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Introduction

Phase transitions are omnipresent phenomena in nature. The formation of liquid
drops, bubbles or ice crystals in water are familiar manifestations of a process,
which beyond its practical interest constitutes a fundamental problem in many
areas of the scientific knowledge. The initial and crucial step in many of these
phase transformations is the formation of small embryos or nucleus of the new
phase within the bulk metastable substance. This fundamental mechanism of
phase transformation is known as nucleation.

Basically, one can distinguish between two different types of nucleation:
homogeneous nucleation which occurs in the bulk of a pure substance; and het-
erogeneous nucleation, which takes place in the presence of boundaries, surfaces,
impurities or pre-existing particles. In fact, these walls and impurities provide
preferential sites for the formation of the new phase and thus the heterogeneous
nucleation is more common in many practical circumstances.

Nucleation phenomena appear in a wide variety of forms. Condensation
(liquid drop formation in a supercooled gas), cavitation (bubble formation in a
superheated liquid), crystallization or void formation occurring in simple sys-
tems, multicomponent mixtures, alloys or amphiphilic substances are fascinat-
ing examples of nucleation processes. But nucleation also plays a crucial role in
very different areas of science and technology.

In atmospheric sciences, the nucleation of water droplets or ice crystals in
the atmosphere is a fundamental issue in weather forecasting, and the cloud
formation provoked by atmospheric aerosols (liquid droplets suspended in a
gas) is one of the reasons of the global warming [1]. Nucleation can also be used
to induce or prevent precipitations and thunderstorms by cloud seeding.

For pharmaceuticals, an appropriate choice of the crystal structure can en-
hance the bio-availability and effectiveness of a drug [2]. Examples of biological
interest encompass the bio-mineralization of bone, teeth and shells [3]; the for-
mation of kidney stones or uric acid crystals in the clinical condition of gout
or protein crystallization [4]. This former example is specially important, since
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crystallization is the key to know the protein structure and from it, its function-
ality. In addition, protein crystallization is also implicated in certain diseases
such as sickle-cell anemia and the formation of cataracts in the eye. In cryo-
genics, there is a strong interest to bypass and control nucleation of ice in the
cryopreservation of embryos and human tissues [5].

The motor engine and turbine function, the oil and gas extraction, the
fabrication of aerosols, coverings, or metallurgic materials constitute practical
problems concerning relevant industries quite involved in the investigation and
control over different aspects of nucleation.

Another area where nucleation constitutes a fundamental problem is geo-
physics. Nucleation is behind vulcanism [6] and planetary formation, and the
understanding of earthquake nucleation [7],[8] is also a primal challenge to ac-
complish its predictability.

On the physical side, nucleation is for instance a major topic in the growth
of low dimensional structures like quantum dots. Cavitation, nucleation of
3He, of vortex [9] in superconductors or of defects in materials [10] are also
significant examples, which also embrace diverse applications to other areas
as the modeling of traffic congestion and car jamming [11] thus revealing its
multidisciplinary character. Nevertheless, the field where nucleation is probably
most relevant is in the context of phase transformations in condensed matter
systems and material science. Nucleation is deciding in manufacturing and in
the development of new materials. An important requirement in the fabrication
of advanced materials, such as polymers, ceramics or semiconductors is control
over crystallization [12]. Precisely, the nucleation stage determines the rate,
size, structure and purity of crystallization, which dictates the future properties
of the material.

Despite all this clear interest arising from many disciplines, nucleation re-
mains an important fundamental problem not completely understood. The
reason for that fact lies in the peculiar characteristics of this phenomenon.

To illustrate the physical nature of the nucleation process let us consider a
simple and well-known example: the condensation of a vapor. Figure 1 repre-
sents the pressure-volume phase diagram of a van der Waals gas. The solid line
denotes the coexistence curve between the liquid and the vapor. The dashed

line, represents the spinodal curve, which is the locus of points where the sta-

bility requirement of positive isothermal compressibility, kr = —% (%—‘;)T, is
first violated. Beneath the spinodal line, the vapor phase is thermodynamically
unstable, and the phase transformation proceeds spontaneously by a barrier-
less mechanism known as spinodal decomposition. In the region between the

spinodal and the coexistence lines, the system is metastable and the phase
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Figure 1: Phase diagram of a Van der Waals gas. The point C indicate the critical point.
Coexistence (binodal) is shown as a full line, the spinodal curve with a dotted line, and the
dashed-dotted line illustrates a typical isotherm. Below, the free energy is represented as a
function of the density for the cases of spinodal decomposition and nucleation.
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Figure 2: Plot of the energy AWy, required to form a cluster of n molecules, which illus-
trates the concepts of nucleation barrier AW,,;,, critical cluster and critical size n*.

transformation occurs by the nucleation and growth mechanisms.

The degree of metastability of a vapor is usually measured in terms of the
supersaturation S, defined as S = p/pey where p is the actual pressure of the
vapor and peq is the equilibrium coexistence pressure. It is a well-known fact
that a metastable phase can persists over long periods of time. For instance, a
sample of purified water can be held indefinitely at -10 °C' without freezing; or
a gas can be compressed to several times its equilibrium pressure before the first
liquid drop suddenly appears. This feature reflects the fact that the development
of the new phase requires the surmounting of an energy barrier. This barrier
becomes infinity at the coexistence curve and vanishes at the spinodal, thus
indicating a strong dependency on temperature and supersaturation.

Let us analyze the physical origin of this barrier and how it is overcome. In
the metastable phase, the thermal agitation of the molecules induces density
fluctuations. These fluctuations generate small aggregates of molecules (also
called clusters) with the same properties of the stable phase, in our case, tiny
liquid droplets. The formation of these small droplets is favored by the energy
decrease associated to the lower chemical potential of the stable liquid phase.
However, the establishment of the new phase from the bulk metastable phase
requires the creation of an interface between the two phases, which implies an
energetic cost. The competition between these two effects is what originates the
nucleation barrier, as illustrated in Fig. 2.

Surface effects are dominant for small clusters and hence tiny droplets tend



to disintegrate. However, there exists a characteristic size beyond which volume
effects overrides surface contributions and clusters tend to grow spontaneously.
This size n* is known as the critical size and the energy required in its formation
constitutes the nucleation barrier. The rate at which critical-sized embryos are
formed is the nucleation rate J, and its prediction is one of the major goals of
nucleation theories.

Although the first studies on phase equilibrium and metastability of un-
dercooled substances date back to the investigations of Fahrenheit [13] in the
eighteen century, the study of the kinetics of nucleation was initiated by the pi-
oneering works of Volmer and Weber [14] in 1926, and Farkas in 1927 [15]. The
field was subsequently developed by the contributions of Becker and Déring
[16], Frenkel [17],[18] and Zeldovich [19], among others. These investigations
constitute, collectively, the body of the Classical Nucleation Theory (CNT).
This classical picture has dominated our understanding of the process during
the last decades. The secret of that success lies in its striking simplicity and in
the initial reasonable agreement of experimental results with its predictions for
the metastability limits of the majority of substances.

In the last years, we have witnessed the sprouting of new and incredibly accu-
rate experimental techniques able to measure actual nucleation rates. Moreover,
for the first time the real-time experimental observation of the appearance and
growing of nucleus [20] and small crystals at the nanoscale [4],[21], is becoming
feasible. In parallel, simulations are increasingly becoming an impressive tool
to characterize the rate of appearance and structure of nucleation events at the
molecular scale [22]. These new findings, which provide an increasingly accu-
rate exploration of the dynamics of the process at the mesoscale, have revealed
the shortcomings of the Classical Nucleation Theory and impelled a renewed
interest in the field.

Despite the significant effort in the subject, several important questions re-
main open. The most crucial one, is of course, that current nucleation theories
are in general still unable to predict accurately the experimental values of ho-
mogeneous nucleation rate. The activated nature of the process, which implies
that the rate depends exponentially on the barrier, makes the process extraor-
dinarily sensitive to small variations of the parameters involved, and thus very
difficult to control and measure. Nucleation is one of the few areas in science
in which differences between predicted and measured values of nucleation rates
within several orders of magnitude can in principle be considered as acceptable.

The classical nucleation theory uses macroscopic and equilibrium arguments
to describe a mesoscopic nonequilibrium process as nucleation is. The approach
to the problem from this perspective has been the cause of some long-standing
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controversies and of the misunderstanding of some key concepts. In addition,
as the modern experimental and simulation techniques are evidencing, this sim-
plified scheme is becoming insufficient to provide an accurate characterization
of the process.

Since the free energy barrier is the dominant factor in the nucleation rate,
most theoretical work has been focused on calculating the equilibrium energy of
formation of the critical nucleus, quite disregarding the importance of nonequi-
librium aspects of the process. One does not have to forget that nucleation is in
essence a kinetic process, and in this sense nonequilibrium effects are unavoid-
able and could be relevant in its description.

Consequently, at the present state of the field it becomes very important
to develop a framework for the description of nucleation and growth processes
which should be as realistic as possible, taking into account its two distinc-
tive characteristics: the fact that the process occurs at the mesoscopic scale
and its intrinsic nonequilibrium nature. In addition, the prominent role that
simulations are playing requires that this scheme should be somehow “friendly”
providing a clear interpretation and connection with simulation results.

Scope of the Thesis

The purpose of the present thesis is to introduce a mesoscopic nonequilibrium
description of the kinetics of nucleation processes. We shall present a consistent
and complete framework to describe the nucleation kinetics which facilitates a
more realistic and accurate description, retaining the potential nonequilibrium
influences and the mesoscopic particularities of the process. Our formalism can
be easily complemented with the results of previous theories, overcoming some
of their drawbacks, and setting up a link with simulations.

We will focus our attention on first order phase transitions which proceed
by homogeneous nucleation, essentially far from the critical point. Most of our
analysis is intended for simple substances and gas-liquid systems. Nevertheless,
nearly all the concepts discussed in this context remain valid for crystallization,
and can be easily extended to more complex situations.

The content of the present work has been organized in chapters trying to
focus on different and complementary aspects of nucleation kinetics.

The first chapter is intended as a brief review of the classical approach to
the nucleation problem, including the most recent developments of experimental
techniques, simulations and theories. This analysis shows the state-of-the-art
in the field and stress the necessity of an improved description of the process
centered on nonequilibrium aspects.



In Chapter 2, we establish the basis for a kinetic description of nucleation
by proposing a mesoscopic formalism able to derive kinetic equations for the
probability distribution functions. These functions may depend on all relevant
parameters specifying the state of a cluster, i.e. geometrical parameters as
the size or the geometry, phase space variables as the velocity, orientation,
spatial position, etc., and their evolution is in general coupled to that of the
environment in which the emerging clusters are embedded. The nucleation
theory we propose thus goes beyond the classical formalism and can account
systematically for the real conditions in which nucleation takes place.

A distinctive feature of many nucleation processes is its mesoscopic trait.
The extrapolation of macroscopic concepts to the mesoscopic scale has precisely
been the source of intense discussion and confusion in the field. One of the
situations in which this fact becomes more evident is in the context of the so-
called “Nucleation Theorem”. In Chapter 3, we shall discuss the meaning of
this theorem and demonstrate its general validity on purely thermodynamics
grounds. In addition, we will outline how the proper understanding of the
theorem from the mesoscopic perspective may establish the basis of a meaningful
definition of cluster in nucleation.

The usefulness of a mesoscopic nonequilibrium description of nucleation be-
comes evident in the topic of Chapter 4. One of the most controversial aspects
of nucleation theories has been and is the proper accounting for translational
and rotational degrees of freedom. Within the framework developed in Chapter
2, we will clarify this issue, and we shall obtain a new genuine nonequilibrium
correction to the nucleation rate arising from the proper consideration of those
degrees of freedom in the kinetics of the process. The correction we have found
is significant and under some circumstances is able to achieve a remarkable
agreement of the theoretical predictions with experiments.

This proper introduction of the translational and rotational degrees of free-
dom constitutes the first step toward a more realistic description of nucleation,
retaining potential nonequilibrium influences. The metastable phase in which
the embryos of the new phase are embedded may play a relevant role in the
process and its influence cannot be ignored. In Chapter 5, we shall develop a
general formalism able to describe the potential influence of the fluid in the pro-
cess, focusing on typical situations of practical interest. In particular, we will
discuss some specific examples to describe nucleation and growth in spatially
inhomogeneous systems or in the presence of external temperature gradients.
Moreover, we will analyze a less studied but specially interesting case: nucle-
ation under the influence of an external flow.

In our goal to provide a more realistic description of the phase transfor-
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mation, we will sketch in Chapter 6 how the process continues beyond the
nucleation stage. We will show how the subsequent step of the phase transition,
the growth and the space filling by the nucleated droplets, can be embraced
in the same consistent nonequilibrium framework, capable of a more complete
characterization of the process.

Finally, we summarize the main conclusions of our work, and discuss some
of our findings which will constitute the basis for subsequent developments.
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Chapter 1

Homogeneous Nucleation:
Experiments, Theory and
Simulations

There has been a pronounced historical interest in the study of nucleation, start-
ing from the early investigations of Fahrenheit [1] about metastability up to the
most recent and impressive progress in simulations [2] and experimental tech-
niques [3]. The core of the classical treatment of nucleation was essentially de-
veloped in the twenties and thirties [4]-[9], but investigations continued steadily
until the recent spectacular resurgence of the field commanded by the puzzling
findings of experiments and simulations. As a consequence, a huge bibliographic
background on the subject exists and the task of providing a comprehensive and
meticulous review of all contributions is really difficult and exceeds the scope
of this thesis. Besides, very good reviews on the topic can be found in the
literature [10]-[16].

Our purpose in this chapter will be to present the state-of-the-art in the field
of homogeneous vapor phase nucleation. Since experiments are playing a crucial
role in the recent advances in the subject, we shall start with a short survey
about the more customary experimental techniques. We will then present a
brief compendium of the different theoretical approaches proposed up to now to
analyze homogeneous nucleation, including some of the most recent topics and
developments. Finally, we will review the contributions arising from simulations,
to conclude with a short summary.

Although the review will be focused on gas-liquid homogeneous nucleation,
many of the theories and concepts discussed here, and in particular the Classical
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Nucleation Theory (CNT), are also valid for crystal nucleation, as mentioned
in Sec. 1.2.1.

1.1 Experimental Techniques

Traditional experimental techniques of nucleation from the vapor phase only
were able to detect the onset of nucleation, by measuring the values of the
critical supersaturation S, as a function of the temperature. The S, is defined
as the value of the supersaturation required to obtain an observable droplet
formation, typically with a rate of J,, ~ 1e¢m 3s~!. These measurements could
then be compared with the predictions of the Classical Nucleation Theory, and
the agreement was initially quite correct for the vast majority of substances.
However, critical supersaturation measurements do not provide a very sensitive
check of the accuracy of the theories, since small discrepancies in S, correspond,
due to the exponentially activated character of the process, to errors in the
nucleation rates of several orders of magnitude.

In the last years, new experimental techniques have been developed which
are able to measure actual nucleation rates, instead of just critical supersatu-
rations. These experiments have stimulated the interest in the field since they
constitute a more stringent test which has revealed the shortcomings of CNT.

It is not our aim in this section to provide an extensive review of recent
experiments. (A comprehensive list of experiments performed during the pe-
riod comprised between 1968 and 1992 can be found in Ref. [17], and earlier
experiments have been reported in Ref. [18]). However, the prominent role that
experiments have played in the revitalization of the field of nucleation certainly
deserves some revision. We also want to stress out the difficulties and the par-
ticular conditions under which nucleation rates are experimentally measured,
and discuss the real accuracy and reliability of the measurements.

According to the procedure employed to generate the supercooled conditions
in which nucleation occurs, we can roughly classify the experiments into two big
families: diffusion and expansion experiments. These techniques are discussed
in more detail below.

1.1.1 Diffusion Cloud Chambers

In diffusion chambers nucleation is accomplished by means of the establishment
of inhomogeneous thermodynamic conditions which generate a supersaturation
profile inside the chamber. Nucleation then occurs in the region, usually quite
narrow, where supersaturation exceeds the critical value. Therefore, this proce-
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dure generates stationary but spatially inhomogeneous nucleation events. The
main difficulty of these experimental devices is that require a quite complicated
modeling of the transport inside the chamber. Besides, the real conditions under
which nucleation is taking place cannot be measured but are obtained instead
from the solution of the transport equations.

The supersaturation profile which activates the nucleation can be rendered
either by thermal diffusion, through the imposition of a temperature gradient as
in the thermal diffusion chambers; or by cooling the nucleating gas with a flow,
as occurs in the laminar flow diffusion chambers. An insight to both methods
is given below.

Thermal Diffusion Cloud Chambers

The upward thermal diffusion cloud chamber, depicted schematically in Fig.
1.1, is the most traditional instrument to investigate nucleation. A detailed
description of the device and its operation can be found for instance in Refs.
[19]-[24]. Initially it was only able to measure critical supersaturation as a func-
tion of temperature, but recently it has been used to measure actual nucleation
rates in many substances (see for instance Refs. [25]-[31]). In this experimental
device, a stationary temperature gradient is established between a warm pool
of liquid on the bottom and a cooled upper surface. The liquid on the lower
plate evaporates and the vapor diffuses upward through an inert gas establish-
ing inside the chamber a temperature and supersaturation profile as the ones
represented in Fig. 1.1. The temperature gradient can be adjusted in order
that the supersaturation maximum, which typically occurs at 3/4 of the cham-
ber height, exceeds the critical value, thus initiating homogeneous nucleation.
The nucleated drops then grow and fall down through the chamber. A laser
beam near the bottom of the chamber finally detects and counts the falling
droplets, thus providing a measure of their formation rate. Typical nucleation
rates measured in these experiments range from 10™* to 10% cm™3s7!.

One of the main inconveniences of this type of experiments is that the tem-
perature and supersaturation profiles are not measured but have to be calculated
by solving the complicate set of equations describing the heat and mass trans-
port in the chamber. Therefore the accuracy of the results strongly depends
on the precision of the thermophysical properties of the gas, and can be dra-
matically modified if the transport is altered due, for instance, to convection
or condensation at the walls. In addition, the measurements are known to be
affected by the value of the total pressure inside the chamber and by the nature
of the carrier gas. Thorough studies of the transport in this chamber and po-
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Figure 1.1: Schematic picture of an upward thermal diffusion cloud chamber, including the
temperature T and supersaturation S profiles (from Ref. [26]).

tential effects altering nucleation rates measurements have been performed in
the literature [32]-[40].

Laminar Flow Diffusion Cloud Chambers

The operational principle of the laminar flow diffusion chamber, illustrated in
Fig. 1.2, is based on the sudden cooling of the nucleating gas assisted by a
flow. A flowing carrier gas is initially saturated of the nucleating vapor (in the
saturator) and then led to a cooling zone (the condenser) where the temperature
suddenly drops. The vapor then becomes supersaturated and nucleation takes
place. The drops are then removed from the nucleation region by the flow and
subsequently grow until they can be detected optically. Also in this case the
supersaturation and temperature profiles have to be calculated by solving the
transport inside the chamber. Nucleation rates between 102 to 108 cm 3s~ !,
can be measured in a wide range of supersaturations and temperatures [41]-
[46]. However, the peculiarities of the operational principle of this chamber
restrict the number of substances whose nucleation can be measured with this
instrument. The laminar flow diffusion chamber is best suited for substances
of high molecular weight, since the nucleation region becomes well defined only
when the ratio of molecular to thermal diffusivity of the vapor is low.

1.1.2 Expansion Chambers

A different technique to measure nucleation rates is based on the cooling of
the vapor through a fast expansion. The gas is suddenly expanded and hence
cooled down achieving a supersaturated state in which nucleation takes place.



1.1 Experimental Techniques 15

Carrier

—4
Saturator

Condenser

4 " Cooling
' liquid

To counter

Figure 1.2: Scheme of a laminar flow diffusion chamber (from Ref. [44]).

After a short interval, typically a fraction of a second, the gas is recompressed,
preventing the formation of additional nuclei but not the subsequent grow of
the nucleated embryos, which are finally detected by optical means.

An important asset of this procedure is that, contrarily to the case of dif-
fusion chambers, spatially homogeneous nucleation occurs, although it is not
stationary. The use of this technique is thus restricted to substances and con-
ditions for which the steady state value of the nucleation rate is achieved very
rapidly. Nevertheless, this method is quite versatile, and has as main advan-
tages that the supersaturation pulses are well defined, and the values of the
pressure and the corresponding supersaturation can be experimentally mea-
sured without depending on the solution of a complicate modeling as happens
in diffusion chambers. As a counterpart, the value of the temperature at which
nucleation occurs cannot be measured, but is calculated through the use of the
Poisson law of adiabatic expansions. This law was formulated for equilibrium
quasistatic situations, hence its applicability to a nonequilibrium fast expansion
is questionable, especially in the shock tube device described below, where a
shock-wave is employed to generate an extremely short-time nucleation pulse.

The different implementations of this technique are described below.
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Figure 1.3: Basic components of a fast expansion chamber (left) and typical supersaturation
ratio S vs. time profile (right) (from Ref. [49]).

Fast Expansion Chambers

In the fast expansion cloud chamber, which is schematically drawn in Fig. 1.3,
the vapor originates from the liquid pool resting on a piston at the bottom of
the chamber. The piston is then displaced to provoke an adiabatic expansion of
the gas, which becomes supersaturated and nucleates. A small recompression
of the piston ends nucleation after typically 10 ms, but the nucleated droplets
are allowed to grow until they can be counted photographically. Figure 1.3 also
shows the typical operation cycle in these chambers. Nucleation rates in the
range of 102 to 10° cm3s~! have been measured for several substances [47]-[51].
The main inconvenience of this method is that the measured nucleation rates
are isoentropic rather than isothermal.

Gottingen or Two-Piston Expansion Chamber

A refined version of the expansion chamber is the two-piston or Géttingen cham-
ber [52]-[59], schematically shown in Fig. 1.4. The presence of two pistons or
valves improves the quality of the expansions and recompressions, achieving
more defined and faster (on the order of 1 ms) pressure profiles, as shown
in Fig. 1.4. The counting of the nucleated droplets is also improved by using
constant-angle Mie light scattering. Measurements have been performed on sev-
eral substances in a rate interval of 10° to 10'° cm™3s~!. Recent developments
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Figure 1.4: Cross-section of a two-piston expansion chamber (left) and detailed representa-
tion of a typical pressure pulse (right). The nucleation rate is calculated dividing the number
density of observed droplets by Ate,, (from Ref. [55]).

of design of the chamber [60] allow the measurement of nucleation rates keeping
constant the nucleation temperature. This feature facilitates the comparison
of the experimental results with theoretical predictions through the use of the
Nucleation Theorem. As will be explained in Chapter 3, this theorem provides
an excellent tool to test the molecular content of the nuclei independently of
any particular theory.

Shock Tubes

Another implementation of the expansion method is the shock tube [61]-[64],
shown in Fig. 1.5. In this device, a high pressure section (HPS) containing
a vapor-inert gas mixture is separated from a low-pressure section (LPS) by a
membrane. When the membrane is broken, an expansion wave travels in the
direction of the HPS end-wall, causing the supersaturation of the vapor and
the onset of nucleation. At the same time, a shock wave traveling in the LPS
reflects on a constriction and causes the recompression of the gas, stopping the
nucleation after an interval of 0.1 ms. The number of drops nucleated during
this short pulse can then be determined by the light intensity of constant-angle
Mie scattering. High values of nucleation rates, from 10® to 10'* cm™3s7!, can
be measured with this technique.

Finally, we want to just mention a different device which can reach even
higher nucleation rates: the supersonic nozzle [65]-[68]. Unlike the other tech-
niques, supersonic nozzles cannot directly measure nucleation rates, but they
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Figure 1.5: Schematic shock-wave tube setup used for nucleation experiments (from Ref.

[63]).

are only able to detect the conditions for the onset of nucleation. Nevertheless,
the relevance of this technique relays on the fact that it can reach extremely
high supersaturations leading to the formation of critical clusters of molecular
size, i.e 5-10 molecules. This device can then provide a very sensitive test to
explore the validity of nucleation theories at molecular scale.

In both devices mentioned above, thermodynamic relations for adiabatic
expansions have been employed to estimate the temperature at which nucleation
is taking place. However, the extremely fast nature of the expansions raises
some concerns about the validity of these equilibrium thermodynamic relations
to extremely far from equilibrium processes such as shock-waves or supersonic
expansions.

1.1.3 Limitations of the Experiments

A great progress has been achieved with the direct measurement of nucleation
rates, and experimental techniques are becoming increasingly accurate. How-
ever, precise nucleation experiments are in nature extremely difficult to perform
due to the utmost sensitivity of the nucleation rate to many factors, including
the thermodynamic conditions or the presence of impurities. In this context,
the comparison between theory and experiments must be taken with care, since
significant disagreement persists even between experiments themselves. There
exists also discrepancies between experiments performed employing different
methods using the same substance or still when the same technique is applied
by different experimentalists. Moreover, the same procedure applied at different
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Figure 1.6: Comparison of experimental, Jespi, and theoretical nucleation rates, Jineor,
predicted by Classical Theory vs. the inverse of the experimental temperature, Teypt, for the
homolog series of n-alcohols (from Ref. [53]).

conditions often provides incompatible results. To overcome this confusing sit-
uation, a significant effort has been recently done in order to create a common
platform for comparing nucleation rate data measured with different techniques
for the same substance [63],[57],[31],[46]. However, strong deviations of two or
three orders of magnitude between different experimental results persist, which
provide a useful hint about the real accuracy and reliability of the experimental
measurements.

The different techniques described previously have been applied to measure
nucleation rates for many substances and in a wide range of conditions, em-
bracing many orders of magnitude of variation of the rate. In spite of the quan-
titative discrepancies, the general trend is that the variation of the nucleation
rate with supersaturation predicted by CNT is approximately correct, but that
the temperature dependence is not. The nucleation rates predicted by CNT are
usually too low at low temperatures and too high at high temperatures, with
errors with span several orders of magnitude in either direction, as is evidenced
by Fig. 1.6 for the homogeneous nucleation of alcohols. These deviations of
the CNT have stimulated the search for improved theories of nucleation. These
theories, including the CNT, are summarized in the following section.
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1.2 Nucleation Theory

We can basically classify the different theories developed to study liquid-vapor
nucleation into three categories. Phenomenological theories, as the classical nu-
cleation theory (CNT), have the main objective of evaluating the free energy of
formation of clusters by using macroscopic concepts such as the surface tension
or the bulk density. In kinetic theories, the efforts are focused on the direct
calculation of the rate coefficients controlling the growth or shrinking of the
nucleated droplets. Finally, molecular, density functional theories, and even
simulations can be grouped under the common label of microscopic models,
since they pursue the understanding of the process directly from the micro-
scopic dynamics and the intermolecular forces acting among molecules. We
discuss and summarize all these approaches below.

1.2.1 Classical Nucleation Theory

The objective of a nucleation theory is the description of the evolution of the
population of clusters of the new phase. In a supercooled substance, small
embryos (or clusters) of the new stable phase are constantly being created and
destroyed from density fluctuations. These clusters are assumed to shrink and
grow in size by gaining or loosing single molecules. Consequently, the variation
of the population of clusters of size n at each instant ¢ is given by the following
master equation

0 t
% = kf(n—-1)f(n—1,1) +k (n+1)f(n+1,%)
- k+(n)f(n’t) - ki(n)f(n,t)a (1'1)
where f(n,t) is the number density of clusters constituted by n monomers at

time ¢; k*(n) is the rate at which a n-cluster gains monomers; and k= (n) is the
rate at which it loses particles. This equation can be rewritten as

of(n,t) _
T =J(n—1,t) — J(n,t), (1.2)
where
J(n) =kt (n)f(n,t) =k~ (n+1)f(n +1,t) (1.3)

is the net rate at which clusters of size n become clusters of size n + 1 at time ¢.
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The basic variables in the previous master equation (1.1) are k*(n) and
k™ (n), the rates of attachment and detachment of single molecules, respectively.
The value of the condensation rate k*(n) is usually taken from kinetic theory of
gases [12]. Assuming that every molecule which collides with a cluster sticks to
it, the attachment rate is then given by the number of collisions with monomers
that a cluster suffers per unit time

K (n) = \/ﬁA(n) (140 ) (140 )" (1.4)

where p is the pressure due to single monomers, 7" is the temperature, kp is
the Boltzmann’s constant, m; is the mass of a single molecule, and A(n) =
s1m?/3 is the surface area of a spherical cluster containing n molecules, being
81 = (36%@%)1/ % the surface area of a monomer and v1 the average volume per
molecule in the bulk liquid. The last two factors of the previous expression are
corrections arising from the consideration of the surface of collision as spherical
rather than flat, and from the translational motion of the clusters, respectively.
However, these corrections are usually negligible [12] and the commonly used
expression for k¥ (n) is simply

+ _ p 2/3

kT (n) = Wmn /3. (1.5)
Unlike the rate k™ (n), which can be obtained from first principles (using for
instance kinetic theory), the value of the detachment rate k£~ (n) is more difficult
to obtain in an independent way. To avoid this difficulty, phenomenological
theories, as the classical nucleation theory, resort to an assumption referred
to as constrained equilibrium hypothesis to obtain a relationship between the
known quantity k*(n) and the unknown £~ (n). This assumption is based on
the fact that, at equilibrium, the flux J(n) must vanish. As a consequence, from

equation (1.3) one obtains the expression

n
kT (n)feg(n) —k~(n+ 1) fegn +1) =0; Kk~ (n+1) = feq‘]%;i&)l)kﬂn), (1.6)
where feq(n) represents the equilibrium distribution of clusters. Therefore, the
kinetic problem of calculating the nucleation rate becomes the thermodynamic
problem of evaluating the equilibrium cluster distribution. From the theory
of thermodynamic fluctuations [69], the equilibrium cluster size distribution is
given by

feq(n) = feq(1) exp — (1.7)
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where the factor exp — Ak(]’;(%l) is related with the probability of obtaining a cluster

of the new phase containing n monomers, and AG(n) is the minimum reversible
work of formation of an n-cluster. Therefore, the problem is formulated now in
terms of the free energy of droplet formation.

Classical nucleation theory, calculate this free energy by using the so-called
capillarity approrimation. In this approximation, clusters are assumed to be
spherical and to have the same properties as the macroscopic bulk phase with a
sharp interface. The free energy AG(n) can then be expressed, following Gibbs,
as the sum of volume and interfacial energy contributions

AG(n) = —nAp + cA(n). (1.8)

Here Ay is the difference of chemical potentials per molecule between the gas
and liquid phase, and ¢ is the surface tension. For undercooled vapors, and
assuming that the gas behaves as ideal, Ay is given by

Ap=kgTInS, (1.9)

being S = p/peq the supersaturation ratio or supersaturation. Using the previ-
ous expression and taking into account the spherical shape of the cluster, the
free energy AG(n) can alternatively be written as

AG(n) = —nkpT1n S + os1n?/3. (1.10)

The critical size n* is defined as the size at which the free energy has a
maximum

0AG(n)
on

Clusters smaller than the critical size tend to shrink, while those larger than n*
can be considered as nuclei of the new phase as they will on average grow. For
the case of spherical clusters, the critical size is

=0. (1.11)

n*

. (260
where
081
0= 1.13
T (1.13)

is the non-dimensional surface tension. That correspond to a maximum value
of the free energy
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This maximum is referred to as the nucleation barrier, and the rate J(n*,t)
at which critical-sized embryos are formed is the nucleation rate.

Classical Nucleation Theory of Crystallization

The analysis presented in the previous section was introduced to describe nu-
cleation of drops from a vapor. However, it is also the basis of crystallization
of liquid substances.

In the classical approach to crystallization, capillarity approximation is also
employed, and the free energy of formation of a crystal of n-molecules is ex-
pressed again as the sum of volume and interfacial energy contributions

AG(n) =v(n)Ag + Z o Aj, (1.15)

where the sum accounts for the different surfaces that the crystalline structure
may present. In the previous expression, v(n) is the volume of the cluster, Ag
is the change of free energy per unit volume, and o; is the interface tension of
the surface 7 with area A;. The degree of metastability of an undercooled liquid
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Figure 1.8: Free energy of formation of a crystal embryo in the classical nucleation picture,
and its surface and bulk contributions.

is characterized by the undercooling AT =T —T,,, where T}, is the equilibrium
melting temperature and 7' is the actual temperature. This undercooling is
equivalent to the supersaturation in condensation, and the gain in free energy
Ag in the phase transition depends on it. In fact, neglecting the temperature
dependence of the heat of fusion Ah, as a first approximation Ag is given by

ARAT
Ag = = (1.16)
m

Consequently, Ag is positive above T;, and it is negative below that tempera-
ture.

For the simplest case of spherical crystal clusters, the crystallization free
energy splits up into bulk and surface contributions (see Fig. 1.8) and is given
by

4 3
AG = 7;; Ag + 4770, (1.17)
with r being the radius of the spherical crystal. This equation can alternatively

be written in terms of the number of monomers as

AG = an + bn?*/0, (1.18)
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where a = Agu is the free energy per monomer and b = (367r)1/ 392/3 with v
the molecular volume.
For the case of spherical clusters, the critical size and the critical radius are

3
i (1.19)
30 |Ag]
and
20
rf = — 1.20
|Ag] (1:20)
which correspond to the maximum value of the free energy
167 o3
AG" = ——. 1.21
¢ 3 Ag? ( )

However, the extension of the classical theory to crystallization presents
some additional difficulties. The first one concerns the absence of independent
measurements of the solid-liquid surface free energy o in the undercooled regime.
In fact, the surface free energy is mostly evaluated precisely by fitting the results
of nucleation rate experiments to the classical expression for the rate.

The second difficulty is related to the lack of a reliable kinetic approach to
estimate the forward rate k*(n). The most usual approach, due to Turnbull
and Fisher [70], proposed the following expression for this rate

0G
E*(n) = 4n?/3T - : 1.22
() = 4n**Texp (5 (122
Here 6G = AG(n + 1) — AG(n), the factor 4n?/3 arises from consideration of
the number of available attachment sites on the surface of a spherical cluster
and ' is the unbiased molecular jump frequency at the cluster interface, that
can alternatively be expressed as

= kBTT exp (_k;T> , (1.23)
where € is the activation energy defined as the difference between the energy of
the activated state and the average energies of the initial and final states, and
h is the Planck constant. This jump frequency I' is often identified with the
jump frequency for bulk diffusion, through the atomic jump distance A and the
spatial diffusion coefficient D, as

r=-—. (1.24)
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Consequently, in this model the attachment rate k*(n) is proportional to the
bulk diffusion coefficient D. As we will illustrate in Chapter 5, the presence of
flows, thermal gradients or hydrodynamic interactions may alter significantly
this diffusion coefficient and thus the kinetic of the nucleation process.

An additional problem refers to the difficulties in identifying the nucleus in
the case of crystallization from the melt. In that sense, promising approaches
defining the cluster in terms of local order, which differs between the liquid and
the crystal, are being developed [71].

All these difficulties imply that, at the present state, one cannot perform di-
rect quantitative tests of nucleation rate experiments against crystal nucleation
theories. For that reason, in this and in the remaining chapters, we will focus
on nucleation from the vapor-phase. Nevertheless, qualitative discussions about
the relevance of nonequilibrium effects on crystallization will be provided, and
a simplified analysis of crystallization at advanced stages will be introduced in
Chapter 6.

Steady-State Nucleation Rate

Classical nucleation theory assumes that a steady state, in which the populations
of different cluster sizes no longer depend on time, is rapidly established. In
this situation, following Eq. (1.2), the flux has the same value irrespective of
the size, i.e. J(n,t) = J. This stationary value of the flux is often referred to
as the nucleation rate, and by recurrence from equation (1.3) it is given by

no 1 -1
J = Nt [gl: W] ) (1.25)

where Ny is the total number density of clusters, and cluster sizes ni and ngy are
such that for n < nq, f(n) = feq(n) and for n > ngy, f(n) = 0. Consequently,
the value ni represents the smaller cluster distinguishable from equilibrium
fluctuations in the metastable phase, and no is a postcritical large enough stable
cluster. It has been shown that the nucleation rate does not strongly depend
on the values of the boundary sizes n; and ng [72].

Replacing the summation in equation (1.25) by an integral, introducing the
“equilibrium” distribution fe4(n), and evaluating the resulting integral by the
steepest descent method (see Appendix), one obtains the classical expression
for the nucleation rate

(1.26)

. AGH
Jont = kT (n*) Z Nyoy exp [— ] ,

kT
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where

(1.27)

is frequently referred to as the Zeldovich factor [73].

