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Abstract 
 

Chapter 1. General introduction 

 

 

 

 

This chapter deals with the 
general description of the 
background and the remaining 
challenges in the field of 
molecular water oxidation 
catalysis (mol-WOC). Firstly, an 
introduction about the current 
energetic scheme based on fossil 
fuels gives rise to the exposure of 
the motivations for new strategies 
based on artificial photsynthesis 
as potential solution. As part of 
this strategy, the analysis of the 
water oxidation reaction together 
with the historical development 
of molecular catalysts leads to 
stablish the main key factors that 
determine the progress in the 
field. Finally, the advances in 
transferring the catalytic activity 
from homogeneous molecular 
catalysts to heterogeneous 
molecular anodes is presented as 
one of the final steps in the design 
of practical photochemical cells 
for artificial photosynthesis. 

 

  

Chapter 2. Objectives 
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 Chapter 3. Redox non-innocent ligands in copper-
catalyzed water oxidation 

 

Chapter 3 explores the use of redox 
non-innocent ligands for molecular 
water oxidation catalysis using the 
copper complex [CuII(mox)]2-. The 
influence of the ligand oxidation on 
the catalytic mechanism allows an 
excellent control on the 
overpotential, that can be lowered 
to a record value of 170 mV. 
Moreover, the computational study 
of the  O-O bond formation step in 
three different copper catalysts 
reveals an unprecedented 
mechanism based on single  
electron transfers. 

 

 

 Chapter 4. From ligand-based to metal-based 
electron transfer in water oxidation catalysis 

 

New copper complexes are 
developed for water oxidation 
catalysis bearing different 
scafolds. The first two complexes 
contains redox non-innocent 
ligands that  can accumulate two 
oxidative equivalents so that the 
metal center act as an spectator in 
the electron transfer processes. A 
third complex has been 
synthetized bearing a redox 
innocent ligand. Those systems 
allow to explore the opportunities 
and limitations of using redox 
non-inocent ligands in water 
oxidation catalysis. 
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 Chapter 5. From molecules to solid state: Copper-
Based Molecular Anodes 

 

 

 

The copper complex  [CuII-mox]2- 
has been modified to include a 
pyrene functionality resulting in an 

improvement of the catalytic 
features compared to the 
unmodified homologue. Moreover, 
both complexes have been used to 
build molecular anodes by 
anchoring on graphene-based 
electrodes through π-π stacking. 
The extended π-interations exerted 
by the graphene enhance the 
catalytic performance of both 
catalysts, reaching one the highest 
kinetic constants in copper WOC.  

 

 

 Chapter 6. An extension to Nickel 

 

 

Motivated by the lack of 
information in nickel-based mol-
WOC, the previous strategies 
using copper complexes are 
applied to the development of 
nickel catalysts. The complex  
[NiII-mox]2- is synthetized and 
its catlytic performance toward 
water oxidation is evaluated. 
This system allows to study the 
factors determining the low 
stability of molecular nickel 
complexes in aqueous solutions 
under oxidative conditions and 
thus, their opportunities as 
molecular catalysts or precursor 
of active nickel oxides 

 

UNIVERSITAT ROVIRA I VIRGILI 
MOLECULAR WATER OXIDATION CATALYSTS BASED ON COPPER AND NICKEL COMPLEXES 
Pablo Garrido Barros 
 



14 

 

 Chapter 8. General conclusions 

 

 

 Chapter 9. Annexes 
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Chapter 1 

General Introduction 
 

This chapter deals with the general description of the background and 
the remaining challenges in the field of molecular water oxidation 
catalysis (mol-WOC). Firstly, an introduction about the current 
energetic scheme based on fossil fuels gives rise to the exposure of 
the motivations for new strategies based on artificial photsynthesis as 
potential solution. As part of this strategy, the analysis of the water 
oxidation reaction together with the historical development of 
molecular catalysts leads to stablish the main key factors that 
determine the progress in the field. Finally, the advances in 
transferring the catalytic activity from homogeneous molecular 
catalysts to heterogeneous molecular anodes is presented as one of 
the final steps in the design of practical photochemical cells for 
artificial photosynthesis.  
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1.1 The energy scheme: Causes and Consequences 

Only in the year 2015, the world total energy consumption was around 

575 quadrillion British thermal units (BTU), what is 14,489.70 millions of 

tonnes of oil equivalent (Mtoe), according to the last data released by the 

U.S. Energy Information Administration (U.S. EIA).1 By itself, this 

amount of energy is just a large number without much meaning unless we 

contextualize it. In a social context, taking into account the world popu-

lation in the same year, around 7.4 billion of people, it involves that each 

single person consumed the energy equivalent to 2 tons of oil fuel in one 

year and this value begins to take on meaning. Moreover, considering the 

social inequalities, this is a low value compared with the personal con-

sumption of an inhabitant from an OECD (Organisation for Economic 

Co-operation and Development) country for instance. In a temporal con-

text, when we look at the past, a clear trend reveals a continuous growth 

in the consumption levels (Figure 1), with a 65% of increase from 1990 

to 2015. If we now look to the future, similar trend is projected for at 

least the next 20 years, involving 30% more consumption by 2040. Alt-

hough the rise is getting slower, the future is characterized by a growing 

of 3.4% per year in the global economy and an expansion from 7.4 bil-

lions of people to more than 9 in 2040 determining the necessary increase 

in energy consumption. Asian countries like India and China will position 

as the main energy consumers with the largest share in the global energy 

use of around 11%. 

 

Figure 1. World total energy consumption and expectations for the time range 
1990-2040. Source: EIA, International Energy Outlook 2018 . 
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Another important factor that helps us to understand the consumption 

data is the resource of energy we employ to satisfy our growing needs. 

According to the U.S. EIA, in 2015 the 83% of the final consumed energy 

was provided by fossil fuels including oil, natural gas and coal (Figure 2). 

This situation is not new, as the energy mix has been long dominated by 

fossil fuels despite the slow decrease in its use in favor of the renewable 

sources. 

 

Figure 2. World energy consumption and expectations by energy spource for the 
time range 1990-2040. Source: EIA, International Energy Outlook 2018 . 

All previous data define a current energy scheme with a high, continu-

ously growing demand that is mainly supplied by fossil fuels. In the search 

for the causes responsible for this situation, three main factors can be 

pointed out: 

 Historical population growth. As recorded by United Nations,2 

population has increased from less than 1 billion around 200 years 

ago to 7.4 in 2015, involving a subsequent increase in the energy 

needs. 

 Improvement of the life standards mainly in the most developed 

countries. The energy consumption per capita has inevitably 

raised to meet the increasingly demanding needs, besides an irre-

sponsible energy use unconcerned about the consequences. 
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 Since the industrial revolution, fossil fuels have been the key gear 

that has guided the human development. These energetic prod-

ucts are the basis of our society and have become essential for 

several important sectors such as industry and transportation. The 

alternatives sources of energy including renewables or the nuclear 

energy have encountered significant barriers in their development 

like low efficiencies, intermittent production, storage problems or 

exploitation risks. Therefore, they have not been competitive op-

ponent to fossil fuels.  

However, despite the widespread use of this energy scheme all over the 

world, it is far from being an ideal energy model as it involves three non-

negligible consequences: 

 Depletion of fossil fuels reserves: Oil, coal and natural gas have 

been generated and accumulated in the Earth crust during million 

of years so that their current fast exploitation makes them a non-

renewable source of energy. Estimations from the Global Re-

source Observatory (Anglia Ruskin University) reveal that few 

places in the world have fossil fuels reserves for more than 100 

years.3 

 Unequal reserves distribution:4 Most of the international conflicts 

we are living nowadays hide some geopolitical reasons in order to 

dominate the production and distribution channel of fossil fuels. 

They constitute a large part of a state’s economy and are currently 

contributing to deepen the difference between developed and un-

derdeveloped countries. 

 Pollution derived from its use: Perhaps this is the most important 

and concerning consequence for the current society. The use of 

fossil fuels to obtain energy generate large amount of CO2 emis-

sions that are responsible for the global warming the Earth is 

experiencing.5 There is a clear correlation between the CO2 levels 
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and the superficial temperature6 (Figure 3) and, despite the slow 

mechanisms that our planet uses to regulate it, living beings can-

not adapt to the fast and drastic warming. 

 

Figure 3. (A) Vostok ice core records for carbon dioxide concentration and tem-
perature change until 1999.6 (B) Global mean carbon dioxide concentration. 
Source: National Oceanic and Atmospheric Administration, U.S. Department of Commerce.  

Since 1992 with the creation of the United Nations Framework Conven-

tion on Climate Change (UNFCCC), governments of different countries 

around the world started to concern about the global warming and its 

harmful consequences and proposed several actions as measures to re-

duce them. One of the first treaty was known as the Kyoto Protocol 

created in 1997 to reduce greenhouse gas emissions in the state parties.7 
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Specifically, the aim was reducing the emissions around 5.2% by 2012 and 

they made available several tools to help countries meeting the objectives. 

Since 1995 the Conferences of the Parties (COP) is the yearly conference 

in charge of assessing the progress and solving the problems regarding 

the compliance with the protocol. Although only 9 countries of the 36 

parties failed with the objective, the total amount of CO2 due to the non-

participating countries resulted in the global failure.  

More recently, in 2016, a new agreement known as the Paris agreement 

was signed by 195 countries in order to reduce the temperature increase 

below 2ºC regarding preindustrial levels.8 This new agreement, which 

starts after the Kyoto protocol finishes in 2020, assumes that meeting the 

objective would considerably reduce the effects of the climate change. 

However, comply with all the pledges provided in the agreement will only 

reduce the energy-related emissions so that the rise in the temperature 

will be 2.7ºC by 2100. The lower use of coal and oil in favour of natural 

gas and renewables energies is not enough to ensure a sustainable future. 

Although those measures would have an important impact on electricity 

generation, nowadays there is not a simple alternative to oil fuels in trans-

portation and petrochemicals production, so its demand is expected to 

continue growing. A deeper change in the current production and life 

models is required and that would likely involve a necessary carbon neu-

tral economy. 

1.2 Artificial Photosynthesis: Toward Solar Fuels 

Sun is the most promising source of energy for human being due to sev-

eral features: 

 It is a renewable source of energy in the time scale of human life. 

 It is carbon neutral. 
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 The Earth’s surface receives in one hour an amount of energy in 

form of radiation enough to supply one year of global energy de-

mand.9 

These reasons have led scientists to focus on the development of tech-

nologies that can take advantage of that energy source. In the history of 

humankind, sunlight has been long used as source of heat by using the 

derived thermal energy. Light can interact with the matter at a vibrational 

level and that produces an increase in the temperature that can be used 

for several applications like warming, cooking or even for obtaining me-

chanical energy that would be eventually transformed into electricity. This 

is the basis for the development of the so-called thermal solar energy. On 

the other hand, light can also interact with semiconductors so that it pro-

motes an electron flow and thus the direct conversion of solar into 

electrical energy, known as photovoltaic (PV) solar energy. This technol-

ogy, which is performed in the photovoltaic cells, has been studied for 

years and nowadays it provides around the 5% of the total energy con-

sumption with growth expectations.2,10 

However, both the thermal and photovoltaic solar energies present a ma-

jor drawback: their energy production model does not contemplate the 

storage of the solar energy into fuels. The final form of energy that those 

technologies produce is either heat, mechanical energy or electricity. In-

stead, as aforementioned, around the 83% of the final consumed energy 

is provided by fuels.2,10 Those data reflect that the main consuming sec-

tors, i.e. industry and transportation, follow an operation scheme based 

on the combustion of fuels to obtain the required energy. Therefore, it is 

imperative to explore the ways of harvesting the solar energy into chem-

ical bonds and producing what would be called solar fuels. 

Importantly, this idea has been already implemented by nature in the pro-

cess known as natural photosynthesis.11,12 Through this process, the 

photosynthetic organisms (green plants and algae) use water and carbon 
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dioxide as raw material and sunlight as energy input to synthetize carbo-

hydrates, whose chemical bonds store the absorbed solar energy. Those 

carbohydrates will be later consumed as fuels to obtain again the energy 

for performing the life functions and releasing carbon dioxide to the en-

vironment. The reactions involved in the storage of solar energy are 

summarized in Scheme 1 and, from a redox point of view, they can be 

divided into the two half-reactions: water oxidation and CO2 reduction 

(Calvin Cycle). 

Scheme 1. Representation of the natural photosynthesis and artificial photosyn-
thesis processes.  
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Following a similar scheme, artificial photosynthesis has emerged as a 

promising technology to harvest the solar energy into fuels.13,14 This pro-

cess generally involves the oxidation of water to molecular oxygen 

releasing protons and electrons and the further reduction of those pro-

tons to molecular hydrogen, reason why this process is also known as 

water splitting. Alternatively, other schemes can be propose by changing 

the nature of the molecules that are oxidized and reduced. For example, 

for synthetic purposes, organic compounds can be oxidized using water 

to other chemicals with commercial interest, what is also termed as “or-

ganic-substrate-assisted water splitting” (OSA-WS).15 In the same way, 

protons and electrons can be used for other reduction reactions coupled 

to water oxidation such as carbon dioxide to carbohydrates, nitrogen to 

ammonia or any other reductions of organic compounds. Those reduced 

products can be also employed as fuel like the hydrogen or for other in-

dustrial processes as starting materials. 

1.2.1 Technical aspects 

From a technical point of view, the reactions involved in the artificial 

photosynthesis have generally three requirements:  

 An input of energy as they are thermodynamically demanding. In 

order to have an efficient way to store energy that input would be 

fully provided by the sunlight. 

 A strategy to overcome the kinetic barriers and make the reactions 

efficient from a practical time-scale perspective.  

 Separation of the different products obtained from the overall 

process, as they would be used with different purposes.  

Since water only interact with light at a vibrational level, the first require-

ment can be accomplish with the use of a light absorber, which should be 

able to uptake the sunlight and transfer it to the rest of the system. Nor-

mally, specific transition metal complexes and semiconductor are 
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employed for this purpose as the light produces the excitation of their 

valence electrons and eventually they are transferred to promote the nec-

essary transformations.13 Regarding the second requirement, many 

molecules and materials have been proposed to catalyze both reactions 

with different mechanisms that in general lower the activation barriers for 

each redox half-reaction.16,17 Currently, this is an highly active field of re-

search in chemistry and the recent advances exceed the rate at which 

those reactions take place in the natural system. Finally, in order to sepa-

rate the product of the reactions, a scheme based on two compartments 

separated by a semipermeable membrane is frequently used so that each 

half reaction is performed in a different compartment and then products 

are obtained separately.  

Keeping in mind the previous technical requirements, different designs 

can be proposed to integrate all the components necessary for the artifi-

cial photosynthesis. Particularly, those designs can be gathered in three 

groups: PV/electrolyzer, Integrated Photoelectrochemical Cell (PEC) or 

mixed colloid devices.18 

PV/electrolyzer, as indicated by its name, incorporates a photovoltaic cell 

that acts as the light absorber and transfer the produced electricity to an 

electrochemical cell, where the catalysts for both reactions are located and 

connected respectively to an anode and a cathode. Using the incoming 

electrical power, those catalysts carry out the water splitting process im-

mersed in an electrolyte solution. Despite that the technology for this 

design is already developed, its cost is generally high due to the expensive 

PV production. On the other hand, mixed colloid systems are based on 

simple and low cost technologies but the concept of their operation has 

to be still proven. The operating basis consists of using particles including 

the three component: light absorber, oxidation catalyst and reduction cat-

alyst. Those particles would remain in suspension in an electrolyte 

solution and operate independently of other particles yielding both prod-

ucts in the same compartment. Finally, the integrated PEC systems are 
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based on an intermediate scheme. They propose the use of a photoanode 

incorporating the light absorber and the oxidation catalyst, coupled to a 

photocathode containing also a light absorber and the reduction catalysts. 

Both photoelectrodes would be wired through electrical connection and 

separated by a membrane into two compartments. 

 

Figure 4. Schematic representation of the three general designs for an artificial 
photosynthetic cell.  

An important aspect of the photosynthetic system, independently of the 

design, is the need to be efficient, stable and operate at an industrial 

level.19 Moreover, all the components of the system have to meet those 

constraints at the same time that they operate in compatible conditions 

with each other. Therefore, beside the individual performance of each 

component, the compatibility and combined features are essential for a 

practical device. 
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According to the previous description, artificial photosynthesis technol-

ogy presents three main advantages compared to other renewables 

strategies: 

 The use of sunlight as the only energy input, taking into account 

that this resource is renewable, highly abundant and well distrib-

uted over the Earth. 

 Artificial photosynthesis for fuel production uses only water as 

main raw materials, which is also the only product from the com-

bustion of molecular hydrogen. In the case of using CO2 also as 

starting material to produce fuels, the combustion of those fuels 

would release the same amount of CO2 as initially consumed. 

Therefore, this process constitutes a closed cycle for the energy 

generation without emissions of net amount of CO2 or other 

waste products.  

 Finally, the technology for the use of carbohydrates as fuels is al-

ready developed and implanted in the industry and transportation. 

Moreover, in the case of producing hydrogen as fuel, many pri-

vate enterprises and public organism are currently working on 

implementing hydrogen-based energetic scheme.20 No further 

deep development is needed for the implementation of artificial 

photosynthesis as energy production process. 

Meanwhile, other renewables resources such as wind or hydraulic power 

are currently not able to cover the whole energy supply. Besides the high 

initial investment and the instability of the production, they are very inef-

ficient and the produced electric energy (they mainly convert primary 

energy into electricity instead of fuels) is currently difficult to store. As to 

nuclear fission energy, the problems associated with the waste storage and 

operation safety has slowed its development despite the high efficiency. 

In contrast, nuclear fusion energy is much safer in terms of waste treat-

ment but it needs many technological requirements that involve high 
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complexity and large investments. Moreover, the energy storage problem 

remains since no fuel is produced in the process. Finally, biomass has 

been lately considered as a potential option for energy production because 

it does not produce net CO2 emissions. However, the raw material cost, 

the large cultivation area needed (responsible for the 87% of the defor-

estation in Malaysia) and the easy degradation of the biodiesel fuel hinders 

a significant develop of this approach. 

1.2.2 Current accomplishments and challenges 

Research in the field of artificial photosynthesis started more than 40 

years ago and partial objectives have been already accomplished.18 It is 

thus important to analyze the current situation in order to perform further 

rational research driven by the remaining needs and challenges. Those 

advances are summarized in the following list: 

 Separators: Semipermeable separators for the anodic and cathodic 

compartment have been commercialized for years. They can op-

erate in both acidic and alkaline media and are mainly based on 

perfluorinated sulfonic acid polymers21 or asbestos separators22 

respectively. Those materials could be readily adapted for their 

use in the integrated PEC, although further research in this area 

would be always welcome in terms of decreasing cost. 

 Catalysts: high activity rates have been reached using mainly ma-

terials comprising noble metal and noble metal oxides.23 For 

proton reduction in acidic media, Pt features one of the highest 

activity and stability, whereas Ru and Ir oxides are employed for 

the water oxidation. Some progress has been also achieved trying 

to move on non-noble metals for proton reduction such as MoS2. 

In alkaline media, Ni based oxides dominate the water oxidation 

field while Ni-Mo composites have been extensively used for the 

proton reduction reaction. 
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 Light absorbers: three metal oxides have been deeply studied as 

light absorbers in tandem water splitting system, being Fe2O3,
24 

WO3
25 and BiVO4.

26 All of them have band gaps in the visible 

range and can be successfully coupled to water oxidation catalyst 

resulting in high photocurrents under operation. Regarding other 

material than oxides, only Silicon27,28 and Indium phosphide29 

have shown promising results for solar-driven water-splitting. 

Beside all those advances, more effort is needed to address the remaining 

challenges in the field. One of the major requirements is related with the 

development of new water oxidation catalysts that operates under milder 

pH and overpotential conditions. Previous advances show that alkaline 

media are used for high activity during water oxidation,17 although those 

conditions enhance the corrosion of the system components, which is 

accelerated under anodic potentials. Moreover, the coupling proton re-

duction reaction is favored at low pH values though, imposing the need 

to work at acidic-neutral conditions. In addition, catalysts based on non-

noble metal are also required to reduce the cost of the water oxidation 

reaction. The highest activities in acidic media have been reached with Ru 

and Ir oxides but those metals are expensive for practical applications 

partially due to their relative low abundance. A third important require-

ment would be the transparent character of the catalysts or supporting 

electrode, as otherwise they would lower the efficiency of the light ab-

sorbers. 

In this context, molecules such as first row transition metal (TM) com-

plexes are potential candidates to be used as catalysts for water oxidation. 

Those abundant metals are in general harmless and inexpensive and there 

is a wide range of techniques for synthesis and characterization of molec-

ular species. Therefore, they offer an ideal platform to study both the 

operating reaction mechanisms and the factors that affect the kinetic. 
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Moreover, this knowledge can ultimately be translated into a rational de-

sign of more active and robust catalysts by fine-tuning of their electrical 

and structural features. 

1.3 Molecular Water Oxidation Catalysis 

1.3.1 General aspects 

Water oxidation catalysis (WOC) to molecular dioxygen (Eq 1) is not only 

an essential reaction in biology, due to its implications in the natural pho-

tosynthesis, but also a key step in the development of new sustainable 

energy schemes based on artificial photosynthesis.13,14  

2 𝐻2𝑂 →  𝑂2 +  4 𝐻
+ +  4 𝑒−, 𝐸0 = 1.23 𝑣𝑠 𝑁𝐻𝐸          (1) 

As already mentioned, this oxidation reaction is thermodynamically de-

manding with a standard redox potential of Eº=1.23 V vs at pH=0 

(Figure 5A). Moreover, from a mechanistic point of view, it involves the 

transfer of four electron, the cleavage of four O-H bonds and the even-

tual formation of a double O-O bond.30 This multiple bond breaking and 

formation lead to a complex mechanistic scenario that is reflected in the 

high kinetic barrier of this reaction. Therefore, there is an extra amount 

of energy that we need to supply to the system to overcome that kinetic 

barrier and this is known as overpotential (η). The development of an 

efficient catalytic system lies in the capacity to generate stable catalysts 

working at acidic-neutral pH values and at low overpotentials, close to 

the thermodynamic redox potential for the water oxidation. 
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Figure 5. (A) Latimer diagram of water at pH 7. All redox potential values are 
reported vs NHE. (B) X-Ray structure of the Oxygen Evolving Complex (OEC) 
cluser with (right) and without (left) the surrounding aminoacid residues. Figure 
taken from reference 32.  

As aforementioned, nature has accomplished this goal using the so-called 

Oxygen Evolving Center (OEC) composed by a manganese cluster with 

the formula Mn4O5Ca.12,31 This cluster has been identified inside the Pho-

tosystem II as the water oxidation catalyst with an overpotential of 0.43 

V and a turnover frequency (TOF) between 100 s-1 and 400 s-1. Thanks to 

the current great atomic resolution of the X-Ray analysis for the OEC (up 

to 1.95 Å) we currently know its structure, that is shown in Figure 5B.32,33 

This cluster includes three Mn atoms and one Ca atom linked by oxo 

bridges resulting in a cubane-like structure. There is a fourth dangling Mn 

atom bonded to the cubane by another oxo bridge. The Ca and the dan-

gling Mn atoms are also bonded to water molecules that are thought to 

have an important role in the overall mechanism. Finally, some aminoacid 

residues are also coordinated to the metal centers of the cubane leading 
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to a complex tridimensional structure. Thanks to the efforts made by re-

searchers using X-ray Diffraction, X-Ray Absorption, electrochemical 

and computational studies, the mechanism of this catalyst has been par-

tially revealed.31,32,33,34,35,36  The Mn4O5Ca is known to be oxidized until four 

oxidative equivalents are accumulated and releasing 4 protons in the pro-

cess. Then the O-O bond formation takes place following a mechanism 

that is still under investigation.  

This natural cluster has been a source of inspiration in the design of cat-

alytic system for water oxidation due to its high efficiency and fast 

reaction rates.13,36 Specifically, in the case of molecular water oxidation 

catalysis (Mol-WOC) based on transition metal complexes, the design is 

based on the coordinative interaction metal-aqua groups, in a similar way 

as Mn and Ca atoms are bonded to aqua groups in the natural cluster. 

Control on the electronic and geometrical structure of the complexes by 

ligand design would determine their general features and particularly the 

catalytic performance toward water oxidation. Therefore, ligand design in 

catalysis has been an extensively studied field in chemistry in order to 

guide a rational discovery of more active and stable catalysts.37 

1.3.2. The “Ru school”: mechanistic lessons in molecular WOC 

Although water oxidation by an artificial catalysts was first developed in 

1902 by Cohen and Glazer using oxides materials ,38 molecular catalysts 

appeared far later in 1982 due to the previous required development of 

coordination chemistry. It started with the report by Meyer group of a 

polypyridyl Ru-aqua complex cis,cis-[[Ru(bpy)2(H2O)]2(μ-O)]4+, 1 (Scheme 

2), so-called blue dimer, that resulted in the first family of catalysts, based 

on a polypyridyl architecture.39 This complex was the first molecularly 

well-characterized water oxidation catalyst and contributed to stablish the 

basis of catalysis for complexes based on metal-aqua interactions. Com-

plex 1 was a model to study the two fundamental steps in the catalytic 

water oxidation by molecular complexes: accumulation of oxidative 
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charges and O-O bond formation. Since then, most of the molecular cat-

alysts developed in the last 30 years have been based on Ru complexes 

and they have been the major contribution to the current mechanistic 

knowledge in molecular WOC.   

Scheme 2. (A) Structural representation of the catalyst 1 and the proposed mech-
anism for the catalytic water oxidation based on the experimental evidences  (bpy 
ligands are omitted for simplicity). (B) Structural representation of catalysts 2 and 
3. 

 

Thanks to the dimer structure of 1, having two Ru(II) centers connected 

by an oxo bridge, and the high electron-donating character of the pyridine 

groups the blue dimer was able to accumulate four oxidative equivalents 

(two oxidations in each metal center), such as the Mn cluster in the PSII, 

leading to highly oxidized Ru(IV)-O-Ru(IV) complex. One of the keys 

for reaching such high oxidation states is based on the Proton Coupled 

Electron Transfer (PCET), consisting in the concerted release of one 

electron and one proton, which was discovered by Meyer group (Scheme 
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3).40,41,42 This process helps the oxidation to take place at lower potentials 

due to two reasons:  

 The simultaneous loss of a proton and an electron avoids the for-

mation of more energetic intermediates in the oxidation process 

since the total charge in the complex remains equal. 

 The proton loss generates a coordinating oxygen group with more 

electron-donor character that stabilizes high oxidation states in 

the metal. 

Scheme 3. Scheme of the proton and electron transfer processes using the  aquo-
complex c-[Ru(bpy)(py)(H2O)]2+ as model at pH 7. Blue arrows ar associated to 
proton transfers, green arrows represent electron transfers and orange arrows are 
proton coupled electron transfers. The latter are the lowest energy pathways con-
necting the different oxidation states. 

 

 

 

In the case of the blue dimer, it ends up forming two Ru(IV)=O groups 

where the oxygen atom is highly activated with a positive partial charge 

due to the acidic character of the Ru(IV) center. Then, this activated spe-

cies enables the O-O bond formation required for the eventual release 

of molecular oxygen. For this step, two alternative mechanisms have been 

envisioned depending on the involvement of either an external water mol-

ecule or another M=O unit43 and are summarized in Scheme 4: 
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 Water Nucleophilic Attack (WNA): As indicated by its name, 

an external water (or hydroxo) molecule performs a nucleophilic 

attack to the M=O unit resulting in the formation of the hydrop-

eroxo species M-O-O-H. This pathway takes place when the 

character of the M=O unit is close to a polarized double bond 

with a partial positive charge in the oxygen. 

 Interaction of two M=O units (I2M): This second alternative 

involves the coupling of two activated M=O unites to form the 

species M-O-O-M. In contrast with the previous WNA, this path-

way is more likely to happen when the oxygen has a radical 

character formally generating the isoelectric species M-O·.  

Scheme 4. The two alternative accepted mechanisms for the O-O bond formation, 
WNA and I2M, using the complex 2 as a model. The apical ligands are not drawn 
for clarity. Red oxygen atoms correspond to 18O initially labelled catalyst whereas 
blue oxygen atoms refer to the initially non-labelled solvent H2

16O.37 

 

In the case of complex 1, a deep characterization based on UV-vis, EPR, 

rRAMAN, X-Ray and isotopic labelling experiments reveals that a WNA 

takes place after two consecutive PCET, instead of the speculated I2M 

mechanism due to the dimer structure. 30,44,45,46,47,48,49  Despite the thorough 

mechanistic study carried out using complex 1, its poor performance as a 
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WOC was far from practical applications, with an observed turnover 

number (TON) and turnover frequency (TOF) values of 13.2 and 0.004 

s-1 respectively. This complex was sensitive to several reaction pathways 

leading to decomposition: Ligand oxidation, µ-oxo bridge cleavage and 

water induced anation.30,50,51 

Following the previously discussed mechanistic aspects, the development 

of water oxidation catalysts based on complexes took off using as func-

tional model the polypyridyl Ru-aqua scaffold. No significant advance 

was achieved in terms of catalytic activity until 2004, when Llobet et al. 

reported on the synthesis and performance of a new dinuclear complex 

named cis,cis-[[Ru(trpy)(H2O)]2(μ-bpp)]3+, 2.52 This catalyst, based on the 

aromatic bridge bis(2-pyridyl)-3,5-pyrazolate (bpp-), features enhanced 

TON values of 512 and a faster kinetic constant of 0.014 s-1. The change 

of the µ-oxo bridge by the bpp- scaffold was essential to confer extra sta-

bility to the complex under oxidative potentials. Moreover, the proximity 

of the two Ru-O moieties exerted by the ligand scaffold allowed the I2M 

mechanism operates for the O-O bond formation. That finding was es-

sential for the development of new complexes based on polyaromatic 

organic architectures bridging two Ru centers.53,54,55 In particular, Sun and 

coworkers reported on a ligand bridge bearing carboxylate groups, 3, that 

was able to increase the TOF up to 1.2 s-2.56 However, not all the bridge 

architectures were found to be favored as the exceeding proximity of the 

Ru-O groups can promote the repulsion and prevent the catalytic activ-

ity.57 

One further step towards the design of more efficient catalysts was 

achieved when Thummel et al. reported on the activity of the first mono-

nuclear Ru based catalyst 4, represented in Chart 1.58 Up to then, two 

metal centers were thought to be necessary for the accumulation of four 

oxidative charges before the O-O bond formation in a similar way as it 

happens in the natural OEC. However, the activity of the mononuclear 
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complex 4 was later the inspiration for the development of more mono-

nuclear Ru-based catalysts that were in general simpler and easier to 

prepare. The mechanism of mononuclear Ru complexes was tested by 

Meyer et al. using the catalyst [Ru(trpy)(bpy)(H2O)]2+.59,60 The operation 

mode was based in three previous PCET steps that led to the formation 

of RuV=O species, which were sensitive to the WNA by a water molecule 

from the solution. The resulting hydroperoxo intermediate RuIII-OOH 

undergoes one more oxidation step with the release of one proton and 

the eventual generation of molecular oxygen. That way, the required four 

oxidation steps can take place nonconsecutively with the O-O bond for-

mation step in between, avoiding the formation of too high oxidation 

states in the metal center. 

 

Chart 1. Structural representation of catalysts 4, 5 and 6. 

A step further was achieved by Sun, Llobet and coworkers when they 

reported on a new family of seven-coordinated, mononuclear, Ru-based 

catalysts bearing the (6,6’-dicarbonixilate-2,2’-dipyridyl) ligand (bda2-

).61,62,63 One of the developed complexes, 5, was able to oxidized water 

with a TOF of 303 s-1, which was comparable to the natural OEC. The 

TON was also unprecedented with a total value of 55,000. Both parame-

ters were approaching to the required ones for a practical application. 
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Mechanistic studies based on UV-vis, isotopic labelling, catalytic experi-

ments and electrochemical measurements revealed that complex 5 

operates through an I2M pathway for the O-O bond formation.  

One of the most recent advances was achieved in 2015 by Llobet et al. 

when they reported on the complex [RuIV(OH)(tda-κ-N3O)(py)2]
+, 6, with 

tda2- being [2,2′:6′,2′′-terpyridine]-6,6′′-dicarboxylate.64 This complex was 

formed upon controlled potential electrolysis (CPE) at pH 11 from the 

analogous complex [RuII(tda)(py)2]
+by insertion of a water molecule lead-

ing to a seven coordinated complex. The advantage of this new catalyst 

lies on the dangling carboxylate group that acts as an intramolecular pro-

ton acceptor group helping in the deprotonation of the water molecules 

during the water oxidation catalysis. Using similar ligand scaffold as the 

bda2-, the presence of the intramolecular proton acceptor group enhances 

the kinetic constant for the catalytic water oxidation up to 8,000 s-1 at pH 

7, becoming the fastest molecular catalyst ever reported. 

1.3.3 First row TM complexes: new generation of catalysts 

The discovery of molecular catalysts based on first row TM complexes 

appeared later than in the case of Ru catalysts. Generally, metals such as 

Ni, Fe, Co, Cu, and Mn are more abundant and harmless from an envi-

ronmental point of view so that they are attracting candidates for water 

oxidation catalysis. In the recent years, a fast development of such cata-

lysts is taking place and promising results have been obtained. 

Manganese Catalysts 

Manganese is an attractive metal due to its involvement in the natural 

OEC from the PSII.12 Moreover, its high abundance and low cost make 

it the ideal candidate to explore water oxidation catalysis based on molec-

ular complexes. In fact, this was the first transition metal from the first 

row to be implemented in a molecular catalyst by Naruta and co-workers 
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in 1994. They synthetized dinuclear Mn complexes, 7, that showed cata-

lytic activity in MeCN:water solutions containing nBu4NOH affording a 

TON value of 9.2.65,66 This initial report reveals the requirement of having 

two Mn centers close to perform water oxidation since the mononuclear 

counterpart did not show any catalytic activity. Five years later in 1999, 

the groups of Crabtree and Brudvig reported on the use of a new Mn 

dimer based on two µ-oxo bridges connecting both metal centers, 8.67,68,69 

This catalyst was able to promote chemical water oxidation using sodium 

hypochlorite as sacrificial electron acceptor (SEA), so it inspired a family 

of catalysts based on modified ligand architectures.70,71,72,73,74 Initially, 

TON of 4 was achieved in 6 h with a TOF value of 0.0033 s-1 showing a 

modest activity toward water oxidation that was assigned to the low sta-

bility of the µ-oxo bridges, as already mentioned for the blue dimer. 

Moreover, it was also demonstrated that the 25% of the evolved oxygen 

came from the ClO- group of the SEA and this catalyst eventually de-

grades to catalytically active MnO4
-.75 Mechanistic proposals were based 

on UV-vis and electron paramagnetic resonance (EPR) and pointed to 

the formation of a MnV=O as the active species for the O-O bond for-

mation, that would take place through a WNA pathway.67,76,77,78 

 

Chart 2. Structural representation of Mn catalysts 7, 8 and 9. 

The development of more dimer Mn complexes continued, with increas-

ing TON values when using two electron oxidants such as H2O2, Oxone 

or NaClO. Åkermark and co-workers developed a new dimer complex 
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based on imidazole, carboxylate and phenol groups that was able to work 

with one-electron oxidants such as [Ru(bpy)3]
3+ thanks to the lower over-

potential toward water oxidation.79 Few mononuclear, highly-oxidized 

Mn=O complexes have also been reported to catalyze the water oxidation 

using different ligand scaffolds such as modified salens,80 corroles (like 

complex 9)81 and polypyridines,82 that in general are electron-rich ligands 

to favor the formation of high-valent MnIV/V=O species. Beside those 

advances, the catalysis based on Mn has shown to be modest and often 

doubts arise about the real active species and the source of the evolved 

oxygen. 

Iron Catalysts 

Iron is also an abundant and inexpensive transition metal that has at-

tracted the attention of researchers. It is involved in a number of 

molecules with important roles in natural processes and its coordination 

chemistry has been extensively studied. However, the examples of iron-

based catalysts for water oxidation are very limited. The first example of 

molecular catalyst based on iron was reported by Collins et al. in 2010 and 

consisted of tetraamido macrocyclic ligands (TAMLs) with four negative 

charges that were able to stabilize the high oxidation states of iron centers, 

10.83 This type of complexes had already been used for oxidation reactions 

using H2O2 and O2 and showed high oxidizing power for the degradation 

of organic dyes due to the formation of FeIV=O species.84,85,86,87,88  They 

were first studied in chemical water oxidation with CeIV as SEA and 

showed modest activities with TON values slightly over 16 and TOF val-

ues of 1.3 s-1. Moreover, they found an interesting dependence of the 

substituent of the phenyl ring with the catalytic performance ranging from 

no activity to the highest values just mentioned. That was first assigned 

to the acid stability of the ligand that was increased with electron with-

drawing groups and later it was found also a positive influence in lowering 

the kinetic barrier for the O-O bond formation. A first order dependence 
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with the catalyst concentration reveals a single metal mechanism support-

ing the WNA as pathway to form the O-O bond. However, the stability 

of those complexes was poor in comparison to other reported Ru and Ir 

catalysts. Further study of these complexes for electrochemical water ox-

idation showed the poor reversibility of the redox features corresponding 

to the one-electron FeIII/FeIV oxidation, what suggests low stability under 

electrochemical conditions and the possible involvement of iron oxide 

nanoparticles as real catalyst.89 

 

Chart 3. Structural representation of Fe catalysts 10 and 11. 

Soon later, in 2011, Lloret-Fillol et al. described the catalytic activity of a 

family of iron complexes based on tetra- and penta- dentate nitrogen-

containing ligand motifs that were commercially available.90 Those com-

plexes were claimed to catalyze the water oxidation using CeIV as SEA 

and only those with free coordinating position in a cis- configuration 

showed activity in contrast with the complexes bearing trans- free posi-

tions. Two years later, Llobet and  Fukuzumi groups reported on similar 

Nonheme iron complexes as water oxidation catalysts revealing that iron 

oxide nanoparticles were involved during catalysis.91 Those finding sowed 

the doubt about the real catalytic activity of that family of complexes and 

further experimental evidences are needed to rule out the degradation of 
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the easily oxidizable ligands and the eventual presence of active iron ox-

ides. 

In contrast with Ru and Mn, development dinuclear iron catalysts is 

mainly limited to the example of Thummel and co-workers that recently 

reported on the iron dimer 11.92 That complex featured a µ-oxo bridge 

and was found to be more active than the mononuclear counterpart, re-

vealing the importance of the electronic coupling between both iron 

centers. A mechanism based on the formation of a FeIII-O-FeV=O species 

and the subsequent nucleophilic attack of a water molecule to that species 

was proposed, affording around 1,000 TONs and a TOF value of around 

2.2 s-1 when CeIV was used as SEA.  

Cobalt Catalysts 

Cobalt has been extensively involved in the development of heterogene-

ous water oxidation catalysts based on cobalt oxide and showed high 

activity and stability.93 Moreover, molecular cubanes94,95,96,97 mimicking the 

OEC as well as polyoxometallates (POMs) based on Co98,99,100,101,102 have 

been also evaluated as catalysts. However, the field of molecular Co com-

plexes for water oxidation has been less investigated and only few 

examples are known. The initial reports by Berlinguette103 and Nocera,104 

based on a Py5 (Py5= 2,6-bis(1,1-bis(2-pyridyl)ethyl)pyridine)]) and a β-

octafluoro hangman corrole respectively, 12 and 13, were the first exam-

ples of complexes showing catalytic activity. The key feature of those 

architectures consists in the ability of the ligands to stabilize high valent 

CoIV species, which were also the active centers of the Cobalt oxides cat-

alysts. Despite that, the performance of those complexes was poor when 

compared to the highly active Ru or Ir catalysts. More effort was put on 

the development of Co catalysts using other ligand scaffolds such as por-

phyrins,105,106 salens,107 TAMLs108 and polypyridyl109,110 backbones, based 

on the previous results, but all of them resulted in moderate activities. 

What is more, a recent reinvestigation of a cobalt salen complex showed 
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that it was just acting as precatalyst for the formation of active Co oxides, 

and that arises doubts again about the real catalytic species when using 

molecular cobalt complexes.111 The common feature of generating stable 

CoIV=O species was pursued in all the cases in order to promote the O-

O bond formation, that was mainly proposed to take place through a 

WNA pathway.  

 

Chart 4. Structural representation of Co catalysts 12, 13 and 14. 

As in the case of iron, the development of dinuclear catalysts is an unex-

plored field. Llobet and co-workers reported on the synthesis and 

catalytic activity of a cobalt dinuclear complex based on the already 

known bpp- ligand, 14.112 Although the activity was also modest, they were 

able to characterize several intermediates and find a WNA mechanism 

based on labelling experiments, resonance Raman, electron paramagnetic 

resonance and X-ray absorption spectroscopies.113 On the other hand, the 

second developed complex based on a dimer structure bearing the tpa 

ligand (tpa meaning tris(2-pyridylmethyl)amine) and a peroxo bridge114 

was eventually demonstrate to act as a precatalysts of highly active Cobalt 

oxide.115 

Nickel Catalysts 

In general, molecular Ni-based water oxidation catalysis is a relatively un-

kown field and only few examples have been reported, although the lack 

of evidencies for homogeneous molecular catalysis often makes difficult 

to obtain meaningful conclusions.  
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Chart 5. Structural representation of Ni catalysts 15. 

One of the first examples of molecular catalysts was based on a Ni por-

phyrin 15, which shows activity from pH 2 to 8 when tested 

electrochemically.116 Linear dependence of the catalytic current with the 

catalyst concentration supported a unimolecular mechanism that was pro-

posed to go through the generation of high valent NiIV species based on 

experimental evidences. However, moderate performance was achieved 

with a TOF value of 0.67 s-1. Several complexes have been developed 

based on the cyclam macrocyclic ligand (1,4,8,11-tetraazacyclotetrade-

cane) and modified analogous and tested as electrocatalytic water 

oxidation catalysts.117,118,119 They all showed irreversible waves related with 

the one-electron oxidation NiII/NiIII and increasing catalytic current in-

tensities upon CPE when analyzing the oxygen evolved, both indicating 

the possible presence of Ni oxides as real catalyst. This was previously 

showed by Spiccia and coworkers120 and later demonstrated by M. M. 

Najafpour et al., who showed the presence of Ni oxide nanoparticles on 

the surface of the electrode.121 

Copper catalysts 

As in the case of iron, copper coordination chemistry has been extensively 

developed due to its implication in natural biological systems.122 For in-

stance, a number of complexes have been reported for O2 activation 
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showing a rich chemistry with interesting redox features. However, the 

development of Cu-based water oxidation catalysts has been less extense, 

although more examples are known in comparison with Ni or Fe. The 

main drawback of Cu against other first row TM is the lower redox flex-

ibility toward high oxidation states, as CuIV complexes are unstable. 

Moreover, CuIII does not generally have enough redox potential to oxi-

dized water. 

 

Chart 6. Structural representation of Cu catalysts 16, 17, 18 and 19. 

Mayer et al. developed the first example of molecular catalyst capable of 

electrochemically oxidizing water to dioxygen in 2012.123 It consisted of 

the [CuII(bpy)(OH)2] complex, 16, which was able to oxidize water in al-

kaline solutions (11.8-13.3) at high oxidation potentials (overpotential of 

around 750 mV). Despite the simplicity of this system and the high TOF 

value of 100 s-1, the harsh conditions (high pH and overpotential) were 

an important obstacle for practical applications. Moreover, the mechanis-

tic cycle remain unknown and information about the relevant oxidation 

states or O-O bond formation pathways were missing. Meyer and co-
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workers followed the development of catalysts by introducing the copper 

complex 17 bearing the triglycylglycine ligand.124 Although this scaffold is 

unusual among water oxidation catalysts, the Cu complex showed cata-

lytic activity at pH 11 with an overpotential of around 520 mV and a TOF 

of 33 s-1. The tetraanionic character of the ligand could be the reason for 

the stabilization of high oxidation states in the metal center active towards 

O-O bond formation. However, once again, a lack of experimental evi-

dences about the mechanism made difficult to obtain conclusions, 

although a cycle based on CuIV=O species was proposed with a single-

site pathway for the oxygen evolution suggesting WNA. 

Lin et al. introduced the tool of using redox active ligands by designing 

the 6,6’-dihydroxo bipyridine ligand and the corresponding copper com-

plex 18.125 This complex was analogous to the first reported 16 but it 

features a lower overpotential for electrocatalytic water oxidation of 

around 510 mV due to the involvement of the ligand into the electron 

transfers. That way, high valent CuIV complexes that are difficult to stabi-

lize were avoided. Regarding the O-O bond formation mechanism, the 

lack of experimental or computational work resulted in a complete igno-

rance about the possible pathways. The group of Papish has also worked 

with the same ligand framework and has studied the influence of ligand-

copper stoichiometry into the catalytic activity.126 

Copper complexes bearing ami-polypyridine ligands have been also tried 

in basic pH values leading to good rates of catalysis (13.1-18.7 s-1) and 

intermediate overpotentials (440-570 mV).127 One of the most recent re-

sults was reported by Crabtree and Brudvig groups showing the catalytic 

activity of the [(pyalk)2Cu] complex (pyalk = 2-pyridyl-2-propanoate), 

19.128 They demonstrated the homogeneous performance under basic 

conditions (pH>10.4) with an intermediate overpotential of 520-580 mV 

and modest TOF value of 0.7 s-1. This catalyst bears a redox inactive lig-

and that is claimed not to participate in the electron transfer during water 
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oxidation and confers high robustness to the catalyst, which is able to 

work for 12 h giving rise to TON value of 30. 

Although more examples are known in the Cu-based water oxidation 

field, they lack evidences about their stability and role as real catalysts. 

Regarding the discussed molecular catalysts, in general, they offer few 

mechanistic information and that makes hard to perform a rational de-

sign. Those catalysts share few features so that no common factors can 

be proposed as essential for the development of more active and stable 

catalysts. One of the main challenges still remaining is to design ligand 

frameworks that resist against acid demetallation when working at acidic-

neutral pH values and operate at low overpotentials. 

1.3.4 Lessons from first row TM catalysts 

The general conclusion that one can make is that the field of first row TM 

complexes as water oxidation catalysts is immature, although a fast devel-

opment is taking place. Unfortunately, there is still an important lack of 

mechanistic information and the methodologies to assess the catalytic 

performance are too diverse to compare among different catalysts. Oxy-

gen evolution has been tested using SEA as well as electrochemical 

methods and therefore comparison between TOF and TON values is 

complicated. 

Regarding stability, first row TMs usually form complexes with more la-

bile character than Ru complexes and then, they are easily degraded under 

harsh conditions such as extreme pH values or high anodic potentials. 

Therefore, developing complexes that can withstand the high oxidation 

state required during water oxidation remained a challenge during many 

years. First row TM complexes are widely considered to degrade through 

two general pathways represented in Scheme 5:   

 The first one results from the high potential required to generate 

the high oxidation states of those metal centers, which are the 
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responsible for the O-O bond formation. At those potentials, 

many organic functionalities are also sensitive to oxidation so that 

their incorporation in a ligand scaffold can compromise the integ-

rity of the complex and drive to oxidative degradation. Depending 

on the degree of ligand oxidation, this deactivation pathway can 

result in modified molecular species or go all the way to the for-

mation of metal oxide (Figure 1A). 

 The second one is related to the metal-ligand bond lability that 

facilitates the competition of solvent water molecules for the co-

ordination positions in the metal center, releasing solvated ions 

available to form oxides. This aspect is even more important 

when the coordinating groups in the ligand are sensitive to proto-

nation since this largely decreases the coordination bond strength 

and thus restricts the pH range of stability (Figure 1A). 

Scheme 5. General deactivation reactions in molecular water oxidation catalysis 
by 1st row transition metals complexes. 

  

Solvated metal ions released from those processes are normally blamed 

for the subsequent formation of metal oxides upon oxidation conditions. 

Generally, those metal oxides feature high activity and sometimes act as 

the only real catalysts. In fact, degradation of molecular species is not 
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necessarily an undesirable side reaction since the resulting metal oxides 

can feature improved catalytic performance as compared with the same 

materials prepared by traditional deposition methods.120 

All those stability problems have prevent researchers from extensively 

studying the performance of first row TM complexes as catalysts and the 

factors that determine their activity towards water oxidation. The fast 

generation of those catalysts has been driven by relatively random design 

criteria and thus has resulted in a lack of rationalization of the catalytic 

performance. Different ligand scaffolds, overall charges, nature of the co-

ordinating groups and metal centers have drawn a confusing panorama 

for the first row TM catalysts. Moreover, most of the mechanistic pro-

posals are based in the Ru chemistry despite the evident differences in 

redox properties. Beside this, the absence of accurate proofs to discard 

the presence of metal oxide as real catalysts make even more difficult to 

obtain relevant conclusions. Therefore, deeper understanding of the cat-

alytic and degradation mechanisms is essential to establish the real 

catalytic species and thus to obtain meaningful information for the design 

of more stable and active molecular catalyst based on inexpensive first 

row TM. 

1.4 Molecular photoanodes:  

From a practical point of view, implementation of catalysts into photoe-

lectrochemical cells would benefit from working in a heterogeneous way, 

i.e. using an active anode containing both the light absorber and the cata-

lysts in contact so that the electron transfer is optimized. Molecular 

catalysts are usually assessed in homogeneous phase for simplicity rea-

sons, but an important objective would be anchoring those molecules to 

anodes and photoanodes resulting in hybrid catalysts. Those so-prepared 

catalysts would benefit from both molecular and material features: the 

molecular catalysts could be optimized by rational design of the ligand 

and then implemented as robust heterogeneous electrodes into the cell 
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upon anchorage. The interest on those materials has open a new field of 

research that aim to successfully transfer the catalytic features of molecu-

lar catalysts to the solid state, which sometimes can be a real challenge. 

1.4.1 Molecular photoanode architecture 

Five components are fundamental to build a molecular photoanode: 

 Molecular catalysts. As discussed before, many molecular catalysts 

have been developed so that the best performing ones could be 

tested for implementation on the anodes. 

 Anchoring group. The molecular structure should have some 

functionality able to interact with the electrode support and keep 

the molecule attached in a robust way. Moreover, it has to be con-

ductive and allow the electron transfer between the electrode and 

the catalyst. 

 Anchorage support. This component would be a conductive solid 

material that interact chemically or physically with the anchoring 

group of the molecular catalyst and the electrode.  

 Light absorber. In order to capture the light and promote the elec-

tron transfer required in the redox reactions, the light absorber 

should be in contact with the electrode and close enough to the 

catalysts for the chemical interaction. 

 Supporting electrode. In order to connect electrically the two half-

reactions taking place in a photoelectrochemical cell, the electrode 

should be in contact with the light absorber and the catalysts 

through the anchorage support to receive or release the electrons 

involved in the catalytic process. 
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Figure 6. Schematic drawing of the alternative building of photoanodes for water 
oxidation. 

Sometimes, the same material can perform the role of the light absorber 

and the anchorage support. That happens with semiconductors such as 

WO3
25 or BiVO4

26 since they are light absorber that can be deposited on 

electrodes and interact with the molecules through the metal centers from 

their chemical structure. Instead, those semiconductor can also bear sup-

porting material to anchor catalysts through different strategies than 

metal-oxide bonding. On the other hand, anchoring of a molecular light 

absorber (dye) would be also needed if the support material is not a sem-

iconductor that transfers the solar energy. Therefore, these two options 

result in the two general architectures used in the field, which are repre-

sented in Figure 6 based on semiconductor or dyes absorbers. 
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1.4.1 Anchoring strategies 

In order to build molecular photoanodes, the molecular catalysts (and the 

light absorber when molecular dyes are used instead of metal oxides) re-

quire specific functional groups that interact with the anchorage support. 

Those anchoring groups should be hydrolytically and oxidatively stable at 

the working pH and potentials in order to avoid the loss of catalyst under 

operation. The nature of the functionality connecting the molecular cata-

lyst and the support can be diverse depending on the type of support 

used. There are two main groups of supports: metal oxides and carbon 

materials.129,130 

Metal oxides 

Regarding anchoring to metal oxides, the most common and widely used 

anchoring groups have traditionally been the carboxylic, phosphonic and 

sulfonic acids. The synthesis of ligands containing those groups normally 

involve the use of a commercial precursor that contain either the acidic 

or the ester form. If the ester forms are used, a further step involving the 

hydrolysis of the ester is needed and can be performed in basic or acid 

conditions depending on the molecule stability.130 Once the acid form is 

obtained, those groups anchor to the metal oxide by bonding with the 

metal atoms in the surface of the support. By FT-IR measurements and 

computational simulations, the surface binding has been studied and it is 

often proposed a bidentate mode where two oxygens are covalently bridg-

ing to different metal centers.131,132,133,134 The main disadvantage of those 

groups is the relatively poor stability in aqueous solution as hydrolytic 

release of the molecules occurs at neutral to acid pH values.133 Moreover, 

the buffer anions can compete for the binding place in the oxide surfaces 

decreasing even more the stability. Regarding electron transfer,130 carbox-

ylic acids have better electron injection dynamics than the others so that 

is favored to anchor dye molecules but not recommended for catalyst 

since recombination processes might interfere in the catalytic reaction. 
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Phosphonic acids on the other hand, have moderate electron injection 

efficiencies so that they can accumulate the charge separation needed to 

oxidize the catalysts and eventually the water molecules. 

Scheme 6. Binding modes of the most popular anchoring groups for metal oxides 
supports. 

 

Hydroxamic acid have been also used as anchoring groups, although less 

extensively than previous alternatives. Usually, they are not commercially 

available so a synthetic work based on multistep process is required start-

ing from carboxylic acids or esters.130,135,136 Hydroxamic acid has several 

possibilities for the binding modes among which the monochelating 

mode is the more experimentally evidenced, based on the chelating inter-

action of two oxygen atoms with a metal center in the oxide surface. The 

advantage of this group is the high stability in aqueous solution from basic 

to acidic media.137,138 The electron injection is similarly efficient as in the 

case of carboxylic groups, so  not favored for catalysts binding.130  

Finally, more recently, sylatranes have been employed as anghoring 

groups for metal oxide surfaces. The synthesis of these groups involves 

assembling pentacoordinate, hypervalent caged silicon compounds but 
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once introduced, their high stability prevent that group from rest of reac-

tions that might be required to obtain the final complex.130 Sylatranes bind 

the surface of the metal oxide by forming Si-O-M bonds, more likely in a 

bidentate form.139 As in the case of the hydroxamic acid, the stability of 

these groups is high both from acid to basic solutions.140 Sylatranes have 

low recombination kinetics thanks to a lower electronic coupling so they 

are recommended to bind catalysts.130 

Carbon Materials 

Carbon electrodes are cheap materials with good electronic conductivities 

that have been widely used in electrochemistry as working electrodes. De-

pending on the way the carbon is organized in the electrode, there are 

different types: from glassy carbon electrodes to nanostructured carbon 

materials. Moreover, multiwalled carbon nanotubes, graphene and other 

high-surface carbon materials are used to increase the surface where cat-

alysts can bind. The anchorage on all of those surfaces is similar and can 

be based on three different main strategies.129  

Scheme 7. Strategies for anchoring of molecules on the surface of carbonous elec-
trodes. 
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One of the easiest ways to anchor molecules to carbon surfaces is through 

π-π stacking forces. Groups such as pyrene can be attached to the catalyst 

molecule by carbon-carbon or other type of bonds and they can eventu-

ally interact with the carbon surface leading to a strong binding. That 

binding does not require chemical reactions so just by mixing the pyrene 

modified molecule and the carbon support the interaction is achieved af-

ter certain time. The simplicity of this method makes it one of the most 

promising. However, structural hindrance should be carefully avoided for 

the correct pi-pi interaction.  

