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Abstract

The Infrared Atmospheric Sounding Interferometer (IASI) is a Fourier Transform Spectrometer im-
plemented on the MetOp satellite series. The instrument, which represents a significant technological
step forward with respect to previous instruments, is intended to measure infrared radiation emitted
from the Earth. IASI produces data with unprecedented accuracy and spectral resolution. Notably,
the sounder harvests spectral information to derive temperature and moisture profiles, as well as
concentrations of trace gases, essential for the understanding of weather, for climate monitoring, and
for atmospheric forecasts. In addition, the instrument collects data on sea-surface temperature and
land-surface emissivity in cloud free conditions.

The large spectral, spatial, and temporal resolution of the data collected by the instrument in-
volves generating products with a considerably large size, about 16 Gigabytes per day by each of the
IASI-A and IASI-B instruments currently operated. The amount of data produced by IASI demands
efficient compression techniques to improve both the transmission and the storage capabilities. This
thesis supplies a comprehensive analysis of IASI data compression and provides effective recommen-
dations to produce useful reconstructed spectra. The study analyzes data at different processing
stages. Specifically, we use data transmitted by the instrument to the reception stations (IASI L0
products) and end-user data disseminated to the Numerical Weather Prediction (NWP) centres and
the scientific community (IASI L1C products).

In order to better understand the nature of the data collected by the instrument, we analyze the
information statistics and the compression performance of several coding strategies and techniques
on IASI L0 data, which has been processed only on-board the satellite and is the input of the on-
ground processing chain. The order-0 entropy and the order-1, order-2, and order-3 context-based
entropies are analyzed in several IASI L0 products provided by CNES and EUMETSAT. This study
reveals that the size of the data could be considerably reduced by exploiting the order-0 entropy.
More significant gains could be achieved if contextual models were used. We also investigate the
performance of several state-of-the-art lossless compression techniques. Experimental results suggest
that a compression ratio of 2.6:1 can be achieved, which involves that more data could be transmitted
at the original transmission rate or, alternatively, the transmission rate of the instrument could be
further decreased.

A comprehensive study of IASI L1C data compression is performed as well. Several state-of-the-
art spectral transforms and compression techniques are evaluated on IASI L1C spectra. Extensive
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experiments, which embrace lossless, near-lossless, and lossy compression, are carried out over a
wide range of IASI-A and IASI-B orbits. We also evaluate the computational cost of several spectral
transforms, which may be critical in a real scenario when the number of spectral components is large
(this is the case of IASI). For lossless compression, compression ratios over 2.5:1 can be achieved.
For near-lossless and lossy compression, higher compression ratios can be achieved, while producing
useful reconstructed spectra.

Even though near-lossless and lossy compression produce higher compression ratios compared
to lossless compression, the usefulness of the reconstructed spectra may be compromised because
some information is removed during the compression stage. Therefore, we investigate the impact of
near-lossless and lossy compression on end-user applications. Specifically, the impact of compres-
sion on IASI L1C data is evaluated when statistical retrieval algorithms are later used to retrieve
physical information. Experimental results reveal that the reconstructed spectra can enable com-
petitive retrieval performance, improving the results achieved for the uncompressed data, even at
high compression ratios.

We extend the previous study to a real scenario, where spectra from different disjoint orbits are
used in the retrieval stage. Experimental results suggest that the benefits produced by compression
are still significant. The retrieval performance is improved when moderate to high compression
ratios (between 32:1 and 160:1) are employed. When the compression ratio is further increased,
the same performance as with uncompressed data can be achieved. Of course, if the compression
ratio is extremely high (above 1,600:1), the retrieval performance decreases. We also investigate the
origin of the benefits produced by compression. On the one hand, results illustrate that compression
performs signal filtering and denoising, which benefits the retrieval methods. On the other hand,
compression is an indirect way to produce spectral and spatial regularization, which helps pixel-wise
statistical algorithms.

In summary, we have carried out a comprehensive study of IASI data compression. We have
analyzed the nature of the data and proposed several compression schemes and recommendations
to alleviate the large size of IASI products. Moreover, we have provided strategies to improve
the performance of linear and nonlinear statistical retrieval algorithms when IASI L1C spectra is
employed to retrieve physical variables.
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Chapter 1

Introduction

Remote sensing refers to the use of aerial sensor technologies to detect and classify
objects on either the land surface, the oceans or in the atmosphere by means of elec-
tromagnetic radiation. Usually, space satellites or aircrafts harvest and transmit data
from different parts of the electromagnetic spectrum providing valuable information
to monitor and manage several application fields.

Remote sensing products have shown to be useful in several application areas
including environmental measurements, weather, biology, defence, and mineralogy.
The information derived from the data collected allows to analyze different scenarios,
providing support for defining relevant actions in a given field. Information sup-
plied by remote sensing products is essential to evaluate the impact of a particular
phenomenon and has become the basis for decision making.

In recent decades, development of remote sensing technologies have allowed to
improve thermal infrared remote sensing measurements, leading to a new generation
of Earth observation instruments, which are able to yield improved products in terms
of spatial, spectral, and temporal resolution, as well as an enhanced accuracy of the
measurements. The Infrared Atmospheric Sounding Interferometer (IASI) belongs to
the new generation of remote sensing instruments developed in recent years.
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1.1 IASI Instrument

IASI is a calibrated Fourier Transform Spectrometer based on a Michelson Interfer-
ometer associated with an integrated imaging system. The instrument is intended to
collect infrared radiation emitted by the Earth’s atmosphere.

IASI is the most advanced instrument implemented on the MetOp satellite series,
which are operated in the framework of the EUMETSAT Polar System (EPS) [1]. The
main objective of the program is to collect and disseminate atmospheric information
to the Numerical Weather Prediction (NWP) centres and the scientific community
for the purpose of supporting global climate monitoring [2].

The EPS comprises both ground and space components. The space component
consists of the MetOp-A, MetOp-B, and MetOp-C satellites. MetOp-A and MetOp-
B were launched in October 2006 and September 2012, respectively. MetOp-C is
scheduled to be launched in October 2018 [3]. The ground component consists of
several reception stations responsible for collecting, processing and distributing the
data captured by the IASI instruments [4, 5].

IASI implements an across track scanning system over a horizontal swath width
of, approximately, 2,200 km. Each scanned line produces 30 Fields of Regard (FOR),
which corresponds to 30 mirror positions. Each FOR consists of four Instantaneous
Fields of View (IFOV) arranged as a 2×2 circular pixel matrix. The instrument
produces 14 orbits everyday, which ensures 99% global coverage of the Earth two
times per day.

The instrument yields data with high spectral resolution between 645 cm−1 and
2,760 cm−1 wavelength leading to over 8,000 components. Products obtained from
IASI data represent a significant improvement in both the quality and the accuracy of
the measurements used in meteorological models. Notably, the instrument provides
infrared soundings of unprecedented accuracy to derive humidity and atmospheric
temperature profiles, as well as some of the chemical components of the atmosphere [6,
7].

Data collected by IASI are processed both on-board the satellite and on-ground
throughout several processing stages, which yield products at different levels [8, 9,
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10, 11]. First, a significant part of the IASI data processing is performed on-board
the satellite. The data rate is reduced from 45 Mb/s to 1.5 Mb/s to meet the data
rate allocated to the instrument. The on-board processing chain generates IASI L0
products, which are the inputs of the on-ground processing chain.

The on-ground processing chain leads from IASI L0 to IASI L2 products delivering
L1A, L1B, and L1C intermediate products. Each processing stage carries out the
following processes:

• IASI L1A spectra are derived from L0 after decoding, spectral calibration, cor-
registration with the Advanced Very High Resolution Radiometer (AVHRR),
geolocation, and dating.

• IASI L1B spectra are derived from L1A after performing spectral resampling.

• IASI L1C products are obtained from L1B after apodisation.

• IASI L2 products involve derivation of physical parameters from radiance mea-
surements.

Only IASI L1C and IASI L2 products are considered useful for end users.

1.2 IASI Data Compression and Dissemination

IASI L1C and IASI L2 are the main products disseminated through EUMETCast [12],
the primary dissemination mechanism of EUMSETSAT to distribute IASI data. Al-
ternatively, other institutions may request and disseminate products from EUMET-
SAT.

The large size of the products, composed of thousands of spectra with over 8,000
components, demands efficient compression strategies to improve the capabilities of
storage and transmission of such amount of information. In the IASI community,
Principal Component Compression (PCC) [13] is the common strategy used for com-
pression of IASI products. PCC is a lossy compression technique, which yields a
truncated principal components representation of the original data and achieves data
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compaction by dimensionality reduction [14]. PCC is able to attain a compression
ratio of, approximately, 50:1 on IASI products.

The main interest in the use of PCC focuses on the ability to remove certain level of
the noise from the data. However, PCC presents some drawbacks. A major concern
refers to the use of a training set of spectra to produce the principal components.
If the spectra used in the training stage are not representative enough or present
deficiencies, some features may be considered noise and, consequently, discarded in
the compression process. Moreover, some features may not be properly retained in
the recovered spectra when the original signal is weak [15, 16].

Despite the large size of the IASI products, IASI data compression has been
scarcely studied beyond PCC. Although IASI is a sounder, coding techniques intended
for images can achieve competitive performance in the compression of IASI products.

This thesis aims at providing a comprehensive study of IASI data compression.
Advantages and disadvantages of state-of-the-art compression techniques and spec-
tral transforms are evaluated. A wide range of coding schemes for lossless, near-
lossless, and lossy compression are proposed to achieve both competitive compression
performance and accurate reconstructed spectra. In addition, the impact of lossy
compression on end-user applications is investigated. Specifically, the performance
of statistical retrieval algorithms is assessed when reconstructed IASI spectra is em-
ployed to predict atmospheric parameters.

1.3 Contributions and Thesis Organization

The contributions of this thesis consist of a compendium of publications addressed to
the compression of IASI data and published in the relevant journals on this area:

• J. García-Sobrino, I. Blanes, M. Albinet, R. Camarero, and J. Serra-Sagristà,
“Proposal for Infrared Atmospheric Sounding Interferometer on-board
data compression,", SPIE Journal of Applied Remote Sensing, vol. 9, num.
1, pp. 097498, May 2015. [17]

• J. García-Sobrino, J. Serra-Sagristà, and J. Bartrina-Rapesta, “Hyperspectral
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IASI L1C Data Compression," MDPI Sensors, vol. 17, num. 6, pp. 1404,
June 2017. [18]

• J. García-Sobrino, J. Serra-Sagristà, V. Laparra, X. Calbet, and G. Camps-
Valls, “Statistical Atmospheric Parameter Retrieval Largely Benefits
From Spatial–Spectral Image Compression," IEEE Transactions on Geo-
science and Remote Sensing, vol. 54, no. 9, pp. 2213-2224, April 2017. [19]

• J. García-Sobrino, V. Laparra, J. Serra-Sagristà, X. Calbet, and G. Camps-
Valls, “Improved Statistically Based Retrievals via Spatial-Spectral
Data Compression for IASI data," MDPI Remote Sensing, vol. xx, no. xx,
pp. xx, 2018. Under Review. [20]

In Chapter 2, the first publication [17] analyzes the IASI L0 products. We study
the information statistics of the data, where both the spectral and the spatial joint in-
formation are investigated. A theoretical study of order-0 entropy, order-1 conditional
entropy, order-2 conditional entropy, and order-3 conditional entropy is performed on
IASI L0 products. This initial analysis reveals that a simple variable-length code
might save at least 1.6 bits per pixel per component (bpppc). Saving increases when
contextual models are considered. The best results are produced by order-3 models,
which might be able to save at least 6.7 bpppc. The performance of different state-of-
the-art lossless compression techniques is also investigated on IASI L0 data, namely,
the CCSDS-123 [21], the JPEG-LS [22], and the JPEG 2000 [23] standards and the
M-CALIC [24] coding technique. To exploit the high spectral redundancy present in
the IASI spectrum, the Pairwise Orthogonal Transform (POT) [25] is paired along
with JPEG-LS and JPEG-2000. Experimental results suggest that a compression
ratio over 2.6:1 can be achieved.

The second publication [18], discussed in Chapter 3, studies the compression per-
formance of several coding strategies and techniques on IASI L1C products. A com-
prehensive analysis of lossless, near-lossless, and lossy compression is reported for 96
IASI L1C orbits acquired over a full year by the IASI-A and IASI-B instruments.
Several state-of-the-art coding techniques and spectral transforms are analyzed. The
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computational cost of the selected spectral transforms, which may be critical in sce-
narios like the IASI near-real time dissemination, is also assessed. Experimental
results illustrate that, for lossless compression, a compression ratio over 2.5:1 can
be achieved. For near-lossless and lossy compression, the reconstructed spectra is
compared to the reconstructed spectra produced by PCC, which is the common lossy
compression strategy used in the IASI community. Results reveal that the proposed
compression schemes produce competitive performance compared to PCC.

In Chapter 4, the third publication [19] investigates the impact of near-lossless and
lossy compression of IASI L1C products on end-user applications. Specifically, the
performance of statistical retrieval algorithms is studied when reconstructed spectra is
employed to retrieve physical information. We propose several compression schemes
according to the characteristics of the IASI data. Experimental results illustrate
that both near-lossless and lossy compression benefit the retrieval performance even
at high compression ratios. The improvements are especially significant for lossy
compression.

In the fourth publication [20], discussed in Chapter 5, the study reported in the
third publication [19] is extended. Experiments are carried out in a realistic scenario,
where data from different IASI orbits are used to define the training, the validation,
and the testing subsets of spectra used in the retrieval stage. Moreover, additional
compression schemes are proposed. Experimental results illustrate that the retrieval
algorithms benefit from compression also in a realistic scenario. In this contribution,
the origin of the improvement produced by the compression stage is also analyzed.
On the one hand, we show that certain level of noise is removed from the data during
the compression stage, which benefits the retrievals. On the other hand, compression
is a simple way to exploit spectral and spatial relations between neighboring samples,
which improves the accuracy of the retrieval results.

Chapter 6 describes the IASI orbits used in the experiments and summarizes the
experimental results. Chapter 7 draws some conclusions and provides some insights
of the future work.
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Abstract. The Infrared Atmospheric Sounding Interferometer (IASI) system provides infrared
soundings of moisture and temperature profiles, as well as soundings of chemical components.
These measurements play a key role in atmospheric chemistry, global change, and climate mon-
itoring. The instrument, developed by a cooperating agreement between European Organisation
for the Exploitation of Meteorological Satellites and Centre National d'Études Spatiales, is
implemented on the Metop satellite series. The instrument data production rate is 45 Mb∕s
while the transmission rate allocated to IASI measurements is 1.5 Mb∕s. It is thus necessary
to implement a significant part of the IASI data processing on-board the instrument. We inves-
tigate the information statistics of IASI L0 data once the on-board processing chain is finished.
We analyze order-0 entropy, and order-1, order-2 and order-3 conditional entropies, where con-
ditional entropies assess both the spectral and the spatial joint information. According
to the simple order-0 entropy, at least one bit per sample could be spared if a variable-length
code was employed. We also investigate the actual performance of different lossless compression
techniques on IASI L0 data. The CCSDS-123, JPEG-LS, and JPEG2000 standards, as well as
M-CALIC coding technique are evaluated. Experimental results reveal that IASI Level 0 data
can be coded by a compression ratio above 2.6:1. © 2015 Society of Photo-Optical Instrumentation
Engineers (SPIE) [DOI: 10.1117/1.JRS.9.097498]

Keywords: remote sensing compression; lossless data coding; predictive coding; entropy analy-
sis; multi- and hyperspectral imagery; CCSDS 123.
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1 Introduction

IASI is an Infrared Atmospheric Sounder Interferometer that provides atmospheric spectra to the
scientific and meteorological communities. It is a key element of the payload on the Metop series
of European meteorological polar-orbiting satellites. IASI represents a significant scientific and
technological step forward that provides meteorologists with atmospheric emission spectra to
derive temperature and humidity profiles with a vertical resolution of 1 km and an accuracy of
within 1 K for temperature and 10% precision for humidity measurements.1

IASI instrument scans the Earth’s surface in step and stare mode, harvesting atmospheric
soundings on both sides of the vertical line, producing fields of view (FOVs). Each FOV consists
of four full spectra, where each spectrum represents a single circular pixel of the scanned
image;2,3 all pixels are captured in the same way. Complete coverage of the Earth orbit is carried
out by scanning lines at regular intervals. Each scanned line consists of 30 FOVs. Figure 1(a),
reproduced from Ref. 4, shows the modus operandi of the IASI instrument. Each scanned pixel
represents 12 km of the Earth’s surface.3 Pixels are spaced by approximately 12 km so that each
FOV represents nearly 50 km of the Earth’s surface at the nadir position. Figure 1(b) shows the

*Address all correspondence to: Joaquín García-Sobrino, E-mail: joaquin.garcia.sobrino@deic.uab.cat

1931-3195/2015/$25.00 © 2015 SPIE
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structure and the pixel numbering of an FOV,5 while Fig. 1(c) reports the size of the Earth’s
surface scanned by an FOV.

The IASI instrument provides infrared spectra with high resolution between wavelengths 645
and 2760 cm−1. The spectral resolution required from IASI after apodisation is equal to 0.5, i.e.,
0.25 cm−1 before apodisation. This represents a challenge because today’s technology does not
produce detectors having the required performance. It is necessary to implement three different
detectors per pixel—providing three different sub-bands (B1, B2, and B3)—to supply the
required spectral range.2 The nominal limits of each sub-band are reported in Fig. 2(a).
However, this approach produces high noise levels in sub-band edges, as shown in Fig. 2(b),
reproduced from Ref. 2, which leads to a band merging process to reduce the increased noise.
This way, edges on sub-bands B1/B2 and B2/B3 are combined, resulting in a spectra less noisy
than the original, but keeping the required spectral resolution (645 to 2760 cm−1).

While the IASI data production rate is 45 Mb∕s, the transmission rate allocated to these
instrument measurements is 1.5 Mb∕s.6 Accordingly, it is necessary to implement a significant
part of the IASI data processing on-board the instrument. An inverse Fourier transform and a
radiometric calibration are performed on-board to reduce the size of the data to be transmitted.
The spectral data are then encoded before being sent to the reception stations. This part of the
IASI processing chain is known as Level 0.

The sensor captures 8359 spectral bands for each pixel, producing 8359 samples. These sam-
ples are split into 522 ranges of 16 bands each one and 1 range of 7 bands (the last one). Each
sample is quantized then coded as a natural number using a fixed number of bits (from 6 to
10 bits, depending on the range) before its transmission to ground. The number of bits for

(a) (b) (c)

Fig. 1 Details of the IASI instrument. (a) Modus operandi of IASI instrument, (b) FOV pixel num-
bering, and (c) FOV size and pixel size.

Fig. 2 Sub-bands in IASI spectral range. (a) Nominal limits of sub-bands and (b) level noise in
sub-bands.
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each sample was chosen to respect the NedT (Noise Equivalent Delta Temperature) degradation
specification. In the end, spectral data are transmitted in the form of a bit-stream.

This method provides simplicity and a fixed bit-rate output, but presents risks of overflow
and its performance is suboptimal. This choice was implemented in the instrument because most
of the processing power in the dedicated electronic unit was devoted to perform the Fourier
transform.

The different processes performed on-board the satellite are described in Tournier et al.,6 where
mathematical and physical contents of the IASI Level 0 processing algorithms are detailed.
Different algorithms are run in real-time in order to complete the on-board processing chain.2

Currently, the IASI instrument is able to transmit an average of 8.2 bits per spectral sample
without loss of useful information.6 However, information statistics of IASI L0 data once the on-
board processing chain is finished suggests that a smaller number of bits per spectral sample
might be needed in practice.

IASI L0 data are not considered as end-user data, therefore, they are not publicly available.
To the best of our knowledge, no compression study beyond those related to the design of the
instrument has been carried out.

This paper investigates the modification of the Level 0 processing chain such that improved
data transmission rate could be provided. We analyze the information statistics of IASI L0 data
before being sent to the ground. We study order-0 entropy, and order-1, order-2, and order-3
conditional entropies, where conditional entropies assess both the spectral and the spatial joint
information. According to the studied contextual models, theoretical results suggest that between
one and seven bits per sample might be spared if a variable-length code was employed.

The rest of the paper is organized as follows: Sec. 2 presents the theoretical results about
different order-n entropies for two sets of IASI L0 images. Section 3 presents the experimental
results of IASI L0 data compression using different techniques: CCSDS-123, JPEG-LS, and
JPEG2000 standards, and M-context-based adaptive lossless image coding (M-CALIC) coding
technique. Section 4 concludes the paper.

2 Entropy Analysis on IASI L0 Data

The information statistics analysis is performed on a corpus of 16 three-dimensional images
consisting of a set of eight images from European Organisation for the Exploitation of
Meteorological Satellites (EUMETSAT) and a set of eight images from Centre National
d'Études Spatiales (CNES). Since raw data produced by the instrument are not available on
ground, all the analyzed images are mounted using spectral data once the on-board processing
chain is finished. All volumes are mounted using data sent from satellite to reception station
before any further processing on ground. Table 1 provides the technical names of the employed
IASI L0 products along with their identifier (id.) used in the remainder of the paper.

All IASI L0 images have 8359 bands, 60 columns, and a different number of rows. Images
from EUMETSAT have 172, 158, 110, 180, 196, 154, 110, and 132 rows, respectively. Images
from CNES have a larger number of rows than images from EUMETSAT, with, respectively,
1484, 1484, 1528, 1482, 1528, 1528, 1528, and 1528 rows; this number of rows approximates a
full Earth orbit (1530 rows).

As explained, the on-board processing chain encodes each sample using a fixed number of bits,
from 6 to 10 bits depending on the range, i.e., all samples belonging to a given range—and, thus,
all samples from the same spectral component—are encoded using the same number of bits.

The entropy analysis presented in this paper comprises order-0 entropy, order-1 conditional
entropy, order-2 conditional entropy, and order-3 conditional entropy. Order-0 entropy is com-
puted as described in Eq. (1), where pðxÞ represents the probability of occurrence of symbol x:

HðXÞ ¼ −
X

x∈X
pðxÞlog2pðxÞ: (1)

The conditional entropy assesses the spatial and/or spectral joint information. Equation (2)
provides the definition for order-1 conditional entropy. Order-2 conditional entropy and order-3
conditional entropy are defined accordingly.

García-Sobrino et al.: Proposal for Infrared Atmospheric Sounding Interferometer on-board. . .
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HðXjYÞ ¼ −
X

x∈X;y∈Y
pðx; yÞlog2

pðx; yÞ
pðyÞ : (2)

Figure 3 illustrates the different contexts analyzed in the study. Order-0 entropy computes
the statistics of the current pixel [Fig. 3(a)]. Six different contextual models are taken into con-
sideration for order-1 conditional entropy: the left pixel [Fig. 3(b)], the top-left pixel
[Fig. 3(c)], the top pixel [Fig. 3(d)], the top-right pixel [Fig. 3(e)], the colocated pixel in a
previous component [Fig. 3(f)], and the colocated pixel in the next to previous component
[Fig. 3(g)] are used as contexts. In the case of order-2 conditional entropy, two different contexts
are considered, the left and the top pixels [Fig. 3(h)] and the colocated pixels in the previous and
in the next to previous component [Fig. 3(g)]. Three different order-3 conditional entropies are
also investigated: the left, the top, and the colocated pixel in a previous component [Fig. 3(f)]; the
left and the colocated pixels in the two previous components [Fig. 3(k)]; and the top and the
colocated pixels in the two previous components [Fig. 3(l)].

To get consistent results, only pixels having all the required contexts shall be analyzed. In this
way, the first row and the first and the last columns in a component are not considered for entropy
computation as their pixels lack some neighboring context. Regarding the spectral dependencies,
only the last 14 components in each range are analyzed, again because of some lacking neigh-
boring contexts for the first two components.

Figure 4 provides an example of the entropy distribution for a single range (range 11) for two
of the analyzed volumes (EUMETSAT 1 and CNES 1). Range 11 comprises bands from 161 to
176 (both included), with all components coded with 9 bits per pixel (bpp). Columns in the graph
correspond to different order-n entropies (contexts). Marks in columns represent the entropy of a
single component. As explained, only 14 marks per column are plotted.

Because of space constraints, only plots corresponding to two images are reported. This same
analysis is performed for all ranges (523) for each of the 16 images (EUMETSAT and CNES).

Table 1 Analyzed images.

Id. IASI L0 product

EUMETSAT 1 IASI_HRP_00_M01_20130813184200Z_20130813185335Z_N_O_20130813184205Z

EUMETSAT 2 IASI_HRP_00_M01_20130813202226Z_20130813203309Z_N_O_20130813202229Z

EUMETSAT 3 IASI_HRP_00_M01_20130814070242Z_20130814071311Z_N_O_20130814070245Z

EUMETSAT 4 IASI_HRP_00_M01_20130814084228Z_20130814085440Z_N_O_20130814084231Z

EUMETSAT 5 IASI_HRP_00_M01_20130814101020Z_20130814102504Z_N_O_20130814101026Z

EUMETSAT 6 IASI_HRP_00_M01_20130814120024Z_20130814121046Z_N_O_20130814120030Z

EUMETSAT 7 IASI_HRP_00_M02_20130813192744Z_20130813193516Z_N_O_20130813192748Z

EUMETSAT 8 IASI_HRP_00_M02_20130814092926Z_20130814093921Z_N_O_20130814092930Z

CNES 1 IASI_xxx_00_M02_20091007112100Z_20091007130000Z_N_O_20091007125723Z

CNES 2 IASI_xxx_00_M02_20091007130000Z_20091007143900Z_N_O_20091007143543Z

CNES 3 IASI_xxx_00_M02_20091007143900Z_20091007162100Z_N_O_20091007161509Z

CNES 4 IASI_xxx_00_M02_20091017125400Z_20091017143300Z_N_O_20091017142943Z

CNES 5 IASI_xxx_00_M02_20100319050300Z_20100319064500Z_N_O_20100319064052Z

CNES 6 IASI_xxx_00_M02_20120718075700Z_20120718093900Z_N_O_20120718084400Z

CNES 7 IASI_xxx_00_M02_20130116133300Z_20130116151500Z_N_O_20130116142103Z

CNES 8 IASI_xxx_00_M02_20130916080300Z_20130916094500Z_N_O_20130916093859Z

García-Sobrino et al.: Proposal for Infrared Atmospheric Sounding Interferometer on-board. . .

Journal of Applied Remote Sensing 097498-4 Vol. 9, 2015



(a) (b) (c) (d) (e)

(f)

(k)(j) (l)

(g) (h) (i)

Fig. 3 Defined contexts in the context-based entropy analysis. (a) order-0, (b) order-1 left, (c)
order-1 top-left, (d) order-1 top, (e) order-1 top-right, (f) order-1 one previous, (g) order-1 next
to previous, (h) order-2 left and top, (i) order-2 two previous, (j) order-3 left and top and one pre-
vious, (k) order-3 left and two previous, and (l) order-3 top and two previous

  

(a) (b)
Range 11 - 9 bits per sample Range 11 - 9 bits per sample

Order-0
Order-1 left
Order-1 top

Order-1 top-left
Order-1 top-right

Order-1 one previous
Order-1 next to previous

Order-2 left and top
Order-2 two previous

Order-3 left and top and one previous
Order-3 left and  two previous
Order-3 top and  two previous

Fig. 4 Entropy distribution of range 11 in bits per pixel (bpp). It is originally encoded with 9 bpp. (a)
EUMETSAT 1 and (b) CNES 1.
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The results indicate that the entropy distribution follows a very similar pattern in each range in all
images. This behavior is common to images from both EUMETSATand CNES corpus, the latter
having a much larger number of rows. Even though the particular entropy values may differ, the
entropy distribution of the different studied contexts is very similar, suggesting that the perfor-
mance of the selected contextual model is similar for all IASI L0 data.

Tables 2 and 3 report the results of the entropy analysis in the studied images. The different
entropy columns provide the average entropy for all components in an image. Entropy is com-
puted on a per component basis. The average entropy is calculated to determine the theoretical
average number of bits per pixel needed to encode the whole image.

Currently, the on-board processing chain implemented in the instrument allows the encoding
of the IASI L0 data using, on average, 8.2 bpp before being transmitted to reception stations. The
theoretical order-0 entropy analysis illustrates that the images from EUMETSAT and CNES
could be coded using, on average, 5.96 and 6.35 bpp, respectively. This implies that 2.23
and 1.84 bpp might be spared in images from EUMETSAT and CNES, respectively, if a simple
variable-length code was employed. In the worst case, for EUMETSAT images, which have
approximately 150 rows, at least 1.73 bpp could be spared; for CNES images, which have
approximately 1500 rows, at least 1.62 bpp could be saved.

These gains could be higher if contextual models were used. When one pixel belonging to the
same spatial component acts as the context, on average, 4.45 bpp (images from EUMETSAT)
and 3.98 bpp (images from CNES) might be saved. If spectral contexts, i.e., the colocated pixel
in a previous component, were used, it would be possible to spare, on average, 5.05 bpp in the
case of images from EUMETSAT and 4.90 bpp for CNES. In the worst case, considering any
order-1 context, 4.13 and 3.78 bpp at least might be spared in images from EUMETSAT and
CNES, respectively.

These results are further improved when order-2 conditional contexts are used. Taking as
context the colocated pixels in the previous and the next to previous component allows us
to spare, on average, 6.18 bpp in images from EUMETSAT and 5.59 bpp in images from
CNES. The savings are greater when order-2 left and top pixel context are used. In this
case, on average, 6.42 and 5.63 bpp could be saved in images from EUMETSAT and CNES,
respectively. In the worst case, using any order-2 conditional context, 5.96 bpp might be saved in
images from EUMETSAT and 5.57 bpp might be spared for CNES.

Nevertheless, the best results are obtained when order-3 conditional contexts are used.
When one spatial neighboring pixel (the left or the top) and two spectral neighboring pixels
(the colocated pixels in the previous and in the next to previous components) are used as context,
it would be possible to save, on average, 7.36 and 6.76 bpp in images from EUMETSAT
and CNES, respectively. When two spatial neighboring pixels (the left and the top) and one
spectral neighboring pixel (the colocated pixel in the previous component) are used as context,
on average, 7.46 bpp (images from EUMETSAT) and 6.94 bpp (images from CNES) could
be saved.

In general, using any contextual model improves the entropy results. Figure 5(a) compares
order-0, order-1 conditional entropy, order-2 conditional entropy, and order-3 conditional
entropy in the image EUMETSAT 1, along with the original bit-depth. Figure 5(b) shows
the same comparison for image CNES 1. To ease the visual interpretation, only one curve
for order-1, order-2 and order-3 entropy is plotted, namely the one providing the best perfor-
mance on average, i.e., one previous component context for order-1, left and top context for
order-2, and left and top and one previous component context for order-3. These plots show
the average entropy per range, i.e., the X-axis represents the 523 ranges in which a spectrum
is divided, and the Y-axis represents the average entropy per range. Due to space constraints only
two graphics are plotted. The results in the other images are almost identical to those shown here.

