

Towards cognitive in-operation
network planning

Fernando Morales Alcaide

ADVERTIMENT La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents
condicions d'ús: La difusió d’aquesta tesi per mitjà del r e p o s i t o r i i n s t i t u c i o n a l
UPCommons (http://upcommons.upc.edu/tesis) i el repositori cooperatiu TDX
(h t t p : / / w w w . t d x . c a t /) ha estat autoritzada pels titulars dels drets de propietat intel·lectual
únicament per a usos privats emmarcats en activitats d’investigació i docència. No s’autoritza
la seva reproducció amb finalitats de lucre ni la seva difusió i posada a disposició des d’un lloc
aliè al servei UPCommons o TDX. No s’autoritza la presentació del seu contingut en una finestra
o marc aliè a UPCommons (framing). Aquesta reserva de drets afecta tant al resum de presentació
de la tesi com als seus continguts. En la utilització o cita de parts de la tesi és obligat indicar el nom
de la persona autora.

ADVERTENCIA La consulta de esta tesis queda condicionada a la aceptación de las siguientes
condiciones de uso: La difusión de esta tesis por medio del repositorio institucional UPCommons
(http://upcommons.upc.edu/tesis) y el repositorio cooperativo TDR (http://www.tdx.cat/?locale-
attribute=es) ha sido autorizada por los titulares de los derechos de propiedad intelectual
únicamente para usos privados enmarcados en actividades de investigación y docencia. No
se autoriza su reproducción con finalidades de lucro ni su difusión y puesta a disposición desde
un sitio ajeno al servicio UPCommons No se autoriza la presentación de su contenido en una
ventana o marco ajeno a UPCommons (framing). Esta reserva de derechos afecta tanto al
resumen de presentación de la tesis como a sus contenidos. En la utilización o cita de partes
de la tesis es obligado indicar el nombre de la persona autora.

WARNING On having consulted this thesis you’re accepting the following use conditions:
Spreading this thesis by the i n s t i t u t i o n a l r e p o s i t o r y UPCommons
(http://upcommons.upc.edu/tesis) and the cooperative repository TDX (http://www.tdx.cat/?locale-
attribute=en) has been authorized by the titular of the intellectual property rights only for private
uses placed in investigation and teaching activities. Reproduction with lucrative aims is not
authorized neither its spreading nor availability from a site foreign to the UPCommons service.
Introducing its content in a window or frame foreign to the UPCommons service is not authorized
(framing). These rights affect to the presentation summary of the thesis as well as to its contents.
In the using or citation of parts of the thesis it’s obliged to indicate the name of the author.

http://upcommons.upc.edu/tesis
http://www.tdx.cat/
http://www.tdx.cat/?locale-attribute=es
http://www.tdx.cat/?locale-attribute=es
http://upcommons.upc.edu/tesis
http://www.tdx.cat/?locale-attribute=en
http://www.tdx.cat/?locale-attribute=en

3

Universitat Politècnica de Catalunya
Optical Communications Group

Towards Cognitive In-Operation
Network Planning

Fernando Morales

Advisors:

Dr. Luis Velasco Esteban

Dr. Marc Ruiz Ramírez

A thesis presented in partial fulfilment of the requirements for
the degree of

Philosophy Doctor

May 2nd, 2018

© 2018 by Fernando Morales

All rights reserved. No part of this book may be reproduced, in any form or by any
means, without permission in writing from the author.

Optical Communications Group (GCO)

Universitat Politècnica de Catalunya (UPC)

C/ Jordi Girona, 1-3

Campus Nord, D6-107

08034 Barcelona, Spain

Agraïments

Primerament, voldria dedicar aquesta tesi a la meva família. El seu sacrifici
incondicional és la raó per la qual hagi pogut arribar fins aquí. Gràcies de tot cor,
n’estic orgullòs de vosaltres.

En segon lloc, voldria destacar la importància d’aquest període en el sí del Grup de
Comunicacions Òptiques. Haver dut a terme la meva tesi en aquest grup m’ha
permès compartir el dia a dia amb grans investigadors que han posat al meu abast
tots els seus coneixement i eines en un ambient professional i acollidor. Gràcies.

Per últim, agraïr especialment als meus directors Luis Velasco i Marc Ruiz per la
seva direcció impecable, pel seu suport continu i per totes les idees i consells que
han compartit amb mi durant aquest temps.

Abstract

Next-generation internet services such as live TV and video on demand require
high bandwidth and ultra-low latency. The ever-increasing volume, dynamicity and
stringent requirements of these services’ demands are generating new challenges
to nowadays telecom networks. To decrease expenses, service-layer content
providers are delivering their content near the end users, thus allowing low latency
and tailored content delivery. Consequently, unseen metro and even core traffic
dynamicity is arising with changes in the volume and direction of the traffic along
the day.

A tremendous effort to efficiently manage networks is currently ongoing towards
the realisation of 5G networks. This translates in looking for network architectures
supporting dynamic resource allocation, fulfilling stringent service requirements
and minimising the total cost of ownership (TCO). In this regard, in-operation
network planning was recently proven to successfully support various network
reconfiguration use cases in prospective scenarios. Nevertheless, additional
research to extend in-operation planning capabilities from typical reactive
optimization schemes to proactive and predictive schemes based on the analysis of
network monitoring data is required.

A hot topic gaining attention is cognitive networking, where an elevated knowledge
about the network could be obtained as a result of introducing data analytics in the
telecom operator’s infrastructure. By using predictive knowledge about the
network traffic, in-operation network planning mechanisms could be enhanced to
efficiently adapt the network by means of future traffic prediction, thus achieving
cognitive in-operation network planning.

In this thesis, we focus on studying mechanisms to enable cognitive in-operation
network planning in core networks. In particular, we focus on dynamically
reconfiguring virtual network topologies (VNT) at the MPLS layer, covering a
number of detailed objectives. First, we start studying mechanisms to allow
network traffic flow modelling, from monitoring and data transformation to the
estimation of a predictive traffic model based on this data. By means of these

II Towards Cognitive In-Operation Network Planning

traffic models, then we tackle a cognitive approach to periodically adapt the core
VNT to current and future traffic, using predicted traffic matrices based on origin-
destination (OD) predictive models. This optimization approach, named
VENTURE, is efficiently solved using dedicated heuristic algorithms and evaluated
under dynamic traffic network scenarios. Next, we extend VENTURE to consider
core flows dynamicity as a result of metro flows re-routing, which represents a
meaningful dynamic traffic scenario. This extension entails enhancements to
coordinate metro and core network controllers with the aim of allowing fast
adaption of core OD traffic models. Finally, we propose the network architectures
needed to bring the previous mechanisms to experimental environments, using
state-of-the-art network protocols such as OpenFlow and IPFIX.

The methodology employed to evaluate the previous work consists of a first
numerical evaluation using a network simulator that was entirely devised and
developed during this thesis. After the simulation validation, the experimental
feasibility of the proposed network architectures is then assessed in a distributed
test-bed.

It shall be mentioned that part of the work reported in this thesis has been done
within the framework of European and National projects, namely METRO-HAUL
(g.a. no. 761727, 2017-2020) funded by the European Commission, and SYNERGY
(TEC2014-59995-R) funded by the Spanish Education and Science Ministry.

Resum

Els serveis d’internet de nova generació tals com la televisió en viu o el video sota
demanda requereixen d’un gran ample de banda i d’ultra-baixa latència.
L’increment continu del volum, dinamicitat i requeriments d’aquests serveis està
generant nous reptes pels teleoperadors de xarxa. Per reduïr costs, els proveïdors
de contigut estan disposant aquests més a prop dels usuaris finals, aconseguint així
una entrega de contingut feta a mida. Conseqüentment, estem presenciant una
dinamicitat mai vista en el tràfic de xarxes de metro amb canvis en la direcció i el
volum del tràfic al llarg del dia.

Actualment, s’està duent a terme un gran esforç cap a la realització de xarxes 5G.
Aquest esforç es tradueix en cercar noves arquitectures de xarxa que suportin
l’assignació dinàmica de recursos, complint requeriments de servei estrictes i
minimitzant el cost total de la propietat. En aquest sentit, recentment s’ha
demostrat com l’aplicació de in-operation network planning permet exitosament
suportar diversos casos d’ús de reconfiguració de xarxa en escenaris prospectius.
No obstant, és necessari dur a terme més recerca per tal d’extendre in-operation
network planning des d’un esquema reactiu d’optimització cap a un nou esquema
proactiu basat en l’analítica de dades provinents del monitoritzat de la xarxa.

El concepte de xarxes cognitives es també troba al centre d’atenció, on un elevat
coneixement de la xarxa s’obtindria com a resultat d’introduir analítica de dades en
l’infrastructura del teleoperador. Mitjançant un coneixement predictiu sobre el
tràfic de xarxa, els mecanismes de in-operation network planning es podrien
millorar per adaptar la xarxa eficientment basant-se en predicció de tràfic, assolint
així el que anomenem com a cognitive in-operation network planning.

En aquesta tesi ens centrem en l’estudi de mecanismes que permetin establir el
cognitive in-operation network planning en xarxes de core. En particular, ens
centrem en reconfigurar dinàmicament topologies de xarxa virtual (VNT) a la capa
MPLS, cobrint una sèrie d’objectius detallats. Primer comencem estudiant
mecanismes pel modelat de fluxos de tràfic de xarxa, des del seu monitoritzat i
transformació fins a l’estimació de models predictius de tràfic. Posteriorment, i

II Towards Cognitive In-Operation Network Planning

mitjançant aquests models predictius, tractem un esquema cognitiu per adaptar
periòdicament la VNT utilitzant matrius de tràfic basades en predicció de parells
origen-destí (OD). Aquesta optimització, anomenada VENTURE, és resolta
eficientment fent servir heurístiques dedicades i és posteriorment evaluada sota
escenaris de tràfic de xarxa dinàmics. A continuació, extenem VENTURE
considerant la dinamicitat dels fluxes de tràfic de xarxes de metro, el qual
representa un escenari rellevant de dinamicitat de tràfic. Aquesta extensió
involucra millores per coordinar els operadors de metro i core amb l’objectiu
d’aconseguir una ràpida adaptació de models de tràfic OD. Finalment, proposem
dues arquitectures de xarxa necessàries per aplicar els mecanismes anteriors en
entorns experimentals, emprant protocols estat-de-l’art com són OpenFlow i IPFIX.

La metodologia emprada per evaluar el treball anterior consisteix en una primera
evaluació numèrica fent servir un simulador de xarxes íntegrament dissenyat i
desenvolupat per a aquesta tesi. Després d’aquesta validació basada en simulació,
la factibilitat experimental de les arquitectures de xarxa proposades és evaluada en
un entorn de proves distribuït.

Cal dir que part del treball mostrat en aquesta tesi ha estat realitzat en el sí de
projectes de recerca europeus i nacionals, concretament METRO-HAUL (g.a. no.
761727, 2017-2020) finançat per la Comisió Europea, i SYNERGY (TEC2014-
59995-R) finançat pel Ministeri d’Educació i Ciència.

Table of Contents

Page

 Introduction ... 1

1.1 Motivation ... 1

1.2 Goals of the PhD thesis .. 2

1.3 Methodology .. 5

1.4 Thesis outline .. 6

 Background .. 7

2.1 Network transport technology ... 7

 Transmission technology ... 7

 Network topology ... 8

 Transponders ... 9

 Elastic Optical Networks .. 10

 MPLS Networks ... 12

2.2 Network technologies and operation ... 13

 Multilayer networks .. 13

 Off-line planning .. 16

 Static vs dynamic network operation ... 17

 In-Operation Network Planning ... 18

 Application-based network operations ... 19

 Network monitoring .. 22

2.3 Network Optimization .. 23

II Towards Cognitive In-Operation Network Planning

 Mathematical programming ... 23

 Heuristics ... 24

 Greedy randomised adaptive search procedure 26

 Iterated local search .. 27

 The RSA problem ... 28

2.4 Data analytics ... 31

 Probability theory .. 31

 Statistic parameter estimation ... 33

 Neural networks .. 34

2.5 Conclusions ... 35

 Review of the State-of-the-Art 37

3.1 Traffic modelling ... 37

 Data plane monitoring .. 37

 Traffic model estimation ... 38

 Traffic model re-estimation ... 39

3.2 VNT reconfiguration ... 40

 VNT reconfiguration approaches .. 40

 VNT reconfiguration based on traffic prediction 41

 Solving methods for VNT reconfiguration .. 42

3.3 Metro-core traffic orchestration ... 43

3.4 Conclusions ... 44

 Simulation environment 45

4.1 Simulator overview ... 45

4.2 Data plane modules .. 46

 Function Custom ... 47

 Generator ... 48

 User .. 48

 User Community .. 49

 Network Node .. 49

4.3 Control plane modules .. 49

Table of Contents III

 SDNController ... 50

 Analytics ... 50

 VNTM ... 51

 Statistics ... 51

4.4 Event modules ... 52

 Generic Configuration ... 52

 Redirection Generator ... 52

 Clock ... 52

4.5 Simulation workflows ... 53

 Traffic generation .. 53

 Traffic request .. 54

 Traffic modeling ... 55

 VNTM algorithms .. 56

 Metro-flow rerouting ... 57

4.6 Conclusions ... 57

 Network traffic modelling 59

5.1 Traffic flow modelling ... 59

 Data analytics modules for traffic flow modelling 59

 Traffic model estimation ... 60

5.2 Time point –valued predictive models ... 62

 Model estimation ... 62

 Model evaluation ... 65

5.3 Time series –valued predictive models .. 66

 Model estimation ... 66

 Model evaluation ... 68

5.4 Numerical results ... 69

 Traffic flow generation .. 69

 Piece-wise linear model estimation .. 71

 ANN-based model estimation ... 73

5.5 Conclusions ... 75

IV Towards Cognitive In-Operation Network Planning

 VNT reconfiguration based on traffic
prediction .. 77

6.1 VNT design and reconfiguration options ... 77

6.2 The VENTURE problem ... 81

 Problem statement .. 81

 Mathematical model .. 81

6.3 Basic heuristic algorithms .. 84

6.4 Numerical results ... 89

 Simulation scenario ... 89

 Blocking probability performance ... 89

 Transponder utilisation performance ... 91

6.5 Conclusions ... 92

 Advanced VENTURE algorithms 93

7.1 GRASP heuristic algorithm .. 94

7.2 ILS heuristic algorithm .. 95

7.3 Numerical results ... 97

 Instance generation ... 97

 Performance evaluation .. 100

7.4 Conclusions ... 105

 Core VNT reconfiguration based on metro-flow
traffic prediction ... 107

8.1 Flow traffic prediction under changing traffic .. 107

8.2 Metro-flow based OD pair traffic modelling .. 109

8.3 Illustrative numerical results .. 112

 Metro-flow model aggregation analysis .. 112

 VNT reconfiguration performance .. 114

8.4 Conclusions ... 116

 Experimental validation 117

9.1 Bringing data analytics to the network ... 118

Table of Contents V

9.2 Proposed architectures ... 120

 Domain controller architecture ... 120

 Multi-domain controller architecture ... 122

9.3 Use cases and workflows .. 123

 Traffic monitoring and model estimation 123

 VNT reconfiguration based on traffic prediction 125

 Metro-core model dissemination ... 126

9.4 Experimental assessment .. 128

 Traffic monitoring and model estimation 128

 VNT reconfiguration based on traffic prediction 129

 Metro-core model dissemination ... 130

9.5 Conclusions ... 132

 Closing discussion .. 135

10.1 Main Contributions ... 135

10.2 List of Publications ... 136

 Publications in Journals .. 136

 Publications in Conferences .. 136

 Book Chapters .. 137

 Other Works Not Included in This Thesis 137

10.3 List of Research Projects .. 137

 European Funded Projects .. 137

 Spanish Funded Projects ... 138

 Pre-doctoral Scholarship ... 138

10.4 Topics for Further Research ... 138

List of Acronyms .. 139

References .. 143

List of Figures

Page

Fig. 1-1 Applying the OAA loop [Ve16] in multilayer optical networks. 3

Fig. 1-2 Methodology used in this PhD thesis. .. 5

Fig. 2-1 DWDM Technology. ... 8

Fig. 2-2 Optical nodes and topologies. .. 9

Fig. 2-3 Logical representation of a fiber link. .. 11

Fig. 2-4 Example of MPLS routing. .. 12

Fig. 2-5 Example of a single-layered network architecture. 14

Fig. 2-6 Two-layer network architecture (a) before and (b) after setting up an end-

to-end MPLS path supported by three vlinks. ... 14

Fig. 2-7. Example of VNT supported by lightpaths on the optical layer. 16

Fig. 2-8 Classical network life-cycle. .. 16

Fig. 2-9 Current static architecture. .. 17

Fig. 2-10 An example of dynamic planning and reconfiguration. 17

Fig. 2-11 Augmented network life-cycle. .. 19

Fig. 2-12 ABNO architecture (reproduced from [RFC7491]). 20

Fig. 2-13 ABNO-based Control and Management Plane Architecture 22

Fig. 2-14 Normal distribution probability density function. 32

Fig. 2-15 Estimation of a parameter from a sample. .. 33

Fig. 2-16 Artificial neural network... 34

Fig. 5-1 Data analytics modules for traffic flow modelling. 60

Fig. 5-2 Different aggregation levels for traffic flow time series. 61

VIII Towards Cognitive In-Operation Network Planning

Fig. 5-3 Example of ACF applied to a monitoring time series Y. 63

Fig. 5-4 Self-learning ANN fitting algorithm. ... 67

Fig. 5-5 Average daily bitrate of Users and Datacenter profiles. 70

Fig. 5-6 Two days of monitoring data of Users traffic generated using iONESim. . 70

Fig. 5-7 Two days of monitoring data of DC traffic generated using iONESim. 71

Fig. 5-8 Mean error of σ2 estimation vs days of monitoring. 72

Fig. 5-9 Maximum error of σ2 and μ vs days of monitoring for the Users (a) and the

DC (b) traffic profiles. ... 72

Fig. 5-10 Prediction of min/max/avg for Users (a) and DC (b) traffic profiles. 73

Fig. 5-11 AIC values for the ANN input selection phase. ... 74

Fig. 5-12 ANN adaptation to smooth (a) and sharp (b) evolutionary bitrate. 75

Fig. 6-1 Static VNT design. ... 78

Fig. 6-2 Threshold-based VNT capacity reconfiguration. ... 79

Fig. 6-3 VNT reconfiguration based on OD traffic prediction. 80

Fig. 6-4 Applying the OAA loop for VNT reconfiguration. .. 80

Fig. 6-5 Rationale behind the heuristic algorithm. ... 84

Fig. 6-6 Average and maximum hourly blocking probability of VENTURE vs load.