This result is obtained under the assumption that the steady-state is instan-
taneously achieved which implies that nucleation proceeds at a constant rate.
While frequently true, this assumption becomes wrong in some specific cases.
A finite time is required in order for the concentration of clusters and the fluxes
to attain their stationary values. This time lag can be of the same order than
the measure time, specially in the case of polymers and glasses, and transient
kinetics may thus be important in the description of crystallization. We shall
not discuss in detail this subject here. Instead, we refer the interested reader
to the works of Shi [74], Shneidman [75], and the references quoted in [15].

To describe the time-dependent nucleation, it is convenient to introduce a
continuous version of the master equation (1.2).

Continuous Approaches to the Master Equation

As we have shown previously, in the classical nucleation theory the kinetics of
the nucleation process is described through the master equation (1.1) for the
evolution of the population of clusters. However, owing to the discrete nature of
the growing process, resulting essentially from the progressive addition of atoms
to the emerging cluster, the master equation provides a hierarchy of kinetic
equations for the evolution of clusters of different sizes which is very difficult to
solve. That is the main reason to abandon the master equation approach and
to formulate a continuous diffusion equation to describe nucleation processes.
The diffusion equation corresponding to the master equation (1.1) adopts the
general form

g_f = a% {Dn(n)% + A(n)f} : (1.28)

where A(n) and D, (n) are the drift and diffusion coefficients, respectively, which
are related to the attachment rate k™ (n) and the energy barrier AG(n).

The proper choice of these coefficients constitutes a controversial issue to
the extent that several different expressions have been derived and proposed in
the literature. Most of them result from continuous approaches to the master
equation (1.1). However, the resulting equation is not unique.
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The most straightforward approach consists of replacing the discrete variable
n by a continuous variable z. After expanding Eq. (1.1) in a Taylor series
we arrive at the well-known Kramers-Moyal [76]-[77] expansion, which upon
truncation in second order yields the desired Fokker-Planck equation. This
equation, however, has the serious inconvenience that it does not reproduce the
equilibrium distribution of the original master equation. Additionally, it has
also been proven that it overestimates the nucleation rate exponentially, with
an error that grows unboundedly for large n [78].

The Fokker-Planck equations of Frenkel-Zeldovich [79], Goodrich [80] and
Shizgal-Barret [81] try to solve these difficulties by imposing a relationship be-
tween drift and diffusion coefficients in order to ensure the correct equilibrium
distribution. These three proposals differ in the expressions for those coeffi-
cients, chosen to improve the approximation. However, as pointed out by Git-
terman and Weiss [82], none of them seem to be able to reproduce the correct
deterministic behavior.

A variant of these equations is the one formulated by Rabin and Gitterman
[83], where the innovation consist in considering that the coefficients of the
Fokker-Planck equation cannot be fixed arbitrarily, but rather - in the vicinities
of the critical point - they are determined by the critical dynamics of the system.

Van Kampen [84] proposed an alternative method, consisting in rescaling the
rate constants k7 (n) and k7 (n) in terms of a parameter Q (usually the system
size) and to expand the result in powers of Q~1. In this way one obtains an
expansion similar to Kramers-Moyal that shares the same problems described
previously.

The contribution of Grabert, Héinggi and Oppenheim [85] and later Hénggi
et al. [86] is also based on a rescaling of the rate constants, but they obtain
the coefficients (expressed in terms of the rates k*(n) and k¥ (n)) from non-
linear transport theory. Their equation reproduces the equilibrium distribution
appropriately, but it does not describe the short time behavior correctly and it
gives an erroneous value of the variance of the distribution [82].

We can also quote the essentially mathematical method of Wu [12],[87] that
proposes a discrete mathematical optimization to minimize the error associated
to approach the master equation - discrete - by means of a - continuous - diffusion
type expression.

Finally, a more physical approach has been proposed by Shi [88]. Using
a mesoscopic kinetic description of inhomogeneous nonequilibrium processes,
his results support the validity of the Frenkel-Zeldovich expression, with the
particularity that the rate constant should be evaluated at n+1/2 instead of at
n. Quantitatively, however, this correction is not very significant and is usually
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ignored.
In spite of the conceptual difficulties and the previous controversy, the most
widely used equation is the classical Frenkel-Zeldovich expression

w _ a% (k;+(n) feq(n)%fi ;%) (1.29)

which is the basis of the calculation of nucleation rates.

1.2.2 Phenomenological Modifications to the CNT

The limitations of the CNT revealed by the experiments have been the origin of
an intense search for improved theoretical models able to describe nucleation.
Phenomenological theories have pursued an improved expression for the work
of formation of a cluster, without introducing any modification in the kinetics,
and keeping the essentials of the capillarity approximation.

The macroscopic and equilibrium character of the capillarity approximation
sustaining the CNT, involve some difficulties when one tries to extend its valid-
ity to the scope of a tiny nonequilibrium entity as a nucleating droplet. For in-
stance, capillarity approximation does not include the translational, rotational,
vibrational or configurational contributions to the free energy of a cluster. These
statistical mechanical contributions are negligible in the thermodynamic limit,
but may become relevant at the mesoscopic scale. The inconsistency problems
of the CNT also arise at this mesoscopic level. In addition, the capillarity ap-
proximation does not take into account the dependency of the surface tension
on the curvature. Many approaches have been proposed to overcome these and
other difficulties. They are summarized in the following subsections.

The Translational-Rotational Paradox

One of the corrections to the CNT subject to an intense debate in last years
originates from the proper accounting of the translational and rotational degrees
of freedom of a small cluster. The work of Lothe and Pound [89] initiated an
intense interest on what has been called the “translational-rotational paradox”.
The paradoxical aspect of the topic was that the apparently reasonable incorpo-
ration of the translational and rotational degrees of freedom lead to a significant
correction to the free energy of formation of a cluster, which resulted in mod-
ifications of nucleation rates by factors on the order of 107, thus destroying
any reasonable agreement of the CNT with experiments. The paradox has been
solved by the recent work of Reiss, Kegel and Katz [90], after a long-standing
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controversy. We shall discuss in more detail this subject and the proper role
played by translational and rotational degrees of freedom in Chapter 4.

Self-Consistency Corrections

The classical expression for the work of formation of a n-cluster presents the
serious inconsistency that it predicts a non-zero value for the energy required
to create a n = 1 cluster, i.e. a monomer, AG(1) = —kgT'InS + os1 # 0.
Since the Gibbs free energy for nucleation is defined relative to the monomer
state, it should accordingly become zero at n = 1. To restore this consistency
requirement, several corrections have been proposed in the literature (see for
instance Refs. [91],[92] and the careful analysis of Ref. [12]). The most popular
proposal consists of simply subtracting AG(1) to AG, yielding a modification
factor to the nucleation rate of e’/S. This term increases nucleation rates by a
factor of 108-108, deteriorating in general the agreement with experiments, but
tends to offset the erroneous trend of the classical theory of predict too high
nucleation rates at high 7', and too low ones at low 7. Whereas the factor 1/S
is commonly accepted, the other is not, and also the requisite of consistency is
still discussed by some authors. The work of Reiss, Kegel and Katz [90] also
seems to have shed some light on this topic.

Theories Based on the Fisher’s Droplet Model

A general phenomenological expression for the free energy of formation of a
cluster was proposed by Fisher in the form [93],]94]

AG(n)
kT

=-—nlnS+ k,0n" + 7lnn + In(Vgo). (1.30)

In this expression, the first and second terms are the bulk and surface contri-
butions, respectively, the two contributions considered in CNT. The parameter
Kn is a function of the size and the temperature which describes deviations of
the surface free energy from that of a macroscopic cluster; and <y is a param-
eter allowing different cluster shapes (y = 2/3 for a spherical cluster). The
remaining terms include rotational, translational, vibrational, configurational,
and entropic contributions related to additional degrees of freedom which capil-
larity approximation may leave out. In those terms, V is the volume, and 7 and
qo are parameters whose expressions and values are different for each theory.

Several phenomenological theories have been proposed in which the expres-
sion of the free energy resembles the one formulated through Eq. (1.30).
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Based on the Fisher’s model for the cluster, Dillmann and Meier [95],[96]
introduced a theory where the x, factor was aimed to correct the curvature
dependence of the surface tension. They proposed a functional form for this
factor in terms of an expansion in powers of the inverse of the radius, inspired
on the work of Tolman [97]

~13 4 apn=2/3, (1.31)

kn =1+ ain

The values of the parameters a1, ao, 7 and gy were fitted to reproduce the
critical and low density properties of each substance. Unexpectedly, 7 and qq
turned out to be almost the same for all substances and the predictions of the
Dillmann and Meier theory agree surprisingly well with the experimental data
for alcohols [96].

Ford et al. [98],[99] recently discovered a serious inconsistency in the original
Dillmann and Meier theory (they considered an ideal gas but fitted the results to
imperfect vapor properties) and proposed a correction to reestablish its validity.
Unfortunately, the corrections alter the predictions of the model considerably
and completely spoil the good agreement with the experimental data. In an
attempt to preserve the original accordance with experiments of the Dillmann
and Meier theory, but overcoming its flaws, Delale an Meier [100] introduced the
exponent vy of the surface term in Eq. (1.30) as another fitting parameter. Its
value was adjusted to fit the critical properties for each substance. The results
were quite correct, but the theory has too many fitting parameters.

Finally, Kalikmanov and van Dongen [101] proposed a similar theory but
only using the first term in the expansion of Eq. (1.31), obtaining good accor-
dance with experimental data for some alcohols.

Scaled Nucleation Theories

The scaling of the nucleation rate with the temperature in the vicinities of the
critical point had been extensively considered in the literature. McGraw [18]
demonstrated that experimental data for critical supersaturations also follow
scaling laws for temperatures far below the critical temperature 7,.. Motivated
by this work and based on the CNT, Hale [102] proposed a scaled theory for
the nucleation rate that suggested a universal dependence of critical supersatu-
rations on (T,/T — 1) for T < T¢

(Te/T —1)*?

In Serig ~ 0535 s —,

(1.32)
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where () is a material-dependent constant related to the excess surface entropy
per molecule. The model seems to work reasonable well in some cases where
CNT fails.

Recently, McGraw and Laaksonen [103] proposed scaling relations for the
number n* of molecules in the critical nucleus and the nucleation barrier AG*.
Based on the CNT and the validity of the nucleation theorem (analyzed in detail
in Chapter 3), they proposed two scaling theorems

n* = C(T)Ap~3, (1.33)

AG* — AGoyr = —D(T), (1.34)
whose validity was confirmed for some cases by density functional calculations
[104], being C(T) and D(T) scaling parameters functions only of 7. These
scaling relations seem to provide a simple explanation and parametrization of
the systematic temperature-dependent departure of CNT predictions and ex-
periments for some substances.

Diffuse Interface Theory

Granasy and collaborators [105],[106] have recently introduced a particular ap-
proach to calculate the work of formation of a droplet which goes beyond the
capillarity approximation by using a diffuse interface model. This model as-
sumes a parametrization of the enthalpy and entropy density profiles of droplets
having the bulk physical properties at the center and a “diffuse interface” whose
thickness is size independent. The rates predicted by this model have been
shown to be consistent with the experimental data of some non-polar substances
and crystals.

Adiabatic Nucleation Theory

A very recent phenomenological approach [107] even question the isothermal
nature of the nucleation process, which is a key assumption in the CNT, and
proposes that nucleation proceeds adiabatically. Although some thermodynamic
relations have been derived, the theory is still not able to predict actual nucle-
ation rates.

1.2.3 Kinetic Models

Unlike phenomenological theories, kinetic models of nucleation are focused on
the direct calculation of the evaporation and the condensation rate coefficients
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without invoking the constrained equilibrium hypothesis or resort to free ener-
gies of cluster formation. Some of these kinetic approaches are based on the
peculiar dynamics of a monomer near the surface of a cluster, which is described
by means of Fokker-Planck equations. Within this approach we will consider
the works of Lovett [108], and Ruckenstein and collaborators [109]-[112].

Lovett [108] uses Thermodynamics to estimate the radius of the critical clus-
ter and the height of the energy barrier that a monomer should surmount to
leave the cluster surface. Considering that the monomer undergoes a Brownian
motion, he uses the corresponding Fokker-Planck equation to study the proba-
bility of leaving the cluster. His model is only applicable to nucleation in gases,
and he uses the macroscopic concept of interfacial tension which can doubtfully
be applied to the molecular description of small clusters.

Ruckenstein and coworkers [109]-[112] propose an alternative approach based
on the direct calculation of the evaporation rate k~. Their starting point is the
estimation of the potential barrier that is generated at the surface of a spherical
cluster of radius R from the interaction between monomers and the recount of
the number of monomers that interact with a given one. They also consider that
the molecules undergo Brownian motion. In the case of nucleation in liquids,
they write a Smoluchowski equation in spherical coordinates for the distribution
of probability p(7,t)

9p(7, 1)
ot

= Vp- (DV;p(’f’, t) + kET (F,t)V;qS(F)) . (1.35)
Here D is the diffusion coefficient and ¢(7) the interaction potential of a sur-
face monomer. For gases, they use a diffusion equation in the energy space.
These equations are just employed to obtain the rates k* and k~, as the mean
first passage time of a monomer crossing the potential barrier generated at the
surface of the cluster. The rates are introduced in the common Kramers-Moyal
truncated expansion of the master equation to evaluate the nucleation rate.

The main inconveniences of this formalism are that it considers (in the
case of liquids) that the diffusion coefficient is constant, when in fact there are
reasons to think that it is not certainly so; moreover the contribution of the
bulk medium to the effective potential is not incorporated rigorously [14]. On
the other hand, an important difficulty linked to this type of descriptions arises
from the fact that the nucleation rate is very sensitive to small uncertainties in
the interatomic potential [113].

The kinetic approach of Bauer et al. [114]-[116] extends the usual kinetic
model for addition and loss of molecules to a cluster by accounting for the
interaction of the clusters with the background carrier gas. Therefore, the theory
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requires double the usual number of kinetic coefficients which are adjusted, after
many assumptions, to fit the experimental data.

Finally, another very recent approach to analyze vapor-phase nucleation is
the Dynamic Nucleation Theory [117], which proposes a method to evaluate
the rate constants for cluster evaporation and condensation by means of the
variational transition state theory. It could be considered as an hybrid treatment
between kinetic and molecular theories.

1.2.4 Field and Density Functional Approaches

One of the main drawbacks of the classical theory is the assumption that the in-
terface of the cluster is sharp, hypothesis that -at least at the level of simulations-
is not completely satisfactory.

Density functional models allow a treatment keeping in mind the possibility
that the interface between the cluster and the original phase may be diffuse. The
basic assumption is the consideration of a nucleation event as an inhomogeneous
fluid of average density p(r). Then, it can be proved [118] that there exists
a free-energy functional of the density Q[p(r)] whose minima determine the
thermodynamic stable states at a given temperature. In the particular case of
nucleation, the evaluation of the saddle-point §2/dp(r) = 0 yields the density
profile of the critical nucleus, and from it the nucleation barrier AQ* can be
calculated. Since density functional approaches provide no information about
kinetic factors, the nucleation rate must be evaluated from the classical steady-
state formula Eq. (1.26).

The first density functional for nucleation was proposed by Cahn and Hilliard
[119],[120]

Qp(r)] = / dr { )] — prolx) + K [Vo()]’} (1.36)

where fp is the Helmholtz free energy per unit volume of the homogeneous
system with density p, and the square gradient-term K [Vp(r)]? accounts for
non-local contributions to the free energy, required to incorporate the energetic
cost associated with the spatial variation of the density.

For very sharp interfaces, the square-gradient approximation is not suffi-
ciently good. To avoid this difficulty, Oxtoby and coworkers [121]-[123] have
proposed a density functional constructed directly from the interaction poten-
tial between molecules

Qp(w)] = [ dr {falp)] = up(e)} + [ [ drde'ua(r ~ ' oe)ote’), (137)
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where the first integral accounts for the hard-sphere, purely repulsive interac-
tion, and ¢4y represents the long range attractive part of the potential. Interest-
ing investigations have been performed on different systems and using different
potentials [124]-[126]. The comparison with macroscopic phenomenological the-
ories results in significant discrepancies. The formalism has also been extended
to describe crystallization [127]-[128].

The main inconvenience of these conventional density functional theories are
that their correctness strongly depends on the appropriate election of the free
energy functional. Moreover, its range of application is restricted to steady-state
situations.

The contributions described above are exclusively centered on the evaluation
of the nucleation barrier and do not deal with the real kinetics of the process.
An interesting approach to incorporate kinetic aspects into density functional
theories for nucleation was developed by Langer [129]-[131]. He proposed a
first-principle calculation of the rate of decay of a metastable state, based on
Statistical Mechanics and including fluctuations. Starting from the Hamiltonian
dynamics of the system, he was able to derive the following equation

op({n},t) 0 [ 0p | 0G({n}) p
P =T (s (g - ) 0

where {n} is the set of all degrees of freedom (coordinates and momenta) that
characterize the system configuration, G({n}) is the coarse-grained free energy
functional, and M;; is a generalized mobility matrix. From this Fokker-Planck
equation, the nucleation rate is given by the flow across the saddle point of
G({n}), which includes a pre-exponential statistical factor (a multi-dimensional
generalization of the Zeldovich factor) and a kinetic factor (related to the de-
terministic growth rate).

Langer and Turski [132] applied this approach to construct a hydrodynamic
model to describe the condensation of a supersaturated vapor. The length-scale
requirements of the hydrodynamic description restrict the validity of the model
to the vicinities of the critical point. The results obtained were nearly the same
as the classical ones.

1.2.5 Molecular Theories

The aim of molecular approaches is to obtain nucleation rates starting directly
from the potential energy of interaction between molecules. The main procedure
relays on the use of statistical mechanics, instead of macroscopic phenomenolog-
ical models, to evaluate the equilibrium distribution of clusters. These theories
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have a strong connection with simulations, since simulations often provide the
only tool able to evaluate the equilibrium distributions proposed by them. A
very comprehensive and complete revision of molecular theories, including a his-
torical perspective and connections with other theories, is given in Ref. [133].

The centerpiece underlying the development of any molecular theory is to
know what is the relevant and physically meaningful definition of a cluster. In
this context, many proposals can be found in the literature.

One possible way to identify a cluster, introduced by Hill [134], is as the
group of molecules whose total energy is negative. However, this criterion has
the serious inconvenient of being very difficult to implement in practice.

Another possible and more wieldy definition of cluster was proposed by
Stillinger [135]. He defined the cluster in terms of a connectivity criterion. Two
molecules are connected if their centers are separated by a distance shorter than
some given maximum 7.. The cluster is then defined by the group of molecules
which lie within a distance r. of at least one other molecule. This definition of
cluster is very useful for simulations, but presents some redundancy problems
as pointed out in Ref. [136].

The LBA cluster, introduced by Lee, Barker and Abraham [137], consist of
n molecules confined in a rigid spherical container of volume v, whose center
coincides with the center of mass of the association of molecules. For interme-
diate sizes, the cluster is stable and its free energy is independent of the volume
v, but there is no natural criterion to justify the volume v of the constraining
cell.

A significant effort toward a true molecular theory of nucleation has recently
been made by Reiss and collaborators [136],[138]-[143]. Trying to avoid the
problem of the arbitrary choice of the constraining volume in the LBA cluster,
they introduced the concept of n/v cluster [143], in which the volume v also plays
the role of an independent variable. The criteria to define the volume is that the
spherical shell dv centered on the center of mass of the molecules, should contain
the “last” molecule. All possible configurations of the molecules preserving the
position of the center of mass and a molecule in the shell constitute, collectively,
the n/v cluster.

Finally, the most satisfactory definition of clusters seem to be the recently
proposed n/v-Stillinger cluster [133], an hybrid that combines the Stillinger
connectivity criterion with the n/v cluster. The cluster consist of all possible
configuration of n molecules within v that satisfy the connectivity condition,
conserve the position of the center of mass, and maintain the shell molecule
within the shell. This seems to be a quite consistent definition of cluster, allows
a reasonable simulative estimation of free energies, and may provide the basis
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of future developments of phenomenological and molecular theories.

1.3 Simulations

The other ingredient which has contributed to the renewed interest in nucleation
is the development of computer simulations. Nowadays, computer simulations
offer the possibility of exploring the process at molecular scale then witnessing
the real formation and evolution of clusters. In addition, they are not subjected
to some of the limitations and inconveniences inherent to the phenomenological
descriptions.

There exist two primary problems that simulations must cope with. The first
one is that nucleation is a rear event and thus difficult in nature to simulate.
Typical values of the parameters that can be handled in simulations (such as
volume, time and number of particles) restrict the scope of direct simulations
to experimentally unreachable conditions or isolated (artificial) clusters. The
second problematic issue of simulations is related with the troubles of definition
and identification of clusters. It is not clear what is the proper prescription
which has to be employed to identify which particles belong to the same cluster
at a given time, as was discussed in the context of molecular theories.

According to the objective of the simulations, we can roughly distinguish
between two different branches: simulations aimed to estimate the nucleation
barriers, and the ones allowing the direct estimation of nucleation rates.

1.3.1 Evaluation of Nucleation Barriers

One of the principal applications of computer simulations is the evaluation of the
energy of droplet formation directly from the interactions between molecules.
The evaluation of energy barriers can be performed either by Monte Carlo or
by molecular dynamics techniques.

Monte Carlo simulations [137],[144]-[152] provide the more straightforward
technique to evaluate equilibrium thermodynamic properties of a droplet. In
particular, its energy of formation can be calculated through the exploration
of equilibrium configurations of the molecules, since the equilibrium probability
of appearance of a cluster containing n molecules, at a given temperature and
supersaturation, is related to the energy involved in its formation through Eq.
(1.7). The problem is that the appearance of a cluster under experimental con-
ditions is an extremely rare event in simulations. Therefore, using the standard
Boltzmann’s sampling of configurations is almost impossible to observe a critical
droplet in the duration of a simulation. Consequently, the direct estimation of
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nucleation barriers is restricted to somewhat unrealistic conditions, unless one
uses a different sampling of the configurational space.

One of these non-standard techniques is the umbrella-sampling [146], ap-
plied to nucleation by Frenkel and collaborators [147]-[149], that permits the
estimation of nucleation barriers at low and experimentally attainable super-
saturations.

Another trick to avoid the computational restrictions of a large scale simula-
tion is to perform a small-system simulation of a single, constrained cluster. For
instance, Kusaka et al. [153],[154] have proposed an efficient method to identify
relevant clusters by a grand-canonical Monte Carlo simulation in a small cell
whose results are rescaled to the system size. This mapping of small-system fluc-
tuations into macrostates has been critically reconsidered in Refs. [155]-[157].
A different small-system grand-canonical Monte Carlo simulation, following the
physical cluster theory of Reiss and coworkers, has recently been implemented
by Oh and Zeng [158].

Molecular dynamics (MD) simulations can also be applied to estimate free
energies of droplet formation [159]-[161]. The molecular dynamics technique fol-
lows the time evolution of a microcanonical ensemble of particles interacting via
a particular intermolecular potential. The integration of the Newton’s equations
for all particles provides the real trajectory of the system in the phase space
from which its properties can be evaluated. However, the use of this method to
calculate equilibrium properties is in general less efficient than the Monte Carlo
approach, because it requires long equilibration times. Where MD simulations
have become really valuable is in the direct evaluation of nucleation rates.

1.3.2 Evaluation of Nucleation Rates

Molecular dynamics simulations offer the interesting possibility of monitoring
the time evolution of the nucleation process and hence estimate directly nucle-
ation rates. Unfortunately, even with the present-day powerful computers, it
is almost impossible to directly simulate the average rate of nucleus formation,
even on the simplest systems.

The “brute-force” application of the molecular dynamics technique would
consist of simply undercooling the system and then waiting the appearance of
nuclei. Since the nucleation barrier decreases as 1/(InS)?, this type of simu-
lations based on the recount of spontaneous formation of nuclei require exper-
imentally non-affordable high supersaturations [162]. For more moderate and
realistic conditions the nucleation barrier is so large that a spontaneous crossing
is extremely unlikely during the typical times of a simulation.
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Recently, a different type of simulations allowing the study of nucleation
under more realistic undercoolings, has been introduced by ten Wolde, Ruiz-
Montero and Frenkel [163]-[165] in the context of crystallization. Their method
is based on the separation of the simulation in two parts. First, either Monte
Carlo or molecular dynamics simulations are employed to evaluate the nucle-
ation barrier in terms of a reaction coordinate. This reaction coordinate con-
stitutes in fact an order parameter connecting the initial and final phases and
being sensitive to the global degree of local order (or crystallinity) in the sys-
tem. Molecular dynamics is then used to simulate the evolution of the transition
state. The Bennett-Chandler scheme [166]-[168], based on linear response the-
ory and described in the next chapter, is employed to relate the decay rate of
a fluctuation having the critical size, with the barrier-crossing rate. The com-
bination of the probability that the system is located at the transition state,
together with the barrier-crossing rate yield a prediction of the nucleation rate.

We also want to mention that, although in the different context of crystal-
lization of colloidal particles, Auer and Frenkel [2] have very recently reported
the first parameter-free estimate of a nucleation rate, demonstrating the power
of computer simulations as a tool to investigate nucleation.

Lately, the interest has also been focused on the direct evaluation of the rate
coefficients of condensation and evaporation, and a small-system MD simulation
has been proposed [169].

1.4 Conclusions

At this point, it is important to stress out the main conclusions aroused by the
previous revision on the subject.

Although an impressive progress has been accomplished in experimental
techniques, the tremendously difficult nature of the measurement of nucleation
rates provokes that substantial discrepancies between theory and experiments
and even between experimental results, persist. These deviations reveal the real
signification of experiments beyond the particular uncertainty estimations pro-
vided by the experimentalists. Consequently, the agreement with experimental
results should not constitute the sole and absolute criterion by means one can
judge the validity of any theory. In fact, and paradoxically, many approaches
considered as more “consistent” than the classical theory yield worst results
when tested against experiments.

Regarding the theory, in spite of its flaws, the Classical Nucleation Theory is
still the reference in the field. Its success lies in the fact that it constitutes a sim-
ple theory with wide applicability which predicts nucleation rates in terms solely
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of easily accessible macroscopic properties. In addition, it has been successful
in predicting the limits of metastability. However, its quantitative predictions
for nucleation rates are not so correct. Besides, simulations have shown that the
capillarity approximation in which CNT is based is not applicable to clusters of
small size containing only a few molecules. In addition, the use of macroscopic
properties for these mesoscopic droplets seems to be arguable.

Many extensions and phenomenological modifications of the CNT have been
introduced to overcome these deficiencies, but these changes have not led to a
general theory that is applicable and reliable for a variety of systems. Molecular
theories have the incentive of providing strong realism of the process at micro-
scopic scale, but the complexity of the definition of the relevant cluster limits
somehow its applicability to simple intermolecular potentials. As with the phe-
nomenological approaches, kinetic and molecular theories presented up to date
have not resulted in a general theory routinely applied to calculate nucleation
rates. That is the main reason why CNT is still widely used.

Finally, concerning simulations, its main contribution up to now has been in
the characterization of nucleation clusters at molecular scale. At their present
state they are still not able to provide a direct insight of nucleation rates. As
a result, some indirect and very promising methods are being developed to
evaluate nucleation rates [2|. The problem is that these methods do not resort
to any of the nucleation theories described previously, so a big gap between
simulations and theories is being opened.

In summary, although recent advances in the study of nucleation are very
promising, much remains to be accomplished. In particular, the previous re-
vision evidences that most of the efforts have been centered on the equilib-
rium aspects of the process -mainly on the calculation of the free energy of
cluster formation- quite disregarding the nonequilibrium facet of the problem.
Our objective will be to introduce a consistent framework to describe nucle-
ation, retaining the two main features of this process, namely its mesoscopic
and nonequilibrium character. This will be the topic of the following chapters.
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Appendix

Evaluation of the Steady-State Nucleation Rate by Steepest De-
scent

The steady-state flux can be calculated from the stationary solution of the
Fokker-Planck equation (1.29)

0

O:%

0 f(n)
(k:+(n)feq(n) o feq(n)) . (1.39)

The boundary conditions are: f/feq(n1) = 1asni — 1 and f/feq(n2) — 0,
as ng — o0. In the steady state, the first integral of the equation above is

9 f(n)
On feq(n)

kt(n) feq(n) = J = constant, (1.40)

where the constant J is in fact the steady-state nucleation rate. The integration
of this equation, using the boundary conditions described above, determines the
expression for the steady-state nucleation rate

1
J = (1.41)
n2 1 ’
Jnt T ety
or alternatively
1
J = (1.42)

2 A ?
It w e mm o (kfs_(;’) dn

where Eq. (1.7) has been used. When the nucleation barrier is very high,
this integral can be evaluated by the steepest descent approximation. Notice
that, due to the presence of the exponential in the integrand, the overwhelming
contribution to the previous integral comes from a narrow region centered about
the location of the maximum at n*. We can then safely assume that k*(n) =
kT (n*), and replace the limits of integration n; and ny by 0 and oo, respectively.
In addition, the free energy barrier can be expanded around the critical size as
follows

d’AG(n)

AG(n) ~ AG(n") + % e (1.43)

n*
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The nucleation rate can then be written as

AG 0 _ d2AG(n) (n _ n*)Q -1
— * an2
~ k1 (n*) feq(1 n . (144
7 ) faesp (o ) | [T e e (1.49)
The evaluation of the Gaussian integral yields
-1  d?AG(n)
7 = 1.45
\/2kaT dn? | (145)

which is frequently referred to as the Zeldovich factor. The final expression for
the steady-state nucleation rate is then

J = kT (n*) feq(1)Z exp (_kig*) . (1.46)
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Chapter 2

Mesoscopic Nonequilibrium
Thermodynamics Description of
Nucleation Kinetics

The first step in the kinetics of many phase transitions is, as we have seen,
the formation of small embryos of the new phase within the bulk metastable
substance. This is an activated process: a free energy barrier must be overcome
in order to form embryos of a critical size, beyond which the new phase grows
spontaneously.

Many nonequilibrium processes in nature may be described in terms of the
crossing of a free energy barrier which separate two accessible states of the
system, corresponding to the local minima at each side of the barrier. When
the system localized at the left well acquires energy, it may surmount the barrier
thus manifesting the characteristics of the state at the right well. Processes as
thermal emission in semiconductors [1], chemical reactions [2], adsorption [3],
nucleation [4], etc. share these common features and are usually referred to as
activated processes.

It is interesting to emphasize the essential difference between activated pro-
cesses and the second category of processes usually occurring in nonequilibrium
situations, namely transport processes. The latter constitute the response to
the application of an external force (or gradient) and may emerge even at very
low values of the applied force. Contrarily, as commented previously, activated
processes may only be induced whenever the applied perturbation exceeds a
threshold value.

This difference has an important consequence. Whereas transport processes
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may exhibit a wide linear regime in which the external force and the estab-
lished current are proportional, the regime in which activated processes develop
is highly nonlinear. In this context, we can compare the linear Fourier, Fick
or Ohm laws, in which the corresponding currents are proportional to the con-
jugated thermodynamic forces or gradients, with the exponential laws usually
appearing in activated processes, as the nonlinear expression of the law of mass
action giving the reaction rate of a chemical reaction in terms of its affinity.

The description of a mesoscopic process, like nucleation, requires the for-
mulation of a kinetic equation tracing the evolution in time of the probability
density of finding the system in a determined configuration. From this equation
we can derive the evolution equations for the different moments providing ex-
pressions for the relaxation times, nucleation rates, etc., that can be contrasted
with experiments.

The kinetics of homogeneous nucleation is habitually described from a the-
oretical point of view by means of kinetic equations of the Fokker-Planck type
focused on the size distribution of the clusters present in the system. Due to the
activated nature of the nucleation process, these equations are formally analo-
gous to the ones arising from Kramers reaction-rate theory [5, 6]. As mentioned
in the previous chapter, these equations have been obtained mainly from three
different procedures: as continuous approaches to a master equation; starting
from microscopic kinetic models by considering the separation of a molecule
from the cluster surface like a problem of Brownian diffusion through a bar-
rier; or as the consequence of imposing a continuity equation for the probability
density in the framework of field and density functional theories. The several
approaches proposed to evaluate nucleation rates differ basically on the expres-
sions for the drift and diffusion coefficients of the Fokker-Planck equation.

In spite of the great variety of proposed equations, up to now none of them
has turned out to be fully satisfactory. In the previous chapter we have verified
that equations obtained as continuous approximation to a master equation have
the main drawback of not being able to reproduce some of the master equation
characteristics (as the equilibrium distribution, the deterministic growth, the
variance of the distribution or the short time behavior). Moreover, in all of
them (except in the vicinities of the critical point) the coefficients are not fully
determined, but rather their expression are postulated, or they are left in terms
of the unspecified rates k¥ and k~. To estimate these rates an appropriate
microscopic kinetic model is required. On the other hand, equations obtained
from kinetic models base their validity on the correction of the microscopic
model proposed for the dynamics of the cluster interface. Finally, the field-
theory approach is restricted to the vicinity of the critical point and to situations
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where temporal dependencies do not exist.

Our purpose in this chapter is precisely to present a simple theoretical frame-
work to analyze the kinetics of homogeneous nucleation. This scheme, based
on mesoscopic nonequilibrium thermodynamics [7]-[15], provides a systematic
method for the description of nonequilibrium processes occurring at a meso-
scopic scale, such as nucleation. It has been applied successfully before to other
problems like the adsorption kinetics of particles on surfaces [3], the description
of chemical reactions [2] or the treatment of noise in interfaces of semiconductor
devices [1]. This formalism allows the derivation of Fokker-Planck equations
from firm thermodynamics and statistical mechanical foundations and not as a
mere continuous approximation to a master equation. We want to show how
the scheme we propose provides a complete nonequilibrium description of the
process, and is able to abridge the gap between theory and simulations.

The chapter is structured as follows. In the Introduction, we justify the
need of a framework to describe the kinetics of mesoscopic systems and acti-
vated processes. Section 2 is devoted to present the mesoscopic nonequilibrium
thermodynamics theory. This scheme is particularized in Section 3 to analyze
the kinetics of homogeneous nucleation. In this context, we will derive several
Fokker-Planck equations describing the kinetics of the process from different
perspectives. In particular, we will introduce new kinetic equations in terms
of an order parameter or an improved hydrodynamic model, and we will also
reproduce some of the kinetic equations proposed in the literature. In Section 4,
we shall discuss the quasi-stationary case to show how in this case our approach
manifests its consistency and overcomes some of the inherent difficulties of pre-
vious treatments. In Section 5, we outline how our theoretical framework can
be easily connected with simulations. Finally, in the last section we summarize
and comment on the main results of the theory we propose.

2.1 Introduction

Thermodynamics is a well-established theory for the description of systems at
equilibrium. Time is an irrelevant variable in thermodynamics since it is re-
stricted to changes which are infinitely slow (quasi-static) or so fast that equilib-
rium is reached immediately. Its scope, therefore, excludes the characterization
of systems evolving in time.

Changes in the equilibrium state of a system are due to the presence of
gradients, or in general of “thermodynamic forces” in the language of nonequi-
librium thermodynamics. The response to those forces is the establishment of
“fluxes” or “currents” trying to compensate their effect by returning the system
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to the equilibrium state.

The objective of nonequilibrium thermodynamics is precisely to relate the
response of the system with the forces causing it. Nonequilibrium thermo-
dynamics [8] provides a powerful tool to set up systematically the equations
characterizing irreversible processes. To accomplish that objective, this the-
ory resort and it is constructed over the firm foundations of thermodynamics.
The crucial assumption allowing the application of thermodynamic concepts to
out of equilibrium situations is the local equilibrium hypothesis. For it, one as-
sumes that although the total system is not at equilibrium, a state of “local”
equilibrium in which thermodynamics remains applicable, is established.

From the Gibbs equation (the first law) and the conservation laws for the
mass, energy and momentum, one obtains the entropy balance equation from
which one may identify the rate of entropy change due to nonequilibrium pro-
cesses occurring in the system. That quantity, referred to as entropy production,
plays a central role in the development of the theory. It contains all possible
sources of dissipation and consists of a sum of products between fluxes (effects)
and conjugated forces (causes, usually proportional to the gradients of system
variables).

