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1. INTRODUCTION 

A wide range of relevant fields, such as agrochemicals, pharmaceuticals, fine 

chemicals and natural products chemistry, require the preparation of enantiomerically 

pure compounds. This is due that in many cases only one enantiomer has the desired 

properties while the other enantiomer is inactive or might give undesirable side-

effects.
[1]

 Enormous efforts are being made to discover enantioselective routes for 

their preparation. Of these routes the asymmetric catalysis, using the appropriate 

metal catalyst, has emerged as one of the most efficient, sustainable and 

straightforward. The importance of asymmetric catalysis is reflected by the many 

publications in this field and the Nobel Prize award in 2001 to W. S. Knowles, K. B. 

Sharpless and R. Noyori and in 2010 to E. Negishi, R. F. Heck and A. Suzuki.
[1] 

To maximize activity and enantioselectivity in metal-catalyzed asymmetric 

reactions several parameters must be taken into account. The most crucial parameter 

is probably the selection and design of the chiral ligand.
[1]

 In this field, the use of cheap 

and readily available natural chiral products is a clever strategy because it avoids the 

use of tedious optical-resolution. The use of highly modular ligand scaffolds is also 

desirable because it facilitates the synthesis and screening of series of chiral ligands 

(ligand library) in the search to maximize activity and selectivity for each particular 

asymmetric catalytic reaction.
[1]

 

The most investigated chiral ligands contain P-donor groups.
[1e,2]

 Phosphine and to 

a less extent phosphinite-containing ligands have had a predominant role.
[2]

 In the last 

decades, phosphite-containing compounds have also emerged as an extremely 

efficient type of ligands, due to their easy preparation from alcohols and their higher 

stability towards air and other oxidizing agents than the commonly used phosphines 

and phosphinites.
[3]

 Heterodonor bidentated P,X-ligands have several advantages over 

homodonors. They can provide different electronic background because of the 

different trans influence of the P and X atoms. Among the heterodonor ligands P,N-

ligands have been the most studied. Transition-metal complexes with chiral sulfur-

containing ligands have been less investigated,
[4]

 although in recent decades the 

number of studies on thioether-containing catalytic systems has increased.
[4]

 

Compared to phosphorous, sulfur has a less donor and acceptor character. In addition, 

to these electronic considerations sulfur atom has two substituents, which can create 

a less hindered environment than the trivalent phosphorus atom. When the thioether 

group is coordinated to the metal center it becomes a stereogenic center and a 

mixture of diasteromeric thioether complexes can be formed. The difficulty to control 

their interconversion has been regarded as a problem for asymmetric induction in 

catalysis. Despite this, thioether-containing ligands have proven to be as useful as 

other classical asymmetric ligands, especially in heterodonor ligands.
[4]

 Recently, our 

group has shown their potential with the successful application of the P-thioether 

ligands in the Ir-catalyzed hydrogenation of minimally functionalized olefins, Rh-
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catalyzed hydrogenation of cyclic β-enamides substrates and Pd-allylic substitution 

reactions.
[5]

 Another group of heterodonor based ligands that have been little used in 

asymmetric catalysis are the P,O-donor compounds although some of them have 

reported  enantioselectivities as high as the most studied and successful P,N-ligands.
[6]

 

In the last two decades, N-heterocyclic carbenes (NHCs) have emerged as a class of 

powerful ligands for promoting catalytic activity.  Owing to their strong σ-donor ability, 

air stability, and low toxicity, NHCs have been considered as practical alternatives to 

the more commonly used phosphines.
[7]

 Because of these unique features, exploring 

new classes of NHCs has been an attractive target of organometallic chemistry. Several 

groups have demonstrated the great potential of this ligand class in catalysis, which 

has spurred further development.
[7] 

Despite these prospects, the development of 

heterodonor-carbene ligands has predominantly focused on pyridyl units, while other 

heteroatom donor groups have not been explored extensively. 

In this context, this thesis has been focused in the design of eight new chiral 

heterodonor ligand libraries from readily available materials and their application in 

several enantioselective metal-catalyzed transformations. In this respect, three 

phosphorus-thioether ligand libraries have been developed for application in the Ir- 

and Rh-catalyzed asymmetric hydrogenation of minimally functionalized and 

functionalized olefins, and in the enantioselective Pd-catalyzed allylic substitution 

reactions. A new carbene-thioether ligand family has been prepared for application in 

Ir-catalyzed asymmetric hydrogenation. One new heterodonor sugar-based P,O ligand 

library have been successfully applied in the Ir-catalyzed hydrogenation of minimally 

functionalized olefins.  One sugar-based P,N-ligand library has been developed for Pd-

catalyzed allylic substitutions. Finally, two tridentated P,N,N-ligand libraries have been 

synthesized for the hydrogenation of ketones and for the asymmetric propargylic 

substitution. The background of each of these catalytic reactions is described in the 

following sections.  

 

1.1. Asymmetric hydrogenation reactions 

Because of its high efficiency, atom economy and operational simplicity, the metal-

catalyzed asymmetric hydrogenation using molecular hydrogen of properly selected 

prochiral olefins, ketones and imines can be a sustainable and direct synthetic tool for 

preparing enantiopure compounds (Scheme 1.1).
[1,8]

 Both academic and industrial 

research groups have studied and developed this reaction for decades. Many 

intermediates and building blocks which are key to organic synthesis are obtained 

through this reaction.
[1,8]
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Scheme 1.1. Asymmetric Hydrogenation of prochiral substrates. 

 

1.1.1. Asymmetric Rh-catalyzed hydrogenation of functionalized olefins 

The hydrogenation of functionalized carbon-carbon double bonds is widely used to 

prepare high value compounds that can be used as building blocks in asymmetric 

synthesis. The hydrogenation of dehydroamino acid derivatives and esters provides 

access to unnatural amino acids and amines that are useful intermediates for the 

pharmaceutical and agrochemical industries.
[1, 6]

 Their hydrogenation is also a typical 

reaction for testing the efficiency of new chiral ligands. Rh- and Ru-complexes 

containing chiral ligands with phosphorus and nitrogen donor centers have proven to 

be the best catalyst for the asymmetric hydrogenation of this type of substrate. 

Excellent activities and enantioselectivities have been achieved lasting recent decades 

for the asymmetric hydrogenation of dehydroamino acids and other functionalized 

substrates.
[1, 6]

 

The asymmetric hydrogenation of ketones is a useful way to synthesize chiral 

secondary alcohols. Ru and, to a lesser extent, Rh are the most widely used metal 

sources.
[1]

 

The enantioselective hydrogenation of carbon-nitrogen double bonds is a simple 

and convenient way to synthesize chiral amines. However, their hydrogenation has 

some serious drawbacks: coordination can take place through the nitrogen atom and 

the double bond, and both the substrate and catalyst intermediates are unstable 

under catalytic conditions. Homogeneous catalysts can complex both the imine 

substrate and the amine product. In consequence, catalytic activity is often low. Unlike 

the asymmetric hydrogenation of functionalized substrates, iridium complexes are the 

best catalysts for imines. The use of enamides offers an alternative to imines for the 

synthesis of chiral amines without the problems associated with imine reduction. Rh-

complexes have shown to be extremely efficient catalysts in the reduction of 

enamides. 

1.1.1.1. Mechanism 

Scheme 1.2 shows the mechanism for the asymmetric hydrogenation of 

dehydroamino acids and their esters with cationic precursors with diphosphines as 

ligands.
[9]

 In the last decade, this mechanism has proved to be valid for other 

phosphorus-based ligands (i.e. diphosphinites, diphosphites, etc.).
[10]

 The catalytic 

cycle consists of two coupled diastereomeric manifolds. The specie starting the 

catalytic cycle is a square planar Rh(I) complex containing the chelating diphosphine 
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and two molecules of solvent (A). This specie reacts with the substrate e.g. methyl (Z)-

α-acetamidoacrylate. 

The substrate displaces the solvent molecules to produce the square planar 

diastereomeric adducts (Bmaj) and (Bmin), where the substrate acts as a bidentate ligand 

bonded via the olefinic double bond and the oxygen atom of the acetyl group. The 

next step is the irreversible oxidative addition of hydrogen, which converts the square 

planar diastereoisomers (B) into the octahedral cis-dihydridorhodium complexes (C). 

Then the coordinated olefin is inserted into one of the Rh-H bonds to produce the two 

diastereomeric alkyl complexes (D). By reductive elimination, they generate the 

enantiomeric forms of the product and regenerate the catalytically active square 

planar species (A).
[9]

 

It is accepted that the oxidative addition of hydrogen is the rate- and 

enantioselective determining step. The reactivity of the minor diastereomer (Bmin) is 

much higher than that of the major diastereomer (Bmaj), so the minor isomer is the 

product determining. Brown’s and Landis’ research groups have conducted studies to 

explain this phenomenon. They show that the oxidative addition of both major and 

minor adducts requires the substrate to be rotated in the opposite direction of the 

rhodium phoshphine axis. In the minor adduct, which is less stable, there is a more 

hindered configuration that will rotate more easily. The minor species is therefore 

much more reactive towards dihydrogen than the major species.
[8-9,11]

 

Scheme 1.2. Mechanistic scheme for Rh-catalyzed asymmetric hydrogenation of methyl α-

acetamidoacrylate.  
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1.1.1.2. Ligands 

The development of homogeneous asymmetric hydrogenation was initiated by 

Knowles
[12]

 and Horner
[13]

 in the late 1960s after the discovery of Wilkinson’s 

hydrogenation catalyst [RhCl(PPh3)3].
[14]

 By replacing the triphenylphosphine of 

Wilkinson’s catalyst with resolved chiral monophosphines, Knowles and Horner 

reported the earliest exemples of enantioselective hydrogenation, although with poor 

enantioselectivity. Later, two advances were made in asymmetric hydrogenation by 

Kagan and Knowles. Kagan reported the first diphosphine ligands successfully used in 

asymmetric hydrogenation (DIOP) (Figure 1.1).
[15]

 Knowles made his significant 

discovery of the C2-symmetric chelating diphosphine ligand, DIPAMP (Figure 1.1).
[16]

 

Because of its high catalytic efficiency, DIPAMP was used in the industrial production 

of L-Dopa, a drug used to treat Parkinson’s disease.
[17]

 For this work Knowles was 

awarded the Nobel Prize in 2001.
[18]

 

 
Figure 1.1. Representative diphosphine ligands in asymmetric hydrogenation. 

Following the significant contributions by Kagan and Knowles came the 

development of hundreds of successful chiral diphosphorus ligands for asymmetric 

hydrogenation. These include Bonisch’s CHIRAPHOS and PROPHOS, Kumada’s 

ferrocene ligands BPPFA and BPPFOH, Achiwa’s BPPM, Rhode Poulenc’s CBD and 

Giongo’s bis(aminophosphine) ligand PNNP (Figure 1.1).
[19]

 However, development in 

the early 1980s focused mainly on the chiral Rh-catalyst, and the substrate scope was 

limited to α-dehydroamino acids. Noyori’s research on the BINAP-Ru catalyst opened 

up opportunities for the efficient hydrogenation of various substrates (Figure 1.1). 

Several prochiral olefins and ketones were hydrogenated with excellent 

enantioselectivity.
[20]

 For this work Noyori was awarded the Nobel Prize in 2001. In the 
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1990s, the introduction of some efficient chiral diphosphorus ligands, such as DUPHOS 

and BPE developed by Burk and coworkers (Figure 1.1) for the hydrogenation of 

various functionalized olefins, significantly expanded the scope of asymmetric 

hydrogenation.
[21]

 

Nowadays, many chiral ligands, mainly phosphorus donor ligands with either C2- or 

C1-symmetry, have been successfully applied. Catalysts containing diphosphine and 

diphosphinite have played a dominant role among the P-ligands.
[1,8,19]

 However, some 

catalysts containing a group of less electron-rich phosphorus compounds, phosphite 

and phosphoramidite ligands, have also demonstrated their potential utility in 

asymmetric hydrogenation.
[2c,3,8,19,22]

 Other donor atoms, such as sulfur and 

heterodonor ligands, have also received attention. Several systems with dithioether 

have led to low-to-moderate enantioselectivities (from 6% to 68% ee).
[4]

 Mixed P,P’-

ligands
[3,23]

 (such as phosphine-phosphite and phosphoramidite-phosphite) have been 

developed and have proved to be very effective for this process. Although it has been 

generally accepted that bidentates are the most appropriate ligands for metal-

catalyzed enantioselective hydrogenation, in recent years it has been shown that some 

monophosphorus ligands are very efficient for Rh-catalyzed asymmetric 

hydrogenation.
[24]

 Mixed chiral P,S-ligands have also demonstrated their potential 

utility. Among P,S-ligands, especially phosphinite-thioether ligands have shown the 

best results in Rh-catalyzed hydrogenation of prochiral olefins.
[2c,4]

 In the next section, 

we collect the most relevant catalytic data published for Rh-catalyzed asymmetric 

hydrogenation with P-thioether ligands, with the aim to compare the results obtained 

with the phosphite-thioether ligand library developed in this thesis (see section 3.3 

below) with the state of the art. 

1.1.1.2.1 Phosphorus-thioether ligands 

In 1998 was reported the first use of Rh complexes containing P-S donor ligands in 

the hydrogenation of prochiral olefins. These chiral bis(phosphinite)-thioether ligands 

1 (Figure 1.2) were tested in the asymmetric hydrogenation of methyl α-

acetomidocinnamate, providing only moderate enantioselectivities (up to 55% ee).
[25]

 

 

 
Figure 1.2. Bis(phosphinite)-thioether ligands 1a-d. 

Lately, a new class of thioether-phosphinite ligands, developed by Evans et. al., 

proved to be very efficient for the rhodium-catalyzed asymmetric hydrogenation of a 

variety of α-dehydroamino acid derivatives (Figure 1.3).
[26]

 In order to control the 

configuration at sulfur once coordinated to the metal center, the authors optimized 

the structure of the ligand backbone. They proved that the introduction of bulky 

substituents adjacent to the sulfur donor forced the sulfur substituent into an anti 
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orientation to minimize the steric hindrance. This sulfur-induced asymmetry together 

with the electronic differentiation of the two donor atoms were used to control the 

orientation of the olefin, making this system strongly enantioselective. Ligands 3c and 

4 afforded the highest enantioselectivities in the hydrogenation of a variety of alkyl- 

and aryl-substituted α-acetamidoacrylates (ee’s up to 97% and 98% respectively). It 

should be noted that the inversion of the stereocenter α adjacent to the sulfur donor 

in ligands 3c and 4, provided the opposite product enantiomer ((S) and (R) 

respectively; Figure 1.3). These catalysts were also interestingly described as tolerant 

to a wide range of N-protecting groups. Ligand 3c was also effective in the 

hydrogenation of the more challenging tetrasubstituted enamide providing an 

enantioselectivity of 93% ee. 

 
Figure 1.3. Phosphinite-thioether ligands 2-4 developed by Evans and coworkers. 

Furanoside phosphinite-thioether ligands 5a-c (Figure 1.4) were succesfully applied 

in the Rh- and Ir-catalyzed asymmetric hydrogenation of α-acylaminoacrilates and 

itaconic acid derivatives (ee’s up to 96%).
[27]

 Enantiomeric excesses depended strongly 

on the steric properties of the substituent in the thioether moiety, the metal source 

and the substrate structure. A bulky group in the thioether moiety in conjunction with 

the use of Rh has a positive effect on enantioselectivity. 

 

 
Figure 1.4. Furanoside phosphinite-thioether ligands 5a-c. 

Figure 1.5 shows another family of phosphinite-thioether ligands derived from 

carbohydrates. Cationic Rh(I) complexes derived from ligands 6-8 were used efficiently 

as catalysts in the enantioselective hydrogenation of enamides. Ligand 7b provided the 

best result, giving the desired (S)-N-acetyl phenyl alanine methyl ester in quantitative 

yield and in 94% ee. The conformational similarity of α-D-arabinopyranose with β-L-

galactopyranose allowed the synthesis of both enantiomers of α-amino acid 

derivatives such as D- and L-DOPA in excellent ee’s (97% and 98% respectively), using 

derivatives of the formal sugar as catalyst precursors (ligands 7b and 8).
[28]
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Figure 1.5. Phosphinite thioglycoside ligands 6-8. 

More recently, a highly modular family of phosphinite-thioether ligands derived 

from readily accessible enantipure epoxides, was systematically studied in the Rh-

catlyzed hydrogenation of dehydroamino esters (Figure 1.6).
[29]

 Ligand 11 contains the 

best combination of all ligand parameters, providing the highest enantioselectivity and 

activity in the Rh-catalyzed hydrogenation of methyl (Z)-α-acetamidocinnamate (%ee = 

84% (S); TOF1/2 = 284 h
-1

). 

Figure 1.6. Highly modular phosphinite-thioether ligands 9-13. 

The same group that reported the first phosphinite-thioether ligands applied in 

asymmetric hydrogenation (Figure 1.3), described the synthesis of a readily accessible 

phosphine-thioether ligand family 14-16 (Figure 1.7).
[30]

 All ligands showed high 

activities (up to 100% conv.) but enantiomeric excesses never exceeded 50% (ligand 

14b). 

 
Figure 1.7. Episulfide based phosphine-thioether ligands 14-16. 

Another family of phosphine-thioether ligands has been used in the asymmetric 

Rh-hydrogenation of prochiral olefins (Figure 1.8). The enantioselectivities obtained 

with ligands 17-19 were low-to-moderate, ranging from 5 to 47% ee. 
[31]

 

 

 
Figure 1.8. Phosphine-thioether ligands 17-19 based on cyclopropane backbone. 
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1.1.2. Asymmetric Ir-catalyzed hydrogenation of minimally functionalized 

olefins. 

Whereas the reduction of olefins containing an adjacent polar group (i.e. 

dehydroamino acids) by Rh- and Ru- catalyst precursors modified with phosphorus 

ligands has a long history,
[1,8]

 the asymmetric hydrogenation of minimally 

functionalized olefins is less developed because they have no adjacent polar group to 

direct the reaction. Iridium complexes with chiral P,N-ligands have become established 

as one of the most efficient catalyst for the hydrogenation of minimally functionalized 

olefins, and their scope is complementary to those of Rh- and Ru-diphosphine 

complexes.
[32]

 

1.1.2.1. Mechanism 

Computational and experimental research showed that the Ir-hydrogenation of 

minimally functionalized olefins can proceeds via two mechanism that evolved Ir
III

/Ir
V
,  

in contrast to the mechanism for the hydrogenation with Rh-catalyst which evolved 

Rh
I
/Rh

III
 species.

[9-10]
 One of the proposed routes involves an Ir

III
/Ir

V
 migratory-

insertion/reductive-elimination pathway (labeled as 3/5-MI in Scheme 1.3)
[33]

 whereas 

the second mechanism uses an Ir
III

/Ir
V
 σ-methatesis/reductive-elimination pathway 

(labeled as 3/5-Meta in Scheme 1.3)
[34]

. In both cycles, π-olefin complex and the 3/5-

MI transition state (3/5-TS) or 3/5-Meta transition state (3/5-TS’) are the responsible 

of the enantiocontrol in Ir-hydrogenation. Very recently, Pfaltz’s group, based on 

mechanistic studies under hydrogenation conditions, was able to detect the Ir(III) 

dihydride alkene intermediates responsible for the catalytic performance for the first 

time.ref They found that, similarly to the classical Halpern-mechanism for asymmetric 

hydrogenation with Rh-catalysts, the minor intermediate, which is less stable, is 

converted to the major product enantiomer. 

 

 
Scheme 1.3. 3/5-MI and 3/5-Meta catalytic cycles for the Ir-hydrogenation of minimally functionalized 

olefins. 
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1.1.2.2. Ligands 

A breakthrough in the hydrogenation of unfunctionalyzed olefins came in 1997 

when Pfaltz and coworkers used phosphine-oxazoline ligands PHOX
[35]

 (Figure 1.9) to 

design [Ir(PHOX)(cod)]PF6 (cod= 1,5-cyclooctadiene), a chiral analogue of Crabtree’s 

catalyst ([Ir(py)(PCy3)(cod)]PF6)
[36]

 that hydrogenated unfunctionalyzed olefins. 

Although this catalyst also hydrogenated prochiral olefins highly enantioselectivity, it 

was unstable under the reaction conditions. Pfaltz and co-workers overcame this 

problem by changing the catalyst anion to [(3,5-(F3C)2-C6H3)4B]
- 
([BArF]

-
). The result was 

[Ir(PHOX)(cod)]BArF (Figure 1.9), an active, enantioselective, and stable catalyst library 

for olefin hydrogenation.
[37]

 These catalysts have been successfully used for the 

asymmetric hydrogenation of a limited range of alkenes (mainly trisubstituted E-

olefins, Figure 1.9).
[37-38]

 Bolm’s group have recently successfully applied Ir-PHOX 

catalytic systems in the hydrogenation of α,β-unsaturated ketones (ee’s up to 99%, 

Figure 1.9).
[39]

 Hydrogenation of α,β-unsaturated ketones leads to the formation of 

ketones with α-chiral carbon centers; which are an important group of compounds in 

organic synthesis.
[40]

 

 
Figure 1.9. Selected Ir-hydrogenation results using PHOX ligand and similar phosphine-oxazoline ligands.  

Since then, P,N-ligands library applied in the hydrogenation reaction have been 

extended (Figure 1.10) by initially replacing the phosphine moiety with a phosphinite 

or carbene group, and the oxazoline moiety with other N-donor groups (such as 

pyridine, thiazole and oxazole).
[32]

 The structure of the chiral ligand’s backbone has 

also been modified. Of them all, chiral Ir-P,N compounds have been the most studied 

and they have therefore become extremely useful catalytic precursors for the 

hydrogenation of unfunctionalized tri- and tetra-substituted olefins.
[32,38a-f,39a,41]

 The 

most successful P,N-ligands contain a phosphine or phosphinite moiety as P-donor 

group and either an oxazoline,
[38a,41a,41g]

 pyridine,
[41d,41h,41m]

 oxazole,
[41b]

 or thiazole
[41i]
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as N-donor group. All, these modifications have led to the discovery of new ligands 

that have considerably broadened the scope of Ir-catalyzed hydrogenation of 

trisubstituted substrates. Despite all these important contributions, the hydrogenation 

of unfunctionalized olefins is still highly substrate-dependent and other types of 

substrates still require much attention. For example, for minimally functionalized 1,1-

disubstituted terminal alkenes more active and enantioselective Ir-catalysts are 

needed. Therefore, more research was required on the development of new ligands 

that can overcome these limitations. 

 Some years ago our group discovered that the presence of biaryl-phosphite 

moieties (Figure 1.10) in ligand design is highly advantageous in this process.
[32e,42]

 

Ir/phosphite-oxazoline catalytic systems provided greater substrate versatility than 

previous Ir/phosphinite-oxazoline systems, and high activities and enantioselectivities 

for several largely unfunctionalyzed E- and Z-trisubstituted and 1,1-disubstituted 

olefins. Several phosphite-nitrogen ligands have therefore recently emerged as 

extremely effective ligands for improving the activity and versatility of this process. 

The latest innovation in the design ligands is the use of iridium catalyst containing 

P,O
[6]

 and P,S
[5] 

heterodonor ligands have been also developed. All these modifications 

have led to the discovery of new ligands that have considerably broadened the scope 

of Ir-catalyzed hydrogenation. 

 

  
Figure 1.10. Representative P,N-ligands applied to the Ir-catalyzed asymmetric hydrogenation of minimally 

functionalized olefins. 
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As mention previously the most successful ligands are P,N-ligands bearing an 

oxazoline group. However, other ligands bearing more robust groups rather than 

oxazoline, such as thioether, amide, and urea moiety, have proved to be also efficient 

ligands for this catalytic process. In the next section we summarize the most relevant 

catalytic systems reported for asymmetric hydrogenation of minimally functionalized 

olefins. We only collect the results obtained with P-S and P-O ligands, in order to be 

able to compare with our P-thioether and P,O-ligand libraries developed in this thesis 

(see section 3.1-3.5 below). 

1.1.2.2.1. Phosphorus-thioether ligands 

A new class of non-N-donor heterodonor ligands successfully applied in the Ir-

hydrogenation of minimally functionalized olefins is the thioether-phosphite ligands. 

Our group was first to present the application of P-thioether ligands in this process. 

The introduction of a thioether moiety in the ligand design was made having in mind 

that: (i) the S atom becomes stereogenic center when coordinated to the metal, which 

moves the chirality closer to the metal, and (ii) the thioether group is more stable than 

the oxazoline moiety. In this context our group has developed a large modular 

furanoside thioether-phosphite/phosphinite ligand library (Figure 1.5).
[5a,b] 

 
Figure 1.11. Thioether-phosphite/phosphinite/phosphine ligands 32-46a-k. 

By carefully selecting the ligand components we found that the best 

enantioselectivities were obtained using thioether-phosphite ligands with 5-

deoxyribofuranoside backbone (42). Excellent enantioselectivities were therefore 

obtained (ee’s up to 99%) in a wide range of E- and Z-trisubstituted alkenes using 42a 
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and 42e. It should be pointed out that these catalysts are also very tolerant to the 

presence of a neighboring polar group. Thus, a range of allylic alcohols, acetates, α,β-

unsaturated esters and vinylboronates were hydrogenated with high 

enantioselectivities. The good performance extends to the very challenging class of 

terminal disubstituted aryl/alkyl olefins. For this substrate class, the results indicated 

that enantioselectivity is dependent on the nature of the alkyl substrate substituent, 

which has been attributed to the presence of an isomerization process under 

hydrogenation conditions. Enantioselectivities were therefore best in the asymmetric 

reduction of aryl and heteroaryl/tert-butyl substrates (ee’s up to 99%). Interestingly, 

for 1,1-disubstituted substrates, both enantiomers of the hydrogenated products were 

achieved in high enantioselectivity, simple by changing the configuration of the biaryl 

phosphite moiety. 

Figure 1.12. Thioether-phosphite/phosphinite ligand library 47-56a-g. 

In 2014, our group in collaboration with Pericàs group have been developed a new 

family of modularly constructed thioether-phosphinite/phosphite ligands (47-56a-g) 

derived from the ring opening of enantiopure epoxides (Figure 1.12).
[43]

 In general, 

enantioselectivities are mainly controlled by the nature of the thioether, the aryl 

moieties and the type of P-donor group. Excellent enantioselectivities (ee’s up to 99%) 

have been obtained for a range of substrates, including E- and Z-trisubstituted and 

disubstituted olefins, α,β-unsaturated enones, tri- and disubstituted alkenylboronic 

esters, and olefins with trifluoromethyl substituents. Asymmetric hydrogenation was 

also performed using propylene carbonate as solvent, which allowed the Ir catalyst to 

be reused. Moreover, a DFT study of the transition state responsible for the 

enantiocontrol in the Ir-catalyzed hydrogenation is also described and used for further 

optimization of the crucial stereaodefining moieties. 

Recently our group, together with Manoury’s research group, has reported the 

application of a novel ferrocenyl-based phosphine-thioether ligand family (Figure 1.13) 
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in the Ir-catalyzed hydrogenation of minimally functionalized olefins.
[5h]

 The ferrocenyl 

moiety gives to ligands 57-64 planar chirality and in addition, ligands 67 and 68 present 

a second stereogenic center next to the sulfur atom. By fine tuning the ligand 

parameters, good to excellent enantioselectivities were achieved in the asymmetric Ir-

catalyzed hydrogenation of many substrates. For example, enantioselectivities up to 

98% ee were achieved in the reduction of several α,β-unsaturated esters and ee’s 

between 92 and 99% in the reduction of di- and trisubstituted enol phosphinates. In 

addition promising high enantioselectivities were achieved for challenging substrates 

such as cyclic enones (ee’s up to 85%), enamides (90% ee) and δ-lactones (84% ee). 

 
Figure 1.13. Ferrocenyl-based phosphine-thioether ligands 57-68. 

1.1.2.2.2. Phosphorus-O ligands 

In 2011, Pfaltz and coworkers reported a new L-proline-based P,O-ligands (69-86)  

in Ir-catalyzed hydrogenation (Figure 1.14).
[6a]

 These ligands have been achieved from 

non expensive and readily available commercial products. Amido- and ureaphosphine 

ligands gave full conversion and excellent enantioselectivities (up to 99% ee) mainly in 

wide range of α,β-unsaturated esters and ketones, with similar or better results than 

those obtained with usual P,N-ligands.
[6b]

 These P,O-complexes proved, however, to be 

less stable than proline-based P,N-catalysts and were therefore generated in situ prior 

to the hydrogenation reaction. 

 

 
Figure 1.14. L-proline-based P,O-ligands 69-86. 

 

1.1.3. Asymmetric Ir-catalyzed hydrogenation of ketones. 

In several numbers of pharmaceutical products, such as aprepitant, crizotinib, 

duloxetine and ezetimibe (Figure 1.15), the key structural block contains a chiral 

secondary alcohol.
[19a,44]

 Because of their importance, special attention has been paid 
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to find efficient strategies to achieve chiral alcohols. The transition-metal catalyzed 

asymmetric hydrogenation of ketones is one of the most attractive methods for the 

synthesis of chiral alcohols due to its high atom economy and activity. Ru and, to a 

lesser extent, Rh are the most widely used metal sources.
[1] 

Despite the good results 

obtained using the previous catalytic system, more recently, iridium catalytic systems 

emerged as an effective method for the hydrogenation of simple ketones without any 

other functionalized coordinative group.
[45]

 

 
Scheme 1.2. Asymmetric hydrogenation of prochiral ketones 

 

 
Figure 1.15. Related chiral pharmaceuticals containing key chiral structural motifs. 

1.1.3.1. Mechanism 

The plausible proposed mechanism for this reaction involves a “metal-catalyzed 

bifunctional” interaction between the catalyst and the substrate, it is shown in Scheme 

1.3.
[46]

 

Catalytic active iridium dihydride complex (A) have been obtained from the 

precursor catalyst [Ir(μ-Cl)(cod)2]2 in presence of the corresponding tridentated P,N,N 

ligand, H2 and a strong base losing one molecule of HCl. This step should explain the 

need to ligand containing NH moiety. The iridium complex (A) is further hydrogenated 

to octahedral intermediate (B). The hydrogenation on the more favorable face of the 

chelating N atom takes place via a concerted four-membered ring type transition state 

(TS1), which evolve to the hydride iridium intermediate (C). The hydrogenation of the 

acetophenone take place via transition state (TS2). Similarly, to the classical Ru-Noyori 

catalyst, in this step the trihydride complex (C) transfers a hydridic Ir-H and protic N-H 

unit to the carbonyl group of the ketone via six-membered cyclic transition state (TS2) 

to produce chiral alcohol and regenerated the Ir complex (A). The presence of a third 
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chelating atom, avoid the formation of inactive iridium complexes achieving better 

results. 

 

 
Scheme 1.3. Proposed mechanism for asymmetric Ir-catalyzed hydrogenation of ketones. 

1.1.3.2. Ligands 

Asymmetric hydrogenation of functionalized ketones with a secondary 

coordination group to the metal center has been extendedly studied and several 

efficient catalysts have been developed for this process.
 [1] 

 In contrast, the asymmetric 

metal-transition-catalyzed hydrogenation of simple unfunctionalyzed non-chelating 

ketones is less investigated and only few catalysts have been reported. 

 

 
Figure 1.16. Representative chiral diphosphine ligands in hydrogenation of ketones.  
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A breakthrough in this field was achieved by Noyori and coworkers in 1995, which 

developed the highly effective BINAP-ruthenium-diamine catalyst system for the 

asymmetric hydrogenation of various simple aromatic ketones.
[47]

 Based on this work, 

other chiral diphosphine ligands (TolBINAP,
[48]

 XylBINAP,
[49]

 BICP,
[50]

 SDP,
[51]

 

TunePhos,
[44e]

 P-Phos,
[52]

 PhanePhos
[53]

) (Figure 1.16) have been developed and 

proved to be efficient in the Ru-catalyzed asymmetric hydrogenation of ketones.  

Chiral iridium catalysts have also emerged as an effective method for the 

hydrogenation simple ketones. Figure 1.17 shows a selection of the most successful Ir-

complexes developed.
[45]

 

 
Figure 1.17. Selected chiral Ir-complex for the hydrogenation of simple ketones. 

The chiral iridium complexes 87 with a planar chiral phosphine-thioether (P,S) 

ligand have been successfully applied in the hydrogenation of alkyl aryl ketones with 

moderated to high enantioselectivities (up to 99% ee) and good activities (up to 250 h
-1

 

TOF).
[54]

 A limited substrate scope was observed. Only two hydrogenated products 

from prochiral ketones were achieved in high enantioselectivities. 

Chiral iridium complex with phosphine-free ligands also give high 

enantioselectivities in the asymmetric hydrogenation of ketones (Figure 1.17; 88-90).  

Iridium-Ms-DPEN complex 88 showed high activities (up to 6000 TON) and excellent 

enantioselectivities (up to 99% ee) for the asymmetric hydrogenation of α-hydroxy 

aromatic ketones in the absence of base giving acces to chiral 1-arylethane-1,2-

diols.
[55]

 

The asymmetric hydrogenation of acetophenone catalyzed by tethered chiral 

iridium complex 89 without using base affords chiral hydrogenated product with up to 

94% ee.
[56]

 

Iridium complex 90 under basic conditions (KO
t
Bu) provided excellent activities (up 

to 200000 TON) and enantioselectivities (up to >99% ee) for the reduction of alkyl aryl 

ketones.
[57]
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Spiro iridium catalyst 91 containing chiral spiro aminophosphine SpiroAP ligand is 

an effective chiral catalyst in the hydrogenation of a series of alkyl aryl ketones and α-

arylmethylene cycloalkanones with high to excellent enantioselectivity (up to 97% ee). 

However, the turnover number using catalyst 91 only reached 10000, in spite of the 

TOF reached up to 37200 h
-1

. This indicates that the iridium complex tends decompose 

to an inactive iridium complex with two molecules of ligand.
[46a,58]

 In order to 

overcome this limitation several strategies have been developed. One of the most 

attractive strategies was reported by Zhou and coworkers, that consists on the 

addition of an extra chelating group in the ligand scaffold.
[59]

 This open up the use of 

tridentated ligands. In the next section we will present the tridentated ligands applied 

in the hydrogenation of simple ketones. 

1.1.3.2.1. Tridentated ligands  

The first iridium-tridentated catalytic system for the hydrogenation of simple 

ketones was reported by Zhou’s research group in 2011. They show the successful 

application of the Ir-catalytic system with a tridentated spiro P,N,N ligand 92
[59]

 (Figure 

1.18; up to >99.9% ee) for the hydrogenation of aryl alkyl ketones
[59]

 and of α,β-

unsaturated ketones (ee’s up to >99.9%)
[60]

. The replacing of the pyridine moiety by a 

sulfur group gave access to chiral spiro-P,N,S ligand 93 which have been applied in the 

hydrogenation of β-alkyl-β-ketoesters providing the corresponding enantiopure 

hydrogenated product in excellent enantioselectivities (up to 99.9% ee).
[61]

 

 
Figure 1.18. Chiral Spiro tridentated ligands reported by Zhou for the hydrogenation of simple ketones. 

Based on the previous P,N,N-ligands, in 2013, Clarke and coworkers reported an 

iridium complex of a tridentate cyclohexane-based phosphine-diamine ligand 94 

(Figure 1.19).
[62]

 The application of ligand 94 in the hydrogenation of alkyl heteroaryl 

ketones afforded excellent enantioselectivities (up to 99% ee). 

 

 
Figure 1.19. Chiral cyclohexane-based tridentated ligands reported by Clarke for the hydrogenation of 

simple ketones. 

 

Encourage by the success of previous tridentated chiral ligands, a new family of 

tridentated ferrocenyl pyridine-aminophosphine ligand 95 (Figure 1.20) was 

developed.
[63]

 However, only 87% ee were achieved in the hydrogenation of simple 
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ketones. Later, Zhang and coworkers reported a modified ferrocenyl tridentated 

ligand, they found that by replacing the pyridine moiety by oxazoline moiety giving an 

electro-donating tridentate ferrocene aminophosphoxazoline ligand 96 (f-amphox) 

(Figure 1.20) the enantioselectivities increased to up to 99.9%.
[46b]

 Ligand 96 also 

provided excellent enantioselectivities for the hydrogenation of α-amino ketones (up 

to >99% ee)
[64]

 and of α-hydroxy ketones (up to 99% ee)
[65]

. Finally, replacing the 

oxazoline substituent by a benzyl group, ligand 97 (Figure 1.20), excellent 

enantioselectivities were obtained for the hydrogenation of ketoamides (up to >99% 

ee).
[66]

  

 
Figure 1.20. Chiral ferrocene-based tridentated ligands reported by Zhang for the hydrogenation of simple 

ketones. 

 

A series of tridentate ferrocene-based amino-phosphine acid ligands 98 (Figure 

1.20) have been also applied in the hydrogenation of simple ketones affording chiral 

alcohols in excellent enantioselectivities (up to >99% ee).
[67]

 Other type of ferrocene-

based P,N,O ligands have been reported, recently by Zhang, with the use of the 

ferrocene-based amino-phosphine-alcohol ligand 99. This ligand exhibited excellent 

catalytic performance in Ir-catalyzed asymmetric hydrogenation of simple ketones (up 

to 99.9% ee).
[68]

 

Recently, Hu and coworkers reported a new ferrocene-based tridentate pyridine-

aminophosphine ligand 100
[69]

 (Figure 1.20) adding a new stereogenic center next to 

pyridine moiety respect ligand 95. These ligands provided good to excellent 

enantioselectivities (up to 97% ee), under mild reaction conditions, in a variety of alkyl 

aryl ketones. 

 

1.2. Asymmetric Pd-catalyzed allylic substitution 

Stereoselective formation of C-C, C-N and C-O bonds is one of the most important 

challenges in organic synthesis. In this context, palladium-catalyzed allylic substitution 

has proved to be an efficient synthetic method for the synthesis of natural products, 

due to its mild reaction conditions, the compatibility with many functional groups and 

the often high enantioselectivity. 
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The Pd-catalyzed allylic substitution consists in the reaction between an allylic 

racemic substrate which contains a leaving group (such as acetate or carbonate) and a 

nucleophile (usually carboanion or amine). Then, a nucleophile substitution takes place 

and an either new carbon-carbon or carbon-nitrogen bond is generated (Scheme 1.4).
 

[47] 

 
Scheme 1.4. Asymmetric allylic substitution reaction with two different kind of substrates. 

Two important classes of asymmetric allylic substitution depending on the kind of 

substrate used are evaluated. Type A reactions start from a racemic substrate (linear 

or cyclic) and proceed via symmetrical allyl systems (Scheme 1.4). In this case, the 

enantioselectivity is determined by the regioselectivity of the nucleophilic attack and 

therefore depends on the ability of the chiral ligand to differentiate between the two 

allylic termini.
[70]

 Type B reactions, racemic or prochiral substrates with two identical 

geminal substituents at one of the allylic termini react via the π-allyl intermediate 

(Scheme 1.4). In this case, enantioselection can occur either in the ionization step, 

leading to the allyl intermediate, or in the nucleophilic attack step. For these latter 

substrates, not only does the enantioselectivity of the process need to be controlled, 

but the regioselectivity is also a problem because a mixture of regioisomers may be 

obtained.
[70]

  

In this reaction, the range of substrates tested (linear or cyclic) is quite wide (Figure 

1.21). However, 1,3-diphenylprop-2-enyl acetate S1 (Figure 1.21) is widely used as a 

model substrate for testing new ligands. With regard to the metal source, a variety of 

transition metal complexes derived from Pd, Ni, Ru, Rh, Ir, Mo, W and other elements 

are known to catalyzed allylic substitutions. However, the most widely used catalysts 

are palladium complexes.
[1,70]

 A wide range of carbon-stabilized nucleophiles bearing 

carbonyl, sulfone, nitrile or nitro groups have been used in this process. While several 

amines such as primary and secondary alkyl amines, aryl amines or nitrogen 

heterocycles have been extensively employed as nucleophiles, Pd-catalyzed allylic 

etherification have been only been efficiently performed in the presence of phenols. 

Aliphatic alcohols have found to be poor nucleophiles for such reactions.
[70f]

 

 
Figure 1.21. The most common substrates used in the enantioselective allylic substitution. 
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1.2.1. Mechanism 

The catalytic cycle for Pd-catalyzed allylic substitution reactions with stabilized 

nucleophiles has been widely studied during the last decades. This is partly due to the 

relative ease to isolate the catalytic intermediate π-allyl complexes (D).
[70]

 The 

mechanism for palladium-catalyzed allylic substitution involves 4 steps (Scheme 1.6). 

The first step is the coordination of an allylic substrate (B) to the catalytic active specie 

(A), which is Pd specie at 0 oxidation state. Both Pd(II) and Pd(0) can be used as a 

catalysts precursors because Pd(II) species will be reduced in situ by the nucleophile to 

Pd(0) form. The most widely used catalyst precursors are Pd2dba3.CHCl3 (dba = 

dibenzylidenacetone), Pd(OAc)2 and [Pd(η-C3H5)(μ-Cl)]2. The next step is the oxidative 

addition of complex (C) to form the π-allyl intermediate (D), which is normally the rate 

determining step of the reaction.
[70]

 The reason why racemic starting materials are 

used is because of the loss of stereochemistry once π-allyl intermediate is formed. The 

product of this oxidative addition has two positions that are susceptible to nucleophilic 

attack (two terminal carbons of the allyl system). This attack will be controlled by steric 

hindrance induced by chiral homodonor ligand or by electronic discrimination when 

heterodonor ligands are used. After the nucleophilic attack, an unstable Pd(0) olefin 

complex (E) is produced which rapidly undergoes dissociation, releasing product (F). 

It is worth to mention that also the nucleophilic addition can be the rate 

determining step of the reaction, being both pathways (oxidative addition and 

nucleophilic attack) close in energy. Depending on the ligand used and also the 

substrate, those pathways can be differently favored.
[47] 

 
Scheme 1.6. Catalytic cycle for Pd-catalyzed allylic substitution reaction. 

The enantioselectivity of the process is controlled by the external nucleophilic 

attack on the most allylic carbon terminus of the π-allyl intermediate (D). Therefore, 

the intermediate (D) plays an important role in the catalytic cycle and it is recognized 

as the intermediate which controls the regio- and enantioselectivity. It is stable in the 

absence of nucleophile and its behavior can be studied by spectroscopic techniques. 
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Due to dynamic behavior of this π-allyl intermediate in solution, different isomers can 

be present (Figure 1.22). 

To achieve high enantioselectivities, the formation of only one isomer is needed, if 

we assume that reaction rates of all isomers are similar. 

 

 
Figure 1.22. Possible isomers adopted by π-allyl palladium complex (D). 

Both oxidative addition and nucleophilic attack take place stereoselectively with 

inversion of configuration. In that case, if the intermediate (D) does not undergo any 

isomeration that changes its configuration, the overall process proceeds with the 

retention of configuration; i.e. the nucleophile is introduced in the same side of the 

allyl plane that occupied the leaving group. 

 

1.2.2. Ligands 

Most of the successful ligands developed for this process have been designed using 

three main strategies. The first one was the use of a secondary interaction of the 

nucleophile with a side chain of the ligand to direct the approach to one of the allylic 

terminal atoms, by means of a secondary ligand-nucheophile interaction (Figure 1.23; 

101). The second one was to increase the ligand’s bite angle in order to create a chiral 

cavity in which the allyl system is perfectly embedded (Figure 1.24; 102). The third 

strategy consists on the use of heterodonor ligands to provide an electronic 

differentiation of the two allylic terminal carbons (Figure 1.25; 103).     

Concerning the secondary interaction of the nucleophile with the ligand, we can 

highlight the work of Hayashi and Ito et al. by the synthesis of 101 (Figure 1.23). By 

introducing a side chain into the ligand they were able to direct the approach of the 

nucleophile to one of the allylic terminal carbon atoms, providing high levels of 

enantioinduction.
[71]

 

 
Figure 1.23. Ferrocene-based phosphine 101. Example of a directing group ligand. 
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The idea of the second strategy, developed by trost and coworkers, is paved the 

way for the successful application of ligands with large bite angles for the allylic 

substitution of unhindered substrates.
[72]

 In 2009, P.-O. Norrby in conjunction with G. 

C. Lloyd-Jones reported a DFT calculation analysis which determined that 13-

membered chelate ring of Pd-102 not only makes a chiral pocket where the substrate 

is embedded but also a secondary interaction which directs the nucleophilic attack 

(Figure 1.24).
[73]

 This interaction is based on an H-bonding interaction between the 

nucleophile (enolate oxygen of dimethyl malonate) and the amide group of the ligand 

backbone. This interaction guided the enolate carbon to the proximal (pro-S) terminus 

of the η
3
-carbon of the allyl with a perfect selectively. This hydrogen-bond directed 

delivery of the nucleophile has precedent in the elegant design of chiral ferrocene 

ligand 101 developed by Hayashi and Ito (Figure 1.23). 

 
Figure 1.24. Secondary interactions of Trost ligand 102 reported by Norrby and Lloyd-Jones. 

The other strategy consists on the use of heterodonor ligands, which create an 

electronic differentiation between both allylic carbons because of the different trans 

influences of the donor groups. The first ligand based on this strategy was the 

phosphine-oxazoline PHOX ligand 101, developed by Pfaltz et al. (Figure 1.25).
[74]

 

 
Figure 1.25. Example of electronic differentiation with. PHOX ligands. 

In this context, this project will be focused in the last strategy, the application of 

heterodonor ligand to create electronic differentiation between both allylic carbons, 

more precisely in the application of P,N and P,S ligands in the Pd-allylic substitution 

reaction. Among heterodonor ligands, phosphorus-nitrogen ligands have been the 

most widely used, although other heterodonor ligands, such as phosphorus-

thioether
[4g,75]

 and phosphorus-sulfoxide
[76]

 are emerging as alternative to P,N-based 

ligands. More recently, our group found that the use of biaryl phosphite-containing 

heterodonor ligands is highly advantageous by overcoming the most common 

limitations of this reaction which are low reaction rates and high substrate 

specificity.
[77]

 Introducing a biaryl phosphite was crucial because its larger π-acceptor 

ability increases the reaction rates (lowering the energetic barrier of the nucleophilic 

attack, making the carbon trans to phosphite more electron deficient and therefore, 
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more reactive) and its flexibility allows the catalyst chiral pocket to adapt to both 

hindered and unhindered substrates.
[77]

 In additions, the presence of biaryl phosphite 

moiety was also beneficial in the allylic substitution of more challenging 

monosubstituted substrates. Regioselectivity towards the desired branched isomer in 

this substrate class increases thanks to the π-acceptor ability of the phosphite moiety, 

which decreases the electron density of the most substituted allylic terminal carbon 

atom via the trans influence, favoring the nucleophilic attack to this carbon atom.
[74]

 

Following the third strategy, several mixed bidentated donor ligands (P-N
[70b-f,78]

,   

P-S,
[4,51]

 N-S
[4,79]

 and P-P’
[23c,80]

 have been developed for Pd-allylic substitution 

reactions. In the following sections we collect the most successful applications of P-N 

and P-S ligands for this catalytic process. 

1.2.2.1. Phosphorus-nitrogen ligands 

The first successfully applied P,N-ligand to Pd-allyl substitution reaction was the 

phosphine-oxazoline PHOX ligand 101 (R= Me, Ph, 
i
Pr, 

t
Bu), developed simultaneously 

by Pfaltz, Helmchen and Williams.
[74]

 Unfortunately, these kind of ligands only 

provided excellent enantioselectivities when bulky benchmark substrate S1 was used. 

When less bulky dimethylated substrate S2 or cyclic substrates S3 were studied, 

enantioselectivities decreases up to 71% ee or racemic mixtures.  

After this pioneering work, several modifications of those PHOX ligand 101 have been 

made by replacing the phosphine moiety by more electronically deficient phosphinite 

or phosphite, and also replacing the oxazoline moieties by other sp
2
- or sp

3
-nitrogen 

donor groups. Figure 1.26 shows the most representative successful ligands reported 

to date for asymmetric Pd-catalyzed allylic substitutions. 

Modification on the substituent of the oxazoline ring led to ligands 102
[81]

 and 103
[82]

 

(Figure 1.26). Both ligands provided similar high enantioselectivities than PHOX ligands 

in the Pd allylic substitution of model substrate S1 (up to 98 % and up to >99% ee, 

respectively). However, only moderate enantioselectivities were obtained in the allylic 

substitution of les sterically demanding substrates such as linear substrate S2 (ee’s up 

to 69% with ligand 102) or cyclic substrate S14 (ee’s up to 59% with ligand 103). 

A ferrocenyl substituent at the oxazoline ring was introduced in ligands 104
[83]

 and 

105
[84]

 (Figure 1.26) instead of a phenyl ring. Both ligand families provided excellent 

results in the Pd-allylic alkylation of model substrate S1 with dimethyl malonate (ee’s 

up to 99% ee and up to 95% ee, respectively). The authors found that the planar 

chirality is decisive in exerting control over both absolute configuration and 

enantiomeric excess. 

The groups of Ikeda and Pregosin developed ligands 106 by introducing an 

enantiomerically pure binaphtyl moiety (Figure 1.26).
[85]

 These ligands provided 

excellent enantioselectivities (ee’s up to 97%) in the test reaction. The authors found 

that the configuration of the substituted product was mainly determined by the 

configuration of the binaphtyl moiety. 
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Figure 1.26. Selected successful P,N-ligands applied in the asymmetric Pd-catalyzed allylic substitution 

reaction. 

 

Phosphine-oxazoline ligands 107
[86]

 and 108
[38b,87]

 (Figure 1.26) were also 

successfully applied in the Pd-allylic alkylation reaction of model substrate S1 (ee’s up 

to 98%). Ligand 107 also provided promising enantioselectivities in the allylic 

substitution of unhindered substrate S2 (ee’s up to 80%) and the cyclic substrate S4 

(ee’s up to 79%).
[86]

 

Phosphite-oxazoline ligands 109 (Figure 1.26) were designed to overcome the 

problem of regioselectivity in the allylic alkylation of monosubstituted linear 

substrates.
[88]

 An excellent combination of regioselectivities (up to 95%) towards the 

desired branched isomer and enantioselectivties (up to 94%) were achieved. Despite 

this success these ligands produced moderate results for hindered (ee’s up to 60% for 

S1) and unhindered (ee’s up to 70% for S4) disubstituted substrates. 

With the aim of finding more versatile phosphite-oxazoline ligands, a decision was 

made to take one of the most successful ligand families for this process (PHOX ligands, 

Figure 1.26, and replace the phosphine group by a bulky diphenyl phosphite moiety 

(ligands 110; Figure 1.26).
[89]

 The application of these ligands in the asymmetric Pd-

catalyzed allylic substitution was very successful. Excellent activities (TOF’s > 2400 mol 
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substrate * (mol Pd * h)
-1

, regio (up to 99%) and enantioselectivities (ee’s up to >99%) 

were obtained for hindered and unhindered disubstituted and also monosubstituted 

substrates using a broad range of nucleophiles. Furthermore, experimental and 

theoretical studies showed that ligands 110 are able to tolerate a wide substrate scope 

due to their ability to adapt the size of the substrate-binding pocket to the reacting 

substrate, since the coordinated ligand in all reactions adopt the Sa,S configuration.
[78f]

  

After this breakthrough, other biaryl phosphite-oxazoline ligands have been 

developed. For instance, ligands 26
[90]

 and 27 (X = O)
[91]

 (Figure 1.26) have been 

efficiently applied in the Pd-catalyzed allylic substitution of a broad range of mono- 

and disubstituted hindered and unhindered linear and cyclic substrates. The 

replacement of the oxazoline moiety in ligands 27 by a thiazoline ring (ligands 27, X = 

S; Figure 1.10) has expanded the range of unhindered allylic substrates that can be 

efficiently catalyzed with this ligand family. 

More recently, the strong π-accepting ligands 111 (Figure 1.26) have also provided 

high regioselectivities (up to 96%) and enantioselectivities (up to 94%) in the Pd-

catalyzed alkylation of monosubstituted allyl substrates.
[78j]

 

Other sp
2
-nitrogen donor groups have also been incorporated in heterodonor P,N-

ligands. In this respect, several phosphorus-imine ligands have been developed and 

showed to be efficient in Pd-allylic substitution reactions. For instance, 

enantioselectivities up to 98% ee were obtained with ligands 112-115 (Figure 1.26) in 

the Pd-alkylation of model substrate S1.
[92]

 More recently, phosphine imidazoline 

ligands have been also developed. For example, ligand 116 (Figure 1.26) provided high 

yields and enantioselectivities in the substitution of S1 with dimethyl malonate and 1-

fluorobis-(phenylsulfonyl)methane (ee’s up to 96% and 98%, respectively).
[78h]

  

P,N-ligands containing a pyridine group as sp
2
-N donor group have also been 

developed. Ligand 117
[93]

 provided ee’s up to 96%. Jiang et al. prepared a pyridine 

ligand 118 based on paracyclophane backbone. This ligand was applied in the allylic 

alkylation of model substrate S1 and dimethylmalonate as nucleophile, achieving 

enantioselectivities up to 97%.
[94]

 Zhou et al. designed a cyclohexyl based phosphinite-

pyridine ligand 119, achieving excellent enantioselectivities when standard substrate 

S1 was studied (ee’s up to 95%).
[95]

 Phosphite-pyridine 120 was successfully applied in 

the Pd-allylic substitution reaction, achieving excellent enantioselectivities (up to 99% 

ee) in a wide range of substrates (disubstituted S1-S2, cyclic S3-S5, monosubstituted 

S6-S9 and trisubstituted S10-S11) and different C-, N- and O-nucleophiles.
[78c]

 

1.2.2.1.1. Phosphorus- sp
3
-nitrogen ligands 

Phosphine-based ligands 

 

Although most of the phosphorus-nitrogen ligands applied in Pd-allylic substitution 

reaction have been phosphorus-sp
2
-nitrogen ligands, some heterodonors sp

3
-nitrogen 
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containing ligands have been successfully applied. These ligands can be divided mainly 

divided in four families: 

The first ligands are variations of PHOX 101 ligand, where oxazoline moiety has 

been replaced by sp
3
-nitrogen heterocycles such as oxazolidines 121

[96]
 (R

1
= Me, Bu; 

R
2
= 

i
Pr, Ph, R

3
= H, Ph), oxazinanes 122

[97]
 (R= Et, Pr, Bu, Bn), imidazolidines 123

[98]
 and 

124
[99]

 (R
1
= H, SiMe3; R

2
= Me, Et, Ph, OMe). All provided similar enantioselectivities in 

the Pd-allylic alkylation of standard substrate S1 (ee’s up to 99%). 

 

 
Figure 1.27. PHOX-type phosphine-sp3 nitrogen ligands 121-124. 

In this second case, the enantioselectivity is provided from the axially chiral 

moieties: Azepine-type P,N ligands 125 and 126 have been successfully applied for the 

model substrate S1 (ee’s up to 97%) but poor results were obtained for unhindered 

substrate S2.
[100]

 

Mino et al. developed amino-phosphine 127 (R= OMe, Naph) which presented axial 

chirality. These ligands provided excellent results in the allylic alkylation of model 

substrate S1 (ee’s up to 99%) with a wide range of C-nucleophiles derived from 

dimethyl malonate.
[101]

 

 

Figure 1.28. Axially chiral phosphine-amine ligands 125-128. 

Amino-phosphine 128 provided excellent results (ee’s up to 97%) for standard 

substrate S1. They also observed kinetic resolution phenomena, achieving also 

enantioenriched S1 from the reaction mixture (ee’s up to 98%), while attaining 

alkylated product in high levels of enantioselectivity.
[102]

 

 The third class of ligands are P,N with N-donor secondary amines 129 (R= Me, 
n
Bu, 

Ph). These ligands provided excellent enantioselectivities for model substrate S1 (ee’s 

96%). 

 

 
Figure 1.29. Phosphine-sp3-amine ligand 129.  
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Last ligand family has a planar chirality, which comes from ferrocenyl moiety. 

Fukuzawa et al. developed ferrocene-based phosphine-amine 130. This ligand 

provided excellent enantioselectivities in the allylic alkylation and amination of 

standard substrate S1 (ee’s up to 96% and 90% respectively).
[103]

  

Ligand 131, developed by Kim and Jin
[104]

, provided excellent enantioselectivities 

for the alkylation of model substrate S1 (ee’s up to >99%). 

 

 
Figure 1.30. Selected ferrocene-based phosphine-sp3-nitrogen ligands 130-131. 

 

Phosphinite/N-phosphine-based ligands. 

 

Only two successful examples are reported in the literature. Ligand 132, developed 

by Chan et al., have been successfully applied in the allylic alkylation of model 

substrate S1, achieving enantioselectivities up to 95% ee. Authors found that 

secondary amines provided better enantioselectivities those tertiary amine-based 

ligands.  

N-phosphine 133, developed by Bujoli and Petit, also based on secondary amine 

moiety, exhibit a high enantioselectivity in the allylic alkylation of standard substrate 

S1 (ee’s up to 93%).
[105]

 

 
Figure 1.31. Selected phosphinite/aminophosphine-sp3-nitrogen ligands 132-133. 

 

Phosphite-based ligands 

 

As in phosphinite case, phosphite-based sp
3
-nitrogen ligands have been poorly 

studied, and only two successful examples are present in the literature. 

First example, reported by Zhang et al. is based on chincona alkaloid. Amino-

phosphite 134 provided excellent results (ee’s up to 94%) in allylic alkylation of 

standard substrate S1 with a wide variety of carbon nucleophiles such as malonates 

and acetylacetones.
[106]

 The second example, developed by Nemoto and Hamada,
[107]

 is 

a unique case. Diaphabox ligand 135 is peculiar as the actual active species binding to 

the palladium is generated in situ. Ligand 135 comes from the P(V) analogue, which is 

reduced to P
III

 by BSA, achieving P-stereogenic phosphite-type ligand. This ligand 

provided excellent enantioselectivities for benchmark substrate S1 (ee’s up to 99%). 
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Figure 1.32. Phosphite-sp3-nitrogen ligands 134-135. 

1.2.2.1.1. Phosphorus- thioether ligands 

Although P-S ligands have been less studied compared with P-N ligands, there are 

some successful examples of their application in the literature. In the next section, the 

most successful P-S ligands reported to date will be discussed. 

 

Phosphine-thioether ligands 

 

Among all the combinations of P-S ligands that have been tested in 

enantioselective Pd-catalyzed allylic substitutions (e.g. phosphine-thioethers, 

phosphinite-thioethers or phosphite-thioethers), phosphine-thioether ligands have 

been the most widely studied. In particular, several chiral phosphine-thioether 

ferrocene based ligands has been developed for this process. 

 
Figure 1.33. Chiral phosphine-thioether ligands 136-139. 

The first example of the application of phosphine-thioether ligands containing a 

ferrocenyl moiety in the Pd-allylic alkylation to the model substrate S10 was developed 

by Albinati and Pregosin (Figure 1.33) in 1996.
[108]

 Ligand 136 bearing thyoglicose 

functionality afforded the alkylated product with an enantioselectivity of 88%. 

Changing the carbohydrate substituent for a cyclohexyl (137a) or an ethyl group (137b) 

(Figure 1.33) resulted in a dramatic decrease in the enantioselectivity (67% ee and 34% 

ee, respectively). Additionally, the replacement of the ferrocene group by a phenyl ring 

on ligands 138a-b (Figure 1.33) resulted in a low asymmetric induction (ee’s up to 

64%).
[109]

 Thus, the combination of the two stereogenic fragments was crucial for 

achieving good levels of enantioselectivity. Low enantiomeric excesses were also 

obtained with a similar thioether-phosphine ligand 139 using a stereogenic norborneol 
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fragment (Figure 1.33), but the authors attributed their catalytic performance to the 

size chain between sulfur donor and the stereogenic unit. 

The catalytic results using ferrocenyl phosphine-thioether ligands 138-142 (Figure 

1.34) indicated that enantioselectivity is better when the phosphine group is attached 

to the Cp ring (ligands 138-140) rather than when is attached to the thioether unit 

(ligands 141 and 142) (Figure 1.34). Furthermore, by comparing ligands 138-140, it can 

be seen that enantioselectivities are not affected by the presence of an additional 

stereogenic unit or by the length of the thioether chain (Figure 1.34). The structural 

studies of a 1,3-diphenylallyl palladium complex containing ligand 138a, [Pd(η
3
-1,3-

PhC3H3Ph)(138a)]PF6, indicate that the small substituents on thioether groups favor 

the nucleophilic attack in the cis position to the S-donor moiety (Figure 1.34).
[110]

 

 

 
Figure 1.34. Ferrocenyl thioether-phosphine ligands 138-142. This figure also shows the enantioselectivities 

obtained in the Pd-catalyzed asymmetric allylic alkylation of dimethyl malonate to S10. 

 

Carretero et. al. reported a readily available family of enantiopure phosphine-

thioether ferrocenes (Figure 1.35), having exclusively planar chirality. Ligands 143 and 

144 were efficiently applied in the palladium-catalyzed allylic substitution of the model 

substrate S10 (ee’s up to 97%).
[111]

 Catalytic results showed that ligands 143b-c 

containing electron-withdrawing phosphines (Figure 1.35) provided high 

enantioselectivities in significantly shorter reaction times (20 min). A less sterically 

demanding thioether substituent in ligand 144 (Figure 1.35) resulted in a dramatically 

drop of the enantioselectivity (40% ee). Ligands 143 and 144 were also applied in the 

Pd-catalyzed allylic amination achieving the best ee’s with ligands 143f-g containing 

bulky phosphines (Figure 1.35) (ee’s up to 99.5%). The authors also performed X-ray 

diffraction analyses and NMR studies of the Pd-allyl intermediates, proving the 

formation of a P,S-bidentated ligand and explaining the enantioselectivity obtained. It 

was concluded that the nucleophilic attack takes place trans to the phosphorus donor 

atom and the bulky thioether substituent plays an important role in enhancing the 

reactivity of the endo/exo intermediate that gives the obtained product enantiomer. 
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Figure 1.35. Ferrocenyl phosphine-thioether ligands 143 and 144 developed by Carretero et al. 

Recently, a new class of ferrocenyl phosphine-thioether ligands with heterocyclic 

scaffolds has been reported by Chan and coworkers (Figure 1.36). Ligands 145-146 

were initially applied in the enantioselective Pd-catalyzed indole alkylation of the 1,3- 

diphenylated substrate S10, achieving enantioselectivities up to 96% ee with ligand 

146, irrespective of the steric and electronic nature of indoles.
[112]

 Later, ligands 145-

147 (Figure 1.36) were applied in Pd-catalyzed allylic alkylation reactions using several 

malonate nucleophiles, providing enantioselectivities up to 96% ee with ligand 146. 

Privileged ligand 146 was also examined in the Pd-allylic alkylation of cyclic allylic 

acetates and unsymmetrical allylic substrates, obtaining enantioselectivities up to 87% 

ee.
[113]

 

 
Figure 1.36. Phosphine-thioether ligands 145-147 based on ferrocene and heterocyclic scaffolds. 

A novel phosphine-thioether ligand family based on a triazoleferrocenylethyl 

backbone was synthesized and applied in Pd-catalyzed allylic alkylations, 

etherifications and aminations. ThioClickFerrophos ligands 148a-f (Figure 1.37), in 

which the thioether moiety is directly attached to the ferrocene unit, were screened in 

the Pd-catalyzed allylic alkylation of substrate S10 using dimethyl malonate. The best 

enantioselectivities were obtained with ligand 148e (up to 90% ee). It should be 

pointed out that ligand 148e was able to efficiently catalyze the etherification between 

substrate S10 and different electronically substituted benzyl alcohols (ee’s and yields 

ranging from 74 to 82% and from 85 to 99%, respectively).
[114]

 

 
Figure 1.37. ThioclickFerrophos ligands 148. 

The axially chiral 1-1’-binaphtyl backbone has been also widely used in the ligand 

design for the asymmetric Pd-catalyzed allylic substitution reaction. Phosphine-

thioether ligands BINAPS 149a-d (Figure 1.38) derived from enantiopure BINOL have 
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been reported by Kang
[115]

, Gladiali
[116]

 and Shi
[117]

 with different alkyl groups on the 

sulfur atom. Kang and coworkers reported 91% ee for the product of usual allylic 

alkylation test by using ligand 149a. Gladiali tested the isopropyl derivative 149b, 

which led to the corresponding compound in quantitative yield in 60% ee. Shi obtained 

77% and 33% ee, respectively, by using ligands 149c and 149d. Interestingly, they 

obtained a reversal of enantioselectivity between ligands 149a, 149c, and 149b, 149d. 

X-ray analyses and NMR studies confirmed a P,S-coordination as a metallocycle in a 

pseudo-boat-seven-membered arrangement. The steric bulkiness of alkyl groups on 

the sulfur atom seems to be responsible for the observed reversal of enantioselectivity 

by favoring one or the other diastereomeric π-allyl complex. Recently, Hagiwara and 

coworkers have reported for the first time the synthesis of the arylthioether 

substituted BINAPS ligands 149e-h and their alkyl counterpart 149i.
[118]

 After a first 

examination of ligand 149e in the test reaction with S10 (90% yield, 95% ee), ligands 

149e-i were tested in the enantioselective Pd-catalyzed allylic alkylation of indoles. 

Tunning of the structural properties of the sulfur substituent was an effective 

stereocontrol tactic. Therefore, 149f provided enantioselectivities up to 95% using 

different sterically and electronically substituted indoles. 

 
Figure 1.38. Phosphine-thioether BINAPS ligands 149. 

Very recently, the synthesis of another axially chiral thioether-phosphine ligand has 

been reported.
[119]

 Ligands 150 (Figure 1.39), containing an enantiopure biphenyl 

backbone, have been applied in the asymmetric Pd-catalyzed allylic substitution of 

model substrate S10 using dimethyl malonanate and indole as nucleophiles. These 

ligands showed in both cases comparable efficiency with regard to their binaphtyl 

homologues (149) above mentioned (ee’s up to 94% were obtained with ligands 150). 

 
Figure 1.39. Axially chiral biphenyl-based phosphine-thioether ligands 150. 

Nakano and Hongo were the first to test the ability of oxathiane-type ligands to 

perform Pd-catalyzed allylic substitutions. They initially synthesized ligands 151-153 

(Figure 1.40) and successfully used them in alkylation and amination reactions of 

substituted allyl acetates. Norbornane-based phosphine-oxathiane ligand 151 gave the 

highest level of enantioselectivity (ee’s up to 94%) in the test reaction. Ligand 151 was 

also useful in the analogous allylic amination with either benzyl amine or potassium 
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phtalamide providing enantioselectivities up to 90% ee.
[120]

 Later, taking into account 

the good catalytic performance obtained with ligand 151, Nakano et. al reported a 

novel polymer-supported P-S type ligands 154a-e (Figure 1.40) and applied them in Pd-

catalyzed asymmetric alkylations and aminations. Excellent enantioselectivities were 

obtained in both processes (up to 96 ee% in alkylation reactions and up to 99% ee in 

amination reactions).
[121]

 Additionally, the same authors developed a new 

xylofuranoside-based phosphinoxathiane ligand 155 (Figure 1.40), that provided also 

high enantioselectivities in the enantioselective Pd-catalyzed allylic substitution of S10 

(ee’s up to 91%).
[122]

 

 
Figure 1.40. Phosphinooxathiane ligands 151-155. 

Cyclopropane-based phosphine-thioether ligands 17-19 (Figure 1.8) and related 

ligands 156-160 (Figure 1.41) were applied in the palladium-catalyzed allylic alkylation 

of S10 with dimethyl malonate. Varying the ligand substituents on the phosphorus, 

sulfur and carbon chain revealed ligand 18 (Figure 1.8) to have the optimal 

configuration for this reaction, giving the product in high yield and with good 

enantioselectivity (93% ee).
[31]

 

 
Figure 1.41. Cyclopropane-based thioether-phosphine ligands 156-160. 

A series of (S)-proline-derived phosphine ligands bearing thioether and selenoether 

functionalities (161-165; Figure 1.42) were prepared and used in the test Pd-catalyzed 

asymmetric allylic alkylation. It was observed that an increase of the steric hindrance 

around the sulfur atom in ligands 163a-g resulted in higher values of 
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enantioselectivity, with a maximum of 88% ee for the ligand bearing a sterically 

hindered naphtyl group (163g). It should be noted that ligands 162 and 164, bearing a 

selenium atom instead of sulfur, also induced good levels of enantioselectivities (ee’s 

ranging from 79% to 86%).
[123]

 

 

 
Figure 1.42. (S)-Proline-derived chiral ligands 161-165. 

Two families of P-chirogenic phosphine-thioether ligands have been developed for 

the asymmetric Pd-catalyzed allylic substitution process. The first one was reported in 

2001 by Imamoto and coworkers (ligands 166, Figure 1.43).
[124]

 By changing the 

substituents on the phosphorus and sulfur atoms, ee’s up to 90% were obtained in the 

model reaction using different malonates. Very recently, a second family of P-

chirogenic phosphine-sulfide has been developed (ligands 167, Figure 1.43).
[125]

 

Ligands 167 have been applied in the Pd-catalyzed allylic alkylation of substrates S10, 

S11 and S13 (Figure 1.21). Excellent enantioselectivities were achieved in the 

alkylation of model substrate S10 (ee’s up to 96%). In contrast, low-to-moderate 

enantioselectivities were obtained in the case of the more challenging substrates S11 

and the S13 (ee’s up to 66% and up to 34%, respectively). These ligands have been also 

applied in the Pd-catalyzed allylation of benzyl amine, leading to the N-benzyl product 

with enantioselectivities ranging from 37% to 89% ee. In all cases enantioselectivity 

was strongly dependent upon the substituents on the phosphorus atom and 

significantly less dependent upon those on the sulfide moiety. 

 

 
Figure 1.43. P-chirogenic phosphine-thioether ligands 166 and 167. 
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Phosphinite- thioether ligands 

 

The first application in the Pd-catalyzed allylic substitution of a family of mixed 

thioether-phosphinite ligands was reported by Evans and coworkers.
[126]

 Ligands 2-4 

(Figure 1.3), also applied in the Rh-catalyzed hydrogenation of enamides,
[26]

 and 

related ligands 168-173 (Figure 1.44) were successfully applied in the allylic 

substitution of several linear and cyclic substrates. After a systematic variation of the 

ligand substituents at sulfur, phosphorus, and backbone, ligands 2g and 3g were found 

to be optimal in the Pd-catalyzed allylic substitution of S10 with dimethyl malonate 

and benzyl amine in high yield and excellent enantioselectivities (91-98% ee) (Figure 

1.45). Hence, ligand 3g contains a bulky substituent in both backbone and thioether 

group that controls the sulfur inversion. A similar optimization of the ligand structure 

for the Pd-catalyzed allylic substitution of cycloalkenyl acetates showed that 171c 

afforded the highest enantioselectivities (91-97% ee) (Figure 1.46). Moreover, sulfur 

and nitrogen containing heterocyclic substrates underwent enantioselective allylic 

alkylation and amination using ligand 171c to afford 3-substituted piperidines and 

dihydrothiopyrans in enantioselectivities up to 94% ee (Figure 1.46). The regioselective 

allylic alkylation of trisubstituted propenyl acetates was also explored with ligands 2g 

and 3g, affording high yields and asymmetric induction up to 94% ee (Figure 1.45). The 

authors could furthermore prove the contribution of sulfur in the coordination of the 

palladium by X-ray analysis of crystals of these organometallic complexes. 

 

 
Figure 1.44. Phosphinite-thioether ligands 168-173 developed by Evans and coworkers. 
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Figure 1.45. Summary of the best results obtained by using ligands 2-3g in the Pd-allylic alkylation and 

amination of symmetrical and unsymmetrical linear substrates S1 and S11. 

 

 
Figure 1.46. Summary of the best results obtained by using ligands 171c in the Pd-allylic alkylation and 

amination of cyclic and heterocyclic substrates S3-S5 and S12-S13. 

 

The series of above mentioned furanoside phosphinite-thioether ligands 5 (Figure 1.4) 

and ligands 174 (Figure 1.47) bearing a more variety of thioether substituents, were 

applied in the Pd-catalyzed allylic substitution of mono- and disubstituted linear and 

cyclic substrates (ee’s up to 95%).
[127]

 These ligands contained several thioether 

substituents with different electronic and steric properties. The authors found that this 

substituent has an important effect on catalytic performance. Enantioselectivities were 

best when the bulkiest ligands 5c and 174a were used. 

 

 
Figure 1.47. Phosphinite-thioether ligands 174 with furanoside backbone. 

At the same time, the phosphinite-thioether ligands 6 and 7 with a pyranoside 

backbone (Figure 1.5) were successfully applied in the Pd-catalyzed allylic substitution 

of 1,3-diphenylprop-2-enyl acetate (ee’s up to 96%). Highest enantioselectivities were 

obtained when bulky tert-butyl group was present in the thioether moiety. Both 

enantiomers of the products were obtained by using ligand 7b.
[28a,b,128]

 

More recently, Pericàs and coworkers applied the previously mentioned 

phosphinite-thioether ligands 9a-m (Figure 1.6) and related ligands 175a-f and 176a,e 

(Figure 1.48), to Pd-catalyzed allylic substitution reactions.
[129]

 After an iterative 

optimization of four different structural parameters (the skeletal aryl group, the 

thioether substituent, the ether moiety and the relative configuration of the chiral 

centers), highly active and enantioselective ligands were identified. In this way, ligands 

175a and 176b provided excellent enantioselectivities in the reaction of S10 using 

dimethyl malonate (up to 99%), benzyl amine (up to 95%), and a much less common O-
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nucleophile, such as benzyl alcohol (up to 94%), in very short reaction times (20 min-

4h, 2h-16h and 3h, respectively). 

 
Figure 1.48. Arylglicidol derived thioether-phosphinite ligands 175 and 176. 

 

Phosphite-thioether ligand 

 

Several combinations of P-S ligands, mainly phosphine thioether and phosphinite-

thioether, have been studied and proven to be effective, but less attention has been 

paid to catalysts containing phosphite-thioether ligands. 

The first one was the binaphtyl phosphite-thioether ligand 177 (Figure 1.49), 

reported by Pregosin and coworkers. Yields up to 70% were reached, but in all cases, 

both the region and enantioselectivities were moderate.
[130]

 

 

 
Figure 1.49. Binaphtyl phosphite-thioether ligand 177. 

In 2001 thioether-phosphite ligands 32-34a and 32d with a furanoside backbone 

(Figure 1.11) were applied in the Pd-catalyzed allylic alkylation and amination 

substitution reactions providing only moderate enantioselectivities (up to 58% and 

67% ee, respectively).
[131]

 It was not until 2014 that the high efficiency of this sugar-

based backbone has been demonstrated in this catalytic process. Ligands bearing 

bulkier thioether substituents (38, Figure 1.11; 178, Figure 1.50) and enantiopure 

biaryl-phosphite moieties (e and f, Figure 1.11) and also their analogous ligands having 

the opposite configuration in C-3 (39 and 42, Figure 1.11) have been successfully 

applied in the Pd-catalyzed allylic substitution.
[5c]

 Ligand 178f was found to have the 

optimal ligand parameters for the Pd-allylic substitution of both linear and cyclic 

substrates S10 and S13 using dimethyl malonate (>99% and 96% ee, respectively). The 

privileged ligand 178f has been efficiently used in the Pd-allylic substitution of 

different hindered and unhindered substrates with a large number of nucleophiles, 

including synthetically useful functionalized malonates, β-diketones, and allyl alcohols 

(ee’s up to >99%) (Figure 1.50). Furthermore, the potential application of this P,S-

system has been proven by simple tandem reactions, involving allylic 

alkylation/ringclosing metathesis or allylic alkylation/cycloisomerization of 1,6-enyne 

reactions, with no loss of enantiomeric excess. 
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Figure 1.50. Phosphite-thioether ligands-type 178. 

Recently, Pericàs and coworkers have been synthesized phosphite-thioether 

indane-based ligands 179 (Figure 1.51) and were applied in 40 compounds involving 

linear and cyclic substrates and a broad range C-, N- and O-nucleophiles (ee’s up to 

99%). The results were maintained using the propylene carbonate as green solvent. In 

comparison with previous furanoside-based P,S ligands, which have emerged as some 

of the most successful catalyst for this process, the new P,S ligand also provided a 

better activity and a wider nucleophile scope (i.e., including the addition of pyrroles 

and a broader range of amines).
[5g]

 

 

 
Figure 1.51. Phosphite-thioether ligands 179.Summary of the excellent enantioselectivities obtained in the 

Pd-allylic substitution of hindered and unhindered substrates with several C-, N- and O-nucleophiles, using 

Pd-179f system. 

 

N-phosphine-thioether ligands 

 

In 2006 Chan and coworkers developed a series of ferrocene N-phosphine-

thioether ligands 180a-c (Figure 1.52) and successfully applied them in the asymmetric 

allylic substitution of S10 (ee’s up to 93%).
[132]

 Later, the same authors expanded this 

family with ligands containing bulkier thioether substituents (180d-e) (Figure 1.52). 

Ligands 180a-e were tested in the Pd-catalyzed allylic substitution of substrate S1 with 

aliphatic alcohols. Ligand 180e was found to be highly efficient in terms of activity and 
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enantioselectivities. Thus, high yields and excellent enantioselectivities (from 77 to 

96% ee) were obtained in the Pd-catalyzed allylic etherification of S10 with a broad 

range of aliphatic alcohols.
[133]

 

 
Figure 1.52. Ferrocene N-thioether-phosphine ligands 180. 

 

1.3. Asymmetric Cu-catalyzed propargylic substitution 

Propargylic compounds are common motif in many natural products, fine 

chemicals and synthetic pharmaceuticals. The π-nucleophilic character of the triple 

bond makes it a versatile entity for further chemical transformations. In addition, for 

terminal acetylidenes, the triple bond is accompanied by a fairly acidic terminal 

acetylenic hydrogen converting these propargylic compounds in a highly potential for a 

wide variety of transformations.
[134]

  

 

 
Scheme 1.7. Asymmetric Cu-catalyzed propargylic substitution reaction. 

Whereas the metal-catalyzed asymmetric allylic substitution is broad studied, the 

transition-metal-catalyzed propargylic substitution reaction is much less developed. 

The Nicholas reaction has been used as an effective method for propargylic 

substitution reactions of propargylic alcohol and their derivatives with a variety of 

nucleophiles to give the corresponding propargylic substituted products.
[135]

 However, 

this reaction has some drawbacks; it needs a stoichiomeric amount of toxic Co2(CO)8, 

which significantly limits its application, and the reaction process requires multiple 

steps to obtain the desired propargylic products.
[135-136]

 For these reasons the 

transition-metal-catalyzed propargylic substitution is required to overcome these 

limitations. Several transition-metal have been applied in the current reaction; Pd, Cu, 

Ti and Ru are some examples. In this thesis we focused on copper-catalyzed 

propargylic substitution because of among various catalysts used in propargylic 

substitution reaction, copper catalysts show several advantages; a) low cost of the 

catalyst precursors, b) low toxicity, c) mild reaction condition, d) broad substrate scope 

and e) excellent enantioselectivities have been achieved. A wide range of nucleophiles 

such as carbon, nitrogen and oxygen
[137]

 have been studied in this reaction. This thesis 

was focused on the application of amines (N-nucleophile) and enamines (C-

nucleophile) which will be explained in more detail in the following sections.  
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1.3.1. Mechanism 

The proposed mechanism for the Cu-catalyzed propargylic substitution using 

nitrogen nucleophiles was largely investigated by Nishibayashi.
[138]

 It was similar to 

previous reaction pathway proposed by van Maarseveen
[139]

, and it is shown in the 

Scheme 1.8. 

 
Scheme 1.8. Proposed reaction pathway for Cu-catalyzed propargylic amination. 

The experimental results revealed that copper-allenylidene complex should be the 

key intermediate. This conclusion is also supported by density functional theory 

calculations for the model reaction. The π-alkyne complex (A) is transformed into 

copper-acetylide complex (C), via protonation of specie (B).
[140]

 Copper-allenylidene 

complex (D) is formed by elimination of an acetyl moiety from the copper-acetylide 

complex (C). N,N-Diisoproylethylamine promotes these deprotonation and 

protonation processes. Copper-acetylide complex (D), which bear a cationic ϒ-carbon, 

and the key intermediate copper-allenylidene complex (E) are in resonance structure. 

The nucleophilic attack of the amine on the ϒ-carbon atom provides Cu-acetylide 

complex (F). Copper-π-alkyne complex (G) was transformed from (F) due to the high 

acidity of the proton in the conjugated amine which promotes the shift of the 

hydrogen atom. The ligand exchange between the product and the substrate 

regenerates the initial π-alkene complex (A). Unfortunately, whereas silver- and gold-

allenylidene complex have been experimentally isolated,
[141]

 the copper-allenylidene 

complex have not been isolated yet.  

DFT calculations for the model reaction system between propargylic acetate and 

dimethylamine in presence of [Cu(PPh3)2(MeOH)]
+
, carried out by Sakata, Nishibayashi 

and coworkers, shown the importance of the Lewis base molecule (methanol or 

trimethylamine) to promote the propargylic amination.
[138]

  

UNIVERSITAT ROVIRA I VIRGILI 
SUSTAINABLE AND COST-EFFECTIVE DEVELOPMENT OF CHIRAL METAL-CATALYSTS FOR C-H AND 
C-X BOND FORMING REACTIONS 
Carlota Borràs Noguera 



INTRODUCTION 

 

- 43 - 
 

 

1.3.2. Ligands 

1.3.2.1. Asymmetric Cu-catalyzed propargylic amination of propargylic esters 

The use of propargylic amines as a versatile building blocks and intermediates for 

organic synthesis is extended.
[142]

 Last years, the copper-catalyzed propargylic 

amination have suffered great progress becoming one of the most attractive strategies 

for the preparation of propargilyc amines.
[140,143]

 

In 1994, Murahashi and coworkers reported a highly effective  Cu-catalyzed 

amination of propargylic esters and phosphates with several amines under mild 

reaction conditions.
[144]

 They found that a terminal acetylenic proton was needed for 

this reaction. It suggested that copper-acetylide complex should be formed as key 

intermediate (see above). Even though, they just got racemic products at this stage, 

this work sets the stage for an enantioselective version. 

First asymmetric Cu-catalyzed propargylic amination was reported by van 

Maarseveen and Nishibayashi research groups independently in 2008. In both cases 

high activities and good enantioselectivities were obtained for the amination of 

aromatic propargylic acetates. The differences between both methods are the 

structure of the chiral ligand and the type of amine used. Regarding to van 

Maarseveen report, they used diPh-pybox 181 (Figure 1.53) in combination with CuI as 

a catalyst, and primary amines proved to be more suitable nucleophiles (up to 88% 

ee).
[139]

 

 
Figure 1.53. Selected ligands for Cu-catalyzed amination of propargylic acetates. 

On the other hand, Nishibayashi group applied  the complex of CuOTf·1/2C6H5 with 

an atropoisomeric diphosphine ligand Cl-MeO-BIPHEP 182 (Figure 1.53) as the 

catalysts and only secondary amines worked as suitable nucleophiles (up to 98% 

ee).
[145]

 Despite this good results, the successfully substrates application was limited to 

aromatic propargylic acetates. In order to extend the substrate scope Nishibayashi’s 

group used BINAP ligand 183 (Figure 1.53) with (CuOTf)2·C6H5 to substituted aliphatic 

propargylic alcohol derivatives with secondary amines achieving excellent 

enantioselectivities (up to 90% ee).
[146]

 The leaving group of the substrates was 
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pentafluorobenzoate instead of acetate group. This modification was found to be 

necessary to promote the amination of aliphatic propargylic esters with secondary 

amines. However, primary amines were less efficient in this catalytic system. On the 

other hand, the copper-catalyzed enantioselective amination of non-aromatic 

propargylic esters with primary amines could be realized by van Maarseveen’s 

method, in which good yields and high enantioselectivities were achieved by the use of 

CuI with Me-pybox 184 (Figure 1.53) (up to 99% ee).
[147]

 Some secondary amines were 

also tested, however, only moderate enantioselectivities were achieved. 

It was not until 2012, when Hu and coworkers demonstrated that chiral tridentate 

P,N,N-ligands, (Sc,Rp)-185 and (R)-186, were highly efficient for the Cu-catalyzed 

asymmetric propargylic amination of propargylic acetates.
[148]

 Both primary and 

secondary amines were found suitable nucleophiles, providing the corresponding 

propargylic amines in high yields and with excellent enantioselectivities (up to 97% ee 

for secondary amines, and up to 96% ee for primary amines) using CuCl/(Sc,Rp)-185 

complex. Moreover, Cu(OAc)2·H2O/(R)-186 catalytic system has been successfully 

applied in the amination of aliphatic propargylic acetates using both primary and 

secondary amines obtaining good enantioselectivities (up to 93% ee for secondary 

amines, and up to 81% ee for primary amines). It was noteworthy that this catalytic 

system was the first successfully example in which both primary and secondary amines 

could be used as efficient nucleophiles for the highly enantioselectivity catalytic 

propargylic amination of both aliphatic and aromatic propargylic acetates. 

Since then, some advances have been developed applying this successful method. 

In 2014, Nishibayashi and co-workers disclosed a copper-catalyzed asymmetric 

intramolecular propargylic amination of propargylic acetates bearing a secondary 

amine moiety at suitable position.
[149]

 The catalytic sequential reaction using transition 

metal complexes have been attracted much attention due to the advantage of 

simplicity and facility in the preparation of complex and useful compounds. Some 

cycloaddition reactions based on the Cu-catalyzed amination of propargylic acetates 

have been also developed.
[150]

   

1.3.2.2. Asymmetric Cu-catalyzed propargylic alkylation of enamines 

Despite the recent developments in the asymmetric catalytic propargylic 

substitution some versions of the reaction are still a challenge, in particular, the use of 

carbon-nucleophile. Among various carbon nucleophiles used,
[151]

 enamine is a quite 

attractive one, because it can provides very useful propargylic ketones.
[140,143]

 

 
Scheme 1.9. Asymmetric Cu-catalyzed propargylic alkylation of enamines. 

The first asymmetric Cu-catalyzed alkylation involving enamides was reported by 

Hou and co-workers in 2009.
[152]

 5 mol% of Cu(CH3CN)4ClO4/(R)-Cl-MeO-BIPHEH 182 
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catalytic system was used to achieve  in good yields and good enantioselectivities (up 

to 91% ee) a series of β-ethynyl ketones. The aliphatic enamine derived from 

cyclohexanone was also examinated, providing the chiral product in 33% yield and 72% 

ee when a propargylic benzoate instead of the acetate was used. 

In order to improve the enantioselectivities obtained in the previous work, Guo’s 

research group reported an enantioselective Cu-catalyzed propargylic alkylation using 

enamines with propargylic esters In presence of chiral ferrocene-based tridentate 

P,N,N ligand 187 to afford the desired propargylic ketone in good yields and excellent 

enantioselectivities (up to 98% ee) under mild reaction conditions (Scheme 1.10). 
[153]

  

 

 
Scheme 1.10. Cu-catalyzed enantioselective propargylic substitution of propargylic acetates with enamines 

involving ferrocene-based tridentate P,N,N-ligand 187. 

 

In 2014, Hu and co-workers applied a bulky and structurally rigid tridentate 

ketamine P,N,N-ligand (S)-188 in a highly diastereo-/enantioselective copper-catalyzed 

propargylic alkylation of morpholine-derived acyclic ketone enamine with propargylic 

esters to afford two vicinal tertiary stereocenters, in excellent diastereo- and 

enantioselectivities (up to >95:5 dr and >99% ee) (Scheme 1.11).
[154]

 

 

 
Scheme 1.11. Cu-catalyzed diastereo-/enantioselective propargylic alkylation of acyclic ketone enamine with 

propargylic acetates involving tridentate P,N,N-ligand (S)-188. 

 
Recently, based on the results obtained on the asymmetric propargylic alkylation 

involving acyclic enamines (Scheme 1.11), Hu and co-workers, tried to expand the 

enamine nucleophilic scope, using more challenging cyclic enamines (Scheme 1.12).
[155]

 

Employing 1-phenylethylamine-derived tridentate P,N,N-ligand (R)-186, good-to-

excellent diastereo- and enantioselectivities (up to >98:2 dr and up to 99% ee) have 

been achieved for a wide range of substrates.  
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Scheme 1.12. Cu-catalyzed diastereo-/enantioselective propargylic alkylation of cyclic ketone enamine with 

propargylic acetates involving tridentate P,N,N-ligand (R)-186. 
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2. OBJECTIVES 

This thesis is focused on the synthesis of new chiral ligand libraries from readily 

available compounds, in order to develop robust and efficient catalytic systems and 

apply them in relevant asymmetric catalytic processes. 

 

The more specific aims are: 

 

1. To synthesize and apply cyclohexane-based phosphite/phosphinite-thioether 

ligands L1-L2a-g (Figure 2.1) in the Ir-catalyzed hydrogenation of minimally 

functionalized olefins. A DFT study has been performed in order to better understand 

their catalytic behavior. 

 

 

 
Figure 2.1. Phosphite/phosphinite-thioether ligands L1-L2a-g. 

2. To synthesize and apply binaphtyl-based phosphite-thioether ligands L3-L6a-c 

(Figure 2.2) in the asymmetric Ir-catalyzed hydrogenation of minimally functionalized 

olefins. 

 

 

Figure 2.2. Binaphtyl-based phosphite-thioether ligands L3-L6a-c. 
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3. To synthesize and apply carbohydrate-derived phosphite-

thioether/selenoether ligands L7-L30a-g (Figure 2.3) in the Ir- and Rh-catalyzed 

hydrogenation of minimally functionalized and functionalized olefins respectively, and 

in the Pd-catalyzed allylic substitution reactions. 

 

 
Figure 2.3. Sugar-based phosphite-thioether/selenoether ligand library L7-L30a-g. 

 

4. To synthesize and apply carbene/phosphinite/phosphite-thioether 

compounds L31H·Br and L32-L33 (Figure 2.4) in the asymmetric Ir-catalyzed 

hydrogenation of minimally functionalized olefins. 

 

 

 
Figure 2.4. Bidentated S-NHC ligands L31-L33. 
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5. To synthesize and apply pyrrolidine-based P,O and P,S ligands L34-L44 (Figure 

2.5) in asymmetric Ir-catalyzed hydrogenation of minimally functionalized olefins. 

 
 

Figure 2.5. Pyrrolidine-based P,O/S ligands L34-L44. 

 
6. To synthesize tridentated P,N,N ligands L45-L48 (Figure 2.6) for the 

asymmetric Ir-catalyzed hydrogenation of simple ketones. 

 

Figure 2.6. P,N,N-ligand library L45-L48. 
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7. To synthesize and apply pyrrolidine-based amino-                                                 

phosphite/phosphinite/phosphine ligands L49-L55a-d (Figure 2.7) in the Pd-catalyzed 

allylic substitution reactions. 

 

 
Figure 2.7. Amino-phosphite/phosphinite/phosphine ligands L49-L55. 

 

8. To synthesize and apply tridentated phosphine-imino-based ligands L56-L61 

(Figure 2.8) in the asymmetric Cu-catalyzed propargylic substitution reactions. 

 

 

Figure 2.8. Chiral tridentated imine-based ligand family L56-L61. 
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3.1. Ir-catalyzed asymmetric hydrogenation with simple cyclohexane-

based P/S ligands: In situ HP-NMR and DFT calculations for the 

characterization of reaction intermediates. 

Carlota Borràs, Maria Biosca,
 
Oscar Pàmies and Montserrat Diéguez in Organometallics 

2015, 34, 5321. 

 

Abstract: We report a reduced but structurally valuable phosphite/phosphinite-

thioether ligand library for the Ir-hydrogenation of 40 minimally functionalized alkenes, 

including relevant examples with poorly coordinative groups. We found that 

enantiomeric excesses are mainly dependent on the substrate structure and on some 

ligand parameters (i.e. the type of thioether/phosphorous moieties and the 

configuration of the phosphite group), whereas the substituents of the biaryl phosphite 

moiety had little impact. By tuning the ligand parameters we were able to find highly 

selective catalysts for a range of substrates (ee’s up to 99%). These 

phosphite/phosphinite-thioether ligands have a simple backbone and thus yield simple 

NMR spectra that reduce signal overlap and facilitate the identification of relevant 

intermediates. Therefore, by combining HP-NMR spectroscopy and theoretical studies, 

we were also able to identify the catalytically competent Ir-dihydride alkene species, 

which made it possible to explain the enantioselectivity obtained. 

  

3.1.1. Introduction 

Over the last four decades, the increasing demand for enantiopure compounds for 

agrochemicals, pharmaceuticals and materials has stimulated the search for efficient 

methodologies for their preparation.
[1]

 Because of its high selectivity and perfect atom-

economic nature, transition-metal-catalyzed asymmetric hydrogenation is one of the 

most powerful and versatile approaches for preparing a wide range of enantiopure 

compounds.
[1-2]

 This field has been dominated by the Rh/Ru-catalyzed asymmetric 

hydrogenation of substrates with a good coordination group close to the C-C double 

bond.
[1-3]

 Today, an impressive range of ligands are being applied to transform a wide 

range of functionalized substrates. In contrast, the asymmetric hydrogenation of 

substrates that do not have an adjacent coordinative polar group – minimally 

functionalized olefins – is much less developed, despite the fact that it constitutes an 

easy way to create complex compounds from simple olefins.
[4]

 In this respect, Ir-

catalyzed asymmetric hydrogenation has emerged as an effective and easy method for 

reducing minimally functionalized olefins. Since Pfaltz applied Ir/phosphine-oxazoline 

PHOX chiral catalysts in 1998,
[5]

 some of the most efficient reported chiral ligands have 

been mixed P-oxazoline ligands. Several successful phosphine/phosphinite/carbene-

oxazoline ligands have been prepared by modifying the chiral backbone.
[6]

 Our group 

has contributed to the Ir-hydrogenation of minimally functionalized olefins with an 
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improved series of ligands. We have shown that phosphite groups improve the ligand’s 

efficiency. Mixed phosphite-oxazoline ligands have been shown to be exceptionally 

effective, providing better substrate versatility than earlier Ir-phosphinite/phosphine-

oxazoline catalysts.
[7]

 Despite the advances achieved with Ir/P-oxazoline catalysts, the 

activity and enantioselectivity in the reduction of some relevant minimally 

functionalized olefins still need to be improved. To this end, research has progressed 

towards mixed ligands with groups that are more robust than oxazolines (pyridines,
[8]

 

amides,
[9]

 thiazoles,
[10]

 oxazoles,
[11]

 etc.). In this context, we recently reported the use 

of non-N-donor mixed ligands – phosphite/phosphinite-thioether – in the 

enantioselective Ir-catalyzed reduction of minimally functionalized olefins.
[12]

 The 

coordination of the thioether moiety to the iridium not only exerts steric and 

electronic effects by means of the change in the thioether groups, but also creates a 

new stereogenic center with a substituent that is very close to the iridium atom and 

therefore strongly shields one of the faces of the coordination sphere.  In this context, 

two families of Ir/P-S catalysts were shown to hydrogenate a large variety of olefins 

with enantioselectivities comparable to the best ones reported to date.
[12b,c]

 Despite 

this success, the performance of this new class of ligands must be further studied for 

this process by screening new readily accessible thioether-containing ligands and 

studying the species responsible for the catalytic performance under hydrogenation 

conditions. No experimental studies of the mechanism and the nature of the relevant 

catalytic intermediates under hydrogenation conditions have yet been carried out. The 

mechanistic proposals using phosphorus-thioether ligands are based on our previous 

work using DFT investigation.
[12c] 

Therefore, in this paper we report a reduced but 

structurally valuable library of phosphite/phosphinite-thioether ligands L1-L2a-g
[13] 

(Figure 3.1.1) for the Ir-hydrogenation of 40 minimally functionalized alkenes, 

including some specific examples with poorly coordinative groups. We also 

investigated the key iridium intermediate complexes under hydrogenation conditions 

to explain the origin of the enantioselectivity. By combining high pressure NMR (HP-

NMR) spectroscopy and theoretical studies we were able to identify the catalytically 

competent Ir-dihydride alkene species. 

 

 
Figure 3.1.1. Phosphite/phosphinite-thioether ligands L1-L2a-g. 
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Phosphite/phosphinite-thioether ligands L1-L2a-g have been selected for this work 

because they have the following advantages: (a) they are synthesized in only two steps 

from commercially accessible cyclohexene oxide; (b) they benefit from the robustness 

of the thioether group; (c) a simple tuning of the thioether and phosphite/phosphinite 

moieties (a-g) provides control over the chiral cavity; and (d) their backbone is simple, 

thus yielding simple NMR spectra that reduce the overlap signals and facilitate the 

identification of relevant intermediates by HPNMR. For the purpose of this work, only 

two thioether substituents, tert-butyl and 2,6-dimethylphenyl, were used because 

previous work with Ir/P-thioether catalysts showed that these bulky substituents made 

it possible to achieve high enantioselectivities.
[12b,c]

  

 

3.1.2. Results and discussion 

3.1.2.1. Synthesis of ligands 

The synthesis of ligands L1-L2a-g is shown in Scheme 3.1.1. The new ligands L1-L2a-

e and L2f,g are prepared in only two steps from readily available cyclohexene oxide. 

The first step (Scheme 3.1.1, step a) consists of the enantioselective desymmetrization 

of cyclohexene oxide with the corresponding thiol using (R)-GaLibis(binaphtoxide) 

complex (GaLB-(R)), in keeping with Shibasaki’s method.
[14]

 Desymmetrization using 

tert-buthylthiol provided the desired cyclohexanol-thioether 1 in >99% ee.
[13a,b]

 

However, desymmetrization using 2,6-dimethylbenzenethiol led to poor 

enantiocontrol (43% ee). Further enantiomer resolution by using semipreparative 

chiral HPLC gave access to both enantiomers of the corresponding hydroxyl-thioether 

(2 and ent-2). In the last step of the ligand synthesis process (Scheme 3.1.1 step b), 

cyclohexanol-thioether intermediates 1-2 were functionalized with different phosphite 

(a-e) or phosphinite moieties (f-g). Therefore, treating enantiopure hydroxyl-

thioethers 1-2 with 1 equiv. of either the appropriate in situ formed 

phosphorochloridite (ClP(OR)2, (OR)2=a-e) or the required chlorophosphine (ClPR2, R= 

f-g) provided the desired phosphite-thioether (L1-L2a-e) and phosphinite-thioether 

(L1-L2f-g) ligands. 

All ligands were isolated in good yields as white solids (phosphite-thioether ligands 

L1-L2a-e) or colorless oils (phosphinite-thioether ligands L1-L2f-g) after purification on 

neutral alumina. They were found to be stable in air and resistant to hydrolysis, so 

they were further manipulated and stored in air. The elemental analyses and mass 

spectrometry were in agreement with the assigned structures. The ligands were also 

further characterized by 
31

P{
1
H}, 

1
H and 

13
C{

1
H} NMR spectroscopy. The spectral 

assignments were based on information from bidimensional 
1
H-

1
H and 

13
C-

1
H 

experiments. The 
31

P{
1
H} NMR spectra showed one singlet for each compound. The 

expected diastereoisomeric mixtures using tropoisomeric biphenyl phosphite moieties 

(a-c) were not detected by low-temperature 
31

P{
1
H} NMR, which is consistent with the 

fast ring inversions in the biphenylphosphorus moieties on the NMR time-scale.
[15]

 
1
H 
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and 
13

C{
1
H} NMR spectra showed the expected pattern for the cyclohexane backbone 

and the phosphite/phosphinite moieties. Concerning the protons of the cyclohexane 

ring, we found the signals of the corresponding diastereomeric methylene protons and 

the expected two signals for the methine protons. The methine protons adjacent to 

the sulfur atom appear at a lower chemical shift than the methine protons adjacent to 

the oxygen atom because the sulfur atom is less electron withdrawing than the oxygen 

atom. Finally, the 
1
H and 

13
C{

1
H} NMR spectra also showed the expected pattern for 

the thioether groups. 

 

 
Scheme 3.1.1. Synthesis of ligands L1-L2a-g. Reaction conditions: (a) GaLB-(R), RSH, toluene, molecular 

sieves 4 Å. For compounds 2 and ent-2 semipreparative chiral HPLC was further needed; (b) ClP(OR)2, Py, 

toluene or ClPR2/NEt3/toluene. 

 

3.1.2.2. Synthesis of Ir-catalysts precursors 

The reaction of the corresponding phosphite/phosphinite-thioether ligand L1-L2a-g 

with [Ir(μ-Cl)(cod)]2 in dichloromethane for one hour followed by in situ chlorine 

abstraction with NaBArF produced the desired cationic catalyst precursors [Ir(cod)(L1-

L2a-g)]BArF (3-12; Scheme 3.1.2). These complexes were obtained in excellent yields 

and in pure form as orange-red solids. They were stable to air, so they were further 

manipulated and stored in air. 

 

 
Scheme 3.1.2. Synthesis of [Ir(cod)(L1-L2a-g)]BArF (3-12). 

The complexes were characterized by elemental analysis, mass spectrometry and 
31

P{
1
H}, 

1
H and 

13
C{

1
H} NMR spectroscopy. For all complexes, the elemental analysis of 

C, H and S matched with the expected stoichiometry. The TOF-MS (ESI+) spectra show 

the highest ions at m/z, which correspond to the loss of the non-coordinated BArF 

anion from the mononuclear species [Ir(cod)(L1-L2a-g)]BArF. The 
31

P{
1
H} NMR spectra 

exhibited a sharp signal in all cases. However, for complexes 3-5, the 
31

P VT-NMR 

spectra (+35 °C to -80 °C) showed that the signals became broader when the 

temperature was lowered. This behavior has been attributed to the 
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tropoisomerization of the biphenyl phosphite moieties (a-c), which led to a mixture of 

diastereoisomeric species in solution. This is supported by the fact that the 
31

P{
1
H} VT-

NMR spectra of related complexes containing ligands with enantiomerically pure 

biphenyl moieties (L1-L2d-e) showed a single isomer in all cases, which rules out the 

possibility of the S-coordination being responsible for the diastereoisomeric species in 

complexes [Ir(cod)(L1a-c)]BArF.  

Crystals suitable for X-ray diffraction analysis of the [Ir(L1a)(cod)]BArF complex 

were obtained by means of the slow diffusion of diethyl ether in a chloroform solution 

(Figure 3.1.2). It should be pointed out that only the diastereoisomer containing an R-

disposition of the biaryl phosphite group crystallized out of the two observed 

diastereoisomers in solution (see above). 

 
Figure 3.1.2. X-Ray structure of [Ir(L1a)(cod)]BArF complex 3 (hydrogens and BArF anion have been omitted 

for clarity). 

 

The crystal structure clearly indicates the bidentate coordination of the P,S ligand 

through both donor atoms with a twist-boat conformation of the chelate ring. As 

expected, the large variations in the Ir-carbon bond distances trans the phosphite and 

thioether (c.a. 0.1 Å) point to the difference in trans influence between the two donor 

groups. The structure also shows a pseudoaxial disposition of the thioether substituent 

as previously observed by the analogue rhodium complex ([Rh(cod)(L1f)]BF4).
[13c]

 

However, this behavior contrasts with the pseudoequatorial disposition of the 

thioether substituent in our previous Ir-structures containing arylglycidol-derived 

phosphite-thioether ligands, which also form a six-membered chelate ring.
[12c]

 For this 

latter case, Ir/phosphite-thioethers catalysts have always provided much lower 

enantioselectivities in the reduction of minimally functionalized olefins than related 

Ir/phosphinite-thioether analogues, in which the thioether substituent adopts a 

pseudoaxial disposition. This, together with the fact that phosphite-thioether ligand 

reported in the present paper provided high enantioselectivities in several substrates 

(see below), could indicate that the disposition of the thioether substituent in the 
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catalyst precursors has a relevant effect on the stereochemical outcome of the 

reaction.
[16] 

3.2.2.3. Asymmetric hydrogenation 

Initially we tested the capacity of ligands L1-L2a-g by applying them in the 

reduction of the trisubstituted substrate S1 model (Table 3.1.1). Excellent activities 

were obtained in all cases. However, the value of enantioselectivity depended on the 

type of thioether/phosphorous moieties and the configuration of the phosphite group, 

while the substituents of the biaryl phosphite moiety had little impact.  

 

Table 3.1.1. Ir-catalyzed hydrogenation of S1 using ligand library L1-L2a-

g.
a 

 
 

Entry Ligand % Conv
b
 % ee

b 

1 L1a 100 19 (R) 
2 L1b 100 18 (R) 
3 L1c 100 18 (R) 
4 L1d 100 42 (S) 
5 L1e 100 86 (R) 
6 L1f 100 60 (R) 
7 L2d 100 5 (S) 
8 L2e 100 36 (R) 
9 L2f 100 69 (R) 

10 L2g 100 61 (R) 
11

c 
L1e 100 86 (R) 

12
d 

L1e 81 85 (R) 
a Reactions carried out using 0.5 mmol of S1 and 2 mol% of Ir-catalyst precursor.    
b Conversion and enantiomeric excesses determined by chiral GC. c Reaction 

carried out using 0.25 mol% of Ir-catalyst precursor. d PC as solvent. 

 

The effect on enantioselectivity of replacing the phosphite moiety with a 

phosphinite group depends on the thioether substituent. Thus, while for ligands L1, 

containing a tert-butyl thioether substituent, the addition of a phosphinite led to lower 

enantioselectivities (Table 3.1.1, entries 5 vs. 6), enantioselectivities increased for 

ligands L2 with a 2,6-dimethylphenyl group (Table 3.1.1, entries 8 vs. 9). The results 

also show that a chiral phosphite moiety is needed for high enantioselectivity (entries 

1-3 vs. 4-5). This indicates that, in contrast to previous xylofuranoside-based thioether-

phosphite ligands,
[12b]

 the simple cyclohexane-backbone is not able to control the 

tropoisomerization of the biaryl phosphite groups (a-c) in the active species, as has 

been found for [Ir(cod)(L1a-c)]BArF precatalysts (see above). Therefore, it is not 

surprising that low enantioselectivities were obtained for this substrate with Ir/L1a-c 
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catalysts (entries 1-3). We also found a cooperative effect between the configuration 

of the cyclohexane-backbone and the configuration of the biaryl phosphite group 

(entries 4, 5, 7 and 8). This led to a matched combination with ligands containing an S-

biaryl phosphite moiety (e; entries 5 and 8). The best enantioselectivity was therefore 

obtained with ligand L1e (ee’s up to 86%; entry 5).  

We also performed this reaction at a low catalyst loading (0.25 mol%) using Ir/L1e, 

which provided the best result, and enantioselectivity was maintained (Table 3.1.1, 

entry 11). Advantageously, the use of propylene carbonate (PC) as an environmentally 

friendly alternative solvent
[17]

 to dichloromethane didn´t affected the stereochemical 

outcome of the reaction (entry 12). 

 
Figure 3.1.3. Asymmetric hydrogenation of trisubstituted substrates S2-S20. Reaction conditions: 1 mol % 

catalyst precursor, CH2Cl2 as solvent, 100 bar H2, 4 h. a Reaction carried out for 18 h. 

 
To further establish the scope of Ir/L1-L2a-g catalysts, we chose a representative 

family of substrates, some of which contain neighboring polar groups. The results are 

summarized in Figure 3.1.3. We found that the ligand parameters must be selected 

specifically for each substrate with the aim of obtaining the highest enantioselectivity. 

We initially considered the reduction of substrates S2-S3, which are related to S1. We 

found that enantioselectivities are relatively unaffected by varying the electronic and 

steric properties of the substrate (ee’s between 85% and 92%). For both substrates the 

highest enantioselectivities were also obtained with Ir/L1e catalyst. The reduction of 
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more challenging Z-isomers (model S4 and S5), which are hydrogenated much less 

enantioselectively than E-isomers, also proceeded smoothly. We were pleased to see 

that for the more demanding Z-substrate S5, enantioselectivity (87% ee) was higher 

than for the Z-S4 model.  

We then went on to study the reduction of a range of key trisubstituted olefins 

with poorly coordinative groups. Their hydrogenation is of particular importance 

because they can be further converted into relevant intermediates for synthesizing 

more complex chiral molecules. Interestingly, the hydrogenation of a very large series 

of α,β-unsaturated esters S6-S13 proceeded with high enantioselectivities (ee’s up to 

98%), comparable to the best reported to date.
[18]

 However, unlike previous S1-S4 

substrates, the effect of the ligand parameters on enantioselectivity is slightly 

different. Therefore, regardless of the thioether substituent, the presence of a biaryl 

phosphite moiety is highly beneficial and the tropoisomerization of the flexible biaryl 

phosphite moieties (a-c) is efficiently controlled. The best enantioselectivities were 

obtained using the Ir/L1a-c and Ir/L1e catalytic systems. Advantageously, the ee’s were 

independent of the electronic nature of the substrate phenyl ring (S6-S8) and the 

steric nature of the alkyl substituent (S6, S9-S11). Also noteworthy were the high 

enantioselectivities obtained using more demanding Z-isomers (S12 and S13). Being 

able to reduce such a range of α,β-unsaturated esters with these high ee’s is highly 

significant because the resulting chiral carboxylic ester derivatives are present in many 

relevant products. This method is a more sustainable way to prepare these chiral 

carboxylic esters than other regular methodologies.
[19]

 Another relevant set of 

substrates that is receiving much consideration are the α,β-unsaturated enones. In the 

reduction of a range of α,β-unsaturated enones S14-S17, the highest 

enantioselectivities (ee’s up to 92%) were obtained with Ir-L1f catalyst, which contains 

a diphenylphosphinite moiety with a tert-butyl thioether substituent. The reduction of 

these kinds of olefins is an elegant route for producing ketones with a chiral center in 

the α position of the carbonyl moiety. Nevertheless, they have been less investigated 

and hydrogenated with less success than other trisubstituted olefins
[6i,6q,r,20] 

These last results encouraged us to move on to the hydrogenation of other difficult 

olefins, such as enamide S18
[6p,21]

 and alkenylboronic esters S19-S20.
[7d,12c,22]

 Few 

catalysts can afford high enantioselectivities for these alkenes, so it was noteworthy 

that we could reach high enantioselectivities in all of them by carefully modification of 

the ligand parameters. In the reduction of enamide S18, the highest 

enantioselectivities (up to 88%) were therefore achieved using [Ir(cod)(L2d)]BArF, 

while for alkenylboronic esters the best enantioselectivities (ee’s up to 85%) were 

obtained with [Ir(cod)(L2f)]BArF. The reduction of enamides and alkenylboronic esters 

is also of great interest because hydrogenated products can easily been transformed 

into high-value compounds such us benzylic acid derivatives and chiral boron 

compounds.  
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Finally, we focused on the reduction of a more demanding type of substrate: 1,1-

disubstituted olefins. Unlike trisubstituted olefins, 1,1-disubstituted olefins have not 

been successfully hydrogenated until very recently.
[4a,e,h]

 This is because most of the 

successful catalysts developed for the reduction of trisubstituted substrates fail either 

to control the face-selective coordination of the less hindered disubstituted substrate 

or to suppress the isomerization of the olefin that leads to the formation of the more 

stable E-trisubstituted substrates, which in turn form the opposite enantiomer when 

hydrogenated. With the aim of evaluating the efficiency of ligands L1-L2a-g in 

hydrogenating this kind of substrate, we first studied the reduction of the model 

substrate S21. The results are shown in Table 3.1.2. We found that the substituents of 

the biaryl phosphite moiety have little impact on selectivity and that the presence of a 

chiral phosphite moiety (d-e) is needed for high enantioselectivity. However, in 

contrast to trisubstituted olefins, the best enantioselectivity was obtained with the 

ligand containing an R-biaryl phosphite moiety and 2,6-Me2-C6H3 thioether substituent 

(ligand L2d, ee’s up to 97%; entry 7). Interestingly, we also found that the 

configuration of the biaryl phosphite moiety controls the sense of enantioselectivity; 

therefore, both enantiomers of the reduction product can be obtained in high 

enantioselectivities under mild reaction conditions (entries 7 and 8).  

 

Table 3.1.2. Ir-catalyzed hydrogenation of S21 using ligand library 

L1-L2a-g.
a
 

 

 
 

Entry Ligand % Conv
b
 % ee

b 

1 L1a 100 30 (S) 
2 L1b 100 28 (S) 
3 L1c 100 27 (S) 
4 L1d 100 90 (S) 
5 L1e 100 85 (R) 
6 L1f 100 29 (S) 
7 L2d 100 97 (S) 
8 L2e 100 90 (R) 
9 L2f 100 65 (S) 
10 L2g 100 84 (S) 

a Reactions carried out using 0.5 mmol of S21 and 2 mol% of Ir-catalyst 

precursor.b Conversion and enantiomeric excesses determined by chiral 

GC. 
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The scope of Ir/L1-L2a-g catalysts was further studied by using other 1,1-

disubstituted substrates (Figure 3.1.4, S22-S40 ). 

Our results with several α-alkylstyrenes with different sterically demanding alkyl 

groups (S21-S24) showed that enantioselectivity is influenced by the alkyl substituents 

(ee’s ranging from 34% to 97%). This behavior may be due to a competition between 

direct hydrogenation and isomerization. In line with this, the hydrogenation of S21 

with a tert-butyl group, which cannot isomerize, provided the highest 

enantioselectivity. However, face selectivity problems cannot be ignored.
[4h]

 To 

address this issue, we carried out deuterium labeling experiments (Scheme 3.1.3) in 

which we reduced S1 and S24 with deuterium. In contrast to S1, the hydrogenation of 

S24 led to the addition of deuterium not only at the expected positions (direct 

incorporation to the double bond), but also at the allylic position, which is in 

agreement of a competing isomerization pathway.
[23]

 Accordingly, the mass spectra 

data of the corresponding deuterated product from S24 showed species with more 

than two incorporated deuteriums.  

 

 
Figure 3.1.4. Asymmetric hydrogenation of 1,1-disubstituted olefins S22-S40. Reaction conditions: 1 mol % 

catalyst precursor, CH2Cl2 as solvent, 1 bar H2, 4 h. 

 

We next screened a wide range of α-tert-butylstyrene type substrates (S25-S31) to 

evaluate how the steric and electronic properties of the aryl group of the substrate 

affected enantioselectivity. Advantageously, we found that enantioselectivity (ee’s up 

to 99%) is relatively insensitive to changes in the electronic and steric properties of the 

aryl group. N-containing heterocycles are present in many relevant compounds such us 
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pharmaceuticals and natural products. We were pleased to see that we could also 

obtained high enantioselectivities in both enantiomers of the reduction products of 2-

(3,3-dimethylbut-1-en-2-yl)pyridine (S32). 

 

 
Scheme 3.1.3. Deuterium labeling experiments with substrates S1 and S24. The percentage of incorporation 

of deuterium atoms is shown in brackets. The results of the indirect addition of deuterium due to the 

isomerization process are shown in red. 
 

Finally, due to the importance of chiral borane compounds, we wanted to see if the 

high enantioselectivities achieved in the reduction of trisubstituted alkenylboronic 

esters (Figure 3.1.3, substrate S19-S20) were retained for the even more challenging 

terminal analogues. The hydrogenation of such compounds using Ir-catalyst has 

recently emerged as a more sustainable alternative to the existing synthetic 

routes.
[22a,b]

 However, high levels of enantioselectivity have only been obtained for 

alkyl-substituted terminal boronic esters such as S33-S36, and the hydrogenation of 

aryl-substituted boronic esters such as S37 has yielded much lower 

enantioselectivities.
[22a,b]

 Despite the moderate enantioselectivities achieved in the 

reduction of S33-S36 using our new Ir-L1-L2a-g catalytic systems, we were pleased to 

find that a range of aryl-substituted terminal boronic esters S37-S40 could be 

efficiently reduced using the Ir-L2e catalytic system. Interestingly, the substitution 

pattern in the aryl ring did not affect the stereochemical outcome of the reaction. This 

constitutes an important finding that overcomes the limitations previously 

encountered in the reduction of terminal aryl-substituted boronic esters and nicely 

complements the current state of the art. 

In summary by efficiently selecting the ligand parameters of this reduced and 

simple readily available phosphite/phosphinite-thioether ligand family, we could 

obtain highly selective catalysts for a range of substrates, with enantioselectivities 

comparable in most cases to the best ones reported. 

3.2.2.4. Mechanistic studies: study of reaction intermediates by in situ HP-NMR 

and theoretical studies 

Computational and experimental research with P,N- and C,N- ligands showed that 

the hydrogenation of minimally functionalized olefins proceeds via and Ir
III

/Ir
V
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migratory-insertion/reductive-elimination catalytic cycle.
[7e,24]

 Very recently, Pfaltz’s 

group, based on mechanistic studies under hydrogenation conditions, was able to 

detect the Ir(III) dihydride alkene intermediates responsible for the catalytic 

performance for the first time.
[25]

 They found that, similarly to the classical Halpern-

mechanism for asymmetric hydrogenation with Rh-catalysts, the minor intermediate, 

which is less stable, is converted to the major product enantiomer. 

Similarly, our previous DFT investigations using Ir-P/S ligands also agree with Ir
III

/Ir
V
 

pathway, with migratory insertion of the hydride as an enantioselective-determining 

step.
[12c]

 However, there is a lack of experimental evidences to support the 

calculations. On the basis of these previous studies and in an effort to rationalize the 

enantioselectivity achieved with the Ir-P/thioether catalysts reported in this 

manuscript, we performed an HP-NMR study of the iridium intermediates formed 

under hydrogenation conditions, with the aim of identifying the catalytically 

competent Ir-dihydride alkene species. 

For this study, we initially investigated the oxidative addition of hydrogen to the 

iridium catalyst precursors [Ir(cod)(P-S)]BArF (P-S = L2f, ent-L2d and L2e; Scheme 

3.1.4). As models, we took complexes containing phosphinite-thioether ligand L2f and 

the phosphite-thioether ligands ent-L2d and L2e, respectively. These ligands contain 

different P-donor groups that can provide insight into their previously observed 

substantial effect on enantioselectivity (see above). 

 

 
Scheme 3.1.4. Oxidative addition of H2 to [Ir(cod)(P-S)]BArF complexes 11, ent-9 and 10. 

 

Bubbling H2 in a CD2Cl2 solution of [Ir(cod)(L2f)]BArF (11) at -78   C led to the 

formation of two dihydride species 13 and 14 in a 2:1 ratio (Scheme 4), which are 

unstable when warming up. The equilibrium shifts back to the starting olefin complex 

11 at -20   C. Both isomers of [Ir(H)2(cod)(L2f)]BArF showed small phosphorus-hydride 

coupling constants (
2
JP-H ≤ 21.2 Hz) that indicate that all the hydrides are cis to the 

phosphorus atom (Table 3.1.3).
[13c,26]
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Table 3.1.3. 
31

P{
1
H} and 

1
H NMR data at the hydride region of dihydride species 

[Ir(H)2(cod)(L2f)]BArF
 
(13 and 14), [Ir(H)2(cod)(ent-L2d)]BArF 15 and [Ir(H)2(cod)(L2e)]BArF 16. 