 .. 90

Fig. 6-7 Blocking probability along one day of VENTURE for a normalised load of

0.48 (a) and 1.0 (b). .. 90

Fig. 6-8 Maximum used transponders vs load. .. 91

Fig. 6-9 Daily transponder usage for a normalised load of 0.48 (a) and 1.0 (b). 92

Fig. 7-1 Generation of matrix D for a 15-node VNT: low (a) and high (b) roughness

values used for the bitrate distribution. .. 98

Fig. 7-2 Approximately 50% of the OD pairs in D increase their capacity a 70%. .. 98

Fig. 7-3 Different <D, OD> traffic transitions for a given granularity value. 99

Fig. 7-4 Gap reduction of GRASP-based VENTURE w.r.t. base VENTURE for

different values of the α parameter. ... 102

Fig. 7-5 Gap reduction of ILS-based VENTURE w.r.t. base VENTURE for different

values of the perturbation strength parameter. .. 103

Fig. 7-6 Running time vs time-to-target probability of ILS-based and base

VENTURE for low granularity instances. ... 104

List of Figures IX

Fig. 7-7 Running time vs time-to-target probability of ILS-based and base

VENTURE for average granularity instances. .. 105

Fig. 8-1. OD traffic can change due to metro-wide re-configuration. 108

Fig. 8-2. Example of a traffic model that becomes obsolete. 108

Fig. 8-3 Predictive error resulting from the aggregation of maximums. 112

Fig. 8-4 (a) Value of k (eq. (8-6)) vs number of aggregated metro-flows and (b)

prediction error vs value of k for 500 aggregated metro-flows. 114

Fig. 8-5 Prediction of min/max/avg OD bitrate during one day. 114

Fig. 8-6 Maximum used transponders under randomised (a) and per type of service

(b) rerouting schemes. ... 115

Fig. 9-1. Conceptual architecture. .. 118

Fig. 9-2. Proposed monitoring hierarchy. .. 120

Fig. 9-3. Detailed architecture, using the extended node proposed in [Gi17]. 121

Fig. 9-4. Proposed flow controller architecture. ... 122

Fig. 9-5. Workflow for traffic monitoring and model estimation. 123

Fig. 9-6. Workflow for VNT reconfiguration based on traffic prediction. 126

Fig. 9-7. Example of VNT reconfiguration based on traffic prediction. 126

Fig. 9-8. Metro-flow set-up (a), Metro-flow model estimation (b) and Metro-flow re-

routing (c). ... 127

Fig. 9-9. Exchanged monitoring messages for the first workflow and details of the

messages. ... 129

Fig. 9-10. JSON object storing the predictive model for LSP-02-05. 129

Fig. 9-11. Exchanged messages for VNT reconfiguration based on traffic prediction

(Fig. 9-6). .. 130

Fig. 9-12. Messages list for metro-flow set-up (a), metro-flow traffic model update

(b) and metro-flow LSP re-routing (c). ... 131

Fig. 9-13. Details of traffic model (a), metro-flow (b) and updated metro-flow (c). 132

List of Tables

Page

Table 1: Thesis goals ... 4

Table 2-1: GRASP main algorithm ... 26

Table 2-2: GRASP constructive phase .. 27

Table 2-3: ILS main algorithm ... 28

Table 2-4 Pre-Computation of C(d) .. 29

Table 3-1: Survey of traffic modelling .. 40

Table 3-2: Survey of VNT reconfiguration ... 42

Table 3-3: Survey of metro-core orchestration ... 43

Table 5-1: Variable definition for the model estimation. .. 64

Table 5-2: Piece-wise linear model estimation .. 64

Table 5-3: Piece-wise linear model evaluation .. 66

Table 5-4: Parameters of the ANN model .. 68

Table 5-5: ANN model evaluation .. 69

Table 5-6 ANN hidden layer dimensioning phase ... 74

Table 5-7 Statistics vs ANN –based estimation .. 76

Table 6-1 Main Algorithm... 85

Table 6-2 Phase I Algorithm ... 86

Table 6-3 Phase III Algorithm .. 87

Table 6-4 Local Search Procedure .. 88

Table 6-5 Time complexity and running times of the algorithms 88

Table 7-1: GCF for GRASP-based VENTURE ... 94

II Towards Cognitive In-Operation Network Planning

Table 7-2: Constructive procedure for ILS-based VENTURE 96

Table 7-3: Perturbation procedure for ILS-based VENTURE 97

Table 7-4 Objective cost and optimality gap of VENTURE solving methods. 101

Table 8-1: OD model update algorithm .. 111

Table 9-1: IPFIX template 264 (OVS native) ... 124

Table 9-2: IPFIX template 500 (custom definition) ... 124

Table 9-3: KDD estimator algorithm ... 125

Chapter 1

Introduction

1.1 Motivation

A new generation of internet services requiring stringent requirements, such as
video on demand and live video streaming [Ru16], is changing the Internet traffic.
The bandwidth demanded by these services is continuously growing: Cisco
forecasts yearly global growth of 24% in the IP traffic between 2016 and 2021
[Cisco17]; by the end of that period, video traffic will account for 82% of the global
IP traffic. The stringent requirement that these services demand is making content
providers to carry traffic closer to end users by delivering it from metro networks.
Metro-delivered traffic is growing faster than core-delivered traffic and will account
for 35% of total end-user traffic by 2021.

An important part of this growth is caused by mobile traffic, experiencing a yearly
global growth of 46%, twice as fast as fixed IP traffic [Cisco17]. In that regard, a
tremendous effort is being carried out toward 5G networks aiming at facing a host
of new challenges covering not only radio but also the non-radio segments of the
network (metro and core). The number of nodes, the heterogeneity of the access
technologies, the conflicting management objectives, the resource usage
minimisation, and the division between limited physical resources and elastic
virtual resources is driving a complete change in the methodology for efficient
network management [5G].

From the metro-core point of view, the accommodation of these services is
introducing an unprecedented dynamicity in the traffic involving changes not only
in its volume but also in its direction over time. On statically, and even on
reactively managed networks such dynamicity entails large overprovisioning,
leading to large capital expenditures (CAPEX). With this in mind, operators are
seeking for architectures that allow dynamic resource allocation, while fulfilling

2 Towards Cognitive In-Operation Network Planning

services’ requirements and minimising the total cost of ownership (TCO).
Notwithstanding dynamic network operation might bring cost savings, dynamicity
itself might cause network resources not to be optimally used. To solve that, in-
operation network planning [Ve14.1] was proposed to make network resources
available by re-configuring and re-optimising the network on-demand. Examples
include re-optimisation [Gi15] and spectrum defragmentation in the optical layer
[Gi14].

By looking at the MPLS layer, static virtual network topologies (VNT) have been
commonly designed to cope with the off-line traffic forecast. VNTs consist of large
packet-switching nodes (e.g., MPLS routers) connected through virtual links
(vlinks) supported by static connections in the optical layer. In this context, in-
operation planning algorithms for VNT reconfiguration such as threshold-based
VNT reconfiguration [Ag15] have been proposed to reroute MPLS paths reactively
by monitoring vlink capacity utilisation according to some configured threshold
(e.g., 90%) and triggering a VNT reconfiguration once such threshold is exceeded.
Although this reactive, threshold-based reconfiguration introduces OPEX savings
when compared to a static VNT, transponder optimization is limited as a result of
its local scope both topologically (per vlink adaptation) and in time (analyzing the
current traffic). To achieve a superior VNT reconfiguration reactive approaches
need to evolve to proactive ones capable of anticipating future traffic, thus allowing
an efficient adaptation of the whole VNT to near-future traffic matrices.

Data analytics presents itself as an interesting option to achieve this. Data
analytics is a field devoted to inspecting, cleansing, transforming, and modelling
large and heterogeneous amounts of data with the goal of discovering useful
information, suggesting conclusions, and supporting decision-making. Data
analytics has multiple facets and approaches, encompassing diverse techniques
under a variety of names applied in several fields. In networking, the data source
comes from monitoring the network nodes at the different network layers (e.g.,
packet or optical nodes). Algorithms based on monitoring the data plane could be
used to elevate the cognitive abilities of in-operation network planning, providing
means to adapt the network not only reactively but also proactively based on
history data hence achieving a superior network configuration [5G]. Therefore,
cognitive in-operation network planning appears as a promising solution for the
next generation of network management.

1.2 Goals of the PhD thesis

In light of the above, this PhD thesis focuses on exploring cognitive in-operation
network planning by combining data analytics based on monitoring data with
optimisation techniques to allow applying the observe-analyse-act loop (OAA) in the

Chapter 1 - Introduction 3

core VNT, adapting it not only to current but also to future traffic conditions (Fig.
1-1).

We propose to monitor traffic flows in core networks to obtain monitoring data used
for knowledge discovery purposes (observe). Next, centralised data analytics
algorithms are executed the core network controller based on monitoring data
aiming at extracting information about the monitored traffic in the form of origin-
destination (OD) predictive traffic models (analyse).

Network
Controller

Multilayer
Network

VNT
IP/MPLS Layer

Optical Layer

O
b
se

rv
e

Analyze

A
ct

Fig. 1-1 Applying the OAA loop [Ve16] in multilayer optical networks.

To adapt the VNT to current and future traffic conditions while ensuring the target
grade of service, the maximum predicted OD traffic matrix is computed based on
the obtained predictive models and then used as input of a VNT reconfiguration
problem based on traffic prediction (act).

To ensure the quality of core OD traffic models under changing traffic patterns, we
propose to bring data analytics to the neighbouring metro areas to obtain metro-
flow predictive models. These models, similarly computed in the metro controllers,
are conveniently disseminated to the core controller and then aggregated to form
updated OD core predictive models.

Three specific goals are defined to achieve this:

G1 – Traffic Modeling

This goal is divided into two sub-goals:

 G1.1: To study mechanisms for core and metro network traffic flow
modelling.

 G1.2: To study mechanisms for efficiently rebuilding obsolete core network
traffic flow models under changing traffic, aggregating several metro-flow
traffic models from neighbouring metro network areas.

4 Towards Cognitive In-Operation Network Planning

G2 – VNT Reconfiguration Based on Traffic Prediction

This goal is divided into three sub-goals:

 G2.1: To study how to periodically reconfigure the VNT to adapt it to
current and predicted traffic matrices in a cost-saving manner (referred to
as the VENTURE problem).

 G2.2: To study advanced solving techniques for the VENTURE problem.

 G2.3: To solve the VENTURE problem using the aggregated metro-flow
traffic prediction under changing traffic scenarios.

G3 – Experimental validation

 This goal concentrates on studying and finding the best way to bring the
algorithms from the previous goals to experimental environments.

A summary of the goals of the thesis is shown in Table 1.

Table 1: Thesis goals

 Goals

G1

Traffic Modeling

G1.1 Traffic flow modelling.

G1.2
Core-flow models based on metro-flow model

aggregation.

G2

VNT Reconfiguration
Based on Traffic

Prediction

G2.1
To periodically adapt the VNT to the near

future traffic (VENTURE problem).

G2.2 Advanced solving techniques for VENTURE

G2.3 Solve VENTURE based on aggregated metro-
flow traffic prediction.

G3

Experimental
validation

Bring the algorithms from previous goals to
experimental environments

It is worth mentioning that this thesis is encompassed in the research activity of
the Optical Communications Group (GCO) at Universitat Politecnica de Catalunya.
Specifically, it continues with the work of two previous PhD thesis recently done
within the group. In the one hand, it continues the work of Dr Alberto Castro
([CaPhD]) devoted to the design of provisioning and re-optimization algorithms in
elastic optical networks. On the other hand, it partially continues the work of Dr
Lluís Gifre ([GiPhD]) devoted to experimentally assessing in-operation network
planning architecture and algorithms.

Chapter 1 - Introduction 5

1.3 Methodology

To carry out the studies needed to meet the goals of this thesis, the methodology
illustrated in Fig. 1-2 will be followed. As the starting point of each study, an idea
related to a thesis objective is conceived and formally stated. Due to the nature of
this thesis, a data analytics algorithm and an optimisation problem are devised,
being the optimisation problem formally modelled as a Mixed Integer Linear
Programming problem (MILP). The data analytics algorithm is implemented in
MATLAB or C++, whereas the mathematical model is solved using IBM’s CPLEX
solver [CPLEX]. Because the realistic scenarios tackled lead to large problem sizes
in most of the studies, MILP formulations require long computation times
prohibitive for in-operation planning purposes. Therefore, aiming at achieving
practical heuristic algorithms are required. To that end, once a MILP formulation
is validated, a heuristic algorithm is designed and implemented in C++.

Problem
statement

Algorithm
implementation

Performance evaluation
Simulation (OMNeT++)Idea

Dissemination

Data analytics
methodology

MILP formulation
Algorithm design

Algorithm
implementation

Experimental
validation

Fig. 1-2 Methodology used in this PhD thesis.

Data analytics and optimisation algorithms are considered jointly as our proposed
solution to the problem. These algorithms are integrated into an event-driven
network simulator based on OMNeT++ [OMNeT] that has been entirely designed
and developed within this thesis. It allows evaluating the performance of the
solution and, if required, revising and improving the algorithms. Then, the
performance of the solution is compared against a certain benchmark (e.g., other
solutions based on state-of-the-art procedures). Once the solution is validated
through simulation, it is brought to a real environment where it is experimentally
assessed. Finally, relevant results are disseminated and considered as the
conception of a new idea requiring further research.

6 Towards Cognitive In-Operation Network Planning

1.4 Thesis outline

The remainder of this thesis is organized as follows:

Chapter 2 presents a brief introduction to multilayer optical transport networks,
including optical transmission technology, network topologies, transponder devices
and Elastic Optical Networks (EONs). Then, the multilayer network architecture is
described followed by an overview of the evolution from off-line network operation
to in-operation network planning. This chapter ends by presenting the
mathematical optimisation and data analytics tools applied to solve the problems
faced along this thesis.

Chapter 3 explores the state-of-the-art used as a reference point in the
development of this thesis. First, the latest research on network traffic modelling is
explored including those works addressing the aggregation of predictive models.
The chapter concludes by presenting the current status of VNT reconfiguration
mechanisms.

Chapter 4 presents the network simulation environment used to evaluate the
algorithms proposed in this thesis. The simulator was devised and developed
jointly with this thesis.

Chapter 5 focuses on network traffic flow modelling. We explore the best ways to
monitor, aggregate and process monitoring data to obtain quality traffic predictive
models.

Chapter 6 shows how predictive OD traffic models can be included in the process of
core VNT reconfiguration to adapt it not only to current but also to future traffic
conditions. We accomplish this by solving a VNT reconfiguration problem based on
traffic prediction (VENTURE).

Chapter 7 is devoted to studying advanced solving techniques for the VENTURE
problem. Metaheuristics are proposed and evaluated through simulation aiming at
finding the most suitable way of adapting the VNT over time.

Chapter 8 presents the problem of rebuilding core OD traffic models once they
become obsolete as a result of metro-flow traffic rerouting from adjacent metro
areas. By correlating metro and core traffic, metro-flow models can be aggregated
to obtain updated core OD traffic models while in-operation.

Chapter 9 focuses on devising and assessing network and control architectures to
bring the algorithms proposed in the previous chapters to experimental
environments.

Finally, Chapter 10 draws the main conclusions of the thesis.

Chapter 2

Background

To perceive how optical transport networks are managed, the multilayer network
architecture is first introduced to define how optical resources can be shared among
different services thus defining virtual network topologies (VNT). The definitions of
network operation and planning are then presented, continuing by a brief overview
of the network life-cycle going from classic off-line network operation to current in-
operation network planning.

Next, we introduce the concepts and technologies considered for the development
this thesis. First, optical transport networks are presented. Dense Wavelength
Division Multiplexing (DWDM) transmission technologies and later Elastic Optical
Networks (EON), which promise a more efficient usage of the optical resources are
briefly introduced. Finally, the MPLS layer is also reviewed.

Finally, we present the mathematical background needed to understand the
algorithms presented in this thesis. First, we briefly introduce the topic of
mathematical network optimization, comprising mathematical programming and
heuristics. Second, we review the probability and statistics theory playing a role in
the data analytics methods that will be seen in the next chapters.

2.1 Network transport technology

 Transmission technology

An optical network is a network composed of optical nodes connected using optical
fibers. In these networks, the information is transmitted as an optical signal; in the
network nodes, the signal can be switched optically or converted to the electrical
domain.

8 Towards Cognitive In-Operation Network Planning

The Dense Wavelength Division Multiplexing (DWDM) technology allows
transmitting different data flows on different optical wavelengths. Most DWDM
systems currently use the frequency region around 1550 nm, because this is one of
the frequency regions where the signal attenuation reaches a local minimum. Fig.
2-1 shows an example of the DWDM technology.

DWDM systems with channel spacings ranging from 12.5 GHz to 100 GHz have
been specified [G694]. With that technology, the number of optical wavelength
channels being multiplexed onto a single fiber ranges between 50 and 400.

Optical Fiber

Wavelengths
(λ)

DWDM
signal

De/Multiplexer De/Multiplexer

DWDM
signal

Wavelengths
(λ)

Data flows Data flows

Fig. 2-1 DWDM Technology.

Light emitters (usually semiconductor lasers) are key components in an optical
network. They convert an electrical signal into the corresponding light signal, on a
single wavelength, that can be injected into the fiber. Besides, a DWDM system
uses a multiplexer at the transmitter side to multiplex the different wavelengths
together in a bundle, and a demultiplexer at the receiver side to split them apart.
An optical fiber transmits optical signal through long distances. On a typical 80
channel DWDM system transporting 10Gbit/s per wavelength, the maximum
distances that can be transmitted without regeneration are about 2000 km [Pe04].

In all-optical or transparent networks, optical connections are established between
end-nodes assigning them a specific optical channel without any intermediate
electronic processing.

When a connection request (or demand) between a source and a destination
arrives, an optical connection is established in the optical network; these optical
connections are commonly referred to as lightpaths.

 Network topology

The first DWDM systems were point-to-point systems. The introduction of
Reconfigurable Optical Add/Drop Multiplexer (ROADM) in the transport networks
allows them to be configured in ring-based topologies. A ROADM allows dropping a
specific wavelength out of the bundle of DWDM-multiplexed signals and adding

Chapter 2 - Background 9

another channel on the same wavelength (Fig. 2-2a). A ROADM also allows for
remote configuration and reconfiguration.

The introduction of sophisticated optical devices such as Wavelength Selective
Switches (WSS) [Ts06] made possible to build evolved ROADM architectures and
optical cross-connects (OXCs), the key element to build optical mesh-based
networks (Fig. 2-2b) [Ro08].

Ring-based networks present lower capacity efficiency than mesh networks; mesh
networking allows connections to be routed over shorter paths. In this regard,
mesh-based networks have been extensively used in packet-based networks due to
their high efficiency and flexibility.

Reconfigurable
Optical Add Drop

Multiplexer (ROADM)
Ring Networks

Optical
Cross-Connect

(OXC)

EastWest

Access Ports

Mesh NetworksRing Networks

a)

b)

Fig. 2-2 Optical nodes and topologies.

 Transponders

Transponders are optical devices responsible for transforming electrical flows into
optical signals and vice-versa; therefore, they are used as end-points of lightpaths.
Depending on their properties, different kinds of transponders are described in the
literature. The selection of the kind of transponder is related to the characteristics
of the lightpaths conveyed through the optical network [Ri12]. In optical networks
where all lightpaths are of the same capacity, e.g. 100 Gb/s, Fixed Transponders
(FT) can be used, and just one type of transponder needs to be kept in the
inventory. However, when lightpaths have different capacities, e.g. 40/100/400
Gb/s, FTs of different capacities have to be installed in the network nodes, and
different types of transponders have to be maintained in the inventory thus,
significantly increasing network operational expenditures (OPEX).

Moreover, since the capacity of demands and transponders must coincide,
compatible transponders need to be available in the end nodes of that connection.