The second law of thermodynamics establishes that this entropy production
should be positive. To fulfill this requirement, nonequilibrium thermodynamics
then postulates linear relationships between fluxes and forces, known as con-
stitutive equations. The proportionality coefficients are called phenomenolog-
ical coefficients and permit the coupling between forces and fluxes of different
nature, thus justifying the existence of cross-effects such as for instance the
thermal-diffusion or the thermoelectric effects. These couplings are restricted
by Onsager-Casimir and Curie principles, consequence of the symmetries of the
underlying microscopic dynamics. Putting the conservation laws and the con-
stitutive relations together, we obtain a complete set of differential equations
characterizing the evolution of the system.

The nonequilibrium thermodynamic description of a system has some limita-
tions. Its scope of application is restricted to macroscopic systems characterized
in terms of state variables, such as temperature, pressure, chemical potential...
In its standard formulation |8, nonequilibrium thermodynamics cannot describe
the kinetics at the mesoscopic level, involving degrees of freedom as for example
the velocity of a Brownian particle, the size of a polymer or a variable charac-
terizing the state of a living cell.

Another restriction is due to the linear character of the constitutive relations.
In principle, this linear approximation should only be appropriate when the
magnitude of the gradients is small. In practice, linear relations have yet been
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proved to work reasonably well for many transport and relaxation processes
even in presence of large gradients.

Nevertheless, for the class of activated processes, the linearity of the phe-
nomenological laws does not constitute a satisfying approximation. A proto-
typical example is a chemical reaction. The standard nonequilibrium thermo-
dynamics predicts a linear dependency of the reaction rate (the response of the
system) in terms of the affinity (the corresponding force). But actually reac-
tion rates evidence a highly nonlinear, exponential, dependency on the affinity,
expressed by the law of mass action.

A mesoscopic reformulation of the standard nonequilibrium thermodynamics
is able to overcome such difficulties, as described in the following section.

2.2 Mesoscopic Nonequilibrium Thermodynamics

The Mesoscopic Nonequilibrium Thermodynamics (MNET) theory constitutes a
powerful, systematic and easy method to describe the kinetics of nonequilibrium
processes occurring at a mesoscopic scale. It is based on the ideas introduced by
Prigogine and Mazur [7] to extend nonequilibrium thermodynamics to systems
with internal degrees of freedom. In its present formulation [16], it constitutes a
generalization of the standard nonequilibrium thermodynamics able to describe
the kinetics of mesoscopic entities in terms of arbitrary coordinates or degrees
of freedom.

MNET is sustained over the grounds of nonequilibrium thermodynamics.
But to be able to extend its scope up to the mesoscopic regime, concepts from
statistical mechanics must be borrowed. In particular, the entropy which is the
crucial quantity in nonequilibrium thermodynamics, is understood from its sta-
tistical perspective. The combination of the statistical definition of the entropy,
which allows the description of a general system in terms of its probability den-
sity, with the systematic procedure of nonequilibrium thermodynamics, results
in a powerful framework to describe the kinetics of a wide class of systems. This
framework is outlined in the next subsection.

2.2.1 General Derivation

Let us assume that the state of a system is fully specified by a set of parameters
v, that we will call internal coordinates or internal degrees of freedom which
describe the system locally. This arbitrary set of coordinates may represent the
velocity of a particle, the orientation of a spin, the size of a macromolecule or
whatever coordinate or order parameter whose values properly define the state
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of the system in a phase space. The characterization at the mesoscopic level is
dictated by f(v,t), the probability density of finding the system at the state
v € (7,v + dvy) at time ¢.

We will assume that the evolution of the system can be described by means
of a diffusion process over a potential landscape in the internal space. This land-
scape is conformed by the values of the energy associated to each configuration
v. The equilibrium state of the system is then characterized by the probability

distribution function AW()
- vy
feq ~ €xp <7kBT ) ; (2.1)

where AW(7y) is the minimum reversible work required to create that state of
the system [17], which is related to the maximum useful work which can be
extracted from it, sometimes referred to as available energy [18] or availability
[19]; kp is Boltzmann’s constant, and 7T is the temperature of the medium.
Variations of the minimum work for a thermodynamic system are expressed as

AW = AU — TAS + pAV — uAN +yAY + ..., (2.2)

where U is the internal energy, S the entropy, V the volume, and N the number
of particles of the system, whereas T, p, and u are the temperature, pressure and
chemical potential of the environment. The term yAY represents other kinds
of work (electric, magnetic, surface work...) performed on the system, being
y the intensive parameter and Y its conjugate extensive variable [20]. For the
case of constant temperature, volume and number of particles, the minimum
work corresponds to the Helmholtz free energy F. In general, that quantity
reduces to the thermodynamics potentials by imposing to expression (2.2) the
corresponding constraints [20] .

Having specified the statics of the system we will now derive the kinetic
equation describing the evolution of the probability density. MNET applies the
scheme of nonequilibrium thermodynamics to describe the dynamics of these
mesoscopic degrees of freedom. The treatment of a diffusion process in the
framework of nonequilibrium thermodynamics is extended to the case in which
the relevant quantity is a probability density, defined in phase space, instead of
a mass density. The starting point is then the formulation of the Gibbs equation
for the entropy variations resulting from this diffusion process

68 = —%/u(v)éf(%t)d% (2.3)

which resembles the corresponding law proposed in nonequilibrium thermody-
namics in terms of the mass density of particles. Here p(y) is a generalized
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chemical potential conjugated to the distribution function f(v,1).

The concept of entropy is not restricted to macroscopic systems in terms of
mass density variables. In fact, for the description of a mesoscopic entity it is
more convenient to resort to the definition of the entropy provided by Statisti-
cal Mechanics. It is precisely the connection between the thermodynamic and
statistical mechanics definition of the entropy which facilitates the identification
of the chemical potential.

The statistical mechanics definition of the entropy is given through the Gibbs
entropy postulate [8]

_ 7:1)
kg / Fy feq Ly v+ S (2.4)

where Seq is the value of the entropy at equilibrium and feq(7y) is the equilibrium
distribution given through Eq. (2.1). Taking variations in the previous equation
one obtains

7 1t)
- —kB/éf dy + 6Seq, (2.5)
jéq( ) “
where the variations of the equilibrium entropy are given by
1
5Seq = _f /#eqdf(’)'at)d’% (26)

and peq is the value of the chemical potential at equilibrium. Comparison of
Eq. (2.5) with the Gibbs equation (2.3) yields the expression for the chemical
potential

[, 1)
+ feg- (2.7)
fegv) 7
Quite generally, the evolution of the probability density in the internal space
is governed by the continuity equation
of __9J
ot oy’

u(v,t) = kpTln

(2.8)

where J(v,t) is a current or density flux in the internal space which has to
be specified. To obtain its value, one proceeds to derive the expression of the
entropy production o = dS/dt which follows from the continuity equation (2.8)
and the Gibbs equation (2.3). One then arrives at

o= 7 [Tt oty (2.9
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where a partial integration has been performed, with the assumption that the
diffusion current vanishes at the initial and final states of the process. This
quantity has the usual form of a sum of flux-force pairs.

Nonequilibrium thermodynamics assumes linear dependency between fluxes
and forces and establishes linear phenomenological relations between them. In
our case, following this scheme, we obtain the desired expression for the current

Tty = -2 L), (2.10)

where L(7) is a phenomenological coefficient which may in general depend on
the internal coordinate. To derive this expression, locality in the internal space
has also been taken into account, for which only fluxes, J(v,t), and forces,
T~1 8u(y,t)/0y, with the same value of v become coupled.

The resulting kinetic equation then follows by substituting Eqgs. (2.10) and
(2.7) into the continuity equation (2.8)

of 0 ( o f >
92 (pp. L), 2.11
or ~ oy \Mray g, 211
where we have defined the diffusion coefficient as
kgL
D(y) = Bf("Y). (2.12)
This equation, which in view of Eq. (2.1) can also be written as
of 0 of D oAW
9 _ 9 (pgl Z 927 2.13
ot (97( oy T keT oy ) (2.13)

is the Fokker-Planck equation accounting for the evolution of the probability
density in y-space.

Under the conditions for which AW = AG = AH — TAS, this equation
transforms into the Fokker-Planck equation for a system in the presence of a
free energy barrier. One then obtains

2D (p, D 08G Y -
ot Oy Oy  kgT Oy

Other cases of interest concern different thermodynamic potentials. For in-
stance, a particularly interesting situation is the case of a purely entropic bar-
rier, often encountered in soft-condensed matter and biophysics, and discussed
in detail in Ref. [16].
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The general form of Eq. (2.11), in which the equilibrium distribution func-
tion does not need to be specified and is given in general by Eq. (2.1), makes
that result applicable to a great diversity of situations. The method used in
this section then offers a common formalism able to analyze the dynamics of
any system at the mesoscopic scale.

Finally, to render the Fokker-Planck dynamics complete, we need to specify
the value of the diffusion coefficient in the internal space, D(v), as well as to
determine the form of the barrier, AW(vy). Both quantities can obviously be
borrowed from well-established theories. However, one can alternatively obtain
these quantities from simulations.

The value of the free energy barrier is related to the equilibrium distribution
(2.1) which can be evaluated from Monte Carlo or molecular dynamics simu-
lations as proposed by van Duijneveldt and Frenkel in Ref. [21]-[23] for the
specific case of homogeneous nucleation.

To determine the diffusion coefficient D(-y) one can use the Landau-Lifshitz
fluctuating hydrodynamics [17],[2]. This theory, originally formulated for trans-
port processes and subsequently extended to activated processes [3], proposes
the decomposition of the total current into a systematic and random contribu-
tions. In our interpretation of the nucleation process as a diffusion along an
internal coordinate, we can apply that formalism to incorporate fluctuations to
the former analysis. The total diffusion current splits up into systematic and
random contributions in the form

J(v,t) = J* (v, t) + " (7, 1) (2.15)

The systematic part J*(vy,t) matches expression (2.8) whereas the random
part J"(v,t) constitutes a Gaussian white noise stochastic process with zero
mean and fluctuation-dissipation theorem given by

(J" (7, 0)J" (¥, ¥)) = 2kpLé(y —v")é(t —t') = 2D fo(y —+')o(¢t — ¢'). (2.16)

Integration of Eq. (2.16) with respect to time and to the internal coordinate
then leads to an expression of the diffusion coefficient in terms of the correlations
of the random current

f(vl 5 //Ooour (7, 0)J (v, ) dt dy" (2.17)

This equation constitutes a Green-Kubo formula and can be used to determine
the diffusion coefficient in the internal space from realizations of the underlying

D('Ya t) =
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stochastic process. For each interpretation of the degree of freedom, the later
equation could be transformed in order to be evaluated by means of simulations.
A concrete example for the nucleation case is given in Section 2.5. Consequently,
our scheme becomes in this way completely solvable at least at the simulation
level.

The incorporation of fluctuations in the internal space indicated previously
implies the formulation of a more general kinetic equation [11],[13]. Taking into
account the random diffusion current in Eq. (2.8) this expression transforms
into

of o of D 0AW

OF _ 9 Ippy pnol D oaW Fr 9.18

e+ DO (219
containing a random source F"(y,t) = —%J’"(fy,t). This equation, of the

Fokker-Planck-Langevin type, expresses the fact that the distribution function
may fluctuate around a mean value solution of the kinetic equation.

The discussion of the stochastic kinetic equations ends our presentation of
the MNET.

2.3 MNET Approach to Nucleation Kinetics

Once established the general MNET framework, our aim in this section is to
particularize the method to the case of nucleation. Adopting the previous pic-
ture of the evolution of a mesoscopic system, the process of nucleation and
growth of the new phase can be viewed as a diffusion process through the free
energy barrier AW(y) that separates the metastable (vapor or liquid) phase
corresponding to y; from the new stable (liquid or crystal) phase characterized
by 7o (see Fig. 2.1).

The formalism we have proposed then enables us to formulate a general
Fokker-Planck equation in terms of an arbitrary mesoscopic coordinate «y spec-
ifying the state of the system. Thus, one of its inherent advantages comes from
the fact that it is not necessarily restricted to give a vision of the nucleation only
focused on the kinetics of clusters. Contrarily, a suitable choice of the internal
coordinate will lead to the Fokker-Planck equation corresponding to a different
description of the nucleation process.

In this section we shall particularize this equation for different interpreta-
tions of the mesoscopic coordinate, suitable to describe nucleation. In this way,
we will see how we can propose new Fokker-Planck equations for alternative
descriptions of nucleation, in terms for instance of a global crystallization order
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Figure 2.1: Nucleation as a diffusion over an energy landscape AW(vy). The internal coor-
dinate v may for instance represent the size of a cluster.

parameter () or from an hydrodynamic perspective, and also how to reproduce
the already existing ones.

2.3.1 v is Related to the Number of Molecules in a Cluster

When nucleation proceeds by the formation of spherical clusters, the process
can be completely characterized by a single coordinate. This coordinate may
represent for instance the number of monomers in a cluster or the cluster size.

Let us consider as internal coordinate the number of monomers that consti-
tute a cluster, n. In this case, f would represent the (time-dependent) clusters
size distribution, and AW(y) = AG(n) would be the free energy needed to form
a cluster of size n. Assuming that n varies in a continuous way, equation (2.11)
yields

of _ 9 9 f
E (D”feqan feq> ’ (219)

which resembles the Fokker-Planck equation (1.29) obtained as continuous ap-
proximation to a master equation. To complete the analogy, the diffusion coef-
ficient D,, given in general by Eq. (2.12) would be identified with k*.

It is worth pointing out that our formalism recovers in a natural and direct
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way (without additional assumptions) the correct equilibrium distribution. It
is straightforward to verify that the equilibrium distribution (2.1) is indeed a
stationary solution of equation (2.11) satisfying the condition J = 0.

2.3.2 v Represents an Order Parameter

A possible way of characterizing the nucleation process for the case of crystal-
lization, which has recently been used by Frenkel and coworkers in computer
simulations (see Refs. [22],[23]), is by means of an order parameter () that de-
scribes the global degree of crystallization of the system. In these simulations,
the nucleation rate is calculated from a phenomenological rate equation using
linear response theory.

One may wonder why they use linear response theory instead of appealing
to the usual nucleation theories or even to the prototypical theory of activated
processes: the Kramers theory. In fact, in their simulations [22],[23] they report
on a diffusive behavior that seems to corroborate the validity of Kramers picture.
Additionally, they also employ Kramers equation in order to obtain reasonably
estimations of the time evolution of the system.

In Ref. [24] the authors themselves expose the reasons why they do not use
Kramers theory. First, they assert that it was originally formulated for the single
particle diffusion problem and therefore its validity is not guaranteed in the case
when the reaction coordinate is a global one. On the other hand, they point out
that the diffusion coefficient, assumed to be constant in Kramers picture, may
depend on the value of the reaction coordinate, and moreover its expression
may be non-trivial. Finally, they affirm that a Fokker-Planck description of
nucleation processes does not take into account hydrodynamic effects that may
be very important in this type of barrier-crossing processes.

Within our framework we can easily propose a theoretical description of
homogeneous nucleation in terms of a global order parameter as the one used
by Frenkel and coworkers in their simulations [25].

According to our theory, the underlying Fokker-Planck equation describing
the kinetics of this process in terms of the variable (), considered as the internal
degree of freedom, is given by

of 0 af D(Q,t) 0AG
Fri @ (D(Q,t)% + knT 8—’)/ )a (2.20)

where AG(Q) is the free-energy of formation of the state with crystallinity @,
and the expression of the diffusion coefficient is, following Eq. (2.12),
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D(Q,t) = hpl(@) (2.21)

(@t

If the internal coordinate represents an order parameter associated to the
whole crystallinity, the interpretation of f is slightly different. Now @ is a
variable that characterizes the global state of the system. Therefore, the internal
space associated to this variable would be the set of all the feasible replicas of
the system in a given "macrostate". From this point of view, f would represent
the non-equilibrium distribution of this ensemble whose meaning would be the
fraction of systems with value of the internal coordinate equal to ) at time ¢.
The quantity fd@Q would then be interpreted as the probability that the order
parameter of our system (a single realization of this non-equilibrium ensemble)
has a value in the interval (@, @ + dQ@) at time ¢.

The Fokker-Planck equation (2.20) we have introduced provides a complete
description of the process, it includes the proper transition rate expression as a
quasi-stationary limit (as we shall demonstrate in Section 2.5) and it overcomes
the reservations exposed by Frenkel et al. [25]

2.3.3 v is the Cluster Radius

If we consider the coordinate 7, corresponding to the position of a monomer in
a cluster of radius R, as the internal degree of freedom and we work in spherical
coordinates, we immediately recover the Smoluchowski equation proposed by
Ruckenstein and coworkers [26]-[29]

8f(7:‘7 t) =

FD _ g, (D(f, 09517 1) + 220

kT

f(7, t)%gzs(??)) . (2.22)

Notice that now, since the phenomenological coefficient defined in Eq. (2.12)
is in general a function of the internal coordinate, the diffusion coefficient will
depend on the radial distance 7. In this case, f would represent the number
density of monomers at 7, and ¢ the energy barrier to overcome in order to
leave the cluster.

2.3.4  is the Set of Degrees of Freedom of the System

If instead of using a single coordinate we carry out a complete description in
terms of all the system’s degrees of freedom {n}, characterizing a given configu-
ration, we recover the form of the Fokker-Planck equation proposed by Langer
[30]-[32]
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T =T (0ot aym) e

where now D;; = % In this case, f({n},t) corresponds to the proba-

bility density associated to the {n} configuration and AW({n}) = AQ({n}) is
the free energy functional.

2.3.5 1« is the Density p(r)

Due to the use of the capillarity approximation in the classical treatment of nu-
cleation, clusters which are the embryos of the new phase can be characterized
only through its molecular content or equivalently its radius. However, simula-
tions show that this simplified description of a cluster is not always sufficient,
since in fact clusters often present a diffuse interface.

A more detailed characterization of a cluster could then be given not only
in terms of its molecular content, but through its density profile p(r). This is
the starting point of density functional calculations [33]-[35], which focus on
evaluation of the free energy functional € [p(r)] required to form this cluster.
However, the nonequilibrium kinetic description of the process lies in general
outside of the scope of these approaches.

Within our framework, we can also propose a kinetic description of the pro-
cess in terms of the density functional. In this case, the internal coordinates are
the density profile p(r), and also the position variable r which is integrated to
render the coarse-grained description. The resulting evolution equation, follow-

ing Eq. (2.13) is
v D-v]{ 6 1t 6AQ}Pdr (2.24)
op(r) " T dp(r) ~ kT dp(r) ’

where P[p(r)] is the distribution functional of the density and D[p(r)] is the
kinetic factor. However in this situation an hydrodynamic description, as the
one developed in the following subsection, is more appropriate.

2.3.6 Hydrodynamic Description

The description of condensation in terms of a density profile has some inher-
ent restrictions associated to the length-scale requirements underlying a coarse-
grained construction. In particular, densities should be smooth functions of
space and time, and vary over scales which are much larger than any micro-
scopic scale. Therefore, this description requires a semi-macroscopic size of
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the fluctuations involving a large number of molecules. This requirement is
satisfied when the phase transformation occurs in the vicinity of the critical
point. In that case, a hydrodynamic description in terms of the local number
density p(r) and momentum g(r), as the one proposed by Langer and Turski
[36] becomes appropriate. Far from the critical point, the fluctuations are not
semi-macroscopic, and the validity of this type of modeling is not guaranteed.

Let us outline how a hydrodynamic description could be easily obtained
inside the MNET framework [37|. The starting point is the consideration of
the system as a continuum divided in tiny cells. In each cell we define a mass
density p(r) and a momentum density g(r) = pv, with r being the position
vector of a cell and v the velocity field. For simplicity, we will introduce the
compact notation {I'} = {p,g}.

Let us consider P({T'},t) as the distribution functional in phase space.
Related to this distribution functional we introduce the phase space entropy
S (ﬁ({E} ,1)), which satisfies the Gibbs equation analogous to Eq. (2.3)

AS =7 / u({T} ) A BT}, #)0T. (2.25)

Here p represents the chemical potential conjugated to the distribution func-
tional, whose expression

~

P
W= fieqg + KT In Bieq (2.26)

can be obtained with the help of the Gibbs entropy postulate, as explained
previously. In the former formula

Pt — exp { — e + e L)+ 201 | (227

is the distribution functional at local equilibrium, and p., the value of the
chemical potential at local equilibrium. Moreover, the coarse-grained free energy
occurring in the equilibrium distribution consist of a kinetic part, given by

1 [ g)?
Q{l} == dr 2.28
w{ry =5 [ B (225)
plus an interaction term Q {p} which represents the coarse-grained free-energy
density functional.

We now assume that the distribution functional evolves according to the
continuity equation

opP § .5 0 .= 4
EJF/(&pPJFE.gp) dr——/g-.]gdr, (2.20)
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where the dot over the field variables indicates time derivative and Jg is a
diffusive current in momentum space.

From Egs. (2.25) and (2.29) we can obtain the rate of the entropy variation
that is written as

%—f: u(;ﬂ'P+%-gP)dr+Z. (2.30)
In this expression, the first term on the right hand side is the rate at which
entropy is supplied to the system by its surroundings through the external
constrains. The second contribution corresponds to the entropy produced inside

the system due to the irreversible processes, whose value is

1 Op
d = —f//.]g : E(szdr, (2.31)

where a partial integration has been performed. This entropy production has
the usual form of flux-force pairs from which we can infer the phenomenological
relation ) 5
7
I=—7 / Lir.x)- o', (2.32)
where the phenomenological coefficients L satisfy the Onsager relations L(r,r’) =
L(r',r)!, in which T stands for the Hermitian conjugate. By computing the
functional derivative and assuming locality in the coordinates, i.e. L(r,r’) =
L(r)é(r —r'), one obtains
0 00k \
J,=—-H(r) - | kpT—+ — | P, 2.33
o= =i10r) (ko + S5 (2.33)
where H(r) = L(r)/T P can be interpreted as a mobility tensor. Its expression
follows from the Navier-Stokes equation [38]

H(r)=—-p (% \VAVES le2) A AVAY; (2.34)

with n and £ being the shear and bulk viscosities, respectively, and 1 the unit
tensor.

By introducing the current we have obtained in Eq. (2.33) into the continuity
equation (2.29) and using the expressions of p and g given by the reversible part
of the Navier-Stokes equation [38], this yields

@_/i et L [0, o 8

H(r) - [kBTi + m—K] }ﬁdr, (2.35)

Tig ig | og
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which constitutes the functional Fokker-Planck equation for the probability dis-
tribution functional P({T'},1).

If we choose as interaction term Q{p} the Cahn-Hilliard free-energy func-
tional [35] given by Eq. (1.36) and discard the last term on the previous equa-
tion, then Eq. (2.35) resembles the one proposed by Langer and Turski [36].
However, our formalism provides a more complete hydrodynamic description
of nucleation, since it accounts for the irreversible transference of moment and
viscous effects represented by the last term of Eq. (2.35).

2.4 The Quasi-Stationary Case

In the previous section, we have shown how to derive different forms of Fokker-
Planck equations. Our task now will be to ascertain if the equations we have
obtained, not only have the appropriate form, but are also physically consistent.
To this purpose, and for the sake of simplicity, we will focus our attention on
the clusters size distribution equation (2.19).

Most of proposed Fokker-Planck equations are just different continuous dif-
fusive approximations to a discrete master equation. Thus, the rightness of this
kind of equations is evaluated in terms of the accuracy of the approximation.
In particular, the two main requirements that a Fokker-Planck equation must
satisfy is that it reproduces the equilibrium distribution and the deterministic
growth rate n [39]; in other words, it must appropriately describe nucleation
and growth.

The Fokker-Planck equation we present has been derived directly and not
as a continuous approach to a master equation. Therefore, in general we do not
have an underlying master equation model to which our expression should be
adjusted and that serve us as a criterion to judge its accuracy.

However, we have shown that, by construction, our equation always guar-
antees the correct equilibrium distribution. Moreover, a case exists in which we
can build up a master equation to evaluate the correctness of our results. It is
the quasi-stationary case, corresponding to high nucleation barriers.

When the height of the nucleation barrier is large enough as compared with
thermal energy, the system achieves a quasi-stationary state characterized by
the current

J(n,t) = J(){0(n —n1) — 6(n —n2)}, (2.36)

where 0 is the step function. This form implies that equilibrium is reached
independently at each barrier side, consequently the chemical potential will be
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uniform

p(n,t) = p(ng,t)0(n* —n) + p(ng,t)f(n —n*). (2.37)

Here n* specifies the size of the critical cluster.
Substituting these two equations in (2.10) and integrating with respect to
the coordinate n, we obtain

_ AG(n*)=AG(ny) _ AG(n*)=AG(ny)

M (f(nl,t)e kT _ f(n2’t)€ kT

J(t) = P—
(2.38)

This is the expression of the nucleation rate in the quasi-stationary case. It
is important to highlight that the value of the rate J(t) depends exponentially
on the nucleation barrier, thus confirming the activated nature of the process.
The ability of MNET in describing the kinetics of activated processes is then
corroborated.

If the nucleation barrier is high enough in such a way that a quasi-stationary
state is reached, the clusters distribution of intermediate sizes does not vary in
time, so that only the states corresponding to f(n1,t) and f(ne,t) matter.
The value n; represents the smaller cluster distinguishable from equilibrium
fluctuations in the metastable phase and n9 corresponds to a post-critical stable
cluster. Clusters sizes n; and ng ( where ny < n* < mg ) are chosen such that
for n < n1, f(n) = feq(n) and for n > no, f(n) = 0. These boundary conditions
are habitual in classical treatments [40] and final results do not strongly depend
on the explicit values of ny and ng [41]. If the intermediate sizes distribution is
constant, it implies that the lost of one ny cluster supposes, after jumping the
energy barrier, the formation of one post-critical nucleus. Conversely, the gain
of mq clusters is due to the disappearance of a post-critical cluster.

Accordingly, the master equation for this quasi-stationary situation has the
following form:

df(;btl,t) = ko1 f(no,t) — kiaf(ni,t) = —J(t) (2.39)
7df(gt2’t) = k12f(n1,t) - k?lf(”?at) = J(t) (2'40)

where k19 and ko are the forward and backward rates. The forward rate ki
is simply the probability that a cluster n; disappears, or equivalently, that it
surpasses the nucleation barrier. Therefore, k1o should be proportional to the
Boltzmann factor associated to the height of the barrier
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_ AG(n*)-AG(ny)

k1o = wve kpT . (241)
Similarly, for the rate ko1 one has

_ AG(n*)—-AG(ng)

k21 = ve kT . (2.42)

Notice that the constant v enters both expressions of k15 and k9 in order to
guarantee that in equilibrium the flow vanishes. This is the requirement to fulfill
detailed balance.

Therefore, the nucleation rate J(t) obtained from the master equation is
given by

(2.43)

_AG(n*)—AG(nl) _AG(n*)—AG(nZ))

50 = v (Fe B = fge

Identifying v with the factor RQD_*M in Eq. (2.38), we see that at least in the
case of high nucleation barriers, our diffusive equation reproduces the steady-
state nucleation rate. Moreover, we are going to prove that our formalism also
recovers all the distribution moments of the master equation model.

By introducing (2.36) into the continuity equation (2.8) we obtain the fol-

lowing expression

0D o) {3(n —m) — o —ma)} (2.44)

which yields the evolution equation for the r-moment (r =1,2,3...)

d<n”>

= = (n5 —n})J (1), (2.45)

It is immediate to realize that this expression agrees with the corresponding one
evaluated from the set of master equations (2.39)-(2.40).

Therefore, we have proved the validity of our equation in the quasi-stationary
case, in the sense that it satisfies the two rightness criteria required to make
our approach consistent, and moreover reproduces the same results obtained
from a master equation. If the height of the barrier is low, the quasi-stationary
hypothesis is not longer valid. This feature invalidate the considerations we
have made in this section.
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2.5 Connection with Simulations

In the last years, computer simulations have also become a useful tool to study
the kinetics of crystal nucleation. However, in order to analyze the results of
simulations the most common theoretical treatments for nucleation processes
are not generally employed.

The objective of this section is to illustrate how to transform the Green-
Kubo expression (2.17) for the diffusion coefficient into a formula suitable for
computer simulations. For the sake of concreteness and simplicity, we are going
to focus our attention in the description of nucleation in terms of a global
order parameter, employed by Frenkel and coworkers in their simulations [22],
and described in Section 2.3.2. First, we will show how, in the quasi-stationary
case, we can recover explicitly the reactive flux expression used by these authors
to evaluate nucleation rates, and derived in the Appendix. Subsequently, we
will analyze the general case.

2.5.1 Quasi-Stationary Case

When the undercooling or the supersaturation is low enough, the energy barrier
to surpass in the nucleation process is large as compared with thermal energy. In
this high barrier situation, as we mentioned in the previous section, the system
achieves a quasi-stationary state characterized by an uniform current

J(Q,t) = J(1){0(Q — Q1) — 6(Q —Q2)}, (2.46)

a chemical potential which equilibrates independently at each barrier side

1(@:t) = u(Q1,1)0(Qo — Q) + 1(Q2,1)0(Q — Qo) , (2.47)
and a probability density

_AG(R)-AG(Qy) _AGQ)-AG(Q2)
FQ1) = F@Quile T 6(Qo-Q)+ F(@ub)e  faT o 0(Q—Qo)
(2.48)
which resembles the corresponding Eqgs. (2.36)-(2.37) but are now expressed in
terms of (). In the previous equations (Jy represents the position of the top of
the barrier.
On the other hand the diffusive current (2.10) can be written in a more
convenient way as

J(Q,1) = —D(Q,t)e‘AG/kBT%e“/kBT. (2.49)
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By equating (2.49) and (2.46), and by integrating over @ with the help of Eq.
(2.47), one arrives at the following expression for the nucleation rate

1) D(Qo) o AGo/kpT (eul/kBT B eu2/kBT) , (2.50)
Q2 — 1

where the sub-indexes 0, 1 and 2 indicate that the corresponding function is

evaluated at @y, @1 and @2, respectively.

Having obtained the nucleation rate expression for the quasi-stationary case,
our goal now will be to show that it is equivalent to the method of reactive flux
equation derived from linear response theory. An important difference between
our formalism and the method followed in the simulations is that we are working
with a non-equilibrium ensemble of replicas, while in simulations one makes
reference to a single system or a single replica. The connecting point that
links our scheme with the results referred to a single system is the probabilistic
interpretation of the ensemble number density f(Q,1).

Bearing this probabilistic interpretation in mind, we will see how to recover
the transition rate expression (2.81). The first step will be to transform the
continuity equation into the phenomenological starting equation of the method
of reactive flux. By integrating Eq. (2.8) from @1 to Qo, and using the quasi-
stationary condition (2.46) and the result (2.50) one obtains

i Qo f(Q,t)dQ _ —J(t) Do e_AGO/k;BT (e“Q/kBT _ e[ll/kBT)’

dt Jo, T Q-
(2.51)

where fglo f(Q,t)dQ = P4(t) is just the probability that the system would be
at the left hand side of the barrier, at time ¢.

From (2.21) the diffusion coefficient expression at the top of the barrier is
given by

D(@o.) = D). (2.52)

By using the expression for the chemical potential (2.7) and (2.48), the density
f(Qo,t) could alternatively be expressed as

£(Qo,t) = er/knTemaGo/ksT, (2.53)

On the other hand, from Eq. (2.48) and (2.7) it follows
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Q2
euz/kBT _ erAGz/kBT — Qo f(Q,t)dQ = Py . (2.54)
[§2 e BGITaQ — [3 e AG/TaQ
) 0

Here Pp represents the probability of being at the right hand side of the barrier.
By introducing these two later expressions into Eq. (2.51), one arrives at

dPa(t)

dt kpa(t)Pp(t) — kap(t)Pa(t), (2.55)
where
Fan(t) = (QQL_(%)l))k;A(t)’ (2.56)
and
Qo ,—AG/kpT
koatt) = Qs __Ja, aQ -

(@2 — Q1) Pa(?) fg:’ e—AG/kBT ()

are the forward and backward rates, respectively.

Therefore, we have just obtained the equation governing the evolution of
the probability that the system would be in the metastable side of the barrier.
At this point, we have to highlight two important differences with respect to
method of reactive flux. First, we have obtained this equation as a particular
case (corresponding to a quasi-stationary situation) of a more general theory
of wider applicability. Moreover, the rate coefficients in our expression are
explicitly time-dependent, which does not happen in the formula of the method
of reactive flux. Finally, it is important to remark, that our rate coefficients
fulfill the detailed balance condition

kap(t) _ Pp'
kpa(t) N Pf‘q’

as follows from Eqgs. (2.1), (2.56) and (2.57). This condition guarantees that
the flux vanishes at equilibrium.

The last task to carry out is to compare the rate k4p(t) with the reactive
flux formula (2.81). Within that framework, the expression (2.78) is identified
with the rate k4p at times large enough so that the correlations have achieved
a stable value characterized by a plateau. In our expression, for long times
the probability P4 will approach and can be replaced by the equilibrium value
P & (na)eq, and therefore kgp will become time independent.

(2.58)
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On the other hand, the random component J” of the current appearing in
the Green-Kubo expression (2.17) is related with the fluctuations of P4 with
respect to the equilibrium value. Indeed, by integrating the continuity equation
(2.8) from Q; to @ one obtains

% = —J(@Q1) = -J*(Q.1) - J(Q.1), (2.59)

where

Q
N(@Q,t) = o (@, 4)dQ". (2.60)

Notice that Eq. (2.59) is valid for arbitrary times. In a very short time scale
-microscopic time scale [17]- we can write

OON(Q,1)
ot

BN (Q,1)
oi

— _J(Q,1), (2.61)

where the time derivative is the instantaneous rate of change [42].

Therefore

(7@ 0077 (Qt))eg = (PO OB, = (569

being N = N — Ng,4. In the quasi-stationary state, described by Eq. (2.46),
IN(Q',t)
ot

the quantity is independent of the position @’ of the absorbing barrier.
Hence, we can particularize for convenience the later expression for Q' = Q,
and taking into account that

d(5N(dC];20,t) _ %<A’n,4(t)) — —%(Ang(t» (2.63)

we can then rewrite the phenomenological coefficient as
o
kpL(Qo) = (Q2 - Ql)/o di{(nB(0))(15(t)))eq- (2.64)
Finally, substitution of this expression in Eq. (2.56) yields
1 o
ban = o [ dl(in(©)m () (265)
<nA>eq 0
By remembering the link between ensemble averages and the values associated

to a single system, the equivalence between this equation and expression (2.81)
is then obviously proven.
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2.5.2 General Case

The method of reactive flux used by Frenkel and coworkers in their simulations
considers that the barrier separates the system into two states, A and B, and
it is restricted to the evaluation of the transition rate between these initial and
final states. In particular, it provides no information about the evolution of
intermediate configurations. In the previous section, we have proved that this
scheme corresponds to a quasi-stationary case associated to high nucleation
barriers. The theory we propose also allows us to evaluate the evolution and
the time-dependent rate of change of the global crystallinity Q) of the system,
at any intermediate state between ()1 and Qs.

Our scheme is formulated in terms of a Fokker-Planck equation accounting
for the evolution of f(Q,t). From the knowledge of the number density f(Q,t)
one could then evaluate the relevant quantities of the system.

In the general case, one must work with the kinetic equation (2.20) which
constitutes the central point of our approach. This equation contains the free
energy barrier AG(Q) and the diffusion coefficient in the internal space D(Q).
The barrier AG(Q) could be evaluated from simulations analogous to the ones
performed in reference [21]. In Section 2.2, we have obtained an explicit expres-
sion for the coefficient D(Q). However, it is necessary to transform Eq. (2.17)
into an expression more proper for simulations.