One can see how order-0 entropy already outperforms the current bit-depth in IASI L0
data. Comparing the different entropies, as expected, order-3 conditional entropy yields the
best results in terms of bit rate in all ranges, followed by order-2, then order-1, and finally
order-0. We also note that, for ranges between 398 and 431, order-0 is very similar to
order-1, order-2, and order-3 conditional entropies.

Although, in general, order-2 left and top pixel context outperforms order-1 one previous
component context in most ranges, this order-1 does yield lower entropy for ranges between
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430 and 523; in these ranges, spectral contexts yield better performance than spatial contexts
(notice that we are comparing order-1 spectral against order-2 spatial).

For these same ranges, from 430 to 523, order-2 spectral context also outperforms order-2
spatial context. Obviously, order-2 spectral context is better than order-1 spectral context. For all
the other ranges, order-2 spatial context is better than order-2 spectral context.

3 Compression of IASI L0 Data

In this section, we investigate the actual performance of different lossless coding techniques and
standards on the two sets of IASI L0 data introduced earlier. The performance of the new
CCSDS-123 standard, the M-CALIC technique, the well-known JPEG-LS, and JPEG2000 stan-
dards for IASI L0 lossless data compression is tested.

The recently approved CCSDS-123 standard7,8 provides a competitive performance with a
low computational cost for a large variety of multi-, hyper-, and ultraspectral data. CCSDS-123 is
a prediction-based coding technique specially designed to operate on-board satellites. CCSDS-
123 operates in a two-stage mode. In the first stage, an estimate of the current pixel is performed
and used to compute a prediction residual. In the second stage, this prediction residual is first
mapped to an integer and then encoded with a Golomb code.

M-CALIC9 is a lossless and near-lossless compression technique for hyperspectral images
based on CALIC.10 The algorithm uses a multiband spectral predictor along with optimized
model parameters and optimization thresholds. Correlation between bands by employing the
two previous bands of the current line is exploited.

JPEG-LS11 is a two-dimensional low-complexity lossless and near-lossless compression
technique that operates in a two-stage mode, modeling, and encoding. It is specially designed
to be simple and fast.

JPEG200012,13 is an international standard developed by the Joint Photographic Experts
Group (JPEG). It is intended as the successor of JPEG in many of its application areas due
to its superior compression performance.

Here, JPEG-LS and JPEG2000 are tested together with pairwise orthogonal transform (POT)
for spectral image coding.14 POT is based on the application of a divide-and-conquer strategy for
the KLT,15,16 where the resulting transform is a composition of smaller KLT transforms. In a full
KLT, all components are decorrelated with each other independently of how much energy they
share. In contrast, the proposed POT has a structure that decorrelates parts with high shared
energy while ignoring the other parts, as parts with low energies have a lower influence in
the coding performance.14 POT is used in the tests to perform a spectral transform before apply-
ing JPEG-LS or JPEG2000.

Although samples have an actual bit-depth precision from 6 to 10 bits, for storing purposes,
each sample is stored in 2 bytes (16 bits) without a sign. Each volume has 8359 bands, 60 col-
umns, and a variable number of rows. Images from EUMETSAT have between 110 and 196
rows. Images from CNES are larger, with between 1482 and 1528 rows.
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Fig. 5 Average entropy analysis by ranges. (a) EUMETSAT 1 and (b) CNES 1.
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As for the parameters employed in the experiments, CCSDS-123 lossless coding technique
includes several user-specified configuration parameters. Here, we resort to default parameters as
suggested in Ref. 8. In the last approach, once POT has been applied for spectral transform,
JPEG2000 performs two levels of DWT spatial transform.

Tables 4 and 5 report the performance of CCSDS-123, M-CALIC, POTþ JPEG-LS, and
POTþ JPEG2000 for lossless compression of IASI L0 images.

The performance of CCSDS-123, M-CALIC, and POTþ JPEG2000 is very similar, while
POTþ JPEG-LS yields worse results. Although not reported here, applying a POT before JPEG-
LS helps improve the performance of JPEG-LS by about 0.9 bpp.

On average, a compression ratio of 2.656:1 and 2.846:1 can be achieved for, respectively,
EUMETSAT and CNES images using either CCSDS-123, M-CALIC, or POTþ JPEG2000.
Compression ratio has been computed considering the length of the original image bit-stream
and the length of the compressed codestream.

Related to entropy results reported earlier in Tables 2 and 3, order-2 entropy analysis
indicated that, on average, images from EUMETSAT and CNES might be coded using
about 1.89 and 2.58 bpp, respectively. Here, we see that CCSDS-123, M-CALIC, and POTþ
JPEG2000 allows one to compress these images using, on average, 3.08 and 2.87 bpp, respec-
tively, which is very close to the theoretical optimal compression when order-2 context is used—
at least for CNES images, which have a larger row size and may better represent the average
performance.

Table 4 Lossless compression performance of images from EUMETSAT. Reported results in
compression ratio (higher is better) and bits per pixel (lower is better).

IASI L0 product CCSDS-123 M-CALIC POT+JPEG-LS POT+JPEG2000

Compression ratios

EUMETSAT 1 2.617 2.693 2.145 2.653

EUMETSAT 2 2.627 2.701 2.116 2.650

EUMETSAT 3 2.483 2.537 1.902 2.489

EUMETSAT 4 2.581 2.637 2.140 2.617

EUMETSAT 5 2.805 2.862 2.308 2.801

EUMETSAT 6 2.761 2.783 2.176 2.706

EUMETSAT 7 2.618 2.746 1.964 2.611

EUMETSAT 8 2.588 2.623 2.010 2.567

Average 2.635 2.697 2.095 2.636

Bits per pixel

EUMETSAT 1 3.13 3.04 3.82 3.09

EUMETSAT 2 3.12 3.03 3.87 3.09

EUMETSAT 3 3.30 3.23 4.31 3.29

EUMETSAT 4 3.17 3.10 3.83 3.13

EUMETSAT 5 2.92 2.86 3.55 2.92

EUMETSAT 6 2.96 2.94 3.76 3.03

EUMETSAT 7 3.13 2.98 4.17 3.14

EUMETSAT 8 3.16 3.12 4.07 3.19

Average 3.11 3.03 3.92 3.11
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CCSDS-123 is especially designed to operate on-board satellites. It has low computational
requirements and acceptable performance. The transmission rate for IASI Level 0 data could be
further decreased, or even some more data could be transmitted at the original transmission rate if
CCSDS-123 was considered as a candidate for on-board lossless compression of IASI L0 data.
M-CALIC and POT+JPEG2000 also achieve good performances, but their computational
requirements are higher.

A brief discussion follows on the potential of integrating CCSDS-123 in the IASI on-board
processing chain. The IASI instrument has a data production rate of 45 Mbit∕s at varying sample
bit depths, and it has a total power consumption of 210 W.17 The fast lossless compressor, on
which the CCSDS-123 standard is based, has been implemented by Aranki et al. in XILINX
VIRTEX IVand VIRTEX V FPGAs.18–20 The authors report an implementation capable of oper-
ating at 40 Msample/s with a power consumption of 700 mW, which seems to fit the require-
ments of the IASI instrument.

4 Conclusion

The IASI is a key element of the payload on the Metop series of EUMETSAT. The instrument
provides atmospheric spectra to derive temperature and humidity profiles to the scientific and
meteorological communities. The data production rate in the instrument is 45 Mb∕s while the
transmission rate allocated to IASI measurements is 1.5 Mb∕s. Consequently, a significant part

Table 5 Lossless compression performance of images from CNES. Reported results in compres-
sion ratio (higher is better) and bits per pixel (lower is better).

IASI L0 product CCSDS-123 M-CALIC POT+JPEG-LS POT+JPEG2000

Compression ratios

CNES 1 2.839 2.874 2.614 2.858

CNES 2 2.846 2.858 2.596 2.834

CNES 3 2.857 2.873 2.597 2.847

CNES 4 2.840 2.859 2.585 2.832

CNES 5 2.843 2.871 2.605 2.857

CNES 6 2.835 2.834 2.569 2.819

CNES 7 2.843 2.883 2.605 2.852

CNES 8 2.832 2.823 2.574 2.812

Average 2.841 2.859 2.593 2.838

Bits per pixel

CNES 1 2.88 2.85 3.13 2.86

CNES 2 2.88 2.86 3.15 2.89

CNES 3 2.87 2.85 3.15 2.88

CNES 4 2.88 2.86 3.17 2.89

CNES 5 2.88 2.85 3.14 2.87

CNES 6 2.89 2.89 3.19 2.90

CNES 7 2.88 2.84 3.14 2.87

CNES 8 2.89 2.90 3.18 2.91

Average 2.88 2.86 3.15 2.88
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of the IASI data processing is performed on-board the instrument before transmitting data to
reception stations.

In this paper, we analyzed the potential of entropy coding in IASI L0 data. A theoretical
analysis of order-0 entropy, order-1 conditional entropy, order-2 conditional entropy, and
order-3 conditional entropy, where conditional entropies assess both the spectral and the spatial
joint information, was performed. This analysis yielded that at least 1.6 bpp might be saved if a
simple variable-length code was employed. The best results were obtained when order-3 con-
textual models were used, saving at least 6.7 bpp.

We also investigated the performance of different lossless compression techniques on IASI L0
data. The recent CCSDS Recommended Standard for Lossless Multispectral & Hyperspectral
image compression (CCSDS-123), the JPEG-LS, and JPEG2000 standards and the M-CALIC
coding technique were evaluated. Experimental results suggested that, on average, a compression
ratio of 2.6:1 could be achieved for images with approximately 150 rows. The performance was
even better for larger images (approximately 1500 rows), reaching a compression ratio of 2.8:1.

Given that CCSDS-123 is a competitive and efficient coding technique whose hardware
implementation is amenable to satellite probes, a particularly interesting point to consider in
the future could be the potential of CCSDS-123 on IASI raw data, i.e., even before the on-
board processing chain has taken place, as the on-board processing introduces loss because
a quantization is carried out. It might be worth investigating whether CCSDS-123 lossless com-
pression could be applied on original IASI raw data, thus enabling transmission of data that has
not gone through any irreversible processing.

Acknowledgments

This work was supported in part by FEDER, the Spanish Government (MINECO), the Catalan
Government, and the Centre National d’Études Spatiales (CNES), under grants TIN2012-38102-
C03-03 and 2014SGR-691.

An earlier version of this work was presented at the ESA CNES On-Board Payload Data
Compression Workshop 2014.

We thank the reviewers for their comments, which have helped to improve the quality of
the paper.

References

1. G. Chalon, F. Cayla, and D. Diebel, “IASI: an advanced sounder for operational meteor-
ology,” in 52nd Proc. Int. Astronautical Congress (IAF) (2001).

2. CNES, “Dossier de définition des algorithmes IASI,” REF. IA-DF-0000-2006-CNE, http://
smsc.cnes.fr/IASI/index.htm (2009).

3. CNES, “Spécification Technique de Besoin du logiciel opérationnel IASI,” REF. IA-SB-
2100-9462-CNE, http://smsc.cnes.fr/IASI/index.htm (2006).

4. EUMETSAT, “Metop design—IASI,” 2014, http://www.eumetsat.int/website/home/
Satellites/CurrentSatellites/Metop/MetopDesign/IASI/index.html (14 May 2015).

5. EUMETSAT, “IASI measurement and verification data,” REF. IA-ID-1000-6477-AER,
www.eumetsat.int (2010).

6. B. Tournier et al., “IASI level 0 and 1 processing algorithms description,” in Proc. ISTCXII
Conf. (2002).

7. Consultative Committee for Space Data Systems (CCSDS), “Lossless Multispectral &
Hyperspectral Image Compression CCSDS 123.0-B-1,” ser. Blue Book, CCSDS (2012),
http://public.ccsds.org/publications/archive/123x0b1ec1.pdf (14 May 2015).

8. E. Augé et al., “Performance impact of parameter tuning on the CCSDS-123 lossless
multi- and hyperspectral image compression standard,” J. Appl. Remote Sens. 7(1), 074594
(2013).

9. E. Magli, G. Olmo, and E. Quacchio, “Optimized onboard lossless and near-lossless com-
pression of hyperspectral data using CALIC,” IEEE Geosci. Remote Sens. Lett. 1(1), 21–25
(2004).

García-Sobrino et al.: Proposal for Infrared Atmospheric Sounding Interferometer on-board. . .

Journal of Applied Remote Sensing 097498-12 Vol. 9, 2015



10. X. Wu and N. Memon, “Context-based, adaptive, lossless image coding,” IEEE Trans.
Commun. 45(4), 437–444 (1997).

11. M. Weinberger, G. Seroussi, and G. Sapiro, “The LOCO-I lossless image compression
algorithm: principles and standardization into JPEG-LS,” IEEE Trans. Image Process.
9(8), 1309–1324 (2000).

12. D. Taubman and M. Marcellin, JPEG2000 Image Compression Fundamentals, Standards
and Practice: Image Compression Fundamentals, Standards, and Practice, Springer, US
(2002).

13. JPEG-Committee, “Standard JPEG2000,” 2014, http://www.jpeg.org/jpeg2000 (14 May
2015).

14. I. Blanes and J. Serra-Sagristà, “Pairwise orthogonal transform for spectral image coding,”
IEEE Trans. Geosci. Remote Sens. 49(3), 961–972 (2011).

15. J. Saghri, S. Schroeder, and A. Tescher, “An adaptive two-stage KLT scheme for spectral
decorrelation in hyperspectral bandwidth compression,” Proc. SPIE 7443, 744313(2009).

16. R. Dony, “Karhunen-Loeve transform,” Chapter 1 in The Transform and Data Compression
Handbook, K. R. Rao and P. C. Yip, Eds., CRC Press (2001).

17. ESA, “Meteorological operational satellite program of Europe,” https://directory.eoportal
.org/web/eoportal/satellite-missions/m/metop (14 May 2015).

18. N. Aranki et al., “Fast and adaptive lossless on-board hyperspectral data compression sys-
tem for space applications,” IEEE Aerospace Conf., IEEE (2009).

19. N. Aranki et al., “Hardware implementation of lossless adaptive and scalable hyperspectral
data compression for space,” NASA/ESA Conf. Adaptive Hardware and Systems, pp. 315–
322, IEEE (2009).

20. N. Aranki et al., “FPGA provides speedy data compression for hyperspectral imagery,”
Xilinx Newslett. (2012).

Joaquín García-Sobrino received his BS and MS degrees in computer science from the
Universidad de Almería, Spain, in 2009 and 2010, respectively. From 2010 to 2013, he was with
the Group on Supercomputing—Algorithms of the Universidad de Almería. Since 2013, he has
been with the group on Interactive Coding of Images of the Universitat Autònoma de Barcelona,
where he currently undertakes a PhD. His current research interests focus on data compression.

Ian Blanes received his BS, MS, and PhD degrees in computer science from the Universitat
Autònoma de Barcelona, in 2007, 2008, and 2010, respectively. Since 2003, he has been with
the group on Interactive Coding of Images of the Universitat Autònoma de Barcelona, where he
currently holds a postdoctoral position. He was a visiting researcher at CNES. He was the sec-
ond-place finisher as best computer-science student of Spanish.

Mathieu Albinet received his engineering degree (BS) in electronics and signal processing from
the École nationale suprieure d’électronique, d’électrotechnique, d’informatique, d’hydraulique
et des télécommunications (ENSEEIHT) in 2003. He has been employed with the French Space
Agency (CNES) since 2005, where his main area of work was on-board payload data processing.
He is currently the head of the On-Board Data Handling Department.

Roberto Camarero received his engineering degree (BS) in electronics and communications
from the University of Zaragoza, Spain, in 2005 and an MS degree from SUPAERO, France, in
2006. He has been employed with the French Space Agency (CNES) since 2006 in the On-Board
Data Handling Department. His main area of work is on-board image coding and processing for
remote sensing missions.

Joan Serra-Sagristà received his PhD in computer science from Universitat Autònoma de
Barcelona (UAB), Spain, in 1999. From 1997 to 1998, he was at University of Bonn, Germany.
He is currently an associate professor at UAB. His research interests focus on source coding and
data transmission. He serves as an associate editor for IEEE Transactions on Image Processing.
He has coauthored over 125 publications. He was the recipient of the Spanish Intensification
Young Investigator Award in 2006.

García-Sobrino et al.: Proposal for Infrared Atmospheric Sounding Interferometer on-board. . .

Journal of Applied Remote Sensing 097498-13 Vol. 9, 2015



Chapter 3

Hyperspectral IASI L1C Data
Compression

23



24 CHAPTER 3. HYPERSPECTRAL IASI L1C DATA COMPRESSION



sensors

Article

Hyperspectral IASI L1C Data Compression

Joaquín García-Sobrino *, Joan Serra-Sagristà and Joan Bartrina-Rapesta

Department of Information and Communications Engineering, Universitat Autònoma de Barcelona,
08193 Bellaterra, Spain; joan.serra@uab.cat (J.S.-S.); joan.bartrina@uab.cat (J.B.-R.)
* Correspondence: joaquin.garcia.sobrino@deic.uab.cat; Tel.: +34-93-5811861

Received: 20 March 2017; Accepted: 9 June 2017; Published: 16 June 2017

Abstract: The Infrared Atmospheric Sounding Interferometer (IASI), implemented on the MetOp
satellite series, represents a significant step forward in atmospheric forecast and weather
understanding. The instrument provides infrared soundings of unprecedented accuracy and spectral
resolution to derive humidity and atmospheric temperature profiles, as well as some of the chemical
components playing a key role in climate monitoring. IASI collects rich spectral information, which
results in large amounts of data (about 16 Gigabytes per day). Efficient compression techniques are
requested for both transmission and storage of such huge data. This study reviews the performance
of several state of the art coding standards and techniques for IASI L1C data compression. Discussion
embraces lossless, near-lossless and lossy compression. Several spectral transforms, essential to
achieve improved coding performance due to the high spectral redundancy inherent to IASI products,
are also discussed. Illustrative results are reported for a set of 96 IASI L1C orbits acquired over a full
year (4 orbits per month for each IASI-A and IASI-B from July 2013 to June 2014) . Further, this survey
provides organized data and facts to assist future research and the atmospheric scientific community.

Keywords: IASI instrument; hyperspectral remote sensing; data compression; lossless; near-lossless
and lossy compression

1. Introduction

The Infrared Atmospheric Sounding Interferometer (IASI) is a new generation of nadir viewing
instruments for obtaining atmospheric measurements with unprecedented quality. The acquired data
provides useful information for many application areas such as meteorology, climate monitoring
or atmospheric chemistry. IASI data is recorded with high spectral accuracy, producing more than
8000 spectral channels that need be stored and transmitted.

The literature on IASI data is extensive. IASI products provide qualitative data for a wealth
of possibilities such as numerical weather prediction (NWP) [1]; for studying the essential climate
variables as cloud properties, greenhouse gases, or the hydrological cycle evaluation [2]; for predicting
temperature and water vapor profiles [3,4]; or for analyzing several chemical atmospheric components
(CO, CO2, CH4, SO2, N2O, HNO3, NH3, OCS, and CF4) [5–11]. The high resolution of the data also
allows to examine the composition of the lowest part of the atmosphere, enabling the research of
specific events. For instance, Coheur et al. [12] and Turquety et al. [13] use IASI data to study the
chemical composition deep in the troposphere to track the emission and movement of pollution
from wildfires.

The high definition of the sensor in terms of spectral, spatial, and temporal resolution produce
collected data with a considerably large size: about 16 Gigabytes per day in Binary Universal Form
(BUFR) for the Representation of meteorological data format. IASI covers the spectral range between
645 and 2760 cm−1. In each acquisition, 8359 spectral channels are acquired on the satellite, the IASI
processing chain [14] leads to 8461 channels distributed on Earth, thus yielding a large volume of
information, which is costly to manage in an operational context, i.e., for transmission and storage.
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An effective way to alleviate the large amount of data produced by the instrument is to compress the
IASI products according to the specific needs of the final users.

In the IASI community, Principal Component Compression (PCC) is an accepted approach for
compression of IASI data. PCC is a lossy compression strategy intended to produce a truncated
Principal Components (PC) representation; additionally, it allows to reduce the dimensionality of the
data [15–20]. Although PCC is a mature field in the scope of IASI dimensionality-reduction and of
IASI compression, other data compression techniques can also produce competitive performance for
compression of IASI spectra.

In the framework of remote sensing data compression, three data coding paradigms can
be adopted: lossless, near-lossless, or lossy compression. Lossless compression allows perfect
reconstruction but achieves low compression ratios. Lossy compression introduces distortion in
the reconstructed data while achieving high compression ratios. Near-lossless compression introduces
a restricted distortion and achieves moderate compression ratios [21,22].

In some remote sensing applications, lossy compression techniques are still appropriate because
several application-oriented processes do not reduce their performance even for large levels of
distortion [23–27]. Furthermore, lossy compression is acknowledged in new remote sensing missions
because the inherent data acquisition noise is usually larger than the distortion introduced during the
coding process [28].

Near-lossless paradigm is a particular kind of lossy compression. The data quality is controlled by
selecting a maximum acceptable distortion error, usually the Peak Absolute Error (PAE), between each
sample of the original and the reconstructed data. Near-lossless coding is convenient when efficient
data transmission or storage is intended and preserving a specific accuracy of the recovered data
is requested.

This paper puts forward a comprehensive review of the compression performance of several
lossless, near-lossless, and lossy coding techniques for IASI L1C products, which are the most
common format for distribution of IASI data. In particular, the following six recent coding techniques
and standards will be considered and their performance assessed: JPEG-LS [29], JPEG 2000 [30],
M-CALIC [31], CCSDS-122.0 [32], CCSDS-123.0 [33] and HEVC [34]. Also, four spectral transform
will be paired along with these coding techniques to exploit the high spectral redundancy inherent to
IASI data (over 8000 channels); specifically, we will look upon Karhunen-Loève Transform (KLT) [35],
Wavelet Transform (WT) [36], Pairwise Orthogonal Transform (POT) [37], and Regression Wavelet
Analysis Transform (RWA) [38].

To provide a quantitative and qualitative comparison and an accurate analysis, a representative
set of 96 IASI L1C products has been thoroughly selected over a full year, from July 2013 to June 2014.
The same number of orbits have been selected from each instrument, 48 orbits from MetOp-A and
48 orbits from MetOp-B, one orbit per week. The selection criteria have considered different areas,
seasons, and acquisition time.

This investigation reviews effective strategies and furnishes instructions and recommendations to
improve the transmission and storage of IASI L1C products, which can benefit the development of
prevailing and upcoming high spectral resolution infrared instruments.

The remaining part of the paper is organized as follows. Section 2 briefly introduces the space
program operating IASI, details of the instrument, and the processing performed since the data are
acquired by the instrument until they are disseminated to end-users. Section 3 introduces the basic
scheme of a data coding system, the characteristics of the coding techniques assessed, puts forward
the setting and parameters of each technique, and states the benefits of applying a spectral transform
along the spectral dimension. Section 4 reports the experimental results and provides analysis and
an extensive discussion. Finally, Section 5 draws some conclusions.
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2. IASI Instrument

This section reviews the operational structure of the IASI instrument. First, the basic structure
of the space program is outlined. Then, details of the architecture and the operating mode of the
instrument are described. Finally, the main stages of the processing chain are summarized, explaining
how interferograms captured by the sensor are transformed into end-user products and disseminated
to data centers.

2.1. Space Program of IASI Instrument

IASI instrument is implemented on the MetOp satellite series, which is part of the European
Organization for the Exploitation of Meteorological Satellites (EUMETSAT) Polar System (EPS).
The mission is led by EUMETSAT in cooperation with American scientific agency National Oceanic
and Atmospheric Administration (NOAA). Both organizations hold close collaboration through the
Initial Joint Polar System (IJPS). The MetOp satellites carry a set of instruments provided by NOAA
and a new generation of European instruments, IASI among them. The main objective of the program
is to harvest and exchange environmental data between EUMETSAT and NOAA and disseminate
the collected information to the scientific community in support of global climate monitoring and
NWP [39,40], where IASI represents the principal instrument of the mission.

The EPS comprises both space and ground components. The space component consists of the
MetOp satellite series (MetOp-A, MetOp-B, and MetOp-C), which are being jointly developed by
EUMETSAT and the European Space Agency (ESA). While MetOp-A and MetOp-B were launched in
October 2006 and September 2012, respectively, MetOp-C is planed to be launched in October 2018 [41].
The recent extension of MepOp-A useful lifetime to 2022 [42] will enable joint operation of MetOp-A,
MetOp-B, and MetOp-C from 2019 onwards. The operation of the three IASI instruments on-board
of the MetOp satellite series will provide over 20 years of continuous observations, which represents
a statistically significant series of climate variables.

The ground component of the program consists of several reception and operating stations
responsible for collecting, operating, processing and distributing the collected data. Figure 1 (courtesy
of EUMETSAT) illustrates the operational mode of the EPS program. Specific and more detailed
elements of the program can be found in [43,44].

Figure 1. EPS program elements. The space component comprises the MetOp-A, MetOp-B,
and MetOp-C satellites, while the ground component includes reception and operating stations.

2.2. IASI Instrument Details

IASI instrument is the result of a cooperating agreement between EUMETSAT and the French
Centre National d’Études Spatiales (CNES). CNES is responsible for the IASI instrument development
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and the data processing software, while EUMETSAT has the responsibility of storage, distribution,
and exploitation of IASI data.

The instrument collects data over a horizontal swath width of, approximately, 2200 km.
This ensures 99% global coverage of the Earth’s surface performed every 12 h (2 times per day),
which means 14 daily orbits in a sun-synchronous mid-morning orbit [39]. IASI observes the Earth’s
surface in a step and stare mode with fast movements between different look locations and stop during
the acquisition of interferograms (see Table 1). The scanning process gathers atmospheric soundings on
both sides of the vertical line along 30 look positions spaced by approximately 3.3 degrees. The optical
axis moves from−47.85 degrees to +47.85 degrees with respect to the nadir position [45]. The scanning
process takes 8 seconds per line and produces 30 elementary fields of regard (FOR) that correspond
to 30 mirror positions. Each FOR consists of a 2× 2 matrix of instantaneous fields of view (IFOV),
matching to four circular pixels of the captured orbit. Each IFOV represents a full spectrum that is
acquired in 3 bands: 645–1240 cm−1, 1200–2040 cm−1, and 1960–2760 cm−1 [14,46]. Each collected
IFOV spreads 12 km of the Earth’s surface and is separated from another IFOV by 12.5 km, so that each
FOR covers, approximately, 50 km at nadir position. Figure 2 (courtesy of EUMETSAT) illustrates the
modus operandi of the instrument. Figure 3 displays FOR characteristics and IFOV numbering [46,47].
Table 1 summarizes the main characteristics of IASI instrument. Further IASI technical descriptions
can be found in [3,45,48,49].

Figure 2. Modus operandi of IASI instrument. The instrument scans the Earth’s surface at regular intervals
producing 30 FORs per line. Each FOR consists of 4 IFOVs, each of which represents a full spectrum.

YIASI

XIASI

12 km

≈ 50 km

IFOV 1 IFOV 4

IFOV 3IFOV 2

≈ 12.5 km

Figure 3. FOR and IFOV details. A single FOR consists of 4 IFOVs. Each IFOV spreads 12 km of the
Earth’s surface and is separated from its neighboring IFOVs by 12.5 km. Each FOR corresponds to,
approximately, 50 km of the Earth’s surface.
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Table 1. Main characteristics of IASI instrument [50].

Characteristics of IASI instrument

Orbit Polar sun-synchronous
Time for one orbit 101 min
Global Earth coverage 2 times per day
Repeat cycle 29 days (412 orbits)
Altitude ∼819 km
Scan type Step and stare
Interferograms 30 per scan line

151 ms per interferogram
taken in equally spaced time intervals every 8/37 s

FOR 30 per line
50 km (3.33◦) at nadir position
4 simultaneous IFOVs of 12 km

Full swath width ∼2200 km (±48.3◦)
Data production 120 spectra every 8 s

∼1,300,000 observations per day
Data acquisition rate 45 Mbps
Data transmission rate 1.5 Mbps
Spectral range Band-1: 645–1240 cm−1

Band-2: 1200–2040 cm−1

Band-3 :1960–2760 cm−1

Spectral sampling 0.25 cm−1 (0.5 cm−1 apodized)

2.3. IASI Processing Chain

The data collected by the instrument are processed through an on-board and an on-ground
processing chain until they are considered end-user products. The processing chain comprises different
stages that yield products at various levels. The first data on ground are IASI L0 products: these have
gone only through the on-board processing chain. The on-ground processing chain leads from IASI
L0 to IASI L2 yielding intermediate products such as L1A, L1B and L1C. Figure 4 illustrates the main
stages in the IASI data processing chain.

Calibration with
blackbodies

Calibration with
blackbodies

Thermal
emission
Thermal
emission

Optical Fournier
transform

Optical Fournier
transform

Sampling and
A/D conversion
Sampling and

A/D conversion

On-Board
Inter-

ferometer

Acquisition

Digital
signal

processing

On-Ground
Atmosphere

L1A Data

L1C Data

L1B Data

Spectrum resamplingSpectrum resampling

Apodization
Analysis of the AVHHR

radiance over the
IASI pixels

Apodization
Analysis of the AVHHR

radiance over the
IASI pixels

Towards the L2
data processing centre

Towards the L2
data processing centre

L2 Data

Spectral calibration
Co-registration
IASI/AVHHR

Geolocation and dating

Spectral calibration
Co-registration
IASI/AVHHR

Geolocation and dating

L0 Data

Inverse Fournier
transform

Inverse Fournier
transform

Figure 4. Main stages in the IASI data processing.
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2.3.1. On-Board Processing Chain

Data collected by the instrument are processed on board the satellite to produce calibrated
atmospheric spectra from raw interferograms. The IASI data production rate is 45 Megabits/s,
while the transmission rate allocated to IASI measurements is 1.5 Megabits/s. In order to reach
the allocated data transmission rate, it is necessary to implement a significant part of the IASI data
processing on board the satellite [51]. The main objective of the on-board processing chain is to convert
raw interferograms into complex spectra meeting the allocated data rate to be transmitted to the
ground station. Extensive details of the different processes performed by the instrument are described
in [14,51].

