
Chapter 3

A model for sand ridges in the

shelf: e�ect of tidal and steady

currents

In chapter 2 the dynamics of the small perturbations of a basic state consisting in a steady longshore
current on a sloping bottom has been studied. Although the model predicted bedforms with the
shape and the alongshore space of the shoreface{connected sand ridges, a model that includes the
e�ect of the tidal currents is needed to explain the presence of these features in places as the Dutch
coast, where signi�cant tidal currents are present. In the present chapter a morphodynamic model
will be discussed which explicitly describes the long-term interaction (i.e., averaged over many
storm cycles) between a ow, consisting of both steady and tidal components, with the erodible
bottom. Other new aspects are the incorporation of a cross-shore windstress and a statistical
description of the sediment transport during storms and fair weather conditions, respectively.

There is a correlation, see Belderson (1986), between the type of dominant currents, stormy or
tidaly, and the presence of di�erents large scale bed patterns. Previous studies have demonstrated
that especially storm-driven currents are important for the evolution of shoreface-connected ridges
(Swift et al., 1978; Niedoroda et al., 1984) and tidal currents are essential to generate tidal sand-
banks (Zimmerman, 1981; Pattiaratchi & Collins, 1987). For tidal sandbanks idealized models
have been developed and analyzed by Huthnance (1982), Hulscher et al. (1993) and de Swart &
Hulscher (1995). The water motion is modelled by depth-averaged shallow water equations, the
basic state describes a pure tidal current over a at bottom and sediment transport is modelled as
a local parametrization. The formation of sandbanks appears to be due to the combined e�ect of
residual circulations, which develop due to tide-topography interactions, and a sediment ux which
is a 'faster than linear' function of the current velocity (as occurs during fair weather conditions).

With regard to shoreface-connected sand ridges separate models have been studied, which are
also based on the shallow water equations and a local sediment transport parametrization. Essential
di�erences with the tidal sandbank models are that the basic state describes a steady current over
a shelf with a transverse slope. The �rst model of this kind was presented by Trowbridge (1995)
and a signi�cant physical modi�cations of the model were added at chapter 2. There is explicitly
modelled the momentum balance of the basic state ow and demonstrated the important role of a
longshore pressure gradient for the ridge formation. Incorporation of the e�ect of local bedslopes on
the sediment transport resulted in the prediction of preferred modes having the fastest growth rate.
The spacings and migration speeds of these modes appeared to be in agreement with observations
along the US and Dutch inner shelf. The main causes for the formation of shoreface-connected
ridges are the transverse slope of the inner shelf, in combination with a sediment ux which is
linear in the current (as occurs during stormy conditions). However, for the North Sea ridges the
model is not entirely suitable since no tidal e�ects are incorporated.

As in previous studies it is shown that large-scale bedforms on the shelf can form as a free
instability of a morphodynamic model which describes the interaction between depth-averaged
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38 CHAPTER 3. TIDAL MODEL

Figure 3.1: Sketch of the geometry and coordinate system. For explanation of the symbols see the
text.

shallow water motion and the erodible bottom. The new aspects in this study are the explicit
incorporation of both steady and tidal currents on a sloping bottom and a statistical approach to
describe the sediment transport during storms (linear in the current) and fair weather conditions
(cubic in the current). The present model is used to gain understanding of the di�erent ridge
characteristics in di�erent geographical regions. This is done by analyzing the initial growth of
small bottom perturbations, which evolve on a basic state describing a longshore uniform ow over
a reference topography, with the use of spectral methods.

The �rst objective is to investigate the e�ect of tidal currents on the dynamics ofshoreface-
connected sand ridges. Secondly, it will be demonstrated that the model also allows for di�erent
types of bedforms, including tidal sandbanks, and that the selection of the most preferred mode
strongly depends on the storm fraction, the intensity of the tidal currents and the geometrical
characteristics of the shelf. These results will also be explained in terms of di�erent physical
mechanisms. For high storm fractions only bedforms trapped to the inner shelf are generated.
These bedforms, which resemble shoreface-connected sand ridges, have growth rates and migration
speeds which decrease if the relative contribution of tides in the total current pro�le increases.
Nevertheless, formation of bedforms still occurs even in case of a pure oscillatory current, due
to the presence of the transversely sloping bottom. If also the e�ects of fair weather conditions
are incorporated it is found that basically four other bottom modes can be generated: shoreface-
connected sand ridges, Coriolis and frictionally-induced bars related to steady currents, trapped
tidal ridges and tidal sandbanks. Their growth rates strongly depend on the weather climate and
the geometrical characteristics of the shelf area. It will be demonstrated that these bedforms are
related to di�erent physical instability mechanisms.

The organization of the chapter is as follows. Equations of motion and boundary conditions are
presented in section 3.1. This is followed by a discussion in section 3.2 of a reference state, which
describes a longshore uniform ow with both steady and tidal components. The stability properties
of this morphodynamic equilibrium with respect to small bottom perturbations are analyzed in
section 3.3. Results are presented in the sections 3.4 and 3.5 and the �nal section contains the
discussion and conclusions.

3.1 Governing equations and boundary conditions

Although the vertical structure of the currents can have an important role in the ridge area, it is
hypothesized here that a depth-averaged model already can describe the ridge formation. So we
will consider the 2D shallow water momentum equations

@v

@t
+ (v �r)v + fez � v = �grzs � �

v

zs � zb
+

� �

�(zs � zb)
; (3.1)

and the mass conservation equation:

@(zs � zb)

@t
+r � [(zs � zb)v] = 0: (3.2)

Here v is the depth-averaged velocity, f is the Coriolis parameter, ez a unity vector in the vertical
direction, zs and zb are the free surface and the bottom elevation, � is the water density, � � is the
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wind stress, g is the acceleration due to gravity and � is a bottom friction coeÆcient. A linearized
bed shear stress formulation is used in order to allow for a simple tidal current solution. This
Lorentz linearization procedure is discussed in Zimmerman (1992).

The bottom evolution is considered to be governed by a sediment conservation equation:

@zb
@t

+r � q = 0; (3.3)

where q stands for the volumetric sediment ux per unit width. A parametrization for this trans-
port will be given later on.

The equations are considered on a half-open domain, as sketched in �gure 3.1. An orthogonal
coordinate system is taken, such that x = 0 marks the transition from inner shelf to shoreface,
which is assumed to be parallel to the straight coastline. The x-, y- and z-axis thus point in the
cross-shore, longshore and vertical direction, respectively. Here z = 0 represents the still water
level and r = (@=@x; @=@y). The boundary conditions imposed are that both the cross-shore ow
component u and the bottom perturbation h vanish at x = 0 and far o�shore (i.e., x!1). This
means that the presence of coastally trapped bedforms will be investigated and there is no net
exchange between the inner shelf and the shoreface.

Note that the equations of motion discussed above are to be interpreted as describing the
dynamics of the water motion and bed evolution averaged over many storm cycles (O(10 yr)).
This means that the e�ect of uctuations due to storms is only parametrically accounted for in the
model. For a discussion about this aspect and about the justi�cation of the boundary conditions
see chapter 2 and appendix A.

Let us now make the equations of motion dimensionless. This is done by introducing the new
dependent variables

t0 = � t; x0 = x=Ls; y0 = y=Ls

where � is the tidal frequency and Ls the characteristic width of the inner shelf. Furthermore we
introduce the transformations

v = Uv 0; zb = Lvz
0
b; zs =

U�Ls
g

z0s; q = [q] q0

where U , Lv and [q] are characteristic magnitudes for the current, the depth and the volumetric
sediment ux per unit width. Here U and [q] will be speci�ed later on, whereas Lv will be the
water depth at the transition x = 0 between the inner shelf and the shoreface.

