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intentant que tot funcionés, tancar-nos una setmana per reescriure tot el codi dels robots,
els esmorzars, els dinars, les festes, els partits de pàdel, que fan que aquest camı́ sigui més
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contra tot pronòstic he guanyat (o perdut segons com es miri). La Tali i en Narćıs en les
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Eduard, Klemen, Dina, Khadidja, ànims pel que us queda. A en Marc, sempre presionant
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Abstract
Autonomous Underwater Vehicles (AUVs) true autonomy capabilities in complex poten-
tially unknown environments, have not yet been fully achieved because of the lack of online
algorithms that can solve fundamental problems such as localization, mapping and path-
planning on-board the AUV and consequently react according to their outputs. These
algorithms can empower them for new capabilities such as long-term deployments, au-
tonomous exploration and autonomous intervention.

This thesis presents the development of two online localization algorithms for AUVs.
The first algorithm is based on a Sum of Gaussian (SOG) filter for online range-only lo-
calization of an acoustic beacon, e.g. localization of a Docking Station (DS) for battery
recharging and data uploading. Two different versions of the algorithm are developed, one
based on Dead Reckoning (DR) navigation and one based on a full Simultaneous Local-
ization and Mapping (SLAM) solution. Moreover, an Active Localization (AL) algorithm
is also developed to autonomously select the best actions that minimize the range-only
localization uncertainty. This algorithm is also tested as part of a wider project where
it is combined with other algorithms to produce a complete homing and docking strat-
egy. Consequently, this algorithm can help long-term deployed AUVs being able to always
return to their base DS for battery recharging.

The second algorithm proposes a new online SLAM framework for continuous occu-
pancy mapping named H-SLAM. It uses a Rao-Blackwellized Particle Filter (RBPF) where
each particle carries a HM representation of the environment. HMs offer a low memory
footprint and constant computational complexity O(1) for insertion and query, suitable
for online processing. This algorithm is tested on two real-world datasets offering a sig-
nificantly better reconstruction of the environment than using DR navigation. Producing
correct continuous occupancy maps and trajectories, opens plenty of possibilities for future
combination with online path-planning algorithms.
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Resum
El verdader potencial d’autonomia dels Vehicles Submarins Autònoms (AUVs) en en-
torns complexos i potencialment desconeguts, encara no ha estat completament assolit
degut a la falta d’algoritmes que puguin resoldre problemes fonamentals com la local-
ització, la construcció de mapes i la planificació de trajectòries en el mateix vehicle i
conseqüentment reaccionar d’acord amb aquests. Aquests algorismes poden capacitar els
AUVs amb noves funcions com desplegaments de llarga durada, exploració autònoma i
intervenció autònoma.

En aquesta tesi es presenta el desenvolupament de dos algoritmes de localització on-
line per AUVs. Per una banda, el primer algorisme està basat en un filtre de Suma de
Gaussians (SOG) per localitzar online una balisa acústica mitjançant mesures de rang, per
exemple per localitzar una Estació d’Acoblament (DS) per recarregar bateries i transmetre
dades. S’han desenvolupat dues versions diferents de l’algorisme, una basada en Navegació
per Estimació (DR) i una basada en una completa Localització i Construcció de Mapes
Simultània (SLAM). A més, s’ha desenvolupat un algoritme de Localització Activa (AL)
per decidir autònomament quines són les millors accions que minimitzen la incertesa de
la localització per rangs. Aquest algorisme s’ha testejat dins un projecte molt més ampli
on s’ha hagut de combinar amb altres algoritmes per tal de desenvolupar una estratègia
completa per tal de localitzar la DS i poder-s’hi acoblar. Com a conseqüència , aquest
algoritme pot ajudar els desplegaments de llarga durada permetent sempre al vehicle de
tornar a la DS per carregar bateries.

Per altra banda, el segon algorisme proposa un nou mètode de SLAM per la construcció
de mapes continus d’ocupació anomenat Hilbert Maps SLAM (H-SLAM). Utilitza un Fil-
tre de Part́ıcules Rao-Blackwellizat (RBPF) on cada part́ıcula té un Mapa de Hilbert
(HM) com a representació de l’entorn. Els HMs ofereixen un baix ús de memòria i una
complexitat computacional constant O(1) per inserció i consulta, adequat per ser proces-
sats online. Aquest algorisme s’ha testejat amb dos conjunts de dades reals produint una
millora significativa en la reconstrucció de l’entorn respecte la reconstrucció obtinguda
utilitzant la navegació DR. Obtenir mapes continus d’ocupació i trajectòries correctes,
obre moltes possibilitats per futures combinacions amb algorismes online de planificació
de trajectòries.
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Resumen
El verdadero potencial de autonomı́a de los Veh́ıculos Submarinos Autónomos (AUVs) en
entornos complejos y potencialmente desconocidos, aún no ha sido completamente logrado
debido a la falta de algoritmos que puedan resolver problemas fundamentales como la
localización, la construcción de mapas y la planificación de trayectorias en el veh́ıculo
mismo y consecuentemente reaccionar de acuerdo con estos. Estos algoritmos pueden
capacitar los AUVs con nuevas funciones como despliegues de larga duración, exploración
autónoma e intervención autónoma.

En esta tesis se presenta el desarrollo de dos algoritmos de localización online para
AUVs. Por un lado, el primer algoritmo está basado en un filtro de Suma de Gausianos
(SOG) para localizar online una baliza acústica mediante medidas de rango, por ejemplo
para localizar una Estación de Acople (DS) para recargar bateŕıas y transmitir datos. Se
han desarrollado dos versiones diferentes del algoritmo, una basada en Navegación por
Estimación (DR) y una basada en una completa Localización y Construcción de Mapas
Simultáneamente (SLAM). Además, se ha desarrollado un algoritmo de Localización Ac-
tiva (AL) para decidir autónomamente cuales son las mejores acciones que minimizan la
incertidumbre de la localización por rangos. Estos algoritmos han sido probados dentro
de un proyecto mas amplio donde se ha combinado con otros algoritmos para desarrollar
una estrategia completa para localizar la DS y poderse acoplar. Como consecuencia, este
algoritmo puede ayudar a los despliegues de larga duración permitiendo al veh́ıculo poder
volver siempre a la DS para cargar bateŕıas.

Por otro lado, el segundo algoritmo propone un nuevo método de SLAM para la con-
strucción de mapas continuos de ocupación llamado Hilbert Maps SLAM (H-SLAM). Uti-
liza un Filtro de Part́ıculas Rao-Blackwellizado (RBPF) donde cada part́ıcula tiene un
Mapa de Hilbert (HM) como representación del entorno. Los HMs ofrecen un bajo uso
de memoria y una complejidad computacional constante O(1) para inserción y consulta,
adecuado para ser procesados online. Este algoritmo se ha probado con dos conjuntos de
datos reales produciendo una mejora significativa en la reconstrucción del entorno respecto
a la reconstrucción obtenida utilizando la navegación DR. Obtener mapas continuos de
ocupación y trayectorias correctas, abre muchas posibilidades para futuras combinaciones
con algoritmos online de planificación de trayectorias.

5





1
Introduction

In this chapter we present the main problems that have motivated this thesis: online underwater
localization for true autonomous Autonomous Underwater Vehicles (AUVs). The motivations

behind this problem are introduced in Section 1.1, relating them to the requirements of real-world
applications and the limitations of current approaches. Next, we state the objectives of the thesis
in Section 1.2 and we briefly describe, in Section 1.3, the context in which this work has been
carried out. Finally, the organization of the thesis document is presented in Section 1.4.

7
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1.1 Motivation

Interest in underwater robotics research has increased over the last couple of decades,
particularly for deep water. This is not surprising since the 71% of Earth surface is
covered by oceans, which represent 96% of Earth’s water. Although life started in the
oceans 3.5 billion years ago and more than 1500 new species were discovered over the last
decade, only 5% of the underwater domain can be considered explored [NOAA, 2018].
Deep water is an extremely hostile environment for humans due to high pressures. Early
underwater exploration started with manned submersibles, and although they are still
in use, the development of Remote Operated Vehicles (ROVs) increased the safety and
duration of underwater operations. ROVs are routinely used in offshore industries and
in science applications among others (e.g. offshore oil and industry, biology, archeology).
However the need for a large and expensive support vessel to be able to handle the crane,
the tether and the involved ROV crew has stimulated the research and development of
AUVs.

Free from the physical connection to the surface ship, AUVs provide a stand-alone
platform [Desa et al., 2006] that can gather data close to the seafloor without human
supervision and avoiding the risks related to the umbilical cable. Those new possibilities
also open new challenges on the engineering side, like better batteries [Reader et al., 2002]
and sensors for longer and safer deployments. Moreover, the limited communications (e.g.
acoustic modems) or lack of human supervision, pose as a huge challenge to computer
science engineering. True autonomy involves several key enabling technologies such as
autonomous localization and map building, autonomous path planning and re-planning,
and autonomous intervention. Having solutions that can be run online in the AUVs will
make them increasingly more capable and therefore more useful in underwater operations.

Localization underwater has always been a difficult problem, mainly due to the lack
of global localization systems like Global Positioning Systems (GPSs). Inertial Naviga-
tion Systems (INSs) with depth measurements from a pressure-cell, velocity measurements
from Doppler Velocity Log (DVL), and orientation from Attitude and Heading Reference
System (AHRS), drift over time and become unreliable after long missions unless exter-
nally aided with absolute position fixes. The most commonly available fixes can come
from Long Baseline (LBL), Short Baseline (SBL), Ultra-Short Baseline (USBL) and GPS
Intelligent Buoys (GIBs) (Figure 1.1). However these systems require time for deployment
and calibration, and constrain the AUV to their coverage area.

Simultaneous Localization and Mapping (SLAM), arises here as a key enabling tech-
nology required to develop other capabilities. Once a correct map is built and the AUV
position within it is known, path planning and autonomous intervention, for instance, can
be tackled with better chances of success. This thesis focuses on the research and devel-
opment of online acoustic based localization algorithms for AUVs. By online we refer to
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Figure 1.1: Types of acoustic absolute positioning fixes.

methods which have been designed to run in real-time, programmed to run on-board the
AUV, accept sensor measurements as they arrive, and provide position and map estimates
on time. This is in contrast to offline methods, which post-process data logged during a
mission and not being required to meet time constrains.

When an online method is used to localize the AUV during a mission, we will refer
to it as a real-time localization method. If the method is run online but over a dataset
playback not during mission, it will be referred as online. Please note that the difference
between online and real-time refers only to how the method has been validated. The main
difference between online and real-time methods, is that the last ones have been tested
enough to allow them to control the vehicle during an actual experiment.

This thesis addresses two methods. The first one works in a confined environment, the
area of coverage of an acoustic beacon, and uses range-only information. The method was
designed to support homing and docking operations using a Docking Station (DS) in the
context of a remote launch/recovery scenario. The second one relieves the confinement
constrains. It is an occupancy based SLAM which makes use of Hilbert Maps (HMs)
to provide a continuous occupancy representation of the space at a very small memory
footprint. The method is O(1), so it is suitable for online implementation.

1.1.1 Range-only localization

Accurate target localization plays an important role in several application scenarios such as
seismology, radar, mobile wireless communications, astronomy and sonar, to name a few.
Underwater, methods based on visual detection such as optical cameras, are dependent
on water visibility conditions and thus only work up to few meters. On the other hand,
acoustic methods can be used at large distances regardless of water quality. There exist
multiple methods of acoustic localization such as bearings-only localization and range-only
localization. The first one uses an array of receivers to detect a Time Difference of Arrival
(TDOA) that provides bearing information. That bearing information can be used on a
moving vehicle to accurately locate the beacon source [Bishop et al., 2007, Hawkes and
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Nehorai, 1998,Li and Nehorai, 2011,Moreno-Salinas et al., 2012]. However, such systems
are not usually installed in AUVs and therefore cannot be used off-the-shelf. Alternatively,
range-only measurements are easily measured on AUV’s acoustic modems.

Range-only localization is a highly non-linear problem since given a measurement,
the uncertainty in beacon localization has the shape of a ring in two-dimensional (2D)
space and a spherical shell in three-dimensional (3D) space. This makes it impossible to
solve directly by an Extended Kalman Filter (EKF) unless an initial guess is provided
or delayed initializations are used. The EKF’s single Gaussian covariance representation
cannot represent this uncertainty shape.

For a first localization estimate, delayed initializations may include a least-squares
approach [Newman and Leonard, 2003, Vaganay et al., 2000], a voting space similar to
Hough transform [Olson et al., 2006], a pose-based EKF with delayed states [Webster et al.,
2009], or a moving horizon estimation [Wang et al., 2013]. However, these methods are
computed offline once the AUV is recovered and therefore cannot be used for autonomous
homing and docking procedures.

[Blanco et al., 2008b] proposed a solution based on the Particle Filter (PF) to accu-
rately represent the uncertainty of the beacon. This method was later improved in [Blanco
et al., 2008a] with the introduction of a Sum of Gaussian (SOG) filter to cover more
efficiently the space and being able to run it online to locate radio transceivers. An-
other solution based on the SOG filter with reduced sphere parametrization was proposed
in [Fabresse et al., 2013].

To solve the range-only localization problem, it is necessary that measurements are
gathered through a path that ensures observability. Observability is a key issue and
several works have addressed it [Song, 1996, Song, 1999, Vaganay et al., 2000, Gadre and
Stilwell, 2004, Gadre, 2007, Olson et al., 2006, Ross and Jouffroy, 2005]. Moreover, in
[Salinas, 2013] there is an extensive research on best beacon positioning configurations to
achieve minimum localization uncertainty. This is achieved through a maximization of the
Fisher Information Matrix, also known as D-optimality or minimization of the uncertainty
volume.

To have a truly autonomous localization method, an AUV must be able to decide which
actions/movements help reduce the localization uncertainty. Algorithms related to Active
Localization (AL) [Thrun et al., 2005, Stachniss, 2009, Vander Hook et al., 2014, Arsenio
and Ribeiro, 1998] can help achieve this goal. Predicting how different actions affect
the future uncertainty and evaluating it through some criteria [Carrillo et al., 2012], can
provide autonomous decisions on the best actions to take.

1.1.2 Underwater SLAM

Multiple works have achieved successful SLAM implementations, either with optical imag-
ing sensors or acoustic sonar sensors. Optical imagery has been used to construct 2D un-
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derwater photo-mosaics that correct the inherent Dead Reckoning (DR) drift and enable
an overview of extended areas of the seafloor [Eustice et al., 2002,Gracias et al., 2003,Ri-
dao et al., 2010,Escart́ın et al., 2008,Singh et al., 2004,Bingham et al., 2010,Elibol et al.,
2011, Eustice et al., 2005]. Additionally, in scenarios with a high 3D component, optical
imagery has also been used for 3D reconstructions [Williams and Mahon, 2004, Pizarro
et al., 2004, Nicosevici et al., 2009, Zhang and Negahdaripour, 2010, Johnson-Roberson
et al., 2010].

On the other hand, among sonar sensors, Forward-Looking Sonar (FLS) provides a
strong alternative to optical imagery mosaicking in low visibility conditions [Kim et al.,
2005, Negahdaripour et al., 2005, Aykin and Negahdaripour, 2013, Hurtós et al., 2015].
Although FLS provides a longer measurement range, its Field of View (FOV) is limited
and the change of orientation greatly affects the perceived appearance of measured objects.

Multibeam echosounders are commonly used to obtain 2.5D elevation maps of the
seafloor thanks to their wide swath and long range of measurements. Typically used
on surface ships to map the seafloor, they are also used in AUVs to obtain a better
resolution closer to the bottom [Roman and Singh, 2005, Barkby et al., 2011, Barkby
et al., 2012,Palomer et al., 2016].

Finally, mechanical scanning sonars and single beam echosounders have also been used
for SLAM in man-made environments with line features [Ribas et al., 2008]. Even in fully
3D environments like caves, with occupancy grids [Fairfield et al., 2007], as well as with
scan-matching algorithms [Mallios et al., 2014].

SLAM underwater is usually computed offline after the AUV is recovered from water
and its data downloaded. After observing the obtained result, another mission can be
scheduled to explore potential targets or cover the gaps of the first mission. This process
can be inefficient and costly. However having the SLAM solution in real-time, could enable
autonomous exploration [Hernández et al., 2017] or autonomous intervention [Palomeras
et al., 2016] capabilities for the AUVs. Moreover, if the map solution is an occupancy
map, it can also help the development of online path-planning algorithms.

To the best of the authors knowledge the only underwater SLAM algorithms that have
been tested in real-time, are [Fairfield et al., 2007, Hurtós et al., 2015]. The first uses
multiple single beam echosounders and provides an Occupancy Grid (OG) map using an
efficient Deferred-Reference Octree representation to avoid huge copies in its PF. While
the second one uses a FLS Fourier-based registration with a pose-graph representation
with loop-closing detection.
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1.2 Objectives

Once motivations have been described, we state the main goal of this thesis as:
“To research and develop advanced online acoustic based localization methods

for AUVs. Two distinct methods are proposed. The first one localizes an AUV and a DS

in the context of a remote launch/recovery application. The second one localizes an AUV

using a continuous occupancy map.”

This general goal can be broken down to the following more specific objectives:

Online localization method to localize a DS: develop an online localization algo-
rithm to support the homing operation of an AUV towards its DS.

Range-only localization: implement an online localization algorithm capable of
localizing an unknown beacon position (DS) with range measurements and the
on-board DR navigation.

Extension to Active Localization: extend the algorithm to be capable of au-
tonomously deciding which movements help achieve better and faster localiza-
tion.

Extension to SLAM: extend the algorithm to simultaneously estimate the posi-
tion of the beacon and the AUV.

Online Occupancy based SLAM: research and develop an online acoustic based
SLAM method, using an occupancy-based representation of the environment, easy
to integrate in the future with online path-planning algorithms.

Efficient Occupancy Based Representation of the Environment: adopt an
occupancy mapping representation capable of running online in a PF-SLAM
where each particle carries its own copy of the map. This representation needs
to have a low memory usage and low computational complexity to allow fast
queries and insertions.

Online occupancy SLAM: develop a new online SLAM framework capable of
localizing the AUV and building an occupancy map.

Experimental validation: Demonstrate the capabilities of the developed methods on
real AUVs.

1.3 Context

The research of this thesis has been conducted at the Underwater Robotics Research
Center, Centre d’Investigació en Robòtica Submarina (CIRS), of the Computer Vision and
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Robotics (ViCOROB) Institute of Universitat de Girona (UdG). Research in underwater
robotics has been ongoing there since 1992, supported by several National and European
research programs. The group has developed several AUV prototypes such as: GARBI
[Amat et al., 1999] originally conceived as a ROV that was later redesigned as an AUV,
URIS [Batlle et al., 2005] a very lightweight AUV, Ictineu [Ribas et al., 2007] that won
the first Student Autonomous Underwater Challenge - Europe (SAUC-E) competition in
2006, Sparus that also won SAUC-E in 2010, Girona500 [Ribas et al., 2012] a reconfigurable
AUV that has been used in the experimental part of this thesis, and Sparus II [Carreras
et al., 2013, Carreras et al., 2018] a restyled version of the original Sparus presented as a
commercial platform and winner of the multi-domain competition Eurathlon 2014, 2015
and 2017, that is also used in the experimental part of this thesis.

Research at CIRS revolves around AUV applications: control architectures [Palom-
eras et al., 2012], autonomous intervention [Carrera et al., 2015, Palomeras et al., 2014,
Youakim et al., 2017, Cieslak et al., 2015, Palomer et al., 2018], SLAM [Ribas et al.,
2008, Mallios et al., 2014, Palomer et al., 2016], and path planning [Hernández et al.,
2011,Galceran Yebenes, 2014,Hernández et al., 2016].

There also exists a close collaboration between CIRS and the Underwater Vision Lab
(UVL), also from VICOROB Institute. UVL research revolves around underwater com-
puter vision, covering topics such as 3D reconstruction [Istenic et al., 2017], underwater
panoramic image stitching [Bosch et al., 2015], image dehazing [Ancuti et al., 2017], multi-
vehicle mapping [Campos et al., 2016] and fish detection [Prados et al., 2017].

Joint work between the two labs has lead to successful results in real-world applications
such as dam inspection [Ridao et al., 2010], AUV mapping of archaeological sites [Gracias
et al., 2013], and AUV mapping and intervention in a harbor scenario [Prats et al., 2012].

1.3.1 Participation in projects

The work presented in this thesis has contributed to the following projects in which CIRS
has participated:

• MINECO Project 3DAUV: Automatic inspection of 3D underwater environments
using an AUV (ref. DPI2015-73978-JIN), funded by the Spanish Ministry of Science
and Innovation.

• EU FP7 Project LOON-DOCK/SUNRISE: Sensing, monitoring and actuating in
the UNderwater world through a federated Research InfraStructure Extending the
Future Internet (ref. FP7-ICT-2013-10-611449), funded by the European Commis-
sion.

• MINECO Project ARCHROV (part of MERBOTS): marine ARChaeology through
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HROV/AUV cooperation (ref. DPI2014-57746-C3-3-R), funded by the Spanish Min-
istry of Science and Innovation.

• MINECO Project COMAROB (part of TRITON): Robótica cooperativa Marina
para el mapeo acústico y la intervención (ref. DPI2011-27977-C03-02), funded by
the Spanish Ministry of Science and Innovation.

• EU FP7 Project EUROFLEETS2: New Operational Steps towards an Alliance of
European Research Fleets (ref. FP7-INFRASTRUCTURES-2012-1-312762), funded
by the European Commission.

• EU FP7 Project MORPH: Marine robotic system of self-organizing, logically linked
physical nodes (ref. FP7-ICT-2011-7-288704), funded by the European Commission.

1.3.2 Research collaborations

Throughout this thesis, various collaborations have taken place with other researchers from
VICOROB and from abroad. The study of acoustic modems and their communications
allowed for collaboration in [Centelles et al., 2017] where compressed visual feedback was
transmitted through the acoustic modem. Moreover, acoustic range measurements were
used to estimate the position of an AUV to accurately position a surface vehicle to improve
the AUV localization in [Mandić et al., 2016]. In addition, early studies on online mapping
methods helped to develop the work related to online path planning algorithms [Hernández
et al., 2015a,Hernández et al., 2015b,Hernández et al., 2015].

Finally, this thesis has also benefited from a research stay of three months in the Marine
Systems group at the Australian Centre for Field Robotics (ACFR) of University of Sydney
(Sydney, Australia). ACFR is a science and engineering research center distinguished for
their work in habitat mapping and SLAM [Barkby et al., 2011,Barkby et al., 2012,Johnson-
Roberson et al., 2010,Williams and Mahon, 2004,Williams et al., 2010]. There, the author
had the opportunity to join a 10-day mapping cruise with Sirius AUV.

1.4 Document Structure

The following chapters of this thesis are structured as follows (see Figure 1.2):

• Chapter 2. Background. Provides an explanation of the different sensors and
AUVs that are used throughout the experimental part of this thesis. A detailed ex-
planation of HM representation for continuous occupancy mapping is also provided.

• Chapter 3. SOG Single Beacon Range-Only Localization for AUV Hom-
ing. A new approach to range-only localization for homing based on the SOG filter
is proposed. Besides providing correct localization of the target, this approach also
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implements an AL method to autonomously minimize the uncertainty of localization.
The proposed approach is tested in a real harbor scenario.

• Chapter 4. AUV homing and docking for remote operations. The range-
only for homing approach of Chapter 3 is used as part of a more complex autonomous
homing and docking strategy to demonstrate permanent deployment in the context
of LOON-DOCK/SUNRISE European project.

