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Abstract 

Operator’s transport networks are becoming increasingly more complex due to the 
large number of network layers needed to support the ever increasing number of 
new services (e.g., video-on-demand, social media, on-line gaming, or video and 
voice calls) with stringent requirements like very low latency and high throughput, 
as well as the number of users of those services. As a result, innovative approaches 
for operating the networks is mandatory in order to fulfill those tight 
requirements, while reducing costs.  

The main objective of this PhD thesis is improving network operation by 
introducing autonomic networking capabilities. To this end, we study algorithms 
targeting network healthiness by monitoring both, the optical (L0) and the packet 
(L2) layers. An in depth study concerning centralized vs distributed architectures 
is carried out for anticipating anomaly or degradation detection before enough to 
give time to re-optimization algorithms. This will allow to plan the most adequate 
re-optimization that will end in, e.g., re-routing those affected demands according 
to their Service Level Agreement (SLAs) aiming at reducing the traffic affected by 
the detected degradation. 

This main goal is achieved by the following five specific goals: 

1. Traffic Anomalies at the packet layer. A score-based anomaly detection method 
is proposed for improving single Origin-Destination (OD) traffic anomalies 
detection. In addition, a method is devised to deal with the case of multiple 
related traffic anomalies triggered by an external event. By anticipating 
whether other ODs are anomalous after detecting one anomalous OD pair, the 
number of network reconfigurations, total reconfiguration time, as well as 
traffic losses are improved. 

2. Failure detection and localization/identification at the optical layer based on 
bit error rate (BER) monitoring. BANDO and LUCIDA algorithms are 
proposed to, first, detect significant BER changes in optical connections, and 
then, to identify the most probable failure pattern. Devoted to soft failure 
localization, two techniques for active monitoring during commissioning 
testing and for passive in-operation monitoring are proposed. 



3. Network Reconfiguration. Two reconfiguration algorithms were devised after 
anomalies at L2 and degradation at L0 are detected. The ODEON optimization 
problem is proposed to reconfigure the VNT, whereas the SCULPTOR 
algorithm is proposed to be triggered for demand re-routing after receiving 
certain BANDO notifications regarding significant BER change. 

4. Cognitive Architecture. A monitoring and data analytics (MDA) architecture is 
devised aiming to reduce the amount of data to be conveyed and to minimize 
anomaly and degradation detection times. Representative use cases for 
autonomic networking in multilayer scenarios experimentally validate the 
distributed MDA architecture presented in this PhD thesis. 

5. Visualization Techniques. Visualization techniques with specific task-oriented 
charts are proposed to help operators. For such visualization to be useful for 
human operators, an overwhelming amount of monitoring data needs to be pre-
processed. A use case for failure localization is utilized as a guiding thread. 

It shall be mentioned that part of the work reported in this thesis has been done 
within the framework of European and National projects. Specifically, the METRO 
High bandwidth, 5G Application-aware optical network, with edge storage, 
compUte and low Latency (METRO-HAUL), H2020-ICT-2016-2. (G.A. 761727) 
funded by the European Commission, and the Service-oriented hYbrid optical 
NEtwork and cloud infrastructuRe featuring high throuGhput and ultra-low 
latency (SYNERGY). Ref: TEC2014-59995-R, 2015-2017 and the cogniTive 5G 
application-aware optical metro netWorks Integrating moNitoring, data analyticS 
and optimization (TWINS) Ref: TEC2017-90097-R, 2018-2020, both funded by the 
Spanish Ministry of Economy, Industry and Competitiveness (MINECO). 
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Resumen 

Las redes de transporte de los operadores son cada vez más complejas debido al 
gran número de capas que son necesarias en la red para poder dar soporte tanto al 
creciente número de servicios (por ejemplo, video bajo demanda, redes sociales, 
juegos on-line, o vídeo llamadas) que requieren estrictos valores de baja latencia o 
alta conectividad, así como la creciente cantidad de usuarios que reclaman estos 
nuevos servicios. Por lo tanto, para poder satisfacer estos rigurosos requisitos y 
reducir costes, es necesario desarrollar enfoques innovadores para la operación de 
estas redes.  

El objetivo principal de esta tesis doctoral se centra en mejorar la operación de la 
red mediante la introducción de capacidades autónomas. Con este objetivo, se 
proponen algoritmos para la evaluación del estado de la red mediante la 
monitorización tanto de la capa óptica (L0), como de la capa de paquetes (L2). 
Asimismo, se compara el uso de una arquitectura centralizada frente a una 
distribuida para anticipar la detección de anomalías o degradaciones con suficiente 
antelación, de forma que se disponga de tiempo suficiente para poder aplicar 
algoritmos de re-optimización. Esto permitirá planificar la re-optimización en el 
mejor momento resultando en, por ejemplo, el re-enrutamiento de las demandas en 
función del Acuerdo de Nivel de Servicio (SLA), de forma que se reduzca 
significativamente el tráfico afectado por la degradación detectada. 

Este objetivo principal se logra mediante los cinco siguientes objetivos específicos: 

1. Anomalías de tráfico en la capa de paquetes. Se propone un método de 
detección de anomalías basado en puntuaciones para mejorar la detección de 
anomalías de tráfico Origen-Destino (OD). Además, se diseña un método para 
tratar el caso de múltiples anomalías de tráfico relacionadas y desencadenadas 
por un evento externo. Al ser capaces de anticipar otros OD también anómalos 
después de haber detectado un primer par OD anómalo, se puede rebajar el 
número de reconfiguraciones que se tienen que realizar en la red, con la 
consiguiente reducción del tiempo total de reconfiguración, minimizando 
finalmente las pérdidas de tráfico. 

2. La detección de fallos y localización/identificación en la capa óptica se basa en 
la monitorización de tasa de error de bits (BER). Para abordar este objetivo se 



proponen dos algoritmos denominados BANDO y LÚCIDA, donde en primer 
lugar BANDO detecta cambios de BER significativos en las conexiones ópticas, 
y luego LÚCIDA identifica el patrón más probable de los fallos. Con el objetivo 
de detectar estos fallos, se proponen dos técnicas para dos momentos diferentes 
en la vida de una conexión óptica. La primera, está basada en monitorización 
activa y está indicada para el momento de puesta en servicio de una conexión. 
La segunda, se centra en la monitorización pasiva durante el tiempo en que la 
conexión está operativa en la red.  

3. Reconfiguración de la Red. Se han diseñado dos algoritmos para ser ejecutados 
cuando se detectan anomalías en la capa L2 o degradaciones en la capa L0. Se 
propone el problema de optimización para reconfigurar la topología de red 
virtual, denominado ODEON, y el re-enrutamiento de las demandas cuando se 
hayan recibido ciertas notificaciones del algoritmo BANDO tras la detección de 
un cambio significativo en la BER algoritmo, denominado SCULPTOR. 

4. Arquitectura Cognitiva. Se diseña una arquitectura de monitorización y 
análisis de datos (MDA) con el doble objetivo de reducir la cantidad de datos 
que se tienen que enviar al repositorio central y a la vez minimizar los tiempos 
de detección de anomalías y degradaciones. Se proponen ciertos casos de uso 
representativos en escenarios multicapa para redes autónomas y que se 
utilizan para validar experimentalmente la arquitectura MDA distribuida 
presentada en esta tesis doctoral. 

5. Técnicas de Visualización. Se proponen técnicas de visualización que incluyen 
gráficas diseñadas para tareas específicas, con el objetivo de guiar a los 
operadores. Para que estas técnicas sean útiles, se han de procesar una 
abrumadora cantidad de datos de monitorización. Un caso de uso de 
localización de fallos se utiliza como hilo conductor. 

Cabe destacar que parte del trabajo reportado en esta tesis doctoral se ha realizado 
en el marco de proyectos europeos y nacionales. En concreto, METRO High 
bandwidth, 5G Application-aware optical network, with edge storage, compUte and 
low Latency (METRO-HAUL), H2020-ICT-2016-2. (G.A. 761727) que ha sido 
financiado por la Comisión Europea, el Service-oriented hYbrid optical NEtwork 
and cloud infrastructuRe featuring high throuGhput and ultra-low latency 
(SYNERGY). Ref: TEC2014-59995-R, 2015-2017 y el cogniTive 5G application-
aware optical metro netWorks Integrating moNitoring, data analyticS and 
optimization (TWINS) Ref: TEC2017-90097-R, 2018-2020, ambos financiados por el 
Ministerio de Economía, Industria y Competitividad (MINECO). 
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Chapter 1 

Introduction 

 Motivation 

Transport networks have been traditionally deployed as multilayer networks, 
where the optical layer provides connectivity to packet nodes adapting the traffic 
generated by the users to the huge capacity of the optical connections. This creates 
Virtual Network Topologies (VNT), since links connecting packet nodes are 
supported by optical connections. However, those optical connections were 
statically configured, as traffic aggregation at the packet layer translated into an 
almost constant capacity requirement. 

However, such scenario has radically changed in the last few years since the 
difference between the traffic requested by the users has significantly increased by 
the introduction of new services, like video-on-demand, social media, video calls, 
on-line gaming, etc. In consequence, traffic dynamicity has arrived at the optical 
layer and optical connections need to be established dynamically; here the concept 
of Software Defined Networking (SDN) has facilitated such dynamic connection 
provisioning. 

Another recent change for the transport networks is the concept of the telecom 
cloud [Ve15], where network operators are deploying data centers connected to 
their networks thus, opening the possibility to the introduction of new services, as 
well as reducing Capital Expenditures (CAPEX) by Virtualizing Network 
Functions (NFV). 

Both, traffic dynamicity and the telecom cloud have added more complexity to 
transport networks infrastructures, making also their operation much more 
complex. In fact, the panorama is getting worse, as new players (e.g., Netflix, 
Amazon or even Google Play Films & TV) have recently arrived at the market 
forcing network operators to both, reduce prices and increment the quality of the 
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services and users’ experience, as a result of the extreme competition. In addition, 
5G networks, already becoming a reality, will bring even more new players to the 
scene and impose even more stringent requirements. 

In this context, reducing CAPEX is not enough to survive as a player and much 
less to be a winner. Then, innovative solutions are needed to keep such CAPEX 
reduction, and also to significantly reduce Operational Expenditures (OPEX) 
coming from adding cognitive capabilities to the network to facilitate their self-
configuration and self-adaptation, paving the way toward a true autonomic 
networking.  

The very first step in this path is understanding what is going on in the network 
infrastructure, making better planning decisions and more efficient resource 
utilization, anticipating anomalies and degradations that might affect the 
committed Service Level Agreements (SLA), and localizing failures at their 
incipient phase thus, leaving plenty of time to reconfigure the network, while 
facilitating its maintenance. 

Considering the network at the packet level, unexpected traffic increments can 
create network congestion and stress resource utilization in packet nodes. Those 
anomalous volumes of traffic do not follow expected patterns and hence, its prompt 
detection becomes essential since it allows preparing the network to minimize their 
impact on the running services. 

Looking at the optical layer, a failure can impact on a huge number of services 
causing disruptions, which entails money losses for the network operators. 
Therefore, detecting failures in advance makes that services can be moved before 
any disruption happens.  

In this PhD thesis, we face those challenges by devising data analytics algorithms 
that are used to help human operators and provisioning and planning tools by 
detecting anomalies and degradations and by supplying useful data that might 
improve their work. Data analytics need data that can be obtained by monitoring 
the network and their results can be used to do reconfiguration of the nodes or the 
network. Then, an additional challenge to be faced is to come up with a monitoring 
and data analytics architecture to support Observe-Analyze-Act (OAA) control 
loops at the node and the network level developing thus, the main ingredients for 
autonomic networking. 

 Goals of the Thesis 

In light of the above, this Ph.D. thesis is focused on applying control loops as a way 
to bring cognition to multilayer transport networks. Specifically, detection of 
different incidences impacting the network, whenever directly involving the optical 
connections (lightpaths) at the optical layer or affecting traffic volume such as 



Chapter 1- Introduction 3 

traffic anomalies at the packet layer, will be tackled by proposing algorithms and 
control and management architectures. Anticipating their detection will provide 
additional time to plan adaptation to those unexpected events by reconfiguring the 
network aiming at reducing signal and packet losses. Not only detection, but also 
identification and localization, wherever possible, is targeted. Moreover, network 
reconfiguration triggered by the detection of incidences will be studied for the sake 
of completeness.  

Five specific goals are defined to achieve this main goal: 

G.1 –Traffic Anomalies at the packet layer 

This goal focuses on detecting traffic anomalies at the packet layer and consists of 
two sub-goals: 

• G.1.1: Study methods for the detection of single traffic anomalies. 

• G.1.2: Study detection and reconfiguration methods in scenarios with 
multiple traffic anomalies. 

G.2 – Failure detection and localization/identification at the optical layer 

This goal targets at detecting and localizing/identifying soft failures that may 
impact the optical layer. The goal is divided into three sub-goals: 

• G.2.1: Methods for soft failure detection. 

• G.2.2: Methods for soft failure localization/identification. 

G.3 – Network Reconfiguration 

This goal aims at reconfiguring either the optical or the packet layer, or both after 
a failure or an anomaly is detected. 

G.4 – Cognitive Architecture 

This goal concentrates on studying different architectures for the control and 
management planes to bring cognition to multilayer transport networks. 

G.5 – Visualization techniques to assist network operator 

This goal focalizes in developing visualization techniques to help human operators 
to understand what is going on in the network. 

A summary of the goals of the thesis is presented in Table 1-1. 
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Table 1-1: Thesis goals. 

Goals Sub-goals 

G.1 

Traffic Anomalies at the 
packet layer 

G.1.1 

Single traffic anomalies. 

G.1.2 

Multiple traffic anomalies. 

G.2 

Failure detection and 
localization/identification at 
the optical layer 

G.2.1 

Failure detection. 

G.2.2 

Failure localization/identification. 

G.3 

Network Reconfiguration 

G.4 

Cognitive Architecture 

G.5 

Visualization techniques 

 Methodology 

To carry out the studies needed to meet the goals of this thesis, the methodology 
illustrated in the next figure will be followed. 

As the starting point of each study, an idea related to a thesis objective is conceived 
and formally stated. Then, due to the nature of this thesis’ goals, both a data 
analytics algorithm and/or an optimization problem (mathematically formulated as 
a Mixed Integer Linear Programming (MILP)) are devised. The data analytics 
algorithms are implemented in R in RStudio framework, whereas the 
mathematical model is solved using IBM’s commercial solver CPLEX [CPLEX]. 
Because the realistic scenarios tackled lead to large problem sizes in most of the 
studies, MILP formulations require long computation times; therefore, for those 
scenarios requiring very short computation times (e.g., once in operation or to 
manage dynamic connection requests) heuristic algorithms are required. To that 
end, once a MILP formulation is validated, an algorithm is designed. 

Data analytics and optimization algorithms are together considered as our 
proposed solution to the problem. These algorithms are integrated in an event-
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driven OMNeT++ [OMNet] simulator, which allows evaluating the performance of 
the solution and, if required, revising and improving the algorithms. Then, the 
performance of the solution is compared against a certain benchmark (e.g., other 
solutions based on state-of-the-art procedures). Relevant results are eventually 
disseminated and considered for the conception of a new idea requiring further 
research. 

Problem
statement

Algorithm 
implementation

Performance evaluation
Simulation

Idea

Dissemination

Data analytics 
methodology

MILP formulation
Algorithm design

Algorithm 
implementation

 

Fig. 1-1. Diagram detailing the followed methodology. 

Finally, aiming at experimentally demonstrating the feasibility of the proposals in 
this PhD thesis, some of the algorithms have been integrated in an experimental 
platform. 

 Thesis Outline 

The remainder of this thesis is organized as follows. 

Chapter 2 introduces the needed background in networking and Chapter 3 in 
optimization, statistics and machine learning. That background is required to 
follow the main concepts of this thesis. 

Chapter 4 briefly reviews the state-of-the-art related to the objectives of this Ph.D. 
thesis, focusing on detaching and highlighting the niches to be covered.  

Chapter 5 deals with traffic anomalies and re-configuration at the packet layer 
targeting goals G.1.1 and G.3. Also, it sketches a cognitive architecture focusing on 
goal G.4. This chapter is based on the following journal and conference 
publications: [ComCom17], [JLT17.1], [ECOC16.2], [ACP16] and [ICTON17.2]. 

Continuing with anomaly detection, Chapter 6 targets goal G.1.2 of multiple traffic 
anomalies detection; it is based on the journal [ComCom17] and conference 
[ACP16] publications. 

Focused at the optical layer, Chapter 7 aims at achieving bit error rate (BER) 
degradation detection and failure identification covering goals G.2.1 and G.2.2. The 
following publications are related to this chapter [JLT17.2], [ICTON17.1], 
[OFC17.1], and [ECOC16.1]. 
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Continuing with soft failure detection, Chapter 8 suggests performing network 
reconfiguration after such detection, thus targeting goal G.3. This chapter is 
related to the conference [OFC17.1] publication. 

Localization after soft failure detection is targeted in Chapter 9, related to goals 
G.2.1 and G.2.2. This chapter is based on the journal [JOCN18] and conferences 
[OFC18.2], [ICTON18.1] and [ICTON18.2]. 

Chapter 10 validates the distributed data analytics architecture targeting goal G.4, 
by demonstrating three representative use cases. It is based on the journal [JLT18] 
and conference [OFC17.2]. 

Chapter 11 relates to goal G.5 and devises several visualization techniques as a 
tool to guide operators in the process of failure localization. This work is based on 
the already published conference [OFC18.1] and the just submitted conference 
[ECOC18.1] and demonstration [ECOC18.2]. 

To conclude, Chapter 12 draws the main contributions of this PhD thesis. 

 Contributions and References from the 
Literature 

For the sake of clarity and readability, references contributing this thesis are 
labeled using the following criteria: [<conference/journal acronyms> <Year 
(yy)[.autonum]>], e.g., [OFC17] or [JLT18]; in case of more than one contribution 
with the same label, a sequence number is added. 

The rest of the references to papers or books, both auto references not included in 
this thesis and other references from the literature are labeled with the initials of 
the first author’s surname and year of publication, e.g., [Bi06]. Finally, references 
to norms or standards are labeled with its identification, e.g., [RFC7491]. 
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Chapter 2 

Background in Networking 

As a starting point, let us introduce in this chapter the main concepts that are used 
over the rest of this PhD thesis. Firstly, an overview of telecom networks 
introducing the access, metro and optical segments is presented. Multilayer 
networks are considered, where virtual network topologies created on top of the 
optical layer. A brief introduction to control and management of telecom networks 
is presented. The optical layer is then examined, and related concepts are 
introduced. Since optical components can experience degradations that could affect 
the optical signal, the optical layer should be monitored, including the spectrum of 
the optical signals.  

 Telecom Networks 

Optical networks are a type of networks using light to convey data between two (or 
more ends) and optical fibers as a transmission medium. A laser is an optical 
device that converts electrical signal received into light pulses and sends them 
through an optical fiber. An optical fiber consists of a cylindrical core of silica with 
a refractive index μ1, surrounded by cylindrical silica cladding with a lower 
refractive index μ2 in order to confine light. 

Optical fiber cables are currently widely deployed and used in all 
telecommunications networks. Compared with copper cables previously used, 
optical fiber offers huge bandwidth and reduced losses and sensitivity to 
electromagnetic interferences among other undesirable effects [Ra10]. Optical 
networks satisfy demand for bandwidth due to the tremendous growth of connected 
users and devices, and the use of popular bandwidth hungry applications, like 
video on demand. 
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Fig. 2-1. Point-to-point optical transmission system. 

The first generation of optical systems was based on point-to-point transmission 
(Fig. 2-1), where only lasers, and Optical Amplifiers (OAs) to amplify the optical 
signal at intermediate points, were used to provide capacity between two distant 
locations. Optical signals can be modulated in a specific central frequency in the 
optical spectrum and passive multiplexors allow multiplexing several optical 
signals to create a bundle that is eventually injected to the optical fiber; this is 
named Wavelength Division Multiplexing (WDM). In this generation, switching 
was performed electronically in the packet nodes. 

In the second generation, optical switching was introduced. Wavelength Selective 
Switching (WSS) enable switching signals between optical fibers on a per-
wavelength basis. As a result of the introduction of switching capabilities, real 
optical networks can be created, and some intelligence is needed to create and 
route optical connections (lightpaths) traversing several nodes between the source 
to the to the destination node [Ra10]. Such optical nodes performing optical 
switching are named (Remotely configurable) Optical Add-Drop Multiplexers 
((R)OADMs) or Optical Cross Connects (OXCs). Remote configuration became a 
must to be able to program the optical nodes from a remote center, to automatically 
establish/release lightpaths in/from the network. 

In general, network operators split their transport networks into several segments, 
to better capture the specific need of each of them. Fig. 2-2 presents an example of 
such split, which include: 

• Access Network that connects users in a small area to their network 
operator and aggregate traffic to fit users’ traffic flows into network 
connections. 

• Metro Network interconnects and aggregates access networks, while 
connecting to the core network. Metro nodes are conceived as a combination 
of optical transmission and switching, a packet switching, and small data 
center, together with Passive Optical Networks (PON) and other access 
specific technologies.  
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• Core Network, or backbone network, is the part that performs the highest 
level of aggregation. It consists of OXCs and packet nodes, in addition to 
large data centers (DC) placed at some strategic locations. 

Access Network Metro Network Core Network

Large Data 
Center

OXCs

Packet 
nodes

PON DC
Residential 

Area

Industrial 
Area

Business 
Area

 

Fig. 2-2. Access, metro and core networks. 

Metro and core networks are the focus of this PhD thesis, as they include optical 
and packet networks. 

 Optical Networks 

Let us now focus on the most important physical components that can be found in 
optical networks [No11], [EON16]: 

• Transponder is the element that sends and receives the optical signal from a 
fiber; it adapts the signal coming from a client layer (e.g., a packet switch) 
into an optical signal ready to be multiplexed in a WDM bundle. Similarly, 
in the reverse direction, it adapts the optical signal from the network into a 
signal for the client. A transponder is characterized by its data rate and the 
maximum distance that the signal can span (see Fig. 2-3). It has two parts, 
the transmitter that includes a semiconductor laser diode as light source, 
and a receiver where the optical signals are converted to the electrical 
domain using a photodetector. 
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In WDM, optical signals where conceived with a fixed spectrum width, e.g., 
50 GHz, which limits the amount of data that can be conveyed. As an 
evolution, the concept of Elastic Optical Networks (EON) allow a variable 
spectrum width for the lightpaths, and therefore, transponders can generate 
elastic optical paths; with variable bitrates according to the current need 
[Ge12]. 

• Optical Amplifiers (OA) amplify optical signals without converting them the 
electrical domain. Although several types of optical amplifiers exist, erbium-
doped fiber amplifiers (EDFAs) are the ones commonly used in intermediate 
locations to amplify WDM signals in long distance optical links. 

• Wavelength Selective Switching (WSS) devices switch signals. Nowadays, 
WSSs are mostly based on Liquid-Crystal-On-Silicon (LCoS); they offer 
flexible passband filtering in conjunction with the wavelength switching and 
routing functionalities [EON16]. The specific functionalities of WSSs, 
include: multiple wavelength routing and switching, power equalization of 
different wavelength channels, dispersion compensation/mitigation, variable 
channel bandwidths, polarization-independent operation, compactness, and 
millisecond reconfiguration times. 

A
Rx

B

A B

OSA

B

Drop

Tx
A

Transponder Transponder
Optical Amplifiers

Tx

Transponder Rx

WSS

Optical
Cross-Connect

(OXC)

 

Fig. 2-3. Example of optical network, where optical components are illustrated. 

A measure of the performance of the optical layer is that of the Quality of 
Transmission (QoT), which can be quantified in terms of BER of the lightpaths. 

 Virtual Network Topologies (VNT) 

We target multilayer networks, where the optical layer includes OXCs and optical 
links with OAs, whereas the packet layer includes packet nodes and links are 
supported by lightpaths in the optical layer (Fig. 2-4). 

The topology at the optical layer is statically configured, as optical links are created 
using physical components such as optical fibers and OAs. However, the topology 
at the packet layer can be dynamically configured, as the links are supported by 
lightpaths that can be dynamically established and released. In these conditions, 
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packet links are said to be virtual and denoted virtual links (vlinks), whereas the 
packet topology is said to be a VNT. 

R1

R2

R3

R4

X1

X2

X3

X4
X5

X6

Lightpath

Optical network

Packet node

Virtual Link

Packet layer

OXC

 

Fig. 2-4. Scheme for a VNT in a multilayer network. 

In this PhD thesis, we assume that packet switches are based on Multiprotocol 
Label Switching (MPLS), which means that they support connections to be 
established at the packet layer, each of them between an origin (O) and a 
destination (D) packet switch and with some maximum capacity. 

Increasing packet traffic dynamicity entails large overprovisioning, which 
increases costs and reduces margin to network operators. The solution to reduce 
overprovisioning lies in monitoring traffic to be able to predict future traffic 
conditions that, because known in advance, allow optimization algorithms to find 
optimal resource allocation, which can be implemented in the network in a 
proactive manner. 

In addition, aiming at quantitatively measure the Quality of Service (QoS) at the 
packet layer, several metrics apart from pure number of bytes/packets can be 
considered, like packet loss, one-way or two-ways delay and differential delay or 
jitter. Note that QoS can be related to the Quality of Experience (QoE) as view from 
the service consumers’. 

 Control and Management Plane 

As introduced above, transport networks consist of different network segments 
(metro and core) and layers (MPLS and optical), possibly from different vendors 
and using different technologies. 

To enable automatic provisioning and management of heterogeneous services over 
such multi- vendor/domain/layer networks, a control and management plane is 
needed (Fig. 2-5). The control plane is in charge of network operation by 
automatically provisioning connections and reacting against failures in the 
network devices, while the Network Management System (NMS) at the 
management plane is responsible for providing Fault, Configuration, 
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Accounting/Administration, Performance and Security (FCAPS) management to 
the network. To enhance network operation, a robust infrastructure capable of 
performing complex operations, such as a SDN controller, is required at the control 
plane. 

The SDN controller uses two differentiated databases to store operational data. 
The topology database (also known as the Traffic Engineering Database -TED) 
contains the state of network resources, whilst the connections database (or Label 
Switched Path (LSP) database) maintains information regarding current 
connections in the network; including the route, the bitrate or capacity, the 
spectrum allocation, the switching types, and other constraints. 

 

 

  

 

 

 

  
 

 

 

Fig. 2-5. Control and Management Plane 

 The Optical Layer 

In this section, we concentrate on the specifics of the optical layer, including optical 
signals, monitoring, and soft failures. 

 The Optical Signal 

Fig. 2-6 illustrates the spectrum of a WDM signal bundle (e.g., in an optical link) 
where lightpaths use a flexible spectrum allocation depending on the bitrates 
requirements; the width of the spectrum allocation, named frequency slot, is 
adapted to meet such requirements. Note that a frequency slot is created as a 
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group of neighboring frequency slices of fixed width, e.g., 6.23 GHz. In the example, 
spectrum allocations range from 37.5 GHz to 75 GHz. 

Frequency (THz) Frequency slice
(12.5 GHz)

50 GHz37.5 GHz 75 GHz
Frequency slot

Allocated
spectrum

  

  

  

 

time t

 

Fig. 2-6. Example of flexible spectrum allocation. 

2.2.1.1 Modulation Formats and Optical Detection 
Several modulation formats are available; its choice impacts on the reach and 
capacity of lightpaths and therefore, choosing the correct modulation format is 
primordial to build a flexible and cost effective high capacity optic-fiber network 
[Ja13]. The different modulation formats convey data by changing some particular 
aspect of a base signal, the carrier, in response to input data. There are three major 
classes of digital modulation techniques used for transmission of digitally 
represented data: ASK, FSK and PSK. 

0         0         1         1        0         1        0         0         0         1        0

0         0         1         1        0         1        0         0         0         1        0

0         0         1         1        0         1        0         0         0         1        0

(b)

(a)

(c)

 

Fig. 2-7. Examples for modulation formats: (a) ASK, (b) FSK, (c) PSK. 

• Amplitude-Shift-Keying (ASK), where digital data are represented as 
variations in amplitude of the carrier wave, also known as On-Off-Keying 
(OOK) (see Fig. 2-7(a). OOK will be later used in Chapter 9.  
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• Frequency-Shift-Keying (FSK) is based on switching the frequency of a laser 
light between two different frequencies to represent 0s and 1s (Fig. 2-7(b)). 

• Phase-Shift-Keying (PSK) uses the phase of the signal to modulate a signal. 
The modulation happens by varying the sine and cosine inputs at a precise 
time Fig. 2-7(c). 

Later, in Chapter 7, the concept of Polarization-Multiplexed (PM) or Dual-
Polarization (DP) is a method that allows extending the bandwidth of optical 
signals transmitting two waves using orthogonal polarization states over the same 
carrier frequency. 

Different optical detection techniques can be considered (e.g., direct, coherent). 
Although the particular type of signal detection is irrelevant for this thesis, the 
experiments entailing optical transmission use coherent detection. Coherent 
detection is a method developed for detecting information encoded as modulation of 
the phase and/or frequency of electromagnetic radiation ranging from infrared to 
visible light. It was first developed for radio and microwaves. The receptor receives 
a weak signal as input, which is later mixed with a strong reference light from a 
local oscillator by means of a nonlinear device e.g., rectifier. Finally, the mixed 
result is detected [wrp].  

2.2.1.2 Spectrum of Optical Signals 
As above introduced, the optical spectrum can be represented as the decomposition 
of the power (dBm) as a function of the frequency (Hz). A related concept is that of 
the optical bandwidth, which is the width of the optical spectrum. 
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Fig. 2-8. Real QPSK optical spectrum acquired by an OSA.  

Fig. 2-8 presents an optical spectrum with two neighboring Quadrature Phase-
Shift Keying (QPSK) 100Gb/s signals (s1 and s2) acquired by an Optical Spectrum 
Analyzer (OSA). OSAs are devices that can be used to acquire the optical spectrum 
of a WDM bundle; the spectrum measurements can be also exported from the OSA 
as ordered lists of <frequency, power> pairs. In particular, signal s1 in Fig. 2-8 was 
generated using an experimental system while signal s2 was generated by a 
commercial one. Note that a band guard is left between both signals to avoid them 
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to overlap. In general, QPSK optical signals present a flat spectral region around 
the central frequency, sharp edges, and a round region between the edges and the 
central frequency. 

 Monitoring 

Monitoring the optical layer has been traditionally limited to metering optical 
power at intermediate points, to detect whether some optical signal is received or 
in the contrary, to detect fiber cuts, and at the receiver side as an indirect way to 
determine whether the quality of the transmission is enough.  

Digital Signal Processing (DSP) module of coherent receivers has posed new 
possibilities for monitoring [Do15], [Do16], since they enable get measurements of 
several parameters related to the optical signal. Such monitoring capability is 
attracting increasing interest for several reasons such as: i) the reduction of system 
margins (which derives in reducing capital expenditures) might induce more 
frequent degradations at the optical layer [Po17], [So17]; ii) a more accurate 
estimation of the QoT and an optimization of transmission parameters, routing, 
and spectrum assignment [Ch15]. 

Monitoring the optical layer is vital to verify SLAs fulfillment. Considering a 
multilayer scenario like the one depicted above, packet losses could come from 
errors affecting the optical layer therefore, leading to unacceptable QoS and to SLA 
violations. Such violations represent money losses for the network operator.  

Monitoring the ends of the lightpaths allows detecting, and somehow identifying 
failures affecting lightpaths. Such failures can be classified as hard and soft 
failures, where hard failures are unexpected events that suddenly interrupt the 
established connections, whereas soft failures are events that progressively 
degrade the quality of the signal. It is key to localize any failing element in order to 
make operational decisions, like reroute lightpaths. In fact, in general, it is not 
enough monitoring the QoT at the ends of the lightpaths, since this does not allow 
localizing the element that causes the failure. 

Several parameters can be measured at the optical layer; above all, pre-FEC BER, 
Optical Signal to Noise Ratio (OSNR), Q-factor, and electrical SNR can be 
monitored by currently available commercial transponders. Moreover, other 
parameters can be monitored: e.g., chromatic dispersion through equalizer taps 
[Co13], the central frequency of the signal thanks to an automatic frequency 
control [Cu13], polarization channel characteristics and the state of polarization 
[Ciena]. Such measurements can be performed with a time period of 10 ms and can 
also be used for failure prediction applications allowing operators to pre-empt 
outages [Ciena]. 

QoT can be roughly estimated as a function of the links and nodes traversed by 
each optical connection. This is useful information since it can be used to configure 



16 PhD Thesis - Alba Pérez Vela 

a BER threshold at connection set-up, which would help to detect BER degradation 
by comparing the actual measured BER against it. However, if the threshold value 
is set to a value too close to the actual BER, many threshold-crossing notifications 
would be raised because of small BER changes, which, in addition to add control 
overhead, do not give useful information. On the contrary, if the threshold value is 
relaxed, e.g., closed to the equipment max BER, degradation detection could not be 
anticipated early enough the transmission is totally disrupted. 

Another useful way to monitor the performance of the network, especially for in-
line optical amplifiers, is the Optical Supervisory Channel (OSC). The OSC is an 
additional data channel that uses a specific wavelength outside the ones used for 
carrying the actual traffic. It is used to verify that an optical link is working 
properly by performing control and management functions along with monitoring 
the performance of amplifiers along the link for failure detection [Ra10]. 

 Soft Failures  

This section presents four different soft failures that could affect the QoT of an 
optical connection (Fig. 2-9): 

• Signal Overlap (SO) happens when the spectrum allocation of an optical 
connection invades that of a neighboring one. This might be caused by the 
inaccuracy in the central frequency of the laser and/or the filters of one of 
the connections. 

• Filter Tightening (FT) appears when there exists a central frequency 
misalignment or a width inaccuracy in the filters along the route of an 
optical connection. Besides, Fig. 2-10 presents four different possible causes 
for FT, where Fig. 2-10(a) shows filter F2 is misaligned, F2 width is 
narrower than required frequency slot width in Fig. 2-10(b),  filters F2 and 
F3 are misaligned in Fig. 2-10(c), and the central frequency of the signal is 
misaligned in Fig. 2-10(d). 

• Gradual Shift/Drift in Fig. 2-9(c) appears when either the optical signal in 
the case of a Laser Drift (LD), or the filter in the case of a Filter Shift (FS), 
gradually deviate from the central frequency determined at set-up time; 

• Cyclic Shift/ Drift in Fig. 2-9(d) occurs when a gradual drift describes a 
cyclical movement with time, Cyclic Laser Drift (cLD) or Cyclic Filter Shift 
(cFS). 
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(a) Signal Overlap (SO) (b) Filter Tightening (FT)

(c) Gradual failure : Drift (LD) / Shift (FS) (d) Cyclic failure: Drift (cLD) / Shift (cFS)

 

Fig. 2-9. Four failures affecting the signal of an optical connection. (a) Signal 
Overlap, (b) Filter Tightening, (c) Gradual Drift/ Shift, and (d) Cyclic Drift/ Shift. 

(a)

(b)

F1

F2

F3

F1

F2

F3

F2

F2

(d)

F1

F2

F3

(c)

F1

F2
F3

F2 F3

 

Fig. 2-10. Causes of Filter Tightening: (a) F2 misalignment, (b) F2 narrower, (c) F2 
and F3 misalignment, and (d) central frequency misalignment. 
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 Optical Spectrum Analysis 

In this section, we focus on obtaining the most illustrative features of a QPSK 
signal optical spectrum. As real measurements are not always available (such as 
Fig. 2-8), simulators such as VPI [VPI] allow to generate and measure the optical 
spectrum at different points of a testbed. Besides, different OSA granularities can 
be emulated, as it can be seen in the different plots of Fig. 2-11. 
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Fig. 2-11. VPI Simulation of a QPSK optical spectrum acquired by an OSA for 
different granularities: (a) 312.5 MHz, (b) 625 MHz, and (c) 1.25 GHz. 