If we drop the primes in the variables for convenience, the non-dimensional momentum and
mass conservation equations read:

@v

@t
+ �(v �r)v + f̂ez � v = �rzs � r v

F̂ 2zs � zb
+

� s

F̂ 2zs � zb
; (3.4)

@(F̂ 2zs � zb)

@t
+ �r � ((F̂ 2zs � zb)v) = 0; (3.5)

where � = U=(�Ls), f̂ = f=�; r = �=(�Lv); F̂
2 = F 2=�; F = U=

p
gLv and � s = � �s=(��ULv).

Typical values of the parameters are � � 1, f̂ � 0:8; r � 0:5 and j� sj � 0:1. Since U � 1 ms�1

and Lv � 20 m the Froude number is very small (F 2 � 0:005). Therefore the free surface terms
which are measured by F̂ 2 can be neglected in equations (3.4) and (3.5).

Now we turn to the sediment mass conservation equation (3.3). Using the previous scaling its
dimensionless form reads (primes are again dropped)

@zb
@t

+
[q]

�LvLs
r � q = 0:

Since [q] � 10�5 m2s�1 during storms, it follows that the parameter which measures the magnitude
of the sediment ux divergence is very small. Thus the bottom does not evolve on the tidal
timescale ��1, but rather on the morphological time scale Tm = LvLs=[q], which is much longer:
Tm � 600 yr. Consequently, the time derivative of the bedlevel zb in equation (3.5) can be
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neglected. Furthermore, the bottom evolution is not determined by the oscillatory sediment uxes
during the tidal cycle, but rather by the tidally averaged uxes. Hence the �nal dimensionless
bottom evolution equation becomes

@zb
@�

+r � hqi = 0; (3.6)

where < : > denotes an average over the tidal period and � = t=Tm is a slow nondimensional time
coordinate.

Finally we discuss how the sediment transport is expressed in terms of the state variables of
the system. In contrast to previous studies on this topic we distinguish between the transport
during storm and that during fair weather situations. In appendix D it is explained that a simple
parametrization which accounts for this e�ect is

q = �q1 + (1� �)q3 qm = �mjvjm
�
v

jvj � rh

�
: (3.7)

Here � is the fraction of time during which storms occur with the sediment transport being linear
in the depth-averaged velocity v. During the other periods (fair weather conditions) the transport
is cubic in the velocity. Here �3 = 1 and �1 � 1 is the squared ratio of the characteristic wave-
related velocity amplitude and the velocity scale U . Note that the contribution of the linear
sediment transport (i.e., during storms) to the total transport need not to be dominant, because
in nature fair weather occurs more often than storms (in other words, fraction � is small).

The term involving the coeÆcient  accounts for the preferred down-slope movement of sediment
due to gravitational e�ects; typically  � 1 and with the new scalling ̂ � 10�4. Note that the
critical shear stress for erosion is not explicitly taken into account: it is assumed to be much smaller
than the instantaneous shear stresses.

3.2 Basic state

We are now going to look for a basic state with a longshore current v = (0; V (x; t)) over a sloping
bottom zb = �H(x): In this state the current is allowed to vary with time but the net sediment
transport must vanish so that the bottom does not vary on the morphological timescale. In this
case the sediment and the mass conservation equations are automatically ful�lled so that we only
have to consider the momentum equations (3.4) which become

�f̂V = � @�
@x

+
�sx
H
;

@V

@t
= �@�

@y
� r

V

H
+
�sy
H
: (3.8)

where zs = �(x; y; t) is the free surface elevation.
Note that in this model the longshore pressure gradient @�=@y must be prescribed. The condi-

tion that the velocity pro�le must be longshore uniform and the solvability condition for the free
surface imply that this forcing term can only be a function of time. Here we choose

@�

@y
= s0 � js1j cos(t);

which represents a steady and one tidal component. From this the longshore ow V (x; t) can be
computed from the second equation in (3.8) whereas the �rst equation in (3.8) determines the
cross-shore set-up or set-down of the water level due to cross-shore winds and Ekman e�ects. It is
assumed that the windstress is constant and that the longshore windstress and longshore pressure
gradient drive a current in the same direction. This implies that the parameters �sy and s0 have
opposite signs.

Upon writing the basic state velocity as a superposition of a steady and a time-dependent
current, i.e. V (x; t) = V0(x) + V1(x; t), the solution reads

V (x; t) = �U0(x) + (1� j�j)U1(x) sin (t+ '(x)) (3.9)

with

� =
�s0 + �sy

r
; U0(x) = 1 + a[H(x)� 1]; a =

js0j
j � s0 + �syj ;
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U1(x) =
Hp

H2 + r2
; '(x) =arctan

� r
H

�
:

Here we have assumed that

j�j+ js1j = 1; (3.10)

which states that the velocity scale U is de�ned as the maximum ow amplitude at the shoreface
boundary x = 0. This quantity can be computed for a given longshore pressure gradient, longshore
windstress, tidal frequency and water depth Lv at x = 0, because the applied scaling yields that

sn =
gs�n
�U

(n = 0; 1); �sy =
��sy=�

�ULv
;

where the asterixes refer to dimensional variables.
The coeÆcient � is the dimensionless amplitude of the steady current at the transition x = 0

from the inner shelf to the shoreface. It also determines the relative contribution of the steady
current to the total ow, i.e., �1 � � � 1. In general the value of this parameter during storms
will di�er from that during mild weather. The steady ow is driven both by wind and a longshore
pressure gradient; the relative e�ect of the latter to the total steady ow is measured by parameter
a (0 � a � 1).

Finally, note that in case j�j = 1 the reference state of the model becomes fully equivalent to
that of chapter 2 with a linear bottom friction coeÆcient. Note that if in the present model a
quadratic (rather than a linearized) bottom friction law would be used the tidal current pro�le
would contain higher (odd) harmonics. As their incorporation would signi�cantly complicate the
subsequent analysis (cf. Zimmerman, 1992) without adding new physical insight, they are not
considered here.

3.3 Linear stability analysis

The next step is to investigate the possible formation of bedforms, with a rhythmic structure in
the alongshore direction, as free modes which evolve on the basic state of the previous section.
This implies a study of the stability properties of the basic state with respect to small bottom
perturbations. The procedure will be to solve the three hydrodynamic equations (3.4) and (3.5)
on the tidal timescale to �nd the velocity and the free surface elevation as a function of a �xed
given bottom topography. Next, we will substitute the ow variables in the bottom evolution
equation (3.6) and we will solve it on the morphological timescale.

Thus we consider solutions of the form

v = (u0; V + v0); zs = � + �0; zb = �H + h0:

Here the perturbations u0; v0 and �0 in the water motion are functions of x; y; t and � , whereas the
bottom perturbation h0 only depends on x; y and � . After substitution in the equations of motion
we use the properties of the known basic state to arrive at equations for the perturbations. Since
we assume the latter to have small amplitudes, the resulting equations are linearized. Due to their
structure and the imposed boundary conditions, they describe solutions with a periodic structure
in the longshore direction, e.g. u0(x; y; t) = Re [~u(x; t; �) exp(iky)], where k is the wavenumber.

