

TAXONOMÍA DE HONGOS CELOMICETOS DE INTERÉS CLÍNICO

Nicomedes Miguel Antonio Valenzuela López

ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.

ADVERTENCIA. El acceso a los contenidos de esta tesis doctoral y su utilización debe respetar los derechos de la persona autora. Puede ser utilizada para consulta o estudio personal, así como en actividades o materiales de investigación y docencia en los términos establecidos en el art. 32 del Texto Refundido de la Ley de Propiedad Intelectual (RDL 1/1996). Para otros usos se requiere la autorización previa y expresa de la persona autora. En cualquier caso, en la utilización de sus contenidos se deberá indicar de forma clara el nombre y apellidos de la persona autora y el título de la tesis doctoral. No se autoriza su reproducción u otras formas de explotación efectuadas con fines lucrativos ni su comunicación pública desde un sitio ajeno al servicio TDR. Tampoco se autoriza la presentación de su contenido en una ventana o marco ajeno a TDR (framing). Esta reserva de derechos afecta tanto al contenido de la tesis como a sus resúmenes e índices.

WARNING. Access to the contents of this doctoral thesis and its use must respect the rights of the author. It can be used for reference or private study, as well as research and learning activities or materials in the terms established by the 32nd article of the Spanish Consolidated Copyright Act (RDL 1/1996). Express and previous authorization of the author is required for any other uses. In any case, when using its content, full name of the author and title of the thesis must be clearly indicated. Reproduction or other forms of for profit use or public communication from outside TDX service is not allowed. Presentation of its content in a window or frame external to TDX (framing) is not authorized either. These rights affect both the content of the thesis and its abstracts and indexes.

Taxonomía de hongos celomicetos de interés clínico

Nicomedes Valenzuela López

TESIS DOCTORAL 2018

UNIVERSITAT ROVIRA i VIRGILI

Taxonomía de hongos celomicetos de interés clínico

Nicomedes Valenzuela López

TESIS DOCTORAL

Dirigida por los Doctores: José Francisco Cano Lira, Alberto Miguel Stchigel Glikman y Josep Guarro Artigas

> Departament de Ciències Mèdiques Bàsiques Facultat de Medicina i Cièncias de la Salut Universitat Rovira i Virgili

> > Reus 2018

FACULTAT DE MEDICINA I CIÈNCIES DE LA SALUT DEPARTAMENT DE CIÈNCIES MÈDIQUES BÀSIQUES UNITAT DE MICROBIOLOGIA Carrer Sant Llorenç, 21 43201 Reus - Tarragona - Spain Tel. 977 759 350 - Fax 977 759 322

HAGO CONSTAR que el presente trabajo, titulado "Taxonomía de hongos celomicetos de interés clínico", que presenta Nicomedes Miguel Antonio Valenzuela López para la obtención del título de Doctor, ha sido realizado bajo mi dirección en el Departamento de Ciencias Médicas Básicas de esta universidad.

Reus, 08 de Junio de 2018

Los directores de la tesis doctoral

CPISR-1C José Francisco CanoLira

Firmado digitalmente por CPISR-1 C José Francisco CanoLira Nombre de reconocimiento (DN):c=E5, o=Universitat Rovira i Virgili,ou=Vegeu https://www.aoc.cat/CATCert/Regulacio, sn=CanoLira, givenName=JoséFrancisco, serialNumber=39854041D,cn=CPISR-1C José Francisco CanoLira Fecha: 2018.06.0813:02:19+02'00'

José Francisco Cano Lira

CPISR-1 C Alberto Miguel Stchigel Glikman CPISR-1 C Alberto Miguel Stchigel Glikman Stochigel Stochigel Glikman

Alberto M. Stchigel Glikman

CPISR-1 C

Firmado digitalmente por CPISR-1 C CPISR-1C Firmado digitalmentepor CPISR-1 Josep Guarro Artigas Josep Guarro Calloritation (DN): c=5, o-diviesital Roving Virgili, ou-Vegeu https://www.aoc.cat/ CallCert/Regulatio, sm=Guaro Artiga, gwenAme=Josep, serialNumber=386226200, cn=CPISR-1 C Josep Guaro Artigas Fecha: 2018.06.08 12:47:37 +0200'

Josep Guarro Artigas

AGRADECIMIENTOS

En primer lugar, agradecer a Dios, quien me ha mantenido firme en el camino y porque me ayuda en todo momento. A mi amada esposa Dámaris, quien apareció en el momento justo en mi vida, quien me da la alegría y las energías cuando me siento cansado y me anima a superarme cada día. A mí querida familia, pilar fundamental que me ha hecho lo que soy hoy en día; a mis padres y a mis hermanos, los amo con todo mi corazón, siempre estando ahí conmigo en todo para apoyarme. También expresar mi gratitud a mis directores de doctorado, por su confianza puesta en mí, por enseñarme lo importante que es ser meticuloso y dedicado, que el tiempo vuela y que hay que estar constantemente estudiando. Al Dr. Stchigel, por su paciencia y enseñanzas en la micología clásica, instruyéndome en el maravilloso mundo de los hongos. Al Dr. Cano, por recibirme en el programa, por las cervecitas tras publicar un trabajo, por su paciencia y cercanía, y por instruirme en la excelencia y en la jerga española. Al Dr. "Profesor" Josep Guarro, el jefe del grupo, con quien crecí en la redacción de artículos científicos, por guiarme y ayudarme en cada momento que lo necesitaba, por sus gestiones de "jefe" consiguiendo cepas en el CBS. Así como también a los restantes miembros del grupo que de alguna u otra forma me han ayudado a terminar este camino en la micología, los Doctores Josepa Gené, Dania García, Javier Capilla, Loida López, María José Figueras, Emilio Mayayo y Beli.

Agracader especialmente a las entidades colaboradoras como el *Fungal Testing Laboratory*, en especial a los doctores Wiederhold y a la memoria de Deanna Sutton, ya que muchos de los logros alcanzados en este trabajo se deben a ellos; también al Dr. Pedro Crous, quien con gran entusiasmo y amabilidad nos facilito un gran número de cepas del CBS y colobaró en importantes artículos con nosotros; también agradecer a Ana y Olga del *Instituto Carlos III*, a Dea García y su grupo de micología del *Institut Pasteur*, por sus colaboraciones y la importante participación que se ha forjado en los trabajos en conjunto.

A los TMs Dr. Luis Zaror y Dr. Patricio Godoy, con quienes tuve los primeros encuentros en cursos de micología y quienes fueron importantes nexos para poder venir a España a realizar el doctorado.

A mi grupo de Microbiología de la Universidad de Antofagasta, quienes depositaron su confianza en mí para poder perfeccionarme en esta materia, con especial cariño a Joselyne Gahona y Juan Silva, mis profes de micro. Durante estos cuatro años han sido decenas las personas que han pasado por la Unidad y que han aportado con su granito de arena en mi desarrollo como doctorando y como persona, a todos ellos y mis compañeros (una larga lista por nombrar), los que han pasado, los que están y los recientes, a todos les agradezco su apoyo y amistad.

A todos, jmuchas GRACIAS!

ÍNDICE

I. Indice de abreviaturas	i
1. INTRODUCCIÓN	1
1.1. Generalidades sobre los hongos	3
1.2. Los hongos celomicetos	5
1.2.1 Historia	5
1.2.2. Ecología	7
1.2.3. Morfología	7
1.2.4. Clasificación taxonómica1	.1
1.3. Generalidades sobre los géneros de hongos celomicetos aislados de especímenes clínicos incluidos en la presente tesis	12
1.3.1. Celomicetos del orden Botryosphaeriales (Dothideomycetes)1	14
1.3.2. Celomicetos del orden Diaporthales (Sordariomycetes) 1	.7
1.3.3. Celomicetos del orden Glomerellales (Sordariomycetes)1	.8
1.3.4. Celomicetos del orden Pleosporales (Dothideomycetes)1	9
1.4. Sensibilidad antifúngica y tratamiento de las infecciones causadas por hongos celomicetos	27
2. INTERÉS Y OBJETIVOS	9
3. MATERIALES Y MÉTODOS	3
3.1. Origen de los aislados	5
3.2. Identificación fenotínica	
	5
3.2.1. Estudio morfológico	5 5
 3.2.1. Estudio morfológico	15 15
 3.2.1 dentificación renotipica 3.2.1. Estudio morfológico	5 5 6 7
 3.2.1 dentificación renotipica 3.2.1. Estudio morfológico	5 15 16 7 7
3.2.1. Estudio morfológico	35 36 7 7
3.2.1. Estudio morfológico	85 86 7 7 7 8
3.2.1 dentificación nenotípica 3 3.2.2 Determinación de los rangos de temperaturas de crecimiento 3 3.3.1 dentificación molecular 3 3.3.1. Extracción del ADN 3 3.3.2. Amplificación y secuenciación 3 3.3.3. Ensamblaje de las secuencias 3 3.3.4. Búsquedas de identidad mediante secuencias nucleotídicas 3	5 5 6 7 7 7 8 8
3.2.1 dentificación nenotípica 3 3.2.2 Determinación de los rangos de temperaturas de crecimiento 3 3.3.1 dentificación molecular 3 3.3.1 Extracción del ADN 3 3.3.2. Amplificación y secuenciación 3 3.3.3 Ensamblaje de las secuencias 3 3.3.4. Búsquedas de identidad mediante secuencias nucleotídicas 3 3.3.5. Alineamiento de las secuencias 3	5 5 6 7 7 7 8 8 9
3.2.1. Estudio morfológico	5 5 6 7 7 7 8 8 9 9
3.2.1. Estudio morfológico	15 17 17 18 19 19 10
3.2.1. definitioación fenologica 3 3.2.2.2 Determinación de los rangos de temperaturas de crecimiento 3 3.3.1. Extracción molecular 3 3.3.1. Extracción del ADN 3 3.3.2. Amplificación y secuenciación 3 3.3.3. Ensamblaje de las secuencias 3 3.3.4. Búsquedas de identidad mediante secuencias nucleotídicas 3 3.3.5. Alineamiento de las secuencias 3 3.4. Registro de novedades taxonómicas 4 3.5. Almacenamiento y conservación de las cepas 4	15 15 17 17 18 18 19 19 10
3.2.1. Estudio morfológico	15 15 17 17 18 18 19 10 10
3.2.1. Estudio morfológico	5 5 5 7 7 7 8 8 9 9 9 10 11
3.2.1. Estudio morfológico	15 17 17 18 18 19 19 10 10 11 13

4.1. Coelomycetous fungi in the clinical setting: Morphological convergence and cryptic diversity
4.2. Coelomycetous <i>Dothideomycetes</i> with emphasis on the families <i>Cucurbitariaceae</i> and <i>Didymellaceae</i>
4.3. Pleosporalean fungi from USA; family structure
4.4. Nothophoma macrospora sp. nov181
Revisión bibliográfica de los hongos celomicetos de interés clínico
4.5. DNA sequencing to clarify the taxonomical conundrum of the clinical coelomycetes
Estudios de los aislados clínicos provenientes de dos laboratorios de referencia europeos
4.6. Diversity of coelomycetes in human infections: a 10-year experience from two European Reference Centers
4.7. <i>Neocucurbitaria keratinophila</i> an emerging opportunistic fungus causing superficial mycosis in Spain
· · ·
Estudios de los aislados ambientales recolectados en España
Estudios de los aislados ambientales recolectados en España
 Estudios de los aislados ambientales recolectados en España
Estudios de los aislados ambientales recolectados en España
 Estudios de los aislados ambientales recolectados en España
Estudios de los aislados ambientales recolectados en España 285 4.8. Pseudoascochyta gen. nov., P. novae-zelandiae sp. nov. y P. pratensis sp. nov287 293 4.9. Coniella heterospora sp. nov. 293 4.10. Alfaria dactylis sp. nov. 297 5. DISCUSIÓN GENERAL 303 6. CONCLUSIONES 313
Estudios de los aislados ambientales recolectados en España
Estudios de los aislados ambientales recolectados en España
Estudios de los aislados ambientales recolectados en España 285 4.8. Pseudoascochyta gen. nov., P. novae-zelandiae sp. nov. y P. pratensis sp. nov. 287 4.9. Coniella heterospora sp. nov. 293 4.10. Alfaria dactylis sp. nov. 297 5. DISCUSIÓN GENERAL 303 6. CONCLUSIONES 313 7. BIBLIOGRAFÍA 321 8. ANEXOS 337 Tabla 1. Aislados principalmente clínicos procedentes de tres laboratorios de referencia incluidos en esta Tesis, nuevas especies están indicados en negrita. 339
Estudios de los aislados ambientales recolectados en España 285 4.8. Pseudoascochyta gen. nov., P. novae-zelandiae sp. nov. y P. pratensis sp. nov287 293 4.9. Coniella heterospora sp. nov. 293 4.10. Alfaria dactylis sp. nov. 297 5. DISCUSIÓN GENERAL 303 6. CONCLUSIONES 313 7. BIBLIOGRAFÍA 321 8. ANEXOS 337 Tabla 1. Aislados principalmente clínicos procedentes de tres laboratorios de referencia incluidos en esta Tesis, nuevas especies están indicados en negrita. 339 Tabla 2. Aislados ambientales y cepas tipo o referencia incluidas en esta Tesis, nuevos especies o cambinaciones estan indicados en negrita. 336

I. Índice de abreviaturas

act	Actina
ADN	Ácido desoxirribonucleico
AFG	Anidulafungina
AMB	Anfotericina B
ARN	Ácido ribonucleico
ATCC	American Type Culture Collection (EE.UU.)
BI	Inferencia Bayesiana
BLAST	Basic Local Alignment Tool
BS	Soporte de bootstrap
CBS	Westerdijk Fungal Biodiversity Institute (Utrecht, The Netherlands)
CFG	Caspofungina
CLSI	Clinical Laboratory and Standards Institute (EE.UU.)
СМЕ	Concentración mínima eficaz
СМІ	Concentración mínima inhibitoria
CNM-CM	Centro Nacional Español de Microbiología del Instituto de Salud Carlos III (Madrid, España).
CNRMA	Centre National de Réfeìrence Mycoses Invasives et Antifongiques, Institut Pasteur (Paris, Francia).
comb. nov.	Nueva combinación
D1-D2	Dominios D1 y D2 del gen 28S del rARN
d	Días
diam	Diámetro
dNTP	Desoxinucleótido trifosfato
et al.	Y co-autores
EUCAST	European Committee on Antimicrobial Suceptibility Testing
fam. nov.	Nueva familia
Fig.	Figura
FLC	Fluconazol
FMR	Facultat de Medicina, Reus
g	Gramo
gen. nov.	Nuevo género

GM	Media geométrica
ΙΤС	Itraconazol
ITS	Región espaciadora intergénica transcrita del ARNr
МСМС	Markov chain Monte Carlo
MEA	Agar extracto de malta
MEC	Concentración mínima efectiva
MEGA	Molecular Evolutionary Genetic Analysis
MFG	Micafungina
MIC	Concentración mínima inhibitoria
ML	Máxima verosimilitud
mL	Mililitro
mM	Mili molar
MP	Máxima parsimonia
mTorr	Mili Torr
MUSCLE	Multiple Sequence Comparison by Log-Expectation
NCBI	National Center for Biotechnology Information (EE.UU.)
NJ	Neighbor-Joining
NNI	Nearest-Neighbor-Interchange
OA	Agar harina de avena
PAUP	Phylogenetic Analysis Using Parsimony
pb	Pares de bases
PCA	Agar patata-zanahoria
PCR	Reacción en cadena de la polimerasa
PDA	Agar patata-glucosa
рр	Probabilidad posterior
PSC	Posaconazol
rpb2	ARN polimerasa subunidad II
RPMI	Medio de Roswell Park Memorial Institute
RNAr	ARN ribosomal
sp. nov.	Nueva especie
tef1	Factor de elongación 1-alfa
TRB	Terbinafina

tub2	Beta-tubulina
U	Unidades
UTHSC	Fungus Testing Laboratory of the University of Texas Health Science Center (San Antonio, EE.UU.)
var.	Variedad
VIH	Síndrome de inmunodeficiencia humana
VRC	Voriconazol
μg	Microgramo
μL	Micro litro
μm	Micrómetro
μΜ	Micro molar
5FC	5-Fluorcitosina
°C	Grados Celsius

1. INTRODUCCIÓN

1.1. Generalidades sobre los hongos

Los hongos son un grupo monofilético (con un ancestro común) de organismos, eucariotas, morfológicamente heterogéneo, uni- o pluricelulares (Fig. 1), con núcleos haploides o diploides, que se reproducen mediante esporas de origen mitótico (asexuales; mitosporas) y/o de origen meiótico (sexuales; meiosporas), y que a diferencia de las plantas y algas carecen de cloroplastos, a pesar de que al igual que ellas son mayoritariamente inmóviles (salvo los taxones menos evolucionados) y sus células están delimitadas por una pared cuyo componente fundamental es la quitina. Debido a que los hongos son incapaces de realizar la fotosíntesis como mecanismo de obtención de energía, y a que no pueden sintetizar sus estructuras celulares a partir de moléculas inorgánicas, estos se ven obligados a utilizar un mecanismo de digestión externa (ya que no poseen un sistema digestivo) de la materia orgánica preformada (organismos quimioheterotróficos), mediante la secreción de exoenzimas que hidrolizan macromoléculas (mayoritariamente proteínas, polisacáridos y lípidos), permitiéndole así obtener los nutrientes esenciales destinados a la generación de energía química y biosíntesis de sus estructuras celulares (Brock 2006). Por dicho motivo, los hongos son conocidos como organismos osmótrofos, o de nutrición absortiva. La mayoría de los hongos son organismos aerobios (obtienen su energía interna mediante el catabolismo oxígeno-dependiente de moléculas orgánicas), pudiendo comportarse como saprobios (nutriéndose a partir de la materia orgánica muerta; necrótrofos), como parásitos (obteniendo los nutrientes esenciales de un organismo vivo) o simbiontes (estableciendo una relación mutualista con otro organismo, con el cual intercambian nutrientes), tanto en ambientes acuáticos como en terrestres.

Los hongos pueden presentar dos tipos de talo (organización somática o vegetativa básica): unicelular (hongos levaduriformes; levaduras) y pluricelular (hongos filamentosos o miceliares). Los hongos filamentosos están formados por una sucesión de células de forma tubular que forman un todo: las hifas (Brock 2006, Brandt & Warnock 2015). Estas células pueden estar delimitadas (hifas septadas ó tabicadas) o no (hifas aseptadas o cenocíticas) entre sí por septos (invaginaciones de la pared celular que separa la hifa en compartimentos intercomunicados o no entre sí). El conjunto de hifas que forman un individuo se denomina micelio. Existen algunos hongos capaces de producir ambos tipos de talo dependiendo de las condiciones ambientales. Cuando el parámetro determinante es la temperatura, estos se denominan hongos térmicamente dimórficos (usualmente presentan una forma filamentosa a 25°C y una levaduriforme a 37°C), muchos de los cuales son patógenos animales (el hombre incluido) y pertenecen a un grupo taxonómico concreto (la familia *Ajellomycetaceae*, del orden *Onygenales*) (Harris 2008, de Hoog *et al.* 2011).

Figura 1. Talo fúngico. A. Unicelular. B. Pluricelular (filamentoso).

La estrategia reproductiva de los hongos puede incluir una fase de reproducción asexual (anamorfo o forma asexual) caracterizada por la producción de esporas cuyos núcleos provienen de la división mitótica de un núcleo preexistente, y/o una fase de reproducción sexual (teleomorfo ó forma sexual) caracterizada por la división meiótica (y posteriormente mitótica) de un núcleo diploide (producto de la fusión de dos núcleos haploides de individuos sexualmente compatibles). El hongo que es capaz de reproducirse mediante ambas estrategias de forma simultánea se denomina holomorfo (Fig. 2). También es posible que un individuo presente dos estrategias de reproducción asexual (morfológica y estructuralmente) diferentes, las que son denominadas sinanamorfos, como es el caso del hongo celomiceto *Neoscytalidium dimidiatum* (capaz de formar esporas asexuales a partir de la fragmentación de las hifas vegetativas y también en el interior de un cuerpo fructífero con diferenciación tisular).

Originalmente los hongos fueron clasificados dentro del reino *Plantae* (Haeckel 1866), en el subreino *Talobionta* (talofitas, o plantas con talo) y se creía que descendían de las algas rojas (rodofíceas o rodífitas) (Scagel *et al.* 1980, Carlile & Watkinson 1994). Sin embargo, Whittaker (1969) propuso un sistema de clasificación de los seres vivos en cinco reinos, dos para la clasificación de los organismos más simples como las bacterias y protozoos (*Monera* y Protista), y los otros tres para los organismos más complejos (*Animalia, Fungi, Plantae*), en el cual los hongos se agrupan dentro del reino *Fungi* hasta el día de hoy (Fig. 3) (Spatafora *et al.* 2017).

Figura 2. Ciclo de vida de Mycosphaerella sp. con su forma asexual Pseudocercospora sp. (Mycosphaerellales, Ascomycota); Abreviaciones: 1n = haploide, P! = plasmogamia, n+n = dicariótico, K! = cariogamia, 2n = diploide, M! = meiosis. Adaptado de M. Piepenbring (http://species-id.net/openmedia/Mycological teaching diagrams by Meike Piepenbring).

1.2. Los hongos celomicetos

1.2.1. Historia

El término "celomiceto" fue introducido por Grove (1919) para acomodar un grupo de hongos morfológicamente caracterizados por producir sus conidios (esporas asexuales) dentro de una cavidad piriforme o una matriz fúngica en forma de cojín, pertenecientes a los géneros *Phloeospora*, *Phomopsis* y *Phyllosticta*. A partir de aquí, el término se fue expandiendo para agrupar a todos los hongos con esas características, proponiéndose posteriormente como una clase, *Coelomyctetes*, dentro de la subdivisión *Deuteromycotina* (que agrupaba a todos los hongos con tan solo el mecanismo de reproducción asexual, llamados por dicho motivo hongos "imperfectos") (Ainswoth 1966). Sin embargo, actualmente este término está obsoleto debido a que posteriores estudios filogenéticos han demostrado su naturaleza polifilética (la existencia de más de un ancestro) del taxón, y solo se mantiene

su uso por fines prácticos, especialmente en fitopatología y en clínica (Taylor 1995, Kendrick 2000).

Figura 3. Clasificación taxonómica vigente del reino *Fungi*, representando por los actuales 8 filos, 12 subfilos y 46 clases. Adaptado de Spatafora *et al.* (2017).

1.2.2. Ecología

Los hongos celomicetos (cómo grupo morfológico) habitan una gran gama de nichos ecológicos, estando presentes mayoritariamente en ambientes terrestres como saprobios o como patógenos de plantas (Cortinas *et al.* 2006, Wikee *et al.* 2011, Udayanga *et al.* 2011, Maharachchikumbura *et al.* 2011, 2013; Hyde *et al.* 2014), pero también se pueden encontrar libres en el suelo (Someya *et al.* 1997), o como endófitos (un tipo de asociación mutualista) de plantas (Rajagopal *et al.* 2012). En ambientes acuáticos también se ha reportado el hallazgo de varias especies, principalmente en plantas acuáticas de agua dulce y saladas, e incluso en aguas residuales (Aveskamp *et al.* 2008, Al-Saadoon & Al-Dossary 2014). También pueden encontrarse como simbiontes en la formación de líquenes o micorrizas (Diederich *et al.* 2001, 2012; Lawrey *et al.* 2011, Oliveira *et al.* 2014). Algunos pueden comportarse como parásitos de otros hongos (hiperparásitos), y un reducido número son patógenos de insectos y vertebrados (seres humanos incluidos) (El-Bassam *et al.* 2002, Krockenberger 2010, de Hoog *et al.* 2011, Stchigel & Sutton 2013, Valenzuela-Lopez *et al.* 2017).

1.2.3. Morfología

Los hongos celomicetos se caracterizan por la producción de un número limitado de estructuras morfológicas. Los conidiomas son sus estructuras reproductivas más distintivas, siendo su naturaleza la de cuerpos fructíferos asexuales, de pared (peridio) delgada (pseudoparenquimatosa, compuesta por células que forman un "tejido" discreto) o gruesa (escleroparenquimatosa, compuesto por una masa de células de paredes engrosadas, de consistencia muy dura que en sus fases iniciales recuerda a esclerocios, y en cuyo interior se abre con el tiempo una cavidad donde se desarrollan las células conidiógenas productoras de conidios), la que se encuentra, por lo general, en combinación o sobre el tejido del huésped (generalmente vegetal). Dichos conidiomas se pueden clasificar en cuatro tipos básicos: acervular (forma de platillo, unido íntimamente al tejido huésped, Fig. 4.A), picnidial (usualmente piriforme y formado de "tejido" fúngico, o en conjunto con el tejido del huésped, Fig. 4.B), estromático (masa de células o de hifas vegetativas unidas o no al tejido huésped, Fig. 4.C) y picnotirial (forma de escudo, en el tejido superficial del huésped, Fig. 4.D), siendo los más frecuentes los conidiomas acervulares y picnidiales. Los conidiomas pueden presentar ciertas ornamentaciones externas, tales como setas, o estar cubiertos de hifas. Su color, forma, textura de la pared, producción (solitarios o agrupados), y su localización en el tejido del huésped o cuando se desarrollan en medios de cultivo in vitro (superficiales o

inmersos) son empleados como criterios taxonómicos secundarios para su clasificación infragenética (en la metodología "clásica" de identificación) (Sutton 1980, Boerema *et al.* 2004, Kirk *et al.* 2008). Los conidióforos se encuentran dentro del conidioma, y estas hifas especializadas contienen o soportan a las células conidiógenas. Estas estructuras se caracterizan en base a su longitud, número de ramificaciones, presencia de septos y color (Fig. 5).

Figura 4. Tipos de conidiomas: A, acervular (*Dinemasporium strigosum*); B, picnidial (*Chaetodiplodia caulina*); C, estromático (*Cryptomycella pteridis*); D, picnotirial (*Pycnothyrium* sp.). A-C. Adaptado de Sutton (1980), D. Adaptado de von Arx & Müller (1975).

Figura 5. Diferentes tipos de conidióforos de hongos celomicetos. A, Digitosporium piniphilum; B, Myxocyclus polycistis; C, Polystigmina rubra; D, Leptomelanconium piceae; E, Pleurophoma pleurospora; F, Phacidiella salicina. Adaptado de Sutton (1980).

Sin embargo, es más habitual que en los hongos celomicetos los conidióforos estén reducidos a tan solo una célula conidiógena, estructura reproductiva asexual donde los conidios son producidos mediante un proceso denominado conidiogénesis, por diferentes mecanismos: enteroblásticos (a partir de una célula conidiógena fialídica o anelídica; de neoformación, estando involucradas las capas más internas de la pared de la célula conidiógena en la producción del conidio); holoblásticos (de neoformación, estando involucradas de la pared de la célula conidiógena en la producción del conidio);

conidio) o tálicos (a partir de la diferenciación de una célula preexistente). Con fines taxonómicos, se documentan su color, grosor y ornamentación de la pared, forma y tamaño (Fig. 6).

Figura 6. Células conidiógenas y sus diferentes tipos de conidiogénesis: A, Tálica-holoártrica (*Staninwardia breviuscula*); B, Holobástica (*Kamatella apiospora*); C, Enteroblástica-anelídica (*Coniothyrium palmarum*); D, Enteroblástica-fialídica (*Amerosporium polynematoides*). Adaptado de Sutton (1980).

Los conidios, son probablemente las estructuras morfológicamente más diversas capaces de ser formadas por los celomicetos, pudiendo presentar 0 no apéndices celulares y acelulares, masas gelatinosas alrededor de ellos, una gran variedad de colores, grosor y ornamentación de su pared, y número variable de septos y tamaños (Fig. 7).

Figura 7. Diversidad de conidios en los hongos celomicetos. A, sin septos; septos Β. con C, muriformes transversales; (septos transversales у D, longitudinales); con apéndices; Ε, de formas variables. Adaptado de Sutton (1980).

Además de las estructuras anteriormente mencionadas, algunos celomicetos pueden presentar setas alrededor del conidioma, clamidosporas en el micelio superficial y/o sumergido y células apresorias (apresorios). Las setas son hifas modificadas de pared gruesa y de color oscuro, que pueden presentar septos, tener una pared lisa u ornamentada, y presentar diferentes (usualmente aguzadas) terminaciones (Fig. 8). Las clamidosporas corresponden a células de resistencia, presentan una pared mucho más gruesa que el resto de las estructuras formadas por estos hongos, y están caracterizadas por su ubicación sobre la hifa que las produce (intercalar o terminal), su forma, coloración y si presentan septos (Fig. 9). Las células apresorias se encuentran principalmente en el género fitopatógeno *Colletotrichum*, y tienen como función la adhesión al huésped en estados tempranos de la infección, sirviendo en la identificación de algunas de las especies del mencionado género (Fig. 10).

Figura 8. Diferentes tipos de setas presentes en los hongos celomicetos. Adaptado de Sutton (1980).

Figura 9. Tipos de clamidosporas: A, unicelulares, intercalares o terminales; B, multicelulares, botrioides o alternariodes, intercalares o terminales. Adaptado de Boerema *et al.* (2004).

Figura 10. Apresorias: A, *Colletotrichum crassipes*; B, *C. musae*; C, *C. orbiculare*; D, *C. coffeanum*; E, *C. gloeosporioides*. Adaptado de Sutton (1980).

1.2.4. Clasificación taxonómica

La taxonomía de los hongos históricamente se ha basado en la clasificación sistemática establecida por Linneo (1753), la cual consiste en la comparación de sus caracteres morfológicos, ubicando organismos similares en un mismo grupo. Estos grupos se denominan taxones y están ordenados jerárquicamente (Fig. 11).

Figura 11. Rangos taxonómicos y sus terminaciones en la clasificación de los hongos (Hibbett *et al.* 2007).

Originalmente, los hongos celomicetos fueron agrupados en la clase *Coelomycetes* de la subdivisión *Deuteromycotina* (hongos exclusivamente con reproducción asexual). La clase *Coelomycetes* estaba divida en tres órdenes: *Melanconiales* (hongos que producen

acérvulos), *Sphaeropsidales* (hongos que producen picnidios) y *Pycnothyriales* (hongos que producen picnotirios) (Ainsworth 1966). Posteriormente, Sutton (1980) en base principalmente al tipo de conidiogénesis, mantuvo dichos hongos dentro de la clase *Coelomycetes*, distribuyéndolos en cinco órdenes: *Blastales, Enterothallales, Phialidales, Thallales* y *Tretales*. Sin embargo, actualmente el sistema de clasificación precedente ya no es aceptado, debido a que en base a los estudios de filogenia molecular se ha demostrado de que no es un grupo monofilético (de Gruyter *et al.* 2009, 2013; Aveskamp *et al.* 2010). Actualmente, el término "coelomycete" se sigue empleando en base a criterios prácticos en patología vegetal y animal, pero se ha demostrado mediante estudios moleculares que este grupo de hongos se encuentra distribuido en, al menos, tres clases diferentes: *Dothideomycetes, Leotiomycetes y Sordariomycetes*, del filo *Ascomycota* (Schoch *et al.* 2009, Maharachchikumbura *et al.* 2014, Wijayawardene *et al.* 2016, Valenzuela-Lopez *et al.* 2017).

1.3. Generalidades sobre los géneros de hongos celomicetos aislados de especímenes clínicos incluidos en la presente tesis

En la presente tesis se han estudiado una gran diversidad de hongos celomicetos aislados de muestras clínicas procedentes de los Estados Unidos de Norteamérica así como de Europa (España y Francia), los cuales correspondieron a los géneros Colletotrichum, Diaporthe, Didymella, Epicoccum, Lasiodiplodia, Medicopsis, Neocucurbitaria, Paraconiothyrium, Neoscytalidium, Nigrograna, Parathyridaria, Phoma, Pseudochaetosphaeronema, Tintelnotia y Trematosphaeria, los cuales se distribuyen en diferentes órdenes (Fig. 12). Estos organismos, involucrados mayoritariamente en la producción de infecciones oportunistas, son por lo general hongos ubicuos de bajo potencial patogénico, lo que sumado a su relativa baja incidencia en clínica humana contribuye a la falta de datos relevantes sobre su epidemiología y tratamiento antifúngico efectivo (Stchigel & Sutton 2013, Guégan et al. 2016, Valenzuela-Lopez et al. 2017).

Las patologías que producen en el hombre se pueden clasificar de acuerdo al tipo de infecciones que son capaces de producir, y en la mayoría de los casos éstas suceden por traumatismo de la piel con materiales contaminados por esporas fúngicas. Las infecciones superficiales pueden afectar la piel, el pelo, los ojos y las uñas (Arenas 2011). Las micosis subcutáneas, pueden presentarse en forma de quistes, pero la forma prevalente de presentación de infecciones por los celomicetos es el eumicetoma de grano negro, esta afección está definida como un síndrome anátomo-patológico de tipo inflamatorio crónico, ésta puede ser causada tanto por bacterias (conocida como actinomicetoma) o por hongos

(eumicetoma) o la mezcla de ambos. Generalmente afecta al pie, pero puedo ocurrir en otras zonas anatómicas, caracterizándose por un aumento del volumen de la zona infectada, con la deformación y aparición de fístulas con contenido purulento donde se encuentra el agente causante de la infección, formando gránulos que pueden ser de color blanco o marrón oscuro (Arenas 2011, van de Sande 2013, van de Sande *et al.* 2017).

Las micosis sistémicas causadas por celomicetos son muy raras, y se suelen reportar en pacientes inmunocomprometidos, los que por lo general han recibido tratamiento antineoplásico o han sido receptores de transplantes de órganos (Benne *et al.* 1993, Balis *et al.* 2006, Tan *et al.* 2008, Woo *et al.* 2008, Kindo *et al.* 2010, Arora *et al.* 2012, Guégan *et al.* 2016).

Por otro lado, la identificación de estos hongos en el laboratorio clínico no siempre es sencillo, debido principalmente a que no se emplea el medio de cultivo apropiado para producir los cuerpos de fructificación típicos, o bien porque ellos no son capaces de desarrollarlos en cultivo. Sin embargo, hoy en día ya no es tan difícil realizar una identificación molecular en los laboratorios clínicos, pero su dificultad radica en que tan solo se emplea un único marcador filogenético para tal finalidad (como p. ej. la región espaciadora intergénica [ITS]), dando como resultado la identificación de varias especies a la vez o géneros incluso (Stchigel & Sutton 2013, Valenzuela-Lopez et al. 2017, Valenzuela-Lopez et al. 2018b). Los exámenes histopatológicos siguen siendo importantes a la hora de confirmar un diagnóstico positivo de una infección causada por un hongo. Los elementos fúngicos de los celomicetos en los tejidos son bastante pleomórficos: pueden presentar hifas moniliformes (forma de collar), estructuras levaduriformes o hifas con o sin septos, en su mayoría pigmentados (Revankar & Sutton 2011, Guarner & Brandt 2011). Además, la observación directa de estructuras fúngicas utilizando KOH al 10 ó 20% en una proporción 1:1 con el tejido potecialmente infectado, es útil. Para la identificación histopatológica de infecciones causadas por celomicetos se recomienda las tinciones de hematoxilina-eosina (H&E), de Gomori- Groccot (GMS) y el ácido peryódico de Schiff (PAS), y en caso de que el hongo no contenga suficiente melanina en sus estructuras se recomienda utilizar la tinción de Fontana-Masson (Guarner & Brandt 2011).

Figura 12. Clasificación taxonómica de los hongos celomicetos aislados de especímenes clínicos y reportados en la literatura como causantes de micosis humana.

En los siguientes apartados se describirán las principales características de los grupos de hongos celomicetos que han sido estudiados en la presente tesis.

1.3.1. Celomicetos del orden Botryosphaeriales (Dothideomycetes)

Este orden fue introducido por Schoch y co-autores (2006), basados en el análisis filogenético de cuatro marcadores moleculares. Este grupo de hongos se encuentra caracterizado por producir ascostromas (masas de tejido parecidas a un cojín, dentro de los cuales se abren una o más cavidades [lóculos] dentro de los cuales se producen ascos y ascosporas) de pared oscura y gruesa. Ascos bitunicados, con un número par de ascosporas uni- o bicelulares, incoloras cuando están inmaduras y marrones cuando son maduras (Schoch *et al.* 2006, 2009).

1.3.1.1. Lasiodiplodia theobromae

Propuesto inicialmente dentro del género *Botryodiplodia* (Patouillard 1892) fue posteriormente introducido con el nombre que se le conoce actualmente por Griffon y Maublanc (1909). Es un hongo cosmopolita presente en el suelo, material vegetal en descomposición y/o en plantas vivas, en este último sustrato como fitopatógeno (Alves *et al.* 2008). Para el hombre es un patógeno oportunista que infecta tejidos superficiales por traumatismo o por contacto con material (suelo o restos vegetales) contaminado (Summerbell *et al.* 2004, Saha *et al.* 2012. Gu *et al.* 2016).

Morfológicamente está caracterizado por producir conidiomas picnidiales, en cuyo interior presenta paráfisis (hifas estériles) hialinas, cilíndricas y septadas, células conidiógenas holoblásticas, hialinas, de pared lisa y delgada, y conidios inicialmente incoloros que se vuelven de color marrón oscuro y con una superficie estriada con el tiempo, subovoides a elipsoidales, con un extremo redondeado y una base trunca, de pared gruesa, presentando un septo transversal cuando el conidio está maduro (Fig. 13).

Figura 13. *Lasiodiplodia theobromae* (CBS164.96). A. Paráfisis. B. Células conidiógenas. C-D. Conidios. Escala = 10 μm. Adaptado de Alves *et al.* (2008).

1.3.1.2. Neoscytalidium dimidiatum

Este hongo cuyo nombre original era el de *Torula dimidiata* (Penzig 1887), ha ido cambiando sucesivamente de género hasta el actual *Neoscytalidium* (Crous *et al.* 2006) debido a la confusión creada con respecto a si pertenecía o no al género *Fusicoccum*, o si su sinanamorfo celomiceto *Hendersonula toruloidea* (Natrass 1933) correspondía filogenéticamente al mencionado género. El análisis molecular y morfológico de estos géneros y los fenotípicamente relacionados evidenció que *Fusicoccum* era polifilético, por lo

que no era factible ubicar dentro de Fusicoccum a Scytalidium dimidiatum. Además se demostró filogenéticamente que Scytalidium sensu stricto no pertenecía a la familia Botryosphaeriaceae, hecho que reforzó la propuesta del nuevo género Neoscytalidium (Crous et al. 2006). Algunos aislados clínicos considerados como una variante hialina (N. dimidiatum var. hialinum) (Madrid et al. 2009), resultaron posteriormente ser genéticamente idénticos al fenotipo pigmentado, descartando así la nueva variante y una única especie. Neoscytalidium manteniendo dimidiatum es un hongo dematiáceo y queratinofílico, distribuido mundialmente, aunque su hallazgo es más frecuente en zonas tropicales y subtropicales, conocido principalmente como fitopatógeno, pero capaz de producir micosis en el hombre por contacto directo con sus propágulos de dispersión presentes en plantas colonizadas (Hay 2002). In vitro, este hongo forma estructuras reproductivas similares a las de un hongo hifomiceto (es decir, que tan solo produce estructuras conidiógenas sencillas, estando ausentes cualquier tipo de cuerpo fructífero), y solo en algunas ocaciones es posible encontrar su sinanamorfo celomiceto Hendersonula toruloidea en cultivos viejos (Madrid et al. 2009). En el hombre este hongo produce desde infecciones superficiales (piel, uñas, cornea) (Elewski 1996, Barua et al. 2007, Godoy et al. 2009, Cursi et al. 2013) hasta profundas, y menos frecuentemente infecciones sistémicas (Benne et al. 1993, Mani et al. 2008, Ikram et al. 2009).

Morfológicamente, *N. dimidiatum* desarrolla colonias de crecimiento rápido, con abundante micelio aéreo de color gris oscuro a negras. Sin embargo, existe un fenotipo con colonias hialinas. Microscópicamente, forma hifas hialinas a marrones, de las cuales se producen cadenas de artroconidios (Fig. 14).

Figura 14. *Neoscytalidium dimidiatum* (FMR 13640). A-B. Colonia en PDA (anverso y reverso). C. Artroconidios. Escala = 10 μm.

1.3.2. Celomicetos del orden Diaporthales (Sordariomycetes)

Este orden fue descrito por Nannfeldt (1932), y contiene un grupo bien conocido de hongos ascomicetos patógenos de plantas, endófitos o saprobios (Castlebury *et al.* 2002, Rossman *et al.* 2007, Maharachchikumbura *et al.* 2016). Sus miembros se caracterizan por producir ascomas periteciales de color marrón oscuro a negro, inmersos en un estroma dentro de los tejidos del huesped, sin paráfisis o con un número muy reducido, los ascos son unitunicados, las ascosporas son desde pequeñas hasta grandes, aseptadas o septadas, incoloras o de pared pigmentada (Senanayake *et al.* 2017).

1.3.2.1. Diaporthe

Hasta hace algunos años *Phomopsis* (anamorfo) era considerado un género distinto del ascomiceto conocido con el nombre de *Diaporthe* (teleomorfo). Sin embargo, con el advenimiento de las técnicas moleculares y los análisis filogenéticos se demostró que ambos géneros estaban relacionados (Udayanga *et al.* 2012). Más recientemente, Rossman y co-autores (2015) propusieron recomendaciones con respecto al uso de nombres dentro del orden *Diaporthales*, teniendo *Diaporthe* prioridad sobre *Phomopsis*, debido a que el primero fue descrito con anterioridad (Nitschke 1870) del segundo (Bubák 1905). Estos cambios en la taxonomía generan confusión en el ámbito clínico y es importante ir introduciendo paulatinamente los nuevos nombres científicos en la rutina de la identificación de los hongos de interés médico.

Actualmente, existe un limitado conocimiento sobre las especies de *Diaporthe* involucrados en infecciones, sobre todo debido a que muchos aislados han sido identificados como *Phomopsis* sp. y, en el mejor de los casos, se ha realizado un análisis filogenético limitado, basado tan solo en el estudio de un único marcador filogenético como el ITS, con lo cual resulta imposible poder llegar a identificar el hongo a nivel de especie.

Las especies del género *Diaporthe* que han sido reportadas como responsables de micosis humanas son *Diaporthe bougainvilleicola*, *D. phaseolorum* y *D. phoenicicola*, causando principalmente infecciones superficiales (queratitis, dermatomicosis) y de tejidos subcutáneos (micetomas) (Iriart *et al.* 2001, Gajjar *et al.* 2011, Cariello *et al.* 2013).

La fase asexual de *Diaporthe* tiene un crecimiento muy rápido en los medios de cultivo empleados habitualmente en el laboratorio microbiológico, pudiendo formar conidiomas picnidiales o estromáticos, en cuyo interior se hayan células conidiógenas fialídicas, hialinas y cilíndricas, presentando dos tipos de conidios: forma *alfa*, caracterizados por ser de tamaño pequeño, incoloros, unicelulares, de ovoides a elipsoidales; y la forma *beta*, más grandes y alargados, incoloros, unicelulares y filiformes (Fig. 15).

Figura 15. *Diaporthe hongkongensis* (CBS 115448). A. conidiomas a la lupa. B. Células conidiógenas. C. Alfa conidios. D. Beta conidios. Escala = 10 µm. Adaptado de Gomes *et al.* (2013).

1.3.3. Celomicetos del orden Glomerellales (Sordariomycetes)

Orden propuesto por primera vez por Chadefaud (1960) como "Glomérellales", y que posteriormente Réblová y co-autores (2011) lo introdujeron formalmente basados en el análisis filogenético de las subunidades mayor (28S) y menor (18S) del ARNr (también conocidos como LSU y SSU). Se caracteriza por producir ascomas periteciales de color marrón oscuro, cuyo ostiolo está cubierto de perífisis, el tejido interascal tapizado de paráfisis, los ascos son unitunicados, las de medidas y formas variadas, aseptadas o septadas, incoloras o ascosporas pigmentadas (Réblová et al. 2011).

1.3.3.1. Colletotrichum

Este género agrupa importantes especies fitopatógenas, distribuidas mundialmente, pero más frecuentemente aisladas en regiones tropicales y subtropicales (Cannon *et al.* 2012). A pesar de que no es un género especialmente patógeno para el hombre, un reducido número de especies del mismo, es capaz de producir micosis, principalmente queratitis y

menos frecuentemente infecciones subcutáneas (Liao *et al.* 1983, Guarro *et al.* 1998, Castro *et al.* 2001, O'Quinn *et al.* 2001, Mendiratta *et al.* 2005, Potea *et al.* 2017). Cano y co-autores (2004) realizaron una revisión sistemática sobre las especies de este género productoras de infecciones en el hombre, en base a la caracterización de sus estructuras vegetativas y reproductivas y en la reconstrucción de su filogenia basada en las secuencias de la región ITS y de los dominios D1-D2 del gen LSU del ARNr. Sin embargo, debido a la complejidad taxonómica de este género, actualmente se necesitan por lo menos entre cinco y seis marcadores filogenéticos para llegar a la correcta identificación a nivel de especie. *Colletotrichum* se caracteriza por producir conidiógenas son fialídicas, hialinas y cilíndricas, sus conidios son incoloros, unicelulares, mayoritariamente cilíndricos y de grandes dimensiones, redondos o aguzados en los extremos. Además, muchas especies son capaces de desarrollar células apresorias (Fig.16).

Figura 16. Colletotrichum dracaenophilum (CBS 118199). A. Conidiomas acervulares a la lupa. B. Células apresorias. C. Célula conidiógena. D. Conidios. Escala = 10 μm. Adaptado de Damm et al. (2019).

1.3.4. Celomicetos del orden Pleosporales (Dothideomycetes)

Este orden fue propuesto por Luttrell (1955), y posteriormente reintroducido formalmente por Barr (1987), basado en las características generales de los miembros de la familia *Pleosporaceae*. Actualmente, es uno de los órdenes más extensos de la clase *Dothideomycetes* (Hyde *et al.* 2013, Liu *et al.* 2017, Valenzuela-Lopez *et al.* 2018a). Los miembros de este orden se caracterizan por desarrollar ascomas periteciales de color marrón oscuro, los que presentan pseudoparáfisis, ascos por lo general cilíndricos y ascosporas de forma variada, uniseptadas o multiseptadas, incoloras o pigmentadas.

1.3.4.1. Géneros Didymella, Epicoccum y Phoma

Estos géneros, pertenecientes a la familia Didymellaceae, guardan una estrecha relación morfológica y filogenética entre sí (de Gruyter et al. 2009, Aveskamp et al. 2010). Previo a los estudios filogenéticos, basados en el análisis de las secuencias nucleotídicas de diferentes genes estructurales, ya se tenía conocimiento sobre la estrecha relación entre el género Didymella como el teleomorfo del género Phoma, y que el género Epicoccum era un sinanamorfo de algunas de las especies de Phoma (Boerema et al. 2004). Estos hongos son cosmopolitas, presentes tanto en ambientes terrestres como en acuáticos, muchos de ellos importantes fitopatógenos (Aveskamp et al. 2008), y a pesar de que las infecciones fúngicas causadas en humanos por especies pertenecientes a la familia Didymellaceae son poco frecuentes, existen reportes tanto de micosis superficiales como profundas (Punithalingam 1979, Bakerspigel et al. 1981, Rai 1989, Balis et al. 2006). Morfológicamente, los anamorfos de Didymella y los sinanamorfos de Epicoccum presentan las características morfológicas típicas del género Phoma: conidiomas picnidiales conteniendo en su interior células conidiógenas fialídicas, incoloras, de cilíndricas a subglobosas, que producen conidios mayoritariamente incoloros (ocasionalmente de color marrón claro), de pared delgada, y principalmente unicelulares (en algunos casos con un septo transversal), de ovoides a cilíndricos. Algunas especies son capaces de producir clamidosporas, unio pluricelulares (Fig. 17).

Figura 17. *Didymella glomerata* (UTHSC DI16-205). A. Conidiomas picnidiales a la lupa. B. Picnidios.
 C. Clamidosporas alternaroides. D. Células conidiógenas. E. Conidios. Escala: B = 100 μm.
 C-E = 10 μm.

1.3.4.2. Medicopsis romeroi

Esta especie fue por primera vez descrita por Borelli (1959) a partir de un caso de micetoma humano procedente de Venezuela. Posteriormente, ha sido reportada con cierta frecuencia produciendo infecciones cutáneas y subcutáneas (Girard *et al.* 2004, Ocampo *et*

al. 2012, Ahmed *et al.* 2014b, Guégan *et al.* 2016). También ha sido reportada en material vegetal, pero como saprobia (de Gruyter *et al.* 2013). Este hongo se caracteriza por producir conidiomas picnidiales cubiertos con setas de color marrón oscuro a negras, con células conidiógenas fialídicas en su interior, incoloras, de cilíndricas a subglobosas, produciendo conidios incoloros, de pared delgada, unicelulares y de forma cilíndrica a elipsoidal (Fig. 18).

Figura 18. *Medicopsis romeroi* (CBS 252.60). A. Conidiomas picnidiales a la lupa. B. Picnidio. C. Células conidiógenas. D. Conidios. Escala = 10 µm. Adaptado de Ahmed *et al.* (2014b).

1.3.4.3. Neocucurbitaria

Varias especies del género *Neocucurbitaria*, previamente clasificadas como pertenecientes al género *Pyrenochaeta* (de Gruyter *et al.* 2013, Ahmed *et al.* 2014b, Jaklitsch & Voglmayr 2016, Wanasinghe *et al.* 2017, Valenzuela-Lopez *et al.* 2018a), han sido reportadas produciendo micosis en humanos, principalmente infecciones de tejidos superficiales (tales como piel y uñas; *Neocucurbitaria* cava y *Neocucurbitaria unguis-hominis*) (Stchigel & Sutton 2013, Valenzuela-Lopez *et al.* 2017, 2018b). *Neocucurbitaria cava* y *N. unguis-hominis* se caracterizan por producir conidiomas picnidiales, cubiertos o no por setas, en cuyo interior se desarrollan conidióforos con células conidiógenas fialídicas, hialinas, cilíndricas o subglobosas; los conidios son incoloros, de pared delgada, unicelulares, pequeños y de forma ovoide a elipsoidal (Fig. 19).

Figura 19. Neocucurbitaria unguis-hominis (CBS 112.79). A. Conidiomas picnidiales a la lupa. B. Picnidios. C. Conidióforos y células conidiógenas. D. Conidios. Escala: B = 50 μm. C-D = 10 μm.

1.3.4.4. Nigrograna mackinnonii

Esta especie ubicada originalmente en el género *Pyrenochaeta* por sus características morfológicas, fue aislada a partir de un caso de micetoma humano en Venezuela (Borelli 1976). Posteriormente, dicho taxón ha sufrido varios cambios nomenclaturales debido a su reubicación taxonómica, hasta que finalmente de Gruyter y co-autores (2013), basándose en un análisis filogenético, propusieron el nuevo género *Nigrograna* (nombre que refiere la manifestación clínica de producir granos negros en el micetoma) para acomodar este hongo, el cual carecía hasta ese momento de una asociación a nivel de familia. En un estudio posterior sobre todas las especies causantes de micetoma de grano negro, se propuso una nueva combinación para esta especie dentro del género *Biatriospora*, basado en un análisis filogenético multi-locus (Ahmed *et al.* 2014b). Sin embargo, el análisis multi-locus y el estudio morfológico de aislados provenientes de material vegetal desarrollado por Jaklitsch y Voglmayr (2016), descartó *N. mackinnonii* como perteneciente al género *Biatriospora*, proponiendo la nueva familia *Nigrogranaceae*.

Nigrograna mackinnonii, está morfológicamente caracterizado por producir conidiomas picnidiales cubiertos por hifas de color marrón oscuro, en cuyo interior se hayan células conidiógenas fialídicas, hialinas, de cilíndricas a subglobosas, las que generan conidios de incoloros a marrón claro, de pared delgada, unicelulares y de forma elipsoidal. A diferencia de las otras especies del género, ésta especie no produce conidióforos diferenciados (Jaklitsch & Voglmayr 2016). La figura 20 muestra los caracteres morfológicos de otra especie del género *Nigrograna*, concretamente *N. fuscidula*.

Figura 20. Nigrograna fuscidula (CBS 141476). A. Corte desde el material vegetal del conidioma picnidial. B. Pared del conidioma y conidióforos. C. Conidióforos y células conidiógenas. D. Conidios. Escala: B-C = 10 μm. D = 5 μm. Adaptado de Jaklitsch & Voglmayr (2016).

1.3.4.5. Paraconiothyrium

Este género fue propuesto por Verkley y co-autores (2004) para acomodar aquellos hongos morfológicamente similares a *Coniothyrium* o *Microsphaeropsis*, siendo éste un taxón cosmopolita y con gran potencial biotecnológico (Fukami *et al.* 2000, da Silva *et al.* 2003, Tsuda *et al.* 2003). Actualmente, solo dos especies del género han sido involucradas en infecciones humanas: *Paraconiothyrium fuckelii* y *Paraconiothyrium cyclothyrioides*, causando infecciones superficiales y profundas (Kiehn *et al.* 1987, Gordon *et al.* 2012, Guégan *et al.* 2016). Este género está morfológicamente caracterizado por producir conidiomas picnidiales o estromáticos, en cuyo interior se localizan células conidiógenas fialídicas, hialinas, de cilíndricas a subglobosas; los conidios inicialmente son incoloros pero al madurar se vuelven de color marrón claro, de pared delgada, unicelulares y de forma cilíndrica u ovoide (Fig. 21).

Figura 21. Paraconiothyrium maculicutis (CBS 101461). A. Picnidio. B. Conidios. Paraconiothyrium fuckelii (CBS 797.95). C. Células conidiógenas. D. Conidios. Escala: A = 20 μm. B-D = 10 μm. Adaptado de de Gruyter et al. (2013) y Verkley et al. (2014).

1.3.4.6. Parathyridaria percutanea

Esta especie fue descrita por primera vez por Ahmed y co-autores (2014a) con el nombre de *Roussoella percutanea*, siendo aislada de una lesión subcutánea del pie en un hombre. Actualmente, en base a un estudio filogenético, esta especie fue reubicada en la familia *Thyridariaceae*, como una combinación nueva dentro del género *Parathyridaria* (Jaklitsch & Voglmayr 2016). Este hongo produce conidiomas picnidiales, células conidiógenas fialídicas, hialinas, de globosas a subglobosas, y conidios incoloros a marrón claro, con paredes delgadas, unicelulares y elipsoidales (Fig. 22).

Figura 22. *Parathyridaria percutanea* (CBS 868.95). A. Conidioma picnidial a la lupa. B. Picnidio. C. Células conidiógenas. D. Conidios. Escala: B = 20 μm. C-D = 10 μm. Adaptado de Ahmed *et al.* (2014a).

1.3.4.7. Pseudochaetosphaeronema

Este género fue introducido por Punithalingam (1979) para reacomodar Chaetosphaeronema larense. Previamente, C. larense fue introducido por Borelli y Zamora (1973), el cual se aisló de un caso de micetoma en un trabajador de la agricultura venezolano. El aislado fue capaz de producir picnidios in vitro, lo que llevó a Punithalingam a comparar las características morfológicas entre C. larense y la cepa tipo del género Chaetosphaeronema (C. hispidulum), llegando a la conclusión de que eran especies distintas incluso a nivel genérico basado únicamente en caracteres morfológicos (Punithalingam 1979).

Hasta hace poco, *P. larense* era la única especie del género, pero recientemente se han introducido dos especies más: *Pseudochaetosphaeronema ginkgonis* y *Pseudochaetosphaeronema martinelli*, la primera de ellas aislada de material vegetal, y la segunda de origen clínico (una lesión subcutánea). Sin embargo, ambas especies no son capaces de fructificar *in vitro*, y su pertenencia al género ha sido propuesta en base al análisis filogenético (Ahmed *et al.* 2015b, Zhang *et al.* 2016). *Pseudochaetosphaeronema larense* se caracteriza por producir conidiomas picnidiales de cuello largo; células conidiógenas fialídicas, hialinas, de cilíndricas a subglobosas y conidios incoloros, de pared delgada, unicelulares, y de forma ovoide a cilíndrica (Fig. 23).

Figura 23. Pseudochaetosphaeronema larense (CBS 640.73). A. Conidiomas picnidiales a la lupa. B. Picnidio. C. Conidióforos y células conidiógenas. D. Conidios. Escala = 10 μm. Adaptado de Ahmed *et al.* (2014b).

1.3.4.8. Trematosphaeria grisea

Trematosphaeria grisea fue previamente clasificada como *Madurella grisea*, uno de los principales agentes productores de eumicetoma (Mackinnon *et al.* 1949), y sistemáticamente incapaz de fructificar *in vitro* (de Hoog *et al.* 2011). Sin embargo, esta especie ha sido reubicada en el género *Trematosphaeria* como una combinación nueva, después del análisis filogenético empleando varios marcadores moleculares (Ahmed *et al.* 2014b). Su distribución está todavía en entredicho, aunque parece ser más frecuente en zonas tropicales, habiendo sido colectada en Latinoamérica, Asia y Europa, tanto de origen clínico como de ambientes acuáticos.

Trematosphaeria grisea se caracteriza morfológicamente por desarrollar conidiomas picnidiales con setas de color marrón oscuro, en cuyo interior desarrollan conidióforos cortos; células conidiógenas fialídicas, hialinas, cilíndricas y conidios incoloros, de pared delgada, unicelulares, de forma cilíndrica a elipsoidal. Solo se ha observado fructificación en los aislados ambientales (Fig. 24).

Figura 24. Trematosphaeria grisea (CBS 120271). A. conidioma picnidial a la lupa. B. Picnidio. C. Conidióforos y células conidiógenas. D. Conidios. Escala: B = 20 μm. C-D = 10 μm. Adaptado de Ahmed *et al.* (2014b).

1.3.4.9. Tintelnotia destructans

Esta especie fue reportada en patología recientemente, habiendo sido aislada de muestras superficiales (uña y ojo). Su distribución está aparentemente restringida a Europa, con especímenes provenientes de Alemania, Finlandia, Holanda е Italia. Como características destacables del taxón, esta especie es capaz de crecer hasta los 40°C y formar picnidios dentro de la uña infectada (Ahmed et al. 2017). Morfológicamente está caracterizada por presentar conidiomas picnidiales con ostiolos (perforaciones apicales de la pared peridial) anchos; células conidiógenas fialídicas, hialinas y subglobosas y conidios incoloros inicialmente y marrón claro al madurar, de pared delgada, unicelulares y de forma elipsoidal (Fig. 25).

Figura 25. *Tintelnotia destructans* (CBS 127737). A. Conidiomas picnidiales a la lupa. B. Picnidio. C. Células conidiógenas. D. Conidios. Escala = 10 μm. Adaptado de Ahmed *et al.* (2017).

1.4. Sensibilidad antifúngica y tratamiento de las infecciones causadas por hongos celomicetos

El conocimiento sobre el tratamiento terapéutico de las infecciones causadas por los hongos celomicetos es aún muy limitado, debido principalmente a las características fisiológicas de estos hongos, tales como su lento crecimiento y su frecuente incapacidad de esporular *in vitro*, lo que hace inviable el poder evaluar su grado de sensibilidad frente a las diferentes drogas antifúngicas acorde a técnicas estándar (CLSI 2008, EUCAST 2008). El mecanismo de acción de los antifúngicos está enfocado en interaccionar con la integridad estructural o interferir en la biosíntesis de la membrana plasmática (alilaminas, azoles y polienos), de la pared celular (equinocandinas) y de la síntesis de ADN, ARN y proteínas (pirimidinas fluoradas) (Lewis 2011, Richardson & Warnock 2012).

Los antifúngicos poliénicos, aunque no son históricamente los primeros, son uno de los más antiguos, habiendo sido introducidos para tratar micosis entre los años 1950 y 1960. El más conocido y empleado de ellos es la anfotericina B, antifúngico de amplio espectro y de elección para el tratamiento de infecciones profundas o sistémicas. Sin embargo, es altamente nefrotóxico. La aparición en 1990 de una presentación liposomal redujo significativamente su toxicidad (Laniado-Laborín 2009, Al-Nakeeb *et al.* 2015). Para el tratamiento de infecciones superficiales puede emplearse otro polieno, la nistatina, que se aplica por vía tópica. La acción antifúngica de dichas substancias se basa en su capacidad de unión al ergosterol (principal esterol de la membrana plasmática de los hongos), lo que genera canales que alteran la permeabilidad de la membrana citoplasmática induciendo la muerte celular (Laniado-Laborín 2009, Ruiz-Camps & Cuenca-Estrella 2009).

Los antifúngicos azólicos son un grupo de fármacos sintéticos los cuales se han introducido en el mercado entre los años 1980 al 2015, se clasifican por el número de anillos azólicos (de uno a tres: azoles, imidazoles y triazoles). El mecanismo de acción se basa en la inhibición de la desmetilación del lanosterol de la membrana fúngica por medio del bloqueo de la enzima C14-alfa-desmetilasa (enzima responsable de la transformación del lanosterol en ergosterol) (Ananda-Rajah *et al.* 2012). Los azoles se encuentran indicados en el tratamiento tanto de las micosis superficiales como de las sistémicas. Los más utilizados en clínica son el fluconazol, itraconazol, voriconazol, posaconazol y el isavuconazol (Allen *et al.* 2015).

Las equinocandinas (lipopéptidos) fueron introducidos para el uso humano por primera vez en el 2001 (a pesar de que se desarrollaron a partir de 1974) con la caspofungina, al que posteriormente se le ha sumado la micafungina y la anidulafungina. El mecanismo de acción de estos antifúngicos se basa en inhibir la $1,3-\beta$ -D-glucano sintasa, la cual tiene por función formar polímeros de glucano, uno de los componentes principales de la pared celular del hongo, motivo por el cual estas drogas tienen un efecto fungicida, promoviendo la destrucción celular (Ferrer *et al.* 2013).

La flucitosina (una pirimidina fluorada) introducida en 1964, es un fármaco fungistático que penetra en el interior de la célula fúngica siendo metabolizado hasta producir ácido 5-fluoruradílico, el cual se incorpora en la cadena del ARN, ocasionando la consecuente inhibición del proceso de traducción a proteínas. Actualmente este antifúngico no se recomienda a menudo debido a que solo es efectivo contra las levaduras, es tóxico y tiende a seleccionar cepas resistentes (Gavalda & Ruiz 2003, Perfect *et al.* 2010). Otros antifúngicos, como la terbinafina (alilamina) presentan un efecto antifúngico debido al bloqueo de la ruta biosintética del ergosterol por inhibición de la escualeno epoxidasa, tiene un efecto fungicida (Carrillo-Muñoz *et al.* 1999).

De todos los antifúngicos antes mencionados, muy pocos estudios existen de ellos comprobando su efectividad frente a los hongos celomicetos, y en la mayoría de casos son solo refractarios a algunos de ellos y con un número reducido de aislados de una especie determinada. También esto se puede deber a que los reportes de casos son esporádicos, y porque son difíciles de trabajar en el laboratorio de rutina. Uno de los escasos trabajos sobre la sensibilidad *in vitro* de los celomicetos frente a los antifúngicos corresponden a Sutton (1999), en el que se demuestra que la mayoría de los celomicetos eran susceptibles a la anfotericina B, y que existían algunas cepas resistentes. Posteriormente, el estudio realizado por Stchigel y Sutton (2013) llegaron a una conclusión similar, indicando que la mayoría de los celomicetos son sensibles a la angotría de los géneros *Paraconiothyrium, Phoma* y *Pyrenochaeta* fueron resistentes a la anfotericina B, que la mayor resistencia fue observada frente a las equinocandinas. Sin embargo, no se puede extrapolar estos resultados a todos los celomicetos, debido a que existe una gran diversidad de especies.

Finalmente, a pesar del escaso número de trabajos sobre la sensibilidad antifúngica y de que no existen valores de corte epidemiológicos para los hongos celomicetos, algunos autores han tratado de establecer guías para el tratamiento de sus infecciones, el cual consiste principalmente en administrar antifúngicos del tipo triazoles (como el voriconazol), y en menor medida la anfotericina B, junto a la remoción del tejido infectado mediante desbridamiento quirúrgico (Chowdhary *et al.* 2014, Guégan *et al.* 2016).

2. INTERÉS Y OBJETIVOS

En las últimas tres décadas la micología médica ha dedicado un especial interés a los hongos patógenos oportunistas, los cuales ocasionan un amplio rango de patologías infecciosas, principalmente en individuos inmunocomprometidos, lo cual determina que dichas infecciones sean a menudo difíciles de tratar y, por dicho motivo, tengan una alta mortalidad asociada. Dichos hongos, tradicionalmente considerados meros contaminantes de laboratorio e inofensivos para el hombre, constituyen actualmente un nuevo motivo de preocupación para la salud pública. A pesar de que los hongos celomicetos se aíslan con cierta frecuencia de especímenes clínicos, se desconoce la incidencia real de sus especies cómo agentes infecciosos para el hombre. Solo un estudio pormenorizado de un gran número de aislados, su correcta identificación y el establecimiento de patrones de sensibilidad antifúngica nos permitirá en el futuro realizar un diagnóstico más preciso de las infecciones causadas por este grupo de hongos y, a su vez, aplicar un tratamiento antifúngico eficaz, el cuál será decisivo para la supervivencia del paciente. Los hongos celomicetos representan un serio reto en cuanto a su identificación en el laboratorio microbiológico clínico, debido (en parte) a la similitud morfológica entre ellos, a su lento crecimiento en los medios de cultivo, y porque muchos de los aislados permanecen estériles por un largo período de tiempo o de forma permanente, siendo necesario recurrir a técnicas moleculares para poder identificarlos y, eventualmente, emitir un diagnóstico.

Las especies de hongos celomicetos implicados en infecciones humanas pertenecen mayoritariamente a los géneros *Colletotrichum*, *Lasiodiplodia*, *Medicopsis* y *Neoscytalidium*. Sin embargo, el número de taxones reportados como patógenos oportunistas crece año tras año, de forma paralela a la incorporación de las técnicas moleculares en el laboratorio clínico empleadas para su identificación.

Por lo antes expuesto, el objetivo general de la presente tesis doctoral es:

- Determinar el espectro de especies y géneros de hongos celomicetos que producen infecciones oportunistas en humanos, contribuyendo al esclarecimiento de su taxonomía y filogenia, así como determinar sus patrones de sensibilidad antifúngica *in vitro*, con la finalidad de poder instaurar un tratamiento terapéutico eficaz.

Por dicho motivo, los objetivos específicos son:

1. Caracterizar fenotípicamente un gran número de aislados clínicos de los hongos de interés.

2. Obtener las secuencias nucleotídicas de la región ITS y de los dominios D1 y D3 del gen 28S del ARN ribosómico nuclear, y de fragmentos de otros genes estructurales (β -tubulina, factor de elongación 1- α , *rpb*2, etc.) de los aislados clínicos en estudio.

3. Comparar los caracteres fenotípicos y genotípicos de los aislados clínicos con aquellos correspondientes a las cepas tipo o de referencia de hongos celomicetos previamente descritos, para establecer sus relaciones filogenéticas y su ubicación taxonómica, proponiendo una metodología eficaz para su correcta identificación.

4. Determinar la sensibilidad *in vitro* de los aislados identificados frente a los antifúngicos existentes actualmente en el mercado.

3. MATERIALES Y MÉTODOS

3.1. Origen de los aislados

En la presente tesis se han estudiado un total de 452 aislados, de los cuales 330 fueron obtenidos a partir de especímenes clínicos (Anexo, Tabla 1) y 122 eran de origen ambiental (Anexo, Tabla 2), incluyendo un importante número de cepas tipo y de referencia obtenidas de colecciones de cultivos internacionales. Los aislados clínicos fueron facilitados mayoritariamente por el *Fungus Testing Laboratory*, *University of Texas Health Science Center* (UTHSC, San Antonio, Estados Unidos de Norteamérica), el *Institut Pasteur* (CNRMA, *Centre National de Réfeirence Mycoses Invasives et Antifongiques*, Paris, Francia) y la colección del *Centro Nacional de Microbiología del Instituto de Salud Carlos III* (CNM-CM, Madrid, España). Las cepas tipo y de referencia se obtuvieron principalmente de la colección del *Westerdijk Fungal Biodiversity Institute* (antiguo CBS-KNAW, Utrecht, Países Bajos), la *International Collection of Microorganisms from Plants* (ICMP, Auckland, Nueva Zelanda) y la *American Type Culture Collection* (ATCC, Virginia, Estados Unidos de Norteamérica). Todas ellas son instituciones de referencia e importancia internacional, con las que la Unidad de Micrología y Microbiología Ambiental viene colaborando desde hace más de tres décadas.

3.2. Identificación

Los aislados se identificaron a partir de la caracterización morfológica de sus colonias y de sus estructuras vegetativas y reproductivas, tanto a nivel macro- como microscópico, su habilidad para crecer a diferentes temperaturas y mediante el análisis de secuencias de diferentes marcadores moleculares.

3.2.1. Estudio morfológico

Para la determinación de las características morfológicas se utilizaron diferentes medios de cultivo, basados principalmente en estudios previos realizados por Boerema y co-autores (2004). Los medios de cultivo utilizados y su composición o procedencia se detallan a continuación: agar con extracto de malta (MEA; 40 g de extracto de malta, 15 g de agar-agar, 1000 mL de agua destilada), agar con harina de avena (OA; 30 g de copos de avena hervidos en 500 mL de agua durante 15 a 20 minutos, y filtrados tras la ebullición, 6.5 g de agar-agar; completar con agua del grifo hasta volumen final de 1000 mL), agar con extracto de patata y glucosa (PDA; *Pronadisa*, Madrid, España). Para inducir la producción de conidiomas y la esporulación, las cepas fúngicas se sembraron en agar agua con hojas

de clavel (CLA; trozos de hojas de clavel esterilizados en autoclave [en condiciones estándar] tres veces en días alternos, y posteriormente mezclados con 15 g de agar-agar disueltos en 1000 mL de agua destillada) bajo la exposición a la luz ultravioleta (12 horas luz, 12 horas oscuridad) (Fisher et al. 1982, Crous et al. 2009, Su et al. 2012). Los cultivos fueron examinados a los 7 y 14 días, midiendo el diámetro de las colonias, describiendo su textura y topología, así como documentando el color de la superficie y el reverso y, de existir, del pigmento difusible acorde a los patrones descritos en Kornerup y Wanscher (1978). En los casos en que las cepas eran incapaces de producir conidiomas fértiles dentro del período de las dos semanas, sus colonias fueron examinadas semanalmente durante un período total de 2 a 3 meses hasta corroborar (o no) la aparición de dichas estructuras. Para documentar el tamaño, el color, la ornamentación, la presencia y número de septos, etc., de las estructuras vegetativas (hifas, apresorios, clamidosporas) y reproductivas (conidiomas, conidióforos y/o células conidiógenas, y conidios) se realizaron preparaciones semipermanentes utilizando diversos líquidos de montaje (ácido láctico al 85%; medio de Shear: 3 g de acetato de potasio, 150 mL de agua destilada, 60 mL de glicerina, 90 mL etanol 95 %), colocando sobre una gota de los mismos el material fúngico de interés, entre porta- y cubreobjetos con la ayuda de jeringuillas tipo tuberculina con su correspondiente aguja (Crous et al. 2009). Los cortes histológicos de los conidiomas, con la finalidad de poder caracterizar y documentar gráficamente su estructura y la relación anatómica entre conidióforos/células conidiógenas y conidios, se realizaron a "mano alzada" cogiendo uno o varios cuerpos fructíferos (picnidios) de la colonia con ayuda de dos agujas estériles y cortándolo con una hoja de bisturí médico clásico tipo Bard-Parker número 3 con hojas Nº 10 ó 11 de preferencia. El examen microscópico y la medición de las mencionadas estructuras se utilizó mediante un microscopio de campo claro Olympus CH-2 (Olympus Corporation, Japón). Las microfotografías se obtuvieron con un microscopio Zeiss Axio-Imager M1 (Zeiss, Alemania), provisto de una cámara digital DeltaPix Infinity X21, utilizando condensador de contraste de fases y de contraste por interferencia diferencial de Nomarski, procesando las imágenes mediante el software DeltaPix InSight 5.0 (DeltaPix, Dinamarca).

3.2.2. Determinación de los rangos de temperaturas de crecimiento

Para determinar la capacidad de las cepas en estudio de crecer a diferentes temperaturas de incubación y el efecto de estas sobre la tasa de crecimiento, se utilizaron placas de Petri de 9-10 cm de diámetro con medio PDA, y una vez inoculadas en su parte central con la cepa de interés se incubaron a diferentes temperaturas en un rango de 5 a 37°C, a intervalos de 5°C (con excepción de los 37°C). Las placas se examinaban a los 7

días de incubación por un máximo de 14 días. Finalmente se consideraba como óptima, aquella temperatura en la que se obtenía una mayor tasa de crecimiento (como diámetro colonial medido en milímetros).

3.3. Identificación molecular

Debido a que muchos de los taxones estudiados en la presente tesis eran morfológicamente similares entre sí, fue imprescindible realizar estudios filogenéticos para su correcta identificación. Para ello, las cepas de interés fueron caracterizadas a nivel molecular mediante la amplificación por PCR y secuenciación de diversos marcadores filogenéticamente informativos. Las secuencias nucleotídicas generadas fueron comparadas con las pertenecientes a cepas tipo y/o de referencia de las especies filogenéticamente próximas disponibles en las bases de datos públicas.

3.3.1. Extracción del ADN

Para la obtención del ADN genómico total, las cepas de interés fueron sembradas en placas de Petri de 9-10 cm de diámetro conteniendo PDA, o en algunos casos OA. Transcurridos 5-14 días de incubación en las condiciones ambientales previamente mencionadas, se extraía el micelio aéreo y las estructuras de fructificación mediante raspado con hoja de bisturí estéril. El ADN fúngico se obtuvo mediante el kit FastDNA® kit (*MP Biomedicals*, EE.UU.), siguiendo las instrucciones del fabricante. El ADN obtenido se cuantificó mediante el uso de NanoDrop 3000 (*ThermoScientific*, EE.UU.).

3.3.2. Amplificación y secuenciación

Mediante PCR se amplificaron diversos genes o fragmentos de los mismos, en dependencia del tipo de taxón a caracterizar, los cuales se detallan en las secciones Resultados y Anexos (Tabla 3).

La reacción de amplificación se realizó en un volumen total de 25 μ L, los que contenían 5 μ L de 10× PCR Buffer, 0.2mM dNTPs, 0.5 μ M de cada cebador, 1 U *Taq* ADN Polimerasa (*Invitrogen,* California, EE.UU.) y 1–10 ng de ADN genómico. El programa de amplificación utilizado para todos los genes consistió en una desnaturalización inicial a 94°C durante 5

minutos, seguido de 30–35 ciclos de desnaturalización a 95°C durante 30 segundos, hibridación entre 53–57°C desde 45 segundos a 1 minuto y 20 segundos (el tiempo y la temperatura dependían de los cebadores utilizados, según se detalla en Anexos, Tabla 3), extensión a 72°C por 1 minuto a 1 minuto y 30 segundos, y una extensión final a 72°C por 4–7 minutos. Para ello se utilizaron los termocicladores 2720 thermal cycler (*Applied Biosystems,* EE.UU.) y Biometra TProfessional Basic Gradient Thermocycler (*Analytic Jena,* Alemania). Para corroborar la efectividad de la amplificación, los productos se sometieron a electroforesis en geles de agarosa al 1 ó 1,2% p/v. Los productos (amplicones) se enviaron para su purificación y secuenciación a Macrogen Corp. Europe (Ámsterdam, Holanda) utilizando los mismos pares de cebadores empleados para su amplificación.

3.3.3. Ensamblaje de las secuencias

Las secuencias nucleotídicas obtenidas se revisaron visualmente para determinar su calidad y fueron ensambladas para obtener la secuencia consenso utilizando el programa SeqMan versión 7.0.0 (*DNASTAR Lasergene*, EE.UU.). Las secuencias generadas en la presente tesis fueron depositadas en las bases de datos European Nucleotide Archive (<u>http://www.ebi.ac.uk/ena</u>) y GenBank (<u>http://www.ncbi.nlm.nih.gov/genbank</u>).

3.3.4. Búsquedas de identidad mediante secuencias nucleotídicas

La identificación preliminar de los aislados se realizó mediante la determinación del grado de similitud genética con secuencias disponibles en bases de datos públicas, tales como la del CBS (www.westerdijkinstitute.nl), del GenBank (www.ncbi.nlm.nih.gov/genbank), y la del Q-Bank (www.q-bank.eu). Para la identificación presuntiva de las cepas de interés a nivel de especie se consideraron aquellas provenientes de cepas tipo o de referencias de colecciones internacionales cuyas secuencias mostraran una identidad ≥98% y una cobertura ≥99%. En el caso de obtener resultados porcentualmente inferiores a los previamente mencionados, se consideró como una identificación parcial, a nivel de género, familia u orden, según correspondiera.

3.3.5. Alineamiento de las secuencias

Las secuencias nucleotídicas de los diferentes genes amplificados se alinearon individualmente, incluyendo aquellas secuencias descargadas desde bases de datos públicas, utilizando los programas ClustalW (Thompson *et al.* 1994) o MUSCLE (Edgar 2004) incorporados en la plataforma MEGA versión 6.06 (Tamura *et al.* 2013), finalmente se procedió a una verificación visual de los mismos para detectar posibles errores de alineamiento. Para la obtención de una mayor resolución en los resultados de los análisis filogenéticos, cada estudio se realizó utilizando una o más combinaciones de los genes seleccionados (p. ej. LSU-ITS-*tub2-rpb2*), dependiendo de la capacidad resolutiva de cada uno de ellos, la disponibilidad de secuencias y la concordancia entre las topologías de los árboles obtenidos tras el análisis filogenético de cada gen individual o concatenado.

Para evaluar la congruencia filogenética entre los diferentes genes de una cepa, se empleó el test de homogeneidad de particiones (*partition-homogeinity test*) mediante el software PAUP* versión 4.0b10 (*Sinauer,* EE.UU.) (Swofford 2000), o basados en filogenias previas de otros autores (Aveskamp *et al.* 2010, de Gruyter *et al.* 2013, Chen *et al.* 2015).

3.3.6. Análisis filogenéticos

La reconstrucción filogenética para cada gen, y las combinaciones de los diversos genes, se llevaron a cabo utilizando principalmente dos tipos de inferencia filogenética: máxima verosimilitud (ML) y análisis bayesiano (BI).

El análisis de ML se llevó a cabo utilizando el software MEGA 6 o la plataforma CIPRES (Miller *et al.* 2012). Los espacios presentes en los alineamientos se trataron como deleciones parciales y la robustez de las ramas se determinó mediante el método de *bootstrap*, utilizando 1.000 iteraciones. Un valor de *bootstrap* ≥70% se consideró como estadísticamente significativo.

Los análisis de BI se llevaron a cabo utilizando el software MrBayes versión 3.2.6 (Ronquist *et al.* 2012). Para ello, se realizaron simulaciones de entre 5.000.000 a 40.000.000 generaciones, en dos series paralelas, almacenando los árboles resultantes cada 100 ó 1.000 generaciones. El análisis se detenía al obtenerse la convergencia de valores estadísticos para ambas series (varianza < 0,01). Se eliminó el 25% de los primeros árboles obtenidos (burnin) para posteriormente calcular el árbol consenso final (50%).

Para la selección del modelo de sustitución nucleotídica más apropiado para cada gen se utilizó la herramienta Find Best DNA/Protein Model incluida en MEGA 6, y para las filogenias más extensas se utilizó el software MrModelTest versión 2.3 (Nylander 2004).

3.4. Registro de novedades taxonómicas

Todas las novedades taxonómicas propuestas (nuevas combinaciones, especies, géneros y familias) en los diferentes estudios fueron depositadas en el MycoBank (<u>www.mycobank.org</u>; Crous *et al.* 2004).

3.5. Almacenamiento y conservación de las cepas en colecciones de cultivos microbianos

Todos los aislados recibidos de los diferentes laboratorios de referencia o de las colecciones internacionales de cultivos microbianos se depositaron en la colección de cultivos fúngicos de la Facultad de Medicina de Reus (FMR), y se conservaron utilizando tres metodologías diferentes:

<u>1.- Almacenamiento en agua</u>: a partir de las colonias del hongo crecidas en placas de Petri con OA, se cortaron de 3–4 bloques del medio de cultivo de aproximadamente 1 cm², con ayuda de un bisturí estéril. Posteriormente, los fragmentos se introdujeron en dos frascos de vidrio estériles conteniendo 2–3 mL de agua destilada estéril c/u, y se guardaron en la oscuridad a temperatura ambiente (aproximadamente 20 ± 1 °C)

<u>2.- Almacenamiento en aceite mineral</u>: se usaron tres tubos de vidrio de 10 cm de longitud con agar inclinado en "pico de flauta" (dos de OA y uno de PDA), provistos de un tapón con cierre hermético. Una vez inoculada la cepa y obtenido suficiente crecimiento, se cubrió con aceite mineral estéril y se guardaron los tubos en oscuridad a temperatura ambiente.

<u>3.-</u> Almacenamiento liofilizado: las cepas se cultivaron en placas de Petri con OA, y una vez crecidas las colonias se retiró material de las mismas con la ayuda de un asa o bisturí estéril. La masa de elementos fúngicos así obtenida se depositó en un tubo de plástico estéril con 3 mL de *skim milk* (Difco, EE.UU.). Ésta suspensión se homogenizó mediante agitación y se distribuyó en fracciones de 1–1,5 mL en tres frascos pequeños de vidrio estériles provistos de tapón de caucho de cierre hermético. Los frascos se liofilizaron mediante el

sistema automatizado VirTis Advantage 2.0 ES (*SP Scientific*, EE.UU.), utilizando el siguiente protocolo: congelación inicial a -45°C seguido de generación de vacío a 200 mTorr, desecación por sublimación a -30°C (240 minutos), -10°C (240 minutos), 10°C (300 minutos) y 30°C (300 minutos). Una vez finalizado el proceso de liofilización, los frascos fueron cerrados herméticamente mediante tapón de caucho y sellados con un anillo de seguridad metálico. Para comprobar la viabilidad y la ausencia de contaminación de las muestras, el producto liofilizado de uno o más viales seleccionados al azar se resembraron en un medio de cultivo apropiado, evaluándose macro- y microscópicamente tanto la viabilidad del hongo como la pureza del cultivo.

<u>4.- Almacenamiento en herbario</u>: para ello, las colonias del aislamiento primario de los nuevos taxones fúngicos que evidenciaron fructificación/esporulación fueron seleccionadas como material tipo. Dicho material fue desecado en una estufa de cultivo a 45–50 °C, y posteriormente fue depositado en el herbario de la colección del CBS.

3.6. Estudios de sensibilidad antifúngica

Se determinó el patrón de sensibilidad antifúngica para un gran número de los aislados clínicos de las especies identificadas (85 cepas), siguiendo el protocolo descrito por el *Clinical* & *Laboratory Standards Institute* en el documento M38-A2 (CLSI 2008).

La sensibilidad de varias cepas pertenecientes a los géneros *Colletotrichum*, *Diaporthe*, *Didymella*, *Epicoccum*, *Neoascochyta*, *Neoscytalidium*, *Paraconiothyrium*, *Phoma* y *Pyrenochaetopsis* fue evaluada frente a la acción de los antifúngicos terbinafina (TRB), itraconazol (ITC), posaconazol (PSC), voriconazol (VRC), anidulafungina (AFG), caspofungina (CFG), micafungina (MFG), 5-fluorcitosina (5FC) y anfotericina B (AMB). El rango de concentraciones ensayadas para cada antifúngico varió entre 0,016 a 16 µg/mL.

Las cepas estudiadas se sembraron en OA en condiciones estándar hasta conseguir esporulación. Sin embargo, en algunos casos no se obtuvieron conidios, por lo cual se siguió un protocolo para hongos filamentosos estériles, para la obtención de un inóculo por suspensión de fragmentos de sus hifas (Chowdhary *et al.* 2013). En estos casos, la superficie de las colonias se raspó con la ayuda de un asa o bisturí estéril, suspendiendo la masa fúngica obtenida en solución fisiológica estéril, la cual fue posteriormente filtrada mediante una gasa o algodón estéril para eliminar los restos de micelio. Las suspensiones de conidios fueron cuantificadas mediante lectura en cámara de Neubauer, ajustadas a una concentración de 4 x $10^5 - 5 x 10^6$ conidios/mL y luego diluidas 1:50 en medio de Roswell Park Memorial Institute

(RPMI-1640, Gibco, Reino Unido). En una microplaca de 96 pocillos, se inocularon 100 μL del inóculo para cada dilución del antifúngico a ensayar. Las microplacas fueron incubadas en la oscuridad, sin agitación, durante 24 a 72 horas a 30°C.

La lectura de la sensibilidad frente a equinocandinas se realizó a las 24 ó 48 horas de incubación, determinando la concentración mínima eficaz (CME), definida como la mínima concentración de antifúngico en la cual se observa un crecimiento aberrante de las hifas del hongo, caracterizado por masas compactas, formadas por elementos miceliares estrellados. Para la lectura de la sensibilidad frente al resto de antifúngicos, se determinó la concentración mínima inhibitoria (CMI) a las 48 y 72 horas de incubación. Se definió la CMI como la mínima concentración de antifúngico capaz de conseguir el 100% de inhibición del crecimiento de hongo para AMB, ITC, PSC y VRC, el 80% de inhibición para TRB y el 50% de inhibición en el caso de 5FC. Todas las pruebas se realizaron por duplicado y la lectura se llevó a cabo de forma visual, con ayuda de un espejo invertido. Para el control de calidad de las pruebas se utilizaron las cepas de *Aspergillus fumigatus* ATCC MYA-3626 y *Paecilomyces variotii* ATCC MYA-3630.

4. RESULTADOS

Estudios de los aislados clínicos provenientes de los

Estados Unidos de Norteamérica

4.1. Coelomycetous fungi in the clinical setting: Morphological convergence and cryptic diversity

Nicomedes Valenzuela-Lopez,^{a,b} Deanna A. Sutton,^c José F. Cano-Lira,^a Katihuska Paredes,^a Nathan Wiederhold,^c Josep Guarro,^a Alberto M. Stchigel^a

^aUnitat de Micologia, Facultat de Medicina i Ciències de la Salut and IISPV, Universitat Rovira i Virgili, Reus,Spain; ^bMicrobiology Unit, Medical Technology Department, Faculty of Health Science, University of Antofagasta, Antofagasta, Chile; ^cFungus Testing Laboratory, University of Texas Health Science Center, San Antonio, Texas, USA.

Publicado en: Journal of Clinical Microbiology 2017; 55: 552–567.

MYCOLOGY

Coelomycetous Fungi in the Clinical Setting: Morphological Convergence and Cryptic Diversity

Nicomedes Valenzuela-Lopez,^{a,b} Deanna A. Sutton,^c José F. Cano-Lira,^a Katihuska Paredes,^a Nathan Wiederhold,^c Josep Guarro,^a Alberto M. Stchigel^a

Unitat de Micologia, Facultat de Medicina i Ciències de la Salut and IISPV, Universitat Rovira i Virgili, Reus, Spain^a; Microbiology Unit, Medical Technology Department, Faculty of Health Science, University of Antofagasta, Antofagasta, Chile^b; Fungus Testing Laboratory, University of Texas Health Science Center, San Antonio, Texas, USA^c

ABSTRACT Human infections by coelomycetous fungi are becoming more frequent and range from superficial to systemic dissemination. Traumatic implantation of contaminated plant material is the most common cause. The typical morphological feature of these fungi is the production of asexual spores (conidia) within fruiting bodies called conidiomata. This study aimed to determine the distribution of the coelomycetes in clinical samples by a phenotypic and molecular study of a large set of isolates received from a U.S. reference mycological institution and by obtaining the in vitro antifungal susceptibility pattern of nine antifungals against a selected group of isolates. A total of 230 isolates were identified by sequencing the D1 and D2 domains of the large subunit (LSU) nuclear ribosomal RNA (nrRNA) gene and by morphological characterization. Eleven orders of the phylum Ascomycota were identified: Pleosporales (the largest group; 66.1%), Botryosphaeriales (19.57%), Glomerellales (4.35%), Diaporthales (3.48%), Xylariales (2.17%), Hysteriales and Valsariales (0.87%), and Capnodiales, Helotiales, Hypocreales and Magnaporthales (0.43% each). The most prevalent species were *Neoscytalidium dimidiatum*, *Paraconiothyrium* spp., Phoma herbarum, Didymella heteroderae, and Epicoccum sorghinum. The most common anatomical site of isolation was superficial tissue (66.5%), followed by the respiratory tract (17.4%). Most of the isolates tested were susceptible to the majority of antifungals, and only flucytosine showed poor antifungal activity.

KEYWORDS *Colletotrichum*, coelomycetous fungi, coelomycetes, mycosis, *Neoscytalidium*, *Phoma*, *Pyrenochaeta*, antifungal susceptibility

The coelomycetous fungi constitute a large number of taxa characterized by the production of conidia (asexual propagules) within a cavity lined by fungal or host tissue, called conidiomata (1), and although the majority of the human-opportunistic infections are caused by fungi producing conidia on conidiophores (modified hyphae, with one or more conidiogenous cells, which develop free on the substrate), a significant number of mycoses are produced by coelomycetous fungi (2–4). Coelomycetous fungi are mostly saprobic and parasites of terrestrial vascular plants, but they can also infect vertebrates and other fungi. They are ubiquitous in soil, in salty and freshwater environments, and in sewage (4). Although the term *Coelomycetes* is still occasionally used to refer to these fungi, this name is obsolete and is currently considered to refer to an artificial fungal class. The class *Coelomycetes* is defined in terms of the morphological characterization of the asexual reproductive structures and considers the type and the shape of their conidiomata and the ontogeny of their conidia as the most useful characteristics (5, 6); the class has traditionally been divided into the orders *Melanconiales* and *Sphaeropsidales*, depending upon the production of either acervular

Received 2 November 2016 Returned for modification 21 November 2016 Accepted 29 November 2016

Accepted manuscript posted online 7 December 2016

Citation Valenzuela-Lopez N, Sutton DA, Cano-Lira JF, Paredes K, Wiederhold N, Guarro J, Stchigel AM. 2017. Coelomycetous fungi in the clinical setting: morphological convergence and cryptic diversity. J Clin Microbiol 55:552–567. https://doi.org/ 10.1128/JCM.02221-16.

Editor David W. Warnock, University of Manchester

Copyright © 2017 American Society for Microbiology. All Rights Reserved. Address correspondence to José F. Cano-Lira,

Address correspondence to Jose F. Cano-Lira, jose.cano@urv.cat.

Coelomycetous Fungi of Clinical Origin

FIG 1 Distribution, by orders, of coelomycetous fungus isolates from clinical samples.

(cup-shaped) and pycnidial (globose to pyriform) conidiomata, respectively, and the *Pycnothyriales*, characterized by the production of pycnothyrial (shield-shaped, flattened, or hemispherical) conidiomata (5, 6). However, molecular studies have demonstrated that the taxonomy of the *Coelomycetes*, represented by nearly 1,000 genera and 7,000 species (1), is artificial. Recent studies, have distributed the coelomycetes into at least three classes of the phylum *Ascomycota*, i.e., *Dothideomycetes*, *Leotiomycetes*, and *Sordariomycetes* (7–9).

Infections by coelomycetous fungi are mostly acquired by traumatic implantation of plant/woody material or soil particles contaminated by their conidia rather than by inhalation of air-dispersed propagules (2, 4). The coelomycetes are responsible for a large variety of clinical entities, such as dermatitis, onychomycosis, keratitis, endoph-thalmitis, subcutaneous phaeohyphomycosis, cysts, mycetoma, sinusitis, osteomyelitis, bursitis, brain abscesses, and disseminated infections (4). The appropriate treatment of the infections produced by these fungi is unknown, mainly due to the wide spectrum of taxa involved and to the difficulties in their identification when the typical reproductive structures are not produced. However, the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) and the European Conference of Medical Mycology (ECMM) have provided joint clinical guidelines for the management of phaeohyphomycosis, with some recommendations for the treatment of infections due to the most usual genera of coelomycetes, such as *Neoscytalidium, Phoma*, and *Pyrenochaeta*, mainly based on the use of amphotericin B and triazoles (10).

For the reasons mentioned above, the spectrum of species of these fungi in the clinical setting is practically unknown (4, 11). Therefore, the objective of this study has been to determine the distribution pattern of the coelomycetous fungi isolated from clinical specimens from the United States using molecular identification of a large set of isolates based on the sequencing of the D1 and D2 (D1-D2) domains of the large subunit (LSU) of the nuclear ribosomal RNA (nrRNA) gene. In addition, we have characterized those isolates morphologically and determined the antifungal susceptibility of a representative number of them to nine antifungal drugs.

RESULTS

A total of 86 (38%) isolates of the 230 studied were able to produce pycnidial conidiomata; 10 (4%) developed acervuli, and 35 (15%) produced the typical anamorphs of *Neoscytalidium*. The other 99 isolates (43%) remained sterile. The most common species was *Neoscytalidium dimidiatum*, representing 15% (35/230) of the isolates, followed by *Paraconiothyrium cyclothyrioides* with 7% (16/230), and both were isolated mostly from superficial tissues. The third most common taxon recovered was

Valenzuela-Lopez et al.

0.96/	UTHSC D116-306 (LN907449) UTHSC D116-307 (LN907450) UTHSC D116-302 (LN90745) UTHSC D116-284 (LN90745) UTHSC D116-282 (LN90737) UTHSC D116-282 (LN907398) UTHSC D116-282 (LN907355) UTHSC D116-205 (LN907348) UTHSC D116-205 (LN907348) UTHSC D116-206 (LN907347) UTHSC D116-206 (LN907342) UTHSC D116-308 (LN907342) UTHSC D116-308 (LN907451) UTHSC D116-308 (LN907451) UTHSC D116-308 (LN907508) Phoma herbarum CBS 615.75 (EU754186) UTHSC D116-276 (LN880537) Leptosphaerulina australis CBS 317.83 (EU754166) UTHSC D116-233 (LN907376) UTHSC D116-232 (LN907455) UTHSC D116-233 (LN907376) UTHSC D116-235 (LN907458) UTHSC D116-236 (LN907373) UTHSC D116-237 (LN907428) UTHSC D116-237 (LN9074745) UTHSC D116-237 (LN907421) UTHSC D116-271 (LN907415) UTHSC D116-271 (LN907415) UTHSC D116-278 (LN907421) UTHSC D116-278 (LN907421)	Phoma clade I	
0.9	101 HSC D116-239 (LN907482) 101 HSC D116-345 (LN907482) Epicoccum sorghinum CBS 179.80 (GU237978) UTHSC D116-338 (LN907481) UTHSC D116-338 (LN907481) UTHSC D116-338 (LN907481) UTHSC D116-280 (LN907444) UTHSC D116-280 (LN907423) UTHSC D116-2626 (LN907400) UTHSC D116-206 (LN907345) UTHSC D116-201 (LN907345) UTHSC D116-210 (LN907345) UTHSC D116-210 (LN907345) UTHSC D116-210 (LN907345) UTHSC D116-211 (LN907354) UTHSC D116-224 (LN907370) UTHSC D116-223 (LN907370) UTHSC D116-223 (LN907374) UTHSC D116-233 (LN907375) UTHSC D116-234 (LN907377) UTHSC D116-235 (LN907378) UTHSC D116-236 (LN907417) UTHSC D116-236 (LN907478) UTHSC D116-274 (LN907417) UTHSC D116-274 (LN907417) UTHSC D116-275 (LN907418) UTHSC D116-276 (LN907417) UTHSC D116-270 (LN907413)	<i>Didymella</i> clade Phoma clade II	Pleosporales
97/- -/86 97/- -/86 99/34	UTHSC D16-291 (LN907413) Ascochyta hordei var. hordei CBS 544.74 (EU754134) Neoascochyta desmazieri CBS 297.69 ^T (KT389726) UTHSC D116-202 (LN907463) UTHSC D116-323 (LN907475) UTHSC D116-323 (LN9074784) UTHSC D116-352 (LN907452) UTHSC D116-359 (LN907502) UTHSC D116-290 (LN907353) Paraphoma radicina CBS 117.79 ^T (KF251676) UTHSC D116-290 (LN907353) Trematophoma sp. CBS 157.86 (EU754221) UTHSC D116-296 (LN907439) Paraphoma fimeti CBS 170.70 ^T (KF251674) UTHSC D116-264 (LN907467) UTHSC D16-264 (LN907467) UTHSC D16-264 (LN907403) Fdenia gomezpompae CBS 124106 ^T (FJ839654) Pleospore berharum CBS 191 86 ^T (GLI238160)	Neoascochyta clade Paraphoma clade Pleospora clade	
$\downarrow \downarrow$		0.05	

FIG 2 Maximum-likelihood tree obtained from the D1-D2 of LSU (555 bp) sequences of the 322 strains, where 92 strains are type or reference strains. In the tree, the branch lengths are proportional to phylogenetic distance. Bayesian posterior probability scores of \geq 0.95 and bootstrap support values of \geq 70 are indicated on the nodes. The GenBank accession numbers are given in parentheses. *Saccharomyces castellii* and *S. cerevisiae* were used to root the tree. The type (indicated by a superscript T) and reference strains are shown in bold type.

Coelomycetous Fungi of Clinical Origin

FIG 2 (Continued)

Phoma herbarum (6.5%, 15/230) from superficial and respiratory tract specimens, followed by *Didymella heteroderae* (5%, 12/230) and *Epicoccum sorghinum* (4%, 10/230), which were isolated from superficial tissues.

In the D1-D2 phylogenetic analysis, the isolates were distributed into 11 orders (Fig. 1), most of which belonged to the *Pleosporales* (66.1%) and the *Botryosphaeriales*

FIG 2 (Continued)

Valenzuela-Lopez et al.

(19.57%), followed by the *Glomerellales* (4.35%), *Diaporthales* (3.48%), *Xylariales* (2.17%), and *Hysteriales* and *Valsariales* (0.87% each). The orders *Capnodiales*, *Helotiales*, *Hypocreales*, and *Magnaporthales* were represented by only one isolate each (0.43%), and the other isolates (0.87%) were *incertae sedis* (of uncertain taxonomic position).

Figure 2 shows the phylogenetic tree inferred from the analysis of 322 D1-D2 sequences corresponding to our set of isolates and numerous selected type or reference strains phylogenetically related to them. As mentioned above, the *Pleosporales* contained the largest number of isolates (n = 152), which were distributed into 22 clades and belonged, probably, to 61 species of 44 different genera. These clades have been named according to the first taxon historically described.

Within the *Pleosporales*, *Phoma* clade I (phylogenetically not supported) included 27 isolates, distributed mainly in two genera: *Leptosphaerulina*, with four isolates characterized by a phoma-like asexual morph, which clustered with a reference strain of *Leptosphaerulina australis*, and *Phoma*, with 15 isolates placed close to a reference strain of *Phoma herbarum* and morphologically characterized by producing pycnidia and hyaline aseptate conidia. The taxonomic position of the other eight isolates of this clade was unresolved; in fact, they formed a separate, unsupported sister clade and displayed a phoma-like asexual morph. The University of Texas Health Science Center (UTHSC) isolate DI16-270 also showed the typical morphology of *Phoma (Phoma* clade II) but has been placed phylogenetically distant from the mentioned genera and probably belongs to a new genus.

The *Didymella* clade included 22 isolates, 10 of which clustered with a reference strain of *Epicoccum sorghinum*; unfortunately, the morphological features of these isolates could not be studied because they produced only sterile mycelia in all the culture media tested. Twelve isolates grouped with the type strain of *Didymella heteroderae*, producing a phoma-like asexual morph, but were particularly characterized by the production of chlamydospores in long chains.

The *Neoascochyta* clade included seven isolates, six clustering with the type strain of *Neascochyta desmazieri* and another one placed together with a reference strain of *Ascochyta hordei* var. *hordei*. Morphologically, the species of this clade are mainly characterized by the production of one-septate conidia that vary in size.

The *Paraphoma* clade contained only one isolate, which showed an identical sequence to the type strain of *Paraphoma radicina* and morphologically was characterized by setose (covered with bristle-like structures) pycnidia and hyaline aseptate conidia.

The *Pleospora* clade was made up of five isolates and, with the exception of one of them, was distributed into three well-supported sister clades corresponding to the genera *Edenia*, *Paraphoma*, and *Trematophoma*. The isolate that clustered with the type strain of *Paraphoma fimeti* was separate from the type species of *Paraphoma (Paraphoma radicina)* and showed glabrous pycnidia instead the setose pycnidia produced by the rest of the species. Interestingly, instead of the ellipsoidal, subhyaline conidia typical of *Edenia* spp., the isolate UTHSC DI16-324 produced fusiform, hyaline, two- to three-septate conidia that are probably indicative of a new genus. The other isolates of this clade remained sterile.

The *Coniothyrium* clade included nine isolates, and its topology shows that the genera *Coniothyrium*, *Leptosphaeria*, and *Pyrenochaeta* are clearly polyphyletic using this conserved marker. Three of these isolates formed a well-supported sister clade together with a reference strain of *Coniothyrium telephii*, which is characterized by setose pycnidia. The other six isolates were distributed into the genera *Leptosphaeria* and *Pyrenochaeta*. These had a pyrenochaeta-like anamorph, producing conidiophores within pycnidia and hyaline aseptate conidia.