• Chapter 5. H-SLAM: Particle Filter SLAM Using Hilbert Maps. A new
SLAM framework, named Hilbert Maps SLAM (H-SLAM), for online continuous
occupancy mapping with sonar sensors is proposed. The combination of a Rao-
Blackwellized Particle Filter (RBPF) with a HM representation in each particle,
provides a continuous occupancy map that correctly represents the environment.
The proposed approach is tested in several 2D datasets.

• Chapter 6. Results & Discussion. A comprehensive discussion of the obtained
results is provided in this chapter.

• Chapter 7. Conclusions & Future Work. Concludes this thesis by summarizing
the main contributions and the future research directions.

Figure 1.2: Document structure.





2
Background

Before moving to the compendium of journal publications that this thesis is composed of, it is
essential to understand the hardware and the algorithms used in them. In this chapter we

first describe the different sensors used by the AUVs in Section 2.1 and then in Section 2.2, the
AUVs that were used in the experimental part of this thesis. Finally, we also describe in detail
(Section 2.3) the HM representation that is used in Chapter 5 for map representation. Finally,
a summary in Section 2.4 links the background of this chapter to the different journals in this
compendium.
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2.1 Underwater sensors

Nowadays AUVs can accommodate a wide range of different sensors from simple pressure
cells to mass spectrometers [Short et al., 1999]. The most basic sensors that AUVs have,
are the ones providing navigation. The most common of those navigation sensors are the
following:

GPS provides accurate positioning, but it only works on surface. It is used mainly to
correctly geolocalize the start of a mission and to evaluate the total drift of the AUV
once it resurfaces. Combined with SBL, USBL or GIBs can provide absolute fixes
underwater that bound the DR navigation drift.

Pressure sensor provides depth measurements. It can be directly measured by a pres-
sure cell or, alternatively, integrated in a more complex one such as the Sound
Velocity Sensor (SVS) (Figure 2.1). Additionally to depth measurements, SVS also
measures sound velocity and temperature. Sound velocity measures are required by
sound related measurements, e.g. acoustic ranges, sonars and DVLs.

Figure 2.1: Example of Sound Velocity Sensor (SVS) from Valeport R©.

DVL provides linear velocities in all three axis (Figure 2.2). Measurements are obtained
thanks to the Doppler shift effect from different acoustic beams. Velocities are
provided relative to water and/or seabed. Moreover, their capacity to analyze the
quality of the measurements, allows outliers to be discarded. It also provides mea-
surements of altitude, that aid to maintain a distance to the seafloor.

Figure 2.2: Example of Doppler Velocity Log (DVL) from Teledyne R©.
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AHRS provides orientation and angular rate measurements. It is an essential sensor to
know the orientation of the vehicle and therefore where it is moving when coupled
with a DVL.

Apart from the basic navigation sensors, exteroceptive sensors such as acoustic modems
and different types of sonars are also used in this thesis:

Acoustic modems (Figure 2.3) are mainly designed to transmit data at low rates. This
allows operators to control the status of the AUV and to send simple commands.
They can also behave as acoustic transponders and combined with LBL, SBL, USBL
or GIB can provide accurate positioning that corrects the drift of the DR navigation.
However, acoustic transponder networks are costly to deploy and calibrate, and/or
require a surface ship.

Figure 2.3: Example of acoustic modem from Evologics R©.

In this thesis, acoustic modems are used as range sensors. Knowing the sound
velocity and measuring the Time of Flight (ToF) of any data transmission between
modems, this range can easily be computed. Moreover, the target can also send
useful information such as its own depth and orientation to ease the localization
process (Chapter 4).

Sonar sensors (Figure 2.4) are used in many underwater operations that have long re-
lied on sonar technology because acoustic waves are significantly less affected by
attenuation than optical sensors such as cameras. Sonars that can deliver range
measurements, such as single beam sonars (Figure 2.4a), profiler sonars (Figure 2.4e)
or multibeam sonars (Figure 2.4g), have been used for obstacle avoidance, naviga-
tion, localization and mapping [Roman and Singh, 2005, Fairfield et al., 2007, Kin-
sey et al., 2006]. Multibeam sonar have been used extensively to create seafloor
bathymetric charts. Imaging sonars, such as Mechanically Scanning Imaging Sonar
(MSIS) (Figure 2.4c), sidescan sonars (Figure 2.4i) or FLS (Figure 2.4k) have also
been widely used for obstacle-avoidance, localization and mapping applications [Tena
et al., 2003,Mallios et al., 2014,Ribas et al., 2008,Aulinas et al., 2010,Baumgartner
and Wales, 2006,Chen et al., 2011,Walter et al., 2008].
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(a) Single beam sonar. (b) Map from single beam sonar.

(c) MSIS. (d) 360◦ scan from MSIS.

(e) Profiler sonar. (f) 360◦ scan from profiler sonar.

(g) Multibeam sonar. (h) Bathymetry map from multi-
beam data.

(i) Sidescan sonar. (j) Waterfall view of sidescan data.

(k) FLS. (l) 2D image from FLS.

Figure 2.4: Sonar sensor types and example data.

2.2 Autonomous Underwater Vehicles (AUVs)

Two different AUVs were used in the experimental part of this thesis: Girona500 and
Sparus II. Both of them were developed in-house at CIRS (Figure 2.5).



2.2 - Autonomous Underwater Vehicles (AUVs) 21

Girona500 AUV (Figure 2.5a) has dimensions 1 m × 1 m × 1.5 m, weights less than
200 kg and is rated for 500 m depth. It has a passive stability in pitch and roll due
to the center of buoyancy being higher than the center of gravity. It is controlled
by 5 thrusters that allow control on in heave, surge, sway and yaw. There is a big
payload area in the lower hull, that can accept many kinds mission-specific sensors
and actuators. It can even handle an arm, converting it to an Intervention AUV
(I-AUV) [Ridao et al., 2015].

Sparus II AUV (Figure 2.5b) is a light torpedo-shaped hovering vehicle of length 1.6 m
by 230 mm�, weights less than 60 Kg and is rated for 200 m depth. It is controlled
by 3 thrusters that allow control in heave, surge and yaw. There is a payload area in
the frontal part, that can accept many kinds mission-specific sensors and actuators.

(a) Girona500 AUV.
(b) Sparus II AUV.

Figure 2.5: Girona500 & Sparus II AUVs with navigation sensors and acoustic modem locations.

Both vehicles are equipped with a navigation sensor suite that includes a pressure
sensor, a DVL, an AHRS and a GPS to receive position fixes while at surface. They also
include an acoustic modem for underwater communication with other vehicles or surface
stations (e.g. by using an USBL system), and a Wi-Fi antenna that can be used when the
AUV is at surface. Moreover, the payload area makes these vehicles easily configurable
according to the mission’s requirements, and may include optical cameras, single-beam
echosounders, MSIS, profiler sonar or multibeam sonar, to name a few.

Both AUVs pack an Intel i7 computer for internal processing. This computer runs the
Component Oriented Layer-based Architecture for Autonomy (COLA2) software architec-
ture [Palomeras et al., 2012] that is built on top of Robot Operating System (ROS) [Quigley
et al., 2009]. Besides operating real robots, the software architecture is the same when op-
erating in simulation. This is extremely useful to develop new capabilities since same code
can be tested on simulation and on the real AUVs without changes. In this thesis newly
developed algorithms request information to the software architecture such as the current
DR navigation or the obtained sensor measurements. Small modifications to the acoustic
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modem driver were made to be able to obtain range measurements when communicating
with other modems.

2.3 Occupancy Representation

Occupancy representation has been historically done with Occupancy Grids (OGs)
[Moravec, 1988] where space is discretized into square grid cells in 2D and cube voxels
in 3D. The extent of the map has to be known beforehand, and all cells are kept in
memory. Instead of saving the occupancy probabilities directly, log-odds representation
(Section 2.3.1) is often used for better numerical stability [Thrun et al., 2005]. To simplify
data insertion, cells are usually assumed to be independent from each other. Insertion and
queries in OGs have a constant computational complexity O(1) since they only require
access to a table entry.

Most of real-world maps are not observed in all their extent and therefore a lot of
memory is wasted storing unobserved regions of the map. To overcome this drawback, the
same space can be represented by quadtrees in 2D or octrees in 3D. These tree structures
only keep observed cells in memory and therefore there is a significant memory reduction.
This reduction comes at the cost of incrementing the computational complexity for queries
and insertion to logarithmic O(log(n)). One well known example of such octree structures
is the Octomap library [Hornung et al., 2013].

The main problem with cell independence assumption is that measurements do not
affect neighboring cells. For example, when a single cell is unobserved but all surrounding
cells are observed to be free multiple times, it could be assumed that the cell is also free
up to some confidence degree. To overcome this problem, Gaussian Processs (GPs) offer a
continuous occupancy representation that can be queried for occupancy but also for uncer-
tainty [O’Callaghan et al., 2009]. The major drawback is that they significantly increase
the computational complexity to O(z3) where z is the number of point observations used
to learn the GP. Because point measurements are needed to learn a GP, range measure-
ments must be randomly sampled to obtain free points. Improvements like accepting line
measurements to reduce the number of observations [O’Callaghan and Ramos, 2012] and
the use of local maps [Kim and Kim, 2013] managed to reduce computation time, but still
remains too complex for online applications.

Hilbert Maps (HMs) [Ramos and Ott, 2016] were proposed to reduce this computa-
tional complexity to constant O(1) and still maintain the continuous representation and
reduction of memory usage with respect to OGs. HMs are an approximation, in a finite
feature space, to the infinite space that GPs represent. However, in this approximation,
uncertainty of occupancy cannot be computed. HMs are used throughout Chapter 5 for
map representation, and a more detailed explanation is available in Section 2.3.2.

The main differences between the aforementioned representations can be observed in
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Table 2.1 and Figure 2.6.

Table 2.1: Comparison of occupancy representations where r is the cell resolution, n is the
number of cells in a full OG, z is the number of observations, and m is the number of features
(where m� n).

OG Octrees GP HM

Independence yes yes no no
Uncertainty no no yes no
Resolution r r ∞ ∞
Memory n < n z2 m
Complexity O(1) O(log(n)) O(z3) O(1)

Figure 2.6: Comparison of different occupancy representations. (top-left) Environment with
green space as occupied space, range measurements in blue and occupied points in red. (bottom-
left) Environment with green space as occupied space, free randomly sampled points in blue and
occupied points in red. (top-center) Range measurements saved in an OG (2500 cells at 0.2 m
resolution). (top-right) Range measurements saved in a quadtree (690 cells at 0.2 m resolution).
(bottom-center) Free and occupied points saved in a GP (112 point observations queried at 0.2 m
resolution). (bottom-right) Free and occupied points saved in a HM (features of dimension 484
queried at 0.2 m resolution).
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2.3.1 Log-odds Probability Representation

In occupancy mapping algorithms it is common to use the log-odds representation of
the probability. The odds of a probability p is defined as the ratio between p and its
complementary (1− p) as

odds(p) = p

1− p. (2.1)

The log-odds is given by the natural logarithm of the odds as

l = log-odds(p) = ln
(

p

1− p

)
(2.2)

where the log-odds(p) domain is [0, 1] and its range is infinite [−∞,+∞] (Figure 2.7).

Figure 2.7: Log-odds of the probability.

Given a log-odds probability l, the corresponding probability can be recovered as

p = 1
1 + e−l

(2.3)

Log-odds is a computationally elegant representation of probabilities since it avoids nu-
merical problems at probabilities close to 0 or 1, and because it transforms equations
based on the product of probabilities (e.g. the Bayes Rule) into equations based on addi-
tions of log-odds due to its logarithmic nature. Nowadays most OGs algorithms, use this
representation.
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2.3.2 Hilbert Maps

2.3.2.1 Notation

Let xi be a point in the space xi ∈ RD, where D is the space dimension, and let yi be a
categorical variable representing the occupancy property of xi, yi ∈ {−1,+1} where −1
means free and +1 means occupied. Then D, is a dataset D = {xi, yi}Ni=1 of observed
points and their categories.

The dataset D, is obtained while the robot moves across the environment. Figure 2.6-
top-left shows a possible example of a dataset captured from a single robot position where
free space rays are represented in blue and occupied points are represented in red. Fig-
ure 2.6-bottom-left shows the points dataset xi that is composed by the set of occupied red
points and free randomly sampled points from the free rays.

2.3.2.2 Map model

The occupancy map is built by learning a discriminative model p(y|x,w), parametrized
by a vector w, to predict the occupancy property of new query points x∗. The parameters
w are learned through a logistic regression classifier using Stochastic Gradient Descent
(SGD). Since a linear classifier would not be able to correctly classify the complex physical
world into free and occupied categories, points x are first projected as features Φ(x) of a
higher dimensional Hilbert Space where the classifier learns the linear model p(y|Φ(x),w)
on the projected features.

Given any training point xi, it can be mapped to a feature Φ(xi) through the feature
mapping function

Φ(xi) = [Φ1(xi) Φ2(xi) . . . ΦM (xi)]T , (2.4)

where Φj(xi) : X → R.

The inner product of these features approximates popular kernels used in kernel ma-
chines for non-linear classification k(x,x′) ≈ 〈Φ(x),Φ(x′)〉. This approximation allows
the use of a linear classifier operating in the Hilbert Space instead of costly non-linear
classifiers operating in the Euclidean Space.

2.3.2.3 Map Query

Once the model p(y|Φ(x),w) is learned, the occupancy y∗ of any query point x∗ ∈ RD

can be tested as occupied evaluating

p(y∗ = +1|Φ(x∗),w) = 1
1 + exp (−wT Φ(x∗))

. (2.5)
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which predicts the value in the Hilbert Space and then transforms it from log-odds to
probability. In the same way, the probability of free can be computed as

p(y∗ = −1|Φ(x∗),w) = 1− p(y∗ = +1|Φ(x∗),w). (2.6)

2.3.2.4 Learning

The learning of the parameters (or weights) vector w, is done by minimizing the negative-
log-likelihood (NLL) using SGD

wt = wt−1 − ηt
∂

∂wNLL(w), (2.7)

where

NLL(w) =
N∑

i=1
− log(p(yi|Φ(xi),w)) +R(w), (2.8)

ηt is the learning rate, and R(w) is the elastic net regularizer to prevent over-fitting and
enforce sparseness.

2.3.2.5 Features

There exist many different types of feature mappings Φ(·), from Fourier features [Ramos
and Ott, 2016], to wall-like features [Guizilini and Ramos, 2017] and Gaussian features
[Guizilini and Ramos, 2016]. In this thesis, a sparse triangle feature is used. Inducing
points fj ∗ of the feature mapping are placed in a regular grid at fres distance and affect
a neighborhood defined by the radius rth. The feature mapping is defined as a function of
the inducing points as

Φj(x) =


rth−||fj−x||2

rth
if ||fj − x||2 < rth

0 otherwise
. (2.9)

A more visual explanation can be found in Figure 2.8 that depicts the feature Φ(x∗).

2.3.2.6 Learning maps from range measurements

Section 2.3.2.4 explains how a HM can be learned from labeled points through SGD.
However, in real world applications, measurements are usually obtained as ranges. Those
ranges need to be discretized into points in order to be learned by the HM.

First, the HM is initialized with all weights equal to zero (w = ~0). This defines a
completely unknown map, since any prediction as occupied (2.5) or free (2.6) will result
in a 0.5 probability.

∗Notice the change of notation from the one used in Chapter 5. Here subindex j is used to better
differentiate between the point index i and the inducing point index j.
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Figure 2.8: Schematic of HM triangle feature mapping. Each inducing point fj is located in
a regular grid at distance fres and affects the neighborhood defined by the radius rth. When
predicting the occupancy of a point x∗, it must be first projected to a feature Φ(x∗) and pre-
multiplied by the weights w according to (2.5). In the example shown, the query point is inside
the neighborhoods of (f11, f43, f44) and all other feature values are zero.

For each range measurement, the endpoint of the range is labeled free if the range is
maximum (no obstacle was found in its path) and occupied otherwise. Then, the rest
of the ray (from sensor position to measured range) is sampled randomly and labeled
free to properly cover the ray (Figure 2.9). Those points and labels are the ones learned
into the HM. When the vehicle advances and obtains new measurements, those are also

Figure 2.9: Example of HM learning from range measurements. (1) Range measurements ob-
tained by a mobile vehicle in an scenario. Blue rays represent the measured free space and red
dots represent hit-points or occupied points. (2) Ray measurements sampled randomly to obtain
points. (3) Occupancy p(y = 1) of the learned HM. (4) Segmented occupancy of the HM where
p(y = 1) < 0.5 is free (white), p(y = 1) > 0.5 is occupied (black) and unknown (gray) otherwise.

incorporated into the HM, obtaining more confidence in the re-observed regions (see the
second row in Figure 2.10).

2.3.2.7 Raycasting

When working with occupancy maps for localization it is necessary to be able to compare
real measurements with expected measurements. The last ones are usually obtained by
raycasting methods in grid-like representations [Amanatides et al., 1987]. For HM, we



28 Chapter 2. Background

Figure 2.10: Example of HM learning while the vehicle advances in the scenario. First row
shows the obtained range measurements where the second and third rows show the occupancy
p(y = 1) of the learned HM and its segmentation in {free, occupied, unknown} (refer to Figure 2.9
for occupancy values).

adopt a similar strategy to the one developed for GP occupancy maps [Hata et al., 2016].
Having a ray with origin and orientation that we want to know its range, we keep checking
the probability of each point following the ray orientation at a certain resolution s. Once
the predicted occupancy of that advancing point is bigger than a specified threshold thp,
the process is stopped and the point is considered a hit. To obtain the exact point where
the threshold thp was crossed, a linear interpolation between the hit point and the previous
point is computed. If no hit point is found before reaching a maximum specified range rmax

the raycast returns a free measurement. For a better explanation check Algorithm 2.3.1.

2.4 Summary

This chapter has explained the different sensors, AUVs and map models that are used
throughout this thesis.

In Chapter 3, Girona500 AUV is used to localize an acoustic beacon through acoustic
range measurements. There, the DR navigation solution provided by the robot’s software
architecture is compared against the SLAM navigation solution which uses raw sensor
data from AHRS, DVL and depth sensors.

In Chapter 4, Sparus II AUV is used to also localize an acoustic beacon (a DS) through
acoustic range measurements. The DR navigation is used in all the experiments. As a
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Algorithm 2.3.1: HM raycasting.
Data: A ray origin xo, ray unit vector u, occupancy probability threshold thp,

maximum range rmax, and query resolution s.
Result: A raycasted range r and its corresponding label y.
xe ← xo

xprev ← xo

p←Predict(xe)
pprev ← p
while p < thp and ||xe − xo|| < rmax do

xprev ← xe

occprev ← p
xe ← xe + s · u
p←Predict(xe)

end
if p < thp then

r ← rmax

y ← −1
else

xe ←Interpolate(xprev,xe, pprev, p, thp)
r ← ||xe − xo||
y ← +1

end

difference with respect to the previous chapter, in this case the range-only localization is
done as a part of a wider project to demonstrate persistent autonomy for AUVs. When
docking is required, the mission manager requests a range-only localization that serves as
an accurate starting point for the final visual servoing docking.

In Chapter 5, Sparus II AUV is used to obtain a full occupancy map, represented as
a HM, obtained using range measurements from a sonar profiler. Raw sensor data from
AHRS, DVL and depth sensors is used in a RBPF where each particle carries its own
version of the HM and range measurements weight the particles according to their self-
consistency with the map constructed from all previous measurements. In this chapter,
the reader has been introduced to the principles of work of the HM, before introducing
H-SLAM in Chapter 5.
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Range-only measurements are extensively used in many Autonomous Underwater Vehicle (AUV) applica- 

tions. These measurements do not depend on water quality and can be taken from long distances. This 

paper proposes two methods based on the Sum of Gaussian (SoG) filter, to solve the range-only localiza- 

tion problem for homing. The use of the SoG allows us to combine the benefits of both a Particle Filter 

(PF) and an Extended Kalman Filter (EKF) approach in a single filter. An Active Localization (AL) method 

is applied to the SoG to autonomously choose the best waypoints for autonomous convergence. Both the 

SoG filter and the AL are tested in a real scenario with an Intervention Autonomous Underwater Vehicle 

(I-AUV) and compared with a vision-based method to confirm localization. 

© 2016 International Federation of Automatic Control. Published by Elsevier Ltd. All rights reserved. 

1. Introduction 

Artificial benthic constructions such as submerged oil fields 

and permanent observatories need periodic inspection and main- 

tenance. Currently these operations are being carried out by Re- 

moted Operated Vehicles (ROVs), operated from very expensive 

surface ships endowed with Dynamic Positioning (DP) systems and 

bulky Tether Management Systems (TMSs). However, there is an 

increasing interest in demonstrating these kinds of operations us- 

ing light Intervention Autonomous Underwater Vehicles (I-AUVs) 

equipped with one or several arms to perform manipulation. 

I-AUVs can be either launched from a small inexpensive surface 

boat or have a permanent Docking Station (DS) ( Alves, Potter, Guer- 

rini, Zappa, & Lepage, 2014 ) in the vicinity of the structure to be in- 

spected and maintained. Either way, the vehicle needs some means 

to properly locate the structure to inspect and/or its DS for bat- 

tery charging and data uploading. Conventional Autonomous Un- 

derwater Vehicles (AUVs) navigation systems are based on Iner- 

tial Navigation System (INS) with updates from sensors like the 

Doppler Velocity Log (DVL) (velocity), pressure-cell (depth) and At- 

titude and Heading Reference System (AHRS) (orientation). Unless 

� This work was supported by the Spanish national funded project ARCHROV 

(Marine ARChaeology through HROV/AUV cooperation) DPI2014-57746-C3-3-R, and 

the LOON-DOCK/SUNRISE (Sensing, monitoring and actuating on the UNderwater 
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FP7-ICT-2013-10-611449 by the European commission , and the Spanish Government 

FPU12/05384 PhD grant (to G. Vallicrosa). 
∗ Corresponding author. 

E-mail address: gvallicrosa@eia.udg.edu (G. Vallicrosa). 

externally aided with USLB/LBL/SBL, the navigation drifts over time 

and can become unreliable after a long inspection mission, making 

it impossible for the AUV to home back to the DS or to locate a 

desired structure to inspect ( Ribas, Palomeras, Ridao, Carreras, & 

Mallios, 2012 ). 

Methods based on visual detection of the structure only work in 

good visibility conditions, and at a few meters of distance. On the 

other side, acoustic methods can be used at larger distances re- 

gardless of the water quality. One such method for localization, is 

range-only localization. Range-only measurements are extensively 

used in many underwater homing applications ( Blanco, Fernandez- 

Madrigal, & González, 2008a; Newman & Leonard, 2003; Olson, 

Leonard, & Teller, 2006; Vaganay, Baccou, & Jouvencel, 20 0 0; 

Wang, Chen, Hu, & Gu, 2013 ). However, these measurements 

present a high non-linearity and standard Extended Kalman Filters 

(EKFs) cannot cope with it, unless delayed initializations are used 

( Webster, Eustice, Singh, & Whitcomb, 2009 ). 