The linearized equations for the amplitudes of the perturbations read

@~u

@t
+ ik�V ~u� f̂~v = �@~�

@x
� r

H
~u+

�sx
H2

~h (3.11a)

@~v

@t
+ �

�
@V

@x
~u+ ikV ~v

�
+ f̂ ~u = �ik~� � r

H
~v +

s0
H

~h� rV1
~h

H2
(3.11b)

H
@~u

@x
+
dH

dx
~u+ ikH~v � ikV ~h = 0 (3.11c)

@~h

@�
+ �h ~S1i+ (1� �)h ~S3i = 0 (3.11d)
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Here

~Sm =�mjV jm�1
�
(m� 1)

V

@V

@x
~u+

@~u

@x
+ ikm~v

� ̂jV j
  

m

V

@V

@x

@~h

@x
+
@2~h

@x2

!
� k2~h

!�

denotes the amplitude of the perturbed sediment ux divergence during storms (m = 1) and fair
weather (m = 3), respectively. Note that the hydrodynamical problem for a speci�c reference
bottom H(x), as de�ned by equations (3.11a)-(3.11c), is solved separately for the two di�erent
ow regimes occurring in the model. The latter correspond to storms (� = 1) and fair weather
conditions (� = 0), respectively. Ultimately, these results are combined in a statistical sense in the
bottom evolution equation (3.11d) to solve for the bottom perturbations.

The amplitude equations have solutions of the type

(~u(t; �); ~v(t; �); ~�(t; �); ~h(�)) = e!� (u(t); v(t); �(t); h) (3.12)

where ! is a complex frequency which describes the evolution of the amplitudes on the morpholog-
ical timescale and is to be determined from the dynamics. Its real part, 
r = Re[!] is the growth
rate of the perturbations and c = �Im[!]=k is the corresponding phase speed.

First we analyze the dynamics on the short, tidal timescale. From cross-di�erentiation of
the momentum equations (3.11a) and (3.11b) and substituting (3.12), we obtain the Fourier-
transformed vorticity equation:�

@

@t
+ ik�V

��
@v

@x
� iku

�
+ �u
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@x2
+

�
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@V
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@u
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=
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@v

@x
� iku
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+

r
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dH

dx
v + s0

@(h=H)

@x
� r

@

@x

�
V1

h

H2

�
� ik

�sx
H2

h:

(3.13)

Here the �rst term on the left-hand side describes the change of relative vorticity in a frame moving
with the basic state velocity, the second term is the advection of basic vorticity by the perturbed
ow and the third contribution describes vortex stretching. On the right-hand side we have the
dissipation of vorticity and next three bottom frictional torques: one related to the perturbed ow
moving along the reference bottom and two related to the steady and tidal ow moving along the
perturbed bottom. The last term on the right-hand side is the torque induced by the cross-shore
windstress.

From the continuity equation (3.11c) and (3.12) it follows the alongshore velocity perturbation
as a function of h and u:

v =
V

H
h+

i

k
(
@u

@x
+

1

H

dH

dx
u); (3.14)

Substitution of this expression in (3.13) yields a single equation for the cross-shore velocity, u; as
a function of the bottom perturbation, h:

U12 @3u

@t@x2
+ U11 @

2u

@t@x
+ U10 @u

@t
+ U02 @

2u

@x2
+ U01 @u

@x
+ U00u = H1

@h

@x
+H0h (3.15)

where the coeÆcients are speci�ed in appendix E. Note that this so-called 'ow over topography'
problem is governed by a vorticity equation, as in Hulscher et al. (1993) and de Swart & Hulscher
(1995), although equation (3.15) is formulated in terms of the cross-shore velocity perturbation.

The linearized bottom evolution equation (3.6) becomes, after substitution of (3.12) and (3.14):

!h = ��hS1i � (1� �)hS3i (3.16)

where

Sm = ��mjV jm�1
�
(m� 1)

@u
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+

�
m
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̂
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@x2
+
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m

V

dV
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�
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� ̂k2h

��
(3.17)
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Together with the boundary conditions u(0) = u(1) = 0; h(0) = h(1) = 0, equations (3.15)-(3.17)
de�ne an eigenvalue problem which determines the complex frequency ! of the perturbations as a
function of the wavenumber k and the model parameters. This problem is solved by a numerical
spectral method (collocation in x, Fourier-Galerkin in t, see appendix E for details).

The physical interpretation of the di�erent terms in (3.17) is as follows. The terms multiplied by
the coeÆcient ̂ describe a di�usive decay of the bedforms. The term in equation (3.17) preceding
the di�usive contributions is proportional to ih and therefore describes a migration of bedforms.
The remaining contributions are potential sources of instabilities and they appear to be of three
di�erent kinds. The �rst term is due to spatial gradients in the cross-shore ow perturbations and
requires a sediment transport which is 'faster than linear' in the ow velocity, i.e., m > 1. In case
of steady ows this is the source of instability which often appears in river models, see Schielen
et al. (1993) and references herein. The mechanism also appears in the tidal morphological models
of Huthnance (1982) and de Swart & Hulscher (1995). The second term is active if the reference
topography contains a cross-shore gradient. In the case that m = 1, which is considered by
Trowbridge (1995), this is the only source of morphologic instabilities, see also chapter 2. Finally,
the third term only contributes to the bottom evolution if the basic ow contains cross-shore shear
(@V=@x 6= 0) and for m > 1. Its e�ect for steady longshore ow is considered in Falqu�es et al.
(1996).

3.4 Results

3.4.1 Introductory remarks

We now discuss the results which are obtained with a numerical model which solves the morpholog-
ical stability of the basic state, consisting of both tidal and steady currents over a given reference
topography. This numerical model is called MORFO30, to distinguish it from the MORFO20-
model for pure steady currents which is discussed in chapter 2.

The required input of the model consists of the shelf and ow characteristics of the reference
state. It is important to realize that many of the model parameters (in particular those related to
the forcing and dissipation mechanisms) generally have di�erent values during storms than during
fair weather conditions. These values will be frequently varied and discussed in the experiments
to be reported in the next subsections. Here we will only specify default values of the part of the
input which is independent of the ow regime, i.e., the tidal frequency �, the Coriolis parameter f
and the shelf characteristics. They are chosen such that they are representative for the situation
on the shelf along the Central Dutch coast. Here the tidal frequency is � = 1:4 � 10�4 s�1 and
f = 1:12�10�4 s�1, consequently the nondimensional parameter f̂ = 0:8. Furthermore, the inner
shelf has a width Ls = 12� 103 m and a rather constant slope, the water depth at the transition
inner shelf-shoreface is Lv = 15 m and the outer shelf has a constant depth of 20 m. This motivates
the choice of the following dimensionless reference topography:

H(x) =

�
1 + sx if 0 � x < 1;
1 + s if x � 1:

(3.18)

where s = s�Ls=Lv and s� the shelf slope; here s=0.33 is considered.

3.4.2 Storm-dominated shelves: � = 1

Here we consider the new model in case that the shelf is storm-dominated, i.e., � = 1. The
morphological timescale is chosen such that parameter �1 = 1 in equation (3.17). This implies
that Tm � 600 yr. Other default parameter values in these experiments are: a dimensional
friction parameter � = 1:25� 10�3 ms�1 and a bed slope coeÆcient  = 0:1. This yields for the
nondimensional parameters r = 0:2; and ̂ = 10�4: The cross-shore windstress �sx, the velocity
amplitude U and the tidal current parameter � will be varied. Test runs showed that in this case
accurate results are obtained with N = 60 collocation points and M = 3 Fourier modes in time
(representing the principal tidal component and two overtides).

In the �rst experiment tidal currents are neglected, i.e., � = �1. The velocity amplitude is
taken to be U = 0:25 ms�1, which implies that parameter ��1 = 6:8. The new element here with
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Figure 3.2: Growth rate 
r versus wavenumber k for di�erent values of the cross-shore windstress
on a storm-dominated shelf. Solid line: �sx = 0, dashed curve: �sx = 0:2, dotted curve: �sx = �0:2.
For other parameter values see the text. In b. contour levels of the most preferred bottom mode
are shown, together with the perturbed velocity �eld; note the o�shore deection of the current
over the bars.

Figure 3.3: Contour plot of the largest growth rate of perturbations as a function of wavenumber
k and parameter �, which de�nes the relative contribution of the steady ow to the total ow.
Storm-dominated case, for parameter values see the text.

respect to chapter 2 is that di�erent values of the cross-shore windstress �sx are considered. Apart
from that these results serve as a test to check the validity of the MORFO30-model.