The *Phaeosphaeria* clade grouped nine isolates, with four of them clustering with *Neosetophoma* and producing confluent pycnidia and small hyaline conidia. The other five isolates were associated with the genera *Diederichomyces*, *Parastagonospora*, *Phaeosphaeria*, and *Phaeosphaeriopsis*. Only one isolate (UTHSC DI16-325), morphologically

Coelomycetous Fungi of Clinical Origin

resembling *Phaeosphaeriopsis* spp., was able to sporulate, displaying small conidiophores within pycnidia and one-septate, pigmented, variable-in-shape conidia.

The *Pyrenochaetopsis* clade included nine isolates, with four of them matching the type strain of *Pyrenochaetopsis leptospora*, another four isolates forming a supported sister clade separate from *P. leptospora*, and one not clustering to any of the type strains included in the analysis. All of the isolates displayed the typical phoma-like morphology, i.e., glabrous pycnidia and hyaline aseptate conidia, instead of setose pycnidia of the genus *Pyrenochaetopsis*.

The five isolates assigned to the *Acrocalymma* and *Medicopsis* clades were grouped with the type strains of *Acrocalymma walkeri* and *Medicopsis romeroi*, respectively, but differed in 4.5% of the nucleotide sequences of the respective strains of reference. These isolates remained sterile throughout.

The *Roussoella* clade was made up of eight isolates, two of which were associated with a supposed reference strain of *Arthopyrenia salicis* (CBS 368.94), whose correct identification was questioned by Liu et al. (12), and the remaining ones were associated with *Roussoella* spp.; only three isolates were able to sporulate and had a morphology similar to that of this genus, i.e., production of glabrous pycnidia and pigmented aseptate conidia.

Two isolates nested in the *Biatriospora* clade but remained sterile. The *Trematosphaeria* clade comprised five sterile isolates, two of which were phylogenetically related with the type strain of *Trematosphaeria pertusa* and the rest of which were associated with a reference strain of *Trematosphaeria grisea*.

The Keissleriella clade had only one isolate, which showed a phoma-like morphology and clustered with a reference strain of Keissleriella cladophila. Another isolate was associated with a reference strain of Paraconiothyrium flavescens and displayed a morphology similar to that of Paraconiothyrium (pycnidia, phialidic conidiogenous cells, and pigmented aseptate conidia); however, the taxonomic placement of that isolate remains doubtful because it grouped phylogenetically distant from the type species of the genus (Paraconiothyrium estuarinum). In the Camarographium clade, two sterile isolates were located that were related to the genera Camarographium and Pseudochaetosphaeronema.

The *Didymosphaeriaceae* clade comprised 33 isolates, of which 22 were phylogenetically related to *Paraconiothyrium* spp., 2 were related to *Montagnula* spp., and 2 were related to the type strain of *Paraphaeosphaeria neglecta*. Three isolates were distributed into each of the genera *Bimuria*, *Curreya*, and *Phaeodothis*, and four isolates formed a well-supported monophyletic sister clade separated from any known taxa of the family. Only three isolates (UTHSC DI16-261, UTHSC DI16-266, and UTHSC DI16-363) were able to sporulate, showing glabrous pycnidia and pale brown conidia displaying morphological features similar to those of *Paraconiothyrium* spp. The *Exosporium* clade comprised only two sterile isolates, one of which was related to the genus *Preussia* while the other was related to *Exosporium*. The *Anteaglonium*, *Lophiostoma*, and *Phyllosticta* clades comprised only one sterile isolate each one.

In the *Valsariales* clade, two isolates matched a reference strain of *Myrmaecium rubricosum*. These isolates were characterized by producing free, well-differentiated conidiophores instead of simply conidiogenous cells (phialides) inside the pycnidia.

The *Hysteriales* clade contained two sterile isolates, one related to an unidentified strain of *Chaetophoma* and one of uncertain taxonomical placement but phylogenetically related to *Chaetophoma*, *Gloniopsis*, and *Rhytidhysteron*.

The second largest clade, corresponding to the order *Botryosphaeriales*, included 45 isolates distributed in six clades but mostly concentrated into the *Neoscytalidium* clade. The fungi included in these clades were characterized by the production of stromatic conidiomata (a hard, compact mass of cells or of vegetative hyphae), holoblastic instead of phialidic conidiogenous cells, and aseptate, hyaline to brown, thick-walled conidia. The *Botryosphaeriales* included the genera *Botryosphaeria* (three isolates), *Lasiodiplodia* (two isolates), *Neofusicoccum* (one isolate), *Aplosporella* (two isolates), and *Phaeobotryosphaeria* (two isolates). Additionally, 35 isolates of *Neoscytalidium dimidia*-

Valenzuela-Lopez et al.

tum were also placed in this order. This fungus is characterized typically by the production of holoarthric conidia (formed by disarticulation of the preexisting hyphae) in chains.

The Capnodiales, Helotiales, and Magnaporthales clades each included only one sterile isolate. Only the isolate of the Helotiales was not phylogenetically related to any previously known described species. The isolate of the Capnodiales was closely related to a reference strain of *Pseudocercospora oenotherae*. This genus is characterized by producing stromata in the (plant) host, subhyaline to brown conidiophores, and small or large, subhyaline to brown conidia; unfortunately, our isolate failed to sporulate. In the Magnaporthales, the isolate matched a reference strain of Mycoleptodiscus indicus. This genus is characterized by producing sporodochia (a cushion-like, densely aggregated group of conidiophores) and curved conidia; in this case, the morphological study was not possible due to the absence of sporulation of the isolate.

The *Xylariales* clade included five sterile isolates, three of which were related to the genus *Diatrype* but phylogenetically distant from a reference strain of *Diatrype disciformis*. The remaining two isolates were associated with the *Peroneutypa* clade, with one of them matching a reference strain of *Peroneutypa scoparia* and the other uncertainly placed taxonomically.

The *Diaporthales* clade grouped eight isolates, six of which belonged to the *Diaporthe* clade and were characterized by the production of hyaline conidiophores within pycnidial conidiomata, phialidic conidiogenous cells, and small conidia. The other two sterile isolates were located in the *Valsa* clade.

The *Hypocreales* clade included only a single sterile isolate that matched a reference strain of *Thyronectria austroamericana*.

The *Glomerellales* clade comprised 10 isolates, all of which belonged to the genus *Colletotrichum* and were characterized by the production of acervular conidiomata, phialidic conidiogenous cells, conidia variable in shape, and the presence of appressoria. Six of the isolates were identified as *Colletotrichum gloeosporioides*, two were identified as *Colletotrichum truncatum*, and one was identified as *Colletotrichum spaethianum*. One isolate (UTHSC DI14-247) was molecularly closely related to a reference strain of *Colletotrichum torulosum*.

Two isolates (UTHSC DI16-350 and UTHSC DI16-223) were not located in any of the previously known orders and consequently were treated as *incertae sedis*. The first one was assigned to the *Phomatospora* clade and the other, characterized by the production of sporodochia and hyaline conidia, was identified as *Phialemoniopsis curvata*.

From a total of 224 clinical isolates, 153 were recovered mainly from superficial tissues (epidermis and dermis) (66.5%), followed by 40 from the respiratory tract (17.4), 22 from miscellaneous deep tissues or fluids (9.6%), and 9 isolates from subcutaneous tissues (3.9%) (Table 1).

Approximately half of all the fungi tested (44%; 101/230) were able to grow at 37° C (Table 1); they were distributed within the orders at the following percentages: 100% (10/10) of the *Glomerellales*, 100% (2/2) of *Hysteriales*, 100% (2/2) of the *Valsariales*, 98% (44/45) of the *Botryosphaeriales*, 50% (1/2) of the isolates *incertae sedis*, and 28% (42/152) of the *Pleosporales*.

Table 2 summarizes the results of the antifungal susceptibility testing. In general, all the drugs tested, but especially terbinafine and amphotericin B, showed good activity against the coelomycetous fungi, with terbinafine being the most active (geometric mean [GM] of 0.04 μ g/ml; MIC₉₀ of 0.03 μ g/ml). Among the triazoles, itraconazole was the least active, with an overall GM of 1 μ g/ml and a MIC₉₀ of 16 μ g/ml. *Collectotrichum gloeosporioides, Neoscytalidium dimidiatum,* and *Didymella heteroderae* showed high MICs for all the antifungals tested. Posaconazole and voriconazole demonstrated similar *in vitro* potencies, with the only exceptions being activity against *Colletotrichum gloeosporioides* and *Neoascochyta desmazieri*, for which the voriconazole GMs were 2.64 and 2 μ g/ml, respectively, and against *Neoscytalidium dimidiatum*, for which the posaconazole GM was 2.26 μ g/ml. All the echinocandins showed good *in vitro* activity
Coelomycetous Fungi of Clinical Origin

TABLE 1 Anatomical sites of coelomycetous fungus isolates from clinical specimens

		No. of isola	tes obtained from	m:				
Order	Clade	Superficial tissue	Subcutaneous tissue	Deep tissue/fluids	Respiratory tract	Environment and animal	37°C growth	Total no. of isolates
Botryosphaeriales	Aplosporella	2					+	2
	Botryosphaeria	3					+	3
	Lasiodiplodia	2					+	2
	Neofusicoccum	1					—	1
	Neoscytalidium	27		3	5		+	35
	Phaeobotryosphaeria	2					+	2
Capnodiales		1					_	1
Diaporthales	Diaporthe	3		2	1		+	6
	Valsa	1			1		+	2
Glomerellales		7	1	1	1		+	10
Helotiales		1					-	1
Hypocreales		1					+	1
Hysteriales			1		1		+	2
incertae sedis	Phialemoniopsis	1					+	1
	Phomatospora			1			_	1
Magnaporthales		1					+	1
Pleosporales	Acrocalymma	1					_	1
	Anteaglonium	1					-	1
	Biatriospora	1			1		-	2
	Camarographium	2					-	2
	Coniothyrium	7	1	1			-	9
	Didymella	17		1	4		+	22
	Didymosphaeriaceae	26	1	2	3	1	-	33
	Exosporium	1				1	-	2
	flavescens	1					-	1
	Keissleriella		1				_	1
	Lophiostoma	2	1				_	1
	Medicopsis	3		1	1		+	4
	Neoascocnyla	0			I		_	/
	Paraphonia	1	1	1	4	1	_	1
	Phoma I	2	I	3	4	1	_	9 27
	Phoma II	1		5	10	I	_	1
	Phyllosticta	1					+	1
	Pleospora	1		1	3		_	5
	Pyrenochaetonsis	6		1	2		_	9
	Roussoella	5		2	1		+	8
	Trematosphaeria	4		1			+	5
Valsariales						2	+	2
Xylariales	Diatrype		1	1	1		_	3
	Peroneutypa		1		1		_	2
Total no. of isolates (%)		153 (66.5)	9 (3.9)	22 (9.6)	40 (17.4)	6 (2.6)		230 (100)

against these fungi, with a GM of 0.06 μ g/ml. Flucytosine was the least active antifungal tested, with elevated MICs against all isolates.

DISCUSSION

This is, to our knowledge, the largest taxonomic study on coelomycetous fungi of clinical origin. It has demonstrated, based on DNA sequencing, a wider diversity of taxa than previously reported. Although two recent reviews have reported approximately 35 species of coelomycetes involved in human infections (3, 4), the present study identifies 88 species; unfortunately, the role of many of them as pathogens for human still remains uncertain because the clinical data of the patients are not allowed to be

Valenzuela-Lopez et al.

TABLE 2 Results of in vitro antifungal susceptibility testing of coelomycetous fungi

		Value for	the drug (μ	ւg/ml) ^ь						
Taxon (no. of isolates)	Parameter ^a	AMB	VRC	ITC	PSC	AFG	CFG	MFG	TRB	5FC
Neoascochyta desmazieri (5)	GM	0.44	2	0.57	0.21	0.03	0.03	0.03	0.03	1.15
	Range	0.25–1	1–4	0.25–1	0.06–0.5	0.03–0.06	≤0.03	≤0.03	≤0.03	0.5–2
	MIC ₉₀	0.5	2	1	0.5	0.03	0.03	0.03	0.03	2
Colletotrichum gloeosporioides (5)	GM	0.57	2.64	8	0.87	0.03	0.03	0.03	0.03	16
	Range	0.03–2	0.5–4	1–16	0.5–1	≤0.03	≤0.03	≤0.03	≤0.03	≥16
	MIC ₉₀	2	4	16	1	0.03	0.03	0.03	0.03	16
Epicoccum sorghinum (8)	GM	0.25	0.92	0.59	0.30	0.03	0.04	0.03	0.03	2.97
	Range	0.12–1	0.5–2	0.5–1	0.12–0.5	0.03–0.06	0.03–0.5	≤0.03	≤0.03	1–8
	MIC ₉₀	0.5	1	1	0.5	0.03	0.03	0.03	0.03	4
Neoscytalidium dimidiatum (16)	GM	0.22	0.59	2.56	2.26	0.13	0.2	0.47	0.08	2.83
	Range	0.06–1	0.03–16	0.06–16	0.03–16	0.03–0.5	0.03–1	0.06–8	0.03–2	0.25–16
	MIC ₉₀	0.5	4	16	16	0.25	0.5	4	0.03	8
Paraconiothyrium cyclothyrioides (15)	GM	0.25	0.25	0.3	0.15	0.03	0.03	0.03	0.03	2.61
	Range	0.03–8	0.06–0.5	0.06–0.5	0.03–0.5	≤0.03	≤0.03	≤0.03	≤0.03	1–16
	MIC ₉₀	0.5	0.5	0.5	0.25	0.03	0.03	0.03	0.03	4
Didymella heteroderae (11)	GM	1.76	1.87	3.31	1.07	0.34	0.13	0.14	0.03	4
	Range	0.5–8	0.06–16	0.5–16	0.5–2	0.03–8	0.03–4	0.03–2	≤0.03	1–16
	MIC ₉₀	4	16	16	2	8	4	2	0.03	16
Phoma herbarum (10)	GM	0.43	0.57	0.81	0.40	0.04	0.04	0.03	0.03	2
	Range	0.12–2	0.06–4	0.25–4	0.12–1	0.03–0.12	0.03–0.12	0.03–0.06	≤0.03	0.5–16
	MIC ₉₀	1	1	1	1	0.06	0.12	0.06	0.03	16
Phoma sp. (7)	GM	0.1	0.17	0.17	0.14	0.03	0.03	0.03	0.03	1.78
	Range	0.03–4	0.03–2	0.03–2	0.03–1	≤0.03	≤0.03	≤0.03	≤0.03	0.5–16
	MIC ₉₀	0.25	1	0.5	0.5	0.03	0.03	0.03	0.03	4
Diaporthe sclerotioides (4)	GM	0.06	0.21	2	0.5	0.04	0.03	0.03	0.03	4
	Range	0.03–0.12	0.12–0.25	1–4	0.5	0.03–0.06	≤0.03	≤0.03	≤0.03	0.5–16
	MIC ₉₀	0.12	0.25	2	0.5	0.03	0.03	0.03	0.03	8
Pyrenochaetopsis leptospora (4)	GM	0.7	0.59	0.7	0.21	0.03	0.03	0.03	0.03	4
	Range	0.03–4	0.25–2	0.06–16	0.03–1	≤0.03	≤0.03	≤0.03	≤0.03	0.5–16
	MIC ₉₀	2	1	1	0.5	0.03	0.03	0.03	0.03	16
Overall (85)	GM	0.33	0.61	1	0.46	0.06	0.06	0.06	0.04	2.9
	Range	0.03–8	0.03–16	0.03–16	0.03–16	0.03–8	0.03–4	0.03–8	0.03–2	0.25–32
	MIC ₉₀	2	4	16	16	0.25	0.5	2	0.03	16

 $^a\mathrm{GM},$ geometric mean; $\mathrm{MIC}_{90^{\prime}}$ drug concentration that inhibited 90% of isolates.

^bAMB, amphotericin B; VRC, voriconazole; ITC, itraconazole; PSC, posaconazole; AFG, anidulafungin; CFG, caspofungin; MFG, micafungin; TRB, terbinafine; 5FC, flucytosine.

published. In general, the coelomycetous fungi are involved in many kinds of mycoses, with superficial to deep infections, onychomycosis, cutaneous infections, keratitis, and endophthalmitis being relatively frequent. In general, the most commonly reported species clinically are *Colletotrichum* spp. (13–20), *Neoscytalidium dimidiatum* (21–25), and *Phoma* spp. (11, 26–35). Our study partly confirms the data from previous studies in which *Neoscytalidium dimidiatum* (approximately 15%), *Paraconiothyrium cyclothyrioides* (approximately 7%), and *Phoma herbarum* (approximately 6.5%) were the most common species, having been recovered mainly from superficial tissue and respiratory tract specimens. However, of these fungi, the only species that is relatively easy to identify by phenotypic criteria is *N. dimidiatum*, which is the best known coelomycetous fungus found clinically (22, 23, 36). The identification of the other fungi mentioned above generally requires the use of molecular tools due to the difficulty of achieving *in vitro* sporulation. Although *Paraconiothyrium cyclothyrioides* was relatively common in our studied samples, there are only two clinical reports that refer to this species. Both

Coelomycetous Fungi of Clinical Origin

cases are from immunocompromised patients; in one case *P. cyclothyrioides* caused skin lesions of the lower extremities, and in the second case it produced a systemic coinfection together with *Phaeoacremonium parasiticum* (37, 38). Even though *Phoma* sporulates easily, it is commonly misidentified as other related genera, such as *Asco-chyta*, because the genera have similar morphologies, physiologies, and nucleotide sequences (39, 40). Boerema et al. carried out one of the most comprehensive revisions of the taxonomy of the genus *Phoma*. Using systematic criteria that predominated then, approximately 220 species were accepted, distributed into nine sections (41). In a recent multilocus study based on the sequence data of the 18S nrRNA (SSU) and LSU genes, other authors demonstrated that such classification was totally artificial (42). Currently, *Phoma sensu stricto* is included in the family *Didymellaceae*, and the other *Phoma*-like fungi belong to other phylogenetic families, i.e., *Cucurbitariaceae*, *Leptosphaeriaceae*, *Phaeosphaeriaceae*, etc. (39, 40, 42, 43).

It is of note that one of the frequently isolated species in our study, *Didymella heteroderae* (5.2% of isolation frequency), has never been mentioned as an etiologic agent of human infections even though our results reveal its ability to grow and to sporulate at 37°C, which is uncommon in that genus and suggests its potential pathogenicity.

An important clinical presentation of the coelomycetous fungi is eumycetoma, which is restricted to a specific group of pleosporalean species of fungi, namely, *Medicopsis romeroi* (formerly, *Pyrenochaeta romeroi*) (44–46), *Biatriospora mackinnonii* (formerly *Pyrenochaeta mackinnonii*) (46), and *Trematosphaeria grisea* (formerly, *Madurella grisea*) (47–49), among others. However, in the present study only nine of the isolates that were isolated from superficial and, less frequently, from deep tissues belonged to these genera. This might be explained by the fact that the habitat of these fungi is usually restricted to arid zones of East Africa and India and, occasionally, South America (46, 50, 51).

Despite several studies in recent years devoted to infections by coelomycetous fungi, little clinical data exist. The first well-documented review of human infections caused by these fungi was carried out by Punithalingham (11), who referenced a total of 12 species belonging primarily to the genera *Botryodiplodia*, *Dothiorella*, *Hendersonula*, *Phoma*, *Phyllosticta*, *Pseudochaetosphaeronema*, and *Pyrenochaeta*. In that work, a morphological description of these taxa and their clinical origin was provided, together with a dichotomous key for their identification. However, in our study, just under 12% of the total isolates identified belonged to such genera. In a recent study, Stchigel and Sutton (4) provided detailed information about the species of these fungi isolated from clinical samples, described useful tools for their isolation and identification, and gave general guidelines for infection management and treatment. These authors concluded that these organisms are easy to isolate but that it was difficult to induce *in vitro* fructification and sporulation. Our results are in agreement with theirs because 43% of our isolates failed to sporulate, and it was only possible to identify them and to determine their phylogenetic relationships by DNA sequencing.

The prevalence of coelomycetous fungi found in these clinical specimens—more than 200 isolates recovered in a 9-year period—goes against the fact that so few studies have described infections by them. This highlights the difficulty in conducting a comprehensive study of these fungi and in establishing their real occurrence in clinical settings. The taxonomy of these fungi is very complex because numerous isolates are usually unable to sporulate *in vitro* or to produce different synanamorphs, which sometimes predominate over the traditional coelomycete structures, making their phenotypic recognition difficult; reliable identification can be done, therefore, only by gene sequencing (9, 46, 52). However, even in this case, there are a very high number of genera and species of coelomycetous fungi, and the phylogenetic boundaries of numerous taxa are still unresolved. Therefore, we carried out a phylogenetic analysis of a large set of coelomycetous fungi using LSU sequences. This marker proved useful for solving the phylogeny of most of the isolates included in the study, identi-

Valenzuela-Lopez et al.

fying them, at least at genus level, and showing, in front of the internal transcribed spacer (ITS), the advantage of an easy alignment of sequences.

The increasing use of molecular tools in fungal taxonomy has allowed the recognition of numerous new taxa that are impossible to detect by traditional methods. Recently, several new species of coelomycetous fungi, namely, *Roussoella percutanea*, *Truncatella angustata*, *Hongkongmyces pedis*, *Rhytidhysteron* spp., *Pseudochaetosphaeronema martinelli*, and *Emarellia* spp., have been involved in cases of subcutaneous infections and eumycetoma (53–58), and some of our *Pleosporales* isolates, having failed to sporulate, could represent new taxa.

Although clinical breakpoints for coelomycetous fungi have not been defined and although *in vitro* antifungal susceptibility studies on these fungi are scarce, most of the species seem to be inhibited by amphotericin B (4). Our results show that posaconazole is the most active of the triazoles tested, and results for amphotericin B are similar *in vitro* to those reported by Chowdhary et al. (10). Currently, only disseminated infections due to *N. dimidiatum* have been conducted in animal models, and amphotericin B, voriconazole, and posaconazole have been shown to be effective in the treatment of this experimental mycosis (36). Guidelines for the management of infections due to coelomycetous fungi include only a small group of taxa (*Neoscytalidium, Phoma*, and *Pyrenochaeta* spp.) (10) although our study supports those protocols. A recent study by Guégan et al. (59) analyzed several coelomycetous fungi that were implicated in human mycosis and concluded that the surgical resection of infected tissues is advisable for treating well-delimited lesions and that surgery together with new triazoles could be used if lesions are extensive.

In conclusion, this study demonstrates that a wide variety of fungal taxa, identified through their morphology as coelomycetous fungi, are involved in human infections in the United States. However, more studies are necessary to understand the real prevalence of coelomycete infections throughout the world. The most active antifungal drugs to treat them seem to be terbinafine, echinocandins, and amphotericin B, while results for the azoles varied. Although the LSU gene sequence is useful for preliminary identification and for establishing phylogenetic relationships between the majority of coelomycetous fungi, future molecular studies testing a higher number genes are essential to properly identify doubtful isolates at the species level.

MATERIALS AND METHODS

Fungal isolates and sequences. A total of 230 isolates of coelomycetous fungi were included in this study, consisting of 224 from human clinical specimens, 3 from animal sources, and 3 from environmental samples. All of the isolates were provided by the Fungus Testing Laboratory of the University of Texas Health Science Center at San Antonio (UTHSC; San Antonio, Texas, USA). In addition, 92 D1-D2 sequences corresponding to type or reference strains were retrieved from GenBank and CBS databases and included in the phylogenetic analysis.

Morphological and physiological characterization. For cultural characterization, the isolates were grown on oatmeal agar (OA; 30 g of filtered oat flakes, 15 g of agar-agar, 1 liter of tap water) and malt extract agar (MEA; 40 g of malt extract, 15 g of agar-agar, 1 liter of distilled water) at $20 \pm 1^{\circ}$ C for 14 days in darkness. The ability of the isolates to grow at 37° C was determined on potato dextrose agar (PDA; Pronadisa, Madrid, Spain) after 7 days of incubation in darkness. The morphological features of the vegetative and reproductive structures were studied using an Olympus CH2 light-field microscope (Olympus Corporation, Tokyo, Japan) in wet mounts (on water and lactic acid) and slide cultures (isolates grown on OA and MEA). The isolates were characterized phenotypically according to traditional criteria (4, 5, 41, 60). Color standards are from Kornerup and Wanscher (61). Photomicrographs were taken with an Axio-Imager M1 light-field microscope (Zeiss, Oberkochen, Germany).

DNA extraction, amplification, and sequencing. The total genomic DNA was extracted from colonies grown on PDA after 7 days of incubation at $20 \pm 1^{\circ}$ C, using a FastDNA kit protocol (Bio101; Vista, CA) with a FastPrep FP120 instrument (Thermo Savant, Holbrook, NY) according to the manufacturer's protocol. DNA was quantified using a NanoDrop 2000 instrument (Thermo Scientific, Madrid, Spain). The D1-D2 domains were amplified with the primer pair LROR and LR5 (62). The amplicons were sequenced in both directions with the same primer pair used for amplification at Macrogen Europe (Macrogen, Inc., Amsterdam, The Netherlands). The consensus sequences were obtained using SeqMan software, version 7.0.0 (DNAStar Lasergene, Madison, WI, USA).

Molecular identification and phylogenetic analysis. Preliminary molecular identification of the isolates was made using the D1-D2 nucleotide sequences in blastn searches (https://blast.ncbi.nlm.nih.gov/Blast.cgi) and the CBS database (www.cbs.knaw.nl). Only the sequences of type or reference strains

Coelomycetous Fungi of Clinical Origin

deposited in CBS/GenBank databases were considered for identification purposes. A level of identity of \geq 98% was considered for species-level identification.

For the phylogenetic study, the sequences were aligned using the ClustalW application (63) of the MEGA, version 6.06 (64), computer program, refined with MUSCLE (65), and manually adjusted using the same software platform. Phylogenetic reconstructions were made by maximum-likelihood (ML) and Bayesian inference (BI) with MEGA, version 6.06, and MrBayes, version 3.2.4 (66), respectively. The best substitution model for the gene matrix (general time-reversal model incorporating invariable sites and a discrete gamma distribution [GTR+I+G]) was estimated using MrModelTest, version 2.3 (67). For ML analyses, a nearest-neighbor interchange was used as the heuristic method for tree inference. Support for internal branches was assessed by 1,000 ML bootstrapped pseudoreplicates. Bootstrap support (BS) of \geq 70 was considered significant. For BI analyses, Markov chain Monte Carlo (MCMC) sampling was carried out with 23 million generations, with samples taken every 1,000 generations. The 50% majority rule consensus trees and posterior probability values (PP) were calculated after the first 25% of the resulting trees was removed for burn-in. A PP value of \geq 0.95 was considered significant. *Saccharomyces carevisiae* (NRRL Y-12630; GenBank accession number AY048157) and *Saccharomyces cerevisiae* (NRRL Y-12632; GenBank accession number AY048154) were used as outgroups.

Antifungal susceptibility testing. Using a broth microdilution reference method (68), the *in vitro* antifungal susceptibilities of 85 isolates were determined of selected species of the genera *Colletotrichum*, *Diaporthe*, *Didymella*, *Epicoccum*, *Neoascochyta*, *Neoscytalidium*, *Paraconiothyrium*, *Phoma* sp., and *Pyrenochaetopsis*. The following antifungals were tested: amphotericin B, voriconazole, posaconazole, itraconazole, caspofungin, anidulafungin, micafungin, terbinafine, and flucytosine. The minimal effective concentration (MEC) was determined after 48 h for the echinocandins, and the MIC was determined after 48 h and 72 h for the other drugs. *Candida parapsilosis* ATCC 22019 and *Paecilomyces variotii* ATCC MYA-3630 were used as controls. The inocula for the coelomycetous fungi that did not sporulate were prepared according to the method of Chowdhary et al. (69).

Accession number(s). The DNA sequences determined in this study have been deposited in GenBank under accession numbers LN907285 to LN907514.

ACKNOWLEDGMENTS

This work was supported by the Spanish Ministerio de Economía y Competitividad, grant CGL2013-43789-P.

We have no conflicts of interest to declare.

REFERENCES

- Kirk PM, Cannon PF, Stalpers JA, Minter DW. 2008. Ainsworth & Bisby's dictionary of the fungi, 10th ed. CAB International, Wallingford, United Kingdom.
- Sutton DA. 1999. Coelomycetous fungi in human disease. A review: clinical entities, pathogenesis, identification and therapy. Rev Iberoam Micol 16:171–179.
- Revankar SG, Sutton DA. 2010. Melanized fungi in human disease. Clin Microbiol Rev 23:884–928. https://doi.org/10.1128/CMR.00019-10.
- Stchigel AM, Sutton DA. 2013. Coelomycete fungi in the clinical lab. Curr Fungal Infect Rep 7:171–191. https://doi.org/10.1007/s12281 -013-0139-9.
- 5. Sutton BC. 1980. The Coelomycetes. Fungi Imperfecti with pycnidia, acervuli and stromata. Commonwealth Mycological, Kew, England.
- 6. Nag Raj TR. 1993. Coelomycetous anamorphs with appendage-bearing conidia. Mycologue Publications, Waterloo, Ontario, Canada.
- Schoch CL, Crous PW, Groenewald JZ, Boehm EWA, Burgess TI, de Gruyter J, de Hoog GS, Dixon LJ, Grube M, Gueidan C, Harada Y, Hatakeyama S, Hirayama K, Hosoya T, Huhndorf SM, Hyde KD, Jones EBG, Kohlmeyer J, Kruys A, Li YM, Lücking R, Lumbsch HT, Marvanová L, Mbatchou JS, McVay AH, Miller AN, Mugambi GK, Muggia L, Nelsen MP, Nelson P, Owensby CA, Phillips AJL, Phongpaichit S, Pointing SB, Pujade-Renaud V, Raja HA, Plata ER, Robbertse B, Ruibal C, Sakayaroj J, Sano T, Selbmann L, Shearer CA, Shirouzu T, Slippers B, Suetrong S, Tanaka K, Volkmann-Kohlmeyer B, Wingfield MJ, Wood AR, Woudenberg JHC, Yonezawa H, Zhang Y, Spatafora JW. 2009. A class-wide phylogenetic assessment of *Dothideomycetes*. Stud Mycol 64:1–15. https://doi.org/ 10.3114/sim.2009.64.01.
- Maharachchikumbura SSN, Hyde KD, Groenewald JZ, Xu J, Crous PW. 2014. *Pestalotiopsis* revisited. Stud Mycol 79:121–186. https://doi.org/ 10.1016/j.simyco.2014.09.005.
- Wijayawardene NN, Hyde KD, Wanasinghe DN, Papizadeh M, Goonasekara ID, Camporesi E, Bhat DJ, McKenzie EHC, Phillips AJL, Diederich P, Tanaka K, Li WJ, Tangthirasunun N, Phookamsak R, Dai D-Q, Dissanayake AJ, Weerakoon G, Maharachchikumbura SSN, Hashimoto A, Matsumura M, Bahkali AH, Wang Y. 2016. Taxonomy and phylogeny of

dematiaceous coelomycetes. Fungal Divers 77:1–316. https://doi.org/ 10.1007/s13225-016-0360-2.

- 10. Chowdhary A, Meis JF, Guarro J, de Hoog GS, Kathuria S, Arendrup MC, Arikan-Akdagli S, Akova M, Boekhout T, Caira M, Guinea J, Chakrabarti A, Dannaoui E, van Diepeningen A, Freiberger T, Groll AH, Hope WW, Johnson E, Lackner M, Lagrou K, Lanternier F, Lass-Flörl C, Lortholary O, Meletiadis J, Muñoz P, Pagano L, Petrikkos G, Richardson MD, Roilides E, Skiada A, Tortorano AM, Ullmann AJ, Verweij PE, Cornely OA, Cuenca-Estrella M. 2014. ESCMID and ECMM joint clinical guidelines for the diagnosis and management of systemic phaeohyphomycosis: diseases caused by black fungi. Clin Microbiol Infect 20:47–75. https://doi.org/ 10.1111/1469-0691.12515.
- Punithalingam E. 1979. Sphaeropsidales in culture from humans. Nova Hedwigia 31:119–158.
- Liu JK, Phookamsak R, Dai DQ, Tanaka K, Jones EG, Xu JC, Chukeatirote E, Hyde K. 2014. *Roussoellaceae*, a new pleosporalean family to accommodate the genera *Neoroussoella* gen. nov., *Roussoella* and *Roussoellopsis*. Phytotaxa 181:1–33. https://doi.org/10.11646/phytotaxa.181.1.1.
- Guarro J, Svidzinski TE, Zaror L, Forjaz MH, Gené J, Fischman O. 1998. Subcutaneous hyalohyphomycosis caused by *Colletotrichum gloeospori*oides. J Clin Microbiol 36:3060–3065.
- Cano J, Guarro J, Gené J. 2004. Molecular and morphological identification of *Colletotrichum* species of clinical interest. J Clin Microbiol 42: 2450–2454. https://doi.org/10.1128/JCM.42.6.2450-2454.2004.
- Castro LG, Da Silva Lacaz C, Guarro J, Gené J, Heins-Vaccari EM, de Freitas Leite RS, Arriagada GL, Reguera MM, Ito EM, Valente NY, Nunes RS. 2001. Phaeohyphomycotic cyst caused by *Colletotrichum crassipes*. J Clin Microbiol 39:2321–2324. https://doi.org/10.1128/JCM.39.6.2321-2324.2001.
- Fernandez V, Dursun D, Miller D, Alfonso EC. 2002. Colletotrichum keratitis. Am J Ophthalmol 134:435–438. https://doi.org/10.1016/S0002 -9394(02)01576-3.
- Chakrabarti A, Shivaprakash MR, Singh R, Tarai B, George VK, Fomda BA, Gupta A. 2008. Fungal endophthalmitis: fourteen years' experience from a center in India. Retina 28:1400–1407. https://doi.org/10.1097/ IAE.0b013e318185e943.

Valenzuela-Lopez et al.

- Shivaprakash MR, Appannanavar SB, Dhaliwal M, Gupta A, Gupta S, Gupta A, Chakrabarti A. 2011. *Colletotrichum truncatum*: An unusual pathogen causing mycotic keratitis and endophthalmitis. J Clin Microbiol 49:2894–2898. https://doi.org/10.1128/JCM.00151-11.
- Shiraishi A, Araki-Sasaki K, Mitani A, Miyamoto H, Sunada A, Ueda A, Asari S, Zheng X, Yamamoto Y, Hara Y, Ohashi Y. 2011. Clinical characteristics of keratitis due to *Colletotrichum gloeosporioides*. J Ocul Pharmacol Ther 27:487–491. https://doi.org/10.1089/jop.2011.0011.
- Figtree M, Weeks K, Chan L, Leyton A, Bowes A, Giuffre B, Sullivan M, Hudson BJ. 2013. *Colletotrichum gloeosporioides* sensu lato causing deep soft tissue mycosis following a penetrating injury. Med Mycol Case Rep 2:40–43. https://doi.org/10.1016/j.mmcr.2013.01.003.
- al-Rajhi AA, Awad AH, Al-Hedaithy SS, Forster RK, Caldwell KC. 1993. Scytalidium dimidiatum fungal endophthalmitis. Br J Ophthalmol 77: 388–390. https://doi.org/10.1136/bjo.77.6.388.
- 22. Elewski BE. 1996. Onychomycosis caused by *Scytalidium dimidiatum*. J Am Acad Dermatol 35:336-338. https://doi.org/10.1016/S0190 -9622(96)90664-7.
- Madrid H, Ruíz-Cendoya M, Cano J, Stchigel A, Orofino R, Guarro J. 2009. Genotyping and in vitro antifungal susceptibility of *Neoscytalidium dimidiatum* isolates from different origins. Int J Antimicrob Agents 34: 351–354. https://doi.org/10.1016/j.ijantimicag.2009.05.006.
- Machouart M, Menir P, Helenon R, Quist D, Desbois N. 2013. Scytalidium and scytalidiosis: what's new in 2012? J Mycol Med 23:40–46. https:// doi.org/10.1016/j.mycmed.2013.01.002.
- Bakhshizadeh M, Hashemian HR, Najafzadeh MJ, Dolatabadi S, Zarrinfar H. 2014. First report of rhinosinusitis caused by *Neoscytalidium dimidiatum* in Iran. J Med Microbiol 63:1017–1019. https://doi.org/10.1099/ jmm.0.065292-0.
- 26. Bakerspigel A. 1970. The isolation of *Phoma hibernica* from lesions on a leg. Sabouraudia 7:261–264.
- Punithalingam E. 1976. *Phoma oculo hominis* sp. nov. from corneal ulcer. Trans Br Mycol Soc 67:142–143. https://doi.org/10.1016/S0007-1536 (76)80022-8.
- Bakerspigel A, Lowe D, Rostas A. 1981. The isolation of *Phoma eupyrena* from a human lesion. Arch Dermatol 117:362–363. https://doi.org/ 10.1001/archderm.1981.01650060052024.
- 29. Shukla NP, Rajak RK, Agarwasl GP, Gupta D. 1984. *Phoma minutispora* as a human pathogen. Mykosen 27:255–258.
- Baker JG, Salkin IF, Forgacs P, Haines JH, Kemna ME. 1987. First report of subcutaneous phaeohyphomycosis of the foot caused by *Phoma minutella*. J Clin Microbiol 25:2395–2397.
- Rai MK. 1989. Phoma sorghina infection in human being. Mycopathologia 105:167–170. https://doi.org/10.1007/BF00437250.
- Rosen T, Rinaldi MJ, Tschen JA, Stern JK, Cernoch P. 1996. Cutaneous lesions due to *Pleurophoma (Phoma)* complex. South Med J 89:431–434. https://doi.org/10.1097/00007611-199604000-00018.
- Hirsh AH, Schiff TA. 1996. Subcutaneous phaeohyphomycosis caused by an unusual pathogen: *Phoma* species. J Am Acad Dermatol 34:679–680. https://doi.org/10.1016/S0190-9622(96)80083-1.
- Tullio V, Banche G, Allizond V, Roana J, Mandras N, Scalas D, Panzone M, Cervetti O, Valle S, Carlone N, Cuffini AM. 2010. Non-dermatophyte moulds as skin and nail foot mycosis agents: *Phoma herbarum, Chaetomium globosum* and *Microascus cinereus*. Fungal Biol 114:345–349. https://doi.org/10.1016/j.funbio.2010.02.003.
- Roehm CE, Salazar JC, Hagstrom N, Valdez TA. 2012. *Phoma* and *Acremonium* invasive fungal rhinosinusitis in congenital acute lymphocytic leukemia and literature review. Int J Pediatr Otorhinolaryngol 76: 1387–1391. https://doi.org/10.1016/j.ijporl.2012.06.026.
- Ruíz-Cendoya M, Madrid H, Pastor J, Guarro J. 2010. Evaluation of antifungal therapy in a neutropenic murine model of *Neoscytalidium dimidiatum* infection. Int J Antimicrob Agents 35:152–155. https:// doi.org/10.1016/j.ijantimicag.2009.09.028.
- Gordon RA, Sutton DA, Thompson EH, Shrikanth V, Verkley GJ, Stielow JB, Mays R, Oleske D, Morrison LK, Lapolla WJ, Galfione S, Tyring S, Samathanam CA, Fu J, Wickes BL, Mulanovich V, Wanger A, Arias CA. 2012. Cutaneous phaeohyphomycosis caused by *Paraconiothyrium cyclothyrioides*. J Clin Microbiol 50:3795–3798. https://doi.org/10.1128/ JCM.01943-12.
- 38. Colombier MA, Alanio A, Denis B, Melica G, Garcia-Hermoso D, Levy B, Peraldi MN, Glotz D, Bretagne S, Gallien S. 2015. Dual invasive infection with *Phaeoacremonium parasiticum* and *Paraconiothyrium cyclothyrioides* in a renal transplant recipient: Case report and comprehensive review of

the literature of *Phaeoacremonium* phaeohyphomycosis. J Clin Microbiol 53:2084–2094. https://doi.org/10.1128/JCM.00295-15.

- Aveskamp MM, de Gruyter J, Woudenberg JH, Verkley GJ, Crous PW. 2010. Highlights of the *Didymellaceae*: a polyphasic approach to characterise *Phoma* and related pleosporalean genera. Stud Mycol 65:1–60. https://doi.org/10.3114/sim.2010.65.01.
- 40. Chen Q, Jiang JR, Zhang GZ, Cai L, Crous PW. 2015. Resolving the *Phoma* enigma. Stud Mycol 82:137–217. https://doi.org/10.1016/j.simyco .2015.10.003.
- Boerema GH, de Gruyter J, Noordeloos ME, Hamers M. 2004. Phoma identification manual. Differentiation of specific and infraspecific taxa in culture. CABI Publishing, Cambridge, United Kingdom.
- 42. de Gruyter J, Aveskamp MM, Woudenberg JH, Verkley GJ, Groenewald JZ, Crous PW. 2009. Molecular phylogeny of *Phoma* and allied anamorph genera: towards a reclassification of the *Phoma* complex. Mycol Res 113:508–519. https://doi.org/10.1016/j.mycres.2009.01.002.
- de Gruyter J, Woudenberg JH, Aveskamp MM, Verkley GJ, Groenewald JZ, Crous PW. 2013. Redisposition of *Phoma*-like anamorphs in *Pleosporales*. Stud Mycol 75:1–36. https://doi.org/10.3114/sim0004.
- Borelli D. 1979. Opportunistic fungi as producers of gray colonies and mycetomata. Dermatologica 159:168–174. https://doi.org/10.1159/ 000250685.
- Mathuram Thiyagarajan U, Bagul A, Nicholson ML. 2011. A nodulo-cystic eumycetoma caused by *Pyrenochaeta romeroi* in a renal transplant recipient: a case report. J Med Case Rep 5:460. https://doi.org/10.1186/ 1752-1947-5-460.
- 46. Ahmed SA, Van De Sande WW, Stevens DA, Fahal A, Van Diepeningen AD, Menken SB, de Hoog GS. 2014. Revision of agents of black-grain eumycetoma in the order *Pleosporales*. Persoonia 33:141–154. https:// doi.org/10.3767/003158514X684744.
- Butz WC, Ajello L. 1971. Black grain mycetoma: a case due to *Madurella grisea*. Arch Dermatol 104:197–201. https://doi.org/10.1001/archderm .1971.04000200085015.
- Gulati V, Bakare S, Tibrewal S, Ismail N, Sayani J, Baghla DPS. 2012. A rare presentation of concurrent *Scedosporium apiospermum* and *Madurella grisea* eumycetoma in an immunocompetent host. Case Rep Pathol 2012:154201. https://doi.org/10.1155/2012/154201.
- de Hoog GS, Van Diepeningen AD, Mahgoub ES, Van de Sande WWJ. 2012. New species of *Madurella*, causative agents of black-grain mycetoma. J Clin Microbiol 50:988–994. https://doi.org/10.1128/JCM .05477-11.
- Mackinnon JE, Ferrada-Urzúa LV, Montemayor L. 1943. Madurella grisea n. sp. Mycopathologia 4:384–393. https://doi.org/10.1007/BF01237166.
- 51. McGinnis MR. 1996. Mycetoma. Dermatol Clin 41:97-104.
- Borman AM, Desnos-Ollivier M, Campbell CK, Bridge PD, Dannaoui E, Johnson EM. 2016. Novel Taxa Associated with Human Fungal Black-Grain Mycetomas: *Emarellia grisea* gen. nov., sp. nov., and *Emarellia paragrisea* sp. nov. J Clin Microbiol 54:1738–1745. https://doi.org/ 10.1128/JCM.00477-16.
- Ahmed SA, Stevens DA, Van de Sande WWJ, Meis JF, de Hoog GS. 2014. *Roussoella percutanea*, a novel opportunistic pathogen causing subcutaneous mycoses. Med Mycol 52:689–698. https://doi.org/10.1093/ mmy/myu035.
- Jagielski T, Zak I, Tyrak J, Bryk A. 2015. First probable case of subcutaneous infection due to *Truncatella angustata*: a new fungal pathogen of humans? J Clin Microbiol 53:1961–1964. https://doi.org/10.1128/JCM .00400-15.
- 55. Tsang CC, Chan JF, Trendell-Smith NJ, Ngan AH, Ling IW, Lau SK, Woo PC. 2014. Subcutaneous phaeohyphomycosis in a patient with IgG4-related sclerosing disease caused by a novel ascomycete, *Hongkongmyces pedis* gen. et sp. nov.: first report of human infection associated with the family *Lindgomycetaceae*. Med Mycol 52:736–747. https://doi.org/ 10.1093/mmy/myu043.
- Mahajan VK, Sharma V, Prabha N, Thakur K, Sharma NL, Rudramurthy SM, Chauhan PS, Mehta KS, Abhinav C. 2014. A rare case of subcutaneous phaeohyphomycosis caused by a *Rhytidhysteron* species: a clinicotherapeutic experience. Int J Dermatol 53:1485–1489. https://doi.org/ 10.1111/ijd.12529.
- Mishra K, Das S, Goyal S, Gupta C, Rai G, Ansari MA, Saha R, Singal A. 2014. Subcutaneous mycoses caused by *Rhytidhysteron* species in an immunocompetent patient. Med Mycol Case Rep 5:32–34. https:// doi.org/10.1016/j.mmcr.2014.07.002.
- Ahmed SA, Desbois N, Quist D, Miossec C, Atoche C, Bonifaz A, de Hoog GS. 2015. Phaeohyphomycosis caused by a novel species, *Pseudochaeto-*

Coelomycetous Fungi of Clinical Origin

Journal of Clinical Microbiology

sphaeronema martinelli. J Clin Microbiol 53:2927-2934. https://doi.org/ 10.1128/JCM.01456-15.

- Guégan S, Garcia-Hermoso D, Sitbon K, Ahmed S, Moguelet P, Dromer F, Lortholary O, French Mycosis Study Group. 2016. Ten-year experience of cutaneous and/or subcutaneous infections due to coelomycetes in France. Open Forum Infect Dis 3:ofw106. https://doi.org/10.1093/ofid/ ofw106.
- de Hoog GS, Guarro J, Gené J, Figueras MJ. 2000. Atlas of clinical fungi, 2nd ed. Centraalbureau voor Schimmelcultures, Utrecht, The Netherlands.
- 61. Kornerup A, Wanscher JH. 1978. Methuen handbook of colour, 3rd ed. Methuen, London, England.
- Vilgalys R, Hester M. 1990. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several *Cryptococcus* species. J Bacteriol 172:4238–4246. https://doi.org/10.1128/jb.172.8.4238 -4246.1990.
- Thompson JD, Higgins DG, Gibson TJ. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680. https://doi.org/10.1093/nar/ 22.22.4673.

- Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30:2725–2729. https://doi.org/10.1093/molbev/mst197.
- Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. https://doi.org/10.1093/nar/gkh340.
- Huelsenbeck JP, Ronquist F. 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755. https://doi.org/10.1093/ bioinformatics/17.8.754.
- 67. Nylander JA. 2004. MrModeltest v2. Uppsala University, Uppsala, Sweden.
- 68. Clinical and Laboratory Standards Institute. 2008. Reference method for broth dilution antifungal susceptibility testing of filamentous fungi; approved standard, 2nd ed. Document M38-A2. Clinical and Laboratory Standards Institute, Wayne, PA.
- 69. Chowdhary A, Kathuria S, Singh PK, Agarwal K, Gaur SN, Roy P, Randhawa HS, Meis JF. 2013. Molecular characterization and in vitro antifungal susceptibility profile of *Schizophyllum commune*, an emerging basidiomycete in bronchopulmonary mycoses. Antimicrob Agents Chemother 57:2845–2848. https://doi.org/10.1128/AAC.02619-12.

4.2. Coelomycetous *Dothideomycetes* with emphasis on the families *Cucurbitariaceae* and *Didymellaceae*

N. Valenzuela-Lopez^{1,2}, J.F. Cano-Lira¹, J. Guarro¹, D.A. Sutton³, N. Wiederhold³, P.W. Crous^{4,5}, and A.M. Stchigel¹

¹Unitat de Micologia, Facultat de Medicina i Ciències de la Salut, and IISPV, Universitat Rovira i Virgili, Reus, Spain; ²Microbiology Unit, Medical Technology Department, Faculty of Health Science, University of Antofagasta, Av. Universidad de Antofagasta s/n, 02800 Antofagasta, Chile; ³Fungus Testing Laboratory, University of Texas Health Science Center, San Antonio, TX, USA; ⁴Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; ⁵Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands

Publicado en: Studies in Mycology 2018; 90: 1-69.

available online at www.studiesinmycology.org

N. Valenzuela-Lopez^{1,2}, J.F. Cano-Lira^{1*}, J. Guarro¹, D.A. Sutton³, N. Wiederhold³, P.W. Crous^{4,5}, and A.M. Stchigel¹

¹Unitat de Micologia, Facultat de Medicina i Ciències de la Salut, and IISPV, Universitat Rovira i Virgili, Reus, Spain; ²Microbiology Unit, Medical Technology Department, Faculty of Health Science, University of Antofagasta, Av. Universidad de Antofagasta s/n, 02800 Antofagasta, Chile; ³Fungus Testing Laboratory, University of Texas Health Science Center, San Antonio, TX, USA; ⁴Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; ⁵Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands

*Correspondence: J.F. Cano-Lira, jose.cano@urv.cat

Abstract: The taxonomy of the coelomycetes has undergone dramatic changes in recent years, but remains controversial due to the high number of taxa involved, their poor morphological differentiation, the rare occurrence of the sexual morphs, and rapid loss of fertility *in vitro*. In the present study, we revisited the families *Cucurbitariaceae* and *Didymellaceae* (*Pleosporales, Dothideomycetes*), which include numerous plant pathogens, endophytic species associated with a wide host range, and saprobes. The taxonomy of two of the most relevant genera, i.e. *Phoma* and *Pyrenochaeta*, remains ambiguous after several phylogenetic studies, and needs further revision. We have studied a total of 143 strains of coelomycetes from clinical or environmental origin, by combining the LSU, ITS, *tub2* and *rpb2* sequences for a multilocus analysis and a detailed morphological comparison. The resulting phylogenetic tree revealed that some fungi previously considered as members of *Cucurbitariaceae* represented five different families, and four of them, *Neopyrenochaetaceae*, *Parapyrenochaetaceae*, *Pseudopyrenochaetaceae* and *Pyrenochaetopsidaceae*, are proposed here as new. Furthermore, 13 new genera, 28 new species, and 20 new combinations are proposed within the *Pleosporineae*. Moreover, four new typifications are introduced to stabilise the taxonomy of these fungi.

Key words: Cucurbitariaceae, Didymellaceae, Multigene phylogeny, New taxa, Phoma, Pleosporineae, Pleosporales, Pyrenochaeta, Pyrenochaetopsis, Taxonomy. Taxonomic novelties: New families: Neopyrenochaetaceae Valenzuela-Lopez, Crous, Cano, Guarro & Stchigel, Parapyrenochaetaceae Valenzuela-Lopez, Crous, Stchigel, Guarro & Cano, Pseudopyrenochaetaceae Valenzuela-Lopez, Crous, Stchigel, Guarro & Cano, Pyrenochaetopsidaceae Valenzuela-Lopez, Crous, Cano, Guarro & Stchigel; New genera: Allocucurbitaria Valenzuela-Lopez, Stchigel, Guarro & Cano, Cumuliphoma Valenzuela-Lopez, Stchigel, Crous, Guarro & Cano, Ectophoma Valenzuela-Lopez, Cano, Crous, Guarro & Stchigel, Juxtiphoma Valenzuela-Lopez, Cano, Crous, Guarro & Stchigel, Neopyrenochaeta Valenzuela-Lopez, Crous, Stchigel, Guarro & Cano, Neopyrenochaetopsis Valenzuela-Lopez, Cano, Guarro & Stchigel, Paracucurbitaria Valenzuela-Lopez, Stchigel, Guarro & Cano, Parapyrenochaeta Valenzuela-Lopez, Crous, Stchigel, Guarro & Cano, Pseudopyrenochaeta Valenzuela-Lopez, Crous, Stchigel, Guarro & Cano, Remotididymella Valenzuela-Lopez, Crous, Cano, Guarro & Stchigel, Similiphoma Valenzuela-Lopez, Crous, Cano, Guarro & Stchigel, Vacuiphoma Valenzuela-Lopez, Cano, Crous, Guarro & Stchigel, Xenopyrenochaetopsis Valenzuela-Lopez, Crous, Stchigel, Guarro & Cano; New species: Allocucurbitaria botulispora Valenzuela-Lopez, Stchigel, Guarro & Cano, Allophoma cylindrispora Valenzuela-Lopez, Cano, Guarro & Stchigel, Cumuliphoma indica Valenzuela-Lopez, Cano, Crous, Guarro & Stchigel, Cu. pneumoniae Valenzuela-Lopez, Stchigel, Crous, Guarro & Cano, Didymella brunneospora Valenzuela-Lopez, Cano, Crous, Guarro & Stchigel, D. keratinophila Valenzuela-Lopez, Cano, Guarro & Stchigel, Epicoccum catenisporum Valenzuela-Lopez, Stchigel, Crous, Guarro & Cano, Ep. keratinophilum Valenzuela-Lopez, Cano, Guarro & Stchigel, Ep. ovisporum Valenzuela-Lopez, Stchigel, Crous, Guarro & Cano, Ep. pneumoniae Valenzuela-Lopez, Stchigel, Guarro & Cano, Neoascochyta cylindrispora Valenzuela-Lopez, Cano, Guarro & Stchigel, Neoa. tardicrescens Valenzuela-Lopez, Cano, Crous, Guarro & Stchigel, Neocucurbitaria aquatica Valenzuela-Lopez, Crous, Stchigel, Guarro & Cano, Neocu. irregularis Valenzuela-Lopez, Cano, Guarro & Stchigel, Neopyrenochaeta fragariae Valenzuela-Lopez, Crous, Stchigel, Guarro & Cano, Neopyrenochaetopsis hominis Valenzuela-Lopez, Cano, Guarro & Stchigel, Nothophoma variabilis Valenzuela-Lopez, Cano, Guarro & Stchigel, Paracucurbitaria italica Valenzuela-Lopez, Crous, Stchigel, Guarro & Cano, Pseudopyrenochaeta terrestris Valenzuela-Lopez, Crous, Cano, Guarro & Stchigel, Pyrenochaetopsis americana Valenzuela-Lopez, Cano, Guarro & Stchigel, Py. botulispora Valenzuela-Lopez, Cano, Guarro & Stchigel, Py. confluens Valenzuela-Lopez, Cano, Guarro & Stchigel, Py. globosa Valenzuela-Lopez, Cano, Guarro & Stchigel, Py. paucisetosa Valenzuela-Lopez, Cano, Guarro & Stchigel, Py. setosissima Valenzuela-Lopez, Cano, Crous, Guarro & Stchigel, Py. uberiformis Valenzuela-Lopez, Cano, Guarro & Stchigel, Remotididymella anthropophila Valenzuela-Lopez, Cano, Guarro & Stchigel, Vacuiphoma oculihominis Valenzuela-Lopez, Stchigel, Guarro & Cano; New combinations: Cumuliphoma omnivirens (Aveskamp et al.) Valenzuela-Lopez, Stchigel, Crous, Guarro & Cano, Ectophoma multirostrata (P.N. Mathur et al.) Valenzuela-Lopez, Cano, Crous, Guarro & Stchigel, Ec. pomi (Horne) Valenzuela-Lopez, Cano, Crous, Guarro & Stchigel, Epicoccum proteae (Crous) Valenzuela-Lopez, Stchigel, Crous, Guarro & Cano, Juxtiphoma eupyrena (Sacc.) Valenzuela-Lopez, Cano, Crous, Guarro & Stchigel, Neocucurbitaria cava (Schulzer) Valenzuela-Lopez, Crous, Stchigel, Guarro & Cano, Neocu. hakeae (Crous) Valenzuela-Lopez, Crous, Stchigel, Guarro & Cano, Neocu. keratinophila (Verkley et al.) Valenzuela-Lopez, Stchigel, Guarro & Cano, Neopyrenochaeta acicola (Moug. & Lév.) Valenzuela-Lopez, Crous, Stchigel, Guarro & Cano, Neopy. inflorescentiae (Crous et al.) Valenzuela-Lopez, Crous, Stchigel, Guarro & Cano, Neopy. telephoni (Rohit Sharma et al.) Valenzuela-Lopez, Crous, Stchigel, Guarro & Cano, Paracucurbitaria corni (Bat. & A.F. Vital) Valenzuela-Lopez, Stchigel, Guarro & Cano, Parapyrenochaeta acaciae (Crous et al.) Valenzuela-Lopez, Crous, Stchigel, Guarro & Cano, Parapy. protearum (Crous) Valenzuela-Lopez, Crous, Stchigel, Guarro & Cano, Pseudopyrenochaeta lycopersici (R.W. Schneid. & Gerlach) Valenzuela-Lopez, Crous, Stchigel, Guarro & Cano, Remotididymella destructiva (Plowr.) Valenzuela-Lopez, Cano, Crous, Guarro & Stchigel, Similiphoma crystallifera (Gruyter et al.) Valenzuela-Lopez, Crous, Cano, Guarro & Stchigel, Vacuiphoma bulgarica (Aveskamp et al.) Valenzuela-Lopez, Cano, Crous, Guarro & Stchigel, Xenodidymella saxea (Aveskamp et al.) Valenzuela-Lopez, Crous, Cano, Guarro & Stchigel, Xenopyrenochaetopsis pratorum (P.R. Johnst. & Boerema) Valenzuela-Lopez, Crous, Stchigel, Guarro & Cano.

Available online 21 November 2017; https://doi.org/10.1016/j.simyco.2017.11.003.

Peer review under responsibility of Westerdijk Fungal Biodiversity Institute.

© 2018 Westerdijk Fungal Biodiversity Institute. Production and hosting by ELSEVIER B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

INTRODUCTION

The Pleosporales is the largest order of the class Dothideomycetes (phylum Ascomycota), encompassing more than 4700 species distributed over 332 genera, and 53 families (Kirk et al. 2008, Zhang et al. 2009, 2012, Ariyawansa et al. 2013, Hyde et al. 2013, Amaradasa et al. 2014, Trakunyingcharoen et al. 2014. Wijavawardene et al. 2014. Crous et al. 2015a. Sharma et al. 2015, Tanaka et al. 2015, Jaklitsch et al. 2016, Jaklitsch & Voglmayr 2016, Wanasinghe et al. 2016, Crous & Groenewald 2017, Hashimoto et al. 2017, Hernández-Restrepo et al. 2017). These fungi are characterised by the production of pseudothecial ascomata (mostly globose and usually papillate) consisting of a peridial wall composed by several layers of cells, within which the fissitunicate (bitunicate) asci are produced amidst a persistent hamathecium (the vegetative structures inside an ascoma) (Jaklitsch & Voglmayr 2016, Jaklitsch et al. 2018, Zhang et al. 2009, 2012) and ascospores, which are mostly septate but variable in shape and pigmentation. The asexual morphs of the Pleosporales are characterised by conidia produced within discrete sporocarps (conidiomata), and sometimes conidia are generated on conidiophores produced on mycelium. Phoma and its relatives are the most common pleosporalean asexual morphs and are characterised by the presence of pycnidia (globose to pyriform conidiomata from which the conidia arise throughout an apical opening) (de Gruyter et al. 2009, 2010, Aveskamp et al. 2010, Chen et al. 2015). Pleosporales are mainly saprobic on plant debris, epiphytic, endophytic or parasitic of living plants, fungi and insects, or mycobionts in lichens (Kruys et al. 2006, Aveskamp et al. 2008, 2010, de Gruyter et al. 2009, Zhang et al. 2009, 2012, Lawrey et al. 2012, Kocakaya et al. 2015). These fungi can also infect humans (Punithalingam 1979, Ahmed et al. 2014, 2015, 2017, Borman et al. 2016, Valenzuela-Lopez et al. 2016).

Modern phylogenetic studies support the division of the Pleosporales into the suborders Pleosporineae and Massarineae (Zhang et al. 2009, 2012, Hyde et al. 2013, Tanaka et al. 2015). The former includes nine families, i.e. Coniothyriaceae, Cucurbitariaceae. Didvmellaceae. Dothidotthiaceae. Haloiulellaceae. Leptosphaeriaceae. Neophaeosphaeriaceae, Phaeosphaeriaceae, Pleosporaceae and Shiraiaceae (Zhang et al. 2012, de Gruyter et al. 2013, Ariyawansa et al. 2013, 2015b, Liu et al. 2013), which encompass plant pathogens of economic importance including the well-known genera such as Alternaria, Ascochyta, Bipolaris, Didymella and Leptosphaeria (Zhang et al. 2012, Ariyawansa et al. 2013, de Gruyter et al. 2013, Liu et al. 2013, Woudenberg et al. 2013). Recently, Tanaka et al. (2015) revised the suborder Massarineae and accepted 12 families; however, more studies are needed for a better understanding of their phylogenetic relationships. Numerous species of Pleosporales are relatively common in clinical samples, most of which belong to the families Cucurbitariaceae and Didymellaceae (Valenzuela-Lopez et al. 2016). Cucurbitariaceae is still a poorly known family, which was erected by Winter (1885) with Cucurbitaria as the type genus, and characterised by ostiolate ascomata aggregated on a basal pseudostromatic structure, hamathecium composed of wide persistent filaments, fissitunicate, cylindrical to cylindrical-clavate asci and dark, phragmosporous or muriform ascospores. In the last revision of Cucurbitariaceae, four sexual genera (Cucurbitaria, Curreya, Rhytidiella and Syncarpella) and two asexual genera (Pyrenochaeta and Pyrenochaetopsis) were accepted (Doilom *et al.* 2013). The latter two genera are characterised by phomalike, setose pycnidia, and hyaline, aseptate conidia (de Gruyter *et al.* 2010, 2013). Recently, Jaklitsch & Voglmayr (2017) demonstrated that some species of *Cucurbitaria*, such as *C. obducens*, *C. piceae* (both producing muriform ascospores) and *C. rhododendri* (with phragmospores), belong to three different genera of *Melanommataceae*. Wanasinghe *et al.* (2017b) proposed *Neocucurbitaria*, characterised by solitary ascomata, the presence of periphyses and muriform ascospores, as a new genus of *Cucurbitariaceae*. However, the current members of this family need to be re-evaluated, including their asexual morphs.

The family *Didymellaceae* also includes economically important plant pathogens, such as the causal agents of blackleg and ascochyta blight (Rouxel & Balesdent 2005, McDonald & Peck 2009, Salam *et al.* 2011, de Gruyter *et al.* 2013), but also diverse endophytic, fungicolous and lichenicolous taxa belong to this fungal group (Aveskamp *et al.* 2010), whereas a few members are known as pathogens of humans (de Hoog *et al.* 2011). This family was established by de Gruyter *et al.* (2009) and embraces the species traditionally classified in the genera *Ascochyta, Didymella* and *Phoma.* However, *Phoma* is one of the largest and most polyphyletic fungal genera (with more than 3 000 names recorded) with species occurring in more than 25 families (http://www.indexfungorum.org).

Zhang et al. (2009), included Didymellaceae in their study and accepted the sexual genera Didymella, Leptosphaerulina, Macroventuria, Monascostroma and Platychora. In general, these genera are characterised by dark pseudothecial ascomata, filamentous pseudoparaphyses, 8-spored, fissitunicate, clavate to saccate asci, and hyaline, 1-septate, fusiform to biconical ascospores; with the only exception being Leptosphaerulina, which has hyaline to brown, ellipsoid, cylindrical or oblong, phragmosporous or muriformly septate ascospores, which also lack pseudoparaphyses. Several studies have tried to resolve the taxonomy of the asexual morphs of the Didymellaceae, especially Phoma and its relatives, with more or less success. Subsequently, de Gruyter et al. (2010) transferred several species of Phoma to Pyrenochaetopsis (Cucurbitariaceae), Neosetophoma and Setophoma (Phaeosphaeriaceae), and resurrected the genus Paraphoma (Phaeosphaeriaceae). The study by Aveskamp et al. (2010), based on the sequences of four loci, revealed that the subdivision of Phoma in sections (Boerema et al. 2004) was phylogenetically inconsistent, and they thus proposed Boeremia to accommodate species morphologically close to Phoma exigua, while species of Phoma section Sclerophomella were transferred to Epicoccum and Peyronellaea. Furthermore, de Gruyter et al. (2013) transferred some species of Phoma sections Plenodomus and Heterospora to the Leptosphaeriaceae and some from Phoma section Pilosa and Ascochyta to Pleosporaceae. Recently, Chen et al. (2015) proposed nine genera (Allophoma, Calophoma, Heterophoma, Neoascochyta, Neodidymelliopsis, Nothophoma, Paraboeremia, Phomatodes and Xenodidymella) in Didymellaceae, transferred Microsphaeropsis (Didymellaceae) to the family Microsphaeropsidaceae, and restricted Phoma to Phoma herbarum (Chen et al. 2017). Other authors have added the genera Briansuttonomyces, Didymellocamarosporium, Heracleicola, Neodidymella, Neomicrosphaeropsis and Pseudoascochyta to Didymellaceae (Ariyawansa et al. 2015a, Crous & Groenewald 2016, Crous et al. 2016a, Thambugala et al. 2016, Wijayawardene et al. 2016). However, the genera Didymellocamarosporium, Heracleicola and Neodidymella were studied by Chen *et al.* (2017) and revealed as probable synonyms of older genera within *Didymellaceae*.

To resolve the taxonomy of the *Cucurbitariaceae* and the *Didymellaceae* we have tried to delineate the phylogenetic relationships within these families performing a multi-locus analysis including ex-type and reference strains of most of the phoma-like and pyrenochaeta-like taxa available in the culture collection of Westerdijk Fungal Biodiversity Institute (Utrecht, The Netherlands; formerly CBS-KNAW), and numerous isolates of clinical origin from the USA.

MATERIALS AND METHODS

Isolates and reference fungal strains

This study comprised 70 clinical isolates previously identified as belonging to the *Pleosporales* (Valenzuela-Lopez *et al.* 2016), provided by the Fungus Testing Laboratory of the University of Texas Health Science Center at San Antonio (UTHSC; San Antonio, Texas, USA), two environmental strains from Spain (CBS 141688) and New Zealand (CBS 141689) respectively, and 71 reference and ex-type strains belonging to the *Cucurbitariaceae* and *Didymellaceae* provided by the CBS culture collection (Table 1).

Phenotypic study

For cultural characterisation, isolates were grown on oatmeal agar (OA; 30 g of filtered oat flakes, 15 g of agar-agar, 1 L tap water) and malt extract agar (MEA; 40 g of malt extract, 15 g of agar-agar, 1 L distilled water), at 25 ± 1 °C for 14 d in darkness (recipes according to Boerema *et al.* 2004 and Crous *et al.* 2009). Some of the cultures were incubated under near-ultraviolet (UV) light (12 h light, 12 h dark) or on carnation leaf agar (CLA) to induce sporulation if necessary (Fisher *et al.* 1982, Su *et al.* 2012). Colony diameters were measured after 7 d at 25 ± 1 °C, and colony characterisation was performed 14 d after inoculation on the culture media. Colours were according to Kornerup & Wanscher (1978). The ability of the isolates to grow at cardinal temperatures were determined on potato dextrose agar (PDA; Pronadisa, Madrid, Spain) after 7 d in darkness, ranging from 5 to 35 °C at 5 °C intervals, and including 37 °C.

Micromorphological characterisation was performed by examining at least 30 individuals of each structure (Aveskamp *et al.* 2010, Chen *et al.* 2015). Wet mounts (in Shear's mounting medium and in water) of structures were examined by using an Olympus CH2 compound microscope (Olympus Corporation, Tokyo, Japan). Photo micrographs were captured using a Zeiss Axio-Imager M1 microscope (Oberkochen, Germany) with a DeltaPix Infinity X digital camera using Nomarski differential interference contrast. The production of metabolite E+ (NaOH spot test) was carried out by the application of a droplet of 1N NaOH on a colony grown on MEA (Dorenbosch 1970, Noordeloos *et al.* 1993).

DNA isolation, PCR amplification and sequencing

The total genomic DNA was extracted from colonies grown on PDA after 7 d incubation at 20 \pm 1 °C, using the FastDNA kit

protocol (Bio101, Vista, CA), with a FastPrep FP120 instrument (Thermo Savant, Holbrook, NY) according to the manufacturer's protocol. DNA was quantified by using Nanodrop 2000 (Thermo Scientific, Madrid, Spain). The following loci were amplified and sequenced: a fragment of the 28S nrRNA gene (LSU) with the primer pair LR0R (Rehner & Samuels 1994) and LR5 (Vilgalys & Hester 1990), internal transcribed spacer region (ITS1-5.8S-ITS2) with the primer pair ITS5 and ITS4 (White et al. 1990), a fragment of the beta-tubulin gene (tub2) with the primers TUB2Fw and TUB4Rd (Woudenberg et al. 2009) and a fragment of the RNA polymerase II subunit 2 gene (rpb2) with RPB2-5F2 (Sung et al. 2007) and fRPB2-7cR primers (Liu et al. 1999). The PCR amplifications were performed in a total volume of 25 µL containing 5 µL 10× PCR Buffer (Invitrogen, California, USA), 0.2 mM dNTPs, 0.5 µM of each primer, 1 U Tag DNA polymerase and 1-10 ng genomic DNA. PCR conditions for LSU, ITS and tub2 were set as follows: an initial denaturation at 95 °C for 5 min, followed by 35 cycles of denaturation, annealing and extension, and a final extension step at 72 °C for 10 min. For the LSU and ITS amplification, the 35 cycles consisted of 45 s at 95 °C, 45 s at 53 °C and 2 min at 72 °C; and for the tub2 region 30 s at 94 °C, 45 s at 56 °C and 1 min at 72 °C. The PCR program for rpb2 amplification consisted of 5 cycles of 45 s at 94 °C, 45 s at 60 °C and 2 min at 72 °C, then 5 cycles with a 58 °C annealing temperature and 30 cycles with a 54 °C annealing temperature (Woudenberg et al. 2013). Sequencing of the amplicons was made in both directions with the same primer pair used for amplification at Macrogen Europe (Macrogen Inc., Amsterdam, The Netherlands). The consensus sequences were obtained using the SegMan software v. 7 (DNAStar Lasergene, Madison, WI, USA).

Phylogenetic analyses

Sequences of related species described in previous studies were obtained from GenBank (Aveskamp et al. 2009, 2010, de Gruyter et al. 2010, 2013, Wijayawardene et al. 2014, Chen et al. 2015, 2017, Thambugala et al. 2016), and listed in Table 1. For the phylogenetic study, the alignments of the sequences were performed using MEGA v. 6.06 (Tamura et al. 2013), using the ClustalW application (Thompson et al. 1994), refined with MUSCLE (Edgar 2004) and manually adjusted using the same software platform. The ambiguous regions were excluded from the analyses. Phylogenetic reconstructions were made by maximum-likelihood (ML) and Bayesian inference (BI) with RAxML v. 8.2.10 (Stamatakis 2014) and MrBayes v. 3.2.6 (Ronquist et al. 2012), respectively. The best substitution model for each gene matrix correspond to GTR+I+G, and was estimated using MrModelTest v. 2.3 (Nylander 2004). For ML analyses, nearest-neighbour interchange was used as the heuristic method for tree inference. Support for internal branches was assessed by 1 000 ML bootstrapped pseudoreplicates. Bootstrap support (BS) \geq 70 was considered significant. For BI analyses, Markov chain Monte Carlo (MCMC) sampling was performed with 46 M generations, with samples taken every 1000 generations. The 50 % majority rule consensus trees and posterior probability values (PP) were calculated after removing the first 25 % of the resulting trees for burn-in. A PP value >0.95 was considered as significant. Both ML and BS analyses were run in CIPRES (Miller et al. 2012). Preussia terricola (AFTOL-ID 282) and Sporormiella minima (CBS 524.50) served as outgroup taxa. Sequences generated in this study were deposited in GenBank

UNIVERSITAT ROVIRA I VIRGILI TAXONOMÍA DE HONGOS CELOMICETOS DE INTERÉS CLÍNICO Nicomedes**VALEDADER**ÉPALA

Table 1. Isolates used in this	study and their GenBank ac	cession numbers. N	umbers of new taxa,	combinatio	ns and sequences ge	enerated are indicated	ated in bold			
Species	Old name	CBS strain ¹ no.	Other strain ¹ no.	Status ²	Host, substrate	Country	GenE	sank acces	sion numb	ers ³
							LSU	ITS	TUB	RPB2
Allocucurbitaria botulispora	Pyrenochaeta sp.	CBS 142452	UTHSC:DI16-273; FMR 13764	F	Human superficial tissue	NSA	LN907416	LT592932	LT593001	LT593070
Allophoma cylindrispora	Phoma sp.	CBS 142453	UTHSC:DI16-233; FMR 13723	F	Human superficial tissue	USA	LN907376	LT592920	LT592989	LT593058
A. labilis		CBS 124.93			Solanum lycopersicum	The Netherlands	GU238091	GU237765	GU237619	КТ389552
A. minor		CBS 325.82	FMR 14905	⊢	Syzygium aromaticum	Indonesia	GU238107	GU237831	GU237632	KT389553
A. nicaraguensis		CBS 506.91	FMR 14904	μ	Coffea arabica	Nicaragua	GU238058	GU237876	GU237596	KT389551
A. oligotrophica	Phoma costarricencis	CBS 497.91	FMR 14902		Coffea arabica	Unknown	GU238059	GU237870	GU237597	LT623247
			CGMCC 3.18114	μ	Air sample	China	KY742194	KY742040	KY742282	KY742128
A. piperis		CBS 268.93		μ	Peperomia pereskiifolia	Netherlands	GU238129	GU237816	GU237644	KT389554
A. tropica		CBS 436.75	FMR 14903	μ	Saintpaulia ionantha	Germany	GU238149	GU237864	GU237663	KT389556
A. zantedeschiae		CBS 131.93			Calla sp.	The Netherlands	GU238159	FJ427084	FJ427188	KT389557
		CBS 229.32			Cicer arietinum	Romania	KT389690	KT389473	KT389558	KT389767
Altemariaster bidentis		CBS 134021	CPC 19479	F	Bidens sulphurea	Brazil	KC609341	KC609333	I	KC609347
A. helianthi		CBS 327.69	IFO 9089		Helianthus annuus	Unknown	KC584369	KC609335	I	KC584494
Ascochyta herbicola		CBS 629.97			Water	NSA	GU238083	GU237898	GU237614	KP330421
A. pisi		CBS 126.54	AFTOL-ID 1583		Pisum sativum	The Netherlands	DQ678070	GU237772	GU237531	DQ677967
A. rabiei		CBS 206.30			Unknown	Unknown	KT389695	KT389478	KT389772	KT389559
A. versabilis		CBS 876.97			Silene sp.	The Netherlands	GU238152	GU237909	GU237664	KT389561
A. viciae		CBS 451.68			Vicia sepium	The Netherlands	KT389701	KT389484	KT389778	KT389562
Boeremia exigua		CBS 118.38			Cheiranthus cheiri	Denmark	KT389706	KT389489	KT389783	KT389582
		CBS 119.38			Nicotiana tabacum	Unknown	KT389707	KT389490	KT389784	KT389583
B. lycopersici		CBS 378.67			Solanum lycopersicum	The Netherlands	GU237950	GU237848	GU237512	KT389580
Briansuttonomyces eucalypti		CBS 114879	CPC 362	г	Eucalyptus sp.	South Africa	KU728519	KU728479	KU728595	I
		CBS 114887	CPC 363		Eucalyptus sp.	South Africa	KU728520	KU728480	KU728596	I
Calophoma aquilegiicola		CBS 107.96			Aconitum pyramidale	The Netherlands	GU238041	GU237735	GU237581	KT389586
		CBS 108.96			Aquilegia sp.	The Netherlands	GU238042	GU237736	GU237582	I
C. clematidina		CBS 102.66			Clematis sp.	UK	FJ515630	FJ426988	FJ427099	KT389587
		CBS 108.79		F	Clematis sp.	The Netherlands	FJ515632	FJ426989	FJ427100	KT389588
C. clematidis-rectae		CBS 507.63		F	Clematis sp.	The Netherlands	FJ515647	FJ515606	FJ515624	КТ389589
C. rosae			CGMCC 3.18347	F	Rosa sp.	China	KY742203	KY742049	KY742291	KY742135
			LC 8119		Rosa sp.	China	KY742204	KY742050	KY742292	KY742136

Table 1. (Continued).										
Species	Old name	CBS strain ¹ no.	Other strain ¹ no.	Status ²	Host, substrate	Country	GenE	3ank acces	sion numb	ers ³
							LSU	ITS	TUB	RPB2
Camarosporidiella aborescentis	Camarosporium aborescentis		MFLUCC 14-0604	н	Colutea arborescens	Russia	KP711378	KP711377	I	I
	Camarosporium arezzoensis		MFLUCC 14-0238	μ	Cytisus sp.	Italy	KP120927	KP120926	I	I
C. aureum	Camarosporium aureum		MFLUCC 14-0620	μ	Cotinus coggygria	Russia	KP744478	KP744436	I	I
C. clematidis	Camarosporium clematidis		MFLUCC 13-0336	г	Clematis vitalba	Italy	KJ562188	KJ562213	I	I
C. elongata	Cucurbitaria elongata		MFLUCC 14-0260		Cytisus scoparius	Italy	KJ724249	I	I	I
	Cucurbitaria elongata	CBS 171.55	AFTOL-ID 1568		Cytisus sessilifolius	France	DQ678061	I	I	DQ677957
C. robiniicola	Camarosporium robiniicola		MFLUCC 13-0527		Robinia pseudacacia	Italy	KJ589412	KJ562214	I	I
C. spartii	Camarosporium spartii		MFLUCC 13-0548		Cytisus sp.	Italy	KJ589413	KJ562215	I	I
Camarosporium quaternatum		CBS 142617	CPC 23216		Daphne mezereum	Germany	KY929170	KY929135	I	I
		CBS 142616	CPC 31081	μ	Lycium barbarum	Hungary	KY929136	KY929171	I	I
			CPC 31518		Lycium barbarum	Hungary	KY929172	KY929137	I	I
Camarosporomyces flavigenus		CBS 314.80		F	Water	Romania	GU238076	КҮ929138	I	I
Coniothyrium palmarum		CBS 758.73	CMW 5283		Phoenix dactylifera	Israel	JX681085	I	I	I
		CBS 400.71			Chamaerops humilis	Italy	EU754153	AY720708	KT389792	KT389592
C. telephii		CBS 188.71			Air sample	Finland	GQ387599	JF740188	KT389793	KT389593
		CBS 856.97			Mineral wool	Finland	GQ387600	JF740189		
Cucurbitaria berberidis			MFLUCC 11-0387		Berberis vulgaris	Austria	KC506796	I	I	I
		CBS 130007	FMR 15751; MFLUCC 11-0384; CB1	⊢	Berberis vulgaris	Austria	KC506793	LT717673	LT717676	LT854936
Cumuliphoma indica	Phoma omnivirens	CBS 654.77	FMR 15341	μ	Unknown	India	GU238122	FJ427043	FJ427153	LT623261
	Phoma omnivirens	CBS 991.95	FMR 15331		Soil	Papua New Guinea	GU238121	FJ427044	FJ427154	LT623262
C. omnivirens	Phoma omnivirens	CBS 341.86	FMR 14915	μ	Phaseolus vulgaris	Belgium	LT623214	FJ427042	FJ427152	LT623260
C. pneumoniae	Phoma sp.	CBS 142454	UTHSC:DI16-249; FMR 13739	F	Human respiratory tract	USA	LN907392	LT592925	LT592994	LT593063
Cucurbidothis pityophila		CBS 149.32	FMR 15744		Unknown	The Netherlands	JX681087	GQ203756	LT854934	LT854935
Didymella aeria			LC 8120		Air sample	China	KY742206	KY742052	KY742294	KY742138
			CGMCC 3.18353	г	Air sample	China	KY742205	KY742051	KY742137	KY742293
D. aliena		CBS 379.93			Berberis sp.	The Netherlands	GU238037	GU237851	GU237578	KP330416
D. americana		CBS 185.85			Zea mays	NSA	GU237990	FJ426972	FJ427088	KT389594
D. anserina		CBS 253.80			Unknown	Germany	KT389715	KT389498	KT389795	KT389595
	Peyronellaea sp.		UTHSC:DI16-255; FMR 13745		Human respiratory tract	USA	LN907398	LT592926	LT592995	LT593064
									(continued or	next page)

UNIVERSITAT ROVIRA I VIRGILI TAXONOMÍA DE HONGOS CELOMICETOS DE INTERÉS CLÍNICO Nicomedes**VALEDADER**ÉPALA

Table 1. (Continued).										
Species	Old name	CBS strain ¹ no.	Other strain ¹ no.	Status ²	Host, substrate	Country	GenE	Bank acces	sion numb	ers ³
							LSU	ITS	TUB	RPB2
D. aquatica			CGMCC 3.18349	Т	Water	China	KY742209	KY742055	KY742297	KY742140
			LC 5555		Water	China	KY742210	KY742056	KY742298	KY742141
D. arachidicola		CBS 333.75		F	Arachis hypogaea	South Africa	GU237996	GU237833	GU237554	KT389598
D. aurea		CBS 269.93		г	Medicago polymorpha	New Zealand	GU237999	GU237818	GU237557	KT389599
D. bellidis		CBS 714.85			Bellis perennis	The Netherlands	GU238046	GU237904	GU237586	KP330417
D. boeremae		CBS 109942		F	<i>Medicago littoralis</i> cv. Harbinger	Australia	GU238048	FJ426982	FJ427097	КТ389600
D. brunneospora	Didymella sp.	CBS 115.58	FMR 15745	н	Chrysanthemum roseum	Germany	KT389723	KT389505	KT389802	КТ389625
D. chenopodii		CBS 128.93			Chenopodium quinoa cv. Sajana	Peru	GU238055	GU237775	GU237591	КТ389602
D. chloroguttulata			CGMCC 3.18351	F	Air sample	China	KY742211	KY742057	KY742299	KY742142
			LC 8122		Air sample	China	KY742212	KY742058	KY742300	KY742143
D. coffeae-arabicae		CBS 123380	PD 84/1013	F	Coffea arabica	Ethiopia	GU238005	FJ426993	FJ427104	KT389603
D. curtisii			PD 92/1460		Sprekelia sp.	The Netherlands	GU238012	FJ427041	FJ427151	KT389604
D. ellipsoidea			CGMCC 3.18350	μ	Air sample	China	KY742214	KY742060	KY742302	KY742145
			LC 8123		Air sample	China	KY742215	KY742061	KY742303	KY742146
D. eucalyptica		CBS 377.91			Eucalyptus sp.	Australia	GU238007	GU237846	GU237562	KT389605
D. exigua		CBS 183.55		μ	Rumex arifolius	France	EU754155	GU237794	GU237525	EU874850
D. gardeniae		CBS 626.68	IMI 108771; FMR 14901	μ	Gardenia jasminoides	India	GQ387595	FJ427003	FJ427114	KT389606
	Peyronellaea sp.		UTHSC:DI16-211; FMR 13701		Human superficial tissue	USA	LN907354	LT592908	LT592977	LT593046
	Peyronellaea calorpreferens		UTHSC:DI16-226; FMR 13716		Human superficial tissue	USA	LN907369	LT592913	LT592982	LT593051
	Peyronellaea sp.		UTHSC:DI16-274; FMR 13765		Human superficial tissue	USA	LN907417	LT 592933	LT593002	LT593071
	Peyronellaea sp.		UTHSC:DI16-295; FMR 13788		Human superficial tissue	USA	LN907438	LT592944	LT593013	LT593083
D. glomerata		CBS 528.66		μ	Chrysanthemum sp.	The Netherlands	JX681105	FJ427013	FJ427124	GU371781
	Peyronellaea glomerata		UTHSC:DI16-205; FMR 13695		Human superficial tissue	NSA	LN907348	LT592905	LT592974	LT593043
D. heteroderae		CBS 109.92	PD 73/1405	F	Undefined food material	The Netherlands	GU238002	FJ426983	FJ427098	KT389601
	Peyronellaea calorpreferens		UTHSC:DI16-190; FMR 13680		Human superficial tissue	USA	LN907333	LT592896	LT592965	LT593034

Table 1. (Continued).										
Species	Old name	CBS strain ¹ no.	Other strain ¹ no.	Status ²	Host, substrate	Country	Genl	Bank acces	sion numb	ers ³
							LSU	ITS	TUB	RPB2
	Peyronellaea calorpreferens		UTHSC:DI16-224; FMR 13714		Human superficial tissue	NSA	LN907367	LT592911	LT592980	LT593049
	Peyronellaea calorpreferens		UTHSC:DI16-227; FMR 13717		Human superficial tissue	NSA	LN907370	LT592914	LT592983	LT593052
	Peyronellaea calorpreferens		UTHSC:DI16-231; FMR 13721		Human superficial tissue	USA	LN907374	LT592918	LT592987	LT593056
	Peyronellaea calorpreferens		UTHSC:DI16-232; FMR 13722		Human deep tissue/ fluids	USA	LN907375	LT592919	LT592988	LT593057
	Peyronellaea calorpreferens		UTHSC:DI16-234; FMR 13724		Human superficial tissue	NSA	LN907377	LT592921	LT592990	LT593059
	Peyronellaea calorpreferens		UTHSC:DI16-235; FMR 13725		Human superficial tissue	USA	LN907378	LT592922	LT592991	LT593060
	Peyronellaea calorpreferens		UTHSC:DI16-305; FMR 13798		Human respiratory tract	USA	LN907448	LT592951	LT593020	LT593090
D. ilicicola			CGMCC 3.18355	μ	llex chinensis	Italy	KY742219	KY742065	KY742307	KY742150
			LC 8127		llex chinensis	Italy	KY742220	KY742066	KY742308	KY742151
D. infuscatispora			CGMCC 3.18356	F	Chrysanthemum indicum	China	KY742221	KY742067	KY742309	KY742152
			LC 8129		Chrysanthemum indicum	China	KY742222	KY742068	KY742310	I
D. keratinophila	Peyronellaea sp.	CBS 143032	UTHSC:DI16-200; FMR 13690	F	Human superficial tissue	USA	LN907343	LT592901	LT592970	LT593039
	Peyronellaea sp.		UTHSC:DI16-228; FMR 13718		Human superficial tissue	USA	LN907371	LT592915	LT592984	LT593053
	Phoma sp.		UTHSC:DI16-282; FMR 13774		Human superficial tissue	USA	LN907425	LT592938	LT593007	LT593077
D. lethalis		CBS 103.25			Unknown	Unknown	GU238010	GU237729	GU237564	KT389607
D. macrophylla			CGMCC 3.18357	μ	Hydrangea macrophylla	Italy	KY742224	KY742070	KY742312	KY742154
			LC 8132		Hydrangea macrophylla	Italy	KY742225	KY742071	KY742313	KY742155
D. macrostoma		CBS 223.69			Acer pseudoplatanus	Switzerland	GU238096	GU237801	GU237623	KT389608
D. maydis		CBS 588.69		T	Zea mays	USA	EU754192	FJ427086	FJ427190	GU371782
D. microchlamydospora		CBS 105.95		г	Eucalyptus sp.	UK	GU238104	FJ427028	FJ427138	KP330424
	Phoma sp.		UTHSC:DI16-199; FMR 13689		Human superficial tissue	USA	LN907342	LT592900	LT592969	LT593038

(continued on next page)

UNIVERSITAT ROVIRA I VIRGILI TAXONOMÍA DE HONGOS CELOMICETOS DE INTERÉS CLÍNICO Nicomedes**VALEDADER**ÉPALA

Table 1. (Continued).										
Species	Old name	CBS strain ¹ no.	Other strain ¹ no.	Status ²	Host, substrate	Country	GenE	3ank acces	sion numb	ers ³
							LSU	ITS	TUB	RPB2
	Peyronellaea sp.		UTHSC:DI16-365; FMR 13858		Human superficial tissue	USA	LN907508	LT592964	LT593033	LT593103
D. molleriana		CBS 229.79			Digitalis purpurea	New Zealand	GU238067	GU237802	GU237605	KP330418
D. musae	Phoma sp.		UTHSC:DI16-230; FMR 13720		Human superficial tissue	NSA	LN907373	LT592917	LT592986	LT593055
		CBS 463.69	FMR 15339		Mangifera indica	India	GU238011	FJ427026	FJ427136	LT623248
D. negriana		CBS 358.71			Vitis vinifera	Germany	GU238116	GU237838	GU237635	KT389610
			ICMP 10845; LC 5249		Vitis vinifera	former Yugoslavia	KY742227	KY742073	KY742315	I
D. nigricans		CBS 444.81	PD 77/919		Actinidea chinensis	New Zealand	GU238001	GU237915	GU237559	KT389611
D. ocimicola			CGMCC 3.18358	т	Ocimum sp.	China	KY742232	KY742078	KY742320	I
			LC 8138		Ocimum sp.	China	KY742233	KY742079	KY742321	I
D. pedeiae		CBS 124517		F	Schefflera elegantissima	The Netherlands	GU238127	GU237770	GU237642	КТ389612
D. pinodella		CBS 531.66			Trifolium pretense	NSA	GU238017	FJ427052	FJ427162	KT389613
D. pinodes		CBS 525.77		F	Pisum sativum	Belgium	GU238023	GU237883	GU237572	KT389614
		CBS 374.84	FMR 15345		Pisum sativum	The Netherlands	EU754135	JF810523	LT623229	LT623249
D. pomorum		CBS 285.76		μ	Heracleum dissectum	Russia	GU238025	FJ427053	FJ427163	KT389615
D. protuberans		CBS 381.96	FMR 14899	Ŧ	Lycium halifolium	The Netherlands	GU238029	GU237853	GU237574	KT389620
	Peyronellaea sp.		UTHSC:DI16-302; FMR 13795		Environmental	NSA	LN907445	LT592949	LT593018	LT593088
D. pteridis		CBS 379.96	FMR 15750		Pteris sp.	The Netherlands	KT389722	KT389504	KT389801	KT389624
D. rhei		CBS 109177			Rheum rhaponticum	New Zealand	GU238139	GU237743	GU237653	KP330428
D. rumicicola	Didymella acetosellae	CBS 179.97			Rumex hydrolapathum	The Netherlands	GU238034	GU237793	GU237575	KP330415
		CBS 683.79		Т	Rumex obtusifolius	New Zealand	KT389721	KT389503	KT389800	KT389622
D. sancta		CBS 281.83		μ	Ailanthus altissima	South Africa	GU238030	FJ427063	FJ427170	KT389623
		CBS 644.97	FMR 15351		Opuntia ficus-indica	Argentina	LT623211	FJ427064	FJ427171	LT623250
D. segeticola			CGMCC 3.17489	г	Cirsium segetum	China	KP330455	KP330443	KP330399	KP330414
			CGMCC 3.17498		Cirsium segetum	China	KP330454	KP330442	KP330398	KP330413
D. sinensis			LC 8142		Dendrobium officinale	China	KY742241	KY742087	KY742329	KY742166
			LC 8143		Dendrobium officinale	China	KY742242	KY742088	KY742330	KY742167
Didymella sp.	Didymella segeticola		LC 8141		Camellia sasanqua	Japan	KY742238	KY742084	KY742326	KY742164
D. subglomerata		CBS 110.92			Triticum sp.	USA	GU238032	FJ427080	FJ427186	KT389626

Table 1. (Continued).										
Species	Old name	CBS strain ¹ no.	Other strain ¹ no.	Status ²	Host, substrate	Country	Gent	Bank acces	sion numb	ers ³
							LSU	ITS	TUB	RPB2
D. suiyangensis			CGMCC 3.18352	μ	Air sample	China	KY742243	KY742089	KY742330	KY742168
			LC 8144		Air sample	China	KY742244	KY742090	KY742332	KY742169
D. viburnicola		CBS 523.73			Viburnum cassioides	The Netherlands	GU238155	GU237879	GU237667	KP330430
Dothidotthia aspera		CBS 119688	CPC 12932		Acer negundo	NSA	EU673275	I	I	I
D. symphoricarpi		CBS 119687	CPC 12929	г	Symphoricarpos rotundifolius	USA	EU673273	I	I	I
Ectophoma multirostrata	Phoma multirostrata	CBS 110.79	FMR 15342		Cucumis sativus	The Netherlands	GU238110	FJ427030	FJ427140	LT623264
	Phoma multirostrata	CBS 274.60	FMR 15335	г	Soil	Maharashtra	GU238111	FJ427031	FJ427141	LT623265
	Phoma multirostrata	CBS 368.65	FMR 15336		Unknown	India	GU238112	FJ427033	FJ427143	LT623266
E. pomi	Phoma pereupyrena	CBS 267.92	FMR 15346	г	Coffea arabica	India	GU238128	GU237814	GU237643	LT623263
Epicoccum brasiliense		CBS 120105	FMR 14907	F	Amaranthus sp.	Brazil	GU238049	GU237760	GU237588	КТ389627
E. camelliae			CGMCC 3.18343	г	Camellia sinensis	China	KY742245	KY742091	KY742333	KY742170
	Epicoccum sorghinum		UTHSC:DI16-201; FMR 13691		Human respiratory tract	USA	LN907344	LT592902	LT592971	LT593040
	Epicoccum sorghinum		UTHSC:DI16-202; FMR 13692		Human superficial tissue	USA	LN907345	LT592903	LT592972	LT593041
	Epicoccum sorghinum		UTHSC:DI16-206; FMR 13696		Human superficial tissue	USA	LN907349	LT592906	LT592975	LT593044
	Epicoccum sorghinum		UTHSC:DI16-280; FMR 13772		Human superficial tissue	USA	LN907423	LT592937	LT593006	LT593076
	Epicoccum sorghinum		UTHSC:DI16-338; FMR 13831		Human superficial tissue	USA	LN907481	LT592959	LT593028	LT593098
	Epicoccum sorghinum		UTHSC:DI16-345; FMR 13838		Human subcutaneous tissue	USA	LN907488	LT592961	LT593030	LT593100
			LC 4862		Camellia sinensis	China	KY742246	KY742092	KY742334	KY742171
E. catenisporum	Epicoccum sorghinum	CBS 181.80	FMR 14911	г	Oryza sativa	Guinea-Bissau	LT623213	FJ427069	FJ427175	LT623253
E. dendrobii			CGMCC 3.18359	г	Dendrobium fimbriatum	China	KY742247	KY742093	KY742335	I
			LC 8146		Dendrobium fimbriatum	China	KY742248	KY74209	KY742336	
E. draconis		CBS 186.83	FMR 14908		Dracaena sp.	Rwanda	GU238070	GU237795	GU237607	KT389628
E. duchesneae			LC 8147		Duchesnea indica	China	KY742250	KY742096	KY742338	I
			CGMCC 3.18345	г	Duchesnea indica	China	KY742249	KY742095	KY742337	I
E. henningsii		CBS 104.80			Acacia mearnsii	Kenya	GU238081	GU237731	GU237612	КТ389629
E. hordei			CGMCC 3.18360	г	Hordeum vulgare	Australia	KY742251	KY742097	KY742339	I
									(continued on	next page)

UNIVERSITAT ROVIRA I VIRGILI TAXONOMÍA DE HONGOS CELOMICETOS DE INTERÉS CLÍNICO Nicomedes**VALEDADER**ÉPALA

Table 1. (Continued).										
Species	Old name	CBS strain ¹ no.	Other strain ¹ no.	Status ²	Host, substrate	Country	Gent	Bank acces	sion numb	ers ³
							LSU	ITS	TUB	RPB2
			LC 8149		Hordeum vulgare	Australia	KY742252	KY742098	KY742340	I
E. huancayense		CBS 105.80		н	Solanum sp.	Peru	GU238084	GU237732	GU237615	KT389630
E. italicum			CGMCC 3.18361	г	Acca sellowiana	Italy	KY742253	KY742099	KY742341	KY742172
			LC 8151		Acca sellowiana	Italy	KY74225	KY742100	KY742342	KY742173
E. keratinophilum	Phoma sp.		UTHSC:DI16-244; FMR 13734		Human superficial tissue	USA	LN907387	LT592924	LT592993	LT593062
	Phoma sp.		UTHSC:DI16-258; FMR 13748		Human respiratory tract	USA	LN907401	LT592928	LT592997	LT593066
	Phoma sp.	CBS 142455	UTHSC:DI16-271; FMR 13762	F	Human superficial tissue	USA	LN907414	LT592930	LT592999	LT593068
	Phoma sp.		UTHSC:DI16-272; FMR 13763		Human superficial tissue	USA	LN907415	LT592931	LT593000	LT593069
	Phoma sp.		UTHSC:DI16-299; FMR 13792		Human deep tissue/ fluids	USA	LN907442	LT592947	LT593016	LT593086
E. latusicollum	Epicoccum sorghinum		UTHSC:DI16-197; FMR 13687		Human superficial tissue	USA	LN907340	LT592898	LT592967	LT593036
			CGMCC 3.18346	г	Sorghum bicolor	China	KY742255	KY742101	KY742343	KY742174
			LC 4859		Camellia sinensis	China	KY742256	KY742102	KY742344	KY742175
E. layuense			CGMCC 3.18362	Т	Perilla sp.	China	KY742261	KY742107	KY742349	I
			LC 8156		Perilla sp.	China	KY742262	KY742108	KY742350	I
E. nigrum		CBS 125.82			Human toe nail	The Netherlands	GU237974	FJ426995	FJ427106	KT389631
		CBS 173.73		Т	Dactylis glomerata	USA	GU237975	FJ426996	FJ427107	KT389632
E. ovisporum	Epicoccum sorghinum	CBS 180.80	FMR 14910	г	Zea mays	South Africa	LT623212	FJ427068	FJ427174	LT623252
E. pimprinum			PD 77/1028		Soil	India	GU237977	FJ427050	FJ427160	KT389633
E. plurivorum		CBS 558.81	FMR 14909	г	Setaria sp.	New Zealand	GU238132	GU237888	GU237647	KT389634
E. pneumoniae	Epicoccum sorghinum		UTHSC:DI16-257; FMR 13747	⊢	Human respiratory tract	USA	LN907400	LT592927	LT592996	LT593065
E. poae			LC 8161		Poa annua	USA	KY742268	KY742114	KY742356	KY742183
			CGMCC 3.18363	н	Poa annua	NSA	KY742267	KY742113	KY742355	KY742182
			LC 8162		Poa annua	NSA	KY742269	KY742115	KY742357	KY742184
E. proteae	Phoma proteae	CBS 114179	CPC 1854; FMR 15332	н	Protea cv. carnival	South Africa	JQ044452	JQ044433	LT623230	LT623251
E. sorghinum		CBS 179.80			Sorghum vulgare	Puerto Rico	GU237978	FJ427067	FJ427173	KT389635
		CBS 627.68			Citrus sp.	France	GU237979	FJ427072	FJ427178	KT389636
						NSA	LN907431	LT592940	LT593009	LT593079

Table 1. (Continued).										
Species	Old name	CBS strain ¹ no.	Other strain ¹ no.	Status ²	Host, substrate	Country	GenE	Bank acces	sion numbe	ers ³
							LSU	ITS	TUB	RPB2
			UTHSC:DI16-288; FMR 13780		Human superficial tissue					
			UTHSC:DI16-301; FMR 13794		Human respiratory tract	NSA	LN907444	LT592948	LT593017	LT593087
E. viticis			BRIP 29294; LC 5257		Andropogon gayanus	Australia	KY742271	KY742117	KY742359	I
			CGMCC 3.18344	F	Vitex negundo	China	KY742272	KY742118	KY742360	KY742186
Foliophoma fallens		CBS 161.78			Olea europaea	New Zealand	GU238074	КҮ929147	I	KC584502
		CBS 284.70			Nerium oleander	Italy	GU238078	КҮ929148	I	I
Halojulella avicenniae			BCC 18422		Mangrove wood	Thailand	GU371823	I	I	GU371787
			BCC 20173		Mangrove wood	Thailand	GU371822	I	I	GU371786
Heterophoma adonidis		CBS 114309			Adonis vernalis	Sweden	KT389724	KT389506	KT389803	KT389637
H. nobilis		CBS 507.91			Dictamnus albus	The Netherlands	GU238065	GU237877	GU237603	KT389638
H. verbascicola			CGMCC 3.18364	F	Verbascum thapsus	China	KY742273	KY742119	KY742361	KY742187
			LC 8164		Verbascum thapsus	China	KY742274	KY742120	KY742362	KY742188
Juxtiphoma eupyrena	Phoma eupyrena	CBS 374.91	FMR 15329		Solanum tuberosum	The Netherlands	GU238072	FJ426999	FJ427110	LT623268
	Phoma eupyrena	CBS 527.66	FMR 15337		Wheat field soil	Germany	GU238073	FJ427000	FJ427111	LT623269
Leptosphaeria conoidea		CBS 616.75			Lunaria annua	The Netherlands	JF740279	JF740201	KT389804	KT389639
L. doliolum		CBS 505.75		г	Urtica dioica	The Netherlands	GQ387576	JF740205	JF740144	KT389640
Leptosphaerulina americana		CBS 213.55			Trifolium pratense	NSA	GU237981	GU237799	GU237539	KT389641
L. australis		CBS 317.83			Eugenia aromatica	Indonesia	EU754166	GU237829	GU237540	GU371790
Libertasomyces myopori		CBS 141302	CPC 27354	г	Myoporum serratum	South Africa	KX228332	NR_145200	I	I
L. platani		CBS 142112	CPC 29609	Т	Platanus sp.	New Zealand	KY173507	KY173416	KY173604	KY173585
L. quercus		CBS 134.97	INIFAT C96/108	Т	Quercus ilex	Spain	DQ377883	I	I	I
Macroventuria anomochaeta		CBS 525.71		г	Decayed canvas	South Africa	GU237984	GU237881	GU237544	GU456346
M. wentii		CBS 526.71		г	Plant litter	NSA	GU237986	GU237884	GU237546	KT389642
Microsphaeriopsis olivacea		CBS 233.77			Pinus laricio	France	GU237988	GU237803	GU237549	KT389643
M. proteae		CBS 111319	CPC 1425		Protea nitida	South Africa	JN712563	JN712497	I	JN712650
Neoascochyta argentina		CBS 112524		⊢	Triticum aestivum	Argentina	KT389742	KT389524	KT389822	I
N. cylindrispora	Ascochyta sp.		UTHSC:DI16-352; FMR 13845		Human superficial tissue	USA	LN907495	LT592962	LT593031	LT593101
	Ascochyta sp.	CBS 142456	UTHSC:D116-359; FMR 13852	F	Human superficial tissue	NSA	LN907502	LT592963	LT593032	LT593102
N. desmazieri		CBS 297.69		F	Lolium perenne	Germany	KT389726	KT389508	KT389807 (continued on	KT389644 next page)
									וה הההוווותהה	וובער המאהו