Compound H
a
 H

b
 

31
P{

1
H} 

[Ir(H)2(cod)(L2f)]BArF (13) 
-12.2 

(d, 
2
JP-H= 18 Hz) 

-14.4 
(d, 

2
JP-H= 16.8 Hz) 

86.2 (s) 

[Ir(H)2(cod)(L2f)]BArF (14) 
-12.3 

(d, 
2
JP-H= 21.2 Hz) 

-15.9 
(d, 

2
JP-H= 16.8 Hz) 

87.5 (s) 

[Ir(H)2(cod)(ent-L2d)]BArF 

(15) 
-12.4 

(d, 
2
JP-H= 22.4 Hz) 

-14.7 (s) 73.4 (s) 

[Ir(H)2(cod)(L2e)]BArF (16) 
-12.43 

(d, 
2
JP-H= 21.6 Hz) 

-14.63 (s) 86.1 (s) 

 

The 3D structure of both isomers of [Ir(H)2(cod)(L2f)]BArF were assigned by DFT and 

NMR studies. Table 3.1.4 shows the calculated DFT relative energies of the four 

possible isomers with all the hydrides cis to the phosphinite group. These four 

structures result from the up or down relative position of one of the hydrides and the 

two possible configurations at the sulfur center (the S atom becomes a stereogenic 

center upon coordination to the metal).  

 

Table 3.1.4. Calculated energies (in kJ/mol) for dihydride complexes 13-16 containing ligands 

L2f, ent-L2d and L2e, respectively. 

Intermediate  L2f  ent-L2d  L2e 

 

 0  0  0 

 

 20  18  29 

 

 25  27  35 

 

 12  29  30 

 

The DFT calculations indicate that the most stable isomer 13 corresponds to 

intermediate A in which the hydride trans to the olefin (H
a
) is pointing down with an S 

configuration at the S atom (Figure 3.1.5a). The minor isomer 14 has been assigned to 

intermediate D with the hydride trans to the olefin (H
a
) pointing up and an R 

configuration at the S atom (Figure 3.1.5a). The assignments of the major and minor 

isomers of [Ir(H)2(cod)(L2f)]BArF were further confirmed by NOE experiments. The 

major isomer 13 therefore showed NOE contacts between the hydride trans to the 

olefin and the methine proton adjacent to the P group, while for the minor isomer 14 
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this NOE interaction appeared with the methine proton adjacent to the thioether 

group (Figure 3.1.5b). The agreement between the NMR elucidation and the DFT 

calculations of structures of 13 and 14 validates the computational model used. The 

observed results may be compared with those obtained from the oxidative addition of 

H2 to [Ir(cod)(L1f)]SbF6, whose ligand differs from (11) by a tert-butyl thioether group 

instead of a 2,6-dimethylphenyl thioether moiety.
[13c]

 The use of Evans and colleagues’ 

ligand leads to a single dihydride species with high thermal stability which has the 

same structure of the major isomer 13.  

 

 
 

 
Figure 3.1.5. a) Calculated structures of dihydride [Ir(H)2(cod)(P-S)]BArF complexes 13-16 (hydrogen atoms 

and BArF anion have been omitted for clarity). b) Relevant NOE contacts from the NOESY experiment of 

dihydride [Ir(H)2(cod)(P-S)]BArF complexes 13 and 14. 

 

We next studied the oxidative addition of H2 to [Ir(cod)(P-S)]BArF precursors 

containing phosphite-thioether ligands ent-L2d and L2e (compounds ent-9 and 10). 

Only one dihydride intermediate was detected for each and required up to 0   C to push 

the equilibrium to the expected dihydride species (Scheme 3.1.4). The observed results 

contrast with [Ir(H)2(cod)(L2f)]BArF where two dihydride species were observed and 

required -78   C. Again, the NMR spectra of the dihydride intermediates of each 

complex indicated that they are cis to the phosphorus atom (Table 3.1.3). The final 

assignments of these dihydride intermediates were performed by DFT studies (Table 

3.1.4). As observed for the previous diphosphinite analogue [Ir(H)2(cod)(L2f)]BArF, 

dihydride compounds 15 and 16 correspond to intermediate A in which the hydride 

UNIVERSITAT ROVIRA I VIRGILI 
SUSTAINABLE AND COST-EFFECTIVE DEVELOPMENT OF CHIRAL METAL-CATALYSTS FOR C-H AND 
C-X BOND FORMING REACTIONS 
Carlota Borràs Noguera 



ASYMMETRIC HYDROGENATION REACTIONS 

   

- 77 - 
 

trans to the olefin (H
a
) is pointing down with an S configuration at the S atom (Figure 

3.1.5a). It should be noted, that at 0   C the cyclooctadiene of the catalyst precursors 

ent-9 and 10 also hydrogenated, resulting in the concomitant formation of other 

species, that have been assigned to catalytically inactive trinuclear iridium hydrido 

species [Ir3(μ3-H)(H)6(P-S)3](BArF)2 17 and 18 (Scheme 3.1.4).
[27] 

These trinuclear iridium 

hydrido species 17 and 18 showed the expected pattern of the hydrides. Thus, for 

instance, for 17 the bridging m3 hydride signal appeared at -5.62 ppm as quadruplet 

due to the coupling with the three phosphorus atoms, while the terminal hydride 

resonances appeared at -13.58 ppm and at -33.72 ppm as a singlet and a broad signal, 

respectively. The hydride resonances for 18 appeared at -4.48, -14.53 and -36.94 ppm, 

respectively.  

We next investigated the reactivity of iridium precatalysts [Ir(cod)(L2f)]BArF 11, 

[Ir(cod)(ent-L2d)]BArF ent-9 and [Ir(cod)(L2e)]BArF 10 with H2 in the presence of an 

alkene (Scheme 3.1.5). The alkene used was (E)-1-methyl-4-(1-phenylprop-1-en-2-

yl)benzene-D5 19, in accordance with the methodology recently described by Pfaltz 

and colleagues.
[25]

  

 

 
Scheme 3.1.5. Reactivity of [Ir(cod)(P-S)]BArF complexes with olefin 19 under hydrogenation conditions. 

Under 10 bar of H2 at -45   C, the reaction of 11 with five equiv. of 19 led to the 

formation of four dihydride complexes in a ratio 6:1.5:1:0.8 (Scheme 3.1.5). The two 

most abundant complexes were unambiguously assigned to the two dihydrides 13 and 

14 described above. The minor isomers were assigned to the elusive dihydride 

intermediate species [Ir(H)2(19)(L2f)]BArF 20 and 21, in which the alkene is coordinated 

(Table 3.1.5).  

The alkene coordination to iridium in these dihydride intermediate species 20 and 

21 was verified by 
1
H-NMR, which showed a significant low-frequency shift of the 

olefinic proton of the alkene 19 from 6.82 to ca 4.8 ppm. Interestingly, in the 
1
H-NMR 

spectra of species 20 and 21 one of the hydrides appeared high-field shifted (between 

-25.6 and -28.5 ppm). This is characteristic of a hydride ligand positioned trans to the 
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coordination site which is either vacant or engaged in a C-H agostic interaction.
[25]

 As 

for [Ir(H)2(cod)(L2f)]BArF complexes 13 and 14, dihydride alkene intermediate species 

20 and 21 also show a small phosphorus-hydride coupling constant (
2
JP-H ≤ 27.6 Hz), 

which indicates that all the hydrides are cis to the phosphorus atom. This behavior is 

not unexpected because early theoretical calculations on Ir(III) dihydride alkene 

intermediates showed the alkene coordinated trans to the phosphorus donor 

group.
[24]

  

 

Table 3.1.5. 
31

P{
1
H} and 

1
H NMR data at the hydride region of dihydride alkene species 

[Ir(H)2(19)(L2f)]BArF
 
(20 and 21), [Ir(H)2(19)(ent-L2d)]BArF 22 and [Ir(H)2(19)(L2e)]BArF 23. 

Compound H
a
 H

b
 

31
P{

1
H} 

[Ir(H)2(19)(L2f)]BArF (20) 
-28.52 

(d, 
2
JP-H= 26 Hz) 

-16.41 
(d,

2
JP-H= 17.2 Hz) 

75.2 (s) 

[Ir(H)2(19)(L2f)]BArF (21) 
-25.59 

(d, 
2
JP-H= 27.6 
Hz) 

-16.23 
(d, 

2
JP-H= 15.6 Hz) 

84.1 (s) 

[Ir(H)2(19)(ent-L2d)]BArF 

(22) 
-25.67 

(d, 
2
JP-H= 34.8 z) 

-16.19 (s) 76.3 (s) 

[Ir(H)2(19)(L2e)]BArF (23) 
-27.22 

(d, 
2
JP-H= 32.1Hz) 

-16.74 
(d, 

2
JP-H= 7.2 Hz) 

77.4 (s) 

 

On the other hand, the reaction of iridium precatalysts [Ir(cod)(ent-L2d)]BArF and 

[Ir(cod)(L2e)]BArF with five equiv. of 19 under optimized reaction conditions (40 bar of 

H2 at -65   C) led to the formation for each complex of two hydride species at a ratio of 

1.2:1 and 1.6:1, respectively (Scheme 3.1.5). In both cases, the major isomers were 

assigned to the corresponding dihydride complexes [Ir(H)2(cod)(P-S)]BArF 15 and 16, 

whereas the minor isomers were attributed to [Ir(H)2(19)(P-S)]BArF intermediate 

species (22 and 23) in which the alkene is coordinated (Table 3.1.5).  

The assignments of the 3D structure of both isomers of [Ir(H)2(19)(L2f)]BArF 20 and 

21 and of the isomer of each complex of [Ir(H)2(19)(ent-L2d)]BArF 22 and 

[Ir(H)2(19)(L2e)]BArF 23 were performed by DFT studies. Unfortunately, due to signal 

overlap in the 
1
H NMR, these studies could not be validated by NOE experiments. The 

DFT relative energies of the sixteen possible isomers with all the hydrides cis to the 

phosphinite/phosphite group are shown in Table 3.1.6. These isomers result from 

varying the relative position of one of the hydrides, the coordination of two 

enantiotopic olefin faces, the two possible configurations at the sulfur center and the 

relative position of the vacant site (up or down). The results indicate that the observed 

major (20) and minor (21) isomers of the olefinic dihydride intermediates 

[Ir(H)2(19)(L2f)]BArF adopt structures K and A, respectively, while intermediates 22 

adopts an L structure and intermediate 23 adopts an K structure. 
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Table 3.1.6. Calculated energies (in kJ/mol) for dihydride olefin complexes 20-23 containing 

ligands L2f, ent-L2d and L2e, respectively. 

Intermediate  L2f  ent-
L2d 

 L2e Intermediate  L2f  ent-
L2d 

 L2e 

 

 0.9  13.2  2.2 

 

 16.1  20.8  13.0 

 

 16.2  21.7  20.3 

 

 15.4  19.3  21.4 

 

 48.3  11.8  12.0 

 

 0  12.9  0 

 

 26.5  6.7  24.1 

 

 5.7  0  7.3 

 

 -  44.4  32.0 

 

 -  33.3  25.8 

 

 35.4  33.5  49.2 

 

 17.8  19.7  22.6 

 

 18.3  29.9  30.1 

 

 18.9  31.1  31.1 

 

 36.1  36.9  47.3 

 

 32.8  32.5  37.1 

 

With these mechanistic results in hand, we next screened precatalysts 

[Ir(cod)(L2f)]BArF 11, [Ir(cod)(ent-L2d)]BArF ent-9 and [Ir(cod)(L2e)]BArF 10 with 

substrate 19 under the conditions used for the HP-NMR analysis. The results are 

shown in Scheme 3.1.6. For precatalyst [Ir(cod)(L2f)]BArF 11 the configuration of the 

product obtained from hydrogenation is R (Scheme 3.1.6), which requires coordination 

of the substrate as determined for the minor isomer 21. This result therefore indicates 

that the hydrogenation of substrate 19 with the Ir/L2f catalytic system follows the 

Halpern-type mechanism in which the less stable isomer 21 reacts faster than the 

major intermediate 20, and it is converted into the major product enantiomer. The 

same behavior is obtained using precatalysts [Ir(cod)(ent-L2d)]BArF ent-9 and 

[Ir(cod)(L2e)]BArF 10. Thus, the configuration of the hydrogenated products are R, 

while the expected from the detected isomers of 22 and 23 is S.  
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Scheme 3.1.6. Asymmetric hydrogenation of 19 using precatalysts [Ir(cod)(L2f)]BArF 11, [Ir(cod)(ent-

L2d)]BArF ent-9 and [Ir(cod)(L2e)]BArF 10 under HP-NMR conditions. 

 

From this we can conclude that in order to obtain the highest enantioselectivity the 

amount of the minor faster reacting isomer has to be enhanced and/or the energy 

difference, and therefore the reaction rates, between both TS resulting from the major 

and minor isomers observed has to be increased. Accordingly, the lowest 

enantioselectivities obtained with precatalysts [Ir(cod)(ent-L2d)]BArF ent-9 and 

[Ir(cod)(L2e)]BArF 10 in comparison with [Ir(cod)(L2f)]BArF 11 can been explained by 

the lower population of the faster reacting olefinic dihydride isomer.   

 

3.1.3. Conclusions 

We report a reduced but structurally valuable phosphite/phosphinite-thioether 

ligand library for the Ir-hydrogenation of 40 minimally functionalized alkenes, including 

some relevant examples with poorly coordinative groups. These 

phosphite/phosphinite-thioether ligands are synthesized in only two steps from 

commercially accessible cyclohexene oxide. They also benefit from the robustness of 

the thioether group and the additional control of the chiral cavity by tuning the 

thioether and phosphite/phosphinite moieties. With a simple tuning of these ligand 

parameters we developed highly selective catalysts for a range of substrates with 

enantioselectivities up to 99%, including a variety of olefins that have recently caught 

attention because their hydrogenated compounds can lead to high-value chemicals. 

Moreover, these catalysts extend the state-of-the-art with the successful reduction, 

for the first time, of terminal aryl-substituted boronic esters. It is also remarkable that 

these thioether-phosphite/phosphinite ligands have a simple backbone and thus their 

NMR spectra are simple, with reduced signal overlap, which facilitates the 

identification of relevant intermediates. Therefore, by combining HP-NMR 

spectroscopy and theoretical studies, we were able to identify the catalytically 

competent Ir-dihydride alkene species, which made it possible to explain the 

enantioselectivity obtained. We found that, similarly to the classical Halpern-

mechanism for asymmetric hydrogenation with Rh-catalysts, the minor intermediate, 

which is less stable, is converted to the major product enantiomer.  
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3.1.4. Experimental Part 

3.1.4.1. General remarks 

 All reactions were carried out using standard Schlenk techniques under an argon 

atmosphere. Commercial chemicals were used as received. Solvents were dried by 

means of standard procedures and stored under argon. 
1
H, 

13
C{

1
H} and 

31
P{

1
H} NMR 

spectra were recorded using a Varian Mercury-400 MHz spectrometer. Chemical shifts 

are relative to that of SiMe4 (
1
H and 

13
C{

1
H}) as an internal standard or H3PO4 (

31
P) as 

an external standard. 
1
H and 

13
C assignments were made on the basis of 

1
H-

1
H gCOSY, 

1
H-

13
C gHSQC and NOESY experiments. The GaLB-(R) solution was prepared in 

accordance with a method published in the literature.
[14] 

Phosphorochloridites were 

easily prepared in one step from the corresponding biphenols.
[28]

 Enantiopure 

hydroxyl-thioether compound 1
[13b]

 thioether-phosphinite ligand L1f
[13b]

 and (E)-1-

methyl-4-(1-phenylprop-1-en-2-yl)benzene-D5 19
[25]

 were prepared as previously 

described.
 

3.1.4.2. Computational details  

The geometries of all intermediates were optimized using the Gaussian 09 

program,
[29]

 employing the B3LYP
[30]

 density functional and the LANL2DZ
[31]

 basis set 

for iridium and the 6-31G* basis set for all other elements.
[32]

 Solvation correction was 

applied in the course of the optimizations using the PCM model with the default 

parameters for dichloromethane.
[33]

 The complexes were treated with charge +1 and 

in the single state. No symmetry constraints were applied. The energies were further 

refined by performing single point calculations using the above mentioned 

parameters, with the exception that the 6-311+G**
[34]

 basis set was used for all 

elements except iridium, and by applying dispersion correction using DFT-D3
[35]

 model. 

All energies reported are Gibbs free energies at 298.15 K and calculated as Greported = 

G6-31G* + (E6-311+G** - E6-31G*) + EDFT-D3. 

3.1.4.3. General procedure for the preparation of the thioether-phosphite ligands 

L1-L2a-e 

The corresponding phosphorochloridite (1.1 mmol) produced in situ was dissolved 

in toluene (5 mL) and pyridine (3.8 mmol, 0.3 mL) was added. The corresponding 

hydroxyl-thioether (1 mmol) was azeotropically dried with toluene (3x1 mL) and 

dissolved in toluene (5 mL) to which pyridine (3.8 mmol, 0.3 mL) was added. The 

solution was transferred slowly at 0  C to the phosphorochloridite solution. The 

reaction mixture was stirred overnight at 80   C, and the pyridine salts were removed 

by filtration. The evaporation of the solvent yielded a white foam, which was purified 

by flash chromatography in alumina (eluent: toluene/triethylamine – 100:1) to 

produce the corresponding ligand as a white solid. 

L1a: Yield: 423 mg (67%). 
31

P NMR (C6D6), δ: 146.3. 
1
H NMR (C6D6), δ: 1.23 (b, 2H, 

CH2), 1.26 (s, 9H, CH3, S
t
Bu), 1.34 (s, 9H, CH3, 

t
Bu), 1.38 (s, 9H, CH3, 

t
Bu), 1.55 (m, 1H, 
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CH2), 1.69 (m, 3H, CH2), 1.72 (s, 18H, CH3, 
t
Bu), 1.84 (m, 2H, CH2), 2.38 (m, 1H, CH2), 

3.19 (b, 1H, CH-S), 4.75 (b, 1H, CH-O), 7.42 (m, 2H, CH=), 7.69 (m, 2H, CH=).
13

C NMR 

(C6D6), δ: 20.2 (CH2), 22.1 (CH2), 29.2 (b, CH2), 29.8 (b, CH2), 30.9 (CH3, S
t
Bu), 31.1 (CH3, 

t
Bu), 31.2 (CH3, 

t
Bu), 31.3 (CH3, 

t
Bu), 34.2 (C, 

t
Bu), 34.3 (C, 

t
Bu), 35.3 (C, 

t
Bu), 35.4 (C, 

t
Bu), 43.0 (CH-S), 44.2 (C, S

t
Bu), 76.7 (b, CH-O, 

2
JC-P=7.7Hz), 123.9-146.2 (aromatic 

carbons). Anal. calcd. (%) for C38H59O3PS: C 72.80, H 9.49, S 5.11; found: C 72.71, H 

9.44, S 5.06. MS HR-ESI [found 649.3811, C38H59O3PS (M-Na)
+ 

requires 649.3815]. 

L1b: Yield: 410 mg (71%). 
31

P NMR (C6D6), δ: 146.0. 
1
H NMR (C6D6), δ: 1.22 (s, 9H, 

CH3, S
t
Bu), 1.32 (b, 2H, CH2), 1.55 (s, 9H, CH3, 

t
Bu), 1.56 (s, 9H, CH3, 

t
Bu), 1.63 (b, 3H, 

CH2), 1.83 (m, 1H, CH2), 1.94 (m, 1H, CH2), 2.31 (m, 1H, CH2), 3.14 (b, 1H, CH-S), 3.31 (s, 

3H, CH3-O), 3.34 (s, 3H, CH3-O), 4.73 (b, 1H, CH-O), 6.65-7.18 (4H, CH=). 
13

C NMR 

(C6D6), δ: 20.1 (CH2), 21.9 (CH2), 29.4 (b, CH2), 29.6 (b, CH2), 30.8 (CH3, 
t
Bu), 30.9 (CH3, 

t
Bu), 35.1 (C, 

t
Bu), 35.3 (C, 

t
Bu), 43.0 (CH-S), 44.0 (C, S

t
Bu), 54.6 (CH3-O), 54.7 (CH3-O), 

76.6 (d, CH-O, 
2
JC-P=8.6Hz), 113.0-155.9 (aromatic carbons). Anal. calcd. (%) for 

C32H47O5PS: C 66.87, H 8.24, S 5.58;  found: C 66.85, H 8.22, S 5.55. MS HR-ESI [found 

597.2768, C32H47O5PS (M-Na)
+ 

requires 597.2774]. 

L1c: Yield: 343 mg (63%). 
31

P NMR (C6D6), δ: 142.3. 
1
H NMR (C6D6), δ: 0.44 (s, 9H, 

CH3Si), 0.47 (s, 9H, CH3Si), 1.13 (s, 9H, CH3,S 
t
Bu), 1.25 (m, 2H, CH2), 1.48-1.72 (b, 5H, 

CH2), 2.21 (m, 1H, CH2), 2.97 (m, 1H, CH-S), 4.52 (m, 1H, CH-O), 7.03-7.42 (6H, CH=). 
13

C 

NMR (C6D6), δ: 0.0 (CH3Si), 0.1 (CH3Si), 20.8 (CH2), 22.5 (CH2), 29.7 (b, CH2), 30.4 (b, 

CH2), 31.0 (CH3,
t
Bu), 43.0 (CH-S), 44.5 (C, S

t
Bu), 76.9 (d, CH-O, 

2
JC-P=3.1Hz), 124.5-155.2 

(aromatic carbons). Anal. calcd. (%) for C28H43O3PSSi2: C 61.50, H 7.93, S 5.86; found: C 

61.47, H 7.92, S 5.83. MS HR-ESI [found 569.2098, C28H43O3PSSi2 (M-Na)
+ 

requires 

569.2101]. 

L1d: Yield: 399 mg (69%). 
31

P NMR (C6D6), δ: 143.7. 
1
H NMR (C6D6), δ: 1.21 (s, 9H, 

CH3,S
t
Bu), 1.30 (b, 2H, CH2), 1.60 (s, 9H, CH3, 

t
Bu), 1.62 (b, 3H, CH2), 1.66 (s, 9H, CH3, 

t
Bu), 1.70 (s, 3H, CH3), 1.72 (s, 3H, CH3), 1.93 (b, 2H, CH2), 2.04 (s, 3H, CH3), 2.07 (s, 3H, 

CH3), 2.32 (m, 1H, CH2), 3.05 (b, CH-S), 4.76 (m, 1H, CH-O), 7.24 (s, 1H, CH=), 7.25 (s, 

1H, CH=).
13

C NMR (C6D6), δ: 16.2 (CH3), 16.4 (CH3), 19.5 (CH2), 19.9 (CH3), 20.0 (CH3), 

21.2 (CH2), 27.8 (b, CH2), 28.2 (b, CH2), 30.8 (CH3, S
t
Bu), 31.2 (d, CH3, 

t
Bu, JC-P= 5.5Hz), 

31.6 (CH3, 
t
Bu), 34.5 (C, 

t
Bu), 34.7 (C, 

t
Bu), 43.0 (CH-S), 43.9 (C, S

t
Bu), 76.1 (d, CH-O, 

2
JC-

P=14.7 Hz), 125.2-145.8 (aromatic carbons). Anal. calcd. (%) for C34H51O3PS: C 71.54, H 

9.01, S 5.62; found: C 71.52, H 8.99, S 5.58. MS HR-ESI [found 593.3187, C34H51O3PS 

(M-Na)
+ 

requires 593.3189]. 

L1e: Yield: 404 mg (70%). 
31

P NMR (C6D6), δ: 133.6. 
1
H NMR (C6D6), δ: 1.19 (s, 9H, 

CH3, S
t
Bu), 1.26 (b, 1H, CH2), 1.56 (b, 1H, CH2) 1.60 (s, 9H, CH3, 

t
Bu), 1.61 (s, 9H, CH3, 

t
Bu), 1.60-1.75 (b, 5H, CH2), 1.69 (s, 3H, CH3), 1.77 (s, 3H, CH3), 2.05 (s, 3H, CH3), 2.09 (s, 

3H, CH3), 2.27 (m, 1H, CH2), 3.19 (m, 1H, CH-S), 4.48 (m, 1H, CH-O), 7.22 (s, 1H, CH=), 

7.24 (s, 1H, CH=). 
13

C NMR (C6D6), δ: 16.8 (CH3), 17.2 (CH3), 20.6 (CH3), 20.7 (CH3), 20.8 

(CH2), 22.6 (CH2), 29.8 (CH2), 30.3 (CH2), 31.6 (CH3, S
t
Bu), 31.9 (d, CH3, 

t
Bu, JC-P=5.6Hz), 

32.1 (CH3, 
t
Bu), 35.2 (C, 

t
Bu), 35.4 (C, 

t
Bu), 43.6 (CH-S), 44.5 (C, S

t
Bu), 77.6 (d, CH-O, 

2
JC-
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P=2.1Hz ), 128-146.7 (aromatic carbons). Anal. calcd. (%) for C34H51O3PS: C 71.54, H 

9.01, S 5.62; found: C 71.50, H 9.02, S 5.59. MS HR-ESI [found 593.3183, C34H51O3PS 

(M-Na)
+ 

requires 593.3189]. 

L2d: Yield: 392 mg (63%). 
31

P NMR (C6D6), δ: 141.7. 
1
H NMR (C6D6), δ: 1.19 (m, 1H, 

CH2), 1.26 (m, 1H, CH2), 1.49 (s, 9H, CH3, 
t
Bu), 1.56 (s, 9H, CH3, 

t
Bu), 1.57 (b, 3H, CH2), 

1.68 (s, 6H, CH3), 1.89 (m, 1H, CH2), 2.01 (b, 1H, CH2), 2.03 (s, 3H, CH3-Ph), 2.05 (s, 3H, 

CH3-Ph), 2.19 (m, 1H, CH2), 2.45 (s, 6H, CH3), 3.20 (m, 1H, CH-S), 4.60 (m, 1H, CH-O), 

6.93-7.20 (m, 5H, CH=).
13

C NMR (C6D6), δ: 16.9 (CH3), 17.1 (CH3), 20.7 (CH3), 21.2 (CH2), 

22.2 (CH2), 22.9 (CH3-Ph), 27.7 (b, CH2), 29.3 (b, CH2), 31.7 (d, CH3, 
t
Bu, JC-P=5.3Hz), 32.6 

(CH3, 
t
Bu), 35.0 (C, 

t
Bu), 35.3 (C, 

t
Bu), 52.2 (CH-S), 76.2 (d, CH-O, 

2
JC-P= 15.3 Hz), 126.0-

146.4 (aromatic carbons). Anal. calcd. (%) for C38H51O3PS: C 73.75, H 8.32, S 5.18; 

found: C 73.72, H 8.31, S 5.16. MS HR-ESI [found 641.3186, C38H51O3PS (M-

Na)
+ 

requires 641.3189]. 

L2e: Yield: 344 mg (56%). 
31

P NMR (C6D6), δ: 137.0. 
1
H NMR (C6D6), δ: 1.31 (m, 1H, 

CH2), 1.42 (m, 1H, CH2), 1.75 (m, 1H, CH2), 1.81 (s, 9H, CH3, 
t
Bu), 1.83 (s, 9H, CH3, 

t
Bu), 

1.84 (b, 3H, CH2), 1.94 (s, 3H, CH3), 2.01 (s, 3H, CH3), 2.18 (m, 2H, CH2), 2.29 (s, 3H, 

CH3), 2.33 (s, 3H, CH3), 2.75 (s, 6H, CH3-Ph), 3.51 (m, 1H, CH-S), 4.79 (m, 1H, CH-O), 

7.17-7.50 (m, 5H, CH=). 
13

C NMR (C6D6), δ: 16.2 (CH3), 16.5 (CH3), 20.0 (CH3), 21.0 (CH2), 

21.2 (CH2), 22.3 (CH3-Ph), 28.3 (b, CH2), 30.2 (b, CH2), 31.2 (d, CH3, 
t
Bu, JC-P=5.4Hz), 31.5 

(CH3, 
t
Bu), 34.5 (C, 

t
Bu), 34.7 (C, 

t
Bu), 51.4 (CH-S), 75.2 (d, CH-O, 

2
JC-P=1.8 Hz), 125.3-

143.2 (aromatic carbons). Anal. calcd. (%) for C38H51O3PS: C 73.75, H 8.32, S 5.18; 

found: C 73.72, H 8.30, S 5.15. MS HR-ESI [found 641.3184, C38H51O3PS (M-

Na)
+ 

requires 641.3189]. 

3.1.4.4. General procedure for the preparation of the thioether-phosphinite 

ligands L2f-g 

The corresponding thioether-hydroxyl compound (0.5 mmol) and DMAP (6.7 mg, 

0.055 mmol) were dissolved in toluene (1 ml), and triethylamine was added (0.09 ml, 

0.65 mmol) at r.t., followed by the addition of the corresponding chlorophosphine 

(0.55 mmol) via syringe. The reaction was stirred for 20 min at r.t. The solvent was 

removed in vacuo, and the product was purified by flash chromatography on alumina 

(toluene/NEt3 = 100/1) to produce the corresponding ligand as a colorless oil.  

L2f: Yield: 307 mg (73%). 
31

P NMR (C6D6), δ: 108.8. 
1
H NMR (C6D6), δ: 0.85 (m, 1H, 

CH2), 1.01 (m, 1H, CH2), 1.32 (m, 2H, CH2), 1.44 (m, 2H, CH2), 1.71 (m, 1H, CH2), 2.02 

(m, 1H, CH2), 2.46 (s, 6H, CH3-Ph), 3.17 (m, 1H, CH-S), 4.03 (m, 1H, CH-O), 6.9-7.7 (m, 

13H, CH=). 
13

C NMR (C6D6), δ: 22.2 (CH3-Ph), 22.8 (b, CH2), 23.7 (b, CH2), 30.2 (b, CH2), 

32.5 (b, CH2), 52.0 (CH-S), 81.1 (d, CH-O, 
2
JC-P=21.4 Hz), 127.3-143.8 (aromatic carbons). 

Anal. calcd. (%) for C26H29OPS: C 74.26, H 6.95, S 7.62; found: C 74.33, H 6.96, S 7.59. 

MS HR-ESI [found 443.1563, C26H29OPS (M-Na)
+ 

requires 443.1569]. 

L2g: Yield: 363 mg (81%). 
31

P NMR (C6D6), δ: 95.2. 
1
H NMR (C6D6), δ: 0.95 (m, 1H, 

CH2), 1.09 (m, 1H, CH2), 1.37 (m, 2H, CH2), 1.49 (m, 2H, CH2), 1.76 (m, 1H, CH2), 2.05 
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(m, 1H, CH2), 2.28 (s, 3H, CH3-Ph), 2.38 (s, 3H, CH3-Ph), 2.42 (s, 6H, CH3-Ph), 3.09 (m, 

1H, CH-S), 4.00 (m, 1H, CH-O), 6.8-7.8 (m, 11H, CH=). 
13

C NMR (C6D6), δ: 20.2 (CH3-Ph), 

20.5 (CH3-Ph), 22.1 (CH3-Ph), 22.5 (b, CH2), 23.3 (b, CH2), 29.7 (b, CH2), 31.6 (b, CH2), 

52.0 (CH-S), 80.1 (d, CH-O, 
2
JC-P=16.2 Hz), 125.7-143.3 (aromatic carbons). Anal. calcd. 

(%) for C28H33OPS: C 74.97, H 7.41, S 7.15; found: C 75.08, H 7.42, S 7.10. MS HR-ESI 

[found 471.1878, C28H33OPS (M-Na)
+ 

requires 471.1882]. 

3.1.4.5. General procedure for the preparation of [Ir(cod)(P-S)]BArF (P-S=L1-L2a-g)   

The corresponding ligand (0.074 mmol) was dissolved in CH2Cl2 (5 mL) and [Ir(µ-

Cl)(cod)]2 (25.0 mg, 0.037 mmol) was added. The reaction mixture was re uxed at 50   C 

for 1 hour. After 5 min at room temperature, NaBArF (77.2 mg, 0.080 mmol) and water 

(5 mL) were added and the reaction mixture was stirred vigorously for 30 min at room 

temperature. The phases were separated and the aqueous phase was extracted twice 

with CH2Cl2. The combined organic phases were dried with MgSO4, filtered through a 

plug of silica and the solvent was evaporated, resulting in the product as a red-orange 

solid. 

[Ir(cod)(L1a)]BArF (3): Yield: 123 mg (93). 
31

P NMR (C6D6), δ: 99.9.
 1

H NMR (C6D6), δ: 

1.33 (s, 9H, CH3, 
t
Bu), 1.36 (s, 9H, CH3, 

t
Bu), 1.49 (s, 9H, CH3, 

t
Bu), 1.52 (s, 9H, CH3, 

t
Bu), 

1.61 (s, 9H, CH3, S
t
Bu), 1.76 (b, 2H, CH2), 1.82 (b, 2H, CH2), 1.95 (m, 2H, CH2), 2.01 (m, 

2H, CH2, cod), 2.14 (m, 2H, CH2), 2.21 (m, 2H, CH2, cod), 2.30 (m, 2H, CH2, cod), 2.38 

(m, 2H, CH2, cod), 2.72 (m, 1H, CH-S), 4.21 (m, 1H, CH-O), 4.61 (b, 1H, CH=, cod), 4.88 

(m, 2H, CH=, cod), 5.76 (b, 1H, CH=, cod), 6.97-7.76 (m, 16H, CH=, Ar). 
13

C NMR (C6D6), 

δ: 23.9 (CH2), 25.8 (CH2), 26.8 (b, CH2, cod), 29.9 (b, CH2, cod), 30.3 (b, CH2, cod), 31.2 

(CH2), 31.3 (CH3, 
t
Bu), 31.4 (CH3, 

t
Bu), 31.5 (CH3, 

t
Bu), 31.5 (CH3, 

t
Bu), 32.0 (CH3, S

t
Bu), 

33.6 (b, CH2, cod), 34.9 (b, CH2, cod), 35.7 (C, 
t
Bu), 36.0 (C, 

t
Bu), 47.6 (CH-S), 58.8 (C, 

S
t
Bu), 77.4 (CH=, cod), 78.0 (CH-O), 78.0 (b, CH=, cod), 99.4 (d, JC-P= 20.36 Hz, CH=, 

cod), 110.7 (d, JC-P= 14.01 Hz, CH=, cod), 117.7 (b, CH=, BArF), 120.6-131.2 (aromatic 

carbons), 134.9 (b, CH=, BArF), 138.1-149.3 (aromatic carbons), 161.8 (q, 
1
JC-B = 49.4 Hz, 

C-B, BArF). Anal. calcd. (%) for C78H83BF24IrO3PS: C 52.32, H 4.67, S 1.79; found: C 52.29, 

H 4.66, S 1.75. MS HR-ESI [found 927.4487, C46H71IrO3PS (M-BArF)
+
 requires 927.4491]. 

[Ir(cod)(L1b)]BArF (4): Yield: 116 mg (90%). 
31

P NMR (C6D6), δ: 102.9. 
1
H NMR 

(C6D6), δ: 1.44 (s, 9H, CH3, 
t
Bu), 1.51 (s, 9H, CH3, 

t
Bu), 1.59 (s, 9H, CH3, 

t
Bu), 1.79 (m, 4H, 

CH2), 2.00 (m, 2H, CH2, cod), 2.11 (m, 2H, CH2, cod), 2.20 (m, 2H, CH2), 2.12 (m, 2H, 

CH2, cod), 2.29 (m, 2H, CH2, cod), 2.32 (m, 2H, CH2), 2.75 (m, 1H, CH-S), 3.80 (s, 3H, 

CH3-O), 3.84 (s, 3H, CH3-O), 4.24 (m, 1H, CH-O), 4.77 (b, 2H, CH=, cod), 4.91 (m, 1H, 

CH=, cod), 5.73 (b, 1H, CH=, cod), 6.52-7.70 (m, 16H, CH=, Ar).
 13

C NMR (C6D6), δ: 23.8 

(CH2), 25.8 (CH2) 27.2 (CH2, cod), 29.9 (CH2, cod), 30.7 (CH2), 31.2 (CH3, 
t
Bu),  31.8 (CH3, 

t
Bu),  31.9 (CH3, 

t
Bu), 33.9 (b, CH2, cod), 34.1 (b, CH2, cod), 35.2 (CH2), 35.9 (C, 

t
Bu), 36.1 

(C, 
t
Bu), 47.7 (CH-S), 55.8 (CH3-O), 55.9 (CH3-O), 58.5 (C, S

t
Bu), 75.8 (CH=, cod), 77.4 

(CH-O), 79.5 (CH=, cod), 99.7 (d, JC-P= 19.56 Hz, CH=, cod), 111.0 (d, JC-P=13.30 Hz, CH=, 

cod), 112.9-115.6 (aromatic carbons), 117.6 (b, CH=, BArF), 120.6-131.9 (aromatic 
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carbons), 135.0 (b, CH=, BArF), 140.4-157.3 (aromatic carbons), 161.9 (q, 
1
JC-B = 49.4 Hz, 

C-B, BArF). Anal. calcd. (%) for C72H71BF24IrO5PS: C 49.75, H 4.12, S 1.84; found: C 49.61, 

H 4.10, S 1.79. MS HR-ESI [found 875.3447, C40H59IrO5PS (M-BArF)
+
 requires 875.3450]. 

[Ir(cod)(L1c)]BArF (5): Yield: 115 mg (91%). 
31

P NMR (C6D6), δ: 99.0. 
1
H NMR (C6D6), 

δ:  0.44 (s, 18H, CH3, SiMe3), 1.57 (s, 9H, CH3, S
t
Bu), 1.79 (b, 4H, CH2, CH3), 1.96 (m, 2H, 

CH2, cod), 2.09 (m, 2H, CH2, cod), 2.20 (m, 4H, CH2 and CH2, cod), 2.20 (m, 4H, CH2 and 

CH2, cod), 2.66 (m, 1H, CH-S), 4.14 (m, 1H, CH=, cod), 4.69 (b, 1H, CH=, cod), 4.92 (m, 

2H, CH=, cod, CH-O), 5.90 (b, 1h, CH=, cod), 7.23-7.70 (m, 18H, CH=, Ar). 
13

C NMR 

(C6D6), δ: 0.7 (CH3, SiMe3), 1.0 (CH3, SiMe3), 24.1 (CH2), 25.9 (CH2), 26.8 (CH2, cod), 30.3 

(CH2, cod), 31.2 (CH2), 31.7 (CH3, S
t
Bu), 33.4 (d, JC-P= 6.25 Hz, CH2, cod), 34.7 (d, JC-P= 

5.54 Hz, CH2, cod), 34.9 (CH2), 47.6 (CH-S), 58.8 (C, S
t
Bu), 76.9 (CH=, cod), 77.4 (CH-O), 

78.5 (CH=, cod), 99.9 (d, JC-P= 20.36 Hz, CH=, cod), 111.6 (d, JC-P= 14.11 Hz, CH=, cod), 

117.6 (b, CH=, BArF), 120.7-133.1 (aromatic carbons), 134.9 (b, CH=, BArF), 135.8-154.1 

(aromatic carbons), 161.9 (q, 
1
JC-B = 49.2 Hz, C-B, BArF). Anal. calcd. (%) for 

C68H67BF24IrO3PSSi2: C 47.75, H 3.95, S 1.87; found: C 47.68, H 3.92, S 1.84. MS HR-ESI 

[found 847.2773, C36H55IrO3PSSi2 (M-BArF)
+
 requires 847.2777]. 

[Ir(cod)(L1d)]BArF (6): Yield: 119 mg (93%). 
31

P NMR (CDCl3), δ: 99.8. 
1
H NMR 

(CDCl3), δ: 1.38 (b, 2H, CH2), 1.44 (s, 9H, CH3, 
t
Bu), 1.53 (s, 9H, CH3, 

t
Bu), 1.56 (m, 2H, 

CH2), 1.57 (s, 9H, CH3, 
t
Bu), 1.64 (s, 3H, CH3), 1.75 (b, 6H, CH2), 1.84 (s, 3H, CH3), 2.1-2.2 

(b, 6H, CH2), 2.23 (s, 3H, CH3), 2.25 (s, 3H, CH3), 2.69 (m, 1H, CH-S), 4.24 (m, 1H, CH=, 

cod), 4.36 (m, 1H, CH=, cod), 4.91 (m, 2H, CH=, cod and CH-O), 5.59 (m, 1H, CH=, cod), 

7.17-7.70 (m, 14H, CH=, Ar). 
13

C NMR (CDCl3), δ: 16.4 (CH3-Ph), 16.7 (CH3-Ph), 20.3 

(CH3-Ph),  20.6 (CH3-Ph),  23.7 (CH2), 25.8 (CH2), 27.8 (b, CH2), 29.2 (CH2), 31.2 (CH3, 
t
Bu), 31.2 (b, CH2), 31.7 (CH3, 

t
Bu), 31.9 (CH3, 

t
Bu), 33.2 (b, CH2), 34.7 (b, CH2), 35.2 (C, 

t
Bu), 35.3 (C, 

t
Bu), 35.5 (C, 

t
Bu), 47.7 (CH-S), 57.6 (C, S

t
Bu), 74.1 (b, CH=, cod), 77.7 (b, 

CH=, cod), 81.6 (CH-O), 99.2 (d, JC-P= 19.7 Hz, CH=, cod), 110.4 (d, JC-P= 14.0 Hz, CH=, 

cod), 117.6 (b, CH=, BArF), 123.3-134.4 (aromatic carbons), 134.9 (b, CH=, BArF), 135.9-

143.9 (aromatic carbons), 161.9 (q, 
1
JC-B = 49.4 Hz, C-B, BArF). Anal. calcd. (%) for 

C74H75BF24IrO3PS: C 51.25, H 4.36, S 1.85; found: C 51.05, H 4.34, S 1.82. MS HR-ESI 

[found 871.3861, C42H63IrO3PS (M-BArF)
+
 requires 871.3865].  

[Ir(cod)(L1e)]BArF (7): Yield: 118 mg (92%). 
31

P NMR (C6D6), δ: 94.6. 
1
H NMR (CDCl3), 

δ: 1.4-1.6 (b, 4H, CH2), 1.40 (s, 9H, CH3, 
t
Bu), 1.56 (s, 9H, CH3, 

t
Bu), 1.6-1.9 (m, 6H, CH2), 

1.62 (s, 3H, CH3), 1.64 (s, 9H, CH3, 
t
Bu), 1.85 (s, 3H, CH3), 2.1-2.4 (b, 6H, CH2), 2.25 (s, 

3H, CH3), 2.29 (s, 3H, CH3), 2.81 (m, 1H, CH-S), 4.12 (m, 1H, CH=, cod), 4.55 (m, 1H, 

CH=, cod), 4.92 (m, 2H, CH=, cod and CH-O), 5.98 (m, 1H, CH=, cod), 7.12-7.70 (m, 14H, 

CH=, Ar). 
13

C NMR (CDCl3), δ: 16.7 (CH3-Ph), 20.2 (CH3-Ph), 20.7 (CH3-Ph),  24.4 (CH2), 

25.1 (CH2), 25.8 (b, CH2), 30.1 (CH2), 30.8 (CH3, 
t
Bu), 31.6 (b, CH2), 32.0 (CH3, 

t
Bu), 32.2 

(CH3, 
t
Bu), 33.7 (b, CH2), 34.2 (b, CH2), 34.7 (b, CH2), 35.2 (C, 

t
Bu), 36.4 (C, 

t
Bu), 46.8 

(CH-S), 57.9 (C, S
t
Bu), 61.9 (b, CH=, cod), 63.4 (b, CH=, cod), 79.6 (CH-O), 97.6 (d, JC-P= 

18.4 Hz, CH=, cod), 110.2 (d, JC-P= 16.1 Hz, CH=, cod), 117.7 (b, CH=, BArF), 120.6-134.6 

(aromatic carbons), 134.9 (b, CH=, BArF), 137.2-144.2 (aromatic carbons), 161.8 (q, 
1
JC-B 
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= 49.4 Hz, C-B, BArF). Anal. calcd. (%) for C74H75BF24IrO3PS: C 51.25, H 4.36, S 1.85; 

found: C 51.11, H 4.35, S 1.82. MS HR-ESI [found 871.3863, C42H63IrO3PS (M-BArF)
+
 

requires 871.3865]. 

[Ir(cod)(L1f)]BArF (8): Yield: 103 mg (91%). 
31

P NMR (C6D6), δ: 100.9. 
1
H NMR (C6D6), 

δ: 1.24 (s, 9H, CH3, S
t
Bu), 1.37 (m, 2H, CH2), 1.49 (m, 2H, CH2), 1.79 (m, 2H, CH2, cod), 

1.86 (m, 2H, CH2), 2.03 (m, 2H, CH2, cod), 2.17 (m, 2H, CH2, cod), 2.28 (m, 2H, CH2, 

cod), 2.37 (m, 2H, CH2), 2.76 (m, 1H, CH-S), 3.37 (b, 1H, CH-O), 4.20 (m, 2H, CH=, cod), 

4.81 (m, 1H, CH=, cod), 5.48 (b, 1H, CH=, cod), 7.16-7.70 (m, 22H, CH=, Ar). 
13

C NMR 

(C6D6), δ: 24.3 (CH2), 25.9 (CH2), 28.0 (CH2, cod), 31.3 (CH3, S
t
Bu), 31.8 (CH2), 34.0 (CH2, 

cod), 35.0 (CH2, cod), 35.4 (CH2), 48.7 (CH-S), 59.4 (C, S
t
Bu), 74.7 (CH=, cod), 77.4 (CH-

O), 83.3 (CH=, cod), 96.1 (d, JC-P= 13.31 Hz, CH=, cod), 104.8 (d, JC-P= 11.79 Hz, CH=, 

cod), 117.6 (b, CH=, BArF), 120.7-134.7 (aromatic carbons), 134.9 (b, CH=, BArF), 135.3 

(C), 161.9 (q, 
1
JC-B = 49.2 Hz, C-B, BArF). Anal. calcd. (%) for C62H53BF24IrOPS: C 48.48, H 

3.48, S 2.09; found: C 48.21, H 3.46, S 2.02. MS HR-ESI [found 673.2239, C30H41IrOPS 

(M-BArF)
+
 requires 673.2245]. 

[Ir(cod)(L2d)]BArF (9): Yield: 125 mg (95%). 
31

P NMR (C6D6), δ: 88.7. 
1
H NMR (C6D6), 

δ:1.15 (m, 1H, CH2), 1.27 (b, 1H, CH2), 1.47 (s, 9H, CH3, 
t
Bu), 1.62 (m, 1H, CH2), 1.64 (s, 

9H, CH3, 
t
Bu), 1.74 (m, 2H, CH2), 1.76 (s, 6H, CH3), 1.84 (m, 3H, CH2), 1.97 (m, 4H, CH2

 

and CH2, cod), 2.01 (m, 4H, CH2 and CH2, cod), 2.26 (s, 3H, CH3), 2.27 (s, 3H, CH3), 2.70 

(s, 3H, CH3), 2.72 (s, 3H, CH3), 3.26 (b, 1H, CH-S), 3.53 (m, 1H, CH=, cod), 4.40 (m, 1H, 

CH=,  cod), 4.54 (m, 2H, CH=, cod), 4.74 (m, 1H, CH-O), 7.20-7.71 (m, 17H, CH=, Ar). 
13

C 

NMR (C6D6), δ: 16.6 (CH3), 16.6 (CH3), 20.3 (CH3-Ph),  20.3 (CH3-Ph),  23.6 (CH3), 23.8 

(CH3), 25.4 (CH2), 27.6 (b, CH2, cod), 29.3 (CH2), 29.7 (CH2), 31.6 (CH3, 
t
Bu), 31.8 (b, CH2, 

cod), 32.3 ( CH3, 
t
Bu), 33.7 (b, CH2, cod), 34.8 (b, CH2), 34.9 (C, 

t
Bu), 35.0 (C, 

t
Bu), 50.9 

(d, JC-P= 5.44 Hz, CH=, cod), 66.9 (CH-S), 76.9 (CH-O), 82.1 (b, CH=, cod), 102.4 (d, JC-P= 

15.6 Hz, CH=, cod), 104.0 (d, JC-P= 14.82 Hz, CH=, cod), 117.4 (b, CH=, BArF), 120.4-134.1 

(aromatic carbons), 134.8 (b, CH=, BArF), 135.7-144.9 (aromatic carbons), 161.7 (q, 
1
JC-B 

= 49.0 Hz, C-B, BArF). Anal. calcd. (%) for C78H75BF24IrO3PS: C 52.56, H 4.24, S 1.80; 

found: C 52.34, H 4.22, S 1.77. MS HR-ESI [found 919.3858, C46H63IrO3PS (M-BArF)
+
 

requires 919.3865]. 

[Ir(cod)(L2e)]BArF (10): Yield: 122 mg (93%). 
31

P NMR (C6D6), δ: 88.8. 
1
H NMR 

(C6D6), δ: 1.38 (s, 9H, CH3, 
t
Bu), 1.55 (m, 2H, CH2, cod), 1.57 (s, 9H, CH3, 

t
Bu), 1.66 (s, 

3H, CH3), 1.72 (b, 2H, CH2), 1.75 (s, 3H, CH3), 1.81 (m, 2H, CH2, cod), 1.90-2.03 (m, 6H, 

CH2), 2.10 (m, 2H, CH2, cod), 2.17 (s, 3H, CH3-Ph), 2.20 (s, 3H, CH3-Ph), 2.25 (m, 2H, CH2, 

cod), 2.42 (s, 3H, CH3), 2.68 (m, 1H, CH-S), 2.88 (s, 3H, CH3), 3.25 (m, 1H, CH=, cod), 

3.81 (m, 1H, CH=, cod), 4.32 (m, 1H, CH=, cod), 4.46 (m, 1H, CH-O), 4.86 (m, 1H, CH=, 

cod), 7.07-7.64 (m, 17H, CH=, Ar). 
13

C NMR (C6D6), δ: 16.4 (CH3), 16.6 (CH3), 20.3 (CH3-

Ph), 20.4 (CH3-Ph), 22.6 (CH3), 22.8 (CH3), 25.4 (CH2), 26.5 (b, CH2, cod), 29.7 (CH2), 29.9 

(CH2), 30.3 (CH2), 31.4 (b, CH2, cod), 31.7 (CH3, 
t
Bu), 32.8 (CH3, 

t
Bu), 34.2 (b, CH2, cod), 

34.6 (b, CH2, cod), 34.8 (C, 
t
Bu), 35.3 (C, 

t
Bu), 52.6 (CH=, cod), 66.2 (CH-S), 76.2 (CH-O), 

78.3 (b, CH=, cod), 102.3 (d, JC-P= 14.11 Hz, CH=, cod), 105.3 (d, JC-P= 16.43 Hz, CH=, 
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cod), 117.5 (b, CH=, BArF), 120.4-134.4 (aromatic carbons), 134.8 (b, CH=, BArF), 135.4-

143.5 (aromatic carbons), 161.5 (q, 
1
JC-B = 49.2 Hz, C-B, BArF). Anal. calcd. (%) for 

C78H75BF24IrO3PS: C 52.56, H 4.24, S 1.80; found: C 52.38, H 4.23, S 1.79. MS HR-ESI 

[found 919.3861, C46H63IrO3PS (M-BArF)
+
 requires 919.3865]. 

[Ir(cod)(L2f)]BArF (11): Yield: 107 mg (91%). 
31

P NMR (C6D6), δ: 99.0. 
1
H NMR (C6D6), 

δ: 1.27 (b, 2H, CH2), 1.56 (m, 2H, CH2, cod), 1.68 (b, 2H, CH2), 1.83 (m, 2H, CH2, cod), 

1.91 (m, 2H, CH2, cod), 2.08 (m, 2H, CH2, cod), 2.36 (m, 4H, CH2), 2.63 (s, 3H, CH3-Ph), 

3.05 (s, 3H, CH3-Ph), 3.12 (b, 1H, CH=, cod), 3.43 (m, 2H, CH-S, CH=, cod), 3.70 (b, 2H, 

CH-O, CH=, cod) 5.01 (b, 1H, CH=, cod), 7.17-8.03 (m, 25H, CH=, Ar). 
13

C NMR (C6D6), δ: 

22.8 (CH3-Ph), 23.5 (CH3-Ph), 25.4 (CH2), 27.5 (b, CH2, cod), 29.7 (b, CH2), 30.2 (CH2), 

30.3 (CH2), 31.2 (b, CH2, cod), 33.0 (b, CH2, cod), 35.0 (b, CH2, cod), 51.3 (CH=, cod), 

67.4 (CH-S), 75.9 (CH-O), 77.8 (CH=, cod), 94.1 (d, JC-P= 9.37 Hz, CH=, cod), 98.5 (d, JC-P= 

13.20 Hz, CH=, cod), 117.5 (b, CH=, BArF), 120.4-133.9 (aromatic carbons), 134.8 (b, 

CH=, BArF), 134.9-143.2 (aromatic carbons), 161.5 (q, 
1
JC-B = 49.4 Hz, C-B, BArF). Anal. 

calcd. (%) for C66H53BF24IrOPS: C 50.04, H 3.37, S 2.02 found: C 49.98, H 3.35, S 1.98. 

MS HR-ESI [found 721.2240, C34H41IrOPS (M-BArF)
+
 requires 721.2245]. 

[Ir(cod)(L2g)]BArF (12): Yield: 112 mg (94%). 
31

P NMR (C6D6), δ: 101.6. 
1
H NMR 

(C6D6), δ: 1.40 (m , 2H, CH2), 1.50 (m, 2H, CH2), 1.61 (m, 2H, CH2), 1.79-2.01 (m, 6H, CH2 

and CH2, cod), 2.08 (s, 3H, CH3), 2.17 (m, 4H, CH2, cod), 2.41 (s, 3H, CH3), 2.56 (b, 1H, 

CH=, cod), 2.82 (s, 3H, CH3-Ph), 2.90 (s, 3H, CH3-Ph), 3.08 (b, 1H, CH-S), 3.47 (m, 1H, 

CH=, cod), 3.66 (m, 2H, CH-O, CH=, cod), 4.70 (b, 1H, CH=, cod), 6.62-8.95 (m, 23H, 

CH=, Ar). 
13

C NMR (C6D6), δ: 21.7 (d, JC-P= 3.0 Hz, CH3), 22.5 (d, JC-P= 7.0 Hz, CH3-Ph), 

22.7 (d, JC-P= 3.0 Hz, CH3-Ph), 23.4 (b, CH3), 25.5 (CH2), 27.8 (b, CH2, cod), 29.6 (CH2), 

29.7 (CH2), 30.3 (CH2), 31.2 (CH2, cod), 33.0 (, CH2, cod), 35.7 (d, JC-P= 7.0 Hz, CH2, cod), 

50.8 (CH=, cod), 68.0 (CH-S), 76.5 (CH-O), 78.8 (b, CH=, cod), 96.9 (d, JC-P= 9.4 Hz, CH=, 

cod), 98.1 (d, JC-P= 13.3 Hz, CH=, cod), 117.5 (b, CH=, BArF), 120.5-133.9 (aromatic 

carbons), 134.8 (b, CH=, BArF), 139.9-143.4 (aromatic carbons), 161.5 (q, 
1
JC-B = 49.2 Hz, 

C-B, BArF).  Anal. calcd. (%) for C68H57BF24IrOPS: C 50.66, H 3.56, S 1.99 found: C 50.34, 

H 3.53, S 1.93. MS HR-ESI [found 749.2553, C36H45IrOPS (M-BArF)
+
 requires 749.2558]. 

3.1.4.6. Preparation of (1R, 2R)-2-(2,6-dimethylphenylthio)cyclohexanol (2) 

A mixture of a 0.05 M solution of GaLB-(R) (2.0 mL, 0.10 mmol) and powdered MS 4 

Å (200 mg) was stirred at room temperature for 30 min and then evaporated in vacuo 

to remove THF. Toluene (2.0 mL) and cyclohexene oxide (101 µL, 1.00 mmol) were 

added to the residue, and then 2,6-dimethylbenzenethiol (160 µL, 1.20 mmol) was 

added in one portion. The mixture was stirred at room temperature for 9 h, then 

diluted with diethyl ether (30 mL) and filtered over a celite pad. The filtrate was 

washed successively with 5% aq. citric acid (10 mL), sat. aq. NaHCO3 (10 mL), and brine 

(10 mL), dried over MgSO4 and then evaporated in vacuo. The residue was purified by 

flash chromatography (SiO2, hexane/acetone (20:1)) to yield the desired thioether-

alcohol as a mixture of enantiomers. Further enantiomeric resolution by using 
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semipreparative chiral HPLC (Daicel CHIRACEL OD, 3% 2-propanol in hexanes, 5 

mL·min
-1

, 23 min (2)) gave access to desired enantiomer hydroxyl-thioether 2 as a 

white solid. Yield: 69 mg (29%). 
1
H NMR (C6D6), δ: 1.16 (m, 1H, CH2), 1.24 (m, 2H, CH2), 

1.31 (m, 1H, CH2), 1.63 (m, 1H, CH2), 1.73 (m, 1H, CH2), 1.88 (m, 1H, CH2), 2.12 (m, 1H, 

CH2), 2.58 (s, 6H, CH3-Ph), 2.63 (b, 1H, OH), 2.72 (m, 1H, CH-O), 3.56 (m, 1H, CH-S), 7.13 

(b, 3H, CH=). 
13

C NMR (C6D6), δ: 22.6 (CH3), 24.2 (CH2), 25.8 (CH2), 32.5 (CH2), 34.1 

(CH2), 56.4 (CH-O), 73.9 (CH-S), 128.3 (CH=), 132.0 (C), 143.5 (CH=). Anal. calcd. (%) for 

C14H20OS: C 71.14, H 8.53, S 13.56; found: C 71.07, H 8.56, S 13.48. MS HR-ESI [found 

236.1232, C14H20OS 
 
requires 236.1235]. 

3.1.4.7. In situ preparation of [Ir(H)2(cod)(L1-L2a-g)]BArF 

In a typical experiment hydrogen was bubbled through a CD2Cl2 solution of the 

desired [Ir(cod)(P-S)]BArF catalyst precursor (6.2 mmol) to the desired temperature for 

15-30 min. The reaction mixture was analyzed by NMR spectroscopy at the desired 

temperature. 

3.1.4.8. In situ HP-NMR hydrogenation experiments using (E)-1-methyl-4-(1-

phenylprop-1-en-2-yl)benzene-D5 19 

 The desired [Ir(cod)(P-S)]BArF catalyst precursor (6.2 mmol) and (E)-1-methyl-4-(1-

phenylprop-1-en-2-yl)benzene-D5 (5.9 mg, 27.7 mmol, 4.5 equiv.) were added to an 

oven-dried Schlenk tube and dissolved in CD2Cl2 (0.6 ml). The solution was transferred 

to a HPNMR sapphire tube (ɸ = 5 mm) and cooled to 195 K. The HPNMR was 

pressurized to the desired pressure of hydrogen gas. The reaction mixture was 

analyzed by NMR spectroscopy at the desired temperature. 

3.1.4.9. Typical procedure for the hydrogenation of olefins 

The alkene (0.5 mmol) and Ir complex (2 mol%) were dissolved in CH2Cl2 (2 mL) in a 

high-pressure autoclave, which was purged four times with hydrogen. It was then 

pressurized at the desired pressure. After the desired reaction time, the autoclave was 

depressurized and the solvent evaporated off. The residue was dissolved in Et2O (1.5 

ml) and filtered through a short celite plug. The enantiomeric excess was determined 

by chiral GC or chiral HPLC and conversions were determined by 
1
H NMR. The 

enantiomeric excesses of hydrogenated products from S1,
[11]

 S2,
[36]

 S3-S4,
[11]

 S5,
[37]

 

S6,
[11]

 S7-S9
,[6l]

 S10,
[38]

 S11,
[39]

 S12,
[37]

 S13,
[38]

 S14-S17,
[6i]

 S18,
[20a]

 S19,
[21d]

 S20,
[21a] 

S21,
[11]

 S22,
[7c]

 S23,
[35] 

S24,
[11]

 S25-S31,
[40] 

S32,
[11]

 S33-S37,
[21a]

 S38,
[41]

 S39
[42]

 and S40
[43]

 

were determined using the conditions previously described. 
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3.2. Ir-catalyzed asymmetric hydrogenation of minimally 

functionalized alkenes using binaphthyl-based phosphite-thioether 

ligands 

Carlota Borràs, Isidro Pastor, Oscar Pàmies and Montserrat Diéguez preliminary 

results. 

 

Abstract: Eight binaphtyl-based phosphite-thioether ligands (L3-L6a-c) have been 

prepared by easily modulate of the thioether substituent and biaryl phosphite moieties,  

from commercially available (R)-BINOL. These ligands have been examined in the Ir-

catalyzed asymmetric hydrogenation of minimally functionalized alkenes. Depending 

on the olefin geometry and its substitution pattern different ligands are required to 

reach the highest enantioselectivity. In some significantly cases, the chiral 

hydrogenated products were isolated with ee’s within 74-99%. It is noteworthy the 

excellent results obtained in the hydrogenation of lactone (up to >99% ee) and lactame 

substrates (up to 97% ee), enolphosphinates (up to 95% ee) and alkenyl boronic esters 

(up to 98% ee).       

 

3.2.1. Introduction 

In this chapter, we wish to give a new push to the catalytic potential of simple 

phosphite-thioether ligands in the hydrogenation of minimally functionalized olefins 

by screening novel and readily available thioether-containing compounds. For this 

purpose we designed a small but structurally valuable library of phosphite-thioether 

ligands L3-L6a-c (Figure 3.2.1). They are based on the successful use of ligands with a 

chiral binapthalene scaffold, such as BINAP
[1]

, in several M-catalyzed asymmetric 

processes. With ligands L3-L6a-c, we investigated the effect on catalytic performance 

of systematically changing the electronic and steric properties of the thioether 

substituent (L3-L6) and the configuration of the biaryl phosphite moiety (a-c).
[2]

   

 

 

Figure 3.2.1. Phosphite-thioether ligands L3-L6a-c. 
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3.2.2. Results and discussion 

3.2.2.1. Synthesis of ligands 

A library of phosphite-thioether ligands L3-L6a-g was prepared as outlined in 

Scheme 3.2.1 from hydroxyl-thioether compounds 3-5 and 9, which are easily 

synthesized from the commercially available (R)-BINOL. Compounds 3-5 have been 

prepared following the procedure reported by Woodward and coworkers.
[3]

 In this 

respect, addition of Me2NC(S)Cl to commercially (R)-BINOL in presence of 

triethylamine and DMAP and the subsequent addition of Me2NC(O)Cl allowed the 

isolation of enantiomerically pure compound 1 (Scheme 3.2.1; steps a and b). The 

purified compound 1 was used in the thermal Newmann rearrangement and after a 

simple recrystallization (to ensure enantiomeric purity) it was hydrolyzed with 

potassium hydroxide to yield 2 (Scheme 3.2.1; steps c and d). Finally, compounds 3-5 

were easily obtained by treating thiol 2 with the appropriate alkylating agent (Scheme 

3.2.1; step e).  

However, for the synthesis of the corresponding hydroxyl-thioether compound 9, 

with an aryl thioether group rather than an alkyl one, we used another route 

developed by Hagiwara's group. First, compound 6 was synthesized as previously 

described (Scheme 3.2.1; steps g and h).
[4]

 Then, the protection of alcohol 6 using 

chloromethyl methylether in presence of sodium hydride and THF as a solvent was 

carried out (step i). The resulting protected compound 7 was transformed to the 

thioether intermediate 8 at low temperature using phenyl disulphide and n-

buthyllithium (step j). Finally, compound 8 was treated with Amberlyst 15 resin to 

afford the desired hydroxyl-thioether 9 (step k). 

 

 
Scheme. 3.2.1. Synthesis of ligands L3-L6a-c. a) Me2NC(S)Cl, NEt3, DMAP, CH2Cl2; b) Me2NC(O)Cl, NEt3, 

DMAP, CH2Cl2; c) 250    C; d) KOH, H2O/MeOH; e) n-BuLi, RX, THF; f) ClP(OR)2; (OR)2 = a-c, NEt3, toluene; g) HY 

Zeolith CBV400, dichlorobenzene; h) Li, 1,1,2,2-tetrabromoethane, toluene/Et2O; i) NaH, MOMCl, THF; j) n-

BuLi, PhSSPh, THF; k) Amberlyst 15 resin, MeOH. 
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The last step is common for all of the ligands. It consists in the reaction of the 

corresponding hydroxyl-thioether compounds 3-5 and 9, in the presence of a base, 

with one equivalent of the desired biaryl phosphochloridite (Cl(OR)2; P(OR)2 = a-c) to 

provide phosphite-thioether ligands L3-L6a-c (Scheme 3.2.1; step f). All of the ligands 

are stable in air at room temperature and to hydrolysis. They were isolated in low-to-

moderated yields as white solids after purification by neutral alumina. HRMS-ESI 

spectra agreed with the assigned structures. The 
1
H, 

31
P and 

13
C NMR spectra were as 

expected for these ligands.  

 

3.2.2.2. Synthesis of Ir-catalyst precursors 

The catalyst precursors were prepared by refluxing a dichloromethane solution of 

the appropriate ligand (L3-L6a-c) in the presence of 0.5 equivalent of [Ir(μ-Cl)cod]2 for 

1 h. The Cl
-
/BArF

-
 counterion exchange was then achieved by a reaction with sodium 

tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (NaBArF) (1 equiv.) in the presence of 

water (Scheme 3.2.2). All complexes were isolated as air-stable orange solids after 

purification. The complexes were characterized by HRSM-ESI, 
31

P NMR, 
1
H NMR and 

13
C NMR. The HRMS-ESI spectra were in agreement with the assigned structures, 

displaying the heaviest ions at m/z which correspond to the loss of the BArF anion from 

molecular species.  NMR spectra showed the expected pattern for these complexes. In 

all cases, one singlet in the VT-
31

P-{
1
H} NMR spectra (in CD2Cl2, +35 to -85   C) was 

observed.  

 
Scheme 3.2.2. Synthesis of catalyst precursors [Ir(cod)(L3-L6a-c)]BArF. 

3.2.2.3. Ir-catalyzed hydrogenation  

The asymmetric hydrogenation of minimally functionalized olefins is highly 

dependent on the olefin geometry and its substitution pattern.
[5]

 In this respect, Z-

trisubstituted olefins are commonly hydrogenated less enantioselectively than the 

related E-isomers. On the other hand, for di- and tetrasubstituted olefins 

enantioslectivities is much more difficult to control than in trisubstituted olefins.  In 

order to evaluate the efficiency of ligands L3-L6 in the hydrogenation of olefins with 

different geometry and substitution pattern, we initially tested them in the 

asymmetric reduction of trisubstituted substrates E-S1 (the model olefin) and Z-S2, 

and in the hydrogenation of di- and tetrasubstituted olefins S3 and S4, respectively 

(Table 3.2.1). The enantioselectivities were found to be dependent on the thioether 

substituent and the biaryl phosphite group. For all of them, we found that ligands with 

alkyl thioether moieties led to higher ee's than their counterparts with an aryl-

thioether group (i.e. entries 1, 4 and 6 vs 8). For di- and tetrasubstituted olefins the 
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best enantioselectivities (ee's up to 92%) were achieved with a methyl-thioether 

substituent (entries 1 and 3) while for E-trisubstituted olefins a cyclohexyl-thioether 

substituent is needed for good enantioselectivity (ee's up to 83%, entry 5). However, 

for Z-trisubstituted olefins the type of alkyl-thioether substituent had little effect on 

enantioselectivity (entries 1-3 vs 4-7). Concerning the effect of the biaryl phosphite 

group, we found that for trisubstituted substrates an S-binaphthyl phosphite group (c) 

is needed to enhance enantioselectivity. In contrast, for di- and tetrasubstituted 

olefins similar enantioselectivities are obtained with ligands containing the achiral 

inexpensive biaryl phosphite (a) and the S-binaphthyl phophite (c) moieties (i.e. entry 1 

vs 6). For these latter substrates, we can conclude that the ligand backbone together 

with the thioether moiety is able to control the tropoisomerism of the biaryl phosphite 

group.  

 
Table 3.2.1. Ir-catalyzed hydrogenation of substrates S1-S4.

a 

   

 

 

 

 

 

 

 
Entry L  % ee

b 
 % ee

b 
 % ee

b 
 % ee

b 

1 L3a  40 (S)  15 (S)  90 (R)  45 (S) 
2 L3b  2 (S)  15 (R)  10 (S)  21 (R) 
3 L3c  63 (S)  5 (R)  92 (R)  43 (S) 
4 L4a  74 (S)  10 (S)  84 (R)  2 (S) 
5 L4c  83 (S)  3 (R)  91 (R)  33 (S) 
6 L5a  66 (S)  15 (S)  85 (R)  36 (S) 
7 L5c  80 (S)  13 (S)  86 (R)  40 (S) 
8 L6a  1 (S)  2 (S)  2 (R)  2 (R) 

a Reactions conditions: 0.5 mmol of substrate, 2 mol% of Ir-catalyst precursor, PH2= 100 bar (for substrates 

S1, S2 and S4) or 1 bar (for substrate S3), rt, 18 h. Full conversions, measured by GC, were achieved in all 

cases. b Enantiomeric excesses determined by chiral GC.  

 

Encouraged by the good enantioselectivities obtained in the reduction of tri- and 

disubstituted olefins we then focus in the hydrogenation of these types of substrates 

including examples containing neighboring polar groups. Results are shown in Table 

3.2.2. We again found that the ligand components must be selected correctly to 

enhance the enantioselectivity for each substrate.  

The reduction of allylic alcohol S5 proceeded with similar good enantioselectivitiy 

(ee's up to 80%) than the achieved in the reduction of S1, although the best 

enantioselectivity is obtained with the ligand L4a that contain the achiral inexpensive 

biaryl phosphite (a). The Ir/L3b catalytic system can also hydrogenate the ,-

unsaturated enone S6 with comparable high enantioselectivities (up to 84% ee). 

Higher enantioselectivities could be achieved with the same catalytic system, Ir/L4a, in 

the reduction of a relevant type of substrate: ,-unsaturated ester S7 (90% ee). 

Although, moderate enantioselectivity was achieved in the hydrogenation of an ,-
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unsaturated amide S8, excellent enantioselectivities were obtained in the reduction of 

lactone S9, lactame S10,  enolphosphinate S11 and alkenyl boronic ester S12 as 

substrates (ee's up to 99%).  

 

Table 3.2.2. Ir-catalyzed hydrogenation of trisubstituted substrates containing minimally 

coordinative groups S5-S12.
a 

  
 

 

 

 

 

 

 
Entry L % ee

b  % ee
b  % ee

b  % ee
b 

1 L3a 50 (S)  6 (S)  35 (S)  65 (S) 
2 L3b 32 (R)  84 (R)  90 (R)  62 (S) 
3 L3c 49 (S)  60 (S)  60 (S)  33 (S) 
4 L4a 80 (S)  28 (S)  52 (R)  60 (S) 
5 L4c 41 (S)  66 (S)  12 (R)  11 (S) 
6 L5a 4 (S)  33 (S)  85 (S)  53 (S) 
7 L5c 30 (S)  30 (S)  68 (S)  4 (S) 
8 L6a 3 (R)  10 (S)  21 (R)  4 (S) 

  

 

 

 

 

 

 

 
9 L3a 99 (R)  96 (R)  20 (R)  40 (-) 

10 L3b >99 (R)  97 (R)  91 (R)  98 (+) 
11 L3c 99 (R)  96 (R)  4 (R)  33 (-) 
12 L4a 13 (S)  9 (S)  70 (S)  97 (+) 
13 L4c 5 (S)  6 (S)  95 (S)  0 
14 L5a 99 (R)  94 (R)  71 (S)  20 (-) 
15 L5c 96 (R)  95 (R)  50 (S)  30 (+) 
16 L6a 33 (S)  24 (S)  5 (R)  48 (-) 

a Reactions conditions: 0.5 mmol of substrate, 2 mol% of Ir-catalyst precursor for substrates S5-S8 and S11 or 

4 mol% for substrates S9, S10 and S11, PH2= 100 bar, rt, 24 h. Full conversions, measured by 1H-NMR, were 

achieved in all cases. b Enantiomeric excesses determined by chiral HPLC.  

 

Finally, we focus in the reduction of other disubstituted substrates (Table 3.2.3). By 

comparing the results obtained with S3, S13 and S14 we conclude that 

enantioselectivities are dependent on the nature of the alkyl chain of the substrate. 

This agrees with a competing isomerization pathway. Finally, we wanted to see if the 

excellent catalytic performance in the reduction of trisubstituted enol phosphinates 

and alkenylboronic esters was maintained for the even more challenging terminal 

analogues. While the hydrogenation of S15 proceeds with low enantioselectivities, 

high enantioselectivities (ee's up to 96%) comparable to the best one reported in the 

literature could be achieved in the reduction of enol phosphinate S16.   
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Table 3.2.3. Ir-catalyzed hydrogenation of substrates S1-S4.
a
 

  

 

 

 

 

 

 

 
Entry L % ee

b 
 % ee

b 
 % ee

b 
 % ee

b 

1 L3a 25 (R)  72 (R)  55 (R)  86 (S) 
2 L3b 17 (R)  24 (S)  10 (R)  36 (R) 
3 L3c 43 (R)  74 (R)  48 (R)  85 (S) 
4 L4a 15 (S)  35 (R)  30 (R)  96 (S) 
5 L4c 2 (R)  50 (R)  11 (R)  83 (S) 
6 L5a 24 (S)  27 (R)  9 (R)  92 (S) 
7 L5c 6 (S)  26 (R)  5 (S)  80 (S) 
8 L6a 0  1 (R)  1 (R)  2 (S) 

a 
Reactions conditions: 0.5 mmol of substrate, 2 mol% of Ir-catalyst precursor, PH2= 1 bar (for substrates S13-

S15) or 100 bar (for S16), rt, 18 h. Full conversions, measured by GC or 1H-NMR, were achieved in all cases.   
b Enantiomeric excesses determined by chiral GC or HPLC.  

 

3.2.3. Conclusions 

A new binaphtyl-based phosphite-thioether ligand family (L3-L6a-c) was 

successfully synthesized from commercially available (R)-BINOL. The synthetic 

procedure used allowed the systematic variation of the substituents of the thioether 

and the biaryl phosphite moiety. Both groups have been found to be highly important 

for the enantioselectivity of the process. The presence of alkyl thioether groups was 

necessary to reach high levels of enantioselectivity. Depending on the olefin geometry 

and its substitution pattern different ligands are required to reach the highest 

enantioselective. In some significantly cases, the chiral hydrogenated products were 

isolated with ee’s in the range of 74-99%. It is noteworthy the excellent results 

obtained in the hydrogenation of lactone (up to >99% ee) and lactame substrates (up 

to 97% ee), enolphosphinates (up to 95% ee) and alkenyl boronic esters (up to 98% 

ee).       

 

3.2.4. Experimental part 

3.2.4.1. General considerations 

All syntheses were performed by using standard Schlenk techniques under an argon 

atmosphere. Solvents were purified by standard procedures. Phosphorochloridites are 

easily prepared in one step from the corresponding biaryls.[6] Compounds 1-2[7], 3[3], 5[3] and 

6[4] were prepared as previously described. All other reagents were used as commercially 

available. 1H, 13C{1H}, 31P{1H} NMR spectra experiments were recorded using a 400 MHz 

spectrometer. Chemical shifts are relative to that of SiMe4 (
1H and 13C) as internal standard 

or H3PO4 (31P) as external standard. 1H and 13C assignments were done based on 1H-1H 

gCOSY and 1H-13C gHSQC experiments.  
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3.2.4.2 General procedure for the preparation of phosphite-thioether ligands L3-

L6a-c 

The corresponding phosphorochloridite (1.1 mmol) produced in situ was dissolved 

in toluene (5 mL) and triethylamine (2.2 mmol, 0.3 mL) was added. The corresponding 

hydroxyl-thioether 3-5 and 9 (1 mmol) was azeotropically dried with toluene (3x1 mL) 

and dissolved in toluene (5 mL) to which NEt3 (2.2 mmol, 0.3 mL) was added. The 

solution was transferred slowly at 0 
o
C to the solution of the phosphorochloridite. The 

reaction mixture was stirred overnight at 80 
o
C, and the triethylamine salts were 

removed by filtration. Evaporation of the solvent gave a white foam, which was 

purified by flash chromatography in silica (eluent: toluene/triethylamine – 100:1) to 

produce the corresponding ligand as a white solid. 

L3a: Yield: 129.1 mg (34%). 
31

P NMR (C6D6), δ: 136.4 (s). 
1
H NMR (C6D6), δ:1.31 (s, 

9H, CH3, 
t
Bu), 1.33 (s, 18H, CH3, 

t
Bu), 1.49 (s, 9H, CH3, 

t
Bu), 1.98 (s, 3H, SCH3), 7.05 (m, 

2H, CH=), 7.20 (m, 2H, CH=), 7.38 (m, 6H, CH=), 7.62 (m, 5H, CH=), 7.78 (m, 2H, CH=). 
13

C NMR (C6D6), δ: 15.3 (SCH3), 29.7 (CH3, 
t
Bu), 29.9 (CH3, 

t
Bu), 31.0 (CH3, 

t
Bu), 31.1 

(CH3, 
t
Bu), 31.3 (CH3, 

t
Bu), 31.4 (CH3, 

t
Bu), 34.4 (C, 

t
Bu), 34.4 (C, 

t
Bu), 35.3 (C, 

t
Bu), 35,4 

(C, 
t
Bu), 122.9-147.4  (aromatic carbons). MS HR-ESI [found 777.3428, C49H55O3PS (M-

Na)
+
 requires 777.3502]. 

L3b: Yield: 115 mg (33%). 
31

P NMR (C6D6), δ:131.4 (s). 
1
H NMR (C6D6), δ: 1.37 (s, 9H, 

CH3, 
t
Bu), 1.43 (s, 9H, CH3, 

t
Bu), 1.67 (s, 3H, CH3), 1.74 (s, 3H, CH3), 1.94 (s, 3H, SCH3), 

2.02 (s, 3H, CH3), 2.08 (s, 3H, CH3), 6.98 (m, 6H, CH=), 7.31 (m, 3H, CH=), 7.50 (d, 1H, 

CH=, 
3
JH-H= 8.3 Hz), 7.62 (m, 4H, CH=). 

13
C NMR (C6D6), δ: 15.5 (SCH3), 16.4 (CH3, 

t
Bu), 

16.6 (CH3, 
t
Bu), 20.2 (CH3, 

t
Bu), 20.3 (CH3, 

t
Bu), 31.3 (CH3, 

t
Bu), 31.7 (CH3, 

t
Bu), 34.7 (C, 

t
Bu), 34.7 (C, 

t
Bu), 122.2-148.0 (aromatic carbons). MS HR-ESI [found 

721.2871, C45H47O3PS (M-Na)
+
 requires 721.2876]. 

L3c: Yield: 157 mg (45%). 
31

P NMR (C6D6), δ: 132.1 (s). 
1
H NMR (C6D6), δ: : 1.21 (s, 

9H, CH3, 
t
Bu), 1.45 (s, 9H, CH3, 

t
Bu), 1.68 (s, 3H, CH3), 1.71 (s, 3H, CH3), 1.94 (s, 3H, 

SCH3), 2.03 (s, 3H, CH3), 2.05 (s, 3H, CH3), 7.12 (m, 9H, CH=), 7.59 (m, 3H, CH=), 7.69 (d, 

2H, CH=, 
3
JH-H= 8.3 Hz) .

13
C NMR (C6D6), δ: 15.3 (SCH3), 16.3 (CH3, 

t
Bu), 16.5 (CH3, 

t
Bu), 

20.0 (CH3, 
t
Bu), 20.1 (CH3, 

t
Bu), 31.1 (CH3, 

t
Bu), 31.3 (CH3, 

t
Bu), 34.5 (C, 

t
Bu), 122.7-

147.4  (aromatic carbons). MS HR-ESI [found 721.2879, C45H47O3PS (M-Na)
+
 requires 

721.2876]. 

L4a: Yield: 213 mg (52%). 
31

P NMR (C6D6), δ: 135.5 (s). 
1
H NMR (C6D6), δ: 1.01 (m, 

5H, CH2, SCy), 1.23 (s, 9H, CH3, 
t
Bu), 1.24 (s, 9H, CH3, 

t
Bu), 1.29 (s, 9H, CH3, 

t
Bu), 1.38 

(m, 3H, CH2, SCy), 1.44 (s, 9H, CH3, 
t
Bu),  1.71 (m, 1H, CH2, SCy), 1.88 (m, 1H, CH2, SCy), 

3.05 (m, 1H, CH, SCy), 7.05 (m, 3H, CH=), 7.18 (m, 2H, CH=), 7.24 (m, 3H, CH=), 7.35 (m, 

1H, CH=), 7.58 (m, 5H, CH=), 7.69 (m, 2H, CH=).
13

C NMR (C6D6), δ: 25.6 (CH2, SCy), 25.8 

(CH2, SCy), 25.9 (CH2, SCy), 30.9 (CH3, 
t
Bu), 31.3 (CH3, 

t
Bu), 32.8 (CH2, SCy), 33.3 (CH2, 

SCy), 34.3 (C, 
t
Bu), 34.4 (C, 

t
Bu), 35.2 (C, 

t
Bu), 35.3 (C, 

t
Bu), 44.8 (CH, SCy), 122.6-147.7 

(aromatic carbons). MS HR-ESI [found 845.4124, C54H63O3PS (M-Na)
+
 requires 

845.4128]. 
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L4c: Yield: 179 mg (47%). 
31

P NMR (C6D6), δ: 131.7 (s). 
1
H NMR (C6D6), δ: 0.99 (m, 

5H, CH2, SCy), 1.24 (s, 9H, CH3, 
t
Bu), 1.26 (m, 1H, CH2, SCy), 1.38 (m, 3H, CH2, SCy), 1.44 

(s, 9H, CH3, 
t
Bu), 1.64 (s, 3H, CH3), 1.67 (s, 3H, CH3), 1.90 (m, 1H, CH2, SCy ), 1.99 (s, 3H, 

CH3), 2.02 (s, 3H, CH3), 3.01 (m, 1H, CH, SCy), 6.92 (m, 2H, CH=), 7.00 (m, 3H, CH=), 7.11 

(m, 5H, CH=), 7.54 (m, 2H, CH=), 7.64 (m, 2H, CH=). 
13

C NMR (C6D6), δ: 16.3 (CH3), 16.5 

(CH3), 20.0 (CH3), 20.1 (CH3), 25.6 (CH2, SCy), 25.8 (CH2, SCy), 25.9 (CH2, SCy), 31.4 (CH3, 
t
Bu), 32.9 (CH2, SCy), 33.2 (CH2, SCy), 34.6 (C, 

t
Bu), 44.8 (CH, SCy), 122.4-147.9 

(aromatic carbons). MS HR-ESI [found 789.3500, C50H55O3PS (M-Na)
+
 requires 

789.3502]. 

L5a: Yield: 251 mg (64%). 
31

P NMR (C6D6), δ: 135.6 (s). 
1
H NMR (C6D6), δ: 0.90 (d, 

3H, CH3, S
i
Pr, 

3
JH-H= 6.6 Hz), 0.95 (d, 3H, CH3, S

i
Pr, 

3
JH-H= 6.6 Hz), 1.21 (s, 9H, CH3, 

t
Bu), 

1.22 (s, 9H, CH3, 
t
Bu), 1.27 (s, 9H, CH3, 

t
Bu), 1.41 (s, 9H, CH3, 

t
Bu), 3.18 (dt, 1H, CH, S

i
Pr, 

3
JH-H= 13.3 Hz, 

3
JH-H= 6.7 Hz), 6.94 (m 3H, CH=), 7.11 (m, 5H, CH=), 7.23 (m, 1H, CH=), 

7.31 (m, 2H, CH=), 7.52 (m, 4H, CH=), 7.67 (m, 1H, CH=).
13

C NMR (C6D6), δ: 22.4 (CH3, 

S
i
Pr), 23.0 (CH3, S

i
Pr), 31.0 (CH3, 

t
Bu), 31.2 (CH3, 

t
Bu), 31.3 (CH3, 

t
Bu), 34.3 (C, 

t
Bu), 34.4 

(C, 
t
Bu), 35.2 (C, 

t
Bu), 35.3 (C, 

t
Bu), 36.0 (CH, S

i
Pr), 122.6-147.7 (aromatic carbons). MS 

HR-ESI [found 805.3813, C51H59O3PS (M-Na)
+
 requires 805.3815]. 

L5c: Yield: 150 mg (41%). 
31

P NMR (C6D6), δ: 131.7 (s). 
1
H NMR (C6D6), δ: 0.89 (d, 3H, 

CH3, S
iPr, 3JH-H= 6.6 Hz), 0.99 (d, 3H, CH3, S

iPr, 3JH-H= 6.6 Hz), 1.21 (s, 9H, CH3, 
tBu), 1.43 (s, 

9H, CH3, 
tBu), 1.63 (s, 3H, CH3), 1.66 (s, 3H, CH3), 1.98 (s, 3H, CH3), 2.00 (s, 3H, CH3), 3.16 (dt, 

1H, CH, SiPr, 3JH-H= 13.3 Hz, 3JH-H= 6.6 Hz), 6.91 (m 2H, CH=), 7.04 (m, 6H, CH=), 7.41 (d, 1H, 

CH=, 3JH-H= 8.8 Hz), 7.53 (m, 2H, CH=), 7.64 (m, 3H, CH=).
13

C NMR (C6D6), δ: 16.3 (CH3), 

16.5 (CH3), 20.1 (CH3), 20.1 (CH3), 22.4 (CH3, S
i
Pr), 22.9 (CH3, S

i
Pr), 31.3 (CH3, 

t
Bu), 31.4 

(CH3, 
t
Bu), 34.5 (CH, S

i
Pr), 36.0 (C, 

t
Bu), 122.6-147.8 (aromatic carbons). MS HR-ESI 

[found 749.3186, C47H51O3PS (M-Na)+ requires 749.3189]. 

L6a: Yield: 55 mg (11%). 
31

P NMR (C6D6), δ: 135.4 (s). 
1
H NMR (C6D6), δ: 1.22 (s, 18H, 

CH3, 
t
Bu), 1.24 (s, 9H, CH3, 

t
Bu), 1.28 (s, 9H, CH3, 

t
Bu), 6.79 (m, 3H, CH=), 6.94 (m, 3H, 

CH=), 7.05 (m, 1H, CH=), 7.14 (m, 1H, CH=), 7.28 (m, 2H, CH=), 7.33 (m, 3H, CH=), 7.40 

(d, 1H, CH=, 
3
JH-H= 8.7 Hz), 7.53 (m, 7H, CH=).

13
C NMR (C6D6), δ:  30.9 (CH3, 

t
Bu), 31.2 

(CH3, 
t
Bu), 34.2 (C, 

t
Bu), 34.3 (C, 

t
Bu), 35.2 (C, 

t
Bu), 122.5-146.8 (aromatic carbons). MS 

HR-ESI [found 839.3655, C50H49O3PS (M-Na)+ requires 839.3658]. 

3.2.4.3. Typical procedure for the preparation of [Ir(cod)(L3-L6a-c)]BArF 

The corresponding ligand (0.037 mmol) was dissolved in CH2Cl2 (2.5 mL) and [Ir(µ-

Cl)(cod)]2 (12.5 mg, 0.0185 mmol) was added. The reaction was refluxed at 50 °C for 1 

hour. After 5 min at room temperature, NaBArF (38.6 mg, 0.041 mmol) and water (2.5 

mL) were added and the reaction mixture was stirred vigorously for 30 min at room 

temperature. The phases were separated and the aqueous phase was extracted twice 

with CH2Cl2. The combined organic phases were dried with MgSO4, the resulting crude 

was purified by flash chromatography on silica (CH2Cl2/hexane 1:1) to give the 

products as orange solids.  
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[Ir(cod)(L3a)]BArF. Yield: 32 mg (90%). 
31

P NMR (161.9 MHz, CDCl3): δ 98.7 (s). 
1
H 

NMR (400 MHz, CDCl3): δ 0.74 (s, 9H, CH3, 
t
Bu), 1.31 (s, 9H, CH3, 

t
Bu), 1.37 (s, 9H, CH3, 

t
Bu) , 1.54 (s, 9H, CH3, 

t
Bu), 1.75 (m, 2H, CH2, cod), 2.17 (m, 5H, CH2, cod), 2.37 (m, 1H, 

CH2, cod), 2.71 (s, 3H, CH3, SMe), 3.42 (b, 1H, CH=, cod), 4.60 (b, 1H, CH=, cod), 5.32 (b, 

1H, CH=, cod), 5.38 (b, 1H, CH=, cod), 7.08 (m, 2H, C=), 7.17 (m, 1H, CH=), 7.23 (m, 1H, 

CH=), 7.29 (b, 1H, CH=), 7.32 (m, 1H, CH=), 7.36 (m, 2H, CH=), 7.53 (m, 4H, CH=), 7.58 

(m, 1H, CH=), 7.64 (m, 1H, CH=), 7.72 (m, 7H, CH=), 7.79 (d, 1H, CH=, 
3
JH-H= 8.8 Hz), 7.89 

(d, 1H, CH=, 
3
JH-H= 9.0 Hz), 7.94 (d, 1H, CH=, 

3
JH-H= 8.1 Hz), 8.01 (d, 1H, CH=, 

3
JH-H= 8.2 

Hz), 8.15 (d, 1H, CH=, 
3
JH-H= 8.7 Hz). 

13
C NMR (100.6 MHz, CDCl3): δ 16.9 (CH3, SMe), 

28.6 (CH2, cod), 29.7 (CH2, cod), 30.4 (CH2, cod), 30.8 (CH3, 
t
Bu), 31.3 (CH3, 

t
Bu), 31.4 

(CH3, 
t
Bu), 31.5 (CH2, cod), 32.5 (CH3, 

t
Bu), 32.9 (CH2, cod), 34.8 (C, 

t
Bu), 34.9 (C, 

t
Bu), 

35.0 (C, 
t
Bu), 35.9 (C, 

t
Bu), 69.8 (CH=, cod), 78.8 (CH=, cod), 97.4 (d, CH=, cod, JC-P= 18.5 

Hz), 98.9 (d, CH=, cod, JC-P= 13.8 Hz), 117.4-149.6 (aromatic carbons), 161.7 (q, C-B, 

BArF, 
1
JC-B =49.9 Hz). MS HR-ESI [found 1055.4170, C57H67IrO3PS (M)

+
 requires 

1055.4172]. 

[Ir(cod)(L3b)]BArF. Yield: 32 mg (93%). 
31

P NMR (161.9 MHz, CDCl3): δ 108.5 (s). 
1
H 

NMR (400 MHz, CDCl3): δ 1.34 (s, 9H, CH3, 
t
Bu), 1.59 (s, 3H, CH3), 1.62 (s, 9H, CH3, 

t
Bu), 

1.67 (s, 3H, CH3), 1.80 (m, 3H, CH2, cod), 2.00 (m, 5H, CH2, cod), 2.18 (s, 3H, CH3), 2.24 

(s, 3H, CH3), 2.55 (s, 3H, CH3, SMe), 3.27 (b, 1H, CH=, cod), 4.49 (b, 1H, CH=, cod), 4.69 

(b, 1H, CH=, cod), 4.93 (b, 1H, CH=, cod), 6.84 (m, 1H, C=), 7.24 (m, 2H, CH=), 7.37 (m, 

3H, CH=), 7.56 (m, 7H, CH=), 7.70 (m, 8H, CH=), 7.90 (d, 1H, CH=, 
3
JH-H= 9.0 Hz), 7.99 (m, 

2H, CH=), 8.15 (m, 2H, C=). 
13

C NMR (100.6 MHz, CDCl3): δ 16.2 (CH3), 16.3 (CH3), 20.0 

(CH3), 20.1 (CH3), 20.3 (CH3, SMe), 27.7 (CH2, cod), 30.1 (CH2, cod), 31.1 (CH2, cod), 32.1 

(CH3, 
t
Bu), 32.7 (CH3, 

t
Bu), 33.7 (CH2, cod), 33.8 (CH2, cod), 34.8 (C, 

t
Bu), 35.6 (C, 

t
Bu), 

68.9 (CH=, cod), 72.6 (CH=, cod), 98.0 (d, CH=, cod, JC-P= 15.3 Hz), 100.3 (d, CH=, cod, JC-

P= 15.3 Hz), 117.4-146.7 (aromatic carbons), 161.7 (q, C-B, BArF, 
1
JC-B =49.7 Hz). MS HR-

ESI [found 999.3542, C53H59IrO3PS (M)
+
 requires 999.3546]. 

[Ir(cod)(L3c)]BArF. Yield: 30 mg (89%). 
31

P NMR (161.9 MHz, CDCl3): δ 95.3 (s). 
1
H 

NMR (400 MHz, CDCl3): δ 0.69 (s, 9H, CH3, 
t
Bu), 1.48 (s, 9H, CH3, 

t
Bu) , 1.69 (b, 2H, CH2, 

cod), 1.82 (s, 3H, CH3), 1.84 (s, 3H, CH3), 2.00 (m, 2H, CH2, cod), 2.14 (m, 3H, CH2, cod), 

2.24 (s, 3H, CH3), 2.31 (s, 3H, CH3), 2.35 (b, 1H, CH2, cod), 2.69 (s, 3H, CH3, SMe), 2.97 

(b, 1H, CH=, cod), 4.51 (b, 1H, CH=, cod), 5.30 (b, 2H, CH=, cod), 7.05 (m, 3H, C=), 7.17 

(d, 1H, CH=, 
3
JH-H= 9.1 Hz), 7.27 (m, 1H, CH=), 7.35 (m, 2H, CH=), 7.51 (m, 7H, CH=), 7.63 

(m, 1H, CH=), 7.71 (m, 8H, CH=), 7.77 (d, 1H, CH=, 
3
JH-H= 8.8 Hz), 7.94 (m, 1H, C=), 8.14 

(d, 1H, CH, 
3
JH-H= 8.8 Hz). 

13
C NMR (100.6 MHz, CDCl3): δ 16.3 (CH3), 16.6 (CH3), 16.8 

(CH3, SMe), 20.3 (CH3), 20.5 (CH3), 28.7 (CH2, cod), 30.1 (CH2, cod), 31.0 (CH3, 
t
Bu), 31.9 

(CH2, cod), 32.5 (CH3, 
t
Bu), 32.7 (CH2, cod), 34.4 (C, 

t
Bu), 35.0 (C, 

t
Bu), 69.8 (CH=, cod), 

78.6 (CH=, cod), 97.1 (d, CH=, cod, JC-P= 18.3 Hz), 98.5 (d, CH=, cod, JC-P= 14.5 Hz), 

117.4-147.3 (aromatic carbons), 161.7 (q, C-B, BArF, 
1
JC-B =49.7 Hz). MS HR-ESI [found 

999.3544, C53H59IrO3PS (M)
+
 requires 999.3546]. 
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[Ir(cod)(L4a)]BArF. Yield: 31 mg (87%). 
31

P NMR (161.9 MHz, CDCl3): δ 95.6 (s). 
1
H 

NMR (400 MHz, CDCl3): δ 0.74 (s, 9H, CH3, 
t
Bu), 0.79 (b, 2H, CH2, SCy), 1.09 (m, 1H, CH2, 

SCy), 1.39 (s, 9H, CH3, 
t
Bu), 1.56 (s, 9H, CH3, 

t
Bu), 1.75 (b, 5H, CH2, cod, CH2, SCy), 2.08 

(b, 2H, CH2, cod), 2.43 (b, 2H, CH2, cod), 3.55 (b, 1H, CH=, cod), 3.75 (b, 1H, CH, SCy), 

4.40 (b, 1H, CH=, cod), 5.62 (b, 2H, CH=, cod), 7.07 (m, 3H, CH=), 7.22 (m, 4H, CH=), 

7.35 (m, 3H, CH=), 7.49 (m, 5H, CH=), 7.59 (m, 1H, CH=), 7.64 (m, 1H, CH=), 7.72 (b, 7H, 

CH=), 7.81 (d, 1H, CH=, 
3
JH-H= 8.8 Hz), 7.86 (d, 1H, CH=, 

3
JH-H= 9.1 Hz), 7.93 (d, 1H, C=, 

3
JH-H= 8.2 Hz), 8.00 (d, 1H, CH=, 

3
JH-H= 8.3 Hz), 8.12 (d, 1H, CH=, 

3
JH-H= 8.7 Hz). 

13
C NMR 

(100.6 MHz, CDCl3): δ 22.7 (CH2, SCy), 24.7 (CH2, SCy), 25.0 (CH2, SCy), 25.4 (CH2, SCy), 

29.4 (CH2, cod), 29.7 (CH2, cod), 30.4 (CH2, SCy), 30.8 (CH3, 
t
Bu), 31.3 (CH3, 

t
Bu), 31.4 

(CH3, 
t
Bu), 32.1 (CH2, cod), 32.5 (CH2, cod), 32.6 (CH3, 

t
Bu), 34.8 (C, 

t
Bu), 34.9 (C, 

t
Bu), 

35.0 (C, 
t
Bu), 35.9 (C, 

t
Bu), 46.0 (CH, SCy), 68.9 (CH=, cod), 75.6 (CH=, cod), 98.4 (d, 

CH=, cod, JC-P= 17.9 Hz), 99.3 (d, CH=, cod, JC-P= 14.2 Hz), 117.4-149.2 (aromatic 

carbons), 161.7 (q, C-B, BArF, 
1
JC-B =49.9 Hz). MS HR-ESI [found 1123.4795, C62H75IrO3PS 

(M)
+
 requires 1123.4798].  

[Ir(cod)(L4c)]BArF. Yield: 31 mg (88%). 
31

P NMR (161.9 MHz, CDCl3): δ 91.9 (s). 
1
H 

NMR (400 MHz, CDCl3): δ 0.67 (s, 9H, CH3, 
t
Bu), 0.73 (m, 2H, CH2, cod), 0.99 (m, 1H, 

CH2, SCy), 1.51 (s, 9H, CH3, 
t
Bu), 1.71 (m, 3H, CH2, cod, CH2, SCy), 1.84 (s, 3H, CH3), 1.85 

(s, 3H, CH3), 2.06 (b, 4H, CH2, cod), 2.24 (s, 3H, CH3), 2.32 (s, 3H, CH3), 2.45 (m, 3H, CH2, 

cod), 3.10 (b, 1H, CH=, cod), 3.73 (b, 1H, CH, SCy), 4.32 (b, 1H, CH=, cod), 5.58 (b, 2H, 

CH=, cod), 7.08 (m, 3H, CH=), 7.32 (m, 4H, CH=), 7.50 (m, 5H, CH=), 7.63 (t, 1H, CH=, 
3
JH-

H= 7.4 Hz), 7.73 (b, 8H, CH=), 7.79 (d, 1H, CH=, 
3
JH-H= 8.8 Hz), 7.86 (d, 1H, CH=, 

3
JH-H= 9.1 

Hz), 7.92 (d, 1H, C=, 
3
JH-H= 8.3 Hz), 7.99 (d, 1H, CH=, 

3
JH-H= 8.1 Hz), 8.10 (d, 1H, CH=, 

3
JH-

H= 8.7 Hz). 
13

C NMR (100.6 MHz, CDCl3): δ 16.3 (CH3), 16.6 (CH3), 20.3 (CH3), 20.5 (CH3), 

22.7 (CH2, SCy), 24.6 (CH2, SCy), 25.0 (CH2, SCy), 25.5 (CH2, SCy), 29.1 (CH2, cod), 29.9 

(CH2, cod), 30.9 (CH2, SCy), 30.9 (CH3, 
t
Bu), 31.0 (CH3, 

t
Bu), 32.0 (CH2, cod), 32.8 (CH3, 

t
Bu), 33.1 (CH2, cod), 34.4 (C, 

t
Bu), 35.2 (C, 

t
Bu), 46.0 (CH, SCy), 68.8 (CH=, cod), 75.6 

(CH=, cod), 98.0 (d, CH=, cod, JC-P= 17.8 Hz), 98.8 (d, CH=, cod, JC-P= 14.7 Hz), 117.4-

147.8 (aromatic carbons), 161.7 (q, C-B, BArF, 
1
JC-B =49.9 Hz). MS HR-ESI [found 

1067.4167, C59H67IrO3PS (M)
+
 requires 1067.4172]. 

[Ir(cod)(L5a)]BArF. Yield: 34 mg (93%). 
31

P NMR (161.9 MHz, CDCl3): δ 95.6 (s). 
1
H 

NMR (400 MHz, CDCl3): δ 0.74 (s, 9H, CH3, 
t
Bu), 1.03 (m, 6H, CH2, S

i
Pr), 1.32 (s, 9H, CH3, 

t
Bu), 1.39 (s, 9H, CH3, 

t
Bu), 1.47 (m, 1H, CH2, cod), 1.56 (s, 9H, CH3, 

t
Bu), 1.83 (b, 3H, 

CH2, cod), 2.13 (m, 2H, CH2, cod), 2.44 (m, 2H, CH2, cod), 3.56 (b, 1H, CH=, cod), 3.96 

(m, 1H, CH, 
i
Pr), 4.42 (b, 1H, CH=, cod), 5.61 (b, 2H, CH=, cod), 7.07 (m, 3H, CH=), 7.23 

(m, 3H, CH=), 7.36 (m, 6H, CH=), 7.51 (b, 5H, CH=), 7.62 (m, 2H, CH=), 7.72 (b, 7H, CH=), 

7.80 (d, 1H, CH=, 
3
JH-H= 8.7 Hz), 7.87 (d, 1H, CH=, 

3
JH-H= 9.1 Hz), 7.93 (d, 1H, C=, 

3
JH-H= 

8.3 Hz), 8.01 (d, 1H, CH=, 
3
JH-H= 8.1 Hz), 8.13 (d, 1H, CH=, 

3
JH-H= 8.7 Hz). 

13
C NMR (100.6 

MHz, CDCl3): δ 21.4 (CH3, S
i
Pr), 22.4 (CH3, S

i
Pr), 28.9 (CH2, cod), 29.3 (CH2, cod), 29.7 

(CH2, cod), 30.8 (CH3, 
t
Bu), 31.3 (CH3, 

t
Bu), 31.4 (CH3, 

t
Bu), 31.5 (CH2, cod), 32.6 (CH3, 

t
Bu), 34.8 (C, 

t
Bu), 34.9 (C, 

t
Bu), 35.0 (C, 

t
Bu), 35.9 (C, 

t
Bu), 37.7 (CH, S

i
Pr), 69.1 (CH=, 
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cod), 75.9 (CH=, cod), 98.1 (d, CH=, cod, JC-P= 19.8 Hz), 99.3 (d, CH=, cod, JC-P= 13.7 Hz), 

115.4-149.3 (aromatic carbons), 161.7 (q, C-B, BArF, 
1
JC-B =50.5 Hz). MS HR-ESI [found 

1083.4482, C59H75IrO3PS (M)
+
 requires 1083.4485]. 

[Ir(cod)(L5c)]BArF. Yield: 32 mg (91%). 
31

P NMR (161.9 MHz, CDCl3): δ 92.1 (s). 
1
H 

NMR (400 MHz, CDCl3): δ 0.67 (s, 9H, CH3, 
t
Bu), 1.00 (m, 6H, CH2, S

i
Pr), 1.44 (m, 2H, 

CH2, cod), 1.51 (s, 9H, CH3, 
t
Bu), 1.74 (m, 2H, CH2, cod), 1.84 (s, 3H, CH3), 1.85 (s, 3H, 

CH3), 2.03 (b, 2H, CH2, cod), 2.24 (s, 3H, CH3), 2.32 (s, 3H, CH3), 2.40 (m, 2H, CH2, cod), 

3.10 (b, 1H, CH=, cod), 3.93 (m, 1H, CH, 
i
Pr), 4.34 (b, 1H, CH=, cod), 5.55 (b, 2H, CH=, 

cod), 7.04 (m, 4H, CH=), 7.35 (m, 4H, CH=), 7.51 (m, 5H, CH=), 7.64 (t, 1H, CH=, 
3
JH-H= 

7.4 Hz), 7.72 (b, 7H, CH=), 7.78 (d, 1H, CH=, 
3
JH-H= 8.7 Hz), 7.87 (d, 1H, CH=, 

3
JH-H= 9.0 

Hz), 7.93 (d, 1H, C=, 
3
JH-H= 8.2 Hz), 8.00 (d, 1H, CH=, 

3
JH-H= 8.1 Hz), 8.12 (d, 1H, CH=, 

3
JH-

H= 8.7 Hz). 
13

C NMR (100.6 MHz, CDCl3): δ 16.3 (CH3), 16.6 (CH3), 20.3 (CH3), 20.5 (CH3), 

22.5 (CH3, S
i
Pr), 22.7 (CH3, S

i
Pr), 29.2 (CH2, cod), 29.8 (CH2, cod), 31.0 (CH3, 

t
Bu), 31.6 

(CH2, cod), 32.8 (CH3, 
t
Bu), 33.0 (CH2, cod), 34.4 (C, 

t
Bu), 35.2 (C, 

t
Bu), 37.7 (CH, S

i
Pr), 

69.1 (CH=, cod), 75.9 (CH=, cod), 97.9 (d, CH=, cod, JC-P= 17.7 Hz), 98.9 (d, CH=, cod, JC-

P= 14.3 Hz), 117.4-147.7 (aromatic carbons), 161.7 (q, C-B, BArF, 
1
JC-B =50.0 Hz). MS HR-

ESI [found 1027.3854, C55H63IrO3PS (M)
+
 requires 1027.3859]. 

 [Ir(cod)(L6a)]BArF. Yield: 33 mg (88%). 
31

P NMR (161.9 MHz, CDCl3): δ 96.5 (s). 
1
H 

NMR (400 MHz, CDCl3): δ 0.68 (s, 9H, CH3, 
t
Bu), 1.31 (s, 9H, CH3, 

t
Bu) , 1.39 (s, 9H, CH3, 

t
Bu), 1.70 (s, 9H, CH3, 

t
Bu), 1.74 (b, 3H, CH2, cod), 1.87 (b, 2H, CH2, cod), 2.35 (b, 3H, 

CH2, cod), 3.44 (b, 1H, CH=, cod), 4.43 (b, 1H, CH=, cod), 4.77 (b, 1H, CH=, cod), 5.30 (b, 

1H, CH=, cod), 7.16 (m, 6H, CH=), 7.35 (m, 5H, CH=), 7.63 (m, 1H, CH=), 7.70 (m, 7H, 

CH=), 7.90 (d, 2H, CH=, 
3
JH-H= 8.8 Hz), 8.09 (m, 2H, CH=), 8.25 (d, 1H, CH=, 

3
JH-H= 8.9 Hz). 

13
C NMR (100.6 MHz, CDCl3): δ 28.3 (CH2, cod), 29.3 (CH2, cod), 30.8 (CH3, 

t
Bu), 31.0 

(CH2, cod), 31.3 (CH3, 
t
Bu), 31.4 (CH3, 

t
Bu), 31.6 (CH2, cod), 32.9 (CH3, 

t
Bu), 34.8 (C, 

t
Bu), 

34.9 (C, 
t
Bu), 35.0 (C, 

t
Bu), 36.4 (C, 

t
Bu), 69.1 (CH=, cod), 77.0 (CH=, cod), 100.8 (CH=, 

cod), 101.7 (CH=, cod), 117.4-149.5 (aromatic carbons), 161.9 (q, C-B, BArF, 
1
JC-B =49.3 

Hz). MS HR-ESI [found 1117.4325, C62H69IrO3PS (M)
+
 requires 1117.4329]. 

3.2.4.4. Procedure for the preparation of hydroxyl-thioether compounds 4 

n
BuLi (0.4 mL of 2.5 M in hexane, 1.09 mmol) was added dropwise to a stirring 

solution of 2
[7]

 (0.30 g, 0.99 mmol) in THF at 0   C under inert atmosphere. Neat 

iodocyclohexane (0.14 mL, 1.09 mmol, 1.1 equiv.) was added, the solution was allowed 

to warm to 55   C and monitored by TLC (dichloromethane/petroleum ether 1:1). After 

16 h the reaction mixture was quenched with HCl (2 M, 5 mL) and extracted with 

dichloromethane, washed with brine and dried over MgSO4. Purification by flash 

column chromatrography (DCM/petrolium ether 1:1) yielded solid 4 (241 mg, 0.63 

mmol, 63% yield). 
1
H NMR (CDCl3), : 0.87 (m, 2H, CH2, SCy), 1.23 (m, 2H, CH2, SCy), 

1.61 (m, 2H, CH2, SCy), 1.90 (m, 2H, CH2, SCy), 3.24 (m, 1H, CH, SCy), 4.79 (s, 1H, OH), 

6.96 (d, 1H, CH=, 
3
JH-H= 8.6 Hz), 7.14 (d, 1H, CH=, 

3
JH-H= 8.6 Hz), 7.29 (m, 4H, CH=), 7.45 

(t, 1H, CH=, 
3
JH-H= 7.5 Hz), 7.72 (d, 1H, CH=, 

3
JH-H= 8.6 Hz), 7.93 (m, 4H, CH=). 

13
C NMR 
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(CDCl3), : 25.5 (CH2, SCy), 26.0 (CH2, SCy), 26.1 (CH2, SCy), 32.9 (CH2, SCy), 33.4 (CH2, 

SCy), 44.8 (CH, SCy), 117.5-130.2 (aromatic carbons).     

3.2.4.5. Procedure for the preparation of hydroxyl-thioether compounds 9 

Compound 7 was prepared via protection and the subsequently thioether 

formation of previously reported compound 6.
[4]

 To a dried schlenk with stir-bar and 

addition funnel was added NaH (60% dispersion in mineral oil, 840 mg, 21 mmol, 3 

equiv.) and THF (30 mL). The reaction was cooled to 0   C. Compound 6 (2.4 g, 7 mmol) 

was added as one portion. The reaction mixture was allowed to stir overnight at RT. 

After completion, the reaction mixture was quenched with saturated aq. NH4Cl, 

extracted with Et2O, and washed with brine. The organic layer was dried with MgSO4 

and the solvent was removed via rotator evaporation. Purification by recristalitzation 

in hexane yielded solid 7 (2.3 g, 5.9 mmol, 85% yield). 
1
H NMR (CDCl3), : 3.20 (s, 3H, 

CH3), 5.11 (m, 2H, CH2), 7.03 (d, 1H, CH=, 
2
JH-H= 8.8 Hz), 7.26 (m, 3H, CH=), 7.37 (m, 1H, 

CH=), 7.49 (m, 1H, CH=), 7.61 (d, 1H, CH=, 
2
JH-H= 9.1 Hz), 7.84 (s, 2H, CH=), 7.92 (m, 2H, 

CH=), 8.01 (d, 1H, CH=, 
2
JH-H= 9.1 Hz). 

13
C NMR (CDCl3), : 55.8 (CH3), 95.4 (CH2), 117.6-

150.7 (aromatic carbons).    

To a solution of the protected compound 7 (1.4 g, 3.7  mmol) in THF (10 mL) was 

added a hexane solution of n-BuLi (2.3 mL, 1.56 M, 3.7 mmol, 1 equiv.) at –70 °C, and 

then the reaction mixture was stirred for 1 h. A solution of phenyl disulfide (480 mg, 

2.2 mmol, 0.6 equiv.) in THF (10 mL) was slowly added to the reaction mixture at this 

temperature and then the reaction mixture was stirred at –55 °C for 72 h. The reaction 

mixture was quenched by saturated NH4Cl(aq), diluted with CH2Cl2, and washed once 

with water and once with brine. The combined aqueous solutions were extracted with 

CH2Cl2, and the combined organic solutions were dried over MgSO4 and concentrated 

under reduced pressure to afford compound 8 (650 mg, 1.5 mmol, 42% yield). Next 

step was carried out without further purification. To compound 8 (650 mg, 1.5 mmol) 

was added MeOH (6.4 mL) and THF (6.4 mL). Amberlyst 15 resin (1 g) was then added, 

and reaction was allowed to reflux at 65   C overnight. After completation, the resin 

was filtered off and the organic layer concentrated to reduce solvent amount. The 

residue was purified by silica gel chromatography (4:1 petrolium 

ether/dichloromethane) to yield the compound 9 as a white solid (480 mg, 1.3 mmol, 

79% yield). 
1
H NMR (CDCl3), : 4.81 (br, OH), 7.08 (d, 1H, CH=, 

2
JH-H= 8.5 Hz), 7.35 (m, 

12H, CH=), 7.86 (m, 3H, CH=), 7.96 (d, 1H, CH=, 
2
JH-H= 11.3 Hz). 

13
C NMR (CDCl3), : 

116.8-151.0 (aromatic carbons).    

3.2.4.6. Typical procedure for the hydrogenation of olefins 

The alkene (0.5 mmol) and Ir complex (2 mol%) were dissolved in CH2Cl2 (2 mL) in a 

high-pressure autoclave, which was purged four times with hydrogen. It was then 

pressurized at the desired pressure. After the desired reaction time, the autoclave was 

depressurized and the solvent evaporated off. The residue was dissolved in Et2O (1.5 
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ml) and filtered through a short celite plug. The enantiomeric excess was determined 

by chiral GC or chiral HPLC and conversions were determined by 
1
H NMR. The 

enantiomeric excesses of hydrogenated products from S1-S5,
[8]

 S6,
[9]

 S7,
[8]

 S8,
[10]

 S9-

10,
[11]

 S11,
[12]

  S12,
[13]

 S13,
[14]

 S14,
[8]

 S15
[15]

 and S16
[16]

 were determined using the 

conditions previously described. 
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3.3. A readily assembled carbohydrate derived phosphite-

thioether/selenoether ligand library for a broad range of M-catalyzed 

asymmetric hydrogenation 

Carlota Borràs, Jèssica Margalef, Sabina Alegre, Elisabeta Alberico, Oscar Pàmies and 

Montserrat Diéguez in manuscript to be submitted 

 

Abstract: A large family of phosphite-thioether/selenoether ligands has been easily 

prepared from accessible L-(+)-tartaric acid and D-(+)-mannitol and applied in the M-

catalyzed asymmetric hydrogenation. Its highly modular architecture has been crucial 

to maximize the catalytic performance. Improving most approaches reported to date, 

this ligand family presents a broad substrate scope. By carefully selecting the ligand 

parameters high enantioselectivities (ee’s up to 99%) have therefore been achieved in a 

broad range of both, functionalized and unfunctionalyzed substrates (45 compounds in 

total). Interestingly, both enantiomers of the hydrogenation products can be usually 

achieved by changing the ligand parameters. 

 

3.3.1. Introduction 

In the present era of green chemistry, where sustainable chemical production are a 

"must" the transition metal-catalyzed asymmetric hydrogenation of alkenes, with its 

very low catalyst loading and no byproducts, has become one of the most reliable 

toolkit for the preparation of enantiomerically pure compounds. In contrast, to the 

reduction of carbonyl-based compounds, the enantioselective reduction of C=C bonds 

relies mainly on transition-metal-catalysts.
[1]

 The extensive research dedicated to this 

process can give the erroneous impression that asymmetric hydrogenation is a mature 

area. However, most of the catalysts still rarely tolerate a broad range of substrates, 

and each type of substrate (functionalized and unfunctionalyzed) requires a particular 

ligand to optimize enantiopurity. Consequently, the identification of "privileged" 

ligands
[2]

 remains a central task in this chemistry. For the asymmetric hydrogenation of 

alkenes with a good coordinating group close to the C=C bond, Rh- and Ru-compounds 

bearing diphosphine ligands are the catalysts of choice.
[1]

 Nowadays, the substrate 

scope has been substantially expanded and it uses has been largely accepted as 

illustrated with the development of commercially processes, such as, the Parkinson's 

drug L-DOPA
[3]

, the broad spectrum antibiotic levofloxacin,
[4]

 sitagliptin
[5]

  and the 

pesticide (S)-metolachlor
[6]

. As a complement, for alkenes carrying no neighboring 

coordinating groups, the so-called minimally functionalized olefins, as shown in 

previous chapters Ir-P,N compounds have been developed into efficient catalysts.
[7]

 

However, its hydrogenation has not reached the same level of development as the 

hydrogenation of functionalized olefins and its synthetic utility remains limited.  Most 

Ir-catalysts are still sensitive to the olefin geometry as well as to the number and 
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nature of substituents. Many important substrates still provide suboptimal results with 

known catalysts.  

Here we wish to give a new push to the search of a family of ligands that can 

efficiently hydrogenate both functionalized and unfunctionalyzed alkenes.  In addition 

to provide excellent results for a broad range of both substrate types, such privileged 

ligands must be readily prepared form simple starting reagents and easy to handle 

(solid, robust and air stable). Our group has expertise in preparing easy to handle 

ligand families from readily available staring materials.
[8]

 We and other have shown the 

useful of carbohydrates for preparing ligands as a source of cheap and readily available 

materials. Their polyfunctional structure and well established chemistry facilitates its 

modular reactivity in terms of electronic and sterical effects.  We have also shown the 

benefits of having biaryl phosphite moieties in the ligand for asymmetric 

hydrogenation.
[9]

 The reason for their good performance is the flexibility of the biaryl 

phosphite groups that allows the chiral pocket of the catalyst to accommodate to the 

steric demand of the substrate. Moreover, their easy preparation from alcohols and 

their higher stability towards air and other oxidizing agents than other commonly used 

phosphines make phosphite ligands very attractive. All these features facilitate to 

prepare large series of chiral ligands that can be screened in the search of the optimal 

ligand for each type of substrate. 

In this chapter we therefore present the synthesis of a highly modular and readily 

accessible phosphite-thioether/selenoether ligand library, for application in the M-

catalyzed asymmetric hydrogenation of both, functionalized and unfunctionalyzed 

olefins. These new ligands are easily prepared on a large scale from L-tartaric acid and 

D-mannitol and their advantages properties derive from the sugar core, the biaryl 

phosphite moieties, and the thioether/selenoether moieties. Their modular nature 

greatly expedites the evaluation of several ligand parameters, which is deemed crucial 

for the iterative optimization of the most promising candidates. Consequently, the 

catalytic performance of the ligands depicted in Figure 3.3.1 has been studied by 

systematically varying electronic and steric effects of the thioether group (Ligands L7-

L13), the substituents and the introduction of a new stereogenic centre in the alkyl 

backbone chain next to the phosphite moiety (ligands L7, L13, L14-L15 and L17-L24), 

the substituents and the introduction of a new stereogenic centre in the alkyl 

backbone chain next to the thioether moiety (ligands L7, L8, L16 and L25), the 

substituents and configurations in the biaryl phosphite moiety (a-g); and finally the 

replacement of the thioether group by a selenoether moiety. 
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Figure 3.3.1. Sugar-based phosphite-thioether/selenoether ligand library L7-L30a-g. 

 

3.3.2. Results and discussion 

3.3.2.1. Synthesis of ligands 

Ligands L7-L30a-g have been synthesized from the readily accessible hydroxyl-

thioether/selenoether compounds 5-10, 12-14, 17-19, 21, 26-33, 35, 38 and 41 

(Scheme 3.3.1). These compounds were chosen as intermediates for the synthesis of 

ligands because they easily allow incorporation of the desired diversity in the ligand 

structure. They were easily prepared on a multigram scale by highly effective methods 

from compounds 1 and 2, which are obtained from inexpensive natural L-(+)-tartaric 

acid and D-(+)-mannitol.  