A second method involves the covalent bond between the carbon surface 

and the molecule by the use of diazonium salts. Those groups can react 

by electroreduction releasing N2 and forming organic radicals that couple 

to the electrode surface. This bond is highly stable from a chemical point 

of view. The third and last method would be based on the use of N-

substituted pyrroles or C-substituted tiophenes, which upon anodic po-

tential they can polymerized on the surface of the electrode.  

1.4.2 Main achievements in molecular anodes 

This section will only focus on molecular anodes, i.e. the anchorage of 

molecular catalysts to support materials and electrodes. Implementation 

of light absorbers to those molecular anodes to build molecular pho-

toanodes will not be described. Ruthenium molecular catalysts have been 

long used to anchor on the surface of the electrodes by most of the pre-

viously described methods. One of the first examples involved the use of 

carboxylic and phosphonic acids, developed by Llobet and Meyer groups 

for dinuclear and mononuclear complexes respectively, 20, 21 and 

22.141,142,143 They synthetized the modified ligands bearing the acid groups 

and initially deposited the complexes on TiO2 and ITO surfaces, that 

work as the working electrodes and anchorage support. The electrochem-

istry of the anchored catalysts was evaluated resulting in a successful 

transfer of the catalytic features to the solid state except for the case of 
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complex 20. In that last case, the position of the anchoring group deter-

mine a surface binding that provoked the blocking of the active sites of 

the catalyst by interaction between the Ru metal centers and the oxo 

groups of the surface. That revealed the importance of the anchoring ar-

chitecture in order to retain the catalytic activity. In the other two cases, 

the coverage achieved by Llobet strategy was higher (0.5 nmol/cm2) than 

the case of Meyer for the mononuclear catalysts (0.1 nmol/cm2), although 

both of them showed similar TOF values (0.3 and 0.36 s-1), which was a 

significant improvement respect to the TOF in homogeneous phase (0.07 

and 0.15 s-1 respectively).  

 

Chart 7. Structural representation of Ru catalysts 20, 21 and 22. 

On the other hand, Sun et al. were using the pi-pi stacking strategy to 

attach mononuclear ruthenium catalysts based on the bda ligand to 

MWCNT as anchorage support, 23.144 The hybrid material containing the 

catalyst and the support was deposited on the surface of ITO electrodes 
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for performing electrochemical water oxidation. Same group also ex-

plored the use of diazonium salts145 as method to attach the catalysts to 

similar carbon electrodes. The pyrrole group for electropolymerization 

was explored by Llobet et al. using the Hbpp as bridging ligand and mod-

ified terpyridines including pyrroles functionalities for anchorage to glassy 

carbon electrodes as support.146 In the case of the catalyst attached with 

pyrene functionalities to MWCNT the coverage was higher than previous 

examples (1.8 nmol/cm2) although the TOF value decreased from 30 s-1 

in the homogeneous phase to 0.3 s-1 once anchored. However, different 

methods and conditions to measure the TOF were employed. 

 

Chart 8. Structural representation of Ru catalysts 23 and 24. 

Finally, Llobet et al. employed the strategy based on pyrene functionalities 

to anchor the mononuclear Ruthenium catalysts based on the tda ligand, 

24, which has shown the highest intrinsic activity from the literature.147 

They were able to transfer the catalytic activity to glassy carbon electrodes 

and Silicon based photoanodes. Importantly, the kinetic of the catalytic 

process was not influenced by the anchoring process as they obtained 

similar TOF values being the most active molecular anode to the date, 

with around 1,000,000 TONs. 
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Chapter 2 

Objectives 
 

The past four decades of research in molecular water oxidation have 
led to important advances as disussed in the General Introduction. 
However, many challenges still remain in order to achieve the required 
progress for practical aplications. In this chapter, the main objectives 
of the present thesis are described regarding those challenges. 
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Over the last decades, the field of molecular water oxidation has been 

dominated by the development of Ru complexes that act as efficient cat-

alysts. The detailed study of some of those catalytic systems has allowed 

researchers to reveal the main factors involved in the high activity and 

stability and has eventually allowed to perform a rational design of im-

proved catalysts. Only in the last 15 years, the TOF of the reported 

systems has increased exponentially exceeding the value corresponding to 

the Mn cluster in the natural oxygen evolving complex. Thanks to those 

advances, a further step towards the building of artificial photosynthetic 

devices has been achieved by anchoring some of the most active catalysts 

to photoanodes that are able to perform solar driven water oxidation.  

Despite all the previous progress in Ru chemistry, using cheaper and more 

abundant transition metals remains as a challenge for the design of inex-

pensive and efficient practical devices. As already mentioned in the 

General Introduction, there has been a sudden and random production 

of molecular catalysts based on first row transition metals during the last 

10 years. However, the lack of detailed studies about the real active spe-

cies and the mechanistic pathways, together with the modest activities 

reached, has prevented researchers from following a rational design of 

more robust and active catalysts, which is essential for the progress in the 

field. For this reason, the general objective of the present PhD Thesis is 

the design and thorough analysis of molecular catalysts based on first row 

transition metals in order to identify the factors that determine the activity 

and stability under catalytic conditions. This would allow us to make an 

iterative cycle based on the rational redesign of new catalysts with im-

proved performance (Scheme 1). The best performing catalyst resulting 

from that rational design will be employed for studying its implementa-

tion in molecular anodes as the following step toward practical devices. 
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Scheme 1. Iterative process for the rational design of improved molecular catalysts.  

 

 

The general objective discussed above can be divided into different partial 

specific objectives: 

 Objective 1: Synthesis and characterization of copper complexes 

based on the tetraamide ligand N1,N1'-(1,2-phenylene)bis(N2-

methyloxalamide) H4mox (Chart 1), that is able to stabilize high 

oxidation states of the metal center thanks to the strong electron-

donation exerted by the four negatively charged amide groups. 

Moreover, this ligand scaffold has a redox non-innocent character 

as the phenyl ring can oxidize to form a radical species. Final eval-

uation of their capability to catalyze the water oxidation will be 

performed with special interest in identifying the role of the ligand 

oxidation into the catalytic cycle. 

 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
MOLECULAR WATER OXIDATION CATALYSTS BASED ON COPPER AND NICKEL COMPLEXES 
Pablo Garrido Barros 
 



Objectives 
 

74 

II 

Chart 1. Schematic representation of the ligands used in this work.  

 

 Objective 2: Computational study of the O-O bond formation 

mechanistic pathways open to Cu-based water oxidation catalysis. 

For that aim, several catalysts with different features will be used 

as models in order to find common factors in their mechanisms 

and compare them with Ru-based catalysis. 

 Objective 3: Design and synthesis of Cu-based molecular cata-

lysts bearing the redox non-innocent ligands 4,4'-(([2,2'-

bipyridine]-6,6'-dicarbonyl)bis(azanediyl)) dibenzenesulfonic acid 

(p-H4BDAM) and 2,2'-(([2,2'-bipyridine]-6,6'-dicar-

bonyl)bis(azanediyl))dibenzenesulfonic acid (o-H4BDAM) (Chart 

1),    that can accumulate  several oxidative equivalents forming 

diradical species. This strategy allows exploring the catalytic pro-

cess where all the electron transfer steps are ligand-based, 

avoiding the high energy-demanding oxidation of the metal cen-

ter. This work will be compared with the copper complex based 

on the redox innocent ligand 6,6’-diisopropanol-2,2’-bipyridine 
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(H2bpk), where only the metal center is in principle expected to 

mediate in the electron transfers upon oxidation. 

 Objective 4: Employing the best performing molecular catalyst 

based on copper complexes to prepare molecular anodes for wa-

ter oxidation catalysis based on inexpensive carbon materials. For 

that aim, pyrene functionalities will be incorporated in the ligand 

backbone in order to promote π-π interactions with graphene-

based electrodes. 

 Objective 5: Due to the lack of information regarding molecular 

Ni-based water oxidation catalysis, a final objective will be to ex-

tend the previous knowledge developed for copper complexes to 

the preparation and evaluation of molecular Ni complexes as wa-

ter oxidation catalysts.
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Chapter 3 

Redox non-innocent ligands 

in copper-catalyzed water 

oxidation 
 

Chapter 3 explores the use of redox non-innocent ligands for 
molecular water oxidation catalysis using the copper complex 
[CuII(mox)]2-. The influence of the ligand oxidation on the catalytic 
mechanism allows an excellent control on the overpotential, that can 
be lowered to a record value of 170 mV. Moreover, the computational 
study of the  O-O bond formation step in three different copper 
catalysts reveals an unprecedented mechanism based on single  
electron transfers. 
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Paper A: Redox Non-innocent Ligand Controls Water 

Oxidation Overpotential in a New Family of Mononu-

clear Cu-Based Efficient Catalysts 

Garrido-Barros, P.; Funes-Ardoiz, I.; Drouet, S.; Benet-Buchholz, J.; Ma-

seras, F.; Llobet, A. J. Am. Chem. Soc. 2015, 137, 6758-6761. 

 

Abstract 

A new family of tetra-anionic tetradentate amidate ligands, N1,N1′-(1,2-

phenylene)bis(N2-methyloxalamide) (H4L1), and its derivatives contain-

ing electron-donating groups at the aromatic ring have been prepared and 

characterized, together with their corresponding anionic Cu(II) com-

plexes, [(LY)Cu]2−. At pH 11.5, the latter undergoes a reversible metal-

based III/II oxidation process at 0.56 V and a ligand-based pHdependent 

electron-transfer process at 1.25 V, associated with a large electrocatalytic 

water oxidation wave (overpotential of 700 mV). Foot-of-the-wave anal-

ysis gives a catalytic rate constant of 3.6 s−1 at pH 11.5 and 12 s−1 at pH 

12.5. As the electron-donating capacity at the aromatic ring increases, the 

overpotential is drastically reduced down to a record low of 170 mV. In 

addition, DFT calculations allow us to propose a complete catalytic cycle 
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that uncovers an unprecedented pathway in which crucial O−O bond 

formation occurs in a two-step, one-electron process where the peroxo 

intermediate generated has no formal M−O bond but is strongly hydro-

gen bonded to the auxiliary ligand. 

Contributions: 

Pablo Garrido Barros synthetized and characterized all the compounds, 

carried out the electrochemical and spectroscopic analysis, collaborated 

in the computational calculations and prepared the manuscript. 

A.1. Introduction 

Molecular water oxidation catalysis by transition metal complexes1 is a 

highly active field of research at present due to its implications in new 

energy conversion schemes based on splitting water with sunlight.2 In ad-

dition, water oxidation is also of interest in biology because it is the 

reaction that takes place at the oxygen-evolving complex of photosystem 

II in green plants and algae.3 The very high thermodynamic potential 

needed for water oxidation (1.23 V vs NHE at pH 0.0) implies necessarily 

the use of transition metal complexes containing oxidatively rugged lig-

ands, in order to come up with long-lasting systems that can have 

potential commercial applications.2c,4 In addition, these complexes need 

to work in water as a solvent, imposing an additional requirement for the 

auxiliary ligands to be substitutionally inert at the pH of action; otherwise, 

they end up generating the corresponding aqua/hydroxo complexes and 

the free ligand. This is especially critical for first-row transition metal 

complexes, as has been previously shown in the literature,5 because there 

will only be a limited pH range where the integrity of the complex is main-

tained. Furthermore, ligand liberation from the metal complex is an 

additional driving force toward the formation of metal oxides and/or 

mixed oxo-hydroxides that will be highly dependent on working pH. On 

the other hand, an interesting feature of water oxidation catalyst (WOC) 
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design is the use of redox noninnocent ligands that can help with the dif-

ficult task of managing the multiple protons and multiple electrons 

transfers needed to carry out the water oxidation reaction.6 This feature 

would be particularly useful if the ligand-based redox processes are tied 

to the rate-determining step (rds) of the catalytic process and not linked 

to unwanted radical-based reactions leading to fast decomposition.7 

A.2. Results and discussion 

In order to explore the options for water oxidation catalysis based on 

oxidatively rugged but redox-active ligands, we have prepared a family of 

four Cu(II) complexes containing the tetradentate amidate acyclic ligands 

H4LY (Y = 1−4) with different substituent groups at the aromatic ring 

(see Figure 1). The H4LY (Y = 2−4) ligands are new compounds that 

have been prepared following related procedures already described for 

the unsubstituted ligand H4L1.8 

 

Figure 1. (Left) Ligand structures and (right) ORTEP figure of [(L2)Cu]2− com-

plex. 

The new copper complexes reported here, [(LY)Cu](NMe4)2 (Y = 2−4), 

have been characterized by the usual spectroscopic techniques and by 

monocrystal X-ray diffraction analysis. An ORTEP view of the cationic 

part of complex [(L2)Cu](NMe4)2 is depicted in Figure 1, while those for 
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the other methoxy derivatives are presented in the Supporting Infor-

mation (SI). It is interesting to observe here that the d9 Cu(II) ion is four-

coordinate with a basically square planar geometry, manifesting the exist-

ence of π-delocalization over the phenyl and amidate moieties of the 

ligand and ensuring strong ligand bonding to the metal center. 

The redox properties of the anionic complexes [(LY)Cu]2− (Y = 1−4) 

were investigated by cyclic voltammetry (CV) and amperometric tech-

niques using a mercury sulfate reference electrode saturated with K2SO4 

(MSE) unless explicitly indicated. All redox potentials in the present work 

are reported versus NHE by adding 0.65 V to the measured potential. 

Figure 2 shows the CV experiments carried out for [(L1)Cu]2− in the pH 

range 11.5−12.5. 

 

Figure 2. (Left) CV experiments with 1 mM [(L1)Cu]2− in phosphate buffer (0.1 
M of ionic strength) at different pH values. (Right) CV and DPV for complexes 
[(LY)Cu]2− (Y = 1−4). The green vertical dashed line indicates the thermodynamic 
E° for the 4e− oxidation of water to dioxygen at pH 11.5. CVs are run at a scan 
rate of 100 mV/s. 

A first pH-independent, chemically reversible, and electrochemically 

quasi-reversible wave at E1/2 = 0.56 V vs NHE (ΔE = 71 mV), eq 1, is 

associated with the formation of a d8 Cu(III) 
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[(L1)CuIII]- (B) + 1e- → [(L1)CuII]2- (A)       E1/2 = 0.56 V    (1) 

square planar ion with very low reorganizational energy, as inferred from 

the very small differences in their respective geometries, and with a rela-

tively low potential due the tetraanionic nature of the L1 ligand (the A 

and B labels indicated here are also used in Figure 3). A second pH-de-

pendent wave (approximately 59 mV/pH unit) observed at more anodic 

potentials, eq 2, is associated with a ligand-based aryl oxidation, 

 

Figure 3. Calculated catalytic cycle. Free energy changes for steps at  the electrode 
are indicated explicitly in volts (red) and for steps in solution are indicated in 
kcal/mol (blue). 

[(L1·)CuIII(OH)]-(C) + 1e- → [(L1)CuIII]-(B) + OH-  E1/2=1.25 V (2) 

forming formally a phenyl radical cation, together with the coordination 

of a hydroxido ligand. This ligand-based oxidation had been previously 

proposed on electrochemical grounds for related complexes9 and is fur-

ther supported by the strong inductive effects exerted by the phenyl 
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substituents, as will be shown further below and also supported by DFT 

calculations (vide infra). In the presence of water, this wave is associated 

with a large electrocatalytic anodic current due the catalytic oxidation of 

water to dioxygen. In order to obtain kinetic information about the cata-

lytic process, a foot-of-the-wave analysis (FOWA) was carried out to 

calculate the apparent rate constant, kobs. We followed the methodology 

described in the literature,10 assuming that the rds is the last electron-

transfer step coupled to a chemical reaction. The largest slope at the very 

beginning of the catalytic process gives an impressive value of kobs= 3.56 

s−1 that is basically independent of the scan rate and thus in agreement 

with the model proposed. These kinetic values compare well with the 

ones reported in the literature for related complexes (see Table 1, below). 

However, since different methods are used for this type of calculation, 

the comparisons should be done with caution.  

To confirm the stability of the WOCs, spectroelectrochemical experi-

ments were performed using an OTTLE cell, scanning from 0.4 to 1.25 

V and back to the original 0.4 V at a very low scan rate of 2 mV/s that 

allows for complete transformations during the redox events. Under these 

conditions, the initial complex is fully recovered, as ascertained by both 

UV−vis spectroscopy and charge integration under the III/II wave (see 

SI for details). Bulk electrolysis experiments for complex [(L1)Cu]2− (Eapp 

= 1.3 V at pH 11.5 with a 2.5 cm2 ITO working electrode) show a current 

density of 0.11 mA/cm2 that slowly decays to 0.06 mA/cm2. Simultane-

ous measurement of the oxygen gas generated by a Clark electrode 

confirms the generation of dioxygen with a Faradaic efficiency close to 

100%. The decrease of current intensity over time is a consequence of 

lower activity of the catalyst as the pH decreases, as has been shown by 

FOWA. Furthermore, both CV and UV−vis spectroscopy (see SI) show 

that the initial species are totally retained, and, in addition, restoring the 

initial pH by adding base restores the initial activity. Similarly, sequential 

base addition during bulk electrolysis experiments maintains the catalyst 
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activity over long periods of time (1 h) without apparent losses (see SI). 

Further, no copper oxide adsorption at the ITO electrode surface could 

be detected under the present conditions, as confirmed by CV, UV−vis, 

and EDX analysis, evidencing the molecular nature of the electrocatalytic 

water oxidation. 

The nature of the species generated in the catalytic cycle was also investi-

gated by DFT calculations (B3LYP-D3 calculations with implicit SMD 

solvation, see SI for computational details), which nicely complement the 

results obtained experimentally. A complete catalytic cycle is presented in 

Figure 3, including the energies involved in the different steps. At oxida-

tion state II, the catalyst remains in its resting state and is activated by two 

consecutive one-electron transfers, as shown by CV techniques and de-

scribed in eqs 1 and 2. The computed oxidation potentials, 0.53 and 1.26 

V, are in good agreement with the experimental values of 0.56 and 1.25 

V, respectively. Calculations confirmed the radical cationic ligand nature 

of species C, as the attempts to obtain a Cu(IV) species always reverted 

to the Cu(III) complex with internal electron transfer from the ligand 

(Figure S27). 

Species C, [(L1•)Cu(III)(OH)], reacts with an additional OH− from the 

media to ultimately produce intermediate E (see Figure 3) with a peroxo 

unit, [(L1)Cu(II)(HO−OH)], as usually assumed in this type of chemistry 

following a concerted two-electron step.5b,11 However, it follows an unu-

sual path that deserves some comment. 

In the usual water nucleophilic attack (WNA) pathway, the OH− would 

directly attack the O and form the O−O bond in a single step through a 

moderate energy transition state. Our attempts to locate such a transition 

state failed, revealing instead the more complex picture indicated in Fig-

ure 4.  
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Figure 4. Potential energy relaxed scan for the O−O bond formation.  The energy 
barrier for the second ISET is estimated from changes of potential energy in the 
coordinate scan. 

There is no direct connection between species C and E (the two curves 

in red) through a two-electron transfer. Instead, they are connected 

through an additional electronic state, shown in blue in the figure. This 

electronic state, which we have labeled as species D, results from C by 

transfer of one electron from the incoming OH− to the [(L1•)Cu(III)] 

moiety (initially in a doublet state) to form a (HO---OH)•− radical anion 

fragment with a partial O−O bond (doublet state, with an O---O distance 

of 2.3 Å) and hydrogen bonded to the [(L1)Cu(III)] complex (H-bonding 

distances between 2.5 and 2.9 Å, see SI). D then evolves to E through a 

second electron transfer, converting the HO−OH unit to a singlet state 

and the [(L1)Cu(II)] unit to a doublet. In species E, the HO−OH frag-

ment is again strongly hydrogen bonded to the [(L1)Cu(II)] moiety (see 

SI). We propose to label this type of mechanism as single-electron trans-

fer water nucleophilic attack (SET-WNA), differing from the traditional 
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WNA, where the two electrons are transferred in a single step. Of course, 

this SET-WNA mechanism would be impossible in the absence of a tran-

sition metal able to undergo a fast single electron transfer toward the 

HO−OH moiety formation. The generation of hydroxyl radical species 

would otherwise be prohibitively high. Thus, in this new SET-WNA 

mechanism, the O−O bond formation step can be considered to involve 

two consecutive intramolecular single electron transfer (ISET) steps. An-

other interesting particularity of our SET-WNA mechanism proposed 

here is the absence of a direct Cu−O bond in species D and E; instead, 

the (HO---OH)•− and (HO−OH)2− moieties are bonded to the [(L1)Cu]2− 

metal complex via hydrogen bonding, as has been already indicated 

above. Precedent for intramolecular ligand-based hydrogen bonding has 

been reported recently for related Fe complexes.12 In our case, the SET-

WNA mechanism has the important consequence of allowing the O−O 

bond formation with a very low barrier of 5.5 kcal/mol, thus practically 

instantaneously after species C is formed by oxidation at the electrode in 

the presence of a basic solution. The evolution from E to dioxygen re-

lease and recovery of catalyst A follows a more conventional pathway, 

which is discussed in detail in the SI, although it is worth mentioning that 

the [(L1)Cu(II)-(HOOH)] complex E is first oxidized to the correspond-

ing [(L1)Cu(III)(HOOH)] species by a metal-based electron transfer at 

0.63 V. Then, a proton-coupled electron transfer happens at a potential 

of 0.42 V, resulting in the formation of a [(L1)Cu(III)(HOO•)] complex 

which evolves dioxygen and a free proton. These values indicate that 

those two processes experimentally occur in a single step involving two 

electrons and one proton.  

As evidenced by CV and confirmed by DFT, the rds involves the gener-

ation of the radical cation species C and its reaction with OH−. It is thus 

reasonable that electronic perturbation of the aromatic ring should 

strongly influence both thermodynamics and kinetics of the water oxida-

tion reaction catalyzed by this type of complexes. For this purpose, we 

UNIVERSITAT ROVIRA I VIRGILI 
MOLECULAR WATER OXIDATION CATALYSTS BASED ON COPPER AND NICKEL COMPLEXES 
Pablo Garrido Barros 
 



Chapter 3 
 

87 

III 

have prepared a family of copper complexes containing electron-donating 

groups such as Me and OMe in the aromatic ring, as indicated in Figure 

1. The CV depicted in Figure 2 clearly shows how the onset of the cata-

lytic wave is shifted to the cathodic region as a function of the strength 

of the electron-donating group. In particular, it is impressive to see that, 

for complex [(L4)Cu]2−, the overpotential at which water oxidation occurs 

is 530 mV lower than for [(L1)Cu]2− and is situated at only 170 mV above 

the thermodynamic value. This is the first example in the literature where 

a rational ligand variation allows us to exert such a degree of control over 

the electrocatalytic water oxidation overpotential, driving it to a record 

low for first row transition metal complexes.13  

A set of electrochemical parameters and kinetic data is presented in Table 

1, together with related data for other Cu complexes described previously 

in the literature.8b,14 It is interesting to observe that, for [(L1)Cu]2−and 

[(L2)Cu]2− (entries 1 and 2, Table 1), the rate constants are 3.56 and 3.58 

s−1, respectively, whereas for [(L3)Cu]2− and [(L4)Cu]2− (entries 3 and 4, 

Table 1), the rate constants decrease by 1 order of magnitude, suggesting 

an important involvement of the electron-transfer process at the rds and 

a significant stabilization of the radical cation active species. On the other 

hand, increasing the pH from 11.5 to 12.5 increases the rate constant up 

to 11.96 s−1. It is also important to realize here that, as the strength of the 

electron-donating group increases, the oxidative ruggedness of the radical 

cation species decreases, manifesting the existence of a decomposition 

pathway coupled to the water oxidation catalysis for complexes [(L3)Cu]2− 

and [(L4)Cu]2−. We are focusing at present on ligand design to improve 

oxidative stability. Nevertheless, [(L1)Cu]2− is the most oxidatively rugged 

Cu-based WOC reported to date, as judged electrochemically by the 

charge under the III/II redox wave before and after the electrocatalytic 

wave (see SI). The fastest Cu-based WOC complex reported, 

[(bpy)Cu(OH)2], works under an overpotential of 750 mV at pH 12.5 (see 

entry  
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Table 1. Kinetic and Electrochemical Data of Complexes [(LY)Cu]2− (Y = 1−4) 
and Related Cu Complexes Described in the Literature That Have Been Reported 
To Act as Water Oxidation Catalysts. 

Ent.a Catalystb pH , mVc kobs,s-1,d 

1tw [(L1)Cu]2- 11.5 700 3.56e 

2tw [(L2)Cu]2- 11.5 400 3.58 

3tw [(L3)Cu]2- 11.5 270 0.43 

4tw [(L4)Cu]2- 11.5 170 0.16 

514c [(Py3P)Cu(OH)]- 8.0 ~500 20 

614g [(dhbp)Cu(OH2)2] 12.4 ~540 0.4 

714a [(bpy)Cu(OH)2] 12.5 750 100 

814d [Cu2(BPMAN)(μ-OH)]3+ 7.0 ~1050 0.6 

atw = this work. bPy3P = N,N-bis(2-(2-pyridyl)ethyl)pyridine-2,6- dicarboxamidate; 
dhbp = 6,6′-dihydroxy-2,2′-bpy; bpy = 2,2′-bpy; bpman = 2,7-[bis(2-pyridylme-
thyl)aminomethyl]-1,8-naphthyridine. cMeasured by DPV for entries 1−4 and 8 and 
from the initial foot of the electrocatalytic wave or the half-peak potential for CVs 
for the rest. dMeasured by FOWA in complexes [(LY)Cu]2− and other methodolo-
gies for the other complexes. ekobs = 11.96 s-1 at pH 12.5. 

8, Table 1), whereas the complex [(Py3P)Cu(OH)]− (entry 5, Table 1) has 

been reported to work at pH 8.0 with a rate constant of 20 s−1 and an 

overpotential of approximately 500 mV. Finally, a dinuclear complex, 

[Cu2(BPMAN)(μ-OH)]3+ (entry 8, Table 1), has been reported that works 

at pH 7, is relatively slow, 0.6 s−1, and works under an overpotential of 

1050 mV. Clearly, more molecular Cu-based WOCs are needed in order 

to understand the factors that allow us to rationally build fast complexes 

with oxidatively rugged ligands that work ideally at pH 7 and with low 

overpotentials. 

A.3. Conclusions 

In conclusion, we have prepared a family of Cu complexes that are capa-

ble of oxidizing water to dioxygen and whose rate determining step 

involves the redox activity of the ligand. Further fine-tuning of the ligand 

backbone allows reducing the overpotential for water oxidation in this 
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family of complexes by more than 500 mV, all the way to a record low 

overpotential of 170 mV. In addition, DFT analysis puts forward an un-

precedented pathway where the O−O bond formation occurs in a two-

step, one-electron processes and where the peroxo intermediate gener-

ated has no formal M−O bond, in sharp contrast with the previous 

mechanism described in the literature.11 The interplay between electrons 

being removed from the metal and/or the ligands opens up new avenues 

for molecular water oxidation catalyst design. We are at present focusing 

our attention on developing further families of molecular water oxidation 

catalysts based on redox noninnocent and oxidatively rugged ligands.  
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A.6. Supporting Information 

Experimental Section 

Materials 

The chemicals used in this work have been purchased to Sigma Aldrich 

Chemical Co. No further purification has been done. The used solvents 

were HPLC grade. High purity deionized water was obtained by passing 

distilled water through a nanopore Milli-Q water purification system. 

Aqueous basic buffer solutions at several pH values were prepared using 

specific concentrations of dibasic and tribasic phosphate salts such that 

the final ionic strength was 0.1 M. 

Elemental Analysis and Mass Spectrometry 

Elemental Analysis of the samples was carried out in a Thermo Finnigan 

elemental analyzer Flash 1112 model. 

Nominal mass analyses were performed in Electrospray mode with a LCT 

Premier mass spectrometer (TOF analyser, Micromass-Waters) in meth-

anol by direct injection. 

Spectroscopic Techniques 

NMR spectroscopy was carried out in a 400 MHz Bruker Advance II 

spectrometer and a Bruker Advance 500 MHz. All the measurements 

were done at room temperature in deuterated DMSO using residual pro-

tons as internal references. 

UV-vis spectra were obtained using a Cary 50 (Varian) UV-vis spectro-

photometer with 1 cm and 2 mm quartz cuvettes in basic solution (pH 

11.5, phosphate buffer 0.1 M of ionic strength) with a complex concen-

tration of 1 mM. 
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Electrochemistry 

Cyclic voltammetry, linear sweep voltammetry and differential pulse volt-

ammetry experiment were carried out on an IJ-Cambria CHI-660 

potentiostat. Solutions of the complexes were placed in one-compart-

ment three-electrode cells. Glassy Carbon (GC) or BDD (Boron Doped 

Diamond) disk electrodes (3 mm of diameter in both cases) were used as 

working electrodes, Mercury/Mercurous sulfate (K2SO4 sat) as reference 

electrode (unless explicity mentioned) and Pt wire as counter electrode. 

Working electrode pretreatment before each measurement consisted in 

polishing with 0.05 μm alumina paste, rinsing after with water and acetone 

and blow-dried finally. All redox potentials in the present work are re-

ported versus NHE by adding 0.65 V to the measured potential. 

CVs and LSVs were collected at 100 mV·s-1except other specification. 

DPV were obtained with the following parameters: amplitude= 50 mV, 

step height=4 mV, pulse width= 0.05 s, pulse period= 0.5 s and sampling 

width= 0.0167 s. E1/2 values for the redox processes studied in this work 

are estimated according to the potential at the Imax in DPV measurements. 

Both kind of measurement were done applying IR compensation. 

When acetonitrile was used as organic solvent, tetrabutylammonium hex-

afluorophosphate ([NBu4]PF6) was added in a concentration of 0.1M to 

act as supporting electrolyte. 

O2 evolution experiment 

Controlled Potential Electrolysis (CPE) experiments were performed at 

different potentials to catalyze the water oxidation by the reported cata-

lysts using a two-compartment cell closed with septum. As working 

electrode large surface glassy carbon (spongy shape), BDD and ITO (rec-

tangular shape with 2.5 cm2 surface) electrodes were used together with a 

silver/silver chloride (KCl sat) as reference electrode. These ones were 
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placed in one of the compartment that was filled with a 2 mM basic solu-

tion of the catalyst (pH 11.5, phosphate buffer 0.1 M of ionic strength). 

In the other compartment, containing only the buffer solution, a mesh 

platinum counter electrode was used. 

The oxygen evolution was monitored with an OXNP type Clark electrode 

in gas phase (from Unisense Company). The CPE was carried out using 

an IJ-Cambria CHI-660 potentiostat and was started as soon as the Oxy-

gen sensor signal was stable under air atmosphere. During the 

experiment, solutions both compartments were vigorously stirred. Cali-

bration of the oxygen sensor was performed after each experiment by 

adding known amount of pure oxygen into the cell using a Hamilton sy-

ringe. The results of the water oxidation catalysis with copper complexes 

were compared with blank experiment in the same conditions but in the 

absence of catalyst. The Faraday efficiency was determined according to 

the total charge passed during the CPE and the total amount of generated 

oxygen by taking into account that water oxidation is a 4 oxidations pro-

cess.  

ITO electrodes were purchased from Delta Technologies, Limited. Specs: 

Corning® alkaline earth boro-aluminosilicate glass, 50x75x1.1 mm, in-

dium tin oxide coated one surface, Rs= 4-10 ohms, cut edges. They were 

cut to the appropriate size, pretreated by sonication in isopropanol and 

acetone (15 min with each one) and blow-dried. After each CPE experi-

ment, the working electrodes were rinsed with water and placed in fresh 

buffer solution to perform CV measurements. That way, we are able to 

observe the formation of electroactive species when comparing these re-

sults with the CVs of these electrodes previous to the CPE experiment.  

Spectroelectrochemistry  

Spectroelectrochemical study was carried out in an optically transparent 

thin-layer electrochemical (OTTLE) cell (OMNI-CELL SPECAC, by 

Prof. Frantisek Hartl’s group, University of Reading). This cell contains 
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two Pt grid electrodes (working and counter) and a silver wire pseudo 

reference electrode (-0.2 V respect to NHE). This cell is filled with less 

than 0.3 ml of a 4 mM catalyst solution in phosphate buffer at pH 11.5 

(0.1 M of ionic strength) avoiding gas bubbles formation within the thin 

layer. The optical path length is about 0.2 mm.  

The OTTLE cell was placed in a Cary 50 (Varian) UV-vis spectropho-

tometer and the electrodes were connected to an IJ-Cambria CHI-660 

potentiostat. Then, a cyclic voltammetry was performed at 2 mV·s-1 in 

order to allow enough time for the redox processes to take paced in all 

the solution volume and UV-vis spectra were recorded continuously to 

monitor the changes in the electronic structure. 

Synthesis of H4LY  

The four ligands used in this work were prepared with a procedure similar 

the previously reported one1,2: 0.6 mmol of the corresponding o-phe-

nylenediamine precursor (o-phenylenediamine for L1; 4,5-dimethyl-1,2-

phenylenediamine for L2; 4-methoxy-o-phenylenediamine dihydrochlo-

ride for L3; 4,5-dimethoxy-o-phenylenediamine dihydrochloride for L4) 

were dissolved in 3 ml of THF and 0.136 ml of ethyl chlorooxoacetate 

(1.2 mmol) were added dropwise. This mixture was refluxed during 1 h 

and the appearing solid waste was removed by filtration. Then, the result-

ing solution was evaporated until we got an oil product and distilled water 

was added slowly that led to the formation of a powdery solid consisting 

of the diethyl ester precursor. It was filtered, rinsed with water and dried 

to further solubilize it (0.46 mmol) in 2.3 ml of methanol. Afterward, 0.12 

ml of a 40% wt. solution of methylamine in water was added and the 

mixture was heated to 70 ºC for 1 h. The appearing solid consist of the 

corresponding ligand H4LY, and was filtered, washed with methanol and 

ether and dried under vacuum.  
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H4L1  

Yield: 145.25 mg, 0.522 mmol, 87%. 1H-NMR (DMSO-d6): δ [ppm]= 

10.46 (H-NPh, s, 2H ), 8.96 (H-NMe, q, J= 4.8 Hz, 2H ), 7.60 (H-2, dd, 

J= 6, 3.6 Hz , 2H ), 7.28 (H-1, dd, J= 6, 3.6 Hz, 2H ) and 2.73 (H-6, d, J= 

4.8 Hz, 6 H ). All the NMR assignments are keyed in the Scheme S1 

shown below.  

H4L2  

Yield: 156.16 mg, 0.510mmol, 85%. Elemental Analysis calc.(%) for 

C14H18N4O4: C 54.89, H 5.92, N 18.29, found (%): C 55.00, H 6.09, N 

17.80. ESI-MS (MeOH) m/z (negative mode): 305.1 [H4L2-H]-,327.1 

[H4L2-2H+Na]-. 1H-NMR (DMSO-d6): δ [ppm]= 10.31 (H-NPh, s, 2 H 

), 8.91 (H-NMe, q, J= 4.5 Hz, 2 H ), 7.34 (H-2, s, 2 H ), 2.73 (H-6, d, J= 

5 Hz, 6 H ) and 2.20 (H-7, s, 6 H ). 13C-NMR (DMSO-d6): δ [ppm]= 

160.59 (C-5, 2C ), 158.98 (C-4, 2 C ), 134.72 (C-1, 2 C ), 127.85 (C-3, 2 C 

), 126.50 (C-2, 2 C ), 26.52 (C-6, 2 C ) and 19.53 (C-7, 2 C ).  

H4L3  

Yield: 125.45 mg, 0.407 mmol,68%. Elemental Analysis calc.(%) for 

C13H16N4O5: C 50.65, H 5.23, N 18.17, found (%): C 50.72, H 5.40, N 

17.84. ESI-MS (MeOH) m/z (negative mode): 307.1 [H4L3-H]-, 329.1 

[H4L3-2H+Na]-. 1H-NMR (DMSO-d6) :δ [ppm]= 10.39 (H-NPh, s, 1 H 

), 10.34 (H-N'Ph, s, 1 H ), 8.98 (H-N'Me, q, J= 4.5 Hz, 1 H ), 8.91 (H-

NMe, q, J= 4.5 Hz, 1 H ), 7.42 (H-2, d, J= 8.5 Hz, 1 H ), 7.27 (H-1', d, J= 

3 Hz, 1 H ), 6.86 (H-2',dd, J= 9, 3 Hz, 1 H ), 3.75(H-7, s, 3 H ), 2.73 (H-

6, d, J= 4.5 Hz, 3 H ) and 2.72 (H-6', d, J= 4.5 Hz, 3 H ). 13C-NMR 

(DMSO-d6): δ [ppm]= 160.60 (C-5, 1 C ), 160.45 (C-5', 1 C ), 159.28 (C-

4, 1 C ), 158.87 (C-4', 1 C ), 157.66 (C-1, 1 C ), 131.84 (C-3, 1 C ), 127.37 

(C-2, 1 C ), 122.71 (C-3', 1 C ), 111.76 (C-2', 1 C ), 110.47 (C-1', 1 C ), 

55.86 (C-7, 1 C ), 26.55 (C-6, 1 C ) and 26.49 (C-6', 1 C ) 
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H4L4  

Yield: 130.20 mg, 0.385mmol, 64%. Elemental Analysis calc.(%) for 

C14H18N4O6: C 49.70, H 5.36, N 16.56, found (%): C 50.00, H 5.45, N 

16.24. ESI-MS (MeOH) m/z (negative mode): 337.2 [H4L3-H]-,359.1 

[H4L4-2H+Na]-. 1H-NMR (DMSO-d6): δ [ppm]= 10.31 (H-NPh, s, 2 H 

), 8.93 (H-NMe, q, J= 4.5 Hz, 2 H ), 7.19 (H-2, s, J=, 2 H ), 3.73 (H-7, s, 

6 H ) and 2.73 (H-6, d, J= 4 Hz, 6 H ). 13C-NMR (DMSO-d6): δ [ppm]= 

160.60 (C-5, 2 C ), 158.93 (C-4, 2 C ),146.93 (C-1, 2 C ), 123.20 (C-3, 2 C 

), 109.48 (C-2, 2 C ), 56.21 (C-7, 2 C ), and 26.52 (C-6, 2 C ). 

 

Scheme S1. Representation of the four ligand used in this work: (a) L1, (b) L2, (c) 
L3 and (d) L4. Numbers represent magnetically non-equivalent carbon atoms. 
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Synthesis of [(LY)Cu](NMe4)2 

The copper complexes here analyzed have been synthesized according to 

the same reference aforementioned1,2 : 0.4 mmol of the corresponding 

ligand was suspended in methanol (8 mL) and the mixture was sonicated 

for 15 min. Afterward, 0.84 ml of a tetramethylammonium hydroxide 

(25% wt. methanolic solution, 2 mmol) were added and all the reacting 

volume was heated at 70 ºC with vigorous stirring. After about 30 min all 

the ligand was completely dissolved and copper(II) perchlorate hexahy-

drate was added dropwise in a methanolic solution (0.4 mmol in 4 mL). 

The appearing precipitate (tetramethylammonium perchlorate) was fil-

tered of and the solution was concentrated down to about 1 ml. Then, by 

adding 1 ml of acetonitrile the remaining waste precipitates again. After 

removing it by filtration, the copper complex ([(LY)Cu](NMe4)2) was pre-

cipitated using equal volume of ether and acetone. This product was 

filtered, washed with acetone and ether, and dried under vacuum.  

[(L1)Cu](NMe4)2 

Yield: 188.49 mg, 0.388 mmol, 97%. Elemental Analysis calc. (%) for 

C20H34CuN6O4 ·2.5H2O : C 45.23, H 7.40, N 15.82,  found (%): C 45.69, 

H 7.79, N 15.33. ESI-MS (MeOH) m/z (negative mode): 338.0 

[(L1)Cu+H]-, 323.0 [(L1)Cu-Me+H]-, 360.0 [(L1)Cu+Na]-, 406.0 

[(L1)Cu+2·H2O+MeOH+H]-. 

[(L2)Cu](NMe4)2 

Yield: 178.91 mg, 0.348 mmol, 87%. Elemental Analysis calc.(%) for 

C22H38CuN6O4 ·0.5H2O: C 50.51, H 7.51, N 16.06, found (%): C 50.80, H 

7.85, N 15.93. ESI-MS (MeOH)m/z (negative mode): 366.0 [(L2)Cu+H]-

, 351.0 [(L2)Cu-Me+H]-, 388.0 [(L2)Cu+Na]-, 434.0 

[(L2)Cu+2·H2O+MeOH+H]-, 420.0 [(L2)Cu+Na+MeOH]-. 
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[(L3)Cu](NMe4)2 

Yield: 165.16 mg, 0.320 mmol, 80%. Elemental Analysis calc.(%) 

forbC21H36CuN6O5·2.5 H2O·1MeOH: C 44.55, H 7.65, N 14.17, found 

(%): C 44.29, H 7.93, N 13.93. ESI-MS (MeOH)m/z (negative mode): 

368.0 [(L3)Cu+H]-, 353.0 [(L3)Cu-Me+H]-, 390.0 [(L3)Cu+Na]-, 422.0 

[(L3)Cu+Na+MeOH]-. 

[(L4)Cu](NMe4)2 

Yield: 170.39 mg, 0.312mmol, 78%. Elemental Analysis calc.(%) for 

C22H38CuN6O6 ·2 H2O ·4MeOH: C 43.96, H 8.23, N 11.83, found (%): C 

44.16, H 8.70, N 11.44. ESI-MS (MeOH) m/z (negative mode): 398.0 

[(L4)Cu+H]-, 383.0 [(L4)Cu-Me+H]-, 466.0 

[(L2)Cu+2·H2O+MeOH+H]-. 
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Spectroscopic Characterization 

NMR Spectroscopy 

 

 

Figure S1. 1H-NMR spectrum of the ligand H4L1 in d6-DMSO (400 MHz). 
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Figure S2. 1H-NMR (500 MHz) (top) and 13C-NMR (500 MHz) (bottom) spec-
tra of the ligand H4L2 in d6-DMSO. 
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Figure S3. 1H-13C HMBC (500 MHz) (top) and HMQC (500 MHz) (bottom) 
spectra of the ligand H4L2 in d6-DMSO. 
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Figure S4. 1H-NMR (500 MHz) (top) and 13C-NMR (500 MHz) (bottom) spec-
tra of the ligand H4L3 in d6-DMSO. 
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Figure S5. 1H-13C HMBC (500 MHz) (top) and HMQC (500 MHz) (bottom) 
spectra of the ligand H4L3 in d6-DMSO. 
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Figure S6. 1H-NMR (500 MHz) (top) and 13C-NMR (500 MHz) (bottom) spec-
tra of the ligand H4L4 in d6-DMSO. 
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Figure S7. 1H-13C HMBC (500 MHz) (top) and HMQC (500 MHz) (bottom) 
spectra of the ligand H4L4 in d6-DMSO. 
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UV-vis Spectroscopy 

 

 

  

Figure S8. (Left) UV-vis spectra of the four copper complexes recorded in 1mM 
[cat] basic solution (pH 11.5, phosphate buffer with 0.1 M of ionic strength). 
(Right) UV-vis spectra enlargement of the visible region for the four copper 
complexes. 
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X-Ray Crystallography 

X-ray Crystal Structure Determination. Crystals of [(L2)Cu](NMe4)2, 

[(L3)Cu](NMe4)2 and [(L4)Cu](NMe4)2 were obtained by slow diffusion 

of ether/acetone (1:1) in methanolic solution of the complexes. The 

measured crystals were prepared under inert conditions immersed in per-

fluoropolyether as protecting oil for manipulation. 

Data collection: Crystal structure determinations for [(L2)Cu](NMe4)2 and 

[(L4)Cu](NMe4)2 were carried out using a Apex DUO diffractometer 

equipped with a Kappa 4-axis goniometer, an APEX II 4K CCD area 

detector, a Microfocus Source E025 IuS using MoK radiation, Quazar 

MX multilayer Optics as monochromator and an Oxford Cryosystems 

low temperature device Cryostream 700 plus (T = -173 °C). Crystal struc-

ture determination for [(L3)Cu](NMe4)2 was carried out using a 

Rigakudiffractometer equipped with a Pilatus 200K area detector, a 

Rigaku MicroMax-007HF microfocus rotating anode with MoK radia-

tion, Confocal Max Flux optics and an Oxford Cryosystems low 

temperature device Cryostream 700 plus (T = -173 °C). Full-sphere data 

collection was used with and scans. Programs used: Data collection 

APEX-23, data reduction Bruker Saint4 V/.60A and absorption correction 

SADABS5 for L2 and L4 and data collection, data reduction and absorp-

tion correction for L3 with CrystalClear6. 

Structure Solution and Refinement: Crystal structure solution was 

achieved using direct methods as implemented in SHELXTL7 and visu-

alized using the program XP. Missing atoms were subsequently located 

from difference Fourier synthesis and added to the atom list. Least-

squares refinement on F2 using all measured intensities was carried out 

using the program SHELXTL. All non hydrogen atoms were refined in-

cluding anisotropic displacement parameters. 
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Comments to the structures: [(L2)Cu](NMe4)2: The asymmetric unit con-

tains one molecule of the metal complex, two N(CH3)4cations and two 

water molecules. This compound crystallized as a two domain crystal (ra-

tio 50:50). The collected data were processed with TWINABS taking in 

account overlapping reflections (TWINABS to be cited).8 

[(L3)Cu](NMe4)2. The asymmetric unit contains one molecule of the 

metal complex, two N(CH3)4 cations and two water molecules. The main 

molecule is disordered inverted in two orientations (ratio 65:35). 

[(L4)Cu](NMe4)2. The asymmetric unit contains a half molecule of the 

metal complex, two half N(CH3)4 cations and highly disordered acetone 

molecules. The metal complex molecule is disordered in two positions 

around a mirror plane (ratio 0.5:0.5). Also the half N(CH3)4 cations are 

partially disorder around a mirror plane. In order to avoid the highly dis-

ordered acetone molecules, which could not be properly refined, the 

program SQUEEZE was applied to remove them from the electron den-

sity (SQUEEZE to be cited).9 

 

 

Figure S9. ORTEP drawing (thermal ellipsoids 50 %) of [(L3)Cu](NMe 4)2. 
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Figure S10. ORTEP drawing (thermal ellipsoids 50 %) of [(L4)Cu](NMe 4)2. 

 

Table S1: Crystal data for compounds [(L2)Cu](NMe4)2, [(L3)Cu](NMe4)2 and 
[(L4)Cu](NMe4)2. 

Compound [(L2)Cu](NMe4)2 [(L3)Cu](NMe4)2 [(L4)Cu](NMe4)2 

Formula  C23H46Cu1N6O7 C21H40Cu1N6O7 C22H38Cu1N6O6 

Solvents 2 x H2O 2 x H2O  Disordered acetone  

Formula weight 582.20 552.13 546.12 

Crystal size (mm3) 0.12 x 0.12 x 0.04 0.20 x 0.20 x 0.20 0.30 x 0.10 x 0.02 

Crystal color pink colorless orange 

Temp (K) 100 100 100 

Crystal system monoclinic orthorhombic monoclinic 

Space group  P21/c Pbca P21/m 
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A (Å) 22.068(2) 11.9851(19) 13.082(3) 

B (Å) 8.1388(7) 16.023(3) 6.8151(16) 

C (Å) 15.9847(15) 26.249(4) 19.224(4) 

 (deg) 90 90 90 

 (deg) 100.7913(17) 90 93.616(7) 

 (deg) 90 90 90 

V (Å3) 2820.2(4) 5040.7(13) 1710.5(6) 

Z 4 8 2 

 (g/cm3) 1.371 1.455 1.060 (SQUEEZE) 

µ (mm-1) 0.825 0.919 0.675 

max (°) 26.44 27.47 26.96 

Reflec. measured 51822 25139 15004 

Unique reflections 5144 [Rint= 0.0607] 4552 [Rint= 0.0322] 2734 [Rint= 0.0905] 

Absorpt. correct. TWINABS SADABS SADABS 

Trans. min/max 0.745/0.968 0.645/0.838 0.759/0.987 

Parameters/Restrains 381/47 534/435 285/392 

R1/wR2 [I>2(I)] 0.0556/0.1367 0.0701/0.1342 0.0635/0.1532 

R1/wR2 [all data] 0.0650/0.1414 0.0932/0.1421 0.0987/0.1660 

Goodness-of-fit (F2) 1.134 1.321 1.027 

Peak/hole (e/Å3) 1.335/ 0.703 0.464/ 498 0.861/ 0.993 
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Electrochemistry 

 

Figure S11. (Left) CV and DPV of 1mM [(L1)Cu]2- in acetonitrile solution con-
taining 0.1 M of tetrabutylammonium hexafluorophosphate. GC working 
electrode and 100 mV/s of scan rate. (Right) Controlled Potential Electrolysis 
(CPE) at 0.85 V in 1mM [(L1)Cu]2- aqueous solutions at pH 11.5 containing 
phosphate buffer with 0.1 M ionic strength. Large surface Pt mesh working elec-
trode was used. 
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Figure S12. CVs of 1mM [(L1)Cu]2-(red) and 1mM [Cu(ClO4)2] (blue) in phos-
phate buffer at pH 11.5 (0.1 M of ionic strength). The black line corresponds to 
a blank CV. The red dashed line is the DPV of the [(L1)Cu]2- complex. GC 
working electrode and 100 mV/s of scan rate.  

  

UNIVERSITAT ROVIRA I VIRGILI 
MOLECULAR WATER OXIDATION CATALYSTS BASED ON COPPER AND NICKEL COMPLEXES 
Pablo Garrido Barros 
 



Redox non-innocent ligands in copper-catalyzed water oxidation 
 

114 

III 

 

Figure S12. (Left) DPVs of 1mM [(L1)Cu]2- in phosphate buffer at different pH 
values (0.1 M of ionic strength). (Right) pH dependence of the E cat value from 
the DPV experiments.  
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Figure S13. (Top) CVs of aqueous solution at pH 11.5 (phosphate buffer with 
0.1 M of ionic strength) containing different concentrations of the complex 
[(L1)Cu]2-. GC working electrode and 100 mV/s of scan rate. (Bottom, left) An-
odic peak intensity corresponding to the reversible oxidation Cu II/CuIII (at 0.62 
V) is represented versus the concentration of the catalyst. (Bottom, right) Cata-
lytic peak current (maximum intensity of the catalytic wave) is represented versus 
the concentration of the catalyst. 
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a) b) 

  

c) d) 

 
 

e) f) 

  

Figure S14. (a) CV performed during the spectroelectrochemistry experiment 
in an OTTLE type spectroelectrochemical cell at 2 mV/s with Pt mesh working 
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and counter electrode and a silver wire pseudo reference electrode ( -0.2 V re-
spect to NHE). (b) Same CV as in a) represented as i vs t by transforming 
potential values into time with the scan rate. 

Below they are shown the UV-vis spectra for the [(L1)Cu]2- species recorded at 
different potentials while performing the CV: (c) 0.4-0.9V (0-5min) (d) 0.9-1.25-
0.9V (5-10min) and (e) 0.9-0.4V (10-14min). They were recorded every 10 s. (e) 
Representative UV-vis spectra for some of the species of the [(L1)Cu]2- catalyst 
involved in the catalytic cycle.  

Moreover, the ratio of ε at 330 nm in the spectra of before and after catalysis is 
1.185/1.205=0.9834, basically 100% recovery. 
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Kinetic analysis by FOWA and TON calculation 

Under catalytic conditions the equation below is operative, 10,11,12 

𝑖𝑐𝑎𝑡
𝑖𝑑
= 

𝑛 · 2.24 ·  √
𝑅 · 𝑇
𝐹 · 𝑉 · 𝑘𝑜𝑏𝑠

1 + exp [
𝐹
𝑅 · 𝑇

(𝐸𝑐𝑎𝑡
0 − 𝐸)]

 

where E0
cat is the standard potential for the catalysis-initiating redox cou-

ple (1.25 V calculated from DPV), icat is the current intensity in the 

presence of substrate, id  is the current intensity in the absence of substrate 

(here we approximate this current to the current associated with the 

CuIII/CuII couple), n is the number of electrons involved in the catalytic 

cycle (4 e- in water oxidation), F is the faraday constant, v is the scan rate, 

kobs is defined as “kcat·C
o
A

” where Co
A is the concentration of substrate 

(55.56 M for water), and R is 8.314 J·mol-1K-1. Background corrected CVs 

of catalyst [(L1)CuII]2- at different scan rates (5 – 100 mVs-1) are shown 

in Figure 3. Now, kobs can be extracted from the plot of icat/id vs. 

1/(1+exp[(F/RT)(Eo
cat-E)]).  
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Figure S15. (Top) Background corrected Linear Sweep Voltammetries at pH = 
11.5 in similar conditions as in Figure 2 at several scan rates of 5 (red) , 10 
(orange), 20 (brown), 30 (green), 40 (dark green), 50 (cyan) and 100 mV/s (tur-
quoise) respectively. (Bottom left) Foot of the wave analysis (FOWA) plotting 
icat/id vs. 1/(1+exp[(F/RT)(Eo

cat-E)]) at each scan rate (same color code). (Bot-
tom right) Plot of the different kcat values extracted from FOWA at each scan 
rate. The red line represents the average kcat value. 
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Figure S16. Foot-of-the-wave analyses for the [(L1)Cu]2- complex at pH 11.5 
and 12.5. Data were obtained from background corrected CV responses in phos-
phate solutions (1mM [cat], 0.1M ionic strength) at 100 mV/s using GC as 
working electrode. 