ż ż

z z

lable 1. (Continued).										
Species	Old name	CBS strain ¹ no.	Other strain ¹ no.	Status ²	Host, substrate	Country	Gent	3ank acces	sion numb	ers ³
							LSU	ITS	TUB	RPB2
	Ascochyta sp.		UTHSC:DI16-207; FMR 13697		Human respiratory tract	NSA	LN907350	LT592907	LT592976	LT593045
	Ascochyta sp.		UTHSC:DI16-320; FMR 13813		Unknown	NSA	LN907463	LT592956	LT593025	LT593095
	Ascochyta sp.		UTHSC:DI16-332; FMR 13825		Human superficial tissue	USA	LN907475	LT592958	LT593027	LT593097
	Ascochyta sp.		UTHSC:DI16-341; FMR 13834		Human superficial tissue	USA	LN907484	LT592960	LT593029	LT593099
N. europaea		CBS 820.84		т	Hordeum vulgare	Germany	KT389729	KT389511	KT389809	KT389646
N. exitialis		CBS 118.40			Unknown	Unknown	KT389732	KT389514	KT389812	KT389647
		CBS 389.86			Triticum aestivum	Switzerland	KT389733	KT389515	KT389813	KT389648
N. graminicola		CBS 301.69			Lolium multiflorum	Germany	KT389737	KT389519	KT389817	KT389650
N. graminicola		CBS 816.84			Hordeum vulgare	Germany	KT389741	KT389523	KT389821	KT389651
N. paspali		CBS 560.81		т	Paspalum dilatatum	New Zealand	GU238124	FJ427048	FJ427158	KP330426
N. soli			LC 8166		Soil	China	KY742276	KY742122	KY742364	I
			CGMCC 3.18365	т	Soil	China	KY742275	KY742121	KY742363	I
N. tardicrescens	Neoascochyta sp.	CBS 689.97	FMR 15352	т	Hay	Norway	KT389744	KT389526	KT389824	KT389654
	Ascochyta sp.		UTHSC:DI16-291; FMR 13783		Human superficial tissue	USA	LN907434	LT592942	LT593011	LT593081
N. triticicola		CBS 544.74		т	Triticum aestivum	South Africa	EU754134	GU237887	GU237488	KT389652
Neocamarosporium betae		CBS 109410	PD 77/113		Beta vulgaris	Unknown	EU754178	KY940790	I	GU371774
		CBS 523.66	IHEM 3915; PD 66/270		Beta vulgaris	The Netherlands	EU754179	FJ426981	KT389842	KT389670
N. calvescens		CBS 246.79	PD 77/655		Atriplex hastata	Germany	EU754131	KY940774	I	KC584500
N. goegapense		CBS 138008	CPC 23676	F	<i>Mesembryanthemum</i> sp.	South Africa	KJ869220	KJ869163	I	I
Neocucurbitaria aquatica	Pyrenochaeta quercina	CBS 297.74	FMR 14867	Т	Sea water	Montenegro	EU754177	LT623221	LT623238	LT623278
N. cava	Pyrenochaeta cava	CBS 115979	FMR 15333		Unknown	The Netherlands	EU754198	AY853248	LT623234	LT623273
	Pyrenochaeta cava	CBS 257.68	FMR 15747; IMI 331911	F	Wheat-field soil	Germany	EU754199	JF740260	KT 389844	LT717681
N. hakeae	Pyrenochaeta hakeae	CBS 142109	CPC 28920	Т	Hakea sp.	Australia	KY173526	KY173436	KY173613	KY173593
N. irregularis	Pyrenochaeta unguis-hominis	CBS 142791	UTHSC:DI16-229; FMR 13719	F	Human subcutaneous tissue	USA	LN907372	LT592916	LT592985	LT593054
N. keratinophila	Pyrenochaeta keratinophila	CBS 121759	FMR 9444	Т	Man corneal scrapings	Spain	LT623215	EU885415	LT623236	LT623275
N. quercina	Pyrenochaeta quercina	CBS 115095	FMR 14868	Т	Quercus robur	Italy	GQ387619	LT623220	LT623237	LT623277

Table 1. (Continued).										
Species	Old name	CBS strain ¹ no.	Other strain ¹ no.	Status ²	Host, substrate	Country	GenE	3ank acces :	sion numb	ers ³
							LSU	ITS	TUB	RPB2
N. unguis-hominis	Pyrenochaeta unguis-hominis		UTHSC:DI16-213; FMR 13703		Unknown	USA	LN907356	LT592910	LT592979	LT593048
	Pyrenochaeta unguis-hominis	CBS 111112	FMR 14866		<i>Agapornis</i> sp. Lung	The Netherlands	GQ387623	LT623222	LT623239	LT623279
	Pyrenochaeta unguis-hominis	CBS 112.79	FMR 15748		Air sample	Wales	GQ387622	LT717672	LT717675	LT717682
Neodidymelliopsis achlydis		CBS 256 77		ь	Achlys triphylla	Canada	KT389749	KT389531	KT389829	I
N. cannabis		CBS 234.37			Cannabis sativa	Unknown	GU237961	GU237804	GU237523	KP330403
N. longicolla	Phoma sp.		UTHSC:DI16-322; FMR 13815		Human respiratory tract	NSA	LN907465	LT592957	LT593026	LT593096
		CBS 382 96		F	Soil in desert	Israel	KT389750	KT389532	KT389830	I
N. polemonii		CBS 109181		Т	Polemonium caeruleum	The Netherlands	GU238133	GU237746	KT389828	KP330427
N. xanthina		CBS 383.68		F	Delphinium sp.	The Netherlands	GU238157	GU237855	KT389831	KP330431
Neomicrosphaeriopsis italica			MFLUCC 15-0485	F	Tamarix sp.	Italy	KU729854	KU900318	I	KU674820
			MFLUCC 15-0484		Tamarix sp.	Italy	KU729853	KU900319	KX453298	KU695539
Neophaeosphaeria agaves		CBS 136429	CPC 21264	⊢	Agave tequilana var. azul	Mexico	KF777227	NR_137833	I	I
N. filamentosa		CBS 102202			Yucca rostrata	Mexico	GQ387577	JF740259	I	GU371773
Neoplatysporoides aloicola		CBS 139901	CPC 24435	F	Aloe sp.	Tanzania	KR476754	KR476719	I	I
Neopyrenochaeta acicola	Pyrenochaeta acicola	CBS 812.95	FMR 14872	F	Waterpipe	The Netherlands	GQ387602	LT623218	LT623232	LT623271
N. fragariae	Pyrenochaeta acicola	CBS 101634	FMR 14871	н	Fragaria ananassa	The Netherlands	GQ387603	LT623217	LT623231	LT623270
N. inflorescentiae	Pyrenochaeta inflorescentiae	CBS 119222	FMR 15334	н	Protea neriifolia	South Africa	EU552153	EU552153	LT623233	LT623272
N. telephoni	Pyrenochaeta telephoni	CBS 139022	FMR 15754	⊢	Screen of a mobile phone	India	KM516290	KM516291	LT717678	LT717685
Neopyrenochaetopsis hominis	Pyrenochaeta sp.	CBS 143033	UTHSC:DI16-238; FMR 13728	⊢	Human superficial tissue	NSA	LN907381	LT592923	LT592992	LT593061
Nothophoma anigozanthi		CBS 381.91	FMR 14914	⊢	Anigozanthus maugleisii	The Netherlands	GU238039	GU237852	GU237580	КТ389655
N. arachidis-hypogaeae		CBS 125.93			Arachis hypogaea	India	GU238043	GU237771	GU237583	KT389656
N. gossypiicola		CBS 377.67	FMR 14912		Gossypium sp.	NSA	GU238079	GU237845	GU237611	KT389658
	Phoma sp.		UTHSC:DI16-294; FMR 13787		Human deep tissue/ fluids	NSA	LN907437	LT592943	LT593012	LT 593082
N. infossa		CBS 123395		н	Fraxinus pennsylvanica	Argentina	GU238089	FJ427025	FJ427135	KT389659
N. macrospora		CBS 140674	UTHSC:DI16-276; FMR 13767	F	Human respiratory tract	USA	LN880537	LN880536	LN880539	LT593073
									(continued on	next page)

Table 1. (Continued).										
Species	Old name	CBS strain ¹ no.	Other strain ¹ no.	Status ²	Host, substrate	Country	GenE	Bank acces	ssion numb	ers ³
							LSU	ITS	TUB	RPB2
N. quercina		CBS 633.92	FMR 14913		Quercus sp.	Ukraine	EU754127	GU237900	GU237609	KT389657
	Leptosphaerulina sp.		UTHSC:DI16-270; FMR 13761		Human superficial tissue	NSA	LN907413	LT592929	LT592998	LT593067
N. variabilis	Phoma sp.	CBS 142457	UTHSC:DI16-285; FMR 13777	F	Human respiratory tract	NSA	LN907428	LT592939	LT593008	LT593078
Ochrocladosporium elatum		CBS 146.33	IMI 049629; ATCC 11280		Mood pulp	Sweden	EU040233	EU040233	I	I
O. frigidarii		CBS 103.81		τ	Cooled room	Germany	EU040234	EU040234	I	I
Ophiosphaerella herpotricha		CBS 620.86	AFTOL-ID 1569		Bromus erectus	Switzerland	DQ678062	KF498728	I	DQ677958
Paraboeremia adianticola		CBS 187.83	FMR 15344		Polystichum adiantiforme	NSA	GU238035	GU237796	GU237576	KP330401
P. camelliae			CGMCC 3.18106	μ	Camellia sp.	China	KX829042	KX829034	KX829058	KX829050
			CGMCC 3.18107		Camellia sp.	China	KX829043	KX829035	KX829059	KX829051
			CGMCC 3.18108		Camellia sp.	China	KX829044	KX829036	KX829060	KX829052
P. litseae			CGMCC 3.18109	μ	<i>Litsea</i> sp.	China	KX829037	KX829029	KX829053	KX829045
			CGMCC 3.18110		Litsea sp.	China	KX829038	KX829030	KX829054	KX829046
P. oligotrophica			CGMCC 3.18111	μ	Limestone	China	KX829039	KX829031	KX829055	KX829047
			CGMCC 3.18112		Limestone	China	KX829040	KX829032	KX829056	KX829048
P. putaminum		CBS 130.69	FMR 15338		Malus sylvestris	Denmark	GU238138	GU237777	GU237652	LT623254
P. selaginellae		CBS 122.93	FMR 15348	μ	Selaginella sp.	The Netherlands	GU238142	GU237762	GU237656	LT623255
Paraconiothyrium estuarinum		CBS 109850	FMR 14887	F	Sediment from estuarine	Brazil	JX496129	JX496016	JX496355	LT854937
Paracucurbitaria italica	Pyrenochaeta corni	CBS 234.92	FMR 14869	μ	Olea europaea	Italy	EU754176	LT623219	LT623235	LT623274
P. corni	Pyrenochaeta corni	CBS 248.79	FMR 16593		Fraxinus excelsior	The Netherlands	GQ387608	LT903672	LT900365	LT903673
Paraepicoccum amazonense			MFLUCC 15-0493		Tamarix sp.	Italy	KU900294	KU752190	I	KU820871
			MFLUCC 15-0491		Tamarix sp.	Italy	KU900295	KU752191	I	KU820872
Paraleptosphaeria dryadis		CBS 643.86	ETH 9446		Dryas octopetala	Switzerland	GU301828	JF740213	I	GU371733
Parapyrenochaeta acaciae	Pyrenochaeta acaciae	CBS 141291	FMR 15755; CPC 25527	г	Acacia sp.	Australia	KX228316	KX228265	LT717679	LT717686
P. protearum	Pyrenochaeta protearum	CBS 131315	FMR 15752; CPC 18322	F	Protea mundii	South Africa	JQ044453	JQ044434	LT717677	LT717683
	Pyrenochaeta pinicola	CBS 137997	FMR 15753; CPC 23455		Pinus sp.	France	KJ869209	KJ869152	KJ869249	LT717684

lable 1. (Continued).										
Species	Old name	CBS strain ¹ no.	Other strain ¹ no.	Status ²	Host, substrate	Country	GenE	3ank acces	sion numb	ers ³
							LSU	ITS	TUB	RPB2
Phaeomycocentrospora cantuariensis		CBS 132014	CPC 11694		Humulus scandens	South Korea	GU253716	GU269668	ļ	I
			CPC 10157		Humulus scandens	South Korea	GU253712	GU269664	I	I
Phaeosphaeria oryzae		CBS 110110		⊢	Oryza sativa	Korea	KF251689	KF251186	KF252680	I
Phoma herbarum		CBS 502.91			Nerium sp.	The Netherlands	GU238082	GU237874	GU237613	KP330419
		CBS 615.75	FMR 15340		Rosa multiflora cv. Cathayensis	The Netherlands	KF251715	FJ427022	KF252703	KP330420
		CBS 377.92			Human leg	LK	KT389756	KT389536	KT389837	KT389663
			UTHSC:DI16-319; FMR 13812		Human superficial tissue	USA	LN907462	LT592955	LT593024	LT593024
			UTHSC:DI16-204; FMR 13694		Human deep tissue/ fluids	NSA	LN907347	LT592904	LT592973	LT593042
			UTHSC:DI16-212; FMR 13702		Human respiratory tract	NSA	LN907355	LT592909	LT592978	LT593047
			UTHSC:DI16-306; FMR 13799		Human respiratory tract	USA	LN907449	LT592952	LT593021	LT593091
			UTHSC:DI16-307; FMR 13800		Human respiratory tract	USA	LN907450	LT592953	LT593022	LT593092
Phomatodes aubrietiae		CBS 627.97		г	Aubrietia sp.	The Netherlands	GU238045	GU237895	GU237585	KT389665
P. nebulosa		CBS 100191			Thlaspi arvense	Poland	KP330446	KP330434	KP330390	KT389666
		CBS 740.96			Armoracia rusticana	The Netherlands	KT389758	KT389540	KT389839	KT389667
Pleiochaeta ghindensis		CBS 552.92			Acacia mellifera	Namibia	EU167561	EU167561	I	I
P. setosa		CBS 496.63	MUCL 8091		Cytisus racemosus	Germany	EU167563	EU167563	I	I
Pleospora herbarum		CBS 191.86		μ	Medicago sativa	Uttar Pradesh	JX681120	NR_111243	I	KC584471
P. typhicola		CBS 132.69			Typha angustifolia	The Netherlands	JF740325	I	KT389843	KC584505
Preussia terricola			AFTOL-ID 282; DAOM 230091		Unknown	Unknown	AY544686	KT225529	I	DQ470895
Pseudoascochyta novae-zelandiea		CBS 141689	FMR 15110; ICMP 10493	F	Cordyline australis	New Zealand	LT592893	LT592892	LT592894	LT592895
P. pratensis		CBS 141688	FMR 14524	н	Soil	Spain	LT223131	LT223130	LT223132	LT223133
Pseudopyrenochaeta lycopersici	Pyrenochaeta lycopersici	CBS 306.65	FMR 15746	F	Lycopersicon esculentum	Germany	EU754205	NR_103581	LT717674	LT717680
P. terretris	Pyrenochaeta lycopersici	CBS 282.72	FMR 15327	μ	Soil	The Netherlands	LT623216	LT623228	LT623246	LT623287
Pyrenochaeta nobilis		CBS 407.76	FMR 14870	Т	Laurus nobilis	Italy	EU754206	EU930011	KT389845	LT623276
Pyrenochaetopsis americana	Pyrenochaetopsis sp.				Unknown	NSA	LN907368	LT592912	LT592981	LT593050
									(continued on	next page)

Table 1. (Continued).										
Species	Old name	CBS strain ¹ no.	Other strain ¹ no.	Status ²	Host, substrate	Country	GenE	ank acces	sion numb	ers ³
							LSU	ITS	TUB	RPB2
			UTHSC:DI16-225; FMR 13715							
P. botulispora	Pyrenochaetopsis sp.		UTHSC:DI16-289; FMR 13781		Human respiratory tract	USA	LN907432	LT592941	LT593010	LT593080
	Pyrenochaetopsis sp.		UTHSC:DI16-297; FMR 13790		Human superficial tissue	NSA	LN907440	LT592945	LT593014	LT593084
	Pyrenochaetopsis sp.	CBS 142458	UTHSC:DI16-298; FMR 13791	F	Human respiratory tract	NSA	LN907441	LT592946	LT593015	LT593085
P. confluens	Pyrenochaetopsis sp.	CBS 142459	UTHSC:DI16-303; FMR 13796	F	Human deep tissue/ fluids	USA	LN907446	LT592950	LT593019	LT593089
P. decipiens		CBS 343.85	FMR 14880	μ	Globodera pallida	The Netherlands	GQ387624	LT623223	LT623240	LT623280
P. globosa	Pyrenochaetopsis sp.	CBS 143034	UTHSC:DI16-275; FMR 13766	F	Human superficial tissue	USA	LN907418	LT592934	LT593003	LT593072
P. indica		CBS 124454	FMR 14879	μ	Saccharum officinarum	India	GQ387626	LT623224	LT623241	LT623281
P. leptospora		CBS 101635	FMR 14877	μ	Secale cereale	Unknow	GQ387627	JF740262	LT623242	LT623282
	Coniothyrium cereale	CBS 122787	FMR 14873		Unknown	Germany	EU754151	LT623225	LT623243	LT623283
P. microspora	Pyrenochaetopsis sp.		UTHSC:DI16-198; FMR 13688		Human superficial tissue	NSA	LN907341	LT592899	LT592968	LT593037
		CBS 102876	FMR 14874	μ	Water	Montenegro	GQ387631	LT623226	LT623244	LT623284
P. paucisetosa	Pyrenochaetopsis sp.	CBS 142460	UTHSC:DI16-193; FMR 13683	F	Human superficial tissue	USA	LN907336	LT592897	LT592966	LT593035
P. poae		CBS 136769	FMR 14876	μ	Poa sp.	The Netherlands	KJ869175	KJ869117	KJ869243	LT623286
P. setosissima	Pyrenochaetopsis microspora	CBS 119739	FMR 14875	г	Coffea arabica	Brazil	GQ387632	LT623227	LT623245	LT623285
P. tabarestanensis		CBS 139506	IBRC-M 30051	F	Soil	Iran	KF803343	KF730241	KX789523	I
P. uberformis	Pyrenochaetopsis sp.	CBS 142461	UTHSC:DI16-277; FMR 13769	⊢	Human superficial tissue	NSA	LN907420	LT592935	LT593004	LT593074
Querciphoma carteri		CBS 105.91			Quercus robur	Germany	KF251712	JF740181	KF252700	KT389591
Remotididymella anthropophila	Phoma sp.	CBS 142462	UTHSC:DI16-278; FMR 13770	F	Human respiratory tract	NSA	LN907421	LT592936	LT593005	LT593075
R. destructiva	Phoma destructiva var. destructiva	CBS 133.93	FMR 15349		Solanum lycopersicon	Guadeloupe	GU238064	GU237779	GU237602	LT623257
	Phoma destructiva var. destructiva	CBS 378.73	FMR 15328	⊢	Lycopersicon esculentum	Tonga	GU238063	GU237849	GU237601	LT623258
	Phoma destructiva var. diversispora	CBS 162.78	FMR 14906		Lycopersicon esculentum	The Netherlands	GU238062	GU237788	GU237600	LT623259

Old name	CBS strain ¹ no.	Other strain ¹ no.	Status ²	Host, substrate	Country	GenE	ank acces	sion numb	ers ³
						LSU	ITS	TUB	RPB2
		NBRC 30754		Phyllostachys sp.	Japan	AB354969	AB354988	AB355003	I
		NBRC 30771		Phyllostachys sp.	Japan	AB354971	AB354990	AB355005	I
		NBRC 30753		Phyllostachys sp.	Japan	AB354968	AB354987	AB355002	I
		NBRC 30772		Phyllostachys sp.	Japan	AB354972	AB354991	AB355006	I
Phoma crystallifera	CBS 193.82	FMR 15343	⊢	Chamaespartium sagittale	Austria	GU238060	GU237797	GU237598	LT623267
	CBS 524.50	AFTOL-ID 1256		Dung of goat	Panama	DQ678056	KT389543	I	DQ677950
	CBS 426.90		μ	Physostegia virginiana	The Netherlands	GU238185	GU237862	GU237690	KT389678
	CBS 572.85			Phaseolus vulgaris	The Netherlands	GU238199	GU237893	GU237704	KT389681
Hazslinszkyomyces aloes	CBS 136437	CPC 21572	μ	Aloe dichotoma	South Africa	KF777198	NR_137821	I	I
Hazslinszkyomyces aptrootii	CBS 483.95		μ	Lycium sp.	The Netherlands	GU301806	КҮ929149	I	I
Hazslinszkyomyces lycii	CBS 142619	CPC 30998	г	Lycium barbarum	Hungary	KY929180	KY929150	I	I
Hazslinszkyomyces lycii		CPC 31014		Lycium barbarum	Hungary	KY929181	KY929151	I	Ι
Phoma bulgarica	CBS 357.84	FMR 14917	μ	Trachystemon orientale	Bulgaria	GU238050	GU237837	GU237589	LT623256
Phoma sp.		UTHSC:DI16-308; FMR 13801	⊢	Human superficial tissue	USA	LN907451	LT592954	LT593023	LT593093
	CBS 205.63			Rubus idaeus	The Netherlands	GU237998	GU237798	GU237556	KP330402
	CBS 115577			Rubus idaeus	Sweden	KT389762	KT389546	KT389850	KT389688
	CBS 375.62		μ	Asphodelus albus	France	KT389765	KT389549	KT389853	KT389689
	CBS 102635			Nepeta catenaria	The Netherlands	GU237962	GU237727	GU237524	KP330404
	CBS 220.85			<i>Franseria</i> sp.	NSA	GU238086	GU237800	GU237617	KP330422
Phoma saxea	CBS 419.92	FMR 15347	⊢	Corroded	Unknown	GU238141	GU237860	GU237655	KP330429
Pyrenochaetopsis pratorum	CBS 445.81	FMR 14878	Т	mediterranean marble Lolium perenne	New Zealand	GU238136	JF740263	KT389846	KT389671
of Life; ATCC: American Type Cui sité catholique de Louvain. Louvain- erlands; CGMCC: China General N ed at CBS; DAOM: Canadian Colle	Iture Collection, Virginia, ¹ -la-Neuve, Belgium; BRIP <i>Microbiological</i> Culture Co ection of Fungal Cultures,	USA; BCC: Biotec Culture Plant Pathology Herbariu Silection, Beijing, China; Cl Ottawa, Canada; ETH: H	: Collection, Pa um, Departmeni MW : Collection Herbaria of the	thum Thani, Thailand; BCC t of Employment, Economic of the Forestry and Agricu department of Environmen	MIHEM: Biomedical F C, Development and Inruitural Biotechnology In tata Systems Science. In	⁻ ungi and Yeas lovation, Quee stitute (FABI), nstitute of Integ	sts Collection, nsland, Austra University of F grative Biology	Louvain-la-Neu lia; CBS : West Pretoria, South ; Zürich, Switz	ive, Belgium; erdijk Fungal Africa; CPC: erland; FMR,
	Old name Phoma crystallifera Hazslinszkyomyces aloes Hazslinszkyomyces lycii Hazslinszkyomyces lycii Hazslinszkyomyces lycii Phoma bulgarica Phoma sorea Phoma sarea Phoma sorea Cuite; ATCC: American Type Cui itié catholique de Louvain. Louvain- erlands; CGMCC: China General M ed at CBS; DAOM: Canadian Colli	Old nameCBS strain1 no.Phoma crystaliferaCBS 133.82Phoma crystaliferaCBS 133.82Phoma crystaliferaCBS 524.50CBS 572.85CBS 572.85Hazslinszkyomyces aloesCBS 572.85Hazslinszkyomyces lyciiCBS 136437Hazslinszkyomyces lyciiCBS 136437Hazslinszkyomyces lyciiCBS 142619Hazslinszkyomyces lyciiCBS 142619Hazslinszkyomyces lyciiCBS 142619Phoma bulgaricaCBS 357.84Phoma sp.CBS 375.62CBS 102635CBS 375.62CBS 115577CBS 115577CBS 115577CBS 205.63CBS 115577CBS 210.85Phoma sp.CBS 205.63CBS 115577CBS 210.85CBS 115577CBS 210.85CBS 115577CBS 210.85CBS 115577CBS 210.85CBS 215.62CBS 210.85Phoma saxeaCBS 245.81of Life: ATCC: American Type Culture Collection, Virginia, itié catholique de Louvain, Louvain-la-Neuve, Belgium; BRIFerelands; CGMCC: China General Microbiological Culture Collection of Fungal Culture Collection Collection of Fungal Culture Collection Collection of Fungal Culture Collection Collectio	Old name CBS strain' no. Other strain' no. Old name NBRC 30754 NBRC 30771 NBRC 30773 NBRC 30773 NBRC 30773 NBRC 30773 NBRC 30773 NBRC 30773 NBRC 30773 NBRC 30773 NBRC 30774 NBRC 30773 NBRC 30773 CBS 142619 CBS 426.90 CPC 30988 Hazslinszkyomyces aloes CBS 142619 CBS 412619 CPC 30988 Hazslinszkyomyces ycii CBS 483.95 Phoma bulgarica CBS 483.95 Phoma bulgarica CBS 483.95 Phoma sp. CBS 483.95 Phoma sp. CBS 483.95 Phoma sp. CBS 483.95 Phoma sp. CBS 4843 Phoma sp. CBS 4843 Phoma sp. </td <td>Old name CBS strain' no. Other strain' no. Status² Phoma crystalifiera NBRC 30754 NBRC 30753 NBRC 30753 Phoma crystalifiera CBS 193.82 FMR 15343 T Phoma crystalifiera CBS 524.50 AFTOL-ID 1256 T Hazslinszkyomyces aloes CBS 512.85 FMR 15343 T Hazslinszkyomyces aloes CBS 136.437 CPC 21572 T Hazslinszkyomyces brain CBS 433.95 T T Honna bugarica CBS 433.95 FMR 14877 T Phonna sp. CBS 415.93<td>Old name CBS strain¹ no. Other strain¹ no. Status² Host substrate Phome crystallifera NBRC 30774 NBRC 30774 Phylostachys sp. Phome crystallifera NBRC 30774 NBRC 30774 Phylostachys sp. Phome crystallifera CBS 133.82 FINR 153.43 T Phylostachys sp. Phome crystallifera CBS 133.82 FINR 153.43 T Phylostachys sp. Phome crystallifera CBS 133.82 FINR 153.43 T Phylostachys sp. Phome crystallifera CBS 133.82 FINR 153.43 T Phylostachys sp. Phome crystallifera CBS 136.85 CPC 101 1256 Dung of goat Commenceparitum Additional bugaria CBS 245.69 AFTOL-ID 1256 Dung of goat Phylostachys sp. Hazsinszkyomyces aloes CBS 136437 CPC 21572 T Aloe dichotoma Hazsinszkyomyces aloes CBS 357.86 Phome dichotoma Phome dichotoma Hazsinszkyomyces ipci CBS 136437 CPC 21572 T Lyoum barbartum Phoma bugaria CBS 2357.84</td><td>Old name CBS strain' no. Other strain' no. Status³ Host, substrate County NBRC 30751 NBRC 30771 NBRC 30771 Phyliostachys sp. Japan NBRC 30771 NBRC 30771 Phyliostachys sp. Japan NBRC 30772 Phyliostachys sp. Japan NBRC 3072 FMR 15343 Phyliostachys sp. Japan NBRC 3072 FMR 15343 T Phyliostachys sp. Japan NBRC 3072 AFTOLID 1256 T Phyliostachys sp. Japan CBS 524.50 AFTOLID 1256 T Phyliostachys sp. Japan Hazsilinszhornyces aloes CBS 136437 CPC 2157 T Physiostachys sp. Japan Hazsilinszhornyces aloes CBS 136437 CPC 2157 T Physiostachys sp. Japan Hazsilinszhornyces aloes CBS 136437 CPC 21157 T Physiostachys sp. Japan Hazsilinszhornyces aloes CBS 136437 CPC 21156 T Physiostachys sp. Japan Hazsilinszhornyces jori CBS 2335 T<</td><td>Old name CBS strain¹ no. Other strain¹ no. Status³ Host, substrate Country Goint Index 3071 Phyliotachys sp. Japan ABS4591 Index 3071 Phyliotachys sp. Japan ABS4591 Index 3071 Phyliotachys sp. Japan ABS4591 Index 3071 Phyliotachys sp. Japan ABS45913 Index 3073 Phyliotachys sp. Japan ABS45913 Index 3071 Phyliotachys sp. Japan ABS45913 Index CBS 1302 AFTOL-ID 1256 Phyliotachys sp. Japan AU33900 Index CBS 1343 CPC 2157 T Physiosachys sp. Japan AU33900 Index CBS 13431 CPC 2157 T Physiosachys sp. AU33900 Index CBS 13443 CPC 3098 T Physiosachys sp. AU33900 Index CBS 1444 T Physiosachys sp. T Physiosachys. AU33916 I</td><td>Old nameCBS strain' no.Other strain' no.Status'Host, substrainCountryGountryGountryGountryRec 30754NBRC 30774NBRC 30774Phylostachys sp.JapanAB354091AB354080AB354080Rec 30712NBRC 30773Phylostachys sp.JapanAB354071AB354091AB354081Rec 30712NBRC 30773Phylostachys sp.JapanAB354971AB354091AB354081Rec 30712Rec 30713Phylostachys sp.JapanAB354971AB354091AB354091Rec 30712Rec 30713Phylostachys sp.JapanAB354971AB354991AB354991Rec 30712Rec 30713Phylostachys sp.JapanAB354971AB354991AB354991Rec 30712Rec 30713Rec 30713Phylostachys sp.JapanAB354971AB354991Rec 30112Rec 30713Rec 30713Rec 30714AB354971AB354991AB354991Rec 30112Rec 30113Rec 30713Rec 30714Rec 30714AB354991AB354991Rec 30112Rec 30114Rec 30114Rec 30114Rec 301740Rec 301740Rec 30112Ce 2152TRec 30114Rec 30174Rec 301740Rec 30112Ce 2152TRec 30114Rec 301740Rec 301742Rec 30113Ce 2152TRec 30114Rec 301740Rec 301740Rec 30114Ce 2152TRec 30114Rec 301740Rec 301740Rec 30114Ce 21512TRec 30114<td< td=""><td>Old nameCBS strain' no.Other strain' no.Status'Host, substrateCountry$racsesion numbIndianaI$</td></td<></td></td>	Old name CBS strain' no. Other strain' no. Status ² Phoma crystalifiera NBRC 30754 NBRC 30753 NBRC 30753 Phoma crystalifiera CBS 193.82 FMR 15343 T Phoma crystalifiera CBS 524.50 AFTOL-ID 1256 T Hazslinszkyomyces aloes CBS 512.85 FMR 15343 T Hazslinszkyomyces aloes CBS 136.437 CPC 21572 T Hazslinszkyomyces brain CBS 433.95 T T Honna bugarica CBS 433.95 FMR 14877 T Phonna sp. CBS 415.93 <td>Old name CBS strain¹ no. Other strain¹ no. Status² Host substrate Phome crystallifera NBRC 30774 NBRC 30774 Phylostachys sp. Phome crystallifera NBRC 30774 NBRC 30774 Phylostachys sp. Phome crystallifera CBS 133.82 FINR 153.43 T Phylostachys sp. Phome crystallifera CBS 133.82 FINR 153.43 T Phylostachys sp. Phome crystallifera CBS 133.82 FINR 153.43 T Phylostachys sp. Phome crystallifera CBS 133.82 FINR 153.43 T Phylostachys sp. Phome crystallifera CBS 136.85 CPC 101 1256 Dung of goat Commenceparitum Additional bugaria CBS 245.69 AFTOL-ID 1256 Dung of goat Phylostachys sp. Hazsinszkyomyces aloes CBS 136437 CPC 21572 T Aloe dichotoma Hazsinszkyomyces aloes CBS 357.86 Phome dichotoma Phome dichotoma Hazsinszkyomyces ipci CBS 136437 CPC 21572 T Lyoum barbartum Phoma bugaria CBS 2357.84</td> <td>Old name CBS strain' no. Other strain' no. Status³ Host, substrate County NBRC 30751 NBRC 30771 NBRC 30771 Phyliostachys sp. Japan NBRC 30771 NBRC 30771 Phyliostachys sp. Japan NBRC 30772 Phyliostachys sp. Japan NBRC 3072 FMR 15343 Phyliostachys sp. Japan NBRC 3072 FMR 15343 T Phyliostachys sp. Japan NBRC 3072 AFTOLID 1256 T Phyliostachys sp. Japan CBS 524.50 AFTOLID 1256 T Phyliostachys sp. Japan Hazsilinszhornyces aloes CBS 136437 CPC 2157 T Physiostachys sp. Japan Hazsilinszhornyces aloes CBS 136437 CPC 2157 T Physiostachys sp. Japan Hazsilinszhornyces aloes CBS 136437 CPC 21157 T Physiostachys sp. Japan Hazsilinszhornyces aloes CBS 136437 CPC 21156 T Physiostachys sp. Japan Hazsilinszhornyces jori CBS 2335 T<</td> <td>Old name CBS strain¹ no. Other strain¹ no. Status³ Host, substrate Country Goint Index 3071 Phyliotachys sp. Japan ABS4591 Index 3071 Phyliotachys sp. Japan ABS4591 Index 3071 Phyliotachys sp. Japan ABS4591 Index 3071 Phyliotachys sp. Japan ABS45913 Index 3073 Phyliotachys sp. Japan ABS45913 Index 3071 Phyliotachys sp. Japan ABS45913 Index CBS 1302 AFTOL-ID 1256 Phyliotachys sp. Japan AU33900 Index CBS 1343 CPC 2157 T Physiosachys sp. Japan AU33900 Index CBS 13431 CPC 2157 T Physiosachys sp. AU33900 Index CBS 13443 CPC 3098 T Physiosachys sp. AU33900 Index CBS 1444 T Physiosachys sp. T Physiosachys. AU33916 I</td> <td>Old nameCBS strain' no.Other strain' no.Status'Host, substrainCountryGountryGountryGountryRec 30754NBRC 30774NBRC 30774Phylostachys sp.JapanAB354091AB354080AB354080Rec 30712NBRC 30773Phylostachys sp.JapanAB354071AB354091AB354081Rec 30712NBRC 30773Phylostachys sp.JapanAB354971AB354091AB354081Rec 30712Rec 30713Phylostachys sp.JapanAB354971AB354091AB354091Rec 30712Rec 30713Phylostachys sp.JapanAB354971AB354991AB354991Rec 30712Rec 30713Phylostachys sp.JapanAB354971AB354991AB354991Rec 30712Rec 30713Rec 30713Phylostachys sp.JapanAB354971AB354991Rec 30112Rec 30713Rec 30713Rec 30714AB354971AB354991AB354991Rec 30112Rec 30113Rec 30713Rec 30714Rec 30714AB354991AB354991Rec 30112Rec 30114Rec 30114Rec 30114Rec 301740Rec 301740Rec 30112Ce 2152TRec 30114Rec 30174Rec 301740Rec 30112Ce 2152TRec 30114Rec 301740Rec 301742Rec 30113Ce 2152TRec 30114Rec 301740Rec 301740Rec 30114Ce 2152TRec 30114Rec 301740Rec 301740Rec 30114Ce 21512TRec 30114<td< td=""><td>Old nameCBS strain' no.Other strain' no.Status'Host, substrateCountry$racsesion numbIndianaI$</td></td<></td>	Old name CBS strain ¹ no. Other strain ¹ no. Status ² Host substrate Phome crystallifera NBRC 30774 NBRC 30774 Phylostachys sp. Phome crystallifera NBRC 30774 NBRC 30774 Phylostachys sp. Phome crystallifera CBS 133.82 FINR 153.43 T Phylostachys sp. Phome crystallifera CBS 133.82 FINR 153.43 T Phylostachys sp. Phome crystallifera CBS 133.82 FINR 153.43 T Phylostachys sp. Phome crystallifera CBS 133.82 FINR 153.43 T Phylostachys sp. Phome crystallifera CBS 136.85 CPC 101 1256 Dung of goat Commenceparitum Additional bugaria CBS 245.69 AFTOL-ID 1256 Dung of goat Phylostachys sp. Hazsinszkyomyces aloes CBS 136437 CPC 21572 T Aloe dichotoma Hazsinszkyomyces aloes CBS 357.86 Phome dichotoma Phome dichotoma Hazsinszkyomyces ipci CBS 136437 CPC 21572 T Lyoum barbartum Phoma bugaria CBS 2357.84	Old name CBS strain' no. Other strain' no. Status ³ Host, substrate County NBRC 30751 NBRC 30771 NBRC 30771 Phyliostachys sp. Japan NBRC 30771 NBRC 30771 Phyliostachys sp. Japan NBRC 30772 Phyliostachys sp. Japan NBRC 3072 FMR 15343 Phyliostachys sp. Japan NBRC 3072 FMR 15343 T Phyliostachys sp. Japan NBRC 3072 AFTOLID 1256 T Phyliostachys sp. Japan CBS 524.50 AFTOLID 1256 T Phyliostachys sp. Japan Hazsilinszhornyces aloes CBS 136437 CPC 2157 T Physiostachys sp. Japan Hazsilinszhornyces aloes CBS 136437 CPC 2157 T Physiostachys sp. Japan Hazsilinszhornyces aloes CBS 136437 CPC 21157 T Physiostachys sp. Japan Hazsilinszhornyces aloes CBS 136437 CPC 21156 T Physiostachys sp. Japan Hazsilinszhornyces jori CBS 2335 T<	Old name CBS strain ¹ no. Other strain ¹ no. Status ³ Host, substrate Country Goint Index 3071 Phyliotachys sp. Japan ABS4591 Index 3071 Phyliotachys sp. Japan ABS4591 Index 3071 Phyliotachys sp. Japan ABS4591 Index 3071 Phyliotachys sp. Japan ABS45913 Index 3073 Phyliotachys sp. Japan ABS45913 Index 3071 Phyliotachys sp. Japan ABS45913 Index CBS 1302 AFTOL-ID 1256 Phyliotachys sp. Japan AU33900 Index CBS 1343 CPC 2157 T Physiosachys sp. Japan AU33900 Index CBS 13431 CPC 2157 T Physiosachys sp. AU33900 Index CBS 13443 CPC 3098 T Physiosachys sp. AU33900 Index CBS 1444 T Physiosachys sp. T Physiosachys. AU33916 I	Old nameCBS strain' no.Other strain' no.Status'Host, substrainCountryGountryGountryGountryRec 30754NBRC 30774NBRC 30774Phylostachys sp.JapanAB354091AB354080AB354080Rec 30712NBRC 30773Phylostachys sp.JapanAB354071AB354091AB354081Rec 30712NBRC 30773Phylostachys sp.JapanAB354971AB354091AB354081Rec 30712Rec 30713Phylostachys sp.JapanAB354971AB354091AB354091Rec 30712Rec 30713Phylostachys sp.JapanAB354971AB354991AB354991Rec 30712Rec 30713Phylostachys sp.JapanAB354971AB354991AB354991Rec 30712Rec 30713Rec 30713Phylostachys sp.JapanAB354971AB354991Rec 30112Rec 30713Rec 30713Rec 30714AB354971AB354991AB354991Rec 30112Rec 30113Rec 30713Rec 30714Rec 30714AB354991AB354991Rec 30112Rec 30114Rec 30114Rec 30114Rec 301740Rec 301740Rec 30112Ce 2152TRec 30114Rec 30174Rec 301740Rec 30112Ce 2152TRec 30114Rec 301740Rec 301742Rec 30113Ce 2152TRec 30114Rec 301740Rec 301740Rec 30114Ce 2152TRec 30114Rec 301740Rec 301740Rec 30114Ce 21512TRec 30114 <td< td=""><td>Old nameCBS strain' no.Other strain' no.Status'Host, substrateCountry$racsesion numbIndianaI$</td></td<>	Old nameCBS strain' no.Other strain' no.Status'Host, substrateCountry $racsesion numbIndianaI$

Corresponding author's personal collection deposited in laboratory, housed at ČAS, China; MFLUCC: Mae Fah Luang University Culture Collection, Chiang Rai, Thailand; NBRC: Biological Resource Center, National Institute of Technology and Evaluation, Chiba, Japan; PD: Plant Protection Service, Wageningen, the Netherlands; UTHSC, Fungus Testing Laboratory at the University of Texas Health Science Center, San Antonio, Texas, USA. Japan, now NBRC; IMI: International Mycological Institute, CABI-Bioscience, Egham, Bakeham Lane, U.K.; INIFAT: Instituto de Investigaciones Fundamentales en Agricultura Tropical "Alejandro de Humboldr", Santiago de las Vegas, Cuba; LC:

Facultat de Medicina, Universitat Rovira i Virgili, Reus, Spain, IBRC: Iranian Biological Resources Center, Tehran, Iran; ICMP: International Collection of Microorganisms from Plants, Auckland, New Zealand; IFO: Institute for Fermentation, Osaka,

² T: ex-type strain

Fig. 1. Phylogenetic tree inferred from a Maximum likelihood analysis based on a concatenated alignment of LSU, ITS, tub2 and rpb2 sequences of 357 strains representing species in Cucurbitariaceae, Didymellaceae and allied families within Pleosporales. The Bayesian posterior probabilities (PP) above 0.95 and the RAxML bootstrap support

(see Table 1), the final matrices used for phylogenetic analyses in TreeBASE (www.treebase.org; accession number: S21115) and the novel taxonomic descriptions and nomenclature in MycoBank (www.mycobank.org; Crous *et al.* 2004).

RESULTS

Phylogenetic analyses

The final concatenated dataset obtained with both ML and Bayesian analysis contained 357 ingroup strains with a total of 1 888 characters including gaps (519 for LSU, 336 for ITS, 434 for *tub2* and 599 for *rpb2*), of which 742 are parsimony informative (132 for LSU, 111 for ITS, 149 for *tub2* and 350 for *rpb2*). The sequence datasets did not show conflict in the tree topologies for the 70 % reciprocal bootstrap trees, which allowed to combine the four genes for the multi-locus analysis.

The ML analysis showed similar tree topology and was congruent with that obtained in the Bayesian analysis. For the BI multi-locus analysis, a total of 34 677 trees were sampled after the burn-in with a stop value of 0.01. The support values were slightly different with the two analysis methods; with BI, posterior probabilities being higher than the ML bootstrap support values (Fig. 1).

The phylogenetic tree distinguished two main supported clades corresponding to the suborders Massarineae (1 PP / 100 % BS), with only the family Didymosphaeriaceae (clade T) here included, and Pleosporineae (1 PP / 74 % BS), emcompassing over 19 families (clades A-S), respectively. Four of the families of the latter suborder are proposed here as new, i.e., Pseudopyrenochaetaceae (clade D), Neopyrenochaetaceae (clade E), Pyrenochaetopsidaceae (clade F) and Parapyrenochaetaceae (clade N). The main clade of the Pleosporineae corresponded to the Didymellaceae (clade A) showing 25 well-supported terminal clades with the only exception being Epicoccum (A2). Twenty terminal clades corresponded to known genera and six are proposed here as new: Ectophoma (A7), Remotididymella (A8), Similiphoma (A9), Cumuliphoma (A12), Juxtiphoma (A13) and Vacuiphoma (A14). The genus Didymella (A1; 1 PP / 90 % BS), comprised 48 species and one undescribed, including two proposed here as new: D. keratinophila sp. nov. (the type strain CBS 143032, UTHSC DI16-228 and UTHSC DI16-282), which is phylogenetically close to D. sancta and D. coffeae-arabicae, and D. brunneospora sp. nov. (CBS 115.58). Several of the clinical strains included in Didymella were distributed among seven known species, i.e., D. heteroderae (nine strains), D. gardeniae (four strains), D. microchlamydospora (two strains), and D. anserina, D. glomerata, D. musae and D. protuberans with only one strain for each. Epicoccum (A2; unsupported) was represented by 17 previously described species (including the type species E. nigrum), the new species E. catenisporum sp. nov., E. ovisporum sp. nov., E. pneumoniae sp. nov. (phylogenetically related with E. camelliae, E. latusicollum, E. sorghinum and E. viticis), and E. keratinophilum sp. nov. (phylogenetically related with E. brasiliense and E. draconis). Finally, E. proteae

(basionym Phoma proteae). which clustered with E. huancavense, is here combined in Epicoccum. Allophoma (clade A3; 1 PP / 96 % BS) is enlarged with A. cylindrispora sp. nov., previously identified as Phoma sp. (Valenzuela-Lopez et al. 2016), clustering with A. minor and A. piperis. The clades from A4 to A6 encompassed three genera i.e. Heterophoma (A4; 1 PP / 98 % BS), Stagonosporopsis (A5; 1 PP / 75 % BS) and Boeremia (A6; 1 PP / 100 % BS). The new genus Ectophoma (clade A7; 1 PP / 100 % BS) comprise two new combinations previously included in Phoma, i.e. the generic type E. multirostrata (syn. P. multirostrata) and E. pomi (syn. P. pereupyrena). The new genus Remotididymella (A8; 0.97 PP / 91 % BS) comprised R. destructiva comb. nov. (basionym Phoma destructiva), the type species, and the new species R. anthropophila. For Phoma crystallifera the new monotypic genus Similiphoma (clade A9) and the new combination S. crystallifera are proposed. The clade corresponding to the genus Paraboeremia (clade A10; 1 PP / 99 % BS) included the six accepted species. Macroventuria formed a well-supported clade (A11; 1 PP / 100 % BS) and included the ex-type strains of M. anomochaeta and M. wentii. Cumuliphoma gen. nov. (clade A12: 1 PP / 94 % BS) included C. omnivirens comb. nov. (svn. Phoma omnivirens), C. indica sp. nov. (with two strains previously identified as P. omnivirens) and C. pneumoniae sp. nov., the latter represented by a clinical strain. The proposed new monotypic genus Juxtiphoma (clade A13; 1 PP / 100 % BS), includes two strains of J. eupyrena comb. nov. (basionym Phoma eupryrena). The new genus Vacuiphoma (clade A14; 1 PP / 100 % BS), included the type species V. bulgarica comb. nov. (basionym Phoma bulgarica) and the new species V. oculihominis described from a sterile clinical strain (UTHSC DI16-308). The genus Nothophoma (clade A15; 1 PP / 95 % BS) comprised seven species, including the generic type, N. infossa, and N. variabilis sp. nov., which is based on a clinical strain phylogenetically related with the ex-type strain of N. anigozanthi. The clade corresponding to Ascochyta (clade A16; 1 PP / 92 % BS), grouped five species, including the type species A. pisi. Clade A17 (1 PP / 100 % BS) included the type species of Phomatodes (P. aubrietiae) and two strains of P. nebulosa, the other species of the genus. The Briansuttonomyces clade (A18, 1 PP / 100 % BS), included two strains of the only species of the genus, B. eucalypti. The clade A19 (1 PP / 100 % BS) encompassed the ex-type strains of the two species of Pseudoascochyta, P. novaezelandiae and P. pratensis. The Neomicrosphaeropsis clade (A20; 1 PP / 100 % BS), contained the type species of the genus, N. italica. In Phoma (A21; 1 PP / 100 % BS) eight strains were grouped, all of them identified as P. herbarum (five from clinical origin and three reference strains). The genus Calophoma (A22; 1 PP / 93 % BS) comprised four species: C. aquilegiicola, C. clematidis-rectae, C. clematidina (type species of the genus) and C. rosae. The clade corresponding to Leptosphaerulina (A23; 1 PP / 100 % BS) contained the two known species, L. americana and L. australis. Xenodidymella (A24; - PP / 74 % BS), grouped the four species of this genus and the new combination Xenodidymella saxea (basionym Phoma saxea), which forms a basal clade with a strain of X. humicola. The clade A25 (1 PP / 100 % BS) included five species of Neodidymelliopsis. Neoascochyta (A26; 1 PP / 98 % BS) represented a basal clade of the

values (BS) above 70 % are given at the nodes (PP/BS). Fully supported branched (1 PP/100 BS) are indicated in bold. Some branches were shortened to fit them to the page, these are indicated by two diagonal lines with the number of times a branch was shortened. Newly proposed taxa are given in bold. Type strains are indicated by a superscript T. The tree was rooted with *Preussia terricola* (AFTOL-ID 828) and *Sporormiella minima* (CBS 524.50).

Fig. 1. (Continued).

Fig. 1. (Continued).

Fig. 1. (Continued).

Fig. 1. (Continued).

Fig. 1. (Continued).

Didymellaceae, very distant from the other genera of that family, and grouped 10 species, two of which are here proposed as new: *Neoascochyta cylindrispora* sp. nov. and *Neoascochyta tardicrescens* sp. nov.

In the family *Cucurbitariaceae* (clade C; 1 PP / 98 % BS) analyses resulted in four clades, which we recognise as genera. *Neocucurbitaria* (C1; 1 PP / 94 % BS), which included two new species, *N. irregularis* (CBS 142791) and *N. aquatica* (CBS 297.74), and the three new combinations, *N. cava* (syn. *Pyrenochaeta cava*), *N. hakeae* (basionym *Pyrenochaeta hakeae*) and *N. keratinophila* (basionym *Pyrenochaeta keratinophila*); the new genus *Paracucurbitaria* (C2; 1 PP / 100 % BS), with two species *P. corni* comb. nov. (syn. *Pyrenochaeta corni*) and *P. italica* sp. nov.; the new genus *Allocucurbitaria* (clade C3), with

the type species *A. botulispora* sp. nov. Finally, the genus *Cucurbitaria* (clade C4; 1 PP / 100 % BS) including only the type species, *C. berberidis*.

Pseudopyrenochaetaceae fam. nov. (clade D; 1 PP / 99 % BS) is introduced to accommodate *Pyrenochaeta lycopersici* and *P. terrestris* in the new genus *Pseudopyrenochaeta*.

The generic type of *Pyrenochaeta*, *Pyrenochaeta nobilis*, was phylogenetically distant from the *Cucurbitariaceae* in our phylogeny, and therefore we consider this species as *incertae sedis*.

The proposed new family *Neopyrenochaetaceae* (clade E; 1 PP / 100 % BS) encompassed several taxa previously included in *Pyrenochaeta*. However, since they were located outside from *Cucurbitariaceae s. str.* we propose the new genus *Neopyrenochaeta*, with the new combinations: *N. acicola* (syn. Pyrenochaeta acicola), N. inflorescentiae (basionym. Pyrenochaeta inflorescentiae) and N. telephoni (basionym Pyrenochaeta telephoni), and the new species N. fragariae.

The new family *Pyrenochaetopsidaceae* (clade F; 0.98 PP / 75 % BS) grouped three clades, which correspond to the genera *Pyrenochaetopsis*, the type genus (type species, *P. leptospora*) (F1; 1 PP / 100 % BS), *Xenopyrenochaetopsis* (type species, *X. pratorum* comb. nov.) (F2) and *Neopyrenochaetopsis* (type species, *N. hominis* sp. nov.) (F3). *Pyrenochaetopsis* encompassed seven new species: *P. americana*, *P. botulispora*, *P. confluens*, *P. globosa*, *P. pauciseptata*, *P. setosissima* and *P. uberiformis*.

The Clade N (1 PP / 100 % BS), which consists of several isolates previously recognised in *Pyrenochaeta*, is proposed as the new family *Parapyrenochaetaceae*. Accordingly, the new genus *Parapyrenochaeta* is proposed for *P. acaciae* comb. nov. (basionym *Pyrenochaeta acaciae*), and the type species *Parapyrenochaeta protearum* comb. nov. (basionym *Pyrenochaeta protearum*). The strain CBS 137997, previously identified as *Pyrenochaeta pinicola*, was re-identified as *Parapyrenochaeta protearum*.

The monospecific genus *Paraepicoccum* was introduced by Matsushima (1993), later epitypified as *Paraepicoccum amazonense* by Thambugala *et al.* (2016) and considered as *incertae sedis* in *Pleosporineae*, which is supported by our phylogenetic results.

Taxonomy

After multi-locus sequence analysis of 357 strains distributed among several families within *Pleosporineae* and the morphological study of 143 strains, in the present paper we propose: four new families, 13 new genera, 28 new species, 20 new combinations, and four typifications. Novel taxa are described and illustrated. Six species proved to be sterile in culture, and therefore are described based on DNA sequence data, following the approach of Chen *et al.* (2017). Clades and genera are given as they appear in the phylogenetic tree, and species are listed in alphabetical order.

Clade A: *Didymellaceae* Gruyter *et al.*, Mycol. Res. 113: 516. 2009.

Type genus: Didymella Sacc.

Clade A1: Didymella

Didymella Sacc. ex Sacc., Syll. Fung. 1: 545. 1882. emend. Chen *et al.*, Stud. Mycol. 82: 173. 2015.

Synonym: Peyronellaea Goid. ex Togliani, Ann. Sperim. Agrar. II 6: 93. 1952.

Type species: Didymella exigua (Niessl) Sacc.

Didymella anserina (Marchal) Q. Chen & L. Cai, Stud. Mycol. 82: 173. 2015.

Basionym: Phoma anserina Marchal, Champignon Copr. 11: 1891.

Synonyms: Peyronellaea anserina (Marchal) Aveskamp et al., Stud. Mycol. 65: 31. 2010.

Phoma radicis-callunae R.W. Rayner, Bot. Gaz. 73: 231. 1922. *Phoma suecica* J.F.H. Beyma, Antonie van Leeuwenhoek 8: 110. 1942.

Description: de Gruyter & Noordeloos (1992).

Materials examined: Germany, Giessen, Dec. 1979, R. Hadlok, living culture CBS 253.80. USA, from human sputum sample, 2008, D.A. Sutton, living cultures UTHSC DI16-255 = FMR 13745.

Notes: Didymella anserina is a ubiquitous soil fungus that has been found in Africa, Europe and North America. Although frequently present on herbaceous or woody plants, it has been recorded from many other substrates. Our strain UTHSC DI16-255 is the first report from a human clinical specimen, and it is morphologically similar to the reference strain of *D. anserina* (CBS 253.80).

Didymella brunneospora Valenzuela-Lopez, Cano, Crous, Guarro & Stchigel, **sp. nov.** MycoBank MB820815. Fig. 2.

Etymology: From Latin *brunneus*-, brown, and *-spora*, spore, because of the conidial pigmentation.

Description: Hyphae hyaline to pale brown, smooth- and thinwalled, septate, 2–5 µm wide. Conidiomata pycnidial, pale brown to dark brown, mostly solitary, occasionally confluent, superficial on OA, glabrous, globose, 140–250 µm diam, with a single papillate ostiolar neck; pycnidial wall of *textura angularis*, 2–5 layered, 25–70 µm thick, composed of pale brown to brown, flattened polygonal cells of 8–15 µm diam. Conidiogenous cells phialidic, hyaline, smooth-walled, ampulliform, 7–10 × 6.5–8 µm. Conidia aseptate, hyaline to pale brown, smooth- and thinwalled, obovoid to cylindrical, 4.5–7 × 3–3.5 µm, guttulate. Chlamydospores absent.

Culture characteristics: Colonies on OA reaching 26 mm diam after 7 d at 25 ± 1 °C, flattened, with abundant production of pycnidia, olive brown (M. 4E6); reverse yellowish brown (M. 5E4). Colonies on MEA reaching 28 mm diam after 7 d at 25 ± 1 °C, flattened, orange melon (M. 5A6) to orange-white (M. 5A2); reverse orange melon (M. 5A6) to orange white (M. 5A2). NaOH spot test negative. Crystals absent. Optimal temperature of growth and sporulation 25 °C; minimum temperature of growth 30 °C.

Material examined: Germany, isolated from flower-stalk of *Chrysanthemum* roseum, R. Schneider (holotype CBS H-23199, ex-holotype living cultures IMB 8675 = DSM 62044 = CBS 115.58 = FMR 15745).

Notes: Ascochyta pyrethri (Brunaud 1887), reported on decaying stems of Pyrethri sinensis in Saintes (France), was originally described (very briefly and lacking of measurements of their reproductive structures) in French, but later Latinised by Saccardo (Saccardo 1892), changing the order of the authors. The description of that fungus by Saccardo was based on the original diagnosis: pycnidia conical-globose, sparse to arrange in linear series, erumpent, black; conidia numerous, ovoid, ellipsoidal or long ellipsoidal, somewhat obtuse at both ends, straight or slightly curved, subhyaline. However, Saccardo described the conidia as not being constricted at the septum, which was not mentioned in the original description. Moreover, the protologue lacks illustrations and references to herbarium material, which makes this taxon doubtful. The strain CBS 115.58, previously identified as Ascochyta pyrethri; clusters distant from Ascochyta and produces pale brown, aseptate conidia, features not seen in that genus, and thus being considered herein as a new species of the genus Didymella.

Didymella gardeniae (S. Chandra & Tandon) Q. Chen & L. Cai, Stud. Mycol. 82: 176. 2015.

Fig. 2. Didymella brunneospora (CBS 115.58). A, B. Colony on OA (front and reverse). C, D. Colony on MEA (front and reverse). E. Pycnidia forming on OA. F. Pycnidium. G. Conidiogenous cells. H. Conidia. Scale bars: F = 50 µm. G, H = 10 µm.

Basionym: Pyrenochaeta gardeniae S. Chandra & Tandon, Mycopathol. Mycol. Appl. 29: 274. 1966.

Synonyms: Phoma gardeniae (S. Chandra & Tandon) Boerema, Verslagen Meded. Plantenziektenk. Dienst Wageningen 156: 27. 1980.

Peyronellaea gardeniae (S. Chandra & Tandon) Aveskamp *et al.*, Stud. Mycol. 65: 32. 2010.

Description: de Gruyter & Boerema (2002).

Materials examined: India, Allahabad, from the leaf of *Gardenia jasminoides*, 1966, S. Chandra & R.N. Tandon (**isotype** CBS H-7605, ex-isotype living cultures CBS 626.68 = IMI 108771 = FMR 14901). **USA**, from human nail distrophy, 2006, D.A. Sutton, living cultures UTHSC DI16-211 = FMR 13701; from human toe nail, 2007, D.A. Sutton, living cultures UTHSC DI16-226 = FMR 13716; from human toe nails, 2009, D.A. Sutton, living cultures UTHSC DI16-274 = FMR 13765; from human wound neck, 2010, D.A. Sutton, living cultures UTHSC DI16-295 = FMR 13788.

Notes: Didymella gardeniae was first isolated from a leaf of *Gardenia jasminoides* in India (Chandra & Tandon, 1966), and it seems to be a common soil- and air-borne fungus recovered also from Netherlands Antilles. Here, it is for first time associated with human clinical specimens from North America. Morphologically our strains resemble *D. gardeniae*, but have setose pycnidia, which are more characteristic of *Pyrenochaeta* than phoma-like taxa. Also remarkable is the fact that our strains are capable of growing at 37 °C.

Didymella glomerata (Corda) Q. Chen & L. Cai, Stud. Mycol. 82: 176. 2015. Fig. 3.

Basionym: Coniothyrium glomeratum Corda, Icon. Fung. (Prague) 4: 39. 1840. Synonyms: Phoma glomerata (Corda) Wollenw. & Hochapfel, Z. Parasitenk. 3: 592. 1936.

Peyronellaea glomerata (Corda) Goid. ex Togliani, Ann. Sperim. Agrar. III 6: 93. 1952.

Description: Boerema et al. (2004).

Materials examined: Lectotype designated here (MBT 377971): plate 8, fig. 108, in Corda, AKJ. 1840. Icones fungorum hucusque cognitorum. Tomus IV, Praga (http://bibdigital.rjb.csic.es/ing/Libro.php?Libro=1812). The Netherlands, from *Chrysanthemum* sp., 1963 (epitype designated here CBS H-16351, MBT377905, ex-epitype living cultures CBS 528.66 = PD 63/590). USA, from human superficial tissue sample, 2006, D.A. Sutton, living culture UTHSC DI16-205 = FMR 13695.

Notes: Coniothyrium glomeratum was introduced by Corda (1840). The description of this fungus is brief, and the illustrations are not very detailed. The natural source has been mentioned as dry greyed wood chips, but without any geographic location. No original material of the basionym exists. Therefore, we designate the illustration by Corda here as lectotype and CBS H-16351 as epitype of Coniothyrium glomeratum. Other authors placed this fungus in other genera, such as Aphosphaeria, Ascochyta, Peyronella and Phoma, but also in Alternaria, because the production of alternarioid chains of chlamydospores in vitro. For a complete discussion about synonymies of this fungus see Boerema et al. (1965), who gave an exhaustive morphological description in vitro of this fungus. Didymella glomerata is characterised by the production of subhyaline to carbonaceous, small to large, glabrous pycnidia bearing one (to two or three) ostioles, aseptate, hyaline to dark-coloured, ovoid

Fig. 3. Didymella glomerata (UTHSC DI16-205). A, B. Colony on OA (front and reverse). C, D. Colony on MEA (front and reverse). E. Pycnidia forming on OA. F. Pycnidia. G. Alternaroid chlamydospores. H. Conidiogenous cells. I. Conidia. Scale bars: F = 100 µm. G-I = 10 µm.

to ellipsoidal conidia measuring mostly $6-7.5 \times 3-3.5 \mu m$, and alternaroid chlamydospores in chains. The fungus is distributed worldwide, and has been recovered from soil, different kinds of living and dead plants, and inorganic materials, and it can also infect humans (Punithalingam 1979, de Hoog *et al.* 2011). The strain UTHSC DI16-205, that phylogenetically clusters with the reference strain CBS 528.66 of *Didymella glomerata*, is morphologically indistinguishable from it.

Didymella heteroderae (Sen. Y. Chen *et al.*) Q. Chen & L. Cai, Stud. Mycol. 82: 176. 2015.

Basionym: Phoma heteroderae Sen Y. Chen *et al.*, Mycologia 88: 885. 1996 (1997).

Synonyms: Peyronellaea heteroderae (Sen Y. Chen et al.) Crous, Persoonia 32: 223. 2014.

Phoma pomorum var. calorpreferens Boerema et al., Persoonia 15: 207. 1993.

Phoma calorpreferens (Boerema *et al.*) Aveskamp *et al.*, Mycologia 101: 370. 2009.

Peyronellaea calorpreferens (Boerema et al.) Aveskamp et al., Stud. Mycol. 65: 31. 2010.

Description: Boerema (1993).

Materials examined: **The Netherlands**, from undefined food material, 1973, G.H. Boerema (**holotype** L 990.290.418, ex-holotype living cultures CBS 109.92 = PD 73/1405). **USA**, from human left plantar foot, 2005, D.A. Sutton, living cultures UTHSC DI16-190 = FMR 13680; from human nail, 2007, D.A. Sutton, living cultures UTHSC DI16-224 = FMR 13714; from human nail, 2007, D.A. Sutton, living cultures UTHSC DI16-227 = FMR 13717; from human fingernail, 2007, D.A. Sutton, living cultures UTHSC DI16-231 = FMR 13721; from human urine, 2007, D.A. Sutton, living cultures UTHSC DI16-232 = FMR 13722; from human nail, 2007, D.A. Sutton, living cultures UTHSC DI16-234 = FMR 13724; from human scalp, 2007, D.A. Sutton, living cultures UTHSC DI16-235 = FMR 13725; from human sputum sample, 2011, D.A. Sutton, living cultures UTHSC DI16-305 = FMR 13798.

Notes: Our strains are morphologically similar to the ex-type strain of *D. heteroderae*, and also show an identical DNA nucleotide sequence dataset. However, we proved that our strains are able to grow and sporulate at 37 °C (Valenzuela-Lopez *et al.* 2016), a higher temperature than that given in the original species description (Boerema *et al.* 2004).

Didymella keratinophila Valenzuela-Lopez, Cano, Guarro & Stchigel, **sp. nov.** MycoBank MB820813. Fig. 4.

Etymology: From Greg $\kappa \epsilon \rho \alpha \tau i \nu \omega v$ -, keratin, and $-\varphi i \lambda o \zeta$, friend of, because the source from which the fungus was isolated.

Description: Hyphae pale brown, smooth- and thin-walled, septate, 2.5–8 µm wide. Conidiomata pycnidial, brown, solitary, superficial on OA, glabrous, broadly ellipsoidal, $250-270 \times 200-230$ µm, with a single papillate ostiolar neck; pycnidial wall of *textura angularis*, 2–5 layered, 15–35 µm thick, composed of brown, flattened polygonal cells of 5–10 µm diam. Conidiogenous cells phialidic, hyaline, smooth-walled, ampulliform or globose, 4.5–6 × 3–4.5 µm. Conidia aseptate, hyaline, smooth- and thin-walled, guttulate, ovoid to cylindrical, 4–6 × 2.5–3 µm. Chlamydospores absent.

Fig. 4. Didymella keratinophila (CBS 143032). A, B. Colony on OA (front and reverse). C, D. Colony on MEA (front and reverse). E. Pycnidia forming on OA. F. Pycnidia. G. Section of pycnidium. H. Conidiogenous cells. I. Conidia. Scale bars: F, G = 100 µm. H, I = 10 µm.

Culture characteristics: Colonies on OA reaching 54 mm diam after 7 d at 25 ± 1 °C, flattened, greyish brown (M. 5F3); reverse greyish brown (M. 5F3). Colonies on MEA reaching 57–67 mm after 7 d at 25 ± 1 °C, flattened, brownish orange (M. 5C3); reverse brownish grey (M. 5C2). NaOH spot test negative. Crystals absent. Optimal temperature of growth and sporulation 25 °C; minimum temperature of growth 5 °C; maximum temperature of growth 37 °C.

Materials examined: USA, from human finger-hand lesion, 2006, D.A. Sutton (holotype CBS H-23200, ex-type living cultures CBS 143032 = UTHSC DI16-200 = FMR 13690); from human toe nail, 2007, D.A. Sutton, living cultures

UTHSC DI16-228 = FMR 13718; from human nail, 2009, D.A. Sutton, living cultures UTHSC DI16-282 = FMR 13774.

Notes: Didymella keratinophila was recovered from a human superficial tissue specimen in the USA, and forms a well-supported sister clade with *D. sancta*. Didymella keratinophila differs phenotypically from *D. sancta* (and related species, such as *D. glomerata*, *D. musae* and *D. pomorum*) by the absence of chlamydospores *in vitro* (brown, alternarioid, phragmosporous and dyctiosporous, singly and terminally produced in *D. sancta*), smaller conidia ($4-6 \times 2.5-3 \mu m vs. 5-7 (-7.5) \times 2.5-4 (-4.5) \mu m$ in *D. sancta*) and a negative NaOH spot test.

Fig. 5. Didymella musae (CBS 463.69). A, B. Colony on OA (front and reverse). C, D. Colony on MEA (front and reverse). E. Pycnidia forming on OA. F. Pycnidium. G. Conidiogenous cells. H. Conidia. Scale bars: F = 100 µm. G, H = 10 µm.

Didymella microchlamydospora (Aveskamp & Verkley) Q. Chen & L. Cai, Stud. Mycol. 82: 178. 2015.

Basionym: Phoma microchlamydospora Aveskamp & Verkley, Mycologia 101: 374. 2009.

Description: Aveskamp et al. (2009).

Materials examined: UK, from leaves of *Eucalyptus* sp., 1994, A.M. Ainsworth (holotype CBS H-20147, ex-holotype living culture CBS 105.95). USA, from human skin leg, 2006, D.A. Sutton, living cultures UTHSC DI16-199 = FMR 13689; from human corneal lesion, 2014, D.A. Sutton, living cultures UTHSC DI16-365 = FMR 13858.

Notes: Phoma microchlamydospora was described as a new species by Aveskamp *et al.* (2009) from leaves of *Eucalyptus* sp. in Great Britain, being subsequently transferred to the genus *Didymella* by Chen *et al.* (2015) after a phylogenetic study. Our two strains of this species differ in the geographic origin (USA) and in substrate (isolated from human clinical specimens), but they are morphologically and genetically similar to the ex-type living culture of *D. microchlamydospora*, being characterised by the production of abundant micropycnidia, globose pycnidia with 1–3 papillate ostioles, frequently on a neck, hyaline, one-celled, globose to ellipsoidal conidia, and relatively small, one-celled to multi-celled chlamydospores arranged in chains.

Didymella musae (P. Joly) Q. Chen & L. Cai, Stud. Mycol. 82: 178. 2015. Fig. 5.

Basionym: Peyronellaea musae P. Joly, Rev. Mycol. 26: 97. 1961.

Synonym: Phoma jolyana Piroz. & Morgan-Jones, Trans. Brit. Mycol. Soc. 51: 200. 1968.

Description: Boerema (1993).

Materials examined: **India**, from fruit of *Mangifera indica*, May 1969, living cultures CBS 463.69 = FMR 15339. **USA**, from human cornea lesion, 2007, D.A. Sutton, living cultures UTHSC DI16-230 = FMR 13720.

Notes: The strain UTHSC DI16-230, which is morphologically similar to the reference strain CBS 463.69, only differs genetically in a few nucleotides of the *tub2* gene.

Didymella protuberans (Lév.) Q. Chen & L. Cai, Stud. Mycol. 82: 180. 2015.

Basionym: Phoma protuberans Lév., Ann. Sci. Nat. Bot. III 5: 281. 1846.

Synonyms: Peyronellaea protuberans (Lév.) Aveskamp et al., Stud. Mycol. 65: 33. 2010.

Didymella alectorolophi Rehm, Hedwigia 64: 294. 1923.

Peyronellaea alectorolophi (Rehm.) Aveskamp *et al.*, Stud. Mycol. 65: 31. 2010.

Phoma alecotorolophi Boerema *et al.*, Persoonia 16: 366. 1997. *Phoma obtusa* Fuckel, Jahrb. Nassauischen Vereins Naturk. 23–24: 378. 1870.

Peyronellaea obtusa (Fuckel) Aveskamp *et al.*, Stud. Mycol. 65: 33. 2010.

Description: Chen et al. (2015).

Materials examined: **The Netherlands**, from a leaf of *Lycium halimifolium*, 1971 (**neotype** HMAS 246694, ex-neotype living cultures CBS 381.96 = PD 71/706). **USA**, from chocolate, 2011, D.A. Sutton, living cultures UTHSC DI16-302 = FMR 13795.

Notes: The strain UTHSC DI16-302 isolated from the USA clusters with the ex-neotype strain of *Didymella protuberans*, being morphologically similar.

Didymella rumicicola (Boerema & Loer.) Q. Chen & L. Cai, Stud. Mycol. 82: 181. 2015.

Basionym: Phoma rumicicola Boerema & Loer., New Zealand J. Bot. 18: 473. 1980.

Description: Chen et al. (2015).

Materials examined: New Zealand, Levin, from *Rumex obtusifolius*, Jun. 1979, G.F. Laundon (holotype PDD 50667, isotype CBS H-7627, ex-isotype living cultures CBS 683.79 = LEV 15094). The Netherlands, Baarn, from a stem of *Rumex hydrolapathum*, Mar. 1996, H.A. van der Aa, living culture CBS 179.97.

Notes: The strain CBS 179.97 was initially identified as *Didy-mella acetosellae*; this strain is genetically identical to the ex-type strain of *D. rumicicola* (CBS 683.79), and the host pertains to the same genus of plants (*Rumex*). Consequently, we assigned this strain to *D. rumicicola*.

Didymella sp.

Material examined: Japan, from Camellia sasanqua, living culture LC 8141.

Notes: This strain was considered by Chen *et al.* (2017) as a reference strain of *Didymella segeticola*. However, in our phylogenetic study, this strain is distinct from the ex-type strain of *Didymella segeticola*, with strain LC 8141 differing in 7 bp in *rpb2*. It was also isolated from a different host and country, and therefore we maintain this strain as *Didymella* sp.

Clade A2: Epicoccum

Epicoccum Link, Mag. Neuesten Entdeck. Gesammten Naturk. Ges. Naturf. Freunde Berlin 7: 32. 1815, emend. Q. Chen & L. Cai, Stud. Mycol. 82: 171. 2015.

Type species: Epicoccum nigrum Link.

Epicoccum camelliae Q. Chen *et al.*, Stud. Mycol. 87: 140. 2017.

Description: Chen et al. (2017).

Materials examined: **China**, Jiangxi, Ganzhou, leaves of *Camellia sinensis*, 7 Sep. 2013, Y. Zhang (**holotype** HMAS 247159, ex-holotype culture CGMCC 3.18343 = LC 4858); *ibid*. LC4862. **USA**, from human respiratory tract, 2006, D.A. Sutton, living cultures UTHSC DI16-201 = FMR 13691; from human nail, 2006, D.A. Sutton, living cultures UTHSC DI16-202 = FMR 13692; from human toe nail, 2006, D.A. Sutton, living cultures UTHSC DI16-206 = FMR 13696; from human toe nail, 2009, D.A. Sutton, living cultures UTHSC DI16-280 = FMR 13772; from human nail, 2011, D.A. Sutton, living cultures UTHSC DI16-388 = FMR 13831; from human abscess, 2012, D.A. Sutton, living cultures UTHSC DI16-345 = FMR 13838.

Notes: A total of six isolates molecularly identified as *E. camelliae* clustered together with *E. viticis* forming a low-supported clade. Our isolates, as well as those of Chen *et al.* (2017), remained sterile. Consequently, further studies will be needed to fully characterise this species.

Epicoccum catenisporum Valenzuela-Lopez, Stchigel, Crous, Guarro & Cano, **sp. nov.**, MycoBank MB819762. Fig. 6.

Etymology: From Latin *catena*-, chain, and *-spora*, spore, because of the disposition of the chlamydospores in chains.

Description: Hyphae pale brown, smooth- and thin-walled, septate, $2.5-5 \mu m$ wide. Conidiomata pycnidial, brown to dark brown, solitary, superficial and immersed (OA), glabrous, sub-globose, $170-190 \times 140-160 \mu m$, with a single papillate ostiolar neck; pycnidial wall of *textura angularis*, 2-5 layered, $15-50 \mu m$ thick, composed of brown to dark brown, flattened polygonal cells of $5-10 \mu m$ diam, Conidiogenous cells phialidic, hyaline, smooth-walled, doliiform or ampulliform, $4-6 \times 2-4 \mu m$. Conidia aseptate, hyaline, smooth- and thin-walled, ovoid or ellipsoidal, $4-5 \times 2-3 \mu m$, guttulate. Chlamydospores aseptate, dark brown, smooth- and thick-walled, in chains or singly, then intercalary disposed, ellipsoidal to ovoid, $9.5-12 \times 4.5-8.5 \mu m$.

Culture characteristics: Colonies on OA reaching 53 mm diam after 7 d at 25 ± 1 °C, flattened, powdery due to the production of abundant pycnidia, orange grey (M. 5B1) to yellowish brown (M. 5F5); reverse pale brown (M. 5D4) to brownish grey (M. 5F2). Colonies on MEA reaching 36 mm after 7 d at 25 ± 1 °C, flattened to floccose, white (M. 5A1) to orange white (M. 5A2); reverse white (M. 5A1) to pale orange (M. 5A4). NaOH spot test negative. Crystals absent. Optimal temperature of growth and sporulation 25 °C; minimum temperature of growth 15 °C; maximum temperature of growth 35 °C.

Material examined: **Guinea-Bissau**, Gacheu, from a leaf spot of *Oryza sativa*, Oct. 1978, deposited by G.H. Boerema (**holotype** CBS H-23203, ex-holotype living cultures CBS 181.80 = PD 78/974 = FMR 14911).

Notes: The strain CBS 181.80 was previously identified as *Phoma sorghina* (currently *E. sorghinum*) by Aveskamp *et al.* (2009). However, it is phylogenetically different from that species. *Epicoccum catenisporum* is morphologically characterised by the production of pycnidia as observed in several other members of *Epicoccum*.

Epicoccum keratinophilum Valenzuela-Lopez, Cano, Guarro & Stchigel, **sp. nov.**, MycoBank MB819758. Fig. 7.

Etymology: From Greek $\kappa\epsilon\rho\dot{\alpha}\tau_{1}\nu\eta$ -, keratin, and - $\phi\dot{\alpha}\lambda_{0}\zeta$, friend, linked to the origin of the fungus.

Description: Hyphae pale brown, smooth- and thin-walled, septate, $2.5-5 \mu m$ wide. Conidiomata pycnidial, brown, solitary, superficial or immersed (OA), glabrous, subglobose, $200-300 \times 180-240 \mu m$, with a single papillate ostiolar neck; pycnidial wall of *textura angularis*, 2-4 layered, $15-45 \mu m$ thick, composed of brown to dark brown, flattened polygonal cells of $5-20 \mu m$ diam. Conidiogenous cells phialidic, hyaline, smoothwalled, ampulliform to globose, $4-5 \mu m$ diam. Conidia aseptate, hyaline, smooth- and thin-walled, cylindrical, $4-6 \times 1.5-2 \mu m$, guttulate. Chlamydospores absent.

Culture characteristics: Colonies on OA reaching 30-35 mm diam after 7 d at 25 ± 1 °C, flattened, entire edge, yellowish brown (M. 5E7) to brownish grey (M. 5F2); reverse brownish grey (M.5F2). Colonies on MEA reaching 30-37 mm diam after 7 d at 25 ± 1 °C, flattened, entire edge, white (M. 2A1) to yellowish white (M. 3A2); reverse dull yellow (M. 3B3). NaOH spot test negative. Crystals absent. Optimal temperature of growth and sporulation 25 °C; minimum temperature of growth 30 °C.

Materials examined: USA, Texas, from animal skin lesion, 2009, D.A. Sutton (holotype CBS H-23032, ex-holotype living cultures CBS 142455 = UTHSC DI16-271 = FMR 13762); Texas, from human superficial tissue, 2007, D.A. Sutton, living cultures UTHSC DI16-244 = FMR 13734; from human bronchial

Fig. 6. Epicoccum catenisporum (CBS 181.80). A, B. Colony on OA (front and reverse). C, D. Colony on MEA (front and reverse). E. Pycnidia forming on OA. F. Pycnidia. G. Chlamydospores in chains. H. Conidiogenous cells. I. Conidia. Scale bars: F = 100 μ m. G-I = 10 μ m.

wash sample, 2008, D.A. Sutton, living cultures UTHSC DI16-258 = FMR 13748; from human toe nail, 2009, D.A. Sutton, living cultures UTHSC DI16-272 = FMR 13763; from human biopsy tissue, 2011, D.A. Sutton, living culture UTHSC DI16-299 = FMR 13792.

Notes: In our phylogenetic tree *E. keratinophilum* forms a wellsupported clade distant from its morphological relatives *E. brasiliense* and *E. draconis*. All *E. keratinophilum* strains have been recovered from clinical samples, and morphologically differ from *E. brasiliense* in producing smaller pycnidia and conidia, and from both *E. brasiliense* and *E. draconis* by a negative NaOH spot test reaction.

Epicoccum latusicollum Q. Chen *et al.*, Stud. Mycol. 87: 144. 2017.

Description: Chen et al. (2017).

Materials examined: **China**, Jiangxi, Ganzhou, endophyte of *Camellia sinensis*, 7 Sep. 2013, Y. Zhang, living culture LC 4859; Shandong, Jining, on leaves of *Sorghum bicolor*, 3 Aug. 2013, N. Zhou (**holotype** HMAS 247164, ex-holotype living culture CGMCC 3.18346 = LC 5158). **USA**, from human eye, 2005, D.A. Sutton, living cultures UTHSC DI16-197 = FMR 13687.

Notes: The strain UTHSC DI16-197 that was isolated from a human eye sample clustered with the ex-type strain of *E. latusicollum* that was recently introduced by Chen *et al.* (2017), being characterised by the production of pycnidial conidiomata. Unfortunately, our strain was sterile, and morphological comparison was not possible, but genetically it is identical to the latter species.

Epicoccum ovisporum Valenzuela-Lopez, Stchigel, Crous, Guarro & Cano, **sp. nov.**, MycoBank MB819761. Fig. 8.

Etymology: From Latin *ovum*-, egg, and *-spora*, spore, due to the shape of the conidia.

Description: Hyphae hyaline to pale brown, smooth- and thinwalled, septate, $2.5-5 \mu m$ wide. Conidiomata pycnidial, brown, solitary, mostly superficial on OA and immersed into MEA, glabrous, subglobose to globose, $100-190 \times 85-180 \mu m$, with short papillate ostiolar neck; pycnidial wall of *textura angularis*, 3-4 layered, $12.5-35 \mu m$ thick, composed of brown, flattened polygonal cells of $5-20 \mu m$ diam. Conidiogenous cells phialidic, hyaline, smooth-walled, doliiform to ampulliform, $5-6 \times 2-3 \mu m$. Conidia aseptate, hyaline, smooth- and thin-walled, guttulate, ovoid, ellipsoidal to cylindrical, $5-7 \times 2-3 \mu m$. Chlamydospores multi-celled, brown to dark brown, smooth-walled, disposed in chains or singly, then intercalary and terminally, globose to subglobose, $10-22.5 \times 10-20 \mu m$.

Culture characteristics: Colonies on OA reaching 36 mm diam after 7 d at 25 ± 1 °C, flattened, with abundant production of pycnidia, greenish grey (M. 29B2); reverse orange grey (M.5B2). Colonies on MEA reaching 38 mm after 7 d at 25 ± 1 °C, floccose, orange grey (M. 5B2) to grey (M. 5C1), producing a hyaline exudate; reverse yellowish brown (M. 5D8). NaOH spot test negative. Crystals absent. Optimal temperature of growth and sporulation 25 °C; minimum temperature of growth 15 °C; maximum temperature of growth 30 °C.

Material examined: **South Africa**, Potchefstroom, from a leaf of *Zea mays*, Nov. 1978, isolated by W.J. Jooste, deposited by G.H. Boerema (**holotype** CBS H-23204, ex-holotype living cultures CBS 180.80 = PD 78/1100 = FMR 14910).

Fig. 7. Epicoccum keratinophilum (CBS 142455). A, B. Colony on OA (front and reverse). C, D. Colony on MEA (front and reverse). E. Pycnidia forming on OA. F. Pycnidium. G. Conidiogenous cell. H. Conidia. Scale bars: F = 100 μm. G, H = 10 μm.

Notes: The strain CBS 180.80 was previously assigned to *E. sorghinum* (Aveskamp *et al.* 2009, 2010); however, in our phylogenetic tree it represents a new species, forming a basal clade together with *E. catenisporum* and *E. sorghinum*, being distant from the rest of the species of the genus. The abovementioned species are morphologically similar to *E. ovisporum* by producing pycnidia instead of sporodochia.

Epicoccum pneumoniae Valenzuela-Lopez, Stchigel, Guarro & Cano, **sp. nov.** MycoBank MB822112.

Etymology: The species name refers to the infection associated with this specimen.

Culture sterile. *Epicoccum pneumoniae* differs from its closest phylogenetic species *Epicoccum latusicollum* based on alignment of the concatenated four loci deposited in TreeBASE (S21115): LSU deletion in position: 382; ITS positions: 587 (C); *tub2* positions: 1075 (T), 1102 (T), 1152 (T), 1159 (T), 1161 (G), 1207 (G), 1209 (T), 1210 (A), 1212 (G), 1213 (T), 1254 (T), 1260 (C), 1284 (C); *rpb2* positions: 1312 (A), 1336 (A), 1339 (G), 1351 (C), 1354 (T), 1384 (C), 1453 (T), 1456 (C), 1495 (T), 1553 (C), 1609 (T), 1757 (T), 1769 (C), 1813 (C), 1816 (C), 1843 (C), 1873 (C), 1897 (C).

Culture characteristics: Colonies on OA reaching 29 mm diam after 7 d at 25 ± 1 °C, flattened, reddish grey (M. 9B2) to white (M. 9A1); reverse white (M. 9A1). Colonies on MEA reaching 31 mm after 7 d at 25 ± 1 °C, flattened to floccose, pinkish white (M. 9A2) to white (M. 9A1); reverse white (M. 9A1). NaOH spot test negative. Crystals absent.

Material examined: USA, from human sputum sample, 2008, D.A. Sutton (holotype FMR H-13747, ex-holotype living cultures UTHSC DI16-257 = FMR 13747).

Notes: The strain UTHSC DI16-257, which remained sterile, forms a basal clade with *E. latusicollum*; however, this strain clearly differs phylogenetically from the latter species mainly in the loci *tub2* and *rpb2*. Therefore it is proposed here as a new species, *Epicoccum pneumoniae*.

Epicoccum proteae (Crous) Valenzuela-Lopez, Stchigel, Crous, Guarro & Cano, **comb. nov.** MycoBank MB820830. *Basionym: Phoma proteae* Crous, Persoonia 27: 151. 2011.

Description: Crous et al. (2011).

Material examined: **South Africa**, Western Cape Province, Somerset West, Karibia Farm, from leaves of *Protea* cv. Carnival (*P. compacta* × *P. neriifolia*), 21 July 1998, J.E. Taylor & S. Denman (**holotype** CBS H-20771, ex-holotype living cultures CPC 1854 = CBS 114179 = FMR 15332).

Notes: This species was first proposed by Crous *et al.* (2011) within *Phoma*, which is characterised by producing brown, globose pycnidia and hyaline, aseptate conidia. However, our phylogenetic study showed that the ex-type strain of this species clustered in *Epicoccum*. Therefore, we propose a new combination for this species.

Epicoccum sorghinum (Sacc.) Aveskamp *et al.*, Stud. Mycol. 65: 36. 2010.

Basionym: Phyllosticta sorghina Sacc., Michelia 1: 140. 1878. *Synonym: Phoma sorghina* (Sacc.) Boerema *et al.*, Persoonia 7: 134. 1973.

Fig. 8. Epicoccum ovisporum (CBS 180.80). A, B. Colony on OA (front and reverse). C, D. Colony on MEA (front and reverse). E. Pycnidia forming on OA. F. Pycnidium. G, H. Conidiogenous cells. I. Conidia. Scale bars: F = 100 µm. G-I = 10 µm.

Description: Boerema et al. (2004).

Materials examined: **France**, Antibes, from a twig of *Citrus* sp., 1966, living cultures CBS 627.68 = PD 66/926. **Puerto Rico**, Mayaguez, from *Sorghum vulgare*, Apr. 1976, R. Alconera, living cultures CBS 179.80 = PD 76/1018; **USA**, from human foot, 2010, D.A. Sutton, living cultures UTHSC DI16-288 = FMR 13692; from human bronchial wash sample, 2011, D.A. Sutton, living cultures UTHSC DI16-301 = FMR 13794.

Notes: Two strains (UTHSC DI16-288 and UTHSC DI16-301) isolated from human clinical specimens in the USA clustered with the reference strains CBS 179.80 and CBS 627.68 of *E. sorghinum*. The latter species had been reported from several different substrates mainly from vegetal materials and it seems to be a widely distributed fungus, also having been associated with human infections (Punithalingam 1985, Rai 1989). Morphologically *E. sorghinum* was described producing mainly pycnidial conidiomata. Unfortunately, our strains were sterile, and further studies are needed to resolve the taxonomy of this species.

Clade A3: Allophoma

Allophoma Q. Chen & L. Cai, Stud. Mycol. 82: 162. 2015.

Type species: Allophoma tropica (R. Schneid. & Boerema) Q. Chen & L. Cai, Stud. Mycol. 82: 162. 2015.

Allophoma cylindrispora Valenzuela-Lopez, Cano, Guarro & Stchigel, **sp. nov.** MycoBank MB819625. Fig. 9.

Etymology: From Latin *cylindricus*-, of cylindrical shape, and *-spora*, spore.

Description: Hyphae brown, septate, smooth- and thin-walled, 2.5–5 µm wide. Conidiomata pycnidial, brown to dark brown, confluent, superficial and immersed (OA), glabrous, ovoid, $120-210 \times 90-140$ µm, with a single papillate ostiolar neck; pycnidial wall of *textura angularis*, 2–4-layered, 15–30 µm thick, composed of brown to dark brown, flattened polygonal cells of 5–12.5 µm diam,. Conidiogenous cells phialidic, hyaline, smooth-walled, ampulliform, 3.5–4 × 4.5–5 µm. Conidia aseptate, hyaline, smooth- and thin-walled, cylindrical, 3–4 × 2 µm, guttulate. Chlamydospores absent.

Culture characteristics: Colonies on OA reaching 36 mm diam after 7 d at 25 ± 1 °C, flattened, beige (M. 4C3) to olive brown (M. 4F3); reverse blond (M. 4C4) to olive brown (M. 4F3). Colonies on MEA reaching 25–27 mm after 7 d at 25 ± 1 °C, flattened, white (M. 4A1); reverse pale yellow (M. 4A4) to yellowish orange (M. 4B7). NaOH spot test negative. Crystals absent. Optimal temperature of growth and of sporulation 25 °C; minimum temperature of growth 5 °C; maximum temperature of growth 30 °C.

Material examined: **USA**, from a human eye lesion, 2007, D.A. Sutton (**holotype** CBS H-23030, ex-holotype living cultures CBS 142453 = UTHSC DI16-233 = FMR 13723).

Notes: This species forms a clade which is distinct from the closest relatives, *A. minor* and *A. piperis*. Unfortunately, the morphological distinction between these three species is difficult. Although these species differ in geography and substrate,

Fig. 9. Allophoma cylindrispora (CBS 142453). A, B. Colony on OA (front and reverse). C, D. Colony on MEA (front and reverse). E. Pycnidium. F. Conidiogenous cells. G. Conidia. Scale bars: E = 100 µm. F, G = 10 µm.

molecular data is required for species identification. *Allophoma cylindrispora* sporulates poorly in culture.

Clade A7: Ectophoma

Ectophoma Valenzuela-Lopez, Cano, Crous, Guarro & Stchigel, gen. nov. MycoBank MB819952.

Etymology: From the Greek εκτos, outside, because it is phylogenetically far from *Phoma*.

Conidiomata pycnidial, brown to dark brown, solitary or confluent, pycnidial wall of *textura angularis*, glabrous, globose to subglobose or irregular, ostiolate, with one or more short necks. *Conidiogenous cells* phialidic, hyaline, smooth-walled, ampulliform to globose. *Conidia* aseptate, hyaline, smooth- and thinwalled, oblong to ellipsoidal, guttulate.

Type species: Ectophoma multirostrata (P.N. Mathur *et al.*) Valenzuela-Lopez, Cano, Crous, Guarro & Stchigel.

Ectophoma multirostrata (P.N. Mathur *et al.*) Valenzuela-Lopez, Cano, Crous, Guarro & Stchigel, **comb. nov.**, Myco-Bank MB819953. Fig. 10.

Basionym: Sphaeronaema multirostratum P.N. Mathur et al., Sydowia 13: 146. 1959.

Synonym: Phoma multirostrata (P.N. Mathur et al.) Dorenb. & Boerema, Mycopathol. Mycol. Appl. 50: 256. 1973. Description: Boerema et al. (2004).

Materials examined: India, Maharashtra, Poona, Talegaon, from poultry farm soil, Mar. 1959, M. J. Thirumalachar (isotype CBS H-7616, ex-isotype living cultures CBS 274.60 = IMI 081598 = FMR 15335); Maharashtra, Poona, Talegaon, from soil, Mar. 1959, M.J. Thirumalachar, living cultures CBS 368.65 = PD 92/ 1757 = FMR 15336. **The Netherlands**, Hoorn, greenhouse, from the stem of *Cucumis sativus*, Aug. 1967, G.H. Boerema, living cultures CBS 110.79 = PD 65/ 8875 = FMR 15342.

Notes: Aveskamp *et al.* (2009) transferred this species from *Sphaeronaema* to *Phoma*. In our study, *P. multirostrata* forms a distinct clade, separated from all genera previously described in the *Didymellaceae*. Therefore, we propose a new genus to accommodate this species.

Ectophoma pomi (A.S. Horne) Valenzuela-Lopez, Cano, Crous, Guarro & Stchigel, **comb. nov.** MycoBank MB819954. Fig. 11. *Basionym: Polyopeus pomi* A.S. Horne, J. Bot., Lond. 58: 240. 1920.

Synonym: Phoma pereupyrena Gruyter *et al.*, Persoonia 15: 398. 1993.

Description: Boerema et al. (2004).

Material examined: India, from a leaf spot of *Coffea arabica*, 1976, deposited by J. de Gruyter (neotype designated here CBS H-23202, MBT377913, exnectype living cultures CBS 267.92 = PD 76/1014 = FMR 15346).

Notes: Polyopeus pomi, introduced by Horne (1920) was validly described growing on potato mush agar, and was isolated from the fruits of *Malus domestica* "Cox's Orange Pippin", in the UK, where it produced dark spots. No illustration is available, and no type material is mentioned in the publication. Therefore, based on the original description, we propose CBS H-23202 as neotype. The fungus produces black, subglobose to irregularly

Fig. 10. Ectophoma multirostrata (CBS 274.60). A, B. Colony on OA (front and reverse). C, D. Colony on MEA (front and reverse). E. Pycnidia forming on OA. F. Pycnidium. G. Conidiogenous cells. H. Conidia. Scale bars: F = 50 µm. G, H = 10 µm.

shaped pycnidia with a blackish neck, and hyaline, ellipsoidal conidia, 5-9 \times 2-3 $\mu m.$

Clade A8: Remotididymella

Remotididymella Valenzuela-Lopez, Crous, Cano, Guarro & Stchigel, gen. nov. MycoBank MB819990.

Etymology: From Latin *remotus*-, distant, because it is phylogenetic far removed from the similar genus *Didymella*.

Conidiomata pycnidial, brown to dark brown, mostly confluent; pycnidial wall of *textura angularis*, mostly glabrous, globose or irregularly-shaped, with a single ostiole. *Conidiogenous cells* phialidic, hyaline, smooth-walled, globose or ampulliform. *Conidia* aseptate, hyaline, smooth- and thin-walled, allantoid or cylindrical, guttulate.

Type species: Remotididymella destructiva (Plowr.) Valenzuela-Lopez, Cano, Crous, Guarro & Stchigel.

Remotididymella anthropophila Valenzuela-Lopez, Cano, Guarro & Stchigel, **sp. nov.** MycoBank MB819991. Fig. 12.

Etymology: From Greek ανθρώπος-, human, and $-\phi i \lambda o \varsigma$, friend, because that fungus has been isolated from a human sample.

Description: Hyphae brown, smooth- and thin-walled, septate, 2.5–8 µm wide. Conidiomata pycnidial, apricot to pale brown, translucent, solitary or confluent, superficial (OA), glabrous,

globose to subglobose, $300-400 \times 250-400 \mu m$, with a single papillate ostiolar neck; pycnidial wall of *textura angularis*, 2–5 layered, $30-40 \mu m$ thick, composed of subhyaline to pale brown flattened polygonal cells of 5–20 μm diam,. *Conidiogenous cells* phialidic, hyaline, smooth-walled, ampulliform to globose, 5–6 μm diam. *Conidia* aseptate, hyaline, smooth- and thinwalled, cylindrical, 5.5–7.5 × 1.5–2.5 μm , guttulate. *Chlamydospores* absent.

Culture characteristics: Colonies on OA reaching 60 mm diam after 7 d at 25 ± 1 °C, flattened, yellowish brown (M. 5E3) to greyish brown (M. 5F3); reverse greyish brown (M. 5F3). Colonies on MEA reaching 35–36 mm diam after 7 d at 25 ± 1 °C, flattened, greyishorange (M. 5B3) to pale brown (M. 5D6); reverse orange white (M. 5A2) to brownish yellow (M. 5C7). NaOH spot test negative. Crystals absent. Optimal temperature of growth and sporulation 25 °C; minimum temperature of growth 5 °C; maximum temperature of growth 35 °C.

Material examined: **USA**, Texas, from human bronchial secretion, D.A. Sutton (**holotype** CBS H-23039, ex-holotype living cultures CBS 142462 = UTHSC DI16-278 = FMR 13770).

Notes: The new species *Remotididymella anthropophila* is genetically distinct from its nearest neighbour *R. destructiva*. Morphologically it is the only species of the genus that produces pale-brown pycnidia, which is unusual in phoma-like species, and it differs in substrate and location with the latter species.

Fig. 11. Ectophoma pomi (CBS 267.92). A, B. Colony on OA (front and reverse). C, D. Colony on MEA (front and reverse). E. Pycnidia forming on OA. F. Pycnidium. G. Chlamydospores. H. Arrow indicate the conidiogenous cell. I. Conidia. Scale bars: F = 50 µm. G-I = 10 µm.

Remotididymella destructiva (Plowr.) Valenzuela-Lopez, Cano, Crous, Guarro & Stchigel, **comb. nov.** MycoBank MB819992. Fig. 13.

Basionym: Phoma destructiva Plowr., Gard. Chron. II 16: 621. 1881.

Synonyms: Diplodina destructiva (Plowr.) Petr., Annls mycol. 19(1/2): 19. 1921.

Phoma destructiva var. diversispora Gruyter *et al.*, Persoonia 18: 28. 2002.

Description from ex-epitype (CBS 378.73): Hyphae brown, smooth- and thin-walled, septate, 2.5–6 µm wide. Conidiomata pycnidial, dark brown, mostly confluent, rarely solitary, superficial or immersed (OA), glabrous, ovoid to irregularly-shaped, $120-250 \times 90-180$ µm, with a single papillate ostiolar neck; pycnidial wall of *textura angularis*, 2–4 layered, 12.5–50 µm thick, composed of brown, flattened polygonal cells of 5–10 µm diam,. Conidiogenous cells phialidic, hyaline, smooth-walled, ampulliform, $10-12 \times 5-6$ µm. Conidia aseptate, hyaline, smooth- and thin-walled, variable in shape, mostly allantoid to cylindrical, $3.5-8 \times 2-2.5$ µm, guttulate. Chlamydospores absent.

Culture characteristics: Colonies on OA reaching 21 mm diam after 7 d at 25 ± 1 °C, flattened, front and reverse dark grey (M. 4F1). Colonies on MEA reaching 10 mm diam after 7 d at 25 ± 1 °C, flattened, front and reverse olive brown to dark grey (M. 5F2). NaOH spot test negative. Crystals absent. Optimal

temperature of growth and sporulation 25 °C; minimum temperature of growth 15 °C; maximum temperature of growth 30 °C.

Materials examined: Lectotype designated here (MBT378116): fig. 123, in Plowright. 1881. The Gardeners' chronicle: a weekly illustrated journal of horticulture and allied subjects (http://www.biodiversitylibrary.org/item/84372#page/ 639/mode/1up). Guadeloupe, from fruit of *Lycopersicon esculentum*, 1987, living cultures CBS 133.93 = PD 88/961 = IMI 173142. The Netherlands, Berkel en Rodenrijs, from a leaf of *Lycopersicon esculentum*, Oct. 1977, G.H. Boerema, living culture CBS 162.78 = PD 77/725. Tonga, Friendly Islands, from decaying fruit of *Lycopersicon esculentum*, 1967, G.F. Laundon (epitype designated here CBS H-16200, MBT377914, ex-epitype living cultures CBS 378.73 = FMR 15328 = CECT 2877).

Notes: Phoma destructiva was originally described by Plowright (1881), infecting fruits of *Lycopersicon esculentum* in King's Lynn, UK. Later, many representative specimens were collected from the similar hosts in other countries of Europe, and in North and South America (de Gruyter *et al.* 2002, Boerema *et al.* 2004). Phoma destructiva is characterised by the production of olivaceous black, globose, glabrous pycnidia with up to three papillate ostioles, hyaline, aseptate, subglobose to ellipsoidal conidia of σ = 5.8 × 2.2 µm, scarce and larger 1-septate conidia, and by the absence of chlamydospores. De Gruyter *et al.* (2002), based on morphological differences of the conidia, recognized two varieties, *destructiva* and *diversispora*. However, the isolates CBS 378.73 and CBS 133.93, representative strains of "Phoma destructiva var. diversispora", were phylogenetically and

Fig. 12. Remotididymella anthropophila (CBS 142462). A, B. Colony on OA (front and reverse). C, D. Colony on MEA (front and reverse). E. Pycnidia forming on OA. F. Pycnidium. G. Conidiogenous cells. H. Conidia. Scale bars: F = 100 µm. G, H = 10 µm.

morphologically very similar in our study. Therefore, we did not accept these varieties, and propose CBS H-16200 as the epitype of *Remotididymella destructiva*.

