
Chapter 6

Optimization methods for IbM

parameter estimation

6.1 Introduction

Individual-based Modelling and simulation of microbial systems may have two aims.
On the one hand, they are used to improve the comprehension of the system's behaviour.
On the other hand, once they have been validated, they may be used as virtual experi-
ments in order to predict the behaviour of a system under certain conditions.

The use of IbM to improve understanding of a microbial system is the main utility
of this methodology (Dens et al., 2005a; Dens et al., 2005b). An estimation of the input
parameters of the simulations is necessary to study the real behaviour in depth, since the
use of an inadequate set of input parameters may produce incoherent and arti�cial results.
Therefore, if the behaviour of a microbial system is studied in the framework of the real
parameters, the detection of a non-predicted behaviour contributes to the understanding
of that system.

This thesis aims to improve understanding of the lag phase through IbM simulations.
In the previous chapter, the soundness of INDISIM predictions and, therefore, the validity
of the model behind the simulator were qualitatively checked by means of experimental
measurements. In order to improve our understanding of the mechanisms that cause
the lag phase, further experiments were also proposed. In this chapter we will de�ne a
methodology that should allow for the setting up of a quantitative relationship between
the experimental work and the IbM simulations.
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The predictive side of the IbM requires an accurate setting of the involved parameters,
since the IbM simulations are treated as virtual experiments (Hilker et al., 2006). There-
fore, speci�c and numerical results for delimited conditions are expected. Input data
must be perfectly �tted to the microorganism strain, the medium and the conditions that
are to be reproduced. The parameter estimation must be carried out carefully to obtain
proper predictions. However, in this case the continuous models are usually more e�cient
in terms of time expenditures than IbM simulations.

In general, the input parameters may be obtained from two di�erent sources. The
bibliography may give values that are based on experimental data or theoretical analysis.
Some of the parameters that are not found in the literature may be estimated by per-
forming ad-hoc experiments. The parameters that can not be found in the literature nor
measured through experiments must be estimated with optimization methods.

There is a third �eld, related to the understanding nature of the IbM, where IbM
parameter estimation acquires a special signi�cance. It is the use of an IbM simulation
to quantify the unknown parameters that are di�cult to measure. That is, the IbM
parameter estimation may be an aim in itself. Input data in IbM simulations are mainly
related to individual bacterial properties that are di�cult to determine experimentally.
Therefore, estimation may be useful to generate a pool of microbial data. This is the
parameter estimation with an IbM, which goes beyond mere adjustment of the model.

In previous chapters we have seen that INDISIM simulations qualitatively reproduce
the evolution of the bacterial cultures during the transient phases. In this chapter we will
see that INDISIM simulations also allow the obtaining of quantitative knowledge.

Several methods for parameter estimation have been developed in the framework of
continuous modelling. However, they are not usable with IbM because they are generally
based on gradient methods, which are not applicable in IbM because of their discrete
nature.

The aim of this chapter is to adapt, test and evaluate the usefulness of di�erent param-
eterization methods for IbM. The work behind this chapter was carried out at BioTeC
(Bioprocess Technology and Control research group, Katholieke Universiteit Leuven),
during a stay from January to April 2007. It was a collaboration with Dr. Arnout Stan-
daert and Dr. Kristel Bernaerts, with the supervision of Dr. Jan Van Impe, and the
parameterization models were tested with BacSim (Kreft et al., 1998) and INDISIM in
parallel, obtaining similar results.

In this chapter, three methods are adapted and tried out for estimating one, two and
three parameters. We will also establish a general framework for performing parameter
estimation on any IbM set.
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The optimization processes require a huge number of simulations. Therefore, a sim-
pli�ed version of INDISIM is used and some slight modi�cations in the model are made
in order to facilitate the comparison with BacSim results. Nevertheless, this chapter
presents a methodological development. Neither the INDISIM version used nor the input
parameters are signi�cant for the �nal conclusions. Once the most appropriate method
is identi�ed, adapted and implemented for use in INDISIM parameter estimation, it will
be used in the future to quantify speci�c parameters in a thoroughly tested version of
INDISIM for the speci�c case.

6.1.1 Input indexes and parameters of an IbM simulation

Individual-based Models are bottom-up approaches. Basically, when the simulations
are performed, microscopic data are input and macroscopic results are obtained. The
input data may be divided in two groups:

1. Indexes and non-physical parameters, which are part of the programming scheme.
They are dimensionless parameters, for instance:

(a) dimension parameters, to set the arrays and matrices;

(b) choice indexes, that allow the user to choose between di�erent options such as
to agitate or not, opened or closed culture or the kind of metabolism, among
others;

(c) random seeds, to generate the random numbers during the simulation.

2. Physical parameters, which can be also classi�ed in two sub-groups:

(a) Intrinsic parameters of the spatial or biological model such as uptake constants,
mass to initiate the reproduction cycle, cell cycle duration, yields or di�usion
constants, among others.

(b) Characteristic parameters of a certain simulation: initial conditions of the in-
oculum and the environment (initial biomass distribution or nutrient amount),
and other conditions that de�ne the simulation (maximum duration or maxi-
mum number of bacteria and nutrient �uxes, among others).