In order to calculate the turnover number of the oxygen evolution exper-

iment, we started taking into account the amount of catalyst in the bulk 

solution (0.012 mmol) and the amount of oxygen generated over 5000 s 

(0.006 mmol) yielding a TON of 0.5 approximately. However, this calcu-

lation underestimate the real TON value since only the catalyst 

surrounding the electrode is involved in the water oxidation. Savéant and 

co-workers13 developed a methodology taking into account this fact in 

electrocatalytic process. In addition, Lin and co-workers adapted this for-

mula to the water oxidation reaction:14 

𝑇𝑂𝑁 =
𝑘𝑜𝑏𝑠𝑡

1 + exp [
𝐹
𝑅 · 𝑇

(𝐸𝑐𝑎𝑡
0 − 𝐸)]

 

Furthermore, Lin considered the different behavior of ITO and glassy 

carbon electrode, using the difference in density current for transferring 

the kobs from one electrode to the other. In our case, the ITO is 8 times 

slower than the glassy carbon electrode which leads to a kobs of 0.445 s-1 

in ITO (3.56 in glassy carbon electrode). The calculated TON considering 

the catalytic amount around the electrode is 1947. 
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Bulk electrolysis and O2 evolution 

 

 

Figure S17. (Top, left) Clark electrode measurement during CPE at 1.3 V in 
phosphate buffer solution at pH 11.5 (0.1 M of ionic strength) with (solid line) 
and without (dash line) 2 mM of [(L1)Cu]2-. ITO working electrode (2.5 cm2), 
AgCl reference electrode and Pt mesh counter electrode (Top, right) Current 
obtained during the CPE experiments at 1.3 V. The Faraday efficiency is 99.8%. 
(Bottom) Linear Sweep Voltammetry of buffer solution at pH 11.5 with (red) 
and without (black) 2 mM of [(L1)Cu]2-, using ITO working electrode, AgCl 
reference electrode (reported E values were obtained by adding 0.2 V to the 
experimental ones), Pt wire counter electrode and 100 mV/s of scan rate. The 
blue line is the CV of the ITO after the CPE experiment in fresh buffer so lution 
and shows no deposition of electroactive species.  
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Bulk electrolysis with added base 

 

Figure S18. (Left) Controlled Potential Electrolysis at 1.3 V in 2mM [(L1)Cu] 2- 
aqueous solution at pH 11.5 containing phosphate buffer with 0.1 M ionic 
strength. ITO working electrode, Ag/AgCl reference electrode and Pt mesh 
counter electrode were used. Every 15 min, the CPE was stopped, the pH was 
measured and a new CPE was set at 1.3 V for 15 min more. The process was 
repeated 4 times. (Right) pH values obtained from the CPE at 1.3 V. 
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Figure S19. (Left) Controlled Potential Electrolysis at 1.3 V in the same condi-
tions as the experiment in Figure . After the first 15 minutes, the CPE was 
stopped and the pH was readjusted to 11.5. The initial current values were re-
covered in the following 15 minutes of CPE. (Right)  The same experiment as 
before was repeated but after 15 min of CPE, basic solution containing 1M of 
NMe4OH was added so that the activity of the catalyst was maintained constant 
for around 1 hour. It was represented together with the first CPE experiment 
when no base was added (blue line).  
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Figure S20. (Left) UV-vis spectra of the 2mM [(L1)Cu]2- basic solutions rec-
orded at different times of the CPE experiment at 1.3 V shown in figure S16. 
(Right) CVs of the 2mM [(L1)Cu]2- basic solutions recorded at different times 
of the CPE experiment at 1.3 V with addition of base shown in figure S17 right. 
GC disk working electrode, mercury/mercurous sulfate reference electrode, Pt 
wire counter electrode and 100 mV/s of scan rate. 
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Figure S21. UV-vis spectra of the ITO electrode before (top) and after (bottom) 
the CPE experiment at 1.3 V in 2mM [(L1)Cu] 2- aqueous solutions at pH 11.5 
containing phosphate buffer with 0.1 M ionic strength.  
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Figure S22. SEM images of the ITO electrode before (left) and after (right) the 
CPE experiment at 1.3 V in 2mM [(L1)Cu]2- aqueous solutions at pH 11.5 con-
taining phosphate buffer with 0.1 M ionic strength.  
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Figure S23. EDX spectra of the ITO electrode Before/After before (left) and 
after (right) the CPE experiment at 1.3 V in 2mM [(L1)Cu] 2- aqueous solutions 
at pH 11.5 containing phosphate buffer with 0.1 M ionic strength. There is no 
appreciable changes in the composition of the electrode. 

 

Table S2: Chemical composition of the ITO electrodes obtained from EDX spec-
tra. 

Electrode O % Mg % Al % Si % K % In % Sn % Total % 

Before CPE 32.81 0.74 9.38 37.42 3.11 12.4 4.14 100 

After CPE 34.56 0.61 8.89 36.79 2.72 12.28 4.15 100 

UNIVERSITAT ROVIRA I VIRGILI 
MOLECULAR WATER OXIDATION CATALYSTS BASED ON COPPER AND NICKEL COMPLEXES 
Pablo Garrido Barros 
 



Redox non-innocent ligands in copper-catalyzed water oxidation 
 

128 

III 

Electrochemistry and O2 evolution with substituted catalysts 

 

Figure S24. DPV of basic solutions containing 1mM of the four different cata-
lysts in phosphate buffer at pH 11.5 (0.1 M of ionic strength), GC working 
electrode. 

 

 

Figure S25. Foot-of-the-wave analyses for the four complexes. Data were ob-
tained from background corrected CV responses of each catalyst in phosphate 
solutions (1mM [cat], pH 11.5, 0.1M ionic strength) at 100 mV/s using GC as 
working electrode. 
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Figure S26. (Top, left) Clark electrode measurement during CPE at 0.9 V in 
phosphate buffer solution at pH 11.5 (0.1 M of ionic strength) with (solid line) 
and without (dash line) 2 mM of [(L4)Cu]2-. ITO working electrode (2.5 cm2), 
AgCl reference electrode and Pt mesh counter electrode. (Top, right) Current 
obtained during the CPE experiments at 0.9 V. The Faraday efficiency is 46.95 
%. (Bottom) Linear Sweep Voltammetry of buffer solution at pH 11.5 with (red) 
and without (black) 2 mM of [(L1)Cu]2-, using ITO working electrode, AgCl 
reference electrode (reported E values were obtained by adding 0.2 V to the 
experimental ones), Pt wire counter electrode and 100 mV/s of scan rate. The 
blue line is the CV of the ITO after the CPE experiment in fresh buffer solution 
and shows no deposition of electroactive species. 
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Comparative data on Cu-based water oxidation catalysts 

Table S3. Kinetic and electrochemical data of complexes [(LY)Cu] 2- (Y = 1-4) and 
related Cu complexes described in the literature that have been reported to act as 
WOCS. 

En-

trya 

Catalystb pH Eo
III/II, V 

(E, mV) 

Eo
cat, 

Vd 

, 

(mV)e 

kobs, 

s-1,f 

TONi 

(s-1) 

1tw [(L1)Cu]2- 11.5 0.56 (71) 1.25 600 3.56g 1947 

2tw [(L2)Cu]2- 11.5 0.51 (74) 1.03 400 3.58 - 

3tw [(L3)Cu]2- 11.5 0.55 (69) 0.85 270 0.43 - 

4tw [(L4)Cu]2- 11.5 0.48 (67) 0.73 170 0.16 - 

515 [(6,6′-

dhbp)2Cu(OH2)] 

12.6 0.97 c  477 0.36 - 

616 [(Py3P)Cu(OH)]- 8.0 1.29 c   ~500 20h - 

717 [(6,6′-

dhbp)Cu(OH2)2] 

12.4 1.0 c  ~540 0.4 400 

818 [(H-

22GH)Cu(OH2)] 

11.0 ~0.65 (80)  ~620 53 - 

919 [(opba)Cu]2- 10.8 ~0.89c  636 1.13 - 

1020 [(TGG)Cu(OH2)]2- 11.0 0.58 (70)  ~650 33 - 

1121 [(bpy)Cu(OH)2] 12.5 1.4c  750 100 - 

1222 [Cu2(BPMAN)(μ-

OH)]3+ 

7.0 > 1.87c 1.87 ~1050 0.6 - 

(a) tw stands for this work. (b) bpy is 2,2’-bpy; dhbp is 6,6’-dihydroxy-2,2’-bpy; 
TGG is triglycylglycine; Py3P is N,N-bis(2-(2-pyridyl)ethyl)pyridine-2,6-dicarbox-
amidate; bpman is 2,7-[bis(2-pyridylmethyl)aminomethyl]-1,8-naphthyridine; opba 
is o-phenylenebis(oxamato); H-22GH is H-Gly-Dap(H-Gly)-His-NH2. (c) The 
III/II redox couple is proposed to appear under the catalytic wave. (d) Measured 
by DPV. (e) Measured by DPV for entries 1-4 and 12 and from the initial foot of 
the electrocatalytic wave or the half-peak potential for CVs for the rest. (f) Meas-
ured by FOWA in complexes [Cu(LY)] and other methodologies for the other 
complexes. (g)  kobs = 11.96 at pH = 12.5. (h) In a 0.1 M [HPO4

2-]. (i) TON values 
calculated with Foot-of-the-wave analysis developed by Savéant and co-workers.23 
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Computational Study 

Computational Details 

All calculations were carried out with the Gaussian09 program package24 

using the DFT method. The selected functional was B3LYP with empir-

ical dispersion correction of Grimme (B3LYP-D3).25,26 The selected basis 

set was 6-31+G(d) for C, N, O and H,27 and LANL2TZ(f) for Cu.28,29 

Solvation was introduced implicitly through the SMD model,30 with water 

as the solvent. All geometry optimizations were computed in solution 

without symmetry restrictions. We confirmed the nature of all computed 

stationary points as minima or transition states through vibrational fre-

quency calculations. Free energy corrections were calculated at 298.15 K 

and 105 Pa pressure, including zero point energy corrections (ZPE). In 

addition, a correction term of 1.9 kcal/mol (at 298 K) was added when 

necessary to account for the standard state concentration of 1 M.  Unless 

otherwise mentioned, all reported energy values are free energies in solu-

tion. 

In the transformation from free energies to electrochemical magnitudes 

we took from the chemical Literature the values of 4.28 V for the absolute 

potential of the standard hydrogen electrode31 and-11.72 eV for the free 

energy of the proton in aqueous solution at pH=1.32The value for the free 

energy of the proton was translated to the experimental pH value of 11.5 

by adding a correction term of -0.059*pH, following the same procedure 

as other authors.33 

The functional for the DFT calculations was selected by calibration with 

respect to the experimental value for the oxidation of Cu(II) to Cu(III) 

catalyst (0.56 V). Different functionals were analyzed, and the results are 

summarized in Table S1. The agreement is very good with experiment 

(discrepancy smaller than 1 kcal/mol) for B3LYP-D3, M06 and M06-D3. 

Agreement is moderate with wB97xD (discrepancy of 5.5 kcal/mol), and 

bad with M06L, M062X and B97D (errors larger than 10 kcal/mol). It is 
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clear that the percentage of HF exchange in the functional affects consid-

erably the energy difference. In this case, the common hybrid methods 

(around 20% of HF exchange) have the best performance. We selected 

B3LYP-D3 for convenience. 

 

 

Scheme S2. Oxidation reaction from [(L1)CuII]2- to [(L1)CuIII]- used for the 
method comparison. 

 

Table S4. Computed E0 values for the indicated oxidation process (V), and com-
parison with the experimental value (kcal/mol) 

Method E0 (V) Gcomput - Gexper (kcal/mol) 

B3LYP-D3 0.53 -0.7 

M06 0.58 0.5 

M06-D3 0.57 0.2 

M06L -0.05 -14.1 

M062X 1.66 25.4 

B97D -0.05 -14.1 

wB97xD 0.80 5.5 
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Spin Distribution in Compound C 

 

 

 

Figure S27. Two different views of spin density distribution in compound C . 
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H-bond found in species D and E 

 

 

 

 

Figure S28. Structure of the species D and E with the identified hydrogen bond.  
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Table S5. Geometrical parameters of the identified hydrogen bonds represented 
in Figure S26. 

Species 
Atoms in-

volved 
dO-H dH-C/N/Cu dC/N/Cu-O âO-H-C/N/Cu 

D 

O1-H1-C1 0.973 2.870 3.689 142.45 

O1-H1-N1 0.973 2.483 3.445 169.70 

O1-H1-Cu 0.973 2.633 3.470 144.30 

O2-H2-C2 0.975 2.803 3.742 161.85 

O2-H2-C3 0.975 2.646 3.580 160.63 

E 

O1-H1-C1 0.986 2.631 3.508 148.27 

O1-H1-C2 0.986 2.579 3.260 126.15 

O1-H1-N1 0.986 2.052 2.987 157.61 

O1-H1-Cu 0.986 2.633 3.500 146.42 

O2-H2-C2 0.979 2.885 3.393 113.24 

O2-H2-C4 0.979 2.783 3.501 130.71 

 

Conversion from E to A 

 

Scheme S3. Calculated water oxidation mechanism after the O-O bond formation, 
corresponding to the oxidation of H2O2 to O2 and catalyst recovery. 
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Once the hydrogen peroxide is formed, the subsequent oxidations occur 

easily. The first one is a one electron oxidation of the metal center (E to 

F, 0.63 V) forming the Cu(III) intermediate. After that, the most favored 

pathway is the proton coupled-electron transfer with a potential of only 

0.42 V (F to I). It is important to notice that again an oxygen centered 

radical is formed (I). This species is deprotonated in the last step, which 

leads to release of dioxygen and recovery of the catalyst complex A. 

Overpotential-Ligand: QSAR model 

Here is analyzed the relationship between the overpotential of the differ-

ent catalysts and the electronic structure of their corresponding ligands in 

order to rationalize the observed behavior. 

 

Figure S29. Plot of the relationship between the HOMO energy of each ligand 
with the observed overpotential for the corresponding complex. Overpotential 
values have been obtained from CVs and DPVs measurements and the energies 
of the HOMO have been calculated by optimizing the structure of free ligand 
molecules with the same computational methods as used before for the copper 
complexes.  The results indicate that the more electron-donating substituents of 
the aromatic ring increase the overall energy of the HOMO and thus, they are 
favoring the electron release from the ligand to give the oxidized molecule. This 
stabilizes the resulting radical in the copper complex and leads to a decrease in 
the overpotential of the water. It provides us a relevant tool to control the water 
oxidation catalysis. 
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2017, 7, 1712-1719. 

 

Abstract 

The systematic computational study of the mechanism for water oxida-

tion in four different complexes confirms the existence of an alternative 

mechanism for the O−O bond formation step to those previously re-

ported: the single electron transfer−water nucleophilic attack (SET-

WNA). The calculated mechanism relies on two SET steps and features 

the existence of an intermediate with a (HO···OH)− moiety in the vicinity 

of the metal center. It is operative in at least three representative copper 

based complexes and is the only option that explains the experimentally 

observed efficiency in two of them. The proposal of this reaction pathway 

redefines the mechanistic scenario and, importantly, generates a promis-

ing avenue for designing more efficient water oxidation catalysts based 

on first row transition metals. 
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Contribution 

Pablo Garrido Barros performed the research on the [(L3)CuII(OH)2] 

and [RuII(L3)(L4)(H2O)]2+ systems and. Together with the rest of au-

thors, analyzed the results and collaborated in the writing of the text. 

B.1. Introduction 

Water splitting driven by sunlight to produce molecular oxygen and hy-

drogen is regarded as one of the most promising approaches for the 

generation of clean fuels in a sustainable manner.1,2 Hydrogen generated 

in this manner is generally labeled as solar-hydrogen3 and is regarded as a 

way of storing solar energy into chemical bonds, in a similar manner as 

done by photosystem II of green plants and algae.4 

From an electrochemical perspective, the water splitting reaction consists 

of two half reactions: water oxidation to molecular oxygen and proton 

reduction to hydrogen. Particularly the water oxidation to dioxygen has 

been traditionally regarded as the bottleneck for the design of practical 

devices that can carry out water splitting with sunlight.5,6,7,8 The water ox-

idation to dioxygen reaction, besides being energy demanding (E° = 1.23 

V vs NHE at pH = 0), is also molecularly complex since it requires the 

breaking of four H−O bonds and the releasing of 4 electrons and 4 pro-

tons together with the formation of an O−O bond. This complex 

mechanistic scenario generally translates into very high overpotentials 

needed for the reaction to proceed.9 

One of the potential strategies to overcome high activation energies con-

sists in the involvement of transition metals as catalysts. Indeed, a number 

of Ru10,11,12,13,14,15,16,17 and Ir18,19,20,21,22 complexes have been recently de-

scribed as efficient catalysts for this reaction. Furthermore, the 

understanding of the different mechanisms involved in these catalytic 

processes as well as the potential deactivation pathways has been crucial 

for the development of the field. However, better catalysts, more robust 

UNIVERSITAT ROVIRA I VIRGILI 
MOLECULAR WATER OXIDATION CATALYSTS BASED ON COPPER AND NICKEL COMPLEXES 
Pablo Garrido Barros 
 



Chapter 3 
 

143 

III 

and efficient, are needed to be able to incorporate them in devices that 

can carry out water splitting with sunlight. 

In order to progress in this front, it is essential to gain a deeper under-

standing of the reaction mechanisms that can operate in water oxidation 

catalysis. From this perspective, it is imperative to spectroscopically char-

acterize reaction intermediates as well as their reactivity. In this respect, 

the theoretical methodologies become an extremely valuable tool to com-

plement experimental work, especially in systems with such a complexity 

as the water oxidation reaction catalyzed by transition metals. 

Mechanistic and theoretical studies have been carried out mainly with Ru 

complexes and have led to proposal of two main pathways for the O−O 

bond formation step depending on whether an external water molecule is 

involved or not. Thus, a water nucleophilic attack (WNA) and interaction 

of two M-O species (I2M) have been extensively discussed by our group 

and others.23,24 

Transition metals in their high oxidation states containing the M-O group 

can be described using two resonant forms depending on whether the 

oxidation occurs solely at the metal center or at the oxygen, as depicted 

on the left-hand side of Figure 1. All over the present paper we will use 

formal oxidation states, since this allows easy tracking of electron traf-

ficking, although it is obvious that the real species will be a mixing of both 

resonant forms. 
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Figure 1. Schematic view of water nucleophilic attack (WNA) and interaction of 
two M-O species (I2M) mechanisms. Formal oxidation states for the metal and 
oxygen atoms are indicated as superscripts. 

A WNA mechanism (Figure 1) is found when the auxiliary ligands favor 

the stabilization of the oxo form shown in Figure 1 top, and an I2M 

mechanism is found when the favored species resemble those of the oxyl 

radical form depicted in the lower part of Figure 1. The WNA involves a 

concerted two-electron process from the incoming water molecule to the 

metal center of the M-oxo group, resulting in the formation of a peroxide 

intermediate and the reduction of the metal center by two units. On the 

other hand, the I2M mechanism involves a radical coupling where the 

oxidation state of the metal center remains unchanged. 

Recently several first row transition metal complexes have been reported 

as catalysts for the water oxidation reaction.25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40 

While these catalysts are of interest because of their high abundance and 

low toxicity, their performance is much poorer than those of their Ru or 

Ir analogues, and in addition, their mechanistic pathways are in most cases 

basically unknown. 28,29,30,41,42,43 

We have very recently reported, a new complex based on Cu, containing 

the amidate ligand OPBAN (o-phenylenebis-(oxamidate)) that can carry 

out the water oxidation reaction in a very efficient manner.31 Surprisingly, 
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from a mechanistic perspective, it does not follow the WNA or I2M 

schemes just described but rather a step by step one electron process that 

we have termed SET-WNA. Computational homogeneous catalysis has 

been, until now, dominated by two-electron transfers,44 but there is an 

increasing recognition of the presence of single electron transfer (SET) 

steps in first-row homogeneous catalysis.45,46 

Therefore, it seems necessary and reasonable to raise these approaches to 

water oxidation catalysis using first row transition metals with the final 

aim of proposing a reasonable and complete mechanistic scenario. We 

will reexamine here the part of the mechanism leading to formation of 

the peroxide from water, as the subsequent oxidation of peroxide to di-

oxygen seems straightforward.31 It is particularly important to place the 

SET-WNA mechanism in the general context of WO, as its electronic 

requirements will lead to different paradigms for catalyst optimization. 

The present work thus aims at the description of a complete and inte-

grated view of all the potential pathways leading to low energy O−O bond 

formation by transition metal catalysts. We report here the DFT study of 

three different copper based catalysts as well as a ruthenium based system 

(Scheme 1), and evaluate the feasibility of the SET-WNA mechanism for 

each of them. The computational results are, in all cases, compared with 

available experimental data, and they allow us to map the different acces-

sible O−O bond formation pathways that, in turn, reveal the most 

important features for WO catalyst design. 

B.2. Results and discussion 

B.2.1 SET-WNA mechanism in copper systems: [(OPBAN)CuII]2−, 

[(6,6′bobp)CuII(OH2)2], [(bpy)CuII(OH)2]. 

We first proposed the existence of a single electron transfer−water nucle-

ophilic attack (SET-WNA) mechanism in a joint experimental and 

computational communication on [(OPBAN)CuII]2− (OPBAN = o-phe-

nylenebis(oxamidate)) complex, hereafter [(L1)CuII]2−, 1a.31 We will 
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briefly recall and extend the results on this system here, and compare 

them with those on other copper complexes that have been shown ex-

perimentally to efficiently catalyze water oxidation. The new complexes 

studied are [(6,6′bobp)CuII(OH2)2] (where 6,6′-bobp = [2,2′-bipyridine]-

6,6′-bis(olate)), hereafter [(L2)CuII(OH2)2], 2a,30 and [(bpy)CuII(OH)2] 

(bpy = 2,2′-bipyridine), hereafter [(L3)CuII(OH)2], 3a.28  

The key intermediates in the computed oxidation sequence for the three 

complexes are shown in eqs 1−3, respectively (the full set of accessible 

species is reported in the Supporting Information, Supplementary Figures 

1 and 2). The active species is formed by two consecutive one electron 

oxidations that can be metal or ligand based. The highest potentials cor-

respond to system 3, where the L3 ligand is not oxidized, since its redox 

potential is too high, and thus the second electron is removed directly 

from the Cu−O moiety, forming an oxyl group, 3c. In the other two sys-

tems, the ancillaryligands acts as redox non-innocent. For 2, the first step 

involves the removal of an electron from the ligand whereas this happens 

in the second step for complex 1. All these potentials are in good agree-

ment with the reported experimental ones28,30,31 and eqs 1−3 explain the 

observed pH dependence. 

                                            (1) 

                            (2) 

                          (3) 
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The setup for the reaction between species 1c, 2c, and 3c, with a hy-

droxyl/oxyl group bound to the metal and an external hydroxyl group, is 

typical of the WNA mechanism, but we did not find this mechanism to 

be preferred in any of the three cases. For the 1c/2c complexes, we could 

not locate a transition state connecting them directly to the resulting in-

termediates 1e/2e (see Figure 2), where both oxygen atoms have a formal 

oxidation state of −1. The reason for this impossibility is apparent in the 

potential energy scans in the top part of Figure 2. 

Intermediates 1c/2c and 1e/2e are at the bottom of two wells in red in 

the potential energy scan, and the energy of both curves increases sharply 

before they meet. Instead, the connection between the two intermediates 

takes place through an additional intermediate 1d/2d, depicted in blue. 

This intermediate has a complex electronic structure, as the unpaired elec-

tron is shared by both oxygen atoms, forming a 2c−3e− bond47 with a 

length around 2.30 Å. This bond has a formal order of 0.5 and a formal 

oxidation state of −1.5 in each oxygenatom (Figure S3). The interaction 

is certainly in the limits of what can be called a bond, and because of this, 

it is marked with dashed lines in the Figures and Schemes. Intermediates 

1d and 2d lie in the bottom of rather shallow wells in the potential energy 

surface and are unlikely to be characterized experimentally, which makes 

calculations very helpful for this particular problem. In fact, intermediate 

1d will be in equilibrium with a species resulting from dissociation of the 

(HO···OH)− moiety, which we have computed as being 4.3 kcal/mol 

more stable in free energy. We have not introduced it in the diagram for 

the sake of simplicity, as the two fragments have to get together for the 

reaction to continue. As this species is kinetically important, the barrier 

for the step from 1d to TS 1d-e will increase by 4.3 kcal/mol, still clearly 

affordable at room temperature. Such a dissociation problem is absent in 

system 2. 
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Figure 2. (a) Free energy profiles of [(L1)Cu II]2− (top) and [(L2)CuII(OH2)2] (bot-
tom), where L1 = o-phenylenebis(oxamidate) and L2 = [2,2′-bipyridine]-6,6′-
bis(olate). Energies in kcal/mol. (b) Potential energy relaxed scan for both com-
plexes of the O−O reaction coordinate. The drawings at the top are updated 
versions of those previously reported by us.31 The color code is based on the elec-
tronic nature of the oxygen centers: red when they are closed shell; blue when they 
involve unpaired electrons. 

Intermediate 1d/2d connects 1c/2c to 1e/2e through single electron 

transfer steps. The connection between 1c and 1d takes place through 

outer-sphere transfer, as the O−O distance is above 3.5 Å. We could not 

find a transition state in the potential energy surface for this step (even 

looking in a two dimension potential energy surface) because the system 

is very sensitive to the electron transfer and goes directly to compound 

1d (Figure 3a) once the external OH is reorganized from hydrogen bond 
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to O−O interaction. From the potential energy scan, the barrier is ex-

pected to be very low in the potential energy surface, further complicating 

the location of the transition state. We could estimate a free energy barrier 

of 5.5/5.6 kcal/mol as the difference between a long-range adduct and 

the separate reactants. It is worth noticing that we did not find a crossing 

between the curves corresponding to 2c and 2d in the potential energy 

surface, but this has no significant effect on the reactivity, as the free en-

ergy of the separate reactants associated with 2c and the free energy of 

intermediate 2d are almost equal, suggesting an easy crossing between 

surfaces. In addition, the relaxed scan was carried out in one dimension 

and probably the crossing would be related with the torsion of the Cu−O-

--OH bond but it is not relevant for the reactivity. For the connection 

between 1d and 1e, we could locate the transition state TS 1d-e, which 

was not reported in our previous communication. 

 

Figure 3. (a) Optimized structure for 1d. (b) Optimized structure for TS 1d-e. 
Arrows indicate the displacement vectors of the normal mode associated with the 
imaginary frequency. Distances are in Å.  

TS 1d-e (Figure 3b) contains an unpaired electron on the ligand (spin 1.0) 

and an additional open-shell between the copper (spin 0.6) and oxygen 

(spin −0.3 each) centers. This transition state has an energy 9.6 kcal/mol 

above intermediate 1d, which increases to 13.9 kcal/mol if we take into 

account the off-cycle dissociation of 1d. This constitutes the highest bar-

rier in the process, which is thus obviously affordable at room 
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temperature. The origin of the barrier is the changes in the catalyst struc-

ture associated with the uptake of one electron, as the Cu−N distances 

increase from values between 1.88 and 1.91 Å in 1d (a Cu(III) complex) 

to values between 1.98 and 2.10 Å in 1e (a Cu(II) complex). Although the 

HO···OH moiety is not attached covalently to the metal center (only by 

hydrogen bonds), the transition vectors show clearly the involvement of 

the catalyst in the transition state. In addition, we analyzed the influence 

of explicit water molecules in this transition state, but there is no effect in 

our system (section 7 in the SI), probably due to the absence of proton 

release in the transition state. 

The connection between 2d (quartet) and 2e (doublet) should take place 

through a minimum energy crossing point (MECP), which we could not 

locate for technical reasons (see computational details in the SI), but we 

could estimate for it a low relative energy of 2.9 kcal/mol from the relaxed 

potential energy scan. The origin of this transition state, and therefore the 

existence of the intermediate 2d and the crossing point between 2d and 

2e, is the reorganization energy in the metal complex due to the different 

oxidation states of the ligand in both species. For example, the Cu−N 

bond distances change from 2.09 to 2.10 Å in 2d to 2.02−2.03 Å in 2e. 

The existence of states with different multiplicities can be, in fact, related 

to the concept of multistate reactivity.46 In spite of the minor differences 

between systems 1 and 2, it is clear from Figure 2 that they share the same 

mechanism. We notice here that the possible intramolecular O−O bond 

formation process between the two hydroxyl ligands in 2c was found to 

have a prohibitively high barrier (Figure S4). These mechanisms agree 

with the first order kinetic demonstrated for both catalysts. 

A slightly different scenario is obtained for complex 3c, where the ligand 

oxidation is very high in energy and thus the ligand is not oxidized, unlike 

the intermediates 1c and 2c. In contrast, the intermediate 3c is oxidized 

at the Cu−O bond, producing a radical character on the oxygen atom. In 

this case, we could characterize an intramolecular WNA mechanism for 
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O−O formation, similar to the reported one by Zhang and coworkers in 

a dimeric copper system.48 The reductive coupling between the hydroxyl 

and the oxyl center can take place through a transition state TS 3c-d′ that 

is 7.0 kcal/mol above 3c (Figure S5). In this transition state, the O−O 

bond formation occurs simultaneously with the reduction of Cu(III) to 

Cu(II). However, the SET-WNA pathway involving an external hydroxyl 

group gives a lower barrier (Figure S6). Indeed, there is a 2c-3e− O---O 

intermediate similar to those reported above, which evolves through a 

low energy path (Figure S6) toward the product. The highest point in this 

path is 3.6 kcal/mol above 3c, thus significantly below the 7.0 kcal/mol 

reported above for the TS 3c-d′ in the intramolecular WNA path. 

 

Figure 4. Catalytic cycle for the [(L3)CuII(OH)2] complex where both the intramo-
lecular WNA and intermolecular SET-WNA pathways are represented. Free energy 
changes for steps at the electrode are indicated explicitly in volts (green) and for 
steps in solution are indicated in kcal/mol with respect to 3c (black). 

The two catalytic pathways just described for the [(L3)-CuII(OH)2] com-

plex are summarized in Figure 4. It is worth mentioning here that the low 

barrier obtained for the SET-WNA mechanism in conjunction with the 

high potential needed to reach the active species in this 3c system is fully 
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consistent with the reported turnover frequency of 100 s−1, which is the 

highest described to date for Cu catalysts. More significantly, it confirms 

the prevalence of this type of mechanism for Cu-based water oxidation 

catalysts, even when the ligand is not involved in the redox process. 

The computed barriers for the three systems reported above are in all 

cases below 15 kcal/mol, which suggests very fast reactions at room tem-

perature. The observed reaction rates are not so fast in the experimental 

reports because of the low stability of the catalysts and the need for an 

oxidation reaction at the electrode for its generation, not considered in 

this work. The kinetic relevance of this oxidation at the electrode is, in 

fact, strongly suggested by the correlation between the applied overpo-

tential and the overall turnover frequency.31 

B.2.2 Extension to Ru systems? The case of [(L3)(damp)RuII(H2O)]2+. 

We finally explored how the SET-WNA mechanism could perform in 

cases where the conventional WNA mechanisms are well established. We 

chose the [(L3)(damp)RuII(H2O)]2+ (damp = 2,6-bis((dimethylamino)- 

methyl)pyridine) system, hereafter [(L3)(L4)RuII(H2O)]2+, that has been 

studied both experimentally and computationally.14 In eq 4 we present the 

oxidation sequence that has been reported for this system. The active spe-

cies 4d can be viewed also as having a formal Ru(IV) state, as there is a 

partial oxyl character (0.4 e− in the oxygen and 0.6 in the Ru). A conven-

tional WNA transition state has been computationally 

 

                      (4) 
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reported for the interaction of this complex with an external water mole-

cule with a relative free energy of 20.7 kcal/mol. In this transition state, a 

lone electron pair of water attacks the oxygen center on ruthenium, and 

leads to a hydroperoxyl intermediate, [(L3)(L4)RuIII(OOH)]2+, releasing 

the proton to the water cluster in the transition state, that further evolves 

to generate dioxygen after one electron oxidation. 

An eventual SET-WNA mechanism from 4d should go through an inter-

mediate where an electron is transferred from the external water to the 

complex. We found this process to be not feasible, and the results are 

summarized in Figure 5.  

 

Figure 5. Free energy profile for the generation of RuIV−OH---HO• intermediate 
in [(L3)(L4)RuII(H2O)]2+. 

An adduct between the complex and the external water can be found, but 

the intermediate with the 2c−3e− bond between the two oxygen atoms is 

not formed. We tried to force this type of species with transfer of a H• 

radical from water to the catalyst (in a way analogous to the R-H activa-

tion chemistry previously reported by Neese and co-workers).46 We could 

reach in this way the Ru(IV) complex shown in Figure 4 (species 4f). This 

0.0 (D)

5.9 (D)

33.5 (D)

33.4 (Q)
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4e

4f
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complex, either in the doublet or quadruplet state, has an energy more 

than 10 kcal/mol above the competing WNA transition state, most likely 

because the oxygen centered •OH radical is not sufficiently stabilized by 

the Ru−OH moiety. These results clearly indicate that the SET-WNA 

mechanism is not operative in the Ru WOC chemistry. 

B.3. Overview of the new mechanistic scenario 

The results reported above make a strong case that SET-WNA has to be 

added to the list of mechanisms available for water oxidation. We make 

an effort in this section to put together all available mechanisms in a single 

view, summarized in Figure 6. The overall process consists of the abstrac-

tion of at least two electrons, by either chemical or electrochemical 

methods from a metal complex, and the absorption by this complex of 

two electrons from two oxygen centers (each in formal oxidation state 

−2) to make a peroxide bond (each oxygen atom in formal oxidation state 

−1). 

 

Figure 6. Overview of the water oxidation mechanisms. The oxygen initially at-
tached to the metal is marked in red; the incoming oxygen is marked in yellow. 

The left part of Figure 6 deals with the electron abstraction from the com-

plex. The reaction usually starts with the oxidation of the metal center in 
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a reversible way. This step is shared by the four systems analyzed in this 

work, with the peculiarity that for the Ru the two electrons are mainly 

abstracted from the metal center. The next step involves the removal of 

an additional electron that can occur at three different sites within the 

complex: the metal center, the ancillary ligand, or the oxygen ligand itself. 

In Ru complexes with neutral ligands such as [(L3)(L4)RuII(H2O)]2+, de-

scribed above, the electron is mainly abstracted from the metal center. In 

the [(L3)CuII(OH)2] system, the second electron is removed from the ox-

ygen ligand, since the IV/III metal based redox potential for copper is 

very high. This produces the corresponding Cu(III)- oxyl species, that is 

very active. Finally, the combination of a metal difficult to oxidize and a 

redox-active ligand leads to an intermediate situation with a ligand-cen-

tered radical, as happens in [(L1)CuII]2− and [(L2)CuII(OH2)2]. 

After the oxidation is completed, the system is ready for the O−O bond 

formation step. Again, three different mechanisms are available, water 

nucleophilic attack (WNA), single-electron transfer water nucleophilic at-

tack (SET-WNA), and interaction of two M-O units (I2M). The WNA 

mechanism is formally the simplest, as it proceeds in one step through a 

single transition state. A lone pair in the external oxygen attacks the metal 

bound oxo center, which in turn transfers two electrons to the metal. As 

a result, the metal oxidation state is diminished by two units, and a single 

O−O bond is formed. The WNA mechanism thus requires a metal center 

in a high oxidation state, which can remove enough charge from the ox-

ygen center to make it suitable for nucleophilic attack. This is most easily 

accomplished with second- or third-row transition metal centers, as is the 

case for the [(L3)(L4)RuII(H2O)]2+ discussed above. A second well-recog-

nized mechanism is the I2M, which requires relatively accessible oxyl 

species that are able to couple. Each oxygen atom is already oxidized to 

oxidation state −1 by the external oxidant, and thus, formally no metal 

reduction takes place. This mechanism requires stable oxyl radical com-

plexes with low charges, as the two complexes need to come together. 

UNIVERSITAT ROVIRA I VIRGILI 
MOLECULAR WATER OXIDATION CATALYSTS BASED ON COPPER AND NICKEL COMPLEXES 
Pablo Garrido Barros 
 



Redox non-innocent ligands in copper-catalyzed water oxidation 
 

156 

III 

The additional mechanism we are proposing, SET-WNA, shares similar-

ities with the two previously described but has some specific features. In 

SET-WNA, the external oxygen does not transfer two electrons in a sin-

gle step to the complex, but makes two single one electron transfers. The 

most significant difference between the SET-WNA mechanism and the 

WNA and I2M just described is the formation of a (HO··· OH)− frag-

ment, where there are two electrons in the σ O−O orbital and one in the 

σ* O−O, thus with a bond order of 0.5. We have shown in the examples 

above that it is operative for the three copper complexes studied. The 

SET-WNA mechanism completes the general scheme by connecting the 

two conventional mechanisms, as it may proceed in principle either from 

the M(n+2)+ oxo systems typical of WNA or from the M(n+1)+ oxyl systems 

typical of I2M. More significantly, SET-WNA depends critically on the 

stability of the M(n+1)+ (HO···OH)− intermediate, defining thus a new par-

adigm for catalyst optimization. The SET-WNA fits well with the 

characteristics of first row transition metals, and has been shown to op-

erate with fast catalysts where the overpotential is easily controlled. The 

introduction of this new mechanism will help experimental and compu-

tational chemists to design new efficient WOCs based on first row 

transition metals as well as explore and characterize their low energy path-

ways. 

B.4. Computatoinal details 

All calculations were performed using the DFT approach with the 

B3LYP-D3 functional49,50 using Gaussian09 as program package.51 The se-

lected basis set was 6-31+G(d) for C, N, O, and H,52,53 and LANL2TZ(f) 

for Cu.54,55 Solvation was introduced implicitly with water as the solvent. 

A pH of 11.5, corresponding to those of experimental system 1, was used 

when necessary. The explicit introduction of a water molecule was evalu-

ated (Figure S7) and found to be not necessary. All geometry 

optimizations were carried out in solution without symmetry restrictions. 

Free energy corrections were calculated at 298.15 K and 105 Pa pressure, 
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including zero point energy corrections (ZPE). In addition, a correction 

term of 1.9 kcal/mol (at 298 K) was added when necessary to account for 

the standard state concentration of 1 M. We used this standard state to 

compare the effectiveness of the different catalyst regardless of the ex-

perimental conditions. Unless otherwise mentioned, all reported energy 

values are free energies in solution. We checked the stability with respect 

to excitations of the electronic state of intermediates 1d, 2d, 3d, and TS 

1d-e, and all of them were found to be stable.56 The B3LYP-D3 compu-

tational method was benchmarked in a previous work and found to 

provide satisfactory results for this type of systems.31 Full computational 

details, including those of benchmarking, are provided in the Supporting 

Information. A data set collection of computational results is available in 

the ioChem-BD repository57 and can be accessed via 

https://doi.org/10.19061/iochem-bd-1-26.  
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B.7. Supporting information 

Activation of  [(L2)Cu(OH2)2] Catalyst  

 

Figure S1. Possible pathways for [(L2)Cu(OH2)2] catalyst activation. The PCET 
processes are calculated at 12.4 pH. 

The activation of the Cu(II) complex takes place in two consecutive 

PCET processes, one at 1.0 V and the other at 1.3 V. In all the second 

row (after the first oxidation), the triplet state is always more stable than 

the singlet. The triplet is more stable due to the high delocalization of the 

unpaired electron inside the ligand. This explains small differences be-

tween our calculations and the previously reported ones.  The key point 

from the previous calculations is in any case reproduced by our calcula-

tions: the species resulting after the second oxidation step has an unpaired 

electron in the ligand. 
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Activation of [(L3)Cu(OH)2] Catalyst 

 

Figure S2. Possible pathways for [(L3)Cu II(OH)2] catalyst activation. The PCET 
processes are calculated at 12.5 pH. 

The activation of the Cu(II) complex starts with the oxidation of the ini-

tial species 3a at 1.1V. Afterwards, the PCET is the most favorable 

process at 1.4 V. We confirmed with our methodology the same active 

species than previously reported. 
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Comparison of spin distributions in key intermediates for systems 

[(L1)CuII]2- and  [(L2)CuII(OH2)2]  

 

Figure S3. Comparison of the 2c-3e- species for [(L1)CuII]2- (left) and  
[(L2)CuII(OH2)2] (right). The upper figures represent the molecular structure, the 
middle figures display the atom Mulliken spin densities and the bottom figures 
show the spin density distribution. 
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Intramolecular Relaxed Scan of 2c 

 

Figure S4. Potential energy relaxed scan of the intramolecular HO---OH coupling 
in 2c intermediate. Energies relative to species X in kcal/mol.  

The  intramolecular coupling is not possible in the intermediate 2c. The 

barrier increases above 50 kcal/mol, which is far higher than the SET-

WNA calculated process.  
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Intramolecular Relaxed Scan of 3c 

 

 

Figure S5. Potential energy relaxed scan of the intramolecular HO---O· coupling 
in  intermediate 3c. Energies relative to species 3c in kcal/mol. Spin densities of 
all displayed species are shown in green (O), red (OH) and blue (Cu).  

The intramolecular coupling mechanism was found from intermediate 2c 

but the barrier is higher than the SET-WNA process (7.0 vs 3.6 kcal/mol).  

The transition state is clearly concerted with an electron transferring from 

the oxyl moiety to the copper metal center. The main difference to the 

[(L2)Cu(OH2)2]  species is that the O moiety is actually oxidized at the 

intermediate 3c instead of the ligand. This fact makes one oxygen (the 

OH) nucleophilic and the other (O) electrophilic, allowing the “nucleo-

philic” attack of the OH moiety to the formal O with one electron 

released from the O to the copper during the transition state. 
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SET-WNA profile and scan in  process in [(L3)CuII(OH)2]  

 

Figure S6. (Left) Free energy profiles of [(L3)Cu II(OH)2] where L3 = 2,2’-bipyri-
dine. ISET energy obtained from the potential energy scan. Energies in kcal/mol. 
(Right) Potential energy relaxed scan of both complexes of the O-O reaction co-
ordinate.  
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Influence of added water molecules in catalysis by [(L1)CuII]2-  

 

Figure S7. (Left) Free energy profile of the optimization of a water molecule with 
the frozen optimized structure of the [(L1)Cu II]2- catalyst. Energies in kcal/mol. 
(Right) Optimized structure for TS (1d-e) (top) and TS (1d-e)···H2O (bottom). 

We repeated the calculation of all species involved in the O-O formation 

process with [(L1)CuII]2-  with the addition of an explicit water solvent 

molecules. In most cases, the procedure consisted of freezing the frag-

ment reported in the main text and letting the water molecule to optimize.  

In all cases, the water molecule ended forming a hydrogen bond with a 

hydroxo group. More significantly, as can be seen by comparing Fig. 2 

and Fig. S3, in all cases the free energy of the system was higher than that 

of the separated fragments complex plus water. The enthalpic binding 

between the two fragments is too small to overcome the entropic ten-

dency of the fragments to separate. This result was further confirmed by 

a full geometry optimization of the transition state with an extra water 

molecule, also shown in Fig. S3. The free energy was in this case 1.8 
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kcal/mol above that of the system with the separated water, thus con-

firming that the addition of an extra solvent molecule in the first 

coordination sphere does not affect our calculations. 

Full Computational Details  

All calculations were carried out with the Gaussian09 program package1 

using the DFT method. The selected functional was B3LYP with empir-

ical dispersion correction proposed by Grimme (B3LYP-D3).2,3 The 

selected basis set was 6-31+G(d) for C, N, O and H,4 and LANL2TZ(f) 

for Cu.5,6 Solvation was introduced implicitly through the SMD model,7 

with water as the solvent. All geometry optimizations were computed in 

solution without symmetry restrictions. We confirmed the nature of all 

computed stationary points as minima or transition states through vibra-

tional frequency calculations. Free energy corrections were calculated at 

298.15 K and 105 Pa pressure, including zero point energy corrections 

(ZPE). In addition, a correction term of 1.9 kcal/mol (at 298 K) was 

added when necessary to account for the standard state concentration of 

1 M.  Unless otherwise mentioned, all reported energy values are free en-

ergies in solution. 

In the cases where the transition states cannot be found (or do not exist) 

we estimate the reaction energy barriers from potential energy relaxes 

scan, applying entropic corrections from the minima to compute an esti-

mated free energy change.  

In the transformation from free energies to electrochemical magnitudes 

we took from the chemical Literature the values of 4.28 V for the absolute 

potential of the standard hydrogen electrode8 and-11.72 eV for the free 

energy of the proton in aqueous solution at pH=1.9 The value for the free 

energy of the proton was translated to the experimental pH value by add-

ing a correction term of -0.059*pH, following the same procedure as 

other authors.10 The experimental pH was 11.5 for catalyst 1,  12.4 for 

catalyst 2 and 12.5 for catalyst 3. 
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Finally, for the calculations with explicit water molecules included (sec-

tion S8), the general procedure was to freeze the catalyst with the OH 

groups (1c, 1d, TS (1d-e) and 1e) and to optimize a water molecule 

around the catalyst. The validity of this simplified treatment was con-

firmed through a full optimization of the transition state TS (1d-

e)···H2O without any restrictions, which provided nearly identical re-

sults. 

The functional for the DFT calculations was B3LYP-D3 based on the 

calibration carried out in a previous work on related systems,11 where its 

performance was compared with that of M06, M06-D3, M06L, M06-2X, 

B97xD and B97D. 
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Chapter 4 

From ligand-based to 

metal-based electron trans-

fer in water oxidation 

catalysis 
 

New copper complexes are developed for water oxidation catalysis 
bearing different scafolds. The first two complexes contains redox 
non-innocent ligands that  can accumulate two oxidative equivalents 
so that the metal center act as an spectator in the electron transfer 
processes. A third complex has been synthetized bearing a redox 
innocent ligand. Those systems allow to explore the opportunities and 
limitations of using redox non-inocent ligands.  
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Paper C: Ligand based water oxidation catalysis 

Gil-Sepulcre, M.; Garrido-Barros, P.; Funes-Ardoiz, I.; Maseras, F.; Llo-

bet, A. 2018, manuscript in preparation 

 

Abstract 

Two new tetradentate ligands, 4,4'-(([2,2'-bipyridine]-6,6'-dicar-

bonyl)bis(azanediyl)) dibenzenesulfonic acid (p-L) and its homologue 

containing the sulfonate group at ortho position with respect to the ami-

date scaffold (o-L), have been synthesized. These new ligands have been 

used for the preparation of the complexes of general formula [(L)CuII]2- 

(L = p-L (12-); L = o-L (22-)), which have been fully characterized by X-ray 

diffraction and electrochemical techniques. At pH 11.4 only complex 12- 

exhibits a raise in the current associated with water oxidation (WO) at an 

overpotential of 835 mV confirmed by O2-detection experiments during 

1 hour of bulk electrolysis at 1.6 V vs. NHE. Electrochemical and com-

putational studies reveal the important redox non-innocent character of 

the ligand, whose oxidation is directly involved in the water oxidation 

mechanism. In contrast, the oxidation state of the metal center remains 

unchanged during catalysis. 
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Contributions: 

Pablo Garrido Barros performed the computational calculations and, to-

gether with Marcos Gil-Sepulcre, carried out the preparation and 

characterization of the compounds, the electrochemical and spectro-

scopic analysis, and the preparation of the manuscript. 

C.1. Introduction 

Molecular water oxidation (WO) driven by transition metal complexes1,2,3 

is a promising and active field at present for its implication in the obtain-

ing of solar fuels from water and sunlight.4 In particular, molecular 

complexes offers an accessible platform to study the mechanistic aspect 

of the catalytic reaction and the factors that determine its kinetic. That 

information is an indispensable tool for the design of more active cata-

lysts.5  

Moreover, the possibility to anchor those complexes on the surface of 

electrodes bases the strategy of generating molecular hybrid material for 

fast and stable catalysis.6,7,8,9,10,11 However, developing an efficient and ro-

bust water splitting device using cheap and abundant non-noble metal 

catalysts is still a great challenge for the scientific community. Several 

first-row transition metal complexes such as iron,12 cobalt,13 manganese14 

and copper15,16,17,18,19,20,21 have been developed and tested towards WO, be-

coming a promising alternative to the extensively studied ruthenium22,23 

and iridium24 catalysts. In particular, molecular copper-based complexes 

are relative new actors in this field and have become attractive candidates 

for WO catalysis during the last years due to their earth-abundance, rela-

tive easy synthesis and the available exhaustive studies on their 

coordination chemistry. 

Elizarova first25 and Mayer and co-workers later reported on Cu(II) com-

plexes bearing a simple 2,2’-bipyridine ligand, which were capable of 
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oxidizing water into dioxygen.15 Since this first works, the bipyridine moi-

ety has been modified by introducing hydroxyl pendant groups.18 These 

groups confer the redox-active character of the ligand so that they are 

able to lower the overpotentials, facilitating the proton coupled electron 

transfer (PCET) process and stabilizing the key intermediates. The poten-

tial of redox-active ligands for water oxidation catalysis was further 

explored by our group. We recently reported on a family of new Cu(II) 

complexes that are capable to drastically downshift the overpotential to a 

value as low as 170 mV.20 The key for this unprecedented overpotential 

is the presence of four amidate groups, which decrease the potential of 

the Cu(III)/Cu(II) couple, together with the non-innocent nature of the 

ligand that allows a fine control on the overpotential by changing the sub-

stituents in the aromatic ring.  

One of the key factor using redox active ligands is precisely the oppor-

tunity to avoid the high oxidation states of the metal centers, which are 

normally energetic intermediates reactive toward the formation of stable 

and active metal oxides.26 Moreover, a number of biological reaction in-

volving natural copper complexes proceed with the formation of radical 

intermediates in the organic moieties as they usually lead to fast reaction 

kinetics.27 Therefore, studying the electron transfer processes in radical 

copper complexes is essential for understanding how they work and fa-

voring the desired catalytic reactions. 

Herein, we present the synthesis and full characterization of a new family 

of Cu(II) complexes [(p-L)Cu](Na)2 (1
2-) and [(o-L)Cu](Na)2 (2

2-) contain-

ing two new tetra-anionic ligands 4,4'-(([2,2'-bipyridine]-6,6'-

dicarbonyl)bis(azanediyl)) dibenzenesulfonic acid (p-L) and 2,2'-(([2,2'-bi-

pyridine]-6,6'-dicarbonyl)bis(azanediyl)) dibenzenesulfonic acid (o-L), 

which differ in the position of the sulfonate group with respect to the 

amide moiety (Scheme 1). We evaluate their behavior as redox active lig-

ands and their role in the water oxidation catalysis.  
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Scheme 1. Schematic drawing of the ligands described in this work . 

 

C.2. Results and Discussion 

C.2.1. Synthesis and characterization of complexes 12- and 22-. 

The new ligands 4,4'-(([2,2'-bipyridine]-6,6'-dicarbonyl)bis(azanediyl)) 

dibenzenesulfonic acid (p-L) and 2,2'-(([2,2'-bipyridine]-6,6' dicar-

bonyl)bis(azanediyl)) dibenzenesulfonic acid (o-L) were synthetized via 

the reaction of the corresponding sulfanilic acid with [2,2'-bipyridine]-

6,6'-dicarboxylic acid after its previous conversion into the corresponding 

acyl chloride with SOCl2. Both were obtained as white powders in high 

yield (85 % and 82 % for p-L and o-L respectively); a detailed description 

of their synthetic pathways is provided in the Electronic Supplementary 

Information together with a full characterization by 1H-NMR, 13C-NMR 

and ESI-MS (Figures S1-11 and S14-15). It is interesting to note the 2 

ppm downfield shift of the amide proton observed in the 1H-NMR spec-

trum of o-L (vs p-L) due to the proximity of the sulfonate groups. Suitable 

crystals for X-ray diffraction analysis were also obtained for o-L by slow 

diffusion of EtOH in an aqueous solution of the ligand (Figure S19 and 

Table S1). 

Synthesis of 12- and 22- involved the use of NaOH(aq.) in MeOH as a base 

to deprotonate the amidate groups of the corresponding ligand, which 

then react with Cu(ClO4)2 to form the copper complex. The purification 

was carried out via evaporation of MeOH and crystallization by slow dif-

fusion of acetone into the remaining aqueous solution, yielding 12- and 22- 
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as green and blue crystals respectively. We obtained a moderate yield 

around 30%, which could be related with the partial conversion of the 

Cu2+ precursor into copper hydroxide in basic media.28 Both complexes 

were characterized by X-ray diffraction (Figure 1), UV-Vis spectroscopy, 

mass spectrometry and elemental analysis (Figures S16-18).  

The X-Ray structure of complex 12- (Figure 1, left, and Table S3) con-

firmed the presence of a Cu(II) metal center with a distorted square planar 

geometry bonded to the four N donor atoms. There is also a contact or 

slightly elongated bond with an oxygen atom in the apical position at a 

distance of 2.31 Å, probably coming from one water molecule. All Cu–

Nbpy distances are 1.95 Å and close to 2.00 Å for the Cu–Namide bonds, 

thus manifesting a strong coordination to the metal center. On the other 

hand, the rigidity of the p-L scaffold is made patent when observing the 

Namide–Cu–Namide (119.69o) and Nbpy–Cu–Nbpy (78.27o) angles, which are 

far from the ideal square planar geometry (90o). Complex 22- (Figure 1, 

right, and Table S2) also displays a distorted square planar geometry, 

showing similar Cu – N bond distances (1.95-2.00 Å) and Namide–Cu–Na-

mide (120.78o) and Nbpy–Cu–Nbpy (78.49o) angles to those in 12-. However, 

some significant differences arise between 12- and 22-. First, the apical po-

sition of 22- is occupied by an oxygen atom from the sulfonate moiety 

(instead of the water molecule observed in 12-), which is in contact with a 

Cu–O distance of 2.61 Å. Then, weak π-π stacking interactions at 3.77 Å 

between both phenyl groups take place for complex 22-. 

It is also interesting to note that the disposition of the sulfonate moieties 

in para with respect to the amide moieties facilitates the formation of an 

interesting polymeric-type 2D framework connected through the sul-

fonate groups (Figure S20). 
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Figure 1. ORTEP representation of 1a2- (left) and 2a2- (right) at 50% probability 
level. The solvent molecules, sodium and hydrogen atoms have been omitted for 
clarity. Colour code: C, grey; N, blue; O, red; S, yellow; Cu, orange.  

C.2.2. Electrochemical behavior DMF  

The redox properties of both ligands were first investigated in DMF by 

electrochemical techniques. All the potentials presented in this work are 

referenced vs. NHE by adding 0.648 V to the measured potential (see 

Experimental Section for further details). As observed in the cyclic volt-

ammetry (CV) measurements of the free ligands (Figure S21), they exhibit 

an irreversible wave at Ep,a
L = 1.29 V for p-L and Ep,a

L’ = 1.24 V for o-L, 

thus suggesting their non-innocent redox character. Then, we studied the 

electrochemical behavior of the copper complexes 12- and 22- that is pre-

sented in Figure 2. The initial anodic scan for 12- shows two irreversible 

electron transfer processes at Ep,a
1 = 1.21 V and Ep,a

2 = 1.42 V. In the 

case of 22-, these waves appear at Ep,a
1’ = 1.00 V and Ep,a

2’ = 1.19 V, thus 

showing a smaller shift (195 mV) between them compared to 12- (210 

mV). The presence of two anodic peaks has also been confirmed by DPV 

(Figure S22). 
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Figure 2. Cyclic Voltammograms of 12- (left) and 22- (right) in DMF containing 0.1 
M of TBAPF. Conditions: scan rate of 100 mV/s and [Complex] = 1 mM.  