In �gure 3.2a the growth rate versus the wavenumber is shown for � = �1 and a = 1, a
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Figure 3.4: a. Growth rate 
r versus wavenumber k for di�erent values of parameter �; storm-
dominated case. Other parameters as in the previous plot. b. As a., but for the migration speed
c.
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Figure 3.5: a. Wavenumber for which the maximum growth rate is attained as a function of
parameter �; other parameter values as in �gure 3.3. b. As a., but for the maximum growth rates.
c. As a., but the migration speed of the most preferred bedforms.

parameter set which is also investigated in chapter 2. This describes a reference ow which points
in the negative y-direction and is forced by a longshore pressure gradient. The curves of the growth
rates all attain a maximum for wavenumber k = O(10). Since this quantity is made dimensionless
with the shelfwidth Ls, this implies that the preferred modes have a longshore wave-length of
approximately 7-8 km.

The spatial structure of the bars with the largest growth rate, together with the perturbed
velocity �eld, is shown in �gure 3.2b for �sx = 0:2. Clearly the bars are rotated upcurrent and



46 CHAPTER 3. TIDAL MODEL

Figure 3.6: Spatial patterns of the most preferred bedforms for di�erent values of parameter �,
other parameter values as in �gure 3.3. a. � = �0:8; k = 8:7. b. � = �0:4; k = 7:0. c.
� = 0:; k = 3:2. d. � = 0:4; k = 1:4.
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Figure 3.7: Growth rate versus the wavenumber for a �xed steady current (velocity Us = 0:25 ms�1

towards the south) and di�erent tidal current amplitudes Ut. Growth rates have been made
nondimensional with the morphological timescale for U = Us + Ut = 0:5 ms�1. The friction
parameter is r = 0:2 and other parameter values are as in the previous experiments.

there is an o�shore deection of the ow over the crests. Both the structure and the wave-length of
these bars correspond well with those of observed shoreface-connected sand ridges in the �eld. Since
the morphological timescale Tm � 600 years a dimensionless growth rate of 0.1 corresponds to
a dimensional e-folding timescale of 6000 years. Furthermore, the dimensionless migration speeds
(not shown) are c � �1. This means that the ridges move downstream with a velocity of about
20 m yr�1. Also these values are in reasonable agreement with the observations.



3.4. RESULTS 47

Note that o�shore windstresses enhance the growth rates of the bedforms. This can be under-
stood from the physical arguments discussed in chapter 2. The instability process is controlled by
the so-called transverse slope mechanism which requires o�shore (inshore) deection of the currents
over the bars (troughs) and this occurs if the crest-lines are rotated upcurrent. Now in the case of
an o�shore directed windstress the water parcels experience an additional o�shore deection above
the bars due to the force �sxh=H

2 which appears in the cross-shore momentum balance (3.11a),
hence the growth rates become larger. As can be seen the preferred wavenumber, which has the
largest growth rate, shifts to smaller values if �sx becomes larger.

In the next set of experiments the parameter �sx = 0, the velocity scale is taken to be U =
0:5 ms�1 (hence ��1 = 3:4) and the parameter � is varied. According to equations (3.9)-(3.10) this
implies that the intensity of both the steady and tidal current is varied, but the maximum velocity
at x = 0 is kept �xed. In �gure 3.3 a contour plot is shown of the growth rates of the bedforms in
the k � � parameter space. In �gure 3.4 the growth rates and migration speeds are shown versus
the wavenumber for di�erent, but �xed values of � : �0:8;�0:4; 0; 0:4 and 0.8. We recall that
e.g. � = 0:8 means that the steady component in the total basic state ow near the landward
boundary is 80 % and that a positive (negative) value for � in this case corresponds to a net ow
in the positive (negative) y-direction. Each curve has a clear maximum which corresponds to the
preferred wavenumber for this set of parameter values. In �gure 3.5 the dominant wavenumber
and corresponding growth rates and migration speeds are shown as functions of the parameter
�. The discontinuities observed in the plots indicate transitions to another modenumber having
the largest growth rate. Finally in �gure 3.6 the spatial patterns of a few characteristic preferred
bedforms and the perturbed tidally-averaged velocity �eld are shown for di�erent values of �.
Other experiments (not shown) have demonstrated that the results shown are quite generic for the
model: they are only weakly sensitive to variations in the parameters r; f and �.

Clearly these results show that growth rates and migration speeds decrease with decreasing
values of j�j. This means that with an increasing relative contribution of tides to the total velocity
�eld, keeping the velocity scale U �xed, the instability process becomes less e�ective. However, a
di�erent conclusion is reached in case the steady velocity amplitude Us(� (1�j�j)U) is kept �xed
and next the tidal velocity amplitude Ut(� j�jU) is increased. As shown in �gure 3.7 increasing
the tidal inuence in an absolute sense results in larger growth rates. This is due to the fact
that the total velocity scale U now increases, which causes the morphological timescale to become
shorter (for storm conditions Tm is inversely proportional to U). Also here a transition between
modenumbers is observed: one has a maximum ampli�cation rate near k � 10) and the other
attain a maximum growth rate near k � 5.

It is also remarkable that, for a �xed value of j�j, the results strongly depend on the direction of
the steady ow. This appears to be a consequence of earth rotation e�ects. In this sense it is useful
to distinguish between upwelling and downwelling ow. The �rst (second) case refers to a situation
during which the Ekman transport induced by Coriolis forces is directed o�shore (onshore), which
results in a set-down (set-up) of the sealevel and associated upwelling (downwelling). In the present
model this occurs on the Northern Hemisphere for ow in the positive (negative) y-direction. Now
the growth rates for downwelling ow appear to be much smaller than those for upwelling ow, the
corresponding wave-lengths of the most preferred bottom modes are smaller and the bars have a
di�erent orientation. This will be further discussed in section 3.5. The overall characteristics are
that all ridges are trapped to the inner shelf and that their crestlines are rotated upcurrent with
respect to the steady current. It is important to realize at this point that all shoreface-connected
ridges in the �eld occur for negative � (i.e., downwelling ow).

The third important result is that in case � = 0 (tides only) there is positive feedback between
the tidal current and the erodible bottom. According to �gure 3.3 these growing modes seem to
be connected to those which appear for positive �. This result clearly di�ers from the conclusions
stated by Huthnance (1982) and Hulscher et al. (1993) that a 'faster than linear' sediment transport
is required in order to generate bedforms due to tide-topography interaction. However, they
considered a reference ow over a at bottom, whereas in the present model the inner shelf has a
transverse slope. In the next section it will be demonstrated, by using physical arguments, that
indeed the presence of the transverse slope is responsible for the instability process in this case.
From �gure 3.6c it can be seen that the preferred bottom mode in case of pure tides has a longshore
wave-length of about 20 km, which is close to the tidal excursion length Ut T (Ut the tidal current
amplitude, T the tidal period). Furthermore, the bar crests are rotated cyclonically with respect to
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Figure 3.8: Contour plot of the maximum growth rate of perturbations as a function of wavenumber
k and parameter �, which de�nes the relative contribution of the steady ow to the total ow.
Fair weather conditions, for parameter values see the text.

the tidal current direction and anticyclonic residual circulations occur around the bars. However,
the centre of these circulations are slightly shifted in the negative y-direction, with respect to the
bar crests, such that there is again an o�shore deection of the net current over the bars. In case
that � = 0 a detailed analysis of the ow behaviour at di�erent stages of the tidal cycle was carried
out. From this it was found that, apart from residual circulations, the tide-topography interactions
also generate M4- and M6-overtides with signi�cant amplitudes. Thus the current near a ridge has
a complicated temporal structure.

