y=x+ z, (4.7) Yy =2z — 2, (4.8) Y =2z, (4.9)
z =xz — 3y. i=—y?+ 22 4a Z=—y—T2—Yz—a.

x =y, T =y, T =y,

y=—x+z, (4.10) y=—x— 2y, (4.11) y=—x— 2y, (4.12)
3 =0.822 + 22 + a. 3 =xy + 0.52% — a. 3=—xz4T2° —a.

T =z,

y=z—1, (4.13)

z=—-09y —zy+z2+a.

T =y, T =z,

y=—x+z2, (4.14) Y =x -, (4.15)
z=—2xy—1.8xz+4+ 2 —a. 3 =— 4z + 8xy + yz +a.

T =-y, T =y,

Y =x + z, (4.16) Y =z, (4.17)
z=xy+zz+02yz —a. 3= —y? + xy + 0422 + a.

i =—0.8z—0.5y°+zz+a, i =—y—22+23zy +a,
§=—0.8y—0522+yx+a, (418) g=—z—2°4+23yz+a, (4.19)
3 =—0.8z—0.522 4 zy + a. t=—1a—y?+23z2z +a.

Each of the systems (4.4)—(4.13) have an equilibrium that undergoes a zero-Hopf
bifurcation at a = ¢* = 0, and no equilibria for a > 0. Each of the systems (4.14)—(4.19)
have an equilibrium that undergoes a Hopf bifurcation at some a = a*. The limit cycle
which appears in this Hopf bifurcation later on produces a period-doubling cascade, and
finally a chaotic attractor with no equilibria, i.e. the equilibrium point which exhibits the
Hopf bifurcation disappears before the chaotic attractor appears.

Jafari et al. [41] have reported numerically a period doubling cascade of periodic
orbits originating the route to the chaotic motion in these systems. Here we graphically
observe that the first periodic orbit performing the period doubling bifurcation detected
by Jafari et al. emerges in those systems at a zero-Hopf or Hopf bifurcation. This helps to
understand the mechanism of chaos in these systems, and the objective of this section is
to show the existence of these zero-Hopf or Hopf bifurcations using the averaging theory.

One of the contributions of this work is to show that in many cases the periodic
solutions that generate (via period-doubling) the chaotic attractor started with a periodic
orbit coming from a zero—Hopf or a Hopf bifurcation.

The next theorem shows that the systems considered exhibit a zero—Hopf bifurcation
at a = 0. Although we can check that these systems have no equilibria when a > 0.

Theorem 25. The following statements hold.
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(1) The differential systems (4.4)—(4.13) exhibit a zero—Hopf bifurcation at a = 0, more
precisely for a > 0 sufficiently small they have a periodic orbit which tends to a
zero-Hopf equilibrium when a — 0.

(7i) All the periodic solutions emerging in the zero—Hopf bifurcation are non-hyperbolic,
with the exception of the differential system (4.5) that has a hyperbolic periodic
solution.

(13i) All the periodic solutions in the zero—Hopf bifurcation emerge around the zero-Hopf
equilibrium point located at the origin of coordinates, with the exception of system
(4.13), which has the periodic solution emerging from the zero-Hopf equilibrium point

(1,0,0).

Another interesting aspect of some the differential systems provided in [41] is that
some of them have equilibria only if the parameter a belongs to convenient intervals. In
these intervals a Hopf bifurcation occurs and a periodic solution emerge in the system,
but as a increases the equilibria disappear and the isolated periodic solution coming from
the Hopf bifurcation start its cascade of period-doubling. The differential systems having
this behaviour are (4.14)—(4.19), in fact for a < 5/36 system (4.14) has the equilibria

P, — (1 (5+ V25— 180a) ,0 (5 + /25 — 180a))

such that when a = 0 the origin is an equilibrium point with the eigenvalues Ao = £
and A3 = —1. Similarly, if @ < 0 system (4.15) has the equilibria

it a = —196 the equilibrium point P, has the eigenvalues \; o = +iv/7 and A3 = —8. The
system (4.15) has the equilibria

Py = (£v/a,0,+Va) ,

for a < 0. When a = —25/16 the equilibria P; has the eigenvalues A\j o = +iv/2 and
A3 = —5/4. System (4.15) has the equilibria

P:I:: (:l:\/a>070>a

for a < 0 and for a = —25 the equilibria P, has the eigenvalues A\ 3 = +iv/5 and \3 = —
Finally, system (4.19) has the equilibria

Py = ( (5+ /25 —130a),0, — (5 + /25 — 130a))

for a < 5/26 and when a = —560/1849 the equilibrium point P_ has the eigenvalues
Mo = £iv/3 and \3 = —69/43.

Theorem 26. Consider the differential systems (4.14)—(4.19). The following statemens
hold.
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(i) Let a = axe® with ay > 0. The differential system (4.14) has a Hopf bifurcation at
a = 0, and for € > 0 sufficiently small a periodic solution emerges from the origin
of coordinates of this system.

(ii) Let a = —196 + age? with ay > 0. The differential system (4.15) has a Hopf
bifurcation at a = —196, and for ¢ > 0 sufficiently small a periodic solution emerges
from the equilibrium point (—7,—7,0).

5
(17i) Leta = 1—6+CL2€2 with ag > 0. The differential system (4.16) has a Hopf bifurcation
—25
at a = ST and for € > 0 sufficiently small a periodic solution emerges from the
5 5
libri nt | ——,0,- ).
equilibrium poin ( 7 ,4>

(iv) Let a = —25+ase? with ay > 0. The differential system (4.17) has a Hopf bifurcation
at a = =25, and for € > 0 sufficiently small a periodic solution emerges from the
equilibrium point (—5,0,0).

8
(v) Let a = % + age? with ay > 0. The differential system (4.18) has a zero-Hopf

bifurcation at a = %5 and for € > 0 sufficiently small a periodic solution emerges

4 4 4
from the equilibrium point (— )

555
. 560 5 . .
(vi) Let a = ~ 1849 + age® with ay > 0. The differential system (4.19) has a Hopf
560
bifurcation at a = ~ 1849’ and for € > 0 sufficiently small a periodic solution
f i Jibri » 10 10 10
emerges from the equilibrium poin 5 B B

To illustrate graphically the relation between the periodic solutions provided by The-
orem 26 and the chaotic attractors presented in [41] we shall use system (4.19) as an
example. First we observe that for a < 5/26 this system has the following equilibrium
point

Do = (1—13 (5 — /25 — 130a) 1—13 (5 — V25 —130a) % (5— /25— 130a)> .

560
Taking a = 1349 + aze? and € > 0 sufficiently small system (4.19) has a periodic

solution as stated by Theorem 26(vi). In this case the equilibirum point py exists only

5
. 23 15 . . o .
if 0 < e < 54/g799 ~ 0.54. For instance, taking ay = ~ 1819 + 2 and € = 0.002 it can

be seen that the solution of system (4.19) starting at (1, —1,0) converges to the periodic
solution, see Figure 4.1. Increasing the value of ¢, for instance ¢ = 0.251 and € = 0.511,
the periodic solution increases its size and still remains stable, see Figures 4.2 and 4.3
respectively. For all the previously values of ¢ the point pgy is an equibilibrium point of
system (4.19). However for ¢ = 0.691 and € = 0.97 the system has no equilibria and we
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can see that the periodic solution starts its cascade of period-doubling, see Figure 4.4 and
4.5. Taking € = 1 the system has a strange attractor as it is reported in [41], see Figure
4.6. These solutions were plotted for 0 < ¢ < 1000.

0.0 —
== 5
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¥o.5 ¥
-0.5
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z \
05T P 1 )
100 ~"-10  -05 00 0.5 1.0 00210 05 00—4a5 10
X -1.0 ) S )

Figure 4.1: Solution of system (4.19) starting at (1,1,0) with

e — 0.002. Figure 4.2: Solution of system (4.19) starting at (1,1,0) with

e = 0.251.
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Figure 4.3: Solution of system (4.19) starting at (1,1,0) with Figure 4.4: Solution of system (4.19) starting at (1,1,0) with

e =0.511. e =0.691.
'/
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Figure 4.5: Solution of system (4.19) starting at (1,1,0) with Figure 4.6: Solution of system (4.19) starting at (1,1,0) with
e =0.97. e=1.
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4.3 Proofs

4.3.1 Proof of Theorem 24

The following lemma will be useful in the proof of Theorem 24, it was proved in [25].

Lemma 27. Consider p+1 linearly independent functions & : I CR —-R,1=0,1,..., p.

(a) Given p arbitrary values x; € I, i = 1,2, ..., p there exist p+ 1 constants C;,
1=20,1, ..., p such that
p
= Ci&i() (4.20)
i=0

is not the zero function and £(x;) =0 fori=1,2, ..., p.

(b) Furthermore if all §; are analytical functions on I and there exists j € {1, 2, ..., p}
such that & |1 has a constant sign, it is possible to get a function &(z) from (4.20),
such that it has at least p simple zeroes in I.

1
Proof of Theorem 24. Take a = —a+a15+a252, ¢ = bd+ coe? and d(1—b*d*) > 0. Doing
the change of variables (x,y, z) — ¢(X,Y, Z) system (4.2) becomes

X =Z,
Y =b(X —dY), (4.21)
Z:—§+Y+dbz+aa1d+)§(1_d)

+e2 (X (ag + X (X —ay)) + 2Z) — a X €.

In order to write the linear part of system (4.21) in its normal real Jordan form we do

bd _ b
the following change of variables X =7+ —y+ 2z, Y = —y —|— —, Z = bdr — wy with

o d’
1
w= ”Zl — b?d?, obtaining

= ((bdg + (T +2)w)) (b(d — )dg — (ad — (d — 1)(T + 7)) w)

o ) G ) e
- — a+ | T+2+— —a1+r+z2+ — rT+zZ+ —
w w w w

+ co(bdT — w@)) , (4.22)
Z7=— Z—b(bdy +w(@+72))(b(d—1)dy —w(ard — (d —1)(T+%)))

bd bdy _ _ bdy bdy ~_  _
— —+:)3+z —+7r+zZ )| —+T+Z2—a
w w w w

+ a2> + o (bdT — yw)) + O(£%).
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Using the change of variables (7, v, Z) — (u, v, w) where T = ucos(wt) — vsin(wt)
y=wvcos(wt)+usin(wt) and Z = w, system (4.22) becomes

:M(sin(tw)(bdu — vw) ~+ cos(tw) (bdv + uw)

dw3
+ ww)((d — 1) (sin(tw) (bdu — vw) + cos(tw)(bdv 4 uw))

— w(ard — dw + w)) — 52812—(’5“) <(sin(tw) <bd7“ _ v)

+ cos(tw) (bzl}_v + u) + w) (% ((sin(tw)(bdu — vw) + cos(tw)(bdv
+uw) + ww)(w(w — ay) + sin(tw) (bdu — vw) + cos(tw)(bdv + uw)))
+ay) — co(sin(tw)(bdv + uw) + cos(tw)(vw — bdu))) +O(eY),
w)(bdv + uw) + ww)((d

:M(sin(tw)(bdu — vw) + cos(t
bdv + uw)) — w(ayd — dw + w))

dw3
— 1)(sin(tw) (bdu — vw) + cos(tw)

" cos(tw) ((sin(tw) (deu — v | + cos(tw) (b%v + u) + w)

(i(sin(tw)(bdu — vw) + cos(tw) (bdv + uw) + ww)(w(w — ay)

+ sin(tw) (bdu — vw) + cos(tw)(bdv + uw)) + as) — co(sin(tw)(bdv

/‘\/—\

(4.23)

+ uw) + cos(tw) (vw — bdu))) +0(e%),

( n(tw)(bdu — vw) + cos(tw) (bdv + uw) + ww)(w(a;d — dw + w)

— 1) (sin(tw) (bdu — vw) + cos(tw)(bdv + uw)))

(
i ( sin(tw) (——v)—l—costw <—+u)—|—w)

( (sin(tw) (bdu — vw) + cos(tw)(bdv + uw) + ww)(w(w — a;)

(
+ sin(tw) (bdu — vw) + cos(tw)(bdv + uw)) + as) — co(sin(tw)(bdv + uw)
)

+ cos(tw)(vw — bdu))) + O().
The above system is in the normal form for applying the averaging theory given in

2
Theorems 1 and 12, where 7' = —7T, y = (u,v,w) and the function (1.3) corresponding to
w

system (4.23) is
— Dw)(bdv + uw)

() = — (ard — 2(d — 1)w)(bdu — vw) (a;d —2(d
ay) = 2dw? ’ 2dw? ’
b((d—1) (u?+v?) (0*d® + w?) — 2w*w(a1d — dw + w))
2wt ‘
d
The zeros of this function are s = (O, 0, %) , and the continuum of zeros Z, =
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{(«, B+()), « € R} where

B w? (a3d? — 2(d — 1)2a?) — 2b*(d — 1)?d*a*  aid
fela) = (i\/ 2(d — 1) (2 + w?) " 9(d — 1))'

advd (d? + w?)
46
existence of a periodic solution of system (4.23) emerging from the origin. Consequently
going back through the change of variables system (4.2) has the periodic solution (4.3).

For z, € Z_ we have

Furthermore since det (Dg;(s)) = — # 0, by Theorem 1 we can ensure the

ra2d*V/b2d? + w? (a2bd + 24cow?)
24(d — 1)w* (2(d — 1)awvb?d? + w? — bdA,,)’

fila) =

4(d —1)%a?

where A, = \/a% (2d — 2b2d*) — . As fi(a) # 0 for all & € R we cannot apply

Theorem 12 in this case. On the other hand for z, € Z, we have

Co + 01042 + CQOZ4 + OgAaa + 04/\@&3

, 4.24
24(d — 1)2dw® (2(d — 1)awVb?d? + w? — bdA,) (4.24)

fi(a) =

where
Co =n (—a}) (d — 1)dPw* (b°d® + w?) (ajbd + 24cow?)
Oy =4m(d — 1)%dw® (V*d* + w?) (af (13b°d° — 11bdw?) 4 24cow® (V*d* + w?)) ,
Cy = — 967b(d — 1)°(bd — w)(bd + w) (d® + w?)?,
Cy =21dw® Va2 + w? (a? (b2d? (3d(d + 8)w? — 14(d — 1)?) + 3d(d + 8)w"
—2(d — 1)’w?) + 24as(d — 1)*w?* (b°d* + w?)) ,
Cy =96mb*(d — 1)*dw (Bd® + w?)**.

a2b%d° (1 — b2d3)
2(d — 1)2

. In addition the domain

The denominator of f; vanishes at a® = i\/

. Thus

of definition of A, is the interval J C R such that |o| < '

the domain of definition of f; is I = J \ {a*}.

In order to study the maximum number of the simple zeros of function (4.24) we are

going to apply Lemma 27. Thus we define the functions & (a) = 1, & (o) = a?, &(a) = o,

&(a) = Aga, () = Aya? and E(a) = Z?:o Ci&i(a) with o € I C R. We observe that
the five functions of the set {C; | i =0, 1, ..., 4} are linearly independent. Indeed due
d(Cy, C1, Cy, C5, Cy) .

to hypothesis (a), the determinant of the Jacobian matrix is

a(a'h az, b7 C2, d)

d a2d(1 — B
(d—1) 2

424673287512 (d—1)" (b2 1)

s (d (0*(d 4 1)d? (6b2d® — 7) + 2)
+10) <a§bd3 (2402d® — 13) — 24y (b?d® — 1)2) 7 0.
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Thus statement (a) of Lemma 27 ensures that the function {(«) has 4 zeros. In addition,
&o(a) does not changes sign, so by statement (b) of the same lemma, £(«) has 4 simple
zeros. Finally we observe that the simple zeros of £(a) are also simple zeros of fi(a) so
there exist values «; € I for i = 1, 2, 3, 4 such that fi(«;) = 0, and det (D fi(«;)) # 0.
So the conclusion of Theorem 24 follows from Theorem 12. O

4.3.2 Proof of Theorem 25

The proof of Theorem 25 for systems (4.4)-(4.7) and (4.9)-(4.13) can be obtained using
Corollary 7 with s = 0 which is equivalent with the classical averaging theory as we shall
see. We start proving Theorem 25 for system (4.13).

Proof of Theorem 25 for system (4.13). We take a = ase? with ay > 0 and ¢ > 0 suffi-
ciently small. First we translate the point p = (1,0,0) to the origin of coordinates, then
we use the change of variables

19X V10Y 19v10Y
P e
(x7 y’ Z) € < 9 + Y 3 Y 30 ) )
and the differential system (4.13) writes
-3, L ((10X + 3\/10Y> (19X +9Z) — 90 )
VTR )
: 10X + 3v10Y) (19X +97) — 90

V10 2710

.1
Z = (90@2 - <10X + 3\/1_OY> (19X + 9Z)> .

Using the cylindrical change of variables (X,Y,Z) = (pcos#,psinf,z) where p > 0,
system (4.25) becomes

1

P “3c (—18a2 (3\/1_051119 + 10cos 0) + 9pz <6\/Esin(29) + cos(20) + 19)
+19p? cos § (6\/1_()sin(29) + cos(26) + 19)) ,

: 3 € )

6 :\/—1_0 + 710, (p <3\/ESII10 + 10 cos 9) (19pcos O + 9z) — 90a2>

(3@ cos — 10sin 0) ,
1
z =3¢ (90@2 —p (3\/1_0 sin f + 10 cos 0) (19pcos 6 + 92)) .

This differential system can be reduced to the normal form for applying the averaging
theory. Taking # as the new independent variable we obtain the differential system

€ 5 )
=3V 32 (P <6\/Esm(20) + cos(20) + 19) (19p cos + 92)

—18as <3\/1_Osin9 + 10 cos 9)) +0(e%),

/

p
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4 :;TB\/E <9Oa2 —r <3\/msin9 + 10 cos 9) (197 cos 0 + 9z)> + O(e?).

Here the derivatives are taken with respect to 6. Using (1.15) we write the functions

1
go = 0 and ¢1(2) = V107 (gp (18ay — 19p2)). The averaged function ¢; has the

© 243
2
solutions z, = + | 3 %,0 . The result follows by taking s = 0 and z* = 2, and
applying Corollary 7. The periodic solution is non-hyperbolic. The eigenvalues of the
20
Jacobian matrix Dg;(zy) are igi\/a_g. O

Proof of Theorem 25 for systems (4.4)-(4.7) and (4.9)-(4.12). The proof of Theorem 25
for systems (4.4)-(4.7) and (4.9)-(4.12) is similar to the proof of Theorem 25 for system
(4.13). It can be done using Corollary 7 with s = 0 and doing analogous computations.
The reader can check in Theorem 1.1 of [20] the proofs for these systems using classical

first order averaging. The authors also provide approximations for the periodic solutions
found. O]

Now we prove Theorem 25 for system (4.8). This proof is not provided in [20] because
the classical averaging theory does not provide information for this case. We shall prove
this result using statement (b) of Theorem 12 .

Proof of Theorem 25 for system (4.8). Using the change of variables (z,y,z) = e(x +
y, —y, —2z) the differential system (4.8) writes
. 1
X=—2V+ce (az —Y?+427%),
Y =2X, (4.26)
1
Z =3¢ (—as +Y?—427%).
Using the cylindrical change of variables (X,Y,Z7) = (p cos @, psin 6,2) where p > 0,
system (4.26) becomes
.1 2 .2 2
pzsicosé(ag — p°sin” 0 + 4z ),
X in@ 24 20+4 2
§_g_Sn (az — p?sin z)’
2p

z :S% (—ag + p?sin? 6 — 422) .

This differential system can be reduced to the normal form for applying averaging theory.
Taking 0 as the new independent variable we obtain the differential system

sin f cos 6 (a2 — p*sin? 0 + 422)2
16p

1
0 =€ cos 0 (as — p*sin® 6 + 427) + &

sin” ) cos 6 (ag — p%sin? 0 + 422)3

3
+e€ 61,2

26
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sinf (az — p?sin® 6 + 4,22)2
16p

2 == (—az + p°sin’ — 42°) + &° — (4.27)

sin® 0 (—ag + p*sin® 6 — 422)3
64p?

+ & +O(eY).

Here the derivatives are taken with respect to #. Using (1.15) we write the functions
90(2) =(0,0),

2
az p 2
g1(2) w(, 5+ z)

1
g2(2) = (0, 57722 (2a2 —p* + 822)> ,

g3(2) = (% (24a2(p + 2) + day (—7p° + 482° 4 96p22 — 12p°2) + 8p° + 3842
P
+ 1152p2* — 192p?2% — 208322 + 15p%z2, 46758 (3p (8 (15 — 327%) a3
P

+4 (647 — 23) azp” + (5 — 647°) p*) — 128z (9a3 — 18asp® + 10p*)
+92162° (p* — az) + 48pz> ((60 — 2567°) ay + (1287 — 47) p?)
~184322° + 1152 (5 — 827%) p2*) ).

=
Consider the graph Z = {za = (o, f(a)) : Blar) = % and a > \/2a2}. For all

a > +/2ay the averaged function g;(z,) = (0,0). Then taking s = 1 in Theorem 12 we

2 2 2
77-62 4 5 a2. For o* = \/2as
we have fy(a*) = 0 and the derivative of f, goes to infinity at a*, so it is a simple zero
of fo. Thus applying statement (b) of Theorem 12 we have that system (4.27) has a
periodic solution bifurcating from point z7. Consequently going back through the change
of variables we have the existence of a periodic solution of system (4.8). O

compute the bifurcation functions fi(a) = 0 and fo(a) =

4.3.3 Proof of Theorem 26

Proof of Theorem 26 statement (i). Using the change of variables (z,y, z) = €<X—|—Z, Y+
Z,2Z7) the differential system (4.14) writes

X=—v+ 130(5a2 ~2X + Z)(5Y — 142)),

Y =X + 130(2()( + Z)(5Y — 147) — 5ay), (4.28)

7 =7+ 15—0(2()( + Z)(5Y — 147) — 5ay).

Using the cylindrical change of variables (XY, Z) = (p cosf, psin H,Z) where p > 0,
system (4.28) becomes

) :%g(cos@ — sinf) (5as + 28pz cos§ — 10psin6(pcos b + z) + 282%)
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0 =1+ %(sin@ + cos§) (—Bas — 28pz cosf + 10psin O(pcos 6 + z) — 282%)
p

Z=z+ 130(2(5psin9 — 14z)(pcosf + z) — Hay).

This differential system can be reduced to the normal form for applying the averaging

theory. Taking # as the new independent variable we obtain the differential system
/

p :16—0((3059 — sinf) (5as + 282> + 28pz cos§ — 10psin6(pcosf + z))

0 — sin f)(sin 0 6
L2 (cos smu))ésm + cos ) (5ay — 5 sin(20) + 282 — 10pzsin 6
p
+28pz cos 0)2 + O(?),

(4.29)
2 =z+4¢e(—bBay — 282" — 28pz cosf + 10psinb(pcosd + z))

(p— z(sinf + cos 9)) L (sin@ + cos0)(—p + zsin @ + z cos )
10p 1002
(5az — 5p” sin(26) + 28z% — 10pz sin 6 + 28pz cos 9)2 + O(e%).