The �rst class of parameters is inherent to the programming strategies, so there is no
need for estimating them. The initial conditions of the inoculum and the environment, as
well as the conditions that de�ne the simulation, are also mainly de�ned by the system
to be reproduced. However, some particular conditions may be di�cult to evaluate - for
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instance, the initial conditions of the inoculum. Finally, the intrinsic parameters of the
model must be set. Some of these may be determined either from the bibliography or the
experimental measures.

Nevertheless, some of these parameters may be di�cult to obtain, due to the essence
of the IbM. For instance, the uptake constants or the mass to initiate the reproduction
cycle for the speci�c strain are unlikely to be experimentally measured or to be found
in the bibliography. Moreover, in many cases the experimentally measured macroscopic
parameters do not have a direct equivalence to the microscopic parameters. Actually,
when we relate macroscopic measurements to microscopic parameters we are using a
model; the soundness of this relationship depends on the soundness of the model used.

Therefore, when some parameters are di�cult or impossible to �x from the litera-
ture or the experiments, the parameter estimation of the IbM is necessary to adjust the
simulations to the real systems.

6.1.2 Basis of the IbM parameter estimation

To estimate the parameters of an IbM, some steps must be taken. First of all, it
is necessary to set the values that can be deduced from the literature or induced from
experimental data, which are the most arguable sources. The parameters to be estimated
should be as low as possible to reduce the parameterization time. So this step concludes
with the identi�cation of the parameters to be estimated. It is also useful to know some
thresholds of these values or at least they order of magnitude. Since we are talking about
IbM models of microbiological systems, the parameters to be estimated must be biological
or physical values with their units. Therefore, the literature should allow a delimitation
of their possible values.

To carry out the estimation of the chosen parameters, experimental information about
the system is necessary. That is, the logical estimation process is based on the �tting
of the unknown parameters so that simulation results are as similar as possible to an
experimental dataset. So, the second step is the choice of the experimental dataset (or
datasets) to be used. The IbM simulations must be adapted to generate results that are
comparable to these data.

In a third step, a numerical method to evaluate the soundness of the simulations re-
garding the experimental data is needed. This numerical evaluation is usually an objective
function that decreases with the soundness of the �tting. Typically, the sum of squared
errors (SSE) or the mean square error are used (MSE) (Standaert, 2007).

Once the three actors are on the table (IbM and parameters to be estimated, experi-
mental dataset and objective function), the parameterization process can start. The aim
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is to �nd the parameter values combination that gives the lowest value for the objective
function. At this moment, a method to perform the search for the lowest value in a
systematic manner is needed.

6.2 Parameter estimation with INDISIM

6.2.1 Experimental dataset

The experimental dataset has been taken from Bernaerts (2002). It corresponds to an
experiment performed with Escherichia coli K12 MG1655, with the conditions detailed
below (Bernaerts, 2002).

The strain was stored at −80 oC in Brain Heart Infusion (BHI) broth (Oxoid) sup-
plemented with 25% glycerol (Acros). Inocula were prepared by transferring a loopful of
the stock culture to 20 ml BHI in a �ask of 100 ml. This inoculated �ask was placed on
a rotary shaker at 175 rpm in a temperature incubator (Temarks, model KBP6151). The
culture was then allowed to grow for 24 h at 18 oC. Then, 100 ml of the cell suspension was
transferred to 20 ml fresh BHI, and incubated for 18 h under the same conditions. Cells
within a late-exponential or early stationary growth phase were obtained and inoculated
into a new BHI medium.

The initial pH of the culture medium before inoculation was set to 7.55 by addition
of KOH after autoclaving. The initial cell concentration after inoculation was around
104 CFU/ml. The E. coli growth was performed in a bioreactor (BIOFLO III, New
Brunswick Scienti�c Inc., US) that maintained the temperature at 27.5 oC. The pH was
also kept constant (7.55), and the agitation speed was �xed at 400 rpm.

After serial dilution of the cell suspension in BHI broth, the appropriate dilution was
surface-plated on BHI agar using a spiral plate (Eddy Jet IUL Instruments S.A., Spain).
Plates were incubated for 18 − 24 h at 37 oC and enumerated to obtain the CFU/ml

counts.
The resulting curve is shown in Figure 6.1. The parameter estimation will be carried

out in two steps. First of all, only the exponential phase data will be used (Fig. 6.2).
Then, the lag and exponential phase data will be used.

6.2.2 Objective function

A function that quanti�es the soundness of the simulations is needed as an objective
function for the parameter estimation methods. This function must re�ect whether the
simulation results �t the experimental data well. A common function that is used for
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Figure 6.1: Growth curve for an Escherichia coli strain growing in a BHI broth at 27.5 oC

(Bernaerts, 2002).

similar cases is the Mean Square Error or MSE. This quanti�es the di�erences between
the experimental points and the corresponding points of the simulated curve. Thus, the
closer the points, the lower the MSE value.