Clade A9: Similiphoma

Similiphoma Valenzuela-Lopez, Crous, Cano, Guarro & Stchigel, gen. nov., MycoBank MB820847.

Etymology: From Latin *similis*-, similar to, due to the morphological similarity with *Phoma*.

Conidiomata pycnidial, brown, confluent or solitary; pycnidium wall of *textura angularis*, glabrous or with short hyphal outgrowths, globose to subglobose, with one or two papillate ostioles. *Conidiogenous cells* phialidic, hyaline, smooth-walled, globose or ampulliform. *Conidia* aseptate, hyaline, smooth- and thin-walled, ellipsoidal to cylindrical, guttulate.

Type species: Similiphoma crystallifera (de Gruyter *et al.*) Valenzuela-Lopez, Crous, Cano, Guarro & Stchigel.

Similiphoma crystallifera (Gruyter *et al.*) Valenzuela-Lopez, Crous, Cano, Guarro & Stchigel, **comb. nov.** MycoBank MB820848. Fig. 14.

Basionym: Phoma crystallifera Gruyter *et al.*, Persoonia 15: 393. 1993.

Description: Boerema et al. (2004).

Material examined: Austria, Kärnten, Wallersberg near Völkermarkt, from *Chamaespartium sagittale*, 1982, H.A. van der Aa (holotype L 992.177-456, exholotype living cultures CBS 193.82 = FMR 15343).

Notes: Similiphoma crystallifera CBS 193.82 clustered phylogenetically distant from the closest morphologically related genera *Ectophoma, Epicoccum* and *Phoma.* Consequently, we designated this strain as the type species of the new genus *Similiphoma.*

Clade A10: Paraboeremia

Paraboeremia Q. Chen & L. Cai, Stud. Mycol. 82: 183. 2015.

Type species: Paraboeremia selaginellae (Sacc.) Q. Chen & L. Cai.

Paraboeremia putaminum (Speg.) Q. Chen & L. Cai, Stud. Mycol. 82: 184. 2015. Fig. 15.

Basionym: Phoma putaminum Speg., Atti Soc. Crittog. Ital. 3: 66. 1881.

Description: de Gruyter & Noordeloos (1992).

Material examined: **Denmark**, from the rhizosphere of Malus sylvestris, Mar. 1968, E. Sønderhousen, living cultures CBS 130.69 = CECT 20054 = IMI 331916 = FMR 15338.

Notes: This species was introduced by Spegazzini in 1881, isolated from pine wood in Sweden, and in the last study of this species by Chen *et al.* (2015) from two reference strains (CBS 130.69 and CBS 372.91) was placed within the genus *Paraboeremia*. However, without an illustration and *rpb2* sequences, in our study, the *rpb2* sequence and the illustration were provided of the reference strain CBS 130.69, which it resembles morphologically (de Gruyter & Noordeloos 1992), but further studies are needed to clarify its typification.

Fig. 13. Remotididymella destructiva (CBS 378.73). A, B. Colony on OA (front and reverse). C, D. Colony on MEA (front and reverse). E. Pycnidia forming on OA. F. Pycnidium. G. Conidiogenous cells. H. Conidia. Scale bars: F = 50 µm. G, H = 10 µm.

Paraboeremia selaginellae (Sacc.) Q. Chen & L. Cai, Stud. Mycol. 82: 184. 2015.

Basionym: Phyllosticta selaginellae Sacc., Malpighia 11: 304. 1897.

Synonym: Phoma selaginellicola Gruyter et al., Persoonia 15: 399. 1993.

Description: Chen et al. (2015).

Material examined: **The Netherlands**, from a leaf of *Selaginella* sp., 1977, G.H. Boerema (**neotype** HMAS 246693, MBT202501, ex-neotype living cultures CBS 122.93 = PD 77/1049 = FMR 15348).

Notes: This species was already typified by Chen *et al.* (2015) providing DNA sequence data and illustrations. However, the *rpb2* sequence was not given, and therefore in the present study the *rpb2* sequence of the ex-type strain CBS 122.93 is added.

Clade A12: Cumuliphoma

Cumuliphoma Valenzuela-Lopez, Stchigel, Crous, Guarro & Cano, gen. nov. MycoBank MB819878.

Etymology: From Latin *cumulus*-, heap or pile, in reference to the aggregated pycnidia.

Conidiomata pycnidial, brown, mostly confluent, pycnidial wall of *textura angularis*, mostly glabrous, globose or nearly so, with a single ostiole. *Conidiogenous cells* phialidic, hyaline, smoothwalled, globose to ampulliform. *Conidia* aseptate, hyaline, smooth- and thin-walled, ellipsoidal to cylindrical, guttulate. *Chlamydospores* mostly absent.

Type species: Cumuliphoma omnivirens (Aveskamp *et al.*) Valenzuela-Lopez, Stchigel, Crous, Guarro & Cano.

Cumuliphoma indica Valenzuela-Lopez, Cano, Crous, Guarro & Stchigel, **sp. nov.** MycoBank MB819880. Fig. 16.

Etymology: The name refers to the geographic origin of the fungus, India.

Description: Hyphae pale brown to brown, smooth- and thinwalled, septate, 2.5-8 µm wide. Conidiomata pycnidial, brown to dark brown, mostly confluent, rarely solitary, immersed (OA MEA), glabrous, ovoid to irregularly-shaped, and $150-180(-520) \times 140-150(-490)$ µm, with a single papillate ostiolar neck: pvcnidial wall of textura angularis. 3-5-lavered. 25-60 µm thick, composed of brown, flattened polygonal cells of 7-23 µm diam. Conidiogenous cells phialidic, hyaline, smooth-walled, globose to ampulliform, $5-6 \times 4-5.5 \mu m$. Conidia aseptate, hyaline, smooth- and thin-walled, ellipsoidal to cylindrical, 4-5.5 × 2-2.5 µm, guttulate. Chlamydospores absent.

Culture characteristics: Colonies on OA reaching 42 mm diam after 7 d at 25 ± 1 °C, flattened, olive brown (M. 4F3); reverse dark grey (M. 4F1). Colonies on MEA reaching 37 mm diam after 7 d at 25 ± 1 °C, flattened, brownish grey (M. 5F2) to pale grey (M. 5C2); reverse brownish grey (M. 5F2). NaOH spot test negative. Crystals absent. Optimal temperature of growth and sporulation 25 °C; minimum temperature of growth 15 °C; maximum temperature of growth 30 °C.

Fig. 14. Similiphoma crystallifera (CBS 193.82). A, B. Colony on OA (front and reverse). C, D. Colony on MEA (front and reverse). E. Pycnidia forming on OA. F. Pycnidium. G. Conidiogenous cells. H. Conidia. Scale bars: F = 100 µm. G, H = 10 µm.

Materials examined: India, Jabalpur, from an unknown substrate, 1977, isolated by D.P. Tiwari (holotype CBS H-20152, ex-holotype living cultures CBS 654.77 = FMR 15341). Papua New Guinea, Varirata National Park, from soil, Aug. 1995, A. Aptroot, living cultures CBS 991.95 = FMR 15331.

Notes: The isolates CBS 654.77 and CBS 991.95 were received as "*Phoma omnivirens*". However, these isolates were phylogenetically distant from the ex-type strain of *C. omnivirens* (CBS 341.86), and also both differ morphologically from the latter due to the absence of chlamydospores and micropycnidia.

Cumuliphoma omnivirens (Aveskamp *et al.*) Valenzuela-Lopez, Stchigel, Crous, Guarro & Cano, **comb. nov.** Myco-Bank MB819882.

Basionym: Phoma omnivirens Aveskamp *et al.*, Mycologia 101: 375. 2009.

Description: Aveskamp et al. (2009).

Material examined: **Belgium**, Gembloux, from *Phaseolus vulgaris*, 1968, isolated by L. Obando (**holotype** CBS H-20151, ex-holotype living cultures CBS 341.86 = FMR 14915).

Notes: Cumuliphoma omnivirens is the only species of the genus that produces chlamydospores. Phylogenetically, it is closely related to *C. pneumoniae*, but is distinct from this species in both *rpb2* and *tub2* sequences by 9 bp.

Cumuliphoma pneumoniae Valenzuela-Lopez, Stchigel, Crous, Guarro & Cano, **sp. nov.** MycoBank MB819881. Fig. 17.

Etymology: From Greek πνευμονικός-, pulmonary, due to the origin of the ex-type strain.

Description: Hyphae hyaline to brown, smooth- and thin-walled, septate, $2.5-6 \mu m$ wide. Conidiomata pycnidial, brown to dark brown, confluent, superficial (OA), glabrous, globose to sub-globose, $200-240 \times 200 \mu m$, with a short papillate ostiolar neck; pycnidial wall of *textura angularis*, 3-5 layered, $25-35 \mu m$ thick, composed of brown to dark brown, flattened polygonal cells of $5-12 \mu m$ diam. Conidiogenous cells phialidic, hyaline, smooth-walled, ampulliform to globose, $5-6 \times 5 \mu m$. Conidia aseptate, hyaline, smooth- and thin-walled, ovoid to cylindrical, $2.5-5 \times 2 \mu m$, guttulate. Chlamydospores absent.

Culture characteristics: Colonies on OA reaching 28 mm diam after 7 d at 25 ± 1 °C, flattened, yellowish brown (M. 5F5); reverse brownish grey (M. 5F3). Colonies on MEA reaching 27–29 mm after 7 d at 25 ± 1 °C, flattened, grey (M. 6C1), producing a diffusible greyish orange pigment; reverse dark brown (M. 6F6). NaOH spot test negative. Crystals absent. Optimal temperature of growth and sporulation 25 °C; minimum temperature of growth 30 °C.

Material examined: **USA**, from human sputum sample, D.A. Sutton (**holotype** CBS H-23031, ex-holotype living cultures CBS 142454 = UTHSC DI16-249 = FMR 13739).

Notes: Cumuliphoma pneumoniae was isolated from a clinical sample of the respiratory tract. This species is morphologically closely related to *C. omnivirens*, which is also the phylogenetically nearest species. However, *C. pneumoniae* does not produce chlamydospores.

Clade A13: Juxtiphoma

Fig. 15. Paraboeremia putaminum (CBS 130.69). A, B. Colony on OA (front and reverse). C, D. Colony on MEA (front and reverse). E. Pycnidia forming on OA. F. Pycnidium. G. Conidiogenous cells. H. Conidia. Scale bars: F = 100 μm. G, H = 10 μm.

Juxtiphoma Valenzuela-Lopez, Cano, Crous, Guarro & Stchigel, gen. nov. MycoBank MB821111.

Etymology: From Latin *juxta*, next to, due to the morphological and phylogenetic similarity with *Phoma*.

Conidiomata pycnidial, brown, mostly solitary, sometimes confluent, pycnidial wall of *textura angularis*, glabrous, sub-globose to conical, papillate, ostiolate. *Conidiogenous cells* phialidic, hyaline, smooth-walled, ampulliform. *Conidia* aseptate, hyaline, smooth- and thin-walled, ovoid, ellipsoidal or cylindrical, biguttulate. *Chlamydospores* aseptate, ochraceous-brown, single or in chains, subglobose, barrel-shaped or ellipsoidal.

Type species: Juxtiphoma eupyrena (Sacc.) Valenzuela-Lopez, Cano, Crous, Guarro & Stchigel.

Juxtiphoma eupyrena (Sacc.) Valenzuela-Lopez, Cano, Crous, Guarro & Stchigel, **comb. nov.** MycoBank MB821112. *Basionym: Phoma eupyrena* Sacc., Michelia 1: 525. 1879.

Description: Boerema et al. (2004).

Materials examined: **Germany**, Kiel-Kitzeberg, from wheat field soil, 1966, W. Gams, living cultures CBS 527.66 = FMR 15337 = ATCC 22238. **The Netherlands**, from the tuber of *Solanum tuberosum*, 1991, J. de Gruyter, living cultures CBS 374.91 = PD 78/391 = FMR 15329.

Notes: Phoma eupyrena, introduced by Saccardo (1879) and reported on stems of *Solanum tuberosum* (geographic origin not cited), has been revised by several authors. The description from Saccardo is minimal: blackish, depressed conical, ostiolate

pycnidia with hyaline, ovoid conidia, 4 × 1.5 µm. Boerema *et al.* (2004) characterised this species morphologically and placed it in the section *Phoma*. Aveskamp *et al.* (2009) considered it phylogenetically close to "*Phoma omnivirens*", and later Aveskamp *et al.* (2010) regarded *P. eupyrena* closely related to *Microsphaeropsis*. However, in our phylogenetic tree this species formed a well-supported monophyletic clade, separate from the other genera of *Didymellaceae*. Therefore, we propose the new genus *Juxtiphoma* to accommodate this species.

Clade A14: Vacuiphoma

Vacuiphoma Valenzuela-Lopez, Cano, Crous, Guarro & Stchigel, gen. nov. MycoBank MB821451.

Etymology: Based on the occurrence of empty pycnidial structures.

Conidiomata pycnidial, brown to dark brown, solitary, glabrous, subglobose or obpyriform; pycnidial wall of *textura angularis*, non-papillate.

Type species: Vacuiphoma bulgarica (Aveskamp *et al.*) Valenzuela-Lopez, Cano, Crous, Guarro & Stchigel.

Vacuiphoma bulgarica (Aveskamp *et al.*) Valenzuela-Lopez, Cano, Crous, Guarro & Stchigel, **comb. nov.** MycoBank MB821452.

Basionym: Phoma bulgarica Aveskamp *et al.*, Stud. Mycol. 65: 47. 2010.

Fig. 16. Cumuliphoma indica (CBS 654.77). A, B. Colony on OA (front and reverse). C, D. Colony on MEA (front and reverse). E. Pycnidia forming on OA. F. Pycnidia. G. Conidiogenous cells. H. Conidia. Scale bars: F = 100 μm. G, H = 10 μm.

Description: Aveskamp et al. (2010).

Material examined: **Bulgaria**, Silkossia, Strandga Mountain, from leafs of *Tra-chystemon orientale*, 20 Jun. 1980, S. Vanev (**holotype** CBS H-20242, exholotype living cultures CBS 357.84 = FMR 14917).

Notes: This species was introduced by Aveskamp *et al.* (2010) within the genus *Phoma* due to the production of pycnidial conidiomata. However, this species was not able to produce conidia and remains poorly characterised. Genetically this species along with *V. oculihominis* form a distinct clade within *Didymellaceae*, thus we treat these species within the new genus *Vacuiphoma*.

Vacuiphoma oculihominis Valenzuela-Lopez, Stchigel, Guarro & Cano, **sp. nov.** MycoBank MB822113.

Etymology: The epithet refers to the human eye clinical sample, from which the fungus was isolated.

Culture sterile. *Vacuiphoma oculihominis* differs from its closest phylogenetic species, *Vacuiphoma bulgarica,* in two bp of the ITS nucleotide sequence, 12 bp of *tub2* and 44 bp of *rpb2*, based on alignment of the concatenated four loci deposited in TreeBASE (S21115).

Culture characteristics: Colonies on OA reaching 30-34 mm diam after 7 d at 25 ± 1 °C, flattened, yellowish grey (M. 2B2) to olive grey (M. 2E2); reverse white (M. 2A1) to olive grey (M. 2E2). Colonies on MEA reaching 33 mm diam after 7 d at 25 ± 1 °C, slightly floccose, white (M. 5A1) to light orange (M. 5A4); reverse light orange (M. 5A4). NaOH spot test negative.

Crystals absent. Optimal temperature of growth 25 °C; minimum temperature of growth 5 °C; maximum temperature of growth 30 °C.

Material examined: USA, Illinois, from human eye secretion, 2011, D.A. Sutton (holotype FMR H-13801, ex-holotype living cultures UTHSC DI16-308 = FMR 13801).

Notes: The strain UTHSC DI16-308 was recovered from a human eye clinical specimen, and remained sterile despite being cultured on different types of media. Because this strain is phylogenetically related with *V. bulgarica*, but distant from that species, it is proposed here as a new taxon.

Clade A15: Nothophoma

Nothophoma Q. Chen & L. Cai, Stud. Mycol. 82: 212. 2015.

Type species: Nothophoma infossa (Ellis & Everh.) Q. Chen & L. Cai, Stud. Mycol. 82: 213. 2015.

Nothophoma gossypiicola (Gruyter) Q. Chen & L. Cai, Stud. Mycol. 82: 213. 2015.

Basionym: Phoma gossypiicola Gruyter, Persoonia 18: 96. 2002.

Description: de Gruyter (2002).

Materials examined: **USA**, Texas, from a leaf of *Gossypium* sp., 1963, L.S. Bird, living cultures CBS 377.67 = FMR 14912; from human ethmoid sinus lesion, 2010, D.A. Sutton, living cultures UTHSC DI16-294 = FMR 13787.

Notes: This species was recently placed within the genus *Nothophoma* by Chen *et al.* (2015). In our study, one isolate from human clinical specimen was identified as *N. gossypiicola*, which

Fig. 17. Cumuliphoma pneumoniae (CBS 142454). A, B. Colony on OA (front and reverse). C, D. Colony on MEA (front and reverse). E. Pycnidia forming on OA. F. Pycnidia. G. Conidiogenous cells. H. Conidia. Scale bars: F = 100 μm. G, H = 10 μm.

it resembles in both morphology and DNA sequences from the reference strain CBS 377.67, isolated from the same country. This species is morphologically characterised by producing longer conidia (10–12.5 × 2.5–3.5 μ m) and chlamydospores arranged in chains. However, further studies are needed to resolve its typification.

Nothophoma macrospora Valenzuela-Lopez *et al.*, Persoonia 36: 431. 2016.

Description: Crous et al. (2016b).

Material examined: **USA**, Arizona, Phoenix, from human respiratory secretion of a patient with pneumonia, 1 Apr. 2009, D.A. Sutton (**holotype** CBS H-22377, exholotype living cultures CBS 140674 = UTHSC DI16-276 = FMR 13767).

Notes: This species was recently proposed by Valenzuela-Lopez et al. (2016), which is phylogenetically related with *N. gossypiicola*, but differs morphologically from the latter species in pycnidial shape, conidia (up to 2 vs non-septate) and the absence of chlamydospores (see Crous et al. 2016b). Furthermore, here the sequence of *rpb2* is provided and differs in 13 bp from *N. gossypiicola*, and therefore *N. macrospora* is also phylogenetically distinct from *N. gossypiicola*.

Nothophoma quercina (Syd.) Q. Chen & L. Cai, Stud. Mycol. 82: 213. 2015.

Basionym: Cicinobolus quercinus Syd., Ann. Mycol. 13: 42. 1915.

Synonyms: Ampelomyces quercinus (Syd.) Rudakov, Mikol. Fitopatol. 13: 109. 1979.

Phoma fungicola Aveskamp et al., Stud. Mycol. 65: 26. 2010.

Description: Aveskamp et al. (2010).

Materials examined: **Ukraine**, Crimea, in the vicinity of Feodosiya, on *Microsphaera alphitoides* from *Quercus* sp., 1979, O.L. Rudakov living cultures CBS 633.92 = ATCC 36786, VKM MF-325 = FMR 14913. **USA**, from human superficial foot lesion, 2009, D.A. Sutton, living cultures UTHSC DI16-270 = FMR 13761.

Notes: This species was already accommodated by Chen *et al.* (2015) within *Nothophoma*, and is characterised by producing globose to suboblate, glabrous, solitary pycnidia and hyaline, aseptate conidia (see Aveskamp *et al.* 2010). In our study, one human clinical strain isolated in the USA clustered with the reference strain CBS 633.92 of *N. quercina*. Morphologically it resembles the latter strain, and only a few differences in bp were genetically noted. However, both strains form a well-supported clade and were identified as the same species.

Nothophoma variabilis Valenzuela-Lopez, Cano, Guarro & Stchigel, **sp. nov.** MycoBank MB819624. Fig. 18.

Etymology: From Latin *variabilis*, due to the variable shape of the conidia.

Description: Hyphae pale brown, septate, smooth- and thinwalled, 2.5–6 μ m wide. Conidiomata pycnidial, brown, confluent, superficial (OA), glabrous, subglobose, 150–350 × 130–270 μ m, with a single papillate ostiolar neck; pycnidial wall of *textura angularis*, 3–6-layered, 25–35 μ m thick, composed of brown to dark brown, flattened polygonal cells of

Fig. 18. Nothophoma variabilis (CBS 142457). A, B. Colony on OA (front and reverse). C, D. Colony on MEA (front and reverse). E. Pycnidia forming on OA. F. Pycnidium. G. Conidiogenous cells. H. Conidia. Scale bars: F = 100 μm. G, H = 10 μm.

5–20 µm diam. *Conidiogenous cells* phialidic, hyaline, smoothwalled, ampulliform, 6×5 µm. *Conidia* aseptate, hyaline, smooth- and thin-walled, ellipsoidal to cylindrical or irregularly shaped, $4-7 \times 3-3.5$ µm, guttulate. *Chlamydospores* absent.

Culture characteristics: Colonies on OA reaching 31 mm diam after 7 d at 25 ± 1 °C, flattened, greyish yellow (M. 4B4) to olive brown (M. 4F3); reverse olive brown (M. 4F3). Colonies on MEA reaching 36 mm after 7 d at 25 ± 1 °C, flattened, olive brown (M. 4F3) to greyish yellow (M. 4C5); reverse olive brown (M. 4F3) to brownish grey (M. 4F2). NaOH spot test negative. Crystals absent. Optimal temperature of growth and of sporulation 25 °C; minimum temperature of growth 5 °C; maximum temperature of growth 35 °C.

Material examined: **USA**, from human bronchial wash sample, 2009, D.A. Sutton (**holotype** CBS H-23034, ex-holotype living cultures CBS 142457 = UTHSC DI16-285 = FMR 13777).

Notes: This species was recovered from a clinical specimen of the respiratory tract, and it is closely related to *N. anigozanthi*. Both species can be differentiated by the presence of a single pycnidial ostiole (*vs.* 1–4 in *N. anigozanthi*), absence of a neck and production of wider conidia (3–3.5 µm vs. 1.5–2.5 µm) in *N. variabilis*. The NaOH spot test was negative, whereas it produces a dull green to vinaceous black pigmentation in *N. anigozanthi*.

Clade A21: Phoma

Phoma Sacc., Michelia 2: 4. 1880. emend. Q. Chen & L. Cai, Stud. Mycol. 82: 194. 2015.

Synonym: Atradidymella M.L. Davey & Currah, Amer. J. Bot. 96: 1283. 2009.

Type species: Phoma herbarum Westend.

Phoma herbarum Westend., Bull. Acad. Roy. Sci. Belgique, Cl. Sci. 19: 118. 1852. emend. Chen *et al.*, Stud. Mycol. 82: 195. 2015.

Synonyms: Atradidymella muscivora M.L. Davey & Currah, Amer. J. Bot. 96: 1283. 2009.

Phoma muscivora M.L. Davey & Currah, Amer. J. Bot. 96: 1283. 2009.

Phoma cruris-hominis Punith., Nova Hedwigia 31: 135. 1979.

Description: Chen et al. (2015).

Materials examined: **The Netherlands**, Emmeloord, from the stem of *Rosa multiflora* cv. Cathayensis, Apr. 1965, G.H. Boerema, living cultures CBS 615.75 = PD 73/665 = IMI 199779 = FMR 15340; Naaldwijk, from a stem base of *Nerium* sp., 1986, J. de Gruyter, living cultures CBS 502.91 = PD 82/276. **UK**, from a leg of woman, Apr. 1977, Y.M. Clayton, holotype of "*Phoma cruris-hominis*" IMI 213845, living cultures CBS 377.92 = IMI 213845. **USA**, from human urine catheter, 2006, D.A. Sutton, living cultures UTHSC DI16-204 = FMR 13694; from human bronchial wash sample, 2006, D.A. Sutton, living cultures UTHSC DI16-212 = FMR 13702; from human sputum sample, 2011, D.A. Sutton, living cultures UTHSC DI16-306 = FMR 13799; from human bronchial sample, 2011, D.A. Sutton, living cultures UTHSC DI16-307 = FMR 13800; from human nail, 2010, D.A. Sutton, living cultures UTHSC DI16-319 = FMR 13812.

Notes: In this study five strains from human clinical specimens were identified as *Phoma herbarum*, all of them corresponding in morphology and genetically with the reference strains CBS 377.92, CBS 502.91 and CBS 615.75. This species was already described as an opportunistic human pathogenic fungus by Punithalingam (1979), and this fact is confirmed in our study.

Clade A24: Xenodidymella

Xenodidymella Q Chen et al., Stud. Mycol. 82: 205. 2015.

Type species: Xenodidymella applanata (Niessl) Q. Chen & L. Cai.

Xenodidymella saxea (Aveskamp *et al.*) Valenzuela-Lopez, Crous, Cano, Guarro & Stchigel, **comb. nov.** MycoBank MB820831.

Basionym: Phoma saxea Aveskamp *et al.*, Stud. Mycol. 65: 23. 2010.

Description: Aveskamp et al. (2010).

Material examined: **Germany**, Oldenburg, from corroded Mediterranean marble, June 1992, J. Kuroczkin (**holotype** CBS H-20240, ex-holotype cultures CBS 419.92 = FMR 15347).

Notes: This species was introduced by Aveskamp *et al.* (2010) and placed together with "*Phoma humicola*" (currently *Xenodidymella humicola*). In our phylogenetic tree, this species was related to the *Xenodidymella* clade. Despite that this species could represent another genus based on its low phylogenetic support and morphology, more studies are needed to resolve its taxonomic placement in the *Didymellaceae*. Thus, a new combination is proposed for this species. Morphologically *X. saxea* is characterised by producing dimorphic conidia: I) aseptate, hyaline, smooth- and thin-walled, (sub-) globose, $(3-)3.5-5.5 \mu m$ diam, guttulate; and II) aseptate, hyaline, smooth- and thin-walled, $(3.5-)4.5-7(-7.5) \times 2.5-3.5 (-4) \mu m$.

Clade A25: Neodidymelliopsis

Neodidymelliopsis Q. Chen et al., Stud. Mycol. 82: 207. 2015.

Type species: Neodidymelliopsis cannabis (G. Winter) Q. Chen & L. Cai.

Neodidymelliopsis longicolla L.W. Hou *et al.*, Stud. Mycol. 87: 153. 2017.

Description: Chen et al. (2017).

Materials examined: **Israel**, En Avdat, Negev desert, from soil, Feb. 1996, A. van Iperen (**holotype** CBS H-23016, ex-holotype living culture CBS 382.96). **USA**, from human bronchial wash sample, 2011, D.A. Sutton, living cultures UTHSC DI16-322 = FMR 13815.

Notes: This species was recently proposed by Chen *et al.* (2017), and is characterised by producing globose to flask-shaped, glabrous or pycnidia with hyphal outgrowths. The most characteristic features include its elongated neck, the conidia that are initially hyaline and aseptate, but became pale-brown and septate with age. In our study, the strain UTHSC DI16-322 clustered with the ex-type strain of *N. longicolla.* However, no morphological comparison was possible because our strain remained sterile.

Clade A26: Neoascochyta

Neoascochyta Q. Chen& L. Cai, Stud. Mycol. 82: 198. 2015.

Type species: Neoascochyta exitialis (Morini) Q. Chen & L. Cai, Stud. Mycol. 82: 199. 2015.

Neoascochyta cylindrispora Valenzuela-Lopez, Cano, Guarro & Stchigel, **sp. nov.** MycoBank MB819691. Fig 19.

Etymology: From Latin *cylindricus*-, of cylindrical shape, and *-spora*, spore, due to the conidial morphology.

Description: Hyphae pale to dark brown, septate, smooth- and thin- to thick-walled, $4-6 \mu m$ wide. Conidiomata pycnidial, brown to dark brown, solitary or confluent, superficial on natural substrate (palm leaf), immersed in culture (OA), glabrous, subglobose, $150-300 \times 130-160 \mu m$, bearing a single ostiolar neck; pycnidial wall of *textura angularis*, composed of brown to dark brown, flattened polygonal cells of $4.5-11.5 \mu m$ diam, 2-4 layered, $15-60 \mu m$ thick,. Conidiogenous cells phialidic, hyaline, smooth-walled, ampulliform or globose, $5 \times 6 \mu m$ wide. Conidia 0-1-septate, hyaline, smooth- and thick-walled, mostly cylindrical or slightly allantoid, $11-11.5 \times 3.5-4 \mu m$, guttulate. Chlamydospores absent.

Culture characteristics: Colonies on OA reaching 30-34 mm diam after 7 d at 25 ± 1 °C, flattened, with an entire edge, dark green (M. 28F6); reverse dark green (M. 28F6) to greenish grey (M. 28F2). Colonies on MEA reaching 25-28 mm 7 d at 25 ± 1 °C, flattened, with an entire edge, white (M. 2A1) to olive grey (M. 2E2); reverse white (M. 2A1) to dark green (M. 27F3). NaOH spot test negative. Crystals absent. Optimal temperature for sporulation, 15 °C; optimal temperature of growth 25 °C; minimum temperature of growth 5 °C; maximum temperature of growth 30 °C.

Materials examined: USA, from human corneal secretion, 2013, D.A. Sutton (holotype CBS H-23033, ex-holotype cultures CBS 142456 = UTHSC DI16-359 = FMR 13852); from human eye secretion, 2012, D.A. Sutton, culture UTHSC DI16-352 = FMR 13845.

Notes: Neoascochyta cylindrispora is phylogenetically distinct from *N. desmazieri*. It differs from the latter also morphologically by its glabrous pycnidia (covered by hyphal outgrowths in *N. desmazieri*), its smaller conidiogenous cells (5–6 μ m wide vs. 7.5–11 μ m wide in *N. desmazieri*) and shorter conidia (11–11.5 μ m vs. 8.5–18 μ m in *N. desmazieri*).

Neoascochyta desmazieri (Cavara) Q. Chen & L. Cai, Stud. Mycol. 82: 198. 2015.

Basionym: Ascochyta desmazieri Cavara, Z. Pflanzenkrankh 3: 21. 1893 (as "desmazieresii").

Description: Chen et al. (2015).

Materials examined: **Germany**, Hohenlieth, from *Lolium perenne*, Apr. 1967, U.G. Schlösser (**neotype** HMAS 246690, ex-neotype living culture CBS 297.69). **USA**, from human respiratory tract, 2006, D.A. Sutton, living cultures UTHSC DI16-207 = FMR 13697; from unknow source of clinical sample, 2010, D.A. Sutton, living cultures UTHSC DI16-320 = FMR 13813; from human head superficial tissue sample, 2011, D.A. Sutton, living cultures UTHSC DI16-332 = FMR 13825; from human toe nail, 2011, D.A. Sutton, living cultures UTHSC DI16-341 = FMR 13834.

Notes: In this study four strains from human clinical specimens clustered with the ex-type strain of *N. desmazieri*, and those strains were morphologically and genetically identical with the type, only differing in location and substrate of isolation.

Neoascochyta tardicrescens Valenzuela-Lopez, Cano, Crous, Guarro & Stchigel, **sp. nov.**, MycoBank MB819693. Fig 20.

Fig. 19. Neoascochyta cylindrispora (CBS 142456). A, B. Colony on OA (front and reverse). C, D. Colony on MEA (front and reverse). E. Pycnidia forming on OA. F. Pycnidia. G. Conidiogenous cells. H. Conidia. Scale bars: F = 100 μm. G, H = 10 μm.

Etymology: From Latin *tarde-*, slowly, and *-crescens*, growing, in reference to the slow growing colonies.

Description: Hyphae pale to dark brown, septate, smooth- and thinto thick-walled, 4–6 µm wide. Conidiomata pycnidial, brown to dark brown, solitary, superficial and immersed (OA), glabrous or covered with hyphal outgrows, globose to subglobose, $100-120 \times 100-170$ µm, with a single papillate ostiolar neck; pycnidial wall of *textura angularis*, 2–4 layered, composed of brown to dark brown, flattened polygonal cells of 12.5–25 µm diam. Conidiogenous cells phialidic, hyaline, smooth-walled, ampulliform, 5–10.5 × 5–8.5 µm. Conidia 1-septate, hyaline, smooth- and thick-walled, cylindrical to allantoid, $10-13.5 \times$ 3-4 µm, guttulate. Chlamydospores absent.

Culture characteristics: Colonies on OA reaching 6 mm diam after 7 d at 25 ± 1 °C, flattened, undulate, dark green (M. 27F3); reverse olive brown (M. 4F3) to brownish grey (M. 4F2). Colonies on MEA reaching 7 mm diam after 7 d at 25 ± 1 °C, flattened, undulate, yellowhish grey (M. 2B2); reverse yellowish-brown (M. 5E8) to greenish grey (M. 28F2). NaOH spot test negative. Crystals absent. Optimal temperature for sporulation 15 °C; optimal temperature of growth 25 °C; minimum temperature of growth 30 °C.

Materials examined: **Norway**, Oslo, from hay, Apr. 1997, M. Torp (**holotype** CBS H-9005, ex-holotype living cultures CBS 689.97 = FMR 15352). **USA**, from human feet, 2010, D.A. Sutton, living cultures UTHSC DI16-291 = FMR 13783.

Notes: The strains CBS 689.97 and UTHSC DI16-291 grow and sporulate better at lower temperatures (around 15 °C) than at room temperature, and clearly differ morphologically from *N. argentina* in producing smaller conidiomata ($100-120 \times 100-170 \mu m vs.$ 210–390 × 140–270 im), in the presence of necks (absent *vs.* present), in the number of ostioles (1 *vs.* 1–3), and in their smaller conidiogenous cells (5–10.5 × 5–8.5 $\mu m vs.$ 7.5–14.5 × 6–13.5 μm). Nonetheless, these strains formed a sister clade to *N. argentina*.

Clade C: Cucurbitariaceae G. Winter, Rabenhorst's Kryptogamen-Flora, Pilze-Ascomyceten 1.2: 308. 1885.

Type genus: Cucurbitaria Gray, Nat. Arr. Brit. Pl. (London) 1: 519. 1821.

Clade C1: *Neocucurbitaria* Wanas., E.B.G. Jones & K.D. Hyde, Mycosphere 8: 408. 2017.

Type species: Neocucurbitaria unguis-hominis (Punith. & M.P. English) Wanas. et al.

Neocucurbitaria aquatica Valenzuela-Lopez, Crous, Stchigel, Guarro & Cano, **sp. nov.** MycoBank MB822114.

Etymology: The species name refers to the habitat from which the fungus was recovered (sea water).

Culture sterile. Neocucurbitaria aquatica differs from its phylogenetically closest species N. unguis-hominis, based on the

Fig. 20. Neoascochyta tardicrescens (CBS 689.97). A, B. Colony on OA (front and reverse). C, D. Colony on MEA (front and reverse). E. Pycnidia forming on OA. F. Pycnidia. G, H. Conidiogenous cells. I. Conidia. Scale bars: F = 100 µm. G-I = 10 µm.

alignment of the concatenated four loci deposited in TreeBASE (S21115): LSU position, 412 (C); ITS positions, 539 (C), 595 (A); *tub2* positions, 1121 (G), 1170 (G), 1257 (T); *rpb2* positions, 1351 (A), 1387 (T), 1439 (T), 1801 (C), and 1816 (C).

Culture characteristics: Colonies on OA reaching 21–24 mm diam after 7 d at 25 ± 1 °C, flattened, olive (M. 3F4); reverse olive (M. 3F4) to dark grey (M. 3F1). Colonies on MEA reaching 16–17 mm diam after 7 d at 25 ± 1 °C, flattened, yellowish grey (M. 3B2); reverse grey (M. 3B1). NaOH spot test negative. Crystals absent. Optimal temperature of growth 25 °C; minimum temperature of growth 5 °C; maximum temperature of growth 35 °C.

Material examined: **Montenegro**, Kotor bay, from sea water, Oct. 1973, M. Muntañola-Cvetkovic, (**holotype** CBS H-16102, ex-holotype living culture CBS 297.74 = FMR 14867).

Notes: Neocucurbitaria aquatica was previously identified as "Pyrenochaeta quercina" based on LSU and SSU loci sequencing (de Gruyter et al. 2010). However, in our phylogenetic analysis using four loci, *N. aquatica* was closely related to Neocucurbitaria unguis-hominis. As *N. aquatica* was recovered from sea water, and is phylogenetically unrelated to the ex-type strain of Neocucurbitaria quercina (CBS 115095), we propose it as a new species.

Neocucurbitaria cava (Schulzer) Valenzuela-Lopez, Crous, Stchigel, Guarro & Cano, comb. nov. MycoBank MB821491. Fig. 21.

Basionym: Phoma cava Schulzer, Verh. Zool.-bot. Ges. Wien 21:1248. 1871.

Synonyms: Aposphaeria cava (Schulzer) Sacc. & Schulzer, Syll. fung. (Abellini) 3: 174. 1884.

Coniothyrium cavum (Schulzer) Kuntze, Revis. gen. pl. (Leipzig) 3(2): 459. 1898.

Pleurophoma cava (Schulzer) Boerema *et al.*, Persoonia 16: 172. 1996.

Pyrenochaeta cava (Schulzer) Gruyter *et al.*, Mycologia 102: 1076. 2010.

Description from ex-epitype culture (CBS 257.68): Hyphae hyaline to brown, smooth- and thin-walled, septate, 2.5–3.5 µm wide. Conidiomata pycnidial, brown, solitary or confluent, semiimmersed or immersed (OA), glabrous, subglobose, $140-200 \times 100-140 \mu$ m, with one ostiolar neck; pycnidial wall of *textura angularis*, composed of brown, flattened polygonal cells of 2.5–5 µm diam. Conidiophores hyaline, smooth-walled, straight or sinuous to slightly curved, slightly tapering towards the apex, branched at the base, $10-22 \times 1.5-2.5 \mu$ m. Conidiogenous cells integrated to the conidiophore, phialidic, hyaline, smooth-walled, doliiform, with a more or less cylindrical collarette, up to 3 per conidiophore. Conidia aseptate, hyaline, smooth- and thin-walled, mostly cylindrical to slightly allantoid, 2.5–3.5 × 1–1.5 µm, guttulate.

Culture characteristics: Colonies on OA reaching 16 mm diam after 7 d at 25 ± 1 °C, flattened, olive (M. 3F4); reverse dark grey

Fig. 21. Neocucurbitaria cava (CBS 257.68). A, B. Colony on OA (front and reverse). C, D. Colony on MEA (front and reverse). E. Pycnidia forming on OA. F. Pycnidia. G. Conidiophores. H. Conidia. Scale bars: F = 100 µm. G, H = 10 µm.

(M. 3F1). Colonies on MEA reaching 14 mm after 7 d at 25 ± 1 °C, flattened, yellowish grey (M. 3B2); reverse olive brown (M. 4E4). NaOH spot test negative. Crystals absent. Optimal temperature of growth and sporulation 25 °C; minimum temperature of growth 35 °C; maximum temperature of growth 35 °C.

Materials examined: Germany, Kiel-Kitzeberg, from wheat field soil, 1965, W. Gams (epitype CBS H-20320, ex-epitype living cultures CBS 257.68 = IMI 331911 = FMR 15747). Italy, on branch of *Quercus cerris*, M. Farras, living cultures CBS 115953 = FMR 15333.

Notes: Pyrenochaeta cava was epitypified by de Gruyter *et al.* (2010). In our phylogenetic analysis this species clustered in *Neocucurbitaria*, a genus recently introduced by Wanasinghe *et al.* (2017b). Therefore, we propose the new combination *N. cava*.

Neocucurbitaria hakeae (Crous) Valenzuela-Lopez, Crous, Stchigel, Guarro & Cano, **comb. nov.** MycoBank MB821492. *Basionym: Pyrenochaeta hakeae* Crous, Persoonia 37: 353. 2016.

Description: Crous et al. (2016a).

Material examined: **Australia**, Western Australia, Denmark, Lights Beach, on leaves of *Hakea* sp., 19 Sep. 2015, P.W. Crous (**holotype** CBS H-22894, exholotype living cultures CBS 142109 = CPC 28920).

Notes: In our phylogenetic tree, this species forms a sister clade to *N. cava*. Therefore, we propose a new combination to accommodate this species in the genus *Neocucurbitaria*. Morphologically, *N. hakeae* resembles *N. unguis-hominis*, but the

former species is the only species of the genus that produces pale brown conidiophores.

Neocucurbitaria irregularis Valenzuela-Lopez, Cano, Guarro & Stchigel, **sp. nov.** MycoBank MB819769. Fig. 22.

Etymology: From Latin *irregularis*, irregular, referring to the shape of its conidia.

Description: Hyphae brown, smooth- and thin-walled, septate, 2–5 μ m wide. Conidiomata pycnidial, brown, solitary or confluent, superficial (OA), glabrous, subglobose to ovoid, 75–130 × 65–120 μ m, with 3–4 papillate ostiolar necks, pycnidial wall of *textura angularis*, 2–5 layered, 10–35 μ m thick, composed of brown, flattened polygonal cells of 3–12 μ m diam. Conidiogenous cells phialidic, hyaline, smooth-walled, doliiform, 2.5 × 3.5 μ m. Conidia aseptate, hyaline, smooth- and thin-walled, ellipsoidal to cylindrical, 2.5–4 × 1.5–2. μ m, guttulate.

Culture characteristics: Colonies on OA reaching 17–18 mm diam after 7 d at 25 ± 1 °C, flattened, olive brown (M. 4F6); reverse brownish grey (M. 4F2). Colonies on MEA reaching 11 mm after 7 d at 25 ± 1 °C, flattened, pale yellow (M. 4A3); reverse pale yellow (M. 4A4) to greyish yellow (M. 4C6). NaOH spot test negative. Crystals absent. Optimal temperature of growth and sporulation 25 °C; minimum temperature of growth 35 °C.

Material examined: **USA**, from human arm injury, 2000, D.A. Sutton (**holotype** CBS H-23029, ex-holotype living cultures CBS 142791 = UTHSC DI16-229 = FMR 13719).

Fig. 22. Neocucurbitaria irregularis (CBS 142791). A, B. Colony on OA (front and reverse). C, D. Colony on MEA (front and reverse). E. Pycnidia forming on OA. F. Pycnidia. G. Conidiogenous cells. H. Conidia. Scale bars: F = 50 μm. G, H = 10 μm.

Notes: Neocucurbitaria irregularis is proposed to accommodate a clinical isolate previously identified as "*Pyrenochaeta unguishominis*" (Valenzuela-Lopez *et al.* 2016). This isolate forms a basal clade together with *N. keratinophila* and *N. unguishominis*. However, it is morphologically well-differentiated from the latter two species, by having small, simple conidiogenous cells instead of filiform conidiophores.

Neocucurbitaria keratinophila (Verkley *et al.*) Valenzuela-Lopez, Stchigel, Guarro & Cano, **comb. nov.** MycoBank MB821494.

Basionym: Pyrenochaeta keratinophila Verkley et al., Revta Iberoamer. Micol. 27: 24. 2010.

Description: Verkley et al. (2010).

Material examined: **Spain**, Alicante, from human corneal scrapings (keratitis), Mar. 2007, A. Rodriguez & J. Guarro (**holotype** CBS H-20122, ex-holotype living CBS 121759 = FMR 9444).

Notes: This species described by Verkley *et al.* (2010) was isolated from a human corneal specimen with a case of keratitis. Morphologically it resembles *Pyrenochaeta*. However, in our phylogenetic analyses this species clustered close to *N. irregularis*. Therefore, we propose a new combination for this fungus in *Neocucurbitaria*.

Neocucurbitaria quercina (Kabát & Bubák) Wanas. et al., Mycosphere 8: 412. 2017. Fig. 23.

Basionym: Pyrenochaeta quercina Kabát & Bubák, Hedwigia 52: 342. 1912.

Description taken from Bubák & Kabát (1912), which is based on the holotype: *Conidiomata* pycnidial dark brown, solitary or confluent, setose, globose, 150–220 µm diam. *Setae* dark brown, tapered towards the apex, erect or decumbent, smoothand thick-walled, up to 65 µm long, 5 µm broad at the base. *Conidiophores* cylindrical, tapered toward the apex, erect or slightly curved, hyaline, 25 × 3–3.5 µm. *Conidia* aseptate, hyaline, bacilliform, 2–3 × 1.5 µm.

Description from the ex-neotype culture (CBS 115095): Hyphae brown, smooth- and thin-walled, septate, 2.5-5 µm wide. Conidiomata pycnidial brown, solitary or confluent, superficial (OA), mostly glabrous or covered with somewhat shortest setae, alobose. 70-90 μ m diam. 100-230 \times 90-130 μ m when ovoid. with 1-2 papillate ostiolar necks; pycnidial wall of textura angularis, composed of brown, flattened polygonal cells of 3-12 µm diam; setae brown, erect, rounded at the top, septate, thin-walled, 7-10 × 2.5-3.5 µm,. Conidiophores hyaline, smooth-walled, straight or sinuous to slightly curved, slightly tapering towards the apex, branched at the base, 6.5-14 × 2-3 µm. Conidiogenous cells terminal and lateral on the conidiophore, phialidic, hyaline, smooth-walled, ampulliform when terminal, with a more or less cylindrical collarette, up to 4 per conidiophore. Conidia aseptate, hyaline, smooth- and thinwalled, ovoid to cylindrical, $1.5-3 \times 1.2-1.5 \mu m$, guttulate.

Culture characteristics: Colonies on OA reaching 21 mm diam after 7 d at 25 ± 1 °C, flattened, olive (M. 3F4); reverse dark grey (M. 3F1). Colonies on MEA reaching 12 mm after 7 d at 25 ± 1 °C,

Fig. 23. Neocucurbitaria quercina (CBS 115095). A, B. Colony on OA (front and reverse). C, D. Colony on MEA (front and reverse). E. Pycnidia forming on OA. F. Pycnidium. G. Setae. H. Conidiophores. I. Conidia. Scale bars: F = 50 µm. G-I = 10 µm.

flattened, olive (M. 3F4) to pale grey (M. 3B1); reverse dark grey (M. 3F1). NaOH spot test negative. Crystals absent. Optimal temperature of growth and sporulation 25 °C; minimum temperature of growth 15 °C; maximum temperature of growth 35 °C.

Material examined: **Italy**, from *Quercus robur*, Nov 1971, S. Mutto Accordi (**neotype designated here** CBS H-23205, MBT377969, ex-neotype living cultures CBS 115095 = FMR 14868).

Notes: Bubák & Kabát (1912) described Pyrenochaeta quercina from Quercus cerris leaves, in Bukovina forest, Moldavia. The holotype is apparently missing. We studied the isolate CBS 115095, identified previously as *P. quercina* by de Gruyter *et al.* (2010), which has been recovered from Quercus robur in Italy. Recently, Wanasinghe *et al.* (2017b) transferred *P. quercina* to *Neocucurbitaria*. In our phylogenetic tree this strain clustered with *N. cava* and *N. hakeae*, confirming the right placement into *Neocucurbitaria*. Because the strain CBS 115095 was isolated from a related host to that of the basionym (both are different species of oaks), we designated this strain as the neotype for *Pyrenochaeta quercina*, in order to stabilize the taxonomy of the species.

Neocucurbitaria unguis-hominis (Punith. & M.P. English) Wanas. *et al.*, Mycosphere 8: 412. 2017. Fig. 24.

Basionym: Pyrenochaeta unguis-hominis Punith. & M.P. English, Trans. Br. mycol. Soc. 64: 539. 1975.

Description: Punithalingam & English (1975).

Materials examined: **The Netherlands**, Utrecht, from lung sample of *Agapornis* sp., C. Hoek, living cultures CBS 111112 = FMR 14866. **USA**, unknown substrate,

2006, D.A. Sutton, living cultures UTHSC DI16-213 = FMR 13703. **Wales**, Cardiff, from air sample, Apr. 1974, G.H. Boerema, living cultures CBS 112.79 = IMI 386095 = PD 74/1018 = FMR 15748.

Notes: Pyrenochaeta unguis-hominis was established by Punithalingam & English (1975) for a fungus recovered from a human toe-nail. Later, Wanasinghe *et al.* (2017b) considered this the type species of *Neocucurbitaria*. Interestingly, the three strains studied by us were able to grow and sporulate at 37 °C, being the only species of the genus that displays such abilities.

Clade C2: Paracucurbitaria

Paracucurbitaria Valenzuela-Lopez, Stchigel, Guarro & Cano, gen. nov. MycoBank MB821453.

Etymology: From Greek $\pi \alpha \rho \alpha$ -, beside, referring to the morphological similarity with the asexual morph of *Cucurbitaria*.

Conidiomata pycnidial, pale brown to brown, solitary or confluent, superficial or semi-immersed, pycnidial wall of *textura angularis*, 2–4 layered, glabrous or ornamented, subglobose to ovoid, ostiolate. *Conidiophores* if present, septate, hyaline, straight or sinuous to slightly curved, slightly tapering towards the apex. *Conidiogenous cells* integrated in the conidiophore, phialidic, hyaline, smooth-walled, ampulliform when terminal, with a more or less cylindrical collarette, several per conidiophore. *Conidia* aseptate, hyaline, smooth- and thin-walled, ellipsoidal to cylindrical, guttulate.

Type species: Paracucurbitaria corni (Bat. & A.F. Vital) Valenzuela-Lopez, Stchigel, Guarro & Cano.

Fig. 24. Neocucurbitaria unguis-hominis (CBS 112.79). A, B. Colony on OA (front and reverse). C, D. Colony on MEA (front and reverse). E. Pycnidia forming on OA. F. Pycnidia. G, H. Conidiophores. I. Conidia. Scale bars: F = 50 µm. G-I = 10 µm.

Paracucurbitaria corni (Bat. & A.F. Vital) Valenzuela-Lopez, Stchigel, Guarro & Cano, **comb. nov.** MycoBank MB821454. Fig. 25.

Basionym: Plenodomus corni Bat. & A.F. Vital, Anais Soc. Biol. Pernambuco 15: 420. 1957.

Synonyms: Phoma riggenbachii Boerema & J.D. Janse, Eur. J. For. Path. 11: 428. 1981.

Pyrenochaeta corni (Bat. & A.F. Vital) Boerema, Loer. & Hamers, Persoonia 16: 158. 1996.

Description from reference strain (CBS 248.79): Hyphae hyaline to pale brown, smooth- and thin-walled, septate, 2.5-4 µm wide. Conidiomata pycnidial, pale brown to brown, solitary or confluent, superficial or semi-immersed (OA), alabrous, alobose to subglobose, 110-210 × 110-190 µm diam, with 2-5 ostiolar necks; pycnidial wall of textura angularis, initially pseudoparenchymatous, scleroplectenchymatous with the age (mainly on MEA), 3–4 layered, 15–30 µm thick, composed of brown to dark brown, flattened polygonal cells of 3-6 µm diam. Conidiophores branched at the base, septate, hyaline, straight or sinuous to slightly curved, slightly tapering towards the apex, 6.5-18 µm long. Conidiogenous cells integrated in the conidiophore, phialidic, hyaline, smooth-walled, doliiform or ampulliform, 3.5-7.5 × 1.3-3.5 µm. Conidia aseptate, hyaline, smooth- and thin-walled, mostly cylindrical or rarely ovoid. 1.8-4 × 1.2-1.6 µm, guttulate.

Culture characteristics: Colonies on OA reaching 14 mm diam after 7 d at 25 ± 1 °C, flattened, olive (M. 2E6); reverse olive (M.

2E6) to dark grey (M. 2F1). Colonies on MEA reaching 10 mm after 7 d at 25 ± 1 °C, flattened, olive brown (M. 4D6) to dark grey (M. 4F1); reverse olive brown (M. 4D6) to dark grey (M. 4F1). NaOH spot test negative. Crystals absent. Optimal temperature of growth and sporulation 25 °C; minimum temperature of growth 30 °C.

Material examined **The Netherlands**, Scheerwolde, from *Fraxinus excelsior* with bacterial canker (also from *Prays fraxinella*), 1978, deposited by G. H. Boerema, living cultures CBS 248.79 = PD 78/1092 = FMR 16593.

Notes: Plenodomus corni was erected by Batista & Vital (1957) as a new species on branches of Cornus sanguinea from Hungary, and it was characterised by producing brown to black, solitary or clustered, mostly immersed, glabrous, globose to subglobose, pycnidial conidiomata of 115-135 µm diam, with a pseudoparenchymatous wall 12.5-20 µm thick, composed of polygonal to subglobose cells of 2.5-4 µm diam, with phialidic, hyaline, filiform or flask-shaped conidiogenous cells, $3.5-6 \times 1-2 \mu m$, and hyaline, bacilliform, $1.5-3 \times 1 \mu m$ conidia. Later, Janse (1981) isolated a similar fungus from Fraxinus excelsior with a bacterial canker, and also from dead, discoloured tissue surrounding galleries and holes of Prays fraxinella (ash bud moth). This fungus (living culture CBS 248.79) was considered by Boerema et al. (1981) as the same taxon as Plenodomus corni. However, a new name was necessary to transfer Plenodomus corni to the genus Phoma because the species name was occupied (Phoma corni Fuckel ex Sacc.). The strain CBS 248.79 was characterised by the production of

Fig. 25. Paracucurbitaria corni (CBS 248.79). A, B. Colony on OA (front and reverse). C, D. Colony on MEA (front and reverse). E. Pycnidia forming on OA. F. Pycnidium G. Conidiophores. H. Conidia. Scale bars: F = 50 μm. G, H = 10 μm.

pycnidial conidiomata with a scleroplectenchymatous wall, variable in size and in shape, 100–200 μ m diam, and of aseptate conidia (measuring 2.1–2.6 × 0.8–1.2 μ m), produced on elongated conidiogenous cells. However, CBS 248.79 shows some morphological variation depending of the culture media employed: on MEA it shows a scleroplectenchymatous wall as given in the original description by Janse, but on OA it resembles the description given by Batista & Vital (1957), but it does not produce setose pycnidia as mentioned by Boerema *et al.* (1996). The strain CBS 248.79 forms a distinct monophyletic clade within the *Cucurbitariaceae*. Therefore, we propose the new combination, *Paracucurbitaria corni*.

Paracucurbitaria italica Valenzuela-Lopez, Crous, Stchigel, Guarro & Cano, **sp. nov.** MycoBank MB822116. Fig. 26.

Etymology: The name of the species refers to the country of origin of the fungus, Italy.

Description: Hyphae hyaline to pale brown, smooth- and thinwalled, septate, 2.5–4 μ m wide. Conidiomata pycnidial, brown, solitary or confluent, superficial or semi-immersed (OA), covered by hyphal outgrowths, subglobose to ovoid, 190–240 × 170–190 μ m diam, with 1–2 ostiolar necks; pycnidial wall of *textura angularis*, 2–4 layered, 10–15 μ m thick, composed of brown to dark brown, flattened polygonal cells of 5–13 μ m diam. Conidiophores septate, hyaline, straight or sinuous to slightly curved, slightly tapering towards the apex, 15–20 µm long. *Conidiogenous cells* phialidic, hyaline, smoothwalled, filiform or flask-shaped, 4–9 × 2–3.5 µm. *Conidia* aseptate, hyaline, smooth- and thin-walled, ellipsoidal to cylindrical, $2.5-3 \times 1-1.5$ µm, guttulate.

Culture characteristics: Colonies on OA reaching 13 mm diam after 7 d at 25 ± 1 °C, flattened, olive (M. 2E6); reverse olive (M. 2E6) to dark grey (M. 2F1). Colonies on MEA reaching 11 mm after 7 d at 25 ± 1 °C, flattened, white (M. 2A1); reverse white (M. 2A1). NaOH spot test negative. Crystals absent. Optimal temperature of growth and sporulation 25 °C; minimum temperature of growth 5 °C; maximum temperature of growth 30 °C.

Material examined: Italy, Rende, from Olea europaea leaves, 26 Feb. 1992, C. Candiano (holotype CBS H-16104, ex-holotype living cultures CBS 234.92 = FMR 14869).

Notes: The strain CBS 234.92 was previously identified as *"Pyrenochaeta corni"* by de Gruyter *et al.* (2010). However, this strain is phylogenetically distinct from its closest relative, *Paracucurbitaria corni*, and differs morphologically by the production of ornamented conidiomata (covered with hyphal outgrowths *vs.* glabrous). Consequently, we propose CBS 234.92 as the ex-type strain of *Paracucurbitaria italica* sp. nov.

Clade C3: Allocucurbitaria

Allocucurbitaria Valenzuela-Lopez, Stchigel, Guarro & Cano, gen. nov. MycoBank MB821455.

Fig. 26. Paracucurbitaria italica (CBS 234.92). A, B. Colony on OA (front and reverse). C, D. Colony on MEA (front and reverse). E. Pycnidia forming on OA. F. Pycnidia. G. Conidiophores. H. Conidia. Scale bars: F = 50 μm. G, H = 10 μm.

Etymology: From Greek àλλo-, different, due to is related but phylogenetically and morphologically different to the genus *Cucurbitaria*.

Conidiomata pycnidial, brown, solitary or confluent, superficial, pycnidial wall of *textura angularis*, glabrous, subglobose to ovoid, ostiolate. *Conidiogenous cells* phialidic, hyaline, smooth-walled, ampulliform. *Conidia* aseptate, hyaline, smooth- and thin-walled, cylindrical to allantoid, guttulate.

Type species: Allocucurbitaria botulispora Valenzuela-Lopez, Stchigel, Guarro & Cano.

Allocucurbitaria botulispora Valenzuela-Lopez, Stchigel, Guarro & Cano, **sp. nov.** MycoBank MB819770. Fig. 27.

Etymology: From Latin *botulus*-, sausage, and *-spora*, spores, due to the shape of the conidia.

Description: Hyphae pale brown, smooth- and thin-walled, septate, 1.5–2.5 μ m wide. Conidiomata pycnidial, brown, confluent, superficial (OA), glabrous, subglobose to ovoid, 60–160 × 60–120 μ m diam, with 1–2 papillate ostiolar necks; pycnidial wall of *textura angularis*, 2–4 layered, 10–30 μ m thick, composed of pale brown to brown, flattened polygonal cells of 3–10 μ m diam. Conidiogenous cells phialidic, hyaline, smooth-walled, ampulliform, 5–8 × 2–2.5 μ m. Conidia aseptate, hyaline, smooth- and thin-walled, cylindrical to allantoid, 3–5 × 1–1.5 μ m, guttulate.

Culture characteristics: Colonies on OA reaching 26–29 mm diam after 7 d at 25 ± 1 °C, flattened, greyish yellow (M. 4C6); reverse olive brown (M. 4D5). Colonies on MEA reaching 22 mm after 7 d at 25 ± 1 °C, slightly floccose, yellowish white (M. 4A2); reverse pale orange (M. 5A3) to deep orange (M. 5A8). NaOH spot test negative. Crystals absent. Optimal temperature of growth and sporulation 25 °C; minimum temperature of growth 15 °C; maximum temperature of growth 37 °C.

Material examined: **USA**, from human scab on leg, 2009, D.A. Sutton (**holotype** CBS H-23028, ex-holotype living cultures CBS 142452 = UTHSC DI16-273 = FMR 13764).

Notes: The strain CBS 142452 (= UTHSC DI16-273) was originally assigned to *Pyrenochaeta* (Valenzuela-Lopez *et al.* 2016). Morphologically, this strain displays a morphology more similar to phoma-like taxa (with glabrous pycnidia) than to species of *Pyrenochaeta* (because of its setose conidiomata). In our phylogenetic analysis, this fungus was placed in an uncertain taxonomic position within *Cucurbitariaceae*. Therefore, we proposed to accommodate CBS 142452 as a new species of the new genus *Allocucurbitaria*.

Clade D: *Pseudopyrenochaetaceae* Valenzuela-Lopez, Crous, Stchigel, Guarro & Cano, fam. nov. MycoBank MB820426.

Etymology: From Latin *pseudo-*, resembling but not equalling, because the morphological similarity to *Pyrenochaeta*.

Fig. 27. Allocucurbitaria botulispora (CBS 142452). A, B. Colony on OA (front and reverse). C, D. Colony on MEA (front and reverse). E. Pycnidia forming on OA. F. Pycnidium. G. Conidiophores. H. Conidia. Scale bars: F = 50 μm. G, H = 10 μm.

Conidiomata pycnidial, brown to dark brown, solitary, setose, globose to subglobose, papillate, ostiolate. *Conidiophores* simple, filiform, septate. *Conidiogenous cells* phialidic, intercalary, disposed along the conidiophores as short side projections. *Conidia* aseptate, hyaline, smooth- and thin-walled, cylindrical to allantoid.

Type genus: Pseudopyrenochaeta Valenzuela-Lopez, Crous, Stchigel, Guarro & Cano.

Pseudopyrenochaeta Valenzuela-Lopez, Crous, Stchigel, Guarro & Cano, gen. nov. MycoBank MB820427.

Etymology: The name refers to the morphological similarity with the genus *Pyrenochaeta*.

Conidiomata pycnidial, brown to dark brown, solitary, setose, globose to subglobose, with a papillate ostiolar neck. *Co-nidiophores* hyaline, simple, filiform, septate. *Conidiogenous cells* phialidic, hyaline, intercalary along the conidiophore, arising as very short lateral projections immediately below the transverse septa. *Conidia* aseptate, hyaline, smooth- and thin-walled, cylindrical to allantoid.

Type species: Pseudopyrenochaeta lycopersici (R.W. Schneid. & Gerlach) Valenzuela-Lopez, Crous, Stchigel, Guarro & Cano.

Pseudopyrenochaeta lycopersici (R.W. Schneid. & Gerlach) Valenzuela-Lopez, Crous, Stchigel, Guarro & Cano, **comb. nov.** MycoBank MB820431.

Basionym: Pyrenochaeta lycopersici R.W. Schneid. & Gerlach, Phytopath. Z. 56: 121. 1966.

Description: Schneider & Gerlach (1966).

Material examined: **Germany**, Berlin, from *Lycopersicon esculentum* root, Nov. 1971, R. Schneider & G.H. Boerema (**isotype** CBS H-17628, ex-isotype culture CBS 306.65 = FMR 15746 = BBA 9911 = DSM 62931).

Notes: In previous studies, the ex-isotype strain of *Pyrenochaeta lycopersici* (CBS 306.65) was phylogenetically located in the *Cucurbitariaceae* (de Gruyter *et al.* 2010, Wanasinghe *et al.* 2017b). However, de Gruyter *et al.* (2013) placed it as *incertae sedis*. According to our results, *P. lycopersici* falls phylogenetically outside the family *Cucurbitariaceae* and represents a new genus, *Pseudopyrenochaeta*, in the new family, *Pseudopyrenochaetaceae*.

Pseudopyrenochaeta terrestris Valenzuela-Lopez, Crous, Cano, Guarro & Stchigel, **sp. nov.** MycoBank MB822117.

Etymology: The species name refers to soil, the substrate from which the fungus was recovered.

Culture sterile. *Pseudopyrenochaeta terrestris* differs from its closest phylogenetic species, *P. lycopersici*, based on the alignment of the concatenated four loci deposited in TreeBASE (S21115), by six bp of LSU, 20 bp of ITS, 16 bp of *tub2*, and 47 bp of *rpb2*.

Culture characteristics: Colonies on OA reaching 22 mm diam after 7 d at 25 ± 1 °C, flattened, olive grey (M. 3E3); reverse olive grey (M. 3E3) to dark grey (M. 3F1). Colonies on MEA reaching 11 mm after 7 d at 25 ± 1 °C, slightly flattened, white (M. 3A1); reverse yellowish grey (M. 3C2). NaOH spot test negative. Crystals absent.

Fig. 28. Neopyrenochaeta acicola (CBS 812.95). A, B. Colony on OA (front and reverse). C, D. Colony on MEA (front and reverse). E. Pycnidia forming on OA. F. Pycnidium. G, H. Conidiogenous cells. I. Conidia. Scale bars: F = 50 μm. G–I = 10 μm.

Material examined: **The Netherlands**, Naaldwijk, from greenhouse soil, Feb. 1972, L.H. Kaastra-Höweler (**holotype** FMR H-15327, ex-holotype living cultures CBS 282.72 = FMR 15327).

Notes: The strain CBS 282.72, deposited as *"Pyrenochaeta lycopersici"*, clustered with the ex-type strain of *Pseudopyr-enochaeta lycopersici*. However, both strains differ significantly in all nucleotide sequences of the phylogenetic markers used in the present study. Therefore, strain CBS 282.72 is proposed here as the new species *Pseudopyrenochaeta terrestris*.

Clade E: *Neopyrenochaetaceae* Valenzuela-Lopez, Crous, Cano, Guarro & Stchigel, fam. nov. MycoBank MB820416.

Etymology: Relating to the distinct phenotypic and genetic relationship to the genus *Pyrenochaeta* and its relatives.

Conidiomata pycnidial, pale brown to brown, solitary, pycnidial wall of *textura angularis*, setose, ovoid to globose, with a non-papillate or papillate ostiolar neck. *Conidiogenous cells* phialidic, ampulliform or lageniform. *Conidia* aseptate, hyaline, smooth- and thin-walled, ovoid to subcylindrical.

Type genus: Neopyrenochaeta Valenzuela-Lopez, Crous, Stchigel, Guarro & Cano.

Neopyrenochaeta Valenzuela-Lopez, Crous, Stchigel, Guarro & Cano, gen. nov. MycoBank MB820313.

Etymology: Referring to its morphological similarity to the genus *Pyrenochaeta*.

Conidiomata pycnidial, pale brown to brown, solitary, pycnidial wall of *textura angularis*, setose, ovoid to globose, ostiolate. Conidiogenous cells phialidic, ampulliform or lageniform. Conidia aseptate, hyaline, smooth- and thin-walled, ovoid to subcylindrical.

Type species: Neopyrenochaeta acicola (Moug. & Lév.) Valenzuela-Lopez, Crous, Stchigel, Guarro & Cano.

Neopyrenochaeta acicola (Moug. & Lév.) Valenzuela-Lopez, Crous, Stchigel, Guarro & Cano, **comb. nov.** MycoBank MB820314. Fig. 28.

Basionym: Vermicularia acicola Moug. & Lév. apud Léveillé, Annls Sci. nat. (Bot.) III, 9:259. 1848 (as "Moug. Lév."; non Phoma acicola sensu Saccardo), Syll. Fung. 3:100. 1884 [as "(Lév.) Sacc."; = Sclerophoma pythiophila (Corda) Höhn.].

Synonym: Phoma leveillei var. leveillei Boerema & G.J. Bollen, Persoonia 8: 115. 1975.

Description and synonymy: Boerema et al. (2004).

Material examined: The Netherlands, from water pipe sample, 1995, Y. Driessen (neotype CBS H-20314, ex-neotype living cultures CBS 812.95 = FMR 14872).

Notes: Pyrenochaeta acicola was neotypified and relegated to the Cucurbitariaceae by de Gruyter et al. (2010). Although Neopyrenochaeta acicola morphologically resembles a Pyrenochaeta species, our phylogenetic analyses revealed that this taxon is distant from the type species of Pyrenochaeta, P. nobilis, and therefore we proposed the new genus Neopyrenochaeta for this and a few related species.

Fig. 29. Neopyrenochaeta fragariae (CBS 101634). A, B. Colony on OA (front and reverse). C, D. Colony on MEA (front and reverse). E. Pycnidia forming on OA. F. Pycnidium. G. Conidiogenous cells. H. Conidia. Scale bars: F = 100 μm. G, H = 10 μm.

Neopyrenochaeta fragariae Valenzuela-Lopez, Crous, Stchigel, Guarro & Cano, **sp. nov.** MycoBank MB820316. Fig. 29.

Etymology: Relating to the host from the fungus was isolated, *Fragaria* (strawberry).

Description: Hyphae pale brown, smooth- and thin-walled, septate. 2.5-3 µm wide. Conidiomata pycnidial, pale brown to brown, superficial globose, solitary, (OA), ovoid to 170-220 × 160-210 µm, covered with brown to dark brown, septate, erect, smooth- and thick-walled setae tapering towards the apex, 110-120 × 2.5-5.5 µm, mainly disposed around the ostiole, with a single papillate ostiolar neck; pycnidial wall of textura angularis, 2-5 layered, 20-60 µm thick, composed of brown, flattened polygonal cells of 5-15 µm diam. Conidiogenous cells phialidic, hyaline, smooth-walled, ampulliform, 4.5-7 × 3.5-4 µm. Conidia aseptate, hyaline, smooth- and thin-walled, ovoid to ellipsoidal, 3.5-5 × 2-3 µm, guttulate. Chlamydospores absent.

Culture characteristics: Colonies on OA reaching 14 mm diam after 7 d at 25 ± 1 °C, flattened, olive brown (M. 4E8); reverse olive brown (M. 4F2). Colonies on MEA reaching 11 mm after 7 d at 25 ± 1 °C, flattened, yellowish-brown (M. 5F4); reverse yellowish brown (M. 5E4). NaOH spot test negative. Crystals absent. Optimal temperature of growth and sporulation 25 °C; minimum temperature of growth 5 °C; maximum temperature of growth 30 °C.

Material examined: **The Netherlands**, Arnhem, from *Fragaria* sp., 1976, M.M.J. Dorenbosch (**holotype** CBS H-23206, ex-holotype living cultures CBS 101634 = PD 76/416 = FMR 14871).

Notes: The strain CBS 101634 was previously named *Pyrenochaeta acicola*. Although it is morphologically similar to the latter mentioned species (now in *Neopyrenochaeta*), these fungi differ in 23 and 11 nucleotides for *rpb2* and *tub2*, respectively. Therefore, a new species name is proposed for CBS 101634.

Neopyrenochaeta inflorescentiae (Crous *et al.*) Valenzuela-Lopez, Crous, Stchigel, Guarro & Cano, **comb. nov.** Myco-Bank MB820317.

Basionym: Pyrenochaeta inflorescentiae Crous et al., CBS Diversity Ser. (Utrecht) 7: 115. 2008.

Description: Marincowitz et al. (2008).

Material examined: **South Africa**, Western Cape Province, from *Protea neriifolia*, 6 Jun. 2000, S. Marincowitz (**holotype** PREM 58657, ex-holotype living cultures CBS 119222 = CPC 13163 = FMR 15334).

Notes: In our phylogenetic analysis, the ex-type strain of *Pyrenochaeta inflorescentiae* (CBS 119222) clustered with *N. acicola* and *N. fragariae* in a terminal clade distant from the type species of the genus *Pyrenochaeta*, *P. nobilis*, and outside the family *Cucurbitariaceae*, where that fungus was previously placed. For that reason, we accommodate *P. inflorescentiae* in the new genus *Neopyrenochaeta* (*Neopyrenochaetaceae*).

WESTERDI FUNGALB DIVERSI'

Fig. 30. Pyrenochaetopsis botulispora (CBS 142458). A, B. Colony on OA (front and reverse). C, D. Colony on MEA (front and reverse). E. Pycnidia forming on OA. F. Pycnidia. G. Conidiogenous cells. H. Conidia. Scale bars: F = 100 µm. G, H = 10 µm.

Neopyrenochaeta telephoni (Rohit Sharma *et al.*) Valenzuela-Lopez, Crous, Stchigel, Guarro & Cano, **comb. nov.** MycoBank MB820318.

Basionym: Pyrenochaeta telephoni Rohit Sharma et al., Persoonia 35: 321. 2015.

Description: Crous et al. (2015b).

Material examined: India, Maharashtra, Pune, from screen of mobile phone, 2013, R. Kurli & P. Rahi (holotype MCC H1001, ex-holotype living cultures MCC 1159 = CBS 119222 = FMR 15754).

Notes: Recently, Sharma *et al.* (in Crous *et al.* 2015b) proposed the new species *Pyrenochaeta telephoni*, recovered from a mobile phone. Morphologically, it resembles other species of *Pyrenochaeta*; however, in our phylogenetic analysis this fungus forms a basal terminal clade in *Neopyrenochaeta*, which is distant from *Cucurbitariaceae s. str.*

Clade F: *Pyrenochaetopsidaceae* Valenzuela-Lopez, Crous, Cano, Guarro & Stchigel, fam. nov. MycoBank MB820308.

Conidiomata pycnidial, pale brown to brown, solitary or confluent; pycnidial wall of *textura angularis*, glabrous or setose, subglobose to ovoid, with a non-papillate or papillate ostiolar neck. *Conidiogenous cells* phialidic, hyaline, discrete or integrated in septate, acropleurogenous conidiophores. *Conidia* aseptate, hyaline, smooth- and thin-walled, ovoid, cylindrical to allantoid, guttulate.

Type genus: Pyrenochaetopsis Gruyter, Aveskamp & Verkley.

Clade F1: Pyrenochaetopsis

Pyrenochaetopsis Gruyter, Aveskamp & Verkley, Mycologia 102: 1076. 2010.

Conidiomata pycnidial, honey to citrine or olivaceous to olivaceous black, solitary to confluent, superficial or submerged, with a non-papillate or papillate ostiolar neck; pycnidial wall pseudoparenchymatous, setose, globose to subglobose. *Conidiogenous cells* phialidic, hyaline, discrete and integrated in septate, acropleurogenous conidiophores. *Conidia* aseptate, cylindrical to allantoid, guttulate (de Gruyter *et al.* 2010).

Type species: Pyrenochaetopsis leptospora (Sacc. & Briard) Gruyter *et al.*

Pyrenochaetopsis americana Valenzuela-Lopez, Cano, Guarro & Stchigel, **sp. nov.** MycoBank MB822115.

Etymology: The species name denotes the geographic area where the fungus is from.

Culture sterile. *Pyrenochaetopsis americana* differs from its closest phylogenetic species, *Pyrenochaetopsis uberiformis*, in five nucleotides for ITS, 19 for *tub2* and 34 for *rpb2*, based on alignment of the concatenated four loci deposited in TreeBASE (S21115).

Culture characteristics: Colonies on OA reaching 30 mm diam after 7 d at 25 ± 1 °C, flattened, dark olive (M. 3F3); reverse olive

Fig. 31. Pyrenochaetopsis confluens (CBS 142459). A, B. Colony on OA (front and reverse). C, D. Colony on MEA (front and reverse). E. Pycnidia forming on OA. F. Pycnidia. G. Conidiogenous cells. H. Conidia. Scale bars: F = 50 µm. G, H = 10 µm.

grey (M. 3D2). Colonies on MEA reaching 19 mm diam after 7 d at 25 ± 1 °C, flattened, olive grey (M. 3D2) to white (M. 3A1); reverse white (M. 3A1). NaOH spot test negative. Crystals absent.

Material examined: **USA**, substrate unknown, 2007, D.A. Sutton (**holotype** FMR H-13715, ex-holotype living cultures UTHSC DI16-225 = FMR 13715).

Notes: The strain UTHSC DI16-225, which remained sterile in all culture media tested in this study, forms an unsupported sister clade with *P. uberiformis*, from which it is phylogenetically distant. Therefore, UTHSC DI16-225 is proposed here as a new species different from *P. uberiformis*.

Pyrenochaetopsis botulispora Valenzuela-Lopez, Cano, Guarro & Stchigel, **sp. nov.** MycoBank MB819764. Fig. 30.

Etymology: From Latin *botulus*-, sausage, and *-spora*, spore, relating to the morphology of the conidia.

Description: Hyphae brown, smooth- and thin-walled, septate, 2–7 µm wide. Conidiomata pycnidial, brown, solitary or confluent, superficial (OA), glabrous, subglobose or globose, $140-190 \times 130-160$ µm, with a single papillate ostiolar neck; pycnidial wall of *textura angularis*, 2–3 layered, 15–35 µm thick, composed of brown, flattened polygonal cells of 5–8 µm diam. Conidiogenous cells phialidic, hyaline, smooth-walled, sub-globose, ca. 4 × 5 µm. Conidia aseptate, hyaline, smooth- and thin-walled, cylindrical, 4.5–6 × 2–2.5 µm, guttulate.

Culture characteristics: Colonies on OA reaching 25–30 mm diam after 7 d at 25 ± 1 °C, flattened, with abundant production of pycnidia, yellowish brown (M. 5E8); reverse yellowish-brown (M. 5F6). Colonies on MEA reaching 30 mm diam after 7 d at 25 ± 1 °C, flattened, orange grey (M. 5B2) to brownish orange (M. 5C5); reverse yellowish brown (M. 5E7) to greyish orange (M. 5B5). NaOH spot test negative. Crystals absent. Optimal temperature of growth and sporulation 25 °C; minimum temperature of growth 30 °C.

Material examined: **USA**, from human sputum sample, 2011, D.A. Sutton (**ho-lotype** CBS H-23035, ex-holotype living cultures CBS 142458 = UTHSC DI16-298 = FMR 13791); from human bronchial wash sample, 2010, D.A. Sutton, living culture UTHSC DI16-289 = FMR 13781; from human foot skin, 2011, D.A. Sutton, living culture UTHSC DI16-297 = FMR 13790.

Notes: Pyrenochaetopsis botulispora is proposed to accommodate three isolates from clinical specimens, which form a sister clade to *P. paucisetosa*, being well differentiated phylogenetically from their closest relatives. Morphologically, *P. botulispora* is characterised by producing glabrous pycnidia, which are setose in *P. paucisetosa*, and by its slightly longer conidia $(4.5-6 \times 2-2.5 \ \mu m \ vs. \ 3-4 \times 2-2.5 \ \mu m \ in \ P. paucisetosa)$.

Pyrenochaetopsis confluens Valenzuela-Lopez, Cano, Guarro & Stchigel, **sp. nov.** MycoBank MB819763. Fig. 31.

Etymology: From Latin *confluens*, confluent, due to the production of tightly aggregated conidiomata.

Fig. 32. Pyrenochaetopsis globosa (CBS 143034). A, B. Colony on OA (front and reverse). C, D. Colony on MEA (front and reverse). E. Pycnidia forming on OA. F. Pycnidium. G. Conidiogenous cells. H. Conidia. Scale bars: F = 50 µm. G, H = 10 µm.

Description: Hyphae pale brown, smooth- and thin-walled, septate, 2–5 µm wide. Conidiomata pycnidial, pale brown, translucent, aggregated, immersed (MEA), subglobose or globose, $80-140 \times 70-90 \mu$ m, with 1–2 papillate ostiolar necks, covered by brown setae around the ostiole; setae erect, smooth- and thick- walled, septate, $15-22.5(-35) \times 2.5-4.5 \mu$ m; pycnidial wall of *textura angularis*, 2–3 layered, 13–20 µm thick, composed of brown, flattened polygonal cells of 5–8 µm diam. Conidiogenous cells phialidic, hyaline, smooth-walled, subglobose, $4.5-7.5 \times 6.5-7.5 \mu$ m. Conidia aseptate, hyaline, aseptate, smooth- and thin-walled, guttulate, ovoid to cylindrical, $2-4 \times 2-2.5 \mu$ m.

Culture characteristics: Colonies on OA reaching 15 mm diam after 7 d at 25 ± 1 °C, flattened, white (M. 4A1) to olive brown (M. 4E4); reverse olive brown (M. 4F3). Colonies on MEA reaching 10 mm diam after 7 d at 25 ± 1 °C, flattened, white (M. 4A1) to brownish-grey (M. 4F2); reverse brownish-grey (M. 4F2). NaOH spot test negative. Crystals absent. Optimal temperature of growth and sporulation 25 °C; minimum temperature of growth 30 °C.

Material examined: **USA**, from human blood sample, 2011, D.A. Sutton (**holo-type** CBS H-23036, ex-holotype living cultures CBS 142459 = UTHSC DI16-303 = FMR = 13796).

Notes: The strain CBS 142459 forms a distinct clade phylogenetically distant from *P. decipiens* and *P. indica*. This new species grows slowly on all culture media tested and produces aggregated conidiomata. *Pyrenochaetopsis decipiens* (Marchal) Gruyter *et al.*, Mycologia 102: 1077. 2010.

Basionym: Pyrenochaeta decipiens Marchal, Bull. Soc. Roy. Bot. Belg. 30:139. 1891.

Synonym: Phoma terricola Boerema, Versl. Meded. plziektenk. Dienst Wageningen 163 (Jaarb. 1984): 38. 1985.

Material examined: **The Netherlands**, Hoofddorp, on cyst of *Globodera pallida*, May 1985, D. Hugo, No. 727 (**neotype** CBS H-20315, ex-neotype living cultures CBS 343.85 = IMI 386097 = FMR 14880).

Notes: In this study, newer genomic sequences data from the extype strain of *Pyrenochaetopsis decipiens* are provided. Unfortunately, we have not been able to induce this fungus to sporulate.

Pyrenochaetopsis globosa Valenzuela-Lopez, Cano, Guarro & Stchigel, **sp. nov.** MycoBank MB821496. Fig. 32.

Etymology: From Latin *globosus*, globose, due to the production of globose conidiomata.

Description: Hyphae hyaline to pale brown, smooth- and thinwalled, septate, 2–4 μ m wide. Conidiomata pycnidial, pale olivaceus-brown to brown, solitary or aggregated, semiimmersed or immersed, mainly globose (70–200 μ m diam), sometimes ovoid (150–220 × 140–190 μ m), glabrous or covered by hyphal outgrowths, with 1–2 papillate ostiolar necks; pycnidial wall of *textura angularis*, 3–5 layered, 25–35 μ m thick, composed of pale olive-brown to brown, flattened polygonal cells of 3–10 μ m diam. Conidiogenous cells phialidic, hyaline,

Fig. 33. Pyrenochaetopsis leptospora (CBS 101635). A, B. Colony on OA (front and reverse). C, D. Colony on MEA (front and reverse). E. Pycnidia forming on OA. F. Pycnidia. G. Conidiogenous cells. H. Conidia. Scale bars: F = 100 μm. G, H = 10 μm.

smooth-walled, lageniform to ampulliform, $3.5-5 \times 2.5-3 \mu m$. *Conidia* aseptate, hyaline, smooth- and thin-walled, ovoid to cylindrical, $3-5.5 \times 1.5-2 \mu m$, guttulate.

Culture characteristics: Colonies on OA reaching 27 mm diam after 7 d at 25 ± 1 °C, flattened, yellowish brown (M. 5E5); reverse greyish brown (M. 5F3). Colonies on MEA reaching 20 mm diam after 7 d at 25 ± 1 °C, flattened, brownish-orange (M. 5C3); reverse pale brown (M. 5D4). NaOH spot test negative. Crystals absent. Optimal temperature of growth and sporulation 25 °C; minimum temperature of growth 5 °C; maximum temperature of growth 30 °C.

Material examined: **USA**, from human dermatitis sample, 2009, D.A. Sutton (**holotype** CBS H-23208 ex-holotype living cultures CBS 143034 = UTHSC DI16-275 = FMR 13766).

Notes: The strain CBS 143034, which is morphologically similar to *P. uberiformis* (slightly different in pycnidial and conidial size), forms a large clade wherein there is *P. uberiformis* and several other species of the genus *Pyrenochaetopsis*. Because the nucleotide sequences of both fungi differ in 19 bp for *rpb2* and 13 bp for *tub2*, *P. globosa* is proposed as a new species for the genus.

Pyrenochaetopsis indica (T.S. Viswan.) Gruyter *et al.*, Mycologia 102: 1077. 2010.

Basionym: Pyrenochaeta indica T.S. Viswan., Curr. Sci. 26:118. 1957.

Synonym: Phoma indica (T.S. Viswan.) Gruyter & Boerema, Persoonia 17: 556. 2002.

Description: Boerema et al. (2004).

Material examined: India, Poona, on leaf spot of *Saccharum officinarum* (holotype AMH-11, ex-holotype living cultures IMI 062569 = CBS 124454 = FMR 14879).

Notes: We studied the ex-type strain of *Pyrenochaetopsis indica*, providing new genomic sequence data. It is morphologically characterised by its setose pycnidia, and the production of globose to subglobose, olivaceous chlamydospores solitary or in chains. Morphologically it is difficult to differentiate this species from *P. decipiens*. However, *Pyrenochaetopsis indica* clearly differs genetically from the latter in its *tub2* and *rpb2* sequences. Unfortunately, all cultures remained sterile.

Pyrenochaetopsis leptospora (Sacc. & Briard) Gruyter *et al.*, Mycologia 102: 1076. 2010. Fig. 33.

Basionym: Pyrenochaeta leptospora Sacc. & Briard, Revue Mycol. 11: 16. 1889.

Synonyms: Pyrenochaeta spegazziniana Trotter, Syll. Fung. 25: 190. 1931.

Phoma briardii Gruyter & Boerema, Persoonia 17: 555. 2002.

Description: Boerema et al. (2004).

Material examined: **Germany**, subtrate unknown, J.W. Veenbaas, living cultures CBS 122787 = FMR 14873. **The Netherlands**, on *Secale cereal* (**epitype** CBS H-20313, ex-epitype living cultures CBS 101635 = PD 71/1027 = FMR 14877).

Fig. 34. Pyrenochaetopsis microspora (CBS 102876). A, B. Colony on OA (front and reverse). C, D. Colony on MEA (front and reverse). E. Pycnidia forming on OA. F. Pycnidium. G. Conidiogenous cells. H. Conidia. Scale bars: F = 50 µm. G, H = 10 µm.

Notes: We received isolate CBS 122787 as "*Coniothyrium cerealis*", but it was identified as *P. leptospora* in our phylogenetic study.

Pyrenochaetopsis microspora (Gruyter & Boerema) Gruyter *et al.*, Mycologia 102: 1077. 2010. Fig. 34.

Basionym: Phoma leveillei var. *microspora* Gruyter & Boerema, Persoonia 17: 553. 2002.

Description: Boerema et al. (2004).

Materials examined: **Montenegro**, Lake of Skadar, from water, 1975 (**holotype** HLB 999-242399, ex-holotype living cultures CBS 102876 = PD 75/911 = FMR 14874). **USA**, from human sinusitis sample, 2006, D.A. Sutton, living cultures UTHSC DI16-193 = FMR 13688.

Notes: In this paper, the ex-type strain of *Pyrenochaetopsis microspora* was examined, and new genomic sequence data and illustrations are provided. Furthermore, one human clinical specimen clustered with the ex-type living culture, being morphologically and genetically very closely related.

Pyrenochaetopsis paucisetosa Valenzuela-Lopez, Cano, Guarro & Stchigel, **sp. nov.** MycoBank MB819766. Fig. 35.

Etymology: From Latin *paucus*, few, and *-setosus*, setose, because the conidiomata are covered by a few setae.

Description: Hyphae brown, smooth- and thin-walled, septate, $2-3 \mu m$ wide. Conidiomata pycnidial, brown, solitary, superficial or immersed (OA), setose, globose to ovoid, $150-190 \times 140-160 \mu m$, with a papillate ostiolar neck, covered

by a few, brown, erect or slightly curved, smooth- and thickwalled, septate setae, $(50-)63-68(-83) \times 2-3.5 \ \mu\text{m}$; pycnidial wall of *textura angularis*, 2–5 layered, 20–50 $\ \mu\text{m}$ thick, composed of brown, flattened polygonal cells of 4–13 $\ \mu\text{m}$ diam. *Conidiogenous cells* phialidic, hyaline, smooth-walled, ampulliform, $3.5-4 \times 3-3.5 \ \mu\text{m}$. *Conidia* aseptate, hyaline, smooth- and thin-walled, cylindrical, $3-4 \times 2-2.5 \ \mu\text{m}$, guttulate.

Culture characteristics: Colonies on OA reaching 25 mm diam after 7 d at 25 ± 1 °C, flattened, olive brown (M. 4F5); reverse brownish grey (M. 4F2). Colonies on MEA reaching 21 mm diam after 7 d at 25 ± 1 °C, floccose, pale grey (M. 4C1); reverse medium-grey (M. 4E1). NaOH spot test negative. Crystals absent. Optimal temperature of growth and sporulation 25 °C; minimum temperature of growth 15 °C; maximum temperature of growth 35 °C.

Material examined: **USA**, from human toe nail, 2005, D.A. Sutton (**holotype** CBS H-23037, ex-holotype living cultures CBS 142460 = UTHSC DI16-193 = FMR 13683).

Notes: Pyrenochaetopsis paucisetosa, recovered from a specimen of superficial human tissue, produces pycnidia covered by a few setae, and conidia smaller than in other species of the genus. Phylogenetically, *P. paucisetosa* is well-separated from *P. botulispora*.

Pyrenochaetopsis poae Crous & Quaedvlieg, Persoonia 32: 197. 2014.

Description: Crous et al. (2014).

Fig. 35. Pyrenochaetopsis paucisetosa (CBS 142460). A, B. Colony on OA (front and reverse). C, D. Colony on MEA (front and reverse). E. Pycnidia forming on OA. F. Pycnidium. G. Conidiogenous cells. H. Conidia. Scale bars: F = 50 µm. G, H = 10 µm.

Material examined: Netherlands, Raalte, on *Poa* sp. (*Poaceae*), 2013, W. Quaedvlieg (holotype CBS H-21677, ex-holotype living cultures CBS 136769 = D779 = FMR 14876).

Notes: We studied the ex-type strain of *Pyrenochaetopsis poae*, which is morphologically similar to the generic type of *P. leptospora*. In this paper, we provide *rpb2* sequence that, together with *tub2*, are useful to differentiate these taxa.

Pyrenochaetopsis setosissima Valenzuela-Lopez, Cano, Crous, Guarro & Stchigel, **sp. nov.** MycoBank MB819767. Fig. 36.

Etymology: From Latin *– setosissimus*, bearing many setae, relating to the ornamentation of the pycnidia.

Description: Hyphae brown, smooth- and thin-walled, septate, $2-5 \mu m$ wide. Conidiomata pycnidial, brown, solitary or confluent, superficial (OA), subglobose to ovoid, $150-230 \times 150-200 \mu m$, with a papillate ostiolar neck, covered by many dark brown, erect, smooth- and thick-walled, septate setae, $33-83 \times 2-4 \mu m$; pycnidial wall of *textura angularis*, 2-4 layered, $20-50 \mu m$ thick, composed of brown, flattened polygonal cells of $5-15 \mu m$ diam. Conidiogenous cells phialidic, hyaline, smooth-walled, ampulliform, $5-4.5 \times 4-4.5 \mu m$. Conidia aseptate, hyaline, smooth- and thin-walled, cylindrical, $4-5 \times 2-2.5 \mu m$, guttulate.

Culture characteristics: Colonies on OA reaching 25 mm diam after 7 d at 25 ± 1 °C, flattened, olive brown (M. 4F4); reverse brownish grey (M. 4F2). Colonies on MEA reaching 18 mm diam

after 7 d at 25 \pm 1 °C, flattened, light orange (M. 5A4); reverse orange white (M. 5A2). NaOH spot test negative. Crystals absent. Optimal temperature of growth and sporulation 25 °C; minimum temperature of growth 5 °C; maximum temperature of growth 30 °C.

Material examined: Brazil, Minas Gerais, Lavras, from *Coffea arabica* leaf, Jun. 1999, L.H. Pfenning (holotype CBS H-23209, ex-holotype living cultures CBS 119739 = FMR 14875).

Notes: The isolate CBS 119739 was identified as *P. microspora* by de Gruyter *et al.* (2010) using SSU and LSU sequences as phylogenetic markers. However, in our phylogenetic study employing more markers, it clusters distant from the latter species. *Pyrenochaetopsis setosissima* is morphologically very similar to *P. microspora*, and can only be distinguished based on molecular data (differing in 19 bp for *tub2* and 31 bp for *rpb2*).

Pyrenochaetopsis uberiformis Valenzuela-Lopez, Cano, Guarro & Stchigel, **sp. nov.** MycoBank MB819765. Fig. 37.

Etymology: From Latin *– ubera*, mammaries, and *-forma*, shape, relating to the anatomy of its pycnidia.

Description: Hyphae brown, smooth- and thin-walled, septate, $2-3 \mu m$ wide. Conidiomata pycnidial, brown, solitary or confluent, superficial or immersed (OA), glabrous, globose or ovoid, $200-440 \times 130-410 \mu m$, with a papillate ostiolar neck; pycnidial wall of *textura angularis*, 2-4 layered, $15-30 \mu m$ thick, composed of pale brown to brown, flattened polygonal cells of

Fig. 36. Pyrenochaetopsis setosissima (CBS 119739). A, B. Colony on OA (front and reverse). C, D. Colony on MEA (front and reverse). E. Pycnidia forming on OA. F. Pycnidium. G. Conidiogenous cells. H. Conidia. Scale bars: F = 50 µm. G, H = 10 µm.

5–10 µm diam. *Conidiogenous cells* phialidic, hyaline, smooth-walled, ampulliform, $3-4 \times 4-5$ µm. *Conidia* aseptate, hyaline, smooth- and thin-walled, cylindrical, $4-6 \times 2-2.5$ µm, guttulate.

Culture characteristics: Colonies on OA reaching 27 mm diam after 7 d at 25 ± 1 °C, flattened, yellowish brown (M. 5E5); reverse greyish brown (M. 5F3). Colonies on MEA reaching 20 mm diam after 7 d at 25 ± 1 °C, flattened, brownish orange (M. 5C3); reverse pale brown (M. 5D4). NaOH spot test negative. Crystals absent. Optimal temperature of growth and sporulation 25 °C; minimum temperature of growth 5 °C; maximum temperature of growth 30 °C.

Material examined: **USA**, from human ear lesion, 2009, D.A. Sutton (**holotype** CBS H-23038, ex-holotype living cultures CBS 142461 = UTHSC DI16-277 = FMR 13769).

Notes: The strain CBS 142461 clustered within the *Pyrenochaetopsis* clade, distant from other species of the genus, with the exception of *P. americana*, which forms a sister clade. Both strains differ in their *rpb2* and *tub2* sequences. Therefore, we propose strain CBS 142461 as representative of the new species *P. uberiformis*.

Clade F2: Xenopyrenochaetopsis

Xenopyrenochaetopsis Valenzuela-Lopez, Crous, Stchigel, Guarro & Cano, gen. nov. MycoBank MB820311.

Etymology: From Greek ξένος-, strange, alien, because it is phylogenetically distinct from the genus *Pyrenochaetopsis*.

Conidiomata pycnidial, pale brown to brown, solitary or confluent; pycnidial wall of *textura angularis*, glabrous, globose, ostiolate. *Conidiogenous cells* phialidic, hyaline. *Conidia* aseptate, hyaline, smooth- and thin-walled, cylindrical, guttulate.

Type species: Xenopyrenochaetopsis pratorum (P.R. Johnst. & Boerema) Valenzuela-Lopez, Crous, Stchigel, Guarro & Cano.

Xenopyrenochaetopsis pratorum (P.R. Johnst. & Boerema) Valenzuela-Lopez, Crous, Stchigel, Guarro & Cano, **comb. nov.** MycoBank MB820312. Fig. 38.

Basionym: Phoma pratorum P.R. Johnst. & Boerema, New Zealand J. Bot. 19: 395. 1981.

Synonym: Pyrenochaetopsis pratorum (P.R. Johnst. & Boerema) Gruyter et al., Stud. Mycol. 75: 24. 2012.

Description from ex-isotype (CBS 445.81): Hyphae pale brown to brown, smooth- and thin-walled, septate, $2.5-5 \mu m$ wide. Conidiomata pycnidial, pale brown to brown, solitary or confluent, semi-immersed or immersed (OA), glabrous, globose to irregular, $(88-)160-270 \times (80-)100-250 \mu m$, with 1–3 papillate ostiolar necks; pycnidial wall of *textura angularis*, 2–4 layered, $10-30 \mu m$ thick, composed of pale brown to brown, flattened polygonal cells of $2.5-8 \mu m$ diam. Conidiogenous cells phialidic, hyaline, smooth-walled, ampulliform, $3-3.5 \times 1.5-2 \mu m$. Conidia aseptate, hyaline, smooth- and thin-walled, subreniform to oblong or cylindrical, $4-5 \times 1.5-2 \mu m$, guttulate.

Culture characteristics: Colonies on OA reaching 5 mm diam after 7 d at 25 ± 1 °C, flattened, olive (M. 3D4) to olive grey (M.3F2);

Fig. 37. Pyrenochaetopsis uberiformis (CBS 142461). A, B. Colony on OA (front and reverse). C, D. Colony on MEA (front and reverse). E. Pycnidia forming on OA. F. Pycnidium. G. Conidiogenous cells. H. Conidia. Scale bars: F = 100 µm. G, H = 10 µm.

reverse olive (M.3F4). Colonies on MEA reaching 4 mm diam after 7 d at 25 ± 1 °C, flattened, yellowish white (M. 3A2); reverse ash blonde (M. 3C3). NaOH spot test negative. Crystals absent. Optimal temperature of growth and sporulation 25 °C; minimum temperature of growth 15 °C; maximum temperature of growth 25 °C.

Material examined: **New Zealand**, Rakura, near Hamilton, from a leaf of *Lolium perenne (Poaceae)*, 1980, P.R. Johnston (**isotype** CBS H-7625, CBS H-7626, ex-isotype living cultures CBS 445.81 = PDDCC 7049 = PD 80/1254 = FMR 14878).

Notes: Pyrenochaetopsis pratorum was proposed as a new combination for *Phoma pratorum* by de Gruyter *et al.* (2013). In that study, it clustered with *Pyrenochaetopsis* but was situated phylogenetically distinct from *P. leptospora*. However, in our phylogenetic analysis this species clustered outside *Pyrenochaetopsis s. str.* Moreover, *Phoma pratorum* differs in the main distinctive morphological feature of the genus *Pyrenochaetopsis*, the production of setose pycnidia (glabrous in *P. pratorum*). Therefore, we accommodate this species in the new genus *Xenopyrenochaetopsis*.

Clade F3: Neopyrenochaetopsis

Neopyrenochaetopsis Valenzuela-Lopez, Cano, Guarro & Stchigel, gen. nov. MycoBank MB820309.

Etymology: Referring to its close phylogenetic relationship with the genus *Pyrenochaetopsis*.

Conidiomata pycnidial, brown, solitary or confluent, pycnidial wall of *textura angularis*, glabrous, subglobose to ovoid, ostiolate.

Conidiogenous cells phialidic, ampulliform to globose. Conidia aseptate, hyaline, smooth- and thin-walled, ovoid to cylindrical.

Type species: Neopyrenochaetopsis hominis Valenzuela-Lopez, Cano, Guarro & Stchigel.

Neopyrenochaetopsis hominis Valenzuela-Lopez, Cano, Guarro & Stchigel, **sp. nov.** MycoBank MB820310. Fig. 39.

Etymology: Relating to its isolation from a human specimen.

Description: Hyphae pale yellow to pale brown, smooth- and thinwalled, septate, 2–3 µm wide. Conidiomata pycnidial, brown, solitary or confluent, superficial or immersed (OA), glabrous, subglobose to ovoid, 160–170 × 140–160 µm, with a single papillate ostiolar neck; pycnidial wall of *textura angularis*, 2–4 layered, 15–40 µm thick, composed of brown, flattened polygonal cells of 2.5–8 µm diam. Conidiogenous cells phialidic, hyaline, smooth-walled, ampulliform to globose, 4–5 µm diam wide. Conidia aseptate, hyaline, smooth- and thin-walled, ovoid to narrowly ellipsoidal, 3–3.5 × 1.5–2 µm, guttulate. Chlamydospores absent.

Culture characteristics: Colonies on OA reaching 31 mm diam after 7 d at 25 ± 1 °C, flattened, greyish yellow (M. 3B4); reverse greyish yellow (M. 3C4); yellow pigment diffusing into the agar. Colonies on MEA reaching 29 mm diam after 7 d at 25 ± 1 °C, floccose, dull yellow (M. 3B3) to white (M. 3A1); reverse brownish yellow (M. 5C8); diffusible pigment yellowish. NaOH spot test negative. Crystals absent. Optimal temperature of

Fig. 38. Xenopyrenochaetopsis pratorum (CBS 445.81). A, B. Colony on OA (front and reverse). C, D. Colony on MEA (front and reverse). E. Pycnidia forming on OA. F. Pycnidium. G. Conidiogenous cells. H. Conidia. Scale bars: F = 100 µm. G, H = 10 µm.

growth and sporulation 25 °C; minimum temperature of growth 5 °C; maximum temperature of growth 30 °C.

Material examined: **USA**, from human skin tissue, 2007, D. A. Sutton (**holotype** CBS H-23207, culture ex-holotype living cultures CBS 143033 = UTHSC DI16-238 = FMR 13728).

Notes: The strain CBS 143033, recovered from a clinical sample, forms a distinct basal clade within the *Pyrenochaetopsidaceae*. Morphologically, *N. hominis* can be differentiated from the other taxa mainly by the production of smaller-sized conidia, and a yellow diffusing pigment on MEA and OA.

Clade N: *Parapyrenochaetaceae* Valenzuela-Lopez, Crous, Stchigel, Guarro & Cano, fam. nov. MycoBank MB820418.

Etymology: Named after its close morphological relationship with *Pyrenochaeta*.

Conidiomata pycnidial, brown, solitary, pycnidial wall of *textura angularis*, setose, globose, ostiolate. *Conidiogenous cells* phialidic, ampulliform or lageniform. *Conidia* aseptate, hyaline, smooth- and thin-walled, allantoid or ellipsoidal.

Type genus: Parapyrenochaeta Valenzuela-Lopez, Crous, Stchigel, Guarro & Cano.

Parapyrenochaeta Valenzuela-Lopez, Crous, Stchigel, Guarro & Cano, gen. nov. MycoBank MB820319.

Etymology: Based on its close morphological relationship to *Pyrenochaeta*.

Conidiomata pycnidial, pale brown to brown, solitary, setose, globose, ostiolate; pycnidial wall of *textura angularis*. *Conidiogenous cells* phialidic, ampulliform or lageniform. *Conidia* aseptate, hyaline, smooth- and thin-walled, allantoid or ellipsoidal.