2.3.2. On-Ground Processing Chain

Once the data are received from the satellites, they are further processed until converted into
end-user products. The on-ground processing chain comprises different stages, yielding products
at different processing levels. L1A products are unapodized calibrated and geolocated spectra with
corresponding Integrated Imaging Subsystem (IIS) images. L1B products are obtained from L1A after
spectral resampling. L1C products are obtained from L1B after apodisation. In L1C level, the data are
sampled every 0.25 cm−1 and the results of the analysis of Advanced Very High Resolution Radiometer
(AVHRR) radiance over the IASI FOR are appended. The IASI L2 processing involves derivation
of geophysical parameters from radiance measurements. This stage is performed in synergy with
measurements from other instruments [50,52,53].

2.4. Data Dissemination

EUMETCast [54] is EUMETSAT’s primary dissemination mechanism for the near real-time
delivery of satellite data and products. IASI products are thus mostly disseminated through
EUMETCast to the NWP centres and scientific community. In turn, other institutions may request
and distribute IASI data from EUMETSAT, for instance, the Physical Oceanography Distributed
Active Archive Center (PODAAC) [55] and the Centre for Environmental Data Analysis (CEDA) [56]
disseminate IASI L1C and L2 products.

In the case of EUMETCast, the number of registered users by June 2016 [57] (last available report)
was over 4500 stations, with over 1,200,000 items delivered, and distributing more than 60 Terabytes
(TB) per month. In the case of CEDA, 90.82 TB of IASI data were disseminated through 636,453 accesses
during the last 12 months, and 466.74 TB through 1,188,507 accesses during the last 5 years [58].

Regarding IASI data, one of the most popular collections of distributed data is IASI Regional
Data Service Level 1 [59], where 500 selected original IASI Channels and 300 Principal Component
Scores (PCS) are combined in products with an average file size of 10 MB. These products discard
many spectral channels and/or components due to the difficulties of transmitting files of larger size.

PCC is the common strategy used in the IASI community to reduce the large size of the data [60].
This technique is able to achieve a compression ratio of, approximately, 50:1 [16,61]. PCC is a lossy
approach that reduces large correlated spectra, composed by thousands of channels, into some
truncated pieces of information—the PCS—[62], which represent the most of the variance observed
in the data. The most part of the atmospheric information is typically contained within the first few
hundred of PCS, thus the most important information present in the spectrum can be preserved by
retaining only the most significant PCS. The EUMETSAT Advanced Retransmission Service (EARS)
provides a total of 290 PCS for the three bands of the IASI spectrum: 90 for Band 1, 120 for Band 2,
and 80 for Band 3. This number of PCS allow to retain the atmospheric signal with negligible loss of
information [16,63].

PCC exploits the high level of correlation between channels to achieve data compression [19].
The main advantage of PCC is the potential to remove part of the noise present in the original data [16].
However, atmospheric information is also lost. A reduction of the random instrument noise between



Sensors 2017, 17, 1404 7 of 32

4 and 6 is achievable, while values of the reconstructed noise and the atmospheric information loss get
close to the optimal ones proposed by the linear estimation theory [64].

A major concern in the use of PCC is that the PCS are determined from a training set. If the
data used for training do not contain specific events, like volcanic eruptions, heavy biomass burning,
wildfires, etc., these characteristics will not be present in the leading PCS and might be considered
noise, reducing the usefulness of the data [62]. In order to minimize this drawback, a global training
set, adequate to represent most of the atmospheric situations, should be employed and updated
periodically to include rare events [61].

Another concern in the use of PCC is that some features associated with trace gases may not be
properly retained in the reconstructed spectra, which is specially critical when the trace gas signal is
weak. This may be caused when the number of PCS used in the reconstruction of the signal is not
large enough or if the training set from which the reference eigenvectors were derived presents some
deficiency [17,65].

PCC is a transform-based approach widely accepted for IASI dimensionality-reduction and for
data compression, whose benefits and drawbacks are well known. Although IASI is not an imager but
a sounder, coding techniques intended for images may also be employed to compress IASI data. In this
paper we will analyze the performance of a wide range of coding techniques for lossless, near-lossless,
and lossy compression of IASI data, including current standards and state-of-the-art coding techniques.
We will review the performance of coding techniques that follow a different approach than PCC, such
as prediction-based techniques, which allow lossless and near-lossess compression. We also evaluate
transform-based coding techniques and the current video coding standard (HEVC), which include
a rate-distortion optimisation stage to determine which contribution from each transformed channel
should be included in the final compressed file, instead of applying the transform and selecting a subset
of the transformed channels as PCC does.

We have observed in recent studies [26,27] that some of the proposed lossy compression
schemes produce reconstructed radiances that are suitable for statistic retrieval algorithms, achieving
competitive performance compared to retrievals performed over the original radiances.

One of the goals of our contribution is to report the performance of several compression schemes
for IASI data, which allow different features in the reconstructed data as compared to PCC, for instance,
compression of the whole spectra, specific accuracy in the recovered data, etc.

Figure 5 illustrates the proposed coding approach. Once the original data (e.g., radiance data)
have been compressed and transmitted, they must be decompressed to produce the reconstructed
data (e.g., radiance data too). The dimensions and size of the reconstructed data are identical to that
of the original data. If a near-lossless or a lossy compression paradigm is selected, the quality of the
reconstructed data will be different than the quality of the original data.

IASI L1C products are the most common format for dissemination of IASI data [54–56,59] and
will be the considered data in this research.

Original
IASI spectra CompressionCompression

Transmission
DecompressionDecompression

Reconstructed
radiances

Further processingFurther processing

Figure 5. Sequential approach for IASI data compression.

3. Data Compression

This section reports schematically the main characteristics of the compression techniques
employed in this paper. Essentially, we introduce first the basic scheme of a data coding system,
then we outline the skilled characteristics of the six examined coding techniques, next we provide the
setting and parameters used for each tested coding technique, and finally we discuss the benefits of
applying a spectral transform along the spectral dimension.



Sensors 2017, 17, 1404 8 of 32

3.1. Data Coding System Pipeline

A data coding system usually comprises three main stages: (1) pre-processing, (2) coding,
and (3) post-processing, as illustrated in Figure 6.

Input Data

Encoded Data

Post-processingPost-processing

Pre-processingPre-processing

QuantizationQuantization

EncodingEncoding

Transform or
Prediction

Transform or
Prediction

Codification

Figure 6. Data compression systems are usually composed of three main stages: pre-processing,
coding, and post-processing. The coding stage may, in turn, comprise three steps: either transform or
prediction, quantization, and encoding. Only the encoding process is displayed; decoding proceeds
in reverse order.

The pre-processing stage is intended to prepare the data for the compression process. In some
scenarios, like remote sensing, it may become a very important stage, having high influence in the
later stages. Partitioning, denoising or segmentation are common processes performed during the
pre-processing stage. The coding stage encodes the data resulting from the pre-processing stage.
Different steps can be carried out in this stage. First, either a transform or a prediction step is applied
to modify the representation space. The transform approach aims at providing a more decorrelated
and compact representation of the signal. An example of this approach is the wavelet transform,
providing a spatial-frequency domain representation. In its turn, the prediction approach aims at
exploiting the correlation among neighbouring—causal—coefficients by guessing the next coefficient
and incurring in a prediction error, which is expected to facilitate a better performing entropy encoding.
The second step is a quantization step, applied in the case of near-lossless or lossy coding, as it entails
a loss of information. The third step is an entropy encoding step. Common approaches include
Huffman [36], Golomb [66] and Arithmetic encoding [67]. Depending on the compression technique
employed, the post-processing stage can manipulate either the final codestream or the data recovered.
In JPEG 2000, this stage organizes the final codestream to minimize the error between the original
data and the reconstructed data at a desired target bit-rate. In HEVC, it defines some parameters for
smoothing artifacts in the reconstructed data to improve its quality.
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3.2. Characteristics of the Coding Techniques

Focusing on the coding stage, in this paper we screen two transform-based coding techniques,
namely JPEG 2000 [30] and CCSDS-122.0 [32], three prediction-based coding techniques, namely
JPEG-LS [29], M-CALIC [31] and CCSDS-123.0 [33], and the most recent video coding standard
that includes both a transform and a prediction step, HEVC [34].

For each of the six considered compression techniques, Tables 2 and 3 provide the following
information: (1) Year: reports when that particular coding technique or standard was published;
(2) Compression paradigm: indicates which of the three different coding paradigms are deployed,
i.e., lossless, near-lossless, or lossy compression and whether that technique is prediction-based or
transform-based; (3) Reference: cites the main reference; (4) Pre-processing: indicates what type of
pre-processing stage is performed, if any; (5) Post-processing: indicates what type of post-processing
stage is performed, if any; (6) Spatial transform: for the case of transform-based coding techniques,
it provides information about what transform is employed to exploit the spatial redundancy;
(7) Prediction: for the case of prediction-based coding techniques, it provides information about what
type of prediction is employed to exploit redundancy and whether it is applied in the spatial direction
(intra), in the spectral direction (inter), or in both; (8) Quantization: indicates what type of quantization
is performed, if any; (9) Bitplane encoding: explains how a bitplane coding strategy [36] is applied,
if any; and (10) Entropy coder: provides information about the type of entropy encoder used.

3.3. Setting and Parameter Configuration

All compression techniques allow different parameter and configuration options: on one hand,
selecting appropriate settings has a significant influence on the compression performance; on another
hand, these settings may determine the computational cost. Careful analysis has to be carried out to
disclose appropriate settings.

To account for the reproducibility of the research, for the six evaluated coding techniques, and for
each coding paradigm (as most coding techniques allow more than one coding paradigm), Table 4
provides the configurations of setting and mode, spatial transform and spectral transform used in
our experiments. Setting and mode column refers to particular characteristics of each compression
technique; Spatial transform column and Spectral transform column indicate what type of spatial or
spectral transform is applied, if any.

Since JPEG-LS [29] and CCSDS-122.0 [32] coding techniques are devised to encode mono-channel
data (2D data), for encoding data scenes with more than one channel (3D data) we used the following
methodology: (1) split the data scenes into mono-channel data (in the case of IASI data, each
spectral channel with a different wave-number shall be a mono-channel data), (2) each of those
mono-channel data are individually encoded, and (3) the total bit-rate is the sum of the bit-rates for
each mono-channel data. When JPEG-LS is paired with a spectral transform (see below), the scenes
are first spectrally transformed and then the splitting procedure above is applied. In the case of
CCSDS-122.0, the upcoming standard CCSDS-122.1 [68] is employed.
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3.4. Spectral Transforms

To achieve competitive compression performance in hyperspectral data like IASI L1C, which
are composed of more than 8000 channels, it is of paramount importance to exploit its high spectral
redundancy. Spectral transforms are a commonly adopted approach. Among all the spectral transforms
in the literature, we focused on four of them: (1) Wavelet Transform (WT), due to its extended use
and low complexity; (2) the Karhunen-Loève Transform (KLT), because it is the optimal decorrelating
transform for gaussian sources despite its high computational cost; (3) the Pairwise Orthogonal
Transform (POT), as it is a low complexity approximation to KLT and is at the basis of upcoming
standard CCSDS-122.1; and (4) the Regression Wavelet Analysis Transform (RWA) because of its highly
competitive performance and bearable computational cost.

Depending on the coding paradigm used, a reversible (RKLT, RPOT, IWT 5/3, RWA) or
an irreversible (KLT, POT, DWT 9/7) version of the spectral transforms must be employed. For RWA,
two different estimation models [38] could be adopted: Maximum model and Restricted model. Here,
we use a variant of the Maximum model, the Exogenous variant, which considerably reduces the
computational cost and does not entail transmission of any side-information.

All of these spectral transforms are used in combination with the six coding techniques evaluated
here. Although M-CALIC, CCSDS-123.0 and HEVC already exploit themselves the spectral redundancy
by employing prediction techniques, we also pair them with the different spectral transforms and
evaluate their coding performance.

A particular aspect to consider when applying a spectral transform is the computational
complexity, because it may be critical in many scenarios. The computational cost in floating-point
operations (FLOPs) of applying lossless forward and backward transforms on a typical IASI L1C orbit
for RKLT, IWT, RPOT, and RWA is shown in Figure 7. In this particular case, the RKLT cost is over
2400 times higher than that of RPOT or IWT, and approximately 6 times higher than that of Maximum
RWA (Exogenous variant).

1010

1011

1012

1013

RKLT RWA
Maximum

RWA
Exogenous

RPOT IWT
5/3

N
u
m

b
e
r 

o
f 

F
L
O

P
s

Figure 7. Cost comparison in FLOPs for the different spectral transforms used in the experiments
applied to an IASI L1C orbit with 8461 spectral channels and a spatial resolution of 765 × 30× 4
(number of scan lines × number of FORs per line × number of IFOVs per FOR).

Table 5 reports a detailed analysis for the reversible version of each spectral transform, in terms
of computational cost (in FLOPs). The computational cost of RKLT and Multilevel Clustering RKLT
(see below) mainly depends on the squared number of spectral channels, which substantially increases
the computational cost as the number of channels increases. The IWT 5/3 and RPOT transforms have
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an approximately linear cost in relation to the spatial locations and the spectral channels. The cost
of RWA is dominated by the estimation of the regression coefficients and the generation of the
predictions [38]. In the case of the Exogenous variant, the estimation stage is performed offline and
does not imply additional transform cost during the encoding process.

Table 5. Computational cost in FLOPs for IWT, RPOT, RWA Maximum, RWA Exogenous, RKLT, and
Multilevel Clustering RKLT. z is the number of spectral channels, m is the number of spatial samples
per channel, y is the number of rows, l is the number of wavelet decomposition levels, k is the number
of detail channels employed in the prediction level i [38], s is the number of spectral channels per
cluster (s� z), and C is the total number of clusters.

Transform FLOPs

IWT 2× 14(1− 1
2l )mz

RPOT 16mz + 26zy− 12m− 28y + 11mz + 5zy− 10m− 5y

RWA Maximum
8(1− 1

2l )mz + (∑l
i=1 (2m− 1)(ki + 1)2+(ki + 1)3+( z

2i )(ki + 1) [(2m− 1)+(2ki + 1)]) +
+(2 ∑l

i=1 (2ki − 1)m z
2i ) + 2m(z− 1)

RWA Exogenous 8(1− 1
2l )mz + (2 ∑l

i=1 (2ki − 1)m z
2i ) + 2m(z− 1)

RKLT m(4z2 + 3z + 1) + 32
3 z3 + 1

2 z2 − 37
6 z + 5 + m(3z2 + z− 3)

Multilevel
Clustering RKLT ∑c∈C m(4s2 + 3s + 1) + 32

3 s3 + 1
2 s2 − 37

6 s + 5 + m(3s2 + s− 3)

As seen, a case of very high computational cost and memory requirements transform is KLT/RKLT,
which renders it unusable in situations where the number of spectral channels is large. To alleviate
its high computational cost, there exist a number of strategies. Here, we use a divide-and-conquer
strategy, the Multilevel Clustering KLT/RKLT [69], as described in Section 3.5.

Some spectral transforms may produce data with more than 16 bits per pixel per channel
(bpppc), whereas software implementations used for JPEG-LS, M-CALIC, CCSDS-122.0, CCSDS-123.0,
and HEVC deal with input data of at most 16 bpppc. In these cases, each transformed channel is split
into two different channels: a channel formed by the 16 most significant bits (MSB), and a channel
formed by the 16 least significant bits (LSB). The MSB channels and the LSB channels are grouped in
two different volumes and encoded separately. The total bit-rate of the compressed data is the sum of
the bit-rates of the two compressed volumes.

3.5. Divide-and-Conquer Strategy for KLT/RKLT

The Classical Clustering divide-and-conquer strategy divides a large transform in several clusters
and applies a smaller transform to each cluster. This approach significantly reduces the overall
computational cost, but only provides local decorrelation within each cluster. Global decorrelation
can be achieved by applying a Multilevel Clustering strategy, where the most important parts of
each local transform are further decorrelated in the next levels. In Figure 8, the structure of a plain
KLT/RKLT transform, of a Classical Clustering KLT/RKLT and of a Multilevel Clustering KLT/RKLT
are displayed.

The computational complexity of KLT/RKLT stems from the number of spectral channels to be
transformed. The complexity of Multilevel Clustering KLT/RKLT depends thus on the employed
cluster size. An appropriate configuration for applying Multilevel Clustering KLT/RKLT on IASI L1C
orbits is found by assessing three different criteria: computational cost, related to the execution time, and
transform coding performance. To perform this assessment, we consider an IASI L1C orbit with 213 (8192)
spectral channels (discarding the last 269 channels of the 8461 channels spectrum).
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(a)

C1 C2 C3

(b)

C3,1

C2,1 C2,2

C1,1 C1,2 C1,3

(c)

Figure 8. Structure of plain KLT/RKLT, Classical Clustering KLT/RKLT, and Multilevel Clustering
KLT/RKLT. This example decorrelates 15 spectral channels. Each arrow denotes a channel and each
coloured rectangle represents the computation of a KLT/RKLT transform. In the case of Classical
Clustering KLT/RKLT, three clusters are employed. In the case of Multilevel Clustering KLT/RKLT,
3 levels of Multilevel Clustering are applied. (a) Plain KLT/RKLT; (b) Classical Clustering KLT/RKLT;
(c) Multilevel Clustering KLT/RKLT.

3.5.1. Computational Cost

The computational cost of different cluster sizes for Multilevel Clustering RKLT is illustrated in
Figure 9. The computational cost rapidly increases as the number of clusters defined in the first level
decreases, which is equivalent to increase the cluster size. Notice that using 1 cluster is identical to not
using any clustering strategy.
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Figure 9. Cost comparison in FLOPs for different cluster sizes of Multilevel Clustering RKLT applied
to an orbit with 213 spectral channels and a spatial resolution of 765× 30× 4 (number of scan lines ×
number of FORs per line × number of IFOVs per FOR).

3.5.2. Execution Time

The forward and backward execution times of different cluster sizes when Multilevel Clustering
RKLT is applied to the proposed 213 IASI L1C orbit are compared in Figure 10. The longest runtimes
are required when less than 25 clusters (28 channels per cluster) are defined in the first level. Execution
times are not provided for 1, 2, 4, and 8 clusters defined in the first level due to the high computational
complexity. All experiments have been performed on an Intel Xeon CPU E3-1230 V2 @ 3.30 GHz processor.
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Figure 10. Runtime comparison in minutes for different cluster sizes of Multilevel Clustering RKLT
applied to an IASI L1C orbit with 213 spectral channels and a spatial resolution of 765 × 30 × 4
(number of scan lines × number of FORs per line × number of IFOVs per FOR). The dissemination
granularity of the data is 3 min for Level 1c [70].

3.5.3. Transform Coding Performance

The performance of Multilevel Clustering RKLT in terms of both computational cost and transform
coding performance is illustrated in Table 6. The best trade-off between computational cost and entropy
of the transformed orbit is obtained when 27 (128) or 28 (256) clusters are defined in the first level.

Table 6. Computational cost (in FLOPs) and transform performance (entropy) for different cluster
sizes of Multilevel Clustering RKLT. Transform performance results are not provided when 20, 21, 22,
and 23 clusters are defined in the first level. For these cases, applying the spectral transform would
require several days due to the high computational cost, which results impractical in a real scenario.

Number of Clusters
Defined in the First Level Cluster Size Total Number

of Clusters FLOPs Entropy

20 213 1 4.90× 1013 -
21 212 3 3.45× 1013 -
22 211 7 1.95× 1013 -
23 210 15 1.03× 1013 -
24 29 31 5.27× 1012 5.20
25 28 63 2.67× 1012 5.14
26 27 127 1.35× 1012 5.14
27 26 255 6.78× 1011 5.13
28 25 511 3.42× 1011 5.13
29 24 1023 1.74× 1011 5.17
210 23 2047 8.98× 1010 5.25
211 22 4095 4.74× 1010 5.48
212 21 8191 2.56× 1010 5.94
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Based on the previous analysis of Multilevel Clustering RKLT, 200 clusters in the first level and
multilevel mode has been used in all the experiments of this manuscript.

For the irreversible case, a Multilevel Clustering KLT with the same configuration has been
selected too, because the coding performance for KLT and Multilevel Clustering KLT is almost
equivalent, because Multilevel Clustering KLT requires much less side-information than KLT,
and because although KLT has a lower computational complexity than RKLT, its application on
a 8461 IASI L1C orbit may take over 30 h.

4. Experimental Results

This section presents a set of experiments aimed at the analysis and evaluation for lossless,
near-lossless, and lossy compression of IASI L1C products. First, a description of the IASI L1C
products and the software employed in the experiments is provided. Then, we will focus on the
compression results produced by the different coding techniques.

4.1. Data Collection and Software

To obtain sound conclusions, the experiments are conducted with a set of 96 IASI L1C orbits
granted by EUMETSAT (http://catalogue.ceda.ac.uk/), representing more than 148 Gigabytes.
48 orbits belong to IASI-A and 48 orbits belong to IASI-B. These orbits are acquired with, respectively,
MetOp-A and MetOp-B satellites. To get a representative data set, orbits acquired throughout a full
year are selected for each sensor: from July 2013 to June 2014, 4 orbits per month, 1 per week. For the
sake of conciseness, details and results will be grouped by instrument, computing the average of the
48 orbits. Results for each individual orbit are very similar. All data are 16 bpppc and are stored as
signed integers. For each product, Table 7 provides the sizes and the average zero-order entropy, which
is the smallest number of bits, on average, required to represent a sample without considering any
dependency among pixels within or between channels.

Table 7. IASI L1C products used in the experiments. Sizes and averaged zero-order entropies per
instrument are provided (48 orbits per instrument). M is the number of spectral channels, Ns is the
number of scan lines, N-FORs is the number of FORs per line, and N-IFOVs is the number of IFOVs
per FOR.

Instrument Size (M × Ns × N-FORs × N-IFOVs) Average Entropy

IASI-A Products 8461 × (630-787) × 30 × 4 12.84

IASI-B Products 8461 × (742-788) × 30 × 4 12.83

Average 8461 × (761) × 30 × 4 12.83

All software used to produce the experimental results is public. The implementations
employed are the following: JPEG-LS software [71], Kakadu software [72] for JPEG 2000, M-CALIC
software [73], TER software [74] for CCSDS-122.0, EMPORDA software [75] for CCSDS-123.0,
and HEVC software [76]; Spectral Transform software [77] for Multilevel Clustering KLT/RKLT and
WT, Pairwise Orthogonal Transform software [78] for POT/RPOT, and Regression Wavelet Analysis
software [79] for RWA.

4.2. Lossless Compression Results

Lossless compression of IASI L1C products is evaluated for the suggested approach: spectral
transform followed by coding technique. Four spectral transforms have been tested: Multilevel
Clustering RKLT, IWT, RPOT and RWA. All six coding techniques are assessed: JPEG-LS, JPEG 2000,
M-CALIC, CCSDS-122.0, CCSDS-123.0 and HEVC. Table 8 reports the average lossless coding
performance (compression ratio). Results suggest that:
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Table 8. Lossless compression of IASI L1C products. Results are reported in compression ratio
(higher is better). Percent savings (higher is better) with respect to original technique are provided
within brackets.

IASI-A—Lossless Compression Ratio & Percent Savings
PPPPPPPTech

Tra. No
Transform IWT RPOT RWA Multilevel

Clustering RKLT

JPEG-LS 1.78:1 2.26:1 (21.24%) 2.26:1 (21.24%) 2.44:1 (27.05%) 2.46:1 (27.64%)
JPEG 2000 1.73:1 2.24:1 (22.77%) 2.24:1 (22.77%) 2.43:1 (28.81%) 2.47:1 (29.96%)
M-CALIC 2.32:1 2.32:1 (0.00%) 2.34:1 (0.85%) 2.48:1 (6.45%) 2.54:1 (8.66%)
CCSDS-122.0 1.68:1 2.13:1 (21.13%) 2.13:1 (21.13%) 2.29:1 (26.64%) 2.33:1 (27.90%)
CCSDS-123.0 2.42:1 2.42:1 (0.00%) 2.39:1 (−1.24%) 2.46:1 (1.63%) 2.47:1 (2.02%)
HEVC 2.23:1 2.29:1 (2.62%) 2.28:1 (2.19%) 2.45:1 (8.98) 2.50:1 (10.80%)

IASI-B—Lossless Compression Ratio & Percent Savings
PPPPPPPTech

Tra. No
Transform IWT RPOT RWA Multilevel

Clustering RKLT

JPEG-LS 1.79:1 2.28:1 (21.49%) 2.27:1 (21.15%) 2.45:1 (26.94%) 2.48:1 (27.82%)
JPEG 2000 1.74:1 2.25:1 (22.67%) 2.25:1 (22.67%) 2.44:1 (28.69%) 2.49:1 (30.12%)
M-CALIC 2.34:1 2.33:1 (−0.43%) 2.35:1 (0.43%) 2.50:1 (6.40%) 2.56:1 (8.59%)
CCSDS-122.0 1.69:1 2.14:1 (21.03%) 2.14:1 (21.03%) 2.30:1 (26.52%) 2.34:1 (27.78%)
CCSDS-123.0 2.44:1 2.44:1 (0.00%) 2.40:1 (−1.64%) 2.48:1 (1.61%) 2.48:1 (1.61%)
HEVC 2.24:1 2.30:1 (2.61%) 2.29:1 (2.18%) 2.47:1 (9.31%) 2.52:1 (11.11%)

• Coding performance for IASI-A and IASI-B products is nearly the same. Lossless compression of IASI-B
products is, on average, only 0.75% better than for IASI-A. This negligible difference happens for
all IASI-A and IASI-B products and for all compression schemes.

• IASI L1C data present high spectral redundancy. M-CALIC, CCSDS-123.0 and HEVC, which
originally exploit the spectral redundancy, achieve better outcomes than JPEG-LS, JPEG2000 or
CCSDS-122.0, which do not exploit this redundancy. For the latter techniques, taking advantage of
this redundancy through a spectral transform yields significantly better compression performance,
bridging the gap with the former techniques.

• Compression techniques that already exploit the spectral redundancy by themselves also benefit from
applying a spectral transform. When paired with a spectral transform, M-CALIC, CCSDS-123.0, and
HEVC usually achieve better coding performance too (except for IWT + M-CALIC and RPOT +
CCSDS-123.0). This effect is specially significant in the case of HEVC, where up to 11.11% can be
improved, but also for M-CALIC, where gains are close to 9%. Gains for CCSDS-123.0, which was
the coding technique providing the best performance, are less meaningful.

• Multilevel Clustering RKLT or RWA yield the best coding performance. Multilevel Clustering RKLT
brings the largest improvements, closely followed by RWA. As compared to original CCSDS-123.0,
which is the coding technique providing the best performance when no spectral transform is
applied, the improvements for Multilevel Clustering RKLT and for RWA when combined with
M-CALIC are, respectively, of 4.7% and 2.4%.

• Compression ratios over 2.5:1 (bit-rates close to 6.3 bpppc) can be achieved for lossless compression
of IASI L1C products. The best results are obtained by Multilevel Clustering RKLT + M-CALIC,
which achieves, on average, a compression ratio of 2.54:1 for IASI-A products and 2.56 for
IASI-B products.

4.3. Near-Lossless Compression Results

Two different coding techniques, M-CALIC and JPEG-LS, are used for near-lossless compression
of IASI L1C products. Eight different Peak Absolute Errors (PAE) (δ ∈ {1, 3, 7, 15, 31, 63, 127, 255}) are
considered. Results are reported in Table 9. Three main observations can be drawn:

• As expected, compression ratio increases as PAE increases.
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• Competitive compression performance is achieved even by allowing small errors. Large savings over 17%
and 30% with respect to lossless compression are already achieved for such small PAE as 1 and 3.

• M-CALIC yields higher compression ratio than JPEG-LS. M-CALIC uses an arithmetic coder, while
JPEG-LS uses Golomb codes, for which bit-rates below 1 bpppc are not achievable.

Figure 11 illustrates the rate-distortion performance of near-lossless compression in terms of
Signal Noise Ratio (SNR) Energy vs. PAE. Using as small PAE as 1 and 3, SNR Energy over 65 dB can
already be achieved.

Table 9. Near-lossless compression of IASI L1C products. Results are reported in compression ratio
(higher is better). Results for lossless compression (PAE = 0) are included. Percent savings (higher is
better) with respect to lossless compression are provided within brackets.

IASI-A IASI-B

PAE JPEG-LS M-CALIC JPEG-LS M-CALIC

0 1.78 2.32 1.79 2.34
1 2.17 (17.97%) 3.02 (23.18%) 2.18 (17.89%) 3.05 (23.28%)
3 2.60 (31.54%) 3.90 (40.51%) 2.61 (31.42%) 3.95 (40.76%)
7 3.15 (43.49%) 5.21 (55.47%) 3.18 (43.71%) 5.28 (55.68%)

15 3.93 (54.71%) 7.34 (68.39%) 3.98 (55.03%) 7.48 (68.72%)
31 5.11 (65.17%) 11.11 (79.18%) 5.18 (65.44%) 11.35 (79.38%)
63 6.99 (74.54%) 18.39 (87.38%) 7.08 (74.72%) 18.82 (87.57%)
127 10.00 (82.20%) 33.33 (93.03%) 10.19 (82.43%) 34.04 (93.13%)
255 15.09 (88.20%) 61.54 (96.23%) 15.38 (88.36%) 64.00 (96.34%)
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Figure 11. Rate-distortion performance of near-lossless compression of IASI L1C products. Results
report SNR Energy (in dB, higher is better) vs. PAE. (a) IASI-A; (b) IASI-B.

4.4. Lossy Compression Results

Lossy compression of IASI L1C products is evaluated using JPEG 2000 and CCSDS-122.0 standards
along with three spectral transforms: Multilevel Clustering KLT, DWT and POT. All schemes are
evaluated using nine target bit-rates between 0.01 and 2 bpppc.

Figure 12 illustrates the lossy compression performance of IASI L1C products for JPEG 2000 and
CCSDS-122.0. Several conclusions can be drawn:
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Figure 12. Rate-distortion performance of lossy compression of IASI L1C products. Results report SNR
Energy (in dB, higher is better) vs. compression ratio. Results for different spectral transforms are
plotted in the columns. In each plot, curves for JPEG 2000 and CCSDS-122.0 performance are displayed.
Ranges are the same in all the plots to ease the comparison. Top row: IASI-A products; Bottom row:
IASI-B products. POT and Multilevel Clustering KLT are not able to reach such high compression ratios
(over 1000:1) as DWT because side-information needs to be transmitted besides the compressed data.

• Exploiting the spectral redundancy is essential to achieve competitive performance. Applying a spectral
transform always outperforms the scheme that does not exploit the spectral redundancy.
Performance difference is more apparent as the compression ratio decreases, growing from
5 to over 15 dB.