This paper presents a solution to the range-only localization for 

homing problem using a Sum of Gaussian (SoG) filter. Two vari- 

ations of the SoG filter are proposed. In the first, each Gaus- 

sian represents a candidate position of the beacon (SoG-DR), 

while in the second, each Gaussian jointly represents a candi- 

date pair of the beacon and AUV positions (SoG-SLAM). Both fil- 

ters are tested in real experiments, where an AUV performs an 

autonomous localization and homing maneuver to a DS follow- 

ing the goals proposed by the Active Localization (AL) method. To 

assess their performance, ground truth measurements of the DS 

are provided using an accurate visual detection algorithm. Visual 

detection is aided by light beacons located on the DS structure 

http://dx.doi.org/10.1016/j.arcontrol.2016.09.007 

1367-5788/© 2016 International Federation of Automatic Control. Published by Elsevier Ltd. All rights reserved. 
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Fig. 1. Spherical shell describing all possible positions of an acoustic beacon given 

a single range measurement. 

( Bosch, Gracias, Ridao, Istenic, & Ribas, 2016 ). This paper builds on 

previous works Vallicrosa, Ridao, and Ribas (2015) ; Vallicrosa, Ri- 

dao, Ribas, and Palomer (2014) extending them with new experi- 

ments in which the different algorithms are compared. 

This paper is organized as follows. Section 2 describes the 

range-only localization problem along with the proposed solu- 

tion, the SoG filter. It completes the description with its initial- 

ization, methods of performing AL re-sampling, and computation 

of the final localization of the acoustic beacon. Section 3 details 

the filter implementation. Section 4 describes the AUV and its sen- 

sors, along with the DS used during the experimental validation. 

Section 5 discusses the results both with and without using AL. Fi- 

nally Sections 6 and 7 present the conclusions and plans for future 

work. 

2. The range-only localization 

Range-only localization is a highly non-linear problem. Given a 

range measure at a certain vehicle position, the acoustic beacon 

location can lie in any position on the spherical shell centered at 

the robot position. ( Fig. 1 ). The shell radius is the measured range, 

and its thickness the range measurement uncertainty. 

Particularly interesting are the symmetries produced when 

moving along a non-observable path ( Vaganay et al., 20 0 0 ) (i.e., 

a straight line). In 2D, the intersection of two circumferences are 

two points, and hence, to resolve this ambiguity a third circumfer- 

ence is necessary. The centre of this third circumference cannot be 

collinear with the centres of the other two circumferences, or the 

symmetry problem will remain. 

In the 3D case, at least four sphere surfaces with non-coplanar 

centers are needed to solve for the beacon position while avoiding 

multiple solutions ( Fig. 2 ). Given two spheres, their intersection is 

a circumference. Adding a third non-collinear sphere provides two 

candidate solutions. Finally, adding a fourth non-coplanar sphere 

narrows down localizations to a single point. This process of local- 

ization with range-only measurements is also known as Trilatera- 

tion. 

This means that to discover the 3D position of an acoustic bea- 

con, an AUV must follow a 3D ( Fig. 3 ) trajectory. However, if extra 

restrictions apply, such as when some of the solutions can be dis- 

carded because they lay above the water surface or below the sea 

bottom, the trajectory can be simplified. 

Multiple methods to solve this localization problem using varia- 

tions of the trilateration procedure have been proposed in the liter- 

Fig. 2. Symmetries when intersecting two and three spheres. 

Fig. 3. Example of movement in three axis leading to a single location. 

ature ( Blanco et al., 2008a; Newman & Leonard, 2003; Olson et al., 

2006; Vaganay et al., 2000; Wang et al., 2013 ). EKFs filters can 

be used when an a priori estimate of the beacon position is avail- 

able or after a Gaussian initial guess has been computed by some 

means. For instance, a delayed EKF initialization ( Webster et al., 

2009 ) can be used to calculate this initial position before incor- 

porating it into the EKF as a point feature. The main problem be- 

ing that the EKF works with Gaussian uncertainties and a spheri- 

cal shell uncertainty is impossible to properly represent by a single 

Gaussian. 

The reported methods using delayed initializations include a 

least-squares approach ( Newman & Leonard, 2003; Vaganay et al., 

20 0 0 ), a Hough Transform ( Olson et al., 2006 ), an EKF with de- 

layed states ( Webster et al., 2009 ) and a Moving Horizon Estima- 

tion ( Wang et al., 2013 ). The least-squares approach checks inter- 

sections between circumferences defined by vehicle position and 

range. The Hough Transform uses a voting space up to a certain 

resolution and takes the most voted cell as the final localization. 

The pose-based EKF with delayed states, contains the current state 

and the previous ones up to a specified time in the state vector 

to take into account the delay in the range measurement Time of 

Flight (TOF). The Moving Horizon Estimation uses a fixed window 

for the range update. 

In the field of mobile robotics, a solution to this problem was 

proposed in Blanco et al. (2008a) with the use of a SoG fil- 

ter. The system was demonstrated on a mobile land robot gath- 
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ering range measurements through a Ultra-WideBand (UWB) ra- 

dio system. The SoG filter was compared to a Particle Filter 

(PF) previously proposed in Blanco, González, and Fernandez- 

Madrigal (2008b) achieving better accuracy with less computation 

time. Like PFs, the SoG filter can represent arbitrary multi-modal 

density functions providing, for some problems, a more efficient 

space representation. A SoG filter requires a significantly smaller 

number of Gaussians than the number of particles that would be 

needed by a PF to represent the same density function. The SoG fil- 

ter also allows easy computation of the entropy. This entropy can 

be seen as the volume of uncertainty of the filter, the less entropy 

the more accurate the localization is. This entropy can be used to 

autonomously select a goal waypoint to drive the AUV in the direc- 

tion which minimizes the predicted entropy, effectively reducing 

the localization uncertainty and autonomously localizing the DS. 

In the next subsections, the implementation of the SoG filter is 

explained along with its initialization. In addition an AL method 

is proposed to ensure autonomous convergence of localization by 

reducing the entropy of the filter. 

2.1. Sum of gaussian filter 

The most common method of properly representing the space 

of possible beacon locations (spherical shell) would be the use of 

particles. However, even though PF are appropriate for non-linear 

filtering, a large number of particles would be necessary to cover 

the spherical shell at enough resolution, making the filter compu- 

tationally demanding. To overcome this problem, a SoG approxima- 

tion ( Alspach & Sorenson, 1972; Kotecha & Djuric, 2003 ) is used to 

represent the belief of the map M (the beacon position) according 

to the odometry x k and the measurements z k : 

p(M| x k , z k ) ≈
N ∑ 

i =1 

υ i 
k N 

(
z k ;μi 

k , �
i 
k 

)
(1) 

where υ i 
k 

is the weight associated with each Gaussian, and μi 
k 

and 

�i 
k 

are its mean and covariance matrix. 

The representation of the possible beacon locations with Gaus- 

sians, allows us to cover all space with the use of less Gaussians 

than particles in a PF. Furthermore, the use of Gaussians allows 

use of an EKF to estimate their position and uncertainty according 

to the range measurements. A SoG-EKF implementation consists of 

the following steps: 

1. Prediction Use EKF prediction equations on each Gaussian. 

2. Weighting 

(a) Use a standard EKF update to update each Gaussian mean 

μi 
k 

and uncertainty �i 
k 
. 

(b) Use the innovation y i 
k 

of the EKF update to update each 

Gaussian weight υ i 
k 
. 

(c) Normalize weights. 

3. Resampling Optional step. PF-like re-samplings can be applied 

(discussed in Section 2.4 ). 

For the sake of completeness EKF prediction and update equations 

are reproduced here. For simplicity, the following notation is going 

to be adopted, being x k = μi 
k 

and P k = �i 
k 
. The prediction equations 

are: 

x k | k −1 == f (x k −1 , u k ) (2) 

P k | k −1 == F k −1 P k −1 F 
T 

k −1 + Q k (3) 

where x k | k −1 and P k | k −1 are the predicted state vector and covari- 

ance matrix respectively, f (x k −1 , u k ) is the process model equation 

and F k −1 its Jacobian, Q k is the process noise covariance, u k is the 

control vector. 

In the update equations, the innovation y k depends on the real 

measurement z k and expected measurement h (x k | k −1 ) . H k is the 

expected measurement Jacobian, R k the observation noise, S k the 

covariance of the innovation and K k the Kalman gain. 

y k = z k − h (x k | k −1 ) (4) 

S k = H k P k | k −1 H 

T 
k + R k (5) 

K k = P k | k −1 H 

T 
k S 

−1 
k 

(6) 

x k = x k | k −1 + K k y k (7) 

P k = ( I − K k H k ) P k | k −1 (8) 

The weight update for each Gaussian in step 2( b ) is computed 

following the likelihood p ( z | x ) of the measurement. Innovation y i 
k 

reflects the difference between the real and the expected mea- 

surement and therefore is inversely proportional to the likelihood. 

Weight is computed with a standard exponential decay as follows: 

υ i 
k = υ i 

k −1 exp 

(
−γ [ y i k ] 

2 
)

(9) 

being i the index of the Gaussian. This equation maximizes the 

weight when the expected measurements and the real ones agree. 

The γ variable controls the degree by which the weight decreases 

when increasing the innovation. For this work, it is set as γ = 

0 . 5 /σ 2 
z , where σ z is the uncertainty of the range measurement. 

2.2. Initialization of the SOG 

The initialization of the SoG filter is produced in the first range 

measurement. Two different initializations are proposed, both cov- 

ering the whole space of possible beacon locations. The first, the 

naive initialization, spreads Gaussians of a specified size over all 

possible latitudes and longitudes of the corresponding sphere. The 

second, the Geodesic Grid initialization, starts with an a priori fixed 

number of Gaussians to be used to represent the density function, 

and searches for their best location in order to cover the com- 

plete sphere. A fixed number of Gaussians bounds the computa- 

tion power required for each range update, which is particularly 

important for real-time implementations. 

The vehicle depth and altitude are known with high precision 

and can be used to discard some of the candidate beacon locations. 

Assuming a flat seafloor terrain, the bottom altitude can be used 

to rule out candidate beacon locations lying below the seafloor. 

Likewise, depth information can be used to discard out-of-water 

positions. Furthermore, the depth location of the beacon can be 

roughly known in advance, in which case minimum and maximum 

values for depth can be specified. 

There are two parameters that define each initialized Gaussian, 

the radial uncertainty σ r (the thickness of the shell) which is equal 

to the range measurement uncertainty σr = σz , and the tangential 

uncertainty σ t . The tangential uncertainty defines how much space 

each Gaussian covers on the spherical surface. All Gaussian weights 

are initialized to 1/ N being N the total number of Gaussians. 

2.2.1. Naive initialization 

The naive initialization ( Fig. 4 ) consists in using N Gaussians 

( N = N lat × N lon ) each one defined as 

N (μi 
k , �

i 
k ) = N 

(
[ z k , θ, ϕ] T , diag(σr , σt , σt ) 

)
(10) 
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Fig. 4. Naive initialization. 

Fig. 5. Geodesic Grid with 12, 42, 162 and 642 vertices, corresponding to the subdivision of the original 12 vertices icosahedron (levels 0, 1, 2, 3) [Wikipedia]. 

in spherical coordinates (radius z k , latitude θ and longitude ϕ), 

where σ t is a user parameter defining the space resolution of the 

Gaussian. Given a range z k , a certain latitude θ and a certain σ t , it 

is possible to compute the number of Gaussians N lon covering the 

complete circumference (all possible longitudes) (12) . In the same 

way, given a range of latitudes [ θmin , θmax ] , a range measurement 

z k and σ t , it is possible to compute the number of Gaussians N lat 

to cover all latitudes (11) . 

N lat = 

⌈
z k (θmax − θmin ) 

2 σt 

⌉
(11) 

N lon = 

⌈
2 πz k cos θ

2 σt 

⌉
(12) 

2.2.2. Geodesic grid initialization 

The Geodesic Grid initialization is based on the concept of 

Geodesic Grids ( Heikes & Randall, 1995 ), often used when mod- 

elling weather and ocean circulation. Geodesic Grid is a technique 

used to model a surface of a sphere (such as the Earth) with a 

subdivided polyhedron, usually an icosahedron. 

The construction of the grid is generated by the subdivision 

of an icosahedron into cells by iteratively bisecting the edges of 

the polyhedron and re-projecting the new cells onto the sphere 

( Fig. 5 ). 

This approach provides a fixed number of equally spaced Gaus- 

sians on the sphere surface. This is particularly important when 

dealing with real-time applications, where only a limited number 

of Gaussians can be processed in the available time. 

This initialization also utilizes the minimum and maximum 

depth information to discard Spherical Grid cells at initialization 

( Fig. 6 ). All the Gaussian centers are pre-computed at different 

Geodesic Grid levels ( Table 1 ) for a unitary sphere. On the filter 

initialization, these centers are scaled by the measured range z K . 

In this case, σ t is not user-provided but computed according to 

the unitary sphere edge length. 

2.3. Active localization with a SOG 

As mentioned earlier, the main goal is to autonomously locate 

the beacon. However, if the AUV chooses a trajectory such that 

Table 1 

Geodesic grid levels with number of 

vertices and unitary edge length. 

Level Vertices Edge/Radius 

0 12 1 .0514622 

1 42 0 .5465330 

2 162 0 .3669588 

3 642 0 .2759044 

the range-only measurements are not useful enough to localize the 

beacon, the whole localization solution may lead to unsatisfactory 

results. Therefore we would like to determine the optimal motion 

of the AUV such that the next range measurement, reveals impor- 

tant information and helps reduce the filter uncertainty, which is 

deeply related to entropy. The entropy for a Gaussian Random Vec- 

tor μ with covariance matrix � can be computed in closed form 

as: 

H \ (μ) = 

1 

2 

ln 

(
( 2 πe ) 

n det (�) 
)

(13) 

where n is the dimension of the vector. Entropy can be inter- 

preted as the volume of the uncertainty bounding hyper-ellipsoid 

( Sim & Roy, 2005 ). Minimizing this entropy is equivalent to the D- 

optimality criterion ( Carrillo, Reid, & Castellanos, 2012 ). Therefore, 

the value of the entropy for a single Gaussian can be computed as 

the product of the eigenvalues λ of its uncertainty matrix �i 
k 
. For 

better numerical stability the entropy E can be computed in the 

logarithmic space as: 

log E j = 

∑ 

log λ�i 
k 

(14) 

This equation can also be used to compute the entropy of the 

complete SoG filter using the global uncertainty estimate of the 

beacon 

ˆ �k which is computed proportionally to the weights and 

uncertainty matrices of each Gaussian as: 

ˆ �k = 

N ∑ 

i =1 

υ i 
k �

i 
k (15) 

In order to actively decide (on-line) the following waypoint for 

the AUV, a set of candidate directions are proposed. For example, 

35



G. Vallicrosa, P. Ridao / Annual Reviews in Control 42 (2016) 177–187 181 

Fig. 6. Example of the geodesical grid initialization without and with depth limitations. 

Fig. 7. 26 proposed actions for active localization ( 8 × 3 + 2 ). 

the proposed actions could be of a fixed displacement of 3 m and 

spread at 45 ° intervals over the horizontal plane at three different 

levels ( −45, 0 and 45 °), plus actions for moving up and down- 

wards ( Fig. 7 ). 

The AL method implemented in this paper, takes advantage of 

the fact that in an EKF framework, the uncertainty obtained af- 

ter the update step does not depend on the measurement itself, 

but only on its uncertainty (8) . For each Gaussian in the SoG, each 

candidate motion is evaluated providing a predicted beacon uncer- 

tainty �i 
k +1 

whose entropy is calculated with (14) . 

A voting scheme is setup, where each Gaussian votes with its 

weight whichever action among those proposed minimizes the 

predicted entropy. The action that receives more votes is set as 

the next motion goal. This goal is the optimal among the proposed 

candidate motions, but might not be the global optimal one. 

2.4. Resampling with a SOG 

In a PF, noise is introduced in the prediction step to account for 

the motion model uncertainty. This noise is essential for the par- 

ticles, because otherwise the motion wouldn’t be probabilistic but 

deterministic. During the resampling process of a PF, some high- 

weight particles get duplicated while other low-weight particles 

disappear. If for instance two particles are resampled to the same 

position and there is no noise in the prediction step, both will al- 

ways behave exactly in the same way and therefore one of them 

Fig. 8. Left: Gaussian of the beacon position. Right: First resampled Gaussian in blue 

and following resamplings over same Gaussian using beacon position sampling. 

becomes redundant. The same problem would appear in the pro- 

posed SoG filter implementation. Since the prediction step is based 

on the EKF prediction step, no difference is observable between 

two co-located Gaussians. Hence, if the optional resampling step 

needs to be added to the SoG filter, this must introduce some noise 

to avoid having duplicated Gaussians. 

The proposed resampling for the SoG filter is the following. 

After using a common Sequential Importance Resampling (SIR) 

( Del Moral, Doucet, & Jasra, 2012 ) used in PFs and before the ac- 

tual copy of the Gaussians, an extra rule is added. If the copy is the 

first one, an exact copy is obtained. If the copy is not the first one, 

a random copy is obtained based on the current uncertainty of the 

acoustic beacon position ( Fig. 8 ). This method ensures copies of the 

Gaussian that are close enough and introduces the necessary noise. 

The resampling is only applied if the effective number of particles 

N eff ( Del Moral et al., 2012 ) is smaller than N /2, where N is the 

number of particles and N e f f = 1 / 
∑ 

i w 

i 2 reflects the variance of 

the weights. 

2.5. Choosing a solution 

Having a multimodal function as the SoG filter does not facili- 

tate the selection of a solution as final localization for homing and 

docking purposes. A solution should be accepted when the SoG 

contains a single blob of weighted Gaussians and they are concen- 

trated in a small area/volume. When this occurs, the SoG can be 

terminated and a reliable acoustic beacon location obtained. This 

location can be later used for a homing procedure or added as a 

feature to the EKF navigation to bound the Dead Reckoning (DR) 

navigation drift. 

We adopt an approach that searches for an equivalent Gaus- 

sian to represent the whole SoG filter using the Unscented Trans- 

form ( Wan & Van Der Merwe, 20 0 0 ). If multiple random points 

are drawn from each of the Gaussians, a mean and covariance can 
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Fig. 9. Comparison of equivalent covariance calculated from all points (blue) or 

from the Unscented Transform (red). (For interpretation of the references to colour 

in this figure legend, the reader is referred to the web version of this article.) 

be calculated from all of them. To make this process less compu- 

tationally expensive, the Unscented Transform is used to obtain 2 n 

points per Gaussian, being n the number of dimensions. The points 

can be computed as: 

X 

i 
j = μi + 

(√ 

n �i 

)
j 

for j = 1 , . . . , n (16) 

X 

i 
j = μi −

(√ 

n �i 

)
n − j 

for j = n + 1 , . . . , 2 n (17) 

being i the index of the Gaussian. For example, for a 3D acoustic 

beacon localization, six points are obtained for each Gaussian and 

their weights are equal to the weight of the Gaussian. Then the 

equivalent Gaussian N ( ̂  μ, ˆ �) can be computed as: 

ˆ μ = 

1 ∑ 

i υ
i 

∑ 

i 

υ i μi (18) 

ˆ � = 

1 

2 n 

∑ 

i υ
i 

∑ 

i 

( 

υ i 
∑ 

j 

(X 

i 
j − ˆ μ)(X 

i 
j − ˆ μ) T 

) 

(19) 

In order to check the equivalence of the use of the Unscented 

Transform, 10 0 0 random points were sampled from different Gaus- 

sians. Those random points were then used to compute an equiv- 

alent Gaussian from all of them. This result was compared ( Fig. 9 ) 

with the one obtained with the points from the Unscented trans- 

form as follows: 

This method is used in order to determine a final location of 

the acoustic beacon from the SoG filter. A user-defined distance 

threshold is used to determine if the 2 σ -bounds of the equivalent 

Gaussian fall below its value. When this condition is met, the SoG 

filter is considered finished and the acoustic beacon localized. 

3. Filters for SoG range-only localization 

Two different filters are presented in this paper: 1) a SoG filter 

which estimates the position of the beacon from DR navigation and 

2) a SoG filter which jointly estimates the beacon position as well 

as the AUV’s position and velocity. 

Although both initializations can be used by both filters, each of 

the proposed algorithms only implements one, providing already 

enough results on real data. 

3.1. Localizing the DS with DR navigation 

According to this filter formulation, first presented in 

Vallicrosa et al. (2014) , the filter state vector only contains 

the position of the beacon. The SoG filter is initialized at the first 

range using the naive initialization ( Section 2.2.1 ) and the DR 

navigation is taken directly from the one already available in the 

AUV software architecture ( Palomeras, El-Fakdi, Carreras, & Ridao, 

2012 ). All Gaussians are preserved throughout the process and no 

resampling is performed ( Algorithm 1 ). 

Algorithm 1 Algorithm for DR3D and DR2D. 

// Init filter 

z k = getRangeFromAcousticModem () 

x k = getDRodometry () 

sog, N = initFilterNaive (x k , z k ) // return SoG and number of 

Gaussians N (Section 2.2.1) 

// Continue until localization threshold passed (equivalent Gaus- 

sian using Eq. (19) and Eq. (20)) 

while sog. getEquivalentGaussian () > Local izationT hreshol d do 

// Get measurements 

z k = getRangeFromAcousticModem () 

x k = getDRodometry () 

// Update filter 

for i = 0 to i = N − 1 do 

y i 
k 

= sog.Gaussian [ i ] . EKFupdate (x k , z k ) 

sog.Gaussian [ i ] . weight (y i 
k 
) // using Eq. (10) 

end for 

sog. normalizeWeights () 

// Active localization (see Section 2.3) 

if UseActi v eLocalization then 

v otes = zeros (num _ P roposedActions ) 

for i = 0 to i = N − 1 do 

action _ id = sog.Gaussian [ i ] . getSmallestEntropyAction 

(P roposedActions ) 

v otes [ action _ id] = v otes [ action _ id] + sog.Gaussian [ i ] . weight 

end for 

goal = getMostVotedAction (v otes ) 

sendGoalToVehicle (goal) 

end if 

end while 

Two different versions of the algorithm are presented. The first 

one assumes that the beacon depth is unknown (named as DR3D, 

Dead-Reckoning full 3D estimation). Hence, the state vector of 

each Gaussian is 3D. The second version assumes a known depth 

(named as DR2D) using a 2D state vector for each Gaussian. In this 

case, the range measurements z k have to be projected into the XY 

plane before introducing the measure to the filter: 

ˆ z k = 

√ 

z 2 
k 

− (z b − z r ) 2 (20) 

where z r is the current vehicle depth and z b is the known beacon 

depth. 

Known depth is a straightforward assumption, since depth mea- 

surements are precise and easy to take either in the AUV or when 

the DS is placed underwater. However, tides must be taken into ac- 

count for correct localization. The reduction of one dimension also 

allows location of the acoustic beacon, using only movements in 

the xy -plane. 

Because the depth of the beacon is known, the AUV usually op- 

erates around the z b depth. So z b is almost equal to z r and hence 

ˆ z k is almost equal to z k allowing for a good Gaussian approxima- 

tion, where its uncertainty is obtained through the projection of 

the corresponding Jacobian of (20) . 
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The state vector μi 
k 
, the process model f (μi 

k 
) and the measure- 

ment model h (μi 
k 
) are the following: 

μi 
k = [ x b , y b , z b ] 

T (21) 

f (μi 
k ) = μi 

k (22) 

h (μi 
k ) = || (x b , y b , z b ) − (x r , y r , z r ) || (23) 

where [ x r , y r , z r ] is the vehicle position obtained from DR naviga- 

tion. In the DR2D the equations are modified by avoiding the use 

of z coordinates. 