Thus, hydroxyl-thioether/selenoether compounds 5-10 have been obtained from 

compound 1 in only three steps. The first step is the reduction of intermediate 1 with 

LiAlH4 to afford diol 3 (Scheme 3.3.1, step a). The second step consists on the selective 

monotosylation of 3 (Scheme 3.3.1, step b). Subsequent reaction with the 

corresponding NaSR or Se2R2 (R=Ph, Me, 
t
Bu, 2,6-Me2C6H3) in the presence of NaBH4 

provided the desired hydroxyl-thioether/selenoether compounds 5-10 (Scheme 3.3.1, 

step c). However, this last step proceeded with poor yields when bulky thioether 

substituents were used. Therefore, for the preparation of corresponding hydroxyl-

thioethers 12-14 an alternative synthetic route was developed.  
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Scheme 3.3.1. Synthesis of phosphite-thioether/selenoether ligands L7-L29a-g. a) LiAlH4, Et2O, THF; b) TsCl, 
Py, CH2Cl2; c) NaSR, THF; d) Se2R2, NaBH4, THF; e) TBDMSCl, NaH, THF; f) Tf2O, Py, CH2Cl2; g) TBAF, THF; h) 
NaBH4, EtOH; i) R3SiCl or TrCl, imidazole, DMF; j) MeLi, THF; k) PhMgBr, THF, Et2O; l) Lawesson’s reagent, 
toluene; m) MeI, NEt3, MeOH; n) AcOH (dil); o) DIAD, pNBA, PPh3, THF then MeOH, NaOH; p) MsCl, NEt3, 
CH2Cl2; q) DBU,AcOH, toluene; r) K2CO3, MeOH; s) ClP(OR)2; (OR)2 = a-g, Py, toluene. 
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Compound 3 was first transformed to the triflate compound 11 via monoprotection 

of 3 with 1 equiv. of TBDMSCl and NaH followed by reaction with triflic anhydride 

(Scheme 3.3.1, steps e, f). Subsequent reaction with the desired NaSR (R= Ad, 1-

Naphth and 2-Naphth) followed by the deprotection of the tert-butyldimethylsilyl 

group with TBAF gave access to the hydroxyl-thioether compounds 12-14 (Scheme 

3.3.1, steps c, g). 

For the preparation of hydroxyl-thioether/selenoether compounds 17-19 and 21, 

which differs from 5-14, in the substituent on the carbon atom adjacent to the alcohol 

group, compound 1 was first transformed to intermediate 15 by reaction with NaBH4 

followed by protection of the alcohol group using 1equiv. of TBDMSCl (Scheme 3.3.1, 

steps h, i). Treatment of compound 15 with MeLi provided compound 16 (Scheme 

3.3.1, step j). Then, the hydroxyl-thioether/selenoether intermediates 17-19 were 

obtained from standard deprotection of compound 16, followed by a treatment of the 

alcohol with p-toluenesulfonyl chloride and pyridine to afford the tosylate compound 

and subsequent reaction with the corresponding NaSR or Se2R2 in the presence of 

NaBH4 gave access to intermediates 17-19 (Scheme 3.3.1, steps g, b, d). For the 

preparation of thioether-hydroxyl compound 21, intermediate 15 was treated with 

PhMgBr and then, Laweson’s reagent was used to transform the alcohol moiety to the 

thiol moiety achieving compound 20 (Scheme 3.3.1, step k, l). Methylation of 20 with 

MeI followed by deprotection of the silyl group gave access to desired hydroxyl 

thioether 21 (Scheme 3.3.1, steps m, g).   

For the preparation of compounds 26-33 and 35, which contain a substituent next 

to the alcohol group that generates a new chiral center, intermediate 2 was treated 

with 1 equivalent of p-toluenesulfonyl chloride and subsequent substitution reaction 

with the appropriated nucleophile afford thioether/selenoether compounds 22-23 

(Scheme 3.3.1, step b, c). Then, standard acid-catalyzed acetal deprotection with AcOH 

provided corresponding compounds 24-25 (Scheme 3.3.1, step n). From this point the 

synthesis followed different pathways depending on the ligand to be prepared. 

Thus, for synthesis of hydroxyl-thioethers 26-30, intermediates 24-25 were treated 

with 1 equiv. of the corresponding silyl chlorides or trityl chloride (Scheme 3.3.1, step 

i).  For the synthesis of hydroxyl-thioethers 31-32, compounds 24-25 have been 

transformed to the corresponding tosylated compounds followed by reaction with 

LiAlH4 (Scheme 3.3.1, steps b, a). For the synthesis of compound 33, which differs from 

31 in the configuration of the carbon next to the alcohol group, the methyl group was 

inverted using an standard Mitsunobu procedure (Scheme 3.3.1, step o). Similarly, for 

the preparation of compound 35 the configuration of the carbon next to the alcohol 

group was inverted using the methodology described by Quan et al.
[10]

 (Scheme 3.3.1, 

steps f,q,r). 

Hydroxyl-thiother compound 38 has also been obtained from intermediate 2. The 

first step is the protection of the alcohol moiety of compound 2 using tert-

butyl(chloro)diphenylsilyl chloride in presence of imidazole and DMF. Subsequent 
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standard acid-catalyzed acetal deprotection provided compound 36 (Scheme 3.3.1, 

step I, n). After tosylation of the primary alcohol followed by reduction of the tosylated 

product provided intermediate 37 (Scheme 3.3.1, steps b, a). Mesylation of 37 

followed by reaction with NaSPh and subsequent deprotection of protecting group 

using TBAF  provided compound 38 (Scheme 3.3.1, step p, c and g). Finally, hydroxyl-

selenoether compound 41 has been prepared following the same synthetic route than 

the one used for the preparation of compound 31, changing the nucleophile from 

NaSPh to Ph2Se2.    

The last step of the ligand synthesis is common for all of them. Hence, treating the 

corresponding hydroxyl-thioether/selenoether (5-10, 12-14, 17-19, 21, 26-33, 35, 38 

and 41) with in situ generated phosphochloridite (ClP(OR)2; (OR)2 = a-g) in presence of 

pyridine provided access to the desired ligands (Scheme 3.3.1, step s). All the ligands 

were purified on neutral alumina under an argon atmosphere and isolated in 

moderated-to-good yields as white solids. Advantageously, ligands L7-L30a-g were 

stable in air so further storage and manipulation were carried out in air. HRMS-ESI 

spectra were in agreement with the assigned structures. The 
1
H, 

31
P and 

13
C NMR 

spectra were as expected for these ligands (see Section 3.3.4). One singlet for each 

compound was observed in the 
31

P NMR spectrum. Rapid ring inversions 

(tropoisomerization) in the biphenyl-phosphorus moieties (a-c) occurred on the NMR 

time scale because the expected diasteroisomers were not detected by low-

temperature 
31

P NMR. 

3.3.2.2. Synthesis of Ir and Rh-catalysts precursors 

The Ir-catalysts precursors were prepared by refluxing a dichloromethane solution 

of the appropriate ligand (L7-L30a-g) in the presence of 0.5 equivalent of [Ir(μ-Cl)cod]2 

for 1 h. The Cl
-
/BArF- counterion exchange was then achieved by a reaction with 

sodium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (NaBArF) (1 equiv.) in the 

presence of water (Scheme 3.3.2). All complexes were isolated after extraction as air-

stable orange solids and were used without further purification. For the synthesis of 

the corresponding Rh-catalyst precursors [Rh(cod)(L)]BF4, [Rh(cod)2]BF4 was reacted 

with one equivalent of the appropriate ligand and the complexes were isolated in pure 

form as yellow powders by adding cold hexane (Scheme 3.3.2).  

All complexes were characterized by HRSM-ESI, 
31

P NMR, 
1
H NMR and 

13
C NMR. 

The HRMS-ESI spectra were in agreement with the assigned structures, displaying the 

heaviest ions at m/z which correspond to the loss of the BArF or the BF4 anion from 

molecular species.  NMR spectra showed the expected pattern for these complexes. 
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Scheme 3.3.2. Synthesis of Ir- and Rh-catalyst precursors [Ir(cod)(L7-L30a-g)]BArF. 

3.3.2.3. Asymmetric Hydrogenation of minimally functionalized olefins 

3.3.2.3.1. Hydrogenation of trisubstituted olefins 

The potential of phosphite-thioether/selenoether ligands (L7-L30a-g) has been first 

investigated by applying them in the hydrogenation of the model substrate S1, in this 

way we can compare the results with the ones described in the bibliography.
[7k]

 The 

results are shown in the Table 3.3.1. They indicate that enantioselectivity is mainly 

affected by the thioether/selenoether substituents, the substituents and 

configurations of the alkyl backbone chain next to both the phosphite and the S/Se 

groups and finally the configuration of the biaryl phosphite moiety. The best result was 

obtained with ligand L25f (ee’s up to 87%). 

With ligands L7a-g we first studied the effect of the substituent/configuration of 

the biaryl phosphite moiety on the catalytic performance (entries 1-7). We found a 

minor impact on enantioselectivity of the substituents; however, a chiral biaryl 

phosphite moiety with an (R)-configuration is required to achieve the highest 

enantioselectivities. Comparing ligands L7-L13 we also found that the presence of 

aromatic thioether substituents has a positive effect on enantioselectivitiy rather than 

alkyl substituents (i.e. entries 4 vs 9, 12 and 17).The results using ligands L14 and L15 

indicated that the presence of two methyl substituents in the carbon next to the 

phosphite moiety had a negative effect on enantioselectivity (entries 24, 25 vs 4 and 

5). Similarly, the use of ligands L16 and L26, with substituents in the carbon next to the 

thioether group, also had a detrimental effect on enantioselectivity (entries 29, 30 and 

47-49). Interestingly, the results using ligands L17 and L24 indicated that there is a 

cooperative effect between the configuration of the carbon next to the phosphite 

group and the ligand backbone that results in a matched combination for ligands L24 

(i.e. entry 44 vs 32). We also studied the effect of the substitution pattern of the chiral 

carbon next to the phosphite moiety with ligands L18 and L20-L23. The results 

indicated that the presence of a CH2OTBDMS group has a positive effect on 

enantioselectivity (i.e. ee’s increased from 53% with ligand L18a to 73% with L20a). 

This finding led us to synthesize ligand L25f, which contains the optimal combination 

of ligand parameters (phenyl group as a thioether substituent, with the presence of a 

CH2TBDMS group in the carbon next to the phosphite moiety with S configuration and 
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chiral biaryl phosphite moiety f). As expected this ligand provided the highest 

enantioselectivity of the series (ee’s up to 87%, entry 46). Finally, we also found that 

the replacement of a thioether moiety by a selenoether group has little effect on 

enantioselectivity (entries 1, 6-7 vs 50-58).  

Table 3.3.1. Results for the Ir-catalyzed hydrogenation of S1 using the phosphite-thioether 
ligand library L7-L30a-g.

a
 

 

Entry Ligand % Conv
b
 % ee

b  
 Entry Ligand % Conv

b
 % ee

b 

1 L7a 99 6 (R)   31 L17a 100 58 (S) 
2 L7b 100 5 (R)   32 L17f 100 58 (R) 
3 L7c 100 6 (R)   33 L17g 100 44 (S) 
4 L7d 100 66 (R)   34 L18a 100 53 (S) 
5 L7e 99 29 (S)   35 L18f 100 61 (R) 
6 L7f 92 53 (R)   36 L18g 100 41 (S) 
7 L7g 88 40 (S)   37 L19a 100 72 (S) 
8 L8a 100 19 (R)   38 L20a 100 73 (S) 
9 L8f 100 38 (R)   39 L20g 100 44 (S) 

10 L8g 100 45 (S)   40 L21g 100 60 (S) 
11 L9a 100 0   41 L22g 100 50 (S) 
12 L9d 100 33 (R)   42 L22g 100 64 (S) 
13 L9e 99 10 (S)   43 L23a 96 47 (R) 
14 L10a 95 25 (S)   44 L24f 95 70 (R) 
15 L10d 100 69 (R)   45 L24g 92 47 (S) 
16 L10e 100 70 (S)   46 L25f 100 87 (R) 
17 L11d 100 21 (R)   47 L26a 100 3 (S) 
18 L11e 99 11 (R)   48 L26f 100 24 (R) 
19 L12d 100 50 (R)   49 L26g 100 28 (S) 
20 L12e 98 31 (S)   50 L27a 100 5 (S) 
21 L13d 100 60 (R)   51 L27f 100 52 (R) 
22 L13e 100 35 (S)   52 L27g 100 47 (S) 
23 L14a 100 25 (S)   53 L28f 100 44 (R) 
24 L14d 100 27 (R)   54 L28g 100 43 (S) 
25 L14e 100 36 (S)   55 L29f 100 37 (R) 
26 L15a 98 19 (S)   56 L29g 100 51 (S) 
27 L15f 100 32 (R)   57 L30f 100 70 (R) 
28 L15g 100 31 (R)   58

 
L30g 100 7 (R) 

29 L16f 100 13 (R)   59
c 

L20a 98 72 (S) 
30 L16g 100 10 (R)   60

c
 L25f 92 87 (R) 

a Reactions carried out using 0.5 mmol of S1 and 2 mol% of Ir-catalyst precursor. b Conversion and 
enantiomeric excesses determined by chiral GC. c Reaction carried out at 0.5 mol% of Ir-catalyst precursor. 

We also performed the reaction at low catalyst loading (0.5 mol%) using Ir-L20a 

and Ir-L25f and enantioselectivities were maintained (entries 59-60). 
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We next studied the asymmetric hydrogenation of other (E)- and (Z)-trisubstituted 

olefins (S2-S18), including examples containing neighboring polar groups, with ligands 

L7-L29a-g. Selected results are shown in Table 3.3.2. We found that the correct choice 

of the ligand is crucial to reach the highest levels of enantioselectivity for each 

substrate.  

We first studied the reduction of substrates with (E)-geometry (S2-S3), that differ 

from S1 in the substituents in both the aryl ring and the substituents trans to the aryl 

group (entries 1 and 2). Enantioselectivities followed the same trends as those 

observed for substrate S1. Enantioselectivities were therefore best with ligand L25f 

(ee's up to 93%). Then, we studied the hydrogenation of (Z)-trisubstituted substrates 

(S4-S5, entries 3 and 4), which are usually hydrogenated less enantioselectively than 

the corresponding (E)-isomers. The reduction of these substrates proceeded with 

moderate-to-low enantiocontrol (ee’s up to 56%). In contrast to the reduction of 

previous E-substrates, the best enantioselectivities were attained with ligand L23g. 

We next studied the reduction of a range of trisubstituted olefins containing 

several types of neighboring poorly coordinative groups (S6-S18). The hydrogenation 

of this type of substrates is especially relevant, because they can be further 

functionalized and could therefore led to important intermediates for the synthesis of 

more complex chiral molecules.  

We found that enantioselectivities up to 85% (entry 5) could be achieved in the 

reduction of allylic alcohol S6 using Ir-L29g catalytic system. A range of α,β-

unsaturated ketones (S7-S10) were also hydrogenated with good enantioselectivities 

(ee’s ranging from 83% to 87%; entries 6-9). Interestingly, the enantioselectivities are 

highly independent of the nature of the alkyl substituent and the electronic nature of 

the substrate phenyl ring. This represents an important finding for the synthesis of 

ketones with stereogenic centers in the α-position to the carbonyl group. Despite this, 

they have been less studied than other trisubstituted olefins with neighboring polar 

groups.
[11]

  

α,β-Unsaturated amide S11, lactone S12 and lactame S13 represent other 

challenging substrate classes that has been overlooked, despite these motifs are 

present in several natural products and/or they can be easily transformed into other 

useful compounds.
[12]

 We were pleased to find out that the reduction of these 

substrates proceeded with good-to-high enantiocontrol
 
(ee’s ranging from 85%-95%, 

entries 10-12). Interestingly, we could also efficiently hydrogenate a range of α,β-

unsaturated esters (S14-S16; ee’s ranging from 96% to 97%, entries 13-15). These 

results are noteworthy because the resulting chiral carboxylic ester derivatives are 

present in many relevant products. Finally, we tested our ligand library in the 

hydrogenation of alkenylboronic esters S17 and S18, since it provides easy access to 

chiral borane compounds, which are valuable organic intermediates for further 

functionalization.
[7j,9b,13]

 Full conversions and good-to-high enantioselectivities (up to 

87% ee) were achieved.   
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Table 3.3.2. Results for the hydrogenation of trisubstituted olefins S2-S18 using [Ir(cod)(L7-L30a-

g)]BArF catalyst precursors.
a
  

Entry Substrate Ligand % Conv
b 

% ee
b 

1 

 

L25f 100 69% (R) 

2 

 

L25f 100 76% (R) 

3 

 

L23g 100 56% (R) 

4 

 

L23g 100 21% (R) 

5 

 

L29g 100 85% (R) 

6 

 

L30f 100 84% (R) 

7 

 

L30f 100 87% (R) 

8 

 

L30f 100 83% (R) 

9 

 

L30f 100 85% (R) 

10 

 

L24g 100 85% (S) 

11 

 

L30f 85 94% (R) 

12 

 

L24g 43 95% (S) 
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(Continuation)     

Entry Substrate Ligand % Conv
b 

% ee
b 

13 

 

L30g 100 96% (S) 

14 

 

L30g 100 97% (S) 

15 

 

L30g 100 97% (S) 

16 

 

L13d 100 77% (S) 

17 

 

L27f 100 87% (-) 

a Reactions carried out using 0.5 mmol of substrate and 2 mol% of Ir-catalyst precursor. b Conversion and 

enantiomeric excesses determined by chiral GC.  

3.3.2.3.2. Ir-catalyzed hydrogenation of disubstituted olefins 

We next screened ligands L7-L30a-g in the asymmetric reduction of much more 

challenging substrates – the terminal olefins. As already mentioned in Chapter 3.1, 

disubstituted substrates has not been efficiently hydrogenated until very recently.
[14]

 

In a first set of experiments, we studied the potential of phosphite-

thioether/selenoether ligands L7-L30a-g in the Ir-catalyzed hydrogenation of 3,3-

dimethyl-2-phenyl-1-butene S19 as  a model 1,1-disubstituted substrate (Table 3.3.3). 

In contrast to trisubstituted olefins, the use of selenoether-based ligands led to lower 

enantioselectivities than their thioether analogues (i.e. entries 27-28 vs 55-56). We 

also found that the presence of chiral biaryl phosphite groups is needed for high 

enantioselectivity. However, in contrast to trisubstituted olefins, both configurations 

of these biaryl groups led to excellent enantioselectivities, which gives access to both 

enantiomers of the hydrogenated product (i.e. entries 21 and 22). Regarding the 

remaining ligand parameters (the nature of thioether substituents and the 

substituent/configuration of the alkyl backbone chain next to both phosphite and 

thioether groups) we found little effect on enantioselectivity. In summary, we have 

been therefore able to fine-tune the ligand parameters to produce both enantiomers 

of the hydrogenated product using ligands L13e and L26g (ee’s up to 98% in the R-

enantiomer) and L13d and L16f (ee’s up to 99% in the S-enantiomer) at low hydrogen 

pressures (1 bar). 

  

UNIVERSITAT ROVIRA I VIRGILI 
SUSTAINABLE AND COST-EFFECTIVE DEVELOPMENT OF CHIRAL METAL-CATALYSTS FOR C-H AND 
C-X BOND FORMING REACTIONS 
Carlota Borràs Noguera 



Chapter 3 

 

- 118 - 
 

Table 3.3.3. Results for the Ir-catalyzed hydrogenation of S19 using the phosphite-thioether 

ligand library L7-L30a-g.
a 

 

Entry Ligand % Conv
b
 % ee

b  
 Entry Ligand % Conv

b
 % ee

b 

1 L7a 94 14 (S)   31 L17a 100 92 (R) 
2 L7b 97 16 (S)   32 L17f 92 90 (S) 
3 L7c 75 19 (S)   33 L17g 100 93 (R) 
4 L7d 100 94 (S)   34 L18a 100 81 (R) 
5 L7e 65 93 (R)   35 L18f 100 93 (S) 
6 L7f 100 95 (S)   36 L18g 100 93 (R) 
7 L7g 60 88 (R)   37 L19a 100 96 (R) 
8 L8a 100 20 (S)   38 L20a 100 93 (R) 
9 L88f 100 95 (S)   39 L20g 100 93 (R) 

10 L8g 100 96 (R)   40 L21g 100 93 (R) 
11 L9a 55 23 (S)   41 L22g 100 95 (R) 
12 L9d 100 90 (S)   42 L22g 100 91 (R) 
13 L9e 96 88 (R)   43 L23a 100 84 (S) 
14 L10a 100 39 (R)   44 L24f 100 92 (S) 
15 L10d 100 92 (S)   45 L24g 100 86 (R) 
16 L10e 100 93 (R)   46 L25f 100 96 (S) 
17 L11d 100 90 (S)   47 L26a 100 30 (R) 
18 L11e 100 89 (R)   48 L26f 100 90 (S) 
19 L12d 100 91 (S)   49 L26g 100 98 (R) 
20 L12e 100 93 (R)   50 L27a 100 15 (R) 
21 L13d 100 96 (S)   51 L27f 100 91 (S) 
22 L13e 100 98 (R)   52 L27g 100 85 (R) 
23 L14a 100 6 (R)   53 L28f 100 82 (S) 
24 L14d 100 94 (S)   54 L28g 100 62 (R) 
25 L14e 100 96 (R)   55 L29f 100 53 (S) 
26 L15a 100 10 (R)   56 L29g 100 45 (R) 
27 L15f 100 95 (S)   57 L30f 100 36 (S) 
28 L15g 100 94 (R)   58

 
L30g 100 66 (R) 

29 L16f 100 99 (S)   59
c 

L13e 91 98 (R) 
30 L16g 100 33 (R)   60

c
 L16f 88 99 (S) 

a Reactions carried out using 0.5 mmol of S19 and 2 mol% of Ir-catalyst precursor. b Conversion and 
enantiomeric excesses determined by chiral GC. c Reaction carried out at 0.5 mol% of Ir-catalyst precursor. 

We then investigated the asymmetric hydrogenation of other terminal 

disubstituted olefins (Table 3.3.4). The results for several -alkylstyrenes (S19-S21) 

indicated that enantioselectivity is affected by the nature of the alkyl chain (ee's 

ranging from 68% to 99%). This could be due to the competition between direct 

hydrogenation and isomerization. This is supported by the fact that the hydrogenation 

of substrate S17 with a tert-butyl group, which cannot isomerize, provides the highest 

enantioselectivity. We next studied several α-tert-butylstyrene type substrates (S22-
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S27, entries 3-8) to evaluate how the electronic and steric properties of the aryl group 

of the substrate affected the catalytic performance (entries 3-8). Positively, the results 

indicate that the substitution pattern and the electronic nature of the substituents 

have no effect in enantioselectivity (ee’s ranging 97% to 99%), albeit the presence of 

ortho substituents at the aryl group has a negative effect on activity (S27, entry 8). It is 

noteworthy that replacing phenyl group by heteroaromatic group the excellent 

activities and enantioselectivities were maintained (ee’s up to 98%; entry 9). This is of 

great importance because N-containing heterocycles are present in many relevant 

compounds such us pharmaceuticals and natural products. Finally, our ligands have 

also been tested in the hydrogenation of the aryl-boronic esters S29-S32, with 

enantioselectivities as high as 88% ee (entries 10-13).
[7j,9b]

 In summary, the results 

obtained in the hydrogenation of 1,1-disubstituted olefins are comparable to the best 

ones reported in the literature. 

 

Table 3.3.4. Results for the hydrogenation of disubstituted olefins S20-S32 using [Ir(cod)(L7-

L30a-g)]BArF catalyst precursors.
a 

Entry Substrate Ligand % Conv
b 

% ee
c 

1 

 

L30g 
L16f 

100 
100 

78% (R) 
59% (S) 

2 

 

L30g 
L16f 

100 
100 

68% (R) 
42% (S) 

3 

 

L13e 
L16f 

100 
100 

98% (R) 
98% (S) 

4 

 

L13e 
L16f 

100 
100 

99% (R) 
99% (S) 

5 

 

L13e 
L16f 

100 
100 

97% (R) 
99% (S) 

6 

 

L13e 
L16f 

100 
100 

99% (R) 
99% (S) 

7 

 

L13e 
L16f 

100 
100 

97% (R) 
98% (S) 
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(Continuation)     

Entry Substrate Ligand % Conv
b 

% ee
c 

8 

 

L13e 
L16f 

41 
29 

97% (R) 
99% (S) 

9 

 

L13e 
L16f 

99 
100 

96% (R) 
98% (S) 

10 

 

L28f 
L16g 

100 
100 

80% (R) 
86% (S) 

11 

 

L28f 
L16g 

100 
100 

81% (R) 
82% (S) 

12 

 

L28f 
L16g 

100 
100 

79% (R) 
86% (S) 

13 

 

L28f 
L16g 

100 
100 

81% (R) 
88% (S) 

a Reactions carried out using 0.5 mmol of substrate and 2 mol% of Ir-catalyst precursor. b Conversion and 

enantiomeric excesses determined by chiral GC. c Reaction carried out at 0.5 mol% of Ir-catalyst precursor 

3.3.2.4. Asymmetric hydrogenation of functionalized olefins 

3.3.2.4.1. Rh-catalyzed hydrogenation of α-dehydroamino acid derivatives S33 and 

S34 

Encouraged by the high enantioselectivities achieved in the reduction of minimally 

functionalized olefins, we decided to apply our ligands in the Rh-catalyzed 

hydrogenation of functionalized olefins in order to further evaluate their versatility. 

Initially, we studied if there is any effect on the catalytic outcome of using the isolated 

precatalysts or the in situ formed catalyst precursors (by adding the corresponding 

ligands to [Rh(cod)2]BF4). The results indicated that there is no need to synthesize and 

isolate the precatalysts prior to use (see Supporting Information). The next reactions 

were therefore performed at room temperature in dichloromethane using 1 mol % of 

the corresponding in situ prepared catalyst precursors.  

Initially, we studied the Rh-catalyzed hydrogenation of the model substrate S33 to 

evaluate the potential of the L7-L30a-g ligand library (Table 3.3.5). Results again 

indicated that enantioselectivity is affected by different ligand parameters, being the 

most crucial ones the thioether/selenoether substituents, the different substituents 

and configurations of the alkyl backbone chain next to both, phosphite moiety and 

S/Se group and finally the configuration of the biaryl moiety. However, the effect of 

these parameters on enantioselectivity was different from previous minimally 
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functionalized olefins. In this case, the introduction of two methyl substituents at the 

carbon adjacent to the phosphite moiety (ligands L14 and L15; entries 24 and 27 vs 4 

and 21) enhanced enantioselectivity considerably.  

Table 3.3.5. Selected results for the Rh-catalyzed hydrogenation of S33 using the phosphite-

thioether ligand library L7-L30a-g.
a 

 

Entry Ligand % Conv
b
 % ee

b  
 Entry Ligand % Conv

b
 % ee

b 

1 L7a 99  48 (R)   31 L17a 100 60 (S) 
2 L7b 100  40 (R)   32 L17f 100 84 (R) 
3 L7c 100 30 (R)   33 L17g 100 93 (S) 
4 L7d 100 68 (R)   34 L18a 100 59 (S) 
5 L7e 100 21 (S)   35 L18f 100 89 (R) 
6 L7f 100 78 (R)   36 L18g 100 96 (S) 
7 L7g 100 64 (S)   37 L19a 100 55 (S) 
8 L8a 92 21 (R)   38 L20a 100 58 (S) 
9 L88f 100 42 (R)   39 L20g 100 95 (S) 

10 L8g 100 19 (S)   40 L21g 100 96 (S) 
11 L9a 100 9 (R)   41 L22g 100 98 (S) 
12 L9d 100 55 (R)   42 L22g 100 95 (S) 
13 L9e 100 35 (S)   43 L23a 100 16 (S) 
14 L10a 82 8 (S)   44 L24f 100 95 (R) 
15 L10d 96 28 (S)   45 L24g 100 70 (S) 
16 L10e 95 11 (R)   46 L25f 100 96 (R) 
17 L11d 100 59 (R)   47 L26a 100 13 (S) 
18 L11e 100 51 (S)   48 L26f 100 34 (R) 
19 L12d 100 54 (R)   49 L26g 100 63 (S) 
20 L12e 100 18 (S)   50 L27a 100 39 (R) 
21 L13d 100 83 (R)   51 L27f 100 75 (R) 
22 L13e 100 16 (S)   52 L27g 100 64 (S) 
23 L14a 100 36 (R)   53 L28f 100 81 (R) 
24 L14d 100 96 (R)   54 L28g 100 23 (S) 
25 L14e 100 34 (S)   55 L29f 100 90 (R) 
26 L15a 100 29 (R)   56 L29g 100 48 (S) 
27 L15f 100 91 (R)   57 L30f 100 85 (R) 
28 L15g 100 34 (S)   58

 
L30g 100 92 (S) 

29 L16f 100 61 (R)   59
c 

L22g 100 99 (S) 
30 L16g 100 29 (S)   60

c
 L24f 100 98 (R) 

a Reactions conditions: [Rh(cod)2]BF4 (1 mol%), ligand (1 mol%), S33 (0.25 mmol), CH2Cl2 (2 mL), H2 (10 bar), 
20 h at rt.b Conversion and enantiomeric excesses determined by chiral GC. c Reaction carried out at 5   C for 
20 h.  

Another important feature is that there is a cooperative effect between the 

configurations of the carbon adjacent to the phosphite group and that of the 

phosphite moiety, which results in a matched combination for ligands L17-L23g and 
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L24-L25f. Interestingly, each of these ligand combinations led to opposite enantiomers 

of the hydrogenated product. Thus, by correctly choosing the ligand parameters, we 

were able to achieve full conversion and both enantiomers of the hydrogenation 

product in high enantioselectivity (ee’s up to 98%) using Rh-L22g and Rh-L25f catalytic 

systems (entries 41 and 46). This result clearly shows the efficiency of using highly 

modular scaffolds for the ligand design. Enantioselectivities were further improved to 

99% ee by lowering the reaction temperature (entries 59 and 60). 

Table 3.3.6. Selected results for the Rh-catalyzed hydrogenation of S34 using the phosphite-

thioether ligand library L7-L30a-g.
a 

 

Entry Ligand % Conv
b
 % ee

b  
 Entry Ligand % Conv

b
 % ee

b 

1 L7a 100  37 (R)   31 L17a 100 18 (R) 
2 L7b 100  15 (R)   32 L17f 100 43 (R) 
3 L7c 100  19 (S)   33 L17g 100 56 (S) 
4 L7d 100 45 (R)   34 L18a 100 22 (R) 
5 L7e 100 15 (R)   35 L18f 100 39 (R) 
6 L7f 100 55 (R)   36 L18g 100 60 (S) 
7 L7g 100 11 (R)   37 L19a 100 19 (R) 
8 L8a 100 13 (R)   38 L20a 100 21 (R) 
9 L88f 100 21 (R)   39 L20g 100 56 (S) 

10 L8g 100 2 (S)   40 L21g 100 58 (S) 
11 L9a 100 9 (S)   41 L22g 100 57 (S) 
12 L9d 100 50 (S)   42 L22g 100 56 (S) 
13 L9e 100 17 (R)   43 L23a 100 38 (R) 
14 L10a 100 43 (S)   44 L24f 100 49 (R) 
15 L10d 100 53 (S)   45 L24g 100 56 (S) 
16 L10e 100 18 (R)   46 L25f 100 48 (R) 
17 L11d 100 43 (S)   47 L26a 100 28 (R) 
18 L11e 100 18 (R)   48 L26f 100 60 (R) 
19 L12d 100 29 (R)   49 L26g 100 49 (S) 
20 L12e 100 19 (R)   50 L27a 100 24 (R) 
21 L13d 99 17 (R)   51 L27f 100 58 (R) 
22 L13e 100 48 (R)   52 L27g 100 18 (R) 
23 L14a 100 58 (R)   53 L28f 100 41 (R) 
24 L14d 100 45 (R)   54 L28g 100 19 (R) 
25 L14e 100 81 (S)   55 L29f 100 50 (R) 
26 L15a 100 42 (R)   56 L29g 100 86 (S) 
27 L15f 100 54 (R)   57 L30f 100 44 (R) 
28 L15g 100 80 (S)   58 L30g 100 62 (S) 
29 L16f 100 26 (R)   59

c 
L29g 100 91 (S) 

30 L16g 100 14 (S)   60
d 

L29g 100 92 (S) 
a Reactions conditions: [Rh(cod)2]BF4 (1 mol%), ligand (1 mol%), S34 (0.25 mmol), CH2Cl2 (2 mL), H2 (10 bar), 
20 h at rt. b Conversion and enantiomeric excesses determined by chiral GC. c  Reac on carried out at  0   C 
for 20 h. d Reac on carried out at 5   C for 20 h.  
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Next, we screened ligands L7-L30a-g in the asymmetric reduction of methyl 2-

acetamidoacrylate S34, which differs from previous substrate in the lack of the phenyl 

group (Table 3.3.6). The effect of the ligand parameters is similar to that observed for 

the related substrate S33, except that the replacement of the thioether by a 

selenoether moiety has a positive effect of enantioselectivity. Thus, the highest 

enantioselectivity (up to 86% ee) was achieved using phosphite-selenoether ligand 

L29g (entry 56). Again enantioselectivity could be further improved (up to 92% ee) by 

lowering the reaction temperature (entry 60). 

 3.3.2.4.2. Rh-catalyzed asymmetric hydrogenation of β-dehydroamino acid 

derivatives S35-S40 

Encourage by the high enantioselectivities achieved in the α-dehydroamino acid 

derivatives, we then moved to investigate the effect of the different ligands L7-L30a-g 

in the hydrogenation of a more challenging functionalized substrates – the β-

dehydroamino acid derivatives with (Z)-geometry.
[15]

 The hydrogenation of this sort of 

substrates provides much lower enantioselectivities than their (E)-analogues, which 

represents a drawback because their hydrogenation products are common motifs in 

biologically active compounds.
[16]

 

We first screened ligands L7-L30a-g in the Rh-catalyzed hydrogenation of model 

(Z)-substrate S35 (Table 3.3.7). The sense of the enantioselectivity is controlled by the 

configuration of the biaryl phosphite moiety. So, ligands containing (R)-biaryl 

phosphite moiety (f) led to (S)-hydrogenated products (entry 1) and vice versa, ligands 

containing (S)-biaryl phosphite moiety (g) led to (R)-hydrogenated products (entry 2). 

Although, slightly higher enantioselectivities are achieved with ligands which contain 

(S)-biaryl phosphite moieties. We also found that the introduction of an stereocenter 

in the carbon next to the phosphite moiety (L17-L25) increases substantially the 

enantioselectivity values (entries 7-13). In summary, both enantiomers of the 

hydrogenation product are accessible with similar good enantioselectivities (ee’s up to 

87%) using Rh-L17g, Rh-L24g and Rh-L25f catalytic systems (entries 8, 12 and 13). 

Then, we evaluated the applicability of ligands L24g and L25f in a range of β-

dehydroamino acid derivatives (S36-S40). The results are found in Table 3.3.8. As 

expected, the enantioselectivity is strongly affected by the nature of the β-

dehydroamino acid substituents and of the ester substituent. Thus, as expected 

enantioselectivity is negatively affected when either using less sterically hindered β-

dehydroamino acid substituents (entries 1-3) or increasing the size of ester substituent 

(entries 3, 5 and 6).  

  

UNIVERSITAT ROVIRA I VIRGILI 
SUSTAINABLE AND COST-EFFECTIVE DEVELOPMENT OF CHIRAL METAL-CATALYSTS FOR C-H AND 
C-X BOND FORMING REACTIONS 
Carlota Borràs Noguera 



Chapter 3 

 

- 124 - 
 

Table 3.3.7. Selected results for the Rh-catalyzed hydrogenation of S35 using the phosphite-
thioether ligand library L7-L30a-g.

a 

 
Entry Ligand % Conv

b
 % ee

b 

1 L7f 60 70 (S) 
2 L7g 55 79 (R) 
3 L8f 65 29 (S) 
4 L8g 45 63 (R) 
5 L14f 100 75 (S) 
6 L14g 100 20 (R) 
7 L17f 100 70 (S) 
8 L17g 100 86 (R) 
9 L18g 100 60 (R) 

10 L20g 100 74 (R) 
11 L24f 100 80 (S) 
12 L24g 100 86 (R) 
13 L25f 100 87 (S) 
14 L26f 100 39 (S) 
15 L26g 100 49 (R) 
16 L29f 100 76 (S) 
17 L29g 100 20 (R) 

a Reactions conditions: [Rh(cod)2]BF4 (1 mol%), ligand (1 mol%), substrate (0.25 mmol), CH2Cl2 (2 mL), 

H2 (10 bar), 20 h at rt. b Conversion and enantiomeric excesses determined by chiral GC. 

 

Table 3.3.8. Asymmetric hydrogenation of β-dehydroamino acid esters S36-S40 using Rh-L24g 

and Rh-L25f catalysts precursor.
a 

 

Entry Substrate Ligand % Conv
b 

% ee
b 

1 

 

L24g 61 47% (R) 

2 

 

L24g 92 63% (R) 

3 

 

L24g 100 70% (S) 

4 L25f 100 72% (R) 

5 

 

L24g 75 32% (R) 

6 

 

L24g 21 14% (S) 

a Reactions conditions: [Rh(cod)2]BF4 (1 mol%), ligand (1 mol%), substrate (0.25 mmol), CH2Cl2 (2 mL), H2 (10 

bar), 20 h at rt.b Conversion and enantiomeric excesses determined by chiral GC. 
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3.3.2.4.3. Asymmetric hydrogenation of α-enamides S41-S45 

Finally, we investigated the effect of the different ligands L7-L30a-g in the 

hydrogenation of α-enamides S41-S45. The hydrogenated products obtained from the 

reduction of this type of substrates give optically active secondary amines, which are 

useful building blocks for the synthesis of fine chemicals.
[17]

 

 
Table 3.3.9. Selected results for the Rh-catalyzed hydrogenation of S41 using the 
phosphite-thioether ligand library L7-L30a-g.

a 

 
Entry Ligand % Conv

b
 % ee

b  
 Entry Ligand % Conv

b
 % ee

b 

1 L7a 100  32 (R)   30 L16g 100 58 (S) 
2 L7b 100  30 (R)   31 L17a 100 70 (S) 
3 L7c 100  31 (R)   32 L17f 100 75 (R) 
4 L7d 100 54 (R)   33 L17g 100 63 (S) 
5 L7e 100 31 (S)   34 L18a 100 70 (S) 
6 L7f 100 51 (R)   35 L18f 100 67 (R) 
7 L7g 100 40 (S)   36 L18g 100 72 (S) 
8 L8a 100 15 (R)   37 L19a 100 87 (S) 
9 L88f 100 19 (R)   38 L20a 100 86 (S) 

10 L8g 100 12 (S)   39 L20g 100 90 (S) 
11 L9a 100 33 (S)   40 L21g 100 92 (S) 
12 L9d 100 14 (R)   41 L22g 100 89 (S) 
13 L9e 100 29 (S)   42 L22g 100 91 (S) 
14 L10a 100 19 (S)   43 L23a 100 59 (R) 
15 L10d 100 8 (R)   44 L24f 100 81 (R) 
16 L10e 100 19 (S)   45 L24g 100 46 (S) 
17 L11d 100 52 (R)   46 L26a 100 14 (R) 
18 L11e 100 30 (S)   47 L26f 100 27 (R) 
19 L12d 100 59 (R)   48 L26g 100 35 (S) 
20 L12e 100 29 (S)   49 L27a 100  35 (R) 
21 L13d 100 25 (R)   50 L27f 100 54 (R) 
22 L13e 100 19 (S)   51 L27g 100 43 (S) 
23 L14a 100 13 (R)   52 L28f 100 48 (R) 
24 L14d 100 84 (R)   53 L28g 100 36 (S) 
25 L14e 100 11 (S)   54 L29f 100 80 (R) 
26 L15a 100 46 (R)   55 L29g 100 29 (S) 
27 L15f 100 84 (R)   56 L30f 100 79 (R) 
28 L15g 100 13 (S)   57 L30g 100 90 (S) 
29 L16f 100 46 (R)   58

c 
L21g 100 96 (S) 

a Reactions conditions: [Rh(cod)2]BF4 (1 mol%), ligand (1 mol%), S43 (0.25 mmol), CH2Cl2 (2 mL), H2 (30 bar), 
20 h at rt. b Conversion and enantiomeric excesses determined by chiral GC. C Reaction carried out at 0   C for 
36 h.  
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To study the effect of the different ligand parameters on catalytic performance, we 

first studied the Rh-catalyzed hydrogenation of the model substrate N-(1-(4-

methoxyphenyl)vinyl)-acetamide S41 under standard conditions (Table 3.3.9).
[18]

 The 

results again indicate that effect of the different ligand parameters on 

enantioselectivity is different from those observed for the previous substrates. Thus, 

albeit the use of ligands L17-L23g, with an (R)-configured carbon adjacent to the 

phosphite group and an R-biaryl phosphite group, had a positive effect on 

enantioselectivity (i.e. entries 32 and 33 vs 6 and 7); similar high ee’s were obtained 

with ligands L19g, with an (S)-configured carbon adjacent to the thioether group (entry 

42 vs 40). Thus, in summary, by correctly choosing the ligand parameters, we were 

able to achieve full conversion and high enantioselectivity (ee’s up to 96%; entry 58) 

using Rh-L21g catalytic system.  

We then extended the use of the previous optimized system Rh-L21g in the 

hydrogenation of others α-enamides (S42-S45, Table 3.3.10). The results indicated that 

the catalytic performance is hardly affected by the electron nature of the aryl 

substituent (ee’s ranging from 93% to 97%), albeit the highest enantioselectivity of the 

series was achieved for substrate S42, which contains an electronwithdrawing group in 

the para position of the aryl group (entry 1). 

 

Table 3.3.10. Asymmetric hydrogenation of -aryl enamides S42-S45 

using Rh-L21g catalyst precursor.
a 

 

Entry Substrate % Conv
b 

% ee
b 

1 

 

100 97% (S) 

2 

 

100 93% (S) 

3 

 

100 94% (S) 

4 

 

100 96% (S) 

a Reactions conditions: [Rh(cod)2]BF4 (1 mol%), ligand (1 mol%), substrate (0.25 mmol), 

CH2Cl2 (2 mL), H2 (10 bar), 36 h at 0 °C. b Conversion and enantiomeric excesses determined 

by chiral GC. 
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3.3.3. Conclusions 

A highly modular new class of phosphite-thioether/selenoether ligand library has 

been applied in the Ir-catalyzed hydrogenation of minimally functionalized olefins and 

in the Rh-catalyzed hydrogenation of functionalized olefins. These ligands have been 

easily synthesized from the readily available and inexpensive L-(+)-tartaric acid and D-

mannitol on a big scale. They have the advantage of the robustness of the 

thioether/selenoether moieties and the extra control provided by the flexibility of the 

chiral pocket through the presence of a biaryl phosphite group and a modular 

carbohydrate-derived backbone. The catalytic results indicated that enantioselectivity 

is highly affected by the ligand parameters as well as the substrate. In every type of 

substrates the effects of the parameters have a different influence on the 

enantioselectivity. Moderate enantioselectivities were achieved in the Ir-catalyzed 

hydrogenation of model (E)- and (Z)-trisubstituted olefins, but high ee’s were achieved 

for other relevant substrates containing poorly coordinative groups (i.e. alkenylboronic 

esters, -unsaturated amides and esters, …) and also for more challenging 

disubstituted olefins. For the Rh-catalyzed hydrogenation of the - and -

dehydroamino acid esters and α-enamides good-to-excellent ee values have been 

achieved. To sum up, these easily prepared ligand family can be applied with high 

results in the hydrogenation of a wide range of substrate classes, which clearly shows 

their high versatility. 

 

3.3.4. Experimental part 

3.3.4.1. General considerations 

All syntheses were performed by using standard Schlenk techniques under an argon 

atmosphere. Solvents were purified by standard procedures. Phosphorochloridites are 

easily prepared in one step from the corresponding biaryls.[19] Compounds 1,[20] 2,[21] 3,[22] 

4,[23] 5,[23] 2,3-O-isopropylidene-1-O-(tert-butyldimethylsilyl)-L-threitol[24] and 1-deoxy-2,3-

O-isopropylidene-1-tosyl-D-arabinitol[25] were prepared as previously described. All other 

reagents were used as commercially available. 1H, 13C{1H}, 31P{1H} NMR spectra experiments 

were recorded using a 400 MHz spectrometer. Chemical shifts are relative to that of SiMe4 

(1H and 13C) as internal standard or H3PO4 (
31P) as external standard. 1H and 13C assignments 

were done based on 1H-1H gCOSY and 1H-13C gHSQC experiments. 

3.3.4.2. General procedure for the preparation of phosphite-

thioether/selenoether ligands L7-L29a-g 

The corresponding phosphorochloridite (1.1 mmol) produced in situ was dissolved 

in toluene (5 mL), and pyridine (0.3 mL, 3.9 mmol) was added. The corresponding 

thioether-hydroxyl compound (1 mmol) was azeotropically dried with toluene (3 x 2 

mL) and then dissolved in toluene (5 mL) to which pyridine (0.3 mL, 3.9 mmol) was 
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added. The alcohol solution was transferred slowly to a solution of 

phosphorochloridite. The reaction mixture was stirred at 80 ᵒC for 90 min, after which 

the pyridine salts were removed by filtration. In the case of ligands L19-23a-g, 

triethylamine was added instead of pyridine (0.5 ml, 3.9 mmol) and the reaction 

mixture was stirred overnight at 80 ᵒC. In the case of ligands L14-L15, 26a-g, 

triethylamine (0.5 ml, 2.8 mmol) and DMAP (0.11 mmol, 13.4 mg) were added and the 

reaction mixture was stirred overnight at room temperature. Evaporation of the 

solvent gave a white foam, which was purified by flash chromatography. 

L7a. Yield: 413 mg (65%); SiO2-flash chromatography (toluene/hexane/NEt3 = 

5:5:0.1). 
31

P NMR (400 MHz, C6D6) δ:   35.7 (s). 
1
H NMR (C6D6), : 1.27 (s, 9H, CH3, 

t
Bu), 

1.28 (s, 9H, CH3, 
t
Bu), 1.29 (s, 3H, CH3), 1.32 (s, 3H, CH3), 1.57 (s, 9H, CH3, 

t
Bu), 1.59 (s, 

9H, CH3, 
t
Bu), 2.88 (dd, 1H, 

2
JH-H= 13.6 Hz, 

3
JH-H= 6.4 Hz, CH2-S), 3.03 (dd, 1H, 

2
JH-H= 13.6  

Hz, 
3
JH-H=  5.6 Hz, CH2-S), 3.93-3.96 (m, 1H, CHCH2O), 4.02 (m, 1H, CHCH2S), 4.08-4.11 

(m, 2H, CH2-O), 6.87-7.60 (m, 9H, CH=). 
13

C NMR (C6D6), : 26.9 (CH3), 27.1 (CH3), 30.8 

(CH3, 
t
Bu), 30.9 (CH3, 

t
Bu), 31.2 (CH3, 

t
Bu), 34.3 (C, 

t
Bu), 35.3 (C, 

t
Bu), 35.3 (C, 

t
Bu), 36.5 

(CH2-S), 64.6 (CH2-O), 76.5 (CHCH2S), 79.7 (d, CHCH2O, JC-P= 3.8 Hz), 109.4 (CMe2), 

124.1 (CH=), 125.3 (C), 125.7 (CH=), 126.7 (CH=), 128.1 (CH=), 128.7 (CH=), 128.9 (CH=), 

129.0 (CH=), 133.2 (C), 136.4 (C), 140.1 (C), 140.2 (C), 146.5 (C), 146.6 (C). MS HR-ESI 

[found 715.3556, C41H57O5PS (M-Na)
+
 requires 715.35.57]. 

L7b. Yield: 294 mg (46%); SiO2-flash chromatography (toluene/hexane/NEt3 = 

5:5:0.1). 
31

P NMR (400 MHz, C6D6) δ:  34.3 (s). 
1
H NMR (C6D6), : 1.24 (s, 3H, CH3), 1.27 

(s, 3H, CH3), 1.45 (s, 9H, CH3, 
t
Bu), 1.48 (s, 9H, CH3, 

t
Bu), 2.83 (dd, 1H, 

2
JH-H= 13.6 Hz, 

3
JH-

H= 6.4 Hz, CH2-S), 3.02 (dd, 1H, 
2
JH-H= 13.6  Hz, 

3
JH-H=  5.6 Hz, CH2-S), 3.31 (s, 6H, CH3-O), 

3.90-3.92 (m, 1H, CHCH2O), 3.93-3.97 (m, 1H, CHCH2S), 3.98-4.02 (m, 1H, CH2-O), 4.12 

(m, 1H, CH2-O), 6.64-7.21 (m, 9H, CH=). 
13

C NMR (C6D6), : 26.9 (CH3), 27.0 (CH3), 30.6 

(CH3, 
t
Bu), 35.1 (C, 

t
Bu), 35.2 (C, 

t
Bu), 36.6 (CH2-S), 54.7 (CH3-O), 64.6 (CH2-O), 76.2 

(CHCH2S), 79.8 (d, CHCH2O, JC-P= 3.0 Hz), 109.4 (CMe2), 112.9 (CH=), 114.5 (CH=), 125.2 

(C), 125.9 (CH=), 128.1 (C), 128.8 (CH=), 128.9 (CH=), 129.1 (CH=), 133.8 (C), 136.3 (C), 

137.4 (C), 142.2 (C), 142.3 (C), 156.0 (C). MS HR-ESI [found 663.2514, C35H45O7PS (M-

Na)
+
 requires 663.2516]. 

L7c. Yield: 366 mg (60%); SiO2-flash chromatography (toluene/hexane/NEt3 = 

5:5:0.1). 
31

P NMR (400 MHz, C6D6) δ:  34.5 (s). 
1
H NMR (C6D6), : 0.0 (s, 9H, CH3, 

SiMe3), 0.03 (s, 9H, CH3, SiMe3), 0.88 (s, 3H, CH3), 0.92 (s, 3H, CH3), 2.48 (dd, 1H, 
2
JH-H= 

13.2 Hz, 
3
JH-H= 5.6 Hz, CH2-S), 2.64 (dd, 1H, 

2
JH-H= 13.6  Hz, 

3
JH-H=  4.8 Hz, CH2-S), 3.50-

3.54 (m, 1H, CH2-O), 3.54-3.56 (m, 1H, CHCH2O), 3.56-3.60 (m, 1H, CHCH2S), 3.67-3.71 

(m, H, CH2-O), 6.52-7.03 (m, 11H, CH=). 
13

C NMR (C6D6), : 0.0 (CH3-Si), 27.2 (CH3), 27.4 

(CH3), 36.9 (CH2-S), 64.8 (CH2-O), 76.7 (CHCH2S), 79.9 (d, CHCH2O, JC-P= 3.1 Hz), 109.7 

(CMe2), 125.0 (CH=), 125.6 (C),  126.1 (CH=), 128.4 (CH=), 129.0 (CH=), 129.2 (CH=), 

129.5 (C), 131.2 (CH=), 131.3 (CH=), 131.9 (CH=),132.5 (C), 135.5 (CH=), 135.6 (CH=), 

136.6 (C), 155.0 (C), 155.1 (C). MS HR-ESI [found 635.1843, C31H41O5PSSi2 (M-

Na)
+
 requires 635.1843]. 
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L7d.  Yield: 342 mg (54%); SiO2-flash chromatography (toluene/hexane/NEt3 = 

5:5:0.1). 
31

P NMR (400 MHz, C6D6) δ:  28.7 (s). 
1
H NMR (C6D6), : 1.25 (s, 3H, CH3), 1.27 

(s, 3H, CH3), 1.52 (s, 9H, CH3, 
t
Bu), 1.54 (s, 9H, CH3, 

t
Bu), 1.64 (s, 3H, CH3), 1.73 (s, 3H, 

CH3), 2.02 (s, 3H, CH3), 2.04 (s, 3H, CH3), 2.80 (dd, 1H, 
2
JH-H= 13.6 Hz, 

3
JH-H= 6 Hz, CH2-S), 

2.97 (dd, 1H, 
2
JH-H= 13.6  Hz, 

3
JH-H=  5.2 Hz, CH2-S), 3.53-3.59 (m, 1H, CH2-O), 3.84-3.88 

(m, 1H, CHCH2O), 3.94-3.99 (m, 1H, CHCH2S), 4.17-4.23 (m, 1H, CH2-O), 6.84-7.22 (m, 

7H, CH=). 
13

C NMR (C6D6), : 16.1 (CH3), 16.3 (CH3), 20.0 (CH3), 26.9 (CH3), 27.0 (CH3), 

30.9 (CH3, 
t
Bu), 31.2 (CH3, 

t
Bu), 34.5 (C, 

t
Bu), 34.6 (C, 

t
Bu), 36.5 (CH2-S), 64.4 (CH2-O), 

76.4 (CHCH2S), 79.8 (d, CHCH2O, JC-P= 3.1 Hz), 109.3 (CMe2), 125.8 (CH=), 127.8 (CH=), 

127.9 (CH=), 128.1 (CH=), 128.7 (CH=), 128.9 (CH=), 129.0 (CH=),131.1 (C), 131.5 (C), 

131.7 (C), 132.3 (C), 134.5 (C), 134.9 (C), 136.5 (C), 137.0 (C), 137.4 (C), 138.1 (C), 145.8 

(C). MS HR-ESI [found 659.2930, C37H49O5PS (M-Na)
+
 requires 659.2931]. 

L7e. Yield: 317 mg (50%); SiO2-flash chromatography (toluene/hexane/NEt3 = 

5:5:0.1). 
31

P NMR (400 MHz, C6D6) δ:  26.  (s). 
1
H NMR (C6D6), : 1.19 (s, 3H, CH3), 1.24 

(s, 3H, CH3), 1.52 (s, 9H, CH3, 
t
Bu), 1.54 (s, 9H, CH3, 

t
Bu), 1.63 (s, 3H, CH3), 1.72 (s, 3H, 

CH3), 2.01 (s, 3H, CH3), 2.03 (s, 3H, CH3), 2.82 (dd, 1H, 
2
JH-H= 13.6 Hz, 

3
JH-H= 6.4 Hz, CH2-

S), 2.96 (dd, 1H, 
2
JH-H= 13.2  Hz, 

3
JH-H=  4.8 Hz, CH2-S), 3.56-3.61 (m, 1H, CH2-O), 3.83-

3.88 (m, 1H, CHCH2O), 3.90-3.95 (m, 1H, CHCH2S), 4.13-4.19 (m, 1H, CH2-O), 6.85-7.23 

(m, 7H, CH=). 
13

C NMR (C6D6), : 16.1 (CH3), 16.4 (CH3), 20.0 (CH3), 26.7 (CH3), 27.0 

(CH3), 30.9 (CH3, 
t
Bu), 31.2 (C, 

t
Bu), 36.4 (CH2-S), 64.4 (CH2-O), 76.2 (CHCH2S), 79.6 (d, 

CHCH2O, JC-P= 3 Hz), 109.3 (CMe2), 125.7 (CH=), 128.1 (CH=), 128.2 (CH=), 128.8 (CH=), 

128.9 (CH=), 129.0 (CH=), 131.0 (C), 131.5 (C), 131.6 (C), 132.3 (C), 134.4 (C), 135.0 (C), 

136.5 (C), 136.9 (C), 137.4 (C), 138.1 (C), 145.8 (C). MS HR-ESI [found 

659.2931, C37H49O5PS (M-Na)
+
 requires 659.2931].. 

L7f. Yield: 335.2 mg (47%); SiO2-flash chromatography (toluene/hexane/NEt3 = 

5:5:0.1). 
31

P NMR (161.9 MHz, C6D6): δ= 34.  (s). 
1
H NMR (400 MHz, C6D6): δ=0.5  (s, 

9H, CH3, SiMe3), 0.55 (s, 9H, CH3, SiMe3), 1.27 (s, 3H, CH3), 1.30 (s, 3H, CH3), 2.77 (dd, 

1H, CH2-S, 
2
JH-H =13.2 Hz, 

3
JH-H =6.0 Hz), 2.95 (dd, 1H, CH2-S, 

2
JH-H =13.6 Hz, 

2
JH-H =5.2 Hz), 

3.39-3.44 (m, 1H, CH2-O), 3.72-3.76 (m, 1H, CHCH2O), 3.94-3.99 (m, 1H, CHCH2S), 4.29-

4.35 (m, 1H, CH2-O), 6.85-7.16 (m, 9H, CH=), 7.23 (d, 1H, CH=, 
3
JH-H =8.4 Hz), 7.34 (d, 

1H, CH=, 
3
JH-H =8.4 Hz), 7.70 (d, 2H, CH=, 

3
JH-H =8.0 Hz), 8.11 (s, 1H, CH=), 8.13 (s, 1H, 

CH=). 
13

C NMR (100.6 MHz, C6D6): δ=-0.5 (CH3, SiMe3), -0.3 (d, CH3, SiMe3, JC-P =4.6 Hz), 

26.8 (CH3), 26.9 (CH3), 36.5 (CH2-S), 63.9 (CH2-O), 75.9 (CHCH2S), 79.6 (CHCH2O), 109.2 

(CMe2), 122.3-152.6 (aromatic carbons). MS HR-ESI [found 735.2154, C39H45O5PSSi2 (M-

Na)
+
 requires 735.2156]. 

L7g. Yield: 289.7 mg (41%); SiO2-flash chromatography (toluene/hexane/NEt3 = 

5:5:0.1). 
31

P NMR (161.9 MHz, C6D6): δ= 32.  (s). 
1
H NMR (400 MHz, C6D6): δ=0.5  (s, 

9H, CH3, SiMe3), 0.57 (s, 9H, CH3, SiMe3), 1.22 (s, 3H, CH3), 1.27 (s, 3H, CH3), 2.73 (dd, 

1H, CH2-S, 
2
JH-H =13.6 Hz, 

3
JH-H =6.0 Hz), 2.92 (dd, 1H, CH2-S, 

2
JH-H =13.6 Hz, 

2
JH-H =4.8 Hz), 

3.57-3.62 (m, 1H, CH2-O), 3.77-3.81 (m, 2H, CHCH2S, CHCH2O), 4.10-4.14 (m, 1H, CH2-

O), 6.84-7.16 (m, 9H, CH=), 7.23 (d, 1H, CH=, 
3
JH-H =8.4 Hz), 7.35 (d, 1H, CH=, 

3
JH-H =8.4 
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Hz), 7.69 (t, 2H, CH=, 
3
JH-H =6.8 Hz), 8.10 (s, 1H, CH=), 8.14 (s, 1H, CH=). 

13
C NMR (100.6 

MHz, C6D6): δ=-0.4 (CH3, SiMe3), -0.2 (d, CH3, SiMe3, JC-P =5.4 Hz), 26.7 (CH3), 26.9 (CH3), 

36.5 (CH2-S), 64.4 (d, CH2-O, 
2
JC-P = 5.1 Hz), 75.5 (CHCH2S), 79.5 (d, CHCH2O, 

3
JC-P =3.1 

Hz), 109.3 (CMe2), 122.2-152.9 (aromatic carbons). MS HR-ESI [found 

735.2155, C39H45O5PSSi2 (M-Na)
+
 requires 735.2156]. 

L8a. Yield: 322 mg (51%); SiO2-flash chromatography (toluene/hexane/NEt3 = 

5:5:0.1). 
31

P NMR (400 MHz, C6D6) δ:  35.4 (s). 
1
H NMR (C6D6), : 1.23 (s, 9H, CH3, 

t
Bu), 

1.24 (s, 9H, CH3, 
t
Bu), 1.28 (s, 3H, CH3), 1.28 (s, 3H, CH3), 1.53 (s, 9H, CH3, 

t
Bu), 1.55 (s, 

9H, CH3, 
t
Bu), 1.79 (s, 3H, CH3),  2.36 (dd, 1H, 

2
JH-H= 14 Hz, 

3
JH-H= 6 Hz, CH2-S), 2.46 (dd, 

1H, 
2
JH-H= 13.6  Hz, 

3
JH-H=  5.2 Hz, CH2-S), 3.78-3.83 (m, 1H, CHCH2O), 3.93-3.98 (m, 1H, 

CHCH2S), 4.00-4.02 (m, 2H, CH2-O), 6.95-7.54 (m, 4H, CH-Ar).
13

C NMR (C6D6), : 16.1 

(CH3), 26.9 (CH3), 27.0 (CH3), 30.9 (2CH3, 
t
Bu), 31.1 (CH3, 

t
Bu), 31.2 (CH3, 

t
Bu), 34.3 (2C, 

t
Bu), 35.3 (2C, 

t
Bu), 36.5 (CH2-S), 64.4 (CH2-O), 77.5 (CHCH2S), 79.5 (d, CHCH2O, JC-P= 3. 

Hz), 109.0 (CMe2), 124.1 (CH-Ar), 125.2 (C-Ar), 126.6 (CH-Ar), 128.1 (CH-Ar), 128.9 (CH-

Ar), 133.1 (C-Ar), 133.2 (C-Ar), 140.0 (C-Ar), 140.1 (C-Ar), 146.4 (C-Ar), 146.5 (C-Ar), 

146.6 (C-Ar). MS HR-ESI [found 653.3399, C36H55O5PS (M-Na)
+
 requires 653.3400]. 

L8a. Yield: 376 mg (56%); SiO2-flash chromatography (toluene/hexane/NEt3 = 

5:5:0.1). 
31

P NMR (400 MHz, C6D6) δ:  35.0 (s). 
1
H NMR (C6D6), : 1.09 (s, 9H, CH3, 

t
Bu), 

1.23 (s, 9H, CH3, 
t
Bu), 1.24 (s, 9H, CH3, 

t
Bu),1.28 (s, 3H, CH3), 1.30 (s, 3H, CH3), 1.54 (s, 

3H, CH3, 
t
Bu), 1.56 (s, 9H, CH3, 

t
Bu), 2.57 (dd, 1H, 

2
JH-H= 12.8 Hz, 

3
JH-H= 7.2 Hz, CH2-S), 

2.71 (dd, 1H, 
2
JH-H= 12.8  Hz, 

3
JH-H=  5.2 Hz, CH2-S), 3.83-3.87 (m, 1H, CHCH2O), 3.94-4.00 

(m, 1H, CHCH2S), 4.01-4.08 (m, 2H, CH2-O), 6.95-7.53 (m, 4H, CH=). 
13

C NMR (C6D6), : 

26.9 (CH3), 27.2 (CH3), 30.5 (CH3, 
t
Bu), 30.9 (CH3, 

t
Bu), 31.2 (CH3, 

t
Bu), 31.4 (CH2-S), 34.3 

(C, 
t
Bu), 35.3 (C, 

t
Bu), 41.6 (C, 

t
Bu), 64.6 (CH2-O), 77.2 (CHCH2S), 80.0 (d, CHCH2O, JC-P= 

3.9 Hz), 109.0 (CMe2), 124.0 (CH=),  125.2 (C), 126.6 (CH=), 128.1 (CH=),128.9 (CH=), 

133.1 (C), 140.0 (C), 146.3 (C), 146.7 (C). MS HR-ESI [found 695.3870, C39H61O5PS (M-

Na)
+
 requires 695.3870]. 

L8f. Yield: 462 mg (71%); SiO2-flash chromatography (toluene/hexane/NEt3 = 

5:5:0.1). 
31

P NMR (161.9 MHz, C6D6): δ= 34.0 (s). 
1
H NMR (400 MHz, C6D6): δ=0.52 (s, 

9H, CH3, SiMe3), 0.54 (s, 9H, CH3, SiMe3), 1.31 (s, 6H, CH3), 1.66 (s, 3H, CH3), 2.29 (dd, 

1H, CH2-S, 
2
JH-H =14.0 Hz, 

3
JH-H =5.6 Hz), 2.40 (dd, 1H, CH2-S, 

2
JH-H =14.0 Hz, 

2
JH-H =5.6 Hz), 

3.43-3.48 (m, 1H, CH2-O), 3.67-3.48 (m, 1H, CHCH2O), 3.86-3.91 (m, 1H, CHCH2S), 4.25-

4.31 (m, 1H, CH2-O), 6.85-6.90 (m, 2H, CH=), 6.99-7.15 (m, 2H, CH=), 7.25 (d, 1H, CH=, 
3
JH-H =8.0 Hz), 7.35  (d, 1H, CH=, 

3
JH-H =8.0 Hz), 7.69 (d, 2H, CH=, 

3
JH-H =8.0 Hz), 8.10 (s, 

1H, CH=), 8.13 (s, 1H, CH=). 
13

C NMR (100.6 MHz, C6D6): δ=0.  (CH3, SiMe3), 0.2 (d, CH3, 

SiMe3, JC-P =4.5 Hz), 16.4 (CH3), 27.3 (CH3), 27.5 (CH3), 36.9 (CH2-S), 64.7 (d, CH2-O, 
2
JC-P 

=3.8 Hz), 77.5 (CHCH2S), 80.1 (d, CHCH2O, 
3
JC-P =3.0 Hz), 109.5 (CMe2), 122.9-153.3 

(aromatic carbons). MS HR-ESI [found 673.1998, C34H43O5PSSi2 (M-Na)
+
 requires 

673.2000]. 

L8g. Yield: 436 mg (68%).; SiO2-flash chromatography (toluene/hexane/NEt3 = 

5:5:0.1). 
31

P NMR (161.9 MHz, C6D6): δ= 32.9 (s). 
1
H NMR (400 MHz, C6D6): δ=0.52 (s, 
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9H, CH3, SiMe3), 0.57 (s, 9H, CH3, SiMe3), 1.28 (s, 6H, CH3), 1.74 (s, 3H, CH3), 2.23 (dd, 

1H, CH2-S, 
2
JH-H =14.0 Hz, 

3
JH-H =5.6 Hz), 2.34 (dd, 1H, CH2-S, 

2
JH-H =14.0 Hz, 

2
JH-H =5.6 Hz), 

3.48-3.54 (m, 1H, CH2-O), 3.67-3.72 (m, 1H, CHCH2O) 3.73-3.78 (m, 1H, CHCH2S), 4.07-

4.13 (m, 1H, CH2-O), 6.85-6.91 (m, 2H, CH=), 6.99-7.15 (m, 2H, CH=), 7.26 (d, 1H, CH=, 
3
JH-H =8.8 Hz), 7.37 (d, 1H, CH=, 

3
JH-H =8.4 Hz), 7.69 (d, 2H, CH=, 

3
JH-H =8.0 Hz), 8.10 (s, 

1H, CH=), 8.15 (s, 1H, CH=). 
13

C NMR (100.6 MHz, C6D6): δ=-0.3 (CH3, SiMe3), -0.1 (d, 

CH3, SiMe3, JC-P =4.6 Hz), 16.1 (CH3), 26.8 (CH3), 27.0 (CH3), 36.3 (CH2-S), 64.3 (d, CH2-O, 
2
JC-P =4.5 Hz), 76.7 (CHCH2S), 79.3 (d, CHCH2O, 

3
JC-P =3.8 Hz), 109.1 (CMe2), 122.4-153.0 

(aromatic carbons). MS HR-ESI [found 673.1999, C34H43O5PSSi2 (M-Na)
+
 requires 

673.2000]. 

L9d. Yield: 321 mg (52%); SiO2-flash chromatography (toluene/hexane/NEt3 = 

5:5:0.1). 
31

P NMR (400 MHz, C6D6) δ:  28.4 (s). 
1
H NMR (C6D6), : 1.09 (s, 9H, CH3, 

t
Bu), 

1.30 (s, 6H, CH3), 1.54 (s, 9H, CH3, 
t
Bu), 1.56 (s, 9H, CH3, 

t
Bu), 1.64 (s, 3H, CH3), 1.75 (s, 

3H, CH3), 2.02 (s, 3H, CH3), 2.06 (s, 3H, CH3), 2.56 (dd, 1H, 
2
JH-H= 12.8 Hz, 

3
JH-H= 6.8 Hz, 

CH2-S), 2.69 (dd, 1H, 
2
JH-H= 13.2  Hz, 

3
JH-H=  6 Hz, CH2-S), 3.58-3.64 (m, 1H, CH2-O), 3.78-

3.82 (m, 1H, CHCH2O), 3.97-4.02 (m, 1H, CHCH2S), 4.26-4.32 (m, 1H, CH2-O), 6.95-7.18 

(m, 2H, CH=). 
13

C NMR (C6D6), : 16.1 (CH3), 16.3 (CH3), 20.0 (CH3), 26.9 (CH3), 27.1 

(CH3), 30.5 (CH3, 
t
Bu), 31.0 (CH3, 

t
Bu), 31.2 (CH3, 

t
Bu), 31.3 (CH2-S), 34.5 (C, 

t
Bu), 34.6 (C, 

t
Bu), 41.6 (C, 

t
Bu), 64.3 (CH2-O), 77.5 (CHCH2S), 80.0 (d, CHCH2O, JC-P= 3.1 Hz), 109.0 

(CMe2), 128.2 (CH=), 128.9 (CH=), 131.1 (C), 131.4 (C), 131.7 (C), 132.2 (C), 134.3 (C), 

134.9 (C), 137.4 (C), 138.1 (C), 145.7(C), 145.8 (C). MS HR-ESI [found 

639.3244, C35H53O5PS (M-Na)
+
 requires 639.3244]. 

L9e. Yield: 388 mg (63%); SiO2-flash chromatography (toluene/hexane/NEt3 = 

5:5:0.1). 
31

P NMR (400 MHz, C6D6) δ:  25.8 (s). 
1
H NMR (C6D6), : 1.10 (s, 9H, CH3, 

t
Bu), 

1.25 (s, 3H, CH3), 1.27 (s, 3H, CH3), 1.53 (s, 9H, CH3, 
t
Bu), 1.55 (s, 9H, CH3, 

t
Bu), 1.62 (s, 

3H, CH3), 1.72 (s, 3H, CH3), 2.00 (s, 3H, CH3), 2.06 (s, 3H, CH3), 2.55 (dd, 1H, 
2
JH-H= 12.8 

Hz, 
3
JH-H= 6.4 Hz, CH2-S), 2.70 (dd, 1H, 

2
JH-H= 12.8  Hz, 

3
JH-H=  5.2 Hz, CH2-S), 3.57-3.62 

(m, 1H, CH2-O), 3.81-3.86 (m, 1H, CHCH2O), 3.93-3.98 (m, 1H, CHCH2S), 4.19-4.28 (m, 

1H, CH2-O), 6.94-7.18 (m, 2H, CH-Ar). 
13

C NMR (C6D6), : 16.1 (CH3), 16.3 (CH3), 20.0 

(CH3), 26.7 (CH3), 27.1 (CH3), 30.5 (CH3, 
t
Bu), 30.9 (CH3, 

t
Bu), 31.2 (CH3, 

t
Bu), 31.3 (CH3, 

t
Bu), 31.4 (CH2-S), 34.5 (C, 

t
Bu), 34.6 (C, 

t
Bu), 41.5 (C, 

t
Bu), 64.4 (CH2-O), 77.1 (CHCH2S), 

79.8 (d, CHCH2O, JC-P= 3.9 Hz), 109.0 (CMe2), 128.2 (CH=), 128.9 (CH=), 131.0 (C), 131.4 

(C), 131.7 (C), 132.3 (C), 134.3 (C), 134.9 (C), 137.4 (C), 138.1 (C), 145.7(C), 146.1 (C).  

MS HR-ESI [found 639.3243, C35H53O5PS (M-Na)
+
 requires 639.3244]. 

L10a. Yield: 462 mg (64%); SiO2-flash chromatography (toluene/hexane/NEt3 = 

5:5:0.1). 
31

P NMR (400 MHz, C6D6) δ:  34.9 (s). 
1
H NMR (C6D6), : 1.31 (s, 9H, CH3, 

t
Bu), 

1.31 (s, 9H, CH3, 
t
Bu), 1.32 (s, 3H, CH3), 1.34 (s, 3H, CH3), 1.60 (s, 9H, CH3, 

t
Bu), 1.61 (s, 

9H, CH3, 
t
Bu), 2.15 (s, 3H, CH3), 2.52  (s, 3H, CH3), 2.73-2.76 (m, 2H, CH2-S), 3.89-3.92 

(m, 1H, CHCH2O), 3.98-4.03 (m, 1H, CHCH2S), 4.05 (m, 2H, CH2-O), 6.95-7.63 (m, 7H, 

CH=).
13

C NMR (C6D6), : 21.8 (CH3-Ar), 22.6 (CH3-Ar), 27.5 (CH3), 27.8 (CH3), 31.6 (CH3, 
t
Bu), 31.9 (CH3, 

t
Bu), 35.0 (C, 

t
Bu), 36.0 (C, 

t
Bu), 38.8 (CH2-S), 65.0 (CH2-O), 77.9 
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(CHCH2S), 80.2 (d, CHCH2O, JC-P= 3.8 Hz), 110.0 (CMe2), 124.8 (CH=),  126.0 (CH=), 127.4 

(CH=), 128.1 (CH=), 128.3 (CH=), 128.6 (CH=), 129.6 (CH=), 133.9 (C), 134.2 (C), 

138.1(C), 140.9 (C), 143.6 (C), 147.2 (C), 147.3 (C).  MS HR-ESI [found 

743.3870, C43H61O5PS (M-Na)
+
 requires 743.3870]. 

L10d. Yield: 315 mg (47%); SiO2-flash chromatography (toluene/hexane/NEt3 = 

5:5:0.1). 
31

P NMR (400 MHz, C6D6) δ:  25.4 (s). 
1
H NMR (C6D6), : 1.24 (s, 3H, CH3), 1.26 

(s, 3H, CH3), 1.51 (s, 9H, CH3, 
t
Bu), 1.54 (s, 9H, CH3, 

t
Bu), 1.64 (s, 3H, CH3), 1.72 (s, 3H, 

CH3), 2.44 (s, 6H, CH3), 2.62 (m, 2H, CH2-S),  3.48-3.53 (m, 1H, CH2-O), 3.76-3.81 (m, 1H, 

CHCH2O), 3.88-3.93 (m, 1H, CHCH2S), 4.13-4.19 (m, 1H, CH2-O), 6.86-7.18 (m, 5H, CH=). 
13

C NMR (C6D6), : 16.1 (CH3), 16.3 (CH3), 20.0 (CH3), 21.8 (CH3), 26.7 (CH3), 27.0 (CH3), 

30.9 (CH3, 
t
Bu), 31.2 (CH3, 

t
Bu), 34.5 (C, 

t
Bu), 38.0 (CH2-S), 64.1 (CH2-O), 77.2 (CHCH2S), 

79.5 (d, CHCH2O, JC-P= 3 Hz), 109.2 (CMe2), 127.8 (CH=), 128.0 (CH=), 128.1 (CH=), 128.2 

(CH=), 128.9 (C), 131.1 (C), 131.5 (C), 131.6 (C), 131.7 (C), 132.3 (C), 133.6 (C), 134.4 

(C), 134.9 (C), 136.9(C), 138.1 (C), 142.8 (C), 145.8 (C). MS HR-ESI [found 

687.3243, C39H53O5PS (M-Na)
+
 requires 687.3244]. 

L10e. Yield: 297 mg (45%); SiO2-flash chromatography (toluene/hexane/NEt3 = 

5:5:0.1). 
31

P NMR (400 MHz, C6D6) δ:  28.0 (s). 
1
H NMR (C6D6), : 1.16 (s, 3H, CH3), 1.19 

(s, 3H, CH3), 1.46 (s, 18H, CH3, 
t
Bu), 1.57 (s, 3H, CH3), 1.68 (s, 3H, CH3), 1.96 (s, 3H, CH3), 

2.00 (s, 3H, CH3), 2.42 (s, 6H, CH3), 2.61 (m, 2H, CH2-S),  3.41-3.46 (m, 1H, CH2-O), 3.70-

3.75 (m, 1H, CHCH2O), 3.84-3.89 (m, 1H, CHCH2S), 4.06-4.12 (m, 1H, CH2-O), 6.84-7.11 

(m, 5H, CH=). 
13

C NMR (C6D6), : 16.1 (CH3), 16.3 (CH3), 20.0 (CH3), 21.9 (CH3), 26.6 

(CH3), 27.1 (CH3), 30.9 (CH3, 
t
Bu), 31.2 (CH3, 

t
Bu), 34.5 (C, 

t
Bu), 34.6 (C, 

t
Bu), 38.1 (CH2-

S), 64.0 (CH2-O), 77.0 (CHCH2S), 79.4 (d, CHCH2O, JC-P= 3.8 Hz), 109.2 (CMe2), 128.0 

(CH=), 128.1 (CH=), 128.2 (CH=), 128.9 (CH=), 131.0 (C), 131.5 (C), 131.6 (C), 132.4 (C), 

133.6 (C), 134.4 (C), 135.0 (C), 136.9 (C), 137.0 (C), 138.0 (C), 142.8 (C), 145.6 (C), 146.0 

(C). MS HR-ESI [found 687.3244, C39H53O5PS (M-Na)
+
 requires 687.3244]. 

L11d. Yield: 381 mg (62%); SiO2-flash chromatography (toluene/hexane/NEt3 = 

5:5:0.1). 
31

P NMR (400 MHz, C6D6) δ:  28.6 (s). 
1
H NMR (C6D6), : 1.37 (s, 3H, CH3), 1.38 

(s, 3H, CH3), 1.47 (m, 6H, CH2, Ad), 1.61 (s, 9H, CH3, 
t
Bu), 1.63 (s, 9H, CH3, 

t
Bu), 1.69 (s, 

3H, CH3), 1.76 (m, 6H, CH2, Ad), 1.80 (m, 6H, CH, Ad, CH3), 2.06 (s, 3H, CH3), 2.10 (s, 3H, 

CH3), 2.60 (dd, 1H, 
2
JH-H= 12.8 Hz, 

3
JH-H= 6.8 Hz, CH2-S), 2.81 (dd, 1H, 

2
JH-H= 13.2  Hz, 

3
JH-

H=  5.6 Hz, CH2-S), 3.67-3.72 (m, 1H, CH2-O), 3.86-3.90 (m, 1H, CHCH2O), 4.05-4.10 (m, 

1H, CHCH2S), 4.39-4.45 (m, 1H, CH2-O), 6.99-7.25 (m, 2H, CH=). 
13

C NMR (C6D6), : 16.9 

(CH3), 17.1 (CH3), 20.7 (CH3), 20.8 (CH3), 27.7 (CH3), 27.9 (CH3), 29.5 (CH2-S), 30.3 (CH, 

Ad), 31.8 (CH3, 
t
Bu), 31.9 (CH3, 

t
Bu), 35.3 (C, 

t
Bu), 35.4 (C, 

t
Bu), 36.7 (CH2, Ad), 44.0 

(CH2, Ad), 44.6 (C, Ad), 65.1 (CH2-O), 78.2 (CHCH2S), 81.0 (d, CHCH2O, JC-P= 3.1 Hz), 

109.7 (CMe2), 129.6 (CH=), 131.9 (C), 132.2 (C), 132.5 (C), 132.9 (C), 135.1 (C), 135.6 

(C), 137.7 (C), 138.2 (C), 138.9 (C), 146.6 (C). MS HR-ESI [found 717.3711, C41H59O5PS 

(M-Na)
+
 requires 717.3713]. 

L11e. Yield: 331 mg (54%); SiO2-flash chromatography (toluene/hexane/NEt3 = 

5:5:0.1). 
31

P NMR (400 MHz, C6D6) δ:  25.8 (s). 
1
H NMR (C6D6), : 1.32 (s, 3H, CH3), 1.39 
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(s, 3H, CH3), 1.51 (m, 6H, CH2, Ad),1.61 (s, 9H, CH3, 
t
Bu), 1.63 (s, 9H, CH3, 

t
Bu), 1.68 (s, 

3H, CH3), 1.78 (s, 3H, CH3), 1.79 (m, 6H, CH2, Ad), 1.82 (m, 3H, CH, Ad), 2.05 (s, 3H, 

CH3), 2.12 (s, 3H, CH3), 2.61 (dd, 1H, 
2
JH-H= 13.2 Hz, 

3
JH-H= 7.2 Hz, CH2-S), 2.83 (dd, 1H, 

2
JH-H= 12.4 Hz, 

3
JH-H=  4.8 Hz, CH2-S), 3.72-3.76 (m, 1H, CH2-O), 3.93-4.02 (m, 2H, 

CHCH2O, CHCH2S), 4.30-4.35 (m, 1H, CH2-O), 6.99-7.27 (m, 2H, CH=). 
13

C NMR (C6D6), : 

16.1 (CH3), 16.4 (CH3), 20.0 (CH3), 20.1 (CH3), 26.8 (CH3), 27.2 (CH3), 28.8 (CH2-S), 29.6 

(CH, Ad), 30.9 (CH3, 
t
Bu), 31.3 (CH3, 

t
Bu), 34.6 (C, 

t
Bu), 34.7 (C, 

t
Bu), 36.0 (CH2, Ad), 43.3 

(CH2, Ad), 43.9 (C, Ad), 64.7 (CH2-O), 77.3 (CHCH2S), 80.2 (d, CHCH2O, JC-P= 4 Hz), 109.0 

(CMe2), 128.1 (CH=), 128.9 (CH=), 131.1 (C), 131.4 (C), 131.7 (C), 132.9 (C), 134.4 (C), 

134.9 (C), 136.9 (C), 138.1 (C), 145.8 (C), 146.6 (C). MS HR-ESI [found 

717.3712, C41H59O5PS (M-Na)
+
 requires 717.3713]. 

L12d. Yield: 344 mg (56%); SiO2-flash chromatography (toluene/hexane/NEt3 = 

5:5:0.1). 
31

P NMR (400 MHz, C6D6) δ:  28.6 (s). 
1
H NMR (C6D6), : 1.30 (s, 3H, CH3), 1.31 

(s, 3H, CH3), 1.52 (s, 9H, CH3, 
t
Bu), 1.58 (s, 9H, CH3, 

t
Bu), 1.67 (s, 3H, CH3), 1.75 (s, 3H, 

CH3), 2.05 (s, 3H, CH3), 2.06 (s, 3H, CH3), 2.89 (dd, 1H, 
2
JH-H= 8.8 Hz, 

3
JH-H= 6 Hz, CH2-S), 

3.05 (dd, 1H, 
2
JH-H= 13.2  Hz, 

3
JH-H=  6 Hz, CH2-S), 3.56-3.62 (m, 1H, CH2-O), 3.89-3.93 (m, 

1H, CHCH2O), 4.06-4.10 (m, 1H, CHCH2S), 4.23-4.30 (m, 1H, CH2-O), 6.99-8.54 (m, 9H, 

CH=). 
13

C NMR (C6D6), : 16.8 (CH3), 17.0 (CH3), 20.7 (CH3), 27.6 (CH3), 27.8 (CH3), 31.6 

(CH3, 
t
Bu), 31.9 (CH3, 

t
Bu), 35.2 (CH2-S), 37.8 (C, 

t
Bu), 65.0 (CH2-O), 77.0 (CHCH2S), 80.7 

(d, CHCH2O, JC-P= 2.3 Hz), 110.0 (CMe2), 125.8 (CH=), 126.0 (CH=), 126.2 CH=), 126.8 

(CH=), 127.0 (CH=), 127.9 (CH=), 128.8 (CH=), 129.2 (CH=), 129.6 (CH=), 131.8 (C), 132.2 

(C), 132.4 (C), 133.0 (C), 133.7 (C), 134.2 (C), 134.8 (C), 135.2 (C), 135.7 (C), 137.7 (C), 

138.1 (C), 138.8 (C), 146.4 (C). MS HR-ESI [found 709.3085, C41H51O5PS (M-

Na)
+
 requires 709.3087]. 

L12e. Yield: 331 mg (54%); SiO2-flash chromatography (toluene/hexane/NEt3 = 

5:5:0.1). 
31

P NMR (400 MHz, C6D6) δ:  26.2 (s). 
1
H NMR (C6D6), : 1.25 (s, 3H, CH3), 1.30 

(s, 3H, CH3), 1.55 (s, 9H, CH3, 
t
Bu), 1.56 (s, 9H, CH3, 

t
Bu), 1.66 (s, 3H, CH3), 1.76 (s, 3H, 

CH3), 2.02 (s, 3H, CH3), 2.04 (s, 3H, CH3), 2.94 (dd, 1H, 
2
JH-H= 12.8 Hz, 

3
JH-H= 5.6 Hz, CH2-

S), 3.05 (dd, 1H, 
2
JH-H= 12.8  Hz, 

3
JH-H=  6 Hz, CH2-S), 3.62-3.67 (m, 1H, CH2-O), 3.92-3.96 

(m, 1H, CHCH2O), 4.03-4.08 (m, 1H, CHCH2S), 4.21-4.27 (m, 1H, CH2-O), 7.00-8.58 (m, 

9H, CH=). 
13

C NMR (C6D6), : 16.8 (CH3), 17.1 (CH3), 20.7 (CH3), 27.5 (CH3), 27.8 (CH3), 

31.6 (CH3, 
t
Bu), 31.9 (CH3, 

t
Bu), 35.2 (C, 

t
Bu), 35.3 (C, 

t
Bu), 37.8 (CH2-S), 65.1 (CH2-O), 

77.1 (CHCH2S), 80.4 (d, CHCH2O, JC-P= 3.8 Hz), 110.1 (CMe2), 125.8 (CH=), 126.0 (CH=), 

126.2 (CH=), 126.8 (CH=), 127.0 (CH=), 127.9 (CH=), 128.9 (CH=), 129.2 (CH=), 129.6 

(CH=),131.8 (C), 132.3 (C), 133.1 (C), 133.7 (C), 134.4 (C), 134.8 (C), 135.2 (C), 135.7 (C), 

137.7 (C), 138.2 (C), 138.8 (C), 146.4 (C), 146.7 (C). MS HR-ESI [found 

709.3086, C41H51O5PS (M-Na)
+
 requires 709.3087]. 

L13d. Yield: 270 mg (60%); SiO2-flash chromatography (toluene/hexane/NEt3 = 

5:5:0.1).  
31

P NMR (400 MHz, C6D6) δ:  26.2 (s). 
1
H NMR (C6D6), : 1.25 (s, 3H, CH3), 1.30 

(s, 3H, CH3), 1.55 (s, 9H, CH3, 
t
Bu), 1.56 (s, 9H, CH3, 

t
Bu), 1.66 (s, 3H, CH3), 1.76 (s, 3H, 

CH3), 2.02 (s, 3H, CH3), 2.04 (s, 3H, CH3), 2.94 (dd, 1H, 
2
JH-H= 12.8 Hz, 

3
JH-H= 5.6 Hz, CH2-
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S), 3.05 (dd, 1H, 
2
JH-H= 12.8  Hz, 

3
JH-H=  6 Hz, CH2-S), 3.62-3.67 (m, 1H, CH2-O), 3.92-3.96 

(m, 1H, CHCH2O), 4.03-4.08 (m, 1H, CHCH2S), 4.21-4.27 (m, 1H, CH2-O), 7.00-8.58 (m, 

9H, CH=). 
13

C NMR (C6D6), : 16.8 (CH3), 17.1 (CH3), 20.7 (CH3), 27.5 (CH3), 27.8 (CH3), 

31.6 (CH3, 
t
Bu), 31.9 (CH3, 

t
Bu), 35.2 (C, 

t
Bu), 35.3 (C, 

t
Bu), 37.8 (CH2-S), 65.1 (CH2-O), 

77.1 (CHCH2S), 80.4 (d, CHCH2O, JC-P= 3.8 Hz), 110.1 (CMe2), 125.8 (CH=), 126.0 (CH=), 

126.2 (CH=), 126.8 (CH=), 127.0 (CH=), 127.9 (CH=), 128.9 (CH=), 129.2 (CH=), 129.6 

(CH=),131.8 (C), 132.3 (C), 133.1 (C), 133.7 (C), 134.4 (C), 134.8 (C), 135.2 (C), 135.7 (C-

Ar), 137.7 (C), 138.2 (C), 138.8 (C), 146.4 (C), 146.7 (C). MS HR-ESI [found 

709.3085, C41H51O5PS (M-Na)
+
 requires 709.3087]. 

L13e. Yield: 234 mg (52%); SiO2-flash chromatography (toluene/hexane/NEt3 = 

5:5:0.1). 
31

P NMR (400 MHz, C6D6) δ:  26.4 (s). 
1
H NMR (C6D6), : 1.25 (s, 3H, CH3), 1.30 

(s, 3H, CH3), 1.56 (s, 9H, CH3, 
t
Bu), 1.57 (s, 9H, CH3, 

t
Bu), 1.66 (s, 3H, CH3), 1.75 (s, 3H, 

CH3), 2.02 (s, 3H, CH3), 2.04 (s, 3H, CH3), 3.00 (dd, 1H, 
2
JH-H= 13.6 Hz, 

3
JH-H= 5.6 Hz, CH2-

S), 3.11 (dd, 1H, 
2
JH-H= 13.6 Hz, 

3
JH-H= 5.2 Hz, CH2-S), 3.63-3.68 (m, 1H, CH2-O), 3.94-3.99 

(m, 1H, CHCH2O), 4.04-4.09 (m, 1H, CHCH2S), 4.22-4.28 (m, 1H, CH2-O), 6.99-7.74 (m, 

9H, CH=). 
13

C NMR (C6D6), : 16.1 (CH3), 16.3 (CH3), 19.9 (CH3), 20.0 (CH3), 26.7 (CH3), 

27.0 (CH3), 30.9(CH3, 
t
Bu), 31.2 (CH3, 

t
Bu), 34.5 (C, 

t
Bu), 34.6 (C, 

t
Bu), 36.4 (CH2-S), 64.4 

(CH2-O), 76.4 (CHCH2S), 79.6 (d, CHCH2O, JC-P= 3.8 Hz), 109.4 (CMe2), 125.2 (CH=), 125.4 

(CH=), 126.3 (CH=), 126.7 (CH=), 127.1 (CH=), 127.2 (CH=), 128.2 (CH=), 128.4 (CH=), 

128.9 (CH=),131.0 (C), 131.6 (C), 131.7 (C), 131.8 (C), 132.4 (C), 134.0 (C), 134.1 

(C),134.4 (C), 135.0 (C), 137.0 (C), 137.4 (C), 138.1 (C), 145.7 (C). MS HR-ESI [found 

709.3083, C41H51O5PS (M-Na)
+
 requires 709.3087]. 

L14a. Yield: 312 mg (55%); Al2O3-flash chromatography (toluene/hexane/NEt3 = 

6:4:0.1). 
31

P NMR (400 MHz, C6D6) δ:   50.4 (s). 
1
H NMR (C6D6), : 1.15 (s, 3H, CH3), 1.22 

(s, 9H, CH3, 
t
Bu), 1.23 (s, 9H, CH3, 

t
Bu), 1.27 (s, 3H, CH3), 1.50 (s, 3H, CH3), 1.53 (s, 9H, 

CH3, 
t
Bu), 1.56 (s, 9H, CH3, 

t
Bu), 1.65 (s, 3H, CH3), 2.57 (dd, 1H, 

2
JH-H= 14.8 Hz, 

3
JH-H= 7.6 

Hz, CH2-S), 3.07 (dd, 1H, 
2
JH-H= 14.8 Hz, 

3
JH-H= 2.4 Hz, CH2-S), 3.88-3.91 (m, 1H, 

CHCMe2O), 4.22-4.28 (m, 1H, CHCH2S), 6.71-7.57 (m, 9H, CH=). 
13

C NMR (C6D6), : 24.0 

(CH3), 26.7 (CH3), 27.2 (CH3), 28.1 (CH3), 30.9 (CH3, 
t
Bu), 31.1 (CH3, 

t
Bu), 31.2 (CH3, 

t
Bu), 

34.3 (C, 
t
Bu), 35.1 (C, 

t
Bu), 35.2 (C, 

t
Bu), 36.0 (CH2-S), 76.4 (CHCH2S), 79.9 (CMe2O), 84.5 

(d, CHCMe2O, JC-P= 1 Hz), 109.0 (CMe2), 123.8 (CH=),124.1 (CH=), 124.7 (CH=), 127.0 

(CH=), 128.0 (CH=), 128.1 (CH=), 128.4 (CH=), 128.7 (CH=), 128.9 (CH=), 130.3 (C), 135.3 

(C), 137.2 (C), 139.9 (C), 146.4 (C). MS HR-ESI [found 743.3868, C43H61O5PS (M-

Na)
+
 requires 743.3870]. 

L14d. Yield: 360 mg (62%); Al2O3-flash chromatography (toluene/hexane/NEt3 = 

6:4:0.1). 
31

P NMR (400 MHz, C6D6) δ:  42.4 (s). 
1
H NMR (C6D6), : 1.21 (s, 3H, CH3), 1.29 

(s, 3H, CH3), 1.36 (s, 3H, CH3), 1.57 (s, 9H, CH3, 
t
Bu), 1.59 (s, 9H, CH3, 

t
Bu), 1.68 (s, 3H, 

CH3), 1.75 (s, 3H, CH3), 1.76 (s, 3H, CH3), 1.84 (s, 3H, CH3), 2.05 (s, 3H, CH3), 2.07 (s, 3H, 

CH3), 2.62 (dd, 1H, 
2
JH-H= 14.8 Hz, 

3
JH-H= 6.8 Hz, CH2-S), 2.93 (dd, 1H, 

2
JH-H= 14.8 Hz, 

3
JH-

H= 2.8 Hz, CH2-S), 4.06 (d, 1H,
 3

JH-H= 4 Hz, CHCMe2O), 4.20-4.25 (m, 1H, CHCH2S), 6.87-

7.33 (m, 7H, CH=). 
13

C NMR (C6D6), : 16.1 (CH3), 16.5 (CH3), 20.0 (CH3), 23.6 (CH3), 26.8 
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(CH3), 27.1 (CH3), 27.9 (CH3),  30.9 (CH3, 
t
Bu), 31.6 (CH3, 

t
Bu), 34.3 (C, 

t
Bu), 34.6 (C, 

t
Bu), 

36.4 (CH2-S), 76.5 (CHCH2S), 79.9 (d, CMe2O, JC-P= 11.4 Hz), 84.4 (CHCMe2O), 108.8 

(CMe2), 124.9 (CH=), 125.9 (CH=), 128.0 (CH=), 128.1 (CH=), 128.4 (CH=), 128.5 (CH=), 

128.9 (CH=), 131.1 (C), 131.8 (C), 131.7 (C), 132.2(C), 132.3 (C), 134.7 (C), 135.1 (C), 

137.3 (C), 137.6 (C), 138.0 (C). MS HR-ESI [found 687.3243, C39H53O5PS (M-

Na)
+
 requires 687.3244]. 

L14e. Yield: 323 mg (57%); Al2O3-flash chromatography (toluene/hexane/NEt3 = 

6:4:0.1). 
31

P NMR (400 MHz, C6D6) δ:   43.4 (s). 
1
H NMR (C6D6), : 1.08 (s, 3H, CH3), 1.31 

(s, 3H, CH3), 1.51 (s, 9H, CH3, 
t
Bu), 1.54 (s, 3H, CH3), 1.57 (s, 3H, CH3), 1.64 (s, 3H, CH3), 

1.65 (s, 9H, CH3, 
t
Bu), 1.69 (s, 3H, CH3), 2.04 (s, 3H, CH3), 2.14 (s, 3H, CH3), 2.41 (dd, 1H, 

2
JH-H= 14.8 Hz, 

3
JH-H= 9.6 Hz, CH2-S), 2.94 (dd, 1H, 

2
JH-H= 14.8 Hz, 

3
JH-H= 1.6 Hz, CH2-S), 

3.76 (d, 1H,
 3

JH-H= 8.8 Hz, CHCMe2O), 4.16-4.21 (m, 1H, CHCH2S), 6.74-7.23 (m, 7H, 

CH=). 
13

C NMR (C6D6), : 16.2 (CH3), 16.4 (CH3), 20.0 (CH3), 20.1 (CH3), 23.8 (CH3), 26.4 

(CH3), 27.2 (CH3), 28.5 (CH3), 31.1 (CH3, 
t
Bu), 31.7 (CH3, 

t
Bu), 34.3 (C, 

t
Bu), 34.4 (C, 

t
Bu), 

34.6 (CH2-S), 75.0 (CHCH2S), 79.5 (d, CMe2O, JC-P= 9.9 Hz), 84.3 (CHCMe2O), 108.4 

(CMe2), 124.1 (CH=), 125.3 (CH=), 126.8 (CH=), 128.1 (CH=), 128.7 (CH=), 128.9 (CH=), 

131.0 (C), 132.4 (C), 134.7 (C), 135.3 (C), 136.5 (C), 137.2 (C), 137.3 (C), 137.4 (C), 144.5 

(C), 145.9 (C). MS HR-ESI [found 687.3244, C39H53O5PS (M-Na)
+
 requires 687.3244]. 

L15a. Yield: 524 mg (68%); Al2O3-flash chromatography (toluene/hexane/NEt3 = 

6:4:0.1). 
31

P NMR (161.9 MHz, C6D6): δ= 50.4 (s). 
1
H NMR (400 MHz, C6D6): δ= .19 (s, 

3H, CH3), 1.22 (s, 9H, CH3, 
t
Bu), 1.24 (s, 9H, CH3, 

t
Bu), 1.31 (s, 3H, CH3), 1.53 (s, 3H, CH3), 

1.58 (s, 18H, CH3, 
t
Bu), 1.71 (s, 3H, CH3), 2.69 (dd, 1H, CH2-S, 

2
JH-H =14.6 Hz, 

3
JH-H =7.7 

Hz), 3.21 (dd, 1H, CH2-S, 
2
JH-H =14.5 Hz, 

3
JH-H =2.6 Hz), 3.97 (d, 1H, CHCMe2O, 

3
JH-H =7.9 

Hz), 4.33 (m, 1H, CHCH2S), 7.00-7.02 (m, 2H, CH=), 7.10-7.12 (m, 2H, CH=), 7.24-7.37 

(m, 3H, CH=), 7.45-7.47 (m, 1H, CH=), 7.62 (m, 1H, CH=), 7.68 (s, 1H, CH=). 
13

C NMR 

(100.6 MHz, C6D6): δ= 24.0 (CH3), 26.8 (CH3), 27.2 (CH3), 28.2 (CH3), 30.9 (CH3, 
t
Bu), 31.1 

(CH3, 
t
Bu), 31.2 (CH3, 

t
Bu), 31.3 (CH3, 

t
Bu), 34.3 (C, 

t
Bu), 35.2 (C, 

t
Bu), 36.3 (CH2-S), 76.5 

(CHCH2S), 79.9 (CMe2O), 84.7 (CHCMe2O), 109.0 (CMe2), 124.0-146.5 (aromatic 

carbons). MS HR-ESI [found 793.4025, C47H63O5PS (M-Na)
+
 requires 793.4026]. 

L15f. Yield: 406 mg (59%); Al2O3-flash chromatography (toluene/hexane/NEt3 = 

6:4:0.1). 
31

P NMR (161.9 MHz, C6D6): δ= 54.3 (s). 
1
H NMR (400 MHz, C6D6): δ=0.56 (s, 

9H, CH3, SiMe3), 0.57 (s, 9H, CH3, SiMe3), 1.17 (s, 3H, CH3), 1.23 (s, 3H, CH3), 1.46 (s, 3H, 

CH3), 1.77 (d, 3H, CH3, 
4
JH-H =2.4 Hz), 2.48 (dd, 1H, CH2-S, 

2
JH-H =14.0 Hz, 

3
JH-H =7.2 Hz), 

2.63 (dd, 1H, CH2-S, 
2
JH-H =14.4 Hz, 

3
JH-H =3.2 Hz), 3.97 (d, 1H, CHCMe2O, 

3
JH-H =8.0 Hz), 

4.20-4.24 (m, 1H, CHCH2S), 6.78-6.85 (m, 2H, CH=), 6.98-7.26 (m, 6H, CH=), 7.34 (d, 1H, 

CH=, 
3
JH-H =7.6 Hz), 7.41  (d, 1H, CH=, 

3
JH-H =8.8 Hz), 7.47-7.70 (m, 4H, CH=), 7.69 (d, 1H, 

CH=, 
3
JH-H =8.0 Hz), 8.11 (s, 1H, CH=), 8.12 (s, 1H, CH=). 

13
C NMR (100.6 MHz, C6D6): 

δ=0.3 (d, CH3, SiMe3, JC-P =4.6 Hz), 0.9 (CH3, SiMe3), 24.6 (CH3), 27.5 (CH3), 27.7 (CH3), 

28.9 (d, CH3, 
3
JC-P =18.4 Hz), 37.7 (CH2-S), 77.3 (CHCH2S), 80.9 (d, CMe2-O, 

2
JC-P =3.8 Hz), 

85.1 (CHCMe2O), 109.6 (CMe2), 125.3-153.1 (aromatic carbons). MS HR-ESI [found 

813.2625, C45H51O5PSSi2 (M-Na)
+
 requires 813.2626]. 
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L15g. Yield: 498 mg (63%); Al2O3-flash chromatography (toluene/hexane/NEt3 = 

6:4:0.1). 
31

P NMR (161.9 MHz, C6D6): δ= 55.4 (s). 
1
H NMR (400 MHz, C6D6): δ=0.52 (s, 

9H, CH3, SiMe3), 0.61 (s, 9H, CH3, SiMe3), 1.04 (s, 3H, CH3), 1.32 (s, 3H, CH3), 1.59 (s, 3H, 

CH3), 1.80 (s, 3H, CH3), 2.51 (dd, 1H, CH2-S, 
2
JH-H =14.4 Hz, 

3
JH-H =8.4 Hz), 2.96 (d, 1H, 

CH2-S, 
2
JH-H =14.8 Hz), 3.95 (d, 1H, CHCMe2O, 

3
JH-H =8.0 Hz), 4.15 (pt, 1H, CHCH2S, 

3
JH-H 

=8.0 Hz), 6.43 (pt, 1H, CH=, 
3
JH-H =7.2 Hz), 6.78-6.87 (m, 2H, CH=), 6.99-7.36 (m, 8H, 

CH=), 7.37 (m, 1H, CH=), 7.48 (m, 1H, CH=), 7.61 (d, 1H, CH=, 
3
JH-H =8.4 Hz), 7.69  (d, 1H, 

CH=, 
3
JH-H =8.4 Hz), 8.17 (s, 1H, CH=), 8.19 (s, 1H, CH=). 

13
C NMR (100.6 MHz, C6D6): 

δ=0.3 (d, CH3, SiMe3, JC-P =5.3 Hz), 1.0 (CH3, SiMe3), 25.0 (d, CH3, 
3
JC-P =7.6 Hz), 27.2 

(CH3), 27.9 (CH3), 29.1 (d, CH3, 
3
JC-P =11.5 Hz), 35.8 (CH2-S), 75.6 (CHCH2S), 80.8 (d, 

CMe2-O, 
2
JC-P =7.6 Hz), 84.8 (CHCMe2O), 109.3 (CMe2), 123.3-153.0 (aromatic carbons). 

MS HR-ESI [found 813.2626, C45H51O5PSSi2 (M-Na)
+
 requires 813.2626]. 

L16f. Yield: 457 mg (57%); SiO2-flash chromatography (toluene/hexane/NEt3 = 

5:5:0.1). 
31

P NMR (161.9 MHz, C6D6): δ= 35.6 (s). 
1
H NMR (400 MHz, C6D6): δ=0.55 (s, 

18H, CH3, SiMe3), 1.07 (b, 3H, CH3), 1.17 (b, 3H, CH3), 1.44 (s, 3H, CH3), 3.22 (b, 1H, CH2-

O), 4.14 (b, 1H, CH2-O), 4.18-4.22 (m, 1H, CHCH2O), 4.43 (d, 1H, CHCMe2S, 
3
JH-H =7.6 

Hz), 6.84-6.89 (m, 4H, CH=), 6.97-7.13 (m, 5H, CH=), 7.22-7.26 (m, 3H, CH=), 7.38 (d, 

1H, CH=, 
3
JH-H =8.0 Hz), 7.38 (d, 1H, CH=, 

3
JH-H =8.0 Hz), 7.47 (d, 2H, CH=, 

3
JH-H =8.4 Hz), 

7.64 (d, 1H, CH=, 
3
JH-H =8.0 Hz), 7.71 (d, 1H, CH=, 

3
JH-H =8.4 Hz), 8.08 (s, 1H, CH=), 8.13 

(s, 1H, CH=). 
13

C NMR (100.6 MHz, C6D6): δ=0.5 (CH3, SiMe3), 0.6 (d, CH3, SiMe3, JC-P =4.6 

Hz), 13.2 (CH3), 27.1 (CH3), 28.5 (CH3), 60.9 (CH2-O), 67.3 (CMe2-S), 79.2 (d, CHCH2O, 
3
JC-

P =3.1 Hz), 80.8 (b, CHCMe2S), 110.2 (CMe2), 123.3-153.6 (aromatic carbons). MS HR-

ESI [found 825.2624, C46H51O5PSSi2 (M-Na)
+
 requires 825.2626]. 

L16g. Yield: 538 mg (67%); SiO2-flash chromatography (toluene/hexane/NEt3 = 

5:5:0.1). 
31

P NMR (161.9 MHz, C6D6): δ= 33.5 (s). 
1
H NMR (400 MHz, C6D6): δ=0.57 (s, 

9H, CH3, SiMe3), 0.61 (s, 9H, CH3, SiMe3), 0.96 (b, 3H, CH3), 1.28 (b, 3H, CH3), 1.35 (s, 

3H, CH3), 3.58 (b, 1H, CH2-O), 4.09 (b, 1H, CH2-O), 4.27-4.31 (m, 1H, CHCH2O), 4.36 (d, 

1H, CHCMe2S, 
3
JH-H =8.0 Hz), 6.84-6.90 (m, 3H, CH=), 6.95-7.14 (m, 7H, CH=), 7.25 (d, 

1H, CH=, 
3
JH-H =8.8 Hz), 7.31 (d, 2H, CH=, 

3
JH-H =7.6 Hz), 7.38 (d, 1H, CH=, 

3
JH-H =8.0 Hz), 

7.52 (d, 2H, CH=, 
3
JH-H =7.6 Hz), 7.62 (d, 1H, CH=, 

3
JH-H =7.6 Hz), 7.69 (d, 1H, CH=, 

3
JH-H 

=8.4 Hz), 8.11 (s, 2H, CH=). 
13

C NMR (100.6 MHz, C6D6): δ=0.4 (CH3, SiMe3), 0.5 (d, CH3, 

SiMe3, JC-P =4.6 Hz), 13.2 (CH3), 27.1 (CH3), 28.2 (CH3), 60.9 (d, CH2-O, 
2
JC-P =26.2 Hz), 

67.3 (CMe2-S), 78.5 (CHCH2O), 79.3 (b, CHCMe2S), 110.4 (CMe2), 125.3-153.8 (aromatic 

carbons). MS HR-ESI [found 825.2625, C46H51O5PSSi2 (M-Na)
+
 requires 825.2626]. 

L17a. Yield: 415.1 mg (58%); SiO2-flash chromatography (toluene/hexane/NEt3 = 

8:2:0.1). 
31

P NMR (161.9 MHz, C6D6): δ= 45.3 (s). 
1
H NMR (400 MHz, C6D6): δ= .26 (s, 

9H, CH3, 
t
Bu), 1.27 (s, 9H, CH3, 

t
Bu), 1.28 (s, 3H, CH3), 1.30 (s, 3H, CH3), 1.33 (s, 3H, CH3), 

1.55 (s, 9H, CH3, 
t
Bu), 1.58 (s, 9H, CH3, 

t
Bu), 2.83 (dd, 1H, CH2-S, 

2
JH-H =14.2 Hz, 

3
JH-H =5.6 

Hz), 3.08 (dd, 1H, CH2-S, 
2
JH-H =14.4 Hz, 

3
JH-H =4.4 Hz), 3.94 (pt, 1H, CHCHO, 

3
JH-H =7.3 

Hz), 4.35-4.39 (m, 1H, CHCH2S), 4.57-4.62 (m, 1H, CH-O), 6.86-7.15 (m, 3H, CH=), 7.28-

7.33 (m, 4H, CH=), 7.57 (d, 1H, CH=, 
4
JH-H =2.4 Hz), 7.60 (d, 1H, CH=, 

4
JH-H =2.8 Hz). 

13
C 
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NMR (100.6 MHz, C6D6): δ= 9.2 (d, CH3, 
3
JC-P =3.0 Hz), 26.9 (CH3), 27.1 (CH3), 31.1 (d, 

CH3, 
t
Bu, JC-P =3.1 Hz), 31.2 (CH3, 

t
Bu), 

 
31.3 (CH3, 

t
Bu), 34.3 (C, 

t
Bu), 34.4 (C, 

t
Bu), 35.3 

(C, 
t
Bu), 35.4 (C, 

t
Bu), 36.5 (CH2-S), 73.0 (d, CH-O, 

2
JC-P =6.1 Hz), 78.4 (CHCH2S), 82.6 (d, 

CHCHO, 
3
JC-P = 3.8 Hz), 109.4 (CMe2), 124.0-146.7 (aromatic carbons). MS HR-ESI 

[found 729.3712, C42H59O5PS (M-Na)
+
 requires 729.3719].  

L17f. Yield: 429 mg (59%); SiO2-flash chromatography (toluene/hexane/NEt3 = 

8:2:0.1). 
31

P NMR (161.9 MHz, C6D6): δ= 47.4 (s). 
1
H NMR (400 MHz, C6D6): δ=0.52 (s, 

9H, CH3, SiMe3), 0.56 (s, 9H, CH3, SiMe3), 1.22 (s, 3H, CH3), 1.32 (s, 3H, CH3), 1.49 (d, 3H, 

CH3, 
3
JH-H =6.4 Hz), 2.33 (dd, 1H, CH2-S, 

2
JH-H =13.6 Hz, 

2
JH-H =4.3 Hz), 2.40 (dd, 1H, CH2-S, 

2
JH-H =14.0 Hz, 

2
JH-H =3.6 Hz), 3.83 (pt, 1H, CHCHO, 

3
JH-H =7.6 Hz), 4.08 (m, 1H, CHCH2S), 

4.49 (m, 1H, CH-O), 6.84-7.16 (m, 9H, CH=),  7.28 (d, 1H, CH=, 
3
JH-H =8.8 Hz), 7.33 (d, 

1H, CH=, 
3
JH-H =8.4 Hz), 7.69 (dd, 2H, CH=, 

3
JH-H =10.8 Hz, 

3
JH-H =8.4 Hz), 8.11 (s, 1H, 

CH=), 8.16 (s, 1H, CH=). 
13

C NMR (100.6 MHz, C6D6): δ=-0.9 (d, CH3, SiMe3, JC-P =4.6 Hz), 

0.7 (CH3, SiMe3), 18.3 (CH3), 26.0 (CH3), 26.2 (CH3), 37.4 (CH2-S), 72.1 (d, CH-O, 
2
JC-P = 

4.6 Hz), 77.4 (CHCH2S), 81.2 (d, CHCHO, 
3
JC-P =2.7 Hz), 111.2 (CMe2), 124.0-136.4 

(aromatic carbons). MS HR-ESI [found 749.2313, C40H47O5PSSi2 (M-Na)
+
 requires 

749.2318].          

L17g. Yield: 480 mg (66%); SiO2-flash chromatography (toluene/hexane/NEt3 = 

8:2:0.1). 
31

P NMR (161.9 MHz, C6D6): δ= 40.9 (s). 
1
H NMR (400 MHz, C6D6): δ=0.50 (s, 

9H, CH3, SiMe3), 0.54 (s, 9H, CH3, SiMe3), 0.78 (d, 3H, CH3, 
3
JH-H =6.8 Hz), 1.32 (s, 3H, 

CH3), 1.35 (s, 3H, CH3), 3.00 (d, 2H, CH2-S, 
3
JH-H =5.6 Hz), 3.93 (dd, 1H, CHCHO, 

3
JH-H =5.6 

Hz, 
3
JH-H =1.1 Hz), 4.20 (m, 1H, CHCH2S), 4.66 (m, 1H, CH-O), 6.83-7.22 (m, 10H, CH=), 

7.34 (d, 1H, CH=, 
3
JH-H =8.8 Hz), 7.69 (dd, 2H, CH=, 

3
JH-H =6.4 Hz, 

4
JH-H =3.6 Hz), 8.10 (s, 

1H, CH=), 8.13 (s, 1H, CH=). 
13

C NMR (100.6 MHz, C6D6): δ=0.1 (d, CH3, SiMe3, JC-P =4.0 

Hz), 0.1 (CH3, SiMe3), 17.8 (CH3), 26.9 (CH3), 27.1 (CH3), 37.5 (CH2-S), 72.4 (d, CH-O, 
2
JC-P 

= 6.9 Hz), 77.1 (CHCH2S), 82.9 (d, CHCHO, 
3
JC-P =4.6 Hz), 109.3 (CMe2), 122.5-137.3 

(aromatic carbons). MS HR-ESI [found 749.2314, , C40H47O5PSSi2 (M-Na)
+
 requires 

749.2318].  

L18a. Yield: 137.0 mg (36%); SiO2-flash chromatography (toluene/hexane/NEt3 = 

8:2:0.1). 
31

P NMR (161.9 MHz, C6D6): δ= 45.2 (s). 
1
H NMR (400 MHz, C6D6): δ= .24 (s, 

9H, CH3, 
t
Bu), 1.26 (s, 9H, CH3, 

t
Bu), 1.28 (s, 3H, CH3), 1.30 (s, 3H, CH3), 1.32 (s, 3H, CH3), 

1.53 (s, 9H, CH3, 
t
Bu), 1.57 (s, 9H, CH3, 

t
Bu), 2.89 (dd, 1H, CH2-S, 

2
JH-H =14.4 Hz, 

3
JH-H =5.6 

Hz), 3.17 (dd, 1H, CH2-S, 
2
JH-H =14.4 Hz, 

3
JH-H =4.4 Hz), 3.97 (pt, 1H, CHCHO, 

3
JH-H =6.8 

Hz), 4.38-4.43 (m, 1H, CHCH2S), 4.58-4.64 (m, 1H, CH-O), 7.15-7.19 (m, 3H, CH=), 7.30-

7.52 (m, 5H, CH=), 7.57 (d, 1H, CH=, 
4
JH-H = 2.4 Hz), 7.60 (d, 1H, CH=, 

4
JH-H = 2.4 Hz), 7.80 

(m, 1H, CH=). 
13

C NMR (100.6 MHz, C6D6): δ= 9.3 (b, CH3), 26.9 (CH3), 27.1 (CH3), 31.0 

(d, CH3, 
t
Bu, 

3
JC-P =3.0 Hz), 31.1 (CH3, 

t
Bu), 

 
31.2 (CH3, 

t
Bu), 34.3 (C, 

t
Bu), 34.4 (C, 

t
Bu), 

35.3 (C, 
t
Bu), 35.4 (C, 

t
Bu), 36.5 (CH2-S), 72.9 (d, CH-O, 

2
JC-P =4.6 Hz), 78.4 (CHCH2S), 

82.7 (d, CHCHO, 
3
JC-P = 3.8 Hz), 109.5 (CMe2), 124.0-146.7 (aromatic carbons). MS HR-

ESI [found 779.3875, C46H61O5PS (M-Na)
+
 requires 779.3875].  
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L18f. Yield: 198.9 mg (51%); SiO2-flash chromatography (toluene/hexane/NEt3 = 

8:2:0.1). 
31

P NMR (161.9 MHz, C6D6): δ= 47.4 (s). 
1
H NMR (400 MHz, C6D6): δ=0.5  (s, 

9H, CH3, SiMe3), 0.55 (s, 9H, CH3, SiMe3), 1.20 (s, 3H, CH3), 1.30 (s, 3H, CH3), 1.49 (d, 3H, 

CH3, 
3
JH-H =6.4 Hz), 2.40 (dd, 1H, CH2-S, 

2
JH-H =14.0 Hz, 

3
JH-H =5.6 Hz), 2.49 (dd, 1H, CH2-S, 

2
JH-H =14.0 Hz, 

3
JH-H =4.0 Hz), 3.86 (pt, 1H, CHCHO, 

3
JH-H =7.2 Hz), 4.10-4.15 (m, 1H, 

CHCH2S), 4.48-4.53 (m, 1H, CH-O), 6.78-6.87 (m, 2H, CH=),  6.99-7.20 (m, 5H, CH=), 

7.26 (d, 1H, CH=, 
3
JH-H =8.8 Hz), 7.34 (m, 2H, CH=), 7.48 (dd, 2H, CH=, 

3
JH-H =8.8 Hz, 

3
JH-H 

=8.0 Hz), 7.52 (d, 1H, CH=, 
4
JH-H =1.2 Hz), 7.59 (d, 1H, CH=, 

3
JH-H =7.3 Hz), 7.70 (d, 1H, 

CH=, 
3
JH-H =8.4 Hz), 8.12 (s, 1H, CH=), 8.15 (s, 1H, CH=). 

13
C NMR (100.6 MHz, C6D6): 

δ=0.0 (CH3, SiMe3), 0.3 (CH3, SiMe3), 19.2 (CH3), 26.8 (CH3), 27.1 (CH3), 35.7 (CH2-S), 

73.0 (d, CH-O, 
2
JC-P = 3.6 Hz), 78.3 (CHCH2S), 82.2 (CHCHO), 109.5 (CMe2), 124.9-152.0 

(aromatic carbons). MS HR-ESI [found 799.2460, C44H49O5PSSi2 (M-Na)
+
 requires 

799.2475].  

L18g. Yield: 396.0 mg (51%); SiO2-flash chromatography (toluene/hexane/NEt3 = 

8:2:0.1). 
31

P NMR (161.9 MHz, C6D6): δ= 4 .0 (s). 
1
H NMR (400 MHz, C6D6): δ=0.48 (s, 

9H, CH3, SiMe3), 0.53 (s, 9H, CH3, SiMe3), 0.80 (d, 3H, CH3, 
3
JH-H =6.0 Hz), 1.34 (s, 3H, 

CH3), 1.37 (s, 3H, CH3), 3.11 (d, 2H, CH2-S, 
3
JH-H =5.6 Hz), 3.97 (dd, 1H, CHCHO, 

3
JH-H =7.2 

Hz, 
3
JH-H =5.6 Hz), 4.26-4.31 (m, 1H, CHCH2S), 4.66-4.71 (m, 1H, CH-O), 6.81-6.87 (m, 

2H, CH=), 6.99-7.23 (m, 5H, CH=), 7.31-7.53 (m, 5H, CH=), 7.67-7.70 (m, 3H, CH=), 8.10 

(s, 1H, CH=), 8.12 (s, 1H, CH=). 
13

C NMR (100.6 MHz, C6D6): δ=0.8 (d, CH3, SiMe3, JC-P 

=4.7 Hz), 0.9 (CH3, SiMe3), 18.8 (CH3), 28.1 (CH3), 28.3 (CH3), 38.6 (CH2-S), 73.6 (d, CH-

O, 
2
JC-P = 6.5 Hz), 78.3 (CHCH2S), 84.1 (d, CHCHO, 

3
JC-P =3.8 Hz), 110.5 (CMe2), 123.6-

153.2 (aromatic carbons). MS HR-ESI [found 799.2473, C44H49O5PSSi2 (M-Na)
+
 requires 

799.2475].  

