List of figures

1.1 Expected fluences at CMS inner tracker after 10 LHC years	2
1.2 Temperature dependence of the charge collection efficiency	5
1.3 $N_{\text{eff}}(T)$ for detectors irradiated by an ultra-high dose of γ -rays [10]	6
1.4 Roman Pot stations located on each side of the interaction point on the LHC tunnel	9
1.5 Position of edgeless silicon detectors as close as possible to the beam	10
2.1 Main components to be integrated in a module	14
2.2 Cross-section of the carbon fiber composite spacer where the cooling pipes are embedded	15
2.3 Thermal conductivity of materials often used in silicon detector modules	17
2.4 Thermal expansion of materials often used in silicon detector modules	17
2.5 Volumes (left) and detail of spacer (right) of the finite element model	21
2.6 Temperature distribution of the module for a geometry with two cooling pipes, silicon support pl	late
and detector, alumina ceramic readout electronics, Pyrex® pitch adapter, Stycast® 2850 GT g	lue
layers and Kapton® film	22
2.7 Temperature distribution of the module for a geometry with one cooling pipe, AlN support pla	ate,
silicon detector, alumina ceramic readout electronics, Pyrex® pitch adapter, Stycast® 2850 GT g	lue
layers and Kapton® film	23
2.8 Temperature distribution of the module with one cooling pipe, silicon support plate, detect	tor,
readout electronics and pitch adapter, Stycast® 2850 GT glue layers and Kapton® film	24
2.9 Microtubes of 800 μ m outer diameter used to cool silicon microstrip detector modules	25
2.10Warm compressor circuit scheme and cycle in the p-h diagram for argon	26
2.11 Microscopic image of the transversal section of the module cooling pipe	27
2.12Heat transfer coefficients in single-phase turbulent liquid and vapor flow, extracted from [27] .	29
2.13Schematic showing the principles of alignment of the cold module	32
2.14Assembly tooling for the prototype module with a small sensor.	33
2.15Mechanism to position the transfer plate with respect to the base plate	33
2.16The assembly of a prototype module using positioning and transfer plates	34
2.17The assembly tooling for the module with a large sensor	34
2.18Assembly tools for carbon fiber composite spacer.	35
2.19Thermally isolating precision support posts	36
2.20 Vacuum chamber hosting a module with a large sensor.	37
2.21 Mechanical module prototype built using the assembly tooling	37
3.1 Preparation of fused quartz filled epoxy samples at CERN.	40
3.2 Experimental setup to measure the thermal dilatation of fused quartz filled epoxies	41
3.3 Comparison between standard and experimental values of the integral thermal dilatation of a cop	per
sample of certified thermal contraction	41
3.4 Integral thermal dilatation of silicon, copper (SRM 736L1) and unfilled Araldite® 20	11,
Stycast® 1266 and R&G Type L epoxies.	42
3.5 Integral thermal dilatation of fused quartz filled Araldite® 2011, R&G Type L and Stycast® 12	266
as a function of temperature	43

3.6	Epoxy sample geometry	4
3.7	Systematic error in the measurement of the integral thermal dilatation	15
3.8	Strain-stress curve for unfilled Stycast® 1266	17
3.9	Comparison between the theoretical models which predict the Young modulus of filled composite	es
	and the experimental data.	50
3.10	Comparison between the theoretical models which predict the thermal dilatation coefficient of fille	ed
	composites and the experimental data	50
3.11	Broken silicon-epoxy-silicon joints after thermal cycling into an open bath of liquid N_2 5	51
4.1	Experimental setup for heat transfer measurements in microtubes	53
4.2	Experimental setup for heat transfer and thermal module tests	54
4.3	The instrumented mechanical module sitting at the test stand	55
4.4	Comparison between experimental data and homogeneous two-phase flow pressure drop model for	or
	mass flows of 50 mg/s, 60 mg/s and 70 mg/s	59
4.5	Dependence of ΔT with applied heat load on the electronics	50
4.6	Results for thermal tests 2 and 3	52
4.7	Dependence of the ΔT with the module inlet vapour fraction.	53
4.8	Instabilities observed when entering the module with sub-cooled liquid	54
4.9	Stability tests for the compressor system	55
4.10	The new model reproduces the geometry of the carbon fiber composite spacer	56
4.11	The temperature distribution of the prototype module with a heat load of 2 W at the readout	ut
	electronics, and an inlet and outlet vapour fraction of 0.2 and 0.75	58
4.12	Simulated temperature on the module as a function of the heat load applied on the electronics 6	58
4.13	Comparison between experimental and simulated data for test 1	59
5.1	Full electrical module prototype	1
5.2	Detail of the resistors needed for biasing the strips	'4
5.3	I-V and C-V characteristic curves of Cz-Si and Fz-Si sensors at room temperature [41][42] 7	'4
5.4	Pitch adapter magnification of the pads on the APV25 and sensor side	6
5.5	Detail of the bonding between the sensor, the pitch adapter and APV25, from left to right 7	6
5.6	Detail of the cryostat cover used in the low temperature hybrid tests	17
5.7	Experimental setup for low temperature readout electronics tests	'8
5.8	APV25 pedestal and common mode subtracted noise at 300 and 210 K	19
5.9	APV25 pulse shape in peak mode with inverter off and deconvolution mode with inverter off at 30	0,
	273, 245 and 210 K, for a Kapton hybrid laminated on ceramics	30
<i>c</i> 1		
6.1	A pair of edgeless diodes mounted on a printed circuit board	52
6.2	Leakage current of an edgeless diode as function of temperature, at 50 V reverse bias potential. &	33
6.3	The V-I characteristic of the edgeless diode at RT and at 90 K	34
6.4	Metrology measurements of the gap width between the pair of edgeless diodes	35
6.5	Layout of the test beam setup at the X5 west experimental area at CERN	35
6.6	Vertical strip planes of the CMS tracker used as a reference telescope	36
6.7	Horizontal strip planes arranged in a petal configuration of the CMS tracker	36
6.8	Schematic layout of the H3/X5 beam	37
6.9	Distribution of the parameter <i>a</i> of the fitted tracks for a CMS run	39
6.10	Distribution of the parameter b of the fitted tracks for a CMS run	39
6.11	Residuals at the tracker TOBs)3