Here the derivatives are taken with respect to 6. Using (1.15) we write the functions

go(z) = (0, (1= €7*7) 2),

0(z) = (% (7 — 1) 2 (T1p+ 42 (1 + ) 2)

2T
(eTpl) (—25a2p +10p% + 28 (62” + 64”) P 9462”p22)> ,

g2(z) = (— 786620 (156 (=71 + 71e®™ — 957) p* + 28 (127 — 195¢*™ + 68¢°7) 2
p
+3 (1591 — 6474€*™ + 4883¢™™) pz) + m (52005720
(—284 4 284¢*™ + 57) p* + (e (4823 — 2226¢>™ + 806€°™) — 3403) 2*
8453760 + 38584 ("™ (1308320 + 1767897¢*™ — 1169940¢*™ + 90712¢°7)
—1996989) pz* — (759163 + 666540¢*™ — 1872448¢°™ + 446745¢°™)
100011p%2* + 8000880 (€™ — 1) (1 + €™) (4799 + 10883¢”™) p*z) ,

3T 42 4 o

_¢ a?fos;lh(w) + T3616TE06TE000.7 (6956415121500 (€>™ — 1) p°

+ 61590200e”™ (e*" (1258803 — 454104€*™ — 409955¢*™ + 230724¢°7)
—625468) 2° + 1764476¢°™ (°7 (61818120 + 35320311e*™ — 60289650¢*™
+256360e°™) — 37105141) pz* — 500055¢*™ (—41423181 — 3714436¢""
+16341616€°™ 4 19305793¢®™ + 9490208¢'%7) p*z* — 3216040 p*2*
sinh(7) (153644891 — 120359184 sinh(27) 4 31576438 cosh(27))
—204805250e°™ (—784488 + 784488¢°™ + 610137) p*z) + (—2403375
(™ —1) p* + (13030 + 21489¢*™ — 4988¢"°™ — 4147¢™ + 6767 2°
357e*™ — 986€°™ pz* sinh(7) (19421 — 3834 sinh(27) + 12388 cosh(27))
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9
113102 (—1627 + 1627¢>™ — 63757) p?2) — o ) .
+11310¢™ ( +ibare ™) ") 96135002

Consider the graph Z = {z, = (a, f(a)) : f(a) = 0 and a > 0}. For all @ > 0 the func-
tion go(zo) = (0,0). Then taking s = 0 in Theorem 12 we compute the bifurcation
functions fi(«) = 0, and

fola) = =55 (10(TLe™ (€27 = 2) + 957 + TL)a, — (2846>" (27 — 2) — 57 +284) a?).
. Say 3857 . .
For a* = oy <1 + 284cT (27 —9) 57r—|—284> we have fo(a*) = 0and D fo(a*) #

0. Thus applying statement (b) of Theorem 12 we have that system (4.29) has a peri-
odic solution bifurcating from point z,+. Consequently going back through the change of
variables we have the existence of a periodic solution for system (4.14). O

Proof of Theorem 26 statement (ii). First we translate the point (=7, —7,0) to the origin
of coordinates. Then we use the change of variables (z,y,z) = 6(8X + Z, X +V7Y —

Z)7,—8 (VTY + Z) ) and the differential system (4.15) writes

X == VTV + —(7ay — 4(336X — 98VTXY +128X 2 + 98V —2V/7Y 2

- 7ZZ>>,

. E
Y =V7X +
3976\/7

n 722> - 1O5a2>, (4.30)

<60 (336X2 _98VTXY + 128X 7 + 98Y2 — /7Y Z

Z—_87+ % (4 (336)(2 _08VTXY + 128X 7 + 98Y2% — 2VTY 7 + 722)

— 7a2>.

Using the cylindrical change of variables (X,Y,Z) = (p cos @, psin 9,2) where p > 0,

system (4.30) becomes

€

27832
+ 2807 (V7(509 5in 6 + 299 sin(30)) — 2303 cos 0 — 49 cos(30) )

P (4pz (1009\/7 sin(20) — 3031 cos(26) — 3241)
+ 7 (ag — 422) (49 cosf — 15v/7sin 9) ),

. € )
0=VT = s (495in6 + 15V7 cos ) (7 (a2 — 4 (319 + 22)) — 4760 cos(26)

—512pz cos 0 + 8/ Tpsin 6(49p cos 6 + z)) :

5 =—8z+ % (=Tas + 476p> cos(20) + 868p> + 282” + 512pz cos 6

— 8V/Tpsin0(49p cos 0 + z)) .

29
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This differential system can be reduced to the normal form for applying the averaging
theory. Taking 6 as the new independent variable we obtain the differential system

o :ﬁm (28p2 (\/7(509 sin @ + 299 sin(36)) — 2303 cos € — 49 COS(39)>
+dpz (1009\/? sin(26) — 3031 cos(26) — 3241) +7 (ay — 42?)
<49 cosf — 15v/7sin 6’)) + O(e?), (4.31)
,_ 8« . _ 2 2
z = 77 24353p ((49 (ﬁp + zsm@) + 15V/7z cos 0) (a2 4 (31p +z )

7 — 476p% cos(20) — 512pz cos  + 8v/Tpsin §(49p cos ) + z)> +O(e2).
Here the derivatives are taken with respect to 6. Using (1.15) we compute the functions
g0(2) = (07 (1 - 61Gﬂ/ﬁ) Z) )

_ 32w _ 167w
97 (e VT — 1) 22 13541 (1 —e ﬁ) pz 6—487’;
(z) = 37346 B 182896 " 168355768p

167 327 167
(e = 1) (9020967 p (472497 — 23a5) + 148892827 4 8¢ 7 22
(7509965 + 186116z)>> :

92(2) = (H1(2), Ha(2)),

where the functions H; and Hy are provided in the Appendix D.

Consider the graph Z = {2z, = (o, B()) : B(a) =0 and « > 0}. For all a > 0 the
function go(2,) = (0,0). Then taking s = 0 in Theorem 12 we compute the bifurcation
functions fi(«) = 0, and

_ 32z
e Vi

2389353344
327
+e 7 (26128V7r (23a; — 17684a?) — 94787 (23az — 47240%) ) ).

fal) (18957467 (284, — 47240%) — 94787 (23a; — 472407

The bifurcation function f, has the positive solution

32n 16w
. 23a; (7 (26128v/7r — 04787) + 189574 V7 — 94787)
o ToA| Tor
e (115511888V/Tr — 111943447) + 223886894e 7 — 111943447
~0.0288042./a3,

such that Dfy(a*) &~ —0.002a5 # 0. Thus applying statement (b) of Theorem 12 we
have that system (4.31) has a periodic solution bifurcating from point z. Consequently,
going back through the change of variables we have the existence of a periodic solution
to system (4.15). O
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Proof of Theorem 26 statement (iii). After translating the point (—5/4,0,5/4) to the ori-

57 417
gin of coordinates we use the change of variables (z,y, z) = 5(Y+Z, Vs V2X)Y — 1_6)’
then the differential system (4.16) writes
. 320 12¢/2X (32Y + 137) — 320Y% + 20Y Z + 625 2>
X —_ \/EY . g ( (05} + \/_ ( + ) + + ) ’
912v/2
) —320ay — 122X (32Y +132) + 5(64Y? —4Y Z — 12527
y —yax o (78200 — 12vaX( 1142) ( )), (4.32)
g 57 N € (320a2 +12v/2X(32Y + 13Z) — 320Y2 4 20Y Z + 625Z2)
4 1140 '

Using the cylindrical change of variables (X,Y,Z) = (p cos @, psin 9,2) where p > 0,
system (4.32) becomes

y — £ 2 . . 2 . . .
P =9120 (5 (64as + 12527) <5\/§COSQ 8sin 9) + 32p°sinf ( 73v/25in(26)
+20 cos(20) + 100) + 2p= (~287V/2sin(26) + 430 cos(26) + 350) )

f=v2+—— (5\/§sin9 +8cos 9) (3203 + 62527 + 4p (5sin 0(2 — 16psin )

9120
+3v/2cos 0(32psin 6 + 132))) ;
)
= ZZ * 11640 (4/) (5 sin(z — 16psinf) + 3v/2 cos §(32psin 6 + 13Z)>

+ 3200y + 62522>.

This differential system can be reduced to the normal form for applying the averaging
theory. Taking # as the new independent variable we obtain the differential system

/

g
P T 9120v2
—1168p2) + 700p°z + 4p? (292\/5 cos(36) + 50sin 0 (16 — 25%22)

( — 2560a, sin 0 + v/2 cos 0 (1600a2 +3125p*2% — 1148z sin 0

52

_|_ -
83174400v/2p
(1600as + 3125p"2* — 1148p°zsin 6 — 1168p°) + 700p°z + 4p”

(292\/5 cos(36) + 50sin 0 (16 — 250222) + 5 cos(20)(32sin 0 + 43pz)))

+5 cos(20)(32sin 6 4 43pz)) > <—2560a2 sin @ + /2 cos 6

+ (sin9 (1600as + 3125p 2% + 2336 cos(20) + 736p%) + 20v/2 cos 6

(64as + 125p"2% + p*sin 0(32sin 6 + 43pz)) + 2p°2(287 cos(26) + 337))
+ O(e?), (4.33)
5z €
7 =— + 1024
42 36480v/2p? ( (

~ 16p2 (—T80az 5in 0 + 6v'2 (20005 — 141p%) cos 6 + p? (1265 sin 0

10ay + p* (6\/§ sin(260) — 5) + 5p COS(ZG))
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1525 sin(36) + 534v/2 cos(30))) + 18750023 (13 sin 6 — 20/2 cos 9) 4 opts?

82

6653952003
+3125p" 2 + 2336p% cos(20) + T36p%) + 20v/2 cos 0 (64ay + 125p" 2

+p°sin0(32sin 6 + 43pz)) + 2p2(287 cos(26) + 337)) (,0 (5\/52 sin 6
(24964, + 4875p" 2% — 4048p”) — 24z cos 6 (1600ay + 3125p"2* — 1128p7)
+12psin(20) (407p%2% + 1024) + 10v/2p cos(26) (512 — 975p%2?)
—8400v/2p%z sin(36) — 17088p%z cos(39)) +10v2(1024a5 + 1103p*2>

- 512,02))) + O3,

(1221V25in(26) — 4875 cos(20) + 5515 ) ) + ((sin6 (16000,

Here the derivatives are taken with respect to 6. Using (1.15) we write the functions

go(z) = (O, (1 — 62%> z> ,

( Pz (—95625e‘%\/§pz + 95625v/2pz — 121264¢ 2v5 121264>
g1(z) =

2558160 ’

_ 157w
e 2v2

51 571
_ e (= 1) (22528 7 (153as — 11202) — 3538125+/20° 23
153489602 <€ ev* (1530, 7) Vs

_15e3vE pt2? (235875\/§pz . 240416)) ) ,

92(2) = (I(2), I»(2)) ,

where the functions I; and I, are provided in the Appendix D. Consider the graph
Z ={zy = (o, B(e)) : B(ar) = 0 and o > 0}. For all @ > 0 the function go(z,) = (0,0).
Then taking s = 0 in Theorem 12 we compute the bifurcation functions fi(«) = 0, and

_ 5w
e 2v2

633793675
+145357V/2 (3060, — 1310%) ) ) .

fo(a) <44096 (153aa; — 1120%) + 8>3 a (5512 (1120 — 153a5)

The bifurcation function f, has the positive solution

34a; (373 (14535127 — 2756) + 2756

e277 (1904085v/27 — 617344) + 617344

such that D fy(a*) &~ —0.47as # 0. Thus applying statement (b) of Theorem 12 we have
that system (4.33) has a periodic solution bifurcating from point z}. Consequently going
back through the change of variables we have the existence of a periodic solution to system
(4.16). O
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Proof of Theorem 26 statement (iv). First we translate the point (—5,0,0) to the origin

X Y Zz
of coordinates, then using the change of variables (z,y,z2) =¢| — —=+ — — —, X +
g g (2,9,2) < T AT
Y 4+ Z,V/5X — /5Y — 2Z> the differential system (4.17) writes
. 2v/5 45
X =iy —2Y5+5) (20 <\/S+6> X? — 1004y — 20 (\/3—6) y?
1800v/5

12X (80Y 41257 + 2\/5Z> v (250 _ 4\/§> YZ+ 8522) ,

V =V5X — 5%0}55) (20 (\/5+ 6) X2~ 10043 — 20 <\/_— 6) y?
£2X (80Y +1257 + 2V52)) + (250 — 4v/5) YZ + 852°) (4.34)

1
Z=—20+ ¢ (20 (\/5 n 6) X? — 100ay + 2X (80Y 41257 + 2\/€Z>

—20 (\f . 6) Y2 4+ (250 _ 4\/5) YZ + 8522) .

Using the cylindrical change of variables (X,Y,Z) = (pcosf,psin6,z) where p > 0,
system (4.34) becomes

p =15 (5 (200, = 172) (V5 +2) cosf — (V5 —2) sino)
—2V/5p? (3 (\/5 + 10) sin(30) + (37\f - 50) sind — 3 (\/5 - 10) cos(36)
+ <37\/5 + 50) cos 0) — 2pz (240 sin(26) + 129v/5 cos(26) + 260)) ,

6 =/5— m ((2v5-5) cost — (2v5+5) sin0) (1206 — 100a;

+2p (10\/5p cos(26) + cos 0 <80p sin 6 + (2\/5 + 125) z)
n (125 - 2\/5) 2sin 9) v 8522> ,

PR & (—100a2 12002 4+ 2p <10\/5p c0s(26) + cos 8 (80psin §
+(2v54+125) ) + (125 - 2V5) 2sin6) + 85:%)

This differential system can be reduced to the normal form for applying the averaging
theory. Taking 6 as the new independent variable we obtain the differential system
/

p :180@5 (5 (200, = 1722) (V5 +2) cost — (V5 —2) sin0) — 257
(3 (JS + 10) sin(36) + (37f - 50) sind — 3 (\/5 - 10) cos(360) + cos 0

(37V5+50) ) — 202 (240sin(26) + 120v/5 cos(26) +260) ) + O(=?),

245
P — V52 + ° <10p + (2\/5 + 5) zsinf + (5 — 2\/5) Z CoS 9) <120p2
25 4500v/5p
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— 100as + 8522 + 2p (1of5p cos(26) + cos 0 <80p sin 6 + (2\/3 + 125) z)

+ (125 _ 2\/S> 2sin 9) ) _o(@v5- 5LS§;§O;O£QF£+ 5) sin ) ( —10p

- (2\/5 + 5) zsin 6 + <2\/_ - 5) Z Cos 8) (120/)2 — 100ay + 852% + zsin @

(125 — 2\/5) +2p (10\/5p cos(260) + cos b (80p sin 0 + (2\/5 + 125) z)>>2
+ O(e?).

Here the derivatives are taken with respect to 6. Using (1.15) we write the functions

gol2) = (0.(1 = e%)z),

(2) = (1 - 647%) <140€87% (10a + (\/g - 12) 2) + 34 (1 + 647%>
gi\z) = 126000 p 2 P

_ 8=w

Ar V5 4w
V5 — 10) B (27\/5 + 412) e%sz) _ 2652050 (e% _ 1) p

Tevs (123\/5 + 520) o+ 170 (1 v 67> (2\/5 + 1) z) )

where the functions J; and J, are provided in the Appendix D.

Consider the graph Z = {z, = (a, f(a)) : f(a) =0 and o > 0}. For all & > 0 the
function go(2,) = (0,0). Then taking s = 0 in Theorem 12 we compute the bifurcation
functions fi(«) = 0, and

_ 8w

e Vi

324000
8w

(9565 + 5625 ) a?) + ¥% ((956v5 +5625) ? + 18075 (84, — 1902)

~10 (123\/5 n 520) az) ~ 10 (123@ + 520) aQ) .

fa(a)

((956\/5 + 5625) 0l 4+ 2V (10 (123\/5 + 520) y—

The bifurcation function fy; has the positive solution a* =

100, (€75 (1447/5 — 1235 — 520) — 123V/5 + 2¢ 5 (12375 + 520) — 520)

e (3420m/5 — 9561/5 — 5625) — 956+/5 + 2e¥5 (9561/5 + 5625) — 5625
~ 0.369082/as,
such that D fy(a*) &~ —0.0las # 0. Thus applying statement (b) of Theorem 12 we have
that system (4.31) has a periodic solution bifurcating from point z}. Consequently going

back through the change of variables we have the existence of a periodic solution to system
(4.15). O
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Proof of Theorem 26 statement (v). First we translate the equilibrium point
(4/5,4/5,4/5) to the origin. Then using the change of variables (z,y,z) = 5<Z -

2V, V3X +Y + ZY, (—\/§) X+Y+ Z) the differential system (4.18) writes
e (3X%2 —2V3BX(Y —22) - 3Y (Y +42))

44/3 ’
CX2_2VBX(Y —22) + V(Y + 42)) , (4.35)

X_—%<4\/§Y>+
I

. 72
Z:€<CL2—2(X2+Y2)+7>

Using the cylindrical change of variables (X,Y,Z) = (pcosf,psinb,z) where p > 0,
system (4.35) becomes

P :Zp <—p sin(36) + v/3p cos(30) + 4z> ,

0= 4\/— 4 (\/§(4z — psin(30)) — pcos(39)> ,

52
z =€ <a2—2p2+5).

This differential system can be reduced to the normal form for applying the averaging
theory. Taking # as the new independent variable we obtain the differential system

p :5p6 (—psin(36) + v/3pcos(30) + 4z) N

16v/3
2ay — 4p* + 22
Z,:55( as —4p* + 2°%) L O,
8v/3

Here the derivatives are taken with respect to 6. Using (1.15) we write the functions

5rz 5 (2ay — 4r? + 2?)
= 0 and z) =m ,

solutions zy = =+ (w, /%,0). The result follows by taking s = 0 and z* = 2z, and

O(),

). The averaged function g; has the

applying Corollary 7. The eigenvalues of Dg;(z;) are £i5, | %. [

Proof of Theorem 26 statement (vi). First we translate to the origin of coordinates the
point (—10/43,—10/43,—10/43). Then using the change of variables (z,y,z) = (X +
X f Y X f Y

Z, gt + Z, Ty T Z) the differential system (4.19) writes

VY + 45—0 (—13)(2 1 26V3XY + 86X 7 +13Y2 + 86\/§YZ) ,

Y =V3X + % <13\/§X2 +26XY — 86V3XZ — 13V/3Y2 + 86YZ> , (4.36)
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; 69 2 2 2

ZZ—EZ—{—E(ZLOCLQ 43 (X? +Y?) +522°%).
Using the cylindrical change of variables (XY, Z) = (p cosf, psin H,Z) where p > 0,
system (4.36) becomes

P 54—0 (13\/_ps1n(39) — 13pcos(30) + 862)

0=V3+ <13p <sin(39) +/3 cos(39)> - 86\/§z> ,
69 1
= gite <a2 + 5 (522 — 43p2)) .

This differential system can be reduced to the normal form for applying the averaging
theory. Taking 6 as the new independent variable we obtain the differential system

2
/

40\/_ (13\/_,08111(39) — 13pcos(30) + 86z> + 4€8OPO (13p(cos(30)
~-V3 sm(39)> . 86,z> (13,0 (sin(39) +/3 Cos(39)> . 86\/§z> O,
Y= 21\3/32« + =5 (43V/3 (400, — 43 (¢ + 2%)) + 897p2  sin(30) (4.37)

+ \/§COS(39)>> + 202;)0 <13p (344 (282" — 5as) <sin(30) + ﬁcos(SQ))
+1849p° (sin(36) + \/§COS(39)) —299pz <3 sin(660) + \/§COS(69)>>
—4v/32(41697p* + 795072% — 36980a2>) + O(%).

Here the derivatives are taken with respect to 0. Using (1.15) we write the functions
go(2) = <0 <1 — 646£ﬂ> z) :
1849 1
g1(z) = (@ (1 - 675(46\/577)) Pz, (e i (40@2 43p%) — 8622>
4637 43€7ﬁ(92\/§ﬂ-)
() B ).
2760

1
1849 15 (184V537) -
92(2) = ( 2660‘88808721605 <e 1o (11640097 (240 (46\/_ T 43) s

+196512%) — 3003145026 (46\/§7r - 43) 0>+ 45396995982pz>

13837

+22989¢ 15 (130634 (40as — 43p2)—2456883pz)—|—172180314824
4631

¢ 2% — 6456761805922 + 4557¢ k] " 2(2432365p — 738100162))
o5 (230v/37)

184f7r
1 — 184
446414827786341650812800 < ( (60 (39 V3m —18 9) 42
+758092%) 6719819923969996144~ + 69703216719171814113816°
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+ 67860377243786125751610p22 — 104464544792
(70137521867896\/§7r . 252393774165) ) — 4245723465¢ 5 -
(175587701015104as + 61893p(10033543p. + 6661987422))
—69703216719171814113816¢ 5" p* 4 4007045420213118625657562>

11951360992537417972¢ 5 22(79833p + 3295092

—336382138210685488¢ 57 2 2(144417p + 15882912)) >

Consider the graph Z = {z, = (o, () : () =0 and « > 0}. For all @ > 0 the func-
tion go(2o) = (0,0). Then taking s = 0 in Theorem 12 we compute the bifurcation
functions fi(«) = 0, and

92371

1849¢e™ 43 \/3r
fala) = e (€™ (46v3r — 43) + 866" — 43) a (400, — 430%)
]_OCLQ .
For a* =2 3 e have fo(a*) = 0 and D fo(a*) # 0. Thus applying statement (b)

of Theorem 12 we have that system (4.37) has a periodic solution bifurcating from point
z%. Consequently, going back through the change of variables we have the existence of a
periodic solution to system (4.19). ]

4.4 Appendix D: Functions H;, I; and J; for : = 1,2

Here we present the coordinate functions of g, that appears in the proof of statements
(1), (4i7) and (iv) of Theorem 26.