10 Towards Cognitive In-Operation Network Planning

Even though FTs could be available in those nodes, lightpaths could not be set up if
they are not of the required capacity.

As an alternative solution, Bandwidth-Variable Transponders (BVT) enhances FTs’
characteristics by enabling dynamic configuration of their capacity and can be used
in a range of capacities, e.g. 40/100/400 Gb/s. In such way, the inventory contains
transponders of a single kind thus, notably reducing network OPEX.

However, BVTs are underutilised when lightpaths require lower capacities than
that of the BVTs. For instance, a 400 Gb/s BVT can end a lightpath of 400 Gb/s at
the most; when lower capacities are requested, the residual capacity remains
unused.

To increase the flexibility of BVTs and improve their utilisation, a new kind of
transponder, named as Sliceable BVT (SBVT), has been proposed in the literature
[Ji12], [Nap15]. SBVTs consist of a set of modules, each able to support an
independent lightpath. SBVTs impose three constraints over the supported
lightpaths: i) the total number of lightpaths cannot exceed the number of modules
in the SBVT; ii) the total capacity of the supported lightpaths cannot exceed the
total switching capacity of the SBVT; and iii) the spectrum allocated to each
lightpath cannot overlap [Sam15]. For instance, an SBVT of 400 Gb/s with 4
internal modules can support four lightpaths of 100 Gb/s, or two lightpaths of 100
Gb/s plus a third one of 200 Gb/s, and so on.

Different modulation formats provide a series of trade-offs and drawbacks. For
instance, the 16-QAM modulation format (B16-QAM=4 b/s/Hz) needs half spectrum
width than QPSK (BQPSK=2 b/s/Hz) to transmit the same bit rate. Whereas 16-QAM
has worse receiver sensitivity than QPSK thus, limiting the distance of optical
connections.

 Elastic Optical Networks

[G964] standardisation defines a flexible grid (previously introduced in [Li11]) to
realise Elastic Optical Networks (EONs). EON requires from specific components
such as Bandwidth-Variable (BV) Spectrum Selective Switches to build BV-OXCs.
The optical spectrum is divided into frequency slices, which are portions of the
spectrum with a fixed width (e.g., 6.25 GHz). The central frequency defines where
the assigned spectrum is centred, and it allows positioning the slices allocated to a
connection. A subset of contiguous (adjacent) frequency slices is called a frequency
slot, and it is characterised by its centre frequency and the number of slices that
contains. To illustrate the concepts introduced above, Fig. 2-3 represents the
spectrum of an optical fiber link in EON.

Chapter 2 - Background 11

Fig. 2-3 Logical representation of a fiber link.

Thanks to this, an EON can adjust the slot allocation to varying traffic conditions
over time, thereby creating a network scenario where slots are both switched and
re-dimensioned according to temporary traffic requirements. Therefore, traffic
demands are assigned a frequency slot according to their requested bit-rate and the
selected modulation technique [Ji10].

Let us introduce some notation related to graph theory. Let graph G(N, E)
represent the topology of an EON, where N is the set of OXCs and E the set of
optical links connecting two OXCs, and let S be the set of frequency slices available
in each link e ∈	E. Then, given a connection request d requesting for B(d) Gb/s, the
spectral resources that need to be allocated are a function of the spectral efficiency
(Bmod in b/s/Hz) of the chosen modulation format.

Without loss of generality, given Bmod and the spectrum granularity (e.g., 6.25
GHz), we compute the number of contiguous slots required by connection request d,
denoted as S(d), as in [Ji10]:












25.6

)(
)(

modB

dB
dS (2-1)

It must be mentioned that eq. (2-1) tends to underestimate the number of slices
required, as it assumes that B(d) consists only of payload data. However, in
general, this is not the case, as different overhead data (e.g., around 10% extra)
may be required. Such overhead may vary according to the modulation format
selected.

12 Towards Cognitive In-Operation Network Planning

 MPLS Networks

Multi-protocol Label Switching (MPLS) [RFC3031] is a type of data-carrying
technique for high-performance telecommunications networks. MPLS directs data
from one network node to the next based on path labels rather than long network
addresses, avoiding complex lookups in a routing table. The labels identify virtual
links (paths) between distant nodes rather than endpoints. MPLS can encapsulate
packets of various network protocols, hence its name “multi-protocol”. MPLS is a
scalable, protocol-independent transport. In an MPLS network, data packets are
assigned labels and packet-forwarding decisions are made solely on the contents of
the label, without the need to examine the packet itself. This allows to create end-
to-end circuits across any type of transport medium, using any protocol. The
primary benefit is to eliminate dependence on a particular layer-2 technology.

An MPLS router that is located in the middle of an MPLS network and performs
routing based only on the label is called a label switch router (LSR). An LSR is
responsible for switching the labels used to route packets: when an LSR receives a
packet, it uses the label included in the packet header as an index to determine the
next hop on the label-switched path (LSP) and a corresponding label for the packet
from a lookup table. The old label is then removed from the header and replaced
with the new label before the packet is routed forward to the next MPLS router.

LER
LSR LSR

LER

IP / MPLS Network

MPLS routers

Labelled switched path (LSP)
(MPLS path)

Labelled IP packet

IP packet

IP packet

Fig. 2-4 Example of MPLS routing.

A label edge router (LER, also known as edge LSR) is a router that operates at the
edge of an MPLS network and acts as the entry and exit points for the network. An
ingress LER pushes an MPLS label onto incoming packets whereas an egress LER
pop the MPLS label from outgoing packets; alternatively, this function may instead
be performed by the last LSR directly connected to the LER. When forwarding an
IP packet into an MPLS network, an LER uses routing information to determine
the appropriate label to be pushed, labels the packet accordingly, and then
forwards the labelled packet into the MPLS network. Likewise, upon receiving a
labelled packet which is destined to exit the MPLS domain, the LER strips off the
label and forwards the resulting IP packet using normal IP forwarding rules.

Chapter 2 - Background 13

A label-switched path (LSP) is a path through an MPLS network, set up based on a
particular forwarding equivalence class (FEC), which describes the set of packets
which may be forwarded using the same MPLS label (e.g., those with the same
destination IP address). The path begins at a label edge router (LER), which makes
a decision on which label to prefix to a packet, based on the appropriate FEC. It
then forwards the packet along to the next router in the path, which swaps the
packet's outer label for another label, and forwards it to the next router. The last
router in the path removes the label from the packet and forwards the packet
based on the header of its next layer, for example IP. Due to the forwarding of
packets through an LSP being opaque to higher network layers, an LSP is also
sometimes referred to as an MPLS tunnel. Fig. 2-4 shows an example of an IP over
MPLS (IP/MPLS) network routing a LSP.

Deploying MPLS networks provides an integrated approach for network traffic
engineering (TE) allowing, among others. to determine the routes for traffic flows
across a network based on the resources the traffic flow requires and the resources
available in the network. This can be achieved by employing “constraint-based
routing”, where the LSP for a traffic flow is the shortest path that meets the
resource requirements (constraints) of the traffic flow. In MPLS traffic engineering,
the traffic flow has bandwidth requirements, media requirements, a priority versus
other flows, and so on [Cisco99] [El01].

2.2 Network technologies and operation

 Multilayer networks

The International Telecommunications Union Telecommunication Standardization
Sector (ITU-T) defines in G.805 [G805] a reference layered transport network
architecture with technology-independent relationships among functional entities.
Therein, each network layer has a twofold role, namely, a server role to the client
layer above it as well as a client role to the network layer below it. In brief, a
subnetwork describes the capacity to associate a set of connection points (CPs) to
convey the so-called characteristic information. With such an objective, two
possible kinds of connection are defined: i) a link connection is a fixed and rigid
connection between two CPs and ii) a subnetwork connection (SNC) is a flexible
connection that may be set up and released by either the control or the
management plane. As a result, a network connection is a concatenation of
subnetwork and link connections delimited by a termination connection point (TCP)
pair.

14 Towards Cognitive In-Operation Network Planning

Lightpath

A B DC

b)

a)

O
p

tic
a

l
L

ay
e

r
O

pt
ic

al

L
a

ye
r

Connection Point (CP)

Termination Connection Point (TCP)

Subnetwork Connection (SNC)

A B DC

Fig. 2-5 Example of a single-layered network architecture.

A single-layered four-node optical network is exemplified in Fig. 2-5a. In such a
scenario, link connections (representing the different frequency slot data links)
associate CPs at remote neighbouring nodes; these link connection sets are bundled
into network connections between remote TCPs. Let us suppose now that a
lightpath is set up between ingress node A and egress node D (Fig. 2-5b). The
incoming client signal at the optical node A is adapted and cross-connected using
an SNC to an outgoing CP.

Virtual Link

Lightpath

MPLS path

Virtual link

Lightpath

B C EDA

Virtual link

Lightpath

Virtual link

Lightpath

Fb)

a)

O
p

tic
a

l
L

a
ye

r
M

P
L

S
L

a
ye

r
O

p
tic

a
l

L
a

ye
r

M
P

L
S

L
a

ye
r

B C EDA F

Fig. 2-6 Two-layer network architecture (a) before and (b) after setting up an end-
to-end MPLS path supported by three vlinks.

Chapter 2 - Background 15

This CP is, in turn, connected through a data link to an incoming CP in the
neighbour of the node. At the intermediate nodes B and C, SNCs bind incoming
and outgoing CPs, which should be mapped to the same frequency slot (assuming
no spectrum conversion is performed). As soon as the signal reaches destination
node D, it is cross-connected, adapted, and sent to the corresponding client access
port.

Let us now present assume a two-layered network architecture with an optical
server layer and a client MPLS aggregation layer on top. The MPLS layer allows
the mapping of the client traffic to be transported over the optical layer. At the
bottom, optical nodes provide client access ports, used to inject aggregated client
flows to the network. The incoming electrical signal would be afterwards adapted,
switched to and conveyed through the optical layer.

The architecture of the two-layered network under consideration is shown in Fig.
2-6, where an MPLS link connection commonly referred as a virtual link (vlink) is
set up between MPLS routers B and E (Fig. 2-6a). Imagine that the requested
bitrate becomes 1/4 of the total spectrum capacity. The incoming signal is adapted
and further inserted into an outgoing lightpath, reaching in this way optical node
E. Note that no processing is needed at intermediate MPLS routers C and D, as the
signal optically bypasses them through the lightpath B–E. At the destination, the
signal is demultiplexed, and the client signal is cross-connected, adapted, and
delivered to the sink MPLS router. In the resulting scenario, routers B and E
appear to be directly connected with an additional capacity of 3/4 of the total vlink
capacity.

Further looking at Fig. 2-6b, the previously established vlink has now been used to
create the transparent MPLS path between nodes A and F. To this end, two
additional vlinks between nodes A–B and E–F are set up, providing the required
connectivity at the MPLS layer. Specifically, an SNC associates incoming CPs with
outgoing CPs at intermediate client nodes B and E. It is worth mentioning that an
MPLS path supported on vlinks allocated in different frequency slots can be
conveyed without spectrum conversion, as the signal is optical/electrically
converted at the MPLS layer.

The previous example illustrates how the proposed architecture allows building
MPLS network topologies, commonly referred to as virtual network topologies
(VNT) where MPLS paths between end MPLS routers can be transparently routed.
Figure Fig. 2-7 illustrates a high-level representation of the multilayer
architecture, with a VNT on top of the optical network topology.

16 Towards Cognitive In-Operation Network Planning

Multilayer
Network

VNT
MPLS Layer

Optical Layer

Fig. 2-7. Example of VNT supported by lightpaths on the optical layer.

 Off-line planning

Planning (i.e., designing and dimensioning) the network consists in determining
the nodes and links that need to be installed and which is the equipment to be
purchased to serve the foreseen traffic while CAPEX. Because those tasks are done
before the network or part of the network enters into operation, it is commonly
known as off-line planning.

Operation
• Provisioning
• Recovery

Monitor

Planning &
Forecast

Design &
Implementation

New services Population grow

Network Operation

Fig. 2-8 Classical network life-cycle.

Indeed, the classical network life-cycle typically consists of several steps that are
performed sequentially (Fig. 2-8). Starting with inputs from the service layer and
the state of the resources in the already deployed network, a planning phase needs
to be carried out to produce recommendations that the next phase uses to design
the network for a given period. That period is not fixed, and the actual duration
usually depends on many factors, which are operator and traffic type specific.

Once the planning phase produces recommendations, the next step is to design,
verify, and manually implement (install) the network changes. While in operation,
the network capacity is continuously monitored, and the obtained data are used as

Chapter 2 - Background 17

input for the next planning cycle. In case of unexpected increases in demand or
network changes, nonetheless, the planning process may be restarted.

 Static vs dynamic network operation

Operation of the currently deployed transport networks is very complex since
multiple manual configuration actions are needed for provisioning purposes (e.g.,
hundreds of thousands of node configurations per year in a mid-size network). In
fact, transport networks are currently configured with big static fat pipes based on
capacity over-provisioning, since they are needed for guaranteeing traffic demand
and Quality of Service (QoS).

Metro
(Vendor A)

Metro
(Vendor B)

IP/MPLS
(Vendor A)

IP/MPLS
(Vendor B)

OXC
(Vendor A)

OXC
(Vendor B)

Internet Voice CDN Cloud Business

Umbrella Provisioning System

Metro
OSS

IP/MPLS Core
OSS

Optical Transport
OSS

NMS
(Vendor A)

NMS
(Vendor B)

NMS
(Vendor A)

NMS
(Vendor B)

NMS
(Vendor A)

NMS
(Vendor B)

Service
Management

Systems

Network
Operations

Support System

Transport
Network

Nodes

Fig. 2-9 Current static architecture.

Scenario
B

Lightpath

IP link

2
2

1

R4 -> 7 interfaces R4 -> 5 interfaces

1
1

3

2
2

1

1
1

3
2

2
3

2

2
3

2

2 3

2

2 3

Scenario
A

Dynamic ReconfigurationStatic Network

R1
R2 R3

R4

R1
R2 R3

R4

R1
R2 R3

R4

R1
R2 R3

R4

Fig. 2-10 An example of dynamic planning and reconfiguration.

18 Towards Cognitive In-Operation Network Planning

Furthermore, network solutions from different vendors typically include a
centralised service provisioning platform, using vendor-specific Network
Management System (NMS) implementations along with an operator-tailored
umbrella provisioning system, which may include a technology-specific Operations
Support System (OSS) (Fig. 2-9). Such complicated architectures generate complex
and long workflows for network provisioning: up to two weeks for customer service
provisioning and more than six weeks for core routers connectivity services over
the optical core network [Lo13].

Fig. 2-10 illustrates the fact that such static networks are designed to cope with the
requirements of several scenarios, and predicted short-term increases in bandwidth
usage thus, requiring capacity over-provisioning and significantly increasing
CAPEX. It shows a simple network consisting in three routers connected to a
central one through a set of lightpaths established on an optical network.

Two different scenarios are considered, although the same amount of IP traffic is
conveyed in each of them. In the scenario A, router R3 needs three lightpaths to be
established to transport its IP traffic toward R4, whereas R1 and R2 need only one
lightpath each. In contrast to the scenario B, R1 and R2 need two lightpaths, while
R3 needs only one lightpath.

In static networks, where lightpaths in the optical network are statically
established, each pair of routers has to be equipped with the number of interfaces
for the worst case, resulting in R4 being equipped with 7 interfaces. However, if the
optical network can be dynamically reconfigured setting up and tearing down
lightpaths on demand, each router can be dimensioned separately for the worst
case, regardless of the peering routers. As a result, R4 would need to be equipped
with only five interfaces, thus saving 28.5% of total interface costs. This example
opens the opportunity to dynamic network operation.

 In-Operation Network Planning

Traffic dynamicity entails setting up connections by allocating resources when
requested and releasing them when the connections are torn down. As a result of
repeating these operations, the available resources in the optical or the MPLS layer
could not be optimally used, hence increasing the number of blocked connections
due to the lack of resources and decreasing the grade of service.

Given the trade-offs of dynamically operating the network, the classical network
life-cycle can be extended with in-operation network planning [Ve14-1] [GiPhd], as
shown in Fig. 2-11. In contrast to off-line planning, in-operation planning relates to
reconfiguration and optimization problems solved over a network which is in-
operation. This new step takes care of network re-configuration and re-
optimisation in real time during network operation, implementing the changes
immediately in the network.

Chapter 2 - Background 19

The main constraint of in-operation network planning problems is the stringent
computation times in which solutions must be found, normally in the range of
hundreds of milliseconds to minimise traffic disruptions. Additionally, note that in-
operation planning algorithms are a subset of on-line algorithms; while on-line
algorithms can access to arbitrary data, such as geographic locations or service
duration periods, in-operation planning algorithms are constrained to access the
data available in the control plane.

Operation
• Provisioning
• Recovery

Monitor

Planning &
Forecast

Design &
Implementation

New services Population grow

Network Operation

Reconfigure /
Reoptimize

In-Operation Planning

Fig. 2-11 Augmented network life-cycle.

 Application-based network operations

Transport networks consist of different network segments (metro and core) and
layers (IP/MPLS and optical), possibly managed by different vendors or using
different technologies. To enable automatic provisioning and management of
heterogeneous services over such multi- vendor/domain/layer networks, control and
management planes need to be used. The control plane is in charge of
automatically provisioning connections and reacting against failures in the
network devices, while the management plane is responsible for providing fault,
configuration, accounting/administration, performance and security management
services to the network. Moreover, standard interfaces need to be available to avoid
vendor specific solutions.

Nonetheless, to enhance network operation, a robust infrastructure capable of
performing complex operations, such as the Application-based Network Operations
(ABNO) architecture [RFC7491], standardized by the Internet Engineering Task
Force (IETF), or a Software Defined Network (SDN) controller, as defined by the
Open Networking Foundation (ONF) [ONF], is required. In this thesis, we assume
the ABNO architecture since many network operators are adopting this solution.

20 Towards Cognitive In-Operation Network Planning

The ABNO architecture consists of a number of standard elements with clearly
defined functionality plus, a north-bound interface (NBI), a south-bound interface
(SBI), and internal interfaces among modules (Fig. 2-12). This, enables distributing
functional blocks across different processes for scalability purposes. The ABNO
components need to work together to provide the network operations requested by
the Network Management System (NMS) / Operations Support Systems (OSS) in
charge of the network.

OSS/NMS / Application Service Orchestrator

ABNO Controller
OAM

Handler

Policy
Agent

ALTO
Server

Topology
Module

Client Network Layer

I2RS
Client

VNTM

Provisioning
Manager

PCE

Server Network Layer

Fig. 2-12 ABNO architecture (reproduced from [RFC7491]).

A simplified ABNO architecture containing the elements required for the
applications of in-operation planning developed along this thesis is shown in Fig.
2-13. Its elements are:

 The controller is the gateway that receives provisioning and service
requests from the NMS / OSS through its NBI, translates them into simpler
operations that the rest of functional components can deal with, and invokes
those components according to implemented workflows to serve the
requests.

 The policy agent is the entity that regulates the use and access to network
functionalities and resources and checks the rights of the different elements
of the ABNO architecture before they commit any operation. It is
responsible for propagating these policies to other components in the ABNO
architecture.