• Multilevel Clustering KLT yields the best coding performance. As happened for lossless compression,
also in the case of lossy compression, Multilevel Clustering KLT furnishes the highest results,
followed by POT and DWT. At high compression ratios (higher than 20:1), POT yields almost
equivalent performance, mostly because of the larger size of the side-information needed by
Multilevel Clustering KLT.

• JPEG 2000 outperforms CCSDS-122.0. JPEG 2000 is a more complex coding technique that is able
to produce more competitive results.

• Plain 2D CCSDS-122.0 yields low performance at high compression ratios. This standard starts
achieving good results for compression ratios lower than 100:1.

4.5. Comparison between Near-Lossless and Lossy Compression

A comparison of the two analyzed compression paradigms that introduce distortion in the
reconstructed data, i.e., near-lossless and lossy compression, is performed in Figure 13. The best
coding scheme for near-lossless (M-CALIC) and for lossy (Multilevel Clustering KLT + JPEG 2000)
compression are compared from the point of view of PAE and SNR Energy. Bit-rates between 0.1 and
2 bpppc are compared (very large PAE—higher than 1023—are requested to achieve bit-rates lower
than 0.1 for near-lossless compression). Some conclusions can be drawn:

• Near-lossless outperforms lossy compression in terms of PAE. Near-lossless compression introduces
lower maximum errors in the data than lossy compression.

• Lossy compression outperforms near-lossless compression in terms of SNR Energy. Lossy compression
yields larger results, especially at large compression ratios.
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Figure 13. Performance comparison between near-lossless (M-CALIC) and lossy compression
(Multilevel Clustering KLT + JPEG 2000). Top row: PAE (lower is better); Bottom row: SNR Energy
(in dB, higher is better).

4.6. Compression and Decompression Runtimes

IASI Level 1 products are distributed to users in different dissemination modes and formats. While
the timeliness for Near-Real Time dissemination through EUMETCast is 2 h 15 min, the timeliness for
products on the EUMETSAT Data Centre retrieval is approximately 8–9 h [70]. Table 10 summarizes the
compression runtimes for the coding schemes that provide the best performance for lossless, near-lossless
and lossy compression. The decompression runtimes, which are applicable at the receiver side, are also
provided. All experiments have been performed on an Intel Xeon CPU E3-1230 V2 @ 3.30 GHz processor.

Table 10. Compression and decompression runtimes for the coding schemes that produce the best
performance for lossless, near-lossless, and lossy compression. The PAE employed for near-lossless
compression is 1. The target bit-rate used for lossy compression is 2 bpppc. All times are expressed
in minutes.

Runtimes (in Minutes) Lossless Near-Lossless Lossy

Compression 81.7 15 13.4
Decompression 41.4 11.3 6.2

Compression schemes that involve lossy coding achieve competitive runtimes and might be
considered in a near-real time scenario. Both near-lossless and lossy compression require less than
15 min in the compression stage. At the receiver side, 11 and 6 min for near-lossless and lossy
coding, respectively, would be required to decompress the codestream. Longer runtimes are required
for lossless compression mainly due to the computation of Multilevel Clustering RKLT. Lossless
compression would be appropriate only in scenarios where the delivery time is not critical.
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4.7. Analysis of the Reconstructed Radiances

To evaluate the usefulness of the reconstructed radiances, M-CALIC and Multilevel Clustering
KLT + JPEG 2000, which are the compression schemes that produce the best performance
for, respectively, near-lossless and lossy compression, are compared with Principal Component
Compression (PCC).

The experiments are conducted using the product IASI_xxx_1C_M02_20140305023859Z_201403050
42058Z_N_O_20140305042027Z (details about file naming convention can be found at [50]). To simplify
the comparison, the first 1800 channels of this IASI L1C orbit are used. All of them belong to Band-1.
Two compression ratios are compared by retaining a different number of eigenvectors in PCC,
either 150 or 200, which is common in practical scenarios. For M-CALIC and Multilevel Clustering
KLT + JPEG 2000, the PAE and target bit-rate that produce, respectively, the same compression ratio as
compared to PCC are employed. Table 11 summarizes the settings for each experiment.

Table 11. Compression setting for PCC, M-CALIC, and Multilevel Clustering + JPEG 2000 comparison.

PCC M-CALIC Multilevel Clustering
KLT + JPEG 2000

Compression ratio PC scores PAE Target bit-rate
Experiment 1 9:1 200 19 1.78
Experiment 2 12:1 150 29 1.33

The noise covariance matrix of the original radiances and of the reconstructed radiances after
Principal Component Compression for experiment 1 and experiment 2 are illustrated in Figure 14.
It is known that the noise covariance matrix of the original radiances is diagonal, while the noise
covariance matrix of the reconstructed radiances is quite similar when 200 or 150 PCS are employed.
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Figure 14. Noise covariance matrix of the original radiances and noise covariance matrix of the
reconstructed radiances after Principal Component Compression when 200 and 150 PCS are employed.

In Figure 15 the normalized radiance residual statistics as a function of component number for
experiment 1 and experiment 2 are shown. The normalized reconstructed radiances are subtracted
from the normalized original radiances. Normalization takes into account the noise covariance matrix
inherent to IASI. The average of the normalized radiance residuals, the standard deviation and the
maximum and minimum values per channel are reported.
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Figure 15. Normalized radiance residuals statistics. The average of the normalized radiance residuals
is shown in blue, standard deviation in red, and maximum and minimum values in green.

The average of the normalized radiance residual and the standard deviation are very similar for all
compression schemes. As for the maximum and minimum differences, PCC and Multilevel Clustering
KLT + JPEG 2000 produce smaller values as compared to M-CALIC. The magnitude of the maximum
and minimum values is slightly lower for PCC than for Multilevel Clustering KLT + JPEG 2000.

The covariance matrix of the original and reconstructed radiances is illustrated in Figure 16 for
the three different coding techniques at the proposed compression ratios. The nature of the original
data and of the reconstructed data has a similar nature.
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Figure 16. Covariance matrix of the original radiances and covariance matrix of the
reconstructed radiances.
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To analyze the impact of the compression, Figure 17 reports the differences between the covariance
matrix of the original radiances and the covariance matrix of the reconstructed radiances.
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Figure 17. Differences between the covariance matrix of the original radiances and the covariance
matrix of the reconstructed radiances.

The differences are very similar for the two compression ratios analyzed in all coding schemes.
The covariance matrices of the reconstructed spectra from Multilevel Clustering KLT + JPEG 2000 and
M-CALIC are very similar to the covariance matrix of the original data. For M-CALIC, the difference
is focused in the main diagonal, while for Multilevel Clustering KLT + JPEG 2000 the differences are
clear in a small set of channels. For PCC, the differences are more apparent.
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4.8. Discussion

The performance of IASI L1C data compression has been investigated for lossless, near-lossless,
and lossy compression. Lossless compression is sometimes a demanded requirement in remote sensing
applications because introducing some amount of distortion in the reconstructed data may compromise
the quality of derived products. For IASI orbits, lossless compression can contribute to alleviate the
large size of the data. As reported in Table 8, lossless compression can reduce the data size to less than
half the original size, achieving compression ratios of 2.5:1.

Experimental results reveal that compression techniques that originally exploit the spectral
redundancy such as M-CALIC, CCSDS-123.0 and HEVC produce better performance than JPEG-LS,
JPEG2000 and CCSDS-122.0, which do not exploit the spectral dimension. It is acknowledged that
exploiting the spectral redundancy present in hyperspectral data is of paramount importance to
achieve competitive compression performance [80]. This is especially critical in the case of IASI L1C
products due to the large number of highly correlated spectral channels. CCSDS-123.0, which is the
coding technique providing the best compression performance, is superior to JPEG-LS, JPEG 2000,
and CCSDS-122.0 in 26.5%, 28.5%, and 30.5%, respectively. When JPEG-LS and JPEG 2000 are
paired with a spectral transform to exploit the spectral redundancy, they surpass CCSDS-123.0.
For CCSDS-122.0 prepended with a spectral transform, the difference with respect to CCSDS-123.0
decreases to less than 4%.

However, the large spectral dimension of IASI data imposes a careful selection to exploit
the spectral redundancy. Some spectral transforms, such as RKLT, may be unusable when the
number of spectral channels is large due to its expensive computational complexity. In this case,
a divide-and-conquer strategy like Multilevel Clustering RKLT may be a very effective approach [81],
both in terms of coding performance and of computational cost. If lower computational requirements
are demanded, RPOT and IWT are two alternatives, although they yield lower compression
performance. RWA spectral transform provides also a competitive coding performance, improving on
average, 7.1% and 6.9% with respect to RPOT and IWT.

We observed that compression techniques that already exploit the spectral redundancy by
themselves also improve the coding performance when a spectral transform is applied. This is
due to the large spectral dimension and the high redundancy present in IASI data. For HEVC and
M-CALIC up to 11.11% and 8.59%, respectively, can be improved. In the case of CCSDS-123.0, gains
are less significant.

Lossless compression can be an appropriate approach to compress IASI L1C products because
all information is preserved, however the achieved compression ratios are limited. When larger
compression ratios are requested, near-lossless or lossy compression is needed. Although using these
approaches prevents a perfect reconstruction, it has been observed that some applications do not
reduce their performance when certain level of distortion is introduced [26,27]. Near-lossless and lossy
compression might be two reasonable compression approaches for IASI L1C products. In fact, data
disseminated today through IASI Regional Data Service is not either the complete original scene, since
only 800 (or less) out of the original 8461 channels are distributed for near-real time dissemination.

If a specific accuracy must be preserved in the reconstructed data, near-lossless compression
is a proper strategy since the quality of the recovered data can be controlled by bounding the peak
absolute error per pixel. In our experiments, we observed that using as small PAEs as 1 and 3,
compression ratios of, respectively, 3:1 and 4:1 can already be achieved, while the data quality,
measured in SNR Energy, still exceeds 65 dB. Table 9 illustrates how the compression ratio increases
as the allowed PAE increases. Among the two compression techniques evaluated for near-lossless
compression, M-CALIC produces larger compression ratios than JPEG-LS, achieving similar SNR
Energy. The performance improvement of M-CALIC increases as PAE value increases, being,
approximately, 25% more competitive for small PAEs and 70% for large PAEs. M-CALIC produces
improved performance mainly due to the ability of M-CALIC to exploit the spectral redundancy
present in the data, which is essential to achieve competitive coding performance. JPEG-LS is a 2D
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data compression standard and is not able to exploit the spectral dimension. In addition, M-CALIC
implements an arithmetic coder, while JPEG-LS uses Golomb codes, not being able to produce bit-rates
below 1 bpppc. In this case, pairing JPEG-LS with a spectral transform would not be an appropriate
approach, because the spectral transform forestalls the precise control over the peak absolute error.

For lossy compression, as happened for lossless compression, exploiting the spectral redundancy
yields improved outcomes. Experimental results reveal that applying a spectral transform always
produce better performance, with differences increasing for smaller compression ratios, growing from
5 to over 15 dB. Multilevel Clustering KLT also produces always the best coding performance among
the spectral transforms. Applying POT achieves similar performance at compression ratios higher
than 20:1, mainly due to the larger size of the side-information produced by Multilevel Clustering
KLT. In turn, employing POT produces more competitive performance than DWT at large compression
ratios, but the performance gets closer at small compression ratios.

With regard to comparison between coding standards JPEG 2000 and CCSDS-122.0, the former
always yields improved coding performance, for both lossless and lossy. When paired with Multilevel
Clustering KLT or POT spectral transforms, these two coding techniques show very similar behaviour
for lossy compression, while there is a difference of about 5.5% for lossless.

Applying a compression process through either M-CALIC or Multilevel Clustering KLT + JPEG 2000,
the compression schemes that produce the best coding performance for, respectively, near-lossless
and lossy compression, takes less than 15 min, which may be acceptable in a near-real time scenario.
The decompression stage, required to retrieve the reconstructed spectra at the receiver side, takes,
approximately, 11 and 6 min for, respectively, near-lossless and lossy compression. Multilevel Clustering
RKLT, the lossless scheme that produces the largest compression ratios, requires longer runtimes mainly
due to the application of the Multilevel Clustering RKLT.

The analysis of the recovered data indicated that the covariance matrix of the reconstructed
radiances for both Multilevel Clustering KLT + JPEG 2000 and M-CALIC is very similar to the
covariance matrix of the original radiances. Although promising, more experiments are needed to
determine whether these two coding schemes could become an alternative to Principal Component
Compression for IASI data near-real time dissemination.

Finally, we note that the compression performance for IASI-A and IASI-B products is almost
equivalent for lossless, near-lossless, and lossy compression.

5. Concluding Remarks

Infrared Atmospheric Sounding Interferometer (IASI) data acquired from MetOp-A and MetOp-B
satellites are mostly disseminated as IASI L1C products. These products have provided over 10 years of
continuous observations, and with the foreseen launch of MetOp-C satellite in October 2018, this long
time series of climate variables will be further extended. So far, distribution of IASI L1C data has been
mostly conducted through IASI Regional Data Service Level 1, where 800 (or less) channels out of the
original 8461 spectral channels are disseminated in near-real time, however, a number of applications
have recently identified the need to operate with the complete range of spectral channels. Transmission
and storage of complete scenes with such large size pose a challenge, which might be alleviated thanks
to data compression.

In this paper we put forward a comprehensive study of IASI L1C data compression. Lossless,
near-lossless and lossy compression paradigms have been investigated on a representative set of
96 orbits selected over a full year, 48 orbits from each MetOp-A and MetOp-B satellite, 4 orbits per
month. Two wavelet-based coding standards, JPEG 2000 and CCSDS-122.0, three prediction-based
techniques, JPEG-LS, M-CALIC and CCSDS-123.0, and the most recent video coding standard, HEVC,
have been evaluated. To account for the large spectral redundancy in IASI products, four spectral
transforms, RKLT/KLT, IWT/DWT, RPOT/POT and RWA, have been combined with the six coding
techniques and their performance assessed.
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Experimental results suggest that Multilevel Clustering RKLT/KLT is an efficient approach
in terms of both coding performance and computational complexity, providing the best outcome
for lossless and lossy compression when paired with, respectively, M-CALIC and JPEG 2000.
For near-lossless compression, M-CALIC is the best performing technique.

The covariance matrix of the reconstructed radiances for Multilevel Clustering KLT + JPEG 2000
and M-CALIC, the compression schemes that provides the best coding performance for lossy and
near-lossless compression, respectively, are very similar to the covariance matrix of the original
radiances, which suggests that the quality of the recovered data is still adequate for further processings.
Although promising, more experiments are needed to determine whether the proposed compression
schemes could become an alternative to Principal Component Compression for IASI data near-real
time dissemination.

The reported analysis can contribute to deploy new methodologies to manage data from current
and upcoming high spectral resolution infrared instruments and improve the quality of disseminated
products as demanded in several application areas. It is important to note that the selected compression
scheme must preserve the atmospheric information content and reduce the level of noise contained in
the data, while achieving competitive compression ratios.
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Statistical Atmospheric Parameter Retrieval
Largely Benefits From Spatial–Spectral

Image Compression
Joaquín García-Sobrino, Joan Serra-Sagristà, Senior Member, IEEE, Valero Laparra,

Xavier Calbet, and Gustau Camps-Valls, Senior Member, IEEE

Abstract— The infrared atmospheric sounding interferome-
ter (IASI) is flying on board of the Metop satellite series, which
is part of the EUMETSAT Polar System. Products obtained from
IASI data represent a significant improvement in the accuracy
and quality of the measurements used for meteorological models.
Notably, the IASI collects rich spectral information to derive tem-
perature and moisture profiles, among other relevant trace gases,
essential for atmospheric forecasts and for the understanding of
weather. Here, we investigate the impact of near-lossless and
lossy compression on IASI L1C data when statistical retrieval
algorithms are later applied. We search for those compression
ratios that yield a positive impact on the accuracy of the
statistical retrievals. The compression techniques help reduce
certain amount of noise on the original data and, at the same time,
incorporate spatial–spectral feature relations in an indirect way
without increasing the computational complexity. We observed
that compressing images, at relatively low bit rates, improves
results in predicting temperature and dew point temperature, and
we advocate that some amount of compression prior to model
inversion is beneficial. This research can benefit the development
of current and upcoming retrieval chains in infrared sounding
and hyperspectral sensors.

Index Terms— Infrared atmospheric sounding interferome-
ter (IASI), JPEG 2000, kernel methods, lossy compression,
M-CALIC, near-lossless compression, spectral transforms,
statistical retrieval.

I. INTRODUCTION

TEMPERATURE and water vapor atmospheric profiles are
essential meteorological parameters for weather forecast-

ing and atmospheric chemistry studies. Observations from high
spectral resolution infrared sounding instruments on board of
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satellites provide unprecedented accuracy and vertical resolu-
tion of temperature and water vapor profiles. However, it is not
trivial to retrieve the full information content from radiation
measurements. Accordingly, improved retrieval algorithms are
desirable to achieve optimal performance for existing and
future infrared sounding instrumentation.

A. Atmospheric Parameter Retrieval With IASI

The use of Metop data in numerical weather predic-
tion (NWP) accounts for 40% of the impact of all space-based
observations in NWP forecasts. The infrared atmospheric
sounding interferometer (IASI) sensor is implemented on the
Metop satellite series. Products obtained from IASI data are
a significant improvement in the quality of the measure-
ments used for meteorological models. In particular, IASI
collects rich spectral information to derive temperature and
moisture profiles, which are essential to the understanding
of weather and to derive atmospheric forecasts. The sen-
sor provides infrared spectra with high resolution between
645 and 2760 cm−1, from which temperature and humidity
profiles with high vertical resolution and accuracy are derived.
Additionally, these spectra are used for the determination of
trace gases such as ozone, nitrous oxide, carbon dioxide, and
methane, as well as land and sea surface temperatures and
emissivities and cloud properties [1], [2].

EUMETSAT, NOAAA, NASA, and other operational agen-
cies are continuously developing product-processing facili-
ties to obtain L2 atmospheric profile products from infrared
hyperspectral radiance instruments, such as the IASI. One of
the retrieval techniques commonly used in L2 processing is
based on linear regression (LR), which is a valuable and very
computationally efficient method. It consists of performing
a canonical least squares LR on top of the data projected
onto the first principal components or empirical orthogonal
functions (EOFs) of the measured brightness temperature
spectra (or radiances) and the atmospheric state parameters.
To further improve the results of this scheme for retrieval,
nonlinear statistical retrieval methods can be applied as an
efficient alternative to more costly optimal estimation (OE)
schemes. These methods have proved to be valid in retrieval
of temperature, dew point temperature (humidity), and ozone
atmospheric profiles when the original data are used [3].

0196-2892 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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B. Impact of Hyperspectral Image Compression

Given the orbit time of Metop satellites (101 min), the large
spectral resolution (8461 components), and spatial resolution
(60×1530 samples) of IASI L1C products and that there are
two active Metop satellites (A and B), about 41.3 GB of IASI
L1C data are produced daily. This large volume of remote
sensing data asks for efficient compression systems for both
storage and transmission. Remote sensing data compression
is a mature field attracting interest of space administrations,
public bodies, and private companies. Lossless, near-lossless,
and lossy coding techniques are already in use in on-going
satellite missions and have been adopted in several current
standards. However, the impact of the (near-lossless and lossy)
compression on the radiances can compromise the quality of
posterior products, such as classification and detection maps,
or biophysical –geophysical parameter estimates, as is the case
of this paper.

1) Impact on Image Classification: Effects of lossy data
compression have been analyzed mostly in the scope of
classification applications. Mercier et al. [4] proposed a vec-
tor quantization for joint classification and compression of
hyperspectral data. This approach proved very competitive for
compressing images, achieving compression ratios of approx-
imately 70:1 and classification performance was not markedly
reduced. Analogous results were achieved in [5]–[7], where
high compression ratios yielded high classification accuracy.

Especially interesting is the observation that this behavior
is more apparent when a spatial–spectral wavelet transform
is applied. Penna et al. [8] reported a stimulating consider-
ation: classification performance was not closely linked to
the distortion levels introduced in the image, meaning that,
in general, the best classification accuracy was not achieved
after applying the coding algorithms/settings that yielded the
best rate–distortion performance.

Du and Fowler [9] proposed a scheme based on princi-
pal component analysis (PCA) deployed in JPEG 2000 to
provide spectral decorrelation. The proposed scheme produced
competitive data analysis performance in terms of information
preservation in an anomaly detection task. Blanes et al. [10]
conducted a study on compression of hyperspectral images
through 3-D JPEG 2000, where supervised and unsupervised
classification of the recovered images was evaluated. The
results reflect that classification accuracy is still reliable after
the compression stage. Similar results were achieved in [11],
where the proposed lossy and near-lossless compression algo-
rithms for hyperspectral images yielded good results for hard
classification, spectral unmixing, and anomaly detection.

2) Impact on Image Unmixing: The impact of lossy
compression on linear spectral unmixing and nonlinear
hyperspectral image classification using support vector
machines (SVMs) was investigated in [12]. The experimental
results suggest that for some compression techniques, a higher
compression ratio may produce more accuracy in classification
results. Chang [13] and Du and Chang [14] have reported
that lossy compression can preserve the needed information to
estimate endmember fractional abundances in linear spectral
unmixing even at low bit rates (BRs). Particularly interesting is

the observation reported in [15] and [16], where it is noted that
the joint use of spectral and spatial information in some stages
of the linear spectral unmixing chain can produce smaller
image reconstruction errors.

3) Impact on Biophysical–Geophysical Parameter
Retrieval: It is worth noting that to the authors’ knowledge,
there are no works analyzing the impact of spatial–spectral
data compression on the bio physical–geophysical parameter
retrieval. We reported preliminary results in [17], which are
further extended here with more data and in-depth analysis.
The experimental results revealed an interesting issue: the
performance of statistical retrieval methods substantially
improved after near-lossless compression. This observation
leads us to define the main goal of this paper.

C. Goal and Main Findings

This paper is concerned with the performance of different
(near-lossless and lossy) compression techniques and different
(linear and nonlinear) statistical retrieval algorithm on IASI
L1C data. We will touch upon M-CALIC [18] coding tech-
nique and upon JPEG 2000 standard [19], [20]. In this latter
case, two spectral transforms will be employed to better exploit
the high spectral redundancy inherent in IASI data, namely,
pairwise orthogonal transform (POT) [21], [22] and discrete
wavelet transform (DWT), which have proved to achieve good
data decorrelation in multi-, hyper-, and ultraspectral images.
Then, two different statistical retrieval algorithms, LR and
kernel ridge regression (KRR) [23], will be evaluated in the
retrieval of temperature and dew point temperature (humidity)
profiles from the recovered decoded images.

In short, the objective of this paper is to provide an outlook
of the effects of near-lossless and lossy compression of IASI
L1C data when statistical retrieval methods are employed to
retrieve physical information from the reconstructed images.
An important conclusion of the work is that retrieval methods
may operate on data that do not have the same quality
precision as that originally provided by IASI L1C products.
Actually, though it may appear counterintuitive at first glance,
some amount of compression can improve the accuracy in
atmospheric parameter profile estimation. This analysis may
have a deep impact on other infrared sounding instruments
and hyperspectral sensors, both currently flying (e.g., AIRS)
or upcoming (e.g., MTG-IRS). The observed effect has been
widely exploited in signal and image processing problems
(see [24]–[27]), and can be explained by noting that com-
pression performs a sort of signal denoising and it generally
constitutes an indirect way to include spatial–spectral feature
relations, which ultimately help to pixelwise retrieval algo-
rithms. This turns to be an extremely simple yet an effective
way to improve retrieval results and comes at the price of
including a compression step before retrievals, where the
compression ratio needs to be properly adjusted.

D. Outline of This Paper

The remainder of this paper is organized as follows.
Section II details the proposed approach, describing the dif-
ferent compression paradigms and statistical retrieval methods.
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Fig. 1. Proposed sequential approach: after a feature extraction process,
compression is applied first, followed by the statistical parameter retrieval.

Section III provides the experimental results. Section IV pro-
vides some discussion about the reasons behind the observed
phenomena. Conclusions and further work are drawn in
Section V.

II. METHODS

This section introduces the experimental setting and meth-
ods. The proposed sequential approach includes first a com-
pression stage and then a stastistical parameter retrieval. Fig. 1
illustrates the adopted scheme. Two different compression
approaches will be considered. On the one hand, the maxi-
mum absolute error per pixel introduced in the reconstructed
image shall be bounded using a near-lossless paradigm.
On the other hand, the overall BR shall be controlled using
a lossy approach. Similarly, two different statistical retrieval
algorithms will be studied: a standard least squares LR and a
KRR method, which have provided a very good performance
in [3]. At a very early stage, a feature extraction/selection
process is conducted to discard some less useful components,
leading from the original 8461 spectral components on IASI
L1C products to 4699 spectral components [3].

A. Near-Lossless and Lossy Compression Techniques

Lossless compression techniques allow one to completely
reconstruct all the original data in the reconstructed image after
the decoding process is performed. However, compression
ratios for lossless coding are limited, usually not going beyond
2:1. Near-lossless and lossy compression removes some infor-
mation during the coding process, preventing the recovery
of all the original data, but allowing one to improve the
compression ratios as the introduction of distortion becomes
larger. These approaches rely on the assumption that the
quality of the data after the coding process is still appropriate
for the intended specific use.

Two recognized coding techniques, M-CALIC for near-
lossless and JPEG 2000 for lossy compression, are discussed
in this section.

1) Near-Lossless Compression: M-CALIC [18] has been
selected for near-lossless compression since it provides a com-
petitive performance when spectral redundancy is high, which
is the case of IASI L1C products. M-CALIC is a lossless
and near-lossless compression technique based on context-
based adaptive lossless image coding (CALIC) [28]. CALIC
was designed as a proposal for the ISO standard for lossless
and near-lossless compression of 2-D images, and although it
was not finally selected because of its higher computational

Fig. 2. M-CALIC basic architecture.

Fig. 3. JPEG 2000 basic architecture.

complexity compared with LOCO-I [29] algorithm, CALIC
provides a higher coding performance.

M-CALIC uses a multicomponent spectral predictor, along
with optimized model parameters and optimization thresholds.
The algorithm exploits correlation among components by
employing the two previous components of the current one in
the prediction, which allows capturing most of the spectral cor-
relation. The intensity of the pixel to be encoded is estimated
based mostly on the intensity of colocated pixels in previous
components, i.e., pixels at the same spatial position but in
components with a lower index. In fact, it is the prediction
error that is encoded. For near-lossless compression, these
prediction errors are quantized, ensuring that all distortion
peak absolute errors (PAEs) fall below a given threshold. Fig. 2
illustrates the basic architecture of M-CALIC.

2) Lossy Compression: JPEG 2000 is an international
standard developed by the Joint Photographic Experts
Group (JPEG). It was intended as the successor of JPEG
due to the JPEG limitations in many application areas,
such as mobile communications, medical diagnostic imaging,
enhanced Internet browsing, digital cinema, and multimedia.
JPEG 2000 provides a wide range of features in a single
compressed bitstream for a large amount of applications. Fig. 3
illustrates the basic architecture of JPEG 2000.

Two spectral transforms, namely, POT and DWT, are
applied along with JPEG 2000 to account for the large
correlation among the spectral components.

POT [21], [22] relies on the implementation of a divide-
and-conquer strategy to the Karhunen–Loève transform (KLT),
where the composition of smaller KLT transforms produces the
resulting transform. Each composition of the KLT is computed
from only two image components. In a classic KLT, every
component is decorrelated with each other, irrespective of
how much energy they share. In its turn, POT implements
a mechanism that decorrelates portions with high shared
energy while ignoring the other portions. POT works in a
multilevel mode, where a two-component KLT transform is
computed for every pair of consecutive components at each
level. This allows accumulating most of the image energy in
the first components since each composition is computed as
a classic KLT. Most of the signal energy is grouped into one
of the two resulting components allowing most of the image
energy to flow across the composition of transforms up to the
last level.
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TABLE I

EXAMPLES OF IASI L1C IMAGES USED IN THE EXPERIMENTS. TECHNICAL NAMES, IDENTIFIERS, AND SIZES ARE PROVIDED

The DWT can be seen as successive levels of decomposition
that allow decorrelating the processed data. Every time the
transform is applied, the signal is decomposed into two sets
of coefficients, the low frequencies (L) and the high frequen-
cies (H) sets. The low frequency set is a representation of the
input signal at a coarser resolution, while the high frequency
set represents details.

B. Statistical Parameter Retrieval

We aim at studying the impact of image compression
on the retrieval of atmospheric profiles using standard and
modern statistical retrieval algorithms. In particular, we will
pay attention to the KRR algorithm [23], [30], which gener-
alizes least squares LR. KRR has shown good performance
in the prediction of such variables using IASI L1 data in [3].
We analyze the performance for both LR and KRR at different
compression ratios.

Let us now fix the notation and review the formulation of
KRR for regression. The KRR, also known as least squares
SVM, is the kernel version of a regularized LR. Let xi ∈ RN

(spectra) and yi ∈ RM (state vectors), where i = 1, . . . , n
indicates the index of the n training samples. We want to
perform a linear least squares regression in a Hilbert space
H, of very high (possibly infinite) dimensionality DH, where
samples have been mapped through a mapping φ(xi). In the
matrix notation, the model is given by Y = �W+b, and under
the assumption of an additive i.i.d. noise model, Ŷ = Y + E
with Gaussian noise E ∼ N (0, σ 2

n I) of zero mean and standard
deviation σn .

Then, as in the regularized LR setting, we want to minimize
the regularized squared loss function Lp = ‖Y − �W‖2 +
λ‖W‖2 with respect to model weights W. In what follows, we
deliberately drop the bias term. Therefore, taking derivatives
with respect to W and equating them to zero gives W =
(���+λI)−1��Y, where � is the matrix of mapped samples,
[φ(x1)

�,φ(x2)
�, . . . ,φ(xn)

�], whose size is n × DH. Note
that this problem is not solvable as the inverse runs on matrix
���, which is of size DH × DH, and � is in principle
unknown. Here, we apply the representer theorem by which
we can express the solution as a linear combination of mapped
samples, W = ��α, and then the solution is expressed as
a function of the dual weights α (one per sample), α =
(��� +λI)−1Y. Note that now the problem is solvable as we
need only to compute the inverse of the (regularized) Gram
matrix K = ��� of size n × n. Even though the mapping
is unknown, one can replace this inner product matrix with
a similarity matrix between samples, which is known as the
kernel matrix K.