2
Hy(z) = —30Hasp | mazp —3%( 899a,22  597507923az2

14840704 568/7 40086032p  47083369573856
_ T03742848467097925p2" N 3392361662905917/}2,2) _189618713a,2
31898417885852553728  116684360646408632 10586680965168p
- (_ 42083az>  468403138778512° N 1820956889005487pz2)
9319261413p  38980159313748576  115614906197860608
L (13541a2p 4046213933ay2 159919213 23113407207573p22>

14840704 * 6557112770432 85334048 195893744016656

47497703966367a,> | 15991921p°  4421mp” 16264¢16V7m 14

 78588870014419072 85334048 3266+/7 B 1048694353p
967

2479453732% 19453239836 V7 23 45877191435540374951287 p2>

i 13482014602168p © 118452839157093 * 2993773813265605489598976
1966020376082088641360420514523 n 89976430564062929487 p*~
21759296009409979593131149751776 ~ 1011920113914411773456
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+e*647777 (_ 17392* n 8088305746441 23 _ 112649333870939/)22)
74243848p  6482324361591568  12499380049315264
n 8%( 3063402* _ 627232932887323)
14913732967p  7986095211566962 ) ’

_m< 2040902z  13593232675a22%  8622181081ay2

Hy(z)=e v7 | — - +

806731394p%  5737473674128p ' 2254007514836
121148255304709p2% 99330705954O7p22> ef( 20409a2z
171407026014574 207368691364912 8067313942
17031asp  12143784230186761a92®  354453085049431 a2
027544 316006608568406160880p2  207977512894816233p
8622181081asz  97masz  54536545° 24457919708879017 25

2251007514836 3479y/7 14724761  595620109778216080404p2
224198124665220307732284401468 2

102793760349089735962832109971811p
11623816554518632367233858323  253261733610700641411573827p22

2690539476878912070359141040  740098259404736722171720962
9933070595407 p*z 1573576377r,02z) ~ 17031agp

207368691364912  17043621+/7 927544
5 (_ 653124039a,2° | 4436646543253a,2> | 2695091534224100912°
0704487615928p2 ' 3790211250695408p = 3488889456265123064
_56593678003503976,0,22) = (_ 1004634a52°  90029282°
102098815565607553 1322004518450 1043961307697
162234797642" 4292454107823) _sng (_ 93459a, 23
4620818852783p ' 14145448347415 390522640482
1551641925 7025387769036846724  134826037398607523
T 2670080255087  12331001516837560228p | 21873915086301712)
L% ( 222327526052 227003953a52> | 654448536652
5718920087111p2  448946020761p = 19753624913484p
_ 1099524174604035922° | 703608436890712pz2) | 54536545°
1113807488504463291 ' 3708743077506621 14724761

3232536¢ V7 25 Lo (2002772 STA25T304T8AZ!
€
513860232977 3246312253802 | 829169874099651, )

1) 16 (14535v/2m — 2756) p N 2310379625p°22  19807570229+/2p%z
Z)=a _
! 2 4142475 61603278561 584130307695

n (383757256080000a2 _ 2 (1353367360104125\/§pz n 257897855245984))

_15n _5r
e 2vzpia? e Viplz

50519616682304880  18475687048500

<<251929337505pz n 178892943548\/5)

. 86_2% p
207306039612375

22 — 392700a; (846537\/_ — 2121875pz>>
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<8415a2 (49013145\/§pz + 32779864) 8487 (810462369\/5/)2 + 238117880))

8 20581329390625p7 =

" 633798675 886732746729984

1734375¢ i pTz4 75 2v3 023 (17274375pz + 10098404+/2)
T 703932 374185614528

256 V3 pfz? (376440625p= — 203279662v/2)  1920033295603982130425% 23
* 2259931934304 T 533122201332257583195361/2

12415915880034901/)522+ 114200436283+/2p* 2 N g5V 55 2

926192972508922800 3154303661553 ' 297952783603200

(1589668853472 — 62502 (18770709375 + 42781318242 ) )

(1904085\/§7r - 617344) P

e [ 40832422 49408v2  252934685856925p2 23
1049427 p? 828495p 2721386433710736

200649985927911/2p22 N 964627 925690614976 2908160+v/2p
— z —
450364467232845 165699 7101967672845 51863787

_ 55275508906250°2° _ 3475436330910009942475p° 2
98525860747776 473886481184228962840321/2

115148537639610717947p* 23 B 196462205901224732+/2°% 22 (_ 273427

88107811281801317041200 4154612210222995125 43605

n 18720891867514208 \ , \ de™Viz
158821303067832735 ) ” 3970532576695818375p?

a3 — 5350a,p” (13391448585291x/§pz + 24183667316248)

(38622216259836000

+p (6854240195252717N§pz + 117005574171963800))

_ 267

e 2v2
+ 629011432051200

+ 1986367162\/5) + 10845743592224)) +

P (162501300000a2 + 2 (35625pz (2487684375pz

—_ 2 157
256+/2 (60409a; — 568000°) P

259318935
P13 (2378225p2 (2065650625p2 + 11979208461/2) + 63652108192902)
95213764854807496
72275a,p° 2° e™5VIT 22 )
20502 (—1072261547055142
2990163 S5R91303545681251000 (20507 (

+5052665015015625\/§pz> + 21417809054549248\/5) — 16482000,

_ 15w
e 2vV2pz

3695137409700
aspz — 3420146270201/ 2ay + 426831261472v/2p° — 18184717070p3z)

2

(21771 195243752 + 379694102864\@)) + (765285440625
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12671875 10V2 5.5 25623 g2t (48584868752 + 20582071161/2)
109408992 18079455474432

)

_l2r
e Vs 22

3397781520000
2465 (3703027\/3 n 5698606) z> — 6211800 (193\/' . 210) a2>

177223244879570402 )
180mv/5 (8as — 199%) — 10 (123 5 520)
5742033134098080960000 ( ™5 (8a — 190°) V5 +520) ay

+ (956\/5 n 5625) p2> 121204422522 (962336 (4577\/5 + 1890) s
-3 (10806179752\/5 + 24675585383) p2> + 325076240p2 (3 (83295503384\/3

+95313187411) p? — 10105 (13907113\/5 + 9542762) a2> + (7\/5 + 2) 2

Ji(2) <p (21 <2005165908\/3 + 3889750015) o

156788319704681160 + 8383108 (1115434951621\/3 + 1966086632830> pz>

_ 8w

e V52
37600 (12 (14879 5 149) 79849 5) 32
5340848160000 < @ V54 149) p +70840V52 ) +3p

(—47 (238651676\/5 + 5061 16445> 2+ 240 (30405896\/3 + 66489385) p)>

_Am

e V5
+ cTiiizong (2150 (882 (128v/5+520) p+ (1460205 + 155618) 2 )

3,7 (6321 (956\/3 + 5625) o+ (48206680\/5 + 75128363> z))

287
289 (7v/5 4+ 10) e~ Vs 24 17 4Vom,3
(VB 10)e v o (4930 (TV5 +6) =

10584000, 23020200000
17 (362175 + 6202) e V523 o VA2
3 (107371 5 148485) ) _
Vo P 168966000 * 125193600000

(-23 (2645856\/3 + 4997225) p? — 3190560v/522 + 13600 (3499\/5 + 4766) pz) :

_Am

e V5
~ 312940805808345412320000 2
a2 + 690 (22687r\/5 — 25255 + 27760> azp? + 3 (4223690\/5 17388 (379%

+410)7r + 7544115) p4> + 315385039867317120)° (735 (35 — 11\/3) as + ,02>
(14247\/5 - 32740) — 15098608062 <<295448712792\/5 + 3357245264653) 2
+300730 <723208\/5 _ 1530333) a2) 1507164822 (a2464830(14106353\/5
—298387900) 121 (16273193039599\/3 n 23844169989280> ,02> + (1583932\/5

—3899715) 503414835861032° + (1249367048959\/_ - 5521411126760> pz4>

Jo(2) (5332597292442562 (40250 (5\/3 + 36)
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234727024 — ¢z (24230500 (5\/3 + 36) 5+ 14835a4p (140 (5552
a a
353280690000,02 2 2

—505\/5>p + <31424\/5 + 72755) z) +21)° (430 (844738\/5 + 1508823) P

93 (30613883\/5 n 55472705) z)) n 99;25 - (735 (11\/_ _ 35) s+ (32740

_l2¢
e V52?2

— 1424 ) 2)
™5)7") + Sis33140000,7

+ 5185 (2630\/5 . 6993) z) +6p? (47 (26214378\/5 + 238047761) 2 —35p

(235a2 (42 (272816\/5 + 172415) P

_l6x
e Vs 22

~ 5582069640000,°
—9586\/5) p+ 765 (217\/5 - 1104) z) +p (—10440;)2 (2887157\/3 + 12737871)

(300370783\/3 n 736870135> )) (13340a2 (14(133175

179373 (94964\/5 - 408025) 22 446 <322207806\/3 + 5283539111) pz>>

_ 24w

17e V5 23
22 (406 (5 (17 5_ 72) 3 (51 5 602) 2) 8874(14 5
 5906060000,2 < V5 az +3 (51V5+602) p* ) + V5

674\/5%,3 \/_
5014((303480 5
* 1776135840000,2 (

+ 23965123) 22 — 2550 (76\/5 - 105) a2> — 1102535 (2092\/5 - 4827) 22 4 476

- 45) 22 4 1575 (1677 . 274\/5> pz>

327 287
289e V5 (24 — TV/B) 2° 17¢” v 2*
17544628V/5 — 103898005) )
( V5 pz)+ 105840002 T 2771042400002

(12665 (146\/5 - 205) 2 — 10496 (424\/5 - 3405) p> .
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Chapter 5

Lorenz and Thomas’ differential
systems

In this chapter we use Theorem 12 for studying the periodic solutions that emerges from
a zero-Hopf bifurcation in the Lorenz differential system. Then we apply Theorem 13 for
describing the stability of a such periodic solution. The same strategy will be used here
for studying the Hopf and zero-Hopf bifurcation that occurs in two circulant systems, one
of then known as Thomas’ differential system. The results here presented where published
in [14].

5.1 Application to Lorenz differential system

The Lorenz system of differential equations in R3 arose from the work of the meteorologist
mathematician Edward N. Lorenz [55], who studied forced dissipative hydro-dynamical
systems. It has become one of the most widely studied systems of ODEs because of its
wide range of behaviors (see for instance [75]). Although the origins of this system lies in
atmospheric modeling, the Lorenz equations also appear in other areas as in the modeling
of lasers see [37], and dynamos see [44]. The Lorenz equations are

T :CL(I' - y)a
y=x(b—2z) -y, (5.1)
z=xy — cz,

with a, b, ¢ being real coefficients.

Theorem 28. Let a = —1 + ase? and ¢ = cie. Assume that b > 1, ay < 0, ¢; # 0 and
le| # 0 sufficiently small. Then the Lorenz differential system (5.1) has a periodic orbit
bifurcating from the origin. Furthermore for ¢c; > 0 this periodic orbit is an attractor,
otherwise for c; < 0 the periodic orbit has a stable manifold formed by two topological
cylinders and an unstable manifold formed by two topological cylinders.
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Figure 5.1: Solution of system (5.1) starting at (0.05,—0.01,0.05) being attracted by the stable
periodic orbit (dashed curve) founded by Theorem 12 . The parameters of the system are
a=—-2,b=2c¢; =1and e=1/100.

5.2 Application to Thomas’ differential system

A circulant system is a differential system defined by a function f(z,y,z) having the
variables cyclically symmetric according to

T = f(xayvz)a
Y= f(y,Z,ZE),
&= f(z,2,9),

where the function f(u,v,w) is fixed and the variables are rotated. In 1999 René Thomas
proposed the following two circulant systems having cyclic symmetry

T =siny — Pz, i=—br+ay—1°,
y =sinz — By, (5.2) y=—by+az— 2" (5.3)
Z=sinx — Bz, 3 =—bz+axr — 2>

System (5.2) is defined by the function f(u,v,w) = —au + sinv and system (5.3) is
defined by f(u,v,w) = —au + bv — v3. The chaotic behavior generated by these systems
was presented by [79]. These systems were also studied in [77]. System (5.2) is sometimes
called Thomas’ system, see for instance [75, Chapter 3]. The next results give sufficient
conditions for the existence of periodic solutions in these differential systems.

One can check that the origin is an equilibrium point of system (5.2), and that it has
the eigenvalues 1 — 3, (=1 — 28 — iv/3)/2 and (—1 — 23 +iv/3)/2. When B = —1/2 the
origin has a pair of complex eigenvalues on the imaginary axis and the bifurcation of a
periodic orbit occurs.

Theorem 29. Let = —1/2+ B1e+ Bog? where 3; € R fori=1,2. Fore > 0 sufficiently
small and By > 0 the differential system (5.2) has an isolated periodic solution bifurcating
from the origin. Moreover this periodic solution is unstable.
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System (5.3) has 27 steady states but we will be interested into the pair symmetric
equilibrium points Py = + (\/a —b,va—b,v/a—b). Taking a = 5v/3w/6 and b =
V3w /3 with w > 0, these equilibrium points have the eigenvalues —v/3w and +wi. The
next theorems show that periodic orbits born at P_ and P.

Theorem 30. Let a = 5v/3w/6 + cay, b = v/3w/3 + by with w > 0 and (5b; — 2a;) < 0.
Then for e > 0 sufficiently small the differential system (5.3) has the two periodic solutions

62\/%

p1(t,e) =Py + \/E<262‘/§”§ cos(tw),
1

- gemﬂg (3 sin(tw) + \/§cos(tw)) ) +0(e), (5.4)

such that ¢4 (t,e) bifurcates from Py, and ¢_(t,e) bifurcates from P_. Here

3 (3 sin(tw) — \/gcos(tw)) ,

§ . 7T(5b1 — 2@1)
V) —3edV3T (/3 — 5m) 4 6/3e2V37 — 3V/3

The periodic orbit analytically found in Theorem 30 was detected numerically in [79].
In this paper it is shown that for specific values of a and b these periodic solutions produce
to a strange attractors after a cascade of doubling. The following figures illustrate this
phenomena. In these figures a; = 6, by = 1 and w = 1, and the time interval varies from 0
to 1000. Figure 5.2a shows the solution starting at (—0.8, —0.8, —0.45) being attracted by
the periodic orbit ¢_(t,¢), see equation (5.4). As we increase ¢ the periodic orbit grows
in size and complexity, see Figures 5.2b, 5.2c. The approximation to the periodic orbit
provided by (5.4) can be seen as a dashed curve. Figures 5.2d, 5.2¢ and 5.2f shows the
appearance of the strange attractor as € increase.

5.3 Proofs

5.3.1 Proof of Theorem 28

Proof. The existence of a such periodic orbit is proved in Theorem 4 of [13]. Following
the ideas of this proof we see that, after some changes of variables, system (5.1) can be
put into the normal form for applying Theorem 12, i.e.

i=ch (z, 9) +2F, (z, 9) + 3y (z, 9) + O(eh),

given by equation (22) of [13], with z = (p, 2) and the derivative is with respect to 6.
Thus calculating the higher order averaging functions of this system for ¢« = 0,1,2,3 we

have g;(z) = (9:1(2), gia(2)) where go(z) = 0 and

g1 (z) =0,
7 (p? — 212
g12(2) :M7
w
70 (8asw? — 4ciz + 3p?
go1(2) = — p (8as 1 )

Sw3 ’
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e
(@) (©) ()

Figure 5.2: Solution ¢_(t,¢) for different values of e: (a) e = 1/250, (b) ¢ = 1/50, (c)
e=1/8,(d)e=1/6,(e)e=1/5, (f)e=1/4
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7 (p*(crw(w — 27) + 32) + 2¢12(27c1w — 2))

g2(2) = 203 ’
7p (42 (2a9w? + 213w — 3¢12) + p*(crw (3w — 41) + 152))
16w
g32(2) :9(: - <9p4w(47r — bw) — 8¢y 2 (12a2w4 +167°ciw? — 36meywz + 9z2) + 4p*
W

(3c10(9w — 287)2 + 4522) — 2 (Basw(w + 21) + ¢ (67w — 87% + 3)) )

Thus we can calculate the functions f;(«) for i = 1,2 with respect to the above averaging
functions and the graph

2o Lo (st £ sl

T (8agw? + a?) o (2w? (4ag + 1) + ba?)
= — d = — .
file) 8w3 o fa(@) 32c1wP
Under the hypothesis of Theorem 28 one can check that a* = 2w+\/—2as is a simple zero
of the function f;(«). Then we can apply Theorem 12 with s = 1. By Proposition 11 and

Lemma 8 we can write the initial point of the periodic solution as z(g) = z,+ + €z with

Y ((16a2 — cf)w\/—2a2’4a2w2 (12(12 B 1)) ’

2
2¢q ci

obtaining

and the matrix (1.25) becomes

Gagm V —2a901T

0 0
A(E) = ( 2017’(’) +ée w 2 w?
— _ v =2 2 —2
47t\/—2as » @ as (2w — A7) — Sazw) m(erm : asw)
wey w

The matrix A(e) has the two distinct eigenvalues

2 2 2 2
A=A ( C”T) +O®E?) and N\ = 2227 L 0(2).
w w w

Thus we can apply Theorem 13 taking s = 1. Since as is negative by hypothesis, we have
that for ¢ > 0 sufficiently small if ¢; > 0, Re(A;) < Re(A2) < 0, then the periodic orbit
is an attractor. Otherwise, if ¢; < 0, Re(A3) < 0 < Re(A1), then the periodic orbit has
a stable manifold formed by two topological cylinders, and an unstable manifold formed
by two topological cylinders. O

5.3.2 Proof of Theorem 29

Proof. Using the change of variables (X,Y,Z) = z(x + 2, (—x — 3y + 22)/2, (—2 +
V3y + 22)/2) the differential system (5.2) becomes

. (1 ;) osin(VE (=X +V3Y +22)/2)  sin(vVE(X + 2))
X—X(§—525)_ 3z * 3ve
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| 2sin (Ve (X +V3Y —27) /2)

3v/e ’
(1, 0\ | sin(VE(X +2))  sin(VE(=X+V3Y +27) /2)
Y =y (2 Bae ) + Ve NG . (5.5)
. (1 sin (Ve (X +V3Y —2Z) /2)  sin(vEe(X + 2))
225 - 3 HEENC
sin (Ve (=X +V3Y +27) /2)
+ N :
We remark that for all 6 € R the function sin(dw)/d is well defined and
(lsi_l)% sin((? w) Cw

Thus the above equation can also be written as

X:—?Y—F%(X?’%—Xz (VaY +22) + X (Y? - 4VBY Z + 4 (22 - 45))
LY <\/§Y2 Y Z o+ 4\/§Z‘Z> ) +0O(£?),

v :?X + (= VBX X (Y —2v8Z) - X (VBY? +4YZ +4v327)
+Y (V24 2VBYZ+4(22 - 48)) ) + O(),

7 :gz o (= X0 = 6X2Z 4 3XY2 - 22 (3Y2 42 (68 + 22)) ) + O(=2).

In order to put the differential system (5.5) into the normal form for applying the averaging
theory we consider the cylindrical change of variables (X,Y, 7) = (p cosf, psinf, w) with

p > 0. Then we check that § = v/3/2 4+ O(e?) for || # 0 sufficiently small. Thus taking
6 as the new independent variable we obtain the differential system

z = Fo(z,e) + €F1 (2,9) + €2F2<Z,9) + 0(83), (56)

with z = (p, w), Fo(z,ﬁ) = (0, \/§w), and E(z,@) = (Fﬂ(z, 9),E2(z,0)) for i = 1,2,

where

[

Fii(z,0) = <p2 + 2pw (cos(B@) — \/gsin(?)@)) +4 (w* - 45)) :

P

8
F12 (Z, 6))

/N

:% w (V3 (485 = 3% + 28u?) + 18rwsin(30))
— 2v/3pcos(36) (p* — 9w?) ),

Fy(2,0) :% (p <—30w sin(36) (328 + p* + 8w?) + 10v/3w cos(36)
(=968 + 7p* + 40w?) + 3psin(66) (p* — 40w?)

— V3pcos(66) (p — 12Ow2)> +20V/3 (—1928, + p* + 6> (w? — 45)

78



Lorenz and

Thomas’ differential systems

FQQ (Z, 9)

System (5.6) is 2m-periodic and it is into the normal form for applying Theorem 12. Fur-
thermore for the initial condition zg = (pg, wp) the solution of the unperturbed differential

system corresponding to (5.6) is given by ®(0, z) = (po,woe‘/ge). Then we consider the
such that Z = {(,0) : @ > 0}. Clearly for z, € Z the solution ®(6, z,)

can be assumed 27-periodic, and therefore the differential system (5.6) satisfies hypoth-
esis (H). Moreover the fundamental matrix of the variational differential system along

set Z C R?

®(0, z,) is

+ 200" — 968w?) )
1

5760v/3

— 30p cos(30) (p4 + 3p°w® — 104w* + 96w?)

+ pw <cos(66) (360pw? — 69p°) + 2v/35in(36) (cos(30) (360pw? — 23p%)

( — 12w (9608, + 5p* + 1208 (p? + 4w?) — 50p°w? — 228w*)

+ 5w (=965 + 39 + 104u?))) ).

1 0
M(ea Za) = (0 6\/590) :

Computing the averaging functions we obtain gg(z) = (0, (62”\/§ — l)w) and g¢;(2)
(9:1(2), gia(2)) for i = 1,2 where

911(Z) =

g12(2) =

g21(2) =

g22(z) =e

144

1—'02<\/§7r (p2 — 165) + (62\/% — 1) w (p + 23y + w) ),

1
(p3 — VT (,03 + 12V37p*w + 28w + 192\/§7T6w) + 2866‘/5”103),

(14 16v3m +54m2) p° V37 pupt 10V 53 (150 — 196w)

1728 LTI 15120

e2V3T 3 (21p 4 13w) V3 pw? (171p2 — 700pw + 3192 (w? — B))
5616 * 2298324

23 (pPw (2885 + 48v/3m (p* — 168) — 19p%) — 2p°)  467p*w

3456 " T60314

5p% (3815w + 286520w)  p* (30247 (V3 + 47) B + 115w?)

1742832 a 18144
SV pw? (11283 — 42v/37 (168 + p?) + 31p* + 42pw)
* 4536

+

e4\/§ﬂpw X , \ ,
Sis (2820° 4 1050%w + 81V/3r (50° — T’ +805p + 1125u)
w? 65ﬁw2)

+968p + 9408510) +p (%7‘( <27T52 — ﬁﬁg) ~ 20 + 613

ovae [ PPw’ Tpw! + 19w i p* (328 + 12¢/37 (p* — 1653) — p?)
252 456 480 6912

+ <p2 (1071w . (619 + 504J§7r> p) — 2888 <<6 + 28\/§7r) p+ 49w>)
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e@\/ﬁwwz esﬁnwz ) \/_ )
—921 4(73—196 3 ) 644 )
$1672 T 24192 (’0< Pt ) pw A+ bddw

11123 (3 +28 (1 43 ) )) LV (—99843% — 123"
P ) 22464 P
9 7616\/§7rw5
+377p%w — 12488p> + 78v/3 (168 + p?)° — 936ﬁpw> o
B e'2V3my3 (49p% + 225pw + 196 (45 + Tw?)) N 35e14V37
30240 2808
L 2V (41 =527 (V3 +3m)) p'w  p* (784 (1 = 2/37) B + 1457w?)
7488 169344
p*w (3360 (3 (V3 —2m) 7 — 1) B+ 1157w?) 856w?  6085w?
60480 P\ 1764 ~ 373464
23w’ (1+4V3m)p® 178w® 4 7,
- - ~3V3 ) .
T e R T AL

We point out that the function go(z) satisfies the hypothesis (i) for the graph Z =
{(a,0) : « > 0}. We apply Theorem 12 to system (5.6) taking s = 0. Then we have

Ay =1—¢e237" £ and the function
T (a? — 163;)

a) = ,
has the positive simple zero o = 4+/B;, where Df,(a*) = 873,/v/3. Then system (5.6)
has a 2m-periodic orbit by Theorem 12 . The periodic orbit of system (5.2) is obtained

going back through the change of variables. Now we want to study the stability of this
periodic orbit using Theorem 13. First using (1.24) we compute the function

fala) :% (23047r (%52 - \/§ﬂ2> + (1 — 2623 4 V3T 1603 + 547r2) ot
— 2887 <\/§ + 47T> 6a2>.