Since Zn is a redox non-active metal, the homologues [(p-L)ZnII]2- and 

[(o-L)ZnII]2- were synthetized in order to study the nature of the electron 

transfers. Two irreversible oxidation waves, Ep,a
1 = 1.01 V and Ep,a

2 = 1.20 

V for [(p-L)ZnII]2- and Ep,a
1’ = 0.87 V and Ep,a

2’ = 1.02 V for [(o-L)ZnII]2- 

were observed in the CV experiments of these complexes (Figure S26), 

revealing the capability of the ligands to undergo two oxidation processes 

once bonded to a metal center. Those oxidation waves are also shifted 

roughly 150-200 mV respect to the corresponding Cu(II) complexes, as 

was expected due to the more electron deficient character of the Cu(II) 

metal center.  

Therefore, the redox processes observed both for 12- and 22- in organic 

media (DMF) were associated with two consecutive ligand-based oxida-

tions. The difference in the Ep,a values (230 mV) between complexes 12- 

and 22- suggests that the ligand oxidation may occur in the phenyl moie-

ties, in contrast with the similar values in the potentials which would be 

expected if the oxidation was centered in the similar bipyridyl rings. More-

over, formation of radical cations in phenyl moieties during water 

oxidation catalysis has been previously reported in the literature20,11 while 

bipyridyl rings appears to be more redox innocent.15,21 
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In case of 12-, the first and second oxidation waves are irreversible in a 

scan rate window of 25-500 mV/s (Figure S23). On the other hand, the 

waves of 22- turned reversible at higher scan rates. This is also consistent, 

with the higher stability of the trans arrangements of the sulfonate groups 

in 22-. 

A higher increase in the current of the second oxidation wave of 12- with 

respect to 22- can be also appreciated. This behavior is probably related 

with a higher reactivity of complex 12- respect to 22-, which after the for-

mation of the diradical species [(p-L2+)CuII] is more reactive toward 

oxidative processes, provoking an increase in the current and the irre-

versible character. 

In the exploration of cathodic potentials, CVs of complex 12- and 22- 

showed the presence of one irreversible reduction wave at an Ep,c value 

around -0.4 V for both cases (Figure S24). Those reduction processes can 

be assigned to the reduction of Cu(II) to Cu(I). The observed irreversible 

character of the Cu(II)/Cu(I) wave is highly consistent with the oxidation 

wave appearing around E = 0.34 V in the corresponding anodic scan, 

which is related with the oxidation of solvated Cu(I) resulting from com-

plex degradation. This is further confirmed by the CV of Cu(ClO4)2 

shown in Figure S25 that features a reversible wave at around 0.34 V due 

to the Cu(II)/Cu(I) redox couple from free copper ions in solution. One 

plausible explanation for the demetallation process could be the preferred 

tetrahedral geometry of Cu(I) complexes. Therefore, the reduction of the 

square planar Cu(II) complexes brings the need of Cu(I) to adopt a tetra-

hedral disposition, which is not allowed by the highly rigid planar ligand, 

provoking eventually the breakage of the Cu-N bonds and subsequent 

release of Cu(I) ions. 
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C.2.3. Electrochemical Water Oxidation Catalysis 

In order to test the electrocatalytic activity of complexes 12- and 22- toward 

water oxidation, their electrochemical behavior was analyzed in aqueous 

solutions at different pH values (Figures S27-29). The initial CVs per-

formed at pH 7 and 9 show a wide oxidative wave centered at 1.37 V for 

12- and 1.27 V for 22- , both assigned to ligand-based oxidations according 

with previous measurements in DMF. Similarly, the non-reversible char-

acter of those waves can be again explained by the formation of highly 

reactive radical species in aqueous media, which in the absence of catalytic 

activity, may be followed by reactions leading to degradation of the com-

plex.  

Those experiments also showed the pH independent character of the 

electron-transfer processes (Figure S30). This behavior indicates that 

there is no proton coupled electron transfer derived from the sulfonate 

groups or possible coordinated water molecules in the apical position of 

complex  12- in the working pH range (7-11.4). This observation nicely 

agrees with the DFT calculations as discussed in following section, which 

show the low pKa value for the sulfonate groups and the disfavored co-

ordination of solvent molecules in the apical position. 

Interestingly, at the more basic pH, there is an apparent increase in the 

current of the ligand-based oxidation in complex 12- suggesting that a pos-

sible electrocatytic process might be taking place. However, the increase 

in the background current from glassy carbon oxidation at high potential 

and pH partially overlaps with previous electrocatalytic process. In the 

case of complex 22-, the increase in the current seems to be only associated 

to the increased signal of the background.  

We repeated the experiments performed at pH 11.4 using the more oxi-

dative robust Boron Doped Diamond (BDD) electrode with the aim of 

avoiding the residual current derived from the glassy carbon electrode 
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mentioned above. As expected, 12- displays a steep rise in the current start-

ing at around 1.30 V clearly differentiated from the background signal of 

the electrode in buffer solution, which is tentatively assigned to electro-

catalytic water oxidation (Figure 3). In contrast, the apparent absence of 

electrocatalytic current above the blank in the experiments performed 

with 22- strongly suggests its inactivity towards water oxidation. Instead, a 

wide oxidation peak is observed with a relative irreversible character that 

we relate to the one or two electron oxidation of the ligand followed by 

its partial degradation. 

 

Figure 3. Cyclic Voltammograms of 12- (black line) and 22- (red line) in 0.1 M 

phosphate buffer pH 11.4. Black dashed line corresponds to a blank with no cata-

lyst. Conditions: scan rate of 100 mV/s, [Complex] = 1 mM. BDD disk as working 

electrode.  

The ligand-based nature of the previous oxidations was again confirmed 

by DPV measurements of the free ligand (Figure S33) and by the electro-

chemical behavior of the corresponding ZnII complexes in aqueous 

solution at pH 11.4. Both [(p-L)ZnII]2- and [(o-L)ZnII]2- feature two elec-

tron transfers at similar redox potentials as the ones observed in DMF, 
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which are also shifted by 200 mV from the waves corresponding to the 

copper complexes (Figure S31).  

However, despite the capacity of the ligand to accommodate two oxida-

tive charges once coordinated to ZnII, the complexes do not show any 

electrocatalytic wave. Therefore, the Cu center displays essential role in 

the coordination of OH- necessary for its oxidation to dioxigen, although 

only the ligand is involved in the electron transfer processes. Previous 

results confirmed that for complex 12- at pH 11.4 the electrocatalytic ac-

tivity appears as a consecuence of two consecutive oxidations both 

centered in the aryl groups of the ligand backbone. Interestingly, complex 

22- is also able to accommodate two oxidative charges in the ligand frame-

work but no electrocatalytic activity appears despite its similar redox 

behavior to complex 12-. 

The kinetic of water oxidation reaction was studied following “foot of the 

wave analysis” (FOWA),14 which allows the calculation of the apparent 

rate constant kobs (Figure S34). The calculated value of kobs = 10.53 s-1 is 

comparable to other reported copper-based complexes containing redox 

non-innocent ligands.18,20 

Following previous observations of electrocatalytic activity we assess the 

evolution of oxygen by 12- and 22- using controlled potential electrolysis 

(CPE) at 1.6 V vs. NHE. For these experiments we used a large surface 

area boron-doped diamond plate working electrode (∼1.5 cm2) with 1 

mM catalyst buffer solutions and a Clark-type electrode to detect and 

monitor the oxygen evolved at three different pH values (7, 9 and 11.4). 

In strong agreement with the previous electrochemical measurements, no 

oxygen evolution above background was observed below pH 11.4 when 

using either 12- or 22- (Figures S35 and S36). In contrast, in the case of 12-

, a steady formation of dioxygen was detected immediately after starting 

the experiment at pH 11.4 (Figure 4, left). No significant induction time 

was observed in the catalytic curve, supporting the homogeneity of 12-. 
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Thus, 12- is active towards water oxidation producing 0.017mmol of O2 

over 100 min. On the contrary, no oxygen evolved compared to the blank 

with 22- as catalyst under the same conditions (Figure 4, right), confirming 

that 22- is not active towards water oxidation. This is in good agreement 

with the absence of current above the blank in the CV experiments per-

formed at pH 11.4. 

 

Figure 4. Oxygen evolution measurements given in mmol O2 vs. time (min) for 
complexes 12- (left) and 22- (right) at 1.5 mM concentration using a Clark probe 
electrode during a CPE at 1.6 V vs. NHE in 0.1 M phosphate buffer pH 11.4. Blank 
data in the absence of complex is shown in orange.  

To evaluate the homogeneity of 12-, BDD electrodes used for the oxygen 

detection were immersed in a new catalyst-free buffer solution and CVs 

were registered (Figure S37 and S38). In comparison with the blank ex-

periments, no catalytic response derived from the formation of active 

heterogeneous copper oxide materials on the surface of the electrodes 

was observed. Several CV cycles were performed on a 1 mM solution in 

0.1 M phosphate buffer at pH 11.4 (Figure 5. left) and we observed a 

decrease in the current of the electrocatalytic wave, probably due to a 

deactivation process promoted by the high reactivity of the diradical spe-

cies. The electrode was again immersed in a new catalyst-free buffer 

solution and CVs were registered (Figure 5, right). We did not observe 

any appearing catalytic activity as compared with the previous behavior. 

Glassy carbon electrode subjected to catalytic water oxidation electrolysis 
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during 30 minutes at 1.6 V vs. NHE with 1.5 mM solutions of complex 

12- was also analyzed by scanning electron microscopy (SEM) and energy 

dispersive X-ray spectroscopy (EDX), showing again no evidence of na-

noparticles, film formation or copper-based heterogeneous materials over 

the surface (Figures S39-41). These results support the homogeneity of 

the catalytic active species. In addition, the possibility of a electrocatalytic 

response due to the presence of free Cu2+ was also discarded by compar-

ing the CV of Cu(ClO4)2 in phosphate buffer at pH 11.4 with complex 12- 

(Figure S32). This test revealed an onset potential similar to the blank for 

Cu(ClO4)2 and approximately 300 mV shifted towards higher potentials 

with respect to the electrocatalytic wave of 12-. 

 

Figure 5. Left, Evolution of CV profile of 12- in 0.1 M phosphate buffer (pH 11.4) 

after 25 cycles. Right, CV measurement with a BDD electrode that has performed 

the previous 25 cycles of the complex (red line) or of a blank solution (blue line) 

immersed in a freshly-prepared catalyst-free 0.1 M phosphate buffer pH 11, show-

ing no catalytic response due to the presence of heterogeneous materials deposited 

onto the surface of the electrode. Conditions: scan rate of 100 mV/s, [Complex] = 

1 mM. BDD as working electrode. 

C.2.4. Computational study 

We further investigate the mechanism of water oxidation catalyzed by 12- 

by DFT calculations using the B3LYP-D3 functional and the implicit 
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SMD solvation method (See Computational Details). The main mecha-

nisms computed for the O-O bond formation step are summarized in the 

catalytic cycle of Figure 6. We firstly explored the starting point of the 

catalytic cycle and according to the calculated pKa values (-7.9 and -0.2 

for each sulfonate group), complex 12- is deprotonated in the working pH 

range. Moreover, all the attempts to coordinate a water molecule in the 

apical position reverted to the formation of hydrogen bond between the 

unbounded water and the nitrogen from one amide group.  Finally, even 

the coordination of hydroxo groups is thermodynamically disfavored by 

3.6 kJ/mol. Those results are in agreement with the absence of proton 

coupled electron transfers for this complex 12-.  

 

Figure 6. Catalytic cycle for catalyst 12- representing the SET-WNA mechanism 
from the two substituted intermediates [1(OH)]- and [1(OH)2]2-. Free energy 
changes are indicated as black number in kcal·mol-1 and calculated redox potential 
as orange number in volts. 
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Upon one electron removal, the most stable oxidized species consist of a 

triplet Cu(II) complex with a radical cation mainly centered on one of the 

phenyl-amidate moiety as shown in Figure 6 and S44, 1-. The calculated 

oxidation potential is 1.27 V, which is in good agreement with the exper-

imental value (1.37 V). Interestingly, this ligand oxidation causes a 

decrease on the strength of the Cu-Namidate bond since now part of the 

electron density of the amidate is used to stabilize the phenyl radical cat-

ion. As a consequence, the Cu-Namide distance increases from 2.05 Å to 

2.14 Å. This bond weakening then favors the substitution of the coordi-

nated amide by a hydroxo molecule (ΔGº= -10.6 kcal/mol) generating 

[(p-L·-ƙ-N3)CuII(OH)]2-, [1(OH)]2-. 

The calculated oxidation potential for [1(OH)]2- is 1.26 V, giving rise to 

the formation of a second radical by releasing one electron from the still 

coordinated phenyl-amidate group and forming [(p-L··-ƙ-N3)CuII(OH)]-, 

[1(OH)]-. The proximity between the oxidation potentials (1.27 V and 

1.26 V) hinder the observation of both processes independently in agree-

ment with what is found experimentally. The doubly oxidized quartet 

species [1(OH)]-  features again an increased Cu-Namide distance, from 

2.07 Å to 2.21 Å., that again favors hydroxo substitution by 2.7 kcal/mol 

to generate [(p-L··-ƙ-N2)CuII(OH)2]
2-, [1(OH)2]

2-, with a highly distorted 

tetrahedral geometry (Figure 7). 
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Figure 7. Two different views of DFT optimized structures for the species 
[1(OH)2]2-. 

We have considered both doubly oxidized substituted species, [1(OH)]- 

and [1(OH)2]
2-, as possible intermediates for the O-O bond formation 

due to their similar energy. Both structures are quartets, presenting an 

unpaired electron on the copper center and the other two unpaired elec-

trons in each phenyl-amidate moieties. The calculated pKa for the 

coordinated hydroxo groups are 13.7 for [1(OH)]- and 21.6 for 

[1(OH)2]
2-, indicating that they remain protonated.  

Starting with [1(OH)]-, the presence of an external OH- molecule even 

at long distances of around 4 Å promotes a single electron transfer from 

the latter to reduce one of the phenyl-amidate groups, suggesting that the 

previously reported Single Electron Transfer-Water Nucleophilic Attack 

(SET-WNA) mechanism is again operative in these type of copper 

WOCs.29 This highly favored electron transfer prevents us from finding 
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the adduct between [1(OH)]- and the external OH-, as well as the associ-

ated transition state, that might be a reorganization process with low 

energy barrier.  The new electronic structure evolves to an intermediate 

[1(HO···OH)]-2 where both oxygen atoms form a two centres-three 

electrons bond (2c-3e-) with a formal order of 0.5 and a bond distance of 

2.23 A (Figure S45 and S46) while one of the sulfonate groups is reduced. 

Upon subsequent approximation of the two oxygen centers, there is a 

second single electron transfer to reduce the second phenyl-amidate moi-

ety forming the hydroperoxo species [1(HO-OH)]-2 in the doublet state, 

where the two oxygen atoms are connected by a bond with an order 1. 

The quartet species [1(HO···OH)]-2 and the doublet [1(HO-OH)]-2 are 

connected by a minimum energy crossing point (MECP) but we were not 

able to compute for technical reasons (see Electronic Supplementary In-

formation). Instead, the barrier for this second electron transfer can be 

estimated from the potential energy scan to be 9.4 kcal·mol-1. 

This new example of SET-WNA mechanism, where the reaction pro-

ceeds via two consecutive single electron transfers, resembles to the 

previously reported catalyst [(6,6′-bobp)CuII(OH2)2].
29 The only difference 

using catalyst 12- is the spectator role of the copper center from an elec-

tronic point of view, since its oxidation state remains unchanged while 

both SET steps involve the reduction of the ligand. However, the copper 

is essential in coordinating the hydroxo group to promote the O-O bond 

formation in the equatorial position. Attempts to characterize a traditional 

Water Nucleophilic Attack (WNA) involving a concerted two-electron 

transfer failed as its energy becomes unaffordable.  
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Figure 8. Potential energy relaxed scan for catalyst 12- of the O-O reaction coor-
dinate. Red color represents the quartet state while blue color indicates the doublet 
state. The inset drawing and the optimized structure to the right represents the 2c -
3e- intermediate. 

Regarding now the doubly oxidized species [1(OH)2]
2-, two pathways for 

the O-O bond formation are available as it can follow a similar SET-

WNA mechanism with an external OH- or promoting an intramolecular 

oxygen coupling between both bonded hydroxo groups. The first option 

is depicted in Figure 6 and involves a similar profile as using [1(OH)]2-, 

with the formation of the (2c-3e-) intermediate featuring a O-O bond 

distance of 2.32 Å and an bond order of 0.5. Once again, the proximity 

of an external OH- molecule promotes the easy first single electron trans-

fer and prevent us from finding the adduct species and the corresponding 

crossing point between both electronic states. We observed a little hill in 

the first scan at a O-O distance of 3.00 Å that is related with a reorgani-

zation of the hydrogen bonds in the system involving a negligible barrier 

(Figure 8). Regarding the second electron transfer occurring through a 

MECP, the estimated energy from the potential energy scan depicted in 

Figure 8 is in this case 3.2 kcal·mol-1 which involves a lower barrier for 

the formation of the O-O bond than for [1(OH)]-, although the 2c-3e 
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intermediate [1(OH)(HO···OH)]3- is less stable than [1(HO···OH)]2-. 

Therefore, both substituted intermediates [1(OH)]- and [1(OH)2]2- 

could be responsible for the catalytic activity of catalyst 12-. The plausible 

intramolecular pathway in [1(OH)2]
2-  was discarded due to the high po-

tential energy (more than 30 kcal·mol-1) to bring both oxygens near to 

each other so that they can form the O-O bond, as depicted in the relaxed 

scan of the intramolecular reaction in Figure S47. 

This new example of SET-WNA mechanism highlight the relevance of 

single electron transfers in water oxidation catalyzed by first row transi-

tion metals complexes, in contrast to the well stablish WNA involving a 

concerted two electron transfer. It is important to note that the equatorial 

position is preferred for supporting the species involved in the O-O bond 

formation when available, as shown with 12-. In this case, the oxidation of 

the coordinating amides and their relative flexibility enable the introduc-

tion of coordinating OH- in the equatorial plane against the less favored 

coordination in the apical position.  

C.3. Conclusions 

New tetradentate bipyridine-based ligands containing strong electron-do-

nating amidate groups have been synthetized and successful coordinated, 

forming their corresponding copper complexes. These complexes have 

been tested concerning their capacity of oxidizing water at basic pH. 

While 12- operates under basic conditions with an overpotential of 835 

mV, 22- resulted to be inactive. One of the most interesenting finding is 

the strong redox character of the ligands that in the case of complex 12-, 

is the only responsible for the electron transfer processes during water 

oxidation catalysis. The ability to oxidize twice thanks to the two phenyl-

amidate groups makes possible the oxidation of two hydroxides all the 

way to release oxygen. To our best knowledge, this is the first copper 

complex example where the metal centers remain as a mere spectator 
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from the redox point of view, although it is essential for the coordination 

of hydroxides molecule enabling the O-O bond formation. 

Finally, the lack of reactivity of 22- can be rationalized due to the ortho 

configuration of the sulfonate groups in the phenyl moieties, which 

blocks the imperative approximation of OH- molecules during WO catal-

ysis. The ability of copper to coordinate oxo groups from the ligand 

architecture hinder the coordination of water or hydroxo molecules, 

which are necessary to promote the O-O bond formation. 
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C.6. Supporting Information 

Experimental Section  

Materials 

All general reagents and chemicals were used as purchased from Sigma-

Aldrich, Fluka and Merck chemical companies without further purifica-

tion unless otherwise stated. The ligand precursor ([2,2'-bipyridine]-6,6'-

dicarboxylic acid) was prepared according to the experimental procedure 

reported in the literature.1 Air and moisture sensitive reactions were car-

ried out under N2 or Ar in oven-dried (120°C) glassware. Evaporation of 

solvents in vacuo was done with a Büchi Rotevapor R-200 at 40°C.  

Instrumentation and measurements  

NMR spectra were measured on a Bruker AV-500 and Bruker 300 MHz 

spectrometers. All NMR experiments were performed at room tempera-

ture in corresponding deuterated solvents and using internal protons as 

reference.  

UV-Vis spectra were measured on a Cary 50 UV-vis spectrometer by Var-

ian Inc. 

Electrospray ionization mass spectra (ESI-MS) were performed on an Ag-

ilent Technologies 6130-Quadrupole LC/MS connected to an Agilent 

Technologies HPLC-1200 series. Samples were dissolved in MeOH or H2O 

and injected directly with an auto-sampler. 

Electrochemical measurements 

Differential pulse voltammetry (DPV) and cyclic voltammetry (CV) were 

measured on a CHI660D potentiostat using a three-electrode cell. Glassy 

carbon (GC) or boron-doped diamond (BDD) (d = 3 mm) working elec-

trodes were employed while a Pt rod/mesh was used as counter electrode 

and a Hg/HgSO4 (K2SO4 sat.) or Ag/AgCl (KCl sat.) electrode was used 
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as a reference electrode. Working electrodes were polished with 1 and 

0.05 micron alumina paste, washed with distilled water and acetone and 

sonicated in acetone for 5 minutes before each measurement. DMF em-

ployed for electrochemical measurements was prepared containing the 

necessary amount of n-Bu4NPF6 (TBAPF6) as supporting electrolyte to 

yield a 0.1 M ionic strength. CVs were typically recorded at different scan 

rates from 25 to 1000 mV/s. DPVs were recorded with the following 

parameters: amplitude= 50 mV, step height=4 mV, pulse width= 0.05 s. 

All redox potentials in the present work are reported versus NHE by add-

ing 0.648 V to the measured potential. 

O2 evolution experiments 

Controlled Potential Electrolysis (CPE) experiments were performed at 

different potentials and different pH values to catalyze the water oxida-

tion reaction by the complexes by using a two-compartment cell closed 

with a septum. As working electrode large surface BDD electrodes (rec-

tangular shape with 1.5 cm2 surface) were used together with a 

silver/silver chloride (KCl sat.) as a reference electrode. These ones were 

placed in one of the compartments that was filled with a 1 mM solution 

of the complex (phosphate buffer pH 7, borate buffer pH 9 or phosphate 

buffer pH 11.4, of 0.1 M ionic strength). In the other compartment, con-

taining only the buffer solution, a mesh platinum counter electrode was 

used.  

The oxygen evolution was monitored with an OXNP type Clark electrode 

in gas phase (from Unisense Company). The CPE was carried out using 

an IJ-Cambria CHI-660 potentiostat and was started as soon as the oxy-

gen sensor signal was stable under air atmosphere. During the 

experiment, solutions of both compartments were vigorously stirred. Cal-

ibration of the oxygen sensor was performed after each experiment by 

adding known amounts of pure oxygen into the cell using a Hamilton 

syringe. The results of the water oxidation catalysis with the complexes 
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were compared with blank experiments under the same conditions but in 

the absence of the complex. The Faradaic efficiency was determined ac-

cording to the total charge passed during the CPE and the total amount 

of generated oxygen by taking into account that water oxidation is a 4 e- 

oxidation process. 

Synthesis of p-L and o-L  

The general procedure for the synthesis of ligands p-L and o-L was 

adapted from the literature2 as follows: 500 mg (2.05 mmol) of [2,2'-bi-

pyridine]-6,6'-dicarboxylic acid were suspended in 20 mL of SOCl2 and 

the mixture was refluxed at 85 ºC under a nitrogen atmosphere during 6 

hours. After complete dissolution of the reactant, SOCl2 was completely 

removed under vacuum, yielding a white powder corresponding to the 

corresponding acyl chloride derivative. The white solid was re-suspended 

in 40 mL of dry DCM and the temperature was decreased until 0 ºC using 

an ice bath. Then, a catalytic amount of NEt3 was added dropwise and 

stirred for 10 minutes. Finally, a previously prepared solution of the cor-

responding sulfonated phenylamine (705.6 mg, 4.1 mmol) in 40 mL of 

dry DCM were added dropwise to the reaction volume and the mixture 

was vigorous stirred for 72 h at room temperature. The appearing solid 

consisted in the corresponding ligand (p-L or o-L), which was filtered and 

washed with DCM and Et2O, yielding the desired product without further 

purification. 

p-L 

Yield: 931 mg, 1.68 mmol, 82%. 1H-NMR (DMSO-d6): δ [ppm] = 10.70 

(H4, s, 2H), 9.24 (H1, dd, J= 7.3, 1.6 Hz, 2H), 8.30 (H2-3, m, 4H), 7.90 (H5, 

d, J= 8.7 Hz, 2H), 7.65 (H6, d, J= 8.7 Hz, 2H). 13C-NMR (DMSO-d6): 

162,9 (C6), 153.9 (C5), 150.0 (C1), 144.7 (C10), 139.8 (C4), 138.6 (C7), 126.5 

(C9), 125.3 (C2), 123.7 (C3), 120.4 (C8). ESI-MS (MeOH) m/z negative 

mode: 553.0 [p-L -H+]-, 276.1 [p-L -2H+]2-. Elemental analysis (% found): 
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C, 54.60; H, 6.71; N, 10.58. Calcd for C24H14N4O8S2·3 Et3N·2 H2O: C, 

54.53; H, 6.61; N, 10.60. 

o-L 

Yield: 965 mg, 1.74 mmol, 85%. 1H-NMR (DMSO-d6): δ [ppm] = 12.55 

(H4, s, 2H), 9.51 (H1, dd, J= 7.3, 1.7 Hz, 2H), 8.67 (H5, dd, J= 8.2, 1.1 Hz, 

2H), 8.26 (H2-3, m, 4H),  7.82 (H8, dd, J= 7.7, 1.7  Hz, 2H), 7.43 (H6, t, J= 

1.2 Hz, 2H), 7.14 (H7, td, J= 7.5, 1.2 Hz, 2H). 13C-NMR (DMSO-d6): 

162,4 (C6), 153.9 (C5), 149.6 (C1), 139.9 (C4), 136.8 (C12), 135.3 (C7), 130.1 

(C9), 127.6 (C8), 125.4 (C2), 123.2 (C1-2), 120.2 (C3-7). ESI-MS (MeOH) m/z 

negative mode: 553.0 [p-L -H+]-, 276.1 [p-L -2H+]2-. Elemental analysis (% 

found): C, 55.35; H, 5.95; N, 10.65. Calcd for C24.H14N4O8S2·3 Et3N: C, 

55.44; H, 5.37; N, 10.77. 

 

Figure S1: Schematic drawing of the two ligands synthetized in this work: p-L (left) 

and o-L (right) and their 1H-NMR and 13C-NMR assignments. 

UNIVERSITAT ROVIRA I VIRGILI 
MOLECULAR WATER OXIDATION CATALYSTS BASED ON COPPER AND NICKEL COMPLEXES 
Pablo Garrido Barros 
 



Chapter 4 
 

201 

IV 

Synthesis of complexes 12- and 22- 

The general procedure for the synthesis of the copper complexes was 

adapted from a previous work published.3 50 mg (0.09 mmol) of the cor-

responding ligand were suspended in 4 mL of MeOH and stired during 

15 minutes. Afterwards, 3.6 mL (4 eq.) of 0.1 M NaOHaq. were added to 

the reaction mixture and vigorously stirred during 30 minutes at room 

temperature. After complete dissolution of the ligand, 33.3 mg (0.09 

mmol) of copper perchlorate hexahydrate dissolved in 4 mL of MeOH 

were added dropwise to the mixture, which was allowed to react overnight 

(16 h) at room temperature. Then, the reaction mixture was filtrated 

through celite and MeOH was evaporated under vacuum, and the remain-

ing solution was diffused with acetone, yielding the corresponding 

complexes. 

Complex 12-  

Yield: 19 mg, 0.03 mmol, 32% ESI-MS (MeOH) m/z negative mode: 

636.0 [M-Na+]-, 614.0 [M-Na+ + H+]-. Elemental analysis (% found): C, 

40.18; H, 2.52; N, 7.74. Calcd for C24.H14CuN4Na2O8S2·3 H2O: C, 40.37; 

H, 2.82; N, 7.85. 

Complex 22- 

Yield: 15 mg, 0.02 mmol, 25%. ESI-MS (MeOH) m/z negative mode: 

636.0 [M-Na+]-, 614.0 [M-Na+ + H+]-. Elemental analysis (% found): C, 

36.89; H, 2.98; N, 7.01. Calcd for C24H14CuN4Na2O8S2·0.5 NaOCl4·3 

H2O: C, 37.18; H, 2.60; N, 7.26. 

Synthesis of complexes [(p-L)Zn]2- and [(o-L)Zn]2- 

The general procedure for the synthesis of the zinc complexes was similar 

to the synthesis of the copper complexes. To a suspension of the corre-

sponding ligand 200 mg (0.36 mmol) in 16 mL of MeOH, 14.4 mL (4 eq.) 

of 0.1 M NaOHaq. were added to the reaction mixture and vigorously 
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stirred during 30 minutes at room temperature. After complete dissolu-

tion of the ligand, 131 mg (0.36 mmol) of zinc trifluoromethanesulfonate 

dissolved in 4 mL of MeOH were added dropwise to the mixture, which 

was allowed to react overnight (16 h) at room temperature.  Afterwards, 

a white precipitate appeared, which was filtrated and washed with H2O (2 

x 2 mL) and dried over vacuum yielding the corresponding complexes as 

white solids.  

[(p-L)Zn]2- 

Yield: 193 mg, 0.29 mmol, 81%. 1H-NMR (D2O-d2): δ [ppm] = 8.04 (H1-

2, m, 4H), 7.67 (H3, dd, J= 7.5, 1.3 Hz, 2H), 7.20 (H4, d, = 8.5 Hz, 4H), 

6.36 (H5, d, J= 8.5 Hz, 4H). Elemental analysis (% found): C, 39.77; H, 

3.44; N, 7.56. Calcd for C24H14CuN4Na2O8S2Zn·4 H2O: C, 39.28; H, 3.02; 

N, 7.63. 

[(o-L)Zn]2- 

Yield: 169 mg, 0.26 mmol, 71%. 1H-NMR (D2O-d2): δ [ppm] = 8.60 (H1, 

d, J= 7.9 Hz 4H), 7.93 (H4, d, J= 8.1 Hz, 2H), 7.83 (H2, d, J= 7.8 Hz, 2H), 

7.56 (H3-7, m, 4H), 7.21 (H5, t, J= 7.8 Hz,2H), 6.96 (H6, t, J= 7.7 Hz,2H). 

Elemental analysis (% found): C, 42.60; H, 3.02; N, 8.14. Calcd for 

C24H14N4Na2O8S2Zn·1.2 H2O: C, 42.06; H, 2.4; N, 8.18. 
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Spectroscopic Characterization  

NMR Spectroscopy 

 

Figure S2. 1H-NMR spectrum of the ligand p-L (DMSO-d6, 500 MHz, 25 °C). 

 

Figure S3. 13C-NMR spectrum of the ligand p-L (DMSO-d6, 500 MHz, 25 °C). 
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Figure S4. COSY spectrum of the ligand p-L (DMSO-d6, 500 MHz, 25 °C). 

 

Figure S5. HSQC spectrum of the ligand p-L (DMSO-d6, 500 MHz, 25 °C). 
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Figure S6. HMBC spectrum of the ligand p-L (DMSO-d6, 500 MHz, 25 °C). 

 

Figure S7. 1H-NMR spectrum of the ligand o-L (DMSO-d6, 300 MHz, 25 °C). 
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Figure S8. 13C-NMR spectrum of the ligand o-L (DMSO-d6, 500 MHz, 25 °C). 

 

Figure S9. COSY spectrum of the ligand o-L (DMSO-d6, 500 MHz, 25 °C). 
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Figure S10. HSQC spectrum of the ligand o-L (DMSO-d6, 500 MHz, 25 °C). 

  

Figure S11. HMBC spectrum of the ligand o-L (DMSO-d6, 500 MHz, 25 °C). 
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Figure S12. 1H-NMR spectrum of the complex [(p-L)Zn]2- (D2O-d6, 500 MHz, 
25 °C). 

 

Figure S13. 1H-NMR spectrum of the ligand [(o-L)Zn]2- (D2O-d6, 500 MHz, 25 
°C). 
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Mass-spectrometry 

 

Figure S14. (-)-ESI-MS spectrum for the ligand p-L. m/z = 553.0 [M-H+]-; m/z = 
276.1 [M-2H+]2-. 
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Figure S15. (-)-ESI-MS spectrum for the ligand o-L. m/z = 553.0 [M-H+]-; m/z = 
276.1 [M-2H+]2-. 
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Figure S16. (-)-ESI-MS for 12-. m/z = 636.0 [M-Na+]-; m/z = 614.0 [M-Na+ + 
H+]. 
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Figure S17. (-)-ESI-MS for 22-. m/z = 636.0 [M-Na+]-; m/z = 614.0 [M-Na++H+]. 
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UV-Vis spectroscopy 

 

Figure S18. (Left) UV-vis spectra of 12- (green line) and 22- (blue line). (Right) 
UV-vis spectra enlargement of the visible region for both copper complexes. Con-
ditions: [Complex] = 0.1 mM in 0.1 M phosphate buffer (pH 11.4).  
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X-Ray Crystallography  

Crystal preparation: Crystals of 12-, 22-and p-L were grown in water (by 

slow diffusion of acetone for 12- and 22-, and EtOH for o-L). The crystals 

were selected using a Zeiss stereomicroscope using polarized light and 

prepared under inert conditions immersed in perfluoropolyether as pro-

tecting oil for manipulation. 

Data collection: Crystal structure determinations for samples 12-, 22-and 

o-L were carried out using a Apex DUO Kappa 4-axis goniometer 

equipped with an APPEX 2 4K CCD area detector, a Microfocus Source 

E025 IuS using MoK radiation, Quazar MX multilayer Optics as mono-

chromator and an Oxford Cryosystems low temperature device 

Cryostream 700 plus (T = -173 °C).  Full-sphere data collection was used 

with  and  scans. Programs used:  Bruker Device: Data collection APEX-

24, data reduction Bruker Saint5 V/.60A and absorption correction SA-

DABS6. 

Structure Solution and Refinement: Crystal structure solution was 

achieved using the computer program SHELXT7. Visualization was per-

formed with the program SHELXle8. Missing atoms were subsequently 

located from difference Fourier synthesis and added to the atom list. 

Least-squares refinement on F2 using all measured intensities was carried 

out using the program SHELXL 20159. All non-hydrogen atoms were 

refined including anisotropic displacement parameters. Comments to 

the structures: Sample o-L: The asymmetric unit contains half a mole-

cules of the organic salt. The main molecule shows Ci-symmetry. 22-: The 

asymmetric unit contains one molecule of the copper metal complex, two 

sodium cations and eight molecules of water. 12-: The asymmetric unit 

contains one molecule of the metal complex, two sodium cations and 6.75 

water molecules which are highly disordered (18 positions) The sulfoxide 

groups and the sodium cations are disorder in three orientations with an 

approximated ratio of 33:33:33. One of the disordered sodium cations is 
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additionally split in two positions (33:33:22:11). In the CIF-file a B-Alert 

related to D-H without acceptor is commented in relation to the water 

molecules: In this highly disordered structure there were 18 positions for 

6.75 disordered water molecules and it was not possible to assign correctly 

all the corresponding hydrogen atom positions. 

 

Figure S19. ORTEP representation of o-L at 50% probability level. The counter 
ions, solvent molecules and hydrogen atoms have been omitted for clarity. Colour 
code: C, grey; N, blue; O, red; S, yellow. 
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Figure S20. X-Ray structure representation of 2D polymeric framework of 12-. 
Colour code: C, grey; N, blue; O, red; S, yellow; Na, Purple; Cu, Orange.  
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Table S1.  Crystal data and structure refinement for o-L. 

Identification code  o-L 

Empirical formula  C36 H48 N6 O8 S2  

Formula weight  756.92 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  P2(1)/c 

Unit cell dimensions a =  14.4650(14)Å α=  90°. 

 b =  8.5135(9)Å β = 109.155(3)°. 

 c =  15.7483(14)Å γ =  90°. 

Volume 1832.0(3) Å3 

Z 2 

Density (calculated) 1.372 Mg/m3 

Absorption coefficient 0.206 mm-1 

F(000)  804 

Crystal size  0.30 x 0.05 x 0.05 mm3 

Theta range for data collection 2.654 to 25.391°. 

Index ranges -16<=h<=17,-6<=k<=10,-18<=l<=15 

Reflections collected  13699 

Independent reflections 3343[R(int) = 0.0878] 
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Completeness to theta =25.391°  98.9%  

Absorption correction  Multi-scan 

Max. and min. transmission  0.990 and 0.541 

Refinement method  Full-matrix least-squares on F2 

Data / restraints / parameters  3343/ 0/ 238 

Goodness-of-fit on F2  0.999 

Final R indices [I>2sigma(I)]  R1 = 0.0493, wR2 = 0.1071 

R indices (all data)  R1 = 0.0942, wR2 = 0.1269 

Largest diff. peak and hole  0.314 and -0.474 e.Å-3 
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Table S2.  Crystal data and structure refinement for 22-. 

Identification code  22- 

Empirical formula  C24 H30 Cu N4 Na2 O16 S2  

Formula weight  804.16 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  P2(1)/c 

Unit cell dimensions a =  7.5982(3)Å α =  90°. 

 b =  17.2572(6)Å β= 98.6877(10)°. 

 c =  24.3433(9)Å γ =  90°. 

Volume 3155.4(2) Å3 

Z 4 

Density (calculated) 1.693 Mg/m3 

Absorption coefficient 0.934 mm-1 

F(000)  1652 

Crystal size  0.40 x 0.10 x 0.05 mm3 

Theta range for data collection 2.063 to 34.993°. 

Index ranges -12<=h<=10,-24<=k<=27,-38<=l<=38 

Reflections collected  38704 

Independent reflections 13011[R(int) = 0.0346] 
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Completeness to theta =34.993°  93.6%  

Absorption correction  Multi-scan 

Max. and min. transmission  0.955 and 0.798 

Refinement method  Full-matrix least-squares on F2 

Data / restraints / parameters  13011/ 0/ 506 

Goodness-of-fit on F2  1.073 

Final R indices [I>2sigma(I)]  R1 = 0.0423, wR2 = 0.0932 

R indices (all data)  R1 = 0.0556, wR2 = 0.0978 

Largest diff. peak and hole  1.087 and -0.796 e.Å-3 
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Table S3.  Crystal data and structure refinement for 12-. 

Identification code  12- 

Empirical formula  C24 H27.50 Cu N4 Na2 O14.75 S2  

Formula weight  781.64 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Triclinic 

Space group  P-1 

Unit cell dimensions a =  7.1558(3)Å α =  70.5590(10)° 

 b =  12.3988(5)Å β = 89.3240(10)° 

 c =  18.4833(7)Å γ =  80.6830(10)° 

Volume 1524.44(11) Å3 

Z 2 

Density (calculated) 1.703 Mg/m3 

Absorption coefficient 0.961 mm-1 

F(000)  801 

Crystal size  0.50 x 0.50 x 0.03 mm3 

Theta range for data collection 1.762 to 33.916°. 

Index ranges -11<=h<=11,-19<=k<=17,-28<=l<=28 

Reflections collected  34506 

Independent reflections 11681[R(int) = 0.0302] 
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Completeness to theta =33.916°  94.6%  

Absorption correction  Multi-scan 

Max. and min. transmission  0.972 and 0.863 

Refinement method  Full-matrix least-squares on F2 

Data / restraints / parameters  11681/ 1914/ 965 

Goodness-of-fit on F2  1.120 

Final R indices [I>2sigma(I)]  R1 = 0.0452, wR2 = 0.1120 

R indices (all data)  R1 = 0.0544, wR2 = 0.1165 

Largest diff. peak and hole  0.936 and -0.564 e.Å-3 
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Electrochemistry in Organic Solvents (DMF) 

 

Figure S21. (Left) Cyclic Voltammograms of p-L (left) and o-L (right) in DMF 
containing 0.1 M of TBAPF. Conditions: scan rate of 100 mV/s and [ligand] = 1 
mM. Conditions: 1 mM of ligand or complex in DMF containing 0.1 M of TBAPF. 
GC disk as working electrode. 

 

 

Figure S22. (Left) DPV experiments of 12- (black line) and p-L (red line). (Right) 
DPV experiments of 22- (black line) and o-L (red line). Conditions: 1 mM of ligand 
or complex in DMF containing 0.1 M of TBAPF. GC disk as working electrode.  
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Figure S23. Cyclic Voltammograms of 12- (left) and 22- (right) at different scan 
rates (25-500 mV/s). Conditions: 1 mM of complex in DMF containing 0.1 M of 
TBAPF6. GC disk as working electrode. 

 

 

Figure S24. Cyclic Voltammograms of 12- (left) and 22- (right) at different scan 
rates (25-500 mV/s). Conditions: 1 mM of complex in DMF containing 0.1 M of 
TBAPF6. GC disk as working electrode. 
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Figure S25. Cyclic Voltammograms of 12- (left) and 22- (right) at low scan rates 
(25-50 mV/s). Dashed black line corresponds to a blank solution containing 1 mM 
of Cu(ClO4)2 salt at 100 mV/s scan rate. Conditions: 1 mM of complex in DMF 
containing 0.1 M of TBAPF. GC disk as working electrode. 

 

 

Figure S26. Cyclic Voltammograms of [(p-L)Zn]2- (left) and [(o-L)Zn]2- (right) 
in DMF containing 0.1 M of TBAPF. Conditions: scan rate of 100 mV/s and [Com-
plex] = 8 mM. 
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Electrochemical behaviour in water 

 

Figure S27. Cyclic Voltammograms of 12- (left) and 22- (right) in 0.1 M phosphate 
buffer pH 7.0. Inset Differential Pulse Voltammograms for 12- and 22-. Dashed black 
line corresponds to a blank with no catalyst. Conditions: scan rate of 100 mV/s, 
[Complex] = 1 mM. GC as working electrode. 

 

 

Figure S28. Cyclic Voltammograms of 12- (left) and 22- (right) in 0.1 M phosphate 
buffer pH 9.0. Inset Differential Pulse Voltammograms for 12- and 22-. Dashed black 
line corresponds to a blank with no catalyst. Conditions: scan rate of 100 mV/s, 
[Complex] = 1 mM. GC disk as working electrode. 
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Figure S29. Cyclic Voltammograms of 12- (left) and 22- (right) in 0.1 M phosphate 
buffer pH 11.4. Inset Differential Pulse Voltammograms for 12- and 22-. Dashed 
black line corresponds to a blank with no catalyst. Conditions: scan rate of 100 
mV/s, [Complex] = 1 mM. GC as working electrode. 

 

 

Figure S30. DPV experiments of 12- (left) and 22- (right), 1 mM concentration in 
phosphate buffers (pH 7.0, 9.0 and 11.4). GC as working electrode.  
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Figure S31. Cyclic Voltammograms of [(p-L)Zn]2- (left) and [(o-L)Zn]2- (right) 
in 0.1 M phosphate buffer pH 11.4. Inset Differential Pulse Voltammograms for 
[(p-L)Zn]2- and [(o-L)Zn]2-. Dashed black line corresponds to a blank with no 
catalyst. Conditions: scan rate of 100 mV/s, [Complex] = 8 mM. GC as working 
electrode. 

 

 

Figure S32. Cyclic Voltammograms of 12- (left) and 22- (right) in 0.1 M phosphate 
buffer pH 11.4, showing the electrocatalytic response of the complex (solid black 
line), Cu(ClO4)2 (solid blue line ) and the blank (dashed line). Conditions: scan rate 
of 100 mV/s, [Complex] = 1 mM. BDD disk as working electrode. 
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Figure S33. DPV experiments of p-L (black line) and o-L (red line) in 0.1 M phos-
phate buffer pH 11.4. [Ligand] = ~1 mM. BDD disk as working electrode. 
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Determination of the kinetic constant. Foot of the Wave Analysis (FOWA). 

 

Figure S34. (Left) CVs of 1 mM solution of 12- in 0.1 M phosphate buffer (pH 
11.4) at 100 mV/s scan rate (grey line) and the blank (dashed line). Solid red line 
corresponds to the experimental data used for FOWA analysis and Solid black line 
shows the region used for the determination of kobs. (Right) FOWA of 12- by plot-
ting i/ip

0 vs. 1/{1+exp[(F/RT)(E0
PQ−E)]}. Inset FOWA equation operative under 

catalytic conditions, where E0
PQ corresponds to the standard potential for the cat-

alytic wave (observed at 1.35 V according to the DPV shown in Figure S30), i is 
the current in the presence of substrate, ip

0 corresponds to the peak current of one-
electron redox process of the catalyst (This value was extracted from the CuII/CuI 
couple observed at -0.4 V according to the CV shown in Figure S32), F is the 
faradaic constant (96485 C mol-1) and R is 8.314 J mol-1 K-1.10 
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Figure S35. Oxygen evolution measurements given in mmol O2 vs. time (min) for 
complexes 12- (left) and 22- (right) at 1.5 mM concentration using a Clark probe 
electrode during a CPE at 1.6 V vs. NHE in 0.1 M phosphate buffer pH 7. Blank 
data in the absence of complex is shown in orange.  

 

Figure S36. Oxygen evolution measurements given in mmol O2 vs. time (min) for 
complexes 12- (left) and 22- (right) at 1.5 mM concentration using a Clark probe 
electrode during a CPE at 1.6 V vs. NHE in 0.1 M borate buffer pH 9. Blank data 
in the absence of complex is shown in orange.  
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Figure S37. (Left) CV measurements for 12- before (black solid line) and after 
(black dashed line) a CPE at 1.6 V during 95 min in 0.1 M phosphate buffer pH 
11.4. (Right) Comparison of CVs of a blank solution after a CPE at 1.6 V during 
95 min and the mechanically polished BDD electrode under a blank solution, show-
ing no catalytic response due to the presence of heterogeneous materials deposited 
onto the surface of the electrode. Conditions: scan rate of 100 mV/s. BDD plate 
as working electrode, Pt mesh counter electrode and Ag/AgCl as reference elec-
trode. 

 

Figure S38. (Left) CV measurements of 22- before (black solid line) and after 
(black dashed line) a CPE at 1.6 V during 45 min in 0.1 M phosphate buffer pH 
11.4. (Right) Comparison of CVs of a blank solution after a CPE at 1.6 V during 
95 min and of the mechanically polished BDD electrode under a blank solution, 
showing no catalytic response due to the presence of heterogeneous materials de-
posited onto the surface of the electrode. Conditions: scan rate of 100 mV/s. BDD 
plate as working electrode, Pt mesh counter electrode and AgCl as reference elec-
trode. 
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Scanning Electron Microscopy 

 

Figure S39. SEM micrographs (left) and corresponding back-scattered electron 
micrographs (right) of a glassy carbon electrode after a 20 minute electrolysis of 12- 
(1.5 mM) in phosphate buffer pH 11.4 at 1.6 V vs. NHE. There is no appreciable 
presence of copper oxide nanoparticles or deposited materials on the electrode.  
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Figure S40. SEM micrographs (left) and corresponding back-scattered electron 
micrographs (right) of glassy carbon electrode after a 20 minute electrolysis of 22- 
(1.5 mM) in phosphate buffer pH 11.4 at 1.6 V vs. NHE. There is no appreciable 
presence of copper oxide nanoparticles or deposited materials on the electrode. 
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Figure S41. EDX spectra of the glassy carbon electrode after a 20 minute electrol-
ysis of 12-(left) and 22- (right) in phosphate buffer pH 11.4 at 1.6 V vs. NHE. There 
is no appreciable presence of copper on the surface of the electrode.  
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Computational studies 

Computational Details 

We perform all the calculations with the Gaussian09 program package11 

using the DFT methodology. We employed B3LYP functional including 

empirical dispersion correction proposed by Grimme (B3LYP-D3).12,13 

We split the basis set into 6-31+G(d) for C, N, S, O and H,14 and 

LANL2TZ(f) for Cu.15,16 Implicit solvation was introduced through the 

SMD model,17 with water as the solvent. All geometry optimizations were 

computed in solution without symmetry restrictions. We confirmed the 

nature of all computed stationary points as minima or transition states 

through vibrational frequency calculations. Free energy corrections were 

calculated at 298.15 K and 105 Pa pressure, including zero point energy 

corrections (ZPE). In addition, a correction term of 1.9 kcal/mol (at 298 

K) was added when necessary to account for the standard state concen-

tration of 1 M, except for water whose considered concentration was 55.6 

M and the correction term 4.3 kcal/mol. Unless otherwise mentioned, all 

reported energy values are free energies in solution. 

We estimate the reaction energy barriers from potential energy relaxes 

scan when the transition states cannot be found (or do not exist), applying 

entropic corrections from the minima to compute an estimated free en-

ergy change.  

In the transformation from free energies to electrochemical magnitudes 

we took from the literature the values of 4.28 V for the absolute potential 

of the standard hydrogen electrode18 and-11.72 eV for the free energy of 

the proton in aqueous solution at pH=1.19 The value for the free energy 

of the proton was translated to the experimental pH value by adding a 

correction term of -0.059*pH, following the same procedure as other au-

thors.20 
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The functional for the DFT calculations was B3LYP-D3 based on the 

calibration carried out in a previous work on related systems,3,22 where its 

performance was compared with that of M06, M06-D3, M06L, M06-2X, 

B97xD and B97D. In order to validate this DFT methodology, we com-

pared the calculated optimized structures with the X-Ray ones. The 

following table summarize all the main metrics of the coordination envi-

ronment for the copper metal center: 

Table S4. Comparison of the main metrics for the X-Ray structure and the DFT 
optimized structure of complexes 12- and 22-. 

 

Moreover, we also validate our methodology with respect to the experi-

mental value for the redox potential of the Cu(III)/Cu(II) redox couple 

for both catalysts in water solutions: 
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Table S5. Comparison of the experimental and calculated redox potential for the 
Cu(III)/Cu(II) couples in complexes 12- and 22-. 

 

  

 

Complex E1/2
o (exp) E1/2

o (calc) 

12- 1.37 V 1.27 V 

22- 1.27 V 1.14 V 
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Speciation for complex 12- in water 

 

 

Figure S42. Deprotonation processes in complex 12- and apical coordination of 
hydroxo or water molecules. The corresponding pKa values or the free energy 
changes for each process are indicated above the arrows.  

 

Figure S43. Apical coordination of hydroxo or water molecules in the one electron 
oxidized complex 1-. The corresponding values of the free energy changes for each 
process are indicated above the arrows. 
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Electrochemical activation for complex 12-  

 

 

Figure S44. Possible pathways for the oxidation ox catalyst 12- to generate an active 
species for the O-O bond formation step.  
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Potential energy relaxed scan for [1(OH)]-  

 

Figure S45. Potential energy relaxed scan for catalyst 12- of the O-O reaction co-
ordinate. Red colour represents the quartet state while blue colour indicates the 
doublet state.  
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Structure and spin density distribution of 2c-3e intermediates  

 

Figure S46. Schematic drawing with the spin distribution of each oxygen atom in 
blue (top) and optimized structure (bottom) of the 2c-3e intermediates for 
[1(OH)]- (left) and [1(OH)2]2- (right) catalysts. 
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Intramolecular relaxed scan for [1(OH)2]
2-  

 

 

Figure S47. Potential energy relaxed scan of the intramolecular HO---OH cou-
pling using catalyst [1(OH)2]2-. 
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Paper D: Transition from redox innocent to redox non-

innocent ligand enables catalytic water oxidation 

Garrido-Barros, P.; Gil-Sepulcre, M.; Bozoglian, F.; Holub, J.; Zamudio, 

J.; Llobet, A. 2018, manuscript in preparation 

 

Abstract 

The present work covers the study of the copper complex [(bpk)Cu] (bpk 

is 6,6’-diisopropanoate-2,2’-bipyridine) as a water oxidation catalyst. This 

Cu(II) complex bear a redox innocent ligand and shows high stability 

upon oxidation to Cu(III) species in the pH range from 7 to 12. Unfor-

tunately, the lack of more easily-accessed oxidation states prevent the 

complex from catalyzing the water oxidation. However, at pH between 

13 and 14, the complex undergoes a partial ligand decoordination with 

concominant coordination of hydroxo molecules. The remaining dan-

gling alkoxo groups get protonated forming alcohols and this groups are 

susceptible to be oxidized at affordable potentials around 1-1.2 V confer-

ring the ligand a redox non-innocent character. The formed hydroxo 

species have been spectroscopically and electrochemically characterized 
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featuring catalytic activity toward water oxidation.  The catalytic mecha-

nism has been computationally studied revealing the essential role of the 

ligand oxidation in the electron transfers that enable the O-O bond for-

mation. 

Contributions: 

Pablo Garrido Barros performed the computational calculations and, to-

gether with Marcos Gil-Sepulcre carried out the preparation and 

characterization of the compounds, the electrochemical and spectro-

scopic analysis, and the preparation of the manuscript. 

D.1. Introduction 

Water splitting to generate hydrogen and oxygen from water and sunlight 

is a potential strategy for renewable energy production.1,2,3 The hydrogen 

produced in this way stores the solar energy into chemical bonds and can 

be further used as a clean fuel. From a redox point of view, water splitting 

can be separated into the two half-reactions: water oxidation and proton 

reduction. One of the current challenge regarding water splitting is the 

development of water oxidation catalysts to overcome the kinetic re-

strictions of this reaction. Most of the initial work in this field involved 

the use of Ru and Ir molecular complexes that were able to catalyze the 

oxidation of water to molecular oxygen. 4,5 However, this 2nd and 3rd row 

transition metals are generally more expensive and less abundant than the 

1st row transition metals. This is the reason for the recent take off of mo-

lecular catalysts based on Fe, Cu, Ni, and Co complexes.6,7,8 

Particularly, copper has been focused of extensive study and a number of 

molecular complexes have been reported as homogeneous catalysts. 
9,10,11,12,13,14,15 First examples of copper catalysts involved the use of redox 

innocent and redox non-innocent bidentate ligands based on a bypyridine 

scaffold forming square planar complexes with hydroxo groups coordi-

nated in the equatorial position.9,12 In those complexes, two consecutive 

UNIVERSITAT ROVIRA I VIRGILI 
MOLECULAR WATER OXIDATION CATALYSTS BASED ON COPPER AND NICKEL COMPLEXES 
Pablo Garrido Barros 
 



From ligand-based to metal-based electron transfer in water oxi-
dation catalysis 

248 

IV 

oxidation steps take place before the O-O bond formation but, interest-

ingly, they do not lead to Cu(IV) species in any case. Instead, Cu(III) 

species with a radical located either in an coordinating OH- group or in 

the bipyridine ligand were formed, depending on the redox innocent or 

redox non-innocent character of the ligand respectively. Both complexes 

were also found to form the O-O bond with a similar mechanism based 

on single electron transfer, so called Single Electron Transfer-Water Nu-

cleophilic Attack (SET-WNA).16 

Shortly after, the copper complex [(mox)CuII]2- was reported with a 

tetraanionic redox-non innocent ligand N1,N1'-(1,2-phenylene)bis(N2-

methyloxalamide) H4mox, which was also oxidized to form an active 

Cu(III) radical species [(mox·)CuIII].14 The tetradentate ligand saturates all 

the equatorial positions so that the chemistry related with the O-O bond 

formation takes place in the apical position where an OH- is weakly co-

ordinated thanks to the electron deficient character of the doubly 

oxidized species forming [(mox·)(OH)CuIII]-. A SET-WNA mechanism 

was again found to be operative besides the significant differences with 

previous bipyridine systems. More recently, a Cu complex has been re-

ported where two bidentate pyalk ligand saturate again the four equatorial 

positions of the Cu metal center.15 Due to the redox-innocent character 

of the ligand and the absence of OH- coordination, this complex cannot 

accumulate two oxidative equivalents to form an electron deficient spe-

cies that can coordinate a hydroxide molecule in the apical position and 

promote the O-O bond formation, such as in the case of [(mox)CuII]2-. 