Type species: Parapyrenochaeta protearum (Crous) Valenzuela-Lopez, Crous, Stchigel, Guarro & Cano.

Parapyrenochaeta acaciae (Crous *et al.*) Valenzuela-Lopez, Crous, Stchigel, Guarro & Cano, **comb. nov.** MycoBank MB820321. Fig. 40.

Basionym: Pyrenochaeta acaciae Crous *et al.*, Persoonia 36: 349. 2016.

Description: Crous et al. (2016b).

Material examined: Australia, Victoria, on leaf of Acacia sp. (Fabaceae), 7 Nov. 2014, J. Edwards, I.G. Pascoe & P.W. Crous (holotype CBS H-22601, exholotype living cultures CPC 25527 = CBS 141291 = FMR 15755).

Notes: Pyrenochaeta acaciae was described by Crous et al. (2016b) based on morphological and nucleotide sequence data, highlighting the close relationship with *P. protearum*. In our phylogenetic study, *P. acaciae* clustered distant from the *Cucurbitariaceae* s. str., forming a distinct clade related to *P. protearum*.

Parapyrenochaeta protearum (Crous) Valenzuela-Lopez, Crous, Stchigel, Guarro & Cano, **comb. nov.** MycoBank MB820320. Fig. 41.

Fig. 39. Neopyrenochaetopsis hominis (CBS 143033). A, B. Colony on OA (front and reverse). C, D. Colony on MEA (front and reverse). E. Pycnidia forming on OA. F. Pycnidia. G. Conidiogenous cell. H. Conidia. Scale bars: F = 100 µm. G, H = 10 µm.

Basionym: Pyrenochaeta protearum Crous, Persoonia 27: 153. 2011.

Synonym: Pyrenochaeta pinicola Crous, Persoonia 32: 255. 2014.

Description: Crous et al. (2011).

Materials examined: **France**, Nice, L'aire d'Esterel petrol filling station, on needles of *Pinus* sp., 20 Jul. 2013, P.W. Crous, living cultures ex-type of *P. pinicola*, CPC 23455 = CBS 137997 = FMR 15753. **South Africa**, Western Cape Province, on leaves of *Protea mundii*, 4 May 2010, P.W. Crous (**holotype** of *P. protearum*, CBS H-20772, ex-holotype living cultures CPC 18322 = CBS 131315 = FMR 15752).

Notes: Pyrenochaeta protearum morphologically resembles phoma-like taxa in producing single phialides covering the inner source of the pycnidia, and having small, $((3-)4-5(-6) \times (2-))$ 2.5(-3) µm), aseptate, hyaline conidia, but also resembles pyrenochaeta-like species due to its setose pycnidia (Crous et al. 2011). Based on ITS and LSU nucleotide sequences, this fungus has been related to Leptosphaeria, Pyrenochaeta and Pyrenochaetopsis, and was included in the genus Pyrenochaeta (Crous et al. 2011). However, our results revealed that this fungus is phylogenetically distant from Pyrenochaeta spp., and from the members of the Cucurbitariaceae, and therefore we accommodated it in the new genus Parapyrenochaeta. We also studied the ex-type strain of Pyrenochaeta pinicola (Crous et al. 2014), which was morphologically and genetically very closely related to Pa. protearum. Therefore, we reduce Py. pinicola to synonymy under Pa. protearum.

DISCUSSION

The taxonomy of the coelomycetes has undergone major changes in recent years, mainly due to the extensive use of molecular techniques, which has resulted in a more natural classification of these fungi. In this regard, the taxonomic circumscription of the genera Phoma (Didymellaceae) and Pyrenochaeta (Cucurbitariaceae) have proven to be especially complex. In recent studies on Didymellaceae, Chen et al. (2015, 2017) restricted Phoma to P. herbarum, accepting 17 genera in the family Didymellaceae. They demonstrated that by combining four loci, but especially by using the rpb2 marker, it was possible to resolve the phylogeny of the Didymellaceae. However, in recent studies, several Phoma species accepted by Aveskamp et al. (2010) such as P. bulgarica, P. crystallifera, P. destructiva, P. eupyrena, P. multirostrata, P. omnivirens, P. pereupyrena and P. saxea, were not included. Currently, several genera such as Didymellocamarosporium, Endocoryneum, Heracleicola, Neodidymella, Platychora and Pseudohendersonia have been added to the Didymellaceae based mainly on the ribosomal gene analyses (Ariyawansa et al. 2015a, Hyde et al. 2016, Wijayawardene et al. 2016). However, recently, Chen et al. (2017) demonstrated that the general mentioned above are simple synonyms of previous genera of that family such as Boeremia, Ascochyta, Stagonosporopsis and Neomicrosphaeropsis. Therefore, sequences of those taxa need to be verified with proper genes to resolve their taxonomic

Fig. 40. Parapyrenochaeta acaciae (CBS 141291). A, B. Colony on OA (front and reverse). C, D. Colony on MEA (front and reverse). E. Pycnidia forming on OA. F. Pycnidia. G. Conidiogenous cells. H. Conidia. Scale bars: F = 50 µm. G, H = 10 µm.

placement within the *Didymellaceae*. For this reason, our proposal was to revise this family testing a large set of coelomycetous fungi recently isolated from clinical specimens (Valenzuela-Lopez *et al.* 2016), but also including several reference species of *Phoma* from the prior study of Aveskamp *et al.* (2010). This resulted in the proposal of six new genera, *viz. Cumuliphoma, Ectophoma, Juxtiphoma, Remotididymella, Similiphoma* and *Vacuiphoma,* 14 new species, and nine new combinations.

The taxonomic placement of Pyrenochaeta continues to be a topic of discussion, as this genus accommodates at least 163 epithets (www.indexfungorum.org). It is currently related to the Cucurbitariaceae, but an earlier phylogenetic study involving Pyrenochaeta species performed by Schoch et al. (2006), showed that P. nobilis, its type species, occupied an unclear taxonomic placement within the Pleosporales. Subsequently, this genus occupied an intermediate position as incertae sedis between the Leptosphaeriaceae and Didymellaceae (de Gruyter et al. 2009), or belonging to the Leptosphaeriaceae (Zhang et al. 2009). Later, de Gruyter et al. (2010) placed Pyrenochaeta in Cucurbitariaceae, and several species of Phoma in the new genus Pyrenochaetopsis. However, by employing additional gene loci in our phylogeny, the type species P. nobilis clustered distant from Cucurbitariaceae s. str., being placed as incertae sedis in the Pleosporineae. Moreover, several species previously identified as Pyrenochaeta have proved to be phylogenetically scattered within the Pleosporineae. Therefore, we introduced four new families with several new genera to accommodate all Pyrenochaeta species which clustered outside the *Cucurbitariaceae*, i.e. *Neo-pyrenochaetaceae* (which includes *Neopyrenochaeta* gen. nov.), *Parapyrenochaetaceae* (within *Parapyrenochaeta* gen. nov.), *Pseudopyrenochaetaceae* (including *Pseudopyrenochaeta* gen. nov.) and *Pyrenochaetopsidaceae* (including the two new genera, *Neopyrenochaetopsis* and *Xenopyrenochaetopsis*).

In the revision of Cucurbitariaceae by Doilom et al. (2013), the authors accepted six genera in the family, although Curreya, Rhytidiella and Syncarpella were not sequenced. This family was recently enlarged by Wanasinghe et al. (2017b) proposing the new genus Neocucurbitaria to accommodate N. acerina, N. unguis-hominis (syn. Pyrenochaeta unguis-hominis, the type species of that genus) and N. guercina (syn. Pyrenochaeta quercina) and considering the genus Fenestella as belonging to this family; however, the type species and more species of this genus should be studied to clarify its taxonomy. Neocucurbitaria has been also modified in our study to include N. cava (syn. Pyrenochaeta cava), N. hakeae (syn. Pyrenochaeta hakeae), N. keratinophila (syn. Pyrenochaeta keratinophila), and the new species N. aquatica and N. irregularis. Here, we have also enlarged the current concept of Cucurbitariaceae with the proposal of the new genera Allocucurbitaria (with the only species A. botulispora), which is closely related to Cucurbitaria and Paracucurbitaria, with P. corni and the new species P. italica forming a clade distinct from Neocucurbitaria. In fact, Cucurbitariaceae is currently circumscribed with four genera, i.e. the three mentioned above, and Cucurbitaria. In contrast, Camarosporium, which was included in Cucurbitariaceae by Doilom

Fig. 41. Parapyrenochaeta protearum (CBS 131315). A, B. Colony on OA (front and reverse). C, D. Colony on MEA (front and reverse). E. Pycnidia forming on OA. F. Pycnidium G. Conidiophores. H. Conidia. Scale bars: F = 50 µm. G, H = 10 µm.

et al. (2013), has been recently placed in Coniothyriaceae by Crous & Groenewald (2017), who studied and epitypified the generic type of Camarosporium and several phoma-like species, proposing the new family Libertasomycetaceae within Pleosporineae. In the same year, Wanasinghe et al. (2017a) have studied a large set of camarosporium-like fungi proposing the new families Camarosporidiellaceae and Neoresurrected familv camarosporiaceae and the Camarosporiaceae. However, in our phylogeny, several members of Coniothyriaceae and Leptosphaeriaceae remain in an ambiguous taxonomic position within Pleosporineae. Furthermore, in our study the family Camarosporidiellaceae was phylogenetically unsupported, which is probably caused by the lack of rpb2 or tub2 sequences; therefore further studies are needed to understand the relationships of this family with the other members of this suborder.

At the present study, we have clarified the generic concept of two of the largest genera of coelomycetes (Phoma and Pyrenochaeta) through a polyphasic approach that included the analysis of four phylogenetic markers of 143 additional isolates. This approach allowed a better delimitation of members of Cucurbitariaceae and Didymellaceae of the suborder Pleosporineae that currently encompasses the following 19 families: Camarosporiaceae, Camarosporidiellaceae, Coniothyria ceae, Cucurbitariaceae, Didymellaceae, Dothidotthiaceae, Halojulellaceae, Leptosphaeriaceae, Libertasomycetaceae, Microsphaeropsidaceae, Neocamarosporiaceae, Neophaeosphaeria Neopyrenochaetaceae, Parapyrenochaetaceae, ceae,

Phaeosphaeriaceae, Pleosporaceae, Pseudopyrenochaetaceae, Pyrenochaetopsidaceae and Shiraiaceae.

ACKNOWLEDGEMENTS

The authors are very grateful to the following researchers or institutions: Markéta Šandová (Curator of the Natural History Museum, Czech Republic, PRM), Fátima Sales (Curator of the Herbarium of the Botanical Garden of the University of Coimbra, Portugal), Marc Jeanson and Simon Chagnoux (Muséum National d'Histoire Naturelle, Paris, France), Begoña Aguirre-Hudson (Curator of the Royal Botanic Gardens, Kew, UK), Rossella Marcucci (Curator of the Saccardo's Herbarium, Università degli Studi di Padova, Italy) and Jamie Minnaert-Grote and Andrew Miller (The Illinois Natural History Survey Fungarium, Illinois, USA). We also thank to reviewers for their valuable comments and suggestions to improve the content of the manuscript. This study was supported by the Spanish Ministerio de Economía y Competitividad, grant CGL2013-43789-P.

REFERENCES

- Ahmed SA, Desbois N, Quist D, et al. (2015). Phaeohyphomycosis caused by a novel species, Pseudochaetosphaeronema martinelli. Journal of Clinical Microbiology 53: 2927–2934.
- Ahmed SA, Hofmüller W, Seibold M, et al. (2017). Tintelnotia, a new genus in Phaeosphaeriaceae harbouring agents of cornea and nail infections in humans. Mycoses 60: 244–253.
- Ahmed SA, Van De Sande WW, Stevens DA, et al. (2014). Revision of agents of black-grain eumycetoma in the order *Pleosporales*. *Persoonia* **33**: 141–154.
- Amaradasa BS, Madrid H, Groenewald JZ, et al. (2014). Porocercospora seminalis gen. et comb. nov., the causal organism of buffalograss false smut. Mycologia 106: 77–85.

- Ariyawansa HA, Hyde KD, Jayasiri SC, *et al.* (2015a). Fungal diversity notes 111–252–taxonomic and phylogenetic contributions to fungal taxa. *Fungal Diversity* **75**: 27–274.
- Ariyawansa HA, Jones EBG, Suetrong S, et al. (2013). Halojulellaceae a new family of the order Pleosporales. Phytotaxa 130: 14–24.
- Ariyawansa HA, Phukhamsakda C, Thambugala KM, et al. (2015b). Revision and phylogeny of Leptosphaeriaceae. Fungal Diversity 74: 19–51.
- Aveskamp MM, de Gruyter J, Crous PW (2008). Biology and recent developments in the systematics of *Phoma*, a complex genus of major quarantine significance. *Fungal Diversity* **31**: 1–18.
- Aveskamp MM, de Gruyter J, Woudenberg JHC, et al. (2010). Highlights of the Didymellaceae: a polyphasic approach to characterise Phoma and related pleosporalean genera. Studies in Mycology 65: 1–60.
- Aveskamp MM, Verkley GJM, de Gruyter J, et al. (2009). DNA phylogeny reveals polyphyly of *Phoma* section *Peyronellaea* and multiple taxonomic novelties. *Mycologia* **101**: 363–382.
- Batista AC, Vital AF (1957). Contribuiçao ao Estudo dos Fungos Sphaeropsidales. Anais da Sociedade de Biologia de Pernambuco 15: 413–427.
- Boerema GH (1993). Contributions towards a monograph of *Phoma* (Coelomycetes) – II. Section *Peyronellaea*. *Persoonia* **15**: 197–221.
- Boerema GH, Bollen GJ (1975). Conidiogenesis and conidial septation as differentiating criteria between *Phoma* and *Ascochyta*. *Persoonia* 8: 111–444.
- Boerema GH, de Gruyter J, Noordeloos ME (1997). Contributions towards a monograph of *Phoma* (Coelomycetes) – IV. Section *Heterospora*: taxa with large sized conidial dimorphs, in vivo sometimes as *Stagonosporopsis* synanamorphs. *Persoonia* **16**: 335–371.
- Boerema GH, de Gruyer J, Noordeloos ME, et al. (2004). Phoma identification manual. Differentiation of specific and infra-specific taxa in culture. CABI Publishing, Wallingford, UK.
- Boerema GH, Dorenbosch MMJ, Kesteren HA van (1965). Remarks on species of *Phoma* referred to *Peryonellaea*. *Persoonia* **4**: 47–68.
- Boerema GH, Kesteren HA van, Loerakker WM (1981). Notes on *Phoma*. *Transactions of the British Mycological Society* **77**: 61–74.
- Boerema GH, Loerakker WM, Hamers ME (1996). Contributions towards a monograph of *Phoma* (Coelomycetes) – III. 2. Misapplications of the type species name and the generic synonyms of section *Plenodomus* (Excluded species). *Persoonia* **16**: 141–189.
- Borman AM, Desnos-Ollivier M, Campbell CK, et al. (2016). Novel taxa associated with human fungal black-grain mycetomas: *Emarellia grisea* gen. nov., sp. nov., and *Emarellia paragrisea* sp. nov. *Journal of Clinical Microbiology* 54: 1738–1745.
- Brunaud P (1887). Supplément à la liste des Sphaeroidées trouvées à Saintes. *Revue Mycologique Toulouse* 9: 13–17.
- Bubák F, Kabát JE (1912). Mykologische Beiträge. VII. Hedwigia 52: 340–363. Chandra S, Tandon RN (1966). Three new leaf-infecting fungi from Allahabad. Mycopathologia et Mycologia Applicata 29: 273–276.
- Chen Q, Hou LW, Duan WJ, et al. (2017). Didymellaceae revisited. Studies in Mycology 87: 105–159.
- Chen Q, Jiang JR, Zhang GZ, et al. (2015). Resolving the Phoma enigma. Studies in Mycology 82: 137–217.
- Corda ACJ (1840). Icones fungorum hucusque cognitorum: 4: 1-53.
- Crous PW, Carris LM, Giraldo A, et al. (2015a). The Genera of Fungi fixing the application of the type species of generic names – G 2: Allantophomopsis, Latorua, Macrodiplodiopsis, Macrohilum, Milospium, Protostegia, Pyricularia, Robillarda, Rotula, Septoriella, Torula, and Wojnowicia. IMA Fungus 6: 163–198.
- Crous PW, Gams W, Stalpers JA, *et al.* (2004). MycoBank: an online initiative to launch mycology into the 21st century. *Studies in Mycology* **50**: 19–22.
- Crous PW, Groenewald JZ (2016). They seldom occur alone. *Fungal Biology* **120**: 1392–1415.
- Crous PW, Groenewald JZ (2017). The Genera of Fungi G 4: Camarosporium and Dothiora. IMA Fungus 8: 131–152.
- Crous PW, Shivas RG, Quaedvlieg W, et al. (2014). Fungal Planet description sheets: 214–280. Persoonia 32: 184–306.
- Crous PW, Summerell BA, Shivas RG, et al. (2011). Fungal Planet description sheets: 92–106. Persoonia 27: 130–162.
- Crous PW, Verkley GJM, Groenewald JZ, *et al.* (2009). *Fungal Biodiversity. CBS Laboratory Manual Series*. Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands.
- Crous PW, Wingfield MJ, Burgess TI, et al. (2016a). Fungal Planet description sheets: 469–557. Persoonia 37: 218–403.
- Crous PW, Wingfield MJ, Le Roux JJ, *et al.* (2015b). Fungal Planet description sheets: 371–399. *Persoonia* **35**: 264–327.

- Crous PW, Wingfield MJ, Richardson DM, et al. (2016b). Fungal Planet description sheets: 400–468. Persoonia 36: 316–458.
- Davey ML, Currah RS (2009). Atradidymella muscivora gen. et sp. nov. (Pleosporales) and its anamorph Phoma muscivora sp. nov.: a new pleomorphic pathogen of boreal bryophytes. American Journal of Botany 96: 1281–1288.
- De Gruyter J (2002). Contributions towards a monograph of Phoma (Coelomycetes) – IX Section Macrospora. Persoonia 18: 85–102.
- De Gruyter J, Aveskamp MM, Woudenberg JHC, et al. (2009). Molecular phylogeny of *Phoma* and allied anamorph genera: towards a reclassification of the *Phoma* complex. *Mycological Research* **113**: 508–519.
- De Gruyter J, Boerema GH (2002). Contributions towards a monograph of Phoma (Coelomycetes) – VIII. Section Paraphoma: taxa with setose pycnidia. Persoonia 17: 541–561.
- De Gruyter J, Boerema GH, van der Aa HA (2002). Contributions towards a monograph of *Phoma* (Coelomycetes) VI – 2. Section *Phyllostictoides*: outline of its taxa. *Persoonia* 18: 1–53.
- De Gruyter J, Noordeloos ME (1992). Contributions towards a monograph of Phoma (Coelomycetes) – I. 1. Section Phoma: taxa with very small conidia in vitro. Personia 15: 71–92.
- De Gruyter J, Woudenberg JH, Aveskamp MM, et al. (2010). Systematic reappraisal of species in *Phoma* section *Paraphoma, Pyrenochaeta* and *Pleurophoma. Mycologia* **102**: 1066–1081.
- De Gruyter J, Woudenberg JHC, Aveskamp MM, et al. (2013). Redisposition of Phoma-like anamorphs in Pleosporales. Studies in Mycology 75: 1–36.
- De Hoog GS, Guarro J, Gené J, Figueras MJ (2011). Atlas of clinical fungi. CD-ROM v. 3.1. Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands.
- Doilom M, Liu JK, Jaklitsch WM, et al. (2013). An outline of the family Cucurbitariaceae. Sydowia 65: 167–192.
- Dorenbosch MMJ (1970). Key to nine ubiquitous soil-borne *Phoma*-like fungi. *Persoonia* 6: 1–14.
- Edgar RC (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. *Nucleic Acids Research* **32**: 1792–1797.
- Fisher NL, Burgess LW, Toussoun TA, Nelson PE (1982). Carnation leaves as a substrate and for preserving cultures of *Fusarium* species. *Phytopathology* 72: 151–153.
- Hashimoto A, Matsumura M, Hirayama K, et al. (2017). Pseudodidymellaceae fam. nov.: phylogenetic affiliations of mycopappus-like genera in Dothideomycetes. Studies in Mycology 87: 187–206.
- Hernández-Restrepo M, Gené J, Castañeda-Ruiz RF, et al. (2017). Phylogeny of saprobic microfungi from Southern Europe. Studies in Mycology 86: 53–97.
- Horne AS (1920). Diagnoses of fungi from "spotted" apples. *Journal of Botany, British and Foreign* **58**: 238–242.
- Hyde KD, Hongsanan S, Jeewon R, et al. (2016). Fungal diversity notes 367–490: taxonomic and phylogenetic contributions to fungal taxa. Fungal Diversity 80: 1–270.
- Hyde KD, Jones EBG, Liu JK, et al. (2013). Families of Dothideomycetes. Fungal Diversity 63: 1–313.
- Jaklitsch WM, Checa J, Blanco MN, et al. (2018). A preliminary account of the Cucurbitariaceae. Studies in Mycology 90: 71–118.
- Jaklitsch WM, Olariaga I, Voglmayr H (2016). Teichospora and the Teichosporaceae. Mycological Progress 15: 31.
- Jaklitsch WM, Voglmayr H (2016). Hidden diversity in *Thyridaria* and a new circumscription of the *Thyridariaceae*. Studies in Mycology 85: 35–64.
- Jaklitsch WM, Voglmayr H (2017). Three former taxa of Cucurbitaria and considerations on Petrakia in the Melanommataceae. Sydowia 69: 81–95.
- Janse JD (1981). The bacterial disease of ash (*Fraxinus excelsior*), caused by *Pseudomonas syringae* subsp. savastanoi pv. *Fraxini* II. Etiology and taxonomic considerations. *European Journal of Forest Pathology* **11**: 425–438.
- Kirk PM, Cannon PF, Minter DW, Stalpers JA (2008). Ainsworth and Bisby's Dictionary of the Fungi, 10th ed. CAB International, Wallingford, UK.
- Kocakaya Z, Halici MG, Kocakaya M (2015). Phoma candelariellae sp. nov., a lichenicolous fungus from Turkey. Mycotaxon 130: 1185–1189.
- Kornerup A, Wanscher JH (1978). Methuen Handbook of Colour, 3rd ed. Methuen, London, England.
- Kruys A, Eriksson OE, Wedin M (2006). Phylogenetic relationships of coprophilous *Pleosporales* (Dothideomycetes, Ascomycota), and the classification of some bitunicate taxa of unknown position. *Mycological Research* **110**: 527–536.
- Lawrey JD, Diederich P, Nelsen MP, et al. (2012). Phylogenetic placement of lichenicolous Phoma species in the Phaeosphaeriaceae (Pleosporales, Dothideomycetes). Fungal Diversity 55: 195–213.

- Liu YJ, Whelen S, Hall BD (1999). Phylogenetic relationships among ascomycetes evidence from an RNA polymerase II subunit. *Molecular Biology and Evolution* **16**: 1799–1808.
- Liu YX, Hyde KD, Ariyawansa HA, et al. (2013). Shiraiaceae, new family of *Pleosporales* (Dothideomycetes, Ascomycota). *Phytotaxa* **103**: 51–60.
- Marincowitz S, Crous PW, Groenewald JZ, Wingfield MJ (2008). Microfungi Occurring on Proteaceae in the Fynbos. [CBS Biodiversity Series No. 7]. Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands.
- Matsushima T (1993). Matsushima mycological memoirs 7. Matsushima Mycological Memoirs 7: 1–141.
- McDonald GK, Peck D (2009). Effects of crop rotation, residue retention and sowing time on the incidence and survival of ascochyta blight and its effect on grain yield of field peas (*Pisum sativum* L.). *Field Crops Research* **111**: 11–21.
- Miller MA, Pfeiffer W, Schwartz T (2012). The CIPRES science gateway: enabling high-impact science for phylogenetics researchers with limited resources. In: Proceedings of the 1st Conference of the Extreme Science and Engineering Discovery Environment: Bridging from the Extreme to the Campus and Beyond: 1–8. Association for Computing Machinery, USA.
- Noordeloos ME, de Gruyter J, van Eijk GW, Roeijmans HJ (1993). Production of dendritic crystals in pure cultures of *Phoma* and *Ascochyta* and its value as a taxonomic character relative to morphology, pathology and cultural characteristics. *Mycological Research* 97: 1343–1350.
- Nylander JAA (2004). *MrModeltest v2. Program Distributed by the Author.* Evolutionary Biology Centre, Uppsala University, Sweden.
- Plowright CB (1881). On the fungoid diseases of the tomato. Gardeners' Chronicle 16: 620–622.
- Punithalingam E (1979). Sphaeropsidales in culture from humans. Nova Hedwigia 31: 119–158.
- Punithalingam E (1985). *Phoma sorghina*. CMI Descriptions of Pathogenic Fungi and Bacteria No. 825.
- Punithalingam E, English MP (1975). Pyrenochaeta unguis-hominis sp. nov. on human toe-nails. Transactions of the British Mycological Society 64: 539–541.
- Rai MK (1989). *Phoma sorghina* infection in human being. *Mycopathologia* **105**: 167–170.
- Rehner SA, Samuels GJ (1994). Taxonomy and phylogeny of *Gliocladium* analysed from nuclear large subunit ribosomal DNA sequences. *Mycological Research* **98**: 625–634.
- Ronquist F, Teslenko M, van der Mark P, et al. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539–542.
- Rouxel T, Balesdent MH (2005). The stem canker (blackleg) fungus, *Leptosphaeria maculans*, enters the genomic era. *Molecular Plant Pathology* **6**: 225–241.
- Saccardo PA (1879). Fungi Gallici lecti a cl. viris P. Brunaud, C.C. Gillet et Abb. Letendre. *Michelia* 1: 500–538.
- Saccardo PA (1892). Sylloge Fungorum omnium hucusque cognitorum: 10. Supplementum Universale, Pars II, Italy, Padova: 1–964.
- Salam MU, MacLeod WJ, Maling T, et al. (2011). A meta-analysis of severity and yield loss from ascochyta blight on field pea in Western Australia. Australasian Plant Pathology 40: 591–600.
- Schneider R, Gerlach W (1966). *Pyrenochaeta lycopersici* nov. spec., der Erreger der Korkwurzelkrankheit der Tomate. *Journal of Phytopathology* **56**: 117–122.
- Schoch CL, Shoemaker RA, Seifert KA, et al. (2006). A multigene phylogeny of the Dothideomycetes using four nuclear loci. Mycologia 98: 1041–1052.
- Sharma R, Sharma R, Crous PW (2015). Matsushimamyces, a new genus of keratinophilic fungi from soil in central India. IMA Fungus 6: 337–343.
- Spegazzini C (1881). Nova addenda ad mycologiam venetam. Atti della Società Crittogamologica Italiana 3: 42-71.
- Stamatakis A (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. *Bioinformatics* **30**: 1312–1313.

- Su YY, Qi YL, Cai L (2012). Induction of sporulation in plant pathogenic fungi. *Mycology* **3**: 195–200.
- Sung G-H, Sung J-M, Hywel-Jones NL, et al. (2007). A multi-gene phylogeny of Clavicipitaceae (Ascomycota, Fungi): identification of localized incongruence using a combinational bootstrap approach. Molecular Phylogenetics and Evolution 44: 1204–1223.
- Tamura K, Stecher G, Peterson D, *et al.* (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. *Molecular Biology and Evolutionary* **31**: 2725–2729.
- Tanaka K, Hirayama K, Yonezawa H, et al. (2015). Revision of the Massarineae (Pleosporales, Dothideomycetes). Studies in Mycology 82: 75–136.
- Thambugala KM, Daranagama DA, Phillips AJL, et al. (2016). Microfungi on Tamarix. Fungal Diversity 82: 239–306.
- Thompson JD, Higgins DG, Gibson TJ (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. *Nucleic Acids Research* **22**: 4673–4680.
- Trakunyingcharoen T, Lombard L, Groenewald JZ, et al. (2014). Mycoparasitic species of Sphaerellopsis, and allied lichenicolous and other genera. IMA Fungus 5: 391–414.
- Valenzuela-Lopez N, Sutton DA, Cano-Lira JF, et al. (2016). Coelomycetous fungi in the clinical setting: morphological convergence and cryptic diversity. *Journal of Clinical Microbiology* 55: 552–567.
- Verkley GJ, Gené J, Guarro J, et al. (2010). Pyrenochaeta keratinophila sp. nov., isolated from an ocular infection in Spain. Revista Iberoamericana de Micología 27: 22–24.
- Vilgalys R, Hester M (1990). Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several *Cryptococcus* species. *Journal of Bacteriology* **172**: 4238–4246.
- Wanasinghe DN, Hyde KD, Crous PW, et al. (2017a). Phylogenetic revision of Camarosporium (Pleosporineae, Dothideomycetes) and allied genera. Studies in Mycology 87: 207–256.
- Wanasinghe DN, Jones EB, Camporesi E, et al. (2016). Taxonomy and phylogeny of Laburnicola gen. nov. and Paramassariosphaeria gen. nov. (Didymosphaeriaceae, Massarineae, Pleosporales). Fungal Biology 120: 1354–1373.
- Wanasinghe DN, Phookamsak R, Jeewon R, et al. (2017b). Fenestellaceae with descriptions of new Fenestella species and Neocucurbitaria gen. nov. Mycosphere 8: 397–414.
- White TJ, Bruns T, Lee S, et al. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR protocols: a guide to methods and applications (Innis MA, Gelfand DH, Sninsky JJ, White TJ, eds). Academic Press, San Diego, California, USA: 315–322.
- Wijayawardene NN, Crous PW, Kirk PM, et al. (2014). Naming and outline of Dothideomycetes–2014 including proposals for the protection or suppression of generic names. *Fungal Diversity* 69: 1–55.
- Wijayawardene NN, Hyde KD, Wanasinghe DN, et al. (2016). Taxonomy and phylogeny of dematiaceous coelomycetes. Fungal Diversity 77: 1–316.
- Winter G (1885). Pilze–Ascomyceten. In: GL Rabenhorst's Kryptogamen-Flora von Deutschland, Oesterreich und der Schweiz, 1: 65–528.
- Woudenberg JHC, Aveskamp MM, de Gruyter J, et al. (2009). Multiple Didymella teleomorphs are linked to the Phoma clematidina morphotype. Persoonia 22: 56–62.
- Woudenberg JHC, Groenewald JZ, Binder M, et al. (2013). Alternaria redefined. Studies in Mycology 75: 171–212.
- Zhang Y, Crous PW, Schoch CL, Hyde KD (2012). Pleosporales. Fungal Diversity 53: 1–221.
- Zhang Y, Schoch CL, Fournier J, et al. (2009). Multi-locus phylogeny of Pleosporales: a taxonomic, ecological and evolutionary re–evaluation. Studies in Mycology 64: 85–102.

UNIVERSITAT ROVIRA I VIRGILI TAXONOMÍA DE HONGOS CELOMICETOS DE INTERÉS CLÍNICO Nicomedes Miguel Antonio Valenzuela López

4.3. Pleosporalean fungi from USA: family structure

N. Valenzuela-Lopez^{1,2}, J.F. Cano-Lira¹, J. Guarro¹, D.A. Sutton³, N. Wiederhold³, P.W. Crous^{4,5}, and A.M. Stchigel¹

¹Unitat de Micologia, Facultat de Medicina i Ciències de la Salut, and IISPV, Universitat Rovira i Virgili, Reus, Spain; ²Microbiology Unit, Medical Technology Department, Faculty of Health Science, University of Antofagasta, Av. Universidad de Antofagasta s/n, 02800 Antofagasta, Chile; ³Fungus Testing Laboratory, University of Texas Health Science Center, San Antonio, TX, USA; ⁴Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; ⁵Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands

(En preparación)

UNIVERSITAT ROVIRA I VIRGILI TAXONOMÍA DE HONGOS CELOMICETOS DE INTERÉS CLÍNICO Nicomedes Miguel Antonio Valenzuela López

Pleosporalean coelomycetes from USA: family structure.

N. Valenzuela-Lopez^{1,2}, J.F. Cano-Lira^{1*}, J. Guarro¹, D.A. Sutton³, N. Wiederhold³, P.W. Crous^{4,5}, and A.M. Stchigel¹.

¹Unitat de Micologia, Facultat de Medicina i Ciències de la Salut, and IISPV, Universitat Rovira i Virgili, Reus, España; ²Microbiology Unit, Medical Technology Department, Faculty of Health Science, University of Antofagasta, Av. Universidad de Antofagasta s/n, 02800 Antofagasta, Chile; ³Fungus Testing Laboratory, University of Texas Health Science Center, San Antonio, Texas, USA; ⁴Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; ⁵Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.

*Correspondence: J.F. Cano-Lira, jose.cano@urv.cat.

Abstract:

A high number of fungi are characterized by the production of conidia within a conidioma, traditionally being named coelomycetes. These fungi can be found on the most diverse habitats including human infections. Recently, the taxonomy of the coelomycetes has drastically changed, remaining still controversial. Most of these organisms belong to *Pleosporales*, one of the largest order in *Dothideomycetes* that includes relevant plant pathogens and numerous species. We have revisited the families of the *Pleosporales* proposing a modern restructuration of most of them, based on the molecular and morphological study of a wide set of fresh or well preserved strains from clinical or environmental origin. We have studied a total of 106 isolates by combining the LSU, ITS, *tub2*, *rpb2* and *tef*1 sequences including numerous types and reference strains for comparison purposes. The resulting phylogenetic tree revealed that the *Pleosporales* are included in 70 families, represented into *Pleosporales*, including the new family *Medicopsidaceae* proposed here. Our strains were distributed in 15 families and 12 genera, 30 species, and five new combinations are proposed as new.

Key words: Coelomycetes, *Didymosphaeriaceae*, Multigene phylogeny, *Pleosporales*, *Phaeosphaeriaceae*, taxonomy, *Thyridariaceae*.

Taxonomic novelties: New family: Medicopsidaceae Valenzuela-Lopez, Cano, Guarro & Stchigel; New genera: Deannamyces, Dictyophoma, Didymosphaeomyces, Neodictyophoma, Neothyridaria, Parachaetomella, Paranigrograna, Pararoussoella, Setosamyces, Sphaeriamyces, Xenoleptosphaeria, Xenoroussoella; New species: Anteaglonium oculorum, Deannamyces macrospora, Dictyophoma flavescens, Didymosphaeomyces unguis, Edenia oculi, Keissleriella profunda, Montagnula cylindrispora, Neodictyophoma brunneospora, Neosetophoma americana, Neothyridaria solani, Nigrograna cutanea, Parachaetomella ligniputridi, Paranigrograna pneumonia, Paraphaeosphaeria ellipsospora, Paraphaeosphaeria Pararoussoella pulmonaris, Parathyridaria hominis, Parathyridaria naris, suttonii, Parathyridaria ovina, Phaeodothis diversispora, Roussoella oculi-hominis, Setosamyces obispora, Sphaeriamyces fuckelii, Trematophoma pneumonia, Trematosphaeria hominis, Trematosphaeria setosa, Xenoleptosphaeria confluens, Xenoroussoella coprophila. Xenoroussoella papuae, Xenoroussoella profunda; New combinations: Neothyridaria solani, Setosamyces glycines, Setosamyces telephii, Thyridaria mukdahanensis, Xenoroussoella mexicana.

INTRODUCTION

A high number of fungi are characterized by the production of conidia within a cavity lined by fungal tissue, host tissue, or the combination of both, called conidioma (Sutton 1980). These organisms were traditionally considered coelomycetes and most of them being saprobic or parasites of terrestrial vascular plants, and commonly found in soil or salty or freshwater environments; although with a lesser occurrence they can also infect vertebrates, including humans and other fungi (Aveskamp et al. 2008, de Hoog et al. 2000, Hyde et al. 2013, Valenzuela-López et al. 2017). In spite of the fact that the term coelomycetes is still used to refer to these fungi is an obsolete name, however, it is considered an artificial fungal class (Taylor 1995). The conidioma structure is usual acervular (cup-shaped and open), pycnidial (globose to pyriform and closed), or showing what seems more or less intermediate structure as sporodochium-like or stroma (Sutton 1980, Nag Raj 1993, Kirk et al. 2008). In this wide group there are included a huge number of fungi representing nearly 1,000 genera and 7,000 species (Kirk et al. 2008), which, modern molecular studies, have demonstrated that belong to at least three classes of the phylum Ascomycota, i.e.s Dothideomycetes, Leotiomycetes, and Sordariomycetes (Schoch et al. 2009, Maharachchikumbura et al. 2014, Wijayawardene et al. 2016).

In a previous study, we have demonstrated that a high variety of coelomycetes are present in clinical samples and that most of these fungi show a phoma-like or paraconiothyrium-like morphology and belong to several families of the Pleosporales (Valenzuela-Lopez et al. 2017). The order Pleosporales encompasses more than 4,700 species included in more than 230 genera, and 39 families (Kirk et al. 2008, Zhang et al. 2009, 2012, Ariyawansa et al. 2013, Hyde et al. 2013, Wijayawardene et al. 2014) and is probably the largest order of the class Dothideomycetes. The asexual morphs of the Pleosporales produce mainly their conidia within discrete conidiomata, or can arise from single conidiophores produced on the mycelia. Most of them are true plant pathogens including numerous species of Alternaria, Ascochyta, Bipolaris, Didymella, Leptosphaeria, Parastagonospora and Phoma (Zhang et al. 2009, 2012, Ariyawansa et al. 2013, de Gruyter et al. 2013, Liu et al. 2013, Quaedvlieg et al. 2013, Woudenberg et al. 2013, Hyde et al. 2014). Of all these coelomycetes, the most commonly recognized, due to their globose to pyriform pycnidia and one-celled hyaline conidia are the phoma-like fungi. However, this common morphology in fact corresponds to a complex taxonomy. For instance the former genus Phoma is highly polyphyletic, its species being distributed in the families Cucurbitariaceae, Didymellaceae, Leptosphaeriaceae and Phaeosphaeriaceae (Aveskamp et al. 2010, de Gruyter et al. 2013). The paraconiothyrium-like fungi which are characterized by pycnidial or

stromatic conidiomata producing mostly relatively small, subhyaline to pigmented, one or twocelled conidia, and previously classified in Coniothyrium or Microsphaeropsis, have also resulted to be polyphyletic and forming different lineages within the *Pleosporales* (Verkley et al. 2004, 2013, 2014, Schoch et al. 2009, Zhang et al. 2009, 2012, Aveskamp et al. 2010, de Gruyter et al. 2013, Quaedvlieg et al. 2013). The type species of Microsphaeropsis, M. olivacea, was recently placed by Chen et al. (2015) in the new family Microsphaeropsidaceae outside of Didymellaceae, and the type species of Coniothyrium, C. palmarum, forms a distinct clade outside of Leptosphaeriaceae, on which has been based the resurrection of the family Coniothyriaceae in the Pleosporales (de Gruyter et al. 2012). Since several species of Coniothyrium were genetically distant from Coniothyrium s. str. (Verkley et al. 2004) the genus Paraconiothyrium was introduced to accommodate them, this latter has been accepted in Didymosphaeriaceae (Ariyawansa et al. 2014). In general the traditional pleosporalean coelomycetes are difficult to identify morphologically because the lack or presence of reduced characteristic under in vitro conditions, which is worsened by the fact that most of these fungi remain sterile under the usual experimental conditions. Therefore, molecular analysis are required in most cases to achieve an accurate identification, being necessary to perform a multi-locus analysis to reproduce a reliable phylogenetic lineage (Schoch et al. 2006, 2009, Zhang et al. 2009, 2012, Valenzuela-Lopez et al. 2018).

In light of the background presented above the aim of this study is to resolve the taxonomic placement of 80 coelomycetous strains isolated from USA that was previously identified as members of *Pleosporales*, as well as 24 reference and ex-type strains provided by the CBS culture collection. For that reason, we have tried to delineate the phylogenetic relationship within the pleosporalean families performing a multi-locus analysis with at least three of the five phylogenetic markers sequenced: a fragment of the 28S nrRNA (LSU), the internal transcribed spacer region (ITS), a fragment of the beta-tubulin (*tub2*), a fragment of the RNA polymerase II subunit 2 (*rpb2*) and a fragment of translation elongation factor 1-alpha (*tef1*) genes, and revising their taxonomy.

MATERIALS AND METHODS

Isolates and reference fungal strains

The study comprises 80 clinical isolates previously identified as belonging to the *Pleosporales* (Valenzuela-Lopez *et al.* 2017), provided by the Fungus Testing Laboratory of the University of Texas Health Science Center at San Antonio (UTHSC; San Antonio, Texas, USA) (Table 1). For comparative purposes 24 reference and ex-type strains provided by the CBS culture

collection and two environmental strains from Spain (FMR 15573 and FMR 15906), were also included (Table 2).

Phenotypic study

For cultural characterisation, isolates were incubated on oatmeal agar (OA), malt extract agar (MEA) and carnation leaf agar (CLA), following the protocols of Valenzuela-Lopez *et al.* (2018). Colony diameters were measured after 7 d at 25 ± 1 °C, and colony characterisation was performed 14 d after inoculation on the culture media. Colours were according to Kornerup & Wanscher (1978). The ability of the isolates to grow at cardinal temperatures were determined on potato dextrose agar (PDA; Pronadisa, Madrid, Spain) after 7 d in darkness, from 5 to 35 °C , at 5 °C intervals, and 37 °C.

Digital images of fruiting bodies were captured with an Olympus CH2 (Olympus Corporation, Tokyo, Japan), and micro-morphological structures with a Zeiss Axio-Imager M1 (Oberkochen, Germany) with a DeltaPix Infinity X digital camera using Nomarski differential interference contrast. Measurements were carried out by examining at least 30 individuals of each structure mounting in Shear's medium and in water (Aveskamp *et al.* 2010, Chen *et al.* 2015, Valenzuela-Lopez *et al.* 2018). The production of metabolite E+ (NaOH spot test) was carried out by the application of a droplet of 1N NaOH on a colony grown on MEA (Dorenbosch 1970, Noordeloos *et al.* 1993).

DNA extration, PCR and sequencing

The total genomic DNA was extracted from colonies grown on PDA after 7 d incubation at 25 \pm 1 °C, using the FastDNA kit protocol (Bio101, Vista, CA), with a FastPrep FP120 instrument (Thermo Savant, Holbrook, NY) according to the manufacturer's protocol. DNA was quantified by using Nanodrop 2000 (Thermo Scientific, Madrid, Spain). The following loci were amplified and sequenced: LSU with the primers LROR (Rehner & Samuels 1994),d LR5 (Vilgalys & Hester 1990) and ITS with the primers ITS5 and ITS4 (White *et al.* 1990), *tub2* with the primers TUB2Fw and TUB4Rd (Woudenberg *et al.* 2009), *rpb2* with the primers RPB2-5F2 (Sung *et al.* 2007) and fRPB2-7cR (Liu *et al.* 1999), and *tef*1 with the primers TEF1-983F and TEF1-2218R (Schoch *et al.* 2006). The PCR amplifications were performed in a total volume of 25 µL containing 5 µL 10× PCR Buffer (Invitrogen, California, USA), 0.2 mM dNTPs, 0.5 µM of each primer, 1 U Taq DNA polymerase and 1–10 ng genomic DNA. PCR conditions for LSU, ITS, *tub2* and *tef*1 were set as follows: an initial denaturation at 95 °C for 5 min, followed by 35 cycles of denaturation, annealing and extension, and a final extension step at 72 °C for 10 min. For the LSU and ITS amplification, the 35 cycles consisted of 45 s at 95 °C, 45 s at 53 °C and 2 min at 72 °C; for the *tub2* region 30 s at 94 °C, 45 s at 56 °C and 1 min at 72 °C; and for *tef*1

region 30 s at 94 °C, 1 min 20 s at 57 °C and 1 min 30 s at 72 °C. The PCR program for *rpb2* amplification was performed following the protocol of Woudenberg *et al.* (2013). Sequencing of the amplicons was made in both directions with the same primer pair used for amplification at Macrogen Europe (Macrogen Inc., Amsterdam, The Netherlands). The consensus sequences were obtained using the SeqMan software v. 7 (DNAStar Lasergene, Madison, WI, USA).

Phylogenetic analyses

Sequences of species used in the phylogenetic analysis were obtained from GenBank and listed in Table 1. For the phylogenetic study, the alignments of the sequences were performed using MEGA v. 6.06 (Tamura et al. 2013), with the ClustalW application (Thompson 1994), refined with MUSCLE (Edgar 2004) and manually adjusted using the same software platform. The ambiguous regions were excluded from the analyses. Phylogenetic reconstructions were made by maximum-likelihood (ML) and Bayesian inference (BI) with RAxML v. 8.2.10 (Stamatakis 2014) and MrBayes v. 3.2.6 (Ronguist et al. 2012), respectively. The best substitution model for each gene matrix correspond to GTR+I+G, and was estimated using MrModelTest v. 2.3 (Nylander 2004). For ML analyses, nearest-neighbour interchange was used as the heuristic method for tree inference. Support for internal branches was assessed by 1 000 ML bootstrapped pseudoreplicates. Bootstrap support (BS) ≥70 was considered significant. For BI analyses, Markov chain Monte Carlo (MCMC) sampling was performed with 10 M generations, with samples taken every 1 000 generations. The 50 % majority rule consensus trees and posterior probability values (PP) were calculated after removing the first 25 % of the resulting trees for burn-in. A PP value ≥0.95 was considered as significant. Both ML and BS analyses were run in CIPRES (Miller et al. 2010). Sequences generated in this study were deposited in GenBank (see Table 1 and 2), the final matrices used for phylogenetic analyses in TreeBASE (www.treebase.org; accession number: SXXXX) and the novel taxonomic descriptions and nomenclature in MycoBank (www.mycobank.org; Crous et al. 2004).

RESULTS AND DISCUSION

Phylogeny of pleosporalean families

The fungi included in the study were analyzed performing a multi-locus alignment of the LSU, *rpb2* and *tef1* sequences of our strains and others from types or reference strains retrieved from Genbank (see Table 2) to confirm and determine their exact placement within the

Pleosporales; genera of the order Helotiales as outgroup. Since the topologies of the consensus trees inferred with ML and BI analyses coincided, only the consensus tree of the first is shown (Fig. 1). The resulting tree showed a total of 75 clades that corresponded to the majority of accepted pleosporalean families. The strains included in the study were accommodated in fourteen of them, i.e. Acrocalymmaceae, Amorosiaceae, Anteagloniaceae, Coniothyriaceae, Dictyosporiaceae, Didymosphaeriaceae, Leptosphaeriaceae, Lindgomycetaceae, Lophiostomataceae, Macrodiplodiopsidaceae, Nigrogranaceae, Phaeosphaeriaceae, Thyridariaceae, Trematosphaeriaceae, and the new family *Medicopsidaceae*, proposed here for the monotypic genus *Medicopsis*. Furthermore, the type species of Pyrenochaeta ligni-putridi was relocated within the order Helotiales and proposed here in the new genus Parachaetomella. The most relevant clades of each family and the new proposed taxa were highlighted and discussed below.

In spite of the numerous recent studies on the *Pleosporales* taxa the boundaries of the different families of the *Pleosporales* are not yet well defined. The first attempts to circumscribe on a molecular basis the different families of *Pleosporales* were carried out by Zhang *et al.* (2009) and Hyde *et al.* (2013) who performing multi-locus analyses accepted 15 and 41 families, respectively. However, more recently Liu *et al.* (2017) enlarged the number of families of *Pleosporales* up to 55. In the present study the taxonomy of the *Pleosporales* has been revised and a total of 71 families have been accepted in this order. Thus, for each family involved where new taxa are propose was constructed its phylogenetic tree, and the number of taxa, characters and information generated from the BI and ML for each dataset is commented in alphabetic order as follows:

Amorosiaceae

The family *Amorisiaceae* currently includes the genera *Amorosia* and *Angustimassarina*. The former only includes the dematiaceous hyphomycete *A. littoralis* that was isolated from marine sediment and originally phylogenetically placed into *Sporormiaceae* (Mantle *et al.* 2006). The latter genus is characterised by narrowly fusiform ascospores, and can produce an asexual morph, and also is considered parasitic of other ascomycetes (Thambugala *et al.* 2015). However, the phylogenetic relationships between both genera are unclear, resulting clearly separated phylogenetically; while *Amorosia* formed a sister clade with the genus *Teichospora* (*Teichosporaceae*) our strain (FMR 13779 joined with *Angustimassarina*, therefore, in a second phylogenetic analysis on Angustimassarina revealed that previous species in this genus remains doubtful due to their ITS and *tef*1 sequences are quite similar among them and more phylogenetic markers should be tested to recognize these species. The Fig. 1 showed a multi-locus tree based in the analysis of three markers (LSU, ITS, *tef*1) that included our

mentioned strain of *Angustimassarina*, the nine accepted species of the genus and *Amorosia littoralis*, while that the type strain of *Westerdykella cylindrica* (CBS 454.72) was used as out group. These data suggested that *Angustimassarina* should be limited to two species; the three markers providing very similar results, i.e., (443 conserved base pairs of 446 bp in ITS and 738 bp of 739 in LSU), and only six species have *tef*1 sequences, in which 17 bp of 628 bp are variable among them. These results demonstrated the polyphyletic characteristic of *Angustimassarina* which should be re-evaluated with more phylogenetic markers to confirm the correct boundaries of this genus. Since the strain FMR 13779 is phylogenetically different from to the species accepted in this genus, here is proposed as the new species *A. marina*.

Anteagloniaceae

The family *Anteagloniaceae* was introduced by Hyde *et al.* (2013) to accommodate the genus *Anteaglonium*, morphologically characterized by producing hysterothecial ascomata and related with the genera *Anteaglonium* and *Flammeascoma* (Liu *et al.* 2015). In a recent study of this family by Jayasiri *et al.* (2016), it was included a coelomycetous morph associated to *Anteaglonium*, and characterized by producing pycnidia, with long, unbranched, hyaline conidiophores and hyaline conidiogenous cells formed in the innermost layer of the wall, and hyaline, oval to globose, aseptate conidia. In our first phylogenetic tree (Fig. 1) the strain UTHSC DI16-316 (FMR 13809) formed a well-supported sister clade with *A. latirostrum* although both species were phylogenetically distinct. Therefore, we proposed this strain as the new species *A. oculorum*.

Coniothyriaceae

The family *Coniothyriaceae* was proposed by Cooke (1983) with *Coniothyrium* as the generic type. These fungiare characterized by pycnidia, annellidic conidiogenous cells and brown, thick-walled, aseptate or 1-septate, verrucose conidia with *C. palmarum* as its type species. Previously it was associated with *Leptosphaeriaceae* (de Gruyter *et al.* 2009), but currently both have demonstrated to be phylogenetically separated within the *Pleosporales* (de Gruyter *et al.* 2013, Hyde *et al.* 2013, Wanasinghe *et al.* 2017). In their study on camarosporium-like species, Wanasinghe *et al.* (2017) showed the phylogenetic relationship of *Coniothyriaceae* with *Camarosporidiellaceae*, and placed the genus *Staurosphaeria* in the first family. However, in this study this family shows a polyphyletic relationship within the suborder *Pleosporineae*, revealing that *Coniothyrium* species were placed in a different clade, also confirms that the type species *C. palmarum* is close related with *Camarosporidiella* species. In addition, this study shows that *Staurosphaeria* forms a distinc clade outside of *Coniothyriaceae* sensu *stricto*. On the other hand, strains previously identified as *C. telephii* were studied here, and

demonstrated to be phylogenetically distinc from strains of *C. palmarum* (CBS 400.71 and 758.73), therefore, it has been erected here the new genus *Setosamyces* to accommodate it. *Coniothyrium telephii* was proposed by de Gruyter *et al.* (2013) as a new combination for *Phoma septicidalis* (Boerema 1979), its basionym *Pyrenochaeta telephii* (Allescher 1896) is morphologically characterised by producing setose pycnidial conidiomata and small, hyaline, aseptate conidia, this demonstrated the morphological difference with the description of the type species of *Coniothyrium*. Thus, here is introduced the new combination *Setosamyces telephii*, and for the strain CBS 101636 previously identified as *C. telephii* is proposed as the new species *S. glycines* based on the phylogenetic analysis and by morphological features (see Taxonomy section). Further studies trying to collect additional fresh material are needed to clarify the taxonomy of this complex family.

Dictyosporiaceae

This family was formally introduced by Boonmee *et al.* (2016) to accommodate those species with cheiroid, digitate and palmate, dictyosporous conidia and their sexual morphs. Currently, it comprises eleven genera, *Dictyosporium* being the generic type. In the first phylogenetic analysis of this study (Fig. 1), the strain UTHSC DI16-355 and CBS 178.93 both previously identified as *Paraconiothyrium* spp. (de Gruyter *et al.* 2012, Valenzuela-Lopez *et al.* 2017) clustered within this family.

Families which have been revisited and pending of writing are: *Didymosphaeriaceae*, *Leptosphaeriaceae*, *Lindgomycetaceae Lophiostomataceae*, *Macrodiplodiopsidaceae*, *Medicopsidaceae*, *Nigrogranaceae*, *Phaeosphaeriaceae*, *Thyridariaceae*, *Trematosphaeriaceae*.

Taxonomy

Nigrogranaceae Jaklitsch & Voglmayr, Stud. Mycol. 85: 54. 2016.

Type genus: Nigrograna Gruyter, Verkley & Crous.

Nigrograna Gruyter *et al.*, Stud. Mycol. 75: 31. 2012, emend. Jaklitsch & Voglmayr, Stud. Mycol. 85: 54. 2016.

Type species: Nigrograna mackinnonii (Borelli) Gruyter, Verkley & Crous.

Nigrograna cutanea Valenzuela-Lopez, Cano, Guarro & Stchigel, **sp. nov.** MycoBank MBXXX.

Etymology: The species name refers to the sort of clinical specimen (skin), from which the fungus was isolated.

Culture sterile. This species differs from its closest species, *Nigrograna mackinnonii* in the sequence of the sequences of ITS, *rpb2* and *tef*1, being this latter the most informative (see TreeBASE SXXXX).

Culture characteristics: Colonies on OA reaching 20 mm diam after 7 d at 25±1 °C, flattened, olive grey (M. 3F2); reverse dark grey (M. 3F1). Colonies on MEA reaching 12 mm after 7 d at 25±1 °C, convex with papillate surface, olive grey (M. 3F2); reverse dark grey (M. 3F1). NaOH spot test negative. Crystals absent. Optimal, minimum and maximum temperatures were 25, 15 and 35° C, respectively.

Material examined: **USA**, from human skin, 2007, D.A. Sutton (**holotype** CBS H-XXX, exholotype living cultures CBS XXX = UTHSC DI16-241 = FMR 13731).

Notes: This species is phylogenetically easy to distinguish from the other species of the genus, but shares along with *N. mackinnonii* the human origin of the clinical specimens, the latter species being associated to the production of black grain mycetoma (Borelli 1976, Ahmed *et al.* 2014). Unfortunately, morphological comparison was not possible since this strain remains sterile.

Paranigrograna Valenzuela-Lopez, Cano, Guarro & Stchigel, gen. nov. MycoBank MBXXXX.

Etymology: It refers to its close phylogenetic relationship with *Nigrograna*.

Culture sterile. This fungus typically produces a greenish-yellow diffusible pigment on MEA.

Type species: Paranigrograna pneumoniae Valenzuela-Lopez, Cano, Guarro & Stchigel.

Paranigrograna pneumoniae Valenzuela-Lopez, Cano, Guarro & Stchigel, **sp. nov.** MycoBank MBXXX.

Etymology: It refers to the respiratory sample, from which the fungus was.

Culture remaining sterile. This strain differs phylogenetically from the closest species of *Nigrograna* (see Fig. X "tree"), particularly *N. obliqua* (XX% identity (ITS) and XX% identity (EF) and forms a distinct basal branch within *Nigrogranaceae*.

Culture characteristics: Colonies on OA reaching 13 mm diam after 7 d at 25±1 °C, felted, olive brown (M. 4F4); reverse dark grey (M 4F1). Colonies on MEA reaching 12 mm after 7 d at 25±1 °C, slightly floccose, greyish-beige (M. 4C2); reverse dark grey (M. 4F1). NaOH spot test negative. Crystals absent. Maximum, optimal and minimum temperature of growth 30, 25and 15 °C, respectively. Optimal temperature for sporulation 25 °C.

Material examined: **USA**, from human bronchial washing, 2011, D.A. Sutton (**holotype** CBS H-XXX, ex-type living cultures CBS XXX = UTHSC DI16-342 = FMR 13835).

Notes: This strain, forms a distinct basal branch outside from *Nigrograna s. str*, but close to that genus. Thus is considered a new within the *Nigrogranaceae*. Unfortunately, this strain remains sterile but produces a characteristic greenish-yellow pigment on MEA.

Thyridariaceae Q. Tian & K.D. Hyde, Fungal Diversity 63: 254. 2013. emend. Jaklitsch & Voglmayr, Stud. Mycol. 85: 44. 2016.

Synonym: Roussoellaceae J.K. Liu et al., Phytotaxa 181: 7. 2014.

Type genus: Thyridaria Sacc.

Neothyridaria Valenzuela-Lopez, Cano, Crous, Guarro & Stchigel, gen. nov. MycoBank MBXXXX.

Etymology: Because its phylogenetic relationship with *Thyridaria*.

Conidiomata pycnidial, brown, immersed to erumpent, solitary, globose, peridium of *textura angularis*, with a single papillate ostiolar neck. *Conidiogenous cells* phialidic, hyaline, smooth-walled, ampulliform to doliiform. *Conidia* aseptate, pale brown, smooth- and thick-walled, subcylindrical, guttulate.

Type species: *Neothyridaria solani* (Crous & M.J. Wingf.) Valenzuela-Lopez, Cano, Crous, Guarro & Stchigel.

Neothyridaria solani (Crous & M.J. Wingf.) Valenzuela-Lopez, Cano, Crous, Guarro & Stchigel, **comb. nov.** MycoBank MBXXX.

Basionym: Roussoella solani Crous & M.J. Wingf., Persoonia 36: 341. 2016. *Description:* Crous *et al.* (2016).

Material examined: **France**, La Reunión, on stems of *Solanum mauritianum* (*Solanaceae*), 13 Mar 2015, P.W. Crous & M.J. Wingfield (**holotype** CBS H-22597, ex-type living cultures CBS 141288 = CPC 26331).

Notes: This species, based on DNA sequences, was recently proposed by Crous & M.J. Wingfield (2016) in *Roussoella*. However, in our phylogenetic study this species was located into a sister clade related with *Neoroussoella*, *Parathyridaria* and *Thyridaria*. Morphologically, this species differs considerably from the asexual morph of *Neoroussoella bambusae*, the phylogenetically closer, that produces conidiophores (absents in *Nt. solani*), anellidic conidiogenous cells (phialidic in *Nt. solani*) and hyaline conidia (pale brown in *Nt. solani*) (Liu JK *et al.* 2014). Genetically, *Nt. solani* differs from *Nr. bambusae* in 14 and 33 bp in their LSU and ITS sequences, respectively. Therefore, because these differences the new combination XXXXX is proposed.

Pararoussoella Valenzuela-Lopez, Cano, Guarro & Stchigel, gen. nov. MycoBank MBXXXX.

Etymology: Based on the phylogenetic relationship with *Roussoella*.

Sexual or asexual reproductive structures absent. Phenotypically this fungus is capable of produce a reddish pigment on culture. No known sexual-morph.

Type species: Pararoussoella pulmonaris Valenzuela-Lopez, Cano, Guarro & Stchigel.

Pararoussoella pulmonaris Valenzuela-Lopez, Cano, Guarro & Stchigel, **sp. nov.** MycoBank MBXXX.

Etymology: The name refers to the respiratory tract where the fungus was isolated.

Culture sterile. *Pararoussoella pulmonaris* differs phenotypically from its closest phylogenetic genus *Xenoroussoella* by the production of a reddish soluble pigment on OA, and genetically in 15 bp of the LSU sequence, 38 bp of ITS and 163 bp of *rpb*2, based on alignment of the

concatenated four loci deposited in TreeBASE (SXXXX).

Culture characteristics: Colonies on OA reaching 17–20 mm diam after 7 d at 25 \pm 1 °C, flattened, front and reverse dark brown (M. 7F5). Colonies on MEA reaching 8–12 mm diam after 7 d at 25 \pm 1 °C, slightly flattened, grey (M. 4C1); reverse olive brown (M. 4E3). NaOH spot test negative. Crystals absent. Optimal temperature of growth 30°C; minimum temperature of growth 15°C; maximum temperature of growth 35°C. *Material examined*: **USA**, from human bronchial washing, 2009, D.A. Sutton (**holotype** CBS H-XXX, ex-holotype living cultures CBS XXX = UTHSC DI16-269 = FMR 13760).

Notes: This strain is phylogenetic distinguishable from its most close relative, *Xenoroussoella*, being clearly a different taxon. Unfortunately, our strain was not able to sporulate, and further studies are needed for a more complete characterization of this fungus.

Parathyridaria Jaklitsch & Voglmayr, Stud. Mycol. 85: 48. 2016.

Type species: Parathyridaria ramulicola Jaklitsch, Fourn. & Voglmayr.

Parathyridaria brachi Valenzuela-Lopez, Cano, Guarro & Stchigel, **sp. nov.** MycoBank MBXXX.

Etymology: The name refers to the clinical specimen (human arm), from which the fungus was isolated.

Culture sterile. This species differs from the closest phylogenetic species, *Parathyridaria percutanea*, in 14 bp of ITS, 7 bp of *rpb*2 and 36 bp of *tef*1, based on alignment of the concatenated four loci deposited in TreeBASE (SXXXX).

Culture characteristics: Colonies on OA reaching 23 mm diam after 7 d at 25±1 °C, flattened, olive (M. 3E5); reverse smoke grey (M 3C2) to olive (M 3F4). Colonies on MEA reaching 18 mm diam after 7 d at 25±1 °C, slightly floccose, white (M. 4A1); reverse dark yellow (M. 4C8). NaOH spot test negative. Crystals absent. Optimal temperature of growth and sporulation 25°C; minimum temperature of growth 5°C; maximum temperature of growth 37°C.

Material examined: **USA**, from human arm sample, 2010, D.A. Sutton (**holotype** CBS H-XXX, ex-holotype living cultures CBS XXX = UTHSC DI16-292 = FMR 13784).

Notes: This strain was recovered from a human clinical specimen in USA, as well as *Parathyridaria percutanea,* but unfortunatrly since our strain is sterile the morphological comparison between both fungi was not possible. However, our strain differs considerably in the ITS, *rpb*2 and *tef*1nucleotide sequences to be considered as a different species, being the last marker the most informative.

Parathyridaria naris Valenzuela-Lopez, Cano, Guarro & Stchigel, **sp. nov.** MycoBank MBXXX.

Etymology: Referring to the nose where the fungus was isolated.

Culture sterile. This species forms a distinct phylogenetic branch from the other species of the genus, differing from its close relative *P. ovina* in 20 bp (LSU), 2 bp (ITS), 143 bp (*rpb2*) and 6 bp (*tef*1).SXXXX).

Culture characteristics: Colonies on OA reaching 19–22 mm diam after 7 d at 25±1 °C, flattened, white (M. 1A1) to olive (M. 1E4); reverse olive (M. 1E4). Colonies on MEA reaching 16–20 mm diam after 7 d at 25±1 °C, floccose, white (M. 1A1) to olive (M. 1E4); reverse pale-grey (M. 1B1) to dark-grey (M. 1F1). NaOH spot test negative. Crystals absent. Optimal temperature of growth 25°C; minimum temperature of growth 15°C; maximum temperature of growth 35°C.

Material examined: **USA**, from human nose, 2011, D.A. Sutton (**holotype** CBS H-XXX, exholotype living cultures CBS XXX = UTHSC DI16-334 = FMR 13827).

Notes: This strain is phylogenetically well-delimitate, being *rpb2* sequences the most informative marker, however, since this culture is sterile further studies are needed to characterise morphologically this species.

Parathyridaria ovina Valenzuela-Lopez, Cano, Guarro & Stchigel, **sp. nov.** MycoBank MBXXX. Fig. X.

Etymology: From Latin *ovina*, sheep, because the aspect of the pycnidia under reflected light. *Description*: *Hyphae* pale brown, 2.5–5 μ m wide, smooth- and thin-walled, septate. *Conidiomata* pycnidial, brown to dark brown, solitary, superficial, glabrous (but covered by abundant hyaline hyphae under reflected light), globose to subglobose, 260–290 × 250–260 μ m diam, with a single papillate otiolar neck, pycnidial wall of *textura angularis*, 2-4 layered, 15–25 μ m thick, composed of brown to dark brown, flattened polygonal cells of 5–15 μ m diam. *Conidiogenous cells* phialidic, doliiform to ampulliform, hyaline, $3-5 \times 3-3.5 \mu m$. *Conidia* aseptate, hyaline, smooth- and thin-walled, cylindrical, $2.5-3.5 \times 2 \mu m$, guttulate.

Culture characteristics: Colonies on OA reaching 20 mm diam after 7 d at 25±1 °C, flattened, white (M. 4A1) to beige (M. 4C3); reverse white (M. 4A1) to olive brown (M. 4F8). Colonies on MEA reaching 17 mm diam after 7 d at 25±1 °C, flattened to floccose, white (M. 4A1); reverse pale yellow (M. 4A3) to olive brown (M. 4F8). NaOH spot test negative. Crystals absent. Optimal temperature of growth and sporulation 25°C; minimum temperature of growth 37°C.

Material examined: **USA**, from joint fluid , 2013, D.A. Sutton (**holotype** CBS H-XXX, exholotype living cultures CBS XXX = UTHSC DI16-360 = FMR 13853).

Notes: The proposal of *Parathyridaria ovina* as a new species is mainly based on its phylogenetic relationships, morphologically, it is easy to distinguishs from its closest relative, *P. percutanea*, in the colony features on OA (flattened *vs* floccose), and the largest dimensions of the pycnidia (260–290 × 250–260 µm *vs* 59–102 × 54–96 µm) and conidia (2.5–3.5 × 2 µm *vs* 1.2–2.0 × 0.7–0.9 µm).

Roussoella Sacc., Atti Inst. Veneto Sci. lett. 6: 410. 1888.

Type species: Roussoella nitidula Sacc. & Paol.

Roussoella oculorum Valenzuela-Lopez, Cano, Crous, Guarro & Stchigel, **sp. nov.** MycoBank MBXXX. Fig. X.

Etymology: From Latin *oculorum*, referring to the eyes from which the fungus was isolated.

Description: Hyphae pale brown to brown, 2–3 µm wide, smooth- and thin-walled, septate. *Conidiomata* pycnidial, dark brown, solitary, superficial on carnation leaf agar (CLA), covered by short hyphal outgrowths, globose to subglobose, 140–200 × 140–170 µm diam, with a single papillate otiolar neck, pycnidial wall of *textura angularis*, 2–4 layered, 15–25 µm thick, composed of brown to dark brown, flattened polygonal cells of 5–13 µm diam. *Conidiogenous cells* phialidic, doliiform, hyaline, 3–3.5 × 2–2.5 µm. *Conidia* aseptate, initially hyaline becoming pale brown with the age, smooth- and thin-walled, ellipsoidal, 3–3.5 × 2.5–3 µm, aguttulate.

Culture characteristics: Colonies on OA reaching 20-23 mm diam after 7 d at 25±1 °C, flattened,

brownish-grey (M. 4F2); reverse dark grey (M 4F1). Colonies on MEA reaching 20–24 mm diam after 7 d at 25±1 °C, floccose, white (M. 4A1); reverse dark grey (M. 4F1). NaOH spot test negative. Crystals absent. Optimal temperature of growth and sporulation 25°C; minimum temperature of growth 37°C.

Material examined: **USA**, from human left eye sample, 2014, D.A. Sutton (**holotype** CBS H-XXX, ex-holotype living cultures CBS XXX = UTHSC DI16-362 = FMR 13855).

Notes: This strain formed a basal clade to the genus *Roussoella*, although it is only supported by the Bayesian posterior probability. Morphologically, this fungus only produces an asexual-morph that resembles the pycnidia described in other species of *Roussoella*. We proposed this fungus as the type strain of a new species of *Roussoella*, mostly due to its phylogenetical relationships with the other species of the genus.

Thyridaria Sacc., Grevillea 4: 21. 1875.

Type species: Thyridaria broussonetiae (Sacc.) Traverso.

Thyridaria mukdahanensis (Phook., D.Q. Dai & K.D. Hyde) Valenzuela-Lopez, Cano, Guarro & Stchigel, **comb. nov.** MycoBank MBXXX.

Basionym: Roussoella mukdahanensis Phook., D.Q. Dai & K.D. Hyde, Fungal Diversity 82: 32. 2016.

Description: Dai et al. (2016).

Material examined: **Thailand**, Mukdahan Province, Nongsung District, Wang Hai village, on dead culms of bamboo, 13 April 2011, R. Phookamsak (**holotype** MFLU 11–0237, ex-holotype living cultures MFLUCC 11–0201 = KUMCC).

Notes: This species was proposed by Dai *et al.* (2016) a saprobic fungus on dead bamboo culms in Thailand. Morphologically, this fungus produces a sexual morph compatible with *Roussoella*. In our phylogenetic study, this species clustered with *Thyridaria*, therefore, we propose the new combination including this species in that genus.

Xenoroussoella Valenzuela-Lopez, Cano, Guarro & Stchigel, gen. nov. MycoBank MBXXXX.

Etymology: From Greek ξένος-, strange, rare, because it is phylogenetically distinct from the genus *Roussoella*.

Conidiomata pycnidial, brown, immersed to erumpent, solitary to aggregated, globose, pycnidial wall of *textura angularis*, with a single papillate ostiolar neck. *Conidiogenous cells* phialidic, subhyaline, smooth-walled, globose to ampulliform. *Conidia* aseptate, brown, smooth- and thick-walled, ellipsoid, guttulate. Some species can produce crystals on culture.

Type species: Xenoroussoella mexicana (Crous & Yáñez-Morales) Valenzuela-Lopez, Cano, Guarro & Stchigel.

Xenoroussoella coprophila Valenzuela-Lopez, Cano, Guarro & Stchigel, **sp. nov.** MycoBank MBXXX. Fig. X.

Etymology: The name refers to dung, from which the fungus was isolated.

Description: Hyphae brown, 2–4 µm wide, smooth- and thin-walled, septate. Conidiomata pycnidial, brown to dark brown, solitary, semi-immersed, covered by hyphal outgrowths, globose, 200–260 µm diam, with a single papillate ostiolar neck, pycnidial wall of *textura angularis*, 2–3 layered, 10–20 µm thick, composed of brown to dark brown, flattened polygonal cells of 3–8 µm diam. Conidiogenous cells phialidic, ampulliform, hyaline, smooth, 4.5–6.5 × 3–4.5 µm. Conidia aseptate, pale brown, smooth- and thin-walled, guttulate, ellipsoidal, 3.5–4.5 × 2.5–3 µm.

Culture characteristics: Colonies on OA reaching 24–28 mm diam after 7 d at 25±1 °C, flattened, olive (M. 3F4); reverse dark-grey (M 3F1). Colonies on MEA reaching 22–25 mm after 7 d at 25±1 °C, slightly floccose, white (M. 3A1) to grey (M. 3C1); reverse olive grey (M. 3D2). NaOH spot test negative. Crystals absent. Optimal temperature of growth and sporulation 25°C; minimum temperature of growth 15°C; maximum temperature of growth 35°C.

Material examined: **Spain**, Burgos, Vizcaínos, from an herbivorous animal dung sample, Jul 2016, J. Guarro, M. Guevara-Suarez & J.P.Z. Siqueira (**holotype** CBS H-XXX, ex-holotype living cultures CBS XXX = FMR 15573).

Notes: The strain FMR 15573 resembles morphologically the asexual-morphs of *Thyridariaceae*. However, due to that this strain was recovered from dung and it is phylogenetically distinct within *Xenoroussoella*, we proposed as a novel taxon.

Xenoroussoella mexicana (Crous & Yáñez-Morales) Valenzuela-Lopez, Cano, Guarro & Stchigel, **comb. nov.** MycoBank MBXXX.

Basionym: Roussoella mexicana Crous & Yáñez-Morales, Persoonia 35: 273. 2015. *Description:* Crous *et al.* (2015).

Material examined: **Mexico**, Pozo del Tigre, Mpio. de Jalpan, Puebla State, on leaf spots of *Coffea arabica (Rubiaceae)*, Caturra Rojo variety plantations, 23 Oct 2014, M. de Jesús Yáñez-Morales (**holotype** CMPH, isotype CBS H-22402, ex-isotype living culture CPC 25355). *Notes*: The new combination of *Xenoroussoella mexicana* is proposed here based on our phylogenetic study, in which Morphologically, this species producies brown, solitary or aggregated, glabrous, globose pycnidia with globose to ampulliform conidiogenous cells and brown and aseptate conidia while that their LSU and ITS sequences demonstrated that it is close to *Roussoella* but enough differently to justifie the proposal of a new genus.

Xenoroussoella papuae Valenzuela-Lopez, Cano, Guarro & Stchigel, **sp. nov.** MycoBank MBXXX. Fig. X.

Etymology: The name refers to Papua New Guinea the geographic region where this fungus was isolated.

Description: Hyphae pale brown to brown, 2–4 µm wide, smooth- and thin-walled, septate. *Conidiomata* pycnidial, brown to dark brown, solitary, superficial (OA), glabrous or covered by somewhat hyphal outgrowths, globose to subglobose, $190-200 \times 150-210$ µm diam, with a single papillate otiolar neck, pycnidial wall of *textura angularis*, 2–3 layered, 10–20 µm thick, composed of brown to dark brown, flattened polygonal cells of 3–10 µm diam. *Conidiogenous cells* phialidic, globose to ampulliform rarely doliform, hyaline, smooth, 4.5–8.5 × 5–5.5 µm. *Conidia* aseptate, initially to pale brown, smooth- and thick-walled, guttulate, ellipsoidal, 5–5.5 × 2.5–3.5 µm.

Culture characteristics: Colonies on OA reaching 24 mm diam after 7 d at 25±1 °C, flattened, olive brown (M. 4F6); reverse olive brown (M. 4F8). Colonies on MEA reaching 21 mm after 7 d at 25±1 °C, slightly floccose, beige (M 4C3) to olive brown (M 4D3); reverse olive brown (M. 3F5). NaOH spot test negative. Crystals absent. Optimal temperature of growth and sporulation 25°C; minimum temperature of growth 15°C; maximum temperature of growth 30°C.

Material examined: **Papua New Guinea**, Madang Prov., Balek Wildlife Sanctuary, c. 15 km S of Madang along road to Lae, from bamboo, 3 Nov 1995, A. Aptroot (**holotype** CBS H-6391; CBS H-6392, ex-holotype living cultures CBS 170.96 = FMR 16827). **USA**, from human wrist sample, 2012, D.A. Sutton, living cultures UTHSC DI16-356 = FMR 13849.

Notes: The strain CBS 170.96 was initially identified as *Roussoella intermedia* (Ahmed *et al.* 2014), but in the last study by Jaklitsch & Voglmayr (2016) this strain was considered an unidentified species of that genus due to that the reference strain NBRC 106245 fix better as *R. intermedia* and is phylogenetically related to *R. pustulans*, which is reinforced by the morphological characteristic among them. The present study revealed this strain phylogenetically distant from *Roussoella* and for this reason has been placed in the new genus *Xenoroussoella*. Morphologically the strain shows the generic characteristics of a roussoella-like fungus.

Xenoroussoella profunda Valenzuela-Lopez, Cano, Guarro & Stchigel, **sp. nov.** MycoBank MBXXX.

Etymology: The name refers to a human deep fluid sample, from which the fungus was isolated. Culture sterile. This species forms a distinct phylogenetic branch together with *Xenoroussoella mexicana* and *X. papuae*. It differs from *X. papuae* mainly in the sequences of ITS and *tef*1, being *rpb*2 sequence less informative.

Culture characteristics: Colonies on OA reaching 20 mm diam after 7 d at 25±1 °C, flattened, white (M. 1A1); reverse white (M. 1A1). Colonies on MEA reaching 21 mm after 7 d at 25±1 °C, flattened, white (M. 1A1); reverse white (M. 1A1). NaOH spot test negative. Crystals absent. Optimal temperature of growth 25°C; minimum temperature of growth 15°C; maximum temperature of growth 30°C.

Material examined: **USA**, from human cerebrospinal fluid, 2012, D.A. Sutton (**holotype** CBS H-XXX, ex-holotype living cultures CBS XXX = UTHSC DI16-220 = FMR 13710).

Notes: The strain UTHSC DI16-220, unfortunately, remains sterile and is only welldifferentiated by phylogenetic analysis, being ITS and *tef*1 the genes most informative. However, further studies are needed to characterise morphologically this species.

Xenoroussoella sp.

Material examined: **The Netherlands**, Flevoland, Roggebotzand, from *Salix* sp. bark, 4 May 1994, A. Aptroot, living culture CBS 368.94.

Notes: This strain was previously identified as Arthopyrenia salicis; however, no herbarium

material or studies of this strain was provided. In our study this strain clustered close to the species of *Xenoroussoella*.

Didymosphaeriaceae Munk, Dansk bot. Ark. 15(no. 2): 128. 1953.

Synonym: Montagnulaceae M.E. Barr, Mycotaxon 77: 194. 2001.

Type genus: Didymosphaeria Fuckel.

Didymosphaeria Fuckel, Jb. nassau. Ver. Naturk. 23-24: 140. 1870. *Type species: Didymosphaeria futilis* (Berk. & Broome) Rehm.

Montagnula Berl., Icon. fung. (Abellini) 2: 68. 1896. *Type species: Montagnula infernalis* (Niessl) Berl.

Paraconiothyrium Verkley, Stud. Mycol. 50: 327. 2004. *Type species: Paraconiothyrium estuarinum* Verkley & M. da Silva.

Paraphaeosphaeria O.E. Erikss., Arkiv før Botanik 6 (4-5): 405. 1967. *Type species: Paraphaeosphaeria michotii* (Westend.) O.E. Erikss.

Paraphaeosphaeria ellipsospora Valenzuela-Lopez, Stchigel, Guarro & Cano, **sp. nov.**, MycoBank MBXXX. Fig. X.

Etymology: xxx.

Description: Hyphae hyaline to pale brown to brown, 2.5–3 µm wide, smooth- and thin-walled, septate. *Pycnidia* solitary or confluent, superficial or immersed (OA), pale brown to dark brown, globose to subglobose, glabrous, $210-250 \times 180-220$ µm. diam., pycnidial wall of *textura angularis*, 2–5 layered, 15–60 µm. thick, composed of pale brown to brown, flattened polygonal cells of 5–12 µm diam., neck absent, with a single ostiolum. *Conidiogenous cells* holoblastic, phialidic, doliform or ampulliform, hyaline, smooth, $9-12 \times 4-5$ µm. *Conidia* ellipsoidal, pale brown to brown, smooth, thin walled, aseptate, aguttulate, $4.5-7 \times 3-3.5$ µm.

Culture characteristics: Colonies on OA reaching 25 mm diam. 7 d at 25±1 °C, flattened, greyish-yellow (M. 4C5) to yellowish-orange (M. 4A7); reverse greyish-yellow (M. 4C5).

Colonies on MEA reaching 27 mm 7 d at 25±1 °C, flattened, brown (M. 6E7) to brownish grey (M. 6C2); reverse dark-brown (M. 6F7) to light-brown (M. 6D8). NaOH spot test negative. Crystals absent. Optimal temperature of growth and sporulation, 25°C; minimum temperature of growth, 30°C.

Material examined: **USA**, from bronchial wash, 2008, D.A. Sutton (**holotype** CBS H-XXX, exholotype living cultures CBS XXX = UTHSC DI16-261 = FMR = 13751).

Notes: xxx.

Trematosphaeriaceae K.D. Hyde, Y. Zhang ter, Suetrong & E.B.G. Jones, Cryptog. Mycol., 32: 347. 2011.

Type genus: Trematosphaeria Fuckel.

Trematosphaeria Fuckel, Jb. nassau. Ver. Naturk. 23-24: 161. 1870.

Type species: Trematosphaeria pertusa Fuckel.

Trematosphaeria setosa Valenzuela-Lopez, Cano, Guarro & Stchigel, **sp. nov.**, MycoBank MBXXXX. Fig. X.

Etymology: xxx.

Description: Hyphae brown, smooth- and thin-walled, septate, 2–5 µm wide. *Conidiomata* pycnidial, brown to dark brown, solitary, superficial and immersed (OA), covered by hyphal outgrowths, globose to subglobose, $100-130 \times 80-110$ µm, with a single papillate otiolar neck, pycnidial wall of *textura angularis*, 2–4-layered, 10–38 µm thick, composed of brown to dark brown, flattened polygonal cells of 3–5 µm diam. *Conidiogenous cells* phialidic, acicular or cylindrical, hyaline, smooth, 5–10 × 2–3 µm. *Conidia* aseptate, hyaline, smooth- and thin-walled, guttulate, cylindrical and slightly curved to ovoid, 3–4.5 × 2–2.5 µm.

Culture characteristics: Colonies on OA reaching 12 mm diam after 7 d at 25±1 °C, flattened,

olive brown (M. 4E3) to brownish-grey (M. 4F2); reverse greyish-beige (M 4C2) to brownishgrey (M. 4F2). Colonies on MEA reaching 10 mm after 7 d at 25±1 °C, flattened, olive brown (M. 4F4); reverse grey (M. 4F1). NaOH spot test negative. Crystals absent. Optimal temperature of growth and sporulation, 25°C; minimum temperature of growth, 5°C; maximum temperature of growth, 37°C.

Material examined: **USA**, from human wound on tissue arm, 2011, D.A. Sutton, living cultures (**holotype** CBS H-XXX, ex-holotype living cultures CBS XXX = UTHSC DI16-335 = FMR = 13828).

Notes: xxx.

Trematosphaeria hominis Valenzuela-Lopez, Cano, Guarro & Stchigel, **sp. nov.** MycoBank MBXXX.

Etymology: xxx.

Culture sterile. This species is phylogenetical related with *Trematosphaeria asexualis* but it differs from that species in 13, 66, 30 and 24 bp of the LSU, ITS, *rpb*2 and *tef*1 sequences. *Culture characteristics*: Colonies on OA reaching 20 mm diam after 7 d at 25±1 °C, flattened, white (M. 1A1); reverse white (M. 1A1). Colonies on MEA reaching 21 mm after 7 d at 25±1 °C, flattened, white (M. 1A1); reverse white (M. 1A1). NaOH spot test negative. Crystals absent. Optimal temperature of growth 25°C; minimum temperature of growth 15°C; maximum temperature of growth 30°C.

Material examined: **USA**, from human tissue, 2009, D.A. Sutton (**holotype** CBS H-XXX, exholotype living cultures CBS XXX = UTHSC DI16-281 = FMR 13773).

Notes: xxx.

REFERENCES

- Ahmed SA, Desbois N, Quist D, et al. (2015). Phaeohyphomycosis caused by a novel species, Pseudochaetosphaeronema martinelli. Journal of Clinical Microbiology 53: 2927–2934.
- Ahmed SA, Hofmüller W, Seibold M, et al. (2017). Tintelnotia, a new genus in Phaeosphaeriaceae harbouring agents of cornea and nail infections in humans. Mycoses 60: 244–253.
- Ahmed SA, Van De Sande WW, Stevens DA, et al. (2014). Revision of agents of black-grain eumycetoma in the order Pleosporales. Persoonia 33: 141–154.
- Ariyawansa HA, Hyde KD, Jayasiri SC, et al. (2015a). Fungal diversity notes 111–252– taxonomic and phylogenetic contributions to fungal taxa. Fungal Diversity 75: 27–274.
- Ariyawansa HA, Jones EBG, Suetrong S, et al. (2013). Halojulellaceae a new family of the order Pleosporales. Phytotaxa 130: 14–24.
- Ariyawansa HA, Phukhamsakda C, Thambugala KM, et al. (2015b). Revision and phylogeny of Leptosphaeriaceae. Fungal Diversity. 74:19–51.
- Aveskamp MM, de Gruyter J, Crous PW (2008). Biology and recent developments in the systematics of Phoma, a complex genus of major quarantine significance. Fungal Diversity 31: 1–18.
- Aveskamp MM, de Gruyter J, Woudenberg JHC, et al. (2010). Highlights of the Didymellaceae: A polyphasic approach to characterise Phoma and related pleosporalean genera. Studies in Mycology 65: 1–60.
- Boerema GH, de Gruyer J, Noordeloos ME, et al. (2004). Phoma identification manual. Differentiation of specific and infra-specific taxa in culture. CABI publishing, Wallingford, U.K.
- Borman AM, Desnos-Ollivier M, Campbell CK, et al. (2016). Novel taxa associated with human fungal black-grain mycetomas: Emarellia grisea gen. nov., sp. nov., and Emarellia paragrisea sp. nov. Journal of Clinical Microbiology 54: 1738–1745.
- Chen Q, Jiang JR, Zhang GZ, et al. (2015a). Resolving the Phoma enigma. Studies in Mycology 82: 137–217.
- Crous PW, Gams W, Stalpers JA, et al. (2004). MycoBank: an online initiative to launch mycology into the 21st century. Studies in Mycology 50: 19–22.

Crous PW, Groenewald JZ (2016). They seldom occur alone. Fungal Biology 120: 1392–1415.

- Crous PW, Groenewald JZ (2017). The Genera of Fungi G 4: Camarosporium and Dothiora. IMA Fungus 8: 131–152.
- Crous PW, Verkley GJM, Groenewald JZ, et al. (2009). Fungal Biodiversity. CBS Laboratory Manual Series. Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands.

De Gruyter J, Woudenberg JH, Aveskamp MM, et al. (2010). Systematic reappraisal of species

in Phoma section Paraphoma, Pyrenochaeta and Pleurophoma. Mycologia 102: 1066– 1081.

- De Gruyter J, Woudenberg JHC, Aveskamp MM, et al. (2013). Redisposition of Phoma-like anamorphs in Pleosporales. Studies in Mycology 75: 1–36.
- De Hoog GS, Guarro J, Gené J, Figueras MJ (2011). Atlas of clinical fungi. CD-ROM v. 3.1. Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands.
- Edgar RC (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32: 1792–1797.
- Fisher NL, Burgess LW, Toussoun TA, Nelson PE (1982). Carnation leaves as a substrate and for preserving cultures of Fusarium species. Phytopathology 72: 151–153.
- Hashimoto A, Matsumura M, Hirayama K, et al. (2017). Pseudodidymellaceae fam. nov.: Phylogenetic affiliations of mycopappus-like genera in Dothideomycetes. Studies in Mycolology 87: 187–206.
- Hernández-Restrepo M, Gené J, Castañeda-Ruiz RF, et al. (2017). Phylogeny of saprobic microfungi from Southern Europe. Studies in Mycology 86: 53–97.
- Hyde KD, Jones EBG, Liu JK, et al. (2013). Families of Dothideomycetes. Fungal Diversity 63: 1–313.
- Hyde KD, Hongsanan S, Jeewon R, et al. (2016). Fungal diversity notes 367–490: taxonomic and phylogenetic contributions to fungal taxa. Fungal Diversity 80: 1–270.
- Jaklitsch WM, Olariaga I, Voglmayr H (2016). Teichospora and the Teichosporaceae. Mycological Progress 15: 31.
- Jaklitsch WM, Voglmayr H (2016). Hidden diversity in Thyridaria and a new circumscription of the Thyridariaceae. Studies in Mycology 85: 35–64.
- Jaklitsch, WM, Voglmayr H (2017). Three former taxa of Cucurbitaria and considerations on Petrakia in the Melanommataceae. Sydowia 69: 81–95.
- Kirk PM, Cannon PF, Minter DW, Stalpers JA (2008). Ainsworth and Bisby's Dictionary of the Fungi, 10th edn. CAB International., Wallingford, UK.
- Kornerup A, Wanscher JH (1978). Methuen handbook of colour, 3rd edn. Methuen, London, England.
- Kruys A, Eriksson OE, Wedin M (2006). Phylogenetic relationships of coprophilous Pleosporales (Dothideomycetes, Ascomycota), and the classification of some bitunicate taxa of unknown position. Mycological Research 110: 527–536.
- Lawrey JD, Diederich P, Nelsen MP, et al. (2012). Phylogenetic placement of lichenicolous Phoma species in the Phaeosphaeriaceae (Pleosporales, Dothideomycetes). Fungal Diversity 55: 195–213.
- Liu YX, Hyde KD, Ariyawansa HA, et al. (2013). Shiraiaceae, new family of Pleosporales (Dothideomycetes, Ascomycota). Phytotaxa 103: 51–60.

- Liu YJ, Whelen S, Hall BD (1999). Phylogenetic relationships among ascomycetes evidence from an RNA polymerase II subunit. Molecular Biology and Evolution 16: 1799–1808.
- Miller MA, Pfeiffer W, Schwartz T. (2012). The CIPRES science gateway: enabling high-impact science for phylogenetics researchers with limited resources. In: Proceedings of the 1st Conference of the Extreme Science and Engineering Discovery Environment: Bridging from the extreme to the campus and beyond: 1–8. Association for Computing Machinery, USA.
- Nylander JAA (2004). MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University, Sweden.
- Punithalingam E (1979). Sphaeropsidales in culture from humans. Nova Hedwigia 31: 119– 158.
- Ronquist F, Teslenko M, van der Mark P, et al. (2012). MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539–542.
- Rouxel T, Balesdent MH (2005). The stem canker (blackleg) fungus, Leptosphaeria maculans, enters the genomic era. Molecular Plant Pathology 6: 225–241.
- Salam MU, MacLeod WJ, Maling T, et al. (2011). A meta-analysis of severity and yield loss from ascochyta blight on field pea in Western Australia. Australasian Plant Pathology 40: 591–600.
- Schoch CL, Shoemaker RA, Seifert KA, et al. (2006). A multigene phylogeny of the Dothideomycetes using four nuclear loci. Mycologia 98: 1041–1052.
- Stamatakis A (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312–1313.
- Su YY, Qi YL, Cai L (2012). Induction of sporulation in plant pathogenic fungi. Mycology 3: 195–200.
- Sutton BC (1980). The Coelomycetes. Fungi Imperfecti with Pycnidia, Acervuli and Stromata, 1st edn. Commonwealth Mycological Institute, UK.
- Tamura K, Stecher G, Peterson D, et al. (2013). MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolutionary 31: 2725–2729.
- Tanaka K, Hirayama K, Yonezawa H, et al. (2015). Revision of the Massarineae (Pleosporales, Dothideomycetes). Studies in Mycology 82: 75–136.
- Thambugala KM, Daranagama DA, Phillips AJL, et al. (2016). Microfungi on Tamarix. Fungal Diversity 82: 239–306.
- Thompson JD, Higgins DG, Gibson TJ (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22: 4673–4680.
- Valenzuela-Lopez N, Sutton DA, Cano-Lira JF, et al. (2016). Coelomycetous fungi in the clinical

setting: morphological convergence and cryptic diversity. Journal of Clinical Microbiology 55: 552–567.

- Vilgalys R, Hester M (1990). Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology 172: 4238–4246.
- Wanasinghe DN, Jones EB, Camporesi E, et al. (2016). Taxonomy and phylogeny of Laburnicola gen. nov. and Paramassariosphaeria gen. nov. (Didymosphaeriaceae, Massarineae, Pleosporales). Fungal Biology 120: 1354–1373.
- Wanasinghe DN, Hyde KD, Crous PW, *et al.* (2017). Phylogenetic revision of *Camarosporium* (Pleosporineae, Dothideomycetes) and allied genera. Studies in Mycology 87: 207–256.
- White TJ, Bruns T, Lee S, et al. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR Protocols: a guide to methods and applications. (Innis MA, Gelfand DH, Sninsky JJ, White TJ, eds.). Academic Press, San Diego, California, USA: 315–322.
- Wijayawardene NN, Crous PW, Kirk PM, et al. (2014). Naming and outline of Dothideomycetes–2014 including proposals for the protection or suppression of generic names. Fungal Diversity 69: 1–55.
- Wijayawardene NN, Hyde KD, Wanasinghe DN, et al. (2016). Taxonomy and phylogeny of dematiaceous coelomycetes. Fungal Diversity 77: 1–316.
- Woudenberg JHC, Aveskamp MM, de Gruyter J, et al. (2009). Multiple Didymella teleomorphs are linked to the Phoma clematidina morphotype. Persoonia 22: 56–62.
- Woudenberg JHC, Groenewald JZ, Binder M, et al. (2013). Alternaria redefined. Studies in Mycology 75: 171–212.
- Zhang Y, Schoch CL, Fournier J, *et al.* (2009). Multi-locus phylogeny of *Pleosporales*: a taxonomic, ecological and evolutionary re–evaluation. *Studies in Mycology* **64**: 85–102.

Zhang Y, Crous PW, Schoch CL, Hyde KD (2012). Pleosporales. Fungal Diversity 53: 1–221.

13698 Montagnula cylindrispora

13750 Edenia oculi

13751 Paraphaeosphaeria ellipsospora

13756 Didymosphaeomyces unguis

13776 Phaeodothis diversispora

13782 Xenoleptosphaeria confluens

13818 Phaeosphaeria sp nov

Н

13828 Trematosphaeria setosa

G

13829 Phaeosphaeria sp nov

13830 Neosetophoma americana

13853 Parathyridaria ovina

13855 Roussoella oculi-hominis

15573 Xenoroussoella coprophila

16827 Xenoroussoella papuae

Table 2. Isolates from USA used in this stud Equation Equation	by and their GenBank accession num	bers. Newly generated sequences are indice	ated in bold.	(
r anny operate		Strain number Status	IIU34, SUDSU AU	Genbank ac	cession numf	TIR	RPR2	TRE-10
Acrocalymmaceae	Acrocalymna walkeri	UTHSC D116-195; FMR 13685	Human scalp	LD007338	LT796832	LT796912	LT796992	LT797072
Amorosiaceae	Exosporium sp.	UTHSC D116-287; FMR 13779	Marine environment	LN907430	LT796869	LT796949	LT797029	LT797109
Anteagloniaceae	Anteaglonium sp.	UTHSC D116-316; FMR 13809 T	Human eye	LN907459	LT796880	LT796960	LT797040	LT797120
Dictyosporiaceae	Paraconiothyrium sp.	UTHSC DI16-355; FMR 13848	Human skin	LN907498	LT796899	LT796979	LT797059	LT797139
Didymosphaeriaceae	Montagnula opulenta	UTHSC D116-208; FMR 13698 T	Unknown	LN907351	LT796834	LT796914	LT796994	LT797074
Didymosphaeriaceae	Paraconiothyrium cyclothyrioides	UTHSC DI16-215; FMR 13705	Human leg	LN907358	LT796837	LT796917	LT796997	LT797077
Didymosphaeriaceae	Paraconiothyrium cyclothyrioides	UTHSC DI16-216; FMR 13706	Human skin	LN907359	LT796838	LT796918	LT796998	LT797078
Didymosphaeriaceae	Paraconiothyrium cyclothyrioides	UTHSC DI16-218; FMR 13708	Human eye	LN907361	LT796839	LT796919	LT796999	LT797079
Didymosphaeriaceae	Paraphaeosphaeria neglecta	UTHSC D116-219; FMR 13709 T	Unknown	LN907362	LT796840	LT796920	LT797000	LT797080
Didymosphaeriaceae	Paraconiothyrium cyclothyrioides	UTHSC DI16-222; FMR 13712	Human scalp	LN907365	LT796842	LT796922	LT797002	LT797082
Didymosphaeriaceae	Letendraea sp.	UTHSC D116-239; FMR 13729	Human arm	LN907382	LT796845	LT796925	LT797005	LT797085
Didymosphaeriaceae	Paraconiothyrium cyclothyrioides	UTHSC DI16-243; FMR 13733	Human nail	LN907386	LT796849	LT796929	LT797009	LT797089
Didymosphaeriaceae	Paraconiothyrium cyclothyrioides	UTHSC DI16-246; FMR 13736	Human finger	LN907389	LT796850	LT796930	LT797010	LT797090
Didymosphaeriaceae	Montagnula sp.	UTHSC DI16-251; FMR 13741	Human scalp	LN907394	LT796851	LT796931	LT797011	LT797091
Didymosphaeriaceae	Paraconiothyrium cyclothyrioides	UTHSC DI16-252; FMR 13742	Human biopsy	LN907395	LT796852	LT796932	LT797012	LT797092
Didymosphaeriaceae	Kalmusia sp.	UTHSC D116-256; FMR 13746 T	Human eye	LN907399	LT796854	LT796934	LT797014	LT797094
Didymosphaeriaceae	Paraphaeosphaeria neglecta	UTHSC D116-261; FMR 13751 T	Human bronch wash	LN907404	LT796856	LT796936	LT797016	LT797096
Didymosphaeriaceae	Paraconiothyrium fuckelii	UTHSC D116-263; FMR 13753	Human bronchoalveolar	LN907406	LT796857	LT796937	LT797017	LT797097
			lavage					
Didymosphaeriaceae	Paraconiothyrium cyclothyrioides	UTHSC DI16-265; FMR 13755	Human hand	LN907408	LT796859	LT796939	LT797019	LT797099
Didymosphaeriaceae	Paraconiothyrium sp.	UTHSC D116-266; FMR 13756 T	Human nail	LN907409	LT796860	LT796940	LT797020	LT797100
Didymosphaeriaceae	Letendraea sp.	UTHSC D116-267; FMR 13758	Human arm	LN907410	LT796861	LT796941	LT797021	LT797101
Didymosphaeriaceae	Paraconiothyrium cyclothyrioides	UTHSC DI16-268; FMR 13759	Human toe nail	LN907411	LT796862	LT796942	LT797022	LT797102
Didymosphaeriaceae	Paraconiothyrium cyclothyrioides	UTHSC DI16-279; FMR 13771	Human bronchoalveolar	LN907422	LT796864	LT796944	LT797024	LT797104
			lavage					
Didymosphaeriaceae	Phaeodothis sp.	UTHSC D116-284; FMR 13776 T	Human right upper lobe	LN907427	LT796867	LT796947	LT797027	LT797107
Didymosphaeriaceae	Paraconiothyrium brasiliense	UTHSC DI16-311; FMR 13804	Unknown	LN907454	LT796876	LT796956	LT797036	LT797116
Didymosphaeriaceae	Paraconiothyrium cyclothyrioides	UTHSC DI16-314; FMR 13807	Human finger	LN907457	LT796878	LT796958	LT797038	LT797118
Didymosphaeriaceae	Paraconiothyrium cyclothyrioides	UTHSC DI16-327; FMR 13820	Human biopsy	LN907470	LT796884	LT796964	LT797044	LT797124
Didymosphaeriaceae	Paraconiothyrium cyclothyrioides	UTHSC DI16-328; FMR 13821	Human knee lesion	LN907471	LT796885	LT796965	LT797045	LT797125
Didymosphaeriaceae	Paraconiothyrium cyclothyrioides	UTHSC DI16-346; FMR 13839	Unknown	LN907489	LT796893	LT796973	LT797053	LT797133
Didymosphaeriaceae	Paraconiothyrium cyclothyrioides	UTHSC DI16-347; FMR 13840	Unknown	LN907490	LT796894	LT796974	LT797054	LT797134
Didymosphaeriaceae	Paraconiothyrium brasiliense	UTHSC DI16-348; FMR 13841	Human scalp	LN907491	LT796895	LT796975	LT797055	LT797135
Didymosphaeriaceae	Paraconiothyrium sp.	UTHSC DI16-349; FMR 13842	Human nail	LN907492	LT796896	LT796976	LT797056	LT797136
Didymosphaeriaceae	Letendraea sp.	UTHSC D116-351; FMR 13844	Human pleural fluid	LN907494	LT796897	LT796977	LT797057	LT797137
Didymosphaeriaceae	Curreya pityophila	UTHSC D116-357; FMR 13850	Human bronchoalveolar lavage	LN907500	LT796901	LT796981	LT797061	LT797141
Didymowhaeriaceae	Daraconiothvrium en	11THSC D116-363: FMR 13856	Human ioint fluid	1 N907506	90690LT	78090LT 1	9902027 I	1 T707146
Diuyiilophawitawaw Didumomhaarimana	r aracomoury mun sp. Dereconiothyrium cyclothyrioidee	UTHISC PLIC-2003, LIVIN 12020	דועווומנו שישיעי דניייייייי אייין	T NIGNTS10	1 T706007	11700007	1 T707067	TT707147
лиушовриаенасеае	Paracomounymum cyclouitymos	UTHOC DT10-207; FININ 14411	Пишан нан	LINYULJIU	L1 /9090/	L1 /90/0/	L1 /7/00/	L1 /7/14/

S069671 N907513

Jnknown

LT796996 LT797018 LT797037 LT797046 LT797049 LT797068 LT797030 LT797008 LT797013 LT797034 TT97035 LT797039 06696LT LT796993 LT797003 LT797043 LT797052 CT796989 LT797062 LT797064 LT797007 LT796995 LT797006 LT797015 LT797026 LT797032 LT797042 LT797050 LT797023 LT797031 LT797033 LT797047 LT797060 LT797063 LT797065 LT797004 LT797025 LT797051 LT796991 LT797001 LT797041 T796955 TT96959 T796910 T796913 TT796923 TT96972 60696LL JT796915 TT96916 TT96926 TT96935 TT796938 TT96946 TT796957 T796966 C1796969 0796970 TT96943 T796953 JT796980 TT796985 JT796945 T796988 T796950 T796928 T796933 T796954 .T796963 .T796982 TT96984 TT96927 TT796911 TT96952 T796961 TT796962 TT96921 TT796967 .T796983 TT96924 1796971. TT96951 JT796830 TT96833 LT796843 LT796836 T796855 TT796872 TT796886 TT96889 LT796890 CT796900 JT796870 T796848 TT96853 TT96874 T796875 CT796879 T796883 TT796892 LT796829 TT96902 TT96904 TT796847 T796891 JT796835 TT96846 LT796858 JT796866 TT96877 TT796881 LT796882 LT796841 TT96863 TT796873 TT796887 T796903 TT796905 JT796844 JT796865 TT796831 LT796871 JN907396 LN907452 LN907458 LN907332 JN907346 LN907379 LN907469 JN907486 LN907330 N907501 N907504 LN907384 JN907485 LN907353 LN907407 LN907426 LN907439 LN907456 LN907473 LN907479 N907363 LN907412 JN907435 N907443 LN907477 LN907499 N907503 N907505 N907433 N907385 LN907453 LN907334 LN907352 LN907383 N907403 LN907468 LN907480 N907380 N907424 LN907467 Human bronchoalveolar Human maxillary sinus Human foot bone tissue Human maxillary sinus Human maxillary sinus Human pleural tissue Human cerebrospinal Human bronch wash Human bronch wash Human bronch wash Marine environment Human lung tissue Human joint fluid Human shoulder Human sputum Human toe nail Human sputum Human biopsy Animal biopsy Human thumb Human ankle Human blood Human elbow Human hand Human liver Human neck Human lung Human nose Human wrist Human foot Human arm Human skin Human skin Human foot Human eye Human skin Human eye Human eye Human leg Human arm

T797095 LT797098

LT797086

T1797117

TT97121

TT97129

LT797130

T79708

LT797122 LT797126 TT97113 LT797127

T797103 LT797111

luid

TT97143 LT797145 TT97084 TT97105 TT97108

LT797028

JT796948

TT796868

N907429

Human leg

JTHSC D116-281; FMR 13773

JTHSC DI16-286; FMR 13778

Trematosphaeria grisea

JTHSC DI16-237; FMR 13727

T797140

LT797106 LT797112

LT797075 LT797076

LT797071

F F H E F E F JTHSC D116-342; FMR 13835 UTHSC D116-330; FMR 13823 JTHSC D116-326; FMR 13819 JTHSC D116-343; FMR 13836 JTHSC D116-241; FMR 13731 JTHSC D116-240; FMR 13730 JTHSC D116-283; FMR 13775 JTHSC D116-324; FMR 13817 JTHSC D116-325; FMR 13818 JTHSC D116-336; FMR 13829 JTHSC D116-337; FMR 13830 JTHSC D116-220; FMR 13710 JTHSC D116-292; FMR 13784 UTHSC D116-334; FMR 13827 JTHSC D116-360; FMR 13853 JTHSC D116-362; FMR 13855 JTHSC D116-370; FMR 14425 JTHSC D116-361; FMR 13854 JTHSC D116-210; FMR 13700 JTHSC D116-264; FMR 13754 UTHSC D116-313; FMR 13806 JTHSC D116-269; FMR 13760 JTHSC D116-356; FMR 13849 JTHSC D116-358; FMR 13851 JTHSC D116-191; FMR 13681 JTHSC D116-260; FMR 13750 UTHSC DI16-290; FMR 13782 JTHSC DI16-242; FMR 13732 JTHSC DI16-253; FMR 13743 JTHSC DI16-309; FMR 13802 JTHSC DI16-310; FMR 13803 UTHSC DI16-315; FMR 13808 JTHSC DI16-189; FMR 13679 JTHSC DI16-203; FMR 13693 UTHSC DI16-236; FMR 13726 JTHSC D116-209; FMR 13699 JTHSC D116-296; FMR 13789 JTHSC DI16-300; FMR 13793 JTHSC DI16-187; FMR 13677

lavage

Pseudochaetosphaeronema sp. **Diederichomyces cladoniicola Diederichomyces cladoniicola** Parastagonospora nodorum **Frematosphaeria grisea** etendraea sp.