L19a. Yield: 374.6 mg (44%); SiO2-flash chromatography (toluene/hexane/NEt3 = 

8:2:0.1). 
31

P NMR (161.9 MHz, C6D6): δ= 47.  (s). 
1
H NMR (400 MHz, C6D6): δ=0.06 (s, 

3H, CH3, OTBDMS), 0.09 (s, 3H, CH3, OTBDMS), 0.97 (s, 9H, CH3, 
t
Bu, OTBDMS), 1.24 (s, 

9H, CH3, 
t
Bu), 1.28 (s, 9H, CH3, 

t
Bu), 1.29 (s, 3H, CH3), 1.30 (s, 3H, CH3), 1.55 (s, 9H, CH3, 

t
Bu), 1.61 (s, 9H, CH3, 

t
Bu), 2.65 (dd, 1H, CH2-S, 

2
JH-H =14.4 Hz, 

3
JH-H =4.4 Hz), 3.10 (dd, 

1H, CH2-S, 
2
JH-H =14.8 Hz, 

3
JH-H =2.4 Hz), 3.77-3.81 (m, 1H, CH2-OTBDMS), 4.11-4.17 (m, 

2H, CHCHO, CH2-OTBDMS), 4.55-4.63 (m, 2H, CHCH2S, CH-O), 6.85-6.92 (m, 3H, CH=), 

7.26 (d, 1H, CH=, 
4
JH-H =2.4 Hz), 7.35 (m, 3H, CH=), 7.58 (d, 1H, CH=, 

4
JH-H =2.4 Hz), 7.61 

(d, 1H, CH=, 
4
JH-H =2.4 Hz). 

13
C NMR (100.6 MHz, C6D6): δ=-5.6 (CH3, OTBDMS), 18.1 (C, 

tBu, OTDMS), 25.8 (CH3, 
t
Bu,

 
OTBDMS), 26.8 (CH3), 26.9 (CH3), 31.1 (CH3, 

t
Bu), 31.2 

(CH3, 
t
Bu), 31.3 (CH3, 

t
Bu), 31.4 (CH3, 

t
Bu), 34.4 (C, 

t
Bu), 35.3 (C, 

t
Bu), 35.4 (CH2-S), 35.5 

(C, 
t
Bu), 64.8 (CH2-OTBDMS), 77.8 (CH-O, CHCHO), 78.9 (CHCH2S), 109.5 (CMe2), 123.9-

146.6 (aromatic carbons). MS HR-ESI [found 879.4215, C50H69O6PSSi (M-Na)
+
 requires 

879.4214]. 

L19f. Yield: 535 mg (61%); SiO2-flash chromatography (toluene/hexane/NEt3 = 

8:2:0.1). 
31

P NMR (161.9 MHz, C6D6): δ= 50.0 (s). 
1
H NMR (400 MHz, C6D6): δ=0.   (s, 

3H, CH3, OTBDMS), 0.14 (s, 3H, CH3, OTBDMS), 0.53 (s, 9H, CH3, SiMe3), 0.58 (s, 9H, 
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CH3, SiMe3), 1.04 (s, 9H, CH3, 
t
Bu, OTBDMS), 1.25 (s, 3H, CH3), 1.29 (s, 3H, CH3), 2.09 

(dd, 1H, CH2-S, 
2
JH-H =14.0 Hz, 

3
JH-H =4.4 Hz), 2.37 (dd, 1H, CH2-S, 

2
JH-H =14.4 Hz, 

3
JH-H =4.0 

Hz), 3.87-3.95 (m, 2H, CH2-OTBDMS, CHCHO), 4.20-4.23 (m, 1H, CH2-OTBDMS), 4.40-

4.44 (m, 1H, CHCH2S), 4.50-4.57 (CH-O), 6.82-6.94 (m, 5H, CH=), 7.00-7.16 (m, 4H, 

CH=), 7.30 (t, 2H, CH=, 
3
JH-H =8.4 Hz), 7.67-7.72 (m, 2H, CH=), 8.10 (s, 1H, CH=), 8.17 (s, 

1H, CH=). 
13

C NMR (100.6 MHz, C6D6): δ=-4.9 (CH3, OTBDMS), -4.8 (CH3, OTBDMS), 0.78 

(d, CH3, SiMe3, JC-P =4.6 Hz), 0.9 (CH3, SiMe3), 18.9 (C, 
t
Bu,

 
OTBDMS), 26.5 (CH3, 

t
Bu,

 

OTBDMS), 27.6 (CH3), 35.8 (CH2-S), 65.8 (CH2-OTBDMS), 78.4 (CHCHO), 78.6 (CH-O), 

79.5 (CHCH2S), 110.4 (CMe2), 122.7-152.1 (aromatic carbons). MS HR-ESI [found 

879.3124, C46H61O6PSSi3 (M-Na)
+
 requires 879.3132]. 

L20a. Yield: 562 mg (62%); SiO2-flash chromatography (toluene/hexane/NEt3 = 

8:2:0.1). 
31

P NMR (161.9 MHz, C6D6): δ= 46.5 (s). 
1
H NMR (400 MHz, C6D6): δ=0.07 (s, 

3H, CH3, OTBDMS), 0.10 (s, 3H, CH3, OTBDMS), 0.98 (s, 9H, CH3, 
t
Bu, OTBDMS), 1.22 (s, 

9H, CH3, 
t
Bu), 1.29 (s, 15H, CH3, CH3 

t
Bu), 1.55 (s, 9H, CH3, 

t
Bu), 1.64 (s, 9H, CH3, 

t
Bu), 

2.70 (dd, 1H, CH2-S, 
2
JH-H =14.4 Hz, 

3
JH-H  =4.4 Hz), 3.19 (dd, 1H, CH2-S, 

2
JH-H =14.4 Hz, 

3
JH-

H =3.2 Hz), 3.81 (dd, 1H, CH2-OTBDMS, 
2
JH-H =11.6 Hz, 

3
JH-H =7.2 Hz), 4.12 (dd, 1H, CH2-

OTBDMS, 
2
JH-H =10.8 Hz), 4.19 (dd, 1H, CHCHO, 

2
JH-H =7.2 Hz, 

3
JH-H =4.0 Hz), 4.58-4.65 (m, 

2H, CHCH2S, CH-O), 7.00-7.22 (m, 2H, CH=), 7.31 (d, 1H, CH=, 
4
JH-H =2.4 Hz), 7.34 (d, 1H, 

CH=, 
4
JH-H =2.4 Hz), 7.38 (d, 1H, CH=, 

3
JH-H =8.8 Hz), 7.46 (d, 2H, 

3
JH-H =8.4 Hz), 7.52 (d, 

1H, CH=, 
3
JH-H =8.0 Hz), 7.58 (d, 1H, CH=, 

4
JH-H =2.4 Hz), 7.64 (d, 1H, CH=, 

4
JH-H =2.4 Hz), 

7.86 (s, 1H, CH=). 
13

C NMR (100.6 MHz, C6D6): δ=-5.6 (CH3, OTBDMS), 18.1 (C, 
t
Bu,

 

OTBDMS), 25.8 (CH3, 
t
Bu,

 
OTBDMS), 26.7 (CH3), 26.8 (CH3), 31.1 (CH3, 

t
Bu), 31.3 (CH3, 

t
Bu), 31.4 (CH3, 

t
Bu), 34.3 (C, 

t
Bu), 34.4 (C, 

t
Bu), 35.3 (C, 

t
Bu), 35.5 (CH2-S), 64.8 (CH2-

OTBDMS), 77.6 (CH-O), 78.0 (CHCHO), 78.9 (CHCH2S), 109.6 (CMe2), 124.0-146.7 

(aromatic carbons). MS HR-ESI [found 929.4368, C54H71O6PSSi (M-Na)
+
 requires 

929.4370]. 

L20g. Yield: 535 mg (58%); SiO2-flash chromatography (toluene/hexane/NEt3 = 

8:2:0.1). 
31

P NMR (161.9 MHz, C6D6): δ= 43.6 (s). 
1
H NMR (400 MHz, C6D6): δ=-0.38 (s, 

3H, CH3, OTBDMS), -0.33 (s, 3H, CH3, OTBDMS), 0.45 (s, 9H, CH3, SiMe3), 0.55 (s, 9H, 

CH3, SiMe3), 0.75 (s, 9H, CH3, 
t
Bu, OTBDMS), 1.43 (s, 3H, CH3), 1.52 (s, 3H, CH3), 3.10 

(dd, 1H, CH2-OTBDMS, 
2
JH-H =10.4 Hz, 

3
JH-H  =5.2 Hz), 3.24 (dd, 1H, CH2-S, 

2
JH-H =13.6 Hz, 

3
JH-H =6.4 Hz), 3.38 (dd, 1H, CH2-S, 

2
JH-H =13.6 Hz, 

3
JH-H =3.6 Hz), 3.51 (dd, 1H, CH2-

OTBDMS, 
2
JH-H =10.8 Hz, 

3
JH-H =8.0 Hz), 4.48 (dd, 1H, CHCHO, 

3
JH-H =7.2 Hz, 

3
JH-H =4.0 Hz), 

4.69-4.74 (m, 1H, CHCH2S), 4.83-4.90 (m, 1H, CH-O), 6.83-6.88 (m, 2H, CH=), 7.02-7.23 

(m, 3H, CH=), 7.32 (d, 1H, CH=, 
3
JH-H =8.4 Hz), 7.45 (s, 2H, CH=), 7.50-7.53 (m, 2H, CH=), 

7.69 (t, 2H, CH=, 
3
JH-H =7.2 Hz), 7.82 (s, 1H, CH=), 8.08 (s, 1H, CH=), 8.10 (s, 1H, CH=). 

13
C 

NMR (100.6 MHz, C6D6): δ=-5.5 (CH3, OTBDMS), -5.2 (CH3, OTBDMS), 0.55 (d, CH3, 

SiMe3, JC-P =4.6 Hz), 0.7 (CH3, SiMe3), 18.5 (C, 
t
Bu,

 
OTBDMS), 26.3 (CH3, 

t
Bu,

 
OTBDMS), 

28.1 (CH3), 38.4 (CH2-S), 63.2 (CH2-OTBDMS), 75.3 (d, CH-O, 
2
JC-P =7.3 Hz), 76.9 

(CHCH2S), 80.4 (d, CHCHO, 
3
JC-P =3.4 Hz), 110.4 (CMe2), 125.5-152.7 (aromatic carbons). 

MS HR-ESI [found 949.2968, C52H59O6PSSi3 (M-Na)
+
 requires 949.2970]. 
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L21g. Yield: 623 mg (63%); SiO2-flash chromatography (toluene/hexane/NEt3 = 

8:2:0.1). 
31

P NMR (161.9 MHz, C6D6): δ= 45.2 (s). 
1
H NMR (400 MHz, C6D6): δ=0.42 (s, 

9H, CH3, SiMe3), 0.52 (s, 9H, CH3, SiMe3), 0.93 (s, 9H, CH3, 
t
Bu, OTBDPS), 1.41 (s, 3H, 

CH3), 1.45 (s, 3H, CH3), 3.23 (dd, 1H, CH2-S, 
2
JH-H =13.6 Hz, 

3
JH-H  =6.8 Hz), 3.34 (d, 1H, 

CH2-S, 
2
JH-H =11.2 Hz), 3.52 (dd, 1H, CH2-OTBDPS, 

2
JH-H =11.2 Hz, 

3
JH-H =6.0 Hz), 3.79 (dd, 

1H, CH2-OTBDPS, 
2
JH-H =11.2 Hz, 

3
JH-H =8.4 Hz), 4.48 (pt, 1H, CHCHO, 

3
JH-H =5.2 Hz), 4.69-

4.73 (m, 1H, CHCH2S), 4.86-4.94 (m, 1H, CH-O), 6.77-6.86 (m, 2H, CH=), 7.00-7.22 (m, 

12H, CH=), 7.38-7.53 (m, 8H, CH=), 7.56 (d, 1H, CH=, 
3
JH-H =8.0 Hz), 7.69 (d, 1H, CH=, 

3
JH-

H =8.0 Hz), 7.78 (s, 1H, CH=), 7.92 (s, 1H, CH=), 8.10 (s, 1H, CH=). 
13

C NMR (100.6 MHz, 

C6D6): δ=0.6 (d, CH3, SiMe3, JC-P =3.8 Hz), 0.7 (CH3, SiMe3), 19.7 (C, 
t
Bu,

 
OTBDPS), 27.2 

(CH3, 
t
Bu,

 
OTBDPS), 28.0 (CH3), 28.1 (CH3), 38.6 (CH2-S), 64.5 (CH2-OTBDPS), 76.1 (d, 

CH-O, 
2
JC-P =4.5 Hz), 77.5 (CHCH2S), 80.3 (d, CHCHO, 

3
JC-P =3.2 Hz), 110.5 (CMe2), 123.2-

152.5 (aromatic carbons). MS HR-ESI [found 1011.3127, C57H61O6PSSi3 (M-Na)
+
 requires 

1011.3126]. 

L22g. Yield: 636 mg (67%); SiO2-flash chromatography (toluene/hexane/NEt3 = 

8:2:0.1). 
31

P NMR (161.9 MHz, C6D6): δ= 42.2 (s). 
1
H NMR (400 MHz, C6D6): δ=0.40 (s, 

9H, CH3, SiMe3), 0.42-0.45 (m, 3H, CH, TIPS), 0.57 (s, 9H, CH3, SiMe3), 0.74 (d, 9H, CH3, 
3
JH-H  =8.4 Hz), 0.81 (d, 9H, CH3, 

3
JH-H  =7.6 Hz), 1.48 (s, 3H, CH3), 1.63 (s, 3H, CH3), 2.85 

(dd, 1H, CH2-OTIPS, 
2
JH-H =10.4 Hz, 

3
JH-H  =6.4 Hz), 3.33 (dd, 1H, CH2-S, 

2
JH-H =14.0 Hz, 

3
JH-H 

=6.8 Hz), 3.46-3.53 (m, 2H, CH2-OTIPS, CH2-S), 4.55 (dd, 1H, CHCHO, 
3
JH-H =8.0 Hz,

 3
JH-H 

=3.2 Hz), 4.82-4.86 (m, 1H, CHCH2S), 5.03-5.08 (m, 1H, CH-O), 6.84-6.90 (m, 2H, CH=), 

7.00-7.30 (m, 7H, CH=), 7.48-7.56 (m, 3H, CH=), 7.66 (t, 2H, CH=, 
3
JH-H =8.8 Hz), 7.88 (s, 

1H, CH=), 8.05 (s, 1H, CH=), 8.07 (s, 1H, CH=). 
13

C NMR (100.6 MHz, C6D6): δ=0.4 (d, 

CH3, SiMe3, JC-P =4.6 Hz), 0.6 (CH3, SiMe3), 11.9 (CH, OTIPS), 18.2 (s, CH3, OTIPS), 18.4 (s, 

CH3, OTIPS), 28.2 (CH3), 38.7 (CH2-S), 63.3 (CH2-OTIPS), 74.1 (d, CH-O, 
2
JC-P =10.7 Hz), 

76.0 (CHCH2S), 80.5 (d, CHCHO, 
3
JC-P =3.7 Hz), 110.5 (CMe2), 123.7-152.5 (aromatic 

carbons). MS HR-ESI [found 971.3750, C53H69O6PSSi3 (M-Na)
+
 requires 971.3752]. 

L23g. Yield: 538 mg (58%); SiO2-flash chromatography (toluene/hexane/NEt3 = 

8:2:0.1). 
31

P NMR (161.9 MHz, C6D6): δ= 45.3 (s). 
1
H NMR (400 MHz, C6D6): δ=0.40 (s, 

9H, CH3, SiMe3), 0.57 (s, 9H, CH3, SiMe3), 1.45 (s, 3H, CH3), 1.51 (s, 3H, CH3), 2.97 (dd, 

1H, CH2-OTr, 
2
JH-H =10.4 Hz, 

3
JH-H  =6.0 Hz), 3.06-3.11 (d, 1H, CH2-OTr), 3.21 (dd, 1H, CH2-

S, 
2
JH-H =13.2 Hz, 

3
JH-H =6.8 Hz), 3.36 (dd, 1H, CH2-S, 

2
JH-H =13.6 Hz, 

3
JH-H =3.6 Hz), 4.57 

(dd, 1H, CHCHO, 
3
JH-H =7.6 Hz, 

3
JH-H =3.6 Hz), 4.67-4.71 (m, 1H, CHCH2S), 4.91-4.98 (m, 

1H, CH-O), 6.82-6.93 (m, 12H, CH=), 7.00-7.18 (m, 11H, CH=), 7.38-7.47 (m, 3H, CH=), 

7.54 (d, 1H, CH=, 
3
JH-H =6.8 Hz), 7.59 (d, 1H, CH=, 

3
JH-H =8.4 Hz), 7.71 (d, 1H, CH=, 

3
JH-H 

=8.0 Hz), 7.78 (s, 1H, CH=), 7.95 (s, 1H, CH=), 8.12 (s, 1H, CH=). 
13

C NMR (100.6 MHz, 

C6D6): δ=-0.1 (d, CH3, SiMe3, JC-P =4.5 Hz), 0.1 (CH3, SiMe3), 27.4 (CH3), 37.6 (CH2-S), 63.7 

(CH2-OTr), 73.2 (d, CH-O, 
2
JC-P =5.7 Hz), 75.7 (CHCH2S), 80.0 (d, CHCHO, 

3
JC-P =4.0 Hz), 

87.4 (C, Tr), 109.7 (CMe2), 122.6-151.8 (aromatic carbons). MS HR-ESI [found 

1057.3512, C63H63O6PSSi2 (M-Na)
+
 requires 1057.3514 
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L24a. Yield: 329.2 mg (46%); SiO2-flash chromatography (toluene/hexane/NEt3 = 

8:2:0.1). 
31

P NMR (161.9 MHz, C6D6): δ= 48.5 (s). 
1
H NMR (400 MHz, C6D6): δ= . 0 (d, 

3H, CH3, 
3
JH-H =6.0 Hz), 1.26 (s, 21H, CH3 

t
Bu), 1.35 (s, 3H, CH3), 1.57 (s, 18H, CH3, 

t
Bu), 

2.89 (dd, 1H, CH2-S, 
2
JH -H =14.4 Hz, 

3
JH-H =6.8 Hz ), 3.10 (dd, 1H, CH2-S, 

2
JH -H =13.6 Hz, 

3
JH-

H =4.0 Hz ), 3.95 (dd, 1H, CHCHO, 
3
JH -H =4.4 Hz, 

3
JH-H =7.3 Hz), 4.18-4.22 (m, 1H, CHCH2S), 

4.51-4.54 (m, 1H, CH-O), 6.86-7.14 (m, 3H, CH=), 7.25-7.31 (m, 4H, CH=), 7.58 (d, 2H, 

CH=, 
4
JH-H =2.4 Hz). 

13
C NMR (100.6 MHz, C6D6): δ= 7.9 (d, CH3, 

3
JC-P =3.1 Hz), 26.9 (CH3), 

27.3 (CH3), 31.2 (CH3, 
t
Bu), 34.3 (C, 

t
Bu), 35.3 (C, 

t
Bu), 36.8 (CH2-S), 71.0 (d, CH-O, 

2
JC-P 

=1.7 Hz), 75.5 (CHCH2S), 82.1 (d, CHCHO, 
3
JC-P =3.1 Hz), 109.4 (CMe2), 123.9-146.4 

(aromatic carbons). MS HR-ESI [found 729.3718, C42H59O5PS (M-Na)
+
 requires 

729.3717]. 

L24f. Yield: 237.1 mg (32%); SiO2-flash chromatography (toluene/hexane/NEt3 = 

8:2:0.1). 
31

P NMR (161.9 MHz, C6D6): δ= 43.6 (s). 
1
H NMR (400 MHz, C6D6): δ=0.53 (s, 

9H, CH3, SiMe3), 0.54 (s, 9H, CH3, SiMe3), 0.78 (d, 3H, CH3, 
3
JH-H =6.4 Hz), 1.31 (s, 3H, 

CH3), 1.34 (s, 3H, CH3), 2.96 (dd, 1H, CH2-S, 
2
JH -H =13.6 Hz, 

3
JH-H =6.4 Hz ), 3.10 (dd, 1H, 

CH2-S, 
2
JH -H =13.6 Hz, 

3
JH-H =4.0 Hz), 3.97 (dd, 1H, CHCHO, 

3
JH -H =4.8 Hz, 

3
JH-H =7.2 Hz), 

4.13 (m, 1H, CHCH2S), 4.55 (m, 1H, CH-O), 6.83-7.15 (m, 7H, CH=), 7.23-7.34 (m, 4H, 

CH=), 7.68-7.71 (m, 2H, CH=), 8.10 (s, 1H, C=H), 8.14 (s, 1H, C=H). 
13

C NMR (100.6 MHz, 

C6D6): δ=-0.1 (d, CH3, SiMe3, JC-P =4.5 Hz), 0.1 (CH3, SiMe3), 17.6 (CH3), 27.0 (CH3), 27.2 

(CH3), 37.3 (CH2-S), 71.6 (CH-O), 75.8 (CHCH2S), 82.2 (d, CHCHO, 
3
JC-P =4.6 Hz), 109.5 

(CMe2), 122.5-152.3 (aromatic carbons). MS HR-ESI [found 749.2316, C40H47O5PSSi2 (M-

Na)
+
 requires 749.2318]. 

L24g. Yield: 289.0 mg (39%); SiO2-flash chromatography (toluene/hexane/NEt3 = 

8:2:0.1). 
31

P NMR (161.9 MHz, C6D6): δ= 5 .4 (s). 
1
H NMR (400 MHz, C6D6): δ=0.5  (s, 

9H, CH3, SiMe3), 0.53 (s, 9H, CH3, SiMe3), 1.15 (s, 3H, CH3), 1.25 (m, 6H, CH3), 2.53 (dd, 

1H, CH2-S, 
2
JH -H =14.0 Hz, 

3
JH-H =6.0 Hz ), 2.69 (dd, 1H, CH2-S, 

2
JH -H =13.6 Hz, 

3
JH-H =2.6 

Hz), 3.95-4.00 (m, 2H, CHCHO, CHCH2S), 4.50-4.55 (m, 1H, CH-O), 6.85-6.86 (m, 3H, 

CH=), 6.92-6.96 (m, 2H, CH=), 6.98-7.00 (m, 1H, CH=), 7.09-7.15 (m, 5H, CH=), 7.24 (d, 

1H, C=H, 
3
JH-H =8.4 Hz), 7.31 (d, 1H, C=H, 

3
JH-H =8.4 Hz),  7.69 (d, 1H, C=H, 

3
JH-H =8.4 Hz), 

8.10 (d, 1H, C=H, 
3
JH-H =8.4 Hz). 

13
C NMR (100.6 MHz, C6D6): δ=-0.1 (d, CH3, SiMe3, JC-P 

=4.6 Hz), 0.2 (CH3, SiMe3), 17.6 (CH3), 26.8 (CH3), 27.1 (CH3), 36.3 (CH2-S), 70.1 (d, CH-

O, 
2
JC-P =10.0 Hz), 75.1 (CHCH2S), 81.0 (CHCHO), 109.1 (CMe2), 122.5-152.1 (aromatic 

carbons). MS HR-ESI [found 749.2317, C40H47O5PSSi2 (M-Na)
+
 requires 749.2318]. 

L25f. Yield: 101 mg (25%). SiO2-flash chromatography (toluene/hexane/NEt3 = 

6:4:0.1). 
31

P NMR (161.9 MHz, C6D6): δ=  44.4 (s). 
1
H NMR (CDCl3), : -0.43 (s, 3H, CH3, 

OTBDMS), -0.40 (s, 3H, CH3, OTBDMS), 0.45 (s, 9H, CH3, SiMe3), 0.54 (s, 9H, CH3, SiMe3), 

0.69 (s, 9H, CH3, 
t
Bu, OTBDMS), 1.41 (s, 3H, CH3), 1.46 (s, 3H, CH3), 2.99 (m, 1H, CH2-O), 

3.18 (m, 1H, CH2-S), 3.30 (m, 1H, CH2-S), 3.57 (m, 1H, CH2-O), 4.47 (m, 3H, CHCHO, 

CHCH2S, CHO), 6.85 (m, 2H, CH=), 6.97 (m, 2H, CH=), 7.10 (m, 2H, CH=), 7.22 (m, 1H, 

CH=), 7.32 (m, 2H, CH=), 7.69 (m, 3H, CH=), 8.08 (m, 3H, CH=). 
13

C NMR (CDCl3), : -6.2 

(CH3, OTBDMS), -6.1 (CH3, OTBDMS), -1.1 (CH3, SiMe3), -0.1 (CH3, SiMe3), 0.0 (CH3, 
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SiMe3), 0.2 (CH3, SiMe3), 1.1 (CH3, SiMe3), 1.2 (CH3, SiMe3), 17.8 (C, 
t
Bu, OTBDMS), 25.5 

(CH3, 
t
Bu, OTBDMS), 27.1 (CH3), 27.1 (CH3), 37.2 (CH2-S), 62.6 (CH2-O), 74.5 (CHO), 76.0 

(CHCH2S), 79.3 (CHCHO), 109.4 (CMe2), 122.6-157.0 (aromatic carbons). MS HR-ESI 

[found 879.3125, C46H61O6PSSi3 (M-Na)
+
 requires 879.3132]. 

L26a. Yield: 322.0 mg (45%); SiO2-flash chromatography (toluene/hexane/NEt3 = 

8:2:0.1). 
31

P NMR (161.9 MHz, C6D6): δ= 35.3 (s). 
1
H NMR (400 MHz, C6D6): δ= .25 (s, 

21H, CH3, CH3 
t
Bu), 1.31 (s, 3H, CH3), 1.42 (s, 3H), 1.56 (s, 9H, CH3, 

t
Bu), 1.59 (s, 9H, CH3, 

t
Bu), 3.28-3.31 (m, 1H, CH-S), 3.94-3.97 (dd, 1H, CHCHS, 

2
JH-H =7.6 Hz, 

3
JH-H =3.6 Hz), 

4.02 (b, 1H, CH2-O), 4.16 (b, 1H, CH2-O), 4.33-4.38 (m, 1H, CHCH2O), 6.90-6.95 (m, 3H, 

CH=), 7.29-7.34 (m, 4H, CH=), 7.58 (s, 2H, CH=). 
13

C NMR (100.6 MHz, C6D6): δ= 8.0 

(CH3), 26.9 (CH3), 27.1 (CH3), 30.9 (CH3, 
t
Bu), 31.2 (CH3, 

t
Bu), 34.3 (C, 

t
Bu), 35.3 (C, 

t
Bu), 

45.1 (CH-S), 65.6 (CH2-O), 77.3 (CHCH2O), 80.5 (CHCHS), 109.4 (CMe2), 124.2-146.5 

(aromatic carbons). MS HR-ESI [found 729.3719, C42H59O5PS (M-Na)
+
 requires 

729.3719]. 

L26f. Yield: 259.4 mg (35%); SiO2-flash chromatography (toluene/hexane/NEt3 = 

8:2:0.1). 
31

P NMR (161.9 MHz, C6D6): δ= 32.0 (s). 
1
H NMR (400 MHz, C6D6): δ=0.5  (s, 

9H, CH3, SiMe3), 0.58 (s, 9H, CH3, SiMe3), 1.23 (d, 3H, CH3, 
3
JH-H =6.8 Hz), 1.24 (s, 3H, 

CH3), 1.38 (s, 3H), 3.18-3.24 (m, 1H, CH-S), 3.68-3.73 (m, 1H, CH2-O), 3.82 (dd, 1H, 

CHCHS, 
3
JH-H =3.6 Hz, 

3
JH-H =7.6 Hz), 4.16-4.25 (m, 2H, CHCH2O, CH2-O), 6.85-6.94 (m, 

5H, CH=), 7.00-7.20 (m, 4H), 7.25 (d, 1H, CH=, 
3
JH-H =8.8 Hz), 7.36 (d, 1H, CH=, 

3
JH-H =8.4 

Hz), 7.66 (d, 1H, CH=, 
3
JH-H = 8.0 Hz), 7.69 (d, 1H, CH=, 

3
JH-H =8.4 Hz), 8.11 (s, 1H, CH=), 

8.15 (s, 1H, CH=). 
13

C NMR (100.6 MHz, C6D6): δ=-0.3 (CH3, SiMe3), -0.1 (d, CH3, SiMe3, 

JC-P =5.3 Hz), 17.3 (CH3), 26.9 (CH3), 27.0 (CH3), 44.8 (CH-S), 65.4 (d, CH2-O, 
2
JC-P =5.4 Hz), 

77.8 (d, CHCH2O, 
3
JC-P =3.8 Hz), 79.6 (CHCHS), 109.3 (CMe2), 122.4-154.0 (aromatic 

carbons). MS HR-ESI [found 749.2315, C40H47O5PSSi2 (M-Na)
+
 requires 749.2318]. 

L26g. Yield: 274.2 mg (37%); SiO2-flash chromatography (toluene/hexane/NEt3 = 

8:2:0.1). 
31

P NMR (161.9 MHz, C6D6): δ= 34.4 (s). 
1
H NMR (400 MHz, C6D6): δ=0.52 (s, 

9H, CH3, SiMe3), 0.54 (s, 9H, CH3, SiMe3), 1.15 (d, 3H, CH3, 
3
JH-H =7.2 Hz), 1.27 (s, 3H, 

CH3), 1.42 (s, 3H, CH3), 3.15-3.18 (m, 1H, CH-S), 3.51-3.57 (m, 1H, CH2-O), 3.82 (dd, 1H, 

CHCHS, 
3
JH-H =7.6 Hz, 

3
JH-H =3.2 Hz), 4.26-4.31 (m, 2H, CHCH2O, CH2-O), 6.84-6.89 (m, 

5H, CH=), 7.11 (1, 2H, CH=, 
3
JH-H =8.0 Hz), 7.16 (s, 1H, CH=), 7.23-7.28 (m, 3H, CH=), 7.34 

(d, 1H, CH=, 
3
JH-H =8.4 Hz), 7.69 (pt, 2H, CH=, 

3
JH-H = 8.4 Hz), 8.11 (s, 2H, CH=). 

13
C NMR 

(100.6 MHz, C6D6): δ=-0.4 (CH3, SiMe3), -0.2 (d, CH3, SiMe3, JC-P =4.6 Hz), 18.2 (CH3), 26.9 

(CH3), 27.0 (CH3), 45.4 (CH-S), 65.5 (CH2-O), 77.6 (CHCH2O), 80.5 (CHCHS), 109.5 

(CMe2), 122.4-152.8 (aromatic carbons). MS HR-ESI [found 749.2317, C40H47O5PSSi2 (M-

Na)
+
 requires 749.2318]. 

L27a. Yield: 503 mg (68%); SiO2-flash chromatography (toluene/hexane/NEt3 = 

5:5:0.1). 
31

P NMR (161.9 MHz, C6D6): δ= 36.0 (s). 
1
H NMR (400 MHz, C6D6): δ= .26 (s, 

9H, CH3), 1.27 (s, 9H, CH3), 1.28 (s, 3H, CH3), 1.33 (s, 3H, CH3), 1.56 (s, 9H, CH3), 1.58 (S, 

9H, CH3), 2.86 (dd, 1H, CH2-Se, 
2
JH-H= 12.6 Hz, 

3
JH-H =6.0 Hz), 2.97 (dd, 1H, CH2-Se, 

2
JH-H 

=12.6 Hz, 
3
JH-H =5.6 Hz), 3.86-4.14 (m, 4H, CHCH2Se, CHCH2O, CH2-O), 6.89-6.96 (m, 3H, 
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CH=), 7.33 (d, 2H, CH=, 
3
JH-H =2.4 Hz), 7.36-7.44 (m, 2H, CH=), 7.58 (d, 2H, CH=, 

4
JH-H 

=2.4 Hz). 
13

C NMR (100.6 MHz, C6D6): δ= 28.0 (CH3), 28.1 (CH3), 31.1 (CH2-Se), 31.9 

(CH3, 
t
Bu), 32.2 (CH3, 

t
Bu), 35.3 (C, 

t
Bu), 36.3 (C, 

t
Bu), 65.6 (CH2-O), 78.1 (CHCH2Se), 81.0 

(d, CHCH2O, 
3
JC-P =3.0 Hz), 110.3 (CMe2), 125.1-147.5 (aromatic carbons). MS HR-ESI 

[found 763.3000, C41H57O5PSe (M-Na)
+
 requires 763.3001]. 

L27f. Yield: 448 mg (59%); SiO2-flash chromatography (toluene/hexane/NEt3 = 

5:5:0.1). 
31

P NMR (161.9 MHz, C6D6): δ= 33.9 (s). 
1
H NMR (400 MHz, C6D6): δ=0.51 (s, 

9H, CH3, SiMe3), 0.55 (s, 9H, CH3, SiMe3), 1.27 (s, 3H, CH3), 1.32 (s, 3H, CH3), 2.79 (dd, 

1H, CH2-Se, 
2
JH-H =12.5 Hz, 

3
JH-H =6.1 Hz), 2.88 (dd, 1H, CH2-Se,

 2
JH-H =12.5 Hz, 

3
JH-H =5.5 

Hz), 3.41 (m, 1H, CH2-O), 3.75 (m, CHCH2O), 3.99 (m, 1H, CHCH2Se), 4.31 (m, 1H, CH2-

O), 6.84-6.93 (m, 5H, CH=), 7.09-7.17 (m, 2H, CH=), 7.25 (d, 1H, CH=, 
3
JH-H =8.6 Hz), 

7.27-7.33 (m, 2H, CH=), 7.35 (d, 1H, 
3
JH-H =8.5 Hz, CH=), 7.70 (d, 2H, CH=, 

3
JH-H =8.2 Hz), 

8.11 (s, 1H, CH=), 8.13 (s, 1H, CH=). 
13

C NMR (100.6 MHz, C6D6): δ=0.6 (CH3, SiMe3), 0.8 

(d, CH3, SiMe3, JC-P =4.8 Hz), 27.9 (CH3), 28.1 (CH3), 31.2 (CH2-Se), 65.1 (CH2-O), 77.6 

(CHCH2Se), 81.0 (CHCH2O), 110.15 (CMe2), 123.5-153.8 (aromatic carbons). MS HR-ESI 

[found 783.1601, C39H45O5PSeSi2 (M-Na)
+
 requires 783.1601]. 

L27g. Yield: 471 mg (62%); SiO2-flash chromatography (toluene/hexane/NEt3 = 

5:5:0.1). 
31

P NMR (161.9 MHz, C6D6): δ= 32.4 (s). 
1
H NMR (400 MHz, C6D6): δ=0.51 (s, 

9H, CH3, SiMe3), 0.56 (s, 9H, CH3, SiMe3), 1.24 (s, 3H, CH3), 1.29 (s, 3H, CH3), 2.73 (dd, 

1H, CH2-Se, 
2
JH-H =12.5 Hz, 

3
JH-H =6.3 Hz), 2.87 (dd, 1H, CH2-Se, 

2
JH-H =12.5 Hz, 

3
JH-H =5.4 

Hz), 3.57 (m, 1H, CH2-O), 3.75 (m, 1H, CHCH2O), 3.86 (m, 1H, CHCH2Se), 4.12 (m, 1H, 

CH2-O), 6.83-6.93 (m, 5H, CH=), 7.08-7.19 (m, 2H, CH=), 7.24 (d, 1H, 
3
JH-H =8.4 Hz, CH=), 

7.28-7.34 (m, 2H, CH=), 7.37 (d, 1H, 
3
JH-H =8.4 Hz, CH=), 7.64-7.73 (m, 2H, CH=), 8.1 (s, 

1H, CH=), 8.2 (s, 1H, CH=). 
13

C NMR (100.6 MHz, C6D6): δ=0.6 (CH3, SiMe3), 0.8 (d, CH3, 

SiMe3, JC-P =4.7 Hz), 27.7 (CH3), 28.1 (CH3), 31.0 (CH2-Se), 65.5 (d, CH2-O, 
2
JH-H =5.4 Hz), 

77.2 (CHCH2Se), 80.9 (d, CHCH2O, 
3
JH-H =3.8 Hz), 110.3 (CMe2), 123.4-153.9 (aromatic 

carbons). MS HR-ESI [found 783.1598, C39H45O5PSeSi2 (M-Na)
+
 requires 783.1601]. 

L28f. Yield: 510 mg (63%); SiO2-flash chromatography (toluene/hexane/NEt3 = 

5:5:0.1). 
31

P NMR (161.9 MHz, C6D6): δ= 33.8 (s). 
1
H NMR (400 MHz, C6D6): δ=0.49 (s, 

9H, CH3, SiMe3), 0.53 (s, 9H, CH3, SiMe3), 1.27 (s, 3H,  CH3), 1.34 (s, 3H, CH3), 2.90 (dd, 

1H, CH2-Se, 
2
JH-H =12.6 Hz, 

3
JH-H =5.8 Hz), 2.97 (dd, 1H, CH2-Se, 

2
JH-H =12.8 Hz, 

3
JH-H =6.0 

Hz), 3.47 (m, 1H, CH2-O), 3.81 (m, 1H, CHCH2O), 4.07 (m, 1H, CHCH2Se), 4.33 (m, 1H, 

CH2-O), 6.87 (m, 2H, CH=), 7.06-7.14 (m, 2H, CH=), 7.18-7.23 (m, 2H, CH=), 7.26 (d, 1H, 

CH=, 
3
JH-H =8.5 Hz), 7.33-7.44 (m, 3H, CH=), 7.45-7.50 (m, 1H, CH=), 7.51-7.56 (m, 1H, 

CH=), 7.64-7.74 (m, 2H, CH=), 7.84-7.88 (m, 1H, CH=), 8.11 (s, 1H, CH=), 8.12 (s, 1H, 

CH=).  
13

C NMR (100.6 MHz, C6D6): δ=0.5 (CH3, SiMe3), 0.7 (d, CH3, SiMe3, JC-P =4.8 Hz), 

27.8 (CH3), 28.0 (CH3), 31.2 (CH2-Se), 65.1 (d, CH2-O, 
2
JC-P =3.7 Hz), 77.8 (CHCH2Se), 81.0 

(d, CHCH2O,
 3

JC-P =2.7 Hz), 110.3 (CMe2), 123.4-153.8 (aromatic carbons). MS HR-ESI 

[found 833.1754, C43H47O5PSeSi2 (M-Na)
+
 requires 833.1757]. 

L28g. 429 mg (53%); SiO2-flash chromatography (toluene/hexane/NEt3 = 5:5:0.1). 
31

P NMR (161.9 MHz, C6D6): δ= 33.0 (s). 
1
H NMR (400 MHz, C6D6) δ=0.50 (s, 9H, CH3, 
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SiMe3), 0.55 (s, 9H, CH3, SiMe3), 1.25 (s, 3H,  CH3), 1.31 (s, 3H, CH3), 2.84 (dd, 1H, , CH2-

Se,
 2

JH-H =12.5 Hz, 
3
JH-H =6.0 Hz), 2.95 (dd, 1H, CH2-Se, 

2
JH-H =12.5 Hz, 

3
JH-H =5.6 Hz), 3.59 

(m, 1H, CH2-O), 3.80 (m, 1H, CHCH2O), 3.95 (m, 1H, CHCH2Se), 4.14 (m, 1H, CH2-O), 

6.87 (m, 2H, CH=), 7.05-7.16 (m, 2H, CH=), 7.18-7.22 (m, 2H, CH=), 7.25 (d, 1H, CH=, 
3
JH-

H =8.5 Hz), 7.34-7.43 (m, 3H, CH=), 7.44-7.50 (m, 1H, CH=), 7.50-7.56 (m, 1H, CH=), 7.62 

(d, 1H, CH=, 
3
JH-H =8.2 Hz), 7.69  (d, 1H, CH=, 

3
JH-H =8.2 Hz), 7.86 (s, 1H, CH=), 8.10 (s, 

1H, CH=), 8.13 (s, 1H, CH=).  
13

C NMR (100.6 MHz, C6D6): δ=0.7 (CH3, SiMe3), 0.8 (d, 

CH3, SiMe3, JC-P =4.8 Hz), 27.8 (CH3), 28.1 (CH3), 31.0 (CH2-Se), 65.4 (d, CH2-O,
 2

JC-P =5.2 

Hz), 77.3 (CHCH2Se), 80.9 (d, 
3
JC-P =3.6 Hz, CHCH2O), 110.3 (CMe2), 123.3-153.9 

(aromatic carbons). MS HR-ESI [found 833.1753, C43H47O5PSeSi2 (M-Na)
+
 requires 

833.1757]. 

L29f. 410 mg (49%); Al2O3-flash chromatography (toluene/hexane/NEt3 = 6:4:0.1). 
31

P NMR (161.9 MHz, C6D6): δ= 53.8 (s). 
1
H NMR (400 MHz, C6D6) δ=0.54 (s, 9H, CH3, 

SiMe3), 0.57 (s, 9H, CH3, SiMe3), 1.17 (s, 3H,  CH3), 1.25 (s, 3H, CH3), 1.45 (s, 3H, CH3), 

1.76 (s, 3H, CH), 2.44 (dd, CH2-Se, 1H, 
2
JH-H =13.4 Hz, 

3
JH-H =6.8 Hz), 2.55 (dd, 1H, CH2-Se,

 

2
JH-H =13.3 Hz, 

3
JH-H =2.8 Hz), 3.95 (d, 1H, CHCMe2O,

 3
JH-H =7.5 Hz), 4.20-4.24 (m, 1H, 

CHCH2Se), 6.84 (m, 3H, CH=), 7.00-7.25 (m, 5H, CH=), 7.36-7.43 (m, 4H, CH=), 7.50 (t, 

2H, , CH=, 
3
JH-H =9.0 Hz), 7.63 (d, 1H, CH=, 

3
JH-H =8.1 Hz), 7.70 (d, 1H, CH=, 

3
JH-H =8.1 Hz), 

8.12 (s, 1H, CH=), 8.14 (s, 1H, CH=).  
13

C NMR (100.6 MHz, C6D6): δ=0.6 (CH3, SiMe3), 0.7 

(CH3, SiMe3), 25.2 (CH3), 27.9 (CH3), 28.1 (CH3), 29.2 (d, CH3, 
3
JC-P =18.5 Hz), 32.4 (CH2-

Se), 77.9 (CHCH2Se), 81.2 (d, CMe2O,
 3

JC-P =3.4 Hz), 86.2 (CHCMe2O), 109.7 (CMe2), 

123.7-153.3 (aromatic carbons). MS HR-ESI [found 861.2068, C45H51O5PSeSi2 (M-

Na)
+
 requires 861.2070]. 

L29g. 452 mg (54%); Al2O3-flash chromatography (toluene/hexane/NEt3 = 6:4:0.1). 
31

P NMR (161.9 MHz, C6D6): δ= 54.9 (s). 
1
H NMR (400 MHz, C6D6): δ=0.53 (s, 9H, CH3, 

SiMe3), 0.58 (s, 9H, CH3, SiMe3), 1.04 (s, 3H,  CH3), 1.30 (s, 3H, CH3), 1.56 (s, 3H, CH3), 

1.75 (s, 3H, CH), 2.52 (dd, 1H, CH2-Se, 
2
JH-H =13.6 Hz, 

3
JH-H =8.2 Hz), 2.87 (dd, 1H, CH2-Se, 

2
JH-H =13.6 Hz, 

3
JH-H =2.4 Hz), 3.91 (d, 1H, CHCMe2O,

 3
JH-H =8.1 Hz), 4.09-4.14 (m, 1H, 

CHCH2Se), 6.55-6.59 (m, 1H, CH=), 6.77-6.85 (m, 1H, CH=), 6.95 (t, CH=, 1H, 
3
JH-H =7.5 

Hz), 7.00-7.05 (m, 1H, CH=), 7.05-7.28 (m, 8H, CH=), 7.41-7.47 (m, 2H, CH=), 7.69 (t, 2H, 

CH=, 
3
JH-H =7.4 Hz), 8.15 (s, 1H, CH=), 8.21 (s, 1H, CH=).  

13
C NMR (100.6 MHz, C6D6): 

δ=0.0 (d, CH3, JC-P =4.9 Hz), 0.8 (CH3, SiMe3), 24.9 (d, CH3,
 3

JC-P =8.7 Hz), 26.9 (CH3), 27.6 

(CH3), 28.8 (d, CH3, 
3
JC-P =8.7 Hz), 30.0 (CH2-Se), 76.3 (CHCH2Se), 80.5 (d, CMe2O,

 3
JC-P 

=7.3 Hz), 85.3 (CHCMe2O), 108.9 (CMe2), 124.9-152.7 (aromatic carbons). MS HR-ESI 

[found 833.1756, C43H47O5PSeSi2 (M-Na)
+
 requires 833.1757]. 

L30f. Yield: 420 mg (51%); SiO2-flash chromatography (toluene/hexane/NEt3 = 

8:2:0.1). 
31

P NMR (161.9 MHz, C6D6): δ= 47.5 (s). 
1
H NMR (400 MHz, C6D6): δ=0.50 (s, 

9H, CH3, SiMe3), 0.53 (s, 9H, CH3, SiMe3), 1.21 (s, 3H, CH3), 1.32 (s, 3H, CH3), 1.47 (d, 3H, 

CH3, 
3
JH-H =6.0 Hz), 2.38 (dd, 1H, CH2-Se, 

2
JH-H =13.2 Hz, 

3
JH-H =5.6 Hz), 2.43 (dd, 1H, CH2-

Se, 
2
JH-H =12.8 Hz, 

3
JH-H =3.6 Hz), 3.80 (dd, 1H, CHCHO, 

3
JH-H =7.6 Hz, 

3
JH-H =6.8 Hz), 4.12-

4.17 (m, 1H, CHCH2Se), 4.46-4.55 (m, 1H, CH-O), 6.80-6.88 (m, 2H, CH=),  7.02-7.06 (m, 
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1H, CH=), 7.10-7.21 (m, 3H, CH=), 7.27 (d, 1H, CH=, 
3
JH-H =8.4 Hz), 7.33 (s, 2H, CH=), 

7.35 (d, 1H, CH=, 
3
JH-H =8.8 Hz), 7.45-7.52 (m, 2H, CH=), 7.63 (d, 1H, CH=, 

3
JH-H =8.4 Hz), 

7.69 (d, 1H, CH=, 
3
JH-H =9.2 Hz), 7.77 (s, 1H, CH=), 8.11 (s, 1H, CH=), 8.14 (s, 1H, CH=). 

13
C NMR (100.6 MHz, C6D6): δ=0.0 (d, CH3, SiMe3,  JC-P =2.2 Hz), 0.1 (CH3, SiMe3), 19.2 

(CH3), 26.9 (CH3), 27.2 (CH3), 29.9 (CH2-Se), 72.9 (d, CH-O, 
2
JC-P =4.6 Hz), 78.6 

(CHCH2Se), 83.0 (d, CHCHO, 
3
JC-P =2.2 Hz), 109.3 (CMe2), 122.6-152.0 (aromatic 

carbons). MS HR-ESI [found 847.1913, C44H49O5PSeSi2 (M-Na)
+
 requires 847.1914]. 

L30g. Yield: 519 mg (63%); SiO2-flash chromatography (toluene/hexane/NEt3 = 

8:2:0.1). 
31

P NMR (161.9 MHz, C6D6): δ= 40.7 (s). 
1
H NMR (400 MHz, C6D6): δ=0.48 (s, 

9H, CH3, SiMe3), 0.53 (s, 9H, CH3, SiMe3), 0.81 (d, 3H, CH3, 
3
JH-H =6.4 Hz), 1.33 (s, 3H, 

CH3), 1.39 (s, 3H, CH3), 3.05 (dd, 1H, CH2-Se, 
2
JH-H =12.8 Hz, 

3
JH-H =6.0 Hz), 3.12 (dd, 1H, 

CH2-Se, 
2
JH-H =12.8 Hz, 

3
JH-H =4.8 Hz), 3.96 (dd, 1H, CHCHO, 

3
JH-H =7.2 Hz, 

3
JH-H =5.2 Hz), 

4.29-4.33 (m, 1H, CHCH2Se), 4.66-4.71 (m, 1H, CH-O), 6.80-6.87 (m, 2H, CH=), 7.05-7.24 

(m, 5H, CH=), 7.34-7.52 (m, 5H, CH=), 7.67-7.70 (m, 2H, CH=), 7.88 (s, 1H, CH=), 8.10 (s, 

1H, CH=), 8.12 (s, 1H, CH=). 
13

C NMR (100.6 MHz, C6D6): δ=-0.1 (d, CH3, SiMe3, JC-P =4.6 

Hz), 0.0 (CH3, SiMe3), 17.9 (d, CH3, 
3
JC-P =3.0 Hz), 27.1 (CH3), 27.4 (CH3), 31.5 (CH2-Se), 

72.8 (d, CH-O, 
2
JC-P = 6.8 Hz), 77.8 (CHCH2Se), 83.6 (d, CHCHO, 

3
JC-P =3.8 Hz), 109.4 

(CMe2), 122.6-152.3 (aromatic carbons). MS HR-ESI [found 833.1753, C43H47O5PSeSi2 

(M-Na)
+
 requires 833.1757]. 

3.3.4.3. Typical procedure for the preparation of [Ir(cod)(L7-L30a-g)]BArF 

The corresponding ligand (0.037 mmol) was dissolved in CH2Cl2 (2.5 mL) and [Ir(µ-

Cl)(cod)]2 (12.5 mg, 0.0185 mmol) was added. The reaction was refluxed at 50 °C for 1 

hour. After 5 min at room temperature, NaBArF (38.6 mg, 0.041 mmol) and water (2.5 

mL) were added and the reaction mixture was stirred vigorously for 30 min at room 

temperature. The phases were separated and the aqueous phase was extracted twice 

with CH2Cl2. The combined organic phases were dried with MgSO4, filtered through a 

plug of celite and the solvent was evaporated to give the products as red-orange 

solids. 

[Ir(cod)(L7a)]BArF. Yield: 62 mg (91%). 
31

P NMR (400 MHz, CDCl3) δ:   0 .8 (s). 
1
H 

NMR (CDCl3), : 1.25 (s, 3H, CH3), 1.28 (s, 3H, CH3), 1.36 (s, 9H, CH3, 
t
Bu), 1.37 (s, 9H, 

CH3, 
t
Bu), 1.54 (s, 9H, CH3, 

t
Bu), 1.71 (s, 9H, CH3, 

t
Bu), 1.86 (m, 2H, CH2, cod), 2.01 (m, 

2H, CH2, cod), 2.1 (m, 4H, 2CH2, cod), 3.74-3.79 (m, 2H, CH2-O), 3.80-3.83 (m, 1H, CH2-

S), 3.96(m, 1H, CH=, cod), 4.11 (m, 1H, CHCH2S), 4.13-4.17 (m, 1H, CH2-S), 4.24-4.28 (m, 

1H, CHCH2O), 4.46(m, 1H, CH=, cod), 4.57 (m, 1H, CH=, cod), 4.71 (m, 1H, CH=, cod), 

7.18-7.70 (m, 21H, CH=). 
13

C NMR (CDCl3), : 26.4 (CH3), 27.8(CH2, cod), 29.7(CH2, cod), 

31.4 (CH3, 
t
Bu), 31.5 (CH3, 

t
Bu), 31.7 (CH2, cod), 32.0 (CH3, 

t
Bu), 33.8 (CH2, cod), 35.0 (C, 

t
Bu), 35.1 (C, 

t
Bu), 35.6 (C, 

t
Bu), 47.8 (CH2-S), 69.1 (CH2-O), 69.3 (CH=, cod), 74.1 (CH=, 

cod), 77.4 (CHCH2S), 79.6 (CHCH2S), 102.8 (CH=, cod), 104.1 (CH=, cod), 110.7 (CMe2), 

117.6-149.9 (aromatic carbons), 161.7 (q, C-B, BArF, 
1
JC-B= 49 Hz). MS HR-ESI [found 

993.4238, C49H69IrO5PS (M)
+
 requires 993.4233]. 
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[Ir(cod)(L7b)]BArF. Yield: 62 mg (93%). 
31

P NMR (400 MHz, CDCl3) δ:   02.6 (s). 
1
H 

NMR (CDCl3), : 1.25 (s, 3H, CH3), 1.28 (s, 3H, CH3), 1.50 (s, 9H, CH3, 
t
Bu), 1.67 (s, 9H, 

CH3, 
t
Bu), 1.85 (m, 2H, CH2, cod), 2.01 (m, 2H, CH2, cod), 2.15 (m, 4H, 2CH2, cod), 3.82 

(s, 6H, O-CH3),  3.87-3.95 (m, 4H, CH2-S, CH2-O, CH= cod), 4.11 (m, 2H, CH2-S, CHCH2S), 

4.25 (m, 1H, CHCH2O), 4.44 (m, 1H, CH=, cod), 4.54 (m, 1H, CH=, cod), 4.71 (m, 1H, 

CH=, cod), 6.70-7.69 (m, 21H, CH=). 
13

C NMR (CDCl3), : 26.4 (CH3), 27.5 (CH2, cod), 

29.5 (CH2, cod), 29.6 (CH2, cod), 31.1 (CH3, 
t
Bu), 31.6 (CH3, 

t
Bu), 33.7 (CH2, cod), 35.4 (C, 

t
Bu), 47.7 (CH2-S), 55.5 (O-CH3), 55.6 (O-CH3), 68.2 (CH=, cod), 69.2 (d, CH2-O, JC-P= 14.7 

Hz), 73.8 (CH=, cod), 77.1 (CHCH2S), 79.4 (CHCH2O), 102.7 (CH=, cod), 103.9 (CH=, cod), 

110.4 (CMe2), 113.7-157.2 (aromatic carbons), 161.5 (q, C-B, BArF, 
1
JC-B= 49 Hz). MS HR-

ESI [found 941.3195, C43H57IrO7PS (M)
+
 requires 941.3192]. 

[Ir(cod)(L7c)]BArF. Yield: 59 mg (90%). 
31

P NMR (400 MHz, CDCl3) δ:   02.6 (s). 
1
H 

NMR (CDCl3), : 0.40 (s, 9H, CH3, SiMe3), 0.56 (s, 9H, CH3, SiMe3),1.19 (s, 3H, CH3), 1.21 

(s, 3H, CH3), 1.73 (m, 2H, CH2, cod), 1.98 (m, 2H, CH2, cod), 2.15 (m, 4H, 2CH2, cod),  

3.63-3.85 (m, 3H, CH2-O, CH2-S), 3.95-4.06 (m, 3H, CH2-S, CH= cod, CHCH2S), 4.06 (m, 

1H, CHCH2O), 4.38 (m, 2H, CH=, cod), 4.74 (m, 1H, CH=, cod), 7.18-7.63 (m, 23H, CH=). 
13

C NMR (CDCl3), : 0.0 (SiMe3), 0.9 (SiMe3), 26.3 (CH3), 26.4 (CH3), 26.9 (CH2, cod), 29.6 

(CH2, cod), 30.1 (CH2, cod), 34.3 (CH2, cod), 48.0 (CH2-S), 69.1 (d, CH2-O, JC-P= 13 Hz), 

69.7 (CH=, cod), 74.2 (CH=, cod), 77.1 (CHCH2S), 79.5 (CHCH2O), 103.4 (CH=, cod), 110.5 

(CMe2), 117.3-152.4 (aromatic carbons) , 161. 6 (q, C-B, BArF, 
1
JC-B= 50 Hz). MS HR-ESI 

[found 913.2524, C39H53IrO5PSSi2 (M)
+
 requires 913.2519]. 

[Ir(cod)(L7d)]BArF. Yield: 60 mg (90%). 
31

P NMR (400 MHz, CDCl3) δ:  94.0 (s). 
1
H 

NMR (CDCl3), : 1.21 (s, 3H, CH3), 1.22 (s, 3H, CH3), 1.36 (s, 9H, CH3, 
t
Bu), 1.54 (m, 2H, 

CH2, cod), 1.63 (s, 9H, CH3, 
t
Bu), 1.70 (s, 3H, CH3), 1.74 (s, 3H, CH3), 1.91 (m, 4H, CH2, 

cod), 2.07 (m, 2H, CH2, cod), 2.19 (s, 3H, CH3), 2.20 (s, 3H, CH3), 3.44 (m, 1H, CH2-O), 

3.50 (m, 1H, CH2-S), 3.62 (m, 1H, CH=, cod), 3.81-3.87 (m, 1H, CHCH2S), 3.94 (m, 1H, 

CH2-O), 4.01 (m, 1H, CH2-S), 4.17 (m, 1H, CHCH2O), 4.49 (m, 3H, CH=, cod), 7.17-7.63 

(m, 19H, CH=). 
13

C NMR (CDCl3), : 16.3 (CH3), 16.6 (CH3), 20.3 (CH3), 20.4 (CH3), 26.4 

(CH3), 28.1 (CH2, cod), 29.0 (CH2, cod), 29.6 (CH2, cod), 31.3 (CH3, 
t
Bu), 32.2 (CH3, 

t
Bu), 

33.0 (CH2, cod), 34.7 (C, 
t
Bu), 35.1 (C, 

t
Bu), 46.3(CH2-S), 68.0 (CH=, cod), 68.3 (CH2-O), 

74.7 (CH=, cod), 77.2 (CHCH2S), 79.9 (CHCH2O), 101.2 (CH=, cod), 101.4 (CH=, cod),  

111.3 (CMe2), 117.4-144.6 (aromatic carbons), 161.5 (q, C-B, BArF, 
1
JC-B= 49 Hz). MS HR-

ESI [found 937.3611, C45H61IrO5PS (M)
+
 requires 937.3607]. 

[Ir(cod)(L7e)]BArF. Yield: 63 mg (95%). 
31

P NMR (400 MHz, CDCl3) δ:  96.7 (s). 
1
H 

NMR (CDCl3), : 1.20 (s, 3H, CH3), 1.22 (s, 3H, CH3), 1.38 (s, 9H, CH3, 
t
Bu), 1.52 (m, 2H, 

CH2, cod), 1.64 (s, 9H, CH3, 
t
Bu), 1.72 (s, 3H, CH3), 1.74 (s, 3H, CH3), 1.84-2.12 (m, 6H, 

CH2, cod), 2.21 (s, 3H, CH3), 2.19 (s, 3H, CH3),  3.33 (m, 1H, CH=, cod), 3.55 (m, 2H, CH2-

O), 3.71 (m, 1H, CH2-S), 4.06 (m, 2H, CH2-S, CHCH2S), 4.18 (m, 1H, CHCH2O), 4.26 (m, 

1H, CH=, cod), 4.47 (m, 1H, CH=, cod), 4.60 (m, 1H, CH=, cod), 7.18-7.63 (m, 19H, CH=). 
13

C NMR (CDCl3), : 16.4 (CH3), 16.6 (CH3), 20.3 (CH3), 20.4 (CH3), 26.4 (CH3), 26.9 (CH2, 

cod), 30.0 (CH2, cod), 30.9 (CH2, cod), 31.4 (CH3, 
t
Bu), 32.1 (CH3, 

t
Bu), 34.2 (CH2, cod), 
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34.7 (C, 
t
Bu), 48.3 (CH2-S), 67.6 (CH=, cod), 69.1 (CH2-O), 74.9 (CH=, cod), 77.6 

(CHCH2S), 79.5 (CHCH2O), 102.6 (CH=, cod), 103.1 (CH=, cod),  110.2 (CMe2), 117.3-

143.8 (aromatic carbons), 161.7 (q, C-B, BArF, 
1
JC-B= 49 Hz). MS HR-ESI [found 937.3609, 

C45H61IrO5PS (M)
+
 requires 937.3607]. 

[Ir(cod)(L7f)]BArF. Yield: 63 mg (91%).
31

P NMR (161.9 MHz, CDCl3): δ=100.6 (s). 
1
H 

NMR (400 MHz, CDCl3): δ=0.55 (s, 9H, CH3, SiMe3), 0.73 (s, 9H, CH3, SiMe3), 1.28 (s, 6H, 

CH3), 1.88 (b, 3H, CH2, cod), 1.94-2.22 (m, 5H, CH2, cod), 3.55-3.58 (m, 1H, CH2-O), 3.68 

(b, 1H, CH2-O), 3.74 (d, 1H, CH2-S, 
2
JH-H =10.8 Hz), 3.85-3.90 (m, 1H, CH2-S), 3.98-4.10 

(m, 2H, CH= cod, CHCH2O), 4.34 (b, 1H, CH=, cod), 4.59 (b, 1H, CHCH2S), 4.65 (b, 1H, 

CH=, cod), 4.77 (b, 1H, CH=, cod), 7.04-8.20 (m, 27H, CH= aromatic). 
13

C NMR (100.6 

MHz, CDCl3): δ=0.0 (CH3, SiMe3), 1.2 (CH3, SiMe3), 26.4 (CH3), 26.6 (CH3), 27.9 (CH2, 

cod), 29.4 (CH2, cod), 31.7 (d, CH2, cod, JC-P =3.1 Hz), 33.5 (d, CH2, cod, JC-P =5.3 Hz), 46.4 

(CH2-S), 68.9 (d, CH2-O, 
2
JC-P =13.8 Hz), 69.3 (CH=, cod), 76.4 (CHCH2S), 77.2 (CHCH2O), 

79.11 (CH=, cod), 102.0 (d, CH=, cod, JC-P =16.1 Hz), 106.3 (d, CH=, cod, JC-P =16.1 Hz), 

112.0 (CMe2), 117.4-150.9 (aromatic carbons), 161.7 (q, C-B, BArF, 
1
JC-B =49.7 Hz). MS 

HR-ESI [found 1113.2835, C47H57IrO5PSSi2 (M)
+
 requires 1013.2832].  

[Ir(cod)(L7g)]BArF. Yield: 64 mg (93%).
31

P NMR (161.9 MHz, CDCl3): δ=103.7 (s). 
1
H 

NMR (400 MHz, CDCl3): δ=0.54 (s, 9H, CH3, SiMe3), 0.78 (s, 9H, CH3, SiMe3), 1.25 (s, 6H, 

CH3), 1.61-1.72 (m, 3H, CH2, cod), 1.97-2.24 (m, 5H, CH2, cod), 3.50-3.64 (m, 3H, CH2-O, 

CH= cod), 3.83 (d, 1H, CH2-S, 
2
JH-H =14.0 Hz), 4.05-4.11 (m, 2H, CH2-S, CHCH2O), 4.23 

(pt, 1H, CHCH2S, 
3
JH-H =7.6 Hz), 4.42-4.50 (m, 2H, CH=, cod), 4.81 (b, 1H, CH=, cod), 

7.07-8.21 (m, 27H, CH= aromatic). 
13

C NMR (100.6 MHz, CDCl3): δ=0.0 (CH3, SiMe3), 1.4 

(CH3, SiMe3), 26.4 (CH3), 26.5 (CH3), 29.7 (CH2, cod), 30.1 (CH2, cod), 30.8 (CH2, cod), 

35.1 (CH2, cod), 48.8 (CH2-S), 68.6 (CH=, cod), 69.1 (d, CH2-O, 
2
JC-P =14.5 Hz), 75.4 (CH=, 

cod), 77.5 (CHCH2O), 79.8 (CHCH2S), 103.2 (d, CH=, cod, JC-P =17.5 Hz), 104.4 (d, CH=, 

cod, JC-P =14.5 Hz), 110.4 (CMe2), 117.4-150.3 (aromatic carbons), 161.6 (q, C-B, BArF, 
1
JC-B =49.7 Hz). MS HR-ESI [found 1113.2834, C47H57IrO5PSSi2 (M)

+
 requires 1013.2832].  

[Ir(cod)(L8a)]BArF. Yield: 59 mg (90%). 
31

P NMR (400 MHz, CDCl3) δ:  03.4 (s). 
1
H 

NMR (CDCl3), : 1.24 (s, 6H, CH3), 1.33 (s, 18H, CH3, 
t
Bu), 1.48 (s, 9H, CH3, 

t
Bu), 1.57 (s, 

9H, CH3, 
t
Bu), 2.11 (m, 8H, CH2, cod), 2.5 (s, 3H, CH3),  3.43 (m, 2H, CH2-S), 3.84-3.99 

(m, 2H, CH2-O, CHCH2S), 4.15 (m, 1H, CH=, cod), 4.22 (m, 1H, CHCH2O), 4.52 (m, 1H, 

CH=, cod), 5.09 (m, 2H, CH=, cod), 7.15-7.69 (m, 16H, CH=).
13

C NMR (CDCl3), : 19.7 

(CH3), 26.6 (CH3), 26.7 (CH3), 28.7 (CH2, cod), 29.8 (CH2, cod), 30.3 (CH2, cod), 31.5 (CH3, 
t
Bu), 31.6 (CH3, 

t
Bu), 31.8 (CH3, 

t
Bu), 33.2 (CH2, cod), 35.0 (C, 

t
Bu), 35.6 (C, 

t
Bu), 35.7 (C, 

t
Bu), 44.5 (CH2-S), 68.1 (d, CH2-O, JC-P= 12.4 Hz), 72.2 (CH=, cod), 74.8 (CH=, cod), 77.1 

(CHCH2S), 77.4 (CHCH2O), 99.8 (CH=, cod), 100.9 (CH=, cod), 110.9 (CMe2), 117.6-149.6 

(aromatic carbons), 161.8 (q, C-B, BArF, 
1
JC-B= 49 Hz). MS HR-ESI [found 931.4078, 

C44H67IrO5PS (M)
+
 requires 931.4076].  

[Ir(cod)(L8f)]BArF. Yield: 62 mg (92%). 
31

P NMR (161.9 MHz, CDCl3): δ= 0 .6 (s). 
1
H 

NMR (400 MHz, CDCl3): δ=0.49 (s, 9H, CH3, SiMe3), 0.63 (s, 9H, CH3, SiMe3), 1.26  (s, 3H, 

CH3), 1.30 (s, 3H, CH3), 1.31 (s, 3H, CH3), 1.91 (b, 2H, CH2, cod), 2.07 (b, 3H, CH2, cod), 
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2.21 (b, 3H, CH2, cod), 3.24-3.31 (m, 2H, CH2-S), 3.63 (b, 2H, CH2-O, CH= cod), 3.99 (dd, 

1H, CH2-O, 
2
JH-H =21.2 Hz, 

3
JH-H =10.4 Hz), 4.08 (b, 1H, CHCH2O), 4.22 (b, 1H, CHCH2S), 

4.67 (b, 1H, CH=, cod), 5.21 (b, 1H, CH=, cod), 5.27 (b, 1H, CH=, cod), 6.99-8.16 (m, 

22H, CH= aromatic). 
13

C NMR (100.6 MHz, CDCl3): δ=0.0 (CH3, SiMe3), 1.0 (CH3, SiMe3), 

26.4 (CH3), 26.6 (CH3), 29.0 (CH2, cod), 29.4 (CH2, cod), 30.0 (CH3), 32.1 (CH2, cod), 32.7 

(CH2, cod), 44.8 (CH2-S), 68.9 (d, CH2-O, 
2
JC-P =13.8 Hz), 70.0 (CH=, cod), 77.2 (CHCH2O), 

78.1 (CH=, cod), 78.8 (CHCH2S), 100.5 (d, CH=, cod, JC-P =17.6 Hz), 104.0 (d, CH=, cod, JC-

P =16.8 Hz), 110.0 (CMe2), 117.4-150.8 (aromatic carbons), 161.7 (q, C-B, BArF, 
1
JC-B 

=49.7 Hz). MS HR-ESI [found 951.2679, C42H55IrO5PSSi2 (M)
+
 requires 951.2676].  

[Ir(cod)(L8g)]BArF. Yield: 64 mg (95%). 
31

P NMR (161.9 MHz, CDCl3): δ= 05.3 (s). 
1
H 

NMR (400 MHz, CDCl3): δ=0.48 (s, 9H, CH3, SiMe3), 0.65 (s, 9H, CH3, SiMe3), 1.25  (s, 3H, 

CH3), 1.29 (s, 3H, CH3), 1.31 (s, 3H, CH3), 1.72 (b, 2H, CH2, cod), 1.87 (b, 1H, CH2, cod), 

2.11 (b, 3H, CH2, cod), 2.31 (b, 2H, CH2, cod), 3.43-3.62 (m, 4H, CH2-S, CH2-O, CH= cod), 

3.73-3.80 (m, 1H, CH2-O), 3.98-4.04 (m, 1H, CHCH2O), 4.16 (pt, 1H, CHCH2S, 
3
JH-H =7.2 

Hz), 4.48 (b, 1H, CH=, cod), 5.01 (b, 1H, CH=, cod), 5.27 (b, 1H, CH=, cod), 7.02-8.18 (m, 

22H, CH= aromatic). 
13

C NMR (100.6 MHz, CDCl3): δ=0.  (CH3, SiMe3), 1.2 (CH3, SiMe3), 

26.5 (CH3), 27.2 (CH3), 29.7 (CH2, cod), 30.0 (CH2, cod), 31.3 (CH3), 34.5 (CH2, cod), 45.7 

(CH2-S), 68.2 (d, CH2-O, 
2
JC-P =12.7 Hz), 70.5 (CH=, cod), 76.2 (CH=, cod), 77.6 (CHCH2O), 

78.2 (CHCH2S), 100.2 (d, CH=, cod, JC-P =18.1 Hz), 101.8 (d, CH=, cod, JC-P =13.8 Hz), 

110.5 (CMe2), 117.5-148.8 (aromatic carbons), 161.7 (q, C-B, BArF, 
1
JC-B =50.4 Hz). MS 

HR-ESI [found 951.2678, C42H55IrO5PSSi2 (M)
+
 requires 951.2676].  

[Ir(cod)(L9a)]BArF. Yield: 63 mg (93%).
31

P NMR (400 MHz, CDCl3) δ:   04.  (s). 
1
H 

NMR (CDCl3), : 1.29 (s, 6H, CH3), 1.35 (s, 9H, CH3, 
t
Bu), 1.36 (s, 9H, CH3, 

t
Bu), 1.44 (s, 

9H, CH3, 
t
Bu), 1.63 (s, 18H, CH3, 

t
Bu), 1.73 (m, 2H, CH2, cod), 1.86 (m, 2H, CH2, cod), 

2.01 (m, 2H, 2CH2, cod), 2.25 (m, 2H, 2CH2, cod), 3.27 (dd, 1H, 
2
JH-H= 15.2  Hz, 

3
JH-H=  3.2 

Hz, CH2-S), 3.50-3.56 (m, 1H, CH2-O), 3.62 (dd, 1H, 
2
JH-H= 12.4  Hz, 

3
JH-H=  2.8 Hz, CH2-S), 

3.80-3.86 (m, 1H, CH2-O), 3.96-4.02 (m, 1H, CHCH2O), 4.04-4.07 (m, 1H, CHCH2S), 

4.56(m, 2H, CH=, cod), 5.56 (m, 1H, CH=, cod), 6.02 (m, 1H, CH=, cod), 7.18-7.72 (m, 

16H, CH=). 
13

C NMR (CDCl3), : 26.6 (CH3), 27.7(CH2, cod), 29.9(CH2, cod), 30.9 (CH3, 
t
Bu), 31.1 (CH3, 

t
Bu), 31.5 (CH3, 

t
Bu), 32.5 (CH2, cod), 33.9 (CH2, cod), 35.0 (C, 

t
Bu), 35.5 

(C, 
t
Bu), 35.7 (C, 

t
Bu), 36.3 (CH2-S), 66.5 (CH2-O), 71.1 (CH=, cod), 71.7 (CH=, cod), 76.3 

(CHCH2S), 78.0 (CHCH2O), 93.9 (CH=, cod), 98.6 (CH=, cod), 110.4 (CMe2), 117.6-149.8 

(aromatic carbons), 161.6 (q, C-B, BArF, 
1
JC-B= 49 Hz). MS HR-ESI [found 973.4549, 

C47H33IrO5PS (M)
+
 requires 973.4546].  

[Ir(cod)(L9d)]BArF. Yield: 62 mg (94%). 
31

P NMR (400 MHz, CDCl3) δ:   03.2(s), 92.7 

(s). 
1
H NMR (CDCl3), :  1.04 (m, 2H, CH2, cod), 1.19 (s, 3H, CH3), 1.25 (s, 3H, CH3), 1.30 

(s, 9H, CH3, 
t
Bu), 1.39 (s, 9H, CH3, 

t
Bu), 1.52 (s, 9H, CH3, 

t
Bu), 1.64 (s, 3H, CH3), 1.75 (s, 

3H, CH3), 1.84-2.02 (m, 4H, CH2, cod), 2.03 (s, 3H, CH3), 2.17 (s, 3H, CH3), 2.43 (m, 2H, 

CH2, cod), 2.89-3.07 (m, 2H, CH2-O, CH2-S), 3.25-3.30 (m, 1H, CH2-S), 3.51 (m, 1H, 

CHCH2S), 3.64 (m, 1H, CHCH2O), 3.84-3.91 (m, 1H, CH2-O), 4.32 (m, 2H, CH=, cod), 5.20 

(m, 1H, CH=, cod), 5.96 (m, 1H, CH=, cod), 7.14-7.60 (m, 14H, CH=). 
13

C NMR (CDCl3), : 
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16.4 (CH3), 16.6 (CH3), 20.3 (CH3), 26.3 (CH3), 28.0 (CH2, cod), 30.2 (CH2, cod), 30.9 (CH3, 
t
Bu), 31.7 (CH3, 

t
Bu), 32.2 (CH3, 

t
Bu), 32.5 (CH2, cod), 32.9 (C, 

t
Bu), 34.9 (C, 

t
Bu), 34.2 

(CH2, cod), 34.4 (CH2, cod), 35.9 (CH2-S), 67.6 (CH2-O), 70.6 (CH=, cod), 72.8 (CH=, cod), 

77.1 (CHCH2S), 84.6 (CHCH2O), 91.4 (CH=, cod), 99.3 (CH=, cod), 110.3 (CMe2), 117.4-

143.4 (aromatic carbons), 161.5 (q, C-B, BArF, 
1
JC-B= 49 Hz). MS HR-ESI [found 917.3922, 

C43H65IrO5PSSi2 (M)
+
 requires 917.3920].  

[Ir(cod)(L9e)]BArF. Yield: 60 mg (92%). 
31

P NMR (400 MHz, CDCl3) δ:  98.6 (s). 
1
H 

NMR (CDCl3), : 1.30 (s, 6H, CH3), 1.37 (s, 9H, CH3, 
t
Bu), 1.50 (s, 9H, CH3, 

t
Bu), 1.61 (s, 

9H, CH3, 
t
Bu), 1.75 (s, 3H, CH3), 1.81 (s, 3H, CH3), 2.04 (m, 6H, CH2, cod), 2.25 (s, 3H, 

CH3), 2.26 (s, 3H, CH3), 2.4 (m, 2H, CH2, cod), 3.25 (m, 1H, CH2-S), 3.31 (m, 1H, CH2-O), 

3.65-3.70 (m, 1H, CH2-S), 3.75-3.81 (m, 1H, CH2-O), 3.98 (m, 1H, CHCH2S), 4.08-4.11 (m, 

2H, CHCH2O, CH= cod), 4.43 (m, 1H, CH=, cod), 5.36 (m, 1H, CH=, cod), 6.09 (m, 1H, 

CH=, cod), 7.19-7.69 (m, 14H, CH=). 
13

C NMR (CDCl3), : 16.6 (CH3), 16.8 (CH3), 20.3 

(CH3), 20.5 (CH3), 26.6 (CH3), 26.7 (CH3), 28.8 (CH2, cod), 29.9 (CH2, cod), 31.1 (CH3, 
t
Bu), 31.4 (CH3, 

t
Bu), 32.2 (CH3, 

t
Bu), 33.8 (CH2, cod), 34.8 (C, 

t
Bu), 35.1 (C, 

t
Bu), 35.1 

(CH2, cod), 36.8 (CH2-S), 66.2 (CH2-O), 69.8 (CH=, cod), 72.8 (CH=, cod), 76.1 (CHCH2S), 

77.5 (CHCH2O), 99.4 (CH=, cod), 99.5 (CH=, cod), 110.5 (CMe2), 117.6-144.5 (aromatic 

carbons), 161.6 (q, C-B, BArF, 
1
JC-B= 49 Hz). MS HR-ESI [found 917.3924, C43H65IrO5PSSi2 

(M)
+
 requires 917.3920]. 

[Ir(cod)(L10a)]BArF. Yield: 64 mg (92%). 
31

P NMR (400 MHz, CDCl3) δ:   0 .5 (s). 
1
H 

NMR (CDCl3), : 1.22 (s, 3H, CH3), 1.24 (s, 3H, CH3), 1.33 (s, 18H, CH3, 
t
Bu), 1.54 (s, 9H, 

CH3, 
t
Bu), 1.62 (s, 9H, CH3, 

t
Bu), 1.78 (m, 2H, CH2, cod), 1.96 (m, 2H, CH2, cod), 2.11 (m, 

2H, CH2, cod), 2.22 (m, 2H, CH2, cod), 2.60 (s, 3H, CH3), 2.68 (s, 3H, CH3), 3.43 (m, 1H, 

CH2-S), 3.69-3.76 (m, 1H, CH2-O), 3.95-4.06 (m, 4H, CH2-S, CH= cod, CHCH2S), 4.12-4.16 

(m, 4H, CH cod, CH2-O, CHCH2O), 4.43 (m, 1H, CH=, cod), 4.57 (m, 1H, CH=, cod), 7.18-

7.68 (m, 19H, CH=). 
13

C NMR (CDCl3), : 22.7 (CH3), 23.0 (CH3), 26.9 (CH3), 30.7 (CH2, 

cod), 30.9 (CH2, cod), 31.4 (CH3, 
t
Bu), 31.5 (CH3, 

t
Bu), 31.9 (CH3, 

t
Bu), 34.6 (CH2, cod), 

35.0 (C, 
t
Bu), 35.1 (C, 

t
Bu), 35.5 (C, 

t
Bu), 35.6 (C, 

t
Bu), 47.3 (CH2-S), 69.3 (CH2-O), 77.4 

(CHCH2S), 80.2 (CHCH2O), 103.7 (CH=, cod), 110.9 (CMe2), 117.6-149.9 (aromatic 

carbons), 161.5 (q, C-B, BArF, 
1
JC-B= 49 Hz). MS HR-ESI [found 1021.4547, C51H73IrO5PS 

(M)
+
 requires 1021.4546]. 

[Ir(cod)(L10d)]BArF. Yield: 63 mg (93%). 
31

P NMR (400 MHz, CDCl3) δ:  93.6 (s). 
1
H 

NMR (CDCl3), : 1.18 (s, 3H, CH3), 1.22 (s, 3H, CH3), 1.36 (s, 9H, CH3, 
t
Bu), 1.56 (m, 2H, 

CH2, cod), 1.61 (s, 9H, CH3, 
t
Bu), 1.71 (s, 3H, CH3), 1.73 (s, 3H, CH3), 1.87 (m, 2H, CH2, 

cod), 2.08 (m, 2H, CH2, cod), 2.18 (s, 3H, CH3), 2.19 (s, 3H, CH3), 2.25 (m, 2H, CH2, cod), 

2.53 (s, 3H, CH3), 2.69 (s, 3H, CH3), 3.02 (m, 1H, CH2-S), 3.32 (m, 1H, CH=, cod), 3.46-

3.49 (m, 1H, CH2-O), 3.79-3.82 (m, 1H, CHCH2S), 3.87-3.92 (m, 1H, CH=, cod), 3.95 (m, 

1H, CH2-S), 4.00-4.08 (m, 2H, CHCH2O, CH2-O), 4.49 (m, 1H, CH=, cod), 4.76 (m, 1H, 

CH=, cod), 7.08-7.63 (m, 17H, CH=). 
13

C NMR (CDCl3), : 16.5 (CH3), 16.8 (CH3), 20.5 

(CH3), 20.6 (CH3), 22.7 (CH3), 22.9 (CH3), 26.8 (2CH3), 27.0 (CH2, cod), 29.9 (CH2, cod), 

31.5 (CH3, 
t
Bu), 31.6 (CH2, cod), 32.6 (CH3, 

t
Bu), 34.3 (CH2, cod), 34.9 (C, 

t
Bu), 35.2 (C, 
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t
Bu), 44.5 (CH2-S), 65.4 (CH=, cod), 69.4 (CH2-O), 74.6 (CH=, cod), 77.4 (CHCH2S), 79.6 

(CHCH2O), 103.1 (CH=, cod), 105.6 (CH=, cod), 112.1 (CMe2), 117.6-145.0 (aromatic 

carbons), 161.7 (q, C-B, BArF, 
1
JC-B= 49 Hz). MS HR-ESI [found 965.3922, C47H65IrO5PS 

(M)
+
 requires 965.3920]. 

[Ir(cod)(L10e)]BArF. Yield: 60 mg (89%). 
31

P NMR (400 MHz, CDCl3) δ:  97.0 (s). 
1
H 

NMR (CDCl3), : 0.85 (s, 3H, CH3), 0.90 (s, 3H, CH3), 0.90 (m, 2H, CH2, cod),1.07 (s, 9H, 

CH3, 
t
Bu), 1.26 (s, 9H, CH3, 

t
Bu), 1.36 (m, 2H, CH2, cod), 1.39 (s, 3H, CH3), 1.42 (s, 3H, 

CH3), 1.57 (m, 2H, CH2, cod), 1.73 (m, 2H, CH2, cod), 1.74 (s, 3H, CH3), 1.87 (s, 3H, CH3), 

2.20 (s, 3H, CH3), 2.21 (s, 3H, CH3), 3.15 (m, 1H, CH2-S), 3.18 (m, 1H, CH=, cod), 3.22 (m, 

2H, CH2-O), 3.47-3.52 (m, 1H, CH2-S), 3.66 (m, 1H, CH=, cod), 3.68 (m, 1H, CHCH2S), 

3.76-3.78 (m, 1H, CHCH2O), 4.00 (m, 1H, CH=, cod), 4.18 (m, 1H, CH=, cod), 6.78-7.30 

(m, 17H, CH=). 
13

C NMR (CDCl3), : 16.4 (CH3), 16.6 (CH3), 20.3 (CH3), 20.4 (CH3), 22.4 

(CH3), 22.5 (CH3), 26.4 (CH3), 26.8 (CH2, cod), 29.6 (CH2, cod), 30.7 (CH2, cod), 31.5 (CH3, 
t
Bu), 32.6 (CH3, 

t
Bu), 34.4 (CH2, cod), 34.7 (C, 

t
Bu), 48.0 (CH2-S), 67.9 (CH=, cod), 68.6 

(CH2-O), 74.7 (CH=, cod), 77.5 (CHCH2S), 80.4 (CHCH2O), 101.8 (CH=, cod), 103.3 (CH=, 

cod), 110.3 (CMe2), 117.4-140.7  (aromatic carbons), 161.6 (q, C-B, BArF, 
1
JC-B= 49 Hz). 

MS HR-ESI [found 965.3921, C47H65IrO5PS (M)
+
 requires 965.3920]. 

[Ir(cod)(L11d)]BArF. Yield: 64 mg (93%). 
31

P NMR (400 MHz, CDCl3) δ:  92.9 (s). 
1
H 

NMR (CDCl3), : 1.30 (s, 3H, CH3), 1.36 (s, 3H, CH3), 1.40 (s, 9H, CH3, 
t
Bu), 1.46 (m, 2H, 

CH2, cod), 1.64 (s, 9H, CH3, 
t
Bu), 1.70 (m, 2H, CH2, cod), 1.74 (s, 3H, CH3), 1.77-181 (m, 

6H, CH2, Ad), 1.85 (s, 3H, CH3), 2.00-2.06 (m, 6H, CH2, Ad), 2.16 (m, 2H, CH2, cod), 2.23 

(m, 3H, CH, Ad), 2.27 (s, 6H, CH3), 2.36 (m, 2H, CH2, cod), 2.50 (m, 1H, CH2-S), 3.05 (m, 

1H, CH2-O), 3.22 (m, 1H, CH2-S), 3.6 (m, 1H, CHCH2S), 3.73 (m, 1H, CHCH2O), 3.98 (m, 

1H, CH2-O),  4.38 (m, 2H, CH=, cod), 5.45 (m, 1H, CH=, cod), 6.12 (m, 1H, CH=, cod), 

7.17-7.71 (m, 14H, CH=). 
13

C NMR (CDCl3), : 16.4 (CH3), 16.6 (CH3), 20.3 (2CH3), 26.0 

(CH2, cod), 26.3 (2CH3), 27.9 (CH2, cod), 29.7 (CH2, cod), 30.0 (3CH, Ad), 30.9 (CH3, 
t
Bu), 

31.8 (CH3, 
t
Bu), 32.8 (CH2-S), 34.2 (CH2, cod), 34.4 (C, 

t
Bu), 35.0 (C, 

t
Bu), 35.3 (3 CH2, 

Ad), 42.5 (3 CH2, Ad), 58.4 (C, Ad), 67.5 (d, CH2-O, JC-P= 15.5 Hz), 70.1 (CH=, cod),  72.7 

(CH=, cod), 78.2 (CHCH2S), 84.8 (CHCH2O), 91.2 (CH=, cod), 99.2 (CH=, cod), 110.2 (C), 

117.3-145.0 (aromatic carbons), 161.6 (q, C-B, BArF, 
1
JC-B= 49 Hz). MS HR-ESI [found 

995.4392, C49H71IrO5PS (M)
+
 requires 995.4389]. 

[Ir(cod)(L11e)]BArF. Yield: 62 mg (92%). 
31

P NMR (400 MHz, CDCl3) δ:  98.5 (s). 
1
H 

NMR (CDCl3), : 1.25 (s, 3H, CH3), 1.32 (s, 3H, CH3), 1.38 (s, 9H, CH3, 
t
Bu), 1.45 (m, 2H, 

CH2, cod), 1.63 (s, 9H, CH3, 
t
Bu), 1.71 (s, 3H, CH3), 1.76 (m, 3H, CH2, Ad), 1.82 (s, 3H, 

CH3), 1.93 (m, 2H, CH2, cod), 2.04 (m, 3H, CH2, Ad), 2.14 (m, 2H, CH2, cod), 2.21 (m, 3H, 

CH, Ad),  2.26 (s, 6H, CH3), 2.34 (m, 2H, CH2, cod), 3.29 (m, 2H, CH2-S, CH2-O), 3.60 (m, 

1H, CH2-S), 3.82 (m, 1H, CH2-O), 4.02-4.11 (m, 3H, CHCH2O, CHCH2S, CH=, cod), 4.43 

(m, 1H, CH=, cod), 5.58 (m, 1H, CH=, cod), 6.16 (m, 1H, CH=, cod), 7.24-7.71 (m, 14H, 

CH=). 
13

C NMR (CDCl3), : 16.4 (CH3), 16.6 (CH3), 20.3 (CH3), 26.4 (CH3), 26.5 (CH3), 26.7 

(CH2, cod), 28.7 (CH2, cod), 29.6 (CH2, cod), 30.3 (3CH, Ad),  31.1 (CH3, 
t
Bu), 32.1 (CH3, 

t
Bu), 33.5 (CH2, cod), 33.9 (CH2-S), 34.6 (C, 

t
Bu), 34.9 (C, 

t
Bu), 35.3 (CH2, Ad), 43.2 (CH2, 
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Ad), 58.5 (C, Ad), 66.0 (CH2-O, JC-P= 15 Hz), 69.1 (CH=, cod), 72.5 (CH=, cod), 76.0 

(CHCH2S), 77.1 (CHCH2O), 99.0 (CH=, cod), 99.1 (CH=, cod), 110.2 (CMe3), 117.3-144.4 

(aromatic carbons), 161.6 (q, C-B, BArF, 
1
JC-B= 49 Hz). MS HR-ESI [found 995.4391, 

C49H71IrO5PS (M)
+
 requires 995.4389]. 

[Ir(cod)(L12d)]BArF. Yield: 61 mg (90%). 
31

P NMR (400 MHz, CDCl3) δ:  94.2 (s). 
1
H 

NMR (CDCl3), : 1.15 (s, 3H, CH3), 1.21 (s, 3H, CH3), 1.31 (m, 2H, CH2, cod), 1.45 (s, 9H, 

CH3, 
t
Bu), 1.67 (s, 9H, CH3, 

t
Bu), 1.72 (s, 3H, CH3), 1.74 (s, 3H, CH3), 1.87-2.13 (m, 6H, 

CH2, cod), 2.20 (s, 6H, CH3), 3.34-3.51 (m, 3H, CH2-S, CH2-O, CH=, cod), 3.85 (m, 1H, 

CHCH2S), 4.06 (m, 2H, CH2-O, CH=, cod), 4.16 (m, 1H, CHCH2O), 4.57 (m, 2H, CH2-O, 

CH=, cod), 5.17 (m, 1H, CH=, cod), 7.05-8.42 (m, 21H, CH=). 
13

C NMR (CDCl3), : 16.3 

(CH3), 16.6 (CH3), 20.3 (CH3), 20.4 (CH3), 26.5 (CH3), 29.3 (CH2, cod),  29.5 (CH2, cod), 

29.7 (CH2, cod), 31.4 (CH3, 
t
Bu), 34.0 (CH2, cod), 34.7 (C, 

t
Bu), 35.1 (C, 

t
Bu), 45.1 (CH2-S), 

66.2 (CH=, cod), 69.0 (CH2-O), 75.7 (CH=, cod), 77.2 (CHCH2S), 79.0 (CHCH2O), 105.7 

(CH=, cod), 111.9 (CMe2), 117.4-144.9 (aromatic carbons), 161.7 (q, C-B, BArF, 
1
JC-B= 49 

Hz). MS HR-ESI [found 987.3765, C49H63IrO5PS (M)
+
 requires 987.3763]. 

[Ir(cod)(L12e)]BArF. Yield: 64 mg (91%). 
31

P NMR (400 MHz, CDCl3) δ:  96.9 (s). 
1
H 

NMR (CDCl3), : 0.87 (m, 2H, CH2, cod), 1.18 (s, 6H, CH3), 1.43 (s, 9H, CH3, 
t
Bu), 1.52 (m, 

2H, CH2, cod), 1.70 (s, 6H, CH3), 1.75 (s, 9H, CH3, 
t
Bu), 2.06 (m, 4H, CH2, cod), 2.22 (s, 

6H, CH3), 3.29 (m, 1H, CH=, cod), 3.57 (m, 2H, CH2-O, CH=, cod), 3.74 (m, 1H, CH2-S), 

3.95-4.34 (m, 3H, CH2-O, CHCH2S, CHCH2O), 4.44 (m, 1H, CH=, cod), 4.54 (m, 1H, CH2-

O), 4.71 (m, 1H, CH=, cod), 7.17-8.37 (m, 21H, CH=). 
13

C NMR (CDCl3), : 16.4 (CH3), 

16.6 (CH3), 20.3 (CH3), 20.4 (CH3), 26.3 (CH3), 26.4 (CH3), 29.6 (CH2, cod), 30.5 (CH2, 

cod), 31.4 (CH3, 
t
Bu), 32.1 (C, 

t
Bu), 32.3 (C, 

t
Bu), 34.8 (CH2, cod), 48.5 (CH2-S), 67.1 (CH=, 

cod), 68.8 (CH2-O), 74.9 (CH=, cod), 77.9 (CHCH2S), 80.2 (CHCH2O), 102.2 (CH=, cod), 

104.8 (CH=, cod), 110.2 (CMe2), 117.4-159.3 (aromatic carbons), 161.6 (q, C-B, BArF, 
1
JC-

B= 49 Hz). MS HR-ESI [found 987.3763, C49H63IrO5PS (M)
+
 requires 987.3763]. 

[Ir(cod)(L13d)]BArF. Yield: 58 mg (89%). 
31

P NMR (400 MHz, CDCl3) δ:  94.1 (s). 
1
H 

NMR (CDCl3), : 1.49 (s, 6H, CH3), 1.66 (s, 9H, CH3, 
t
Bu), 1.83 (m, 2H, CH2, cod), 1.96 (s, 

9H, CH3, 
t
Bu), 2.00 (s, 3H, CH3), 2.04 (s, 3H, CH3), 2.20 (m, 4H, CH2, cod), 2.35 (m, 2H, 

CH2, cod), 2.49 (s, 6H, CH3), 3.78 (m, 1H, CH2-O), 3.90 (m, 2H, CH2-S, CH=, cod), 4.16 (m, 

1H, CHCH2S), 4.25 (m, 1H, CH2-O), 4.40-4.34  (m, 1H, CH2-S), 4.53 (m, 1H, CHCH2O), 

4.78 (m, 1H, CH=, cod), 4.86 (m, 2H, CH=, cod), 7.47-8.23 (m, 21H, CH=). 
13

C NMR 

(CDCl3), : 16.3 (CH3), 16.6 (CH3), 20.3 (2CH3), 26.5 (2CH3), 28.2 (CH2, cod), 28.8 (CH2, 

cod), 29.7 (CH2, cod), 31.3 (CH3, 
t
Bu), 32.3 (CH3, 

t
Bu), 32.9 (CH2, cod), 34.7 (C, 

t
Bu), 35.1 

(C, 
t
Bu), 46.5 (CH2-S), 67.9 (CH=, cod), 68.3 (CH2-O, JC-P= 14.4 Hz), 75.0 (CH=, cod), 77.2 

(CHCH2S), 79.9 (CHCH2O), 101.5 (CH=, cod), 104.4 (CH=, cod), 111.4 (CMe2), 117.4-

144.7 (aromatic carbons), 161.6 (q, C-B, BArF, 
1
JC-B= 49 Hz). MS HR-ESI [found 987.3766, 

C49H63IrO5PS (M)
+
 requires 987.3763]. 

[Ir(cod)(L13e)]BArF. Yield: 61 mg (90%). 
31

P NMR (400 MHz, CDCl3) δ:  96.9 (s). 
1
H 

NMR (CDCl3), : 1.28 (s, 6H, CH3), 1.48 (s, 9H, CH3, 
t
Bu), 1.60 (m, 2H, CH2, cod), 1.76 (s, 

9H, CH3, 
t
Bu), 1.81 (s, 3H, CH3), 1.84 (s, 3H, CH3), 1.93 (m, 2H, CH2, cod), 2.14 (m, 4H, 
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CH2, cod), 2.3 (s, 6H, CH3), 3.45 (m, 1H, CH=, cod), 3.64 (m, 2H, CH2-O), 3.87 (m, 1H, 

CH2-S), 4.18 (m, 2H, CH2-S, CHCH2S), 4.31 (m, 1H, CHCH2O), 4.40 (m, 1H, CH=, cod), 

4.58 (m, 1H, CH=, cod), 4.74 (m, 1H, CH=, cod), 7.26-8.06 (m, 21H, CH=). 
13

C NMR 

(CDCl3), : 16.4 (CH3), 16.6 (CH3), 20.3 (CH3), 20.4 (CH3), 26.4 (CH3), 27.0 (CH2, cod), 

29.6 (CH2, cod), 30.0 (CH2, cod), 31.0 (CH2, cod), 31.4 (CH3, 
t
Bu), 32.1 (CH3, 

t
Bu), 34.3 (C, 

t
Bu), 34.7 (C, 

t
Bu), 48.3 (CH2-S), 67.8 (CH=, cod), 69.1 (CH2-O, JC-P= 14.4 Hz), 75.0 (CH=, 

cod), 77.6 (CHCH2S), 79.6 (CHCH2O), 102.9 (CH=, cod), 103.1 (CH=, cod),  110.3 (CMe2), 

117.4-143.9 (aromatic carbons), 161.7 (q, C-B, BArF, 
1
JC-B= 49 Hz). MS HR-ESI [found 

987.3764, C49H63IrO5PS (M)
+
 requires 987.3763]. 

[Ir(cod)(L14a)]BArF. Yield: 63 mg (90%). 
31

P NMR (400 MHz, CDCl3) δ:  99.1 (s). 
1
H 

NMR (CDCl3), : 0.88 (m, 2H, CH2, cod), 1.25 (s, 3H, CH3), 1.28 (s, 3H, CH3), 1.33 (s, 9H, 

CH3, 
t
Bu), 1.36 (s, 9H, CH3, 

t
Bu), 1.52 (s, 9H, CH3, 

t
Bu), 1.56 (s, 9H, CH3, 

t
Bu), 1.77 (s, 3H, 

CH3), 1.99 (m, 2H, CH2, cod), 2.09 (m, 2H, CH2, cod), 2.1 (m, 2H, 2CH2, cod), 3.80 (m, 

1H, CH=, cod), 3.95 (m, 1H, CH2-S), 4.19 (m, 2H, CH2-S, CHCMe2O), 4.33 (m, 1H, 

CHCH2S), 4.42 (m, 1H, CH=, cod), 4.50 (m, 1H, CH=, cod), 4.70 (m, 1H, CH=, cod), 7.15-

7.71 (m, 21H, CH=). 
13

C NMR (CDCl3), : 22.7 (CH2, cod), 26.4 (CH3), 26.5 (CH3), 27.5 

(CH3), 29.6 (2CH2, cod), 31.2 (CH3, 
t
Bu), 31.6 (2CH3, 

t
Bu), 31.9 (CH3, 

t
Bu), 33.8 (CH2, cod), 

34.8 (C, 
t
Bu), 35.4 (C, 

t
Bu), 35.5 (C, 

t
Bu), 47.9 (CH2-S), 75.9 (CH=, cod), 76.8 (CH=, cod), 

77.2 (CHCH2S), 83.7 (CHCMe2O), 91.3 (d, CMe2O, JC-P= 21.2 Hz), 100.5 (CH=, cod), 100.7 

(CH=, cod), 109.2 (CMe2), 117.4-149.5 (aromatic carbons), 161.6 (q, C-B, BArF, 
1
JC-B= 49 

Hz). MS HR-ESI [found 1021.4547, C57H73IrO5PS (M)
+
 requires 1021.4546]. 

[Ir(cod)(L14d)]BArF. Yield: 60 mg (91%). 
31

P NMR (400 MHz, CDCl3) δ:  92.2 (s). 
1
H 

NMR (CDCl3), : 0.85 (m, 2H, CH2, cod), 1.25 (s, 3H, CH3), 1.31 (s, 3H, CH3), 1.32 (s, 3H, 

CH3), 1.40 (s, 3H, CH3), 1.43 (s, 9H, CH3, 
t
Bu), 1.59 (m, 2H, CH2, cod), 1.68 (s, 9H, CH3, 

t
Bu), 1.73 (s, 3H, CH3), 1.84 (s, 3H, CH3), 2.16 (m, 4H, 2CH2, cod), 2.27 (s, 3H, CH3), 2.28 

(s, 3H, CH3), 3.44 (m, 1H, CH=, cod), 3.66 (d, 1H, CHCMe2O,
 3

JH-H= 8 Hz), 3.77-3.89 (m, 

2H, CH2-S), 4.14 (m, 1H, CH=, cod), 4.37-4.42 (m, 1H, CHCH2S), 4.58 (m, 1H, CH=, cod), 

4.72 (m, 1H, CH=, cod), 7.22-7.70 (m, 19H, CH-Ar). 
13

C NMR (CDCl3), : 16.2 (CH3), 16.4 

(CH3), 20.2 (CH3), 20.4 (CH3), 22.8 (CH3), 26.5 (CH3), 26.6 (CH3), 27.9 (CH2, cod), 29.6 

(CH2, cod), 29.9 (CH2, cod), 30.8 (CH2, cod), 31.3 (CH3, 
t
Bu), 32.4 (CH3, 

t
Bu), 33.6 (C, 

t
Bu), 

34.8 (C, 
t
Bu), 45.5 (CH2-S), 68.9 (CH=, cod), 76.5 (CHCH2S), 77.2 (CH=, cod), 85.5 

(CHCMe2O), 92.1 (d, CMe2O, JC-P= 21.2 Hz ), 99.6 (CH=, cod), 100.2 (CH=, cod), 109.9 

(CMe2), 117.4-136.9 (aromatic carbons), 161.6 (q, C-B, BArF, 
1
JC-B= 49 Hz). MS HR-ESI 

[found 965.3923, C47H65IrO5PS (M)
+
 requires 965.3920]. 

[Ir(cod)(L14e)]BArF. Yield: 63 mg (93%). 
31

P NMR (400 MHz, CDCl3) δ:  94.0 (s). 
1
H 

NMR (CDCl3), : 0.85 (m, 2H, CH2, cod), 1.25 (s, 3H, CH3), 1.28 (s, 3H, CH3), 1.34 (s, 3H, 

CH3), 1.46 (s, 9H, CH3, 
t
Bu), 1.56 (s, 3H, CH3),  1.67 (m, 2H, CH2, cod), 1.74 (s, 3H, CH3), 

1.75 (s, 9H, CH3, 
t
Bu), 1.77 (s, 3H, CH3), 2.17 (m, 4H, 2CH2, cod), 2.26 (s, 3H, CH3), 2.28 

(s, 3H, CH3), 3.26 (m, 1H, CH=, cod), 3.33 (m, 1H, CH2-S), 4.13-4.20 (m, 2H, CHCMe2O, 

CH2-S), 4.29-4.37 (m, 2H, CHCH2S, CH=, cod), 4.45 (m, 1H, CH=, cod), 4.61 (m, 1H, CH=, 

cod), 7.26-7.71 (m, 19H, CH=). 
13

C NMR (CDCl3), : 16.1 (CH3), 16.4 (CH3), 20.2 (CH3), 
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20.3 (CH3), 22.7 (CH3), 22.8 (CH3), 26.4 (CH3), 26.5 (CH3), 27.0 (CH2, cod), 29.8 (CH2, 

cod), 30.1 (CH2, cod), 30.7 (CH2, cod), 31.6 (CH3, 
t
Bu), 32.2 (CH3, 

t
Bu), 34.3(C, 

t
Bu), 34.7 

(C, 
t
Bu), 48.3 (CH2-S), 69.1 (CH=, cod), 75.8 (CHCH2S), 76.0 (CH=, cod), 83.9 (CHCMe2O), 

91.2 (d, CMe2O, JC-P= 20.5 Hz ), 99.9 (CH=, cod), 100.5 (CH=, cod), 109.2 (CMe2), 117.4-

145.2 (aromatic carbons), 161.6 (q, C-B, BArF, 
1
JC-B= 49 Hz). MS HR-ESI [found 965.3922, 

C47H65IrO5PS (M)
+
 requires 965.3920]. 

[Ir(cod)(L15f)]BArF. Yield: 66 mg (91%). 
31

P NMR (161.9 MHz, CDCl3): δ: 98.8 (s). 
1
H 

NMR (400 MHz, CDCl3): δ: 0.55 (s, 9H, CH3, SiMe3), 0.77 (s, 9H, CH3, SiMe3), 0.79 (s, 3H, 

CH3), 1.18 (s, 3H, CH3), 1.27 (s, 3H, CH3), 1.31 (s, 3H, CH3), 1.67-1.75 (m, 2H, CH2, cod), 

1.90-2.19 (m, 6H, CH2, cod), 3.50 (b, 1H, CH=, cod), 3.87 (dd, 1H, CH2-S, 
2
JH-H =12.8 Hz, 

3
JH-H =9.6 Hz), 3.94 (d, 1H, CHCMe2O, 

3
JH-H =7.2 Hz), 4.01 (dd, 1H, CH2-S, 

2
JH-H =12.8 Hz, 

3
JH-H =2.0 Hz), 4.49-4.56 (m, 2H, CHCH2S, CH= cod), 4.61 (b, 1H, CH=, cod), 4.79 (b, 1H, 

CH=, cod), 6.96-8.21 (m, 29H, CH= aromatic). 
13

C NMR (100.6 MHz, CDCl3): δ: 0.2 (CH3, 

SiMe3), 1.5 (CH3, SiMe3), 22.4 (CH3), 26.6 (CH3), 26.8 (CH3), 27.5 (CH2, cod), 28.6 (CH3), 

30.1 (CH2, cod), 31.1 (CH2, cod), 34.0 (d, CH2, cod, JC-P =4.9 Hz), 46.9 (CH2-S), 69.2 (CH=, 

cod), 76.2 (CHCH2S), 77.2 (CH=, cod), 85.4 (d, CHCMe2O, 
3
JC-P =10.0 Hz), 92.9 (d, CMe2O, 

2
JC-P =21.4 Hz), 100.5 (d, CH=, cod, JC-P =16.8 Hz), 102.4 (d, CH=, cod, JC-P =16.0 Hz), 

111.1 (CMe2), 117.4-150.5 (aromatic carbons), 161.7 (q, C-B, BArF, 
1
JC-B =50.5 Hz). MS 

HR-ESI [found 1091.3305, C53H63IrO5PSSi2 (M)
+
 requires 1091.3302]. 

[Ir(cod)(L15g)]BArF. Yield: 64 mg (89%). 
31

P NMR (161.9 MHz, CDCl3) δ: 102.1 (s). 
1
H 

NMR (400 MHz, CDCl3): δ: 0.38 (s, 3H, CH3), 0.56 (s, 9H, CH3, SiMe3), 0.86 (s, 9H, CH3, 

SiMe3), 1.24 (s, 3H, CH3), 1.28 (s, 3H, CH3), 1.31 (s, 3H, CH3), 1.61 (m, 2H, CH2, cod), 

1.94-2.02 (m, 1H, CH2, cod), 2.05-2.18 (m, 4H, CH2, cod), 2.21-2.30 (m, 1H, CH2, cod), 

3.53 (b, 1H, CH=, cod), 4.04 (d, 1H, CH2-S, 
2
JH-H =14.4 Hz) 4.10 (d, 1H, CHCMe2O, 

3
JH-H 

=8.4 Hz), 4.19 (dd, 1H, CH2-S, 
2
JH-H =14.8 Hz, 

3
JH-H =8.4 Hz), 4.37 (pt, 1H, CHCH2S, 

3
JH-H 

=7.2 Hz), 4.48-4.53 (m, 1H, CH=, cod), 4.60 (b, 1H, CH=, cod), 4.73 (b, 1H, CH=, cod), 

7.00-8.23 (m, 29H, CH=, aromatic). 
13

C NMR (100.6 MHz, CDCl3) δ: 0.3 (CH3, SiMe3), 1.6 

(CH3, SiMe3), 23.0 (d, CH3, 
3
JH-H =6.1 Hz), 26.4 (CH3), 26.7 (CH2, cod), 29.7 (CH3), 29.9 

(CH2, cod), 31.1 (CH2, cod), 35.1 (CH2, cod), 48.3 (CH2-S), 70.2 (CH=, cod), 75.8 (CHCH2S, 

CH=, cod), 84.4 (CHCMe2O), 92.0 (d, CMe2, 
2
JC-P =20.6 Hz), 100.2 (d, CH=, cod, JC-P =17.6 

Hz), 102.3 (d, CH=, cod, JC-P =15.3 Hz), 109.4 (CMe2), 117.4-150.5 (aromatic carbons), 

161.7 (q, C-B, BArF, 
1
JC-B =49.7 Hz). MS HR-ESI [found 1091.3304, C53H63IrO5PSSi2 (M)

+
 

requires 1091.3302]. 

[Ir(cod)(L16f)]BArF. Yield: 65 mg (89%). 
31

P NMR (161.9 MHz, CDCl3) δ: 99.7 (s). 
1
H 

NMR (400 MHz, CDCl3) δ: 0.59 (s, 9H, CH3, SiMe3), 0.72 (s, 9H, CH3, SiMe3), 0.91 (s, 3H, 

CH3), 1.32 (s, 3H, CH3), 1.40-1.67 (m, 2H, CH2, cod), 1.74 (m, 1H, CH2, cod), 1.93-2.08 

(m, 4H, CH2, cod), 2.18 (b, 1H, CH2, cod), 2.36 (s, 3H, CH3), 3.45 (b, 1H, CH=, cod), 3.84-

3.89 (m, 1H, CH2-O), 4.12 (b, 1H CH=, cod), 4.34-4.44 (m, 2H, CH2-O, CHCH2O), 4.55 (b, 

1H, CH=, cod), 4.94-5.10 (m, 1H, CH=, cod), 5.65 (d, 1H, CHCPh2S, 
3
JH-H =3.5 Hz), 6.89-

8.17 (m, 32H, CH=, aromatic). 
13

C NMR (100.6 MHz, CDCl3) δ: 0.1 (CH3, SiMe3), 1.3 (CH3, 

SiMe3), 14.8 (CH3), 26.1 (CH3), 26.4 (CH=, cod), 28.3 (CH2, cod), 28.8 (CH2, cod), 31.6 
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(CH2, cod), 35.0 (CH2, cod), 64.7 (d, CH2-O, 
2
JC-P =10.7 Hz), 71.8 (CH=, cod), 74.8 (CPh2-S), 

75.0 (d, CHCH2O, 
3
JC-P =4.6 Hz), 78.0 (CH=, cod), 83.9 (CHCPh2S), 102.1 (d, CH=, cod, JC-P 

=15.3 Hz), 105.8 (d, CH=, cod, JC-P =16.0 Hz), 112.7 (CMe2), 117.4-151.0 (aromatic 

carbons), 161.7 (q, C-B, BArF, 
1
JC-B =49.7 Hz). MS HR-ESI [found 1103.3304, 

C54H63IrO5PSSi2 (M)
+
 requires 1103.3302]. 

[Ir(cod)(L16g)]BArF. Yield: 67 mg (92%). 
31

P NMR (161.9 MHz, CDCl3) δ: 109.5 (s). 
1
H 

NMR (400 MHz, CDCl3) δ: 0.52 (s, 3H, CH3), 0.59 (s, 9H, CH3, SiMe3), 0.63 (s, 9H, CH3, 

SiMe3), 1.47 (s, 3H, CH3), 1.26-1.38 (m, 2H, CH2, cod), 1.60-1.71 (m, 2H, CH2, cod), 1.75-

1.81 (m, 2H, CH2, cod), 1.86 (b, 1H, CH2, cod), 2.03-2.13 (m, 1H, CH2, cod), 2.41 (s, 3H, 

CH3), 3.11-3.18 (m, 1H, CH=, cod), 3.35-3.38 (m, 1H, CH=, cod), 3.84 (d, 1H, CHCH2O, 
3
JH-H =8.8 Hz), 4.31-4.37 (m, 1H, CH2-O), 4.63-4.66 (m, 1H, CH=, cod), 4.90-5.00 (m, 2H, 

CH2-O, CH=, cod), 5.69 (d, 1H, CHCPh2S, 
3
JH-H =8.8 Hz), 6.96-8.20 (m, 32H, CH= 

aromatic). 
13

C NMR (100.6 MHz, CDCl3) δ: 0.9 (CH3, SiMe3), 1.4 (CH3, SiMe3), 13.7 (CH3), 

25.2 (CH3), 27.3 (CH3), 28.5 (CH2, cod), 30.1 (CH2, cod), 30.8 (CH2, cod), 32.4 (CH2, cod), 

64.7 (d, CH2-O, 
2
JC-P =5.3 Hz), 72.8 (CH=, cod), 74.0 (CPh2-S), 75.2 (d, CHCH2O, 

3
JC-P =3.8 

Hz), 75.7 (CHCPh2S), 79.0 (CH=, cod), 99.9 (d, CH=, cod, JC-P =16.8 Hz), 103.8 (d, CH=, 

cod, JC-P =14.5 Hz), 109.6 (CMe2), 117.4-150.5 (aromatic carbons), 161.7 (q, C-B, BArF, 
1
JC-B =50.5 Hz). MS HR-ESI [found 1103.3304, C54H63IrO5PSSi2 (M)

+
 requires 1103.3302]. 

MS HR-ESI [found 1103.3306, C54H63IrO5PSSi2 (M)
+
 requires 1103.3302]. 

[Ir(cod)(L17a)]BArF. Yield: 64 mg (92%). 
31

P NMR (161.9 MHz, C2DCl2) δ: 102.8 (s). 
1
H NMR (400 MHz, C2DCl2) δ: 0.29 (d, 3H, CH3, 

3
JH-H =6.0 Hz), 1.13 (s, 3H, CH3), 1.19 (s, 

3H, CH3), 1.25 (s, 27H, CH3, 
t
Bu), 1.38 (s, 9H, CH3, 

t
Bu), 1.80 (b, 2H, CH2, cod), 2.00 (b, 

4H, CH2, cod), 2.10 (m, 1H, CH2, cod), 2.25 (m, 1H, CH2, cod), 2.97 (b, 1H, CH=, cod), 

3.63 (pt, 1H, CHCHO, 
3
JH-H =8.4 Hz), 3.71 (d, 1H, CH2-S, 

2
JH-H =12.8 Hz), 4.00 (dd, 1H, 

CH2-S, 
2
JH-H =12.4 Hz, 

3
JH-H =6.4 Hz), 4.07 (b, 1H, CH=, cod), 4.24-4.29 (m, 1H, CH=, cod), 

4.37-4.42 (m, 2H, CH-O, CHCH2S), 4.79 (b, 2H, CH=, cod), 7.05-7.66 (m, 21H, CH= 

aromatic). 
13

C NMR (100.6 MHz, C2DCl2) δ: 19.0 (CH3), 27.0 (CH3), 27.1 (CH3), 28.4 (CH2, 

cod), 30.3 (b, CH2, cod), 31.2 (b, CH2, cod), 31.6 (CH3, 
t
Bu), 32.3 (CH3, 

t
Bu), 34.1 (CH2, 

cod), 35.2 (C, 
t
Bu), 35.4 (C, 

t
Bu), 35.8 (C, 

t
Bu), 36.4 (C, 

t
Bu), 46.3 (CH2-S), 69.7 (CH=, 

cod), 77.1 (CH=, cod), 79.1 (CHCH2S), 81.4 (CH-O), 83.9 (CHCHO), 102.4 (d, CH=, cod, JC-

P =16.1 Hz), 104.3 (d, CH=, cod, JC-P =17.5 Hz), 112.0 (CMe2), 118.0-140.7 (aromatic 

carbons), 162.1 (q, C-B, BArF, 
1
JC-B =49.9 Hz). MS HR-ESI [found 1007.4390, C50H71IrO5PS 

(M)
+
 requires 1007.4389].   

[Ir(cod)(L17f)]BArF. Yield: 64 mg (91%).
31

P NMR (161.9 MHz, CDCl3) δ: 102.9 (s). 
1
H 

NMR (400 MHz, CDCl3) δ: 0.41 (d, 3H, CH3, 
3
JH-H =7.2 Hz), 0.54 (s, 9H, CH3, SiMe3), 0.80 

(s, 9H, CH3, SiMe3), 1.27  (s, 3H, CH3), 1.29 (s, 3H, CH3), 1.68 (b, 2H, CH2, cod), 1.94-2.15 

(m, 6H, CH2, cod), 3.22 (b, 1H, CH=, cod), 3.94 (m, 2H, CH2-S, CHCHO), 4.10 (dd, 1H, 

CH2-S, 
2
JH-H =14.4 Hz, 

3
JH-H =7.6 Hz), 4.26 (m, 2H, CH-O, CHCH2S), 4.51 (b, 2H, CH=, cod), 

4.61 (b, 1H, CH=, cod), 6.98-8.21 (m, 27H, CH= aromatic). 
13

C NMR (100.6 MHz, CDCl3) 

δ: 0.0 (CH3, SiMe3), 1.6 (CH3, SiMe3), 18.4 (CH3), 26.5 (CH3), 26.6 (CH3), 29.7 (CH2, cod), 

30.1 (d, CH2, cod, JC-P =2.7 Hz), 30.7 (d, CH2, cod, JC-P =2.6 Hz), 34.8 (d, CH2, cod, JC-P =5.0 
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Hz), 48.4 (CH2-S), 69.7 (CH=, cod), 77.0 (CH=, cod), 80.2 (CHCH2S), 82.3 (CHCHO), 84.2 

(d, CH-O, 
2
JC-P =19.1 Hz), 101.3 (d, CH=, cod, JC-P =17.5 Hz), 102.8 (d, CH=, cod, JC-P =16.0 

Hz), 109.9 (CMe2), 117.4-150.3 (aromatic carbons), 161.7 (q, C-B, BArF, 
1
JC-B =49.7 Hz). 

MS HR-ESI [found 1027.2993, C48H59IrO5PSSi2 (M)
+
 requires 1027.2989]. 

[Ir(cod)(L17g)]BArF. Yield: 67mg (95%). 
31

P NMR (161.9 MHz, CDCl3) δ: 99.3 (s). 
1
H 

NMR (400 MHz, CDCl3) δ: 0.56 (s, 3H, CH3), 0.55 (s, 9H, CH3, SiMe3), 0.69 (s, 9H, CH3, 

SiMe3), 1.29  (s, 3H, CH3), 1.32 (s, 3H, CH3), 1.78 (b, 2H, CH2, cod), 1.91-1.95 (m, 2H, 

CH2, cod), 2.00-2.07 (m, 2H, CH2, cod), 2.13-2.28 (m, 2H, CH2, cod), 3.50 (pt, 1H, CH2-S, 
3
JH-H =10.0 Hz), 3.55-3.57 (m, 1H, CH=, cod), 3.89-3.93 (m, 2H, CH2-S, CHCHO), 4.26-

4.31 (m, 1H, CH=, cod), 4.38-4.45 (m, 1H, CH-O), 4.47-4.52 (m, 1H, CHCH2S), 4.81 (b, 

1H, CH=, cod), 5.12 (b, 1H, CH=, cod), 7.00-8.17 (m, 27H, CH= aromatic). 
13

C NMR 

(100.6 MHz, CDCl3) δ: 0.2 (CH3, SiMe3), 0.9 (CH3, SiMe3), 19.1 (CH3), 26.4 (CH3), 26.8 

(CH3), 27.9 (CH2, cod), 29.4 (d, CH2, cod, JC-P =2.3 Hz), 32.1 (d, CH2, cod, JC-P =4.8 Hz), 

33.2 (d, CH2, cod, JC-P =4.1 Hz), 45.6 (CH2-S), 69.5 (CH=, cod), 77.2 (CHCH2S),  79.1 (CH=, 

cod), 79.9 (d, CH-O, 
2
JC-P =14.5 Hz), 82.9 (d, CHCHO, 

3
JC-P =6.1 Hz), 102.2 (d, CH=, cod, JC-

P =16.0 Hz), 105.5 (d, CH=, cod, JC-P =16.0 Hz), 112.5 (CMe2), 117.4-150.8 (aromatic 

carbons), 162.1 (q, C-B, BArF, 
1
JC-B =41.8 Hz). MS HR-ESI [found 1027.2992, 

C48H59IrO5PSSi2 (M)
+
 requires 1027.2989]. 