We finally need to show that we never actually require
access to the mapped feature vectors, which could be of infinite
dimension. What we need in practice is the predicted value
for a new matrix of test examples, X∗. This is computed by
projecting it onto the solution W

Ŷ∗ = �∗W = �∗��α = K∗α (1)

where the matrix K∗ contains the similarities between all
test and training samples, whose entries are K (xi , x j ) =
φ(xi )φ(x j )

�. The important message here is of course that
we only need access to the kernel function K . Examples of
typical kernel functions are the linear K (xi ,x j ) = x�

i x j , the
polynomial K (xi ,x j ) = (x�

i x j + 1)d , and the one used in our
implementation, the Gaussian function [radial basis function
(RBF)] kernel K (xi ,x j ) = exp(-‖xi − x j‖2/(2σ 2)). Therefore,
in KRR, two free parameters are tuned: the regularization para-
meter λ and the kernel parameter σ . We used a cross-validation
strategy for their optimization. For the interested reader, a
MATLAB implementation of KRR and other regression algo-
rithms can be found at http://isp.uv.es/soft_regression.html.

III. EXPERIMENTAL RESULTS

This section is devoted to report the experimental results.
First, we will describe the IASI L1C data used in the experi-
ments. Then, we will pay attention to the compression results
obtained by a near-lossless (M-CALIC) and a lossy (JPEG
2000) coding technique, and finally, we will evaluate the
impact of compression on linear (LR) and nonlinear (KRR)
retrieval of atmospheric parameters. Due to restrictions in the
space, we show results for only one image and one biophys-
ical variable in most of the experiments (see Supplementary
Material for the results for all the other images).1

A. Data Collection

To conduct the experiments, several IASI L1C images were
used. Table I provides characteristics for four images of this
data set. All the four images were obtained from the IASI-B
instrument (implemented on MetOp-B satellite), are 16 bits
per pixel per component (bpppc), and are stored as signed
integers.

B. Compression Results

All the considered IASI L1C images have gone through
a feature (component) selection process before carrying
out the compression stage. We selected a subset of spec-
tral components based on the minimization of measure-
ment errors [3], which discards components with negative

1http://isp.uv.es/coding_retrieval.html
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TABLE II

M-CALIC COMPRESSION PERFORMANCE IN BR (MEASURED IN BITS PER PIXEL PER COMPONENT, LOWER IS BETTER)
AND SNR ENERGY (MEASURED IN dB, HIGHER IS BETTER)

radiance and high levels of estimated noise by applying
thresholds on the estimated noise standard deviation per
component.

For near-lossless compression, we used the M-CALIC soft-
ware [31]. The tested images have been compressed using
the default parameters configuration. Eleven different PAEs,
δ ∈ {1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, 2047}, are
used in our experiments. Table II shows the performance for
M-CALIC compressor on IASI L1C products. Of course, the
higher the PAE, the lower the BR (or, equivalently, the higher
the compression ratio).

For lossy compression, we used the well-known JPEG 2000
Part 2 standard with two spectral transforms, DWT and POT.
We analyze three different compression schemes: 1) only a
spatial transform (DWT); 2) only a spectral transform (either
DWT or POT); and 3) both a spectral transform (either DWT
or POT) and a spatial transform (DWT). When applicable,
schemes are evaluated considering five and ten levels of DWT
spectral transform, and one, three, and five levels of DWT spa-
tial transform. Seventeen target BRs are analyzed, uniformly
distributed from 0.001 to 2 bpppc. Kakadu software [32]
was used for JPEG 2000 experiments. The standard provides
a multicomponent extension in its Part 2 [33]. In order to
compute the POT spectral transform, the POT software [34]
was used.

Fig. 4 shows the performance of the different lossy com-
pression schemes for the product IASI_20130817055657Z.
The results for the other images are practically identical and
hence not reported here for the sake of brevity. Actually,
due to space constraints, only the best configuration for each
scheme is plotted: 1) spatial DWT five levels; 2) spectral
POT ; and 3) both spectral POT + spatial DWT five levels and
spectral DWT ten levels + spatial DWT five levels. To facilitate
the performance comparison between near-lossless and lossy
compression, a curve reporting the performance of M-CALIC
is also plotted in Fig. 4. For M-CALIC, only compression
results for PAEs between 15 and 2047 are plotted, because
lower PAEs imply BRs larger than those commonly employed
for lossy compression.

One can see that, as expected, the best performance is
achieved when a spectral transform followed by a spatial
transform is applied. The performance comparison between
POT and DWT as spectral transforms is very similar, and
selecting one or the other may depend not only on the
coding performance but also on complexity issues. In addition,

Fig. 4. Rate–distortion performance for near-lossless and lossy compression.
The results show SNR energy (in db, higher is better) versus BR (in bits per
pixel per component) for image IASI_20130817055657Z.

as expected, M-CALIC starts achieving competitive coding
performance only at medium to high BRs.

C. Retrieval Assessment

This section presents the results of estimating physical
variables (temperature and dew point temperature) using com-
pressed IASI L1C images. Results are reported for image
IASI_20130817055657Z for moisture prediction (related dew
point temperature). Once more, results for the other images
are practically identical, and hence not reported here for
the sake of brevity. Similarly, reciprocal performance is
obtained for temperature estimation; these results are not
reported either for the sake of conciseness. For Supplemen-
tary Material, we encourage the reader to browse through
http://isp.uv.es/coding_retrieval.html, which reports detailed
results for four IASI L1C products, for both near-lossless and
lossy compression and for both temperature and dew point
temperature.

The acquisition conditions vary depending on several fac-
tors, and globally, this affects the values of the radiances
from overpass to overpass. We can identify three different
strategies to mitigate the effect of training and testing on
statistically different data sets: 1) adapt the regression method
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Fig. 5. Estimation using LR or KRR for M-CALIC compression. The
horizontal axis represents the compression ratio and the vertical axis represents
the mean RMSE (dew point temperature in kelvin) over the different pressure
levels. The plot shows the results for M-CALIC compression when using LR
(dashed line) and KRR (solid line) for predicting moisture as compared with
the retrieval results on original images.

in each overpass; 2) build a sufficiently large and representa-
tive training data set; and 3) adapt the feature representation
(relative normalization) in each overpass. In this paper, we
decided to start with the simpler first approach, and hence
the statistical retrieval algorithms (LR and KRR) are trained
(and cross validated) in each overpass, as previously done
in [3]. The approach is simple and efficient. The second
approach implies building a representative big data set, but
this is challenging, suboptimal, and makes training methods
more complex. The last approach would be certainly ideal,
but still unsolved in signal processing and machine learning,
where this is commonly referred to as manifold alignment or
domain adaptation. Domain adaptation assumes that the test
examples come from a slightly different distribution to those
from the training set. Several works trying to accommodate
such statistical differences between train–test distributions
have been proposed in [35]–[37]. Such complex methods are
not considered in this paper. In order to avoid the effect of
this data set shift problem, we assume an ideal situation: the
acquisition conditions are exactly the same for both train and
test (data points inside the same image are used for training
and testing), but both data sets are disjoint, i.e., we report
results in a test set never seen by the regression algorithms
for training. This is the most common case in [38].

In the experiments, we follow a similar procedure as in [3].
We apply LR and KRR on IASI data hyperpixels to predict
temperature and humidity at different pressure levels, i.e.,
all the spectral components at a particular spatial position
are considered for the regression. The experiments are con-
ducted on images compressed at different target BRs (different
compression ratios). For each image, coding scheme, and
compression ratio, we follow the same procedure. A set of
2000 samples is used for training and a different set of 2000
samples is used for testing. Note that the test samples are
not used in any moment in the training process and that test
samples are used only for the evaluation of the performance.

Fig. 6. Moisture RMSE (dew point temperature in kelvin) profiles for near-
lossless compression. We chose the PAE with the best average RMSE. For LR
(dashed line) and KRR (solid line), the minimum averaged RMSE is obtained
at a compression ratio of 129:1. Results when using original images are shown
as well for comparison purposes.

Samples are first drawn following a random distribution; then,
to allow a fair comparison, the position of the training samples
and the position of the test samples are kept constant for all
coding schemes. The procedure consists of two steps. First,
the dimensionality of the data is reduced to 260 components
using the classical PCA/EOF transformation in the spectral
domain. Then, LR and KRR models are applied to predict the
temperature and the humidity profiles (i.e., the values at each
pressure level) at the spatial position corresponding to each
particular sample. LR and KRR are trained on input samples of
260 dimensions to predict output samples of 137 dimensions
(one for each pressure level). We employ regularization for
both methods. In addition, we train the parameters of both
methods using cross validation for minimizing the average
root-mean-square error (RMSE) of the predictions for all
the pressure levels, one parameter for the LR method (the
regularization parameter) and two parameters for the KRR
method (the regularization parameter and the kernel RBF
sigma parameter). Everything that needs to be trained (PCA
and the regression parameters) is trained using just the training
set. Once everything is learned, the same procedure is applied
to the test data. To assess the performance, we compute in
the test set the RMSE between the predictions given by the
regression models and the ground-truth values of temperature
and humidity in each pressure level.

1) Retrieval Assessment for Near-Lossless Compressed
Images: Figs. 5 and 6 summarize the prediction results that
can be obtained using the selected near-lossless coding tech-
nique, M-CALIC, and the investigated regression methods,
LR and KRR. Fig. 5 shows the average RMSE across the
whole atmospheric column as a function of the compres-
sion ratio and the RMSE for each specific pressure level,
respectively. One can see that while small compression ratios
[left of Figs. 5 and 6] keep the results almost unchanged,
larger compression ratios benefit the retrieval performance.
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Fig. 7. Moisture RMSE (dew point temperature in kelvin) profiles for
lossy compression. The selected configuration for multicomponent JPEG 2000
lossy compression is POT as spectral transform and five levels of spatial
DWT. We chose the compression ratio with the best average RMSE. For LR,
the minimum averaged RMSE is obtained at a compression ratio of 3200:1.
For KRR, the minimum averaged RMSE is obtained at a compression ratio
of 1600:1. The results when using original images are shown as well for
comparison purposes.

Nevertheless, when the level of distortion inserted—due to the
excessive compression—is increased [right of Figs. 5 and 6],
the prediction results start to deteriorate. The effect is the same
for both LR and KRR, but with an improved accuracy for
KRR. These results, although counterintuitive, are consistent
with the facts and results reported before in the literature.
We refer the reader to Section IV for a lengthy discussion
providing explanations and examples for this behavior.

Fig. 6 reports the RMSE results for the different pressure
levels (measured in hectopascals) achieved after a near-lossless
compression at compression ratio 129:1; again, we can observe
that compression benefits the retrieval estimation and that KRR
yields a higher performance than LR.

2) Retrieval Assessment for Lossy Compressed Images: As
Fig. 6 in the case of near-lossless compression, Fig. 7 reports
the RMSE results for the whole range of pressure levels. The
above conclusions apply here too: introducing compression
benefits the retrieval estimation and KRR is superior to LR.

Next, Fig. 8 summarizes the prediction results that can
be obtained using the selected lossy compression approach
(JPEG 2000 with several compression configurations) and LR
or KRR. Fig. 8 shows the average of the RMSE prediction
over the different pressure levels. Several relevant conclusions
can be extracted from Fig. 8.

1) KRR Always Yields Better Results Than LR: It is clear
from the individual plots that for the same configura-
tion of spatial and spectral compression methods, KRR
always produces less error than LR.

2) Using Compressed Images Produces Better Results Than
Using Original Images: This statement is derived by
comparing the top leftmost plot of Fig. 8 (original
images) with the other plots of Fig. 8. Actually, this
is confirmed within a wide BR range. Although it could

seem counterintuitive at first glance (compressed images
carry less information than original ones), compression
algorithms capture and convey the important informa-
tion, which allows the prediction algorithms to focus on
just this spatial–spectral compact information, and thus
they can yield a better performance. Of course, when the
BR is very small (i.e., a high compression is applied), the
remaining information is very small and the prediction
performance decreases regardless of the capacity of the
regression method (either LR or KRR). We argue that
the positive influence is an effect of the spatial–spectral
compression applied, which can be seen as an efficient
(yet indirect) way to include spatial–spectral relations in
the retrieval algorithm (see Section IV).

3) Spatial Transform Is More Important Than Spectral
Transform: If we look at the plots within the same row,
going from left to right (from a lower to a larger number
of levels of spatial wavelet transform), the performance
of the retrieval algorithms increases. This effect is less
notable across columns, i.e., using different spectral
transforms or a different number of transform levels
for the same wavelet-based spectral transform does not
have significantly different effects on the retrieval per-
formance. Note that prediction is performed using single
hyperpixels, and therefore, the prediction models are
not using spatial information directly, although they are
indirectly using it through the compressed data. Actually,
spatial transform fuse the spatial information in a way
that the compressed hyperpixels carry some information
about the close-by hyperpixels, while original hyperpix-
els carry only the spectral information. As such, spatial
transform helps to introduce some spatial information in
the prediction (see Section IV).

4) Using Both Spectral and Spatial Transforms Yield the
Best Retrieval Performance for Low BRs: Using an
extremely low BR (0.005 bpppc) produces a very good
performance in retrieval accuracy [see the rightmost
plot in the second row (green triangles) and in the
last row (gray diamonds) of Fig. 8]. These would be
the best configurations if the interest is to optimize the
performance and compression ratio simultaneously.

Finally, Fig. 9 compares the performance of the different
compression schemes considering the compression ratio that
yields the lower mean RMSE. Again, the conclusion is that
using both spectral and spatial transforms yield the best
retrieval performance.

IV. DISCUSSION

As reported in Figs. 5–8, compressing the images before
carrying out the statistical retrieval for weather forecast brings
a significant improvement. In order to understand this observed
positive effect, we should first review some well-known facts
in signal and image processing. First, it is acknowledged that
signal coding is a way of performing signal filtering and
denoising. This is a known fact reported elsewhere [24]–[27].
The connections between denoising and compression have
been actually widely studied theoretically [39] and exper-
imentally in general and for wavelet transforms in
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Fig. 8. Estimation using LR or KRR for different spatial and spectral configurations for lossy compression. In all the plots, the horizontal axis represents
the compression ratio, and the vertical axis represents the averaged RMSE (dew point temperature in kelvin) over the different pressure levels. Ranges are
the same in all the plots to ease the comparison. Each plot shows the results for a particular compression configuration when using LR (dashed lines) and
KRR (solid lines) for predicting moisture. Configurations using the same number of levels for the spatial wavelet transform are in the same column and
configurations using the same spectral transform are in the same row (same color and multiple color shades). “No” refers to no transform (neither spatial nor
spectral). The minimum averaged RMSE in each curve is indicated with a larger marker point.

particular [26], [27], [40]. Therefore, it goes without saying
that when one performs lossy signal compression (coding), the
obtained signal is denoised.

An additional important observation, relevant to our discus-
sion, is the fact that using a filtered (denoised) signal typically
improves regression and function approximation results. The
presence of noise in the observations obviously hampers
estimation of the underlying signal. This is why very often
when performing regression, one aims at estimating the noise
(or its covariance) where the signal was buried. Such a noise
estimate is then used to discount the uninformative noise
contributions in the observation, which definitely helps in
recovering the signal. There is a vast literature in both noise
(covariance) estimators and how one can embed these priors
in generalized least squares [41], which has been extended for
nonlinear regression under a Bayesian framework in [42] and
the kernel framework in [43], [44]. However, noise estimation

is typically difficult, especially when signal-dependent noise
(heteroscedasticity), structured domains (as in time series or
images), or outlying samples are present. A much simpler and
more practical approach is to just filter out the observed signal
before applying the regression algorithm. Such filtering can
be done with standard PCA projection on the top eigenvectors
(thus assuming that noise is related to the higher frequency
components), via wavelets (thresholding coefficients in partic-
ular scales or orientations whenever some knowledge about
the signal is available) or via iterative thresholding methods
(that iteratively refine the signal estimation). In conclusion, as
mentioned before, compression schemes constitute an alterna-
tive indirect simple way to filter signals.

Actually, using wavelet-based and M-CALIC coding
schemes yields an extremely useful by-product: they
reinforce/encode spatial relations in the generate product.
Coding schemes such as the ones used in this paper
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Fig. 9. Performance of the different lossy compression schemes for predicting moisture. The vertical axis reports the minimum averaged RMSE (dew
point temperature in kelvin) achieved for each compression scheme. The horizontal axis represents the different lossy compression configuration schemes; the
ordering follows that of Fig. 8, first by type of spectral transform (same color) and then by number of levels for the spatial wavelet transform (color shade).

(wavelet-based multicomponent JPEG 2000 for lossy compres-
sion and M-CALIC for near-lossless compression) not only
typically reduce the noise variance but also encode spatial
smoothness in the compressed image. Compression algorithms
aim to concentrate information in a reduced set of coefficients,
which is done through “decorrelation” of the observation
space (spatial, spectral, or both), and very often assume
stationarity (hence smoothness) implicitly. This is obviously
an indirect simple way to enforce local (spatial) relations
between nearby pixels. Image compression therefore enforces
pixel correlations and smoothness in the image plane, which
can be exploited in pixelwise regression algorithms to improve
the spatial homogeneity/consistency of the prediction maps
too. In fact, it is widely acknowledged that model inversion
and parameter retrieval in remote sensing applications largely
improve when including spatial information (see [45], [46],
and the references therein). Moreover, in recent years, it is
being widely accepted that using the spectral information only
(as done by pixelwise algorithms), is not optimal and that it is
important to find a tradeoff between the spatial and the spectral
information [47].

Finally, we should mention that these observations are not
new in signal and image processing. Several applications ben-
efit from a coding-first scheme. There is a wide evidence that
compressing the signal before any further processing is bene-
ficial. We have shown this effect previously for several com-
pression algorithms in hyperspectral image classification [12],
and it has been a common strategy in other applications such
as genomics,in particular for next-generation sequencing [48],
[49], seismic signal processing [50], [51], bioengineering [52],
and communications [53]. Therefore, we posit that what we
report is yet another case of an effect previously observed in
signal and image processing, here transported to the field of
biophysical–geophysical parameter estimation in atmospheric
applications using infrared sounding data.

V. CONCLUSION

This paper was concerned with how to include spatial–
spectral information for retrieving atmospheric profiles of

temperature and humidity using infrared sounders and statis-
tical regression. While many sophisticated approaches can be
deployed for this purpose (e.g., contextual and spatial–spectral
feature extraction or filtering at a postprocessing stage), they
typically involve handcrafted features and engineering new and
complicated retrieval algorithms, nonautomatic processes, and
tedious user intervention. Last but not least, such processes
raise important issues about parameter tuning and the little
control one has on the retrieval generalization capabilities.
Alternatively, we approached the problem in an indirect way
by compressing the hyperspectral cubes before performing
retrieval. Compression techniques are well understood and
the impact on the quality of the radiances can be easily
controlled by prescribing a compression ratio. A wide range
of spatial, spectral, and spatial–spectral image compression
approaches were evaluated and two linear and nonlinear
regression algorithms were compared. Results for the pre-
diction of both temperature and humidity can be found at
http://isp.uv.es/coding_retrieval.html.

Near-lossless compression was carried out through the
M-CALIC coding technique, while lossy compression was
based on the multicomponent JPEG2000 standard. Even
though both compression approaches introduce certain level of
distortion on the original data, they simultaneously incorporate
the spatial–spectral feature relations, so there is no need to
design specific retrieval algorithms that fuse such information.
In our experiments, we searched for an acceptable compression
ratio on IASI L1C products such that it has a positive impact
on the accuracy of the statistical retrievals, i.e., an optimal
tradeoff between the positive effect of the compression, i.e.,
the introduction of spatial relations and some sort of denoising
on the data, and its negative effect, i.e., the reduction of infor-
mation compared with the original image. Our first conclusion
is interesting enough, and we think that the message can be of
high interest to the parameter retrieval community in general
and to scientists and organizations dealing with atmospheric
retrieval models in particular. We show that compression is a
very easy, cheap, and consistent way to perform denoising and
to introduce spatial–spectral image relations in the compressed
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product that largely benefits the current (pointwise) retrieval.
We observed that high compression ratios yielded improved
results in predicting dew point temperature (similar results for
temperature were obtained; see Supplementary Material) in
all the experiments for moderate and high compression ratios.
Of course when the compression ratio is extremely large, this
effect vanishes, since the amount of information removed by
the compression is too large.

Our second message we want to convey in this commu-
nication is that a spatial transform revealed itself to be more
important than a spectral transform. This observation is related
to the fact that the retrieval algorithms work in a pixelwise
manner, and hence the spatial component is missing. This
is why the spectral–spatial image compression configuration
results in such large gains in spectrum-based retrieval. We will
explore in future works the tradeoff between the gains obtained
when using a scheme based on spectral–spatial compression
plus spectral retrieval versus a more complete yet challenging
spectral–spatial compression plus spectral–spatial retrieval.
This second approach would require, however, redesigning
retrieval algorithms, which in most of the cases are pixel based.

As the main conclusion, we want to highlight that compres-
sion prior to model inversion is largely beneficial in retrieval
problems in general. The benefit is not only of practical use
but also computationally convenient and more accurate. It is
practical because following the presented methodology does
not change current operational approaches much.

1) Current retrieval schemes would be still valid since they
would be fed with efficiently compressed data before the
retrieval instead of the original data.

2) There are moderate-to-big savings in data storage and
transmission because of the compression step.

The benefit is also in terms of prediction accuracy, as we have
observed consistent gains in all cases and images. We believe
that the proposed methodology may benefit the development
of current and upcoming infrared sounding and hyperspec-
tral sensors to advance in biophysical–geophysical parameter
estimation schemes. It has not escaped our notice that the
same procedure can be actually applied to other algorithms
for retrieval, such as the OE scheme or Bayesian approaches,
and to other problems dealing with high resolution data, such
as spectral unmixing. These issues are the subject of further
research studies.
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Abstract: In this paper we analyze the effect of spatial and spectral compression on the performance of1

statistically based retrieval. Although the quality of the information is not completely preserved during the2

coding process, experiments reveal that a certain amount of compression may yield a positive impact on the3

accuracy of retrievals. We unveil two strategies, both with interesting benefits: either to apply a very high4

compression, which still maintains the same retrieval performance as that obtained for uncompressed data; or to5

apply a moderate to high compression, which improves the performance. As a second contribution of this work,6

we focus on the origins of these benefits. On the one hand, we show that a certain amount of noise is removed7

during the compression stage, which benefits the retrievals performance. On the other hand, we analyze the8

effect of compression on spectral/spatial regularization (smoothing). We quantify the amount of information9

shared among the spatial neighbours for the different methods and compression ratios. We also propose a10

simple strategy to specifically exploit spectral and spatial relations and find that, when these relations are taken11

into account beforehand, the benefits of compression are reduced. These experiments suggest that compression12

can be understood as an indirect way to regularize the data and exploit spatial neighbours information, which13

improves the performance of pixel-wise statistics based retrieval algorithms.14

Keywords: Infrared Atmospheric Sounding Interferometer (IASI), Lossy Compression, Spectral Transforms,15

JPEG 2000, Statistically Based Retrieval, Kernel Methods, Regression.16

1. Introduction17

In recent decades, advances in remote sensing technology have made it possible to collect information from18

the electromagnetic spectrum with unprecedented accuracy and resolution [1]. Infrared sounder instruments19

usually produce large volumes of data, which is costly to manage in an operational context, i.e., for transmission,20

processing, and storage. An effective strategy to alleviate the problems derived from the data size is to compress21

the data according to the specifics needs of the final users. However, in order to achieve high compression22

ratios, it is typically needed to go through a lossy compression stage. Lossy compression entails to lose some23

information in the reconstructed data, which may compromise the quality of the products in later processing24

stages. Therefore, a careful evaluation of the impact of the compression process applied to the data is needed to25

determine the quality of the information and of the derived products.26

Although lossy compression implies going through a distortion process, the quality of the recovered data27

can be still adequate for the intended specific use. If the amount of the inherent data acquisition noise is large,28

the signal removed during the coding process is mostly noise for certain compression ratios [2,3]. Therefore, the29

Submitted to Remote Sens., pages 1 – 28 www.mdpi.com/journal/remotesensing
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amount of useful signal lost is usually low and the quality of the recovered products may be yet appropriate, or30

even better suited, to feed a subsequent information extraction stage. Of course, if the compression ratio is very31

high, a lot of useful information is removed and the quality of the reconstructed data is seriously compromised.32

The impact of lossy compression on information extraction systems has been investigated in several33

application areas. Ryan and Arnold [4] discussed the lossy compression of remotely sensed images using34

vector quantization in the context of image classification. The impact of compression was analyzed on the35

maximum likelihood classification of the recovered data concluding that the loss in the classification accuracy36

was not significant (less than 8%). Sánchez and Perronnin [5] evaluated two lossy compression techniques,37

one based on product quantizers and another based on dimensionality reduction, to assess large-scale image38

classification. Results reported that compression ratios between 64:1 and 128:1 produced little loss in the39

classification performance. Similar results were obtained in Minguillon et al. [6], Kaarna et al. [7], Zabala et al.40

[8], Blanes and Serra-Sagristà [9], Álvarez-Cortés et al. [10], where lossy compression did not markedly reduce41

classification accuracy.42

Besides, several studies have analyzed the effect of near-lossless and lossy compression techniques based43

on JPEG 2000 standard within the framework of feature extraction, classification, and anomaly detection44

tasks. Pal et al. [11] analyzed the performance of supervised, unsupervised, and hybrid classification processes.45

Results reflected that classification accuracy was still reliable even at low bit-rates (high compression ratio).46

A compression scheme based on Principal Component Analysis (PCA) was proposed in Du and Fowler [12]47

producing competitive results in terms of information preservation in anomaly detection tasks. Supervised and48

unsupervised classification of reconstructed data was evaluated in Blanes et al. [13]. The experimental results49

showed competitive classification performance after the compression stage. Analogous results were reported in50

Carvajal et al. [14], where the proposed compression algorithm for hyperspectral images did not significantly51

reduce the performance of hard classification, linear spectral unmixing, and anomaly detection.52

An interesting observation was reported in Penna et al. [15], where the impact of lossy compression of53

hyperspectral data was analyzed on multiclass classification, classification of mixed pixels via spectral unmixing,54

binary hard classification, and anomaly detection. Experimental results revealed that for multiclass classification55

and spectral unmixing, the Signal-to-Noise ratio (SNR) was a reasonable indicator of classification performance;56

for binary hard classification, the performance was little dependent on the SNR; and for anomaly detection, the57

compression algorithms that produced the best rate-distortion performance were not the best choice. Actually,58

the effect of lossy compression on supervised classification and spectral unmixing using support vector machines59

was quantified in García-Vílchez et al. [2]. The assessment reported that lossy compression can produce accurate60

results even at high compression ratios (above 16:1).61

The estimation of atmospheric parameters from remote sensing data is an inverse problem where we62

retrieve the physical parameters given a set of observations. Inverting the physical (radiative transfer) model63

through look-up-tables or optimal estimation models (OEM) [16] are standard approaches, but they lead to much64

higher computational costs than those required for statistical approaches [17]. In the last decade, statistical65

model inversion based on machine learning has provided excellent performance in accuracy and efficiency66

terms. Statistically based atmospheric parameter retrieval from IASI and AIRS data was first conducted using67

vanilla neural networks trained with backpropagation [18–20]. In a set of previous comparisons [17,21–24]68

we used other forms of nonlinear and nonparametric machine learning regression like more advanced neural69

nets, kernel ridge regression and Gaussian processes. Other strategies to plain regression consider introducing a70

dimensionality reduction before the regression. Smart approaches consider spatially and noise-aware transforms71

like in [23,25], or more advanced nonlinear dimensionality reduction approaches based on kernel machines [26].72

The functional sliced inverse regression (FSIR) in [27] is a dimensionality reduction method that generalizes73

PCA by designing a spectral information driven by the parameters to be retrieved. FSIR is actually related to linear74

discriminant analysis (LDA) and partial least squares (PLS) approaches, being a kind of supervised dimensionality75

reduction approach, and provides noise-aware feature components (hence being related to minimum noise fraction76

-MNF- methods). Nevertheless, the standard PCA approach is still the most widely adopted and studied for77

dimensionality reduction in atmospheric parameter retrieval. In [28] the impact of spectral compression on78

statistically based retrievals was analyzed, investigating the use of Principal Components Analysis (PCA) based79
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methods for compressing high-resolution infrared measurements before performing linear regression. It was80

shown that a compression ratio of 15:1 can be performed with low degradation of the temperature and water81

vapour retrievals. In [29,30] we observed that data that had gone through a near-lossless and lossy compression82

process enabled achieving, for certain compression ratios, improved statistically based retrieval performance83

compared to the retrieval on the original products. It was suggested that the spectral/spatial regularization and the84

noise filtering produced by the compression stage benefit the performance of the statistical retrieval algorithms.85

However, these counterintuitive observations were scarcely studied. In this paper, we provide appropriate86

responses to the observations reported in [29,30], investigate the actual impact of compression in the retrievals,87

and supply results and discussion to understand why lossy compression may give rise to improved retrievals.88

This led us to lay out the main contributions of this paper:89

1. While experiments in [29,30] were carried out in an ideal scenario, where samples to define the training,90

validation and testing subsets were acquired under the same conditions, here, we assume a more realistic91

scenario, where samples used to define the training, the validation and the testing subsets come all from92

disjoint orbits. Therefore, conclusions are not biased by an eventual risk of model overfitting.93

2. Three different multi-component transforms have been employed in the compression process, all bringing94

forth improved performance.95

3. The causes of the benefits on the retrieval performance due to a compression stage are thoroughly96

investigated and discussed, and reasons of the statistically based retrieval improvement are provided.97

In this paper, a wide spread lossy compression technique and two different statistical retrieval algorithms98

are evaluated on Infrared Atmospheric Sounding Interferometer (IASI) L1C data [31]. For lossy compression,99

JPEG 2000 standard [32] is paired along with three different spectral transforms: the Discrete Wavelet Transform100

(DWT) [33], the Pairwise Orthogonal Transform (POT) [34]), and the Multilevel Clustering Karhunen-Loève101

Transform (Multilevel Clustering KLT) [35]. For atmospheric variables prediction, a linear and a nonlinear102

statistically based retrieval algorithm, i.e., the Linear Regression (LR) and the Kernel Ridge Regression (KRR)103

[36], respectively, are employed in the retrieval of physical information (temperature and dew point temperature104

profiles) from the reconstructed data.105

To investigate the origin of the improved retrieval performance produced by lossy compression, two106

approaches are followed. On the one hand, we analyze the noise level remaining in the recovered spectra. On107

the other hand, we compare the performance of the retrieval algorithms when a compressed (and reconstructed)108

data is employed, with a simple method which specifically takes into account information from the spatial and109

spectral neighbours. Experiments reveal that the improvement in retrieval accuracy is motivated by: 1) lossy110

compression performing some noise filtering, which typically improves regression and function approximation111

results; and 2) compression being an indirect way to exploit spatial feature relations, which, generally, helps in112

pixel-wise retrieval algorithms.113

The remainder of the paper is organized as follows. Section 2 introduces the proposed sequential approach114

detailing the compression scheme and the statistically based retrieval methods used in the experiments. Section 3115

reports the data collection used in the experiments. Section 4 reports and analyzes the experimental results.116

Section 5 provides an extensive discussion. Finally, Section 6 draws some conclusions.117

2. Methodology118

This section describes the methods and techniques used in the experiments. For the compression stage,119

the JPEG 2000 standard is paired along with three spectral transforms to exploit the high spectral redundancy120

present in IASI L1C data. For atmospheric prediction, two different statistically based retrieval algorithms, which121

have provided competitive performance in atmospheric parameter retrieval [37], are employed: a standard least122

squares LR and a kernel ridge regression (KRR) method.123

Figure 1 illustrates the proposed sequential scheme. In a first stage, the data is lossy compressed. At the124

receiver side, data is decompressed to produce the reconstructed data. Finally, the statistical parameter retrieval is125

carried out on the reconstructed data.126
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Figure 1. Proposed sequential chain.