It is also worthwhile to point out that for � = 0 and also f = 0; r = 0 the growth rates
become in�nitely large. This suggests that the instability mechanism cannot longer be described
by a model which is based on irrotational ow, as was done by Trowbridge (1995) for steady ow.
The reason for this is that tidally induced residual circulations around sandbanks can only exist
if friction is present, see e.g. Zimmerman (1981). However it is still true that the transverse bed
slope is the principal cause of instabilities on storm-driven shelves: if the slope s! 0 growth rates
tend to zero.

Finally note that the results are rather sensitive to parameter a in the steady ow, which
indicates the relative contribution of longshore pressure gradients in driving the reference ow.
If also the forcing due to a longshore windstress is taken into account growth rates become sub-
stantially smaller. This result was also found in chapter 2. There ussing statistical arguments,
see appendix A, to argue that during stormy conditions the relative contribution of the longshore
windstress is rather weak, because the e�ect is counteracted by a frictional stress related to the
weather uctuations. We will not pursue on this aspect here, but simply state that quite realistic
ridges are obtained in case forcing by a longshore pressure gradient is used.

3.4.3 Fair weather conditions: � = 0

In this subsection the sediment transport is assumed to be cubic in the instantaneous ow velocity.
This corresponds to fair weather conditions during which the wave orbital velocities near the
bottom are small compared to the velocities induced by steady and tidal currents. In this case
the morphological timescale Tm is de�ned such that parameter �3 = 1 in equation (3.17). This
means that the morphological timescale Tm is much larger than in the previous subsection: it
is of order 6000 yr (since the ratio (�1=�3) � 10). Experiments revealed that in this case more
collocation points were required to obtain converging solutions. The results described below have
been computed for N = 120 collocation points and M = 3 tidal harmonics. Also the model yields
spurious eigenvalues for certain combinations of the model parameters. Although partially visible
in the results, this behaviour was not such that it masked the general behaviour of the model.

Here we present results for the same shelf as was discussed in the previous subsection. The
following parameter values were used: a = 1; f = 0:8; r = 0:4; ��1 = 3:4 and ̂ = 10�3. Further-
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Figure 3.9: Wavenumber for which the maximum growth rate (top), the maximum growth rates
(bottom left) and the migration speed of the most preferred bedforms (bottom right) is attained
as a function of parameter �; other parameter values as in �gure 3.8.

Figure 3.10: Spatial patterns of the most preferred bedforms for di�erent values of parameter
�, other parameter values as in �gure 3.8. a. � = �0:8; k = 3:0. b. � = �0:4; k = 8:0. c.
� = 0:; k = 10:7: a trapped tidal sand ridge. d. � = 0:; k = 10:7: an o�shore tidal sandbank.

more the ow pro�le was chosen such that it exponentially decays in the o�shore direction. This
was done in order to have no conict with the boundary conditions in the model which require
the perturbations to vanish far o�shore. The e-folding lengthscale of the decay was chosen to be
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120 km. A motivation for this choice is that on that this is of the order of the external Rossby
deformation radius. Using this value, a correct description of the bottom modes was found up to
a distance of 50 km from the coast. This exponentially decaying ow structure was also used in
chapter 2.

In �gure 3.8 a contour plot is shown of the largest growth rate of the perturbations as a function
of wavenumber k and parameter �. First of all, a remarkable di�erence with the storm-dominated
case (compare with �gure 3.3) is that this plot is nearly symmetric with respect to the line � = 0.
Hence the direction of the steady current is no longer important for the characteristics of the
resulting bedforms. Furthermore, in this plot clearly three di�erent instability regimes can be
identi�ed. The �rst occurs for large values of j�j (nearly steady ow) and is characterized by
wavenumbers k � 4, i.e., longshore spacings of approximately 20 km. A second regime occurs for
moderate values of j�j (of order 0.5) and has wavenumbers k � 8. The �nal instability regime is
observed for small values of j�j (dominant tidal ow) and has wavenumbers k � 10. In �gure 3.9
the wavenumber of the most preferred mode, the maximum growth rate and the migration speed
of the most preferred mode are shown as a function of parameter �. Finally, in �gure 3.10 contour
plots of the most preferred bedforms, together with the perturbed tidally averaged velocity �eld,
are shown for several characteristic preferred modes.

Note that the typical dimensional growth rates are much larger than those in the previous
section. However, it should be realized that also the morphologic timescale is now much longer.
Hence a dimensionless growth rate of 1 now corresponds to a dimensional e-folding timescale of
6000 yr. Since the nondimensional migration speeds are still of order 1, this implies that the
bedforms migrate much slower than in the storm-dominated case: about 2 m yr�1.

The contour plots in �gure 3.10 clearly reveal the character of the di�erent preferred modes. For
j�j close to 1 the most preferred mode is trapped to the coast and its crests are rotated cyclonically
with respect to the dominant current direction. Its formation is related to vorticity production due
to Coriolis torques which are exerted if a steady ow is moving over this bar, see chapter 2. The
second mode, which can be seen in �gure 3.10b, appears on the outer shelf and is characterized
by a series of alternating bars and pools. This type of bedform is related to vorticity production
induced by frictional torques and it is also observed in case of pure steady ow (see chapter 2).

The third instability regime is linked to the presence of tidal currents and the corresponding
bedforms resemble tidal sand ridges, as can be seen in �gure 3.10 c,d. Remarkably enough there are
two di�erent modes with almost identical growth rates. One corresponds to the classical o�shore
tidal sandbank which was already described by Huthnance (1982) and Hulscher et al. (1993): it
occurs on the outer shelf, the crests are rotated cyclonically with respect to the tidal current
direction and anticylonic residual circulations exist around the bars. The other mode appears to
be a tidal sand ridge which is trapped to the inner shelf and also has cyclonically rotated crests.
However its residual circulation is characterized by strong o�shore deection over the bars, which
suggests that its formation is related to the transverse slope mechanism. Indeed experiments (not
shown) indicate that the latter mode disappears if the slope s of the inner shelf is reduced.

Another remarkable di�erence with the storm-dominated case is that the results are not strongly
dependent on the value of the parameter a in the steady current pro�le. If the value of a is reduced
(i.e., increasing inuence of longshore windstress with respect to longshore pressure gradient)
growth rates weakly decrease, but they are still substantially large, even in case a = 1. Thus the
results discussed here are rather representative for the model; also the sensitivity with respect to
the parameter ��1 is rather weak. Furthermore, the sizes of the di�erent instability regions in
plots like �gure 3.10 depend on the choices for the friction and Coriolis parameter. However, no
new phenomena are detected if the values of these coeÆcients are varied.

3.4.4 Probabilistic mode: experiments with varying �

In this subsection the model is used as a tool to obtain information about the dynamics of bedforms
in a probabilistic sense. Thus a shelf is considered on which stormy conditions occur during a time
fraction �, whereas in the remaining periods (time fraction 1 � �) the weather is calm. The
sediment transport which occurs during these two situations is a linear and a cubic function of
the instantaneous velocity, respectively. Besides, the hydrodynamic conditions may also di�er
during storms and calm weather. This depends on the main direction of waves during storms. If
waves approach the coast in a shore-normal direction, physical quantities like the velocity scale U
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Figure 3.11: Contour plot of the maximum growth rate of perturbations as a function of wavenum-
ber k and the storm fraction parameter �. Here parameter � = �0:8, for other values see the
text.
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Figure 3.12: a. Wavenumber for which the maximum growth rate is attained as a function of
parameter �; other parameter values as in �gure 3.11. b. As a., but for the maximum growth
rates. c. As a., but the migration speed of the most preferred bedforms.

and the relative contribution of steady and tidal components to the reference ow (indicated by
parameter �) will hardly vary. On the other hand, if the wind and waves during storms are mainly
directed alongshore, the steady ow (and hence U and �) will be di�erent during di�erent weather
conditions.