Instead, once the complex is oxidized to a Cu(III) species, a hydroxide 

molecule binds the metal center in a equatorial position with a concomi-

tant decoordination of a pyridine group thanks to the flexibility of the 

coordination environment.17 Then the coordinated OH- group is also ox-

idized through a proton coupled electron transfer (PCET) to form the 

active species [(pyalk)2(O·)CuIII] which promotes the O-O bond for-

mation by a WNA mechanism. 
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The results with previous catalysts show that Cu(IV) species are never 

reached before the O-O bond formation. Instead, to access the higher 

oxidation states needed to promote the O-O bond formation, either the 

ligand or a coordinated OH- have to assume the role of oxidizing to form 

active species. Therefore, a redox non-innocent ligand or coordination of 

hydroxide molecules are essential features that a copper-based water oxi-

dation catalyst requires. This is in agreement with recent results by Batista 

where they study the complex [(bpk)CuII] (bpk is 6,6’-diisopropanoate-

2,2’-bipyridine).17 This complex lacks of redox non-innocent ligand and 

its rigid coordination environment prevent OH- molecules to coordinate 

the metal center. Moreover, only the one-electron oxidized Cu(III) spe-

cies is easily accessed but it is not electron deficient enough to coordinate 

OH- molecules in the apical position. Then, it was found to be inactive at 

basic pH toward water oxidation catalysis. Therefore, using [(bpk)CuII] 

as model of inactive complex, we have studied the factors that determine 

the presence or absence of catalytic activity in this complex as well as the 

possible catalytic mechanism.  

D.2. Results and discussion 

D.2.1. Synthesis, characterization and electrochemical behavior of [(bpk)CuII] 

The synthesis of the ligand 6,6’-diisopropanol-2,2’-bipyridine (H2bpk) 

and its copper complex [(H2bpk)CuII]2+ are summarized in Figure S2. 

6,6’-Dimethyl-2,2’-bipyridine was oxidized to the corresponding dicar-

boxylic acid using potassium dichromate18 and subsequent esterification 

in acid media using methanol afforded the precursor  dimethyl [2,2'-bi-

pyridine]-6,6'-dicarboxylate.19 Final product was obtained via Grignard 

reaction using MeMgBr, with an overall yield of around 20%. Complexa-

tion using Cu(OTf)2 in acetonitrile afforded the copper complex 

[(H2bpk)CuII]2+, that was crystallized from diethyl ether diffusion into 

an acetonitrile solution resulting in long blue crystal needles. Both, the 
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ligand and its corresponding complex were fully characterized by NMR, 

IR, UV-vis, EA and ESI-MS (Figures S4-13). 

The X-Ray structure of [(H2bpk)CuII]2+ revealed a distorted square pla-

nar geometry where the two alcohol groups are placed slightly below the 

plane formed by the copper and the bipyridine moiety (Figure 1 and Table 

S1). Distances for Cu-N bonds are 1.918 and 1.915 Å whereas they sig-

nificantly increase to 1.985 and 1.976 Å in the case of Cu-O bonds. 

Moreover, the N-Cu-N and O-Cu-O angles are 81.69° and 116.71° re-

spectively, reflecting the distortion from the ideal 90° in a square planar 

geometry. All those metrics, in contrast with structure of the chemically 

similar [(Hpyalk)2(Cl-)CuII]+ and [(pyalk)2CuII] complexes,15 reveal the 

relatively high rigidity of this copper complex supported by the tetraden-

tate ligand H2bpk. In the apical position, one of the triflate anion shows 

in a long contact with the metal center at a distance of 2.336 Å, although 

this position is expected to remain uncoordinated in solution.   

 

Figure 1. (A) ORTEP view of [(H2bpk)Cu]2+at 50% probability level. The coun-
ter ions, solvent molecules and hydrogen atoms have been omitted for clarity. 
Colour code: C, grey; N, blue; O, red; H, white; Cu, light blue . 

The UV-vis spectra of complex [(H2bpk)CuII]2+ in acetonitrile solutions 

features an absorption band at λ = 650 nm that might be related with a 
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MLCT process (Figure S13). At lower wavelengths, there are two promi-

nent bands at 314 and 302 nm, with a small shoulder at 293 nm, that we 

associate to π-π* transitions in the ligand.  

Regarding aqueous media, [(H2bpk)CuII]2+ is soluble in phosphate 

buffer solution at pH higher than 6, featuring a similar 650 nm band in 

the UV-vis spectrum, which indicate that the coordination environment 

is the same in acetonitrile than in water (Figure 2, left). Regarding the 

bands in the UV region, some differences can be observed depending on 

the pH of the solution. At pH 7, the UV-vis spectrum shows one main 

band at 290 and two shoulders at 302 and 314 nm. When we increase the 

pH up to 8 the band at 293 nm starts to decrease whereas the band at 314 

nm increases its intensity. This change is more pronounced when we in-

crease the pH up to 10, where the band at 293 nm remains as a low 

intensity shoulder. In all the cases, the band placed at 650 nm experienced 

a small increase in the intensity although does not shift the energy. Upon 

higher increase up to 12 we observe the same trend, with only two prom-

inent bands at 302 and 314 nm, and the smaller band at 650 which remain 

unchanged. We associate these changes in the UV-vis spectra to the dif-

ferent protonation states of the ligand. As the pH decreases to 7, both 

alkoxo groups get protonated resulting in an unstable complex that even-

tually demetallates at lower pH values by ligand substitution releasing 

copper ions and free ligand as a white solid. The protonated complexes 

feature the three main bands at 293 and 302 and 650 nm, with a shoulder 

at 313 nm. At higher pH values, those groups consecutively deprotonate 

yielding finally the soluble uncharged complex [(bpk)CuII], whose spec-

trum features the main bands at 302, 313, and 650 nm and a shoulder at 

293 nm. 
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Figure 2. (Left) UV-Vis spectra of complex [(H2bpk)Cu]2+ in a 0.1 M phosphate 
aqueous solution at different pH values. The inset shows a zoom of the 400-800 
nm region with the bands corresponding to the MLCT. (B) Pourbaix diagram ob-
tained by measuring the E0 for the Cu(III)/Cu(II) redox couple from the previous 
CV experiments (Figure S15). 

We further explore the complex’s speciation and its electrochemical be-

havior by cyclic voltammetry (CV) and differential pulse voltammetry 

(DPV). In pH 7 solutions, this complex shows a reversible wave at 

E1/2=1.36 V with a peak to peak separation higher than 60 mV (Ep,a=1.41 

V and Ep,c=1.31 V) corresponding to one-electron transfer process (Fig-

ure S14). This wave is assigned to the redox couple CuIII/CuII, in 

agreement with the complex bearing similar reported ligand pyalk.15 

When scanning through cathodic potentials, the complex presents a wide 

quasi-reversible wave at around E1/2=-0.03 V together with the appear-

ance of a new oxidative peak in the subsequent anodic scan at around 

0.36 V. The first quasi-reversible wave is related to the redox couple 

CuII/CuI that would involve a high reorganizational energy due to the 

change from square planar CuII to tetrahedral CuI geometry. This would 

explain the high peak to peak separation and the quasi-reversible charac-

ter of this wave. On the other hand, the appearing oxidative wave at 0.36 

V is related to free Cu+ ions as compared with a CV of Cu(ClO4)2 in the 

same buffer solution (Figure S18). The reason for the release of metal 

ions from the complex lies in the attempt to adopt a tetrahedral geometry 
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upon reduction typical for d10 CuI complexes that is frustrated by the high 

rigidity of the ligand.  

Upon pH increase, the redox wave associated to CuIII/CuII undergoes a 

shift toward lower potential in the pH range from 7 to 9 indicating the 

presence of a proton coupled electron transfer (PCET) that facilitates the 

oxidation to CuIII (Figure 2, left). In those pH values, the coordinated 

ligand is mono-protonated but oxidation to the more electron deficient 

CuIII causes an increase in the acidity of the coordinating alcohol and then 

eases the proton release turning back to the coordinated alkoxo form. 

From pH 9, since the ligand is deprotonated, the wave for the CuIII/CuII 

redox couple stays unchanged at around 1.23 V with a full reversible char-

acter that demonstrate the high stability of the CuII and CuIII complexes. 

We have not found any indication of electrocatalytic processes using 

[(bpk)CuII] under those reported conditions and possible water oxida-

tion catalysis at higher potential values would lie behind the background 

current of the electrode. All these processes are summarized in the Pour-

baix diagram of Figure 2, showing a PCET event with a slope of 40 mV 

per pH unit (similar to complex [(pyalk)2Cu]) and pKa values for the 

alkoxo groups of around 7 and 9.5. 

D.2.2. Ligand opening and formation of Cu-hydroxo species 

Following the initial absence of electrocatalytic water oxidation by 

[(bpk)CuII], we further analyzed its electrochemical behavior at extreme 

pH values between 13 and 14. As shown in Figure 3, the aforementioned 

reversible wave for the CuIII/CuII redox couple turns into irreversible 

waves at similar potential values indicating that electrocatalytic water ox-

idation might be taking place. At pH 13 the irreversible wave is larger than 

at pH 14, where the electrocatalytic current is only slightly higher than the 

background signal as was already reported by Batista and coworkers.17 

That result indicates the presence of two processes at different pH values, 

one generating a very active species and a second one yielding less active 
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or inactive species. In order to explore the reason for the appearance of 

catalytic activity at those higher pH values, we analyzed the species in-

volved in solution by spectroscopic techniques. 

 

Figure 3. CVs of a 0.1 M phosphate aqueous solution containing 1 mM of the 
complex [(bpk)CuII] at different basic pH values. A GC disk was used as working 
electrode and the scan rate was set to 100 mV·s-1. 

We first performed a spectrophotometric acid-base titration examining 

the UV-vis spectra of [(bpk)CuII] upon basification of the solution from 

pH 12 to pH 14 by successive addition of conc. NaOH (10 M) solution 

(Figure 4). As already discussed, the complex features two main bands at 

315 and 304 nm with a small shoulder at 290 nm at pH 12 corresponding 

to the fully deprotonated ligand. This features however changed from pH 

13.0 to 13.6 so that the two main bands decrease the intensity while the 

shoulder increases resulting in a spectrum that strongly reminds to the 

monoprotonated [(Hbpk)CuII]+ complex (Figure 2, left). As the pH in-

creased to 14, those changes followed similar trend and become more 
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evident with a faster decrease of the bands at 315 and 304 nm in contrast 

to the relative increase of the band at 290 nm. The final spectrum has 

similar features as the one obtained at pH 6 for the protonated complex 

[(H2bpk)CuII]2+. Plot of the maximum absorbance at 304 nm allows us 

to distinguish between those two regions of pH with different slopes 

where the monoprotonated and deprotonated species are formed respec-

tively. Due to the high concentration of OH-, we assign those two 

processes to the coordination of a hydroxo group coming from the media 

with the subsequent decoordination of one alkoxo group. The uncoordi-

nated alkoxo group has now higher pKa than coordinated to the electron 

deficient metal center so that it protonates, as will be further supported 

by DFT (Figure S5 and S36). In the less alkaline region from 13 to 13.6, 

only one hydroxo group is introduced producing the complex  

[(Hbpk)(OH)CuII] whereas at higher pH both alkoxo groups are sub-

stituted giving rise to the complex [(H2bpk)(OH)2CuII]. Those two new 

species are the responsible for the appearance of catalytic activity. 

 

Figure 4. UV-Vis spectra of 1mM aqueous solution of [(H2bpk)Cu]2+ in 0.1 M 
phosphate buffer at different pH values. The pH was adjusted by addition of a 
conc. NaOH (40 %). The inset shows the evolution of the absorption at 304 nm 
with the pH value of the solution.  
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Scheme 1. (A) Mechanistic pathways for the formation of the Cu-hydroxo species 
that are active toward catalytic water oxidation. 

 

Due to the fast substitutions processes, we analyze their kinetic by 

stopped-flow UV-vis experiment at pH 14 by mixing a pH 12 solution 

containing 1 mM of [(bpk)CuII] with a 1 M NaOH solution and we rec-

ord the UV-vis spectra during the first seconds of reaction (Figure 5, left). 

We then fitted the experimental data to a model where two consecutive 

irreversible reactions take place as shown in the Figure 5, right. 

[(𝑏𝑝𝑘)𝐶𝑢]

+𝐻2𝑂
𝑘𝐻,1
→   [(𝐻𝑏𝑝𝑘)(𝑂𝐻)𝐶𝑢]+

+𝐻2𝑂
𝑘𝐻,2
→   [(𝐻2𝑏𝑝𝑘)(𝑂𝐻)2𝐶𝑢]

2+            (1) 

Both experimental and fitting data were in good agreement with calcu-

lated kinetic constants of 0.59 min-1 and 0.23 min-1 (Scheme 1, top). Figure 

S20 also shows the calculated UV-Vis spectra for the formed species and 

the distribution diagram vs. time where the initial decrease of complex 
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[(bpk)CuII] give rise first to a fast increase of complex 

[(Hbpk)(OH)CuII] which in turn runs out to produce the di-substituted 

species [(H2bpk)(OH)2CuII]. 

 

Figure 5. (A) Evolution of the UV-Vis spectra of complex [(H2bpk)Cu]2+  upon 
sudden basification from 12 to 13.9 by addition of conc. NaOH (1M) solution by 
stopped-flow experiment. The mixing time was set to 10 ms. (B) Experimental (red 
line) and fitted (green line) data of the evolution of the absorbance at 314 nm with 
the time. 

Formation of substituted complexes was also studied by paramagnetic 
1H-NMR in D2O at different pD values, since the Cu(II) species is para-

magnetic (Figure S21). Spectrum of complex [(bpk)CuII] at pD 12 

features a wide band around 9 ppm corresponding to the bipyridinic pro-

tons that are highly influenced by the presence of the paramagnetic CuII 

center. At higher field a single singlet signal from the methyl groups ap-

pears as expected for a complex with symmetric geometry. However, 

when the pD was increased up to 13.6, the singlet corresponding to the 

methyl groups was split into three different signal indicating the break of 

the symmetry due to the introduction of one or two hydroxo groups. We 

also observe the speciation of complex [(bpk)CuII] upon basification by 

EPR spectroscopy and results are shown in Figures 6 and S23. In all the 

cases, the observed clear g|| > gꓕ suggests the presence of distorted 
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square-planar geometries with the dx
2
-y

2 ground state. However, the ap-

pearing differences in the g values together with the differences in 

hyperfine splitting clearly indicate different coordination environment of 

the copper center at the studied pH values. This fact is consistent with 

the structural distortion exerted by the coordination of the hydroxo mol-

ecules and the resulting steric hindrance with the H2bpk ligand. 

 

Figure 6. EPR spectra of [(H2bpk)Cu]2+ showing changes in the nature of the 
copper species in solution at different pH values (8-14). Conditions: 
[(H2bpk)Cu]2+ = 10 mM in distilled water basify by addition of conc. NaOH (10 
M). 

We also explore the generation of the substituted species 

[(Hbpk)(OH)CuII] and [(H2bpk)(OH)2CuII] by reduction of the initial 

complex. As already discussed at pH 7, generation of CuI implies a strong 

structural reorganization from square-planar to tetrahedral geometries 

that eventually ends up with the release of Cu+ ions to the solution. We 

then investigated the same reduction process in presence of basic media 

(pH 12) with the aim of facilitating the alkoxo decoordination and hy-

droxo introduction due to the structural stress exerted by the rigid ligand 

in the frustrated tetrahedral structure. Figure S16 displays successive CV 

cycles in pH 12 using complex [(bpk)CuII] in the potential range from -

0.8 V, where the complex is reduced to [(bpk)CuI]-, up to 1.6 V. Those 
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data reveal the existence of an activation process since there is consecu-

tive increase in the current corresponding to the CuIII/CuII couple that 

becomes irreversible featuring two differentiable wave peaks. Similar re-

sults were obtained when we subject the solution to controlled potential 

electrolysis (CPE) at -0.6 V during 120 seconds and we subsequently scan 

through anodic potentials (Figure 7, left). 

 

Figure 7. (Left) CVs of a 0.1 M phosphate aqueous solution containing 1 mM of 
the complex [(H2bpk)Cu]2+ at pH 12 before (black line) and after (red line) a CPE 
at -0.6 V for 120 seconds. (Right) Evolution of the UV-Vis spectra of complex 
[(H2bpk)Cu]2+ during a CPE at -0.6 V for 120 seconds in a spectroelectrochemical 
cell. 

The used glassy carbon electrode (GC) was rinsed with water and ana-

lyzed in a fresh buffer solution at pH 12 showing some electrocatalytic 

activity respect to a bare glassy carbon electrode as indicative of deposi-

tion of an active material (Figure S17, left). Moreover, successive CVs 

performed using a CuII salt also showed electrodeposition as the current 

at around 1.25 V increases. Comparison of those deposited materials with 

the last CV of the activated solution indicates that part of the electrocat-

alytic activity comes from electrodeposited copper based-material 

corresponding to the second catalytic peak observed at 1.40 V (Figure 

S17, right). This material was confirmed to be a mixture CuO and Cu0 by 

means of scanning electron microscopy (SEM), energy.dispersive x-ray 
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spectroscopy (EDX) and x-ray photoelectron spectroscopy (XPS) analy-

sis (Figures S28, S31 and S32 and Table S3).  

However, there is a contribution to the catalytic activity at lower poten-

tials around 1.2 V that we associated with molecular species. In order to 

confirm the nature of those molecular species, we performed a spectroe-

lectrochemical analysis of the solution by recording UV-vis spectra during 

a Controlled Potential Electrolysis (CPE) at -0.6 V (Figure 7, right). In-

terestingly, the spectrum of complex [(bpk)CuII] slowly turned in to the 

one similar to the corresponding spectrum of monoprotonated species 

[(Hbpk)(OH)CuII] (Figure S24). Since the π-π* transition bands are ex-

pected to be quite independent of the oxidation state of the metal center, 

those results demonstrate the generation of the active species 

[(Hbpk)(OH)CuI]- upon reduction to CuI and consecutive anodic scan 

that is responsible for part of the catalytic activity observed in previous 

experiments. However, that species is not stable at long term in pH 12 

solution as we recover the initial UV-vis spectrum some minutes after 

stopping the CPE experiment (Figure S25). This was also checked by 

electrochemistry by performing a CPE at -0.6 and analyzing the initial and 

the resulting species by CV (Figure S22). After different lengths of CPE 

(0.5 to 2 h) upon stirring, the CV of the solution did not show any catalytic 

activity but just similar behavior to the initial complex. That supports the 

instability of the hydroxo species at pH 12 that can be only generated on 

the double layer in contact with the electrode during the timescale of a 

CV. 

D.2.3. Catalytic performance of Cu-hydroxo species and proposed mechanism 

Following the identification of the species responsible for the observed 

activity, we pursued the characterization of the catalytic performance by 

electrochemical methods. First we performed a CPE at 1.4 V in a two-

compartment cell using a GC sponge working electrode and a 1.5 mM 

solution of [(bpk)CuII] at pH 13, conditions that favors the formation 
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of the mono protonated species [(Hbpk)(OH)CuII]. Analysis of the ox-

ygen evolved using a Clark electrode revealed the production of around 

0.16 µmols during 35 mins with a Faradaic efficiency of 85%, very close 

to the ideal value of 100% (Figure S26, left). Subsequent analysis of the 

used GC sponge electrode and a GC plate submitted to the same oxida-

tive conditions (CPE at 1.4 V for 1 h) did not show any indication of 

deposited copper-based materials on SEM, EDX and XPS measurements 

(Figures S29, S31, S33 and Table S3), demonstrating that species 

[(Hbpk)(OH)CuII] can act as homogeneous molecular catalyst for water 

oxidation. When the CPE was performed in absence of the catalysts, no 

oxygen was detected.  

Similar experiment was performed at pH 14 to promote the formation of 

the disubstituted species [(H2bpk)(OH)2CuII], whose activity was 

found to be just slightly higher than the GC background based on the CV 

(Figure 3) and previous results.17 This might be due to the strong degra-

dative oxidation of the glassy carbon electrode in strong basic pH which 

would hinder the electrocatalytic activity of the complex.  Simultaneous 

analysis of the oxygen evolved also resulted in a generation of 0.14 µmols 

in 60 min, approximately half of the generation reached by 

[(Hbpk)(OH)CuII]. This lower activity at pH 14 is in agreement with 

the lower electrocatalytic wave found in CV. The Faradaic efficiency in 

this case is around 80 % due to the mentioned degradative oxidation of 

the glassy carbon electrode.(Figure S26, right).20 Similarly to the previous 

experiment, analysis of the used electrode and GC plate prepared under 

the same oxidative stress did not reveal the formation of any deposited 

copper based material on the surface confirming the homogeneous nature 

of this catalyst (Figures S30, S31, S33 and Table S3). Once again, experi-

ment in the absence of the catalysts did not show any indication of water 

oxidation and the high current obtained is assigned to the oxidation of 

the carbonaceous electrode surface. 
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Foot of the wave analysis (FOWA) was also performed according to the 

procedure described in the literature and that is summarized in equation 

2.21 We considered again the CVs in pH 13 and pH 14 where the major 

catalytic species in solution are [(Hbpk)(OH)CuII] and 

[(H2bpk)(OH)2CuII] respectively (Figure S27).  

𝑖

𝑖𝑝
=

8.96√
𝑅𝑇
𝐹ʋ
𝑘𝑜𝑏𝑠

1 + exp [
𝐹
𝑅𝑇 (𝐸𝑃𝑄

0 − 𝐸)]
                                 (2) 

In equation 1, icat is the catalytic current, id the one-electron oxidation cur-

rent of the complex, F is the Faraday constant, R is the ideal gases 

constant, ʋ is the scan rate, T is the temperature and kobs is defined as 

“kcat·C
0
A” where C0

A is the concentration of the substrate (55.56 M for 

water). Since the one-electron CuIII/CuII redox wave lies behind the cata-

lytic wave, we estimate ip CV at pH 12 in absence of catalytic activity. This 

will be a conservative value since the conversion to substituted species 

can be as high as 100%. We obtained kobs values of 2.28 s-1 and 0.44 s-1 for 

[(Hbpk)(OH)Cu] and [(H2bpk)(OH)2Cu] respectively, revealing the 

faster catalytic process in the case of the former, with both values in the 

range of the reported copper-based molecular catalyst. 

We finally studied the water oxidation mechanism for both catalytic spe-

cies by DFT using the B3LYP-D3 functional and the SMD implicit 

method of solvation (SI for full computational details). In aqueous solu-

tion, complex [(H2bpk)CuII]2+ features an expected square-planar 

geometry with an empty apical position: water molecules end up forming 

hydrogen bonds with the amide groups and coordination of an OH- 

group requires an energy consumption of 6.8 kcal·mol-1. The calculated 

pKa values of the coordinated alkoxo groups is around 10.5 and 6.9, 

which are in good agreement with the experimental values obtained from 

the Pourbaix diagram, 9.5 and 7. Regarding the one-electron oxidized 

complex [(H2bpk)CuIII]+, the most stable electronic structure consist of 
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singlet species with an oxidized copper(III) center. In this case, the pKa 

values are 1.8 and -8.5 due to the coordination to the more acidic Cu(III) 

metal center, indicating that [(H2bpk)CuII]+ is deprotonated upon oxi-

dation in the whole working pH range. The calculated redox potential for 

the proton coupled electron transfer from [(Hbpk)CuII] to [(bpk)CuIII] 

is 1.31 V that compares well with the experimentally observed one (1.36 

V). The second one-electron oxidation involves a potential of around 1.92 

V and lead to the formation of a quartet species [(bpk··)CuII]. In this 

species the electron is taken from the ligand, whose coordinating capabil-

ity to the metal center diminishes and promotes an internal electron 

transfer to reduce the copper oxidizing the other alkoxo group. However, 

this oxidation requires an extremely high potential for the experimental 

conditions in the CVs so that the background signal hinder the observa-

tion of this process and the possible appearance of catalytic activity. 

 

Figure 8. Catalytic cycle for the hydroxo derivatives from complex 
[(H2bpk)Cu]2+. Cycles include the electrochemical activation of both catalysts and 
the SET-WNA mechanism for the O-O bond formation step. Free energy changes 
are indicated as blue number in kcal·mol-1 and calculated redox potential as orange 
number in volts. 

In the presence of OH-, corresponding to the more basic conditions, the 

coordination of a hydroxo molecule in the equatorial position of the 
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deprotonated complex [(bpk)CuII]  by exchange with an alkoxo group is 

thermodynamically demanding. However, coordination of one or two 

OH- molecules to the mono- and di- protonated complexes respectively 

is exergonic. Formation of the species [(Hbpk)(OH)CuII] and  

[(H2bpk)(OH)2CuII] is thermodynamically favored by 7.5 and 8.8 

kcal·mol-1 indicating that the pendant alkoxo groups protonate after co-

ordination of the hydroxo molecules as experimentally evidenced. The 

pka values of the dangling alcohol groups are 20.4 for 

[(Hbpk)(OH)CuII] and for [(H2bpk)(OH)2CuII] they are 20.7 and 

19.6, supporting all the previous experimental observations. 

Those two new hydroxo species are responsible for the catalytic activity 

toward water oxidations so we have studied the oxidation and formation 

of the O-O bond for each one (Figure 8). Regarding the complex 

[(Hbpk)(OH)CuII], the oxidation to the deprotonated triplet species 

[(bpk·)(OH)CuII] takes place through a proton coupled electron trans-

fer (PCET) at a potential of 1.08 V, close to the experimental value for 

the catalytic onset potential 1.1 V. This oxidation generates a radical with 

an unpaired electron mainly located in the uncoordinated alkoxo group. 

Upon subsequent oxidation, the quartet species [(bpk··)(OH)CuII] is 

formed at 1.37 V, where both alkoxo groups are oxidized and each one 

accommodate an unpaired electron with a spin density of 0.8 and 0.84.  

We have further investigate the interaction of this doubly oxidized species 

with an external OH- molecule by relaxed potential energy scan aiming to 

study the O-O bond formation step (Figure S37 and S38). As previously 

found for a copper complex bearing a redox active ligand,14 an external 

OH- molecule transfer one electron to reduce the ligand at distances 

longer than 4 Å and supporting a mechanism based on the reported Single 

Electron Transfer-Water Nuclephilic Attack (SET-WNA). We were not 

able to characterize the electronic structure of the adduct before the first 

single electron transfer as we directly obtained the highly favored elec-

tronic structure where the electron has been already transferred from the 
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external OH- to the ligand, [(bpk·)(HO···OH·)CuII] (Figure S37). As 

the two oxygen get closer, there is the second single electron transfer from 

the external OH- to reduce again the ligand through a minimum energy 

crossing point (MECP) connecting the previous quartet species with the 

doublet product [(bpk)(H2O2)CuII]. Interestingly in this case, the sec-

ond single electron transfer takes place before the formation of any stable 

intermediate as obtained for other catalysts16 and thus there is not any 

barrier.  

Complex [(H2bpk)(OH)2CuII] follows a similar reaction mechanism as 

previously explained. A first PCET process affords the radical triplet spe-

cies [(Hbpk·)(OH)2CuII]  at 1.00 V where one electron is mainly 

released from the dangling alkoxo group. A second oxidation process 

takes place at the same potential of 1.00 V releasing a second electron 

from the other alkoxo unit and formally forming the quartet species 

[(bpk··)(OH)2CuII] with an spin density of around 0.7 on each oxygen. 

At this point, interaction of the coordinated hydroxo with an external hy-

droxo molecule at long distances do not promote the electron transfer 

until the distance between both oxygens is around 2.39 Å (Figure S38). 

At this distance, the electronic structure of the system reorganize so that 

an electron is transferred from the external hydroxo to reduce one alkoxo 

group, althought the overall multiplicity remain as quartet. This first elec-

tron transfer can be detected as a crossing point between the two 

potential energy surfaces in red color from Figure S38. Upon further ox-

ygen approximation, the new formed electronic structure evolves to an 

intermediate at a O-O distance of 2.29 Å in which both oxygen accom-

modate one unpaired electron forming the two centres-three electrons 

(2c-3e) species [(Hbpk)(OH)(HO···OH·)CuII]. Similar species have 

been already characterized as intermediates for the SET-WNA using 

many other copper-based systems and all share similar electronic features 

and O-O bond distances. At shorter O-O bond distances, the second sin-

gle electron transfer takes place through a MECP in which the electronic 
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structure goes from quartet to doublet, leading to the formation of the 

hydroperoxo species [(Hbpk)(OH)(H2O2)CuII]. The barrier for both 

single electron transfers is estimated from the potential energy surface to 

be as low as 2.8 and 1.8 kcal·mol-1 respectively. The intramolecular path-

way using [(H2bpk)(OH)2CuII] has been also investigated but lead to 

energy barrier higher than 25 kcal·mol-1 as obtained from Figure S39. 

It is interesting to highlight that the coordinated ligand bpk2- does not 

features redox activity in the studied potential range (from 0.2 to 1.4 V) 

and therefore requires an extremely high energy to accumulate two oxi-

dative charges necessary to promote the O-O bond formation. However, 

upon exchange by coordinating hydroxo molecules, the resulting dangling 

alcohol/alkoxo groups confer the ligand redox activity. This is in good 

agreement with the electrochemistry of the free ligand in solution that 

shows a redox wave at around 1.3 V (Figure S19). Therefore a doubly 

oxidized species can be obtained at affordable potential values and that 

lead to the formation of O-O bond and eventually the release of oxygen. 

This is an important example that rigid square planar copper complexes 

cannot afford high oxidation states in the metal center but instead, they 

need the redox activity of ligands (or coordinated hydroxo molecules) to 

promote the electron transfers needed for the catalytic water oxidation. 

The role of the metal among other is to serve as a scaffold to hold alkoxyl 

radicals in close proximity ready to be transferred to the O-O bond for-

mation process ending up in the peroxide intermediate. 

D.3. Conclusions 

In conclusion, we have found that the use of redox inactive tetradentate 

ligands with a rigid planar geometry prevent the presence of catalytic ac-

tivity in the apical position of copper complexes, in agreement with 

previous results by Batista and coworkers. However, the presence of con-

trolled basic conditions promotes a partial ligand decoordination and the 
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introduction of OH- molecules that substitutes the previously coordi-

nated alkoxo groups in the equatorial position. Once decoordinated, the 

alkoxo groups get protonated forming alcohols and that provide the lig-

and with a redox non-innocent character as those alcohol groups can be 

oxidized. Those changes in the structure and redox features of the com-

plex enable the catalytic activity toward water oxidation. 
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D.6. Supporting information 

Experimental Section  

Materials 

All general reagents and chemicals were used as purchased from Sigma-

Aldrich, Fluka and Merck chemical companies without further purifica-

tion unless otherwise stated. The ligand precursor ([2,2'-bipyridine]-6,6'-

dicarboxylic acid) was prepared according to the experimental procedure 

reported in the literature.1 Air and moisture sensitive reactions were car-

ried out under N2 or Ar in oven-dried (120°C) glassware. Evaporation of 

solvents in vacuo was done with a Büchi Rotevapor R-200 at 40°C.  

Instrumentation and measurements  

NMR spectra were measured on a Bruker AV-500 and Bruker 300 MHz 

spectrometers. All NMR experiments were performed at room tempera-

ture in corresponding deuterated solvents and using internal protons as 

reference.  

UV-Vis spectra were measured on a Cary 50 UV-vis spectrometer by Var-

ian Inc. 

Electrospray ionization mass spectra (ESI-MS) were performed on an Ag-

ilent Technologies 6130-Quadrupole LC/MS connected to an Agilent 

Technologies HPLC-1200 series. Samples were dissolved in MeOH and in-

jected directly with an auto-sampler. 

Exact mass analyses were performed with a micrOTOF mass spectrom-

eter (from Bruker company) using Electrospray ionization technique in 

methanol by direct injection and detecting with positive polarity. 

Elemental Analysis of the samples was carried out in a Thermo Finnigan 

elemental analyzer Flash 1112 model. 
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Electrochemical measurements 

Differential pulse voltammetry (DPV) and cyclic voltammetry (CV) were 

measured on a IJ-Cambria CHI660D potentiostat using a three-electrode 

cell. Glassy carbon - d = 3 mm - (GC) working electrode were employed 

while a Pt disk/mesh was used as counter electrode and a Hg/HgSO4 

(K2SO4 sat.) or Ag/AgCl (KCl sat.) electrode was used as a reference elec-

trode. Working electrodes were polished with 1 and 0.05 micron alumina 

paste, washed with distilled water and acetone and sonicated in acetone 

for 5 minutes before each measurement. CVs were typically recorded at a 

scan rate of 100 mV/s. DPVs were recorded with the following parame-

ters: amplitude= 50 mV, step height=4 mV, pulse width= 0.05 s. All 

redox potentials in the present work are reported versus NHE by adding 

0.648 V to the measured potential. 

O2 evolution experiments 

Controlled Potential Electrolysis (CPE) experiments were performed at 

different potentials and different pH values to catalyze the water oxida-

tion reaction by the complexes by using a two-compartment cell closed 

with a septum. As working electrode large surface glassy carbon sponge 

electrodes were used together with a silver/silver chloride (KCl sat.) as a 

reference electrode. These ones were placed in one of the compartments 

that was filled with a 1.5 mM solution of the complex in the correspondin 

pH solution. In the other compartment, containing only the clean elec-

trolyte solution, a mesh platinum counter electrode was used (Figure S1).  
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Figure S1. Schematic representation of the set up used for O2 detection experi-

ments. 

The oxygen evolution was monitored with an OXNP type Clark electrode 

in gas phase (from Unisense Company). The CPE was carried out using 

an IJ-Cambria CHI-660 potentiostat and was started as soon as the oxy-

gen sensor signal was stable under air atmosphere. During the 

experiment, solutions of both compartments were vigorously stirred. Cal-

ibration of the oxygen sensor was performed after each experiment by 

adding known amounts of pure oxygen into the cell using a Hamilton 

syringe. The results of the water oxidation catalysis with the complexes 

were compared with blank experiments under the same conditions but in 

the absence of the complex. The Faradaic efficiency was determined ac-

cording to the total charge passed during the CPE and the total amount 

of generated oxygen by taking into account that water oxidation is a 4e- 

oxidation process. 
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Synthesis of H2bpk 

Dimethyl [2,2'-bipyridine]-6,6'-dicarboxylate: 850 mg (3.5 mmol) of [2,2'-

bipyridine]-6,6'-dicarboxylic acid were suspended in 85 mL of anhydrous 

MeOH containing a catalytic amount of H2SO4 (10%) and the mixture was 

refluxed at 85 oC under a nitrogen atmosphere during 24 hours. After-

wards the methanol was evaporated in vacuum and the remaining 

solution was dissolved in 20 mL of water, which was neutralized by add-

ing NaHCO3 and extracted with 3 x 100 mL of DCM. The organic phase 

was evaporated yielding the desired product without further purification. 

Yield: 767 mg, 2.8 mmol, 80%. 1H-NMR (CD2Cl2-d2): δ [ppm] = 8.77 (H1, 

dd, J= 7.9, 1.2 Hz, 2H), 8.23(H3, dd, J= 7.7, 1.2 Hz, 2H), 8.14 (H2, t, J= 

7.8 Hz, 2H), 4.06 (H4, s, 6H). 

2,2'-([2,2'-bipyridine]-6,6'-diyl)bis(propan-2-ol) (H2bpk):  To a solution 

of Dimethyl [2,2'-bipyridine]-6,6'-dicarboxylate (700 mg, 2.6 mmol) in dry 

THF (60 mL) at 0 oC, 4.5 equivalents of Methylmagnesium bromide in 

Et2O was added dropwise, and the mixture was stirred at room tempera-

ture and under a nitrogen atmosphere during 16 hours. Then, the reaction 

was quenched by adding a saturated solution of NH4Cl (20 mL) and 60 

mL of Et2O were added, the organic layer was separated and the aqueous 

layer was extracted with Et2O (3 x 60 mL). The organic layers were com-

bined, dried with MgSO4 and concentrated in vacuum to obtain a yellow 

oil. The desired product was obtained after purification by chromato-

graphic column (5:1 Hexane/Ethyl acetate) as a white powder. Yield: 305 

mg, 1.1 mmol, 43%. 1H-NMR (CDCl3-d1): δ [ppm] = 8.37 (H1, dd, J= 7.8, 

0.9 Hz, 2H), 7.90 (H2, t, J= 7.8, 2H), 7.44 (H3, dd, J= 7.8, 0.9 Hz, 2H), 

1.63 (H4, s, 12H). 13C-NMR (CDCl3-d1): 165.45 (C5), 153.28 (C1), 138.1 

(C3), 119.18 (C4), 119.0 (C2), 71.8 (C6), 30.7 (C7). ESI-MS (MeOH) m/z 

positive mode: 273.16 [M -H+]-; m/z = 274.16 [M -2H+]2-. Elemental anal-

ysis (% found): C, 70.39; H, 7.40; N, 10.29. Calcd for C16H20N2O2: C, 

70.56; H, 7.40; N, 10.29. 
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Figure S2. Schematic drawing of synthetic route employed for the preparation of 
H2bpk and their 1H-NMR and 13C-NMR assignments. 

Synthesis of [(H2bpk)Cu]2+ 

A solution of Cu(OTf)2 (133 mg, 0.37 mmol) of Cu(OTf)2 in 50 mL of 

MeCN was slowly added to a solution of H2bpk (100 mg, 0.37 mmol) in 

MeCN and the mixture was stirred overnight at 60 oC (Figure S3). After-

wards, the remaining blue solution was distributed in several vials and 

diffused with Et2O favoring the crystallization of [(H2bpk)CuII](OTf)2 as 

blue needles. Yield: 185 mg, 0.29 mmol, 79%. ESI-MS (MeOH) m/z pos-

itive mode: m/z = 334.0 [M -2H+-2OTf]-. Elemental analysis (% found): 

C, 31.86; H, 2.99; N, 4.15. Calcd for C16H20CuN2O2 + 2.4 OTf-: C, 31.86; 

H, 2.91; N, 4.04. 

 

Figure S3. Schematic drawing of the preparation of [(H2bpk)CuII]2+. 

 

  

UNIVERSITAT ROVIRA I VIRGILI 
MOLECULAR WATER OXIDATION CATALYSTS BASED ON COPPER AND NICKEL COMPLEXES 
Pablo Garrido Barros 
 



Chapter 4 
 

275 

IV 

Spectroscopic Characterization  

NMR and Mass Spectroscopy  

 

Figure S4. 1H-NMR spectrum of Dimethyl [2,2'-bipyridine]-6,6'-dicarboxylate 
(CD2Cl2-d2, 400 MHz, 25 °C). 
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Figure S5. 13C-NMR spectrum of H2bpk (CDCl3, 500 MHz, 25 °C). 

 

Figure S6. 13C-NMR spectrum of H2bpk (CDCl3, 500 MHz, 25 °C). 
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Figure S7. COSY spectrum of H2bpk (CDCl3, 500 MHz, 25 °C). 

 

Figure S8. HSQC spectrum of H2bpk (CDCl3, 500 MHz, 25 °C). 
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Mass-spectrometry 

 

Figure S9. (+)-ESI-MS spectrum of H2bpk. m/z = 273.16 [M-H+]-; m/z = 274.16 
[M-2H+]2-. 

 

 

Figure S10. (+)-ESI-MS spectrum of [(H2bpk)CuII]2+. m/z = 334.0 [M-2H+-

2OTf]-. 
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IR-Spectroscopy 

 

Figure S11. FT-IR spectrum of H2bpk. Wavenumber (cm-1): 3387 (O-H, Stretch), 
3078 (Aromatic, Stretch), 2970-2925 (-CH3, Stretch). 

 

Figure S12. FT-IR spectrum of [(H2bpk)CuII]2+. Wavenumber (cm-1): 3387 (O-
H, Stretch), 3078 (Aromatic, Stretch), 2970-2925 (-CH3, Stretch). 
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UV-Vis Spectroscopy 

 

Figure S13. UV-Vis spectra of [(H2bpk)CuII]2+ showing intense absorption 
bands between 250-400 nm, corresponding to π-π* transitions of the ligand. (Inset) 
enlargement of the visible region showing less intense absorption bans, with a max-
imum at 680 nm, corresponding to MLCT transition and the d-d transition bands. 
Conditions: [Complex] = 0.1 mM in MeCN. 
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X-Ray Crystallography  

Crystal preparation: Crystals of [(H2bpk)CuII]2+ were grown in MeCN 

(by slow diffusion of Et2O). The crystals were selected using a Zeiss ste-

reomicroscope using polarized light and prepared under inert conditions 

immersed in perfluoropolyether as protecting oil for manipulation. 

Data collection: Crystal structure determination for sample 

[(H2bpk)CuII]2+ was carried out using a Apex DUO Kappa 4-axis goni-

ometer equipped with an APPEX 2 4K CCD area detector, a Microfocus 

Source E025 IuS using MoK radiation, Quazar MX multilayer Optics as 

monochromator and an Oxford Cryosystems low temperature device 

Cryostream 700 plus (T = -173 °C).  Full-sphere data collection was used 

with  and  scans. Programs used:  Bruker Device: Data collection APEX-

24, data reduction Bruker Saint5 V/.60A and absorption correction SA-

DABS6. 

Structure Solution and Refinement: Crystal structure solution was 

achieved using the computer program SHELXT7. Visualization was per-

formed with the program SHELXle8. Missing atoms were subsequently 

located from difference Fourier synthesis and added to the atom list. 

Least-squares refinement on F2 using all measured intensities was carried 

out using the program SHELXL 20159. All non-hydrogen atoms were 

refined including anisotropic displacement parameters.  
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Table S1.  Crystal data and structure refinement for [(H2bpk)CuII]2+. 

Identification code  [(H2bpk)CuII]2+ 

Empirical formula  C18 H20 Cu F6 N2 O8 S2  

Formula weight  634.02 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  P2(1)/n 

Unit cell dimensions a =  10.0210(5)Å α=  90°. 

 b =  9.7375(5)Å β = 91.6693(11)°. 

 c =  24.2843(11)Å γ =  90°. 

Volume 2368.6(2) Å3 

Z 4 

Density (calculated) 1.778 Mg/m3 

Absorption coefficient 1.194 mm-1 

F(000)  1284 

Crystal size  0.40 x 0.10 x 0.05 mm3 

Theta range for data collection 1.678 to 34.982°. 

Index ranges -15<=h<=16,-14<=k<=15,-38<=l<=28 

Reflections collected  34869 
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Independent reflections 9679[R(int) = 0.0354] 

Completeness to theta =34.982°  92.9%  

Absorption correction  Multi-scan 

Max. and min. transmission  0.943 and 0.764 

Refinement method  Full-matrix least-squares on F2 

Data / restraints / parameters  9679/ 0/ 346 

Goodness-of-fit on F2  1.052 

Final R indices [I>2sigma(I)]  R1 = 0.0308, wR2 = 0.0775 

R indices (all data)  R1 = 0.0389, wR2 = 0.0813 

Largest diff. peak and hole  0.823 and -0.685 e.Å-3 
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Electrochemical behaviour 

 

Figure S14. (Left) Cyclic Voltammograms of 1 mM solution of [(Hbpk)CuII]+ in 
0.1 M phosphate buffer (pH 7) with a scan rate of 100 mVs -1. (Right) Schematic 
representation of the ligand partial decoordination process, which end with the 
releasing of free Cu+ to the solution.  

 

Figure S15. Cyclic Voltammograms of [(H2bpk)CuII]2+ at different pH values (7-
12) with a scan rate of 100 mVs-1. Conditions: [(H2bpk)CuII]2+ = 1 Mm in 0.1 M 
phosphate buffer solutions (I = 0.1) acidify by addition of conc. H2SO4 (1 M). 
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Figure S16. Evolution of cyclic voltammograms of 1 mM solution of 
[(H2bpk)CuII]2+ in 0.1 M phosphate buffer (pH 7) during 10 cycles, with a scan 
rate of 100 mVs-1. First scan (black line), CV Evolution (grey line), last scan (green 
line), blank (dashed line). 

 

Figure S17. (Left) CV measurement with a GC electrode that has performed the 
previous 10 cycles of the complex (red line) or of a blank solution (blue line) im-
mersed in a freshly-prepared catalyst-free 0.1 M phosphate buffer pH 11.84, 
showing catalytic response due to the presence of heterogeneous materials depos-
ited onto the surface of the electrode. (Right) Comparison of CV evolution during 
10 cycles of 1 mM solution of [(H2bpk)CuII]2+ in 0.1 M phosphate buffer 
pH 11.84 (black line) and 1 Mm of Cu(OTf)2 (blue line), with a scan rate of 100 
mVs-1.  
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Figure S18. Cyclic Voltammograms of 0.1 M solution of Cu(ClO4)2 in 0.1 M phos-
phate buffer (pH 7) with a scan rate of 100 mVs-1.  

 

Figure S19. Cyclic Voltammograms of 0.1 mM solution of H2bpk in 0.1 M phos-
phate buffer (pH 12) with a scan rate of 100 mVs-1.  
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Spectroscopic Characterization of Cu-Hydroxo Species  

 

Figure S20. (Left) Calculated UV-Vis spectra for the proposed species in solution 
upon sudden basification from pH 12 to 13.9 using conc. NaOH (1M) by stopped-
flow experiment. (Right) Calculated distribution diagram vs. time for the different 
species. 

 

Figure S21. Paramagnetic 1H-NMR of [(bpk)CuII] in D2O basify by addition of 
conc. NaOD (40%) until pH 13.6 (top) and 12 (bottom). The comparison of the 
spectra shows a change in the splitting of aliphatic signals assigned to the methyl 
groups at pH 13.6, which indicate the presence of a mixture of two species assigned 
to [(Hbpk)(OH)CuII] and [(H2bpk)(OH)2CuII].  
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Figure S22. (Left) Cyclic Voltammograms of 1 mM solution of [(H2bpk)CuII]2+ 
in 0.1 M phosphate buffer (pH 12) with a scan rate of 100 mVs -1 before (black line) 
and after (red line) CPE at -0.6 V vs. NHE. (Right) Schematic representation of 
the two-compartment cell used for this experiment. Both compartments were 
closed with a septum for avoiding the introduction of O 2 during the experiment 
and were vigorously stirred. The CPE was carried out using an IJ -Cambria CHI-
730 bipotentiostat appling a potential of-0.6 V at different times (0.5-2h) and CVs 
were performed just after stopping the CPE experiment.As working electrode for 
CPE, large surface glassy carbon rod electrode (GC Rod) was used together with a 
glassy carbon disk electrode (d = 3 mm) used for recording the CVs and a sil-
ver/silver chloride (KCl sat.) as a reference electrode. These ones were placed in 
one of the compartments that was filled with a 1.0 mM solution of the complex in 
0.1 M phosphate buffer solution pH 12. In the other compartment, containing only 
the clean electrolyte solution, a mesh platinum counter electrode was used.  
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Figure S23. EPR spectra of [(H2bpk)CuII]2+ showing changes in the nature of 
the copper species in solution at different pH values (8-12). Conditions: 
[(H2bpk)CuII]2+ = 10 mM in distilled water basify by addition of conc. NaOH (10 
M). 

 

Figure S24. Comparison of UV-Vis spectra of complex [(H2bpk)CuII]2+ obtained 
after a CPE at -0.6 V for 120 seconds in a spectroelectrochemical cell (purple line) 
and in a 0.1 M phosphate aqueous solution basify with conc. NaOH (10 M) until 
pH 13.6, without applying any electrolysis time. 
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Figure S25. UV-Vis spectra of complex [(H2bpk)CuII]2+ obtained after a CPE at 
-0.6 V for 120 seconds in a spectroelectrochemical cell (purple line) and the same 
sample measured 5 minutes after stopping the CPE at -0.6 V (black line). The com-
parison shows that Cu-Hydroxo formed species after applying -0.6 V are not stable 
at pH 12, the ligand coordinate again forming the initial complex [(H2bpk)CuII]2+. 
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O2 detection experiments 

 

Figure S26. Comparison between current, expressed as μmol of O2 (red line) and 
the number of mmol of O2 detected by the Clark electrode (black line), obtained 
during the CPE experiment of [(H2bpk)CuII]2+ at 1.4 V vs. NHE in 0.1 M phos-
phate buffer basify by addition of conc. NaOH (10 M) until pH 13 (left) and 
[(H2bpk)CuII]2+ in a 1 M NaOH pH 14 (right). Baseline and blank were subtracted 
before calculation of Faradaic Efficiency. 
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Determination of Kinetic constants, Foot of the Wave Analysis 

(FOWA). 

Under catalytic conditions: 

 

Where E0
PQ is the standard potential for the catalysis-initiating redox cou-

ple, i is the CV current intensity in the presence of the substrate, ip is the 

peak current intensity of a one-electron redox process of the catalyst (ex-

tracted from CuIII/CuII couple observed in CV experiment performed at 

pH 12), F is the Faradaic constant, ν is the scan rate and R is 8.314 J mol−1 

K−1. 

Table S2. Summary of the electrochemical parameters used for the calculations of 
kobs. 
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Figure S27. Linear Sweep Voltammetry (LSV) and FOWA region (obtained by 
plotting i/ip

0 vs. 1/{1+exp[(F/RT)(E0
PQ−E)]}) of 1 mM solutions of 

[(H2bpk)CuII]2+ after CPE at -0.6 V for 120 seconds in 0.1 M phosphate buffer 
pH 12 (top), [(H2bpk)CuII]2+ in 0.1 M phosphate buffer basify by addition of 
conc. NaOH (10 M) until pH 13 (middle) and [(H2bpk)CuII]2+ in 1 M NaOH pH 
14 (bottom). Solid black line corresponds to the experimental data used for FOWA 
analysis and Solid red line shows the region used for the determination of kobs. 
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Scanning Electron Microscopy, EDX and XPS 

 

Figure S28. SEM micrographs (left) and corresponding back-scattered electron 
micrographs (right) of a glassy carbon electrode after CPE of [(H2bpk)CuII]2+ (1.5 
mM) at -0.6 V vs. NHE during 1 hour in 0.1 M phosphate buffer pH 11.84. The 
image shows presence of copper-based aggregated nanomaterials deposited mate-
rials on the electrode. 

 

Figure S29. SEM micrographs (left) and corresponding back-scattered electron 
micrographs (right) of a glassy carbon electrode after CPE of [(H2bpk)CuII]2+ (1.5 
mM) at 1.4 V vs. NHE during 1 hour in 0.1 M phosphate buffer basify by addition 
of conc. NaOH (10 M) until pH 13. There is no appreciable presence of copper 
oxide nanoparticles or deposited materials on the electrode.  
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Figure S30. SEM micrographs (left) and corresponding back-scattered electron 
micrographs (right) of a glassy carbon electrode after CPE of [(H2bpk)CuII]2+ (1.5 
mM) at 1.4 V vs. NHE during 1 hour in 1 M NaOH (pH 14). There is no appre-
ciable presence of copper oxide nanoparticles or deposited materials on the 
electrode. 
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Figure S31. EDX analysis of glassy carbon electrodes obtained after 1h-CPE of 
1.5 mM solution of [(H2bpk)CuII]2+ at -0.6 V in 0.1 M phosphate buffer pH 11.84 
(left), 1.4 V in 0.1 M phosphate buffer basify by addition of conc. NaOH (10 M) 
until pH 13 (middle) and 1.4 V in 1 M NaOH pH 14 (right).  
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Table S3. Elemental composition found by EDX analysis of glassy carbon elec-
trodes obtained after 1h-CPE of 1.5 mM solution of [(H2bpk)CuII]2+ at -0.6 or 
1.4 V in different pHs solutions. 

 

 

 

 

 

 

 

 

Entry Eapp (V) pH Cu (%) C (%) O (%) 

1 -0.6 11.8 0.45 95.55 4.0 

2 1.4 13.0 - 83.52 15.41 

3 1.4 14.0 - 96.5 3.5 

UNIVERSITAT ROVIRA I VIRGILI 
MOLECULAR WATER OXIDATION CATALYSTS BASED ON COPPER AND NICKEL COMPLEXES 
Pablo Garrido Barros 
 



From ligand-based to metal-based electron transfer in water oxi-
dation catalysis 

298 

IV 

 

Figure S32. (Left) XPS spectra for the glassy carbon electrode obtained after 1h-
CPE of 1.5 mM solution of [(H2bpk)CuII]2+ at -0.6 V in 0.1 M phosphate buffer 
pH 11.84. (Right) Cu 2P spectra showing the presence of Cu0 and CuO deposited 
on the electrode. (Inset) Elemental composition found by XPS analysis. Note: En-
ergies have been calibrated according to the C 1s band of graphite at 284.2 eV. 

 

Figure S33. (Left) XPS spectra for glassy carbon sponges after 1h-CPE of 1.5 mM 
solution of [(H2bpk)CuII]2+ at 1.4 V in 0.1 M phosphate buffer basify by addition 
of conc. NaOH (10 M) until pH 13 (red line) and 1 M NaOH (pH 14) (black line). 
(Inset) Elemental composition found by XPS analysis showing no appreciable pres-
ence of copper-based deposited materials on the electrode. Note: Energies have 
been calibrated according to the C 1s band of graphite at 284.2 eV.  
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Computational Study 

Computational Details 

We perform all the calculations with the Gaussian09 program package11 

using the DFT methodology. We employed B3LYP functional including 

empirical dispersion correction proposed by Grimme (B3LYP-D3).12,13 

We split the basis set into 6-31+G(d) for C, N, S, O and H,14  and 

LANL2TZ(f) for Cu.15,16 Implicit solvation was introduced through the 

SMD model,17 with water as the solvent. All geometry optimizations were 

computed in solution without symmetry restrictions. We confirmed the 

nature of all computed stationary points as minima or transition states 

through vibrational frequency calculations. Free energy corrections were 

calculated at 298.15 K and 105 Pa pressure, including zero point energy 

corrections (ZPE). In addition, a correction term of 1.9 kcal/mol (at 298 

K) was added when necessary to account for the standard state concen-

tration of 1 M, except for water whose considered concentration was 55.6 

M and the correction term 4.3 kcal/mol.  Unless otherwise mentioned, all 

reported energy values are free energies in solution. 