 The databases module stores the information related to the network. The
TE Database (TED) contains the state of network resources. Besides, when

Chapter 2 - Background 21

the Path Computation Element (PCE) is stateful (see PCE module below),
the databases module contains an additional database, named as LSP
Database (LSP-DB), maintaining information regarding current LSPs in the
network; including the route, the bitrate, the spectrum allocation, the
switching types, and the LSP constraints. The PCE updates the LSP-DB
when connections are set-up, torn-down, or updated.

 The Path computation element (PCE) [RFC4655] is the entity devoted to
perform constrained path computation on a graph representing the network
by solving the RSA problem in the case of flexgrid-based networks for
incoming connection requests as well as for solving optimization problems.
It can be implemented with either stateless or stateful capabilities [draft-
stateful]. In the stateless architecture, the PCE relies only on the TED to
perform the path computation. The stateful PCE architecture extends the
stateless one with the LSP-DB. Additionally, a stateful PCE may also
include the active functionality that enables the PCE to modify the route
and the frequency slot of already established LSPs.

 The VNT Manager (VNTM) [RFC5623] is in charge of creating and
configuring VNTs in multi-layer networks by requesting to the PCE to set-
up or tear down LSPs supporting the vlinks in such VNT [RFC5212].

 The Provisioning Manager (PM) is responsible for configuring the network
devices to establish LSPs in the network, through the paths computed by
the PCE. It uses ABNO’s SBI to interact with a Generalized MPLS
(GMPLS) [RFC3945] control plane or an SDN controller for directly
programming the data path on each individual network node using
protocols such as OpenFlow [OpenFlow].

 The Operations, Administration and Maintenance (OAM) Handler is
responsible for receiving notifications from the network elements
advertising for events such as failures, alarms or monitoring counters.
When a message is received, the OAM Handler decides whether to invoke
another component through the controller to deal with that event.

Some other elements are also included in the ABNO architecture. However, since
they are not used in this thesis we refer the reader to [RFC7491] for further
details. Additionally, a number of use cases are presented in [RFC7491] describing
how ABNO can be applied to provide application-driven and NMS/OSS-driven
network operations, such as multi-layer networking or global concurrent
optimization.

22 Towards Cognitive In-Operation Network Planning

IP/MPLS Layer

Flexgrid Optical Layer

NMS / OSS

Controller

Databases

TED LSP-DB
VNTM

Policy
Agent

PCE

ABNO

Provisioning
Manager

OAM Handler

(Vendor A)

(Vendor A) (Vendor B)

(Vendor B)

Service Layer

GMPLS Control Plane

Fig. 2-13 ABNO-based Control and Management Plane Architecture

 Network monitoring

Network monitoring consists of collecting different types of data from the different
network layers with the aim of obtaining different performance metrics (e.g., to
obtain bitrates measurements from the packet layer or to detect failures in the
optical layer). In that regard, one of the first network monitoring protocols is the
Simple Network Management Protocol (SNMP), developed by the IETF in 1990
[RFC1157]. Although it was initially designed to facilitate network device
configurability, it proved to be a very popular network management protocol used
for basic network monitoring (i.e., fault and performance management). As a
consequence, a later review by the IETF about the SNMP protocol [RFC3535]
revealed that operators were primarily using proprietary Command Line Interfaces
(CLI) to configure network devices (as it had a number of practical advantages as
opposed to SNMP). In addition, many equipment vendors did not provide the
option to completely configure their devices via SNMP. Soon became clear that a
more compact protocol than SNMP was needed to scale better for performance
collection on IP networks. As a result of this, the NetFlow protocol was proposed by
Cisco, today known as the IP Flow Information Export (IPFIX) protocol [RFC7011]
which has become a standard implemented by many router and switch vendors.

Chapter 2 - Background 23

Similar to the NetFlow Protocol, IPFIX considers a flow to be any number of
packets observed in a specific timeslot and sharing a number of properties (e.g.,
same source, destination and protocol). Using IPFIX, devices like routers can
inform a central monitoring station about their view of a potentially larger
network. IPFIX is a push protocol, i.e. each sender will periodically send IPFIX
messages to configured receivers without any interaction by the receiver. The
actual data layout in IPFIX messages is widely configurable by the sender, based
on special monitoring templates defining the monitoring data. In addition, the
sender can also use custom user-defined data types in its messages, so the protocol
is freely extensible and can adapt to different scenarios.

2.3 Network Optimization

In-operation network planning problems entail solving a series of complex decision-
making problems, given the size of the networks and the wide margin of operation
that current transmission technologies offer.

Because of this, it is crucial relying on mathematical methods not only capable of
formally representing these problems, but also of providing high-quality solutions
in practical times. In this section, we introduce two of these methods namely
mathematical programming and heuristics, which will be applied in this thesis.

 Mathematical programming

Mathematical Programming is the mathematical field that studies the selection of
the best element x* from a set of feasible solutions X, subject to some criteria or
constraints [Ch83]. The quality of a choice x ∈	X is relative to a function f(x).

In particular, Linear Programming (LP) is a subset of Mathematical Programming
where x is a real-valued vector, f(x) is a linear function, and X is defined by a linear
system of inequalities. More formally, a minimisation LP problem can be defined as
follows:

)(min* xfz  (2-2)

subject to:

0,  xbAx (2-3)

where a feasible solution of the problem is any element x satisfying eq. (2-3). Thus,
the optimal solution x* of an LP problem is defined as follows:

}0,:)(min{arg*  xbAxxfx (2-4)

24 Towards Cognitive In-Operation Network Planning

Note that a problem can show one or multiple optimal solutions; it might even be
the case where x* does not exist. For instance, in a maximisation problem where
feasible solutions can make f(x) arbitrarily large, the problem is said to be
unbounded. Contrariwise, when the set of feasible solutions is empty, the problem
is said to be infeasible.

Integer Linear Programming (ILP) is the subfield of LP including integrality
constraints. If the problem combines integer and real variables, it is named as
Mixed Integer Linear Programming (MILP) problem. Finally, Non-Linear
Programming (NLP) refers to the subfield of Mathematical Programming with non-
linear function or constraints.

Regarding the complexity of these problems, a decision problem is said to be Non-
deterministically Polynomial (NP) if any candidate solution can be verified in a
polynomial number of steps relative to the input size by a deterministic Turing
machine. There is an exponential upper bound on the number of steps needed to
decide an NP-complete problem, whereas it is still an open issue whether this
bound is polynomial (i.e., P=NP). Among NP, NP-complete subclass refers to the
hardest decision problems, to which ILP was proven to belong [St82].

Several exact procedures have been developed to find the optimal solution of a
Mathematical Programming problem. For example, the Simplex algorithm for LPs
and Branch and Bound or Branch and Cut algorithms for ILPs [Ch83]. When a
problem is largely-scaled (i.e., huge number of variables and constraints), it
becomes impractical to solve it using the previously described algorithms. In that
case, decomposition methods such as column and row generation and interior point
methods can be used to solve them. In the case of NLPs, the use of interior point
methods such as Newton’s barrier method has been exploited for non-linear
constrained problems. Although the output of these exact methods is the optimal
solution, the required computation time tends to be too high for practical purposes
when real-life instances need to be solved, even if commercial solvers are used such
as CPLEX [CPLEX].

When the achievement of the optimal solution is not possible, some relaxation
methods such as Lagrangian relaxation or Randomized rounding provide good-
quality solutions by relaxing some integrality constraints, thus decreasing the
problem’s complexity. As an alternative to these relaxation methods, meta-
heuristic methods have also been deeply studied to provide near-optimal feasible
solutions [Bl03]. Next section provides the basic concepts of meta-heuristics, as
well as the details of the meta-heuristics used in this thesis.

 Heuristics

Heuristics is a technique designed for solving a problem more quickly when exact
methods (i.e., mathematical programming) are too slow, or for finding an
approximate solution when exact methods fail to find the optimal. This is achieved

Chapter 2 - Background 25

by trading optimality, completeness, accuracy, or precision for speed. In a way, it
can be considered a shortcut. Results about NP-hardness in theoretical computer
science make heuristics the only viable option for a variety of complex optimisation
problems that need to be routinely solved in real-world applications, such as ILPs
(e.g., the travelling salesman problem for transport networks).

Although the optimality of the heuristic solutions cannot be guaranteed, the
obtained solutions can be compared to those of exact methods obtaining the so-
called optimality gap. In particular, the relative optimality gap is defined in eq.
(2-5), where zbest is the cost of the best solution found by a particular heuristic
procedure, typically expressed as a percentage. In the usual case that z* is not
available, a lower (upper) bound for the minimisation (maximisation) problem can
be obtained and used instead (e.g. as in branch-and-bound exact solving method).

*

*

z

zz best
 (2-5)

A meta-heuristic can be defined as an iterative master process that guides and
modifies the operations of subordinate heuristics to produce high-quality solutions
efficiently. Because of this, metaheuristics can be seen as optimisation frameworks
useful for a wide variety of optimisation problem regardless of the particular
context. This is achieved by encapsulating context-specific features in specific parts
of the metaheuristic and leaving the master procedure to specify a generic search
strategy in the solution space (i.e., the feasible region).

Among the multiple types of metaheuristics, neighbourhood-based metaheuristics
(or single-solution metaheuristics) aim at exploring the solution space obtaining
and improving a single solution at a time. This allows shorter computation times
when compared to population-based metaheuristics (e.g., genetic algorithms),
dealing with a set of solutions at the same time. Typically, a search strategy for a
neighbourhood-based metaheuristic is defined in terms of diversification and
intensification: the first aims at performing a wider exploration of the solution
space, whereas the second aims at narrowing the search in the vicinity of known
quality solutions.

Two subordinate procedures are mostly used in neighbourhood-based
metaheuristics: the constructive and local search phases. Constructive algorithms
generate solutions from scratch by adding components to an initially empty partial
solution, until a solution is complete. Local search algorithms, instead, start with
an initial solution and iteratively try to replace the current solution with a better
solution in an appropriately defined neighbourhood of the current solution. Two
different approaches can be followed to improve a solution: replace by the first
improving solution found in the neighbourhood (first-improvement) or by the best
solution found in the vicinity (best-improvement), usually offering a different trade-
off between computational effort and solution quality.

26 Towards Cognitive In-Operation Network Planning

Examples of neighbourhood-based meta-heuristics are Simulated Annealing, Path
Relinking, Tabu Search [Gl03], the Greedy Randomized Adaptive Search Procedure
(GRASP) [Fe02] and Iterated Local Search [Lo03], just to mention some.

Let us next present the two neighbourhood-based metaheuristics for combinatorial
network optimisation that will be used in this thesis.

 Greedy randomised adaptive search procedure

The Greedy Randomized Adaptive Search Procedure (GRASP) [Fe02] is a
neighbourhood-based metaheuristic that builds multiple solutions from scratch
(multi-start) and eventually returns the best one found. GRASP allows
parameterising its search strategy by a parameter α ∈ [0,1] and encapsulates
context-dependent cost computation in a greedy cost function (GCF). GRASP is
selected due to its proven performance in solving combinatorial network
optimisation problems [Pe13].

The procedure (detailed in Table 2-1) receives the GCF and α and starts initialising
the best solution and its cost to default values (line 1). Next, a number of iterations
are run until a given stopping criterion is met (lines 2-6). Stopping criteria can be
either deterministic (e.g., a maximum number of non-improving iterations or
running time) or stochastic, such as the probabilistic stopping criterion [Ri13]. At
each iteration, a new local optimum is obtained by running first a constructive
phase (line 3) followed by a local search procedure (line 4). The best solution found
is updated (lines 5-6) and eventually returned (line 7).

Table 2-1: GRASP main algorithm

INPUT GCF, α
OUTPUT xbest
1:
2:
3:
4:
5:
6:
7:

xbest ← ∅
while not stoppingCriterion() do

x ← constructivePhase(GCF, α)
x’ ← localSearchPhase(x)
if f(x’) < f(xbest) then

xbest ← x’
return xbest

The constructive phase (shown in Table 2-2) details how a new solution is built
from scratch according to the GCF and α. First, a new solution and a candidate list
(CL) are initialised (lines 1-2). The CL contains a list of candidates, each one
representing a part or component of a solution x. Candidates are sequentially
added to an empty solution until it becomes complete. Contrarily to a first
intuition, the final cost of selecting a candidate is not usually known a priori. This
is because candidates’ costs depend on the order in which they are selected: an
early choice of an expensive candidate could lead to finding cheaper candidates in
the future or vice-versa. In other words, candidates’ costs are not independent or

Chapter 2 - Background 27

uncoupling. Before this difficulty in knowing the real cost of adding a candidate u
to a solution, a GCF is used to provide a greedy (local) cost estimation only taking
into account previously selected candidates (i.e., GCF(u, x)).

After the CL is computed, all its elements are iteratively selected according to a
greedy-randomised criterion (lines 3-7). At each iteration, the cost of each
remaining candidate u ∈	 CL is recomputed according to GCF(u, x). Next, a
restricted candidate list (RCL) is computed as a subset of CL according to eqs. (2-6)-
(2-8) (line 4): a value of α close to 0 will define a greedy candidate selection,
whereas a value close to 1 will lead to a randomised selection. One candidate is
selected at random from the RCL and added to the partial solution (lines 5-7).

Table 2-2: GRASP constructive phase

INPUT GCF, α
OUTPUT x
1:
2:
3:
4:
5:
6:
7:
8:

x ← ∅
CL ← initializeCL()
while CL ≠ ∅	do

RCL ← computeRCL(GCF, α) (eq. (2-6)-(2-8))
u ← selectAtRandom(RCL)
x ← x U {u}
CL ← CL \ {u}

return x

    minmaxmin),(:, GCFGCFGCFxuGCFCLuCLRCL   (2-6)

),(minmin xuGCFGCF
CLu

 (2-7)),(minmin xuGCFGCF
CLu

 (2-8)

 Iterated local search

Iterated Local Search (ILS) is a neighbourhood-based metaheuristic that builds an
initial solution from scratch and then iteratively perturbs it at random aiming at
finding quality solutions [Lo03]. ILS allows parameterising the strength of the
perturbations by a strength parameter inducing its search strategy: strong
perturbations allow moving further in the solution space (diversification) whereas
small ones allow narrowing down the search to a particular region (intensification).
Although sophisticated versions of ILS include tunning the strength parameter at
runtime, for the sake of simplicity we present a version with a constant strength
parameter. This metaheuristic acts as a black box, only requiring three functions to
run: a constructive, a perturbation and a local search procedure. The performance
of ILS in solving combinatorial network optimisation problems is also present in
the literature [Wu15].

28 Towards Cognitive In-Operation Network Planning

Table 2-3: ILS main algorithm

INPUT strength
OUTPUT xbest
1:
2:
3:
4:
5:
6:
7:
8:
9:

x ← constructivePhase()
x ← localSearchPhase(x)
xbest ← x
while not stoppingCriterion() do

xpert ← perturb(x, strength)
x ← localSearchPhase(xpert)
if f(x) < f(xbest) then

xbest ← x
return xbest

The algorithm in Table 2-3 starts by finding an initial local optimum by first
running a constructive phase followed by a local search (lines 1-3). After this, a
number of iterations are run until some stopping criterion is met (lines 4-8). At
each iteration, a randomised perturbation is applied according to the strength
parameter thus obtaining a new feasible solution (line 5). It is worth noting that
some versions of ILS allow reaching infeasible solutions after a perturbation is
applied; this is done in the hope of moving further across the feasible region once
an infeasible solution is repaired. Once a new solution is obtained, a local search
procedure is applied to the current solution x to reach a local optimum (line 6). The
best solution found is updated (lines 7-8) and eventually returned (line 9).

 The RSA problem

Although the problems addressed in this thesis relate to MPLS-over-optical
multilayer networks, we stress the resolution and analysis of these problems at the
MPLS layer, assuming that well-known subproblem is solved in the optical layer
every time that a lightpath is needed to upgrade the capacity of the core VNT. To
facilitate the understanding of the presented algorithms in the MPLS layer, let us
introduce the routing and spectrum allocation problem (RSA), solved every time
that a lightpath is needed to support the VNT.

The Routing and Spectrum Allocation Problem (RSA) problem consists in finding a
feasible route and spectrum allocation for one or multiple demands. Similar to the
Routing and Wavelength Assignment (RWA) problem in DWDM networks, the
spectrum continuity constraint must be enforced. In the case of EONs, the
spectrum allocation is represented by a slot, and thus, in the absence of spectrum
converters, the same slot must be used along the links of a given routing path; this
is called as continuity constraint. Besides, the allocated spectrum slices must be
contiguous; this is called as spectrum contiguity constraint. The RSA problem was
proved to be NP-complete in [Chr11] and [Wa11]. As a consequence, research has
been carried out to find efficient methods to solve real size RSA instances [Ve12],
[Ve16].

Chapter 2 - Background 29

Due to the spectrum contiguity constraint, RWA problem formulations developed
for DWDM networks are not applicable for RSA in EONs, and they need to be
adapted to include that constraint. Although several works can be found in the
literature presenting ILP formulations for RSA, here we rely on those in [Ve12]
since their approach, based on the assignment of slots, allows efficiently solving the
RSA problem.

The definition of slot can be mathematically formulated as follows. Let us assume
that a set of slots C(d) is pre-defined for each demand d, which requests nd slices.
Let qcs be a coincidence coefficient which is equal to 1 whenever slot c ∈	C uses slice
s ∈	 S, and 0 otherwise. Hence, ∀c ∈	C(d) the spectrum contiguity constraint is
implicitly imposed by the proper definition of qcs, stated as follows:

d
Ss

csckcjci nqjikqqqjiSji  


},,...,{,11,,, (2-9)

In this thesis, we consider that each set C(d) consists of all possible slots of the size
requested by d that can be defined in S. Since |C(n)|=|S|-(n-1), the size of the
complete set of slots C that needs to be defined is |C|=∑n∊N [|S|-n+1] < |N|·|S|.

The algorithm in Table 2-4 computes C(d). Note that slot computation is trivial and
thus, no additional complexity is added to the pre-computation phase.

Table 2-4 Pre-Computation of C(d)

INPUT S, d
OUTPUT C(d)
1:
2:
3:
4:
5:

Initialize: C(d) ← 0[|S|-nd + 1∙|S|]
for each i in [0, |S|-nd] do

for each s in [i, i+nd-1] do
C(d)[s]=1

return C(d)

Therefore, we can define the RSA problem as the problem that finds a proper
lightpath (i.e., a route and a slot) for each demand from a given set so that the
number of active slices in the assigned slot guarantees that the bitrate requested
by each demand can be transported. Note that by pre-computing the set of slots
that can be assigned to each demand, the complexity added by the contiguity
constraint is removed. Finally, without loss of generality, we can consider that
guard bands are included as a part of the requested spectrum (i.e., in nd).

A very basic RSA problem consists in finding a lightpath for every demand in a
given traffic matrix with the objective of minimising or maximising some utility
function. Several alternatives for this problem may exist, for instance, we can
assume that all the traffic matrix needs to be served, or some demands can be
blocked, i.e. not served. Note that additional characteristics, such as selecting the
modulation format and limiting lightpath reach could be defined. The problem can
be formally stated as follows.

30 Towards Cognitive In-Operation Network Planning

Given:

 A connected graph G(N, E), where N is the set of locations and E is the set
of optical fibers connecting two locations,

 the characteristics of the optical spectrum (i.e., spectrum width and
frequency slice width) and the set of modulation formats,

 a traffic matrix D with the amount of bitrate exchanged between each pair
of locations in N.