With the help of Eq. (2.61), one can relate the rate of change of the order
parameter with the random contribution to the current in the following way

. Q2 95 f(Q,t Q2
@y = [ 0ag - [T ruie. (e
Q1 Q1
By substitution of the later expression and Eq. (2.61) into the Green-Kubo
formula (2.17) for D(q) (where q represents an arbitrary value of the degree of
crystallization), and using Eq. (2.21) we finally obtain

kL) = — /0 " a((Q(0))N (¢, 1)) ea- (2.67)

In the equation above there appears the expected value (Q(O)), which could be
identified with the initial speed of change Q(0) of the system which is being
simulated. Additionally, the term dN(q,t) is given by

IN(g,t) = —(nq(t)), (2.68)

where n4(t) = 0[Q(t) — ¢
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With these considerations in mind, the definitive expression in a simulable
form yields

1

o) = o /0 " AHO()ig (1)) eq. (2.69)

Note that the later equation for the phenomenological coefficient is formally
similar to expression (2.81), analyzed in Section 2.5.1 and in the Appendix.
However, two significant differences exist. The first difference comes from the
fact that in Eq. (2.81), the only trajectories giving a non-vanishing contri-
bution are the ones corresponding to configurations initially at the top of the
barrier. The second consists of the replacement of the characteristic function
ng(t) = 0[Q(t) — Qo] of Eq. (2.81) for ng(t). Therefore, by performing sim-
ulations analogous to the ones carried out by Frenkel and coworkers, we could
obtain the phenomenological coefficient L(q) for any value ¢ of the degree of
crystallization. Knowing L(q), since the barrier AG(Q) could be evaluated from
simulations, we could completely determine the Fokker-Planck Eq. (2.20). By
solving this equation we would know the probability density f(Q,t) describing
the dynamics of the system.

2.6 Conclusions

In this chapter, we have introduced a new method based upon mesoscopic
nonequilibrium thermodynamics to describe the nucleation kinetics from a meso-
scopic and nonequilibrium perspective. This method allows one to easily obtain
a set of general kinetic equations of the Fokker-Planck type that not only re-
produce the ones which have been proposed in the literature, but they facilitate
alternative descriptions of the nucleation process. In this context, we have de-
rived a new Fokker-Planck equation in terms of an order parameter -as the
one used by Frenkel et al. [22],[23] in recent simulations- and we have also
introduced an enhanced hydrodynamic model of nucleation.

We have verified that the Fokker-Planck equations we have obtained apart
from having the appropriate form, they are also consistent, at least in the quasi-
stationary case. In fact, the quasi-stationary situation corresponds to low su-
persaturations (and slow rates), that are the typical experimentally affordable
conditions.

Moreover, our treatment links theory with simulations, in the sense that
we propose Fokker-Planck equations as the ones commonly used at theoretical
level, but their coefficients are susceptible to be determined from simulations.
Moreover, it constitutes a unifying proposal where the expressions of the linear
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response theory emerge in the quasi-stationary limit of a more general Kramers-
type theory. Besides, it offers the possibility of a deeper study of the process.
As we have described in the last Section, by performing simulations analogous
to the ones carried out in the quasi-stationary case, one could in principle obtain
a more complete information about the process. For example, one could study
time-dependent nucleation and follow the evolution and the rate of change of
intermediates states.

Our model facilitates the study of time-dependent nucleation and also may
include potential effects of a pre-existent clusters distribution. Moreover, this
new formalism we have proposed, not only reproduces and overcomes some of the
main drawbacks of previous homogeneous nucleation treatments, but rather it
constitutes an appropriate framework to treat nucleation processes from a wider
perspective. In fact, the formalism could easily be extended to more general
situations as the case of inhomogeneous nucleation in the presence of external
gradients or flows, discussed in Chapter 5.
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Appendix

Our aim in this appendix is to present a brief review of the derivation, the
limitations and the scope of applicability of the method of reactive flux to
evaluate reaction-rates [43]-[45]. To this purpose, let us consider a macroscopic
system whose state is characterized by a reaction coordinate (). This system
can be in two different states, A and B, separated by an energy barrier whose
maximum is located at position (Qg. The state of the system, i.e. the side of
the barrier where it is located, can be characterized by the functions

na(t) = 0[Qo — Q(t)] (2.70)

np(t) = 0[Q(¢) — Qol, (2.71)

where 0 is the step function, and n4(t), ng(t) obviously satisfy the condition

na(t) + np(t) = 1. (2.72)

The probability that our system is at state A at time £, will be given by the
non-equilibrium average of the characteristic function n4(t)

Pa(t) = (na(?))- (2.73)

The starting point of this theory is to postulate the validity of the following
phenomenological equation describing the dynamics of the populations at states
A and B

dPx(t)
dt

where Pp(t) = 1 — Py4(t), and kap and kpy are the forward and backward
rates, respectively. These rates are assumed to be constant and verify the
detailed balance condition

= kpaPp(t) — kapPa(t), (2.74)

kaB P
A

In the spirit of the Onsager’s regression hypothesis, one assumes that the
relaxation of AP4(t) = P4(t) — P4’ from an initial non-equilibrium devia-
tion AP4(0) follows the same exponential decay as the equilibrium correlation
function of the fluctuations
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APx(t) _ <AnA(0)AnA(t)>eq — N (2.76)
APA(0) — (Ana(0)AnA(0))eq ’
where Ana(t) = na(t) — (na)eg, the symbol (...)¢q represents an equilibrium

average and the relaxation rate A is given by

A = kap + kpa. (2.77)

From these equations one can obtain the following formula for the transition
rate, employed by ten Wolde, Ruiz-Montero and Frenkel in their simulations
[22]-[23]

bap = PEOn5(0)eg _ (QOIQO) ~ QOIQW) =~ Qg 5 7y
<nA>eq <nA>eq

This expression is not valid for very short times (because the relaxation of
the system cannot be exponential at ¢ = 0). Additionally, it is also restricted
to times ¢ verifying the condition ¢ << 1/, since along its derivation it is
assumed that e™ ~ 1. Moreover, we notice that although kjp is a time
independent rate, in expression (2.78) it is equated to a correlation function
depending explicitly on time. Therefore, the later equation is only correct for
times long enough so that the correlations have reached a plateau value.
On the other hand, taking into account the identity

ng(t) — np(0) = /0 t dt'd%ftl), (2.79)

and since the equilibrium average (npnp(0))e, vanishes, one can rewrite Eq.
(2.78) as follows

o t<hB(O)hB(t,))eq !
kap = /0 MAYed dt. (2.80)

As asserted before, this expression is only valid for times long enough so
that the correlations have achieved a plateau. For such values of time, it is then
meaningful to assume that the velocity autocorrelation function has decayed to
zero, so that we can replace the upper limit of the previous integral by infinity.
Therefore, the final expression for the transition rate yields

b
<nA>eq

b
<nA)eq

| )i et = | (@510~ Qulis 1)yt
0 0

(2.81)

kap =
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This expression coincides with the one derived from our method.
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Chapter 3

The Generalization of the
Nucleation Theorem

The “nucleation theorem” is a thermodynamic formula which establishes a re-
lation between the energy of formation of a drop and its molecular content. Its
relevance lies in the fact that it constitutes a powerful tool to analyze the ex-
perimental data on homogeneous nucleation. Assuming that the preexponential
factor in the nucleation rate expression (1.26) depends only weakly on super-
saturation, the nucleation theorem facilitates the knowledge of the size of the
critical nucleus directly from measurements of the nucleation rate as a function
of the supersaturation, and independently of any cluster model. Provided that,
as we showed in Chapter 1, there is still no consensus about the most correct
expression for the energy of formation or even for the proper definition of a
cluster, the nucleation theorem provides a useful test of validity of the different
theories. That is the reason why it has been subject of intense investigations
since it was conjectured by Anisimov et al. [1] and, independently, by Kashchiev
[2] in 1982.

At the same time as the nucleation theorem became a common tool to infer
the properties of the critical nucleus from experimental results, its credibility
was put under scrutiny. The expression of the theorem was refined and its
cogency was confirmed beyond the CNT, for more sophisticated cluster models.
In addition, simulation results which explored the validity of the theorem at the
molecular level, found a remarkable agreement, even for tiny critical clusters.
However, all the previous derivations were based on particular thermodynamic
models thus raising some doubts about its generality. Moreover, it was still
conceivable that such an approach would fail for very small droplets.

The mesoscopic and nonequilibrium character of nucleation acted in sup-
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port of that concerns, hiding the proper meaning and scope of the nucleation
theorem. Its thermodynamic nature seemed to be in contradiction with its
applicability to a non-macroscopic and unstable entity as a nucleating droplet
is.

Our purpose in this chapter is precisely to shed some light about the validity
and significance of the nucleation theorem. First, we shall proof from different
perspectives that the so-called nucleation theorem is a general relation whose
applicability extends down to the molecular level and whose scope goes beyond
the context of nucleation. To stress its generality, we present a purely ther-
modynamic, and therefore model-independent, derivation of the theorem. This
derivation clearly evidences that similar relations may be extremely useful in
the study of general inhomogeneous systems. In addition, we will try to clar-
ify the relation between the nucleation theorem and the proper definition of a
physically meaningful cluster.

The chapter is distributed as follows. We begin in Section 3.1 by reviewing
the previous investigations concerning the nucleation theorem. In Section 3.2
we recover the derivation of the theorem originally proposed by Hill in the con-
text of the “small system thermodynamics”. Section 3.3 is devoted to present
a general thermodynamic proof of the nucleation theorem. In Sec. 3.4 we test
the theorem’s applicability at the molecular level by examining the nonuniform
distributions caused by cavities and a simple cluster in a hard rod fluid, while
in Section 3.5 we show that the nucleation theorem is valid, and related to
the compressibility equation of state, for the density distribution in the “atmo-
sphere” of a molecule in a fluid. In Section 3.6 we use the nucleation theorem
to derive the Gibbs absorption equation whereas in Section 3.7 the meaning of
the molecular excess is reconsidered in the context of the nucleation theorem.
Finally, we present a summary of our main findings in Section 3.8.

3.1 Introduction

The “nucleation theorem” was proposed by Anisimov et al. [1] in 1982 in connec-
tion with classical nucleation theory. In fact, from equations (1.19) and (1.21)
it is straightforward to verify that the classical work of formation of a drop is
related to the number of molecules that it contains through the expression

A *
(M) - (3.1)
0Ap v,T

In the same year, Kashchiev [2] independently derived a more general ex-
pression using a phenomenological model for the work of formation of a cluster.
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Writing the work required to form a cluster of n molecules as

W(n,Ap) = —nApu+ F(n, Au), (3.2)

where Ay is the difference of chemical potentials between the metastable and
the stable phase, and F'(n, Au) is the excess free energy of the cluster, Kashchiev

showed that DA oF
=-—n*+ . 3.3
( 0Ap )V,T (BAU)V,T (33)

The importance of the nucleation theorem becomes apparent from its relation
to the rate of nucleation. As we saw in Chapter 1, the steady-state nucleation
rate is usually expressed in an Arrhenius form,

J = Kexp(—AW*/kpT), (3.4)

where K is a preexponential kinetic factor. Taking the logarithm of Eq. (3.4),
differentiating with respect to Ay, and using Eq. (3.3) yields

8(kBTan)> . (B(kBTan)) (8F*>
—_— =n"+|—F— - . 3.5
( 0Au VT 0Au VT OAp ) yr (3:5)

Kashchiev then pointed out that if both K and F' are essentially independent
of the chemical potential we can obtain the size of the critical nucleus directly
from isothermal experiments measuring the nucleation rate J as a function of
Ay (or supersaturation). The nucleation theorem clearly provides an essential
link between theory, for which n* can be calculated for different models, and
experiment. In his work [2] Kashchiev explored this relation for nucleation in
a variety of systems, including homogeneous and heterogeneous nucleation in
vapors, nucleation in solutions and melts, and electrolytic nucleation.
Subsequent studies seem to have verified that the theorem is surprisingly
general. For the case of nearly ideal mother phases, Strey, Wagner and their
coworkers [3| have used the nucleation theorem, in connection with various of
their experimental studies, to infer nucleus sizes. At the same time, working in
the framework of CNT, they also used the Kelvin relation [4] to infer nucleus
size [5] and found a remarkable level of agreement between the two inferences,
thus rendering as credible, both the nucleation theorem and the extrapolation
of the Kelvin relation down to the molecular level. Oxtoby and Kashchiev [6]
calculated the properties of the nucleus, using density functional theory and,
within the limit of accuracy of their calculation, were able to confirm it for
the case of nucleation in nearly ideal argon vapor. More recently ten Wolde et
al. [7], followed by Oh and Zeng [8], found agreement with the theorem in a
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Figure 3.1: The excess number of particle An* in the critical cluster as a function of the
supersaturation S obtained from MC simulations of nucleation in argon by integrating the
density profile (squares) and by using the nucleation theorem (circles). (From Ref. [7]).

Monte Carlo (MC) simulations of nucleation in argon vapor, as Fig. 3.1 shows.
Kashchiev [9] and Ford [10]-[12] have made extensive use of the nucleation the-
orem in the analysis of experimental data. Moreover, the nucleation theorem
is the basis of the scaling relations proposed by McGraw and Laaksonen [13],
which have succeed in explaining the systematic discrepancies between CNT
and experiments.

In 1993 Viisanen et al. [3] attempted a statistical mechanical derivation of
the nucleation theorem, using the grand ensemble. Subject to the limitation
that there were no interfacial effects between the system and the reservoir of
constant chemical potential, these authors were able to validate a relation that
differed from Eq. (3.1) in that an “excess quantity”, n* — 7, appeared in place
of n*. Roughly speaking, n represents the average number of molecules of the
uniform phase that would occupy the “volume” of the nucleus. Somewhat later,
in an independent analysis appearing in his thesis, ten Wolde [14] repeated the
analysis of Viisanen et al., and did so, not only within the grand ensemble, but
within a variety of ensembles. Again, the derivation was limited to the case
where interfacial effects were absent. In these analyses the nucleation theorem
proved applicable, not only to the nucleus, but to all other clusters as well.

In 1994 Oxtoby and Kashchiev [6] published a thermodynamic proof of the
nucleation theorem using the Gibbsian model of a drop [15] and also extended
this proof to crystal and bubble nuclei. In this work, there was no limitation
equivalent to the absence of interfacial effects. At this juncture it is appropriate
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to indicate that, physically, the absence of interfacial effects implies that the
cluster representing the nucleus is surrounded by an ideal gas medium. Thus
the result of Oxtoby-Kashchiev, which includes interfacial effects, is applicable
to nonideal as well as ideal systems. Later, Ten Wolde [14] placed this result on
a somewhat sounder basis. Ford [10] also published a thermodynamic derivation
of the nucleation theorem while Kashchiev has recently presented a review of
the theorem [16].

In an attempt to determine how far the thermodynamic result could be
extended down toward the molecular level, and in particular, whether the nu-
cleation theorem was indeed applicable to a nonideal system, Bowles et al. [17]
presented a statistical mechanical theory in which interfacial effects were in-
cluded. In this theory, a term associated to the interfacial effects, admitted
no clear interpretation except for the case of an ideal mother phase, in which
case it vanished. Bowles et al. speculated that it would require a mathematical
miracle in order for this term to yield the nucleation theorem for a nonideal
mother phase, but remarked that such a miracle could be possible. Since then
it has become apparent that the additional term represented an additional con-
tribution to the excess so that it would not have to vanish, as we will explain
later on.

Finally, it is imperative to mention that until now nobody realized that Hill
[18],[19] had derived relations equivalent to the nucleation theorem as long ago
as 1962, although they were never explicitly applied to nucleation. To credit
him with having proposed the first expression of the theorem, we will devote
the following section to revisit Hill’s pioneering work.

3.2 Derivation of the Nucleation Theorem
from Small System Thermodynamics

Expression (3.3) evidences the fact that the nucleation theorem is a general
relation involving only thermodynamic quantities. The problem is that, in the
case of nucleation, these thermodynamic quantities refers to clusters of very
small size, even of molecular size. The direct application of equilibrium ther-
modynamics to such objects could in principle be questioned. However, one can
formulate an extension of the thermodynamics principles to deal with systems of
mesoscopic size. That is the idea underlying the small system thermodynamics
formulated by T.L. Hill almost forty years ago.

In fact, in Refs. [18] and [19], Hill not only developed this general frame-
work but also provided an ezplicit derivation of the later on called nucleation
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theorem. He accomplished that in 1962, that is 20 years before the same relation
was proposed by Anisimov et al. and Kashchiev. Moreover, Hill’s derivation
constitutes a rigorous proof of the general validity of the nucleation theorem,
not only for the particular case of a critical nucleus, but also for any kind of
drop or inhomogeneity in the system.

One of our aims in this chapter is precisely to give pioneer Hill’s work the
credit and recognition that it deserves. To this end, we will now bring to light
Hill’s derivation of the nucleation theorem and try to clarify its subtleties.

The limitations of thermodynamics to deal with small systems comes from
the fact that thermodynamic quantities are only properly defined for macro-
scopic (extensive) systems. When the system is no longer macroscopic, its
properties become strongly dependent on its size. The idea proposed by Hill
to overcome that difficulty is that, although the methods of classical thermo-
dynamics cannot be applied to analyze a single small system (for instance a
cluster of molecular size), they are still valid for a large (macroscopic) ensemble
of those small systems. The averaged properties of this ensemble will then be
representative of the behavior of a single small system.

For the sake of clarity, let us face directly the derivation of the nucleation
theorem originally proposed by Hill. Consider a drop or, more in general, a
density inhomogeneity in a container of volume V. The center of mass of the
drop is restrained to the origin and it is in contact with a metastable vapor
characterized by a temperature T', and chemical potential u. The volume V
includes the inhomogeneity and the metastable vapor, and must be such that
the bulk metastable vapor properties (u, T') are reached at least at the boundary
of V'; otherwise, the election of V is arbitrary.

Let us construct a macroscopic system, constituted by a collection of A
replicas of this system of volume V containing inside the inhomogeneity plus
surrounding vapor. For this ensemble, thermodynamics is applicable and in
particular the first law yields

dU = TdS — poNdV + udN + XdN, (3.6)

where U, S, and N are the total energy, entropy and number of particles,
respectively, pg is the pressure of the vapor at the periphery, and X = (gWU) SVN
can be regarded as the work required to introduce another replica in the system.

Integration of the previous equation at constant 7', y, and V yields
X =U-TS — uN, (3.7)

where U = U/N, S = S/N, and N = N/N are the average energy, entropy and
number of particles of the system including the drop. Notice that, S does not
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need to be averaged, because the entropy has the same value for each system of
the ensemble [19, 20].

Since we are interested in the properties solely of the drop, let us now con-
sider a reference state constituted by the same vapor at T', u, but without any
drop inside. Following the same steps than before, we can construct an ensemble
of such homogeneous systems, formulate the first law

dUy = TdSy — poNdV + pdNy + XodN (3.8)

and obtain )
Xo=Uy—TSy — ulNy, (3.9)

where the upper bar represents average over the ensemble and the subindex 0
denotes the properties of this homogeneous vapor. Precisely from the fact of
being an homogeneous system, following thermodynamics the work to introduce
a new replica in the ensemble is simply the conventional volume work Xy =
—poV. In turn, X has the meaning of the average work necessary to create a
single small system containing the inhomogeneity. Thus, W, = X — X is the
work involved in the creation of the drop. Due to the subtraction of the reference
state, W, is independent of the choice of the volume V. Then subtracting
equations (3.7) and (3.9), and using Egs. (3.6) and (3.8) one obtains

dW, = —ASdT — ANdyp, (3.10)

where AS = S — Sy and AN = N — N refer to the inhomogeneity. The nucle-
ation theorem follows as an immediate consequence of the previous equation

oW,
ou

)T = —AN, (3.11)

where AN is the average excess of number of particles associated to the inho-
mogeneity. In addition, a similar relation holds for the entropy

oW,
or

) = —AS, (3.12)
p

where AS is the average entropy excess.

At this point, it is worth to emphasize some questions concerning Hill’s
derivation in order to clarify its generality and rigorousity. Notice that there
is not restriction on the size of the inhomogeneity since using a macroscopic
(N — o0) ensemble allows one to consider very small inhomogeneities (even
of molecular size) with relatively large fluctuations. On the other hand, the
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derivation is general in the sense that it does not refer to any particular model
nor require the concept of dividing surface which constitutes the main draw-
back of the previous thermodynamic derivations. Moreover, rigor demands that
thermodynamic properties for such small systems should be defined in an aver-
aged sense, resorting to the construction of the ensemble to get a true macro-
scopic system in which thermodynamics can safely be applied. Consequently,
the molecular excess appearing in the nucleation theorem is the average excess
present in the whole system and it may not be entirely confined into a partic-
ular region. These concepts will become more clear in the molecular examples
developed in Sec. 3.4, and in the discussion of Sec. 3.7.

3.3 Thermodynamic Proof of the Generalized Nucle-
ation Theorem

The content of the present section is devoted to derive the nucleation theorem
within a more conventional thermodynamic framework which put emphasis on
the generality and the validity of the theorem beyond the scope of nucleation.

The number of independent variables necessary to characterize a thermody-
namic system is equal to the number of constraints imposed upon the system,
or equivalently to the number of kinds of work (defining work broadly so as to
include thermal and chemical works) that the system is set up to perform. A
general way of formulating thermodynamic potentials can be based on this prin-
ciple [21]. Before deriving the desired nucleation theorem, a brief explanation
of this method is appropriate.

For a single component system, the fundamental equation of thermodynam-
ics (combining first and second laws) may be written as

AU = /TdS /pdV+/udN+/de+/:1:dX (3.13)

where the terms ydY and zdX represent works performed on the system, with
z and y symbolizing the intensive parameters while Y and X are the conjugate
extensive parameters. The larger the number of works, the larger will be the
number of independent variables.

It is useful to introduce the following expression

AD = AU—/TdS+/pdV— /de— /udN: /a:dX, (3.14)

where if the integral on the right were equal to zero, the second equation in
Eq. (3.14) would simply give the fundamental thermodynamic equation for a
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system, in a state of equilibrium, that was capable of only volume and Y work.
In Eq. (3.14), ® is not supposed to represent a thermodynamics state function.
Indeed, only the full symbol A® is intended to have meaning, and it simply
represents the collection of terms on its right.

The system can be reversibly displaced from its state of stable equilibrium
by the application of a constraint that can exchange work with the system. In
Eq. (3.14), zdX can represent that work. Of course, the system on the path
of displacement, will have an additional independent variable corresponding to
the constraint. In our example, it could be either £ or X. For any displacement
of the system from a state of stable equilibrium, the second law establishes that

Ad >0, (3.15)

where the equality occurs for a reversible process and then A® resembles the
concept of minimum work [22].
It is convenient to write down Eq. (3.14) for an infinitesimal variation

D® = dU — TdS + pdV — ydY — pdN > 0, (3.16)

where we emphasize that D® is not an exact differential by using D instead of d.
Using Eq. (3.16), one can now propose an arbitrary number of thermodynamic
potentials characterized by the fact that their values increase along selected
reversible paths of displacement from the initial state of equilibrium [21]. As an
example, suppose the system is not set up to do Y work as in Eq. (3.16). Then

D® =dU —TdS + pdV — udN > 0. (3.17)

The strategy for proposing functions of state that can serve as thermodynamic
potentials is then to form a function and choose a “path” over which its differ-
ential imitates D® on the same path. For example, if we select a path defined
as having S, V, N constant then, from Eq. (3.17) we find

(dU)s,v,y = (D®)s,v,ny > 0, (3.18)

so that along this path dU does indeed imitate D®, and U is the required ther-
modynamic potential. Alternatively, if we selected a path of constant N, P, T,
then the Gibbs free energy,

G=U-TS+pV, (3.19)
is the thermodynamic potential we must use since

(dG@)n,pr = (dU)N,pr —T(dS)n.pr +p(dV)Npr = (D®)NpT >0, (3.20)
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so dG imitates D® along this path.

We continue by considering an open system contained in a macroscopic
volume V which can exchange molecules with its surroundings. For simplicity we
will restrict ourselves to a single component system, although multicomponent
systems and other phases can be treated by the same method. The volume V
is chosen so that the intensive properties of the system at the boundaries are
identical to the ones of the uniform system outside V, i.e. the nonuniformity of
density lie far from the boundaries.

We introduce this restriction, because we do not want to consider a system
that can exchange surface work with its surroundings, i.e. we do not want
to allow V to have a real physical interface with its surroundings. However,
we should mention at the outset that the nucleation theorem can be derived
without much additional difficulty for the case where there is a real physical
interface. The restriction to nonuniformities that lie far from the boundary will
not compromise our goal, since in the end we will be interested in mesoscopic or
molecular non uniformities that can easily be positioned far from the boundaries
of a macroscopic containing volume.

We now refer to D® defined in Eq. (3.16) in order to construct a particular
thermodynamic potential for a system capable of performing both volume and
Y work. In this case, we are interested in examining systems which are inhomo-
geneous so that y is associated with the field required to create such an inhomo-
geneity. This field may take on a variety of forms, including a wall, an electric
field, or it may be some more complicated field that can form a small cluster
or drop. It is important to note that we need not specify exactly what the field
is and that we can select fields to reproduce molecular sized inhomogeneities.
Consequently, although we are using the tools of macroscopic thermodynamics,
our proof is valid even for these molecular sized inhomogeneities as long as we
deal with the average inhomogeneity under the constraint.

Consider using y to displace an initially homogeneous system, capable only
of volume work, along a path of constant y, V', T so that the system along this
path is nonuniform. If we introduce the usual grand potential,

Q=U-TS — uN, (3.21)

then it is straightforward to show that dQ will imitate D® of Eq. (3.17) along a
path of constant u, V', T. Thus Q is the appropriate thermodynamic potential
along such a path. Since y is displacing the system along this path, it performs
the reversible work, ydY = DW, on the system and the fundamental equation
of thermodynamics becomes
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dU = TdS — pdV + ydY + pdN, (3.22)

or

(dU)vir = T(dS) v — p(dN) vir = (dQ) uyvr
= y(dY)uvr = (DWe)uv,r, (3.23)

where we use D to emphasize that work is not an exact differential, i.e., we
cannot say that the system contains a certain amount of “work”.

Note that 2 becomes a function of Y as well as of u, V, T along the path
of displacement. Also, integration of Eq. (3.23) gives

Q(H‘a ‘/a T’ Y) - QO (y‘a ‘/7 Ta YO (ua Va T)) = (WC)MaVaT7 (324)

where we have used the 2y to denote the value of € in the initial equilibrium
state in which the system is set up in a manner that allows it to perform only
volume work. In that state, there are only three independent variables which
we have chosen to be u, V, T, so that Y in that state, denoted by Yy, is itself a
function of y, V, T and is fully determined when these variables are fixed. The
semicolon in Eq. (3.24) emphasizes this special character of Yy. Performing a
Legendre transformation of  in Eq. (3.21) it yields

dQ) = —SdT — pdV — Ndu + ydY . (3.25)

From this relation it follows that

Q
N=-— (8—> : (3.26)
ou V,T,Y
and
o0
S—_ (_) . (3.27)
) vy

We now wish to determine how (W), v,r changes when p is changed. A
common practice is to refer to the derivative 0W,/0u. However, this is inaccu-
rate since DW, is not a complete differential and does not have a well defined
derivative. Instead, we must consider the “ratio” (DW,./du) at constant V, T,
Y.
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Returning to Eq. (3.24), we can write

o )rr = @) () 09
o Jvry /vy o Jyr

where, since )y depends only on u, V, T and not on a fourth independent
variable Y, the derivative 2y needs no Y subscript. If we now substitute Eq.
(3.26) into Eq. (3.28), applying the relation, respectively, to the initial uniform
state and to the final nonuniform one (produced by applying the field y) we

obtain
DW,
op

) = —(N = Ny) = —AN, (3.29)
v, Iy

where AN is the excess number of molecules. An exactly similar procedure,
utilizing Eq. (3.27), leads to

(%V;C) — _(S—8y) = —AS, (3.30)
Viu,Y

where AS is the excess entropy. Equations (3.29) and (3.30) constitute the
nucleation theorem. Note that Y (or y) is always adjusted to be consistent with
the external field that produces the final nonuniformity. Furthermore, Egs.
(3.29) and (3.30) are more general than the nucleation theorem derived with
the “nucleus” of nucleation theory in mind, since they can be applied to any
system in which an equilibrium non uniform density is induced by an external
field. Also note that Ay in Egs. (3.1), (3.3), and (3.5) differs from p in the
equations of this and following sections by a constant. Finally, note that we
also find the analogous relation for the pressure

DWC>
= —(p —po) = —Ap, (3.31)
( ov T.u,Y

where Ap is the excess pressure.

All these relations are almost intuitively obvious. For example, the “chemical
work” involved in moving “excess” molecules from the reservoir into V, at a
maintained chemical potential, should be W = —pAN, and the derivative of
this equation with respect to p should be Eq. (3.29). However, rigor demands
that we follow the quantitative thermodynamic protocol presented above. It
should be reemphasized that Eqgs. (3.29) and (3.30) are those derived by Hill in
1962 by another method [18], reviewed in the preceding section.

Although our analysis has been focused on a single component system, a
simple extension of the argument to multicomponent systems easily yields the
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relations
D
(M) = —ezxcess of component i, (3.32)
O TV, # i
(M) = —excess of entropy, (3.33)
oT {u},V

where {u} is the set of all chemical potentials.

The great generality of the theorem formulated in terms of thermodynamic
relations (Egs. (3.29) and (3.30)) makes it possible its application to differ-
ent situations. One possible model is the drop, mentioned above, in equilibrium
with its vapor. This of course is the original system to which the nucleation the-
orem was applied. However, even a concrete model as this one admits different
possibilities. For example we could choose the capillarity model of classical nu-
cleation theory, or we could choose the more sophisticated Gibbs model treated
by Oxtoby and Kashchiev [6]. In particular, we would have to specify (at least
implicitly) the field responsible for the local nonuniformity in density, and this
also becomes part of the model. In each case, the model is defined, in part, by
the number of independent variables that must be used to describe it. When
we pass from the capillarity model to the Gibbs model, curvature appears as an
additional variable, and if we elect to consider drops only slightly larger than
molecules, other variables might become important.

As a corollary, in choosing a cluster model, e.g. the Stillinger cluster dis-
cussed in Section 1.2.5, to be used in a simulative test of the nucleation theorem,
one must be careful to include the part of the “excess” that lies outside of the
cluster, as will be explained in Sec. 3.7. This is not a serious problem where
the surrounding phase is almost ideal (as in the simulation of ten Wolde [7]),
but it grows in importance as the system becomes increasingly nonideal.

The argument which might be raised, however, is that the nucleation theo-
rem applies to a thermodynamically metastable or unstable system containing
the nucleus. The answer to this claim is that, in order to calculate the work
of formation of this nucleus, it must be implicitly stabilized by a constraint,
e.g. an external field, that converts it to a truly stable equilibrium to which
thermodynamics can be applied. Indeed, it is this constraint that performs the
reversible work required in the formation of the nucleus.

Note that, as far as the theorem represented by Eqs. (3.29) and (3.30) is
concerned, there is nothing in its proof that prevents it from applying right down
to the molecular level, provided that the various thermodynamic quantities are
interpreted as time or ensemble averages in the presence of the field that assures
stable equilibrium.
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In the remainder of this chapter we shall study a number of systems other
than that involving a nucleus. These can be of molecular size or larger, and
we will show, by means of statistical mechanics, that the nucleation theorem is
exact as far as these systems are concerned. In this way, the proof presented
above is further confirmed for those systems. This analysis is initiated in the
following section.

3.4 Nonuniform Density Distributions in a 1-D Hard
Rod Fluid

The nucleation theorem has been proved to be of general applicability to equilib-
rium systems containing nonuniform distributions of density and is valid down
to the molecular level. To show this assertion, we will study several systems
that can be analyzed exactly using statistical mechanics. First, we will exam-
ine two nonuniform density distributions formed in a one dimensional hard rod
fluid, where we are able to analytically calculate both the work of generate the
uniformity and the excess number of particles. The density distributions we will
consider, respectively, are that which results from the presence of a cavity and
that due to the presence of a simple cluster.

Our strategy will be as follows: The reversible work required to apply a con-
straint (or field) in order to create a nonuniform distribution can be expressed

as
W,.=—kTIn %, (3.34)
Qo
where @, is the partition function of the original (uniform) phase and Q. is the
partition function of the system subject to the constraint. Having calculated
these partition functions to obtain W,, we take the derivative of this work
with respect to the chemical potential of the original phase. Application of the
nucleation theorem relates this quantity with —An, the negative value of the
excess number of particles. We then obtain the excess, via a means independent
of the theorem, and compare the two quantities.
We first calculate @), along with the chemical potential of the uniform state.
Then we calculate both @), and the excesses for both the cavity and the cluster.

3.4.1 Initial Uniform State

The initial uniform state for both cases consists of N hard rods of size ¢ on a
circular ring of length L, where the effect of converting a straight line to a ring
simply introduces periodic boundaries. To calculate the partition function Q,,
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particle 1 is initially held fixed at L = 0, while the remaining N — 1 can be
integrated in the same manner as described by Tonks [23] for a system of hard
rods on a line without a periodic boundary. Then the final particle is integrated
over the entire length L, to obtain

—0 L—o
Qo = / d:z:l/ dﬁcz/ d.’l)g/ d.TN
20 (N-1)o

(L - No)N- 1L
= I (3.35)

Eq. (3.35) differs slightly from the partition function derived by Tonks due
to the absence of the wall effects. The two walls in the original calculation
exclude a total volume of o to the centers of the N rods. However, as one
expects, the thermodynamic quantities of the two models become the same in
the thermodynamic limit because end effects become unimportant. Hence the
chemical potential obtained from Q,, is

+
po= —lenQ—o
o
N+1 T
= Y krin - poy 4+ PO
(1 —po)
kT po
= kTlnp—kTIn(1 —po) + - ——, 3.36
(1= po) + (3.36)

where @ is the partition function @, for N + 1 particles and p = N/L is the
density. Eq. (3.36) is identical to the usual expression for the chemical potential
of a hard rod system in the thermodynamic limit where N 4+ 1 = N. Similarly,
the pressure of a hard rod system on a ring approaches that of the hard rods
on line, in the limit L — oo,

olnQ,  kTp kT 1 _ KkTp

PR T a—p) T T Upo) A= po)

(3.37)

3.4.2 Cavity Formation

A cavity [24] excludes the centers of the rods in the fluid from a localized region,
creating a local decrease in the density. If the size of the cavity, which we will
denote by A, is less than the diameter of a rod then, a rod on one side of the
cavity can interact with (collide with) a rod on the other side, as depicted in
Figure 3.2(a). If A > o, the rods cannot interact across the cavity and in effect,
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Figure 3.2: The partition function for a system of hard rods of diameter o that contains a
small cavity of length A < ¢ is divided into two sets of configurations. (a) Configurations in
which a particle is in the region between A and o so that particle 1 interacts with particle IV
across the cavity. These contribute to QL. (b) Configurations in which no particle is in the
region between A and ¢ and there is no possibility of interaction. These contribute to Q2.
Large cavities of length A > o only have configurations of this type.

the rods “see” a hard wall. To calculate the work of forming a cavity of any size
we treat these two cases independently.

Starting with the small cavity (A < o) we place the center of the cavity at the
point A/2 so that the centers of the rods are excluded from the region between
0 and A. We then note that the full partition function for this system can be
divided into two sets of configurations: those configurations, @, in which a rod
is in the region between A and o so that it can interact across the cavity (Fig.
3.2a), and those configurations Q?, in which there is no rod in this region so that
there is no interaction (Fig. 3.2b). It is obvious for a system containing a large
cavity (A > o) that the full partition function will be related to configurations
similar to @2, except that there will be no rods in a region between 0 and \.