3.2. Localizing the DS with SLAM 

First presented in Vallicrosa et al. (2015) , it contains a single- 

feature Simultaneous Localization and Mapping (SLAM) in each 

Gaussian., where the state vector μi 
k 
, the process model f (μi 

k 
) and 

the measurement model h (μi 
k 
) are the following: 

μi 
k = [ x r y r z r ˙ x r ˙ y r ˙ z r x b y b z b ] 

T 
(24) 

f (μi 
k ) = 

[ 

x̄ r,k 
ȳ r,k 
z̄ r,k 

] 

= 

[ 

x r,k −1 

y r,k −1 

z r,k −1 

] 

+ Rot(φk , θk , ψ k ) ·
[ 

˙ x r,k −1 

˙ y r,k −1 

˙ z r,k −1 

] 

· �t (25) 

h (μi 
k ) = || (x b , y b , z b ) − (x r , y r , z r ) || (26) 

being [ x r , y r , z r ] the AUV position in the world frame, [ ̇ x r , ˙ y r , ˙ z r ] 

the AUV velocities in the vehicle frame, and [ x b , y b , z b ] the acous- 

tic beacon location in the world frame, �t the time increment 

between measurements at current time k and previous measure- 

ments at time k − 1 , and Rot ( φk , θ k , ψ k ) the rotation matrix with 

respect to the vehicle orientation. 

The SoG filter is initialized at the first range using the Geodesic 

grid initialization ( Section 2.2.2 ) and the position and velocities of 

the AUV estimated through DR. Each candidate beacon position is 

initialized at a different position on the spherical shell, and all AUV 

positions are defined as the current DR position estimate. 

At each sensor measurement, prediction and update steps of 

the EKF are performed in the same way as they are performed 

in the AUV’s own navigation filter. Those sensors include an 

AHRS, a pressure sensor and a DVL. All Gaussians are main- 

tained throughout the process and resampled as explained in 

Section 2.4 ( Algorithm 2 ). 

4. Experimental setup 

The three algorithms proposed in the previous section (DR2D, 

DR3D and SLAM) were experimentally validated in real-world con- 

ditions in Sant Feliu de Guixols’ harbor. A DS with an acoustic mo- 

dem mounted on it is placed on a flat terrain without any obstacles 

in the close vicinity. A Girona500 AUV ( Ribas, Ridao, Magi, Palom- 

eras, & Carreras, 2011 ) measures ranges to the acoustic modem and 

uses these measurements to locate the DS. Once the DS is located, 

the vehicle homes to the detected position for visual confirmation. 

4.1. Girona 500 I-AUV 

The Girona 500 is a compact-size AUV designed and developed 

in the University of Girona for a maximum operating depth of 

500 m. The vehicle is built around an aluminum frame which sup- 

ports three torpedo-shaped hulls as well as other elements such 

as the thrusters ( Fig. 10 ). The overall dimensions of the vehicle are 

Algorithm 2 Algorithm for SLAM. 

// Init filter 

z k = getRangeFromAcousticModem () 

x k = getDRodometry () 

sog, N = initFilterGeodesicGrid (x k , z k ) // return SoG and number 

of Gaussians N (Section 2.2.2) 

// Continue until localization threshold passed (equivalent Gaus- 

sian using Eq. (19) and Eq. (20)) 

while sog. getEquivalentGaussian () > Local izationT hreshol d do 

// Navigation sensors and DR navigation 

ahrs, depth, dv l = getNavigationSensors () 

sog. EKFpredict&update (ahrs, depth, dv l) 
// Update filter 

z k = getRangeFromAcousticModem () 

for i = 0 to i = N − 1 do 

y i 
k 

= sog.Gaussian [ i ] . EKFupdate (z k ) 

sog.Gaussian [ i ] . weight (y i 
k 
) // using Eq. (10) 

end for 

sog. normalizeWeights () 

// Resampling (Section 2.4) 

if sog. computeNeff() < N/ 2 then 

sog. resamplingWithNoise () 

end if 

// Active localization (see Section 2.3) 

if UseActi v eLocalization then 

v otes = zeros (num _ P roposedActions ) 

for i = 0 to i = N − 1 do 

action _ id = sog.Gaussian [ i ] . getSmallestEntropyAction 

(P roposedActions ) 

v otes [ action _ id] = v otes [ action _ id] + sog.Gaussian [ i ] . weight 

end for 

goal = getMostVotedAction (v otes ) 

sendGoalToVehicle (goal) 

end if 

end while 

Fig. 10. Girona 500 I-AUV with detailed positioning of its components. An electric 4 

degrees of freedom (DoF) arm can be mounted on the payload area for intervention 

purposes. 

1.0 m in height, 1.0 m in width, 1.5 m in length, and a weight 

(in its basic configuration) of about 140 kg. The two upper hulls, 

which contain the flotation foam and the electronics housing, are 

positively buoyant, while the lower one contains the heavier el- 

ements such as the batteries and the payload. This particular ar- 

rangement of the components provides the vehicle with passive 
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Fig. 11. Mock-up docking station panel used in PANDORA project for free-floating 

manipulation. 

stability in pitch and roll, making it suitable for tasks requiring a 

stable platform such as video surveying or intervention. The most 

remarkable characteristic of the Girona 500 is its capacity to be 

reconfigured for different tasks. On its basic configuration, the ve- 

hicle is equipped with typical navigation sensors, DVL, AHRS, pres- 

sure gauge and Ultra-Short Baseline (USBL). In addition to these 

sensors, almost half of the volume of the lower hull is reserved 

for mission-specific payload, which makes it possible to modify its 

sensing and actuation capabilities as required. The addition of an 

electric-actuated 4DoF arm provides the intervention capabilities 

necessary in an I-AUV. 

Navigation sensor measurements are fused in the Girona 500 

in the EKF navigation of its software architecture Component Ori- 

ented Layer-based Architecture for Autonomy (COLA2). The naviga- 

tion frame is defined as the North East Depth (NED) frame, and can 

be aided with Global Positioning System (GPS) information when 

the vehicle is on surface or USBL when underwater. An acoustic 

modem is used to obtain a range measurement against the mo- 

dem on the DS. Finally, a forward-looking camera was incorporated 

to visually confirm correct homing. 

4.2. Docking station 

In order to emulate a DS panel, a custom mock-up panel from 

the FP7 PANDORA project ( Lane et al., 2012 ) was used. It consists 

of four valves that can be turned and a custom printed background 

to look like a real one ( Fig. 11 ). 

The panel was also equipped with an acoustic modem to be 

able to measure ranges relative to it. In order to obtain a ground 

truth location of the DS, a set of four light beacons (one at each of 

the corners) were mounted. These LED light beacons were detected 

Table 2 

Parameters and algorithms used for localization at the two 

batches of experiments performed at sea. 

Batch Type σ z σ t min z max z AL 

1 (Exp 1–4) DR3D 1 .0 1 .0 3 .0 10 .0 

2 (Exp 5–12) DR3D 2 .0 1 .0 3 .0 10 .0 � 

Table 3 

Localization errors (in the 2D plane and in 3D) against Ground truth (vision) 

for each of the experiments. 

Experiment MAN/AL Error xyz Experiment MAN/AL Error xyz 

1 MAN 2 .95 7 AL 1 .46 

2 MAN 0 .98 8 AL 1 .36 

3 MAN 2 .18 9 AL 1 .54 

4 MAN 1 .61 10 AL 3 .29 

5 AL 3 .72 11 AL 0 .70 

6 AL 2 .05 12 AL 0 .75 

with a vehicle-mounted camera, and a vision-based algorithm pro- 

vided a global localization of the light beacons. Given the high ac- 

curacy of the DS pose estimation using visual markers, those mea- 

surements were used as ground-truth. 

5. Results 

In order to test the performance of the algorithms, two batches 

of experiments were performed at sea on different days ( Table 2 ). 

The first batch was manually tele-operated (experiments 1–4) 

while the second one (experiments 5–12) was guided by the AL 

algorithm. 

All experiments started at different positions ( Fig. 12 ). The AUV 

was first commanded either by the AL, or manually, until the 

acoustic beacon was located with enough precision. Next, the AUV 

was guided straight to the detected beacon location to obtain vi- 

sual confirmation. This visual confirmation was used as ground 

truth measurement to compare with the localization provided by 

the SoG filter. 

To achieve the visual confirmation, the AUV uses the imagery 

provided by its forward-looking camera ( Fig. 13 ). The algorithm de- 

scribed in Bosch et al. (2016) is used to detect the light beacons in 

the images when visible. The algorithm detects the lights, identi- 

fies them based on their coded blinking frequency, and estimates 

the AUV position with respect to the DS based on the a priori 

knowledge of their position within the DS panel. The relative DS- 

to-AUV position obtained by the light beacons is then compounded 

with the AUV navigation to obtain the world frame DS-position for 

evaluation purposes. 

The localization errors obtained by both batches at sea are 

given in Table 3 . The results allowed us to conclude that in all ex- 

periments the AUV was able to home onto the DS with an error 

smaller than 4 m, this being enough to establish visual confirma- 

tion and detection of the DS. If we take a detailed look at some 

experiments, examining all the ranges obtained during localization 

( Fig. 14 ), it can be appreciated how challenging the process of esti- 

mating the correct location of the beacon is, especially during the 

first movements. 

5.1. SoG filter with active localization 

Active Localization (AL) was tested on Batch 2 using the DR3D 

filter. The vehicle demonstrated that even with non-perfect range 

measurements it was capable of locating the DS autonomously 

and home to it. The localization errors obtained, which are below 

4.0 m, are acceptable values for docking purposes as demonstrated 

by the successful visual detection before docking. 
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Fig. 12. Trajectories followed by the vehicle in each experiment. (circle) starting position of the AUV. (unbroken line) trajectory during the SoG algorithm execution. (dashed 

line) approach trajectory to the detected beacon position. (star) detected beacon position by SoG filter. (black) star representing the ground truth position detected by visual 

confirmation with a 4 m radius circle where detection is enough for docking purposes. 

Fig. 13. Visual detection of the light beacons on the panel. 

It is worth noting that while searching for the next goal with 

the Active Localization algorithm, the entropy is minimized while 

correctly locating the acoustic beacon ( Fig. 15 ). All experiments 

show a clearly decreasing trend. Note also that the trajectories per- 

formed by the vehicle ( Fig. 12 b) tend to make sharp changes in the 

direction of movement in order to decrease the entropy of the fil- 

ter. 

Finally, it can be appreciated in Fig. 16 that for all the experi- 

ments the localization error is decreasing over time in concert with 

the entropy. A huge entropy decrease is observed when localization 

symmetries are solved. 

5.2. SLAM filter 

To assess the performance of the SLAM filter, the two batches 

of datasets were run again using the playback mechanism provided 

by the Robot Operating System (ROS). By this means, the actual 

sensor measurements messages logged during the experiment are 

reproduced in real-time and the navigation filter is run on-line, as 

if it were running in real-time on the AUV. This allows the running 

of new navigation algorithms on already available data-sets in real- 

Fig. 14. Examples of the AUV’s trajectories with the corresponding range measurements. 
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Fig. 15. Batch 2 entropy over time for each of the experiments (computed using 

(14) and (15) ). 

Fig. 16. Batch 2 errors over time for each of the experiments. 

time conditions. However, the AL algorithm is not used since it is 

recorded data, so it is not possible to change the trajectory that 

was followed by the AUV. 

The Table 4 and the Fig. 17 report the estimation errors ob- 

tained for each algorithm. Note that Fig. 17 also contains the re- 

sults obtained in the LIVE trials at the harbour which are already 

shown in Table 3 . In this case we have differentiated between the 

Table 4 

Localization errors against visual ground truth. 

Experiment DR2D DR3D SLAM Experiment DR2D DR3D SLAM 

1 3 .34 3 .17 3 .31 7 0 .91 1 .18 1 .68 

2 0 .82 1 .16 2 .14 8 2 .13 1 .25 1 .32 

3 2 .27 2 .16 2 .35 9 0 .66 1 .33 0 .24 

4 2 .01 1 .73 2 .35 10 3 .22 3 .27 2 .76 

5 2 .17 3 .59 3 .81 11 0 .64 0 .60 0 .56 

6 0 .87 1 .70 1 .94 12 0 .87 0 .71 0 .91 

SoG filter running in 2D (assuming that the DS depth is a priori 

known) and in 3D. 

From the analysis of the results it is not possible to conclude 

that one of the methods performed better than the others. All of 

them seem able to solve the problem with an error smaller than a 

value around 4 m, which is enough to establish visual contact to 

guide a vision-based docking process after homing. However, hav- 

ing a known depth offers clear advantages in most of the experi- 

ments, providing a much better localization. 

6. Conclusions 

This paper presents two range-only localization filters for AUV 

homing to a DS, based on the SoG filter. The first, depends on the 

DR navigation and is tested in both 2D (with DS depth known) and 

3D. The second includes a full SLAM in each Gaussian and it is im- 

plemented for the 3D case. Different initialization and resampling 

methods are also tested with both filters. 

Both filters exhibit accurate localization in a real scenario of 

an unknown acoustic beacon. Results are corroborated by a vision- 

based algorithm which detects the DS. The datasets obtained from 

real sea experiments were used to compare all algorithms, achiev- 

ing a similar performance over a total of 8 different trajectories. 

Final localization errors are below the 4 m bound necessary for 

accurate visual detection, needed for the inspection/docking task. 

The analysis of the results does not provide insights into which al- 

gorithm performs better. 

The addition of an AL method based on the predicted entropy 

of the filter after a given action is taken, enables the vehicle to au- 

tonomously select waypoints. This procedure allows for a complete 

autonomous homing without any human intervention, which is the 

goal of the LOON-DOCK project. 

7. Future work 

Since all algorithms performed similarly in the experimental 

test cases, the simplest one, DR2D, will be used for future work. 

Fig. 17. Comparison of total localization errors ||( e x , e y , e z )|| per experiment and algorithm. Includes results of the live experiments Table 3 and the replayed data Table 4 . 
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This range-only acoustic localization will be used for docking in 

the LOON-DOCK project ( Alves et al., 2014 ). First the DS will be 

localized with the DR2D filter. Then, it will be added to the EKF- 

SLAM navigation filter as a feature for navigational drift correction. 

Then the vehicle will home to the estimated position until light 

beacons are detected. From there, the vehicle will autonomously 

dock with visual feedback. Once docked, it will transmit the data 

gathered during the mission to the base station. 

Since, unlike Girona 500, most AUVs are non-holonomic, the 

study of the kinematic constraints of a torpedo-like vehicle will be 

very valuable, proposing smooth candidate actions in the AL algo- 

rithm. 
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4
AUV homing and docking forremote operations

In this chapter, the range-only localization method explained in Chapter 3 is integrated in
a cost-effective autonomous homing and docking strategy to provide remote AUV deploy-

ment/recovery in the framework of the EU funded project LOON-DOCK/SUNRISE. The algo-
rithm is simplified to the 2D case where the depth of the DS is known. Range-only localization
offers a first estimate of the DS position, that is then confirmed by visual localization that aids
in the last meters of the docking procedure. The homing and docking strategy was successfully
tested on the LOON testbed in La Spezia (Italy).
The thesis author contribution is focused on the range-only localization algorithm as well as the
systems integration required to interact with the other modules such as mission control and visual
localization. The author also helped to develop the simulated environment [Vallicrosa et al., 2016].
He also demonstrated the system in simulation and contributed to the experimental demonstration.

The proposed method has been published in the following paper:
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A B S T R A C T

One of the major goals of the SUNRISE FP7 project is to make the Underwater Internet of Things a reality. In this
context, the LOON-DOCK project presented here extends the existing Litoral Ocean Observatory Network testbed
with a Docking Station tailored to the Sparus II AUV. The docking system allows a remote user to program survey-
like missions through a web-based interface as well as to retrieve the data gathered by the AUV once a mission
finalizes. To enable the autonomous docking of the AUV, two complementary and cost-effective localization
systems have been developed. The first one implements a range-only localization algorithm to approach the
docking station while the second, based on active light beacons, provides high accuracy at short ranges to
complete the docking maneuver. The system has been extensively tested, in different trials from a controlled
water tank environment to more realistic sea operation conditions proving its viability despite very poor water
visibility conditions.

1. Introduction

The increased number of deployed subsea systems (infrastructures,
sensors, robots, gliders and others) during the last years, is raising the
need for interconnection among themselves and to the exterior world, for
a better management and exploitation. This is one of the major goals of
the SUNRISE FP7 project (Petrioli et al., 2013), which is devoted to make
the Underwater Internet of Things (UIoT) a reality. Connecting the un-
derwater systems to the network and endowing them with the capability
of making their data widely accessible while minimizing the need of
human interaction, has the potential of providing ocean data at an un-
precedented scale.

Persistent deployment of buoyancy-driven vehicles (gliders) in open
waters has already been achieved for periods of time spanning months
(Manley and Willcox, 2010; Meyer, 2016). However, persistent deploy-
ment of survey-type Autonomous Underwater Vehicles (AUVs), capable
of more complex mapping missions, is a challenging problem that arises
the requirement of docking. The objective behind the docking concept is
to extend the deployment time by installing a Docking Station (DS) that
allows to extract the data of finishedmissions, program newmissions and
recharge the batteries of the vehicle without recovering it at the surface.
The first systems were designed for oceanographic sampling purposes
(Curtin et al., 1993; Singh et al., 2001). More recently, the interest has
grown towards using AUVs in commercial scenarios, for the periodic
inspection and maintenance of subsea installations (Brignone et al.,

2007; Krupinski et al., 2008; Jacobson et al., 2013). In addition, a sig-
nificant part of docking-related works have emerged from operational
environments where launch and recovery is a difficult task such as under
ice operations (King et al., 2009). However, despite many demonstra-
tions have taken place since the 90's, the combined need of infrastructure
(physical mounting, power, communications) and the demanding vehicle
reliability required to operate continuously without human servicing,
still makes docking a state-of-the-art problem (Bellingham, 2016).

In the context of the SUNRISE project, the LOON-DOCK project pre-
sented here aims to extend the existing Litoral Ocean Observatory
Network (LOON) testbed (Alves et al., 2014) with a DS to demonstrate
data transmission from a survey-AUV to the Internet. The idea is to be
able to remotely operate the AUV from the SUNRISE GATE, (Petrioli
et al., 2014), a web interface created to remotely schedule experiments
using assets persistently deployed in different testbed facilities around
the world. For the AUVs to really become part of the UIoT, it is essential
to provide docking solutions that are cost-effective, while maintaining
the performance and reliability of the system. In this sense, our proposal
strives to keep the implemented docking approach low-cost in all the
addressed aspects, namely the mechanical design, the communications
and the autonomous docking procedure. The power transference to the
AUV is not covered in the scope of this work. However, it is worth noting
that solutions for wireless inductive power transference already exist in
the market and could be integrated at a certain cost.

From the hardware point of view, the developed DS is based on a
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funnel-shaped receptacle, which is a traditional solution (Cowen et al.,
1997; Allen et al., 2006; McEwen et al., 2008) to physically guide the
vehicle into the dock. Another common design found in the literature are
the vertical dock poles (Singh et al., 2001; Stone et al., 2010) that allow
the vehicle to approach from any direction, making them more robust to
changing water disturbances. To alleviate the directionality constrain,
the funnel receptacle has been designed so that it can pivot over the static
base and be oriented according to the water currents of the environment.
Compared to a pole dock, the funnel-shaped design eases the installation
of the necessary equipment to support the communications and the
homing maneuvers, facilitates the establishment of links with the vehicle
and protects the AUV against environmental hazards while docked. With
regards to communications, the developed docking system is directly
connected to the Internet through the LOON infrastructure, and features
two modes of communication with the AUV. The first mode uses an
acoustic modem and the SUNSET protocol (Petrioli et al., 2015), a
lightweight networking framework well-suited for underwater acoustic
communications. The second mode, intended for when the AUV is

docked, is based on a contactless WiFi module installed in the DS, which
is crucial to transfer at high speed the vast amounts of data that a
survey-AUV can gather in a mission. The use of a contactless radio fre-
quency module, based on a commercial off-the-shelf (COTS) WiFi
modem, provides a reliable and low-cost data transmission system
(McEwen et al., 2008) capable of achieving transfer speeds in the order of
tens of Mbps. It does not require the mating of connectors underwater,
thus preventing the exposure of electrical contacts, and provides a less
sensitive alignment with respect to establishing direct electrical con-
nections (Stokey et al., 2001) or inductive coupling (Feezor et al., 2001).

To assist the autonomous docking procedure, the DS employs the
acoustic modem as a range-only transponder for mid-range homing, and
a set of light beacons installed in the funnel entrance for the terminal
phase of the docking. The autonomous docking is tackled from the gen-
eral scenario in which the vehicle does not know the exact position of the
DS, usually because it has lost the communication with the DS during a
mission execution and only has an a priori coarse estimate of its position.
Then, following the nomenclature established in Bellingham (2016), our
proposed approach for autonomous docking works as follows (see Fig. 1):
first, the vehicle starts from an en route phase, that gets the vehicle close
enough so it can sense the DS with the on-board acoustic transponder.
This navigation is performed according to the on-board navigation filter
that merges information from different sensors to navigate relative to the
Earth. Next, in the approach-setup phase, a range-only localization filter is
used to estimate the DS location while the AUV is guided along an
observable trajectory. Once an estimation of the DS position becomes
known, the vehicle approaches the DS to bring it within visual reach (i.e.,
approach phase). The light beacon navigation system is used to estimate
the DS pose with respect to the AUV on-board camera. Visual information
is used to update a single landmark simultaneous localization and map-
ping filter that provides the relative position between the AUV and the DS
with the accuracy required for the terminal homing phase. Preliminary
versions of these two localization algorithms have been previously re-
ported in a simulation environment (Vallicrosa et al., 2016). In order to
back up the visual localization during the very last few meters of the
approach, when the light beacons are no longer inside the camera field of
view, a complementary system has been integrated using augmented
reality (AR) markers (Garrido-Jurado et al., 2014). After this phase, the
AUV ends up inside the docking funnel and is guided up to the latch
mechanism by controlling the generated forward thrust (i.e., capture
phase).

Existing solutions to perform autonomous docking usually rely in
more complex acoustic sensors including USBL (McEwen et al., 2008;
Allen et al., 2006) or inverted SBL setups (Smith and Kronen, 1997).
Optical sensors have also been explored for the terminal phase, with
solutions comprising either active light sources -with single (Cowen
et al., 1997; Murarka et al., 2009; Li et al., 2015, 2016) or multi-light
systems (Hong et al., 2003; Park et al., 2009)- or passive patterns and
markers (Kushnerik et al., 2009; Maire et al., 2009) that can be detected
by on-board cameras. Altogether, our approach provides an hierarchical
homing procedure that ensures a reliable approach and terminal homing
maneuvers enabled with low-cost equipment and minimal requirements
on both the vehicle and the DS sides. Notice that, indeed, the acoustic
ranging and optical image acquisition are capabilities that either already
exist in most AUVs or can be easily added at a reasonable cost. The same
reasoning applies to the docking station, since the light beacon system
and the AR markers are relatively inexpensive to manufacture.

The reminder of this paper is organized as follows: next section de-
scribes in more detail the employed AUV and the design of the proposed
docking station. Section 3 introduces the navigation system of the AUV
together with the developed algorithms for autonomous docking,
including both the range-only localization and the visual localization of
the DS. Section 4 covers the insights about operation and control,
involving the remote operation through the SUNRISE web-based

Fig. 1. Docking phases scheme.

Fig. 2. Testing the docking station and the approach procedures in a water
tank. The AUV cable visible in the image is only for monitoring purposes.
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interface and the AUV guidance module that controls the various phases
of the autonomous docking. Section 5 presents the experiments that have
been performed together with an analysis of the results obtained with the
system fully integrated in the LOON infrastructure. Finally, Section 6
reports the conclusions and points out future work directions.