Let us consider the characterization of an optical spectrum by extracting its main 
features. In particular, we examine the optical spectrum of a simulated 100Gb/s 
Dual Polarization - Quadrature Phase Shift Keying (DP-QPSK) modulated signal 
acquired by an OSA with 625 MHz granularity presented in Fig. 2-13(a). In 
general, QPSK optical signals present a flat spectral region around the central 
frequency, sharp edges, and a round region between the edges and the central 
frequency. When the signal is properly configured, its central frequency should be 
around the center of the assigned spectrum slot to avoid filtering effects, and it 
should be symmetrical with respect to its central frequency. On the contrary, when 
a misconfiguration occurs, the optical spectrum is affected as shown in Fig. 2-12. In 
the case of filter shift (Fig. 2-12(a)), the optical spectrum would be asymmetrical, in 
the case of filter tightening, (Fig. 2-12(b)) the edges of the optical spectrum would 
get noticeably rounded due to the degradation in both sides of the slot, and in the 
case of laser drift, the central frequency of the signal would be shifted with respect 
to the assigned slot; (Fig. 2-12(c)). 

In order to detect the above distortions, a module, named FeX in [JOCN18], 
primarily pre-processes the optical spectrum of the signal, which formally consists 
of an ordered list of frequency-power (<f, p>) pairs. The first pre-processing step 
consists in equalizing power, so the maximum power to be 0 dBm. Then, the 
derivative of the power with respect to the frequency is computed. Fig. 2-13(b) 
illustrates the derivative of the example optical signal; note that sharp convexity is 
observed close to the edges. 
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(a) filter shift (b) filter tightening (c) laser shift

 

Fig. 2-12. Solid black line represents the spectrum of a non-degraded signal. Solid 
areas represent the spectrum of signals affected by different soft failures: (a) filter 

shift, (b) filter tightening, and (c) laser shift. 

After pre-processing, the FeX module characterizes the mean (μ) and the standard 
deviation (σ) of the power around the central frequency (fc±Δf), as well as a set of 
primary features computed as cut-off points of the signal with the following power 
levels: i) equalized noise level, denoted as sig (e.g., -60dB + equalization level); ii) 
edges of the signal computed using the derivative, denoted as ∂; iii) a family of 
power levels computed with respect to μ minus kσ, denoted as kσ; and iv) a family 
of power levels computed with respect to μ minus a number of dB, denoted as dB. 
Each of these power levels generates a couple of cut-off points denoted as f1(·) and 
f2(·). In addition, the assigned frequency slot is denoted as f1slot, f2slot.  
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Fig. 2-13. Relevant signal points (primary features). 
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Although features have been computed from an equalized signal, note that signal 
distortion due to filter cascading effect has not been corrected yet. As previously 
introduced, this effect might induce to a wrong diagnosis of a filter problem for a 
normal signal. To overcome this drawback, a filter mask can be used to compensate 
the effect that a normal signal would suffer after passing a defined number of 
filters before computing its features. Filter masks can be easily obtained by means 
of the theoretical signal filtering effects or experimental measurements taken for a 
distinct number of cascaded filters. 

Other features are computed as linear combinations of the primary features focus 
on characterizing a given optical signal; they include: i) bandwidth, computed as 
bw(·)=f2(·)-f1(·); ii) central frequency, computed as fc(·)=f1(·)+0.5*bw(·), as well as the 
shifting of the central frequency ∆fc(·)=fc(·)-fc(slot); and iii) symmetry with respect to a 
reference (frequency slot or derivatives), computed as sym(·)-ref=(f1(·)-f1ref)-(f2ref-f2(·)). 

These features can be used as input for algorithms that can identify soft failures 
and their magnitude. 

 Conclusions 

The purpose of this chapter has been giving the needed background on networking 
to ease the comprehension of some concepts used in this PhD thesis. Starting from 
a quick survey of ideas related to telecom networks are introduced, a deep study of 
the optical signal concerning the optical spectrum and modulation formats was 
carried out. Likewise, the concept of soft failure and possible causes is explained to 
facilitate the comprehension of further Chapter 7, Chapter 8 and Chapter 9. 

The following chapter is focused on reviewing optimization problems continuing 
within an exhaustive presentation of Machine Learning (ML) algorithms that are 
used through this PhD thesis. 
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Chapter 3 

Background in Optimization, 
Statistics, and Machine Learning 

Basic concepts related to optimization and statistics are introduced in this chapter, 
as they are used to tackle specific problems through this PhD thesis and are also 
an essential part of ML algorithms subsequently introduced. Last but not least, 
visualization techniques are motivated, and some visualization charts needed in 
further chapters are presented. 

 Optimization 

Mathematical programming or optimization is a mathematical method to find an 
optimal point x* that results into the minimum (or maximum) value of a function 
f(x) while satisfying a set of constraints [Ch83]; such point x* is said to be optimum. 
More formally, an optimization problem can be defined as follows:  

( )
( ) ,i i

 min   z f x
subject to 

g x b i C
=
≥ ∀ ∈

 
(3.1) 

where x represents a vector of variables, f(x) is the objective function, and C 
represents the set of constraints. A constraint is an inequality defined by a function 
gi(x) and a constant bi. 

Let us define X as the set of all possible x vectors. Then, we can define the set S of 
feasible solutions of the problem, as follows:  

{ }' | ( ') ,i iS x X g x b i C= ∈ ≥ ∀ ∈  (3.2) 
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i.e., S contains all elements in X satisfying the whole set of constraints. Note that a 
problem could have alternative optimal solutions, i.e., several x* with the same z* 
value. Therefore, we can define the set of optimal solutions X* as:  

{ }SxxfxfSxX ∈∀≤∈= ''),''()'(|'*  (3.3) 

The problem, however, could have no feasible solution, i.e., S = Ø; in such case the 
problem is unfeasible. Finally, when f(x*) = -∞ the problem is unbounded. 

A Linear Programming (LP) problem is a special case of mathematical 
programming, where f(x) and gi(x) are linear functions of real variables. When 
variables are restricted to be integer, the problem is called Integer Linear 
Programming (ILP), whereas if the problem combines integer and real variables, 
the problem is defined as Mixed Integer Linear Programming (MILP).  

Exact procedures have been developed to solve mathematical programming 
problems. For example, the simplex algorithm is used for solving LPs, whereas 
Branch&Bound and Branch&Cut algorithms are used to solve ILPs. 

Although the output of these exact methods is the optimal solution, the required 
computation time tends to be too high for practical purposes when real-life 
instances need to be solved, even in the case of using powerful solver engines, such 
as CPLEX [CPLEX]. Thus, heuristic algorithms have been proposed to provide 
near optimal solutions to optimization problems. A heuristic is an algorithm to 
obtain feasible solutions, where the guarantee of finding an optimal solution is 
sacrificed for the sake of getting good solutions in a significantly reduced amount of 
time. 

 Statistics 

Some concepts related to statistics are needed not only to introduce concepts 
related to problems addressed in this PhD thesis, but also for Machine Learning 
(ML). Further details of the contents presented in the following section can be 
found in [Sm08] and [Bi06]. 

 Random Variables 

A random variable X is a probabilistic variable whose possible values are outcomes 
of a random phenomenon, e.g., casting a dice or in coin tossing experiment; 
different outcomes depend on some physical effects yet not understood. In the first 
case, there are six possible outcomes X = {1,2,3,4,5,6} equally likely to occur. By 
means of probability theory, we can model uncertainty in the outcome of such 
experiments stating that 1 would occur with probability 1/6. In contrast, the 
outcome when flipping a coin is not numerical, e.g., heads or tails, so it is useful to 
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associate numerical values to the outcomes via a random variable. For example, let 
us consider a random variable X take on value +1 whenever the coin lands heads 
and -1 otherwise.  

Let us now introduce some important concepts to characterize a random variable: 
the mean, the variance, and the standard deviation. 

The mean (μ), also known as the expected value (E(·)), refers to a single measure of 
the central tendency of a probability distribution. If we consider X as a random 
variable, f: ℝ → ℝ, f(X) is also a random variable with mean:  

( )( ) ( ) ( )f X f x dp xΕ = ∫  (3-4) 

If X is a discrete random variable, then:  

( ) ( )
x

X xp xΕ =∑  (3-5) 

The variance (σ2 or Var(·)) of a random variable X is defined as follows:  

( ) [ ]( )2Var X X X = Ε −Ε    
(3-6) 

Measuring how much on average X deviates from its expected value. Note that the 
concept of standard deviation (σ) is often used, which is defined as the square root 
of the variance. 

 Probability Distributions 

Besides the mean and the variance, random variables can be deeply characterized 
by probability distribution functions. Roughly speaking, these are functions that 
return the expected probability for every possible value of the variable under study. 
A very common continuous probability distribution is the normal or Gaussian 
distribution, (𝒩𝒩 (μ,σ2)) which is important in statistics and are often used to 
represent real-valued random variables. In fact, normal distributions with zero 
mean and unitary variance (𝒩𝒩 (0,1)) are used several times along this PhD thesis. 

The domain of the random variable defines the type of function that could be 
obtained. 

Discrete: taking on a finite number of values, where the assignment of probabilities 
is called a Probability Mass Function (PMF) characterized by the fact that they are 
non-negative and must sum to one. Considering the above example of tossing a 
coin, if heads and tails are equally likely, then the random variable χ described 
above takes on values +1, -1 with probability 0.5, i.e., P(X =+1) = 0.5, and P(X =-1) 
= 0.5. 
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Continuous: taking on an infinite number of values, where the assignment of 
probabilities is called Probability Density Function (PDF), defined as: 

( )2

22

1( ) exp
22

x
f x

µ
σπσ

 −
 = −
 
 

 
(3-7) 

In particular, in this PhD thesis we use the Cumulative Distribution Function 
(CDF) that gives us the probability that random variable X will take a value less 
than or equal to x’. For a real valued random variable X with PDF f(x), the 
associated Cumulative Distribution Function F(x’) is given by: 

( ) { } ( )
'

' P '
x

F x X x df x
−∞

= ≤ = ∫  (3-8) 

The CDF F(x’) allow us to efficiently perform range queries on p. For instance, by 
integral calculus, we obtain: 

( ) ( ) ( ) ( )P
b

a
a X b df x F b F a≤ ≤ = = −∫  (3-9) 

In particular, the values of x’ for which F(x’) assumes a specific value, such as 0.1 or 
0.5 have a certain name, quantile of the distribution p.  

In some special cases we are interested in obtaining the inverse F-1 defined when F 
is strictly increasing and continuous, then F-1(p) is equal to the unique real number 
x that satisfies F(x) = p such that p∈[0,1]. 

As an illustrative example, Fig. 3-1 shows the PDF (see Fig. 3-1(a)) and the CDF 
(Fig. 3-1(b)) for the normal distribution 𝒩𝒩 (0,1). 
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Fig. 3-1. (a) PDF and (b) CDF for the normal distribution with zero mean and unit 
variance. 
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 Statistical Modeling 

So far, we have focused on characterizing a random variable, using well known 
functions. However, it is also possible to characterize a random variable by 
obtaining a certain model that explains its behavior. The most basic model is linear 
regression; this model aims at finding the relationship between a dependent 
variable (y) and a single or multiple independent predictor variable(s) (xi). 

Consider the statistical model presented in eq. (3-10) to predict the dependent 
variable y. The general model consists on a deterministic term computed as a 
function of the independent variables, xi, and a random term ε. 

1 2( , ,..., )ny f x x x ε= +  (3-10) 

Two good properties that a statistical model should satisfy are the following: 

• Unbiased estimation: it is satisfied when the expected value of the 
dependent variable is the deterministic term (e.g., E(y)=f(x1,x2,…,xn)). 
Equivalently, we can consider the expected value of the random component 
as 0, E(ε) =0. 

• Known error distribution:  the random term of the model, ε, should fit with a 
known distribution such as the Gaussian distribution. 

Note that in the definition in eq. (3-10) we are considering that y and xi are 
different types of variables; however, there are particular situations, such as time 
series, where y and xi variables represent the same variable at different time 
moments. Let us reformulate eq. (3-10) to cover such case: 

( ) ( ( 1), ( 2),.., ( ))y t f y t y t y t n ε= − − − +  (3-11) 

Simple Linear Regression 

As previously stated, the simplest form of linear regression relates the independent 
and dependent variables is a straight line [La13], i.e.,  

1 0y a x a= ⋅ + ,  (3-12) 

where y is the dependent variable, the one that we want to model according to the 
input data x; the unknowns are then, coefficients a1 and a0. Fig. 3-2 presents an 
illustrative example of simple linear regression. 

Let us denote ŷi the predicted value for data point i. Then, the difference between 
the training and predicted values, i.e., (yi - ŷi), represents the error between the 
real and the modeled value. 
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Fig. 3-2. (a) Real data points, (b) linear regression is applied obtaining a linear 
model, and (c) distance between real and predicted data. 

The regression algorithm is based on solving an optimization problem to minimize 
the squared error, i.e., the sum of the square of the differences between the 
predicted and the real points: 

( )2
min i i

i
y - y 

 
 
∑  

(3-13) 

Multiple Linear Regression 

The case where there is more than one single independent variable is known as 
multiple linear regression; it normally follows the form:  

0
1

n

i i
i

y a x a
=

= ⋅ +∑  
(3-14) 

Note that non-linear relationships between dependent and independent variables 
can be considered using multiple linear regression. For instance, the linear relation 
between x and y in eq. (3-12) can be extended to a k-th degree polynomial in x by 
creating k variables each one representing one power of x from 1 to k:  

0
1

k
i

i
i

y a x a
=

= ⋅ +∑  
(3-15) 

Generalized Linear Model (GLM) 

The traditional linear models predict the expected value of a random variable as a 
linear combination of a set of observed values. Thus, a constant change in a 
predictor leads to a constant change in the response variable; note that this is only 
satisfied when the response variable has a normal distribution.  

For other more complex scenarios, these assumptions are not satisfied, hence, the 
GLM arises as extension of traditional linear models. Eq. (3-16) shows the generic 
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form of a GLM, where g is named link function and relates the linear predictor to 
the response variable [Cu89]. 

1
0

1

n

i i
i

y g a x a−

=

 
= ⋅ + 

 
∑  

(3-16) 

For response variables distributed according to distributions different than the 
Gaussian, (e.g., binomial, Poisson, gamma, etc.), link functions range from the 
simple identity function in the case of a simple linear regression to complex 
relation of logarithmic transformations such as the logit function or the Box-Cox 
transformation.  

 Goodness of Fit 

The goodness of fit describes how well a statistical model fits a set of observations. 
Although several measures of goodness of fit have been defined, in the following we 
only introduce the ones used in this PhD thesis. 

Coefficient of Determination R2 

The coefficient of determination, also denoted as R2, is a statistic used in the 
context of statistical models that shows the proportion of the variance in the 
dependent variable (yi) that is explained from the independent variables (xi). It 
aims at providing a measurement of how well observed outcomes are replicated by 
the model. 

Consider a dataset with n values: x1, x2,…, xn, where each of them is associated 
with a predicted value ŷi. We define the residuals as:  

ˆi i ie x y= −  (3-17) 

Besides, we define the mean of the observed data as: 

1

1 n

i
i

x x
n =

= ∑  
(3-18) 

Finally, the variability of the dataset can be measured using the following 
formulas: i) total sum of squares eq. (3-19), ii) sum of squares of residuals eq. 
(3-20). 

2( )tot i
i

SS x x= −∑  
(3-19) 

2 2ˆ( )res i i i
i i

SS x y e= − =∑ ∑  
(3-20) 
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Then, the most general definition of R2 is: 

2 1 res

tot

SSR
SS

= −  
(3-21) 

Likelihood Function 

The likelihood is a function of the parameters from a statistical model given some 
specific observed data. Likelihood functions are useful to estimate a parameter 
given specific observed data. In particular, the likelihood acts as an indicator of 
how much the data contributes to the probability of the parameter value or of the 
model. 

For the sake of clarity, consider an example where a supposedly fair coin is tossed 
6 times, obtaining the following results: HHHTTH, where H and T stand for heads 
and tails respectively. Fig. 3-3 shows the likelihood of the coin fairness; it can be 
observed how the maximum value of the likelihood is obtained around 0.65, far 
from the expected result around 0.5. Hence, we could presume that the coin has 
been slightly tricked. 
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Fig. 3-3. Likelihood function example. 

In some applications is more convenient the logarithm of the likelihood (Log-
likelihood) as it is a strictly increasing function. Note that the logarithm of a 
function achieves its maximum value at the same points as the function itself, and 
hence the log-likelihood can be used in place of the likelihood in maximum 
likelihood estimation and related techniques. In addition, finding the maximum of 
a function involves taking derivatives and it is often easier to work with the log-
likelihood rather than the original likelihood function. 
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In addition, the marginal likelihood is a particular likelihood function where the 
likelihood is based on only part of the data, some variables have been marginalized 
(integrated out). 

Akaike Information Criterion (AIC) 

Eq. (3-22) presents one of the forms to compute the AIC, an indicator that provides 
an estimation of the quality of a statistical model compared to others for a given 
data. The quantity maxL is the maximum of the likelihood function and M is the 
number of parameters in the model [Bi06]. 

2 2ln( )AIC M maxL= −  (3-22) 

Hence, AIC weights the accuracy of the model and the number of parameters 
required. We aim at minimizing AIC values by either increasing the maximum 
likelihood of the model or decreasing the amount of parameters. In other words, 
considering two models providing the same accuracy, the one with less parameters 
(parsimonious model) will be preferred. 

 Bayesian Statistics 

So far, the frequentist inference approach has been considered thus, conclusions 
from sample data were based on the frequency or proportion of the data. In 
contrast, Bayesian inference uses the Bayes' theorem to update the probability for 
a hypothesis as more evidence or information becomes available. 

Bayesian inference derives the posterior probability P(A|B) from two antecedents 
A and B: a prior probability P(B|A) and a likelihood function derived from a 
statistical model for the observed data. Bayesian inference computes the posterior 
probability according to Bayes’ Theorem: 

( | )· ( )( | )
( )

P B A P AP A B
P B

=  (3-23) 

 Machine Learning and Data Mining 

Machine learning is omnipresent nowadays as a technique to find relations 
between inputs and outputs, where no specific analytical equations (or algorithms) 
can be found to perform such transformation. In fact, as stated in [bAl10], “What 
we lack in knowledge, we make up for in data”. 

For illustrative purposes, let us consider a quick example where we aim at 
developing an algorithm to filter spam from legitimate emails where both: i) 
incoming emails as input and ii) decision: yes/no as output are known. For this 
particular example there is not a simple transformation from input to output, 
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however, an exhaustive study of thousands of examples of both type of messages 
could extract automatically the algorithm for this purpose [La13]. 

ML is an incredibly powerful tool for Big Data, predicting future behavior. One of 
the most well-known examples of ML in the technical industry is related to 
Amazon’s or Netflix’s algorithms, which can make suggestions based on your own 
choices in products or movies. 

Algorithms for ML can be classified into three different categories according to the 
input received data [Bi06]: 

• Supervised learning, when the training data contains examples (data 
points) of the input vectors and their corresponding target vectors; in other 
words, when a label is available for a subset of the dataset (Fig. 3-4(a)). The 
training set is used to generate a function to map inputs with the desired 
outputs until the model achieves a certain level of accuracy. This kind of 
algorithms is often used for classification; predicting to which category does 
a new data point belong to. 

• Unsupervised learning is applied when the training data consists of a set 
of input vectors without any corresponding target value to predict (Fig. 
3-4(b)). As an example, clustering targets at finding collection of data points 
with similar features among them but different from other data points in 
input data. 

• Reinforcement learning is based on training the machine to make 
specific decisions. Initially it is continuously self-trained using trial and 
error (Fig. 3-4(c)). Then, it learns from experience and captures this 
knowledge to make accurate decisions, such as Markov decision process.  

In this PhD thesis, only the two first techniques are considered. It is worth noting 
that the supervision refers to the fact that the target values provide a way for the 
algorithm to check how well is the learning achievement.  

(a) (b) (c)

? ? ? ?

 

Fig. 3-4. (a) Supervised, (b) unsupervised and (c) reinforcement learning 
algorithms. 

Another way to classify Machine Learning algorithms would be according to their 
function similarity: 
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• Regression algorithms deal with modeling the relationship between 
variables. Some algorithms are simple and multiple linear regression, as 
well as polynomial regression. 

• Classification algorithms aim at deciding at which already known group 
does a new data point belong to. Some algorithms are Support Vector 
Machines (SVM), Naive Bayes, and decision tree classification. 

• Clustering algorithms are focused on modeling as centroid-based. K-
Means is the well-known clustering algorithm. 

In the process of creating ML algorithms, datasets are divided into training and 
testing datasets. An approximation proportion could be the use of 60%-80% for 
training and the 40%-20% for testing. First, the model is obtained with the training 
dataset and then checked with the testing dataset. 

Let us present some of the ML algorithms we are going to use through this PhD 
thesis. 

 Support Vector Machine 

The SVM is a supervised learning technique used for classification and prediction. 
SVMs are easy to understand when are used for binary classification; a boundary 
called hyperplane separates data into groups of similar features; this hyperplane 
becomes a line in a 2D (Fig. 3-5(a)) and a plane in the case of 3D (Fig. 3-5(b)). When 
the two groups can be perfectly divided by the hyperplane, they are called linearly 
separable [La13]. 

(a) (b)

 

Fig. 3-5. Two-class problem where the classes are shown by dots and squares. (a) 
computes the optimal line in 2D, and (b) depicts the optimal hyperplane between 

both classes in 3D. 

Given a set of training data, an SVM can be trained to build a predictive model to 
classify new data points. Each data point in the dataset belongs to the n-
dimensional space of the problem; each coordinate of the n-dimensional vector 
representing the data point represents a particular feature. 
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The SVM algorithm is able to find several hyperplanes that separate the points 
into two different classes. The choice of the best hyperplane is based on maximizing 
the separation between the two considered classes (Fig. 3-6(a)). This problem will 
be tackled in the next subsection. 

(b)(a)

 

Fig. 3-6. Two-class problem where the classes are shown by dots and squares. (a) 
Different possible hyperplanes, and (b) the optimal hyperplane. 

Linearly Separable Classes 

Let us consider a binary classifier, where we are given a training dataset with a 
number m of input data points in the n-dimensional space xi = (xi1, xi2, …, xin) and 
labels yi=±1: 

( )

( )

1 1,

:

,m m

x y

x y

 
(3-24) 

In order to improve the chance of classification, we consider the search of the 
Maximum Margin Hyperplane (MMH) [La13], characterized by creating the 
greatest separation between the two considered classes (Fig. 3-6(b)). 

The support vectors (the not filled markers in Fig. 3-6(b) are the data points that 
are the closest to the hyperplane; each class has at least one support vector, but it 
is possible to have more than one. It is possible to define the MMH using only the 
support vectors; the support vectors provide a very compact way to store a 
classification model, even if the number of features is extremely large. 

In SVM, the error is minimized by maximizing the margin γ, i.e., the minimal 
distance between the hyperplane separating the two classes and the support 
vectors. The separating hyperplane can be written as: 

0w x b⋅ − =  (3-25) 
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Where b is a scalar known as the bias; it is conceptually equivalent to the intercept 
term to specify lines in 2D space. While, w is the n-dimensional vector of weights 
and it is normal to the hyperplane.  

Two parallel hyperplanes, called margins, can be selected to separate the two 
classes aiming at making the distance between them as large as possible (see Fig. 
3-7). Then, the MMH is the hyperplane that lies in between them. These 
hyperplanes can be described as follows [Bi06]: 

1w x b⋅ − =  (3-26) 

1w x b⋅ − = −  (3-27) 

The geometrical distance between those two hyperplanes is computed as follows. If 
x1 and x2 are support vectors of each of the classes, then subtracting eq. (3-26) and 
eq. (3-27), we obtain: 

2 1( ) 2w x x⋅ − =  (3-28) 

2
||w||

 

Fig. 3-7. Equations for the margins and the optimal hyperplane in a 2D example. 

Using eq. (3-28), we project the n-dimensional vector x2-x1 (the blue dotted line in 
Fig. 3-8) onto the vector normal to the hyperplane (the black dashed line).  

( )2 1
2wx -x

w w
⋅ =  

(3-29) 
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x1 x2

 

Fig. 3-8. Projection of the distance over the perpendicular margins’ line. 

We obtain twice the size of the margin γ, therefore the size of the margin is: 

1
w

γ =  
(3-30) 

An optimization problem arises to maximize the margin γ. Therefore, maximizing 
eq. (3-30) is completely equivalent to minimize the inverse of γ. 

21 1
2

Maximize Minimize w Minimize w
w

γ = ⇔ ⇔  
(3-31) 

We need now to define the constraints for this optimization problem. These 
constraints state that each data point must lie on the correct side of the margin. 
The equations return 1 only for the support vectors, being greater than 1 for every 
other point. 

1 ( · ) 1

( ) 1

w x b hyperplane above

w x b hyperplane below

⋅ − ≥

⋅ − ≤ −
 

(3-32) 

Working with eq. (3-26) we obtain the constraints for the hyperplanes from eq. 
(3-32), which can be grouped in eq. (3-34) thanks to eq. (3-33). 

1 1 1 ( ) 1w x b w x b w x b⋅ − ≥ ⇔ ⋅ − ≤ − ⇔ − ⋅ ⋅ − ≥  (3-33) 

1 1 ( ) 1
( ) 1

1 1 ( ) 1 ( ) 1

if y w x b
y w x b

if y w x b w x b

= ⇒ ⋅ ⋅ − ≥  ⋅ ⋅ − ≥
= − ⇒ − ⋅ ⋅ − ≥ ⇒ ⋅ − ≤ − 

 
(3-34) 

Then, the optimization problem reads: 
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21
2
: ( ) 1, 1,...,i i

Minimize w

subject to y w x b for i n⋅ ⋅ − ≥ =
 

(3-35) 

Solving this problem, variables w and b are determined and as such our classifier, 
where: 

sgn( · )x w x b→ −  (3-36) 

Non-Linearly Separable Classes 

In many cases, however, data is not linearly separable by a hyperplane. In order to 
extend SVM to such cases, we consider the so-called soft margins and we introduce 
the concept of hinge loss; a loss function used for maximum margin classification. 

For these special cases, the optimization problem needs to be revisited and a 
relaxation needs to be introduced to allow some points to fall on the incorrect side 
of the margin [La13]. Now, the optimization problem from eq. (3-35) is re-written 
as in eq. (3-37), where C represents the cost of allowing not perfect classification, 
i.e., the cost of the relaxation. The importance of the parameter C is illustrated in 
Appendix A. 
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(3-37) 

 Bayesian Network Classifiers 

Probabilities play a central role in modern patter recognition. Classifiers based on 
Bayesian methods use a set of training data to compute the observed probability of 
each outcome based on the evidence provided by feature values. Once the classifier 
is applied to unknown data, the algorithm relies on the already observed 
probabilities to be able to predict the most likely class for the new features. To 
work with this kind of algorithm, data from numerous features should be 
simultaneously considered to estimate the overall probability of an outcome, even if 
some features have weak effects [La13]. 

Sometimes, it could be beneficial to improve probability analysis using probabilistic 
graphical models, such as Bayesian Network (BN). Generally speaking, a BN 
consist on a probabilistic directed acyclic graphical model that represents a set of 
variables and their conditional dependencies, e.g., relations between diseases and 
symptoms, cause and effects [Bi06]. 
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3.3.2.1 Naïve Bayes 
Recall that the Bayes theorem was introduced in Section 3.1, which is necessary for 
the Naïve Bayes approach. In particular, Naïve Bayes algorithm is a special case of 
a BN. The key assumption of the Naïve Bayes (NB) model is that, conditioned on 
the class to be predicted, the distributions of the input variables x1,…,xm are 
independent. In other words, NB assumes that the presence of a particular feature 
in a class is unrelated to the presence of any other feature. This assumption is 
rarely satisfied (e.g., considering cancer and age as variables, or the age and the 
salary of a person as variables, at some point in their lives, there would exist some 
kind of relation). Anyway, the exact reason why Naive Bayes works well in spite of 
its inaccurate assumptions has been the subject of much speculation [La13], [Bi06]. 

NB algorithm has many advantages, like it is an easy algorithm to build, it is fast 
for class prediction, it is very useful for very large datasets, it requires relatively 
few examples for training, but it works well with very large number of examples, 
and it is easy to obtain the estimated probability for a prediction. As well as some 
weaknesses, like it relies on the assumption of equally important and independent 
features, and it is not ideal for datasets with many numeric features, because in 
the case a categorical variable has a category which is not present in the training 
dataset the model will not be able to make a prediction for this case. 

For the sake of clarity, let us consider an example. Note that these values are not 
experimental measurements, simply a set of points to illustrate the main concept of 
this algorithm. Consider the use of internet depending on the age and on people's 
way to go to work, e.g., walking or driving (see Fig. 3-9(a)). We want to use the NB 
algorithm to classify new data points and know whether the new person goes 
walking or by car (Fig. 3-9(b)).  

Age

In
te

rn
et

 u
sa

ge

(a)

New data 
point

Walking

Age

In
te

rn
et

 u
sa

ge

(b)

Age

In
te

rn
et

 u
sa

ge

(c)

Driving

 

Fig. 3-9.(a) Input data and new point, (b) circle for computing marginal likelihood, 
and (c) only consider points for class “walking”. 

Let us compute the probability that a new person added to the dataset walks to 
work, P(Walks | x), according to their age and use of the internet. For this purpose, 
we use the following equations: 
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Prior 
probability 

P(Walks) = # walks/total observations =10/20 (3-38) 

Marginal 
Likelihood 

P(x) = # similar observations / total observations = 5/20 (3-39) 

Likelihood 
(Fig. 3-9(c)) 

P(x|Walks) =# similar observation among walk / total walkers = 
2/10  

(3-40) 

 

The result for the probability that the new point belongs to the “walking” group is: 

2 10·( | )· ( ) 10 20( | ) 0.405( )
20

P x Walks P WalksP Walks x
P x

= = =  (3-41) 

 Clustering  

Although several clustering algorithms can be found in ML methods, in this PhD 
thesis we rely on the popular K-means clustering algorithm. K-means is designed to 
find a custom number K of clusters in a dataset. The algorithm assigns each of the 
m points to one of the K clusters aiming at minimizing the differences within each 
cluster and maximizing the differences between the clusters [La13]. 

For illustrative purposes, let us consider an example where only two variables are 
plotted (Fig. 3-10(a)). By inspection, several ways of grouping could be considered. 
The advantage of K-means algorithm lies in the fact that it takes out the 
complexity of this decision and easily finds clusters in the dataset (Fig. 3-10(b)). 

K-means

Before K-means After K-means

(a) (b)
 

Fig. 3-10.(a) Input data, (b) after applying K-means data is grouped in clusters. 
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Let us analyze the process presented in Fig. 3-10 in more detail. For this purpose, 
let us describe the main steps of the K-means algorithm, which are presented in 
Table 3-1. 

Table 3-1 Steps in K-means algorithm. 

Step Action 
1 Choose a number K of clusters. 
2 Select the centroids by selecting K points at random, not 

necessarily from the dataset. 
3 Assign each data point to the closest (Euclidean) centroid. 
4 Compute and place the new centroid of each cluster. 
5 Reassign each data point to the new closest centroid. If any 

reassignment took place, go over steps 4 and 5, otherwise finish. 
 

An optimization problem needs to be solved to minimize the distance between each 
point of the cluster, xi, and its centroid, cj: 

( )min ( , )i jDist x c  (3-42) 

This minimization problem is considered in step 3 of Table 3-1 and repeated every 
step 5 if needed. 

 Data visualization 

Data visualization is a technique that involves processing raw data aiming at 
communicating information in a clear way using graphical resources. It is worth 
noting that data visualization is extremely helpful to discover hidden behavior 
when points are presented graphically rather than checking data points in a table.  

The process involving data visualization is far beyond the simplistic idea of seeing 
a plot. It is important to note, considering data visualization on a grand scale, that 
it is a tool that combines decision making, human interaction and data analysis 
[Ke08] (see Fig. 3-11). 
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Fig. 3-11. Improving visual analytics by getting the best from machines and human 
knowledge (based on [Ke08]). 
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The main goals of data visualization include [Es17], [Sh96]: answering questions, 
synthesizing information to obtain an insight from massive data, making decisions, 
finding visual patterns, and seeing data in context. 

According to author in [Sh96], there exist seven data types that reflect an 
abstraction of the reality, such as those in Table 3-2. 

Table 3-2 Data types 

 Data types 

1-Dimensional 
Item: Line of text containing a string of characters. 

Example: Linear data types; documents, source code. 

2-Dimensional 
Item: Has attributes such as name, owner, value, and 

features such as size, color, opacity, etc. 

Example: Geographic maps, floorplans. 

3-Dimensional 

Item: Volume and potentially complex relationship with 
other items. 

Example: Real-world objects such as molecules, the human 
body, and buildings. 

Temporal 
Item: Time lines, items a start and finish time. 

Example: Medical records, project management. 

Multi-dimensional 
Item: With n attributes become points in an n-

dimensional space. 

Example: Datasets with many dimensions. 

Tree 
Item: Hierarchies that are a collection of items; each item 

has a link to one parent item (except the root). 

Example: Tree-structured data. 

Network 

Item: Items linked to an arbitrary number of other items 
when relationships among items cannot be 

conveniently captured with a tree structure. 

Example Acyclic networks, lattices. 
 

Visual structures are based on graphical properties effectively processed by human 
vision. In this sense, Fig. 3-12 presents the reference model for visualization 
[Chi00], which it can be described as the mapping of data to visual form supporting 
human interaction in a workspace for visual sense making [Ca99]. This model, 
breaks down the visualization technique into: i) three types data transformation 
(green boxes) and ii) four stages of human interaction (orange circles). In the first 
step, data transformation, data needs to be filtered and processed to transform 
them into a suitable format. Besides, in this scheme, arrows flow from raw data on 
the left towards the human experiencing multiple chained transformations. 
Moreover, arrows also flow from the human at the right to the transformation 



40 PhD Thesis - Alba Pérez Vela 

themselves, showing that these transformations are user-operated controlled. 
Finally, View Transformations create Views where the user can control parameters 
of these transformations. 
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Fig. 3-12. Reference model for visualization [Ca99]. 

Let us now introduce the basic charts used in this PhD thesis, using an approach 
that considers the number of variables considered: i) univariate, ii) bivariate or iii) 
multivariate data [Sh96]: 

Univariate data 

In order to deal with univariate data, several graphical techniques are suitable 
such as:  

• Line graphs plot data points on a Cartesian coordinate grid connected by a 
line. The direction of the lines on the graph eases the process of 
visualization, since an upward slope means that values have increased, 
while downward slope indicates that values have decreased. This kind of 
plot is used to display quantitative values over a continuous interval (see 
Fig. 3-13(a)). 

• Histogram: This kind of chart helps to visualize the distribution of data 
over a continuous interval. Each bar represents the tabulated frequency at 
each interval. Thus, it helps to give an estimation to see where values are 
concentrated (see Fig. 3-13(b)). 

Bivariate data 

When dealing with bivariate data the best way of representing data would be 

• Scatter plot: It is a mathematical diagram using Cartesian coordinates. 
The scatterplot uses a collection of points placed to display values from two 
variables. By plotting a variable in each of the axis, a relationship or 
correlation between the two variables can be found. They are very useful to 
check if one variable impacts the other. It is one of the best well-known and 
widely used plots (see Fig. 3-13(c)).  
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(c) Bivariate(b) Univariate

(e) Multivariate

(a) Univariate

Legend
(d) Multivariate (f) Multivariate

 

Fig. 3-13. Different schematic charts used in through this PhD thesis. 