Biatriospora mackinnonii Keissleriella cladophila **Roussoella percutanea** Roussoella percutanea **Frematosphaeria** grisea Camarographium sp. Coniothyrium telephii Roussoella percutanea Coniothyrium telephii Coniothyrium telephii **Arthopyrenia salicis** Arthopyrenia salicis Medicopsis romeroi Medicopsis romeroi Trematosphaeria sp. Medicopsis romeroi Medicopsis romeroi Paraphoma radicina **Frematophoma sp.** Neosetophoma sp. Neosetophoma sp. Phaeosphaeria sp. Phaeosphaeria sp. Neosetophoma sp. Arthopyrenia sp. Arthopyrenia sp. Paraphoma fimeti Biatriospora sp. Pyrenochaeta sp. Phyllosticta sp. Roussoella sp. Preussia sp. Edenia sp. Edenia sp. Edenia sp.

Macrodiplodiopsidaceae Macrodiplodiopsidaceae Didymosphaeriaceae Lindgomycetaceae Phaeosphaeriaceae Phaeosphaeriaceae Phaeosphaeriaceae Phaeosphaeriaceae Phaeosphaeriaceae Lophiostomataceae Phaeosphaeriaceae Nigrogranaceae Nigrogranaceae Lentitheciaceae Incertae sedis Incertae sedis Incertae sedis Incertae sedis Insertae sedis Insertae sedis Insertae sedis Incertae sedis Incerta sedis

Phaeosphaeriaceae Phaeosphaeriaceae Phaeosphaeriaceae Phaeosphaeriaceae

Phaeosphaeriaceae Phaeosphaeriaceae Phaeosphaeriaceae Phaeosphaeriaceae **Fhyridariaceae**

Trematosphaeriaceae Trematosphaeriaceae Trematosphaeriaceae Thyridariaceae Thyridariaceae **Thyridariaceae** Thyridariaceae Thyridariaceae Thyridariaceae Thyridariaceae

LT797119

070797070

LT797083

TT97123 LT797132

TT97073

CT797069

LT797142 LT797144 LT797087 TT97131

T797115

TT97110

TT97088 TT97093 LT797114

TT97148

4.4. Nothophoma macrospora sp. nov.

N. Valenzuela-Lopez^{1,2}, A.M. Stchigel¹, J.F. Cano-Lira¹, D.A. Sutton³

¹Unitat de Micologia, Facultat de Medicina i Ciències de la Salut, and IISPV, Universitat Rovira i Virgili, Reus, Spain; ²Microbiology Unit, Medical Technology Department, Faculty of Health Science, University of Antofagasta, Av. Universidad de Antofagasta s/n, 02800 Antofagasta, Chile; ³Fungus Testing Laboratory, University of Texas Health Science Center, San Antonio, TX, USA

Publicado en: Fungal Planet sheets, Persoonia 2016; 36: 430-431.

Fungal Planet description sheets

Fungal Planet 456 - 4 July 2016

Nothophoma macrospora Valenzuela-Lopez, Stchigel, Cano & Deanna A. Sutton,

sp. nov.

Etymology. G. $\mu\alpha\kappa\rho\delta$ -, large, and $-\sigma\pi\rho\rho\delta$, spore, referring to the big size of the conidia.

Classification — *Didymellaceae*, *Pleosporales*, *Dothideo-mycetes*.

Hyphae pale to dark brown, 3–10 µm wide, thin- to thick-walled, smooth to granulose due to the production of dark granules, septate, anastomosing. Conidiomata pycnidial dark brown, pyriform to heart-shaped by the occasional production of 2-3(-4) necks, rarely globose, 100-300 × 100-300 µm; peridium 3-5-layered, 15-25 µm thick, peridial cells globose to polygonal, pale to dark brown, 5–10 µm diam, thick-walled; neck usually present, paler than the peridial wall, cylindrical to conical, (50-)90-150 \times (50–)80–110 µm, papillate, ornamented with a crown of short, subhyaline, conical to digitiform projections around the ostiolum, ostiolum of late opening; exuded conidial masses not observed; conidiogenous cells enteroblastic, phialidic, globose to flaskshaped, hyaline, thin-walled, 5-10 µm diam; conidia (9-)10-15 $\times 2.5-3(-3.5)$ µm, hyaline, cylindrical to slightly clavate at one or both ends, 0(-2)-septate, narrowing slightly at the septa, guttulate, sometimes producing a similar conidia on a lateral bulge, then forming irregular chains. Chlamydospores absent, but some hyphae cells become darker, thicker and barrelshaped.

Culture characteristics — Colonies on OA reaching 30 mm diam in 7 d at 25 °C, olive brown (M.4F3), flattened, granulose due to the production of numerous pycnidia; reverse concolorous. Colonies on MEA attaining 37–41 mm in 7 d at 25 °C, yellowish white (M.4A2) to light brown (M.6D8), flattened, compact, reverse concolorous. NaOH spot test: negative. Crystals absent.

Typus. USA, Arizona, Phoenix, from respiratory secretion of a patient with pneumonia, 1 Apr. 2009, *D.A. Sutton* (holotype CBS H-22377, cultures extype UTHSC DI09-853 = FMR 13767 = CBS 140674, ITS sequence GenBank LN880536, LSU sequence GenBank LN880537, *actA* sequence GenBank LN880538, *tub2* sequence GenBank LN880539, MycoBank MB815051).

Notes — This fungus was isolated from a human clinical specimen. Morphologically, Nothophoma macrospora resembles the species previously classified into Phoma section Macrospora (Boerema et al. 2004), i.e. Phoma andropogonivora, P. boeremae, P. chenopodii, P. commelinicola, P. gossvpiicola, P. necator, P. rabiei, P. xanthina and P. zeae-maydis. These species produce the largest conidia of the genus. Based on a megablast search of NCBIs GenBank nucleotide database, the closest hits using the LSU sequence are Peyronellaea combreti (GenBank KJ869191; Identities = 887/889 (99 %), no gaps) and Peyronellaea prosopidis (GenBank KF777232; Identities = 887/889 (99 %), no gaps). Closest hits using ITS sequence are Leptosphaerulina australis (GenBank KF293970; Identities = 493/497 (99 %), gaps 1/497 (0 %)), Didymella glomerata (GenBank AB369471; Identities = 493/497 (99 %), gaps 1/497 (0%)) and Nothophoma guercina (GenBank AB369461; Identities = 493/497 (99 %), gaps 1/497 (0 %)). In a similar search in the Q-Bank fungal nucleotide database (www.g-bank.eu), the closest hit is Nothophoma anigozanthi CBS 381.91 (Identities = 468/473 (99 %), gaps = 1/473 (0 %)). The closest hit using the beta-tubulin (tub2) sequence is Nothophoma gossypiicola (GenBank GU237611; Identities = 323/335 (99 %), no gaps), as well was using the actin (actA) sequence against Q-Bank (Nothophoma gossypiicola CBS 377.67; Identities = 214/224 (96 %), no gaps). Our phylogenetic tree, built by using the ITS, LSU, tub2 and actA sequences, corroborated that our fungus represents a new species of the genus Nothophoma, N. gossypiicola being the most phylogenetically and morphologically related species. Nothophoma macrospora differs from N. gossypiicola by its lower growing rate on OA, the shape (pyriform to hearth-shaped vs globose), the number of necks (up to 4 vs 0-1) and the ornamentation (papillate vs non-papillate) of the pycnidia, and the presence of conidial septa (up to 2 vs non-septate).

Colour illustrations. USA, Arizona, Phoenix, McDowell mountain park (image credit: Hector Lopez and Brenda, www.hmlopezphoto.com); colony on OA after 7 d at 25 °C, conidiomata under stereomicroscope, pycnidia, conidiogenous cells, conidia. Scale bars = 10 µm. Maximum likelihood tree obtained from the combined DNA sequences dataset from four loci of our isolate and sequences retrieved from the GenBank and the Q-Bank databases (Tree-BASE ID 18137). Above the nodes are presented the bootstrap support values \geq 70 %, and the Bayesian posterior probability scores \geq 0.95 are indicated below. *Neoascochyta paspali* (CBS 560.81 & CBS 561.81) was used as outgroup. Ex-type strains of the different species are indicated with ^T. The new species proposed in this study is indicated in **bold**. The alignment was performed by MEGA v. 6.06 (Tamura et al. 2013), and the tree building by MEGA v. 6.06 and by MrBayes v. 3.2.4 (Huelsenbeck & Ronquist 2001).

Nicomedes Valenzuela-Lopez, Mycology Unit, Medical School and IISPV, Universitat Rovira i Virgili (URV), Sant Llorenç 21, 43201 Reus, Tarragona, Spain; Microbiology Unit, Medical Technology Department, Faculty of Health Science, University of Antofagasta, Av. Universidad de Antofagasta s/n, 02800 Antofagasta, Chile; e-mail: nicomedes.vl@gmail.com

Alberto M. Stchigel & José F. Cano-Lira, Mycology Unit, Medical School and IISPV, Universitat Rovira i Virgili (URV), Sant Llorenç 21,

43201 Reus, Tarragona, Spain; e-mail: alberto.stchigel@urv.cat; jose.cano@urv.cat & josep.guarro@urv.cat

Deanna A. Sutton & Nathan P. Wiederhold, Fungus Testing Laboratory, Department of Pathology, University of Texas Health Science Center,

⁷⁷⁰³ Floyd Curl Dr., San Antonio, Texas 78229-3900, USA; e-mail: suttond@uthscsa.edu

Revisión bibliográfica de los hongos celomicetos de

interés clínico

4.5. DNA sequencing to clarify the taxonomical conundrum of the clinical coelomycetes

N. Valenzuela-Lopez^{1,2}, J.F. Cano-Lira¹, A.M. Stchigel¹, J. Guarro¹

¹Unitat de Micologia, Facultat de Medicina i Ciències de la Salut, and IISPV, Universitat Rovira i Virgili, Reus, Spain; ²Microbiology Unit, Medical Technology Department, Faculty of Health Science, University of Antofagasta, Av. Universidad de Antofagasta s/n, 02800 Antofagasta, Chile

Aceptado en: Mycoses 2018; doi: 10.1111/myc.12785.

PROFESSOR JOSÉ F. F. CANO-LIRA (Orcid ID : 0000-0003-4495-4394)

Article type : Review Article

DNA sequencing to clarify the taxonomical conundrum of the clinical coelomycetes

Nicomedes Valenzuela-Lopez^{1,2}, José F. Cano-Lira^{1*}, Alberto M. Stchigel¹, Josep Guarro¹

¹Mycology Unit, Medical School and IISPV, University Rovira i Virgili, C/ Sant Llorenç 21, 43201 Reus, Spain.

²Microbiology Unit, Medical Technology Department, Faculty of Health Science, University of Antofagasta, Chile.

Running head: Coelomycetes of clinical interest.

^{*}Corresponding author. E-mail: jose.cano@urv.cat. Unitat de Micologia, Facultat de Medicina i Ciències de la Salut, IISPV, Universitat Rovira i Virgili, 21 Sant Llorenç St., 43201, Reus, Spain.

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/myc.12785

This article is protected by copyright. All rights reserved.

Summary

The taxonomy of the fungi that produce human infections and that develop asexual fruiting bodies in culture has become very complex. Recent molecular studies have produced dramatic changes in their classification. Currently, the coelomycetes traditionally included in *Sphaeropsidales* and *Melanconiales* are in fact distributed across at least three different classes of the Phylum Ascomycota. Approximately 1,000 genera and 7,000 species have been grouped in the classes *Dothideomycetes*, *Leotiomycetes* and *Sordariomycetes* and their proper identification can only be made by analysing their DNA sequences and comparing them with those corresponding to type strains available in the adequate databases. To facilitate this task for scientists and clinicians involved in the study of these complex, and every day more numerous taxa, we have updated the knowledge about the taxonomy of the commonest coelomycetes of clinical interest with the aim of improving their identification and antifungal treatment.

Keywords: Coelomycetes, Medicopsis, mycosis, Neocucurbitaria, Phoma, Pyrenochaeta.

INTRODUCTION

The number of species of coelomycetes involved in human infections has increased enormously in recent years¹⁻⁴. This has been a consequence of the current use of molecular biology approaches in taxonomy that have allowed more stable systematic criteria to be established and a redefinition of modern concepts of genera and species. On that basis, numerous taxa have recently been delimited. For instance, two of the most relevant genera of coelomycetes such as *Phoma* and *Pyrenochaeta* have undergone major changes. The former

has been reduced to only one species within the family *Didymellaceae*; while *Pyrenochaeta* has been excluded from *Cucurbitariaceae* and maintained as *incertae sedis*, its species mainly being distributed into the genus *Neocucurbitaria*.^{5,6} The coelomycetes have been classified, traditionally, by their morphological features.^{3,4} However, its classification turned out to be obsolete, and these fungi have been considered, based on phylogenetic analyses in three different classes, i.e. *Dothideomycetes* (bitunicate ascostromatic-like fruiting bodies), *Leotiomycetes* (apothecium-like fruiting bodies), and *Sordariomycetes* (unitunicate ascomata-like fruiting bodies) of the phylum Ascomycota.^{4,7-9} Nevertheless, in the clinical setting the term "Coelomycete" is still used to refer to fungi morphologically characterized by producing conidia within fruiting bodies (= conidiomata.^{10,11} Taxonomically, species with clinical prevalence are distributed mainly within the two first classes mentioned above, as was shown by Valenzuela-Lopez *et al.* [4], in a study of a large number of coelomycetous isolates from the USA, which demonstrated that the majority of them were distributed across at least eleven orders, being the *Pleosporales* the most prevalent.

With an ability to cause human infections, the coelomycetes have been involved in numerous opportunistic mycoses ranging from superficial to deep infections, most of them acquired by traumatic implantation of plant material or soil particles mainly in subtropical and tropical areas.^{1,3-4,12-14} The most frequent are reduced to a specific group of taxa that includes *Colletotrichum* spp., *Medicopsis romeroi* and *Neoscytalidum dimidiatum*, although apart from these a huge number of species are occasionally also involved in human pathologies (see Table 1). Approximately 50 species have been reported in human mycoses, mainly causing subcutaneous infections.

Identification of the coelomycetes in the clinical laboratory is not easy because of their difficulty in sporulating. Recognizing and characterizing the most representative morphological structures of these fungi requires some expertise and even then these microorganisms remain sterile in many cases.³ The use of molecular techniques based on the amplification and sequencing of appropriate phylogenetic markers is very important in the identification in this group of fungi.

Treatments are still not established due to the lack of clinical breakpoints for these fungi and to the difficulties in performing antifungal susceptibility testing against these fungi that hardly sporulate. Only few studies on coelomycetes have demonstrated that the use of surgical resection and a few drugs such as amphotericin B and triazoles have shown some efficacy.¹⁴⁻¹⁵

The aim of this paper is to update the current knowledge of the taxonomy of these taxa involved in human infections.

LABORATORY IDENTIFICATION

Isolation and morphological identification of clinical coelomycetous isolates

For cultural isolation and characterization the isolates should be inoculated on the following culture media: malt extract agar (MEA; 40 g of malt extract, 15 g of agar-agar, 1 L distilled water), oatmeal agar (OA; 30 g of filtered oat flakes, 15 g of agar-agar, 1 L tap water) and potato dextrose agar (PDA, 4 g of potato infusion, 20 g dextrose, 15 g of agar-agar, 1 L tap water) at $25 \pm 1^{\circ}$ C for 14 days in darkness. If the isolate does not sporulate, its incubation under near ultraviolet (UV) light (12 hours light, 12 hours dark) or on carnation leaf agar (CLA) to induce sporulation can be useful.¹⁶⁻¹⁷ For micromorphological characterization, the use of wet mounts prepared in Shear's mounting medium (potassium acetate 3 g, distilled

water 150 mL, glycerin 60 mL, ethanol (95 %) 90 mL) or 85% lactic acid are recommended. Table 1 summarizes the most relevant morphological features of the most prevalent coelomycetes in the clinical setting.

DNA extraction, amplification, and sequencing

For identification purposes the fungal genomic DNA should be extracted from colonies grown on PDA after 7 days of incubation at $25 \pm 1^{\circ}$ C, following the protocols by Valenzuela-Lopez *et al.* [4].

Molecular identification of coelomycetes

To this purpose, the fragment of the 28S nrRNA gene (LSU) and internal transcribed spacer region (ITS) should be amplified, and depending on the fungus secondary phylogenetic markers such as beta-tubulin gene (tub2) and/or RNA polymerase II subunit 2 gene (rpb2) should be additionally tested (see Table 2).

Preliminary identification of coelomycetes can be carried out using the BLAST nucleotide tool of the NCBI (https://blast.ncbi.nlm.nih.gov/Blast/), the Westerdijk Fungal Biodiversity Institute (former CBS) (http://www.westerdijkinstitute.nl/Collections/) or the Q-Bank (http://www.q-bank.eu/Fungi/) databases. For accurate identification of the isolates, the sequences must be compared with those of type or reference strains. It is also recommended to perform an alignment and its phylogenetic analysis using appropriate softwares such as MrBayes, RAxML, MEGA or several other useful programs.¹⁸⁻²⁰

We suggest, depending on the fungi in order to identify, to follow the scheme of figure 1 and the primers listed in Table 2. In general, the genes ITS, LSU, *tub*2 and translation elongation factor 1-alpha (*tef*1) are easy to amplify; and also the *rpb*2, which is a bit more difficult to amplify; however, it is one of the most informative marker. ⁵⁻⁶ Nowadays, most of ITS and LSU genes of these species are sequenced and available in the public databases. Recently,

additional phylogenetic markers have been sequenced, which increase the possibility of a better taxonomic classification and identification of the fungi.

In figure 2 we provide an example of phylogenetic analysis with a tree performed by using the MEGA software with a set of LSU sequences of clinical coelomycetes available. However, the precise identification always depends on the phylogenetic markers used (see above). Unfortunately, most of the coelomycetes information in public databases it is not updated and in many cases is necessary an exhaustive literature search for a correct taxonomic placement of the fungus.

Recently, the use of matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) mass spectrometry for identifying microorganisms in the clinical laboratory has quickly become important.²¹⁻²³ This technique was used previously mostly for yeasts, but more recently it has been also adapted for identifying molds. A recent study by Fraser *et al.* [23] also demonstrated the usefulness of this technique for coelomycetes that produce black grain mycetoma.

Conclusions

The taxonomy of the coelomycetes that have produced human infections is confusing because they are currently distributed across a high number of genera and species. They can only be properly identified by DNA sequencing and comparison with reference strains. However, their identity is crucial for their correct antifungal management, which is still little known.

ACKNOWLEDGMENTS

This work was supported by the Spanish Ministerio de Economía y Competitividad,

grant CGL2017-88094-P.

CONFLICT OF INTEREST

None to declare.

REFERENCES

- 1. Sutton DA. Coelomycetous fungi in human disease. A review: clinical entities, pathogenesis, identification and therapy. *Rev Iberoam Micol*. 1999;16:171–179.
- de Hoog, Guarro J, Gene J, Figueras MJ. Atlas of clinical fungi. Utrecht/Reus: Centraalbureau voor Schimmelcultures/Universitat Rovira i Virgili, 2000.
- Stchigel AM, Sutton DA. Coelomycete fungi in the clinical lab. Curr Fungal Infect Rep. 2013;7:171–191.
- Valenzuela-Lopez N, Sutton DA, Cano-Lira JF, *et al.* Coelomycetous fungi in the clinical setting: morphological convergence and cryptic diversity. *J Clin Microbiol*. 2017;55:552–567.
- Chen Q, Jiang JR, Zhang GZ, Cai L, Crous PW. Resolving the *Phoma* enigma. *Stud Mycol.* 2015;82:137–217.
- Valenzuela-Lopez N, Cano-Lira JF, Guarro J, *et al.* Coelomycetous Dothideomycetes with emphasis on the families *Cucurbitariaceae* and *Didymellaceae*. *Stud Mycol*. 2018;90:1–69.
- Schoch CL, Crous PW, Groenewald JZ, *et al.* A class-wide phylogenetic assessment of Dothideomycetes. *Stud Mycol.* 2009;64:1–15.
- Maharachchikumbura SSN, Hyde KD, Groenewald JZ, Xu J, Crous PW. *Pestalotiopsis* revisited. *Stud Mycol*. 2014;79:121–186.
- Wijayawardene NN, Hyde KD, Wanasinghe DN, et al. Taxonomy and phylogeny of dematiaceous coelomycetes. Fungal Divers. 2016;77:1–316.

- Sutton BC. *The Coelomycetes: Fungi Imperfecti with pycnidia, acervuli and stromata*.
 Kew, Surrey, England, Commonwealth Mycological Institute; 1980.
- 11. Kirk PM, Cannon PF, Stalpers JA, Minter DW. *Ainsworth & Bisby's dictionary of the fungi*. 10th ed. Wallingford, United Kingdom: CAB International; 2008.
- 12. Ahmed SA, Van De Sande WW, Stevens DA, *et al.* Revision of agents of black-grain eumycetoma in the order Pleosporales. *Persoonia*. 2014;33:141–154.
- Vasant JA, Maggiani F, Borman AM. Subcutaneous mycotic cyst caused by *Roussoella percutanea* in a UK renal transplant patient. *Mycopathologia*. 2017;182:721–725.
- 14. Guégan S, Garcia-Hermoso D, Sitbon K, et al. Ten-year experience of cutaneous and/or subcutaneous infections due to coelomycetes in France. Open Forum Infect Dis. 2016;3:ofw106.
- 15. Chowdhary A, Meis JF, Guarro J, *et al.* ESCMID and ECMM joint clinical guidelines for the diagnosis and management of systemic phaeohyphomycosis: diseases caused by black fungi. *Clin Microbiol Infect.* 2014;20:47–75.
- 16. Fisher NL, Burgess LW, Toussoun TA, Nelson PE. Carnation leaves as a substrate and for preserving cultures of *Fusarium* species. *Phytopathology*. 1982;72:151–153.
- 17. Su YY, Qi YL, Cai L. Induction of sporulation in plant pathogenic fungi. *Mycology*. 2012;3:195–200.
- Huelsenbeck JP, Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. *Bioinformatics*. 2001;17:754–755.
- Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. *Bioinformatics*. 2014;30:1312–1313.
- 20. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. *Mol Biol Evol*. 2013;30:2725–2729.

- 21. Havlicek V, Lemr K, Schug KA. Current trends in microbial diagnostics based on mass spectrometry. *Anal Chem.* 2013;85:790–797.
- Sanguinetti M, Posteraro B. Identification of molds by matrix-assisted laser desorption ionization-time of flight mass spectrometry. *J Clin Microbiol*. 2017;55:369–379.
- 23. Fraser M, Borman AM, Johnson EM. Rapid and robust identification of the agents of black-grain mycetoma by matrix-assisted laser desorption ionization–time of flight mass spectrometry. *J Clin Microbiol*. 2017;55:2521–2528.
- 24. Campbell CK, Mulder JL. Skin and nail infection by Scytalidium hyalinum sp. nov. *Sabouraudia*. 1977;15:161–166.
- 25. Moore MK. Morphological and physiological studies of isolates of *Hendersonula toruloidea* Nattrass cultured from human skin and nail samples. J Med Vet Mycol. 1988;26:25–39.
- 26. Kombila M, Martz M, Gomez de Diaz M, de Bievre C, Richard-Lenoble D. *Hendersonula toruloidea* as an agent of mycotic foot infection in Gabon. *J Med Vet Mycol.* 1990;28:215–223.
- 27. Al-Rajhi AA, Awad AH, Al-Hedaithy SS, Forster RK, Caldwell KC. *Scytalidium dimidiatum* fungal endophthalmitis. *Br J Ophthalmol*. 1993;77:388–390.
- Benne CA, Neeleman C, Bruin M, de Hoog G, Fleer A. Disseminating infection with Scytalidium dimidiatum in a granulocytopenic child. Eur J Clin Microbiol Infect Dis. 1993;12:118–121.
- 29. Geramishoar M, Zomorodian K, Zaini F, et al. First case of cerebral phaeohyphomycosis caused by *Nattrassia mangiferae* in Iran. Jpn J Infect Dis. 2004;57:285–286.

- 30. Jabbarvand M, Hashemian MR, Abedinifar Z, Amini A. *Nattrassia mangiferae* keratitis after laser in situ keratomileusis. *J Cataract Refract Surg*. 2004;30:268–272.
- 31. Padhi S, Uppin SG, Uppin MS, et al. Mycetoma in South India: retrospective analysis of 13 cases and description of two cases caused by unusual pathogens: *Neoscytalidium dimidiatum* and *Aspergillus flavus*. Int J Dermatol. 2010;49:1289– 1296.
- 32. Jagielski T, Zak I, Tyrak J, Bryk A. First probable case of subcutaneous infection due to *Truncatella angustata*: a new fungal pathogen of Humans?. *J Clin Microbiol*. 2015;53:1961–1964.
- Rebell G, Forster RK. Lasiodiplodia theobromae as a cause of keratomycoses. Sabouraudia. 1976;14:155–170.
- 34. Restrepo A, Arango M, Velez H, Uribe L. The isolation of *Botryodiplodia theobromae* from a nail lesion. *Sabouraudia*. 1976;14:1–4.
- 35. Slomovic AR, Forster RK, Gelender H. *Lasiodiplodia theobromae* panophthalmitis. *Can J Ophthalmol.* 1985;20:225–228.
- 36. Maslen MM, Collis T, Stuart R. Lasiodiplodia theobromae isolated from a subcutaneous abscess in a Cambodian immigrant to Australia. J Med Vet Mycol. 1996;34:279–283.
- 37. Woo PC, Lau SK, Ngan AH, Tse H, Tung ET, Yuen KY. *Lasiodiplodia theobromae* pneumonia in a liver transplant recipient. *J Clin Microbiol*. 2008;46:380–384.
- 38. Kindo AJ, Pramod C, Anita S, Mohanty S. Maxillary sinusitis caused by *Lasiodiplodia theobromae. Indian J Med Microbiol.* 2010;28:167–169.
- 39. Papacostas LJ, Henderson A, Choong K, Sowden D. An unusual skin lesion caused by *Lasiodiplodia theobromae*. *Med Mycol Case Rep.* 2015;8: 44–46.

- 40. Tan DH, Sigler L, Gibas CF, Fong IW. Disseminated fungal infection in a renal transplant recipient involving *Macrophomina phaseolina* and *Scytalidium dimidiatum*: case report and review of taxonomic changes among medically important members of the *Botryosphaeriaceae*. *Med Mycol*. 2008;46:285–292.
- 41. Srinivasan A, Wickes BL, Romanelli AM, et al. Cutaneous infection caused by Macrophomina phaseolina in a child with acute myeloid leukemia. J Clin Microbiol. 2009;47:1969–72.
- Premamalini T, Ambujavalli BT, Vijayakumar R, Rajyoganandh SV, Kalpana S, Kindo AJ. Fungal keratitis caused by *Macrophomina phaseolina* - A case report. *Med Mycol Case Rep.* 2012;1:123-126.
- 43. Kirkness CM, Seal DV, Clayton YM, Punithalingam E. *Sphaeropsis subglobosa* keratomycosis First reported case. *Cornea*. 1991;10:85–89.
- 44. Cariello PF, Wickes BL, Sutton DA, *et al. Phomopsis bougainvilleicola* prepatellar bursitis in a renal transplant recipient. *J Clin Microbiol*. 2013;51:692–695.
- 45. Iriart X, Binois R, Fior A, *et al.* Eumycetoma caused by *Diaporthe phaseolorum* (*Phomopsis phaseoli*): a case report and a mini-review of *Diaporthe/Phomopsis* spp invasive infections in humans. *Clin Microbiol Infect.* 2001;17:1492–1494.
- 46. Gajjar DU, Pal AK, Parmar TJ, *et al*. Fungal scleral keratitis caused by *Phomopsis phoenicicola*. *J Clin Microbiol*. 2011;49:2365–2368.
- 47. Liesegang TJ, Forster RK. Spectrum of microbial keratitis in South Africa. *Am J Ophthalmol.* 1980;90:38–47.
- 48. O'Quinn RP, Hoffmann JL, Boyd AS. *Colletotrichum* species as emerging opportunistic fungal pathogens: a report of 3 cases of phaeohyphomycosis and review. *J Am Acad Dermatol.* 2001;45:56–61.

- Liao WQ, Shao JZ, Li SQ, *et al.* Colletotrichum dematium caused keratitis. *Chin Med J.* 1983;96:391–394.
- 50. Mendiratta DK, Thamke D, Shukla AK, Narang P. Keratitis due to *Colletotrichum dematium* A case report. *Indian J Med Microbiol*. 2005;23:56–58.
- 51. Singh R, Gupta V, Chakarborty A, Nijhawan R, Arora S, Gupta A. Fungal endophthalmitis complicating subconjunctival injection of triamcinolone acetonide in anterior scleritis. *Ann Ophthalmol* (Skokie). 2006;38:253–256.
- 52. Castro LG, da Silva LC, Guarro J, *et al.* Phaeohyphomycotic cyst caused by *Colletotrichum crassipes. J Clin Microbiol.* 2001;39:2321–2324.
- 53. Shukla PK, Khan ZA, Lal B, Agrawal PK, Srivastava OP. Clinical and experimental keratitis caused by *Colletotrichum* state of *Glomerella cingulata* and *Acrophialophora fusispora*. *Sabouraudia*. 1983;21:137–147.
- 54. Guarro J, Svidzinski TE, Zaror L, Forjaz MH, Gené J, Fischman O. Subcutaneous hyalohyphomycosis caused by *Colletotrichum gloeosporioides*. J Clin Microbiol. 1998;36:3060–3065.
- 55. Potea ST, Chakraborty A, Lahiri KK, Patolea MS, Deshmukhc RA, Shah SR. Keratitis by a rare pathogen *Colletotrichum gloeosporioides*: A case report. *J Mycol Med.* 2017;27:407–411.
- 56. Ritterband DC, Mahendra S, Seedor JA. *Colletotrichum graminicola*: A new corneal pathogen. *Cornea*. 1997;16:362–364.
- 57. Shivaprakash MR, Appannanavar SB, Dhaliwal M, *et al. Colletotrichum truncatum*: an unusual pathogen causing mycotic keratitis and endophthalmitis. *J Clin Microbiol*. 2011;49:2894–2898.

UNIVERSITAT ROVIRA I VIRGILI

TAXONOMÍA DE HONGOS CELOMICETOS DE INTERÉS CLÍNICO

Nicomedes Miguel Antonio Valenzuela López

58. Chowdhary A, Guarro J, Randhawa HS, et al. A rare case of chromoblastomycosis in a renal transplant recipient caused by a non-sporulating species of *Rhytidhysteron*. *Med Mycol*. 2008;46:163–166.

- 59. Mahajan VK, Sharma V, Prabha N, *et al.* A rare case of subcutaneous phaeohyphomycosis caused by a *Rhytidhysteron* species: a clinico-therapeutic experience. *Int J Dermatol.* 2014;53:1485–1489.
- 60. Mishra K, Das S, Goyal S, *et al.* Subcutaneous mycoses caused by *Rhytidhysteron* species in an immunocompetent patient. *Med Mycol Case Rep.* 2014;5:32–34.
- 61. Guarro J, Höfling-Lima AL, Gené J, *et al.* Corneal ulcer caused by the new fungal species *Sarcopodium oculorum*. *J Clin Microbiol*. 2002;40:3071–3075.
- Perdomo H, García D, Gené J, et al. Phialemoniopsis, a new genus of Sordariomycetes, and new species of Phialemonium and Lecythophora. Mycologia. 2013;105:398–421.
- 63. Zaitz C, Heins-Vaccari EM, Freitas RS, *et al.* Subcutaneous phaeohyphomycosis caused by *Phoma cava*. Report of a case and review of the literature. *Rev Inst Med trop S Paulo*. 1997;39:43–48.
- 64. Ferrer C, Pérez-Santonja JJ, Rodríguez AE, *et al.* New Pyrenochaeta species causing keratitis. *J Clin Microbiol*. 2009;47:1596–1598.
- 65. Verkley GJ, Gené J, Guarro J, *et al. Pyrenochaeta keratinophila* sp. nov., isolated from an ocular infection in Spain. *Rev Iberoam Micol*. 2010;27:22–24.
- 66. English MP, Atkinson R. Onychomycosis in elderly chiropody patients. *Br J Dermatol.* 1974;91:67–72.
- 67. Punithalingam E, English MP. *Pyrenochaeta unguis-hominis* sp.nov. on human toenails. *Trans Br Mycol Soc.* 1975;64:539–541.
- Toh YF, Yew SM, Chan CL, et al. Genome anatomy of Pyrenochaeta unguis-hominis UM 256, a multidrug resistant strain isolated from skin scraping. PLoS One. 2016;11:e0162095.
- 69. Balis E, Velegraki A, Fragou A, Pefanis A, Kalabokas T, Mountokalakis T. Lung mass caused by Phoma exigua. *Scand J Infect Dis*. 2006;38:552–555.
- 70. Punithalingam E. Sphaeropsidales in culture from humans. *Nova Hedwigia*. 1979;31:119–158.
- 71. Rai MK. *Phoma sorghina* infection in human being. *Mycopathologia*. 1989;105:167–170.
- 72. Bakerspigel A, Lowe D, Rostas A. The isolation of *Phoma eupyrena* from a human lesion. *Arch Dermatol.* 1981;117:362–363.
- Punithalingam E. Phoma oculo-hominis sp.nov. from corneal ulcer. Trans Br Mycol Soc. 1976;67:142–143.
- 74. Colombier MA, Alanio A, Denis B, et al. Dual Invasive Infection with Phaeoacremonium parasiticum and Paraconiothyrium cyclothyrioides in a Renal Transplant Recipient: Case Report and Comprehensive Review of the Literature of Phaeoacremonium Phaeohyphomycosis. J Clin Microbiol. 2015;53:2084–2094.
- 75. Kiehn TE, Polsky B, Punithalingam E, Edwards FF, Brown AE, Armstrong D. Liver infection caused by Coniothyrium fuckelii in a patient with acute myelogenous leukemia. *J Clin Microbiol*. 1987;25:2410–2412.

76. Borelli D. Pyrenochaeta romeroi nova especie. Dermatol Venez. 1959;1:325-326.

77. Girard C, Dereure O, Rispail P, Durand L, Guilhou JJ. Subcutaneous phaeohyphomycosis due to Pyrenochaeta romeroi in a patient with leprosy. *Acta Derm Venereol.* 2004;84:154–155.

- 78. Ocampo MA, Kanitakis J, Bienvenu AL, Chauvet C, Euvrard S. Phaeohyphomycosis caused by *Pyrenochaeta romeroi* mimicking a plantar wart in a kidney transplant recipient. *Transpl Infect Dis*. 2012;14:173–174.
- Borelli D, Zamora R, Senabre G. *Chaetosphaeronema larense* nova species agente de micetoma. *Gaceta Med Caracas*. 1976;84:307–318.
- 80. Ahmed SA, Desbois N, Quist D, *et al.* Phaeohyphomycosis caused by a novel species, *Pseudochaetosphaeronema martinelli. J Clin Microbiol.* 2015;53:2927–2934.
- 81. Chabasse D, de Bievre C, Legrand E, *et al.* Subcutaneous abscess caused by *Pleurophomopsis lignicola* Petr: first case. *J Med Vet Mycol.* 1995;33:415–417.
- 82. Padhye AA, Karpati A, Rosenthal SA, Punithalingam E. Subcutaneous phaeohyphomycotic abscess caused by *Pleurophomopsis lignicola*. *Med Mycol*. 2004;42:129–134.
- Borelli D. Pyrenochaeta mackinnonii nova species agente de micetoma. Castellania. 1976;4:227–234.
- 84. Ahmed SA, Hofmüller W, Seibold M, et al. Tintelnotia, a new genus in Phaeosphaeriaceae harbouring agents of cornea and nail infections in humans. Mycoses. 2017;60:244–253.
- 85. Shukla NP, Rajak RK, Agarwal GP, Gupta DK. *Phoma minutispora* as a Human Pathogen. *Mycoses*. 1984;27:255–258.
- 86. Ahmed SA, Stevens DA, van de Sande WW, Meis JF, de Hoog GS. Roussoella percutanea, a novel opportunistic pathogen causing subcutaneous mycoses. Med Mycol. 2014;52:689–698.
- 87. Borman AM, Desnos-Ollivier M, Campbella CK, Bridge PD, Dannaoui E, Johnson EM. Novel taxa associated with Human fungal black-grain Mycetomas: *Emarellia*

grisea gen. nov., sp. nov., and Emarellia paragrisea sp. nov. J Clin Microbiol. 2016;54:1738–1745.

- 88. Segretain G, Destombes P. Mycetomas caused by *Madurella grisea* and *Pyrenochaeta romeroi*. *Sabouraudia*. 1969;7:51–61.
- 89. White TJ, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, eds. PCR Protocols: A Guide to Methods and Applications. Orlando, Florida: Academic Press; 1990:315–322.
- 90. Rehner SA, Samuels GJ. Taxonomy and phylogeny of *Gliocladium* analysed from nuclear large subunit ribosomal DNA sequences. *Mycol Res.* 1994;98:625–634.
- 91. Vilgalys R, Hester M. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol. 1990;172:4238–4246.
- 92. Carbone I, Kohn L. A method for designing primer sets for speciation studies in filamentous Ascomycetes. *Mycologia*. 1999;91:553–556.
- 93. O'Donnell K, Cigelnik E. Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus *Fusarium* are nonorthologous. *Mol Phylogenet Evol.* 1997;7:103–116.
- 94. Glass NL, Donaldson G. Development of primer sets designed for use with PCR to amplify conserved genes from filamentous Ascomycetes. *Appl Environ Microb*. 1995;61:1323–1330.
- 95. Woudenberg JHC, Aveskamp MM, de Gruyter J, Spiers AG, Crous PW. Multiple *Didymella* teleomorphs are linked to the *Phoma clematidina* morphotype. *Persoonia*. 2009;22:56–62.

UNIVERSITAT ROVIRA I VIRGILI

TAXONOMÍA DE HONGOS CELOMICETOS DE INTERÉS CLÍNICO

Nicomedes Miguel Antonio Valenzuela López

96. Guerber JC, Liu B, Correll JC, Johnston PR. Characterization of diversity in *Colletotrichum acutatum* sensu lato by sequence analysis of two gene introns, mtDNA and intron RFLPs, and mating compatibility. *Mycologia*. 2003;95:872–895.

- 97. Crous PW, Groenewald JZ, Risede JM, Hywel-Jones NL. *Calonectria* species and their *Cylindrocladium* anamorphs: species with sphaeropedunculate vesicles. *Stud Mycol*. 2004;50:415–430.
- 98. Liu YJ, Whelen S, Hall BD. Phylogenetic relationships among ascomycetes evidence from an RNA polymerase II subunit. *Mol Biol Evol*. 1999;16:1799–1808.
- 99. Schoch CL, Shoemaker RA, Seifert KA, Hambleton S, Spatafora JW, Crous PW. A multigene phylogeny of the Dothideomycetes using four nuclear loci. *Mycologia*. 2006;98:1041–1052.

Figure legend

Figure 1. Flow scheme showing the phylogenetic markers for coelomycete identification ("?" means that ITS not always it's an useful tool to resolve the identification at species level). Data referred to genes are included in Table 2.

Figure 2. Maximum likelihood tree obtained from the D1-D2 of LSU (588 bp) sequences of 40 coelomycetous isolates. Bootstrap support values of \geq 70 are indicated on the nodes. The GenBank accession numbers are given for each isolate. *Chaetomella oblonga* ATCC 12718 and *C. zambiensis* CBS 137978 were used to root the tree.

Order & Family	Species (former name)	Human infection	Reference	Conidiomata	Conidia	Other features
Amphisphaeriales						
Bartaliniaceae	Truncatella angustata	Subcutaneous	53	Acervular to pycnidial	Fusiform, 3-septate, 15– 23 × 6–8 μ m, with apical appendages; basal cell hyaline, obconic, thin- walled; mediun cells brown, doliiform to subcylindrical, thick- walled	
Botryosphaeriales						
Botryosphaeriaceae	Hendersonula toruloidea synanamorph: Neoscytalidium dimidiatum (Scytalidium hyalinum)	Cutaneous, keratitis, onychomycosis, black grain eumycetoma, endophthalmitis, subcutaneous, Cerebral, systemic	24-31	Pycnidial	Initially hyaline, aseptate, becoming dark brown and septate with age, $12-20 \times 4-8 \ \mu m$	The synanamorph <i>N. dimidiatum</i> produces arthroconidia
do	Lasiodiplodia theobromae (Botryodiplodia theobromae)	Keratitis, onychomycosis, endophthalmitis, subcutaneous, pneumonia, sinusitus	32-38	Pycnidial	Initially hyaline, becoming dark brown with longitudinal striations , ellipsoidal, thick-walled, 1-septate, $20-30 \times 10-15 \ \mu m$	Sexual morph on vegetal material. Paraphyses hyaline, cylindrical, septate
	Macrophomina phaseolina	Cutaneous, keratitis, systemic	39-41	Pycnidial	Hyaline, ellipsoid to obovoid, $14-30 \times 5-10$	Sclerotia on vegetal material

Table 1 Species of coelomycetes of clinical interest and their morphological characteristics

This article is protected by copyright. All rights reserved.

Glomerellaceae

Brown, obovoidal or subspherical to spherical, with truncate base, thickwalled, as eptate, 9–12 \times Stromatic 42 Neodeightonia subglobosa Keratitis (Sphaeropsis subglobosa)

шŋ

шп 6-9

Diaporthales

Diaporthaceae

 43 Stromatic Hyaline, of two types: alpha, ellipsoidal or fusiform, 5–8.4 × 1.2–2 µm, and beta, filiform, curved, 16–31 × 0.5–0.9 µm 	1 44 Pycnidial Hyaline, of two types: alpha, ovoid, $6.7-7 \times 2.4$ µm, and beta, filiform, $13.3-22.5 \times 0.5-0.9$ µm	45 Pycnidial Hyaline, only alpha- conidia, ovoid to fusiform, $8-12 \times 2-2.5$
Bursitis	Black grain eumycetoma	Keratitis
Diaporthe bougainvilleicola (Phomopsis bougainvilleicola)	Diaporthe phaseolorum (Phomopsis phaseoli)	Diaporthe phoenicicola (Phomopsis phoenicicola)

Glomerellales

UNIVERSITA	AT F	ROVIE	RA I	VIR	GILI				
TAXONOMÍA	DE	HONO	SOS	CELO	MICETOS	DE	INTERÉS	CLÍNICO	
Nicomedes	Mig	guel	Ant	onio	Valenzu	lela	a López		

Colletotrichum dematium	Keratitis, endophthalmitis	48-50	Acervular	Hyaline, falcate, acute apex, 20 – 30×3 – $5 \mu m$	Apressoria brown, clavate to circular, 8– 11.5×6.5 –8 µm
Colletotrichum zigasporum (C. crassipes)	Subcutaneous	51	Acervular	Hyaline, cylindrical with rounded ends, 27–30 × 9–10 µm	Apressoria brown to dark brown, variable in shape including ovoid, clavate or slightly irregular, 15– $30 \times 7-14 \ \mu m$
Colletotrichum doeosporioides	Keratitis, subcutaneous	52-54	Acervular	Hyaline, straight, cylindrical, obtuse at the apex, $9-24 \times 3-4.5 \ \mu m$	Apressoria brown, clavate or irregular, 6–20 × 4–12 μm
Colletotrichum ;raminicola	Keratitis	55	Acervular	Hyaline, fusiform to falcate, 23–29 × 3.5–5 µm	Apressoria brown, irregular, 17–20 × 12– 14 µm
Colletotrichum truncatum	Keratitis	56	Acervular	Hyaline, fusiform, 20– 23.5 \times 3.5–4 μ m	Appressoria light brown, solitary or in groups, ellipsoidal or clavate, 6.5–13 × 5.5– 7.5 μm
Rhytidhysteron rufulum	Subcutaneous	57-59	Pycnidial	Hyaline, globose to subglobose, smooth- and thin-walled	Sexual morph on vegetal material

This article is protected by copyright. All rights reserved.

DEED AT

Pycnidial or sporodochial	Hyaline, ellipsoidal, smooth-walled, aseptate, $2-3.5 \times 1-1.5 \mu m$	Chlamydospores, brown, thick- and rough-walled, intercallary, solitary or in chains, globose to pyriform, $5-9 \times 3-6$ 6 µm
Pycnidial	Hyaline, cylindrical to slightly allantoid, smooth- and thin-walled, aseptate, $2.5-3.5 \times 1-1.5$ µm	Growth at 37°C ^a
Pycnidial	Hyaline, ellipsoidal, smooth- and thin-walled, as eptate, $2.5-3 \times 1-2 \ \mu m$	Growth at 37°C ^a
Pycnidial	Hyaline, cylindrical, smooth- and thin-walled, aseptate, $2-3.5 \times 1-1.5$ µm	Growth at 37°C ^a

62

Subcutaneous

Neocucurbitaria cava

Cucurbitariaceae

Pleosporales

(Pyrenochaeta cava)

This article is protected by copyright. All rights reserved.

aseptate or 1(-2)-septate,

 $4.5\text{--}8\times2.5\text{--}4~\mu\text{m}$

Hyaline, smooth- and thin-walled, mainly

Pycnidial

68

Lung mass

exigua (Phoma exigua)

Boeremia exigua var.

Didymellaceae

65-67

Onychomycosis

Neocucurbitaria unguis-

hominis (Pyrenochaeta

unguis-hominis)

63-64

Keratitis

Neocucurbitaria

(Pyrenochaeta keratinophila)

keratinophila

UNIVERSITAT ROVIRA I VIRGILI TAXONOMÍA DE HONGOS CELOMICETOS DE INTERÉS CLÍNICO Nicomedes Miguel Antonio Valenzuela López

Incertae sedis

60-61

Keratitis

Phialemoniopsis ocularis

(Sarcopodium oculorum)

Didymella glomerata (Phoma glomerata)	Subcutaneous	69	Pycnidial	Hyaline, variable in shape, smooth- and thin-walled, aseptate, $4-8.5 \times 1.5-3 \ \mu m$	Chlamydospores dark brown, solitary or in chains, multicellular- dictyosporous, 30–65 × 15–25 µm
Epicoccum sorghinum (Phoma sorghina)	Subcutaneous	70	Pycnidial	Hyaline, variable in shape mostly ovoid- ellipsoidal, smooth- and thin-walled, aseptate, $4.5-7 \times 2-3$ µm	Chlamydospores dark brown, solitary or in chains, irregular, dictyosporous, 8–35 µm diam.
Juxtiphoma eupyrena (Phoma eupyrena)	Subcutaneous	71	Pycnidial	Hyaline, ellipsoidal, smooth- and thin-walled, aseptate, $4-5.5 \times 2-2.5$ µm	Chlamydospores dark brown, barrel shaped, 4–15 µm diam.
Phoma herbarum (Phoma cruris-hominis)	Subcutaneous	69	Pycnidial	Hyaline, ellipsoidal to ovoid, smooth- and thin- walled, aseptate, $4.5-6 \times 2-3 \mu m$	
Stagonosporopsis oculi- hominis (Phoma oculi- homini)	Keratitis	72	Pycnidial	Hyaline to brown, cylindrical, smooth- and thin-walled, aseptate $(3-7 \times 1-2 \mu m)$ or 1- septate $(9-16 \times 3-4.5 \mu m)$	

This article is protected by copyright. All rights reserved.

A

		Growth at 37°C ^a		Culture sterile	
Initially hyaline, yellowish brown with age, cylindrical, thin- walled, aseptate, 3–4.2 ×	Pale brown, cylindrical, smooth- and thin-walled, aseptate, $2.5-4 \times 1.5-2$ µm	Hyaline, cylindrical to ellipsoidal, smooth- and thin-walled, aseptate, 2– 2.8 × 1.2–1.5 μm	Hyaline, cylindrical, smooth- and thin-walled, aseptate, $2-3 \times 1-1.8 \ \mu m$		Hyaline, ellipsoidal, smooth- and thin-walled,
Stromatic	Pycnidial	Pycnidial	Pycnidial		Pycnidial
73	74	11,75-77	78	79	80-81
Systemic	Systemic	Cutaneous, black grain eumycetoma, subcutaneous	Black grain eumycetoma	Subcutaneous	Subcutaneous, sinusitus
Paraconiothyrium cyclothyrioides	Paraconiothyrium fuckelii (Coniothyrium fuckelii)	Medicopsis romeroi (Pyrenochaeta romeroi)	Pseudochaetosphaeronema larense (Chaetosphaeronema larense)	Pseudochaetosphaeronema martinelli	Pleurophomopsis lignicola
Didymosphaeriaceae		Incertae sedis	Macrodiplodiopsidaceae		Melanommataceae
		7 1	b 9)]	

aseptate, $2-3 \times 0.5-1 \ \mu m$ smooth, aseptate, 2.5–3 \times 1.5–2 µm Subhyaline, ellipsoidal, Pycnidial 82 Black grain eumycetoma Nigrograna mackinnonii (Pyrenochaeta Nigrogranaceae

This article is protected by copyright. All rights reserved.

mackinnonii)

	Onychomycos	Subcutaneous	Subcutaneous	Black grain eu Black grain eu
	Tintelnotia destructans	Westerdykella minutispora (Phoma minutispora)	Parathyridaria percutanea (Roussoella percutanea)	Emarellia grisea Emarellia paragrisea
	Phaeosphaeriaceae	Sporormiaceae	Thyridariaceae	Trematosphaeriaceae
ÐĮ	JIJ	JY	p	91

ly tested at different temperature conditions
previous
t was
s tha
^a specie

ts reserved.	
y copyright. All righ	
iis article is protected by	
Ε	

Growth at 37°C^a

ellipsoidal, smooth- and thin-walled, aseptate, 2-

 $3.2\times1{-2}~\mu m$

Hyaline to pale brown,

Pycnidial

83

Onychomycosis

Chlamydospores dark brown, subglobose or

mostly terminally on

irregular, solitary

thin-walled, aseptate, 2-

 $2.5\times1.5{-2}~\mu m$

ellipsoidal, smooth- and

Hyaline, subglobose to

Pycnidial

84

diam. Can produce hyphae, 6–15 µm

sexual morph

Growth at 37°C^a

ellipsoidal, smooth- and

thin-walled, aseptate,

 $1.2-2 \times 0.7-0.9 \ \mu m$

Hyaline to pale brown,

Pycnidial

85

Growth at 37°C^a

Hyaline to pale brown,

11,87-88 Pycnidial

clavate to ellipsoidal,

smooth- and thin-walled

aseptate, $4-5.4 \times 2-2.4$

шn

Culture sterile

86

Black grain eumycetoma

86

Black grain eumycetoma

Black grain eumycetoma

Trematosphaeria grisea

(Madurella grisea)

Culture sterile

Table 2 Primers used for coelomycetes identification

	•					
Gene	Product name	Primer	Direction	Sequence (5'-3')	Reference	Used in
Internal transcribed	STI	ITS-5	Forward	GGA AGT AAA AGT CGT AAC AAG G	White <i>et al.</i> ⁸⁹	All coelomycetes
spacer (complete)		ITS-4	Reverse	TCC TCC GCT TAT TGA TAT GC	White et al. ⁸⁹	
28S ribosomal RNA	LSU	LR0R	Forward	GTA CCC GCT GAA CTT AAG C	Rehner & Samuels ⁹⁰	All coelomycetes
7		LR5	Reverse	TCC TGA GGG AAA CTT CG	Vilgalys & Hester ⁹¹	
Actin	ACT	ACT-512F	Forward	ATG TGC AAG GCC GGT TTC GC	Carbone & Kohn ⁹²	Colletotrichum,
1		ACT-783R	Reverse	TAC GAG TCC TTC TGG CCC AT	Carbone & Kohn ⁹²	Didymella, Phoma
Beta-tubulin	TUB2	T1	Forward	AAC ATG CGT GAG ATT GTA AGT	O'Donnell & Cigelnik ⁹³	Colletotrichum,
9		Bt-2b	Reverse	ACC CTC AGT GTA GTG ACC CTT GGC	Glass & Donaldson ⁹⁴	Dtaporthe
		TUB2Fd	Forward	GTB CAC CTY CAR ACC GGY CAR TG	Woudenberg et al. ⁹⁵	Didymellaceae,
		TUB4Rd	Reverse	CCR GAY TGR CCR AAR ACR AAG TTG TC	Woudenberg et al. ⁹⁵	Pleosporalean coelomycetes
Calmodulin	CAL	CAL-228F	Forward	GAG TTC AAG GAG GCC TTC TCC C	Carbone & Kohn ⁹²	Colletotrichum,
		CAL-737R	Reverse	CAT CTT TCT GGC CAT CAT GG	Carbone & Kohn ⁹²	Diaporthe
Chitin synthase 1	CHS-1	CHS-79F	Forward	TGG GGC AAG GAT GCT TGG AAG AAG	Carbone & Kohn ⁹²	Colletotrichum

UNIVERSITAT ROVIRA I VIRGILI TAXONOMÍA DE HONGOS CELOMICETOS DE INTERÉS CLÍNICO Nicomedes Miguel Antonio Valenzuela López

This article is protected by copyright. All rights reserved.

All coelomycetes All coelomycetes Colletotrichum Colletotrichum Diaporthe Carbone & Kohn⁹² Carbone & Kohn⁹² Carbone & Kohn⁹² Guerber et al.⁹⁶ Guerber et al.⁹⁶ Schoch et al.⁹⁹ Crous et al.⁹⁷ Crous et al.⁹⁷ Liu et al.⁹⁸ Liu et al.⁹⁸ Forward GCC GTC AAC GAC CCC TTC ATT GA Forward GCY CCY GGH CAY CGT GAY TTY AT Reverse TGG AAG AAC CAT CTG TGA GAG GGG TGG AGT CGT ACT TGA GCA Forward GAY GAY MGW GAT CAY TTY GG Forward CAT CGA GAA GTT CGA GAA GG Reverse CCC ATW GCY TGC TTM CCC AT Reverse AGC TGG ATG TCC TTG GAC TG Reverse TAC TTG AAG GAA CCC TTA CC Forward AGG TCC ACT GGT GGC AAG TTG TGT Reverse **TEF1-983F** CHS-354R fRPB2-5F fRPB2-7R EF1-728F EF1-986R **CYLH3F CYLH3R GDF1 GDR1** GAPDH **RPB2** HIS3 TEF Translation elongation second largest subunit

RNA polymerase II

factor 1-alpha

Glyceraldehyde-3-

dehydrogenase

phosphate

Histone H3

Schoch et al.⁹⁹

Reverse AT GAC ACC RAC RGC RAC RGT YTG

TEF1-2218R

This article is protected by copyright. All rights reserved.

UNIVERSITAT ROVIRA I VIRGILI TAXONOMÍA DE HONGOS CELOMICETOS DE INTERÉS CLÍNICO Nicomedes Miguel Antonio Valenzuela López

Article	EU754186 Phoma herbarum CBS 615.75 GU238073 Juxtiphoma eupyrena CBS 527.66 JX681105 Didymella glomerata CBS 528.66 JX681105 Didymella glomerata CBS 528.66 JX681074 Boeremia exigua var. exigua CBS 431.74 GU238176 Stagonosporopsis oculi-hominis CBS 634.92 GU238196 Stagonosporopsis oculi-hominis CBS 634.92 V100 GU238196 Stagonosporopsis oculi-hominis CBS 634.92 V100 GU238196 Stagonosporopsis oculi-hominis CBS 127737 LT623215 Neocucurbitaria keratinophila CBS 121759 EU754199 Neocucurbitaria cava CBS 257.68 GQ387623 Neocucurbitaria unguis-hominis CBS 11112 EU754207 Medicopsis romeroi CBS 252.60 Pleosporales #100 UT160931 Emarellia paragrisea NCPF7611 LT160929 Emarellia grisea CBS 332.50 KF015611 Pseudochaetosphaeronema larense CBS 640.73 98 JX496232 Paraconiothyrium cyclothyrioides CBS 972.95 KF015611 Nigrograna mackinnonii CBS 674.75 KF366449 Parathyridaria percutanea CBS 868.95 GU238108 We	Dothideomycetes
	100 GU397354 Rhytidhysteron rufulum EB 0384 Hysteriales	
	Botryosphaeriales	
)t(100 AJ565912 Colletotrichum graminicola CBS 305.69 100 JN940809 Colletotrichum dematium CBS 125.25 76 JN940819 Colletotrichum truncatum CBS 151.35 98 EU552111 Colletotrichum gloeosporioides CBS 122687 100 AY705727 Colletotrichum gloeosporioides CBS 796.72	Sordar
	HG933292 Phialemoniopsis ocularis CNRMA 12.278 Incertae sedis	iomy
	AF382383 Truncatella angustata ICMP 7062 100 KC241880 Truncatella angustata TAPL.1 Amphisphaeriales	/cete
	EU255083 Diaporthe phaseolorum FAU 458 JX847137 Diaporthe bougainvilleicola R-4745	ίΩ.
	AY487080 Chaetomella oblonga ATCC 12718 100 KJ869187 Chaetomella zambiensis CBS 137978 OUT GROUP Leotiomycetes 0.02	

UNIVERSITAT ROVIRA I VIRGILI TAXONOMÍA DE HONGOS CELOMICETOS DE INTERÉS CLÍNICO Nicomedes Miguel Antonio Valenzuela López

Estudios de los aislados clínicos provenientes de dos

laboratorios de referencia europeos

UNIVERSITAT ROVIRA I VIRGILI TAXONOMÍA DE HONGOS CELOMICETOS DE INTERÉS CLÍNICO Nicomedes Miguel Antonio Valenzuela López

4.6. Diversity of coelomycetes in human infections: a 10-year experience from two European Reference Centers.

D. Garcia-Hermoso¹, N. Valenzuela-Lopez^{2,3}, O. Rivero-Menendez⁴, A. Alastruey-Izquierdo⁴, J. Guarro², J.F. Cano-Lira², A.M. Stchigel², and the French Mycoses Study Group

¹Institut Pasteur, National Reference Center for Invasive Mycoses and Antifungals (NRCMA), Molecular Mycology Unit, CNRS UMR2000, Paris, France; ²Mycology Unit, Medical School and IISPV, University Rovira i Virgili, C/ Sant Llorenç 21, 43201 Reus, Spain; ³Microbiology Unit, Medical Technology Department, Faculty of Health Science, University of Antofagasta, Chile; ⁴Mycology Reference Laboratory, Spanish National Center for Microbiology, Instituto de Salud Carlos III, Madrid, Spain

Enviado: Journal of Clinical Microbiology 2018.

UNIVERSITAT ROVIRA I VIRGILI TAXONOMÍA DE HONGOS CELOMICETOS DE INTERÉS CLÍNICO Nicomedes Miguel Antonio Valenzuela López

Diversity of coelomycetous fungi in human infections: a 10year experience of two European reference centres.

3

```
4 Dea Garcia-Hermoso<sup>1</sup>, Nicomedes Valenzuela-Lopez<sup>2,3</sup>, Olga Rivero-Menendez<sup>4</sup>, Ana
```

- 5 Alastruey-Izquierdo⁴, Josep Guarro², José F. Cano-Lira^{2#}, Alberto M. Stchigel² and the
- 6 French Mycoses Study Group
- 7 ¹Institut Pasteur, CNRS, National Reference Center for Invasive Mycoses and
- 8 Antifungals (NRCMA), Molecular Mycology Unit, UMR2000, Paris, France.
- 9 ² Mycology Unit, Medical School and IISPV, University Rovira i Virgili, C/ Sant
- 10 Llorenç 21, 43201 Reus, Spain.
- 11 ³Microbiology Unit, Medical Technology Department, Faculty of Health Science,
- 12 University of Antofagasta, Chile.
- ⁴Mycology Reference Laboratory, Spanish National Center for Microbiology, Instituto
 de Salud Carlos III, Madrid, Spain
- 15
- 16 **Running title:** Coelomycetous fungi of clinical interest in Europe.
- 17
- [#]Corresponding author. E-mail: jose.cano@urv.cat Unitat de Micologia, Facultat de
 Medicina i Ciències de la Salut, IISPV, Universitat Rovira i Virgili, 21 Sant Llorenç St.,
 43201, Reus, Spain.
- 21 D.G-H. and N.V-L contributed equally to this article.

22

23 No conflict of interest declared.

24 Word count: abstract = 129; text = 3184 (without ref).

25 ABSTRACT

The coelomycetous fungi are difficult to properly identify from their phenotypic 26 characterization and their role as etiologic agents of human infections is not clear. We 27 studied the species distribution of these fungi among clinical isolates that had been 28 collected and stored over a ten-year period in two European reference laboratories 29 (France and Spain). We identified phenotypically and molecularly 97 isolates by 30 sequencing the D1-D2 fragment of the 28S nrRNA (LSU) gene. Species of the orders 31 32 Pleosporales and Glomerellales were present in both collections, and Botryosphaeriales 33 and Diaporthales only in the French one. The most prevalent species were Medicopsis Neocucurbitaria keratinophila, romeroi. Neocucurbitaria unguis-hominis 34 and 35 Paraconiothyrium cyclothyrioides, which had been recovered primarily from superficial tissues. The Didymellaceae was the most common family represented, with 27 isolates 36 distributed into five genera. 37

38

39 Keywords: Colletotrichum, coelomycetes, coelomycetous fungi, Didymella,
40 Medicopsis, mycosis, Neocucurbitaria, Paraconiothyrium, Phoma.

41 INTRODUCTION

Human infections by coelomycetous fungi are rare and poorly characterized due 42 to the difficulty in identifying these fungi using only phenotypic tools. The 43 coelomycetous fungi are characterized by the production of conidia into fruiting bodies 44 (= conidiomata), and were originally included in the orders Sphaeropsidales and 45 Melanconiales of the class Coelomycetes, taxa which today lack scientific validity due 46 to the demonstrated polyphyletic character of this sort of fungus (1-3). They cause 47 superficial or subcutaneous infections, mostly following a traumatic inoculation of 48 contaminated plant material or soil particles during agricultural work in tropical and 49 subtropical areas (4-6). The most common coelomycetous fungi involved in these 50 infections are the etiologic agents of black-grain eumycetoma, such as Biatriospora 51 mackinnonii; Falciformispora *Medicopsis* 52 romeroi, and spp., Pseudochaetosphaeronema larense. Other common coelomycetous fungi include 53 54 Lasiodiplodia theobromae and Neoscytalidium dimidiatum (synanamorph of *Hendersonula toruloidea*) (7–11), which typically cause onychomycosis, subcutaneous 55 phaeohyphomycosis (12-15), and eumycetoma (16). In addition, many species of 56 *Phoma* and *Pyrenochaeta* have been reported as occasional agents of localized and 57 systemic infections in humans (9, 17-20). The taxonomy of several coelomycetous 58 genera mentioned before have been revised recently but they still constitute a group of 59 highly polyphyletic taxa that are usually difficult to identify phenotypically (2, 21–24). 60

In a recent study conducted in the USA, Valenzuela-Lopez *et al.* (6) identified 230 fungal strains by sequencing the D1-D2 domains of the 28S rRNA gene (LSU), from which 152 (66.1%) strains belonged to the order *Pleosporales*, the rest being distributed in several orders of the phylum Ascomycota. Most of these strains were recovered from superficial tissue. *Neoscytalidium dimidiatum, Paraconiothyrium*

cyclothyrioides and members of the family Didymellaceae were the most prevalent taxa. 66 67 In addition, those authors demonstrated the usefulness of the LSU as a good molecular marker for a preliminary identification of coelomycetous fungi at genus level. In fact, 68 such locus is easily amplified and many sequences are available in the GenBank 69 database. However, the nucleotide sequences of more phylogenetically informative 70 genes need analysing in order to identify the fungi at species level. Genes such as the 71 72 RNA polymerase II subunit 2 (rpb2), translation elongation factor 1-alpha (tef1), betatubulin (tub2) and the ribosomal internal transcribed spacer region (ITS), combined in a 73 multi-locus analysis, have all been recommended for this purpose (25) 74

Until now, the coelomycetous fungi involved in invasive fungal infections (IFIs) are poorly known in Europe, probably due to the infrequency of these fungi and the complexity of their identification in the absence of characteristic fruiting bodies when grown on culture media used in the clinical lab. In a recent French study, eighteen proven cases of cutaneous and subcutaneous primary infections by coelomycetous fungi were reported and analysed in patients from tropical and subtropical regions (26).

For a better knowledge of the diversity of coelomycetous fungi involved in human infections, we studied a large set of clinical isolates that had been identified in two mycology reference centres in France and Spain, and determined their *in vitro* antifungal susceptibility pattern.

85

86 **RESULTS**

87 Locations of infections

The majority of the isolates were recovered from superficial tissue, mainly skin (44%; 43/97), eyes (27%; 26/97), nails/hairs (18%; 17/97) and mouth/sinus (2%; 2/97). A few were recovered from deeper sites: bones (4%, 4/97), blood (2%, 2/97), cerebrospinal fluid (n=1), bone marrow (n=1) and lung (n=1) (Table 1 & 2).

92 Phylogenetic analyses

The maximum-likelihood (ML) phylogenetic analysis of the LSU sequences (approximately 584 pb) demonstrated that the 97 isolates were distributed into four orders, but scattered into fourteen clades (Fig. 1). Most of the isolates (81%; 78/97) belonged to the order *Pleosporales*, which were distributed into nine clades corresponding to 23 species of twelve genera, followed by those of the *Botryosphaeriales* (8%; 8/97), the *Diaporthales* (6%; 6/97) and the *Glomerellales* (5%; 5/97).

The most common species identified was *Medicopsis romeroi* (11%; 11/97),
followed by *Paraconiothyrium cyclothyrioides*, *Neocucurbitaria keratinophila* and *N*. *unguis-hominis* (8% each; 8/97). These species were mostly isolated from cutaneous
lesions (Table 2).

104 Clade 1 of the *Pleosporales* corresponded to the family *Didymellaceae*, which 105 included 27 isolates distributed into five genera, morphologically characterized by their 106 production of pycnidial conidiomata and hyaline, aseptate conidia. The five genera were 107 *Didymella*, *Epicoccum*, *Neoascochyta*, *Phoma* and *Xenodidymella*. *Didymella* was 108 represented by 13 isolates, six of them clustering with the type strain of *D. gardeniae* 109 (CBS 626.68), and the other seven clustered with a reference strain of *D. glomerata* 110 (CBS 528.66). The genus *Epicoccum* grouped five of the isolates, three of them 111 clustering with a reference strain of *E. sorghinum* (CBS 179.80) and the other two with 112 the type strain of the type species of the genus, *E. nigrum* (CBS 173.73). The genus 113 *Phoma* was represented by seven clinical isolates and a reference strain of *Phoma* 114 *herbarum* (CBS 615.75). Two additional isolates included in this clade (CNRMA 16.76 115 and CNM-CM 6201) grouped with the type strains of *Xenodidymella saxea* (CBS 116 419.92) and *Neoascochyta desmazieri* (CBS 297.69), respectively.

117 Clade 2 had two species of *Preussia*: CNM-CM 7335 grouped with a reference 118 strain of *P. typharum* (CBS 107.69), while CNM-CM 7343 represented an unknown 119 species forming a sister clade with the type strain of *P. terricola* (CBS 317.65).

120 Clade 3 grouped three isolates of *Paraphoma*, one of them (CNM-CM 8075) 121 clustered with the type strain of *P. fimeti* (CBS 170.70), and the remaining two 122 (CNRMA 15.665 and CNRMA 9.467) representing unidentified phoma-like species.

123 Clade 4 had two sister clades of the genus *Tintelnotia*, which produced pycnidia 124 and hyaline, aseptate conidia. The isolate CNM-CM 7430 was identified as *T*. 125 *destructans*. However, the other two isolates (CNM-CM 7080 and CNM-CM 7981) did 126 not cluster with any known species of the genus and might represent new species.

127 Clade 5 had 20 isolates of *Neocucurbitaria*. *Neocucurbitaria keratinophila* and 128 *N. unguis-hominis* were the most common species, both with eight isolates each. 129 *Neocucurbitaria cava*, with a single isolate (CNRMA 15.708), was also included in this 130 clade. Three Spanish isolates, CNM-CM 6489, CNM-CM 7025 and CNM-CM 7132 131 were identified as *Neocucurbitaria* sp. due to being phylogenetically different from the 132 other isolates and, again, might be a new species of the genus. *Neocucurbitaria* spp. produces pycnidia, ornamented or not, with bristle-like setose structures, and hyaline,aseptate conidia.

Clade 6 had eleven isolates of *Medicopsis romeroi* (syn. *Pyrenochaeta romeroi*),
which produces pycnidia and hyaline, aseptate conidia.

137 Clade 7 is represented by a single isolate (CNRMA 11.1115), phylogenetically138 distinct from the known pleosporalean fungi, possibly representing a novel taxon.

139 Clades 8 and 9 belonged to the family *Didymosphaeriaceae*. Clade 8 included a 140 single isolate (CNM-CM 6000) phylogenetically related to a reference strain of 141 *Paraphaeosphaeria michotii* (MFLUCC 13-0349). Clade 9 grouped ten isolates, two 142 related to a reference strain of *Paraconiothyrium fuckelii* (CBS 797.95) and eight with 143 the type strain of *Paraconiothyrium cyclothyrioides* (CBS 972.95). Members of the 144 *Didymosphaeriaceae* form pycnidia and pale brown, 0-1 septate conidia.

The order *Botryosphaeriales* are present in Clades 10 to 12. Clade 10 had only one isolate (CNRMA 12.597) which clustered with a reference strain of *Neofusicoccum luteum* (CBS 110299); Clade 11 also had a single isolate (CNRMA 6.1007) that clustered with the type strain of *Diplodia seriata* (CBS 112555), and Clade 12 grouped six isolates, five of them clustering with the type strain of *Lasiodiplodia theobromae*, and CNRMA 15.383 identified as *Lasiodiplodia* sp. These fungi produce stromatic conidiomata and aseptate, hyaline to brown, thick-walled conidia.

152 Clade 13 included the type strain of *Diaporthe sclerotioides* (CBS 296.67) and 153 six isolates corresponding to unidentified species of the genus *Diaporthe* 154 (*Diaporthales*), none of them able to be morphologically distinguished since they 155 produce pycnidia and small hyaline conidia. 156 Clade 14, corresponding to the *Glomerellales*, was used as outgroup. Five 157 isolates nested in the *Colletotrichum* clade, two clustering with reference strains of *C*. 158 *gigasporum* (CBS 159.75) and *C. gloeosporioides* (CBS 122687), respectively; and the 159 other three, could not be identified. All the isolates showed the typical morphology of 160 *Colletotrichum*, i.e., acervuli, conidia variable in shape, flattened with thickened tip 161 branches (appressoria).

162 Antifungal susceptibility testing

The minimum inhibitory concentration (MIC) was determined for 46 of the 163 isolates included here (16 from Spain and 30 from France) (Table 3, Table S1). 164 Globally, the geometric mean (GM) and MIC₅₀ values of itraconazole and caspofungin 165 were the highest (Table 3). The MIC of amphotericin B (0.06-1 mg/L) was generally 166 low among the *Pleosporales* with the exception of one isolate of *M. romeroi* and one of 167 D. gardeniae, with MICs of 8 and 32 mg/L, respectively. The azole MIC ranged 168 between 0.03 and 1 mg/L for isolates belonging to the genera Paraconiothyrium, 169 Paraphoma, Tintelnotia and Neocucurbitaria, with the exception of two isolates of N. 170 unguis-hominis, which showed higher values (16 mg/L). The terbinafine MIC was low 171 172 except for *Diaporthe* spp. and a few isolates of *Colletotrichum* spp. and *M. romeroi*.

173

174 **DISCUSSION**

The present study is the largest on this taxonomically complex group of fungi 175 from clinical origin, with almost a hundred isolates morphologically and molecularly 176 characterized from two southern European countries (France and Spain). Most of these 177 coelomycetous fungi belonged to the order *Pleosporales* and were most commonly 178 recovered from superficial infections. Similar results were observed in a previous work 179 that focused on coelomycetous fungi collected at a North American reference centre (6). 180 However, the diversity of the fungi identified in that study was higher, i.e. eleven orders 181 were represented against four here. 182

In the present study, *Medicopsis romeroi* was the most frequently isolated species whereas the most common taxon in the American study was *Neoscytalidium dimidiatum*. Interestingly, while *M. romeroi* is usually reported as an etiologic agent of black grain eumycetoma (4, 11, 26–29), our isolates were mainly recovered from eye and non-mycetoma subcutaneous infections.

The second most frequently isolated species were Paraconiothyrium 188 cyclothyrioides, Neocucurbitaria unguis-hominis and Ν. keratinophila. 189 Paraconiothyrium cyclothyrioides is an emerging pathogen (6, 26, 30, 31) and was 190 represented by eight isolates recovered from skin or superficial locations and mainly 191 from tropical regions. *Neocucurbitaria unguis-hominis*, initially described as an agent 192 193 of human onychomycosis (17), was equally distributed across both centres (n=8 isolates). Regarding N. keratinophyla, this species was reported for the first time from a 194 corneal infection in Spain (18, 19). Interestingly, as well as being the first case reported 195 for this species, all the isolates of N. keratinophyla were recovered in Spain from 196 superficial tissue. 197

Other coelomycetous fungi we identified in the present work were *Didymella glomerata* and *Phoma herbarum*. Although *Phoma* spp. are commonly reported as a coelomycete involved in human infections (9, 20, 32–39), recent extensive changes in taxonomy and nomenclature have spread all but one of the species into different genera of the *Didymellaceae*, *Phoma herbarum* remaining as the unique species of the genus (22–24). Interestingly, *Didymella gardeniae* was commonly found in our study (five isolates from Spain and one from France).

Recently, Ahmed *et al.* (40) proposed *Tintelnotia destructans*, a new phoma-like fungus belonging to the *Phaeosphaeriaceae* able to cause eye and nail infections. They reported the successful use of terbinafine against a case of keratitis by this species. Two of the Spanish isolates recovered from superficial specimens (one cutaneous exudate and one nail sample) were molecularly related to the above-mentioned species but phylogenetically different and might represent a new taxon.

Lasiodiplodia theobromae (order Botryosphaeriales) is the only species of this genus involved in human opportunistic infections (41–46). Valenzuela-Lopez *et al.* (6) found a higher species diversity in the North American study than we report here, since five of the French isolates were identified as *L. theobromae*. The other three isolates of the Botryosphaeriales we found were related, one to a different species of *Lasiodiplodia* and the other two to other genera, specifically *Neofusicoccum* and *Diplodia*.

Four species of the genus *Diaporthe* (formerly *Phomopsis*; order *Diaporthales*), i.e. *D. bougainvilleicola*, *D. longicolla*, *D. phaseolorum* and *D. phoenicicola*, are considered opportunistic pathogens that cause mycoses that range from superficial to deep infections (47–51). Six isolates from France were phylogenetically placed into the latter genus. However, our results are only preliminary since only one phylogenetic marker was analysed. Similar was observed in several polyphyletic genera of thecoelomycetes (52, 53).

We also report the finding of five clinical isolates of *Colletotrichum*. Two of the 224 isolates corresponded to C. gigasporum (formerly C. crassipes) and C. gloeosporioides, 225 taxa that have previously been reported as agents of keratitis, endophthalmitis and 226 phaeohyphomicotic cyst; the other three isolates could not be identified at species level. 227 This genus encompasses numerous plant pathogens that are found worldwide, although 228 229 mainly in tropical and subtropical regions (54). The taxonomy of Colletotrichum is complicated and the genus is organized in species-complexes (55-59). Species such as 230 C. coccodes, C. crassipes, C. dematium, C. gloeosporioides, C. graminicola and C. 231 truncatum cause superficial and deep infections (endophthalmitis, keratitis, 232 subcutaneous cyst or more rarely arthritis) (60-65). Further studies, including different 233 phylogenetic markers, are needed to delimit the different species and clarify their 234 pathogenic role. 235

The antifungal susceptibility of coelomycetous fungi involved in human 236 infections is poorly known, mainly because they do not easily sporulate. In spite of the 237 238 limited number of isolates tested here, amphotericin B seemed the most active drug in vitro together with terbinafine, in agreement with Valenzuela-Lopez et al. (6). Until 239 240 more *in vitro* data is available, the antifungal treatment of the infection by this sort of fungus remains purely empirical. In a recent study, Guégan et al. (26) recommended 241 242 extensive surgical resection of affected tissues as a first-line treatment for solitary subcutaneous lesions by coelomycetous fungi, followed by an antifungal therapy 243 244 (posaconazole or voriconazole) in the case of relapse or amphotericin B in refractory 245 cases.

Since our study is based on isolates from the two reference centres, we cannot comment on the incidence of infections due to coelomycetes nor compare their epidemiology between France and Spain. However, we still provide a good picture of the great diversity of coelomycetous fungi in the clinical context, and the basis for future studies on this interesting but neglected group of fungi.

251

252 MATERIAL AND METHODS

253 Fungal isolates

We studied 97 isolates of coelomycetous fungi recovered from clinical 254 specimens, 51 of which were provided by the French National Reference Centre for 255 Invasive Mycoses and Antifungals (NRCMA) at the Institut Pasteur, Paris (CNRMA 256 isolates, n=51). The NRCMA offers expertise on difficult-to-identify fungi and the 257 epidemiological surveillance of all cases of IFIs, which are notified on a voluntary basis 258 259 either through active or passive surveillance programmes. The Spanish National Centre of Microbiology at the Instituto de Salud Carlos III, Madrid provided 46 isolates 260 (CNM-CM isolates, n=46). This mycology reference laboratory receives isolates from 261 the National Health System on a voluntary basis, the main aim of which is to support it 262 by identifying and profiling the antifungal susceptibility of fungal isolates. The isolates 263 were collected between 2005 and 2015. Table 1 gives information about the country of 264 isolation and the location of the infection in the body. 265

266 Morphological and physiological characterization

For morphology studies, the isolates were cultured on oatmeal agar (OA; 30 g of filtered oat flakes, 15 g of agar-agar, 1 L tap water) and malt extract agar (MEA; 40 g of malt extract, 15 g of agar-agar, 1 L distilled water) at $20 \pm 1^{\circ}$ C for 14 days in darkness. The morphological features of the vegetative and reproductive structures were studied using an Olympus CH2 bright-field microscope (Olympus Corporation, Tokyo, Japan) in wet mounts (on water and lactic acid) and slide cultures (by growing the isolates on OA and MEA) of the fungal isolates, following Valenzuela-Lopez *et al.* (6). Colour standards by Kornerup & Wanscher (66) were used in colony description. Photomicrographs were taken with an Axio-Imager M1 microscope (Zeiss, Oberkochen, Germany).

277 DNA extraction, amplification and sequencing

Total genomic DNA was extracted from colonies grown on potato dextrose agar 278 (PDA; 4 g of potato infusion, 20 g dextrose, 15 g of agar-agar, 1 L tap water) after seven 279 days of incubation at $20 \pm 1^{\circ}$ C, using the FastDNA kit protocol (Bio101, Vista, CA), 280 with a FastPrep FP120 instrument (Thermo Savant, Holbrook, NY) following the 281 manufacturer's protocol. DNA was quantified using the Nanodrop 2000 (Thermo 282 283 Scientific, Madrid, Spain). LSU was amplified with the primer pair LR0R and LR5 (67). The amplicons were sequenced in both directions with the same primer pair used 284 for amplification at Macrogen Europe (Macrogen Inc., Amsterdam, The Netherlands). 285 The consensus sequences were obtained using the SeqMan software version 7.0.0 286 (DNAStar Lasergene, Madison, WI, USA). 287

288 Molecular identification and phylogenetic analysis

Preliminary molecular identification of the isolates was made using LSU nucleotide sequences in $BLAST_N$ searches. Twenty-eight LSU sequences of type or reference strains deposited in the GenBank database by the Westerdijk Fungal Biodiversity Institute (CBS) and the Mae Fah Luang University (MFLUCC) culture collections were used for identification and phylogenetic purposes. DNA sequences 294 generated in this study were deposited in GenBank (accession numbers are given in295 Table 1).

For the phylogenetic study, sequences were aligned using the ClustalW 296 application (68) of the MEGA 6.06 (69) computer program, and manually adjusted 297 using the same software platform. Phylogenetic reconstructions were made by 298 maximum-likelihood (ML) and Bayesian inference (BI) with MEGA 6.06 and MrBayes 299 3.2.4 (70), respectively. The best substitution model for the gene matrix (TN93+G) was 300 estimated using MEGA 6.06. For ML analyses, nearest-neighbour interchange was used 301 as the heuristic method for tree inference. Support for internal branches was assessed by 302 1,000 ML bootstrapped pseudoreplicates. Bootstrap support (BS) of \geq 70 was considered 303 significant. For BI analyses, Markov chain Monte Carlo (MCMC) sampling was carried 304 out with four million generations, with samples taken every 1,000 generations. The 50% 305 majority rule consensus trees and posterior probability values (PP) were calculated after 306 removing the first 25% of the resulting trees for burn-in. A PP value of ≥ 0.95 was 307 considered significant. Reference strains of Colletotrichum gigasporum (CBS 159.75), 308 C. gloeosporioides (CBS 122687) and C. hippeastri (CBS 241.78) were used as 309 310 outgroup.

311 Antifungal susceptibility testing

The *in vitro* susceptibility testing in both reference centres (n= 46 isolates) followed the European Committee on Antimicrobial Susceptibility Testing (EUCAST) procedure (71, 72). The antifungals used were amphotericin B (Sigma-Aldrich Química, Madrid, Spain), itraconazole (Sigma-Aldrich Química, Madrid, Spain), posaconazole (Schering-Plough Research Institute, Kenilworth, N.J.), voriconazole (Pfizer S.A., Madrid, Spain), caspofungin (Merck & Co., Inc., Rahway, N.J.), micafungin (Astellas Pharma Inc, Tokyo, Japan) and terbinafine (Novartis, Basel, Switzerland). For the
NCRMA, all antifungal drugs were obtained from ALSACHIM, Strasbourg, France.

The isolates were cultured on potato carrot agar (PCA; 20 g each of filtered 320 potatoes and carrots, 20 g of agar, 1 L of distilled water) or OA for seven to 30 days at 321 25°C and 30°C to obtain sporulation. Conidia were then collected in sterile water 322 containing 0.01% (v/v) Tween 80 (Sigma-Aldrich, St. Louis, MO, USA), and the 323 suspension was adjusted to $2-5 \times 10^5$ conidia/mL. The minimal effective concentration 324 (MEC) was determined for each echinocandin and the minimal inhibitory concentration 325 (MIC) for the other drugs (90% inhibition for amphotericin B and 80% for the azoles) 326 after 24 h and 48 h of incubation at 35°C. Aspergillus flavus ATCC 204304 and 327 Aspergillus fumigatus ATCC 204305 were used as quality control strains in all tests 328 carried out. Susceptibility profiles were determined for 46 isolates since non-sporulating 329 isolates were excluded at the NRCMA. 330

331

332 ACKNOWLEDGMENTS

333

We thank Cécile Gautier (National Reference Center for invasive Mycoses and Antifungals [NRCMA]) for technical assistance. This work was supported by the Spanish *Ministerio de Economía y Competitividad*, grant CGL2017-88094-P.

337

Olga Rivero-Menendez holds a fellowship from the *Fondo de Investigaciones Sanitarias* (grant FI14CIII/00025). Ana Alastruey-Izquierdo is supported by a research
project from the *Fondo de Investigación Sanitaria* (FIS) (project PI16CIII/00035).

341

Members of the French Mycoses Study Group who contributed their clinical isolates 342 to this study are as follows: Annecy (S. Bland), Bichat (C. Chochillon), Boulogne-343 344 Billancourt (N.Ait-Ammar), Caen (C. Duhamel), Clermont Ferrand (P.Poirier), Cochin 345 (A. Paugam), Corbeil-Essones (D. Kubab), Guadeloupe (M. Nicolas), La Réunion (S. Picot), Lyon (A.L. Bienvenu), Martinique (N. Desbois), Nantes (F. Morio), Necker 346 (M.E. Bougnoux), Nouvelle Calédonie (R. Goursaud), Pitié (A. Fekkar), Poitiers (C. 347 Kauffmann), Quinze-Vingts (L. Merabet), Rouen (L. Favennec), Saint Etienne (H. 348 Raberin), Saint-Louis (A. Alanio), Toulouse (S. Cassaing). 349

350 **REFERENCES**

351

Sutton BC. 1980. The Coelomycetes. Fungi Imperfecti with pycnidia, acervuli and
 stromata. Commonwealth Mycological, Kew, England.

- 2. Aveskamp MM, de Gruyter J, Woudenberg JH, Verkley GJ, Crous PW. 2010.
- 355 Highlights of the *Didymellaceae*: a polyphasic approach to characterise *Phoma*356 and related pleosporalean genera. Stud Mycol 65:1–60.
- 357 3. Wijayawardene NN, Hyde KD, Wanasinghe DN, Papizadeh M, Goonasekara ID,
- 358 Camporesi E, Bhat DJ, McKenzie EHC, Phillips AJL, Diederich P, Tanaka K, Li
- 359 WJ, Tangthirasunun N, Phookamsak R, Dai D-Q, Dissanayake AJ, Weerakoon G,
- 360 Maharachchikumbura SSN, Hashimoto A, Matsumura M, Bahkali AH, Wang Y.
- 361 2016. Taxonomy and phylogeny of dematiaceous coelomycetes. Fungal Divers
 362 77: 1–316.
- 363 4. Sutton DA. 1999. Coelomycetous fungi in human disease. A review: Clinical
 364 entities, pathogenesis, identification and therapy. Rev Iberoam Micol 16:171–179.
- 365 5. Stchigel AM, Sutton DA. 2013. Coelomycete fungi in the clinical lab. Curr
 366 Fungal Infect Rep 7:171–191.
- Valenzuela-Lopez N, Sutton DA, Cano-Lira JF, Paredes K, Wiederhold N, Guarro
 J, Stchigel AM. 2017. Coelomycetous fungi in the clinical setting: Morphological
 convergence and cryptic diversity. J Clin Microbiol 55:552–567.
- 370 7. André M, Brumpt V, Destombes P, Segretain G. 1968. Fungal mycetoma with
 black grains due to *Pyrenochaeta romeroi* in Cambodia. Bull Soc Pathol Exot
 Filiales 61:108–12.
- Borelli D, Zamora R, Senabre G. 1976. *Chaetosphaeronema larense* nova species
 agente de micetoma. *Gaceta Med Caracas* 84:307–318.
- Punithalingam E. 1979. *Sphaeropsidales* in culture from humans. Nova Hedwigia
 31:119–158.
- de Hoog GS, Guarro J, Figueras MJ, Gené J. 2000. Atlas of clinical fungi, 2nd ed
 Centraalbureau voor Schimmelcultures, Utrecht, The Netherlands.
- 379 11. Ahmed SA, van de Sande WW, Stevens DA, Fahal A, van Diepeningen AD,
- Menken SB, de Hoog GS. 2014. Revision of agents of black-grain eumycetoma in
 the order Pleosporales. Persoonia 33:141–154.
- 382 12. Gentles JC, Evans EG. 1970. Infection of the feet and nails with *Hendersonula* 383 *toruloidea*. Sabouraudia 8:72–75.
- 384 13. Gugnani HC, Oyeka CA. 1989. Foot infections due to *Hendersonula toruloidea*and *Scytalidium hyalinum* in coal miners. J Med Vet Mycol 27:167–179.
- 386 14. Kombila M, Martz M, Gómez de Díaz M, de Bievre C, Richard-Lenoble D. 1990.
- *Hendersonula toruloidea* and an agent of mycotic foot infection in Gabon. J Med
 Vet Mycol 28:215–223.
- 389 15. Madrid H, Ruíz-Cendoya M, Cano J, Stchigel A, Orofino R, Guarro J. 2009.
- Genotyping and in vitro antifungal susceptibility of *Neoscytalidium dimidiatum*isolates from different origins. Int J Antimicrob Agents 34:351–354.
- Restrepo A, Arango M, Velez H, Uribe L. 1976. The isolation of *Botryodiplodia theobromae* from a nail lesion. Sabouraudia 14:1–4.
- Punithalingam E, English MP. 1975. *Pyrenochaeta unguis-hominis* sp. nov. on
 human toe-nails. Trans Br Mycol Soc 64:539–541.
- 396 18. Ferrer C, Pérez-Santonja JJ, Rodríguez AE, Colom MF, Gené J, Alio JL, Verkley
- GJ, Guarro J. 2009. New *Pyrenochaeta* species causing keratitis. J Clin Microbiol
 47:1596–1598.
- 399 19. Verkley GJ, Gené J, Guarro J, Pérez-Santonja JJ, Rodríguez AE, Colom MF, Alio
- 400 JL, Ferrer C. 2010. Pyrenochaeta keratinophila sp. nov., isolated from an ocular
- 401 infection in Spain. Rev Iberoam Micol 27:22–24.

- 20. Roehm CE, Salazar JC, Hagstrom N, Valdez TA. 2012. *Phoma* and *Acremonium*invasive fungal rhinosinusitis in congenital acute lymphocytic leukemia and
 literature review. Int J Pediatr Otorhinolaryngol 76:1387–1391.
- 405 21. de Gruyter J, Woudenberg JH, Aveskamp MM, Verkley GJ, Groenewald JZ,
 406 Crous PW. 2013. Redisposition of Phoma-like anamorphs in Pleosporales. Stud
 407 Mycol 75:1–36.
- 408 22. Chen Q, Jiang JR, Zhang GZ, Cai L, Crous PW. 2015. Resolving the *Phoma*409 enigma. Stud Mycol 82:137–217.
- 410 23. Chen Q, Hou LW, Duan WJ, Crous PW, Cai L. 2017. *Didymellaceae* revisited.
 411 Stud Mycol 87:105–159.
- 412 24. Valenzuela-Lopez N, Cano-Lira JF, Guarro J, Sutton DA, Wiederhold N, Crous
 413 PW, Stchigel AM. 2018. Coelomycetous Dothideomycetes with emphasis on the
 414 families *Cucurbitariaceae* and *Didymellaceae*. Stud Mycol 90:1–69.
- 415 25. Valenzuela-Lopez N, Cano-Lira JF, Stchigel AM, Guarro J. 2018. DNA
 416 sequencing to clarify the taxonomical conundrum of the clinical coelomycetes.
 447 Manager (DLDDESS) DOL 10.1111/marg.12785
- 417 Mycoses. (IN PRESS) DOI:10.1111/myc.12785.
- 418 26. Guégan S, Garcia-Hermoso D, Sitbon K, Ahmed S, Moguelet P, Dromer F,
- Lortholary O. 2016. Ten-Year experience of cutaneous and/or subcutaneous
 infections due to Coelomycetes in France. Open Forum Infect Dis
 doi:10.1093/ofid/ofw106.
- 422 27. Khan Z, Ahmad S, Kapila K, Ramaswamy NV, Alath P, Joseph L, Chandy R.
- 423 2011. Pyrenochaeta romeroi: a causative agent of phaeohyphomycotic cyst. J
- 424 Med Microbiol 60:842–846.

- van de Sande WW. 2013. Global burden of human mycetoma: a systematic 28. 425 426 review and meta-analysis. PLoS Negl Trop Dis 7: e2550. doi: 10.1371/journal.pntd.0002550. 427
- Borman AM, Desnos-Ollivier M, Campbell CK, Bridge PD, Dannaoui E, Johnson
 EM. 2016. Novel taxa associated with human fungal black-grain mycetomas: *Emarellia grisea* gen. nov., sp. nov., and *Emarellia paragrisea* sp. nov. J Clin
 Microbiol 54:1738–1745.
- 432 30. Gordon RA, Sutton DA, Thompson EH, Shrikanth V, Verkley GJM, Stielow JB,
- Mays R, Oleske D, Morrison LK, Lapolla WJ, Galfione S, Tyring S, Samathanam
 CA, Fu J, Wickes BL, Mulanovich V, Wanger A, Arias CA. 2012. Cutaneous
 phaeohyphomycosis caused by *Paraconiothyrium cyclothyrioides*. J Clin
 Microbiol 50:3795–3798.
- 437 31. Colombier MA, Alanio A, Denis B, Melica G, Garcia-Hermoso D, Levy B,
 438 Peraldi MN, Glotz D, Bretagne S, Gallien S. 2015. Dual invasive infection with
- 439 *Phaeoacremonium parasiticum* and *Paraconiothyrium cyclothyrioides* in a renal
- 440 transplant recipient: Case report and comprehensive review of the literature of
- 441 *Phaeoacremonium* phaeohyphomycosis. J Clin Microbiol 53:2084–2094.
- 32. Bakerspigel A. 1970. The isolation of *Phoma hibernica* from lesions on a leg.
 Sabouraudia 7:261–264.
- Bakerspigel A, Lowe D, Rostas A. 1981. The isolation of *Phoma eupyrena* from a
 human lesion. Arch Dermatol 117:362–363.
- 446 34. Shukla NP, Rajak RK, Agarwasl GP, Gupta D. 1984. *Phoma minutispora* as a
 447 human pathogen. Mykosen 27:255–258.

- 35. Baker JG, Salkin IF, Forgacs P, Haines JH, Kemna ME. 1987. First report of
 subcutaneous phaeohyphomycosis of the foot caused by *Phoma minutella*. J Clin
 Microbiol 25:2395–2397.
- 451 36. Rai M. 1989. *Phoma sorghina* infection in human being. Mycopathologia
 452 105:167–170.
- 453 37. Rosen T, Rinaldi MJ, Tschen JA, Stern JK, Cernoch P. 1996. Cutaneous lesions
 454 due to *Pleurophoma (Phoma)* Complex. South Med J 89:431–434.
- 455 38. Hirsh AH, Schiff TA. 1996. Subcutaneous phaeohyphomycosis caused by an
 456 unusual pathogen: *Phoma* species. J Am Acad Dermatol 34:679–680.
- 457 39. Tullio V, Banche G, Allizond V, Roana J, Mandras N, Scalas D, Panzone M,
- 458 Cervetti O, Valle S, Carlone N, Cuffini AM. 2010. Non-dermatophyte moulds as
- 459 skin and nail foot mycosis agents: *Phoma herbarum*, *Chaetomium globosum* and
 460 *Microascus cinereus*. Fungal Biol 114:345–349.
- 40. Ahmed SA, Hofmüller W, Seibold M, de Hoog GS, Harak H, Tammer I, van
 Diepeningen AD, Behrens-Baumann W. 2017. *Tintelnotia*, a new genus in *Phaeosphaeriaceae* harbouring agents of cornea and nail infections in humans.
 Mycoses 60:244–253.
- 465 41. Summerbell RC, Krajden S, Levine R, Fuksa M. 2004. Subcutaneous
 466 phaeohyphomycosis caused by *Lasiodiplodia theobromae* and successfully treated
 467 surgically. Med Mycol 42:543–547.
- 468 42. Woo PC, Lau SK, Ngan AH, Tse H, Tung ET, Yuen KY. 2008. *Lasiodiplodia theobromae* pneumonia in a liver transplant recipient. J Clin Microbiol 46:380–
 470 384.
- 471 43. Kindo AJ, Pramod C, Anita S, Mohanty S. 2010. Maxillary sinusitis caused by
 472 *Lasiodiplodia theobromae*. Indian J Med Microbiol 28:167–169.

- 473 44. Saha S, Sengupta J, Banerjee D, Khetan A. 2012. *Lasiodiplodia theobromae*474 keratitis: a case report and review of literature. Mycopathologia 174:335–339.
- 475 45. Papacostas LJ, Henderson A, Choong K, Sowden D. 2015. An unusual skin lesion
 476 caused by *Lasiodiplodia theobromae*. Med Mycol Case Rep 8:44–46.
- 477 46. Gu HJ, Kim YJ, Lee HJ, Dong SH, Kim SW, Huh HJ, Ki CS. 2016. Invasive
 478 fungal sinusitis by *Lasiodiplodia theobromae* in an patient with aplastic anemia:
 479 An extremely rare case report and literature review. Mycopathologia 181:901–
 480 908.
- 481 47. Sutton DA, Timm WD, Morgan-Jones G, Rinaldi MG. 1999. Human
 482 phaeohyphomycotic osteomyelitis caused by the Coelomycete *Phomopsis*483 Saccardo 1905: Criteria for identification, case history, and therapy. J Clin
 484 Microbiol 37:807–811.
- 485 48. Gajjar DU, Pal AK, Parmar TJ, Arora AI, Ganatra DA, Kayastha FB, Ghodadra
 486 BK, Vasavada AR. 2011. Fungal scleral keratitis caused by *Phomopsis*487 *phoenicicola*. J Clin Microbiol 49:2365–2368.
- 488 49. Garcia-Reyne A, López-Medrano F, Morales JM, García Esteban C, Martín I,
 489 Eraña I, Meije Y, Lalueza A, Alastruey-Izquierdo A, Rodríguez-Tudela JL,
 490 Aguado JM. 2011. Cutaneous infection by *Phomopsis longicolla* in a renal
 491 transplant recipient from Guinea: first report of human infection by this fungus.
 492 Transpl Infect Dis 13:204–207.
- 493 50. Iriart X, Binois R, Fior A, Blanchet D, Berry A, Cassaing S, Amazan E, Papot E,
 494 Carme B, Aznar C, Couppié P. 2011. Eumycetoma caused by *Diaporthe*495 *phaseolorum (Phomopsis phaseoli)*: a case report and a mini-review of
 496 *Diaporthe/Phomopsis* spp invasive infections in humans. Clin Microbiol Infect
 497 17:1492–1494.