2. Hardware

The DS has been designed especially for the Sparus II AUV (Carreras
et al., 2013) (see Fig. 2). Sparus II AUV is a lightweight (i.e., 50 kg)
torpedo-shaped vehicle with partial hovering capabilities. It has two
horizontal and one vertical thrusters, allowing surge, heave and yaw
movements, and a mission-specific payload area. Its flexibility and easy
operation makes the Sparus II AUV a multipurpose platform adaptable to
a high variety of mapping applications in shallow water (i.e., up to
200m).

The DS provides active and passive guidance for docking, a latching
mechanism to maintain the vehicle docked while in standby mode, high
bandwidth data communications, and visual feedback.

The DS has been designed to be as small as possible and lightweight
for easy transportation, deployment, and recovery. It is constructed
mainly from corrosion resistance aluminium and polyoxymethylene

(POM). The structure consists of twomain parts, the docking part and the
base (see Fig. 3). The entrance of the docking part has fourteen funnel-
shaped rails that passively guide the vehicle to the dock position using
vehicle's thrust. The size of the funnel can handle translation misalign-
ment of 40 cm and rails arrangement can correct vehicle misalignment's
in roll and pitch up to 30deg. Rail guides are made from flexible POM
which can absorb collisions, thus minimizing vehicle back bouncing.

The base connects with the docking part with a single axis rotation
mechanism that allows the docking part to align with water currents
without moving the base. Current implementation requires manual input
for the rotation (i.e., by using a diver), however, in the future an active
automatic mechanismwill be implemented. The base feet can be adjusted
up to 20 cm in height in order to level the DS and accommodate ballast
weights to keep the centre of gravity low.

A latching system (see Fig. 4) has been developed to prevent the
vehicle from exiting the DS due to water currents thus allowing it to enter
in low power mode once docked. When the vehicle has entered the DS in
its final position, two claws grip on the antenna does not allow the AUV
to exit. The operation of the claws is controlled from a servomotor. There
is a solid join between the motor and the right claw and from this the
motion is propagated to the left claw via flexible wires. The servo motor,
when activated, has enough torque to withstand opening forces if the

Fig. 3. Docking station CAD model (dimensions in
mm).

Fig. 4. (a) CAD model of the latching mechanism
and (b) picture of the real latching mechanism.
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vehicle tries to exit due to water currents or even with its thrusters.
However, if it is deactivated, such in the event of a DS power loss, the
claws are disengaged and with relatively small thrust the AUV can safely
exit.

Two active systems provide mid and short range localization infor-
mation to the AUV in order to guide it to the DS using the algorithms that
will be described in Section 3.

For mid range detection, an Evologics acoustic modem is installed on
the top of the DS, performing two main functions: a transponder function
providing range measurements for homing and a modem function to
monitor the AUV during survey operations and to allow the user to send
basic commands to the AUV remotely.

For short range guidance, when the DS is within the AUV visual range
of its camera, light beacons are used to provide localization aid. There are
four beacons installed around the entrance ring in a symmetrical fashion.

Each individual light beacon consists of five high-intensity LEDs to
create a homogeneous lighting effect inside a waterproof housing (see
Fig. 5). Each beacon provides flashing light at approximately 110deg
field of view (FoV)FOV at 1 Hz period with 90% on - 10% off duty cycle.
The system is operated at 24 V, and the maximum power consumption is
22W, when all markers are lit. The beacons can be remotely activated
from top-side.

Two high-bandwidth data communications interfaces have been
included in the DS: one between the top-side and the DS, and one be-
tween the DS and the AUV.

It is very common to install the DS in long distance from the top-side

base. Establishing communications between them can be achieved either
by wireless connection via a surface buoy or by fixed wire. Given that in
the area where the system was demonstrated (i.e., the LOON testbed)
there are restrictions for installing permanent surface buoys, we chose to
implement a wired connection with a long cable laying on the seafloor.
Nevertheless, the DS can be easily modified to support wireless
connection.

For the wired communication scheme we are using VDSL2 technol-
ogy. It supports, via a single twisted pair, up to 100Mbit/s downstream
rates at 500m and graduate decreasing to 1-4Mbit/s over distances of
4–5 km. We have also included an Ethernet connection, though it can
only be reliably used for distances shorter than 100m.

For the AUV to DS communication aWiFi modem has been adapted to
fit in a waterproof housing and is positioned on the latching mechanism.
When the AUV is docked, its WiFi antenna is close enough to the modem
(� 7 cm) to allow a strongwireless data link. With this systemwe are able
to communicate with up to 45Mbit/s between the AUV and the top-side.

On the DS there is a watertight container that houses all the necessary
electronic components for its operation. That includes a pressure sensor,
an inertial measurement unit (IMU) and an Ethernet switch connecting
the Evologics modem, the WiFi modem, and a Raspberry Pi 3 single
board computer. The Raspberry Pi 3 is locally running ROS (Quigley
et al., 2009) and provides control for the latch mechanism and the LEDs.
It is also in charge to broadcast through the modem the DS depth and
orientations, obtained from the IMU, in order to check that the DS has
been properly leveled during its installation. Besides, there is also a
webcam that points to the center of DS imaging the AUV when it is
docked. There is also an independent underwater analog video camera
that is placed on the side of the DS, providing a general overview of the
DS and the AUV when approaching.

The DS is connected to top-side via two independent cables, one for
power and one for data, to minimize electromagnetic interferences. It is
powered with 220VAC via an isolation transformer in order to minimize
power loss. The data cable is an Ethernet CAT 5e cable, where one pair is
used for the VDSL2, one for the analog video, and the last four are used
for the short range Ethernet link.

3. AUV navigation and DS localization

The navigation filter of the Sparus II AUV is based on the well known
extended Kalman filter (EKF). It combines the information on depth
returned by the pressure sensor, velocities from the Doppler velocity log
(DVL) and attitude from the attitude and heading reference system
(AHRS) to provide a dead reckoning (DR) navigation. This navigation
drifts over time and needs absolute measurements to correct it. Those
measurements can come from either global positioning system (GPS)
when on surface, ultra-short base-line (USBL), or acoustic ranges or vi-
sual detections with respect to a known landmark (see Fig. 6).

A feature-based EKF-SLAM navigation filter is used in the proposed
scenario where the only landmark will be the DS. The state vector for the
implemented filter is the following:

x ¼ ½ x y z u v w l1 … lN �; (1)

where [x y z] and [u v w] are the position and linear velocity vectors of
the AUV, and li is the landmark i pose vector defined as:

li ¼ ½ lxi lyi lzi lϕi lθi lψ i �: (2)

Because range-only measurements cannot estimate the landmark orien-
tation, a landmark must be initialized by a visual detection. However,
once in the state vector, both range-only and visual-based updates can be
applied.

The navigation filter uses a constant velocity model with attitude
input:

Fig. 5. Light beacon hardware design.

Fig. 6. Set of sensors that take part in the navigation algorithm of the AUV
software architecture.
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where t is the sample time, [nu nv nw] is the noise vector and [ϕk θk ψk]
are the Euler angles used as the filter input uk. Each sensor measurement
is modelled as:

zk ¼ Hbxk þ sk; (4)

where zk is the measurement itself, H is the observation matrix that re-
lates the state vector with the sensor measurement (hðbxkÞ if the mea-
surement is not linear), and sk is the sensor noise. To differentiate
between range and light beaconmeasurements we will use zrngk , hrngðÞ and
zlbk , H

lb respectively.
In case of range-only measurements, the observation equation pro-

vides the expected range measurement hrngðbxkÞ which is given by the
norm of the difference between the vehicle and beacon positions at time
k.

hrngðbxkÞ ¼ jjðx; y; zÞ � ðlxi; lyi; lziÞjj: (5)

In the case of a visual detection measurements, updates are linear
being

zlbk ¼ ½lxi lyi lzi lϕi lθi lψ i�; (6)

and

Hlb ¼
�
�ℛðϕkθkψ kÞT 03�3 ℛðϕkθkψ kÞT 03�3 …

03�3 03�3 03�3 I3�3 …

�
; (7)

where [lxi lyi lzi] is the relative position of the landmark with respect to
the vehicle, [lϕi lθi lψ i] is the landmark orientation with respect the in-
ertial frame and ℛðϕkθkψkÞ is the vehicle orientation rotation matrix at
time k.

When the position of the DS is unknown or known with a high un-
certainty, the range-only localization method described in Section 3.1 is
used to obtain an approximate location. Once the vehicle homes to the
vicinity of the DS, the light beacon detection system will be used to
initialize the landmark in the EKF-SLAM navigation filter and to provide
accurate updates (see Section 3.2).

3.1. DS range-only localization

Range-only localization is a highly non-linear problem. Given 1D
measurements (range), the vehicle must be localized in a higher
dimensional space (3D). With an unknown position of the beacon and
after the first measurement, the probability distribution has the shape of
a spherical shell with thickness equal to the range measurement uncer-
tainty. Kalman filter (KF) represents a location as a Gaussian with a mean
and a covariance matrix, that can be used to express a location as a sphere
but not as a spherical shell. Therefore the use of KF is not appropriate for
this problem.

Several range-only localization methods have been reported in the
literature (Vaganay et al., 2000; Newman and Leonard, 2003; Olson
et al., 2006; Webster et al., 2009; Wang et al., 2013; Blanco et al., 2008).
However, those methods are demonstrated offline after the vehicle is
recovered and no online localization is performed.

In order to simplify the problem from 3D localization to 2D, we
project the measured ranges rng (8) to the horizontal plane according to
the depths of the DS zDS and vehicle zV (see Fig. 7). The beacon depth is
known a priori, since it is measured during the DS deployment or by the
internal pressure sensor installed in the DS, which broadcasts measures
through the acoustic modem. Likewise, AUV depth information is known
very precisely from its pressure sensor, only having to take into account
the tide if necessary, for which appropriate models are already available
(Ray, 1999).

zrngk ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rng2 � ðzV � zDSÞ2
q �

(8)

During the estimation of the beacon position, we rely on the on-board
DR navigation filter explained in Section 3. The DR navigation drift is not
taken into account because the time needed to localize the DS is small
enough, as demonstrated in Vallicrosa and Ridao (2016) where a 3D sum
of Gaussian (SoG) filter with active localization (AL) was used to suc-
cessfully localize an acoustic beacon in a real scenario.

At known depth, a range measurement describes a beacon as being in
any position on a circumference around the AUV with a radius equal to
the projected range and thickness equal to the uncertainty of the mea-
surement. To cover this big space of possibilities one might use a particle
filter (PF) to represent the static beacon position, however, the PF solu-
tion would leave empty spaces without coverage. To avoid that, a much

Fig. 7. Projection of the range measurement.

Fig. 8. Initialization of the SOG filter (2σ bounds).
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larger number of particles could be used, but then the problem would
become computationally intractable. A more elaborate option is the use
of a SOG filter (Blanco et al., 2008), which is similar to the PF but uses
weighted Gaussians instead of weighted particles. It represents the
believed beacon position B according to the odometry xk and the
measurements zrngk :

pðB jxk ; zrngk Þ �
XN
i¼1

υikN
�
zrngk ; μik ;Σ

i
k

�
; (9)

where υik is the weight associated with each Gaussian, and μik and Σi
k its

mean and covariance matrix.
The Gaussians in the SOG can cover all the probability space if they

are correctly distributed. Moreover, an EKF is used to correct their po-
sition according to the measurements, thus improving its performance.

The SOG is initialized with the first range measurement (see Fig. 8).
The filtering is carried out in two main steps. First, the range measure-
ment is used to update each of the Gaussians (μik, Σ

i
k) with an EKF. Sec-

ond, the weights are updated with the innovation of the EKF

yi
k ¼ zrngk � hrngðμikÞ:

υik ¼ υik�1⋅exp
�
� �

yi
k

�2�
; (10)

being i the index of the Gaussian and υk�1 the previous weight. This
computed weight is always in the ½0;1� range. The weights of the
Gaussians with a small innovation are significantly greater than those
having a large innovation. Thus, after some updates, the Gaussians which
are not consistent with the observed ranges become negligible while
those consistently compatible will influence the estimated pose of the
beacon.

When the vehicle follows an observable path (Vaganay et al., 2000),
the beacon is localized in a few seconds. In this work, a simple approach
using a star shaped trajectory is used to avoid symmetries and locate the
beacon (see Fig. 9). The trajectory is scaled proportionally to the first
measured range and it is aborted as soon as the beacon is localized with
an uncertainty below a user-provided threshold.

The obtained localization of the DS after the star trajectory, suffers
from a large uncertainty on the tangent of the circumference defined by
the range measurements (see Fig. 10). To reduce this uncertainty before
attempting to approach the DS, the vehicle is commanded to a new
waypoint computed on the principal axis of the localized beacon. Range
updates obtained from this position further reduce the uncertainty of
localization, ending with a much better localization result.

3.2. Visual pose estimation

Acoustic localization can be very effective from medium to long dis-
tances, but it is not so advantageous at short distances when high pre-
cision operation is required for successfully completing the docking
maneuver. To achieve a level of performance capable of ensuring the
vehicle's safety during the terminal homing, visual sensing is used to
provide updates with small uncertainty and high update rates.

The proposed solution consists in placing a set of active light beacons
in distinct and known positions of the DS (see Fig. 11). Using a standard
camera it is possible to detect the lights in the images and estimate the
pose between the DS and the camera. It is worth noting that differently
from range-only localization, this method is able to provide information
on the relative orientation of the DS, involving the full 6 DoFs (three
relative translations and three rotations).

Fig. 9. Star shaped trajectory used for beacon localization.

Fig. 10. After performing the star-shaped trajectory (green), the beacon is
localized (blue) with big uncertainty on the axis tangent to the circumference
described by the range measurements (dark red). An extra waypoint (red) is
commanded to the vehicle to correct this uncertainty. (For interpretation of
the references to color in this figure legend, the reader is referred to the Web
version of this article.)

Fig. 11. Screenshot of the output while tracking the DS. In orange the posi-
tion of the light markers according to the image analysis. In purple, the po-
sition of the markers in the DS according to the estimated relative position. AR
markers were used as a complementary resource during the final approach
when the light beacons are not in the FOV of the camera. (For interpretation of
the references to color in this figure legend, the reader is referred to the Web
version of this article.)
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With the aim of facilitating the detection of the light beacons and
avoiding wrong identifications, the lights follow a known blinking
pattern (as explained in Section 2). This pattern allows the actual lights to
be correctly identified even in the presence of reflections or permanently
illuminated areas in the scene.

The implemented detection technique is similar to the one detailed in
Bosch et al. (2016), where we used it to track multiple AUVs for coop-
erative navigation in real sea conditions, and proved to be both effective
and robust. It is based on three main steps: first there is a selection of
candidate spots in the image based on gradient information. Then, at
every incoming frame, the candidates are tracked taking into account the
camera motion and we check its agreement along time with the known
blinking pattern. Finally, each candidate is associated with a beacon
according to the known geometry of the beacons installed in the docking
station.

When the four lights have been detected (see Fig. 12), the relative

landmark pose bl of the DS that best fits the observation of the light
beacons in the image, qi, is found using non-linear least squares mini-
mization. This is done by searching for the values of the variable l that
minimize the re-projection error of the beacons; that is, the difference
between the real observation and the projection of the light beacon
derived from the variable l and the calibration parameters of the camera.

bl ¼ argmin
l

Xn

i

ðflðpiÞ � qiÞ2: (11)

The variable l contains the complete pose of the DS with respect to the

camera l ¼ 	
lcx lcy lcz lcϕ lcθ lcψ


T . The function f computes the image
projection of each marker i given l and the position of the marker in the

DS reference frame, pi. This function uses the pinhole camera model
(Zhang, 2000; Hartley and Zisserman, 2004), and assumes known
intrinsic calibration parameters. Although an approximate linear solution
can be found for four or more light markers using a different pose
parametrization, we are interested in the above parametrization since it
can be directly used in the docking problem. The problem is solved with
the Levenberg-Marquardt algorithm available in the Ceres library
(Agarwal et al., 2012). As with all iterative methods, it needs an initial
guess of the variables, which can be approximated from the range mea-
surements between acoustic modems. Further details on the pose esti-
mation problem and its performance with a varying number of light
beacons can be found in Gracias et al. (2015).

For the proper operation of the navigation filter it is essential to have
an estimate of the pose uncertainty. A first-order approximation of the
pose covariance Σbl can be computed from the assumed covariance Σq of

the pixel location of the beacons in the image and from the Jacobian

JðblÞ ¼ ∂q
∂l ðblÞ that relates small changes in the pose parameter with small

changes in the observations. The Levenberg–Marquardt implementation
provides an estimate of this Jacobian at the end of the minimization. The
pose covariance estimate is given by:

Σbl ¼
�
J
�bl�TΣ�1

q J
�bl���1

: (12)

The uncertainty obtained Σbl excludes the uncertainty in the trans-

formation between the camera and the AUV and the uncertainty related
with the camera calibration.

In order to have an approximate value of the uncertainty of the
localization of a light in the image Σq we assume the detected lit region
on the image follows a 2D Gaussian distribution, and that its area covers
the 95% of lit pixels. In other words, we find an equivalent radius for the
blob as it was a perfect circle and we assume this radius is 2σ. After
analysing multiple series of light beacon images gathered at different
distances and lighting conditions this value has been set as constant for
the range of operation of the detector σ ¼ 1 pixel.

A complementary system has been developed to help the vehicle in
the last few meters of the terminal homing, when due to the small dis-
tance to the DS, the light beacons are not in the field of view of the
camera. This system consists in detecting augmented reality (AR)
markers placed in known positions of the DS (see Fig. 11), and estimating
the relative pose of the DS in a analogous way as done with the light
beacons. Notice that when the vehicle is well aligned to the docking
during the terminal homing, it is capable of docking reliably using only
its own navigation and the last estimated pose of the DS obtained from
the light beacons localization. However, in cases where there is signifi-
cant navigation drift (e.g., bad DVL readings due to slopes or rocky
areas), the vehicle might not present a good alignment with the dock
entry therefore causing some light beacons to drop off the field of view. In
such situations, the side markers become useful to locate the DS during
the last meters. It is important to note that the pose estimation based on
AR markers is complementary but not a substitute to the light beacon
approach given that it only works when there is ambient or artificial light
to make the markers visible and that the distance under which the AR
markers are detectable is significantly smaller (see Section 5, Results).
The detection of the AR markers was done using the ARUCO library
(Garrido-Jurado et al., 2014). Given that the library does not provide any
uncertainty values on the location of the detected marker corners, a
conservative value of σ ¼ 2 pixel was chosen. This uncertainty was then
propagated in the same way as in the case of the light beacons to obtain
Σbl .
4. Vehicle operation and control

The goal of the LOON-DOCK project is to have a vehicle persistently
deployed so that a user can connect to it and use it remotely to carry out

Fig. 12. Diagram of the detection algorithm. The algorithm starts by detect-
ing spots in the images as candidate lights. These candidates are then tracked
during several frames before deciding if they are accepted as a light beacon or
rejected. Once there are four accepted candidates each one is associated to one
of the light beacons and the relative pose of the DS is estimated.
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survey-like missions. Therefore, the user must be able to define, upload
and delete mission plans to the AUV and start, stop or abort its execution.
These plans have been defined to include the following motion com-
mands: go to a position, keep the current position, execute a lawnmower

like trajectory, and dock or undock. Moreover, the user can request the
AUV position and state as well as information related with the AUV
payload in real time. Acoustic modems are used to carry out all these
communications, however, when the AUV is docked, the user can
download the data gathered in a previous mission using the WiFi
connection installed in the DS.

The following sections present the communication framework used to
remotely operate the AUV and the high-level and low-level controllers
used to carry out the mission plans defined by the users.

4.1. Remote operation

As shown in Fig. 13, a user can connect to the control PC in the LOON
test-bed using the web-based interface named SUNRISE GATE (Petrioli
et al., 2014), passing through a virtual private network (VPN) and a
gateway that ensure the privacy and security of the network (Alves et al.,
2014). The commands that the user executes through the web interface
are received by the control PC and translated to SUNSET commands
(Petrioli et al., 2015), which is the protocol used for acoustic commu-
nications. Then, they are sent through an acoustic node (i.e., the modem
mounted in the DS and wired to the control PC) to another acoustic node
(i.e., the modem of the AUV). Because the AUV uses a ROS-based ar-
chitecture, (Quigley et al., 2009), once it receives these commands, they
are translated from SUNSET to ROS. Finally, a wrapper module executes
the necessary vehicle primitives available in the Sparus II control archi-
tecture named component oriented layer-based architecture for auton-
omy (COLA2) (Palomeras et al., 2012).

Both the SUNRISE GATE and the SUNSET communications were
previously developed in the context of the SUNRISE project. Therefore,
the main effort to allow the execution of remote commands to Sparus II
AUV has been to map the SUNSET commands to the primitives in the
COLA2 architecture used in the vehicle.

4.2. AUV guidance and control

To execute the plans defined by a user, the COLA2 architecture im-
plements a high-level guidance module with the following motion
commands: keep position, go to waypoint, perform a survey-like pattern and
dock/undock. To achieve these motion commands the control architec-
ture has a low-level module including a velocity (linear and angular) and
a pose (position and orientation) tracking control schemes (see Fig. 14).

The objective for the velocity control scheme is to minimize the error
between a commanded velocity setpoint and the actual vehicle velocity.
Analogously, the pose tracking controller seeks to minimize the error
between a desired pose setpoint and the actual vehicle pose. Both pose
and velocity controllers generate an output force (τi) that is merged with
other forces that can be generated by other high-level controllers (e.g.,
safety controllers, teleoperation, etc.). The resulting force (τd) must be
then achieved by the vehicle thrusters. To compute the thrust that each
propeller must yield, τd is multiplied by the inverse of the thruster control
matrix (TCM), being TCM a matrix that codifies the amount of force that
each thruster produces per DoF. A complete description of the imple-
mented low-level controller module can be found in Palomeras et al.
(2015) for an AUV that runs the same architecture than Sparus II AUV.

To implement the available motion commands, the guidance module
uses the pose and velocity control schemes as follows:

Station Keeping: To keep the current position, the pose of the AUV in
the moment to enable this motion command is sent as a desired setpoint
to the pose controller.

Go to waypoint: To move the AUV to a specific waypoint, the guidance
module computes the orientation error (ψ e) between the vehicle's current
position and the desired waypoint and sends the desired yaw (ψd) to the
pose controller together with the desired depth (zd). When, ψ e is smaller
than a defined error, the desired surge (ud) is computed, proportionally to
ψ e and a maximum speed, and is sent to the velocity controller.

Survey like pattern: A lawn-mower pattern is generated from the user

Fig. 13. Diagram of the connections to remotely operate the DS/AUV system
in the LOON testbed.

Fig. 14. Girona 500 AUV control scheme.

Fig. 15. Angles and distances involved in the LOS controller.
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input specifying the area to be covered (i.e., three waypoints) and the
desired track spacing. The generated transects are then followed using a
line-of-sight (LOS) controller with cross tracking error (LOS-cte), as the
one described in Fossen (2011). A proportional controller using the
cross-track error e in conjunction with the sideslip (drift) angle β (13)
allows steady state convergence of the controller under constant currents
(see Fig. 15). The LOS-cte controller sends the computed yaw reference
ψd and the desired depth zd to the pose controller while the desired
constant surge velocity ud is achieved by the velocity control scheme.