Multivariate data 

Finally, for the case of multivariate data, the best techniques are: 

• Bubble chart: It is a multi-variable graph that uses a Cartesian coordinate 
system to plot points along a grid, where X and Y axis represent different 
variables. In contrast to the scatter plot, here, each point is assigned a label 
or category. The main advantage of bubble charts is that several dimensions 
can be represented in a 2D plot. The graphic allows to plot points in two 
dimensions (X and Y axis), the third dimension is represented by the area of 
the bubbles, and colors are used to represent an additional variable. This 
chart can be used to seek for patterns/correlations (see Fig. 3-13(d)). 

• Parallel coordinates or Sankey diagram: This diagram shows flow and 
their quantities in proportion one to another. The width of the lines reflects 
its magnitudes, so the bigger the line, the larger the quantity. Color may be 
used to divide the diagram into different categories. The function works as 
follows, for every single dimension, a horizontal (or vertical) bar is displayed 
for each of its categories. The width of the bar symbolizes the size of the 
absolute frequency or the proportional fraction of the category total (see Fig. 
3-13(e)).  

• Heat map: Heat maps are used to visualize data through variations in the 
colors; they are useful for showing variance across multiple variables and to 
reveal patterns. Normally, all the rows belong to a category and all the 
columns to a different one. The cells in the table are based on the 
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relationship between the two variables (row, column) and they contain 
color-coded categorical or numerical data. However, heat maps have some 
limitations due to the need of converting data into a matrix format. Besides, 
to successfully understand the graph, the choice of colors to represent the 
difference between high and low values is subtle, and a legend is required 
for detailing color meaning (see Fig. 3-13(f)). 

 Conclusions 

This chapter has focused on giving the needed background of concepts related to 
optimization, statistics, and machine learning, to ease the comprehension of some 
concepts used in this PhD thesis. Starting with a short introduction to optimization 
and basic statistics, the chapter exhaustively presented the ML algorithms that are 
used through this PhD thesis. 

Let us summarize the main strengths and weaknesses of the considered ML 
algorithms [La13]. 

Table 3-3. Strengths and weaknesses of different statistical and ML algorithms. 

ML 
Algorithm 

Strengths Weaknesses 

Linear 
Regression 
(Supervised) 

• most common approach for 
modeling data 

• can be adapted to model 
 

• makes strong assumptions about 
data 

• unable to handle missing data 
• useful for numeric features 

(categorical data needs pre-
processing) 

SVM 
(Supervised) 

• can be used for 
classification or prediction 

• high accuracy 
• not influenced by noisy 

data 

• requires many combinations of 
kernels and model parameters to 
find best model 

• can be slow to train (input dataset 
has large number of features) 

Bayesian 
Networks 
(Supervised) 

• simple, fast and effective 
• easy to obtain the 

estimated probability for a 
prediction 

• based on the often-faulty 
assumption of equally important 
and independent features 

• not ideal for datasets with many 
numeric features 

Clustering 
(Unsupervised) 

• uses simple principles, 
• is very flexible being able to 

adapt with simple 
adjustments 

• not guaranteed to find the optimal 
set of clusters because it uses 
random elements 
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A section focused on visualization techniques eventually pointed out the main uses 
of this technique. 

The following chapter is focused on reviewing the State-Of-The-Art of the objectives 
of this PhD thesis, aiming at clearly identifying niches that may become research 
opportunities. 
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Chapter 4 

Review of the State-of-the-Art 

In this chapter, we review the state-of-the-art related to the different goals defined 
for this Ph.D. thesis with, the twofold objective of ensuring that these goals have 
not yet been covered in previous works in the literature and to serve as a starting 
point for this research work targeting to occupy the discovered niches. 

 Packet Traffic 

In this section, we focus on the packet layer targeting to detect traffic anomalies, 
i.e., short-living events that do not follow expected traffic patterns (see a survey in 
[Ch09]). Since detecting traffic anomalies requires being able to forecast the traffic 
that is expected, this section also covers traffic modelling. Once those models are 
obtained, they can be used for several purposes, such as traffic prediction that can 
feed optimization models for preparing the VNT in a proactive manner [Mo17], as 
well as for traffic generation that can be used for ML algorithms training. 

 Traffic Anomalies 

Traffic Anomalies can create network congestion and stress resource utilization in 
packet nodes and hence, its prompt detection becomes essential since it allows 
preparing the network e.g., by reconfiguring the VNT in multilayer network 
scenarios [Mo17].  

Specifically, traffic anomaly detection can be used to trigger lightpath provisioning 
and network re-configuration, which entails analyzing monitoring data to 
anticipate congestion. It is clear that developing efficient techniques to detect 
traffic anomalies in real time would empower network operators to prevent grave 
consequences induced by such anomalies affecting end users. However, detecting 
anomalies is a difficult task because anomalous patterns need to be extracted and 
interpreted from large amounts of high-dimensional, noisy data. 
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In order to detect traffic anomalies, it is essential to: i) monitor traffic at the nodes 
and ii) to model such traffic [Li16]. For packet networks specifically, the traffic 
monitoring function allows identifying (classifying) the traffic belonging to a 
specific service or destination, so as to apply specific policies. 

Monitoring traffic samples are produced at the packet nodes; according to the ITU-
T [M.2120], performance events are counted second by second over every 15-minute 
period. At the end of a period, they are collected in a repository for further analysis 
[Mo17], [Mas14]. Data analysis can be used to create predicted traffic matrices for 
the near future; please refer to [RFC7536] for a list of use cases of traffic 
monitoring. Among use cases, that of identifying network failures and problems (or 
anomalies) is undoubtedly of the interest of many network operators. It is clear 
that when analytics are applied to data collected every 15 minutes, the expected 
traffic anomaly detection times will be as well in that order of magnitude. 
Consequently, the monitoring period should be reduced, which in turn increases 
the amount of monitoring data to be sent to the centralized data repository. 

Many works in the literature can be found on intrusion and Denial-of-Service (DoS) 
detection (see, e.g., [Bh14]). However, traffic anomalies are a less common topic. 
Authors in [La04] proposed a general method that entails monitoring traffic in 
links and correlate monitoring time-series to detect volume anomalies, identify the 
anomalous Origin-Destination (OD) pair, and estimate the amount of traffic 
involved in that OD pair. The method is based on applying Principal Component 
Analysis (PCA) to separate the multidimensional space occupied by a set of 
network traffic samples into disjoint subspaces corresponding to normal and 
anomalous traffic conditions. Note that this method requires from previous 
collection and analysis of anomalous traffic, which is not always feasible since it is 
a very rare occurrence and that traffic anomaly might not follow a predictable 
pattern. 

Regarding traffic periodicity, authors in [Cu15] analyzed the performance of 
several methods in detecting link traffic anomalies with respect to the traffic 
pattern on a 24h typical day. As traffic varies throughout the day, it is essential to 
consider the concrete traffic period in which the anomaly occurs. Authors in [Ma12] 
suggested a model based on splitting a 24 hours day period into 16 non-overlapping 
intervals of 90 min. Their on-line change detection algorithm identified relevant 
changes in link utilization and reported those links to a centralized controller for 
further analysis. Finally, authors in [So07] compared three traffic aggregation 
entities such as ingress routers, input links, and OD pairs and concluded that 
traffic aggregation level has a significant impact on the number of anomalies 
detected and on the false positive rate; they showed that aggregating traffic by OD 
pairs is the most appropriate choice. 

Finally, different detection methods have been studied in the literature and applied 
to different contexts such as in traffic changes detection [Mo17] and anomaly 
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detection based on hypothesis testing [Ku00]. These methods are a good starting 
point for this thesis. 

Besides, and according to our knowledge, no research has been performed towards 
the detection of multiple traffic anomalies. Accordingly, it is still an unexplored 
field to be studied. 

In conclusion, considering the previous works, it is clear that a further study 
specially focused on traffic anomaly detection is suitable. Different OD traffic 
anomaly detection methods should be proposed combined with different monitoring 
strategies to efficiently detect OD traffic anomalies to minimize detection time and 
traffic losses. This is the work that we target in the specific objective G.1.1 and 
G.1.2. 

 Traffic Modeling 

Traffic generation is a useful technique that enables studying and evaluating the 
network performance through simulation, when real traffic traces are not 
available. In fact, as pointed out by authors in [Ka02], there is an absence of public 
availability of real world network traces, specifically for traffic in the operators’ 
and Internet service providers core transport networks. 

Therefore, due this unavailability, one option is to attempt generating simulated 
traces which resemble to real ones. Authors in [Va14] state that it is quite easy to 
generate traffic, but it is far more difficult to produce traffic that exhibit real 
characteristics, such as the ones observed through the Internet. Several traffic 
generators have been developed until present but, to the best of our knowledge, 
literature is mainly focused on generating representative IP traffic for packet-
based networks or connection arrival based on the Poisson distribution for circuit-
switched networks [Ca12]. 

Model estimation requires i) new traffic samples arriving from the domain 
controller (e.g., every 15 min); ii) a time windows within which traffic samples will 
be considered for model estimation, and iii) the minimum number of samples to 
estimate the model. Once the model has been estimated, it can be evaluated to 
obtain a bitrate prediction. Given an absolute time t for which the bitrate needs to 
be estimated and a predictive traffic model, t is translated to a time within the 
model’s period. Finally, a tuple containing the average bitrate and standard 
deviation prediction for time t is obtained. 

For further details regarding traffic generation, please refer to Appendix B. 
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 Failures at the Optical Layer 

Faults or degradations occurring in the network may affect the fulfillment of SLAs, 
for that very reason, it is essential to monitor the physical layer to localize the 
failed elements and address the issue. 

Besides, although commercially available optical equipment is able to correct 
degraded optical signals by means of Forward Error Correction (FEC) algorithms, a 
value of pre-FEC BER over the pre-defined limit (max BER) would imply a non-
error-free post-FEC transmission and, as a result, communication would be 
disrupted. Therefore, a prompt detection of optical connections with excessive pre-
FEC BER can greatly reduce SLA violations. 

 Failure Detection 

Hard Failures Detection 

For the purpose of detecting hard failures, an OSC can be implemented between 
every pair of optical nodes carrying information regarding the optical layer. In 
particular, when the signal from the adjacent node is lost, a failure in the link is 
detected. Note that to implement the OSC in a network, the number of additional 
transmitters and receivers that need to be installed is equal to the number of links. 
To reduce the number of additional transmitters and receivers, authors in [Ta15] 
proposed a solution based on monitoring trails (m-trails), which enables all-optical 
failure localization in the optical domain. M-trails can be implemented as a pair of 
lightpaths along a common physical route in opposite directions for 
sensing/monitoring the health of the links along the route. 

A different option is proposed by the authors in [We05], consisting in sending 
optical probe signals sequentially along a set of designed lightpaths, where the 
network state can be inferred from the result of this set of end-to-end 
measurements. 

Soft Failures Detection 

As to soft failures detection literature is less extensive but still, some appealing 
work can be found. For example, the authors in [Ma00] proposed an algorithm to 
localize failures in the optical layer considering BER monitoring data. They 
included data from the following optical components in their algorithm: i) optical 
transmitters and receivers, ii) regenerators, iii) filters, and iv) amplifiers. All the 
received data is processed, and the algorithm is able to infer the possible cause of 
the failure. Note that this technique works when failures are persistent in the 
network, i.e., the failures remain over time. 

However, intermittent failures, e.g., those that show a cyclic behavior appearing 
and disappearing cannot be localized by the above algorithm. In fact, to the best of 
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our knowledge, no works in the literature have focused on that type of failures. 
Therefore, our work will be focused on addressing the latter by implementing 
techniques for the time-series based data analytics algorithms. 

 Failure Localization 

Failure localization is a very useful technique since it helps to greatly reduce 
failure repair times. In particular, regarding hard failure localization, considerable 
number of works has been proposed, however, as it happened with failure 
detection, soft failure localization has been less addressed in the literature.  

Hard Failures Localization 

Different works can be found in the literature for hard failure localization in 
optical networks, proposing methods for localizing hard link failures that affect a 
number of established connections, focused on reducing restoration times (see, e.g., 
[Ta12], [Ze06]). All the proposed methods basically consist on computing and 
establishing a number of auxiliary connections (m-trails or m-cycles). In the event 
of a link failure, one single connection would be affected thus, localizing the failed 
link.  

For instance, authors in [Wu09] proposed an m-trail mechanism for fast link 
failure localization as a result of a fiber cut. Based on defining different m-cycles 
and analyzing a set of alarm signals generated in each monitor of the cycle, failure 
localization is achieved. Authors in [Ma05] presented a failure location algorithm to 
locate single and multiple failures in transparent optical networks by analyzing the 
received alarms. Finally, authors in [XLi16] proposed an m-trail allocation 
heuristic providing a simpler installation and smaller management cost. A 
different failure localization procedure was proposed by the authors in [Ta14] to 
help the restoration process to localize the failure, thus avoiding the failed 
resource. Related to m-trails, network kriging was proposed by the authors in 
[Ch16] to localize failures using alarm correlation. 

A different approach for packet networks is presented by authors in [Ko16] based 
on defining control flows for link failure localization on SDN-based network. 

When a hard failure occurs at the optical layer, the affected traffic needs to be 
immediately restored using currently available resources. For the restauration 
different algorithms can be devised, including multipath and bitrate squeezing 
[Pa14]. 

Nonetheless, some hard failures start as soft failures, and they can be detected as 
incipient degradations. Therefore, it would be desirable to anticipate and resolve 
hard failures in order to plan proper actions like traffic re-routing. Even though 
some soft failures evolution might take a long time, they can affect the quality of 
stablished optical connections. 
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Soft Failures Localization 

Initially not very critical, they can become as harmful as hard failures, therefore, 
developing efficient techniques for soft failure localization is key to guarantee SLAs 
fulfillment and the correct network functioning. 

Although, linear impairments (e.g., dispersion) can be compensated by the DSP 
itself, signal degradations in coherent systems are mainly dominated by amplified 
spontaneous emission, non-linear effects including also interference, and filters 
introducing signal distortion. Thus, the identification of such most relevant 
impairments is mandatory. A challenge is the analysis of monitoring data with the 
objective of identifying the nature of a problem (e.g., decide if a reduction of the 
OSNR is due to an amplifier malfunction or some other issue) and such topic still 
requires to be investigated to reach an adequate maturity. Regarding filtering 
effects, studies in [Sa12], [Gh13] evaluated the related induced penalties. However, 
work is still needed to correlate information related to end-to-end parameters such 
as OSNR and non-linear or filtering effects to identify the type of failure. Note that 
any of the techniques for hard-failure localization work for soft failures affecting 
individual lightpaths, such as Laser Drift, Filter Shift, or Filter Tightening, and 
thus in-line monitoring techniques to analyze and evaluate the quality of 
individual optical lightpaths are required. In this regard, although OSAs could be 
used to analyze the spectrum of optical signals, until recently, the use of OSA in 
the network was very limited due to the high cost of accurate OSAs. However, 
improvements in OSA technology are taking place, and a new generation of cost-
effective OSAs with sub-GHz resolution is now available to be integrated into a 
new generation of optical nodes [Finisar]. Furthermore, OSA and other monitoring 
techniques require sophisticated algorithms able to identify and localize failures. 

While being so critical, few works in the literature have been focused on soft failure 
localization that might affect a single or a reduced set of optical connections.  

Some literature works also take advantage of the previously cited m-trails for soft 
failure localization. For instance, the authors in [Og14] propose a method to 
localize multiple link failures, including hard and soft failures. 

However, vendors have lately commercialized products to track lightpaths along 
their route (e.g., [TAnalytics] from Nokia) or to predict network health 
[BluePlanet]. 

One step further, would involve the process of soft failure identification aiming at 
understanding the cause of a failure to accelerate maintenance thus reducing 
Mean-Time-To-Repair (MTTR). According to our knowledge, until now and since 
the beginning of this PhD thesis, no research has been performed in this decisive 
and unexplored field. Recently, this subject has gained more interest proven by the 
availability of some publications, like [To18]; where the authors agree on the 
challenges of this process, and the necessity of further research. For this very 
reason, this PhD thesis has been focused on this process since the very beginning. 
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In conclusion, considering the previous works, it is clear that a further study 
considering the whole process of soft failure detection, localization and 
identification is required. For this purpose, we address these challenges through 
goals G.2.1 and G.2.2. 

 Visualization 

Data visualization is the process and ability of abstracting data in a significant 
way aiming at better understanding it. It is key for transforming huge amounts of 
raw data into meaningful information by the use of different type charts. The 
advantage of data visualization resides on the fact that exploits both, raw data 
analysis and human perception and expertise. Besides, visualization allows the 
detection of properties and patterns and it even reveals information about the way 
it was collected. Therefore, using an appropriate visualization, errors and spurious 
data would be straightforward identified. For this very reason, data visualization is 
a very valuable technique in quality control [Wa04]. 

Literature explores the development of more effective visual ways to present data, 
but it is mainly oriented towards detecting attacks, like [Co07] focused on 
visualizing vulnerabilities and intrusion detection. 

According to the extensive survey presented by authors in [Gu16], research 
regarding security management is the most trending topic, around 71% of the total 
papers. However, only few are devoted to monitoring and measurements, where 
some of them are focused on failures at IP level (see [Ta13], [CAIDA]).  

To conclude, taking into account the previous related work, it seems that data 
visualization at the optical layer has not yet been addressed and should be 
considered for further study. In particular, in this PhD thesis we consider the 
specific goal (G.2.3) for applying data visualization techniques to help network 
operators to detect and localize incipient optical degradation that could evolve on to 
a hard failure. 

 Network Reconfiguration 

Network reconfiguration can be triggered periodically or by an unexpected event 
such as a failure at the optical layer or traffic anomalies at the packet layer. The 
most common network reconfiguration is in the case of a link failure, where an 
algorithm to recover the affected connections can be executed [Ve14.1]. 

Authors in [Ca13] presented a path-triggered spectrum defragmentation in flexgrid 
optical networks, particularly; in the case a requested connection could not be 
served using the currently available resources. 
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The result of the algorithm is a set of already established lightpaths that can be 
reallocated to make enough room to the incoming connection request. In this 
example, network reconfiguration is purely reactive against current network 
conditions. 

To the best of our knowledge, network reconfiguration triggered by events such as 
traffic anomalies affecting the packet layer or degradation at the optical layer has 
been less explored. Although similar methods, based on optimization, can be 
applied, the triggering event is as a result of expected future scenarios, which 
might entail considerations that must be carefully taken into account. Note that 
this kind of reconfiguration is not reactive, but proactive aiming at minimizing the 
impact of future network conditions. 

As an illustrative example, consider the detection of a traffic anomaly involving a 
single OD pair o→d. In such case, a VNT can be immediately triggered to increase 
the capacity allocated for traffic between origin node o∈R and destination node d∈R 
(e.g., by setting up new connections on the underlying optical network), where R 
represents the set of nodes in the packet network. In this regard, authors in [Sr06] 
presented a VNT reconfiguration algorithm in the case of occurring traffic change. 

However, not only single but also multiple anomalies can arise and affect the 
network; they can be caused by special circumstances, e.g., when a disaster affects 
the network [Na16]. Therefore, the fact of reconfiguring the VNT after an 
individual OD traffic anomaly is detected should be deeply studied thus it can 
result in both, an intolerable number of VNT reconfiguration and traffic losses and 
in a far from optimal network configuration in terms of resource utilization. 

In addition, a prompt detection of optical connections with excessive pre-FEC BER 
can help to greatly reduce SLA violations, in particular when supporting vlinks in 
multilayer MPLS-over-optical VNTs. Therefore, focusing on localizing failures at 
the optical layer and identifying the most probable cause of failure after its 
detection is key to trigger a network reconfiguration algorithm. Developing an 
algorithm to be triggered for pro-actively re-routing those demands affected by QoS 
degradation is needed aiming at reducing the number of affected bandwidth and 
demands. 

As presented above, efficient network reconfiguration considering future scenarios 
is an area not yet covered in the literature. Consequently, it represents one of the 
goals (G.3) of this PhD thesis. 

 Control and Management Architecture 
Supporting Autonomous Networking 

Significant research and standardization effort has been made in defining control 
plane architectures and protocols to automate connection provisioning. Starting 
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from a distributed paradigm, the control and management plane has lately moved 
towards a centralized one led by the development of the SDN concept.  

In a scenario where connection provisioning can be automated, network resources 
can be made available by reconfiguring and/or re-optimizing the network on-
demand and in real-time. This was called as in-operation network planning 
[Ve14.2]. 

A new generation of internet services requiring stringent requirements, such as 
video on demand and live TV streaming, are changing the Internet traffic [Ru16]. 
The bandwidth that these services are demanding is continuously growing 
[Cisco16], and their allocation in metro and core networks is introducing an 
unprecedented dynamicity in the traffic involving changes over time not only in its 
volume, but also in its direction. On statically, and even on reactively -managed 
networks, such dynamicity entails large overprovisioning, and hence large costs for 
network operators. With this in mind, operators are seeking for architectures that 
allow adaptive resource allocation, while fulfilling services’ requirements, aiming 
at minimizing the Total Cost of Ownership (TCO). 

In this context, cognitive network architectures have been proven to adapt the 
network in a cost-effective manner and are gaining increasing importance 
[TAnalytics]. Specifically, by applying data analytics to monitored data, the 
Observe-Analyze-Act (OAA) loop [Bo76] can be enabled in the network, as proposed 
in [Mo17], where authors presented an architecture to allow collecting and storing 
data from monitoring at the network nodes and that was used to train predictive 
models for every OD pair. They also proposed an algorithm named as VENTURE to 
reconfigure the VNT based on predicted traffic matrices. In such centralized data 
analytics architecture, the monitored data is stored and processed in a central 
controller. Although that architecture provides adaptability to dynamic traffic and 
a lower TCO, it might not be suitable for the detection of traffic anomalies or 
degradations, as a result of both, the large amount of data to be conveyed to and 
analyzed in the centralized data analytics system, as well as the stringent times in 
which the detection needs to be performed. 

Considering this reasoning, centralized data analytics architectures become rather 
limited, and therefore they must be upgraded to bring data analytics to the nodes 
and allow distributed data analytics schemes. 

We propose to take advantage of novel network reconfiguration capabilities and 
new network management architectures to perform in-operation planning to 
reconfigure the network triggered by the results of analyzing monitoring data 
collected from the devices in the data plane. 

In the literature, different architectures supporting cognition are considered for 
diverse purposes. However, the OAA loop can be applied to a variety of use cases, 
so specific requirements are needed to implement the OAA loop efficiently. Those 
requirements include, among others,  
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• monitoring as many devices as possible in the data plane, 

• collecting large amount of data in a centralized repository, 

• analyzing heterogeneous data to find patterns and discover knowledge,  

•  supporting distributed decision making to enable making decisions as 
closer as possible from the data,  

• applying re-optimization techniques to proactively reconfigure the network 
based on the results of the data analysis to find optimal solutions for the 
predicted scenarios, and 

•  the ability to dynamically reconfigure the network data plane. 

As far as we know, no previous works have been focused on studying different 
control and management, architectures to support the OAA loop. Particularly, 
regarding traffic anomalies affecting the packet layer, it is clear in view of the 
above requirements that architectures need to be studied to evaluate different data 
analytics algorithms placements. 

Note that the storage required for traffic traces has greatly expanded due to 
increasing network speeds [Uc16]. Regarding data analytics placement, a 
meaningful study has been proposed in the context of global iceberg detection, e.g., 
distributed DoS attack; distributed monitors first measure local traffic for iceberg 
candidates and then, they report the measured datasets to a central server, which 
finds the most frequent ones [Hu11]. 

Research on distributed monitoring architectures is recently receiving great 
interest. As an example, authors in [Sa16] proposed a hierarchical monitoring 
architecture aiming at providing monitoring information gathering coming from 
different layers and network elements in a scalable way without overloading 
centralized controllers. Reactive strategies based on alarms pre-configured at 
different monitoring planes for several transmission parameters are proposed as 
the way to trigger network reconfiguration. This data analysis approach, however, 
results insufficient for detecting complex events such as traffic prediction. In fact, 
performing data analytics at the nodes requires from data stream mining 
algorithms [Me10]. For instance, authors in [Zh17] presented a data stream 
algorithm working in tight memory to detect hosts connecting to a large number of 
destinations (named to as superpoints). This algorithm provides a clear notion that 
data modeling is not only needed at a central controller but also distributed at the 
nodes. Effectively, the algorithm transforms IP packets into superpoints modeling 
data before sending it to the controller. In consequence, distributed data analytics 
must be complemented with a monitoring architecture enabling modeling and 
exporting data rather than just monitoring raw data. 

In view of the above, we conclude that architectures to support the OAA loop are 
still a technological niche that yet needs to be covered. To this end, goal G.4 
intends to effectively tackle this issue. 
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 Conclusions 

In this chapter, we have reviewed the state-of-the-art of relevant works related to 
the goals of this thesis. Table 4-1 summarizes the study. 

Table 4-1: State-of-the-art summary 

Goals References 

Traffic Anomalies at the packet layer 
[Ch09], [Mo17], [Li16], [M.2120], [Ma14], 

[RFC7536], [Bh14], [La04], [Cu15], 
[Ma12], [So07], [Ku00] 

Failure detection and localization / 
identification at the optical layer 

[Ta14], [We05], [Ma00], [Ta12], [Ze06], 
[Wu09], [Ma05], [Sa12], [Gh13], [Pa14], 
[Ch16], [Ko16], [Og14], [XLi16], [Ta15], 
[Finisar], [ComCom17], [TAnalytics], 

[BluePlanet], [To18] 

Network Reconfiguration [Ve14.1], [Ca13], [Sr06], [Na16] 

Cognitive Architecture 
[Ve14.2], [Ru16], [Cisco16], [TAnalytics], 
[Bo76], [Mo17], [Mo17], [Si13], [Uc16], 

[Hu11], [Sa16], [Me10], [Zh17] 

Visualization [Wa04], [Co07], [Gu16], [Ta13] 

 

In view of this study, we can conclude that, although some previous works have 
proposed algorithms and different methods for traffic anomaly detection at the 
packet layer and for failures detection and identification/localization at the optical 
layer, many enhancements can still be made, where data analytics combined with 
optimization can improve the network performance. 

In addition, the state-of-the-art review of the architectures already proposed in the 
literature revealed that they have not been proposed with the aim of bringing 
cognition to the network or they do not provide the needed scalability.  

In this and the previous chapters we have reviewed the state-of-the-art and the 
background concepts needed to fully understand this work. The following chapters 
present the essence and contributions of this PhD thesis. 
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Chapter 5 

Traffic Anomaly Detection and 
VNT Reconfiguration 

In this chapter, we focus on the L2 traffic and investigate methods to detect single 
traffic anomalies. As previously introduced, traffic anomalies can create network 
congestion, so its prompt and accurate detection would allow network operators to 
make decisions to guarantee the required network performance avoiding services to 
experience any perturbation. In particular, we focus on Origin-Destination (OD) 
traffic; to efficiently detect those traffic anomalies, we study two different detection 
methods based on data analytics and combine them with three monitoring 
strategies. In view of the short monitoring period needed to reduce anomaly 
detection, which entails large amount of monitoring data to be collected and 
analyzed in a centralized repository, we propose bringing data analytics to the 
network nodes, while keeping traffic estimation centralized. Once an OD traffic 
anomaly is detected, a network reconfiguration can be proactively triggered to 
adapt the network to the new traffic conditions. Exhaustive simulation results on a 
realistic network scenario show that the monitoring period should be as low as 
possible (e.g., 1 min) to keep anomaly detection times low, which clearly motivates 
placing traffic anomaly detection function in the network nodes. Finally, the 
benefits obtained from reconfiguring the Virtual Network Topology (VNT) after the 
anomaly has been detected are shown. 

 Motivation and Objectives 

Two different methods for anomaly detection are studied in this chapter: traffic-
based and score-based; both methods have already been proposed in the literature 
for traffic changes detection and other scenarios (see Chapter 4). In this chapter, 
we adapt them for OD traffic anomaly detection; assuming that monitoring data is 
stored in a centralized repository, we propose to dynamically configure the 
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monitoring period aiming at reducing the amount of data to be conveyed. Once a 
traffic anomaly involving a single OD pair o→d has been detected, a VNT can be 
immediately triggered to increase the capacity allocated for traffic between origin 
node o∈V and destination node d∈ V (e.g., by setting up new connections on the 
underlying optical network), where V represents the set of nodes in the packet 
network. 

Another option is to devise novel architectures where data analytics algorithms can 
be placed to reduce traffic anomaly detection time and the amount of monitoring 
data to be conveyed to the central repository. In this chapter, we study different 
monitoring strategies. Specifically, the contributions of this chapter are the 
following: 

• Two different OD traffic anomaly detection methods together with three 
monitoring strategies are studied in section 5.2 to efficiently detect traffic 
anomalies. The traffic-based method uses predictive models to detect 
sequences of consecutive atypical traffic values, whereas the score-based 
method is a probabilistic classifier that considers both normal and atypical 
traffic data to measure how likely is to classify an OD as anomalous. 

• Section 5.3 presents a VNT reconfiguration optimization problem to be 
solved when an OD traffic anomaly has been detected in order to adapt the 
VNT to the increase of traffic.  

• Two architectural approaches are studied in section 5.4, where the anomaly 
detection algorithm is placed in a centralized controller or distributed inside 
packet nodes. The monitoring parameters to be configured in the nodes and 
the data in the notifications that they have to send towards the controller 
are specified. 

The discussion is supported by the results from exhaustive simulation over a 
realistic scenario in section 5.5. 

 OD Traffic Anomalies 

 Overview 

Before detecting OD traffic anomalies, traffic behavior needs to be firstly 
characterized. To this aim, OD traffic models need to be fitted, so as to generate 
predictions against which monitored values can be compared. As previously 
presented in Chapter 2, OD traffic models can be computed for the expected 
average by predicting two response variables: the mean (µod) and the standard 
deviation (σod). For the sake of simplicity, hereafter we use just µ and σ in the 
understanding that those refer to the mean and standard deviation, respectively 
for a specific OD pair. 
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Fig. 5-1 illustrates the main steps of the process on a sample network where V= 
{R1, R2, R3, R4, R5}. Monitoring traffic values for every OD pair are collected from 
the packet nodes periodically, with a given monitoring period, denoted as δ. OD 
traffic models are fitted with these data (Fig. 5-1(a)). Upper and lower bounds, 
computed as μ±3σ, and traffic samples for a given od pair and for a typical day are 
shown in Fig. 5-1(b). Received monitored data can be now compared against its od 
traffic model and those out-of-bound values are considered as atypical (Fig. 5-1(c)). 
Notwithstanding, its detection does not entail a traffic anomaly evidence. In fact, 
the decision of whether an atypical sample is considered as a traffic anomaly 
cannot be based on just one single sample, but in observing some previous samples 
and computing a sort of likelihood of that od to be anomalous; we call this score. 
Score values are compared against a defined threshold value (εA) and those scores 
exceeding such threshold are considered anomalies. An example is depicted in Fig. 
5-1(d), where an anomaly is detected after receiving two atypical values and 
considering some other previous within-bound samples.  
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Fig. 5-1. (a) Monitoring samples and estimation boundaries. (b) Monitoring 
samples vs. estimation. (c) Atypical values over estimation. (d) Anomaly detection. 

 Notation 

The following Table 5-1 presents the key notation used in this chapter. 

Table 5-1. Relevant notation used in this chapter. 

δ monitoring period 

µ mean 

σ standard deviation 

s(t) score 
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εA threshold value 

y(t) traffic monitoring data of a given OD pair 

ŷ(t) normalized value of y(t) with respect to the average model 

m number of traffic data samples received 

Ŷ vector with normalized traffic data samples 

𝒩𝒩(∙) Gaussian distribution 

c coarse monitoring period in the reactive monitoring strategy 

f fine monitoring period in the reactive monitoring strategy 

 Detection Method 

As stated above, two different methods for anomaly detection are adapted from the 
literature for OD traffic anomaly detection: traffic-based and score-based. The 
adapted traffic-based method consists in detecting anomalies after receiving a 
number of consecutive atypical monitoring data with respect to the μ±3σ confidence 
interval. 

Table 5-2. Score-based algorithm for traffic anomaly detection. 
INPUT: y(t), μ(t) , σ(t), t, Ŷ(t) 
OUTPUT: Anomaly 
1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

ŷ(t) ← Normalize (y(t), μ(t), σ(t)) (eq. (5-1)) 
remove oldest value from Ŷ 
Ŷ(t) ← add (Ŷ, ŷ(t)) 
if ŷ(t) < 3 then 
return false (atypical) 

s(t) ← computeScore (Ŷ(t)) (eq. (5-3)) 
if s(t) < εA then 
return false 

return true 
 

The score-based method is a probabilistic classifier with two labels for the response: 
normal and anomaly. The algorithm (see Table 5-2) is based on a multi-response 
model to predict whether a sequence of consecutive traffic data belongs to the 
normal class or, on the contrary, there is sufficient evidence to declare it 
anomalous. Since this method considers previous (not only atypical) traffic 
monitoring data, it has the capability of potentially anticipating traffic anomalies 
thus, reducing detection time compared to that of the traffic–based method. 

The algorithm starts when a traffic monitoring data of a given OD pair y(t) is 
received at time t; let ŷ(t) be the normalized value of y(t) with respect to the 
average model, i.e.,:  
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where μ(t) and σ(t) are the mean and standard deviation, respectively, of the traffic 
model for such OD pair at time t. 

Note that a normalized value equal to K-means that y(t) = µ(t)+k∙σ(t). After 
normalization, ŷ(t) is stored in a fixed-size data series Ŷ containing the last m 
normalized traffic data received. Therefore, at a given time t, Ŷ contains the 
following normalized traffic data:  

Ŷ(t) = {ŷ(t-i), ∀ i ∈ 0..m-1} ≈ 𝒩𝒩(0mx1, Imxm), (5-2) 

where 𝒩𝒩(∙) represents the multivariate Gaussian distribution with mx1 zero vector 
mean and mxm identity covariance matrix. This multivariate distribution is the 
key result of normalizing traffic by means of µ and σ models. Note that the identity 
covariance matrix indicates unitary standard deviation for every single ŷ value and 
no correlation between any pair of elements in Ŷ(t). Hence, we can conclude that 
Ŷ(t) contains independent and identically distributed random variables each 
following the univariate standard Gaussian distribution 𝒩𝒩(0,1). 

According to the aforementioned properties of the normalized traffic, let us define 
the probability p(i)=1-P(z≤|ŷ (t-i)|) as an indicator of how likely is to consider ŷ as 
a normal traffic value. Therefore, we assume that smaller (i.e., less probable) p(i) 
values will be observed in case of an anomaly. Based on these individual 
probabilities, we define a score function s(t) to compute how likely is that a data 
series Ŷ(t) does not belong to the normal class. The score s(t) is defined as: 
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In view of eq. (5-3), it is worth noting that the lower the probabilities of ŷ variables, 
the lower the product of probabilities and inversely, the higher the score. To decide 
whether an anomaly is detected, we simply compare s(t) against the εA threshold 
that normal data series Ŷ(t) do not practically exceed. Then, there is sufficient 
evidence to detect an anomaly in OD pair in time t if s(t) ≥ εA. 

 VNT Reconfiguration  

Once a traffic anomaly has been detected, the VNT can be reconfigured to cope 
with the traffic increment. In this regard, a prediction of the magnitude of the 
anomaly would be of great interest. However, in absence of such estimation we can 
consider that the magnitude of traffic anomies never exceeds e.g., double of normal 
traffic. 
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Fig. 5-2. (a) Initial VNT and OD 1→3 routing. (b) Reconfigured VNT and OD pair 
1→3 routing after traffic anomaly detection. 