Then if (t,e) is the above periodic solution founded we can use Proposition 11 and
Lemma 8 to write p(0,¢) = zy + €21 + O(&?), where

20 = (4 /617 0) )
2 ((1 — 9e2V3T | V3T _ 2\/§7r> B2 — 9\/§7Tﬁ2>
21 = - )
1 0v/31/5
462\/%55/2
Ao (1o (v37)) 1) )
Then by (1.26) and (1.27) we can write the matrix (1.25) as
87Tﬁl 451 237
o) = (° 0 L V3 3 (6 1)

T \0 1 eV B _ 8e2Vimrp,

(e

3 V3
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Now we use Theorem 13 taking s = 0. The eigenvalues of Id + Ay are \; = 2 — e2mV3
and Ay = 1. Consequently A(e) satisfies the hypothesis (s1) and (s2). Thus the Jacobian
matrix of the Poincaré map (1.19) is 2—hyperbolic. Then its eigenvalues can be written
as

— 87’(’61627“/g 2 ~ 871—51 2
M=M+e——+0(e and Al =1+c¢ + O(e%).
1 1 \/g ( ) 2 \/g ( )
Since B; > 0 we have |\;| > 1 for all |¢| > 0 and the result follows. O

5.3.3 Proof of Theorem 30

Proof. We will prove the result only for the equilibrium point P,. The proof for the
equilibrium point P_ follows exactly the same steps. First we translate the equilibrium
point P, to the origin and rescale the system using the change of variables (XY, 7) =
VE(z+ 2, (—2 — 3y +22) /2, (—z — /3y + 22)/2), the differential system (5.3) becomes

. 3wv/3
_ 2 _
X = wY+\/E<X X <\/§Y+2Z) Y<Y+4\/§Z>>4m
+ §<X (8a1 — 20k, + 3 (Y2 L AVBY Z ¢ 422)) Y <—3\/§Y2 —6YZ
— 4v3 (201 = 3by +32%) ) +3X° - 3X* (VBY - 22) ) + O(=*7),
4
Y =wX +Ve(V3X? - 2XY +4V3XZ — V3Y? +4Y 7) i‘\"/;/_g
w

+ = (80 (VBX +Y) — by (3vBX +5Y) +3(VBX* + x* (Y +2v32)
+ X (VBY? - v 7+ 4v328) 41 (V2= 23V Z +427) ) ) + O(=2),
3/wv/3
2v2
67 (X2 +Y?) +3XY? —42°) + O(=*%)

7= \BwZ 4 VAX?+ Y2 4 222) + (82001 — ) - X*

This system can be written into the normal form for applying the averaging theory. We
use the cylindrical change of variables (X,Y, Z) = (p cosf, psinf, w) with p > 0. Then

we check that § = v/3/2+ O(e'/?) for € > 0 sufficiently small. Then we take 6 as the new
independent variable obtaining the differential system

= Fo(z, 9) + Ve, (z, 9) + ek, (z, 9) + O(¥?), (5.7)

with z = (p, w), Fo(z,H) = (O, —\/§w), and E(Z,@) = (El(z,ﬁ),ﬁb(z,@)) fori = 1,2,

where

3v/3p (v/3psin(360 cos(30) + 4w
Fu(2.0) = p(V3p EL\/%:;J/) (30) + )7
3v/3 (2p? — 8w? + V/3pwsin(30) — 3pw cos(30))

W2/w ’
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Fy(2,0) = — 37 <3p (9p cos(66) + 2v/3sin(30)(3p cos(30) + 8w) + 64w cos(39))

+ 4 (~8ay + 200, — 307 + 96u?) ),

Foo(2,0) === (o (6V3sin(36) (~30" + 2602 + 9puw cos(30)) + (469" — 468u?)

32w
cos(30) — 27pw cos(60)> + 2w (16a; — 40b; + 75p* — 376w?) )

We consider the period T' = 27, thus system (5.7) is in the normal form for applying
Theorem 12 . Taking the initial condition zy = (po, wp) the solution of the unperturbed

differential system corresponding to (5.7) is given by ®(0,z) = <p0,w06_\/§9). Again
we consider the set Z C R? such that Z = {(«,0) : @ > 0}. Thus for 2z, € Z the
solution ®(0, z,) is 2m-periodic, and therefore the differential system (5.7) satisfies the

hypothesis (H). Moreover the fundamental matrix of the variational differential system
along ®(0, z,) is

1 0
M(Q,Za) = <O e_\/gee) .

The averaging functions for this system are go(z) = (07(1 _ ezm/ﬁ)w) and g;(z) =
(9i1(2), gia(2)) for i = 1,2 where

33/4 (1 2fﬂ> pw

2) = ,
33/4,—4V/37 (62\/§7r _ 1) <62\/§7rp2 _ 4w2>
z)=— )
g12(2) 2\/5\/(,_0
pefB\/gw
g21(2) =0 (eg‘/g’T (287r (8a1 ) (4b1 + 3p2)) +3 (84,02 — 168w?* — 23pw)>
w
— 56v/3¢>V3Tw? + 84v/3w? + V3V w(51p + 140w)
— 28v/3¢V37p(3p + w)),
e —10V/3~w
g2(2) = (— 1820v/3¢19V37 53 1 26208+/3w® + 1092v/3¢2V3 w2 (3p — 32u)
W

— 52v/3eM3T2(81p — 658w) — 39879v/3e8V37 pRy 4 8V <21847rw
(8ay — 20b, — 75p2) + /3 (1820p" — 25480w® + 936pw? + 39879p2w)> )
Function go(z) vanishes on the the graph Z = {(a,0) : @ > 0}. We apply Theorem 12 to

system (5.7). Here s = 0 and A, = 1 — e 2V37 £ (. The bifurcation functions are

3 <\/§e_4*/§” (1 - 262\/§“> +3 - 57?) a® + 8taa, — 20mab,
4w )
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Function f5 has the positive simple zero

Oé* _ 262\/§ﬂ. 7T(5b1 - 2@1)
3V3 — 64/3e2V31 4 3./3e4V3m — 15etViEny]

where D fy(a*) = (10mby — 4mwa;)/w. By statement (b) of Theorem 12 system (5.7) has a
2m-periodic solution. The periodic solution of system (5.4) is obtained going back through
the change of variables. O]
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Chapter 6

Generalized Van der Pol - Dufling
differential system

In this work we the use averaging theory of integrability and the computation of Lyapunov
coefficients to detect for the first time Hopf and zero—Hopf bifurcations in the origin of
coordinates for the general Van der Pol-Duffing equations here considered. We also show,
for the first time, that for certain parameter values two periodic orbits will be surrounded
by a torus.

The autonomous chaotic van der Pol-Duffing oscillator is the differential system given
by

:t:—y(:v?’—w:—y),
y=x—ay—=z (6.1)
z =py.

Matouk and Agiza [58] used the Hopf’s theorem and numerical methods to investigate the
Hopf bifurcations and the existence of chaotic behavior in system (6.1). We recall that a
Hopf bifurcation is the mathematical way to study the birth (or death) of a limit cycle
from an equilibrium point in a family of ordinary differential equations. Their results show
that there are periodic solutions and chaotic attractors bifurcating from a fixed point of
this system. Later on Zhao et. al. [89] provided the general van der Pol-Duffing oscillator
given by

J'U:—V(x?’—,ux—y),
y=—hz+kr—ay (6.2)
z =Py,
where «, h, B, k, v and p are real positive parameters.
Motivated by the works of Leonov and Kuznetsov, they found the occurrence of hidden
chaotic attractors besides periodic orbits and chaotic attractors of system (6.2).

The Hopf bifurcation analysis done in [89] discuss only the periodic orbits bifurcating
from the pair of symmetric equilibria

fﬂ==(iv%JLi¢ﬁ%).
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However we are going to show that a rich bifurcating phenomena may emerge at the origin
of coordinates O(0,0,0). Although the origin of coordinates is an unstable equilibrium
point of system (6.2), we will analytically prove that multiple periodic orbits may bifurcate
from this point. Some of these periodic orbits are stable guaranteeing a very controlled
behavior of the system. We will study analytically all possible classical and degenerate
Hopf bifurcations as well as the zero-Hopf bifurcations at the origin of coordinates. Some
of these techniques were also used for other chaotic systems (see for instance [12, 63]).
The results of this chapter are presented in [19] and submitted for publication.

6.1 Application to General Van der Pol - Duffing dif-
ferential system

More precisely our first main result is the following one.
Theorem 31. Consider system (6.2) with

kv + w?
h

a=ca;, fB= +ef and p=cep,

where (ay, B1, 1) € RS and e > 0 is a small parameter. Let p = (2kpv? —ayw?)/k. Then
there exist g > 0 sufficiently small such that for 0 < e < gq the following statements hold.

(a) If p <0, system (6.2) has the periodic solution

v v2 hv?

ol ) = 2\/&? (w? + kv?) ([ cos(wt)  sin(wt) (kv + w?) cos(wt) L OE).
3k

bifurcating from the origin of coordinates. This periodic solution has a stable man-

ifold formed by two topological cylinders and an unstable manifold also formed by

two topological cylinders.

(b) If p > 0, system (6.2) has 3 simultaneous periodic solutions bifurcating from the
origin coordinates, mainly

€ 1 [20qw? + kugv? 2 cos(tw) \/GkuwQ — 3ow?
te) =)o £= -
pxltie) =43 ( y\/ K 3v k !

2w sin(tw) \/Qk,ulyQ -«
v? 3k

2V/3 (kv + w?) \/2ku1y2 — oqw?
- S cos(tw) ? + O(¢)

1w2 1
, :l:h—\/k' (2@1&)2 + k/LlV2>
1%

and po(t,e). Moreover w4 (t,e) are symmetric and stable, and po(t,e) has a stable
manifold formed by two topological cylinders and an unstable manifold also formed
by two topological cylinders.
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The choice of the parameters in Theorem 31 comes from the fact that if a = 0,
B = (kv +w?)/h and pu = 0 the origin is a zero-Hopf equilibrium point, i.e., the Jacobian
matrix of system (6.2) at O(0,0,0) has the eigenvalues Ay = +iw and \g = 0. In Figure
6.1 we have plotted a solution converging to the periodic orbit obtained in Theorem 31.

From now on we relax the condition over the coefficients of system (6.2) by taking
(o, B,k,h,v) € R®. In the next result we show that an invariant torus bifurcate from the
periodic orbits ¢4 (¢) given in Theorem 31. The proof uses the fact that we can show the
existence of a Hopf bifurcation for the averaged system of system (6.2) (see the proof of
Theorem 31).

Theorem 32. Consider system (6.2) and 0 < € < &g as stated in Theorem 31. Take

2 4 9,2 a 4
VR here b= O

Qw2 vt — 8r2w?

B Skr2w? — 3kt
- 4t ’

651 H1

and assume that

908 (3wt — 8w!) (811° 4 21615w? — 8961 w! + 8001w’ — 256w®)

l 0.
20 (8w3 — 312w) 7

For |§] > 0 sufficiently small each one of the periodic solutions p(t, ) will be surrounded
by an invariant torus. If k is in the region where py(t,e) is unstable (stable), then the
torus will be stable (unstable).

0.5
[ 0.0,
01} Z.
[ 0.05 |

Y0.00 |

0.0 0.2 0.00 0.05 0.10 0.15
X X

(a) (b)

Figure 6.1: (a) The solution starting at (0.3,0.1,0.6). Here e = 1/20, h = 1, k = 2.04772,
a; =1, 61 =1, uy =0.332958, v = 1 and w = 1. (b) The aproximation ¢ (g,t) in detail.

Figure 6.2 shows a solution converging to the torus around the periodic solution
founded in Theorem 32.

In the proof of Theorem 32 we will see that the first and second Lyapunov coefficients
vanish but the third coefficient is different from zero. This will lead to the statement of
the theorem.
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02

Figure 6.2: Solution of system (6.2) starting at (0.229319,0.0210973, —0.26471). Here
e=1/80, h =1, sy = —1.595, py = —1.99375, v = 5/2, f; = 1, § = 0.005 and w = 1.
The dashed curve represent an approximation of the solution provided by ¢ (g,t).

. . . A . P .
02430 - - . - 02280 -+ - 02285 . . . 02240 © 02245

-02435F 1

ozl - T LT

-+ .-0.2445-"

o _ A_(.b).

Figure 6.3: (a) it shows the transverse section, (b) The transverse section in detail.

Figure 6.3 show the transversal section of the periodic solution presented in Theorem
32. There we can see how the solution converge to the small torus around the periodic
solution. Finally we show that system (6.2) also has a Hopf equilibrium bifurcation at
the origin of coordinates.

a(apy — Bh — p?v?)
v —pv)

and xg = 0(0,0,0). Then (xo,k) is a Hopf point (see Section 6.2.1) of system (6.2).
Moreover its corresponding eigenvalues are

Proposition 33. Let k = —

and assume that (Bhuv)(py —a) > 0

Proof. The proof of Proposition (33) is done by direct computations, and we omit it
here. O
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Theorem 34. Consider system (6.2) as in Proposition 33. Let

h
(o, B,k, h,v) € R® with Oz:,uu(l—ﬁ—) and w > 0.

w?

Then for k sufficiently close to the bifurcation value k the following statements hold:

(i) If (w? — Bh) (Bhu*v?* —w*) > 0, system (6.2) has a supercritical Hopf bifurcation at
the origin of coordinates,

(ii) If (w? — Bh) (BhyPv? — w') < 0, system (6.2) has a subcritical Hopf bifurcation at
the origin of coordinates.

We have added an Appendix FE where we show how to obtain similar conclusions to
the ones given in Theorem 34 but using the averaging theory described in Theorem 12.

6.2 Proofs

Remark 1. From the averaging theory we know that there is a coordinate transformation
x =y +eu(y,t),

T—periodic in t that carries the solutions of the original system (1.11) to the solutions of
the full averaged system of system (1.11), i.e.

y =cqly)+e°g(y. t,e), (6.3)

where g is T—periodic in t. Taking T = €t we obtain the system
2 =q1(2) +eg(z,7/e,€). (6.4)

with ' = d/dr. For a fized € > 0 sufficiently small it is well known that if the (guiding)
system 2’ = g1(2) has a periodic solution due to a Hopf bifurcation, then system (6.4) also
has a periodic solution (cf. [57, Theorem 7.1, pg. 250]). Thus the full averaged system
(6.3) will have a periodic solution of period O(1/¢). In this case a torus will emerge from
the periodic solution in the original system (1.11). This bifurcation is called Neimark-
Sacker bifurcation. For more information about Neimark-Sacker bifurcation see [46]. For
details about Neimark-Sacker bifurcation due to a Hopf bifurcation in the averaged system

see [68, Chapter C| and [3]. Similar ideas were also used in [27].

6.2.1 Lyapunov coefficients

In this section we present some basic notions about the Hopf bifurcations and Lyapunov
coefficients. The theory of the Lyapunov coefficients can be found in [46, Chapters 3 and
10]. We also refer the reader to [74] where the Lyapunov coefficient are calculated in great
detail up to order 4.

Consider the differential equation

v = f(x,m), (6.5)
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where x € R" and p € R™ are respectively vectors representing phase phase variables
and control parameters.

Here a Hopf point (xo, p,) is an equilibrium point of (6.5) where the Jacobian matrix
A = fx(x0, o) has a pair of purely imaginary eigenvalues A\; 5 = fiw, w > 0 and admits
no other eigenvalues with zero real part.

Denoting the variable x — x( also by x we write

F(X) = f(X7 [LO),

1 1
F(x) = Ax+ 5 B(x,x) + 2C(x,x,x) + O(|[x|I"),

where A = £(0, p),

— 9*Fy(§)
Bz(x7y) = x]ylw
0808k o
and
(x,y,2 ;1 0@8&8& :ijkzl.

Let p, ¢ € C" be vectors such that
Aq =iwq, A'p=—iwp, qq=p.q=1,
where AT is the transposed of the matrix A. We define the first Lyapunov coefficient as

L= iRe (p-C(a,9,0) — 2p.B(q, A™".B(g, Q) + pB(q, (2wil, — A) ' B(q,q))), (6.6)

where [,, is the n x n identity matrix.
A Hopf point is called transversal if the parameter controlling the complex eigenvalues
cross the imaginary axis with non-zero derivative. We have the following lemma.

Lemma 35. Consider the differential system (6.5) having the Hopf point (Xo, pg) and
assume that l; # 0 and Re(A+(py)) # 0. Then following statements hold.

(i) If Iy > 0, the differential system (6.5) has a supercritical Hopf bifurcation at xq.

(i) If l; <0, the differential system (6.5) has a subcritical Hopf bifurcation at xq.

To study the co-dimensions two and three Hopf bifurcations, we need to compute the
pertinent Lyapunov stability coefficients.

Here we consider a cubic polynomial system such that the differential system (6.5)
writes

= f(x, ) = Ax + %B(X,X) + éC’(x, X, X). (6.7)

The two-dimensional center manifolds associated to the eigenvalues A; 5 can be param-
eterized by the variables w and w by the immersion of the form z = H(w,w), where
H : C? — R" has a Taylor expansion of the form

1 4
H(w, U_)) = wq +wq + E Tk'hjkwju‘]k + (’)(]w[7), (68)
2<j+k<6 "
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with hjp € C?. Then substituting this expression in (6.7) we get the following equation
Huw + Hpw = f(H(w,w)). (6.9)

The vectors hj, are obtained solving the linear systems defined by the coefficients in (6.8)
by taking into account the coefficients of (6.7). System (6.9) on the chart w for a central
manifold, is written as

1

6 8
144G43w|w| + O(|w|®),

1 1
W = iww + =Gow|w|? + —=Gpw|w|* +
2 12
with G € C. Thus the first three Lyapunov coefficients are
1 1 1
l1 == éRe(Ggl), l2 = ERG(GQ) and lg = ERG(G43).

More precisely, we have
hll :AilB((L 6)7
h20 = (2%‘) * ]3 - A)_l B(q7 q)7

where I, is the n x n identity matrix. From the coefficients of the terms w? in (6.9), we

have
h30 = (3ZWITL - A)71(3B<Q7 h20> + C(q7 q, q))

From the coefficients of the terms w?w in (6.9), we obtain the singular system for hy

wl, — A q ho1\  (Ha — Gagq
P 0 s ) 0 ’

where Hy = B(q, hao) + 2B(q, h11) + C(q,q,q) and Gy = p.Ho.
From the coefficients of the terms w*, w3w and w?w? in (6.9) one obtains respectively
hao =(4iwl, — A) (3B (hao, hao) + 4B(q, hso) + 6C(q, ¢, hao),
hs =(2iwl, — A)~* (B((j, hso) + 3B(hao, h11) + 3B(q, ha1) + 3C(q, G, hao)
+3C(q, ¢, hi1) — 3Ga1hay),
hay = — A7 (B(hao, hnzo) + 2B(q, har) + 2B(q, ha1) + 2B(ha1, hiy)
+ C(q, ¢, hao) +4C(q, G, hir) + C(q, G, hao)).

Defining

Hsy =B(hao, hao) + 3B (hat, hao) + 2B(q, hay) + 6B(hy1, haor) + 3B(q, hao)
+ 3C(q, hao, hao) + 3C(q, q, har) + 6C(q, hao, h11) + 6C(q, @, hor)
+ C(q,q, hso) + 6C(q, h11, hi1) — 3Ga1hay — 6Gaghan,

we have G33 = p.Hszys. The complex vector hzs can be found solving the non-singular

system
iwl, — A q\ (hss _ Hsy — G3agq
D 0 s 0 ’
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4

Finally from the terms w*w, w*w? and w3w? in (6.9), one has respectively

hay =(3iwl, — A)~ (B(q, hao) + 4B (h11, hao) + 6B(hao, hor) + 4B(q, hs1)
+ 3C(q, hao, hao) +4C(q, q, hao) + 12C (g, hu, hao) + 6C(q, ¢, ha1)
— 6Ga1hsp),

has =(2iwl, — A)~" (B(hao, hao) + 4B(ha1, hao) + 2B(q, hur) + 8B(h11, har)
+ 6B(hag, haa) + 6B(ha1, ha1) + 4B(q, hsz) 4+ 3C (hag, hao, f_zgo)
+4C(q, hao, hao) + 12C(q, hao, ha1) + 8C(q, ha1, hso) + 12C(q, hao, ha1)
+8C(q,q, ha1) + C(q, G, hao) + 12C(ha1, hay, hao + 24C(q, hay, hot))
+ 6C(q, ¢, hao) — 4(Garhs1 + 3Ga1ha1 + Gashao)),

hss = — A7 (3B(hao, ha1) + 9B(ha1, ha1) + B(hso, hso) + 3B(hao, ha1)
+ 3B(q, hsa) + 3B(q, haz) + 9B(hy1, has) + 9C(g, hao, har)
+ 3C(q, hao, h3o) + 9C (ha1, hag, hao) + 9C(q, hao, har)
+18C (g, ka1, ha1) + 3C(q, hao, hao) + 3C(q, ¢, har)
+ 18C(q; ha1, ha1) +9C(g, q, haz) + 3C(q, G, har)
+ 6C (ha1, hat, hat) — 9haa(Gar + Ga1) — 3h11 (G2 + Gs2)),

Hys =3B(hao, har) + 12B(hay, har) + B(hso, hao) + 4B(hso, ha:)
+ 6B(hao, hsz) + 3B(q, hag) + 12B(hy1, hsy) + 18B(hay, hoy) + 4B(q, hss)
+3C(q, hao, hao) + 12C (hqy, hao, hso) + 18C'(hao, hao, hat)
+12C(q, hao, ha1) + 12C(q, hay, hao) + 36C (hy1, hao, hay)
+ 36C(q, hat, hot) + 3C (hao, hao, hao) + 4C (g, hao, hao))
+12C(q, hao, ha1 + 6C(q, ¢, hs) + 24C(q, ha1, ha1))
+ 18C(q, h2o, ha2) + 18C(q, ha1, ha1) + 12C(q, G, ha2))
+3C(q,q, ha1) + 36C (hi1, h11, har) + 36C(q, hi1, hoo)
— 6(2Go1h3s + Gaghay + 3Ga1hse + 2G32hay ),

obtaining G43 = ﬁ.H43.

6.2.2 Proof of Theorem 31

Proof. First we do the reescaling (z,vy, z) = £(Z, g, Z) obtaining the system

In order to write the linear part of this system in its Jordan real normal form, we do the
linear change of variables

w59 (- 203 (1~ 2) - x0)).
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Then the previous system writes

X =—wY+ (kv(vX —wZ) (VX? = 2wXwZ +w* (2% — 1)) — prhw’Y)

£
wt
Y =wX —eayY, (6.10)
Z :é (kv(Xv — Zw) (X*V? = 2X Zvw + (Z2° — 1) w®) + w* ( — hY Brw

+(Xv — Zw) (X = 2X Zvw + (27 — pn)w?))) .