Output: the route and spectrum allocation for each demand in D.

Objective: one or more among:

 Minimise the amount of bitrate blocked,

 Minimise the total amount of used slices.

In the following, we present an ILP model for the above problem, based on the
formulations in [Ve12]. Note that since the topology is given, we can pre-compute a
set of k distinct paths for each of the demands in the traffic matrix and hence, the
formulation is usually known as link-path [Pi04]. Moreover, because of the use of
pre-computed slots for each demand, we call this formulation as link-path slot-
assignment (LP-SA).

The following sets and parameters have been defined.

Topology:

N Set of locations, index n.

E Set of fiber links, index e.

Demands and paths:

D Set of demands, index d. For each demand d, the tuple <od, td, bd> is given,
where od and td are the origin and target nodes, and bd is the bitrate in
Gb/s.

P Set of pre-computed paths, index p.

P(d) Subset of pre-computed paths for demand d. |P(d)|=k, ∀d ∈ D

rpe Equal to 1 if path p uses link e.

Spectrum:

S Set of spectrum slices, index s.

C(d) Set of pre-computed slots for demand d.

qcs Equal to 1 if slot c uses slice s.

The decision variables are:

Chapter 2 - Background 31

wd Binary, equal to 1 if demand d cannot be served.

xdpc Binary, equal to 1 if demand d is routed through path p and slot c.

Then, the LP-SA formulation is as follows:

(LP-SA) 



Dd

dd wbmin (2-10)

subject to:

  
Ddwx

dPp dCc
ddpc  

 

,1 (2-11)

  
SsEexqr

Dd dPp dCc
dpccspe   

  

,,1 (2-12)

The objective function (2-10) minimises the amount of bitrate that cannot be served
(rejected). Constraint (2-11) ensures that a lightpath is selected for each demand
provided that the demand is served; otherwise, the demand cannot be served and
therefore, is rejected. Constraint (2-12) guarantees that every slice in every link is
assigned to one demand at most. Regarding size, the LP-SA formulation has
O(|D|·k·|C|) variables and O(|E|·|S|+|D|) constraints. It is worth mentioning
that the RSA problem can be expressed as an extension of the multicommodity flow
problem with additional constraints for the spectrum continuity and contiguity,
therefore belonging to the NP-complete complexity class [It95].

2.4 Data analytics

Data analytics is a field devoted to inspecting, cleansing, transforming, and
modelling large and heterogeneous amounts of data with the goal of discovering
useful information, suggesting conclusions, and supporting decision-making. Data
analytics has multiple facets and approaches, encompassing diverse techniques
under a variety of names that are applied in several fields.

 Probability theory

A random variable, usually written X, is a function from an outcome space Ω
taking values in a measurable space E, usually real-valued (2-13). In short, this
mathematical definition allows defining a probability measure P in Ω expressing
the likelihood that a measurable set of outcomes A ⊆	Ω (i.e. an event) happens.
Therefore, a random variable itself does not return any probability; instead, these
are given by the probability measure P. As an example, a random variable could be
defined being Ω a population and X mapping a randomly selected person to his/her
height, or to his/her number of children. In this cases, function P provides the

32 Towards Cognitive In-Operation Network Planning

probability that a given person is within a given range of height or that has a given
number of children.

:X (2-13)

When the image of X is finite or countably infinite, we say that X is a discrete
random variable, and the distribution of event probabilities described by a
probability mass function P (pmf). On the contrary, if the image of X is uncountable
infinite we say that X is a continuous random variable and the distribution of event
probabilities described by a probability density function (pdf). Any random variable
can be described by its cumulative distribution function (cdf), which describes the
probability that the random variable will be less than or equal to a certain value.

In the previous examples, a pdf would be used to compute the probability of being
taller or shorter than a given value and a pmf used to compute the probability of
having a certain amount of children. Either in the case of discrete or continuous
random variables, we find a pre-defined set of probability distributions that can
accurately model the distribution of events in many scenarios.

It is interesting to present the normal (or Gaussian) continuous probability
distribution, whose pdf is defined in eq. (2-14). A normally distributed random
variable X denoted as X~N(μ, σ2), is characterised by a mean value μ and a
standard deviation σ ≥ 0. The normal distribution is commonly used to model many
environments in several natural and social sciences, where events are likely to take
values around a mean μ rather than distant to it. Fig. 2-14 shows a plot for the pdf
of the normal distribution in eq. (2-14).

2

2

2

)(

2

2

2

1
),(










x

exf (2-14)

0

0.1

0.2

0.3

0.4

0.5

f(
x

| μ
,σ

2)

μ μ+σ μ+2σ μ+3σμ-3σ μ-2σ μ-σ

μ±σ

μ±2σ
μ±3σ

Fig. 2-14 Normal distribution probability density function.

Chapter 2 - Background 33

As we can observe in the figure, the standard deviation provides some information
about the probability of falling in a given region centred on the mean. Formally,
the probability that a random sample of falls in the interval Ik = [μ - k·σ, μ + k·σ]
can be to configure confidence bounds. For example, for integer values k = 1, 2 and
3, the probability that a random sample will fall in the μ ± k·σ interval is 68.27%,
95.45% and 99.73%, respectively.

 Statistic parameter estimation

Usually, we are interested in discovering information about the underlying
probability distribution of empirical data presenting a random behaviour. For
example, it could be desired to estimate the proportion of a population of voters
who will vote for a particular candidate. That proportion (a probability in this case)
is usually called parameter, and its estimation (i.e., the estimate) is based on an
observed random sample of voters (i.e., the sample).

Observable
(sample)

Not observable
(population)

 ෠ߠ
 ߠ

estimate parameter

Fig. 2-15 Estimation of a parameter from a sample.

Since the estimate is computed based on particular observed data and not the
entire population, the estimate will be an approximation of the parameter. These
concepts are illustrated in Fig. 2-15.

Estimation theory is the branch of statistics that deals with estimating the values
of parameters based on measured empirical data that has a random component.
Among the different approaches that can be followed, we focus on the probabilistic
approach which assumes that observed vectors of data X={x1,...,xN} are random with
probability distribution dependent on the parameters of interest.

An estimate is said to be unbiased if its expectation equals the target parameter
(eq. (2-15)). For illustrative purposes, equations (2-16) and (2-17) below can be used
to compute unbiased estimates of for the mean and standard deviation μ and σ of a
normally distributed data sample [Ho13]. The resulting values can then be
compared to the original parameters (if known), using some error measure such as
the absolute relative error, shown in eq. (2-18).

34 Towards Cognitive In-Operation Network Planning

 )ˆ(E (2-15) 



n

i
ix

n 1

1̂ (2-16)








n

i
ix

n 1

2)ˆ(
1

1
ˆ  (2-17)



 


ˆ
e (2-18)

 Neural networks

Machine learning is a field in computer science devoted to program computers to
use past data or experience to solve a given problem. Many successful applications
of machine learning exist already applied in several fields, including economics,
robotics, and bioinformatics. The field is closely related to other fields such as
Mathematical Optimization and Computational Statistics. In data analytics,
machine learning refers to the methods used to devise complex models and
algorithms that lend themselves to prediction. Although machine learning
encompasses a wide variety of fields, we focus our attention in artificial neural
networks (ANN), since they play a central role in our proposed approach for
predicting quality core network traffic. ANNs are computing systems inspired by
the biological neural networks that constitute animal brains. Such systems learn
how to do tasks by considering examples or past data, generally without task-
specific programming. For example, they can be used to predict future values in a
data stream, or to identify and classify patterns in images.

Hidden layer(s) Output layer Input layer

Input
values

Output
values

wij

uj

w’jk zk

xi

Fig. 2-16 Artificial neural network.

An ANN (Fig. 2-16) is based on a collection of connected units called neurons
interconnected by a set of synapses. Typically, neurons are organized in layers,
where each layer might perform different kinds of transformations on their inputs.
Signals travel from the first (input) to the last (output) layer, possibly after
traversing multiple hidden layers. A receiving neuron can process the signals from

Chapter 2 - Background 35

preceeding neurons and then signal downstream neurons connected to it. Neurons
may have a state, generally represented by real numbers, typically between 0 and
1. Neurons and synapses may also have a weight that varies as learning proceeds,
which can increase or decrease the strength of the signal that it sends downstream.
Further, they may have a threshold such that only if the aggregate signal is below
(or above) that level the downstream signal is sent.

2.5 Conclusions

In this chapter, some background has been introduced necessary to understand the
work presented in this thesis. First, optical transport networks have been
introduced, reviewing basic concepts on transmission technology, network topology
transponders and elastic optical networks. Next, multilayer networks have been
introduced to understand how the VNT, a central element of this thesis, is defined.

In addition, a review of off-line network planning to state-of-the-art in-operation
network planning has also been introduced to facilitate the reader the contribution
of this thesis in the forthcoming chapters.

Tools for solving complex decision-making problems have been presented, paying
special attention to mathematical programming and meta-heuristics for
combinatorial optimisation problems. These tools are used to solve the
combinatorial problems identified during the development of this thesis. The RSA
problem has been finally presented to know the underlying subproblems present in
our proposed algorithms and also to familiarise the reader with network
optimisation problems.

Finally, some concepts related to the field of data analytics have been presented,
gathering together probability and estimation theory as well as neural networks in
machine learning. All these concepts are needed to understand properly the data
analytics approaches presented in the following chapters.

Next chapter explores the state-of-the-art used as a reference point in the
development of this thesis.

Chapter 3

Review of the State-of-the-Art

Next, we review the state-of-the-art related to the different goals targeted by this
PhD thesis with the twofold objective of ensuring that these goals have not yet
been covered in the literature and for serving as a starting point for work.

3.1 Traffic modelling

 Data plane monitoring

Research on distributed monitoring architectures is recently receiving great
interest. Authors in [Sa16] proposed a hierarchical monitoring architecture aiming
at providing monitoring information gathering coming from different layers and
network elements in a scalable way without overloading centralised controllers.
Reactive strategies based on alarms pre-configured at different monitoring planes
for several transmission parameters are proposed as the way to trigger network
reconfiguration. This data analysis approach, however, results insufficient for
detecting complex events such as traffic prediction. In fact, performing data
analytics at the nodes requires from data stream mining algorithms [Me10].

Recently, authors in [AV17-2] proposed an early bit error rate (BER) degradation
detection algorithm in the optical layer to meet the committed quality of service for
demands in the MPLS layer. This approach evidences that extending data
analytics to the network nodes across multiple layers also provides an increased
knowledge about the network. To facilitate the introduction of multilayer data
analytics, a monitoring architecture suitable for multilayer networks is required to
provide mechanisms that allow grouping and correlating packet and optical
monitoring.

38 Towards Cognitive In-Operation Network Planning

Last but not least, CPU and memory are scarce resources in network nodes, which
limits the number of observation points that can be configured. Therefore, huge
research effort has been focused on making efficient use of them. For instance,
since observation points can be configured not only in the source nodes of labeled
switched path (LSP), but also in any node along their route, authors in [Mal14]
proposed an algorithm that intelligently configures observation points and
dedicates more monitoring resources to the most relevant flows while doing an
aggregated monitoring of the rest, thus allowing more accurate traffic flow
estimations. In light of this, monitoring architectures need to incorporate a flexible
monitoring placement in addition to efficient use of node resources.

 Traffic model estimation

Traffic modelling aims at finding mathematical models to represent the behaviour
of traffic, also referred to as teletraffic theory [Wi98]. The first traffic modelling
work was carried out by A. K. Erlang, where certain probability distributions for
new calls characterized telephone traffic and call durations. Since then, teletraffic
theory for packet networks has tremendously evolved by proposing new
mathematical models to better model current network traffic [As14], being
continuously challenged by new network technologies and services [5G] [Lee14].

Traffic modelling is not straightforward and can be done in multiple and
interesting ways [Ch06]. Some proposals aim at obtaining mathematical models for
both the packet size and the packet inter-arrival time (IAT). Whereas modeling
packet size has been proven to be a simple problem, modelling the packet inter-
arrival time remains a much more difficult one, for which a wide variety of
solutions have been proposed including Pareto, Poisson and Weibull processes just
to mention some [Zu03]. Another approach consists of finding a mathematical
model describing the packet ratio (i.e., the bitrate) over time. Among these,
Fractional Brownian motion and auto-regressive models (e.g. ARIMA) have been
proposed in the literature to model network flow bitrate [Wei94]. Also, queuing
theory models have been proposed to model not only traffic flows at the packet
level, but also their processing at packet nodes [Zu03].

Packet traffic also varies depending on the network segment: traffic in access
networks conveys few end-user connections and is bursty when compared to high
capacity flows in metro and core segments, less bursty as a result of the
aggregation of several connections [Ve13]. Given this, different works have been
proposed to model traffic at different network segments [Lee14] [Ba04] [Hol03].

Another important aspect of traffic modelling relates to when the modelling occurs.
On-line modelling occurs in real time while the network is in-operation. Streams of
packet traffic are monitored until traffic models can be estimated based on the
monitored data, thus allowing to use them in operation. This approach differs from
off-line modelling, entirely based on history data with no real-time application. One

Chapter 3 - Review of the State-of-the-Art 39

of the main difficulties of online modelling arises on big networks where a large
amount of traffic flows needs to be modelled thus requiring huge storage and
computing requirements [Zh03]. However, the evolution of cloud computing in the
recent years allows efficiently storing and processing large and heterogeneous
amounts of data, reason why large-scale on-line traffic modelling has received
increasing attention [Gi16-1].

Because all of the above, the choice of the best traffic modelling approach is not
immediate and depends on the specific context. In the context of this PhD thesis,
we tackle the online modelling the bitrate of metro and core OD traffic flows based
on monitoring the data plane, considering the current dynamicity of service layer
traffic. Table 3-1 summarises the works surveyed above regarding traffic
modelling. Although the literature contains works covering traffic modelling in its
various aspects, to the best of our knowledge our proposal has not been studied.
Although online data analytics is recently being applied to monitoring data [Gi16-
1], most traffic modelling approaches are based on off-line traffic traces.

For that reason, goal G1.1 in this PhD thesis focuses on studying the best way to
apply data analytics techniques on monitored traffic to obtain such models.

 Traffic model re-estimation

Although traffic modelling techniques can be applied to achieve traffic prediction,
sudden and unexpected changes in the monitored traffic can lead to inaccurate
models. It can happen, for instance, when core-flow traffic patterns change as a
result of changes in the injected traffic from adjacent metro network segments, e.g.,
when some metro-flows are redirected to a different entry node in the core.
Although the detection of a change in a data stream has been extensively studied
in the literature (commonly referred to as concept drift detection [Ga14]), new
models need to be estimated after the original ones become no longer accurate. The
re-estimation of new models entails long monitoring times (e.g. several weeks)
during which no predictive models are available. Depending on the rate these
changes re-estimation might not even be possible.

In light of this, new mechanisms need to be devised to ensure uninterrupted
predictive capabilities in the core network. In this regard, some authors have
proposed to monitor (small) individual flows instead of the (large) aggregated flows
for traffic modelling purposes. For instance, authors in [Mal14] proposed a machine
learning procedure that intelligently de-aggregates relevant monitored traffic flows
and aggregates the rest to achieve accurate traffic estimations. However, this kind
of selective flow monitoring approaches lacks the flexibility required to adapt OD
traffic models against any potential metro-flow rerouting.

Another option is to apply data analytics in metro networks, based on monitoring
data from metro nodes and estimate metro-flow traffic models. Metro-flow
predictive models can be aggregated to re-estimate obsolete OD models in the core.

40 Towards Cognitive In-Operation Network Planning

For instance, authors in [Yu09] proposed AutoRegressive Integrated Moving
Average (ARIMA) for modelling and forecasting metro area network traffic flows as
a function of application-layer traffic flow models in IP networks.

It is worth mentioning that the accuracy of predictive OD models cannot be based
only on extensive metro-flow traffic monitoring. Although the literature offers a
broad range of mathematical models for fitting flow traffic data, techniques for
aggregating metro-flow models to guarantee reliable and accurate OD traffic
predictions need to be explored. Among related works, the survey presented in
[Lu11] reviews different approaches to predict time series of an aggregate using
each flow forecast. Although model aggregation has been used in other fields (e.g.,
in bioinformatics [Ra09] or marketing [Ma08]), its application in the context of
network traffic prediction is unexplored. For this reason, the contribution of goal
G1.2 of this PhD thesis is to obtain core OD traffic models based on the aggregation
of metro flow traffic models in real-time.

Table 3-1 summarises the different features studied in the literature related to
some aspect of traffic modelling.

Table 3-1: Survey of traffic modelling

Feature References

Reactive monitoring architecture [Sa16]

Access network traffic modelling [Lee14], [As14]

Metro and core network traffic modeling [Ba04], [Zh03], [Hol03], [Yu09]

Packet-wise modeling [Ch06], [Zu03], [Ba04]

Flow-wise modeling (i.e., bitrate) [Ch06], [Ba04], [Zh03]

Traffic flow aggregation [Mal14]

Model inaccuracy detection [Ga14]

Predictive model aggregation [Lu11], [Ra09], [Ma08]

3.2 VNT reconfiguration

 VNT reconfiguration approaches

Because of its benefits, VNT reconfiguration has been widely studied in the
literature. Authors in [Agr09] proposed a centralised path reallocation module
running periodically aiming at minimising the number of used transponders. The
approach, named as Optical Resource Optimization (ORO) is triggered on a fixed
basis to minimize the number of used transponders of the VNT. Although the good

Chapter 3 - Review of the State-of-the-Art 41

results obtained by running the ORO algorithm, its execution is triggered at fixed
time periods rather than based on some performance metric (e.g., the blocking
probability). This unawareness of the network performance might bring
performance issues when considering dynamic network traffic scenarios.

To alleviate this problem and follow traffic changes, authors in [Gen03] proposed to
reconfigure the VNT according to vlink utilisation. By setting low and high
utilisation thresholds (watermarks) on each vlink’s capacity, VNT reconfiguration
is triggered whenever one of these thresholds is violated, by either removing or
adding a vlink, respectively. Although this VNT reconfiguration approach adjusts
the capacity of the VNT accordingly to traffic changes, its scope is local (per vlink),
and thus it might bring sub-optimal savings when compared to global-scope VNT
reconfiguration. For this very reason, this approach lacks a wider vision of the
traffic evolution, such as end-to-end (OD) traffic variations.

 VNT reconfiguration based on traffic prediction

In light of the above, further research has been carried out aiming at achieving
more knowledge about traffic changes. For instance, by using monitored data to
produce estimations that can help to anticipate changes in the traffic and
proactively reconfiguring the VNT beforehand. In this regard, authors in [Oh10]
proposed a method for reducing errors in traffic estimations by adapting the VNT
reconfiguration result at multiple stages over time. Although this approach shows
the benefits of performing a global VNT reconfiguration based on predicted traffic
matrices, authors do not provide a means to obtain such prediction from the
network while it is in-operation. The same problem arises in a different work
[Fe15], where a decision-making system to select pre-defined solutions for the VNT
based on predicted traffic matrices is used rather than an on-line VNT
reconfiguration algorithm. Finally, authors in [Ve16] used future traffic estimation
to trigger a VNT reconfiguration after the detection of an anomalous traffic
increment between two network nodes.