Note that when the traffic experiments an abrupt increment in a short period of 
time vlinks capacity might be exceeded and thus, traffic losses appear until the 
new lightpath becomes available. 

An example is shown in Fig. 5-2, where OD traffic is monitored (Fig. 5-2(a)) and a 
traffic anomaly in OD pair 1→3 is detected. The VNT is reconfigured by creating 
new vlink 1→3 and traffic is re-routed (Fig. 5-2(b)). As a result of the anticipated 
VNT reconfiguration, traffic losses might be decreased. 

 

Based on the above, the OD traffic anomaly-triggered topology reconfiguration 
(ODEON) problem that we propose can be formally stated as: 

Given:  

• a graph G(V, E), where V is the set of packet nodes and E is the set of 
directed vlinks connecting two nodes. The remaining capacity of each vlink e 
(be) is also known; 

• a set TP(v) of transponders installed in each node v. Some of these 
transponders can be currently used for the existing vlinks and some of them 
might be unused; 

• the OD pair od affected by the anomaly; od is defined by the tuple <o,d,b>, 
where o and d are the source and target nodes, respectively, and b is the 
maximum expected bitrate during anomaly lifetime. 

Output: The capacity increments in existing vlinks and the new vlinks to be 
created, so as to serve od. In addition, the new path for od needs to be specified. 

Objective: Minimize the use of resources to serve od, including transponders 
utilization. 

To tackle the ODEON problem, we propose the algorithm in Table 5-3. The 
resources currently allocated to pair od are first released (line 1 in Table 5-3) and 
the vlinks without enough capacity are removed from the graph (lines 2-3). Next, 
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the graph is augmented where new vlinks are created between routers with 
available transponders (line 4) and a shortest path is computed (line 5), assuming 
vlinks cost as follows:  
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Table 5-3 ODEON Algorithm 
INPUT: G(V, E), od=<o,d,b> 
OUT: <L, p> 
1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10: 
11: 
12: 

deallocate(G, od) 
for each e in E do 
if availableCapacity(e) ≤ b then E ← E \ {e} 

G’(V, E’) ← augment(G) 
p ← SP(G’, <o, d>) 
if p = Ø then return INFEASIBLE 
L ← Ø 
for each a in p do 
if e=(v1,v2) ∈ E’\E then 
l ← RMSA(G’, <v1, v2, b>, ∞) 
L ← L U {l} 

return <L, p> 
 

Finally, the Routing, Modulation and Spectrum Assignments (RMSA) problem (see 
Chapter 2) is solved for every new vlink and for existing vlinks where the capacity 
needs to be increased. 

 Proposed Architecture and Monitoring 
Strategies 

To efficiently implement OD-based traffic anomaly detection methods, we propose 
the modules depicted in Fig. 5-3 that are all of them, for the moment, assumed to be 
placed in the network control plane. We call this module Monitoring and Data 
Analytics System (MDA) In such centralized architecture, traffic samples are 
collected from packet nodes and stored in the Collected Data Repository (CR). 
Collected data can be conveniently summarized in modeled data, e.g., by computing 
average deviation, percentile, etc. The Estimator (E) module applies data analytics 
on samples from the Modeled Data Repository (MR) to estimate the specific models 
for every OD pair, which are stored in a model repository. Models predict response 
variables for the average OD traffic (i.e., µ(t) and σ(t)). An Anomaly Detection (AD) 
module is in charge of detecting traffic anomalies; it first verifies whether a just 
arrived monitored OD traffic value is out-of-bounds and, only in such case, its 
current score is computed and compared against threshold εA. Upon the detection 
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of an anomalous OD pair, a VNT reconfiguration needs to be triggered as presented 
in the previous section. 

Anomaly Detection (AD)

Estimator (E)

Collected Data
Repository (CR)

Modeled Data 
Repository (MR)

Predictive
Model

Repository

Max

VNT Reconfig

t1,…,tN-1

t1,…,tS

Modeled data

OD traffic 
monitoring

From nodes  

Fig. 5-3. MDA architecture for OD traffic anomaly detection. 

Fig. 5-4 presents a general view of the centralized architecture with module 
placement, as well as the monitoring parameters that the MDA system can 
configure in the network nodes. Analyzing the placement, it is clear that 
repositories need to be centralized, since data can be used for several purposes that 
might require a global view of the network. Regarding model fitting, it can be 
carried out in the MDA from monitoring data collected every 15-minute period.  
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Fig. 5-4. Centralized monitoring architecture. 

However, that monitoring period would impact on the time to detect OD traffic 
anomalies and hence, shorter monitoring period would be preferred from that 
viewpoint. For instance, if the target time to detect traffic anomalies is within the 5 
minutes after they appear, the monitoring period cannot exceed that value (results 
are presented in section 5.5). In consequence, δ is a key parameter to study since 



Chapter 5- Traffic Anomalies Detection and VNT reconfiguration 65 

reducing it entails increasing the amount of monitoring data to be conveyed from 
the network nodes to the collected data repository in the MDA system. 

Aiming at limiting the amount of collected data, in this chapter we propose 
studying the performance of the following monitoring strategies: 

• the traditional fixed monitoring period strategy but reducing its period to 
accelerate anomaly detection;  

• a dynamic monitoring strategy, where the monitoring period can be re-
programmed during the day; and  

• a reactive monitoring strategy (c:f) that uses a coarse monitoring period (c) 
and re-configures it to a finer period (f) after detecting the first atypical 
monitoring data.  

From the possible combination of methods and strategies, we focus on studying the 
four most relevant approaches (Table 5-4):  

• traffic-based with fixed monitoring (traffic-fixed);  

• score-based with fixed monitoring (score-fixed);  

• score-based with dynamic monitoring (dynamic); 

• score-based with reactive monitoring (reactive) 
 

Table 5-4. Anomaly detection methods and monitoring strategies 

Monitoring Strategy 
Detection method 

Traffic-based Score-based 

Fixed traffic-fixed score-fixed 

Dynamic  -  dynamic 

Reactive  - reactive 
 

Another different option is to place the traffic anomaly detection functionality 
inside the network nodes, as depicted in Fig. 5-5; we call this the distributed 
architecture. This way, data analytics for anomaly detection has access to fine-
grained monitoring data every δ period, which allows achieving low detection times 
while keeping a larger monitoring period (e.g., 15 minutes) for model fitting thus, 
reducing the amount of monitoring data to be collected. 
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Fig. 5-5. Distributed monitoring architecture 

 Illustrative Results 

In this section, we first study the performance of the proposed strategies and 
methods for traffic anomaly detection, where each anomaly affects one single OD 
pair. Next, the performance of the ODEON problem will be evaluated. 

 Scenario and Parameters Tuning 

For evaluation purposes we developed an ad-hoc event-driven simulator in 
OMNET++ and considered a scenario with ten packet nodes (i.e., 90 OD pairs). OD 
traffic (see Appendix B for the details about traffic generation) and traffic 
anomalies were generated separately and subsequently combined. Traffic 
anomalies are generated following a pulse function (Fig. 5-6(a)), where the raising 
front consists of an exponential function and are used as a multiplicative factor 
over normal traffic (Fig. 5-6(b)). Anomalies can be configured to be triggered at any 
specific time and with any specific duration and scaling factor. As an example, in 
Fig. 5-6(c) an anomaly can be generated to multiply traffic by x1.5, last for two 
hours and reach 90% of its maximum value at the first 30 minutes. 

The Estimator module was implemented in C++ and integrated in the simulator, 
whereas the AD module implementing the anomaly detector was developed in R 
and kept as a separated standalone module. Generated traffic values were used as 
input of an R function that computed the score of every OD pair and returned 
whether an OD exceeded a threshold. 
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Fig. 5-6. (a) Exponential traffic anomaly. (b)  OD traffic with a traffic anomaly at 
9am. (c) OD normal traffic profile in a typical day 

Before evaluating the performance of the previously proposed strategies and 
methods, some key parameters need to be determined. To this aim, we run some 
simulations without adding traffic anomalies, so as to produce monitoring data for 
the normal traffic. From those simulations, we observed that the maximum 
amount of consecutive atypical monitoring traffic data in an OD pair was 2. In 
consequence, anomalies will be detected by the traffic-based method when 3 or 
more consecutive atypical values are monitored. Regarding the score-based method, 
we considered the number of normalized traffic samples received, m=5. Finally, the 
value of εA was fixed to 1000. The rationale of such decision is left to the next 
chapter.  
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 OD Traffic Anomaly Detection Methods 

Graphs in Fig. 5-7 plot, for several hours of the day, the anomaly detection time for 
the considered detection methods and monitoring strategies, where the monitoring 
period is in the interval [1-5] minutes. We observe that although anomaly detection 
time varies for the different considered hours of day, detection time increases 
remarkably with the traffic-fixed approach when the monitoring period increases. 
This is in contrast to the moderated increment achieved by the score-fixed one. In 
the case of the reactive approach, where we assume a (c=5:f=1) min. monitoring 
strategy, slightly lower detection times with respect to the previous approaches can 
be observed. 
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Fig. 5-7. Traffic anomaly detection time vs. monitoring period for different hours of 
a day at: (a) 5am, (b) 10am, (c) 3pm, and (d) 9pm. 
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Table 5-5. Gains from applying ALCOR (%). 

Hour of day (h) 

Detection Time (min) Gain 

Score-based 
Abs. (min) % 

Fixed Reactive 

5am 8.8 6.2 2.6 30.2% 

10am 5.2 4.4 0.8 16.4% 

3pm 4.8 4.4 0.4 9.0% 

9pm 4.4 4.4 >0 1% 
 

The table in Table 5-5 reports the gains in detection time for the studied hours of 
day, where using a finer monitoring period after an out-of-bound traffic sample is 
detected provides gains between 1% and 30%. 

Fig. 5-8 focuses on studying in depth the potentials of the score-fixed and 
illustrates how anomaly detection depends on different factors, such as the changes 
on traffic volume among the different hours of the day for the same monitoring 
period. This opens the opportunity to dynamically adapt the monitoring period for 
different hours of day and achieve the same anomaly detection times (Dynamic 
monitoring). Note that this is positive since to achieve low detection times, 1-
minute period should be fixed. Hence, by relaxing the monitoring period, we are 
effectively reducing the amount of monitoring data to be collected in the centralized 
repository. 
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Fig. 5-8. Anomaly detection time vs. hours of day for different δ values. 

Fig. 5-9 shows the amount of monitored data to be collected along the day when 
reducing δ. E.g., assuming a 5 minutes period, 288 monitoring samples per OD and 
day need to be collected achieving 5.14 and 4.62 min. detection times for the score-
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fixed and the reactive approaches, respectively. Finally, Table 5-6 compares the 
amount of data to be collected in the centralized and the distributed architecture as 
a function of the required detection time for both, anomaly detection and traffic 
modelling. Note that the amount of data in the case of the distributed architecture 
is constant and equal to one sample every 15 min, since monitored data is 
exclusively used for traffic modelling purposes.  
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Fig. 5-9. Amount of collected data and anomaly detection time vs. δ. 

Table 5-6. Amount of collected data per OD and day vs. required anomaly detection 
time 

Monitoring 
Period (min) 

Centralized 
Architecture 

Distributed 
Architecture 

3 720 96 

5 360 96 

10 144 96 

15 96 96 
 

Even though the different proposed methods for anomaly detection can be 
improved by changing the monitoring period, the best solution to avoid dealing 
with huge amount of monitored data is clearly to place traffic anomaly detection 
directly into the network node, as proposed in section 5.3. 

 VNT Reconfiguration 

To evaluate the performance of the ODEON algorithm, the event driven simulator 
triggers a network reconfiguration in case of a sudden anomaly. Lightpath set-up 
path was set to 1 min. The gain in terms of traffic loss is analyzed for different 
values of maximum traffic expected per OD. 
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Table 5-7 Improvement using ODEON. 

Max OD  

Traffic (Gb/s) 

Loss (Gb) 

without ODEON 

Loss (Gb) 

with ODEON 

Loss reduction (%) 

mean 1am 9am 5pm 

40 15 10 33% 9% 22% 20% 

60 20 13 33% 58% 13% 56% 

80 28 18 38% 21% 18% 54% 

100 45 28 37% 43% 17% 54% 

120 49 21 56% 40% 36% 76% 

140 48 27 44% 29% 18% 80% 
 
 

 

Table 5-7 shows the results of traffic loss with and without ODEON assuming that 
an anomaly can occur at any hour, as well as the loss reduction at three different 
day times. In view of the results, we can conclude that ODEON reduces traffic 
losses in more than 30% in average, reaching up to 80% of reduction for specific 
hours and loads. 

 Concluding Remarks 

Two different anomaly detection methods have been studied in this chapter: traffic-
based and score-based. The traffic-based consists in detecting anomalies after 
receiving a number of consecutive atypical monitoring data values with respect to 
the μ±3σ confidence interval, while the score-based method is a probabilistic 
classifier that assigns two labels for the response: normal and anomaly. Besides, an 
algorithm based on a multi-response model has been presented to predict whether 
a sequence of consecutive traffic data belongs to the normal class or, on the 
contrary, there is sufficient evidence to declare it as anomalous. Next, a traffic 
anomaly detection architecture has been proposed based on the following 
components:  

• Traffic samples from every OD pair are collected at a given rate and stored 
in the collected data repository. 

• Collected data is used by a traffic anomalies detection module, to compare 
its value against that of a predicted traffic model. 

• An estimator module that pre-processes collected data to fit multi-response 
predictive traffic models for the average. 

Predictive models include both, mean and deviation as response variables. All 
these components were first assumed to be placed centralized in the network 
controller. 
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Different function placement architectures and monitoring strategies were 
explored for the data analytics to perform OD traffic anomaly detection aiming at 
reducing anomaly detection times. It was shown that 15-minute monitoring cannot 
provide the short anomaly detection times required to react against unexpected 
traffic changes. Consequently, four different approaches mixing detection methods 
and monitoring strategies have been proposed using the centralized architecture; 
the shortest anomaly detection times were achieved when monitoring every 1 min. 
However, this represents a large amount of data storage in the centralized 
controller. In view of the above, an alternative distributed architecture was 
proposed where the proposed data analytics method for OD anomaly detection were 
moved to the network nodes thus, relaxing data collection from the centralized 
controller to the traditional 15-min. period, that can be used for traffic modelling 
and estimation purposes.  

After detecting an OD traffic anomaly, a network reconfiguration can be triggered 
to avoid traffic losses as a result of capacity exhaustion. In this regard, the ODEON 
algorithm that targets at reconfiguring the VNT after a traffic anomaly is detected 
was proposed. Simulation results showed remarkable packet loss reduction when 
VNT reconfiguration was carried out.  

The proposed distributed architecture presents some open aspects that can be 
summarized as follows:  

• The network nodes need to be upgraded to introduce the anomaly detection 
functionality. This entails that the architecture of the network nodes needs 
to be extended to support monitoring and data analytics software, as well as 
monitoring programmability (i.e., monitoring parameter configuration). In 
addition, the architecture of the network controllers needs extensions to 
support modeling traffic from monitoring data, data analytics to make 
decisions (e.g., to initiate a network reconfiguration), monitoring 
programming, etc.  

• Related to monitoring programmability, the distributed architecture needs 
more monitoring parameters to be specified (i.e., per-OD traffic models and 
score thresholds), which requires extending the interface between the 
controller and network nodes.  

• In the migration process from nodes with and without extended capabilities, 
the data plane could include both node types, which would entail increasing 
the complexity of managing the data plane. In such cases, a hierarchical 
approach [Sa16] can be implemented, where monitoring data from non-
extended nodes can be collated in some intermediate element implementing 
the extended capabilities. 

The next chapter continues addressing traffic anomalies issue, in particular, traffic 
anomalies that arise from a common cause and affect several OD pairs 
simultaneously. 
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Chapter 6 

Multiple Traffic Anomalies 
Detection 

The previous chapter targeted single traffic anomalies detection and subsequent 
reconfiguration; however, an external event might cause multiple related traffic 
anomalies. In the case of triggering the ODEON problem to reconfigure the 
network just after one traffic anomaly is detected, some Key Performance 
Indicators (KPI) as well as traffic losses would be unnecessarily high. KPIs include 
the number of network reconfigurations, and the total reconfiguration time. In 
light of that, we propose the Anomaly and Network Reconfiguration (ALCOR) 
method to anticipate whether other ODs are anomalous after detecting one 
anomalous OD pair. Exhaustive simulation on a realistic network scenario in the 
case of multiple anomalies, show that ALCOR can significantly improve KPIs. 

 Introduction 

 Motivation and Objectives 

Multiple anomalies can be caused under special circumstances, e.g., when a 
disaster affects the network [Na16]. In such scenarios, several ODs leaving from a 
common origin node (o→(M⊂V)) or arriving to a common destination node 
((N⊂V)→d) can be produced, where M represents the set of destinations from o and 
N is the set of origins to d and V is the set of packet nodes in the VNT. Here, 
reconfiguring the VNT after an individual OD traffic anomaly is detected can 
result in both, an intolerable number of VNT reconfiguration, as well as and traffic 
losses and in a far from optimal network configuration in terms of resource 
utilization.  
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In this chapter, we study multiple OD anomalies. Specifically, the Anomaly and 
Network Reconfiguration (ALCOR) method is proposed to improve the following 
key performance indicators (KPI) in the event of multiple OD traffic anomalies: 

• the number of network reconfigurations (nReconfig), 

• the total reconfiguration time (tReconfig),  

• the traffic losses (lossTraffic). 

The method developed in this chapter, consists in anticipating whether other ODs 
are anomalous after detecting one anomalous OD pair before triggering a 
reconfiguration. The discussion is supported by the results from exhaustive 
simulation over a realistic scenario. 

 Notation 

Table 6-1 presents the key notation used in this chapter. 

Table 6-1. Relevant notation used in this chapter. 

δr time that reconfiguration process lasts 

εA anomalous ODs threshold 

εS suspicious ODs threshold 

o origin node 

d destination node 

M set of destinations from o 

N set of origins to d 

nReconfig number of network reconfigurations 

tReconfig total reconfiguration time 

lossTraffic traffic losses 

ŷ(t) normalized value of y(t) with respect to the average model 

Ŷ vector with normalized traffic data samples 

 Dealing With Multiple OD Traffic Anomalies 

 Multiple Anomalies and Network Reconfiguration 

Let us assume now that an event causes several related OD traffic anomalies. For 
illustrative purposes, Fig. 6-1 shows an example where a traffic anomaly has been 
detected in OD R1→R3 (i.e., that threshold εA has been violated at time t0); the 
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score evolution with time for several monitoring intervals is shown in Fig. 6-1(a). 
Note that a purely per-OD reconfiguration would immediately trigger a network 
reconfiguration after the R1→R3 OD traffic anomaly is detected (Fig. 6-1(b)). Let us 
assume that the monitoring period δ is fixed to 1 minute and the reconfiguration 
process takes δr, e.g., 2 minutes. Then, network reconfiguration process for OD pair 
R1→R3 will end at t0+ δr. Later, at t0+3δ, an OD traffic anomaly in pair R1→R5 is 
confirmed and thus, the controller triggers a new reconfiguration for such OD that 
finishes at t0+3δ+δr. While the network reconfiguration for OD pair R1→R5 is still 
in progress, another anomaly for OD pair R1→R2 is detected at t0+4δ, but the 
reconfiguration for that OD anomaly needs to be delayed until that for OD pair 
R1→R5 finishes. Therefore, reconfiguration for OD pair R1→R5 starts at t0+5δ and 
finishes at t0+5δ+δr. 
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R1→R3 R1→R5

R1→R2
R1→R5

t0 t0+3δ
t0+5δ

t0+5δ t0+6δ t0+7δ

(a)

(b)

(c) 2δ

R1→R2

t0

R1→R3 R1→R5, R1→R2 
t0+3δ

t0+3δ+δr t0+5δ+δrt0+ δr

t0+ δr t0+3δ+δr

 

Fig. 6-1. Example of multiple anomalies. (a) Score vs. time. (b) Single and (c) 
multiple OD reconfiguration. 

To reduce the number of reconfigurations and minimize the time when the last 
reconfiguration finishes, thus reducing traffic losses, a procedure to detect multiple 
OD anomalies would be useful Fig. 6-1(c). To that end, we propose the ALCOR 
method to analyze other ODs and to compare their scores against a different 
threshold εS for suspicious ODs. ALCOR aims at improving the considered KPIs by 
reducing the number of network reconfigurations, as well as the total 
reconfiguration time in the case of multiple anomalies. This is achieved by avoiding 
the case when anomalies are detected while the reconfiguration triggered by other 
anomalies is still in process. Thus, ALCOR anticipates the reconfiguration of some 
suspicious ODs with sufficient evidence to shortly become anomalous. Since those 
anomalies are related, we propose to focus that analysis on outgoing OD pairs 
R1→N, as well as on incoming ODs M→R3. 
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In the example in Fig. 6-1, a threshold violation εS is detected for OD pair R1→R5 
after the detection of an anomaly in OD pair R1→R3 at time t0. After predicting the 
evolution of the R1→R5 score by means of extrapolation based on past score values 
(lines with square markers in Fig. 6-1(a), the occurrence of an anomaly during next 
2δ in such suspicious OD pair is discarded and hence, reconfiguration of OD pair 
R1→R3 is triggered at t0. Later on, OD pair R1→R5 anomaly arises and OD pair 
R1→R2 is identified as suspicious. In this case, there is sufficient evidence to 
declare the latter as anomalous in the next time interval and consequently, it is 
jointly reconfigured with OD pair R1→R5 at time t0+3δ. As a result, preparing the 
network for the new traffic conditions takes 2δ time units less than the total time 
required by the per-OD reconfiguration. 

 Evolved MDA Architecture 

In Chapter 5, two architectures for single OD-based traffic anomaly detection were 
analyzed:  centralized (Fig. 5-4) and distributed (Fig. 5-5) architecture, leading to 
the conclusion that distributed architecture achieved best anomaly detection times 
while transferring the least amount of data to the central repository. For that 
reason, Fig. 6-2 presents an evolved distributed architecture focused on multiple 
traffic anomalies, where OD anomaly detection data analytics method was brought 
to the network nodes (Fig. 6-3) aiming at providing fine-grained monitoring data 
every δ period to lower detection times. Upon the detection of an anomalous OD 
pair at the node, the ALCOR module in the network controller is in charge of 
deciding the ODs for which VNT reconfiguration needs to be triggered. 
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Fig. 6-2. Architecture for OD traffic anomaly detection. 

Specifically, the AD module in the network nodes, detects anomalies by using as 
input, the traffic models that have been estimated by the Estimator in the MDA 
module. To be able to perform such traffic estimation, monitoring data is 
aggregated and conveyed periodically to the MDA system. A number of parameters 
need to be configured in the network nodes, including the thresholds, the traffic 
models, the OD pairs to be monitored, etc. 
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Fig. 6-3. Distributed monitoring architecture 

 The Anomaly and Network Reconfiguration 
(ALCOR) Method 

This section focuses on the ALCOR method that identifies multiple related 
anomalies; the score value defined in eq. (5-3)  is used to decide whether to trigger 
a network reconfiguration with only confirmed anomalous OD pairs or anticipate 
further anomaly evidences in suspicious OD pairs. Assuming the distributed 
architecture Fig. 6-3, ALCOR configures every node in the network specifying, 
among other parameters, the anomaly detection thresholds (εA and εS). Initially, 
nodes only monitor outgoing OD traffic and periodically send average values 
towards the controller, which estimates the coefficients to model OD traffic (Fig. 
6-4(a)). The coefficients for every OD pair are forwarded to the origin and 
destination nodes and are used together with the εA threshold to detect traffic 
anomalies. 

Whenever an OD traffic anomaly is detected by a node (i.e., OD pair R1→R3 in Fig. 
6-4), a notification is sent to the controller and, as a result, ALCOR decides to 
activate the notification for threshold εS in origin node for all outgoing OD pairs 
o→N, as well as to activate traffic monitoring for the incoming ODs M→d and εS 

threshold notification in the destination node (i.e., R1→{R2, R3, R4, R5} and {R1, 
R2, R4, R5}→R3 in Fig. 6-4(b)). 
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Fig. 6-4. (a) OD pair R1→R3 anomaly detection. (b) Anomaly threshold notification 
reconfigured in R1 and R3. 

ALCOR decision problem can be addressed by solving the algorithm presented in 
Table 6-2. The algorithm receives an od in the set of OD pairs in the network, for 
which an anomaly threshold thr (either εS or εA) has been exceed at time t and 
returns a set of tuples with the OD pairs to be reconfigured together with the 
threshold violated and the time of such event. Note that in normal conditions, 
network nodes are configured to send notifications only after threshold εA is 
exceeded and therefore, no notification is sent when the score for any OD pair 
exceeds εS. Only when one network node notifies about an OD pair threshold 
violation some network nodes will be configured to send notifications for εS 
violations in some of the monitored OD pairs. In that regard, line 1 in Table 6-2 
checks whether ALCOR can start making decisions. 

Table 6-2. ALCOR Algorithm. 
INPUT: od, thr, t 
OUTPUT: Sol 
1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 
18: 

if decisionOngoing=false AND thr= εS then return Ø 
if decisionOngoing=false then 

Sol ←Ø; MSi ←Ø; MSo ←Ø 
decisionOngoing = true 

if thr= εA then 
<MA, MSi, MSo>←reconfigureODMonitoring(MA, MSi, MSo, od) 
Sol ←Sol U {<od,thr,t>} 
configureTimer (time, ALCOR(Ø, 0, 0)) 
return Ø 

if od≠ Ø then 
Sol ←Sol U {<od,thr,t>} 
removeTimer() 

Sol←decideReconfiguration(Sol,t) then 
removeMonitoring(MSi) 
configureMonitoring(MSo, εA) 
MA ←MA U MSo 
decisionOngoing = false 
return Sol 

 

In case that no decision process is started yet, auxiliary sets are initialized and 
variable decisionOngoing is set (lines 2-4). Next, the MDA system configures 
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monitoring parameters to detect εS violations for every other OD pairs leaving node 
o and entering node d (line 5). Note that initially only outgoing OD traffic was 
monitored to detect εA violations. Sets of monitored ODs are updated, containing 
those ODs being monitored for threshold εA (MA), outgoing ODs for threshold εS 
(MSo) and incoming ODs for threshold εS (MSi). The partial solution Sol is updated 
with the detected anomaly and a timer is started waiting for new evidences (lines 
7-8). When the controller receives an εS violation, Sol is updated and timers 
disabled (lines 10-12). 

The function decideReconfiguration(∙) detailed in Table 6-3 is used to select which 
ODs in Sol need to be actually reconfigured. Recall that Sol contains both 
anomalous and suspicious ODs; the former subset will be always reconfigured 
(lines 3-4 in Table 6-3), whereas ODs in the latter group are analyzed one by one 
and selected (or not) for reconfiguration (lines 6-12). Specifically, the normalized 
monitored traffic Ŷ is used to estimate the expected normalized traffic for the next 
δr time. Although normalized traffic presents a stationary behavior around zero 
mean under normal conditions, the presence of an anomaly dramatically alters this 
behavior causing sharp increasing trend during anomaly lifetime. 

Table 6-3. decideReconfiguration algorithm. 
INPUT: Sol, t 
OUTPUT: Sol* 
1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10: 
11: 
12: 
13: 
14: 
15: 
16: 

Sol* ← Ø 
for each i in Sol do 
if i.thr = εA then 
Sol* ← Sol* U {i} 

else 
Ŷ(t) ← getNormalizedTraffic(i.od) 
Ŷ’(t) ← BoxCoxTransform(Ŷ(t)) 
for k=1.. δr do 
ŷ’(t+k) ← linearExtrapolation(Ŷ’(t+k-1)) 
ŷ(t+k)  ← BoxCoxTransform-1(ŷ’(t+k)) 
Ŷ(t+k) ← update(Ŷ(t+k-1), ŷ(t+k)) 
s(t+k) ← computeScore(Ŷ(t+k)) 
if s(t+k)≥εA then 
Sol* ← Sol * U {i} 
break 

return Sol* 
 

The procedure to predict future normalized traffic is based on linear extrapolation 
from observed Ŷ data series assuming that observations in Ŷ are linearly correlated 
with time, i.e., ŷ(t) values in Ŷ can be expressed a linear function of t. To guarantee 
that linearity, we obtain Ŷ’ as the transformed Ŷ data series after applying a Box-
Cox transformation [Ch02] (line 7). In brief, that procedure finds the 
transformation parameter λ that returns Ŷ’ with the highest linear correlation with 
respect to time. Once λ is obtained, every ŷ’ in Ŷ’ is computed as follows: 
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(6-1) 

Fig. 6-5 shows examples of data series Ŷ under normal traffic and under an 
anomaly, where plots show values in Ŷ (markers), as well as the trend line of those 
values with respect to time (dashed line). Under normal traffic (Fig. 6-5(a)), 
normalized traffic values present stationary behavior around 0, as well as no linear 
correlation. However, under unexpected traffic Ŷ shows a remarkable increasing 
trend with time, which might be non-linear (Fig. 6-5(b)). We propose the Box-Cox 
transformation in equation (6-1) to prepare data for linear regression fitting (Fig. 
6-5(c)). Therefore, linear extrapolation can likely predict expected future 
normalized traffic in the event of an anomaly. 
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Fig. 6-5. Example of data series Ŷ under normal traffic (a) and under an anomaly 
(b). Box-Cox transformation is applied in (c). 



Chapter 6- Multiple Traffic Anomalies Detection 81 

Normalized traffic for the future δr time is then forecast (line 8) and the obtained 
value is used to update Ŷ (lines 9 and 10); updated Ŷ contains monitored 
normalized traffic in the first m-x positions and forecast normalized traffic in the 
last x positions. This data is used to compute the predicted score (eq. (5-3)) and 
compared against εA (lines 11 and 12). 

 Illustrative Results 

In this section, we apply ALCOR when multiple anomalies arise together and study 
the obtained performance. 

 Scenario 

For evaluation purposes we extended the event-driven simulator in OMNET++ 
used in Chapter 5 generate multiple anomalies; the anomaly detector and the 
ALCOR modules were developed in R and kept as a separated standalone modules. 
Traffic anomalies were generated following the same procedure defined in the 
previous chapter (Fig. 5-6a), but in this scenario:  

• inter arrival time between anomalies is set between 1-5 minutes, 

• involves a maximum of 6 nodes  

In order to tune εS threshold value, we analyzed its impact on the defined KPIs 
(nReconfig, tReconfig and lossTraffic). We selected εS equal to10 that is high 
enough for the sample to be out of the interval μ±3σ and it is low enough to allow 
that many OD traffic pairs to be considered by the ALCOR method. 

The value of εA  needs to be also tuned (recall that it was fixed to 1000 in Chapter 
5). To this end, we run experiments to study how the influence of that threshold on 
the selected KPIs: i) the number of reconfigurations that need to be performed 
when multiple anomalies arrive; ii) the total time required to detect all the 
anomalies and to reconfigure the network; and iii) normalized volume traffic that is 
lost due to network congestion before reconfiguration finishes (we assume that all 
traffic exceeding 3σ will be lost). Fig. 6-6 shows the results; we can conclude, in 
view of the figure, that εA = 1000 provides the best overall results. 
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Fig. 6-6. KPIs vs εA. 

 ALCOR Performance 

Let us first evaluate the accuracy of the decisions that ALCOR makes. Recall that 
ALCOR applies traffic linear extrapolation and the result is used as input to 
compute the expected score and to make reconfiguration decisions based on that 
forecast data (see decideReconfiguration(∙) function in Table 6-3). Regarding the 
score-based method, we considered reconfiguration time δr equal to 2 min. Let us 
define that a decision in time t is incorrect if the decideReconfiguration(∙) function 
predicts the scores in the interval [t+1, t+δr] for a given OD pair to be below εA (i.e., 
reconfiguration decision is not made at time t), while later, at some time t in the 
interval, some score actually exceeds εA. In our simulations, the 
decideReconfiguration(∙) function was triggered 300 times, resulting in incorrect 
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decisions in only 5.65% of the times. Therefore, the goodness-of-fit of the traffic 
linear extrapolation model for score prediction purposes is validated. 

Let us now consider multiple anomalies affecting different OD pairs. As concluded 
in the previous subsection, we assume the distributed monitoring architecture. Let 
us now study the performance of the proposed ALCOR method and compare that 
against a purely per-OD reconfiguration strategy. In addition, to evaluate the 
performance of the predictive capacity of ALCOR, we compare its performance 
against running the ALCOR algorithm under a perfect information assumption 
(ALCOR-PI), where the decision of reconfiguration is made with perfect knowledge 
of the future, i.e., it makes perfect decisions. 
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Fig. 6-7. Normalized traffic (a) and score 
(b) vs. time for anomaly scenario 1. 
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Fig. 6-8. Normalized traffic (a) and score 
(b) vs. time for anomaly scenario 2. 

In order to evaluate the performance of the proposed ALCOR algorithm, we focus 
on the KPIs previously defined. Graphs in Fig. 6-7 and Fig. 6-8 present the results 
for two different scenarios, when four traffic anomalies arrive close in time one to 
the other (scenario 1) or more spaced (scenario 2). Fig. 6-7(a) and Fig. 6-8(a) plot 
the evolution of normalized traffic values as a function of the time; under normal 
conditions they should be centered on zero (the mean value) and within some 
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interval in terms of σ. When a traffic anomaly occurs in an OD, the normalized 
traffic changes sharply. Notwithstanding that sharp variation, it is difficult to set 
thresholds for normalized traffic values since the probability of observing values 
out of normal boundaries (e.g., 3σ) is not negligible and therefore, the score 
presented in eq (5-3) that considers previous traffic values is used. Fig. 6-7(b) and 
Fig. 6-8(b) plot the computed scores against time for the four affected ODs under 
the considered scenarios. Note the difference between normalized traffic and score 
for OD pairs 6→9 and 6→2 in scenario 1 (Fig. 6-7(a)); although the normalized 
traffic value is around 2σ at minute 5 and minute 8 for OD pairs 6→9 and 6→2, 
respectively, their score values are under εS for OD pair 6→9 and above εS for OD 
pair 6→2. 
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Fig. 6-9. Real and predicted score values against time for the three OD pairs in 
anomaly scenario 1. 
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Comparing both scenarios, it is clear that ALCOR would made different decisions 
in each case. For instance, in scenario 1, when the first anomaly in OD pair 6→9 is 
detected at minute 7, OD pair 6→2 has already exceeded εS threshold. In this 
scenario, ALCOR would detect that and run the decideReconfiguration(·) function. 
To clarify score extrapolation, Fig. 6-9 plots the score values computed when an 
anomaly has been detected (dark markers) and the predicted score values for the 
next two minutes (dotted markers) for those OD pairs with scores exceeding εS 
threshold. Then, ALCOR will find that OD pair 6→2 will not become anomalous in 
the next 2 minutes (see predicted scores for OD pair 6→2 in Fig. 6-9) and it will 
trigger a network reconfiguration only for OD pair 6→9. Later, at minute 10 OD 
pair 6→2 violates εA; at that time, score extrapolation anticipate that OD pairs 6→1 
and 6→8 will become anomalous in the next 2 minutes (see Fig. 6-9), so ALCOR 
triggers a network reconfiguration for all three OD pairs. Interestingly, the per-OD 
reconfiguration would need 3 reconfigurations, 1 more than ALCOR and delays the 
network adaptation in 2 minutes. 