To understand the behaviour of the probabilistic model the two cases mentioned above will be
discussed separately. First the case of 'shore-normal' storms is considered to study the sensitivity
of the results to variations in parameter � for di�erent values of �. Once again a shelf with
the dimensions and location as discussed in section 3.4.2 is assumed. For stormy conditions the
following parameter values were selected: a = 1; r = 0:2; ̂ = 10�4; ��1 = 3:4, whereas during
calm weather a = 0; r = 0:4; ̂ = 10�3; ��1 = 3:4. Note that the ow amplitude U during both
situations is 0.5 ms�1. The choice of a = 1 (i.e., V=H is constant) during storms is quite important,
as already found in section 3.4.2, but the choice a = 0 for calm weather ow is less important (see
section 3.4.3). Finally the ratio of the coeÆcients �1 and �3, which indicate the magnitude of the
sediment transport during storms and calm weather, had to be selected. From the arguments of
section 3.1 and appendix D it follows that (�1=�3)� 1. In all the experiments discussed below we
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Figure 3.13: Spatial patterns of the most preferred bedforms for di�erent values of parameter
�, other parameter values as in �gure 3.11. a. � = 0:3; k = 2:6. b. � = 0:65; k = 2:9. c.
� = 0:9; k = 7:4.

Figure 3.14: Contour plot of the maximum growth rate of perturbations as a function of wavenum-
ber k and the storm fraction parameter �. Here parameter � = �0:5 (left) and � = �0:2 (right),
for other values see the text.

have chosen (�1=�3) = 10, which means that the wave-orbital velocity amplitude near the bottom
during storms is about three times larger than velocity scale U . Hence in the present case this
near-bottom wave velocity amplitude is approximately 0.8 ms�1.

In �gure 3.11 a contour plot is shown of the largest growth rate as a function of wavenumber
k and storm fraction � for � = �0:8. The latter choice implies that the reference ow is directed
in the negative y-direction and has a strong steady component. In �gure 3.12 the wavenumber,
growth rate and migration speed of the most preferred perturbations are shown as a function of �.
Clearly, two di�erent instability regimes can be observed in �gure 3.11. One occurs for small values
of � (dominant calm weather conditions) and has a preferred wavenumber of k � 4 (corresponding
longshore spacings of about 20 km). The second regime is found for large values of � (storms
dominate) and the preferred wavenumber k � 9 (longshore wave-lengths of about 8 km).

As indicated by the �gure 3.12 the transition between the two regimes occurs for � � 0:7.
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Figure 3.15: Left: Wavenumber for which the maximum growth rate (top), the maximum growth
rates (bottom left) and the migration speed of the most preferred bedforms (bottom right) is
attained as a function of parameter �; � = �0:5; other parameter values as in �gure 3.14. Right:
As in the left but for � = �0:2.

Contourplots of a few typical preferred modes are shown in �gure 3.13. As expected from the
analysis of the previous two subsections, for small � (see subplot a) the bottom mode is a Coriolis-
induced bar which extends over the inner and outer shelf and has cyclonically rotated crestlines.
On the other hand, for large � an upcurrent rotated, trapped shoreface-connected ridge is obtained
which, on the Northern Hemisphere, has a di�erent orientation than that of the Coriolis-induced
bars and also migrates faster.

It is interesting to observe that if � � 0:7 is selected (�gure 3.13c) a preferred mode is predicted
which has the characteristics of both shoreface-connected ridges and Coriolis bars. On the outer
shelf the bars are cyclonially rotated, whereas on the inner shelf the crest-lines are upcurrent
rotated. This is a situation which is also observed on the shelf along the Central Dutch coast, see
�gure 1.1.

In the next series of experiments the relative contribution of the tidal currents in the reference
ow was increased. Results are presented for two di�erent cases: � = �0:5 and � = �0:2. In
�gure 3.14 contour plots of the corresponding maximum growth rate in the k; �-parameter space
are shown. The dependence of the wavenumber, growth rate and migration speed of the most
preferred mode on parameter � is shown in �gure 3.15 and the spatial pattern of a few typical
bedforms are shown in �gure 3.16. From this it follows that always two distinct instability regimes
appear which are characterized by small and large �-values, respectively. The transition occurs for
� = �c � 0:7, and this value is determined by the choice of the ratio �1=�3. The characteristics of
the preferred bedforms in these regimes depend on the value of �, i.e., on the relative contributions
of steady and tidal ow. For � = �0:5 (moderate tidal ow) a transition from frictionally-induced
alternate bars to shoreface-connected ridges is found, whereas for � = �0:2 (strong tidal ow) a
transition from o�shore tidal sandbanks to trapped tidal ridges is found. For � � �c the bedforms
have characteristics of both these modes.

Subsequently experiments were carried out in which di�erent hydrodynamic conditions during
storms and calm weather were modelled. First it was tested whether the model could predict
the occurrence of bottom patterns with the characteristics of both shoreface-connected ridges and
o�shore tidal sandbanks. The parameter values were the same as before, except that for stormy
conditions � = �1 was chosen and for fair weather conditions � = 0. It appeared that, with
varying values of the storm fraction �, a transition was found from trapped tidal ridges (near
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Figure 3.16: Spatial patterns of the most preferred bedforms for di�erent values of parameter �,
other parameter values as in �gure 3.11. a. � = �0:5; � = 0:3; k = 3:2. b. � = �0:2; � = 0:3; k =
10:0. c. � = �0:5; � = 0:7; k = 1:5. d. � = �0:2; � = 0:85; k = 9:6. e. � = �0:5; � = 0:9; k = 5:8.
f. � = �0:2; � = 0:95; k = 10:4.

� = 0) to shoreface-connected ridges (near � = 1). However the bedforms for � � 0:7 (not shown)
have either the mixed characteristics of a trapped tidal ridge and shoreface-connected ridge or
that of pure o�shore tidal sandbanks (without morphologic activity on the inner shelf). This
suggest that, according to this model, the observed presence of both o�shore tidal sandbanks and
shoreface-connected ridges cannot be attributed to one preferred mode, which is forming during
di�erent weather conditions, but is rather due to the presence of di�erent bottom modes which
simultaneously develop and have almost equal growth rates.

Finally we carried out experiments in which both the velocity scale U and parameter � have
di�erent values during di�erent weather conditions. Parameters were chosen to be more or less
indicative for the shelf along the central Dutch coast. Here a characteristic depth-averaged tidal
current amplitude is Ut = 0:4 ms�1 and steady current amplitudes during storms and calm weather
are of order 0.4 ms�1 and 0.1 ms�1, respectively. This yields for storms: � = �0:5; ��1 = 2:215
and during calm weather � = �0:2; ��1 = 3:4. Figure 3.17 shows the contour plot of the largest
growth rates as a function of k and �. The dependence of wavenumber, growth rate and migration
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Figure 3.17: Contour plot of the maximum growth rate of perturbations as a function of wavenum-
ber k and the storm fraction parameter �. Here parameters are indicative for the shelf along the
central Dutch coast, see the text.
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Figure 3.18: Wavenumber for which the maximum growth rate (top), the maximum growth rates
(bottom left) and the migration speed of the most preferred bedforms (bottom right) is attained
as a function of parameter �; other parameter values as in �gure refa2:�g:C3-1.

speed of the most preferred mode are shown in �gure 3.18 and contour plots of typical preferred
bottom modes are shown in �gure 3.19. As can be seen the results are qualitatively similar to
the case that � = �0:5 both during storms and fair weather, as was discussed above: a transition
occurs from frictionally induced alternate bars on the outer shelf to shoreface-connected ridges
trapped on the inner shelf. For � � 0:6 two modes exist with almost identical growth rates but
di�erent spatial characteristics.