2.1. Data Compression127

Compression of remote sensing products is an efficient strategy to reduce the large size of the collected128

data. In recent years, various compression strategies have been adopted in several standards and have been129

implemented both on board the satellites and on-the-ground processing stations [38–42].130

Three compression approaches can be considered, namely, lossless, lossy, and near-lossless. Lossless131

compression is the mandatory approach when the original signal must be fully preserved, however, the achievable132

compression ratios are rather low (below 5:1). Lossy compression can be a desirable approach in scenarios133

where high compression ratios are required and losing some information in the signal might be admissible.134

Near-lossless compression is also a lossy compression approach, where some information is removed from135

the original data, but the compression ratios achieved are closer to lossless compression than to typical lossy136

compression. Near-lossless compression is an adequate approach when higher compression ratios compared to137

lossless compression are demanded and, at the same time, a specific fidelity criterion (usually the peak absolute138

error) must be preserved in the recovered data.139

Here we will focus on lossy compression because it is a widely accepted strategy when large volumes of140

remote sensing data need be compressed, as witnessed in the today-in-use pipeline for IASI data [43,44] (recall141

that we will use IASI data for the experiments).142

2.1.1. Lossy Compression143

Lossy compression approach allows to achieve high compression ratios at the expense of recovering a144

reconstructed data not identical to the original ones. It is expected that the reconstructed data preserve enough145

information to be used for the intended specific purpose, while alleviating problems derived from the transmission,146

handling, and storage of large volumes of information.147

The international standard JPEG 2000 [32] is used to carry out the lossy compression stage. JPEG 2000148

was published by the Joint Photographic Experts Group (JPEG) in year 2000 as the successor of classical JPEG149

coding standard, and provides a wide diversity of features and functionalities in a single compressed code-stream:150

among others, lossless and lossy compression, progressive lossy-to-lossless coding, robustness to the presence151

of errors, region-of-interest coding, and progressive transmission. JPEG 2000 is employed in a wide range of152

applications, e.g., remote sensing, medical imagery, mobile applications, digital library, digital photography, etc.153

To achieve competitive compression performance in data formed by thousands of spectral components, like154

IASI L1C products, it is of paramount importance to exploit the redundancy present in the spectral dimension.155

Three spectral transforms are paired along with JPEG 2000: the Discrete Wavelet Transform (DWT), the Pairwise156

Orthogonal Transform (POT), and the Multilevel Clustering Karhunen-Loève Transform (Multilevel Clustering157

KLT).158

DWT decomposes the processed signal into different subbands, which allows to decorrelate the data to159

be encoded. When the transform is applied, the signal is decomposed into two set of coefficients: the low160

and high frequency subbands. The low frequency subbands (L) have a coarse frequency resolution, while161

the high frequency subbands (H) represent fine details of the data. The high frequency subbands contain162

coefficients that can be discarded or quantized to achieve efficient lossy compression. Often, competitive data163

quality can be achieved from a small amount of transform coefficients, which makes DWT a suitable transform164
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for lossy compression [45]. DWT can be applied on the transform coefficients (low frequency subbands) in165

successive levels producing further decorrelation, although the optimal number of transform levels shall depend166

on the particularities of the data. DWT can be used too to transform two dimensional signals by applying a167

one-dimensional transform in the vertical direction and a one-dimensional transform in the horizontal direction,168

which usually improves the coding results.169

Both POT and Multilevel Clustering KLT are affordable approximations of the computationally demanding170

Karhunen-Loève Transform (KLT) [46], which is optimal decorrelating Gaussian sources. A critical consideration171

when applying a spectral transform on data volumes with large spectral dimension is the computational complexity172

[47]. Some spectral transforms like the KLT may prove unusable for large dimensions such as in IASI data.173

POT and Multilevel Clustering KLT rely on the implementation of a divide-and-conquer strategy to the KLT.174

While a classic KLT decorrelates all components with each other regardless of how much energy they share,175

a divide-and-conquer strategy implements a mechanism to decorrelate several spectral components with high176

shared energy and ignore the other components. The resulting transform is the composition of smaller KLT177

transforms, where each composition is processed as a classic KLT. If a multilevel mode is used, most of the178

data energy flows across the composition of transforms up to the last level, because most of the signal energy is179

grouped in the first few decorrelated components, which are further decorrelated in upper levels. POT uses a180

two-component KLT transform for every pair of consecutive components and works in a multilevel mode. In the181

case of Multilevel Clustering KLT, each composition of KLT can be formed by a number of spectral components182

between two and all the spectral components. Figure 2 illustrates the structure of a classical KLT, of a POT and183

of a Multilevel Clustering KLT.184

C3,1

C2,1 C2,2

C1,2 C1,3 C1,4C1,1

C2,1

C1,2C1,1

a) Classical KLT b) POT c) Multilevel Clustering KLT

Figure 2. Structure of a classical KLT, POT, and Multilevel Clustering KLT. This example decorrelates eight
spectral components. Each arrow denotes a component and each coloured rectangle represents the computation of
a KLT. In the case of POT, three levels of transform are applied, with a different number of clusters per level,
and all clusters transforming two components. In the case of Multilevel Clustering KLT, two levels of multilevel
clustering are applied and two clusters are defined in the first level.

2.2. Statistically Based Parameter Retrieval185

In the last decades, statistically based retrieval has proved to be very useful to solve inverse problems using186

remote sensing data. Different algorithms have been considered, but mainly restricted to neural networks [18–20,187

23] and kernel machines and Gaussian processes [17,21,22,24]. In particular, kernel methods are well suited due188

to its ability to deal with high dimensional data [48]. Kernel methods generalize linear algorithms while still189

relying on linear algebra. This is why we focus on two approaches for (first guess) parameter estimation: least190

squares (regularized) linear regression and its generalization using kernels. We will use classical linear regression191

(LR) and kernel methods in this work to implement the step of retrieving physical parameters from the data.192

We will use the Kernel Ridge Regression (KRR) algorithm [36,49], which has shown very good performance193

in prediction when used on IASI L1 data on different problems [37,50,51]. KRR was the method employed in194

[29,30] to analyze the effect of compression on physical parameters retrieval at different compression ratios. The195

KRR has the advantage of generalizing least squares linear regression to the nonlinear regression case.196



Version June 12, 2018 submitted to Remote Sens. 6 of 28

2.2.1. Statistically Based Retrieval Methods197

Here we define the notation and review the formulation of KRR from the LR solution. We will denote198

xi ∈ RDx as the inputs and yi ∈ RDy as the desired outputs. In matrix notation, we will denote the training input199

samples as X = [x1 . . . xN ] ∈ RN×Dx , the training desired outputs as Y = [y1 . . . yN ] ∈ RN×Dy , the test input200

samples as X∗ = [x∗1 . . . x∗N ] ∈ RM×Dx , and the test desired outputs Y∗ = [y∗1 . . . y∗N ] ∈ RM×Dy . Using the201

matrix notation, the application of the linear model is:202

Ŷ∗ = X∗WL, (1)

where we have discarded the bias term and WL ∈ RDx×Dy are the regression weights. We fit the weights using203

classical least squares solution, which depends on the inversion of (X>X). In order to ensure inversion we use204

the classical Tikhonov regularized solution:205

WL = (X>X + λI)−1X>Y. (2)

Kernel methods are based on defining a mapping function φ(x) for the input samples to a Hilbert space,206

H, of very high (possibly infinite) dimensionality DH. KRR can be defined following the same procedure as in207

the LR case as a linear least squares regression in the Hilbert space. If we map the samples using the mapping208

function we have Φ = φ(X) ∈ RN×DH , and Φ∗ = φ(X∗) ∈ RM×DH . Therefore the prediction model is given209

by:210

Ŷ∗ = Φ∗W. (3)

As in the LR case, we can apply the Tikhonov regularized solution to find the weights:211

W = (Φ>Φ + λI)−1Φ>Y. (4)

Note that this problem is not solvable as the inverse runs on matrix ΦΦ>, which is of size DH × DH, and212

Φ is in principle unknown. However, if we use a λ that ensures that the matrix can be inverted, the solution is213

equivalent to:214

W = Φ>(ΦΦ> + λI)−1Y. (5)

If we summarize the right part of the equation by α = (ΦΦ> + λI)−1Y, the predictions for the text input215

samples is:216

Y∗ = Φ∗Φ>α. (6)

Note that even though the mapping Φ is unknown, one can replace this inner product matrix with a similarity217

matrix between samples, which is known as the kernel matrix K. In this case we can replace the Gram matrix as218

K = ΦΦ>, and equivalently K∗ = Φ∗Φ>. Therefore the predictions can be computed by:219

Ŷ∗ = K∗α. (7)

In KRR we only need a kernel function, k(xi, xj), according to the Mercer’s theorem [52]. Kernel methods220

literature is full of examples of proper kernel matrices. Here we will use the most standard one, the Gaussian221

Function (Radial Basis Function, RBF) kernel k(xi,xj) = exp(-‖xi − xj‖2/(2σ2)), which has only one free222

parameter, σ. Therefore, in LR one parameter is tuned: the regularization parameter λ. In KRR, two free223

parameters are tuned: the regularization parameter λ and the kernel parameter σ.224

In both cases we used a cross-validation strategy for their optimization using one half of the data for training225

and the other half for validating. A MATLAB implementation of KRR and other regression algorithms can be226

found at http://isp.uv.es/soft_regression.html.227



Version June 12, 2018 submitted to Remote Sens. 7 of 28

3. Data and Experimental Setting228

This section introduces the data collection used in the experiments and the parameter configuration employed229

in the compression and in the statistically based regression stages. First, a description of the main characteristics230

of the IASI instrument is given, along with the specific products used in the experiments.231

3.1. Data Collection232

IASI is the main payload instrument carried on the MetOp satellite series [53]. Data provided by the233

instrument represent a significant improvement in the retrieval accuracy and vertical resolution of atmospheric234

parameters (temperature and water vapour concentration mostly) with respect to previous lower spectral resolution235

instruments, such as HIRS, SEVIRI, etc. This has in turn improved the output from numerical weather prediction236

models and atmospheric chemistry studies.237

IASI produces rich spectral information to derive temperature and moisture profiles. The spectra is also238

used for the determination of trace gases such as CO, CO2, CH4, SO2, N2O, HNO3, NH3, OCS, and CF4 [54–59],239

land and sea surface temperatures, and cloud properties.240

The instrument collects data with high spectral, spatial, and temporal resolution producing large volumes241

of information (about 16 Gigabytes per day generated by each of the IASI-A and IASI-B instruments). IASI242

covers the spectral range between 645 and 2760 cm−1 yielding 8461 spectral components. Such an amount of243

information is costly to manage, hence the need to search for efficient strategies to reduce the large size of the244

data for improved processing, transmission, and storage.245

An effective strategy to alleviate the large volume of information produced by the IASI instrument is to246

compress the data according to the specific requirements of the end-user applications. As outputs of the models,247

we use the physical variables (temperature and dew point temperature) given by the analyses of the model of248

the European Centre for Medium-Range Weather Forecasts (ECMWF). The model provides estimations for249

137 different pressure levels between [10−2 · · · 103] hPa in the atmosphere and spatial resolution of 0.5 degrees.250

We co-registered the predictions supplied with the scenes acquired by IASI instrument with the analyses of the251

ECMWF.252

The experiments have been conducted in a realistic context, where data from disjoint orbits are used for253

training and testing. The training set is composed by seven orbits and the atmospheric parameter retrieval test is254

carried out on six different orbits. All data have been produced by the IASI-B instrument, implemented on the255

MetOp-B satellite. Table 1 reports the characteristics of the 13 IASI orbits used in the experiments. In order to256

isolate the results for cloud free and cloudy areas we use the fractional cloud cover data provided in the L2 level257

[60].258

Usually, the Band 3 of the IASI spectrum and some channels from the Band 1 and from the Band 2 are not259

used for temperature and dew point temperature retrieval because they are influenced by solar radiation and trace260

gases such as CO, CH4, etc. Following the feature selection in [37] we performed feature selection removing the261

most noisy bands and keeping 4699.262

3.2. Setting and Parameter Configuration for Lossy Compression263

Lossy compression is carried out through JPEG 2000 standard. It is meaningful to consider that, in264

hyperspectral data with such a large number of spectral components as IASI products, it is of utmost importance265

to exploit the high spectral redundancy inherent to the data. As mentioned, to achieve improved coding266

performance, JPEG 2000 is paired along with three spectral transforms: for DWT, 10 levels of 9/7 DWT are267

applied in the spectral dimension; POT is run using the default parameter settings; and for Multilevel Clustering268

KLT, 100 clusters are defined in the first level. To account for the spatial redundancy, a 9/7 DWT with five levels269

is applied in the spatial dimension. Nine target bit-rates are analyzed, distributed from 2 to 0.0025 bit per pixel270

per component (bpppc), corresponding to compression ratios from 8:1 to 6,400:1. Table 2 summarizes the main271

characteristics of the three compression settings studied in the experiments.272

In the experiments, Kakadu software [61] has been used for JPEG 2000, Pairwise Orthogonal Transform273

software [62] has been run for POT, and Spectral Transform software [63] has been employed for Multilevel274
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Table 1. IASI L1C products used in the experiments. Identifiers and sizes are provided. M is the number of
spectral components, Ns is the number of scan lines, N-FORs is the number of elementary fields of regard (FOR)
per line, and N-IFOVs is the number of instantaneous fields of view (IFOV) per FOR.

Orbit identifiers
Size

(M × Ns × N-FORs × N-IFOVs)

Training set

IASI_xxx_1C_M01_20131017012656Z_20131017030856Z_N_O_20131017021701Z (8461 × 765 × 30 × 4)

IASI_xxx_1C_M01_20131017045352Z_20131017063552Z_N_O_20131017054413Z (8461 × 765 × 30 × 4)

IASI_xxx_1C_M01_20131017081752Z_20131017095656Z_N_O_20131017090901Z (8461 × 743 × 30 × 4)

IASI_xxx_1C_M01_20131017113856Z_20131017131752Z_N_O_20131017123024Z (8461 × 742 × 30 × 4)

IASI_xxx_1C_M01_20131017145656Z_20131017163856Z_N_O_20131017155030Z (8461 × 765 × 30 × 4)

IASI_xxx_1C_M01_20131017181752Z_20131017195952Z_N_O_20131017190946Z (8461 × 765 × 30 × 4)

IASI_xxx_1C_M01_20131017214152Z_20131017232352Z_N_O_20131017223236Z (8461 × 765 × 30 × 4)

Test set

IASI_xxx_1C_M01_20131017030856Z_20131017045352Z_N_O_20131017035958Z (8461 × 787 × 30 × 4)

IASI_xxx_1C_M01_20131017063552Z_20131017081752Z_N_O_20131017072637Z (8461 × 765 × 30 × 4)

IASI_xxx_1C_M01_20131017095656Z_20131017113856Z_N_O_20131017104905Z (8461 × 765 × 30 × 4)

IASI_xxx_1C_M01_20131017131752Z_20131017145656Z_N_O_20131017141023Z (8461 × 743 × 30 × 4)

IASI_xxx_1C_M01_20131017163856Z_20131017181752Z_N_O_20131017173059Z (8461 × 742 × 30 × 4)

IASI_xxx_1C_M01_20131017195952Z_20131017214152Z_N_O_20131017205049Z (8461 × 765 × 30 × 4)

Table 2. Configuration of the compression setting used in the experiments.

Spectral transform Spatial
transform

Compression
technique

Target bit-rates
(bpppc)

Compression
ratios

DWT 10 levels

5 levels of DWT JPEG 2000
2, 0.5, 0.25, 0.1,
0.05, 0.03, 0.01,

0.005, and 0.0025

8, 32, 64, 160, 320,
533, 1,600, 3,200,

and 6,400

POT
Default parameter

settings

Multilevel
Clustering KLT

100 clusters in the
first level and

multilevel mode

Clustering KLT. The JPEG 2000 standard provides a multicomponent extension in its Part 2 [64], which has been275

used to apply the DWT.276

It is worth mentioning that, in our lossy compression approach, we apply a decoding stage prior to the277

statistically based retrieval, so that retrieval works with the reconstructed data and not in the compressed domain.278

These reconstructed data have exactly the same spectral and spatial dimensions as the original data, i.e., no279

spectral or spatial dimensionality reduction occur. It is the quality of the observations that is being modified, not280

the size of the scenes.281

3.3. Settings of Statistically Based Regression282

The retrieval experiments have been carried out in a realistic scenario, i.e., data from disjoint IASI orbits283

have been used for training and testing. The statistical retrieval algorithms are applied on IASI data hyperpixels at284

different pressure levels considering all the spectral components at a particular spatial position in the regression.285

In the training stage 8,000 samples are randomly selected from each of the training orbits (seven products),286

which produces a training set of 56,000 samples. To allow a fair comparison, the positions of the samples used for287

training are kept constant for all the experiments, i.e., all three multi-component transforms and all compression288

ratios. Six different orbits are used for testing. The prediction is carried out on the whole orbit. To assess the289

retrieval performance, the RMSE between the ground-truth values of temperature/dew point temperature and the290

predictions produced by the regression models is computed in each pressure level.291



Version June 12, 2018 submitted to Remote Sens. 9 of 28

We trained one model for each coding setting and each compression ratio. Note that the input data to292

the retrieval process is the reconstructed spectra, i.e., compressed and decompressed data. The models were293

trained using a simple cross-validation scheme with half of the data used for training and the other half used for294

validating the parameters.295

4. Experimental Results296

This section presents the experimental results. We report results for atmospheric parameter retrieval over297

the reconstructed spectra and investigate the origin of the improvement in the retrievals produced using the298

reconstructed spectra. Results are evaluated in terms of noise removal and shared spatio/spectral information to299

assess the impact of compression on the retrievals. This study is conducted through several experiments:300

1. We evaluate the performance of the retrievals produced using reconstructed spectra. Different compression301

settings and retrieval algorithms are used. The experiment is carried out in a realistic scenario where data302

used for testing comes from orbits different from those used for training.303

2. We analyze the amount of noise left in the data after being processed with each compression setting and at304

different compression ratios.305

3. We analyze the spectral and spatial information in the compression settings. First we quantify the amount306

of information shared among the spatial neighbours. We then propose an scheme which specifically307

enforces different levels of spatial and spectral relations in a simple way, and compare the performance of308

the retrieval algorithms when using data processed following this scheme and when using reconstructed309

data from the compression algorithms.310

Results are reported for one IASI L1C orbit and one physical variable (dew point temperature) in most of311

the experiments due to restrictions in page length. Conclusions from the results for the remainder orbits and312

for temperature are similar. We report all these results in the supplementary material at http://isp.uv.es/spatio_313

spectral_compression.html.314

4.1. Retrieval Assessment315

This section reports the results of estimating atmospheric physical variables through316

LR and KRR using reconstructed IASI L1C spectra. Results are presented for the orbit317

IASI_xxx_1C_M01_20131017030856Z_20131017045352Z_N_O_20131017035958Z (see table 1) and318

dew point temperature prediction. Results for all the other orbits and variables are very similar and reported as319

supplementary material.320

A first assessment of the reconstructed radiances is reported in the Appendix, where the normalized radiance321

residuals statistics and the spectral signature of the reconstructed radiances are analyzed. Next, Figure 3 shows322

the retrieval performance of dew point temperature prediction for the lossy compression settings proposed. Plots323

show the average of the RMSE prediction over the different pressure levels between 1100 and 100 hPa. We324

analyze four different scenarios, i.e., land and cloud free, land and cloudy, ocean and cloud free, and ocean and325

cloudy conditions. Cloud free conditions is equivalent to cloud fraction equals to 0%. Otherwise, it is considered326

cloudy conditions. Ocean is equivalent to land fraction equals to 0%. Otherwise, it is considered land. Table 3327

reports the number of spectra analyzed in each scenario. The compression settings POT + JPEG 2000 and328

Multilevel Clustering KLT + JPEG 2000 achieve lower maximum compression ratios compared to DWT + JPEG329

2000 because side-information needs to be transmitted in addition to the compressed data.330

Table 3. Number of spectra in each of the scenarios analyzed. The percentage of the orbit in each scenario is
reported in brackets.

Land - Cloud
free

Land -
Cloudy

Ocean -
Cloud free

Ocean -
Cloudy

10,218
(10.8%)

28,613
(30.3%)

6,658
(7.1%)

48,951
(51.8%)
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Figure 3. Dew point temperature (in kelvin) retrieval performance for different lossy compression settings using
LR (solid red lines) and KRR (solid blue lines). In all the plots, the vertical axis represents the averaged RMSE
over the different pressure levels between 1100 and 100 hPa and the horizontal axis represents the compression
ratio. Ranges are the same in all the plots to ease the comparison. Each row shows the results for a particular
compression setting and each column shows the results for a particular scenario. Results using uncompressed
spectra (original data) for LR (dashed red lines) and KRR (dashed blue lines) are plotted for comparison purposes.

One can see that while low compression ratios do not reduce the accuracy in the retrievals, the prediction331

results are improved as the compression ratio increases. Nonetheless, when the compression ratio is very high,332

the retrieval performance begins to deteriorate because too much distortion is introduced in the reconstructed333

data. This behaviour occurs for both LR and KRR, although the retrieval improvements are larger for LR (in the334

sense that higher compression ratios can be applied before the retrieval performance starts to deteriorate). These335

results are consistent with the observations reported in García-Sobrino et al. [30]. However, note that here the336

situation is more realistic than in García-Sobrino et al. [30], since we use different orbits for training, validation,337

and testing. By doing so we ensure that no information about the true values due to the blurring introduced by the338

compression settings can be used in the predictions. Results are also consistent for the new compression settings339

evaluated.340

An interesting analysis was introduced in [25] about the correlation between the dimensions of the341

predictions. Figure 4 shows the value of the iD index for the different compression configurations and the different342

regression algorithms taken into consideration in this paper. We provide the index without the normalization by343

the number of output dimensions. We can see that given a particular regression method, the differences in the344

correlation between the outputs for different compression ratios (and also for different compression settings) are345

negligible for the compression ranges with low prediction errors, i.e., until compression ratios about 300:1.346

Several conclusions can be drawn:347

1. Statistical atmospheric parameter retrieval benefits from spectral/spatial lossy compression. It is clear from348

Fig. 3 that using reconstructed data after a compression process allows to achieve improved statistically349

based retrieval performance. While moderate and medium compression ratios enable to achieve at least the350

same performance than the original spectra, when the distortion level introduced in the data is high, the351

accuracy in the retrievals decreases. In all the scenarios analyzed, a compression ratio of, approximately,352
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Figure 4. Index iD for different lossy compression settings using LR (solid red lines) and KRR (solid blue lines).
In all the plots, the vertical axis represents the iD index and the horizontal axis represents the compression ratio.
Ranges are the same in all the plots to ease the comparison. Results using uncompressed spectra (original data)
for LR (dashed red lines) and KRR (dashed blue lines) are plotted for comparison purposes.

100:1 allows to achieve the same or improved retrieval results compared to retrieval results obtained from353

uncompressed spectra (original data).354

2. KRR produces more accurate predictions than LR. For all plots, KRR consistently yields better retrieval355

performance than LR. These results are constant for all the data (original and reconstructed spectra) and356

scenarios analyzed. The difference is specially significant for cloudy conditions.357

3. Lossy compression enables more significant retrieval improvements for LR compared to KRR. The retrieval358

improvement is more evident for LR than for KRR when a compression process has taken place, which359

suggests that the spectral/spatial regularization produced by the compression stage particularly benefits360

LR.361

4. LR achieves competitive performance when the spectra have been compressed at higher compression ratios362

compared to KRR. Fig. 3 illustrates that while KRR is able to achieve improved retrieval results when363

data compressed at a compression ratio of, approximately, 124:1 are used, LR still produces competitive364

performance when spectra compressed at a compression ratio of, approximately, 203:1 is employed.365

5. Multilevel Clustering KLT + JPEG 2000 leads to the best prediction results. The compression setting366

Multilevel Clustering KLT + JPEG 2000 leads to the best retrieval improvements for land and cloudy,367

ocean and cloud free, and ocean and cloudy conditions. For land and cloud free conditions, both DWT368

+ JPEG 2000 and POT + JPEG 2000 slightly overcome Multilevel Clustering KLT + JPEG 2000. If the369

interest is to optimize the retrieval performance in all the scenarios, Multilevel Clustering KLT + JPEG370

2000 is the best compression setting.371

6. POT + JPEG 2000 allows to achieve higher compression ratios leading at least to the same retrieval372

performance than the original spectra. If the interest is to achieve very high compression ratios, POT +373

JPEG 2000 would be the best compression setting. A compression ratio of 421:1 allows to achieve at least374

the same prediction results compared to the original data for all the scenarios analyzed. Higher compression375

ratios decrease the retrieval performance because useful information is missing in the recovered spectra.376

7. The effect of lossy compression is alike for all the compression settings and scenarios analyzed. One can377

see in Fig. 3 that, depending on the compression setting applied and the scenario analyzed, the results can378

slightly vary, but the impact of lossy compression on retrieval performance is similar for all cases.379

8. The effect of the compression on the predictions correlation is negligible for useful compression ratios. If380

we take in consideration the range of compression ratios for low prediction error (i.e. [0-300], see Fig. 3),381

the difference in correlation between the predicted outputs when using and when not using compression382

is very low (Fig. 4). The same effect can be observed if we compare this difference with the difference383

inferred by using different prediction methods.384

Figure 5 shows the bias and the RMSE results for the range of pressure levels corresponding to the385

troposphere (between 1100 and 100 hPa). For each compression setting and each scenario, results for the386

compression ratio that produces the best prediction performance are reported.387
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Figure 5. Dew point temperature (in kelvin) RMSE profiles and bias. The compression ratio (CR) with the best
average RMSE is reported for LR (thick, solid and red lines) and KRR (thick, solid and green lines). Results
using the original data are shown as well for comparison purposes when LR (thick, dashed and red lines) and
KRR (thick, dashed and green lines) are used for the predictions. The bias of the reconstructed data are plotted
with thin and dash-dot lines for LR (red) and KRR (green).

Reconstructed spectra produce better (or at least the same) results compared to the original data for388

all pressure levels and all compression settings. Generally, improvements are more evident in the mid-low389

troposphere. As illustrated in Fig. 3, the improved prediction is more significant for LR. Results are usually390

better over ocean areas than over land, and better on cloud free situations rather than in cloudy scenarios.391

The Mean Absolute Error (MAE) between the dew point temperature values provided by the ECMWF392

analyses (and taken here as the ground truth), and the predicted values produced by LR and KRR when393

uncompressed and reconstructed spectra are employed in the retrievals is illustrated in Fig. 6. Maps plot the MAE394

for all the analyzed orbits. Results are reported only for the original data and Multilevel Clustering KLT + JPEG395

2000, which is the compression technique that produces the most competitive performance, due to restrictions in396

page length. As expected, KRR produces smaller errors than LR (more bluish areas), and maps show that the397

MAE is very similar when the original data and the reconstructed spectra are used. Errors occur in the same398

geographic areas and the error pattern is similar for both the original and the reconstructed data.399

4.2. Noise Reduction (denoising) through Compression400

This section is specifically dedicated to analyze the effect of the compression process on the noise present401

in the data. Lossy compression is known to be an indirect way of performing signal filtration and denoising.402

Compression aims for a compact representation of the data by eliminating redundant information, preserving as403

much as possible the characteristics of the observation needed by the intended data user.404

Figure 7 reports an estimate of the noise level present in the reconstructed spectra for the compression405

settings analyzed. In the experiments it is assumed that the noise model in the IASI data comes from an additive406

white Gaussian distribution, and also independent and identically distributed. This is a realistic assumption for an407

interferometer and is the model adopted in EUMETSAT [44], Hultberg [65], Aires et al. [66], Calbet et al. [67].408

To compute the noise standard deviation, the Anisotropic Nonparametric Image Restoration toolbox [68] was409
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LR, Original Data, Uncompressed LR, MLC KLT + JPEG 2000, CR =
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KRR, Original Data, Uncompressed KRR, MLC KLT + JPEG 2000, CR =
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0 5 10 15

Figure 6. MAE for dew point temperature over the whole profile. Plots report MAE for uncompressed and
reconstructed spectra and LR and KRR algorithms. Larger errors are represented by red color and smaller errors
by blue color. CR reports the compression ratio achieved in the compression stage.

used. This method provides a robust estimate of the standard deviation based on the well-known median of the410

absolute deviation (MAD) [69]. This technique is used along with an orthogonal wavelet transform in such a way411

that the median estimator is applied on the high frequency subbands (fine details) of the transform domain to412

reduce the impact of the features present in the signal. In the experiments, a Daubechies wavelet transform was413

used. Specific and more detailed description of the adopted strategy can be found in [70,71].414

We can see how part of the improvement in the retrievals is due to the filtering of noise performed by the415

compression process. It is interesting to compare Fig 7 with Fig 3. It is clear from Fig. 7 that, as the compression416

ratio increases, the noise level in the reconstructed data decreases. While most of the noise is removed at417

moderate compression ratios, the noise level keeps unchanged for extremely high compression ratios because418

almost all the noise has already been removed from the data. When data is compressed in moderate to high419

compression ratios (i.e., [10:1-300:1]), most of the content removed by the compression process is noise, keeping420

the retrieval performance competitive or even getting better results than using uncompressed data. However, if421

the compression ratio is extremely high (i.e., [300:1-2,000:1]), useful information is also eliminated, degrading422

the accuracy of the retrievals. We can suppose that noise filtering is one of the reasons why reconstructed423

compressed spectra from high compression ratios can result in better performance compared to uncompressed424

data. It is also clear that increasing the compression ratio beyond a certain point has no effect on the elimination425

of noise and therefore the only content removed from now on is relevant information. Therefore, the retrievals426

performance decreases beyond this point. Note that the compression settings POT + JPEG 2000 and Multilevel427

Clustering KLT + JPEG 2000 achieve lower maximum compression ratios compared to DWT + JPEG 2000428

because side-information needs to be transmitted in addition to the compressed data.429
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Figure 7. For each compression setting, the Noise Standard Deviation is plotted (solid blue lines). In all the plots,
the vertical axis represents the noise level (noise standard deviation of IASI raw data) in the reconstructed spectra
and the horizontal axis represents the compression ratio. Noise estimation for uncompressed data (dashed green
lines) is reported as well for comparison purposes.