Similarly, the first OD traffic anomaly is detected in pair 6→9 at minute 4 under 
scenario 2. Nonetheless, since no evidences of other anomalous ODs are found, 
ALCOR decides to trigger a reconfiguration for that OD pair. When a new OD 
traffic anomaly is detected in pair 6→2 at minute 10, OD pair 6→8 also violates εS 
threshold and shows evidences of becoming anomalous in the next 2 minutes, so 
ALCOR triggers a new reconfiguration for both ODs. Finally, a third 
reconfiguration is triggered for OD pair 6→1 at minute 15. Note that the per-OD 
strategy needs four reconfigurations and, although the network would be adapted 
to the new conditions at the same time as in the case of ALCOR, the per-OD 
strategy increases traffic losses in a 27%. 

In view if the above, it is interesting to study the performance of ALCOR under 
several traffic anomaly inter-arrival times and let us consider the scenario where 
six ODs are affected and assuming an anomaly scaling factor x2.  

Table 6-4. Gains from applying ALCOR (%). 

Avg. Interarrival time (min) nReconfig tReconfig lossTraffic 

0.5 45.5 39.9 23.5 

1.0 47.7 36.4 28.3 

1.5 38.2 21.3 12.0 

2.0 38.2 18.2 19.7 

2.5 32.7 6.4 10.6 

3.0 17.2 0 8.1 
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Fig. 6-10. Number of reconfigurations 
(a), total reconfiguration time (b), and 
normalized traffic loss (c), against the 

anomalies inter-arrival time. 
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Fig. 6-11. Number of reconfigurations 
(a), total reconfiguration time (b), and 
normalized traffic loss (c), against the 

anomalies scaling factor.  
 

Fig. 6-10 shows that applying ALCOR algorithm results in an improved in the 
defined KPIs, i.e., reduction in nReconfig (Fig. 6-10(a)), tReconfig (Fig. 6-10(b)), and 
lossTraffic (Fig. 6-10(c)), compared to the per-OD strategy even when anomaly 
inter-arrival time is as high as 3 min (larger than that of the considered 
reconfiguration time). Table 6-4 summarizes the gains from applying ALCOR. 

Interestingly, ALCOR performs virtually like ALCOR-PI; however, this could be as 
a result of the high value of the considered anomaly scaling factor, so let us analyze 
the influence of the traffic anomaly intensity on the performance of ALCOR (Fig. 
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6-10). We studied the range for anomaly scaling factors from x1.4 up to x2, 
considering that lower scaling factors can hardly considered as traffic anomalies 
since they produce traffic values within the limits of normal traffic. One can 
observe how the intensity affects both the nReconfig (Fig. 6-11(a)), the tReconfig 
(Fig. 6-11(b)), and lossTraffic (Fig. 6-11(c)), showing ALCOR a better performance 
than that of the per-OD approach in all the cases and getting closer to the ALCOR-
PI method as soon as the scaling factor increases. 

 Concluding Remarks 

In the event of multiple related anomalous OD pairs, its detection can be spread 
along the time, which would entail unnecessary number of network 
reconfigurations and long total reconfiguration times. In view of that, the ALCOR 
method is proposed to identify multiple related OD traffic anomalies targeting at 
reducing the considered traffic losses coming from unexpected traffic increments, 
as well as the number of network reconfigurations performed to consequently 
adapt the network capacity. Since ALCOR needs to access monitoring data from 
several network nodes, it is placed in the centralized controller. Simulation results 
show remarkable saving in the KPIs (e.g., number of reconfigurations, the total 
reconfiguration time and the traffic losses) compared to a per-OD reconfiguration 
strategy. 
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Chapter 7 

BER Degradation Detection and 
Failure Identification 

Previous chapters focused on L2 traffic anomaly detection and VNT 
reconfiguration. Let us now center our attention on the optical layer where optical 
connections might support vlinks in packet-over-optical multilayer networks. 
Therefore, QoT degradation in the optical layer L0 impacts on the QoS of the 
services deployed on top of such networks. Monitoring the performance of the 
physical layer allows verifying the proper operation of optical connections, as well 
as detecting BER degradations and anticipating connection disruption. In addition, 
failure identification facilitates localizing the cause of the failure by providing a 
short list of potential failed elements and enables self-decision making to keep 
committed service level. 

In this chapter, we analyze several soft failure causes affecting the QoT of optical 
connections and propose two different algorithms: one focused on detecting 
significant BER changes in optical connections, named BER Anomaly Detection 
(BANDO), and the other focused on identifying the most probable failure pattern, 
named Failure Identification Algorithm (LUCIDA). 

Assuming the distributed architecture proposed in previous chapters, BANDO 
would run inside the network nodes to accelerate degradation detection and send a 
notification to the LUCIDA algorithm that would run on the centralized MDA 
system. Experimental measurements were carried out on two different setups to 
obtain values for BER and received power; these allow to generate synthetic data 
used in subsequent simulations. Results show significant improvement 
anticipating maximum BER violation and small failure identification errors.  
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 Introduction 

 Motivation and Objectives 

This chapter is focused on soft failures occurring at the optical layer; recall Chapter 
2 where soft failures were introduced. It is hard to discern the real cause of soft 
failures in view of Fig. 2-10 , since, filters misconfiguration and transmitter laser 
shift could lead to similar evidence. However, discovering and identifying a failure 
pattern can reduce remarkably the subsequent failure localization effort by 
providing a short list of potential failed elements (e.g., filters used by a certain 
connection). Moreover, failure identification enables self-decision making to keep 
committed service level, e.g., by triggering re-routing of the traffic used by a 
connection where a gradual BER degradation has been detected. 

For this very reason, in this chapter, we focus on BER degradation detection and 
failure identification. Specifically, the contribution of this chapter is three-fold: 

• Section 7.2 motivates the definition of two different algorithms: i) the 
BANDO algorithm focused on detecting significant BER changes in optical 
connections, and ii) the LUCIDA algorithm that identifies the most probable 
failure pattern. 

• In Section 7.3 the proposed BANDO and LUCIDA algorithms are described 
in detail. BANDO algorithm is designed to follow the metered BER and to 
raise notifications in case of abrupt BER changes. LUCIDA is a probabilistic 
algorithm that analyzes time-series from monitoring and notifications and 
returns the most probable failure class together with its probability. 

• Experimental measures for BER and PRx obtained from two different setups 
are reported in Section 7.4. Based on experimental measurements, realistic 
scenarios are generated, and exhaustive simulations are run, where 
obtained results show the performance of the proposed algorithms. 

 Notation 

It is worth noting that in the rest of the chapter, unless explicitly stated otherwise, 
we just use failure localization for the sake of brevity. Besides, Table 7-1 presents 
the key notation used in this chapter. 
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Table 7-1. Relevant notation used in this chapter. 

Various  

n capacity of vector inside the node 

M monitoring data: tuple of length n containing metered {<t,ber, 
PRx >  data for every connection received at a given rate 

M.Ds, M.Dns stationary D contains oldest samples and the non-stationary D 
the most recent samples 

M.N monitoring notifications: tuple of length n {<t,type,data>} 

ber last BER received value 

PRx last value of received power 

μ(∙),σ(∙) mean and standard deviation of the last n BER measures 

δ parameter to compare BER threshold with 

Δ(i, j) returns the relative difference of window i with respect to j. 

Q, H set of failure classes and relevant features 

PRXhigh PRx above the reference level 

BERTrend BER positive trend 

BERPeriod BER periodicity 

α α∊[0,1) is the minimum allowed probability in F(x) (the 
cumulated probability when the feature takes the value x) 

Boundaries and Thresholds 

Bound outer boundary to anticipate BER threshold violation 

k values for inner and outer boundaries 

lBound lower inner boundary limit  

uBound upper inner boundary limit 

BER max the maximum pre-FEC BER that the equipment can correct 

BER threshold represents the maximum tolerable BER for a connection 

tmax time when maximum BER would be reached 

Notifications  

bExc, bCh  notification for boundary excess and boundary re-estimation 

thExc, thDec notification for upper threshold exceeded and fallen below 
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 Soft Failure Detection and Failure 
Identification 

As introduced before, a gradual degradation of the optical signal might cause 
service losses to client demands. For illustrative purposes, Fig. 7-1 plots the pre-
FEC BER evolution with time when a gradual BER degradation starts impacting 
an optical connection; we assume that BER is monitored by the receivers of the 
connection. Many commercial equipment, such as the ones used in our experiments 
in section 7.4.1, tolerate some amount of errors until automatically tear-down the 
connection when some BER threshold is exceeded. Notwithstanding a restoration 
procedure could be started to recover the affected traffic after the disruption is 
detected, it would be desirable to anticipate such event and re-route those demands 
according to SLAs. The proposed BANDO algorithm detects changes in the 
monitored BER measured in the receptor of an optical connection, focusing on 
anticipating such detection as much as possible and leaving enough time to plan a 
re-routing procedure e.g., during off-peak hours. 

As for the failure identification, we propose an algorithm named as LUCIDA that 
analyzes monitoring time-series and, based on the expected patterns of the 
considered failure causes, identifies the most probable cause of failure affecting a 
given set of optical connections. 
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Fig. 7-1. Monitoring data stream 

Information retrieved by commonly used power monitors can be combined with 
monitoring information accessible through emerging transponders based on 
coherent detection [Na15]. In particular, such transponders offer the possibility to 
monitor several parameters associated to connections or to the traversed links: e.g., 
pre-FEC BER or linear dispersion. 

 Considered Soft Failures 

For illustrative purposes, Fig. 7-2 plots the evolution with time of pre-FEC BER 
and PRx monitoring data metered at the receiver side of a connection affected by 
each of the failures above-described. In the case of Signal Overlap (SO) (Fig. 
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7-2(a)), the allocation of a neighboring optical connection results in a sudden 
increment in both, BER and PRx, of the previously established connection. In the 
case of the new connection, high pre-FEC BER and within limits PRx values can be 
measured just after its set-up. As for Filter Tightening (FT) (Fig. 7-2(b)), it happens 
when a too much narrow filter configuration distorts the signal; such effect may 
become even more relevant when the signal drifts (e.g., due to a laser drift) toward 
the rising edge of the filter. Similarly as it happened for newly established 
connection in the previous case, high pre-FEC BER and PRx values within limits 
can be measured in the receptor.  
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Fig. 7-2. Example of pre-FEC BER and PRx monitoring time series for the 
considered BER degradation failures: (a) SO, (b) FT, (c) LD/FS, and (d) cLD/cFS. 

In the case of Filter Shift (FS) or Laser Drift (LD) (Fig. 7-2(c)), pre-FEC BER shows 
a gradual deterioration with time, while measured PRx reduction is almost 
imperceptible. Finally, in the case of Cyclic Filter Shift (cFS) or Cyclic Laser Drift 
(cLD) (Fig. 7-2(d)), high pre-FEC BER and slight PRx reduction periods when part 
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of the signal is out filters’ bandwidth are followed by normal values when the 
signal is inside them. Note that any combination of the previous failures might 
happen, e.g., a Gradual Cyclic Drift (gCLD) would produce increasingly higher pre-
FEC BER periods. These cyclic failures are especially difficult to identify due to its 
periodic nature. 

It is hard to discern the real cause of the above failures since transmitter laser 
degradation, and filters misconfiguration could lead to similar evidence. In chapter 
Chapter 7 and Chapter 9, we would concentrate in the prompt detection of pre-FEC 
BER degradation and in the identification of the failure pattern as presented in 
Fig. 7-2. 

 Proposed Architecture 

Let us propose the placement of the algorithms considered in this chapter. In order 
to detect BER degradation and identify the cause failure, we propose two different 
algorithms that work in a coordinate manner. For BER degradation detection, we 
propose the BANDO algorithm that can be placed inside network nodes, close to 
the observation points, to reduce the amount of monitoring data to be conveyed to 
the control/management plane.  

Because of its target, LUCIDA needs to be placed on the MDA system, where 
monitoring data from different nodes, as well as operational data regarding the 
optical connections are available. 

MDA System

LUCIDA

BANDOBANDO

BANDO

BANDO detects pre-FEC BER
variations on individual optical 
connections. 
Requires:
• Maximum BER
• Threshold BER at set-up
• Monitored BER

LUCIDA identifies the most probable 
cause of failure
Requires:
• Historic BER and PRx.
• Connection events (e.g., set-up, 

teardown, BANDO notifications, etc).

 

Fig. 7-3. Proposed architecture and algorithm features. 

Fig. 7-3 presents the suggested architecture and algorithm placement. The BANDO 
algorithm runs inside the optical nodes and has access to fine-granular monitoring 
data to accelerate BER degradation detection. Once BER variation is detected, a 
notification is sent towards the MDA system for further analysis, which triggers 
LUCIDA for failure identification. Main features of the proposed algorithms are 
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also summarized in Fig. 7-3. Depending on the particular case, different 
reconfiguration algorithms can be triggered after the failure has been identified. 

 Algorithms for BER Degradation Detection and 
Failure Identification 

In this section, we define BANDO and LUCIDA algorithms in detail. 

 BANDO Algorithm 

We assume that metered pre-FEC BER and PRx data for every connection is 
received at a given rate (e.g., every minute) and stored in a vector M of fixed 
capacity n in the node. BANDO analyzes pre-FEC BER data to detect gradual 
changes with time that might derive into BER degradation and intolerable BER 
values, as well as sudden anomalous BER values. 

Fig. 7-4 illustrates three cases of BER evolution with time, where the dark 
continuous line represents monitored BER. Besides, two different limits are 
presented:  

• BER max is the maximum pre-FEC BER that equipment can correct 

• a BER threshold for the current connection computed as a function of the 
estimated BER (e.g., 5*estimated BER) and represents the maximum 
tolerable BER for such connection. 
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Fig. 7-4. BER and boundaries evolution with time 

To follow BER evolution with time, an outer boundary is used to anticipate BER 
threshold violation and to detect sudden BER variations. In addition, two inner 
boundaries, named as a lower boundary (lBound) and upper boundary (uBound), 
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are used to trigger boundary re-estimation when measured BER reaches, exceeds 
or falls below one of them. Inner and outer boundaries are estimated as bound = 
μ(M.ber) +/- k∙σ(M.ber), where μ(M.ber) and σ(M.ber) are the mean and the 
standard deviation computed on the last n BER measures and k is a multiplicative 
factor different per each boundary.  

Every time an event occurs, a notification is sent to the MDA system and analyzed 
by LUCIDA; defined events include:  

• the boundary is re-estimated (bCh) 

• the boundary is exceeded (bExc) 

• BER exceeds the threshold (thExc) 

• BER falls below the threshold (thDec) 

Fig. 7-4(a) presents an example of monitored BER evolution with time causing 
boundary changes. As soon as monitored BER crosses one of the inner bounds, a 
boundary re-estimation is triggered, and a notification is sent toward the MDA 
system. Note that such boundary changes do not necessarily entail excessive BER, 
so the notification has an INFO severity level. Fig. 7-4(b) and Fig. 7-4(c) present 
two examples of sudden BER variation, where the bound and the BER threshold is 
exceeded, respectively. In such cases, boundaries are reset, and notifications are 
sent to the MDA system with WARNING and MAJOR severity levels, respectively. 
Note that, in case pre-FEC BER exceeds maximum BER, a notification will be sent 
with a CRITICAL severity level. 

Table 7-2. BANDO Algorithm. 
INPUT: M, ber, Bounds, state 
OUTPUT: Event, state, Bounds 
1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10: 
11: 
12: 
13: 
14: 
15: 
16: 

Event ← Ø 
Update(M with ber,PRx) 
if ber ≥ Bounds.th then 

if state ≠ thExc then 
Event = thExc 

return <Event, thExc, -> 
if state = thExc then 

return <thDec, bExc, -> 
if ber ≥ Bounds.outerBoundary then 

if state ≠ bExc then 
Event = bExc 

return <Event, bExc, -> 
if ber is in [Bounds.lBound, Bounds.uBound] then 

return < Ø, Normal, -> 
Bounds ← recomputeBounds(Bounds, M, ber) 
return <bCh, state, Bounds> 

BANDO algorithm presented in Table 7-2 has been designed in order to obtain the 
current state and what Event led to it. The state is used to store whether BER 
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status is normal or has exceeded either the boundary or the threshold. Besides, the 
event stores notifications and actions. 

When a new sample (ber, PRx) arises, a new event is created (line 1) and the tuple 
M is updated (line 2). Then, the value of BER of the new sample is compared 
against the different Bounds to classify which type of Event and new state (lines 3-
14). Finally, in line 15, the boundaries are recomputed and line 16 returns the 
output of the algorithm <Event, state, Bounds>.  

 LUCIDA Algorithm 

Regarding failure identification, we propose LUCIDA as a probabilistic algorithm 
that returns the most likely failure among a set Q of failure classes. Firstly, 
LUCIDA computes the probability of a set H of relevant features that can be 
observed on collected monitoring time-series. In view of the failures described in 
Section 2.2, three relevant features that can be identified and quantified in time-
series are:  

• PRx above the reference level (PRXhigh) 

• BER positive trend (BERTrend)  

• BER periodicity (BERPeriod).  

Next, LUCIDA maps feature probabilities to failure probabilities by means of 
predefined combination functions. 

Upon the reception of a BANDO notification with a relevant BER change, i.e., 
either bExc or thExc, the algorithm in Table 7-3 is triggered.  

Table 7-3. LUCIDA Algorithm 

INPUT: notif, α, βqh, δ 
OUTPUT: <class, prob, timeToMaxBER> 
1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10: 
11: 
12: 
13: 
14: 

connId ← notif.conn_id 
lastBer ← notif.getLast().ber 
threshold ← notif.threshold 
storeNotif(connId, notif) 
if (lastBer / threshold) < δ then return <’no’,-,-> 
M.D={<t,ber,PRx>} ← getData(connId) 
M.N={<t,type,data>} ← getNotif(connId) 
PH ← computeFeatureProbs(M, α) (Table 7-4) 
PQ ← computeFailureProbs(PH, βqh) 
failureClass ← arg max(q ∈ Q)(PQ) 
tmax ← - 
if PH(BERTrend) > 0 then 
tmax ← computeTMax (M) 

return <failureClass, PQ(failureClass), tmax> 
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After retrieving useful data from the received notification, the notification is stored 
in a database for further analysis (lines 1-4 in Table 7-3). Then, the ratio between 
the last monitored BER value and the connection BER threshold is computed and 
compared to parameter δ. In case the ratio does not exceed δ, we assume that no 
failure is evinced (line 5); otherwise, failure detection is positive, and the 
identification procedure is started (lines 6-14). 

Failure identification is based on processing historical BER and PRx time-series 
obtained from a monitoring DB, as well as historical notifications stored in the 
notification DB. The first step consists in retrieving PRx and notification time-series 
that are stored in the local structure M and computing feature probabilities from 
data (lines 6-8). Once all feature probabilities have been computed, failure 
probabilities are evaluated (line 9). For each of the failures q, a score is computed 
by means of the product of feature probabilities (eq. (7-1)), where βqh coefficients 
are defined in the interval [0,1].  

( ) ( ) ( ) ( )( )[ ]∏
∈

−⋅−+⋅=
Hh

HqhHqh hPhPqS 11 ββ
 

(7-1) 

For example, if βqh=1 the partial score of feature h equals PH(h); if PH(h)=0, the 
partial score will be 0, thus discarding the evidence of failure q. Finally, to obtain a 
failure probability in the range [0,1], the score of every failure is normalized eq. 
(7-2).  

( ) ( ) ( )∑
∈

=
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Q qSqSqP
 

(7-2) 

Next, the failure class with the maximum probability is retrieved (line 10). 
Additionally, if the probability of feature BERTrend is non-zero, the time when 
maximum BER would be reached, tmax, is estimated by means of linear 
extrapolation computed from monitoring data (lines 11-13). 

Table 7-4 details the algorithm to compute feature probabilities. Input time-series 
are firstly split into two segments: i) the stationary segment (DS) containing the 
oldest samples which average and standard deviation remain near to a constant 
value, and ii) the non-stationary segment (DNS) that contains the most recent 
samples where meaningful changes of mean and/or standard deviation with respect 
to the stationary segment are observed (line 1 in Table 7-4). The rationale behind 
this division is based on the assumption that monitored signals behave stationary 
in time under normal conditions and that stationary behavior is severely altered in 
the event of a failure. 
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Table 7-4. ComputeFeatureProbs Algorithm 
INPUT: M, α 
OUTPUT: PH 
1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10: 

<Ds, Dns> ← splitSegments(M.D) 
F ← 𝒩𝒩(μ(Ds.PRx), σ(Ds.PRx)) 
x ← M.N.PRx.getLast() 
PH[PRXhigh] = p(x) ← computeTruncatedProb(F, x, α) 
PH[BERTrend]←0; PH[BERPeriod] ← 0 
Dnotif ← extractDataSeries(M.N) 
for D in {Dns.BER, Dnotif.BER} do 

max_model ← linearRegression(D,’max’) 
x ← max_model.slope.mean 
F ← 𝒩𝒩(0, max_model.slope.std) 

11: 
12: 
13: 
14: 
15: 
16: 
17: 
18: 
19: 
20: 
21: 

p(x) ← computeTruncatedProb(F,x,α) 
PH[BERTrend] ← max(PH[BERTrend], p(x)) 
min_model ← linearRegression(D,’min’) 
D’ ← normalize(D, min_model, max_model) 
SP={<period, density>} ← spectrogram(D’) 
SPhigh← {sp∈SP | sp.density≥ mean(SP.density)} 
x ← 1-(|SPhigh|/|SP|)/0.5 
F ← 𝒩𝒩(0, (|SPhigh|)-1/2) 
p(x) ← computeTruncatedProb(F,x,α) 
PH[BERPeriod] ← max(PH[BERPeriod], p(x)) 

return PH 
 

To compute feature probabilities, we obtain the probability distribution function F 
that returns high probabilities when the evidence of the desired feature is 
significant. To give emphasis to significantly high feature values (x), we use the 
truncated probability distribution defined in (eq. (7-3)), where F(x) is the 
cumulated probability when the feature takes the value x, α ∊[0,1) is the minimum 
allowed probability in F, and F-1(α ) is the inverse of the distribution function and 
returns the value with a cumulative probability equal to α. 
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The probability of feature PRXhigh is computed by characterizing the probability 
distribution of PRx in the stationary segment, i.e., the PRx reference level (lines 2-4). 
Without loss of generality, we assume a Gaussian distribution function defined by 
the mean and standard deviation of the samples in that stationary segment (𝒩𝒩 
(μ,σ)). 

In the case of features related to BER, the non-stationary time-series segment Dns 
is used. Since Dns time-series could be noisy, we consider another time-series Dnotif, 
created from the notifications M.N time-series that could reflect more clearly the 
desired features of trend and periodicity; Dnotif data is completed with intermediate 
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data points computed by linear interpolation (line 6). In the algorithm, we compute 
BER-related feature probabilities in both time-series and return the highest 
probability for each feature (lines 7-21). 

For the BERTrend feature, the linear model that represents the evolution of the 
maximum BER with time is found; time-series are split into several chunks, and 
the model is obtained by applying linear regression to the pairs <time, maximum 
value>. Note that this model collects trend independently of whether the time-
series has a meaningful period or not (line 8). The mean and the standard 
deviation of the slope of the model allow evaluating whether that mean slope is 
significantly higher than 0 (lines 9-10). Finally, the feature probability is computed 
(eq. 5.3) and PH is updated (lines 11-12). 

As for the BERPeriod feature, we compute a linear model for the evolution of the 
minimum BER that it is used, together with that for the maximum, to normalize 
the selected time-series D as specified in (eq. (7-4)) (lines 13-14). 

 
el(t)t)-min_modmax_model(

odel(t)D(t)-min_mD'(t) =
 

(7-4) 

Next, the spectrogram of D’ is computed to obtain the density value for every 
possible period interval (line 15) [Pr91]. To detect periodicity, we look for periods 
with densities clearly higher than the majority of the densities; hence, we find the 
set of periods with a density over the mean and its proportion over the total of 
periods is compared to the expected proportion in case of no periodicity, i.e., 0.5 
(lines 16-17). Since x tends to be 0 when no meaningful period is observed, we use a 
Gaussian distribution centered in 0 and with a standard deviation inversely 
proportional to the number of periods over the mean (line 18). Feature probability 
is eventually computed and PH updated (lines 19-20). 

As a final remark, it is worth noting that the accuracy to detect and identify 
failures is subject to various factors, including the configuration of BANDO and 
LUCIDA parameters. The next section presents illustrative results to find the 
configuration leading to faster and more accurate detection and identification of 
failures. 

 Results 

In this section, we first present the experimental setup needed to evaluate the 
performance of the proposed algorithms for early pre-FEC BER degradation 
detection and failure identification and then, illustrative simulation results are 
presented. 
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 Experimental Measurements for BER and PRX.  

In this subsection, we experimentally reproduce the soft failures presented in 
Section 2.2 aiming at measuring BER and PRx data that will be used to generate 
synthetic data for the simulations in the next subsection. A comprehensive set of 
measurements was carried out in a testbed deployed in CNIT premises employing 
two types of 100Gb/s transmission systems and different configurations of 
traversed filters, channel spacing, and optical spans. 

In the first setup used for the measurements, the considered 100Gb/s transmission 
system is based on Polarization-Multiplexed Quadrature Phase-Shift Keying (PM-
QPSK) and coherent detection derived from the lab implementation utilized in 
[Cu13]. Two modulated lasers (signal 1 and signal 2) are multiplexed by means of a 
WSS configured to reserve a 37.5 GHz frequency slot for each channel. 
Measurements are reported for signal 1. 

(a) Normal Signal (c) Signal Overlap(b) Drift

Constellations after equalization

YX YX YX

 

Fig. 7-5. Experimental results for the (a) normal conditions and (b), (c) considered 
failures. 

In a first experiment, drift effects are applied by inducing frequency drift to signal 
1. In a second experiment, signal overlap is introduced by applying laser drift to 
signal 2. In this second case, the channel spacing among the signals decreases, 
inducing an increase of interference. The spectrum related to signal 1 is reported in 
Fig. 7-5 for both experiments. Fig. 7-5(a) shows signal 1 spectrum under normal 
conditions. Fig. 7-5(b) reports on the first experiment, showing the slight shift in 
frequency due to the laser drift and Fig. 7-5(c) reports on the second experiment, 
showing that part of signal 2 falls within the bandwidth of signal 1. 

Additional experiments have been performed on a second setup exploiting, as 
signal 1, a commercial 100Gb/s transmission system based on PM-QPSK and 
coherent detection. In this second setup, four 80km-spans are also introduced to 
assess the system performance under different conditions of OSNR. 
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Fig. 7-6. Experimental BER and PRx for: (a) signal overlap, (b) filter tightening, and 
(c) drift/shift. 

Fig. 7-6 reports pre-FEC BER and PRx provided by the commercial 100Gb/s system. 
Plots in Fig. 7-6(a) show the measured values in the case of signal overlap. In 
particular, the 100Gb/s signal used in the first setup is now utilized to induce 
overlap (on?) the commercial 100Gb/s signal (x-axis in Fig. 7-6(a) reports such 
overlap). Results show that the pre-FEC BER starts to increase when channel 
overlapping goes above 10GHz, while received power starts increasing for small 
channel overlapping values since part of signal 2 enters in signal 1 bandwidth. 

In the case of filter tightening (Fig. 7-6(b)) x-axis reports the actual bandwidth 
configured on the traversed Bandwidth Variable Wavelength Selective Switch (BV-
WSS). The central frequency of the signal has been aligned with the center of the 
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filter, i.e., both sides of the signal are equally affected when filter tightening is 
applied. For comparison, Fig. 7-6(b) also reports the measurements for the first 
experimental setup (back-to-back configuration). Results show that up to 32GHz 
can be configured without significant penalties, whilst further reduction of the 
actual frequency slot drives signal degradations. Note that post-FEC performance 
is error free in all the reported plots. The minimum supported filter configuration 
is 26GHz (lower values would tear down the connection since post-FEC error free 
condition can be no longer guaranteed). Regarding received power, results show a 
clear deviation from the reference value, starting from a frequency slot of 38GHz. 

A similar behavior was observed in the case of drift (Fig. 7-6(c)), where x-axis 
reports filter detuning. Pre-FEC BER increases when filtering effects become more 
relevant because of filter detuning. Results show that the pre-FEC BER starts 
increasing when filter detuning goes above 10GHz. Obviously, received power 
decreases when part of the power is cut by the filter; a clear deviation from the 
reference value is shown for the received power when filter detuning goes above 
10GHz. Another case of drift is that of the laser. 48-hours monitoring was 
performed with the bandwidth set to 30GHz and, because laser drift of the 
commercial card, pre-FEC BER was observed as if the bandwidth was 28GHz. 

As a conclusion, although the behavior of the pre-FEC BER looks similar for all 
three failure cases, that of the received power is different. Indeed, the proposed 
LUCIDA algorithm is based on the identification of such different behaviors to 
discern between failures. 

 Simulation Scenario and Parameter Tuning 

According to the experimental measurements in the previous section, we generated 
synthetic monitoring time-series at a rate of one sample per minute by means of a 
generator implemented in R. Each monitoring sample includes a synthetic measure 
of pre-FEC BER and PRx. The generator allows reproducing realistic monitoring 
activity of a set of optical connections with different characteristics, such as route, 
spectrum allocation, and slot width. Based on such characteristics and those of the 
underlying optical network topology, signal behavior in the absence of failures is 
generated. Besides, a per-connection BER threshold is computed based on an 
estimated BER value computed as a function of the OSNR of the links in its route 
[Sa11]. 

The generator allows reproducing any of the soft failures introduced in Section 2.2. 
According to the selected failure, one or more connections become affected at a 
given time, when some of their relevant physical properties are altered, e.g., filter 
bandwidth is narrowed; in the case of gradual changes, the magnitude of the 
alteration increases linearly with time following a predefined rate. Varying optical 
connection properties, failure class, failure magnitude, and gradual variation rate, 
we generated more than 100 distinct configurations. For each configuration, five 
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60-day instances (each generating 86,400 monitoring samples per optical 
connection) were randomly generated. Some of these configurations produced 
instances where BER never exceeded connection’s BER threshold (we call this as 
the lowBER set), whereas the rest contain at least one monitoring sample 
exceeding the connection’s BER threshold (we call this as the highBER set).  
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Fig. 7-7. Tuning of BANDO parameters. 

Both BANDO and LUCIDA algorithms were implemented in R and integrated into 
a simulator following the architecture presented in Fig. 7-3. Aiming at finding the 
best configuration for BANDO parameters (to avoid an excessive number of 
notifications being sent to the controller while keeping it informed of meaningful 
BER changes), we set n=15 and perform several tests with a wide range of k values 
for inner and outer boundaries; results are reported in Fig. 7-7 were values are 
normalized to those for the minimum k. 

Starting with inner boundaries, Fig. 7-7(a) shows a number of bCh notifications for 
different values of k for connections affected by a failure and for those normal. 
Hence, configuring k equal to 3 allows keeping boundaries constant when normal 
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BER behavior is monitored. In the event of connections with failure, less than 1% 
of all monitoring samples generate a bCh notification, which is enough to keep 
track of BER evolution with time as it will be shown in the following results. 

Regarding the outer boundary, Fig. 7-7(b) shows the amount of bExc notifications 
as a function of k. Fixing k equal to 6 eliminates those notifications caused by 
atypical BER measures that do not entail failures, as well as keeps more than 90% 
of those notifications raised in the event of a failure. It is worth noting that bExc 
notifications are much less frequent than bCh ones and consequently, its impact on 
total notification overhead is negligible. 

 Degradation Detection and Failure Identification 

Once BANDO has been properly configured, simulations including failure detection 
and identification were run. We configured LUCIDA parameters α=0.7 and βqh = 1 
if failure q must present evidence of feature h (βqh = 0, otherwise). 

In the simulations, LUCIDA was triggered in two distinct modes: only upon the 
reception of a thExc notification (Major mode) and upon the reception of any 
notification (Info mode). It is worth noting that only the Info mode allows detecting 
failures in the lowBER set, which confirms the need of BANDO and LUCIDA 
collaboration. 
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Fig. 7-8. Failure detection errors 

For the lowBER instance set and the Info triggering mode, Fig. 7-8 analyzes δ 
parameter tuning, where the percentage of decision errors is plot as a function of 
its value. Since BER threshold is set as 5 x estimated BER, we assume δ=0.2 as 
starting point. When δ<0.3, some normal optical connections cross the failure 
detection condition and are classified as one of the failure classes thus, producing a 
false positive detection. On the other end, δ>0.8 produces that some actual failures 
never reach the detection limit and hence, they are wrongly classified as normal 
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(false negatives). In the middle, failure detection has no error and hence, we 
assume δ=0.5 for the ongoing results. 

Let us now focus on the identification of the detected failures. Table 7-5 details the 
identification error upon the reception of the first triggering notification. Note that 
no identification error is observed for signal overlap and filter tightening failures, 
which is a good result since these failures generate very few notifications and need 
to be identified as soon as they are detected. 

Table 7-5. Failure Identification Errors (First Notification) 

Failure 
highBER lowBER 

Major Info Major Info 

Signal Overlap 0% 0% - 0% 

Filter Tightening  0% 0% - 0% 

Gradual Drift / Shift  33% 37% - 30% 

Cyclic Drift / Shift 70% 48% - 54% 
 

As anticipated above, the Info mode allows LUCIDA to detect all signal overlap and 
filter tightening failures, even when they do not produce BER samples over the 
threshold, which enables detecting soft failures hidden below a too high threshold. 

In the case of gradual and cyclic drift failures, the first identification is not correct 
in most of the cases since they are related to BER trend and periodicity features, 
and time is needed to ensure their presence or absence. However, both failures 
produce many and various notifications compared to signal overlap and filter 
tightening ones, and therefore, the opportunity of identifying the failure extends 
beyond time. 

In view of the above, we study the time needed for a right failure classification of 
gradual and cyclic drift failures. Plots in Fig. 7-9(a) for the Info mode and Fig. 
7-9(b) for the Major mode represent the evolution of the computed failure 
probability of a cyclic drift failure as a function of the number of periods since the 
first bCh event. Note that markers represent only those notifications that actually 
triggered failure identification phase, that is when the ratio between the last 
monitored BER and the threshold exceeds δ. In both modes, the most probable 
failure identified when a triggering notification is received before the first 
periodical peak is gradual drift since during the raising front LUCIDA detected a 
meaningful trend. 

In contrast, the probability of the cyclic drift failure class is negligible since no 
periodicity was found. However, when a complete period is observable, BER 
periodicity feature starts being significant and cyclic drift becomes the most 
probable failure class from that point on. The difference between both modes is the 
time for a right failure classification; because under the Info mode LUCIDA 
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receives several notifications as a result of different events detected by BANDO, it 
allows a clearer identification of the non-stationary time-series segment, and 
therefore, it is able to produce right classifications after one single period, i.e., less 
than half of time compared to the Major mode. Although illustrated in Fig. 7-9 for 
just an instance, this gain keeps constant for all other cyclic drift instances. 
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Fig. 7-9. Cyclic Drift Identification. 

Finally, Fig. 7-10 illustrates the accuracy of the estimation for the time when max 
BER (1·10-6) will be reached in case of a gradual drift failure. Prediction based on 
linear extrapolation is shown at three different time instants. Although the failure 
is perfectly identified as gradual drift upon the reception of a bExc at day 30 (Fig. 
7-10(a)), due to the lack of evidence of the actual future BER trend evolution, no 
max BER violation in the following 30 days is predicted. Later, upon the reception 
of a thExc at day 36 (Fig. 7-10(b)), max BER violation is predicted to happen in the 
near future. It is not until day 42, i.e., five days before the connection is disrupted, 
that prediction becomes steady to a constant value, which happens in Fig. 7-10(c); 
hence, this method provides enough anticipation for an optimal reaction against 
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the failure. Comparable results were obtained for the rest of gradual drift 
instances. 
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Fig. 7-10. Max BER anticipation. 