In this speci�c case we work with cell concentration. Our experimental data consist
of a set of cell concentration measures at certain measure times, Cexp(ti). The simulation
gives the cell concentration at each time step (ts = 1min). Therefore, we can identify the
cell levels resulting from the simulation that correspond to the measure times, Csim(ti).
If n is the total number of data points that is used in the calculation, the MSE will be:

MSE =
1

n− 1

n∑
i=1

(Cexp(ti)− Csim(ti))2 (6.1)

6.2.3 INDISIM adaptation

The aim of this chapter is to adapt, test and evaluate the usefulness of di�erent
parameterization methods. Thus, it is not necessary to work with the complete INDISIM
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Figure 6.2: Exponential part of the experimental growth curve that will be used in this study

(Bernaerts, 2002).

version. The version used is a simpli�cation of the one presented in Section 2.3, in
order to obtain fast simulations that allow fast multi-evaluations. This optimization of
the methods for IbM parameter estimation has been done together with BioTeC research
group (Katholieke Universiteit Leuven), who work on BacSim parameter estimation (Kreft
et al., 1998; Kreft et al., 2001; Standaert, 2007). Therefore, we need an INDISIM version
that is similar to BacSim in order to compare results and extract common conclusions.
Some of the main changes and simpli�cations are detailed below.

Output: The experimental dataset is the growth curve presented in Figure 6.1. There-
fore, the only output that we need from the simulations is the evolution of the cell con-
centration. The suppression of graphic output and unnecessary calculations considerably
reduces the simulation time.

Experimental setup: The dataset comes from a homogeneous batch culture. There-
fore, the model is adapted to shu�e around the nutrient particles and the bacteria at
each time step. There is no need to introduce randomness when setting the order of
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the sequential turns of action, and the nutrient di�usion and bacterial movement can be
avoided. These simpli�cations result in a simulation time reduction.

Random number generator: Multi-evaluations and multi-runs must be performed.
It is important to use a random number generator with a long cycle. We have implemented
with INDISIM a pseudo random number generator based on Mersenne-Twister algorithm
(Matsumoto and Nishimuram, 1998).

Reproduction model: For the reasons given above, the reproduction model is slightly
modi�ed in some simulations: it is used the mass at division md (at the end of the cell
cycle) instead of the mass to initiate the reproduction cycle mR (at the beginning of the
reproduction cycle). That is, the cell cycle duration is not taken into account, and the
reproduction occurs immediately when the cell reaches the md. The relationship between
them is md = mR · e−µmax·tR . This simpli�cation is made in accord with the aim of this
chapter, which is the assay of the optimization methods for carrying out IbM parameter
estimation.

Uptake model: Regarding the uptake, a double Gaussian is used, in order to be co-
herent with BacSim's model. On the one hand, we maintain a small variability in the
individual mean uptake each time step. On the other hand, a bigger Gaussian is intro-
duced to give individual mean uptake values, as is done in BacSim. After some tests,
a CV = 0.15 for this Gaussian is chosen. This assumption has to be considered as a
temporal artifact to test the methods, since it has serious consequences on the biological
model. It implies that there are some bacteria with a natural tendency to be fast growers,
while there are other bacteria that tend to grow slowly. But some questions arise from
this. Is this hereditary behaviour? If it is, natural selection should favor the fast growers
over the slow. If it is not, it is di�cult to defend such a strong tendency without a genetic
component. But, again, the aim of the chapter arises and the simpli�cations or small
modi�cations of the model do not have to be strongly considered.

This example shows that di�erent behaviour models are implicit in the parameteriza-
tion processes. Thus, depending on the chosen model we will obtain di�erent parameters.

With these simpli�cations and assumptions, an INDISIM simulation with an initial
population of 100 cells takes between 35 seconds and 1 minute to reach a population of
106 cells in a standard PC. Since the experimental data covers a cell level from 104 to
108CFU/ml, a scaling of the simulation results is performed prior to the MSE evaluation.
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The scaling is proportionally done by means of simple �tting procedures appropriate to
the purposes of this study (Standaert, 2007).

Input parameters

The non-physical parameters are adjusted to chose the experimental setup conditions,
a batch homogeneous culture, and set the particular conditions enumerated above.

The physical parameter input �le has been modi�ed to introduce the parameters in
real units. These values are converted into simulation units in the �rst subroutine. The
choice of these parameters is made according to the values used by BacSim, which are
taken from the bibliography (Table 6.1).

Table 6.1: Overview of the physical input parameters and the bibliography sources.

Parameter Value Source

Cellular density, ρ (dry g/l) 290 Table 2 of Kreft et al. (1998)

Reproduction cycle duration,

tR (min)

27 Table 3 of Bremer and Dennis (1996)

for E. coli growing at 37oC and

µ = 1h−1

Mass at division, md (dry pg) 0.426 Table 1 of Kreft et al. (1998)1

mass to initiate the
reproduction cycle, mR

(dry pg)

0.276 From md and µexp, extrapolating the

growth during reproduction cycle

(mR = md · e−µexp·tR)

Yield Y

(dry g cell/mol glucose)

78.69 Table 2 of Kreft et al. (1998) and

Pirt's relationship from Domach et al.