We estimate the reaction energy barriers from potential energy relaxes 

scan when the transition states cannot be found (or do not exist), applying 

entropic corrections from the minima to compute an estimated free en-

ergy change.  

In the transformation from free energies to electrochemical magnitudes 

we took from the literature the values of 4.28 V for the absolute potential 

of the standard hydrogen electrode18 and-11.72 eV for the free energy of 

the proton in aqueous solution at pH=1.19 The value for the free energy 

of the proton was translated to the experimental pH value by adding a 

correction term of -0.059*pH, following the same procedure as other au-

thors.20  
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 The functional for the DFT calculations was B3LYP-D3 based on the 

calibration carried out in a previous work on related systems,3,21 where its 

performance was compared with that of M06, M06-D3, M06L, M06-2X, 

B97xD and B97D. In order to validate this DFT methodology, we com-

pared the calculated optimized structures with the X-Ray ones. The 

following table summarize all the main metrics of the coordination envi-

ronment for the copper metal center: 

Table S4. Comparison of the main metrics for the X-Ray structure and the DFT 
optimized structure. 

 

 

Moreover, we also validate our methodology with respect to the experi-

mental value for the redox ppotential of the Cu(III)/Cu(II) redox couple 

for both catalysts in water solutions: 

Table S5. Comparison of the experimental and calculated redox potential for the 
Cu(III)/Cu(II) couples at pH 7-. 

 

 

 

METRIC X-RAY (SOLID) 
DFT OPTIMIZED 

(WATER) 

CU-N 1.918 Å, 1.915 Å 1.977 Å, 1.970 Å 

CU-O 1.966 Å, 1.976 Å 2.058 Å, 2.069 Å 

N-CU-N 81.67° 80.63° 

O-CU-O 116.71° 122.62° 

 

E1/2
O (EXP) E1/2

O (CALC) 

1.38 V 1.31 V 
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Redox behavior of [(H2bpk)CuII]2+ 

 

 

 

Figure S34. Pathways for the redox processes of complex [(H2bpk)CuII]2+ .  
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Activation of [(Hbpk)(OH)CuII]2+ catalyst 

 

 

Figure S35. Possible pathways for the oxidative activation of catalyst 
[(Hbpk)(OH)CuII]2+ to generate an active species for the O-O bond formation 
step.  
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Activation of [(H2bpk)(OH)2CuII]2+ catalyst 

 

 

Figure S36. Possible pathways for the oxidative activation of catalyst 
[(H2bpk)(OH)2CuII]2+ to generate an active species for the O-O bond formation 
step. 
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O-O bond formation with [(Hbpk)(OH)CuII]2+ catalyst 

 

Figure S37. Potential energy relaxed scan for catalyst [(Hbpk)(OH)CuII]2+  of 
the O-O reaction coordinate. Red color represents the quartet state while blue 
color indicates the doublet state.  
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O-O bond formation with [(H2bpk)(OH)2CuII]2+ catalyst 

 

Figure S38. Potential energy relaxed scan for catalyst [(H2bpk)(OH)2CuII]2+  of 
the O-O reaction coordinate. Red color represents the quartet state of the (solid) 
initial electronic structure and (dashed) after the first SET, while blue color indi-
cates the doublet state.  
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Figure S39. Potential energy relaxed scan of the intramolecular HO---OH cou-
pling using catalyst [(H2bpk)(OH)2CuII]2+ . 
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Structure and spin density distribution of 2c-3e intemediate 

 

 

 

Figure S40. Optimized structure of the 2c-3e intermediate derived from catalyst 
[(H2bpk)(OH)2CuII]2+ with the spin distribution as white numbers.  
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Chapter 5 

From molecules to solid 

state: Copper-Based Molec-

ular Anodes 

The copper complex  [CuII-mox]2- has been modified to include a 
pyrene functionality resulting in an improvement of the catalytic 
features compared to the unmodified homologue. Moreover, both 
complexes have been used to build molecular anodes by anchoring on 
graphene-based electrodes through π-π stacking. The extended π-
interations exerted by the graphene enhance the catalytic performance 
of both catalysts, reaching one the highest kinetic constants in copper 
WOC.   
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Paper E: Electronic π-Delocalization Boots Catalytic Wa-

ter Oxidation by Cu(II) Molecular Catalysts 

Heterogenized on Graphene Sheets 

Garrido-Barros, P.; Gimbert-Suriñach, C.; Moonshiram, D.; Picón, A.; 

Monge, P.; Batista, V. S.; Llobet, A. J. Am. Chem. Soc. 2017, 139, 12907-

12910. 

 

Abstract 

A molecular water oxidation catalyst based on the copper complex of 

general formula [(Lpy)CuII]2−, 22−, (Lpy is 4-pyrenyl-1,2-phenylenebis(ox-

amidate) ligand) has been rationally designed and prepared to support a 

more extended π-conjugation through its structure in contrast with its 

homologue, the [(L)CuII]2− water oxidation catalyst, 12− (L is o-phe-

nylenebis(oxamidate)). The catalytic performance of both catalysts has 

been comparatively studied in homogeneous phase and in heterogeneous 

phase by π-stacking anchorage to graphene based electrodes. In the ho-

mogeneous system, the electronic perturbation provided by the pyrene 

functionality translates into a 150 mV lower overpotential for 22− with 

respect to 12− and an impressive increase in the kcat from 6 to 128 s−1. 
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Upon anchorage, π-stacking interactions with the graphene sheets pro-

vide further π-delocalization that improves the catalytic performance of 

both catalysts. In this sense, 22− turned out to be the most active catalyst 

due to the double influence of both the pyrene and the graphene, display-

ing an overpotential of 538 mV, a kcat of 540 s−1 and producing more 

than 5300 TONs..  

Contributions: 

Pablo Garrido Barros synthetized and characterized all the compounds 

and electrodes, carried out the electrochemical and spectroscopic analysis, 

performed the computational calculations and prepared the manuscript. 

E.1. Introduction 

Heterogenized water-oxidation catalysis based on earth abundant transi-

tion metals, such as Mn, Fe, Co, Ni and Cu, are highly desired for 

sustainable energy technologies that exploit direct solar water-splitting.1 

An advantage of Heterogenized homogeneous catalysts, when compared 

to heterogeneous catalysts,2 is that they can be improved by ligand design. 

Yet, first-row transition metal complexes pose several challenges. They 

usually get deactivated when immobilized on electrode surfaces and they 

suffer from instability due to hydrolytic behavior and decomposition into 

metal-oxides upon oxidation of the organic ligands.3 However, from an 

engineering perspective, solid-state electroanodes are desired due to the 

simplicity of assembly for potential devices. Therefore, it is imperative to 

understand the influence of the anchoring functionality on the perfor-

mance of the immobilized catalysts to learn how to anchor and stabilize 

functional molecular catalysts on electrode surfaces.4,5 Here, we focus on 

water oxidation by Cu(II) molecular catalysts heterogenized on graphene 

surfaces. 

A family of copper complexes based on tetraamide ligands, such as 

[(L)CuII]2−, 12−, (L = o-phenylenebis(oxamidate)) shown in Figure 1, have 
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been recently reported to be effective at catalyzing oxygen evolution by 

water oxidation at basic pH.6 Remarkably, the rate-determining step (rds) 

was found to involve reversible oxidation of the phenyl ring. Here, we 

explore whether the catalytic properties of these complexes can be ma-

nipulated by electronic perturbation of the tetraamide π- system, either by 

modification of the ligand or by π-stacking to graphitic electrode surfaces. 

 

Figure 1. Structural representation and labeling code of the complexes and the 
hybrid materials used in this work. 

E.2. Results and discussion 

We focus on complex 12− as well as on the analogous catalyst [(Lpy)CuII]2−, 

22− with the 4-pyrenyl-1,2-phenylenebis- (oxamidate) ligand (Lpy)
4− that 

has extended π-conjugation via a pyrene moiety covalently connected to 

the phenyl ring (see SI for a detailed synthetic description) (see Figure 1). 

We analyze the water oxidation catalytic performance both in the homo-

geneous phase and heterogenized on graphene sheets. The pyrene 

anchoring functionality is ideally suited for the comparative analysis be-

cause it allows for strong attachment to graphitic surfaces with molecular-
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surface interactions that are not as much affected by the supporting elec-

trolyte as in the case of oxo-acid type of functionalities.7 

 

Figure 2. (A) Normalized Cu K-edge XANES of 22− and 2− in MeCN. Inset: 
zoom-in of the pre-edge regions. (B) Experimental Fourier transforms of k2-
weighted Cu EXAFS of 22− and 2− in MeCN. Inset. Back Fourier transforms, ex-
perimental results (solid lines) and fitting (dashed lines) k2 χ(k) for 22− and 2− − in 
MeCN. Experimental spectra were calculated for k values of 1.212 to 11.6 Å−1. (C) 
Normalized Cu K-edge XANES of 22−, G-22−, G-2− after controlled potential elec-
trolysis (CPE) at 1.25 V and CuO. (D) Experimental Fourier  transforms of k2-
weighted Cu EXAFS of G-22−after CPE and CuO. Inset: Back Fourier transforms, 
experimental results (solid lines) and fitting (dashed lines) k2 χ(k) for G-22− after 
CPE. Experimental spectra were calculated for k values of 1.212 to 11.6 Å−1.  

The synthesis of complex [(Lpy)CuII]2−, 22−, is straightforward (as de-

scribed in the SI). We characterized complex 22− and its one electron 

oxidized homologue [(Lpy)CuIII]−, 2−, by using analytic, spectroscopic and 

electrochemical techniques as well as DFT calculations. Furthermore, 
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MeCN frozen solutions of 22− and 2− (potentiometrically prepared) were 

studied by X-ray absorption near edge structure (XANES) (Figure 2A) 

and extended X-ray absorption fine structure (EXAFS) spectroscopy 

(Figure 2B).  

Cu K-edge XANES are generally characterized by two peaks along the 

rising maximum edge, namely the 1s→4p main transition along with a 

1s→(4p+shakedown) transition, assigned as the 1s→4p transition with 

concurrent ligand to metal charge transfer (LMCT), as illustrated in Fig-

ure 2A and S16.8 The XANES spectrum of 2− relative to 22−shows a clear 

edge energy shift of 1.5 eV at around half height and 0.65 normalized 

absorption, reflecting the higher ionization energy required for ejecting a 

core 1s electron from a more positively charged ion. The distinct metal-

centered oxidation state of 2− vs 22− is shown by the 1.5 eV energy shift 

in the pre-edge energy range from 8979.4 to 8980.9 eV, corresponding to 

the 1s→3d electronic transition (Figure 2A, S16, Table S1). Moreover, 

the 1s→(4p+shakedown) transition is strikingly more intense than the 

1s→4p main transition in 2− than in 22− as illustrated by XANES K-edge 

fits (Figure S16), providing another indication for the oxidation of Cu(II) 

to Cu(III) as previously demonstrated by Solomon and co-workers and 

X-ray photoelectron studies carried out on Cu(II) and Cu(III) oxides.9,10 

The EXAFS spectra (Figure 2B) further revealed a prominent peak in the 

first coordination sphere corresponding to the Cu−N bond distances. 

Analysis of the first peak resolves the Cu−N distances for 22− and 2− to 

be 1.93 and 1.86 Å respectively, in agreement with the calculated relaxed 

structures from DFT geometry optimization and typical shortened 

Cu−N/O bond lengths expected for oxidized Cu(III) species (Table S2, 

S3, Figure S17). Cu K-edge EXAFS for 12−  and 1−  in MeCN solutions 

were also carried out under identical experimental conditions and yielded 

similar Cu−N bond distances and similar 1.54 eV edge energy shift at half 

height in the XANES spectra as 22−     and 2−  , respectively (Table S2, S3, 

Figure S18). Interestingly, however, a decreased intensity in the pre-edge 
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features of both 12− and 1− compared to 22−  and 2−   was observed, most 

likely due to the more rigorous centrosymmetric environment displayed 

by 12− and 1− (Figure S18A).11 

The UV−vis spectra for 22− and 2− both in MeCN and in aqueous solution 

at pH = 12 are depicted in Figure 3A. The corresponding spectra of 12− 

and 1− are provided in the SI. The Cu(III) spectrum of 2− in MeCN is 

characterized by a small hypsochromic shift with regard to that of Cu(II) 

in 22−. In sharp contrast, the spectrum of 2− in aqueous solution is char-

acterized by a drastic decrease of the intensity of the bands at 340 nm. 

This is consistent with the fact that the first oxidation process occurs at 

the pyrene moiety12 rather than at the Cu center in aqueous solution. This 

striking difference is associated with the increase in π-delocalization due 

to the pyrene functionalized ligand, Lpy, that significantly lowers the oxi-

dation potential at the ligand site13 together with the large stabilization to 

the putatively charged oxidized species in the aqueous environment. 
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Figure 3. (A) UV−vis spectra for 22− and 2− in MeCN and in aqueous solution at 
pH = 12. (B) CV of 12− and 22-. (C) Background corrected CV of G-12− and G-22-. 
Inset shows an enlargement of the 0.2−1.0 V potential range. (D) Tafel plots for 
12−, 22-, G-12− and G-22-. 

Figure 3B−D provides further support for π-delocalization as manifested 

by the redox properties of the complexes. Figure 3B shows the CVs of 

12− and 22- at pH = 12. The anodic scanning of 12− exhibits a first wave at 

0.56 V vs NHE, assigned to the Cu(III)/Cu(II) couple.14 A sharp increase 

in current density at around 1.2 V is associated with the electrocatalytic 

oxidation of water to dioxygen, after formation of the radical cation 

[(L+)CuIII(OH)]−. The first oxidation wave of 22- is cathodically shifted by 

130 mV due to the pyrene oxidation. This ligand-based oxidation was 

further confirmed by electrochemical means on a homologue [(Lpy)Zn]2− 
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complex, because Zn is a redox nonactive metal (see SI Figure S22). The 

electrocatalytic wave is also cathodically shifted by approximately 150 

mV. In this case, the oxidation occurs first at the ligand and subsequently 

at the metal center, concomitant with OH− coordination, as supported by 

DFT calculations of the complete catalytic cycle (Scheme 1). Analogous 

to the mechanism of 12−, the rate-determining step involves ET transfer 

to generate [(Lpy
+)CuIII(OH)]−. 

Scheme 1. Computed Catalytic Cycle for the Catalyst 22-.a 

 

aGreen color represents the reduced form of the metal center and the  ligand 
whereas orange color represents their oxidized forms. The values in red refers to 
calculated oxidation potentials in V and the blue values are free energy in 
kcal·mol−1. 
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The foot of the wave analysis (FOWA) was carried out to further charac-

terize the electrocatalytic phenomenon,15,16 giving a maximum turn over 

frequency (TOFmax) of 6.2 s−1 for 12-. In sharp contrast, the TOFmax of 22- 

increases up to 128 s−1 under the same conditions, manifesting the strong 

influence of π-delocalization over catalysis.  

Complexes 12- and 22- were anchored to graphene by preparing a disper-

sion of 1 mg of graphene (G) per mL of a methanol solution containing 

1 mM 12- or 22-. The dispersion was stirred overnight at RT to afford a 

modified graphene material which was subsequently dropcasted into 

glassy carbon (GC) electrodes. The resulting preparative procedure gen-

erated hybrid materials GC@G@12- (G-12-) and GC@G@22- (G-22-) with 

surface coverages of 0.052 and 0.050 nmol/cm2 respectively, as measured 

from CV experiments (see SI). The anchored species were characterized 

by XANES and EXAFS and were found to have similar bond distances 

and XANES features as those obtained in MeCN frozen solutions of the 

individual molecules (Figures 2C, S19, Tables S2,S3). It is interesting to 

note that the 1s→4p (+shakedown) transition at 8987 eV and 0.5 nor-

malized fluorescence of the immobilized G-22-complex is found at a 

slightly higher energy and intensity than the corresponding transition for 

homogeneous 22-. Further, the CVs of the anchored catalysts displayed in 

Figure 3C show a first oxidation wave at 0.52 V and a huge catalytic wave 

associated with the oxidation of water to dioxygen basically at nearly the 

same overpotential (η) as in the case of 22- in the homogeneous phase. 

The 100 mV anodic shift of the first oxidation couple in heterogeneous 

phase with respect to 22- (0.53 vs 0.43 V) is due to the lower degree of 

solvent stabilization of the anion radical cation in contact with the hydro-

phobic surface of graphene. A FOWA analysis was again carried out to 

quantify the electrocatalytic rates obtaining TOFmax of 320 and 540 s−1 for 

G-12- and G-22-, respectively.  

UNIVERSITAT ROVIRA I VIRGILI 
MOLECULAR WATER OXIDATION CATALYSTS BASED ON COPPER AND NICKEL COMPLEXES 
Pablo Garrido Barros 
 



Chapter 5 
 

321 

V 

These are the highest TOFmax values ever reported for molecular first row 

transition metals (Table S4 in SI),17 demonstrating the importance of elec-

tronic delocalization for fast catalysis even in heterogenized complexes.  

The stability of the anchored molecular catalysts on graphene, G-12- and 

G-22-, was analyzed under catalytic turnover by comparing the anodic 

charge under the first oxidation wave with the charge in the correspond-

ing reduction wave after the electrocatalytic process as shown in the inset 

of Figure 3C. The comparative analysis showed basically no difference, 

revealing the high stability of the molecular species in the graphene sup-

port. Further evidence for high stability was also obtained by X-ray 

absorption spectroscopy (XAS), as discussed below and further illustrated 

in Figure 2C,D, and by Raman spectroscopy (Figure S35). Both tech-

niques unambiguously show the absence of CuO after catalysis. A 

rotating ring disk electrode experiment (RDDE) was carried out for G-12- 

and G-22- (see Figure S37) to characterize the electrocatalytic generation 

of oxygen. A linear sweep voltammetry (LSV) was applied in the disk 

electrode reaching the threshold potential for electrocatalytic water oxi-

dation whereas the ring electrode was set at Eapp = −0.35 V, for the 

reduction of the generated dioxygen. The setup yielded Faradaic efficien-

cies of 23% and 26% for G-12- and G-22-, respectively. In addition, a bulk 

electrolysis experiment was also carried for G-22- deposited on a 1 cm2 

glassy carbon plate as a working electrode and with a Clark electrode 

placed at the headspace of the electrochemical cell for measurement of 

the generated dioxygen in situ (Figure S33). An applied potential Eapp = 

1.25 V for 20 min yielded 0.34 Coulombs and 0.21 μmols of O2, corre-

sponding to a Faradaic efficiency of 24.5%, similar to the calculated value 

based on RDDE experiments. The TONs are >5300 and are the largest 

ever reported for first row transition metal-based molecular catalysts (see 

Table S4 in the SI).17 The low Faradaic efficiency is then likely due to 

graphene oxidation in parallel to water oxidation reaction in basic solu-

tions.7 Nevertheless, the molecular catalyst remains intact after catalysis 
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as evidenced by CV and XAS spectroscopy. Indeed, Figure 2C shows that 

the species after bulk electrolysis are identical to those obtained before 

catalysis. More important, Figure 2C,D shows that no traces of CuO are 

revealed by XANES or EXAFS spectra, suggesting that the molecular G-

22- active catalyst is robust. This observation is extremely important be-

cause most of the molecular catalysts reported so far degrade during the 

catalytic process yielding the corresponding oxides. This is particularly 

acute with WOCs based on first row transition metals.3 Figure 3D shows 

the catalytic Tafel plots for 12−, 22-, G-12− and G-22-. It is interesting to 

observe that the pyrene functionalization of the tetraamide ligand and an-

choring to the graphene support has two beneficial effects: decrease of 

the overpotential (η) for catalytic water oxidation by about 200 mV and 

increase the TOFmax by about 2 orders of magnitude. 

In the homogeneous phase, the role of the pyrene group is to stabilize the 

aromatic ring of the tetraamide moiety via π- delocalization leading to a 

drastic reduction of the overpotential (η) necessary for catalysis. In the 

heterogenized G-12−, a complex without a pyrene functionality, π-delocal-

ization is provided by graphene. Interestingly, G-22-exploits the benefit of 

having both the pyrene moiety and stacking interactions with graphene 

and ends up being the best catalyst. The larger TOFmax of G-22- when 

compared to G-12− suggests that the resulting extended π-delocalization 

due to pyrene−graphene interactions enhances the ET from the catalyst 

to the graphene electrode, supporting ET as the rds of the catalytic pro-

cess. 

E.3. Conclusions 

In conclusion, we have found an extremely rugged and efficient molecular 

WOC based on Cu, a first-row transition metal complex that is efficient 

both in the homogeneous phase and heterogenized on graphene elec-

trodes. Importantly, we demonstrated that the molecular catalyst remains 

intact under catalytic turnover when immobilized on graphene exhibiting 
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no sign of decomposition or formation of CuO during or after catalysis. 

Furthermore, we found that the pyrene functionality not only acts as a 

very robust anchoring unit but also facilitates the electrocatalytic oxida-

tion of water to dioxygen both from a thermodynamic and a kinetic 

perspective. Finally, G-12- and G-22 -are oxidatively robust hybrid materials 

with exceptional catalytic performance for water oxidation, rendering 

them as excellent electroanode candidates for direct solar water-splitting 

devices. 
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E.6. Supporting information 

Experimental details 

Materials 

All the chemicals used in this work were provided by Sigma Aldrich 

Chemical Co and they have been used without further purification. The 

solvents were selected to be HPLC grade and the deionized water was 

obtained with high purity by passing through a nanopore Milli-Q water 

purification system. Aqueous basic buffer solutions at pH 12 were pre-

pared using the necessary amount of dibasic and tribasic sodium 

phosphate salts and adjusting the pH to the desired value so that the final 

ionic strength was 0.1 M. 

Graphene was purchased from Nanostructured & Amorphous Materials, 

Inc. (NanoAmor) with a purity > 98%, 1-3 layers (1-3 nm of thickness), 

2-10 µm of diameter and a specific surface area of about 500-700 m2·g-1. 

GC plate electrodes (GCp) were purchased from HTW, Germany, and 

are made of glassy carbon SIGRADUR® with the dimensions 

20x10x0.18 mm. 

Elemental Analysis and Mass Spectrometry 

Elemental Analysis of the samples was carried out in a Thermo Finnigan 

elemental analyzer Flash 1112 model. 

Exact mass analyses were performed with a micrOTOF mass spectrom-

eter (from Bruker company) using Electrospray ionization technique in 

methanol by direct injection and detecting with positive polarity. 
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Spectroscopic Techniques 

NMR spectroscopy was carried out in a 400 MHz Bruker Advance II 

spectrometer and a Bruker Advance 500 MHz. All the measurements 

were done at room temperature in deuterated DMSO using residual pro-

tons as internal references. 

IR spectrometry was performed using a FTIR-ATR TR0 equipment using 

the pure synthetized compounds as solids. 

UV-vis spectrometry was done using a Cary 50 (Varian) UV-vis spectro-

photometer. 

Resonance Raman Spectroscopy was performed in a Renishaw inVia 

Confocal Reflex RAMAN microscope instrument (Gloucestershire, UK), 

equipped with an Ar ion laser, operating at 514 nm. The spectrometer 

was equipped with a Peltier-cooled CCD detector (-70°C) coupled to a 

Leica DM-2500 microscope. Calibration was carried out with respect to 

Si standard. 

General electrochemistry 

Cyclic Voltammetry (CV), Linear Sweep Voltammetry (LSV), Differential 

Pulse Voltammetry (DPV) and Controlled Potential Electrolysis (CPE) 

experiments were carried out on an IJ-Cambria CHI-660 potentiostat. We 

used a one-compartment three-electrode cell for these measurements. 

Glassy Carbon (GC) disk electrodes (3 mm of diameter) were used as 

working electrodes, Pt wire (unless indicated) as counter electrode, Mer-

cury/Mercurous sulfate (K2SO4 sat.), MSE, as reference electrode for CV, 

LSV and DPV. For CPE, Silver/Silver Chloride (KCl sat.) was used as 

reference and either GC disk or GC plate (as indicated) as working elec-

trode. All redox potentials in the present work are reported versus NHE 

by adding 0.65 V or 0.2 V to the measured potential, depending on 
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whether MSE or Silver/Silver Chloride electrodes were employed respec-

tively. 

GC disk working electrode pretreatment for homogeneous phase analysis 

consisted in polishing with 0.05 μm alumina paste, rinsing after with water 

and acetone and blow-dried finally. GC disk used for catalyst deposition 

were polished with 1, 0.3 and 0.05 μm alumina paste, then rinsed with 

water and sonicated for 15 min in acetonitrile. Finally, they were washed 

with acetone and blow-dried.  

CVs and LSVs were collected at 50 mV·s-1 except other specification. 

DPV were obtained with the following parameters: amplitude= 50 mV, 

step height=4 mV, pulse width= 0.05 s, pulse period= 0.5 s and sampling 

width= 0.0167 s. E1/2 values for the reversible waves were obtained from 

the half potential between the oxidative and reductive peaks, and the one 

for irreversible processes are estimated according to the potential at the 

Imax in DPV measurements. All the measurements were done applying IR 

compensation.  

When acetonitrile was used as organic solvent, tetrabutylammonium hex-

afluorophosphate ([NBu4]PF6) was added in a concentration of 0.1M as 

supporting electrolyte. 

Surface coverage (Γ) calculation 

The surface coverage (Γ) was calculated based on electrochemical meas-

urements according to the following formula: 

𝛤 (𝑚𝑜𝑙 · 𝑐𝑚−2) =
𝑄 

𝑛 · 𝑆 · 𝐹
 (S1) 

Q is the charge under the oxidative peak of the reversible, one-electron 

wave obtained by integration in the CV; n is the number of electrons in-

volved in that oxidation process, which is 1; S is the geometrical surface 

of the electrode that is 0.07 cm-2 or 1 cm-2 for GCd and GCp respectively; 
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finally F is the Faradaic constant. In this work, the average surface cover-

age for each hybrid catalyst was calculated from 5 independent electrodes 

that were subjected to CV under same conditions. The error of the meas-

urements was expressed as the standard deviation among the different 

values obtained. Moreover, the surface coverage of each electrode used 

for different analyses was calculated.   

Rotating Ring Disk Electrode 

Rotating Ring Disk Electrode (RRDE) was used to evaluate the catalytic 

performance of the immobilized catalysts. For this purpose, a RRDE-3A 

Rotating Ring Disk Electrode from IJ-Cambria was employed with an 

electrode composed of a GC disk and a Pt ring electrodes and the follow-

ing diameters: 7 mm outer, 5 mm middle and 4 mm inner. The solution 

is placed in a one-compartment cell with a Teflon top that closes hermet-

ically. The top has a big hole for the RRDE, two smaller holes for 

reference and counter electrodes and finally two more thin holes for ni-

trogen flow tubes, all of them fitting tightly. The electrodes were 

connected to a IJ-Cambria CHI-660 potentiostat for electrochemical 

measurements. Before each experiment, the solution was purged with ni-

trogen during 10 minutes, and then a nitrogen atmosphere was 

maintained during the measurement.  

O2 detection by Clark electrode 

Controlled Potential Electrolysis (CPE) experiments were performed to 

assess the catalytic performance by the immobilized catalyst using a one-

compartment three-electrode cell closed with septum. A GC plate elec-

trode (1 cm2) supporting the graphene loaded with the catalyst was 

employed as large surface working electrode. The Ag/AgCl (KCl sat) 

electrode was used as reference electrode and a Pt mesh as the counter 

electrode. The cell was filled with phosphate buffer solution at pH 12 

with 0.1 M of ionic strength. The CPE was carried out using an IJ-Cam-

bria CHI-660 potentiostat. 
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During the CPE experiment, the oxygen evolution was monitored with 

an OXNP type Clark electrode in gas phase (from Unisense Company). 

This electrode was placed in the cell through the septum without immer-

sion in the solution (gas phase detection from headspace). Once the set 

up was ready, we remove the oxygen by bubbling nitrogen during 30 min. 

Once the Clark signal reached values close to 0 mV, the nitrogen flow 

was stopped and we left the base line to stabilize during 15 min under 

nitrogen atmosphere. The CPE was started as soon as the Oxygen sensor 

signal was stable. The experiment was performed under vigorous stirring. 

Calibration of the oxygen sensor was performed after each experiment by 

adding known amount of pure oxygen into the cell using a gas tight Ham-

ilton syringe. The blank experiment was performed following the same 

procedure with bare graphene on the GC plate. The Faraday efficiency 

was determined according to the total charge passed during the CPE and 

the total amount of generated oxygen by taking into account that water 

oxidation is a 4-e- oxidation process. 

Spectroelectrochemistry 

Spectroelectrochemical study was carried out in an optically transparent 

thin-layer electrochemical (OTTLE) cell (OMNI-CELL SPECAC, by 

Prof. Frantisek Hartl’s group, University of Reading). The optical path 

length of the cell is 0.2 mm. This cell contains two Pt grid electrodes 

(working and counter) and a silver wire pseudo reference electrode (-0.2 

V respect to NHE). To perform the experiment, the cell is filled with less 

than 0.3 ml of a 5 mM catalyst solution in phosphate buffer at pH 12 that 

has a 0.1 M of ionic strength. Special care was taken to avoid gas bubbles 

formation within the cell.  

The OTTLE cell was placed in a Cary 50 (Varian) UV-vis spectropho-

tometer and the electrodes were connected to an IJ-Cambria CHI-660 

potentiostat. Cyclic voltammetry was performed at 2 mV·s-1 to ensure full 

conversion of species during the redox processes. UV-vis spectra were 
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recorded continuously to monitor the changes in the electronic structure 

upon oxidation and successive reduction.  

X-ray Absorption Spectroscopy (XAS) Methods 

X-ray absorption spectra were collected at the Advanced Photon 

Source(APS) at Argonne National Laboratory on bending magnet beam-

line 20 at electron energy 9.0 KeV and average current of 100 mA and at 

the CLAESS beamline at ALBA synchrotron light source The radiation 

at APS was monochromatized by a Si(110) crystal monochromator. The 

intensity of the X-rays were monitored by three ion chambers (I0, I1 and 

I2 ) filled with 80% nitrogen and 20% helium and placed before the sample 

(I0) and after the sample (I1 and I2 ).Cu metal was placed between ion 

chambers I1 and I2 and its absorption was recorded with each scan for 

energy calibration. The samples were kept at 20 K in a He atmosphere at 

ambient pressure. Hybrid materials on glassy carbon surfaces were rec-

orded as fluorescence excitation spectra using a 13-element energy-

resolving detector. All samples were measured in a continuous helium 

flow cryostat in fluorescence mode with a 13-element Germanium detec-

tor. Around 15-20 XAS spectra were collected for each solution sample. 

No more than 5 scans were taken at each sample position at any condi-

tion. Two glassy carbon sheets with sub-monolayer coverage of the 

hybrid materials were on the other hand stacked on top on each other 

and wrapped in kapton tape.  Around 30 XAS spectra of each hybrid 

sample were collected. Care was again taken to measure at several sample 

positions on each sample and no more than 5 scans were taken at each 

sample position.   In order to reduce the risk of sample damage by x-ray 

radiation, 80% flux was used in the defocused mode (beam size 5500 

µm(Horizontal) x 600 µm(Vertical)) and no damage was observed scan 

after scan to any samples. All samples were also protected from the x-ray 

beam during spectrometer movements by a shutter synchronized with the 

scan program. Cu XAS energy was calibrated by the first maxima in the 

second derivative of the copper metal X-ray Absorption Near Edge 
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Structure (XANES) spectrum. The CuO reference compound diluted 

with Boron Nitride (BN) and some Cu hybrid complexes were addition-

ally measured on the CLAESS wiggler beamline at the ALBA synchrotron 

light source whereby the radiation was monochromatized using a pair 

Si(111) crystals. Similarly, two glassy carbon sheets wrapped in kapton 

tape were mounted between PEEK sample holders and measured with a 

circular beam spot size of around 15 µm using a liquid nitrogen cryostat 

cooled down to 77 K. Fluorescence absorption measurements were car-

ried out on hybrid materials at ALBA with an Amptek silicon drift solid 

state detector (XR-100 SDD)1 placed at 90 degrees to the incoming beam. 

The silicon drift detector was placed on a motorized stage allowing the 

sample-detector distance to be easily changed between 30-110 mm1. Solid 

CuO diluted with BN powder was pressed between polypropylene and 

mylar tape, and measured in the cryostat in transmission mode. Around 

3 scans were collected on CuO and around 20-25 scans were collected on 

hybrid materials. Care was once again taken to measure at several posi-

tions on each sample to minimize radiation damage 

Extended X-ray Absorption Fine Structure (EXAFS) Analysis 

Athena software1 was used for data processing. The energy scale for each 

scan was normalized using copper metal standard. Data in energy space 

were pre-edge corrected, normalized, deglitched (if necessary), and back-

ground corrected. The processed data were next converted to the 

photoelectron wave vector (k) space and weighted by k3. The electron 

wave number is defined as , E0 is the energy origin or 

the threshold energy. K-space data were truncated near the zero crossings 

k = 1.212 to 11.6 Å-1 for the solution and the hybrid materials, in Cu 

EXAFS before Fourier transformation. The k-space data were transferred 

into the Artemis Software for curve fitting.  In order to fit the data, the 

Fourier peaks were isolated separately, grouped together, or the entire 

2
1

2

0 ]/)(2[ EEmk 
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(unfiltered) spectrum was used. The individual Fourier peaks were iso-

lated by applying a Hanning window to the first and last 15% of the 

chosen range, leaving the middle 70% untouched. Curve fitting was per-

formed using ab initio-calculated phases and amplitudes from the FEFF82 

program from the University of Washington. Ab initio-calculated phases 

and amplitudes were used in the EXAFS equation 

 

(S2) 

where Nj is the number of atoms in the jth shell; Rj the mean distance be-

tween the absorbing atom and the atoms in the jth shell;  (,k, Rj ) is 

the ab initio amplitude function for shell j, and the Debye-Waller term 

accounts for damping due to static and thermal disorder in absorber-

backscatterer distances. The mean free path term  reflects losses due 

to inelastic scattering, where λj(k), is the electron mean free path. The os-

cillations in the EXAFS spectrum are reflected in the sinusoidal term 

, where is the ab initio phase function for shell j. This 

sinusoidal term shows the direct relation between the frequency of the 

EXAFS oscillations in k-space and the absorber-backscatterer distance. 

S0
2 is an amplitude reduction factor.  

The EXAFS equation3 (Eq. S2) was used to fit the experimental Fourier 

isolated data (q-space) as well as unfiltered data (k-space) and Fourier 

transformed data (R-space) using N, S0
2, E0, R, and 2 as variable param-

eters (Table S4, S5). N refers to the number of coordination atoms 

surrounding Cu for each shell. The quality of fit was evaluated by R-factor 

and the reduced Chi2 value. The deviation in E0 ought to be less than or 

equal to 10 eV. R-factor less than 2% denotes that the fit is good enough3 

whereas R-factor between 2 and 5% denotes that the fit is correct within 

a consistently broad model. The reduced Chi2 value is used to compare 
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fits as more absorber-backscatter shells are included to fit the data.  A 

smaller reduced Chi2 value implies a better fit. Similar results were ob-

tained from fits done in k, q, and R-spaces. 

Synthetic details and electrode preparation 

H4L and [(L)Cu](NMe4)2 

The H4L ligands and the corresponding copper complex [(L)Cu](NMe4)2 

were synthetized according to the procedures described in literature.4,5,6 

H4Lpy and [(Lpy)Cu](NMe4)2 

General scheme 

Scheme 1. Reaction scheme for the synthesis of [(Lpy)Cu]2-. 
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Synthesis of di-tert-butyl (4-bromo-1,2-phenylene)dicarbamate 

 

The product was prepared following a procedure similar to a previously 

reported one7: 2.0 mmols of the starting product (4-bromo-1,2-diamino-

benzene), 5.0 mmols of di-tert-butyl dicarbonate and 1.25 mmols of 

guanidine hydrochloride were mixed and dissolved in 20 mL of ethanol 

(96% v/v). The mixture was set to 35 ºC and left over-night under stir-

ring. Then the ethanol was evaporated and the resulting solid was 

extracted with dichloromethane and filtered. Upon evaporation of di-

chloromethane, a brown solid appears which was washed with hexane 

until filtrate was colorless. 

Yield: 657 mg (1.69 mmols), 77%. 1H-NMR (DMSO-d6): δ [ppm] = 8.57 

(H-NPh, s, 1H) 8.55 (H-N’Ph, s, 1H), 7.69 (H-1, s, 1H), 7.39 (H-2, d, J = 

8.6 Hz), 7.23 (H-3, dd, J1 = 8.6 Hz, J2 = 2.3 Hz), 1.45  ([-O-(C(CH3)3)], s, 

9H), 1.44 ([-O’-(C(CH3)3)], s, 9H). 

Synthesis of di-tert-butyl (4-(pyren-1-yl)-1,2-phenylene)dicarbamate 

 

The synthesis of the pyrene adduct was performed using a Suzuki cou-

pling in similar conditions to reported existing reactions with pyrene-1-
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boronic acid8. 2.5 mmol of di-tert-butyl (4-bromo-1,2-phenylene)dicarba-

mate, 2.5 mmol of pyrene-1-boronic acid and 7.5 mmol of potassium 

carbonate are mixed. After degasing and placing the solids under nitrogen 

atmosphere, 0.25 mmols tetrakis(triphenylphosphine)palladium(0) were 

added also under nitrogen atmosphere. Then 8 mL of distilled water and 

40 mL of THF that had been previously degassed by bubbling nitrogen 

under stirring were added. The reaction mixture was left for 21h at reflux. 

Afterwards, ice cool distilled water was added and the mixture was ex-

tracted with 4x20 mL of DCM. After evaporation of the solvent, the solid 

is purified by liquid chromatography. Silica was used as stationary phased 

and a mixture of hexane/ethylacetate 9:1 was used as mobile phase.  

Yield: 924 mg (1.81 mmols), 72%. IR: ʋmax [cm-1] = 3319 (N-H tension); 

3038 (=C-H tension, aromatic); 2976, 2930 (C-H tension); 1696 (C=O 

tension), 1149 (C-H bending). 1H-NMR (DMSO-d6): δ [ppm] = 8.66 (H-

NPh, s, 1H), 8.63 (H-N’Ph, s, 1H), 8.33 (H-4 or H-5, d, J= 7.9 Hz), 8.30 

(H-8 or H-10, dd, J1 = 7.6 Hz J2 = 1.0 Hz, 1 H), 8.26 (H-8 or H-10, dd, 

J1 = 7.7 Hz J2 = 0.9 Hz, 1 H), )  8.19 - 8.11 (group H-12, H-11, H-7, H-

6, multiple signals, 4H), 8.07 (H-9, dd, J1 = 7.6 Hz, J2 = 7.6 Hz), 7.97 (H-

4 or H-5, d, J = 7.9 Hz, 1H), 7.70 (H-1, broad signal, 1H), 7.66 (H-2, d, J 

= 8.2 Hz, 1H), 7.33 (H-3, dd, J1 = 8.2, J2 = 2.08, 1H), 1.49 (-O’-(C(CH3)3), 

s, 9H), 1.42 (-O’-(C(CH3)3), s, 9H). 13C-NMR (DMSO-d6): δ [ppm] = 

153.97 (-NH-COO-, 1C), 153.90 (-NH-C’OO-, 1C), 136.79 (1C), 136.70 

(1C), 131.36 (1C), 130.77 (1C), 130.65 (1C), 130.53 (1C), 129.79 (1C) 

128.28 (1C), 128.00 (1C), 127.93 (1C), 127.82 (1C), 126.99 (1C), 126.56 

(1C), 125.90 (1C), 125.52 (1C), 125.45 (1C), 124.90 (1C), 124.54 (1C), 

124.41 (1C), 80.40 (-C-(CH3)3, 1C), 80.37 (-C’-(CH3)3, 1C), 28.45 (-C-

(C’H3)3, 3C), 28.41 (-C-(C’H3)3, 3C). 
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Synthesis of 4-(pyren-1-yl)benzene-1,2-diamine 

 

The product was prepared by following an acid hydrolysis similar to what 

had been described in similar reactions.9 1.77 mmols of di-tert-butyl (4-

(pyren-1-yl)-1,2-phenylene)dicarbamate were dissolved in 8 mL mixture 

of HCl (37%, aq) and AcOEt in a 1:3 proportion. The mixture is left 

under stirring at room temperature for 2h. Then distilled water is added 

and the solution is brought to basic pH by adding excess solid K2CO3. 

Then the mixture is extracted with 5x20 mL of AcOEt. The organic phase 

is recovered and solvent is evaporated. 

Yield: 543 mg (1.76 mmols) 99%. HR-MS (ESI positive mode, CH2Cl2): 

m/z [M+H]+ = 309.1398 (Expected: 309.1391). IR: ʋmax [cm-1]= 3394, 

3355, 3308, 3184 (N-H, tension) 3040 (=C-H, tension), 1500 (-C=C- ar-

omatic, tension), 1280 (C-N, tension). 1H-NMR (DMSO-d6): δ [ppm] = 

8.30-8.23 (pyrene, multiple signals, 4H), 8.18 (pyrene, d, J = 9.0 Hz, 1H), 

8.15 (pyrene, d, J = 8.9 Hz, 1H), 8.12 (pyrene, d, J = 9.3 Hz, 1H), 8.05 

(H-4, dd, J1 = 7.6 Hz, J2 = 7.6 Hz), 7.94 (pyrene, d, J = 7.9 Hz, 1H), 6.83 

(H-1, d, J = 1.9 Hz, 1H), 6.73 (H-2, d, J = 7.8 Hz, 1H), 6.67 (H-3, dd, J1 

= 7.8  J2 = 1.9 Hz, 1H), 4.71 (H2-HPh, broad signal, 2H) 4.67 (H2-N’Ph, 

broad signal, 2H). 13C-NMR (DMSO-d6): δ [ppm] = 139.42 (1C), 135.99 

(1C), 135.20 (1C), 131.55 (1C), 131.03 (1C), 129.62 (1C), 129.53 (1C), 

128.85 (1C), 128.02 (1C), 127.91 (1C), 127.17 (1C), 126.67 (C-4, 1C), 

126.00 (1C), 125.33 (1C), 125.28 (1C), 124.98 (1C), 124.80 (1C), 124.73 

(1C) 120.04 (C-3, 1C), 116.94 (C-1, 1C) 114.89 (C-2, 1C).  

 

UNIVERSITAT ROVIRA I VIRGILI 
MOLECULAR WATER OXIDATION CATALYSTS BASED ON COPPER AND NICKEL COMPLEXES 
Pablo Garrido Barros 
 



From molecules to solid state: Copper-based molecular anodes 

338 

V 

Synthesis of N1,N1'-(4-(pyren-1-yl)-1,2-phenylene)bis(N2-methyloxalamide) (H4L) 

 

 

The product was synthesized following a similar two steps procedure to 

the synthesis of ligand H4L that has been previously cited.4-6 Firstly, 0.17 

mmol of the 4-(pyren-1-yl)benzene-1,2-diamine were dissolved in 3 mL 

of THF. Then 0.4 mmol (66 µL) of the ethyl clorooxoacetate were added 

drop wise. The mixture was refluxed for 1h and the appearing solid waste 

was removed by filtration. The resulting solution was evaporated and an 

oil product was formed. Upon addition of distilled water, a white solid 

formed, which was collected by centrifugation. After washing with water 

it was left to dry, to then solubilize it with 6 mL of THF. Afterward, 130 

µL of a 33% wt methylamine solution in MeOH were added and the mix-

ture was left at 70 ºC for 1 h. The appearing solid corresponds to the 

target ligand and is filtrated and washed with THF and ether. 
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Yield: 28 mg (0.05 mmol) 32%. Elemental Analysis calc.(%) for 

C28H22N4O4 ·3.5 H2O: C 62.10, H 5.40, N 10.35, found (%): C 61.83, H 

4.23, N 11.33. HR-MS (ESI positive mode, CH2Cl2): m/z [M+H]+ = 

501.1526 (Expected: 501.1539). IR: ʋmax [cm-1]= 3350, 3297, 3241 (N-H, 

tension), 3040 (=C-H aromatic, tension), 2940 (C-H, tension), 1656, 1681 

(C=O, tension), 1530, 1506, 1409, (C-N, tension). 1H-NMR (DMSO-d6): 

δ [ppm] = 10.73 (H-N-C=O & H-N’-C=O, broad signal, 2H), 9.06-8.99 

(H-N-CH3 & H-N’-CH3, m, 2H) 8.39 (H-4/H-5, d, J = 7.9 Hz, 1H), 8.36-

8.31 (H-8 & H-10, m, 2H), 8.27-8.18 (group H-6, H-7, H-11 and H-12, 

m, 4H), 8.11 (H-9, dd, J1 = 7.6 Hz, J2 = 7.6 Hz), 8.06 (H-4/H-5, d, J = 

7.9 Hz, 1H), 7.91 (H-1, d, J = 2.1 Hz, 1H), 7.87 (H-2, d, J = 8.3 Hz, 1H), 

7.59 (H-3, dd, J1 = 8.3  J2 = 2.1 Hz, 1H), 2.79 (H3-C-NH-, d, J = 4.8 Hz, 

3H), 2.75 (H3-C’-NH-, d, J = 4.8 Hz, 3H). 13C-NMR (DMSO-d6): δ [ppm] 

= 160.61 (C-10/C-11, 1C), 160.56 (C-10/C-11, 1C), 159.37 (C-12/C-13, 

1C), 159.28 (C-12/C-13, 1C), 138.31 (1C), 136.33 (1C), 131.45 (1C), 

130.85 (1C), 130.80 (1C), 130.34 (1C), 129.78 (1C), 129.76 (1C), 128.39 

(C-2, 1C) 128.11 (C-4/C-5, 1C), 128.05 (1C), 127.84 (1C), 127.66 (C-1, 

1C), 126.97 (C-6, 1C), 125.95 (C-3, 1C) 125.58 (C-4/C-5, 1C), 125.52 

(1C), 124.90 (1C), 26.61 (C-8/C-9, 1C), 26.56 (C-8/C-9, 1C). 
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Synthesis of [(Lpy)Cu](NMe4)2 

 

The complex was synthesized by an adaptation of the procedure pre-

sented in the previously mentioned works.4-6 0.05 mmols of the precursor 

ligand were weighted and dispersed in 1 mL of MeOH using a sonicator 

for 15 minutes. The mixture was brought to 70 oC and a tetramethyla-

moniumhydroxide solution was added until a clear solution was formed. 

At that moment, a copper perchlorate hexahydrate solution of 0.05 

mmols in 2 mL of MeOH is prepared and added to the mixture drop wise 

and slowly. After 1 hour, solid formed is removed by filtration and the 

solvent is evaporated until about 1 mL solution.  After addition of 1 mL 

of MeCN more solid was removed by filtration. Finally, the remaining 

solution is treated with acetone and abundant ether which causes a brown 

solid to precipitate. This solid quickly became an oil through absorption 

of atmospheric water. Water was removed at the pump in a heating bath 

at 40 oC and the solid was kept under nitrogen atmosphere. 

Yield 28 mg (0.04 mmols) 80%. Elemental Analysis calc.(%) for 

C36H42CuN6O4 ·5 H2O: C 55.69, H 6.75, N 10.82, found (%): C 55.47, H 

7.44, N 10.59. HR-MS (ESI negative mode, CH2Cl2): m/z [M+H]+ = 

538.0702 (Expected: 538.0708).  
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Synthesis of [(Lpy)Zn]Na2 

 

This complex was synthesized by a different procedure than in the case 

of Cu complex, adapted from a related reported complex.5 0.02 mmols of 

the precursor ligand were weighted and dispersed in 1 mL of wa-

ter/MeOH mixture (1:1) using a sonicator for 15 minutes. The mixture 

was brought to 80 oC and 0.1 ml of a solution containing 1mmol/ml of 

NaOH in water was added. The mixture was stirred at 80ºC for 30 

minutes. Then, a Zn(OTf)2 solution of 0.02 mmols in 0.2 mL of water is 

added to the mixture drop wise and slowly. After 1 day at the same tem-

perature, suspended solid is removed by filtration and the solvent is totally 

evaporated. The obtained solid was dissolved in MeOH to remove unre-

acted ligand by filtration and solvent is again evaporated. Finally, the 

remaining solid was washed with ether and vacuum dried.  

Yield 4.5 mg (0.008 mmols) 40%.  
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Preparation of hybrid materials G-12- and G-22- 

As supporting material, graphene (1-3 layers) deposited onto glassy car-

bon electrodes was used due to its high electroactive surface area and 

conductivity. Graphene is also produced extremely pure, without contain-

ing any catalytically active transition metal that would make the analysis 

harder. The immobilization procedure consists in preparing a 1mM solu-

tion of either 12- or 22- in methanol; then graphene (1-3 layers) in a ratio 

of 1mg/ml solution was added forming a suspension that was sonicated 

for 15 minutes and stirred overnight, allowing enough time for the π-π 

interaction to cover the maximum surface. This new modified material 

was separated from the solution, washed three times with fresh methanol 

and finally dispersed again in the same solvent. The electrode was pre-

pared by dropcasting and evaporating 5 consecutive times 5 µL of that 

suspension on the surface of two kind of glassy carbon electrodes: glassy 

carbon disks (GCd, 0.07 cm2) for most of electrochemical measurements 

and glassy carbon plates (GCp, 1 cm2) for oxygen measurement and XAS 

experiments. The electrodes were finally dried under vacuum for 1 h and 

then were ready for use. They were named GC@G@[(L)Cu]2- and 

GC@G@[(Lpy)Cu]2- (G-12- and G-22- respectively). 

Scheme S2. Schematic representation of the electrode preparation procedure. 
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Spectroscopic characterization 

NMR Spectroscopy 

 

 

Figure S1. 1H-NMR spectrum of di-tert-butyl (4-bromo-1,2-phenylene)dicarba-
mate in DMSO-d6. 
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Figure S2. 1H-NMR spectrum of di-tert-butyl (4-(pyren-1-yl)-1,2-phenylene)di-
carbamate in DMSO-d6. 
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Figure S3. 13C-NMR  spectrum of di-tert-butyl (4-(pyren-1-yl)-1,2-phe-
nylene)dicarbamate in DMSO-d6. 

UNIVERSITAT ROVIRA I VIRGILI 
MOLECULAR WATER OXIDATION CATALYSTS BASED ON COPPER AND NICKEL COMPLEXES 
Pablo Garrido Barros 
 



From molecules to solid state: Copper-based molecular anodes 

346 

V 

 

Figure S4. 1H-NMR spectrum of 4-(pyren-1-yl)benzene-1,2-diamine in DMSO-
d6. 
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Figure S5. 13C-NMR spectrum of 4-(pyren-1-yl)benzene-1,2-diamine in DMSO-
d6.  
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Figure S6. 1H-NMR spectrum of N1,N1'-(4-(pyren-1-yl)-1,2-phenylene)bis(N2-
methyloxalamide) (H4L) in DMSO-d6. 
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Figure S7. 13C-NMR spectrum of N1,N1'-(4-(pyren-1-yl)-1,2-phe-
nylene)bis(N2-methyloxalamide) (H4L) in DMSO-d6. 
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Figure S8. 1H-NMR spectrum of complex [(Lpy)Zn]2- in DMSO-d6 with 1% 
v/v of a solution 1M NaOD in D2O.  
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IR Spectroscopy 

 

Figure S9. IR spectrum of di-tert-butyl (4-(pyren-1-yl)-1,2-phenylene)dicarba-
mate. 

 

Figure S10. IR spectrum of 4-(pyren-1-yl)benzene-1,2-diamine. 
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Figure S11. IR spectrum of N1,N1'-(4-(pyren-1-yl)-1,2-phenylene)bis(N2-
methyloxalamide) (H4L). 
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Uv-vis Spectroscopy 

 

Figure S12. UV-vis spectra for [(Lpy)Cu]2- and [(Lpy)Zn]2- in pH 12 phosphate 
buffer solution (0.1 M of ionic strenght).  
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Spectroelectrochemistry 

 

Figure S13. CVs performed in an OTTLE type spectroelectrochemical cell in 
pH 12 aqueous (left) and acetonitrile (right) solution of 22- (4mM) at 2 mV/s 
with Pt mesh working and counter electrode and a silver wire pseudo reference 
electrode (-0.2 V respect to NHE). 

 

 

Figure S14. UV-vis spectra for 12- recorded during spectroelectrochemistry ex-
periment in an OTTLE type spectroelectrochemical cell in pH 12 aqueous ( left) 
and acetonitrile (right) solution containing 4mM of the catalyst.  
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Figure S15. CVs performed in an OTTLE type spectroelectrochemical cell in 
pH 12 aqueous (left) and acetonitrile (right) solution of 12- (4mM) at 2 mV/s 
with Pt mesh working and counter electrode and a silver wire pseudo reference 
electrode (-0.2 V respect to NHE). 
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X-Ray Absorption Spectroscopy 

 

Figure S16. Results of fits to K-edge data for: A. 22- and B. 2-. Data are shown 
as solid black lines and fits as black dashed lines. Each fit is the sum of the five 
Gaussian peaks and one error function curve (dashed black line) shown. Peak 
assignments are as shown on the plots. Second derivatives of the data are plotted 
over each spectrum. Peak positions are clearly visible in the second derivative 
spectra. The curve fittings for the edge spectra of 22- and 2- are shown below.  

XANES fitting procedure as shown in Figure S16: 

The near edge fit and pre-edge peak fits were carried out with an error function 
and 5 Gaussian functions respectively. The formulas for the error (erf) and 
Gaussian functions(gauss) are as follows: 

Error function: 
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Gaussian function: 







 









)2(

)(
exp

2
2

2

0

w

Ee

w

A

 (S4) 

Where A corresponds to the amplitude; w, the width; E0, the centroid of the 
pre-edge and near edge peaks and e, the x-ray energy. The parameters E0, A and 
w used for each sets of functions for the experimental fits are tabulated below 
(Table S1). 
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Table S1. Sets of functions with parameters used for the experimental XANES 
fits of 22- and 2-. 

 

22- Expt 

Function Centroid Amplitude Width 

Gauss (Pre-edge ) 8979.40 0.150 1.44 

Gauss 8982.60 0.346 1.50 

Gauss (shakedown) 8986.29 1.15 2.00 

Gauss 8989.26 1.53 2.99 

Gauss (main peak) 8992.47 3.32 2.35 

Erf 8995.20 0.580 2.52 

2- Expt. 