To obtain Q., we begin by holding the first rod fixed at a point dz1 between
A and o and noting that the Nth rod on the line will interact with this fixed rod
before reaching the wall of the cavity at L. The upper limit of integration for
the Nth rod will be L — o + z1, so we have to integrate over the N — 1 particle
as usual, and then integrate the first particle over the region between A and o,
which gives

4—0 L—o+x1
Qi = / da:l/ darg/ da:3---/ dry
x1+o0 1420 $1—|—(N—1)0'

(L—No)N=to - ))

D (3.38)
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If z; is greater than ¢ the upper limit for the position of the Nth particle is
no longer dependent on z1, and simply becomes L while the upper limit for the
first particle becomes L — (N — 1)o. Proceeding as before, the remainder of the
partition function is given by

L—(N-1)o T3—0 Ta—0 L
Q? = / d:v1/ dxg/ davg---/ dzn
o T1+0 T1+20 z1+(N-1)o

L — No)V
_ (E=No)? (3.39)
(N)!
which, is in fact just the Tonks partition function for a hard rod system. This
is not surprising since, as we mentioned earlier, the presence of a cavity of
size A = o is equivalent to a hard wall. The full partition function for a one
dimensional system of hard rods containing a cavity of size A < ¢ is then given
by
(L— NX(L - No)N-1
Qe=Qh+Q2 = - ,

so that the work required to form such a cavity, obtained from Eq. (3.34), is

(3.40)

W, = —kT In(1 — pA). (3.41)

Eq. (3.41) has been previously derived using scaled particle theory [25]. To
arrive at an expression for the excess using the nucleation theorem we must
take the derivative of this work with respect to the chemical potential given by
Eq. (3.36). Taking the derivatives of both Egs. (3.41) and (3.36) with respect
to p, at constant L, and using the chain rule gives

c c A(1 - 2
() (3, (%), 257 o
op Op Jp\ou/),  (L=pA)
The total excess, An can be obtained by calculating the excess for each set of
configurations, An; and Ang, and weighting them by their respective probabil-

ities. To obtain these excess quantities we will make use of the compressibility
equation of state [20], which in one dimension can be written as

p/ooo 2[g(r) — 1]dr = pkTk — 1, (3.43)

where g(r) and k are the pair correlation function and compressibility of the
fluid, respectively. The connection between Eq. (3.43) and the excess becomes
immediately obvious when we note that pg(r) = p(r) is the local density at a
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point a distance r from the center of a rod, so that expanding p through the
integral gives,

/000 2[p(r) — pldr = pkTk — 1, (3.44)

where the term in the brackets is the local excess at a point . Completing the
integration over r then gives the total excess in the system due to the presence
of a rod. We elaborate this in more detail in Section 3.5.

Coming back to the calculation of An; we see that the excess surrounding
the fixed rod is given exactly by Eq. (3.43). However, this rod also contributes
to the excess of the cavity, so to obtain An; we can simply add one unity to
Eq. (3.43), giving

Any = pkTk
= (- o), (3.45)

where, in the final step of Eq. (3.45), the compressibility, = —(1/L)(0L/dP),
was obtained using Eq. (3.37) for the pressure.

In calculating Any we will make use of the fact that if the rods are unable
to interact with rods on the other side of the cavity i.e. A > o, they are unable
to distinguish between a cavity, a hard wall or another rod, so that the pair
correlation function outside of such a cavity is identical to that outside of a
rod. From this we can see that the excess due to a cavity of size A\ = 20,
so it excludes exactly the same amount of volume as another rod, is given by
Eq. (3.43). The excess due to cavities of different sizes, as long as A > o only
differ by the number of rods or local density excluded. This is because, under
this condition, at a given density the pair correlation function outside a rod or
cavity depend on the size of the cavity, while the density inside a rod or cavity
is zero, representing a negative contribution to the excess which depends on the
excluded length. Figure 3.3 shows the density profile in a hard rod fluid due to
the presence of a cavity. In general, the excess due to a cavity of length A is

An = pkTk—1—pA—20): A>0
= p’o? - \p. (3.46)

Since the configurations belonging to @2 have no rods in the region between 0
and o, a situation equivalent to the presence of a cavity of size o, we find from
Eq. (3.46),

Any = p*o? — po. (3.47)
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The total excess An is finally obtained by weighting An; and Ang by their
respective probabilities. Thus,

QLA + Q%*An, A1 - po)?

An = = . 3.48
Qc (1 - p)‘) ( )
Comparison of Eq. (3.48) with Eq. (3.42) yields
ow,
=_A A4
( op ) " (3.49)

which is the nucleation theorem valid also for a nonuniform distribution caused
by a cavity of size A < o. To complete the proof for cavities sizes A > o, it
is necessary only to consider configurations of the type described by @Q? since
there is no possibility that particles interact across the cavity. Q. for this case
can be obtained directly from Eq. (3.39) by replacing the lower limit of the
integral for the particle in dz; with A, thus

L—(N-1)o r3—0 T4—0 L
Q> = / dz, / dzo / dzs--- / dzy
A r1+0 r1+20 ;E1—|—(N—1)0’

(L—No—(\—a)V

= ) , (3.50)
and KT ol
W, = —kTIn(1 — po) — FLPA=0) (3.51)
1—-po
This expression gives
(8(;/50) = —(p?c? — \p) = —An, (3.52)

which is again the nucleation theorem. The last equality on the right of Eq.
(3.52) arises from the expression obtained for the excess in Eq. (3.46).

3.4.3 Cluster Formation

To examine a case involving a cluster we define and make use of a simple cluster
consisting of two hard rods confined to a cell of length X fixed at a point on
the ring. To ensure that the remaining Ny = N — 2 rods, which constitute the
surrounding phase, interact with the cluster, they are not restricted to remain
outside the cell and so may penetrate the cell walls. One of such configurations
is shown in Fig. 3.4. However, the particles from the surrounding phase are not
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Figure 3.3: The radial density profile of the 1D hard rod fluid surrounding a cavity of size
A = 20 (solid line). The dashed line shows the uniform density of the fluid before the cavity
was formed.

able to enter the space between the two cluster particles. In constructing the
full partition function for the system, i.e. the cluster and its surroundings, it is
useful to analyze Fig. 3.4. For a fixed value of y, which denotes the distance
between the centers of the two cluster particles, the No remaining particles are
restricted to a region L — y — 20, where the 20 arises from the presence of the
cluster particles. The position of particle 1 of the cluster can range between 0
and A\ — y while the separation between the particle 1 and particle 2 can vary
from o to A. The full partition function can be written as

A—y Ta—0 L—o
/ dy/ dwl/ d.’Eg"'/ dry
y+o y+Nao

L Na N-2 Ay V=2
= 11— —— .
/ dy/ dxy ( 7= Na) , (3.53)

where we have simply used No = N — 2 and removed a constant from the
integrand. Assuming that L and N are arbitrarily large so that the fraction
(y — 0)/(L — No) is arbitrarily small, the integrand in Eq. (3.53) can be
expressed as an exponential. Then completing the integration over dz; and dy
we arrive at

Qe

L—No)

(N —2)I(v —2) |° (L — No)

Using Egs. (3.54) and (3.35) in Eq. (3.34), and assuming that in the thermo-
dynamic limit N —1 and N —2 = N, yields the relation for the reversible work

(L - No)V er (N -2)(\—o)

Qc = —1]. (3.54)
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Figure 3.4: The centers of two rods belonging to the cluster (shaded) are confined a cell of
length A while surrounding rods are able to penetrate the cell as shown. When the cluster
rods are separated by a distance y they create a cavity of y + 20.

required to form the cluster

6O-2)  p(A— o)
= —kTIn(1 — —kT1 Tmpe " — 1. 3.55
We=—kTn(l = po) ~k “[e " a0 ] (8.59)

Finally, taking the derivative of this work with respect to the chemical potential,
results in

(p(A=0)
oW, (e 1=po — 1> (A=o)p
< o ) =po(l —po)+ e a) oo ) . (3.56)
o |
To calculate the excess, we note that the two rods in the cluster separated
by a distance y, create a cavity of size y + 20, and that the excess due to such
a cavity is given by Eq. (3.46). However, this is not the total excess since we

must add a factor 2 to account for the 2 particles inside the cluster. Thus, the
excess for the cluster, when the cluster rods are separated v, is

An(y) = pkTk + 1 — py. (3.57)

The total excess can then be expressed as a weighted average

An—/ An(y)®(y)dy, (3.58)

where N s
fO yd‘,I" fy—f—o‘ d$3 fy—f—Nzo‘d'TN

B(y) = 0. :

is the probability density for the cluster particles to be a distance y apart. Using
Eq. (3.54) in Eq. (3.59) yields, after some manipulation,

(e(A=0)
(e BT —1) (A—o)p

{e(Pl(Ap:) + p()\ 0') _ 1] ’

(3.59)

An = — |po(l — po) + (3.60)

(T—po
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and again we find, through comparison of this result with the right side of Eq.
(3.56), that the nucleation theorem holds.

3.5 The Nucleation Theorem and the Compressibility
Equation of State

In the previous section we have shown that the nucleation theorem is valid for
any size cavity inserted into a one dimensional hard rod fluid. Furthermore,
we also noted that the compressibility equation of state, Eq. (3.43), was equal
to the excess due to the presence of a single rod. If we now consider the work
required to insert a cavity of length 20, using Eq. (3.46) and the nucleation
theorem, we find

(BaVZc> = —(pkTk — 1), (3.61)

Due to the nature of the hardcore interaction between particles, inserting such
a cavity into a hard rod fluid is equivalent to inserting another rod with the
difference that this new “rod” has no translation [24]. We will now show that
Eq. (3.61) is more generally applicable, and not restricted to a hard rod fluid.
We now turn our attention to a 3D single component system consisting of
any kind of molecule and consider a field that produces a density distribution
identical to that which would be produced by a molecule in the surrounding fluid
fixed at a single point. In effect the field gives rise to a pseudomolecule fixed
at a point. We might call this pseudomolecule an “equivalent molecule” but it
is unable to move. If it was allowed to diffuse throughout the entire volume we
would have introduced a new molecule to the system, and the reversible work to
do this would equal the chemical potential. Thus, the reversible work required
to introduce it at a fixed point is given by
3
W:u—lenATN, (3.62)
where the translational component of the work has been subtracted from the
full chemical potential. Taking the derivative of Eq. (3.62) with respect to u

yields
T (ON
(3_W> :1_’“_(3_) | (3.63)
ou vV, T N\ ou v,T

(3_N> _<3_N> (3_V> (3.64)
op V,T ov wT op N,T’ '

Writing



3.5 The Nucleation Theorem and the Gibbs Adsorption Eq. 109

and using the Gibbs-Duhem relation, du = (V/N)OP, gives

o), - (@), 5, -
o ) vy V), VNOP)yy 7

1 /oV

is the isothermal compressibility and we noted that, at constant p and T,
(ON/QV') = p. Substitution of Eq. (3.65) into Eq. (3.63) yields

where

(%—VDV,T — —(pkTx — 1), (3.66)

The compressibility equation of state
o
An = p/ [g(r) — 1]4nrdr = pkTk — 1, (3.67)
0

relates x to the excess number of molecules, An, due to the presence of a
molecule, through the pair correlation function, g(r). Substitution of Eq. (3.67)
into Eq. (3.66) then leads to the nucleation theorem and completes the proof.
Thus we have shown that the nucleation theorem holds for a specific nonuniform
density distribution that corresponds to an additional molecule at a fixed point
and it surroundings, and for this molecule 0W/0u is equal the negative of the
excess in the compressibility equation of state.

It should be noted that we could have used the nucleation theorem to derive
the compressibility equation of state. By simply assuming the validity of the
theorem we could have equated Eq. (3.66) with the negative of the left hand
side of Eq. (3.67). This would yield the equality on the right hand side of Eq.
(3.67) which is the desired result.

It is also worth to mention that the previous analysis can be generalized to
include fluctuations that are no longer identical to the molecules in the fluid,
but resemble different molecules, as occurs in a multicomponent system [27].

3.6 The Nucleation Theorem and the Gibbs Adsorp-
tion Equation
The Gibbs adsorption equation can also be derived by using the nucleation

theorem where the corresponding constraint is the one creating a large cavity
in the fluid.
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We consider that the cavity is a connected region of space that excludes the
centers of all the surrounding molecules, so that one having a radius R, fixed
at a point R, excludes (4/3)mR3p molecules. The molecules in the fluid see
the “hard wall” of the cavity, and depending on their intermolecular potential
will either adsorb or desorb on this surface. In either case, near that surface,
there will occur a deviation of the local density away from the original uniform
fluid. This deviation will contribute to the molecular excess. Provided that the
cavity is large enough that curvature effects can be ignored, the total number
of absorbed molecules can be expressed as

Tr=p /R o) — 14nrdr, (3.68)

where g(r) is the correlation function, at a distance r, between the center of
the cavity and the molecules in the fluid, while p is the original uniform fluid
density. The total excess due to the presence of the cavity is a combination of
molecules absorbed at the surface and those expelled from the cavity, and can
be written

An = —%ﬂRi’p +Tr = —gwR;”p + 47 R2T,

where the negative sign in the first term arises because the cavity ezcludes
molecules, so that the local density inside the cavity is lower than the original
density. In the second term of Eq. (3.69) 'y, the total number of adsorbed
molecules has been replaced by I', the thermodynamic surface excess expressed
as the number of molecules adsorbed per unit area.

The reversible work required to grow the cavity, again assuming that it is
large enough, is given by [26]

4
W= 57rR}c”P + 47 R%y, (3.69)

where P is the pressure of the fluid and + is the surface or boundary tension of
the fluid at the wall interface. The first term is the volume work need to grow
the cavity while the second is the work needed to create the new interface. As
in the previous section, we take the derivative of this work with respect to the
chemical potential and find

oW\ 4. (0P By
(8/1'>RC a 37TRC<8M)+47T((9M>
_ 4 3 oy
= 37chp—I—47r (all)’ (3.70)
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where in the second step we have made use of the Gibbs Duhem relation. Using
the nucleation theorem, taking note of the fact that it requires the negative of
the excess, Egs. (3.69) and (3.70) can then be equated. This gives

r—-(51). (3.71)

which is the Gibbs adsorption equation for the surface in question. On the other
hand, we could have used Eq. (3.71) in Eq. (3.70) to recover the nucleation
theorem. This shows that, in the regime where the cavity is large enough to
neglect the effects of curvature, the Gibbs adsorption equation is a necessary
and sufficient consequence of the nucleation theorem. Also, the form of the
surface work that we have chosen indicates that the surface involved is the
Gibbs surface of tension. However, for large enough R, its exact location does
not have to be specified.

3.7 The Nucleation Theorem and the Molecular Ex-
cess

At this point, it is appropriate to clarify the relation of the nucleation theorem
to the cluster that constitutes the nucleus. There seems to be no doubt that,
within the limits of the approximation, if the kinetic preexponential factor in
the nucleation rate is independent of the chemical potential, one can determine
the “excess” associated with the nucleus. However, it is important to elucidate
what is the real meaning of this molecular “excess”.

Let us consider for instance a n-cluster defined by isolating n particles in-
side a given volume, following some criteria, i.e. the Stillinger cluster. Then one
usually assumes that these n particles constitute the cluster, and the remaining
N — n the surrounding vapor. In principle, one could then perform a statisti-
cal mechanics description of such droplet and calculate, through the partition
function, the work associated to its formation. If the vapor is ideal, in the sense
that it does not interact with the n particles inside the volume of the cluster,
one would obtain [17]

That is, in this case the entire excess in number of molecules is contained inside
the volume of the cluster and coincide with the n particles we have isolated
less the number 7 of ideal vapor molecules that would occupy that volume. Of
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course, if the vapor is not ideal, those n particles inside the volume of the cluster
may interact with the surrounding vapor, which originates an additional term
to the partition function. This term, following Eq. (3.34), contributes to the
work of formation of that droplet and consequently generates a new term An
in the excess

<8Wc(’l’b) — _(n - An) (3.73)

8” ) V,T,nonideal

One then might think that this additional term An destroy the validity
of the nucleation theorem. But this would be a misinterpretation of the real
meaning of the molecular excess.

The excess is a property of the whole system and cannot be independent on
the election, the location or the properties of the dividing surface. Except in few
particular cases, one cannot expect that the entire excess will be located in a
restricted region inside the system, as for instance in the volume containing the
n particles. The molecular examples developed in the preceding sections clearly
illustrates this fact. The density profile outside the cavity in Fig. 3.3 confirms
that a significant part of the molecular “excess” is exterior to the cavity. In
addition, the calculated excess for the case of the cluster containing 2 hard-rods
is not simply n — 7 = 2 — pA, but is given instead by Eq. (3.60).

Even the Stillinger cluster will exhibit an “excess” outside of the cluster itself
unless its surroundings are almost ideal. This exterior excess, An, forms part of
the total excess that the nucleation theorem refers to. Moreover, it corresponds
to the term that Bowles et al. [17] could not force to zero in their molecular
analysis of the problem. We now know that, in the first place, there was no
need to explain how this term could be zero since it represented an excess that
was to be included in the theorem.

Once elucidated the real meaning of the molecular excess given by the nu-
cleation theorem, one may take one step forward. One of the difficulties in the
development of nucleation theories is the definition of a physically consistent
cluster. As we showed in Chapter 1, many definitions have been proposed in
the literature, but only a few criteria, as for example the comparison with exper-
imental results, are available to show their accuracy. The nucleation theorem
becomes now a valuable tool to refine nucleation theories and cluster models.
The last discussion suggests that a “good” definition of a physically meaningful
cluster would be the one that never leads to an appreciable exterior excess, even
when the cluster is embedded in a non ideal environment.



3.8 Conclusions 113

3.8 Conclusions

In concluding this chapter, it is appropriate to carefully examine what has been
accomplished in the previous sections, and to speculate on future directions that
might be profitable.

First, we have presented a proof that the nucleation theorem applies to any
system having an equilibrium nonuniform distribution of density induced by an
external field. The case of the cluster of molecules constituting the nucleus in
nucleation theory is only a particular case. (We also noted that the theorem
is identical to a set of thermodynamic relations derived by Hill in 1962 in the
framework of small system thermodynamics). This proof also shows that the
theorem extends rigorously down to nonuniformities of molecular dimensions.
Furthermore the theorem, as it emerges from the proof, is relatively sterile until
it is used in connection with a particular real thermodynamic system or a par-
ticular model of a real system. The ingredients of such a model involve the spec-
ification of the independent thermodynamic variables of the system, the nature
of the field that induces the nonuniformity, or the character of the nonunifor-
mity itself. This character may involve the assumption that the density profile
is mesoscopic and local as in the case of a drop. It may also be determined by
some underlying molecular restrictions, as for example in the case of a Stillinger
cluster. The nature of the density profile (and the corresponding field) might
be determined by the presence of a wall or it might correspond to the field of a
single molecule, as in the case of a pair correlation function.

Not surprisingly, the nucleation theorem has already been used extensively
within the nucleation community, where it provides an essential link between ex-
periment and theory by allowing the molecular excesses predicted by molecular
models and computer simulation to be compared with those obtained directly
from nucleation rate data. However, in the present chapter we have been able to
show that the so-called nucleation theorem is applicable beyond the field of nu-
cleation since it constitutes a general thermodynamic relation. To highlight this
we have applied the theorem (i) to the molecular excesses due to cavities and
clusters in hard rod systems, and (ii) to the excesses surrounding monoatomic
molecules of any type in fluids, even in the three-dimensional case. We have
also shown a close connection, at the molecular level, between the nucleation
theorem and the compressibility equation of state, and at the macroscopic level
between the nucleation theorem and the Gibbs adsorption equation.

Moreover, it is important to emphasize that relations resembling the nucle-
ation theorem have been widely used in many fields other than nucleation, with-
out considering that its formulation deserved a distinctive label. For instance,
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it has come to the authors’ attention that A. Vrij [28] derived the compressibil-
ity equation of state from the Gibbs adsorption equation using an intermediate
relation that was, in effect, the “nucleation theorem”. Another example can be
found in Ref. [29], where similar relations where applied for solvation forces in
fluids confined between parallel walls.

Given the general nature of the theorem, it would be reasonable to identify it
by a name that does not seem to restrict it to nucleation. However, it is perhaps
too late for this and it might confuse the issues. In view of the generality of the
theorem, it could represent a powerful tool for the exploration of a wide range
of phenomena different from those associated with nucleation. For example, the
nucleation theorem might be useful in the study of transition state complexes;
after all the nucleus is a transition complex in chemical kinetic language. It
could also be useful in the study of solutions where the solvation of a solute
molecule forms part or all of the “excess” of solvent. This application might
be especially useful in the study of water molecules in the atmosphere of a
polyelectrolyte molecule. As far as theory is concerned, the nucleation theorem
might be helpful, for example, in achieving closure in integrodifferential theories
of fluids and, in particular, in scaled particle theory [26].
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Chapter 4

Nonequilibrium
Translational-Rotational Effects

One of the most controversial issues in nucleation theory is the proper account-
ing for embryo degrees of freedom, sometimes referred to as the translational-
rotational paradox. The controversy dates back to the consideration of Lothe
and Pound [1] of what appears to be a serious inconsistency in the conventional
theory of nucleation from the vapor phase. These authors pointed out that
several important contributions to the free energy of formation of the critical
cluster attributable to rotational and translational degrees of freedom had been
neglected in Classical Nucleation Theory (CNT). The paradox emerged because
the inclusion of these additional terms in the way they proposed, although aimed
to restore the consistency of the CNT, increased the nucleation rate by a factor
on the order of 1017, thus destroying any reasonable agreement between theory
and experiments.

Reiss and coworkers [2, 3] attempted to solve the paradox by arguing that
the CNT free energy barrier already takes into account all rotational and most
of translational contributions. From this point of view, the correction they
proposed lead to a much smaller change in the expected rates, between 10® and
108.

There followed a series of counter arguments and discussions by several
authors [4]-[11]. Although the proper inclusion of these contributions continued
being debated [11], the issue was never satisfactorily resolved until the recent
work of Reiss, Kegel and Katz [12] which clarifies this and other inconsistencies
of the nucleation theory.

As we have seen, considerable emphasis has been put on the introduction of
the translational and rotational degrees of freedom in the equilibrium partition
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function of a nucleating droplet. However, these corrections refer only to the
influence of these degrees of freedom in the equilibrium sense. Translational
and rotational degrees of freedom also arise from the motion and rotation of
the clusters through the metastable phase. This is a purely nonequilibrium
effect, which may have a relevant influence in the nucleation kinetics.

Our purpose in this chapter is precisely to analyze the influence of the trans-
lational and rotational degrees of freedom in nucleation, stressing out the meso-
scopic and nonequilibrium nature of the process [13]. A large amount of work
has been done concerning the equilibrium aspects of those degrees of freedom
and it is not our intention to provide here a comprehensive review of the many
attempts to solve the paradox which would lie beyond the scope of this the-
sis. We will try instead to clarify the origin and the resolution of the paradox
through a proper interpretation of the mesoscopic nature of the process. That
will be developed in the first part of this chapter.

The main objective of this chapter is the analysis of the nonequilibrium ef-
fects corresponding to the motion of the clusters in nucleation. To this end, we
will first derive the equation governing the kinetics of the nucleation, retaining
the dynamics of the clusters, and using the mesoscopic nonequilibrium thermo-
dynamics scheme developed in Chapter 2. After a proper elimination of the
velocity variables, this equation will be used to obtain a purely nonequilibrium
correction to the nucleation rate. We will finally discuss explicitly the particular
case of nucleation rates of water and the extension and relevance of our results
in other situations.

4.1 Influence of Translational-Rotational Degrees
of Freedom in Nucleation

As we showed in Chapter 1, phenomenological theories of nucleation are based
on the formulation of the free energy AG(n) associated to the formation of
a cluster of n molecules from the metastable phase. The expression (1.21)
proposed by CNT, based on capillarity approximation, is obtained by treating
the cluster as a macroscopic spherical droplet with bulk and surface free energy
contributions. However, treating embryos as macroscopic objects and using
thermodynamic arguments to calculate the work of embryo formation give rise to
important inconsistencies [14, 15]. One of these is that logarithmic corrections,
like the ones arising from additional degrees of freedom that a drop may have,
are not included. In particular, the CNT leaves out the contribution of the
translational and rotational degrees of freedom.
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Capillarity approximation deals with the free energy required to form a sin-
gle cluster at rest in the metastable phase. However, the conception of droplets
at rest constitutes an approximation to the real state of the system. The small
clusters which are the embryos of the new phase can spontaneously appear at
any point of the system, and with arbitrary orientation. Moreover, due to the
mesoscopic size of these entities, they move and spin around the metastable
phase because the influence of the medium in which they are embedded (Brow-
nian motion). Both factors constitute translational and rotational degrees of
freedom of the cluster and must be taken into account to describe accurately
the nucleation process. But the influence and the way of considering both ef-
fects is different. The arbitrariness of positions and orientations which a cluster
may occupy can be incorporated as a purely equilibrium correction by including
these translational and rotational degrees of freedom in the partition function
of the cluster. Consequently, this yields a modification of the free energy of
formation of this cluster. Contrarily, the effect of the movement and rotation of
the clusters does not directly alter the nucleation barrier itself. It is a nonequi-
librium factor that modifies the kinetics of the process. Both aspects will be
discussed separately.

4.1.1 Equilibrium Influence:
The Translational-Rotational Paradox

Most of the work on translational-rotational correction, and the paradox itself,
addresses to modify the free energy to form a cluster of size n, taking into ac-
count those degrees of freedom in the partition function. In this sense, one may
refer to the works of Lothe and Pound (LP)[1], which originated the paradox,
and the recent resolution by Reiss, Kegel and Katz (RKK)[12]. Both works
deal with purely equilibrium corrections. The common underlying idea is that
if nucleation occurs in a volume V, the physical critical cluster may appear
anywhere in the system with any orientation. Considering that all the clusters
appearing at different positions and orientations are equivalent, one then has
to account for the additional translational and rotational degrees of freedom in
the partition function. The accounting of these degrees of freedom increases
the value of the partition function, consequently reducing the free energy of
formation of a droplet and thus increasing the nucleation rate. The difference
between both treatments and the origin of the paradox concerns what is the
proper accounting of those degrees of freedom in the partition function and
how to define and distinguish different states of a cluster in a volume V. The
paradox can be reconsidered and understood from a mesoscopic perspective.
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Figure 4.1: Two possibilities of localization of a mesoscopic cluster: left: by the position of
the center of mass (C.M); right: by the location of the center of the volume v containing the
n molecules.

Using the CNT expression for the free energy of formation of a cluster entails
the extrapolation of a macroscopic expression to the mesoscopic scale. But, as
became clear in the previous chapter, the extrapolation of macroscopic ther-
modynamic concepts to the mesoscopic regime is not always straightforward
and may give rise to several problems. Some concepts and definitions which
are clear in the macroscopic regime, become fuzzy and ambiguous when applied
to the mesoscopic level. One of them is precisely the proper description of a
mesoscopic entity.

Whereas it is clear how to locate a macroscopic droplet at rest, the charac-
terization becomes less obvious when this cluster only contains a small number
of molecules. For instance, the position of a mesoscopic cluster constituted by n
molecules inside a spherical volume v, can be described in terms of the position
of its center of mass, or by the position of the center of the spherical boundaries,
as illustrated in Fig. 4.1. Whereas for a macroscopic droplet both descriptions
practically coincide, for the mesoscopic one they differ due to the presence of
fluctuations.

The other problem arising in the mesoscopic scale concerns the pertinent
volume scale one has to use to discretize the space with the purpose of dis-
tinguishing different states in the calculation of the partition function. The
uncertainty in defining a volume scale is a well-know problem in Statistical
Mechanics [16]. For macroscopic systems, however, this arbitrariness is not rel-
evant, because it only introduces a logarithmic correction to the free energy
which is always negligible in the thermodynamic limit. But for a small embryo,
the correction may become important.
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Hence the central point in the paradox can be reformulated in terms of
knowing what is the proper definition of a mesoscopic cluster and what is the
physical meaningful volume scale to count states in the partition function and
consequently to calculate the free energy of a mesoscopic cluster.

A reasonable choice for the volume scale would be of course based on the
quantum uncertainty principle and the corresponding de Broglie wavelength;
that was the one implicitly used by Lothe and Pound [1]. They assumed that the
location of a spherical cluster of n molecules is defined through the position of its
center of mass and its orientation. Therefore every configuration of n molecules
with different position of the center of mass and different orientation constitute
a different realization of a cluster and consequently a new state to be accounted
for in the partition function. Treating the cluster as a spherical macromolecule

and applying the quantum uncertainty principle, the quantities A = W

W represent the smallest length and angular position within
which a cluster of mass m and moment of inertia I can be definitely located
at a temperature 7' (h is the Planck’s constant). That is, every configuration
of n molecules whose center of mass and orientation differs by A and A,
respectively, is a new state that increases the value of the partition function.

This criterion leads to the following correction of the free energy

and Ao =

872 1
AGLp(n) = —kpTIn s — kgThn Sr — kyTn : (4.1)
A Arot Qrep

where the first and the second terms are the translational and rotational correc-
tion, respectively; and the last one includes a “replacement factor” g,¢, related
to the entropy reduction accompanying the separation of n molecules from the
system. Assuming reasonable values for parameters concerning vapor conden-
sation, the small size of the de Broglie lengths, originates that these additional
terms increase nucleation rates by approximately 107, destroying in most cases
the agreement between CNT results and experimental data.

But the quantum scale is not the only reasonable scale one may choose, and
RKK theory [12] proposes a different alternative. From their point of view,
the location of a mesoscopic cluster must be defined by the position of the
spherical container, and not by its center of mass. All possible configurations
of n molecules inside a spherical container of volume v are then realizations
of the same cluster and consequently they are already accounted for in the
CNT expression of the free energy. In particular, all possible orientations of
the molecules inside the spherical volume are included, which implies that the
rotational degrees of freedom are already accounted for in the CNT free energy
barrier.
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In addition, to incorporate the translational degrees of freedom one has to
take into account that not all the different positions which this spherical cluster
may occupy inside the volume of the system correspond to different clusters. As
Fig. 4.2 illustrates, if we displace the spherical container a small distance dz,
most of the configurations of the n molecules compatible with the new situation
are the same and have been already accounted for in the undisplaced original
cluster. Hence treating this new position of the cluster as a completely different
cluster entails an overcounting of states in the partition function.

Those authors affirm that this is essentially the origin of the excessively high
correction of obtained by LP which initiated the paradox: the overcounting of
configurations in choosing the quantum length scale to enumerate states in
the partition function. Consequently, the quantum scale seems not to be the
pertinent criteria for a mesoscopic system. There must exist a distinct minimum
volume scale to differentiate clusters in the configurational space. The detailed
and elegant calculation of the partition function performed by RKK ends up
with an interesting conclusion, a kind of analog of the uncertainty principle
in the mesoscopic scale. The result is that for a very large drop the proper
volume scale is of the order of the mean volume per molecule k”%. That is
meaningful, because even for a big cluster we need to displace our cluster at
least to include a different molecule to obtain a different cluster. In addition,
for a mesoscopic nearly incompressible drop, this scale turns out to be the one
related to the volume fluctuation v/kgTkvin. From the mesoscopic point of
view that reflects the reasonable fact that a cluster cannot be located more
precisely than its volume fluctuation. This criterion prevents the overcounting
of configurations who originated the paradox and gives rise to a correction in
the nucleation barrier

v
AG = —kgTln ——,
RKK B4 VkTrvin

leading to a much smaller change in nucleation rates on the order of 10%.

Notice that this criterion is also more consistent with the results of the
former chapter. One of the main conclusions of our previous chapter was that
the identification of thermodynamic quantities with mesoscopic entities can only
be taken into account in an averaged sense. That is, the thermodynamic work
of formation of a cluster refers to all possible configurations compatible with
a given constraint and not to one particular realization, as the LP treatment
implicitly assumed. In particular, in the mesoscopic range, it must include the
fluctuations. That is essentially what the RKK criteria is telling us, and the
hint to the proper understanding of the paradox.
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Figure 4.2: Example of two different positions of a cluster sharing the same configuration
of molecules. Dashed circle represents the cluster in the original position, and the full circle
represents the drop displaced by a distance dx.

4.1.2 Nonequilibrium Aspects: The Effects of Motion

Both LP and RKK approaches are deeply rooted in equilibrium statistical argu-
ments. However, the correction they propose and the whole controversy around
the paradox does not in fact concern the movement of clusters. Although in
the literature the effect of the movement of the clusters has been practically
ignored, different ways exist for which this movement can influence the process.

On one hand, the movement of the clusters through the metastable phase
may alter the rate at which the cluster collides and incorporates molecules of
the metastable phase. As we saw in the introduction, the coefficient kT (n)
is usually calculated using kinetic theory and is just the number of collisions
with molecules of the supersaturated vapor that the cluster suffers per unit
time. The classical theory assumes a sticking coefficient equal to 1 (that is, all
molecules that collide with the cluster get attached to it) assuming that only the
monomers move while the cluster keeps at rest. Olson and Hamill [17] repeated
the kinetic calculation considering the effect of the movement of clusters in the
supersaturated vapor in the rate at which a cluster gains monomers. The result
is a correction factor (1 + n~")"/2 in k*(n). However, this correction has a
negligible effect on the nucleation rate [15].

But on the other hand, the movement of the cluster can modify not only
the rate of growth of a cluster, but also the kinetics of the whole process. Con-
trarily to the equilibrium point of view, our objective will be to analyze the
influence of the movement and rotation of clusters in the nucleation process
from a dynamical point of view. Nucleation is a nonequilibrium kinetic phe-
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nomenon essentially related to the variation of the size distribution of clusters
present in the system. If the clusters are moving through the metastable phase,
its movement may influence the evolution of the cluster size distribution thus
altering the kinetics of the process. Therefore, it seems reasonable to study the
process not only by considering the evolution of the size of clusters but also
retaining its dynamics. This is the approach we develop in the next section,
following the mesoscopic nonequilibrium thermodynamic scheme introduced in
Chapter 2.

4.2 Nonequilibrium Kinetics of Nucleation

We will model the real system, composed by droplets and molecules of the
metastable phase, as a dispersion of clusters of different and varying sizes. Since
we will focus on homogeneous nucleation in spatial homogeneous systems, the
spatial variables are not relevant and will not be included in our description.
Thus, the variables characterizing a cluster are its size n, its velocity u and its
angular velocity w. The description of the system will be carried out in terms of
the distribution function f(T,t), with I = (n, u, w), whose evolution is dictated
by the continuity equation

of (L, t) 0
=" _ _ . J(.t 4.2
I, (4.2
where J = (J,,,Jy,Jw) is a multidimensional current defined in [-space.
The nucleation process may be conceived as a diffusion process in the space
spanned by the values of I" through the energy barrier

C(T) = AG(n) + %m(n)uz + %I(n)wQ, (4.3)
which is simply the energy of cluster of size n, mass m(n) = nm; and moment of
inertia I(n), moving with velocities u and w. In the above expression, AG(n)
represents the energy of formation of a n-cluster at rest and the remaining
terms correspond to translational and rotational kinetic energies. Assuming
that the cluster is nearly a rigid spherical object, its moment of inertia would
be I(n) = %m(n)rQ. But for our analysis, the really relevant property is the
dependency on the size n, which in this case is I(n) ~ n®/3.

The entropy of the system, S(t), is given through the Gibbs entropy postu-

late [18, 19]
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_ L,%)
= kg / F(T feq )d + Seq, (4.4)

where S, is the value of the entropy at equilibrium. Its variations can be
expressed in the form

1
35(1) =~ [ WL 5T O, (4.5)
where u(L, t) is a generalized chemical potential defined in I-space.
r,¢
w(T,t) = kgTln (L )+uq. (4.6)
feq(L)

This expression corresponds to the chemical potential of an ideal, i.e. non-
interacting, dispersion of clusters in the liquid phase. In the latter equation,
feq(L') represents the equilibrium distribution given by

Jeq(L') o< exp(—%), (4.7)

and fieq is the chemical potential at equilibrium.

The expression for the current J defined in Eq. (4.2) can be obtained from
nonequilibrium thermodynamics. The entropy production

UZ—kB/J ilIl f (4.8)
f eq

follows from Eqgs. (4.2), (4.5) and (4.6). The resulting linear law, obtained from

the assumption of isotropy and locality in F—space [20], is given by

J(T,t) = —kpL- (4.9)

8I‘ feq

where L is the corresponding matrix of Onsager coefficients. This expression
can be used in the continuity equation (4.2) thus leading to the Fokker-Planck
equation

of 0 (Q 8f+ D _80) (4.10)

R or  kgT or
where D = kpL/f is the matrix of diffusion coefficients, which in first approx-
imation can be considered as diagonal, neglecting any coupling between the
velocities.

The former equation provides a complete dynamical description of the sys-
tem in terms of the variables n, u, and w. However, from the analysis of the
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time scales of the system it is easy to realize that in the nucleation time scale the
system reaches equilibration in velocities space. The characteristic nucleation
relaxation time [21] is given by 7, ~ k+(n) where for the rate k™ (n) of addition
of one molecule to a droplet of size n we may adopt the classical expression Eq.
(1.5).