ψd ¼ αk þ arctan
��Kp e

�� β (13)

β ¼ arctan2ðvy ; vxÞ
Docking: Finally, for the docking motion command, the guidance

module executes a state machine like the one presented in Fig. 16:

i Given an estimation of the DS position and orientation, a waypoint
40m in front of it is computed and the AUV navigates to it (en route).
Notice that this point is only used to start sensing ranges from the
modem and therefore the accurate positioning of the AUV in that
point is not critical. It is set at 40m in order to account for up to 30m
of navigation drift. In this way there is enough margin to avoid po-
tential collisions with the DS while still ensuring that ranges would be
sensed with no problem (even at shallow water, i.e., less than 15m
depth, ranges can be heard at more than 70m distance). In the event
that no ranges were detected by the modem from this point, the AUV

surfaces to get a GPS update, if possible, and moves again to the
computed location.

ii Once ranges are available, the acoustic localization algorithm (see
Section 3.1) is enabled in order to estimate the DS position (approach
setup).

iii Once the acoustic localization finalizes, if a candidate position for the
DS is obtained, the AUV is sent several meters in front of it and a
visual-based searching procedure, consisting in turning the vehicle
left and right while approaching the DS up to a safety distance, is
started to localize the light beacons (approach home).

iv If the light beacons are localized (see Section 3.2), the DS landmark is
initialized in the EKF-SLAM filter and the vehicle is sent again to some
distance with respect to the DS entrance to carry out the terminal
homing. This phase can be classified as a pose-based visual servoing
(PBVS) and contains two main steps (see Fig. 17): move closer to the
LOS path while not losing the visual contact with the DS and follow
the LOS path until reaching the DS entrance. Initially, if the vehicle is
not aligned with the DS, a series of movements might be required to
position the robot in an appropriate location. These maneuvers al-
ways try to keep the light beacons inside the camera FOV using the
position of both the AUV and the DS estimated by the navigation
filter. In the second step, the already presented LOS algorithm with
cross tracking error (LOS-cte) is executed to guide the AUV up to the
DS entrance. If the AUV gets out of the LOS approach area while
getting closer to the DS it returns to the first step.

v If the terminal homing finalizes successfully, the capture phase starts
applying a force profile to the thrusters to gently introduce the vehicle
inside the DS. A similar force profile, but on the opposite direction, is
applied to undock the vehicle.

If all phases conclude satisfactory, to verify that the vehicle has been
correctly docked, several elements are considered: a camera in the DS
pointing to the funnel, the WiFi connection between the DS and the AUV,
and also a test to check that the AUV orientation is static despite applying
some thrust.

If any of the phases fails, the same phase or the previous one is
repeated as shown in Fig. 16. If after three repetitions the phase keeps
failing, the docking command is aborted.

5. Experiments and results

All the elements described in Section 3 were tested incrementally.
Preliminary tests were performed in a 16� 8x5m water tank at the
University of Girona. Even though this water tank has a rather limited
space, it provides a convenient and controlled environment with a su-
pervision room that offers direct view to the water. In there we could test
the light beacons localization, the acoustic communications using SUN-
SET, the vehicle remote operation from the SUNRISE GATE, and the final
phases of the docking maneuver (i.e., approach home, terminal homing and
capture). Later, additional experiments were carried out in a harbour near
Girona. The SOG filter and further tests on the light beacon localization
system were performed at this harbour under more real conditions. Once

Fig. 16. State diagram for undocking, mission
execution, and docking while handling more common
failures.

Fig. 17. Terminal homing phase.
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all the phases of the docking command were checked individually, more
complete tests, involving survey trajectories started and/or ended in the
dock, were carried out using the acoustic communications between the
DS and the AUV.

Final experiments were performed at the LOON testbed, located in La
Spezia (Italy), during a three day campaign. Fig. 18 shows the location of
the LOON container, where the LOON control PC running the SUNSET
gateway was located. The blue area shows the region that was designated
for conducting the experiments and where the DS was installed at around
9m depth. Fifteen mission plans, all of them including docking com-
mands, were executed by the AUV at this testbed.

In all tests the DS was correctly detected and only in three (20%) was
not possible to conclude the docking maneuver due to the presence of
strong water currents that affected the DS area during some hours in a
direction that was not aligned with the docking station. In two of these
three cases, after a predefined number of re-attempts, the system
returned an error indicating that the docking could not be performed and
in the remaining one, the vehicle finalized the maneuver but detected
that the vehicle was not correctly docked. As described in Section 2, the
DS can rotate to be aligned with the water currents. However, in the DS
current state, this is a manual adjustment that has to be done by a diver.
When the current was aligned with the DS axis or was relatively low
(below 0.15m/s), the docking maneuver was always successful despite
very poor visibility (below 3m most of the time).

Several tests were done to assess the remote operation of the vehicle.
First, SUNSET commands were sent through the SUNSET user interface
directly from the LOON control PC. Once checked that the AUV could be
completely commanded by sending acoustic orders through the SUNSET
protocol, the vehicle was remotely operated through the SUNRISE GATE

web interface demonstrating the complete integration with the LOON
test-bed (see Fig. 19). The DS capability to latch the AUV and to transmit
large amounts of data once this was docked was also tested during the
trials allowing to keep the AUV docked, in suspension mode, for several
hours as well as to transmit previously gathered data files up to 45Mbits/
s.

Fig. 20 summarizes one of the full missions performed by the AUV.
The vehicle started by undocking from the DS (purple line) and went to
the first waypoint of the survey trajectory. It executed the grid survey
(orange line) while gathering multibeam data from 5m altitude. At the
end of it, the docking motion command was triggered. Even though the
AUV had left the DS, and therefore it could receive acoustic range up-
dates during the whole mission, we forced the AUV to localize the DS
using the SOG filter with AL. Thus, the AUV started the star pattern
trajectory that is performed to increase the observability of the DS
ranges.

Fig. 18. View of the operational area, where the docking station was
deployed and the experiments took place. All tests were controlled from a lab
container located next to the LOON container.

Fig. 19. SUNRISE GATE web interface screenshot.

Fig. 20. Visual mission summary.
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The range-only localization process can be seen in more detail in
Fig. 21. The algorithm starts by initializing a set of Gaussians that cover
all the position probability space (Fig. 21a) according to the first range
measurement. The vehicle initiates the star pattern trajectory and the
incoming range measurements quickly narrow the probability of the DS
position to two possible locations that are in agreement with all the

received measurements (Fig. 21b). After performing the first turn, new
incoming ranges narrow down the uncertainty of the docking station
position below the established threshold (σth ¼ 1:5). At this point, the
vehicle moves to one side of the determined position in order to decrease
the uncertainty of the ellipse (down to σDS ¼ 0:7) in its main axis
(Fig. 21c and d). It is worth noting that this successful localization
benefited from very consistent range measurements provided through
SUNSET, arriving every 5s.

Range measurements can be affected by various types of non-
Gaussian noise like surface bounces, wrap returns and background
noise (Yoerger et al., 2007). In the presented experiments, the measured
ranges are not affected by those problems due to the small distance be-
tween the AUV and the DS and because there were no obstacles in the
vicinity, leaving a direct reception for modem communication and range
measurements. This correct reception can be observed in Fig. 22 where
measured ranges over time, during the localization and approach to the
DS, show a smooth shape without outliers. Given the favorable condi-
tions, the range update rate was constant at 0.2 Hz.

In the final approach to the docking station, the optical tracking
system is started in order to have a better precision on the DS location as
well as a faster update rate. At this point, the docking command executes

Fig. 21. Evolution of the range-only localization algorithm to detect the docking station position. See text for details.

Fig. 22. Range measurements over time for two different missions.
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a search pattern in which the AUV approaches the estimated position of
the DS from 10m to 4m, and every 2m the AUV performs a sweeping
movement turning from 90deg to the left to 90deg to the right. This
behavior terminates when the DS is detected. With this simple search
pattern, we ensure that the vision-based system will be able to detect the
light beacons, even when the error in the SOG filter estimation is up to
2.8 m (i.e., 95% of cases when σ ¼ 0:7).

The maximum distance of operation for the optical tracking depends
strongly on the visibility conditions. For this particular experiment, the
visibility was considered poor: the structural elements of the DS were not
visible at distances greater than 3m. However, the light beacons could be
properly detected up to a maximum distance of 7m, allowing to complete
the docking approach without difficulty. Visibility conditions can be
appreciated in Fig. 23.

Fig. 23. Docking maneuver images from Sparus II
AUV on-board camera. The lights were visible from at
least 7m away from the DS, while the AR markers
were only visible at 3m.

Fig. 24. DS tracking performance during the docking
command execution in one of the missions. The
different colored dots represent three different up-
dates: White dots correspond to acoustic updates,
black dots are visual updates computed using light
beacons while grey dots are visual updates computed
using AR markers. The blue line represents the rela-
tive distance between the DS and the AUV according
to the navigation of the vehicle and was computed
offline once the position of the DS was known pre-
cisely. The colored background reflects how many
light beacons were inside the FOV of the camera ac-
cording to the orientation of the vehicle. (For inter-
pretation of the references to color in this figure
legend, the reader is referred to the Web version of
this article.)
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Once the vision-based system is able to estimate consistently several
times the DS pose, a landmark is initialized in the EKF localization system
and every time that a new vision-based measure or a range measure is
obtained, the position of both AUV and DS is updated in the navigation
filter (see Section 3). After introducing the landmark in the EKF, the
guidance module moves the AUV to a waypoint placed 10m in front of
the DS pose available in the state vector and initializes the terminal
homing phase. While approaching the DS following the LOS path, if the
estimated distance by the optical tracking is under 1.5m and there is
ambient light, the approach used to detect the DS changes and the al-
gorithm tries to estimate the relative position of it using the AR markers
instead of the light beacons. When the system was on tracking mode, it
was able to provide updates at a maximum of 15 Hz, which corresponds
to the capture frame rate of the camera. Because acoustic ranges, light
beacons, and ARmarker measurements are equally used to update the DS
position in the EKF-SLAM filter, the position of these three elements with
respect to the DS frame must be properly calibrated.

Fig. 24 compares the distance between the AUV and the DS estimated
according to the acoustic ranges, light beacons and AR markers. All

methods show a high degree of agreement with the trajectory estimated
offline, once the DS position was known precisely, with differences
smaller than 30 cm. The background colors in the plot represent the
number of light beacons inside the FOV of the camera, this is, depending
on the orientation of the AUV a different number of light beacons are
inside the FOV of the camera. Due to the fact that the orientation of the
DS is known a priori, even when only two of the light beacons have been
identified it is possible to estimate the relative pose. For this particular
mission the optical track was lost between seconds 15 to 25 due to a
reorientation of the AUV to correctly approach the DS. From second 45
onwards, when the distance is smaller than 1.5m, the optical tracking
was based on AR markers.

From the plot, we can conclude that the optical tracking workedwhen
the lights were in the camera FOV and in a distance of less than 7m. The
tracking was lost at 1.5 m, moment in which the tracking method
changed to AR markers detection.

The uncertainty of the DS position according to the visual estimates is
shown in Fig. 25. The plot includes the uncertainty in the detection of the
DS in the image, but excludes the uncertainty in the transformation

Fig. 25. Uncertainty of the optical tracking
updates during the docking maneuver in one
of the missions. Black dots correspond to
light beacons updates while grey dots are for
AR markers updates. The colored back-
ground reflects how many light beacons
were inside the camera FOV according to the
vehicle's orientation.

Fig. 26. Bathymetric data collected during different experiments in the LOON testbed.
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between the camera and the AUV and the uncertainty related with the
camera calibration. Peaks in the uncertainty plot appear when only two
or three lights are visible instead of four.

Fig. 26 shows the bathymetric data collected along several survey
missions that were autonomously commanded and executed in different
locations. Although the data might not be very valuable in terms of
mapping utility, because the area was extremely flat and with scarcity of
features, it serves as a proof of concept and testifies to the whole concept
of the LOON-DOCK: being able to remotely command and retrieve large
amounts of data from a persistently deployed AUV through a DS.

6. Conclusions and future work

This paper has presented the docking solution implemented in the
context of the LOON-DOCK project in order to demonstrate the remote
operation and data transmission of a survey-AUV from Internet.

We have designed and built a docking station for Sparus II AUV,
providing passive and active guidance mechanisms, a latching system,
high-bandwidth data communications and visual feedback. The active
guidance for docking is based on two complementary and cost-effective
systems: two acoustic modems using only range information within a
SOG filter to detect the DS from mid distances and a vision-based system,
composed of a set of light beacons and visual markers, used in the ter-
minal homing phase. The combination of a mid-accuracy mid-range
method with a high-accuracy short-range method allows us to reliably
dock the AUV.

The system has been extensively tested, with trials ranging from a
controlled water tank environment to more realistic sea operation con-
ditions. Successful validation of all the involved parts (i.e., AUV navi-
gation, control, acoustic communications, and autonomous docking
capabilities) has been conducted despite the presence of currents and
very poor water visibility.

The main downside identified in our docking approach arises in the
presence of strong water currents that are not aligned with the docking
station. Sparus II, being a torpedo-shaped vehicle underactuated in sway,
can only deal with lateral currents by changing its heading. This has two
negative effects: first, by adapting the heading to compensate the cur-
rents, the vehicle is more prone to lose sight of the light beacons during
the terminal homing, and second, if the misalignment with the docking is
larger than 30�, the vehicle cannot physically enter inside the funnel
receptacle. For this reason, as a future work, it is important to deal with
the automatic alignment of the DS with the currents. Notice that the
proposed design is already able to rotate the DS funnel receptacle and
only a system to measure the water currents and an actuator to move it
accordingly would have to be added. Besides, a battery recharging
mechanism will be also integrated in the future to complete the system
and enable its persistent deployment through longer time spans.
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5
H-SLAM: Rao-Blackwellized
Particle Filter SLAM Using

Hilbert Maps

In this chapter, we propose a new SLAM framework for continuous occupancy mapping named
H-SLAM. This framework is based on a RBPF with a HM map representation in each particle.

As explained in detail in Section 2.3, the HM provides a continuous occupancy representation
at constant computational complexity O(1), while significantly reducing the amount of memory
needed in traditional OGs to have a similar representation. Range measurements are used to learn
the map as well as to provide self consistency measurements following the measurement model
in [Thrun et al., 2005]. The system is tested both in simulation and real datasets gathered with
Sparus II AUV.

The proposed method has been published in the following paper:
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Abstract: Occupancy Grid maps provide a probabilistic representation of space which is important
for a variety of robotic applications like path planning and autonomous manipulation. In this
paper, a SLAM (Simultaneous Localization and Mapping) framework capable of obtaining this
representation online is presented. The H-SLAM (Hilbert Maps SLAM) is based on Hilbert Map
representation and uses a Particle Filter to represent the robot state. Hilbert Maps offer a continuous
probabilistic representation with a small memory footprint. We present a series of experimental results
carried both in simulation and with real AUVs (Autonomous Underwater Vehicles). These results
demonstrate that our approach is able to represent the environment more consistently while capable
of running online.

Keywords: AUV (Autonomous Underwater Vehicle); SLAM (Simultaneous Localization and Mapping);
PF (Particle Filter); 2D

1. Introduction

Robot localization is a fundamental problem in achieving true autonomy. Especially underwater,
where global localization systems like Global Positioning System (GPS) are not available, vehicles
have often to rely on Dead Reckoning (DR) navigation that drifts over time. This accumulated drift is
problematic when constructing maps because a same geophysical feature may appear as a different
one when it is re-observed after drifting.

To overcome this drift, systems like the Long Baseline (LBL), the Short Baseline (SBL),
the Ultra-Short Baseline (USBL), the GPS Intelligent Buoyss (GIBs), or the single beacon navigation,
are commonly used to provide absolute positioning fixes [1–4]. However, these systems require time
for deployment and constrain the vehicle to their coverage area.

To avoid the use of external structures, a vehicle equipped with exteroceptive sensors such as
sonars can make use of Terrain-Based Navigation (TBN) [5] to bound its navigational drift. However,
detailed digital terrain maps are not always available. Moreover, those maps are mainly measured
from surface ships, thus degrading their resolution as depth increases.

Another solution, is the use of Simultaneous Localization and Mapping (SLAM) methods [6,7],
which do not require any external structures and neither a pre-obtained digital map. As in TBN,
SLAM needs the use of exteroceptive sensors, mainly cameras or sonars. Although underwater
cameras suffer from low visibility in turbid waters, they provide higher resolution and faster refresh
rate while they are much cheaper than sonars. On the other hand, sonar sensors have lower resolution
and refresh rate, but measure up to hundreds of meters regardless of water visibility issues.

Some of the most successful SLAM methods in the literature use a feature-based approach for
SLAM [8–10]. Uniquely identifiable features are detected and associated to continuously correct the
navigational drift and the learned map. However, underwater environments make robust feature
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extraction difficult, especially on sonar measurements, and a featureless method should be used.
Featureless methods can rely on scan-matching, frequency registration, . . . , where relations between
different scans are obtained. Those relations are represented in a graph-like structure that can be
solved/optimized with any of the state of the art back ends [11–13]. Another method is to rely
on Particle Filters (PFs) where each particle carries its own map and is weighted against it for
self-consistency of its measurements [14].

1.1. Underwater SLAM State of the Art

Focusing specifically on the underwater environment, multiple works have achieved successful
SLAM implementations, either with optical imaging sensors or acoustic sonar sensors.

Optical imagery has been used to construct two-dimensional (2D) underwater photomosaics
that correct the inherent DR drift and enable an overview of extended areas of the seafloor [15–22].
Additionally, in scenarios with a high three-dimensional (3D) component, optical imagery has also
been used for 3D reconstructions [23–27].

Regarding sonar sensors, the Forward-Looking Sonar (FLS) provide a strong alternative to optical
imagery mosaicking in low visibility conditions [28–31]. Although FLS provide a longer measurement
range, its Field of View (FOV) is limited and the change of orientation greatly affects the perceived
appearance of measured objects.

Multibeam echosounders are commonly used to obtain 2.5D elevation maps of the seafloor thanks
to their wide swath and long range of measurements. Typically used on surface ships to map the
seafloor, they are also used in Autonomous Underwater Vehicles (AUVs) to obtain a better resolution
closer to the bottom [32–35].

Finally, mechanical scanning sonars and single beam echosounders have also been used for
SLAM in man-made environments with line features [36]. Even in fully 3D environments like caves,
with occupancy grids [37], as well as with scan-matching algorithms [38].

SLAM underwater is usually computed after the AUV is recovered from water and its data
downloaded. After observing the obtained result, another mission can be scheduled to explore
potential targets or cover the gaps of the first mission. This process can be inefficient and costly.
However having the SLAM solution online, could enable autonomous exploration [39] or autonomous
intervention [40] capabilities for the AUVs.

To the best of the authors knowledge the only underwater SLAM algorithms that have been
tested online are [31,37]. The first uses multiple single beam echosounders and provides an Occupancy
Grid (OG) map using an efficient Deferred-Reference Octree representation to avoid huge copies in
its PF. While the second one uses a FLS Fourier-based registration with a pose-graph representation
with loop-closing detection. While FLS mosaicking does not provide a useful representation of the
environment for path planning, the OG grid map provides the perfect candidate for online path
planning. OG describe the environment as free, occupied and unknown zones with certain probability.
This information can be used to plan safe paths and autonomous exploration.

In our proposal, we want to work with occupancy maps because in future work they can be
used for online path planning. To work with occupancy maps, we need to work with particle
filters, where each particle carries their own version of the map. In [37] they reduced the memory
footprint from OG maps by using an octree structure, but increased the computational complexity
of the cell-query/update operation from constant O(1) to logarithmic O(log(n)). We propose a new
SLAM framework, named Hilbert Maps SLAM (H-SLAM) which reduces the memory footprint of
traditional OG maps while keeping the computational complexity constant O(1). Moreover, they offer
a continuous occupancy representation that can be queried at any resolution.

1.2. Contribution

The main contributions of this paper are:

1. Bring the map representation named Hilbert Maps (HMs) to the underwater environment.
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2. Implement a new SLAM framework, the H-SLAM.

(a) Use sonar measurements with HM representation.
(b) PF based.
(c) Capable of running online on an AUV.

3. Simulated experiments and results of the method proposed.

(a) Experiment with a known map. Localization only (TBN).
(b) Full SLAM experiment.

4. Real experiments and results of the method proposed.

(a) Datasets obtained by an AUV.

1.3. Paper Organization

The paper is organized as follows. Section 2 describes the HM representation and the specifics
on how to use it for map localization. Section 3 presents the Rao-Blackwellized Particle Filter (RBPF)
used in conjunction with the HM representation for the H-SLAM framework. Section 4 describes
the datasets used for testing the algorithms while Section 5 discusses the results obtained with them.
Finally, in Section 6, we present the conclusions.

2. Hilbert Maps

HMs where recently introduced in [41] to offer a continuous probabilistic representation of the
space given a collection of range sensor measurements. In other words, it offers a continuous occupancy
map representation. Unlike traditional OGs, there is no cell resolution, so any point in the space can be
queried. Moreover, it captures spatial relationships between measurements, thus being more robust
to outliers and possessing better generalization performance and exploiting that environments have
some inherent structure. For example, if two close points are observed occupied the space between
them will have a higher probability of being occupied than free while no other measurements are
obtained on the neighbourhood.

Developed as an alternative to the Gaussian Process Occupancy Maps (GPOMs) [42], they offer
similar advantages at a smaller computational cost. While GPOMs have a cubic computational cost
O(n3), HMs computational cost is constant O(1). Instead of training the classifier directly on the
training points x, HMs project them to a finite set of features or inducing points Φ(x), where a simple
logistic regression classifier is learned. Those features dot product approximates popular kernels in the
Gaussian Process (GP) framework k(x, x′) ≈ Φ(x)T

Φ(x′), like the Radial-Basis Function. Furthermore,
the logistic regression can be trained and updated using Stochastic Gradient Descent (SGD), making
computation theoretically independent from the number of observations.

Given a dataset D = {xi, yi} where xi ∈ RD is a point in the 2D or 3D space and yi ∈ {−1, 1} is
the label corresponding to the occupancy of the point xi. HMs learn the discriminative model p(y|x, w)

on the dataset through SGD. Once the model is learned, one can use the parameters w to predict the
probability of occupancy of any query point x∗ as

p(y∗ = 1|x∗, w) =
1

1 + exp(−wTΦ(x∗))
∈ [0, 1]. (1)

The most important parameters that define a HM are the learning rate of the SGD and features
used. Regarding the learning rate ηt, it can be constant or decaying with time. Regarding the features,
many different features have been applied to HMs [41,43,44], and the basic parameters common to
them are the feature_resolution fres, that defines how distant each feature are from each other, and the
radius_neighbourhood rth that defines how far a feature affects its surroundings (Figure 1). The closer
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the features are, the smaller the details that can be represented. The lower the radius, the less features
affect the same point in space. The feature used in this work is a simple triangle feature defined as

Φ(x) =

{ rth−r
rth

if r < rth

0 otherwise
(2)

where r = ||fi − x||2 and fi is the position of the feature i.

Figure 1. Schematic of a Hilbert Map. Features fi are spread at fres distance in a square grid and the
neighbourhood that they affect is defined by the radius rth. When predicting the occupancy of a point
x∗, one must gather all the feature weights and multiply it by the value of the feature in that point
Φ(x∗) according to (1). In the example shown, the query point is outside f2 neighbourhood and thus,
its contribution is zero.