4.3. Exploiting Spectral/Spatial Relations through Compression430

It is acknowledged that parameter retrieval and model inversion applications largely improve when exploiting431

spatial information [72–74]. Compression is an indirect way to stress relevant feature relations and to enforce432

smoothness in the reconstructed data, which can be exploited by pixelwise retrieval methods.433

In this section we analyze the impact that the analyzed compression approaches have on sharing spectral434

and spatial information about the neighboring pixels and the effect it has in the retrieval performance. We first435

asses how much information is shared between spatial neighbours. Then we propose a simple method which436

specifically takes into account information from the spatial and spectral neighbours, and we compare these results437

with the results obtained when we do the retrieval over the recovered coefficients after compression. We also438

investigate how the benefits of compression (sec. 4.1) are affected when we have already exploited specifically439

the spatial/spectral information in the data.440

4.3.1. Assessing the amount of Spectral/Spatial Information shared through Compression441

Here we use information theory [75] measures in order to quantify the amount of information that spatial442

neighbours share when use different compression approaches and different compression ratios. In particular we443

compute the mutual information between one pixel and its neighbours. The same procedure has been used to444

measure the amount of information shared between spatial, spectral and orientation neighbours in the wavelet445

domain [76] and in the normalized domain [77].446

In Fig. 8 we show the results when the spatial neighbours are taken into account. We computed the mutual447

information between each pixel and its neighbours in a neighbouring of 11× 11. For the experiment we used the448

data contained in the whole orbit, i.e., for the computation of the mutual information we used 94, 440 samples for449

each component and compute the average among all the components. Particular values are different for the three450

compression settings analyzed, however, the trend is the same for all of them. For low to high compression ratios451

(i.e. [30:1-500:1]) each coefficient contains more information about its neighbours than the original scenes. When452

the compression ratio is extremely high (i.e., higher than 500:1), the shared information decreases dramatically.453

This behavior is also easy to see in the detailed squares below the graphs. In these squares we show the spatial454

pattern of the mutual information. It is easy to see that closer coefficients are more related (as expected), and455

that only the global intensity of the relations changes (i.e., the pattern of the relations is similar for different456

compression ratios).457

4.3.2. A Simple Way to Exploit Spectral/Spatial Relations458

In the following we investigate the impact that specifically exploiting spectral and spatial information has459

in the retrievals. Elaborated models that take into account the dependence of the the spatial smoothness with460

the spectral channel [78], or that avoid the neighbour pixels corrupted by clouds could be used. However, for461
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Figure 8. Spatial information shared for each compression approach and different compression ratios. Blue solid
curve shows the average amount of mutual information (in number of bits) shared between one coefficient and its
spatial neighbours. Green dashed line represents the same quantity for the uncompressed image. Below each plot,
the detailed shared information between the central pixel and each neighbour is reported. In each square, the
amount of black corresponds to the mutual information between this spatial position and the central pixel. Each
square corresponds to a different compression ratio in the plot above, and are sorted left to right as the dots in the
blue solid curve in the plot.

simplicity we choose here to simply convolve the data with two Gaussian filters, one over the spectral domain and462

one with spatial neighboring pixels. We define the σsc (spectral) and the σst (spatial) parameters for the spatial463

deviation of the Gaussian filter in the spectral and the spatial dimension, respectively. Combinations of five464

different σsc and seven different σst are evaluated. The minimum values, σsc = 0.01 and σst = 0.01, correspond465

to a identity function, i.e., no spectral/spatial features are taken into account.466

Table 4 reports the retrieval performance for dew point temperature for different combinations of the467

parameters values. While exploiting both spectral and spatial features benefits the retrieval performance for LR,468

exploiting spectral features does not improve the results for KRR. In the case of LR, the performance is slightly469

improved when σsc is large and σst is small. However, for KRR the retrieval results are generally degraded when470

σsc is increased.471

Table 4. RMSE of dew point temperature predictions (in kelvin) for different combinations of σst and σsc. The
improvement over the original data is reported in percentage in brackets. Best (green) and worst (red) performance
are reported.

LR KRR

σsc(spectral) σsc(spectral)
0.01 0.25 1 5 10 0.01 0.25 1 5 10

σ
st
(s

pa
ti

al
)

0.01 4.515
4.515
(0%)

4.540
(-0.6%)

4.370
(3.2%)

4.362
(3.4%)

σ
st
(s

pa
ti

al
)

0.01 3.345
3.345
(0%)

3.376
(-0.9%)

3.389
(-1.3%)

3.379
(-1.0%)

0.25
4.343

(3.8%)
4.343

(3.8%)
4.400

(2.6%)
4.254

(5.8%)
4.233

(6.2%)
0.25

3.248
(2.9%)

3.248
(2.9%)

3.276
(2.1%)

3.305
(1.2%)

3.266
(2.4%)

1
4.061

(10.1%)
4.061

(10.1%)
4.097

(9.3%)
4.036

(10.6%)
3.996

(11.5%)
1

3.082
(7.9%)

3.082
(7.9%)

3.109
(7.1%)

3.113
(6.9%)

3.109
(7.1%)

5
3.834

(15.1%)
3.835

(15.1%)
3.880

(14.1%)
3.809

(15.6%)
3.771

(16.5%)
5

2.994
(10.5%)

2.995
(10.5%)

3.017
(9.8%)

3.028
(9.5%)

3.021
(9.7%)

10
3.742

(17.1%)
3.740

(17.2%)
3.795

(15.9%)
3.724

(17.5%)
3.711

(17.8%)
10

3.007
(10.1%)

3.007
(10.1%)

3.025
(9.6%)

3.035
(9.3%)

3.031
(9.4%)

20
3.684

(18.4%)
3.683

(18.4%)
3.737

(17.2%)
3.697

(18.1%)
3.681

(18.4%)
20

3.069
(8.3%)

3.070
(8.2%)

3.108
(7.1%)

3.114
(6.9%)

3.095
(7.5%)

30
3.669

(18.7%)
3.668

(18.8%)
3.736

(17.3%)
3.711

(17.8%)
3.694

(18.2%)
30

3.138
(6.2%)

3.138
(6.2%)

3.139
(6.2%)

3.160
(5.5%)

3.152
(5.8%)
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It is clear that spatial features are more important than spectral features, as shown in Laparra and472

Santos-Rodríguez [74] for hyperspectral data. It is interesting to note that, while the best prediction results for473

LR are yielded for large σst, the best choice for KRR is significantly smaller σst. Improvements for LR are more474

significant than for KRR. Results confirm the suggestion reported in García-Sobrino et al. [30]: exploitation of475

spectral and spatial regularization (smoothing) improves the retrieval results.476

4.3.3. Combining Compression Settings with the Specific Exploitation of Spectral/Spatial Relations477

In this section we show how the benefits due to compression are drastically reduced when we have already478

taken into account spatial/spectral information when pre-processing the data. We will show that compression479

is an effective, consistent, and cheap way to exploit important spectral and spatial data relations and removing480

noise in the reconstructed spectra. However, it is done in an indirect way and the benefits are limited.481

In order to analyze the performance of compression paired along with the exploitation of spectral/spatial482

feature relations, we analyze several configurations. On the one hand we present results for the already explored483

strategies: retrieval over the original data, retrieval over the compressed and recovered data, and retrievals over484

the data processed using the method presented in the previous section. On the other hand we follow two extra485

strategies: 1) first, the Gaussian filter is applied to the original data and then, the filtered data are compressed; 2)486

first, the original data are compressed and then, the reconstructed spectra are filtered. Figure 9 illustrates the487

sequential chain of the last two strategies.488

Input
data

Encoded dataReconstructed data
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PredictionStatistical
parameter retrieval

(LR and KRR)

Statistical
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- Dew point temperature
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(σ

sc
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σ
st 

= 10)

a) Spectral/spatial regularization + compression. First, we filter the data to take into
account the spatial and spectral relations. Then, the filtered data are compressed and
decompressed, finally statistical parameter retrieval is carried out over the reconstructed
spectra.
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(σ
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= 10)
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b) Compression + spectral/spatial regularization. First, a compression and decompression
stage is performed. Then, feature relations are taken into account in the reconstructed
spectra using a Gaussian filter, finally statistical parameter retrieval is carried out over the
filtered data.

Figure 9. Adopted sequential chain when a spectral/spatial regularization stage and a coding process are carried
out.

Figure 10 and Fig. 11 illustrate the retrieval performance of dew point temperature for LR and KRR,489

respectively. Plots show the average of the RMSE prediction over the different pressure levels. A configuration490

that produces competitive performance for both LR and KRR is used in the filtering stage, i.e., σsc = 0.25 and491

σst = 10. Results are reported for four different scenarios: land and cloud free, land and cloudy, ocean and cloud492
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free, and ocean and cloudy. The compression settings POT + JPEG 2000 and Multilevel Clustering KLT + JPEG493

2000 achieve lower maximum compression ratios compared to DWT + JPEG 2000 because side-information494

needs to be transmitted in addition to the compressed data. Several conclusions can be extracted from this495

experiment:496
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Figure 10. Dew point temperature (in kelvin) retrieval performance for different lossy compression settings using
LR. In all the plots, the vertical axis represents the averaged RMSE over the different pressure levels and the
horizontal axis represents the compression ratio. Ranges are the same in all the plots to ease the comparison.
Each row shows the results for a particular compression setting and each column shows the results for a particular
scenario. Each plot compares five different approaches, i.e., original data, compression of the original data,
original data + Gaussian filter, Gaussian filter + compression, and compression + Gaussian filter.

1. Pre-process the data to take into account the spatial and the spectral information about the neighbours497

compensates the effect of using recovered data from compression. While using recovered data (maroon498

curve) improves the results obtained for the original data (red curve), this improvement vanishes when499

spectral/spatial information is exploited, i.e., using a compression method over data that have been already500

pre-processed to take into account spectral/spatial information (blue line) does not improve the performance501

(orange line). This observation indicates that when spectral/spatial regularization is carried out before502

compression, the spectral/spatial transform applied in the compression stage is not able to exploit extra503

features.504

2. Exploiting feature relations achieves improved retrieval performance. As we have already seen in505

section 4.3.2, exploiting extra features about the neighbouring pixels in the original spectra clearly506

benefits the prediction results. The consistency and homogeneity of the data is improved by pre-processing507

the data to take into account local relations between neighboring pixels, which benefits the regression508

algorithms. The improvement is more significant for cloudy conditions than for cloud free conditions.509

3. LR benefits more significantly from spectral/spatial regularization than KRR. According to the results510

reported in the supplementary material at http://isp.uv.es/spatio_spectral_compression.html, it is clear from511
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Figure 11. Dew point temperature (in kelvin) retrieval performance for different lossy compression settings using
KRR. In all the plots, the vertical axis represents the averaged RMSE over the different pressure levels and the
horizontal axis represents the compression ratio. Ranges are the same in all the plots to ease the comparison.
Each row shows the results for a particular compression setting and each column shows the results for a particular
scenario. Each plot compares five different approaches, i.e., original data, compression of the original data,
original data + Gaussian filter, Gaussian filter + compression, and compression + Gaussian filter.

the individual plots that, when spectral/spatial regularization is added, larger improvements in the retrieval512

performance are achieved for LR compared to KRR. Gains produced for LR are, approximately, twice the513

gains produced for KRR.514

4. Filtering + compression yields better results than compression + filtering. When the exploitation of515

features relations is paired along with compression, it is more efficient to perform first the spectral/spatial516

regularization and then compress the filtered data. When the compression stage is first carried out and517

the reconstructed spectra are filtered, the prediction performance is degraded as the compression ratio518

increases. The loss of performance is clear even at low compression ratios.519

5. Results are consistent for all the approaches and scenarios analyzed. Conclusions are similar for all the520

plots, which suggests that the observed behaviour is consistent for all the approaches, compression settings,521

and scenarios analyzed.522

Figure 12 illustrates the bias and the RMSE results for the range of pressure levels between 1100 and 100523

hPa. The figure illustrates that the benefits of compression are compensated by pre-processing the data to take524

into account neighbouring spatial and spectral features. This supports the idea that one important advantage of525

using recovered compressed data for retrieval is that the process exploits information about the neighbours in the526

data.527

Both approaches achieve the similar performance for all pressure levels and scenarios, which indicates528

that the benefits obtained from compression were mostly due to the indirect exploitaiton of spatial and spectral529

neighbouring pixels information.530
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Figure 12. Dew point temperature (in kelvin) RMSE profiles and bias. Two approaches are compared: original
data + Gaussian filter, and Gaussian filter + Multilevel Clustering KLT + JPEG 2000. LR (thick, solid and red
lines) and KRR (thick, solid and green lines). The bias of the each approach is plotted with thin and dash-dot
lines for LR (red) and KRR (green). For the compression setting, only the compression ratio (CR) with the best
average RMSE is reported. Results using the original data are also displayed for comparison purposes, LR (thick,
dashed and red lines) and KRR (thick, dashed and green lines).

5. Discussion531

Lossy compression techniques aim at reducing the size of the transmitted/stored information keeping the532

most informative part of the signal. As a consequence, the data information becomes more compact, which helps533

the subsequent information extraction steps. The multi-component transforms employed in the compression534

stage in this paper are based either in the Karhunen-Loeve transform (KLT) or the wavelet transform. Both535

transformations have the effect of translating the data to a domain where the statistical relations (or correlations)536

are reduced [33,79,80]. When compressing in these domains, the less relevant features are reduced, thus stressing537

the important ones. When transforming back to the original domain, the reconstructed data is a version of the538

original data where the less relevant features have also been reduced. From the signal processing point of view, it539

can be seen as a filtering process.540

As an example, when using KLT on images, the transformation becomes very similar to the Fourier541

transformation [81], i.e., the signal is decomposed in different frequencies. The high frequencies of the images542

have low magnitude in this domain, which in general translates into a poor signal to noise ratio –this serves543

to explain why most coding techniques aim at reducing the energy of these frequencies–. As a consequence,544

the reconstructed image has less energy in the high frequencies, which stresses the contribution of the low545

frequencies.546

We investigated how much each of these aspects affects the performance of the statistically-based retrieval547

methods for sounder data. In particular, we analyzed the retrieval of physical variables (temperature and dew548

point temperature) from IASI L1C data.549

We first verified that applying a compression process to remote sensing scenes can improve the performance550

of the statistically based retrieval methods. We analyzed different compression settings combined with different551

retrieval methods in a realistic scenario. This was illustrated in Figure 3 and Figure 5. While low compression552

ratios kept the results almost unchanged, moderate and high compression ratios generally enabled improved553

retrievals. However, when the compression ratios were very high, the retrieval performance was notably decreased,554

as expected.555

Then we analyzed the first effect: how certain compression ratios help to remove useless information while556

keeping the relevant one. We analyzed the compression approaches as if they were denoising methods. When a557

signal is lossy compressed, the reconstructed (decompressed) signal has lost information. When this removed558
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information is mostly noise and only a small amount of useful information is removed, compression has a positive559

impact on the regression results. We showed that for certain compression ratios and compression settings, most560

of the removed information was noise. Figure 7 reported the noise level present in the reconstructed spectra for561

different compression ratios and different compression settings. Plots illustrated that low compression ratios of562

approximately 8:1 removed small amounts of noise, specially in the case of POT + JPEG 2000 and Multilevel563

Clustering KLT + JPEG 2000. Moderate and high compression ratios were able to filter most of the noise present564

in the data. However, when extremely high compression ratios (i.e., above 500:1) were used in the compression565

stage, useful information was also removed and the quality of the reconstructed data was degraded. This explains566

why reconstructed spectra produce accurate retrieval performance when the original data have been compressed567

at moderate and high compression ratios (between 32:1 and 420:1, approximately, depending on the compression568

setting). When extremely high compression ratios were used, the removed signal was informative and therefore569

retrieval performance decreased.570

The last part of the paper was focused on the second important effect of the lossy compression techniques.571

We posit that the compaction of the information introduced by the compression has the effect of exploiting spatial572

and spectral information about the neighbours in the reconstructed signal.573

First, we specifically computed the amount of information about the spatial neighbours is introduced574

when compressing the data. After that, we showed that exploiting certain spectral/spatial regularization on575

hyperspectral data had a positive effect in the retrievals (Table 4). In particular, the spatial relations were more576

important than the spectral relations. Then we evaluated the impact of compression in the retrievals when the577

data was already pre-processed to take into account spectral/spatial feature relations. Results in Fig. 10 and578

Fig. 11 showed that when the data was pre-processed the effect of compression in retrieval performance are579

compensated. In other words, an important advantage of using recovered compressed data for retrieval is that the580

process exploits information about the data neighbours.581

6. Conclusions582

This paper studied the impact of lossy compression on statistically based regression algorithms for retrieving583

atmospheric profiles of temperature and dew point temperature using infrared sounder data (IASI L1C). We584

analyzed the reasons behind the benefits produced by compression and provided recommendations for effective585

prediction performance and data compression.586

Several compression settings were evaluated and a linear and a nonlinear regression algorithm were assessed587

in a realistic training/testing scheme. Results for the prediction of two physical variables (temperature and dew588

point temperature) and four different scenarios (land and cloud free, land and cloudy, ocean and cloud free, and589

ocean and cloudy) were reported.590

Lossy compression was carried out through different compression settings, always within the scope of591

international standard JPEG 2000. To achieve competitive compression performance in hyperspectral data with a592

large number of spectral components (such as IASI data), three spectral transforms were paired along with JPEG593

2000, i.e., DWT, POT, and Multilevel Clustering KLT. In the experiments, nine compression ratios were analyzed594

to search for an optimal trade-off between retrieval performance and data compression.595

Experimental results revealed that reconstructed spectra have enough quality to achieve competitive retrieval596

performance because noise filtering is carried out in the compression stage, which allows to achieve high597

compression ratios while retaining as much features as possible. Another positive effect arises from the ability of598

compression to exploit spectral and spatial feature relations in an indirect way, which benefits the retrieval methods599

(on average and using ECMWF analysis as ground truth). We observed that moderate-to-high compression600

ratios produced improved results in predicting temperature and dew point temperature in the different scenarios601

analyzed. As expected, when the compression ratio is extremely high, the benefits disappear because large602

amounts of useful information are removed from the data.603

Results reported that exploiting spatial relations between neighboring pixels is more productive than604

exploiting spectral relations. While spectral regularization kept the results almost unchanged, spatial605

regularization improved the predictions by almost 20%. Spatial regularization is, hence, a key element to606

be exploited in pixelwise retrieval algorithms, where the spatial component is missing.607
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Experiments revealed that when the data is pre-processed to take into account the spectral and spatial feature608

relations before compression, the retrieval performance was improved compared to the results yielded by the609

original data even at high compression ratios. The compression setting Multilevel Clustering KLT + JPEG 2000610

was able to significantly improve the atmospheric predictions at compression ratios higher than 200:1.611

The proposed methodology can be applied to other retrieval methods and benefits the development of current612

and upcoming infrared sounding instruments. While current retrieval methods would benefit from efficiently613

compressed spectra, savings in data transmission and storage would involve operational improvements.614

This study may have a deep impact on both currently flying infrared sounding instruments (e.g., IASI and615

CrIS ) or upcoming (e.g., MTG-IRS).616
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Appendix Quality of Reconstructed Radiances806

The quality of reconstructed radiances has been analyzed from two points of view. On the one hand, we807

examine the residuals computed as the difference between the original and the reconstructed radiances. On the808

other hand, the spectral signature of the reconstructed radiances is compared to the spectral signature of the809

original radiances.810

Figure A1 illustrates the mean and the standard deviation of the noise normalized residuals for different811

compression settings. This strategy is used in [44,67] to validate reconstructed radiances from Principal812

Component Compression (PCC). One can see that as the compression ratio increases, both the mean and the813
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standard deviation increase. For Multilevel Clustering KLT + JPEG 2000, the mean is close to zero and the814

standard deviation is close to one even at high compression ratios (i.e., 533:1). Very high compression ratios815

(3,200:1) increase both the mean and the standard deviation. For DWT + JPEG 2000 and POT + JPEG 2000, the816

mean is close to zero at low compression ratios (8:1). When the compression ratio is higher than 533:1, the mean817

increases for most components. The standard deviation is only close to one at a compression ratio of 8:1.818
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Figure A1. Radiance residuals statistics as a function of channel number. The mean of the radiance residuals
of the normalized radiances is plotted in blue and the standard deviation in red. Following the feature selection
in [37], 4699 channels are used. Results for different compression ratios (CR) are reported.



Version June 12, 2018 submitted to Remote Sens. 26 of 28

Figure A2 reports the average of the standard deviation and the mean (absolute value) for each compression819

setting. While DWT + JPEG 2000, significantly increases both the standard deviation and the mean as the820

compression ratio increases, the standard deviation is close to one and the mean is close to zero, even at high821

compression ratios of 3,200:1, when Multilevel Clustering KLT + JPEG 2000 is used.822
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Figure A2. Average radiance residual statistics.

The difference between the spectral signature of the reconstructed radiances and the spectral signature of823

the original radiances (in mW/m2/sr/cm−1) is reported in FigureA3. Results are reported for a randomly824

selected pixel at coordinates (y = 50, x = 10) from a 3D volume representing an IASI orbit. Is is clear that the825

differences are particularly small at compression ratios lower than 533:1. When the compression ratio increases,826

the differences also increase. It is interesting to note that Multilevel Clustering KLT + JPEG 2000 produces827

smaller differences than DWT + JPEG 2000 and POT + JPEG 2000 at high compression ratios (above 533:1).828

Figure A4 illustrates the average of the differences (absolute value) between the spectral signature of the829

reconstructed radiances and the spectral signature of the original radiances for the compression settings analyzed.830

It is clear that Multilevel Clustering KLT + JPEG 2000 produces the smallest errors.831

c© 2018 by the authors. Submitted to Remote Sens. for possible open access publication under the terms and conditions of832

the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).833
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Figure A3. Difference between the spectral signature of the original data and the spectral signature of the
reconstructed data as a function of channel number. Following the feature selection in [37], 4699 channels are
used. Results for different compression ratios (CR) are reported.
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Chapter 6

Results summary

Experimental results of IASI data compression are summarized in this chapter. First,
we present the data collection used in the experiments. IASI L0 and IASI L1C
products acquired with IASI-A and IASI-B instruments are used to conduct the tests.
Then, we report the compression performance of lossless, near-lossless, and lossy
compression. Several state-of-the-art compression techniques and spectral transforms
are evaluated on different scenarios. Finally, we investigate the impact of near-lossless
and lossy compression on statistical retrieval algorithms. The origin of the positive
impact of compression in the performance of the statistical retrieval methods is also
studied.

6.1 Data Collection

The experiments are conducted with a set of IASI L0 products reported in Table 6.1
and three sets of IASI L1C products reported in Tables 6.2, 6.3, and 6.4. All products
have been provided by CNES and EUMETSAT. IASI L0 products are stored without
a sign and have a bit-depth precision from 6 to 10 bits. Each volume has 8,359
components, 30 FORs, and a variable number of lines. While products from CNES
contain between 741 and 764 lines, products from EUMETSAT contain between 55
and 98 lines. To evaluate the compression performance of several coding strategies
and techniques on IASI L1C products, a set of 96 IASI L1C orbits (48 orbits per

101
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instrument) is employed. Due to space constraints, averaged sizes and zero-order
entropies per instrument are reported in Table 6.2. The IASI L1C products reported
in Table 6.3 are employed to evaluate the impact of lossy compression on statistical
retrieval algorithms. Table 6.4 illustrates the products used to investigate the origin of
the benefits produced by compression when reconstructed spectra is used in statistical
retrieval methods. All IASI L1C products have 16 bpppc and are stored as signed
integers. Each volume contains 8,461 components, 30 FORs, and a variable number
of lines between 630 and 788.
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Table 6.1: IASI L0 data used in the experiments. Identifiers, which indicate the provider
of each product, and technical names are provided.

Identifier IASI L0 Product

EUMETSAT 1
IASI_HRP_00_M01_20130813184200Z_20130813185335Z_N_O_-
20130813184205Z

EUMETSAT 2
IASI_HRP_00_M01_20130813202226Z_20130813203309Z_N_O_-
20130813202229Z

EUMETSAT 3
IASI_HRP_00_M01_20130814070242Z_20130814071311Z_N_O_-
20130814070245Z

EUMETSAT 4
IASI_HRP_00_M01_20130814084228Z_20130814085440Z_N_O_-
20130814084231Z

EUMETSAT 5
IASI_HRP_00_M01_20130814101020Z_20130814102504Z_N_O_-
20130814101026Z

EUMETSAT 6
IASI_HRP_00_M01_20130814120024Z_20130814121046Z_N_O_-
20130814120030Z

EUMETSAT 7
IASI_HRP_00_M02_20130813192744Z_20130813193516Z_N_O_-
20130813192748Z

EUMETSAT 8
IASI_HRP_00_M02_20130814092926Z_20130814093921Z_N_O_-
20130814092930Z

CNES 1
IASI_xxx_00_M02_20091007112100Z_20091007130000Z_N_O_-
20091007125723Z

CNES 2
IASI_xxx_00_M02_20091007130000Z_20091007143900Z_N_O_-
20091007143543Z

CNES 3
IASI_xxx_00_M02_20091007143900Z_20091007162100Z_N_O_-
20091007161509Z

CNES 4
IASI_xxx_00_M02_20091017125400Z_20091017143300Z_N_O_-
20091017142943Z

CNES 5
IASI_xxx_00_M02_20100319050300Z_20100319064500Z_N_O_-
20100319064052Z

CNES 6
IASI_xxx_00_M02_20120718075700Z_20120718093900Z_N_O_-
20120718084400Z

CNES 7
IASI_xxx_00_M02_20130116133300Z_20130116151500Z_N_O_-
20130116142103Z

CNES 8
IASI_xxx_00_M02_20130916080300Z_20130916094500Z_N_O_-
20130916093859Z
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Table 6.2: IASI L1C products used to investigate the compression performance of several
coding strategies and techniques on IASI L1C data. Sizes and averaged zero-order entropies
per instrument are provided (48 orbits per instrument). M is the number of spectral
channels, Ns is the number of scan lines, N-FORs is the number of elementary fields of
regard (FOR) per line, and N-IFOVs is the number of instantaneous fields of view (IFOV)
per FOR.

Instrument
Size (M × Ns × N-FORs

× N-IFOVs)
Average Entropy

IASI-A Products 8461 × (630-787) × 30 × 4 12.84

IASI-B Products 8461 × (742-788) × 30 × 4 12.83

Average 8461 × (761) × 30 × 4 12.83

Table 6.3: IASI L1C orbits used to investigate the impact of near-lossless and lossy compres-
sion on statistical retrieval algorithms. Technical names, identifiers and sizes are provided.

Technical name Identifier Size (x× y × z)

IASI_xxx_1C_M01_20130817004753Z_-
20130817022952Z_N_O_20130817013849Z

IASI_20130817004753Z 60×1530×8461

IASI_xxx_1C_M01_20130817041457Z_-
20130817055656Z_N_O_20130817050513Z

IASI_20130817041457Z 60×1530×8461

IASI_xxx_1C_M01_20130817055657Z_-
20130817073856Z_N_O_20130817064707Z

IASI_20130817055657Z 60×1530×8461

IASI_xxx_1C_M01_20130817073857Z_-
20130817092056Z_N_O_20130817082957Z

IASI_20130817073857Z 60×1530×8461
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Table 6.4: IASI L1C products used to investigate the origin of the benefits produced by
lossy compression on statistical retrieval algorithms. Identifiers and sizes are provided. M
is the number of spectral channels, Ns is the number of scan lines, N-FORs is the number
of elementary fields of regard (FOR) per line, and N-IFOVs is the number of instantaneous
fields of view (IFOV) per FOR.

Orbit identifiers
Size (M × Ns ×

N-FORs × N-IFOVs)

Training set

IASI_xxx_1C_M01_20131017012656Z_20131017030856Z_N_-
O_20131017021701Z

(8461 × 765 × 30 × 4)

IASI_xxx_1C_M01_20131017045352Z_20131017063552Z_N_-
O_20131017054413Z

(8461 × 765 × 30 × 4)

IASI_xxx_1C_M01_20131017081752Z_20131017095656Z_N_-
O_20131017090901Z

(8461 × 743 × 30 × 4)

IASI_xxx_1C_M01_20131017113856Z_20131017131752Z_N_-
O_20131017123024Z

(8461 × 742 × 30 × 4)

IASI_xxx_1C_M01_20131017145656Z_20131017163856Z_N_-
O_20131017155030Z

(8461 × 765 × 30 × 4)

IASI_xxx_1C_M01_20131017181752Z_20131017195952Z_N_-
O_20131017190946Z

(8461 × 765 × 30 × 4)

IASI_xxx_1C_M01_20131017214152Z_20131017232352Z_N_-
O_20131017223236Z

(8461 × 765 × 30 × 4)

Test set

IASI_xxx_1C_M01_20131017030856Z_20131017045352Z_N_-
O_20131017035958Z

(8461 × 787 × 30 × 4)

IASI_xxx_1C_M01_20131017063552Z_20131017081752Z_N_-
O_20131017072637Z

(8461 × 765 × 30 × 4)

IASI_xxx_1C_M01_20131017095656Z_20131017113856Z_N_-
O_20131017104905Z

(8461 × 765 × 30 × 4)

IASI_xxx_1C_M01_20131017131752Z_20131017145656Z_N_-
O_20131017141023Z

(8461 × 743 × 30 × 4)

IASI_xxx_1C_M01_20131017163856Z_20131017181752Z_N_-
O_20131017173059Z

(8461 × 742 × 30 × 4)

IASI_xxx_1C_M01_20131017195952Z_20131017214152Z_N_-
O_20131017205049Z

(8461 × 765 × 30 × 4)
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6.2 Compression of IASI L0 Products

Tables 6.5 and 6.6 report the order-0 entropy and the order-1, order-2, and order-3
context-based entropies of IASI L0 data. Each column provides the average entropy
for all samples in a product. One can see that, since the IASI on-board processing
chain achieves an average bit-rate of 8.2 bpppc, at least 1.63 bpppc might be saved
if a variable-length code were used. Results improve when contextual models are
employed. Order-1 context-based entropy allows to gain at least 3.78 bpppc. Order-2
and order-3 context-based models further improve the results, allowing to spare at
least 5.57 and 6.71 bpppc, respectively.