A very similar problem, known as the multi-hour VNT reconfiguration problem,
has been studied in the literature [Ap10] [Ap12] [Pa10]. In this problem, the VNT
is designed off-line for a set of n periods (e.g. the days of the week) using n
predicted traffic matrices. The predicted traffic matrices are used as input of an
optimisation problem that outputs the sequence of VNT for each period minimising
OPEX in terms of used transponders and optical spectrum. Although the multi-
hour problem includes traffic prediction in the process of VNT reconfiguration, it is
solved off-line before the n considered periods, which might entail inefficiencies
under dynamic traffic scenarios where OD traffic patterns can suddenly change.
For example, assuming a reconfiguration at time t based on n predicted traffic
matrices for times t+1, ..., t+n, an unexpected OD traffic change between t and t+n
could cause inefficiencies in the solution, since some of those traffic matrices would

42 Towards Cognitive In-Operation Network Planning

be no longer representative of the actual traffic. In those scenarios, a single-period,
on-line VNT reconfiguration approach would prefered to reconfigure the VNT
based on a more reliable, short-term traffic prediction. In addition, this sort of VNT
reconfiguration would require from powerful algorithms to analyse large amounts
of traffic monitoring data in real time to anticipate traffic changes when possible.
For instance, a data analytics algorithm could run periodically (e.g., every hour) to
predict traffic, and, in case the VNT needed to be reconfigured trigger the execution
of a VNT optimiser to find the optimal topology for the next period.

 Solving methods for VNT reconfiguration

Let us finally focus on the solving methods used to solve the VNT reconfiguration
problems presented above. In [Agr09], the ORO algorithm is formulated as an ILP
problem, and, in light of its complexity for realistic instances, a GRASP-based
heuristic algorithm is proposed to obtain quality solutions in practical times.
Similarly, an ILP formulation along with a heuristic algorithm are presented in
[Gen03]. This time, however, the heuristic algorithm is ad-hoc and is not based on
any metaheuristic framework. Instead, it is based on two major stages: a vlink
addition stage followed by a vlink removal stage. The heuristic algorithm presented
in [Oh10] is also based on these two stages, but performing them globally based on
an estimated traffic matrix. Finally, the solving method proposed by authors in
[Fe15] is not based on an on-line VNT reconfiguration algorithm. Instead, a pool of
VNT are generated off-line, based on a VNT design algorithm (named as CONGA-
VTD). Once in-operation, a decision-making system decides which of the pre-
computed VNT adapts better the predicted traffic matrix for the next period.

Table 3-2 summarises the works surveyed above regarding VNT reconfiguration.
Although the literature contains similar works, to the best of our knowledge there
is not a previous one featuring a single-period, on-line, global VNT reconfiguration
based on traffic prediction considering the increasing dynamicity of core OD traffic.
For this reason, the contribution of goals G2.1 and G2.2 of this PhD thesis is to
devise, implement and evaluate a VNT reconfiguration approach gathering all
these features at the same time.

Table 3-2: Survey of VNT reconfiguration

Feature References

Global VNT reconfiguration [Agr09], [Fe15]

VNT reconfiguration based on performance
metrics

[Gen03], [Oh10], [Ve16]

VNT reconfiguration based on predicted
traffic matrices

[Oh10], [Fe15], [Ve16],
[Ap10] [Ap12] [Pa10]

VNT reconfiguration under dynamic traffic [Ve16]

Chapter 3 - Review of the State-of-the-Art 43

3.3 Metro-core traffic orchestration

Different works have addressed the topic of metro-core orchestration. Regarding
path computation across multiple network domains, authors in [Ca16] proposed a
broker-plane above the management planes of network domains. By allowing the
broker to obtain available resources from each network domain, end-to-end
resource management and multi-domain path provisioning networks is enabled
with reduced blocking probability. In a more recent work [Pro18] authors proposed
to add cognition to the broker by collecting per-domain quality of transmission
(QoT) monitoring data from the optical layer to assist the end-to-end multi-domain
RMSA process. Although this architecture facilitates end-to-end provisioning
across multiple domains based on traffic monitoring, the information about traffic
flows from the MPLS layer remains unshared between adjacent network domains
and hence the possibility of re-optimising the core VNT based on metro-flow traffic
information.

In that regard, authors in [Al16] addressed the impact of human mobility patterns
of mobile users in a metro area over the aggregated traffic offered to the mobile
metro-core networks. By exploiting predictable trends recognised in aggregated
core traffic, they propose two optimisation methods to reduce the energy
consumption in the optical layer of metro-core networks. Although this work
proposes to predict core flow traffic based ultimately on monitoring data from
metro networks, such predictive models are obtained from off-line metro network
history data. This off-line traffic prediction approach might result inefficient when
applied to a changing metro traffic scenario, where the re-routing of some metro-
flows to a different entry node in the core would change the aggregated traffic
patterns in the core thus dropping the predictive quality of the original models. To
alleviate this problem, it would be advisable to enhance the previous approach to
an online one, where the aggregated core traffic could be predicted based on online,
metro-flow traffic monitoring. For this reason, the contribution of goal G1.2 and
G2.3 in this PhD thesis is to efficiently keep up-to-date predictive OD traffic
models for VNT reconfiguration under dynamic traffic, by aggregating several
metro network flow traffic models from neighbouring metro network areas.

Table 3-3: Survey of metro-core orchestration

Feature References

End-to-end service orchestration in multi-domain
networks.

[Ca16], [Pro18]

Core network optimisation based on metro traffic
patterns.

[Al16]

44 Towards Cognitive In-Operation Network Planning

3.4 Conclusions

In this chapter, we have reviewed the state-of-the-art of relevant works related to
the goals of this thesis.

Regarding traffic modelling, several works have been proposed to model traffic,
including specific ones studying traffic modelling in metro and core networks.
Nevertheless, there are not any works devoted to online traffic modelling of the OD
bitrate in metro and core networks, assuming the current dynamicity of service
layer traffic. It is also of special interest to guarantee uninterrupted traffic
predictive capabilities in the core network under changing traffic scenarios.
Although several works have studied concept drift detection, the re-estimation of
new models entails long monitoring data collection times (e.g., several weeks).
Therefore, new mechanisms new to be explored to achieve real-time predictive core
traffic model re-estimation.

The literature contains multiple works regarding VNT reconfiguration, presenting
partial or global reconfiguration approaches, some of them based on estimated
traffic matrices and some triggered by a decision-making system. However, none of
them presents a reconfiguration approach jointly featuring online, global VNT
reconfiguration based on traffic prediction. The approach above will be studied in
this thesis.

Finally, although some works focusing on metro-core orchestration provide a
means for efficient end-to-end resource allocation across multiple domains, the
proposed architectures lack mechanisms to allow the exchange of traffic-flow
related information between the participating network domains. Other approaches
consider such exchange of information in the form of predictive traffic models for
the core based on metro-flow traffic data. Although these models are used for
efficiently re-optimising the core, they are built on an off-line basis and therefore
lack of re-estimation mechanisms to ensure quality traffic prediction under
changing traffic. For this reason, the approach above will also be studied in this
thesis.

Several open issues have been detected. Next chapters will focus on presenting our
contributions for each of these unexplored issues that will eventually lead to the
consecution of the main goal of this thesis.

Chapter 4

Simulation environment

Studies involving multilayer networks, in particular, those dealing with in-
operation network planning may need of evaluation in complex scenarios. The
access to test-beds providing realistic scenarios is usually limited, which demands
alternative evaluation methods for the research community.

In that regard, network simulation has been proven as a useful tool. It does not
only overcome the limited access to physical resources but also offers a means of
implementing and evaluating algorithms in an accessible and controlled
environment, so they can be verified and improved before being brought into
practice hence increasing the chances of success.

Although previous work has been done regarding multilayer network simulation
[CaPhd], it does not entirely match the requirements needed to properly evaluate
the algorithms and network scenarios presented in this thesis. For that reason, we
present a new multilayer network simulation environment for cognitive in-
operation planning: iONESim. It is based on the OMNeT++ simulation framework
[OMNeT] widely used among the research community.

4.1 Simulator overview

In this section, we present the modules defining the structure of iONESim as well
as their interconnections. Although these definitions will remain constant for all
simulation scenarios, some of their parameters can be modified to simulate
different network scenarios.

Fig. 4-1 shows how iONESim modules communicate with each other. According to
the OMNeT++ simulation framework, each iONESim module is attached to a C++

46 Towards Cognitive In-Operation Network Planning

class and exchanges data with different modules either in terms of the OMNeT++
built-in messaging system or by making API calls to public class methods. In the
latter case, a pointer to the desired module can be obtained before the simulation
starts (i.e., at initialisation time).

There are three main module groups in iONESim modules: data plane modules,
control plane modules and event modules. Data plane modules are responsible for
the simulation of the network data plane, featuring a traffic generation framework
able of generating OD traffic either for metro or for core network flows during the
simulation, according to customizable service layer traffic patterns. Control plane
modules simulate the role of a network controller, including an SDN controller, a
VNT manager (VNTM), centralised data analytics and statistic collection module
for post-simulation analysis. Finally, event modules trigger external events that
have an impact in the network performance, such as metro traffic re-routing or just
the management of the simulation timing.

Event modules Control Plane Modules

Data Plane Modules

VNTM

Clock

User
Community

Generator

Function
Custom

Generic
Configuration

Network
Node

Statistics

User

Analytics

Redirection
Generator

SDN
Controller

Connection types:

Message

API

Fig. 4-1: iONESim modules and their interconnection.

4.2 Data plane modules

Taking into account the evolution of service traffic in the recent years, we aim at
simulating OD traffic patterns matching an evolving traffic scenario. To that end, a
traffic generation framework has been devised as a core feature of iONESim
offering not only a flexible way to simulate network traffic flow data but also as a

Chapter 4 – Simulation environment 47

generic data stream generator. The approach followed in this thesis is to
periodically generate flow data (i.e., bitrate) for all the OD pairs in the VNT (i.e., a
periodic update of the traffic matrix). This is in contrast with other approaches
followed in previous simulators [CaPhd], where a series of demands arrive to the
network following a Poisson-based stochastic process. Therefore, there are not
demands in iONESim. Instead, we consider time-varying OD bitrate flows.

To generate customizable traffic patterns either for core or for metro network flow
traffic, we devised a series of modules with independent functionalities that all
together allow the periodic generation of OD traffic matrices. The data plane
modules responsible for the traffic generation are FunctionCustom and Generator
whereas the User, UserCommunity and NetworkNode modules are responsible for
the aggregation and injection of the generated traffic matrices into the VNT.

 Function Custom

To allow a high degree of customisation in the generation of traffic,
FunctionCustom modules are devised to facilitate generating time-dependent,
correlated real-valued data. The main function of a FunctionCustom module is
mathematically stated in eq. (4-1), where variable t represents the current
simulation time point and vector vt an ordered tuple representing the n previous
values of f (eq. (4-2)), allowing introducing autocorrelation in the data.

 nf :

),(),(tt vtfvvt






(4-1)

 ),(),...,,1(1 nttt vntfvtfv  


 (4-2)

Although new FunctionCustom modules can be implemented to represent the
different components of the traffic, we can identify that these functions usually
result from the composition of simpler mathematical functions. To ensure re-usable
and well-structured code, a library of non-module classes is defined to facilitate the
composition of new FunctionCustom modules. These simpler functions are
classified into two main categories, namely FunctionUnitary or
FunctionDistribution. A FunctionUnitary implements a real-valued function
defined in the [0,1]×[0,1] square. This domain and range constraints are imposed in
order to avoid the duplication of essentially the same mathematical procedure.
Examples of these are polynomial and periodic functions. On the other hand,
FunctionDistributions are devised to implement random variables, based on
pseudo-random real number generation of given probability distributions.
Examples include the normal, the chi-squared and the uniform distribution.

48 Towards Cognitive In-Operation Network Planning

 Generator

Although the definition of FunctionCustom is flexible enough to allow the
implementation of an entire OD traffic profile, an upper aggregation level is
defined by the Generator module to allow combining different FunctionCustom
modules.

Formally, the Generator module combines a set of FunctionCustom modules
providing the different components defining a traffic profile. This combination of
FunctionCustom modules is done by evaluating an arithmetic expression which is
parsed at initialisation time and later evaluated every time that a traffic (bitrate)
generation request is triggered. Multiple Generator modules might be used within
a simulation in order to generate different OD traffic profiles using various
different FunctionCustom. For example, two Generators could be defined to inject
user-related traffic (e.g. video) or datacenter-related traffic (e.g. database
synchronisation) into the VNT.

The Generator modules provide the endpoint for the OD bitrate generation. Next,
the modules responsible for aggregating and injecting this traffic into the network
are presented in detail.

 User

One of the goals of this thesis is devoted to metro traffic flow modelling. To
numerically assess our proposals, iONESim must include a means of working with
metro-flow traffic. For that reason, the User module is defined to implement the
generation of multiple metro-sourced traffic flows traversing the core VNT. In
particular, it contains information about the ingress node in the core VNT, the set
of egress nodes in the core VNT (defining one metro-flow each) and one Generator
module providing the same traffic profile for the User metro-flows. Thousands of
User (hence metro-flows) are configured in iONESim simulations to analyze our
proposed algorithms in realistic traffic scenarios properly.

Although the ingress node of a User module is set at initialisation time, we
advance that this can be modified once the simulation has started by the
RedirectionGenerator module. In contrast, the destination nodes and the
associated Generator remain constant during the simulation.

Once a User module receives a traffic generation request, it generates a new
bitrate value by calling the corresponding Generator module. This new value is
bundled with ingress and egress information and sent to its parent
UserCommunity module. Also, this data is also sent to the Analytics module to
simulate metro-flow traffic monitoring.

Chapter 4 – Simulation environment 49

 User Community

The UserCommunity module is defined to act as an aggregation point for User-
generated traffic; the module aggregates all the User-generated traffic matrices
entering the core VNT through the same ingress node. For that reason, the
simulation must contain as many UserCommunity modules as edge VNT nodes.

The single role of a UserCommunity module is to periodically aggregate all the
received metro-flow traffic into a single traffic matrix and eventually send it to the
associated ingress node. It is worth mentioning that the matrix built by a
UserCommunity is only one row of the complete core OD traffic matrix since all the
OD pairs are sourced in the same node.

 Network Node

So far, we have presented the traffic generation framework formed by the
FunctionCustom and the Generator modules, which can be configured to shape
different traffic patterns for metro-flow traffic. User modules representing metro
traffic flows use this framework, periodically calling the Generator modules to
generate new metro-flow traffic matrices with ingress and egress nodes in the core
VNT. Finally, UserCommunities aggregate bitrate requests from several Users
composing one row of the core OD traffic matrix. To process the allocation of
resources in the VNT according to the new traffic matrices, we need to provide a
meeting point between the data and the control plane modules. This is
accomplished by the NetworkNode module, a high-level representation of an edge
MPLS router whose main function is to notify traffic matrix updates to the control
plane. An IP address uniquely identifies every NetworkNode module.

At regular intervals each NetworkNode receives an updated traffic matrix from its
associated UserCommunity; upon reception, a request containing the updated
traffic matrix is sent to the control plane aiming at (i) allocating the requested
capacity in the VNT and (ii) simulating OD core traffic monitoring. Data plane
simulation ends at this point giving way to control plane modules, presented next.

4.3 Control plane modules

The main contribution of this thesis is the combination of data analytics with
optimisation techniques in order to apply the OAA loop in the network. This
contribution is presented in the following chapters, using iONESim to assess their
performance. We advance the reader that our proposal is based on a centralised
network architectures scheme, and therefore a series of control plane modules are
defined in iONESim.

50 Towards Cognitive In-Operation Network Planning

 SDNController

The SDNController module is responsible for processing the (partial) OD traffic
matrices sent by the NetworkNodes modules during a simulation. It stores a
representation of the core VNT, the allocated paths and the current traffic matrix
resulting from combining all the received sourced (row) traffic matrices and
operates these three elements according to the changes in the traffic.

At initialisation time, the module sets up the initial VNT, the routes and the traffic
matrix from an external file. Once a simulation starts, the SDNController is the
only responsible for operating these three elements, with the only exception of the
Virtual Network Topology Manager (VNTM) to whom management can be
promptly delegated for cognitive running in-operation planning algorithms.

OD bitrate requests received from NetworkNodes are processed at the
SDNController by running a routing algorithm based on general or per-OD pair
routing policies. Routing policies are defined to establish resource-related
constrains in the allocation of requested OD bitrate. Once a traffic matrix from a
NetworkNode has been completely processed, a response message is sent back to
the original NetworkNode containing information about how the request was
processed (e.g., the amount of served unserved traffic for each OD pair and the
paths supporting the served capacity).

 Analytics

The combination of data analytics with optimisation techniques is the central part
of this thesis, aiming at applying the OAA loop in the network. To enable data-
analytics based simulation, iONESim includes the Analytics module which allows
centralized data analytics based on monitoring data. Despite being a single
module, it is composed of a family of submodules that provide different data
analytics –related functionalities and that are orchestrated during the simulation.
The Analytics module implements one of the major contributions of this thesis,
which is the data analytics framework presented in Chapter 5. Hence, we refer the
reader to that chapter for further details.

As already mentioned, every User and NetworkNode in the simulation periodically
sends their generated traffic matrices to the Analytics module. This is done to
simulate traffic monitoring capabilities both for metro-flow and core OD traffic.

Every time that new monitoring data is received, it is stored in a BigDataRepo
(Fig. 4-2) simulating a noSQL database [Gi16-1]; hence, monitoring data is stored
as new bitrate values are generated. At a configurable period, the traffic samples in
the BigDataRepo are processed and transformed into modelled data and stored in a
ModeledDataRepo; modelled data summarises monitoring data into relevant

Chapter 4 – Simulation environment 51

statistic features. This procedure is periodically applied thus building monitoring
time series during the simulation.

Once enough monitoring data is available in the repositories, an Estimator module
might trigger the estimation of traffic models capable of predicting metro flow or
core OD traffic (traffic model estimation is studied in detail in Chapter 5). Once
obtained, traffic models are stored in a PredictiveModelRepo where they will be
available for use and periodically evaluated by an Estimator module, aiming at
ensuring a target predictive quality along time. The predictive models stored in the
repository are used to serve traffic predictions to other simulation modules.

Analytics

Estimator

Evaluator

Pred. Model
Repository

Modeled Data
Repository

Big Data
Repository

Monitoring data from
Users and NetworkNodes

Serve traffic
predictions

Fig. 4-2: Structure of the Analytics module in iONESim.

 VNTM

In iONESim, the Virtual Network Topology Manager (VNTM) module is
responsible for the execution of cognitive in-operation network planning algorithms
that ensure a good performance in the core VNT. Although the SDNController is in
control of the VNT during the simulation, it can delegate its management to the
VNTM temporarily whenever it detects a performance issue in the VNT. As it will
be explained in the forthcoming chapters, cognition is added to in-operation
planning by combining the Analytics and the VNTM modules.

It is worth mentioning that the VNTM is designed to be easily extended by
implementing new VNTM algorithms which can be enabled or disabled at choice
for a particular simulation.