Now we use cylindrical coordinates X = rcosf, Y = rsinf and Z = z in system (6.10).
Thus taking 6 as the new independent variable we finally obtain a system in the normal
form for applying the averaging theorem

7’ :% (=Brhrw’ sin(0) cos(0) + kv cos(0) (vr cos(8) — wz) (vr cos(8) (vr cos()
—2wz) + w? (2* — 1)) + aa(—r)w?sin®(0)) + O(e*) = Fu (0,7, 2) + O(£%),

2 :% (v (kv 4+ w?) (vrcos(0) — wz) (vrcos(8)(vr cos(f) — 2wz) + w? (2% — 1))
—Bihwrw?®sin(8)) + O(e?) = Fia(0, 1, 2) + O(e?), (6.11)

where here " = d/df. System (6.11) is 2m-periodic in #, and we can use the first order
averaging method to write its averaged system

T (—doywt + 3kvtr? + 4kv2w? (322 — 1))
8uw?® ’

NI (kv + w?) (3v%1? 4+ 2w? (22 — 1))
2wb '

The equilibrium point of the averaged system satisfying r» > 0 are

2w [p 0 2w [ayw? + kuyv?
— (= /2 4. /2 _ (2w Ty
= (u \ 15° \ﬂ) and - So (:ﬂ\/ 5. V)

where p = (2ku1v? — ayw?)/k. Consequently the following statements hold.
(7) If p <0 the only equilibrium point of system (6.11) is S.
(17) If p > 0 system (6.11) has three equilibrium points Sy and Sp.

For analyzing the stability of these equilibria we study their eigenvalues. First the eigen-
values of the Jacobian matrix of system (6.11) at Sy are A\ < 0 < A, where

(kv + w?) (2oyw? + kpyv?)
kw3

aw? + kg

A= — and Ay =

w3

Thus Sy always has one stable and one unstable direction.
For analyzing the stability of S1 we assume p > 0. Then we write the characteristic
polynomial of its Jacobian matrix

C(\) =N +b)\+c,
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where

_ dow? + Sagky + 2k v? and ¢ — 2p (kv + w?) (2oyw?* + kuyv?)
S5kvw Svwb

b

Let A\; and A2 be the solutions of C'(A\) = 0 then the following statement hold.
(i) If b¥* — 4c < 0 then Re(\) = Re(X\s) = —b/2 < 0.
(i) If b — 4c > 0 then A, < o < 0.

Statement (i) follows directly from the fact that b > 0. Furthermore the graph of C'(\)
is a parabola opening upwards cutting the ordinate axis at C'(0) = ¢ > 0 and since
C’'(0) = b > 0, it is increasing at C(0), then its roots must be at the left side of the
abscissa axis. This graph analysis justifies statement (i). O

6.2.3 Proof of Theorem 32

Proof. Let

B 8kv2w? — 3kv* 3v? + 2w?

B 4wt 2w?

To prove the Neimark-Sacker bifurcation occurring in system (6.2) we use Remark 1.
Thus we use the averaged system (1.2) to write the guiding system as

o and =

8w? 8w?
, vz (3242w (kv +w?) 3%z (kv +w?) v (kv + w?)
7= —

5 0 — 3 . (6.12)

, kvt 3kv?2%  3kv? (V? + 4w?)
r = -
2w’ ’

We are going to show that the guiding system has Hopf bifurcations at Sy = (1,=+1).
Due to the symmetry of the system, the proof will be done only for the Hopf bifurcation
at S,.

We translate S to the origin of coordinates, and do the change of coordinates

Sw3 — 312w’ 32w — Sw3

()= )0+ (e (6.13)

obtaining the system

6503

where A = m, and
3v° (¥ (p+1) (P + 2v5p( + 5¢%) +4pw? (p* + p — 2V5())
Mlp,C) = - 4w3 (8w? — 312) ’
3v° 2 2 2 2
ha(p, ) ~T6var (8 —307) (4y w ((7/) +10)p” + 5(p — 2)¢* + 8V5(p + 1)p<>
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+ v (p3 + 3V5p2C + 15p¢% + 5\/5C3> + 16pw? ((,0 —5)p — 2\@() )

In order to calculate the first Lyapunov coefficient of system (6.13) we compute the
multilinear functions

0 —A
=00,

B(x,y) = ( 3

62 — 1607 (xlyl (1/2 + 4w2) + \/gxlyg <V2 — 4w2)

30
" V5w? (8w? — 312)
<5$1?Jl + 2v531ys + 2V By 119 — 5332?/2) — 61°w® <5$1?J1

+V5a1y, + \/gy1372>> , and

+ 29 (\/gyl <V2 - 4w2) + 51/2yg> )

36V3J:1y1z1w2 30
612w3 — 16w®  612w3 — 16w®

C(x,y,z) :< (551 (33/121 + 2\/5?/122

+2Vbzys + 5y222> + X9 (2\/51/121 + 5y129 + 521y2> )7

3 3 4 7
100 (8w? — 312) (1svwtmipnanst 307 (an (o1 (V521 +522)
+ 592 <Zl + \/322>) + 5372 <y1z1 + \/gylz2 —+ \/521y2 —+ 5y2z2>>

+ 415w? <!E1 (21\/39121 + 40y 29 + 402192 + 5\/6922’2>
+ 5552 <8y121 + \/gyle + \/321y2> ))) s

as defined in Section 6.2.1. We take the eigenvectors
=q=—(1,—1).
p=q \/5( )
In order to calculate the first Lyapunov coefficient we compute the quantities

8w 3t
hin={ -5+ 40 9 1)
3vt 4+ 8w 3vt 4+ 8w

o <8iw2 (—6v/50% + (11V5 + 10i) w?) v (3 (25 + 4iV/5) % + 16 (—5 — 2iV/5) w2)>

15 (3v4 + 8w?) ’ 15 (3v* + 8uw?)
4w? (27 (1 — iv/5) v* + 12 (=17 4 7iv/5) v2w? + 4 (53 — 13iv/5) w?)
h30 = 24 1 )
52 (304 + Swh) VZ’ +9

V312 (3 (17 + 8iv5) vt + 8 (—14 — 11iV/5) 12w? + 16 (1 + 4iv/5) w?)
5 (30t + 8wh)?/? ’
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’

8iv/3viw (3 (4v/5 4 5i) v* + 16 (V5 + 51) v2w? + 8 (4v/5 + 351) w*)
]151 = 3/2
5 (3v2 — 8w?) (v + 8w?)
6v/30° (3 (5 + 13iV/5) v* + 32iv/502w? + 8 (=5 + 3iv/5) w4)>

5 (8w — 3v2w) (3u4 4 8uw?)/?
488 (3vt + Aw? + 8w?)
2w (8w? — 3v2) (3wt + 8wt

Thus we have [; = 0.
Now we perform the computations to obtain the second Lyapunov coefficients

(/320w 8w = 3vh) V3B (V5 +5i) (310 - 81°w?)
. 5 (vt 8w 10 (30t + 8wh)* ’

642
hao = (7235~ 131V5) v + 3 (6595 + 101605 ) v'u?
1125 (304 + 8w?)

1

+4(9715 — 47i/5 ) 12w 4 (—21445 — 132405 ) w° ), .
375 (3v* + 8w?)

<9 (1775 n 3128i\/5> VS 4 96 (—325 _ 1441¢\/5) V502

+ 64 (—1525 n 3044i\/5) VA 4 4096 (25 _ 17@'\/5> 1/2w6)> ,

4 2
hay = L (18 (15— 19iV5) 10 + (=345 4 4410V/5 ) w'e?
75 (3u + 8w

2

+16 (=70 +200V/5) 12w + 8 (85 + 891V ), v '
150 (304 + 8w?)

(9 (205 n 311\/5) VS 1 48 (95 _ 42'\/3) Viw? + 8 (965 n 1791\/5) V2t
+128 (—125 - 23z'\/5) wG)) ,
b _< 16w* (9301 — 1760%w? + 188w?t)  v* (14101 — 3520°w? + 496w4)>
* 15 (34 + 8wh)? 5 (304 + 8w)? ’

4313w
Hsy =
25 (312 — 8w?) (3vt + 8w

+ 48 (160 _ 472'\/3) 52 + 16 (—1000 n 689@‘\/5) VAt

Y

9 (665 + 101iv/5) v/°
)5/2

128 (340 _ 472'\/5) V2ub 4 64 <—2665 n 1012'\/5) w8>,

6v/30°
vy (9 (~360 - 4613v5) v*
25 (32w — 8w?) (3v* + 8w?)

424 (35 n 1292'\/5) 5,2 + 8 (815 _ 563@'\/5) At
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+ 64 (—25 + 697L\/5) 20 + 64 (195 n 94z'\/3> w8>> ,

48iVBr? (3vt — 8r2w? + 8w?) (3v! + 4v%w? + 8w?)
(8w? — 312w) (3v4 + 8w?)? '

32

Obtaining again [y = 0.
Finally we have to calculate

hay — (25 : V3w ( (—297 - 9992’\/5) V8 1 48 (1 + 6@'\/5) V542

vt + 8(,u4)5/2
+ 2608w + 128 (1 . 6@'\/5> V20 4192 (—11 + 371'\/5) w8>,

V3 EE (81 (~20+ 8iv5) v* + 24 (20 - Tiv/5) 0?

50 (3v4 + 8w

— 1304i (\/5 - z) Vit 1 64 (—31 + 5i\/5> V20 + 192 (98 _ 131\/5) w8)> ,

Sw?
h’41 -
1254/3 (304 + 8wt
+36 (—848 n 199¢\/§) VSw? + 12 (271 _ 536N5> VAt

7 (27 (211 - 14005 »*

432 (—19 + 536@'\/5) V25 4+ 16 (3857 - 619@‘\/5) w8>,
V312

125 (30 + 8uw?)™/?

472 (—29 n 149z'x/5> Vit 4 576 (—183 - 83¢\/3) V24

(9 (1328 n 455z'\/3> S 424 <283 _ 4192\/3) o

128 (259 + 3972\/6) w8>> ,

Sw?

By —
. (1875 (34 + 8w)?
41200 (—511 _ 107i\/§> WSt + 80 (—15700 n 36537;\/5) LA

(54 (4445 _ 3154N5) V10 4 45 (—2615 + 11036@‘\/3) 82

+ 1280 (5 v 442'\/5) V2w 4+ 64 (11005 n 13399z'\/5) w10)> ,

4 2
higs — L (- 2187iVE 0 + 9 (5653 — 27005 ) v
25 (301 + 8w

+24 (4547 n 4772'\/5) St + 16 (—8782 ¥ 3512'\/S> b
+ 64 (2657 _ 234N§> V2w + 64 (—1783 n 36z'\/5) wm),

32

50 (3v4 + 8w*

E (9 (~1963 + 1620/ ) 1 496 (1108 + 13515 ) ve?
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432 (—6596 _ 711z\/5) VSt 4 198 (1531 _ 2432'\/5> A
464 (—2533 n 786z'\/5> V2 — 92161 (\/S _ 51’) wlo)) ,

2433w
625 (3v2 — 8w?) (3v* 4 8w?)

£ 72 (22270 n 13269i\/5> 11942 4 600 (2025\/5 4 18337@') L8

(27 (101960 v 11141¢\/S) 12

4320 (69785 _ 30641¢\/5) 50 + 48004 (4215\/5 T 10117¢> At

+1536 (43005 _ 5252z'\/5) V2wl 4 512 (-254120 n 10241z‘\/3) w”),
6+/31°

625 (302w — 8w3) (34 + 8w?)™?

+216 (39995 + 539572’\/5) 192 1+ 3600 (3289 . 11246z\/5> o

( <—7787205 _ 63115472'\/5) P12

4 640i (66413\/5 n 396852’) 5,8 + 3200 (10024 _ 9112'\/5) VA

1512 (12115 . 62099i\/5> 2,10 1 112128 (535 + 5012\/_> ))

5 =25 (3 3326:; (301 + 8wt)? (s1 (3975 + 409735
+ 72 (10125 - 17716z'\/5> v1%0?% 4+ 120 (-31275 + 356392’\/3) VAw!
+160 (4725 - 334492’\/3) V500 4 1280 <5625 + 35662'\/5) A
+256 (~28125 — 15857i/5 ) 12w!” + 6144 (375 + 11931v/5) w'?).
Hence

Re(Gys) 9% (3v* — 8w?) (811° + 2161w — 8961 w* 4 8001°w® — 256w®)

[ — _
T 144 20 (8w — 312w) (34 + 8w?)’

and by the arguments given in Section 6.2.1 we know that the guiding system (6.12) has
a Hopf bifurcation. Figure 6.4 numerically shows the periodic solution for system (6.12).
O

6.2.4 Proof of Theorem 34

Proof. The proof will be provided using Lemma 35. In order to simplify the computations
we take a = uv (1 — F) with w > 0. Then the bifurcation coefficient becomes k =

G ) iy

" , and the eigenvalues are +iw and
The characterlstlc polynomial of the Jacobian matrlx of system (6.2) at the origin is

2.2 2

w2

Bhuv + A (1/ (k + /fy) —
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1.00002

1.00001
1.00000 |

0.99999 |

0.99998

1 1 L 1 1

L

0.99998 0.99999 1.00000 1.00001 1.00002

Figure 6.4: Two solutions converging to the limit cycle resulting of the Hopf bifurcation
at 5. Here k = —1.595, v = 1 and w = 1. The square and triangle represent the initial
points (1.00001, 1.000002) and (1.00001, 1.00002) respectively.

Assume that A(k) is a solution of the characteristic polynomial. It depends continuously
on k and we can write

d\ (k) = vw? (k)

dk*" Bh(u2v? + w?) — 2B8huv (k) + 3w2A(k)? — vw? (k + pu2v)’
Let A(k) = iw and taking k = k in (6.14) we have that

_ Bhuv?w?
Re (| —(k) ) = — 0.
¢ (dk( )) P )

Thus in order to apply Lemma 35 accordingly with the arguments of Section 6.2.1, we
calculate

(6.14)

j% v 0
o 2) (1242 2
A= (8h w)(’lél/—i_w) uy(ﬁ—};—1> —h |,
vw w
0 B 0

and the multilinear functions B(x,y) = (0,0,0) and C(x,y, z) = (—6x14121,0,0). We
also obtain the eigenvectors
C( iBBR - ) (- fwlwtiw) Sh(uw — iw)
p=a 2uw (Bhpv —iw3) 7 2Bhuv — 2iw3’ 2Bhuv — 2iw3 |’

. <_ ww w |5|>
T2 sen(B) (v — i) sen(8) )

where

2
2 v 1
w <M2V2 + w2 + ) O 1202 1 w?
o1 = 09 = .
1 32 ) 2 B2 (u212 4+ w?) + (12 + 1) 12w? + w?
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In this case the first Lyapunov coefficient (see (6.6))

1 _ _
ll - %Re (pO(Q7 q, q))
becomes
. 33w (w? — Bh) (BhpPv? — wt)
PR ) (R D) A+ ) (PR )
So the result follows directly from Lemma 35. O]

6.3 Appendix E: Hopf bifurcation via Theorem 12

In this Appendix, we show that the Hopf bifurcation detected by the computation of the
Lyapunov coefficients in Theorem 34 can also be detected with the averaging method (see
Theorem 12 ). More precisely we have the following result.

Theorem 36. Consider the differential system (6.2) with

w2 _ Bh> (,11,21/2 + w2) ay (ﬂh,u2l/2 + w4) ,uyw2 _ ﬁhﬂy
J— E: 5 = —_—m—h—lh -
vw? Bhuv? w?

L

+ eay,
and assume that

Bhuv? (ﬂh — w2) (w4 — 6hu2u2) > 0.

Then for |e| > 0 sufficiently small system (6.2) has a periodic solution bifurcating from
the origin of coordinates.

Proof. Following the algorithm used in the proof of Theorem 31, we first do a reescaling
of the system by doing (z,v, 2) = €(Z,y, Z). Then we do the linear change of coordinates

o —BhuvZ + prXw? + w3Y + prw*Z
=(X+Z -
(2,9,%) ( +7Z, —

BhXw — BhuvY + fhwZ — w3Z)

I

hvw

obtaining the system

ay (B2h* P2 Z — Bhuvw’Y + Wb (X + 2))
B2h2120% + W

X 1 2)° (Bh— ) (Bhu? — o)

3202202 + Wb ’
(a1 2R v Z — oy Bhuvw®Y + a; Xw? + ayw’Z2)

B3 1313 + Bhp

WX + 2P (= W)

B2h2 1202 + b ’
6h/u/Z s (alﬁh,ul/X (Bhuv cos(Y) + w?sin(Y))
2 82121202 + Wb

X=—wY+e

Y:wX+€

(6.15)

+ée

7 =

— a1(X cos(Y) + Z))
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o Bhvw? (p?v? + w?) (X cos(Y) + Z)3
ﬁ2h2u2y2 + wﬁ ’

Then we take the cylindrical coordinates X = rcosf, Y = rsinf and Z = z in system
(6.15) and take 6 as the new independent variable obtaining a differential system

(7', 2) = Fo(r, 2) + eFi(r, 2,0) + e Fy(r, 2,0) + O(%), (6.16)

where

Fyo(r,z) = (0, 5h—ugyz) ,
w

Fi(r,z,0) = < (z (B?R*p*V? + w®) — Bhpuvrw® sin(0) + rw® cos(6))

Bh 0) + w3 sin(#
s e £ e )

— Bhuwrw?® sin(8) + rw® cos(9)) <w3(r + z cos(0))

. aq
— Bh 0
/6 ,uVZSHl( )) ’I"CU4 (/32h2,l,621/2 _I_wﬁ))a

F2 (Ta Z, 0) - !
h2rB2p212w? (Wb + h2B2p212
— BB (1R + w?) WP+ 232 RS — R ARt (1202 + w?) w?
+h5r255ﬂ5u6) cos?(0) + rw (rw (—a%wm + h2B% % (BC@ + r2uy2) wl®
+R4 2 B4 (i — w) (v + w)w? — ROr? 3% 1°10) sin(0) — hzBuv (w° + h*B%p*v?)
(2a%w8 + 3hr?Bur*w’ — 3R r? 5% (,u2u2 + w2) w? + 3h3r263/f’u4)) cos®(6)
—w (hﬂ;u/ (wG + h252u21/2) (a?ws + 3hr? Burwb + K22 u? (a%,u
—3r? (u21/2 + wz)) w? + 3h3r2ﬂ3,u31/4) 2% 4+ rwsin(0) (Shra%ﬂ;w (h262u2u2
—wf) sin(0)w” + 2 (W + A2 B2 p*1?) (205w — B2 B2 pPV? (4 + 3rPw?) w?
+3h47"2ﬁ4u31/4))) cos®(0) + (sin(0) (hraiBuvsin(0) (42w + hrBuv (h*B?p*v?
—3w0) sin()w® — 2n* 28" ' v?) WP + 22 (W8 + W?BP VP (—afw'?
+3h2r2 321348 + hApt st (a%,u - 3r2w2))) — W32t Rw (hﬂ - w2)
(hBp*v? — w*) (W + B*B%pv?)) cos(0) + hBuvw® sin(0) (ajw (h*rzB°pv?
sin(20)w® + sin() (2 (w°® + A*B°1*v?) — hrBuvw® Sin((‘)))2> — hr2®Buv?

)2 ( — hr?Buvw (a%wM + hr?Buwt?

252 4\ (6 | 1232,2 2 1 2,,2(.2 16
(h BT —w ) (w +h" B uv )) >7 2 By (0 +h2,62u21/2)2 (r Zw (alw

CR22E280 4010 ¢ 2 at s (w2 _ H2V2) wh ot h6r2ﬂﬁﬂ5y6) cos*(8)
—rw (— (r2 + 2z2) a%w” + 232 ? ((,u21/2 + w2) rt 4+ 2% (3r2uu2 — Qa%)) wlt
+hr2 B4 vt ((r2 + 322) v + (7"2 - 322) wz) w® — 3n5r222 6% 1510w + hrzBuv
(4a§wl4 + 2B — B2 B2 (szz +w2) WS+ 20312 33 1340

—hr? Bt (R + w?) w? + hPr? B pr0) sin(0)) cos®(6)
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+ w (2w (wﬁ + h252,u21/2) ((2r2 +z ) 2010 4 R2B% p? (z I ( —3r?uw )

—3rt (szz + w2)) wh 4+ 3n4r222 84 Y ) + 3hrBuv sin(f) (— (r +22%) ajw'
—hr? 22 Bur*w'? 4 2hrza? fuv sin(0)w' + h222 6% uv? (r2 (/L2l/2 + w2) — 2a1u) w®
—2R32 230 A 4 B2 B Rt (120 + w?) w? — BB 1Pu0)) cos?(0)

+ w (—4h*r? 201 B2 1P V? sin® (0)w® + 3h%ral B2 pPr? (r?w® + 227 (wh

+h2 B2 Py )) sin?(0)w® + 722 (w6 + h262u2u2) (a%wlo h? 32 uv? ((3r2 + 22)
Qu) wh + t2pt3 ) — hzBuv (w + h2ﬂ2,u21/2)

(2 (27"2 + 22) alw + 3hr2 22 B w® + h2 22 B2 (Qa%,u — 32 (MQVZ + w2)) w?

+3h37222 83 1) sin(0)) cos(0) — hBuv (hr?2Br (pPv? + w?) (w° + K2 B2 p2r?) wb

+ sin(6) (rw (w6 + h262u2u2) (a%wg + h2?Burw® — K22’ (22 (M2I/2 + wQ)

—afp) w? 4+ W22 B3 Pv?) 2% + hal Buw sin(0) (hrBuvw?® sin(0) (r*w®

—hrzBpvsin(0)w® + 22° (W + B?B%p*V?)) — 2 (W° + K2 B2 p*v?)

((2r® + 2%) w5 + h22262%0%)))) ))
Thus we use (1.15) to obtain the the following averaged functions of system (6.16):

2nBhuv
1—e W )z),

%ﬁhw a1 PR Ay — aqwtz)  ay BPRAP Az — aqwdz
253h3u V3 + 2Bhuvwb 2333 13v3 + 2Bhpuvws

u2u24k3r2w2

4nBhuv

2mphuy a1 Bhuvw?2? 3rayz a1 Bhuvw?z?e” «F
e w _ _
B2h? p2v?r + rwb 2w B2h2 12 v?r + rw

02uwta2e o 8 + 18 _ 1
1 B2h2p2v2+uw0 4B2h2 p2v2+ws ﬂZ h2‘u2y2
ga(r, 2) =
’ 8r
6mBhuv
w?2%e” W3

373 2,2 2 9
r(B2h2p2v? + W) (982h2 21?2 + W) (35 Wtz — B0 e

(6a%,u +rz (3u2y2 + 4w2)) + 3Bhur*rwsz + Wb (20@ + MV27’Z))
N 1 2nbhu 243%R% vz (203wt + 3pu?r? (B2h? — w?))