- 498 51. Cariello PF, Wickes BL, Sutton DA, Castlebury LA, Levitz SM, Finberg RW,
- Thompson EH, Daly JS. 2013. *Phomopsis bougainvilleicola* prepatellar bursitis in
 a renal transplant recipient. J Clin Microbiol 51:692–695.
- 501 52. Udayanga D, Liu X, Crous PW, McKenzie EHC, Chukeatirote E, Hyde KD.
- 502 2012. A multi-locus phylogenetic evaluation of *Diaporthe (Phomopsis)*. Fungal
 503 Divers 56:157–171.
- 504 53. Gomes RR, Glienke C, Videira SI, Lombard L, Groenewald JZ, Crous PW. 2013.
 505 *Diaporthe*: a genus of endophytic, saprobic and plant pathogenic fungi. Persoonia
 506 31:1–41.
- 507 54. Cannon PF, Damm U, Johnston PR, Weir BS. 2012. *Colletotrichum* current
 508 status and future directions. Stud Mycol 73:181–213.
- 509 55. Damm U, Cannon PF, Woudenberg JH, Johnston PR, Weir BS, Tan YP, Shivas
 510 RG, Crous PW. 2012. The *Colletotrichum boninense* species complex. Stud
 511 Mycol 73:1–36.
- 512 56. Damm U, Cannon PF, Woudenberg JH, Crous PW. 2012. The *Colletotrichum*513 *acutatum* species complex. Stud Mycol 73:37–113.
- 514 57. Weir BS, Johnston PR, Damm U. 2012. The *Colletotrichum gloeosporioides*515 species complex. Stud Mycol 73:115–180.
- 516 58. Damm U, O'Connell RJ, Groenewald JZ, Crous PW. 2014. The *Colletotrichum*517 *destructivum* species complex hemibiotrophic pathogens of forage and field
 518 crops. Stud Mycol 79:49–84.
- 519 59. Liu F, Cai L, Crous PW, Damm U. 2014. The *Colletotrichum gigasporum* species
 520 complex. Persoonia 33:83–97.

- 521 60. Guarro J, Svidzinski TE, Zaror L, Forjaz MH, Gené J, Fischman O. 1998.
- 522 Subcutaneous hyalohyphomycosis caused by *Colletotrichum gloeosporioides*. J
 523 Clin Microbiol 36:3060–3065.
- 61. Cano J, Guarro J, Gené J. 2004. Molecular and morphological identification of
 Colletotrichum species of clinical interest. J Clin Microbiol 42:2450–2454.
- 526 62. Yegneswaran PP, Pai V, Bairy I, Bhandary S. 2010. *Colletotrichum graminicola*527 keratitis: first case report from India. Indian J Ophthalmol 58:415–417.
- 528 63. Shivaprakash MR, Appannanavar SB, Dhaliwal M, Gupta A, Gupta S, Gupta A,
- 529 Chakrabarti A. 2011. *Colletotrichum truncatum*: An unusual pathogen causing
 530 mycotic keratitis and endophthalmitis. J Clin Microbiol 49:2894–2898.
- 531 64. Figtree M, Weeks K, Chan L, Leyton A, Bowes A, Giuffre B, Sullivan M,
- Hudson BJ. 2013. *Colletotrichum gloeosporioides* sensu lato causing deep soft
 tissue mycosis following a penetrating injury. Med Mycol Case Rep 2:40–43.
- 65. Cho JC, Sharma RS, Sutton DA, Wiederhold NP, Sanders C, Wickes BL, Estrada
 SJ. 2015. Fungal arthritis secondary to *Colletotrichum gloeosporioides*. JMM
 Case Rep 2 doi: 10.1099/jmmcr.0.000012.
- 537 66. Kornerup A, Wanscher JH. 1978. Methuen handbook of colour 3rd ed. Methuen,538 London, England.
- 539 67. Vilgalys R, Hester M. 1990. Rapid genetic identification and mapping of
 540 enzymatically amplified ribosomal DNA from several *Cryptoccocus* species. J
 541 Bacteriol 172:4238–4246.
- 542 68. Thompson JD, Higgins DG, Gibson TJ. 1994. CLUSTAL W: improving the
 543 sensitivity of progressive multiple sequence alignment through sequence
 544 weighting, position-specific gap penalties and weight matrix choice. Nucleic
 545 Acids Res 22:4673–4680.

- 546 69. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6:
 547 Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–
 548 2729.
- 549 70. Huelsenbeck JP, Ronquist F. 2001. MRBAYES: Bayesian inference of
 550 phylogenetic trees. Bioinformatics 17:754–755.
- 551 71. Subcommittee on Antifungal Susceptibility Testing of the ESCMID European
 552 Committee for Antimicrobial Susceptibility Testing (EUCAST). 2008. EUCAST
 553 Technical Note on the method for the determination of broth dilution minimum
 554 inhibitory concentrations of antifungal agents for conidia-forming moulds. Clin
 555 Microbiol Infect 14:982–984.
- 556 72. Garcia-Hermoso D, Hoinard D, Gantier JC, Grenouillet F, Dromer F, Dannaoui E.
 557 2009. Molecular and phenotypic evaluation of *Lichtheimia corymbifera* (formerly
 558 *Absidia corymbifera*) complex isolates associated with human mucormycosis:
 559 rehabilitation of *L. ramosa*. J Clin Microbiol 47:3862–3870.

561 FIGURE LEGEND

FIG 1 Maximum likelihood tree obtained from the D1-D2 of LSU (584 bp) sequences of the 125 strains, where 28 belong to type or reference strains. The branch lengths are proportional to phylogenetic distance. Bayesian posterior probability scores ≥ 0.95 and Bootstrap support values $\geq 70\%$ are indicated on the nodes. Some branches were shortened to fit them to the page, these are indicated by two diagonal lines with the number of times a branch was shortened. The species of the genus *Colletotrichum* were used to root the tree. Superscript ^T indicated the type strains.

569

Order	Species	Strain no. ^a	Origin	Country	GenBank accesion no. ^b
Botryosphaeriales	Diplodia seriata	CBS 112555 ^T	Vitis vinifera dead plant	Portugal	KF766327
		CNRMA 6.1007	bone	France	LT965964
	Lasiodiplodia sp.	CNRMA 15.383	eye	France (West Indies, Guadeloupe)	LT965965
	Lasiodiplodia theobromae	CBS 164.96 ^T	fruit along coral reef	Papua New Guinea	NG_042460
		CNRMA 10.1369	skin	France (West Indies, Martinique)	LT965966
		CNRMA 10.813	eye	France (West Indies, Martinique)	LT965967
		CNRMA 11.360	eye	France (West Indies, Martinique)	LT965968
		CNRMA 13.891	skin	France	LT965969
		CNRMA 14.708	eye	France (West Indies, Guadeloupe)	LT965970
	Neofusicoccum luteum	CBS 110299	Vitis vinifera cane	Portugal	AY928043
		CNRMA 12.597	eye	France	LT965971
Diaporthales	Diaporthe sclerotioides	CBS 296.67 ^T	Cucumis sativus root	The Netherlands	AF439628
	Diaporthe sp.	CBS 477	Cucumis sativus	USA	AF439631
		CNRMA 8.522	eye	France	LT965972
		CNRMA 9.205	eye	France (West Indies, Guadeloupe)	LT965973
		CNRMA 11.385	eye	France (West Indies, Martinique)	LT965974
		CNRMA 12.311	blood	France	LT965975
		CNRMA 13.515	skin	France	LT965976
		CNRMA 14.198	skin	France	LT965977

TABLE 1 Taxonomical identification of the isolates studied, origin and GenBank accession numbers. New sequences generated are indicate in bold.

Glomerellales	Colletotrichum	CBS 159.75	air and stored grains	India	DQ286206
	gigasporum	CNRMA 16.553	skin	France (West Indies, Guadeloupe)	LT965978
	Colletotrichum gloeosporioides	CBS 122687	Leucospermum sp. leaf	South Africa	EU552111
		CNRMA 15.504	utter eye	France (West Indies, Martinique)	LT965979
	Colletotrichum hippeastri	CBS 241.78	Hippeastrum sp.	The Netherlands	DQ286167
	Colletotrichum sp.	CNM-CM4760	corneal swab	Spain	LT965980
		CNM-CM 6116	conjuntival	Spain	LT965981
		CNM-CM 7345	humor acuosus	Spain	LT965982
Pleosporales	Didymella gardeniae	CBS 626.68^{T}	Gardenia jasminoides Isof	India	GQ387595
		CNM-CM 3697	nail	Spain	LT965983
		CNM-CM 3895	nail	Spain	LT965984
		CNM-CM 5036	scales	Spain	LT965985
		CNM-CM 5814	conjunctival exudate	Spain	LT965986
		CNM-CM 7499	conjunctival exudate	Spain	LT965987
		CNRMA 11.794	skin	France	LT965988
	Didymella glomerata	CBS 528.66	Chrysanthemun sp.	The Netherlands	EU754184
		CNM-CM 3356	toenail	Spain	LT965989
		CNM-CM 3546	nail	Spain	LT965990
		CNM-CM 4675	nail	Spain	LT965991
		CNM-CM 7099	cutaneous exudate	Spain	LT965992
		CNRMA 9.1046	skin	France	LT965993

LT965994	LT965995	GU237975	LT965996	LT965997	GU237978	LT965998	LT965999	LT966000	EU754207	LT966001	LT966002	LT966003	LT966005	LT966007	LT966008	LT966010	LT966011	LT966013	LT966014	LT966015
France	France	USA	Spain	Spain	Puerto Rico	France (New Caledonia)	France (New Caledonia)	France (New Caledonia)	Venezuela	Spain	Spain	France								
skin	mouth/sinus	Dactylis glomerata seed	skin	vitreous humor	Sorghum vulgare	bone	skin	skin	maduromycosis	knee ulcer	cutaneous exudate	eye	skin	skin	skin	skin	bone	skin	bone	skin

KT389726 LT966016

Germany Spain

nail

CNM-CM 6201

Lolium perenne CNRMA 10.948 CNRMA 8.1363 CNRMA 11.680 CNRMA 11.949 CNRMA 14.407 CNRMA 10.947 CNM-CM 7645 **CNRMA 7.1225** CNRMA 15.461 CNM-CM 5724 **CNM-CM 3387** CNM-CM 5281 **CNRMA 7.167** CNRMA 4.200 CNRMA 5.321 CNRMA 15.7 CBS 173.73^{T} CBS 252.60^T CBS 297.69^T CBS 179.80 Neoascochyta desmazieri Epicoccum sorghinum Medicopsis romeroi Epicoccum nigrum

CNRMA 10.867

CNRMA 15.6

Neocucurbitaria cava	$CBS 257.68^{T}$	wheat-field soil	Germany	EU754199
	CNRMA 15.708	mouth/sinus	France	LT966017
Neocucurbitaria keratinophila	CBS 121759 ^T	corneal scrapings	Spain	LT623215
	CNM-CM 5882	cutaneous exudate	Spain	LT966018
	CNM-CM 6401	fingernail	Spain	LT966019
	CNM-CM 6455	cutaneous exudate	Spain	LT966020
	CNM-CM 7013	cutaneous exudate	Spain	LT966021
	CNM-CM 7457	cutaneous exudate	Spain	LT966022
	CNM-CM 7731	cutaneous exudate	Spain	LT966023
	CNM-CM 8010	conjunctival exudate	Spain	LT966024
	CNM-CM 8674	toenail	Spain	LT966025
Neocucurbitaria unguis- hominis	CBS 112.79	airborn	Wales	GQ387622
Cantantion	CNM-CM 7037	nail	Spain	LT966026
	CNM-CM 7089	cutaneous lession	Spain	LT966027
	CNM-CM 8717	urine	Spain	LT966028
	CNM-CM 8743	toenail	Spain	LT966029
	CNRMA 4.1112	eye	France	LT966030
	CNRMA 6.243	eye	France	LT966031
	CNRMA 16.153	eye	France	LT966032
	CNRMA 16.19	lung	France	LT966033
Neocucurbitaria sp.	CNM-CM 6489	wound exudate	Spain	LT966034
	CNM-CM 7025	hair	Spain	LT966035
	CNM-CM 7132	toenail	Spain	LT966036

	Papua New Guinea	JX496232
exudate	Spain	LT966037
	Spain	LT966038
	Spain	LT966039
	France (West Indies, Martinique)	LT966041
	France	LT966042
	France	LT966043
	France (West Indies, Guadeloupe)	LT966044
	France (West Indies, Guadeloupe)	LT966045
ad stem	Denmark	JX496226
	France	LT966046
	France	LT966047
d leaves	Italy	KJ939282
	Spain	LT966048
olens seeds	The Netherlands	GQ387584
ate	Spain	LT966049
	France	LT966050
	France	LT966051
cens dead	Portugal	JX681119

Paraconiothyrium	$CBS 972.95^{T}$	soil	Papua New Guinea
c) cioni y i oues	CNM-CM 6313	conjunctival exudate	Spain
	CNM-CM 6513	nail	Spain
	CNM-CM 4767	abscess	Spain
	CNRMA 11.383	skin	France (West Indies, Martiniq
	CNRMA 11.855	skin	France
	CNRMA 13.245	skin	France
	CNRMA 16.374	skin	France (West Indies, Guadelo
	CNRMA 16.556	skin	France (West Indies, Guadelo
Paraconiothyrium fuckelii	CBS 797.95	Rubus sp. dead stem	Denmark
	CNRMA 3.240	eye	France
	CNRMA 4.493	eye	France
Paraphaeosphaeria michotii	MFLUCC 13- 0349	Poaceae dead leaves	Italy
	CNM-CM 6000	skin	Spain
Paraphoma fimeti	CBS 170.70^{T}	Apium graveolens seeds	The Netherlands
	CNM-CM 8075	wound exudate	Spain
Paraphoma sp.	CNRMA 9.467	skin	France
	CNRMA 15.665	skin	France
Phaeosphaeriopsis obtusispora	CBS 246.64	Aloe arborescens dead leaf	Portugal
Phoma herbarum	CBS 615.75	<i>Rosa multiflora</i> dead stem	The Netherlands

EU754186

	CNM-CM 2132	right toe	Spain	LT966052
	CNM-CM 3526	bone marrow	Spain	LT966053
	CNM-CM 3597	blood culture	Spain	LT966054
	CNM-CM 8031	nail	Spain	LT966055
	CNRMA 9.1095	skin	France	LT966056
	CNRMA 11.1097	eye	France	LT966057
	CNRMA 12.1227	eye	France	LT966058
pleosporelean fungus	CNRMA 11.1115	skin	France	LT966059
Preussia sp.	CNM-CM 7343	nail	Spain	LT966060
Preussia terricola	CBS 317.65 ^T	<i>Musa sapientum</i> rhizosphere	Honduras	GQ203725
Preussia typharum	CBS 107.69 CNM-CM 7335	Dung of deer nail	Japan Spain	GQ203726 LT966061
Pseudophaeosphaeria rubi	MFLUCC 14- 0259	<i>Rubus idaeus</i> dead branch	Italy	KX765299
Tintelnotia destructans	CBS 127737 ^T	anterior eye chamber comea	Germany	KY090664
	CNM-CM 7430	Unknown	Spain	LT966062
Tintelnotia sp.	CNM-CM 7080	nail	Spain	LT966063
	CNM-CM 7981	cutaneous exudate	Spain	LT966064
Xenodidymella saxea	$CBS 419.92^{T}$	Corroded mediterranean marble	Unknown	GU238141

^a CBS: Strains from Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands; CNM-CM: Isolates from the National Centre for Microbiology, Instituto Carlos III, Madrid, Spain; CNRMA: Isolates from the National Reference Center for Invasive Mycoses and Antifungals; Institut Pasteur, Paris, France; MFLUCC: Strains from Mae Fah Luang University Culture Collection, Chiang Rai, Thailand. Type strains are indicated by a superscript^T LT966065 France Cerebrospinal fluid CNRMA 16.76

^b LSU, large subunit ribosomal DNA sequences

solates TABLE 2 Localization of infections due to coelomycetous fungi isolates -1-4-1-1 C. -

	no. of isolates obtained from:		
Orders	Superficial infection	Deep infection	Total no. of ise
Botryosphaeriales	L	1	8
Diaporthales	5	1	9
Glomerellales	5		5
Pleosporales	71	7	78

97 (100)

(6)

88 (91)

Total no. of isolates (%)

UNIVERSITAT ROVIRA I VIRGILI TAXONOMÍA DE HONGOS CELOMICETOS DE INTERÉS CLÍNICO Nicomedes Miguel Antonio Valenzuela López

Antifungal agent		MIC/MEC va	alues (mg/L)) ^b	
	range	median	GM	MIC ₅₀	MIC ₉₀
Amphotericin B	0.03 -16	0.5	0.41	0.25	1
Itraconazole	0.014 -16	2	1.72	0.5	16
Voriconazole	0.03 -16	0.5	0.70	0.6	4
Posaconazole	0.014 -16	0.5	0.58	0.25	8
Caspofungin	0.125-16	2	2.17	1	8
Micafungin	0.015-16	0.5	0.53	0.125	8
Terbinafin	0.014- 16	0.25	0.39	0.25	2

TABLE 3 Overall *in vitro* antifungal activity against the 46 coelomycetous isolates as determined by EUCAST^a methodology

^aEUCAST, European Committee on Antimicrobial Susceptibility Testing procedure (71);

^bMIC, minimum inhibitory concentration; MEC, minimal effective concentration; MIC_{50} and MIC_{90} , MIC encompassing 50 and 90% of isolates tested, respectively.

Pleosporales

4.7. *Neocucurbitaria keratinophila* an emerging opportunistic fungus causing superficial mycosis in Spain.

N. Valenzuela-Lopez^{1,2}, J.F. Cano-Lira¹, A.M. Stchigel¹, O. Rivero-Menendez³, A. Alastruey-Izquierdo³, J. Guarro¹

¹Mycology Unit, Medical School and IISPV, University Rovira i Virgili, C/ Sant Llorenç 21, 43201 Reus, Spain; ²Microbiology Unit, Medical Technology Department, Faculty of Health Science, University of Antofagasta, Chile; ³Mycology Reference Laboratory, Spanish National Center for Microbiology, Instituto de Salud Carlos III, Madrid, Spain

Enviado: Medical Mycology 2018.

2 3	1	Neocucurbitaria keratinophila: an emerging opportunistic fungus causing
4 5	2	superficial mycosis in Spain.
6 7 8 9	3	
10 11 12	4	Nicomedes Valenzuela-Lopez ^{1,2} , José F. Cano-Lira ^{1*} , Alberto M. Stchigel ¹ , Olga
13 14	5	Rivero-Menendez ³ , Ana Alastruey-Izquierdo ³ , Josep Guarro ¹
15 16 17	6	¹ Mycology Unit, Medical School and IISPV, University Rovira i Virgili, C/ Sant
18 19	7	Llorenç 21, 43201 Reus, Spain.
20 21 22	8	² Microbiology Unit, Medical Technology Department, Faculty of Health Science,
23 24	9	University of Antofagasta, Chile.
25 26 27	10	³ Mycology Reference Laboratory, Spanish National Center for Microbiology, Instituto
28 29	11	de Salud Carlos III, Madrid, Spain
30 31 32 33	12	
34 35	13	Running title: Neocucurbitaria keratinophila, a coelomycetous fungus of clinical
36 37 38	14	interest in Spain.
39 40	15	
42 43	16	*Corresponding author. E-mail: jose.cano@urv.cat. Unitat de Micologia, Facultat de
44 45	17	Medicina i Ciències de la Salut, IISPV, Universitat Rovira i Virgili, 21 Sant Llorenç St.,
46 47 48 49 50 51	18	43201, Reus, Spain.

ABSTRACT

Although there have been few reports of opportunistic infections (superficial and systemic) caused by coelomycetous fungi, they are becoming more frequent. *Neocucurbitaria keratinophila* (formerly *Pyrenochaeta keratinophila*), characterized by producing pycnidial conidiomata and small hyaline conidia, seems to be an emergent opportunistic pathogen in Spain. Since this fungus was first reported from human keratitis, eight strains have been isolates from clinical cases in Spain. This is a retrospective study of these fungal strains, including phenotypic and molecular characterizations, and *in vitro* antifungal susceptibility assays. These clinical strains were identified by multi-locus analysis, by sequencing the internal transcribed spacer region (ITS1-5.8S-ITS2) and fragments of the 28S nrRNA (LSU), beta-tubulin (tub2) and RNA polymerase II subunit 2 (rpb2) genes. All the strains tested were susceptible to the majority of antifungals, being isavuconazole the only drug that showed a poor antifungal activity.

Keywords: Antifungal superficial susceptibility, coelomycetes, mycosis, Neocucurbitaria, Pyrenochaeta.

36 Introduction

Coelomycetous fungi are commonly found as saprobic or parasites of terrestrial vascular plants, although they can also be found in diverse environments such as soil, freshwater, salty water, sewage and even inorganic materials, and more rarely as human opportunistic pathogens.^{1,2} Although the class Coelomycetes is now obsolete, it is still used in clinics to refer fungi that are morphologically characterized by producing asexual fruiting bodies called conidiomata inside which numerous conidia are produced on conidiophores and/or from conidiogenous cells. Although human infections by coelomycetous fungi are relatively scarce in comparison with other fungi, they are becoming more frequently reported, producing superficial and systemic infections.¹⁻⁵ Currently, identifying coelomycetous fungi is still complex because of the small number of discriminative morphological features and the high number of taxa involved.^{1,6} For that reason a multi-locus analysis is necessary, using three or more phylogenetic markers for accurate identification.^{7–9}

In a recent study on coelomycetous fungi from clinical origin [D. Garcia-Hermoso, N. Valenzuela-Lopez, O. Rivero-Menendez, et al. Journal Clinical Microbiology. Send manuscript to publisher]^{9bis}, we found that a relatively high number of isolates of Neocucurbitaria keratinophila (formerly Pyrenochaeta keratinophila) had been deposited between 2005 and 2015 at the Mycology Reference Laboratory of the Spanish National Center for Microbiology, all of them recovered from cases of superficial mycosis. We recently carried out studies on the biodiversity of coelomycetous fungi from clinical origin in different countries, such as France and the United States of America.^{2,9bis} Although we identified more than 300 isolates from numerous specimens, *Neocucurbitaria keratinophila* was not found. To our knowledge, this species has only been isolated from clinical samples in Spain^{9bis}. Prior to our finding, N. keratinophila

Medical Mycology

has only been reported from a human case of keratitis in a diabetic Spanish woman.¹⁰ Since this fungus is morphologically similar to a species of Pyrenochaeta, it was proposed by Verkley and co-workers as a new species of the genus as P. *keratinophila*.¹¹ However, in a recent revision of the genus, this species was described as phylogenetically different from *Pyrenochaeta sensu stricto*, being placed in the genus *Neocucurbitaria.*⁸

The objective of this study was to carry out accurate identification of N. keratinophila, studying all those known isolates. A multi-locus analysis was developed using four phylogenetic markers, including a fragment of the 28S nrRNA (LSU), the internal transcribed spacer region (ITS1-5.8S-ITS2), and fragments of the beta-tubulin (tub2)and RNA polymerase II subunit 2 (rpb2) genes. Another objective was to characterize their morphology. In addition, we determined their antifungal susceptibility to nine C.C. antifungal drugs.

Material and Methods

Fungal isolates

We processed eight isolates from clinical specimens deposited at the Mould Collection

of the Spanish National Center of Microbiology (CNM-CM) (Table 1).

Morphological and physiological characterization

For cultural characterization, the isolates were grown on oatmeal agar (OA; 30 g of filtered oat flakes, 15 g of agar-agar, 1 L tap water) and malt extract agar (MEA; 40 g of malt extract, 15 g of agar-agar, 1 L distilled water), at $20 \pm 1^{\circ}$ C for 14 days in darkness.

Colour notations of the colonies were according to Kornerup and Wanscher.¹². The ability of the isolates to grow at cardinal temperatures was determined on potato dextrose agar (PDA; Pronadisa, Madrid, Spain) in 7 d of darkness, ranging from 5 to 35°C at intervals of 5°C, and also at 37°C. Metabolite E+ (NaOH spot test) was produced by applying a droplet of 1N NaOH onto a colony grown on MEA.^{13,14}

The structures were assessed under an Olympus CH2 microscope on wet mounts (using the Shear's medium) and slide cultures on OA and MEA, following Valenzuela-Lopez *et al.* (2017)⁸ Photomicrographs were taken with an Axio-Imager M1 microscope (Zeiss, Oberkochen, Germany).

94 DNA extraction, amplification and sequencing

The total genomic DNA was extracted from colonies grown on PDA after 7 d of incubation at $20 \pm 1^{\circ}$ C, using the FastDNA kit protocol (Bio101, Vista, CA), with a FastPrep FP120 instrument (Thermo Savant, Holbrook, NY) following the manufacturer's protocol. DNA was quantified using the Nanodrop 2000 (Thermo Scientific, Madrid, Spain). Each gene was amplified with the primer pair listed in Table 2^{15-19} The amplicons were sequenced in both directions with the same primer pair used for amplification at Macrogen Europe (Macrogen Inc., Amsterdam, The Netherlands). The consensus sequences were obtained using the SeqMan software version 7.0.0 (DNAStar Lasergene, Madison, WI, USA).

105 Molecular identification and phylogenetic analysis

106 Molecular identification of the isolates was carried out by multi-locus analysis using the

107 ITS, LSU, *rpb2* and *tub2* sequences of 29 type and reference strains from previous

studies.^{8,9,20} DNA sequences generated in this study have been deposited in the
GenBank and the accession numbers are given in Table 1.

For the phylogenetic study, the sequences were aligned using the ClustalW application of MEGA 6.06 and manually adjusted using the same software platform.^{21,22} Phylogenetic reconstructions were made by maximum-likelihood (ML) and Bayesian inference (BI) in CIPRES.²³ The best substitution model for each gene matrix was estimated using MrModelTest v. 2.3, shown in Table 3.²⁴ For ML analyses, nearest-neighbour interchange was used as the heuristic method for tree inference. Support for internal branches was assessed by 1,000 ML bootstrapped pseudoreplicates. Bootstrap support (BS) of \geq 70 was considered significant. For BI analyses, Markov chain Monte Carlo (MCMC) sampling was carried out with five million generations, samples taken every 100 generations. The 50% majority rule consensus trees and posterior probability values (PP) were calculated after removing the first 25% of the resulting trees for burn-in. A PP value of >0.95 was considered significant. The species *Cucurbitaria berberidis* was used as outgroup. The final matrices used for phylogenetic analysis was submitted in TreeBASE (www.treebase.org; accession number: S22786).

125 Antifungal susceptibility testing

The *in vitro* susceptibility testing was carried out following the procedure laid down by
the European Committee on Antimicrobial Susceptibility Testing (EUCAST)²⁵,
including the following nine antifungals: amphotericin B (AMB; range 0.03–16 mg/L;
Sigma-Aldrich Quimica, Madrid, Spain), isavuconazole (ISV, range 0.015–8 mg/L;
Basilea Pharmaceutica, Basel, Switzerland), itraconazole (ITC, range 0.015–8 mg/L;
Sigma-Aldrich Quimica, Madrid, Spain), posaconazole (IPCZ; range 0.015–8 mg/L;

Sigma-Aldrich Quimica, Madrid, Spain), voriconazole (VCZ; range 0.015–8 mg/L; Sigma-Aldrich Quimica, Madrid, Spain), anidulafungin (AND, range 0.007-4 mg/L; Pfizer, Madrid, Spain), caspofungin (CPF, range 0.03–16 mg/L; Merck, Madrid, Spain), micafungin (MCF; range 0.004-2 mg/L; Astellas Pharma Inc, Tokyo, Japan) and terbinafine (TRB, range 0.03–16 mg/L; Sigma-Aldrich Quimica, Madrid, Spain). The strains were cultured on PDA for 7 to 30 d at 25°C and 30°C to obtain sporulation. Conidia were then collected in water and the suspension was adjusted to $2-5 \times 10^5$ colony-forming units (CFU)/mL. Minimal effective concentrations (MEC) were determined for echinocandins, and minimal inhibitory concentrations (MIC) for the other drugs after 48 h and 72 h of incubation at 35°C. Aspergillus flavus ATCC 204304 and Aspergillus fumigatus ATCC 204305 were used for quality control.

Revie

144 Results

Phenotypic characterization

Five of the eight isolates tested produced fertile structures under *in vitro* conditions and were characterized by the production of colonies of 8–10 mm diameter after 7 d on MEA at $20 \pm 1^{\circ}$ C, flattened, margin entire edge or lobate, immersed mycelium initially white (M. 3A1) and becoming grevish vellow (M. 3C3); colonies on OA reached 15–16 mm diameter, flattened, margin entire edge, immersed mycelium initially olive (M. 3D3) becoming olive grey (M. 3F3), with felty grey aerial mycelium; pycnidial conidiomata were solitary, superficial, brown to dark brown, mostly glabrous or covered with somewhat short setae, globose (100-180 µm diameter) to subglobose $(180-200 \times 130-150 \text{ um})$, only seen on OA; conidiogenous cells were ampulliform to doliform, $8-16 \times 2-4$ µm, integrated to acropleurogenous, branched at the base, conidiophores as terminal and lateral openings; conidia were aseptate, hyaline, smooth-

and thin-walled, subglobose to ellipsoid, $3.5-4.5 \times 1.5-3.5 \mu m$, with few guttules (Fig.

158 1).

 The NaOH spot test was negative. Crystals were absent. Optimal temperature for growth and sporulation 25°C; minimum temperature of growth 15°C; maximum temperature of growth 35°C.

Phylogenetic analysis

The final concatenated dataset obtained with both ML and BI analysis contained 37 ingroup strains with a total of 2,503 characters including gaps (815 for LSU, 531 for ITS, 319 for *tub2* and 838 for *rpb2*), 435 of which were parsimony informative (35 for LSU, 85 for ITS, 94 for tub2 and 221 for rpb2). The sequence datasets did not show conflict in any of the tree topologies for the 70% reciprocal bootstrap trees, which allowed us to combine the four genes in the multi-locus analysis. The ML showed similar tree topology and was congruent with that obtained in the BI. For the BI multi-locus analysis, a total of 2,816 trees were sampled after the burn-in with a stop value of 0.01. The support values were highly similar with the two methods (Fig. 2).

In the phylogenetic tree, all (n=19) of the currently accepted species of *Neocucurbitaria*have been separated appropriately from all (n=9) *N. keratinophila* strains (including the
ex-type strain CBS 121759) isolated from Spanish clinical samples, which formed a
clade with 1 PP / 100 % BS.

Table 4 summarizes the results of the antifungal susceptibility testing. In general, all the drugs assayed showed good activity against *N. keratinophila*, with anidulafungin as the most active, having a geometric mean (GM) of 0.01 μ g/mL and a MIC₉₀ (causing inhibition of 90% of the isolates) of 0.015 μ g/mL. Posaconazole was the most active 181 azole, with an overall GM of 0.1 μ g/mL and a MIC₉₀ of 0.12 μ g/mL; while 182 isavuconazole showed higher MICs (GM of 2 μ g/mL and; MIC₉₀ of 2 μ g/mL).

Discussion

Although all isolates of *N. keratinophila* in this study could not be proven as agents of mycoses, all of them were isolated from human superficial specimens, which reinforces its clinical importance as a potential emergent opportunistic pathogen.

The genus *Neocucurbitaria* was recently introduced by Wanasinghe *et al.* $(2017)^{20}$ to accommodate the sexual morph of *N. acerina*, and to propose the coelomycetous fungus *N. unguis-hominis* (formerly *Pyrenochaeta unguis-hominis*) as the type species for the genus. *Neocucurbitaria* is characterized morphologically by producing brown to black ascomata, scattered or aggregated, globose to pyriform or turbinate, asci bitunicate, fissitunicate, cylindrical and containing 4-8 muriform ascospores, while the asexual morph is pycnidial, producing hyaline and aseptate conidia. Subsequently, recent studies enlarged the genus to a total of 19 species.^{8,9} There is a small number of pyrenochaeta-like species involved in human mycoses, but they are a group of species that produce well-characterized mycoses, such as eumycetoma by Medicopsis romeroi (syn. Pyrenochaeta romeroi) and Nigrograna mackinnonii (syn. P. mackinnonii).⁴ Neocucurbitaria unguis-hominis was one of the former coelomycetous fungi of this genus reported as able to cause human infections, i.e. toe-nail infection,²⁶ while the second most frequent species to cause opportunistic superficial mycoses was N. *keratinophila*, reported as producing keratitis.¹⁰ Interestingly, all eight strains in this study are clinical isolates from Spain, which would suggest an abnormal geographical distribution of this fungus. As the first report of N. keratinophila was also from Spain, this might also suggest that this fungus is endemic in our country. However, further studies are needed to clarify what sort of ecological niches this fungus occupies and

There have been few antifungal studies on coelomycetous fungi, and clinical breakpoints are not defined. However, some authors recommend treatments that include surgical resection and antifungal treatment. Amphotericin B and triazoles have shown some efficacy in the limited data reported so far.^{2,27-29} In this study, the *in vitro* antifungal susceptibility pattern for N. keratinophila showed low MICs ($\leq 2 \mu g/mL$) to all antifungals tested although more data are needed to establish protocols for antifungal treatment of the infections caused by coelomycetous fungi.

Acknowledgments

This work was supported by the Spanish Ministerio de Economía y Competitividad,

grant CGL2017-88094-P.

Olga Rivero-Menendez holds a predoctoral fellowship from Fondo de Investigacion Sanitaria (FI14CIII/00025). Ana Alastruey-Izquierdo is supported by research project from Fondo de Investigación Sanitaria (PI16CIII/00035)

Declaration of interest: Ana Alastruey-Izquierdo has received research grants or honoraria as a speaker or advisor from Gilead Sciences, Pfizer, F2G and Scynexis outside the submitted work. The other authors report no conflicts of interest.

References 1. Stchigel AM, Sutton DA. Coelomycete fungi in the clinical lab. *Curr Fungal Infect Rep.* 2013; 7: 171–191.

- Valenzuela-Lopez N, Sutton DA, Cano-Lira JF, et al. Coelomycetous fungi in the
 clinical setting: Morphological convergence and cryptic diversity. *J Clin Microbiol.* 2017; 55: 552–567.
- 233 3. Sutton DA. Coelomycetous fungi in human disease. A review: Clinical entities,
 234 pathogenesis, identification and therapy. *Rev Iberoam Micol.* 1999; 16: 171–179.
- Ahmed SA, van de Sande WWJ, Stevens DA, et al. Revision of agents of blackgrain eumycetoma in the order *Pleosporales*. *Persoonia*. 2014; 33: 141–154.
- 237 5. Vasant JA, Maggiani F, Borman AM. Subcutaneous mycotic cyst caused by
 238 *Roussoella percutanea* in a UK renal transplant patient. *Mycopathologia*. 2017;
 239 182: 721–725.
 - Wijayawardene NN, Hyde KD, Wanasinghe DN, et al. Taxonomy and phylogeny
 of dematiaceous coelomycetes. *Fungal Divers*. 2016; 77: 1–316.
- 242 7. Chen Q, Jiang JR, Zhang GZ, Cai L, Crous PW. Resolving the *Phoma* enigma.
 243 *Stud Mycol.* 2015; 82: 137–217.
 - 244 8. Valenzuela-Lopez N, Cano-Lira JF, Guarro J, et al. Coelomycetous
 245 Dothideomycetes with emphasis on the families *Cucurbitariaceae* and
 246 *Didymellaceae*. *Stud Mycol*. 2018; 90: 1–69.
 - 247 9. Jaklitsch WM, Checa J, Blanco MN, Olariaga I, Tello S, Voglmayr H. A
 248 preliminary account of the *Cucurbitariaceae*. *Stud Mycol*. 2018; 90: 71–118.
 - 249 10. Ferrer C, Pérez-Santonja JJ, Rodríguez AE, et al. New *Pyrenochaeta* species
 250 causing keratitis. *J Clin Microbiol*. 2009; 47: 1596–1598.

2 3	251	11.	Verkley GJ, Gené J, Guarro J, et al. Pyrenochaeta keratinophila sp. nov., isolated
4 5	252		from an ocular infection in Spain. Rev Iberoam Micol. 2010; 27: 22-24.
6 7	253	12.	Kornerup A, Wanscher JH. Methuen handbook of colour 3rd ed. Methuen,
8 9 10	254		London, England, 1978.
11 12	255	13.	Dorenbosch MMJ. Key to nine ubiquitous soil-borne Phoma-like fungi.
13 14	256		<i>Persoonia</i> . 1970; 6: 1–14.
15 16	257	14.	Noordeloos ME, de Gruyter J, van Eijk GW, Roeijmans HJ. Production of
17 18	258		dendritic crystals in pure cultures of Phoma and Ascochyta and its value as a
19 20	259		taxonomic character relative to morphology, pathology and cultural
21 22	260		characteristics. <i>Mycol Res.</i> 1993; 97: 1343–1350.
23 24	261	15	White TL Bruns T. Lee S. Taylor I. Amplification and direct sequencing of fungal
25 26	201	15.	while 15, Druhs 1, Dee 5, Tuylor 5. Aimphileation and direct sequencing of fungar
27	262		ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ,
28 29	263		White TJ, eds. PCR Protocols: A Guide to Methods and Applications. Orlando,
30 31 22	264		Florida: Academic Press, 1990: 315–322.
33 34	265	16.	Rehner SA, Samuels GJ. Taxonomy and phylogeny of Gliocladium analysed from
35 36	266		nuclear large subunit ribosomal DNA sequences. Mycol Res. 1994; 98: 625-634.
37 38	267	17.	Vilgalys R, Hester M. Rapid genetic identification and mapping of enzymatically
39 40	268		amplified ribosomal DNA from several Cryptococcus species. J Bacteriol. 1990;
41 42	269		172: 4238–4246.
43 44	270	18.	Woudenberg JHC, Aveskamp MM, de Gruyter J, Spiers AG, Crous PW. Multiple
45 46	271		Didymella teleomorphs are linked to the Phoma clematidina morphotype.
47 48	272		Persoonia. 2009; 22: 56–62.
49 50	273	19.	Liu YJ, Whelen S, Hall BD. Phylogenetic relationships among ascomycetes
51 52	274		evidence from an RNA polymerase II subunit. Mol Biol Evol. 1999; 16: 1799-
55 54			
55 56 57 58	275		1808.
50			

276	20.	Wanasinghe DN, Phookamsak R, Jeewon R, et al. A family level rDNA based
277		phylogeny of Cucurbitariaceae and Fenestellaceae with descriptions of new
278		Fenestella species and Neocucurbitaria gen. nov. Mycosphere. 2017; 8: 397-414.
279	21.	Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity
280		of progressive multiple sequence alignment through sequence weighting, position-
281		specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994; 22:
282		4673–4680.
283	22.	Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular
284		evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013; 30: 2725-2729.
285	23.	Miller MA, Pfeiffer W, Schwartz T. The CIPRES science gateway: enabling high-
286		impact science for phylogenetics researchers with limited resources. In:
287		Proceedings of the 1st Conference of the Extreme Science and Engineering
288		Discovery Environment: Bridging from the Extreme to the Campus and Beyond:
289		1-8. Association for Computing Machinery, USA, 2012.
290	24.	Nylander JAA. MrModeltest v2. Program Distributed by the Author. Evolutionary
291		Biology Centre, Uppsala University, Sweden, 2004.
292	25.	Subcommittee on Antifungal Susceptibility Testing of the ESCMID European
293		Committee for Antimicrobial Susceptibility Testing (EUCAST). EUCAST
294		Technical Note on the method for the determination of broth dilution minimum
295		inhibitory concentrations of antifungal agents for conidia-forming moulds. Clin
296		Microbiol Infect. 2008; 14: 982–984.
297	26.	English MP, Atkinson R. Onychomycosis in elderly chiropody patients. Br J
298		Dermatol. 1974; 91: 67–72.
299	27.	Chowdhary A, Meis JF, Guarro J, et al. ESCMID and ECMM joint clinical
-----	-----	--
300		guidelines for the diagnosis and management of systemic phaeohyphomycosis:
301		diseases caused by black fungi. Clin Microbiol Infect. 2014; 20: 47-75.
302	28.	Ahmed SA, de Hoog GS, Stevens DA, Fahal AH, van de Sande WW. In vitro
303		antifungal susceptibility of coelomycete agents of black grain eumycetoma to
304		eight antifungals. Med Mycol. 2015; 53: 295-301.

29. Guégan S, Garcia-Hermoso D, Sitbon K, et al. Ten-Year experience of cutaneous and/or subcutaneous infections due to Coelomycetes in France. Open Forum Infect Dis. 2016. doi:10.1093/ofid/ofw106.

309 Figure legend

Figure 1. Neocucurbitaria keratinophila CBS 121759 (ex-type strain) (A-G). (A), (B). Colonies on MEA and OA (surface). (C). Pycnidia on OA (indicated by arrows). (D). Pycnidium. (E), (F). Conidiogenous cells. (G). Conidia. Neocucurbitaria keratinophila CNM-CM 6401 (H-N). (H), (I). Colonies on MEA and OA (surface). (J). Pycnidia on OA (indicated by arrows). (K). Pycnidium. (L), (M). Conidiogenous cells and conidiophores. (N). Conidia. Scale bars: (D), (K) = 50 μ m. (E-G), (L-N) = 10 μ m. Figure 2. Maximum likelihood tree based on a concatenated alignment of LSU, ITS, tub2 and rpb2 sequences of 37 strains representing a total of 19 species of *Neocucurbitaria*. The Bayesian posterior probabilities (PP) above 0.95 and the RAXML bootstrap support values of \geq 70 are indicated on the nodes. Fully supported branched (1 PP/100 BS) are indicated in **bold**. Some branches were shortened to fit them to the page, these are indicated by two diagonal lines with the number of times a branch was shortened. Type strains are indicated by a superscript ^T. Species involved in the clinical setting are indicated with a cross. The tree was rooted with Cucurbitaria berberidis (CBS 130007 and CBS 142401).

\sim	
2	
Ť	
0	
\sim	
-	
Ð	
σ	1
σ	
Δ_	

		Medical Mycology					Nicomedes I	UNIVERSITA TAXONOMÍA
אנג אנג	ession numbers of the sequences of the iso	alates used in this study. New sequen	ces oenerated are inc	ticated in hold			Miguel Antoni	TE HONGOS CEL
			0		GenBank acc	cession no.	o Va	OMTC
	Isolate no. ^a	Source	Country	ΠSΠ	STI	tub2	rpb2	1 H''''''''
	CBS 130007 ¹	Berberis vulgaris	Austria	KC506793	LT717673	LT717676	MF795800	er n
	CBS 142401	Berberis sp.	Austria	MF795756	MF795756	MF795886	07 00 01 00 01 00 01 00 01 00 00 00 00 00	E INT
cladae	CBS 142398 ^T	Genista acanthoclada	Greece	MF795766	MF795766	MF795894	MF795808	ERÉS C
	CBS 142403	Acer pseudoplatanus	Austria	MF795768	MF795768	MF795896	MF795810	T. Í N T
	MFLUCC 16-1450 ^T	Acer campestre	Italy	KY563076	KY563073	ı		CO
is	CBS 142404 ^T	Genista aetnensis	Italy	MF795769	MF795769	MF795897	MF795811	
	WU 36930	Genista aetnensis	Italy	MF795770	MF795770	MF795898	MF795812	
r	CBS 297.74 ^T	Sea water	Montenegro	EU754177	LT623221	LT623238	LT623278	
	CBS 115979	Unknown	The Netherlands	EU754198	AY853248	LT623234	LT623273	
	CBS 257.68 ^T	Wheat-field soil	Germany	EU754199	JF740260	KT389844	LT717681	
e	CBS 142406 ^T	Genista cinerea	Spain	MF795771	MF795771	MF795899	MF795813	
а	CBS 142402 ^T	Cistus monspeliensis	Spain	MF795772	MF795772	MF795900	MF795814	
	CBS 142109 ^T	<i>Hakea</i> sp.	Australia	KY173526	KY173436	KY173613	KY173593	
ıris	CBS 142791 ^T	Human arm injury	USA	LN907372	LT592916	LT592985	LT593054	
licola	CBS 142390^{T}	Juglans regia	Austria	MF795773	MF795773	MF795901	MF795815	

 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1

http://mc.manuscriptcentral.com/tmmy

UNIVERSITAT ROVIRA I VI TARONOMÍA DE HONGOS CEI	IRGILI LOMICE	TOS I	DE IN	TERÉS	6 CLÍN	IICO								
Ni@omedes Miguel Anton:	LT623275	ET 992268	LT99226	LT992270	LT992271	LT992272	LT992273	LT992274	LT992275	MF795816	LT623277	MF795817 MF795818	MF795822 MF795823	MF795824 MF795825
	LT623236	LT992260	LT992261	LT992262	LT992263	LT992264	LT992265	LT992266	LT992267	MF795902	LT623237	- MF795903	MF795906 MF795907	MF795908 MF795909
	EU885415	LT992276	LT992277	LT992278	LT992279	LT992280	LT992281	LT992282	LT992283	MF795774	LT623220	MF795775 MF795776	MF795780 MF795781	MF795782 MF795783
	LT623215	LT966018	LT966019	LT966020	LT966021	LT966022	LT966023	LT966024	LT966025	MF795774	GQ387619	MF795775 MF795776	MF795780 MF795781	MF795782 MF795783
	Spain	Spain	Spain	Spain	Spain	Spain	Spain	Spain	Spain	Sweden	Italy	Austria Austria	Spain Spain	Spain Greece
Medical Mycology	Human corneal scrapings	Human cutaneous exudate	Human fingernail	Human cutaneous exudate	Human cutaneous exudate	Human cutaneous exudate	Human cutaneous exudate	Human conjunctival exudate	Human toenail	Populus sp.	Quercus robur	Rhamnus frangula Rhamnus frangula	Rhamnus lycioides Rhamnus alaternus	Rhamnus myrtifolius Rhamnus saxatilis ssp. prunifolius
	CBS 121759 ^T , FMR 9444	CNM-CM 5882, FMR 17319	CNM-CM 6401, FMR 17320	CNM-CM 6455, FMR 17321	CNM-CM 7013, FMR 17322	CNM-CM 7457, FMR 17323	CNM-CM 7731, FMR 17324	CNM-CM 8010, FMR 17325	CNM-CM 8674, FMR 17326	CBS 142393^{T}	CBS 115095 ^T	CBS 142391 ^T WU 36936	CBS 142396 ^T WU 36947	CBS 142395 ^T WU 36949
	Neocucurbitaria keratinophila									Neocucurbitaria populi	Neocucurbitaria quercina	Neocucurbitaria rhamni	Neocucurbitaria rhamnicola	Neocucurbitaria rhamnioides

http://mc.manuscriptcentral.com/tmmy

23
F
Š
1
Φ
ð
õ

2 , -

UNIVERSITAT ROVIRA I VIRGILI

DE HONGOS CELC Miguel Antonio	MF795827 W	ME795828 MF795828 MF795828 MF79582 MF79592 MF7950 MF7050 MF7000 MF7000 MF7000 MF70000 MF70000 MF70000 MF70000 MF70000 MF700	LT623279 H	nterés pez 1020304 M	MF795829	, USA; USA;
	MF795911	MF795912	LT623239	LT592979	MF795913	III, Madrid, Spa Antonio, Texas
	MF795785	MF795786	LT623222	LT592910	MF795787	e Center, San
	MF795785	MF795786	GQ387623	LN907356	MF795787	he Instituto de s Health Scienc
	Austria	Austria	The Netherlands	USA	Morocco	ogy Mould Collection of t at the University of Texa:
	Ribes rubrum	Ribes rubrum	Agapornis sp. Lung	Unknown	Vachellia gummifera	ds; CNM-CM, Center of Microbiol THSC, Fungus Testing Laboratory 1, University of Vienna, Austria.
	CBS 142394^{T}	WU 36952	CBS 111112	UTHSC DI16-213	CBS 142397 ^T	rsity Institute, Utrecht, The Netherlar ersitat Rovira i Virgili, Reus, Spain; U t of Botany and Biodiversity Researc
	Neocucurbitaria ribicola		Neocucurbitaria unguis-hominis		Neocucurbitaria vachelliae	^a CBS, Westerdijk Fungal Biodive FMR, Facultat de Medicina, Univ WU, Fungarium of the Departmen ^T Type strain.
	Miguel Antonio	Midnel Autouro CBS 142394 ^T Ribes rubrum Austria MF795785 MF795911 MF795829 MF79585 MF795911 MF795829	Neocucurbitaria ribicola CBS 142394 ^T Ribes rubrum Austria MF795785 MF795785 MF795825 WU 36952 Ribes rubrum Austria MF795786 MF795786 MF795825 MF795825825825825825825825825825825825825825	Neocucurbitaria ribicolaCBS 142394 ^T Ribes rubrumAustriaMF795785MF795785MF795785MF79583WU 36952Ribes rubrumAustriaMF795786MF795786MF79583MF79583WU 36952Ribes rubrumAustriaMF795786MF795786MF79583Neocucurbitaria unguis-hominisCBS 11112Agapornis sp. LungThe NetherlandsGQ387623LT623239LT623239	Neocucurbitaria ribicolaCBS 142394 ^T Ribes rubrumAustriaMF795785MF795785MF795785MF795785MF795786MF795786MF795786MF795736MF795323MF795323Line MF795323MF795323Line MF795323Line MF795334Line MF7953344Line MF795334Line MF795334 <td>Neocucurbitaria ribicolaCBS 142391Ribes rubrumAustriaMF795785MF795785MF795911MF79588Neocucurbitaria unguis-hominisCBS 11112Agapornis sp. LungThe NetherlandsGQ387623LT623229LT623239Neocucurbitaria unguis-hominisCBS 11112UnknownUSALN907356LT623229LT623239Neocucurbitaria unguis-hominisCBS 11112UnknownUSALN907356LT623239LT623239Neocucurbitaria vachelliaeCBS 1123UnknownUSALN907356LT792919LT793048Neocucurbitaria vachelliaeCBS 142397Vachellia gummiferaMF795787MF795787MF795782</td>	Neocucurbitaria ribicolaCBS 142391Ribes rubrumAustriaMF795785MF795785MF795911MF79588Neocucurbitaria unguis-hominisCBS 11112Agapornis sp. LungThe NetherlandsGQ387623LT623229LT623239Neocucurbitaria unguis-hominisCBS 11112UnknownUSALN907356LT623229LT623239Neocucurbitaria unguis-hominisCBS 11112UnknownUSALN907356LT623239LT623239Neocucurbitaria vachelliaeCBS 1123UnknownUSALN907356LT792919LT793048Neocucurbitaria vachelliaeCBS 142397Vachellia gummiferaMF795787MF795787MF795782

http://mc.manuscriptcentral.com/tmmy

Table 2. Primers used in this study with sequences and sources

I alle 2. I IIIIIVIS used III ullis study, with sequences and some cos .					
Gene	Product name	Primer	Direction	Sequence (5'-3')	Reference
Internal transcribed spacer (complete)	STI	ITS-5	Forward	GGA AGT AAA AGT CGT AAC AAG G	15
		ITS-4	Reverse	TCC TCC GCT TAT TGA TAT GC	15
28S ribosomal RNA	LSU	LR0R	Forward	GTA CCC GCT GAA CTT AAG C	16
		LR5	Reverse	TCC TGA GGG AAA CTT CG	17
Beta-tubulin	tub2	TUB2Fd	Forward*	GTB CAC CTY CAR ACC GGY CAR TG	18
		TUB4Rd	Reverse	CCR GAY TGR CCR AAR ACR AAG TTG TC	18
RNA polymerase II second largest subunit	rpb2	RPB2-5F2	Forward	GAY GAY MGW GAT CAY TTY GG	19
		fRPB2-7cR	Reverse	CCC ATW GCY TGC TTM CCC AT	19
*B: C or G or T; Y: C or T; R: A or G; M: A or C; W: A or T					

Medical Mycology

Table 3. Nucleotic	le substitution models used in phylogenetic analysis.
Gene	Substitution model ^a
LSU	GTR + I

ITSSYM + I + Gtub2HKY + Grpb2GTR + I + G

^a GTR, General time-reversible model; HKY, Kishino and Yano model; SYM, symmetrical model. G, gamma distribution; I, proportion of invariable sites.

for peer perien only

testing
susceptibility
antifungal
vitro
of in
Results
Table 4.

4 5 9 7 8

~ ~ ~ ~

6

Taxon (no. of isolates)	Parameter ^a	V_{2}	ulues for	the drug (J	ug/mL) ^b						
		A	ИВ	ISV	ITC	PCZ	VCZ	AND	CPF	MCF	TRB
N. keratinophila (8)	GM	0.2	67	2	0.5	0.1	1	0.01	0.39	0.03	0,25
	Range	0.1	2-1	1-4	0.25-1	0.06-0.25	0.25-2	≤0.015	0.25-1	≤ 0.03	≤0.025
	MIC ₉₀	0.5		7	0.5	0.12	2	0.015	0.25	0.03	0,25

^a GM, geometric mean; MIC₉₀, drug concentration that inhibited 90% of isolates.

^b AMB, amphotericin B; ISV, isavuconazole; ITC, itraconazole; PCZ, posaconazole; VCZ, voriconazole; AND, anidulafungin; CPF, caspofungin; MCF, micafungin; TRB, terbinafine.

1, Mol

41

42 44 45 45 47

Figure 1. Neocucurbitaria keratinophila CBS 121759 (ex-type strain) (A-G). (A), (B). Colonies on MEA and OA (surface). (C). Pycnidia on OA (indicated by arrows). (D). Pycnidium. (E), (F). Conidiogenous cells. (G). Conidia. Neocucurbitaria keratinophila CNM-CM 6401 (H-N). (H), (I). Colonies on MEA and OA (surface). (J). Pycnidia on OA (indicated by arrows). (K). Pycnidium. (L), (M). Conidiogenous cells and conidiophores. (N). Conidia. Scale bars: (D), (K) = 50 μm. (E-G), (L-N) = 10 μm.

240x341mm (300 x 300 DPI)

Medical Mycology

Figure 2. Maximum likelihood tree based on a concatenated alignment of LSU, ITS, tub2 and rpb2 sequences of 37 strains representing a total of 19 species of Neocucurbitaria. The Bayesian posterior probabilities (PP) above 0.95 and the RAxML bootstrap support values of \geq 70 are indicated on the nodes. Fully supported branched (1 PP/100 BS) are indicated in bold. Some branches were shortened to fit them to the page, these are indicated by two diagonal lines with the number of times a branch was shortened. Type strains are indicated by a superscript T. Species involved in the clinical setting are indicated with a cross. The tree was rooted with Cucurbitaria berberidis (CBS 130007 and CBS 142401).

0.01

218x226mm (300 x 300 DPI)

Estudios de los aislados ambientales recolectados en

España

4.8. *Pseudoascochyta* gen. nov., *P. novae-zelandiae* sp. nov. y *P. pratensis* sp. nov.

N. Valenzuela-Lopez^{1,2}, A.M. Stchigel¹, J. Cano-Canals³, J. Guarro¹, J.F. Cano-Lira¹

¹Unitat de Micologia, Facultat de Medicina i Ciències de la Salut, and IISPV, Universitat Rovira i Virgili, Reus, Spain; ²Microbiology Unit, Medical Technology Department, Faculty of Health Science, University of Antofagasta, Av. Universidad de Antofagasta s/n, 02800 Antofagasta, Chile; ³I.E.S Gabriel Ferrater i Soler, Ctra. de Montblanc, 5-9, 43206 Reus, Tarragona, Spain

Publicado en: Fungal Planet sheets, Persoonia 2016; 37: 254–257.

254

Fungal Planet 483 – 21 December 2016

Pseudoascochyta Valenzuela-Lopez, Stchigel, Cano-Canals, Guarro & Cano, gen. nov.

Etymology. Name reflects the morphological similarity with the genus *Ascochyta*, but from which it is distinct.

Classification — Didymellaceae, Pleosporales, Dothideomycetes.

Hyphae pale to dark brown, smooth- and thin- to thick-walled, septate. Pycnidia brown to dark brown, globose, solitary, pyc-

nidial wall of *textura angularis*, neck absent, ostiolated or not. *Conidiogenous cells* enteroblastic, phialidic, globose to flask-shaped, hyaline, thin-walled. *Conidia* hyaline, cylindrical, 1-septate, guttulate. *Chlamydospores* absent.

Type species. Pseudoascochyta pratensis Valenzuela-Lopez, Cano-Canals, Stchigel, Guarro & Cano.

MycoBank MB817646.

Pseudoascochyta pratensis Valenzuela-Lopez, Cano-Canals, Stchigel, Guarro &

Cano, sp. nov.

Etymology. From Latin *pratum*, prairie, referring to the toponymy of the place where the specimen was collected.

Hyphae pale to dark brown, 2–2.5 mm wide, smooth- and thin- to thick-walled, septate. *Pycnidia* dark brown, globose, with hyphal outgrowths, mostly immersed, solitary, 250–330 mm diam, pycnidial wall of *textura angularis* (*textura epidermoidea* on sterile carnation leaves), 30–40 mm thick, outer wall 2–3-layered, composed of dark brown, flattened polygonal cells of 5–25 mm diam, inner wall 4–6-layered, composed of hyaline to subhyaline, flattened polygonal cells, neck absent, ostiole absent (formed very late when the fungus grow on sterile carnation leaves, of 25–35 mm diam). *Conidiogenous cells* enteroblastic, phialidic, globose to flask-shaped, hyaline, thin-walled, 5–8 mm diam. *Conidia* hyaline, cylindrical, 1-septate, (8–)10–12 × 2.5–3 mm, narrowing slightly at the septa, smooth- and thin-walled, guttulate.

Culture characteristics — Colonies on OA reaching 12 mm diam in 7 d at 25 ± 1 °C, flattened, granulose due to the production of pycnidia, dark green (M.30F3); reverse olive brown (M.4F3) to brownish grey (M.4F2). Colonies on MEA reaching 15 mm in 7 d at 25 ± 1 °C, flattened, compact, greyish brown (M.7F3); reverse dark brown (M.8F5). NaOH spot test negative. Crystals absent. Optimal temperature for sporulation, 15 °C; optimal temperature of growth, 25 °C; minimum temperature of growth, 5 °C; maximum temperature of growth, 30 °C.

Typus. SPAIN, Tarragona, Prades, from soil, 13 Apr. 2015, *J. Cano-Canals* (holotype CBS H-22735, cultures ex-type FMR 14524 = CBS 141688, ITS sequence GenBank LT223130, LSU sequence GenBank LT223131, *tub2* sequence GenBank LT223132, *rpb2* sequence GenBank LT223133, Myco-Bank MB817647).

Notes — The fungus was isolated from a soil sample. Morphologically, Pseudoascochyta pratensis resembles species of the genus Ascochyta (Chen et al. 2015). Based on a megablast search of NCBIs GenBank nucleotide database, the closest hits using the LSU sequence are Ascochyta phacae (Gen-Bank EU167570; Identities = 841/841 (100 %), no gaps) and Microsphaeropsis olivacea (GenBank JX681101; Identities = 840/841 (99 %), no gaps). Closest hits using the ITS sequence are Ascochyta medicaginicola (GenBank EU167575; Identities = 550/558 (99 %), gaps 3/558), Leptosphaerulina australis (GenBank JN712494; Identities = 537/542 (99 %), gaps 1/542). The closest hit using the tub2 sequence is Phoma sp. (Gen-Bank KT309385; Identities = 330/332 (99 %), no gaps). The closest hit using the rpb2 (RPB2) sequence is Ascochyta pisi (GenBank EU874867; Identities = 844/923 (91 %), gaps 2/923). Our phylogenetic tree (see FP484), built by using the combined LSU, ITS, tub2 and rpb2 sequence alignment, corroborated that our fungus represents a new genus and a new species. Pseudoascochyta pratensis differs from A. medicaginicola var. macrospora by its lower growth rate on OA, the absence of crystal production, its larger conidia (28 × 6 mm vs (8–)10–12 \times 2.5–3 mm) and the number of septa (1–3 vs 1).

Colour illustrations. Prades, Tarragona, Spain; colony on OA after 7 d at 25 ± 1 °C, conidiomata (pycnidia) under the stereomicroscope, pycnidia, conidiogenous cells, conidia. Scale bars = 10 µm.

Nicomedes Valenzuela-Lopez, Mycology Unit, Medical School and IISPV, Universitat Rovira i Virgili (URV), Sant Llorenç 21, 43201 Reus, Tarragona, Spain; Microbiology Unit, Medical Technology Department, Faculty of Health Science, University of Antofagasta, Av. Universidad de Antofagasta s/n, 02800 Antofagasta, Chile;

e-mail: nicomedes.vl@gmail.com

Alberto M. Stchigel, Josep Guarro & José F. Cano-Lira, Mycology Unit, Medical School and IISPV, Universitat Rovira i Virgili (URV),

Sant Llorenç 21, 43201 Reus, Tarragona, Spain;

e-mail: albertomiguel.stchigel@urv.cat, josep.guarro@urv.cat & jose.cano@urv.cat

Julia Cano-Canals, I.E.S Gabriel Ferrater i Soler, Ctra. de Montblanc, 5-9, 43206 Reus, Tarragona, Spain; e-mail: july_cc_98@hotmail.com

Fungal Planet description sheets

Fungal Planet 484 - 21 December 2016

Pseudoascochyta novae-zelandiae Valenzuela-Lopez, Stchigel, Guarro & Cano, sp. nov.

Etymology. Referring to the geographical origin of the fungus.

Classification — *Didymellaceae*, *Pleosporales*, *Dothideomycetes*.

Hyphae brown, 2.5–3 mm wide, smooth- and thin- to thickwalled, septate. *Pycnidia* brown to dark brown, globose, immersed, solitary, 120–250 mm diam, pycnidial wall of *textura angularis*, 3-layered, 10–15 mm thick, composed of dark brown polygonal cells of 5–25 mm diam, neck absent, non-ostiolated. *Conidiogenous cells* enteroblastic, phialidic, globose to flaskshaped, hyaline, thin-walled, 5–6 mm diam. *Conidia* hyaline, cylindrical, aseptate, $(5-)6-7 \times 2-2.5$ mm, guttulate.

Culture characteristics — Colonies on OA reaching 50 mm diam in 7 d at 25 ± 1 °C, flattened, granulose due to the production of pycnidia, olive (M.3F2) to olive grey (M.3F4); reverse dark grey (M.1F1). Colonies on MEA reaching 48 mm diam in 7 d at 25 ± 1 °C, flattened, compact, olive (M.2E5) to yellowish white (M.2A2); reverse dark brown (M.6F6) to olive brown (M.4D4). NaOH spot test negative. Crystals absent. Optimal temperature for sporulation, 15 °C; optimal temperature of growth, 25 °C; minimum temperature of growth, 5 °C; maximum temperature of growth, 30 °C.

Typus. New ZEALAND, Wellington, Titahi Bay, *Cordyline australis (Agavaceae)*, 1 May 1990, *P.R. Johnston* (holotype CBS H-22734, cultures extype FMR 15110 = CBS 141689, ITS sequence GenBank LT592892, LSU sequence GenBank LT592893, *tub2* sequence GenBank LT592895, MycoBank MB817648).

Notes — The fungus was isolated from a cabbage tree, endemic to New Zealand. Based on a megablast search of NCBIs GenBank nucleotide database, the closest hits using the LSU sequence are Ascochyta phacae (GenBank EU167570; Identities = 842/842 (100 %), no gaps) and Microsphaeropsis olivacea (GenBank JX681101; Identities = 841/842 (99 %), no gaps). Closest hits using the ITS sequence are Ascochyta medicaginicola (GenBank EU167575; Identities = 540/546 (99 %), gaps 2/546), Leptosphaerulina australis (GenBank JN712494; Identities = 537/542 (99 %), gaps 1/542). The closest hit using the tub2 sequence is Phoma sp. (GenBank KT309385; Identities = 332/332 (100 %), no gaps). The closest hit using the rpb2 sequence is Ascochyta pisi (GenBank EU874867; Identities = 760/835 (91 %), gaps 1/835 (0%)). Our phylogenetic tree, built by using the concatenated LSU, ITS, tub2 and rpb2 sequence alignment, corroborated that our fungus represents a new species. Pseudoascochyta novae-zelandiae differs from P. pratensis (the type species of the genus) by its faster growth rate on OA, smaller pycnidia (130-250 mm vs 250-330 mm) and conidia $((5-)6-7 \times 2-2.5 \text{ mm vs} (8-)10-12 \times 2.5-3 \text{ mm})$, and by the number of conidial septa (aseptate vs 1-septate).

Maximum likelihood tree obtained from the combined dataset of the nucleotide sequences of four different nuclear *loci* (LSU, ITS, *tub2* and *rpb2*) of the new proposed species and those of related taxa retrieved from the GenBank (TreeBASE ID 19426). At the nodes are presented the Bayesian posterior probability scores \geq 0.95 and the bootstrap support values \geq 70 %. *Microsphaeriopsis olivacea* CBS 233.77 was used as outgroup. Extype strains are indicated with ^T. The new species proposed in this study are indicated in **bold** face.

Microsphaeropsis olivacea CBS 233.77

0.01

Colour illustrations. Titahi Bay, Wellington, New Zealand (image credit: Graeme Simpson, www.graemesimpsonimages.com); colony on OA after 7 d at 25 °C, conidiomata under the stereomicroscope, pycnidia, conidiogenous cells, conidia. Scale bars = 10 μ m.

1/100

Nicomedes Valenzuela-Lopez, Mycology Unit, Medical School and IISPV, Universitat Rovira i Virgili (URV), Sant Llorenç 21, 43201 Reus, Tarragona, Spain; Microbiology Unit, Medical Technology Department, Faculty of Health Science, University of Antofagasta, Av. Universidad de Antofagasta s/n, 02800 Antofagasta, Chile; e-mail: nicomedes.vl@gmail.com

Alberto M. Stchigel, Josep Guarro & José F. Cano-Lira, Mycology Unit, Medical School and IISPV, Universitat Rovira i Virgili (URV), Sant Llorenç 21, 43201 Reus, Tarragona, Spain;

e-mail: albertomiguel.stchigel@urv.cat, josep.guarro@urv.cat & jose.cano@urv.cat

Julia Cano-Canals, I.E.S Gabriel Ferrater i Soler, Ctra. de Montblanc, 5-9, 43206 Reus, Tarragona, Spain; e-mail: july_cc_98@hotmail.com

Neoascochyta exitialis CBS 389.86

Neoascochyta paspali CBS 560.817

4.9. Coniella heterospora sp. nov.

N. Valenzuela-Lopez^{1,2}, J.F. Cano-Lira¹, J. Guarro¹, A.M. Stchigel¹

¹Unitat de Micologia, Facultat de Medicina i Ciències de la Salut, and IISPV, Universitat Rovira i Virgili, Reus, Spain; ²Microbiology Unit, Medical Technology Department, Faculty of Health Science, University of Antofagasta, Av. Universidad de Antofagasta s/n, 02800 Antofagasta, Chile

Publicado en: Fungal Planet sheets, Persoonia 2017; 39: 290-291.

Fungal Planet description sheets

Fungal Planet 629 - 20 December 2017

Coniella heterospora Valenzuela-Lopez, Cano, Guarro & Stchigel, sp. nov.

Etymology. Named after the variable shape of the conidia.

Classification — Schizoparmaceae, Diaporthales, Sordariomycetes.

Hyphae hyaline to pale brown, smooth- and thin- to thick-walled, septate, 2-5 µm wide. Pycnidia initially hyaline, becoming dark brown with age due to the production of conidia, glabrous, semi-immersed or superficial (OA), solitary, confluent with age, globose, (320-)370-500(-800) µm diam, without neck, ostiolate, pycnidial wall of textura angularis, 50-65 µm thick, 5-6-layered, composed of hyaline to pale brown or brown, flattened polygonal cells of 5-15 µm diam, on the inside of the pycnidium there is a basal central cushion-like structure composed of hyaline cells from which the conidiophores arise. Conidiophores densely aggregated, hyaline, branched at the base and with 2-3 supporting cells, or reduced to a single conidiogenous cell. Conidiogenous cells hyaline, determinate, smooth- and thin-walled, lageniform, $6.5-12(-16) \times 1.5-2$ (-2.5) µm, 1-1.5 µm wide at apex. Conidia hyaline at first, becoming coppery-coloured when mature, aseptate, smoothand thin- to thick-walled, mostly with a large guttula, sometimes biguttulate, variable in shape, mostly ellipsoidal, sometimes naviculate, limoniform, subsphaerical or irregularly-shaped, mostly laterally compressed, apex acute to nearly rounded, truncate at the base, with a longitudinal germ slit in older conidia, with a minute basal appendage formed by rests of the conidiogenous cell, $(4.5-)5.5-8(-9.5) \times (3-)4.5-6(-6.5) \times 4-4.5(-5.5) \mu m$.

Culture characteristics — Colonies on OA reaching 79 mm diam after 7 d at 25 ± 1 °C, flattened, white (M. 4A1); reverse white (M. 4A1). Colonies on MEA reaching 86 mm diam after 7 d at 25 ± 1 °C, floccose, brownish grey (M. 4D2) to dark grey (M. 4F1); reverse dark grey (M. 4F1). NaOH spot test negative. Crystals absent. Optimal temperature of sporulation and growth, 25 °C; minimum temperature of growth, 15 °C; maximum temperature of growth, 30 °C.

Typus. SPAIN, Huelva, Almonte, road HF6245 from Los Cabezudos village to Los Bodegones village, from herbivorous dung, Mar. 2016, coll. *C. González-García* and *G. Sisó*, isol. *N. Valenzuela-Lopez* (holotype CBS H-23198, cultures ex-type FMR 15231 = CBS 143031, ITS, LSU, *tef*-1α and *rpb2* sequences GenBank LT800501, LT800500, LT800503 and LT800502, MycoBank MB820451).

Notes - Coniella heterospora is characterised by the production of coppery-coloured conidia that are variable in shape. Based on a megablast search of NCBIs GenBank nucleotide database, the closest hit using the LSU sequence is C. fragariae CBS 183.52 (GenBank KJ710442; Identities = 835/838 (99 %), no gaps). Closest hits using the ITS sequence are C. fragariae CBS 198.82 (GenBank KJ710465; Identities = 600/601 (99 %), no gaps) and C. solicola CPC 17308 (GenBank KX833598; Identities = 589/591 (99 %), no gaps). The closest hits using the rpb2 sequence are C. solicola CBS 114007 (GenBank KX833504; Identities = 756/767 (99 %), no gaps) and C. fragariae CBS 454.68 (GenBank KX833477; Identities = 751/767 (98 %), no gaps). The closest hits using the tef-1α sequence are C. solicola CPC 17308 (GenBank KX833702; Identities = 311/335 (93 %), gaps 4/335 (1%)) and C. fragariae STE-U 3713 (GenBank AY339350; Identities = 327/359 (91 %), gaps 9/359 (2 %)). Our phylogenetic tree, built by using concatenated LSU, ITS, rpb2 and tef-1a sequences, corroborated that our isolate represents a new species (Alvarez et al. 2016, Marin-Felix et al. 2017). Coniella heterospora is morphologically similar to C. fragariae, C. nigra and C. solicola, but differs in conidium colour (coppery-coloured in C. heterospora vs dark brown in the other three species) and shape (very variable and sometimes irregularly-shaped in C. heterospora, and scarcely variable in the other species). The phylogenetic analysis showed that C. heterospora forms a basal branch with C. solicola and C. nigra, and differs from these species in 8 bp and 10 bp for rpb2, respectively, and in 26 bp for both *tef*-1 α nucleotide sequences.

Colour illustrations. Los Cabezudos-Los Bodegones, Huelva, Spain; colony on MEA and OA after 14 d at 25 \pm 1 °C; pycnidia under the stereo-microscope; conidiophores, conidiogenous cells and conidia; conidia, some of them showing minute basal cellular appendage (indicated by arrows). Scale bars: conidiophores = 20 μ m, conidiogenous cells and conidia = 10 μ m.

Maximum likelihood tree obtained from the combined DNA sequences dataset from four loci (LSU, ITS, *rpb2* and *tef*-1 α) of our isolate and sequences retrieved from the GenBank database. Ex-type strains of the different species are indicated with ^T. The new species proposed in this study is indicated in **bold**. The Bayesian posterior probabilities (\geq 0.95) and RAxML bootstrap support values (\geq 70 %) are provided at the nodes. *Melanconiella hyperopta* CBS 131696 and *Melanconiella* sp. CBS 110385 were used as outgroup.

Nicomedes Valenzuela-Lopez, Mycology Unit, Medical School and IISPV, Universitat Rovira i Virgili (URV), Sant Llorenç 21, 43201 Reus, Tarragona, Spain; Microbiology Unit, Medical Technology Department, Faculty of Health Science, University of Antofagasta, Av. Universidad de Antofagasta s/n, 02800 Antofagasta, Chile; e-mail: nicomedes.vl@gmail.com Alberto M. Stchigel, Josep Guarro & José F. Cano-Lira, Mycology Unit, Medical School and IISPV, Universitat Rovira i Virgili (URV), Sant Llorenç 21, 43201 Reus, Tarragona, Spain; e-mail: alberto.stchigel@urv.cat, josep.guarro@urv.cat & jose.cano@urv.cat

4.10. Alfaria dactylis sp. nov.

N. Valenzuela-Lopez^{1,2}, J.F. Cano-Lira¹, J. Guarro¹, A.M. Stchigel¹

¹Unitat de Micologia, Facultat de Medicina i Ciències de la Salut, and IISPV, Universitat Rovira i Virgili, Reus, Spain; ²Microbiology Unit, Medical Technology Department, Faculty of Health Science, University of Antofagasta, Av. Universidad de Antofagasta s/n, 02800 Antofagasta, Chile

Aceptado en: Fungal Planet sheets, Persoonia 2018.

Alfaria clactylis

Fungal Planet XXX – date

Alfaria dactylis Valenzuela-Lopez, Cano, Guarro & Stchigel sp. nov.

Classification — Stachybotryaceae, Hypocreales, Sordariomycetes.

Etymology. From Latin *dactylus*, date, due to the nature of the substrate (date, the fruit of *Phoenix dactylifera*) from which the fungus was isolated.

Hyphae hyaline to pale green, smooth- and thin- to thick-walled, septate, 2.5–5 μ m wide. *Conidiomata* discrete, cupulate, stromatic, unilocular, non-ostiolate, superficial, solitary or confluent, greenish-black, covered by setae, broadly lenticular, 177–275 μ m × 133–242 μ m, filled with black mass of slimy conidia; *conidioma wall* 10–27 μ m broad, pseudoparenchymatous, of *textura globulosa* and *textura angularis*, composed of 2 to 4 layers of pale green to dark green, globose to flattened polygonal cells of 5–7.5 μ m diam.; *setae* greenish-black, smooth- and thick-walled, multiseptate, unbranched, straight, narrowing towards the sharp apices, 60–200 μ m long, 4–8 μ m wide at the base. *Conidiophores* densely aggregated, arising from the basal part of the locule, unbranched or branched at the base with 2–4 supporting cells, pale green, smooth-walled, up to 47 μ m long, bearing 1–3 conidiogenous cells. *Conidiogenous cells* phialidic, cylindrical, elongate, hyaline to pale green, smooth-walled, guttulate, lanceolate, 8.5–11.5 × 2–2.5 μ m, with an obtuse apex and truncate at the base.

Culture characteristics — Colonies on OA reaching 19–21 mm diam. after 7 d at 25 ± 1 °C, margin regular, flattened, with sparse aerial mycelium, surface white (M. 4A1); reverse white (M. 4A1). Colonies on MEA reaching 18–20 mm diam. after 7 d at 25 ± 1 °C, margin regular, flattened, covered by dense white felty aerial mycelia, surface white (M. 4A1) to pale yellow (M. 4A3); reverse white (M. 4A1) to yellowish-orange (M. 4A6). NaOH test negative.

Typus. SPAIN, Tarragona, from palm fruit of *Phoenix dactylifera*, February 2017, coll. *I.A. Iturrieta-González*, isol. *N. Valenzuela-Lopez*, holotype CBS H-XXX, cultures ex-type FMR 16398 = CBS XXX, ITS sequence GenBank LT984556, LSU sequence GenBank LT984557, *btub* sequence GenBank LT984555, and *tef-1a* sequence GenBank LT984553, MycoBank MB 824149. Notes — *Alfaria dactylis* is characterized by the production of large, lanceolate, pale green conidia and discrete, cupulate, stromatic condiomata covered by abundant setae, being morphologically similar to *A. dandenongensis* but differing in aspect of their conidia (cylindrical, granular and verrucolose in *A. dandenongensis*) and setae (smooth-walled in *A. dactylis* vs verruculose in *A. dandenongensis*) (Crous *et al.* 2017). Despite the fact of *A. dactylis* is phylogenetically close related to *A. ossiformis*, it is morphologically distinct from the latter species by its setose conidiomata (lacking of setae in *A. ossiformis*) (Lombard *et al.* 2016).

Based on a megablast search of NCBI's GenBank nucleotide database, the closest hit using the LSU sequence is *A. ossiformis* CBS 324.54 (GenBank KU845993; Identities = 810/810 (100 %), no gaps). Closest hits using ITS sequence are *A. putrefolia* CBS 112037 (GenBank KU845985; Identities = 533/544 (98 %), 6 gaps (1%)) and *A. ossiformis* CBS 324.54 (GenBank NR_145068; Identities = 534/547 (98 %), 7 gaps (1%)). The closest hits using *tub2* sequence are *C. terrestris* CBS 477.91 (GenBank KU846019; Identities = 288/308 (94 %), 4 gaps (1%)) and *C. putrefolia* CBS 112038 (GenBank KU846017; Identities = 285/307 (93 %), 2 gaps (0%)). The closest hits using *tef*-1 α sequence are *A. terrestris* CBS 127305 (GenBank KU846012; Identities = 315/362 (87 %), 14 gaps (3 %)) and *A. ossiformis* CBS 324.54 (GenBank KU846009; Identities = 313/360 (87 %), 17 gaps (4 %)).

Maximum likelihood tree obtained from the combined DNA sequences dataset from six loci (ITS, LSU, *tef*-1 α , *cmdA*, β -*tub* and *rpb*2) of our isolate and sequences retrieved from the GenBank database. Ex-type strains of the different species are indicated with ^T. The new species proposed in this study is indicated in bold. The RAxML bootstrap support values (\geq 70 %) are provided at the nodes. *Alfariacladiella spartii* CPC 24966 and MFLUCC 13-0799 were used as outgroup.

Colour illustrations. Tarragona, Spain; colony on MEA and OA after 14d at 25 ± 1 °C; conidiomata under the stereomicroscope; cupulate stromatic conidiomata, conidiophores, conidiogenous cells and conidia. Scale bars: conidiomata = 50 µm, conidiophores and conidia = 10 µm.

Nicomedes Valenzuela-Lopez, Mycology Unit, Medical School and IISPV, Universitat Rovira i Virgili (URV), Sant Llorenç 21, 43201 Reus, Tarragona, Spain; Microbiology Unit, Medical Technology Department, Faculty of Health Science, University of Antofagasta, Av. Universidad de Antofagasta s/n, 02800 Antofagasta, Chile; e-mail: nicomedes.vl@gmail.com

Alberto M. Stchigel, Josep Guarro & José F. Cano-Lira,

Mycology Unit, Medical School and IISPV, Universitat Rovira i Virgili (URV), Sant Llorenç 21, 43201 Reus, Tarragona, Spain; e-mail: albertomiguel.stchigel@urv.cat; josep.guarro@urv.cat & jose.cano@urv.cat

References

Crous PW, Shivas RG, Quaedvlieg W, *et al.* (2014). Fungal Planet Description Sheets: 214–280. *Persoonia*, 32:184–306.

Lombard L, Houbraken J, Decock C, *et al.* (2016). Generic hyper-diversity in *Stachybotriaceae*. *Persoonia*, 36:156–246.

Crous PW, Wingfield MJ, Burgess TI, *et al.* (2017). Fungal Planet Description Sheets: 625–715. *Persoonia*, 39:270–467.

5. DISCUSIÓN GENERAL

En las últimas décadas se ha producido un cambio dramático en la clasificación de los hongos celomicetos, debido mayoritariamente al conocimiento más profundo de su filogenia y ecología (Sutton BC 1980, Sutton DA 1999, Wijayawardene et al. 2016, Valenzuela-Lopez et al. 2018a). Sin embargo, la taxonomía de este grupo de hongos es aún compleja, considerándose su identificación un verdadero desafío para la mayoría de los micólogos y, más aún, para los profesionales del laboratorio clínico (Stchigel & Sutton 2013, Valenzuela-Lopez et al. 2017). Cada nueva propuesta taxonómica, por lo general, necesita de una cuidadosa revisión de todos los taxones ubicados en la antigua clase Coelomycetes, muchos de los cuales han sido instituidos (hace ya un siglo y medio) en base a sus caracteres morfológicos y tipo de hospedador (mayoritariamente plantas vasculares terrestres) (Sutton BC 1980, Boerema et al. 2004). Sin embargo, la propuesta de nuevas especies de hongos celomicetos para la ciencia no siempre ha implicado la necesaria comparación con los taxones previamente descritos, realizándose tales propuestas únicamente en base a los análisis filogenéticos de secuencias nucleotídicas (correspondientes a varios genes o regiones genómicas, en el mejor de los casos), los cuales no siempre han sido adecuadamente seleccionados por su bajo poder resolutivo. Debido a ello, a pesar de las grandes ventajas taxonómicas que ofrecen los métodos de identificación basados en el empleo de criterios moleculares (en comparación con el estudio de las características fenotípicas), algunas de las propuestas taxonómicas recientes resultan, como mínimo, controvertidas.

A pesar de que Kirk y co-autores (2008) mencionan que el número de especies de hongos celomicetos es de aproximadamente 7.000, es probable que su número sea significativamente mayor, si nos basamos en el aumento (durante la última década) de la descripción de nuevas especies de este grupo de hongos (Aveskamp et al. 2010, de Gruyter et al. 2013, Hyde et al. 2013, Chen et al. 2015, Wijayawardene et al. 2016, Valenzuela-Lopez et al. 2018a). A pesar de ello, el número de especies de celomicetos capaces de producir infecciones (mayoritariamente oportunistas) en el hombre es comparativamente bajo si lo referimos a la totalidad de taxones descritos para este grupo de hongos (Sutton DA 1999, Stchigel & Sutton 2013). Durante el desarrollo de la presente tesis doctoral, se ha realizado una extensa revisión bibliográfica, documentándose un total de 38 especies distribuidas en 25 géneros (pertenecientes a tres clases de hongos diferentes: Dothideomycetes, Leotiomycetes y Sordariomicetes), como causantes de micosis superficiales y subcutáneas, y, en menor medida, de infecciones profundas o sistémicas. A pesar de esta aparente escasa diversidad de especies patógenas para el hombre, el número real de taxones implicados en infecciones humanas es considerablemente mayor a lo descrito en la literatura, tal se ha podido demostrar durante el desarrollo de la presente tesis doctoral.

Nuestro estudio abarca la caracterización fenotípica y molecular de 452 cepas, de las cuales 322 provenían de muestras clínicas. De estas últimas, 224 procedían del *Fungus Testing Laboratory* (UTHSC, San Antonio, EE.UU.), 51 fueron remitidas por el *Institut Pasteur* (CNRMA, París, Francia) y otras 46 por el *Instituto de Salud Carlos III* (CNM-CM, Madrid, España). Respecto al origen anatómico de las mismas, más de la mitad de ellas (≈ 53%) fueron aisladas a partir de tejidos superficiales. Este hecho no es fortuito, debido a que está probado que la vía de adquisición más frecuente de las infecciones por este grupo de hongos es el contacto de lesiones de la piel con material contaminado, principalmente restos vegetales o suelo (Stchigel & Sutton 2013). Sin embargo, algunos de estos hongos han sido aislados de zonas anatómicas más profundas, produciendo quistes o eumicetomas, e incluso a nivel sistémico (cultivos de líquido céfalo-raquídeo y sangre, entre otros), pero con escasa frecuencia.

La mayoría de las cepas (> 50%) estudiadas en la presente tesis se ubicaron taxonómicamente en el orden *Pleosporales*, tanto las provenientes de los Estados Unidos de Norteamérica como las de dos laboratorios de referencia europeos (España y Francia) (Valenzuela-Lopez et al. 2017, Garcia-Hermoso et al. 2018{sometido}). Esto se debe a que, probablemente, el orden Pleosporales es uno de los más diversos dentro de la clase Dothideomycetes, con más de 50 familias (Hyde et al. 2013, Liu et al. 2017). El resto de cepas se distribuyó ponderadamente dentro de los órdenes Botryosphaeriales, Diaporthales y Glomerellales (de la clase Dothideomycetes), independientemente de su origen geográfico. Sin embargo, las cepas norteamericanas mostraron una mayor diversidad taxonómica, con una distribución en once órdenes, mientras que las procedentes de Francia se ubicaron en cuatro órdenes y las de España únicamente en dos (Valenzuela-Lopez et al. 2017, Garcia-Hermoso et al. 2018{sometido}, Valenzuela-Lopez et al. 2018b). Los géneros más frecuentemente reportados en el presente trabajo fueron Didymella (38 cepas), Neoscytalidium (35), Paraconiothyrium (28), Neocucurbitaria (21), Epicoccum (20), Colletotrichum y Medicopsis (16). Por lo tanto, la mayoría de los hongos aislados de especímenes clínicos pertenecieron a especies de los géneros Didymella y Epicoccum, de la Didymellaceae; los cuales anteriormente estaban asimilados al género familia Phoma (Boerema et al. 2004, de Gruyter et al. 2009, 2013; Aveskamp et al. 2010, Chen et al. 2015, 2017). Ochenta y cinco de las cepas de origen clínico habían sido identificadas en origen cómo pertenecientes al género Phoma; sin embargo, su estudio taxonómico polifásico (que implica la caracterización fisiológica, morfológico-estructural y molecular de las cepas con fines taxonómicos) permitió reubicarlas en distintos géneros de la familia Didymellaceae, algunos de los cuales resultaron ser nuevos para la ciencia, que otras fueron finalmente identificadas como especies no descritas mientras anteriormente (Valenzuela-Lopez et al. 2018a).

La gran mayoría de las especies del género Pyrenochaeta han sido descritas entre principios de los siglos XIX y XX, alcanzando un número de 163 epítetos (www.indexfungorum.org). Previamente, este género constituía una sección dentro del género Phoma, pero los estudios realizados por de Gruyter y co-autores (2010, 2013) han permitido redistribuir sus especies entre los géneros Pyrenochaeta y Pyrenochaetopsis, corroborando que ambos pertenecían a la familia Cucurbitariaceae (en tanto que Phoma se adscribía a la familia Didymellaceae). Estudios filogenéticos posteriores (Wanasinghe et al. 2017), permitieron proponer el nuevo género Neocucurbitaria (familia Cucurbitariaceae), dentro del cual fueron reubicadas varias especies de Pyrenochaeta (Wanasinghe et al. 2017). En la presente tesis doctoral, se intentó delimitar con precisión la familia Cucurbitariaceae, proponiéndose nuevos géneros dentro de ella y separando el género Pyrenochaetopsis, considerado previamente dentro de esta familia. En consecuencia, todos nuestros aislados inicialmente identificados dentro del género Phoma fueron segregados tanto en Cucurbitariaceae como en Didymellaceae; otros aislados, considerados inicialmente como phoma-like se reubicaron en el género Pyrenochaetopsis y otros resultaron ser nuevos géneros. Estos resultados nos permiten concluir que la filogenia de Pyrenochaeta sensu stricto aún no está resuelta, por lo que hemos propuesto de mantenerla como un género incertae sedis (Valenzuela-Lopez et al. 2018a). Además, en paralelo con nuestro trabajo, Jaklitsch y co-autores (2018) han introducido nuevos géneros en la familia Cucurbitariaceae; estas inclusiones han ratificado nuestras propuestas taxonómicas dentro de la familia, y han reforzado la necesidad de realizar una revisión en profundidad de Pyrenochaeta sensu stricto.

Desde el punto de vista clínico tanto especies del género Phoma como Pyrenochaeta han sido relacionadas con micosis oportunistas, en su mayoría a nivel de tejido superficial o subcutáneo, sin embargo, a pesar de que casos clínicos asociados al género Phoma son raros o escasos, tuvo una relativa frecuencia entre los años 1970 y 1990 (Bakerspigel A 1970, Punithalingam E 1976, 1979, Bakerspigel et al. 1981, Shukla et al. 1984, Baker et al. 1987, Rai MK 1989, Hirsh AH & Schiff TA 1996, Rosen et al. 1996). Actualmente, el número de casos debidos a este género ha disminuido (Tullio et al. 2010, Roehm et al. 2012), lo que quizás se deba a que esté subestimada su incidencia al necesitarse personal altamente especializado para identificación, o que se considere como un mero contaminante. Nuestro estudio de cepas clínicas, podría considerarse como un muy buen ejemplo de lo expuesto anteriormente, ya que un gran número de aislados clínicos inicialmente constaban como phoma-like; en base a ello, consideramos que no debemos de prescindir de los aislados de este grupo de hongos, si queremos evaluar adecuadamente la incidencia de los celomicetos en clínica. Por otro lado, dos especies previamente pertenecientes a *Pyrenochaeta* actualmente se conocen como Neocucurbitaria keratinophila y N. unguis-hominis

(Wanasinghe *et al.* 2017, Valenzuela-Lopez *et al.* 2018a); estas dos especies son las de mayor incidencia en clínica para dicho género; es de destacar que *N. keratinophila* en particular fue aislada únicamente a partir de infecciones fúngicas superficiales en España, concretamente nueve, lo cual indicaría una distribución muy restringida de la misma, si tenemos en consideración el elevado número de cepas clínicas estudiadas tanto a partir de Estados Unidos como de Francia. Todos nuestros aislados de las dos especies de *Neocucurbitaria* fueron aislados a partir de muestras de tejidos superficiales como piel, uñas o del ojo; ambas especies, ya habían sido previamente reportadas de casos clínicos humanos (Punithalingam E & English MP 1975, Ferrer *et al.* 2009, Verkley *et al.* 2010).

Otro hongo celomiceto con un número importante de aislados correspondió a *Neoscytalidium dimidiatum*, aunque se lo trate en el laboratorio clínico como un hifomiceto debido a su rápido crecimiento en medios artificiales y la producción de artroconidios. Los casos clínicos reportados para este hongo son muy variados, causando micosis oportunistas mayoritariamente en tejidos superficiales, o incluso siendo responsables de otras micosis más profundas como quistes, llegando a estar presente en sangre o en líquido cefalorraquídeo entre otros (Elewski *et al.* 1996, Madrid *et al.* 2009, Machouart *et al.* 2013, Bakhshizadeh *et al.* 2014, da Silva *et al.* 2016, James *et al.* 2017).

Otro de los géneros más frecuentemente aislado y al mismo tiempo prevalente en el presente estudio correspondió a *Paraconiothyrium*. Este género fue introducido en un principio como relacionado con *Coniothyrium*, sin embargo, desde el punto de vista de su filogenia están muy distantes uno del otro (Verkley *et al.* 2014). En nuestro trabajo hemos obtenido 28 aislados a partir de muestras clínicas correspondientes a dicho taxón, con especial prevalencia de *P. cyclothyrioides* (13 aislados). Este resultado es destacable, ya que actualmente los casos clínicos asociados a este género son muy escasos (Gordon *et al.* 2012, Colombier *et al.* 2015, Guégan *et al.* 2016). Sin embargo, este bajo número de casos reportados puede deberse a una incorrecta identificación debido a la semejanza morfológica con *Microsphaeropsis arundinis*, el cual también ha sido reportado como agente responsable de micosis oportunistas (Sutton DA 1999, Stchigel & Sutton 2013). Actualmente y mediante estudios de filogenia molecular, el género *Microsphaeropsis* ha sido reubicado y propuesto dentro de su propia familia, *Microsphaeropsidaceae*, muy cercana a *Didymellaceae* (Chen *et al.* 2015). En base a lo expuesto, podríamos considerar *Paraconiothyrium* spp. como un patógeno emergente causante de micosis superficiales.

El género *Colletotrichum* fue otro de los celomicetos con un número importante de aislados. En la actualidad, las especies reportadas en clínica son seis, *Colletotrichum coccodes, C. crassipes, C. dematium, C. gloeosporioides, C. graminicola y C. truncatum*, las que principalmente producen micosis oculares (p. ej. endoftalmitis, queratitis) y raramente micosis profundas (p. ej. quistes) (Guarro *et al.* 1998, Cano *et al.* 2004, Yegneswaran *et al.* 2010, Shivaprakash *et al.* 2011, Figtree *et al.* 2013, Cho *et al.* 2015). Por otra parte, en base a los estudios de filogenia molecular se está comprobando que la taxonomía de este género es muy compleja y que probablemente las especies actuales sean en realidad complejos de especies (Cannon *et al.* 2012, Damm *et al.* 2012, Weir *et al.* 2012, Liu *et al.* 2014), lo que implicaría que todos los aislados clínicos deberán ser reevaluados en vistas a su correcta identificación, ya que en la mayoría de los casos solo se han tomado en consideración caracteres morfológicos y como máximo uno o dos marcadores filogenéticos. Actualmente, se ha comprobado que para realizar una correcta identificación a nivel de especie se necesita secuenciar al menos seis marcadores filogenéticos. Por lo tanto, será necesario el realizar un gran esfuerzo para determinar el papel de las diferentes especies del género en clínica.

Dentro de las manifestaciones clínicas más importantes causadas por los hongos celomicetos está el eumicetoma, enfermedad más frecuente en zonas tropicales o subtropicales y que se adquiere principalmente por abrasiones o heridas causadas por espinas de plantas, las que están contaminadas con las esporas de los agentes etiológicos. La infección se desarrolla de forma local, crónica y progresiva, afectando principalmente al tejido subcutáneo, produciendo una tumefacción desfigurante de la cual drena pus y gránulos que pueden ser de color claro u oscuros, dependiendo del agente causante de la infección. Además, ésta se presenta en su mayoría en las extremidades del huesped, principalmente en los pies o en las manos, pero puede ocurrir en cualquier zona anatómica (van de Sande 2013, van de Sande et al. 2017). Esta patología es producida por un diverso grupo de agentes que van desde bacterias como Nocardia o Streptomyces (actinomicetoma) así como por hongos filamentosos como Madurella o Trematosphaeria (eumicetoma) (van de Sande 2013). Sin embargo, en los últimos años se ha incrementado el número de reportes de eumicetoma de grano negro debido a Medicopsis romeroi y Nigrograna mackinnonii (antiguamente incluidos dentro del género Pyrenochaeta), así como a Trematosphaeria grisea (Ahmed et al. 2014b). Para el tratamiento de las infecciones debidas a estas últimas especies fúngicas, se recomienda una combinación de itraconazol o ketoconazol junto con la remisión quirúrgica del tejido infectado (Welsh O et al. 2014). Hasta la fecha, son escasos los trabajos científicos que evalúen la sensibilidad frente a los antifúngicos contra los agentes etiológicos de eumicetoma, y el tratamiento con dichos azoles está tan solo indicado frente a la infección causada por Madurela mycetomatis. Sin embargo, la especie *M. romeroi* parece demostrar
un patrón de susceptibilidad diferente, presentando elevados rangos de CMI contra el grupo de los azoles (Ahmed *et al.* 2015a). En esta tesis, 25 aislados fueron identificados como pertenecientes a los géneros antes mencionados, siendo *M. romeroi* el más prevalente (16/25) seguido por *Trematosphaeria* spp. (7/25), y en menor medida *Nigrograna* spp. (2/25), todas provenientes de muestras de origen clínico procedentes de los tres países estudiados. Desafortunadamente no se obtuvieron datos clínicos procedentes de infecciones de tejidos superficiales o en menor medida de tejidos subcutáneos. Por otra parte, solo un reducido número de aislados fue capaz de esporular, por lo que solo seis aislados de *M. romeroi* se sometieron a ensayos de sensibilidad antifúngica presentando una gran variabilidad en cuanto a la CMI, con algunos aislados cuya CMIs eran elevadas para la mayoría de los antifúngicos probados (Garcia-Hermoso *et al.* 2018{sometido}).

El tratamiento contra las infecciones causadas por hongos celomicetos sigue representando un gran desafío, principalmente porque no existen puntos de corte clínicos, y porque muchas veces el hongo no es capaz de esporular, dificultando los ensayos in vitro. Existen pocos estudios que evalúen la sensibilidad de los hongos celomicetos más prevalentes en micosis humanas frente a los diferentes antifúngicos. Uno de estos estudios es una guía elaborada por Chowdhary y co-autores (2014), donde se resume todos los estudios clínicos realizados hasta el momento sobre los géneros Neoscytalidium, Phoma y Pyrenochaeta; en el mismo, y dependiendo del género, se proporciona información con respecto a qué antifúngicos y procedimientos clínicos se consideran más adecuados para tratar sus infecciones. En el caso de *Neoscytalidium*, se menciona que la anfotericina B y la terbinafina son más activas in vitro que los azoles, y a pesar de que no se ha determinado un tratamiento para las infecciones diseminadas, se menciona que tanto la anfotericina B como el voriconazol y posaconazol son los compuestos más activos. En el caso de Phoma, la intervención quirúrgica sin administración de antifúngicos puede llegar a ser suficiente, pero para casos más complicados se recomienda además el uso de la anfotericina B junto con azoles como voriconazol o itraconazol, dependiendo del tipo de la lesión. En el caso de Pyrenochaeta no existe un tratamiento protocolizado consensuado (Chowdhary et al. 2014).

En los últimos años autores como Ahmed y co-autores (2015a) han realizado un esfuerzo para determinar la sensibilidad frente a los antifúngicos de los agentes etiológicos de eumicetoma (*Medicopsis romeroi*, *Nigrograna mackinnonii* y *Trematosphaeria grisea*), ello ha facilitado el abordar el tratamiento de este tipo de infecciones (Ahmed *et al.* 2015a). Recientemente, Guegán y co-autores (2016) han proporcionado más información sobre la sensibilidad *in vitro* y las opciones terapéuticas frente a las infecciones ocasionadas por

algunos celomicetos como por ejemplo *Didymella*, *Medicopsis* y *Paraconiothyrium*, indicando como primera línea la resección quirúrgica seguido en función de los casos de un tratamiento antifúngico, inicialmente con voriconazol o posaconazol y en el caso de que la infección sea refractaria con anfotericina B. Sin embargo, todavía quedan un gran número de hongos celomicetos por evaluar, en este trabajo doctoral se ha realizado el esfuerzo de probar la sensibilidad *in vitro* frente a diversos antifúngicos de un gran número de aislados. De los 85 aislados ensayados provenientes de los Estados Unidos de Norteamérica, estos estaban distribuidos en nueve géneros, y los 46 aislados provenientes de Europa (España y Francia) pertenecían a trece géneros. Además, se evaluó la sensibilidad de los aislados de *Neocucurbitaria keratinophila* que fueron capaces de fructifivar *in vitro*. A partir de estos estudios se puede concluir que la mayoría de los celomicetos fueron sensibles a los antifúngicos ensayados, con excepción de los géneros *Colletotrichum* y *Neoascochyta*, los que presentaron CMIs relativamente elevadas frente al voriconazol y el itraconazol; también se ha observado que los aislados de *Medicopsis* no eran sensibles al itraconazol y a la caspofungina, corroborando los resultados obtenidos por Ahmed y co-autores (2015a).

Finalmente, se considera importante el reseñar que a pesar de las apreciables aportaciones realizadas por la presente tesis doctoral sobre la taxonomía, biodiversidad, clínica y de sensibilidad antifúngica de los hongos celomicetos en clínica, creemos que todavía queda un largo camino por recorrer. Los hongos celomicetos continúan siendo un grupo de hongos filogenéticamente diverso y complejo, el cual necesita de estudios taxonómicos profundos para poner en evidencia las relaciones evolutivas existentes entre sus miembros. También, por otra parte, poner en evidencia todas las especies que pueden actuar como patógenos oportunistas del hombre, identificándolos apropiadamente y evaluando su patrón de sensibilidad frente a los diferentes antifúngicos.