 Statistics

The Statistics module is responsible for the collection of different statistics during a
simulation. To implement new statistics more flexible, a modular approach has

52 Towards Cognitive In-Operation Network Planning

been followed, where multiple containers are defined to collect and produce a
different kind of statistic data. The choice of these containers is customizable and is
done before the simulation starts. Examples of statistics containers are blocking
probability computation, transponder utilisation or monitoring traffic data
visualisation.

As a result of this, the Statistics module acts as an intermediary between its own
containers and the rest of simulation modules, facilitating to the formers relevant
data for statistics computation which is made available by the latter (e.g., the
served or unserved OD bitrate is used to compute blocking probabilities).

4.4 Event modules

 Generic Configuration

The GenericConfiguration module sets up the traffic generation specified by the
User at initialisation time. It reads an input file defining the attributes
characterising the traffic requests of each User (i.e., their ingress and egress nodes
and the Generator providing bitrate values).

Besides that, it is also responsible for miscellaneous tasks facilitating the control of
the simulation such as pseudo-random number generation and logging.

 Redirection Generator

The RedirectionGenerator module is responsible for modifying the ingress node of a
given set of Users during a simulation. In order to do that, the module parses an
external file before the simulation begins containing information about the
redirections (i.e., affected Users, new ingress nodes and simulation time when the
redirections take place). Once parsed, these redirections are scheduled and
eventually notified to the affected User modules once they are triggered. Every
time that a notification is received by a User, this proceeds to switch to the
specified UserCommunity, with the corresponding change in the core OD traffic
patterns.

 Clock

In iONESim, simulation timing is controlled by the Clock module, running a
configurable periodic timer (tick). Every elapsed tick the module broadcasts a
traffic generation request to all User modules, effectively starting a new wave of
metro-flow bitrate value generation that will eventually produce partial (row)
updates in the core OD traffic matrix. Each of these updates is processed by the

Chapter 4 – Simulation environment 53

SDNController and by the Analytics modules, to adjust the allocated capacity in
the VNT and to apply data analytics based on monitoring data, respectively.

The Clock tick is customizable and is typically set to a small value (e.g., one
minute). The choice of this value has an impact on different aspects of the
simulation that are worth noticing. If a small Clock tick is configured, more traffic
generation waves will be triggered. This will slow down the simulation as a result
of an increased number of events to be processed. Also, memory consumption will
increase as a result of an increased granularity in the monitoring data (more data
being stored). However, increased granularity in the monitored traffic might
improve the predictive model quality. Conversely, if a large Clock tick is used less
traffic generation, waves will be triggered thus speeding up the simulation and
decreasing memory consumption. However, the quality of the predictive models
might drop due to a lower granularity in the monitoring data.

4.5 Simulation workflows

In this section, the main simulation workflows that are executed in iONESim
during a simulation are presented.

 Traffic generation

The first workflow in this section shows the messages exchanged aiming at
generating new traffic matrices for every User module. This is a core workflow
since it allows the continuous generation of traffic matrices during all the
simulation. Recall that the generation of traffic in iONESim is scheduled
periodically by the tick value of the Clock module. Therefore, this workflow is
started every Clock tick.

Fig. 4-3 shows the workflow in detail. Every time that a Clock period is elapsed (1),
the Clock module sends a new message to every User module in the simulation at
the same simulation time (2). These messages notify each User module that a new
traffic matrix must be generated. When a User module receives such message, it
requests new bitrate values to its related Generator module (3) in order to produce
a new metro-flow traffic matrix; note that the same Generator will be called as
many times as the number of destinations (i.e., metro-flows) of that User.

Every time that a new bitrate value is requested to a Generator module, this
evaluates an internal arithmetic expression combining its child FunctionCustom
modules. Because of this, during the expression evaluation, multiple calls to
different FunctionCustom might be done (4). The final result of evaluating that
expression (i.e. a new bitrate value) is eventually returned to the User module (5).

54 Towards Cognitive In-Operation Network Planning

Clock User Generator
Function
Custom

...

2
3

4 1 5

Fig. 4-3: Traffic generation workflow.

 Traffic request

Fig. 4-4 presents the workflow continuing with the previous one, right after each
User module has built a new metro-flow traffic matrix. In consequence, this
workflow is also triggered every time that a Clock period is elapsed.

A User module performs two main actions after building a new traffic matrix. In
one hand, a new traffic matrix is sent to the Analytics module (1) to simulate
metro-flow monitoring. On the other hand, the matrix is sent to its parent
UserCommunity to inject the traffic into theVNT (2).

When a UserCommunity module receives a new metro-flow traffic matrix from one
of its child Users, it aggregates it with the rest of received metro-flow traffic
matrices in order to produce a final, core OD traffic matrix for its associated
NetworkNode. Since the traffic matrix generation happens at the same simulation
time for all Users, it would be inefficient to forward the OD traffic matrix to the
NetworkNode every time a User module updates it. To prevent this, each
UserCommunity stores a temporary counter storing all the remaining User
modules yet to send their matrices. This counter is reset every Clock period, thus
allowing the UserCommunity to keep track of the remaining updates left. When
the count reaches zero, the updated traffic matrix is finally sent to the
NetworkNode module (3). Recall that the core OD traffic matrix contains no longer
the disaggregated metro-flow bitrate information, but its aggregation (OD bitrate).

Once a traffic matrix from a UserCommunity is received, a NetworkNode executes
two main actions. First, it updates its internal traffic matrix and sends a copy to
the Analytics module (4) to simulate core OD traffic monitoring. Secondly, it sends
a copy of the matrix to the SDNController module requesting the allocation of
resources to serve the updated bitrate entries in the matrix (5). The SDNController
finally adjusts the allocated capacity for each OD pair in the VNT according to the
new values and sends back a response to the NetworkNode (6).

Chapter 4 – Simulation environment 55

User
User

Community
Network

Node
SDN
Ctrl

Analytics

1

2

3
5

count=0

count=1

4

traffic
gen.

6

Fig. 4-4: Traffic request workflow.

 Traffic modeling

As we have seen in the two previous workflows, either metro-flow or core OD traffic
matries are sent to the Analytics module, simulating metro and core traffic
monitoring. The workflow in Fig. 4-5 shows the interaction between the different
Analytics submodules to store and process this data, simulating the process of data
analytics based on monitoring data. The workflow only shows the messages
exchanged between the different Analytics submodules; for details about the actual
data analytics procedures taking place in this workflow we refer the reader to
Chapter 5.

When new monitoring data (either metro or core) is received, it is stored in the big
data repository (1). The monitoring data remains stored until a configurable
periodic timer is elapsed. Once every period (2) monitoring data is conveniently
processed from the big data repository and summarized into modelled data which
is stored in the modelled data repository (3).

The data stored in the modelled data repository can feed various data analytics -
based procedures, among which we find predictive model estimation. When the
Estimator module checks that enough monitoring data is available to produce
quality traffic models, the corresponding estimation is triggered (4). The estimator
module then queries the modelled data repository the monitoring data needed for
the estimation of the new metro-flow or core OD models (5). The new models are
finally stored in the predictive model repository (6).

56 Towards Cognitive In-Operation Network Planning

Big
Data Repo

Modeled
Data Repo

Estimator
Predictive

Model Repo

new
samples

1

3
5

6

2

4

Fig. 4-5: Data analytics workflow.

 VNTM algorithms

In the previous workflow, we have seen the role and interaction of the Analytics
submodules, starting from monitoring metro and core flow traffic to finally
producing predictive models. These models can be used to apply the OAA loop in
the network. Effectively, by combining data analytics (Analytics module) with
network optimisation (VNTM), we enable cognitive in-operation planning.

VNTM Analytics
SDN
Ctrl

2

4

5
6

VNTM
Algorithm

1 3

Fig. 4-6: Example workflow for cognitive in-operation network planning.

Fig. 4-6 shows an example workflow executed periodically to re-configure the VNT.
Periodically (e.g., every hour) a timer is triggered in the VNTM (1) to run a VNTM
algorithm based on data analytics, for example involving traffic prediction. Next,
the VNTM module requests a traffic matrix prediction to the Analytics module (2)
that is computed and returned in a reply message (3). After receiving the traffic
prediction, the VNTM module requests the temporal management of the VNT to
the SDNController module, thus completing all the input data needed to run the
VNTM algorithm. The algorithm is executed (5) and its solution eventually
implemented in the VNT (6).

Chapter 4 – Simulation environment 57

 Metro-flow rerouting

The last workflow in this section details the process of redirecting some metro-
flows towards different ingress nodes in the VNT. This is achieved by modifying
the parent UserCommunity of a given set of User modules. Redirecting metro-flow
traffic to a different ingress node triggers changes in the core OD traffic patterns;
this, in turn, might affect the predictive quality of the OD traffic models and also
the performance of the VNT. This thesis devotes Chapter 8 to analyse this network
scenario.

The workflow (shown in Fig. 4-7) starts whenever a redirection scheduled by the
RedirectionGenerator module is executed (1). Initially, each affected User module
is notified to change to a different ingress node in VNT (2). To that end, a User
proceeds to switch to a different UserCommunity as follows: first, a message is sent
to its current UserCommunity to notify unsubscription (3); as a result, the
UserCommunity will decrease the amount of subscribed User by one. Once
unsubscribed, the User module will subscribe to the new UserCommunity (4),
increasing in the latter the User subscriber count by one. In the following traffic
generation waves, traffic matrices will be sent to the new UserCommunity.

Redirection
Generator

User
SDN
Ctrl

Analytics
User

Community

2
3

4
651

Fig. 4-7: Workflow for metro-flow ingress node redirection.

After all the affected User modules are redirected to their new ingress nodes, the
RedirectionGenerator module notifies the whole redirection event to the
SDNController module (5). The SDNController then computes the set of affected
OD pairs by inspecting the set of rerouted metro-flows and sends such information
to the Analytics module (6). This last step is done to allow the deletion of obsolete
monitoring data and inaccurate predictive models for the affected OD pairs, thus
re-starting the process of traffic modelling.

4.6 Conclusions

In this chapter, the iONESim network simulator has been introduced. We devised
it as a means of evaluating the algorithms for cognitive in-operation network
planning proposed in this thesis. According to the specific goals of this thesis, the
simulator allows combining in-operation network planning with data analytics

58 Towards Cognitive In-Operation Network Planning

based on monitoring the data plane. The simulation of metro and core traffic flow
data is based on a complex traffic generation framework.

Chapter 5

Network traffic modelling

In this chapter, we study modelling techniques for network traffic flows. This is, to
obtain a mathematical model describing the bitrate from a network node to some
other destination at a given time t. To that end, we first devise a centralised data
analytics framework which is located in the network controller. Through a series of
data analytics modules, the framework collects monitoring data from packet nodes,
processes it into meaningful modeled data and finally estimates predictive models
based on this data. Predictive models for each monitored traffic flow are finally
stored for their later utilisation.

Aiming at obtaining quality predictive models, we study in detail two different
model estimation approaches, each one providing a series of trade-offs under
different applications. Both approaches are introduced, formally explained and
eventually evaluated through simulation.

5.1 Traffic flow modelling

 Data analytics modules for traffic flow modelling

Let us assume a scenario where MPLS routers are extended with traffic monitoring
capabilities thus allowing the obtention of bitrate samples. Each bitrate sample
x∊X is obtained following the node architecture in [Gi17]: initially, bitrate is
monitored at packet nodes where bit counters are continuously updated during
short granularity periods of duration G (e.g., every 1 minute); once a period G ends,
counters are processed to produce a new bitrate measurement. To alleviate the
number of samples sent to the network controller, these are aggregated in the
router by computing the arithmetic mean in a larger monitoring period T (e.g.,

60 Towards Cognitive In-Operation Network Planning

every 15 minutes) hence producing a single sample x=<time, bitrate>. Monitoring
samples are sent to a collected data repository in the central controller storing a
time series X for each monitored traffic flow, as illustrated in Fig. 5-1.

At regular intervals, collected data of a traffic flow can be conveniently
summarized by applying data stream mining techniques, hence converting a time
series X in a single modelled data value y. Modeled data includes, among others,
the minimum, maximum, average and last collected bitrate value within some
period (e.g., every hour). Every time that a newly modelled data y is generated, it is
added to a modelled time series Y of the corresponding traffic flow, which is stored
in a modelled data repository. It is possible to keep Y=X if no summarisation of the
data is needed.

To obtain predictive traffic models, an estimator module periodically queries the
modelled data repository to check if the amount of modelled data (i.e., the length of
Y) is large enough to ensure a target predictive quality, and if so, proceeds to the
execution of an estimation algorithm. The estimation algorithm receives as input a
modelled time series Y and returns a mathematical model predicting the modelled
variable at any time (e.g., the maximum bitrate). Once a predictive model has been
computed, it is stored in a predictive model repository for future utilisation.

Estimator

Collected
Data Repo

Modeled
Data Repo

Predictive
Model Repo

X
x1 xn

ym

Y +
y1

B
itr

at
e

t

t

Traffic flow

MPLS node

T

x

G

Predictive
model

B
itr

at
e

Fig. 5-1 Data analytics modules for traffic flow modelling.

 Traffic model estimation

Let us now analyse in more detail the process of data modelling and model
estimation that takes place in the previous modules. Fig. 5-2 shows one day of

Chapter 5 – Network traffic modelling 61

monitoring data from a traffic flow with granularity G=1 minute. Those samples
are aggregated at the MPLS node with a monitoring period of T=15 minutes and
sent to the collected data repository (time series X in the figure). Every hour, data
from series X is processed and added to a modelled data time series Y containing
the average bitrate of the last hour. As we can observe in the figure, data
aggregation (averaging in this case) decreases granularity, variability and the total
storage requirement. It is worth noticing that the bitrate variability can change
along time for various reasons, such as the number of service connections being
aggregated into the traffic flow or the type of service of each connection.

0

0.5

1

1.5

2

2.5

0 2 4 6 8 10 12 14 16 18 20 22 24

Node (G = 1 min) X (T = 15 min) Y (1 hour)

B
it

ra
te

 (
G

b
/s

)

Hour of the day

Fig. 5-2 Different aggregation levels for traffic flow time series.

A classical approach to fit the previous time series is to use models from time series
analysis, such as the ARIMA model [Wei94]. Such models allow to predict at time
tn+1 based on k previous values from times tn-i1,…,tn-ik; This entails that, in order to
evaluate the model, access to the modelled data repository must be somehow
available; let us refer to these models as time series –valued. Although time series
models have been extensively used in the literature, they present a series of
drawbacks when considered for our data analytics framework.

Time series-valued models do not pose a problem when used close the modelled
data (e.g., in the network controller). However, they become difficult to evaluate at
remote locations where a modelled data repository is not available; one example is
when anomaly detection is remotely applied in the network nodes [AV17-1]. Also,
input values for these models need to be equally spaced in time to enable their
evaluation at any time, thus introducing additional constraints in the modelled
data. Last but not least, the discrete nature of the model demands additional
processing if a prediction is needed between two discrete times tn,tn+1. This problem

62 Towards Cognitive In-Operation Network Planning

could be alleviated by increasing the granularity of the data hence obtaining a finer
discretisation of the time but at the expense of having more parameters in the
model. A more recent and alternative approach is to use machine learning methods
such as artificial neural networks (ANN) [Em08], which have been proven to adapt
to changing patterns in contrast with more classical time series models.

In light of the previous analysis of time series –valued models we would like to find
an alternative approach which overcomes the previous modelling constraints. For
instance, it would be desirable to work with predictive models of the form y=f(t)
only depending on the absolute time value for a prediction rather than a series of
previous modelled data values. These time point –valued models can be evaluated
regardless of their location. Within this type of predictive models, we aim at those
that overcome the discrete nature of time series data by offering a continuous
expression for f(t). Some well-known models satisfying this criterion are those
based on least-squares (regression) and interpolation. Least-squares offer a wide
range of function basis (e.g., polynomials) to accurately approximate the data with
relatively few parameters. On the contrary, interpolation allows fitting exactly the
data at the expense of having as many parameters as data points to interpolate.

A common problem with both approaches arises when adjusting complex patterns
spanning over long time intervals. This usually induces a more complex expression
of f(t) along with more parameters to represent it. It usually brings some
inefficiencies as well, such as the Runge phenomenon in interpolation. To solve this
problem, we can rather choose a continuous, piece-wise model consisting of simpler
functions defined over shorter time intervals. For instance, we can consider a piece-
wise linear model interpolated over the time series values.

5.2 Time point –valued predictive models

 Model estimation

The first model estimation approach aims at obtaining an estimation of the
expected mean (or average) bitrate μ and its variance σ2 as a function of time. The
proposed estimation algorithm is presented in Table 5-2. It receives a collected time
series Y=X for a given traffic flow and the monitoring period T and returns
predictive models fitting this data. Specifically, two models (for μ and σ2) consisting
of two piece-wise linear functions of a certain number of segments are computed.
The main variables used in the algorithm are shown in Table 5-1.

The first part of the algorithm (lines 1-5 in Table 5-2) is a pre-processing phase
consisting of grouping traffic values in time series Y by their relative time within
the longest identified period. A seasonality detection procedure on the time series
[Wei94] is applied to compute the most likely period in the data (line 1). The
detection procedure consists in computing the autocorrelation function (ACF) to

Chapter 5 – Network traffic modelling 63

detect the distance between consecutive correlation peaks, identified as the
duration of the period; perStart is set in consequence (e.g., to 00:00h if a daily
period is detected).

T
ra

ff
ic

 (
M

b
/s

)
C

o
rr

el
at

io
n

Lag

96 lags = 1 day

a)

b)

Day

Fig. 5-3 Example of ACF applied to a monitoring time series Y.

Fig. 5-3b illustrates the result of the ACF when it is applied to the monitoring
traffic series Y from Fig. 5-3a. The bar in the i-th lag indicates the correlation that
each of the values in the data series has with the value that is exactly i positions
before. Note that the highest correlation is observed for 96 lags (i.e., one day since
samples are collected every 15 minutes). This technique based on the ACF provides
a robust periodicity detection whatever the traffic profile is. Since samples are
monitored at regular intervals, the number of segments (nSegm) of the piece-wise
linear functions can be easily computed from perDur and T (line 2). Once the period
has been obtained, data is grouped by segments, i.e., expressed with a time t
relative to the period. To this aim, every sample in Y is retrieved, its relative time t
computed and the traffic value pushed to the vector that contains all the samples
collected at t, which is stored in data set D (lines 3-5).

64 Towards Cognitive In-Operation Network Planning

Table 5-1: Variable definition for the model estimation.

Name Definition

perDur Duration of the period.

perStart Period starting time.

nSegm Number of segments of the piece-wise linear
functions.

segmLength Length of each segment.