Similarly, the Brownian translational and rotational time scales are Typgns =
6;’:7 - and T & W, respectively, where a is the radius of the cluster and 75
is the viscosity. For nucleation in liquid-vapor systems, the order of magnitude
of these characteristic times is approximately 7, =~ 10~3n2/3 for the growth of
the cluster, and Tyrqns, Trot = 10~ 13n2/3 for the velocities. Therefore a clear
separation between time scales exists, the condition 7,; > Tyrans, Trot holds, and
one can perform an adiabatic elimination of the fast variables (the velocities)
[22].

The adiabatic elimination is a well-known procedure to simplify multidimen-
sional Fokker-Planck equations when the decay constants for some variables,
called “slow”, are much larger than those for other variables, named “fast”. Un-
der that conditions, it is then reasonable to assume that the fast variables, in
our case the velocities, will decay very rapidly to their equilibrium distribution.
Hence, for a time scale large compared to the decay time of the fast variables, the
process is then mainly described by the evolution of the slow variable, the size n
in our problem. One can then eliminate these fast variables by integrating the
Fokker-Planck equation over the equilibrium distribution of the fast variables.
For the case of the velocities, this is the familiar Maxwellian distribution.

After performing the adiabatic elimination of velocities, the resulting dy-
namics is governed by the Fokker-Planck equation

_ D A 1

7810(8";’” = a% (D(n)g—i + kg (d i(") —|—4k3T;) f), (4.11)
where f(n,t) = [ f(n,u,w)dudw, and D(n) = [ Dpeq(u,w) dudw is the dif-
fusion coefficient averaged over the equilibrium distribution peq(u,w) of the
velocities. By comparing now this equation with the usual kinetic equation for
nucleation Eq. (1.29), one can then identify the diffusion coefficient D(n) with
the forward rate k™ (n), and obtain the expression for the effective nucleation
barrier AGpew(n)

AGpew(n) = AG(n) + 4kpT Inn. (4.12)

The conclusion is that translational and rotational motion of clusters in the
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spatial homogeneous medium introduce an effective additional size-dependent
contribution 4kgT Inn in the nucleation barrier, inherent to the diffusion process
and thus independent of the energy of formation of cluster at rest AG(n). It is
important to highlight that since this contribution is always positive translational-
rotational motion always increases nucleation barrier and consequently reduces
nucleation rates, contrarily to the results of the equilibrium corrections which
always decrease the nucleation barrier thus increasing the rate. One may won-
der about the reasons for this feature. In essence, the difference lies on the
treatment of velocity variables.

From the equilibrium point of view, it was always assumed that the velocity
and the motion of the clusters does not influence the nucleation process. And the
justification was precisely the same than the one we have used to eliminate the
velocity variables in our Fokker-Planck equation. The time scale of the velocity
relaxation is much faster than the nucleation time scale, so it was assumed that
nucleation occurs when velocity distribution is equilibrated thus not influencing
the process. Following this line of reasoning, the free energy of formation of
clusters is constructed by averaging the contribution of all cluster velocities.
The nucleation kinetics is then studied focusing only on the evolution of the
cluster size distribution.

In contrast with that line of reasoning, in our treatment we consider that,
due to the coupling between the dynamics of n and (u, w), the elimination of
velocities must be performed at the last stage because it influences the kinetics
of the whole process. Hence we maintain velocities of the cluster as relevant
variables in its description. Instead of constructing an averaged free energy
of a drop taking into account all possible velocities, we directly use the free
energy to form a n-cluster with velocities u, w (Eq. 4.3) to study the evolution
of the system as well with respect to the size of clusters as their velocities.
Finally, we perform an adiabatic elimination of u and w from characteristic
time scales considerations. The result is a net positive contribution to the
nucleation barrier.

If in both cases, the velocity is finally eliminated using the same equilibrium
distribution and the same arguments, one then may wonder about the physical
origin of the additional effective contribution we obtain. The underlying reason
can be naively understood as follows. Although the velocity is initially equi-
librated and equilibrates very fast, every time that a cluster gains or looses a
molecule not only the size distribution of the clusters is altered, but also the
velocity distribution. Therefore, the alteration of cluster size distribution en-
tails a reorganization of velocities distribution through diffusing currents. These
currents involve an additional dissipation which has an energetic cost. Conse-
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quently, the growing of the cluster requires more effective energy, because part
of that is expended in the reorganization (in the new equilibration) of the ve-
locity distribution. As we will show in the following section, the nucleation rate
is thus slowed down.

4.3 Nucleation Rate

The consideration of translational and rotational contribution due to the motion
of the clusters in the nucleation process then leads to the following expression
for the stationary nucleation rate per unit volume, resulting from Eq. (4.11)

(4.13)

where n* is the size of the critical nucleus obtained from the condition of max-
imum of the nucleation barrier

dAG(n)
dn

1
+4kpT— =0, (4.14)

n*
and K is the pre-exponential factor which for liquid-gas nucleation, following
Eq. (1.26), is given by

K = k*(n*) p\/ | PAGMT) (4.15)

kT \| 2nkgT  On2

In order to quantitatively illustrate the effect of our correction in the nucle-
ation rate, we will particularize our general formulation to a concrete physical
situation by using a specific model for the energy barrier AG(n) of formation
of clusters at rest. Our aim in this sense is to show how the consideration of
the translational-rotational degrees of freedom in the way we propose may lead
some phenomenological theories to a better agreement with experimental data
for some substances.

As a concrete example, we will focus on the nucleation rates of water. We
choose this substance because its thermophysical properties are well-established
(see Table 4.1) and there are accurate experimental measures of nucleation rates
performed by Viisanen et al. [23|. As a model for the free energy of formation
of a cluster at rest AG(n), we will use RKK model, explicitly

v

AG = —kgTnlnS 23 _ kpTln ———.
rEK(N) gTnlnS + osin B n\/lm



4.3 Nucleation Rate 129

Table 4.1: Thermophysical properties of the water required to evaluate the nucleation rate:
molecular mass M; saturation pressure peq expressed in mmH g; liquid density p;; surface ten-
sion o; and isothermal compressibility . In the table, T represents the absolute temperature
in Kelvins, ¥ = T — 273.15 K is the Celsius temperature and € = (7/228 — 1). Data taken
from Refs. [25] and [24].

Water

M = 18.015 g/mol

pr = 0.99984 + 0.860 10~* 9 — 0.108 10~ 92 g/cm?

o = 93.6635 + 0.009133 T — 0.000275 T? dyn/cm

log peq =19.301142 — 2892.3693 /T — 2.892736 log T—
—4.9369728 103 T + 5.60695 106 72—
—4.64586910° T3 + 3.787410 12 T*

Kk =29.65 1076 ¢70:349 pgp—1

As we have discussed in Section 4.1.1, the RKK model constitutes an im-
provement of the CNT in the sense that solves some consistency problems and
properly incorporates the equilibrium corrections due to the translational de-
grees of freedom. Unfortunately, this theoretical consistency does not guarantee
an improvement of the quantitative results. In fact, for the particular case of
water, the RKK theory clearly overestimates the nucleation rate by factor of
10° — 108, whereas the discrepancy of the CNT is approximately two orders of
magnitude (see Figs. 4.3 and 4.4).

However, taking into account the nonequilibrium effects of the motion of
the cluster in the way we propose and using the RKK energy barrier one can
achieve a very good concordance with the experimental results. In Fig. 4.4, we
compare the experimental values of Ref. [23] for the nucleation rate of water at
different temperatures, with the predictions of CNT, and the values obtained
using Eq. (4.13) from our theory. We can see that the agreement of our result is
excellent, specially at high temperatures. For low temperatures, the results get
slightly worst which can be attributed to the low temperature anomalies of the
compressibility of the supercooled water (in fact it diverges at approximately
228 K, see Ref [24]). Nevertheless, the maximum discrepancies are less than
a factor of 3 for the whole range of temperatures above 228 K. This example
illustrates the fact that an energy barrier constructed under the requirement
of preserving self-consistency and including properly the nonequilibrium effects
may reproduce experimental results.
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Figure 4.3: Comparison of experimental nucleation rates J as a function of the supersatura-
tion S with the predictions of the RKK Theory (full lines). Crosses represent data of Viisanen
et. al. [23] for water at different nucleation temperatures.

It is important to emphasize that the accuracy of the results we may provide
mostly relies on the correctness of the energy barrier at rest AG(n) we adopt.
The theory we present aims to analyze the nonequilibrium effects of the motion
of the clusters in nucleation, but phenomenological nucleation barriers based on
capillarity approximation present other serious drawbacks , like dependencies of
the surface tension on the radius of cluster or temperature, on which agreement
with experiments depends on. It is evident, that in those cases translational
corrections are not sufficiently important to reestablish the agreement with ex-
periments.

On what concerns nucleation in liquids, there is a general belief that cluster
motion is of little influence and does not need to be considered. Homogeneous
nucleation of crystals is much less well understood than condensation discussed
previously, and presents additional difficulties [26] as mentioned in Chapter 1.
However, in spite of the differences between gas and crystal nucleation, and the
additional problems that the latter presents, the formalism previously devel-
oped to introduce translation-rotation effects in liquid-gas nucleation remains
applicable. Consequently, the net effect of translational-rotational degrees of
freedom predicted by our model is again the variation of the energy barrier
given in Eq. (4.12). In this case, the differences between our nonequilibrium
treatment and the equilibrium approaches become even more obvious, because
in condensed phases translational /rotational contributions to the free energy of
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Figure 4.4: Comparison of experimental nucleation rates J as a function of the supersat-
uration S with the predictions of the Classical Nucleation Theory (dashed lines) and the
new theory (full lines). Crosses represent data of Viisanen et. al. [23] for water at different
nucleation temperatures.

a cluster (in the partition function) are expected to be negligible [26], while the
influence of the movement of clusters in the kinetics of the process still remains
the same.

4.4 Conclusions

In this chapter we have shown how the proper understanding of the mesoscopic
and nonequilibrium nature of the nucleating kinetics reveals the solution of one
of the most paradoxical issues in the nucleation theory, the inclusion of the
translational and rotational degrees of freedom.

The importance of a pure nonequilibrium description of nucleation becomes
then manifest. Our mesoscopic nonequilibrium scheme reveals the transcen-
dence of the effect of the motion of the cluster which has been long-ignored in
the studies of nucleation.

The analysis of the problem has been performed by taking into account the
fact that the emerging clusters remain embedded in the metastable phase and
that their movement could induce modifications in the nucleation rate. Actually,
the motion of the clusters influence the kinetics of their size evolution, therefore
the study of the problem must be performed by retaining their dynamics. The
influence of the medium is then reflected in the appearance of a new effective
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contribution to the energy barrier which is independent of the definition of clus-
ter and of the energy barrier at rest one adopts. The contribution we have found
originates from Brownian diffusion of clusters and in this sense is a translational
contribution arising from a nonequilibrium situation and not from equilibrium
statistical considerations. The effect we have introduced is fundamental as is
due to the ineluctable presence of the medium during the nucleation process.

The conclusion is that the motion of the clusters is relevant in the kinet-
ics of nucleation, leads to a reduction of the nucleation rates, and its proper
inclusion constitutes a first step toward the construction of a nucleation en-
ergy barrier that preserve all logical consistencies and is able to reproduce and
predict experimental results.

A relevant aspect to be emphasized is that our analysis could directly be
extended to consider other hydrodynamic effects in nucleation processes, as the
ones related to the presence of gradients or inhomogeneities. We then provide
a theoretical framework from which the influence that the proper dynamics
of the metastable phase may play in the nucleation process could be studied
systematically. That is the objective of the next chapter.
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Chapter 5

Homogeneous Nucleation in
Inhomogeneous Media

The analysis developed in the previous chapters has been focused on the simplest
case of homogeneous, isothermal and isotropic nucleation. But the real situation
under which nucleation occurs very often does not correspond to that conditions.
One has to take into account that the real process occurs in a media, which in
general has spatial, thermal or velocity inhomogeneities, which in turn may
exert a relevant influence in the process.

One of the situations in which this fact becomes more evident is in polymer
crystallization, which will be discussed in the next chapter. Contrarily to the
case of solidification of simple substances, crystallization of polymers occurs in
a wide range of temperatures. Moreover, in realistic situations the external con-
ditions, specially those concerning the temperature of the system, may change
in time thus altering the process significantly. These characteristics makes it
necessary the study of the process under non-isothermal and inhomogeneous
conditions.

Our aim in this chapter is precisely to develop a more realistic model of
nucleation and crystallization which considers the potential influence of the
medium. We will focus on the simplest cases in which the medium may affect
the kinetics. These situations involve the presence of spatial inhomogeneities in
the thermodynamic properties or the conditions under which nucleation occurs;
the presence of temperature gradients or non-isothermal conditions; and finally
the impact of flow and stresses in the nucleation process.

In the case of homogeneous isotropic nucleation, we can leave spatial depen-
dencies aside as the process occurs identically at any point of the system. We
can thus focus our description on the evolution of the cluster size as a function
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of the external conditions (pressure, temperature, density). The homogeneity
thus justifies the use of a global thermodynamic approach.

However, when the system is inhomogeneous the conditions controlling con-
densation and crystallization vary from point to point of the material and there-
fore a local description of the process must be considered.

To this purpose, we will divide the whole sample into volume elements small
enough in order that temperature, pressure, density... can be considered as
homogeneous, but large enough to guarantee that thermodynamics can still be
applied. In terms of length scales, the previous statement means that the typical
length of the volume element must be much smaller than the gradients present
at the system and much bigger than any microscopic length.

In order to guarantee the consistency of a thermodynamic analysis at the
local level, we must introduce the local equilibrium hypothesis. This hypothesis
assumes that, although the system is not globally in equilibrium, thermody-
namics holds locally. That is, the local variables density, temperature, etc.. are
related through the same thermodynamic relationships than those for homo-
geneous macroscopic systems. In particular, the Gibbs equation remains valid
locally for a volume element followed along its center of gravity motion [1].

It is important to remark, that nucleation involves two clearly differentiated
length scales of macroscopic and mesoscopic natures. On one hand, the scale in
which thermodynamic quantities as pressure, temperature, density, etc. vary.
These quantities can be considered as uniform within each elementary cell, but
may change along the sample. On the other hand, nucleation occurs on a
mesoscopic scale.

Once again, the mesoscopic nonequilibrium thermodynamics (MNET) [2]-
[11] becomes the natural framework to analyze this process. The key ingredient
to apply this formalism to the present situation is to carry out a local description
resorting to a reference state in which local equilibrium is assumed to hold.

Starting from this reference state we will use our MNET formalism developed
in the second chapter in order to obtain the Fokker-Planck equation describing
the dynamics of this kind of “equilibrium fluctuations”. Following the tenets
of nonequilibrium thermodynamics, we will assume that any nonequilibrium
initial state will decay to the reference state in the same way as an equilibrium
fluctuation. That is, the evolution of nonequilibrium states is also dictated by
the same Fokker-Planck equation.

The resulting Fokker-Planck equation provides a complete description of
the system at the mesoscopic level. However, it contains more information than
the one accessible from experiments, which are performed on a macroscopic
scale. We will then describe the macroscopic evolution of the system through
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the hydrodynamic equations, which are constructed by averaging the relevant
quantities with the probability density occurring in the Fokker-Planck equation.

In this way, we will obtain the kinetic equations governing the nucleation
and the transport in the system. We will point out that the formalism is able
to recover some results of the kinetic theory, in a more simple and systematic
way, inside a nonequilibrium thermodynamics framework. In particular, we
can obtain relaxation equations and describe the short-time inertial regime of
the dynamics. However, for the nucleation problem, this short-time regime is
usually not relevant, hence we will focus our analysis on a long-time regime
where diffusion is the dominant mechanism of transport.

For simplicity, we will not consider angular variables in the analysis devel-
oped in this chapter. These can be easily included following our general scheme,
but their inclusion complicates considerably the description of the process. For
the sake of concreteness, we will analyze in detail two particular interesting
situations. First we will derive the kinetic equations governing nucleation in
spatially inhomogeneous systems under the presence of a temperature gradi-
ent. The second case under scrutiny will be nucleation in a stationary flow,
representative of the influence of stresses or mechanical processing. These ex-
amples resemble situations of real interest. Using the results obtained within our
theoretical framework, we will finally discuss the implications in condensation
experiments and in polymer crystallization [12].

5.1 Nucleation under Spatially Inhomogeneous
Non-Isothermal Conditions

Let us consider a non-isothermal situation where the medium, globally at rest, is
characterized by a temperature profile T'(x). In our reference state, this profile
is assumed as stationary.

To account for spatial inhomogeneities, we will perform a local description
in terms of f(n,x,u,t)/N, the probability density of finding a cluster of size
n € (n,n +dn) at x € (x,x + dx), with velocity u € (u,u + du), at time
t. N is the total number of clusters in the system. The whole system is then
thermodynamically characterized by the local energy density per cluster e(x,t),
the entropy density per cluster s(x,t), and the number density

p5.8) = pm + 9o = pra-+ [ (3,0, t)dudn, (5.1)

where p,, is the density of the heat bath, assumed constant.
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Our initial step is the formulation of the Gibbs equation for the entropy
variations of this system, which is now expressed in terms of the corresponding
local thermodynamic quantities (see Appendix)

0 (ps) = (S(Tﬂ - %/u(n,x,u,t) 0f(n,x,u,t)dudn, (5.2)
where p(n,x,u,t) is the generalized chemical potential. Notice that the last
term in the previous equation is reminiscent of the corresponding one for a
mixture in which the different components would be specified by the continuum
‘indexes’ n and u. The generalized chemical potential can be specified through
the use of the Gibbs’ entropy postulate. This formula establishes the connection
between statistical mechanics and thermodynamics through the definition of the
entropy in terms of a probability function

ps = —kB/fln ff dudn + psjeq, (5.3)
leq

being fieq and psjeq the probability distribution and the entropy at local equi-
librium, respectively. Variations of this expression yield:

f
f leq

where the variations of the local equilibrium entropy obey the Gibbs equation

0(ps) = —kp / 0fIn dudn + 6(ps)ieq » (5.4)

1
5(p3)leq = ?5(pe)leq - Nleq(spleqa (55)

and fyeq(x) denotes the local equilibrium chemical potential which is indepen-
dent of the internal variables, but in general will depend on position. By com-
parison of the previous equation with the Gibbs equation (5.2), one obtains the
expression for the generalized chemical potential

/,L(TL, u,x,t) = k'BT]IlfL +Hleq(x)- (56)
leq

At local equilibrium, the system (i.e. the ensemble of clusters) is described at
each position by an equilibrium distribution function of the internal variables
(i.e the velocities and sizes) in which the temperature is the corresponding
one at that point. Consequently, the local equilibrium distribution is just the
probability of formation of an equilibrium fluctuation originating a cluster of n
particles and velocity u [13]
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Fieq(n 1, %, ) = exp (’”q%;(““)) . (5.7)

The quantity C(n,u) denotes the energy cost of formation of a cluster of
size n, velocity u and mass m(n) = min, and is given by

1
C(n,u) = AG(n) + Em(n)u2, (5.8)
where AG(n) represents the energy of formation of a cluster of size n at rest and
the second term is its kinetic energy. By using the local equilibrium distribution

(5.7), the chemical potential can be written as
%, 0,2) = kpTn f(n, %, u,8) + C(n, u) (5.9)

which corresponds to that of an ideal system. That is, interactions between
clusters are neglected.

Our next step is to formulate the balance equations governing the evolution
of the relevant quantities of the system: the probability density f, the inter-
nal energy e(x,t), and the entropy s(x,t). In absence of external forces, the
continuity equation for f may in general be written as

of o o,
o= vV T G

(5.10)
where J, is the flux of clusters in size space, and J,, is a new current resulting
from the interaction of the clusters with the heat bath.

The balance of local energy density can be formulated [1, 14] as follows

Ope

o =V Ja, (5.11)

which states that the total internal energy of the fluid element at x can only be
altered by the presence of a heat flux Jg, in the absence of external forces and
viscous heating effects.

We can now calculate the rate of entropy change per unit of volume by
differentiating the Gibbs equation (5.2) with respect to time

Ops _10pe 1 [ OF
o5 T T/ P dndu. (5.12)
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Introducing the energy balance (5.11) and the continuity equation (5.10),
we obtain

1
6”3 =V,

—/ (u Vf—i— - Ju —i—ai) dndu. (5.13)

Integrating by parts, assuming that the fluxes vanish at the boundaries, and
introducing Eq. (5.9) for the chemical potential, we can write down expression
above in the form of a balance equation

Ops

P _ _v. .14
5 V-Js+o, (5.14)

where the entropy flux J; is given by

— AH(n))
T

J, = %J; - kB/uf(lnf — 1)dndu — /fu (AG(n) dndu, (5.15)

and the entropy production o, which must be positive semidefinite according to
the second law of thermodynamics, is

1, 1 ou 8/1
J——ﬁ.]q vT T/J 7 ——dndu T/J I dndu. (5.16)

In previous equations, AH(n) is the enthalpy of an n—cluster and J; is the
irreversible heat flux

J=J,- / fu (AH(n) + %m(n)u2> dndu, (5.17)

in which the integral represents the transfer of heat due to the diffusion of the
clusters. In order to obtain the entropy flux we have additionally employed the
identity

/V-(uf)lnfdndu:V- (/uf(lnf—l)dndu) , (5.18)

and the thermodynamic relation [1]
AG(n)\ = AH(n)
\Y ( - ) == VT, (5.19)

valid when the system is in mechanical equilibrium.
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The entropy production can be interpreted as a sum of products between
forces-fluxes pairs. In this particular situation, we may identify from equation
(5.16) the thermodynamic forces

VT, - 22 (5.20)

conjugated to the heat J,, velocity J,, and size J,, fluxes, respectively. It
becomes then clear that the origin of the thermodynamic forces are the presence
of gradients or, in accordance with Eq. (5.6), variations of the distribution
function with respect to its local equilibrium value.

Now, according to the tenets of nonequilibrium thermodynamics, we may
postulate linear phenomenological relations between thermodynamic forces and
fluxes. Assuming isotropy, implying that currents and forces of different ten-
sorial nature are not coupled, and locality in the internal space since physical
currents at each point (n,u) of the internal space are only determined by the
local properties, one obtains

LTT 1 ou
I — —_ P —
Jg = VT — / T Ly 9 dndu , (5.21)
LuT 1 ('),u
1 0
Jn — _TLnn 8_5 ’ (523)

where the phenomenological coefficients satisfy the Onsager reciprocal relation

Lyy =—Lyr. (5.24)
It is useful to redefine the phenomenological coefficients in a more convenient
way. Defining A = LTT as the thermal conductivity, D,, = kBJLc”” as the diffusion

coefficient in n-space, and 8 = % and £ = I}“TT as friction coefficients, and
using the expression for the chemical potential (5.9), the currents can be written
as follows

J = -A\VT + /fm (f 4 kBT gf> dndu, (5.25)
J, = —£§VT e <f + "%Tg—ﬁ) (5.26)
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an + 55T On (5.27)

Introducing now these expressions into the continuity equation (5.10), we
finally obtain the Fokker-Planck equation

Jn:_Dn<8f 1 aC )

of 9 of 1 aC
a—‘“'v“a—n[% (%*rBT—an )}*

o kT Of 0 ¢
Tou [ﬂ (f‘” 7%)} T ou (:FfVT)’ (5.28)

which governs the evolution of the inhomogeneous density distribution of clus-
ters in a bath with a non-uniform temperature distribution. The phenomeno-
logical coeflicients  and ¢ still remain unspecified. Their identification must be
carried out through a proper interpretation of the macroscopic relaxation equa-
tions derived from the Fokker-Planck equation. This point will be discussed in
the next section.

5.1.1 Homogeneous Nucleation in Spatially Inhomogeneous
Systems. Diffusion Regime

The Fokker-Planck equation (5.28) provides the complete description of the
evolution of the probability distribution of the clusters at mesoscopic level.
In particular, it can even describe inertial regimes at the earlier stages of the
nucleation process and retains information about the velocity of the clusters.
However, the process of equilibration in velocity space is usually much faster
than the remaining ones. After times much larger than the characteristic time
for the relaxation of the velocity, the system enters the diffusion and thermal
diffusion regime for which the evolution is governed by a simpler set of equations.
In this section, we will discuss the main features of this diffusion regime.

After equilibration in velocity space, for which its distribution achieves its
Maxwellian equilibrium form, the velocity does not longer constitute a relevant
variable in the kinetic description of the system. Instead, we can describe the
system in terms of the moments of the distribution function, which are related
to the hydrodynamic fields, namely the reduced probability density, defined as

fe(n,x, 1) :/f(n,x,u,t)du, (5.29)

the velocity in (n,x)-space
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veln,x, 1) = £ / ufdu, (5.30)

and the second moment

P = /f(u — Vc) (u — vc)du, (531)

which is related to the kinetic definition of the pressure tensor [1, 15, 16].

The corresponding balance equations for these moments can be obtained
by introducing the Fokker-Planck equation (5.28) in the definitions of these
quantities, after performing the time derivative and the required integrations
in velocity space [11, 17]. The resulting evolution equations for the three first
moments are, respectively, the continuity equation

of.
ot

the balance equation for the velocity

9
=V fove o / Tndu, (5.32)

dv, P
fe ;; =V -P—Bfeve— %fCVT - /(u = Ve) - Indu, (5.33)

and the balance equation for the pressure tensor

2kgT
L V. Q2P Vv —PV-v.—28P - 2L 5
dt m
_ / (W—v)u—v)Lide  (5.34)
on

In the previous expressions @ = [(u — v¢)(u — v¢)(u — ve) fdv is related
with the kinetic part of the heat flux, an upper s means symmetric part of a
tensor, and the total derivative is defined as

—=—+4v.-V. (5.35)

In a similar way, we could derive the evolution equations for the higher-order
moments of the distribution, which constitute a coupled hierarchy of hydrody-
namic equations [11, 17, 18]. Time-scale considerations will allow us to simplify
this hierarchy.
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The balance equation for the velocity (5.33) reveals the forces acting over
the cluster, and facilitates the identification of the phenomenological coefficients
B and &.

On one hand, the third term on the right hand side of that equation mani-
fests a force acting on the cluster arising from the presence of the temperature
gradient. The presence of this force gives rise the thermophoretic effect or ther-
mophoresis [19]-[22], and its origin can be naively understood from microscopic
basis [20]. The cluster immersed in a thermal gradient is being hit by particles
of the host fluid. However, the collisions with particles of the “hot” region are
stronger than the ones from “cold” side, thus generating a net force driving the
particle to the cold region. Phenomenologically, the force per unit mass over a
particle is given by

Fr=—-2VT, (5.36)
m

where ¢ is called the thermophoretic coefficient. By comparison with the third
term on the right hand side of Eq. (5.33) we can relate our phenomenological
coefficient ¢ with the thermophoretic coefficient, through the expression

¢ =cT. (5.37)

On the other hand, the second term on the right hand side of Eq. (5.33) can
be identified with the hydrodynamic force exerted by the fluid on the cluster,
with g playing the role of the friction constant. That friction constant estab-
lishes the characteristic relaxation time scale S~! for the velocity. It can be
estimated through Stokes’ law 8 =~ 6“%, which indicates that its magnitude
is very large for small clusters, as was verified in the previous chapter. Con-
sequently, the discussion of the behavior of the system may be carried out by
expanding the hierarchy of evolution equations for the moments in powers of
B~L. This time scale also motivates the separation of the dynamics into two
well-differentiated regimes: an inertial regime for ¢ < B!, characterized for
the relaxation of the variables toward the diffusion regime, which is achieved
for ¢t > p7L.

A remarkable feature of our theory is the fact that it provides a simple and
complete framework to accurately analyze the dynamics of mesoscopic systems,
even at inertial regimes and very short times. The set of equations (5.32)-(5.34)
which govern the hydrodynamic behavior of the ‘gas’ of clusters, are analogous
to the ones obtained in kinetic theory [15],[16]. Notice that our continuity
equation (5.10) resembles the usual Boltzmann equation, with the flux J, acting
as the collision integral. Therefore our mesoscopic theory is able to reproduce
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the results of the kinetic theory in a more simple way, inside the framework of
nonequilibrium thermodynamics.

For instance, by retaining more orders in the ! expansion of the continu-
ity equation, one can successively recover corrections to the diffusion behavior,
analogous to the Chapman-FEnskog or Burnett order corrections of the Boltz-
mann equation in the kinetic theory [17]. It is important to highlight that
corrections in orders of S~ also arise from higher order moments, which must
then be included for consistency [11].

However, the short-time inertial regime is usually not observed in typical
experiments, since they are focused on the nucleation phenomenon occurring
on a longer time scale. Hence we shall center our description in the diffusion
regime. Consequently, for our purposes, it is sufficient to truncate the hierarchy
of moments at the level of the pressure tensor, discarding contributions from
the heat flux and higher order moments. In addition, we shall retain only the
lowest order correction in 1.

We will first discuss the diffusion approximation in the evolution equations
for the pressure tensor (5.34) and the velocity (5.33).

The terms appearing in the evolution equation for the pressure tensor (5.34),
involve different time scales. In the diffusion regime, that is for ¢ > B7!,
time derivatives can be neglected when compared with terms proportional to 3.
Notice also that the divergence term V - v, is essentially a time derivative, as
follows from Eq. (5.115), and can accordingly be neglected. Moreover, velocity
relaxation is usually faster than relaxation in the size-space, as was shown in
the previous chapter. Consequently, we can also neglect the contribution arising
from the current J,. Taking all these considerations into account, the equation
for the pressure tensor then reduces to

pFel ey (5.39)
m

which is the one of an ideal gas [1, 14] being 1 the unit tensor. Introducing the
value of the pressure tensor in Eq. (5.33) for the evolution of the velocity yields

8!
T

dv, _ _ _
fc% =-V (DOIBfCﬂ') ,B

LT — Bfove — / (u— vc)%Jndu, (5.39)

where Dy = ’jﬁ—g is the spatial diffusion coefficient. In the diffusion regime we

can again safely neglect the time derivative and the term proportional to J,.
The resulting equation can be written as
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£671
T

which defines the current in the diffusion regime. Inserting previous expression
in the continuity equation (5.32) yields

Jp = feve=-V (DOfc) - VT fe, (5'40)

of. _ 0
ot on
where the integral of the current in n-space with respect to velocities is
~ B D,, 9C(n) af
In = /Jndu = / (kBT o f+ Dy, o du. (5.42)

We can reasonably assume that the diffusion coefficient in n-space, Dy, is
approximately independent of the velocity, but in general the drift term ‘g—g does
depend on u. In fact, from the energy barrier (5.8) this drift is

oc 1 5  O0AG(n)
on 2 on

However, in the diffusion regime the system has achieved equilibration in
the velocity space. Therefore the relation

. (5.43)

1
/ §mu2 fdu = ngch, (5.44)

reminiscent of the energy equipartition law, holds as in equilibrium. The integral
of the current in size-space can then be written as

~  _[8f.. 1 [0AG 3kgT
Jn—Dn[a—n+k3T(an m)fc]

:Dn[%+;fm70<n>

fel s (5.45)

on kT On

where AG(n) is the modified nucleation barrier whose value is

AG(n) = AG(n) + ngT Inn, (5.46)

which includes in an averaged way the effects of the Brownian diffusion of clus-
ters. Notice that that is the same correction discussed in the previous chapter.
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The density balance equation can then finally be expressed as

of. 1 9AG
Dn (%—i_kBT on fc)]

0

Ofe
ot + on

SE =V (V(Dofo) + 667 VInT f,)

This is the equation governing the evolution of the cluster distribution function
in spatially inhomogeneous systems in the diffusion regime.
It is convenient to rewrite the spatial flux of clusters as follows

-1 vT
I =-DoVf~ Lor LT = DoV~ Do fer (5.48)

k
mp T

where it becomes evident that Jp has two contributions: normal diffusion de-
scribed by Fick’s law and a drift term that can be identified with thermal
diffusion. The quantity

Dy, = (DO n %) — D, (1 n %) (5.49)

is the thermal diffusion coefficient. Another interesting quantity is the thermal
diffusion ratio

kp = =0 (5.50)

which measure of the importance of thermal diffusion also known as Soret effect.
Finally, it is important to highlight that the relation found in Ref. [22] between
the thermophoresis and the Soret effect,

< =kp(kr — 1), (5.51)

is automatically recovered in our formalism, as follows trivially from Eqs. (5.37),
(5.49) and (5.50).

5.1.2 Temperature Evolution

Our formalism not only gives the evolution of the probability density, but can
also describe the coupled evolution of the temperature field originating from the
balance of internal energy.

The local internal energy has two contributions: the internal energy of the
clusters and that of the heat bath. If we neglect thermal expansion, variations
of the total internal energy can be related with temperature variations through
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the thermodynamic relation pde = cypdT, where cy is the specific heat of the
system bath plus clusters at constant volume. In the nonequilibrium situation
where nucleation occurs, and neglecting viscous heating effects, the total internal
energy may vary due to the heat flux and also due to the release of latent heat
associated with the phase transformation. The heat released in the formation
of a cluster of the new stable phase of size n is ém(n)f. , where £ is the latent
heat per unit mass. Consequently, the equation governing the evolution of the
temperature field is

dar . dpt
pev-r = V-Jq—{—edt (5.52)

where py(x,t) = [ m(n)fcdn represents the total density of crystallized material.

We have seen that the coupling between thermal and diffusion effects mod-
ifies the diffusion current. In addition, it also modifies the heat flux. To show
this feature it is more convenient to work with the unmodified heat current
because it is the quantity usually measured in experiments

Jo=J,+ / u(AH(n) + %mug) fdndu. (5.53)

Inserting in this expression the phenomenological equation for the flux (5.25)
and using the result

1
/uimUQfdndu = /kBTJan, (5.54)
valid in the diffusion regime, we obtain

J, = —AVT + / (AH(n) + kgT + £m) J pdn. (5.55)

Now, employing Eq. (5.48) for the diffusion current Jp, we finally arrive at

J, = —AVT - / Dtthvaf dn + / AH(n) I pdn, (5.56)
[+
where
~ D2 kgT
A= M+ [ =27 dp 5.57
DY, (5.57)

is the modified heat conductivity.
Finally, the equation for the evolution of the temperature is then
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Ve
fe

The former expression enables one to identify the basic mechanisms respon-
sible for temperature variations: heat conduction, convection, thermal diffusion
effects, and the release of latent heat in the crystallization process, correspond-
ing to the different terms on the right hand side of that equation, respectively.
Notice that, by neglecting the contributions arising from the diffusion of clus-
ters and the modification of the heat conductivity, one can recover the usual
equation for the evolution of temperature field

aT ~
evp g = V-()\VT)—V-/AH(n)Jan+V-/DtthT dn +€ . (5.58)

T d
prco = = AVPT + d"t

Once developed the general formalism describing nucleation in inhomoge-
neous media, our aim now will be to analyze the direct influence that the pres-
ence of these inhomogeneities may play in the nucleation process. That is the
topic of the next section.

(5.59)

5.1.3 Influence of Diffusion and Thermal Diffusion in
Nucleation Experiments

Condensation Experiments in Thermal Diffusion Cloud Chambers

Many systems in which nucleation occurs are spatially nonuniform. In fact,
some experimental setups impose and take advantage of these inhomogeneities
to bring about and measure nucleation rates. For instance, as we mentioned
in the first chapter, in diffusion experiments a temperature (thermal diffusion
chambers) or a velocity gradient (laminar flow diffusion chambers) is imposed
to generate a very narrow region in which supersaturation exceeds the critical
value and thus nucleation occurs.

Different mechanism exists through which the presence of inhomogeneities
may influence the nucleation process. On one hand, gradients change the heat
and mass transport in the system. We have also shown that the transport co-
efficients may be altered by the presence of gradients. Moreover, thermal and
diffusion effects may induce convection, which strongly alters the transport in
the chamber. In that case, the supersaturation and temperature conditions
under which nucleation occurs may not be accurately described on these exper-
iments. This is an important problem which has been profusely studied in the
literature |23]-|28], and will not be discussed here.
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Figure 5.1: Typical profiles of total gas density ptot, temperature T, equilibrium vapor pres-
sure peq(T), supersaturation S, and nucleation rate J, in a thermal diffusion cloud chamber
(taken from Ref. [30]).

On the other hand, there is a direct effect of loss of sub-critical clusters due
to diffusion and thermal diffusion. If the region in which nucleation occurs is
narrow, sub-critical clusters may escape from that region before having time
to grow beyond the critical size. This mechanism may prevent nucleation or
reduce its rate significantly. We will focus our analysis on this effect.