24¢ * (B2h2 1212 + wb)?
n 8182h2uv?r?z — 54Bhuv*r?w?z — 3wtz (804% + 9,uu27"2)

B2h2 212 + Wb
z (—962h2,u1/2r2 — 18Bhuv?r?w? + w (3204% + 27,1“/27“2))
B2h? u2v? + 9w

1003wtz 3003wtz
B2h21202 " B2h2p2u2 + 4w
n 1 amphuy 86402 32h? 22wt 27503wt
2426 w (4ﬁ2h2M2V24—&ﬁ) 4ﬁ2h2N2V24‘9W6

3adw (144 Bhpuy + T9w3) 6 (3822 u2r?z — 3Bhu?r?w?z + dadw? (r — 2))

482121202 + Wb + r (B2h2p202 + w)
203wt (4r +32)  1282h2p20? (4adw? + 3pPrz (wh — B2h?)) N 72madw
B2h2p2v2r (B2h2 1202 + wb)? Bhyuw

+
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18rw?z + 18rz 1 [z (9[32h2u1/2r2 + 18Bhuv*r?w? 4 w* (f (320@ + 27w/27’2)))
Bhu i 24 B2h2pu2v? + 9uwb
3 2;2 2 2 2 2 2
+ (P22 1 ) (ﬁ heuvirz (—277’ — 6rz + 4z ) + 2B8hvrew (71' (4ozl,u

+3r2 (/J,QVQ + wz)) + 3urwz(3r + z)) + wlz (9uu2T3 — 4uPr2® + 8aiz))
N 3622 (—3ﬁ2h2,u1/27‘z + 2Bhpv*rw?z + wt (204% + /.LZ/Q’/‘Z)) B 3a3whz(6r + 2)

1 (982h2p212 + wb) B2h21202r

3a3wz(79r —18z) 36822 pvtrz(2r + z) (B2R* — w?) B 86403 B2h?uviwiz

r (452h2uzu2 + w6) (B2h2p2v? + w6)2 (452h2M2V2 + w6)2

3003wz n 27503whz 24ralrw  18rw?z?  18mwrd  18r2?
B2h2p2v? + 4wb  4B2h2p2v? + 9wb Bhuv Bhu w i ’
Qwlzde 5 - 3 25212 2 2. 42

1 BZRZp202+wb  ABZR2ZpZr2+wo n 1 eswguu 12a5B2h*pu vorw*z

4r? 12r2 (B2h2p202 + wb)?

n 322 (76[32h2lul/27'22 +4BhurPrw?z? + wt (—lloﬁr + 2ur?rz? + 804%2))
982h2 212 + Wb

r(682h% 22t + whz? (1704 — 6p?2?))  2a3wtz? 1503w 23
2121212 4 o)b B2h2202  9B2h2120% + 4w
_16a%64h4u4l/4rw4z2> n 1 5 omshuv 203wz
(B2h2p202 + wb)® g7 ¢ ¢ <B2h2u2v2r2
ofw (1447 Bhuvr + w?(29r + 40z)) 28802 32h2 22wt 7502wt
12 (482h21212 + wb) r (48202202 4+ wb)?  482h2p2v2r 4 9rwd

N 4B2h2 PPz + 6Bhuriw?z — 2wt (5uv?r?z + 203 (Tr + 22))
12 (BZh2p202% + wb)
12821220 (B2h2 Pz — w (of + p’rz)) 16a2p4h ptvtnt 4z
r (B2h2 202 + wb)? r (B2h2p2v? + wb)? B ﬂ>

4 1 amphuw 1260w 32403 32 h? 2 viwt 5002 w?
79°¢ B2h2pPv? T (B2h2p202 + 4wb)? B2h2pPu? + 1600
B 3603w (Qwﬂhw/ + w?’) N 27z (362h2uuzr2 + 6Bhur?riw? + w? (— (80@ + 9uu2r2)))
B2h2 1212 + Auwb r (B2h2p202 + 9wb)
N —29782h% pv*r?z + bABhuwrw (4mad + vrwz) + wt (27pr*r?z — 1603 (r — 27z))
r (B2h2 1202 + wb)
n 2432h2 202 (18ﬁ2h2uu27’2z —wt (18uu2r22 +a2(Tr + 32))) 3247ra%w>

r (B2h2p2v? +w6)2 Bhuv
N (,,,w4 (_ga%wu + 64}14”31/472 (M2V2 _|_w2) + ﬁ2h2uy2w6 (77“2 (/J,2V2 +w2) _ O‘%M)))
(52}12#2,/2 + w6)2 (,82h2M2V2 + 9w6)

+ e (—82944z (22 — 217"2) @2w™ 4 2737152072 20 Buvw™ + 5760 B2 v’
(864r°w?2 4 p (2160r° vz + (1728r° + 7134021 — 95042%r — 79012%) af) ) w™

— 17283 r233 12 v? (1442 (4r2 + 3zr + 422) prw + (432r3 (5u2u2 + 4w2) — 358631“@%@))
w™ + 16R* B p3 " (1 (132926417 + 237949142r% — 60299282%r — 34878012%) o

—108r (448r* — 364821 — 169692°r — 23042*) pv?) — 2161 (224r* — 1152212
—32212%r — 288,24) w2) WS — 48Pz ut® (36z (130127"2 + 966327 + 827622) prw

+7 (540r® (322101 + 2548w?) — 11180393raip)) wb + 4h°3% 1710
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(24r (—172568r" + 864288212 + 9692232%r + 1074962" ) w? + p ((41952144r°
+4649449862r° — 139496600z°r — 734179552%) of + 12r (—345136r" + 28123682°r>
+55885072%r + 1108800z*) pur?)) wb' — 1217 rzB7 v (458777287mw?r® + 275mp
(214860r* v — 71385103 r + 202 (808332r> + 5908652 + 3443002%) pvw) w™®
+ h®B8u"v® (24r (—5460008r" + 260931842°r% + 154427112°r + 12254002") w?
+ p ((637246224r° + 5389071552212 — 18727433842 — 8345613552%) af

+12r (—10920016r" + 890880482 + 1048359472°r + 23108800z*) puv?)) w®®
X — 1517728 uv? (42 (141087482 + 1006318521 + 417406027) pvw

+33m (20r° (3049451°1° + 229632w?) — 11713659raipu)) w® + A'0BYp 110

(6r (—83286888r" + 365438784271 + 11545604127 — 4477000z") w?

+ 1 (2 (6258259987 + 491376463221 — 202550458921 — 7465237302°) af

+3r (—166573776r"! + 1361639088271 + 110566403721 + 2414896002*) puv?)) w*
— 15h"  rzp" Ot (2 (1375461001 + 9444491121 + 293307082%) puvw

+117 (r® (429295051°1% + 30684264w?) — 50917669raiju)) w'® + h'2 12yt
(12r (—82398971r" + 30374740821 + 261736422"r — 237090152") w?

+ p ((12882540841° + 114470558522r% — 54095172862°r — 17325430152°)
+6r (—164797942r" + 135174930621 + 842060099z°r 4 1725622802") puv?) ) w*
— 15h" 37z ' ?0'3 (82 (2450246177 + 1587441321 + 390965627) pivw

+85m (r® (74703121° 1% 4 4865133w?) — 5788106raip)) w™ + 2pM3M

(1 ((3513103387% + 411924982221 — 217400328321 — 6335709702°) o

+6r (—85931879r* + 7091190272°r% + 3684145482r + 701051002") uv/?)

—3r (171863758 — 408252954271 + 14700676921 + 943691602*) w?) W’

— 30h"PrzB pM 1P (2 (836936881 + 4977186921 + 1027841227) pivw

+517 (r® (4879595.° 1% + 2658624w?) — 2608451raip)) w?t + K100 L1110

(1 (2056607647 + 343368373221 — 20132228182%r — 5608985052°) o}

+6r (—95841042r" + 79878216621 + 36488046921 + 653580402" ) uv/?)

—6r (95841042r" + 43322342°r% 4 2463734012 + 88818140z" ) w?) w?!

— 15h! Tz T 017 (82112550mw?r® + 55 (4128552r% uv® — 1616617a3) r

+82 (107743951 + 56767592 + 10332082%) prw) w?® + h' B8 118

(1 (4 (7902804r% + 1901911112r% — 1260711662r — 361616452°) of

+3r (—58044436r* + 490872468212 + 2016937072°r + 345972002" ) uv/?)

—12r (145111091 4 645767732%r7 + 779412522%r + 223469402") w?) W

— 150" r2B" 0" (2 (2642492417 + 11863599z + 19792522%) pvw

+117 (3r® (17975154%1° + 61828w?) — 1644041raip)) w? + K> 20!

(1 ((2320704r® + 7889620821 — 623282802%r — 205717812%) af

+12r (—2340796r" + 201867482°r* + 7485977=%r + 1246960z") pv/”)

—6r (4681592r* + 607379342°r% 4 4858753127 + 123504702*) w?) w'?

— 3R rz B vt (202 (114968417 + 42414921 + 6674827) vw

+33m (25r° (51412p°0% — 30771w?) — 323252rajp)) w'® — 24h** 32212 >

(r (91512r* 4 29776742%r% + 19260572°r + 4566102*) w? + p

((—2592r° — 1485362r” + 13041227 + 600512%) of + 2r (45756r" — 4040282°r
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—134577z%r — 220002%) pu?) ) w'® — 120312 3% *21°% (42 (1256042 + 372332r
+56442%) pvw + 3 (r® (248220p1° — 508339w?) — 54396raipu)) w'® + 144432
p23u (Su (z (1447“2 — 1122r — 8722) oF + 4r (—367’4 +32422%r% 4 99257 + 1624) ,uy2)

—2r (216r" + 21582272 4+ 119792%r + 27262%) w?) w" — 432K r25%° 1?4 1?°
(—37057rw2r3 + 1087w (5r2;w2 — a%) r+44z (1087"2 + 27zr + 422) ,uuw) w?
—10368h*0r2” (1817 + 921 4 227) B2 1*P1v*0w® + 466561 mr 2327 11*01%7)
(12h2T252M2V2 (w6 + 4h2ﬁ2u2y2)2 (w6 + 9h252M2V2) (4w6 + h252u2v2)2
(4w6 + 9h252u2u2) (90.)6 + h252u2u2) (90.)6 + 4h252u21/2) (160.)6 + h252ﬂ2u2)

(w7 + h252u21/2w)3> o > .

Function go(z) vanishes on the the graph Z = {(r,0) : 7 > 0}. We apply Theorem 12
_ZWBfLMV

to system (6.16). Here A, =1 —¢e <3 # 0. Computing the bifurcation functions we
have

fl(T) =0,
fo(r

)= — o
 4Bhpvw (82h2pcr? 4 W)
(/w (4a2u + 4ky — 3/w7"2) — 37"2w2) + Bhuvw® (4a2 + 3ur2) )

<4a%w8 + 38303 134 r? + B2RE utw?

Let
ro = Bhuv? (,Bh — w2) (w4 — Bh,u2y2) )
2061(.4.14

\/37“0

If 7o > 0 the equation fy(r) = 0 has the positive solution 7 =

. Furthermore,

2malw’
=\ __ 1
f2(7’) - thgﬂgyg —|—ﬁh,uyw6 7& 0

and consequently, by Theorem 12 (b), system (6.16) has a periodic solution bifurcating
from the origin. O
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Chapter 7

Zero-Hopf Bifurcations in a
Hyperchaotic Lorenz System

In recent times a so-called hyperchaotic Lorenz system was introduced; see for instance
[4, 21, 26, 31, 39, 42, 72, 71, 70, 78, 83, 87, 90] and the references therein. MathSciNet
presently lists 32 papers on hyperchaotic Lorenz systems. We observe that not all these
hyperchaotic Lorenz systems are similar, since they can vary in one or two terms. However
these systems are autonomous differential systems in a phase space of dimension at least
four, with a dissipative structure, and at least two unstable directions, such that at least
one is due to a nonlinearity. The hyperchaotic systems has a dynamics hard to predict or
control, for this reason such systems are as well of use in secure communications systems
see, for instance [88].

Our aim in this work is to study, from a dynamical point of view, the 4-dimensional
zero—Hopf equilibria in the hyperchaotic Lorenz system. Here, a 4—dimensional zero—Hopf
equilibrium means an equilibrium point with two zeros and a pair of pure conjugate
imaginary numbers as eigenvalues. Using the averaging theory and convenient changes
of variables and parameters we can analyse the zero-Hopf bifurcations. More precisely
we study the zero—Hopf bifurcations of the following hyperchaotic Lorenz system (given
in [26, 42])

t=aly — )+ w,
y=cr—y—1xz,
z = —bz+ 2y,
w=dw — xz,

(7.1)

for appropriate choices of the parameters a, b, ¢ and d.

There are several works studying zero-Hopf bifurcation see for instance Guckenheimer
[35], Guckenheimer and Holmes [36], Han [38], Kuznetsov [46], Llibre [49], Marsden,
Scheurle [69].... It has been shown that, under specific conditions, some elaborated
invariant sets of the unfolding could be bifurcated from a zero—Hopf equilibrium and
hence, in some cases, a zero-Hopf equilibrium is the local birth of “chaos” (see [22, 69]).
Also, recently Li and Wang [47] published a paper on a Hopf bifurcation in a 3-dimensional
Lorenz-type system. Due to the complexity related to the high dimensionality, there is
very little work done on the n—dimensional zero-Hopf bifurcation with n > 3.

The characterization of the zero-Hopf bifurcation at the origin was recently study
by Cid-Montiel, Llibre and Stoica in [24]. In this work we are going to complete this
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characterization analyzing all singular points for system (7.1). The results here presented
were published in [16].

7.1 Application to a Hyperchaotic Lorenz System

First we are going to compute the equilibrium points of the hyperchaotic Lorenz system
(7.1). One may verify that for any choice of the parameters, the origin of coordinates of R*
is always an equilibrium point for this system. Moreover if ad # 1 and abd(1—c)(c—ad) >
0, system (7.1) will have two additional equilibrium points

P, <i\/abd(1 —0) i\/abd(l —c)(c—ad) ad(l—c) ia(l —¢)y/abd(1 — c)) ‘

Vve—ad 1 —ad " 1—ad’ (1 —ad)ve—ad

Considering b = 0 then all the z—axis is filled of equilibria. And if b = 0 and ad(1 —¢)(1 —
ad) # 0 we have the additional equilibrium point

ad(l —¢)
=10,0, ——=,0|.
p (7 Y 1—ad7>

We observe that the two equilibria p, tends to the equilibrium points p when b — 0. In
short, the equilibrium point of system (7.1) can be p,, p_, p and the origin.

Note that system (7.1) is invariant by the symmetry (z,vy, z,w) — (—z,—y, z, —w), i.e.
it is invariant under the symmetry with respect to the z-axis. Therefore we can study p_
and p_ simultaneously using only one of these points. Due to that in what follows we
consider only the equilibrium p, in order to study when it will be a zero-Hopf equilibrium
for some values of the parameter, and clearly the same will occur for the other equilibrium
p_.

In the next result we characterize when the equilibria p, p, and the origin are zero—
Hopf equilibria. To simplify the expressions we define

D, = Va® + 2a° — 3a* — 14a® — 14a? — 4da + 1.
Proposition 37. The following statements hold.
(a) The origin is a zero—Hopf equilibrium if and only ifa = -1, b=d =0 and ¢ > 1.

(b) Assume that ad(1—c)(1—ad) # 0 and b = 0. The equilibrium point p is a zero-Hopf
equilibrium if and only if d = a4+ 1, and
1+d®—d*+(d>—1)c
d?—d—1
—1+4+a(l+a)*(@*+2a+3)+ (a*+a—1)D,
2a(a? 4 3a + 3)
—4 —9a — 10a* — 5a® —a* + (2 +a)D,

(b.1) either

> 0;

(b.24) orcy =

wnd 3+ 3a+a? >0;
(b2.) orec = —1+a(l+a)*(a®+2a+3) - (a*+a—1)D,
2a(a® + 3a + 3)
—4—9a—100® —5a° —a* — (2+a)Ds
and > 0:

3+3a+a?
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(¢) The equilibria p,. never are zero—Hopf equilibria.

Note that despite z—axis being filled of equilibria when b = 0, its only zero-Hopf
equilibria are the origin and the equilibrium point p. Furthermore, corresponding to
statement (a) of the Proposition 37 there is one 1-dimensional parametric family for
which the origin is a zero—Hopf equilibrium point and there are three parametric families
for which the equilibrium point p is a zero-Hopf equilibrium of the hyperchaotic Lorenz
system, one 2-dimensional parametric family corresponding to conditions (b.1) and two
1-dimensional parametric families corresponding to conditions (b.2,) and (b.2_).

If (a) holds the eigenvalues at the origin are 0, 0 and

fwi = £ve—11.

If (b.1) holds the eigenvalues at p are 0, 0 and

: I+ —d*+ (> -1)c .
j:wO'z:j:\/ g1 i (7.2)

If (b.24) holds the eigenvalues at p are 0, 0 and

—4 —9a —10a® — 5a® — a* + (2 +a) D,
tw, i ==+ . 7.3
Wit \/ 2(3 + 3a + a2) ' (73)
If (b.2_) holds the eigenvalues at p are 0, 0 and
—4 —9a — 10a® — 5a® — a* — (2 +a)D,
fw 1=+ . 7.4
Wt \/ 2(3 + 34+ a?) ' (7-4)

The next results characterizes when periodic orbits bifurcate from these zero—Hopf equi-
librium points.

Theorem 38. (i) Consider system (7.1) with
a=-1+ca;,, b=¢eb, c=1+c), and d=ced. (7.5)
For the zero—Hopf equilibrium at the origin we have:

(a) If a1 by # 0, a1 # dy and co > 0, then there exists an €1 > 0 such that when
le| < e the hyperchaotic Lorenz system (7.1) has a periodic solution

($(t,5)7 y(t,e), 2(t,¢), w(t75)) =

5 <\/2alblco sin(cot), /2a1bicr (sin(cot) — co cos(cot)), arcg, O) + O(e?),
(7.6)

bifurcating from the origin. The periodic solution (7.6) is stable if by > 0,
a1 <0 and di < ay.
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(b) If bydy # 0, a1 # dy and co > 0, then there is a convenient choice of € such
that for either ¢ € (—e1, 0), or e € (0, g1) there are two additional periodic
solutions (x(t,€),y(t,€), z(t,e), w(t,e)), =

y(
(j:C(” [ —— bldl Con/ bldl 1 + CO dl, +c 3

emerging from the origin. These solutions are stable if by > 0, di > 0 and
d1 < ai.

) +OE?) (1)

(i) Considering system (7.1) with
a=d—1+4eca; and b=e>bh,. (7.8)

If a1 by #0, c#1,d ¢ {0, £1} and wy € R*, then there exists an &1 > 0 such that
when |e| < €1 the hyperchaotic Lorenz system (7.1) has a periodic solution

(:E(t,g% y(t,e), 2(t,¢), w(t,g)) =

201 (1 —¢)(d — 1)d(d* — 1) .
(6\/ Jd—1) -1 sin(wot),

2b(1 — ¢)(d — 1)d .
5\/(d(d —1)-1)(@-1) (wy cos(wyt) — sin(wyt)),

(c—1)(d—l)d+8a1(—cd2—cd—|—0+d4—d3+d—1)
?—d—1 (@ —d—1)° ’

ed(d — 1)\/(;?95 i)cllgc(id; i>1) (dsin(w,t) + w, cos(wot))> +0(?), (7.9)

bifurcating from the zero—Hopf equilibrium point p. The periodic solution (7.9) is
unstable if a; < 0 orby(c—1)(d—1)d < 0. Furthermore there is a convenient choice
of € such that for either e € (—e1, 0) ore € (0, €1) there are two additional periodic
solutions (x(t,€), y(t,e), z(t,e), w(t,e)), =

(_5\/191(@_ D@ — d)d 8\/bl(c— 1)(1 — d)d(c+d — d?)

ctd—d? dd—1)—1 ’
(c=1)(d=1)d  aj(c—1)d e \/bld(c —1)3(1— d)3> L O

dd—1) -1 (Q-d—d2 dd—1)— ctd—d

(7.10)

and (I<t’ 5)7 y(tv 6)7 Z(t7 6)’ w(t’ 6))2 -

\/bl(c—l)(l—d)d bi(c—1)(1 —d)d(c+d— d?)
N cva-—2 dd—1)— 1 ’
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(c=1)(d=1)d  aj(c—1)d —e \/bld(c— 1)3(1 —d)3> + O

dd-1) -1 (Q1-d-a? dld—1) -1 ctd—d

(7.11)
emerging from p. These orbits are unstable if a; < 0 or by(c —1)(d —1)d > 0.
(i1i) Considering system (7.1) with
b=¢e%, c=cy+ec; and d=1+a+ ed;. (7.12)

If bydy #0, a ¢ {—2, -1, 0, %@, #} and w, € R*, then there exists e1 > 0

such that when |e| < &1 the hyperchaotic Lorenz system (7.1) has a periodic solution
(a:(t, 5),y(t,e),z(t,e),w(t,5)) =

<5 ; f:):j) ((3 i(i(;: i)a))Q (1+ a(16 + a(45 + a(59 + 2a(20

-

+a(7+a)) + Do) sin(w, 1)

€ ( a(l+a)?
a(l+ a)w,vV2+a \(3+a(3+a))?

1

+2a(20 +a(7+a))))) + Dm)>E (w, cos(w, t) —sin(w, t)),

(a+1)(a3+3a2+4a+Da+l)+ (a+1)
2(a?+3a+3) 82(a2+a—1)(a(a+3)+3)
(2a(a(a+ 3) + 3)c; — ala(a + 5) + 8)dy + d1 D, — bdy),

€ a(l+a)?
RV ((3 Bt a)? (1+a(16 + a(45 + a(59

+2a(20 + a(7+a))))) + Da)> : (w, cos(w, t) + (1 +a) sin(wJ))) + 0(e?),

(1+a(16 + a(45 + a(59

(7.13)

bifurcating from the zero—Hopf equilibrium point p. Furthermore there is a con-
venient choice of € such that for either ¢ € (—e1, 0) or e € (0, €1) there are two
additional periodic solutions (z(t,¢),y(t,€), z(t,e), w(t,e)), =

(_6\/61(Da+a3+a2—1) 5(1—@(1+a)(2+a)+Da)\/bl(Da+a3+a2—1)

2 ’ 3+ 3a+ a?) 2 ’
(1~|—a)(1—|—4a~|—3a2+a3+Da)+ £
23+ a(3+a)) 2(a®>+a—-1)(34+a(3+a))

<2a(1 4 a)(34 a3+ a))co — dy — a4+ a(3 + a))dy — dlDa>,

_8(1+4a+3a2+a3+Da)\/bl(Da+a3+a2—1) L o)
2(34+ 3a + a?) 2

(7.14)
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(iv)

Cmd (l‘(t7 5)7 y(tv 5)7 Z(t7 5)’ w(t’ 6))2 -

(8\/b1(Da+a3+a2—1) _5(1—a(1+a)(2+a)+Da)\/bl(Da+a3+a2—1)

2 ’ 3+ 3a+a?) 2 ’
(1+a)(1+4a+ 3a* + a® + Da) £
23+ a(3+a)) 2(a®+a—1)(3+a(3+a))

<2a(1 +a)(3+ a3 +a))co — di — a4+ a(3 + a))d; — dlDa>,

(7.15)

5(1+4a~|—3a2+a3+Da)\/bl(Da+a3+a2—1) LOE)
2(3+ 3a + a?) 2 ’

emerging from p. These orbits are unstable if dy > 0 or if the eigenvalues (7.28)
are non-zero real numbers.