[Ir(cod)(L18a)]BArF. Yield: 66 mg (93%).
31

P NMR (161.9 MHz, CDCl3): δ= 101.0 (s). 
1
H NMR (400 MHz, CDCl3): δ=0.47 (d, 3H, CH3, 

3
JH-H =6.0 Hz), 1.25 (s, 3H, CH3), 1.28 (s, 

3H, CH3), 1.36 (s, 9H, CH3, 
t
Bu), 1.38 (s, 9H, CH3, 

t
Bu), 1.51 (s, 9H, CH3, 

t
Bu), 1.76 (s, 9H, 

CH3, 
t
Bu), 1.84 (b, 2H, CH2, cod), 2.01-2.17 (b, 5H, CH2, cod), 2.33 (m, 1H, CH2, cod), 

3.72 (pt, 1H, CHCHO, 
3
JH-H =8.8 Hz), 3.83 (dd, 1H, CH2-S, 

2
JH-H =13.2 Hz, 

3
JH-H =2.4 Hz), 

4.08 (m, 1H, CH2-S), 4.11 (b, 1H, CH=, cod), 4.44 (m, 1H, CH=, cod), 4.49 (m, 2H, CH-O, 

CHCH2S), 4.86 (b, 1H, CH=, cod), 4.97 (b, 1H, CH=, cod), 7.15-8.06 (m, 23H, CH= 

aromatic). 
13

C NMR (100.6 MHz, CDCl3): δ= 8.8 (CH3), 26.9 (CH3), 27.0 (CH3), 28.1 (d, 

CH2, cod, JC-P =3.0 Hz), 29.9 (b, CH2, cod), 31.5 (CH3, 
t
Bu), 31.6 (CH3, 

t
Bu), 32.0 (d, CH2, 

cod, JC-P =2.1 Hz), 32.2(CH3, 
t
Bu), 33.8 (d, CH2, cod, JC-P =3.8 Hz), 35.1 (C, 

t
Bu), 35.2 (C, 

t
Bu), 35.6 (C, 

t
Bu), 36.2 (C, 

t
Bu), 46.5 (CH2-S), 69.5 (CH=, cod), 77.5 (CH=, cod), 78.7 

(CHCH2S), 81.3 (d, CH-O, 
2
JC-P =14.5 Hz), 83.6 (d, CHCHO, 

3
JC-P =6.0 Hz), 102.1 (d, CH=, 

cod, JC-P =15.3 Hz), 103.9 (d, CH=, cod, JC-P =16.8 Hz), 111.9 (CMe2), 120.8-150.7 

(aromatic carbons), 162.1 (q, C-B, BArF, 
1
JC-B =49.3 Hz). MS HR-ESI [found 1057.4547, 

C54H73IrO5PS (M)
+
 requires 1057.4546]. 

[Ir(cod)(L18f)]BArF. Yield: 65 mg (91%). 
31

P NMR (161.9 MHz, CDCl3): δ= 102.9 (s). 
1
H NMR (400 MHz, CDCl3): δ=0.45 (d, 3H, CH3, 

3
JH-H =6.4 Hz), 0.57 (s, 9H, CH3, SiMe3), 

0.86 (s, 9H, CH3, SiMe3), 1.26  (s, 3H, CH3), 1.30 (s, 3H, CH3), 1.62 (b, 2H, CH2, cod), 1.95 

(m, 1H, CH2, cod), 2.00 (b, 4H, CH2, cod), 2.20 (m, 1H, CH2, cod), 3.27 (b, 1H, CH=, cod), 

4.01 (m, 2H, CH2-S, CHCHO), 4.19 (dd, 1H, CH2-S, 
2
JH-H =14.4 Hz, 

3
JH-H =6.0 Hz), 4.30 (m, 

2H, CH-O, CHCH2S), 4.57 (b, 2H, CH=, cod), 4.71 (b, 1H, CH=, cod), 7.02-8.24 (m, 29H, 

CH= aromatic). 
13

C NMR (100.6 MHz, CDCl3): δ=0.28 (CH3, SiMe3), 1.93 (CH3, SiMe3), 

18.7 (CH3), 26.8 (CH3), 26.9 (CH3), 30.1 (b, CH2, cod), 30.4 (b, CH2, cod), 31.2 (b, CH2, 
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cod), 35.3 (d, CH2, cod, JC-P =4.6 Hz), 48.8 (CH2-S), 70.3 (CH=, cod), 77.6 (CH=, cod), 80.5 

(CHCH2S), 82.7 (CHCHO), 84.7 (d, CH-O, 
2
JC-P =20.1 Hz), 101.4 (d, CH=, cod, JC-P =17.5 

Hz), 103.4 (d, CH=, cod, JC-P =15.3 Hz), 110.2 (CMe2), 120.8-150.7 (aromatic carbons), 

162.1 (q, C-B, BArF, 
1
JC-B =49.3 Hz). MS HR-ESI [found 1077.3148, C52H61IrO5PSSi2 (M)

+
 

requires 1077.3145]. 

[Ir(cod)(L18g)]BArF. Yield: 64 mg (89%). 
31

P NMR (161.9 MHz, CDCl3): δ= 99.6 (s). 
1
H 

NMR (400 MHz, CDCl3): δ= 0.56 (b, 3H, CH3), 0.58 (s, 9H, CH3, SiMe3), 0.73 (s, 9H, CH3, 

SiMe3), 1.29  (s, 3H, CH3), 1.34 (s, 3H, CH3), 1.74-1.81 (b, 2H, CH2, cod), 1.89-2.05 (m, 

3H, CH2, cod), 2.16-2.36 (b, 3H, CH2, cod), 3.59 (b, 1H, CH=, cod), 3.62 (m, 1H, CH2-S), 

3.94 (pt, 1H, CHCHO, 
3
JH-H =7.2 Hz), 4.02 (dd, 1H, CH2-S, 

2
JH-H =11.6 Hz, 

3
JH-H =3.2 Hz), 

4.36 (m, 1H, CH=, cod), 4.46 (m, 1H, CH-O), 4.55 (m, 1H, CHCH2S), 4.83 (b, 1H, CH=, 

cod), 5.19 (b, 1H, CH=, cod), 7.00-8.19 (m, 29H, CH= aromatic). 
13

C NMR (100.6 MHz, 

CDCl3): δ= 0.44 (CH3, SiMe3), 1.21 (CH3, SiMe3), 19.3 (CH3), 26.6 (CH3), 27.0 (CH3), 28.2 

(CH2, cod), 29.5 (CH2, cod), 32.4 (CH2, cod), 33.3 (CH2, cod), 46.2 (CH2-S), 69.7 (CH=, 

cod), 69.5 (CH=, cod), 79.0 (CHCH2S), 80.0 (CH=, cod), 80.1 (CH-O), 82.9 (d, CHCHO, 
2
JC-P 

=20.1 Hz), 101.4 (d, CH=, cod, JC-P =17.5 Hz), 103.4 (d, CH=, cod, JC-P =15.3 Hz), 110.2 

(CMe2), 120.8-150.7 (aromatic carbons), 162.1 (q, C-B, BArF, 
1
JC-B =49.3 Hz). MS HR-ESI 

[found 1077.3147, C52H61IrO5PSSi2 (M)
+
 requires 1077.3145]. 

[Ir(cod)(L19a)]BArF. Yield: 66 mg (89%). 
31

P NMR (161.9 MHz, CDCl3): δ= 102.1 (s). 
1
H NMR (400 MHz, CDCl3): δ= -0.04 (s, 3H, CH3, OTBDMS), 0.00 (s, 3H, CH3, OTBDMS), 

0.88 (s, 9H, CH3, 
t
Bu, OTBDMS), 1.25 (s, 3H, CH3), 1.26 (s, 3H, CH3), 1.35 (s, 9H, CH3, 

t
Bu), 1.37 (s, 9H, CH3, 

t
Bu), 1.51 (s, 9H, CH3, 

t
Bu), 1.72 (s, 9H, CH3, 

t
Bu), 1.86 (b, 2H, CH2, 

cod), 1.94 (d, 1H, CH2-OTBDMS, 
2
JH-H =12.0 Hz), 2.04-2.13 (b, 5H, CH2, cod), 2.33-2.38 

(m, 1H, CH2, cod), 3.22 (d, 1H, CH2-OTBDMS, 
2
JH-H =11.6 Hz), 3.73 (dd, 1H, CH2-S, 

2
JH-H 

=12.8 Hz, 
3
JH-H =2.8 Hz), 3.87 (dd, 1H, CH2-S, 

2
JH-H =13.2 Hz, 

3
JH-H =6.4 Hz), 4.11 (b, 1H, 

CH=, cod), 4.23 (pt, 1H, CHCHO, 
3
JH-H =8.8 Hz), 4.31-4.37 (m, 2H, CH= cod, CH-O), 4.53-

4.57 (m, 1H, CHCH2S), 4.97 (b, 2H, CH=, cod), 7.10-7.71 (m, 21H, CH= aromatic). 
13

C 

NMR (100.6 MHz, CDCl3): δ= -5.7 (CH3, OTBDMS), -5.0 (CH3, OTBDMS), 18.3 (C, 
t
Bu, 

OTBDMS),  25.8 (CH3, 
t
Bu, OTBDMS), 26.5 (CH3), 26.8 (CH3), 27.7 (CH2, cod), 30.8 (CH3, 

t
Bu), 30.9 (CH2, cod), 31.2 (CH3, 

t
Bu), 31.4 (CH3, 

t
Bu), 31.6 (d, CH2, cod, JC-P =3.8 Hz), 31.8 

(CH3, 
t
Bu), 33.6 (d, CH2, cod, JC-P =4.3 Hz), 34.8 (C, 

t
Bu), 34.9 (C, 

t
Bu), 35.2 (C, 

t
Bu), 35.8 

(C, 
t
Bu), 45.6 (CH2-S), 60.5 (CH2-OTBDMS), 68.8 (CH=, cod), 76.0 (d, CHCHO, 

3
JC-P =5.3 

Hz), 77.0 (CH=, cod), 77.2 (CHCH2S), 83.1 (d, CH-O, 
2
JC-P =15.3 Hz), 101.8 (d, CH=, cod, JC-

P =16.1 Hz), 103.8 (d, CH=, cod, JC-P =17.5 Hz), 111.8 (CMe2), 117.4-149.8 (aromatic 

carbons), 161.6 (q, C-B, BArF, 
1
JC-B =50.5 Hz). MS HR-ESI [found 1137.5207, 

C56H85IrO6PSSi (M)
+
 requires 1137.5203]. 

[Ir(cod)(L20a)]BArF. Yield: 69 mg (91%). 
31

P NMR (161.9 MHz, CDCl3): δ= 102.3 (s). 
1
H NMR (400 MHz, CDCl3): δ=-0.03 (s, 3H, CH3, OTBDMS), -0.02 (s, 3H, CH3, OTBDMS), 

0.89 (s, 9H, CH3, 
t
Bu, OTBDMS), 1.26 (s, 6H, CH3), 1.37 (s, 9H, CH3, 

t
Bu), 1.38 (s, 9H, CH3, 

t
Bu), 1.54 (s, 9H, CH3, 

t
Bu), 1.77 (s, 9H, CH3, 

t
Bu), 1.82 (b, 2H, CH2, cod), 1.99 (b, 3H, 

CH2-OTBDMS, CH2, cod), 2.13 (b, 3H, CH2, cod), 2.37 (b, 1H, CH2, cod), 3.23 (d, 1H, CH2-
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OTBDMS, 
2
JH-H =12.0 Hz), 3.81 (d, 1H, CH2-S, 

2
JH-H =11.8 Hz), 3.99 (dd, 1H, CH2-S, 

2
JH-H 

=12.8 Hz, 
3
JH-H =6.4 Hz), 4.13 (m, 1H, CH=, cod), 4.26 (pt, 1H, CHCHO, 

3
JH-H =8.4 Hz), 

4.36-4.41 (m, 2H, CH-O, CH=, cod), 4.61 (b, 1H, CHCH2S), 4.98 (b, 1H, CH=, cod), 5.07 

(b, 1H, CH=, cod), 7.12-8.07 (m, 23H, CH= aromatic). 
13

C NMR (100.6 MHz, CDCl3): δ=    

-5.7 (CH3, SiMe3, OTBDMS), -5,0 (CH3, SiMe3, OTBDMS), 18.3 (C, 
t
Bu, OTBDMS), 25.8 

(CH3, 
t
Bu, OTBDMS), 26.5 (CH3), 26.8 (CH3), 27.7 (CH2, cod), 29.7 (CH2, cod), 30.9 (CH3, 

t
Bu),  31.2 (CH3, 

t
Bu), 31.4 (CH3, 

t
Bu), 31.7 (CH2, cod), 31.9 (CH3, 

t
Bu), 33.6 (CH2, cod), 

34.8 (C, 
t
Bu), 35.0 (C, 

t
Bu), 35.2 (C, 

t
Bu), 35.9 (C, 

t
Bu), 45.8 (CH2-S), 60.5 (CH2-OTBDMS), 

68.8 (CH=, cod), 76.1 (d, CHCHO, 
3
JC-P =4.5 Hz), 77.2 (CHCH2S, CH= cod), 83.2 (d, CH-O, 

2
JC-P =14.5 Hz), 101.9 (d, CH=, cod, JC-P =14.6 Hz), 103.8 (d, CH=, cod, JC-P =16.9 Hz), 

111.8 (CMe2), 117.4-149.8 (aromatic carbons), 161.7 (q, C-B, BArF, 
1
JC-B =49.7 Hz). MS 

HR-ESI [found 1087.5363, C60H87IrO6PSSi (M)
+
 requires 1087.5359]. 

[Ir(cod)(L20g)]BArF. Yield: 71 mg (93%).
31

P NMR (161.9 MHz, CDCl3): δ= 101.0 (s). 
1
H NMR (400 MHz, CDCl3): δ= -0.09 (s, 3H, CH3, OTBDMS), -0.02 (s, 3H, CH3, OTBDMS), 

0.63 (s, 9H, CH3, SiMe3), 0.71 (s, 9H, CH3, SiMe3), 0.86 (s, 9H, CH3, 
t
Bu, OTBDMS), 1.27 

(s, 3H, CH3), 1.36 (s, 3H, CH3), 1.72-2.07 (m, 6H, CH2, cod), 2.05 (d, 1H, CH2-OTBDMS, 
2
JH-H =12.0 Hz), 2.17-2.21 (m, 1H, CH2, cod), 2.29-2.32 (m, 1H, CH2, cod), 3.18 (d, 1H, 

CH2-OTBDMS, 
2
JH-H =11.6 Hz), 3.55-3.60 (m, 1H, CH2-S), 3.69 (b, 1H, CH=, cod), 4.03 (dd, 

1H, CH2-S, 
2
JH-H =11.2 Hz, 

3
JH-H =3.2 Hz), 4.30 (m, 2H, CH-O, CH=, cod), 4.44 (pt, 1H, 

CHCHO, 
3
JH-H =8.4 Hz), 4.57 (b, 1H, CHCH2S), 4.93 (b, 1H, CH=, cod), 5.30 (b, 1H, CH=, 

cod), 6.98-8.18 (m, 29H, CH= aromatic). 
13

C NMR (100.6 MHz, CDCl3): δ= -5.9 (CH3, 

SiMe3, OTBDMS), -5,3 (CH3, SiMe3, OTBDMS), 0.0 (CH3, SiMe3), 0.9 (CH3, SiMe3), 18.4 

(C, 
t
Bu, OTBDMS), 25.8 (CH3, 

t
Bu, OTBDMS), 26.2 (CH3), 26.8 (CH3), 27.8 (CH2, cod), 29.6 

(d, CH2, cod, JC-P =13.0 Hz), 31.9 (CH2, cod), 33.4 (CH2, cod), 45.6 (CH2-S), 61.2 (CH2-

OTBDMS), 69.5 (CH=, cod), 76.2 (d, CHCHO, 
3
JC-P =5.3 Hz), 76.6 (CHCH2S), 79.2 (CH=, 

cod), 82.5 (d, CH-O, 
2
JC-P =14.5 Hz), 102.6 (d, CH=, cod, JC-P =17.6 Hz), 105.5 (d, CH=, 

cod, JC-P =15.3 Hz), 112.4 (CMe2), 117.4-151.6 (aromatic carbons), 162.2 (q, C-B, BArF, 
1
JC-B =63.4 Hz). MS HR-ESI [found 1207.3964, C58H75IrO6PSSi3 (M)

+
 requires 1207.3959]. 

[Ir(cod)(L21f)]BArF. Yield: 73 mg (90%).
31

P NMR (161.9 MHz, CDCl3): δ= 100.5 (s). 
1
H 

NMR (400 MHz, CDCl3): δ= 0.55 (s, 9H, CH3, SiMe3), 0.70 (s, 9H, CH3, SiMe3), 1.09 (s, 9H, 

CH3, 
t
Bu, OTBDPS), 1.18 (s, 3H, CH3), 1.30 (s, 3H, CH3), 1.70 (b, 1H, CH2, cod), 1.85 (b, 

2H, CH2, cod), 2.01 (b, 1H, CH2, cod), 2.11-2.22 (m, 3H, CH2, cod), 2.30-2.36 (m, 1H, 

CH2, cod), 2.51 (d, 1H, CH2-OTBDPS, 
2
JH-H =12.0 Hz), 3.37 (d, 1H, CH2-OTBDPS, 

2
JH-H 

=11.6 Hz), 3.44-3.49 (m, 1H, CH2-S), 3.74 (b, 1H, CH=, cod), 4.11 (d, 1H, CH2-S, 
2
JH-H =9.9 

Hz), 4.32 (b, 2H, CH-O, CH=, cod), 4.68 (b, 2H, CHCH2S, CHCHO), 4.97 (b, 1H, CH=, cod), 

5.34 (b, 1H, CH=, cod), 6.93-8.17 (m, 39H, CH= aromatic). 
13

C NMR (100.6 MHz, CDCl3): 

δ= -0.1 (CH3, SiMe3), -0.8 (CH3, SiMe3), 19.8 (C, 
t
Bu, OTBDPS), 26.0 (CH3), 26.7 (CH3), 

27.1 (CH3, 
t
Bu, OTBDPS), 27.7 (CH2, cod), 29.8 (CH2, cod), 31.8 (CH2, cod), 33.6 (CH2, 

cod), 45.6 (CH2-S), 62.5 (CH2-OTBDPS), 70.0 (CH=, cod), 75.7 (CHCHO, CHCH2S), 80.0 

(CH=, cod), 82.2 (d, CH-O, 
2
JC-P =14.6 Hz), 102.6 (d, CH=, cod, JC-P =16.0 Hz), 105.6 (d, 

CH=, cod, JC-P =16.0 Hz), 112.4 (CMe2), 117.4-151.0 (aromatic carbons), 161.8 (q, C-B, 
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BArF, 
1
JC-B =49.7 Hz). MS HR-ESI [found 1331.4276, C68H79IrO6PSSi3 (M)

+
 requires 

1331.4272]. 

[Ir(cod)(L22g)]BArF. Yield: 71 mg (91%). 
31

P NMR (161.9 MHz, CDCl3): δ= 100.4 (s). 
1
H NMR (400 MHz, CDCl3): δ= 0.62 (s, 9H, CH3, SiMe3), 0.71 (s, 9H, CH3, SiMe3), 0.97 (s, 

21H, CH, CH3, OTIPS), 1.27 (s, 3H, CH3), 1.38 (s, 3H, CH3), 1.69 (b, 1H, CH2, cod), 1.84 (b, 

2H, CH2, cod), 2.00 (b, 1H, CH2, cod), 2.11 (b, 3H, CH2, cod), 2.34 (b, 1H, CH2, cod), 2.51 

(d, 1H, CH2-OTIPS, 
2
JH-H =11.2 Hz), 3.30 (d, 1H, CH2-OTIPS, 

2
JH-H =10.4 Hz), 3.45-3.50 (m, 

1H, CH2-S), 3.72 (b, 1H, CH=, cod), 4.08 (dd, 1H, CH2-S, 
2
JH-H =10.8 Hz, 

3
JH-H =2.8 Hz), 

4.30-4.38 (m, 2H, CH-O, CH=, cod), 4.57 (pt, 1H, CHCHO, 
3
JH-H =8.4 Hz), 4.65 (m, 1H, 

CHCH2S), 4.96 (b, 1H, CH=, cod), 5.31 (b, 1H, CH=, cod), 6.94-8.17 (m, 29H, CH= 

aromatic). 
13

C NMR (100.6 MHz, CDCl3): δ= -0.1 (CH3, SiMe3), 0.8 (CH3, SiMe3), 12.0 (CH, 

OTIPS), 17.9 (CH3, OTIPS), 26.2 (CH3), 26.8 (CH3), 27.6 (CH2, cod), 29.8 (b, CH2, cod), 31.8 

(CH2, cod), 33.6 (CH2, cod), 45.5 (CH2-S), 62.3 (CH2-OTr), 69.8 (CH=, cod), 76.1 (CHCH2S), 

77.0 (CHCHO), 80.0 (CH=, cod), 82.5 (d, CH-O, 
2
JC-P =14.5 Hz), 102.5 (d, CH=, cod, JC-P 

=16.8 Hz), 105.3 (d, CH=, cod, JC-P =16.1 Hz), 112.6 (CMe2), 117.4-151.1 (aromatic 

carbons), 161.7 (q, C-B, BArF, 
1
JC-B =49.7 Hz). MS HR-ESI [found 1249.4431, 

C61H81IrO6PSSi3 (M)
+
 requires 1249.4428]. 

[Ir(cod)(L23g)]BArF. Yield: 73 mg (90%). 
31

P NMR (161.9 MHz, CDCl3): δ= 99.5 (s). 
1
H 

NMR (400 MHz, CDCl3): δ= 0.46 (s, 9H, CH3, SiMe3), 0.70 (s, 9H, CH3, SiMe3), 1.34 (s, 3H, 

CH3), 1.37 (s, 3H, CH3), 1.66 (b, 1H, CH2, cod), 1.81 (b, 2H, CH2, cod), 1.98-2.17 (m, 4H, 

CH2, cod), 2.29-2.36 (m, 1H, CH2, cod), 2.52 (dd, 1H, CH2-OTr, 
2
JH-H =11.2 Hz, 

3
JH-H =4.0 

Hz), 3.06 (dd, 1H, CH2-OTr, 
2
JH-H =11.8 Hz, 

3
JH-H =2.8 Hz), 3.48-3.53 (m, 1H, CH2-S), 3.66 

(b, 1H, CH2, cod), 4.10 (dd, 1H, CH2-S, 
2
JH-H =11.2 Hz, 

3
JH-H =3.2 Hz), 4.33 (m, 1H, CH=, 

cod), 4.43 (m, 1H, CH-O), 4.71 (m, 2H, CHCHO, CHCH2S), 4.89 (b, 1H, CH=, cod) 5.30 (b, 

1H, CH=, cod), 6.85-8.15 (m, 44H, CH= aromatic). 
13

C NMR (100.6 MHz, CDCl3): δ= -0.1 

(CH3, SiMe3), 0.9 (CH3, SiMe3), 26.3 (CH3), 26.7 (CH3), 27.6 (CH2, cod), 29.8 (d, CH2, cod, 

JC-P =19.1 Hz), 31.7 (CH2, cod), 33.7 (CH2, cod), 45.1 (CH2-S), 63.0 (CH2-OTr), 70.2 (CH=, 

cod), 76.0 (CHCH2S), 78.3 (CHCHO), 80.7 (CH=, cod), 81.2 (d, CH-O, 
2
JC-P =15.3 Hz), 87.3 

(C, OTr), 102.5 (d, CH=, cod, JC-P =16.1 Hz), 105.2 (d, CH=, cod, JC-P =16.1 Hz), 112.5 

(CMe2), 117.4-150.8 (aromatic carbons), 162.7 (q, C-B, BArF, 
1
JC-B =49.7 Hz). MS HR-ESI 

[found 1335.4193, C71H75IrO6PSSi2 (M)
+
 requires 1335.4190]. 

[Ir(cod)(L24a)]BArF. Yield: 62 mg (91%). 
31

P NMR (161.9 MHz, CDCl3): δ= 105.2 (s). 
1
H NMR (400 MHz, CDCl3): δ= 0.83 (d, 3H, CH3, 

3
JH-H =6.4 Hz), 1.24 (s, 3H, CH3), 1.26 (s, 

3H, CH3), 1.36 (s, 9H, CH3, 
t
Bu), 1.37 (s, 9H, CH3, 

t
Bu), 1.47 (s, 9H, CH3, 

t
Bu), 1.75 (s, 9H, 

CH3, 
t
Bu), 1.85 (b, 2H, CH2, cod), 1.95-2.10 (b, 4H, CH2, cod), 2.14-2.31 (m, 2H, CH2, 

cod), 3.95 (dd, 1H, CH2-S, 
2
JH-H =14.0 Hz, 

3
JH-H =4.8 Hz), 4.05 (d, 1H, CH2-S, 

2
JH-H =14.0 

Hz), 4.14-4.19 (m, 1H, CH=, cod), 4.23-4.91 (m, 3H, CHCH2S, CHCHO, CH-O), 4.43-4.38 

(m, 1H, CH=, cod), 4.77 (b, 2H, CH=, cod), 7.15-7.71 (m, 21H, CH= aromatic). 
13

C NMR 

(100.6 MHz, CDCl3): δ= 14.2 (CH3), 26.6 (CH3), 28.3 (CH2, cod), 28.6 (CH2, cod), 31.3 

(CH3, 
t
Bu), 31.6 (CH3, 

t
Bu), 32.1 (CH3, 

t
Bu), 33.2 (d, CH2, cod, JC-P =3.6 Hz), 33.3 (d, CH2, 

cod, JC-P =4.8 Hz), 35.1 (C, 
t
Bu), 35.2 (C, 

t
Bu), 35.5 (C, 

t
Bu), 35.8 (C, 

t
Bu), 47.6 (CH2-S), 
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69.2 (CH=, cod), 74.2 (CHCHO), 75.5 (CH=, cod), 77.4 (CHCH2S), 79.1 (CH-O), 102.5 (d, 

CH=, cod, JC-P =15.8 Hz), 103.4 (d, CH=, cod, JC-P =16.5 Hz), 110.3 (CMe2), 117.7-150.4 

(aromatic carbons), 162.0 (q, C-B, BArF, 
1
JC-B =50.2 Hz). MS HR-ESI [found 1007.4392, 

C50H71IrO5PS (M)
+
 requires 1007.4389]. 

[Ir(cod)(L24f)]BArF. Yield: 64 mg (92%). 
31

P NMR (161.9 MHz, CDCl3): δ= 103.8 (s). 
1
H NMR (400 MHz, CDCl3): δ= 0.52 (s, 9H, CH3, SiMe3), 0.76 (s, 9H, CH3, SiMe3), 0.92 (d, 

3H, CH3, 
3
JH-H =6.8 Hz), 1.22  (s, 3H, CH3), 1.25 (s, 3H, CH3), 1.70 (b, 2H, CH2, cod), 1.94-

2.22 (m, 6H, CH2, cod), 3.66 (b, 1H, CH=, cod), 3.90 (d, 1H, CH2-S, 
2
JH-H =14.4 Hz), 4.03 

(dd, 1H, CH2-S, 
2
JH-H =14.0 Hz, 

3
JH-H =6.8 Hz), 4.07-4.13 (m, 1H, CHCH2S), 4.22 (pt, 1H, 

CH-O, 
3
JH-H =5.2 Hz), 4.30 (pt, 1H, CHCHO, 

3
JH-H =7.6 Hz), 4.39-4.44 (m, 1H, CH=, cod), 

4.52 (b, 1H, CH=, cod), 4.80 (b, 1H, CH=, cod), 6.99-8.19 (m, 27H, CH= aromatic). 
13

C 

NMR (100.6 MHz, CDCl3): δ= 0.3 (CH3, SiMe3), 1.6 (CH3, SiMe3), 14.5 (d, CH3, 
3
JC-P =4.9 

Hz), 26.6 (CH3), 26.8 (CH2, cod), 26.9 (CH3), 30.4 (CH2, cod), 31.0 (CH2, cod), 35.1 (d, CH2, 

cod, JC-P =5.3 Hz), 49.2 (CH2-S), 69.1 (CH=, cod), 75.3 (CHCHO), 75.7 (CH=, cod), 77.4 

(CHCH2S), 79.6 (CH-O), 102.8 (d, CH=, cod, JC-P =17.6 Hz), 104.2 (d, CH=, cod, JC-P =15.0 

Hz), 110.4 (CMe2), 117.6-150.9 (aromatic carbons), 162.0 (q, C-B, BArF, 
1
JC-B =49.9 Hz). 

MS HR-ESI [found 1027.2992, C48H59IrO5PSSi2 (M)
+
 requires 1027.2989]. 

[Ir(cod)(L24g)]BArF. Yield: 62 mg (90%). 
31

P NMR (161.9 MHz, CDCl3): δ= 103.6 (s). 
1
H NMR (400 MHz, CDCl3): δ= 0.53 (s, 9H, CH3, SiMe3), 0.73 (s, 9H, CH3, SiMe3), 0.88 (d, 

3H, CH3, 
3
JH-H =6.4 Hz), 1.29  (s, 3H, CH3), 1.39 (s, 3H, CH3), 1.55 (b, 1H, CH2, cod), 1.69-

1.77 (m, 1H, CH2, cod), 1.77-1.87 (m, 1H, CH2, cod), 1.91-2.12 (m, 3H, CH2, cod), 2.24-

2.29 (m, 2H, CH2, cod), 3.73 (d, 1H, CH2-S, 
2
JH-H =13.6 Hz), 3.89 (b, 1H, CH=, cod), 3.99 

(dd, 1H, CH2-S, 
2
JH-H =14.0 Hz, 

3
JH-H =5.6 Hz), 4.08-4.14 (m, 1H, CH=, cod), 4.36 (b, 2H, 

CHCH2S, CHCHO), 4.44 (b, 2H, CH-O, CH=, cod), 5.11 (b, 1H, CH=, cod), 6.94-8.19 (m, 

27H, CH= aromatic). 
13

C NMR (100.6 MHz, CDCl3): δ= 0.1 (CH3, SiMe3), 1.4 (CH3, SiMe3), 

14.8 (CH3), 26.3 (CH3), 26.7 (CH3), 29.7 (CH2, cod), 29.9 (CH2, cod), 31.4 (CH2, cod), 35.1 

(CH2, cod), 46.7 (CH2-S), 69.8 (CH=, cod), 74.2 (CH=, cod), 74.9 (CHCH2S), 79.4 (d, CH-O, 
2
JC-P =16.0 Hz), 80.2 (d, CHCHO, 

3
JC-P =9.2 Hz), 100.9 (d, CH=, cod, JC-P =17.6 Hz), 102.8 

(d, CH=, cod, JC-P =15.3 Hz), 110.7 (CMe2), 117.4-150.7 (aromatic carbons), 161.6 (q, C-

B, BArF, 
1
JC-B =50.5 Hz). MS HR-ESI [found 1027.2993, C48H59IrO5PSSi2 (M)

+
 requires 

1027.2989]. 

[Ir(cod)(L25f)]BArF. Yield: 66 mg (89%). Major isomer (60%). 
31

P NMR (161.9 MHz, 

CDCl3): δ= 105.4 (s). 
1
H NMR (400 MHz, CDCl3): δ= -0.66 (s, 3H, CH3, OTBDMS), -0.65 (s, 

3H, CH3, OTBDMS), 0.64 (s, 9H, CH3, 
t
Bu, OTBDMS), 0.79 (s, 9H, CH3, SiMe3), 0.92 (s, 9H, 

CH3, SiMe3), 1.29  (s, 3H, CH3), 1.56 (s, 3H, CH3), 1.68-2.51 (m, 8H, CH2, cod), 2.68 (m, 

1H, CH2-O), 2.80 (m, 1H, CH2-O), 2.95 (m, 1H, CH2-S), 3.44 (m, 1H, CH2-S), 3.80 (b, 1H, 

CH=, cod), 4.02 (m, 1H, CHCH2S), 4.27 (m, 1H, CHCHO), 4.55 (m, 1H, CH-O), 4.96 (m, 

1H, CH=, cod), 5.29 (b, 1H, CH=), 5.53 (b, 1H, CH=, cod), 6.96-8.21 (m, 15H, CH= 

aromatic). 
13

C NMR (100.6 MHz, CDCl3): δ= -5.8 (CH3, OTBDMS), -5.5 (CH3, OTBDMS), 

0.0 (CH3, SiMe3), 1.4 (CH3, SiMe3), 17.9 (C, 
t
Bu, OTBDMS), 25.9 (CH3, 

t
Bu, OTBDMS), 

26.6 (CH3, 
t
Bu, OTBDMS), 29.7-36.2 (m, CH3, 

t
Bu, OTBDMS, CH2, cod), 48.2 (CHCH2S), 
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59.5 (CH2-S), 61.3 (CH2-OP), 69.5 (b, CH=, cod), 75.5 (CH-OP), 78.2 (CHCH2O), 102.0 

(CH=, cod), 103.8 (CH=, cod), 106.2 (m, CH=, cod), 109.6 (CMe2), 117.4-138.9 (aromatic 

carbons), 161.3 (m, C-B, BArF). Minor isomer (40%). 
31

P NMR (161.9 MHz, CDCl3): δ= 

101.9 (s).
 1

H NMR (400 MHz, CDCl3): δ=  -0.05 (s, 3H, CH3, OTBDMS), 0.07 (s, 3H, CH3, 

OTBDMS), 0.51 (s, 9H, CH3, 
t
Bu, OTBDMS), 0.53 (s, 9H, CH3, SiMe3), 0.56 (s, 9H, CH3, 

SiMe3), 1.49 (s, 3H, CH3), 1.37 (s, 3H, CH3), 1.68-2.51 (m, 8H, CH2, cod), 2.51 (b, 1H, 

CH2-O), 3.22 (m, 1H, CH2-S), 3.44 (m, 1H, CH2-O), 3.53 (m, 1H, CH2-S), 3.80 (b, 1H, CH=, 

cod), 4.02 (m, 1H, CHCH2S), 4.40 (m, 1H, CHCHO), 4.65 (m, 1H, CH-O), ), 4.96 (m, 2H, 

CH=, cod), 5.29 (b, 1H, CH=, cod), 5.62 (b, 1H, CH=, cod), 6.96-8.21 (m, 15H, CH= 

aromatic). 
13

C NMR (100.6 MHz, CDCl3): δ= -6.2 (CH3, OTBDMS), -6.3 (CH3, OTBDMS), 

0.4 (CH3, SiMe3), 1.5 (CH3, SiMe3), 17.7 (C, 
t
Bu, OTBDMS), 25.5 (CH3, 

t
Bu, OTBDMS), 

26.8 (CH3, 
t
Bu, OTBDMS), 27.3 (CH3, 

t
Bu, OTBDMS), 29.7-36.2 (m, CH2, cod), 44.7 

(CHCH2S), 53.8 (CH2-OP), 60.9 (CH2-S), 69.5 (b, CH=, cod), 74.1 (CH-OP), 77.5 (CHCH2O), 

102.2 (CH=, cod), 103.7 (CH=, cod), 106.2 (m, CH=, cod), 108.3 (CMe2), 117.4-138.9 

(aromatic carbons), 161.3 (m, C-B, BArF).  MS HR-ESI [found 1157.3795, C54H73IrO6PSSi3 

(M)
+
 requires 1157.3803]. 

[Ir(cod)(L26f)]BArF. Yield: 65 mg (94%). 
31

P NMR (161.9 MHz, CDCl3): δ= 104.2 (s). 
1
H NMR (400 MHz, CDCl3): δ= 0.58 (s, 9H, CH3, SiMe3), 0.67 (s, 9H, CH3, SiMe3), 1.31 (s, 

6H, CH3), 1.79 (d, 3H, CH3, 
3
JH-H =7.6 Hz), 1.88 (m, 2H, CH2, cod), 1.98-1.93 (m, 3H, CH2, 

cod), 2.17 (b, 3H, CH2, cod), 3.53-3.62 (m, 1H, CH2-O), 3.66 (b, 1H, CH=, cod), 3.95-4.02 

(m, 1H, CH2-O), 4.15-4.23 (m, 2H, CHCH2O, CH2-S), 4.46 (dd, 1H, CHCHS, 
3
JH-H =2.0, 

3
JH-H 

=8.0), 4.64-4.73 (b, 2H, CH=, cod), 4.96 (b, 1H, CH=, cod), 6.99-8.18 (m, 27H, CH= 

aromatic). 
13

C NMR (100.6 MHz, CDCl3): δ= 0.3 (CH3, SiMe3), 1.3 (CH3, SiMe3), 19.0 

(CH3), 26.4 (CH3), 26.7 (CH3), 28.5 (CH2, cod), 29.0 (CH2, cod), 32.4 (d, CH2, cod, JC-P =4.1 

Hz), 32.7 (d, CH2, cod, JC-P =3.5 Hz), 54.5 (CH-S), 67.2 (d, CH2-O, 
2
JC-P =11.4 Hz), 68.8 

(CH=, cod), 72.1 (CHCH2O), 76.9 (CH=, cod), 80.9 (CHCHS), 104.0-104.3 (CH=, cod), 

109.0 (CMe2), 117.4-149.6 (aromatic carbons), 161.7 (q, C-B, BArF, 
1
JC-B =49.7 Hz). MS 

HR-ESI [found 1027.2990, C48H59IrO5PSSi2 (M)
+
 requires 1027.2989]. 

[Ir(cod)(L26g)]BArF. Yield: 61 mg (89%).
31

P NMR (161.6 MHz, CDCl3): δ= 102.1 (s). 
1
H NMR (400 MHz, CDCl3): δ= 0.54 (s, 9H, CH3, SiMe3), 0.76 (s, 9H, CH3, SiMe3), 1.25 (s, 

3H, CH3), 1.32 (s, 3H, CH3), 1.72 (d, 3H, CH3, 
3
JH-H =6.8 Hz), 1.89 -2.40, (m, 2H, CH2, cod), 

2.07-2.15 (m, 2H, CH2, cod), 2.22-2.26 (m, 4H, CH2, cod), 3.33-3.37 (m, 1H, CH2-O), 3.89 

(b, 1H, CH=, cod), 3.97-4.17 (m, 3H, CH2-O, CHCH2O, CH-S), 4.32-4.38 (m, 1H, CH=, cod), 

4.41 (d, 1H, CHCHS, 
3
JH-H =6.8 Hz), 4.8 (b, 1H, CH=, cod), 5.04 (b, 1H, CH=, cod), 7.03-

8.21 (m, 27H, CH= aromatic). 
13

C NMR (100.6 MHz, CDCl3): δ= 0.1 (CH3, SiMe3), 1.4 

(CH3, SiMe3), 17.7 (CH3), 26.5 (CH3), 26.9 (CH3), 29.7 (CH2, cod), 30.4 (CH2, cod), 30.9 (d, 

CH2, cod, JC-P =3.5 Hz), 34.5 (d, CH2, cod, JC-P =4.8 Hz), 56.2 (CH-S), 68.1 (d, CH2O, 
2
JC-P 

=14.5 Hz), 69.3 (CH=, cod), 72.7 (d, CHCH2O, 
3
JC-P =8.1 Hz), 74.8 (CH=, cod), 81.2 

(CHCHS), 102.4 (d, CH=, cod, JC-P =16.8 Hz), 104.7 (d, CH=, cod, JC-P =15.3 Hz), 110.4 

(CMe2), 117.4-150.9 (aromatic carbons), 161.7 (q, C-B, BArF, 
1
JC-B =49.7 Hz). MS HR-ESI 

[found 1027.2992, C48H59IrO5PSSi2 (M)
+
 requires 1027.2989].  
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[Ir(cod)(L27a)]BArF. Yield: 64 mg (91%). 
31

P NMR (161.9 MHz, CDCl3): δ= 101.2 (s). 
1
H NMR (400 MHz, CDCl3): δ= 1.27 (s, 3H, CH3), 1.29 (s, 3H, CH3), 1.36 (s, 9H, CH3, 

t
Bu), 

1.37 (s, 9H, CH3, 
t
Bu), 1.51 (s, 9H, CH3, 

t
Bu), 1.73 (s, 9H, CH3, 

t
Bu), 1.76 (b, 1H, CH2, cod), 

1.86 (b, 1H, CH2, cod), 1.95-2.19 (b, 6H, CH2, cod), 3.64-3.76 (m, 3H, CH2-O, CH2-Se, 

CH= cod), 3.89 (b, 1H, CH2-O), 3.95-4.01 (m, 1H, CH2-Se), 4.13 (b, 1H, CHCH2O), 4.30 

(pt, 1H, CHCH2Se, 
3
J =

 
9.2 Hz), 4.61 (b, 2H, CH=, cod), 4.76 (b, 1H, CH=, cod), 7.19-7.71 

(m, 21H, CH= aromatic). 
13

C NMR (100.6 MHz, CDCl3): δ= 26.5 (CH3), 28.1 (CH2, cod), 

29.4 (CH2, cod), 31.2 (CH3, 
t
Bu), 31.3 (CH3, 

t
Bu), 31.8 (CH2, cod), 32.0 (CH3, 

t
Bu), 33.2 

(CH2, cod), 34.9 (C, 
t
Bu), 35.4 (C, 

t
Bu), 35.5 (C, 

t
Bu), 41.3 (CH2-Se), 66.9 (b, CH=, cod), 

69.2 (d, CH2-O, 
2
JC-P =15.3 Hz), 75.1 (b, CH=, cod), 77.6 (CHCH2O), 79.3 (CHCH2S), 102.0 

(d, CH=, cod, JC-P =16.0 Hz), 103.5 (d, CH=, cod, JC-P =16.1 Hz), 110.2 (CMe2), 117.4-149.7 

(aromatic carbons), 161.7 (q, C-B, BArF, 
1
JC-B =49.7 Hz). MS HR-ESI [found 1041.3679, 

C49H69IrO5PSe (M)
+
 requires 1041.3677]. 

[Ir(cod)(L27f)]BArF. Yield: 62 mg (88%).
31

P NMR (161.9 MHz, CDCl3): δ= 100.4 (s). 
1
H 

NMR (400 MHz, CDCl3): δ= 0.53 (s, 9H, CH3, SiMe3), 0.72 (s, 9H, CH3, SiMe3), 1.26 (s, 3H, 

CH3), 1.29 (s, 3H, CH3), 1.69 (b, 1H, CH2, cod), 1.82 (b, 1H, CH2, cod), 1.91-2.13 (m, 6H, 

CH2, cod), 3.51 (CH=, cod), 3.59-3.64 (m, 1H, CH2-O), 3.69 (d, 2H, CH2-Se, 
3
JH-H = 6.0), 

3.89-3.97 (m, 1H, CH2-O), 4.08-4.14 (m, 1H, CHCH2O), 4.41-4.46 (m, 1H, CHCH2Se), 4.57 

(b, 1H, CH=, cod), 4.76 (b, 1H, CH=, cod), 4.86 (b, 1H, CH=, cod), 7.06-8.20 (m, 27H, CH= 

aromatic). 
13

C NMR (100.6 MHz, CDCl3): δ= 0.0 (CH3, SiMe3), 1.1 (CH3, SiMe3), 26.4 

(CH3), 26.6 (CH3), 27.7 (CH2, cod), 30.0 (CH2, cod), 31.1 (CH2, cod), 33.8 (CH2, cod), 41.2 

(CH2-Se), 68.1 (CH=, cod), 68.5 (d, CH2O, 
2
JC-P =14.6 Hz), 76.1 (CH=, cod), 77.3 (CHCH2O), 

78.2 (CHCH2S), 101.5 (d, CH=, cod, JC-P =16.9 Hz), 105.0 (d, CH=, cod, JC-P =15.0 Hz), 

112.0 (CMe2), 117.4-150.5 (aromatic carbons), 161.7 (q, C-B, BArF, 
1
JC-B =50.5 Hz). MS 

HR-ESI [found 1061.2281, C47H57IrO5PSeSi2 (M)
+
 requires 1061.2277]. 

[Ir(cod)(L27g)]BArF. Yield: 63 mg (89%). 
31

P NMR (161.9 MHz, CDCl3): δ= 103.4 (s). 
1
H NMR (400 MHz, CDCl3): δ= 0.53 (s, 9H, CH3, SiMe3), 0.76 (s, 9H, CH3, SiMe3), 1.26 (s, 

6H, CH3), 1.59 (b, 1H, CH2, cod), 1.74 (b, 1H, CH2, cod), 2.00-2.23 (m, 6H, CH2, cod), 3.39 

(CH=, cod), 3.47-3.56 (m, 1H, CH2-O), 3.60-3.66 (m, 2H, CH2-O, CH2-Se), 3.89-3.95 (m, 

1H, CH2-Se), 3.99-4.05 (m, 1H, CHCH2O), 4.28 (pt, 1H, CHCH2Se, 
3
JH-H =8.4), 4.52-4.59 (b, 

2H, CH=, cod), 4.87 (b, 1H, CH=, cod), 7.08-8.22 (m, 27H, CH= aromatic). 
13

C NMR 

(100.6 MHz, CDCl3): δ= -0.2 (CH3, SiMe3), 1.4 (CH3, SiMe3), 26.4 (CH3), 26.6 (CH3), 26.8 

(CH2, cod), 30.4 (CH2, cod), 30.7 (CH2, cod), 34.7 (CH2, cod), 42.1 (CH2-Se), 67.0 (CH=, 

cod), 69.2 (d, CH2-O, 
2
JC-P =13.8 Hz), 76.3 (CH=, cod), 78.0 (CHCH2O), 80.4 (CHCH2S), 

102.9 (d, CH=, cod, JC-P =16.8 Hz), 103.4 (d, CH=, cod, JC-P =14.5 Hz), 110.2 (CMe2), 

117.4-150.1 (aromatic carbons), 161.7 (q, C-B, BArF, 
1
JC-B =49.7 Hz). MS HR-ESI [found 

1061.2282, C47H57IrO5PSeSi2 (M)
+
 requires 1061.2277]. 

[Ir(cod)(L28f)]BArF. Yield: 66 mg (90%). 
31

P NMR (161.9 MHz, CDCl3): δ= 103.6 (s). 
1
H NMR (400 MHz, CDCl3): δ= 0.55 (s, 9H, CH3, SiMe3), 0.81 (s, 9H, CH3, SiMe3), 1.26 (s, 

3H, CH3), 1.27 (s, 3H, CH3), 1.70 (b, 1H, CH2, cod), 1.99-2.22 (m, 7H, CH2, cod), 3.43 

(CH=, cod), 3.50-3.59 (m, 2H, CH2-O), 3.62-3.72 (m, 2H, CH2-O, CH2-Se), 3.98-4.08 (m, 

UNIVERSITAT ROVIRA I VIRGILI 
SUSTAINABLE AND COST-EFFECTIVE DEVELOPMENT OF CHIRAL METAL-CATALYSTS FOR C-H AND 
C-X BOND FORMING REACTIONS 
Carlota Borràs Noguera 



Chapter 3 

 

- 162 - 
 

2H, CH2-S, CHCH2O), 4.32 (pt, 1H, CHCH2S, 
3
JH-H =8.8 Hz), 4.55 (b, CH=, cod), 4.60-4.68 

(m, 1H, CH=, cod), 4.95 (b, 1H, CH=, cod), 7.10-8.23 (m, 29H, CH= aromatic). 
13

C NMR 

(100.6 MHz, CDCl3): δ= 0.0 (CH3, SiMe3), 1.4 (CH3, SiMe3), 26.4 (CH3), 26.6 (CH3), 26.9 

(CH2, cod), 30.4 (CH2, cod), 30.7 (CH2, cod), 34.6 (CH2, cod), 42.1 (CH2-Se), 67.2 (CH=, 

cod), 69.2 (d, CH2-O, 
2
JC-P =14.6 Hz), 76.4 (CH=, cod), 78.0 (CHCH2O), 79.6 (CHCH2S), 

102.7 (d, CH=, cod, JC-P =17.6 Hz), 103.8 (d, CH=, cod, JC-P =14.5 Hz), 110.2 (CMe2), 

117.4-150.1 (aromatic carbons), 161.7 (q, C-B, BArF, 
1
JC-B =49.7 Hz). MS HR-ESI [found 

1111.2438, C51H59IrO5PSeSi2 (M)
+
 requires 1111.2433]. 

[Ir(cod)(L28g)]BArF. Yield: 68 mg (93%).
31

P NMR (161.9 MHz, CDCl3): δ= 100.6 (s). 
1
H NMR (400 MHz, CDCl3): δ= 0.56 (s, 9H, CH3, SiMe3), 0.80 (s, 9H, CH3, SiMe3), 1.27 (s, 

3H, CH3), 1.29 (s, 3H, CH3), 1.68 (b, 1H, CH2, cod), 1.80 (b, 1H, CH2, cod), 1.95 (b, 1H, 

CH2, cod), 2.10 (b, 4H, CH2, cod), 3.53 (CH=, cod), 3.66 (m, 1H, CH2-O), 3.79 (m, 2H, 

CH2-Se), 3.92-3.40 (m, 1H, CH2-O), 4.13-4.18 (m, 1H, CHCH2O), 4.49 (b, 1H, CHCH2Se, 
3
JH-H =8.8 Hz), 4.60 (b, CH=, cod), 4.83 (b, 1H, CH=, cod), 4.95 (b, 1H, CH=, cod), 7.08-

8.22 (m, 29H, CH= aromatic). 
13

C NMR (100.6 MHz, CDCl3): δ= 0.0 (CH3, SiMe3), 1.1 

(CH3, SiMe3), 26.4 (CH3), 26.6 (CH3), 27.7 (CH2, cod), 30.1 (CH2, cod), 31.1 (CH2, cod), 

33.9 (CH2, cod), 41.4 (CH2-Se), 68.2 (CH=, cod), 68.5 (d, CH2-O, 
2
JC-P =14.6 Hz), 76.2 

(CH=, cod), 77.2 (CHCH2O), 78.1 (CHCH2S), 101.5 (d, CH=, cod, JC-P =17.6 Hz), 105.2 (d, 

CH=, cod, JC-P =15.3 Hz), 112.1 (CMe2), 117.4-150.5 (aromatic carbons), 161.7 (q, C-B, 

BArF, 
1
JC-B =49.7 Hz). MS HR-ESI [found 1111.2437, C51H59IrO5PSeSi2 (M)

+
 requires 

1111.2433]. 

[Ir(cod)(L29a)]BArF. Yield: 65 mg (89%).
31

P NMR (161.9 MHz, CDCl3): δ=99.2 (s). 
1
H 

NMR (400 MHz, CDCl3): δ=0.74 (s, 3H, CH3), 1.25 (s, 3H, CH3), 1.26 (s, 3H, CH3), 1.34 (s, 

9H, CH3, 
t
Bu), 1.37 (s, 9H, CH3, 

t
Bu), 1.39 (s, 3H, CH3), 1.54 (s, 9H, CH3, 

t
Bu), 1.75 (b, 1H, 

CH2, cod), 1.97 (m, 2H, CH2, cod), 2.09-2.21 (b, 5H, CH2, cod), 3.83 (b, 1H, CH=, cod), 

4.04 (d, 1H, CH2-S, 
2
JH-H =13.6 Hz), 4.22 (b, 1H, CHCMe2O), 4.26-4.32 (m, 1H, CH2-S), 

4.37 (m, 1H, CHCH2S), 4.50 (b, 1H, CH=, cod), 4.58 (b, 1H, CH=, cod), 4.73 (b, 1H, CH=, 

cod), 7.16-8.08 (m, 23H, CH= aromatic). 
13

C NMR (100.6 MHz, CDCl3): δ=22.7 (d, CH3, 
3
JH-H =6.9 Hz), 26.4 (CH3), 26.6 (CH3), 27.5 (CH2, cod), 29.7 (d, CH2, cod, JC-P =4.5 Hz),  

30.0 (CH2, cod), 31.3 (CH3, 
t
Bu), 31.6 (CH3, 

t
Bu), 32.0 (CH3, 

t
Bu), 33.9 (CH2, cod), 34.8 (C, 

t
Bu), 34.9 (C, 

t
Bu), 35.4 (C, 

t
Bu), 35.6 (C, 

t
Bu), 47.9 (CH2-S), 76.0 (CH=, cod), 77.2 

(CHCH2S), 83.8 (CHCMe2O), 91.1 (d, CMe2O, 
2
JC-P =35.1 Hz), 100.3 (d, CH=, cod, JC-P 

=23.6 Hz), 101.1 (d, CH=, cod, JC-P =16.9 Hz), 109.2 (CMe2), 117.4-150.5 (aromatic 

carbons), 161.7 (q, C-B, BArF, 
1
JC-B =49.7 Hz). MS HR-ESI [found 1105.3993, 

C54H73IrO5PSe (M)
+
 requires 1105.3990].  

[Ir(cod)(L29f)]BArF. Yield: 67 mg (91%). 
31

P NMR (161.9 MHz, CDCl3): δ= 99.5 (s). 
1
H 

NMR (400 MHz, CDCl3): δ= 0.53 (s, 9H, CH3, SiMe3), 0.76 (s, 9H, CH3, SiMe3), 0.94 (s, 3H, 

CH3), 0.99 (s, 3H, CH3), 1.26 (s, 3H, CH3), 1.32 (s, 3H, CH3), 1.62-1.73 (b, 2H, CH2, cod), 

1.90-1.94 (m, 1H, CH2, cod), 1.99-2.08 (m, 4H, CH2, cod), 2.12-2.17 (m, 1H, CH2, cod), 

3.40 (b, 1H, CH=, cod), 3.76 (dd, 1H, CH2-Se, 
2
JH-H =21.2 Hz, 

3
JH-H =8.0 Hz), 3.87 (dd, 1H, 

CH2-Se, 
2
JH-H =11.2 Hz, 

3
JH-H =3.2 Hz) 4.00 (d, CHCMe2O, 

3
JH-H =7.6 Hz), 4.58 (b, 1H, CH=, 
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cod), 4.64-7.72 (b, 2H, CHCH2Se, CH=, cod), 4.81 (b, 1H, CH=, cod), 6.97-8.21 (m, 29H, 

CH= aromatic). 
13

C NMR (100.6 MHz, CDCl3): δ= 0.2 (CH3, SiMe3), 1.3 (CH3, SiMe3), 22.1 

(CH3), 26.7 (CH3), 27.0 (CH3), 27.5 (CH2, cod), 29.0 (CH3), 30.4 (CH2, cod), 30.7 (CH2, 

cod), 34.1 (CH2, cod), 41.6 (CH2-Se), 68.3 (CH=, cod), 75.5 (CHCH2S), 77.2 (CH=, cod), 

85.5 (d, CHCMe2O, 
3
JC-P =8.3 Hz), 93.2 (d, CMe2O, 

2
JC-P =21.4 Hz), 99.6 (d, CH=, cod, JC-P 

=16.0 Hz), 101.9 (d, CH=, cod, JC-P =15.3 Hz), 111.7 (CMe2), 116.8-150.1 (aromatic 

carbons), 161.7 (q, C-B, BArF, 
1
JC-B =49.7 Hz). MS HR-ESI [found 1139.2749, 

C53H63IrO5PSeSi2 (M)
+
 requires 1139.2746]. 

[Ir(cod)(L29g)]BArF. Yield: 69 mg (93%).
31

P NMR (161.9 MHz, CDCl3): δ= 101.4 (s). 
1
H NMR (400 MHz, CDCl3): δ= 0.38 (s, 3H, CH3), 0.54 (s, 9H, CH3, SiMe3), 0.84 (s, 9H, 

CH3, SiMe3), 1.25 (s, 3H, CH3), 1.29 (s, 3H, CH3), 1.34 (s, 3H, CH3), 1.48 (b, 1H, CH2, cod), 

1.61 (b, 1H, CH2, cod), 1.97 (m, 2H, CH2, cod), 2.05 (m, 3H, CH2, cod), 2.17 (m, 1H, CH2, 

cod), 3.36 (b, 1H, CH=, cod), 3.78 (d, 1H, CH2-Se, 
2
JH-H =12.4 Hz), 4.01-4.08 (m, 2H, CH2-

Se, CHCMe2O), 4.47 (pt, 1H, CHCH2Se, 
3
JH-H =9.2 Hz), 4.62 (b, 2H, CH=, cod), 4.75 (b, 1H, 

CH=, cod), 6.99-8.22 (m, 29H, CH= aromatic). 
13

C NMR (100.6 MHz, CDCl3): δ= 0.3 (CH3, 

SiMe3), 1.6 (CH3, SiMe3), 23.0 (d, CH3, 
3
JC-P =6.1 Hz), 26.3(CH3), 26.5 (CH3), 26.6 (CH2, 

cod), 26.8 (CH3), 29.9 (CH2, cod), 31.1 (CH2, cod), 34.8 (CH2, cod), 42.1 (CH2-Se), 68.3 

(CH=, cod), 75.6 (CHCH2Se), 77.6 (CH=, cod), 84.9 (CHCMe2O), 92.3 (d, CMe2O, 
2
JC-P 

=21.4 Hz), 100.0 (d, CH=, cod, JC-P =17.6 Hz), 101.4 (d, CH=, cod, JC-P =14.5 Hz), 109.0 

(CMe2), 117.4-151.1 (aromatic carbons), 161.7 (q, C-B, BArF, 
1
JC-B =50.5 Hz). MS HR-ESI 

[found 1139.2750, C53H63IrO5PSeSi2 (M)
+
 requires 1139.2746]. 

[Ir(cod)(L30f)]BArF. Yield: 65 mg (88%). 
31

P NMR (161.9 MHz, CDCl3): δ= 101.8 (s). 
1
H NMR (400 MHz, CDCl3): δ= 0.47 (d, 3H, CH3, 

3
JH-H =5.6 Hz), 0.56 (s, 9H, CH3, SiMe3), 

0.84 (s, 9H, CH3, SiMe3), 1.27 (s, 3H, CH3), 1.31 (s, 3H, CH3), 1.49 (b, 1H, CH2, cod), 1.65 

(b, 1H, CH2, cod), 1.99 (b, 5H, CH2, cod), 2.18 (b, 1H, CH2, cod), 3.09 (b, 1H, CH=, cod), 

3.79 (d, 1H, CH2-Se, 
2
JH-H =12.0 Hz), 3.93 (pt, 1H, CHCHO, 

3
JH-H =8.4 Hz), 4.04-4.09 (m, 

1H, CH2-Se), 4.33 (b, 1H, CH-O), 4.38 (m, 1H, CHCH2Se), 4.57 (b, 1H, CH=, cod), 4.67 (b, 

1H, CH=, cod), 4.77 (b, 1H, CH=, cod), 7.00-8.24 (m, 29H, CH= aromatic). 
13

C NMR 

(100.6 MHz, CDCl3): δ= -0.2 (CH3, SiMe3), 1.5 (CH3, SiMe3), 18.2 (CH3), 26.5 (CH3), 26.6 

(CH3), 26.9 (CH2, cod), 30.3 (CH2, cod), 30.7 (CH2, cod), 34.5 (d, CH2, cod, JC-P =4.6 Hz), 

42.1 (CH2S), 68.0 (CH=, cod), 77.8 (CH=, cod), 80.1 (CHCH2S), 82.8 (CHCHO), 84.7 (d, CH-

O, 
2
JC-P =19.9 Hz), 100.8 (d, CH=, cod, JC-P =17.6 Hz), 102.1 (d, CH=, cod, JC-P =15.3 Hz), 

109.5 (CMe2), 117.4-150.6 (aromatic carbons), 161.7 (q, C-B, BArF, 
1
JC-B =50.5 Hz). MS 

HR-ESI [found 1125.2593, C52H61IrO5PSeSi2 (M)
+
 requires 1125.2590].  

[Ir(cod)(L30g)]BArF. Yield: 66 mg (90%).
31

P NMR (161.9 MHz, CDCl3): δ= 98.9 (s). 
1
H 

NMR (400 MHz, CDCl3): δ= 0.55 (s, 9H, CH3, SiMe3), 0.69 (d, 3H, CH3, 
3
JH-H =6.0 Hz), 0.75 

(s, 9H, CH3, SiMe3), 1.30 (s, 3H, CH3), 1.33 (s, 3H, CH3), 1.67 (b, 1H, CH2, cod), 1.89 (b, 

3H, CH2, cod), 2.05 (b, 3H, CH2, cod), 2.18 (b, 1H, CH2, cod), 3.45 (b, 1H, CH=, cod), 

3.54-3.60 (m, 1H, CH2-Se), 3.89-3.97 (m, 2H, CH2-Se, CHCHO), 4.43 (b, 1H, CH-O), 4.64 

(b, 2H, CHCH2Se, CH=, cod), 4.76 (b, 1H, CH=, cod), 5.17 (b, 1H, CH=, cod), 7.00-8.21 (m, 

29H, CH= aromatic). 
13

C NMR (100.6 MHz, CDCl3): δ= 0.2 (CH3, SiMe3), 0.8 (CH3, SiMe3), 
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19.1 (CH3), 26.4 (CH3), 26.8 (CH3), 28.5 (CH2, cod), 29.5 (CH2, cod), 31.8 (CH2, cod), 33.1 

(CH2, cod), 41.4 (CH2-Se), 68.1 (CH=, cod), 76.7 (CHCH2Se), 78.1 (CH=, cod), 79.8 (CH-O, 
2
JC-P =14.5 Hz), 82.9 (d, CHCHO, 

3
JC-P =6.1 Hz), 101.3 (d, CH=, cod, JC-P =16.8 Hz), 104.5 

(d, CH=, cod, JC-P =15.3 Hz), 112.4 (CMe2), 117.4-152.9 (aromatic carbons), 161.7 (q, C-

B, BArF, 
1
JC-B =49.7 Hz). MS HR-ESI [found 1125.2592, C52H61IrO5PSeSi2 (M)

+
 requires 

1125.2590].  

3.3.4.4. Synthesis of [Rh(cod)(L)]BF4 catalyst precursor 

 Corresponding ligand (0.05 mmol) was dissolved in CH2Cl2 (1 mL) and [Rh(cod)2]BF4 

(20.3 mg, 0.05 mmol) was added. The reaction was stirred for 10 min at room 

temperature. The product was precipitated by adding cold hexane (5 mL). The product 

was then filtered and washed with cold hexane (3x5 mL). The solid was then dried to 

afford the catalyst precursor as a yellow solid. 

[Rh(cod)(L7f)]BF4. Yield: 43 mg (43%).
31

P NMR (161.9 MHz, CDCl3): δ= 114.2 (d, 

minor isomer, 
1
JP-Rh= 260.0 Hz), 117.8 (d, major isomer, 

1
JP-Rh= 256.0 Hz). 

1
H NMR (400 

MHz, CDCl3): δ= 0.43 (s, 9H, CH3, SiMe3), 0.74 (s, 9H, CH3, SiMe3), 1.33 (s, 3H, CH3), 1.46 

(s, 3H, CH3), 1.82-2.53 (b, 8H, CH2, cod), 2.79 (m, 1H, CH2-OP), 3.38 (m, 2H, CH2-S, 

CHCH2S), 3.74 (m, 2H, CH2-OP, CH=, cod), 3.93 (m, 2H, CH2-S, CH=, cod), 4.34 (m, 1H, 

CHCH2OP, cod), 4.93 (b, 1H, CH=, cod), 5.17 (b, 1H, CH=, cod), 6.91-8.26 (m, 15H, CH= 

aromatic). 
13

C NMR (100.6 MHz, CDCl3): δ= -0.2 (CH3, SiMe3), 1.8 (CH3, SiMe3), 28.4 

(CH3), 28.7 (CH3), 29.7 (CH2, cod), 30.2 (CH2, cod), 33.6 (CH2, cod), 37.4 (CH2, cod), 66.1 

(CH2-S), 72.1 (CHCH2S), 72.4 (CH2-OP), 78.7 (CHCH2O), 83.9 (CH=, cod), 92.9 (b, CH=, 

cod), 112.3 (b, CH=, cod), 112.8 (CMe2), 113.1 (b, CH=, cod), 120.5-150.7 (aromatic 

carbons). MS HR-ESI [found 923.2250, C47H5O5PRhSSi2 (M)
+
 requires 923.2258].  

[Rh(cod)(L7g)]BF4. Yield: 40 mg (80%). Major isomer (60%). 
31

P NMR (161.9 MHz, 

CDCl3): δ= 122.0 (d, 
1
JP-Rh= 258.4 Hz). 

1
H NMR (400 MHz, CDCl3): δ= 0.56 (s, 9H, CH3, 

SiMe3), 0.87 (s, 9H, CH3, SiMe3), 1.18 (s, 3H, CH3), 1.21 (s, 3H, CH3), 1.88-2.68 (b, 8H, 

CH2, cod), 3.39 (m, 1H, CH2-OP), 3.58 (m, 2H, CH2-S, CH2-O), 3.83 (m, 1H, CH2-S), 3.95 

(m, 1H, CH=, cod), 4.01 (m, 1H, CHCH2OP, cod), 4.22 (b, 1H, CHCH2S), 4.46 (b, 1H, CH=, 

cod), 4.87 (b, 1H, CH=, cod), 4.95 (b, 1H, CH=, cod), 6.74-8.27 (m, 15H, CH= aromatic). 
13

C NMR (100.6 MHz, CDCl3): δ= 0.0 (CH3, SiMe3), 1.1 (CH3, SiMe3), 26.0 (CH3), 26.4 

(CH3), 28.6 (b, CH2, cod), 29.4 (CH2, cod), 30.7 (CH2, cod), 34.8 (CH2, cod), 46.4 (CH2-S), 

69.3 (CH2-O), 74.8 (CHCH2O), 77.4 (CH=, cod), 80.2 (CHCH2S), 89.1 (CH=, cod), 109.7 

(CMe2), 112.2 (b, CH=, cod), 112.9 (b, CH=, cod), 120.2-151.4 (aromatic carbons). 

Minor isomer (40%). 
31

P NMR (161.9 MHz, CDCl3): δ= 114.5 (d, 
1
JP-Rh= 266.6 Hz). 

1
H 

NMR (400 MHz, CDCl3): δ= 0.58 (s, 9H, CH3, SiMe3), 0.69 (s, 9H, CH3, SiMe3), 1.29 (s, 3H, 

CH3), 1.40 (s, 3H, CH3), 1.88-2.68 (b, 8H, CH2, cod), 3.03 (m, 1H, CH2-S), 3.30 (m, 1H, 

CH2-S), 3.39 (m, 1H, CH2-OP), 3.58 (m, 1H, CH2-O), ), 3.95 (m, 1H, CH=, cod), 4.01 (m, 

1H, CHCH2OP, cod), 4.13 (b, 1H, CHCH2S), 4.46 (b, 1H, CH=, cod), 5.49 (b, 1H, CH=, cod), 

5.69 (b, 1H, CH=, cod), 6.74-8.27 (m, 15H, CH= aromatic). 
13

C NMR (100.6 MHz, CDCl3): 

δ= 0.9 (CH3, SiMe3), 1.0 (CH3, SiMe3), 26.2 (CH3), 26.8 (CH3), 28.6 (b, CH2, cod), 30.0 
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(CH2, cod), 31.0 (CH2, cod), 34.3 (CH2, cod), 35.6 (CH2-S), 69.2 (CH2-O), 74.6 (CHCH2O), 

79.7 (CHCH2S), 81.2 (CH=, cod), 86.4 (b, CH=, cod), 111.1 (CMe2), 115.4 (b, CH=, cod), 

115.6 (b, CH=, cod), 120.2-151.4 (aromatic carbons). MS HR-ESI [found 923.2250, 

C47H5O5PRhSSi2 (M)
+
 requires 923.2258]. 

[Rh(cod)(L17f)]BF4. Yield: 43 mg (84%).
31

P NMR (161.9 MHz, CDCl3): δ= 119.5 (d, 
1
JP-

Rh= 260.8 Hz). 
1
H NMR (400 MHz, CDCl3): δ= 0.34 (d, 3H, CH3, 

3
JH-H =5.8 Hz), 0.54 (s, 9H, 

CH3, SiMe3), 0.83 (s, 6H, CH3, SiMe3), 0.90 (s, 3H, CH3, SiMe3), 1.20  (s, 3H, CH3), 1.24 (s, 

3H, CH3), 1.80 (b, 1H, CH2, cod), 2.13 (m, 5H, CH2, cod), 2.47 (m, 2H, CH2, cod), 3.58 (b, 

1H, CH=, cod), 3.69 (d, 1H, CH2-S, 
2
JH-H= 14.2 Hz), 3.88 (m, 2H, CH2-S, CHCHO), 4.25 (m, 

2H, CHCH2-S, CHOP), 4.55 (b, 1H, CH=, cod), 4.67 (b, 1H, CH=, cod), 4.97 (b, 1H, CH=, 

cod), 6.94-8.28 (m, 15H, CH= aromatic). 
13

C NMR (100.6 MHz, CDCl3): δ= -0.2 (CH3, 

SiMe3), 1.4 (CH3, SiMe3), 18.1 (CH3), 26.0 (CH2, cod), 26.4 (CH3), 26.6 (CH3), 29.1 (CH2, 

cod), 30.7 (CH2, cod), 34.6 (CH2, cod), 46.0 (CH2-S), 80.2 (CHCH2S), 82.1 (CHCHO), 82.4 

(CH=, cod), 83.6 (d, CH-O, 
2
JC-P =19.8 Hz), 90.6 (d, CH=, cod, JC-P =8.4 Hz), 109.3 (CMe2), 

110.4 (d, CH=, cod, JC-P= 10.0 Hz), 111.6 (d, CH=, cod, JC-P= 12.3 Hz), 121.3-150.9 

(aromatic carbons). MS HR-ESI [found 937.2406, C48H59PRhO5SSi2 (M)
+
 requires 

937.2414] 

[Rh(cod)(L17g)]BF4. Yield: 39 mg (77%).
31

P NMR (161.9 MHz, CDCl3): δ= 117.8 (d, 
1
JP-Rh= 258.4 Hz). 

1
H NMR (400 MHz, CDCl3): δ= 0.50 (d, 3H, CH3, 

3
JH-H =5.0 Hz), 0.58 (s, 

9H, CH3, SiMe3), 0.73 (s, 9H, CH3, SiMe3), 1.28  (s, 3H, CH3), 1.32 (s, 3H, CH3), 1.90 (b, 

3H, CH2, cod), 2.11 (m, 1H, CH2, cod), 2.28 (m, 2H, CH2, cod), 2.41 (m, 1H, CH2, cod), 

2.53 (m, 1H, CH2, cod), 3.16 (m, 1H, CH2-S), 3.98 (m, 3H, CH2-S, CHCHO, CH=, cod), 4.30 

(b, 1H, CH, cod), 4.43 (m, 2H, CHCH2-S, CHOP), 5.33 (b, 2H, CH=, cod)  6.97-8.20 (m, 

15H, CH= aromatic). 
13

C NMR (100.6 MHz, CDCl3): δ= 0.2 (CH3, SiMe3), 0.76 (CH3, 

SiMe3), 18.2 (CH3), 26.3 (CH3), 26.6 (CH3), 27.6 (CH2, cod), 28.7 (CH2, cod), 31.6 (CH2, 

cod), 32.7 (CH2, cod), 42.5 (CH2-S), 77.3 (CHCH2S), 79.2 (CH-O), 82.0 (b, CH=, cod), 82.7 

(d, CHCHO, 
2
JC-P =6.0 Hz), 90.3 (b, CH=, cod), 111.5 (d, CH=, cod, JC-P= 12.6 Hz), 111.8 

(CMe2), 114.2 (b, CH=, cod), 120.6-150.9 (aromatic carbons). MS HR-ESI [found 

937.2408, C48H59PRhO5SSi2 (M)
+
 requires 937.2414].  

[Rh(cod)(L18g)]BF4. Yield: 47 mg (88%).
31

P NMR (161.9 MHz, CDCl3): δ= 118.4 (d, 
1
JP-Rh= 260.1 Hz). 

1
H NMR (400 MHz, CDCl3): δ= 0.53 (d, 3H, CH3, 

3
JH-H =5.0 Hz), 0.62 (s, 

9H, CH3, SiMe3), 0.75 (s, 9H, CH3, SiMe3), 1.29  (s, 3H, CH3), 1.34 (s, 3H, CH3), 1.85 (b, 

3H, CH2, cod), 2.10 (m, 1H, CH2, cod), 2.24 (m, 2H, CH2, cod), 2.43 (m, 1H, CH2, cod), 

2.58 (m, 1H, CH2, cod), 3.24 (m, 1H, CH2-S), 4.02 (m, 2H, CHCHO, CH=, cod), 4.25 (m, 

2H, CH2-S, CH, cod), 4.44 (m, 1H, CHOP), 4.55 (m, 1H, CHCH2-S), 5.35 (b, 2H, CH=, cod)  

6.98-8.21 (m, 17H, CH= aromatic). 
13

C NMR (100.6 MHz, CDCl3): δ= 0.3 (CH3, SiMe3), 0.5 

(CH3, SiMe3), 19.1 (CH3), 26.1 (CH3), 26.7 (CH3), 26.8 (CH2, cod), 29.9 (CH2, cod), 30.3 

(CH2, cod), 33.9 (CH2, cod), 42.8 (CH2-S), 76.8 (CHCH2S), 79.0 (CHCHO), 79.1 (CH=, cod), 

82.4 (CH-O), 93.1 (d, CH=, cod, JC-P =8.2 Hz), 111.6 (d, CH=, cod, JC-P= 11.8 Hz), 112.3 

(CMe2), 114.6 (d, CH=, cod, JC-P= 12.4 Hz), 120.0-150.0 (aromatic carbons). MS HR-ESI 

[found 987.2567, C52H61PRhO5SSi2 (M)
+
 requires 987.2571].  
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[Rh(cod)(L21g)]BF4. Yield: 53 mg (89%).
31

P NMR (161.9 MHz, CDCl3): δ= 119.9 (d, 
1
JP-Rh= 261.5 Hz). 

1
H NMR (400 MHz, CDCl3): δ= 0.59 (s, 9H, CH3, SiMe3), 0.72 (s, 9H, 

CH3, SiMe3), 0.84 (b, 6H, CH3), 1.04 (s, 9H, CH3, 
t
Bu, OTBDMS), 1.20 (s, 3H, CH3), 1.26 (s, 

3H, CH3), 1.79 (m, 2H, CH2, cod), 1.95 (m, 1H, CH2, cod), 2.12 (m, 1H, CH2, cod), 2.27 

(m, 1H, CH2-OTBDMS), 2.37 (m, 2H, CH2, cod), 2.49 (m, 1H, CH2, cod), 2.69 (m, 1H, CH2, 

cod), 3.16 (m, 2H, CH2-OTBDMS and CH2-S), 4.16 (b, 1H, CH=, cod), 4.27 (m, 3H, CH2-S, 

CH= cod, CH), 4.64 (m, 2H, CH), 5.50 (m, 2H, CH=, cod), 6.91-8.21 (m, 17H, CH=, 

aromatic). 
13

C NMR (100.6 MHz, CDCl3): δ= -0.1 (CH3, SiMe3), 0.4 (CH3, SiMe3), 14.3 

(CH3), 18.4 (C, 
t
Bu, OTBDMS), 22.9 (CH3), 26.8 (CH3, 

t
Bu, OTBDMS), 29.7 (b, CH2, cod), 

30.4 (b, CH2, cod), 31.9 (CH3), 34.5 (b, CH2, cod), 34.9 (b, CH2, cod), 42.5 (CH2-S), 62.2 

(CH2-OTBDMS), 75.6 (CH), 75.7 (CH), 81.1 (CH), 82.7 (CH=, cod), 94.0 (CH, cod), 112.1 

(C), 112.3 (CH, cod), 114.6 (CH=, cod), 114.6-151.4 (aromatic carbons). MS HR-ESI 

[found 1241.3689, C58H75RhO6PSSi3 (M)
+
 requires 1241.3692].  

[Rh(cod)(L24f)]BF4. Yield: 47 mg (92%). Major isomer (53%). 
31

P NMR (161.9 MHz, 

CDCl3): δ=  22.6 (d, 
1
JP-Rh= 257.3 Hz). 

1
H NMR (400 MHz, CDCl3): δ= 0.55 (s, 9H, CH3, 

SiMe3), 0.87 (s, 9H, CH3, SiMe3), 0.90 (b, 3H, CH3), 1.20 (s, 3H, CH3), 1.90-2.52 (b,8H, 

CH2, cod), 3.67 (m, 1H, CH2-S), 3.82 (m, H, CH2-S, CH-OP), 4.12 (m, 1H, CH=, cod), 4.25 

(m, 1H, CHCHO), 4.41 (m, 2H, CHCH2S, CH=, cod), 4.90 (b, 1H, CH=, cod), 4.99 (b, 1H, 

CH=, cod), 7.01-8.25 (m, 15H, CH= aromatic). 
13

C NMR (100.6 MHz, CDCl3): δ= 0.0 (CH3, 

SiMe3), 1.2 (CH3, SiMe3), 14.4 (CH3), 23.0 (CH3), 26.4 (m, CH2, cod), 32.0 (CH3), 34.6 (b, 

CH2, cod), 46.6 (m, CH2-S), 75.5 (CHCHO), 76.8 (CH-OP), 79.2 (CH=, cod), 88.9 (b, CH=, 

cod), 109.5 (CMe2), 111.5 (b, CH=, cod), 112.0 (b, CH=, cod), 112.5 (b, CHCH2S,), 120.9-

151.0 (aromatic carbons). Minor isomer (47%). 
31

P NMR (161.9 MHz, CDCl3): δ=   3.4 

(d, 
1
JP-Rh= 268.3 Hz). 

1
H NMR (400 MHz, CDCl3): δ= = 0.47 (s, 9H, CH3, SiMe3), 0.82 (b, 

3H, CH3), 0.83 (s, 9H, CH3, SiMe3), 1.20 (s, 3H, CH3), 1.33 (s, 3H, CH3), 1.38 (s, 3H, CH3), 

1.90-2.52 (b, 8H, CH2), 3.54 (m, 1H, CH2-S),  3.82 (m, H, CH2-S, CH-OP), 4.12 (m, 1H, 

CH=, cod), 4.25 (m, 1H, CHCHO), 4.41 (m, 1HCH=, cod), 4.48 (b, 1H, CHCH2S), 5.48 (b, 

1H, CH=, cod), 5.61 (b, 1H, CH=, cod), ), 7.01-8.25 (m, 15H, CH= aromatic). 
13

C NMR 

(100.6 MHz, CDCl3): δ= 0.1 (CH3, SiMe3), 1.1 (CH3, SiMe3), 14.6 (CH3), 26.4 (m, CH2, cod), 

29.6 (CH3), 30.3 (CH2, cod), 30.7 (CH3), 34.6 (b, CH2, cod), 46.6 (m, CH2-S), 76.1 

(CHCHO), 77.3 (CH-OP), 81.5 (CH=, cod), 88.9 (b, CH=, cod), 110.1 (CMe2), 112.5 (b, 

CHCH2S), 120.9-151.0 (aromatic carbons). MS HR-ESI [found 937.2406, C48H59PRhO5SSi2 

(M)
+
 requires 937.2414]. 

3.3.4.5. Typical procedure for the preparation of hydroxyl-thioether compounds 

6-8 

To a cooled (-15 °C) suspension of the desired thiolate sodium salt (10.2 mmol) in 

THF (20 mL), a solution of the corresponding tosylate (3.2 mmol) in THF (10 mmol) was 

added. The reaction mixture was stirred at room temperature for minimum 48 h and 

quenched with water. The THF was removed under reduced pressure. The aqueous 

phase was extracted with CH2Cl2 (3 x 25 mL), dried with MgSO4 and the solvent was 
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evaporated. The crude was purified by flash chromatography (AcOEt/EP = 1/2) to 

produce the desired alcohol-thioethers as white solids. 

((4S,5R)-2,2-Dimethyl-5-((methylthio)methyl)-1,3-dioxolan-4-yl)methanol (6) 

Yield: 0.43 g (66%). 
1
H NMR (CDCl3), : 1.40 (s, 3H, CH3), 1.41 (s, 3H, CH3), 2.12 (s, 

1H, OH), 2.16 (s, 3H, CH3-S),  2.67 (dd, 1H, 
2
JH-H= 13.6 Hz, 

3
JH-H= 6.4 Hz, CH2-S), 2.78 (dd, 

1H, 
2
JH-H= 14 Hz, 

3
JH-H= 6 Hz, CH2-S), 3.69 (dd, 1H, 

2
JH-H= 11.6  Hz, 

3
JH-H=  4 Hz, CH2-O), 

3.85 (dd, 1H, 
2
JH-H= 15.2  Hz, 

3
JH-H=  4.8 Hz, CH2-O), 3.90 (dd, 1H, 

2
JH-H= 8 Hz, 

3
JH-H= 3.6 

Hz, CHCH2O), 4.08 (dd, 1H, 
2
JH-H= 13.6 Hz, 

3
JH-H= 6 Hz, CHCH2S). 

13
C NMR (CDCl3), : 16.6 

(CH3-S), 27.2(CH3), 27.3 (CH3), 36.7 (CH2-S), 62.4 (CH2-O), 76.2 (CHCH2S), 81.3 (CHCH2S), 

109.4 (CMe2).  

((4S,5R)-5-((tert-Butylthio)methyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol (7) 

Yield: 0.47 g (63%). 
1
H NMR (CDCl3), : 1.31 (s, 9H, CH3, 

t
Bu),1.28 (s, 3H, CH3), 1.39 (s, 

3H, CH3), 1.41 (s, 3H, CH3, 
t
Bu), 2.05 (b, 1H, OH), 2.69 (dd, 1H, 

2
JH-H= 12.4 Hz, 

3
JH-H= 7.2 

Hz, CH2-S), 2.87 (dd, 1H, 
2
JH-H= 12.4  Hz, 

3
JH-H=  5.2 Hz, CH2-S), 3.67-3.87 (m, 2H, CH2-O), 

3.88-3.89 (m, 1H, CHCH2O), 4.01 (dd, 1H, 
2
JH-H= 7.2 Hz, 

3
JH-H= 2 Hz, CHCH2S). 

13
C NMR 

(CDCl3), : 27.2 (CH3), 27.3 (CH3), 31.0 (CH3, 
t
Bu), 31.3 (CH2-S), 42.7 (C, 

t
Bu), 62.7(CH2-

O), 76.7 (CHCH2S), 81.8 (CHCH2O), 109.3 (CMe2). 

((4S,5R)-5-(((2,6-Dimethylphenyl)thio)methyl)-2,2-dimethyl-1,3-dioxolan-4-

yl)methanol (8). Yield: 0.57 g (53%). 
1
H NMR (CDCl3), : 1.40 (s, 3H, CH3), 1.42  (s, 3H, 

CH3), 1.86  (s, 1H, OH), 2.53  (s, 6H, CH3), 2.84 (dd, 1H, 
2
JH-H= 12 Hz, 

3
JH-H= 8 Hz, CH2-S), 

2.89 (dd, 1H, 
2
JH-H= 12 Hz, 

3
JH-H= 4 Hz, CH2-S), 3.66 (dd, 1H, 

2
JH-H= 12 Hz, 

3
JH-H= 4 Hz, CH2-

O), 3.83 (dd, 1H, 
2
JH-H= 12  Hz, 

3
JH-H= 4 Hz, CH2-O), 3.89-3.93 (m, 1H, CHCH2O), 3.97-4.02 

(m, 1H, CHCH2S), 7.08-7.11 (m, 3H, CH=).
13

C NMR (CDCl3), : 22.3 (CH3-Ar), 27.3 (CH3), 

27.4 (CH3), 38.3 (CH2-S), 62.4 (CH2-O), 76.2 (CHCH2S), 81.3 (CHCH2O), 109.5 (CMe2), 

128.4 (CH=),  128.6 (CH=), 133.4 (C), 143.1 (C). 

3.3.4.6. Typical procedure for the preparation of hydroxyl-selenoether 

compounds 9-10
[26]

 

Powdered NaBH4 (98.4 mg, 2.6 mmol) was added in portions to a solution of the 

corresponding (Se-Ar)2
[27]

 (2 mmol) in THF (2 mL) at 0 ᵒC. The reaction mixture was 

stirred for 10 min at room temperature. 1-Deoxy-2,3-O-isopropylidene-1-tosyl-D-

arabinitol (1 mmol) in THF (5 mL) was added, and the reaction mixture was stirred 

overnight. The reaction was quenched with water and extracted with dichloromethane 

for three times. The extract was dried over anhydrous magnesium sulfate and 

concentrated. The residue was purified by SiO2-column chromatography (PE/EtOAc = 

1/10) to produce the desired selenide compound as colorless oil. 

((4S,5R)-5-((phenylselanyl)methyl)-1,3-dioxolan-4-yl)methanol (9). Yield: 608 mg 

(70%). 
1
H NMR (400 MHz, CDCl3): δ= .40 (s, 3H, CH3), 1.44 (s, 3H, CH3), 1.96 (b, 1H, 

OH), 3.08 (dd, 1H, CH2-Se, 
2
JH-H =12.4 Hz, 

3
JH-H= 6.4 Hz), 3.19 (dd, 1H, CH2-Se, 

2
JH-H =12.4 

Hz, 
3
JH-H =4.8 Hz), 3.68 (dd, 1H, CH2-O,

 2
JH-H =12.0 Hz, 

3
JH-H= 4.8 Hz), 3.85 (dd, 1H, CH2-O,

 

2
JH-H =12.4 Hz, 

3
JH-H =3.6 Hz), 3.94 (m, 1H, CHCH2O), 4.12 (m, 1H, CHCH2Se), 7.24-7.28 
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(m, 3H, CH=), 7.51-7.53 (m, 2H, CH=). 
13

C NMR (100.6 MHz, CDCl3): δ= 27.2 (CH3), 27.3 

(CH3), 30.1 (CH2-Se), 62.5 (CH2), 76.0 (CHCH2Se), 81.6 (CHCH2O), 109.3 (CMe2), 127.2 

(CH=), 129.2 (CH=), 129.6 (C), 132.7 (CH=). 

((4S,5R)-5-((naphthalene-2-ylselanyl)methyl)-1,3-dioxolan-4-yl)methanol (10) 

Yield: 730 mg (62%). 
1
H NMR (400 MHz, CDCl3): δ= 1.41 (s, 3H, CH3), 1.46 (s, 3H, CH3), 

2.35 (b, 1H, OH), 3.18 (dd, 1H, CH2-Se, 
2
JH-H =12.6 Hz, 

3
JH-H =6.5 Hz), 3.29 (dd, 1H, CH2-

Se, 
,2

JH-H =12.6 Hz, 
3
JH-H =5.6 Hz), 3.70 (dd, 1H, CH2-O,

 2
JH-H =11.9 Hz, 

3
JH-H =4.6 Hz), 3.86 

(dd, 1H, CH2-O, 
3
JH-H =11.9 Hz, 

2
JH-H =3.3 Hz), 3.98 (m, 1H, CHCH2O), 4.14 (m, 1H, 

CHCH2Se), 7.44-7.50 (m, 2H, CH=), 7.57-7.60 (m, 1H, CH=), 7.73 (d, 1H, CH=, 
3
JH-H =8.3 

Hz), 7.5-7.82 (m, 2H, CH=), 8.01 (s, 1H, CH=). 
13

C NMR (CDCl3), δ: 27.9 (CH3), 28.0 (CH3), 

30.8 (CH2-Se), 63.3 (CH2-O), 76.8 (CHCH2Se), 82.3 (CHCH2O), 110.1 (CMe2), 126.9-134.6 

(aromatic carbons). 

3.3.4.7. Typical procedure for the preparation of hydroxyl-thioether compounds 

12-14 

The already monosilane-protected compound 3 (890 mg, 3.2 mmol) was 

azeotropically dried with toluene (3 x 2 mL) and then dissolved in CH2Cl2 (20 mL) to 

which pyridine (0.56 mL, 6.8 mmol) was added. The alcohol solution was cooled to -15 

°C and Tf2O (0.78 mL, 4.5 mmol) was added slowly over 2 min. The reaction mixture 

was stirred at -15 °C for 2 h and quenched with water. The aqueous phase was 

extracted with diethyl ether (3 x 50 mL), dried with MgSO4 and the solvents were 

removed at room temperature. To the crude product, petroleum ether (25 mL) was 

added and the insoluble impurities were removed by filtration. Evaporation of the 

solvent provided the desired monotriflate 11 in 93% yield (1.22 g), which was used 

without further purification in the next step. 

To a suspension of NaH (385 mg, 9.6 mmol) in THF (5 mL) a solution of the desired 

thiol (0.94 g, 5.6 mmol) in THF (15 mL) was added. After 2 min, the suspension was 

cooled to -78 °C and a solution of 11 (1.22 g, 3.0 mmol) in THF (20 mL) was added. 

After 90 min, water (25 mL) was added and the THF was evaporated. The solution was 

extracted with CH2Cl2 (3 x 50 mL), dried with MgSO4 and the solvents were evaporated. 

The crude was purified by flash chromatography (AcOEt/EP = 1/19) to produce the 

desired compounds as white solids. 

((4S,5R)-5-((Adamantan-1-ylthio)methyl)-2,2-dimethyl-1,3-dioxolan-4-

yl)methanol (tert-butyl) dimethylsilane. Yield: 830 mg (66%). 
1
H NMR (CDCl3), : 0.06 

(s, 6H, CH3-Si), 0.89 (s, 9H, CH3, Si
t
Bu),1.37 (s, 3H, CH3), 1.40 (s, 3H, CH3), 1.65 (m, 6H, 

CH2, Ad), 1.85 (m, 6H, CH2, Ad), 2.02 (m, 3H, CH, Ad), 2.77 (d, 1H, 
2
JH-H= 6.4 Hz, CH2-S), 

3.77-3.83 (m, 3H, CH2-O, CHCH2O), 4.03  (m, 1H, CHCH2S).  

tert-Butyl(((4S,5R)-2,2-dimethyl-5-((naphthalen-1-ylthio)methyl)-1,3-dioxolan-4-

yl)methoxy)dimethylsilane. Yield: 830 mg (67%). 
1
H NMR (CDCl3), : 0.01 (s, 6H, CH3-

Si), 0.84 (s, 9H, CH3, Si
t
Bu),1.49 (s, 3H, CH3), 1.43 (s, 3H, CH3), 3.25 (dd, 1H, 

2
JH-H= 12 Hz, 

3
JH-H= 8 Hz, CH2-S), 3.31 (dd, 1H, 

2
JH-H= 12 Hz, 

3
JH-H= 4 Hz, CH2-S), 3.74 (dd, 1H, 

2
JH-H= 8 
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Hz, 
3
JH-H=  4 Hz, CH2-O), 3.83 (dd, 1H, 

2
JH-H= 8  Hz, 

3
JH-H=  4 Hz, CH2-O), 3.92-3.96 (m, 1H, 

CHCH2O), 4.17-4.22 (m, 1H, CHCH2S), 7.41-8.47 (m, 7H, CH=).  

tert-Butyl(((4S,5R)-2,2-dimethyl-5-((naphthalen-2-ylthio)methyl)-1,3-dioxolan-4-

yl)methoxy)dimethylsilane. Yield: 780 mg (63%).
1
H NMR (CDCl3), : 0.01 (s, 6H, CH3-

Si), 0.84 (s, 9H, CH3, Si
t
Bu),1.39 (s, 3H, CH3), 1.45 (s, 3H, CH3), 3.27 (dd, 1H, 

2
JH-H= 13.6 

Hz, 
3
JH-H= 6.8 Hz, CH2-S), 3.34 (dd, 1H, 

2
JH-H= 13.2 Hz, 

3
JH-H= 4.8 Hz, CH2-S), 3.74 (dd, 1H, 

2
JH-H= 10.8 Hz, 

3
JH-H=  6 Hz, CH2-O), 3.83 (dd, 1H, 

2
JH-H= 10.8  Hz, 

3
JH-H=  4.4 Hz, CH2-O), 

3.91-3.95 (m, 1H, CHCH2O), 4.15-4.20 (m, 1H, CHCH2S), 7.40-7.78 (m, 7H, CH=).
13

C 

NMR (CDCl3), : -5.2 (CH3-Si), 18.5 (C-Si), 26.0 (CH3, Si
t
Bu), 27.2 (CH3), 27.5 (CH3), 37.0 

(CH2-S), 63.9 (CH2-O), 77.2 (CHCH2S), 80.8 (CHCH2O), 109.6 (CMe2), 125.9 (CH=), 126.7 

(CH=),  127.1 (CH=), 127.2 (CH=), 127.5 (CH=), 127.9 (CH=), 128.6 (C).  

The desired monosilane-protected thioether compound (1.27 mmol) was dissolved 

in THF (5 mL) to which TBAF (3.8 mL of 1M in THF, 3.8 mmol) was added slowly. The 

reaction mixture was stirred at room temperature for 90 min and quenched with 

diethyl ether (25 mL). The organic phase was washed with HCl 1M, brine and water, 

dried with MgSO4 and evaporated. The crude was purified by flash chromatography 

(AcOEt/EP  = 1/3) to produce the desired thioether-alcohols as white solids. 

((4S,5R)-5-((Adamantan-1-ylthio)methyl)-2,2-dimethyl-1,3-dioxolan-4-

yl)methanol (12). Yield: 241 mg (63%). 
1
H NMR (CDCl3), : 1.34 (s, 3H, CH3), 1.35 (s, 3H, 

CH3), 1.60-1.62 (m, 6H, CH2, Ad), 1.78-1.79 (m, 6H, CH2, Ad), 1.97 (m, 3H, CH, Ad), 2.51 

(m, 1H, OH), 2.60 (dd, 1H, 
2
JH-H= 12.8 Hz, 

3
JH-H= 7.6 Hz, CH2-S), 2.81 (dd, 1H, 

2
JH-H= 12.8  

Hz, 
3
JH-H=  5.6 Hz, CH2-S), 3.62-3.69 (m, 1H, CH2-O), 3.77-3.83 (m, 2H, CH2-O, CHCH2O), 

3.89-3.94 (m, 1H, CHCH2S). 
13

C NMR (CDCl3), : 27.0 (CH3), 27.1 (CH3), 28.5 (CH2-S), 29.5 

(CH, Ad), 36.1 (CH2, Ad), 43.3 (CH2, Ad), 53.4 (C, Ad),  62.6 (CH2-O), 76.8 (CHCH2S), 81.7 

(CHCH2O), 109.0 (CMe2). 

((4S,5R)-2,2-dimethyl-5-((naphthalen-1-ylthio)methyl)-1,3-dioxolan-4-

yl)methanol (13). Yield: 255 mg (66%). 
 1

H NMR (CDCl3), : 1.40 (s, 3H, CH3), 1.43 (s, 

3H, CH3), 2.84 (b, 1H, OH), 3.13 (dd, 1H, 
2
JH-H= 13.2 Hz, 

3
JH-H= 5.6 Hz, CH2-S), 3.27 (dd, 

1H, 
2
JH-H= 13.2 Hz, 

3
JH-H= 5.6 Hz, CH2-S), 3.64 (m, 1H, CH2-O), 3.80 (m, 1H, CH2-O), 3.95-

3.99 (m, 1H, CHCH2O), 4.10 (m, 1H, CHCH2S), 7.34-8.41 (m, 7H, CH=).
13

C NMR (CDCl3), 

: 27.1 (CH3), 27.2 (CH3), 37.1 (CH2-S), 62.5 (CH2-O), 75.7 (CHCH2S), 81.3 (CHCH2O), 

109.5 (CMe2), 124.9 (CH=), 125.6 (CH=), 126.3 (CH=),  126.6 (CH=), 127.6 (CH=), 128.4 

(CH=), 128.6 (CH=), 132.7 (C), 133.9 (C).  

((4S,5R)-2,2-dimethyl-5-((naphthalen-2-ylthio)methyl)-1,3-dioxolan-4-

yl)methanol (14). Yield: 201 mg (52%). 
1
H NMR (CDCl3), : 1.41 (s, 3H, CH3), 1.45 (s, 3H, 

CH3), 2.04 (s, 1H, OH), 3.11 (dd, 1H, 
2
JH-H= 16 Hz, 

3
JH-H= 8 Hz, CH2-S), 3.32 (dd, 1H, 

2
JH-H= 

12 Hz, 
3
JH-H= 4 Hz, CH2-S), 3.65 (dd, 1H, 

2
JH-H= 8 Hz, 

3
JH-H=  4 Hz, CH2-O), 3.81 (dd, 1H, 

2
JH-

H= 12  Hz, 
3
JH-H=  4 Hz, CH2-O), 3.92-3.96 (m, 1H, CHCH2O), 4.02-4.09 (m, 1H, CHCH2S), 

7.43-7.81 (m, 7H, CH=).
13

C NMR (CDCl3), : 27.1 (CH3), 27.2 (CH3), 36.5 (CH2-S), 62.5 

(CH2-O), 75.5 (CHCH2S), 81.2 (CHCH2O), 109.5 (CMe2), 125.8 (CH=), 126.6 (CH=),  127.1 

(CH=), 127.2 (CH=), 127.7 (CH=), 128.6 (CH=), 131.8 (C), 132.8 (C), 133.7 (C).  
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3.3.4.8. Preparation of compounds 15 and 16 

(4R,5S)-Ethyl-5-(hydroxymethyl)-2,2-dimethyl-1,3-dioxolane-4-carboxylate. To a 

stirred solution of compound 1 (10 g, 40.6 mmol) in ethanol (40 mL), with cooling (ice-

bath), was added, portionwise, NaBH4 (922 mg, 24.4 mmol) over a 1 hour period. The 

resulting mixture was then stirred at room temperature for a further 30 min. After, the 

ethanol was removed under reduced pressure. To the crude product was added water 

and extracted in ethyl acetate (3 x 25 mL), dried with MgSO4 and dried in the 

rotavapor. The crude was purified by flash chromatography on silica (Et2O/EP = 1/1) 

afforded diester 1. Further elution (Et2O/EP = 3/1) afforded the desired monoester. 

Yield: 2.7 g (33%). 
1
H NMR (CDCl3), : 1.27 (m, 3H, CH3, Et), 1.39 (s, 3H, CH3), 1.44 (s, 

3H, CH3), 2.40 (b, 1H, OH),  3.69-3.72 (m, 1H, CH2-O), 3.89-3.92 (m, 1H, CH2-O), 4.17-

4.24 (m, 3H, CHCH2O, CH2, Et), 4.38-4.42 (m, 1H, CHCOOEt). 
13

C NMR (CDCl3), : 14.1 

(CH3, Et), 25.5 (CH3), 26.7 (CH3), 61.5 (CH2, Et), 61.8 (CH2-O), 74.8 (CHCOOEt), 79.2 

(CHCH2O), 111.3 (CMe2), 170.8 (C=O). Further elution with ethyl acetate (100%) 

afforded diol 3. 

(4R,5S)-Ethyl-5-(((tert-butyldimethylsilyl)oxy)methyl)-2,2-dimethyl-1,3-dioxolane-

4-carboxylate (15). The already prepared monoester (1.8 g, 8.8 mmol), tert-

butyldimethylsilyl chloride (1.59 g, 10.6 mmol) and imidazole (1.5 g, 22 mmol) were 

stirred together in dry DMF (4.5 mL) at room temperature for 1 h. The crude product 

was extracted in Et2O (3 x 25 mL), dried with MgSO4 and dried in the rotavapor. The 

crude was purified by flash chromatography (Et2O/EP = 1/10) to produce 15 as an oil. 

Yield: 2.1 g (75%). 
1
H NMR (CDCl3), : 0.00 (s, 6H, CH3-Si), 0.82 (s, 9H, CH3, Si

t
Bu), 1.21 

(m, 3H, CH3, Et), 1.36 (s, 3H, CH3), 1.38 (s, 3H, CH3), 3.71 (dd, 1H, 
2
JH-H= 8 Hz, 

3
JH-H= 4 Hz, 

CH2-O), 3.8 (dd, 1H, 
2
JH-H= 12 Hz, 

3
JH-H= 4 Hz, CH2-O),  4.11-4.18  (m, 3H, CHCH2O, CH2, 

Et), 4.38  (d, 1H, 
2
JH-H= 4 Hz, CHCOOEt). 

13
C NMR (CDCl3), : -5.4 (CH3-Si), -5.3 (CH3-Si), 

14.1 (CH3, Et), 18.3 (C-Si), 25.8 (CH3, Si
t
Bu), 25.9 (CH3), 26.8 (CH3), 61.2 (CH2, Et), 62.6 

(CH2-O), 75.2 (CHCOOEt), 79.7 (CHCH2O), 111.2 (CMe2), 170.9 (C=O).  

2-((4R,5S)-5-(((tert-Butyldimethylsilyl)oxy)methyl)-2,2-dimethyl-1,3-dioxolan-4-

yl)propan-2-ol (16). To a solution of compound 15 (2.1 g, 6.5 mmol) in dry stirred THF 

(16.5 mL) under nitrogen, at -60   C was added methyllithium (as a complex with LiBr, 

11 mL of 1.5 mol dm
-3

, solution in diethyl ether, 16.2 mmol) dropwise. The resulting 

mixture was stirred at -60 ⁰C for 0.5 h, then was warmed to room temperature and 

quenched with water. The crude product was extracted in Et2O (3 x 25 mL), dried with 

MgSO4 and dried in the rotavapor. The crude was purified by flash chromatography 

(Et2O/EP = 1/4) to produce 16 as an oil. Yield: 1.1 g (52%). 
1
H NMR (CDCl3), = 0.06 (s, 

6H, CH3-Si), 0.88 (s, 9H, CH3, Si
t
Bu), 1.19 (s, 3H, CH3), 1.22 (s, 3H, CH3), 1.36 (s, 3H, CH3), 

1.39 (s, 3H, CH3), 2.82 (b, 1H, OH), 3.70-3.79 (m, 3H, CH2, CH-CH2), 3.93-3.97 (m, 1H, 

CH-CMe2).
13

C NMR (CDCl3), = -5.5 (CH3-Si), -5.4 (CH3-Si), 18.3 (C-Si), 25.8 (CH3, Si
t
Bu), 

25.9 (CH3), 26.1(CH3), 27.0 (CH3), 27.1 (CH3), 64.3 (CH2), 69.5 (CMe2), 77.3 (CH-CH2), 

84.7(CH-CMe2), 108.5 (CMe2). 
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3.3.4.9. General procedure for the preparation of thioether-hydroxy compounds 

17 and 18 and selenoether-hydroxy compounds 19-20 

2-((4R,5S)-5-(Hydroxymethyl)-2,2-dimethyl-1,3-dioxolan-4-yl)propan-2-ol 

Compound 16 (500 mg, 1.6 mmol) was dissolved in THF (5 mL) to which TBAF (5 mL, 5 

mmol) was added slowly. The reaction mixture was stirred at room temperature for 90 

min. The THF was removed under reduced pressure. The crude product was purified by 

flash chromatography (AcOEt/EP = 2/1) to produce the deprotected alcohol as a white 

solid. Yield: 265 mg (85%).
 1

H NMR (CDCl3), = 1.21 (s, 3H, CH3), 1.28 (s, 3H, CH3), 1.42 

(s, 3H, CH3), 1.44 (s, 3H, CH3), 2.08 (b, 2H, 2OH), 3.65-3.84 (m, 3H, CH2, CH-CH2), 4.07-

4.11 (m, 1H, CH-CMe2).
13

C NMR (CDCl3), = 25.7 (CH3), 26.3 (CH3), 27.1 (CH3), 27.2 

(CH3), 63.4 (CH2), 69.8 (C-O), 77.4 (CH-CH2), 83.5 (CH-CMe2), 108.8 (CMe2). 

((4S,5R)-5-(2-Hydroxypropan-2-yl)-2,2-dimethyl-1,3-dioxolan-4-yl)methyl 4-

methylbenzenesulfonate. To a solution of the previously synthesized diol (100 mg, 

0.52 mmol) in anhydrous pyridine (0.3 mL) at 0 °C, a solution of tosylchloride (100.2 

mg, 0.52 mmol) in dichloromethane (2 mL) was added dropwise. The reaction mixture 

was stirred overnight at room temperature and quenched with water. The crude 

product was extracted in CH2Cl2 (3 x 20 ml), then washed with CuSO4 and water, finally 

dried with MgSO4 and dried in the rotavapor. The crude was purified by flash 

chromatography (AcOEt/EP = 1/1) to produce the tosylated product as white solid. 

Yield: 148 mg (82%). 
1
H NMR (CDCl3), = 1.12 (s, 3H, CH3), 1.23 (s, 3H, CH3), 1.32 (s, 3H, 

CH3), 1.38 (s, 3H, CH3), 1.95 (b, 1H, OH), 2.45 (s, 3H, CH3, OTs), 3.74 (d, 1H, 
2
JH-H= 7.6 Hz, 

CH-CMe2), 4.08 (dd, 1H, 
2
JH-H= 10.8 Hz, 

3
JH-H= 4.8 Hz, CH2), 4.13-4.16 (m, 1H, CH-CH2), 

4.23 (dd, 1H, 
2
JH-H= 10.8 Hz, 

3
JH-H= 2.8 Hz, CH2), 7.33-7.81 (m, 4H, CH=). 

13
C NMR 

(CDCl3), = 21.6 (CH3, OTs), 25.1 (CH3), 26.7 (CH3), 27.1 (CH3), 69.6 (C-O), 70.1 (CH2), 

74.7 (CH-CH2), 82.4 (CHCMe2), 109.7(CMe2), 128.0 (CH=), 129.8 (CH=), 132.7 (C), 145.0 

(C).  

Treatment of the previously synthesized tosylated compound as previously 

described for compounds 5-10 and 9-10 afforded the desired thioether-hydroxy 

acompounds 17-18 and selenoether-hydroxy compounds 19. 

2-((4R,5R)-2,2-Dimethyl-5-((phenylthio)methyl)-1,3-dioxolan-4-yl)propan-2-ol 

(17). Yield: 770 mg (70%). 
1
H NMR (CDCl3), = 1.15 (s, 3H, CH3), 1.24 (s, 3H, CH3), 1.43 

(s, 3H, CH3), 1.44 (s, 3H, CH3), 2.01 (b, 1H, OH), 3.13 (dd, 1H, 
2
JH-H= 12 Hz, 

3
JH-H= 8 Hz, 

CH2-S), 3.3 (dd, 1H, 
2
JH-H= 16 Hz, 

3
JH-H= 4 Hz, CH2-S), 3.76 (d, 1H, 

2
JH-H= 8 Hz, CHCMe2O), 

4.18-4.23 (m, 1H, CHCH2S), 7.17-7.41 (m, 5H, CH=). 
13

C NMR (CDCl3), : 25.2 (CH3), 27.0 

(CH3), 27.1 (CH3), 27.3 (CH3), 38.8 (CH2-S), 69.8 (CMe2OH), 75.7 (CHCH2S), 85.9 

(CHCMe2O), 109.2 (CMe2), 126.3 (CH=), 128.9 (CH=), 129.6 (CH=), 146.4 (C).  

2-((4R,5R)-2,2-dimethyl-5-((napthalen-2-ylthiol)methyl)-1,3-dioxolan-4-yl)propan-

2-ol (18). Yield: 1.2 g (77%). 
1
H NMR (400 MHz, CDCl3): δ= 1.18 (s, 3H, CH3), 1.25 (s, 3H, 

CH3), 1.44 (s, 3H, CH3), 1.46 (s, 3H, CH3), 2.01 (s, 1H, OH), 3.23 (dd, 1H, CH2-S, 
2
JH-H= 

13.2 Hz, 
3
JH-H= 6.8 Hz), 3.41 (dd, 1H, CH2-S, 

2
JH-H= 13.6 Hz, 

3
JH-H =3.2 Hz), 3.80 (d, 1H, 

CHCMe2O,
 2

JH-H= 8.0 Hz), 4.25-4.29 (m, 1H, CHCH2S), 7.41-7.49 (m, 3H, CH=), 7.73-7.83 
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(m, 4H, CH=). 
13

C NMR (100.6 MHz, CDCl3): δ= 25.4 (CH3), 27.0 (CH3), 27.2 (CH3), 27.4 

(CH3), 38.6 (CH2-S), 69.9 (CMe2O), 75.8 (CHCH2S), 86.0 (CHCMe2O), 109.3 (CMe2), 125.8 

(CH=), 126.6 (CH=), 127.0 (CH=), 127.1 (CH=), 127.7 (CH=), 128.0 (CH=), 131.8 (C=), 

133.7 (C=).  

2-((4R,5R)-2,2-dimethyl-5-((naphthalen-2-ylselanyl)methyl)-1,3-dioxolan-4-

yl)propan-2-ol (19). Yield: 186 mg (49%). 
1
H NMR (400 MHz, CDCl3): δ= 1.13 (s, 3H, 

CH3), 1.23 (s, 3H, CH3), 1.43 (s, 3H, CH3), 1.46 (s, 3H, CH3), 2.07 (s, 1H, OH), 3.19 (dd, 

1H, 
2
JH-H= 12.7 Hz, 

3
JH-H= 7.2 Hz, CH2-Se), 3.38 (dd, 1H, 

2
JH-H= 16.0 Hz, 

3
JH-H= 4.0 Hz, CH2-

Se), 3.77 (d, 1H, 
3
JH-H= 8.0 Hz, CHCMe2O), 4.28-4.22 (m, 1H, CHCH2Se), 7.44-7.49 (m, 

2H, CH=), 7.60-7.62 (m, 1H, CH=), 7.71-7.82 (m, 3H, CH=), 8.02-8.05 (m, 1H, CH=). 
13

C 

NMR (100.6 MHz, CDCl3): δ= 25.6 (CH3), 27.4 (CH3), 27.5 (CH3), 27.8 (CH3), 32.8 (CH2-

Se), 70.1 (CMe2O), 76.5 (CHCH2Se), 86.8 (CHCMe2O), 109.4 (CMe2), 126.0 (CH=), 126.8 

(CH=), 127.5 (CH=), 128.0 (CH=), 128.2 (C), 128.8 (CH=), 130.5 (CH=), 131.7 (CH=), 132.5 

(C), 134.2 (C).  

3.3.4.10. Preparation of compound 20 

(5-(((tert-butyldimethylsilyl)oxy)methyl)-2,2-dimethyl-1,3-dioxolan-4-

yl)diphenylmethanol. To a solution of compound 15 (3.7 g, 11.6 mmol) in dry stirred 

THF (30 mL) under nitrogen, at 0   C a Et2O solution of phenylmagnesium bromide (3M, 

11.6 mL, 34.8 mmol) was added dropwise. The resulting mixture was stirred overnight 

at room temperature and quenched with water. The crude product was extracted in 

Et2O (3 x 25 mL), dried with MgSO4 and dried in the rotavapor. Then, PE was added 

and product precipitates. Finally, the crude was purified by flash chromatography 

(EtOAc/PE = 10/3) to produce the desired compound as an oil. Yield: 4.2 g (85%). 
1
H 

NMR (400 MHz, CDCl3): δ= 0.12 (s, 3H, CH3, OTBDMS), 0.17 (s, 3H, CH3, OTBDMS), 1.09 

(s, 9H, CH3, 
t
Bu, OTBDMS), 1.60 (s, 3H, CH3), 1.71 (s, 3H, CH3), 2.51 (dd, 1H, CH2-O, 

2
JH-

H= 11.2 Hz, 
3
JH-H= 2.8 Hz), 3.51 (dd, 1H, CH2-O, 

2
JH-H= 11.6 Hz, 

3
JH-H= 2.4 Hz), 3.65 (s, 1H, 

OH), 4.20 (m, 1H, CHCH2O), 5.30 (d, 1H, CHCPh2O, 
3
JH-H= 8.4 Hz), 7.35-7.51 (m, 4H, 

CH=), 7.56-7.61 (m, 3H, CH=), 7.74-7.80 (m, 3H, CH=). 
13

C NMR (100.6 MHz, CDCl3): δ=  

-5.6 (CH3, OTBDMS), -5.4 (CH3, OTBDMS), 18.3 (C, 
t
Bu, OTBDMS), 25.9 (CH3, 

t
Bu,  

OTBDMS), 27.2 (CH3), 62.2 (CH2-O), 76.3 (CPh2O), 77.8 (CHCH2O), 78.2 (CHCPh2O), 

109.0 (CMe2), 125.9 (CH=), 127.1 (CH=), 127.2 (CH=), 127.3 (CH=), 128.1 (CH=), 128.7 

(CH=), 142.6 (C=), 146.1 (C=).  

(5-(((tert-Butyldimethylsilyl)oxy)methyl)-2,2-dimethyl-1,3-dioxolan-4-

yl)diphenylmethanethiol (20). To a solution of 15 (5.9 g, 13.8 mmol), in toluene (50 

mL), Lawesson’s reagent (4.5 g,   .  mmol) was added. The reaction mixture was 

stirred for 3h at 60 ᵒC. Then, solvent was evaporated and the crude product was 

purified by SiO2-chromathography (EtOAc/PE = 1/20  1/3) to yield thiol 20 as a white 

solid.   Yield: 1.3 g (40%). 
1
H NMR (400 MHz, CDCl3): δ= -0.06 (s, 3H, CH3, OTBDMS), 

0.00 (s, 3H, CH3, OTBDMS), 0.90 (s, 9H, CH3, 
t
Bu, OTBDMS), 1.55 (s, 3H, CH3), 1.60 (s, 

3H, CH3), 2.74 (s, 1H, SH), 2.18 (dd, 1H, CH2-O, 
2
JH-H= 10.0 Hz), 3.31 (dd, 1H, CH2-O,     
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2
JH-H= 11.2 Hz, 

3
JH-H= 1.2 Hz), 4.12 (m, 1H, CHCH2O), 5.11 (d, 1H, CHCPh2S, 

3
JH-H= 7.6 Hz), 

7.21-7.25 (m, 1H, CH=), 7.28-7.38 (m, 7H, CH=), 7.58 (d, 2H, CH=, 
3
JH-H= 6.0 Hz). 

13
C 

NMR (100.6 MHz, CDCl3): δ= -5.5 (CH3, OTBDMS), -5.3 (CH3, OTBDMS), 18.4 (C, 
t
Bu, 

OTBDMS), 26.0 (CH3, 
t
Bu,  OTBDMS), 27.6 (CH3), 27.7 (CH3), 60.4 (CPh2S), 62.5 (CH2-O), 

78.6 (CHCPh2S), 80.2 (CHCH2O), 109.4 (CMe2), 126.6 (CH=), 127.7 (CH=), 127.9 (CH=), 

128.2 (CH=), 128.3 (CH=), 128.7 (CH=), 142.7 (C=), 148.8 (C=).  

3.3.4.11. Preparation of hydroxyl-thioether compound 21 

tert-Butyl((2,2-dimethyl-5-((methylthio)diphenylmethyl)-1,3-dioxolan-4-

yl)methoxy)dimethylsilane. To a cooled solution (0   C) of thiol 20 (1.1 g, 2.5 mmol) in 

MeOH (20 mL), triethylamine (0.42 mL, 3.0 mmol) and iodomethane (0.18 mL, 2.7 

mmol) were slowly added. The reaction mixture was stirred overnight at room 

temperature. The reaction was quenched by adding an aqueous solution of NaHCO3 

(10%) and the product was extracted with Et2O (x3).  The organic phase was washed 

with brine, dried with anhydrous MgSO4 and evaporated to dryness. The crude residue 

was purified by flash SiO2-chromatography (PE/EtOAc = 1/20) and the pure product 

was afforded as white solid. Yield: 941.8 mg (83%). 
1
H NMR (400 MHz, CDCl3): δ= -0.05 

(s, 3H, CH3, OTBDMS), 0.00 (s, 3H, CH3, OTBDMS), 0.87 (s, 9H, CH3, 
t
Bu, OTBDMS), 1.29 

(b, 3H, CH3), 1.49 (s, 3H, CH3), 1.80 (s, 3H, CH3), 2.69 (b, 1H, CH2-O), 3.46 (d, 1H, CH2-O, 
2
JH-H =11.2 Hz), 4.03 (m, 1H, CHCH2O), 5.08 (d, 1H, CHCPh2S, 

3
JH-H= 7.6 Hz), 7.22-7.38 

(m, 8H, CH=), 7.51 (d, 2H, CH=, 
3
JH-H= 7.2 Hz). 

13
C NMR (100.6 MHz, CDCl3): δ= -5.5 (CH3, 

OTBDMS), -5.3 (CH3, OTBDMS), 13.8 (CH3), 18.4 (C, 
t
Bu, OTBDMS), 26.0 (CH3, 

t
Bu,  

OTBDMS), 26.9 (CH3), 27.5 (CH3), 61.0 (CPh2S), 63.1 (CH2-O), 79.0 (CHCPh2S), 80.1 

(CHCH2O), 108.9 (CMe2), 126.7 (CH=), 126.9 (CH=), 127.5 (CH=), 127.8 (CH=), 129.1 

(CH=), 130.4 (CH=), 143.2 (C=), 143.3 (C=).  

(2,2-Dimethyl-5-((methylthio)diphenylmethyl)-1,3-dioxolan-4-yl)methanol (21) 

Treatment of silylated compound (682.1 mg, 2.1 mmol) in THF (50 mL) with a THF 

solution of TBAF (1 M, 3.1 mL, 3.1 mmol) provided the desired deprotected compound. 

The reaction mixture was concentrated under vacuum and purified by SiO2-column 

chromatography (PE/EtOAc = 1/3) yielding pure thioether-hydroxy compound 21 as a 

white solid. Yield: 411 mg (91%). 
1
H NMR (400 MHz, CDCl3): δ= 1.27 (b, 3H, CH3), 1.48 

(s, 3H, CH3), 1.78 (s, 3H, CH3), 1.84 (t, 1H, OH, 
3
JH-H= 4.0 Hz), 2.77 (b, 1H, CH2-O), 3.17 

(b, 1H, CH2-O), 4.08-4.12 (m, 1H, CHCH2O), 4.85 (d, 1H, CHCPh2S, 
3
JH-H= 8.0 Hz), 7.21-

7.34 (m, 8H, CH=), 7.48 (d, 2H, CH=, 
3
JH-H= 8.0 Hz). 

13
C NMR (100.6 MHz, CDCl3): δ= 13.8 

(CH3), 26.7 (CH3), 27.7 (CH3), 60.7 (CPh2S), 62.8 (CH2-O), 79.5 (CHCH2O), 80.2 

(CHCPh2S), 109.1 (CMe2), 126.8 (CH=), 127.2 (CH=), 127.6 (CH=), 128.0 (CH=), 128.9 

(CH=), 130.3 (CH=), 142.9 (C=).  
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3.3.4.12. Preparation of acetal-thioether compounds 22-23 

A suspension of  NaH (3.1 mg, 77.4 mmol), washed three times in hexane, in THF 

(25 mL) was cooled to -15 ᵒC, and the corresponding thiol (37.5 mmol) in THF (8 mL), at 

-15 ᵒC was added. After 10 min a solution of 1-deoxy-2,3-O-isopropylidene-1-tosyl-D-

arabinitol (16.3 mmol) in THF (25 ml) was added at -15 ᵒC. The reaction was stirred for 

72h at room temperature. The reaction was quenched with water and extracted with 

dichloromethane for three times. The extract was dried over anhydrous MgSO4 and 

concentrated. The residue was purified by SiO2-column chromatography (PE/EtOAc = 

1/6) to produce the corresponding thioether-derived compound as colorless oil.   

1-Deoxy-2,3:4,5-di-O-isopropylidene-1-phenylthio-D-arabinitol (22). Yield: 3.6 g 

(84%). 
1
H NMR (400 MHz, CDCl3): δ= 1.35 (s, 3H, CH3), 1.37 (s, 3H, CH3), 1.40 (s, 3H, 

CH3), 1.42 (s, 3H, CH3), 3.09 (dd, 1H, CH2-S, 
2
JH-H =13.6 Hz, 

3
JH-H= 6.8 Hz), 3.46 (dd, 1H, 

CH2-S, 
2
JH-H= 13.6 Hz, 

3
JH-H =3.2 Hz), 3.78 (pt, 1H, CHCHO, 

3
JH-H= 7.3 Hz), 3.95 (dd, 1H, 

CH2-O, 
2
JH-H= 8.4 Hz, 

3
JH-H =4.8 Hz), 4.04-4.08 (m, 1H, CH-O), 4.13 (dd, 1H, CH2-O, 

2
JH-H= 

8.0 Hz, 
3
JH-H= 6.0 Hz), 4.16-4.19 (m, 1H, CHCH2S), 7.15-7.19 (m, 1H, CH=), 7.25-7.29 (m, 

2H, CH=), 7.39-7.41 (m, 2H, CH=). 
13

C NMR (100.6 MHz, CDCl3): δ= 25.5 (CH3), 26.9 

(CH3), 27.3 (CH3), 27.4 (CH3), 36.8 (CH2-S), 68.0 (CH2-O), 77.3 (CH-O), 79.3 (CHCH2S), 

80.3 (CHCHO), 109.9 (CMe2), 110.1 (CMe2), 126.0 (CH=), 129.0 (CH=), 129.1 (CH=), 

136.8 (C=).  