In real experiments in thermal diffusion cloud chambers, the imposition of
a temperature gradient generates a temperature, pressure and supersaturation
profiles as the ones depicted in Fig. 5.1. Measurements are performed under
steady state conditions, thus implying that these profiles and the nucleation rate
are stationary. As one can see in Fig. 5.1, the region in which nucleation takes
place is quite narrow. The activated nature of nucleation implies that when
supersaturation is below the critical value, nucleation is practically completely
prevented.

Under these conditions, one can simplify Eq. (5.47) describing homogeneous
nucleation in spatially inhomogeneous systems [29]. We can then reasonably
assume that nucleation takes place only in a small region of thickness dy (see
Fig. 5.2).

The loss of sub-critical clusters per unit of volume in that region by diffusion
and thermal diffusion can be approximated by

1

Jp 1 VT
¥ /v cIpdx ~ 2 = — (—DOVfC - Dthch) : (5.60)

do — do

The saturation ratio decays rapidly on both sides, and due to the fact that
the concentration of clusters strongly depends on supersaturation, there is vir-
tually no cluster outside that region. If the concentration of clusters is zero on
the boundaries of the chamber, then one can estimate the gradients for diffusion
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Figure 5.2: Schematic supersaturation profile in a diffusion cloud chamber.

as f./d1 and f./ds. Taking these considerations into account the rate of loss of
n-sized clusters by diffusion and by thermal diffusion is

—#Dofc - DthVIIITdiOfC, (561)
where d ! = d;' +dy .

It is important to remark that these approximations for the diffusion and
thermal diffusion terms of Eq. (5.47) are lower bounds that underestimate the
actual value, since a sub-critical cluster will decompose immediately outside the
region dy. Introducing these simplifications and the stationary condition into
Eq. (5.47), we obtain

0 ~ 1 1dInT

0=—o-Jn—Do-—fc - g T dz

5o9n = Do fe (562

where jn is the flux of clusters in size space.

Since only order of magnitude estimates of diffusion and thermal diffusion
effects are of interest, we will perform some additional simplifications. For
simplicity, we will not include the nonequilibrium correction to the nucleation
barrier given by Eq. (5.46), which certainly modifies the actual value of the
nucleation rate, but has a weak influence in the alterations due to diffusion,
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because its logarithmic dependency on the size. We will then adopt the CNT
model for the flux of clusters

T _ .t i (i)
Jn k (n)feqan ) (5.63)

where feq(2,t) is the equilibrium distribution of clusters given by

feq(2,t) = Ni(t) exp(nln S — n?/3), (5.64)

with N; being the total number of monomers.

It is also convenient to construct a dimensionless version of equation (5.62)
resorting to time-scale considerations. It is evident that the effect of diffusion
will be important when the time that the cluster takes to diffuse out of the
nucleation region is smaller than the time the cluster takes to grow beyond
the critical size. The spatial and thermal diffusion coefficients, and the rate
of growing of a cluster provide the proper time scales for each one of these
processes. The characteristic nucleation relaxation time (see previous chapter
and Ref. [31]) is

52
where § = 3(n*)%/39~1/2 defines the width of the interval around the critical
size n* = ( 31255)3 where the height of the nucleation barrier has drop 1kgT.
The diffusion and thermal diffusion time scales are in turn
ddy
B = , 5.66
B Dy (n*) (5.66)
and 4
0
Tih = Tge—, (5.67)
D

respectively. Therefore, the dimensionless parameters which control the influ-
ence of diffusion and thermal diffusion effects are

Tn

a=_, (5.68)
and I
b= ", (5.69)
Tth

It is then clear, that a value of a or b bigger than one implies that the time
required for a cluster to nucleate is bigger than the time it takes to diffuse away
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of the nucleating region dy by diffusion or thermal diffusion, respectively. In
that case a reduction in the nucleation rate by loss of sub-critical clusters is
expected. Contrarily, values of ¢ and b smaller than one mean that a cluster
in the nucleation region has enough time to become stable, growing beyond the
critical size, before it diffuses away. In that situation, the nucleation rate is not
significantly altered by diffusion or thermal diffusion.

Introducing these parameters into Eq. (5.62), and defining the reduced
distribution function y = f/ feq, and size z = n/n*, we obtain the dimensionless
expression

d2y
2

2
6—
dzr

2 13\ W _ —4/3 |y —2/3), _
+ (3m€ -|—6<1 x ) Iy 2(@:3 + bz )y—O, (5.70)

where ¢ = §/n*. This equation is useful to estimate the effects of the inho-

mogeneities in the nucleation rate for different values of the parameters a and
b.

Numerical Estimates for the Case of Condensation

To analyze the importance of diffusion and thermal diffusion in real nucleation
experiments, we have solved numerically, using Mathematica [32], the equation
(5.70) for different values of the parameters a and b. We have employed the
usual boundary conditions y = 1 for n = 1, and y = 0 for n — oo, that for
practical reasons has been chosen as x = 3.

For the case of condensation, the expression of the diffusion and thermal
diffusion coefficients can be borrowed from the kinetic theory. In fact, the
Brownian diffusion coefficient of a n—sized cluster is approximately given by
[15]

Do(n) 127 (kpT)3/?n=2/3
’n, =
0 8Pygin/27 M5,

where Py, is the total pressure and M, is the molecular mass of the carrier gas.
The thermal diffusion coefficient can be approximated [15] by

(5.71)

Dy, = krD(n) = arzi1(1 — z1)D(n), (5.72)

where ap is the thermal diffusion factor, and z1 = p/ P,y is the mole fraction
of the nucleating substance. One then obtains
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3
- 27m (kgT) 4. (5.73)

4peqS Ptotsi’\/ %_f

and

277 (kgT)?
(h5T) — arz1(1 — z1)Y,
4peqS Ptots?\/ m_f

where ¢ = (ddy)~! and 9 = diinsza ! In the previous expressions, the param-
eters which can be changed significantly are the total pressure, and specially
the equilibrium (coexistence) pressure which decreases exponentially with the
temperature. One can then infer that pressure is the main property control-
ling the importance of diffusion and thermal diffusion is the pressure. At low
enough pressures, a and b can become of the order of unity , thus indicating the

potential relevance of diffusion and thermal diffusion under rarefied conditions.

b= (5.74)

To be more precise, we will discuss two particular situations. The first one
is the influence of diffusion and thermal diffusion in a real experiment [30] in
a thermal diffusion cloud chamber, using n-pentanol as a nucleating substance.
And the second is a model compound mimicking the properties of a typical
sulfinic acid, a substance of great interest in atmospheric processes. Thermo-
physical properties of both substances are listed in Table 5.1. Typical values
of the geometric parameters in a diffusion cloud chamber are [33]: do = 0.1h,
di = 0.7h, and do = 0.2h, where h = 42.3 mm is the height of the chamber,
which results in ¢ = 3.6, and 1 ~ 0.1 for a representative value of the difference
between the temperature of the upper and lower plates of 50K.

Figures 5.3 and 5.4 represent the ratio between the rate of nucleation in the
presence of diffusion and thermal diffusion effects and that in its absence, as
a function of the dimensionless parameters a and b. Plots have been obtained
from numerical resolution of Eq. (5.70) using Mathematica, and the properties
for n-pentanol at T' = 260K, S = 9, and P;,; = 30 kPa [30].

The estimated values of the dimensionless parameters a and b corresponding
to that experimental conditions are a = 5107 and b = 810 '2. As one can
observe from Figs. 5.3 and 5.4, these small values of ¢ and b imply that neither
diffusion not thermal diffusion have a relevant influence in the results of these
particular experiments. That fact is mainly due to the high values of both the
equilibrium pressure and the total pressure under which these experiments are
performed.

The situation changes drastically when either equilibrium pressure of the
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Table 5.1: Thermophysical properties of n-pentanol and the model compound using helium
as a carrier gas. The properties are: M, the molar weight; peq, the saturation pressure; p;,
the liquid density; o, the surface tension; M., the molar weight of the carrier gas (helium);
ar, is the thermal diffusion factor; and z, is the mole fraction. In the table, T represents the
absolute temperature in Kelvins and Z =1 — T'/588.15. Data taken from Refs. [29] and [30].

n-pentanol

M = 88.15 g/mole

Peq = 133.322 exp(90.079043 — 9788.384/T — 9.91og T) Pa

pr = 0.270 + 1.930229 Z1/3 — 8.414762 Z?/3 4 19.226001 Z — 18.559303 Z*/3
+6.555718 Z%/3 g /cm?®

o = 26.85469 — 0.07889 (T — 273.15) dyn/cm

M, = 4.0026 g/mole

1/ar = (—0.7272 — T/(16.36 — 0.2882 T))(x; + 0.12281) + 0.089303

Model compound

M =94.13 g/mole

pr = 0.868 g/cm? (v; = 1.810 3 cm?)
o =30.0dyn/cm

Peq = 1075 Torr

substance or the total pressure are low. To illustrate that fact, we have repeated
the previous calculation using now the model compound whose properties are
listed in Tab. 5.1. Figures 5.5 and 5.6 illustrate the influence of diffusion
and thermal diffusion effects on the nucleation rate for this model compound
at T = 293.15K, S = 12.5 [29, 31]. When nucleation takes place at normal
pressure, Pyt = 1 atm, the resulting value for the parameter controlling the
diffusion effects is a = 107%¢, indicating again that diffusion is not specially
relevant. However, this model compound presents the peculiarity of having a
small saturation pressure. That fact indicates that if the total pressure is low
enough, diffusion effects can be important. In fact, in experiments performed in
thermal diffusion chambers, for stability reasons the chamber must be operated
at reduced pressure to avoid convection [26, 27|. Using a realistic bound of
Piy¢ < 100peq, one obtains that a > 3 for Py < 1072 Torr, thus implying a
reduction of the nucleation rate by three orders of magnitude, as evidenced by
Fig. 5.5. This fact confirms that diffusion may have a significant influence in
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10
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Figure 5.3: Ratio between the rate of nucleation with diffusion, J(n*), and without diffusion,
Jo, for n-pentanol at T' = 260K, S = 9, as a function of the dimensionless parameter a (and
b=0).

the nucleation rate of substances at reduced pressures.

The properties some pollutants commonly found at the atmosphere are sim-
ilar to the ones of our model compound [29]. Therefore, the results of this
section provide a hint about the relevant implications that diffusion effects may
have in atmospheric processes.

Condensation Experiments in Laminar Flow Diffusion Cloud Cham-
bers

The previous analysis remains valid for experiments performed in laminar flow
diffusion cloud chambers [34]-[36]. In these experiments, the imposition of a
steady laminar flow is responsible for the appearance of a region in which the
temperature abruptly drops and nucleation occurs. We can see in Fig. 5.7 rep-
resentative temperature, supersaturation and nucleation rate profiles occurring
in these experimental devices. Once again, the region in which nucleation takes
place is narrow, and temperature gradients are also present. Therefore, we can
use the results of the previous section to infer the relevance of diffusion and
thermal diffusion in this experiments.

To be more precise, let us consider a typical experiment using n-pentanol
as a nucleating substance. From Ref. [36], representative conditions for this
experiments are T' = 260K, S = 10, and P;x = 100 kPa. Inserting the prop-
erties of n-pentanol tabulated in Tab. (5.1) in Egs. (6.2) and (5.74), yields the
values a = 4 10 °¢, and b = 8 10~ '?4) for the dimensionless parameters. These



5.1 Nucleation under Non-Isothermal Conditions 157

10

10

I,

10

10

o
[N
N
w
IN
al

Figure 5.4: Ratio between the rate of nucleation in the presence of thermal diffusion, J(n*),
and in its absence, Jy, for n-pentanol at T' = 260K, S = 9, as a function of the dimensionless
parameter b (for a = 0).

Figure 5.5: Ratio between the rate of nucleation with diffusion, J(n*), and without diffusion,
Jo, for the model compound at different values of the dimensionless parameter a (and b = 0).
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Figure 5.6: Ratio between the rate of nucleation affected by thermal diffusion, J(n"), and
without diffusion, Jo, for the model compound at different values of the dimensionless param-
eter b (and a = 0).

very small values of a and b evidence that, under those particular conditions,
these experiments in laminar flow diffusion cloud chambers are not significantly
affected by the loss of subcritical clusters by diffusion or thermal diffusion.

Influence in Polymer Crystallization

A simplified model of polymer crystallization can be carried out in terms of
the coordinates of the center of mass of the polymer crystallite and the number
of monomers that it contains. Under that assumptions, the analysis developed
in the previous section remains valid to describe the polymer crystallization
process.

Although the theoretical description of condensation and crystallization can
be similar, the crystallization process presents some peculiarities that makes its
description more difficult, as discussed in Chapter 1. For the case of crystalliza-
tion, and specially for polymer crystallization, the identification of the transport
coefficients is not so straightforward. Moreover, as discussed in the first chapter,
the attachment rate k™ (n) and specially the surface tension are not well known.
That is the reason why, it is very difficult to perform a detailed quantitative
estimation of the diffusion and thermal diffusion effects in the case of polymer
crystallization. Nevertheless, we will present here a qualitative discussion of the
potential influence of these effects.

As we mentioned in Chapter 1, in the case of crystallization the forward
rate constant kT (n) is roughly proportional to the diffusion, as established by
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Figure 5.7: Typical profiles of nucleation rate, supersaturation, temperature and vapor con-
centration inside a laminar flow diffusion cloud chamber (taken from Ref. [35]).

Eq. (1.24). This proportionality implies that any modification of diffusion in
the system alters the crystallization rate accordingly, since the mechanism of
diffusion is also responsible for the growth of the crystals. The relevance of
that fact becomes evident for the case of crystallization under nonisothermal
conditions. When a temperature gradient is present in the system, the diffusivity
of monomers is changed by the appearance of the thermal diffusion mechanism,
as stated by Eq. (5.48). Moreover, the total diffusivity is no longer isotropic
but is different in the direction dictated by the gradient. Since any reduction or
increase of the diffusivity leads to the corresponding reduction /increase of the
nucleation rate, this fact implies that the presence of temperature gradients may
significantly alter the nucleation rate. Let us estimate the potential magnitude
of this effect.

Thermal diffusion is proportional to the temperature gradient and to the



160 Homogeneous Nucleation in Inhomogeneous Media

thermal diffusion coefficient Dy, as manifested by Eq. (5.48). This former co-
efficient is in general smaller than normal diffusion in gases, but may become
extremely relevant in polymers. A measure of the importance of thermal dif-
fusion effects follows from the ratio between thermal and diffusion coefficients,
called Soret coefficient

Dy,

S=————.
D()T.Tl(l —.’L‘l)

(5.75)

Typical values of this coefficient for gaseous and liquid mixtures range from
1073 to 10 ° K ! in orders of magnitude, which indicates that mass diffusion
is dominant. For polymer solutions, however, the situation is completely differ-
ent. The Soret coefficient increases with the molecular weight to the extent of
becoming significant at high values of the molecular weight, as reported in Ref.
[37]. Moreover, the small thermal conductivity of the melted polymer provoke
that the release of latent heat involved in the crystallization process sets up very
big temperature gradients, as follows from Eq. (5.59). Both factors imply that
the magnitude of the thermal diffusion in polymers under non-isothermal condi-
tions is relevant, and therefore can influence very importantly the crystallization
process.

5.1.4 Conclusions

In summary, the conclusions derived from our analysis are that condensation in
thermal and laminar flow diffusion cloud chambers is not significantly affected
by diffusion and thermal diffusion effects, when experiments are performed at
normal conditions. However, in rarefied media, as in upper atmosphere or for
substances with low equilibrium vapor pressures, it can become extremely rele-
vant.

Another situation in which the nucleation process can be drastically influ-
enced by the presence of a temperature gradient is the case of polymer crys-
tallization. Precisely, polymers use to have low thermal conductivities, which
set up very big gradients, and high values of the Soret coefficient. Since both
factors control the relevance of thermal diffusion, this is a signature that this
effects may become crucial in real crystallization.

Finally, it is worth to mention that diffusion and thermal diffusion effects

have proved to be also important in chemical vapor deposition, as analyzed in
Ref. [31].
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5.2 Nucleation in a Shear Flow

Another interesting case in which the presence of the medium may exert an in-
fluence on the nucleation process arises from the presence of flows or, in general,
stresses in the system. This factor is specially relevant in crystallization, which
often involves mechanical processing of the melt, such as extrusion, shearing
or injection. This feature may have drastic consequences in the crystallization
process. Therefore it would be desirable to build up a model that can take
into account these mechanical influences in a consistent and proper way. Sev-
eral models have been proposed to capture some features of phase transitions
under shear flows [38] but up to now, there is no theory providing a complete
description of the crystallization process in that conditions.

Our objective in this section will be to analyze the potential effects of me-
chanical stresses in nucleation and crystallization, focusing on the simplest in-
fluence. To that end, we will discuss the case of nucleation in the presence of a
stationary flow, which for simplicity we will choose a shear flow.

It is worth pointing out that the presence of the flow breaks down the
isotropy of the system, distinguishing between diffusion in different directions.
Moreover, it introduces spatial inhomogeneities, which induce spatial, velocity
and temperature fluxes. Cross effects between these currents may be in gen-
eral very important, and consequently the evolution of the probability density,
velocity and temperature fields will be governed by a highly coupled set of ki-
netic differential equations. These equations can be derived within our general
framework, following the steps developed in the previous sections, but the re-
sulting equations could be quite complex. For illustrative purposes, it is better
to restrict our analysis to effects purely originated from the presence of the flow.
Consequently, for the sake of simplicity, we will assume isothermal conditions.

The system we consider is the metastable phase in which the emerging
clusters (liquid droplets or crystallites) are embedded. We assume that this
metastable phase acts as a heath bath imposing a constant temperature.

Following the scheme developed in previous sections, we will first formulate
the Gibbs equation for the entropy variations of this system with respect to the
reference state. In this particular situation, our reference state is a stationary
state characterized by the steady velocity profile of the shear flow vq(x).

Assuming local equilibrium, entropy variations are given through the Gibbs
equation (see Appendix)

Tpds = pde + ppdp~ ! — p/uécdndu. (5.76)
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Here s(x,t) and e(x,t) are the local entropy and energy per cluster, respec-
tively; p(x,t) is the hydrostatic pressure, p(x,t) is the total number of clusters
per unit of volume, u(n,x,u,t) is the non-equilibrium chemical potential, and
c(n,x,u,t) = f(n,x,u,t)/p is the number fraction of clusters. The former
equation remains valid for changes in time and position into a mass element
followed along the center of gravity motion of the clusters ‘gas’ [1]. The explicit
expression for the chemical potential can again be obtained by comparison of
the Gibbs equation (5.76) with the Gibbs’ entropy postulate, yielding

f
lj’(na u, X, t) = kBT In— + lf’leq(x)’ (577)
f leq
where fij¢4(x) denotes the local equilibrium chemical potential, which is inde-
pendent of the internal variables, and fi, is the local equilibrium distribution
function corresponding to the reference state whose expression is again

Hieq — C(n,u)) )

P (5.78)

freg(n,u,x) = exp <
The quantity C(n,u) denotes the energy cost of formation of a state described
by the internal variables (n,u, ), given now by

C(n,u) = AG(n) + %m(n)(u — ), (5.79)

where AG(n) represents again the energy of formation of a cluster of size n at
rest and the second term is its kinetic energy with respect to the steady state
velocity profile vy.

The next step toward obtaining the Fokker-Planck equation, is the formula-
tion of the conservation laws for the ‘gas’ of clusters. In the absence of external
body forces, the distribution function obeys the continuity equation

of _ _ 0 Ok
TR C A PRk v

which introduces the current J, in phase space, arising from the interaction of
the clusters with the metastable phase.

(5.80)

In order to derive the entropy balance equation, we also need the expres-
sion for the variations of the energy with respect to its value at the stationary
state. The presence of the external flow is responsible for the appearance in
that equation of the term of ‘viscous heating’, giving rise to variations in the
temperature field. To maintain isothermal conditions, and following previous
ideas introduced in the implementation of the so-called ‘homogeneous shear’
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[39, 40], we will assume the existence of a local heat source capable to remove
the heat generated in the process. Under this assumption, the energy of the
volume elements remains constant along their motion and its balance equation
can be omitted in the subsequent analysis.

Introducing then the equation for number fraction

dc 0 oJy,

P%Z—V'f(U—VO)—%'Ju—%,

derived in the Appendix, into the Gibbs equation (5.76), we obtain after some
straightforward calculations the entropy balance equation

(5.81)

d
pd—‘: = -V-J,+o, (5.82)

where the entropy flux J; is given by

J, = —kB/f(lnf —1)(u — vg)dndu — % / C(n,u)f(u — vo)idndu, (5.83)

and the entropy production, o, which must be positive according to the second
law of thermodynamics, is

——l/J B“dd——/ 6“dndu

3 [10-v09 (3m ()(U—V0)>dndu (5.84)

In order to obtain the entropy flux we have additionally employed the iden-
tity

/V u—vp) )lnfdndu-V/u vo)f(Inf —1)dndu—pV-vqg, (5.85)

and we have omitted in the entropy production the term—(kpp — £)V - vo due
to the bulk viscosity, which is in general negligibly small.

The entropy production can be interpreted as a sum of products between
forces-fluxes pairs. In this particular situation, the forces are —%g—ﬁ, —%g—g,
and —+V (3m(n)(u — vo)?) and their conjugated fluxes are the velocity flux
Jy, the flux in size space J,,, and the spatial relative current J, = f(u — vy),

respectively.
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The next step is the formulation of linear phenomenological equations re-
lating those fluxes and forces. The situation we are considering present some
peculiarities. Spatial and velocity currents have both the same tensorial charac-
ter (they are both vectors) which implies that in general they must be coupled.
Moreover, the presence of the shear flow breaks down the isotropy of the system
by introducing a privileged direction. Consequently, phenomenological coeffi-
cients are expected to be in general tensors. In addition, locality in the internal
space will be assumed again. Taking all these considerations into account, the
expressions for the currents are

m 1 0
J:v = +T Eww ' VV() : (u - VO) + T Eux ) a_ﬁa (586)
1 0 m
Ju = _fEUu ) a_ﬁ+fﬁux-VV0'(u—V0), (5.87)
1 ou
= ——Lpn ~— .
where we have used the Onsager reciprocal relation
Lyz =Ly, (5.89)
and the result
1 2
\Y% im(u —vp)° ) =—-mVvp- (u—vyp). (5.90)
It is useful to redefine the phenomenological coefficients in a more convenient
way. By identifying D,, = % as the diffusion coefficient in n-space, which

in turn can be identified with the rate of attachment of monomers to a cluster

kt(n); o = Mf” and ( = Mjﬁm as friction tensors, and introducing the
explicit form of the chemical potential, equation (5.9), the currents J, and J,
can be written as

Ju:—f[%z;—l—?-VvO]-(u—vo)—g%-g—ﬁ, (5.91)
__p (9f, 1 9C
Jn = —Dy, <8n + "T o f) . (5.92)

Introduction of these expressions for the currents into the continuity equa-
tion yields
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% o 2on (Lo 2]

ot on kT On
=
v 2 ([F 7 v s v o FRT Y, (5.93)

which corresponds to the Fokker-Planck equation describing the evolution of
the inhomogeneous density distribution of clusters in the presence of a steady
state flow.

5.2.1 Balance Equations in the Diffusion Regime

The Fokker-Planck equation (5.93) we have derived retains information about
the evolution of the cluster velocity distribution. Although the movement of
clusters may play a significant role in the nucleation process, as we verified in
the previous chapter, velocity dependencies can hardly be measured because
velocity distribution relaxes to equilibrium very fast. Therefore, as discussed in
Section 5.1.1, we can perform a simplified description of the process. The rele-
vant quantities will then be the distribution function for the density of clusters
together with the velocity in n-space defined in equations (5.29) and (5.30).

Proceeding along the lines of Section 5.1.1, integration of Eq. (5.93) over
velocities leads to the corresponding balance equations for the density of clusters
in n-space

ofe 0
E = -V - feve on /Jndua (5'94)
for the velocity
dve 0
fcﬁ =-V-P—-B-fo(ve—vp) — /(u - vc)a—andu, (5.95)

and for the reduced pressure tensor

i'P =-V-9Q-— 2(P . VVC)S — PV -v.— 2(BP)8 _ZkBTfC (3)5

m

0
- /(u - Vc) (u - Vc)%Jndua (5.96)

=
where Q is the kinetic part of the heat flux and B = c__)} + ¢ - Vvy.
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A remarkable feature is the fact that the balance equation for the pres-
sure tensor Eq. (5.96) is similar to the one obtained for the thirteen moment
approximation to the Boltzmann equation [16]. Once again our mesoscopic
nonequilibrium thermodynamic treatment of the problem has been able to re-
cover results similar results to that of kinetic theory. In particular, inertial
regimes and relaxation equations for the main quantities involved can be ob-
tained inside this framework. This result reinforce the fact that application of
the well-established non-equilibrium thermodynamics postulates as indicated in
[1], suffices to provide a general scheme under which non-equilibrium processes
of macroscopic and mesoscopic nature can be treated.

The second term on the right hand side of the velocity balance equation
can be identified with the friction force per unit mass exerted on the suspended
cluster by the host fluid, where B plays the role of the friction tensor. The
modulus of this tensor determines again the characteristic time scale for the
relaxation of the velocities. In general, such friction tensor can be calculated
from hydrodynamics; however, for the sake of simplicity, let us approximate
this tensor by the Stokes diagonal friction B ~ 1. This identification leads to

&=p1—- ¢ -Vv,.

The inverse of the friction ! separates again the dynamics of the system
into a short-time inertial regime and the diffusion regime. For times ¢ > 8! the
system achieves the diffusion regime. In this situation, we can neglect inertial
effects manifested through the presence of the time derivative d;;C. Moreover,
we can neglect the contribution arising from the current J, in the velocity
relaxation since the rate of relaxation of velocities is usually faster than the
relaxation of cluster sizes determined by D,,.

Proceeding along the lines indicated in Section 5.1.1 and in Ref. [11], we
find that in the diffusion regime, the expression for the pressure tensor when a
shear flow is present, is

=g - (o (ar ?) -w)s] . (5.97)

From this equation, we can conclude that Brownian motion of the particles
contributes to the total pressure tensor of the suspension in two forms. The
first contribution is the well-known scalar kinetic pressure given by

ksT
p=-2"f, (5.98)
m

which is the equation of state for the ideal Brownian ‘gas’. The second contri-
bution comes from the irreversible part II? of the pressure tensor, which can be
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written in the form

0
Iﬂz—Dm{m+?»vW], (5.99)

where Dy = krg—T is the diffusion coefficient of the cluster when the liquid is at
rest, and the superindex 0 means symmetric traceless tensor. This last equation
defines the Brownian viscosity tensor

%:Dmm+jx (5.100)

which contains the “Brownian viscosity” Dy f. [41], and the contribution due to

the coupling with the non-equilibrium bath which is proportional to ( .
Inserting the expression for the pressure tensor in the velocity balance equa-
tion (5.95), and taking the diffusion limit we obtain for the current of clusters

Ip=feve=-D-Vfe+ fevo (5.101)

D =D, []1 — (51 (11 + ?) : Vv0>0] (5.102)

can be identified with the spatial diffusion coefficient, which in this situation
possesses tensorial character. Using Egs. (5.100) and (5.98), it can be rewritten
as

where

0
D=Dp |1- (% : vv0> . (5.103)

Inserting this expression in the equation for the density (5.94) one finally
obtains

Ofe
ot

_ 0 dfc . Dn OAG

which is the kinetic equation for nucleation in presence of a shear flow in the
diffusion regime, and where, as discussed in Section 5.1.1, AG(n) is the effective
nucleation barrier given in the diffusion regime by Eq. (5.46).
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5.2.2 Influence of the Shear Flow in Nucleation and
Crystallization

The goal in this subsection will be to analyze the conditions under which the
presence of a mechanical stress in the system, modeled through a shear flow, may
influence the nucleation process. Obviously, a shear rate modifies the transport
in the system, setting up alterations in the density, pressure and temperature
profiles. We will not study this heat and mass transfer problem, which is fairly
complicate. Instead, we will focus on the direct effect of the presence of a flow
in the nucleation rate, both in condensation and in crystallization, with especial
emphasis on polymer crystallization.

Influence in Condensation

As shown in the previous section, one important influence that the flow may
exert in the nucleation process is through the alteration of the diffusion given
by Eq. (5.103). This modification depends on the shear rate, the pressure and
the viscosity, and its magnitude is accordingly expected to be important when

ngo\ > 1, (5.105)

that is, for high enough values of the shear rate and low pressures.

To be more precise, let us estimate the magnitude of the correction for a typ-
ical experiment in a laminar flow diffusion cloud chamber [36]. Representative
values of the shear rates, the pressure and the viscosity in these experiments are
Vg ~ 103 571, p ~ 10* dyn/cm?, and n ~ 10~ poise. These numbers yield an
approximate value of the order of magnitude of the correction introduced by the
shear of 10°. Consequently, in this range of values, not the diffusion coefficient
nor the nucleation rate measured in that experiments are significantly altered
by the shear rate.

Influence in Polymer Crystallization

Whereas in condensation under normal conditions, the modification of the dif-
fusion coefficient due to the shear flow is in general negligible, that is not the
case in crystallization. The relevance of this modification lies again in the fact
that the rate of attachment of monomers to the crystal kT and consequently
the exponential prefactor of the nucleation rate, Eq. (1.26), strongly depends
on the diffusivity of monomers [42]. The fact that the diffusion coefficient could
be altered by the flow implies that the nucleation rate is accordingly modified.
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Moreover, the symmetry breaking inherent to the presence of the flow promotes
that the diffusion coefficient is no longer a scalar quantity, but has tensorial
nature. The rate of the process will depend on the direction thus making the
nucleation and specially the growth of crystals no longer isotropic. Finally, the
viscosity of a supercooled liquid can be very large, specially near the glass tran-
sition. In that situation, the correction of the diffusion coefficient given by Eq.
(5.103) can become crucial and could modify dramatically the nucleation rate.

Another important factor one has to consider is that the flow also induces
a stress acting on the surface of the cluster which may break up the droplets
when they become large enough [43, 44]. To incorporate this effect, one must
include the additional energetic cost associated to the shear stress in the free
energy of cluster formation.

Consequently, our results may constitute a hint to assess the relevance of
the presence of a flow in crystallization.

5.2.3 Conclusions

The main effects that the presence of a shear flow exerts on the nucleation pro-
cess can be summarized as follows. On one hand, the flow alters the transport
and consequently the evolution of the growing clusters distribution function,
which has implications in the effective nucleation and growth rate. On the
other hand, the presence of a shear flow changes the spatial diffusion coefficient
of the clusters, as shown in equation (5.102). Typical values of the param-
eters controlling this correction imply that this effect is not very important
for condensation. However, the high viscosity and the peculiarities of polymer
crystallization suggest that the presence of a shear flow may promote drastic
changes in the process. The formalism we have developed in this section could
then share some light to explain the experimental results of polymer crystalliza-
tion under shear flow [45], although the formulation of quantitative predictions
is limited by the unavailability of the values of the physical parameters required
in the calculations.

As stated previously, the main objective of the section has been to analyze
the effects that the flow by itself may induce on the nucleation process. That is
the reason why we have assumed isothermal conditions. A more complete and
realistic treatment may be carried out incorporating thermal effects, in the way
discussed in the preceding section.
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Appendix

Local Thermodynamic Relations

Our purpose in this Appendix is to show the derivation of the local thermody-
namic relations which have been employed in the contents of this chapter.
The Gibbs equation for a multicomponent thermodynamic system is

T6S = 6E +psV — Y _ usN. (5.106)

The continuous analogous to that expression can be formulated as follows

T6S =0FE + pdV — /,u(SN(n,u) dndu, (5.107)

in which different values of the variables n and u denote different “chemical
species”, and N(n,u) is the total number of particles of each specie.

Let us now construct the local version of the previous equation. To that
end, we will describe the system in terms of f(n,x,u,t), the number of cluster
of size n € (n,n+dn) at x € (x,x 4 dx), with velocity u € (u,u+ du), at time
t. We can then define the corresponding specific thermodynamic quantities s,
e, v, and c as follows

S = /spdx (5.108)
E = /epdx (5.109)
V= /1dx=/vpdx (5.110)

N(n,u) = / fdx = / cpdx (5.111)

where p(x,t) = [ fdndu is the number density of clusters per unit volume,
v=p',and c = %.

Using these specific quantities, the local expression of the Gibbs equation is
then

T6(ps) = d(pe) +pdo(1) — /uéf dndu, (5.112)

which is the form used in Section 5.1.
This equation can alternatively be written as
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Tpds — pde — ppdp~t + p/uécdndu + (Ts —e—pp 1+ /pcdndu) op=0,

(5.113)
which, using the definition of the Gibbs energy to cancel the last term, reduces
to

Tpds = pde + ppdp~' — p/uéc dndu. (5.114)

That is the expression employed in Section 5.2.

Balance Equation for the Number Fraction

Integration of Eq. (5.80) with respect to the cluster velocity u and size, leads
to the macroscopic equation of continuity, which can be written in the form

dp
- . 11

where p(x,t) is the density of the Brownian ‘gas’, given by

p(x,1) = / £ dndu, (5.116)

v(x,t) is the average velocity of the Brownian particles defined through the
expression

pv(x,t) = /uf dndu, (5.117)
and we have defined the total derivative as
d 0
—_— = — - V. 11
= o +v-V (5.118)

Using the continuity equation (5.80) and Eq. (5.115), one obtains the equa-
tion for the number fraction

de df fdp 0 oJy,

————:—V-f(u—v)—%-Ju—%- (5.119)

Under the local equilibrium assumption, the average velocity v coincides with
the velocity of the reference state, that is v = vg, thus obtaining Eq. (5.81).
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Chapter 6

Crystallization Beyond
Nucleation

The content of the previous chapters have been mainly devoted to the analysis
of the first step in the phase transformation, the nucleation process, focused
essentially on the particular situation of condensation. The next stage in the
dynamics of the phase transformation is the growth of the nucleated embryos
to fill the whole space of the sample.

It is important to mention that the same formalism employed to describe
nucleation remains valid for the initial steps of growth, as we will justify later
on. However, at more advanced stages of the process, additional mechanisms
arise, and a different description must be adopted.

The importance of a proper description of the growth stage becomes more
relevant in crystallization than in condensation. The reason is that the evolution
of crystallization process strongly dictates the final microstructure achieved by
the solid, which in turn determine its mechanical and physical properties.

Our purpose in this chapter is precisely to sketch how the phase transition
proceeds beyond the nucleation step. In the next stage, the most important
process to describe is the filling of the space available by the growing of the dif-
ferent nucleated clusters. We will outline how the formalism we have developed
in the previous chapters can be implemented in the subsequent stages of the
phase transformation process, to describe this space filling. To this purpose we
shall use a very simplified model of polymer crystallization.

In spite of the striking differences between crystallization of polymers and
that of simple substances, polymer crystallization theories originate largely from
theories developed earlier for simple substances [1]. The real description of the
crystallization process of polymers at advanced stages involve complicated con-
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cepts, such as the secondary crystallization, the crystal thickening or the molec-
ular fractioning which go beyond the scope of this chapter. A more realistic
description of the growth of crystalline polymers is provided, for instance, by
the approaches of Lauritzen and Hoffman [2], or Sadler and Gilmer [3], which
will not be discussed here.

Nevertheless, polymers are useful models for the study of crystallization for
different reasons. The first one is related to time scale considerations. An ordi-
nary ionic substance will crystallize very rapidly from the melt once the first seed
appears, because ions usually diffuse very rapidly. However, polymer molecules
move slowly enough that the crystallization process can be reasonably moni-
tored before the crystals have grown to macroscopic dimensions. On the other
side, some polymers crystallize in a spherical structure known as spherulite,
which permits a simplified description in terms of a single parameter describ-
ing the size of the crystal. Finally, crystallization of polymers is of interest in
their own right, due to their significant relevance in industrial applications. Its
importance arises from the fact that mechanical properties of any crystal poly-
mer are determined by its morphology and internal structure, which in turn
is dictated by the crystallization kinetics. For all these reasons, mathematical
modeling aiming to describe and control the kinetics of polymer crystallization
has achieved great interest (see for instance Refs. [4]-[8]).