(1983)2

1The volume at division, Vd, is calculated as Vd = Vd,min2g, where g is the number of generations
per hour (g = µ/ln2). The volume Vd,min would be the volume at division if µ = 0. It is
evaluated with the expression Vd,min = 2V u/1.433, where V u is the mean cellular volume when
µ = 0 (Kreft et al., 1998). The mass at division md can be easily calculated with the cellular
density.

2Pirt's relationship establishes 1/Y = 1/Ymax + m/µ. Taking Ymax = 0.444 fgdrybiom/fgglucose

and m = 0.0004 fgglucose/fgdrybiom ·min from Kreft et al. (1998) and µmax = 0.9669 h−1 from

the experimental dataset, we obtain the indicated result.

Parameters to be estimated

The optimization process has been carried out in two phases. In the �rst step, the
three methods were used to estimate one or two parameters to �t the experimental data
corresponding to the exponential phase. In the second step, the NEWUOA method was
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used to estimate two or three parameters with the data of the lag and exponential phases.
This is an overview of the di�erent estimations:

1. Exponential phase data

(a) One parameter: mean maximum uptake rate (umax)

2. Lag and exponential phase data

(a) Two parameters: mean maximum uptake rate (umax) and mean mass at divi-
sion (md), �xing an initial biomass distribution among bacteria

(b) Three parameters: mean maximum uptake rate (umax) and initial biomass
distribution among bacteria (A and B of a Weibull distribution), �xing the
mean mass at division

6.3 Parameter estimation methods

6.3.1 Classical method: grid search

The classical method for parameter estimations consists in evaluating the objective
function (MSE) for di�erent values of the parameter to be estimated, and taking as the
best value that one that minimizes the objective function. When more than one parameter
is being estimated, the same process must be carried out with di�erent combinations of
the parameter values, taking as the best the combination that gives the minimum value
for the objective function.

To do this in a systematic way, a grid with the di�erent combinations to be evaluated
is generated. Each parameter is discretized in a certain interval where its best value is
assumed to be. Therefore, for each parameter pi a number npi

of points to be tested are
set. If N parameters must be estimated, the grid will consist of np1×np2×...×npi×...×npN

points. The value of the objective function is evaluated at each point of the grid, and
the best combination of the parameters is given by the grid point where the objective
function has the minimum value.

For IbM parameter estimation, every objective function estimate requires a simulation
with the corresponding input parameters. IbM simulations always include some random-
ness that comes either from the programming strategies or from the computing essence.
Therefore, the same set of input parameters may result in di�erent output parameters
for two independent simulations. This re�ects the reality: it is impossible to obtain the
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same results from two independent experiments, although the conditions are assumed to
be the same.

The grid search method must take into account this phenomenon. Usually several
repetitions of the whole search are performed, so that we have a distribution of 'best esti-
mates' as a result. From the histogram of the obtained best estimates for each parameter,
the �nal best estimation can be obtained.

This method does not require a complex implementation. We only need a program
that generates the grid and executes the corresponding INDISIM simulations. For each
simulation, the value of the objective function must be assessed (Fig. 6.3).

Figure 6.3: Overview of the implementation of the grid search method for parameterization

INDISIM.

This method is probably the most reliable, but also the most tedious. It requires a lot
of simulations and, therefore, it involves a great time expenditure. For instance, let us
suppose that two parameters must be estimated. These parameters are discretized in 20
values each one, so a 20× 20 grid is created, resulting in 400 points where the MSE must
be assessed. If 100 repetitions of the whole search are performed to solve the problem of
the randomness, 400× 100 = 40000 simulations must be carried out. Let us suppose that
we are working with simulations that last 5 minutes each on a standard PC. Then, the
total amount of time required to perform the grid search is 5× 40000 = 200000 minutes.
This is equivalent to 139 days-more than 4 months! Although several simulations may be
performed in parallel and the time can vary depending on the computer used, the total
time is still great.

Several methods have been developed to �nd the minimum of a function without
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assessing its value at each grid point. We need some methods that optimize the search
for the minimum of a non-derivable function. Two methods that do not use the function
gradient in their algorithms have been chosen to be adapted and tested. They are the
Nelder-Mead Threshold Accepting (Section 6.3.2) and the NEWUOA (Section 6.3.3).

6.3.2 Nelder-Mead Threshold Accepting

The Nelder-Mead simplex search method is an algorithm that was �rst proposed by
Nelder and Mead (1965). It has become one of the most used algorithms for nonlinear
unconstrained optimization. It is a direct search method, since it does not use derivatives.
The basic unit in this method is the simplex : a geometric �gure in an n-dimensional space
that is a convex hull of n+1 vertexes, with each vertex representing a certain combination
of the n parameters to be estimated. The value of the objective function is assessed in each
simplex vertex, and a new simplex that is closer to the objective function is constructed
in each step. The rules for constructing each new simplex are based on a set of geometric
operations: re�ection, expansion, outside contraction, inside contraction and shrinkage

(for a graphical description of these operations see Standaert, 2007). The value of the
objective function determines whether new vertexes are accepted or rejected. If a new
vertex is accepted, a new simplex is constructed by rejecting the worst existing vertex,
always according to the objective function values.