Being a continuous representation features can be much farther than cells in a traditional OG,
but achieve a similar representation at a much lower memory footprint. For example the map described
in Figure 2 extends 28.5 × 24.5 m which for an occupancy grid at 0.1 m resolution takes around
70,000 cells to represent. If represented by doubles (8 bytes/double), it takes ≈545.5 kB. However
a HM representation at 0.5 m feature resolution, takes ≈21.8 kB (a 0.04% of the memory) providing
similar representation at 0.1 m queries.

(a) OG representation at 0.1 m resolution. (b) HM representation with features at 0.5 m,
queried at 0.1 m resolution.

Figure 2. Comparison between OG and HM representation queried at same resolution. Notice
that rounded corners are not the most desirable representation for structured environments, but for
underwater scenarios is not usually a drawback.
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Hilbert Map Learning and Raycasting

Learning a map from range sensors measurements and querying a point in the map, are both
clearly defined in the seminal work of HMs [41]. To include range measurements, they are first
discretized into single points. The point at the end of the range is labeled free if the range is maximum
and occupied otherwise. Then, the rest of the ray (from vehicle position to measured range) is sampled
randomly and labeled free every 1 or 2 m to properly cover the ray (Figure 3). Those points and labels
are learned into the HM.

Figure 3. (left) Original range measurements made with a sonar. (right) Sampled points for map
learning (black points are occupied and blue points are free).

However, to develop a SLAM framework based on HMs, it lacks a necessary raycast method to
compare the real range measurements with the expected range measurements that the vehicle would
have according to the learned map. On grided OG maps, the cells are queried through the ray path
until an occupancy value bigger than a threshold is found [45]. Our HM raycasting method is inspired
by the one developed on GPOMs [46].

The raycast starts from the vehicle position in the HM and points in the same relative direction as
the real measurement. Points at increasing distance from the vehicle are queried in the HM to obtain
the occupancy value (Figure 4). This distance is defined as the query resolution. When a query point
has an occupancy value bigger than a threshold, this point is considered a hit (occupied) and no more
points are queried. To get the exact position where the threshold was crossed, a linear interpolation
between the hit point and the point previous to the hit point is computed. Finally, the raycasted range
is the distance between the vehicle position and the result of the linear interpolation.

Figure 4. Example of raycast where queries are made at specific resolution.
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3. Rao-Blackwellized Particle Filter with Hilbert Maps

AUVs are often loaded with a handful of sensors to provide proper positioning. Depth sensor,
Attitude and Heading Reference System (AHRS) and Doppler Velocity Log (DVL) provide excellent
positioning except for the x and y axis in the absence of GPS, SBL, LBL, USBL or GIB. To assess this
positioning one can represent the state of the vehicle as a RBPF [47]. Here, states directly observable
using vehicle sensors are removed from the PF and are tracked by a single Extended Kalman Filter
(EKF) shared by all particles whose state vector is

xek f
k = [zk uk vk wk]

T , (3)

where zkk is the depth of the vehicle in the world frame, [uk vk wk] are the velocities in the vehicle
frame at the time k. The vehicle orientation φk, θk roll and pitch and the yaw rate ψ̇k in the world frame
are taken as inputs uk of the EKF prediction model and are not estimated. The remaining states are
estimated by the PF, where each particle is defined as

xp f ,i
k =

{[
xi

k yi
k ψi

k

]T
, wi

k, mi
k

}
, (4)

where i is the particle index and [xi
k yi

k ψi
k]

T are the positions and the yaw in the world frame, wi
k is

the weight of the particle and mi
k is the HM of the particle.

The particle filter is initialized from the on-board DR filter if an absolute positioning system
is available. Otherwise the filter is initialized at the origin for x, y and uses the current sensor
measurements to initialize the state model.

3.1. State Propagation

At each sensor measurement, the EKF is predicted to the time of the observation. A simple
constant velocity model is used for the prediction as

xek f
k+1 = f

(
xek f

k , uk, nk

)
=




zk + cos(θk) cos(φk)
(

wkt + nwk
t2

2

)

uk + nuk t
vk + nvk t
wk + nwk t


 (5)

where t is the time increment from the previous prediction, uk = [φk θk ψ̇k]
T is the input control

vector and nk = [nuk nvk nwk ]
T are the acceleration noises in the linear velocities. Note that noises in

roll and pitch [nφk nθk ] are so small that can be considered negligible and are not taken into account.
Covariance is also predicted as

Pk+1 = FkPkFT
k + WkQkWT

k (6)

where Fk =
∂ f (xek f

k ,uk ,nk)

∂xek f
k

∣∣∣∣
xek f

k =x̂ek f
k ,nk=0

, Wk =
∂ f (xek f

k ,uk ,nk)
∂nk

∣∣∣∣
xek f

k =x̂ek f
k ,nk=0

, and Qk = diag{σu σv σw}.

Each particle is also predicted forward by randomly sampling the uncertainties of uk, vk from the
EKF and a user specified yaw rate uncertainty σψ̇. The velocities and their covariances are transformed
for each particle from the body frame to the world frame {W} as




W ẋi
k

W ẏi
k

W żi
k


 = Rot(φk, θk, ψi

k)




uk
vk
wk


 (7)

W Pi
ẋk ,ẏk ,żk

= Rot(φk, θk, ψi
k)Puk ,vk ,wk Rot(φk, θk, ψi

k)
T (8)
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where Rot(φk, θk, ψi
k) is a rotation matrix given the attitude Euler angles and Puk ,vk ,wk is the 3 × 3

sub-matrix of Pk containing the velocity uncertainties. Those obtained values are used to predict each
particle positions as

xi
k+1 = xi

k +N
(

W ẋi
k, W Pi

ẋk ,ẋk

)
t (9)

yi
k+1 = yi

k +N
(

W ẏi
k, W Pi

ẏk ,ẏk

)
t (10)

ψi
k+1 = ψi

k +N
(

ψ̇k, σψ̇

)
t (11)

where ψ̇ is taken from uk.

3.2. State Update

Once the prediction has been computed up to the time of the sensor measurement, the EKF state
can be updated with the common EKF update equations. The measurement function is defined as

zk = Hkxek f
k + vk (12)

where zk is the measurement, Hk defines which states are observed and vk is the noise of the
measurement.

Depending on the different measurements zk provided by the different sensors (see Section 4.2)
the Hk matrix will change. For example, the depth sensor provides depth measures and it is defined as

[
z
]

depth
=
[

1 0 0 0
]

xek f
k +

[
σdepth

]
(13)

DVL sensor provides velocities in the vehicle frame, and thus it is defined as




u
v
w




DVL

=




0 1 0 0
0 0 1 0
0 0 0 1


 xek f

k +




σu

σv

σw


 (14)

Finally, AHRS sensor provides orientation in roll and pitch, and angular rate in yaw [φ θ ψ̇] that
are saved in the input control vector uk.

3.3. Weighting, Learning and Resampling

Once a sonar measurement is received, it is segmented according to the returned intensities to
obtain a single range and occupancy value. If no significant intensity is found, the range is set to the
maximum range value and the measure is set to free. Otherwise, the range is set to the range of the
highest intensity and the measure is set to occupied.

If it is an occupied measurement, its range rmeas
k is compared with each particle map mi

k to update
the particle weight. The expected range measurement ri,cast

k is obtained by casting a ray as described in
Section 2, from the particle position in their respective HM mi

k. The weight update per each particle is
proportional to the difference of those ranges

wi
k+1 ∝ wi

k exp


−

(
rmeas

k − ri,cast
k

)2

σ2
r


 , (15)

where σr is the range measurement covariance. This can be thought as a measure of self-consistency of
the each particle HM.
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After particle weighting, the measurement is learned in each mi
k to be used in future weightings

and to properly reconstruct the environment. These ranges are first sampled and then learned as points
as explained in Section 2.

Finally, the well known Sequential Importance Resampling (SIR) is used each time the number of
effective particle Ne f f falls below half of the number of particles (Ne f f < N/2) [48].

Please note that in the case of TBN, particles carry no HMs and there is a single shared HM.
This shared map is only learned beforehand and never updated. The learning step is suppressed in
this case.

4. Datasets

The proposed H-SLAM framework was tested on several datasets. First on a synthetic dataset to
ensure correct implementation and to be able to compare against ground truth, and then with two
underwater datasets, one structured and one non-structured, gathered by an AUV.

4.1. Simulated Dataset

This dataset is used as a proof-of-concept of the algorithms. The dataset is generated from a set
of 53 vehicle poses in a 2D map where 36 range measurements spaced 10◦ around the vehicle are
obtained for each pose (Figure 5a). The increments between the poses are obtained, then linear and
angular gaussian noises are added to obtain the odometry measurements. The range measurements
are also corrupted by gaussian noise (Figure 5b). When predicting particles, odometry increments
[∆x ∆y ∆ψ] are combined with gaussian noise [σlin σlin σang] to obtain particle positions.

This dataset is used for both TBN and SLAM. For the TBN case, the original map is sampled at
0.2 m resolution and those points are used to learn its HM representation (Figure 6). Then this map is
used to localize the particles. On the SLAM case, only the noisy odometries and ranges are used as
input to the filter because each particle learns its own HM mi

k.
Using only odometry increments and ranges simplifies the filter explained in Section 3.

Each particle state is propagated by compounding their current position with the noisy
odometry increments.

(a) Ground truth. (b) Noisy odometry and measurements.

Figure 5. Simulated dataset of an indoor environment. Vehicle starting position on the bottom left.
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(a) Sampled points with label
(black occupied, white free).

(b) Learned Hilbert Map (colored
by occupancy probability).

(c) Thresholded Hilbert Map
(black occupied, white free, grey
unknown).

Figure 6. (a) Sampled points from the simulated scenario; (b) Learned HM for TBN; (c) Learned HM
thresholded at p(occ) > 0.5 for the occupied, p(occ) < 0.5 for free, and p(occ) = 0.5 for unknown,
to better identify the different areas.

4.2. Real-World Datasets

These datasets were obtained with Sparus II AUV [49] equipped with a Tritech SeaKing Profiling
Sonar for range measurements. The Sparus II AUV provides depth information from a pressure sensor,
velocities and altitude from a DVL, and attitude from an AHRS. The profiler is mounted at the payload
space of the AUV (Figure 7).

Figure 7. Sparus II AUV side view (up) and bottom view (bottom). Profiler is mounted on the payload
area (in yellow) at the bottom of the vehicle.

With those sensors the AUV is capable to provide a DR navigation that drifts over time as can
be observed in the following datasets. Both datasets were taken along Sant Feliu de Guixols’ coast
(Figure 8) at a constant depth, during the experiments regarding [50] trials.

No GPS or USBL were available to provide global corrections to the navigation drift or to provide
a ground truth to compare with. The profiler provides a 120◦ FOV in the front of the vehicle at 1.8◦

angular increments. This forward-looking configuration complicates the SLAM in the sense that until
a loop is closed, same locations are not measured again.

Each ray measurement provides ranges from 0 m to 10 m at 0.025 m resolution with their
corresponding intensity values. Those rays are thresholded according to a minimum and maximum
range, and a minimum return intensity to obtain a range measurement to be used in the H-SLAM filter.

68 Chapter 5. H-SLAM: Particle Filter SLAM Using Hilbert Maps



Sensors 2018, 18, 1386 10 of 19

The first dataset was taken on the man-made breakwater structure outside of the harbour.
The three most eastern blocks of around 14 × 14 m with a spacing of 5 m were surveyed with
the AUV (Figure 9). The dataset contains a total of 12,412 range measurements over 15 min mission at
1.5 m constant depth. As can clearly be observed on the figure, when the vehicle returns to the starting
point the drift is clearly noticeable. This dataset contains three loop closes, where same features are
re-observed after going around each of the three blocks.

Figure 8. Location of both real-world datasets along Sant Feliu de Guixols’ coast
(source: OpenStreetMap c©).

Figure 9. DR trajectory in a continuous line from magenta to red, with the corresponding profiler
rays (in black) and their hitpoints (also colored by time) of the breakwater dataset. Grid cells at the
background are 5 m wide.

The second dataset was taken on the natural rock structure next to the so-called Punta del Molar.
Like the previous dataset, the AUV navigated around the rock (Figure 10). The dataset contains a total
of 14,417 range measurements over 17 min mission at 2.5 m constant depth. Likewise the first dataset,
the drift is clearly observable when the vehicle returns to the starting position.
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Figure 10. DR trajectory in a continuous line from magenta to red, with the corresponding profiler rays
(in black) and their hitpoints (also colored by time) of the rocks dataset. Grid cells at the background
are 5 m wide.

5. Results

All the tests on the different datasets were run with the similar parameters to ease the comparison
of results (Table 1). Feature resolution and radius of the neighbourhood were increased for the real
datasets since they are bigger than the simulated one and have less details. Range covariance was also
increased due to the bigger errors obtained when dealing with real sensors.

Table 1. Parameters used in the different datasets. On the real datasets prediction covariances are
gathered from the covariance matrix Pek f

k .

Parameter Simulated Breakwater Rocks

Feature resolution (m) 0.5 1.0 1.0
Radius neighbourhood rth (m) 1.5 2.0 2.0

Linear covariance σlin (m) 0.25 - -
Angular covariance σang (degree) 2 - -

Range covariance σr (m) 0.05 0.4 0.4
Number of particles 40 40 40

5.1. Simulated Dataset

The simulated dataset is first used on a TBN experiment, where the HM is first learned from
samples as explained on Section 4.1. This map is shared between particles being only queried to
modify particle weights according to the differences between measured and casted rays. The results
are compared against the ground truth but also against the provided odometry inputs in a DR filter
that simply composes them (Figure 11).

As can be observed, the TBN corrects the vehicle trajectory reducing significantly the position
error. While the DR filter error keeps increasing, the TBN error is maintained almost constant around
0.4 m (Figure 12).
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(a) Trajectories for all particles involved in the filter. (b) Comparison between ground truth, DR filter,
and best and mean particle trajectories.

Figure 11. Trajectory results of TBN on HMs.

Figure 12. Position error of the filters compared to ground truth (TBN).

As expected, moving to SLAM increases the error and the correction of the trajectory is lower
than in the TBN case (Figure 13).

However, errors continue to be bounded although they are much higher due to the nature of map
incremental learning and self-consistency checks (Figure 14).

Another way to compare the results is to compare the map learned using ground truth odometry
and measurements against the map learned by the DR filter and the H-SLAM filter (Figure 15). In this
case, the representation obtained by the H-SLAM is much more close to the ground truth one than the
one obtained by the DR filter.
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(a) Trajectories for all particles involved in the filter. (b) Comparison between ground truth, DR filter,
and best and mean particle trajectories.

Figure 13. Trajectory results of SLAM on HMs.

Figure 14. Position error of the filters compared to ground truth (SLAM).

(a) Ground truth map. (b) DR map. (c) Best particle map.

Figure 15. Comparison of HMs learned from different vehicle trajectories.
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5.2. Breakwater Dataset

On the case of the breakwater dataset, we can observe a quite problematic area in the small
corridors between the blocks. A multipath echo is clearly present when looking to the east.
This multipath returns a maximum range which is interpreted as a completely free ray. This problem
is clearly visible on the rightmost block, causing the HM to represent it hollow.

When the H-SLAM is applied to the breakwater dataset, the result clearly improves over the
trajectory, providing more consistent sizes for the blocks and avoiding the double wall at the end of
the dataset (Figure 16). Observing the reprojected measurements on the corrected trajectory, no major
drifts are observed.

Figure 16. Breakwater dataset results. (a,b) Original dataset; (c,d) Corrected dataset; (a,c) Raw rays
and endpoints with the vehicle trajectory colored by time; (b,d) Learned HM segmented to show
free/unknown/occupied values with the vehicle trajectory.

The validity of H-SLAM approach can be seen when comparing the results with the satellite
images because they maintain the same structure as they have underwater (Figure 17).

Figure 17. Breakwater HM superimposed with a satellite image (source: Map data c©2018 Google, Inst.
Geogr. Nacional, Spain).

Finally, observing the covariance of the particles over time (Figure 18), the three loop closing
events described in Section 4.2 produce a clear decrease in uncertainty of the H-SLAM localization.
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Figure 18. Covariance of the particles over time for the Breakwater dataset.

5.3. Rocks Dataset

On the rocks dataset the same parts of the map are not observed until the trajectory finishes.
Incremental corrections are made during the whole dataset and at the end a loop-closing is achieved.
Several outliers are observed at the boundaries of the dataset due to proximity to other rock formations
(Figure 19).

Figure 19. Rocks dataset results. (a,b) Original dataset. (c,d) Corrected dataset. (a,c) Raw rays
and endpoints with the vehicle trajectory colored by time. (b,d) Learned HM segmented to show
free/unknown/occupied values with the vehicle trajectory.

Although the natural rock structure does not maintain the same structure underwater,
when comparing the results with the satellite images, the validity of H-SLAM can be seen (Figure 20).
Furthermore, the small occupied spots on the south-western part of the explored zone are clearly
caused by the nearby rock structures.

Finally, observing the covariance of the particles over time (Figure 21), a loop closing event is
observed at around 900 s that corresponds to revisiting the initial area.
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Figure 20. Rocks HM superimposed with a satellite image (source: Map data c©2018 Google, Inst.
Geogr. Nacional, Spain).
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Figure 21. Covariance of the particles over time for the Rocks dataset.

5.4. Performance

H-SLAM was not run online when obtaining the datasets, but from previously obtained datasets
saved in a rosbag file. This file, part of the Robot Operating System (ROS) [51], allows to replay data
exactly as how it was obtained. In this case, the algorithm was run as fast as possible through the
bagfile to compare the time it took to gather data (total available time for execution) against the time
needed to compute the H-SLAM solution (Table 2).

Table 2. Computing time comparison with dataset collection time.

Breakwater Rocks

Time to obtain dataset 14 min 36 s 16 min 54 s
Time to run H-SLAM 02 min 26 s 03 min 42 s

As can be observed, the computing time is much lower an thus making the algorithm capable of
running online on the AUV, even with many more particles than the 40 used on the tests.
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6. Conclusions

In this work, we have presented new SLAM framework named H-SLAM for AUVs equipped with
sonars. The combination of a RBPF with a HM representation of the environment provided trajectory
corrections that increased the consistency of the recorded measurements both in simulation and in real
datasets. Moreover, the computing time required is much lower than the time it took to collect the
datasets, being capable of being used online on an AUV.

In the simulated datasets, the RBPF provided a significant correction when used for TBN with a
known map, and a lesser correction when used for SLAM. However the final map was much more
consistent than the one obtained by the DR filter.

In the real datasets, significantly more consistent maps were also obtained. Especially on the
breakwater dataset, the multiple closing loops allowed to obtain a correct trajectory and map that
matches the satellite image of the structure.

7. Future Work

The algorithms have been tested at constant depth providing continuous occupancy maps in 2D.
Future work must better reflect the nature of underwater environments, extending H-SLAM to the
3D case. Moreover, multipath errors observed on the real datasets should be filtered out. Our idea is
check the range measurements persistence over time before using them in H-SLAM.
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6
Results & Discussion

In this chapter we present the main results and discussions derived from this thesis. First we
start with a summary of the completed work in Section 6.1. Then we move to the results of

the range-only localization algorithm in Section 6.2 and the results of the continuous occupancy
mapping algorithm in Section 6.3.
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6.1 Summary of completed work

It is known that to have true autonomous vehicles, a good online localization is needed.
In this thesis we have proposed two online localization methods for AUVs. The first one
works in a restricted environment to find a beacon using range-only measurements. The
other works in an unrestricted environment and provides continuous occupancy maps.

In Chapter 2 we provided basic background on the sensors and AUVs that are used
in the real-world tests carried throughout this thesis. Moreover, a detailed description of
HMs for occupancy representation is provided to extend the description already provided
in Chapter 5.

In Chapter 3 we addressed the problem of range-only localization for homing. On
long term deployed AUVs with DSs, AUVs must be always able to return to their DS for
battery recharging and/or data uploading. We proposed two algorithms based on SOG
filter already defined in previous works [Vallicrosa et al., 2014,Vallicrosa et al., 2015] and
tested them to compare their performances.

In Chapter 4 we took one of the algorithms proposed in Chapter 3 and made a simpler
but more robust implementation. This algorithm was coupled with a vision-based local-
ization system to provide continuous position updates for a complete homing and docking
procedure. The development of this work started in simulation [Vallicrosa et al., 2016],
then moved to simple trials in the water tank and harbor [Hurtós et al., 2017], to finally be
extensively tested on the LOON testbed during the final trials of LOON-DOCK/SUNRISE
project.

In Chapter 5 we addressed the problem of occupancy mapping. This work started as
online Terrain-Based Navigation (TBN) navigation based on Octomap [Vallicrosa et al.,
2013a, Vallicrosa et al., 2013c, Vallicrosa et al., 2013b]. Then shifted to propose a new
SLAM framework, named H-SLAM, combining a RBPF with HM continuous occupancy
representation. This framework was tested in several 2D datasets.

All of the algorithms developed in the various chapters are implemented efficiently to
be run online in an AUV. This is the basic premise maintained throughout this thesis, an
essential step to increase the autonomy of AUVs.

6.2 Online Range-Only Localization for Homing

We proposed two different algorithms tested with an unknown beacon depth (3D) and
with known depth (2D) using the projection of range measurements:

SOG-DR was proposed to locate an acoustic beacon given only range measurements and
the DR navigation provided by the AUV’s navigation filter. This algorithm assumes
that the drift during localization is small. A SOG filter is implemented where each
Gaussian represents a static possible position of the beacon localization. At each
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range measurement an EKF update is triggered to each Gaussian, then their weights
are updated according to the innovation of the EKF update.

SOG-SLAM was proposed to locate simultaneously an acoustic beacon and an AUV,
given range measurements and navigation sensor measurements (pressure cell, DVL,
and AHRS). This algorithm runs a complete navigation filter in each Gaussian of the
SOG that also incorporates one possible position of the beacon. At each navigation
sensor measurement, the Gaussian is predicted and updated with the new data. At
each range measurement an EKF update is triggered to each Gaussian, then their
weights are updated according to the innovation of the EKF update. Finally, a
custom resampling step is tested where first copy of a Gaussian is identical, but
successive copies are sampled from their own beacon location uncertainty.

We have also proposed two initialization methods for SOG filters when the first range
measurement is received:

Naive initialization is based on a user specified parameter, the tangential uncertainty
σt. This parameter defines how much space each Gaussian covers on the spherical
shell. In the 2D case it simply divides the circumference by 2σt to obtain the angu-
lar increment between each Gaussian, providing a uniform coverage of the possible
beacon positions (more details can be found in Chapter 3). This initialization was
tested with the SOG-DR algorithm.

Geodesic Grid initialization provides a uniform coverage for the 3D case. By using
the subdivisions of a regular icosahedron, the spherical shell can be covered with
12, 42, 162, 642, . . . , Gaussians. This also has the advantage of an upper bound
in the maximum number of Gaussians used in the localization whatever the value
of the first range measurement. This upper bound can be linked to the compu-
tational power of the AUV to reduce its computational burden. The position of
each Gaussian is precomputed for the unitary sphere and then scaled when the first
range measurement is received. This initialization was tested with the SOG-SLAM
algorithm.

To evaluate the SOG filter localization performance, an equivalent Gaussian formu-
lation was proposed. The equivalent Gaussian is computed after each range update by
obtaining the Unscented Transform of each Gaussian in the SOG and then computing
the mean and covariance of those Unscented points. As can be seen in Chapter 3, this
equivalent Gaussian gives a result very similar to sampling a large number of points from
each Gaussian and computing their mean and covariance. This ensures a fast and reliable
computation. The equivalent Gaussian is compared with the user provided uncertainty
localization threshold. When this Gaussian has a lower uncertainty in its biggest axis than
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the threshold, the beacon is considered localized. This is the stopping condition of the
range-only localization algorithms.