Consider system (7.1) with

b=¢c%by, c=c_+4¢ec; and d=1+a+ed;. (7.16)

If budy #£ 0, a ¢ {—2, -1, 0, #5, #5} and w_ € R*, then there exists e > 0
such that when |e| < &1 the hyperchaotic Lorenz system (7.1) has a periodic solution
(z(t,e), y(t,€), 2(t,€), w(t,e)) =
<8 2+a
a(l+a)(3+a(3+a))w_
1
+a(7+a))))) — Da))*|al sin(w_t),

(a(l 4+ a)*b1 (1 + a(16 + a(45 + a(59 + 2a(20

V2+ a3+ a3+ a))lal(a+ a?)w_
+ (a(1+ a)®bi (1 + a(16 + a(45 + a(59 + 2a(20a(7 + a))))) — D,)) : (w_]a| cos(w_t)

~ asin(w_1)) (a+1)(a®+ 3a®> +4a — D, + 1) ela+1)

@smie-t), 2(a® + 3a + 3) 23+ a3 +a))(a?+a—1)
(2a(3+ a3+ a))cr — (5+ a8 +a(5+ a))d; — diD,)), TG a3
(a(1 + a)*bi(1 + a(16 + a(45 + a(59 + 2a(20 + a(7 + a))))) — Da))*

(cos(w_t) + a(l+ a) sin(w_t))) + O(e?) (7.17)

bifurcating from the zero—Hopf equilibrium point p. Furthermore there is a conve-
nient choice of € such that for either ¢ € (—¢ey1, 0), or e € (0, €1) there are two
additional periodic solutions (z(t,€),y(t,e), z(t, €), w(t, 5))i =

j:g\/bl(a:"jtaz—1—Da) iga(1+a)(2+a—1+Da)\/b1(a3+a2—1—Da)
2 ’ 2a(a® 4 3a + 3) 2

(I1+a)(1+a(4+a(3+a)) — D,) n 5
2(a® + 3a + 3) 2(a® +a? — 1)(a® + 3a + 3)

(2&(1 +a)(a® +3a +3)co — di — a(d + a(3 + a))d; + dlDa>,
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1—|—a(4—|—a(3—|—a))—Da\/bl(a3+a2—1—Da)

+e 2N 301 3) 5 ) + O(e?), (7.18)

emerging from p.

Theorem 38 is proved in Section 7.2.

In statements (iii) and (iv) of Theorems 38 we do not provide the type of linear stability
for the solutions (7.13), (7.17) and (7.18) because the expressions of the eigenvalues are
huge.

7.2 Proofs

In this section we prove our results.

7.2.1 Proof of Proposition 37

Proof. First we assume that b = 0. The characteristic polynomial P()\) of the linear part
of the differential system (7.1) at the equilibrium point (0,0, zo, 0) is

M4 (a—d+ 1N+ (—ca — da + z0a + a — d + 20)\* + (—ad + acd — azod + 2p)\.

Clearly an equilibrium point is a zero-Hopf equilibrium if and only if P(\) = A2 (\? + w?)
with w > 0. Hence solving the equation P(\) = A\? (A\* + w?), with respect to the param-
eters a, b, ¢, d and w, we get only two real solutions:

S w=+vc—1, zo = 0, d=0, a=—1;
(24 a)z (a®> 4+ a)(c—1)
20 ¥ \/ 1+a (T+a)?, 2 a2+a—1 " at

The solution S; says when the equilibrium point located at the origin is zero-Hopf, proving
statement (a), and it is easy to check that the solution Sy corresponds to the equilibrium
p.

Now we shall provide necessary and sufficient conditions under which either p_ if
b# 0, or pif b =0, is a zero-Hopf equilibrium point. The Jacobian matrix of system
(7.1) evaluated at p, is

—a a 0 1
ad — ¢ | abd (1 —c)
ad —1 Vve—ad
A= +abd(1—c) (c—ad) +/abd (1—c) . o |

ad —1 —vc—ad
ad(1l — c) 0 Vabd (1—c¢) (c— ad) p

ad —1 ve—ad

and its characteristic polynomial is P(A) = A + 033 + 092 + 01\ + 0 with

0o = — 2abd(c — 1),
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—a?d? — 2a2d? — a*d® + ac — dc + ade + a®de + 2ad?c + 3a*d?c + 2a*dPe

o= (ad — 1)(ad — ¢)
—a’d3c — ac® — 2adc® — a?dc?
(ad — 1)(ad — ¢) ’
-\ :ad2 — a?d — a®bd + abd?® + a*bd? — a*d® — a*d® — a*bd® + ac + be + abe — dc

(ad —1)(ad — ¢)
a?dc — bde — 2abdc — a?bde + ad?c + 2a%d?c + abd?c + a?bd?*c — ac® — adc?
+ )
(ad — 1)(ad — ¢)

o3=14+a+b-—d.

The expressions for the matrix A and for its characteristic polynomial also work for the
equilibrium p taking b = 0.

Forcing that P(\) = A% (A\? 4+ w?), i.e. we must solve the following system: o3 = 0,
oy = w?, 0; = 0 and 0y = 0. Obtaining the following three real solutions:

St w=uwy,b=0and a=d—1;
S w=w_,b=0,d=1+aand ¢c=c_;

S3zw:w+,b:(),d:1+a and ¢ = cg;

where ¢y are defined in the statement of Proposition 37, wy in (7.2) and w4 in (7.3) and
(7.4).

The solution S! says that p is a zero-Hopf equilibrium if condition (b.1) holds. While
the solutions S? and S® correspond to the fact that p is a zero-Hopf equilibrium when
conditions (b.2+) and (b.2—) hold. This completes the proof of statement (b).

Since in the three solutions we have b = 0 it follows that the equilibrium p, never can
be a zero—Hopf equilibrium, proving statement (c) and consequently proving Proposition

37. [l

7.2.2 Proof of statement (i) of Theorem 38

Proof. First we assume condition (7.5) and the new scale (x,y,z,w) = (Z,7,Z,W) to
system (7.1), obtaining
T=(—1+ea)(y—7T)+w,
y=(1+q)T -7 -77%
Z=—ebiZ + €77, (7.19)
W =ed W — €T Z.
We now do the linear change of variables

_ Z+~
T =— ,
2 4
1+ -
Y =z 5 — Ccox + v,
€
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in order to write the unperturbed part of system (7.19) in its real Jordan normal form in
accordance with the matrix

0 —cp 0 0
j_| @ 0 00
0 0 00
0 0 00

Thus omitting the tilde we obtain the new system

z(ay + dy) . :13>
—— —mx |,

:i:':—coy—l—a(
Co

. Alwy — dyz) + wz
y:cox—l—a(al(z—coa:)—i— o(wy 41) >,

Co
Z =¢ <dlz—w<%+y>>,
Co
. z z
w:5<<—2—|—y) (—2—cox+y+z) —b1w>.
€o Co

Finally we use the generalized cylindrical coordinates to write the previous system in

the form

T :5(34 (ci(ar + di) cos O + (arcy — cjdy + w) sin6) +
)
(w sin 6*
,

2
€o

— ay cos 0 — ajco cos O sin 0)),

0 =co + e(cosb((arcy — cydr + w)z + cgr(aicy + w) sin6)
— arcgrcos 0 — cj(ar + di)zsind), (7.20)

£
. 2 2 .
i=s (cfdiz — wz — grwsinb),
0

w :5<— blw + (C% +rsin9> <z+ C_Zz —cwcos(@—l—rsin@))).
0 0

We also take 6 as a new independent variable, obtaining the system

dr  (aicgrcos®(0) —sinf (z (arcy — cgdy + w) + cgrwsin())
do —c
5 cos(6 orsing + z(—ay —d
+ % COS( ) (alcor Slnc5 z( o 1))) +52F21(97y7€)7
—G
dz wz dyz  rwsinf
5=c (—? + cl_o — ) + 2 Fyp(0,y,¢), (7.21)
0
dw bow 22 2rzsind 22 rzcosf  r’sin?(6)
— = . J— - -
df co c c 2 Co
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rzsinf

— r%sin 6 cos 9) +e2Fy3(0,y,¢),
Co
where Fy(0,y,¢) = (F21(9,y,5), Fy(0,y,¢), F23(9,y,5)) is a 27—periodic function in 6,
and y = (r, z,w).

To study the periodic orbits of system (7.21) we compute the averaged function (1.3)
of Theorem 5 corresponding to system (7.1), and we get

2 2 2 2 2

r(w—aicy) z(cgdi —w) r*—=2bw (cg+1)z
gl(Y):( ( 5 )zl ; ) + ¢ .
s s 2co o

solving the non-linear system ¢(y) = 0, we have

So = (Co\/ 2a1b1, 0, (1103> ;

The solution sy has the Jacobian

0 bi(ay — d

det (—g(S(])) = —al l(al?’ 1)’

oy o
which is non-zero under conditions (a), then by Theorem 5 we know that there is a
periodic solution ®(t,¢) close to sy such that ®(0,e) = sy + O(e). Going back through
the change of coordinates, it provides the periodic solution (7.6) of system (7.1).
—bl + bl (4&1 + bl) dl — ax

and ——, we

260 Co
use Theorem 5 (¢) to study the stability of the periodic solution (7.6). Here we divide the

analysis in two cases:
—b1 + b1 (4&1 + bl)
200

We also notice that the eigenvalues of sy are

When € R: In this case the solution is stable if d; < ay, by > 0

—b
and Tl <a <0.

—bl + b1 (4@1 + bl)

Wh
en 200

€ C: In this case the solution is stable if d; < aq, by > 0

and a; < _Tbl.
In summary this periodic solution is stable if b; > 0, a; < 0 and d; < a;.

9] bidy(dy —
The solutions s{ and sy are such that det a—g(s?) = L?)al)
Y €
By hypothesis (b) they also provide two additional periodic solution for system (7.1) if
r =er; + O(e?) > 0, this is possible restricting e to one of the half intervals e € (—&1,0),

or € € (0,ey).

, for i = 1,2.

b1 + bl(bl — 8d1) and d1 — ay

—260 2C0
Thus following the previous analysis we can say by Theorem 5 (c¢) that the periodic
solution (7.7) is stable if by > 0, d; > 0 and a; > d;. O

We notice that s{ and s have the same eigenvalues
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7.2.3 Proof of statement (ii) of Theorem 38

Proof. Assuming conditions (7.8), system (7.1) has two equilibrium points p, and p_,
when ¢ — 0 these equilibria tends to

(d—1)d(c—1)
p=<&& M—Ud—l’@'

We now are studying the bifurcation of periodic orbits from this point. First we translate
p to the origin of coordinates doing (x,y, z,w) = (¥,y,Z,w) + p, then we introduce the
scaling (7,7,z,w) = (X,Y, Z,W). With these changes of variables the hyperchaotic
Lorenz system (7.1) becomes

X=01-dX+{d-1)Y +W+ear (Y — X),
—d’+d+c

=— X -Y —-eXZ
—d?>+d+1 R
: bid(d(—c) +d+c—1) (7.22)
Z = XY | - Z
5( d—1d—-1__ © e
. (d(—c)+d+c—1)
W =d X+W) —-eXZ.
( d—ni-1 ~° c
We do the linear change of variables
d>—1 -
X:< )y+
Wo
o
y:_ig szLg,
“o (d—1)d
7 =w,
(P*(d—-1)). (c—1)(d—1)_ -
W = d—1)d
P i v v e w AL

in order to write the unperturbed part of system (7.22) in its real Jordan normal form,
in accordance with the matrix

0 —wp 0 0
j_ |« 0o 00
0 0 00
0 0 00

Thus omitting the tilde, we obtain a system of the form

x = Jx +eG(t,x) + 2Gy(t, x), (7.23)
where x = (z,y, z,w),
G11(t,x) 0
Gi(t,x) = gzg:g and Gy(t,x) = _212 ,
Gha(t,x) 0
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with

(ar(c=1)(d—1)z—a; (d=2)d®+ 1)z +d(—d* +d+ 1) wz)
((d—=1)d —1)(a* = 1)
(d* — 2d° + d) y(ard — (d + 1)w)
((d—=1)d—1)(d> = 1) wo
(=2 +d+1°W (2 =1)Y +wyZ)
(d?—1)(—cd®+c+(d—1)d® - 1)
(=2 +d+1)* (2 — 1) (—ed? + ¢+ (d — 1)d3 — 1)
((d—2)d*+1) (—c(d+ 1) + (d = 1)d* + 1) (wo (¢ — 1)Z
+ (- +d+1) X))+ ((d—1)d — 1)d*Y),
ardwy ((c =) Z + (—=d* +d+ 1) X) +a;((d — 1)d — )Y
wo ((d—1)(cd+c—d?)+1)
(= +d+1°W (2 -1)Y 4 weZ)
wo((d—1)(cd+c—d?) +1) ’
—(by(c=1)(d=1)d+ Z(cZ —(d—1)d(X + 2))+ X Z)
((d—1)d—1)
Y2(—(c(d®—=1)+d(—d (w2 +2)+wi+1)+w+2))
((d=1)d - 1)wj
Y ((d?—1)X — (w2 +2)2)

GH (t, X) =

G12 (t, X) =

Gu(t, x) =

G14(t, X) =

+

_|_

We now use generalized cylindrical coordinates obtaining system (7.32). Taking 6 as the
new independent variable we have

% e S_ o (== ((d(d = 1) = D(@(c = 1)(d - 1) +d(d
—d* — Dw)wocosd + (—ar(c — 1)(d — 1)(c+cd+d* —d* - 1)
— (d(d—1) — 1)*w) sinf) + ((d(d — 1) — 1)*rwo(a:1(d(d
—1) — Dwicos® 0 + 2 Fy(0,y,¢),

dz €

@:(d(d—l)—l)wo((al( Dd + (1 +d — d*)w)awy + (d(d — 1) = Dr

(—ardwo cos 8 + (ard® +w + d(1 + (d — 2)d(1 + d))w) sin 0)) 2 F(0,y, ),

(7.24)
dw ¢ [=bl(c—1)(d—1)dwy 9 , —(c+d—d?*)z
o —1
b ( da_n 1 et (@ = Drsing) (5o
+ rcosf — Tj:n0>) +e2Fy3(0,y,€),
0

where Fy(0,y,¢) = (F21(9,y,6), Fy(0)y,¢), F23(9,y,5)) is a 2m—periodic function in 6,
and y = (r, z,w).
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We are going to applying Theorem 5, thus we compute the averaged function ¢;(y) =
(911(¥); 912(¥), 913(y)) corresponding to system (7.24) where

Crla—d+d —d +e(d® —d—-1)+ (1 +d—d*)w)

guly) = 2(d(d—1) — )i )
(a(c—1)d+ (14 d—d*)’w)z

912y) = dd—1) - 1t ’

7s(y) :—2b1(c —1)(d—1)d—2(c+d—d*)z

2(d(d — 1) — Dwo
(d(d —1) = 1)*(d* — 1)r?
2(d(d—1) = 1)(d*(d—1) —cd + ¢ — 1wy’
solving the non-linear system ¢;(y) = 0, we obtain the solutions
2byd(d —cd+c—1) ar(d—1+(d—1)d® —c(d®* +d—1))
(d?—1)(d(d—-1)—1)" " (dd—-1)—-1) ’
1 0 V(1 —c)(d—1)db, _ai(e—1)d
" Vetd—-2 7 (14+d-d?)? )’
1 0 _\/(1—0)(d—1)db1 _aifc—1)d
’ Verd—a# 7 (1+d-d?)? )’

The solution s; has the Jacobian

det (g—i(sl)) __abife=1)(d=-1)d

+

S1 =

5
Wo

which is non-zero, then by Theorem 5 we know that there is a periodic solution ®(¢,¢)
close to sy such that ®(0,¢) = s; + O(e). Going back through the change of variables it
provides the periodic solution (7.9) of system (7.1).

—bi(c—1)(d—-1)d
\/ 1(c 2)( ) and _n By
Wy Wo

Theorem 5 (c¢) the periodic solution (7.9) is unstable if a; < 0 or by(c — 1)(d — 1)d < 0.

0 bi(c—1)(d—1)d
The solutions si and s} are such that det (—g(sl)) _ abi(e 2( ) ,fori=1,2.

We also notice that the eigenvalues of s; are +

dy " W)

They also provide two additional periodic solution for system (7.1) if r = er; +O(g?) > 0,
this is possible restricting € to one of the half intervals ¢ € (—¢1,0), or € € (0,¢;).

V201 (c — i)(d —1)d g M

We notice that s} and s} have the same eigenvalues +

w3 2wy
Thus by Theorem 5 (¢) the periodic solutions (7.10) and (7.11) are unstable if a; < 0 or
bi(c—1)(d—1)d > 0. O

7.2.4 Proof of statement (iii) of Theorem 38

Proof. Assuming conditions (7.12) system (7.1) has two equilibrium points p, and p_,
when € — 0 these equilibria tends to
o= (0.0 (a+1) (a3+3a2+4a+Da+1)’O '
2(a®+3a+3)
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We now are studying the bifurcation of periodic orbits from this point. First we translate
p to the origin of coordinates doing (x,y, z,w) = (¥,y,Z,w) + p, then we introduce the
scaling (7,7,z,w) = ¢ (X, Y, Z,W). With these changes of variables system (7.1) becomes

X =a(Y —X)+ W,
(—14+a(l+a)(2+a) — Dy)X
2a(3+ a(3+ a))

1+a)bi(1+a(d+a(3+a))+ D,) 5

23 + a(3 + a)) ) —ehZ,

(1+a)(1+a(d+a3+a))+ Dy)X
23+ a3 + a))

Y = ~Y + X(c1 — 2), (7.25)

Zzs(XY—<

W =W +aW — +e(dW - X2Z).

We do the linear change of variables

- @2+ay
X_Z+(1+a)w+’
v — T (al+a)2+a)— D, — 1)z M
a+ a? 2a(3+ a(3+a)) (a+a®)w,’
Z =w,
W:5+(1+a(4+a(3+a))+Da)Z (1—1—@)5’

23+ a(3+a)) (a4 a?)w,

in order to write the unperturbed part of system (7.25) in its real Jordan normal form,
in accordance with the matrix

0 —w, 00
@ 0o 00
0 0 00
0 0 00

Thus omitting the tilde we obtain a system of the form
x=Jx +eH(t,x)+ 2 Hy(t, %), (7.26)

with x = (z,y, z, w). Using cylindrical coordinates we obtain system (7.34). In order to
put system (7.34) in the normal form (1.11), we take 6 as the new independent variable
and then we have

% =— 6((1 +a)(3+a(3+a))dy <\/§W+>3Tcos 02
_ %( —a(1+a)(3+ a(3 + a))(4 + a(9 + a(10 + a(5 + a))))ex

+a(16 + a(45 + a(59 + 2a(7+ a))))dy + (a(l + a)(2+ a)(3 + a(3 + a))c
+d))Dy+dy +(=1+a+a*)B3+aB3+a)(d+ a9+ a(10 +a(5

+a)) = D,) — 2Da)w>z +2(3 + a3 + a))?
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\/—a(9 +a(10 + a(5 + a)) —

Da)
3+ a(3+a) r((l +a)(a(2+a)er — (14 a)dy)

—2+a)(-1+a+ az)w) sin9> + €2F21(9, Y, €),

% 28(\/§<3 +a(3+a))e((1+ a)V2w, (a(6e; — 4dy) — dy(1+ D,) + a*(12¢

—3d; — 10w) + a®(8cy — dy — 8W) + 2a*(c; — w) + 6w)z + 2(3

+a(3 4 a))r(—(1 +a)dV2w, cos — V2((1 + a)(dy + a(—(2 + a)e,

+dp)) + (2 + a(a* +a — 1)w)sin 9))) + &2 Fy(0,y,€), (7.27)
Cc%) =— e<2(1 + a)®(abi (1 4 a(16 + a(45 + a(59 + 2a(20 + a(7 + a))))) + D,)

+(1—a(l+a)(@®+a—-1)3+a(3+a))+ D, +ald+a(4+a))D,)z*)
+(B+aB+a)r(—2(1+a)(4+ a9+ a(10+ a(5+ a)) — Dy)zcosb

+2(2+a)(3+ a(3 4 a))rcos(20) + V2(1 + a)(a(2 + a)(3+a) — 3 — D,)
—2(4+ D,))V2w, zsinf + (2 + a)(3 + a(3 + a))r(V2V2w, sin(26))))/

<a(1 +a)*)(3+a(3+a)(4+ a9+ a(10+a(5+a)) — D,)

2D,) —2(4+a(94+a(10+a(b+a))))+2(2+a)D,
e 3+a(3+a)
+ 2 Fy3(0,y, €),

with Fy(0,y,¢) = (F21(9,y, e), Fas(0,y,¢), Fos(0,y, 5)) a 2m-periodic function in 6.
Now we can apply Theorem 5 and calculate the averaged function
91(y) = (811(y), 812(¥), 813(¥))
of (7.27) where

510) =757 a(; o (11 +a)(20(3 + a(3+ a))es — 50,
—a(84a(5+a))dy + d D, 2(a2+a—1)(3—|—a(3+a))rw>,
Bly) =557 a(_31—|— o (Q(a(a +3) + 3)(ala+ 1) — w) +w)
~ (afala+3) +4) + 1)d; — d; D, ),
gis3(y) = — e a(; s <—2(1 +a)by (1 +a(4+a(3+a)) + D,)

),
+(2+a)(3—|—a(3+ a)) (22 + Dy) + a(9 + a(10 + a(5 + a)) + D,))r?
a(l+a)’(1+a(3+a))
2(—1+a(l+a)2+a)— D)22>

+

a
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The non-linear system ¢(y) = 0 has the solutions

a(1+ a)®by (1 + a(16 + a(45 + a(59 + 2a(20 + a(7 + a))))) + D,)
(2+ a)(S +a(3+ a))2

(1+a)(2a(3 + a(3 + a))er — (5 + a(8 + a(5 + a)))ds + diD,) )
0, :
2@ +a—1)(3+a(3+a))

9 (O V(a3 +a2—1+D,)b
) \/5 )
—2a(l+a)3+aB3+a)ey+di+a(d+ a3+ a))d, + Dad1)>
2(a®+a—1)(34+a(3+a)) ’
, <0 V@t a2 =1+ Db
) \/§ )
—2a(l+a)3+aB3+a)ey+di+a(d+a(3+a))d, + Dad1)>
2(a®>+a—1)(3+a(3+a)) '

So =

)

The solution s, has the Jacobian

g _ (I4a)(@®+a—1)bdi(1+a(4+ a3+ a)) — D,)
det (_(SZ)> 23+ a3 +a))w?

which is non-zero, then by Theorem 5, there is a periodic solution ®(¢,¢) close to sy such
that ®(0,e) = sy + O(e). Going back through the change of variables, it provides the
periodic solution (7.13) of system (7.1).