 Conclusions 

SLA violations entail money losses for the network operators and hence, 
minimizing such violations is of paramount importance to them. This chapter 
focused on anticipating BER degradation detection at the optical layer, which 
typically supports many of the offered services. In addition to a prompt BER 
degradation detection, the chapter targeted at failure identification to help to 
localize the cause of the failure. 
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In this regard, two cooperating algorithms have been proposed: i) the BANDO 
algorithm which works inside the optical nodes to take advantage of a fine 
monitoring granularity, and ii) the LUCIDA algorithm, working in the centralized 
MDA system. BANDO detects changes in the BER of optical connections and sends 
notifications to LUCIDA.  

To evaluate the performance of the algorithms, different BER degradation failures 
were considered, including gradual and periodical degradation. Aiming at studying 
realistic scenarios, experimental measures were carried out on two different setups 
involving commercial equipment. The results of the experiments were used to 
generate synthetic data used to simulate the considered BER degradation failures. 

Simulation results show that maximum BER violation was anticipated several 
days before the connection was disrupted, which allows planning a network 
reconfiguration to be performed on low activity hours. Interestingly, the 
cooperation of BANDO and LUCIDA algorithms demonstrated its advantage for 
failure identification compared to a centralized algorithm receiving notifications 
only after BER threshold violations. 

The next chapter goes further by focusing on the location of the failure after BER 
degradation is detected. We take advantage of BER degradation detection and 
failure identification/localization to trigger network re-configuration, so as to avoid 
SLA breaking. 





3 
 
 
 
 
 
 
 
 

 

Chapter 8 

Network Reconfiguration after 
Soft Failure Detection 

This chapter focuses on triggering a re-routing process after failure detection and 
identification has been achieved, targeting at reducing SLA violation. First an 
effective machine learning-based algorithm is proposed, to localize and identify the 
most probable cause of failure impacting a given service. Once the failure has been 
detected, identified and in some cases localized, reconfiguration can be performed 
for one particular case. Specifically, the SCULPTOR algorithm is defined for 
demand re-routing, triggered by BANDO notifications. Results show that the 
proposed identification and re-routing algorithms noticeably reduce bandwidth and 
the number of demands affected. 

 Introduction and Notation 

Service layer connections are usually set up on top of VNTs, where vlinks are 
supported by lightpaths in the optical layer. Thus, errors in lightpaths translate 
into errors in those connections that might cause packet losses and retransmissions 
and lead to unacceptable QoS. For this very reason, a gradual degradation in the 
optical layer could impact a large number of client demands. To keep committed 
QoS, monitoring the physical layer is key to verify the fulfilment of SLA and, in 
case of faults or degradations, to localize the failed elements [Ta15] [Da16] and to 
take actions for preserving the services. However, the degradation might affect 
differently each client demand; specifically, those demands related to a SLA need 
especial attention since a SLA violation represents money losses for the network 
operator [Zh16].  

In this chapter, we continue studying the effects on QoT monitoring parameters of 
several failures on the optical layer, specifically those of filter tightening and signal 
overlap interference; collected QoT monitoring parameters include received power 
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(PRx) and pre-FEC BER. After failure detection, re-routing is performed in certain 
conditions. Specifically, the contribution of this chapter is three-fold: 

• Section 8.2 proposes an algorithm that analyzes monitoring time-series and, 
based on the expected patterns obtained in our experiments for the 
considered failure causes, localizes and identifies the most probable cause of 
failure at the optical layer affecting a given service. 

• Section 8.3 presents a re-routing algorithm named SCULPTOR that re-
routes the affected demands upon the reception of BER degradation 
notifications for the sake of SLA fulfillment.  

• The discussion is supported by the results in Section 8.4.  

Some key notation used in this chapter is presented in Table 8-1.  

Table 8-1. Relevant notation used in this chapter. 

sd source node for the demand 

td target node for the demand  

bd required bandwidth for the demand 

dp current path serving the demand 

qd committed QoS in case the demand is related to a SLA contract 

e virtual link 

 Multilayer Failure Localization 

This section focuses on analyzing the degradation caused by signal overlap 
interference and filter tightening. For illustrative purposes, recall that Fig. 7-2 
presented monitoring data series for Pre-FEC BER and PRx magnitudes, for the 
possible causes of failure affecting a given optical connection (e.g., SO, FT, FS, LD, 
cFS, cLD). 

As presented in Chapter 7, in case of LD, PRx decreases because of the filtered 
power and BER is degraded; in fact periods with degraded BER are followed by 
others with normal BER, which makes difficult to localize the failure cause. In fact, 
BER degradation is not always caused by PRx decrease, as shown in Fig. 7-2, the 
signal overlap example, where the allocation of a neighboring lightpath results in a 
sudden increment observed in the target lightpath. Hence, failure localization 
entails deep analysis of monitoring data from several lightpaths. 

With the above in mind, we propose a probabilistic failure localization algorithm 
based on BN [Bi06]. A BN is a directed acyclic graph where nodes represent 
features and edges the conditional dependency between a pair of features (see 
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Chapter 2). Each node is associated to a probability function that takes values from 
the parent nodes and returns the probability of the feature represented by the 
node. 

X1

X2 X3

X4 X5 X6
X7

X4-X5

X5-X6

X6-X7

p

p1

p2

p

p2

p2

p2

p

Packet Circuit (PC) id#

R1

R2

R3

p2

p2

p2

t

BER

t

BER

PRx

t

PRx

t

 

Fig. 8-1. Example of failure localization caused by signal overlap interference. 

Fig. 8-1 shows an example of the proposed failure localization algorithm. Let us 
imagine that a service using a connection between R1 and R3 has detected and 
notified service degradation to the service provider. The monitoring data of the two 
lightpaths supporting the service connection are analyzed. As observed, p1 
monitoring data series show an almost constant trend for both power and BER, 
whereas p2 BER suffered a steeped increase at some point in the past. From this 
available data, the failure localization algorithm returns no failure with probability 
95% for p1 and identifies interference with 70% and filter tightening with 25% for 
p2. 

According to the probabilities above, the scope of network reconfiguration is firstly 
focused on p2 and those lightpaths sharing an optical link in the route of p2. A 
deeper analysis identifies that p2 BER increment is correlated with lightpath p set-
up. Therefore, by slightly shifting p in the spectrum away from p2, its BER should 
be improved and the detected service degradation eventually reduced. However, a 
monitoring period after reconfiguration is needed to verify that BER degradation 
has been completely solved. In the case that p2 BER has not reduced to normal 
values after p2 shifting, the second action in the list is taken, which might consists 
in making filters wider to overcome the probable filter tightening failure. With this 
second reconfiguration step, the service degradation should be finally solved. 

The BN needs to be trained to locate different causes of failures and to return its 
probability. Before the training phase, several experimental tests for each of the 
possible causes of failure, as well as for the no failure case, need to be carried out to 
obtain monitoring data series similar to the ones in Fig. 7-2. Then, those data 
series are transformed into relevant descriptive features collecting their main 
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characteristics, such as minimum, maximum, average, trend stepped change 
presence and size, etc. Since BNs require categorical features (i.e., with a finite 
range of levels), continuous features can be easily discretized by applying a 
clustering algorithm to find the number and ranges of each of the levels. The type 
of failure is also added as response feature.  

Table 8-2. Failure Localization Algorithm  
INPUT: s, BN 
OUT: A 
1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

P←getLightpaths(s) 
A←Ø 
for each p in P do 

H←getMonitorDataSeries(p) 
F←BN.computeFeatures(H) 
F’←BN.discretize(F) 
D←BN.predict(F’) 
A.p←sortProblemList(D) 

return A 
 

The proposed algorithm that integrates the BN is presented in Table 8-2, it 
receives as input the affected service connection s and the previously trained BN. 
After retrieving the set P of lightpaths supporting s from the operational database 
(line 1 in Table 8-2), every single lightpath is sequentially processed as follows: 
first, the available BER and PRx monitoring data series are retrieved from the 
monitoring repository in the form of variable-length time-series of continuous data 
(line 4). Then, continuous features are computed and transformed into categorical 
values (lines 5-6). The prediction D returns, for each of the failures, the probability 
that it actually occurs (line 7). Such probabilities allow sorting the list of failures 
for every single lightpath, which is returned (lines 8-9). 

 Meeting Committed QoS 

In the previous section we focused on localizing failures on a multilayer network 
and identifying the most probable cause of failure after its detection.  

In this section, we propose an algorithm to promptly detect distinct BER anomaly 
patterns with the objective of anticipating intolerable BER values. BANDO 
algorithm defined in Chapter 7 detects boundary and threshold crossing and 
generates a notification containing additionally information, e.g., a prediction for 
the expected time when the maximum BER threshold is going to be crossed. 

After BANDO notifications (e.g., exceeding the outer boundary Bound) are 
received, we propose the SCULPTOR algorithm to be triggered for pro-actively re-
routing those demands affected by QoS degradation. For the sake of clarity let us 



Chapter 8- Network Reconfiguration After Soft Failure Detection 115 

consider an example of the proposed re-routing illustrated in Fig. 8-2, where three 
client demands are being served. Each demand is denoted by:  

• a demand identifier dj, 

• the required bandwidth, 

• whether the demand requires some QoS level. 

In the example, demands have different bandwidth requirements (30Gb/s, 70Gb/s 
and 40Gb/s respectively) and they are all ending in the same router (R3) but with 
diverse origins. In this example, let us assume 100Gb/s vlinks. 

d1
30Gb/s
no SLA

R1
R2 R3

R4 R6R5

d2
70Gb/s

SLA d3
40Gb/s
no SLA

(a)

d1
30Gb/s
no SLA

R1
R2 R3

R4 R6R5

d2
70Gb/s

SLA d3
30Gb/s
no SLA

(b)

 

Fig. 8-2 (a) Initial demand routing before a service degradation. (b) After re-routing 
algorithm. 

Fig. 8-2(a) shows the initial routing just when the BANDO algorithm has detected 
a BER degradation in the lightpath supporting vlink R2-R3, detected in R3 
endpoint. It is worth noting that since demand d2 requires (high) QoS, when a BER 
degradation affects one of the links in its path, re-routing for this demand is 
mandatory to fulfill its SLA contract. On the contrary, both demands d1 and d3 do 
not require any particular QoS (best effort traffic), so when a BER degradation 
affects some link in their paths no re-routing is strictly required. When the 
degradation is detected, the SCULPTOR re-routing algorithm is triggered to find 
re-routing paths for those affected demands degradation and requiring QoS. 
SCULPTOR can also re-route no-QoS demands (affected or not by the BER 
degradation) with the objective of releasing resources that can be used to re-route 
affected demands with QoS requirements. 
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Fig. 8-2(b) shows the re-routing suggested by SCULPTOR. The initial path for 
SLA-related demand d2 was affected by the BER degradation and it has been re-
routed using an alternative path to avoid the BER degraded vlink. However, the 
available capacity in vlinks R5-R6 and R6-R3 would be exceeded unless the 
bandwidth of some of the demands being served through those vlinks are squeezed. 
The solution is to squeeze the bandwidth of not SLA-related demand d2. Finally, 
demand d1 does not require QoS and thus, it was not re-routed although its path 
contains the degraded R2-R3 vlink. 

The SCULPTOR reconfiguration problem can be stated as follows: 

Given:  

• A VNT represented by a graph G(N, E), where set N contains the MPLS 
nodes and the set E of vlinks. 

• Set D of demands currently being served. Each demand d is characterized 
by the tuple: <sd, td, bd, dp, qd>, where sd is the source node for the demand, 
td is the target node, bd is the required bandwidth, dp is the current path 
serving the demand, and qd is the committed QoS in case the demand is 
related to a SLA contract. 

• The monitored BER (in particular, that for which BANDO detected BER 
degradation) for every vlink e ∈ E. 

Output: The demands to be re-routed and the new paths. 

Objective: Minimize the amount of bandwidth entailing SLA violation, as well as 
the amount of unserved bandwidth (affected by bitrate squeezing). 

The following parameters have been defined. 

Demands and paths: 

P(d) Subset of pre-computed paths for demand d. 

δep Equal to 1 if path p uses link e. 

qp Equal to 1 if path p meets QoS requirements. 

dp Current path for demand d. 

The decision variables are: 

xp Binary, equal to 1 if demand d uses path p; 0 otherwise. 

ydp Real, served bitrate for demand d through path p. 

zd Binary, equal to 1 if demand d is re-routed, 0 otherwise. 

The SCULPTOR formulation is as follows:  

( )
( )

min (1 )· ( ) (1 )d p dp d dp d d
d D p P d

q q y b y q zα
∈ ∈

⋅ − + − + ⋅ − ⋅∑ ∑  (8-1) 
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subject to:  
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The objective function (8-1) minimizes the amount of bitrate that cannot be served 
(rejected, lost) with no QoS and minimizes bitrate affected by errors. Constraint 
(8-2) ensures a demand is routed by only one single lightpath (not multi-path 
routing is allowed). Constraint (8-3) ensures that if both the demand and the path 
have QoS requirements, the current path is not modified. For other cases, the path 
can be changed. Constraint (5-3) ensures that a demand with QoS requirements 
(qd=1) should not be re-routed to a path with no QoS (qp=0). Constraints (8-5) and 
(8-6) prevents squeezing the bitrate for demands with QoS requirements. 
Constraint (8-7) guarantees that the available bitrate be in each link is not 
exceeded. Finally, constraint (8-8) accounts for demands that are re-routed.  

Regarding SCULPTOR constraints, it does not allow re-routing SLA-related 
demands if the current path already provides enough QoS and also to paths that do 
not ensure enough QoS. 

To implement SCULPTOR, we first generate a set of possible paths for each 
demand and label them according to the fulfillment of the specific QoS 
requirements for that demand. As an illustrative example, let us assume that 
demand d2 in Fig. 8-2 requires QoS ≤ 10-7 and BER in R3 is 10-8 then the SLA 
agreement is currently met. However, in the case that BER in R3 would be 10-6, the 
SLA would be violated and therefore the demand would be candidate to be re-
routed through other path fulfilling the required QoS. Finally, note that the 
SCULPTOR problem always returns a feasible solution, i.e., the current one. 
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 Results 

In this section, we present two different cases where re-routing of the affected 
demands is mandatory to meet the committed QoS. We first present results 
regarding the performance of the BN targeting at failure localization and 
identification prior to re-routing. Likewise, notifications coming from BANDO’s 
algorithm could also trigger re-routing. A study regarding the improvement 
achieved on the decrease of both, affected bandwidth and the affected demands, by 
using SCULPTOR algorithm is also presented. 

Let us consider the experimental results from Chapter 7 where BER degradation 
failures were reproduced in order to generate synthetic data for the simulations. 

According to the experimental values in Fig. 7-6, we generated synthetic 
monitoring time-series for the normal signal and the considered failure cases. A set 
of 5,000 randomly generated time-series were first used to train the BN and next, 
500 additional ones used for testing. Table 8-3 reports the obtained goodness-of-fit 
computed as the probability that the BN predicts the actual failure cause as the 
first option. Note that only 0.8% error was observed in some tests where a normal 
signal was predicted instead of a filter tightening. In such cases, the second most 
probable cause of failure was filter tightening failure. This demonstrates the 
validity of the proposed procedure and BN to localize and identify failures in the 
optical layer. 

Table 8-3. BN Goodness-of-Fit 
 

Real 

Normal Filtering Signal Overlap 

Pre-diction 

Normal 99.2% 0.8% 0% 

Filtering 0% 100% 0% 

Signal Overlap 0% 0% 100% 

 

According to the experiments in Chapter 7, we generated synthetic monitoring 
BER data time-series (at a rate of one measure each 15 minutes) reproducing BER 
degradation, as well as normal BER time-series. Normal BER was set to 10-8 and 
for the filtering failure, we considered an incremental BER lasting from 2 to 10 
days to reach intolerable BER = 10-6. The minimum time between detection and 
intolerable BER value was 40 hours, more than enough to plan the application of 
the SCULPTOR algorithm. 
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Fig. 8-3. Affected bandwidth and number 
of affected demands when 30% of the 

demands requiring QoS. 

Fig. 8-4. Affected bandwidth and 
number of affected demands when 50% 

of the demands requiring QoS. 

In order to evaluate SCULPTOR algorithm performance, we simulate a 30-node 
and 56-link MPLS network, where initially, 870 demands are being served. To 
evaluate the proposed algorithm, we compare the affected bandwidth and number 
of demands when SCULPTOR is applied or not. Fig. 8-3(a) and Fig. 8-3(b) present 
the gain obtained by using SCULPTOR in terms of affected bandwidth when 30% 
or 50% of the demands require QoS. Interestingly, the amount of affected 
bandwidth is reduced by at least 30% when SCULPTOR is applied. It is also worth 
noting that the affected bandwidth increases circa 60% when the amount of SLA-
related demands increases from 30% to 50%, while the affected bandwidth remains 
mostly constant when SCULPTOR is applied.  

The same study can be applied to the number of affected demands (Fig. 8-4(a) and 
Fig. 8-4(b)) obtaining similar conclusions as for affected bandwidth. 
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 Conclusions 

BER degradation in the optical layer could impact a large number of client 
demands, which can translate into money losses for network operators when 
violating SLAs. When a service detects excessive errors, a Bayesian Network –
based algorithm is used to localize and identify the most probable cause of the 
errors at the optical layer. Results showed the effectiveness of the algorithm. 

Targeting at anticipating intolerable BER, the BANDO algorithm was used for 
detecting, among others, gradual increasing BER degradation; its detection helps 
meeting the committed QoS by re-routing the affected SLA-related demands. To 
that end, the SCULPTOR algorithm was proposed. 

Results showed that SCULPTOR noticeably reduces the number of affected 
bandwidth and demands. 

In this chapter, two algorithms were proposed. First, a failure identification 
algorithm is run to classify between: normal, filter or signal overlap. Only for the 
signal overlap case, localization can be performed at the optical layer. However, 
location in the case of multilayer networks is easier, and allows to re-route 
demands as a function of the committed QoS. The next chapter focuses failure 
localization at the optical layer.  
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Chapter 9 

Soft Failure Localization 

Methods to detect BER degradation and failure identification methods were 
proposed in the previous chapters. Although soft failure detection and 
identification might allow to detect SLA violations while anticipating possible hard 
failure events; it is not enough to help operator and maintenance processes, where 
failure localization is strictly required. So far, failure localization techniques have 
been proposed and deployed mainly for hard failures, while significant work is still 
required to provide effective and automated solutions for soft failures, both during 
commissioning testing and in-operation phases. In this chapter, we focus on soft 
failure localization by proposing two techniques for active monitoring during 
commissioning testing and for passive in-operation monitoring. The techniques rely 
on specifically designed low-cost optical testing channel (OTC) modules and on the 
widespread deployment of cost-effective OSA.  

The retrieved optical parameters are elaborated by machine learning-based 
algorithms running in the agent’s node and in the centralized MDA system. In 
particular, the Testing optIcal Switching at connection SetUp timE (TISSUE) 
algorithm is proposed to localize soft failures during commissioning testing, 
whereas, the FailurE causE Localization for optIcal NetworkinG (FEELING) 
algorithm is proposed to localize failures during lightpath operation. Extensive 
simulation results are presented, showing the effectiveness of the algorithms to 
correctly localize soft failures. 

 Motivation and Objectives 

Chapter 7 aimed at detecting in advance excessive BER in lightpaths in order to 
anticipate connection disruption. Once a BER degradation is detected, it is of 
paramount importance to localize the failure, so as to accelerate network 
maintenance and to reconfigure the network. 
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In this chapter, we focus on soft failure localization during commissioning testing, 
as well as once lightpaths are in operation. In the rest of the chapter, unless 
explicitly stated otherwise, we just use failure localization for the sake of brevity. 

In this PhD thesis we propose to apply a similar concept to OSC (Chapter 4), for 
commissioning testing and failure localization purposes; we name it as optical 
testing channel (OTC). The main difference is that, in OTC, the low-speed low-
index OOK modulation is applied to a continuous-wave laser rather than to a high-
speed coherent signal. The modulation parameters in OTC are the same as in OSC 
to guarantee accurate BER estimation, while requiring simple and low-cost 
hardware for the operator. 

We propose using OTC systems for active monitoring during commissioning 
testing, as well as the use of OSAs for passive monitoring. The techniques 
presented in this chapter highly depend on the modulation format of the 
lightpaths, so we restrict ourselves to focus specifically on QPSK-modulated signals 
since it is the most common modulation format used in medium and long reach 
telecom operator networks. Specifically, the contribution of this chapter is three-
fold: 

• Section 9.2 presents our proposals for BER estimation and failure 
localization. Besides, a node architecture equipped with OSAs and OTC 
modules is proposed and modules running in the agent’s node and in the 
MDA system are presented. 

• Section 9.3 focuses on designing the OTC system to be used during 
commissioning testing. The Testing optIcal Switching at connection SetUp 
timE (TISSUE) algorithm that received estimated BER and localizes 
failures is presented. 

• Section 9.4 targets at localizing failures affecting a lightpath using OSAs. 
Optical spectrum features (see Chapter 2) are exploited by machine 
learning-based algorithms to detect degradations and identify failure 
classes. The FailurE causE Localization for optIcal NetworkinG (FEELING) 
algorithm running in the MDA system uses these modules to localize, 
classify and estimate the magnitude of the failure. 

The discussion is supported by the results from simulation presented in Section 
9.5. 

 Before and In-Operation Failure Localization 

Two different scenarios for failure localization are considered:  

• During lightpaths’ commissioning testing to ensure the proper lightpath 
performance before they are delivered to the customer and enter into 
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operation. Note that since excessive BER might lead to SLA violations, BER 
needs to be checked at the reception side and, in the case of excessive BER, 
the source of the errors should be localized as accurately as possible. At this 
point, we assume that transponders are at the customer side and that the 
lightpath is already established in the network between ingress and egress 
nodes at the switching level, so active monitoring can be applied by injecting 
a test signal. 

• Once a lightpath is in operation, BER can be measured, and BER 
degradations can be detected in advance before reaching excessive BER 
levels (see previous chapter). Once detected, the cause of failure needs to be 
localized, this time by using passive monitoring techniques, to facilitate 
lightpath re-routing. 

For these scenarios, we propose the use of two monitoring systems to be installed 
in the optical network nodes: a redesigned OSC and OSAs (see Chapter 2). Here, 
the concept of OSC is redefined and renamed as OTC, where the OTCTx module is 
equipped with a tunable laser and a Pseudo-Random Bit Sequence (PRBS) 
generator to create a test signal. Then, the OTCRx receives the test signal and 
estimates the BER (see the details of this new OTC in Section 9.3). 
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Fig. 9-1. Simplified optical node architecture with OTC and OSA monitoring. 

Fig. 9-1 presents a very simplified diagram of the architecture of an optical node, 
where only one incoming and one outgoing links, as well as the local signals being 
added and dropped are represented. The node consists of WSSs, OAs, Dispersion 
Compensation Fibers (DCFs) and channel equalizers; OTC and OSA monitoring 
systems are highlighted. OTC modules are connected to local WSSs in the 
architecture in Fig. 9-1. In addition, only one single OTCTx and one single OTCRx 
modules per node need to be equipped, which although limits the number of 
concurrent test that can be carried out, also limits the number of consumed local 
WSS ports; this has a significant impact on the cost of the ROADMs [Kh15]. On the 
other hand, OSAs are placed in every outgoing link, so the number of OSAs per 
node equals the nodal degree. In this case, we have limited the number of OSAs 
due to its cost, and although failure localization can still be carried out, the 
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granularity of the localization would be at the node level. To achieve a finer failure 
location granularity, more OSAs should be placed, consequently increasing the 
node cost. 

Ingress Node Egress NodeIntermediate Node Intermediate Node

MDA
TISSUE

OTCTx OTCRx OTCRx OTCRx

Client Signal Client Signal

SQE SQE SQE SQE

TISSUE: Testing optical Switching at connection setup time
SQE: Signal quality estimation
OTC: Optical testing channel 

 

Fig. 9-2. OTC active monitoring for commissioning testing and failure localization. 
 

Fig. 9-2 shows an example of the use of the proposed OTC monitoring system for 
before-operation tests and failure localization. One OTCTx is used in the ingress 
node to generate the test signal, and one OTCRx per intermediate and egress node 
is used to estimate the BER. Note that, since the lightpath has not been delivered 
to the customer yet, the client signal is not connected to the lightpath neither in 
the ingress nor the egress node at this stage. A module named as Signal Quality 
Estimation (SQE) running in the node’s agent is in charge of receiving the 
measured BER in the local OTC and correlate to what the client signal would 
observe. The TISSUE algorithm, running in the MDA system, is in charge of 
allocating the OTC modules in the network nodes, setting-up the local connections 
from them to the lightpath in the end nodes, receiving BER estimations and 
deciding whether the tests pass or not, and estimating the elements that 
participate in the excessive BER. 

Fig. 9-3 depicts the use of OSAs to localize soft failures once the lightpath is in 
operation. OSAs acquire the whole C-band spectrum, and then, data for the portion 
of the spectrum allocated to the lightpath under study is extracted. OSAs passive 
monitoring is carried out in the ingress and every intermediate node (but not in the 
egress one). The feature extraction module defined in Section 2.2, running in the 
node’s agent is in charge of analyzing the spectrum. 

The FEELING algorithm, runs in the MDA system and is in charge of commanding 
the modules in the nodes and of receiving a diagnosis, as well as the relevant signal 
points from them to localize the failure and estimate its magnitude. It is worth 
mentioning that FEELING must be able to distinguish between actual failures and 
normal effects that could lead to similar evidence, specifically filter tightening 
effects due to filter cascading of a normal signal. FEELING takes advantage of the 
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classifiers module that generates a diagnosis of one signal focusing specifically on 
filtering problems. In addition, these failure magnitude estimation modules (ME) 
have been designed to quantify specific failure effects: 

• Laser Drift Estimator (LDE). 

• Filter Shift Estimator (FSE). 

• Filter Tightening Estimator (FTE). 
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Fig. 9-3. OSA passive monitoring for in-operation failure localization. 

The next section is focused on the design of the proposed active and passive 
monitoring systems. 

 Use Case I: Commissioning Tests and Failure 
Localization 

Fig. 9-4 presents the first use case addressed in this chapter, which shows the OTC 
system design, where a continuous-wave laser is OOK modulated. A PRBS pattern 
generator drives the modulator (modulation speed is below 1 GHz with low 
modulation index). At different intermediate nodes, the OTC channel is dropped 
and received with a simple low-bandwidth photoreceiver connected to a BER tester. 
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OTC Signal Input To SQE
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Fig. 9-4. OTC system design: a) OTC transmitter and b) OTC receiver 
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Note that, it is necessary for the operator to linearly adjust the modulation speed of 
the OTC channel according to the baud-rate of the lightpath requested by the 
client. In this chapter, we assume 25 GBd DP-QPSK client signals and OTC is 
250Mb/s OOK. A BER conversion model (e.g., table or function) is needed to 
translate the OTC measured BER value into a client QPSK signal estimated BER. 

As introduced above, the TISSUE algorithm running in the MDA system is in 
charge of collecting the QPSK signal estimated BER from each of the intermediate 
nodes. Running in the network nodes, the SQE module is in charge of acquiring the 
OTC BER and use the BER conversion model to obtain the estimated BER. 

Table 9-1 TISSUE Algorithm 
INPUT lightpath 
OUTPUT FailureList 
1: 
2: 
3: 
4: 
5: 
6: 

<otcTx, OTCRx> ← allocateResources (lightpath) 
setupConnections (lightpath, {otcTx} ⋃ OTCRx) 
for each r ∈ OTCRx do: 
BER.estim[r] ← getEstimatedBER(r) 
BER.theo[r] ← computeTheoBER(r.node, lightpath) 

failures ←∅ 
7: 
8: 
9: 
10: 
11: 
12: 
13: 

for i = 1..|OTCRx|-1 do: 
estimSlope ← compSlope(BER.estim[i],BER.estim[i+1]) 
theoSlope ← compSlope(BER.theo[i], BER.theo[i+1]) 
if estimSlope / theoSlope > α then 
failures ←failures ⋃ {<i, i+1>} 

deAllocateResources (lightpath, otcTx, OTCRx) 
return failures 

 

Initially, the TISSUE algorithm (Table 9-1) allocates the OTC modules in the 
network nodes along the route of the lightpath and sets up the needed connections 
between the OTC modules and the lightpath, so the OTCTX module injects the test 
signal in the ingress node and all the OTCRX modules get the test signal to measure 
BER (lines 1-2 in Table 9-1). Next, the QPSK BER estimated values are collected 
from the SQE modules, and theoretical BER values are computed based on OSNR 
values [Sa11] (lines 3-5). 

Finally, the difference between the slopes of both estimated and theoretical BER in 
each span are computed to determine the existence of a failure; if the slopes 
difference is above a maximum value, a failure has been detected in such span 
(lines 6-11). The OTC modules are released (line 12) and the list of spans in failure 
is eventually returned (line 13). 
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 Use Case II: In-Operation Failure Localization 

Let us now focus on the use of OSAs to localize failures once the lightpath is in 
operation. For the sake of clarity, Table 9-2 defines subset of features (see Chapter 
2) that are considered in the classification module presented in this section, where 
∂ stands for the derivative. 

Table 9-2 Selected spectrum features 

Module 
bandwidth (bw) symmetry (sym) Freq. shift (Δfc) 

∂ -3dB -6dB ∂-3dB ∂-6dB slot-3dB ∂ 

Classifier X X X X X - - 

LDE - - - - - - X 

FSE - - - - - X X 

FTE - X - - - - - 
 

As described in Fig. 9-3, the classification module placed inside the MDA system 
generates a diagnosis of one signal focusing specifically on filtering problems; it 
classifies signals into three classes: Normal, FilterShift, FilterTightening. 

In order to differentiate between the previous classes, we propose the algorithm 
presented in Table 9-3 that trains a SVM that will be used for classification. The 
algorithm receives a dataset that is firstly balanced by replicating samples for the 
less frequent classes, and it is then randomly split into training and testing (lines 
1-2 in Table 9-3). After few initializations (lines 3-4), an iterative procedure is 
executed to fit a SVM, where the loop is iterated on both, the cost of misclassifying 
(misClassCost) and the degree of the polynomial kernel (kernelDegree), which are 
parameters to control the complexity and size of the SVM. For every kernelDegree 
(e.g., lineal, 2nd polynomial degree, etc.) a decision SVM is fitted from the training 
dataset and the error, defined as wrong classified samples over the total number of 
samples, is computed for both training and testing datasets (lines 5-9). In case of 
reducing the minimum error obtained so far, the difference between error from 
training and from testing is stored (lines 10-16). The SVM fitted with the input 
dataset is eventually returned (line 17). 

The decision-making units of the classifiers module use the SVM previously fitted. 
The classifier module presented in Table 9-4, consists of a hierarchy of two binary 
classifiers based on SVM. For both classifiers, the algorithm in Table 9-3 is called 
with a particular dataset to obtain a particular SVM model. Initially, a failure class 
(line 1-2) is obtained using the corresponding SVM model (SVMModel_NF) to 
distinguish “Normal” from “Filter problems”. For the case where the latter is 
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returned, lines 7-10 perform the same prediction using in this case the 
SVMModel_FTFS model, in order to classify between “Filter Shift” or “Filter 
Tightening”. 

Table 9-3 Classification Module: SVM Training Algorithm 
INPUT dataset, kernelDegree, misClassCost 
OUTPUT SVMModel 
1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 

dataset←balanceClassesByReplication(dataset) 
<training,testing>←randomSplit(dataset) 
minDiff←∞ 
minError←∞ 
for i in kernelDegree do 

for c in misClassCost do 
svm ← fitSVM(training, i) 
errorTesting ←predict(SVM, testing) 
errorTraining ←predict(SVM, training) 
if errorTesting<minError then  
minError←errorTesting 
minDiff←|errorTraining-errorTesting| 

else if errorTesting==minError then 
diff←|errorTraining-errorTesting| 
if diff≤minDiff then  
minDiff←diff 

return SVMModel(dataset) 
 

Table 9-4 Classifier Module 
INPUT SVMModel_NF, SVMModel_FTFS, CapturedOptSpec, SelFeat 
OUTPUT class 
1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10: 
11: 
12: 

decision← Ø 
decision←predict(SVMModel_NF, CapturedOptSpec, SelFeat) 
if decision ==0 then 
class = “N” 

else if decision ==1 then  
class = “F” 
decision←predict(SVMModel_FTFS, CapturedOptSpec, SelFeat) 

if decision ==1 then 
class = “Filter Shift” 

else if decision ==0 then  
class = “Filter Tightening” 

return class 
 

Finally, the FEELING algorithm that uses the above-defined modules is detailed in 
Table 9-5; recall that FEELING is called upon the detection of excessive BER at 
the reception side of an optical signal. The algorithm first calls feature extraction 
module, in the ingress and last intermediate nodes to perform signal verification 
and obtain a diagnosis (lines 1-5 in Table 9-5). It is worth noting that diagIngress is 
a tuple <class, X, features>, where X is the captured optical spectrum. In the case 
that the diagnosis of both nodes is normal, FEELING ends with no failure detected 
(lines 6-7). Otherwise, in the event of laser drift diagnosis at the ingress, the LDE 
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module is run to measure failure magnitude (lines 8-10); for LDE modeling, we 
considered linear regression. 

Table 9-5 FEELING Algorithm 
INPUT lightpath 
OUTPUT {<node, class, magnitude>} 

1: 
2: 
3: 
4: 
5: 
6: 
 

7: 
8: 
9: 
10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 
18: 
19: 
20: 

 
21: 
22: 
23: 

ingress ← lightpath.getNodeFromRoute (1) 
lastInterm ← lightpath.getNodeFromRoute (-2) 
FM ← getFilterMasks(lightpath) 
diagIngress ← getFailureDiagnosis (ingress, FM (1)) 
diagLast ← getFailureDiagnosis (lastInterm, FM (-2)) 
if diagIngress.class = diagLast.class AND 

diagIngress.class = Normal then 
return {<1, Normal, ->} 

if diagIngress.class =LaserDrift then 
magn← LDE(diagIngress.X) 
return <1, LaserDrift, magn> 

XNodeChange ← diagIngress.X 
diagChange = <class, magn> ←Classifier (diagIngress.X) 
if diagChange.class<> normal then 
FailureSet←<1, diagChange> 

else FailureSet ← Ø 
for i=2..lightpath.RouteLength()-1 do 
node_i ← lightpath.getNodeFromRoute (i) 
Xi← getSignalPoints (node_i) 
diagNode_i ← Classifier (Xi) 
if diagNode_i.class <> diagNodeChange.class OR  
diagNode_i.magn - diagNodeChange.magn > α then 
XNodeChange ← Xi 
FailureSet ← FailureSet U {<i, diagNode>} 

return FailureSet 
 

In the case of a different diagnosis, FEELING starts a procedure to detect filter 
related problems at intermediate nodes using the classifiers module to compare 
diagnosis and magnitudes between nodes in the route of the lightpath. This process 
starts with the diagnosis at the ingress node that it is used as the initial reference 
node (lines 11-14). Then, the diagnosis of every intermediate node is compared 
against the one of the reference changing node and failure set is updated if either a 
new filter failure is detected or the magnitude increased above a certain threshold 
(lines 15-22). After processing all intermediate nodes, the list of failures detected is 
eventually returned (line 23). 

When a filter related failure is detected, either a FSE or a FTE is called to estimate 
the magnitude of the failure as a function of the selected spectrum features (see 
Table 9-2). Linear regression for the magnitude estimators was used since both, 
magnitudes and features take real values. In order to find the proper set of 
features, we apply a stepwise approach that aims at finding the model with the 
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optimum balance between accuracy and number of coefficients (i.e., features) in 
terms of the AIC. 

 Results 

This section reports the obtained results from simulating scenarios for the previous 
sections; Section 9.3 regarding commissioning testing and Section 9.4 related to in-
operation failure localization. 