1-Deoxy-2,3:4,5-di-O-Isopropylidene-1-(2-naftylthio)-D-arabinitol (23). Yield: 5.3 g 

(87%). 
1
H NMR (400 MHz, CDCl3): δ= 1.39 (s, 6H, CH3), 1.45 (s, 6H, CH3), 3.19 (dd, 1H, 

CH2-S, 
2
JH-H= 13.6 Hz, 

3
JH-H= 7.6 Hz), 3.60 (dd, 1H, CH2-S, 

2
JH-H =14.4 Hz, 

3
JH-H= 3.2 Hz), 

3.83 (pt, 1H, CHCHO, 
3
JH-H= 8.4 Hz), 4.00 (dd, 1H, CH2-O, 

2
JH-H= 8.4 Hz, 

3
JH-H= 3.2 Hz), 

4.07-4.11 (m, 1H, CH-O), 4.14-4.17 (m, 1H, CH2-O), 4.23-4.27 (m, 1H, CHCH2S), 7.41-

7.49 (m, 3H, CH=), 7.24-7.80 (m, 3H, CH=), 7.84 (s, 1H, CH=). 
13

C NMR (100.6 MHz, 

CDCl3): δ= 25.6 (CH3), 27.1 (CH3), 27.4 (CH3), 27.5 (CH3), 36.7 (CH2-S), 68.0 (CH2-O), 77.4 

(CH-O), 79.3 (CHCH2S), 80.5 (CHCHO), 110.0 (CMe2), 110.2 (CMe2), 125.8 (CH=), 126.4 

(CH=), 126.8 (CH=), 127.2 (CH=), 127.3 (CH=), 128.0 (CH=), 128.6 (CH=), 131.9 (C=), 

134.1 (C=), 134.3 (C=). 

3.3.4.13. General procedure for preparation of compound 37 

Selenoether-acetal compound 37 was synthesized as described above for 

compounds 9-10. 

1-Deoxy-2,3:4,5-di-O-isopropylidene-1-(1-naftylseleno)-D-arabinitol (37). Yield: 

3.2 g (88%). 
1
H NMR (400 MHz, CDCl3): δ= 1.34 (s, 3H, CH3), 1.37 (s, 6H, CH3), 1.44 (s, 

3H, CH3), 3.18 (dd, 1H, CH2-Se, 
2
JH-H= 12.8 Hz, 

3
JH-H= 7.2 Hz), 3.52 (dd, 1H, CH2-Se, 

2
JH-H= 

12.8 Hz, 
3
JH-H= 3.6 Hz), 3.80 (pt, 1H, CHCHO, 

3
JH-H =8.0 Hz), 3.95 (dd, 1H, CH2-O, 

2
JH-H= 

8.0 Hz, 
3
JH-H= 4.8 Hz), 4.04-4.08 (m, 1H, CH-O), 4.11-4.14 (m, 1H, CH2-O), 4.23-4.26 (m, 

1H, CHCH2S), 7.44-7.48 (m, 2H, CH=), 7.60 (dd, 1H, CH=, 
3
JH-H= 8.8 Hz, 

4
JH-H= 1.6 Hz), 

7.69-7.81 (m, 3H, CH=), 8.01 (s, 1H, CH=). 
13

C NMR (100.6 MHz, CDCl3): δ= 25.3 (CH3), 
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26.7 (CH3), 27.1 (CH3), 27.3 (CH3), 30.5 (CH2-Se), 67.8 (CH2-O), 77.0 (CH-O), 79.6 

(CHCH2Se), 80.8 (CHCHO), 109.7 (CMe2), 125.9-133.9 (aromatic carbons). 

3.3.4.14. General procedure for obtention of thioether compounds 24-25 and 

selenoether compound 39 

The fully protected compound 22, 23 and 37 (1.0 mmol) was stirred overnight at 

room temperature in 70% aq. acetic acid (3.5 mL). Then, the reaction mixture was 

neutralized with aq. NaHCO3, and extracted with ethyl acetate (2 x 100 mL). The 

combined organic extracts were washed with brine (20 mL), dried over anhydrous 

MgSO4, concentrated under reduced pressure and purified by SiO2-column 

chromatography (EtOAc/PE = 1/1) to afford the desired deprotected compounds 

colorless oil. 

1-Deoxy-2,3-O-isopropylidene-1-phenylthio-D-arabinitol (24). Yield: 2.1 g (67%). 
1
H NMR (400 MHz, CDCl3): δ= 1.38 (s, 3H, CH3), 1.43 (s, 3H, CH3), 2.08 (b, 1H, OH), 2.65 

(b, 1H, OH), 3.20 (dd, 1H, CH2-S, 
2
JH-H =13.6 Hz, 

3
JH-H =6.0 Hz), 3.33 (dd, 1H, CH2-S, 

2
JH-H 

=13.6 Hz, 
3
JH-H =4.8 Hz), 3.68 (dd, 1H, CH2-O, 

2
JH-H =10.8 Hz, 

3
JH-H =5.2 Hz), 3.72-3.76 (m, 

1H, CH-O), 3.80 (dd, 1H, CH2-O, 
2
JH-H =10.4 Hz, 

3
JH-H =3.2 Hz), 3.87 (pt, 1H, CHCH-O, 

3
JH-H 

=6.8 Hz), 4.18-4.22 (m, 1H, CHCH2S), 7.17-7.21 (m, 1H, CH=), 7.26-7.31 (m, 2H, CH=), 

7.39-7.41 (m, 2H, CH=). 
13

C NMR (100.6 MHz, CDCl3): δ= 27.4 (CH3), 27.5 (CH3), 37.5 

(CH2-S), 64.2 (CH2-O), 72.9 (CH-O), 78.5 (CHCH2S), 80.7 (CHCHOH), 110.0 (CMe2), 126.6 

(CH=), 129.3 (CH=), 129.6 (CH=), 136.1 (C=).     

1-Deoxy-2,3-O-Isopropylidene-1-(2-naftylthio)-D-arabinitol (25). Yield: 3.0 g 

(63%). 
1
H NMR (400 MHz, CDCl3): δ= 1.35 (s, 3H, CH3), 1.41 (s, 3H, CH3), 3.22 (dd, 1H, 

CH2-S, 
2
JH-H =13.6 Hz, 

3
JH-H =7.2 Hz), 3.46 (dd, 1H, CH2-S, 

2
JH-H =14.0 Hz, 

3
JH-H =4.4 Hz), 

3.65 (dd, 1H, CH2-O, 
2
JH-H =11.6 Hz, 

3
JH-H =6.0 Hz), 3.67-3.73 (m, 1H, CH-O), 3.79 (dd, 1H, 

CH2-O, 
2
JH-H =10.8 Hz, 

3
JH-H =2.8 Hz), 3.86 (pt, 1H, CHCHO, 

3
JH-H =7.6 Hz), 4.24-4.29 (m, 

1H, CHCH2S), 7.36-7.44 (m, 3H, CH=), 7.69-7.74 (m, 3H, CH=), 7.81 (s, 1H, CH=). 
13

C 

NMR (100.6 MHz, CDCl3): δ= 27.  (CH3), 27.2 (CH3), 37.0 (CH2-S), 63.9 (CH2-O), 72.8 

(CH-O), 78.3 (CHCH2S), 80.2 (CHCHOH), 109.8 (CMe2), 125.7 (CH=), 126.6 (CH=), 126.7 

(CH=), 127.1 (CH=), 127.7 (CH=), 128.5 (CH=), 131.7 (C=), 133.4 (C=), 133.7 (C=).        

1-Deoxy-2,3-O-isopropylidene-1-(1-naftylseleno)-D-arabinitol (38). Yield: 2.8 g 

(58%). 
1
H NMR (400 MHz, CDCl3): δ= 1.37 (s, 3H, CH3), 1.43 (s, 3H, CH3), 2.40 (b, 2H, 

OH), 3.23 (dd, 1H, CH2Se, 
2
JH-H =12.8 Hz, 

3
JH-H =6.4 Hz), 3.40 (dd, 1H, CH2-Se, 

2
JH-H =12.4 

Hz, 
3
JH-H =4.4 Hz), 3.65 (dd, 1H, CH2-O, 

2
JH-H =10.8 Hz, 

3
JH-H =5.2 Hz), 3.70-3.73 (m, 1H, 

CH-O), 3.77 (dd, 1H, CH2-O, 
2
JH-H =11.2 Hz, 

3
JH-H =3.2 Hz), 3.86 (pt, CHCHO, 

3
JH-H =6.8 Hz), 

4.26-4.30 (m, 1H, CHCH2Se), 7.42-7.48 (m, 2H, CH=), 7.58 (dd, 1H, CH=, 
3
JH-H =8.4 Hz, 

4
JH-H =1.6 Hz), 7.70-7.79 (m, 3H, CH=), 8.01 (s, 1H, CH=). 

13
C NMR (100.6 MHz, CDCl3): 

δ= 27.2 (CH3), 27.3 (CH3), 31.1 (CH2-Se), 63.9 (CH2-O), 73.0 (CH-O), 78.9 (CHCH2Se), 80.6 

(CHCHO), 109.7 (CMe2), 126.0 (CH=), 126.5 (CH=), 127.2 (CH=), 127.8 (CH=), 128.5 

(CH=), 129.8 (CH=), 130.8 (CH=), 132.1 (C=), 133.9 (C=). 
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3.3.4.15. Synthesis of hydroxyl-thioether compounds 31-32 and hydroxyl-

selenoether compound 39 

To a cooled solution (-15   C) of compound 24, 25 or 38 (1 mmol) in pyridine (0.27 

mL. 3.4 mmol), a solution of p-toluenesulfonyl chloride (190.0 mg, 1 mmol) in DCM (2 

mL) was slowly added. After stirring overnight, water was added and the reaction 

mixture was extracted with DCM (x3). The organic extract was washed with a solution 

of HCl 0.1 M (x1). The organic layer was dried over MgSO4, evaporated to dryness and 

purified by SiO2-flash chromatography (EtOAc/PE = 1/2) to produce the product as a 

white solid.    

1-Deoxy-2,3-O-Isopropylidene-1-phenylthio-5-O-tosyl-D-arabinitol. Yield: 3.0 g 

(93%). 
1
H NMR (400 MHz, CDCl3): δ= 1.21 (s, 3H, CH3), 1.27 (s, 3H, CH3), 2.35 (s, 3H, 

CH3, OTs), 2.58 (d, 1H, OH, 
3
JH-H =4.4 Hz), 3.02 (dd, 1H, CH2-S, 

2
JH-H =14.0 Hz, 

3
JH-H =6.8 

Hz), 3.24 (dd, 1H, CH2-S, 
2
JH-H =13.6 Hz, 

3
JH-H =4.4 Hz), 3.62 (dd, 1H, CHCHO, 

3
JH-H =8.0 Hz, 

3
JH-H =6.4 Hz), 3.71-3.78 (m, 1H, CH-O), 3.94 (dd, 1H, CH2-OTs, 

2
JH-H =10.4 Hz, 

3
JH-H =6.8 

Hz), 4.06-4.09 (m, 1H, CHCH2S), 4.18 (dd, 1H, CH2-OTs, 
2
JH-H =10.4 Hz, 

3
JH-H =2.4 Hz), 

7.06-7.10 (m, 1H, CH=), 7.15-7.19 (m, 2H, CH=), 7.24-7.28 (m, 4H, CH=), 7.69-7.71 (m, 

2H, CH=). 
13

C NMR (100.6 MHz, CDCl3): δ= 2 .9 (CH3, OTs), 27.2 (CH3), 27.4 (CH3), 37.4 

(CH2-S), 71.8 (CH-O), 72.1 (CH2-OTs), 78.8 (CHCHO), 79.2 (CHCH2S), 110.3 (CMe2), 126.4 

(CH=), 128.2 (CH=), 129.2 (CH=), 129.4 (CH=), 130.2 (CH=), 132.6 (C=), 136.1 (C=), 145.4 

(C=).      

1-Deoxy-2,3-O-Isopropylidene-1-(2-naftylthio)-5-O-tosyl-D-arabinitol. Yield: 3.6 g 

(83%). 
1
H NMR (400 MHz, CDCl3): δ= 1.31 (s, 3H, CH3), 1.38 (s, 3H, CH3), 2.42 (s, 3H, 

CH3, OTs), 3.20 (dd, 1H, CH2-S, 
2
JH-H =14.4 Hz, 

3
JH-H =7.2 Hz), 3.47 (dd, 1H, CH2-S, 

2
JH-H 

=14.0 Hz, 
3
JH-H =4.4 Hz), 3.76 (dd, 1H, CHCHO, 

3
JH-H =8.4 Hz, 

3
JH-H =6.8 Hz), 3.83-3.88 (m, 

1H, CH-O), 4.06 (dd, 1H, CH2-OTs, 
2
JH-H =10.8 Hz, 

3
JH-H =6.8 Hz), 4.22-4.26 (m, 1H, 

CHCH2S), 4.29 (dd, 1H, CH2-OTs, 
2
JH-H =10.4 Hz, 

3
JH-H =2.4 Hz), 7.31 (d, 2H, CH=, 

3
JH-H =8.8 

Hz), 7.42-7.46 (m, 3H, CH=), 7.72-7.81 (m, 6H, CH=). 
13

C NMR (100.6 MHz, CDCl3): δ= 

21.7 (CH3, OTs), 27.0 (CH3), 27.2 (CH3), 36.9 (CH2-S), 71.6 (CH-O), 72.0 (CH2-O), 78.6 

(CHCHOH), 78.9 (CHCH2S), 110.2 (CMe2), 125.7 (CH=), 126.5 (CH=), 126.6 (CH=), 127.1 

(CH=), 127.7 (CH=), 128.0 (CH=), 128.5 (CH=), 130.0  (CH=), 131.7 (C=), 132.3 (C=), 

133.4 (C=), 133.8 (C=), 145,2 (C=).        

1-Deoxy-2,3-O-isopropylidene-1-(1-naftylseleno)-5-O-tosyl-D-arabinitol. Yield: 2.2 

g (55%). 
1
H NMR (400 MHz, CDCl3): δ= 1.31 (s, 3H, CH3), 1.38 (s, 3H, CH3), 2.42 (s, 3H, 

CH3, OTs), 3.19 (dd, 1H, CH2-Se, 
2
JH-H =12.8 Hz, 

3
JH-H =6.4 Hz), 3.42 (dd, 1H, CH2-Se, 

2
JH-H 

=12.4 Hz, 
3
JH-H =4.0 Hz), 3.76 (pt, 1H, CHCHO, 

3
JH-H =7.2 Hz), 3.84 (dd, 1H, CH-O, 

3
JH-H 

=8.8 Hz, 
2
JH-H =2.8 Hz), 4.04 (dd, 1H, CH2-OTs, 

2
JH-H =10.8 Hz, 

3
JH-H =7.2 Hz), 4.24-4.30 (m, 

2H, CHCH2Se, CH2-OTs), 7.30 (d, 2H, CH=, 
3
JH-H =7.6 Hz), 7.45-7.49 (m, 3H, CH=), 7.57 

(dd, 1H, 
3
JH-H =8.4 Hz, 

4
JH-H =1.2 Hz), 7.70-7.79 (m, 5H, CH=), 8.00 (s, 1H, CH=). 

13
C NMR 

(100.6 MHz, CDCl3): δ= 21.7 (CH3, OTs), 27.1 (CH3), 27.3 (CH3), 30.9 (CH2-Se), 71.6 (CH-

O), 72.0 (CH2-O), 79.1 (CHCHO), 79.5 (CHCH2Se), 110.0 (CMe2), 126.0 (CH=), 126.5 
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(CH=), 127.2 (CH=), 127.6 (CH=), 127.9 (CH=), 128.5 (CH=), 129.8 (CH=), 130.8 (CH=), 

132.2 (C=), 132.3 (C=), 133.9 (C=), 145.2 (C=). 

To a cooled solution (0   C) of the corresponding thioether-tosyl compound (1.0 

mmol) in THF (2.5 mL), LiAlH4 (56.9 mg, 1.5 mmol) was added portion-wise. The 

solution was stirred at reflux for 2 h. Then, drops of water were carefully added and a 

white precipitate appeared which was filtered and clean three times with ethyl 

acetate. The organic phase was dried over MgSO4 and evaporated to dryness. The 

crude product was purified by SiO2-column chromatography (EtOAc/PE = 1/3) yielding 

the corresponding compounds as colorless oils.     

1,5-Dideoxy-2,3-O-isopropylidene-5-methyl-1-phenylthio-D-arabinitol (31). Yield: 

1.2 g (67%). 
1
H NMR (400 MHz, CDCl3): δ= 1.18 (d, 3H, CH3, 

3
JH-H =6.8 Hz), 1.38 (s, 3H, 

CH3), 1.41 (s, 3H, CH3), 2.03 (b, 1H, OH), 3.15 (dd, 1H, CH2-S, 
2
JH-H =13.6 Hz, 

3
JH-H =6.8 

Hz), 3.26 (dd, 1H, CH2-S, 
2
JH-H =13.6 Hz, 

3
JH-H =4.8 Hz), 3.74 (dd, 1H, CHCHO, 

3
JH-H =7.2 Hz, 

3
JH-H =5.2 Hz), 3.87-3.90 (m, 1H, CH-O), 4.13-4.18 (m, 1H, CHCH2S), 7.14-7.18 (m, 1H, 

CH=), 7.23-7.28 (m, 2H, CH=), 7.36-7.39 (m, 2H, CH=). 
13

C NMR (100.6 MHz, CDCl3): δ= 

19.5 (CH3), 27.5 (CH3), 27.6 (CH3), 38.2 (CH2-S), 68.2 (CH-O), 77.0 (CHCH2S), 84.0 

(CHCHO), 109.7 (CMe2), 126.6 (CH=), 129.3 (CH=), 129.7 (CH=), 136.3 (C=).     

1,5-Dideoxy-2,3-O-isopropylidene-5-methyl-1-(2-naftylthio)-D-arabinitol (32). 

Yield: 1.1 g (54%). 
1
H NMR (400 MHz, CDCl3): δ= 1.22 (d, 3H, CH3, 

3
JH-H =6.8 Hz), 1.39 (s, 

3H, CH3), 1.44 (s, 3H, CH3), 1.91 (b, 1H, OH), 3.26 (dd, 1H, CH2-S, 
2
JH-H =13.6 Hz, 

3
JH-H 

=6.4 Hz), 3.39 (dd, 1H, CH2-S, 
2
JH-H =13.6 Hz, 

3
JH-H =4.4 Hz), 3.79 (dd, 1H, CHCHO, 

3
JH-H 

=7.6 Hz, 
3
JH-H =5.6 Hz), 3.90-3.93 (m, 1H, CH-O), 4.21-4.24 (m, 1H, CHCH2S), 7.40-7.48 

(m, 3H, CH=), 7.72-7.82 (m, 4H, CH=). 
13

C NMR (100.6 MHz, CDCl3): δ= 19.3 (CH3), 27.2 

(CH3), 27.3 (CH3), 37.7 (CH2-S), 68.0 (CH-O), 77.4 (CHCH2S), 83.8 (CHCHO), 109.4 

(CMe2), 125.8 (CH=), 126.6 (CH=), 126.9 (CH=), 127.1 (CH=), 127.3 (CH=), 127.7 (CH=), 

128.5 (CH=), 131.8 (C=), 133.5 (C=), 133.7 (C=).        

1,5-Dideoxy-2,3-O-isopropylidene-5-methyl-1-(1-naftylseleno)-D-arabinitol (38). 

Yield: 731 mg (58%). 
1
H NMR (400 MHz, CDCl3): δ= 1.18 (d, 3H, CH3, 

3
JH-H =6.8 Hz), 1.39 

(s, 3H, CH3), 1.45 (s, 3H, CH3), 1.92 (b, 1H, OH), 3.21 (dd, 1H, CH2-Se, 
2
JH-H =12.4 Hz, 

3
JH-H 

=6.4 Hz), 3.35 (dd, 1H, CH2-Se, 
2
JH-H =12.4 Hz, 

3
JH-H =4.4 Hz), 3.78 (dd, 1H, CHCHO, 

3
JH-H 

=7.6 Hz, 
3
JH-H =5.2 Hz), 3.87-3.93 (m, 1H, CH-O), 4.24-4.29 (m, 1H, CHCH2Se), 7.42-7.49 

(m, 2H, CH=), 7.59 (dd, 1H, 
3
JH-H =8.4 Hz, 

4
JH-H =2.0 Hz), 7.71-7.80 (m, 3H, CH=), 8.01 (d, 

1H, CH=, 
4
JH-H =1.6 Hz). 

13
C NMR (100.6 MHz, CDCl3): δ= 19.2 (CH3), 27.2 (CH3), 27.4 

(CH3), 31.7 (CH2-Se), 67.8 (CH-O), 77.0 (CHCH2Se), 84.2 (CHCHO), 109.2 (CMe2), 126.0 

(CH=), 126.5 (CH=), 127.2 (CH=), 127.8 (CH=), 128.5 (CH=), 130.0 (CH=), 131.1 (CH=), 

132.2 (C=), 133.9 (C=), 134.8 (C=). 

3.3.4.16. General procedure for the synthesis of thioether-hydroxy compounds 

26-30 

The corresponding diol 24 or 25 (1 mmol) was solved in DMF (2 mL) in the presence 

of imidazole (2.5 mmol) and was cooled to -15   C. A solution of the desired 
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chlorosilane (1.2 mmol) in DMF (1 mL) was added and the reaction was stirred for 1.5 

h. When chlorotrimethylsilane was used, the solution was cooled to -75   C and the 

reaction mixture was stirred only 30 min. Then, water was added and the reaction 

mixture was extracted with Et2O (x3). The organic layer was dried over MgSO4, 

evaporated to dryness and purified by SiO2-column chromatography (EtOAc/PE =  1/4) 

to produce the product as a colorless oil.    

5-O-(tert-Butyldimethylsilyl)-1-deoxy-2,3-O-isopropylidene-1-phenylthio-D-

arabinitol (26). Yield 263.3 mg (61%). 
1
H NMR (400 MHz, CDCl3): δ= 0.09 (s, 6H, CH3, 

OTBDMS), 0.91 (s, 9H, CH3, 
t
Bu, OTBDMS), 1.38 (s, 3H, CH3), 1.42 (s, 3H, CH3), 2.62 (d, 

1H, OH, 
3
JH-H =5.2 Hz), 3.12 (dd, 1H, CH2-S, 

2
JH-H =13.6 Hz, 

3
JH-H =7.2 Hz), 3.46 (dd, 1H, 

CH2-S, 
2
JH-H =10.4 Hz, 

3
JH-H =6.8 Hz), 3.62-3.68 (m, 2H, CH-O, CH2-OTBDMS), 3.76-3.81 

(m, 2H, CHCHO, CH2-OTBDMS), 4.26 (m, 1H, CHCH2S), 7.14-7.18 (m, 1H, CH=), 7.25-

7.29 (m, 2H, CH=), 7.39-7.42 (m, 2H, CH=). 
13

C NMR (100.6 MHz, CDCl3): δ= -5.2 (CH3, 

OTBDMS), -5.1 (CH3, OTBDMS), 18.5 (C,, 
t
Bu, OTBDMS), 26.1 (CH3, 

t
Bu, OTBDMS), 27.4 

(CH3), 27.5 (CH3), 37.4 (CH2-S), 64.5 (CH2-OTBDMS), 73.3 (CH-O), 79.1 (CHCH2S, 

CHCHO), 109.8 (CMe2), 126.0 (CH=), 129.1 (CH=), 136.8 (C=). 

5-O-(tert-Butyldimethylsilyl)-1-deoxy-2,3-O-isopropylidene-1-(2-naftylthio)-D-

arabinitol (27). Yield 710.5 mg (69%). 
1
H NMR (400 MHz, CDCl3): δ= 0.08 (s, 3H, CH3, 

OTBDMS), 0.09 (s, 3H, CH3, OTBDMS), 0.91 (s, 9H, CH3, 
t
Bu, OTBDMS), 1.38 (s, 3H, CH3), 

1.44 (s, 3H, CH3), 2.61 (b, 1H, OH), 3.21 (dd, 1H, CH2-S, 
2
JH-H =13.6 Hz, 

3
JH-H =7.2 Hz), 3.59 

(dd, 1H, CH2-S, 
2
JH-H =13.2 Hz, 

3
JH-H =3.6 Hz), 3.64-3.69 (m, 2H, CH-O, CH2-OTBDMS), 

3.79-3.83 (m, 2H, CHCHO, CH2-OTBDMS), 4.29-4.34 (m, 1H, CHCH2S), 7.40-7.58 (m, 3H, 

CH=), 7.74-7.79 (m, 3H, CH=), 7.87 (s, 1H, CH=). 
13

C NMR (100.6 MHz, CDCl3): δ=-5.4 

(CH3, OTBDMS), -5.3 (CH3, OTBDMS), 18.3 (C, 
t
Bu, OTBDMS), 25.9 (CH3, 

t
Bu, OTBDMS), 

27.2 (CH3), 27.3 (CH3), 36.4 (CH2-S), 64.3 (CH2-OTBDMS), 73.2 (CH-O), 78.9 (CHCH2S, 

CHCHOH), 109.7 (CMe2), 125.5 (CH=), 126.2 (CH=), 126.5 (CH=), 127.1 (CH=), 127.7 

(CH=), 128.3 (CH=), 131.6 (CH=), 133.8 (C=), 134.2 (C=).        

5-O-(tert-Butyldiphenylsilyl)-1-deoxy-2,3-O-isopropylidene-1-(2-naftylthio)-D-

arabinitol (28). Yield 913.3 mg (69%). 
1
H NMR (400 MHz, CDCl3): δ= .07 (s, 9H, CH3, 

t
Bu, OTBDPS), 1.30 (s, 3H, CH3), 1.41 (s, 3H, CH3), 2.76 (b, 1H, OH), 3.21 (dd, 1H, CH2-S, 

2
JH-H =13.6 Hz, 

3
JH-H =7.2 Hz), 3.58 (dd, 1H, CH2-S, 

2
JH-H =13.2 Hz, 

3
JH-H =2.8 Hz), 3.69 (b, 

1H, CH-O), 3.76-3.91 (m, 3H, CHCHO, CH2-OTBDPS), 4.28-4.31 (m, 1H, CHCH2S), 7.38-

7.50 (m, 8H, CH=), 7.68-7.87 (m, 9H, CH=). 
13

C NMR (100.6 MHz, CDCl3): δ= 9.4 (C, 
t
Bu, 

OTBDPS), 27.2 (CH3, 
t
Bu, OTBDPS), 27.4 (CH3), 27.6 (CH3), 37.3 (CH2-S), 65.5 (CH2-

OTBDPS), 73.6 (CH-O), 79.1 (CHCH2S), 79.3 (CHCHO), 110.0 (CMe2), 125.5 (CH=), 126.3 

(CH=), 126.5 (CH=), 127.1 (CH=), 127.7 (CH=), 127.8 (CH=), 127.9 (CH=), 128.3 (CH=), 

129.6 (CH=), 129.9 (CH=), 131.7-134.8 (C=), 135.5 (CH=), 135.6 (CH=).        

1-Deoxy-2,3-O-isopropylidene-5-O-triisopropylsilyl-1-(2-naftylthio)-D-

arabinitol)oxy)ethan-1-ol (29). Yield 823 mg (73%). 
1
H NMR (400 MHz, CDCl3): δ=0.97-

1.13 (m, 3H, CH, OTIPS), 1.04 (s, 9H, CH3, OTIPS), 1.06 (s, 9H, CH3, OTIPS), 1.37 (s, 3H, 

CH3), 1.42 (s, 3H, CH3), 2.72 (b, 1H, OH), 3.20 (dd, 1H, CH2-S, 
2
JH-H =13.6 Hz, 

3
JH-H =7.6 
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Hz), 3.59 (dd, 1H, CH2-S, 
2
JH-H =14.0 Hz, 

3
JH-H =3.2 Hz), 3.69 (b, 1H, CH-O), 3.76 (dd, 1H, 

CH2-OTIPS, 
2
JH-H =10.0 Hz, 

3
JH-H =5.6 Hz), 3.84 (pt, 1H, CHCHO, 

3
JH-H =4.8 Hz), 3.88 (dd, 

1H, CH2-OTIPS, 
2
JH-H =10.0 Hz, 

3
JH-H =3.6 Hz), 4.29-4.33 (m, 1H, CHCH2S), 7.38-7.48 (m, 

3H, CH=), 7.73 (d, 2H, CH=, 
3
JH-H =8.4 Hz), 7.77 (d, 1H, CH=, 

3
JH-H =8.0 Hz), 7.84 (s, 1H, 

CH=). 
13

C NMR (100.6 MHz, CDCl3): δ=  .9 (CH, OTIPS),  7.7 (CH3, OTIPS), 17.9 (CH3, 

OTIPS), 27.1 (CH3), 27.2 (CH3), 36.9 (CH2-S), 64.5 (CH2-OTIPS), 73.3 (CH-O), 78.8 

(CHCH2S), 78.9 (CHCHO), 109.7 (CMe2), 125.5 (CH=), 126.2 (CH=), 126.4 (CH=), 127.1 

(CH=), 127.7 (CH=), 128.3 (CH=), 131.6 (CH=), 133.8 (C=), 134.2 (C=). 

3.3.4.17. Synthesis of hydroxyl-thioether compound 30 

1-Deoxy-2,3-O-isopropylidene-1-(2-naftylthio)-5-O-trityl-D-arabinitol (30). 

Tritylchloride (940.2 mg, 3.5 mmol) was added to a solution of diol 25 (769.2 mg, 2.3 

mmol) in pyridine (49.4 mmol, 4 mL). The reaction mixture was allowed to stir at room 

temperature for 36 h. Then dichloromethane was added and the solution was washed 

with a saturated CuSO4 aqueous solution. The aqueous phase was extracted with 

dichloromethane once. All organic phases were washed with water, dried over MgSO4 

and concentrated. The resulting residue was purified by SiO2-column chromatography 

(EtOAc/PE = 1/4) to yield the product as a colorless oil. Yield 415.8 mg (31%). 
1
H NMR 

(400 MHz, CDCl3): δ= .3  (s, 3H, CH3), 1.42 (s, 3H, CH3), 2.49 (b, 1H, OH), 3.17 (dd, 1H, 

CH2-S, 
2
JH-H =13.6 Hz, 

3
JH-H =7.2 Hz), 3.32 (d, 1H, CH2-OTr, 

3
JH-H =1.2 Hz), 3.34 (s, 1H, CH2-

OTr), 3.48 (dd, 1H, CH2-S, 
2
JH-H =13.2 Hz, 

3
JH-H =3.2 Hz), 3.76-3.80 (m, 1H, CH-O), 3.94 

(pt, 1H, CHCHO, 
3
JH-H =7.6 Hz), 4.24-4.29 (m, 1H, CHCH2S), 7.21-7.30 (m, 10H, CH=), 

7.40-7.44 (m, 8H, CH=), 7.70 (t, 2H, CH=, 
3
JH-H =8.4 Hz), 7.77 (dd, 2H, CH=, 

3
JH-H =6.0 Hz, 

4
JH-H =1.2 Hz). 

13
C NMR (100.6 MHz, CDCl3): δ= 27.  (CH3), 27.4 (CH3), 37.1 (CH2-S), 65.1 

(CH2-OTr), 72.2 (CH-O), 78.3 (CHCH2S), 79.8 (CHCHO), 87.4 (C, OTr), 109.7 (CMe2), 

125.6 (CH=), 126.4 (CH=), 126.5 (CH=), 127.1 (CH=), 127.2 (CH=), 127.7 (CH=), 128.0 

(CH=), 128.3 (CH=), 128.7 (CH=), 131.7 (C=), 133.8 (C=), 134.1 (C=), 143.8 (C=). 

3.3.4.18. Synthesis of hydroxyl-thioether compound 35 with inversion of 

configuration
[10]

 

A solution of compound 26 (518.2 mg, 1.3 mmol) and pyridine (0.26 mL, 3.25 

mmol), in dichloromethane (5 mL) was cooled to -15   C, Tf2O (0.26 mL, 1.6 mmol) was 

added slowly over 2 min. The reaction mixture was stirred at -15 °C for 2 h and 

quenched with water. The aqueous phase was extracted with ethyl acetate (3 x 50 

mL), dried with MgSO4 and the solvents were removed at room temperature. 

Evaporation of the solvent provided the desired triflate 34, which was used without 

further purification in the next step. 

To a solution of DBU (0.4 mL, 2.6 mmol) in toluene (2 mL) was added acetic acid (0.3 

mL, 5.2 mmol). The solution was then stirred at room temperature for 90 min, and 

compound 34 (1.3 mmol) was added. The mixture was heated for 80   C, and stirring 

was then continued at this temperature for 4 h. After being cooled down to room 

temperature, the reaction mixture was diluted with toluene (5 mL). The solution was 
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transferred into separatory funnel, and was washed successively with aquos K2CO3 

solution (10% w/v, 3 mL), and brine (1 mL). After organic solution was dried over 

MgSO4, the solvent was removed to give the crude product which was purified by flash 

chromatography (EtOAc/PE – 1/9) to afford acetate (300 mg, 0.68 mmol) in 52% yield. 
1
H NMR (CDCl3), : 0.00 (s, 6H, CH3, OTBDMS), 0.83 (s, 9H, CH3, 

t
Bu, OTBDMS), 1.34 (s, 

3H, CH3), 1.37 (s, 3H, CH3), 1.93 (s, 3H, CH3, OAc), 3.09 (m, 1H, CH2-S), 3.19 (m, 1H, CH2-

S), 3.67 (m, 2H, CH2-O), 3.98 (m, 1H, CHCH2S), 4.08 (m, 1H, CHCHO), 4.95 (m, 1H, CHO), 

7.14 (m, 1H, CH=), 7.23 (m, 2H, CH=), 7.33 (m, 2H, CH=). 
13

C NMR (CDCl3), : -5.4 (CH3, 

OTBDMS), 14.2 (CH3, 
t
Bu, OTBDMS), 21.0 (CH3, OAc), 25.8 (CH3, 

t
Bu, OTBDMS), 26.8 

(CH3), 27.3 (CH3), 36.6 (C, 
t
Bu, OTBDMS), 61.7 (CHO), 72.4 (CH2-O), 75.1 (CHCHO,CH2-S), 

78.5 (CHCH2S), 109.7 (CMe2), 126.4-135.7 (aromatic carbons). 

A solution of acetate compound (300 mg, 0.68 mmol) in methanol (2 mL), K2CO3 (188.4 

mg, 1.4 mmol) was added.  The reaction mixture was stirred for 30 min and methanol 

was removed in vacuum. Ethyl acetate was added to the crude and was washed with 

water (3 x 1 mL), organic phase was dried with MgSO4 and the solvents were removed. 

The crude was purified by silica gel flash chromatography (EtOAc/PE – 1/5) to give 

desired compound 35 in 73% yield (199 mg). 
1
H NMR (CDCl3), : 0.00 (s, 6H, CH3, 

OTBDMS), 0.83 (s, 9H, CH3, 
t
Bu, OTBDMS), 1.35 (s, 3H, CH3), 1.36 (s, 3H, CH3), 2.26 (d, 

1H, OH, 
3
JH-H= 6.9 Hz), 3.12 (m, 2H, CH2-S), 3.60 (m, 3H, CH2-O, CHO), 3.92 (m, 1H, 

CHCHO), 4.08 (m, 1H, CHCH2S), 7.12 (m, 1H, CH=), 7.21 (m, 2H, CH=), 7.31 (m, 2H, 

CH=). 
13

C NMR (CDCl3), : -5.4 (CH3, OTBDMS), -5.3 (CH3, OTBDMS), 18.3 (C, 
t
Bu, 

OTBDMS), 25.9 (CH3, 
t
Bu, OTBDMS), 27.0 (CH3), 27.3 (CH3), 36.9 (CH2-S), 64.4 (CH2-O), 

70.4 (CHO), 75.4 (CHCH2S), 80.4 (CHCHO), 109.6 (CMe2), 126.3-135.9 (aromatic 

carbons). 

3.3.4.19. Synthesis of hydroxyl-thioether compound 33 with inversion of 

configuration
[28]

 

1,5-Dideoxy-2,3-O-isopropylidene-5-methyl-O-4-(p-nitrobenzoate)-1-phenylthio-

D-xylitol. DIAD (3.1 mL, 16 mmol) was added dropwise to a solution of thioether-

hydroxy 31 (1.1 g, 4 mmol), p-nitrobenzoic acid (2.7 g, 16 mmol), and PPh3 (4.2 g, 16 

mmol) in THF (33 mL) at 0   C. After being stirred overnight at room temperature, the 

reaction mixture was concentrated and the residue was purifief by SiO2-column 

chromatography (EtOAc/PE = 1/6) to yield the product as a colorless oil. Yield: 1.4 g 

(90%). 
1
H NMR (400 MHz, CDCl3): δ= .39 (d, 3H, CH3, 

3
JH-H =6.0 Hz), 1.43 (s, 3H, CH3), 

1.44 (s, 3H, CH3), 3.13 (dd, 1H, CH2-S, 
2
JH-H =13.6 Hz, 

3
JH-H =5.6 Hz), 3.24 (dd, 1H, CH2-S, 

2
JH-H =14.0 Hz, 

3
JH-H =5.6 Hz), 4.02-4.09 (m, 2H, CHCH2S, CHCHOpNBA), 5.32-5.35 (m, 1H, 

CH-OpNBA), 7.07-7.09 (m, 1H, CH=), 7.15-7.20 (m, 2H, CH=), 7.29-7.32 (m, 2H, CH=), 

8.10-8.12 (m, 2H, CH=), 8.20-8.23 (m, 2H, CH=). 
13

C NMR (100.6 MHz, CDCl3): δ= 6.7 

(CH3), 27.2 (CH3), 27.5 (CH3), 36.9 (CH2-S), 70.9 (CH-OpNBA), 75.2 (CHCH2S), 82.1 

(CHCHOpNBA), 109.9 (CMe2), 123.5 (CH=), 126.4 (CH=), 129.0 (CH=), 129.5 (CH=), 130.7 

(CH=), 135.2 (C=), 135.3 (C=), 150.5 (C=), 163.9 (C=O, pNBA).     
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1,5-Dideoxy-2,3-O-isopropylidene-5-methyl-1-phenylthio-D-xylitol (33). 1,5-

Dideoxy-2,3-O-isopropylidene-5-methyl-O-4-(p-nitrobenzoate)-1-phenylthio-D-xylitol 

(1.4 g, 3.6 mmol) was dissolved in MeOH (48.5 mL) and treated with NaOH ( 1.1 g, 26.9 

mL) at room temperature. After being stirred overnight, the reaction mixture was 

concentrated and extracted with diethyl ether. The organic phase was washed with 

brine, dried over anhydrous MgSO4, filtered, and evaporated. The residue was purified 

by SiO2-column chromatography (EtOAc/PE = 1/1) to yield the product as a colorless 

oil. Yield: 850 mg (87%). 
1
H NMR (400 MHz, CDCl3): δ= . 7 (d, 3H, CH3, 

3
JH-H =6.0 Hz), 

1.40 (s, 3H, CH3), 1.43 (s, 3H, CH3), 2.29 (s, 1H, OH, 
3
JH-H =10.4 Hz), 3.10-3.23 (m, 2H, 

CH2-S), 3.72-3.79 (m, 2H, CHCHO, CH-O), 4.11 (q, 1H, CHCH2S, 
3
JH-H =6.0 Hz), 7.16-7.20 

(m, 1H, CH=), 7.27 (t, 2H, CH=, , 
3
JH-H =7.2 Hz), 7.36-7.38 (m, 2H, CH=). 

13
C NMR (100.6 

MHz, CDCl3): δ= 20.0 (CH3), 27.4 (CH3), 27.5 (CH3), 37.3 (CH2-S), 67.2 (CH-O), 76.0 

(CHCH2S), 84.1 (CHCHO), 109.7 (CMe2), 126.4 (CH=), 129.1 (CH=), 129.5 (CH=), 135.7 

(C=).     

3.3.4.20. Typical procedure for the synthesis of compound 36 

1-O-tert-Butyldiphenylsilyl-2,3:4,5-di-O-isopropylidene-D-arabinitol. Compound 2 

(3.1 g, 13.4 mmol) was solved in DMF (20 mL) in the presence of imidazole (4.75 g, 

33.4 mmol) and was cooled to -15   C. A solution of tert-buthyl(chloro)diphenylsilane 

(4.2 mL, 16.0 mmol) in DMF (10 mL) was added and the reaction was stirred for 1.5 h. 

Then, water was added and the reaction mixture was extracted with Et2O (x3). The 

organic layer was dried over MgSO4, evaporated to dryness and purified by SiO2-

column chromatography (EtOAc/PE = 9.5/0.5) to produce the product as a white solid. 

Yield: 6.1 g (97%). 
1
H NMR (400 MHz, CDCl3): δ= .08 (s, 9H, CH3, 

t
Bu, OTBDPS), 1.33 (s, 

3H, CH3), 1.35 (s, 3H, CH3), 1.41 (s, 3H, CH3), 1.44 (s, 3H, CH3), 3.76-3.80 (m, 1H, CH2-

OTBDPS), 3.92-3.95 (m, 1H, CH2-OTBDPS), 3.96-3.98  (m, 1H, CH2-O), 4.02-4.04 (m, 2H, 

CH-O, CHCH2OTBDPS), 4.07-4.14 (m, 2H, CH2-O, CHCHO), 7.36-7.45 (m, 6H, CH=), 7.70-

7.75 (m, 4H, CH=). 
13

C NMR (100.6 MHz, CDCl3): δ= 9.3 (C, 
t
Bu, OTBDPS), 25.3 (CH3), 

26.6 (CH3), 26.8 (CH3, 
t
Bu, OTBDPS), 27.2 (CH3), 27.4 (CH3), 63.8 (CH2-OTBDPS), 67.4 

(CH2-O), 77.0-80.9 (CHCH2OTBDPS, CHCHO, CH-O), 109.5 (CMe2), 127.6 (CH=), 129.6 

(CH=), 129.7 (CH=), 133.3 (C=), 133.4 (C), 135.7 (CH=).      

1-O-tert-Butyldiphenylsilyl-2,3-O-isopropylidene-D-arabinitol (36). The previously 

synthesized fully protected compound (4.7 g, 10.0 mmol) was stirred overnight at 55   C 

in a mixture of 5:2:1 AcOH/THF/H2O (30 mL). Then, the reaction mixture was cool 

down to room temperature and neutralized with aq. NaHCO3, and extracted with ethyl 

acetate (2 x 100 mL). The combined organic extracts were dried over anhydrous 

MgSO4, concentrated under reduced pressure and purified by SiO2-column 

chromatography (EtOAc/EP = 1/1) to afford the desired compound 36 as colorless oil. 

Yield: 1.6 g (37%). 
1
H NMR (400 MHz, CDCl3): δ= .07 (s, 9H, CH3, 

t
Bu, OTBDPS), 1.35 (s, 

3H, CH3), 1.38 (s, 3H, CH3), 3.68-3.83 (m, 4H, CH2-OTBDPS, CH-O, CHCH2OTBDPS, 

CHCHO), 3.86 (dd, 1H, CH2-OTBDPS, 
2
JH-H =10.4 Hz, 

3
JH-H =4.0 Hz), 3.93-3.96  (m, 1H, 
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CH2-O), 4.01-4.06 (m, 1H, CH2-O), 7.38-7.48 (m, 6H, CH=), 7.66-7.69 (m, 4H, CH=). 
13

C 

NMR (100.6 MHz, CDCl3): δ= 9.4 (C, 
t
Bu, OTBDPS), 27.1 (CH3, CH3,

 t
Bu, OTBDPS), 27.2 

(CH3), 64.1-80.3 (CH2-OTBDPS, CH2-O, CHCH2OTBDPS, CHCHO, CH-O), 109.7 (CMe2), 

128.2 (CH=), 130.4 (CH=), 129.7 (CH=), 132.5 (C=), 132.6 (C), 135.9 (CH=).      

3.3.4.21. Preparation of the compound 37 

1-O-tert-Butyldiphenylsilyl-2,3-O-isopropylidene-5-O-tosyl-D-arabinitol. To a 

cooled solution (-15   C) of compound 36 (227.0 mg, 0.53 mmol) in pyridine (0.14 mL, 

1.8 mmol), a solution of p-toluenesulfonyl chloride (100.7 mg, 0.53 mmol) in DCM (1 

mL) was slowly added. After stirring overnight, water was added and the reaction 

mixture was extracted with DCM (x3). The organic extract was washed with a solution 

of HCl 0.1 M (x1). The organic layer was dried over MgSO4, evaporated to dryness and 

purified by SiO2-flash chromatography (EtOAc/PE = 1/2) to produce the product as a 

white solid. Yield: 227 mg (41%). 
1
H NMR (400 MHz, CDCl3): δ= .04 (s, 9H, CH3, 

t
Bu, 

OTBDPS), 1.31 (s, 6H, CH3), 2.41 (s, 3H, OTs), 3.13 (d, 1H, OH, 
3
JH-H =4.0 Hz), 3.72 (dd, 

1H, CH2-OTBDPS, 
2
JH-H =12.8 Hz, 

3
JH-H =6.0Hz), 3.78-3.82 (m, 2H, CH2-OTBDPS, 

CHCH2OTBDPS), 3.86 (pt, 1H, CHCHO, 
3
JH-H =8.4 Hz), 3.98-4.03 (m, 1H, CH-O), 4.08-4.13 

(m, 1H, CH2-OTs), 4.30 (dd, 1H, CH2-OTs, 
2
JH-H =10.8 Hz, 

3
JH-H =2.4 Hz), 7.30 (d, 1H, CH=, 

3
JH-H =8.0 Hz), 7.36-7.44 (m, 6H, CH=), 7.65-7.68 (m, 5H, CH=), 7.81 (d, 2H, CH=, 

3
JH-H 

=8.4 Hz). 
13

C NMR (100.6 MHz, CDCl3): δ= 9.  (C, 
t
Bu, OTBDPS), 21.6 (CH3, OTs), 26.8 

(CH3,
 t
Bu, OTBDPS), 26.9 (CH3), 64.5 (CH2-OTBDPS), 71.4 (CHCH2OTBDPS), 71.7 (CH2-O), 

76.9 (CHCHO), 80.4 (CH-O), 109.6 (CMe2), 127.8 (CH=), 128.0 (CH=), 129.8 (CH=), 129.9 

(CH=), 130.0 (CH=), 132.6 (C=), 132.7 (C=), 132.8 (C=), 135.6 (CH=), 135.7 (CH=), 144.8 

(C=).      

1-O-tert-Butyldiphenylsilyl-5-deoxy-2,3-O-isopropylidene-5-methyl-D-arabinitol 

(37). To a cooled solution (0   C) of the already prepared thioether-tosyl compound (3.6 

g, 6.2 mmol) in THF (15.5 mL), LiAlH4 (352.8 mg, 9.3 mmol) was added portion-wise. 

The solution was stirred at reflux for 2h. Then, drops of water were carefully added 

and a white precipitate appeared which was filtered and clean three times with ethyl 

acetate. The organic phase was dried over MgSO4 and evaporated to dryness. The 

crude product was purified by SiO2-column chromatography (EtOAc/PE = 1/3) yielding 

the corresponding compounds as colorless oils. Yield: 619 mg (24%). 
1
H NMR (400 

MHz, CDCl3): δ= . 0 (s, 9H, CH3, 
t
Bu, OTBDPS), 1.23 (d, 3H, CH3, 

3
JH-H =6.4 Hz), 1.41 (s, 

3H, CH3), 1.42 (s, 3H, CH3), 2.79 (b, 1H, OH), 3.78-3.86 (m, 3H, CH2-OTBDPS, CHCHO), 

3.90-3.94 (m, 1H, CH-O), 4.03-4.07 (m, 1H, CHCH2OTBDPS), 7.40-7.48 (m, 6H, CH=), 

7.70-7.73 (m, 4H, CH=). 
13

C NMR (100.6 MHz, CDCl3): δ= 9.0 (CH3), 19.2 (C, 
t
Bu, 

OTBDPS), 26.8 (CH3, 
t
Bu, OTBDPS), 27.0 (CH3), 27.1 (CH3), 64.8 (CH2-OTBDPS), 67.9 (CH-

O), 78.8 (CHCH2OTBDPS), 82.6 (CHCHO), 108.8 (CMe2), 127.8 (CH=), 127.9 (CH=), 129.9 

(CH=), 130.0 (CH=), 132.6 (C=), 135.7 (CH=). 
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3.3.4.22. Preparation of compound 38 

1-O-tert-Butyldiphenylsilyl-5-deoxy-2,3-O-isopropylidene-4-O-mesyl-5-methyl-D-

arabinitol. To a cooled solution (0   C) of compound 37 (1.1 g, 2.6 mmol) in DCM (18 

mL), triethylamine (1.1 mL, 7.8 mmol) and methanesulfonyl chloride (0.65 mL, 7.8 

mmol) in DCM  was slowly added. After stirring 1 h, water was added and the reaction 

mixture was extracted with DCM (x3). The organic layer was dried over MgSO4, 

evaporated to dryness and purified by SiO2-flash chromatography (EtOAc/EP = 1/4) to 

produce the product as a colorless oil. Yield: 1.3 g (100%). 
1
H NMR (400 MHz, CDCl3): 

δ= .07 (s, 9H, CH3, 
t
Bu, OTBDPS), 1.41 (d, 3H, CH3, 

3
JH-H =6.4 Hz), 1.42 (s, 3H, CH3), 1.43 

(s, 3H, CH3), 2.97 (s, 3H, CH3, OMs), 3.74 (dd, 1H, CH2-OTBDPS, 
2
JH-H =11.2 Hz, 

3
JH-H =4.0 

Hz), 3.88 (dd, 1H, CH2-OTBDPS, 
2
JH-H =11.6 Hz, 

3
JH-H =4.0 Hz), 4.04-4.08 (m, 1H, 

CHCH2OTBDPS), 4.19 (dd, 1H, CHCHOMs, 
2
JH-H =7.6 Hz, 

3
JH-H =4.0 Hz), 4.87-4.93 (m, 1H, 

CH-OMs), 7.37-7.44 (m, 6H, CH=), 7.67-7.71 (m, 4H, CH=). 
13

C NMR (100.6 MHz, CDCl3): 

δ= 7.3 (CH3), 19.2 (C, 
t
Bu, OTBDPS), 26.8 (CH3, 

t
Bu, OTBDPS), 27.1 (CH3), 27.2 (CH3), 

64.0 (CH2-OTBDPS), 77.9 (CH-OMs), 78.2 (CHCH2OTBDPS), 78.6 (CHCHOMs), 109.7 

(CMe2), 127.8 (CH=), 129.8 (CH=), 129.9 (CH=), 132.9 (C=), 135.6 (CH=). 

1-O-tert-Butyldiphenylsilyl-4,5-dideoxy-2,3-O-isopropylidene-5-methyl-4-

phenylthio-D-xylitol. A suspension of  NaH (494 mg, 12.4 mmol), washed three times 

in hexane, in THF (15 mL) was cooled to -15   C, and thiophenol (0.64 mL) in THF (2 mL), 

at -15   C was added. After 10 min a solution of compound 1-O-tert-butyldiphenylsilyl-

5-deoxy-2,3-O-isopropylidene-4-O-mesyl-5-methyl-D-arabinitol (1.3 g, 2.6 mmol) in 

THF (3 ml) was added at -15 ᵒC. After stirring at -15   C for 10 min, the reaction was 

warmed to 67   C and stirred for 36 h. The reaction was quenched with water and 

extracted with dichloromethane for three times. The extract was dried over anhydrous 

magnesium sulfate and concentrated. The residue was purified by SiO2-column 

chromatography (EtOAc /PE = 0.5/9.5) to produce the desired product.  Yield: 604 mg 

(46%). 
1
H NMR (400 MHz, CDCl3): δ= 1.11 (s, 9H, CH3, 

t
Bu, OTBDPS), 1.45 (d, 3H, CH3, 

3
JH-H =7.2 Hz), 1.47 (s, 3H, CH3), 1.55 (s, 3H, CH3), 3.46-3.49 (m, 1H, CH-S), 3.86-3.93 (m, 

2H, CH2-OTBDPS), 4.21-4.24 (m, 1H, CHCHS), 4.27-4.31 (m, 1H, CHCH2OTBDPS), 7.25-

7.50 (m, 11H, CH=), 7.71-7.76 (m, 4H, CH=). 
13

C NMR (100.6 MHz, CDCl3): δ= 8.9 (CH3), 

19.3 (C, 
t
Bu, OTBDPS), 26.9 (CH3, 

t
Bu, OTBDPS), 27.2 (CH3), 27.3 (CH3), 45.2 (CH-S), 64.9 

(CH2-OTBDPS), 78.6 (CHCH2OTBDPS), 80.8 (CHCHS), 109.4 (CMe2), 126.7 (CH=), 127.8 

(CH=), 128.9 (CH=), 129.0 (CH=), 129.8 (CH=), 131.5 (CH=), 132.9 (C=), 133.1 (C=), 135.1 

(C=), 135.7 (CH=).   

4,5-Dideoxy-2,3-O-isopropylidene-5-methyl-4-phenylthio-D-xylitol (38) 

 Treatment of silylated compound (604.0 mg, 1.2 mmol) in THF (5 mL) with a THF 

solution of TBAF (1 M, 1.8 mL, 1.8 mmol) provided deprotected compound 36. The 

reaction was quenched with water and extracted with ethyl acetate (x3). The organic 

layer was dried over anhydrous MgS04, filtered and concentrated. The crude product 

was subjected to SiO2-column chromatography (EtOAc /PE = 1/5) yielding pure 

thioether-hydroxy compound 38 as yellowish oil. Yield: 252 mg (76%). 
1
H NMR (400 
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MHz, CDCl3): δ= .42 (d, 3H, CH3, 
3
JH-H =7.6 Hz), 1.44 (s, 3H, CH3), 1.49 (s, 3H, CH3), 2.51 

(b, 1H, OH), 3.41-3.48 (m, 1H, CH-S), 3.68-3.74 (m, 1H, CH2-O), 3.87-3.90 (m, 1H, CH2-

O), 4.04 (dd, 1H, CHCH-S, 
2
JH-H =8.0 Hz, 

3
JH-H =4.0 Hz), 4.17-4.21 (m, 1H, CHCH2O), 7.24-

7.34 (m, 3H, CH=), 7.45 (d, 2H, CH=, 
3
JH-H =7.2 Hz). 

13
C NMR (100.6 MHz, CDCl3): δ= 17.5 

(CH3), 27.1 (CH3), 27.2 (CH3), 44.5 (CH-S), 63.1 (CH2-O), 78.5 (CHCH2O), 79.2 (CHCHS), 

109.2 (CMe2), 127.1 (CH=), 129.0 (CH=), 131.7 (CH=), 134.5 (C=). 

3.3.4.23. Typical procedure for the hydrogenation of olefins 

The alkene (0.5 mmol) and Ir complex (2 mol %) were dissolved in CH2Cl2 (2 mL) an 

placed in a high-pressure autoclave. The autoclave was purged 4 times with hydrogen. 

Then, it was pressurized at the desired pressure. After the desired reaction time, the 

autoclave was depressurized and the solvent evaporated off. The residue was 

dissolved in Et2O (1.5 ml) and filtered through a short plug of celite. The enantiomeric 

excess was determined by chiral GC or chiral HPLC and conversions were determined 

by 
1
H NMR. The enantiomeric excesses of hydrogenated products from S1,

[12e]
 S2,

[29]
 

S3-S6,
[12e]

 S7-S10,
[30]

, S11,
[11a]

 S12-S13,
[31]

 S14,
[12e]

 S15-S16,
[11c]

 S17,
[13] 

S18,
[7j]

 S19,
[12e]

 

S20,
[9b]

 S21,
[12e] 

S22-S27,
[32]

 S28,
[12e]

 S29,
[12b]

 S30,
[33]

 S31
[34]

 and S32
[35]

 were determined 

using the conditions previously described. 

3.3.4.24. General procedure for the Rh-asymmetric hydrogenation  

In a typical run, the corresponding Rh-catalyst precursor (0.01 mmol), the 

corresponding ligand (0.011 mmol) and the corresponding substrate (1 mmol) were 

dissolved in dichloromethane (6 mL). The reaction mixture was then placed in the 

autoclave and the autoclave was purged five times with hydrogen gas. Then, it was 

pressurized to the desired pressure. After the desired reaction time, the autoclave was 

depressurized and the solvent evaporated off. The residue was dissolved in Et2O (2 mL) 

and filtered through a short celite plug. The enantiomeric excess was determined by 

chiral GC and conversions were determined by GC and confirmed by 
1
H NMR. The 

enantiomeric excess was determined by chiral GC or chiral HPLC and conversions were 

determined by 
1
H NMR. The enantiomeric excesses of hydrogenated products from 

S33-S34,
[36]

 S35-S40
[37]

 and S41-S45
[38]

 were determined using the conditions 

previously described. 
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3.4 Application of a carbene-thioether ligand in the Ir-catalyzed 

hydrogenation of minimally functionalized olefins. Comparison with 

their analogues phosphinite and phosphite ligands 

Carlota Borràs, Zahra Mazloomi, Pol de la Cruz Sánchez,
 
Jordi Faiges, Oscar Pàmies and 

Montserrat Diéguez preliminary results. 

 

Abstract: A thioether-carbene ligand was prepared, and its iridium complex was 

evaluated as catalysts precursor for the asymmetric hydrogenation of various 

minimally functionalized olefins. Iridium thioether-phosphinite and thioether-phosphite 

complex analogues of iridium thioether-carbene complex have also been synthesized 

and tested in the reduction of minimally functionalized alkenes in comparison 

purposes. In general, catalyst precursor containing carbene-thioether ligand provided 

lower activity and enantioselectivity than their related P-analogues modified with 

phosphinite and phosphite groups. Enantioselectivity is highly dependent on both the 

ligand and the substrate parameters. It should be mentioned the good 

enantioselectivities achieved for several substrate types, such as trisubstituted α,β-

unsaturated enones, esters and lactones, tri- and disubstituted enol phosphinates and 

(3,3-dimethylbut-1-en-2-yl)benzene with this very simple ligand scaffold. 

 

3.4.1. Introduction 

As already mentioned in previous chapters, asymmetric hydrogenation is one of 

the most attractive tools for the preparation of optically active compounds, due to its 

perfect atom economy, low catalyst loading and that it can generally be performed 

under mild reaction conditions.
[1]

 Unlike the Rh-catalyzed hydrogenation of the olefins 

with a coordination group close to the double bond, the Ir-catalyzed hydrogenation of 

olefins without any group of coordination, is less studied. Ir-phosphine/oxazoline 

PHOX ligand (Figure 3.4.1; 1), reported by Pfaltz in 1997, was a breakthrough in the 

ligand design for the hydrogenation of minimally functionalized olefins.
[2]

 Since then, 

several modifications in the ligand structure have been developed, either replacing the 

phosphine moiety by a phosphinite,
[3]

 phosphite
[4]

 or carbene group or the oxazoline 

by other nitrogen groups (such as pyridine, thiazole)
[3]

 or other non-N donor groups, 

such as amides
[5]

 or thioethers
[6]

 moieties. These latter modifications widened the 

range of olefins that can be hydrogenated with excellent enantioselectivities. 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
SUSTAINABLE AND COST-EFFECTIVE DEVELOPMENT OF CHIRAL METAL-CATALYSTS FOR C-H AND 
C-X BOND FORMING REACTIONS 
Carlota Borràs Noguera 



Chapter 3 

 

- 188 - 
 

 
Figure 3.4.1. Selected complexes used in the hydrogenation of olefins. 

In the last two decades, N-heterocyclic carbenes (NHCs) have emerged as a class of 

powerful ligands for promoting catalytic activity.  Owing to their strong  donor ability, 

air stability, and low toxicity, NHCs have been considered as practical alternatives to 

the more commonly used phosphines.
[7],[8]

 Because of these unique features, exploring 

new classes of NHCs has been an attractive target of organometallic chemistry. In this 

respect, in 2001, Burgess and coworkers reported a small library of carbene-oxazoline 

ligands for the Ir-catalyzed hydrogenation of minimally functionalized olefins (figure 

3.4.1; 2).
[9]

 These ligands afforded enantioselectivities up to 98% in a limited range of 

unfunctionalized olefins. Since then, a few more carbene-N ligands have been applied 

in the hydrogenation of minimally functionalized olefins with less sucess.
[10]

 The use of 

NHC ligands with other heterodonor ligands is still unexplored. Regarding to 

bidentated sulfur-carbene ligands, to date, only one S-carbene/Rh complex has been 

reported by Chung and coworkers (figure 3.4.1; 3) for the hydrogenation of 

functionalized olefins with poor success.
[11]

 In order to further explore the potential of 

carbene-based ligands in the hydrogenation of minimally functionalized olefins using 

Ir-complexes, in this chapter we synthesized the simple thioether-carbene compound 

L31H·Br (Figure 3.4.2) and applied it in the hydrogenation of minimally functionalized 

olefins. This ligand combines the advantages of the thioether and carbene moieties. 

Finally, we also compare the effectiveness of this thioether-carbene ligand with its 

related thioether-phosphinite (L32) and thioether-phosphites (L33a–b).   

 
Figure 3.4.2.  Thioether-carbene ligand L31 and their analogues thioether-phosphinite/phosphites L32-L33 

ligands. 

3.4.2 Results and discussion 

3.4.2.1 Synthesis of thioether-NHC/P ligands L31-L33 and their corresponding Ir(I) 

complexes 

The thioether-NHC/P ligands L31-L33 were efficiently synthesized by the coupling 

of the corresponding readily accessible thioether-bromide derivative 8 or thioether-
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hydroxyl derivative 7 with the either 1-(2,6-diisopropylphenyl)-1H-imidazole 9 (for 

ligand L31·HBr; Scheme 3.4.1, step f)
[12]

 or chlorodiphenylphosphine (for ligand L32; 

Scheme 3.4.1, step g) or the desired phosphochloridite (for ligands L33; Scheme 3.4.1, 

step h).  

The preparation of thioether-hydroxyl/bromide derivatives 7 and 8 was carried out 

as depicted in Scheme 3.4.1 from commercially available starting material 4 following 

already reported synthetic procedures.
[13]

  According to Evan’s procedure, the (R)-

benzyl-2-oxazolidinone were treated with n-butyllithium at -78   C and the resulting 

salts were acylated with isovaleryl chloride 4 to give the corresponding N-acyl 

carboximide (Scheme 3.4.1, step a).
[13b]

 After selective α-bromation of the N-acyl 

carboximide using N-bromosuccinimide (NBS) and dibutylboryl triflate in presence of 

N,N-diisopropylamine, compound 5 was achieved in excellent diastereoselectivity 

(dr>25:1; Scheme 3.4.1, step b).
[13c]

 Treatment of 5 with thiophenol provides 

compound 6 in good yield (Scheme 3.4.1, step c). Reductive cleavage of the Evan’s 

auxiliary with lithium borohydride gave access to the corresponding thioether-hydroxyl 

7 (Scheme 3.4.1, step d).
[13d]

 Finally, treatment of  alcohol 7 with tetrabromomethane 

and triphenylphosphine afforded the desired thioether-bromine compound 8.
[13a]

  

 
Scheme 3.4.2. Synthesis of thioether-NHC/P ligands L31-L33. Reaction conditions: a) Evans’ auxiliary, nBuLi, 

THF, -78 °C, 1 h. b) DIPEA, nBu2OTf, NBS, DCM, -78 °C, 1.3 h. c) Ph-SH, DBU, THF, -10 °C, 4 h. d) LiBH4, H2O, 

THF, 0 °C, 3 h. e) CBr4, PPh3, DCM, 0 °C, 6 h. f) 9, MeCN, 1.5 days, reflux. g) ClPPh2, NEt3, toluene, 1 h. h), 

ClP(OR)2; (OR)2 = a-b, Py, toluene,      C, 16 h. 

 

The corresponding [Ir(cod)(L)]BArF (L=L31-L33a-b) complexes were prepared as 

previously described in the literature (Scheme 3.4.3).
[7f]

 For the coordination of the 

thioether-carbene ligand L31, compound L31H·Br were first treated with Ag2O to form 

the corresponding silver-carbene complex 10. Then, transmetallation with 0.5 

equivalent of [Ir(μ-Cl)cod]2 followed by in situ Cl
-
/BArF

-
 counterion exchange led to the 

desired [Ir(cod)(L31)]BArF. The thioether-P ligands L32-L33 were directly coordinated 

to Ir by reaction with  .5 equivalent of [Ir(μ-Cl)cod]2 followed by in situ Cl
-
/BArF

-
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counterion exchange as for the preparation [Ir(cod)(L31)]BArF. All complexes were 

isolated after extraction and SiO2 chromatography as air-stable orange solids. They 

were characterized by 
31

P NMR, 
1
H NMR and 

13
C NMR. The HRMS-ESI spectra were in 

agreement with the assigned structures, displaying the heaviest ions at m/z which 

correspond to the loss of the BArF anion from molecular species.  NMR spectra showed 

the expected pattern for these C1-complexes.  

 

 Scheme 3.4.3. Synthesis of Ir-catalyst precursors [Ir(cod)(L31-L33)]BArF. 

 

3.4.2.2. Ir-catalyzed hydrogenation of minimally functionalized olefins 

The newly prepared iridium complexes were evaluated in the asymmetric 

hydrogenation of several trisubstituted minimally functionalized olefins (substrates S1-

S6), as well as in the reduction of more challenging di- and tetrasubstituted olefins 

(substrates S7-S9 and S10, respectively). As shown in Table 3.4.1, catalyst precursor 

containing carbene-thioether ligand L31H·Br generally provided lower activity and 

enantioselectivity than their related analogues modified with phosphinite and 

phosphite counterparts. Exceptions to this general rule are the full conversions and 

high enantioselectivities (similar to those attained with the best [Ir(P-S)(cod)]BArF) 

achieved in the hydrogenation of enol phosphinates S6 and S9 using [Ir(L31)(cod)]BArF. 

The results also indicate that enantioselectivity highly depends on subtle variations of 

the ligand parameters as well as of the substrate parameters (substrate geometry, 

substitution pattern and electronic variations). Thus, while the use of catalyst 

precursor [Ir(L33a)(cod)]BArF provides the highest enantioselectivities of the series in 

the reduction of E-unfunctionalized olefin S1, ,-unsaturated enone S3, enol 

phosphonate S6 and tetrasubstituted olefin S10; the highest enantioselectivities 

achieved for Z-unfunctionalized olefin S2, , -unsaturated ester S4, lactone S5 and 

vinyl boronate S8 are achieved using [Ir(L33b)(cod)]BArF. However, for disubstituted 

olefin S7 and enol phosphonate S9 the highest ee’s are achieved using 

[Ir(L31)(cod)]BArF.  
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Table 3.4.1. Asymmetric hydrogenation of substrates S1-S10 using [Ir(cod)(L31-L33a-b)]BArF 

catalyst precursors.
a 

Entry Substrate L31 L32 L33a L33b 

1 

 

42% Conv 
2% (R) 

100% Conv 
48% (S) 

100% Conv 
40% (S) 

100% Conv 
30% (S) 

2 

 

- 100% Conv 
21% (R) 

100% Conv 
58% (R) 

100% Conv 
31% (R) 

3 

 

10% Conv 
9% (R) 

95% Conv 
82% (S) 

80% Conv 
20% (R) 

75% Conv 
60% (S) 

4 

 

20% Conv 
9% (R) 

100% Conv 
31% (S) 

90% Conv 
80% (S) 

50% Conv 
50% (S) 

5 

 

20% Conv 
20% (R) 

55% Conv 
28% (R) 

90% Conv 
75% (R) 

42% Conv 
33% (S) 

6 

 

100% Conv 
75% (S) 

86% Conv 
85% (S) 

25% Conv 
72% (R) 

25% Conv 
9% (S) 

7
b 

 

- 100% Conv 
80% (R) 

100% Conv 
15% (R) 

100% Conv 
91% (R) 

8
b 

 

100% Conv 
10% (R) 

100% Conv 
25% (R) 

100% Conv 
44% (S) 

100% Conv 
1% (S) 

9 

 

100% Conv 
91% (S) 

100% Conv 
3% (S) 

100% Conv 
94% (S) 

100% Conv 
98% (S) 

10
c 

 

100% Conv 
5% (R,R) 

100% Conv 
58% (R,R) 

100% Conv 
50% (R,R) 

100% Conv 
40% (R,R) 

a Reaction conditions: substrate (0.25 mmol), [Ir(cod)(L)]BArF (2 mol%), PH2 (100 bar) in dichloromethane at 

room temperature for 4 h. b Reactions carried out at 1 bar of H2. 
c Reactions carried out at 100 bar of H2 for 

24 h. 

 

3.4.3. Conclusions 

In this study, a series of thioether-carbene/phosphite/phosphite ligands were 

prepared, and their iridium complexes were evaluated as catalyst precursors for the 

asymmetric hydrogenation of various minimally functionalized olefins. In general, 

catalyst precursor containing carbene-thioether ligand provided lower activity and 

enantioselectivity than their related analogues modified with phosphinite and 

phosphite groups. Enantioselectivity is highly dependent on both the ligand and the 

substrate parameters. It should be mentioned the good enantioselectivities achieved 

for several substrate types, such as trisubstituted ,-unsaturated enones, esters and 
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lactones, tri- and disubstituted enol phosphinates and (3,3-dimethylbut-1-en-2-

yl)benzene with this very simple ligand scaffold. 

 

3.4.4. Experimental Part 

3.4.4.1. General remarks 

All syntheses were performed by using standard Schlenk techniques under an 

argon atmosphere. Solvents were purified by standard procedures. Compounds 5,
[13b]

 

6,
[13d]

 7,
[13d]

 8,
[13a]

 9
[12]

 and phosphorochloridites
[14]

 were prepared as previously 

described. All other reagents were used as commercially available. 
1
H, 

13
C{

1
H}, 

31
P{

1
H} 

NMR spectra experiments were recorded using a 400 MHz spectrometer. Chemical 

shifts are relative to that of SiMe4 (
1
H and 

13
C) as internal standard or H3PO4 (

31
P) as 

external standard. 
1
H and 

13
C assignments were done based on 

1
H-

1
H gCOSY and 

1
H-

13
C 

gHSQC experiments. 

3.4.4.2. Typical Procedure for the synthesis of thioether-imidazolium ligand 

L31H·Br 

1-(2,6-Diisopropylphenyl)-1H-imidazole 9 (114 mg, 0.5 mmol) was charged in 

schlenk tube under argon, and a solution of the corresponding bromide 8 (0.4 mmol) 

in dry MeCN (3 mL) was added. The reaction mixture were stirred at 80   C for 1.5 days, 

concentrated and purified by silica flash chromatography (dichloromethane/MeOH 

20:1 to 10:1) to afford L31. Yield: 230 mg (42%) as dark orange oil. 
1
H NMR (400 mHz, 

CDCl3) δ: 0.92 (d, 3H, 
3
JH-H= 6.8 Hz, CH3, 

i
Pr, Ar), 0.99 (d, 3H, 

3
JH-H= 6.8 Hz, CH3, 

i
Pr, Ar), 

1.01 (d, 3H, 
3
JH-H= 6.8 Hz, CH3, 

i
Pr, Ar), 1.02 (d, 3H, 

3
JH-H= 6.8 Hz, CH3, 

i
Pr, Ar), 1.05 (d, 

3H, 
3
JH-H= 6.8 Hz, CH3, 

i
Pr), 1.07 (d, 3H, 

3
JH-H= 6.8 Hz,  CH3, 

i
Pr), 2.12 (m, 2H, CH, 

i
Pr, Ar), 

2.32 (m, 1H, CH, 
i
Pr),  3.80 (m, 1H, CH-S), 4.61 (dd, 1H, 

2
JH-H = 14.0 Hz, 

3
JH-H= 11.3 Hz, 

CH2-N), 5.37 (dd, 1H, 
2
JH-H = 14.0 Hz, 

3
JH-H= 3.6 Hz, CH2-N), 7.13 (s, 1H, NHC-H), 7.20-

7.35 (m, 7H, CH=), 7.50 (m, 1H, CH=), 8.40 (s, 1H, NHC-H), 10.08 (s, 1H, NHC-H). 
13

C 

NMR (100.6 mHz, CDCl3) δ: 1 .2 (CH3, 
i
Pr), 20.6 (CH3, 

i
Pr), 24.1 (CH3, 

i
Pr), 24.2 (CH3, 

i
Pr), 

24.2 (CH3, 
i
Pr), 24.3 (CH3, 

i
Pr), 28.5 (CH, 

i
Pr), 28.6 (CH, 

i
Pr), 31.6 (CH, 

i
Pr), 53.1 (CH2-N), 

58.7 (CH-S), 123.4 (CH, NHC), 124.5 (CH, NHC), 124.7-129.9 (aromatic carbons), 138.7 

(CH, NHC), 145.6 (C), 145.7 (C). MS HR-ESI [found 407.2515, C36H35N2S (M-Na)
+ 

requires 

407.2507].     

3.4.4.3. Typical Procedure for the synthesis of thioether-phosphinite ligand L32 

Compound 8 (0.5 mmol) and DMAP (6.7 mg, 0.055 mmol) were dissolved in 

toluene (1 ml), and triethylamine was added (0.09 ml, 0.65 mmol) at r.t., followed by 

the addition of the corresponding chlorophosphine (0.55 mmol) via syringe. The 

reaction was stirred for 1 h at r.t. The solvent was removed in vacuo, and the product 

was purified by flash chromatography on alumina (toluene/NEt3 = 100/1) to produce 

ligand L32 as a colorless oil. Yield: 118 mg (62%). 
31

P NMR (C6D6), δ: 114.5 (s). 
1
H NMR 
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(C6D6), δ:  .91 (d, 3H, CH3, 
i
Pr, 

3
JH-H= 6.8 Hz), 0.98 (d, 3H, CH3, 

i
Pr, 

3
JH-H= 6.8 Hz), 2.20 (m, 

1H, CH, 
i
Pr), 3.24 (m, 1H, CH-S), 4.01 (m, 2H, CH2-N), 6.98 (m, 10H, CH=), 7.32 (m, 2H, 

CH=), 7.54 (m, 3H, CH=). 
13

C NMR (C6D6), δ: 18.6 (CH3, 
i
Pr), 21.2 (CH3, 

i
Pr), 29.5 (CH, 

i
Pr), 

58.0 (d, CH-S, JC-P= 8.1 Hz), 71.1 (d, CH2-N, JC-P= 19.1 Hz), 126.0-143.2 (aromatic 

carbons). MS HR-ESI [found 403.1253, C23H25OPS (M-Na)
+ 

requires 403.1261]. 

3.4.4.4. Typical Procedure for the synthesis of thioether-phosphite ligands L33a-b 

The corresponding phosphorochloridite (1.1 mmol) produced in situ was dissolved 

in toluene (5 mL) and pyridine (3.8 mmol, 0.3 mL) was added. Compound 8 (1 mmol) 

was azeotropically dried with toluene (3x1 mL) and dissolved in toluene (5 mL) to 

which pyridine (3.8 mmol, 0.3 mL) was added. The solution was transferred slowly at   

0   C to the phosphorochloridite solution. The reaction mixture was stirred overnight at 

80   C, and the pyridine salts were removed by filtration. The evaporation of the solvent 

yielded a white foam, which was purified by flash chromatography in alumina (eluent: 

toluene/triethylamine – 100:1) to produce the corresponding ligand as a white solid.  

L33a: Yield: 416 mg (72%). 
31

P NMR (C6D6), δ: 12 . . 
1
H NMR (C6D6), δ: 0.90 (d, 3H, 

CH3, 
i
Pr, 

3
JH-H= 6.8 Hz), 1.02 (d, 3H, CH3, 

i
Pr, 

3
JH-H= 6.8 Hz), 1.51 (s, 9H, CH3, 

t
Bu), 1.51 (s, 

9H, CH3, 
t
Bu), 1.64 (s, 3H, CH3), 1.67 (s, 3H, CH3), 2.01 (s, 6H, CH3), 2.35 (m, 1H, CH, 

i
Pr), 

3.28 (m, 1H, CH-S), 3.68 (m, 1H, CH2-N), 4.12 (m, 1H, CH2-N), 6.76 (m, 1H, CH=), 6.87 

(m, 2H, CH=), 7.16 (d, 2H, CH=, 
3
JH-H= 5.0 Hz), 7.26 (m, 2H, CH=). MS HR-ESI [found 

601.2874, C35H47O3PS (M-Na)
+ 

requires 601.2881]. 

L33b: Yield: 352 mg (61%). 
31

P NMR (C6D6), δ: 127.7. 
1
H NMR (C6D6), δ: 0.89 (d, 3H, 

CH3, 
i
Pr, 

3
JH-H= 6.8 Hz), 1.03 (d, 3H, CH3, 

i
Pr, 

3
JH-H= 6.8 Hz), 1.39 (s, 9H, CH3, 

t
Bu), 1.52 (s, 

9H, CH3, 
t
Bu), 1.63 (s, 3H, CH3), 1.75 (s, 3H, CH3), 2.01 (s, 3H, CH3), 2.07 (s, 3H, CH3), 

2.30 (m, 1H, CH, 
i
Pr), 3.18 (m, 1H, CH-S), 3.93 (m, 1H, CH2-N), 4.26 (m, 1H, CH2-N), 6.98 

(m, 4H, CH=), 7.17 (m, 1H, CH=), 7.30 (m, 2H, CH=). MS HR-ESI [found 

601.2871, C35H47O3PS (M-Na)
+ 

requires 601.2881]. 

3.4.4.4. Procedure for the preparation of [Ir(cod)(L31)]BArF 

The corresponding ligand L31H·Br (0.1 mmol) and DCM (3 mL) are added into a 

flame dried Schlenk. Then, Ag2O (0.05 mmol) are added and kept in the dark for 2.5 h. 

After that, the reaction crude is passed through a dry celite pad and evaporated 

affording complex 10. Yield: 13.1 mg (29%) as a dark brown foam. 
1
H NMR (400 mHz, 

CDCl3) δ: 1.10 (m, 6H, CH3 
i
Pr, Ar), 1.17 (d, 3H, CH3, 

i
Pr, 

3
JH-H= 6.8 Hz), 1.18 (d, 3H, 

3
JH-H= 

6.8 Hz, CH3 
i
Pr, Ar), 1.21 (m, 6H, CH3 

i
Pr, Ar), 2.11 (m, 1H, CH 

i
Pr), 2.26 (m, 1H, CH 

i
Pr, 

Ar), 2.33 (m, 1H, CH 
i
Pr, Ar), 3.53 (m, 1H, CH-S), 4.24 (dd, 1H, 

2
JH-H= 14.1 Hz, 

3
JH-H= 9.2 

Hz, CH2-N), 4.56 (dd, 1H, 
2
JH-H= 14.1 Hz, 

3
JH-H= 5.6 Hz, CH2-N), 7.20-7.50 (m, 8H, CH=). 

13
C NMR (100.6 mHz, CDCl3) δ: 24.2 (CH3, 

i
Pr, Ar), 24.3 (CH3, 

i
Pr, Ar), 24.4 (CH3, 

i
Pr), 24.5 

(CH3, 
i
Pr), 24.6 (CH3, 

i
Pr, Ar), 24.6 (CH3, 

i
Pr, Ar), 28.3 (CH3, 

i
Pr, Ar), 30.9 (CH, 

i
Pr), 54.3 

(CH2-N), 59.6 (CH-S), 121.5-138.4 (aromatic carbons), 145.5 (C), 145.7 (C), 146.6 (C). 

MS HR-ESI [found 921.3919, C52H70AgN4S (M)
+ 

requires 921.4093]. 
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Precursor [Ir(μ-Cl)(COD)]2 (0.1 mmol) are added into a solution of the 

corresponding silver carbene 10 (0.05 mmol) in DCM (50 mL/mmol) and it is stirred for 

4.5 h in the dark. Subsequently, 1.2 eq of NaBArF and dionized water (50 mL/mmol) are 

added and it is stirred for 30 min. Then, it is diluted in DCM and the organic layer 

extracted, dried with MgSO4, filtrated over celite and the solvent evaporated in vacuo. 

If it’s necessary column chromatography can be performed for further purification 

(Neutral SiO2, DCM/Hexane – 75:25). Yield: 10 mg (32%) as a  bright orange solid. 1H 

NMR (400 mHz, CDCl3) δ: 1.  (d, 3H, 
3
JH-H= 6.8 Hz, CH3, 

i
Pr, Ar), 1.04 (d, 3H, 

3
JH-H= 6.8 Hz, 

CH3, 
i
Pr, Ar), 1.08 (d, 3H, 

3
JH-H= 6.8 Hz, CH3, 

i
Pr, Ar), 1.10 (d, 3H, 

3
JH-H= 6.8 Hz, CH3, 

i
Pr, 

Ar), 1.43(d, 3H, 
3
JH-H= 6.8 Hz, CH3, 

i
Pr, Ar), 1.68-1.84 (b, 8H, CH2, cod)  2.11 (m, 1H, CH, 

i
Pr), 1.99 (m, 1H, CH, 

i
Pr), 2.29-3.28 (m, 2H, CH3, 

i
Pr, Ar), 3.19 (m, 1H, CH-S), 3.63 (b, 2H, 

CH, cod), 3.68 (b, 1H, CH, cod), 4.12 (m, 1H, CH, cod)  4.55 (dd, 1H, 
2
JH-H= 14.2 Hz, 

3
JH-H= 

6.3 Hz, CH2-N), 4.78 (d, 1H, 
2
JH-H= 14.2 Hz, CH2-N), 6.99 (d, 1H, 

3
JH-H= 1.9 Hz, NHC-H), 

7.13 (d, 1H, 
3
JH-H= 1.9 Hz, NHC-H), 7.28-7.76 (dd, 15H, CH=). 

13
C NMR (100.6 mHz, 

CDCl3) δ: 19.7 (CH3, 
i
Pr, Ar), 20.5 (CH3, 

i
Pr), 23.5 (CH3, 

i
Pr, Ar), 25.0 (CH3, 

i
Pr, Ar), 25.3 

(CH3, 
i
Pr, Ar), 28.8 (CH, 

i
Pr, Ar), 29.5 (CH, 

i
Pr), 29.9 (CH2, cod), 32.4 (CH2, cod), 54.6 (CH2-

N), 58.0 (CH-S), 71.2 (CH, cod), 83.4 (CH, cod), 84.1 (CH, cod), 118.1-160.4 (aromatic 

carbons), 161.4 (q, C-B, BArF, 
1
JC-B =49.6 Hz), 169.7 (C). MS HR-ESI [found 

705.2872, C34H46N2SIr (M)
+ 

requires 705.2982]. 

3.4.4.4. Procedure for the preparation of [Ir(cod)(P-S)]BArF (P-S=L32-L33a-g)   

The corresponding ligand (0.074 mmol) was dissolved in CH2Cl2 (5 mL) and [Ir(µ-

Cl)(cod)]2 (25.0 mg, 0.037 mmol) was added. The reaction mixture was refluxed at      

50   C for 1 hour. After 5 min at room temperature, NaBArF (77.2 mg, 0.080 mmol) and 

water (5 mL) were added and the reaction mixture was stirred vigorously for 30 min at 

room temperature. The phases were separated and the aqueous phase was extracted 

twice with CH2Cl2. The combined organic phases were dried with MgSO4, filtered 

through a plug of silica and the solvent was evaporated, resulting in the product as a 

red-orange solid. 

[Ir(cod)(L32)]BArF: Yield: 99 mg (87%). 
31

P NMR (C6D6), δ: 1 3.7 (s). 
1
H NMR (C6D6), 

δ: 0.91 (d, 3H, CH3, 
i
Pr, 

3
JH-H= 6.8 Hz), 1.01 (d, 3H, CH3, 

i
Pr, 

3
JH-H= 6.8 Hz), 1.93 (m, 5H, 

CH, 
i
Pr, CH2, cod), 2.32 (m, 4H, CH2, cod), 3.28 (b, 1H, CH, cod), 3.36 (m, 1H, CH-S), 3.55 

(b, 1H, CH, cod), 4.28 (m, 2H, CH2-N, CH, cod), 4.61 (m, 1H, CH2-N), 4.98 (b, 2H, CH, 

cod), 7.26-7.72 (m, 27H, aromatic protons). 
13

C NMR (C6D6), δ: 17.5 (CH3, 
i
Pr), 20.4 

(CH3, 
i
Pr), 28.8 (d, CH2, cod, JC-P= 2.0 Hz), 29.0  (d, CH2, cod, JC-P= 2.0 Hz ), 29.6 (CH2, 

cod), 30.3 (CH, 
i
Pr), 32.2 (d, CH2, cod, JC-P= 6.9 Hz), 59.0 (CH-S), 68.9 (CH2-N), 73.2 (CH, 

cod), 73.3 (CH, cod), 99.7 (d, CH, cod, JC-P= 11.4 Hz), 100.6 (d, CH, cod, JC-P= 11.9 Hz), 

117.4-134.8 (aromatic carbons), 161.6 (q, C-B, BArF, 
1
JC-B =49.9 Hz). MS HR-ESI [found 

681.1921, C31H37IrOPS (M)
+ 

requires 681.1932]. 

[Ir(cod)(L33a)]BArF: Yield: 110 mg (87%). 
31

P NMR (C6D6), δ: 96.4 (s). 
1
H NMR (C6D6), 

δ: 1.01 (d, 3H, CH3, 
i
Pr, 

3
JH-H= 6.6 Hz), 1.11 (d, 3H, CH3, 

i
Pr, 

3
JH-H= 6.6 Hz), 1.47 (s, 9H, 

UNIVERSITAT ROVIRA I VIRGILI 
SUSTAINABLE AND COST-EFFECTIVE DEVELOPMENT OF CHIRAL METAL-CATALYSTS FOR C-H AND 
C-X BOND FORMING REACTIONS 
Carlota Borràs Noguera 



ASYMMETRIC HYDROGENATION REACTIONS 

   

- 195 - 
 

CH3, 
t
Bu), 1.65 (s, 9H, CH3, 

t
Bu), 1.78 (s, 3H, CH3), 1.84 (s, 3H, CH3), 2.05 (m, 9H, CH, 

i
Pr, 

CH2, cod), 2.29 (s, 3H, CH3), 2.31 (s, 3H, CH3), 3.08 (b, 1H, CH, cod), 3.29 (m, 1H, CH-S), 

4.37 (b, 1H, CH, cod), 4.63 (m, 2H, CH2-N, CH, cod), 4.98 (m, 1H, CH2-N, CH, cod), 7.25-

7.73 (m, 19H, aromatic protons). 
13

C NMR (C6D6), δ: 14.5 (CH3), 14.6 (CH3), 17.3 ( CH3, 
i
Pr), 18.3 (CH3), 18.5 (CH3), 18.9 (CH3, 

i
Pr), 25.7 (b, CH2, cod), 27.0 (CH, 

i
Pr), 27.5 (b, CH2, 

cod), 29.6 (CH3, 
t
Bu), 30.2 (d, CH2, cod, JC-P= 3.9 Hz), 30.7 (CH3, 

t
Bu), 31.4 (, CH2, cod, JC-

P= 3.1 Hz), 32.9 (C, 
t
Bu), 33.2 (C, 

t
Bu), 60.7 (CH-S), 66.9 (CH, cod), 67.8 (CH2-N), 75.5 

(CH, cod), 101.0 (d, CH, cod, JC-P= 14.5 Hz), 104.3 (d, CH, cod, JC-P= 14.9 Hz), 115.5-134.9 

(aromatic carbons), 159.7 (q, C-B, BArF, 
1
JC-B =49.7 Hz). MS HR-ESI [found 

879.3557, C43H59IrO3PS (M
+
)

 
requires 879.3552]. 

[Ir(cod)(L33b)]BArF: Yield: 102 mg (79%). 
31

P NMR (C6D6), δ: 98.2 (s). 
1
H NMR 

(C6D6), δ: 0.91 (d, 3H, CH3, 
i
Pr, 

3
JH-H= 6.9 Hz), 1.04 (d, 3H, CH3, 

i
Pr, 

3
JH-H= 6.8 Hz), 1.46 (s, 

9H, CH3, 
t
Bu), 1.65 (s, 9H, CH3, 

t
Bu), 1.79 (s, 3H, CH3), 1.82 (s, 3H, CH3), 2.03 (m, 9H, CH, 

i
Pr, CH2, cod), 2.29 (s, 3H, CH3), 2.30 (s, 3H, CH3), 3.04 (b, 1H, CH, cod), 3.43 (m, 1H, CH-

S), 4.36 (m, 1H, CH2-N), 4.67 (m, 3H, CH2-N, CH, cod), 5.11 (b, 1H, CH, cod), 7.28-7.93 

(m, 19H, aromatic protons). 
13

C NMR (C6D6), δ: 14.4 (CH3), 14.6 (CH3), 18.3 ( 2xCH3, 
i
Pr), 

18.4 (2xCH3) 25.8 (d, CH2, cod, JC-P= 2.2 Hz), 26.6 (CH, 
i
Pr), 27.3 (b, CH2, cod), 29.7 (CH3, 

t
Bu), 30.4 (d, CH2, cod, JC-P= 4.3 Hz), 30.6 (CH3, 

t
Bu), 31.4 (, CH2, cod, JC-P= 2.6 Hz), 32.9 

(C, 
t
Bu), 33.1 (C, 

t
Bu), 54.8 (CH-S), 65.1 (CH, cod), 65.4 (CH2-N), 76.9 (CH, cod), 102.9 (d, 

CH, cod, JC-P= 14.4 Hz), 104.1 (d, CH, cod, JC-P= 14.7 Hz), 115.5-142.3 (aromatic 

carbons), 159.8 (q, C-B, BArF, 
1
JC-B =49.9 Hz). MS HR-ESI [found 879.3590, C43H59IrO3PS 

(M
+
)

 
requires 879.3552]. 

3.4.4.5. Procedure for the preparation of compound 7  

To a cooled (-10   C) solution of 2,6-dimethylthiophenol (0.7 mL, 5.13 mmol) in dry 

THF (28 mL) was added DBU dropwise (0.8 mL, 5.13 mmol). After 20 min a white 

suspension was formed and a solution of 5 (1.5 g, 4.31 mmol) in THF was added. The 

reaction mixture was stirred at -10   C for 90 min and then 2.5 h at RT. When the 

reaction was completed, the mixture was quenched with water and extracted with 

Et2O. The organic phases were washed with water and brine. After drying over MgSO4, 

the organic solution was concentrated in vacuo, and the crude was purified by silica 

flash chromatography (PE/EtOAc 9:1) to afford desired compound 7 (98 mg, 92% 

yield). 
1
H NMR (400 mHz, CDCl3) δ: 1. 6 (d, 3H, CH3, 

3
JH-H= 6.8 Hz), 1.08 (d, 3H, CH3, 

3
JH-

H= 6.8 Hz), 2.01 (m, 1H, CH, 
i
Pr), 2.11(b, 1H, OH), 3.06 (ddd, 1H, 

3
JH-H= 7.3 Hz, 

3
JH-H= 6.0 

Hz, 
3
JH-H= 5.0 Hz, CH-S), 3.60 (dd, 1H, 

2
JH-H= 12.0 Hz, 

3
JH-H= 7.3 Hz, CH2-OH), 3.74 (dd, 1H, 

2
JH-H= 12.0 Hz, 

3
JH-H= 5.0 Hz, CH2-OH ), 7.21-7.47 (m, 5H, CH=). 

3.4.4.6. Typical procedure for the hydrogenation of olefins 

The alkene (0.5 mmol) and Ir complex (2 mol%) were dissolved in CH2Cl2 (2 mL) in a 

high-pressure autoclave, which was purged four times with hydrogen. It was then 

pressurized at the desired pressure. After the desired reaction time, the autoclave was 

depressurized and the solvent evaporated off. The residue was dissolved in Et2O (1.5 
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ml) and filtered through a short celite plug. The enantiomeric excess was determined 

by chiral GC or chiral HPLC and conversions were determined by 
1
H NMR. The 

enantiomeric excesses of hydrogenated products from S1-S2,
[3l]

 S3,
[3h]

 S4,
[3l]

 S5,
[15]

 

S6,
[16]

 S7,
[3l]

 S8,
[17]

 S9
[18]

 and S10
[19]

 were determined using the conditions previously 

described. 
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3.5. Pyrrolidine-based P,O ligands from carbohydrates: Easily 

accessible and modular ligands for the Ir-catalyzed asymmetric 

hydrogenation of minimally functionalized olefins 

Carlota Borràs, Pilar Elías-Rodríguez, Ana T. Carmona, Jordi Faiges, Inmaculada 

Robina,
 
Oscar Pàmies and Montserrat Diéguez in manuscript to be submitted. 

 

Abstract: A modular pyrrolidine-based phosphine/phosphite-O/S ligand library is 

presented. These ligands are obtained in enantiomerically pure form, from readily 

available sugars. Carbohydrates are highly functionalized compounds with several 

stereogenic centers. Their modular nature offers a wide variety of opportunities for the 

derivatization and tailoring of synthetic tools in the search for the best ligand for each 

particular substrate. This new P-O/S  ligand library have been applied on the reduction 

of a broad scope  of minimally functionalized trisubstituted olefins with a different 

electron and steric characteristics and on the more challenging 1,1-disubtituted 

terminal olefins. We found that their effectiveness at transferring the chiral 

information in the product can be tuned by correctly choosing the ligand components 

and the substrate. High enantioselectivities (ee's up to 99%) could therefore be 

achieved in the asymmetric hydrogenation of selected tris- and disubstituted 

substrates.  

 

3.5.1. Introduction 

Enantiomerically pure compounds are relevant in pharmacy, agro-chemistry, fine 

chemistry and natural product chemistry. Enormous efforts are being made to improve 

the enantioselective routes for synthesizing these compounds. Of them, asymmetric 

metal-based catalysis is one of the most efficient, sustainable and straightforward.
[1]

 

Among the metal-catalyzed processes, the asymmetric hydrogenation (AH) of selected 

olefins has dominated both industry and academia, mainly because of its high 

efficiency in transferring the chiral information from the catalyst to the product, its 

perfect atom economy and its operational simplicity.
[1a,1c-e,1g,2]

 This field is dominated 

by the Rh- and Ru-diphosphine catalysts for the hydrogenation of functionalized 

olefins (e.g. enamides, dehydroamino acid derivatives, …)
[1,3]

 and the Ir-P-oxazoline 

catalysts for the reduction of minimally functionalized olefins (those without a highly 

coordinative group)
[4]

. Compared to the AH of functionalized olefins, the reduction of 

minimally functionalized olefins is underdeveloped and thus its synthetic utility is 

limited. Despite the advances in catalyst design with new types of heterodonor 

ligands, mainly P,N-, most catalysts are sensitive to the olefin geometry and the nature 

of the substrate. In 2011, Pfaltz and coworkers demonstrated for the first time that 

phosphine,O ligands (Figure 3.5.1), that coordinate to the metal through the carbonyl 

oxygen atom and the phosphine moiety, can also be used in the AH of minimally 
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functionalized olefins with enantioselectivities comparable to the most commonly 

used Ir-P-oxazoline catalysts. However, high enantioselectivities were obtained only 

for a few trisubstituted olefins.
[5]

 The results indicated that high enantioselectivities 

were obtained when substituents at both the phosphine group and the O-donor 

moiety were bulky. After this initial success, no new developments were published 

with these P,O-ligands.
[6]

 

 

Figure 3.5.1. Proline-based P-O ligands used by Pfaltz and coworkers for the asymmetric hydrogenation of 

minimally functionalized trisubstituted olefins. 

 

 

Figure 3.5.2. Pyrrolidine-based phosphine/phosphite-O/S ligand library L34-L44. 

To further investigate the potential of P,O-based ligands in the Ir-catalyzed 

asymmetric hydrogenation of minimally functionalized olefins, we developed a 

modular pyrrolidine-based phosphine/phosphite-O/S ligand library (L34-L44; Figure 

3.5.2). The new ligands are relevant not only because they are easily prepared in a 

large scale from cheap carbohydrates (D-mannose, D-ribose and D-arabinose), but also 

because they can be easily modulated with well-established carbohydrate chemistry. 

These series of ligands allowed us to study the effect on catalytic performance of (i) 

the configuration of the pyrrolidine moiety (with ligands L34 and L35), (ii) the 

pyrrolidine backbone rigidity (with ligands L35 and L36), (iii) the size of the chelate ring 

(with ligands L37 and L38), (iv) the type of O-donor group (carbamate, L34; amide, L39-

L40; and urea, L41-L42), (v) replacing the carbamate O-donor group by a 
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thiocarbamate moiety (ligand L43) and (vi) replacing the phosphine moiety by a chiral 

biaryl phosphite group (ligands L44).  

 

3.5.2. Results and discussion 

3.5.2.1. Synthesis of ligands 

Schemes 3.5.1-3.5.3 show the synthetic sequences, first for those ligands derived 

from D-mannose, then for ligands derived from D-ribose and finally for ligands derived 

from D-arabinose. Starting from D-mannose (Scheme 3.5.1), the phosphine/phosphite-

O ligands L34, L39-L42 and L44a-b were obtained. They have the same configuration of 

the carbons bearing the isopropylidene group and differ on the type of the O-donor 

group and the type of P-functionality. Their synthesis started from pyrrolidine 

compound 1 which have been recently reported by our group,
[7]

 through tosylation of 

alcohol 1 easily obtained from D-mannose following a modified Fleet’s methodology.
[8]

 

Reaction of tosylate 2 with KPPh2 in THF at -35 °C afforded amino-phosphine L34 in 

57% yield. Its structure was confirmed by 
1
H-NMR with the disappearance of the 

signals corresponding to the tosyl group and the appearance of a multiplet (δ = 7.55-

7.33 ppm) for 10 H corresponding to the diphenylphosphino group. In the 
31

P-NMR 

spectrum the signal at -23.2 ppm is compatible with the phosphine moiety. Boc 

deprotection and reaction with different acyl halides in the presence of Et3N gave 

compounds L39-L42, with amide and urea groups, in moderate-to-good yields. Their 

structures were also confirmed by NMR. Therefore, 
31

P-NMR spectra show the 

expected one singlet in the region compatible with the phosphine moiety, except for 

L40 that the presence of two rotamers were detected. Reaction of alcohol 1 with one 

equivalent of the corresponding in situ phosphorochloridite (ClP(OR)2) gave access to 

carbamate-phosphite ligands L44a-b with the desired configuration of the biaryl 

phosphite group. The 
31

P-NMR spectra shows two singlets for each compound at 

around 130 ppm compatible with phosphite moieties. The presence of two rotamers 

for each ligand, as for L40, were confirmed by performing the 2D-
31

P DOSY NMR 

experiment that shows that the two isomers have the same diffusion coefficient. Both 

isomers also show the same HR-mass spectra. 

Protected pyrrolidine-phosphine L37, with a 2,3-trans configuration and which 

differs of ligand L34 in a longer phosphine alkyl chain, was also prepared starting from 

D-mannose (Scheme 3.5.1) through intermediate 3 that was recently reported by us.
[7]

 

Primary alcohol protection and iodination afforded derivative 4, which after 

hydrogenation and subsequent deprotection gave alcohol 5. Mesylation and 

displacement with KPPh2 in THF at -40   C furnished protected pyrrolidine phosphine-

carbamate L37 in 69% yield. The 
31

P-NMR spectrum shows the expected singlet at -

15.4 ppm compatible with a phosphine moiety. 

 

UNIVERSITAT ROVIRA I VIRGILI 
SUSTAINABLE AND COST-EFFECTIVE DEVELOPMENT OF CHIRAL METAL-CATALYSTS FOR C-H AND 
C-X BOND FORMING REACTIONS 
Carlota Borràs Noguera 



Chapter 3 

 

- 202 - 
 

 
Scheme 3.5.1. Synthesis of ligands L34, L37, L39-L42 and L44a-b derived from D-mannose.

        Scheme 3.5.2. Synthesis of ligands L35-L36 and L43 derived from D-ribose. 

The preparation of ligands L35, L36 and L43 with different configuration of the 

carbons bearing isopropylidene group than L34 and L37 analogues, is shown in Scheme 

3.5.2. Starting from D-ribose, compound 6 was prepared following reported 

procedure.
[9]

 N-Boc protection and tosylation afforded cyclic carbamate 8 as was 

observed by us in similar 2,3-cis compounds.
[10]

 Nucleophilic ring opening with KPPh2 in 

THF gave the corresponding pyrrolidine-phosphine 9. The phosphine moiety was 

ascertained by the signal at -20.9 ppm in the 
31

P-NMR. Reaction with 3,5-

ditrifluoromethylisothycyanate and Boc2O/Py gave thiourea-phosphine ligand L43 and 
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carbamate-phosphine ligand L35, respectively, in moderate yields. Deprotection of 

cyclic carbamate 8 with THF:HClaq 4M (1:1) followed by conventional benzylation gave 

the benzylated carbamate 11. The nucleophilic ring opening of 11 using KPPh2 in 

refluxing THF followed by N-Boc protection afforded L36 in 55% yield. 

Finally, protected pyrrolidine-phosphine L38, with a 2,3-cis configuration and differ 

from L37 in the configuration of C-2 of the ligand backbone, was obtained from 13 

which was prepared from D-arabinose (Scheme 3.5.3) following the same procedure 

described by us for its enantiomer.
[11]

 Carbamate protection and reduction with LiAlH4 

at -10 °C gave alcohol 15 in good yield. Phosphine moiety was introduced by the above 

described conventional method giving L38 in 52% yield.  

 

 
Scheme 3.5.3. Synthesis of ligand L38 derived from D-arabinose. 

The formation of all ligands was confirmed by 
31

P {
1
H}, 

1
H and 

13
C {

1
H} NMR spectra 

and mass spectrometry. The spectra assignments were supported by the information 

obtained from 
1
H-

1
H and 

1
H-

13
C correlation measurements. See experimental section 

for purification and characterization details. 

 

3.5.2.2. Asymmetric Ir-catalyzed hydrogenation of olefins 

The library of P,O/S ligands L34-L44  was evaluated in the iridium-catalyzed 

asymmetric hydrogenation of both, trisubstituted minimally functionalized olefins (S1-

S16) and more challenging 1,1-disubstituted olefins (S17-S31). The catalyst was 

generated in situ by adding  the corresponding P,O/S ligand to the catalyst precursor 

[Ir(cod)2]BArF following the procedure previously reported by Pfaltz.
[5j]

  

Initially, as in the previous study with proline-based P,O ligands reported by Pfaltz, 

we tested the potential of ligands L34-L44 in the AH of ethyl (E)-3-phenylbut-2-enoate 

S1 (Table 3.5.1). This allows a direct comparison with the Pfaltz P,O catalytic systems. 

Moreover, chiral carboxylic esters are versatile chiral building blocks for the 

preparation of fine chemicals (e.g. natural products, agrochemicals, fragrances …). The 

results with ligands L34-L36 indicated that the catalytic outcome (activity and 

enantioselectivity) is very sensitive to the proper selection of the chirality and the 

rigidity of the pyrrolidine moiety (entries 1-3). The highest enantioselectivities were 

achieved using ligand L34 (entry 1), with an R-configuration at C-2 and a (3S,4R)-

isopropylidene group. The results with ligands L34, L37 and L38 also indicated that the 

chelate ring size also influences the catalytic performance. Ligands L37-L38, that form 
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a less stable 8-membered chelate ring, provide lower enantioselectivities than ligands 

L34 and L35 (entries 4-5 vs 1-2). This is in agreement with the hemilabile character of 

the carbamate group upon coordination to iridium. Moreover, the use of ligand L37 

has an extremely negative effect on activity. The results also indicated that the nature 

of the O-donor group affects enantioselectivity considerably (entries 1, 6-9). The 

presence of a carbamate (ligand L34) or an amido (ligands L39 and L40) group are 

needed to achieve the highest enantioselectivities (ee’s up to 98%).  We also found 

that the replacement of either the carbamate moiety (ligand L34) by a thiocarbamate 

group (ligand L43) or the phosphine (ligand L34) by a biaryl phosphite moiety (ligands 

L44) has a detrimental effect on catalytic performance (entry 1 vs 10-12).   

 

Table 3.5.1. Ir-catalyzed hydrogenation of substrate S1 using Ir(cod)BArF/L34-L44 catalyst 

precursors. 

 

 

 

Entry Ligand % Conv
b
 ee %

c
 

1 L34 80 97 (R) 
2 L35 35 68 (R) 
3 L36 35 58 (R) 
4 L37 <5 nd 
5 L38 100 30 (S) 
6 L39 29 97 (R) 
7 L40 40 98 (R) 
8 L41 60 70 (R) 
9 L42 58 67 (R) 

10 L43 <2 nd 
11 L44a 50 65 (R) 
12 L44b <5 3 (S) 

13
d
 

 

65 33 (R) 

14
d
 

 

>99 98 (R) 

15
d
 

 

>99 94 (R) 

a
 Reactions carried out using 0.5 mmol of substrate and 2 mol% of Ir-catalyst precursor, 2 mol% of 

corresponding ligand at 50 bar of H2 for 4 h. b Conversion determined by chiral GC or 1H NMR.                            
c Enantiomeric excess determined by chiral GC or HPLC. d Data from Angew. Chem. Int. Ed. 2011, 50, 9598  
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In summary, by properly selecting the ligand parameters high enantioselectivities 

can be achieved (ee’s up to 98%) using the pyrrolidine-based phosphine-carbamate 

and phosphine-amido ligands L34, L39 and L40. If we compare the results with those 

achieved with the proline-based analogues, we can conclude that the introduction of a 

more rigid bicyclic backbone had a positive effect on enantioselectivity. 

Enantioselectivities increases from 33% to 97% ee when using ligand L6 instead of 16 

(entry 6 vs 13). In addition, our results are comparable with the excellent 

enantioselectivities achieved when using the bulkier and less stable di-tert-butyl- or 

dicyclohexyl-phosphino analogues 17 and 18 developed by Pfaltz’s group (see Table 1, 

entries 14 and 15). 

To further establish the scope of the new P,O-ligands we selected a representative 

family of trisubstituted substrates (Figure 3.5.3). Primarily, we focused on the 

reduction of a variety of α,β-unsaturated carboxylic esters S2-S11 using Ir/L34 catalytic 

system, that have provided the best trade of between activity and enantioselectivity. 

Advantageously, the ee’s were independent of the electronic nature of the substrate 

phenyl ring (S1-S4) and the steric nature of the alkyl substituent (S1, S5-S7). 

Interestingly, high enantioselectivities were also attained in the reduction of the more 

challenging Z-analogues (S8-S9) as well as for the challenging α-substituted carboxylic 

esters S10 and S11. However, the pyrrolidine-based Ir-P,O catalytic systems seems to 

be less appropriate for the reduction of the much studied model α-methylstillbene 

S12, allylic alcohol S14 and enone S15. Nevertheless, enantioselectivities up to 90% ee 

were achieved in the reduction of β-substituted unsaturated ketone S16. 

 
Figure 3.5.3. Selected results for the asymmetric hydrogenation of minimally functionalized trisubstituted 

olefins. Reaction conditions: 2 mol% of catalyst precursor, 2 mol% of L34, CH2Cl2 as solvent, 50 bar of H2, 4 h.  

 

Encouraged by previous results, we next screened ligands L34-L44 in the 

asymmetric hydrogenation of more the demanding terminal olefins. Unlike 

trisubstituted substrates 1,1-disubstituted olefins have not been successfully 

hydrogenated until more recently. Only few catalysts have provided high 
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enantioselectivitites. This is because the catalyst has the added difficulty of controlling 

not only the face selectivity coordination (only two substituents compared with the 

three of trisubstituted olefins), but also the isomerization of the olefins to form the 

more stable E-trisubstituted substrates, which are hydrogenated to form the opposite 

enantiomer. As a model substrate, we have chosen the 3,3-dimethyl-2-phenyl-1-

butene S17 to assess the potential of the new ligand library. The results, which are 

summarized in Table 3.5.2, indicated that the effect of the different ligand parameters 

follow a similar general trend than in the hydrogenation of trisubstituted olefins, 

except for the nature of the O-donor group. The highest enantioselectivity (74% ee at 

only 1 bar of H2, entry 1) was achieved with the pyrrolidine-based carbamate-

phosphine ligand L34, while ligands L39 and L40 that provided also high 

enantioselectivity in the reduction of trisubstituted olefins were much less 

enantioselective (entry 6 and 7). 

 

Table 3.5.2. Ir-catalyzed hydrogenation of substrate S17 using Ir(cod)BArF/L34-L44 catalyst 

precursors.
a 

 

 

 

 

Entry Ligand % Conv
b
 ee %

c
 

1 L34 80 74 (R) 

2 L35 25 44 (R) 

3 L36 33 42 (R) 

4 L37 40 7 (R) 

5 L38 100 9 (S) 

6 L39 15 50 (R) 

7 L40 16 12 (R) 

8 L41 75 45 (R) 

9 L42 35 33 (R) 

10 L43 <2 nd 

11 L44a 12 29 (S) 

12 L44b 10 8 (R) 
a
 Reactions carried out using 0.5 mmol of substrate and 2 mol% of Ir-catalyst precursor, 2mol% of 

corresponding ligand at 1 bar of H2 for 4 h. b Conversion determined by chiral GC or 1H NMR.  c  Enantiomeric 

excess determined by chiral GC. 

 

We next studied the scope of the ligand library in asymmetric hydrogenation of 

other 1,1-disubstituted alkenes (Figure 3.5.4). Initially, we focused on the reduction of 

a variety of 3,3-dimethyl-2-aryl-1-butenes S18-S22, with different electronic and steric 

properties at the aryl moiety. As for trisubsititued α,β-unsaturated carboxylic esters, 

enantiomeric excesses are hardly affected by variations in the electronic and steric 

nature of the substrate aryl substitutent (ee’s ranging from 73% to 76%). We then 
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studied how the nature of the alkyl chain affected enantioselectivity by comparing 

substrates S17 and S23–S25. The results indicate a huge effect on the nature of the 

alkyl chain on enantioselectivity. Thus, high enantioselectivities are only accessible for 

substrates containing a tert-butyl group (i.e. 74% ee for S17 vs <20% ee for substrates 

S23–S25). These results are in line with the presence of a competing isomerization 

process, which was confirmed by studying the degree of indirect incorporation of 

deuterium due to the isomerization process in the deuteration of S23 (Scheme 3.5.3).  

 

 

Scheme 3.5.3. Deuteration of substrate S23. The percentage of incorporation of deuterium atoms is shown 

in brackets. The results of the indirect addition of deuterium due to the isomerization process are shown in 

red. 

 
Figure 3.5.4. Selected results for the asymmetric hydrogenation of 1,1-disubstituted substrates S18-S32 

using [Ir(cod)2]/L34-L44 as catalyst precursor. Reaction conditions: 2 mol% of [Ir(cod)2]BArF, 2 mol% of 

ligand, CH2Cl2 as solvent, 1 bar of H2, 4 h. 

 

Finally, we focused our attention to the hydrogenation of terminal olefins 

containing minimally coordinating polar groups, which would led to versatile building 

blocks. For this purpose, we focused in the reduction of aryl and alkyl boronic esters 

(S26 and S27), enol phosphinate (S28) and allylic acetates (S29-S32). Remarkably, the 

pyrrolidine-based P,O ligands are well suited for the reduction of allylic acetates. Thus, 

high enantioselectivities (ranging from 97% to 99% ee) have been achieved for a range 

of differently substituted allylic acetates (S29-S32). Derivatives of the hydrogenation 

products of S29-S32 are highly valuable. Thus, for instance, they are used in the 

cosmetic industry as components of fragrance mixtures (i.e., Pamplefleur) and also in 
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the pharmaceutical industry (i.e., intermediates for the synthesis of modulators of 

dopamine D3 receptors).
[12]

 

3.5.3. Conclusions 

A modular pyrrolidine-based phosphine/phosphite-O/S ligand library has been 

applied in the hydrogenation of minimally functionalized olefins. The new ligands are 

relevant not only because they are easily prepared in a large scale from cheap 

carbohydrates (D-mannose, D-ribose and D-arabinose), but also because they can be 

easily modulated with well-established carbohydrate chemistry. We found that their 

effectiveness at transferring the chiral information in the product can be tuned by 

correctly choosing the ligand components and the substrate. High enantioselectivities 

(ee's up to 99%) could therefore be achieved in the asymmetric hydrogenation of 

selected tris- and disubstituted substrates.  

 

3.5.4. Experimental Part 

3.5.4.1. General remarks 

All reactions were carried out using standard Schlenk techniques under an 

atmosphere of argon. Commercial chemicals were used as received. Solvents were 

dried by standard procedures and stored under argon. Phosphorochloridites were 

easily prepared in one step from the corresponding biphenols.
[13]

 Compounds 1
[8]

, 2
[7]

, 

3
[9]

, 10
[7]

 and 13
[11]

 were prepared as previous reported. Optical rotations were 

measured in a 1.0 cm or 1.0 dm tube with a Jasco P-2000 spectropolarimeter. Infrared 

spectra were recorded with Jasco FTIR-410 spectrometer.
 1

H, 
13

C{
1
H} and 

31
P{

1
H} NMR 

spectra were recorded using a Bruker, AV300, AV500 and Varian Mercury-400 MHz 

spectrometer for solutions in CDCl3, C6D6 and DMSO-d6 at room temperature. Chemical 

shifts are relative to that of SiMe4 (
1
H and 

13
C{

1
H}) as internal standard or H3PO4 (

31
P) 

as external standard. 
1
H and 

13
C assignments were made on the basis of 

1
H-

1
H gCOSY 

and 
1
H-

13
C gHSQC experiments. Mass spectra (CI and ESI) were recorded on Micromass 

AutoSpeQ and QTRAP (Applied Biosystem) and Orbitrap Elite spectrometers. NMR and 

mass spectra were registered in CITIUS (university of Seville) and in SRCiT (Universitat 

Rovira I Virgili).  

(2R,3S,4R)-N-terc-Butoxycarbonyl-2-diphenylphosphinomethyl-3,4-O-

isopropylidene-pyrrolidine-3,4-diol (L34) 

Tosylate 2 (300 mg, 0.7 mmol) was dissolved in dry  THF (9 mL) under argon and 

was cooled to -35   C. Then KPPh2 (1.7 mL, 0.9 mmol, 0.5 M in THF) was slowly added 

and the reaction mixture was stirred for 50 min. IRA-120H
+ 

was added, stirred for 

several minutes and then filtered through Celite, washed  with AcOEt and evaporated 

to dryness. Column  chromatography on silica gel (Cyclohexane → AcOEt:cyclohexane, 

1:5), gave L34 (176 mg, 0.4 mmol, 57%) as a colourless oil. 
31

P NMR (121.5 MHz, 
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DMSO-d6 a 343 K, δ ppm) δ -23.2 (s). 
1
H NMR (300 MHz, DMSO-d6, 343 K, δ ppm, J Hz) 

δ 1.22 (s, 3H, CH3), 1.29 (s, 12H, CH3, 
t
Bu, NBoc, CH3), 2.27 (m, 2H, CH2-OP), 3.34 (dd, 

1H, CH2-N 
2
JH-H= 12.9, 

3
JH-H = 4.5), 3.66 (m, 1H, CH2-N), 3.97 (m, 1H, CH-N), 4.73 (m, 2H, 

CH-O),  7.44 (m, 10H, CH=). 
13

C NMR (75.4 MHz, DMSO-d6, 343 K, δ ppm) δ 24.5 (CH3), 

26.4 (CH3), 27.1 (CH3, 
t
Bu, NBoc), 29.1 (CH2-OP), 50.2 (CH2-N), 60.9 (CH-N), 78.4 (CH3, 

CH-O), 83.7 (CH-O), 110.3 (C), 139.0-128.1 (aromatic carbons), 153.2 (C=O). αD +48.4 (c 

0.56, CH2Cl2). IR νmax 2980, 2927, 1691 (C=O), 1162, 1055, 695 cm
-1

. 

 3.5.4.2. General procedure for the prefortion of compounds L39-L42 

TFA (20 mol%) was added dropwise at 0 °C to a solution of L34 (0.2 mmol) in dry 

CH2Cl2 (3 mL) containing 4 Å molecular sieves. The mixture was stirred at r.t. for 1 h, 

then filtered and evaporated to dryness. The residue was dissolved in CH2Cl2, treated 

with Ambersep 900 (OH
-
) resin, filtered and evaporated. A solution of NEt3 (2.0 eq.), 

the corresponding carbonyl compound (1.3 eq.) and the deprotected amine was 

stirred at r.t. for 2-4 h. After addition of sat. aquousNH4Cl, the mixture was extracted 

with CH2Cl2 (3x10 mL). The combined organic phases were washed brine, dried 

(Na2SO4), filtered and concentrated. Purification by column chromatography on silica 

gel afforded the corresponding acylated compound. 

(2R,3S,4R)-N-Pivaloyl-2-diphenylphosphinomethyl-3,4-O-isopropylidene-

pyrrolidine-3,4-diol (L39) 

Compound L39 (74% yield) was prepared according to general procedure from L34 

and pivaloyl chloride, followed by column chromatography on silica gel 

(AcOEt:cyclohexane - 1:5). 
31

P NMR  (121.5 MHz, CDCl3, δ ppm) δ -24.2 (s). 
1
H NMR 

(300 MHz, CDCl3, δ ppm) δ 1.14 (s, 9H, CH3, 
t
Bu, NBoc), 1.14 (s, 9H, CH3, 

t
Bu, NBoc), 

1.28 (s, 3H, CH3), 1.36 (s, 3H, CH3), 2.18 (m, 1H, CH2-OP), 2.44 (m, 1H, CH2-OP), 3.51 (m, 

1H, CH2-N), 4.09 (m, 1H, CH2-N), 4.68 (br.s, 1H, CH-N), 4.81 (m, 2H, CH-O), 7.35 (m, 6H, 

CH=), 7.43 (m, 2H, CH=), 7.53 (m, 2H, CH=). 
13

C NMR (75.4 MHz, CDCl3, δ ppm) δ 25.0 

(CH3), 26.7 (CH3), 27.7 (CH3, 
t
Bu, NBoc), 29.7 (CH2-OP), 38.7 (CH3), 53.0 (CH2-N), 63.0 

(CH-N), 80.2 (CH-O), 82.3 (CH-O), 111.7 (C), 138.5-128.7 (aromatic carbons), 176.4 

(C=O), αD +198.4 (c 0.56, CH2Cl2). ESI-HRMS m/z found 426.2186, calc. for C25H33NO3P 

[M+H]+: 426.2193. 