One of these theories is the general Avrami-Kolmogoroff formalism, which
provides a stochastic geometrical model for the development and space-filling
of the new phase. The underlying physical ingredients of this theory are the
nucleation and growth rates, i.e. the rate of appearance and growth of the new
crystalline phase. This fact highlight the importance of developing a theory
for nucleation and growth as realistic as possible. The general formalism of
nucleation we have introduced in the previous chapters may then facilitate a
more complete and accurate description of the crystallization process. In fact,
since our formalism accounts for the influences of the host fluid in the nucleation
rate, its implementation may constitute the first step toward a more realistic
description of crystallization.

This chapter has been organized in the following manner. In Section 1, we
shall describe the different steps underlying the polymer crystallization process.
In the Section 2, we will derive a the kinetic equation suitable to describe a non-
spherical cluster, which is one of the distinctive features of crystallization. In
Sections 3 and 4, in order to describe the advanced stages of the crystallization,
we will use our results in the classical Avrami-Kolmogoroff model, to analyze
the behavior of the crystallinity. Further extensions and improvements will be
outlined in Section 5, whereas the last section is intended as a brief summary.
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6.1 The Polymer Crystallization Process

Crystallization of polymers is the process of structural reorganization of a melted
polymer leading to the appearance of an ordered structure. In practice, crystal-
lization proceeds by the melting and subsequent cooling down of the sample. In
general, this process strongly depends on temperature. For temperatures higher
than the melting temperature T),, thermal agitation breaks up any ordered
structure and the polymer remains melted in a “liquid-like” phase. Contrar-
ily, for temperatures lower than the melting temperature, the thermodynamic
stable phase is the crystalline one. The transition from melted to crystalline
polymer is what is known as crystallization. This process involves diffusion of
monomer units toward the crystal front. However, the diffusion mechanisms are
prevented at temperatures below the glass transition temperature T,. Conse-
quently, crystallization takes place for temperatures in the range Ty < T < Ty,.

For temperatures lower than T, crystals are formed from the melted phase
by the nucleation mechanism. Density fluctuations in the liquid phase may
eventually create small aggregates of polymers having the same properties than
the crystalline phase. The small crystals are continuously being created and
destroyed by fluctuations. The reason for the break up of the crystals is that,
although below T, the crystal phase is the thermodynamic stable one, the
formation of a crystal involves the creation of one or more interfaces between
the liquid and the crystal, with the corresponding energetic cost due to the
surface tension. However, as described in the case of condensation, beyond the
critical size the volume effects dominate over the surface ones, and the growth
of the cluster is favored by a global reduction of the energy.

Nucleation is then the initial step in the crystallization process, for it deter-
mines the appearance of the first crystal nuclei which are the germ of the second
stage of crystallization process: the growth. At this stage, nuclei larger than
the critical size, tend to grow through the addition of monomer units or alter-
natively acting as sites of heterogeneous nucleation (nucleation on the surface
of the growing crystal).

Crystals grow freely until they progressively begin to compete to fill the
whole space. They may eventually hit each other, and therefore the growth
is stopped at the contact surface. This phenomenon, called impingement, is
relevant at later stages of the process and determines the final morphology of
the system.

In the final stage of crystallization, the impingement impedes the subse-
quent growth of the crystals. Therefore, amorphous non-crystallized matter
remains trapped among clusters. Moreover, clusters themselves are not fully
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crystalline, but may contain some amorphous inclusions. This trapped material
can eventually self-organize, joining to the main crystal structure and therefore
increasing the crystallinity of the sample. This process of reorganization is what
it is normally referred to as secondary crystallization or perfection.

In summary, we can schematically distinguish between three stages in the
entire crystallization process:

e Nucleation, which is the process of formation of the initial crystalline
embryos.

e Growth, which describes the space-filling of this crystals which is limited
by impingement.

e Secondary crystallization, accounting for the reorganization of the amor-
phous inclusions to achieve a more crystalline material.

What we call a “crystallized polymer” is in fact a crystal aggregate with amor-
phous inclusions.

6.2 Nucleation of Polyhedrical Clusters

Although in the case of condensation the hypothesis of an spherical droplet is
at least quite reasonable, for the case of crystallization, the potential presence
of ordered structures often involves the creation of different oriented surfaces,
which in turn may have distinct values of the surface tension. Therefore, in the
general situation of a non-spherical anisotropic clusters, additional geometrical
parameters have to be considered in order to perform an accurate description
of the clusters. Several ways exist to describe the size and shape of the clusters.
One plausible approach, previously employed Ref. [9], consist of describing the
cluster as a polyhedrical object of volume v with N faces of areas s1, s, ..., SN-
The complete description of the cluster is thus provided by the 3N-dimensional
vector R

R={71, 7a.., "N}, (6.1)

whose components are the N vectors 77 normal to the individual faces s;.
According to equation (1.15) the minimum work of formation of this poly-
hedrical cluster is

AG(E) =vAg+ Z 0;8;- (62)
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In order to obtain the kinetic equation following the procedure introduced
in Chapter 2, we must consider R as the internal coordinate. Notice that
in this case, the state of the system (the cluster) is not determined by a single
coordinate as in the isotropic case, but by the set of internal coordinates R. The
extension of our method set up previously to deal with this multidimensional
case is straightforward. Nucleation can be viewed now as a diffusion in the
multidimensional space of cluster shapes. The Gibbs equation accounting for
entropy variations related to changes in configuration in R-space is

55 = / W(R,1)5f (R, ) dR, (6.3)

where dR = d71...d7 n . The corresponding entropy production is then given
by
1 ou(R, 1)
_ L= 7 4

o= [I®0) - LD R, (64
where the current in R-space J(R, ?) is defined through the corresponding con-
servation law of the probability density

of (R, 1) 9

“or = am 1R (6.5)

and p(R,1) is a generalized chemical potential in R-space similar in form to the

one introduced in the one-dimensional case by Eq. (2.7). The linear laws for

the currents obtained from the entropy production (6.4) are
1 ou

JR,t) = —~L

Y \=2 T:' 83, (6'6)

which inserted in the conservation law (6.5) give the kinetic equation

of @ af 1 dAG
TR RECE SEe o0

describing the evolution of the probability density f(R,%). In this expression

kL . . . . . .
D= ~2= is a diffusion tensor, which accounts for the rate of directional growth,

and may in general depend on the configuration in R-space. The existence
of non-diagonal components of D may account for the simultaneous coupled
growth in different directions.

If we neglect these couplings and identify the diagonal components of the
diffusion-growth coefficient D with the forward rate kt given in expression
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(1.22), one can recover the kinetic equation for the nucleation of a polyhedrical
clusters proposed by Ziabicki [9],[10].

The former analysis then illustrates the application of our formalism to the
case in which the characterization of the state of the system must be carried out
by certain number of coordinates or degrees of freedom. However, in practice,
the analysis of crystallization in terms of this multidimensional cluster is quite
unwieldy. To capture the essential features of crystallization, the space-filling,
a simplified description can be performed in terms of a single global parameter
as described in the following section.

6.3 Space-Filling in Terms of the Crystallinity Frac-
tion

The aim of the models we have presented up to now has been mainly the descrip-
tion of the mechanism of nucleation. However their validity is not restricted to
nucleation process, as they may also describe the earlier stages of crystal growth.
We have seen that nucleation can be considered as an activated process where
a free energy barrier has to be surmounted. However, the barrier crossing pro-
cess is of stochastic nature and in fact recent numerical simulations [11], [12]
have revealed that this crossing is highly diffusive which means that the barrier
can be surmounted in both directions. Consequently, the fact that a cluster
is bigger than the critical size n* does not guarantee that it must grow indefi-
nitely. Post-critical clusters, which are usually assumed as stable crystals, may
eventually shrink and disappear. Therefore the diffusive nature of nucleation
mechanism implies that the separation between a pure “nucleation” regime (as
the formation of critical clusters) and a “growth” regime (for clusters larger than
the critical size) is not sharp.

Definitively, the nucleation and the subsequent crystal growth are not in-
trinsically different processes since, at least in the initial stages, they obey the
same underlying physical mechanism. In fact, the same ingredients appearing
in phenomenological theories of nucleation namely, the free energy barrier AG
and even the rate of attachment of monomers k¥ (n), remain well defined for
sizes larger than the critical size. Therefore, they also describe the kinetics of
the growth.

Consequently, the model we have introduced may describe nucleation and
the initial stages of growth in the crystallization process. As most of nucleation-
aimed models, our theory is subjected to the following considerations:

e It applies while interactions between clusters are practically negligible.
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When clusters are large enough, the ideality assumption employed in the
expression for the chemical potential fails, since interactions between clus-
ters start to play a significant role. Interactions among clusters emerge as
they try to fill the whole space.

e We have not considered the presence of secondary crystallization or per-
fection which is governed by a different mechanism. This assumption is
justified from the fact that secondary crystallization is normally slower,
and consequently the overall initial crystallization is usually determined
by nucleation and growth.

e We have focused our study on bulk nucleation. Surface nucleation at
the surface of the growing clusters can be categorized as heterogeneous
nucleation.

e Finally, for the sake of simplicity, we have assumed that the shape of the
clusters is spherical until impingement occurs. Consequently, polymor-
phic crystallization is not taken into account and anisotropic effects are
neglected.

In previous chapters, we have modeled the initial stage of crystallization focusing
on the evolution of the probability density of clusters of a given size. It remains
now to describe the subsequent steps of the process.

It is interesting to realize that our formalism still retains information about
the size distribution of crystals of the new phase. Sometimes, however, it is more
convenient to work out with a simplified global description in terms of merely the
fraction of material crystallized. Accordingly, one introduces a new macroscopic
variable, the crystalline fraction or crystallinity w defined as the fraction of the
volume occupied by the crystal phase. The state w = 0 thus corresponds to a
totally melted polymer whereas w = 1 would indicate complete crystallization.
The latter situation can barely be achieved. As we have stated previously,
the reason is that the resulting “crystal” is in fact a crystalline aggregate with
amorphous inclusions of non-crystallized material which get trapped between
crystal spherulites.

Let us first introduce the wirtual volume fraction crystallized, V, defined
as the fraction of volume that the nucleated clusters would occupy at time % if
they could grow freely in absence of impingement effects. This quantity differs
from the actual fraction of volume crystallized in the fact that overlapping
between clusters is allowed. In terms of the size distribution of clusters, it can
be expressed as
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o

V(x,t) = / fe(n,x,t)p1n dn, (6.8)
n*(T)

where p; is the fraction of volume per monomer of the crystal phase, and n* is

the size of the critical cluster that strongly depends on temperature.

In the initial stages of nucleation, the crystallinity coincides with the vir-
tual volume fraction crystallized w = V, because impingement or overlapping
between clusters is negligible. At more advances stages of the process, this
statement becomes no longer valid since neither nucleation nor growth may
take place in an already crystallized region.

Those effects, which can be viewed as interactions between clusters, are
difficult to include in nucleation/growth theories to the extent that they are
usually not considered. We can then wonder how is possible to describe the
space-filling with theories that cannot include interactions or impingement of
clusters. The most common answer is to resort to the mathematical theory of
Avrami-Kolmogoroff.

6.3.1 Avrami-Kolmogoroff Theory

The theory of Avrami-Kolmogoroff [13],[14], based upon purely stochastic geo-
metric grounds, aims to describe the space-filling in the crystallization kinetics.

In its formulation, the crystallization process is divided into two basic and
well differentiated regimes: nucleation and deterministic growth. Nucleation is
viewed as a point process in the space of the sample. That is, nuclei, which are
the germ of crystallization, may emerge at random points of the system follow-
ing a Poisson distribution. The reason for choosing this particular probability
distribution for the appearance of nuclei is, apart from its simplicity, the fact
that it is the one assuming less information. The rate at which nuclei appear
per unit of volume at position z at time ¢, denoted by N(z,t), is referred to as
the nucleation rate.

After the formation of the nuclei, it is assumed that it grows freely and
deterministically with a radial rate R(x,t). Free growth means that clusters are
not aware of the presence of neighbor cluster and overlapping is allowed.

For illustrative purposes, we will proceed to discuss in some detail a par-
ticular case of this general theory leading to the formulation of the classical
Kolmogoroff equation. This equation is derived for spatially homogeneous nu-
cleation, which entails the additional assumptions of uniformity of the density
and growth rate. Therefore this particular case assumes that crystallization
starts randomly at different locations and subsequently propagates spherically
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outwards from the nucleation site. The question is then to calculate the prob-
ability p(¢) that at time ¢ a representative point P of the sample is not covered
by any spherulite.

The probability that the number of nucleation fronts which pass through a
representative point P up to time ¢ is exactly ¢ is given by the Poisson distri-
bution

e—E [
P = (69

where F is the average value of the number of passing waves, which can be
identified with the virtual volume V. The probability that at time ¢ the point
P is not covered by any spherulite is then the probability that no fronts pass
through P, that is that ¢ =0

p(0) =eV. (6.10)

This probability is equivalent to the fraction (1 — w) of the sample still
remaining in the melted state. Taking this fact into account in the previous
equation, one then finally arrives at the classical Kolmogoroff equation

w(t)=1-—¢", (6.11)
which can be written in the alternative form
ow oV
— = (1 —-w) —. 12
5 (1 —w) 5 (6.12)

As mentioned before, the degree of crystallinity of polymers seldom reaches
the limiting value one. The solidified polymer is always semi-crystalline, due to
the amorphous material trapped within the crystallization fronts. This feature
can be taken into account by slightly modifying the previous equation in the
form

wit) _ 1—e ", (6.13)
Wm
where w,,, denotes the maximum crystallinity that can be achieved.

In this particular situation of spatially homogeneous isotropic nucleation
and neglecting impingement effects with neighboring spherulites, the volume
fraction that a spherulite, nucleated at time s, would occupy at time ¢ is given
by

ot 5) = 4?” [/t R(u)dur, (6.14)
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where the term within the brackets corresponds to the radius of the spherulite
at time ¢. Therefore, the virtual volume fraction crystallized up to time ¢ is
given by

3

V(t) = 4?” /_ ; N(s) [ / t R(u)du] ds. (6.15)

This formula manifests how the evolution of the crystallinity is fully determined
by both nucleation N(z,t) and growth R(z,t) rates.

To calculate the degree of crystallinity of the polymer, one usually proposes
particular forms of the nucleation and growth rates and uses Eq. (6.15) to
calculate the virtual volume which is subsequently utilized in the Kolmogoroff
equation (6.11) to obtain the desired variable. As an example, for the case
of constant nucleation and growth rates (N(t) = N, and R(t) = R, ) the
crystallinity evolves as

w(t) =1—¢ sNeRtY, (6.16)

Additional examples have been studied for instance in Ref. [6]. A common
characteristic of all of them is that in spite of the different nucleation and growth
mechanisms the crystallinity can be expressed through the general formula

w(t) =1— e Kath (6.17)

which is usually known as the Avrami equation. The parameter A is referred
to as the Avrami exponent. Experimental data of crystallization kinetics ob-
tained by differential scanning calorimetry, dilatometry [15] or scattering [16]
techniques can be fitted to estimate the value of this exponent.

In spite of its usefulness, the mathematical theory of Avrami-Kolmogoroff
presents some drawbacks:

e It assumes that nucleation is a point process with Poissonian distribution.
In spite that this assumption is the more reasonable one when no further
information is available, it may be not valid under realistic conditions. For
instance, the presence of inhomogeneities in the system can make Poisson
distribution for the nucleation events no longer applicable.

e Nucleation seldom proceeds according to a simple single mechanism as
one often assumes in Avrami theory.

e Experiments on crystallization kinetics not always can be reproduced by
the Avrami equation. In this context, the value of the Avrami exponent
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strongly depends on the underlying model for nucleation and growth rates,
which must be introduced a priori.

e The separation between nucleation and growth regimes is not always well
defined. As we have shown, nucleation is a stochastic process of diffusive
nature which causes that apparently stable nuclei can eventually shrink
and even disappear. It is worth to emphasize that, better than delimiting
different regimes, the critical size separates different tendencies (to grow
or to shrink).

Some of these shortcomings can be avoided by using the approach discussed in
the following section.

6.4 Kinetic Equations for the Crystallinity

In previous chapters, we have developed a general framework and discussed a
set of examples to describe the evolution of the distribution of clusters under
different realistic conditions. Although our formalism is restricted to the ear-
lier stages of crystallization, its results can be used in the Avrami-Kolmogoroff
theory to describe the space-filling. The improvements of our theory arise from
the fact that it unifies nucleation and growth, retaining the stochastic nature of
these processes, and incorporating possible influences of the fluid.

From the kinetic equations we have derived, one can evaluate the nucleation
N(t) and growth R(t) rates, which take into account the physical mechanisms
and try to reproduce the experimental conditions.

In fact, it is not necessary to calculate both rates N(t), and R(t) separately.
It is more accurate to directly evaluate the virtual volume crystallized from the
cluster size distribution function as shown in Eq. (6.8).

The expression for the virtual volume introduced in the Kolmogoroff equa-
tion (6.12) can describe the advanced stages of crystallization. In the following
subsections, we will briefly illustrate the evolution of the crystallinity in some
particular situations analyzed in previous chapters. For the sake of simplicity,
we will analyze the kinetic equations for the variation of the virtual volume
fraction with time which following equation (6.8) is given by

0 % 9fc(n,x,t) on* oT . .
9 _ ) on_ oL . 1
V(1) / oy G pnan 4 G x Do (615)

The first term on the right hand side accounts for nucleation and growth
as described by the Fokker-Planck equation; and the last term refers to the
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appearance of stable clusters due to the change in the critical size originated
from the variations of the temperature. This last effect is known as athermal
nucleation.

Consideration of the different Fokker-Planck dynamics corresponding to the
models discussed in the previous chapter gives rise to different types of kinetic
equations for the evolution of the virtual volume fraction.

6.4.1 Case 1: Isothermal Homogeneous Nucleation

As mentioned in the previous chapter, a minimal model for a spherulite of
crystallized polymer can be formulated in terms of a single parameter, the size of
the crystal, characterized by the molecular content of the crystal or alternatively
the radius of the sphere. The results derived in the previous chapter remain
then applicable to this simplified model of polymer crystallization. In particular,
under isothermal and homogeneous conditions, we have shown in Chapter 2,
that the Fokker-Planck equation corresponding to this situation is given by

91 _ 9 [} 0 , Du0AG
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By using this result in the general expression for the evolution of the virtual
volume fraction (6.18) one obtains
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The right hand side of this expression contains contributions of different types.
The first term corresponds to the flux of clusters of critical size due to diffusion
at the top of the barrier. This term is, essentially, the nucleation rate times the
volume of the critical cluster. Notice that there is no contribution arising from
the drift because, by definition H%G n+ = 0. The second term corresponds to
the usually called “growth regime” of the clusters. It accounts for the increase
of the virtual volume due to the overall change in size of clusters bigger than
the critical size. It is important to emphasize that the growth term is not
deterministic. Contrarily, it retains the stochastic diffusive nature of the crystal
growth. Finally, the last term takes into account the athermal nucleation.
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6.4.2 Case 2: Spatial Inhomogeneous Crystallization

The presence of spatial inhomogeneities requires the use of an additional coordi-
nate, the position z, in our description and significantly modifies the equations
governing the evolution of the virtual volume. By introducing the Fokker-Planck
equation (5.41) derived in Section 5.1.1, the local evolution of the virtual volume
fraction is given by

%V(x, t) =
=D; G| et = [T (Dn 8 + k%&fd%—f) dn + G G fo(n*, x, t)pin*
+V - (V [ D(n)fepindn — [ 71V InT fepindn), (6.21)

where the last term arises due to spatial inhomogeneities and thermal diffusion.
One can roughly approximate this term as
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where (D) and ({6~ ') are the size-averaged spatial diffusion and thermal fric-
tion coefficient. From this expression, the spatial diffusive behavior of the evo-
lution of the virtual volume becomes clearly manifested. To account for the
global evolution of the virtual volume, an additional integration of Eq. (6.21)
over the position coordinate is required.

6.4.3 Case 3: Nucleation in a Shear Flow

When the crystallizing system is under the influence of an external flow, its
evolution is governed by the Fokker-Planck equation (5.104) derived in Section
5.2. In terms of the virtual volume fraction, its evolution is governed by

B L Of . [ df. D, .9AG
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where again the last term has been approximated employing the size-averaged
spatial diffusion coefficient (D). The novelties introduced by the presence of the
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flow concerns the two last terms of that expression, corresponding to convection
and spatial diffusion of the local virtual volume which has tensorial character.
Once again, to describe the total virtual volume, integration of Eq. (6.23) over
the space variables is needed.

In the previous examples, we have shown how to formulate differential equa-
tions for the virtual volume corresponding to different situations. It becomes
then clear that, in practical situations, the evolution of the crystallinity may
exhibit a more complex behavior than the one resulting form the mathematical
models usually introduced in the Avrami-Kolmogoroff theory. The natural ex-
tension of our analysis is to employ those equations to study the behavior of the
crystallinity in realistic cases. The evolution of the crystallinity given by Eq.
(6.12) would constitute a valid result to be checked with experimental data.

6.5 Crystallization at Advanced Stages

The situations introduced in which the theory we have presented applies do
not completely describe the crystallization process. Our aim in this section is
precisely to outline possible extensions of the theory with the main purpose of
offering a more general framework in which actual physical situations can be
studied.

As the nucleation theories formulated up to now, our theory introduces some
assumptions that are only valid in the initial stages. These assumptions are in
essence the following:

e The appearance of crystallization nuclei only occurs in a few points of the
sample. Therefore, in the nucleation regime, it is reasonable to assume
that crystal clusters constitute a dilute system. This means that we can
neglect interactions between clusters, and the system behaves as ideal.
One also assumes that clusters grow by addition of single monomers. In
the dilute regime, the number of monomers is much higher than the num-
ber of binary, ternary... clusters and therefore one can neglect collisions
between them. As clusters grow, collisions acquire relevance and the no-
tion of dilute regime is no longer valid.

e The analysis of nucleation process is mostly focused on the evolution of
the cluster size distribution function. One tends to identify the proba-
bility density of clusters of a given size with the number distribution of
clusters present at the system. A conservation law similar to Eq. (2.8) is
usually formulated for the evolution of this quantity. Consequently, con-
servation of the total number of clusters present at the system is assumed.
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Moreover, as stated in the Section 1.2.1, the kinetic equation for the distri-
bution function is formulated within a finite range of sizes. Moreover, the
loss of monomers due to the growth of clusters is not taken into account
since one assumes an almost infinite number of them. However, as they
grow reaching macroscopic sizes, the number of monomers (and clusters
of small sizes) decreases significantly thus leading to a reduction of the
crystallization rate.

These restrictions make nucleation theories not valid at advanced stages of crys-
tallization process. This is the reason why these theories are only utilized as
models for early stages of crystallization. To describe subsequent space-filling
and impingement regimes, one has to use other approaches as the mathematical
model of the Avrami-Kolmogoroff.

It would be interesting to extend the validity of nucleation theories to de-
scribe latest stages of crystallization process, overcoming their restrictions and
retaining the physical nature of crystallization process. The restrictions of nucle-
ation theories come mainly from two features: avoidance of interactions between
clusters and conservation of the number of clusters.

In the following subsections we will precisely outline how these difficulties
could be accounted for within the context of our theory.

6.5.1 Interactions Between Clusters

At the earlier stages of the process, nucleation and subsequent formation of
clusters may be assumed to take place under ideal conditions for which clusters
practically do not interact. The theory we have developed holds for this par-
ticular situation. A complete description of the process requires the knowledge
of the kinetics at later times when clusters have grown to the extent of making
ideal conditions inapplicable.

To accomplish for that situation, two slight modifications of the formalism
we have presented can be carried out. On one hand, the interaction potential
between clusters, U, must be taken into account in the expression of the chemical
potential (for instance in Eq. (2.7)). One may equivalently introduce an activity

coefficient a, defined as
a = exp (kBLT) , (6.24)

in such a way that the chemical potential is now given by

p=kgTlhaf + AG. (6.25)
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On the other hand, the continuity equation (2.8) must be modified to ac-
count for direct interactions. With the introduction of these modifications,
we could now proceed along the lines indicated in Section 5.1 to obtain the
corresponding kinetic equation governing the system under the presence of in-
teractions.

6.5.2 Non-Conservative Equations

In addition to the interactions among clusters, the advanced stages of crystal-
lization are also characterized by the decrease of the crystallization rate. The
reasons are that nucleation and growth cannot proceed in a region already crys-
tallized, and that the amount of amorphous phase to crystallize progressively
decreases. Whereas, the first item can be treated as interactions between clus-
ters of the excluded volume type, the second one must be considered separately.

In order to take into account the reduction of the amorphous phase and the
disappearance of small clusters, which end up incorporated to the larger ones,
our formalism has to be extended to deal with “open systems”. That is, our
theory must consider the fact that the total number of cluster is not necessarily
conserved.

The simplest way to introduce that feature, is to replace the continuity
equation for the evolution of the population of clusters (for instance, Eq. (2.8)
in the case of inhomogeneous nucleation) by a non-conservative one including a
source/sink term. This term will be responsible for the appearance/disappearance
of monomers/clusters of any size in the system.

The incorporation in our formalism of interactions between clusters and
of a non-conservative equation governing the evolution of cluster population
may lead to a complete description of crystallization even at latest stages, and
may constitute a powerful model for crystallization alternative to the classical
Avrami-Kolmogoroff formalism.

6.5.3 Anisotropic Effects

In the situations developed in previous chapters, the growing clusters feel the
influence of possible external agents through the metastable phase in which
they are embedded. For example, the kinetic equation governing nucleation in
a temperature gradient, given by Eq. (5.28), differs from its isothermal coun-
terpart, Eq. (6.19), in terms containing the influence of the melted phase. In
its derivation, it is implicitly assumed that the nucleation mechanisms remains
unaltered.
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In the initial stages of the crystallization, this assumption is fully justified.
The length scale in which variations of the fields takes place (the gradient length
scale) is significantly bigger than the typical size of the emerging clusters. Con-
sequently, for all practical purposes, these clusters appear and growth under
homogeneous conditions. When clusters grow, they can achieve sizes compara-
ble to the gradients length scale. As a consequence, clusters undergo growing
processes under inhomogeneous conditions leading to their deformation. In this
context, it has been shown that clusters growing in the presence of a tempera-
ture gradient elongate in the direction of the gradient.

In order to describe this feature, we must incorporate the effect of the gradi-
ents in the kinetics coefficients which control the mechanism of nucleation and
growth. In fact, in Section 5.2, we have precisely shown how the presence of
a flow alters the rate of attachment of clusters, through modifications in the
diffusion coefficient, leading to anisotropic behaviors.

6.6 Conclusions

In this chapter, we have introduced the basis of a theoretical framework for
modeling crystallization processes. The theory we have presented is aimed to
describe the initial stages of growth after nucleation, which play a very im-
portant role in crystallization processes. Moreover, it takes into account the
stochastic nature of both nucleation and growth, offering a common treatment
for both mechanisms, without introducing a sharp and somehow artificial split-
ting into two different regimes. We have also outlined how to extend the results
obtained for nucleation and for earlier steps of growth to describe advanced
stages of crystallization by invoking the classical Avrami-Kolmogoroff theory.
Since the modeling we have performed of the nucleation stage is able to account
for the influence of different external conditions concerning inhomogeneities,
temperature gradients, or the presence of external flows, these influences, which
may induce drastic changes in the process, are retained in the description of the
space filling process. The counterpart of introducing a more realistic description
of the crystallization process is that the solution of the corresponding equations
becomes a more difficult task.

However, the ultimate goal would be to be able to describe the space-filling
without using mathematical models but by implementing a physical kinetic
model of crystallization valid even at the final stages of the process. We believe
that our formalism, with the proper inclusion of interactions and of the no
conservation aspects in the way outlined in the previous section, may become a
valuable tool to describe crystallization process.
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Conclusions and Perspectives

In this thesis we have been mainly concerned with the study of the kinetics of
nucleation processes, which constitute the first step in many phase transforma-
tions. Recent results obtained from experiments and simulations are increas-
ingly evidencing that an accurate description of nucleation cannot be accom-
plished without accounting for the nonequilibrium aspects of the process.

Along the contents of the thesis, we have presented and developed a meso-
scopic nonequilibrium description of the nucleation kinetics. The theory we
have introduced provides a consistent and general framework allowing a flexible
description of the process in terms of the relevant parameters. Our scheme is
able to recover and complement the result of previous approaches, overcoming
some of their drawbacks. Moreover, we have established the basis for different
descriptions of the process in terms, for instance, of order parameters or of den-
sity functionals, which are promising alternatives to analyze the phenomenon
in more detail. Besides, the framework we have presented sets up a link be-
tween theoretical approaches to homogeneous nucleation, generally formulated
in terms of a kinetic equation of the Fokker-Planck type, and simulations, which
mostly employ linear response theory. In this context, our scheme offers a the-
oretical framework to interpret and extend the results obtained in recent sim-
ulations, since it provides explicit and simulable expressions for the quantities
and coefficients involved in the process.

The theory we have presented has confirmed its usefulness to clarify the
mesoscopic subtleties of the process and to reveal potential nonequilibrium in-
fluences, in different circumstances. One of these cases refers to the proper
meaning and scope of the thermodynamic relation known as “nucleation theo-
rem”. The validity and application of this thermodynamic relation to an un-
stable and small object such as the nucleus has motivated some concerns. We
have demonstrated that the validity of the nucleation theorem transcends the
phenomenon of nucleation and extends to all equilibrium systems containing
local nonuniform density distributions stabilized by external fields. Moreover,
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it remains valid down to the molecular level. These results have been confirmed
by some examples concerning cavities and clusters in hard rod fluids, as well as
the molecular excesses associated with the “atmospheres” of molecules in single
fluids. We have shown that, at the molecular level, the theorem can be asso-
ciated with the compressibility equation of state and, at the macroscopic level,
with the Gibbs adsorption equation. It is thus a relation of great power and
should be useful in many contexts.

Another topic which has been subjected to intense controversy is the proper
consideration of the degrees of freedom that the nucleating cluster possesses.
The approach to this problem from an equilibrium perspective gave rise to the
long-standing “translational-rotational paradox”. In Chapter 4, we have clari-
fied the paradoxical aspects that the inclusion of these degrees of freedom has
presented through a mesoscopic analysis of the problem. In addition, the role
that translational-rotational degrees of freedom plays in nucleation theories has
been reconsidered by the proper accounting for the effects of motion of clusters
in nucleation rate. Contrarily to the theories proposed up to now, we have
adopted a non-equilibrium description more proper for a problem intrinsically
out of equilibrium as nucleation is. In this sense, we have shown that when con-
sidering the process retaining the dynamics of the clusters a new, important,
and genuine nonequilibrium correction to the nucleation kinetics arises.

The analysis of nonequilibrium effects in the process has also been treated in
the subsequent chapter. One does not have to forget that nucleation occurs in
a metastable phase and that the dynamics of this phase may strongly affect the
process. Chapter 5 has been precisely devoted to analyze the influence of the
medium. Apart from developing a general framework to describe nucleation in
inhomogeneous situations, we have analyzed in detail three particularly inter-
esting situations: nucleation in spatially inhomogeneous conditions, subjected
to a temperature gradient or in the presence of a flow. This last situation is
specially relevant since it has been scarcely analyzed in the literature despite its
significant importance in many real nucleation processes, such as for instance
the processing and crystallization of polymer melts. We have studied in detail
the influence of the medium in real nucleation experiments in diffusion cham-
bers, and we have also discussed the potential importance of these effects in
polymer crystallization. The results confirm that actual nucleation experiments
are not strongly affected by the medium at high pressures, but they suggest
that this influence may have important consequences when pressure decreases,
as occurs in atmospheric processes, and in polymer crystallization.

Finally, we have outlined how the results we have obtained for nucleation
can settle the basis for a more realistic description of the next stage in the
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dynamics of the phase transformation: the growth of the nucleated regions up
to fill the available space.

The range of application of our theory is by no means limited to these
few particular cases. It constitutes a general framework in which, following
systematically a small set of simple rules, one can derive kinetic equations for
nucleation phenomena aiming to reproduce actual conditions and their influence
in the process. Thus, the flexibility of the formalism we have presented may
become very useful to the systematic description of more complicated situations.
In addition, the intrinsic generality and multidimensional character of our theory
facilitates its extension to other problems of interest.

In this sense, the theory we have introduced may open up new an interesting
research lines to carry out future investigations. Concerning these perspectives,
we can quote some short-term objectives and more wide generalizations.

The first objective we will pursue is the comparison of the predictions of
our theory with the brand-new simulation results of Auer and Frenkel [1]. This
work reports the first parameter-free estimation of the nucleation rate in a hard
sphere colloid by means of computer simulations. The fact of using hard-spheres
facilitates the comparison, since this system has been thoroughfully studied
in the literature and its properties are available and well-known. It could be
extremely important to test if our scheme can reproduce the simulation results
and shed some light about the significant discrepancies between the results of
these simulations, the predictions of the classical nucleation theory and the
experimental results.

Other immediate application of our work concerns the results of Chapter
3. Now that the basis and proper meaning of the nucleation theorem have
been firmly established, it becomes a valuable tool not only to infer information
from experiments, but also to improve nucleation theories. In fact, the scaling
relations proposed by McGraw and Laaksonen [2] have demonstrated that the
systematic discrepancies of the classical nucleation theory with experiments can
be parametrized by using this theorem. We are convinced that the nucleation
theorem can settle the basis not only to account for the disagreements of CNT,
but also to construct a more accurate phenomenological model for the free
energy of formation of a cluster.

In addition, as we mentioned at the concluding remarks of that chapter, the
generality of the theorem makes it a powerful tool to investigate a wider range
of phenomena beyond the scope of nucleation. In particular, we are exploring
the possibility of its application to the theory of the hydrophobic bond [3, 4],
but there are many other possibilities.

Another topic of major interest which has not been discussed in the contents
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of the thesis is the definition of temperature of a cluster and the role played by
thermal fluctuations in the nucleation rate [5]-[8]. The assignment of a temper-
ature to small objects, and the proper conception of temperature fluctuations
are very controversial issues in nucleation and in a general context [9]-[13]. Our
theory, due to its intrinsic mesoscopic and nonequilibrium nature, starts off
with advantage in elucidate the proper influence of temperature fluctuations in
nucleation. In particular, the concepts and results discussed in Chapter 4 can
be very useful in the clarification of this issue, and work along this lines is in
progress.

Finally, the last immediate application of our theory we are now considering
is to go deeply into the extension to account for other external influences in the
nucleation process. These external influences may facilitate the induction and
control over the process, for instance through external electric fields [14]-[16],
ions [17]-[19] or pressure waves. The interplay of thermal noise, responsible for
the overcoming of the nucleation barrier, with these external influences may give
rise to resonant phenomena [20] which can be very useful to optimize and control
the nucleation process. By merely introducing the proper additional variables in
our formalism, which can be easily done due to its multidimensional character,
we could provide a theoretical description of these situations.

In a more general outlook, our results can be extended in many directions.
Specially interesting is the task of providing a more complete description of the
cluster including its shape. This would be useful to analyze accurately nucle-
ation in polar fluids [21] or crystallization [22], where the sharp spherical shape
assumed in the classical approach have turned out to be insufficient. Another
particularly relevant situation would be the extension of our theory to the case
of binary or ternary systems, which are specially important in atmospheric pro-
cesses [23]. The application of our formalism to heterogeneous nucleation would
be of great interest as well.

In addition, it would be worth to pursue in more deep the hydrodynamic
description introduced in the second chapter. Density functional theories are
one of the most promising techniques to accomplish a more realistic description
of the equilibrium facet of nucleation. The extension of the hydrodynamic
characterization to non-conservative models would also constitute an issue of
remarkable relevance.

Exploring the consequences of the formalism introduced in Chapter 6 on
what concerns the calculation and prediction of new scaling exponents for the
evolution of crystallinity, and its comparison with the experimental results [24],
is an interesting perspective, too. The extension to open systems, including
interaction between clusters, in the way outlined at the end of that chapter
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would overcome some of the limitations of the present nucleation theories.

Finally, due to the multidisciplinary character of the process, it would be
also worth to investigate if the results we have presented here may have relevant
implications to the other areas mentioned at the introduction, where nucleation
is a very important topic.

In summary, despite all the significant efforts and the interdisciplinary in-
terest in the field of nucleation, several fundamental questions remain opened,
whose future answers envision interesting consequences. By achieving a greater
understanding of nucleation, we could control the process and potentially change
the course of many first-order phase transitions.
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