 Optical Testing Channel 

Regarding commissioning testing, we first study the correlation between OTC 
measured BER and QPSK signal estimated BER. We performed simulations with a 
250Mb/s OOK channel transmission with the OTC scheme described in Section 9.3, 
and a 25GBd DPQPSK signal to measure the BER after every span; Fig. 9-5(a) 
plots the obtained BER relation. It can be shown that there is an almost linear 
relationship between the BER of the OTC channel at 250Mb/s and the BER of a 
QPSK channel. Note that the above BER relation is specific for the particular case 
where the signal does not traverse any filter. 

Because the signal will be affected by intermediate filters, different OTC vs. QPSK 
BER correlation curves need to be used as a function of the number of filters that 
the signal has traversed. Then, family of piece-wise linear models can be used to 
convert the measured OTC BER to the estimated QPSK signal BER as a function 
of the number of filters. Such models are stored in every SQE module and used 
every time the TISSUE algorithm requests BER estimation. Finally, after several 
tests, we set TISSUES’s parameter α to 2. 

At lightpath commissioning testing, the TISSUE algorithm requests SQE modules 
along the route of the lightpath to obtain BER estimations and compares them 
against theoretically computed values. Fig. 9-5(b) plots an example of theoretical 
and estimated BER for the last seven 100km spans of the simulated 10-span 
scenario (the first three spans are not shown since their BER is lower than 10-7). As 
observed, values are very close (about half decade difference in BER values), 
proving that the OTC scheme is an effective testing technique for operators to 
check the quality of a new lightpath, as well as to localize spans with excessive 
BER. 

Finally, to evaluate the TISSUE algorithm, we added 2dB of noise after span #5. 
Fig. 9-5(c) plots the estimated QPSK BER and the theoretical BER for the last 
seven spans. TISSUE localizes the failure after noticing the large estimated BER 
slope compared to the theoretical one. 
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Fig. 9-5. (a) OTC vs. QPSK BER correlation. (b) Estimated QPSK BER vs. 
theoretical QPSK BER. (c) Degraded BER and failure localization. 

 Optical Spectrum Analyzer 

Regarding in-operation failure localization, we simulated a 30 GBd DP-QPSK 
signal that passes through 10 single mode fiber spans. After each span, an optical 
amplifier compensates for the accumulated attenuation of the fiber. Each node is 
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modeled as a single optical filter emulating optical switching functionality 
performed by several WSSs; filters bandwidth is set to 37.5 GHz, leaving 7.5 GHz 
as a guard band for the lightpath  

Emulating the optical node architecture in Fig. 9-1, coarse-granular OSAs are 
placed after every filter to analyze the optical spectrum. OSAs have been 
configured with a granularity of 625 MHz. 

Simulations have been carried out to produce a database of samples belonging to 
different failure classes (including normal operation):  

• in case of LaserDrift failures, a frequency shift is applied to the laser 
emission frequency; the frequency of the local oscillator at the Rx side is 
configured accordingly;  

• for FilterShift failures, a frequency shift is applied to the central frequency 
of filters; 

• FilterTightening failures are emulated by modifying the bandwidth of the 
filter.  

Regarding failure magnitudes, although we simulated a wide range of them, we 
considered as actual failures those with a magnitude higher than a certain 
threshold, while samples below the threshold were re-labeled as normal. 
Specifically, thresholds were set to 1.5GHz for LaserDrift, 3 GHz for FilterShift, 
and 32 GHz for FilterTightening. Recall that FilterTightening magnitude increases 
when filter bandwidth decreases. 

It is worth mentioning that the FilterTightening failure needs to be distinguished 
from filter cascading, as described in section 2.2. In view of that, the training of 
classifiers and magnitude prediction modules has been carried out with a shorter 
testbed (only two spans and filters between Tx and Rx) to avoid mispredicting filter 
cascading as filter failure. 28 distinct configurations of failure and magnitude have 
been simulated, generating up to 500 different samples for training and testing. 
Each sample consists of 56 different features obtained at several power levels. 

The first classifier in the classifiers module, which is in charge of identifying 
between normal and filter failures, provides no classification error. This result is 
the key for the failure localization process since we can conclude that the classifiers 
module provides perfect localization of a failed filter in the absence of filter 
cascading effects. The second classifier, used upon the localization of a failure to 
distinguish between FilterShift and FilterTightening, returns a classification error 
around 18%. Although this error is not negligible, it is worth noting that its 
negative impact is small since filter failure identification is not as crucial as filter 
failure localization. Finally, magnitude predictors were fitted with the above-
mentioned features to provide highly accurate linear models with average errors 
below 5%. 
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Fig. 9-6. FEELING performance for 
FilterShift in failure localization 
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Fig. 9-7. FEELING performance for 
FilterTightening in failure localization 

Once classifiers and predictors have been successfully trained and validated, let us 
evaluate the performance of FEELING. As for previous results, we carried out 
simulations for all failures and several magnitudes, considering only one failure 
per simulation.  

For the case of LaserDrift, FEELING is able to localize the failure with 100% of 
accuracy, which is as a consequence of the goodness of the selected spectrum 
features, and the fact that in our simulations, the transmitter was collocated with 
the ingress node, and thus the signal arrives without any filter cascading effects. 
For the case of filter related failures, Fig. 9-6(a) and Fig. 9-7(a) illustrate 
localization accuracy for FilterShift and FilterTightening, respectively when 
considered filter mask correction. Accuracy in terms of the proportion of correct 
localizations is provided as a function of the magnitude of the failure, the 
conclusion is that, as soon as the failure magnitude increases, localization accuracy 
also increases. For FilterShift higher than 5GHz (Fig. 9-6 (a)) and for 
FilterTightening smaller than 28 GHz overall accuracy reaches 100%. 

Finally, it is important to recall that FEELING is triggered upon the BANDO 
algorithm in Chapter 7 detects excessive BER in the reception of a lightpath. The 
calibration of BANDO includes BER thresholds that are setup in order to perform 
prompt and even anticipated BER degradation. Assuming a BER increase due to a 
gradual degradation of a filter, Fig. 9-6(b) and Fig. 9-7 (b) are provided to illustrate 
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the relation between BER change detection thresholds and failure localization. 
These figures depict the simulated BER as a function of failure magnitude. For 
illustrative purposes, let us imagine that, due to two different configurations, 
BANDO detects excessive BER at 8∙10-5 and 5∙10-4. Without entering into details, 
the former could correspond to a BER threshold violation anticipation while the 
latter could represent an actual threshold violation. A BER equal to 8∙10-5 could 
correspond to a degraded filter shifted around 4 GHz or narrowed until 32GHz, a 
failure that is localized with an accuracy around 90%. On the other hand, BER 
equal to 5∙10-4 is obtained for failures whose magnitude is large enough to perfectly 
localize them. Hence, modules for BER degradation and failure identification and 
localization must be configured with a global perspective to achieve optimal overall 
performance. 

 Concluding Remarks 

Proper operation of the network components is a key factor to provide the expected 
QoS to the end-users and to avoid violating SLAs. Therefore, predicting upcoming 
failures that can disrupt the network operation, by continuous monitoring of the 
active lightpaths is of great importance. In this chapter, we proposed two 
monitoring systems to intelligently identify and localize soft failures during 
commissioning testing and lightpath operation. 

In the case of commissioning testing, a low cost and complexity OTC system was 
proposed and validated as a promising technique for estimating the BER of 
100Gb/s DP-QPSK modulated lightpaths. Simulations showed that the estimated 
BER can be used for testing and failure localization. 

For the case of lightpath operation, a machine-learning based identification and 
localization algorithm (called FEELING) was proposed, taking advantage of 
continuous monitoring of the optical spectrum using cost-effective OSAs installed 
in the optical nodes. FEELING predicts whether a component failed and estimates 
the magnitude of the failure. As in the previous chapter, we focused on three 
classes of failures: LaserDrift, FilterShift, FilterTightening. In order to evaluate the 
accuracy of FEELING, we performed an extensive set of simulations, and the 
results showed that FEELING identifies/localizes LaserDrift with 100% of 
accuracy. In the case of filter related failures, FEELING can identify/localize the 
failure with the accuracy above 90%. 
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Chapter 10 

Validation of the Distributed 
Monitoring and Data Analytics 
Architecture 

This final chapter focuses on demonstrating the proposed distributed monitoring 
and data analytics architecture by validating the algorithms devised and evaluated 
in the previous chapters. Recall that the architecture consists on extended nodes 
that collate monitoring data and that are capable of performing data analytics and 
local decision making; in addition, a centralized MDA system is able to perform 
network-wide data analytics on monitoring data collected from all the nodes in the 
network. Specifically, the architecture is demonstrated by implementing three use 
cases that entail network cognition, namely: i) BER degradation detection and 
proactive lightpath restoration, ii) OD traffic anomaly detection based on predictive 
traffic model estimation and VNT reconfiguration, and iii) BER degradation 
detection and service layer connection re-routing. 

 Introduction 

In this chapter we demonstrate our monitoring and data analytics architecture to 
support cognition in multilayer optical networks. Particularly, the contribution of 
this chapter is as follows: 

• The proposed architecture is first motivated in Section 10.2, where a 
monitoring hierarchy to allow monitoring across different nodes of the same 
or different layers is proposed. In addition, Section 10.2, details this 
architecture that brings distributed and centralized data analytics to the 
network. The architecture includes a central MDA system performing wide-
scope data analytics and extended nodes capable of performing local data 
analytics and decision making. 



136 PhD Thesis - Alba Pérez Vela 

• To demonstrate the proposed architecture, three OAA loop use cases are 
defined in Section 10.3, as well as their workflows on the proposed 
architecture. Besides, data analytics algorithms to support Knowledge 
Discovery from Data (KDD) in the extended nodes and in the MDA system 
are proposed. The defined use cases are: i) BER degradation detection and 
proactive lightpath restoration, ii) OD traffic anomaly detection based on 
predictive traffic model estimation and VNT reconfiguration, and iii) BER 
degradation detection and service layer connection re-routing. 

For the first use case, the BANDO algorithm from Chapter 7 is re-implemented 
and adapted for the considered extended node and the proposed architecture. 
Recall that BANDO algorithm detects BER changes in the optical connections by 
comparing BER measurement with boundaries (see Section 7.3). Besides, in certain 
cases, BANDO is able to extract a pattern of BER behavior in order to make 
predictions. Additionally, BANDO algorithm sends notifications towards the MDA 
including the severity level for BER changes. 

The second use case includes the anomaly detector algorithm proposed in Chapter 
5. That algorithm is adapted to be implemented inside the extended node. For 
anomaly detection purposes, the estimator (running in the MDA system) fits 
specific models for every OD pair which, in turn, are sent towards the extended 
node to be stored. Monitoring data collected from the nodes is directly compared 
against traffic model estimation, detecting therefore any anomaly that might occur. 
The ODEON optimization problem proposed in Chapter 5 is involved in case of 
VNT reconfiguration is needed. 

Finally, the third use case considers a multilayer network affected by a BER 
degradation. For this particular case we recall SCULPTOR algorithm from Chapter 
8 for demand re-routing. It is worth noting that SCULPTOR algorithm is only 
triggered by certain BANDO notifications. 

 Distributed and Centralized Data Analytics 

 Motivation and General Concept 

In this section, we motivate the proposed architecture, whose main concept is 
illustrated in Fig. 10-1. The data analytics function is distributed in the 
architecture, i.e., optical and packet nodes are extended with monitoring and data 
analytics capabilities, and the control and management plane in charge of the 
network is extended with data analytics capabilities (MDA system). 

In line with [RFC7011], we call observation points (OP) to location in the 
infrastructure where measurements can be performed. In connection-oriented 
networks, typical OPs include: 
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• Optical connections (lightpaths), where BER and PTx/PRx, among other 
parameters, can be measured at the optical transponders. 

• L2-LSPs, where packets and bit rate can be measured in any packet node 
along the route of the LSP.  
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Fig. 10-1. Conceptual architecture. 

Extended nodes’ data analytics capabilities enable local KDD, so raw monitoring 
data collected from the physical devices is pre-processed, transformed, and modeled 
to fit the requirements of local KDD algorithms. Based on the obtained knowledge, 
the node can make local decisions and trigger notifications to the control and 
management plane. 

Although extended nodes enable monitoring and distributed data analytics, the 
scarcity of computational and storage resources along with their strictly local 
perspective becomes insufficient when large datasets need to be processed and 
global network knowledge be discovered. Consequently, data analytics capabilities 
are also needed at the control and management plane. The centralized MDA 
system is thus responsible for:  

• collating, processing, and storing monitoring data 

• producing predictive models 

• processing notifications received from the extended nodes 

• managing the configuration of extended nodes 

• issuing reconfiguration recommendations to the SDN controller 

With this global vision, the MDA system is able to perform a network-wide KDD. 
Since large amounts of data need to be collected, stored, and analyzed, the MDA 
system needs to be designed with big data capabilities. 
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As an example, these capabilities would allow the MDA system to find predictive 
models for the traffic of L2-LSPs from monitoring data and send the predictive 
models to the extended nodes. The extended nodes can then compare the metered 
traffic against the predictive model and notify the control and management plane 
in case a traffic anomaly is detected. 

Aiming at facilitating decision-making, we extend the definitions in [RFC7011] and 
propose defining two different monitory elements: i) OPs are locations in the 
network where monitoring data records are generated (as in [RFC7011]), ii) 
observation groups (OGs) collect data recovered from a set of observation points, 
which monitoring data needs to be aggregated. 
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Fig. 10-2. (a) Monitoring observation points and groups, and (b) hierarchy. 

For illustrative purposes, Fig. 10-2(a) presents an example where three separate 
L2-LSPs that convey the traffic of OD pair R1→R3. To measure the OD traffic, that 
of each individual L2-LSP needs to be metered and aggregated. L2-LSPs can be 
monitored by activating one single observation point in any packet node along their 
route, which is advantageous since the number of OPs that can be configured in 
every packet node is limited. Notwithstanding OPs have been activated for the 
three LSPs in our example in Fig. 10-2(a), not all of them are in the same packet 
node, so an OG that aggregates monitoring data records received from every L2-
LSP supporting the OD traffic is configured. 

This hierarchy is set up in the control and management plane and the MDA system 
sends it to the corresponding nodes, so data can be aggregated, if possible, directly 
in the extended node or, otherwise, in the MDA system. In the example (see Fig. 
10-2(b), node R1 collects traffic samples for LSP-1 and LSP-2 and exports them to 
the MDA system as a single, aggregated traffic sample for OD R1→R3. The 
remaining OP data for LSP-3 in node R2 will be aggregated to that from node R1 
once data arrive in the MDA system, to produce the final sample for the OD traffic. 

In the next subsection, we present the proposed monitoring and data analytics 
architecture to support OAA loops.  
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 Proposed Architecture 

Fig. 10-3 presents an evolution for the proposed distributed architecture in Chapter 
6. One of the main differences relies on the proposal of an extended node where 
several processes are now carried out in situ. Besides, now extended nodes receive 
monitoring messages from physical devices containing data records from multiple 
observation points.  

First, monitoring samples are stored in a temporal repository allocated for every 
observation group; the repository consists of a queue where the latest N aggregated 
samples are stored. Time parameter G (granularity) specifies the period used to 
aggregate samples received from the observation points (e.g., 1 min), whilst time 
parameter T specifies the monitoring period (e.g., 15 min) used to aggregate and 
export observation group samples to the MDA system. Second, after monitoring 
data is collected and processed, modeled data is sent towards the MDA system for 
further analysis. Besides, due to the fact that the extended node has access to fine-
grained monitoring data, among its new capabilities, it is worth highlighting the 
ability to perform local data analytics. For example, the anomaly detection 
algorithm can analyze fine-grained OD traffic monitoring data to detect anomalies 
and the BANDO algorithm can analyze BER monitoring data to detect BER 
degradations. 
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Fig. 10-3. Evolution of the distributed architecture for anomaly and failure 
detection. 
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The MDA system receives both, modeled data from the data processing in the 
extended node for model estimation and BANDO’s notifications concerning BER 
measurements in the optical layer. In the MDA system, the OD traffic modeled 
data is received as input for the Estimator module which is in charge of estimating 
the specific traffic models for every OD pair. Then the new traffic models are stored 
in the Predictive Model Repository and used by the ALCOR algorithm. According to 
the notifications received from the anomaly detection algorithm, a change in the 
packet node configuration can be applied e.g., changing thresholds εS and εA (see 
Chapter 5 and Chapter 6). In case an anomaly has been detected a message is sent 
towards the SDN controller for recovery VNT reconfiguration; to that end, the 
ODEON algorithm can be used (see Chapter 5). Besides, BANDO’s notifications are 
received in the MDA system as an input for FEELING algorithm (see Chapter 8); 
for failure localization during lightpath operation. For the sake of SLA fulfillment, 
the SCULTPOR algorithm in the SDN controller can be used to re-route the 
affected demands upon the reception of BER degradation notifications  

One of the most interesting aspects of the extended node is the programmability of 
the local KDD. The extended node is able to receive configurations from the MDA 
system such as e.g., processes configuration and aggregation parameters. In 
addition, the control interface also includes a notification system toward the 
controller. This bidirectional exchange of data between the extended node and the 
MDA system opens the possibility to combine distributed and centralized data 
analytics workflows. 

In the next section, we present the workflows for three demonstrative OAA use 
cases, as well as the adapted version of data analytics algorithms to support KDD 
in the extended nodes and in the MDA system. 

 OAA Control Loop Uses Cases 

In this section, we demonstrate the architecture defined in the previous section by 
defining three different uses cases, namely: i) BER degradation detection and 
proactive lightpath restoration, ii) OD traffic anomaly detection based on predictive 
traffic model estimation and VNT reconfiguration, and iii) BER degradation 
detection and service layer connection re-routing. As previously mentioned, 
algorithms that have already been proposed in previous chapters are revisited so as 
to integrate them in the experimental validation. 

 L2 Traffic Estimation, Dissemination and Anomaly Detection  

The second use case is related to traffic anomaly detection by comparing 
monitoring data with a traffic model. However, model estimation entails 
monitoring and processing time-series collated from OPs configured in different 
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nodes and spanning for a long time, e.g., several weeks; therefore, model 
estimation needs to be performed in the MDA system. In contrast, a traffic 
anomaly needs to be detected as fast as possible by comparing aggregated traffic 
samples against the predictive traffic model. Aiming at achieving minimum 
anomaly detection times, traffic anomaly detection process can be accomplished as 
a local KDD process running in the extended nodes, so traffic models produced in 
the centralized domain data analytics need to be disseminated to the corresponding 
extended nodes. 

With this in mind, let us present the workflow needed for L2 traffic estimation and 
dissemination Fig. 10-4. First, packet nodes send monitoring messages encoding 
data records with measured traffic data to the corresponding extended node 
(message 1 in Fig. 10-4). When the extended node receives monitoring data, it 
processes and stores samples locally. Periodically (according to parameter T), 
extended nodes export aggregated samples to the MDA system (message 2). The 
MDA system, specifically the Estimator module, will eventually produce a new 
predictive OD traffic model that and will be disseminated to the corresponding 
extended nodes (message 3). The purpose of this process is to enable anomaly 
detection by comparing received monitoring with estimated traffic values at the 
extended node.  
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Fig. 10-4. Model estimation and dissemination. 

Let us consider some examples of VNT reconfiguration using traffic prediction. In 
the example in Fig. 10-5(a) predictive traffic models have been estimated. In this 
example, if OD traffic anomaly is detected, the capacity of R2 - R3 vlink will be 
exceeded. Therefore, VNT reconfiguration needs to be performed, e.g., by creating a 
new vlink connecting R2 – R5. Fig. 10-5(b) shows that such new vlink has been set-
up to cope with the unexpected traffic increment and LSP 02-05 has been re-
routed. It is worth noting that vlinks in Fig. 10-5 are supported by lightpaths in the 
optical layer even if that is not shown in the scheme. 
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Fig. 10-5. Example of VNT reconfiguration using traffic prediction and after traffic 
anomaly detection. 

After a predictive model has been estimated and made available in the extended 
nodes, an anomaly detector algorithm running in the extended node is executed 
every time a new traffic sample arrives in the temporal repository. 

Usually a finer period than that used to export samples to the MDA system is used 
between the real and the extended node, e.g., 1 min. 
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Fig. 10-6. Traffic anomaly detection finite state machine. 
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The traffic anomaly detection algorithm defined in Chapter 5 has been extended so 
it can be interpreted in an experimental environment. The new algorithm has been 
designed as an fsm with three main states and 8 transient states (Fig. 10-6); main 
states are used to store whether score status is normal or has exceeded a threshold, 
whereas transient states are used to produce notifications on threshold crossing. 
Every time a new sample arrives, two fsm transitions are performed, one to obtain 
the right output and action, and another to move to the new main state. The 
complete algorithm is detailed in Table 10-1. 

Table 10-1 Experimental Traffic Anomaly Detection Algorithm. 
INPUT obsGroupId 
OUTPUT <sucess, error> 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10: 
11: 
12: 
13: 
14: 
15: 
16: 

z=<y, time> ← getLastSample(obsGroupId) 
if z=Ø then return <false, “No sample”> 
model ← getModel(obsGroupId) 
if model=Ø then return <false, “No model”> 
<µ, σ> ← evaluateModel(model, t) (Chapter 4)  
ŷ ← normalize(y, µ, σ) (eq. (5-1)) 
Ŷ ← getLastNormalizedSamples(obsGroupId) 
Ŷ ← Ŷ U {ŷ} 
if ŷ < 3 then return <false, -> 
s ← computeScore(Ŷ) (eq. (5-3)) 
<transient, output> = doTransition(currentState, s) 
<currentState, _> = doTransition(transient, s) 
if output <> none then 

z[] ← getLastSamples(obsGroupId) 
sendNotif(obsGroupId, z[], output) 

return <true, -> 
 

The algorithm receives as input the OG with new samples, and starts by getting 
the last sample from the temporal repository along with the predictive model (lines 
1-4). Next, the sample bitrate is normalized with respect to the predicted average 
and standard deviation values (lines 5-6) and it is added to a series of previous 
normalized bitrate values (lines 7-8). The metered bitrate value is assumed normal 
if it is not higher than 3 times σ; otherwise a score is computed for the series as 
detailed in Chapter 5 (line 10) to decide the outcome of the algorithm. Two anomaly 
detection thresholds are configured: suspicious (defined by parameter εS) and 
anomaly (defined by parameter εA). If the score violates or falls down an anomaly 
detection threshold, the event is notified to the domain controller (lines 11-15). 

Finally, the workflow for anomaly detection and VNT reconfiguration use case is 
presented in Fig. 10-7. The workflow starts when a sample with and anomalous 
amount of traffic, as compared with the predictive traffic model, is received in the 
extended node (message 1 in Fig. 10-7). Upon the detection of the traffic anomaly, 
the KDD process sends a notification to the MDA system detailing the metered 
traffic in the observation group. The notification is conveyed to the registered KDD 
processes; in this case to the one in charge of reconfiguring the network, e.g., 
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ALCOR defined in Chapter 6. When ALCOR decides that the VNT needs to be 
reconfigured to cope with the anomalous traffic detected, it sends a notification to 
the SDN (message 3). The new VNT topology, as well as the new route for the 
anomalous LSP can be obtained by solving the ODEON problem proposed in 
Chapter 5. The SDN controller eventually implements the results for ODEON by 
setting up the new lightpath and then, reporting the LSP where the anomaly has 
been detected. 
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Fig. 10-7. Anomaly detection and VNT reconfiguration. 

 L0 BER Degradation with Lightpath and LSP Rerouting 

For failure detection, the BANDO algorithm defined in Chapter 7, has been 
implemented as a finite state machine (fsm) with three main states and 11 
transient states (Fig. 10-8); main states are used to store whether BER status is 
normal or has exceeded either the boundary or the threshold, whereas transient 
states are used to produce notifications and actions (i.e., boundaries re-estimation 
or reset). Every time a sample arrives, two fsm transitions are performed, one to 
obtain the output and action, and another to move to the new main state. 

State E1 (normal BER) is reached when the last BER value falls below the 
boundary and the threshold. Transitions to transient state T1 follow BER within 
boundaries, while transitions from transient states T2 and T3 re-estimate the 
boundaries (see Fig. 7-4(a)). State E2 (boundary exceeded) is reached when the last 
BER value has exceeded the boundary, but it is still below the threshold (see Fig. 
7-4(b)). Transitions from transient states T4 and T5 reset boundaries, so n-1 new 
samples are needed to arrive to re-compute new boundaries. Finally, state E3 
(threshold exceeded) is reached when the last monitored BER is above the 
threshold (Fig. 7-4(b)). Transitions from transient states T7 and T8 reset 
boundaries, whereas from transient states T9 and T11 re-estimate them. 

Recall that a prompt BER degradation detection helps meeting the committed QoS 
by re-routing the affected SLA-related demands; therefore the BANDO algorithm is 
used to monitor BER changes in the lightpaths.  
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Fig. 10-8. BANDO finite state machine 
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Fig. 10-9. Lightpath restoration after optical link failure prediction. 

Fig. 10-9 presents the workflow considered for this use case. Initially, monitoring 
coming from the optical nodes is collected by the extended node in change of the 
optical node (message 1 in Fig. 10-9). Targeting at anticipating intolerable BER, 
the BANDO algorithm is used for detecting excessive BER in the received samples. 
Therefore, BANDO algorithm analyzes data, detecting, among others, gradual BER 
degradation. Depending on the case, a different notification (message 2) is be 
forwarded to the MDA which, in light of such detection, issues a recommendation 
to the SDN controller (message 3). Finally, managed by the SDN controller two 
different decisions can be taken depending on the circumstances. One decision 
could be to perform a lightpath re-routing directly over the optical nodes (message 
4a). While, another option is to consider that the lightpath is supporting a vlink 
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and the reconfiguration is done solely at the L2 layer by running the SCULPTOR 
algorithm (message 4b) (see Chapter 8). 

 Conclusion 

The dynamicity introduced by new connectivity services requires from control and 
managements architectures to help reducing resource overprovisioning. In that 
regard, this chapter proposed and demonstrated a hierarchical monitoring and 
data analytics architecture that consists of extended nodes that collate monitoring 
data, and are capable of performing data analytics on local data, together with a 
MDA system able to perform network-wide data analytics on monitoring data 
collected from all the nodes in the network.  

The architecture has been demonstrated by defining three use cases in a multilayer 
network scenario: i) BER degradation detection and proactive lightpath 
restoration, ii) OD traffic anomaly detection based on predictive traffic model 
estimation and VNT reconfiguration, and iii) BER degradation detection and 
service layer connection re-routing. 
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Chapter 11 

Visualization Tools  

The previous chapters have focused on analyzing soft failures caused by filters and 
lasers that impact on the QoT of the lightpaths; in particular, algorithms for 
identifying and localizing the failed element have been developed. However, not 
only those failures need to be considered, as failures in other devices like optical 
amplifiers, can cause similar QoT degradations. In this chapter, we explore the use 
of data visualization techniques to guide human operators in failure localization 
tasks. Data visualization is of paramount importance for humans since it assists in 
the process to understand what is going on in the network. To that end, we propose 
the concept of task-oriented visualization, as the way to present charts that extract 
the fundamental information operators need; this entails not only collecting and 
storing, but also filtering and processing enormous amounts of monitoring data. 

In this chapter, we consider the case where a subset of lightpaths’ experience 
gradual BER degradation, i.e., BER evolves with time. We aim at using 
visualization techniques that guide a human operator to find out the most likely 
resource that is responsible for such degradation, as well as when such degradation 
started. Note that the challenge is to analyze an amount of data that might be 
huge (e.g., 1 sample every 15 min for the last, let us say, 4 weeks, for every 
lightpath in the network) and display charts in seconds, while revealing 
meaningful information for human operators. The proposed task-oriented 
visualization tackles such challenge by using charts that first help finding the 
subset of affected lightpaths (in this chapter we use bubble chart and Sankey 
diagram, just as examples) thus, reducing the number of lightpaths to be analyzed. 
In a second step, different charts are used to reduce the element in failure as much 
as possible (in this chapter a column chart or spectrum color map are proposed). 
Finally, the few suspicious elements can be analyzed in detail using more 
traditional timeline graphs. 
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 Introduction 

Data analytics architectures for optical networks like the presented in this PhD 
thesis, are facilitating the introduction of intelligence and cognition towards 
autonomous network operation. A challenging scenario where data analytics helps, 
as demonstrated in the previous chapters, is the localization of soft failures 
affecting optical systems. What makes soft failures difficult to detect is that the 
produced degradation can be initially very subtle and thus, very difficult to detect 
before lightpaths’ degradation exceed some threshold. Recall that BANDO, running 
in the network nodes, and LUCIDA, running in the MDA controller, were 
presented in Chapter 7 to detect BER degradation and identify soft failures. 
Certainly, other algorithms could be devised to correlate several degraded 
lightpaths and localize the common set of links supporting the lightpaths. 
Nonetheless, in this chapter, we tackle the problem in a different way and present 
visualization techniques to guide human operators through myriads of data.  

It is important to highlight, in the context of autonomous networking, that the role 
of human operators in the control and management of the network cannot be put 
aside, but the opposite; it should be reinforced by the availability and accessibility 
of rich and accurate monitoring data. Such large amount of monitoring data, 
however, needs to be adequately presented by means of advanced operation-
oriented data visualization methods. 

In fact, insightful visualization cannot simply consist in periodically plotting a set 
of charts trying to statistically summarize the current status of the network. 
Indeed, typical data visualization tools available in many management systems 
include timeline charts to represent single time-series, e.g., the evolution of BER 
monitored on a chosen lightpath. Commercial data visualization tools are including 
charts fueled by statistical and ML algorithms that allow extending dashboards 
with information extracted from manually selected monitoring metrics, e.g., to 
highlight whether a lightpaths’ BER is likely to be anomalous [BluePlanet]. 

Specifically for the case of failure localization, many network management systems 
include some sort of data visualization to facilitate such task to human operators. 
Although these tools are really useful when the degradation is high, they fail to 
provide trend information, so the detection cannot be anticipated. For illustrative 
purposes, Fig. 11-1 shows an example, where two maps are presented for two 
different times t1 and t2; colors are used to give information about lightpaths’ QoT 
thus, highlighting those with poor values. In particular, we are considering the 
case of a gradual degradation in a link, were increasing BER values have been 
collected for those lightpaths traversing such link; we are assuming that BER 
monitoring values are available for all the stablished lightpaths.  
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Fig. 11-1. Lightpath BER degradation evolution as a consequence of a soft failure 
in link X8-X11. 

Some questions that cannot be answered looking at Fig. 11-1 at t1 or t2, are: i) is 
lightpaths’ QoT normal? ii) Might be BER is a bit high but, should we be 
concerned? iii) Are lightpaths quickly degrading? 

Instead the above network maps, task-oriented charts that are plotted according to 
a visualization process need to be specified for each desired use case, in the same 
way as different use cases require from different algorithms. More sophisticated 
charts need to be integrated to facilitate human operators to understand the 
relationship among monitoring metrics, find meaningful events, and correlate 
observable consequences caused by the same event. 

 Task-Oriented Visualization 

Aiming to answer the above questions and to localize the element responsible for 
the degradation, we propose a visualization process that consists of a set of chained 
task-oriented charts. 

When requested by the network operator, a huge amount of monitoring data 
belonging to all the established lightpaths collected during a period of time, need to 
be analyzed (left part of Fig. 11-2(a)). It is clear that one cannot simply use a 
timeline chart to plot the BER evolution for all the lightpaths, so other charts 
should be used. The visualization process that we propose consists in iteratively 
present the operator with charts that help him/her to reduce the number of 
suspicious elements causing a failure that affects a subset of lightpaths (right part 
of Fig. 11-2(a)). 

Two examples of this chained process are presented in Fig. 11-2; the first one uses 
a bubble chart and the second one uses a Sankey diagram at the first step, where 
we aim at first to have an insight of which lightpaths show a suspicious behavior. 
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After this first step, one might want to know whether there is/are common 
resources responsible for such degradation, so other visualization charts are 
suggested for that end. Finally, once the number of suspicious elements is small, 
one-by-one analysis can be carried out. As it can be observed in the workflow in 
Fig. 11-2, we have analyzed a set of three chained task-oriented charts, however, 
other combinations of charts can be considered.  
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Fig. 11-2. Example of chained task-oriented applying visualization-assisted data 
filtering (a), bubble chart (b), network color spectrum map (c), historical BER (d), 

Sankey diagram (e), column bar plot (f), and historical packets with error (g). 

 Data Pre-Processing 

Most of the visualization charts presented in this section require pre-processing 
monitoring data records to produce meaningful variables to be visualized. In the 
case of lightpaths’ monitoring, data records contain, among others:  

• time stamp (t); 

• lightpath identifier (p) 

• measured BER, BERtp.  

In addition, the lightpath operational database contains data about the lightpaths 
themselves, including their route and spectrum allocation, length, and estimated 
BER reference value, BER_Refp. Finally, let us assume that a global BER 
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threshold, BER_Thr, is configured as a limit of BER for all the lightpaths in the 
network. From such data, the pre-process phase transforms lightpaths’ BER 
measurements producing a new variable, BER’tp, representing the BER within the 
interval [BER_Refp, BER_Thr]; i.e., 
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where BERtp is previously forced to be confined in the defined interval. Next, two 
variables are computed by aggregating BER’tp data from a selected time period (T):  

• Maximum BER in T, BER_MaxTp, computed as the quartile with probability 
of 95% in order to avoid spurious values; and  

• BER trend in the period, BER_TrendTp, computed using the averaged first 
and last BER’tp values.  

A visualization database, visualizationDB, is created combining these two 
variables together with useful data about the lightpaths; such database will be the 
input of the visualization algorithms that eventually will produce the charts. 

Owing to the fact that visualization is fostered by colors, we use a color palette 
specifically designed to guide operators in finding problems in the network. The 
proposed color palette is defined as a set of concatenated non-overlapping segments 
of gradient color and threshold values in the continuous interval [a, b] ({[colora, 
colorb], [a, b]>}, a, b in [0, 1]), where the color of a given data value in the interval 
[0,1] results from finding the segment representing the data and then computing 
the color in the defined gradient. 

 Detecting Lightpaths Affected by a Gradual Soft Failure  

Bubble Charts 

Specially tailored bubbles charts can be used to provide the specific information 
that network operators need to detect soft failures before they can degrade the QoT 
of established lightpaths. Fig. 11-2(b) illustrates the bubble chart resulting from 
the evolution from t1 to t2 depicted in Fig. 11-1. 

The proposed bubble chart uses BER measures for all lightpaths in the network for 
a given period of time (e.g., the last month) available in the big data repository in 
the MDA controller. The main features of the proposed bubble chart are 
summarized as follows: 

• Number of bubbles, it can be fixed to achieve the best data 
representation. 
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• Bubbles’ position, giving information of the relation between the BER 
value w.r.t. the BER change (trend) in the period; the metrics are relative to 
the expected BER for every lightpath, computed using analytical formulae. 

• Bubbles’ size, gives information about the number of lightpaths a bubble 
includes. 

• Color of each bubble, computed considering two different metrics: BER 
and BER trend, representing the L2-norm of the bubble’s position.  

The resulting bubble chart shows extreme usefulness to detect lightpaths with an 
increasing BER degradation within the considered time period. As an illustrative 
example, two bubbles are represented in Fig. 11-2(b) aggregating lightpaths with 
low BER and trend (B1), and those lightpaths with high BER and appreciable 
trend (B2). In view of bubble B2, the operator can decide to further analyze the 
cause of failure of the paths contained in such bubble; to this end, he/she selects 
bubble B2 and chooses to represent the lightpaths in a new task-oriented chart.  