3.5 Physical instability mechanisms

The physical mechanisms underlying the formation of bedforms in the present model can be under-
stood from the analysis of the bottom evolution equation (3.16). As already explained at the end
of section 3.4 it basically describes two di�erent instability mechanisms: one related to the trans-
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Figure 3.19: Spatial patterns of the most preferred bedforms for di�erent values of parameter
�, other parameter values as in �gure 3.11. a. � = 0:2; k = 10:2. b. � = 0:6; k = 3:2. c.
� = 0:6; k = 9:0.

verse slope of the inner shelf and one related to a 'faster than linear' dependence of the sediment
transport on the ow velocity.

The results of the previous section indicate that there are bascially �ve di�erent types of
bedforms generated by the interaction of a combined steady and tidal current and the sandy
bottom on the inner and outer shelf. These are shoreface-connected ridges, Coriolis-induced ridges,
frictionally-induced alternate bars, o�shore tidal sandbanks and tidal ridges which are trapped to
the inner shelf. We will now discuss their formation mechanisms.

Shoreface-connected ridges are found for high storm fractions (parameter � close to 1), such
that the sediment transport is almost linear, and also for strong steady currents (parameter j�j
near 1). These bedforms, which are trapped to the inner shelf, have longshore wavelengths of
5-8 km, they are upcurrent rotated and the ow shows an o�shore deection over the crests. As
already discussed by Trowbridge (1995) and in chapter 2 their formation is due to the transverse
slope instability mechanism and their length-scale is determined by the width Ls of the inner shelf.

Likewise, the generation of Coriolis- and frictionally induced bars has been explained in chap-
ter 2 by showing that (@u=@x) becomes positive over a bar due to the production of vorticity
by Coriolis and frictional torques if a steady ow moves over these bars. The relevant horizontal
lengthscales are Us=f � 4.5 km and ULv=� � 6 km, respectively, where � is the dimensional linear
friction coeÆcient. The numerical values refer to the parameter settings discussed in the previous
section.

The two last bedforms, o�shore tidal sandbanks and trapped tidal ridges, are not found in
case of a purely steady ow. The former exists only if a 'faster than linear' sediment transport is
selected, i.e. � < 1, see e.g. �gure 3.10c. The latter exists for all values of the storm fraction �, as
can be seen from the contour plots in �gure 3.6d and 3.10d. Their crests are rotated cyclonically
with respect to the dominant current direction. Furthermore, their length scales are of the order
of the tidal excursion length (UtT )=�, which is the distance travelled by a water parcel during a
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Figure 3.20: Situation sketch (topview) of a tidal ow (solid arrows) over a cylonically rotated
ridge on the Northern Hemisphere; reference bottom is at. Due to tide-topography interaction,
see Zimmerman (1981), an anticylonic residual circulation (indicated by dashed arrows) exists
around the bank. This causes the upslope ow velocity to be slightly larger than the downslope
component. In case of a sediment ux which depends 'faster than linear' on the ow velocity, this
results in a net convergence of sediment above the crest.

Figure 3.21: a. Situation sketch (topview) of a water parcel moving over a cyclonically rotated bar
on a shelf with a transverse slope. The ow bends toward the crest due to continuity e�ects. At
the crest the upper part of the parcel is in deeper water than its lower part. Thus the Coriolis force
experienced by the parcel is slightly smaller on the upper part than at the lower part and directed
to the right; hence a positive torque occurs (indicated by the solid arrows). Likewise, since the left
part of the parcel is in shallower water than the right part, the frictional force on the left side is
slightly larger than on the right (indicated by the dahshed arrows). Consequently, also the friction
force induces a positive torque. Since velocity component v is positive in this case, the vorticity
ux is positive at the crest. b. The net vorticity ux induced by the transverse slope causes a
shift in the negative y-direction of the anticyclonic residual circulation (indicated by the dashed
contours). Consequently, u > 0 above the crest, and instability occurs. For further details see the
text.

ood (or ebb) period.
The mechanism causing the generation of o�shore tidal sandbanks is rather well-known, but

we recapitulate the arguments since they will be used to understand the physics of trapped tidal
ridges. As shown by Zimmerman (1981) a tidal ow moving over a cyclonically rotated ridge
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generates positive (negative) vorticity, due to both Coriolis and frictional torques, on the down-
stream (upstream) part of the ridge. This leads to a net, tidally averaged, convergence of negative
vorticity above the crests, as illustrated in �gure 3.20. Hence an anticylonic residual circulation
(clockwise on the Northern Hemisphere) exists around the ridges. This causes the total velocity of
particles moving upslope (downslope) to become slightly larger (smaller). Hence, if the sediment
transport is a 'faster than linear' function of the instantaneous ow velocity, the ux will depend
on the absolute value of the velocity vector, thereby causing a net convergence of sediment above
the crest. In other words, there is a positive feedback between the water motion and the bottom
such that the amplitude of the ridge will grow. This mechanism is less e�ective for anticyclonically
rotated ridges, because in that case the Coriolis and frictional torques have opposite signs, such
that the residual circulations are much weaker.

The formation of trapped tidal ridges is also closely related to the occurrence of tidal residual
circulations, but in this case the instability process is controlled by the transverse slope of the inner
shelf. Thus we will analyze the interaction of a tidal ow with a ridge on a tranversely sloping
shelf. Again vorticity production due to Coriolis and bottom frictional torques will occur, like in
the case of o�shore tidal sandbanks. However, as can be seen from the vorticity equation (3.13) and
continuity equation (3.14) the transverse slope a�ects both the planetary vortex stretching (i.e., the
Coriolis torque) and the frictional torque. First we consider a cyclonically rotated ridge. If it was
located on a at bed both torques would vanish at the crest and the resulting residual circulation
would be anticyclonic around the crests and exactly follow the topographic contours. However,
if the undisturbed water depth increases in the o�shore direction both the Coriolis torque and
frictional torque are such that the net vorticity ux above the crest is positive, see �gure 3.21a.
Together with the vorticity ux generated due to the sole e�ect of the ridge (i.e., as if it were
located on a at bottom) it follows that the net vorticity ux due to the transverse slope causes
the centre of the anticyclonic residual circulation to shift in the negative y-direction, as indicated
in �gure 3.21b. Consequently, a positive correlation between the o�shore ow component u and
the perturbed bottom h occurs and thus the transverse slope mechanism causes a net convergence
of sediment above the crests, similar as in the case of shoreface-connected ridges. This shift in the
residual circulation and the corresponding positive correlation between u and h is clearly visible
in �gure 3.6d and 3.10d. Hence the formation of this type of ridges can occur both during stormy
and fair weather conditions.

Like in case of a at bed, the transverse slope mechanism is less e�ective for trapped tidal ridges
which are rotated anticyclonically. A similar analysis yields that the Coriolis torque and frictional
torque related to the transverse slope cause net vorticity uxes of opposite sign. Depending on the
values of the Coriolis and friction parameters this will result in a weaker o�shore (or even onshore)
ow component at the bar crests and thus the instability process is weaker.