Tables 6.7 and 6.8 illustrate the lossless compression performance of several coding
strategies and techniques on IASI L0 data. Results indicate that all the compression
schemes employed produce similar results. On average, a compression ratio of 2.75:1
can be achieved using either CCSDS-123, M-CALIC, or POT + JPEG 2000. Slightly
lower compression ratios are yielded by POT + JPEG-LS.
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Table 6.7: Lossless compression performance of several coding strategies and techniques on
IASI L0 products from EUMETSAT. Results are reported in compression ratio (higher is
better) and bpppc (lower is better).

Compression ratios

IASI L0
Product

CCSDS-123 M-CALIC
POT +
JPEG-LS

POT +
JPEG2000

EUMETSAT 1 2.617 2.693 2.145 2.653

EUMETSAT 2 2.627 2.701 2.116 2.650

EUMETSAT 3 2.483 2.537 1.902 2.489

EUMETSAT 4 2.581 2.637 2.140 2.617

EUMETSAT 5 2.805 2.862 2.308 2.801

EUMETSAT 6 2.761 2.783 2.176 2.706

EUMETSAT 7 2.618 2.746 1.964 2.611

EUMETSAT 8 2.588 2.623 2.010 2.567

Average 2.635 2.697 2.095 2.636

Bits per pixel per component

IASI L0
Product

CCSDS-123 M-CALIC
POT +
JPEG-LS

POT +
JPEG2000

EUMETSAT 1 3.13 3.04 3.82 3.09

EUMETSAT 2 3.12 3.03 3.87 3.09

EUMETSAT 3 3.30 3.23 4.31 3.29

EUMETSAT 4 3.17 3.10 3.83 3.13

EUMETSAT 5 2.92 2.86 3.55 2.92

EUMETSAT 6 2.96 2.94 3.76 3.03

EUMETSAT 7 3.13 2.98 4.17 3.14

EUMETSAT 8 3.16 3.12 4.07 3.19

Average 3.11 3.03 3.92 3.11
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Table 6.8: Lossless compression performance of several coding strategies and techniques on
IASI L0 products from CNES. Results are reported in compression ratio (higher is better)
and bpppc (lower is better).

Compression ratios

IASI L0
Product

CCSDS-123 M-CALIC
POT +
JPEG-LS

POT +
JPEG2000

CNES 1 2.839 2.874 2.614 2.858

CNES 2 2.846 2.858 2.596 2.834

CNES 3 2.857 2.873 2.597 2.847

CNES 4 2.840 2.859 2.585 2.832

CNES 5 2.843 2.871 2.605 2.857

CNES 6 2.835 2.834 2.569 2.819

CNES 7 2.843 2.883 2.605 2.852

CNES 8 2.832 2.823 2.574 2.812

Average 2.841 2.859 2.593 2.838

Bits per pixel per component

IASI L0
Product

CCSDS-123 M-CALIC
POT +
JPEG-LS

POT +
JPEG2000

CNES 1 2.88 2.85 3.13 2.86

CNES 2 2.88 2.86 3.15 2.89

CNES 3 2.87 2.85 3.15 2.88

CNES 4 2.88 2.86 3.17 2.89

CNES 5 2.88 2.85 3.14 2.87

CNES 6 2.89 2.89 3.19 2.90

CNES 7 2.88 2.84 3.14 2.87

CNES 8 2.89 2.90 3.18 2.91

Average 2.88 2.86 3.15 2.88
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6.3 Compression of IASI L1C Products

Table 6.9 reports the average lossless compression performance of several coding
strategies and techniques on IASI L1C data. Results are computed using six state-of-
the-art compression standards and techniques, namely, JPEG-LS [22], JPEG 2000 [23],
M-CALIC [24], CCSDS-122.0 [26], CCSDS-123.0 [21], and HEVC [27]. To exploit the
high spectral redundancy present in IASI data, four widely accepted spectral trans-
forms are paired along with the compression methods, namely, the Multilevel Clus-
tering Reversible Karhunen-Loève Transform (Multilevel Clustering RKLT) [28], the
Integer Wavelet Transform (IWT) [29], the Reversible Pairwise Orthogonal Transform
(RPOT) [25], and the Regression Wavelet Analysis Transform (RWA) [30].

One can see that exploiting the high spectral redundancy present in IASI L1C data
is of paramount importance to produce competitive compression results. Compression
ratios over 2.5:1 can be achieved for lossless compression of IASI L1C products. The
best performance is achieved by Multilevel Clustering RKLT + M-CALIC, which
yields, on average, a compression ratio of 2.55:1.

Experimental results for near-lossless compression are reported in Table 6.10. As
expected, when the Peak Absolute Error (PAE) increases, higher compression ratios
are produced. It is interesting to note that competitive coding performance can be
achieved by allowing small errors. PAEs equal to 1 and 3 allow to improve the coding
results by 17% and 30%, respectively, compared to lossless compression. Figure 6.1
reports the rate-distortion performance of near-lossless compression as a function of
the PAE and the SNR Energy. Plots indicate that small PAEs as 1 and 3 allow to
achieve SNR Energy over 65 dB.

Figure 6.2 illustrates the lossy compression performance of several coding strate-
gies and techniques on IASI L1C products. Lossy compression is evaluated employ-
ing the JPEG 2000 and the CCSDS-122.0 standards. Three spectral transforms are
used to exploit the spectral dimension of the data, namely, the Multilevel Cluster-
ing Karhunen-Loève Transform (Multilevel Clustering KLT), the Discrete Wavelet
Transform (DWT), and the Pairwise Orthogonal Transform (POT). All schemes are
assessed using nine target bit-rates distributed between 0.01 and 2 bpppc.
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Results reveal that, as happened for lossless compression, exploiting the redun-
dancy present in the spectral dimension is of utmost importance to achieve competi-
tive coding performance. The best results are produced by Multilevel Clustering KLT
+ JPEG 2000.

Table 6.9: Lossless compression of IASI L1C products. Results are reported in compression
ratio (higher is better). Percent savings (higher is better) with respect to original technique
are provided within brackets.

IASI-A—Lossless Compression Ratio & Percent Savings

PPPPPPPPPPTech.
Tra.

No
Trans-
form

IWT RPOT RWA
Multilevel
Clustering
RKLT

JPEG-LS 1.78:1 2.26:1 (21.24%) 2.26:1 (21.24%) 2.44:1 (27.05%) 2.46:1 (27.64%)

JPEG 2000 1.73:1 2.24:1 (22.77%) 2.24:1 (22.77%) 2.43:1 (28.81%) 2.47:1 (29.96%)

M-CALIC 2.32:1 2.32:1 (0.00%) 2.34:1 (0.85%) 2.48:1 (6.45%) 2.54:1 (8.66%)

CCSDS-122.0 1.68:1 2.13:1 (21.13%) 2.13:1 (21.13%) 2.29:1 (26.64%) 2.33:1 (27.90%)

CCSDS-123.0 2.42:1 2.42:1 (0.00%) 2.39:1 (−1.24%) 2.46:1 (1.63%) 2.47:1 (2.02%)

HEVC 2.23:1 2.29:1 (2.62%) 2.28:1 (2.19%) 2.45:1 (8.98) 2.50:1 (10.80%)

IASI-B—Lossless Compression Ratio & Percent Savings

PPPPPPPPPPTech.
Tra.

No
Trans-
form

IWT RPOT RWA
Multilevel
Clustering
RKLT

JPEG-LS 1.79:1 2.28:1 (21.49%) 2.27:1 (21.15%) 2.45:1 (26.94%) 2.48:1 (27.82%)

JPEG 2000 1.74:1 2.25:1 (22.67%) 2.25:1 (22.67%) 2.44:1 (28.69%) 2.49:1 (30.12%)

M-CALIC 2.34:1 2.33:1 (−0.43%) 2.35:1 (0.43%) 2.50:1 (6.40%) 2.56:1 (8.59%)

CCSDS-122.0 1.69:1 2.14:1 (21.03%) 2.14:1 (21.03%) 2.30:1 (26.52%) 2.34:1 (27.78%)

CCSDS-123.0 2.44:1 2.44:1 (0.00%) 2.40:1 (−1.64%) 2.48:1 (1.61%) 2.48:1 (1.61%)

HEVC 2.24:1 2.30:1 (2.61%) 2.29:1 (2.18%) 2.47:1 (9.31%) 2.52:1 (11.11%)
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Table 6.10: Near-lossless compression of IASI L1C products. Results are reported in com-
pression ratio (higher is better). Results for lossless compression (PAE = 0) are included.
Percent savings (higher is better) with respect to lossless compression are provided within
brackets.

IASI-A IASI-B

PAE JPEG-LS M-CALIC JPEG-LS M-CALIC

0 1.78 2.32 1.79 2.34

1 2.17 (17.97%) 3.02 (23.18%) 2.18 (17.89%) 3.05 (23.28%)

3 2.60 (31.54%) 3.90 (40.51%) 2.61 (31.42%) 3.95 (40.76%)

7 3.15 (43.49%) 5.21 (55.47%) 3.18 (43.71%) 5.28 (55.68%)

15 3.93 (54.71%) 7.34 (68.39%) 3.98 (55.03%) 7.48 (68.72%)

31 5.11 (65.17%) 11.11 (79.18%) 5.18 (65.44%) 11.35 (79.38%)

63 6.99 (74.54%) 18.39 (87.38%) 7.08 (74.72%) 18.82 (87.57%)

127 10.00 (82.20%) 33.33 (93.03%) 10.19 (82.43%) 34.04 (93.13%)

255 15.09 (88.20%) 61.54 (96.23%) 15.38 (88.36%) 64.00 (96.34%)
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Figure 6.1: Rate-distortion performance of near-lossless compression of IASI L1C products.
Results report SNR Energy (in dB, higher is better) vs. PAE. (a) IASI-A; (b) IASI-B.
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Figure 6.2: Rate-distortion performance of lossy compression of IASI L1C products. Results
report SNR Energy (in dB, higher is better) vs. compression ratio. Results for different
spectral transforms are plotted in the columns. In each plot, curves for JPEG 2000 and
CCSDS-122.0 performance are displayed. Ranges are the same in all the plots to ease
the comparison. Top row: IASI-A products; Bottom row: IASI-B products. POT and
Multilevel Clustering KLT are not able to reach such high compression ratios (over 1,000:1)
as DWT because side-information needs to be transmitted besides the compressed data.

Figure 6.3 reports a comparison between lossy and near-lossless compression. The
coding schemes that yield the best performance for lossy compression (Multilevel
Clustering KLT + JPEG 2000) and near-lossless compression (M-CALIC) are com-
pared from the perspective of PAE and SNR Energy.

Two main conclusions can be drawn from this comparison. On the one hand, plots
reveal that near-lossless compression produces smaller errors in the reconstructed
data than lossy compression. On the other hand, lossy compression achieves better
performance than near-lossless compression in terms of SNR Energy.

Figures 6.4, 6.5, and 6.6 analyze the quality of the reconstructed spectra when
some distortion is introduced in the data, i.e., when near-lossless o lossy compression
schemes are used. Reconstructed radiances previously compressed with the coding
strategies that achieve the best compression performance for near-lossless (M-CALIC)
and lossy (Multilevel Clustering KLT + JPEG 2000) compression are compared with
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reconstructed spectra from PCC, which is the common strategy used to compress
IASI L1C data. Two target compression ratios are compared. Configuration for each
compression scheme is summarized in Table 6.11.
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Figure 6.3: Performance comparison between near-lossless (M-CALIC) and lossy compres-
sion (Multilevel Clustering KLT + JPEG 2000). Top row: PAE (lower is better); Bottom
row: SNR Energy (in dB, higher is better).

The maximum and minimum values, the standard deviation and the average of
the normalized radiance residuals are compared in Figure 6.4. Note that only the
first 1,800 components of the IASI spectrum are compared to simplify the compari-
son. Plots illustrate that the standard deviation and the average are similar for all
compression schemes analyzed. However, Multilevel Clustering KLT + JPEG 2000
and PCC yield smaller maximum and minimum values than M-CALIC.
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Table 6.11: Compression setting for PCC, M-CALIC, and Multilevel Clustering KLT +
JPEG 2000 comparison.

PCC M-CALIC
Multilevel

Clustering KLT +
JPEG 2000

Compression
ratio

PC scores PAE Target bit-rate

Experiment 1 9:1 200 19 1.78

Experiment 2 12:1 150 29 1.33

Figure 6.5 reports the covariance matrix of the original and the reconstructed
radiances for the compression strategies analyzed. One can see that both the original
and the reconstructed data have a similar nature in all cases.

The differences between the covariance matrix of the original data and the co-
variance matrix of the reconstructed data are reported in Figure 6.6. The differences
produced by PCC are more apparent than the differences produced by Multilevel
Clustering KLT + JPEG 2000 and M-CALIC, which suggest that the reconstructed
radiances from Multilevel Clustering KLT + JPEG 2000 and M-CALIC can retain at
least the same quality than the reconstructed radiances from PCC.
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Figure 6.4: Normalized radiance residuals statistics. The average of the normalized radiance
residuals is shown in blue, standard deviation in red, and maximum and minimum values
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Figure 6.5: Covariance matrix of the original radiances and covariance matrix of the recon-
structed radiances.
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6.4 Impact of Near-lossless and Lossy Compres-
sion on Statistical Retrieval Algorithms

Figures 6.7, 6.8, 6.9, and 6.10 illustrate the performance of statistical retrieval algo-
rithms when reconstructed IASI L1C spectra is employed to retrieve physical infor-
mation. Specifically, the retrieval of dew point temperature profiles is reported.

The average RMSE across the whole atmospheric column when reconstructed
spectra from near-lossless compression (M-CALIC) is used in the retrieval stage is
reported in Fig. 6.7. It is clear that low compression ratios achieve the same retrieval
performance than the original data (uncompressed). As the compression ratio in-
creases the retrieval performance increases. However, if the compression ratio is high
(approximately 100:1) results start to deteriorate. Figure 6.8 illustrates the RMSE
results for different pressure levels achieved for reconstructed data from near-lossless
compression. The compression ratio with the best average RMSE is reported, namely,
129:1. The results are consistent with the average RMSE reported in Fig. 6.7. One
can see that compression improves the retrieval performance throughout the whole
atmospheric column.

As Fig. 6.7 and Fig. 6.8 in the case of near-lossless compression, Fig. 6.9 and
Fig. 6.10 illustrate the average RMSE across the whole atmospheric column and the
RMSE results for the whole range of pressure levels, respectively, for lossy compres-
sion schemes (spectral transform + JPEG 2000). Conclusions are similar to those
drawn for near-lossless compression. However, the retrieval improvements are more
significant in the case of lossy compression. The best performance is produced when
both spectral and spatial transforms are used. Moreover, higher compression ratios
compared to near-lossless compression allow to achieve the best retrieval results. The
benefits of compression are present in all compression schemes and retrieval algorithms
analyzed. The improvements are clear throughout the whole atmospheric column.
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Figure 6.7: Estimation using LR or KRR for M-CALIC compression. The horizontal axis
represents the compression ratio, and the vertical axis represents the mean RMSE (dew
point temperature in K) over the different pressure levels. The plot shows the results for
M-CALIC compression when using LR (dashed line) and KRR (solid line) for predicting
moisture as compared to retrieval results on original data.
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Figure 6.8: Moisture RMSE (dew point temperature in K) profiles for near-lossless compres-
sion. We chose the PAE with the best average RMSE. For LR (dashed line) and KRR (solid
line), the minimum averaged RMSE is obtained at a compression ratio of 129:1. Results
when using original data are shown as well for comparison purposes.
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Figure 6.9: Estimation using LR or KRR for different spatial and spectral configurations
for lossy compression. In all the plots, the horizontal axis represents the compression ratio,
and the vertical axis represents the averaged RMSE (dew point temperature in K) over the
different pressure levels. Ranges are the same in all the plots to ease the comparison. Each
plot shows the results for a particular compression configuration when using LR (dashed
lines) and KRR (solid lines) for predicting moisture. Configurations using the same number
of levels for the spatial wavelet transform are in the same column and configurations using
the same spectral transform are in the same row (same color, multiple color shades). ’No’
refers to no transform (neither spatial nor spectral). The minimum averaged RMSE in each
curve is indicated with a larger marker point.
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Figure 6.10: Moisture RMSE (dew point temperature in K) profiles for lossy compression.
The selected configuration for multi-component JPEG 2000 lossy compression is POT as
spectral transform and 5 levels of spatial DWT. We chose the compression ratio with the
best average RMSE. For LR, the minimum averaged RMSE is obtained at a compression
ratio of 3,200:1. For KRR, the minimum averaged RMSE is obtained at a compression ratio
of 1,600:1. Results when using original data are shown as well for comparison purposes.
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6.5 Origin of the Benefits Produced by Compres-
sion

Figure 6.11 illustrates the performance of atmospheric parameter retrieval methods
when reconstructed spectra from lossy compression are used in a realistic scenario,
i.e., samples from different orbits are employed to define the training, validation and
testing subsets used by the statistical retrieval algorithms. Plots show the average
RMSE of the predictions over different pressure levels. Results are reported for four
different scenarios: land and cloud free, land and cloudy, ocean and cloud free, and
ocean and cloudy conditions.

It is clear that statistical atmospheric parameter retrieval benefits from lossy com-
pression. Low compression ratios keep the results almost unchanged compared to
uncompressed data. However, the retrieval performance is improved when the com-
pression ratio is increased. As expected, when the compression ratio is extremely
high (above 300:1), the retrieval results start to deteriorate because too much infor-
mation have been removed. It is interesting to note that while Multilevel Clustering
KLT + JPEG 2000 produces the best prediction results, POT + JPEG 2000 enables
competitive retrieval performance at higher compression ratios.

Figure 6.12 plots the RMSE results for different pressure levels. For each com-
pression scheme, the compression ratio that achieves the best prediction performance
is reported. One can see that the reconstructed spectra improve (or at least equal)
the results achieved for the uncompressed data in all pressure levels. Improvements
are more apparent in the mid-low troposphere.

Experiments suggest that the origin of the benefits produced by lossy compression
relies on two consequences of the coding stage. On the one hand, lossy compression
removes certain amount of noise from the original data, which benefits statistical
retrieval algorithms. On the other hand, compression is an indirect way to exploit
spectral and spatial relations between neighboring samples, which helps pixelwise
statistical methods.

Figure 6.13 analyzes the noise level remaining in the reconstructed data when
different compression schemes and compression ratios are used. Plots indicate that
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the amount of noise in the reconstructed data decreases as the compression ratio
increases. These results are consistent with the retrieval performance reported in
Fig. 6.11. Moderate to high compression ratios (i.e., [10:1-300:1]) remove most of
the noise present in the data, which benefits the retrieval results. Of course, if the
compression ratio is extremely high (i.e., [300:1-2,000:1]) compression does not have
any effect on the noise removal beyond a certain point and only useful information is
removed.
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Figure 6.11: Dew point temperature (in kelvin) retrieval performance for different lossy
compression settings using LR (solid red lines) and KRR (solid blue lines). In all the plots,
the vertical axis represents the averaged RMSE over the different pressure levels between
1,100 and 100 hPa and the horizontal axis represents the compression ratio. Ranges are the
same in all the plots to ease the comparison. Each row shows the results for a particular
compression setting and each column shows the results for a particular scenario. Results
using uncompressed spectra (original data) for LR (dashed red lines) and KRR (dashed
blue lines) are plotted for comparison purposes. The compression settings POT + JPEG
2000 and Multilevel Clustering KLT + JPEG 2000 achieve lower maximum compression
ratios compared to DWT + JPEG 2000 because side-information needs to be transmitted
in addition to the compressed data.
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Figure 6.12: Dew point temperature (in kelvin) RMSE profiles and bias. The compression
ratio (CR) with the best average RMSE is reported for LR (thick, solid and red lines) and
KRR (thick, solid and green lines). Results using the original data are shown as well for
comparison purposes when LR (thick, dashed and red lines) and KRR (thick, dashed and
green lines) are used for the predictions. The bias of the reconstructed data are plotted
with thin and dash-dot lines for LR (red) and KRR (green).

Table 6.12, Fig. 6.14, and Fig. 6.15 illustrate the impact of the spectral and spatial
regularization produced by the compression stage on the retrieval performance.

First, different levels of spectral and spatial feature relations are exploited in the
original data between neighboring samples. The objective is to assess the impact of
spectral and spatial regularization on the retrieval performance. A simple strategy
based on a data convolution with two Gaussian filters is applied to the spectral
(σsc) and the spatial (σst) domain. Table 6.12 reports the retrieval performance for
the different combinations analyzed. It is clear that exploiting spectral and spatial
features improves the retrieval results. Nonetheless, more significant improvements
are achieved by spatial regularization.
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Figure 6.13: For each compression setting, the Noise Standard Deviation is plotted (solid
and blue lines). In all the plots, the vertical axis represents the noise level (noise standard
deviation of IASI raw data) in the reconstructed spectra and the horizontal axis represents
the compression ratio. Noise estimation for uncompressed data (dashed and green lines) is
reported as well for comparison purposes. The compression settings POT + JPEG 2000
and Multilevel Clustering KLT + JPEG 2000 achieve lower maximum compression ratios
compared to DWT + JPEG 2000 because side-information needs to be transmitted in
addition to the compressed data.

Table 6.12: RMSE of dew point temperature predictions (in kelvin) for different combina-
tions of σst and σsc. The improvement over the original data is reported in percentage in
brackets. Best (green) and worst (red) performance are reported.

LR KRR
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Figures 6.14 and 6.15 report the retrieval performance when reconstructed spectra
from compression and reconstructed spectra from compression paired along with the
specific exploitation of spectral and spatial feature relations are used. Plots illustrate
that the specific exploitation of spectral and spatial information between neighbour-
ing samples before compression (blue curve) produces the same retrieval results than
uncompressed filtered spectra (orange line). This observation suggests that the trans-
forms applied in the compression stage are behind the spectral/spatial regularization,
which ultimately benefits the retrieval performance.
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Figure 6.14: Dew point temperature (in kelvin) retrieval performance for different lossy
compression settings using LR. In all the plots, the vertical axis represents the averaged
RMSE over the different pressure levels and the horizontal axis represents the compression
ratio. Ranges are the same in all the plots to ease the comparison. Each row shows the
results for a particular compression setting and each column shows the results for a partic-
ular scenario. Each plot compares 5 different approaches, i.e., original data, compression
of the original data, original data + Gaussian filter, Gaussian filter + compression, and
compression + Gaussian filter. The compression settings POT + JPEG 2000 and Multi-
level Clustering KLT + JPEG 2000 achieve lower maximum compression ratios compared
to DWT + JPEG 2000 because side-information needs to be transmitted in addition to the
compressed data.
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Figure 6.15: Dew point temperature (in kelvin) retrieval performance for different lossy
compression settings using KRR. In all the plots, the vertical axis represents the averaged
RMSE over the different pressure levels and the horizontal axis represents the compression
ratio. Ranges are the same in all the plots to ease the comparison. Each row shows the
results for a particular compression setting and each column shows the results for a partic-
ular scenario. Each plot compares 5 different approaches, i.e., original data, compression
of the original data, original data + Gaussian filter, Gaussian filter + compression, and
compression + Gaussian filter. The compression settings POT + JPEG 2000 and Multi-
level Clustering KLT + JPEG 2000 achieve lower maximum compression ratios compared
to DWT + JPEG 2000 because side-information needs to be transmitted in addition to the
compressed data.



Chapter 7

Conclusions

7.1 Summary

The Infrared Atmospheric Sounding Interferometer (IASI) represents a significant
progress in the accuracy and quality of the measurements injected into meteorologi-
cal models. The particular characteristics of the instrument lead to generate a large
amount of data every day. Therefore, efficient strategies are demanded to improve
the capabilities of transmission and storage of such an amount of information. Com-
pression is an effective way to reduce the size of the data produced. However, specific
compression schemes should be designed to adapt to the particular nature of the IASI
data. Currently, Principal Component Compression (PCC) is an accepted strategy
to compress IASI products. Nonetheless, PCC entails several drawbacks related with
the use of a training set to obtain a truncated principal components representation of
the original signal. Accordingly, image compression techniques may be an adequate
alternative to PCC. In this thesis we present a comprehensive study of IASI data
compression based on state-of-the-art image compression techniques.

Our first analysis focused on the study of IASI L0 products, which are data sent
from the instrument to the reception stations and the inputs of the on-ground pro-
cessing chain. We investigated the order-0 entropy and the order-1, order-2, and
order-3 context-based entropies on several IASI L0 products. Our analysis in Chap-
ter 2 suggested that, using a simple variable-length code, at least 1.62 bpppc might be
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saved. However, gains could be even higher if contextual models were used. Order-1
conditional contexts revealed that at least 3.78 bpppc might be spared. Order-2 con-
ditional contexts allowed to save over 5.50 bpppc. The best results were achieved by
order-3 conditional contexts, which yielded gains higher than 6.70 bpppc. Then, we
translated these observations to a real compression scenario, where the compression
performance of different state-of-the-art lossless compression techniques was investi-
gated on IASI L0 products. We observed that compression ratios over 2.6:1 could be
achieved.

On the basis of the aforementioned study, in Chapter 3 we extended the analysis to
IASI L1C products, which are considered useful for end users. The assessment of IASI
L0 data compression revealed that exploiting the spectral dimension is of utmost im-
portance to achieve competitive compression performance. Therefore, we performed a
computational complexity analysis of several spectral transforms and provided specific
recommendations for IASI data. Based on this study, we proposed several compression
schemes for lossless, near-lossless, and lossy compression of IASI L1C products. For
lossless compression, we observed that compression techniques that already exploit
the spectral redundancy by themselves like M-CALIC and CCSDS-123 also benefit
from applying a spectral transform. Multilevel Clustering RKLT and RWA were the
spectral transforms that achieved the best coding performance. Compression ratios
over 2.5:1 were achieved for IASI L1C orbits. The near-lossless compression analysis
revealed that small PAEs such as 1 and 3 achieved gains over 17% and 30%, respec-
tively, compared to lossless compression, while a SNR Energy performance over 65
dB was obtained. For lossy compression, Multilevel Clustering KLT + JPEG 2000
yielded the best compression performance for all bit-rates analyzed. We also com-
pared the reconstructed spectra from Multilevel Clustering KLT + JPEG 2000 and
M-CALIC, which are the coding schemes that achieved the more competitive lossy
and near-lossless compression performance, respectively, with reconstructed spectra
from PCC and with the original spectra. This analysis suggested that the proposed
compression schemes are able to produce useful reconstructed spectra to be used in
further processings.

The promising coding performance of the proposed compression schemes for IASI
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products led us to analyze the impact of compression in end-user applications. In
Chapter 4 we investigated the impact of IASI L1C data compression when the re-
constructed radiances were later used by statistical retrieval algorithms to predict
physical parameters. We analyzed both near-lossless and lossy compression. Near-
lossless compression produced significant improvements in the prediction performance
at compression ratios of, approximately, 100:1. However, lossy compression achieved
even better results. The retrieval results were further improved at higher compres-
sion ratios. We observed that, for lossy compression, the retrieval performance was
more competitive when a spatial transform had been applied, which suggests that the
spatial regularization produced by the spatial transform is behind the improvements.
As a conclusion, the proposed lossy compression schemes revealed themselves as an
effective strategy to exploit spectral and spatial feature relations in an indirect way,
which benefits the retrieval methods.

On the basis of the previous analysis, the origin of the benefits produced by
compression was investigated in Chapter 5. We focused on two consequences of
compression. On the one hand, the noise filtering produced by compression was
analyzed. We observed that the noise level in the recovered spectra decreased as
the compression ratio increased. When the retrieval results were compared to the
level of noise in the reconstructed data, we observed that the retrieval performance
improved at low noise levels. If the compression ratio was higher than some point, the
noise filtering effect vanished, which yielded degraded retrieval performance because
relevant information was removed beyond this point. On the other hand, we analyzed
the exploitation of spectral and spatial feature relations through the spectral and
spatial transforms applied in the compression stage. To this end, we proposed a simple
technique to specifically include spectral and spatial regularization consisting of a
spectral and a spatial Gaussian filter to convolve neighboring pixels. We observed that
the improvements in the retrieval performance achieved by compression decreased
when the Gaussian filters was used, which suggests that the benefits produced by
compression are mainly caused by the exploitation of spectral and spatial relations.

As a general conclusion of this thesis, we have carried out a comprehensive anal-
ysis of IASI data compression. Several lossless, near-lossless, and lossy compression
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schemes have been proposed for IASI L0 and IASI L1C products, which are able to
produce useful reconstructed spectra at high compression ratios. The quality of the
reconstructed radiances have been analyzed on statistical retrieval algorithms. Ex-
perimental results suggest that compression benefits the retrieval results at moderate
and high compression ratios. We have investigated the origin of the benefits and
provided recommendations for competitive compression of IASI L1C products.

7.2 Future work

Even though competitive compression strategies for IASI data compression have been
proposed in this thesis, the reported conclusions lead to new ideas for further research
and contributions.

The theoretical entropy study carried out on IASI L0 data yielded gains over 80%
when order-3 contextual models were employed. It seems interesting to extend this
analysis to IASI L1C products. The large size of the data has led EUMETSAT to
adopt lossy compression strategies, like PCC, to produce appropriate products for
the near real-time dissemination. Effective lossless compression strategies might help
to disseminate the whole products in such scenarios. As a future work, we aim to
explore the potential of contextual entropy coding within the framework of lossless
compression of IASI L1C data.

Regarding lossy compression, the spectral/spatial regularization produced dur-
ing the compression stage has revealed itself to be the main reason of the retrieval
improvements. Exploitation of spectral/spatial feature relations is an indirect con-
sequence of using spectral and spatial transforms. Therefore, it is worth to further
investigate the impact of transforms on the retrieval methods. Analyzing additional
transforms, testing another parameter configuration and settings, and adapting state-
of-the-art transforms to enhance the retrieval results and the compression performance
are areas of interest.

Another area of interest is to investigate the impact of lossy compression on other
application fields. For instance, neural networks, radiative transfer models, trace
gases measurements, etc.
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Finally, the IASI-C instrument is planned to be launched in October 2018. The
nature of the IASI next-generation (IASI-NG) products shall be different to the na-
ture of the IASI-A and IASI-B products. Both the instrument characteristics and the
processing chain shall evolve with respect to the previous IASI instruments. There-
fore, IASI-NG data compression is an interesting research field. Lossless, near-lossless,
and lossy compression of IASI-NG products and the impact of lossy compression on
end-user applications are two attractive areas that are still unexplored.
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