Four parameters are de�ned to determine the impact of the geometric operations.
They are the coe�cients of re�ection (ρ = 1), expansion (χ = 2), contraction (γ = 1/2)
and shrinkage (σ = 1/2) (Standaert, 2007).

As was pointed out in Section 6.3.1, if we perform independent IbM simulations there
is an inherent randomness that results in slightly di�erent output for the same input
parameters and conditions. This phenomenon can entail the appearance of local minima
in the objective function. To solve this obstacle, the Threshold Accepting (TA) algorithm
is incorporated (Dueck and Scheuer, 1990). TA performs a local search that escapes local
minima by means of accepting solutions that are not worse than the current one by more
than a given threshold, τ . That is, a new point is randomly chosen around the existing
one. If the objective function value in the new point is not worse than its value in the old
point plus τ , the new point replaces the old one. The value of τ is successively decreased
as the real minimum comes closer.
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NMTA for INDISIM parameter estimation

The Nelder-Mead Threshold Accepting (NMTA) algorithm for BacSim one- parameter
estimation was implemented in Matlab by Standaert (2007). The original program was
adapted to render the INDISIM parameter estimation with the chosen experimental data.
Figure 6.4 shows an overview of the structure of the implemented program.

Figure 6.4: Overview of the implementation of the NMTA method for optimizing the INDISIM

parameter estimation.

In this study, the local minima will be avoided by means of several mechanisms. The
most important is the incorporation of the above-mentioned TA algorithm. Then, we have
three complementary mechanisms. At each simplex search step, the objective function is
recalculated for all the simplex vertexes, even for the existing points. Moreover, a certain
number of function evaluations, R, is averaged to obtain the objective function value.
Finally, at each simplex search step there is a small probability ξ = 0.15 of making a
random shift of the current simplex, with a random magnitude in a random direction.

An initial simplex must be input to the program to initiate the search. From this initial
point, nR = 3 successive rounds will be performed to �nd the objective function minimum,
each one containing a de�ned number of simplex search steps, nS,r. The �rst round (r = 1)
will contain nS,1 = 30 search steps. The second round (r = 2) will comprise nS,2 = 20
simplex search steps, and nS,3 = 10 for the third one. The number of repetitions, R, for
averaging the function value also varies from round to round. It increases as the function
minimum comes closer in order to increase the �nal result accuracy: R1 = 1, R2 = 5 and
R3 = 15.

The threshold value is calculated for each round according to Eq. 6.2:
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τr = Γ · α ·Rβ
r (6.2)

The constant Γ is a parameter that determines the strictness of the threshold value,
and it is set to Γ = 2 (Standaert, 2007). The constants α and β must be set according to
the objective function behaviour around the minimum. Therefore, this depends on the
speci�c case to be studied. A summary of the mentioned constants is shown in Table 6.3.

Table 6.3: Summary of the parameters and constants of the NMTA algorithm to be used in

INDISIM parameter estimations (source: Standaert, 2007).

Constant Value De�nition

ρ 1 Coe�cient of re�ection

χ 2 Coe�cient of expansion

γ 1/2 Coe�cient of contraction

σ 1/2 Coe�cient of shrinkage

ξ 0.15 Probability of randomly changing the current simplex

nR 3 Number of successive rounds

nS,1 30 Number of simplex search steps in the �rst round

nS,2 20 Number of simplex search steps in the second round

nS,3 10 Number of simplex search steps in the third round

R1 1 Number of evaluations of the objective function at each

simplex vertex in the �rst round

R2 5 Number of evaluations of the objective function at each

simplex vertex in the second round

R3 15 Number of evaluations of the objective function at each

simplex vertex in the third round

Γ 2 Constant for the threshold accepting strictness

6.3.3 The NEWUOA method

The NEWUOA is a method for solving non-linear unconstrained minimization prob-
lems that was developed by Powell (2004). The algorithm seeks the minimum of an
objective function F (−→x ), where −→x ∈ Rn. The model proposes the use of the objective
function values for building a quadratic model, Q(−→x ) ≈ F (−→x ), which is assumed to be
valid in a neighbourhood of the current iteration, called trust region. The radius of the
trust region is iteratively adjusted. Then, the quadratic model is minimized within the
trust region, hopefully yielding a point with a low function value.

The complete method is detailed in Powell (2004). In general terms, at each iteration
the NEWUOA algorithm �ts a quadratic model Q to a set of points Y of the objective
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function F (−→x ), which is valid inside a trust region. Some speci�c rules are also used for
the quadratic model identi�cation (Powell, 2004). Then, NEWUOA �nds the minimum
of the quadratic within the trust region. The real cost of the function is evaluated at
this point: if the decrease in the real value is less than the decrease predicted by the
model, the radius of the trust region is scaled down; otherwise, the radius is not changed.
The minimization algorithm by successive quadratic approximations is summarized in
Algorithm 1. The algorithm �nishes when the radius of the trust region achieves the
lower boundary �xed by the user, ρend.