6.13Distribution of σ_a and σ_b calculated for each track	6.12Number of strips for each cluster
6.14Simulated 2D image of the pair of edgeless diodes	6.13Distribution of σ_a and σ_b calculated for each track
6.15Simulated 1D image of the pair of edgeless diodes	6.14Simulated 2D image of the pair of edgeless diodes
6.16TOB 1 image of the beam and fit with a gaussian function	6.15Simulated 1D image of the pair of edgeless diodes
6.17 The <i>x</i> -distribution of the extrapolated tracks at the edgeless diodes plane (50 V)	6.16TOB 1 image of the beam and fit with a gaussian function
6.18 The <i>x</i> -distribution of the extrapolated tracks at the edgeless diodes plane (100 V)	6.17The x-distribution of the extrapolated tracks at the edgeless diodes plane (50 V)
6.19 Impact coordinates at the reference tracker planes (100 V bias potential edgeless diodes) 100 6.20 The <i>x</i> -distribution of the extrapolated tracks at the edgeless diodes plane (150 V) 101 6.21 Gap width parameter and χ^2 as a function of the number of bins included in the fit 102 6.22 Variation of the χ^2 of the fit with d_g when σ_g is fixed to 180 µm. Variation of the χ^2 of the fit with σ_g when d_g is fixed to 470 µm	6.18The x-distribution of the extrapolated tracks at the edgeless diodes plane (100 V)
6.20 The <i>x</i> -distribution of the extrapolated tracks at the edgeless diodes plane (150 V) 101 6.21 Gap width parameter and χ^2 as a function of the number of bins included in the fit 102 6.22 Variation of the χ^2 of the fit with d_g when σ_g is fixed to 180 µm. Variation of the χ^2 of the fit with σ_g when d_g is fixed to 470 µm	6.19Impact coordinates at the reference tracker planes (100 V bias potential edgeless diodes) 100
6.21 Gap width parameter and χ^2 as a function of the number of bins included in the fit 102 6.22 Variation of the χ^2 of the fit with d_g when σ_g is fixed to 180 µm. Variation of the χ^2 of the fit with σ_g when d_g is fixed to 470 µm	6.20The x-distribution of the extrapolated tracks at the edgeless diodes plane (150 V) 101
6.22 Variation of the χ^2 of the fit with d_g when σ_g is fixed to 180 µm. Variation of the χ^2 of the fit with σ_g when d_g is fixed to 470 µm	6.21 Gap width parameter and χ^2 as a function of the number of bins included in the fit 102
$\sigma_{\rm g}$ when $d_{\rm g}$ is fixed to 470 µm	6.22 Variation of the χ^2 of the fit with d_g when σ_g is fixed to 180 µm. Variation of the χ^2 of the fit with
6.23 Distribution of the hit strips from one of the petal CMS sensors with horizontal strips 104 6.24 Comparison between metrology and beam measurements of the gap width 104	$\sigma_{\rm g}$ when $d_{\rm g}$ is fixed to 470 μ m
6.24 Comparison between metrology and beam measurements of the gap width	6.23 Distribution of the hit strips from one of the petal CMS sensors with horizontal strips 104
	6.24 Comparison between metrology and beam measurements of the gap width 104