(2R,3S,4R)-N-Benzoyl-2-diphenylphosphinomethyl-3,4-O-isopropylidene-

pyrrolidine-3,4-diol (L40) 

Compound L40 (72% yield) was prepared according to the general procedure from 

L34 and benzoyl chloride, followed by column chromatography on silica gel 

(AcOEt:hexane - 1:7). Major rotamer (63%): 
31

P NMR (121.5 MHz, CDCl3, δ ppm): -24.8 

(s). 
1
H NMR (300 MHz, CDCl3, δ ppm): 1.28 (s, 3H, CH3), 1.40 (s, 3H, CH3), 2.42 (dd, 1H, 

CH2-OP, 
2
JH-H = 8.4 Hz), 2.52 (ddd, 1H, CH2-OP, 

2
JH-H = 14.1 Hz, 

3
JH-H = 5.4 Hz, 

4
JH-H = 1.8 

Hz), 3.63 (m, 2H, CH2-N), 4.88 (m, 3H, CH-N, 2x CH-O), 7.31 (m, 15H, CH=).
 13

C NMR 

(75.4 MHz, CDCl3, δ ppm): 25.0 (CH3), 26.9 (CH3), 30.5 (d, CH2-OP, JC-P = 16.1 Hz), 54.5 
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(CH2-N), 61.3 (d, CH-N, JC-P = 14.9 Hz), 79.7 (CH-O), 84.2 (d, CH-O, JC-P= 9.7 Hz), 111.9 (C, 

major rotamer), 138.2-127.3 (aromatic carbons), 170.8 (C=O minor). Minor rotamer 

(37%): 
31

P NMR (121.5 MHz, CDCl3, δ ppm), -24.8 (s). 
1
H NMR (300 MHz, CDCl3, δ ppm): 

1.33 (s, 3H, CH3), 1.51 (s, 3H, CH3), 1.95 (m, 1H, CH2-OP), 2.14 (m, 1H, CH2-OP), 4.00 (m, 

1H, CH2-N), 4.14 (m, 1H, CH-N), 4.29 (d, 1H, CH2-N, 
2
JH-H = 13.8 Hz), 4.74 (m, 1H, CH-O), 

7.31 (m, 15H, CH=). 
13

C NMR (75.4 MHz, CDCl3, δ ppm): 24.8 (CH3), 26.8 (CH3), 31.3 (d, 

CH2-OP, JC-P = 17.4 Hz), 50.4 (CH2-N),
 
63.2 (d, CH-N, JC-P= 18.2 Hz), 78.4 (CH-O), 83.8 (d, 

CH-O, JC-P= 10.1 Hz), 111.8 (C), 138.2-127.3 (aromatic carbons), 169.9 (C=O). αD +85.5 (c 

0.6, CH2Cl2). ESI-HRMS m/z found 446.1873, calc. for C27H29NO3P [M+H]
+
: 446.1880. 

(2R,3S,4R)-N,N-Diisopropylcarbamoyl-2-diphenylphosphinomethyl-3,4-O-

isopropylidene-pyrrolidine-3,4-diol (L41) 

Compound L41 (45% yield) was prepared according to the general procedure from 

L34 and N,N-diisopropylcarbamoyl chloride, followed by column chromatography on 

silica gel (AcOEt:hexane - 1:3). 
31

P NMR (121.5 MHz, CDCl3, δ ppm) δ -23.4 (s). 
1
H NMR 

(300 MHz, CDCl3, δ ppm) δ 1.00 (d, 6H, CH3, 
i
Pr, 

3
JH-H= 6.6 Hz), 1.22 (d, 6H, CH3, 

i
Pr, 

3
JH-

H= 6.6 Hz), 1.28 (s, 3H, CH3, 
i
Pr), 1.42 (s, 3H, CH3, 

i
Pr), 2.15 (ap.d, 2H, CH2-OP, 

3
JH-H= 8.1 

Hz), 3.38 (ap.d, 1H, CH2-N, 
2
JH-H= 12.6 Hz), 3.51 (m, 3H, CH2-OP, CH, 

i
Pr), 4.18 (m, 1H, 

CH-N), 4.67 (m, 1H, CH-O), 4.78 (m, 1H, CH-O), 7.36 (m, 6H, CH=), 7.45 (m, 4H, CH=). 
13

C NMR (75.4 MHz, CDCl3, δ ppm) δ 20.6 (CH3, 
i
Pr), 22.4 (CH3, 

i
Pr), 25.0 (CH3), 26.7 

(CH3, 
i
Pr), 29.6 (d, CH2-OP, JC-P= 16.3 Hz), 47.3 (CH, 

i
Pr), 53.3 (CH2-N), 62.2 (d, CH-N, JC-P 

= 17.9 Hz), 78.7 (CH-O), 84.2 (d, CH-O, JC-P= 9.7 Hz), 111.5 (C),  138.1-128.6 (aromatic 

carbons), 161.3 (C=O). αD -5.2 (c 1.3, CH2Cl2). ESI-HRMS m/z found 469.2610, calc. for 

C27H38N2O3P [M+H]
+
: 469.2615. 

(2R,3S,4R)-N-Adamantan-1-carbamoyl-2-diphenylphosphinomethyl-3,4-O-

isopropylidene-pyrrolidine-3,4-diol (L42) 

Compound L42 (55% yield) was prepared according to the general procedure from 

L34 and 1-adamantyl isocyanate, followed by column chromatography on silica gel 

(AcOEt:hexane - 1:3). 
31

P NMR (121.5 MHz, CDCl3, δ ppm) δ -23.8 (s). 
1
H NMR (300 

MHz, CDCl3, δ ppm) δ 1.29 (s, 3H,  CH3), 1.42 (s, 3H, CH3), 1.63 (s, 6H, CH2, ad), 1.85 (s, 

6H, CH2, ad), 2.02 (s, 3H, CH, ad), 2.22 (m, 1H, CH2-OP), 2.34 (m, 1H, CH2-OP),  3.29 (m, 

1H, CH2-N), 3.70 (d, 1H, CH2-N, 
2
JH-H = 12.6 Hz), 4.00 (m, 1H, CH-N), 4.78 (br.s, 2H, CH-

O),  7.41 (m, 10H, CH=). 
13

C NMR (75.4 MHz, CDCl3, δ ppm) δ 25.1 (CH3), 27.0 (CH3), 

29.7 (CH), 30.6 (d, CH2-OP, JC-P = 16.3 Hz), 36.6 (CH2), 42.4 (CH2),  51.4 (CH2-N), 61.6 (d, 

CH-N, JC-P = 16.7 Hz), 79.1 (CH-O), 85.0 (d, CH-O, JC-P = 9.6 Hz), 111.9 (C), 137.8-128.7 

(aromatic carbons), 155.5 (C=O). αD +37.3 (c 0.75, CH2Cl2). ESI-HRMS m/z found 

519.2766, calc. for C31H40N2O3P [M+H]
+
: 519.2771.  
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3.5.4.3. General procedure for the preparation of the pyrrolidine-phosphite 

ligands L44a-b 

The corresponding phosphorochloridite (1.1 mmol) produced in situ was dissolved 

in toluene (5 mL) and pyridine (3.8 mmol, 0.3 mL) was added. The corresponding 

alcohol 1 (1 mmol) was azeotropically dried with toluene (3x1 mL) and dissolved in 

toluene (5 mL) to which pyridine (3.8 mmol, 0.3 mL) was added. The solution was 

transferred slowly at 0   C to the solution of the phosphorochloridite. The reaction 

mixture was stirred overnight at 80 
o
C, and the pyridine salts were removed by 

filtration. Evaporation of the solvent gave a white foam, which was purified by flash 

chromatography in alumina (toluene:triethylamine – 100:1) to produce the 

corresponding ligand as a white solid. 

L44a: Yield: 167.2 mg (50%). Major rotamer (63%): 
31

P NMR (121.5 MHz, CDCl3, δ 

ppm), 134.2 (s). 
1
H NMR (300 MHz, CDCl3, δ ppm): 0.45 (s, 9H, CH3, SiMe3), , 0.52 (s, 

9H, CH3, SiMe3), 1.08 (s, 3H, CH3), 1.09 (s, 9H, CH3, 
t
Bu, NBoc), 1.28 (s, 3H, CH3), 3.24 

(dd, 1H, CH2-N, 
2
JH-H =12.5 Hz, 

3
JH-H =5.2 Hz), 3.43 (m, 1H, CH), 3.55 (m, 1H, CH2-OP), 

4.07 (m, 2H, CH2-N, CH-O), 4.39 (m, 1H, CH2-O), 4.73 (d, 1H, CH-O, 
3
JH-H =5.2 Hz), 6.83 

(m, 2H, CH=), 7.07 (m, 2H, CH=,), 7.18 (m, 1H, CH=), 7.27 (m, 1H, CH=), 7.65 (m, 2H, 

CH=), 8.04 (m,  2H, CH=).
 13

C NMR (75.4 MHz, CDCl3, δ ppm): -0.6 (CH3, SiMe3), -0.4 

(CH3, SiMe3), -0.1 (CH3, SiMe3), 0.0 (CH3, SiMe3), 1.0 (CH3, SiMe3), 21.1 (C, 
t
Bu, NBoc), 

24.6 (CH3), 26.7 (CH3), 26.8 (CH3), 27.9 (CH3, 
t
Bu, NBoc), 52.8 (CH2-N), 63.3 (CH), 64.5 

(CH2-OP), 79.3 (CH-O), 82.5 (CH-O), 111.3 (C), 122.5 – 153.6 (aromatic carbons) 153.0 

(C=O). Minor rotamer (37%): 
31

P NMR (121.5 MHz, CDCl3, δ ppm), 138.0 (s). 
1
H NMR 

(300 MHz, CDCl3, δ ppm): 0.49 (s, 9H, CH3, SiMe3), 0.53 (s, 9H, CH3, SiMe3), 1.03 (s, 3H, 

CH3), 1.28 (s, 3H, CH3), 1.34 (s, 9H, CH3, 
t
Bu, NBoc), 2.79 (dd, 1H, CH2-N, 

2
JH-H =12.3 Hz, 

3
JH-H =5.3 Hz), 3.55 (m, 1H, CH2-N), 4.07 (m, 3H, CH2-OP, CH), 4.23 (m, 1H, CH-O), 4.66 

(d, 1H, CH-O, 
3
JH-H =5.3 Hz), 6.83 (m, 2H, CH=), 7.07 (m, 2H, CH=,), 7.18 (m, 1H, CH=), 

7.27 (m, 1H, CH=), 7.65 (m, 2H, CH=), 8.04 (m,  2H, CH=), 8.12 (s, 1H, CH=).
 13

C NMR 

(75.4 MHz, CDCl3, δ ppm): NMR (C6D6), δ: -0.6 (CH3, SiMe3), -0.4 (CH3, SiMe3), -0.1 (CH3, 

SiMe3), 0.0 (CH3, SiMe3), 1.0 (CH3, SiMe3), 21.1 (C, 
t
Bu, NBoc), 24.5 (CH3), 26.7 (CH3), 

26.8 (CH3), 28.0 (CH3, 
t
Bu, NBoc), 52.8 (CH2-N), 63.4 (CH), 64.0 (CH2-OP), 78.9 (CH-O), 

82.0 (CH-O), 111.3 (C), 122.5 – 153.6 (aromatic carbons),153.3 (C=O). TOF-MS (ESI+): 

m/z: calcd for C39H50NO7PSi2: 754.2756 [M-Na]
+
; found 754.2759. 

L44b: Yield: 167.2 mg (50%). Major rotamer (61%): 
31

P NMR (121.5 MHz, CDCl3, δ 

ppm): 129.7 (s). 
1
H NMR (300 MHz, CDCl3, δ ppm): 0.48 (m, 18H, CH3, SiMe3), 1.18 (s, 

3H, CH3), 1.32 (m, 3H, CH3), 1.40 (s, 9H, CH3, 
t
Bu, NBoc), 3.53 (dd, 1H, CH2-N, 

2
JH-H =11.9 

Hz, 
2
JH-H =5.7 Hz), 3.76 (m, 2H, CH2-OP, CH2-N), 4.00 (m, 2H, CH2-OP, CH), 4.54 (m, 1H, 

CH-O), 4.61 (m, 1H, CH-O), 6.85 (m, 2H, CH=), 7.08 (m, 2H, CH=), 7.33 (m, 2H, CH=), 

7.66 (m, 2H, CH=), 8.07 (m, 2H, CH=).
 13

C NMR (75.4 MHz, CDCl3, δ ppm): -0.6 (CH3, 

SiMe3), -0.5 (CH3, SiMe3), -0.1 (CH3, SiMe3), 0.0 (CH3, SiMe3), 1.0 (CH3, SiMe3), 21.1 (C, 
t
Bu, NBoc), 24.6 (CH3), 28.0 (CH3, 

t
Bu, NBoc), 28.2 (CH3), 54.2 (CH2-N), 63.3 (CH), 64.6 

(CH2-OP), 78.9 (CH-O), 82.4 (CH-O), 111.0 (C), 124.9 – 153.7 (aromatic carbons), 153.7 
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(C=O). Minor rotamer (39%): 
31

P NMR (121.5 MHz, CDCl3, δ ppm), 130.6 (s). 
1
H NMR 

(300 MHz, CDCl3, δ ppm): 0.48 (m, 18H, CH3, SiMe3), 1.12 (s, 3H, CH3), 1.20 (m, 9H, CH3, 
t
Bu, NBoc), 1.32 (m, 3H, CH3), 3.15 (m, 1H, CH2-N), 3.25 (dd, 1H, CH2-OP, 

2
JH-H =12.6 Hz, 

3
JH-H =5.7 Hz), 4.00 (m, 3H, CH2-N, CH2-OP, CH), 4.25 (m, 1H, CH-O),  4.54 (m, 1H, CH-O), 

6.85 (m, 2H, CH=), 7.08 (m, 2H, CH=), 7.21 (m, 2H, CH=), 7.66 (m, 2H, CH=), 8.07 (m, 

2H, CH=).
 13

C NMR (75.4 MHz, CDCl3, δ ppm): -0.6 (CH3, SiMe3), -0.5 (CH3, SiMe3), -0.1 

(CH3, SiMe3), 0.0 (CH3, SiMe3), 1.0 (CH3, SiMe3), 21.1 (C, 
t
Bu, NBoc), 24.6 (CH3), 26.8 

(CH3, 
t
Bu, NBoc), 28.2 (CH3), 52.5 (CH2-N), 63.7 (CH), 64.0 (CH2-OP), 78.8 (CH-O), 82.6 

(CH-O), 111.2 (C), 124.9 – 153.7 (aromatic carbons) 153.2 (C=O). TOF-MS (ESI+): m/z: 

calcd for C39H50NO7PSi2: 754.2756 [M-Na]
+
; found 754.2761. 

3.5.4.5. Procedure for the preparation of the pyrrolidine-phosphinite ligand L37 

To a solution of 3 (650 mg, 2.14 mmol) in dry CH2Cl2 (3 mL), Et3N (595 μL, 4.28 

mmol) and TBSCl (612 mg, 2.14 mmol) were added. After stirring at r.t overnight, the 

reaction was quenched with sat. aq. soln. of NH4Cl and extracted with CH2Cl2 (3 x 10 

mL). The combined organic phases were washed with brine, dried (Na2SO4), filtered 

and concentrated. To a solution of the crude product in dry toluene (18 mL), imidazole 

(466 mg, 6.85 mmol), PPh3 (1.30 g, 4.92 mmol) and I2 (868 mg, 3.42 mmol) were added 

and the mixture was refluxed for 2 h. After cooling to r.t. and diluting with AcOEt, the 

mixture was washed with sat. aq. Na2S2O3, water and brine. The reaction mixture was 

dried (Na2SO4) and evaporated. Purification by column chromatography on silica gel 

(cyclohexane→AcOEt:cyclohexane - 1:20) afforded N-tert-butoxycarbonyl-1,4,5-

trideoxy-6-O-tert-butyldimethylsilyl-1,4-imino-5-iodo-2,3-O-isopropyli-dene-D-talitol 

(4)  (865 mg, 77%, 2 steps) as a colorless oil, that was used immediately in the next 

step. 
1
H NMR (300 MHz, CDCl3, δ ppm) δ 0.09 (s, 6H, CH3), 0.91 (s, 9H, CH3, 

t
Bu), 1.31 

(s, 3H, CH3), 1.44 (s, 3H, CH3), 1.47 (s, 9H, CH3), 3.81 (m, 4H), 4.11 (m, 1H), 4.62 (m, 3H). 

To a solution of 4 (705 mg, 1.34 mmol) in EtOH (14 mL), Et3N (450 μL) and Pd/C 

(10%, cat.) were added and the reaction hydrogenated at 1 atm for 4 h. The crude 

product was filtered through Celite and the solvent evaporated under vacuum. The 

resulting residue was purified by column chromatography on silica gel 

(EtOAc:cyclohexane - 1:10 AcOEt) to give dehalogenated derivative (490 mg, 82%).  1 

M TBAF in THF (0.49 mL, 0.49 mmol) was added to a solution of this compound (180 

mg, 1.49 mmol) in THF (6 mL) and the mixture was stirred at r.t. for 6 h and then the 

solvent evaporated under vacuum. Purification by column chromatography on silica 

gel (CH2Cl2:MeOH - 50:1) afforded  deprotected compound (5) (128 mg, quant.) as a 

colorless oil, that was used immediately in the next step. 
1
H NMR (300 MHz, CDCl3, δ 

ppm) δ 1.27 (s, 3H, CH3), 1.40 (s, 3H, CH3), 1.33 (m, 1H), 1.44 (s, 9H, CH3, 
t
Bu), 1.72 (m, 

1H), 3.22 (dd, 1H, J = 13.2 Hz, J = 4.9 Hz), 3.46 (m, 3H), 3.89 (m, 1H), 4.24 (m, 1H), 4.43 

(m, 1H), 4.67 (t, 1H, J = 5.3 Hz),  

Then a solution of MsCl (55 μL, 0.71 mmol) in pyridine (1 mL) was added dropwise 

to a 0   C solution of alcohol 5 (67.5 mg, 0.24 mmol) in CH2Cl2 (2 mL) and the mixture 
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stirred at r.t. for 2 h. Water was then added dropwise under stirring and the mixture 

evaporated to dryness. The residue was dissolved in CH2Cl2 and washed with water 

and brine. The organic phase was dried (Na2SO4), filtered and concentrated. The crude 

mesylate was dissolved in anhidrous THF (2 mL) and cooled to -40   C. KPPh2 (565 μL, 

0.28 mmol, 0.5 M in THF) was slowly added and the mixture was stirred at -40   C for 15 

min. IRA-120H
+
 resin was added and the mixture diluted with AcOEt, filtered through 

Celite and washed with AcOEt and CH2Cl2. Evaporation of the solvent and purification 

by column chromatography on silica gel (AcOEt:cyclohexane - 1:10→1:5) afforded L37 

(74mg, 69%, 2 steps). 
31

P NMR (121.5 MHz, DMSO-d6, δ ppm, mixture of rotamers) δ -

15.4 (s), -16.1 (s).
 1

H-NMR (300 MHz, DMSO-d6, 363 K,  δ ppm) δ 1.24 (s, 3H, CH3), 1.34 

(s, 3H, CH3), 1.36 (s, 9H, CH3, 
t
Bu), 1.53 (m, 2H, CH2-O),  2.08 (m, 2H, CH2-CH2O), 3.23 

(dd, 1H, CH2-N, 
3
JH-H = 4.8 Hz), 3.65 (ap.d, 1H, CH2-N, 

2
JH-H = 12.9 Hz), 3.98 (m, 1H, CH-

N), 4.48 (m, 1H, CH-O), 4.68 (t, 1H, CH-O, 
3
JH-H= 

3
JH-H=  5.1 Hz), 7.41 (m, 8H, CH=), 7.52 

(m, 1H, CH=), 7.77 (m, 1H, CH=). 
13

C NMR (75.4 MHz, DMSO-d6, 363 K, δ ppm) δ 23.0 

(d, CH2-O, JC-P = 12.1 Hz), 24.5 (CH3), 26.3 (CH3), 26.8 (d, CH2-CH2O, JC-P= 17.3 Hz), 27.6 

(CH3, 
t
Bu), 50.3 (CH2-N),  63.7 (d, CH-N, JC-P= 12.8 Hz), 78.2 (CH-O, C, 

t
Bu), 83.1 (CH-O), 

110.2 (C), 138.1-127.9 (aromatic carbons), 153.3 (C=O), αD +14.8 (c 1.3, CH2Cl2). ESI-

HRMS m/z found 456.2292, calc. for C26H35NO4P [M+H]
+
: 456.2298. 

3.5.4.4. General procedure for the preparation of the pyrrolidine-phosphine 

ligands L35-L36 and L43 

(2S,3R,4S)-N-terc-Butoxycarbonyl-2-hydroxymethyl-3,4-O-isopropilidene 

pyrrolidine-3,4-diol (7) 

To a solution of compound 6 (2.44 g, 9.28 mmol) in MeOH (70 mL), Boc2O (2.02 g, 

18.6 mmol) and Pd/C 10% (0.63 g) was added. The reaction mixture was hydrogenated 

a 1 atm for 3 h. Then filtered through Celite and washed with MeOH. The filtrate was 

evaporated to dryness. Purification by column chromatography on silica gel 

(AcOEt:cyclohexane - 1:2), gave 7 (2.18 g, 7.99 mmol, 86%) as colorless oil. 
1
H NMR 

(500 MHz, DMSO-d6, 363 K, δ ppm) δ 1.30 (s, 3H, CH3), 1.42 (s, 9H, CH3, 
t
Bu), 1.43 (s, 

3H, CH3), 3.23 (dd, 1H, CH2-N, 
2
JH-H = 12.0 Hz), 3.60 (dd, 1H, CH2-N, 

2
JH-H = 12.0 Hz),  3.67 

(m, 1H, CH2-OP),  3.77 (m, 2H, CH-N, CH2-OP), 4.05 (m, 1H, OH),  4.70 (td, 1H, CH-O, 
3
JH-

H = 
3
JH-H = 6.5 Hz, 

3
JH-H = 3.5 Hz), 4.78 (m, 1H, CH-O). 

13
C-NMR (125.7 MHz, DMSO-d6, 363 

K, δ ppm) δ 24.6 (CH3), 26.0 (CH3), 27.6 (CH3, 
t
Bu), 51.2 (CH2-N), 59.3 (CH2-OP), 61.1 

(CH-N), 76.5 (CH-O), 78.8 (C, 
t
Bu), 79.3 (CH-O), 110.9 (C), 154.1 (C=O). αD +41.8 (c 1.00, 

CH2Cl2). ESI-HRMS m/z found 296.1465, calc. for C13H23NO5Na [M+Na]
+
: 296.1468. IR 

νmax 3419 (OH), 2979, 2935, 1675 (C=O), 1366, 1161, 856 cm
-1

. 

(6S,7R,7aS)-6,7-O-Isopropylidene-tetrahydropyrrolo [1,2-c]oxazol-3-one-6,7-diol 

(8) 

To a solution of compound 7 (1.06 g, 3.89 mmol) in dry pyridine (15 mL) cooled to  

0   C TsCl (1.89 g, 9.74 mmol) was added. The reaction mixture was allowed to stand at 

r.t. for 14 h under Ar and then concentrated to dryness. Purification by column 
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chromatography on silica gel (AcOEt: cyclohexane - 1: 1 → 2: 1) gave 8 (713 mg, 3.58 

mmol, 92%) as a white solid. NMR and IR data coincide with those of its enantiomer.
[14]

 

αD +25.6 (c 0.82, CH2Cl2). ESI-HRMS m/z found 222.0735, calc. for C9H13NO4Na [M+Na]
+
: 

222.0737. 

(2R,3R,4S)-2-Diphenylphosphinomethyl-3,4-O-isopropylidene-pyrrolidine-3,4-diol 

(9) 

To a solution of 8 (147 mg, 0.74 mmol) in dry THF (5.7 mL) cooled to 0   C KPPh2 (1.8 

mL, 0.89 mmol) is added dropwise. The reaction mixture was heated under Ar at reflux 

for 2 h, then allowed to cool to r.t. and neutralized with IRA-120H
+
. The reaction 

mixture was filtered through Celite, washed CH2Cl2 and concentrated to dryness.  

Purification by column chromatography on silica gel (Et2O:Acetone - 10:1, 1% Et3N), 

gave 9 (226 mg, 0.66 mmol, 89%) as a colorless oil. 
31

P NMR (121.5 MHz, CDCl3, δ ppm) 

δ -20.9 (s). 
1
H NMR (300 MHz, CDCl3, δ ppm) δ 1.31 (s, 3H, CH3), 1.46 (s, 3H, CH3), 1.95 

(s.a, 1H, NH), 2.37 (dd, 1H,CH2-P, 
3
JH-H = 8.1 Hz), 2.43 (dd, 1H, CH2-P, 

2
JH-H = 13.2 Hz, 

3
JH-H 

= 6.3 Hz), 2.56 (m, 2H, CH-N, CH2-N), 3.02 (d, 1H, CH2-N, 
2
JH-H = 13.5 Hz), 4.57 (dd, 1H, 

CH-O,
3
 JH-H= 5.7 Hz,

3
 JH-H = 3.9 Hz), 4.63 (m, 1H, CH-O), 7.32 (m, 6H, CH=), 7.47 (m, 4H, 

C=). 
13

C NMR (75.4 MHz, CDCl3, δ ppm) δ 24.1 (CH3), 26.0 (CH3), 27.3 (d, CH2-P, JC,P = 

13.2 Hz), 53.2 (CH2-N), 61.5 (d, CH-N,  JC,P = 16.3 Hz), 81.8 (d, CH-P, JC,P = 4.5 Hz), 82.2 

(CH-O), 110.6 (C), 138.9-128.4 (aromatic carbons).  αD +63.2 (c 0.57, CH2Cl2). ESI-HRMS 

m/z found 342.1609, calc. for C20H25NO2P [M+H]
+
: 342.1617. IR νmax 3296 (NH), 2970, 

2927, 1431, 1075, 977, 696 cm
-1

. 

(2R,3R,4S)-N-(3,5-Bis (trifluoromethyl) phenyl)-2-diphenylphosphinomethyl-3,4-

O-isopropylidene-pyrrolidine-1-carbothioamide-3,4-diol (L43) 

To a solution of 9 (195 mg, 0.570 mmol) in dry CH2Cl2 (6 mL) 3,5-

bis(trifluoromethyl) phenylisothiocyanate (0.26 mL, 1.5 mmol) was added. The 

reaction mixture was allowed to stand at r.t. for 3.5 h and then concentrated to 

dryness.  Purification by column chromatography on silica gel (AcOEt: cyclohexane - 

1:5) gave L43 (230 mg, 0.370 mmol, 66%) as a white foam. 
31

P NMR (121.5 MHz, 

CDCl3, δ ppm) δ: -20.6 (s). 
1
H NMR (500 MHz, CDCl3, δ ppm) δ: 1.40 (s, 3H, CH3), 1.55 

(s, 3H, CH3), 2.60 (ddd, 1H, CH2-P, 
2
JH-H = 4.5 Hz, 

3
JH-H = 2.5 Hz), 2.79 (dd, 1H, CH2-P, 

2
JH-H 

= 14.0 Hz, 
3
JH-H = 9.0 Hz), 3.65 (dd, 1H, CH2-N, 

3
JH-H = 4.5 Hz), 4.40 (m, 1H, CH-N), 4.55 

(dd, 1H, CH2-N, 
2
JH-H = 13.0 Hz, 

3
JH-H = 7.5 Hz), 4.84 (m, 1H, CH-O), 4.94 (t.a., 1H, CH-O, 

3
JH-H = 

3
JH-H = 6.5 Hz), 6.93 (d.a., 1H, NH, J = 2.5 Hz), 7.28 (m, 3H, CH=),7.36 (m, 3H, CH=),  

7.48 (m, 4H, CH=), 7.64 (m, 3H, CH=). 
13

C NMR (125.7 MHz, CDCl3, δ ppm) δ 25.3 (CH3), 

26.6 (CH3), 28.8 (d, CH2-P, JC,P = 13.9 Hz ), 54.9 (CH2-N), 60.2 (d, CH-N, JC,P = 23.1 Hz), 

77.1 (CH-O), 79.9 (d, CH-O, JC,P = 3.0 Hz), 114.0 (C), 118.9 (c, JC,F = 3.8 Hz, CH=), 123.2 (c, 

JC,F = 272.6, CF3), 140.5-124.9 (aromatic carbons), 179.3 (C=S), αD +42.4 (c 0.58, CH2Cl2). 

ESI-HRMS m/z found 613.1497, calc. for C29H28F6N2O2PS [M+H]
+
: 613.1508. IR νmax 3238 

(NH), 2993, 2927, 1371, 1275 (C=S), 1126 (C-F), 695 cm
-1

. 
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(2R,3R,4S)-N-terc-Butoxycarbonyl-2-diphenylphosphinomethyl-3,4-O-

isopropylidene-pyrrolidine-3,4-diol (L35) 

To a solution of 9 (239.3 mg, 0.70 mmol) in dry pyridine (3.5 mL) Boc2O (382 mg, 

1.75 mmol) was added and the reaction mixture was stirred at r.t. for 6.5 h. Then, the 

mixture was evaporated to dryness. The residue was dissolved in EtOAc and washed 

with water and brine. The organic phase was dried (Na2SO4), filtered and 

concentrated. Purification by column chromatography on silica gel (AcOEt:cyclohexane 

- 1:8) afforded L35 (148.8 mg, 0.34 mmol, 48%) as a pale yellow oil. 
31

P NMR (121.5 

MHz, CDCl3, δ ppm) δ: -20.1 (s). 
1
H NMR (500 MHz, CDCl3, δ ppm) δ: 1.31 (s, 3H, CH3), 

1.37 (s, 9H, CH3, 
t
Bu, NBoc), 1.44 (s, 3H, CH3), 2.43 (dd, 1H, CH2-P, 

2
JH-H = 13.2 Hz, 

3
JH-H = 

10.4 Hz), 2.87 (b, 1H, CH2-P), 3.34 (dd, 1H, CH2-N, 
2
JH-H = 13.2 Hz

 
, 

3
JH-H = 4.5 Hz), 3.78 

(m, 1H, CH2-N), 3.98 (m, 1H, CH-N), 4.66 (m, 1H, CH-O), 4.76 (t.a., 1H, CH-O, 
3
JH-H = 

3
JH-H 

= 6.2 Hz), 7.32 (m, 5H, CH=), 7.45 (m, 2H, CH=),  7.55 (m, 2H, CH=). 
13

C NMR (125.7 

MHz, CDCl3, δ ppm) δ: 25.4 (CH3), 27.0 (CH3), 28.6 (CH3, 
t
Bu), 29.0 (d, CH2-P, JC,P = 15.1 

Hz), 51.1 (CH2-N), 58.1 (d, CH-N, JC,P = 24.2 Hz), 77.4 (CH-O), 80.3 (d, CH-O, JC,P = 21.3 

Hz), 112.8 (C), 128.6-139.6 (aromatic carbons), 154.5 (C=O). αD +61.1 (c 0.82, CH2Cl2). 

ESI-HRMS m/z found 442.2134, calc. for C25H33NO4P [M+H]
+
: 442.2142. 

(6S,7R,7aS)-6,7-Dihydroxy-tetrahydropyrrolo [1,2-c]-oxazol-3-one (10) 

To a solution of compound 8 (170 mg, 0.850 mmol) in THF (8 mL) cooled to 0   C, a 

solution of 4M HCl (8 mL) was added dropwise. The reaction mixture was left to stand 

at r.t. for 3 h. Then concentrated to dryness and the resulting crude was purified by 

column chromatography on silica gel (CH2Cl2: MeOH - 20: 1 → 10: 1) to give 10 (122 

mg, 0.770 mmol, 90%) as a white solid. The NMR data and IR are consistent with those 

of its enantiomer.
[14]

 αD +28.4 (c 0.49, CH2Cl2). ESI-HRMS m/z found 182.0420, calc. for 

C6H9NO4Na [M+Na]
+
: 182.0424. 

(6S,7R,7aS)-6,7-O-Bis(benzyloxy)-tetrahydropyrrolo[1,2-c]oxazol-3-one (11) 

To a mixture of 10 (36 mg, 0.23 mmol) and NaH (35 mg, 1.4 mmol)  in dry DMF (1.8 

mL) at 0   C BnBr (163 μL, 1.37 mmol) was added dropwise. The reaction mixture was 

stirred at r.t. under Ar for 5.5 h, cooled to 0   C and then Et3N (2 mL) and MeOH (2 mL) 

were added. The reaction mixture is concentrated to dryness. The residue was diluted 

with CH2Cl2 and washed with H2O and brine. The organic phase is dried (Na2SO4), 

filtered and concentrated to dryness. Purification by column chromatography on silica 

gel (AcOEt: cyclohexane - 1:2 → 1:1) furnished 11 (70 mg, 0.21 mmol, 90%) as a white 

solid. 
1
H NMR  (300 MHz, CDCl3, δ ppm) δ 3.27 (dd, 1H, CH2-N), 3.74 (dd, 1H, CH2-N, 

2
JH-

H= 11.4 Hz), 3.95 (m, 2H, CH-O, CH-N), 4.14 (td, 1H, CH-O,
3
 JH-H= 

3
JH-H= 5.7 Hz, 

3
JH-H= 3.3 

Hz), 4.31 (ap.t., 1H, CH2-O,
2
JH-H= 

3
JH-H= 8.4 Hz), 4.57-4.48 (m, 3H, CH2Ph, CH2Ph, CH2-O), 

4.65 (d, 1H, CH2Ph), 4.87 (d, 1H, CH2Ph, 
2
JH,H= 12.0 Hz), 7.31 (m, 10H, CH=), 

13
C NMR 

(75.4 MHz, CDCl3, δ ppm) δ 49.0 (CH2-N), 59.2 (CH-N), 63.9 (CH2-O), 72.2 (CH2Ph), 73.2 

(CH2Ph), 77.4 (CH-O), 80.2 (CH-O), 137.9-127.9 (aromatic carbons), 162.8 (C=O), αD 
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+36.9 (c 0.78, CH2Cl2). IR νmax 2922, 2894, 1749 (C=O), 1244, 766, 697 cm
-1

. ESI-HRMS 

m/z found 362.1353, calc. for C20H21NO4Na [M+Na]
+
: 362.1363. 

(2R,3R,4S)-N-tert-Butoxycarbonyl-3,4-di-O-benzyl-2-diphenylphosphinomehyl-

pyrrolidine-3,4-diol  (L36) 

To a solution of 11 (171.1 mg, 0.36 mmol) in dry THF (4 mL) cooled to 0   C, KPPh2 

(1.8 mL, 0.89 mmol, 0.5 M in THF) was slowly added and the mixture was heated at 

reflux for 1.5 h. Then, IRA-120H
+
 resin was added, filtered through Celite and washed 

with CH2Cl2. Evaporation of the solvent and purification by column chromatography on 

silica gel (CH2Cl2, 1% Et3N) afforded pyrrolidine 12 (171.1 mg, 0.35 mmol, 80%). Boc2O 

(194 mg, 0.89 mmol) in dry pyridine (2 mL) was subsequently added and the reaction 

mixture was stirred at r.t. for 6 h. Then, the mixture was evaporated to dryness. The 

residue was dissolved in EtOAc and washed with water and brine. The organic phase 

was dried (Na2SO4), filtered and concentrated. Purification by column chromatography 

on silica gel (AcOEt:cyclohexane - 1:8) afforded L36 (114 mg, 0.20 mmol, 55%) as a pale 

yellow oil. 
31

P NMR (121.5 MHz, CDCl3, δ ppm) δ: -19.2 (s). 
1
H NMR (500 MHz, CDCl3, δ 

ppm) δ: 1.32 (s, 9H, CH3, 
t
Bu, NBoc), 2.52 (m, 1H, CH2-P), 2.75 (m, 1H, CH2-P), 3.29 (dd, 

1H, CH2-N, 
2
JH-H = 11.3 Hz

 
, 

3
JH-H = 4.0 Hz), 3.62 (m, 1H, CH2-N), 4.07 (m, 1H, CH-N), 4.16 

(m, 2H, 2xCH-O), 4.67 (m, 4H, CH2Ph), 7.37 (m, 20H, CH=). 
13

C NMR (125.7 MHz, CDCl3, 

δ ppm) δ: 27.7 (CH3, 
t
Bu, CH2-P), 48.7 (CH2-N), 56.1 (d, CH-N, JC,P = 22.4 Hz), 71.2 

(CH2Ph), 71.8 (CH2Ph), 76.6 (CH-O), 78.4 (CH-O), 78.7 (C, 
t
Bu), 126.9-138.1 (aromatic 

carbons), 153.5 (C=O. αD +32.9 (c 0.78, CH2Cl2). ESI-HRMS m/z found 582.2760, calc. for 

C36H41NO4P [M+H]
+
: 582.2768. 

3.5.4.6. Procedure for the preparation of the pyrrolidine-phosphinite ligand L38. 

(2R,3S,4R)-N-Benzyloxycarbonyl-2-ethoxymethyl-3,4-O-isopropyliden-pyrrolidine-

3,4-diol (14) 

To a solution of 13 (751 mg, 3.28 mmol) in EtOH:H2O (1:1) (12 mL) NaHCO3 (276 

mg, 3.28 mmol) and CbzCl (0.55 mL, 3.6 mmol) were added. The reaction mixture was 

stand at r.t. For 3 h. Then saturated aqueous solution of NaHCO3 (25 mL) was added 

and the aqueous phase is extracted with AcOEt (3 x 15 mL). The combined organic 

phases were dried (Na2SO4), filtered and concentrated to dryness. Purification by 

column chromatography on silica gel (AcOEt: cyclohexane - 1:3) gave 14 (1.15 g, 3.16 

mmol, 97%) as a colorless oil. NMR and IR data coincide with those of its 

enantiomer.
[11c]

 αD -55.2 (c 0.73, CH2Cl2). CI-HRMS m/z found 364.1756, calc. for 

C19H26NO6 [M+H]
+
: 364.1760. 

(2R,3S,4R)-N-Benzyloxycarbonyl-2-hydroxyethyl-3,4-O-isopropiliden-pyrrolidine-

3,4-diol (15) 

To a suspension of LiAlH4 (35 mg, 0.91 mmol) in dry Et2O (3 mL) cooled at -10   C, a 

solution of 14 (275 mg, 0.756 mmol) in dry Et2O (5 mL) was added dropwise. The 

reaction mixture is allowed to stand at that temperature under an inert atmosphere 
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for 10 min. Saturated aqueous Na2SO4 solution (30 mL) is then added and stirred 

several minutes, diluted with water (150 mL) and partitioned with AcOEt (3x50 mL). 

The combined organic phases were dried (Na2SO4), filtered and concentrated to 

dryness. The resulting crude is purified by column chromatography on silica gel 

(toluene: acetone - 5:1) to afford 15 (171 mg, 0.532 mmol, 70%) as a colorless oil. 
1
H 

NMR (300 MHz, CDCl3, δ ppm) δ 1.34 (s, 3H, CH3), 1.50 (s, 3H, CH3), 1.78 (m, 1H, CH2-

O), 1.98 (m, 1H, CH2O), 3.31 (dd, 1H, CH2-N, 
3
JH-H= 4.2 Hz), 3.63 (m, 2H, CH2-CH2O), 3.97 

(dd, 1H, CH2-N, 
2
JH-H= 12.3 Hz, 

3
JH-H= 6.9 Hz), 4.24 (m, 1H, CH-N), 4.75 (m, 2H, CH-O), 

5.12 (s, 2H, CH2Ph), 7.34 (m, 5H, CH=), 
13

C NMR (75.4 MHz, CDCl3, δ ppm) δ 25.2 (CH3), 

26.4 (CH3), 32.4 (CH2-O), 49.7 (CH2-N), 57.0 (CH-N), 59.3 (CH2-CH2O), 67.5 (CH2Ph), 78.3 

(CH-O), 79.7 (CH-O), 113.5 (C), 136.4-128.5 (aromatic carbons), 155.4 (C=O). αD -25.6 (c 

0.78, CH2Cl2). IR νmax 3472 (OH), 2948, 1677 (C=O), 1422, 1079, 696 cm
-1

. ESI-HRMS m/z 

found 344.1466, calc. for C17H23NO5Na [M+Na]
+
: 344.1468. 

(2R,3S,4R)-N-Benzyloxycarbonyl-2-diphenylphosphinoethyl-3,4-O-isopropylidene-

pyrrolidine-3,4-diol (L38) 

To a solution of 15 (257 mg, 0.799 mmol) in dry CH2Cl2 (5 mL) cooled to 0   C, a 

solution of MsCl (187 μL, 2.39 mmol) in dry pyridine (2.5 mL) was added. The reaction 

mixture was left to stand at r.t. under Ar for 2 h. Then it is cooled to 0   C and H2O (3 

mL) is added dropwise, left at r.t. for 15 min and concentrated to dryness. The 

obtained residue was dissolved in CH2Cl2 (15 mL) and washed with H2O (3 x 10 mL). The 

organic phase is dried (Na2SO4), filtered and concentrated to dryness. The resulting 

crude product is then dissolved in dry THF (5.8 mL) under Ar, cooled to -78   C, and 

KPPh2 (4.46 mL, 0.5 M in THF, 2.23 mmol) was added dropwise. The reaction mixture 

was left to stand at that temperature for 15 min under Ar. Then, a saturated aqueous 

solution of NH4Cl (3 mL) was added and the solution allowed to reach r.t. The aqueous 

phase is extracted with CH2Cl2 and the combined organic phases are dried (Na2SO4), 

filtered and concentrated to dryness. Purification by column chromatography on silica 

gel (AcOEt: cyclohexane - 1:5) gave L38 (201 mg, 0.42 mmol, 52%, 2 steps) as a 

colorless oil. 
31

P NMR (121.5 MHz, CDCl3, δ ppm) δ -15.0 (s). 
1
H NMR (300 MHz, CDCl3, 

δ ppm) δ 1.33 (s, 3H, CH3), 1.42 (s, 3H, CH3), 1.85 (m, 1H, CH2-OP), 2.04 (m, 2H, CH2-

CH2OP, CH2-OP), 2.24 (m, 1H, CH2-CH2OP), 3.29 (dd, 1H, CH2-N, 
3
JH-H= 4.2 Hz), 3.90 (dd, 

1H, CH2-N, 
2
JH-H= 12.6 Hz, 

3
JH-H= 6.9 Hz), 4.07 (m, 1H, CH-N), 4.72 (m, 2H, CH-O), 5.06 (d, 

1H, CH2Ph), 5.11 (d, 1H, CH2Ph, 
2
JH,H= 12.3 Hz), 7.31 (m, 11H, CH=), 7.43 (m, 4H, CH=). 

13
C NMR (75.4 MHz, CDCl3, δ ppm) δ 24.6 (d, CH2-CH2OP, JC,P= 11.5 Hz), 25.3 (CH3), 26.2 

(d, CH2-OP, JC,P= 18.0 Hz), 26.6 (CH3), 50.5 (CH2-N), 60.9 (d, CH-N, JC,P= 14.9 Hz), 67.0 

(CH2Ph), 77.9 (CH-O), 80.0 (CH-O), 113.1 (C), 139.2-128.0 (C-arom.), 154.8 (C=O). αD -

57.6 (c 0.78, CH2Cl2). IR νmax 2985, 2929, 1698 (C=O), 1408, 1209, 695 cm
-1

. ESI-HRMS 

m/z found 490.2134, calc. for C29H33NO4P [M+H]
+
: 490.2142. 

3.5.4.7. Typical Procedure for the hydrogenation of trisubstituted olefins (S1-S16) 
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The corresponding ligand (L34-L44) (0.01 mmol) was dissolved in CH2Cl2 (2 mL) and 

[Ir(cod)2]BArF (0.01 mmol, 4.0 mg) was added. Then, The trisubstituted substrate S1-

S13 (0.5 mmol) was added to the solution. The mixture was put in a high-pressure 

autoclave. The autoclave was purged four times with hydrogen. It was then 

pressurized at 50 bar of H2. After 12 h, the autoclave was depressurized and the 

solvent evaporated off. The residue was dissolved in Et2O (1.5 mL) and filtered through 

a short Celite plug. The enantiomeric excess was determined by chiral GC or chiral 

HPLC, and the conversions were determined by 
1
H NMR or chiral GC. The enantiomeric 

excesses of hydrogenated products from S1,
[15]

 S2-S5,
[16]

 S6,
[17]

 S7,
[18]

 S8,
[19]

 S9,
[16]

 

S10,
[19]

 S11,
[5j]

 S12-S14
[15]

 and S15-S16
[20]

 were determined using the condition 

previously described.  

3.5.4.28. Typical Procedure for the hydrogenation of 1,1-disubstituted olefins 

(S17-S32) 

The corresponding ligand (L34-L44) (0.01 mmol) was dissolved in CH2Cl2 (2 mL) and 

[Ir(cod)2]BArF (0.01 mmol, 4.0 mg) was added. Then, the 1,1-disubtituted substrate 

S17-S32 (0.5 mmol) was added to the solution). The mixture was put in a high-pressure 

autoclave, which was purged four times with hydrogen. It was then pressurized at 1 

bar of H2. After 12 h, the autoclave was depressurized and the solvent evaporated off. 

The residue was dissolved in Et2O (1.5 mL) and filtered through a short Celite plug. The 

enantiomeric excess was determined by chiral GC or chiral HPLC, and the conversions 

were determined by 1H NMR or chiral GC. The enantiomeric excesses of hydrogenated 

products from S17,
[15]

 S18-S22,
[21]

 S23-S24,
[15]

 S25,
[22]

 S26-S27,
[23]

 S28
[24]

 and S29
[25]

 

were determined using the condition previously described.  
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4.1. Synthesis of tridentated phosphite/phosphinite/phosphine-

amino-oxazoline/pyridine ligands for iridium-catalyzed hydrogenation 

of simple ketones 

Carlota Borràs,
 
Oscar Pàmies and Montserrat Diéguez in progress 

 

Abstract: A new class of phosphite/phosphinite/phosphine-amino-

pyridine/oxazoline ligand library (L45-L48a-c) has been successfully synthesized in 

good-to-moderated yields following a direct synthetic route. The synthesis of these 

ligands has been confirmed by 
31

P, 
1
H and 

13
C NMR spectra. These ligands are designed 

for their specific application in the hydrogenation of simple ketones. 

 

4.1.1. Introduction 

Chiral secondary alcohols are important key structural motifs in a great number of 

pharmaceutical products, such as aprepitant, crizotinib, duloxetine and ezetimibe 

(Figure 4.1.1).
[1]

 Catalytic asymmetric hydrogenation of prochiral ketones is one of the 

most powerful and convenient methods to approach these enantiopure useful 

secondary alcohols.  

 
Figure 4.1.1. Chiral pharmaceuticals containing key chiral structural motifs. 

Chiral iridium complexes with phosphorus nitrogen ligands are among the most 

commonly used catalysts in asymmetric hydrogenations.
[2]

 Under the hydrogenation 

conditions of these substrates, these catalysts are easily deactivated by irreversible 

formation of inactive dimers or trimers.
[3]

 To overcome this limitation several 

strategies have been investigated and one of the most useful methods was found in 

2001 by Zhou and coworkers. It consisted on the addition of an extra coordinating 

group in the catalysts structure, they developed an Ir-SpiroPAP catalytic system 1 

(Figure 4.1.2) obtaining excellent enantioselectivities although multistep complicated 
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reactions were involved to synthesize these ligands.
[4]

 Since then, new ferrocene-based 

P,N,N-ligands 2
[5]

 and 3
[6]

 containing a phosphine moiety and oxazoline or pyridine 

group, respectively have been synthesized for the reductions of simple aromatic 

ketones (Figure 4.1.2). Despite the great success that has been achieved, it is still 

necessary to develop effective and readily available ligands especially for asymmetric 

hydrogenation of various simple ketones.  

 
Figure 4.1.2. Examples of efficient chiral ligands for Ir-catalyzed asymmetric hydrogenation of ketones. 

In order to further study the potential of the hydrogenation of prochiral ketones, in 

this work we synthesized a new ligand library of tridentated P,N,N ligands L45-L48a-c 

(Figure 4.1.3). Different phosphorus and nitrogen groups in the ligand structure have 

been synthesized. Three different phosphorus groups have been contemplated; for 

ligands L45a-c and L47a-c, biaryl phosphite moieties with different substituents and 

configurations (a-c) were included. For ligand L46 phosphinite and N-phosphine 

functionality are present in the same ligand’s structure. Finally a phosphine moiety is 

present in the structure of the ligand L48. Regarding to the nitrogen group, ligands 

with oxazoline (L47-L48) and pyridine groups (L45-L46) have been synthesized.   

 

Figure 4.1.3. P,N,N-ligand library L45-L48a-c. 
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4.1.2. Results and discussion 

4.1.2.1. Synthesis of ligands 

The synthesis of tridentate ligands L45-L48a-c is straightforward (Scheme 4.1.1). 

Ligands L45-L48a-c were efficiently synthesized from the corresponding easily 

accessible hydroxyl compounds 6 and 7. Compounds 6 and 7, which are easily 

synthesized from inexpensive natural L-alaninol, were chosen as intermediates for the 

preparation of ligands because they easily allow incorporating the desired diversity in 

the ligand design. For the preparation of hydroxyl compound 6, L-alaninol was 

protected with tert-butyldimethylsilane chloride in the presence of imidazole to afford 

the protected intermediate, which was then treated with 1 equiv of 2-

pyridinecarboxaldehyde in the presence of molecular sieves     to produce the desired 

imine compound 4 (Scheme 4.1.1, steps a and b). Subsequent reaction with NaBH4 

provided direct access to the corresponding secondary amine 5, which was treated 

with tetrabutylammonium fluoride to give access to desired hydroxyl-amine 

intermediate 6 (Scheme 4.1.1, steps c and d). For the preparation of hydroxyl-

thioether compounds 7, a new alternative route was developed. Commercially 

available L-alaninol was treated with previous prepared oxazoline 8
[7]

 and potassium 

carbonate to produce the desired intermediate 7 (Scheme 4.1.1, step g). The last step 

of the ligand synthesis is common for ligands L45-L47a-c. Therefore, treating the 

corresponding hydroxyl-amine (6-7) with 1.1 equiv of the desired in situ formed 

phosphorochloridite (ClP(OR)2; (OR)2 = a-c) in the presence of triethylamine provided 

easy access to the desired ligands (Scheme 4.1.1, step (e)). Ligands L45a-c were 

purified on neutral alumina under an argon atmosphere and isolated in moderate-to-

good yields as white solids. However, ligands L47a-c decompose under column 

chromatography conditions and further efforts are therefore needed to purify these 

compounds. Ligand L46 was prepared from the hydroxyl compound 6 by treatment 

with chlorodiphenylphosphine in presence of triethylamine to afford the desired ligand 

in moderated yield after the purification on neutral alumina under argon atmosphere. 

Finally, ligand L48 has been prepared in one step from commercially available chiral 

(R)-1-[2-(diphenylphosphino)phenyl]ethylamine by treatment with the oxazoline 8 and 

potassium carbonate to obtain the desired ligand L48 without purification. 
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Scheme 4.1.1. Synthesis of ligands L45-L48a-c. Reaction conditions: a) TBDMSCl, imidazole, CH2Cl2; b) 2-

pyridinecarboxaldehyde, molecular sieve 4  , toluene; c) NaBH4, EtOH; d) TBAF, THF; e) ClP(OR)2; (OR)2 = a-c, 

NEt3, toluene; f) ClPPh2, NEt3, toluene; g) K2CO3, 8, CH3CN. 

 

 The 
1
H, 

31
P and 

13
C NMR spectra were as expected for these ligands (see Section 

4.1.4). Expected singlet for each compound was observed in the 
31

P NMR spectrum. 

Rapid ring inversions (tropoisomerization) in the biphenyl-phosphorus moiety (a) 

occurred on the NMR time scale because the expected diastereoisomers were not 

detected by low-temperature 
31

P NMR. 

 

4.1.3. Conclusions and future work 

New class of phosphite/phosphinite/phosphine-amino-pyridine/oxazoline ligand 

library (L45-L48a-c) has been successfully synthesized in good to moderated yields 

following a direct synthetic route (75 to 25% yield). The synthesis of these ligands has 

been confirmed by 
31

P, 
1
H and 

13
C NMR spectra. These ligands are thought to be 

applied in the hydrogenation of simple ketones in the future. 

 

4.1.4. Experimental Part 

4.1.4.1. General remarks 

All reactions were carried out using standard Schlenk techniques under an 

atmosphere of argon. Commercial chemicals were used as received. Solvents were 

dried by standard procedures and stored under argon. Phosphorochloridites were 

easily prepared in one step from the corresponding biphenols.
[8]

 Compound 8
[7]

 was 

prepared as previously reported. 
1
H, 

13
C{

1
H} and 

31
P{

1
H} NMR spectra were recorded 
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using a Bruker  and Varian Mercury-400 MHz spectrometer for solutions in CDCl3 and 

C6D6 at room temperature. Chemical shifts are relative to that of SiMe4 (
1
H and 

13
C{

1
H}) 

as internal standard or H3PO4 (
31

P) as external standard. 
1
H and 

13
C assignments were 

made on the basis of 
1
H-

1
H gCOSY and 

1
H-

13
C gHSQC experiments.  

4.1.4.2. Procedure for the preparation of (S,E)-N-(1-((tert-

butyldimethylsilyl)oxy)propan-2-yl)-1-(pyridin-2-yl)methanimine (4) 

TBSCl (8.8 g, 58 mmol) was added portionwise at 0   C to a mixture of amino alcohol 

(4 g, 53 mmol) and 7.2 g imidazole (106 mmol) in 75 mL CH2Cl2. The mixture was 

stirred overnight at room temperature and the reaction was stopped by addition of 

10 mL aqueous saturated NaHCO3 solution. The aqueous layer was extracted with 

CH2Cl2 (2 × 20 mL). The combined organic layers were dried (Na2SO4), concentrated, 

and purified by column chromatography on silica gel (CH2Cl2/MeOH/NEt3 = 8/2/0.1.). 

Yield: 8.5 g (76%). 
1
H NMR (400 MHz, CDCl3): δ= 0.05 (s, 6H, CH3, OTBDMS), 0.89 (s, 9H, 

CH3, 
t
Bu, OTBDMS), 1.00 (d, 3H, CH3, 

2
JH-H= 6.5 Hz), 1.65 (b, 2H, NH2), 2.91 (m, 1H, CH-

N), 3.26 (m, 1H, CH2-O), 3.50 (dd, 1H, CH2-O, 
2
JH-H= 9.7 Hz, 

3
JH-H= 4.3 Hz). 

13
C NMR 

(100.6 MHz, CDCl3): δ= -5.7 (CH3, OTBDMS), -5.3 (CH3, OTBDMS), 18.3 (CH3), 19.4 (C, 
t
Bu, OTBDMS), 25.7 (CH3, 

t
Bu, OTBDMS), 48.5 (CH-N), 69.9 (CH2-O).   

2-Pyridinecarboxaldehyde (0.6 mL, 6.16 mmol) was added to a solution of 

protected compound (1.4 g, 7.39 mmol) and toluene (60 mL) in presence of molecular 

sieves 4  . The reaction mixture was stirred overnight at reflux and then it was 

concentrated under vacuum. The crude product was subjected to SiO2-column 

chromatography (EtOAc /PE = 1/1) yielding pure compound 4 as oil. Yield: 1.7 g (83%). 
1
H NMR (400 MHz, CDCl3): δ= -0.07 (s, 3H, CH3, OTBDMS), -0.02 (s, 3H, CH3, OTBDMS), 

0.79 (s, 9H, CH3, 
t
Bu, OTBDMS), 1.20 (d, 3H, CH3, 

2
JH-H= 6.8 Hz), 3.50 (m, 1H, CH-N), 3.64 

(m, 2H, CH2-O), 7.24 (m, 1H, CH=), 7.67 (m, 1H, CH=), 7.93 (d, 1H, CH=, 
3
JH-H= 4.4 Hz), 

8.33 (s, 1H, N=CH), 8.59 (m, 1H, CH=). 
13

C NMR (100.6 MHz, CDCl3): δ= -5.3 (CH3, 

OTBDMS), -5.2 (CH3, OTBDMS), 18.2 (CH3), 18.2 (C, 
t
Bu, OTBDMS), 25.8 (CH3, 

t
Bu, 

OTBDMS), 69.9 (CH2-O), 67.8 (CH-N), 121.4-161.4 (aromatic carbons).   

4.1.4.3. General procedure for the preparation of (S)-1-((tert-

butyldimethylsilyl)oxy)-N-(pyridin-2-ylmethyl)propan-2-amine (5) 

NaBH4 (276.6 mg, 7.31 mmol) was added to a solution of compound 4 (1.7 g, 7.31 

mmol) and MeOH (12 mL). The reaction mixture was stirred for 2 h at room 

temperature and then it was concentrated under vacuum. The crude product was 

dissolved in EtOAc and washed with H2O. The organic layer was dried over anhydrous 

MgSO4, filtered and concentrated. The crude product was subjected to SiO2-column 

chromatography (CH2Cl2/MeOH/NEt3 = 8/2/0.1) yielding pure thioether-hydroxy 

compound 5 Yield: 1.3 g (76%). 
1
H NMR (400 MHz, CDCl3): δ= 0.03 (s, 3H, CH3, 

OTBDMS), 0.04 (s, 3H, CH3, OTBDMS), 0.88 (s, 9H, CH3, 
t
Bu, OTBDMS), 1.03 (d, 3H, CH3, 

2
JH-H= 6.4 Hz), 2.28 (b, 1H, NH), 2.79 (m, 1H, CH-N), 3.50 (m, 2H, CH2-O), 3.91 (m, 2H, 

CH2-N), 7.12 (m, 1H, CH=), 7.31 (d, 1H, CH=, 
3
JH-H= 7.8 Hz), 7.63 (m, 1H, CH=), 8.52 (d, 
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1H, CH=, 
2
JH-H= 8.2 Hz). 

13
C NMR (100.6 MHz, CDCl3): δ= -5.4 (CH3, OTBDMS), -5.3 (CH3, 

OTBDMS), 16.9 (CH3), 18.3 (C, 
t
Bu, OTBDMS), 25.9 (CH3, 

t
Bu, OTBDMS), 52.7 (CH2-N), 

54.2 (CH-N), 67.5 (CH2-O), 121.7-160.2 (aromatic carbons). 

4.1.4.4. General procedure for the preparation of (S)-2-((pyridin-2-

ylmethyl)amino)propan-1-ol (6) 

Compound 5 (1.3 g, 4.6 mmol) was dissolved in THF (25 mL) to which TBAF (5 mL, 5 

mmol) was added slowly. The reaction mixture was stirred at room temperature for 2 

h. The THF was removed under reduced pressure. The crude product was purified by 

flash chromatography (CH2Cl2/MeOH/NEt3 = 10/1/0.1) to produce the deprotected 

alcohol 6. Yield:  654.8 mg (85%). 
1
H NMR (400 MHz, CDCl3): δ= 1.16 (d, 3H, CH3, 

2
JH-H= 

6.6 Hz), 2.98 (m, 1H, CH-N), 3.11 (b, 2H, OH, NH), 3.45 (m, 1H, CH2-O), 3.67 (m, 1H, 

CH2-O), 3.96 (d, 1H, CH2-N, 
2
JH-H= 14.6 Hz), 4.11 (d, 1H, 

2
JH-H= 14.6 Hz), 7.19 (m, 1H, 

CH=), 7.31 (d, 1H, CH=, 
3
JH-H= 7.8 Hz), 7.66 (m, 1H, CH=), 8.54 (m, 1H, CH=). 

13
C NMR 

(100.6 MHz, CDCl3): δ= 16.7 (CH3), 51.7 (CH2-N), 54.6 (CH-N), 65.2 (CH2-O), 121.3-158.8 

(aromatic carbons). 

4.1.4.5. General procedure for the preparation of ((S)-2-((((R)-4-phenyl-4,5-

dihydrooxazol-2-yl)methyl)amino)propan-1-ol (7) 

A solution of oxazoline 8 (500 mg, 2.75 mmol) and CH3CN (8 mL) was added to a 

solution of L-alaninol (0.15 mL, 2.5 mmol), K2CO3 (798 mg, 6.25 mmol) and CH3CN (8 

mL).  The reaction mixture was stirred at 80   C for 48 h. The CH3CN was removed under 

reduced pressure. The crude product was filtered in a plug of celite to produce the 

compound 7. Yield: 380.7 mg (65%). 
1
H NMR (400 MHz, CDCl3): δ= 1.05 (d, 3H, CH3, 

2
JH-

H= 6.1 Hz), 2.68 (b, 2H, OH, NH), 2.85 (m, 1H, CH-N), 3.28 (m, 1H, CH2-O), 3.56 (m, 3H, 

CH2-O, CH2-N), 4.11 (m, 1H, CH, oxazoline), 4.63 (m, 1H, CH2, oxazoline), 5.16 (m, 1H, 

CH2, oxazoline), 7.26 (m, 10H, CH=). 
13

C NMR (100.6 MHz, CDCl3): δ= 17.3 (CH3), 43.6 

(CH2-N), 54.9 (CH-N), 65.3 (CH2-O), 69.2 (CH, oxazoline), 75.1 (CH2, oxazoline), 126.5-

168.8 (aromatic carbons). 

4.1.4.6. General procedure for the preparation of ligands L45a-c and L47a-c 

The corresponding phosphorochloridite (0.55 mmol) produced in situ was dissolved 

in toluene (5 mL), and triethylamine (0.25 mL, 2.0 mmol) was added. The 

corresponding thioether-hydroxyl compound (1 mmol) was azeotropically dried with 

toluene (3 x 2 mL) and then dissolved in toluene (5 mL) to which triethylamine (0.25 

mL, 2.0 mmol) was added. The alcohol solution was transferred slowly to a solution of 

phosphorochloridite. The reaction mixture was stirred overnight at 80 ᵒC, after which 

the triethylamine salts were removed by filtration. Evaporation of the solvent gave a 

white foam, which was purified by flash chromatography. 

L45a. Yield: 119 mg (39%); SiO2-flash chromatography (toluene/hexane/NEt3 = 

8:2:0.1). 
31

P NMR (400 MHz, C6D6) δ:  138.1. 
1
H NMR (400 MHz, C6D6) δ: 0.86 (d, 3H, 

CH3, 
2
JH-H= 6.4 Hz), 1.22 (s, 18H, CH3, 

t
Bu), 1.53 (s, 18H, CH3, 

t
Bu), 2.74 (m, 1H, CH-N), 
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3.78 (m, 4H, CH2-O,  CH2-N), 6.58 (m, 1H, CH=), 7.02 (m, 2H, CH=), 7.27 (m, 2H, CH=), 

7.55 (d, 2H, CH=, 
3
JH-H= 2.5 Hz), 8.38 (m, 1H, CH=). 

13
C NMR (100.6 MHz, CDCl3): δ= 17.2 

(CH3), 30.8 (CH3, 
t
Bu), 30.9 (CH3, 

t
Bu), 31.0 (CH3, 

t
Bu), 31.2 (CH3, 

t
Bu), 34.3 (C, 

t
Bu), 35.3 

(C, 
t
Bu), 52.6 (CH2-N), 52.9 (CH-N), 68.4 (CH2-O), 121.1-160.7 (aromatic carbons). 

L45b. Yield: 141 mg (45%); SiO2-flash chromatography (toluene/hexane/NEt3 = 

8:2:0.1). 
31

P NMR (400 MHz, C6D6) δ:  135.2. 
1
H NMR (400 MHz, C6D6) δ: 0.46 (s, 9H, 

CH3, SiMe3), 0.48 (s, 9H, CH3, SiMe3), 0.77 (d, 3H, CH3, 
2
JH-H= 6.5 Hz), 2.59 (m, 1H, CH-N), 

3.27 (m, 1H, CH2-O), 3.56 (q, 2H, CH2-N, 
2
JH-H= 14.7 Hz), 3.90 (m, 1H, CH2-O), 6.51 (m, 

1H, CH=), 6.83 (m, 3H, CH=), 7.14 (d, 1H, CH=, 
3
JH-H= 7.8 Hz), 7.21 (d, 1H, CH=, 

3
JH-H= 7.9 

Hz), 7.33 (d, 1H, CH=, 
3
JH-H= 8.4 Hz), 7.65 (m, 3H, CH=), 8.06 (m, 3H, CH=), 8.24 (m, 1H, 

CH=). 
13

C NMR (100.6 MHz, CDCl3): δ= -1.0 (CH3, SiMe3),  -0.3 (CH3, SiMe3),  -0.2 (CH3, 

SiMe3),  -0.2 (CH3, SiMe3),  17.0 (CH3), 52.2 (CH2-N), 52.7 (CH-N), 68.7 (CH2-O), 110.8-

160.4 (aromatic carbons). 

L45c. Yield: 413 mg (35%); SiO2-flash chromatography (toluene/hexane/NEt3 = 

8:2:0.1). 
31

P NMR (400 MHz, C6D6) δ:  13 .9. 
1
H NMR (400 MHz, C6D6) δ: 0. 6 (s, 9H, 

CH3, SiMe3), 0.48 (s, 9H, CH3, SiMe3), 0.77 (d, 3H, CH3, 
2
JH-H= 6.4 Hz), 2.67 (m, 1H, CH-N), 

3.34 (m, 1H, CH2-O), 3.65 (m, 2H, CH2-N), 3.87 (m, 1H, CH2-O), 6.55 (m, 1H, CH=), 6.83 

(m, 3H, CH=), 6.89 (m, 1H, CH=), 7.22 (d, 1H, CH=, 
3
JH-H= 4.1 Hz), 7.32 (d, 1H, CH=, 

3
JH-H= 

8.0 Hz), 7.66 (m, 3H, CH=), 8.07 (m, 3H, CH=), 8.31 (m, 1H, CH=). 
13

C NMR (100.6 MHz, 

CDCl3): δ= -0.3 (CH3, SiMe3),  -0.2 (CH3, SiMe3),  -0.2 (CH3, SiMe3),  17.2 (CH3), 52.5 (CH2-

N), 52.9 (CH-N), 68.5 (CH2-O), 110.8-160.7 (aromatic carbons). 

L47a. Yield: 232.2 mg (69%); no purification was carried out. 
31

P NMR (400 MHz, 

C6D6) δ:  137.7. 
1
H NMR (400 MHz, C6D6) δ: 0.8  (d, 3H, CH3, 

2
JH-H= 6.3 Hz), 1.23 (s, 18H, 

CH3, 
t
Bu), 1.54 (s, 18H, CH3, 

t
Bu), 2.92 (m, 1H, CH-N), 3.38 (m, 2H, CH2-N), 3.66 (t, 1H, 

CH2, oxazoline, 
2
JH-H= 8.3 Hz), 3.77 (m, 2H, CH2-O), 4.01 (m, 1H, CH2, oxazoline), 4.89 

(m, CH, oxazoline), 7.04 (m, 5H, CH=), 7.32 (m, 2H, CH=), 7.57 (d, 2H, CH=, 
3
JH-H= 2.4 

Hz). 
13

C NMR (100.6 MHz, CDCl3): δ= 17.0 (CH3), 30.9 (CH3, 
t
Bu), 31.3 (CH3, 

t
Bu), 34.3 (C, 

t
Bu), 35.3 (C, 

t
Bu), 43.8 (CH2-N), 52.8 (CH-N), 68.4 (CH2-O), 69.3 (CH, oxazoline), 74.3 

(CH2, oxazoline), 124.0-146.3 (aromatic carbons), 166.8 (C, oxazoline). 

L47b. Yield: 193.8 mg (56%); no purification was carried out. 
31

P NMR (400 MHz, 

C6D6) δ:  135.1. 
1
H NMR (400 MHz, C6D6) δ: 0.50 (s, 18H, CH3, SiMe3), 0.75 (d, 3H, CH3, 

2
JH-H= 6.4 Hz), 2.03 (m, 1H, CH2-N), 2.75 (m, 1H, CH-N), 3.27 (m, 2H, CH2-N, CH2-O), 3.61 

(m, 1H, CH2, oxazoline), 3.90 (m, 1H, CH2-O), 4.00 (m, 1H, CH2, oxazoline), 4.84 (m, CH, 

oxazoline), 6.85 (m, 2H, CH=), 7.06 (m, 7H, CH=), 7.22 (d, 1H, CH=, 
3
JH-H= 8.6 Hz), 7.32 

(d, 1H, CH=, 
3
JH-H= 8.6 Hz), 7.66 (m, 2H, CH=), 8.09 (m, 2H, CH=). 

13
C NMR (100.6 MHz, 

CDCl3): δ= -0.3 (CH3, SiMe3), -0.2 (CH3, SiMe3), -0.1 (CH3, SiMe3), 16.7 (CH3), 43.7 (CH2-

N), 52.7 (CH-N), 68.6 (CH2-O), 69.3 (CH, oxazoline), 74.2 (CH2, oxazoline), 122.3-153.0 

(aromatic carbons), 166.7 (C, oxazoline). 

L47c. Yield: 154.7 mg (45%); no purification was carried out. 
31

P NMR (400 MHz, 

C6D6) δ:  13 .5. 
1
H NMR (400 MHz, C6D6) δ: 0.49 (s, 18H, CH3, SiMe3), 0.75 (d, 3H, CH3, 

2
JH-H= 6.4 Hz), 1.88 (m, 1H, CH2-N), 2.81 (m, 1H, CH-N), 3.31 (m, 2H, CH2-N, CH2-O), 3.63 
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(m, 1H, CH2, oxazoline), 3.90 (m, 1H, CH2-O), 3.99 (m, 1H, CH2, oxazoline), 4.87 (m, CH, 

oxazoline), 6.83 (m, 2H, CH=), 7.04 (m, 7H, CH=), 7.24 (d, 1H, CH=, 
3
JH-H= 8.6 Hz), 7.32 

(d, 1H, CH=, 
3
JH-H= 10.3 Hz), 7.66 (m, 2H, CH=), 8.09 (m, 2H, CH=). 

13
C NMR (100.6 MHz, 

CDCl3): δ= -0.3 (CH3, SiMe3), -0.2 (CH3, SiMe3), -0.1 (CH3, SiMe3), 17.0 (CH3), 43.7 (CH2-

N), 52.9 (CH-N), 68.4 (CH2-O), 69.3 (CH, oxazoline), 74.2 (CH2, oxazoline), 122.3-158.8 

(aromatic carbons), 166.7 (C, oxazoline). 

4.1.4.7. Procedure for the preparation of ligand L46 

Hydroxyl compound 7 (0.5 mmol) and DMAP (6.7 mg, 0.055 mmol) were dissolved 

in toluene (1 ml), and triethylamine was added (0.09 ml, 1.2 mmol) at r.t., followed by 

the addition of the chlorodiphenylphosphine (1.1 mmol) via syringe. The reaction was 

stirred for 20 min at r.t. The solvent was removed in vacuo, and the product was 

purified by flash chromatography on alumina (toluene/NEt3 = 100/1) to produce the 

ligand L46 as a colorless oil. Yield: 68 mg (25%). 
31

P NMR (400 MHz, C6D6) δ:  46.3 (s, P-

N), 113.8 (s, P-O). 
1
H NMR (400 MHz, C6D6) δ: 1.17 (d, 3H, CH3, 

2
JH-H= 6.7 Hz),  3.60 (m, 

1H, CH-N), 3.80 (m, 1H, CH2-O), 4.21 (m, 1H, CH2-O), 4.47 (m, 2H, CH2-N), 6.49 (m, 1H, 

CH=), 6.65 (d, 1H, CH=, 
3
JH-H= 7.8 Hz), 6.85 (m, 1H, CH=), 7.04 (m, 12H, CH=), 7.52 (m, 

8H, CH=), 8.36 (d, 1H, CH=, 
3
JH-H= 4.7 Hz). 

13
C NMR (100.6 MHz, CDCl3): δ 17.8 (CH3), 

56.0 (CH-N), 56.4 (CH2-N),  73.6 (CH2-O), 121.2-160.3 (aromatic carbons).  

4.1.4.8. Procedure for the preparation of ligand L48 

A solution of oxazoline 8 (41 mg, 0.21 mmol) and CH3CN (1.4 mL) was added to a 

solution of (R)-1-(2-(diphenylphosphino)phenyl)ethylamine (61 mL, 0.2 mmol), K2CO3 

(69 mg, 0.5 mmol) and CH3CN (1.4 mL).  The reaction mixture was stirred at 80   C for 

48 h. The CH3CN was removed under reduced pressure. The crude product was filtered 

in a plug of celite to produce the ligand L48. Yield: 70 mg (75%). 
1
H NMR (400 MHz, 

CDCl3): δ= 2.07 d, 3H, CH3, 
2
JH-H= 1.3 Hz), 3.20 (m, 2H, CH2-N), 3.95 (m, 1H, CH), 4.51 (m, 

2H, CH2, oxazoline), 5.08 (m, 1H, CH, oxazoline), 6.81 (m, 2H, CH=), 7.21 (m, 9H, CH=), 

7.52 (m, 4H, CH=). 
13

C NMR (100.6 MHz, CDCl3): δ= 22.8 (CH3), 53.2 (CH2-N), 68.4 (CH), 

73.6 (CH, oxazoline), 73.8 (CH2, oxazoline), 124.3-150.8 (aromatic carbons), 166.5 (C, 

oxazoline). 
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5.1. Application of a high modular carbohydrate-derived phosphite-

thioether/selenoether ligand library for asymmetric Pd-catalyzed 

allylic substitution reaction 

Carlota Borràs, Jèssica Margalef, Sabina Alegre, Elisabeta Alberico, Oscar Pàmies and 

Montserrat Diéguez in manuscript to be submitted. 

 

Abstract: A readily available library of phosphite-thioether/selenoether ligands L7-

L30a-g has been used in Pd-catalyzed allylic substitution reactions of several substrates 

including the more challenging monosubstituted substrates using a broad  range of C-, 

N- and O-nucleophiles, among which are the less studied α-substituted malonates, β-

diketones and benzyl alcohol. This ligand library combines the advantages of 

carbohydrates, the thioether/selenoether moiety with those of the phosphite group.  

Enantioselectivities can be tuned by correctly choosing the ligand parameters. High 

enantioselectivities were therefore obtained in the alkylation of a broad range of 

disubstituted substrates with different steric requirements using a number of  C-, N- 

and O-nucleophiles. 

 

5.1.1. Introduction 

Transition-metal based asymmetric catalysis is recognized as one of the most 

reliable strategies to access a wide range of optically pure compounds because of its 

high selectivity. In this respect, remarkable efforts have been dedicated to asymmetric 

Pd-catalyzed allylic substitution reaction as one of the most relevant method for the 

synthesis of C-C and C-heteroatom bond.
[1]

 Most of the ligand's design rely on using 

either ligands with a pendant group able to interact with the nucleophile and direct its 

approach to the substrate;
[2]

 or C2 ligand scaffolds, to reduce the number of 

diastereoisomeric paths;
[3]

 or a combination of strong and weak donor groups, to 

control the nucleophile approach due to the different trans influence of the donor 

moieties, being the last strategy the most studied.
[4]

 All these approaches have led to 

the discovery of several widely used ligands (i.e. phosphine-oxazoline PHOX ligands, 

DACH-phenyl Trost ligand, …). Despite all these strategies and advances, the 

stereochemical outcome of the reaction is highly dependent on the steric demands of 

the substrate. 

In this reaction the most predominant type of heterodonor ligands are the  

phosphorus-oxazoline compounds, with the prominent position of  the PHOX-based 

ligands.
[1]

 Some heteredonor phosphorus-thioether ligands have been proved to be 

potentially useful for this reaction, however, they have not been much studied.
[5]

This 

can be explained by the formation of mixtures of diastereomeric thioether complexes 

(because the S atom becomes an stereogenic centre when coordinated to the metal) 

and the difficulty of controlling their interconversion in solution.
[1f]

When the structure 

of the ligand is able to control the S-coordination, the chirality is closer to the metal 
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and it may be extremely beneficial. In this respect, we recently found that the 

furanoside backbone in phosphite-thioether ligands can control the thioether 

coordination to palladium and achieve therefore high enantiomeric excesses.
[5g]

 

Therefore, in this chapter we report the application of previous phosphite-

thioether/selenoether ligand library presented in chapter 3.4 (L7-L30a-g; Figure 5.1.1) 

in this process. The high options in the variations of the ligand scaffold allowed us to 

systematically investigate the effect of varying: (a) the electronic and steric properties 

of the thioether group (ligands L7-L13); (b) the substituents and the introduction of a 

new stereogenic centre in the alkyl backbone chain next to the phosphite moiety 

(ligands L7, L13, L14-L15 and L17-L20); (c) the substituents and the introduction of a 

new stereogenic centre in the alkyl backbone chain next to the thioether moiety 

(ligands L7, L8, L16 and L26); (d) the substituents and configurations in the biaryl 

phosphite moiety (a-g); and finally (e) the replacement of the thioether group by a 

selenoether moiety.  

 
Figure 5.1.1. Sugar-based phosphite-thioether/selenoether ligand library L7-L30 a-g. 

 

5.1.2. Results and discussion 

5.1.2.1. Allylic substitution of disubstituted linear substrates  

First, we tested the efficiency of the chiral phosphite-thioether/selenoether ligands 

L7-L30a-g in the Pd-catalyzed allylic substitution of linear substrates with different 

steric properties: rac-1,3-diphenyl-3-acetoxyprop-1-ene S1 (widely used as a model 

substrate) and the more challenging rac-(E)-ethyl-2,5-dimethyl-3-hex-4-enylcarbonate 
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S2 and rac-1,3-dimethyl-3-acetoxyprop-1-ene S3. In all the cases, the catalysts were 

generated in situ from π-allyl-palladium chloride dimer [PdCl(η
3
-C3H5)]2, the 

corresponding ligand and the desired nucleophile. Several C-, N- and O- nucleophiles 

were used under standard conditions.  

 

Table 5.1.1. Results for the Pd-catalyzed allylic alkylation of S1 with dimethyl malonate using the 

ligand library L7-L30a-g.
a
 

 
Entry Ligand %Conv (h)

b
 % ee

c  
 Entry Ligand % Conv (h)

b
 % ee

c 

1 L7a 100 (3) 18 (S)   26 L16g 100 (3) 45 (S) 
2 L7b 100 (3) 17 (S)   27 L17a 100 (3) 70 (S) 
3 L7c 100 (3) 17 (S)   28 L17f 100 (3) 35 (R) 
4 L7d 100 (3) 34 (R)   29 L17g 100 (3) 92 (S) 
5 L7e 100 (3) 37 (S)   30 L18f 100 (3) 39 (R) 
6 L7f 100 (3) 38 (R)   31 L18g 100 (3) 94 (S) 
7 L7g 100 (3) 39 (S)   32 L19a 100 (3) 72 (S) 
8 L8a 100 (3) 4 (S)   33 L20a 100 (3) 76 (S) 
9 L9a 92 (3) 17 (R)   34 L20g 100 (3) 92 (S) 

10 L9d 96 (3) 23 (R)   35 L21g 100 (3) 92 (S) 
11 L9e 100 (3) 12 (S)   36 L22g 100 (3) 93 (S) 
12 L10a 100 (3) 11 (R)   37 L23g 100 (3) 97 (S) 
13 L10d 100 (3) 27 (R)   38 L24a 100 (3) 13 (R) 
14 L10e 100 (3) 14 (S)   39 L24f 100 (3) 41 (S) 
15 L11d 100 (3) 25 (R)   40 L24g 100 (3) 46 (R) 
16 L11e 100 (3) 0   41 L26a 100 (3) 9 (S) 
17 L12d 100 (3) 22 (R)   42 L26f 100 (3) 50 (R) 
18 L12e 100 (3) 4 (R)   43 L26g 100 (3) 24 (S) 
19 L13d 100 (3) 14 (R)   44 L27a 100 (3) 7 (S) 
20 L13e 100 (3) 4 (R)   45 L27f 100 (3) 13 (R) 
21 L14a 100 (3) 40 (R)   46 L27g 100 (3) 18 (S) 
22 L14d 100 (3) 80 (R)   47 L29f 100 (3) 81 (R) 
23 L14e 100 (3) 10 (R)   48 L29g 100 (3) 4 (S) 
24 L15a 100 (3) 58 (R)   49 L30f 100 (3) 2 (R) 
25 L16f 100 (3) 31 (R)   50 L30g 100 (3) 90 (S) 

a 0.5 mol% [PdCl(3-C3H5)]2, ligand (0.011 mmol), S1 (1 mmol), CH2Cl2 (2 mL), BSA (3 eq), dimethyl malonate 
(3 eq), KOAc (pinch). b Conversion percentage determined by 1H-NMR. c Enantiomeric excesses determined 
by HPLC on a Chiralcel-OJ column. Absolute configuration drawn in parentheses. 

In the first set of experiments, we studied the effect of the ligand parameters by 

applied them in the Pd-catalyzed allylic substitution of model linear substrate S1 with 

dimethyl malonate as nucleophile. The results, which are presented in Table 5.1.1, 

indicate that enantioselectivities are highly affected by a subtle balance of the 

thioether/selenoether substituent, the substituents/configurations at the alkyl 

backbone chain next to both, the phosphite and thioether/selenoether moieties as 

well as the configuration of the biaryl phosphite moiety. By selecting the correct 
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combination of ligand parameters high enantioselectivities (up to 97% ee) could be 

therefore achieved. In all cases, 100 % conversion were achieved in only 3 hours.  

The first parameter to be studied is the effect of changing the substituents/ 

configuration in the biaryl phosphite moiety by comparing the results using ligands 

L7a-g (entries 1-7). We found a minor impact on enantioselectivities and activities by 

modifying the substituents; however, a chiral biaryl phosphite moiety must be present 

to achieve the highest enantioselectivity. Therefore, the ligand backbone is not 

capable to fix the tropoisomerization of the biaryl moiety. 

By comparing ligands L7-L13 we also found that enantioselectivity is affected by 

the thioether substituent.  The presence of a phenyl thioether group (ligands L7) has a 

positive effect on enantioselectivities. (i.e. entry 4 vs 8, 10, 13, 15, 17 and 19).The 

presence of either two methyl substituents to the carbon next to the phosphite moiety 

(ligands L14 and L15, Table 5.1.1; entries 22 and 23 vs 4 and 5) or substituents to the 

carbon next to the thioether group ( ligands L16 and L26 entries 25, 26 and 41-43) , 

also had a positive effect on enantioselectivity ). However, the results with ligands L17 

and L24 indicated a cooperative effect between the configurations of the carbon next 

to the phosphite functionality and the biaryl phosphite moiety, that results in a 

matched combination for ligands L17g, with an (R)-configuration of both the carbon 

next to the phosphite group and the biaryl phosphite moiety (92% ee; entry 29).  

 With ligands L18-L23, we studied the effect of different substituents to the carbon 

next to the phosphite moiety. The highest enantioselectivity (up to 97% ee) was 

obtained with Pd-L23g catalyst  (entry 37). 

Finally, comparing the results with phosphite-selenoether ligands L27-L30 with 

their thioether counterparts we found that the replacement of the sulphur by 

selenium hardly affected the catalytic performance (i.e. entry 29 vs 50). 

With the best catalytic system in hand (Pd-23g), we next decided to study its scope 

by using several C-, N- and O- nucleophiles, among which are the little studied 

functionalized malonates, β-diketones and alkyl alcohols The results are shown in 

Table 5.1.2. Advantageously, we found that the catalytic performance is unaffected by 

the variations of the steric properties of the ester moiety and the substituents of the 

malonate nucleophiles. A broad range of malonates therefore provided products 2-8 in 

high yields and enantioselectivities, comparable to those obtained with dimetyl 

malonate (ee's up to 98%). Of particular importance are the high enantioselectivities 

obtanied with allyl-, butenyl-, pentenyl- and propargyl-substituted malonates, whose 

products are key intermediates in the synthesis of more complex chiral products.
[1,5g,6], 

The addition of acetylacetone (compound 9) also provided with similar high 

enantioselectivities (ee's up to 97%). Enantiocontrol was also excellent when a N-

nucleophile such as benzylamine (compound 10) were used. We could achieve high 

enantioselectivity when a range of O-nucleophiles were used. The efficient  allylic 

substitution with this type of nucleophiles opens up a straightforward way for the 

preparation of aliphatic chiral ether for the synthesis of biologically active target.
[7]
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Table 5.1.2. Allylic substitution of S1 with C-, N- and O-nucleophiles using Pd-L23g 

catalytic system.
a
 

 

Entry Product 
% Conv

b 

(% Yield) 
% ee

c 

1 
 

100 (91) 96% (S) 

2 

 

100 (93) 97% (S) 

3 

 

100 (89) 96% (R) 

4 

 

100 (88) 98% (R) 

5 

 

100 (90) 95% (R) 

6 

 

100 (87) 94% (R) 

7 

 

100 (88) 92% (R) 

8 

 

100 (90) 97% (S) 

9 
 

100 (87) 98% (R) 

10
d
 

 

100 (82) 95% (R) 

11
d
 

 

100 (86) 91% (-) 

12
d
 

 

100 (86) 90% (-) 

a 0.5 mol% [PdCl(3-C3H5)]2, L23g (0.011 mmol), S1 (1 mmol), CH2Cl2 (2 mL), BSA (3 eq), 
nucleophile (3 eq), KOAc (pinch). b Conversion percentage determined by 1H-NMR. 
c Enantiomeric excesses determined by HPLC on a Chiralcel-OJ column. Absolute 
configuration drawn in parentheses. d Reactions carried out using 2 mol % [PdCl(η3-C3H5)]2, 
4 mol % ligand and Cs2CO3 (3 equiv).  
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Despite this, few successful examples exist and most of them use phenols as O-

nucleophiles.
[5f,8]

 The application of Pd/L17g to several aliphatic alcohols provided the 

desired products (compounds 11-13) in high yields and enantioselectivities, 

comparable to the best ones reported in the literature. 

 
Table 5.1.3. Selected results for the Pd-catalyzed allylic alkylation of S2 with dimethyl malonate 

using the ligand library L7-L30a-g.
a         

 

Entry Ligand %Conv (h)
b
 % ee

c  
 Entry Ligand % Conv (h)

b
 % ee

c 

1 L7a 100 (24) 21 (S)   26 L16g 100 (24) 49 (S) 
2 L7b 100 (24) 22 (S)   27 L17a 100 (24) 74 (S) 
3 L7c 100 (24) 20 (S)   28 L17f 100 (24) 38 (R) 
4 L7d 100 (24) 44 (R)   29 L17g 100 (24) 95 (S) 
5 L7e 100 (24) 20 (S)   30 L18f 100 (24) 43 (R) 
6 L7f 100 (24) 46 (R)   31 L18g 100 (24) 94 (S) 
7 L7g 100 (24) 25 (S)   32 L19a 100 (24) 78 (S) 
8 L8a 100 (24) 7 (S)   33 L20a 100 (24) 77 (S) 
9 L9a 99 (24) 19 (R)   34 L20g 100 (24) 95 (S) 

10 L9d 100 (24) 26 (R)   35 L21g 100 (24) 93 (S) 
11 L9e 100 (24) 17 (S)   36 L22g 100 (24) 97 (S) 
12 L10a 100 (24) 15 (R)   37 L23g 100 (24) 99 (S) 
13 L10d 100 (24) 34 (R)   38 L24a 100 (24) 18 (R) 
14 L10e 100 (24) 19 (S)   39 L24f 100 (24) 44 (S) 
15 L11d 100 (24) 31 (R)   40 L24g 100 (24) 53 (R) 
16 L11e 100 (24) 2 (S)   41 L26a 100 (24) 11 (S) 
17 L12d 100 (24) 29 (R)   42 L26f 100 (24) 54 (R) 
18 L12e 100 (24) 9 (R)   43 L26g 100 (24) 31 (S) 
19 L13d 100 (24) 19 (R)   44 L27a 100 (24) 12 (S) 
20 L13e 100 (24) 7 (R)   45 L27f 100 (24) 18 (R) 
21 L14a 100 (24) 42 (R)   46 L27g 100 (24) 23 (S) 
22 L14d 100 (24) 83 (R)   47 L29f 100 (24) 82 (R) 
23 L14e 100 (24) 12 (R)   48 L29g 100 (24) 11 (S) 
24 L15a 100 (24) 63 (R)   49 L30f 100 (24) 8 (R) 
25 L16f 100 (24) 37 (R)   50 L30g 100 (24) 92 (S) 

a 0.5 mol% [PdCl(3-C3H5)]2, ligand (0.011 mmol), S2 (1 mmol), CH2Cl2 (2 mL), BSA (3 eq), dimethyl malonate 
(3 eq), KOAc (pinch). b Conversion percentage determined by 1H-NMR. c Enantiomeric excesses determined 
by 1H using [Eu(hfc)3]. Absolute configuration drawn in parentheses. 

Then, we applied our phosphite/thioether-selenoether ligand library L7-L30a-g in 

the Pd-catalyzed allylic substitution of substrate S2, a more sterically demanding than 

substrate S1, used previously.
[1] 

This fact causes the necessity to slightly increase the 

ligand chiral pocket around the metal center in order to be capable of accommodate 

the substrate for obtaining.
[1]

 Due to the flexibility of the biaryl phosphite moiety 
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together with the extra flexibility conferred by modifying the thioether/selenoether 

groups and the ligand backbone, we expect to be able to successfully tuning the ligand 

parameters to obtain high enantioselectivities.. Table 5.1.3 shows the results. The 

behavior of the modification on the ligand parameters follows the same pattern than 

for the allylic substitution of S1. Again, the alkylation product 14 was accessible in 

excellent enantioselectivity (ee’s up to 99%) with the catalyst precursor containing 

ligand L23g (Table 5.1.3, entry 37). As expected, the activities were lower than in the 

alkylation reaction of S1.
[1]

 

 

Table 5.1.4. Results for the Pd-catalyzed allylic alkylation of S3 with dimethyl malonate using the 

ligand library L7-L30a-g.
a
 

 

Entry Ligand %Conv (h)
b
 % ee

c  
 Entry Ligand % Conv (h)

b
 % ee

c 

1 L7a 100 (6) 11 (S)   25 L16f 100 (6) 72 (R) 
2 L7b 100 (6) 9 (S)   26 L16g 100 (6) 69 (S) 
3 L7c 100 (6) 10 (S)   27 L17a 100 (6) 21 (S) 
4 L7d 100 (6) 59 (R)   28 L17f 100 (6) 71 (R) 
5 L7e 100 (6) 12 (S)   29 L17g 100 (6) 50 (S) 
6 L7f 100 (6) 62 (R)   30 L18f 100 (6) 60 (R) 
7 L7g 100 (6) 12 (S)   31 L18g 100 (6) 42 (S) 
8 L8a 100 (6) 3 (S)   32 L19a 100 (6) 22 (S) 
9 L9a 100 (6) 15 (R)   33 L19f 100 (6) 82 (R) 

10 L9d 100 (6) 21 (R)   34 L20f 100 (6) 86 (R) 
11 L9e 100 (6) 19 (S)   35 L20g 100 (6) 39 (S) 
12 L10a 100 (6) 8 (R)   36 L24a 100 (6) 27 (R) 
13 L10d 100 (6) 22 (R)   37 L24f 100 (6) 48 (R) 
14 L10e 100 (6) 15 (S)   38 L24g 100 (6) 29 (S) 
15 L11d 100 (6) 20 (R)   39 L26a 100 (6) 6 (R) 
16 L11e 100 (6) 10 (S)   40 L26f 100 (6) 72 (R) 
17 L12d 100 (6) 24 (R)   41 L26g 100 (6) 64 (S) 
18 L12e 100 (6) 7 (R)   42 L27a 100 (6) 12 (S) 
19 L13d 100 (6) 40 (R)   43 L27f 100 (6) 48 (R) 
20 L13e 100 (6) 8 (R)   44 L27g 100 (6) 9 (S) 
21 L14a 100 (6) 8 (R)   45 L29f 100 (6) 59 (R) 
22 L14d 100 (6) 64 (R)   46 L29g 100 (6) 39 (S) 
23 L14e 100 (6) 29 (R)   47 L30f 100 (6) 49 (R) 
24 L15a 100 (6) 13 (R)   48 L30g 100 (6) 15 (S) 

a 0.5 mol% [PdCl(3-C3H5)]2, ligand (0.011 mmol), S3 (1 mmol), CH2Cl2 (2 mL), BSA (3 eq), dimethyl malonate 
(3 eq), KOAc (pinch). b Conversion percentage determined by 1H-NMR. c Enantiomeric excesses determined 
by GC. Absolute configuration drawn in parentheses. 

We then also tested ligands L7-L30a-g in the allylic substitution of the linear 

substrate S3, which is less sterically demanding than previously used substrates S1 and 

S2. This fact causes that less catalytic systems have been successfully applied than for 

more hindered substrate S1.
[3b,9]

 In contrast to previous hindered substrates a smaller 
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chiral pocket is needed for enantioselectivity to be high. 
[1]

 Due to the flexibility of our 

ligand design we also expected to successfully accommodate the chiral pocket to the 

steric demand of substrate S3 and to obtain good enantioselectivities.  

Table 5.1.4 shows the results, which indicated that we were able to fine-tune the 

ligands in order to obtain also high enantioselectivities in the alkylation of this 

demanding substrate (ee’s up to 86%). The results indicate that although 

enantioselectivities are controlled by the same ligand parameters than in the 

substitution of S1, their effect on enantioselectivity is different. Thus, for example and 

in contrast to the reduction of S1, ligands containing an (R)-biaryl phosphite moiety 

provided the highest enantioselectivities (i.e. entries 6 and 7). Thus, the highest 

enantioselectivity of the ligand series (ee’s up to 86%) was achieved using ligand L20f 

(entry 34). 

We next studied the allylic substitution of S3 using several carbon nucleophiles. 

The results are shown in Table 5.1.5. Again, the catalyst precursor containing ligand 

L20f provided the best enantioselectivities (ee’s ranging from 82% to 86%). In all cases, 

enantioselectivities were similar to those obtained using dimethyl malonate. 

 

Table 5.1.5. Allylic substitution of S3 with C-nucleophiles using Pd-L20f catalytic 

system.
a
 

 

Entry Product 
% Conv

b 

(% Yield) 
% ee

c 

1 

 

100 (88) 85% (R) 

2 

 

100 (86) 84% (R) 

3 

 

100 (90) 86% (R) 

4 

 

100 (84) 82% (R) 

a 0.5 mol% [PdCl(3-C3H5)]2, L20f (0.011 mmol), S3 (1 mmol), CH2Cl2 (2 mL), BSA (3 eq), 
nucleophile (3 eq), KOAc (pinch). b Conversion percentage determined by 1H-NMR. 
c Enantiomeric excesses determined by HPLC on a Chiralcel-OJ column. Absolute 
configuration drawn in parentheses.  

5.1.2.2. Allylic substitution of disubstituted cyclic substrates  

The use of cyclic substrates, which have less sterically anti substituents, causes 

difficulties in the control of the enantioselectivity. These anti substituents are thought 
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to play a crucial role in the enantioselection observed with cyclic substrates in the 

corresponding Pd-allyl intermediates. 

We tested the use of the chiral phosphite-thioether/selenoether ligands L7-L30a-g 

in the Pd-catalyzed allylic substitution of cyclic substrates with different ring sizes: rac-

3-acetoxycyclohexene S4 (widely used as a model substrate), rac-3-

acetoxycyclopentene S5 and rac-3-acetoxycycloheptene S6. Several C-nucleophiles 

were used under standard conditions.  

We studied the effect of modifying the different ligand parameters by applying 

phosphite-thioether/selenoether ligand library (L7-L30a-g) in the Pd-catalyzed allylic 

substitution of model cyclic substrate S4 with dimethyl malonate as nucleophile. The 

results are in Table 5.1.6 and indicate that enantioselectivities are highly affected by a 

subtle balance of the thioether/selenoether substituent, the 

substituents/configurations at the alkyl backbone chain next to the phosphite and 

thioether/selenoether moieties as well as the configuration of the biaryl phosphite 

moiety. By correctly choosing the ligand parameters good enantioselectivities (up to 

89% ee) could be therefore achieved in both enantiomers of the alkylated product. 

The first parameter to be studied is the effect of changing the substituents and the 

configuration in the biaryl moiety by comparing the results with ligands L7a-g (entries 

1-7). First evidences showed an impact on the enantioselectivity with the modification 

of the substituents. Enantioselectivities are better when bulky trimethylsilyl 

substituents are present at the ortho positions of the biaryl phosphite moiety. (i.e. 

entry 3 vs 1-2). We also found that the configuration of the biaryl phosphite group 

controls the sense of the enantioselectivity. Thus, while the use of ligands containing 

(R)-biaryl phosphite groups (d and f) provide (R)-20, (S)-20 is achieved when using 

ligands with (S)-biaryl phosphite moieties (e and g). 

The results using ligands L7-L13 indicate that enantioselectivity is affected by the 

thioether substituent. Thus, ligands L7, containing a phenyl thioether group led to 

higher enantioselectivities. (i.e. entry 4 vs 8, 10, 13, 15, 17 and 19).The presence of 

two methyl substituents attached to the carbon close to the phosphite moiety (L14 

and L15) had a positive effect on enantioselectivity (Table 5.1.6; entries 22 and 23 vs 4 

and 5), this fact follow the same tend as for linear substrates. Similarly, the use of 

ligands L16 and L26, with substituents attached to the carbon next to the thioether 

group, also had a positive effect on enantioselectivity (entries 25, 26 and 41-43).The 

results using ligands L17 and L24 again indicated that there is a cooperative effect 

between the configuration of the carbon adjacent to the phosphite group, the ligand 

backbone and the configuration of the biaryl phosphite group that results in a matched 

combination for ligands L17g and L24f (ee’s up to 85%; entries 29 and 40 vs 28 and 41). 

So, in contrast to S1-S3, this matched combination provides access to both 

enantiomers of alkylated product 20 in high ee’s. 

The results using ligands L12-L17 indicated that enantioselectivities could be 

further improved to up to 89% ee by introducing bulkier groups attached to the carbon 

adjacent to the phosphite moiety. The highest enantioselectivities were achieved using 

ligands L22g and L13g (entries 37 and 38). 
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Finally, as observed for S1, comparing the results using phosphite-selenoether 

ligands L27-L30 with their thioether counterparts we found that the catalytic 

performance is hardly affected by the replacement of the sulfur by selenium (i.e. entry 

29 vs 50). 

 

Table 5.1.6. Results for the Pd-catalyzed allylic alkylation of S4 with dimethyl malonate using the 

ligand library L7-L30a-g.
a 

 

 

Entry Ligand %Conv (h)
b
 % ee

c  
 Entry Ligand % Conv (h)

b
 % ee

c 

1 L7a 100 (6) 9 (S)   27 L17a 100 (6) 24 (S) 
2 L7b 100 (6) 9 (S)   28 L17f 100 (6) 72 (R) 
3 L7c 100 (6) 14 (S)   29 L17g 100 (6) 82 (S) 
4 L7d 100 (6) 55 (R)   30 L18f 100 (6) 75 (R) 
5 L7e 100 (6) 66 (S)   31 L18g 100 (6) 87 (S) 
6 L7f 100 (6) 80 (R)   32 L19a 100 (6) 23 (S) 
7 L7g 100 (6) 77 (S)   33 L19f 100 (6) 82 (R) 
8 L8a 100 (6) 3 (S)   34 L20a 100 (6) 37 (S) 
9 L9a 100 (6) 11 (S)   35 L20g 100 (6) 82 (S) 

10 L9d 100 (6) 22 (R)   36 L21g 100 (6) 87 (S) 
11 L9e 100 (6) 14 (S)   37 L22g 100 (6) 89 (S) 
12 L10a 100 (6) 8 (S)   38 L23g 100 (6) 89 (S) 
13 L10d 100 (6) 42 (R)   39 L24a 100 (6) 52 (R) 
14 L10e 100 (6) 25 (S)   40 L24f 100 (6) 85 (R) 
15 L11d 100 (6) 24 (R)   41 L24g 100 (6) 82 (S) 
16 L11e 100 (6) 17 (S)   42 L26a 100 (6) 20 (S) 
17 L12d 100 (6) 34 (R)   43 L26f 100 (6) 77 (R) 
18 L12e 100 (6) 19 (S)   44 L26g 100 (6) 79 (S) 
19 L13d 100 (6) 40 (R)   45 L27a 100 (6) 2 (S) 
20 L13e 100 (6) 12 (S)   46 L27f 100 (6) 78 (R) 
21 L14a 100 (6) 8 (R)   47 L27g 100 (6) 78 (S) 
22 L14d 100 (6) 59 (R)   48 L29f 100 (6) 71 (R) 
23 L14e 100 (6) 41 (S)   49 L29g 100 (6) 85 (S) 
24 L15a 100 (6) 13 (R)   50 L30f 100 (6) 75 (R) 
25 L16f 100 (6) 78 (R)   51 L30g 100 (6) 72 (S) 
26 L16g 100 (6) 74 (S)       

a 0.5 mol% [PdCl(3-C3H5)]2, ligand (0.011 mmol), S4 (1 mmol), CH2Cl2 (2 mL), BSA (3 eq), dimethyl malonate 
(3 eq), KOAc (pinch). b Conversion percentage determined by 1H-NMR. c Enantiomeric excesses determined 
by HPLC on a Chiralcel-OJ column. Absolute configuration drawn in parentheses. 
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Table 5.1.7. Allylic substitution of S4 with C-nucleophiles using Pd-L22g catalytic 

system.
a
 

 

Entry Product 
% Conv

b 

(% Yield) 
% ee

c 

1 

 

100 (89) 88% (-) 

2 

 

100 (91) 87% (-) 

3 

 

100 (88) 91% (S) 

4 

 

100 (84) 88% (-) 

a 0.5 mol% [PdCl(3-C3H5)]2, L22g (0.011 mmol), S4 (1 mmol), CH2Cl2 (2 mL), BSA (3 eq), 
nucleophile (3 eq), KOAc (pinch). b Conversion percentage determined by 1H-NMR. 
c Enantiomeric excesses determined by HPLC on a Chiralcel-OJ column. Absolute 
configuration drawn in parentheses.  

With the best catalytic system in hand (Pd-22g), we next decided to study its scope 

by using other C-nucleophiles. The results are summarized in Table 5.1.7. 

Advantageously, we found that the catalytic performance is unaffected by the 

variations of the steric properties of the ester moiety and the substituents of the 

malonate nucleophiles. A broad range of malonates therefore provided products 21-23 

in high yields and enantioselectivities, comparable to those obtained with dimetyl 

malonate (ee's up to 98%). Of particular interest are the high enantioselectivities 

achieved with allyl- and propargyl-substituted malonates, whose products are key 

intermediates in the synthesis of more complex chiral products.
[5g,10] 

The addition of 

acetylacetone (compound 24) also proceeded with similar high enantioselectivities 

(ee's up to 88%). 

Encourage by the results obtained in the substitution of substrate S4, we decided 

to applied the catalysts that have provided the best enantioselectivities (Pd/L7-L30a-g) 

using other cyclic substrates with different ring size (S5 and S6). The results, which are 

found in Table 5.1.8, indicated that ligands L22f and L24g can provided with good 

results in both enantiomers of the alkylated products 25-28. 
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Table 5.1.8. Results for allylic substitution of S5-S6 with C-nucleophiles using Pd-L7-L30a-g 

catalytic system.a 

 

Entry Product 
Ligand % Conv

b 

(% Yield) 
% ee

c 

1 

 

L22f 
L24g 

100 (84) 
100 (79) 

82% (-) 
80% (+) 

2 

 

L22f 
L24g 

100 (86) 
100 (84) 

80% (S) 
79% (R) 

3 

 

L22f 
L24g 

100 (89) 
100 (86) 

92% (S) 
91% (R) 

4 

 

L22f 
L24g 

100 (87) 
100 (91) 

91% (S) 
87% (R) 

a 0.5 mol% [PdCl(3-C3H5)]2, L (0.011 mmol), S5-S6 (1 mmol), CH2Cl2 (2 mL), BSA (3 eq), nucleophile (3 eq), 
KOAc (pinch). b Conversion percentage determined by 1H-NMR. c Enantiomeric excesses determined by HPLC 
on a Chiralcel-OJ column. Absolute configuration drawn in parentheses.  

5.1.2.3. Allylic substitution of monosubstituted substrates  

To further study the potential of these readily available ligands, we tested L7-L30a-

g in the regio- and stereoselective allylic alkylation of 1-(1-naphthyl)allyl acetate (S7) 

and 1-(1-naphthyl)-3-acetoxyprop-1-ene (S8) with dimethyl malonate as nucleophile. 

For these substrates, not only does the enantioselectivity of the process need to be 

controlled but regioselectivity is also a problem because a mixture of regioisomers can 

be obtained. Most Pd-catalysts developed to date favor the formation of achiral linear 

product 30 rather than the desired branched isomer 29.
[11]

 The development of highly 

regio- and enantioselective Pd-catalysts is therefore still important.
[9a,9e,12]

 

The results, which are summarized in Table 5.1.9, indicated that regio- and 

enantioselectivity is highly affected of the nature of the thioether group, the presence 

of a stereogenic center at the carbon adjacent to the phosphite moiety, the 

configuration of the biaryl phosphite group and the introduction of a selenoether 

group instead of the thioether moiety. Therefore, the use of phosphite-

thioether/selenoether ligands provided high regioselectivity (up to 85%) towards the 

desired branched product 29, but with moderate enantioselectivities (up to 54% ee). In 

addition both substrates provided similar regioselectivities, which excludes the 

possibility of memory effects.
[13]

 In other words, the results indicated that the 
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equilibration rates of isomeric allylic palladium intermediates are fast compared to the 

rate of nucleophilic attack. 

 

Table 5.1.9. Results for the Pd-catalyzed allylic alkylation of S7 and S8 with dimethyl malonate 

using the ligand library L7-L30a-g.
a
 

 
  S7 

 
 S8 

Entry Ligand %Conv (h)
b 

% b/l
b
 % ee

c  
 %Conv (h)

b 
% b/l

b
 % ee

c 

1 L7a 100 (2) 60/40 8 (R)   100 (2) 55/45 7 (R) 
2 L7f 100 (2) 50/50 33 (S)   100 (2) 50/50 33 (S) 
3 L7g 100 (2) 50/50 48 (R)   100 (2) 50/50 48 (R) 
4 L8a 100 (2) 55/45 3 (R)   100 (2) 55/45 4 (R) 
5 L9d 100 (2) 45/55 12 (S)   100 (2) 45/55 11 (S) 
6 L9e 100 (2) 40/60 16 (R)   100 (2) 40/60 18 (R) 
7 L10d 100 (2) 55/45 36 (S)   100 (2) 55/45 36 (S) 
8 L10e 100 (2) 50/50 41 (R)   100 (2) 50/50 40 (R) 
9 L11e 100 (2) 55/45 28 (R)   100 (2) 55/45 28 (R) 

10 L12e 100 (2) 50/50 34 (R)   100 (2) 50/50 32 (R) 
11 L13e 100 (2) 55/45 41 (R)   100 (2) 55/45 39 (R) 
12 L14d 100 (2) 50/50 16 (S)   100 (2) 50/50 16 (S) 
13 L14e 100 (2) 55/45 35 (R)   100 (2) 55/45 35 (R) 
14 L15a 100 (2) 50/50 10 (S)   100 (2) 50/50 9 (S) 
15 L16f 100 (2) 65/35 31 (S)   100 (2) 65/35 30 (S) 
16 L16g 100 (2) 55/45 42 (R)   100 (2) 55/45 42 (R) 
17 L17f 100 (2) 55/45 29 (R)   100 (2) 55/45 29 (R) 
18 L17g 100 (2) 80/20 23 (S)   100 (2) 80/20 25 (S) 
19 L18f 100 (2) 50/50 24 (R)   100 (2) 50/50 24 (R) 
20 L18g 100 (2) 80/20 35 (S)   100 (2) 80/20 36 (S) 
21 L19a 100 (2) 40/60 38 (S)   100 (2) 40/60 38 (S) 
22 L19f 100 (2) 45/55 26 (R)   100 (2) 45/55 26 (R) 
23 L19g 100 (2) 75/25 35 (S)   100 (2) 75/25 35 (S) 
24 L24f 100 (2) 65/35 54 (R)   100 (2) 65/35 53 (R) 
25 L24g 100 (2) 50/50 19 (S)   100 (2) 50/50 19 (S) 
26 L26f 100 (2) 55/45 18 (R)   100 (2) 55/45 17 (R) 
27 L26g 100 (2) 65/35 41 (S)   100 (2) 65/35 41 (S) 
28 L27f 100 (2) 60/40 14 (R)   100 (2) 50/50 13 (R) 
29 L27g 100 (2) 85/15 38 (S)   100 (2) 80/20 37 (S) 
30 L30f 100 (2) 50/50 26 (R)   100 (2) 60/40 24 (R) 
31 L30g 100 (2) 80/20 32 (S)   100 (2) 85/15 34 (S) 

a 0.5 mol% [PdCl(3-C3H5)]2, ligand (0.011 mmol), substrate (1 mmol), CH2Cl2 (2 mL), BSA (3 eq), dimethyl 
malonate (3 eq), KOAc (pinch). b Conversion percentage and branched-to-linear ratio determined by 1H-
NMR. c Enantiomeric excesses determined by HPLC on a Chiralcel-OJ column. Absolute configuration drawn 
in parentheses. 
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The use of ligands L7-L13 indicated that nature of the thioether substituent has an 

effect on enantioselectivity, but not on regioselectivity. The best catalytic performance 

was therefore achieved using aryl thioether groups (ee’s up to 48% and 

regioselectivities up to 60% in favor of 29). 

The presence of substituents at the carbon close to the thioether group has almost 

no effect on catalytic performance; however, the presence of substituents at the 

carbon adjacent to the phosphite moiety has an important impact on regioselectivity. 

Using ligands L17 and L24 we have therefore found that there is a cooperative effect 

between the configuration of the stereocenter adjacent to the phosphite group and 

the configuration of the biaryl phosphite moiety. This results in a high regioselectivity 

(up to 80% in favor of 29) for ligand L17g (entry 18), albeit the highest 

enantioselectivity (up to 54% ee) was achieved using ligand L24f (entry 24). 

 

5.1.3. Conclusions 

A library of phosphite-thioether/selenoether ligands L7-L30a-g has been applied in 

the Pd-catalyzed allylic substitution reactions of several substrates including the more 

challenging monosubstituted substrates using a wide range of C-, N- and O-

nucleophiles, among which are the little studied α-substituted malonates, β-diketones 

and benzyl alcohol. This ligand library combines the advantages of the 

thioether/selenoether moiety with those of the phosphite group. The ligands are very 

stable, less sensitive to air and other oxidizing agents than phosphines and 

phosphinites, and easy to synthesize from readily available feedstocks. Moreover, we 

found that the extent to which the chiral information was transferred to the product 

can be tuned by correctly choosing the ligand components. Enantioselectivities were 

therefore high in a wide range of disubstituted substrates using several C-, N- and O-

nucleophiles. 

 

5.1.4. Experimental part 

5.1.4.1 General considerations 

All reactions were carried out using standard Schlenk techniques under an argon 

atmosphere. Commercial chemicals were used as received. Solvents were dried by 

means of standard procedures and stored under argon. 
1
H, 

13
C{

1
H} and 

31
P{

1
H} NMR 

spectra were recorded using a Varian Mercury-400 MHz spectrometer. Chemical shifts 

are relative to that of SiMe4 (
1
H and 

13
C{

1
H}) as an internal standard. Racemic 

substrates S1-S8 were prepared as previously reported.
[14]

 The synthesis of ligands L7-

L30a-g is described in section 3.3 (Chapter 3). 

5.1.4.2. Typical procedure for the allylic alkylation of disubstituted linear (S1-S3) 

and cyclic (S4-S6) substrates 

A degassed solution of [PdCl(
3
-C3H5)]2 (0.9 mg, 0.0025 mmol) and the 

corresponding phosphite-thioether/selenoether ligand (0.0055 mmol) in 
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dichloromethane (0.5 mL) was stirred for 30 min. Subsequently, a solution of the 

corresponding substrate (0.5 mmol) in dichloromethane (1.5 mL), nucleophile (1.5 

mmol), N,O-bis(trimethylsilyl)-acetamide (370 L, 1.5 mmol) and KOAc (3mg, 003 

mmol) was added. The reaction mixture was stirred at room temperature. After the 

desired reaction time the reaction mixture was diluted with Et2O (5 mL) and saturated 

NH4Cl (aq) (25 mL) was added. The mixture was extracted with Et2O (3 x 10 mL) and 

the extract dried over MgSO4. For compounds 1-13, 16, 18-19, 21 and 22, the solvent 

was removed, conversions were measured by 
1
H NMR and enantiomeric excesses 

were determined by HPLC. 
[12a]

 For compounds 15, 17, 20, 23-24 and 26-28, conversion 

and enantiomeric excesses were determined by GC.
[12a]

 For compounds 14 and 25, 

conversion were measured by 
1
H NMR and ee’s were determined by 

1
H NMR using 

[Eu(hfc)3].
[12a]

 

5.1.4.3. Typical procedure for the allylic alkylation of monosubstituted substrates 

(S7 and S8) 

A degassed solution of [PdCl(
3
-C3H5)]2 (1.8 mg, 0.005 mmol) and the 

corresponding phosphite-thioether/selenoether ligand (0.011 mmol) in 

dichloromethane (0.5 mL) was stirred for 30 min at room temperature. Subsequently, 

a solution of substrate (0.5 mmol) in dichloromethane (1.5 mL), dimethyl malonate 

(171 L, 1.5 mmol), N,O-bis(trimethylsilyl)-acetamide (370 L, 1.5 mmol) and KOAc 

(3mg, 003 mmol) was added. After 2 hours at room temperature, the reaction mixture 

was diluted with Et2O (5 mL) and saturated NH4Cl (aq) (25 mL) was added. The mixture 

was extracted with Et2O (3 x 10 mL) and the extract dried over MgSO4. The solvent was 

removed, conversions and regioselectivities were measured by 
1
H NMR and 

enantiomeric excesses were determined by HPLC.
[12a]

  

5.1.4.4. Typical procedure for the allylic amination of disubstituted linear 

substrate S1 

A degassed solution of [PdCl(
3
-C3H5)]2 (0.9 mg, 0.0025 mmol) and the 

corresponding phosphite-thioether/selenoether (0.0055 mmol) in dichloromethane 

(0.5 mL) was stirred  for 30 min. Subsequently, a solution of the corresponding 

substrate (0.5 mmol) in dichloromethane (1.5 mL) and benzylamine (131 L, 1.5 mmol) 

were added. The reaction mixture was stirred at room temperature. After the desired 

reaction time, the reaction mixture was diluted with Et2O (5 mL) and saturated NH4Cl 

(aq) (25 mL) was added. The mixture was extracted with Et2O (3 x 10 mL) and the 

extract dried over MgSO4. The solvent was removed, conversions were measured by 
1
H 

NMR and enantiomeric excesses were determined by HPLC.
[12a]

 

5.1.4.5. Typical procedure for the allylic etherification of disubstituted linear 

substrate S1 

A degassed solution of [PdCl(
3
-C3H5)]2 (0.9 mg, 0.0025 mmol) and the 

corresponding phosphite-thioether/selenoether (0.0055 mmol) in dichloromethane 

(0.5 mL) was stirred  for 30 min. Subsequently, a solution of the corresponding 
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substrate (31.5 mg, 0.125 mmol) in dichloromethane (1.5 mL) was added. After 10 

minutes, Cs2CO3 (122 mg, 0.375 mmol) and benzyl alcohol (40 L, 0.375 mmol) were 

added. The reaction mixture was stirred at room temperature. After the desired 

reaction time, the reaction mixture was diluted with Et2O (5 mL) and saturated NH4Cl 

(aq) (25 mL) was added. The mixture was extracted with Et2O (3 x 10 mL) and the 

extract dried over MgSO4. The solvent was removed, conversions were measured by 
1
H 

NMR and enantiomeric excesses were determined by HPLC.
[12a]
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5.2. Amino-P ligands from iminosugars: new readily available and 

modular ligands for enantioselective Pd-catalyzed allylic substitutions 

Carlota Borràs, Pilar Elías-Rodríguez, Ana T. Carmona, Inmaculada Robina,
 

Oscar 

Pàmies and Montserrat Diéguez.  

Organometallics, DOI: 10.1021/acs.organomet.8b00140 

 

Abstract: The synthesis of a new type of amino-phosphite/phosphinite/phosphine 

ligands containing a protected pyrrolidine-3,4-diol moiety is presented. These ligands 

are obtained in enantiomerically pure form, from readily available sugars. They thus 

contain the advantages of carbohydrates in terms of selection of the stereogenic 

carbons, polyfunctional groups able to modulate the electronic and sterical properties, 

and the general good stability of carbohydrate derivatives. They constitute a new type 

of P,N-ligands that have been used in the asymmetric Pd-catalyzed allylic reaction of 

acyclic and cyclic substrates with varied steric requirements, using different C- and N-

nucleophiles. By selecting the ligand parameters (amine substituent, configuration of 

the carbons bearing the isopropylidene group, substituent/configuration for the 

phosphite moieties and the rigidity of the ligand) and several substrates with different 

electronic and steric requirements, asymmetric reactions with a number of C- and N-

nucleophiles gave substituted compounds in which new stereogenic C-C and C-N bonds 

are formed with high enantioselectivities giving chiral molecules ready for further 

alkene transformations. Among the three groups of P,N-ligands (amino-P (P= 

phosphite, phosphinite and phosphine groups) the new amino-phosphite ligands gives 

the widest substrate and nucleophile scope, including the more challenging hindered 

linear and cyclic substrates. In particular, for carbohydrate derived amino-phosphite 

ligands and linear substrates, high enantioselectivity in the reactions requires an R-

configuration of the binaphthyl moiety. However, for cyclic substrates both 

enantiomers of the alkylated products are obtained by simply setting out the 

configuration of the binaphthyl phosphite moiety. A detailed study of the Pd-π-allyl 

intermediates is also presented. 

 

5.2.1. Introduction 

Catalysis has revolutionized the chemical industry because catalysts are used in the 

production of most chemicals, resulting in a multi-billion euro business. The 

development and improvement of catalysts are therefore keys for achieving a 

sustainable production of all sorts of chemicals. Chirality is a fundamental property for 

a large number of technologically and biologically relevant compounds.
[1]

 Among the 

catalytic reactions leading to chiral products, asymmetric Pd-catalyzed allylic 

substitution creates new stereogenic C-C and C-X bonds creating chiral simple 

molecules that can be further transformed by taking advantage of the alkene 
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functionality.
[2]

 Other advantages of the Pd-catalyzed allylic substitution are the high 

functional group tolerance and mild reaction conditions. Heterodonor compounds are 

among the most successful ligands reported to date for this process.
[2] 

Their success 

derives mainly from the different trans influence of the donor groups that allow an 

efficient electronic differentiation between the two allylic terminal carbon atoms so 

that the nucleophilic attack takes place predominantly trans to the donor group with 

stronger trans influence. Among the heterodonor compounds, 

phosphine/phosphinite-oxazoline ligands have been the most studied.
[2]

 Other 

heterodonor phosphine/phosphinite-ligands containing a more stable group than 

oxazolines (such thioether,
[3]

 pyridine,
[4]

 imine
[5]

 and amine
[6]

) have also been studied. 