Algorithm 1 Overview of the NEWUOA algorithm for each iteration (source: M. Guilbert,

personal communication, 2007)

(i) Initialize the set Ybeg, the radius of the trust region ρbeg and the �rst iteration
(ii) Build the quadratic model Q
(iii) Minimize this model within the trust region
(iv) Update the set of interpolation Y
(v) Update the radius of the trust region ρ

(vi) Update the current iteration and go to step (ii), until ρ = ρend.

NEWUOA for INDISIM parameter estimation

The NEWUOA software can be freely downloaded from the Web1. It is programmed
in Fortran. Only a few modi�cations in it need to be made in order to input the necessary
data and to link the NEWUOA software with the F (−→x ) calculations. Thus, it has been
adapted for performing INDISIM parameter estimation. The objective function is, again,
F (−→x ) = MSE({pi}). That is, the vector −→x contains the di�erent combinations of the
N parameters to be estimated, {pi}. Each 'combination' or vector has to be introduced
to the INDISIM input �le to obtain the corresponding simulation results and, therefore,
the MSE. Since three di�erent programs have to be combined, text �les are used to
pass the information from one to another. An overview of the global implementation of
NEWUOA with MSE evaluations and INDISIM is shown in Figure 6.5.

The NEWUOA algorithm uses m = 2n + 1 points for each interpolation, where n is
the dimension of the vector −→x and, therefore, is equal to the number of parameters to be
estimated (n = N). The program asks for an initial point, −→x0, and the radius of the initial
trust region, ρbeg. The initial group of m interpolation points, Ybeg, is set by adding and
subtracting the radius ρbeg to the initial vector components, −→x0 = ({pi,0}).

For instance, let us suppose that two parameters, p1 and p2, are being estimated.
In this case, the vector −→x has two components, and m = 2N + 1 = 5 interpolation

1http://www.inrialpes.fr/bipop/people/guilbert/newuoa/newuoa.html
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Figure 6.5: Overview of the NEWUOA implementation for optimizing the INDISIM parameter-

ization.

points. If the initial point is set to −→x0 = (p1,0, p2,0), and the initial radius is ρbeg, the
other four interpolation points for the �rst iteration will be −→x1 = (p1,0 + ρbeg, p2,0),
−→x2 = (p1,0 − ρbeg, p2,0), −→x3 = (p1,0, p2,0 + ρbeg) and −→x4 = (p1,0, p2,0 − ρbeg).

The use of a unique radius to set the trust region and the interpolation points is
the �rst pitfall in our study. The N parameters that we are estimating may have very
di�erent orders of magnitude, and the trust region for each one can be very di�erent from
the others. Another problem arises from the nature of the objective function. F (−→x ) is
assumed to be de�ned for RN , while MSE may not be de�ned in some zones: if the mass
to initiate the reproduction cycle is being estimated, negative values for it make no sense,
or INDISIM may not be prepared to perform simulations with a mean uptake above an
upper limit. Therefore, we may have some constraints, and NEWUOA is a method to
solve unconstrained minimization problems.

However, the physical essence of these parameters provides the clues for partially
solving these problems. We must be able to identify an interval for each parameter that
contains the best estimation. This interval will be the initial trust region, and it should
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be as small as possible to have the MSE de�ned for the whole interval, but great enough
to contain the solution. This will be the key factor for the success of the optimization.

The parameters pi will be re-scaled before being input to the NEWUOA algorithm,
taking the values from 0 to 1 in the given interval. If pi,min and pi,max are the limits for
the parameter pi, the re-scaled parameter, p̂i, will be (Eq. 6.3):

p̂i =
pi − pi,min

pi,max − pi,min
(6.3)

Therefore, in the new scale p̂i,min = 0 and p̂i,max = 1. Working with the parameters
in the transformed scale, the radius ρ̂beg can be commonly de�ned for all of them. Then,
when a set of parameters has to be input to INDISIM to evaluate the corresponding MSE

value, the original values are retrieved as (Eq. 6.4):

pi = (pi,max − pi,min) · p̂i + pi,min (6.4)

The initial point can be set to the middle point of the interval, −→x0 = ({pi,0} = { ˆpi,0 =
0.5}). With an initial radius ρ̂beg = 0.5, we would sweep the whole interval at the �rst
iteration.

If the interval is well chosen, we will not have problems regarding the constraints,
because the algorithm will almost always be within the interval. If it is not possible to
delimit the interval, some penalization function can be added to the objective function
to avoid the forbidden zones, as has been done in other �elds (Guilbert et al., 2006).

6.4 Results

6.4.1 Parameter estimation with exponential phase experimental

dataset

In this section, only the experimental data corresponding to the experimental phase
is used (Fig. 6.2). The aim is to implement and test the usefulness of the three methods,
so the �rst step must be done with the simplest case. First of all, the estimation of
one parameter is performed in order to implement, adjust, test and improve the three
methods.