The bubble chart algorithm in Table 11-1 uses the k-means algorithm to find points 
in a 2D space (i.e., centroids), so that paths are grouped by assigning them to the 
nearest centroid. Each centroid is characterized by the coordinates BER_TrendTp 
(x-axis) and BER_MaxTp (y-axis), and by the list of paths contained in the centroid 
(line 1 in Table 11-1). Next, for each centroid, its color is computed according to the 
L2-norm of the vector representing its position, i.e., ║(BER_MaxTp, 
BER_TrendTp)║2, within the color palette (lines 2-4). Finally, the algorithm returns 
the set of bubbles B (line 5). According to bubbles’ color, one can infer the severity 
of the paths enclosed; note that this will pilot the operator towards these suspicious 
paths. 

Table 11-1 Bubble Chart Algorithm  
INPUT visualizationDB, colorPalette, numBubbles 
OUTPUT Bubbles 
1: 
2: 
3: 
4: 

 
5: 

C={<xPos, yPos, paths>} ← k-means(visualizationDB, numBubbles) 
B ← Ø 
for c in C do 
B ← B U {<c.xPos, c.yPos, |c.paths|, getColor(colorPalette, 
║(c.xPos, c.yPos║2)>} 

return B 
 

Sankey Diagram 

Another useful chart for this task is the Sankey diagram depicted in Fig. 11-2(e). 
This chart is a type of flow diagram that helps visually to emphasize the major or 
minor flow transfer within a system. The proposed diagram includes: 

• Upper labels, consider different periods of time, e.g., monthly, weekly 
periodicity. 

• Lower labels, consider levels for the normalized BER values. 
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• Ribbon thickness, flow running from the upper to the lower label; it 
considers the amount of lightpaths that have a BER evolution that satisfies 
the conditions of both labels.  

Considering the above, the operator can also select the Sankey diagram as another 
option to easily find lightpaths with high BER without visualizing every individual 
lightpath’s BER evolution. In this task-oriented chart, all or a subset of the 
lightpaths in the network are selected and classified according to a given statistical 
function (e.g., the max function) that is applied to BER measures for every defined 
period (e.g., every month). For illustrative purposes, only two levels (normal and 
high) of normalized BER (measured BER over estimated BER) are shown in Fig. 
11-2(e). 

The pre-process to generate the Sankey diagram consists in computing a single 
normalized BER value per each of the lightpaths and time periods (e.g., weeks); we 
used the 95% quantile to this end. 

 Intermediate Filtering 

The charts introduced in this section are assumed to be created after some previous 
filtering has been done, e.g., but not limited to, the bubble chart or the Sankey 
diagram presented above. 

Network Spectrum Color Map 

A network spectrum color map (Fig. 11-2(c)) is a matrix representing the optical 
links as rows and the spectrum slices as columns; the color of each cell inherits the 
color of the lightpaths, computed likewise as for the bubbles, i.e., using the L2-
norm of its vector. The intention is to find common causes leading lightpaths 
appreciable BER values or BER trend. A row-summary column is additionally 
displayed to assist the operator in finding those links supporting the highest 
number of degraded lightpaths. 

Column Plot 

A column plot (Fig. 11-2(f)) is defined by different ranges of normalized BER for the 
columns. The pre-processing consists on computing the column’s height according 
to the corresponding number of lightpaths in each range.  

 Single Element Analysis 

The previous charts can led the operator to an accurate filtering, where coming 
from thousands of lightpaths (left part of Fig. 11-2(a)). At the end of the 
visualization process, only a small amount of lightpaths need to be further 
analyzed (right part of Fig. 11-2 (a)). 
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Fig. 11-2(d) and Fig. 11-2(g) use timeline plots to visualize the evolution of one 
single measurement with time. 

 Data Pre-Processing 

Task-oriented charts might require examining long monitoring time-series data 
sets from a large huge of elements; e.g., analyzing BER time-series for the last 
month for a set of 5,000 lightpaths entails retrieving and processing about 110 MB 
of data. Although processes behind task-oriented charts are designed to produce 
the essential chart configuration data, i.e., chart elements, color scheme, etc., to 
highlight the desired visualization effect, monitoring data should be aggregated at 
collecting time aiming at reducing processing at visualization time. For instance, 
charts in Fig. 11-2((e) and (f) require only one data value per each ribbon and 
column, respectively; if such data pre-computation is done at collecting time, 
visualization will be accelerated. 

 Illustrative Results 

To evaluate the proposed data visualization techniques, we carried out simulations 
on a realistic 30-node and 56-link multilayer network based on the Spanish 
Telefonica’s optical network, where a 14-node VNT was defined. Besides, 800 100 
Gb/s lightpaths using 3x12.5GHz frequency slices were set-up sequentially between 
randomly selected nodes; lightpaths’ BER was computed considering the expected 
OSNR in the links (needed to compute BER_Refp) plus a randomly generated 
amount of errors; expected links’ OSNR considered not only link’s length but also 
its load [Po12]. A maximum pre-FEC BER that transponders can support before a 
lightpath is torn-down, was set up as BER_Thr. Finally, we emulated a gradual 
degradation in link F08-F09, which decreases its OSNR and hence, increases BER 
of lightpaths using this link. 

Fig. 11-3 presents the results of applying the bubble chart algorithm previously 
defined on two very different scenarios: i) stable scenario (right), and ii) gradual 
degradation scenario (left). In both scenarios, lightpath BER measurements of the 
selected week (36 and 39) are visualized using three bubbles. The defined color 
palette is also presented. 

In the first scenario (Fig. 11-3 right), one can observe that although one bubble 
appears with high BER, there is no trend, i.e., the cause of the high BER in the 
lightpaths is now stable. The operator could request to visualize previous weeks to 
find the period where the degradation happened. This leads to our second scenario, 
which is presented in Fig. 11-3 left; in this bubble chart for week 36, the operator 
clearly identifies one bubble with significant BER trend (bubble 3). A summary of 
the two bubble charts is presented in Table 11-2. 
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Fig. 11-3. Bubble charts for weeks 36 and 39. 
 

Table 11-2 Bubble Chart Summary  

 Bubble Paths BER Trend BER max 

Week 36 

1 604 0.0 0.02 

2 142 0.01 0.23 

3 54 0.07 0.61 

Week 39 

1 595 0.0 0.008 

2 154 0.0 0.23 

3 51 0.0 0.826 
 

Once the time when the degradation appeared has been identified, the operator 
might decide to find whether the cause of failure is in an optical link; to that end, 
he/she can select another operation-oriented chart to visualize a network spectrum 
color map. To clearly appreciate the goodness of the proposed visualization process, 
let us assume that no previous filtering is performed, so Fig. 11-4(a) presents the 
network spectrum color map when all the paths in the network (800 lightpaths) are 
selected. 

Although a trained eye could perceive that few links might be the responsible for 
the degradation, such conclusion is not obvious. In fact, the row-summary column 
in the spectrum color map, which is intended to highlight the most likely degraded 
links, does not show any clear identification.  
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Fig. 11-4. Network Spectrum Color Map computed with all lightpaths (a) and with 
the lightpaths in bubble 3 (b). 

Conversely, computing the spectrum color map with only the paths in bubble 3 that 
summarizes 54 paths, results is a much clear map (see Fig. 11-4(b)). In this case, 
the row-summary column identifies four links (out of 56) to likely be the 
responsible of causing degradation on the lightpaths. It is easy now for the operator 
to inspect one by one each of these optical links to find whether there is a clear 
responsible for the degradation. 

Considering now the other chained task-oriented charts, the operator would first 
select the Sankey diagram (Fig. 11-5(a)), which consists in computing a single 
normalized BER value per each of the lightpaths and time periods (e.g., weeks); we 
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used the 95% quantile to this end. As stated in the previous section, the proposed 
Sankey diagram can define different labels. For the upper labels we select four 
consecutive periods of one week. In contrast, we define three severity levels for 
lightpaths’ normalized BER lower labels as follows:  

• normal, in the segment (-∞, 2.5]; 

•  warning, confined in (2.5, 5]  

• anomalous  in the segment (5, +∞). 

Sankey Diagram (BER evolution)

Week 39 (25 Sep – 1 Oct  2017)
Warning

Week 39 (25 Sep – 1 Oct  2017)
Anomalous

Packet errors evolution (vLink TR2-TR3)

(a)

(b) (c)

(d)

 

Fig. 11-5. Experimental chained task-oriented (a-c) and timeline (c) charts. 

According to Fig. 11-5(a), the operator can then select a particular ribbon, a subset 
of lightpaths is then chosen, acting as a filter for the next chart or list, in our 
example, a column plot. Pre-processing for column charts defines different ranges 
for the columns and computes column’s height according to the corresponding 
number of lightpaths in each range.  

Fig. 11-5(b), presents the column plot for a certain number of lightpaths; 
particularly the ones that the last week have had a normalized BER value in the 
range of warning. Nevertheless, Fig. 11-5(c) depicts the same chart when only the 
anomalous lightpaths are considered. Finally, the evolution of packets with error 
(Fig. 11-5(d)) in the vlink supported by a selected lightpath is shown, where the 
time window in the X-axis in the plot relates to that of the previous plots in the 
chain. Optionally, the operator may enable “refresh” to see the evolution real-time. 
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 Conclusions 

In this chapter, we explored the use of data visualization techniques to guide 
operators in failure localization tasks. A data visualization process based on 
advanced graphical representation has been proposed for the localization of soft 
failures affecting lightpaths. In the first step, two visualization task-oriented charts 
can be used e.g., bubble charts using specific metrics or Sankey diagram have been 
proposed to identify, if any, those lightpaths deserving deep inspection because of 
unexpected high and/or increasing BER. Secondly, other charts e.g., network 
spectrum color map and column plots, have been proposed as an ad hoc technique 
for accurate localization of the failing optical fiber link. As proven by the 
illustrative results, using the proposed chained charts, operators can easily track 
network performance and speeding up health diagnosis through a powerful and 
simple visualization process. 
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Chapter 12 

Closing Discussion 

 Main Contributions 

The main contributions of this thesis are: 

• Chapter 5 proposed a score-based different anomaly detection method for 
improving single traffic anomalies detection at layer 2. Once detected, the 
ODEON optimization problem was proposed to reconfigure the VNT. 
Besides, a monitoring and data analytics architecture was devised in order 
to reduce the amount of data to be conveyed and to minimize anomaly 
detection times.  

• The ALCOR method was devised in Chapter 6 to deal with the case of 
multiple related traffic anomalies triggered by an external event. By 
anticipating whether other ODs are anomalous after detecting one 
anomalous OD pair, KPIs like the number of network reconfigurations, total 
reconfiguration time, as well as traffic losses were improved. 

• Chapter 7 was devoted to BER degradation detection and failure 
identification at the optical layer. BANDO and LUCIDA algorithms were 
proposed to, first, detect significant BER changes in optical connections, and 
then, to identify the most probable failure pattern. 

• The SCULPTOR algorithm was proposed in Chapter 8 to be triggered for 
demand re-routing after receiving certain BANDO notifications regarding 
significant BER change. 

• Devoted to soft failure localization, Chapter 9 proposed two techniques for 
active monitoring during commissioning testing and for passive in-operation 
monitoring. 
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• Chapter 10, experimentally validated the distributed data analytics 
architecture presented in this PhD thesis through three representative use 
cases for autonomic networking in multilayer scenarios. 

• Finally, Chapter 11 focused on the use of visualization techniques to help 
operators during failure localization procedure. 
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Appendix A – Examples Machine 
Learning Algorithms 

This appendix details examples of R code for applying the different machine 
learning algorithms that have been introduced in Chapter 3 such as: i) regression, 
ii) SVM, iii) NB and iv) K-means algorithms. 

Regression 

It is one of the most used algorithms in statistics, based on finding the relation that 
explains the behavior between variables. In particular, this section details an 
example of R code (see code in Fig. A-1) for applying linear and non-linear models 
using the R function lm(·). The first part of the code creates a dataset. Later, 
different models are tried for fitting the real observations. Finally, as presented in 
Fig. A-1, the different models to fit the experimental points are depicted. Note that 
high order polynomials are not suitable since they tend to overfit original data. 

# Creating dataset

x <- 1:10

y <- x + c(-0.3,0.3)

plot(x,y, xlim=c(0,11), ylim=c(-1,12))

# Different models, lineal and polynomial

fit2 <- lm( y~x )

fit3 <- lm( y~poly(x,3) )

fit5 <- lm( y~poly(x,6) )

fit4 <- lm( y~poly(x,9) )

# Plotting

xx <- seq(0,11, length.out=250)

lines(xx, predict(fit2, data.frame(x=xx)), col='orange')

lines(xx, predict(fit3, data.frame(x=xx)), col='green')

lines(xx, predict(fit5, data.frame(x=xx)), col='blue')

lines(xx, predict(fit4, data.frame(x=xx)), col='purple')  
Fig. A-1 Example of R code for regression. The inlet figure points fitted with 

different equations (lineal and polynomial). 
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Support Vector Machine 

SVM is a supervised learning technique really useful for binary classification since 
a boundary called hyperplane is computed and separates data into groups of 
similar features. 

As an example of how to implement an SVM in R using the svm(·) r-package , we 
present the following Table A-1. As a summary, the pseudocode in Table A-2 
resumes this R code. One of the basis of SVMs is to divide the dataset in the 
training and the testing groups (training_set, testing_set) as a percentage of 60%-
80% and 20%-40% respectively (lines 1-2). Then, several parameters such as the 
cost C need to be fixed (line 4). Later, applying the package/library for SVMs a 
model is obtained (line 5); using this model, predictions for classification with the 
testing dataset as input are performed (line 6). As the correct classification labels 
for the testing data are available, a further study concerning errors can be done 
(line 7). 

Table A-1 Example of R code for SVM. 
# Installing libraries 

install.packages(“e1071”) 

library(“class”) 

library(e1071) 

library(rpart)  

# Reading, processing and plotting data 

trainingData =read.csv(file=“trainingData.txt”, header = TRUE, sep=“,”) 

testingData =read.csv(file=“testingData.csv”, header = TRUE, sep=“,”) 

# Rename columns 

names(trainingData)[1]<-”x1” 

names(trainingData)[2]<-”x2” 

# Models: Linear Kernel changing cost parameter C 

n = c(0.01, 0.1, 1, 10, 25, 100, 1000) 

model <- svm(trainingData[,1:2],trainingData[,3], type=“C-classification”, 
cost=n, kernel=“linear”, scale = FALSE) 

plot.prediction (model, paste0(“linear kernel, C=“,1)) 

# Computing predictions and frequency table of success 

svm.pred <- predict(model, testingData[,1:2]) 

table(pred = svm.pred, true = testingData[,3]) 

# Getting parameters of hyperplane 

plot(trainingData[,-(3:5)],pch=19,col=(trainingData$target+3)/2) 

w <- t(model$coefs) %*% model$SV 

i <- -model$rho 

# in this 2D case the hyperplane is the line w[1,1]*x1 + w[1,2]*x2 + b = 0 

abline(a=-i/w[1,2], b=-w[1,1]/w[1,2], col=“blue”, lty=3) 

abline(a=-(i-1)/w[1,2], b=-w[1,1]/w[1,2], col=“grey”, lty=3) 

abline(a=-(i+1)/w[1,2], b=-w[1,1]/w[1,2], col=“grey”, lty=3) 

points(trainingData[model$index,c(1,2)],col=“blue”,cex=2) 
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Finally, this algorithm returns the model to allow classification of an unknown new 
dataset. 

Table A-2 SVM algorithm pseudocode. 
INPUT dataset 
OUTPUT model(hyperplane, SVs) 
1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

training_set ← select a percentage of the dataset at random 
testing_set ← dataset \ training_set 
do 

select params (C, other) 
model ← fit SVM (training_set, params) 
predicted ← predict(model, testing_set) 
study error 

while error intolerable 
return model 

 

An important property of SVMs is that the determination of the model parameters 
corresponds to a convex optimization problem, and so any local solution is also a 
global optimum [Bi06].  

In the following examples we present the training dataset in Fig. A-2(a) and Fig. A-
2(b) shows the testing dataset. As it can be seen, both are more or less similar. As 
previously seen, this case presents an example of non-linearly separable training 
class, therefore we need to solve the optimization problem presented in eq. (3-37) 
by changing the cost parameter C. Fig. A-3 shows an illustrative example for three 
different values for C showing the number of support vectors needed in all the 
cases. Polynomial kernels could also be used, but this simple example is well 
classified with a linear kernel. 
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Fig. A-2 (a) Input data for training the SVM and (b) input data for testing the SVM 
model. 
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Analysis of parameter cost C 

Fig. A-3 presents the use of lineal kernel with different C parameter values 
ranging from C = 0.1 to C =10). The C parameter allows to decide how mucho to 
penalize misclassified points. A low value of C parameter prioritizes simplicity (soft 
margin), while high C values prioritize making as few mistakes as possible, 
probably tending to overfitting. As it can be observed, for small values of C, the 
optimization chooses a bigger-margin hyperplane in contrast with the case of high 
values of C. 

Fig. A-3(a) shows the computed hyperplane using C = 0.1, for this value, 6 support 
vectors are needed; then Fig. A-3(b) tests the just obtained model with a new 
dataset to evaluate its performance (detailed in Fig. A-3). Besides, the same study 
has been considered for other cost values such as: C = 1 (Fig. A-3 (c), (d)) and C = 
10 (Fig. A-3 (e),( f)). It can be observed that when C increases to 1, the number of 
support vectors decreases down to 4. Note that when C = 10 or above, the number 
of support vectors remains equal to 3. In particular, with this high value of C, the 
constraint penalizes a lot making a classification mistake, therefore not allowing 
committing any misclassification. As it can be seen, in Fig. A-3 (e) even the most 
distant point in the training class 2 is correctly classified. 

Table A-3 Confusion matrix. 

 Real 

 C=0.1 C=1 C=10 

Prediction Class 1 Class 2 Class 1 Class 2 Class 1 Class 2 

Class 1 15 0 15 0 13 0 

Class 2 0 13 0 13 2 13 

Table A-3 resumes the performance of the models obtained changing the cost C 
parameter, where both, prediction and the correct classification are presented. 
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Fig. A-3. SVM hyperplane and margins computed with training data for three 
different costs (a) 0.1, (c) 1 and (e) 10. (b), (d) and (f) use the SVM to classify the 

testing data. 
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Naïve Bayes 

This algorithm is a special case of a Bayesian Network (BN). In particular, the 
Naïve Bayes (NB) assumes that the presence of a particular feature in a class is 
unrelated to the presence of any other feature. However, this assumption is rarely 
satisfied. 

Let us consider both, an example of R code explaining the implementation of 
naive.bayes R package (see Table A-4) and also a pseudocode of NB implementation 
(see Table A-5). For this example, a dataset of independent variables (x1, x2, x3) 
and a dependent variable y is generated. Firstly, a random dataset is generated 
and structured as a dataset (Table A-5, lines 1-4). As NB requires variables to be 
discrete, factorization needs to be performed on both variables (lines 5-7). Finally, 
using the naive.bayes package, the model is created (line 8) with which predictions 
can be made (line 9). Finally, line 10 returns the obtained model. 

Table A-4 Example of R code for Naïve Bayes. 
# Installing libraries 

install.packages(“bnlearn”) 

library(bnlearn) # data(learning.test) head(learning.test) 

# Generating data 

n=100 

x1=runif(n) 

x2=runif(n) 

x3=runif(n) 

y=floor(x1+x2+x3) 

x1=floor(x1*5) 

x2=floor(x2*5) 

x3=floor(x3*5) 

df=data.frame(x1,x2,x3,y) 

# Discretize values into factors before applying Naïve Bayes  

df[,'x1']<-factor(df[,'x1']) 

df[,'x2']<-factor(df[,'x2']) 

df[,'x3']<-factor(df[,'x3']) 

df[,'y']<-factor(df[,'y']) 

# Computing the Y prediction separately with each one of the variables  

resNB_X1=naive.bayes(df[,c(“x1”, “y”)], “y”) 

resNB_X2=naive.bayes(df[,c(“x2”, “y”)], “y”) 

resNB_X3=naive.bayes(df[,c(“x3”, “y”)], “y”) 

# Plotting Bayesian Network 

plot(resNB_X1) 

plot(resNB_X2) 

plot(resNB_X3) 

# Computing Y prediction with all the variables (X1, X2, X3) 

resNB=naive.bayes(df, “y”) 

plot(resNB) 

# Computing prediction of Y separately with each one of the variables 
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Ypred_X1=as.data.frame(predict(resNB_X1,df[,c(“x1”,”y”)], prob=FALSE)) 

Ypred_X2=as.data.frame(predict(resNB_X2,df[,c(“x2”, “y”)], prob=FALSE) 

Ypred_X3=as.data.frame(predict(resNB_X3,df[,c(“x3”, “y”)], prob=FALSE) 

# Computing prediction of Y with ALL  of the variables 

Ypred = as.data.frame(predict(resNB, df, prob=FALSE)) 

# Create a dataframe with all Y predictions and Y real. 

Yreal = as.data.frame(as.numeric(as.character(df$y))) 

Ypredict_df=as.data.frame(c(Ypred_X1,Ypred_X2,Ypred_X3, Ypred, Yreal)) 

colnames(Ypredict_df)[4]=“YpredAllX” 

colnames(Ypredict_df)[5]=“Yreal” 

# Compare predictions with real Y value. Convert factors to numeric 

dif_X1=Ypredict_df$Yreal-as.numeric(as.character(Ypredict_df$pred_X1)) 

dif_X2=Ypredict_df$Yreal-as.numeric(as.character(Ypredict_df$pred_X2)) 

dif_X3=Ypredict_df$Yreal-as.numeric(as.character(Ypredict_df$pred_X3)) 

dif_allX=Ypredict_df$Yreal-as.num(as.character(Ypredict_df$YpredAllX)) 

info_X1=as.data.frame(table(dif_X1)) 

info_X2=as.data.frame(table(dif_X2)) 

info_X3=as.data.frame(table(dif_X3)) 

info_Xall=as.data.frame(table(dif_allX)) 

posX1_OK = as.numeric(rownames(info_X1[info_X1$dif_X1==0,])) 

posX2_OK = as.numeric(rownames(info_X2[info_X2$dif_X2==0,])) 

posX3_OK = as.numeric(rownames(info_X3[info_X3$dif_X3==0,])) 

posXall_OK = as.numeric(rownames(info_Xall[info_Xall$dif_allX==0,])) 

# Computing probabilities of sucess 

probOK_X1 = info_X1$Freq[posX1_OK]/sum(info_X1$Freq) 

probOK_X2 = info_X2$Freq[posX2_OK]/sum(info_X2$Freq) 

probOK_X3 = info_X3$Freq[posX3_OK]/sum(info_X3$Freq) 

probOK_Xall = info_Xall$Freq[posXall_OK]/sum(info_Xall$Freq) 

The example considers the number of points in the dataset n equal to 100 and the 
number of independent variables j is equal to 3. Besides, y stands for the 
dependent variable of the model, the one we want to predict. 

Table A-5 Bayesian Network pseudocode. 
INPUT n, j 
OUTPUT model 
1: 
2: 

3: 

4: 

5: 
6: 
7: 

8: 

9: 

10: 

for each j do: 
xj ← runif(n) 

y ← floor(sum(xj)) 
df ← data.frame(x1,x2…xj,y) 
for each j do: 

df[,'xj'] ← factor(df[,'x1']) 
df[,'y'] ← factor(df[,'y']) 
model ← naive.bayes(df, ‘y’) 
pred ← predict(model, df, prob=TRUE) 
return (model)  
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The results for this example are presented in Table A-6, where, by inspection it can 
be seen that generating the model with only one of the variables or a combination 
of them has a direct influence on the probability of success. 

Table A-6 Results for success with different models. 

Probability of success modeling Y~X1 0.69 

Probability of success modeling Y~X2 0.68 

Probability of success modeling Y~X3 0.67 

Probability of success modeling Y~X1,X2, X3 0.91 

Clustering 

The K-means algorithm is one of the most well-known clustering algorithms; its 
main steps were introduced in Chapter 3 and they are reproduced in Table A-7 to 
facilitate reading. 

Table A-7 Steps in K-means algorithm. 

Step Action 
1 Choose a number K of clusters. 
2 Select the centroids by selecting K points at random, not 

necessarily from the dataset. 
3 Assign each data point to the closest (Euclidean) centroid. 
4 Compute and place the new centroid of each cluster. 
5 Reassign each data point to the new closest centroid. If any 

reassignment took place, go over steps 4 and 5, otherwise finish. 
 

The pseudocode for implementing the K-means algorithm is detailed in Table A-8. 
The input for the algorithm in Table A-8 is represented by step 1. Then, step 2 can 
be found in lines 2-3. Then, steps 2 and 3 concerning assignation and re-
computation of centroids are stated in lines 2-7. Finally, steps 4 and 5 are repeated 
in lines 8-9 until there are no more changes needed for centroid placement.  

Consider Fig. A-4 where the steps for the K-means algorithm are detailed. This 
algorithm receives as input: X which is the dataset of samples to be clustered, K 
which is the number of clusters and MaxIters to limit the maximum number of 
iterations in this iterative algorithm. Besides, the output of this algorithm contains 
C={c1, c2,…,cn} which is the set of cluster centroids and D which is the set of cluster 
labels of X={d(x) |x=1,2,…,n}. 

First, Fig. A-4(a) shows the initial dataset, where the selection of the clusters is not 
straightforward. We decide to set the number of clusters K equal to 2 (step 1) and 
place the centroids at random places as presented in Fig. A-4(b) (line 1). Then, we 
need to assign each of the points to the closest centroid (lines 2-7), where the 
optimization problem for minimizing the distance is specified in line 5. For the sake 
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of clarity, in this PhD thesis we are only considering Euclidean distances. Fig. A-
4(c) shows a dotted line which is equidistant from both centroids; with this 
separation in mind, we can color the dataset according to the distance to the closest 
centroid, forming K clusters [DMR]. 

Table A-8 K-means pseudocode. 
INPUT X={x1, x2,…,xn}, K, MaxIters 
OUTPUT C={c1, c2,…,cn } 
1: 
2: 
3: 

4: 

5: 

6: 
7: 
8: 
9: 
10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 

ci ← computeRandomCentroids(·) 
for each ci ∈  C  do: 

ci ← xi ∈  X 
for each xi ∈ X  do: 

d(xi) ← argminDistance(xi, cj) j∈ {1,…K} 
change ← false 
i ← 0 
while changed≠false & iter ≠ MaxIters 
for each ci ∈  C  do: 

updateCluster(ci) 
for each xi ∈ X  do: 

minDist ← argminDistance(xi, cj) j∈ {1,…K} 
if minDist ≠ d(xi) then 

d(xi) ← minDist 
change ← true 

else change ← false 
i++ 

 

Later, step 4 computes and places the new centroid of each cluster (Table A-8– lines 
8-17), i.e., imagine that each of the points weights one kg and we need to find the 
center of gravity, as presented in Fig. A-4(d). Then, according to the new 
equidistant line, some points are now not well classified and we need to reassign 
each data point to the new closest centroid Fig. A-4(e). A reassignment took place, 
so then, step 4 and step 5 need to be redone as plotted in Fig. A-4 (f) and Fig. A-4(g). 
In case the equidistant line makes no points to be reassigned, means that the 
algorithm has converged and that the model is ready. Finally, Fig. A-4(h) and Fig. 
A-4(i) show the final clusters after an iterative process (variable MaxIters from 
Table A-8 is set to fix the maximum number of iterations allowed). 
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(a) (b) (c)
 

(d) (e) (f)
 

(g) (i)(h)

 

Fig. A-4(a) Input data, (b) selection of random centroids, (c) assigning samples to 
clusters, (d) new centroid placement, (e) samples reassigned to new centroids, (f),(g) 

iteration of the previous process, and (h),(i) final clusters. 

For the sake of clarity, let us present a quick example of the use of the kmeans 
package in R [RCran]. 

Table A-9 kmeans R package, description and example. 

Function kmeans(x, centers, iter.max = 10) 

Input  

 x numeric matrix of data 

 centers either the number of clusters K or a set of initial cluster centers 

 iter.max the maximum number of iterations allowed 
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Output  

 cluster vector of integers (1:K) indicating the cluster where each point is allocated 

 centers a matrix of cluster centers 

 totss total sum of squares 

 size number of points in each cluster 

 iter number of iterations 

Example  
 

# Generating 2D data 

x <- rbind(matrix(rnorm(100, sd = 0.3), ncol = 2), 

matrix(rnorm(100, mean = 1, sd = 0.3), ncol = 2)) 

colnames(x) <- c(“x”, “y”) 

# Generating trying with different K values (2,3,4) 

K=c(2,3,4) 

cl <- kmeans(x, K) 

plot(x, col = cl$cluster) 

points(cl$centers, col = 1:K, pch = 8, cex = 2) 
 

When K takes different values in Table A-9, we can obtain a set of plots as in Fig. 
A-5 where K ranges from 2 to 4. 

 

 

Fig. A-5(a) Input data, clustering with: (b) K=2, (c) K=2, and (d) K=4. 
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Appendix B - Traffic Modeling 
and Generation 

Traffic generation is an important tool to study and characterize the network. This 
appendix presents general traffic profiles and the way they can be generated.  

Let us denote f(t;T) as the periodic function with period T returning the mean value 
of the model complex against time traffic. This function f(t;T) can be generated in 
multiple ways. For instance, one can define a piecewise linear function, i.e., a 
function composed of a number of linear segments, aiming to reproduce the traffic 
behavior against time. Another way could consist on a polynomial of some degree, 
or even a summation of functions, e.g., trigonometric sines, as it will be presented. 

In addition, some random values around the average value are usually observed as 
a result, among others, of the monitoring process. That random function εt can be 
modeled as a probability distribution function, e.g., following the normal 
(Gaussian) distribution. In such case, εt~(µ,σ2) defined by the mean (µ) and the 
standard deviation (σ). In consequence, the complex traffic profile Y(t;T) to be 
reproduced can be generated as: 

tTtfTtY ε+= );();(  (B-1) 

Let us now present three different traffic profiles, where f(t;T) functions were 
generated using piecewise linear functions and εt~𝒩𝒩(0,σ2) (Fig. B-1). Fig. B-1 
presents three different cases of traffic generation where the mean function f(t;T) 
and the random function εt are represented as strong blue line and red dots , 
respectively. Fig. B-1a plots a business-like traffic with differentiated traffic 
intensities during working and night hours; intensity experiences a significant 
increase around 9h reaching its maximum at midday. Fig. B-1(b) shows a similar 
traffic profile focused on the traffic generated by residential users; refer to this as 
content delivery network (CDN). It can be observed how the maximum value is 
around 17h. Finally, Fig. B-1(c), plots a totally different traffic profile reproducing 
the traffic exchange among servers in distant datacenters, e.g., for database 
synchronization; we call this profile as DC2DC traffic. The main characteristic of 
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this traffic is that the maximum value is reached during night, whereas day time 
intensity is virtually zero. 
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Fig. B-1. Traffic profiles generated: (a) Business, (b) CDN, and (c) DC2DC. 

As anticipated above, f(t;T) can be modeled as a summation of trigonometric sines. 
This alternative way has been used to model periodic traffic due to its repetitive 
pattern, e.g., in [STRONGEST10], where the authors reproduced traffic obtained 
from monitoring the Telecom Italia IP national backbone network. Daily profiles 
from Monday to Friday were very similar but also profiles on Saturday and on 
Sundays, hence only one model was developed to represent any day of the week 
(Fig. B-2a). Equation (B-2) reproduces the model, where k is the index for the 
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corresponding term in the sinusoidal series expansion, a0 is the mean traffic 
intensity, ak is the amplitude, tk is the time shift in seconds, and daily period T (in 
seconds).  

∑
=





 −

+=
K

k

k
k T

ttkaaTtf
1

0 ··2·sin);( π  (B-2) 

The curve in Fig. B-2a represents the traffic intensity generated with eq. (B-2), 
applying the values of the coefficients in the table. The equation is limited to the 
first four terms of the harmonic expansion since higher order terms add hardly any 
information. 
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Fig. B-2. (a) Daily network traffic generated as a summation of trigonometric sines. 
Coefficients are specified. (b) Daily traffic variation with evolutionary traffic profile 

and incremental intensity. 

The previous traffic profiles showed how periodicity can be modeled assuming that 
the profile observed in one day is similar for the rest of the days. However, traffic 
volume in usually growing when looking at long periods (e.g., one year) and even 
changes its daily pattern. Equation (B-3) presents a general formula to generate 
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evolutionary traffic profiles, where α(t) represents the line with value 1 for t=0 and 
0 for t=max_time, and parameter β is the growing factor (e.g., 1.5). For instance, 
Fig. B-2b plots a traffic profile where f1(t) is the business profile and f2(t) is the 
CDN profile, previously presented. 

))(·))·((1())()·(();( 2 t2t11 tfttftTtY εβαεα +−++=  (B-3) 

Notwithstanding traffic generation is usually focused on modelling traffic, in this 
work, time evolutionary traffic profiles have also been covered. 
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List of Acronyms 

AIC Akaike Information Criterion 

ALCOR Anomaly and Network Reconfiguration 

BANDO BER Anomaly Detection 

BER Bit Error Rate 

BN Bayesian Networks 

BV-WSS Bandwidth Variable Wavelength Selective Switch 

CASTOR Cognitive Architecture to Support Telecom clOud Resource sharing 

CDF Cumulative Distribution Function 

cFS Cyclic Filter Shift 

cLD Cyclic Laser Drift 

CR Collected Data Repository 

DCF Dispersion Compensation Fiber 

DoS Denial-of-Service 

DP-QPSK Dual Polarization - Quadrature Phase Shift Keying 

DSP Digital Signal Processing 

EDFA Erbium Doped Fibre Amplifier 

EON Elastic Optical Networks 

FEC Forward Error Correction 

FEELING FailurE causE Localization for optIcal NetworkinG 

FS Filter Shift 

FSE Filter Shift Estimator 

FT Filter Tightening 
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FTE Filter Tightening Estimator 

KDD Knowledge Discovery from Data 

KPI Key Performance Indicators 

LD Laser Drift 

LDE Laser Drift Estimator 

LSP Labeled Switched Path 

LUCIDA Failure Identification Algorithm 

MDA Monitoring and Data Analytics System 

MILP Mixed Integer Linear Programming 

ML Machine Learning 

MMH Maximum Margin Hyperplane 

MPLS Multi-Protocol Label Switching 

MR Modeled Data Repository 

MTTR Mean-Time-To-Repair 

NMS Network Management System 

OA Optical Amplifier 

OAA Observe-Analyze-Act 

OD Origin-Destination 

ODEON OD Traffic Anomaly-Triggered Topology Reconfiguration 

OOK On-Off Keying 

OSA Optical Spectrum Analyzer 

OSC Optical Supervisory Channel 

OSNR Optical Signal to Noise Ratio 

OTC Cost Optical Testing Channel 

PCA Principal Component Analysis 

PDF Probability Density Function 

PM Polarization Multiplexed 

PMF Probability Mass Function 

PM-QPSK Polarization-Multiplexed Quadrature Phase-Shift Keying 

PRBS Pseudo-Random Bit Sequence 

QoS Quality of Service 
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QoT Quality of Transmission 

QPSK Quadrature Phase-Shift Keying 

RMSA Routing, Modulation And Spectrum Assignments 

SDN Software Defined Network 

SLA Service Level Agreements 

SO Signal Overlap 

SQE Signal Quality Estimation 

SVM Support Vector Machine  

TCO Total Cost Of Ownership 

TISSUE Testing optIcal Switching at connection SetUp timE 

TP Transponders 

vlink Virtual Link  

VNT Virtual Network Topology 

VPI VPIphotonics: Simulation Software and Design Services 

WSS Wavelength-Selective-Switches 
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