The previous arguments can also be used to understand the observed asymmetry in �gure 3.3
with respect to the line � = 0. This indicate that the instability mechanism is more e�ective for
positive values of � (which corresponds to upwelling ow conditions, see section 3.4.2) rather than
for negative �-values. This is a consequence of earth rotation which a�ects both the steady and
tidal components of the reference ow. Regarding a steady upwelling ow, its acceleration over a
ridge induces an additional o�shore-directed Coriolis force. This enhances the o�shore deection
of the ow over the bars and thus the transverse slope mechanism becomes more e�ective. On the
contrary, a down-welling ow (in the present model: negative values of �) induces an additional
onshore-directed Coriolis force over the bars, such that the transverse slope mechanism is reduced.
Also tidal e�ects are relevant in this respect because it appears from the results of section 3.4.2
that steady upwelling ow induces ridges which are always rotated cyclonically with respect to the
dominant currents. This orientation also leads to a strong positive feedback between the bottom
and the tidal ow, since in the vorticity equation the torques induced by bottom friction and by the
Coriolis force reinforce each other. On the other hand, if the steady ow represents downwelling
conditions, both sources of tidal vorticity oppose each other. So in this case, growth rates are
smaller, and become even negative for a small downwelling steady current component. Note that
the situation for ow along an eastern coast follows by rotating the domain over 180o and the
situation on the Southern Hemisphere is obtained by reection in the x-axis (in the simulations by
changing the sign of �).

We also see in �gure 3.5a that the preferred wavenumber for positive � are of order 1, so that
the dimensional wavelengths are of the order of the tidal excursion Ut T , i.e., 20 km. For negative
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weak tides strong tides

storm dominance shoreface{connected ridges trapped tidal ridges

fair weather
dominance

Coriolis bars
alternate bars

trapped tidal ridges
tidal sand banks

Table 3.1: Classi�cation of the �ve di�erent types of preferred bottom modes predicted by the
model. Weak and strong tides refer to values of the �-parameter close to 0 and 1, respectively.
Fair weather dominance and storm dominance refer to values of the �-parameter close to 0 and 1,
respectively.

� wavenumbers are larger and thus spacings between successive crests are smaller (about 8 km);
they are determined by the width of the inner shelf.

3.6 Conclusions

In this chapter an idealized morphodynamic model has been analyzed to study the joint interaction
of a steady and tidal ow with the erodible bed on the inner and outer shelf. The �rst objective was
to �nd out which types of large-scale alongshore rhythmic bottom patterns can form as inherent free
instabilities of a coupled water-bottom system. Further aims were to understand the underlying
physics of these bedforms and to relate their characteristics to those of morphological features
observed in the �eld.

The water motion in the model is described by the depth-averaged shallow water equations and
for the sediment transport a local parametrization is used. A probabilistic concept is used in the
sense that the model distinguishes between stormy and calm weather conditions, during which the
sediment transport is linear and cubic in the instantaneous velocity, respectively. Apart from that
also the e�ect of local bedslopes on the sediment transport was accounted for.

It appears that the model allows for basically �ve di�erent types of bedforms: shoreface-
connected ridges, Coriolis-induced ridges, frictionally-induced bars, o�shore tidal sandbanks and
trapped tidal ridges. They occur for di�erent values of the tidal parameter � and the storm fraction
parameter �, as is summarized in table 3.1 .

The formation of shoreface-connected ridges, which are trapped to the inner shelf and have
up-current rotated crest-lines, occurs most e�ectively during stormy conditions and with a strong
steady ow component, see also Trowbridge (1995) and chapter 2. Predicted spatial patterns and
timescale are in satisfactory agreement with �eld data. Their formation is related to the presence
of the transverse slope of inner shelf and is strongly inuenced by tidal e�ects. If for a �xed steady
current the amplitude of the tidal current is increased the growth rates become larger, longshore
spacings become longer and the orientation of the crest-lines changes from upcurrent to cyclonic.
For strong tidal currents the preferred bedform becomes a trapped tidal sand ridge, a feature
which has not been described in earlier studies. It owes its existence to the shift of tidal residual
circulations due to the transverse slope of the inner shelf, as explained in section 3.5 of this chapter.

Coriolis-induced ridges mainly form during calm weather and dominant steady current; with
increasing tidal inuence (or increasing the value of the bottom friction coeÆcient) frictionally-
induced alternate bars are predicted. These two modes are modi�cations of bedforms which were
already identi�ed and explained in chapter 2. For strong tidal currents and a 'faster than linear'
sediment transport o�shore tidal sandbanks occur, which were modelled by Huthnance (1982) and
Hulscher et al. (1993).

The ultimate structure of the bedforms strongly depends on the value of the storm fraction
parameter �. For � smaller than a critical value �c the preferred bedforms primarily form during
calm weather conditions. In our simulations the value of �c is about 0.6-0.8; this depends on
the choice of the morphological timescales during calm weather and storms, respectively. For �
somewhat larger than �c the preferred bedforms have more the characteristics of storm-dominated
features. In the transition regime � � �c the spatial pattern of the bottom modes has characteristics
of both types of bedforms. This suggests that the simultaneous presence of o�shore tidal sandbanks
and shoreface-connected ridges on the shelf along the central Dutch coast can be understood from
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the characteristics of one preferred mode, which is forming during di�erent weather conditions.
However, a series of model experiments has shown that such type of behaviour is only observed for
strong steady currents. In case that tidal e�ects dominate the simultaneous presence of di�erent
bottom modes can only be explained as the result of the growth of di�erent bottom modes which
have almost identical growth rates.

It is remarkable that the model predicts �ve di�erent types of preferred bottom modes, whereas
only two of them (shoreface-connected ridges and o�shore tidal sandbanks) are well-known from
�eld observations. This is probably due to the fact that the parameter values for which the
other bedforms are most favourably excited correspond to situations which usually do not occur
in nature. Indeed most shelves are either storm-dominated and characterized by strong steady
currents (like the US and Argentinian shelf) or calm weather conditions prevail together with
strong tidal currents (like the outer shelf of the North Sea).

The model is also subject to a number of limitations which deserve further attention. First of
all, it seems that quite small values of the bedslope coeÆcient ̂ has to be assumed during stormy
conditions in order to obtain realistic spacings of shoreface-connected ridges. This appears to be
due to the formulation of the bedslope correction term in the sediment transport. As shown in a
recent study by Walgreen (1999) it appears the e�ective di�usion coeÆcient during storm is not
̂jV j, as in the present model, but rather a constant e�ective di�usion coeÆcient, which has a
value of about 3 times larger than the present value of . The reason that we have not adopted
this formulation in the present study is to keep an as close as possible connection with the study
of chapter 2 in which also a di�usion coeÆcient proportional to ̂jV j was assumed. Moreover, the
qualitative results of the model do not depend on this particular choice.

Another limitation is that the model is based on spatially uniform wave conditions during
storms. In other words, parameters like the 'wave stirring coeÆcient' �1, bedslope coeÆcient 
and bottom friction parameter during storms are assumed to be constant. In reality these will be
functions of the water depth and this may have quite a substantial e�ect on the dynamics of the
bedforms. However, results of Walgreen (1999) indicate that, for suitable and realistic choices of
the depth dependencies, the main conclusions are found in the present chapter are recovered.

The reference ow in the present model consists of a steady component and one tidal con-
stituent; overtides are only generated internally due to tide-topography interaction. However,
both observations and models of tidal currents in the North Sea, cf. Sinha & Pingree (1997),
demonstrate that the water motion along the central part of the Dutch coast also has a strong
external M4-component. Thus it is worthwhile to investigate the sensitivity of model results to
incorporation of this second tidal harmonic. It should be realized that the discussion in appendix E
indicates that this is quite a substantial amount of work.

Finally note that the present study is limited to a linear analysis. In other words, the model only
describes the initial formation of the bedforms and it yields no information about the amplitude
behaviour of the ridges. In order to describe the long-term behaviour of bedforms the model has
to be extended into the nonlinear regime. This will be done in chapter 4, based on a method
in which the solution is expanded in eigenfunctions of the linear stability analysis. The analysis
is restricted to shoreface-connected ridges on a storm-dominated shelf with steady currents only.
Hence it seems that the present model set-up and results contribute to a further understanding of
the dynamics of sand ridges on the inner and outer shelf.