The solutions s? and s3 are such that

det (@(520 _ (a* +a—1)bydi(a(l +a)(2+a) — D, — 1)(Dy + a* +a® — 1)
oy 4a(3 + 3a + a?)w® ’

for i = 1,2. They also provide two additional periodic solutions for system (7.1) if

r =er; + O(e?) > 0, this is possible restricting € to one of the half intervals e € (—¢y,0),

or e € (0,&y).

dy

We notice that s? and s2 has the same eigenvalues and

.
+1

a(3 +a(3 + a))3w?

+103a'! + 4280 + 1202a° + 2427a® + 3699a” + 4487a° 4 4581a° + 4038a*

+2948a® — (a + 1)*(a + 2)* (a®* + a + 1) (a(a + 3) + 3)(a(a + 4) + 5) D,

(—aZ(a +1) (¢ +a—1) (a(a+3) +3)*h (a (a" + 15a"

1

+16140® + 573a + 100) + Dy +1) ). (7.28)

Thus by Theorem 5 (¢) the periodic solutions (7.14) and (7.15) are unstable if d; > 0, or
if the eigenvalues (7.28) are non-zero real numbers. O
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7.2.5 Proof of statement (iv) of Theorem 38

Proof. of statement (iv) of Theorem 38. Assuming conditions (7.16) system (7.1) has two
equilibrium points p, and p_, when € — 0 these equilibria tends to

<0 (a+1)(a3+3a2+4&—Da+1) 0)

p= 2(a® + 3a + 3)

We now are studying the bifurcation of periodic orbits from this point. First we translate
p to the origin of coordinates doing (x,y, z,w) = (7,7, %z, W) + p, then we introduce the
scaling (7,7y,z,w) = ¢ (X, Y, Z,W). With these changes of variables system (7.1) becomes

X =W +a(Y — X),
Y_a(1+a)(2+a)+Da—1

X =Y +elag—-2)X,

2a(3+ a(3 +a))
P (XY 1+ a)bi(1+a(4+a(3+a)) — Da)) ez (7.29)
2(3+a(3+a))
- _ (I+a)(I+ad+aB+a)— D) . B
W =(1+a)W GGt X +e(d,W — X 2).

We do the linear change of variables

- V2(2+a) >
+(1+ot)\/§au7y+ ’
1

' “20(1+a)(3+a(3+a))v2w_ ( —2V2(3+a(3+0)j+ V2w ((1+a)(-1

+a(l4+a)(2+a)+Dy)w+2(3+a(B+a)z+ (1+a)(—1+a(l
+a)(2+a)+ DG)Z),
7 =w,
V2 1
\/§w_y * 2(3+a(3+ a))\/ﬁw_

+a(3+a)) = Do) Vaw_ (@ +3)),

W =7 +

(2\@@(3 +a(B3+a)y+ (1+a(4

in order to write the unperturbed part of system (7.29) in its real Jordan normal form,
in accordance with the matrix

o O O O
o O O O

Thus omitting the tilde we obtain a system of the form
x =Jx +ely(t,x) + 2 L(t, x), (7.30)
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with x=(z,y, z,w). Using cylindrical coordinates we obtain system (7.33) and taking 6
as the new independent variable we have

dr B V2

40 (2+a)(4+a(9+a(10 + a(5+a)) — D,) — 2D,)’

((1 +a)v2w_(a(3+a(3+ a))er(4+ a(9+ a(10 + a(5 + a)) — D,) — 2Da)

+dq (1 + a(16 + a(45 + a(59 + 2a(20 + a(7 + a))))) + D,)

—(14+a)(3+aB3+a))(4+a(9+a(10+ a(10+ a(5+ a)) — D,)

—2D,)w)zcosf — (1+a)(3+a(3+ a))le\/ﬁwfr cos 62

— sin 6’(\/5(1 +a)(—a(l+a)(3+aB+a))(4+a9+a(l0+al5

+a))))er +di + a(16 + a(59 + 2a(20 + a(7 + a)))) ) di + (a(1 + a)(2 + a)

(3+aB+a))er +di) Do+ (a®+a—1)(34+ a3+ a))(4+ a9+ a(10

+a(5+a)) — D)w)z+2(3+ a3+ a))* V2w )r((1+a)(a(2 + a)ey

— (14 a)d) —2(2+a)(a® +a—1)w)sind + 27 (3+a(3+a))

(4+ a9+ a(10+a(5+ a)) — Do) — 2D,)r(a((2 + a)er + di + ady)

— (1 +a)(1+ a2+ a)w)) sin(?@)) 2P0,y ), (7.31)
dz —£vV2(3+a(3+a))

40 (1+a)(4+a(9+a(10+a(5+a)) — D,) — 2D,)”
— 4dy) — di(1 + D,) + a*(12¢; — 3dy — 10w) + a®(8¢; — di8w) + 2a* (¢ — w)
+6w)22(3+ a3+ a))r((1+ a)V2w_ cosf + \/5((1 + a)(dy
+a(—2+a)er +di)) + (24 a)(a® +a—1)w) sin@)) + &2 Fy(0,y, €),

dw —v2(3+a(3+a))

df _(1+a)(4+a(9+a(10+a(5+a)) - D,) — D,)
— (14 D,) + a*(12¢; — 3d; — 10w) + a*(8¢; — di — 8w) + 2a*(¢; — w)
+6w)z —2(3+a(3+a))r((1+a)di V2w cosf + \/5((1 +a)(dy
+a(—(2+a)er +di)) + (24 a)(a® + a — 1)w) sin 9)) + 2Fy3(0,y, ),

<(1 +a)V2w_ (a(6e

2 ((1 +a)V2w_(a(6ey — 4d;)

with Fo(0,y,¢) = (F21(9,y,5), Fy(0,y,¢), F23(9,y,5)) a 2m—periodic function in 6. Now
we can apply Theorem 5 and calculate the averaged function g(y) = (g1(y), 82(y), g3(y))
corresponding to system (7.31), where

1
g1(y) :2(3+a(3+a))w§ (— (14 a)(2a(3+a(3+a))q

—5dy — a8+ a(5 + a))d; +d1D,)r +2(* + a — 1) (3 + a3 + a))rw),
g(y) = ! 5 ((3 +a(3+a))2w.

(4+ a9+ a(10+ a(5+ a)) — D,) — 2D,)
(-1—a(d+a(3+a))di —diD, +2(3+ a3+ a)) (a(l + a)(c1 — w)
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—|—w))z>,

1
4a(3+a(3+a))w_
(24 a)(3+a(3+a)) (224 D,) + a(9 + a(10 + a(5 + a)) + D,))r?

(1+a)’(1+a(3+a))

+2(—1+a(l+a)(2+a) —Da)ZZ).

gs(y) = (— 20(1 +a)br (1 +a(4 + a(3+a)) + D)

+

The non-linear system g(y) = 0 has the solutions

a(1 + a)?bi (1 — Do + a(16 + a(45 + a(59 + 2a(20 + a(7 + a))))))
2+a)(3+a(3+a))’

(1+a)(2a(3+a(3+a))er — (54 a8+ a(5+ a)))dy + diD,) )
0, ;
2@ +a—-1)(3+a(3+a))

5 (O 2a(1+a)3+a(34+a))cy — (1 +a(d+ a3+ a)))dy + Dydy
A 2(a®+a—1)(3+a(3+a)) ’
V(@ +a2—1—D,)b

NG ;
(O 2a(1+a)(3+a(34+a))cy — (1 +a(d+ a3+ a)))dy + Dydy

’ 2(a2+a—1)3+a(3+a)) ’

V(@3 +a2—1-D,)b

NG :

The solution s; has the Jacobian

S3 =

Y

S

S

3
2

a

g B
det (a_y<s3>> “lal2B+ a3+ @))%
+a(59 + 2a(20 + a(7 + a))))) — Da)>

((1 +a)(a®+a— D)bidi(1+ a(16 + a(45

which is non-zero, then by Theorem 5 we know that there is a periodic solution ®(¢,¢)
close to sz such that ®(0,¢) = s3 + O(e). Going back through the change of variables, it
provides the periodic solution (7.17) of system (7.1).

The solutions s? and s3 are such that

99, 3\ _ —a ) - ) )
det <8_y(52)) _|a|2<3+a<3+a))2wz ((1 +a)(a +a l)bldl(l + (16+ (45

+a(59 + 2a(20 + a(7 + a))))) — Da)>,
for i = 1,2. They also provide two additional periodic solution for system (7.1) if r =
ery + O(g?) > 0, this is possible restricting € to one of the half intervals € € (—¢y,0) or
e € (0,e1). O
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7.3 Appendix F

Let R, = (d—1)(cd+c—d®) + 1 and Ry, = d> —d — 1 then system (7.23) in cylindrical
coordinates writes
; :5( 1 (a1(d(2Rs + Ryp(Ry +2)) + Ry(Ra + Ry + 1)) + Rjw(d + Ry))
2R.(d+ Ry)
| Zeos O(ar(—c(Ry + 1) + Ry(d+ Ry + 2) + R, + 1) — dRyw)
Ry(d + Ry)
N 1 cos(20) (ay (Ry(d(Rp +2) + Ry + 1) + Ro(Ry + 2)) + Riw(d + Ry))
2R, (d + Ry)
zsinf (a1 (¢«(R, — 1)+ d (R, + R + Ry) — 2R, + 1) + Riw)
\/R_aRz’/2(d + Ry)
N rsin(20) (a1 (dRy(Ry + 2) + R,) — (d + 1) Ry (R + 1)w)>
2v/Rov/Ry(d + Ry) ’
ay cos?(0)(dRy + R,) v/ Ry(Ry + 1) sin?(0)(—a1d + dw + w)
VRV ERy(d+ Ry) VR.(d+ Ry)
zsin@(ay(—c(Ry+ 1) + Ry(d + Ry + 2) + R, + 1) — dRyw)
B rRy(d+ Ry)
z(a1(c(Ry —1) +d(Ry + R} + Ry) — 2R, + 1) + R}2)
VR Ry)?(d + Ry)
sinf (a1 (Ry(d(Ry 4+ 2) + Ry + 1) + Ro(Ry + 2)) + Riw(d + Rb))>>
Ru(d+ Ry) ’
5 :g(z (a1(Ry(—c+d+ Ry +2) + R,) + Rjw)  ardrRycosf
R, R,
. rRY?sinf(a1(d(Ry + 2) + Ry + 1) + Ryw(d + Rb))>
RY* ’
" _6(Z (a1 (Rp(—c+d+ Ry +2) + R,) + Riw) _ adrRycost
R, R,
rRY?sinf(a1(d(Ry + 2) + Ry + 1) + Ryw(d + Rb))>

3/2
a

ézwo—l—e(

cos@( - (7.32)

System (7.26) in cylindrical coordinates.

; :g( _ (a+Ddir(a(aala +5) +10) = Dy +9) — 2D, + 4) cos?(6)
(a+2)(a(a + 3) + 3)V2w?
V2(a+1)d, Z(a(a(a(2a(a(a + 7) + 20) + 59) + 45) 4+ 16) + D, + 1)
(a+2)(a(a+3) + 3)2V2uw?
_(a+1)Z(a(a(a(a+5) +10) = Dy +9) — 2D, +4)(ala +1)(cs = W) + W))
(a+2)(a(a+3) + 3)w?
2a(a+ 1)eyr —2(a* +a—1)rW ~ 2(a+ 1)2d1r>
\/ﬁwi (a+2)v2w?

+sin8<

+ sin 92<
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+ 1)di1 Z(a(a(a(2a(a(a + T) + 20) + 59) + 45) + 16) + D, + 1)
(a+2)(ala+3)+ S)Qﬁwi

(a+1)Z(a(a(a(a+5)+10) — D, +9) — 2D, + 4)(ac; — (a + 1)W)
(a+2)(a(a + 3) + 3)V2w?

(ﬁa(a + 1)dyr(ala(a(a +5) + 10) — D, +9) — 2D, + 4)
(a+2)(ala+3) + 3)v2w?

V2r(a(a(a(a +5) +10) — D, +9) — 2D, + 4)(ac; — (a + 1)W))))

(a(a + 3) + 3)v2w? ’

—I—cos@(— (a

—sinf

+

0w 4 E(\/i(a + 1)dy(aa(a(a + 5) + 10) — Dy + 9) — 2D, + 4) cos?(0)
S (a+2)(ala+3) +3)\/§wi
4 sin 9<(a +1)d\ Z(a(a(a(a 4 5) +10) — Dy +9) — 2D, + 4)

2(a+2)(ala+3) + 3)2\/§w3r
(a(a(a+3)+4)+ Dy +1)
2(a+2)(ala+3) + 3)2\/§wzr
N (a+1)Z(a(a(a(a+5)+10) — Dy +9) — 2D, + 4)(ac; — (a + 1)W)>
(a+2)(a(a+3) + 3)v2uw?r

V2(a + 1)%dy(a(a(a(a + 5) + 10) — D, +9) — 2D, + 4)
(a+2)(a(a +3) + 3)v2w?

(a(a(a(a+5) +10) — D, +9) — 2D, +4)(ac; — (a + 1)W)>
(a(a+3) + 3)w?

1
4(a+2)(ala+3) + 3)2wr (
+10) — Do +9) — 2D, + 4)(a(a(a + 3) +4) + D, + 1))
~(a+1)Z(a(ala(a+5) +10) = Dy +9) = 2D, +4)(ala +1)(c1 = W) + W))

(a+2)(a(a+3) + 3)wir
g {0+ Dilolala + Dla+2) = D, =9) 2D, +1)
(a+2)(a (a+3)+3)\/§w3
L 2ala+ )(fwi W)+ ))) (7.33)

T (a+1)(ala+3) +3)v2uw? ((1 +a) V2w, (a(601 —4dy) — di (14 D,)

+a2(12¢1 — 3dy — 10w) + a®(8e; — dy — 8w) + 2a*(¢; — w) + 6w>z —2(3+a(3

+ sin 92(

+

+cos€( (a+ 1)d1Z(a(a(a(a + 5)

+ a))r((l + a)dlx/ﬁw+ cosf + \/§<(1 +a)(dy + a(—(2+a)e; +dy)) + (2 + a)(a?

+a— 1)w> sin 8)) + bywe?,
(G(S +a(3+4a))(4+ a(9 +2£5+ a(5+a)) — D,) — 2D,) ( - abl(l +a(16
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+ a(45 + a(59 + 2a(20 + a(7 + a))))) + Da) — 22+ (a(l+a)(a® +a
~1)B+aB+a)— (1+a+ad+ a)))Da)zQ)
V2w, rZ(a(—a(a+2)(a+3) + Dy + 3) + 2(D, +4)) sin 0
V2a(a + 1)(a(a(a(a +5) +10) — Dy +9) — 2D, + 4)

+ cosd rZ V2(a + 2)(a(a + 3) +3)\/§w+r2 sin @
S\ 21 g a(a +1)2(a(a(a(a +5) +10) — D, +9) — 2D, + 4)

N 2(a + 2)(a(a + 3) + 3)r?sin®(0)
a(a+ 1)%(a(a(a(a+5) +10) = D, +9) — 2D, +4)

System (7.30) in cylindrical coordinates.

" T2(ala+3) +3)(a+ 2)2D, + 2(ala + 3) + 3)(alalala + 5) + 10) + 9) + 4)(a + 2)

(2(a +1)(a(a + 3) + 3)(a(a(ala + 5) + 10) + 9) + 4)d,r cos*(0)

20039((1 +a)(di — 12w+ a((3+a(B3+a))(4+a9+a(l0+a(b+a))))a
+ (16 + a(45 + a(59 + 2a(20 + a(7 + a)))))d; — (51 + a(100
+ a(115 4 a(82 + a(36 + a(9 + a))))))w))(w + 2) — V2(3 + a(3
+a))2V2w r(a((2 + a)er + dy + ady) — (1 + a)(2 + a)w) sin 9)
—(3+a(3+a)) sm@(\/_(l +a)V2w_ (6w —dy + a(2(1 + a3+ a(3+ a))
—(A+aB+a))d; —2a(5+a(d+a))w))(w+2)+ 43+ a3+ a))r((1+a)(a(2
+a)ey — (1+a)dy) — (24 a)(a® + a — Dw) sinf) + Dy (2(1 + a)(a(2 + a)(3
+a(3+4a))e; —dy — 6w —a(3+ a5+ a3+ a))w)(w + z) cos b
+(1+a)(2+a)3+a(3+a))dyrcost’
V21 +a)(3 + a3 + a))d;)V2w_(w + 2) sin 9)),

0 =w_ + 0T a3 T 20T PPy (2\/5(1 +a)(3+a(3+a))di(2(2+ D,)
+a(9+ a(10 + a(5+ a)) + D,))rcos6* + (1 +a)(2(2 + D,)
+a(9+ a(10 + a(5 + a)) + D,))V2w_(dy — di D, + a*(6¢; + 3d; — Sw)
+ 2a(3cy + 2d; — 6w) + a*(2¢; + di — 2w) — 6w)(w + z) sin &
+2V2(3 4+ a(3 +a))(2(2 + Do) + a(9 + a(10 + a(5 4+ a)) + Dy,))r(d,
+a(2+a)(cr +di) — 2w — a(3 + a)w) sin 62 + cos O(—V2(1 + a)(2(2
+ Do) +a(9+ a(10 + a(5 + a)) + D,))(a(6er — 4dy) + di(D, — 1)
+a*(12¢; — 3d; — 10w) + a*(8¢y + dy — 8w) + 2a*(¢; — w) + 6w)(w + 2)
+ 23+ a(3+4 a))V2w_r(2dy(D, — 1) 4 a®(28¢1 + 5dy — 26w)
+a?(30cy + dy (D — 1) — 20w) + 4a*(3¢1 + dy — 3w) + a®(2¢; + dy — 2w)

+ 12w + a(12¢y — 5dy + 3¢1 D, + 6w)) sin 9)),
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s =(2(~(a+ D)(ala+ 1)(ala +3) + 3)(ala(a(a(a(a +5) + 7) ~ 4) = 17) ~ 12)
—3)—1)Z* +ala(a + 3) + 3)(a(a + 1)(a(a + 3) + 3)(a(a(a(a + 5) + 10) + 9)
+4)e; — (ala(a(2a(a(a + 7) + 20) + 59) + 45) + 16) + 1)d;)Z

+a(a + 1)(a(a(a(a(a(a(a(a(a(a + 12) + 65) + 208) + 435) + 623) + 621)
+424) 4+ 183) 4+ 40) + 1)by) (a + 1)* + (—2(a(a(a(a(a(a(a(a(a(2a(a + 11)
+107) + 296) + 495) + 470) + 141) — 219) — 312) — 180) — 46) — 1)(a + 1)?
—2(a(a+1)(a+2)(ala+ 3) + 3)(a(2a(a + 3) + 5) — 1) + 1) Dy(a + 1)*) W?
+ W ((a+1)Dy (2(a+ 1)(a(a(a + 3) + 3)(a(a + 1)(a+ 2)(a(a + 3) + 3)c
+dy —alala+3)3ala+3)+14)+ 172 —2Z) —2Z) + (a + 2)(a(a + 3)
+3)r <\/§(a +2)(ala+1)(a +2) — 1)v2w_siné — 2(a(a(aa + 5) + 10) + 9)
+4)cosf)) + (a+1) (2(a+ 1)(a(a(a + 3) + 3)(a(a+ 1)(ala + 3) + 3)(a(a(a(a
+5)+10)+9) +4)c; — (a(a(a(2a(a(a + 7) + 20) + 59) + 45) + 16) + 1)d;)
+ a(56 — a(a(a(a(a(a(a(a(a(3a 4+ 32) + 149) + 386) + 576) + 411) — 107)
— 519) — 501) — 243))Z + 22) + (ala + 3) + 3)r (\/§(a<a(a<a(a(a<a(3a +26)
+93) + 168) 4 134) — 26) — 131) — 84) — 14)v2w_ sin 0 — 2(a(a(a(a(a(a(a(a
+8) 4 27) 4+ 50) + 58) + 52) + 45) 4 30) + 10) cosb))) + %(a(a +3)
+3)r (—2(a+ 2)(a(a + 3) + 3)(a(a(a(a + 5) + 10) +9) + 4)r + 2(a + 2)(a(a
+3) + 3)(alalala +5) +10) +9) +4) cos(20)r — 4(a + 1)(a(a + 1)(a(a + 3)
+ 3)(a(a(ala +5) +10) +9) + 4)d; + (a(a(a(a(a(a(a(a + 8) + 27) + 50) + 58)
+52) +45) + 30) + 10)Z) cos 0 + V2v2w_ ((a + 2)(a(a + 3) + 3)(a(a(a(a
+5)+10)+9) + 4)rsin(20) — 2(a + 1) (2a(a + 1)(a
—(a + 1)dy)(a(a + 3) + 3)* — a(a(ala(a(a(a(a + 8) + 25) + 34) + 2) — 56)
_77) — 48)Z + 142) sin0)) + D, (—2(a(a(a(alala(a + 8) + 27) + 49)
+51) +31) + 11) + 1) Z%(a + 1)* + 2a (a(a + 1)*(a + 2)*(a(a + 3) + 3)
—1)bi(a+1)° +2a(a(a + 3) + 3)(a(a + 1)(a + 2)(ala + 3) + 3)cs
+dy)Z(a+1)* — a(a(a+5) + 9)(a(a(a + 5) + 9) + 12)r?

— 36r% + %(a +2)(a(a+3) +3)r ((a +2) (2(a(a + 3) + 3)r cos(20)

+V2V2w_ (2(a(a(ala +4) +5) +1) — 1)Zsin 6 + (a(a + 3) + 3)r sin(20))>
—4(a+1)(ala+ 1)(a(a+ 3) + 3)dy + (a(a(a(a +5) + 10) +9) +4)Z) cos 9)))

/(2a(1 + a)*(3 + a(3 + a)) (10 + 8D, + a(30 + 22D, + a(52 + 20D,

+ a(58 + 7D, + a(50 + a(27 + a(8 + a)) + Da)))))) + biwe>,
5

(2a(1+a)?2(34+a(3+ a))(2(2+ Da) + a(9+ a(10 + a(5 + a)) + Da)))
((a +12(a(ala(a+5) + 10) + Dy + 9) + 2(D, +2)) (a°by + 4a’h,
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+a® (T — (W + 2)%) —a® (bi(Dy — 5) +3(W + 2)*) —a(bi(D, — 1)
+2(W + 2)?) — (D — )(W + 2)%) + V2(a(a + 3) + 3)(a + 1)vV2w_r(a(a(a
+2)(a+3)+ D, —3)+2(D, —4))sin(W + Z) — 4(a + 2)(a(a + 3)

+ 3)%r? sin2(8)> — whie?,
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