On top of the SOG filter, an AL algorithm was proposed to autonomously decide which
actions contribute more to reduce the filter uncertainty. A set of actions as 3D motions
are proposed. This method takes advantage of the fact that the EKF uncertainty update
does not depend on the measure itself. Then, each Gaussian in the SOG evaluates each of
the actions and checks its future uncertainty. This uncertainty is equivalent to the entropy
of the system, and its minimization is equivalent to the D-optimality criterion. A voting
system is used, where each Gaussian in the SOG votes for the action that reduces more
its future entropy. The most voted action is the one selected as the next movement.

A total of 12 experiments were proposed to evaluate these methods (Chapter 3). Four
of them were teleoperated, while the remaining eight were autonomously run thanks to
the AL algorithm. As stated in Chapter 3 results, the entropy of the filter is continuously
decreasing after each AL action is taken. The localization errors follow the same trend
as the entropy, and significant reductions are observed when localization symmetries are
resolved.

To assess accurate localization position, the localized beacon is approached by the
AUV. When the forward-looking camera precisely localizes the beacon, this measure is
assumed as ground truth and compared with the range-only localization.

All localization errors in the experiments fall below 4 m, while in 9 of them the error
is below 2.5 m. Although the 3 experiments with errors bigger than 2.5 m might seem sig-
nificant, the beacon was correctly localized with the camera, ensuring correct localization
for docking.

Those experiments where later re-run online on the recorded data, to compare the
different algorithms given the exact same inputs. SOG-DR and SOG-SLAM showed no
substantial difference in performance when the beacon depth is unknown (3D). However,
when depth is known (2D), localization performs better than in the previous case, in
several of the experiments.

6.2.1 Full homing and docking strategy

Although the DS range-only localization was initially developed for the Spanish na-
tional project COMAROB, it was not until the start of European project LOON-
DOCK/SUNRISE that a full homing and docking strategy was implemented. The
LOON-DOCK project aimed to extend the Littoral Ocean Observatory Network (LOON)
testbed by incorporating a DS with an AUV to be able to demonstrate data transmission
from AUV missions to the Internet.

A cost effective solution was required to achieve this goal and the online range-only
localization for homing was selected together with a vision-based localization. Range-only
localization located the DS from a distant location, and then was approached until the
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vision-based navigation could provide better estimates for the final docking maneuvers.
From the previously presented algorithms, the SOG-DR with known depth was selected

for having a similar performance but being simpler to work with. Instead of teleoperating
the AUV or using AL, a predefined trajectory that ensured observability was used. This
trajectory was scaled according to the first range measurement and was run until the
specified uncertainty threshold was reached. An additional step was added to correct the
tangential uncertainty observed in all localizations. This was achieved by moving the AUV
to a point in the axis of major uncertainty, e.g. giving reductions from σt = 1.5 to σt = 0.7
(more details in Chapter 4).

This wider LOON-DOCK project also required the development of a cost-effective DS
for Sparus II AUV, a control strategy to achieve successful docking and the integration be-
tween range-only localization and vision-based localization to provide continuous updates
on the DS localization. Additionally, modifications to the software architecture were done
to be able to communicate through the project infrastructure.

A total of 15 experiments were proposed to evaluate the whole homing and docking
procedure (Chapter 4). Twelve of the experiments were a complete success, while one
successfully docked but was not correctly reported to the control system, and the last two
(after several retries) were aborted due to strong water currents in the vicinity of the DS.
The limited maneuverability of a torpedo shape AUV such as Sparus II cannot cope with
those kinds of lateral water currents when docking. This could be solved by a DS that
automatically aligns itself to the currents as discussed in Chapter 4. When current was
aligned the docking maneuver was always successful even when visibility was below 3 m.
In the results we can also observe an strong agreement between the range measurements
and the visual detections.

Range measurements were also integrated into the on-board navigation system pro-
vided by the AUV’s software architecture COLA2. These measurements can provide
navigation corrections once the DS position is known. For example, when the AUV starts
a new mission from the DS, its position is known and can be used to consistently update
the navigation filter while range measurements are available. Although this is used in
Chapter 4, it is explained in more detail in [Vallicrosa et al., 2016].

6.3 Online Continuous Occupancy Mapping

We proposed a new SLAM framework named H-SLAM for continuous occupancy mapping.
It uses a RBPF representation where directly observable states (depth and linear velocities)
are tracked through a common EKF filter while position in the xy-plane and heading are
tracked by the PF. Each particle also has a weight and carries its own map solution
according to its particular path. The final map solution and trajectory is obtained by
selecting the most weighted particle. The comparison of obtained measurements with
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each particle map serves as a measure of self consistency that rewards the most consistent
maps with higher particle weights.

For the map representation, HMs were selected. They offer a continuous occupancy
representation that can be very useful for future works combining it with online path
planning. They also offer a high memory reduction compared to traditional OG maps
while maintaining their computational complexity constant O(1) as is detailed in Sec-
tion 2.3. A simple triangle feature mapping that is fast to compute was chosen for this
work. This feature mapping also has a very sparse nature that reduces its computation
time. A raycasting method was also developed in order to be able to compare real range
measurements with expected measurement from the HM. This method is essential in the
particle weighting step of the H-SLAM.

H-SLAM was tested in simulation before moving to real-world datasets. Simulation
datasets provided precise ground truth to compare with the obtained results. First a TBN
algorithm was tested. In this case, particles carried no map and there was a single HM that
was shared among all particles and learned beforehand. This test proved very successful
maintaining the localization error below 0.5 m even though the simulated noise was high.

Afterwards the complete H-SLAM was tested on the same simulated dataset. In this
case the localization performed worse than in the TBN case as expected. Nonetheless it
provided a significantly more consistent map that the one obtained with DR navigation.
Moreover, the position errors were bounded below 2 m.

Finally, two real-world datasets obtained by Sparus II AUV equipped with a MSIS
profiler sonar were tested. The first dataset contains a trajectory around three square
blocks that are part of a breakwater structure. A significant navigation drift was observed
in the DR navigation at the end of the path. Three loop closing events also took place
during the circumnavigation of the blocks. Those loop closes proved really useful when
computing H-SLAM, clearly dropping the uncertainty of the particles position after being
observed and maintaining it mostly below 1 m. The final map represents correctly the
three square blocks shape. However, multi-path problems in the sonar measurements were
observed. Those decreased the quality of map representation by showing free space inside
the blocks.

The second real-world dataset contains a circumnavigating trajectory around a natural
rock formation. A significant navigation drift was also observed at the end of the trajectory.
A single loop closing event is available almost at the end of the trajectory when the initial
area is re-observed. This is a more complicated dataset for the SLAM problem in general.
H-SLAM constantly increased the particles uncertainty (up to 4.8 m) until the loop-closing
event. Having no ground truth available makes it difficult to assess the correct performance
of the solution. This is why the final map was compared to satellite images of the rock
formation, that provided a clear match.

Although H-SLAM was not tested in real-time, the time needed to compute the map
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and the trajectory was compared to the time it took to gather the datasets. In both cases,
the H-SLAM computation time represents less than 22% of the time to gather the data.
This ensures the possibility of running the algorithm in real-time, and even to increase the
number of particles used. Note that the computer where H-SLAM was tested has similar
performance to the one in the AUVs.

6.3.1 Effect of H-SLAM parameters

The tunning of the filter parameters is very important to obtain a good result when work-
ing with HMs. The most important parameters are the feature resolution fres (distance
between features) and the radius of their neighborhood rth. The first contributes to the
level of detail that the HM can achieve. Different resolutions lead to finer or coarser HMs
(Fig. 6.1).

Figure 6.1: Comparison of different feature resolutions fres while number of particles is 20 and
the radius of the neighborhood is defined as rth = 2fres. From left to right, resolutions are 0.5,
1.0, 1.5, 2.0 and 2.5 m.

The second, defines to how many neighboring features each measured point contributes.
The bigger the radius, the more features in the vicinity of a point. This also increases
the computation time because more neighbors, means more weight updates per point
(Fig. 6.2).
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Figure 6.2: Computation time versus rth with 20 particles and fres = 1.0.

Bigger radius implies that feature values are more interlinked between neighboring
inducing points. If the radius is set equal or below fres we will obtain completely inde-
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pendent features, while if it is too high points will affect features that are much farther,
losing details in the HM (Fig.6.3).

Figure 6.3: Comparison of different radius of neighborhood rth while the feature resolution fres

is kept constant at 1 m resolution. From left to right, radius are 1.0, 1.5, 2.0, 3.0 and 4.0 m.

Finally, another important parameter is the number of particles. Once fres and rth are
fixed, the number of particles increases the computational time linearly (Fig.6.4).
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Figure 6.4: Computation time versus number of particles with fres = 1.0 and rth = 2.0.

Figure 6.4 shows the computation time from different number of particles over 10
iterations each. From this data, the maximum number of particles that can be used in the
breakwater dataset (876 s) can be extrapolated to 478 (with fres = 1.0 and rth = 2.0).
However this is a value that cannot be known beforehand and lower particle counts must
be selected to ensure online computation of H-SLAM.

In conclusion fres and rth have to be tuned according to the level of detail of the
environment to explore, and then a number of particles that ensures online processing
must be selected.



7
Conclusions & Future Work

This chapter concludes this thesis by reviewing the main contributions in Section 7.1 and dis-
cussing compelling areas for future work in Section 7.2.
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7.1 Conclusions and Contributions

In this thesis we have presented two algorithms for online localization. The first one locates
a beacon using range-only measurements, while the second provides continuous occupancy
maps of its environment. We divided the outcomes of these algorithms in the following
contributions:

Online Range-Only Localization for Homing We have proposed two SOG-based
methods for range-only localization (SOG-DR and SOG-SLAM). Given the high-
nonlinearity of the problem, the SOG filter has the advantages of both the PF and
the EKF filters, to provide correct localization for homing (PFs can deal with non-
linear problems, and EKFs cover more space than a single particle). Quantitative
comparisons between them showed similar performance in localization.

SOG initialization through Geodesic Grids We have proposed a initialization
method for SOG filters to ensure full coverage of equally distributed Gaussians in
a sphere given a single range measurement. Moreover, it allows to select differ-
ent resolutions depending on the available computational power to ensure online
computations of the SOG filter.

SOG equivalent Gaussian with Unscented Transform We have proposed a fast
method to evaluate the precision of a SOG representation by means of the Unscented
Transform. An fast approximated equivalent Gaussian is computed to evaluate the
SOG uncertainty. This was useful to check the localization uncertainty that provided
the SOG filter to determine when a beacon can be considered correctly localized or
still requires more range measurements from different positions.

Range-Only Active Localization We have proposed an AL algorithm on top of the
Online Range-Only Localization for Homing. Given a set of possible actions, AL
choses the action that further decreases the SOG entropy and therefore its uncer-
tainty. AL has proven useful to rapidly and autonomously locate an acoustic modem
without human intervention.

Integration with other localization methods Online Range-Only Localization has
been integrated with a visual based method to develop a reliable full homing and
docking procedure. Range-Only Localization has been accurate enough even in bad
visibility conditions where the visual method required close proximity and therefore
a precise location of the DS.

Hilbert Maps We have brought HM representation to the underwater domain for the
first time in literature. The use of this continuous occupancy representation greatly
reduces the memory requirements compared to traditional OG while maintaining
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O(1) computational complexity. A raycasting method was developed to be able to
compare real range measurements with expected measurements in the HM.

H-SLAM We have proposed a new SLAM framework combining RBPF with HM rep-
resentation that has obtained correct reconstructions of 2D environments using a
sonar sensor.

Experimental evaluation This thesis has provided multiple experimental evaluations of
the proposed methods, demonstrating their applicability on real data from different
vehicles. Range-Only Localization was tested in real-time, while H-SLAM was tested
online on real data gathered in real-world environments.

7.2 Future work

This thesis cannot be considered a final and definitive solution for AUV range-only local-
ization and occupancy mapping. However, it does contribute a further step towards better
and more capable AUVs. In doing so, this thesis has established the basis for challenging
future work that will continue extending AUV capabilities.

Long-term deployment of an AUV Although range-only localization and the com-
plete homing and docking strategy have been thoroughly tested, we think that a
more long-term deployment should be tested in order to assess reliability of the sys-
tem without any human intervention. However, to be able to run these tests, it is
imperative to have a DS that is able to charge the AUV’s batteries. That will clearly
demonstrate true autonomy for long term deployment operations and open new uses
for AUVs such as continuous monitoring and inspection.

H-SLAM framework for full 3D environments Although HM representation sup-
ports both 2D and 3D environments, its capability was only evaluated for 2D
real-world datasets. The author’s current effort focuses on implementing H-SLAM
in 3D and demonstrating it on a full 3D dataset.

Filter outliers in sonar range measurements In Chapter 5, we observed sonar mea-
surements suffer from multi-path problems caused by the geometry of the environ-
ment. A sonar measurements filter is needed to ensure that outliers are discarded
and never incorporated in a map. This is quite a challenging problem that we are
trying to solve by temporally checking the consistency of measurements.

Test other sonar sensors with H-SLAM framework In Chapter 5, only a profiler
sonar was used to construct the maps. We think that the use of other sensors,
e.g. a multibeam sonar can improve the precision of map representation and easily
represent 3D environments, specially if coupled with a pan&tilt unit.
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Real-time H-SLAM in the AUV In Chapter 5, all experiments related to H-SLAM
were tested online on previously recorded data. The next logical step is to test the
algorithms in real-time.

Use H-SLAM framework with online path planning The combination of a contin-
uous occupancy representation with online path planning methods can greatly im-
prove the autonomy of AUVs (e.g. enabling autonomous exploration of full 3D envi-
ronments like underwater caves).
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[Prados et al., 2017] Prados, R., Garćıa, R., Gracias, N., Neumann, L., and Vagstol, H.
(2017). Real-time fish detection in trawl nets. In OCEANS 2017 - Aberdeen, pages 1–5.

[Prats et al., 2012] Prats, M., Garcia, J., Wirth, S., Ribas, D., Sanz, P., Ridao, P., Gra-
cias, N., and Oliver, G. (2012). Multipurpose autonomous underwater intervention:
A systems integration perspective. In 20th Mediterranean Conference on Control &
Automation (MED), pages 1379–1384. IEEE.

[Quigley et al., 2009] Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J.,
Wheeler, R., and Ng, A. Y. (2009). ROS: an open-source Robot Operating System. In
ICRA workshop on open source software, volume 3, page 5. Kobe, Japan.



98 BIBLIOGRAPHY

[Ramos and Ott, 2016] Ramos, F. and Ott, L. (2016). Hilbert maps: scalable continuous
occupancy mapping with stochastic gradient descent. The International Journal of
Robotics Research, 35(14):1717–1730.

[Reader et al., 2002] Reader, G. T., Potter, J., and Hawley, J. G. (2002). The evolution
of AUV power systems. In OCEANS ’02 MTS/IEEE, volume 1, pages 191–198.

[Ribas et al., 2007] Ribas, D., Palomeras, N., Ridao, P., Carreras, M., and Hernandez,
E. (2007). Ictineu AUV wins the first SAUC-E competition. In IEEE International
Conference on Robotics and Automation (ICRA), pages 151–156. IEEE.

[Ribas et al., 2012] Ribas, D., Palomeras, N., Ridao, P., Carreras, M., and Mallios, A.
(2012). Girona 500 AUV: From Survey to Intervention. IEEE/ASME Transactions on
Mechatronics, 17(1):46–53.

[Ribas et al., 2008] Ribas, D., Ridao, P., Tardós, J. D., and Neira, J. (2008). Underwater
SLAM in man-made structured environments. Journal of Field Robotics, 25(11-12):898–
921.

[Ridao et al., 2010] Ridao, P., Carreras, M., Ribas, D., and Garcia, R. (2010). Visual
inspection of hydroelectric dams using an autonomous underwater vehicle. Journal of
Field Robotics, 27(6):759–778.

[Ridao et al., 2015] Ridao, P., Carreras, M., Ribas, D., Sanz, P. J., and Oliver, G. (2015).
Intervention AUVs: The next challenge. Annual Reviews in Control, 40:227 – 241.

[Roman and Singh, 2005] Roman, C. and Singh, H. (2005). Improved vehicle based multi-
beam bathymetry using sub-maps and SLAM. In Intelligent Robots and Systems,
2005.(IROS 2005). 2005 IEEE/RSJ International Conference on, pages 3662–3669.
IEEE.

[Ross and Jouffroy, 2005] Ross, A. and Jouffroy, J. (2005). Remarks on the observability
of single beacon underwater navigation. In Proc. Intl. Symp. Unmanned Unteth. Subm.
Tech.

[Salinas, 2013] Salinas, D. M. (2013). Adaptive sensor networks for mobile target localiza-
tion and tracking. PhD thesis, Universidad Nacional de Educación a Distancia. UNED.

[Short et al., 1999] Short, R. T., Fries, D. P., Toler, S. K., Lembke, C. E., and Byrne,
R. H. (1999). Development of an underwater mass-spectrometry system for in situ
chemical analysis. Measurement Science and Technology, 10(12):1195.

[Singh et al., 2004] Singh, H., Howland, J., and Pizarro, O. (2004). Advances in large-area
photomosaicking underwater. IEEE Journal of Oceanic Engineering, 29(3):872–886.



BIBLIOGRAPHY 99

[Song, 1996] Song, T. L. (1996). Observability of target tracking with bearings-only mea-
surements. IEEE Transactions on Aerospace and Electronic Systems, 32(4):1468–1472.

[Song, 1999] Song, T. L. (1999). Observability of target tracking with range-only mea-
surements. IEEE Journal of Oceanic Engineering, 24(3):383–387.

[Stachniss, 2009] Stachniss, C. (2009). Information Gain-based Exploration. In Robotic
Mapping and Exploration, pages 143–160. Springer.

[Tena et al., 2003] Tena, I., Reed, S., Petillot, Y., Bell, J., and Lane, D. M. (2003). Con-
current Mapping and Localisation Using Side-scan Sonar for Autonomous Navigation. In
Proceedings of the 13th International Symposium on Unmanned Untethered Submersible
Technology, Durham, NH, USA.

[Thrun et al., 2005] Thrun, S., Burgard, W., Fox, D., et al. (2005). Probabilistic robotics,
volume 1. MIT press Cambridge.

[Vaganay et al., 2000] Vaganay, J., Baccou, P., and Jouvencel, B. (2000). Homing by
acoustic ranging to a single beacon. In OCEANS 2000 MTS/IEEE Conference and
Exhibition, volume 2, pages 1457–1462. IEEE.

[Vallicrosa et al., 2016] Vallicrosa, G., Bosch, J., Palomeras, N., Ridao, P., Carreras, M.,
and Gracias, N. (2016). Autonomous homing and docking for AUVs using Range-
Only Localization and Light Beacons. IFAC-PapersOnLine, 49(23):54–60. 10th IFAC
Conference on Control Applications in Marine SystemsCAMS 2016.

[Vallicrosa et al., 2013a] Vallicrosa, G., Palomer, A., Ribas, D., and Ridao, P. (2013a).
Realtime AUV Terrain Based Navigation with Octomap. In XXXIV Jornadas de Au-
tomática.

[Vallicrosa et al., 2013b] Vallicrosa, G., Palomer, A., Ribas, D., and Ridao, P. (2013b). Re-
altime AUV Terrain Based Navigation with Octomap in a Natural Environment, pages
41–53. Springer International Publishing.

[Vallicrosa et al., 2013c] Vallicrosa, G., Palomer, A., Ribas, D., and Ridao, P. (2013c).
Towards realtime AUV SLAM with occupancy grids. In Martech 2013 5th International
Workshop on Marine Technology, volume 15, pages 59–60.

[Vallicrosa et al., 2015] Vallicrosa, G., Ridao, P., and Ribas, D. (2015). AUV Sin-
gle Beacon Range-Only SLAM with a SOG Filter. IFAC-PapersOnLine, 48(2):26 –
31. 4th IFAC Workshop onNavigation, Guidance and Controlof Underwater Vehicles
(NGCUV2015).



100 BIBLIOGRAPHY

[Vallicrosa et al., 2014] Vallicrosa, G., Ridao, P., Ribas, D., and Palomer, A. (2014). Ac-
tive Range-Only beacon localization for AUV homing. In 2014 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 2286–2291.

[Vander Hook et al., 2014] Vander Hook, J., Tokekar, P., and Isler, V. (2014). Cautious
Greedy Strategy for Bearing-only Active Localization: Analysis and Field Experiments.
Journal of Field Robotics, 31(2):296–318.

[Walter et al., 2008] Walter, M., Hover, F., and Leonard, J. (2008). SLAM for ship hull
inspection using exactly sparse extended information filters. In IEEE International
Conference on Robotics and Automation (ICRA), pages 1463–1470. IEEE.

[Wang et al., 2013] Wang, S., Chen, L., Hu, H., and Gu, D. (2013). Single beacon based
localization of AUVs using moving Horizon estimation. In Intelligent Robots and Systems
(IROS), 2013 IEEE/RSJ International Conference on, pages 885–890. IEEE.

[Webster et al., 2009] Webster, S. E., Eustice, R. M., Singh, H., and Whitcomb, L. L.
(2009). Preliminary deep water results in single-beacon one-way-travel-time acoustic
navigation for underwater vehicles. In Intelligent Robots and Systems, 2009. IROS
2009. IEEE/RSJ International Conference on, pages 2053–2060. IEEE.

[Williams and Mahon, 2004] Williams, S. and Mahon, I. (2004). Simultaneous localisation
and mapping on the great barrier reef. In Robotics and Automation, 2004. Proceedings.
ICRA’04. 2004 IEEE International Conference on, volume 2, pages 1771–1776. IEEE.

[Williams et al., 2010] Williams, S. B., Pizarro, O., Jakuba, M., and Barrett, N. (2010).
AUV benthic habitat mapping in south eastern Tasmania. In Field and Service Robotics,
pages 275–284. Springer.

[Youakim et al., 2017] Youakim, D., Ridao, P., Palomeras, N., Spadafora, F., Ribas, D.,
and Muzzupappa, M. (2017). MoveIt!: Autonomous Underwater Free-Floating Manip-
ulation. IEEE Robotics Automation Magazine, 24(3):41–51.

[Zhang and Negahdaripour, 2010] Zhang, H. and Negahdaripour, S. (2010). EKF-based
recursive dual estimation of structure and motion from stereo data. IEEE Journal of
Oceanic Engineering, 35(2):424–437.










	List of Publications
	Acronyms
	List of Figures
	List of Tables
	Table of Contents
	Abstract
	Resum
	Resumen
	Introduction
	Motivation
	Range-only localization
	Underwater SLAM

	Objectives
	Context
	Participation in projects
	Research collaborations

	Document Structure

	Background
	Underwater sensors
	Autonomous Underwater Vehicles (AUVs)
	Occupancy Representation
	Log-odds Probability Representation
	Hilbert Maps

	Summary

	SOG Single Beacon Range-Only Localization for AUV Homing
	AUV homing and docking for remote operations
	H-SLAM: Particle Filter SLAM Using Hilbert Maps
	Results & Discussion
	Summary of completed work
	Online Range-Only Localization for Homing
	Full homing and docking strategy

	Online Continuous Occupancy Mapping
	Effect of HSLAM parameters


	Conclusions & Future Work
	Conclusions and Contributions
	Future work

	Bibliography