The �rst parameter to be estimated is the umax. The other input parameters are set
according to Table 6.1.
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Classical method

A grid of 20 uniformly distributed umax values is set up, covering the interval [0.011,
0.014]. The entire grid is covered from the minimum to the maximum to evaluate the
MSE at each point of the one-dimensional grid. This process is repeated for 149 individual
and independent runs. The results are shown in Figure 6.6.

Figure 6.6: The MSE for a grid of 20 umax values, for 149 runs executed with non-overlapping

random number sequences.

The best estimate for umax is assumed to be the grid point where the MSE reaches its
minimum value. A histogram of the best estimates obtained by the 149 runs is constructed
(Fig. 6.7a). A normal distribution is �tted to this histogram to evaluate the mean best
estimate (Fig. 6.7b), which results in umax = 0.012589± 0.000108 molgl/gh.

NMTA method

The constants α and β that are used to �x the threshold (Eq. 6.2) must be set for
this speci�c case. They are derived from the behaviour of MSE around the minimum
(mean and standard deviation). 300 evaluations of MSE value at the point umax =
0.0124 molgl/gh, which is near the minimum, are assessed. The values α and β are
derived from the mean and the standard deviation of the result (Standaert, 2007), which
are MSE = 0.0137 and StdDev = 0.0009. The obtained values are α = 0.0009468 and
β = −0.527.
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Figure 6.7: (a) Best estimates histogram for the 149 individual runs. (b) Normal distribution

�tted to the best estimates histogram, with the dashed line the mean value and the dotted lines

the con�dence interval boundaries.

Several optimizations are done to assay and polish up the NMTA method, each lasting
between 6 and 20 hours. In general, no problems of convergence are detected, and the
quality of the best estimates are acceptable. Figure 6.8 shows a typical result. The initial
simplex was [0.016, 0.015], and the optimization process took 15 h. The best estimate was
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umax = 0.0127 molgl/gh, which is in agreement with the grid search result (∆umax < 1%).

(a) Complete results for the maximum uptake estimate

(b) Enlargement of the convergence zone

Figure 6.8: Results of the Nelder-Mead Threshold Accepting method for estimating the best

umax. The vertical lines indicate the boundaries between subsequent stepping rounds increasing

accuracy.
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NEWUOA method

The �rst tests of NEWUOA method for one parameter estimation are done without
the re-scaling options, since there are no problems of orders of magnitude or trust regions
between parameters. Each optimization process lasts around 50 minutes. 20 indepen-
dent optimizations have been performed from di�erent initial points, which are randomly
chosen. The results are shown in Figure 6.9. As is shown, no problems of convergence
are detected. The mean best estimate is umax = 0.01269 molgl/gh. This result is also in
agreement with the grid search and NMTA best estimates.

Figure 6.9: 20 independent rounds of NEWUOA optimization method for estimating the umax.

Blue full rhombus are the randomly chosen initial points, and red open circles are the best estimate

for each run. The mean of the 20 best estimates is shown in a dashed line.

Conclusions

The best estimates for umax are similar using any of the presented methods, and the
quality of the results is comparable. The classical grid search gives a lot of information
about the MSE behaviour in the studied interval, but is slow and tedious. NMTA and
NEWUOA show good convergence for the studied case, although it is necessary to delimit
the interval. The fastest method by far is NEWUOA.

6.4.2 Parameter estimation with lag and exponential phases ex-

perimental dataset

After the tests with one parameter estimation, the method that seems to work best
is the NEWUOA. It is immediately usable for estimating more than one parameter with-
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out any adaptation. The only part that must be adjusted is the re-scaling of the input
parameters (see Section 6.3.3). However, the NMTA method would require a long re-
programming process in order to be able to estimate two parameters. Therefore, the
estimation of more than one parameter will be carried out with the NEWUOA method,
with some tests with the grid search.

In this part, the experimental data of the lag and exponential phases are used.

Two-parameter estimation

The initial distribution of the biomasses among the bacteria of the inoculum is set with
a Weibull distribution. It is assumed to be known, and the parameters to be estimated
will be the mass at division, md, and the mean maximum uptake rate, umax. The lag
phase duration of the simulated growths is mainly given by the distance between the
initial mean mass (which is �xed) and the mass at division. The greater the distance,
the longer the lag phase. The uptake rate determines the lag duration and the culture
growth rate at exponential phase. The greater the uptake rate, the shorter the lag and
greater the growth rate.

A Weibull distribution (Eq. 6.5) is �tted to a biomass distribution of a simulated
growth at the end of the stationary phase. The parameters for this �tting result in
A = 0.0766 pg (parameter related with the mean mass) and B = 2.3236 (parameter
related to the shape).

f(m;A,B) =
B

A

(m

A

)B−1

e−(m/A)B

(6.5)

The distribution is displaced C = 0.0561 from the origin. At each simulation, an
initial biomass distribution is randomly generated with the �tted Weibull parameters.
An example of a biomass distribution of 10,000 individuals, randomly generated with the
�tted Weibull parameters, is plotted in Figure 6.10.