However, only a few of them have been successfully used and they are typically limited 

in substrate and nucleophile scope.
[7]

 We have contributed with improvements in 

catalyst performance with mixed ligands that have biaryl phosphite moieties.
[2h,8]

 We 

found that biaryl phosphite moieties improve substrate versatility because the 

flexibility of these groups allows the catalyst chiral pocket to adapt to the steric 

demands of the substrate.
[8e]

 

Despite all the remarkable advances in catalyst design, still few ligands have been 

successfully applied in the allylic substitution of substrates with different electronic 

and steric proprieties using a large number of nucleophiles. "Privileged" ligands
[9]

 with 

a wide substrate scope and suitable for a large number of nucleophiles would allow us 

to limit time-consuming ligand design and preparation, and would be the key for 

achieving the sustainable production of all the sorts of C−C and C−X bonds required for 

synthesizing complex organic compounds.  

The search for such ligands that are easy to handle (solid and stable in air), easy to 

prepare from simple starting materials, and that are good for a broad range of 

substrates and nucleophiles, is a relevant topic in this reaction. Carbohydrates are 

particularly useful for preparing ligands because they are relative abundant in an 

enantiomerically pure form, present a wide stereochemical diversity, besides they are 

cheap and readily available. Their polifunctional structure facilitates its modular 

reactivity in terms of electronic and sterical effects.
[10]

 Series of chiral ligands can be 

synthesized and screened in the search of the optimal ligand for each type of 

substrate.  

In our search for more versatile and stable Pd-catalysts, we herein report the 

synthesis and application of a new sugar-based amino-

phosphite/phosphinite/phosphine ligand library (L49–L54a–d; Figure 5.2.1) in the Pd-

allylic substitution of substrates with different steric requirement with several 

nucleophiles. These ligands have been prepared from amino-alcohols 1–6, which are 

obtained from commercially available cheap carbohydrates. We believe that the 

modular nature of the iminosugar backbone together with the appropriate choice of 

the P functionality would be crucial to control the configuration of the nitrogen upon 

coordination of the P-N ligands,
[7]

 which in turn will aid in the development of efficient 
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ligands for this transformation. To achieve such a control, several ligand parameters 

have been easily tuned. We have therefore investigated the effect of systematic 

changing the substituent in the nitrogen group (L49–L51), the configuration of carbons 

bearing the isopropylidene group (ligands L49 vs L52), the rigidity of the ligand 

backbone (ligands L55) and the substituent/configuration in the biaryl phosphite 

moiety (a–d). We also studied the effect of replacing the phosphite moiety by a 

phosphinite group (L53) or a phosphine group (L54). In this paper, we have also carried 

out the synthesis and elucidation of the Pd--allyl intermediates to explain the origin 

of enantioselectivity. 

  
Figure 5.2.1. Amino-phosphite/phosphinite/phosphine ligands L49-L55a-d and their starting products, cyclic 

amino alcohols 1–6. 

 

5.2.2. Results and discussion 

5.2.2.1. Synthesis of ligands 

The synthesis of ligands L49–L51 started from pyrrolidine alcohol 7, easily obtained 

from D-mannose following the procedure recently reported by us.
[11] 

Reduction of 7 

with LiAlH4 gave N-methyl pyrrolidine alcohol 1. On its side, acidic deprotection of the 

Boc group of 7 followed by reductive amination with benzaldehyde and acetone 

afforded N-benzyl and N-isopropyl hydroxy pyrrolidine derivatives 2 and 3, 

respectively. With these steps the desired diversity in the electronic and steric 

proprieties of the amine part was attained. Finally, reaction of amino-alcohols 1, 2 and 

3 with one equivalent of the corresponding phosphorochloridite (ClP(OR)2; OR= a–d)  

formed in situ gave access to amino-phosphite ligands L49–L51 with the desired 

substituent/configurations of the biaryl phosphite group.  
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Scheme 5.2.1.Synthesis of ligands L49-L51. 

The preparation of ligands L52-L53, with a different configuration of the carbons 

bearing the isopropylidene group than L49-L51, is outlined in Scheme 5.2.2. Alcohol 9 

was prepared from D-ribose as previously reported.
[12] 

Protecting group manipulation 

afforded N-Boc derivative 10 that after reduction with LiAlH4 gave N-methyl 

pyrrolidine alcohol 4. Its reaction with ClP(OR)2 or ClPR2 furnished the corresponding 

phosphite/phosphinite ligands L52 and L53. Standard tosylation of 10 did not afford 

the corresponding tosylate derivative, instead, cyclic carbamate 11 was obtained as 

previously described for ent-10.
[11] 

Nucleophilic ring opening of 11 by treatment with 

KPPh2 in THF at reflux gave phosphine 12. Reaction with methoxycarbonyl chloride 

gave the corresponding carbamate which, after reduction with LiAlH4, gave amino-

phosphine ligand L54 in 82% yield (2 steps). On the other hand, starting from D-

arabinose, pyrrolizidine-alcohol 6 was obtained (Scheme 5.2.2).
[13]

 Subsequent 

reaction
 
with ClP(OR)2 afforded the corresponding amino-phosphites L55. 

 
Scheme 5.2.2. Synthesis of ligands L52-L55. 

 

Advantageously, the amino-phosphite ligands were found to be stable in air and 

resistant to hydrolysis, so they were further manipulated and stored in air. The 
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phosphinite and phosphine analogues (L53 and L54), however, were less stable in air 

and were stored under argon. The formation of the ligands was confirmed by 
31

P{
1
H}, 

1
H and 

13
C{

1
H} NMR spectra and mass spectrometry. The spectra assignments were 

supported by the information obtained from 
1
H–

1
H and 

1
H–

13
C correlation 

measurements. The 
31

P{
1
H}, 

1
H and 

13
C{

1
H} NMR spectra showed the expected signals 

for these C1–ligands. All NMR spectra showed only one isomer in solution. One singlet 

in the 
31

P{
1
H} NMR spectra was therefore observed. See experimental section for 

purification and characterization details. 

5.2.2.2. Allylic substitution of disubstituted substrates S1 and S2 with dimethyl 

malonate as nucleophile 

We initially tested the capacity of ligands L49–L55a–d by applying them in the 

allylic alkylation of two substrates with different steric requirement, the benchmark 

linear substrate S1 and the more challenging cyclic substrate S2, using dimethyl 

malonate as nucleophile (Scheme 5.2.3). For substrate S2 it is more difficult to control 

enantioselectivity, mainly because of the presence of less sterically anti substituents, 

which have a key role in the enantioselection found in the corresponding Pd-allyl 

intermediates. Enantioselectivities were found to depend on the ligand architecture 

and the substrate type (Table 5.2.1). While the best enantioselectivities for S1 were 

achieved with ligands L49a and L49d, for cyclic substrate S2 the best 

enantioselectivities in both enantiomers of the alkylated product were achieved using 

ligands L49a-b and L55a-b. 

 
Scheme 5.2.3. Allylic substitution of disubstituted substrates S1 and S2 with dimethyl malonate as 

nucleophile.  

 

Concerning the effect of the different P-donor groups the results indicated that 

replacing the phosphite (L52) moiety by a phosphinite or a phosphine group (ligands 

L53 and L54) had a negative effect on enantioselectivity (Table 5.2.1; entry 9 vs 11-12). 

We also found that the chirality at the biaryl phosphite moiety controls the sense of 

enantioselectivity. Accordingly, ligands with R configuration at biaryl phosphite moiety, 

gave (R)-alkylated products, while ligands with S configuration at the biaryl phosphite 

group, gave (S)-alkylated products (e.g. entry 1 vs 2). In addition, for the lineal 

substrate S1 there is a cooperative effect between the configuration of the biaryl 

phosphite moiety and the ligand backbone that results in a matched combination with 

ligand L49a, containing an R-biaryl phosphite group (entry 1 vs 2). This cooperative 

effect is less pronounced in the allylic substitution of cyclic substrate S2 and both 
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enantiomers of the alkylated products are therefore easily accessible by simply setting 

the configuration of the biaryl phosphite moiety (entries 1 and 2). Finally, for the cyclic 

substrate S2 it is also seen that enantioselectivity is affected by the substituents of the 

biaryl phosphite group. Enantioselectivities are therefore the highest when SiMe3 

groups are present at the ortho positions of the biaryl phosphite moiety (entries 1–2 vs 

3-4).  

Comparing the results with ligands L49-L51, it can be seen that the nature of the 

amine substituent has an effect on enantioselectivity, which increases when less 

sterically demanding substituents are present (entries 1, 5 and 6).  

The effect of configuration of carbons bearing the isopropylidene group on 

enantioselectivity was investigated, observing that is larger for substrate S1 than S2 

(entries 1-2 vs 9-10).  

We also studied the application of ligands L55 with a more rigid ligand backbone 

since the nitrogen is constrained in a bicyclic structure. However, while the use of 

ligands L55 has a negative effect on enantioselectivity for substrate S1 (entries 1 and 2 

vs 13 and 14) it has a little impact for substrate S2 (entries 1 and 2 vs 13 and 14).  

 

Table 5.2.1. Pd-catalyzed allylic substitution of substrates S1–S2 using dimethyl malonate as 

nucleophile with P,N-ligands L49–L55.
a 

  
 

 

 
Entry L % Conv (h)

b
 % ee

c  % Conv (h)
b
 % ee

c 

1 L49a 100 (6) 80 (R)  100 (12) 75 (R) 
2

 
L49b 100 (6) 71 (S)  100 (12) 72 (S) 

3 L49c 100 (6) 77 (R)  100 (12) 58 (R) 
4 L49d 100 (6) 79 (R)  100 (12) 53 (R) 
5 L50a 100 (6) 11 (R)  100 (12) 60 (R) 
6 L51a 100 (6) 7 (R)  100 (12) 45 (R) 
9 L52a 100 (6) 15 (R)  100 (12) 60 (S) 

10 L52b 100 (6) 17 (S)  100 (12) 68 (R) 
11 L53 100 (6) 6 (S)  100 (12) 38 (S) 
12 L54 100 (24) 3 (S)  60 (24) 35 (S) 
13

 
L55a 80 (6) 20 (R)  100 (12) 70 (R) 

14 L55b 100 (6) 9 (S)  100 (12) 71 (S) 
15

d
 L55a 100 (10) 87 (R)  100 (20) 81 (R) 

a 0.5 mol% [PdCl(η3-C3H5)]2, ligand (0.011 mmol), substrate (1 mmol), CH2Cl2 (2 mL), BSA (3 eq), dimethyl 

malonate (3 eq), KOAc (pinch). b Conversion percentage determined by 1H-NMR. c Enantiomeric excesses 

measured by HPLC for 13 and by GC for 14. Absolute configuration drawn in parentheses. d Reaction carried 

out at 0 °C. 

 

Finally, enantioselectivity can be improved by controlling not only the structural 

but also the reaction parameters. In this case, enantioselectivity was further improved 

by lowering the reaction temperature to 0 °C (ee's up to 87% for S1 and 81% for S2, 

entry 15).  
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5.2.2.3. Allylic substitution of other substrates and with other nucleophiles. 

Scope and limitations 

The scope of Pd/L49-L55a-d catalysts was then extended to other substrates and 

nucleophiles. As an example, Figures 5.2.2 and 5.2.3 shows the results using ligand 

L49a which had provided together with ligands L49d (for S1), and L49b and L55a-b (for 

S2) one of the best results.  

 

 
Figure 5.2.2. Allylic substitution of linear disubstituted substrates with C- and N- nucleophiles using Pd-L49a 

catalytic system. Reactions were run at 0°C with [PdCl(η3-C3H5)]2 (0.5 mol %), CH2Cl2 as solvent, ligand (1.1 

mol %), BSA (3 equiv), and KOAc. Full conversions were achieved after 12 h. 

 

We initially considered the substitution of substrate S1 with several nucleophiles. 

Advantageously, enantioselectivity was insensitive to the steric nature of the ester 

groups of the malonate nucleophiles (products 13, 15–16) and also to the replacement 

of the malonate by acetylacetone (product 22) and benzylamine derivatives (products 

23–25). In addition, a broad range of malonates substituted with allyl-, butenyl, 

pentenyl- and propargyl-groups reacted with S1 to provide the corresponding 

alkylated products 17–21 in high yields, and enantioselectivities comparable to those 

obtained with dimethyl malonate (ee’s up to 91%). These results are important 

because products 18–21 can been used as intermediates for preparing more complex 
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chiral compounds.
[14]

 Interestingly, enantioselectivities comparable to those achieved 

with S1 were also achieved in the alkylation of other substrates (compounds 26–29) 

including those more sterically demanding (compounds 28 and 29, ee’s up to 93% ee) 

than S1. These results show that the biaryl phosphite moiety in the Pd/L1a catalyst is 

able to adapt its chiral pocket and catalyze with comparable high enantioselectivities 

other linear substrates, with different steric and electronic properties, than S1.  

Encouraged by the high enantioselectivity obtained in the alkylation of the 

challenging cyclic substrate S2 (see Table 5.2.1) we then focused our attention to the 

allylic substitution of cyclic substrates. For the cyclohexenyl derivative S2, several C-

nucleophiles were used. In all cases, enantioselectivities (ee's up to 83%, compounds 

14, 30–33) were similar to those obtained when using dimethyl malonate, even when 

acetylacetone was used as nucleophile. High yields and enantioselectivities were also 

obtained in the allylic alkylation of a 7-membered cyclic substrate with dimethyl and 

propargyl-malonates (products 34 and 35). Again, compounds 31, 32 and 35 are 

relevant intermediates for the synthesis of chiral polycyclic compounds.
[14a,14d]

 These 

results are among the best reported for these challenging cyclic substrates, even with 

synthetically useful nucleophiles other than dimethyl malonate, for which only few 

catalysts have afforded high enantioselectivities.  

 

 
Figure 5.2.3. Allylic substitution of cyclic substrates with C-nucleophiles using Pd-L49a catalytic system. 

Reactions were run at 0°C with [PdCl(η3-C3H5)]2 (0.5 mol %), CH2Cl2 as solvent, ligand (1.1 mol %), BSA (3 

equiv), and KOAc. Full conversions were achieved after 24 h. 

 

To sum up, the new sugar-based amino-phosphite ligands L49a-d and L55a–b have 

provided good results in different substrate types using several nucleophiles. The high 

activities and enantioselectivities (ee’s up to 86%) obtained for cyclic substrates are 

particularly encouraging. This fact, along with the promising results obtained for a 

number of linear substrates (ee's up to 93%; including the challenging sterically 

demanding compounds 28 and 29), open up the Pd-catalyzed allylic alkylation 

reactions to a new class of readily available, solid, air stable and modular ligands. 
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5.2.2.4. Mechanistic insights: study of the key Pd--allyl intermediates 

In the Pd-catalyzed allylic alkylation it has been found that the enantioselectivity is 

determined in the irreversible nucleophilic attack.
[2]

 Consequently, the elucidation of 

Pd-π-allyl intermediates and the determination of their reactivity toward the 

nucleophile are key to understand their catalytic behavior. We therefore studied the 

Pd-π-allyl compounds 36–39 [Pd(η
3
-allyl)(P-N)]BF4 (P-N = L49a, L49b and L52a). These 

Pd-complexes, which contain cyclohexenyl and 1,3-diphenyl allyl groups, were 

prepared by using the previously reported method
[15]

 from the [PdCl(η
3
-allyl)]2 and the 

corresponding ligand with silver tetrafluoroborate (Scheme 5.2.4). The complexes 

were characterized by mass spectrometry and by NMR (
1
H, 

13
C and 

31
P). The spectral 

assignments were based on information from 
1
H-

1
H, 

31
P-

1
H, 

1
H-

1
H NOESY and 

13
C-

1
H 

experiments. The ESI-HR-MS showed the heaviest ions at m/z corresponding to the 

cation. 

 
Scheme 5.2.4. Preparation of [Pd(3-allyl)(P-N)]BF4  complexes 36-39. 

 

To understand the reversal in the sign of the enantioselectivity in the substitution 

of cyclic substrates when changing the configuration of the biaryl phosphite group 

(moving from a to b), we compared the Pd-1,3-cyclohexenyl-allyl intermediate 36, 

which contains ligand L49a with its related counterpart Pd/L49b intermediate 37. The 

VT-NMR study (30   C to -80   C) showed the presence of two isomers in equilibrium at a 

ratio of 1:8 and 20:1, respectively (Scheme 5.2.5). The major isomer of compound 36 

was assigned by NOE to the Pd-η
3
-exo, while the NOE indicated an endo disposition for 

major isomer of 37 (Figure 5.2.4). So, changes in the configuration of the phosphite 

moiety lead to changes in the ratio of the species that provide both enantiomers of the 

alkylated product. For the major isomer of complex 36, the NOE indicates interaction 

between the hydrogen of the CH-N group with the central allyl proton, whereas for the 

major isomer of 37, this interaction appears with one of the methylene groups of the 

cyclohexenyl moiety (Figure 5.2.4). These interactions are in agreement with an exo 

and an endo disposition of the major isomers of 36 and 37, respectively. Moreover, the 

NOE also shows that for both isomers 36 the nitrogen adopts an R-configuration upon 

coordination, while for the major isomer of 37 it adopts an S-configuration. Thus, for 

isomers 36, the NOE indicates interactions between hydrogens of the methyl amine 

group with the terminal allylic proton trans to the phosphite moiety, whereas for the 

major isomer of 37 this interaction appears with the hydrogen of one of the CH-O 

groups of the sugar backbone (Figure 5.2.4). For all isomers, the carbon chemical shifts 

indicate that the most electrophilic allyl C terminus is trans to the phosphite moiety 

(Scheme 5.2.5). If we assume that the nucleophilic attack takes place at the most 
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electrophilic carbon, for complex 36 the fact that the observed stereochemical 

outcome of the reaction (75% ee (R)) is similar to the diastereoisomeric excess of the 

Pd-isomers (de = 78% (R)) indicates that both isomers react at a similar rate. Therefore, 

for complex 36, the enantioselectivity is mainly controlled by the population of the exo 

and endo isomers. However, for complex 37 the observed stereochemical outcome of 

the reaction (72% (S)) is different from the diastereomeric excess (90% (S)) of the Pd 

intermediates. This indicates that the minor isomer should react slightly faster than 

the major isomer and that enantioselectivity is also controlled by the different 

reactivity of the allyl intermediates towards the nucleophile.  

 

Scheme 5.2.5. Diastereoisomeric Pd-η3-allyl intermediates for S2 with ligands L49a (isomers 36) and L49b 

(isomers 37). The relative amounts of each isomer are shown in parentheses. The chemical shifts (in ppm) of 

the allylic terminal carbons are also shown. 

 

 
Figure 5.2.4. Relevant NOE contacts from the NOESY experiment of Pd-η3-allyl intermediates 36 and 37. 

Finally, to evaluate the effect of the configuration of carbons bearing the 

isopropylidene group on the enatioselectivity obtained in the allylic alkylation of S1, 

we studied the Pd allylic intermediates with ligands L49a and L52a (38 and 39, 

respectively). Whereas ligand L49a provided high enantioselectivity (80% (R)), ligand 

L52a which differs in the configuration of the carbons bearing the isopropylidene 

group gave less enantioselectivity (17% (S)).  
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Scheme 5.2.6. Diastereoisomeric Pd-η3-allyl intermediates for S1 with ligand L49a (isomers 38). The relative 

amounts of each isomer are shown in parentheses. The chemical shifts (in ppm) of the allylic terminal 

carbons are also shown. 

The VT-NMR (30   C to -85   C) study of Pd-allyl intermediate 38, with ligand L49a, 

showed a mixture of two isomers in equilibrium in a ratio of 2.2:1. The two isomers 

were assigned by NMR to the two syn/syn exo and endo isomers (Scheme 5.2.6). For 

both isomers the NOE shows interactions between the two terminal protons of the 

allyl group, which indicates a syn-syn disposition (Figure 5.2.5a). In addition, the NOE 

also indicates that for both isomers the nitrogen adopts an R-configuration upon 

coordination. For the major isomer the NOE also indicates interaction between the 

hydrogen of the CH-N group with the central allyl proton, whereas for the minor 

isomer there is a NOE interaction between the hydrogens of the methyl amine group 

with the hydrogen placed at the ortho position of one of the phenyl groups of the 

substrate. These interactions can be explained by assuming an exo disposition for the 

major isomer of 38 and an endo disposition for the minor isomer (Figure 5.2.5a). The 

carbon NMR chemical shifts indicate that the most electrophilic allyl carbon terminus 

is again trans to the phosphite moiety. Assuming that the nucleophilic attack takes 

place at the most electrophilic terminal carbon atom and the fact that the 

enantiomeric excess of the alkylation product  (ee’s up to 80% (R)) is higher than the 

diastereoisomeric excesses of the Pd-intermediates (de= 37% (S)), indicated that minor 

endo isomer must react faster than the exo. To prove this fact we used in situ NMR to 

study the reactivity of the Pd-intermediates with dimethyl malonate at low 

temperature (Figure 5.2.5b). Our results show that the minor endo isomer reacts 

around 15 times faster than the major exo isomer. If we take into account the relative 

reaction rates and the abundance of the reacting isomers, the theoretical ee should be 

74% (R), which agrees with the ee obtained experimentally. We can therefore 

conclude that the nucleophilic attack takes place preferentially at the allyl terminus 

trans to the phosphite moiety of the minor Pd-intermediate. Consequently, in the case 

of substrate S1 and ligand L49a the enantioselectivity seems to be controlled by the 

different reactivity of the allyl intermediates towards the nucleophile, rather than their 

population, as was the case for substrate S2 when the same ligand L49a was used. 
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Figure 5.2.5. (a) Relevant NOE contacts from the NOESY experiment of Pd-η3-allyl intermediates 38 exo and 

endo. (b) Reactivity of intermediates 38 towards sodium dimethyl malonate at -80 °C.  31P-{1H} NMR spectra 

before and after the addition of sodium dimethyl malonate in CD2Cl2. 

 

In contrast to the previous study with ligand L49a, the VT-NMR (30   C to -85   C) of 

Pd-allyl intermediate 39, with ligand L52a, had a mixture of three compounds in a ratio 

of 3.2:1.7:1. The two major ones were assigned to the two syn/syn endo and exo 

isomers 39 (see relevant NOE contacts in Figure 5.2.6), while the minor compound was 

assigned to Pd-allyl complex ([Pd(η
3
-allyl)(L52a)2]BF4) in which two P-N ligands are 

coordinated in a monodentate fashion through the phosphite moiety (Scheme 5.2.7). 

Monodentate coordination of L52a in the minor species [Pd(η
3
-allyl)(L52a)2]BF4 is 

clearly disclosed because the signals of the methyl amine group in the 
1
H and 

13
C NMR 

spectra are not shielded as is the case when the amino group coordinates to Pd. It 

should be pointed out that changes in the configuration of carbons bearing the 

isopropylidene group also lead to changes in the configuration of the nitrogen upon 

coordination to palladium from R (in isomers 38) to S (in isomers 39). Thus, for isomers 

39, the NOE indicates interactions between one of the methyl groups of the 

isopropylidene moiety with the methyl of the amino group (Figure 5.2.6). The fact that 

enantioselectivity was lower with the Pd/L52a catalyst than when the Pd/L49a catalyst 

was used may be due to the presence of [Pd(η
3
-allyl)(L52a)2]BF4. Complexes of this 

type are known to give faster and less enantioselective reactions than their bidentate 

counterparts because they have more degrees of freedom.
[16]

  

The study of the Pd-1,3-diphenylallyl intermediates therefore showed that for 

enantioselectivity to be high, the different ligand parameters need to be correctly 

combined to avoid the formation of species with ligands coordinated in monodentated 

fashion. 
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Scheme 5.2.7. Pd-η3-allyl intermediates for S1 with ligand L52a (isomers 39 and [Pd(η3-allyl)(L52a)2]BF4). The 

relative amounts of each compound are shown in parentheses. The chemical shifts (in ppm) of the allylic 

terminal carbons are also shown. 

 
Figure 5.2.6. Relevant NOE contacts from the NOESY experiment of Pd-η3-allyl intermediates 39 exo and 

endo. 

 

5.2.3. Conclusions 

A series of new iminosugar-phosphite/phosphinite/phosphine ligands have been 

applied in Pd-catalyzed allylic substitution reactions. These ligands are obtained in 

enantiomerically pure form from readily available sugars as starting materials. They 

thus contain the advantages of carbohydrates in terms of selection of the stereogenic 

carbons, polyfunctional groups able to modulate the electronic and sterical properties, 

and the general good stability of carbohydrate derivatives. Thus, several ligand 

parameters can be systematically varied so selectivities can been maximized for each 

substrate. By selecting the ligand components, we obtained good results in several 

substrates with different electronic and steric requirements and using a number of C- 

and N-nucleophiles (23 compounds in total with ee's up to 93%). For both substrate 

types (linear and cyclic), we found that the presence of biaryl phosphite groups in the 

ligand are needed for high enantioselectivity. This is advantageous because the 

iminosugar-phosphite ligands are air-stable solids in contrast to their amino-

phosphinite/phosphine analogues. The effect of the remaining ligand parameters 

(amine substituent, the configuration of carbons bearing the isopropylidene group, the 

substituent/configuration of the phosphite moieties and the rigidity of the ligand) on 

the selectivity depend on each type of substrate. Particularly, for lineal substrates we 
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found that an R-configuration of the binaphthyl moiety is needed for high 

enantioselectivity. However, for cyclic substrates both enantiomers of the alkylated 

products can be obtained by simply setting the configuration of the binaphthyl 

phosphite moiety. Additionally, for cyclic substrates, in contrast to linear ones, 

enantioselectivity is also affected by the substituent of the biaryl phosphite group and 

there is a little impact by the configuration of carbons bearing the isopropylidene 

group and the rigidity of the ligand. In comparison with previous air instable amino-P 

ligands
[6]

 (P=phosphine, aminophosphine and phosphinite groups) reported in the 

literature, the new amino-phosphite ligands provided a better substrate and 

nucleophile scope (i.e. including more challenging hindered linear and cyclic 

substrates, even using highly appealing nucleophiles such as those α-substituted with 

methyl, allyl, butenyl, pentenyl and propargyl groups). These results pave the way for 

the further development of modular amino-phosphite ligands, which are readily 

available and air stable, for the asymmetric Pd-catalyzed allylic substitution of several 

substrate types, including the more demanding cyclic ones, with a large number of 

nucleophiles. 

Finally, the study of the Pd-π-allyl intermediates make it possible to understand the 

catalytic results obtained. It shows that for enantioselectivities to be high the ligand 

parameters need to be appropriately combined to either increase the difference in the 

population of the resulting Pd-allyl compounds (for cyclic substrate), or to increase the 

relative rates of the nucleophilic attack of each Pd-allyl intermediate, and also to avoid 

the formation of Pd-allyl intermediates with monodentated coordinated ligands (for 

linear substrates). This study also indicates that the sugar backbone is able to control 

the configuration of the amino group upon coordination, which in turn can be 

efficiently shifted from R- to S- by simply varying the configuration of the biaryl 

phosphite moiety. 

 

5.2.4. Experimental Part 

5.2.4.1. General remarks 

All reactions were carried out using standard Schlenk techniques under an argon 

atmosphere, except for the preparation of pyrrolidine alcohols and their precursors. 

Commercial chemicals were used as received. Solvents were dried by means of 

standard procedures and stored under argon. Phosphorochloridites were easily 

prepared in one step from the corresponding biphenols and binols.
[17]

 Racemic 

substrates S1, S2, 1,3-di-p-tolylallyl acetate, 1,3-bis(3-methoxyphenyl)allyl acetate, 1,3-

di-o-tolylallyl acetate, 2,6-dimethylhept-4-en-3-yl acetate and cyclohept-2-en-1-yl 

acetate;
[18]

 and Pd-allyl complexes [Pd(
3
-1,3-Ph2-C3H3)(-Cl)]2

[19]
 and [Pd(

3
-

cyclohexenyl)(-Cl)]2
[20]

 were prepared as previously reported. TLC was performed on 

silica gel HF254 (Merck), with detection by UV light charring with H2SO4, p-anisaldehyde, 

vanillin, ninhydrin, KMnO4, phosphomolybdic acid or with Pancaldi reagent 
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[(NH4)6MoO4, Ce(SO4)2, H2SO4, H2O]. Silica gel 60 (Merck, 63–200 μm) was used for 

preparative chromatography. Optical rotations were measured in a 1.0 cm or 1.0 dm 

tube with a Jasco P-2000 spectropolarimeter. Infrared spectra were recorded with a 

Jasco FTIR-410 spectrophotometer. 
1
H, 

13
C{

1
H} and 

31
P{

1
H} NMR spectra were recorded 

using a Bruker, AV300, AV500 and Varian Mercury-400 MHz spectrometers for 

solutions in CDCl3, C6D6 and DMSO-d6 at room temperature, except when indicated. 

Chemical shifts are relative to that of SiMe4 (
1
H and 

13
C{

1
H}) as an internal standard or 

H3PO4 (
31

P) as an external standard. 
1
H and 

13
C assignments were made on the basis of 

1
H–

1
H gCOSY, 

1
H–

13
C gHSQC and NOESY experiments. Mass spectra (CI and ESI) were 

recorded on Micromass AutoSpeQ and QTRAP (Applied Biosystems) y Orbitrap Elite 

spectrometers. NMR and mass spectra were registered in CITIUS (University of Seville) 

and in SRCiT (Universitat Rovira i Virgili). 

(2S,3S,4R)-N-Methyl-2-hydroxymethyl-3,4-O-isopropyliden-pyrrolidine-3,4-diol 

(1) 

To a suspension of LiAlH4 (420 mg, 10.9 mmol) in anhydrous THF (22 mL) at 0   C, a 

solution of 7
[10]

 (600 mg, 2.19 mmol) in anhydrous THF (22 mL) was added. The mixture 

was heated at reflux for 2.5 h and then cooled at 0   C. Diethyl ether and sat. aq. sol. of 

Na2SO4 were successively added and the mixture was filtered through celite and 

washed with CH2Cl2. The solvent was evaporated and the residue was purified by 

chromatography column on silica gel (eluent: EtOAc/cyclohexane – 1/3) to produce 1 

(345 mg, 84%) as a pale yellow oil. αD
24 

- 19.9 (c 1.08, CH2Cl2). 
1
H NMR (300 MHz, 

CDCl3), δ: 1.11 (s, 3H, -C(CH3)2), 1.51 (s, 3H, -C(CH3)2), 2.36 (s, 3H, N-CH3), 2.51-2.57 (m, 

2H, H-2, H-5a), 2.61 (brs, 1H, OH), 3.33-3.39 (m, 1H, H-5b), 3.63 (dd, 1H, H-1’a, J1’a-1’b = 

11.4,  J1’a-2 = 2.7), 3.72 (dd, 1H, H-1’b, J1’b-2 = 3.6), 4.56-4.63 (m, 2H, H-3, H-4). 
13

C NMR 

(75.4 MHz, CDCl3), δ: 25.0 (-C(CH3)2), 27.3 (-C(CH3)2), 40.0 (N-CH3), 59.3 (C-1’), 62.0 (C-

5), 71.6 (C-2), 77.8, 82.2 (C-3, C-4), 113.1 (-C(CH3)2). HRMS (ESI) m/z: calcd for 

C9H18NO3: 188.1281 [M+H]
+
; found 188.1276. 

(2S,3S,4R)-2-Hydroxymethyl-3,4-O-isopropyliden-pyrrolidine-3,4-diol (8) 

To a solution of 7
[10]

 (203 mg, 0.74 mmol) in anhydrous CH2Cl2 (10 mL) with 4 Å MS 

at 0   C, was added anhydrous trifluoroacetic acid (1.9 mL). The mixture was stirred at 

r.t. for 1 h and then was filtered and the solvent was evaporated. The residue was 

dissolved in anhydrous CH2Cl2 and Ambersep 900 was added. The resulting mixture 

was filtered and the solvent was evaporated. The residue was purified by 

chromatography column on silica gel (eluent: CH2Cl2/MeOH – 10/1, 1% Et3N) to 

produce 8 (101 mg, 78%) as a pale yellow oil. αD
27 

- 26.2 (c 1.0, CH2Cl2). 
1
H NMR (300 

MHz, CDCl3), δ: 1.30 (s, 3H, -C(CH3)2), 1.47 (s, 3H, -C(CH3)2), 3.08 (dd, 1H, H-5a, J5a-5b = 

13.5, J5a-4 = 4.2), 3.19 (d, 1H, H-5b), 3.39 (dd, 1H, H-1’a, J1’a-1’b = 11.1, J1’a-2 = 8.7), 3.49 

(dd, 1H, H-2, J2-1’b = 4.2), 3.65 (dd, 1H, H-1’b), 4.50 (d, 1H, H-3, J3-4 = 5.4), 4.63 (brs, 2H, 

OH, NH), 4.76 (t, 1H, H-4). 
13

C NMR (75.4 MHz, CDCl3), δ: 24.0 (-C(CH3)2), 26.3                

(-C(CH3)2), 51.3 (C-5), 59.5 (C-1’), 66.5 (C-2), 81.0 (C-4), 82.7 (C-3), 111.6 (-C(CH3)2). 

HRMS (ESI) m/z: calcd for C8H16NO3: 174.1125 [M+H]
+
; found 174.1121. 
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(2S,3S,4R)-N-Benzyl-2-hydroxymethyl-3,4-O-isopropyliden-pyrrolidine-3,4-diol (2) 

To a solution of 8 (125 mg, 0.72 mmol) in anhydrous 1,2-dichloroethane (7.5 mL), 

benzaldehyde (0.15 mL, 1.44 mmol) and NaBH(OAc)3 (320 mg, 1.51 mmol) were 

successively added. The mixture was stirred at r.t. for 3 h and then, sat. aq. sol. of 

NaHCO3 (15 mL) was added. The aqueous phase was extracted  (× 4) with EtOAc. The 

organic layers were dried with Na2SO4, filtered and evaporated. The residue was 

purified by chromatography column on silica gel (eluent: Et2O/cyclohexane – 

3/1→Et2O) to produce 2 (128 mg, 68%) as a pale yellow oil. αD
28

 + 41.3 (c 0.94, CH2Cl2). 
1
H NMR (300 MHz, CDCl3), δ: 1.32 (s, 3H,-C(CH3)2), 1.54 (s, 3H, -C(CH3)2), 2.39 (brs, 1H, 

OH), 2.61-2.66 (m, 1H, H-5a), 2.94-2.97 (m, 1H, H-2), 3.17-3.23 (m, 1H, H-5b), 3.57 (dd, 

1H, H-1’a, J1’a-1’b = 11.1, J1’a-2 = 3.6),  3.60 (d, 1H, CH2Ph, JH-H = 12.9), 3.65 (dd, 1H, H-1’b, 

J1’b-2 = 3.9), 3.98 (d, 1H, CH2Ph), 4.56-4.63 (m, 2H, H-3, H-4), 7.23-7.36 (m, 5H, H-

arom.). 
13

C NMR (75.4 MHz, CDCl3), δ: 25.0 (-C(CH3)2), 27.4 (-C(CH3)2), 58.3 (CH2Ph), 

58.6 (C-5), 59.6 (C-1’), 70.1 (C-2), 78.6, 82.7 (C-3, C-4), 112.9 (-C(CH3)2), 127.5, 128.6, 

128.9, 138.5 (aromatic carbons). HRMS (ESI) m/z: calcd for C15H22NO3: 264.1594 

[M+H]
+
; found 264.1594. 

 

(2S,3S,4R)-N-Isopropyl-2-hydroxymethyl-3,4-O-isopropyliden-pyrrolidine-3,4-diol 

(3) 

To a solution of compound 8 (121 mg, 0.70 mmol) in MeOH (1.5 mL), acetone (0.26 

mL, 3.49 mmol) and Pd/C 10% (cat.) were added. The reaction mixture was stirred 

under H2 overnight. The catalyst was filtered through celite and washed with MeOH. 

The solvent was evaporated and the residue was purified by chromatography column 

on silica gel (eluent: CH2Cl2/MeOH – 30/1→20/1) to produce 3 (113 mg, 75%) as a pale 

yellow oil. αD
27

 + 13.3 (c 0.79, CH2Cl2). 
1
H NMR (300 MHz, CDCl3), δ: 1.00 (d, 3H, CH3, JH-

H = 6.3), 1.09 (d, 3H, CH3), 1.31 (s, 3H,-C(CH3)2), 1.50 (s, 3H, C(CH3)2), 2.32 (brs, 1H, OH), 

2.77 (dd, 1H, H-5a, J5a-5b = 10.2, J5a-4 = 4.8), 2.97-3.06 (m, 2H, (CH3)2CH, H-2), 3.18 (dd, 

1H, H-5b, J5b-4 = 6.0), 3.52 (dd, 1H, H-1’a, J1’a-1’b = 10.8, J1’a-2 = 2.7), 3.63 (dd, 1H, H-1’b, 

J1’b-2 = 3.6), 4.52 (dd, 1H, H-3, J = 6.6, J = 3.0), 4.56-4.62 (m, 1H, H-4). 
13

C NMR (75.4 

MHz, CDCl3), δ: 15.7 (CH3), 22.3 (CH3), 25.3 (-C(CH3)2), 27.6 (-C(CH3)2), 48.0 ((CH3)2CH), 

51.6 (C-5), 59.6 (C-1’), 65.8 (C-2), 78.4 (C-4), 83.0 (C-3), 112.5 (-C(CH3)2). HRMS (ESI) 

m/z: calcd for C11H22NO3: 216.1594 [M+H]
+
; found 216.1589. 

 

(2S,3R,4S)-N-terc-Butoxycarbonyl-2-hydroxymethyl-3,4-O-isopropyliden-

pyrrolidine-3,4-diol (10) 

To a solution of compound 9
[11]

 (2.44 g, 9.28 mmol) in MeOH (70 mL), Boc2O (2.02 

g, 18.6 mmol) and Pd/C 10% (0.63 g) were added. The reaction mixture was stirred 

under H2 for 3 h. The catalyst was filtered through celite and washed with MeOH. The 

solvent was evaporated and the residue was purified by chromatography column on 

silica gel (eluent: EtOAc/cyclohexane – 1/2) to give 10 (2.18 g, 86%) as a colourless oil. 

αD
24

 +41.8 (c 1.00, CH2Cl2). NMR and IR data are in accordance with those of its 
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enantiomer.
[11]

 HRMS (ESI) m/z: calcd for C13H23NO5Na: 296.1468 [M+Na]
+
; found 

296.1465. 

(2S,3R,4S)-N-Methyl-2-hydroxymethyl-3,4-O-isopropyliden-pyrrolidine-3,4-diol 

(4) 

To a suspension of LiAlH4 (206 mg, 5.43 mmol) in anhydrous THF (11 mL) at 0   C, a 

solution of 10 (292.6 mg, 1.09 mmol) in anhydrous THF (11 mL) was added. The 

mixture was heated at reflux for 2.5 h and then cooled at 0   C. Diethyl ether and sat. 

aq. sol. of Na2SO4 were successively added and the mixture was filtered through celite 

and washed with CH2Cl2. The solvent was evaporated and the residue was purified by 

chromatography column on silica gel (eluent: EtOAc/MeOH– 7/1→5:1) to produce 4 

(184.2 mg, 91%) as a pale yellow solid. αD
27

 + 72.5 (c 0.8, CH2Cl2). 
1
H NMR (300 MHz, 

CDCl3), δ: 1.30 (s, 3H, -C(CH3)2), 1.51 (s, 3H, -C(CH3)2), 2.06-2.13 (m, 1H, H-2), 2.19 (dd, 

1H, H-5a, J5a-5b = 11.4, J5a-4 = 4.5), 2.32 (s, 3H, N-CH3), 3.25 (d, 1H,  H-5b), 3.42 (brs, 1H, 

OH), 3.84 (dd, 1H, H-1’a, J1’a-1’b = 11.7, J1’a-2 = 6.0), 3.91 (dd, 1H, H-1’b, J1’b-2 = 3.6), 4.61 

(dd, 1H, H-4, J4-3 = 6.3), 4.70 (dd, 1H, H-3, J3-2 = 5.1). 
13

C NMR (75.4 MHz, CDCl3), δ: 24.3 

(-C(CH3)2), 25.9 (-C(CH3)2), 40.3 (N-CH3), 59.7 (C-1’), 61.7 (C-5), 69.7 (C-2), 78.0 (C-4), 

81.8 (C-3), 111.3 (-C(CH3)2). HRMS (ESI) m/z: calcd for C9H18NO3: 188.1281 [M+H]
+
; 

found 188.1277. 

(6S,7R,7aS)-6,7-O-Isopropyliden-tetrahydropyrrolo[1,2-c]-oxazol-3-ona-6,7-diol 

(11) 

To a solution of 10 (1.06 g, 3.89 mmol) in anhydrous pyridine (15 mL) at 0   C, TsCl 

(1.89 g, 9.74 mmol) was slowly added. After stirring at r.t. overnight, the solvent was 

evaporated and the residue was purified by chromatography column on silica gel 

(eluent: EtOAc/cyclohexane – 1/1→2/1) to produce 11 (713 mg, 92%) as a white solid. 

αD
22

+25.6 (c 0.82, CH2Cl2). HRMS (ESI) m/z: calcd for C9H13NO4Na: 222.0737 [M+Na]
+
; 

found 222.0735. NMR and IR data are in accordance with those of its enantiomer.
[10]

  

(2S,3R,4S)-2-Diphenylphosphinomethyl-3,4-O-isopropyliden-pyrrolidine-3,4-diol 

(12) 

To a solution of 11 (147 mg, 0.74 mmol) in anhydrous THF (6.0 mL) at 0   C, KPPh2 

(0.5 M in THF, 1.8 mL, 0.89 mmol) was slowly added. The mixture was heated at reflux 

for 2 h and then cooled to r.t. IRA-120H
+
 was added and the resulting mixture was 

filtered through celite and washed with CH2Cl2. The solvent was evaporated and the 

residue was purified by chromatography column on silica gel (eluent: Et2O/acetone – 

10/1, 1% Et3N) to produce 12 (26 mg, 89%) as a colourless oil. αD
22

 +63.2 (c 0.57, 

CH2Cl2). 
31

P NMR (121.5 MHz, CDCl3), δ: -20.9. 
1
H NMR (300 MHz, CDCl3), δ: 1.31 (s, 3H, 

-C(CH3)2), 1.46 (s, 3H, -C(CH3)2), 1.95 (brs, 1H, NH), 2.37 (dd, 1H, H-1’a, J1’a-1’b = 13.2, J1’a-

2 = 8.1), 2.43 (dd, 1H, H-1’b, J1’b-2 = 6.3), 2.50-2.62 (m, 2H, H-2, H-5a), 3.02 (d, 1H, H-5b, 

J5b-5a = 13.5), 4.57 (dd, 1H, H-3, J3-4 = 5.7, J3-2 = 3.9), 4.61-4.64 (m, 1H, H-4), 7.29-7.35 (m, 

6H, H-arom.), 7.42-7.53 (m, 4H, H-arom.). 
13

C NMR (75.4 MHz, CDCl3), δ: 24.1 (-

C(CH3)2), 26.0 (-C(CH3)2), 27.3 (d, JC-P = 13.2, C-1’), 53.2 (C-5), 61.5 (d, JC-P = 16.3, C-2), 

81.8 (d, JC-P = 4.5, C-3), 82.2 (C-4), 110.6 (-C(CH3)2), 128.4 (C-arom.), 128.5 (d, JC-P = 8.4, 
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C-arom.), 128.6 (d, JC-P = 6.7, C-arom.), 128.9 (C-arom.), 132.8 (d, JC-P = 19.1, C-arom.), 

133.1 (d, JC-P = 19.3, C-arom.), 138.6 (d, JC-P= 13.0, Carom-P), 138.9 (d,  JC-P = 13.0, Carom-P). 

HRMS (ESI) m/z: calcd for C20H25NO2P: 342.1617 [M+H]
+
; found 342.1609. 

5.2.4.2. General procedure for the preparation of the amino-phosphite ligands 

L49–L52a–d and L55a–b 

The corresponding phosphorochloridite (1.1 mmol) produced in situ was dissolved 

in toluene (5 mL) and pyridine (3.8 mmol, 0.3 mL) was added. The corresponding 

alcohols 1–4 and 6 (1 mmol) was azeotropically dried with toluene (3x1 mL) and 

dissolved in toluene (5 mL) to which pyridine (3.8 mmol, 0.3 mL) was added. The 

solution was transferred slowly at 0 
o
C to the solution of the phosphorochloridite. The 

reaction mixture was stirred overnight at 80 
o
C, and the pyridine salts were removed 

by filtration. Evaporation of the solvent gave a white foam, which was purified by flash 

chromatography in alumina (eluent: toluene/triethylamine – 100/1) to produce the 

corresponding ligand as a white solid. 

L49a: Yield: 72.5 mg (28%). 
31

P NMR (161.9 MHz, C6D6), δ: 132.9. 
1
H NMR (400 

MHz, C6D6), δ: 0.52 (s, 9H, CH3, SiMe3), 0.54 (s, 9H, CH3, SiMe3), 1.17 (s, 3H, CH3), 1.46 

(s, 3H, CH3), 1.96 (s, 3H, CH3, NMe), 2.37 (dd, 1H, CH2-N, 
2
JH-H =9.6 Hz, 

3
JH-H =4.8 Hz), 

2.47 (m, 1H, CH), 2.89 (dd, 1H, CH2-N, 
2
JH-H =9.6 Hz, 

3
JH-H =6.1 Hz), 3.45 (m, 1H, CH2-OP), 

4.11 (m, 1H, CH2-OP), 4.33 (m, 1H, CH-O), 4.53 (m, 1H, CH-O), 6.85 (m, 2H, CH=), 7.01 

(m, 1H, CH=), 7.04-7.13 (m, 1H, CH=), 7.24 (d, 1H, CH=, 
3
JH-H =8.5 Hz), 7.36 (d, 1H, CH=, 

3
JH-H =8.5 Hz), 7.69 (d, 2H, CH=, 

3
JH-H =8.5 Hz), 8.12 (d, 2H, CH=, 

3
JH-H =8.5 Hz). 

13
C NMR 

(100.6 MHz, C6D6), δ: -0.2 (CH3, SiMe3), -0.1 (CH3, SiMe3), 1.0 (CH3, SiMe3), 24.9 (CH3), 

27.2 (CH3), 39.3 (CH3, NMe), 61.8 (CH2-N), 62.3 (CH2-OP), 70.1 (CH), 77.8 (CH-O), 82.3 

(CH-O), 112.5 (C), 122.5 – 153.1 (aromatic carbons). TOF-MS (ESI+): m/z: calcd for 

C35H44NO5PSi2: 668.2388 [M+Na]
+
; found 668.2390. 

L49b: Yield: 100.0 mg (40%). 
31

P NMR (161.9 MHz, C6D6), δ: 136.5. 
1
H NMR (400 

MHz, C6D6), δ: 0.50 (s, 9H, CH3, SiMe3), 0.51 (s, 9H, CH3, SiMe3), 1.10 (s, 3H, CH3), 1.47 

(s, 3H, CH3), 2.02 (s, 3H, CH3, NMe) 2.42 (dd, 1H, CH2-N, 
2
JH-H =9.6 Hz, 

3
JH-H =4.6 Hz), 

2.61 (m, 1H, CH), 2.95 (m, 1H, CH2-N), 3.53 (m, 1H, CH2-OP), 4.09 (m, 1H, CH2-OP), 4.24 

(m, 1H, CH-O), 4.32 (m, 1H, CH-O), 6.86 (m, 2H, CH=), 7.02 (m, 1H, CH=), 7.12 (m, 1H, 

CH=), 7.24 (d, 1H, CH=, 
3
JH-H =8.5 Hz), 7.33 (d, 1H, CH=, 

3
JH-H =8.5 Hz), 7.69 (d, 2H, CH=, 

3
JH-H =8.2 Hz), 8.10 (d, 2H, CH=, 

3
JH-H =8.2 Hz). 

13
C NMR (100.6 MHz, C6D6), δ: -0.2 (CH3, 

SiMe3), -0.2 (CH3, SiMe3), 1.1 (CH3, SiMe3), 24.9 (CH3), 27.2 (CH3), 39.5 (CH3, NMe), 61.9 

(CH2-N), 64.1 (CH2-OP), 70.3 (CH), 77.9 (CH-O), 82.4 (CH-O), 112.6 (C), 122.3 – 152.9 

(aromatic carbons). TOF-MS (ESI+): m/z: calcd for C35H44NO5PSi2: 668.2388 [M+Na]
+
; 

found 668.2387. 

L49c: Yield: 71.5 mg (22%). 
31

P NMR (161.9 MHz, C6D6), δ: 129.6. 
1
H NMR (400 MHz, 

C6D6), δ: 1.98 (s, 3H, CH3), 2.11 (m, 2H, CH2), 2.28 (s, 3H, CH3) 2.31 (m, 6H, CH2), 2.38 (s, 

18H, CH3, 
t
Bu), 2.92 (s, 3H, CH3, NMe), 3.07 (m, 1H, CH2), 3.35 (m, 9H, CH2, CH, CH2-N), 

3.77 (dd, 1H, CH2-N, 
2
JH-H =9.5 Hz, 

3
JH-H =6.1 Hz), 4.31 (m, 1H, CH2-OP), 4.86 (m, 1H, CH2-

OP), 5.18 (m, 1H, CH-O), 5.34 (m, 1H, CH-O), 7.96 (m, 2H, CH=). 
13

C NMR (100.6 MHz, 
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C6D6), δ: 23.6 (CH2), 23.8 (CH2), 23.9 (CH2), 25.7 (CH2), 28.0 (CH2), 28.1 (CH2), 28.3 (CH3), 

30.3 (CH3), 30.4 (CH2), 31.7 (CH3, 
t
Bu), 31.9 (CH3, 

t
Bu), 32.0 (CH3, 

t
Bu), 35.3 (C, 

t
Bu), 35.4 

(C, 
t
Bu), 40.2 (CH3, NMe), 62.7 (CH2-N), 63.5 (CH2-OP), 71.0 (CH), 78.9 (CH-O), 83.3 (CH-

O), 113.3 (C), 126.1 – 139.3 (aromatic carbons). TOF-MS (ESI+): m/z: calcd for 

C37H52NO5P: 644.3475 [M+Na]
+
; found 644.3479. 

L49d: Yield: 118.4 mg (41%). 
31

P NMR (161.9 MHz, C6D6), δ: 127.5. 
1
H NMR (400 

MHz, C6D6), δ: 1.14 (s, 3H, CH3), 1.43 (s, 3H, CH3), 1.54 (s, 18H, CH3, 
t
Bu) 1.64 (s, 3H, 

CH3), 1.74 (s, 3H, CH3), 2.02 (s, 3H, CH3), 2.04 (s, 3H, CH3), 2.07 (s, 3H, CH3, NMe), 2.43 

(dd, 1H, CH2-N, 
2
JH-H =9.6 Hz, 

3
JH-H =4.7 Hz), 2.58 (dd, 1H, CH, 

2
JH-H =8.6 Hz, 

3
JH-H =4.0 Hz), 

2.93 (dd, 1H, CH2-N, 
2
JH-H =9.6 Hz, 

3
JH-H =6.1 Hz), 3.49 (m, 1H, CH2-OP), 4.10 (m, 1H, CH2-

OP), 4.34 (m, 1H, CH-O), 4.53 (m, 1H, CH-O), 7.17 (m, 1H, CH=), 7.18 (m, 1H, CH=). 
13

C 

NMR (100.6 MHz, C6D6), δ: 16.2 (CH3), 16.4 (CH3), 20.0 (CH3), 20.1 (CH3), 24.9 (CH3), 

27.2 (CH3), 29.8 (CH3), 31.2 (CH3, 
t
Bu), 31.3 (CH3, 

t
Bu), 34.6 (C, 

t
Bu), 34.7 (C, 

t
Bu), 39.3 

(CH3, NMe), 61.9 (CH2-N), 62.4 (CH2-OP), 70.3 (CH), 77.9 (CH-O), 82.5 (CH-O), 112.4 (C), 

125.3 – 146.2 (aromatic carbons). TOF-MS (ESI+): m/z: calcd for C33H48NO5P: 592.3162 

[M+Na]
+
; found 592.3165. 

L50a: Yield: 167.2 mg (50%). 
31

P NMR (161.9 MHz, C6D6), δ: 133.6. 
1
H NMR (400 

MHz, C6D6), δ: 0.47 (s, 9H, CH3, SiMe3), 0.48 (s, 9H, CH3, SiMe3), 1.16 (s, 3H, CH3), 1.47 

(s, 3H, CH3), 2.51 (dd, 1H, CH2-N, 
2
JH-H =10.3 Hz, 

3
JH-H =3.6 Hz), 2.76 (dd, 1H, CH2-N, 

2
JH-H 

=10.3 Hz, 
3
JH-H =3.6 Hz) 2.92 (m, 1H, CH), 3.22 (d, 1H, CH2Ph, 

2
JH-H =13.3 Hz), 3.36 (m, 

1H, CH2-OP), 3.64 (d, 1H, CH2Ph, 
2
JH-H =13.3 Hz),  4.07 (m, 1H, CH2-OP), 4.27 (m, 1H, CH-

O), 4.59 (dd, 1H, CH-O, 
2
JH-H =6.6 Hz, 

3
JH-H =2.6 Hz), 6.84 (m, 2H, CH=), 7.03 (m, 7H, 

CH=), 7.20 (d, 1H, CH=, 
3
JH-H =8.6 Hz), 7.32 (d, 1H, CH=, 

3
JH-H =8.6 Hz), 7.65 (d, 2H, CH=, 

3
JH-H =8.4 Hz), 8.07 (d, 2H, CH=, 

3
JH-H =4.7 Hz). 

13
C NMR (100.6 MHz, C6D6), δ: -0.4 (CH3, 

SiMe3), -0.1 (CH3, SiMe3), 0.0 (CH3, SiMe3), 24.9 (CH3), 27.2 (CH3), 56.9 (CH2Ph), 58.5 

(CH2-N), 62.8 (CH2-OP), 67.9 (CH), 78.6 (CH-O), 82.7 (CH-O), 112.1 (C), 122.4 – 153.0 

(aromatic carbons). TOF-MS (ESI+): m/z: calcd for C41H48NO5PSi2: 744.2701 [M+Na]
+
; 

found 744.2703. 

L51a: Yield: 148.9 mg (47%). 
31

P NMR (161.9 MHz, C6D6), δ: 134.24. 
1
H NMR (400 

MHz, C6D6), δ: 0.49 (s, 9H, CH3, SiMe3), 0.51 (s, 9H, CH3, SiMe3), 0.69 (d, 3H, CH3, 
i
Pr, 

2
JH-

H =6.3 Hz) 0.78 (d, 3H, CH3, 
i
Pr, 

2
JH-H =6.3 Hz), 1.21 (s, 3H, CH3), 1.46 (s, 3H, CH3), 2.63 

(m, 3H, CH2-N, CH, 
i
Pr), 3.11 (m, 1H, CH), 3.38 (m, 1H, CH2-OP), 3.97 (m, 1H, CH2-OP), 

4.35 (m, 1H, CH-O), 4.60 (dd, 1H, CH-O, 
2
JH-H =6.5 Hz, 

3
JH-H =1.2 Hz), 6.82 (t, 2H, CH=, 

3
JH-

H =11.3 Hz), 7.08 (m, 2H, CH=), 7.19 (d, 1H, CH=, 
3
JH-H =8.6 Hz), 7.29 (d, 1H, CH=, 

3
JH-H 

=8.5 Hz), 7.65 (m, 2H, CH=), 8.08 (d, 2H, CH=, 
3
JH-H =9.3 Hz). 

13
C NMR (100.6 MHz, C6D6), 

δ: -0.3 (CH3, SiMe3), -0.2 (CH3, SiMe3), -0.1 (CH3, SiMe3), 17.0 (CH3, 
i
Pr), 21.8 (CH3, 

i
Pr), 

25.2 (CH3), 27.3 (CH3), 47.9 (CH, 
i
Pr), 52.8 (CH2-N), 62.8 (CH2-OP), 64.6 (CH), 78.5 (CH-

O), 82.7 (CH-O), 111.7 (C), 122.4 – 153.0 (aromatic carbons). TOF-MS (ESI+): m/z: calcd 

for C37H48NO5PSi2: 696.2701 [M+Na]
+
; found 696.2700. 

L52a: Yield: 71 mg (27%). 
31

P NMR (161.9 MHz, C6D6), δ: 135.6. 
1
H NMR (400 MHz, 

C6D6), δ: 0.55 (s, 9H, CH3, SiMe3), 0.57 (s, 9H, CH3, SiMe3), 1.14 (s, 3H, CH3), 1.37 (s, 3H, 
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CH3), 1.55 (dd, 1H, CH2-N, 
2
JH-H =10.8 Hz, 

3
JH-H =4.6 Hz), 1.87 (s, 3H, CH3, NMe), 2.01 (m, 

1H, CH), 2.88 (d, 1H, CH2-N,
 2

JH-H =10.8 Hz), 3.59 (m, 1H, CH2-OP), 4.07 (m, 1H, CH-O), 

4.28 (m, 1H, CH-O), 4.52 (m, 1H, CH2-OP), 6.84 (m, 2H, CH=), 7.04 (m, 2H, CH=), 7.29 

(dd, 2H, CH=, 
3
JH-H =15.1 Hz, 

3
JH-H =8.4 Hz), 7.68 (m, 2H, CH=), 8.12 (d, 2H, CH=, 

3
JH-H 

=5.2 Hz). 
13

C NMR (100.6 MHz, C6D6), δ: -0.2 (CH3, SiMe3), -0.1 (CH3, SiMe3), 1.1 (CH3, 

SiMe3), 25.1 (CH3), 26.0 (CH3), 40.2 (CH3, NMe), 62.5 (CH2-N), 62.7 (CH2-OP), 69.4 (CH), 

77.9 (CH-O), 80.2 (CH-O), 110.8 (C), 122.3 – 153.3 (aromatic carbons). TOF-MS (ESI+): 

m/z: calcd for C35H44NO5PSi2: 668.2388 [M+Na]
+
; found 668.2390. 

L52b: Yield: 112.9 mg (43%). 
31

P NMR (161.9 MHz, C6D6), δ: 137.7. 
1
H NMR (400 

MHz, C6D6), δ: 0.54 (s, 9H, CH3, SiMe3), 0.55 (s, 9H, CH3, SiMe3), 1.14 (s, 3H, CH3), 1.35 

(s, 3H, CH3), 1.50 (dd, 1H, CH2-N, 
2
JH-H =10.8 Hz, 

3
JH-H =4.6 Hz), 1.66 (s, 3H, CH3, NMe), 

2.00 (m, 1H, CH), 2.80 (d, 
2
JH-H =10.8 Hz, 1H, CH2-N), 4.03 (m, 3H, CH2-OP, CH-O), 4.36 

(m, 1H, CH-O), 6.83 (m, 2H, CH=), 7.08 (m, 2H, CH=), 7.25 (m, 2H, CH=), 7.65 (m, 2H, 

CH=), 8.06 (s, 2H, CH=). 
13

C NMR (100.6 MHz, C6D6), δ: -0.2 (CH3, SiMe3), -0.1 (CH3, 

SiMe3), 0.00 (CH3, SiMe3), 1.0 (CH3, SiMe3), 25.1 (CH3), 25.9 (CH3), 39.8 (CH3, NMe), 

62.2 (CH2-N), 62.6 (CH2-OP), 69.8 (CH), 77.9 (CH-O), 80.1 (CH-O), 110.8 (C), 122.2 – 

153.0 (aromatic carbons). TOF-MS (ESI+): m/z: calcd for C35H44NO5PSi2: 668.2388 

[M+Na]
+
; found 668.2386. 

L55a: Yield: 51.9 mg (20%). 
31

P NMR (161.9 MHz, C6D6), δ: 142.2. 
1
H NMR (400 

MHz, C6D6), δ: 0.43 (s, 3H, CH3, SiMe3), 0.46 (s, 15H, CH3, SiMe3), 1.09 (s, 3H, CH3), 1.46 

(s, 3H, CH3), 1.57 (m, 2H, CH2-CHOP), 2.67 (dd, 1H, CH2, 
2
JH-H =13.3 Hz, 

3
JH-H =5.6 Hz), 

2.78 (dd, 1H, CH2, 
2
JH-H =11.4 Hz, 

3
JH-H =4.9 Hz)  2.90 (d, 1H, CH2, 

2
JH-H =13.3 Hz), 3.15 (m, 

2H, CH2, CH), 4.21 (m, 2H, CH-O), 4.37 (m, 1H, CH-OP),  6.81 (m, 2H, CH=), 7.03 (m, 2H, 

CH=), 7.18 (d, 1H, CH=, 
3
JH-H =7.5 Hz), 7.30 (d, 1H, CH=, 

3
JH-H =10.3 Hz), 7.66 (m, 2H, 

CH=), 8.06 (s, 1H, CH=), 8.08 (s, 1H, CH=). 
13

C NMR (100.6 MHz, C6D6), δ: -0.2 (CH3, 

SiMe3), 0.0 (CH3, SiMe3), 25.1 (CH3), 26.8 (CH3), 37.0 (CH2-CHOP), 59.5 (CH2), 61.3 (CH2), 

70.5 (CH), 78.5 (CH-OP), 81.1 (CH-O), 84.9 (CH-O), 111.2 (C), 122.3 – 157.2 (aromatic 

carbons). TOF-MS (ESI+): m/z: calcd for C36H44NO5PSi2: 680.2388 [M+Na]
+
; found 

680.2389. 

L55b: Yield: 53.2 mg (20%). 
31

P NMR (161.9 MHz, C6D6), δ: 141.0. 
1
H NMR (400 

MHz, C6D6), δ: 0.45 (s, 9H, CH3, SiMe3), 0.47 (s, 9H, CH3, SiMe3), 1.15 (s, 3H, CH3), 1.51 

(m, 4H, CH3, CH2-CHOP), 1.68 (m, 1H, CH2-CHOP), 2.65 (dd, 1H, CH2, 
2
JH-H =13.1 Hz, 

3
JH-H 

=5.8 Hz), 2.84 (m, 2H, CH2, CH2),  3.07 (t, 1H, CH, 
2
JH-H =8.4 Hz), 3.18 (m, 1H, CH2), 4.19 

(d, 1H, CH-O, 
2
JH-H =6.2 Hz), 4.30 (m, 1H, CH-O), 4.39 (m, 1H, CH-OP),  6.82 (m, 2H, 

CH=), 7.03 (m, 2H, CH=), 7.21 (d, 1H, CH=, 
3
JH-H =8.5 Hz), 7.33 (d, 1H, CH=, 

3
JH-H =8.5 Hz), 

7.65 (d, 2H, CH=, 
3
JH-H =8.0 Hz), 8.07 (s, 1H, CH=), 8.08 (s, 1H, CH=). 

13
C NMR (100.6 

MHz, C6D6), δ: -0.2 (CH3, SiMe3), 0.0 (CH3, SiMe3), 25.2 (CH3), 26.8 (CH3), 37.8 (CH2-

CHOP), 59.5 (CH2), 60.4 (CH2), 70.6 (CH), 78.4 (CH-OP), 81.2 (CH-O), 84.9 (CH-O), 111.2 

(C), 122.3 – 152.3 (aromatic carbons). TOF-MS (ESI+): m/z: calcd for C36H44NO5PSi2: 

680.2388 [M+Na]
+
; found 680.2391. 
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5.2.4.3. Procedure for the preparation of the amino-phosphinite ligand L53 

Pyrrolidine-hydroxyl compound 4 (93.1 mg, 0.5mmol) and DMAP (6.7 mg, 0.055 

mmol) were dissolved in toluene (1 mL), and triethylamine was added (0.09 mL, 0.65 

mmol) at r.t, followed by addition of the corresponding chlorophosphine (0.55 mmol) 

via syringe. The reaction was stirred for 1 h at r.t. The solvent was removed in vacuo, 

and the product was purified by flash chromatography on alumina (toluene/NEt3 = 

100/1) to produce the corresponding ligand as an oil. Yield: 30 mg (15%). 
31

P NMR 

(161.9 MHz, C6D6), δ: 116.1. 
1
H NMR (400 MHz, C6D6), δ: 1.00 (s, 3H, CH3), 1.33 (s, 3H, 

CH3), 1.97 (s, 3H, CH3-N), 2.34 (m, 1H, CH2-N), 2.60 (m, 1H, CH-N), 2.79 (m, 1H, CH2-N), 

3.67 (m, 2H, CH2-O), 4.12 (m, 1H, CH-O), 4.32 (m, 1H, CH-O), 6.86 (m, 7H, CH=), 7.41 

(m, 2H, CH=), 7.83 (m, 1H, CH=). 
13

C NMR (100.6 MHz, C6D6), δ: 24.0 (CH3), 26.4 (CH3), 

38.6 (CH3-N), 58.3 (CH2-O), 61.1 (CH2-N), 70.9 (CH-N), 77.0 (CH-O), 81.5 (CH-O), 111.8 

(CMe2), 126.6 – 130.9 (aromatic carbons). TOF-MS (ESI+): m/z: calcd for C21H26NO3P: 

394.1543 [M-Na]
+
; found 394.1538.  

5.2.4.4. Preparation of the amino-phosphine ligand (2S,3R,4S)-N-Methyl-2-

diphenylphosphinomethyl-3,4-O-isopropyliden-pyrrolidine-3,4-diol (L54)  

To a solution of 12 (94 mg, 0.28 mmol) in anhydrous CH2Cl2 (1.5 mL) at 0   C, Et3N 

(43 µL, 0.30 mmol) and ClCO2CH3 (24 µL, 0.30 mmol) were successively added. The 

mixture was stirred at 0   C for 3 h. HCl (0.1 M) (6 mL) was added and the aqueous 

phase was extracted (× 3) with CH2Cl2. The organic layers were washed with sat. aq. 

sol. of NaHCO3, dried with Na2SO4, filtered and evaporated. The resulting crude was 

dissolved in anhydrous THF (2 mL) and added to a suspension of LiAlH4 (32 mg, 0.83 

mmol) in anhydrous THF (1.0 mL) at 0   C. The reaction mixture was heated at reflux for 

2 h and then cooled at 0   C. Diethyl ether and sat. aq. sol. of Na2SO4 were successively 

added and the mixture was filtered through celite and washed with CH2Cl2. The solvent 

was evaporated and the residue was purified by chromatography column on silica gel 

(eluent: EtOAc/cyclohexane – 1/2) to produce L54 (81 mg, 82%) as a colourless oil. αD
24

 

+167.5 (0.58, CH2Cl2). 
31

P NMR (202 MHz, C6D6), δ: -21.1. 
1
H NMR (500 MHz, C6D6), δ: 

1.27 (s, 3H, -C(CH3)2), 1.59 (s, 3H,-C(CH3)2), 2.02 (s, 3H, N-CH3), 1.54 (dd, 1H, H-5a, J5a-5b 

= 10.5, J5a-4 = 5.0), 1.71-1.76 (m, 1H, H-2), 2.44 (dt, 1H, H-1’a, J1’a-1’b = 13.5, J1’a-2 = J1’a-P = 

2.5), 2.72-2.77 (m, 1H, H-1’b), 3.03 (d, H-5b, 1H,), 4.18 (dd, 1H, H-4, J4-3 = 6.0), 4.51 (dd, 

1H, H-3, J3-2 = 4.5), 7.01-7.13 (m, 6H, H-arom.), 7.49-7.52 (m, 2H, H-arom.), 7.54-7.57 

(m, 2H, H-arom.). 
13

C NMR (125.7 MHz, C6D6), δ: 25.7 (-C(CH3)2), 26.6 (-C(CH3)2), 26.7 

(d, JC-P = 13.9, C-1’), 39.6 (N-CH3), 62.7 (C-5), 68.1 (d, JC-P = 20.6, C-2), 78.3 (C-4), 81.5 (d, 

JC-P = 3.6, C-3), 111.2 (-C(CH3)2), 128.4 (C-arom.), 128.6 (d, JC-P = 6.2, C-arom.), 128.8 (d, 

JC-P = 6.8, C-arom.), 129.0 (C-arom.), 132.9 (d, JC-P = 18.1, C-arom.), 133.6 (d, JC-P = 19.8, 

C-arom.), 139.7 (d, JC-P = 15.0, Carom-P), 140.4 (d, JC-P = 13.4, Carom-P). HRMS (ESI) m/z: 

calcd for C21H27NO2P: 356.1774 [M+H]
+
; found 356.1768. 
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5.2.4.5. General procedure for the preparation of [Pd(η
3
-allyl)(P-N)]BF4 (36–39) 

The ligand (0.05 mmol) and the complex [Pd(μ-Cl)(η
3
-1,3-allyl)]2 (0.025 mmol) were 

dissolved in CD2Cl2 (1.5 ml) at rt under argon. AgBF4 (9.8 mg, 0.05 mmol) was added 

after 30 min, and the mixture was stirred for 30 min. The mixture was then filtered 

through Celite under argon, and the resulting solutions were analyzed by NMR 

spectroscopy. The complexes were precipitated as pale yellow solids by adding 

hexane. 

[Pd(η
3
-1,3-cyclohexenyl)(L49a)]BF4 (36). Yield: 37.7 mg (82%). MS HR-ESI [found 

832.2227, C41H53NO5PPdSi2 (M-BF4)
+
 requires 832.2229]. Major isomer (89%): 

31
P NMR 

(161.9 MHz, CD2Cl2, 298 K), δ: 140.7 (s, 1P). 
1
H NMR (400 MHz, CD2Cl2, 298 K), δ: 0.51 

(s, 9H, CH3, CH3-Si), 0.53 (s, 9H, CH3, CH3-Si), 0.88-2.21 (m, 6H, CH2), 1.41 (s, 3H, CH3), 

1.57 (s, 3H, CH3), 3.12 (s, 3H, CH3-N), 3.17 (m, 1H, CH), 3.37 (b, 1H, CH allyl trans to N), 

3.44 (bd, 1H, CH2-N, J= 12.4 Hz), 3.99 (dd, 1H, CH2-N, 
2
JH-H= 12.4 Hz, 

3
JH-H= 3.6 Hz), 4.42-

4.49 (b, 2H, CH2-O), 5.02 (m, 2H, CH-O), 5.41 (m, 1H, CH allyl central), 6.05 (m, 1H, CH 

allyl trans to P), 6.92 (d, 1H, CH=, 
3
JH-H= 8.0 Hz), 7.12 (d, 1H, CH=, 

3
JH-H= 8.4 Hz), 7.24 (m, 

1H, CH=), 7.31 (m, 1H, CH=), 7.47 (m, 1H, CH=), 7.55 (m, 1H, CH=), 7.98 (d, 1H, CH=, 
3
JH-

H= 8.0 Hz), 8.04 (d, 1H, CH=, 
3
JH-H= 8.0 Hz), 8.19 (s, 1H, CH=), 8.22 (s, 1H, CH=). 

13
C NMR 

(100.6 MHz, CD2Cl2, 298 K), δ: -0.1 (CH3-Si), 0.5 (CH3-Si), 19.9 (CH2), 24.4 (CH3), 26.0 

(CH3), 27.0 (CH2), 28.2 (b, CH2), 51.4 (CH3-N), 65.5 (d, CH2-O, JC-P= 6.1 Hz), 67.4 (d, CH 

allyl trans to N, JC-P= 8.4 Hz), 68.7 (CH2-N,), 75.2 (d, CH, JC-P= 2.3 Hz), 77.9 (CH-O), 79.8 

(CH-O), 106.1 (d, CH allyl trans to P, JC-P= 39.4 Hz), 113.6 (d, CH allyl central, JC-P= 6 Hz), 

114.7 (CMe2), 120.6-151.5 (aromatic carbons). Minor isomer (11%): 
31

P NMR (161.9 

MHz, CD2Cl2, 298 K), δ: 142.7 (s, 1P).
 1

H NMR (400 MHz, CD2Cl2, 298 K), δ: 0.46 (s, 9H, 

CH3, CH3-Si), 0.59 (s, 9H, CH3, CH3-Si), 0.88-2.21 (m, 6H, CH2), 1.36 (s, 3H, CH3), 1.56 (s, 

3H, CH3), 3.17 (m, 1H, CH), 3.22 (s, 3H, CH3-N), 3.37 (b, 1H, CH allyl trans to N), 3.44 

(bd, 1H, CH2-N, J= 12.4 Hz), 3.92 (dd, 1H, CH2-N, 
2
JH-H= 12.6 Hz, 

3
JH-H= 4.0 Hz), 4.42-4.51 

(b, 2H, CH2-O), 5.02 (m, 2H, CH-O), 5.83 (m, 1H, CH allyl central), 6.28 (m, 1H, CH allyl 

trans to P), 6.98 (d, 1H, CH=, 
3
JH-H= 8.0 Hz), 7.10 (d, 1H, CH=, 

3
JH-H= 8.0 Hz), 7.24 (m, 1H, 

CH=), 7.28 (m, 1H, CH=), 7.48 (m, 1H, CH=), 7.51 (m, 1H, CH=), 7.98 (m, 1H, CH=), 8.03 

(d, 1H, CH=, 
3
JH-H= 8.0 Hz), 8.16 (s, 1H, CH=), 8.20 (s, 1H, CH=). 

13
C NMR (100.6 MHz, 

CD2Cl2, 298 K), δ: 0.0 (CH3-Si), 0.5 (CH3-Si), 19.3 (CH2), 24.3 (CH3), 25.9 (CH3), 26.9 (CH2), 

29.6 (CH2), 50.9 (CH3-N), 65.3 (d, CH2-O, JC-P= 10.2 Hz), 66.5 (b, CH allyl trans to N), 69.6 

(CH2-N,), 75.02 (b, CH), 79.3 (CH-O), 80.8 (CH-O), 104.6 (d, CH allyl trans to P, JC-P= 42.6 

Hz), 113.9 (d, CH allyl central, JC-P= 8 Hz), 116.1 (CMe2), 120.6-151.5 (aromatic 

carbons). 

[Pd(η
3
-1,3-cyclohexenyl)(L49b)]BF4 (37). Yield: 35 mg (76%). MS HR-ESI [found 

832.2233, C41H53NO5PPdSi2 (M-BF4)
+
 requires 832.2229]. Major isomer (96%): 

31
P NMR 

(161.9 MHz, CD2Cl2, 298 K), δ: 142.5 (s, 1P). 
1
H NMR(400 MHz, CD2Cl2, 298 K), δ: 0.47 

(s, 9H, CH3, CH3-Si), 0.55 (s, 9H, CH3, CH3-Si), 0.88-1.17 (m, 3H, CH2), 1.35 (s, 3H, CH3), 

1.58 (s, 3H, CH3), 1.59 (m, 1H, CH2), 1.82 (m, 1H, CH2), 2.12 (m, 1H, CH2), 3.34 (s, 3H, 

CH3-N), 3.48 (m, 1H, CH), 3.59 (bd, 1H, CH2-N, J= 13.6 Hz), 3.67 (m, 1H, CH allyl trans to 
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N), 3.75 (dd, 1H, CH2-N, 
2
JH-H= 13.6 Hz, 

3
JH-H= 5.6 Hz), 4.15 (m, 1H, CH2-O), 4.45 (m, 1H, 

CH2-O), 4.71 (m, 1H, CH-O), 4.96 (m, 1H, CH-O), 5.49 (m, 1H, CH allyl central), 6.14 (m, 

1H, CH allyl trans to P), 6.94 (d, 1H, CH=, 
3
JH-H= 8.8 Hz), 7.13 (d, 1H, CH=, 

3
JH-H= 8.4 Hz), 

7.22 (m, 1H, CH=), 7.32 (m, 1H, CH=), 7.47 (m, 1H, CH=), 7.56 (m, 1H, CH=), 7.99 (d, 1H, 

CH=, 
3
JH-H= 8.4 Hz), 8.04 (d, 1H, CH=, 

3
JH-H= 8.0 Hz), 8.20 (s, 1H, CH=), 8.23 (s, 1H, CH=). 

13
C NMR (100.6 MHz, CD2Cl2, 298 K), δ: 0.8 (CH3-Si), 20.7 (CH2), 23.8 (CH3), 26.4 (CH3), 

27.4 (CH2), 28.5 (CH2), 53.4 (CH3-N), 66.4 (d, CH2-O, JC-P= 6.8 Hz), 67.2 (d, CH2-N, JC-P= 

8.3 Hz), 67.8 (b, CH allyl trans to N), 75.9 (CH), 80.0 (CH-O), 81.2 (CH-O), 106.6 (d, CH 

allyl trans to P, JC-P= 38.7 Hz), 113.4 (d, CH allyl central, JC-P= 10.7 Hz), 114.2 (CMe2), 

121.3-151.9 (aromatic carbons). Minor isomer (4%): 
31

P NMR (161.9 MHz, CD2Cl2, 298 

K), δ: 141.8 (s, 1P). 

[Pd(η
3
-1,3-diphenylallyl)(L49a)]BF4 (38). Yield: 40 mg (78%). MS HR-ESI [found 

944.2539, C50H57NO5PPdSi2 (M-BF4)
+
 requires 944.2542]. Major isomer (70%): 

31
P NMR 

(161.9 MHz, CD2Cl2, 298 K), δ: 145.0 (s, 1P). 
1
H NMR (400 MHz, CD2Cl2, 298 K), δ: 0.64 

(s, 9H, CH3, CH3-Si), 0.67 (s, 9H, CH3, CH3-Si), 1.27 (s, 3H, CH3), 1.39 (s, 3H, CH3), 2.57 (s, 

3H, CH3-N), 3.01 (bd, 1H, CH2-N, J= 13.6 Hz), 3.18 (m, 1H, CH), 4.09 (bd, 1H, CH2-N, J= 

13.6 Hz), 4.59 (m, 1H, CH2-O), 4.93 (m, 1H, CH2-O), 5.22 (m, 1H, CH allyl trans to N), 

5.30 (m, 1H, CH-O), 5.31 (m, 1H, CH-O), 5.78 (m, 1H, CH allyl trans to P), 5.8 (m,1H, 

CH=), 6.62 (m, 1H, CH allyl central), 6.2 – 8.3 (m, 19H, CH=). 
13

C NMR (100.6 MHz, 

CD2Cl2, 298 K), δ: 0.5 (CH3-Si), 0.8 (CH3-Si), 23.0 (CH3), 25.7 (CH3), 50.1 (CH3-N), 63.7 

(CH2-N), 67.4 (d, CH2-O, JC-P= 4.0 Hz), 77.0 (CH), 78.4 (CH-O), 78.5 (CH-O), 79.8 (CH allyl 

trans to N), 98.0 (d, CH allyl trans to P, JC-P= 35.7 Hz), 111.5 (d, CH allyl central, JC-P= 6.2 

Hz), 113.2 (CMe2), 120.4-151.9 (aromatic carbons). Minor isomer (30%): 
31

P NMR 

(161.9 MHz, CD2Cl2, 298 K), δ: 140.2 (s, 1P). 
1
H NMR (400 MHz, CD2Cl2, 298 K), δ: 0.52 

(s, 9H, CH3, CH3-Si), 0.76 (s, 9H, CH3, CH3-Si), 1.27 (s, 3H, CH3), 1.49 (s, 3H, CH3), 2.83 

(m, 1H, CH), 2.84 (bd, 1H, CH2-N, J= 13.2 Hz), 2.57 (s, 3H, CH3-N), 4.08 (bd, 1H, CH2-N, 

J= 13.2 Hz), 4.56 (m, 1H, CH allyl trans to N), 4.75 (m, 1H, CH2-O), 4.81 (m, 1H, CH2-O), 

5.30 (m, 1H, CH-O), 5.35 (m, 1H, CH-O), 5.59 (m, 1H, CH allyl trans to P), 6.82 (m, 1H, 

CH allyl central), 6.2 – 8.3 (m, 20H, CH=). 
13

C NMR (100.6 MHz, CD2Cl2, 298 K), δ: 0.6 

(CH3-Si), 0.7 (CH3-Si), 23.90 (CH3), 26.0 (CH3), 49.8 (CH3-N), 61.0 (CH2-N), 64.4 (b, CH2-

O), 75.4 (CH), 78.4 (CH-O), 78.5 (CH-O), 79.4 (CH allyl trans to N), 103.9 (d, CH allyl 

trans to P, JC-P= 32.7 Hz), 114.4 (d, CH allyl central, JC-P= 12.2 Hz), 114.5 (CMe2), 120.4-

151.9 (aromatic carbons). 

[Pd(η
3
-1,3-diphenylallyl)(L52a)]BF4 (39). Yield: 44 mg (83%). Major isomer (67%): 

31
P NMR (161.9 MHz, CD2Cl2, 298 K), δ: 135.0 (s, 1P). 

1
H NMR (400 MHz, CD2Cl2, 298 K), 

δ: 0.45 (s, 9H, CH3, CH3-Si), 0.75 (s, 9H, CH3, CH3-Si), 1.21 (s, 3H, CH3), 1.36 (s, 3H, CH3), 

2.70 (s, 3H, CH3-N), 3.22 (m, 1H, CH), 3.36 (dd, 1H, CH2-N, J= 14.0 Hz, J= 5.6 Hz), 3.72 

(m, 1H, CH2-N), 4.50-4.64 (m, 2H, CH-O), 4.70 (m, 1H, CH2-O), 4.82 (m, 1H, CH allyl 

trans to N), 4.86 (m, 1H, CH2-O), 5.32 (m, 1H, CH allyl trans to P), 6.57-6.67 (m, 1H, CH 

allyl central), 5.8 – 8.3 (m, 20H, CH=). 
13

C NMR (100.6 MHz, CD2Cl2, 298 K), δ: 0.3 (CH3-

Si), 0.7 (CH3-Si), 22.9 (CH3), 25.5 (CH3), 53.1 (CH3-N), 63.7 (CH2-O), 64.1 (CH2-N), 64.7 
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(CH allyl trans to N), 76.0 (CH), 80.5 (CH-O), 80.8 (CH-O), 95.6 (d, CH allyl trans to P,     

JC-P= 35.7 Hz), 111.5 (d, CH allyl central, JC-P= 11.4 Hz), 112.8 (CMe2), 120.3-151.7 

(aromatic carbons). Minor isomer (35%): 
31

P NMR (161.9 MHz, CD2Cl2, 298 K), δ: 137.7 

(s, 1P). 
1
H NMR (400 MHz, CD2Cl2, 298 K), δ: 0.51 (s, 9H, CH3, CH3-Si), 0.66 (s, 9H, CH3, 

CH3-Si), 1.22 (s, 3H, CH3), 1.44 (s, 3H, CH3), 3.22 (m, 1H, CH3-N), 3.71 (m, 1H, CH2-N), 

3.80 (m, 1H, CH2-N), 4.01 (m, 1H, CH), 4.50-4.64 (m, 2H, CH-O), 4.69 (m, 1H, CH2-O), 

4.82 (m, 1H, CH2-O), 5.09 (m, 1H, CH allyl trans to N), 5.54 (m, 1H, CH allyl trans to P), 

6.57-6.67 (m, 1H, CH allyl central), 5.8 – 8.3 (m, 20H, CH=). 
13

C NMR (100.6 MHz, 

CD2Cl2, 298 K), δ: -0.2 (CH3-Si), 0.5 (CH3-Si), 22.4 (CH3), 24.0 (CH3), 48.6 (CH3-N), 61.7 

(CH2-N), 63.7 (CH2-O), 62.9 (CH allyl trans to N), 77.8 (CH), 80.5 (CH-O), 80.2 (CH-O), 

94.8 (d, CH allyl trans to P, JC-P= 36.5 Hz), 111.9 (d, CH allyl central, JC-P= 11.4 Hz), 113.0 

(CMe2), 120.3-151.7 (aromatic carbons). [Pd(η
3
-1,3-diphenylallyl)(L52a)2]BF4 (8%): 

31
P 

NMR (161.9 MHz, CD2Cl2, 298 K), δ: 137.7 (s, 1P). 
1
H NMR (400 MHz, CD2Cl2, 298 K), δ: 

0.55 (s, 9H, CH3, CH3-Si), 0.63 (s, 9H, CH3, CH3-Si), 1.18 (s, 3H, CH3), 1.27 (s, 3H, CH3), 

1.81 (m, 1H, CH3-N), 2.52 (m, 1H, CH), 2.87 (b, 2H, CH2-N), 4.50-4.64 (m, 2H; CH-O), 

4.57 (m, 1H, CH2-O), 4.90 (m, 1H, CH2-O), 5.85 (m, 2H, CH allyl terminal), 6.57-6.67 (m, 

1H, CH allyl central), 5.8 – 8.3 (m, 20H, CH=). 
13

C NMR (100.6 MHz, CD2Cl2, 298 K),        

δ: -0.1 (CH3-Si), 0.0 (CH3-Si), 23.1 (CH3), 24.5 (CH3), 42.5(CH3-N), 60.7 (b, CH2-N), 69 (b, 

CH2-O), 76.9-77.1 (CH-O), 77.6-77.8 (CH), 99.9 (m, CH allyl terminal), 112.0 (b, CH allyl 

central), 112.3 (CMe2), 120.3-151.7 (aromatic carbons). 

5.2.4.6. Study of the reactivity of the [Pd(η
3
-allyl)(L)]BF4 with sodium malonate by 

in situ NMR spectroscopy
[21]

 

 A solution of in situ prepared [Pd(η
3
-allyl)(L)]BF4 (L=amino-phosphite, 0.05 mmol) 

in CD2Cl2 (1 ml) was cooled in the NMR spectrometer to -80   C. At this temperature, a 

solution of cooled sodium malonate (0.1 mmol) was added. The reaction was then 

followed by 
31

P NMR spectroscopy. The relative reaction rates were calculated using 

capillary that contained a solution of triphenylphosphine in CD2Cl2 as the external 

standard. 

5.2.4.7. Typical procedure for the allylic alkylation of disubstituted linear and 

cyclic substrates  

A degassed solution of [PdCl(η
3
-C3H5)]2 (0.9 mg, 0.0025 mmol) and the 

corresponding ligand (0.0055 mmol) in dichloromethane (0.5 mL) was stirred for 30 

min. Subsequently, a solution of the corresponding substrate (0.5 mmol) in 

dichloromethane (1.5 mL), nucleophile (1.5 mmol), N,O-bis(trimethylsilyl)-acetamide 

(370 μL, 1.5 mmol) and KOAc (3 mg, 003 mmol) was added. The reaction mixture was 

stirred at room temperature. After the desired reaction time the reaction mixture was 

diluted with Et2O (5 mL) and saturated NH4Cl (aq) (25 mL) was added. The mixture was 

extracted with Et2O (3 x 10 mL) and the extract dried over MgSO4. Conversions were 

measured by 
1
H NMR and enantiomeric excesses were determined either by HPLC 

(compounds 13, 15–22 and 26–28) or by GC (compounds 14 and 30–35) or by 
1
H NMR 

using [Eu(hfc)3] (compound 29).  
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5.2.4.8. Typical procedure for the allylic amination of disubstituted linear 

substrate S1 

 A degassed solution of [PdCl(η
3
-C3H5)]2 (0.9 mg, 0.0025 mmol) and the 

corresponding ligand (0.0055 mmol) in dichloromethane (0.5 mL) was stirred for 30 

min. Subsequently, a solution of rac-1,3-diphenyl-3-acetoxyprop-1-ene (S1) (0.5 mmol) 

in dichloromethane (1.5 mL), the corresponding amine (1.5 mmol), N,O-

bis(trimethylsilyl)-acetamide (370 μL, 1.5 mmol) and KOAc (3 mg, 0.03 mmol) were 

added. The reaction mixture was stirred at room temperature. After the desired 

reaction time, the reaction mixture was diluted with Et2O (5 mL) and saturated NH4Cl 

(aq) (25 mL) was added. The mixture was extracted with Et2O (3 x 10 mL) and the 

extract dried over MgSO4. Conversions were measured by 
1
H NMR and enantiomeric 

excesses were determined by HPLC.
[8e]
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6.1. Copper-catalyzed propargylic substitution using chiral tridentated 

ligands and N- and C-nucleophiles 

Carlota Borràs, Oscar Pàmies and Montserrat Diéguez preliminary results. 

 

Abstract: A tridentated imine-based ligand family (L57-L61) was successfully 

synthesized in few steps procedure. The synthetic strategy used allowed us to 

systematically modify the chelating atoms. Although poor enantioselectivities were 

only achieved in the amination of propargylic acetates S1-S3 (ee’s up to 25%) and low-

to-moderated enantioselectivities were only achieved in the alkylation reaction of S1 

(ee’s up to 60%) 

6.1.1. Introduction 

Propargylic compounds are common design in many natural products, fine 

chemicals and synthetic pharmaceuticals. The presence of the nucleophilic triple bond 

and acidic terminal acetylenic hydrogen in many cases, convert these propargylic 

compounds in a highly potential for a wide variety of transformations.
[1]

 

In contrast with the metal-catalyzed allylic substitution reactions, much less 

attention has been paid to metal-catalyzed propargylic substitution reactions of 

propargylic alcohol derivatives with nucleophiles.  

In this chapter, we wish to give a new push to the catalytic potential of different 

tridentated imine based ligands in the copper-catalyzed propargylic substitution by 

screening several combination of phosphine, thioether, hydroxyl and nitrogen-

containing compounds. For this purpose we designed a small but structurally valuable 

library ligands L56-L61 (Figure 6.1.1). These ligands are based on the successful chiral 

tridentated P,N,N ligand L56 developed by Hu and coworkers and their demonstration  

to be highly efficient for the Cu-catalyzed enantioselective propargylic amination of 

propargylic acetates with both primary and secondary amines as nucleophiles.
[2]

 We 

investigated the effect on catalytic performance of systematically changing the nature 

of the chelating atom (L56, L58-L61) and steric effects (L56-L57). We also studied two 

different types of nucleophiles to give propargylic amination (using amine as 

nuclephile) and propargylic alkylation (using enamides as nucleophile) of propargylic 

acetates. Different substrates with aromatic (S1) and alkylic (S2-S3) substituents have 

also been investigated. 
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Figure 6.1.1. Chiral tridentated imine-based ligand family L56-L61. 

6.1.2. Results and discussion 

6.1.2.1. Synthesis of ligands 

The synthesis of tridentate ligands L56-L61 is shown in Scheme 6.1.1. Ligands L56-

L59 have been prepared in only one step from commercially available (R)-1-[2-

(diphenylphosphino)phenyl]ethylamine with the corresponding aldehyde in presence 

of toluene and molecular sieves 4   (Scheme 6.1.1; step a). Ligands L60-L61 have been 

prepared from commercially available L-alaninol in five steps. First step is the 

protection of the alcohol with di-tert-butyl dicarbonate in the presence of 

triethylamine to give the protected compound 1 (Scheme 6.1.1, step b).  Compound 1 

was transformed to intermediate 2 by treatment with methanesulfonyl chloride and 

triethylamine (Scheme 6.1.1; step c). Subsequent reaction with NaSPh provided direct 

access to protected amino-thioether, which was easily deprotected by reaction with 

trifluoroacetic acid and dicloromethane (Scheme 6.1.1, steps d and e). Last step is the 

same than for ligands L56-L59, coupling of the amine with the corresponding aldehyde 

affords the desired ligands L60-L61 (Scheme 6.1.1; step a). 

The 
1
H, 

31
P and 

13
C NMR spectra were as expected for these C1-tridentated ligands 

(see Section 6.1.4). 

 

 
Scheme 6.1.1. Syntesis of ligands L56-L61. a) R’-CHO, molecular sieves 4  , toluene; b) Boc2O, NEt3, THF; c) 

MsCl, NEt3, CH2Cl2; d) PhSH, NaH, THF; e) TFA, CH2Cl2. 
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6.1.2.2. Asymmetric Cu-catalyzed propargylic amination 

In a first set of experiments we tested ligands L56-L61 in the Cu-catalyzed 

propargylic amination of propargylic acetates with different electronic and steric 

properties: (rac)-1-phenylprop-2-yn-1-yl acetate (S1), (rac)-but-3-yn-2-yl acetate (S2) 

and (rac)-1-cyclohexylprop-2-yn-1-yl acetate (S3). In all cases the catalyst were 

generated in situ from CuCl and the corresponding ligand. N-Methylaniline was used as 

a model nucleophile because enables the efficiency of the various ligand systems to be 

compared directly with those found in the literature. The preliminary results are 

shown in Table 6.1.1. The use of ligand L57, which contains a methyl substituent at 6 

position of the pyridyl moiety, had a negative effect on enantioselectivity (e.g. in the 

amination of S1, enantioselectivity drops from 90% to 25% ee when using ligand L57 

instead of L56; entry 1 vs 2). Similarly, the use of ligands L58 and L59, in which the 

pyridine group has been respectively replaced by a phosphine and an alcohol moiety, 

also leads to a substantial decrease in enantioselectivity (entries 3-4 vs 1). The 

replacement of the phosphine group in ligand L56 with a thioether group (ligand L60) 

also proceeded with much lower enantioselectivity (ee’s up to 11%, entry 5). Finally, as 

observed when using ligand L58, the introduction of a phosphine moiety instead of the 

pyridyl group in thioether-based ligand L61 also had a detrimental effect on 

enantioselectivity (entry 6). 

 

Table 6.1.1. Asymmetric Cu-catalyzed propargylic amination of S1-S3 using ligands L56-L61.
a 

 
 

   

 

 

 

 

 
Entry Ligand  % Conv

b 
% ee

c 
 % Conv

b 
% ee

c 
 % Conv

b 
% ee

c 

1 L56  100 90 (S)  62 78 (R)  25 78 (S) 
2 L57  83 25 (S)  31 nd

d 
 58 8 (S)

 

3 L58  40 4 (S)  34 30 (R)  49 20 (S) 
4 L59  37 15 (S)  7 nd

d 
 15 nd

d 

5 L60  100 11 (S)  32 6 (S)  18 10 (R) 
6 L61  85 2 (R)  62 <2  30 nd

d 

a Reactions conditions: CuCl (0.015 mmol), ligand (0.03 mmol), N-methylaniline (0.36 mmol), DIPEA 

(0.36 mmol), MeOH (2 mL), 18 h,  T= 0 °C (for substrate S1) and 25 °C (for substrates S2-S3).                    
b Conversion measured by 1H-NMR. c Enantiomeric excesses measured by chiral HPLC. d nd= not 

determined. 

 

6.1.2.3. Asymmetric Cu-catalyzed propargylic alkylation 

We also carried out a preliminary investigation on the effectiveness of ligands L56-

L61 in the Cu-catalyzed propargylic alkylation of 1-phenylprop-2-yn-1-yl acetate (S1) 
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using N,N-diethyl-1-phenylethen-1-amine as nucleophile. In all cases the catalyst were 

generated in situ from [Cu(CH3CN)4]BF4 and the corresponding ligand. The preliminary 

results, which are shown in Table 6.1.2., indicated a similar trend than in the 

propargylic amination of S1. Thus, the replacement of the pyridyl group in ligand L56 

by a 6-methyl pyridyl (ligand L57), by a phosphino (ligand L58) or by a hydroxyl moiety 

(ligand L59) had a negative effect on enantioselectivity (entry 1 vs 2-4). Similarly, 

switching the phosphine group in ligand L56 by a thioether group (ligand L60 and L61) 

had a detrimental effect on enantioselectivity (entry 1 vs 5-6). 

 

Table 6.1.2. Asymmetric Cu-catalyzed propargylic alkylation of S1 using ligands L56-L61.
a 

 
Entry Ligand % Conv

b 
% ee

c 

1 
L56 100 85 (+) 

2 
L57 46 60 (+) 

3 
L58 49 33 (+) 

4 
L59 56 5 (-) 

5 
L60 51 15 (-) 

6 
L61 21 <2  

a Reactions conditions: [Cu(CH3CN)4]BF4 (0.015 mmol), ligand (0.03 mmol), N,N-diethyl-1-phenylethen-1-

amine (0.36 mmol), DIPEA (0.36 mmol), MeOH (2 mL), 18 h,  T= 0 °C. b Conversion measured by 1H-NMR. 
c Enantiomeric excesses measured by chiral HPLC.  

 

6.1.3. Conclusions 

Five new tridentated ligands (L57-L61) have been successfully synthesized in few 

simple steps procedure from commercially available starting material. The synthetic 

procedure used allowed the systemic variation of the chelating atoms. These new 

ligands have applied in the amination reaction of three different propargylic acetates 

(S1-S3) with different steric requirements using N-methylaniline as a nucleophile. 

Unfortunately, poor enantioselectivities were only achieved in all cases (ee’s up to 25% 

ee). Moreover, they have been also applied in the alkylation reaction of substrate S1 

using a N,N-diethyl-1-phenylethen-1-amine. In these cases, enantioselectivities are 

slightly higher than previous amination reactions, but, only poor-to-moderated results 

have been obtained (up to 60% ee’s).  
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6.1.4. Experimental Part 

6.1.4.1. General remarks 

All reactions were carried out using standard Schlenk techniques under an 

atmosphere of argon. Commercial chemicals were used as received. Solvents were 

dried by standard procedures and stored under argon. Ligand L61
[3]

 and compounds 

1
[4]

 and 2
[5]

 were prepared as previous reported.
 1

H, 
13

C{
1
H} and 

31
P{

1
H} NMR spectra 

were recorded using a Varian Mercury-400 MHz spectrometer for solutions in CDCl3 

and C6D6 at room temperature. Chemical shifts are relative to that of SiMe4 (
1
H and 

13
C{

1
H}) as internal standard or H3PO4 (

31
P) as external standard. 

1
H and 

13
C 

assignments were made on the basis of 
1
H-

1
H gCOSY and 

1
H-

13
C gHSQC experiments.  

 6.1.4.2. General procedure for the preparation of ligands L57-L61 

To a solution of corresponding amine (1 mmol) in 8 mL of toluene was added the 

corresponding aldehyde (1 mmol) and anhydrous molecular sieves 4   (200 mg). The 

reaction mixture was refluxed for 8 h, and then cooled to room temperature. The 

reaction mixture was diluted with 5 mL of deoxygenated CH2Cl2, and MgSO4 were 

removed by the filtration. The filtrate was concentrated under reduced pressure, and 

the residue was purified by silica gel column chromatography under argon 

(toluene/Et3N, 10/0.1) to afford a white solid.  

L57: Yield: 290 mg (71%). 
31

P NMR (C6D6), δ: -16.6 (s). 
1
H NMR (C6D6), δ: 1.44 (d, 3H, 

CH3, 
2
JH-H= 6.6 Hz), 2.56 (s, 3H, CH3, Py), 5.49 (m, 1H, CH), 7.13 (m, 1H, CH=), 7.13 (d, 

2H, CH=, 
3
JH-H= 7.6 Hz), 7.27 (m,  10H, CH=), 7.56 (t, 1H, CH=, 

3
JH-H= 7.7 Hz), 7.75 (d, 1H, 

CH=, 
3
JH-H= 7.8 Hz), 7.80 (m, 1H, CH=), 8.23 (s, 1H, CH=N). 

13
C NMR (C6D6), δ: 24.4 (CH3, 

py), 24.9 (CH3), 66.2 (CH), 118.4-157.8 (aromatic carbons), 161.2 (CH=N).  

L58: Yield: 130 mg (23%). 
31

P NMR (C6D6), δ: -16.7 (s), -12.2 (s). 
1
H NMR (C6D6), δ: 

1.18 (d, 3H, CH3, 
2
JH-H= 6.4 Hz), 5.30 (m, 1H, CH), 6.84 (m, 2H, CH=), 7.09 (t, 1H, CH=, 

3
JH-

H= 7.5 Hz), 7.26 (m, 22H, CH=), 7.49 (m, 1H, CH=), 7.73 (m, 1H, CH=), 8.59 (s, 1H, 

CH=N). 
13

C NMR (C6D6), δ: 24.9 (CH3), 66.5 (CH), 126.7-149.8 (aromatic carbons), 158.7 

(CH=N).   

L59: Yield: 111 mg (27%). 
31

P NMR (C6D6), δ: -15.9 (s). 
1
H NMR (C6D6), δ: 1.50 (d, 3H, 

CH3, 
2
JH-H= 6.5 Hz), 5.32 (m, 1H, CH), 6.79 (m, 2H, CH=), 6.94 (m, 2H, CH=), 7.13 (m, 1H, 

CH=), 7.31 (m, 12H, CH=), 7.64 (m, 1H, CH=), 7.82 (s, 1H, CH=N). 
13

C NMR (C6D6), δ: 24.9 

(CH3), 65.5 (CH), 116.8-160.9 (aromatic carbons), 163.7 (CH=N).  

L60: Yield: 88.4 mg (35%). 
1
H NMR (C6D6), δ: 1.36 (d, 3H, CH3, 

2
JH-H= 6.4 Hz), 3.15 (d, 

2H, CH2-S, 
2
JH-H= 6.7 Hz), 3.59 (m, 1H, CH-N), 7.10 (m, 1H, CH=), 7.25 (m, 5H, CH=), 7.67 

(m, 1H, CH=), 7.89 (m, 1H, CH=), 8.31 (s, 1H, CH=N), 8.63 (m, 1H, CH=). 
13

C NMR (C6D6), 

δ: 21.9 (CH3), 41.0 (CH2), 65.4 (CH), 121.7-154.3 (aromatic carbons), 161.3 (CH=N). 

L61: Yield: 48 mg (11%). 
31

P NMR (C6D6), δ: -13.2 (s).
 1

H NMR (C6D6), δ: 1.07 (d, 3H, 

CH3, 
2
JH-H= 4.8 Hz), 2.86 (d, 2H, CH2-S, 

2
JH-H= 6.7 Hz), 3.30 (m, 1H, CH-N), 6.78 (m, 1H, 

CH=), 7.05 (m, 1H, CH=), 7.22 (m, 16H, CH=), 7.83 (m, 1H, CH=), 8.75 (s, 1H, CH=N). 
13

C 
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NMR (C6D6), δ: 21.6 (CH3), 40.9 (CH2-S), 65.1 (CH-N), 125.6-139.3 (aromatic carbons), 

159.2 (CH=N).. 

6.1.4.3. Procedure for the preparation of intermediate amino-thioether 3 

 PhSH (2.7 mL, 25.41 mmol) was added to a solution of NaH (2.10 g in 60% oil, 52.5 

mmol) and THF (11mL) at -15   C after 1 h a solution of compound 2
[5]

 (2.8 g, 11.05 

mmol) and THF was added to a stirred mixture. After 16 h the reaction mixture was 

quenched with H2O (10 mL) and THF is evaporated under vacuum. The aqueous phase 

was extracted with CH2Cl2 and washed with brine. The organic phases was dried with 

MgSO4, which were removed by the filtration. The filtrate was concentrated under 

reduced pressure, and the residue was purified by silica gel flash-chromatography 

(petroleum ether/AcOEt, 18/1) to afford a colorless oil. Yield: 1.5 g (50%).  
1
H NMR 

(C6D6), δ: 1.21 (d, 3H, CH3, 
2
JH-H= 6.7 Hz), 1.42 (s, 9H, CH3, 

t
Bu, NHBoc), 2.97 (m, 1H, 

CH2-S), 3.13 (m, 1H, CH-N), 3.91 (m, 1H, CH2-S), 4.60 (b, 1H, NH), 7.16 (t, 1H, CH=, 
3
JH-H= 

7.3 Hz), 7.27 (m, 2H, CH=), 7.38 (d, 2H, CH=, 
3
JH-H= 7.5 Hz). 

To a solution of a protected thioether compound (1.5 g, 5.61 mmol) and CH2Cl2 (90 

mL), TFA (50 mL) was added. The reaction mixture was stirred overnight at room 

temperature. After evaporate the TFA the crude was purified by flash chromatography 

(CH2Cl2/MeOH/NEt3 – 20/1/0.25) to afford the compound 3. Yield: 1.0 g (quantitative). 
1
H NMR (C6D6), δ: 1.29 (d, 3H, CH3, 

2
JH-H= 6.5 Hz), 3.03 (m, 2H, CH2-S), 3.21 (m, 1H, CH-

N), 6.03 (b, 2H, NH), 7.21 (m, 1H, CH=), 7.27 (m, 2H, CH=), 7.36 (d, 2H, CH=, 
3
JH-H= 7.1 

Hz). 
13

C NMR (C6D6), δ: 18.9 (CH3), 39.7 (CH2-S), 47.0 (CH-N), 127.1-130.4 (aromatic 

carbons). 

6.1.4.4. General procedure of Cu-catalyzed propargylic amination 

CuCl (1.5 m , 0.015 mmol) and correspondin  li and (0.03 mmol) were s rred in 1 

m  o  anhydrous methanol under ar on atmosphere  or 1 h.  he mi ture was cooled to 

0   C and then a solution of propargylic acetate (0.3 mmol), N-methylaniline (0.36 

mmol) and N,N-diisopropylethylamine (0.36 mmol) in 1 m  o  anhydrous methanol was 

added.  he reac on was  ept at 0   C for S1 and at RT for S2 and S3 for 18 h. The 

solvent was removed under reduced pressure, and the residue was purified by silica 

gel column chromatography with petroleum ether and ethyl acetate as eluent. The 

enantiomeric excesses of substituted products from S1-S3
[2]

 were determined using 

the conditions previously described. 

6.1.4.5. General procedure of Cu-catalyzed propargylic alkylation 

Under an argon atmosphere, Cu(CH3CN)4ClO4 (8.3 mg, 0.015 mmol) and chiral 

tridentate P,N,N ligand (0.03 mmol) were dissolved in 2 mL of MeOH. The resulting 

mixture was stirred at room temperature for 1 h, and then was cooled to 0 °C. 

Enamine (0.36 mmol), propargylic acetate 1 (0.3 mmol), 2 mL of MeOH and N,N-

diisopropylethylamine (0.36) were added sequentially. The reaction mixture was 

stirred at 0 °C for 18 h, and then was concentrated in vacuo. The residue was purified 

through flash column chromatography (EtOAc/petroleum ether = 1/40) to afford the 
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corresponding propargylic ketone. The enantiomeric excesses of substituted products 

from S1
[6]

 were determined using the conditions previously described. 
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7. Conclusions 

1. Chapter 3. Asymmetric hydrogenation reactions. The conclusions of this 

chapter can be summarized as follows: 

- Five different ligand families have been successfully synthesized from 

readily available starting materials for their application in Rh- and Ir- 

catalyzed hydrogenation of functionalized and minimally functionalized 

olefins. 

- A structurally valuable cyclohexane-based phosphite/phosphinite-

thioether ligand library has been synthesized in only two steps from 

commercially available cyclohexene oxide. They have been applied in the 

hydrogenation of 40 minimally functionalized olefins, including some 

relevant examples with poorly coordinative groups obtaining high 

enantioselectivities (ee’s up to 99%). Their simple backbone gives simple 

NMR spectra, with reduced overlap, which facilitates the identification of 

relevant intermediates. Therefore, by combining HP-NMR spectroscopy 

and DFT calculations, we were able to identify the catalytically competent 

Ir-dihydride alkene species, which made it possible to explain the 

enantioselectivity obtained. We found that, similarly to the classical 

Halpern-mechanism for asymmetric hydrogenation with Rh-catalysts, the 

minor intermediate, which is less stable, is converted to the major product 

enantiomer. 

- A new binaphtyl-based phosphite-thioether ligand family was successfully 

synthesized from commercially available (R)-BINOL and evaluated in the 

asymmetric Ir-catalyzed hydrogenation of minimally functionalyzed 

olefins. Good-to-excellent enantioselectivities (ee’s up to 99%) have been 

obtained for a range of tri- and disubstituted olefins, including lactone and 

lactame substrates and in alkenyl boronic ester containing substrates. 

- A large modular phosphite-thioether/selenoether ligand library has been 

successfully synthesized from L-tartaric acid and D-mannitol. Improving 

most approach reported to date, these ligands have been successfully 

applied (ee’s up to 99%) in both the Rh- and Ir-catalyzed asymmetric 

hydrogenation of a wide variety of functionalized and unfunctionalyzed 

olefins (45 compounds in total). We found that enantioselectivity in this 

process is mainly affected by the ligand parameters as well as the 

substrate class. By carefully selecting the ligand components, full 

conversions and high enantioselectivities have been achieved in the 

reduction of several α,β-unsaturated carboxylic acid derivatives, 

substrates containing poorly coordinative groups (i.e. alkenylboronic 

esters, α,β-unsaturated amides and esters, …), and also for the more 

challenging disubstituted olefins. 
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- We show the first application of a carbene-thioether ligand in the Ir-

catalyzed asymmetric hydrogenation of minimally functionalized olefins. 

Comparing the effectiveness of this thioether-carbene ligand with its 

related phosphinite and phosphite-based ligands. We found that carbene-

thioether ligand provided lower activity and enantioselectivity than their 

related analogues modified with phosphinite and phosphite groups. 

Enantioselectivity is highly dependent on both the ligand and the 

substrate parameters. It should be mentioned the good 

enantioselectivities (ee’s up to 98%) achieved for several substrate types, 

such as trisubstituted ,-unsaturated enones, esters and lactones, tri- 

and disubstituted enol phosphinates and (3,3-dimethylbut-1-en-2-

yl)benzene with this very simple ligand scaffold. 

- A modular pyrrolidine-based phosphine/phosphite-O/S ligand library has 

been applied in the hydrogenation of minimally functionalized olefins. 

These ligands have been synthesized from readily available D-mannose, D-

ribose and D-arabinose. We found that their effectiveness at transferring 

the chiral information in the product can be tuned by correctly choosing 

the ligand components and the substrates. High enantioselectivities could 

therefore be achieved in the asymmetric hydrogenation of selected tris- 

and disubstituted substrates (ee’s up to 99%). In comparison with related 

successful proline-based P,O ligand, the introduction of a readily available 

sugar and more rigid bicyclic backbone, had a positive effect on 

enantioselectivity extending the range of substrates that can been 

reduced, including several 1,1-disubstituted allylic acetates. In addition, 

our ligands contained a diphenyl phosphine moiety instead of the bulkier 

phosphine groups found in related proline-based P,O ligands, which are 

made from much more expensive chlorophosphine precursors and made 

them less stable ligands. 

 

2. Chapter 4. Asymmetric Ir-catalyzed hydrogenation of ketones. The conclusions 

of this chapter can be summarized as follows: 

- A new class of tridentated phosphite/phosphinite/phosphine-amino-

oxazoline/pyridine ligand library has been synthesized in good to 

moderated yields following a direct synthetic route. These ligands were 

designed for a future specific application in the hydrogenation of simple 

ketones. 

 

3. Chapter 5. Asymmetric Pd-catalyzed allylic substitution. The conclusions of this 

chapter can be summarized as follows: 

- The previous readily available library of phosphite-thioether/selenoether 

ligands has also been applied in the Pd-catalyzed allylic substitution 
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reactions of several substrates including the more challenging 

monosubstituted ones, using a broad range of C-, N- and O-nucleophiles. 

Enantioselectivities can be tuned by correctly choosing the ligand 

parameters (ee’s up to 99%). 

- New iminosugar-phosphite/phosphinite/phosphine ligands have been 

applied in Pd-catalyzed allylic substitution reactions. By selecting the 

ligand components, we obtained good results in several substrates with 

different electronic and steric requirements and using a number of C- and 

N-nucleophiles (23 compounds in total with ee’s up to 93%). In 

comparison with previous air instable amino-P ligands (P=phosphine, 

aminophosphine and phosphinite groups) reported in the literature, the 

new amino-phosphite ligands provided a better substrate and nucleophile 

scope (i.e. including more challenging hindered linear and cyclic 

substrates, even using highly appealing nucleophiles such as those α-

substituted with methyl, allyl, butenyl, pentenyl and propargyl groups). 

The study of Pd-π-allyl intermediates shows that for enantioselectivities to 

be high the ligand parameters need to be appropriately combined to 

either increase the difference in the population of the resulting Pd-allyl 

compounds (for cyclic substrate), or to increase the relative rates of the 

nucleophilic attack of each Pd-allyl intermediate, and also to avoid the 

formation of Pd-allyl intermediates with monodentated coordinated 

ligands (for linear substrates). This study also indicates that the sugar 

backbone is able to control the configuration of the amino group upon 

coordination, which in turn can be efficiently shifted from R- to S- by 

simply varying the configuration of the biaryl phosphite moiety. 

 

4. Chapter 6. Asymmetric Cu-catalyzed propargylic substitution. The conclusions 

of this chapter can be summarized as follows: 

- A tridentated imine-based ligand family was successfully synthesized in a 

few steps procedure. The synthetic strategy used allowed us to 

systematically modify the chelating atoms. These ligands have been 

applied in the propargylic amination (ee’s up to 25%) and alkylation (up to 

60% ee’s) of three propargylic acetates . 
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8. Resum (Summary) 

L’obtenció de compostos enantiomèricament purs ha esdevingut una necessitat 

que ha conduit a un important progrés en la catàlisi asimètrica, principalment usant 

compostos organometàl·lics quirals. Entre les diferents estratègies en l’optimització 

dels catal·litzadors per aconseguir elevades selectivitats i activitats, el disseny i 

correcta selecció de lligands quirals, modificant-ne les seves propietats és fonamental i 

la més utilitzada. Que un lligand sigui fàcil de sintetitzar a partir de compostos de 

partida accessibles i que aquests lligands siguin estables i fàcils de manipular, tenen un 

elevat interès en la industria. 

En aquest context, el principal objectiu d’aquesta tesi és la síntesi de diferents 

famílies de lligands quirals, acomplint els requisits prèviament esmentats, i la seva 

posterior aplicació a diverses reaccions asimètriques d’elevat interès industrial: 

hidrogenació d’olefines funcionalitzades i no funcionalitzades catalitzada per Rh i Ir, 

hidrogenació de cetones catalitzada per Ir, reaccions de substitució al·lílica catalitzades 

per Pd i reaccions de substitució propargílica catalitzada per Cu. S’han sintetitzat 

diverses famílies fosfit/fosfinit-tioèter/selenoèter, carbè-tioèter, amino-

fosfit/fosfinit/fosfina, i varies famílies de lligands tridentats. 

En el primer capítol (introducció), es fa un repàs del les característiques més 

rellevants per a cadascuna de les reaccions que s’estudien en aquesta tesi, explicant el 

mecanisme i els lligands més significants. El següent capítol consisteix en la 

presentació dels diferents objectius en els que es basa aquesta tesi. 

El tercer capítol, presenta cinc apartats on es discuteix la síntesi de varies llibreries 

de lligands quirals i l’aplicació en reaccions d’hidrogenació d’olefines. La primera secció 

consta de l’article titulat Ir-catalyzed asymmetric hydrogenation with simple 

cyclohexane-based P/S ligands: In situ HP-NMR and DFT calculations for the 

characterization of reaction intermediate, on es descriu la síntesi I l’aplicació de 

lligands fosfit/fosfinit-tioèter en la hidrogenació d’olefines no funcionalitzades 

catalitzada per iridi. A més a més, en aquest treball, s’han realitzat estudis de 

ressonància magnètica nuclear d’alta pressió i estudis teòric per tal d’identificar 

intermedis de reacció i poder definir l’origen de la enantioselectivitat. 

En la segona part es descriu el treball titulat Ir-catalyzed asymmetric hydrogenation 

of minimally functionalized alkenes using binaphthyl-based phosphite-thioether 

ligands. Aquest consisteix en la síntesi de lligands fosfit-tioèter, derivats del (R)-Binol. 

També es presenten els resultats preliminars obtinguts de la seva aplicació a la 

hidrogenació catalitzada per iridi en diferents tipus de substrat mínimament 

funcionalitzats. 

La tercera part inclou el treball titulat A readily assembled carbohydrate derived 

phosphite-thioether/selenoether ligand library for a broad range of M-catalyzed 

asymmetric hydrogenation, on es descriu la síntesi i aplicació de lligands fosfit-

tioèter/selenoèter, derivats de L-àcid tartaric o del D-manitol, en les reaccions 
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d’hidrogenació asimètriques, catalitzades per Rh i Ir, de diverses olefines 

funcionalitzades i no funcionalitzades. L’alta modularitat d’aquests lligands ha permès 

obtenir elevades enantioselectivitats (fins a un excés enantiomeric del 99%). 

En la quarta secció es presenta el següent treball Pyrrolidine-based P,O ligands 

from carbohydrates: Easily accessible and modular ligands for the Ir-catalyzed 

asymmetric hydrogenation of minimally functionalized olefins, on s’exposa la síntesi i la 

següent aplicació de la familia de lligands fosfina/fosfit-O/S derivats de la pirrolidina en 

la hidrogenació de olefines mínimament funcionalitzades catalitzada per iridi s’han 

obtingut elevades enantioselectivitats (de fins al 99%) per una selecció de substrats 

amb diferents requeriments. 

En l’ultim apartat d’aquest capítol, es mostra el treball anomenat Application of a 

carbene-thioether ligand in the Ir-catalyzed hydrogenation of minimally functionalized 

olefins. Comparison with their analogues phosphinite and phosphite ligands. En aquest 

apartat es fa un estudi comparatiu entre un lligand carbè-tioèter i els seus anàlegs 

fosfinit/fosfit-tioèter en l’aplicació d’aquests en  la reacció de hidrogenació catalitzada 

per iridi d’un ventall de substrats amb diferents geometries i característiques.  

En el següent capitol (Capítol 4) es presenta un treball titulat Synthesis of 

tridentated phosphite/phosphinite/phosphine-amino-oxazoline/pyridine ligands for 

iridium-catalyzed hydrogenation of simple ketones, on s’exposa la síntesi d’una familia 

de lligands tridentats, amb diferents característiques electròniques i estèriques, per a 

la futura aplicació d’aquests en la hidrogenació de cetones simples catalitzada per iridi. 

En el cinquè capítol es mostren dos treballs on s’apliquen dues famílies de lligands 

en la reacció de substitució al·lílica catalitzada per pal·ladi. En al primera secció, es 

presenta el treball anomenat Application of a high modular carbohydrate-derived 

phosphite-thioether/selenoether ligand library for asymmetric Pd-catalyzed allylic 

substitution reaction, on s’aplica la família fosfit-tioèter/selenoèter prèviament 

descrita en la tercera secció del tercer capítol en la reacció de substitució al·lilica 

catalitzada per Pd. Seleccionant els paràmetres estructurals adequats, s’ha pogut 

identificar lligands capaços de proveir altes enantioselectivitats en l’alquilació de 

substrats amb diferents requeriments estèrics utilitzant un ample ventall de nucleòfils 

de carboni, nitrogen i oxigen. 

El segon apartat del capítol consta de l’article titulat P-amino ligands from 

iminosugars: New readily available and modular ligands for the asymmetric Pd-

catalyzed allylic substitution reaction, on es mostra la síntesi de la família de lligands 

amina-fosfit/fosfinit/fosfina, derivats de la pirrolidina i la seva posterior aplicació en la 

reacció de substitució al·lílica catalitzada per pal·ladi. S’obtenen excel·lents 

enantioselectivitats per un ampli ventall de substrats amb diferents propietats, tant 

estèriques com electròniques, i varis nucleòfils tant de carboni com de nitrogen. 

També es van fer estudis dels intermedis de reacció per poder entendre els resultats 

catal·lítics obtinguts. 
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Finalment, en el sisè capítol, es mostra el treball anomenat Copper-catalyzed 

propargylic substitution using chiral tridentated ligands and N- and C-nucleophiles. En 

aquesta secció es presenta la síntesi d’una família de lligands tridentats i els estudis 

preliminars de la seva aplicació en la reacció de substitució propargíl·lica catalitzada 

per Cu utilitzant dos tipus de nucleòfils, amina i enamina. 
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