6. CONCLUSIONES

En el presente trabajo se ha realizado un estudio polifásico (morfológico, fisiológico y molecular) de un gran número de aislados de hongos celomicetos de origen clínico, así como de un cierto número de aislados de origen ambiental provenientes de colecciones internacionales de cultivos microbianos, y de muestras de suelo y heces de animales herbívoros (aisladas durante el presente estudio), con la finalidad de clarificar su taxonomía y posición filogenética. Los resultados obtenidos, los que también incluyen el perfil de sensibilidad antifúngica de aquellas especies de hongos celomicetos más frecuentemente recuperadas de especímenes clínicos, se exponen a continuación:

Del estudio de los aislados clínicos provenientes de los Estados Unidos de Norteamérica, así como de los aislados ambientales:

- Los 230 aislados procedentes del Fungus Testing Laboratory, University of Texas Health Science Center (UTHSC, San Antonio, EE.UU.) se distribuyeron en once órdenes diferentes: Botryosphaeriales, Capnodiales, Diaporthales, Glomerellales, Helotiales, Hypocreales, Hysteriales, Magnaporthales, Pleosporales, Valsariales y Xylariales, siendo el orden Pleosporales el que agrupó el mayor número de hongos celomicetos (n = 152, 66.1 %).
- 2. A partir del estudio polifásico de 70 aislados del UTHSC (identificados previamente como *Phoma* spp. o *Pyrenochaeta* spp.), 71 cepas de referencia o tipo del *Westerdijk Fungal Biodiversity Institute* (CBS, Utrecht, Países Bajos), un aislado del *International Collection of Microorganisms from Plants* (ICMP, Nueva Zelanda) y un aislado de la colección de microorganismos Facultad de Medicina de Reus (FMR, España), se propusieron cuatro nuevas familias, 13 nuevos géneros y 29 nuevas especies, con un total de 20 nuevas combinaciones y cuatro tipificaciones, las cuales se mencionan a continuación:

Nuevas familias: *Neopyrenochaetaceae* Valenzuela-Lopez, Crous, Cano, Guarro & Stchigel, *Parapyrenochaetaceae* Valenzuela-Lopez, Crous, Stchigel, Guarro & Cano, *Pseudopyrenochaetaceae* Valenzuela-Lopez, Crous, Stchigel, Guarro & Cano, *Pyrenochaetopsidaceae* Valenzuela-Lopez, Crous, Cano, Guarro & Stchigel; Nuevos géneros: *Allocucurbitaria* Valenzuela-Lopez, Stchigel, Guarro & Cano, *Cumuliphoma* Valenzuela-Lopez, Stchigel, Crous, Guarro & Cano, Crous, Guarro & Stchigel, *Juxtiphoma* Valenzuela-Lopez, Cano, Crous, Guarro & Stchigel, Juxtiphoma Valenzuela-Lopez, Cano, Crous, Guarro & Stchigel, Juxtiphoma Valenzuela-Lopez, Cano, Crous, Guarro & Cano, Crous, Guarro & Stchigel, Juxtiphoma Valenzuela-Lopez, Cano, Crous, Guarro & Cano, Crous, Guarro & Cano, Crous, Guarro & Cano, Crous, Guarro & Stchigel, Juxtiphoma Valenzuela-Lopez, Cano, Crous, Guarro & Stchigel, Juxtiphoma Valenzuela-Lopez, Cano, Crous, Guarro & Cano, Crous, Stchigel, Guarro & Cano, Cano, Crous, Cano, Cano,

Neopyrenochaetopsis Valenzuela-Lopez, Cano, Guarro & Stchigel, Paracucurbitaria Valenzuela-Lopez, Stchigel, Guarro & Cano, Parapyrenochaeta Valenzuela-Lopez, Crous, Stchigel, Guarro & Cano, Pseudopyrenochaeta Valenzuela-Lopez, Crous, Stchigel, Guarro & Cano, Remotididymella Valenzuela-Lopez, Crous, Cano, Guarro & Similiphoma Valenzuela-Lopez, Crous, Cano, Guarro & Stchigel, Stchigel, Valenzuela-Lopez, Vacuiphoma Cano. Crous, Guarro & Stchigel. Xenopyrenochaetopsis Valenzuela-Lopez, Crous, Stchigel, Guarro & Cano; Nuevas especies: Allocucurbitaria botulispora Valenzuela-Lopez, Stchigel, Guarro & Cano, Allophoma cylindrispora Valenzuela-Lopez, Cano, Guarro & Stchigel, Cumuliphoma indica Valenzuela-Lopez, Cano, Crous, Guarro & Stchigel, Cu. pneumoniae Valenzuela-Lopez, Stchigel, Crous, Guarro & Cano, Didymella brunneospora Valenzuela-Lopez, Cano, Crous, Guarro & Stchigel, D. keratinophila Valenzuela-Lopez, Cano, Guarro & Stchigel, Epicoccum catenisporum Valenzuela-Lopez, Stchigel, Crous, Guarro & Cano, Ep. keratinophilum Valenzuela-Lopez, Cano, Guarro & Stchigel, Ep. ovisporum Valenzuela-Lopez, Stchigel, Crous, Guarro & Cano, Ep. pneumoniae Valenzuela-Lopez, Stchigel, Guarro & Cano, Neoascochyta cylindrispora Valenzuela-Lopez, Cano, Guarro & Stchigel, Neoa. tardicrescens Valenzuela-Lopez, Cano, Crous, Guarro & Stchigel, Neocucurbitaria aquatica Valenzuela-Lopez, Crous, Stchigel, Guarro & Cano, Neocu. irregularis Valenzuela-Lopez, Cano, Guarro & Stchigel, Neopyrenochaeta fragariae Valenzuela-Lopez, Crous, Stchigel, Guarro & Cano, Neopyrenochaetopsis hominis Valenzuela-Lopez, Cano, Guarro & Stchigel, Nothophoma macrospora Valenzuela-Lopez, Stchigel, Cano & Deanna A. Sutton, No. variabilis Valenzuela-Lopez, Cano, Guarro & Stchigel, Paracucurbitaria italica Valenzuela-Lopez, Crous, Stchigel, Guarro & Cano, Pseudopyrenochaeta terrestris Valenzuela-Lopez, Crous, Cano, Guarro & Stchigel, Pyrenochaetopsis americana Valenzuela-Lopez, Cano, Guarro & Stchigel, Py. botulispora Valenzuela-Lopez, Cano, Guarro & Stchigel, Py. confluens Valenzuela-Lopez, Cano, Guarro & Stchigel, Py. globosa Valenzuela-Lopez, Cano, Guarro & Stchigel, Py. paucisetosa Valenzuela-Lopez, Cano, Guarro & Stchigel, Py. setosissima Valenzuela-Lopez, Cano, Crous, Guarro & Stchigel, Py. uberiformis Valenzuela-Lopez, Cano, Guarro & Stchigel, Remotididymella anthropophila Valenzuela-Lopez, Cano, Guarro & Stchigel, Vacuiphoma oculihominis Valenzuela-Lopez, Stchigel, Guarro & Cano; Nuevas combinaciones: Cumuliphoma omnivirens (Aveskamp et al.) Valenzuela-Lopez, Stchigel, Crous, Guarro & Cano, Ectophoma multirostrata (P.N. Mathur et al.) Valenzuela-Lopez, Cano, Crous, Guarro & Stchigel, Ec. pomi (Horne) Valenzuela-Lopez, Cano, Crous, Guarro & Stchigel, Epicoccum proteae (Crous) Valenzuela-Lopez, Stchigel, Crous, Guarro & Cano, Juxtiphoma eupyrena (Sacc.) Valenzuela-Lopez, Cano, Crous, Guarro & Stchigel, Neocucurbitaria cava (Schulzer) ValenzuelaLopez, Crous, Stchigel, Guarro & Cano, Neocu. hakeae (Crous) Valenzuela-Lopez, Crous, Stchigel, Guarro & Cano, Neocu. keratinophila (Verkley et al.) Valenzuela-Lopez, Stchigel, Guarro & Cano, Neopyrenochaeta acicola (Moug. & Lév.) Valenzuela-Lopez, Crous, Stchigel, Guarro & Cano, Neopy. inflorescentiae (Crous et al.) Valenzuela-Lopez, Crous, Stchigel, Guarro & Cano, Neopy. telephoni (Rohit Sharma et al.) Valenzuela-Lopez, Crous, Stchigel, Guarro & Cano, Paracucurbitaria corni (Bat. & A.F. Vital) Valenzuela-Lopez, Stchigel, Guarro & Cano, Parapyrenochaeta acaciae (Crous et al.) Valenzuela-Lopez, Crous, Stchigel, Guarro & Cano, Parapy. protearum (Crous) Valenzuela-Lopez, Crous, Stchigel, Guarro & Cano, Pseudopyrenochaeta lycopersici (R.W. Schneid. & Gerlach) Valenzuela-Lopez, Crous, Stchigel, Guarro & Cano, Remotididymella destructiva (Plowr.) Valenzuela-Lopez, Cano, Crous, Guarro & Stchigel, Similiphoma crystallifera (Gruyter et al.) Valenzuela-Lopez, Crous, Cano, Guarro & Stchigel, Vacuiphoma bulgarica (Aveskamp et al.) Valenzuela-Lopez, Cano, Crous, Guarro & Stchigel, Xenodidymella saxea (Aveskamp et al.) Valenzuela-Lopez, Crous, Cano, Guarro & Stchigel, Xenopyrenochaetopsis pratorum (P.R. Johnst. & Boerema) Valenzuela-Lopez, Crous, Stchigel, Guarro & Cano.

3. El resto de los aislados del UTHSC (n = 82), CBS (n = 24) y FMR (n = 2) se distribuyeron en 15 familias del orden *Pleosporales*, se proponen como potenciales nuevos taxones y que corresponden a un total de una nueva familia, 12 nuevos géneros y 30 nuevas especies, más cinco combinaciones nuevas, las cuales se mencionan a continuación:

Nueva familia: Medicopsidaceae; Nuevos géneros: Deannamyces, Dictyophoma, Didymosphaeomyces, Neodictyophoma, Neothyridaria, Parachaetomella, Paranigrograna, Pararoussoella, Setosamyces, Sphaeriamyces, Xenoleptosphaeria, Xenoroussoella; especies: Anteaglonium oculorum, Nuevas Deannamyces macrospora, Dictyophoma flavescens, Didymosphaeomyces unguis, Edenia oculi, Keissleriella profunda, Montagnula cylindrispora, Neodictyophoma brunneospora, Neosetophoma americana, Neothyridaria solani, Nigrograna cutanea, Parachaetomella ligniputridi, Paranigrograna pneumonia, Paraphaeosphaeria ellipsospora, Paraphaeos. suttonii, Pararoussoella pulmonaris, Parathyridaria hominis, Parathy. naris, Parathy. ovina, Phaeodothis diversispora, Roussoella oculihominis, Setosamyces obispora, Sphaeriamyces fuckelii, Trematophoma pneumonia, Trematosphaeria hominis, Trematosphae. setosa, Xenoleptosphaeria confluens, Xenoroussoella coprophila, Xenoro. papuae, Xenoro.profunda; Nuevas combinaciones: Neothyridaria solani, Setosamyces glycines, Se. telephii, Thyridaria mukdahanensis, Xenoroussoella mexicana.

Del estudio de los aislados clínicos provenientes de dos laboratorios de referencia europeos (*Instituto Carlos III*, Madrid, España, y el *Institut Pasteur*, París, Francia):

- Los 97 aislados clínicos provenientes de España (n = 46) y Francia (n = 51) se distribuyeron en cuatro órdenes diferentes: *Botryosphaeriales*, *Diaporthales*, *Glomerellales* y *Pleosporales*, siendo este último el más prevalente (n = 78; 81 %).
- 2. Ocho aislados pertenecieron a la especie *Neocucurbitaria keratinophila*, motivo por el cual se sospecha que es un patógeno emergente de distribución geográfica limitada (a España), motivo por el cual fueron caracterizadas tanto morfológica como molecularmente (mediante las secuencias nucleotídicas de los marcadores LSU, ITS, *tub*2 y *rpb*2), además de determinar su patrón de sensibilidad antifúngica *in vitro*.

Del estudio de los aislados ambientales provenientes de España y otro aislado ambiental procedente de Nueva Zelanda se concluye lo siguiente:

 De un total de 20 aislados ambientales colectados en España y uno de Nueva Zelanda, se obtuvieron un género nuevo y cuatro nuevas especies para la ciencia: *Alfaria dactylis, Coniella heterospora, Pseudoascochyta novae-zelandiae* y *Pseudoascochyta pratensis.*

Del estudio de sensibilidad *in vitro* de diferentes géneros de hongos celomicetos frente a antifúngicos:

- 1. La mayoría de los 139 aislados presentaron CMIs bajas frente a los antifúngicos ensayados.
- 2. Los aislados de *Colletotrichum* spp. presentaron CMIs elevadas frente al itraconazol y el voriconazol, y en el caso de un aislado frente a la caspofungina y la micafungina.
- 3. Los aislados de *Didymella* spp. presentaron CMIs elevadas frente a la anfotericina B, itraconazol, voriconazol, anidulafungina y caspofungina.

- 4. Los aislados de *Neoascochyta desmazieri* presentaron CMIs elevadas solo frente al voriconazol.
- 5. Los aislados de *Neoscytalidium dimidiatum* presentaron CMIs elevadas frente al voriconazol, itraconazol, caspofungina y micafungina.
- 6. Los aislados de *Medicopsis romeroi* presentaron CMIs elevadas frente a la anfotericina B, itraconazol, caspofungina y micafungina.

7. BIBLIOGRAFÍA

- Abd-elsalam KA, Tibpromma S, Wanasinghe DN, Camporesi E, Hyde KD. *Equiseticola* gen. nov. (*Phaeosphaeriaceae*), from *Equisetum* sp. in Italy. *Phytotaxa*. 2016;284:169–180.
- Ahmed SA, Stevens DA, Van de Sande WWJ, Meis JF, de Hoog GS. *Roussoella percutanea*, a novel opportunistic pathogen causing subcutaneous mycoses. *Med Mycol*. 2014a;52:689–698.
- Ahmed SA, Van De Sande WW, Stevens DA, Fahal A, Van Diepeningen AD, Menken SB, de Hoog GS. Revision of agents of black-grain eumycetoma in the order *Pleosporales*. *Persoonia*. 2014b;33:141–154.
- Ahmed SA, de Hoog GS, Stevens DA, Fahal AH, van de Sande WW. In vitro antifungal susceptibility of coelomycete agents of black grain eumycetoma to eight antifungals. *Med Mycol.* 2015a;53:295–301.
- Ahmed SA, Desbois N, Quist D, *et al.* Phaeohyphomycosis caused by a novel Species, *Pseudochaetosphaeronema martinelli. J Clin Microbiol.* 2015b;53:2927–2934.
- Ahmed SA, Hofmüller W, Seibold M, *et al. Tintelnotia*, a new genus in *Phaeosphaeriaceae* harbouring agents of cornea and nail infections in humans. *Mycoses*. 2017;60:244–253.
- Ainsworth GC. A general purpose classification of fungi. *Bibliography of Systematic Mycology* 1966;1:1–4.
- Allen D, Wilson D, Drew R, Perfect J. Azole antifungals: 35 years of invasive fungal infection management. *Expert Rev Anti Infect Ther*. 2015;13:787–798.
- Al-Nakeeb Z, Petraitis V, Goodwin J, Petraitiene R, Walsh TJ, Hope WW. Pharmacodynamics of amphotericin B deoxycholate, amphotericin B lipid complex, and liposomal amphotericin B against *Aspergillus fumigatus*. *Antimicrob Agents Chemother*. 2015;59:2735–2345.
- Al-Saadoon AH, Al-Dossary MN. Fungi from submerged plant debris in aquatic habitats in Iraq. *Int J Biodivers Conserv*. 2014;6:468–487.
- Alves A, Crous PW, Correia A and Phillips AJL. Morphological and molecular data reveal cryptic speciation in *Lasiodiplodia theobromae*. *Fungal Divers*. 2008;28:1–13.
- Ameen M. Epidemiology of superficial fungal infections. *Clin Dermatol* 2010;28:197–201.
- Ananda-Rajah MR, Grigg A, Downey MT, *et al.* Comparative clinical effectiveness of prophylactic voriconazole/posaconazole to fluconazole/itraconazole in patients with acute myeloid leukemia/myelodysplastic syndrome undergoing cytotoxic chemotherapy over a 12-year period. *Haematologica* 2012;97:459–463.

Arenas R. Micología médica ilustrada. 4ª ed. España, Interamericana McGraw-Hill; 2011.

Ariyawansa, HA, Phukhamsakda, C, Thambugala, KM, et al. Fungal Divers. 2015;74:19–51.

- Arora P, Dilbaghi N, Chaudhury A. Opportunistic invasive fungal pathogen *Macrophomina phaseolina* prognosis from immunocompromised humans to potential mitogenic RBL with an exceptional and novel antitumor and cytotoxic effect. *Eur J Clin Microbiol Infect Dis*. 2012;31:101–7.
- Aveskamp MM, Gruyter J de, Crous PW. Biology and recent developments in the systematics of *Phoma*, a complex genus of major quarantine significance. *Fungal Divers*. 2008;31:1–18.
- Aveskamp MM, de Gruyter J, Woudenberg JH, Verkley GJ, Crous PW. Highlights of the *Didymellaceae*: a polyphasic approach to characterize *Phoma* and related pleosporalean genera. *Stud Mycol.* 2010;65:1–60.
- Baker JG, Salkin IF, Forgacs P, Haines JH, Kemna ME. First report of subcutaneous phaeohyphomycosis of the foot caused by *Phoma minutella*. *J Clin Microbiol*. 1987;25:2395–2397.
- Bakerspigel A, Lowe D, Rostas A. The isolation of *Phoma eupyrena* from a human lesion. *Arch Dermatol.* 1981;117:362–363.
- Bakerspigel A. The isolation of *Phoma hibernica* from lesions on a leg. *Sabouraudia*. 1970;7:261–264.
- Bakhshizadeh M, Hashemian HR, Najafzadeh MJ, Dolatabadi S, Zarrinfar H. First report of rhinosinusitis caused by *Neoscytalidium dimidiatum* in Iran. *J Med Microbiol*. 2014;63:1017–1019.
- Balis E, Velegraki A, Fragou A, *et al.* Lung mass caused by *Phoma exigua*. *Scand J Infect Dis*. 2006;38:552–555.
- Barr ME. Prodomus to class Loculoascomycetes. Amherst, Massachusetts; 1987.
- Barua P, Barua S, Borkakoty B, Mahanta J. Onychomycosis by *Scytalidium dimidiatum* in green tea leaf pluckers: report of two cases. *Mycopathologia*. 2007;164:193–195.
- Benne CA, Neeleman C, Bruin M, *et al.* Disseminating infection with *Scytalidium dimidiatum* in a granulocytopenic child. *Eur J Clin Microbiol Infect Dis.* 1993;12:118–121.

- Boerema GH, de Gruyter J, Noordeloos ME, Hamers M. *Phoma* identification manual. Differentiation of specific and infraspecific taxa in culture. CABI Publishing, Cambridge, United Kingdom; 2004.
- Borelli D. Pyrenochaeta romeroi nova especie. Dermay Venez. 1959;1:325-326.
- Borelli D, Zamora R, Senabre G. *Chaetosphaeronema larense nova* species agente demicetoma. *Gaceta Med Caracas*. 1976;84:307–318.
- Borelli D. *Pyrenochaeta mackinnonii nova* species agente de micetoma. *Castellania*. 1976;4:227–234.
- Brandt ME, Warnock DW. Taxonomy and classification of fungi. Manual of clinical microbiology, 11^a ed, pp. 1935–1943. ASM Press, Washington, USA; 2015.
- Brock D. Infectious Fungi. Chelsea House Publishers, New York, USA; 2006.
- Bubák. Oesterreichische botanische Zeitschrift. 1905;55: 78.
- Cannon PF, Damm U, Johnston PR, Weir BS. *Colletotrichum* current status and future directions. *Stud Mycol.* 2004;73:181–213.
- Cano J, Guarro J, Gené J. Molecular and morphological identification of *Colletotrichum* species of clinical interest. *J Clin Microbiol*. 2004;42:2450–2454.
- Cariello PF, Wickes BL, Sutton DA, *et al. Phomopsis bougainvilleicola* prepatellar bursitis in a renal transplant recipient. *J Clin Microbiol*. 2013;51:692–695.
- Carlile MJ, Watkinson SC. The Fungi. 2ª ed. Academic Press Inc, Londres, UK; 1994.
- Carrillo-Muñoz AJ, Pemán J, Gobernado M. New antifungals drugs. Present and future. *Rev Esp Quimioter*. 1999;12:181–204.
- Castlebury LA, Rossman AY, Jaklitsch WJ, *et al.* A phylogeny overview of the *Diaporthales* based on large subunit nuclear ribosomal DNA sequences. *Mycologia*. 2002;94:1017–1031.
- Castro LG, da Silva LC, Guarro J, *et al. Phaeohyphomycotic* cyst caused by *Colletotrichum crassipes. J Clin Microbiol.* 2001;39:2321–2324.
- Chadefaud M. Les végétaux non vasculaires (Cryptogamie). In: Traité de botanique systématique. Tome I (Chadefaud M, Emberger L, eds), Masson et Cie, Paris, France;1960.

- Chen Q, Jiang JR, Zhang GZ, *et al.* Resolving the *Phoma* enigma. *Stud Mycol.* 2015;82:137–217.
- Chen Q, Hou LW, Duan WJ, et al. Didymellaceae revisited. Stud Mycol. 2017;87:105–159.
- Cho JC, Sharma RS, Sutton DA, *et al.* Fungal arthritis secondary to *Colletotrichum gloeosporioides*. *JMM Case Rep* 2. 2015. doi: 10.1099/jmmcr.0.000012.
- Chowdhary A, Kathuria S, Singh PK, *et al.* Molecular characterization and in vitro antifungal susceptibility profile of *Schizophyllum commune*, an emerging basidiomycete in bronchopulmonary mycoses. *Antimicrob Agents Chemother.* 2013;57:2845–2848.
- Chowdhary A, Meis JF, Guarro J, *et al.* ESCMID and ECMM joint clinical guidelines for the diagnosis and management of systemic phaeohyphomycosis: diseases caused by black fungi. *Clin Microbiol Infect.* 2014;20:47–75.
- Clinical and Laboratory Standards Institute (CLSI). Reference method for broth dilution antifungal susceptibility testing of filamentous fungi; approved standard. 2^a ed. Documento M38-A2. Clinical and Laboratory Standards Institute, Wayne, USA; 2008.
- Colombier MA, Alanio A, Denis B, *et al.* Dual invasive infection with *Phaeoacremonium parasiticum* and *Paraconiothyrium cyclothyrioides* in a renal transplant recipient: Case report and comprehensive review of the literature of *Phaeoacremonium phaeohyphomycosis. J Clin Microbiol.* 2015;53:2084–2094.
- Cortinas MN, Burgess T, Dell B, *et al.* First record of *Colletogloeopsis zuluense* comb. nov., causing a stem canker of *Eucalyptus* in China. *Mycol Res.* 2006;110:229–236.
- Crous PW, Gams W, Stalpers JA, Robert V, Stegehuis G. MycoBank: an online initiative to launch mycology into the 21st century. *Stud Mycol.* 2004;50:19–22.
- Crous PW, Slippers B, Wingfield MJ. Phylogenetic lineages in the *Botryosphaeriaceae*. *Stud Mycol*. 2006;55:235–254.
- Crous PW, Verkley GJM, Groenewald JZ, *et al.* Fungal Biodiversity. CBS Laboratory Manual Series. Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands; 2009.
- Crous PW, Wingfield MJ, Burgess TI, *et al.* Fungal Planet description sheets: 558–624. *Persoonia*. 2017;38:240–384.
- Cursi IB, Silva RT, Succi IB, *et al.* Onychomycosis due to *Neoscytalidium* treated with oral terbinafine, ciclopirox nail lacquer and nail abrasion: A pilot study of 25 patients. *Mycopathologia*. 2013;175:75–82.

- Damm U, Cannon PF, Woudenberg JH, *et al.* The *Colletotrichum boninense* species complex. *Stud Mycol.* 2012;73:1–36.
- de Gruyter J, Aveskamp MM, Woudenberg JHC, *et al.* Molecular phylogeny of *Phoma* and allied anamorph genera: towards a reclassification of the *Phoma* complex. *Mycol Res.* 2009;113:508–519.
- de Gruyter J, Woudenberg JH, Aveskamp MM, *et al.* Redisposition of *Phoma*-like anamorphs in *Pleosporales. Stud Mycol.* 2013;75:1–36.
- de Hoog GS, Guarro J, Gené J, Figueras MJ. 2011. Atlas of clinical fungi, electronic version 3.1. CBS-KNAW Fungal Biodiversity Centre, Utrecht, Países Bajos; 2011.
- da Silva M, Cerniglia CE, Pothuluri JV, Canhos VP, Esposito E. Screening filamentous fungi isolated from estuarine sediments for the ability to oxidize polycyclic aromatic hydrocarbons. *World J Microbiol Biotechnol.* 2003;19:399–405.
- da Silva RT, Guimarães DA, Camargo ZP, *et al.* Cutaneous murine model of infection caused by *Neoscytalidium dimidiatum*: a preliminary study of an emerging human pathogen. *Med Mycol.* 2016;54:890–898.
- Diederich P, van den Boom PPG, Aptroot A. *Cladoniicola staurospora* gen. et sp. nov., a new lichenicolous coelomycete from Western Europe. *Belgian J Bot*. 2001;134:127–130.
- Diederich P, Lawrey JD, Sikaroodi M, Van Den Boom PPG, Ertz D. *Briancoppinsia*, a new coelomycetous genus of *Arthoniaceae* (*Arthoniales*) for the lichenicolous *Phoma cytospora*, with a key to this and similar taxa. *Fungal Divers*. 2012;52:1–12.
- Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. *Nucleic Acids Res.* 2004;32:1792–1797.
- El-Bassam S, Benhamou N, Carisse O. The role of melanin in the antagonistic interaction between the apple scab pathogen *Venturia inaequalis* and *Microsphaeropsis ochracea*. *Can J Microbiol*. 2002;48:349–358.
- Elewski BE. Onychomycosis caused by *Scytalidium dimidiatum*. *J Am Acad Dermatol*. 1996;35:336–337.
- Ferrer C, Pérez-Santonja JJ, Rodríguez AE, *et al.* New *Pyrenochaeta* species causing keratitis. *J Clin Microbiol.* 2009;47:1596–1598.
- Ferrer R, Gómez de la Cámara A, Jarque I, Quindós G, Tejerina T. Estudio comparativo multidisciplinar de las equinocandinas, anidulafungina, caspofungina y micafungina. *Actualidad en Farmacología y Terapéutica*. 2013;11:146–159.

- Figtree M, Weeks K, Chan L, *et al. Colletotrichum gloeosporioides sensu lato* causing deep soft tissue mycosis following a penetrating injury. *Med Mycol Case Rep.* 2013;2:40–43.
- Fisher NL, Burgess LW, Toussoun TA, Nelson PE. Carnation leaves as a substrate and for preserving cultures of *Fusarium* species. *Phytopathology*. 1982;72:151–153.
- Fukami A, Nakamura T, Kim YP, *et al.* A new anti-influenza virus antibiotic, 10-norparvulenone from *Microsphaeropsis* sp FO-5050. *J Antibiot*. 2000;53:1215–1218.
- Gajjar DU, Pal AK, Parmar TJ, *et al.* Fungal scleral keratitis caused by *Phomopsis phoenicicola. J Clin Microbiol.* 2011;49:2365–2368.
- Gavalda J,Ruiz I. Guidelines for the treatment of infection due to Aspergillus spp. Enferm Infecc Microbiol Clin. 2003;21:571–578
- Girard C, Dereure O, Rispail P, *et al.* Subcutaneous phaeohyphomycosis due to *Pyrenochaeta romeroi* in a patient with leprosy. *Acta Derm Venereol.* 2004;84:154–155.
- Godoy P, Nunes FG, Tomimori-Yamashita J, *et al.* Onychomycosis in São Paulo, Brazil. *Mycopathologia*. 2009;168:111–116.
- Gomes RR, Glienke C, Videira SI, *et al. Diaporthe*: a genus of endophytic, saprobic and plant pathogenic fungi. *Persoonia*. 2013;31:1–41.
- Gordon RA, Sutton DA, Thompson EH, *et al.* Cutaneous phaeohyphomycosis caused by *Paraconiothyrium cyclothyrioides. J Clin Microbiol.* 2012;50:3795–3798.
- Griffon E, Maublanc A. Sur une maladie du cacaoyer. *Bulletin de la Société Mycologique de France*. 1909;25:51–58.
- Grove WB. Mycological notes IV. J Bot Lond. 1919;57:206–210.
- Gu HJ, Kim YJ, Lee HJ, *et al.* Invasive fungal sinusitis by *Lasiodiplodia theobromae* in an patient with aplastic anemia: An extremely rare case report and literature review. *Mycopathologia.* 2016;181:901–908.
- Guarner J, Brandt ME. Histopathologic diagnosis of fungal infections in the 21st century. *Clin Microbiol Rev.* 2011;24:247–280.
- Guarro J, Svidzinski TE, Zaror L, *et al.* Subcutaneous hyalohyphomycosis caused by *Colletotrichum gloeosporioides. J Clin Microbiol.* 1998;36:3060–3065.
- Guégan S, Garcia-Hermoso D, Sitbon K, *et al.* Ten-Year experience of cutaneous and/or subcutaneous infections due to Coelomycetes in France. *Open Forum Infect Dis.* 2016 doi:10.1093/ofid/ofw106.

- Haeckel E. Generelle Morphologie der Organismen: allgemeine Grundzüge der organischen Formen-Wissenschaft, mechanisch begründet durch die von C. Darwin reformirte Decendenz-Theorie. Berlin; 1866.
- Harris SD. Branching of fungal hyphae: regulation, mechanisms and comparison with other branching systems. *Mycologia*. 2008;100:823–832.
- Hay RJ. Scytalidium infections. Curr Op Infect Dis. 2002;15:99–100.
- Hibbett DS, Binder M, Bischoff JF, *et al.* A higher-level phylogenetic classification of the Fungi. *Mycol Res.* 2007;111:509–547.
- Hirsh AH, Schiff TA. Subcutaneous phaeohyphomycosis caused by an unusual pathogen: *Phoma* species. *J Am Acad Dermatol.* 1996;34:679–680.
- Hyde KD, Jones EBG, Liu JK, *et al.* Families of *Dothideomycetes*. *Fungal Divers*. 2013;63:1–313.
- Hyde KD, Nilsson RH, Alias SA, *et al.* One stop shop: backbones trees for important pytopathogenic genera: I. *Fungal Divers*. 2014;67:21–125.
- Ikram A, HussainW, Satti ML,Wiqar MA. Invasive infection in a young immunocompetent soldier caused by *Scytalidium dimidiatum*. *J Coll Physicians Surg Pak*. 2009;19:64–66.
- Iriart X, Binois R, Fior A, *et al.* Eumycetoma caused by *Diaporthe phaseolorum (Phomopsis phaseoli)*: a case report and a mini-review of *Diaporthe/Phomopsis* spp invasive infections in humans. *Clin Microbiol Infect.* 2011;17:1492–1494.
- Jaklitsch WM, Voglmayr H. Hidden diversity in *Thyridaria* and a new circumscription of the *Thyridariaceae*. *Stud Mycol*. 2016;85:35–64.
- Jaklitsch WM, Checa J, Blanco MN, *et al.* A preliminary account of the *Cucurbitariaceae*. *Stud Mycol.* 2018;90:71–118.
- James JE, Santhanam J, Lee MC, *et al.* In vitro antifungal susceptibility of *Neoscytalidium dimidiatum* clinical isolates from Malaysia. *Mycopathologia*. 2017;182:305–313.
- Kendrick WB. The Fifth Kingdom, 3^a ed. Focus Publishing, Newbury;2000.
- Kiehn TE, Polsky B, Punithalingam E, *et al.* Liver infection caused by *Coniothyrium fuckelii* in a patient with acute myelogenous leukemia. *J Clin Microbiol.* 1987;25:2410–2412.
- Kindo AJ, Pramod C, Anita S, Mohanty S. Maxillary sinusitis caused by *Lasiodiplodia theobromae*. *Indian J Med Microbiol*. 2010;28:167–169.

- Kirk PM, Cannon PF, Stalpers JA, Minter DW. Ainsworth & Bisby's dictionary of the fungi, 10th ed. CAB International, Wallingford, United Kingdom; 2008.
- Kornerup A, Wanscher JH. Methuen Handbook of Colour, 3^a ed. Methuen, London, England; 1978.
- Krockenberger MB. Localised *Microsphaeropsis arundinis* infection of the subcutis of a cat. *J Feline Med Surg.* 2010;12:3231–3236.
- Laniado-Laborín R, Cabrales-Vargas MN. Amphotericin B: side effects and toxicity. *Rev Iberoam Micol.* 2009;26:223–227.
- Lawrey JD, Diederich P, Nelsen MP, *et al.* The first molecular phylogeny of the lichenicolous genus *Lichenoconium* (*Ascomycota, Dothideomycetes*), including a new species from Europe. *Fungal Biol.* 2011;115:176–187.
- Lewis RE. Current concepts in antifungal pharmacology. Mayo Clin Proc. 2011;86:805-817.
- Liao WQ, Shao JZ, Li SQ, *et al. Colletotrichum dematium* caused keratitis. *Chin Med J.* 1983;96:391–394.
- Linneo C. Species plantarum: exhibentes plantas rite cognitas, ad genera relatas, cum differentiis specificis, nominibus trivialibus, synonymis selectis, locis natalibus, secundum systema sexuale digestas. Holmiae: Impensis Laurentii Salvii, Estocolmo. Suecia; 1753.
- Liu F, Cai L, Crous PW, Damm U. The *Colletotrichum gigasporum* species complex. *Persoonia*. 2014;33:83–97.
- Liu JK, Hyde KD, Jeewon R, *et al.* Ranking higher taxa using divergence times: a case study in *Dothideomycetes*. *Fungal Divers*. 2017;84:75–99.
- Luttrell ES. The ascostromatic Ascomycetes. Mycologia. 1955;47:511-532.
- Machouart M, Menir P, Helenon R, Quist D, Desbois N. *Scytalidium* and *scytalidiosis*: what's new in 2012? *J Mycol Med*. 2013;23:40–46.
- Mackinnon JE, Ferrada-Urzúa LV, Montemayor L. *Madurella grisea* n. sp. *Mycopathologia*. 1949;4:384–393.
- Madrid H, Ruíz-Cendoya M, Cano J, *et al.* Genotyping and in vitro antifungal susceptibility of *Neoscytalidium dimidiatum* isolates from different origins. *Int J Antimicrob Agents*. 2009;34:351–354.

- Maharachchikumbura SSN, Guo LD, Chukeatirote E, Bahkali AH, Hyde KD. *Pestalotiopsis*morphology, phylogeny, biochemistry and diversity. *Fungal Divers*. 2011;50:167–187.
- Maharachchikumbura SSN, Guo LD, Chukeatirote E, McKenzie EHC, Hyde KD. A destructive new disease of *Syzygium samarangense* in Thailand caused by the new species *Pestalotiopsis samarangensis*. *Trop Plant Pathol*. 2013;38:227–235.
- Maharachchikumbura SSN, Hyde KD, Groenewald JZ, Xu J, Crous PW. *Pestalotiopsis* revisited. *Stud Mycol.* 2014;79:121–186.
- Maharachchikumbura SSN, Hyde KD, Jones EBG, *et al.* Families of Sordariomycetes. Fungal Divers. 2016;79:1–317.
- Mani RS, Chickabasaviah YT, Nagarathna S, *et al.* Cerebral phaeohyphomycosis caused by *Scytalidium dimidiatum*: a case report from India. *Med Mycol.* 2008;46:705–711.
- Mendiratta DK, Thamke D, Shukla AK, Narang P. Keratitis due to *Colletotrichum dematium*-A case report. *Indian J Med Microbiol*. 2005;23:56–58.
- Miller MA, Pfeiffer W, Schwartz T. The CIPRES science gateway: enabling high-impact science for phylogenetics researchers with limited resources. In: Proceedings of the 1st Conference of the Extreme Science and Engineering Discovery Environment: Bridging from the Extreme to the Campus and Beyond: 1–8. Association for Computing Machinery, USA; 2012.
- Nannfeldt JA. Studien über die Morphologie und Systematik der nichtlichenisierten inoperculaten *Discomyceten*. *Nova Acta Regiae Societatis Scientiarum Upsaliensis*. 1932;8:1–368.
- Nattrass RM. A new species of *Hendersonula* (*H. toruloidea*) on deciduous trees in Egypt. *Trans Br Mycol Soc.* 1933;18:189–198.
- Nitschke T. Pyrenomycetes Germanici. 1870;2:161–320.
- Nylander JAA. MrModeltest v2. Program Distributed by the Author. Evolutionary Biology Centre, Uppsala University, Sweden; 2004.
- Ocampo MA, Kanitakis J, Bienvenu AL, *et al.* Phaeohyphomycosis caused by *Pyrenochaeta romeroi* mimicking a plantar wart in a kidney transplant recipient. *Transpl Infect Dis.* 2012;14:173–174.
- Oliveira RJV, Lima TEF, Cunha IB, et al. Corniculariella brasiliensis, a new species of coelomycetes in the rhizosphere of Caesalpinia echinata (Fabaceae, Caesalpinioideae) in Brazil. Phytotaxa. 2014;178:197–204.

- O'Quinn RP, Hoffmann JL, Boyd AS. *Colletotrichum* species as emerging opportunistic fungal pathogens: a report of 3 cases of phaeohyphomycosis and review. *J Am Acad Dermatol*. 2001;45:56–61.
- Patouillard NT, Lagerheim G, de. Champignons de l'Equateur (Pugillus II). *Bull trimest soc mycol Fr.* 1892;8:113–140.
- Penzig O. Funghi agrumicoli. Contribuzione allo studio dei funghi parassiti degli agrumi. *Michelia*. 1882;2:385–508.
- Perfect JR, Dismukes WE, Dromer F, *et al.* Clinical practice guidelines for the management of cryptococcal disease: 2010 update by the infectious diseases society of América. *Clin Infect Dis.* 2010;1:291–322.
- Potea ST, Chakraborty A, Lahiri KK, *et al.* Keratitis by a rare pathogen *Colletotrichum gloeosporioides*: A case report. *J Mycol Med.* 2017;27:407–411.
- Punithalingam E, English MP. *Pyrenochaeta unguis-hominis* sp. nov. on human toe-nails. *Trans Br Mycol Soc.* 1975;64:539–541.
- Punithalingam E. *Phoma oculo hominis* sp. nov. from corneal ulcer. *Trans Br Mycol Soc.* 1976;67:142–143.
- Punithalingam E. Sphaeropsidales in culture from humans. Nova Hedwigia. 1979;31:119–158.
- Rai MK. Phoma sorghina infection in human being. Mycopathologia. 1989;105:167–170.
- Rajagopal K, Maheswari S, Kathiravan G. Diversity of endophytic fungi in some tropical medicinal plants A report. *Afr J Micro Res.* 2012;6:2822–2827.
- Réblová M, Gams W, Seifert KA. *Monilochaetes* and allied genera of the *Glomerellales*, and a reconsideration of families in the *Microascales*. *Stud Mycol*. 2011;68:163–191.
- Revankar SG, Sutton DA. Melanized fungi in human disease. *Clin Microbiol Rev.* 2010;23:884–928.
- Richardson MD, Warnock DW. Fungal Infection: Diagnosis and Management, 4^a ed. Wiley-Blackwell, Nueva York, USA; 2012.
- Roehm CE, Salazar JC, Hagstrom N, Valdez TA. *Phoma* and *Acremonium* invasive fungal rhinosinusitis in congenital acute lymphocytic leukemia and literature review. *Int J Pediatr Otorhinolaryngol.* 2012;76:1387–1391.
- Ronquist F, Teslenko M, van der Mark P, *et al.* MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. *Syst Biol.* 2012;61: 539–542.

- Rosen T, Rinaldi MJ, Tschen JA, Stern JK, Cernoch P. Cutaneous lesions due to *Pleurophoma (Phoma)* complex. *South Med J.* 1996;89:431–434.
- Rossman AY, Farr DF, Castlebury LA. A review of the phylogeny and biology of the *Diaporthales. Mycoscience*. 2007;48:135–144.
- Rossman AY, Adams GC, Cannon PF, *et al.* Recommendations of generic names in *Diaporthales* competing for protection or use. *IMA Fungus*. 2015;6:145–154.
- Ruiz-Camps I, Cuenca-Estrella M. Antifungal for systemic use. *Enferm Infecc Microbiol Clin*. 2009;27:353–362.
- Saha S, Sengupta J, Banerjee D, Khetan A. *Lasiodiplodia theobromae* keratitis: a case report and review of literature. *Mycopathologia*. 2012;174:335–339.
- Scagel RF, Bandoni RJ, Rouse GE, Schofield WE, Stein JR, Taylor TMC. El reino vegetal. Omega, Barcelona, España; 1980.
- Schoch CL, Shoemaker RA, Seifert KA, Hambleton S, Spatafora JW, Crous PW. A multigene phylogeny of the *Dothideomycetes* using four nuclear loci. *Mycologia*. 2006;98:1041–1052.
- Schoch CL, Crous PW, Groenewald JZ, *et al.* 2009. A class-wide phylogenetic assessment of *Dothideomycetes. Stud Mycol.* 2009;64:1–15.
- Senanayake IC, Crous PW, Groenewald JZ. Families of *Diaporthales* based on morphological and phylogenetic evidence. *Stud Mycol.* 2017;86:217–296.
- Shivaprakash MR, Appannanavar SB, Dhaliwal M, *et al. Colletotrichum truncatum*: An unusual pathogen causing mycotic keratitis and endophthalmitis. *J Clin Microbiol*. 2011;49:2894–2898.
- Shukla NP, Rajak RK, Agarwasl GP, Gupta D. *Phoma minutispora* as a human pathogen. *Mykosen*. 1984;27:255–258.
- Someya A, Yaguchi T, Udagawa S. *Microsphaeropsis rugospora*, a new species from Japanese soil. *Mycoscience*. 1997;38:429–431.
- Spatafora JW, Aime MC, Grigoriev IV, Martin F, Stajich JE, Blackwell M. The Fungal Tree of Life: from Molecular Systematics to Genome-Scale Phylogenies. *Microbiol Spectr.* 2017. doi: 10.1128/microbiolspec.FUNK-0053-2016.
- Stchigel AM, Sutton DA. Coelomycete fungi in the clinical lab. *Curr Fungal Infect Rep.* 2013;7:171–191.

- Su YY, Qi YL, Cai L. Induction of sporulation in plant pathogenic fungi. *Mycology*. 2012 3:195–200.
- Subcommittee on Antifungal Susceptibility Testing of the ESCMID European Committee for Antimicrobial Susceptibility Testing (EUCAST). EUCAST Technical Note on the method for the determination of broth dilution minimum inhibitory concentrations of antifungal agents for conidia-forming moulds. *Clin Microbiol Infect*. 2008;14:982–984.
- Summerbell RC, Krajden S, Levine R, Fuksa M. Subcutaneous phaeohyphomycosis caused by *Lasiodiplodia theobromae* and successfully treated surgically. Med Mycol. 2004;42:543–547.
- Sutton BC. The Coelomycetes. Fungi Imperfecti with pycnidia, acervuli and stromata. Commonwealth Mycological, Kew, England; 1980.
- Sutton DA. Coelomycetous fungi in human disease. A review: clinical entities, pathogenesis, identification and therapy. *Rev Iberoam Micol.* 1999;16:171–179.
- Swofford DL. PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4. Sinauer, Sunderland, USA; 2000.
- Tamura K, Stecher G, Peterson D, *et al.* MEGA6: molecular evolutionary genetics analysis version 6.0. *Mol Biol Evol.* 2013;31:2725–2729.
- Tan DH, Sigler L, Gibas CF, Fong IW. Disseminated fungal infection in a renal transplant recipient involving *Macrophomina phaseolina* and *Scytalidium dimidiatum*: case report and review of taxonomic changes among medically important members of the *Botryosphaeriaceae*. *Med Mycol*. 2008;46:285–92.
- Taylor JW. Making the *Deuteromycota* redundant: a practical integration of mitosporic and meiosporic fungi. *Can J Bot.* 1995;73:754–759.
- Thompson JD, Higgins DG, Gibson TJ (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22: 4673–4680.
- Tibpromma S, Liu JK, Promputtha I, *et al. Ophiosimulans tanaceti* gen. et sp. nov. (*Phaeosphaeriaceae*) on *Tanacetum* sp. (*Asteraceae*) from Italy. *Mycol Progress*. 2016;15:46.
- Tsuda M, Mugishima T, Komatsu K, *et al.* Modiolides A and B, two new 10-membered macrolides from a marine derived fungus. *J Nat Prod.* 2003;66:412–415.

- Tullio V, Banche G, Allizond V, *et al.* Non-dermatophyte moulds as skin and nail foot mycosis agents: *Phoma herbarum, Chaetomium globosum* and *Microascus cinereus. Fungal Biol.* 2010;114:345–349.
- Damm U, Sato T, Alizadeh A, Groenewald JZ, Crous PW. The *Colletotrichum dracaenophilum*, *C. magnum* and *C. orchidearum* species complexes. *Stud Mycol*. 2019;92:1–46.
- Udayanga D, Liu X, McKenzie EHC, Chukeatirote E, Bahkali AHA, Hyde KD. The genus *Phomopsis*: biology, applications, species concepts and names of common phytopathogens. *Fungal Divers*. 2011;50:189–225.
- Udayanga D, Liu X, Crous PW, McKenzie EHC, Chukeatirote E, Hyde KD. A multi-locus phylogenetic evaluation of *Diaporthe* (*Phomopsis*). *Fungal Divers*. 2012;56:157–171.
- Valenzuela-Lopez N, Sutton DA, Cano-Lira JF, *et al.* Coelomycetous fungi in the clinical setting: Morphological convergence and cryptic diversity. *J Clin Microbiol.* 2017;55:552–567.
- Valenzuela-Lopez N, Cano-Lira JF, Guarro J, *et al.* Coelomycetous *Dothideomycetes* with emphasis on the families *Cucurbitariaceae* and *Didymellaceae*. *Stud Mycol.* 2018a;90:1–69.
- Valenzuela-Lopez N, Cano-Lira JF, Stchigel AM, Guarro J. DNA sequencing to clarify the taxonomical conundrum of the clinical coelomycetes. *Mycoses*. 2018b (IN PRESS). DOI:10.1111/myc.12785.
- van de Sande WWJ. Global burden of human mycetoma: a systematic review and metaanalysis. *PLoS Negl Trop Dis.* 2013;7: e2550. https://doi.org/10.1371/journal.pntd.0002550.
- van de Sande W, Fahal A, Ahmed SA, *et al.* Closing the mycetoma knowledge gap. *Med Mycol.* 2018;56:153–164.
- Verkley GJM, da Silva M, Wicklow DT, Crous PW. *Paraconiothyrium*, a new genus to accommodate the mycoparasite *Coniothyrium minitans*, anamorphs of *Paraphaeosphaeria*, and four new species. *Stud Mycol*. 2004;50:323–336.
- Verkley GJ, Gené J, Guarro J, *et al. Pyrenochaeta keratinophila* sp. nov., isolated from an ocular infection in Spain. *Rev Iberoam Micol.* 2010;27:22–24.
- Verkley GJ, Dukik K, Renfurm R, Göker M, Stielow JB. Novel genera and species of coniothyrium-like fungi in *Montagnulaceae* (*Ascomycota*). *Persoonia*. 2014;32:25–51.

- von Arx JA, Müller E. A reevaluation of the bitunicate *Ascomycetes* with keys to families and genera. *Stud Mycol.* 1975;9:1–159.
- Wanasinghe DN, Phookamsak R, Jeewon R, *et al.* A family level rDNA based phylogeny of *Cucurbitariaceae* and *Fenestellaceae* with descriptions of new *Fenestella* species and *Neocucurbitaria* gen. nov. *Mycosphere*. 2017;8:397–414.
- Weir BS, Johnston PR, Damm U. The *Colletotrichum gloeosporioides* species complex. *Stud Mycol.* 2012;73:115–180.
- Welsh O, Al-Abdely HM, Salinas-Carmona MC, Fahal AH. Mycetoma medical therapy. *PLoS Negl Trop Dis.* 2014;8:e3218. doi:10.1371/journal.pntd.0003218.
- Whittaker RH. New concepts of kingdoms of organisms. Science. 1969;163:150–160.
- Wijayawardene NN, Hyde KD, Wanasinghe DN, *et al.* Taxonomy and phylogeny of dematiaceous coelomycetes. *Fungal Divers.* 2016;77:1–316.
- Wikee S, Udayanga D, Crous PW, *et al. Phyllosticta* an overview of current status of species recognition. *Fungal Divers*. 2011;51:43–61.
- Woo PC, Lau SK, Ngan AH, *et al. Lasiodiplodia theobromae* pneumonia in a liver transplant recipient. *J Clin Microbiol.* 2008;46:380–384.
- Yegneswaran PP, Pai V, Bairy I, Bhandary S. *Colletotrichum graminicola* keratitis: first case report from India. *Indian J Ophthalmol.* 2010;58:415–417.
- Zhang T, Deng X, Yu Y, Zhang M, Zhang Y. *Pseudochaetosphaeronema ginkgonis* sp. nov., an endophyte isolated from *Ginkgo biloba*. *Int J Syst Evol Microbiol*. 2016;66:4377– 4381.

8. ANEXOS

Tabla	ι 1. Aislados β	principalmente clínicos procedentes	de tres laboratorios de referencia incluido	os en esta Tesis, nue	evas especie	ss están indicados en negrita.
No.	Nº FMRª	Otra colección ^b	Taxón	País de origen	Estatus ^c F	uente
-	13629	UTHSC:DI14-306	Neoscytalidium dimidiatum	EE.UU.	4	Abceso
2	13630	UTHSC:DI14-307	Neoscytalidium dimidiatum	EE.UU.		Jña del dedo del pie
ო	13631	UTHSC:DI14-308	Neoscytalidium dimidiatum	EE.UU.	-	⁻ alón
4	13632	UTHSC:DI14-309	Neoscytalidium dimidiatum	EE.UU.	ш	bie
Ŋ	13633	UTHSC:DI14-310	Neoscytalidium dimidiatum	EE.UU.		Jña
9	13634	UTHSC:DI14-311	Neoscytalidium dimidiatum	EE.UU.	-	Herida del pie
7	13635	UTHSC:DI14-312	Neoscytalidium dimidiatum	EE.UU.		Jña del dedo del pie
ø	13636	UTHSC:DI14-313	Neoscytalidium dimidiatum	EE.UU.		Jña
6	13637	UTHSC:DI14-314	Neoscytalidium dimidiatum	EE.UU.	-	Herida del tobillo
10	13638	UTHSC:DI14-315	Neoscytalidium dimidiatum	EE.UU.		Jña
1	13639	UTHSC:DI14-316	Neoscytalidium dimidiatum	EE.UU.	-	Herida del talón
12	13640	UTHSC:DI14-317	Neoscytalidium dimidiatum	EE.UU.		Jedo del pie
13	13641	UTHSC:DI14-318	Neoscytalidium dimidiatum	EE.UU.		Jña del dedo del pie
4	13642	UTHSC:DI14-319	Neoscytalidium dimidiatum	EE.UU.	ш	biel
15	13643	UTHSC:DI14-320	Neoscytalidium dimidiatum	EE.UU.		Jña del dedo del pie
16	13644	UTHSC:DI14-321	Neoscytalidium dimidiatum	EE.UU.		avado broncoalveolear.
17	13645	UTHSC:DI14-322	Neoscytalidium dimidiatum	EE.UU.		Jña
18	13646	UTHSC:DI14-323	Neoscytalidium dimidiatum	EE.UU.	ш	viel de los dedos del pie
19	13647	UTHSC:DI14-324	Neoscytalidium dimidiatum	EE.UU.		Jña
20	13648	UTHSC:D114-325	Neoscytalidium dimidiatum	EE.UU.	-	Herida

No.	Nº FMR ^a	Otra colección ^b	Taxón	País de origen	Estatus ^c	Fuente
21	13649	UTHSC:DI14-326	Neoscytalidium dimidiatum	EE.UU.		Seno
22	13650	UTHSC:DI14-327	Neoscytalidium dimidiatum	EE.UU.		Lavado broncoalveolear
23	13651	UTHSC:DI14-328	Neoscytalidium dimidiatum	EE.UU.		Pie
24	13652	UTHSC:DI14-329	Neoscytalidium dimidiatum	EE.UU.		Pie
25	13653	UTHSC:DI14-330	Neoscytalidium dimidiatum	EE.UU.		Lavado broncoalveolear
26	13654	UTHSC:DI14-331	Neoscytalidium dimidiatum	EE.UU.		Dedo del pie
27	13655	UTHSC:DI14-332	Neoscytalidium dimidiatum	EE.UU.		Dedo del pie
28	13656	UTHSC:DI14-333	Neoscytalidium dimidiatum	EE.UU.		Piel de pie
29	13657	UTHSC:DI14-334	Neoscytalidium dimidiatum	EE.UU.		Dedo del pie
30	13658	UTHSC:DI14-335	Neoscytalidium dimidiatum	EE.UU.		Esputo
31	13659	UTHSC:DI14-336	Neoscytalidium dimidiatum	EE.UU.		Herida del pie
32	13660	UTHSC:DI14-337	Neoscytalidium dimidiatum	EE.UU.		Tejido de cerebro
33	13661	UTHSC:DI14-338	Neoscytalidium dimidiatum	EE.UU.		Líquido cerebroespinal
34	13662	UTHSC:DI14-339	Neoscytalidium dimidiatum	EE.UU.		Cerebro
35	13663	UTHSC:DI14-340	Neoscytalidium dimidiatum	EE.UU.		Lavado broncoalveolear
36	13667	UTHSC:DI14-245	Colletotrichum gloeosporioides	EE.UU.		Dedo de la mano
37	13668	UTHSC:DI14-246	Colletotrichum sp.	EE.UU.		Esputo
38	13669	UTHSC:DI14-247	Colletotrichum gloeosporioides	EE.UU.		Piel
39	13670	UTHSC:DI14-248	Colletotrichum gloeosporioides	EE.UU.		Masa del codo
40	13671	UTHSC:DI14-249	Colletotrichum gloeosporioides	EE.UU.		Mano

Tabla 1. (continuación)

No.	Nº FMRª	Otra colección ^b	Taxón	País de origen	Estatus ^c	Fuente
41	13672	UTHSC:DI14-250	Colletotrichum gloeosporioides	EE.UU.		Cornea
42	13673	UTHSC:DI14-251	Colletotrichum capsici	EE.UU.		Cornea
43	13674	UTHSC:DI14-252	Colletotrichum truncatum	EE.UU.		Tejido del pie
44	13675	UTHSC:DI14-253	Colletotrichum spaethianum	EE.UU.		Muñeca
45	13676	UTHSC:DI14-254	Colletotrichum gloeosporioides	EE.UU.		Líquido sinovial de la rodilla
46	13677	UTHSC:DI16-187	Trematosphaeria sp.	EE.UU.		Biopsia del talón
47	13678	UTHSC:DI16-188	Diatrype sp.	EE.UU.		Hisopado de la rodilla
48	13679	UTHSC:DI16-189	Coniothyrium telephii	EE.UU.		Seno maxilar derecho
49	13680	UTHSC:DI16-190	Didymella heteroderae	EE.UU.		Pie
50	13681	UTHSC:DI16-191	Neosetophoma sp.	EE.UU.		Esputo
51	13682	UTHSC:DI16-192	Leptosphaeria sp.	EE.UU.		Piel
52	13683	UTHSC:DI16-193; CBS 142460	Pyrenochaetopsis paucisetosa	EE.UU.	F	Dedo del pie
53	13684	UTHSC:D116-194	Diatrype sp.	EE.UU.		Osteomielitis
54	13685	UTHSC:D116-195	Massarina walkeri	EE.UU.		Cuero cabelludo
55	13686	UTHSC:D116-196	Cadophora sp.	EE.UU.		Abdomen
56	13687	UTHSC:DI16-197	Epicoccum latusicollum	EE.UU.		Cornea
57	13688	UTHSC:D116-198	Pyrenochaetopsis microspora	EE.UU.		Sinusitis crónica
58	13689	UTHSC:DI16-199	Didymella microchlamydospora	EE.UU.		Pierna
59	13690	UTHSC:DI16-200; CBS 143032	Didymella keratinophila	EE.UU.	F	Dedo de la mano
60	13691	UTHSC:D116-201	Epicoccum camelliae	EE.UU.		Pulmón

Tabla 1. (continuación)

\sim
ò
. <u> </u>
0
g
Ē
·=
-
=
~
0
~
0
<u> </u>
_
_
(C)
-
<u> </u>
_
ຜ

Tabla	1. (continuac	ión)				
No.	Nº FMRª	Otra colección ^b	Taxón	País de origen	Estatus ^c	Fuente
61	13692	UTHSC:DI16-202	Epicoccum camelliae	EE.UU.		Uña
62	13693	UTHSC:DI16-203	Coniothyrium telephii	EE.UU.		Piel
63	13694	UTHSC:DI16-204	Phoma herbarum	EE.UU.		Cateter uninario
64	13695	UTHSC:D116-205	Didymella glomerata	EE.UU.		Hombro
65	13696	UTHSC:D116-206	Epicoccum camelliae	EE.UU.		Uña del dedo del pie
66	13697	UTHSC:DI16-207	Neoascochyta desmazieri	EE.UU.		Pulmón
67	13698	UTHSC:D116-208	<i>Montagnula</i> sp.	EE.UU.		Piel
68	13699	UTHSC:DI16-209	Paraphoma radicina	EE.UU.		Pierna
69	13700	UTHSC:DI16-210	Trematophoma sp.	EE.UU.		Lavado broncoalveolear
70	13701	UTHSC:DI16-211	Didymella gardeniae	EE.UU.		Distrofia de la uña
71	13702	UTHSC:DI16-212	Phoma herbarum	EE.UU.		Lavado broncoalveolear
72	13703	UTHSC:DI16-213	Neocucurbitaria unguis-hominis	EE.UU.		Ambiental
73	13704	UTHSC:DI16-214	Aplosporella sterculiae	EE.UU.		Tobillo
74	13705	UTHSC:DI16-215	Paraconiothyrium cyclothyrioides	EE.UU.		Pierna
75	13706	UTHSC:D116-216	Paraconiothyrium cyclothyrioides	EE.UU.		Herida de la piel
76	13707	UTHSC:DI16-217	Aplosporella sterculiae	EE.UU.		Tejido del cráneo
77	13708	UTHSC:DI16-218	Paraconiothyrium maculicutis	EE.UU.		Cornea
78	13709	UTHSC:DI16-219	Didymosphaeriaceae sp.	EE.UU.		Piel
79	13710	UTHSC:DI16-220	Roussoella sp.	EE.UU.		Líquido cerebroespinal
80	13711	UTHSC:DI16-221	Lasiodiplodia parva	EE.UU.		Uña del dedo del pie

No.	Nº FMRª	Otra colección ^b	Taxón	País de origen	Estatus ^c	Fuente
81	13712	UTHSC:DI16-222	Paraconiothyrium maculicutis	EE.UU.		Herida del cuero cabelludo
82	13713	UTHSC:DI16-223	Phialemoniopsis curvata	EE.UU.		Planta del pie
83	13714	UTHSC:DI16-224	Didymella heteroderae	EE.UU.		Uña
84	13715	UTHSC:DI16-225	Pyrenochaetopsis americana	EE.UU.	F	Ambiental
85	13716	UTHSC:DI16-226	Didymella gardeniae	EE.UU.		Uña del dedo del pie
86	13717	UTHSC:DI16-227	Didymella heteroderae	EE.UU.		Uña
87	13718	UTHSC:DI16-228	Didymella keratinophila	EE.UU.		Uña del dedo del pie
88	13719	UTHSC:DI16-229; CBS 142791	Neocucurbitaria irregularis	EE.UU.	⊢	Herida del brazo
89	13720	UTHSC:DI16-230	Didymella musae	EE.UU.		Cornea
06	13721	UTHSC:DI16-231	Didymella heteroderae	EE.UU.		Uña del dedo del pie
91	13722	UTHSC:DI16-232	Didymella heteroderae	EE.UU.		Orina
92	13723	UTHSC:DI16-233; CBS 142453	Allophoma cylindrispora	EE.UU.	F	Ojo
93	13724	UTHSC:DI16-234	Didymella heteroderae	EE.UU.		Uña del dedo del pie
94	13725	UTHSC:DI16-235	Didymella heteroderae	EE.UU.		Cuero cabelludo
95	13726	UTHSC:DI16-236	Coniothyrium telephii	EE.UU.		Sangre
96	13727	UTHSC:DI16-237	Trematosphaeria grisea	EE.UU.		Codo
97	13728	UTHSC:DI16-238; CBS 143033	Neopyrenochaetopsis hominis	EE.UU.	F	Piel
98	13729	UTHSC:DI16-239	Letendraea sp.	EE.UU.		Brazo
66	13730	UTHSC:DI16-240	Parastagonospora nodorum	EE.UU.		Ambiental
100	13731	UTHSC:DI16-241	<i>Nigrograna</i> sp.	EE.UU.		Piel

Tabla 1. (continuación)

_
\sim
ΥŪ.
0
ā
ιu
_
=
.=
+
~
0
0
<u> </u>
\sim
_
—
_
65
-
<u> </u>
~

Tabla	1. (continuac	sión)				
No.	Nº FMR ^a	Otra colección ^b	Taxón	País de origen	Estatus ^c	Fuente
101	13732	UTHSC:DI16-242	Medicopsis romeroi	EE.UU.		Palma de la mano
102	13733	UTHSC:DI16-243	Paraconiothyrium cyclothyrioides	EE.UU.		Uña
103	13734	UTHSC:DI16-244	Epicoccum keratinophilum	EE.UU.		Dígito (canino)
104	13735	UTHSC:DI16-245	Pseudocercospora sp.	EE.UU.		Mano
105	13736	UTHSC:DI16-246	Paraconiothyrium cyclothyrioides	EE.UU.		Dedo de la mano
106	13737	UTHSC:DI16-247	Diaporthe sp.	EE.UU.		Ojo
107	13738	UTHSC:DI16-248	Phaeobotryosphaeria sp.	EE.UU.		Párpado
108	13739	UTHSC:DI16-249; CBS 142454	Cumuliphoma pneumoniae	EE.UU.	⊢	Esputo
109	13740	UTHSC:DI16-250	Phaeobotryosphaeria sp.	EE.UU.		Cuero cabelludo
110	13741	UTHSC:DI16-251	<i>Montagnula</i> sp.	EE.UU.		Cuero cabelludo
111	13742	UTHSC:DI16-252	Paraconiothyrium maculicutis	EE.UU.		Biopsia
112	13743	UTHSC:DI16-253	Preussia sp.	EE.UU.		Dedo del pie
113	13744	UTHSC:DI16-254	Chaetophoma sp.	EE.UU.		Aspirado
114	13745	UTHSC:DI16-255	Didymella anserina	EE.UU.		Esputo
115	13746	UTHSC:DI16-256	Tremateia sp.	EE.UU.		Ojo
116	13747	UTHSC:DI16-257	Epicoccum pneumoniae	EE.UU.		Esputo
117	13748	UTHSC:DI16-258	Epicoccum keratinophilum	EE.UU.		Lavado broncoalveolear
118	13749	UTHSC:DI16-259	Valsa sp	EE.UU.		Lavado broncoalveolear
119	13750	UTHSC:DI16-260	Edenia sp	EE.UU.		Ojo
120	13751	UTHSC:DI16-261	Paraphaeosphaeria sp.	EE.UU.		Lavado broncoalveolear

		Otra aalaaciánb	Τονόκ	Doío do orizon		Enconto
.02			Iaxoli	rais de origen	Estatus	Luelle
121	13752	UTHSC:DI16-262	Diaporthe sp.	EE.UU.		Esputo
122	13753	UTHSC:D116-263	Paraconiothyrium fuckelii	EE.UU.		Lavado broncoalveolear
123	13754	UTHSC:DI16-264	Edenia sp.	EE.UU.		Úlcera de la cornea
124	13755	UTHSC:D116-265	Paraconiothyrium maculicutis	EE.UU.		Manos
125	13756	UTHSC:D116-266	Didymosphaeriaceae sp.	EE.UU.		Uña
126	13758	UTHSC:DI16-267	Letendraea sp.	EE.UU.		Brazo
127	13759	UTHSC:D116-268	Paraconiothyrium maculicutis	EE.UU.		Uña del dedo del pie
128	13760	UTHSC:D116-269	Roussoella sp.	EE.UU.		Lavado broncoalveolear
129	13761	UTHSC:DI16-270	Nothophoma quercina	EE.UU.		Pie
130	13762	UTHSC:DI16-271; CBS 142455	Epicoccum keratinophilum	EE.UU.	F	Piel
131	13763	UTHSC:DI16-272	Epicoccum keratinophilum	EE.UU.		Uña del dedo del pie
132	13764	UTHSC:DI16-273; CBS 142452	Allocucurbitaria botulispora	EE.UU.	F	Costra en la pierna
133	13765	UTHSC:DI16-274	Didymella gardeniae	EE.UU.		Uña del dedo del pie
134	13766	UTHSC:DI16-275; CBS 142459	Pyrenochaetopsis globosa	EE.UU.	F	Piel
135	13767	UTHSC:DI16-276; CBS 140674	Nothophoma macrospora	EE.UU.	F	Pulmón
136	13769	UTHSC:DI16-277; CBS 142461	Pyrenochaetopsis uberiformis	EE.UU.	F	Oreja
137	13770	UTHSC:DI16-278; CBS 142462	Remotididymella anthropophila	EE.UU.	F	Lavado broncoalveolear
138	13771	UTHSC:DI16-279	Paraconiothyrium cyclothyrioides	EE.UU.		Lavado broncoalveolear
139	13772	UTHSC:DI16-280	Epicoccum camelliae	EE.UU.		Uña del dedo del pie
140	13773	UTHSC:DI16-281	<i>Trematosphaeria</i> sp.	EE.UU.		Piel

Tabla 1. (continuación)
No.	Nº FMRª	Otra colección ^b	Taxón	País de origen	Estatus ^c	Fuente
) 		3
141	13774	UTHSC:DI16-282	Didymella keratinophila	EE.UU.		Uña
142	13775	UTHSC:DI16-283	Neosetophoma sp.	EE.UU.		Seno maxilar izquierdo
143	13776	UTHSC:DI16-284	Phaeodothis sp.	EE.UU.		Piel
144	13777	UTHSC:DI16-285; CBS 142457	Nothophoma variabilis	EE.UU.	F	Lavado broncoalveolear
145	13778	UTHSC:DI16-286	Trematosphaeria grisea	EE.UU.		Pierna
146	13779	UTHSC:DI16-287	Exosporium sp.	EE.UU.		Ambiental
147	13780	UTHSC:DI16-288	Epicoccum sorghinum	EE.UU.		Pie
148	13781	UTHSC:DI16-289	Pyrenochaetopsis botulispora	EE.UU.		Lavado broncoalveolear
149	13782	UTHSC:DI16-290	Leptosphaeria etheridgei	EE.UU.		Hombro
150	13783	UTHSC:DI16-291	Neoascochyta tardicrescens	EE.UU.		Pie
151	13784	UTHSC:DI16-292	Parathyridaria sp.	EE.UU.		Brazo
152	13785	UTHSC:DI16-293	Diaporthe sclerotioides	EE.UU.		Cornea
153	13786	UTHSC:DI16-372	Pleosporales sp.	EE.UU.		Ojo
154	13787	UTHSC:DI16-294	Nothophoma gossypiicola	EE.UU.		Seno etmoidal
155	13788	UTHSC:D116-295	Didymella gardeniae	EE.UU.		Herida del cuello
156	13789	UTHSC:D116-296	Paraphoma fimeti	EE.UU.		Pulmón
157	13790	UTHSC:DI16-297	Pyrenochaetopsis botulispora	EE.UU.		Pie
158	13791	UTHSC:DI16-298; CBS 142458	Pyrenochaetopsis botulispora	EE.UU.	F	Esputo
159	13792	UTHSC:DI16-299	Epicoccum keratinophilum	EE.UU.		Biopsia
160	13793	UTHSC:DI16-300	Parathyridaria percutanea	EE.UU.		Pie

No.	Nº FMRª	Otra colección ^b	Taxón	País de origen	Estatus ^c	Fuente
161	13794	UTHSC:DI16-301	Epicoccum sorghinum	EE.UU.		Lavado broncoalveolear
162	13795	UTHSC:DI16-302	Didymella protuberans	EE.UU.		Ambiental (chocolate)
163	13796	UTHSC:DI16-303; CBS 142459	Pyrenochaetopsis confluens	EE.UU.	F	Sangre
164	13797	UTHSC:DI16-304	Mycoleptodiscus sp.	EE.UU.		Piel
165	13798	UTHSC:D116-305	Didymella heteroderae	EE.UU.		Esputo
166	13799	UTHSC:D116-306	Phoma herbarum	EE.UU.		Esputo
167	13800	UTHSC:DI16-307	Phoma herbarum	EE.UU.		Lavado broncoalveolear
168	13801	UTHSC:DI16-308	Vacuiphoma oculihominis	EE.UU.	F	Ojo
169	13802	UTHSC:DI16-309	Medicopsis romeroi	EE.UU.		Tobillo
170	13803	UTHSC:DI16-310	Medicopsis romeroi	EE.UU.		Pie
171	13804	UTHSC:DI16-311	Didymosphaeria sp.	EE.UU.		Piel
172	13805	UTHSC:DI16-312	Botryosphaeria dothidea	EE.UU.		Pie
173	13806	UTHSC:DI16-313	Diederichomyces cladoniicola	EE.UU.		Tejido de pulmón
174	13807	UTHSC:DI16-314	Paraconiothyrium sp.	EE.UU.		Herida del dedo de la mano
175	13808	UTHSC:DI16-315	Medicopsis romeroi	EE.UU.		Tejido de pulmón
176	13809	UTHSC:DI16-316	Anteaglonium sp.	EE.UU.		Ojo
177	13810	UTHSC:DI16-317	Diaporthe sclerotioides	EE.UU.		Raspado del ojo
178	13811	UTHSC:DI16-318	Neofusicoccum sp.	EE.UU.		Raspado de cornea
179	13812	UTHSC:DI16-319	Phoma herbarum	EE.UU.		Uña
180	13813	UTHSC:DI16-320	Neoascochyta desmazieri	EE.UU.		Piel

No.	Nº FMR ^a	Otra colección ^b	Taxón	País de origen	status ^c Fuente	
181	13814	UTHSC:DI16-321	Botryosphaeria dothidea	EE.UU.	Piel	
182	13815	UTHSC:DI16-322	Neodidymelliopsis longicolla	EE.UU.	Lavado bi	roncoalveolear
183	13816	UTHSC:DI16-323	Diatrype sp.	EE.UU.	Lavado bi	roncoalveolear
184	13817	UTHSC:DI16-324	Edenia sp.	EE.UU.	Hueso de	l pie
185	13818	UTHSC:DI16-325	Phaeosphaeria sp.	EE.UU.	Hígado	
186	13819	UTHSC:DI16-326	Keissleriella cladophila	EE.UU.	Biopsia na	asal (de perro)
187	13820	UTHSC:DI16-327	Paraconiothyrium cyclothyrioides	EE.UU.	Biopsia d	e la rodilla
188	13821	UTHSC:D116-328	Paraconiothyrium maculicutis	EE.UU.	Rodilla	
189	13822	UTHSC:DI16-329	Diaporthe sclerotioides	EE.UU.	Líquido si	novial
190	13823	UTHSC:D116-330	Diederichomyces cladoniicola	EE.UU.	Lavado bi	roncoalveolear
191	13824	UTHSC:D116-331	Diaporthe sclerotioides	EE.UU.	Líquido si	novial
192	13825	UTHSC:DI16-332	Neoascochyta desmazieri	EE.UU.	Cabeza	
193	13826	UTHSC:D116-333	Botryosphaeria dothidea	EE.UU.	Úlcera de	la cornea
194	13827	UTHSC:DI16-334	Parathyridaria sp.	EE.UU.	Nariz	
195	13828	UTHSC:DI16-335	Trematosphaeria sp.	EE.UU.	Herida de	l brazo
196	13829	UTHSC:D116-336	Phaeosphaeria sp.	EE.UU.	Seno ma)	kilar derecho
197	13830	UTHSC:DI16-337	Neosetophoma sp.	EE.UU.	Esputo	
198	13831	UTHSC:DI16-338	Epicoccum camelliae	EE.UU.	Uña	
199	13832	UTHSC:DI16-339	Diederichomyces cladoniicola	EE.UU.	Cornea	
200	13833	UTHSC:DI16-340	Valsa ambiens	EE.UU.	Lavado bi	roncoalveolear

No.	Nº FMRª	Otra colección ^b	Taxón	País de origen	Estatus ^c	Fuente
201	13834	UTHSC:DI16-341	Neoascochyta desmazieri	EE.UU.		Uña del dedo del pie
202	13835	UTHSC:D116-342	Nigrograna sp.	EE.UU.		Lavado broncoalveolear
203	13836	UTHSC:D116-343	Pleosporales sp.	EE.UU.		Pulgar
204	13837	UTHSC:DI16-344	Nectria austroamericana	EE.UU.		Pie
205	13838	UTHSC:D116-345	Epicoccum camelliae	EE.UU.		Abceso
206	13839	UTHSC:D116-346	Paraconiothyrium cyclothyrioides	EE.UU.		Dedo anular
207	13840	UTHSC:D116-347	Paraconiothyrium maculicutis	EE.UU.		Piel
208	13841	UTHSC:D116-348	Didymosphaeria sp.	EE.UU.		Herida del cuero cabelludo
209	13842	UTHSC:D116-349	Paraconiothyrium estuarinum	EE.UU.		Uña
210	13843	UTHSC:D116-350	Phomatospora sp.	EE.UU.		Hueso
211	13844	UTHSC:D116-351	Letendraea sp.	EE.UU.		Líquido pleural
212	13845	UTHSC:DI16-352	Neoascochyta cylindrispora	EE.UU.		Ojo
213	13846	UTHSC:D116-353	Chaetophoma sp.	EE.UU.		Pulmón
214	13847	UTHSC:D116-354	Trematosphaeria grisea	EE.UU.		Líquido sinovial
215	13848	UTHSC:D116-355	Paraconiothyrium sp.	EE.UU.		Esternón
216	13849	UTHSC:D116-356	Roussoella sp.	EE.UU.		Muñeca
217	13850	UTHSC:D116-357	Paraphaeosphaeria sporulosa	EE.UU.		Lavado broncoalveolear
218	13851	UTHSC:D116-358	Pseudochaetosphaeronema sp.	EE.UU.		Brazo
219	13852	UTHSC:DI16-359; CBS 142456	Neoascochyta cylindrispora	EE.UU.	Т	Cornea
220	13853	UTHSC:D116-360	Parathyridaria sp.	EE.UU.		Líquido articular

. =
Ū,
.2
2
σ
=
100
7
<u> </u>
0
õ
9
-
~
-
3
_
0
<u>–</u>
σ

Tabla	1. (continuac	ción)					
No.	Nº FMRª	Otra colección ^b	Taxón	País de origen E	:status⁰	Fuente	
221	13854	UTHSC:DI16-361	Camarographium sp.	EE.UU.		Piel	
222	13855	UTHSC:DI16-362	Roussoella sp.	EE.UU.		Ojo	
223	13856	UTHSC:DI16-363	Austropleospora archidendri	EE.UU.		Líquido articular	
224	13857	UTHSC:DI16-364	Lasiodiplodia theobromae	EE.UU.		Ojo	
225	13858	UTHSC:DI16-365	Didymella microchlamydospora	EE.UU.		Cornea	
226	13859	UTHSC:DI16-366	Eutypella sp.	EE.UU.		Abceso	
227	14411	UTHSC:DI16-367	Paraconiothyrium sp.	EE.UU.		Uña	
228	14412	UTHSC:DI16-368	<i>Myrmaecium</i> sp.	EE.UU.		Ambiental	
229	14413	UTHSC:DI16-369	<i>Myrmaecium</i> sp.	EE.UU.		Ambiental	
230	14425	UTHSC:DI16-370	Letendraea sp.	EE.UU.		Cuello	
231	14433	UTHSC:DI16-371	Eutypa sp.	EE.UU.		Lavado broncoalveolear	
232	16704	CNRMA 15.416	Kirschsteiniothelia tectonae	Francia		Desconocido	
233	16705	CNRMA 16.553	Colletotrichum gigasporum	Francia		Piel	
234	16706	CNRMA 15.504	Colletotrichum gloeosporioides	Francia		Ojo	
235	16707	CNRMA 13.515	Diaporthe sp.	Francia		Piel	
236	16708	CNRMA 11.385	Diaporthe sp.	Francia		Ojo	
237	16709	CNRMA 8.522	Diaporthe sp.	Francia		Ojo	
238	16710	CNRMA 9.205	Diaporthe sp.	Francia		Ojo	
239	16711	CNRMA 9.1095	Phoma sp.	Francia		Piel	
240	16712	CNRMA 6.1007	Diplodia seriata	Francia		Hueso	

\sim
, E
. <u> </u>
Ö
ž
<u><u> </u></u>
_
. =
<u> </u>
5
2
0
\sim
_
~
~
5
-
0
6

Tabla	1. (continuac	sión)			
No.	Nº FMRª	Otra colección ^b	Taxón	País de origen Est	atus ^c Fuente
241	16713	CNRMA 10.947	Epicoccum sp.	Francia	Piel
242	16714	CNRMA 10.948	Epicoccum sp.	Francia	Piel
243	16715	CNRMA 7.167	Epicoccum sorghinum	Francia	Hueso
244	16716	CNRMA 14.708	Lasiodiplodia theobromae	Francia	Ojo
245	16717	CNRMA 15.383	Lasiodiplodia sp.	Francia	Ojo
246	16718	CNRMA 11.360	Lasiodiplodia theobromae	Francia	Ojo
247	16719	CNRMA 10.1369	Lasiodiplodia theobromae	Francia	Piel
248	16720	CNRMA 13.891	Lasiodiplodia theobromae	Francia	Piel
249	16721	CNRMA 10.813	Lasiodiplodia theobromae	Francia	Ojo
250	16722	CNRMA 11.680	Medicopsis romeroi	Francia	Piel
251	16723	CNRMA 14.407	Medicopsis romeroi	Francia	Piel
252	16724	CNRMA 4.200	Medicopsis romeroi	Francia	Ojo
253	16725	CNRMA 4.556	Medicopsis romeroi	Francia	Ojo
254	16726	CNRMA 5.321	Medicopsis romeroi	Francia	Piel
255	16727	CNRMA 5.666	Medicopsis romeroi	Francia	Piel
256	16728	CNRMA 7.1225	Medicopsis romeroi	Francia	Piel
257	16729	CNRMA 8.1363	Medicopsis romeroi	Francia	Piel
258	16730	CNRMA 11.949	Medicopsis romeroi	Francia	Hueso
259	16731	CNRMA 11.950	Medicopsis romeroi	Francia	Hueso
260	16732	CNRMA 9.467	Paraphoma sp.	Francia	Piel

\sim
ò
·
¥
<u>u</u>
7
5
0
\mathbf{O}
S
-
~
<u></u>
~
<u> </u>
~

Tabla	1. (continuac	ción)				
No.	Nº FMRª	Otra colección ^b	Taxón	País de origen	istatus⁰ Fuente	
261	16733	CNRMA 12.597	Neofusicoccum luteum	Francia	Ojo	
262	16734	CNRMA 11.382	Paraconiothyrium cyclothyrioides	Francia	Piel	
263	16735	CNRMA 11.383	Paraconiothyrium cyclothyrioides	Francia	Piel	
264	16736	CNRMA 11.855	Paraconiothyrium cyclothyrioides	Francia	Piel	
265	16737	CNRMA 13.245	Paraconiothyrium cyclothyrioides	Francia	Piel	
266	16738	CNRMA 16.374	Paraconiothyrium cyclothyrioides	Francia	Piel	
267	16739	CNRMA 16.556	Paraconiothyrium cyclothyrioides	Francia	Piel	
268	16740	CNRMA 4.493	Paraconiothyrium fuckelii	Francia	Ojo	
269		CNRMA 3.240	Paraconiothyrium fuckelii	Francia	Ojo	
270	16741	CNRMA 10.867	Didymella sp.	Francia	Piel	
271	16742	CNRMA 9.1046	Epicoccum sp.	Francia	Piel	
272	16743	CNRMA 11.794	Didymella sp.	Francia	Piel	
273	16744	CNRMA 11.1097	Phoma herbarum	Francia	Ojo	
274	16745	CNRMA 12.1227	Phoma herbarum	Francia	Ojo	
275	16746	CNRMA 15.6	Didymella microchlamydospora	Francia	Seno maxila	
276	16747	CNRMA 16.76	Xenodidymella saxea	Francia	Líquido cerel	oroespinal
277	16748	CNRMA 14.198	Diaporthe sp.	Francia	Piel	
278	16749	CNRMA 12.311	Diaporthe sp.	Francia	Sangre	
279	16750	CNRMA 15.665	Phaeosphaeriaceae sp.	Francia	Piel	
280	16751	CNRMA 15.708	Neocucurbitaria sp.	Francia	Seno maxilai	

No	Nº FMR ^a	Otra colección ^b	Taxón	País de origen	Estatus ^c F	Tuente
281	16752	CNRMA 16.153	Neocucurbitaria unguis-hominis	Francia	0	ojo
282	16753	CNRMA 4.1112	Neocucurbitaria unguis-hominis	Francia	0)jo
283	16754	CNRMA 6.243	Neocucurbitaria unguis-hominis	Francia	0	Qjo
284		CNM-CM 2132	Didymella glomerata	España	ш	bie
285		CNM-CM 3356	Didymella microchlamydospora	España	Ļ	Jña del dedo del pie
286		CNM-CM 3387	Medicopsis romeroi	España	Ċ,	Jlcera de la rodilla
287		CNM-CM 3526	Didymella glomerata	España	2	/lédula ósea
288	16909	CNM-CM 3546	Didymella microchlamydospora	España		Jña
289		CNM-CM 3597	Didymella glomerata	España	0)	Sangre
290		CNM-CM 3697	Didymella heteroderae	España		Jña
291	16910	CNM-CM 3895	Didymella heteroderae	España		Jña
292	16911	CNM-CM 4675	Didymella sp.	España		Jña
293	16912	CNM-CM 4760	Colletotrichum boninense	España	Ľ	Raspado de cornea
294		CNM-CM 4767	Paraconiothyrium sp.	España	4	Abceso
295		CNM-CM 5036	Didymella heteroderae	España		Jescamación de piel
296	16913	CNM-CM 5281	Epicoccum sp.	España	ш	Diel
297	16914	CNM-CM 5724	Epicoccum sp.	España	Ť	Humor vítreo
298		CNM-CM 5814	Didymella heteroderae	España	ш	Exudado de la conjuntiva
299		CNM-CM 5882	Neocucurbitaria keratinophila	España	ш	Exudado cutáneo
300	16915	CNM-CM 6000	Paraphaeosphaeria michotii	España	ш	Piel

No.	Nº FMRª	Otra colección ^b	Taxón	País de origen	Estatus ^c	Fuente
301	16916	CNM-CM 6116	Colletotrichum boninense	España		Conjuntiva
302		CNM-CM 6201	Neoascochta desmazieri	España		Uña
303		CNM-CM 6313	Paraconiothyrium sp.	España		Exudado de la conjuntiva
304		CNM-CM 6401	Neocucurbitaria keratinophila	España		Uña
305		CNM-CM 6455	Neocucurbitaria keratinophila	España		Exudado cutáneo
306	16917	CNM-CM 6489	Neocucurbitaria sp.	España		Exudado de herida
307		CNM-CM 6513	Paraconiothyrium sp.	España		Uña
308		CNM-CM 7013	Neocucurbitaria keratinophila	España		Exudado cutáneo
309	16918	CNM-CM 7025	Neocucurbitaria sp.	España		Pelo
310	16919	CNM-CM 7037	Neocucurbitaria unguis-hominis	España		Uña
311	16920	CNM-CM 7080	Phaeosphaeriopsis obtusispora	España		Uña
312		CNM-CM 7089	Neocucurbitaria unguis-hominis	España		Lesión cutánea
313		CNM-CM 7099	Didymella microchlamydospora	España		Exudado cutáneo
314	16921	CNM-CM 7132	Neocucurbitaria sp.	España		Uña del dedo del pie
315	16922	CNM-CM 7335	Preussia sp.	España		Uña
316	16923	CNM-CM 7343	Preussia sp.	España		Uña
317	16924	CNM-CM 7345	Colletotrichum gloeosporioides	España		Humor acuoso
318	16925	CNM-CM 7430	Tintelnotia destructans	España		Desconocido
319		CNM-CM 7457	Neocucurbitaria keratinophila	España		Exudado cutáneo
320		CNM-CM 7499	Didymella heteroderae	España		Exudado de la conjuntiva

No.	Nº FMRª	Otra colección ^b	Taxón	País de origen E	istatus ^c F	uente
321		CNM-CM 7645	Medicopsis romeroi	España	ш	xudado cutáneo
322		CNM-CM 7731	Neocucurbitaria keratinophila	España	ш	xudado cutáneo
323	16926	CNM-CM 7981	Tintelnotia sp.	España	Ш	xudado cutáneo
324		CNM-CM 8010	Neocucurbitaria keratinophila	España	Ш	xudado de la conjuntiva
325		CNM-CM 8031	Phoma herbarum	España		ña
326		CNM-CM 8075	Paraphoma fimeti	España	Ш	xudado de herida
327		CNM-CM 8674	Neocucurbitaria keratinophila	España		iña del dedo del pie
328	16927	CNM-CM 8695	Didymella sp.	España	ш	xudado de la conjuntiva
329		CNM-CM 8717	Neocucurbitaria unguis-hominis	España	0	Drina
330		CNM-CM 8743	Neocucurbitaria unguis-hominis	España		iña del dedo del pie
^a FMR	, Número de la	colección de los aislados de la Facultac	<i>l de Medicina de Reus</i> , Tarragona, España.			

^b CBS, aislados de la colección del Westerdijk Fungal Biodiversity Institute, Utrecht, Países Bajos; CNM-CM, aislados de la colección del Centro Nacional de Microbiología del Instituto de Salud Carlos III, Madrid, España; CNRMA, aislados de la colección del National Reference Center for Invasive Mycoses and Antifungals, Institut Pasteur, Paris, Francia; UTHSC, aislados de la colección del Fungus Testing Laboratory, University of Texas Health Science Center, San Antonio, Estados Unidos de Norteamérica.

^c T, indica que corresponde a una cepa tipo.

Tabl	a 2. Aislados	s ambientales y cepas tipo o refe	erencia incluidas en esta Tesis, nuevos	especies o cambinacio	nes estan inc	licados en negrita.
No.	Nº FMRª	Otra colección ^b	taxón	País de origen	Estatus ^c	Fuente
-	9444	CBS 121759	Neocucurbitaria keratinophila	España	F	Raspado de cornea
2	14461	CBS 179.80	Epicoccum sorghinum	Puerto Rico		Sorghum vulgare
с	14861	CBS 856.97	Coniothyrium telephii	Finlandia		Lana mineral
4	14862	CBS 188.71	Coniothyrium telephii	Finlandia		Aire
5	14863	CBS 101636	Coniothyrium telephii	Zimbabue		Glycine max
9	14864	CBS 138.96	Neosetophoma samarorum	Países Bajos	F	Phlox paniculata
7	14865	CBS 568.94	Neosetophoma samarorum	Países Bajos		Urtica dioica
œ	14866	CBS 111112	Neocucurbitaria unguis-hominis	Países Bajos		Pulmón de <i>Agapornis</i> sp.
6	14867	CBS 297.74	Neocucurbitaria aquatica	Montenegro	F	Agua de mar
10	14868	CBS 115095	Neocucurbitaria quercina	Italia		Quercus robur
1	14869	CBS 234.92	Paracucurbitaria italica	Italia	F	Olea europaea
12	14870	CBS 407.76	Pyrenochaeta nobilis	Italia	F	Laurus nobilis
13	14871	CBS 101634	Neopyrenochaeta fragariae	Países Bajos	F	Fragaria ananassa
14	14872	CBS 812.95	Neopyrenochaeta acicola	Países Bajos	F	Tubería de agua
15	14873	CBS 122787	Pyrenochaetopsis leptospora	Alemania		Desconocido
16	14874	CBS 102876	Pyrenochaetopsis microspora	Montenegro	F	Agua
17	14875	CBS 119739	Pyrenochaetopsis setosissima	Brasil	μ	Coffea arabica
18	14876	CBS 136769	Pyrenochaetopsis poae	Países Bajos	μ	Poa sp.
19	14877	CBS 101635	Pyrenochaetopsis leptospora	Desconocido	μ	Secale cereale
20	14878	CBS 445.81	Xenopyrenochaetopsis pratorum	Nueva Zelanda	⊢	Lolium perenne

rita £ ÷ .9 ÷ .C i, ج م زر

No.	Nº FMR ^a	Otra colección ^b	taxón	País de origen	Estatus ^c	Fuente
21	14879	CBS 124454	Pyrenochaetopsis indica	India	F	Saccharum officinarum
22	14880	CBS 343.85	Pyrenochaetopsis decipiens	Países Bajos	⊢	Globodera pallida
23	14882	CBS 132531	Montagnula aloes	Sudáfrica	F	Aloe sp.
24	14883	CBS 998.72	Phyllosticta flevolandica	Países Bajos	F	Suelo
25	14884	CBS 101461	Paraconiothyrium maculicutis	EE.UU.	⊢	Lesión cutánea humana
26	14885	CBS 972.95	Paraconiothyrium cyclothyrioides	Papúa Nueva Guinea	F	Suelo
27	14886	CBS 432.75	Paraconiothyrium cyclothyrioides	Sri Lanka		Suelo debajo de <i>Hevea brasiliensis</i>
28	14887	CBS 109850	Paraconiothyrium estuarinum	Brasil	F	Sedimento de un estuario
29	14888	CBS 653.85	Paraconiothyrium fuckelii	Alemania		Picea abies
30	14889	CBS 797.95	Paraconiothyrium fuckelii	Dinamarca		Rubus sp.
31	14890	CBS 168.77	Paraconiothyrium archidendri	Burma	F	Pithecellobium bigeminum
32	14891	CBS 253.92	Paraconiothyrium lini	Países Bajos		Tanque
33	14892	CBS 112.72	Didymosphaeria variabile	Italia		Dianthus sp.
34	14893	CBS 121164	Didymosphaeria variabile	Sudáfrica		Prunus persica
35	14894	CBS 100299	Didymosphaeria rubi-ulmifolii	Brasil		Coffea arabica
36	14895	CBS 115.92	Didymosphaeria sp.	Italia		Olea europaea
37	14896	CBS 178.93	Paraconiothyrium flavescens	Países Bajos	⊢	Suelo
38	14897	CBS 123380	Didymella coffeae-arabicae	Etiopia		Coffea arabica
39	14898	CBS 391.93	Didymella protuberans	Países Bajos		Spinacia oleracea
40	14899	CBS 381.96	Didymella protuberans	Países Bajos	F	Lycium halifolium

\sim
_
~
ŝ
<u> </u>
0
Ē
_
_
_
. =
=
~
0
\sim
. . .
\sim
2
••
_
0
-
<u> </u>
_
n 1

Tab	l a 2. (continu	lación)				
No.	Nº FMRª	Otra colección ^b	taxón	País de origen	Estatus ^c	Fuente
41	14900	CBS 132.96	Didymella protuberans	Países Bajos		Rhinanthus major
42	14901	CBS 626.68	Didymella gardeniae	India	⊢	Gardenia jasminoides
43	14902	CBS 497.91	Allophoma oligotrophica	Desconocido		Coffea arabica
44	14903	CBS 436.75	Allophoma tropica	Alemania	F	Saintpaulia ionantha
45	14904	CBS 506.91	Allophoma nicaraguensis	Nicaragua	⊢	Coffea arabica
46	14905	CBS 325.82	Allophoma minor	Indonesia	⊢	Syzygium aromaticum
47	14906	CBS 162.78	Remotididymella destructiva	Países Bajos		Lycopersicon esculentum
48	14907	CBS 120105	Epicoccum brasiliense	Brasil	F	Amaranthus sp.
49	14908	CBS 186.83	Epicoccum draconis	Ruanda		Dracaena sp.
50	14909	CBS 558.81	Epicoccum plurivorum	Nueva Zelanda	F	Setaria sp.
51	14910	CBS 180.80	Epicoccum ovisporum	Sudáfrica	F	Zea mays
52	14911	CBS 181.80	Epicoccum catenisporum	Guinea-Bisáu	⊢	Oryza sativa
53	14912	CBS 377.67	Nothophoma gossypiicola	EE.UU.		Gossypium sp.
54	14913	CBS 633.92	Nothophoma quercina	Ucrania		Quercus sp.
55	14914	CBS 381.91	Nothophoma anigozanthi	Países Bajos		Anigozanthus maugleisii
56	14915	CBS 341.86	Cumuliphoma omnivirens	Bélgica	μ	Phaseolus vulgaris
57	14916	CBS 124106	Edenia gomezpompae	Filipinas	⊢	Senna alata
58	14917	CBS 357.84	Vacuiphoma bulgarica	Bulgaria	μ	Trachystemon orientale
59	15327	CBS 282.72	Pseudopyrenochaeta terretris	Países Bajos	⊢	Suelo
60	15328	CBS 378.73	Remotididymella destructiva	Tonga	⊢	Lycopersicon esculentum

No.	Nº FMR ^a	Otra colección ^b	taxón	País de origen	Estatus ^c	Fuente
61	15329	CBS 374.91	Juxtiphoma eupyrena	Países Bajos		Solanum tuberosum
62	15331	CBS 991.95	Cumuliphoma indica	Papúa Nueva Guinea		Suelo
63	15332	CBS 114179	Epicoccum proteae	Sudáfrica	F	Protea cv. carnival
64	15333	CBS 115979	Neocucurbitaria cava	Países Bajos		Desconocido
65	15334	CBS 119222	Neopyrenochaeta inflorescentiae	Sudáfrica	F	Protea neriifolia
66	15335	CBS 274.60	Ectophoma multirostrata	Maharashtra	F	Suelo
67	15336	CBS 368.65	Ectophoma multirostrata	India		Desconocido
68	15337	CBS 527.66	Juxtiphoma eupyrena	Alemania		Suelo de un campo de trigo
69	15338	CBS 130.69	Paraboeremia putaminum	Dinamarca		Malus sylvestris
70	15339	CBS 463.69	Didymella musae	India		Mangifera indica
71	15340	CBS 615.75	Phoma herbarum	Países Bajos		Rosa multiflora cv. cathayensis
72	15341	CBS 654.77	Cumuliphoma indica	India	F	Desconocido
73	15342	CBS 110.79	Ectophoma multirostrata	Países Bajos		Cucumis sativus
74	15343	CBS 193.82	Similiphoma crystallifera	Austria	F	Chamaespartium sagittale
75	15344	CBS 187.83	Paraboeremia adianticola	EE.UU.		Polystichum adiantiforme
76	15345	CBS 374.84	Didymella pinodes	Bélgica		Pisum sativum
77	15346	CBS 267.92	Ectophoma pomi	India	⊢	Coffea arabica

Solanum lycopersicon

Guadeloupe

Remotididymella destructiva

Paraboeremia selaginellae

Xenodidymella saxea

CBS 419.92

15347

78

CBS 122.93 CBS 133.93

15348

79

15349

80

Mármol corroído

 \vdash ⊢

Desconocido Países Bajos

Selaginella sp.

Tabla 2. (continuación)

No.	Nº FMRª	Otra colección ^b	taxón	País de origen	Estatus ^c	Fuente
81	15350	CBS 134.96	Phoma herbarum	Países Bajos		Delphinium sp.
82	15351	CBS 644.97	Didymella sancta	Argentina		Opuntia ficus-indica
83	15352	CBS 689.97	Neoascochyta tardicrescens	Noruega	F	Heno
84	15744	CBS 149.32	Cucurbidothis pityophila	Países Bajos		Desconocido
85	15745	CBS 115.58	Didymella brunneospora	Alemania	F	Chrysanthemum roseum
86	15746	CBS 306.65	Pseudopyrenochaeta lycopersici	Alemania	F	Lycopersicon esculentum
87	15747	CBS 257.68	Neocucurbitaria cava	Alemania	F	Suelo de un campo de trigo
88	15748	CBS 112.79	Neocucurbitaria unguis-hominis	Gales		Muestra de aire
89	15749	CBS 606.94	Pyrenochaeta ligni-putridi	Suiza	F	Picea abies
06	15750	CBS 379.96	Didymella pteridis	Países Bajos		Pteris sp.
91	15751	CBS 130007	Cucurbitaria berberidis	Austria	F	Berberis vulgaris
92	15752	CBS 131315	Parapyrenochaeta protearum	Sudáfrica	F	Protea mundii
93	15753	CBS 137997	Parapyrenochaeta protearum	Francia		Pinus sp.
94	15754	CBS 139022	Neopyrenochaeta telephoni	India	F	Pantalla de un teléfono móbil
95	15755	CBS 141291	Parapyrenochaeta acaciae	Australia	F	<i>Acacia</i> sp.
96	16593	CBS 248.79	Paracucurbitaria corni	Países Bajos		Fraxinus excelsior
97	16827	CBS 170.96	Roussoella sp.	Papúa Nueva Guinea		Bambú
98	16828	CBS 119687	Dothidotthia symphoricarpi	EE.UU.	μ	Symphoricarpos rotundifolius
66	16829	CBS 119688	Dothidotthia aspera	EE.UU.		Acer negundo
100	16848	CBS 134.97	Libertasomyces quercus	España	⊢	Quercus ilex

-	<u> </u>
٠C)
C)
π	5
=	5
.=	
+	
	•
~	<u> </u>
C	,
\sim	-
<u> </u>	i –
• •	
-	
")
-	
	2
n	5

Tabl	a 2. (continu	lación)				
No.	Nº FMRª	Otra colección ^b	taxón	País de origen	Estatus ^c	Fuente
101	16849	CBS 139506	Pyrenochaetopsis tabarestanensis	Irán	F	Suelo
102	14524	CBS 141688	Pseudoascochyta pratensis	España	F	Suelo
103	15109		Libertasomyces sp.	España		Heces de pájaro
104	15110	CBS 141689; ICMP 10493	Pseudoascochyta novae-zelandiea	Nueva Zelanda	F	Cordyline australis
105	15230		Preussia intermedia	España		Heces de hervíboro
106	15231	CBS 143031	Coniella heterospora	España	F	Heces de hervíboro
107	15232		Preussia intermedia	España		Heces de hervíboro
108	15247		Westerdykella sp.	España		Heces de hervíboro
109	15572		Neocucurbitaria cava	España		Heces de hervíboro
110	15573		Roussoella sp.	España		Heces de hervíboro
111	15652		Roussoella sp.	España		Heces de hervíboro
112	15653		Allophoma labilis	Argentina		Suelo
113	15846		Nothophoma gossypiicola	España		Heces de hervíboro
114	15847		Preussia sp.	España		Heces de hervíboro
115	15848		Preussia sp.	España		Heces de hervíboro
116	15906		Coniothyrium sp.	España		Heces de hervíboro
117	15907		Allophoma labilis	México		Suelo
118	15908		Didymella subglomerata	México		Suelo
119	16396		Didymella glomerata	España		Suelo
120	16397		Volutella ciliata	España		Suelo

No.	Nº FMRª	Otra colección ^b	taxón	País de origen	Estatus ^c	Fuente
121	16398	CBS 144249	Alfaria dactylis	España	F	Phoenix dactylifera
122	16399		Volutella ciliata	España		Suelo
a FMF	Nímero de	la colección de los aislados de l	a Facultad de Medicina de Reus Tarragona	Esnaña		

і анадона, пърана LINIC, NUL

^b CBS, aislados de la colección del Westerdijk Fungal Biodiversity Institute, Utrecht, Países Bajos; ICMP, aislado de la colección del International Collection of Microorganisms from Plants, Auckland, Nueva Zelanda.

 $^{\circ}$ T, indica que corresponde a una cepa tipo.

PCR utilizadas en esta tesis.
lación en la P
nes de hibrid
res y condicio
3. Cebador

Tabla 3. Cebadores y	' condiciones de	hibridación e	n la PCR utilizadas en esta tesis.			
Locus	Cebador	Dirección	Secuencia (5'–3')	T° Hibridación (C°)	Tiempo (s)	Referencia
Actina (<i>act</i>)	ACT-512F ACT-783R	Forward Reverse	ATG TGC AAG GCC GGT TTC GC TAC GAG TCC TTC TGG CCC AT	56	60	Carbone & Kohn Carbone & Kohn
Beta-tubulina (<i>tub</i> 2)	TUB2Fd TUB4Rd	Forward Reverse	GTB CAC CTY CAR ACC GGY CAR TG CCR GAY TGR CCR AAR ACR AAG TTG TC	56	45	Woudenberg <i>et al.</i> Woudenberg <i>et al.</i>
Factor de elongación (<i>tef</i> 1)	TEF1-983F TEF1-2218R	Forward Reverse	GCY CCY GGH CAY CGT GAY TTY AT AT GAC ACC RAC RGC RAC RGT YTG	57	80	Schoch <i>et al.</i> Schoch <i>et al.</i>
Región espaciadora intergénica del ARNr (ITS)	ITS-5 ITS-4	Forward Reverse	GGA AGT AAA AGT CGT AAC AAG G TCC TCC GCT TAT TGA TAT GC	53	60	White <i>et al.</i> White <i>et al.</i>
Subunidad mayor de la ARN polimerasa II (<i>rpb</i> 2)	fRPB2-5F fRPB2-7R	Forward Reverse	GAY GAY MGW GAT CAY TTY GG CCC ATW GCY TGC TTM CCC AT	56	60	Liu <i>et al.</i> Liu <i>et al.</i>
Subunidad mayor 28S del ARNr (LSU)	LR0R LR5	Forward Reverse	GTA CCC GCT GAA CTT AAG C TCC TGA GGG AAA CTT CG	53	60	Rehner & Samuels Vilgalys & Hester

U N I V E R S I T A T ROVIRA i VIRGILI