Function Centroid Amplitude Width 

Gauss (Pre-edge) 8980.90 0.480 2.00 

Gauss 8983.67 0.403 1.55 

Gauss (shakedown) 8988.39 2.65 2.30 

Gauss 8993.79 4.20 2.58 

Gauss (main peak) 8997.49 1.88 2.00 

Erf 8998.20 0.580 2.52 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
MOLECULAR WATER OXIDATION CATALYSTS BASED ON COPPER AND NICKEL COMPLEXES 
Pablo Garrido Barros 
 



From molecules to solid state: Copper-based molecular anodes 

358 

V 

 

Figure S17. Simulated Fourier transforms using DFT optimized coordinates as 
input of k2-weighted Cu EXAFS of: A. 12- (black) and 1- (red) in acetonitrile, B. 22- 
(black) and 2- (red) in acetonitrile. 

 

 

Figure S18. A, Normalized Cu K-edge XANES of 12- (black) and 1- (red) in 
MeCN. Inset: Zoom-in of the pre-edge regions. B, Experimental Fourier trans-
forms of k2-weighted Cu EXAFS of 22- (black) and 2- (red) in MeCN.  
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Figure S19. Back Fourier transformed experimental (solid lines) and fitted (dashed 
lines)  Re[χ(q)](Å-2 ) for 12- (a), 1- (b), 22- (c), 2- (d), G-22- (e). 

Table S2. EXAFS summary of fits. 

Sample Fit Peak Shell,N R, Å E0 ss.2  

(10-

3) 

R-fac-

tor 

Reduced  

Chi-

square 

12- in CH3CN 1 I Cu-N,4 1.94 0.87 2.8 0.0026 104 

 2 I,II Cu-N,4 

Cu-C,5 

Cu-

C,12 

1.94 

2.75 

3.01 

0.83 3.0 

2.4 

3.7 

0.0046 87 

1-in CH3CN 3 I Cu-N,4 1.88 1.1 3.7 0.0015 35 

 4 I,II Cu-N,4 

Cu-C,6 

Cu-

C,12 

1.88 

2.69 

2.94 

0.75 4.0 

6.1 

3.5 

0.0055 60 
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22- in CH3CN 5 I Cu-N,4 1.94 0.24 3.9 0.0027 26 

 6 I,II Cu-N,4 

Cu-C,5 

Cu-

C,12 

1.93 

2.74 

3.02 

-

0.33 

4.0 

12.1 

1.7 

0.0031 14 

2- in CH3CN 7 I Cu-N,4 1.87 0.33 5.2 0.0079 43 

 8 I,II Cu-N,4 

Cu-C,6 

Cu-

C,12 

1.86 

2.66 

2.92 

-

0.73 

5.5 

11.5 

5.8 

0.0097 24 

G-22- 9 I Cu-N,4 1.96 0.10 3.2 0.0043 52 

 10 I,II Cu-N,4 

Cu-C,6 

Cu-

C,12 

1.95 

2.67 

2.98 

-1.9 3.5 

10.5 

0.1 

0.0038 21 

G-22- after 

controlled po-

tential 

electrolysis 

(CPE) 

 

11 I Cu-N,4 1.95 -0.5 3.5 0.0034 30 

 12 I,II Cu-N,4 

Cu-C,6 

Cu-

C,12 

1.94 

2.65 

3.00 

-3.0 3.6 

13.0 

1.5 

0.0041 17 
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Table S3. Metric parameters obtained for complexes 12-, 1- in MeCN, 2-, 22- in 
MeCN, G-22-, G-22- after CPE.  

Species, Fit num-

ber in Table S2 

EXAFS Shell: 

N x distance in Å 

DFT optimized coordinates for 

the Cu-N atoms within the 1st co-

ordination shell, (Å) 

12- in CH3CN, fit 2 

Cu-N: 4 x 1.94 

Cu-C: 5 x 2.75 

Cu-C: 12 x 3.01 

Cu-N: 1.98, 1.98, 2.01, 2.01 

1- in CH3CN, fit 4 

Cu-N: 4 x 1.88 

Cu-C: 6 x 2.69 

Cu-C: 12 x 2.94 

Cu-N: 1.87, 1.88, 1.91, 1.91 

22- in CH3CN, fit 6 

Cu-N:  4 x 1.93 

Cu-C: 5 x 2.74 

Cu-C: 12 x 3.02 

Cu-N: 1.96, 1.96, 1.98, 1.98 

2- in CH3CN, fit 8 

Cu-N: 4 x 1.86 

Cu-C: 6 x 2.66 

Cu-C: 12 x 2.92 

Cu-N: 1.86, 1.86, 1.90, 1.90 

G-22-, fit 10 

Cu-N: 4 x 1.95 

Cu-C: 6 x 2.67 

Cu-C: 12 x 2.98 

Cu-N: 1.96, 1.96, 1.97, 1.98 

G-2 2- after CPE, fit 

12 

Cu-N: 4 x 1.94 

Cu-C: 6 x 2.65 

Cu-C: 12 x 3.00 
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Electrochemistry 

Homogeneous phase 

 

Figure S20. (Left) CVs of an acetonitrile solution containing 1 mM of 12- (pur-
ple) and 22- (green) with 0.1 M of tetrabutylammonium hexafluorophosphate. 
GC working electrode was employed and the scan rate was set to 100 mV/s. 
(Right) Controlled Potential Electrolysis (CPE) at 0.55 V in 1mM 22- acetonitrile 
solution containing 0.1 M of tetrabutylammonium hexafluorophosphate. Large 
surface Pt mesh was used as both working and counter electrode. A two-com-
partment cell was employed with one compartment containing the complex 
solution and the other a blank solution. Total charged passed and the end of the 
bulk corresponds to a 1 e- oxidation process. 

 

Figure S21. DPVs of 1mM 12- (purple) and 22- (green) in phosphate buffer at 
pH 12 (0.1 M of ionic strength), using GC working electrode and 100 mV/s of 
scan rate. 
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Homologue systems in homogeneous phase 

 

Figure S22. (Left) Background corrected CVs at 100 mV·s -1 and (Right) DPVs 
of [(Lpy)Cu]2- (1mM) and its homologue [(Lpy)Zn]2- (0.5mM) in phosphate buffer 
at pH 12 with 0.1 M of ionic strength. 

The coincidence of the redox potentials at 0.45 V for the Cu and Zn 

complexes indicates that it is a ligand based transformation since Zn is 

redox inactive transition metal. 

 

  

UNIVERSITAT ROVIRA I VIRGILI 
MOLECULAR WATER OXIDATION CATALYSTS BASED ON COPPER AND NICKEL COMPLEXES 
Pablo Garrido Barros 
 



From molecules to solid state: Copper-based molecular anodes 

364 

V 

Heterogeneous phase 

Normalization procedure: 

We found that for similarly prepared electrodes, the charging current (ic) 

of the double-layer was different when doing CVs under the same condi-

tions (Figure S23, left). This means that the nonfaradaic processes were 

different and therefore, they affect in a different way to the intensity of 

the faradaic processes. The ic depends on the scan rate and the capacitance 

of the double-layer according to equation S5. The capacitance of the dou-

ble-layer in turns depends on the specific capacitance of the material, Cs, 

and the electroactive surface area, ECSA, as shown in equation S6. Since 

the scan rate was equal for all the CVs performed it can be considered 

constant, likewise the specific capacitance because we are using same ma-

terials for all the electrodes. Then, the different ECSA of the electrodes 

is the only responsible for the different charging current observed. This 

is mainly due to the relative hydrophobicity of the graphene material, 

since some little air bubbles remained in the electrode-solution interphase 

and lead to different ECSA, i.e. different current densities for homologue 

electrodes. 

𝑖𝑐 = 𝜈 · 𝐶𝐷𝐿 (S5) 

𝐶𝐷𝐿 = 𝐸𝐶𝑆𝐴 · 𝐶𝑠 (S6) 

𝑖𝑐 ∝ 𝐸𝐶𝑆𝐴 (S7) 

Due to the difficulties to control the ECSA as aforementioned, all the 

CVs were normalized in order to counter the differences in the resulting 

charging intensity. For electrodes with equal ECSA, the ic should be sim-

ilar according to equation S7. Then dividing the intensity from the CV of 

each electrode by the value of its charging intensity ic, we can obtain CVs 

with equivalent ic and thus equivalent ECSA, removing the influence of 
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the nonfaradaic processes. The value of the ic was obtained from a non-

faradaic region of the CV, such as the intensity at 0.3 V, far enough from 

the faradaic processes. This normalization procedure finally allows us to 

compare fairly the CVs of different electrodes (Figure S23). 

 

 

Figure S23. (Left) CVs and (Right) normalized CVs at 50mV·s -1 of two different 
G-22- in phosphate buffer at pH 12 with 0.1 M of ionic strength. In the non-
normalized CVs, the charging current and thus the catalytic current are very 
different when comparing both electrodes. After normalization, both electrodes 
present equal charging current and thus very close catalytic activity.  
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Figure S24. (Left) Consecutive CVs of G-22- hybrid electrodes in phosphate 
buffer at pH 12 (0.1 M of ionic strength), at 50 mV·s -1 of scan rate. In the 10th 
scan, a stable peak current is obtained. (Right) CVs of 22- anchored on bare GC 
disk electrode (solid line) and on graphene over GC disk electrode (dotted line) 
in phosphate buffer at pH12 at 50 mV·s1. 

After repeated CVs (10th scans), the anodic and cathodic intensities in-

crease up to a stationary value, indicating that more active material is 

being exposed (Figure S24, left). The reason could come from some re-

organization promoted by the hydrophobic character of the graphene. 

Therefore, before every electrochemical measurement, the electrodes 

were subjected to 10 previous scans. 

Bare glassy carbon electrodes were also used (Figure S24, right) as sup-

porting material by soaking them overnight into a 1mM catalyst solution 

in methanol followed by washing with fresh methanol. The so-prepared 

electrodes showed much less catalyst concentration in comparison with 

the graphene modified electrodes due to its lower surface and thus were 

discarded for further analysis. 
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Figure S25. (Left) CVs of G-22- hybrid electrodes (solid line) and unmodified 
graphene (dashed line) in phosphate buffer at pH 12 (0.1 M of ionic strength), 
at 50 mV/s of scan rate. The green regions represent the charge passed due to 
the oxidation and reduction of the complex on the electrode. (Right) Back-
ground corrected LSV of the hybrid electrode G-22- in the same conditions as 
before. 

 

Figure S26. CVs of G-12- (left) and G-22- (right) hybrid electrodes (solid lines) 
and unmodified graphene (dashed line) in phosphate buffer at pH 12 (0.1 M of 
ionic strength), at 50 mV/s of scan rate. The surface coverage, Γ, was calculated 
from the charge integrated under the background corrected oxidation peak, av-
eraged over five replicates. 
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Figure S27. (Left) CV at 50mV·s-1 of G-12-, G-22- and bare graphene over GC 
in phosphate buffer at pH 12 with 0.1 M of ionic strength. The coverage was 
calculated to be 0.043 and 0.044 nmol·cm -2 for. G-12- and G-22- respectively. 
(Right) Zoom of the reversible wave region from the previous CVs.  

 

Figure S28. DPVs (left) and background subtracted DPVs (right) of G-12-, G-
22- and bare graphene over GC in phosphate buffer at pH 12 with 0.1 M of ionic 
strength. The coverage was calculated to be 0.043 and 0.044 nmol·cm -2 for. G-
12- and G-22- respectively. The insets show a zoom of the one-electron wave 
region. 
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Kinetic analysis by FOWA  

Foot of the wave analysis (FOWA) was applied according to the proce-

dures described in the literature.6,10,11,12 For homogeneous water oxidation 

catalysis, the following expression is deducted for a mechanism where just 

one catalyst molecule is involved and assuming that the rds is the last 

electron-transfer step coupled to a chemical reaction: 

𝑖

𝑖𝑑
= 

𝑛 · 2.24 ·  √
𝑅 · 𝑇
𝐹 · 𝑉 · 𝑘𝑜𝑏𝑠

1 + exp [
𝐹
𝑅 · 𝑇

(𝐸𝑐𝑎𝑡
0 − 𝐸)]

 (S8) 

In the case of heterogeneous water oxidation with equivalent mechanism, 

the equation changes: 

𝑖

𝑞𝑑
= 

𝑘𝑜𝑏𝑠

1 + exp [
𝐹
𝑅 · 𝑇

(𝐸𝑐𝑎𝑡
0 − 𝐸)]

 (S9) 

where E0
cat is the standard potential for the catalysis-initiating redox cou-

ple (calculated from DPV), i is the current intensity, id is the current 

intensity associated with the CuIII/CuII couple, qd is the charge under the 

oxidative peak of the reversible wave CuIII/CuII, n is the number of elec-

trons involved in the catalytic cycle (4 e- in water oxidation), F is the 

faraday constant, v is the scan rate, kobs is defined as “kcat·C
o

A
” where Co

A 

is the concentration of substrate (55.56 M for water), and R is 8.314 J·mol-

1K-1. Background corrected LSVs of the catalysts are shown in Figure S29-

S32. Now, kobs can be extracted from the plot of icat/id vs. 

1/(1+exp[(F/RT)(Eo
cat-E)]).  
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Figure S29. Background corrected LSV of 1mM 12- in phosphate buffer at pH 
12 (0.1 M of ionic strength), using GC working electrode and 100 mV/s of scan 
rate. Foot of the wave region is highlighted in red color. (Right) Foot of the 
wave analysis (FOWA) by plotting icat/id vs. 1/(1+exp[(F/RT)(Eo

cat-E)]).  

 

Figure S30. Background corrected LSV of 1mM 22- in phosphate buffer at pH 
12 (0.1 M of ionic strength), using GC working electrode and 100 mV/s of scan 
rate. Foot of the wave region is highlighted in red color. (Right) Foot of the 
wave analysis (FOWA) by plotting icat/id vs. 1/(1+exp[(F/RT)(Eo

cat-E)]).  
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Figure S31. Background corrected LSV of a hybrid electrode G-12- in phosphate 
buffer at pH 12 (0.1 M of ionic strength), at 50 mV/s of scan rate. Foot of the 
wave region is highlighted in red color. (Right) Foot of the wave analysis 
(FOWA) by plotting icat/id vs. 1/(1+exp[(F/RT)(Eo

cat-E)]). The kinetic constant, 
kcat, was obtained as the average from analysis to 5 different electrodes.  

 

Figure S32. Background corrected LSV of a hybrid electrode G-22- in phosphate 
buffer at pH 12 (0.1 M of ionic strength), at 50 mV/s of scan rate. Foot of the 
wave region is highlighted in red color. (Right) Foot of the wave analysis 
(FOWA) by plotting icat/id vs. 1/(1+exp[(F/RT)(Eo

cat-E)]). The kinetic constant, 
kcat, was obtained as the average from analysis to 5 different electrodes.  
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Bulk electrolysis, O2 evolution and stability 

 

Figure S33. (Left) Oxygen evolution detected by Clark electrode during a CPE 
experiment using a G-22- hybrid electrode (green solid line) and a bare graphene 
GC electrode (dashed black line). A GC plate was used in this case as supporting 
electrode to increase the total amount of catalyst. (Right) CPE at 1.25 V per-
formed during the oxygen evolution experiment in a pH 12 solution using the 
same electrodes, with a Pt mesh counter electrode and an Ag/AgCl reference 
electrode.  

*The inset show a CV of both electrodes in the reversible wave region, and the 
charge under the oxidative peak was used to determine the catalyst loading that 
turned out to be 0.0394 nmol·cm-2. The resulting TON from the measured O2 
was 5388. 
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Figure S34. CPE at 1.25 V (red) and 1.05 V (blue) performed with different G-
22- hybrid electrodes in a pH 12 solution, with a Pt mesh counter electrode and 
a MSE reference electrode. GC disk (3mm) supporting electrode was used for 
the hybrid electrode. At higher potentials, degradation of the electrode appears 
to be faster although higher intensities are reached. 
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Figure S35. Resonance Raman with excitation at 532 nm of CuO solid, G-22- 
and G-22- after CPE recorded at room temperature.  

 

Raman measurements of CuO, hybrid materials G-22- and G-22- after con-

trolled potential electrolysis (at 1.25 V) were carried out and are shown in 

Figure S35. As shown from Raman measurements, the characteristic Ra-

man features of CuO at 312 cm-1, 368 cm-1 and 680 cm-1 were absent in 

the hybrid materials confirming lack of any traces of CuO. Only the Ra-

man peaks at 1409 cm-1 and 1628 cm-1 corresponding to that of graphene 

were observed in G-22- and G-22- after CPE.13  
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RRDE for O2 and H2O2 generation assessment 

The collection efficiency of the RRDE, N, was previously determined by 

using the redox couple Fe(CN)6
4- / Fe(CN)6

3- as well defined one-electron 

transfer process. We prepared a 1 mM solution of the reduced ferrocya-

nide K4Fe(CN)6 in pH 12 solution of phosphate buffer, and it was 

oxidized during a LSV at 10 mV·s-1 in the disk electrode to ferricyanide 

Fe(CN)6
3-. This last was detected at the Pt ring by performing a CPE at 

0.05 V vs NHE to yield the reduction to the initial ferrocyanide. The col-

lection efficiency was determined by the rate between the intensity in the 

ring and the intensity in the disk electrodes when they reach stable values 

at the plateau, iring/idisk. The efficiency was found to be 0.4. Results are 

shown in Figure S36 for 1600 rpm. 

The oxygen reduction reaction was also studied at the Pt ring electrode 

under same experimental conditions to analyze the number of electrons 

involved, according to procedure described in the literature.14 For that, 

three different solutions were prepared at pH 12 with phosphate buffer: 

N2 saturated, air saturated and O2 saturated. Then a LSV at 10 mV·s-1 was 

performed through negative potentials to reduce the dissolved oxygen, 

that was detected by an increase in the ring current. In N2, no current was 

detected as expected, while in air and O2 current increased when the po-

tential was negative enough to reduce the oxygen. In those last cases, the 

current reached an approximately stable signal at -0.6 V vs NHE. With 

these stable current values, the apparent number of electrons (napp) in-

volved in the reduction of oxygen can be calculated from the Levich 

equation for the rotating ring: 

|𝑖𝑟𝑖𝑛𝑔| = 0.62 · 𝑛𝑎𝑝𝑝 · 𝐹 · 𝜋 · (𝑟𝑜
3 − 𝑟𝑚

3)2/3 · 𝐷2/3 · 𝜔1/2

· 𝜈−1/6 · [𝑂2] 
(S10) 

F is the Faraday constant, ro and rm are the outer and middle radio that 

define the Pt geometry, D is the Difussion coefficient for oxygen in water 
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calculated to be 2.52·10-5 cm2·s-1 with Wilke’s correlation,15 ω is the rota-

tion rate in rad·s-1, ν is the kinematic viscosity of the solution that is 

0.0085cm2·s-1 and [O2] is the concentration of oxygen in the solution cal-

culated to be 1.28·10-6 mol·cm-3 for O2 saturated solution and 2.67·10-7 

mol·cm-3 for air saturated solution.16 With all these values, the apparent 

number of electrons involved in the oxygen reduction turned out to be 

ca. 2 at 1600 rpm for both air and oxygen saturated solutions, which 

means reduction of O2 to H2O2 in pH 12 at -0.6 V vs NHE. Those results 

are shown in Figure S36. 

Collection efficiency and napp calculation for O2 evolution 

 

Figure S36. (Left) RRDE experiment using 1 mM of ferrocyanide K4Fe(CN)6 
in pH 12 solution of phosphate buffer (0.1 M ionic strength). In the disk elec-
trode, a LSV was performed at 10 mV·s -1 (blue) to oxidize to ferricyanide 
Fe(CN)6

3-. In the ring electrode, a CPE was performed at 0.05 V to yield the 
reduction to the initial ferrocyanide Fe(CN)6

4- (orange line). The rotation speed 
was 1600 rpm. (Right) LSVs performed at 10 mV·s -1 with the Pt ring electrode 
in three different pH 12 solutions with phosphate buffer: N 2 saturated (black 
dashed line), air saturated (orange solid line) and O 2 saturated (blue solid line). 
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Catalytic O2 evolution by hybrid catalysts G-12- and G-22- 

 

Figure S37.  (Left) LSV of bare graphene (blank), G-12- and G-22- electrodes 
using RRDE in phosphate buffer at pH 12 (0.1 M of ionic strength) under ni-
trogen atmosphere and at 1600 rpm. (Right) Simultaneous oxygen reduction at 
Pt ring of the RRDE by CPE at -0.35 V. 

 

In order to further characterize the catalytic activity toward water oxida-

tion, a Rotating Ring Disk Electrode (RRDE) was used in a similar way 

as described by Jaramillo et al. for heterogeneous catalysts.14 The gra-

phene loaded with the catalyst was deposited on the surface of the glassy 

carbon disk electrode, which was used as the working electrode to per-

form the water oxidation. To evaluate the catalytic activity, the disk 

electrode was subjected to a CV experiment in pH 12 at a slow scan rate 

(10 mV/s) in the potential range from 0.25 V to 1.3 V while the whole 

RRDE was rotating at a constant rate of 1600 rpm under nitrogen atmos-

phere. The oxygen produced in this electrode moves to the surrounding 

Pt ring electrode due to the centrifugal force generated by the rotation. In 

this ring electrode, the oxygen is electrochemically detected by its reduc-

tion applying a constant potential of -0.35 V. The resulting data for both 
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G-12- and G-22- (GC@G@[(L)Cu]2- and  GC@G@[(Lpy)Cu]2- respec-

tively) compare to the blank (GC@G electrode) are represented in Figure 

S37, which shows the normalized intensity passed through the disk (left) 

and ring (right) electrode at every potential. As expected, when the disk 

reaches potentials 0.9-1.0 V, a huge catalytic current is observed leading 

to the formation of molecular oxygen that is then reduced in the ring 

electrode with the subsequent increase in the ring intensity. In the case of 

the blank, no oxygen was detected despite of the increase in the intensity, 

meaning that this current is due to electrode oxidation and degradation. 

From these experiments we can also obtain the Faradaic efficiency of the 

catalysts for water oxidation based on the relation between both disk and 

ring intensities, as shown in the equation below for a 2-e- reduction of 

oxygen to hydrogen peroxide: 

𝜀 =
2 · 𝑖𝑟
𝑖𝑑 · 𝑁

 (S11) 

In this equation, N is the collection efficiency previously calculated, and 

id and ir are the values taken from the top of the peaks, where the intensity 

reaches a pseudo-stationary value before it starts to decrease due to elec-

trode oxidative degradation. The Faradaic efficiency ε was calculated as 

the average of three independent samples and for both systems was prac-

tically equal: 23.36% for G-12- and 25.56% for G-22-. Those values are 

relatively low due to the extensive graphene oxidation in these conditions, 

as has also been observed previously in literature when carbon based elec-

trodes are used.14 This oxidation process could be complete releasing 

CO2 or partial, generating some oxygenated group in the surface of the 

electrode. In both cases, the morphological changes occurring in the sur-

face would lead to catalyst leaching and thus the loose of the activity. The 

similarity in the efficiencies also supports this idea since both values, and 

thus the main degradation pathway, do not seem to depend on the catalyst 

architecture.  
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RDDE calibration for H2O2 detection 

 

Figure S38.  LSV of GC ring electrode in phosphate buffer at pH 12 (0.1 M of 
ionic strength) under nitrogen atmosphere and at 1600 r.p.m. in presence (solid 
blue line) and absence (dashed black line) of 0.1% H2O2. This shows that above 
1.0 V the ring potential can already detect HOOH. 
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H2O2 detection during catalytic water oxidation 

 

Figure S39. LSV of G-22- electrodes using RRDE in phosphate buffer at pH 
12 (0.1 M of ionic strength) under nitrogen atmosphere and at 1600 r.p.m. The 
applied potential at the Ring is 1.45V. Intensity at the disk electrode is repre-
sented as a solid line while the intensity measured at the ring electrode is shown 
with dashed line. Inset shows a zoom at the 0-20 A range. No significant cur-
rent density is observed over the whole potential scan indicating the absence of 
HOOH. This methodology has also been applied to the study of O 2 reduction 
reaction.17 
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Comparison of relevant water oxidation catalysts 

Table S4. Summary of the catalytic performance of some relevant water oxidation 
catalysts based on first row transition metals. 

Entry Catalyst 
Overpo-

tential, V 

TOFmax, 

s-1 

TONs 

(based on 

) 

1tw G-22- 558 540 5300 

26 12- 708 6.2 1947 

318 [(bpy)Cu(OH)2] 750 100 >30 

419 [(6,6′-bobp)Cu(OH2)2] 510 0.4 400 

520 [Cu(pyalk)2] 520-580 0.7 >30 

621 [(dbzbpen)Cu(OH2)]2- 570 13.1 - 

722 [(2GH2−)Cu(H2O)] 620 53 - 

823 [(Py3P)Cu(OH)]- 500 38 19 

924 Fe(ClO4)3 - 9.6 436 

1025 [CoII(qpy)(OH2)2]
2+ - 4 335 

*tw: this work. 
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Computational Study 

Computational Details 

All calculations were carried out with the Gaussian09 (v. D.01) program 

package26. In the present work, we study two different systems, homoge-

neous and heterogeneous, which drastically differ in the number of 

atoms. Therefore, for practical reasons, we need to use two different 

methodologies to calculate them, with a full-QM methodology in the case 

of homogeneous one and a multiscale QM/MM method to study the het-

erogeneous system.  

For the homogeneous system models, we employed Density Functional 

Theory (DFT) methodology. All the calculations were computed using 

B3LYP as functional including Grimme’s empirical dispersion correction 

(B3LYP-D3).27,28 The basis set was split, using 6-31+G(d) for C, N, O 

and H,29 and LANL2TZ(f) for Cu (including the associated pseudopoten-

tial).30,31 The solvation was considered implicitly using the SMD model32, 

with either water (ε = 78.3553) or acetonitrile (ε = 35.688) as solvent as 

specified in the text. All geometry optimizations were computed in solu-

tion without symmetry restrictions. The nature of all computed stationary 

points was confirmed by vibrational frequency calculations. Free energy 

corrections were calculated at 298.15 K and 105 Pa pressure, including 

zero point energy corrections (ZPE). In addition, a correction term of 1.9 

kcal/mol (at 298 K) was added when necessary to account for the stand-

ard state concentration of 1 M. Unless otherwise mentioned, all reported 

energy values are free energies in solution. The stability of the electronic 

states corresponding to the intermediates was confirmed by stability anal-

ysis of the wavefunction. This methodology was already benchmarked in 

previous works providing satisfactory results for this type of systems. 6,36 

Once again, in the new system reported here the agreement with the ex-

perimental potentials is very good, confirming the validity of this 

methodology for copper water oxidation catalysis. 
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For the heterogeneous system, QuantumMechanics/MolecularMechan-

ics (QM/MM) was applied using 2-layer ONIOM to model the anchoring 

architectures of both homogeneous catalysts on the graphene surface. For 

this model, a graphene layer was selected with a size big enough to avoid 

edge interactions with the catalyst (14x14 phenyl groups). The low-level 

layer was modeled with molecular mechanics, using the Universal Force 

Field (UFF), while high-level layer was computed using DFT methodol-

ogy with M06 as functional, which has the dispersion correction 

intrinsically parameterized and was shown to reproduce as well as 

B3LYP-D3 this family of catalysts.6,36 We changed the functional to avoid 

introducing empirical dispersion corrections, which can lead to errors in 

combination with MM calculation. For this layer, we selected as basis sets 

6-31G(d) for C, N, O and H, and LANL2DZ(f) for Cu. We reduced the 

size of the basis set for technical reasons, since the computational cost 

when we introduced diffuse functions was too large for our system. The 

nature of stationary points was also confirmed by frequency analysis, with 

zero imaginary frequencies for all the points computed for heterogeneous 

system.  

The electrochemical magnitudes were calculated from the free energies 

using the values of 4.28 V found in literature for the absolute potential of 

the standard hydrogen electrode33 and-11.72 eV for the free energy of the 

proton in aqueous solution at pH=1.34 The value for the free energy of 

the proton was translated to the experimental pH value of 12 by adding a 

correction term of -0.059*pH, following the same procedure as other au-

thors.35 
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Cu(II) speciation in aqueous solutions at pH=12 

Before calculations of the catalytic cycle intermediates, we analyzed first 

which is the species that is formed in aqueous solution after addition of 

[(Lpy)Cu]2-.  

Through rotation of the C-C bond between phenyl ring and pyrene group 

we can obtain several conformers that may be stable. Then we first scan 

the dihedral angle between those two groups in order to find the most 

stable conformer. We defined that dihedral angle with the atoms high-

lighted in blue shown in Figure S40. The most stable conformer turn out 

to be the one having a dihedral angle of about -130.  

 

Figure S40. Potential energy relaxed scan of the dihedral angle defined by the 
atoms in blue from the catalyst picture. The energies of each species are calcu-
lated in H. The table in the right part show the free energy in H of the four 
minima obtained from the scan. 

Secondly, we analyzed the possibility of water or hydroxo coordination in 

the free apical positions. In all cases, the external molecules ended up 

forming hydrogen bonds with the nitrogen atoms of the ligand, what is 

consistent with the pH independency found for the Cu(II)/Cu(III) redox 

couple as well as with previous results using [(L)CuII]2- catalyst.6,36  
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Electrochemical activation of [(Lpy)Cu]2- catalyst 

As can be deducted from the electrochemistry, water oxidation catalysis 

starts after two consecutive one-electron oxidations, first in the ligand and 

second in the metal center together with a hydroxo group coordination. 

These two redox processes have been computed and the resulting calcu-

lated potentials are in good agreement with the observed experimental 

ones: 0.44 V and 1.15 V vs 0.43 V and 1.06 V respectively (less than ±0.1 

V deviation). The found sequence of oxidation was the same with a first 

oxidation in the ligand and a second oxidation in the metal center. The 

final formed species is a radical-Cu(III) complex with an unpaired elec-

tron highly delocalized mainly through the phenyl, pyrene and hydroxo 

groups and that is active toward O-O bond formation reaction. Probably 

due to the stabilization of the radical species through the delocalized π-

orbitals, the redox potential for the ligand oxidation is much lower than 

in the unsubstituted catalyst 12-. 

Scheme S3. Calculated mechanism for the electrochemical activation of the 
[(Lpy)Cu]2- catalyst. The values for the potentials correspond to the calculated 
ones. 
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Figure S41. (Left) DFT optimized structure for the active species 
[(Lpy)*CuIII(OH)]-, (2-OH)-. (Right) Two different views of the SOMO repre-
sentation for the active species. 

 

O-O bond formation step 

As found for 12- catalyst in previous work,6,36 the mechanism for the O-O 

bond formation in 22- has been found to follow a Single Electron Trans-

fer-Water Nucleophilic Attack (SET-WNA).42 After the generation of 

[(Lpy)*CuIII(OH)]-, (2-OH)-,  this species is highly oxidizing and suscepti-

ble to be attacked by an OH- coming from the solution to the coordinated 

hydroxo group, yielding the O-O bond formation. In order to analyze this 

mechanism, we perform a relaxed scan studying the O-O distance as re-

action coordinate, as shown in Figure S42. 
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Figure S42. Potential energy relaxed scan of the O-O reaction coordinate, 
where energy is expressed in kcal·mol -1. Color code is based on the electronic 
structure of both oxygen centers where red is for closed shell and blue for radical 
species. 
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Figure S43. Free energy profile of the O-O bond formation reaction, where 
energy is expressed in kcal·mol-1. Color code is the same as in previous Figure 
S42, based on the electronic structure of both oxygen centers where red is for 
closed shell and blue for radical species. 
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Figure S44. (Left) DFT optimized structure for the 2c-3e- intermediate (2-
OH···OH)2-. (Right) Calculated spin density for the same species.  

 

 

Figure S45. (Left) Computed transition state for the second single electron 
transfer connecting (2-OH···OH)2- and (2···HO-OH)2-. (Right) Displacement 
vectors of the normal mode associated with the imaginary frequency in the same 
transition state. 
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O2 release and catalyst regeneration 

After the O-O bond step formation, hydrogen peroxide remains hydro-

gen bonded to the catalyst in its initial species form, i.e. with the ligand 

reduced and the metal center in oxidation state II. Then, the release of 

one electron has a potential of 0.51 V so it will takes place at the applied 

potential for water oxidation catalysis (1.08 V). Once again, the ligand is 

the first being oxidized generation a triplet species with the peroxide still 

hydrogen bonded. Last oxidation occurs as a proton coupled electron 

transfer (PCET) at very low potential (0.38 V) which means that is highly 

favored to generate a quartet species. In this case, the electron is released 

from the peroxide species with the concerted loss of a proton. Finally, the 

last proton is highly acidic and its release leads to the initial molecular 

catalyst along with the evolution of oxygen. 

Scheme S4. Calculated mechanism for the third and fourth oxidations that lead 

to the oxygen evolution and catalyst regeneration. The values for the potentials 

and pKa correspond to the calculated ones and are in good agreement with the 

experimental observations. 
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Hybrid catalyst structure 

In order to analyse the anchoring structure of both catalysts on the gra-

phene layers, QMMM calculations were performed (see computational 

details section). Thanks to the square-planar geometry of 12- it is able to 

interact strongly with the graphene layer through π-π interactions, which 

is reflected in the short Cu-Graphene distance of about 3.522 Å. Regard-

ing the coordination environment, changes respect to the structure in 

solution are negligible, with similar Cu-N distances. On the other hand, 

complex 22- undergoes a significant rearrangement upon interaction with 

the graphene layer. Due to the capability of both moieties (the pyrene 

group and the phenyloxamidate) to interact through π-π interactions with 

the graphene layer, there is a bond rotation and the dihedral angle changes 

from -130º in solution to around 0º when deposited on the graphene. 

This allows for higher delocalization of electrons through the whole lig-

and as well as more π orbitals interacting with the graphene. Current 

computational studies are being peformed to further characterize the dif-

ferent oxidation states of the hybrid catalysts and the catalytic properties 

of both. 
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Figure S46. DFT optimized structure of the QMMM model for both hybrid 
catalysts G-12- (A) and G-22- (B).  

 

  

UNIVERSITAT ROVIRA I VIRGILI 
MOLECULAR WATER OXIDATION CATALYSTS BASED ON COPPER AND NICKEL COMPLEXES 
Pablo Garrido Barros 
 



Chapter 5 

393 

V 

 

 

 

References

1 Ravel, B.; Newville, M. J. Synchrotron Rad. 2005, 12, 537-541. 

2 Rehr, J. J.; Albers, R. C. Rev. Mod. Phys. 2000, 72, 621-654. 

3 Koningsberger, D. C.; Prins, R. X Ray Absorption: Principles, Applications, 

Techniques of EXAFS, SEXAFS and XANES; John Wiley & Sons: New York, 

1988. 

4Stumpf, H. O.; Pei, Y.; Kahn, O.; Sletten, J.; Renard, J. P. J. Am. Chem. Soc. 

1993, 115, 6738. 

5Ruiz, R.; Surville-Barland, C.; Aukauloo, A.; Anxolabehere-Mallart, E.; Jour-

naux, Y.; Cano, J.; Carmen Munoz, M. J. Chem. Soc., Dalton Trans. 1997, 745-752. 

6 Garrido-Barros, P.; Funes-Ardoiz, I.; Drouet, S.; Benet-Buchholz, J.; Maseras, 

F.; Llobet, A. J. Am. Chem. Soc. 2015, 137, 6758-6761. 

7 Jahani, F.; Tajbakhsh, M.; Golchoubian, H.; Khaksar, S. Tetrahedron Lett. 2011, 

52, 1260-1264. 

8 Kwon, J.; Hong, J.-P.; Lee, S.; Hong, J.-I. New J. Chem. 2013, 37, 2881–2887. 

9 Lebedeva, M. A.; Chamberlain, T. W.; Davies, E. S.; Mancel, D.; Thomas, B. 

E.; Suyetin, M.; Bichoutskaia, E.; Schröder, M.; Khlobystov, A. N. Chem.Eur. J. 

2013, 19, 11999–12008 

10 Costentin, C.; Savéant, J.-M. ChemElectroChem 2014, 1, 1226-1236. 

11 Rountree, E. S.; McCarthy, B. D.; Eisenhart, T. T.; Dempsey, J. L. Inorg. Chem. 

2014, 53, 9983-10002. 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
MOLECULAR WATER OXIDATION CATALYSTS BASED ON COPPER AND NICKEL COMPLEXES 
Pablo Garrido Barros 
 



 

394 

 

12 Matheu, R.; Neudeck, S.; Meyer, F.; Sala, X.; Llobet, A. ChemSusChem 2016, 

9, 3361−3369 

13 Kaniyoor, A.; Ramaprabhu, S., AIP Adv., 2012, 2,  032183. 

14 McCrory, C. C. L.; Jung, S. H.; Peters, J. C.; Jaramillo, T. F. J. Am. Chem. Soc. 

2013, 135, 16977−16987. 

15 Wilke, C. R.; Chang, P., AIChE J, 1955, 63, 264-270. 

16 Tromans, D., Hydrometallurgy, 1998, 50, 279–296. 

17 Rigsby, M. L., Wasylenko, D. J., Pegis, M. L., Mayer, J. M., J. Am. Chem. Soc., 

2015, 137, 4296–4299. 

18 Barnett, S. M.; Goldberg, K. I.; Mayer, J. M. Nat. Chem. 2012, 4, 498-502. 

19 Zhang, T.; Wang, C.; Liu, S.; Wang, J.-L.; Lin, W. J. Am. Chem. Soc. 2014, 136, 

273-281. 

20 Fisher, K. J.; Materna, K. L.; Mercado, B. Q.; Crabtree, R. H.; Brudvig, G. W. 

ACS Catal. 2017, 7, 3384-3387. 

21 Shen, J.; Zhang, P.; Jiang, J.; Sun, L. Chem. Commun. 2017, 53, 4374-4377. 

22 Pap, J. S.; Szyrwiel, L.; Sranko, D.; Kerner, Z.; Setner, B.; Szewczuk, Z.; Ma-

linka, W. Chem. Commun. 2015, 51, 6322-6324. 

23 Coggins, M. K.; Zhang, M.-T.; Chen, Z.; Song, N.; Meyer, T. J. Angew. Chem. 

Int. Ed. 2014, 53, 12226-12230. 

24 Chen, G.; Chen, L.; Ng, S.-M.; Man, W.-L.; Lau, T.-C. Angew. Chem. Int. Ed. 

2013, 52, 1789-1791. 

25 Leung, C.-F.; Ng, S.-M.; Ko, C.-C,; Man, W.-L.; Wu, J.; Chen, L.; Lau, T.-C. 

Energy Environ. Sci. 2012, 5, 7903-7907. 

26 Gaussian 09, Revision D.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; 

Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Men-

nucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; 

 

UNIVERSITAT ROVIRA I VIRGILI 
MOLECULAR WATER OXIDATION CATALYSTS BASED ON COPPER AND NICKEL COMPLEXES 
Pablo Garrido Barros 
 



 

395 

 

Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; 

Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; 

Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, 

F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Ko-

bayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, 

S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, 

J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; 

Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. 

L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, 

J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; 

Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009. 

27 Becke, A.D., J. Chem. Phys.1993, 98, 5648-5652. 

28 Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H.,  J. Chem. Phys.2010, 132, 

154104. 

29 a) Hehre, W.J.; Ditchfield, R.; Pople, J.A.,  J. Chem. Phys. 1972, 56, 2257. b) 

Hariharan, P.C.; Pople, J.A., Theoret. ChimicaActa 1973, 28, 213-222. c) Francl, 

M.M.; Petro, W.J.; Hehre, W.J.; Binkley, J.S.; Gordon, M.S.; DeFrees, D.J.; 

Pople, J.A., J. Chem. Phys. 1982, 77, 3654. 

30 a) Hay, P. J.; Wadt, W. R., J. Chem. Phys.1985, 82, 270. b) Hay, P. J.; Wadt, W. 

R., J. Chem. Phys.1985, 82, 284. c) Hay, P. J.; Wadt, W. R., J. Chem. Phys.1985, 82, 

299. 

31Taken from EMSL Basis set Library: a) Felier, D., J. Comp. Chem.1996, 17, 

1571-1586. b) Schuchardt, K.L.; Didier, B.T.; Elsethagen, T.; Sun, L.; 

Gurumoorthi, V.; Chase, J.; Li, J.; Windus, T.L., J. Chem. Inf. Model., 2007, 47, 

1045-1052. 

32 Marenich, S. A. V.; Cramer, C. J.; Truhlar, D. G., J. Phys. Chem. B, 2009, 113, 

6378-6396. 

33a) Lewis, A.; Bumpus, J. A.; Truhlar, D. G.; Cramer, C. J., J. Chem. Ed. 2004, 

81, 596-604. b)  Lewis, A.; Bumpus, J. A.; Truhlar, D. G.; Cramer, C. J., J. Chem. 

Ed. 2007, 84, 934. 

 

UNIVERSITAT ROVIRA I VIRGILI 
MOLECULAR WATER OXIDATION CATALYSTS BASED ON COPPER AND NICKEL COMPLEXES 
Pablo Garrido Barros 
 



 

396 

 

34 Marenich, A. V.; Majunmdar, A.; Lenz, M.; Cramer, C. J.; Truhlar, D. G., 

Angew. Chem. Int. Ed. 2012, 51, 12810-12814. 

35 Winikoff, S.G.; Cramer, C.J.; Catal. Sci. Technol. 2014, 4, 2484-2489. 

36 Funes-Ardoiz, I.; Garrido-Barros, P.; Llobet, A.; Maseras, F. ACS Catal. 2017, 

7, 1712−1719. 

UNIVERSITAT ROVIRA I VIRGILI 
MOLECULAR WATER OXIDATION CATALYSTS BASED ON COPPER AND NICKEL COMPLEXES 
Pablo Garrido Barros 
 



 

397 

Chapter 6 

An extension to Nickel 

Motivated by the lack of information in nickel-based mol-WOC, the 
previous strategies using copper complexes are applied to the 
development of nickel catalysts. The complex  [Ni II-mox]2- is 
synthetized and its catlytic performance toward water oxidation is 
evaluated. This system allows to study the factors determining the low 
stability of molecular nickel complexes in aqueous solutions under 
oxidative conditions and thus, their opportunities as molecular 
catalysts or precursor of active nickel oxides   

UNIVERSITAT ROVIRA I VIRGILI 
MOLECULAR WATER OXIDATION CATALYSTS BASED ON COPPER AND NICKEL COMPLEXES 
Pablo Garrido Barros 
 



An extension to Nickel 
 

398 

VI 

6.1. Paper F: Can Ni complexes behave as molecular wa-

ter oxidation catalysts? 

Garrido-Barros, P.; Grau, S.; Drouet, S.; Benet- Buchholz, J; Gimbert-

Suriñach, C.; Llobet, A. 2018, submitted. 

 

Abstract 

The present report uncovers the borderline between homogeneous and 

heterogeneous water oxidation catalysis using a family of Ni complexes 

containing oxamidate anionic type of ligands. In particular, the Ni com-

plex [(L1)NiII]2- (12-; L1 = o-phenylenebis(oxamidate)) and its modified 

analogues [(L2)NiII]2- (22- ;L2 = 4,5-dimethyl-1,2-phenylenebis(oxamidate)) 

and [(L3)NiII]2- (32- ;L2 = 4-methoxy-1,2-phenylenebis(oxamidate)) have 

been prepared and evaluated as molecular water oxidation catalysts at 

basic pH. Their redox features have been analyzed by mean of electro-

chemical measurements revealing a crucial involvement of the ligand in 

the electron transfer processes. Moreover, the stability of those com-

plexes has been assessed both in solution and immobilized on graphene-

based electrodes at different potentials and pHs. The degradation of the 

molecular species generates a NiOx layer, whose stability and activity as 

water oxidation catalyst has also been stablished. Electrochemical meth-

ods, together with surface characterization techniques, have shown the 
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complex mechanistic scenario in water oxidation catalyzed by this family 

of Ni complexes, which consists of the coexistence of two catalytic mech-

anism: a homogeneous pathway driven by the molecular complex and a 

heterogeneous pathway based on NiOx. The electronic perturbations ex-

erted through the ligand framework has manifested a strong influence 

over the stability of the molecular species under turnover conditions. Fi-

nally, 12- has been used as a molecular precursor for the formation of 

NiFeOx anodes that behave as extremely powerful water oxidation an-

odes.   

Contributions: 

Pablo Garrido Barros synthetized and characterized all the compounds 

and electrodes, carried out the electrochemical and spectroscopic analysis, 

performed the computational calculations and prepared the manuscript. 

F.1. Introduction 

Water oxidation to molecular dioxygen is not only an essential reaction in 

biology, due to its implications in the natural photosynthesis,1 but also a 

key step in the development of new sustainable energy schemes based on 

artificial photosynthesis.2,3,4 In this context, molecular complexes based 

on first row transition metals (FR-TM) are attracting increasing attention 

as inexpensive homogeneous water oxiation catalysts (WOCs) that can 

potentially operate close to the thermodynamic limit.5,6,7  

One of the attracting features of molecular WOCs is the existence of a 

synthetic versatility that thanks to the ligand variation allows to prepare a 

large variety of complexes where electronic, steric and supramplecular ef-

fects can be finely tuned. In addition there is a wide range of 

spectroscopic techniques that allows a deep characterization of molecular 

species including reactive intermediates. Thus molecular science is an 

ideal platform to study the reaction mechanism that operate in the water 
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oxidation reaction as well as the factors that determine their activity and 

robustness.8 

On the other hand, water oxidation requires a thermodynamic potential 

of 1.23 V vs NHE at pH 0, plus an additional overpotential to overcome 

the kinetic barriers. This high potential value can promote total or partial 

ligand oxidation as a parallel undesired deactivation reactions.9,10,11,12 Be-

sides, the relatively high metal-ligand bond lability of FR-TM complexes 

can lead to partial or total ligand substitution reactions by solvent mole-

cules. The latter is favored at extreme pH values.13,14,15,16,17 This can foster 

the subsequent formation of metal oxides that can be responsible for the 

observed water oxidation catalysis. Therefore, deeper understanding of 

all these processes is essential to establish the real catalytic species that 

operate in a particular system and thus to obtain meaningful information 

for the design of more stable and active molecular catalyst. 

Stability considerations are of special importance in Ni based molecular 

complexes due to its high affinity to form Ni oxide in aqueous solution 

upon oxidation.18,19,20,21 True homogeneous catalysis based on Ni com-

plexes are rare and thus is a relatively unexplored field.22,23,24 
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Figure 1. (A) Schematic representation and labeling of the homogeneous catalysts 
used in this work. (B) ORTEP figure of complexes 22- and 32-. (C) HOMO orbital 
of the copper and nickel complexes 42- and 12- calculated by Natural Orbital (NO) 
analysis. 

In order to decipher the narrow line between homogeneous and het-

erogeneous catalysis using molecular Ni complexes, we have chosen 

the recently reported [(L1)NiII]2- (L1 = o-phenylenebis(oxamidate)) 

complex, 12-,19 and its aryl substituted analogues [(L2)NiII]2- (L2 = 4,5-
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dimethyl-1,2-phenylenebis(oxamidate)), 22-, and [(L3)NiII]2- (L2 = 4-

methoxy-1,2-phenylenebis(oxamidate)), 32- reported here for the first 

time (See Figure 1 for a drawn structure and crystal structure). We 

study in depth the catalytic pathways available to this family of com-

plexes together with the deactivation paths that can lead to the 

formation of NiOx. 

F.2. Results and discussion 

F.2.1 Synthesis, structure and redox properties of 12--32- 

We have prepared and characterized  complexes 12-, 22-  and 32- in Figure 

1A following similar procedures described in the literature (See SI).23,25 As 

already reported for 12-, complexes 22-  and 32- with Me and MeO substi-

tution at the aromatic ring respectively, also feature a pseudo square-

planar geometry typical of a low spin d8 Ni(II) complex as shown in their 

crystal structure presented in Figure 1B. The Ni-N distances range from 

1.852 to 1.918 Å and are slightly shorter than those of the analogous cop-

per complexes,25 reflecting the strength and stability of the Nickel-

amidate bonds.  

 

Figure 2. (A) CVs of 1 mM 12- in aqueous solutions at different pH values. The 
inset figure shows the ratio between the reductive and oxidative charge (Q III/II and 
QII/III respectively) under the NiII/NiIII redox wave as function of the pH. (B) CVs 
of a solution containing 1mM of 12-, 22- and 32- at pH 11. 
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Figure 2A shows the electrochemical behavior of 12- in basic aqueous so-

lutions from pH 10 to 13. In this pH range, this complex is stable in 

solution over time as demonstrated by the lack of changes in its electro-

chemical performance (Figure S4), but it undergoes demetallation due to 

the protonation of the amidate groups at pHs lower than 10. The cyclic 

voltammetry (CV) and differential pulse voltammetry (DPV) (Figure 2 

and S3) reveal a first electrochemically quasi-reversible, chemically re-

versible metal based wave at 0.67 V due to the pH-independent 

Ni(III)/Ni(II) redox couple, to form [(L1)NiIII]-. A UV-vis spectrum of 

the oxidized complex (Figure S5) confirms the metal based assignment 

and generation of the Ni(III) species at this pH based on the similarity 

with that obtained for the same complex in dry acetonitrile reported in 

the literature.26 

At pH 10-13 a second oxidation process due to the electrocatytic oxida-

tion of H2O to O2 is observed. The second oxidation takes place mainly 

at the aromatic ring generating a phenyl radical cation with concomitant 

coordination of a hydroxo group to form [(L1)·NiIII(OH)]- (see Scheme 1, 

bottom). The latter species is responsible for the O-O bond formation 

and final oxygen release as shown in Scheme 1. A Foot-of-the-wave anal-

ysis (FOWA) of the catalytic current27 allows us to calculate the observed 

kinetic constant for water oxidation resulting in a value around 0.20 s-1 

(Figure S7). This is slightly lower than the 3.56 s-1 obtained for the analo-

gous copper complex, manifesting the lower reactivity of the Ni catalyst 

that could be partly associated to the lower driving force due to the de-

crease in overpotential of the latter (500 mV for Ni vs 700 mV for Cu at 

pH = 12).  
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Scheme 1. Catalytic cycle for water oxidation by complex 12- and mechanism for 
deactivation of complex 12- and formation of NiOx. 

Similarly to 12-, complexes 22- and 32- feature two oxidation processes as 

shown in Figure 2. In both cases, the electronic perturbations induced by 

the electron-donor substituents in the phenyl ring lead to a decrease in 

the overpotential for water oxidation of around 170 and 220 mV respec-

tively, supporting the assignment of a second ligand-based oxidation. In 

contrast to the analogous copper complexes, these modifications have 

also an influence on the first reversible wave that are cathodically shifted 

by approximately 100 mV. Since the metal coordination environment is 

practically identical in the 3 complexes, the change in the III/II potential 

can be attributed to a significant ligand contribution at their HOMO or-

bitals as shown by DFT calculations as opposed to the copper analogue 

[(L1)Cu]2-, 42- (Figure 1 and S30).28 
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One of the most interesting features of catalyst 12- arises from the revers-

ibility observed in the first redox wave after going through the catalytic 

process, which is very unusual in Ni-based complexes proposed as water 

oxidation catalysts.22,24,29,30,31,32 Reversibility of precatalytic waves is an im-

portant indicator of robustness since it implies that the coordination 

environment in the metal center remains intact after catalytic turnovers. 

Regarding the substituted analogous, complex 22- also features similar re-

versible behavior while 32- experiences a significant decrease in the 

reduction wave during the cathodic scan after the catalytic process. Simi-

lar results were obtained in the related family of copper complexes and 

point out to the presence of competing deactivation reaction possibly in-

volving the reactive phenyl radical cation.25 

F.2.2. Molecular Catalyst stability in Homogeneous Phase 

F.2.2.1. Stability of the one electron oxidized derivative [(L1)NiIII]-, 1- 

The stability of the oxidized species generated from the Ni(II) complex 

12-, was monitored electrochemically at the pH range 10-13. From pH 10 

to 12, the Ni(III)/Ni(II) redox wave for 12-, shows a reversible behavior 

at 25-200 mV·s-1 scan rates within the 0.25-0.85 V range where the cor-

responding Ni(III) complex is generated. Further, the intensity of the 

oxidative peak depends linearly with the square root of the scan rate, as 

expected for a diffusion controlled process from the Randles–Sevcik 

equation. However, at pH 13 the reversibility decreases with the scan rate 

and the oxidative current shows an important deviation of the Randles–

Sevcik equation (see Figures S8-S9). 

This result reveals that while the Ni(III) species 1-, is fully stable within 

the pH 10-12 within the CV timescales, at pH = 13, it likely undergoes 

progressive hydroxo substitution as proposed in equations 1-4 and graph-

ically depicted in Scheme 1. 
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[NiIII(L1-ƙ-N4)]- + OH- ↔ [NiIII(L1-ƙ-N3)(OH)]2-                     (1) 

[NiIII(L1-ƙ-N3)(OH)]2- + OH- ↔ [NiIII(L1-ƙ-N2)(OH)2]
3-           (2)  

[NiIII(L1-ƙ-N2)(OH)2]
3-  + OH- ↔ [NiIII(L1-ƙ-N1)(OH)3]

4-         (3) 

[NiIII(L1-ƙ-N1)(OH)3]
4- + OH- ↔ [NiIII(OH)4]

- +  L14-              (4) 

F.2.2.2. Formation of ligand radical cation [(L1)·NiIII(OH)]- and catalysis 

at different pHs 

The stability of complex 12- was also evaluated during electrocatalytic pro-

cess at pH 10-13 by monitoring the ratio between the charge under the 

reductive and oxidative waves (QIII/II/QII/III) calculated by integration of 

the NiII/NiIII redox wave of the CVs (See inset in Figure 2). This ratio is 

very close to 1 when working at pH 10 but drastically drops at higher pH, 

suggesting an important decrease in the stability of the complex during 

catalysis turnover at higher pH. 

Here besides the potential substitution processes described in equations 

1-4 that can also occur in this doubly oxidized species, there is an addi-

tional pathway for degradation that involves the phenyl radical cation 

species present in [(L1)·NiIII(OH)]-, 1(OH)- . Indeed, this species will be 

highly reactive towards the hydroxylation of the aromatic ring with the 

OH- present in the medium that in turn is competing with the O-O bond 

formation that drives the desired catalytic process (Scheme 1, bottom 

right). The relative ratios of these two reactions will dictate the stability 

of the initial complex and thus its ruggedness as a water oxidation catalyst. 
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Figure 3. (A) 100 consecutive CVs in an aqueous solution containing 1 mM of 12- 
at pH 10 from 0.25 V to 1.25 V. (B) Evolution of the intensity at 0.70 V and 1.20 
V with the consecutive cycles. (C) 100 consecutive CVs in an aqueous solution 
containing 1 mM of 12- at pH 10 from 0.25 V to 1.55 V. (D) Evolution of the 
intensity at 0.70 V, 1.20 V and 1.55 V with the consecutive cycles  

The stability of 12- as catalyst at longer time scales was monitored via re-

petitive CVs at a scan rate of 100 mV/s in the potential range from 0.25 

to 1.25 V for 100 consecutive scans in the pH range 10-14. Figure 3A 

shows that at pH =10 for the first cycle the degree of degradation is prac-

tically non-existent as judged by the reversibility of the III/II couple. 