With this initial distribution, a NEWUOA optimization is performed in order to
estimate umax and md. They must be re-scaled as indicated in Eq. 6.3. The chosen
intervals are detailed in Table 6.4.

Table 6.4: Intervals for umax and md to re-scale the input values in the NEWUOA algorithm.

umax (molgl/gh) md (pg)

min 0.007 0.25

max 0.016 1.0

Forty independent runs are performed in order to validate the good convergence of
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Figure 6.10: Example of an initial biomass distribution for the estimation of mass at division

and maximum uptake rate.

the optimization. For carrying out these rounds, the starting points are randomly chosen
in the interval p̂i ∈ [0.25, 0.75] in the re-scaled format (between 0 and 1). The ρ̂beg is set
to 0.25, so the whole interval is potentially covered by the randomly chosen initial points,
and the ρ̂end = 0.000001.

The results, which are plotted in Figure 6.11, give a umax = 0.0125 molgl/gh and a
md = 0.4662 pg. Both of them are in the range of the expected values. The umax is
slightly lower than the previous parameter estimations, and the md is near the value that
was used in previous simulations (md,bib = 0.426 pg). The optimization processes take
around 1 hour each. The convergence in mass at division is not as good as the conver-
gence in maximum uptake rate. The reason for this is that the experimental data have
only two points that correspond to lag phase. Therefore, there is a lack of information
for carrying out the parameterization process properly. Nevertheless, the method seems
to work properly. That is, the problem is in the experimental data, not in the optimiza-
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tion method. It has been tested with other datasets with a longer lag phase, and the
convergence is considerably better.

Figure 6.11: NEWUOA results for optimizing (a) maximum uptake rate (umax) and (b) mass at

division (md). Blue full circles are the initial points, and red open circles are the best estimates

for each run. The dashed line indicates the mean value of the best estimates.

A grid search has been built to corroborate this result (Fig. 6.12). It yields a similar
best estimate for both parameters (umax = 0.0124 molgl/gh, md = 0.4 pg).

Three-parameter estimation

Taking the md from the bibliography (md = 0.426 pg), a third test is carried out
to evaluate the usefulness of the NEWUOA method for the estimation of more than
one parameter. In this case, a three-parameter evaluation is performed. The chosen
parameters are the umax again, and the two Weibull parameters for setting the inoculum
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Figure 6.12: Grid search for mass at division and maximum uptake rate.

biomass distribution, A and B. Thus, the initial biomass distribution is now assumed to
be unknown.

The intervals for re-scaling the three parameters are shown in Table 6.5. Again, 40
independent runs are carried out with a random initial point p̂i ∈ [0.25, 0.75], and the
radii are set to ρ̂beg = 0.25 and ρ̂end = 0.000001. Each run takes from 1 to 2 hours.

Table 6.5: Intervals for umax, A and B for re-scaling the input values.

umax (molgl/gh) A (pg) B

min 0.007 0.01 1.0

max 0.016 0.3 6.0

The mean of the 40 independent runs results in the best estimates A = 0.10 pg,
B = 2.99 and umax = 0.0124 molgl/gh (Fig. 6.13). The convergence is acceptable
for umax and A, which are mainly related to the growth rate and the lag duration,
respectively. But the convergence for the parameter B is not so good. The reason is,
again, a lack of information in the experimental data. The shape of the initial distribution
determines the shape and duration of the transition between lag and exponential phases,
as has been seen previously (Chapter 4). Thus, the lack of experimental points in the
transition phase causes a lack of information for estimating the constant B.



156 Chapter6. Optimization methods for IbM parameter estimation

Figure 6.13: NEWUOA results for optimizing (a) the maximum uptake rate umax, (b) the

Weibull distribution constant for the inoculum A and (c) the Weibull distribution constant for

the inoculum B. Blue full rhombus are the initial points, and red open circles are the best

estimates for each run. The dashed line indicates the mean value of the best estimates.
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6.5 Discussion

Two methods have been adapted and tested for IbM parameter estimation. NMTA
method, which has been shown to be considerably faster than the classic grid search,
shows a good convergence for one parameter but some di�culties for the programming.
The NEWUOA method is a black box that can be easily adapted for many optimiza-
tion problems. The adaptation for applying NEWUOA to any IbM parameter estimation
problem has been carried out, and a strategy for avoiding the di�erences in orders of
magnitude and trust regions has been implemented with success. One-, two- and three-
parameter optimizations have been tested. More than three parameters could be eas-
ily evaluated with this method with the appropriate experimental dataset, without any
speci�c adaptation of the algorithm. NEWUOA has proved to be a useful tool for IbM
parameterization, although it requires a minimum knowledge of the parameters to be
estimated. It is also the fastest method, and the results have su�cient precision. For
further and better applications of the NEWUOA method to IbM parameter estimation,
the objective function should be slightly modi�ed to incorporate a penalty function that
avoids the algorithm of leaving the real trust region. It has also been seen that the ex-
perimental data must contain as much information as possible, to obtain reliable results
for the parameters.