However, upon repetitive cycles, Figure 3B shows that the intensity of 

the anodic peak decreases by half after 10 cycles as is also the case of the 

catalytic current (see green and purple lines, respectively). This decrease 
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continues in the following cycles suggesting the presence of a deactivation 

pathway that generates inactive species. Figure 3C illustrates the effect of 

increasing the anodic potential up to 1.50 V. In this potential range, even 

after the first cycle the returning cathodic wave of the III/II couple re-

duces its intensity by half with regards to its anodic counterpart. Further 

cycling shows the typical waves associated with the formation of 

NiOx/NiOOHx that remain attached at the surface of the electrode: the 

Ni(II)/Ni(III) at Ea≈ 1.2 V and the catalytic wave starting at Ecat≈1.45 V. 

Thus under these conditions it seems that the homogeneous catalysts is 

competing with two other reactions: one that deactivates the catalyst to-

wards the formation of aromatic hydroxylated species that have no water 

oxidation activity and a second one that triggers the formation of 

NiOx/NiOOHx that absorb at the surface of the electrode and that is 

the active catalyst towards the water oxidation reaction at higher potential 

than the molecular catalyst. 
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Figure 4. (A) 100 consecutive CVs in an aqueous solution containing 1 mM of 12- 
at pH 11. (B) Evolution of the intensity at 0.75 V and 1.03 V with the consecutive 
cycles. (C) 100 consecutive CVs in an aqueous solution containing 1 mM of 12- at 
pH 12. (D) Evolution of the intensity at 0.96 V and 1.25 V with the consecutive 
cycles. (E) 100 consecutive CVs in an aqueous solution containing 1 mM of 12- at 
pH 13. (B) Evolution of the intensity at 0.80 V and 1.25 V with the consecutive 
cycles. 
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At pH = 11 the repetitive CVs displayed in Figure 4A and analyzed in 

Figure 4B, show that the wave associated with NiOx/NiOOHx (intensity 

at 1.03 V represented as the purple line) increases as the III/II wave of 

the complex (intensity at 0.75 V, green line) decreases suggesting that the 

dominant pathway here is the formation of the NiOx/NiOOHx. Inter-

estingly the amount of deposited oxide increases mainly linearly up to 25 

cycles and then slightly levels off suggesting a saturation at the surface of 

the electrode. The catalytic activity of this NiOx/NiOOHx lies at higher 

potentials that are not represented in the CV scale. 

At pH = 12, the formation of the NiOx/NiOOx takes place readily re-

flecting the high impact of increasing the pH (Figure 4C). At the initial 

cycles the activity of the formed NiOx, represented by the intensity at 

1.25 V (orange line), lies at similar potential as the catalytic wave of the 

molecular complex and grows linearly while the amount of deposited 

NiOx remain low as can be inferred from the current intensity at 0.96 V 

(purple line). After an induction period of around 20 cycles, the deposi-

tion of NiOx increases exponentially while the activity reaches a plateau. 

After 40 cycles the deposited NiOx starts to redisolve as reflected by the 

strong decay in the intensity whereas the activity keeps approximately 

constant. Finally, at pH 13, Figures 3 E,F, a similar behavior is found 

except for the activity of the NiOx that after reaching 40 cycles, decreases 

together with the amount of deposited NiOx. These last results at pH > 

12 indicate that, beside the NiOx/NiOOHx formation, there is a second 

process that dissolves that material in the solution taking place at longer 

timescale. 

F.2.2.3. The impact of the applied potential (Eapp) 

The stability of 12- was also analyzed as a function of the applied potential 

using potentiostatic methodologies. Controlled potential electrolysis 

(CPE) experiments were first conducted at a lower potential of 0.85 V 
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(Figure S11) where just the one electron oxidized Ni(III) species 1- is gen-

erated. At pH < 12 the molecular complex was stable against degradation 

and formation of NiOx/NiOOHx. On the other hand, NiOx/NiOOHx 

was confirmed after CPE at pH 12-13 by a continuous increase in the 

electrochemical activity of the used electrode when analyzed in a fresh 

buffer solution (Figure S11C, D). EDX and XPS confirmed the presence 

of NiOx species at higher pHs but only for the electrodes with high load-

ing (Figure S26). This fact reflects the high sensitivity of the 

electrochemical techniques to detect even low amounts of deposited ma-

terials with characteristic redox features. When the same experiment of 

generating 1- potentiostatically is performed in pH 12 solutions and at 

lower potential (Eapp =0.7 V), formation of NiOx is avoided as depicted 

in Figure 5A,B. This is in sharp contrast to the results obtained with a 

similar experiment at Eapp = 0.7 V in the presence of free metal ions, 

which showed a clear formation of NiOx on the electrode (Figure S12). 

All these results confirm that NiOx deposited from 1- comes from Ni 

ions in solutions, which are generated by the substitution reactions in 

equations 1-4 under certain Eapp and pH conditions.  
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Figure 5. (A) CVs of 1mM solution of complex 12- in aqueous phosphate buffer at 
pH 12. (B) CVs in a fresh buffer solution at pH 12 of a bare GC electrode (black  
line) and GC electrodes after CPE in a 1mM solution of 12- at different potentials 
(red and green lines). (C) CVs of 1mM solution of complex 12- and 22- in aqueous 
phosphate buffer at pH 11. (D) CVs in a fresh buffer solution at pH 11 of a bare 
GC electrode (black line) and GC electrodes after 3600 s CPE at 1.25 V (red line) 
and 1.05 V (green line) in a 1mM solution of 12- and 22- respectively. Green and red 
zones represent the conditions under which NiOx was present and absent respec-
tively after CPE. GC disk was used as working electrode and the scan rate was set 
to 100 mV/s. 

CPE experiments were also conducted at higher potentials to assess the 

stability under catalysis. Figure 5C,D shows the response of the electrode 

in a clean electrolyte solution after applying higher potentials of 1.05 and 

1.25 V for 1h at pH 11. At the Eapp = 1.05 V no NiOx can be observed 

and thus manifests the high stability of the Ni(III) species in 1- (green line, 
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Figure 5D) indicating that the substitution processes shown in equations 

1-4 are negligible under these conditions. However, when the Eapp = 1.25 

V, the formation of the NiOx is evident (red line, Figure 5D)and thus 

points out towards the degradation of the initial molecular complex as 

was described for the previous section using voltammetric techniques.  

At pH 10, similar behavior is observed with formation of NiOx only at 

the highest potential of 1.25 V (Figure S14 and S15). At pH values of 12 

and 13, NiOx is also formed under catalytic conditions, although the 

speed of formation and the final NiOx amount is much higher than at 

lower pH values, which is in agreement with previous voltammetric meas-

urements (Figure S14 and S15). Moreover, similar saturation process and 

final decay of the NiOx activity are present at pH 12 and 13, since the 

catalytic activity of the NiOx increases during the first 120 s but then it 

significantly decreases until 600 s. 

F.2.2.4. The unique case of stabilization by Me groups in 22- 

Similar experiments were carried out for 22-, where the benzene ring is 

substituted with two methyl groups with regard to 12-. As already men-

tioned, at an Eapp = 1.05 V for 1h at pH 11, catalyst 12- does not degrade 

to form NiOx, even though at this potential the catalytic current is rather 

low. In contrast, catalyst 22- shows high current intensity values in the 

same experimental conditions due to the cathodic shift of the waves in-

duced by the electron-donating methyl groups. Thus, at Eapp = 1.05 V the 

reaction takes place well beyond the electrocatalytic current for 22- (Figure 

5C). Interestingly, this complex shows a spectacular stability as demon-

strated by the absence of any NiOx absorbed at the electrode (Figure 5D). 

These results reveal that neither equations 1-4 nor the deactivation pro-

cess proposed for the cation radical [(L1·)NiIII(OH)]- operate at any 

significant length. On the other hand, as in the previous case, increasing 

the pH increases the OH- concentration that in turn habilitate the deacti-

vation pathways. Thus, similar experiments carried out for 22- at pH 12 
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and 13 generate NiOx at the surface of the electrode as can be seen in 

Figure S17. 

The high stability of complex 22- under catalytic conditions in pH 11 

shown in Figure 5C,D is not only very remarkable but actually unprece-

dented in molecular Ni complexes. The extra stability of the 22- as 

compared to 12- is due to the electronic effects exerted by the two methyl 

groups at the aromatic moiety of the ligand over the stability of singly and 

doubly oxidized Ni(III) and Ni(III)-OH-radical cation species. This elec-

tronic effect can be appreciated in the CV of Figure 5C for 22- where the 

redox potentials decrease by approximately 200 mV for each redox cou-

ple with respect to that of 12-. 

F.2.3. Molecular catalyst stability in heterogeneous phase 

To test the stability of the molecular catalyst in heterogeneous phase, 

complex 12- was anchored on Graphene sheets via pi-pi stacking interac-

tions in a similar manner as it had previously been done for related Cu 

complexes with the same ligand.33 The procedure consists of suspending 

the Graphene sheets in a 1 mM of the complex and stirring the mixture 

overnight. After separation and washing of the functionalized graphenic 

material, it was dropcasted on a glassy carbon (GC) electrode generating 

the G@12- hybrid materials (see experimental section in the SI for addi-

tional details). 

The performance of G@12- was assessed by electrochemical techniques 

including CV, DPV and rotating ring disk electrode (RRDE). The CVs at 

pH 10-14 are displayed in Figure 6A, which shows a relatively similar be-

havior as in homogeneous phase except that the onset of the catalytic 

waves are shifted by 100 mV toward the cathodic region. This is a result 

of the pi-interaction of the graphene with the pi- system of complex 12-, 

in a similar manner as had been previously observed for the Cu analogue 

[(L1)Cu]2-, 42-.33 
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Figure 6. (A) CVs of G@12- electrodes in aqueous solutions at different pH values 
(B) LSV of G@12-/NiOx generated after cycling a G@12- electrode for four times 
in the range from 0.3 to 1.05 V. The hybrid material was supported on the disk of 
a RRDE in phosphate buffer at pH 11. Experiment was performed under nitrogen 
atmosphere and at 1600 rpm. (C) Simultaneous CPE at -0.35 V performed in the 
Pt ring of the RRDE for the reduction of the generated oxygen. Green color rep-
resents the molecular domain while red color refers to the electrochemical response 
of the NiOx. 

Repetitive cyclic voltammetric experiments (Figure S18) similar to the 

ones performed in homogeneous phase display a relatively similar behav-

ior and thus show that the anchoring process do not stabilize the 

molecular catalyst against the formation of NiOx.  

To further characterize these hybrid materials the graphene sheets func-

tionalized with 12- were deposited at the surface of the graphitic working 

electrode of a RRDE and the results are displayed in Figure 6B,C and 

S19. A linear sweep voltammetry (LSV) at 2 mV/s from 0.3 to 1.5 V for 

G@(12-/NiOx) is shown in Figure 6B at pH 11.0 after depositing a mix-

ture of the molecular catalyst and NiOx at the surface of the working 

electrode, following the protocol described in the SI, while the ring disk 
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potential was fixed at -0.35 V where the reduction of oxygen to superox-

ide occurs (Figure 6C).33The Figures show that the first release of oxygen 

is detected under the catalytic wave of the molecular species, at potential 

values between 0.65 and 0.80 V. Further, there is a second increase in the 

oxygen detected due to the NiOx at higher potentials (with onset at ca. 

1.3 V). The two phenomena can be clearly distinguished since the rate at 

which oxygen is formed is different and this is translated into a change in 

curvature that is clearly appreciated in Figure 6B and C. Similar phenom-

ena can be observed at other pHs as shown in Figure S19. 

F.2.4 Preparation and water oxidation performance of NiFeOOH from NiL 

As already demonstrated, NiOx owes its high activity for water oxidation 

partly due to the incorporation of Fe impurities from the solution forming 

Ni1-xFex(OH)2 films. 34,35 It has been found that an iron composition be-

tween 5-25% provide the electrodes with the maximum activity at the 

lowest overpotential. Therefore, using the optimal conditions that we 

found for NiOx deposition from the homogeneous catalyst 12- (CPE at 

0.85 V and pH 13, Figure S20) we prepared new Ni1-xFex(OH)2 electrodes 

in the presence of 0.05 mM of FeII(ClO4)2, based on reported methodol-

ogies for cathodic codeposition (SI for details).36 As expected, this 

procedure led to electrodes with largely improved catalytic performance 

in comparison with the previous ones due to the greater incorporation of 

Fe atoms in the oxide structure (Figure 7). XPS and EDX analysis of the 

material deposited on GC plates electrodes confirm the presence of Ni1-

xFex(OH)2 species on the surface, with around 7-10% of Fe (Figure S27 

and S28). SEM images of the same electrodes revealed the formation of 

a film of material extended over the whole surface of the electrode (Figure 

S29).  

Control of the total charge passed in the CPE during deposition resulted 

in different loadings of this material, as calculated by integration of the 

oxidative NiII/NiIII wave (Figure S21 and S22).37 The calculated surface 
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coverage ranged from 1 to a maximum of 50 nmol·cm-2, which are in 

general low loading values compare to most of the reported Ni1-xFex(OH)2 

materials prepared with different methods.36  This fact can be explained 

as there is only a partial degradation of the molecular complex induced 

by the electrode within the time scale of the CPE (0-600s).  

We also analyzed the Electrochemically Active Surface Area (ECSA) 

measuring the non-Faradaic capacitive current as a function of the scan 

rate38 (Figure S23) resulting in an average value of 0.17 ± 0.06 cm2. The 

ECSA was calculated for the different electrodes but in all the cases the 

value ranged from 0.075 to 0.218 cm2 without apparent dependence on 

the loading. This suggests that the increase in the metal loading increases 

the number of internal layers, keeping the electroactive surface and thus 

the exposed catalytic sites approximately constant. These values for the 

ECSA are relatively low compared to other reported NiFeOx, as expected 

from the low loading. 

We further assessed the performance of these active electrodes following 

standard methodologies previously described to compare metal ox-

ides.37,38 Firstly, using a RRDE we evaluated the Faradaic efficiency for 

water oxidation, resulting essentially in 100% as reported for many other 

oxides in alkaline conditions (Figure S24).  As metrics to compare the 

catalytic activity of heterogeneous metal oxides, many parameters have 

been described, referred to the amount of deposited material. The most 

popular ones are the specific current density and the Turnover Frequency 

(TOF) at certain overpotential (normally 300-350 mV), as defined in the 

literature.37,38 These two standard parameters allow for fair comparison 

among the catalyst reported, so we have calculated them as a function of 

the loading of our active electrodes. As deducted from the results sum-

marized in Figure S25, the current density at η=300 mV decreases as the 

loading of the electrode increases, featuring the maximum values between 

1 and 6 nmol·cm-2. Figure 7A shows the CV for an electrode featuring 

one of the maximum current densities of around 3.57 and 11.77 mA·cm-
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2 at 300 and 350 mV respectively, or 1.42 and 4.86 mA·cm-2 considering 

the ECSA instead of geometric area. Those maximum values are among 

the highest reported for NiFeOx electrodes, despite the low loading and 

ECSA values of our electrodes.18,37,38,39,40,41,42 Similar observation were 

made when analyzing the TOF at η=300 and 350 using the integration of 

the Ni(II)/Ni(III) oxidation peak as measurement for the estimation of 

the total metal sites. There is a significant increase in the TOF as the de-

posited material decreases, reaching maximum values around 2 and 11 s-

1 at overpotential values of 300 and 350 mV respectively (Figure 7B). 

Those TOF values exceed other high performance NiFeOx catalysts as 

well as other metal oxides electrodes, although comparison should be 

made carefully according to the employed TOF calculation method.37 

 

Figure 8. (A) CV of one NiFeOx on GC electrode in a 1 M KOH aqueous solu-
tions at 10 mV/s.  Inset shows a zoom of the redox wave corresponding to the 
NiII/NiIII couple with a loading of 4.4 nmol·cm-2 calculated from integration of the 
red area. (B) Representation of the TOF values calculated at η=350 mV for elec-
trodes with different loading values. 

These results demonstrate that there is a clear benefit when codepositing 

Ni1-xFex(OH)2 from the molecular Ni complex 12- by degradation due to 

molecule-electrode interactions, compared to traditional methods. 
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F.3. Conclusions 

The present work shows how slight modification of different experi-

mental conditions namely, pH, Eapp, time of exposure (scan rate) can 

determine the robustness of molecular Ni complexes influencing both the 

amount and nature (electrocatalytic activity) of the derived NiOx/NiOOx 

species (particle size and morphology) and the stability of the oxide at-

tached at the surface of the electrode. Further, it also discloses the 

complex reaction system involved during the catalyst activity in homoge-

neous phase and its progressive anchoring and water oxidation activity in 

solid supports. It thus brings light to this very thin border between the 

homogeneous and heterogeneous activity summarized in Scheme 1 and 

Figure 8. Moreover, it is striking to see the spectacular increase of stability 

of the molecular 22- complex, with Me-substituted ligand L2, as compared 

to L1 under exactly the same conditions and thus manifest how small var-

iations on the organic ligands can strongly influence the combination of 

reactions involved in the catalyst behavior. 

 

Figure 8. Pourbaix diagram of complex 12- with experimental redox potential as 
grey points. Points in green represent the CPE performed in those pH and Eapp 
conditions that did not form NiOx whereas points in red represent the CPE where 
NiOx was detected on the electrode. 
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Overall the work described here indicates how thorough, cautious and 

careful analysis and interpretations should be done to fully understand the 

complicated behavior of Ni complexes as water oxidation catalysts. 
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F.6. Supporting information 

Experimental Section 

Materials 

All the chemicals used in this work were provided by Sigma Aldrich 

Chemical Co and they have been used wihtout further purification. The 

solvents were selected to be HPLC grade and the deionized water was 

obtained with high purity by passing through a nanopore Milli-Q water 

purification system. Aqueous basic buffer solutions at pH 12 were pre-

pared using the necessary amount of dibasic and tribasic sodium 

phosphate salts and adjusting the pH to the desired value so that the final 

ionic strength was 0.1 M. 

Graphene was purchased from Nanostructured & Amorphous Materials, 

Inc. (NanoAmor) with a purity > 98%, 1-3 layers (1-3 nm of thickness), 

2-10 µm of diameter and a specific surface area of about 500-700 m2·g-1. 

GC plate electrodes were purchased from HTW, Germany, and are made 

of glassy carbon SIGRADUR® with the dimensions 20x10x0.18 mm. 

Elemental Analysis and Mass Spectrometry 

Elemental Analysis of the samples was carried out in a Thermo Finnigan 

elemental analyzer Flash 1112 model. 

Exact mass analyses were performed with a micrOTOF mass spectrom-

eter (from Bruker company) using Electrospray ionization technique in 

methanol by direct injection and detecting with positive polarity. 

Spectroscopic Techniques 

NMR spectroscopy was carried out in a 400 MHz Bruker Advance II 

spectrometer and a Bruker Advance 500 MHz. All the measurements 
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were done at room temperature in deuterated DMSO using residual pro-

tons as internal references. 

UV-vis spectrometry was done using a Cary 50 (Varian) UV-vis spectro-

photometer. 

General electrochemistry 

Cyclic Voltammetry (CV), Linear Sweep Voltammetry (LSV), Differential 

Pulse Voltammetry (DPV) and Controlled Potential Electrolysis (CPE) 

experiments were carried out on an IJ-Cambria CHI-660 potentiostat. We 

used a one-compartment three-electrode cell for these measurements. 

Glassy Carbon (GC) disk electrodes (3 mm of diameter) were used as 

working electrodes, Pt wire (unless indicated) as counter electrode, Mer-

cury/Mercurous sulfate (K2SO4 sat.), MSE,  as reference electrode for 

CV, LSV and DPV. For CPE, Silver/Silver Chloride (KCl sat.) was used 

as reference and either GC disk or GC plate (as indicated) as working 

electrode. All redox potentials in the present work are reported versus 

NHE by adding 0.65 V or 0.2 V to the measured potential, depending on 

whether MSE or Silver/Silver Chloride electrodes were employed respec-

tively. 

GC disk working electrode pretreatment for homogeneous phase analysis 

consisted first in two consecutive washes with HNO3/HCl mixture (1:3) 

and KOH in propanol in order to remove the rest of metallic impurities 

deposited on the surface. Then, we continue by polishing with 0.05 μm 

alumina paste, rinsing after with water and acetone and blow-dried finally. 

GC disk used for catalyst deposition were polished with 1, 0.3 and 0.05 

μm alumina paste, then rinsed with water and sonicated for 15 min in 

acetonitrile. Finally they were washed with acetone and blow-dried.  

CVs and LSVs were collected at 100 mV·s-1 except other specification. 

DPV were obtained with the following parameters: amplitude= 50 mV, 

step height=4 mV, pulse width= 0.05 s, pulse period= 0.5 s and sampling 
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width= 0.0167 s. E1/2 values for the reversible waves were obtained from 

the half potential between the oxidative and reductive peaks, and the one 

for irreversible processes are estimated according to the potential at the 

Imax in DPV measurements. All the measurement were done applying IR 

compensation.  

When acetonitrile was used as organic solvent, tetrabutylammonium hex-

afluorophosphate ([NBu4]PF6) was added in a concentration of 0.1M as 

supporting electrolyte. 

Surface coverage (Γ) calculation 

The surface coverage (Γ) was calculated based on electrochemical meas-

urements according to the following formula: 

𝛤 (𝑚𝑜𝑙 · 𝑐𝑚−2) =
𝑄 

𝑛 · 𝑆 · 𝐹
 

Q is the charge under the oxidative peak of the reversible, one-electron 

wave obtained by integration in the CV; n is the number of electrons in-

volved in that oxidation process, which is 1; S is the geometrical surface 

of the electrode that is 0.07 cm-2 or 1 cm-2 for GCd and GCp respectively; 

finally F is the Faradaic constant.   

Calibration of the Rotating Ring Disk Electrode 

The collection efficiency of the RRDE, N, was previously determined by 

using the redox couple Fe(CN)6
4- / Fe(CN)6

3- as well defined one-electron 

transfer process. We prepared a 1 mM solution of the reduced ferrocya-

nide K4Fe(CN)6 in pH 12 solution of phosphate buffer, and it was 

oxidized during a LSV at 10 mV·s-1 in the disk electrode to ferricyanide 

Fe(CN)6
3-. This last was detected at the Pt ring by performing a CPE at 

0.05 V vs NHE to yield the reduction to the initial ferrocyanide. The col-

lection efficiency was determined by the rate between the intensity in the 
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ring and the intensity in the disk electrodes when they reach stable values 

at the plateau, iring/idisk. The efficiency was found to be 0.4. 

The oxygen reduction reaction was also studied at the Pt ring electrode 

under same experimental conditions to analyze the number of electrons 

involved, according to procedure described in the literature. For that, 

three different solutions were prepared at pH 12 with phosphate buffer: 

N2 saturated, air saturated and O2 saturated. Then a LSV at 10 mV·s-1 was 

performed through negative potentials to reduce the dissolved oxygen, 

that was detected by an increase in the ring current. In N2, no current was 

detected as expected, while in air and O2 current increased when the po-

tential was negative enough to reduce the oxygen. In those last cases, the 

current reached an approximately stable signal at -0.6 V vs NHE. With 

these stable current values, the apparent number of electrons (napp) in-

volved in the reduction of oxygen can be calculated from the Levich 

equation for the rotating ring: 

|𝑖𝑟𝑖𝑛𝑔| = 0.62 · 𝑛𝑎𝑝𝑝 · 𝐹 · 𝜋 · (𝑟𝑜
3 − 𝑟𝑚

3)2/3 · 𝐷2/3 · 𝜔1/2 · 𝜈−1/6 · [𝑂2] 

F is the Faraday constant, ro and rm are the outer and middle radio that 

define the Pt geometry, D is the Difussion coefficient for oxygen in water 

calculated to be 2.52·10-5 cm2·s-1 with Wilke’s correlation,1 ω is the rota-

tion rate in rad·s-1, ν is the kinematic viscosity of the solution that is 

0.0085cm2·s-1 and [O2] is the concentration of oxygen in the solution cal-

culated to be 1.28·10-6 mol·cm-3 for O2 saturated solution and 2.67·10-7 

mol·cm-3 for air saturated solution.2 With all these values, the apparent 

number of electrons involved in the oxygen reduction turned out to be 

ca. 2 at 1600 r.p.m. for both air and oxygen saturated solutions, which 

means reduction of O2 to H2O2 in pH 12 at -0.6 V vs NHE.  
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Synthetic details and characterization 

H4L
1, H4L

2 and [(L1)Ni](NMe4)2 

These compounds were prepared and characterized following the proce-

dures already described in the literature.3,4,5 

[(L2)Ni](NMe4)2 

To a suspension of ligand L2 (0.653 mmol, 0.200 g) in methanol (10 mL) 

was added (1.37 mL) a 25% wt. methanol solu-tion of NMe4NOH. Af-

terwards a methanol solution of Ni(ClO4)2.6H2O (0.653 mmol, 0.238 g) 

was added dropwise under stirring. A white solid of Me4NClO4 was 

formed that was filtered off and the solution was concentrated under vac-

uum using a rotatory evaporator. The Ni complex was then precipitated 

by adding ether and acetone, filtered off, washed with ether and dried 

under vacuum giving rise to a yellow to orange solid (0.309, 93%). ESI-

MS (MeOH) m/z (negative mode): 361.0448 [(L2Ni+H]-. 1H-NMR (500 

MHz, DMSO-d6): δ [ppm]= 7.74 (s, 2H, H2), 2.36 (s, 6H, N-CH3), 1.98 

(s, 6H, CH3).  13C-NMR (DMSO-d6): δ [ppm] = 170.14 (C5, 2C), 163.82 

(C4, 2C), 141.93 (C1, 2C), 126.13 (C5, 2C), 119.23 (C2, 2C), 32.93 (C6, 

2C), 19.45 (C7, 2C). 

 [(L3)Ni](NMe4)2 

To a suspension of the corresponding ligand L3 (0.325 mmol, 0.100 g) in 

methanol (6 mL) was added (680 µL) a 25% wt. methanol solution of 

NMe4NOH. Afterwards a methanol solution (3 cm3) of Ni(ClO4)2.6H2O 

(0.325 mmol, 0.121 g) was added dropwise under stirring. A white solid 

of Me4NClO4 was formed that was filtered off and the solution was con-

centrated under vacuum using a rotatory evaporator. The Ni complex was 

then precipitated by adding ether and acetone, filtered off, washed with 

ether and dried under vacuum leading to a yellow to orange solid (0.148 

mg, 89%). ESI-MS (MeOH) m/z (negative mode): 363.0239 [(L3Ni+H]-
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. 1H-NMR (500 MHz, DMSO-d6): δ [ppm] = 7.82 (d, 3J = 8.6 Hz,  1H, 

H2’), 7.65 (d, 4J = 2.8 Hz, 1H, H2), 6.05 (dd, 3J = 8.5 Hz, 4J = 2.8 Hz, 

1H, H1’), 3.57 (s, 3H, OCH3), 2.38 (s, 3H, N-CH3), 2.38 (s, 3H, N-CH3) 

. 13C-NMR (500 MHz, DMSO-d6): δ [ppm] = 170.17 (C5, 1C), 169.80 

(C5’, 1C), 164.51 (C4, 1C), 163.44 (C4’, 1C), 153.29 (C1, 1C), 144.81 (C3’, 

1C), 138.11 (C3, 1C), 117.07 (C2’, 1C) 104.76 (C2, 1C), 104.09 (C1’, 1C), 

54.94 (Me-O-Ph), 1C), 32.95 (Me-N, 1C), 32.90 (Me-N, 1C).. 
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NMR Spectroscopy 
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Figure S1. (A)1H-NMR (B)13C-NMR (C)HSQC (D)HMBC spectra of complex 
[(L2)NiII]-2 in DMSO-d6. 
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Figure S2. (A)1H-NMR (B)13C-NMR (C)HSQC (D)HMBC spectra of complex 
[(L3)NiII]-2 in DMSO-d6. 
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Electrode preparation 

Preparation of G@12- electrodes 

As supporting material, graphene (1-3 layers) deposited onto glassy car-

bon electrodes was used due to its high electroactive surface area and 

conductivity. Graphene is also produced extremely pure, without contain-

ing any catalytically active transition metal that would make the analysis 

harder due to their general high activity in basic solutions. The immobili-

zation procedure consists in preparing a 1mM solution of either 12- or 22- 

in methanol; then graphene (1-3 layers) in a ratio of 1mg/ml solution was 

added forming a suspension that was sonicated for 15 minutes and stirred 

overnight, allowing enough time for the π-π interaction to cover the sur-

face. This new modified material was separated from the solution, washed 

three times with fresh methanol and finally dispersed again in the same 

solvent. The electrode was prepared by dropcasting and evaporating 5 

consecutive times 5 µL of that suspension on the surface of two kind of 

glassy carbon electrodes: glassy carbon disks (GCd, 0.07 cm2) for most of 

electrochemical measurements and glassy carbon plates (GCp, 1 cm2) for 

oxygen measurement and XAS experiments. The electrodes were finally 

dried under vacuum for 1 h and then were ready for use. They were 

named GC@G@[(L1)Ni]2- (G-12-). 

Preparation of G@12-/NiOx electrodes 

The G@12- electrodes generated with the previous procedure were sub-

jected to ten consecutive cycle voltammetries from 0.3 to 1.05 so that the 

molecular species partially degrades to NiOx diving rise to a certain mix-

ture of both catalytic species attached to the same electrode. They were 

named G@12-/NiOx. 
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Preparation of NiFeOx electrodes 

A basic solution at pH 13 (0.1 M NaOH) containing 1 ml of catalyst 12- 

and 0.05 mM of FeII(ClO4)2  was freshly prepared before each electrode 

preparation. Then a clean GC electrode were immersed and a CPE at 0.85 

vs NHE was performed during different time in order to deposit diferent 

amount of material. Then the electrode was rinsed with abundant water 

and immersed in a 1 M KOH aqueous solution (pH 14) to perform a CPE 

at 0.15 V vs NHE during 300 s so that all the nickel species were reduced 

to NiII oxidation state. Therefore, quantification by integration of the 

NiII/NiIII oxidation peak is accurate. 

 

 

 

 

 

 

 

  

UNIVERSITAT ROVIRA I VIRGILI 
MOLECULAR WATER OXIDATION CATALYSTS BASED ON COPPER AND NICKEL COMPLEXES 
Pablo Garrido Barros 
 



An extension to Nickel 
 

436 

VI 

Electrochemical analysis of molecular catalysts 

 

 

Figure S3. (A) DPVs of 1 mM 12- in aqueous solutions at different pH values. 
GC disk was used as working electrode. (B) Dependence of the potential for 
second oxidation process on the pH and linear fit, showing that the slope is 
close to the predicted value for proton coupled electron transfer from the 
Nernst equation. (C) DPVs of an aqueous solutions containing 1 mM of 12-, 22- 
and 32- at pH 11. GC disk was used as working electrode. 
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Figure S4. CVs of 1 mM 12- in aqueous solution at pH 10 (A) and 13 (B) just 
dissolved (grey solid line) and after 4 hours of solution (dashed black line). GC 
disk was used as working electrode and the scan rate was set to 100 mV/s.  

 

Figure S5. (A) LSVs of 1 mM 12- in aqueous solution at pH 11 using a spectro-
electrochemical cell with a Pt mesh working electrode, a Pt wire counter 
electrode and a mercurous sulfate reference electrode. The scan rate was 2 mV·s -

1 and the path length of the cell was 1 mm. (B) UV-vis spectra recorded at dif-
ferent times during the previous LSV experiment.  
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Figure S6. (A) LSVs of 1 mM 22- in aqueous solution at pH 11 using a 
spectroelectrochemical cell with a Pt mesh working electrode, a Pt wire 
counter electrode and a mercurous sulfate reference electrode. The scan 
rate was 2 mV·s-1 and the path length of the cell was 1 mm. (B) UV-vis 
spectra recorded at different times during the previous LSV experiment  

 

 

Figure S7. (A) CV of 1 mM 12- in aqueous solution at pH 11 using a GC disk 
as working electrode and the scan rate was set to 100 mV/s. The red line 
represents the data range corresponding to the the foot of the wave. (B) Foot 
of the wave analysis (FOWA) by plotting icat/id vs. 1/(1+exp[(F/RT)(Eo

cat-
E)]). 
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Figure S8. CVs in 1 mM aqueous solution of 12- at different pH values and 
different scan rates. 
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Figure S9. Plot of the current corresponding to the oxidative peak 
Ni(II)/Ni(III) in different pH solutions versus the square root of the scan rate 
and the linear fit according to the Randles–Sevcik equation. 
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Figure S10. Consecutive CPE experiments at 0.85 V during different times (30, 
30, 30, 30 and 480 s) using solutions containing 1 mM 12- at different pH values: 
(A) 10, (B) 11, (C) 12 and (D) 13. GC disk was used as working electrode for the 
CPE. After each bulk, the working electrode was rinsed with water and analyzed 
in a fresh buffer solution. 
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Figure S11. CVs in a fresh buffer solution at (A) pH 10, (B) pH 11, (C) pH 12 
and (D) pH 13 of a bare GC electrode (black line) and GC electrodes after CPE 
in a 1mM solution of 12- at 0.85 V during increasing times (from purple to red 
lines). 
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Figure S12. CVs in a fresh buffer solution at (A) pH 11 and (B) pH 12 of a bare 
GC electrode (black lines) and GC electrodes after CPE in a 1mM solution of 
Ni(ClO4)2 (purple lines). That indicates that free metal ions in the solutions read-
ily form NiOx upon CPE under same conditions where complex 12- did not 
form.   
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Figure S13. Consecutive CPE experiments at 1.25 V during different times us-
ing solutions containing 1 mM 12- at different pH values: (A) 10, (B) 11, (C) 12 
and (D) 13. GC disk was used as working electrode and the scan rate was set to 
100 mV/s. After each bulk, the working electrode was rinsed with water and 
analyzed in a fresh buffer solution. 
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Figure S14. CVs in a fresh buffer solution at (A) pH 10, (B) pH 11, (C) pH 12 
and (D) pH 13 of a bare GC electrode (black line) and GC electrodes after CPE 
in a 1mM solution of 12- at 1.25 V during increasing times (from purple to red 
lines). 
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Figure S15. CVs in a fresh buffer solution at pH 10 of a bare GC electrode 
(black line) and GC electrode after 3600 s CPE in a 1mM solution of 12- at 1.09 
V. 
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Figure S16. CVs in a fresh buffer solution at (A) pH 10, (B) pH 11, (C) pH 12 
and (D) pH 13 of a bare GC electrode (black line) and GC electrodes after 600 
s of CPE in a 1mM solution of 22- at different potentials (from red, brown and 
green lines). 
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Figure S17. DPV of G@12- compared with a 1 mM solution of 12- both at pH 
11, showing a decrease of around 100 mV in the potential of the  catalytic wave. 
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Figure S18. (A) 100 consecutive CVs of electrodes G@12- at different pH values 
at a scan rate of 100 mV/s. (B) Evolution of the intensity at different potentials 
with the consecutive cycles in solutions at (left) pH 11 and (right) 13. 
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Figure S19. Top figures represents the LSVs of G@(12-/NiOx) electrodes gen-
erated after cycling G@12- electrodes four times supported on the disk of a 
RRDE in phosphate buffer at different pH values. Experiments were performed 
under nitrogen atmosphere and at 1600 rpm. Bottom figures show simultaneous 
CPE at -0.35 V performed in the Pt ring of the RRDE for the reduction of the 
generated oxygen. Green color represent the molecular domain while red color 
refers to the electrochemical response of the NiOx. 
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Electrochemical analysis Ni1-xFex(OH)2 electrodes 

 

Figure S20. . (A) CVs of NiOx, deposited in a GC electrode from 1mM 12- 
under different conditions of pH and Eapp, obtained in a 1 M KOH aqueous 
solutions at 10 mV/s. (B) Ni(OH)2 loading obtained by integration of the redox 
NiII/NiIII wave for the different electrodes. 

 

 

Figure S21. CVs of a NiFeOx in a 1 M KOH aqueous solutions at 10 mV/s. 
The area of integration is colored in red and obtained using an exponential 
function as baseline. 
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Figure S22. CVs of different NiFeOx electrodes prepared with different load-
ings obtained in a 1 M KOH solution at 10 mV/s.  

 

 

Figure S23. (A) CVs taken at different scan rates in a non-Faradaic region using 
a NiFeOx electrode. Before every sweep pf potential, the working electrode was 
held at the limit potential values during 10 s. (B) Representation of the cathodic 
and anodic charging current in function of the scan rate. Linear fitting of those 
data allows to calculate the double-layer capacitance from the slope.  
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Figure S24. RRDE voltammetry for determination of the Faradaic efficiency. 
Blue line represents the current in the disk electrode obtained by doing a linear 
sweep voltammetry of NiFeOx deposited on the GC disk electrode at 10 mV/s 
(blank). Red line represents the current in the Pt ring electrode obtained by do-
ing a CPE at -1 V to reduce the oxygen produced in the disk. The rotation speed 
was set to 1600 rpm and the experiment was performed in a 1 M KOH aqueous 
solution. 

 

 

Figure S25. Current densities obtained at 300 mV overpotential taken from CVs 
of the NiFeOx electrodes prepared with different loadings.  
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Physical and chemical characterization of electrode surface 

 

 

Figure S26. EDX analysis of deposited NiOx on GC plates from molecular 
complex 12- by CPE at 1.25 V in pH 13 solution. 

 

Figure S27. EDX analysis of codeposited on GC plates NiFeOx from a solution 
containing molecular complex 12- and Fe(ClO4)2 by CPE at 0.85 V in pH 13 
solution. 
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Figure S28. XPS analysis of codeposited NiFeOx on GC plates from a solution 
containing molecular complex 12- and Fe(ClO4)2 by CPE at 0.85 V in pH 13 
solution. 

 

 

Figure S29. SEM images of (A) bare GC plate electrode and (B) codeposited 
NiFeOx on GC plates from a solution containing molecular complex 12- and 
Fe(ClO4)2 by CPE at 0.85 V in pH 13 solution. 
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Computational details 

All calculations were carried out with the Gaussian09 (v. D.01) program 

package6. We employed Density Functional Theory (DFT) methodology 

using the long-range corrected wB97xD as functional.7 The basis set was 

split, using 6-31+G(d) for C, N, O and H,8 and LANL2TZ(f) for Ni and 

Cu (including the associated pseudopotential).9,10 The solvation was con-

sidered implicitly using the SMD model11, with water (ε = 78.3553) as 

solvent. All geometry optimizations were computed in solution without 

symmetry restrictions. The nature of all computed stationary points was 

confirmed by vibrational frequency calculations. Free energy corrections 

were calculated at 298.15 K and 105 Pa pressure, including zero point 

energy corrections (ZPE). In addition, a correction term of 1.9 kcal/mol 

(at 298 K) was added when necessary to account for the standard state 

concentration of 1 M. Unless otherwise mentioned, all reported energy 

values are free energies in solution. The stability of the electronic states 

corresponding to the intermediates was confirmed by stability analysis of 

the wavefunction. The electrochemical magnitudes were calculated from 

the free energies using the values of 4.28 V found in literature for the 

absolute potential of the standard hydrogen electrode12 and-11.72 eV for 

the free energy of the proton in aqueous solution at pH=1.13 The value 

for the free energy of the proton was translated to the experimental pH 

value of 12 by adding a correction term of -0.059*pH, following the same 

procedure as other authors.14 In the systems reported here the agreement 

of the calculated redox potential with the experimental ones is very good, 

confirming the validity of this methodology. 
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Table S1. Comparison between the experimental and the calculated redox po-
tential of the first wave corresponding formally to the Ni II/NiIII transition for 
the three Nickel complexes studied in this work. 

Complex 

Redox potential NiII/NiIII in V 

E0
exp E0

calc 

[(L1)NiII]2- 0.67 0.65 

[(L2)NiII]2- 0.57 0.50 

[(L3)NiII]2- 0.57 0.52 

 

 

Figure S30. HOMO orbital of the different copper and nickel species calculated 
by Natural Orbital (NO) analysis. In the case of the copper complex, the HO-
MOI is mainly located in a d orbital of the metal center, supporting the first 
metal center oxidation. In the case of the Nickel complexes, the HOMO is 
shared between the metal center and the ligand, supporting the involvement of 
the ligad into the first oxidation. 

 

UNIVERSITAT ROVIRA I VIRGILI 
MOLECULAR WATER OXIDATION CATALYSTS BASED ON COPPER AND NICKEL COMPLEXES 
Pablo Garrido Barros 
 



An extension to Nickel 
 

458 

VI 

References

1 Wilke, C. R.; Chang, P., AIChE J, 1955, 63, 264-270.   

2 Tromans, D., Hydrometallurgy, 1998, 50, 279–296.   

3 Stumpf, H. O.; Pei, Y.; Kahn, O.; Sletten, J.; Renard, J. P. J. Am. Chem. Soc.1993, 

115, 6738. 

4 Ruiz, R.; Surville-Barland, C.; Aukauloo, A.; Anxolabehere-Mallart, E.; Jour-

naux, Y.; Cano, J.; Carmen Munoz, M. J. Chem. Soc., Dalton Trans.1997, 745. 

5 Garrido-Barros, P.; Funes-Ardoiz, I.; Drouet, S.; Benet-Buchholz, J.; Maseras, 

F.; Llobet, A. J. Am. Chem. Soc. 2015, 137, 6758. 

6 Gaussian 09, Revision D.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scu-

seria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, 

B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmay-

lov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, 

K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; 

Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bear-

park, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, 

R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; To-

masi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; 

Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, 

O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Moro-

kuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; 

Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, 

J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009. 

7 Chai, J.-D.; Head-Gordon, M. Phys. Chem. Chem. Phys. 2008, 10, 6615-6620. 

8 a) Hehre, W.J.; Ditchfield, R.; Pople, J.A.,  J. Chem. Phys. 1972, 56, 2257. b) 

Hariharan, P.C.; Pople, J.A., Theoret. ChimicaActa 1973, 28, 213-222. c) Francl, 

M.M.; Petro, W.J.; Hehre, W.J.; Binkley, J.S.; Gordon, M.S.; DeFrees, D.J.; 

Pople, J.A., J. Chem. Phys. 1982, 77, 3654. 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
MOLECULAR WATER OXIDATION CATALYSTS BASED ON COPPER AND NICKEL COMPLEXES 
Pablo Garrido Barros 
 



 

459 

 

9 a) Hay, P. J.; Wadt, W. R., J. Chem. Phys.1985, 82, 270. b) Hay, P. J.; Wadt, W. 

R., J. Chem. Phys.1985, 82, 284. c) Hay, P. J.; Wadt, W. R., J. Chem. Phys.1985, 82, 

299. 

10 Taken from EMSL Basis set Library: a) Felier, D., J. Comp. Chem.1996, 17, 

1571-1586. b) Schuchardt, K.L.; Didier, B.T.; Elsethagen, T.; Sun, L.; 

Gurumoorthi, V.; Chase, J.; Li, J.; Windus, T.L., J. Chem. Inf. Model., 2007, 47, 

1045-1052. 

11 Marenich, S. A. V.; Cramer, C. J.; Truhlar, D. G., J. Phys. Chem. B, 2009, 113, 

6378-6396. 

12a) Lewis, A.; Bumpus, J. A.; Truhlar, D. G.; Cramer, C. J., J. Chem. Ed. 2004, 

81, 596-604. b)  Lewis, A.; Bumpus, J. A.; Truhlar, D. G.; Cramer, C. J., J. Chem. 

Ed. 2007, 84, 934. 

13 Marenich, A. V.; Majunmdar, A.; Lenz, M.; Cramer, C. J.; Truhlar, D. G., 

Angew. Chem. Int. Ed. 2012, 51, 12810-12814. 

14 Winikoff, S.G.; Cramer, C.J.; Catal. Sci. Technol. 2014, 4, 2484-2489. 

UNIVERSITAT ROVIRA I VIRGILI 
MOLECULAR WATER OXIDATION CATALYSTS BASED ON COPPER AND NICKEL COMPLEXES 
Pablo Garrido Barros 
 



 

460 

UNIVERSITAT ROVIRA I VIRGILI 
MOLECULAR WATER OXIDATION CATALYSTS BASED ON COPPER AND NICKEL COMPLEXES 
Pablo Garrido Barros 
 



 

461 

Chapter 7 

General Conclusions 

According to the general objectives proposed in the present thesis, 
this chapter gather the general conclusions obtained. Specific and 
more detailed conclusions are presented at the end of each chapter 
from 3 to 7.   
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VII 

A new family of copper complexes based on the redox non-innocent 

ligand H4mox (H4mox is N1,N1'-(1,2-phenylene)bis(N2-methyloxa-

lamide))) generated efficient and robust catalyst toward water 

oxidation to molecular oxygen. 

 Firstly, this tetra-anionic ligand has a strong σ-donating character and, 

once coordinated to the metal center, it imposes a rigid square planar ge-

ometry. Both factors are essentials in order to stabilize high oxidation 

states of copper complexes (such as Cu(III)), which are potentially in-

volved in the catalytic cycle as intermediates. Secondly, as already 

mentioned, this ligand has also a redox non-innocent character and its 

one-electron oxidation enables the generation of a radical species 

[(mox·)(OH)Cu(III)]-  that can promote the O-O bond formation and 

eventually release oxygen regenerating the initial catalyst. As this ligand 

oxidation is tied to the rate determining step of the catalytic cycle, simple 

modifications ligand’s electronic features can translate into an excellent 

control of the catalytic propierties such as overpotential or kinetic con-

stant. Therefore, introduction of more electron-donating substituent in 

the phenyl ring allowed to gradually decrease the overpotential for water 

oxidation to a record value of 150 mV. 

 

Figure 1. Cyclic voltammetry of the different copper complexes from the 
[(mox)Cu]2- family showing the relationship between overpotential and electron-
donation character of the phenyl substituents.  
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VII 

New unprecedented mechanism for the O-O bond formation is 

found for molecular water oxidation using copper complexes: Sin-

gle Electro Transfer-Water Nucleophilic Attack (SET-WNA).  

Ruthenium complexes have been long studied as water oxidation catalysts 

giving rise to valuable mechanistic knowledge. However, the redox flexi-

bility of those complexes allows them to reach high oxidation states such 

as Ru(V) or Ru(VI) that are able to activate coordinated oxo groups to-

ward the water nucleophilic attack. Therfore the O-O bond is formed 

through a single, concerted two-electron transfer. However, first row 

transition metal complexes are more reluctant to reach those high oxida-

tion states and as a consequence one-electron transfer steps are favoured. 

Considering this new outlook, three different catalytic system based on 

copper complexes have been computationally studied. Beside the struc-

tural and electronic differences, the O-O bond formation mechanism was 

found to be equivalent in the three cases. After two consecutive oxida-

tions, an active species is formed featuring a Cu(III) center and a radical 

in the ligand or bonded hydroxo/oxo group. This species promotes a first 

single electron transfer with an external OH- molecule giving rise to a two 

centres-three eleectrons intermediate. The latter undergoes a second sin-

gle electron transfer making the O-O bond and forming a hydroperoxo 

intermediate. This new mechanism has been named as Single Electron 

Transfer-Water Nucleophilic Attack and enabled to complete the mech-

anistic scenario of water oxidation by molecular complexes catalysts. 

 

Figure 2. Overview of the water oxidation mechanisms. The oxygen initially at-
tached to the metal is marked in red; the incoming oxygen is marked in yellow. 
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The redox activity of the ligand or coordinated hydroxo/oxo groups 

is essential to promote the O-O bond formation since copper metal 

center is reluctant to accumulate two oxidative equivalents. 

The work performed with [(mox)Cu(II)]2-  has shown that Cu(IV) species 

are reluctant to be formed during the water oxidation mechanism even 

when higly σ-donating ligand are used (such as tetra-amide ligands). In-

stead, either the ligand or a coordinated hydroxo/oxo group is oxidized 

generating the key species that are active toward water oxidation. In this 

context, two new systeems with different redox features have been ana-

lyzed as water oxidation catalyst. First, the copper complex [(p-bdam)Cu] 

(where p-bdam is 4,4'-(([2,2'-bipyridine]-6,6'-dicarbonyl)bis(azanediyl)) 

dibenzenesulfonic acid) has demonstrated to catalytically oxidized water 

to dioxygen at basic pH. Interistingly, during the water oxidation mecha-

nism, the metal center does not change the oxidation state and, instead, 

two oxidations taking place in the ligand promote the generation of the 

active species toward the O-O bond formation. Although the copper cen-

ter remain as a spectator from a redox point of view, it is essential for the 

coordination of the hydroxo molecules in the equatorial position that are 

required during the catalytic cycle. The lack of catalytic activity in the anal-

ogous complex [(p-bdam)Cu] (where o-bdam is 2,2'-(([2,2'-bipyridine]-6,6' 

dicarbonyl)bis(azanediyl)) is attributed to the sterical difficulties in coor-

dinating hydroxo molecules due to the ortho position of the sulfonate 

groups. 

On the other hand, the copper complex [(bpk)Cu] (where bpk is 6,6’-

diisopropanoate-2,2’-bipyridine) has also been studied for water oxida-

tion. In the pH range of 7-12, the ligand remained deprotonated with 

both alkoxo unit coordinating the metal center. In these conditions, the 

ligand is redox innocent and the complex can only be oxidize once to a 

Cu(III) species that is not able to promote water oxidation. However, be-

tween pH 13 and 14, there is a partial ligand decoordination and either 

one or two hydroxo molecules are coordinated in the equatorial position. 

The dangling alkoxo moieties are thus protonated forming alcohol groups 

that confer redox activity to the ligand. This change in the electronic fea-

tures enables to accumulate more than one oxidative equivalent in the 

complex and then becomes active for catalytic water oxidation. 
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VII 

 

Figure 3. Structural representation of the water oxidation catalysts [(p-bdam)Cu] 
and [(bpk)Cu]. 

Anchoring of molecular copper catalysts bearing non-innocent lig-

ands to π-delocalized surface by π-π stacking forces boosts the 

reaction rate of water oxidation catalysis. 

The water oxidation catalyst [(mox)CuII]2-  and its modified analogue in-

cluding a pyrene functional group in the phenyl ring have been studied in 

order to analyzed the influence that a π-delocalized functionality exerts 

on the catalytic performance. Results show that both the overpotential 

for water oxidation and the observed kinetic constant improved respect 

to the unfunctionalized catalysts: the overpotential decreases around 150 

mV and the kcat increases two order of magnitude. Moreover, both cata-

lysts have been used to generate anodes upon immobilization on the 

surface of graphenic electrodes by π-π stacking forces. Therefore, the ef-

fect of the π-delocalization exerted by the graphene layers is added leading 

to an increase in the kcat in both cases respect to the homogeneous sys-

tems. The new immobilized system containing the pyrene functionality is 

one of the fastest and most robust catalysts based on first row transition 

metals complexes with TON values of 5300 and with a kcat of 540 s-1. 
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Nickel complexes features more labile metal-ligand bonds than the 

copper analogous complexes. Then, substitution of those bonds by 

hydroxo molecules coming from the solvents takes place more eas-

ily leading to degradation under oxidative potential and basic pH 

values.  

Considering the results and mechanistic information obtained with the 

copper catalyst [(mox)Cu(II)]2-, the same ligand framework has been used 

to generate nickel complexes that have been studied for water oxidation 

catalysis. Interestingly, beside the similar structural features of both Cu 

and Ni complexes revealing strong metal-ligand bonds, Ni complexes are 

susceptible to substitution reactions under the water oxidation condition 

that eventually release free ligand and result in the formation of Ni oxide 

on the surface of the electrode. Therefore, two catalytic cycles can operate 

simultaneously: one based on the molecular complex acting as homoge-

neous catalyst and the other based on the Ni oxide acting as 

heterogeneous catalyst. The degradation of the molecular species and for-

mation of Ni oxide is highly determined by the experimental conditions 

and modification of the ligand can strongly influence the relationship be-

tween both systems increasing the stability of the molecular catalysts. 

 

Figure 4. Simplified proposed catalytic cycle for water oxidation by complex 12- 

and mechanism for deactivation of complex 12- and formation of NiOx. 
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Glossary of terms and abbreviations 

bpp- 3,5-bis(2-pyridyl)pyrazolate 
bpy  
CDL 

2,2’-bipyridine  
Double Layer Capacitance 

COSY  Correlation Spectroscopy  
CPE 
CS  

Controlled Potential Electrol-
ysis 
Specific Capacitance 

CV  Cyclic Voltammetry  
BDD Boron Doped Diamond 
d  doublet  
δ Chemical shift  
DCM  Dichloromethane  
DFT  Density Functional Theory  
dmso  Dimethyl sulfoxide  
DPV  Differential Pulse Voltamme-

try  
E  
ECSA 

Potential 
Electrochemically Active Sur-
face Area 

ε Extintion Coefficient  
E½ Half wave potential  
ESI-MS 
 
FE 
FOWA  

Electrospray Ionization Mass  
Spectrometry  
Faradaic Efficiency 
Foot of the Wave Analysis 

GC 
H2bda 
HER  
HEC 
hν 

Glassy Carbon 
[2,2'-bipyridine]-6,6'-dicarbox-
ylic acid  
Hydrogen Evolution Reaction 
Hydrogen Evolution Catalyst 
Light 

J  Coupling constant  
λ Wavelenght  
M  Molar  
Ι 
I2M 
i 
j 

Ionic force 
Bimolecular Interaction 
Mechanism  
Current 
Current density 
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m/z  Mass-to-Charge ratio  
MLCT  Metal to Ligand Charge 

Transfer  
MS  Mass Spectrometry  

 Overpotential 

NHE  Normal Hydrogen Electrode  
NMR  Nuclear Magnetic Resonance  
NOESY 
NPs  

Nuclear Overhauser Spectros-
copy 
Nanoparticles  

OEC  Oxygen Evolving Center  
PCET 
PEC  

Proton Coupled Electron 
Transfer 
Photoelectrochemical cell  

PEM  Proton Exchange Membrane  
Ph  Phenyl  
ppm  Parts per million  
PSI  Photosystem I  
PSII  Photosystem II  
PT  
PV 

Proton Transfer  
Photovoltaic 

py  Pyridine  
RDV 
RF 

Rotating Disk Voltammetry 
Roughness Factor 

RT  
S 

Room Temperature 
Surface of the electrode 

s  Singlet  
SCE  Saturated Calomel Electrode  
t  Triplet  
TBAPF6  
TEA 

Tetra(N-butyl)ammonium hex-
afluorophosphate  
Trimethylamine 

TOF  Turnover Frequency  
TON  Turnover Number  
trpy  2,2’:6’,2’’-terpyridine  
UV-vis  
v 

Ultraviolet-visible Spectroscopy  
Scan rate 

vs.  
WNA 

versus  
Water Nucleophilic attack 

WO  
WOC 

Water Oxidation 
Water Oxidation Catalyst 
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