Table 5-2: Piece-wise linear model estimation

INPUT Y, T
OUTPUT model

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:

<perStart, perDur> ← identifyPeriod(Y)
D ← []; nSegm ← ڿ perDur / T ۀ
for y = <time, bitrate> in Y do

t ← ہ ((y.time - perStart) % perDur) / T ۂ
push(y.bitrate, D{t})

U ← []; V ← []; μ ← ∅; σ2 ← ∅
segmLength ← perDur / nSegm
for t in 0..nSegm do

if t < nSegm then
U[t] ← compute mean u(D{t}) (eq. (5-1))
V[t] ← compute variance v(D{t}) (eq. (5-2))

if t = 0 continue
if t < nSegm then t’ ← t – 1 else t ← 0; t’← nSegm - 1
aμ ← U[t]; aσ2 ← V[t]
bμ ← compute slope b(U[t’], U[t], segmLength) (eq. (5-3))
bσ2 ← compute slope b(V[t’], V[t], segmLength) (eq. (5-3))
μ[t] ← <aμ, bμ>; σ2[t] ← <aσ2, bσ2>

return model = <perStart, perDur, nSegm, μ, σ2>

After the pre-processing phase, D contains the same data in Y but properly grouped
to easily compute the coefficients of the linear equation of each segment of the
piece-wise linear functions. Every vector D{t} is used to compute two consecutive
linear equations: for segment [t-1, t] it is used as ending edge whereas for segment
[t, t+1] it is used as starting edge. Thus, for each edge of a segment, the empirical
mean and variance are computed according to those typical moment estimators
[Ho13] detailed in eq. (5-1) and (5-2) (lines 6-11).

   





1

0

1 D

i

iD
D

Du

(5-1)

Chapter 5 – Network traffic modelling 65

 
    

1

1

0

2










D

DuiD
Dv

D

i
(5-2)

As soon as the empirical mean and variance are available for both edges of a
segment, the linear equations (intercept and slope) of that segment for both μ and
σ2 models are computed (lines 12-17). Segments are identified by an intercept a
equal to the empirical value at the starting of the segment and a slope b computed
from the values at both edges and the segment length, according to equation (5-3).
Finally, the model consisting in the obtained period, the number of segments, and
the piece-wise linear functions μ and σ2, is returned (line 18). In practice, nSegm is
implicitly stored as the size of μ and σ2.

 
l

dd
lddb ij

ji


,, (5-3)

 Model evaluation

Once traffic models are available, they can be used to predict future traffic. Table
5-3 shows the evaluation algorithm that receives a predictive model and the
absolute time for which a prediction is needed. First, the absolute time needs to be
transformed to a time (t) within the model’s period (lines 1-2). Next, the linear
equations (slope and intercept) for µ and σ2 that enclose t are selected (lines 3-6)
and finally evaluated (lines 7-8). The algorithm returns the average bitrate and the
variance prediction for the requested time (line 9). The number of operations that
the algorithm executes is constant and does not depend of the size of the input;
therefore, its time complexity is constant, which translates in fast evaluation times
in practice. In addition, it requires a constant amount of additional memory apart
from that used to load the model (space complexity is linear). This facilitates its
utilisation in computational resource scarcity environments. The storage
requirements of these models are studied in Section 5.4.

The granularity of the previous prediction is implicitly given by the monitoring
period T, which might not be fine enough for some algorithms, such as anomaly
detection [AV17-1]. This especially affects the σ2 model, since the variance of bitrate
at a granularity smaller than T (e.g., G) tends to be higher. For illustrative
purposes, let us imagine that µ and σ2 models have been obtained setting a
granularity G=1 min and a monitoring period T=15 min. As a result of the implicit
traffic aggregation induced by T, we will obtain: i) a µ model estimation close to the
mean traffic observed at a granularity G and ii) a σ2 model estimation significantly
smaller than that observed at a granularity G. Thus, if we want to use the σ2 model
to predict traffic with granularity 1 minute its accuracy needs to be improved. To
that end, we propose to use approximated predictions applying corrections derived
from the theory of estimation in statistics [Ho13].

66 Towards Cognitive In-Operation Network Planning

Table 5-3: Piece-wise linear model evaluation

INPUT model, time
OUTPUT <µ, σ2>

1:
2:
3:
4:
5:
6:
7:
8:
9:

segmLength ← model.perDur / model.nSegm
t ← (time – model.perStart) % model.perDur
s ← ہ t / segmLength ۂ
offset ← t % segmLength
[aμ, bμ] ← model.µ[s]
[aσ2, bσ2] ← model.σ2[s]
µ ← aμ, + bμ * offset
σ2 ← aσ2 + bσ2 * offset
return <µ, σ2>

5.3 Time series –valued predictive models

 Model estimation

The second model estimation approach consists of fitting ANN models, selected
because of its inherent capability of adapting to traffic changes in a non-supervised
manner. We consider different ANNs to predict the bitrate of each traffic flow
separately. Each ANN receives as input p previous modelled data values of the
corresponding traffic flow from the modelled data repository and returns the
expected modelled variable value at time t (e.g., the maximum or the average
bitrate).

Since the size of an ANN depends on the number of inputs, hidden layers and
neurons, we consider ANN models with p inputs, s neurons in a single hidden layer
and one output. Consequently, c=s·(p+1) coefficients need to be found to specify
every ANN. Aiming at keeping the number of coefficients small, we designed the
algorithm in Fig. 5-4 that has to be triggered every time an ANN needs to be
estimated. It consists in three phases: i) input data pre-processing, ii) selection of
significant inputs and iii) dimensioning of the hidden layer.

In the first phase, a modelled time series Y for the selected traffic flow is retrieved
from the modelled data repository. The seasonality detection procedure introduced
in the previous section is also applied here to identify the largest period per in the
time series. This value is used to define the number of inputs of the ANN (i.e., the
number of lags in per). Based on this, Y is transformed into a dataset D used to fit
the ANN model. Every row in D corresponds to a time t within the time series, and
every column corresponds to a lag within perDur, i.e., {y(t-1),..., y(t-perDur)}

The second phase is an iterative procedure that finds the ANN with the best trade-
off between accuracy and number of inputs. This trade-off is captured numerically
by the Akaike Information Criterion (AIC) [Em08] (eq. (5-4)); the AIC is computed
using the number of parameters n of the model and the residual sum of squares

Chapter 5 – Network traffic modelling 67

(RSS) (eq. (5-5)) obtained by evaluating the model against a training data set.
Starting with p=per, the ANN routine fits an ANN from dataset D and returns the
corresponding AIC value. While the AIC value obtained improves the lowest one
obtained so far, the best ANN is stored, and p is decremented effectively removing
one input. Aiming at reducing the complexity of selecting the input to be removed,
we select the lag with lowest ACF. When the minimum AIC is reached, the third
phase is executed to increase even more the accuracy of the model by adding
hidden neurons until the AIC does not improve. The best ANN is eventually
returned, containing the parameters detailed in Table 5-4.

Y←getModelled
TimeSeries(o)

sort(lags, “ACF”)

i) pre-processing

minAIC=∞
s=1

<W,aic>←ANN(D,s)

aic<minAIC?

minAIC←aic
W* ← W; D* ← D

D.removeCol(lags[1].col)
lags.pop(1)

ii) input selection iii) hidden layer dimensioning

s++

aic<minAIC?

yes

no

yes

<W,aic>←ANN(D*,s)

minAIC←AIC
W* ← W

D←TStoDS(Y,per)

per←findPeriod(lags)

lags←ACF(Y)

no

Return
model = W*

Start

Fig. 5-4 Self-learning ANN fitting algorithm.

)ln(2 RSSncAIC  (5-4)

ܴܵܵ ൌ෍ሺݕ௜ െ ݂ሺݔ௜ሻሻଶ
௡

௜ୀଵ

 (5-5)

68 Towards Cognitive In-Operation Network Planning

 Model evaluation

Once an ANN model is available, it can be evaluated to predict the target modelled
variable. The evaluateANN algorithm in Table 5-5 can be used to evaluate an ANN
model. It receives an ANN model and the absolute time for which a prediction is
desired. For the sake of simplicity, let us assume that the modelled data repository
stores equally spaced time points and that the input time for the algorithm is a
multiple of this time separation as well. This constraint is needed since the inputs
of the ANN are lags equally spaced in time. Otherwise, the ANN algorithm
presented next should be evaluated at the nearest time multiple and then
approximate the prediction to the desired input time, for instance, by interpolation.

Table 5-4: Parameters of the ANN model

Name Definition

P Set of inputs neurons.

S
Set of neurons of the hidden layer. Each neuron s
contains the activation function fs(x).

inWeights
Real-valued matrix containing the weights of every
connection (p, s) ∈ P × S.

outWeights
Real-valued vector containing the weights between
every neuron s ∈ S and the output.

Initially, the input time value is used to retrieve from the modelled data repository
the set of p previous modelled data values needed as input for the ANN (line 1). It
might happen, however, that some of the input data were missing if the requested
prediction is far ahead in the future and some lags are not yet in the repository.
For these missing values, the algorithm is recursively called thus obtaining an
estimation for the input data (lines 2-3). It is worth noticing that this recursive
approach introduces an accumulated error in the originally requested prediction.
Once completed, the input data is propagated through the neural network by
properly combining it with the weights of the connected neurons. Formally, this is
achieved by running an iterative procedure on the hidden layer. For each s ∈ S,
each input value is multiplied with the weight connecting p and s (lines 4-8) and
added to a temporary value. Next, the temporary value is evaluated by the
activation function of s, fs(x), weighted and added to the final prediction value ypred
(line 9). Once the iterative procedure ends, the final prediction is returned (line 10).

The time complexity of the previous algorithm is O(s·p), plus the time needed to
retrieve the input modelled data from the repository. Therefore, the evaluation
algorithm depends on the size of the ANN, in contrast with the piece-wise linear
models, which present o(1) time complexity for their evaluation.

Chapter 5 – Network traffic modelling 69

Table 5-5: ANN model evaluation

INPUT model, time
OUTPUT ypred

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:

I ← modeledDataRepo.getInputs(model.P, time)
for <y, t> ∈ I do

if y = ∅ then y ← evaluateANN(model, t)
ypred ← 0
for s ∈ model.S do

x ← 0
for p ∈ model.P do

x ← x + I[p].y · model.inWeights[p,s]
ypred ← ypred + model.fs(x)·model.outWeights[s]

return ypred

5.4 Numerical results

This section starts by presenting the traffic flows used in the numerical evaluation
of the two proposed model estimation approaches. Next, both traffic modelling
approaches are evaluated by analysing different performance metrics.

 Traffic flow generation

Due to the diversity of service types that can be conveyed in metro and core flows,
we ran simulations in iONESim to generating monitoring data according to two
differentiated traffic profiles. The first traffic profile, named as Users, represents
the traffic aggregation of end users consuming high-bandwidth applications such
as video-on-demand or live TV, with higher activity at evening hours, i.e. prime-
time [Ve14.3]. The second traffic profile, named as Datacenter (DC), aggregates
traffic of DC to DC connectivity services required for dynamic management
activities of distributed DCs, such as DB synchronisation or virtual machine (VM)
migration [Be92]. The daily expected bitrate of these two profiles is illustrated in
Fig. 5-5.

The monitoring time series X for each traffic profile is generated using the traffic
generation framework presented in [AV16] and included as part of iONESim.
Based on this framework, a time series is generated by combining a deterministic
average f(t) (as in Fig. 5-5) with a stochastic component. To do so, a random
variable ε representing random variable traffic is defined assuming a 0-centred
normal probability distribution. Therefore, monitoring samples for every traffic
flow are generated applying eq. (5-6). Aiming at correlating burstiness with peak
hours, a time dependency is introduced in the standard deviation of ε as stated by
eq. (5-7) assuming a constant coefficient of variation (CV) in the traffic [Ho13].
Based on this procedure, training and validation time series with several months of
monitored bitrate were generated at a granularity G=1 minute for the Users and

70 Towards Cognitive In-Operation Network Planning

DC traffic profiles generated with iONESim. Fig. 5-6 and Fig. 5-7 illustrate two
days of this data for each of the traffic profiles. The traffic generation approach
presented here will be used in the forthcoming chapters.

)()(tftX (5-6)

CV

tf
t

)(
)( (5-7)

Hour of the day

N
o

rm
al

iz
ed

 b
it

ra
te

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

0 2 4 6 8 10 12 14 16 18 20 22

Users

DC

Fig. 5-5 Average daily bitrate of Users and Datacenter profiles.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 8 16 24 32 40 48

B
it

ra
te

 (G
b

/s
)

CV = 3.75 a)

Hour

Fig. 5-6 Two days of monitoring data of Users traffic generated using iONESim.

Chapter 5 – Network traffic modelling 71

B
it

ra
te

 (G
b

/s
)

0

2

4

6

8

10

12

14

0 8 16 24 32 40 48

Hour

b)CV = 20

Fig. 5-7 Two days of monitoring data of DC traffic generated using iONESim.

 Piece-wise linear model estimation

Let us start evaluating the piece-wise linear models by first focusing on analysing
the quality of μ model estimation under different monitoring periods T of 1, 5, 15,
30 and 60 minutes. For each T, we retrieved time series X from the training data
set containing several months of monitoring data used as input to the estimator
algorithm in Table 5-2 (we assume no modelling of the data, i.e., Y=X). To check the
quality of the estimation, we compared it against a new, validation time series Y*
for each traffic profile; in particular, for each data value y∈Y* the error of the
prediction was computed as the relative difference between the prediction and the
real monitored value y. The average and maximum error were then compared for
different values of T. By observing the average error we find values under 1% for
both traffic profiles and for T lower than 30 min. However, when looking at the
maximum error (i.e., the worst prediction) we notice important differences between
both traffic profiles. While the Users profile yields maximum error values below 2%
for all T, those for the DC profile remain low only when T≤15 min, while exceeding
10% for larger T; this is caused by the combination of abrupt changes in its daily
profile and the loss of information because of aggregation.

Consequently, setting T = 15 min provides a good tradeoff between information loss
and prediction quality and hence, we fix this value for the rest of this study.
Similar experiments were conducted to evaluate the estimation of the variance σ2.
Fig. 5-8 shows the error resulting from comparing the estimation of σ2 against the
variance used to generate the training time series. It can be observed that the
estimation offers a 0-centred error bounded by ±10%. Results are shown averaged
for the Users and DC profiles, yielding similar results for both individually.

72 Towards Cognitive In-Operation Network Planning

M
ea

n
 e

rr
o

r

Variance (x103)

-25%

-20%

-15%

-10%

-5%

0%

5%

10%

15%

20%

25%

0 20 40 60 80 100 120 140 160

Fig. 5-8 Mean error of σ2 estimation vs days of monitoring.

0%

20%

40%

60%

80%

100%

0 10 20 30 40 50 60 70 80 90

σ μ

0%

20%

40%

60%

80%

100%

0 10 20 30 40 50 60 70 80 90
Days of monitoring

M
ax

im
u

m
 e

rr
o

r

Days of monitoring

M
ax

im
u

m
 e

rr
o

r
a) b)

Fig. 5-9 Maximum error of σ2 and μ vs days of monitoring for the Users (a) and the
DC (b) traffic profiles.

Let us now analyse the impact of the amount of training data (i.e., |Y|) in the
quality of the predictive models. Monitoring traffic during the right period is
crucial to producing quality models while minimising the time for new model
availability. To evaluate this, we conducted experiments where μ and σ2 are
estimated and evaluated varying |Y| between 2 days and 3 months.

Fig. 5-9a-b show the maximum error for σ2 and μ estimations for different values of
|Y|. Values are normalized to the ones obtained with |Y|=3 months, which
offered an acceptable error. Although μ can be estimated with less than 5%
maximum error in about 10 days, a maximum error of 60% is obtained for σ2 for the
same time. To decrease the maximum error |Y| need to be increased up to 2
months to keep maximum prediction errors under 20%. Henceforth, we consider

Chapter 5 – Network traffic modelling 73

|Y|=3 months of traffic monitoring to train models to accurately fit the behaviour
of metro-flows. Fig. 5-10 shows one day of monitoring traffic data, as well as the
prediction of the μ model (red line) and the confidence interval at 95% that is
obtained using the σ2 model (dashed lines).

Finally, let us analyse the storage requirements for the piece-wise linear models.
Each traffic model requires 2·(2N+1) floating point numbers to be stored, where N
is the number of model pieces. As an example, in a 100-node network, each node
would require 153 KB to store all the traffic flow models originated in the node to
every other node with daily periodicity, being this value increased to 4 MB if
monthly periodicity is used.

Fig. 5-10 Prediction of min/max/avg for Users (a) and DC (b) traffic profiles.

 ANN-based model estimation

To evaluate the ANN-based model estimation approach, we retrieved time series X
from the training data set containing several months of monitoring data. For each
time series X, a modelled time series Y was computed to obtain the maximum
hourly bitrate. In this case, we chose to model the maximum hourly bitrate aiming
at obtaining ANN-based models capable of predicting the peak bitrate value along
one hour, used for network design and reconfiguration. Based on this data, ANN
models were trained applying the fitting algorithm in Fig. 5-4.

Results shown in Fig. 5-11b illustrate the average input size p of ANN models
obtained in the input selection phase. Recall that during the input selection phase,
the number of inputs p is decreased aiming at minimising the AIC value. We
observe that the minimum AIC is on average reached at p=4, being mainly selected
those inputs from t-1 to t-4. Results from the hidden layer dimensioning phase
fixing p=4 are shown in Table 5-6, for a number of hidden neurons ranging from 1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 4 8 12 16 20 24

monitoring
μ ± 2ꞏsqrt(σ^2)
μ

Hour of the day

a)

0

2

4

6

8

10

12

0 4 8 12 16 20 24
Hour of the day

b)

B
it

ra
te

 (G
b

/s
)

74 Towards Cognitive In-Operation Network Planning

to 3. Note that the minimum AIC is obtained for s=2, which results in an ANN
model with 10 coefficients that accurately predicts the output variable with a good
trade-off between average and maximum relative errors (2.64% and 9.55%,
respectively).

Finally, let us analyse the degree of adaptation of ANN models under evolutionary
traffic scenarios. To that end, we generated evolutionary time series according to
two different scenarios. In the first scenario (smooth), the bitrate experiments a
transformation from the current traffic pattern to an unexpected one in a time
span of two weeks, whereas in the second scenario (sharp) the bitrate suffers a
multiplicative increment on its bitrate values in a time span of one month,
although its normalized traffic pattern remains constant.

625

635

645

655

665

675

1 2 3 4 5 6 7 8 9 10

Number of inputs (p)

A
IC

 v
al

u
e

Fig. 5-11 AIC values for the ANN input selection phase.

Table 5-6 ANN hidden layer dimensioning phase

s AIC
Error (%)

Avg. Max.

1 631.43 2.07% 10.44%

2 616.65 2.64% 9.55%

3 644.46 3.21% 10.68%

Fig. 5-12 shows the adaptation of a sample ANN model to the two types of
evolutionary traffic, without performing any refitting in the model. By looking at
the smooth evolutionary traffic scenario in Fig. 5-12a we can see how the ANN
model is capable of adapting from the old (red) to the new (blue) traffic pattern
while keeping its original predictive accuracy without refitting. This is an

Chapter 5 – Network traffic modelling 75

important feature of ANN-based estimation in contrast with piece-wise linear
models, since the former provides no means of adaptation in front of smoothly
changing traffic. In contrast, the sharp evolutionary scenario in Fig. 5-12b reflects
the impossibility of the ANN model to adapt to abrupt scaling in the traffic pattern
thus requiring re-running the ANN estimation algorithm.

Let us finish de study by analysing the storage requirements for the ANN models.
Assuming ANN models with p=4 inputs and s=2 neurons in the hidden layer, it
would require 10 floating-point numbers to store each model. As an example, in a
100-node network, each node would require 3.96 KB to store all the traffic flow
models originated in the node to every other node with daily periodicity (38 times
less storage than piece-wise linear models). However, in practice such large
variations in traffic are very unlikely in the short term (except for DDoS attacks
[Lau00]). In this regard, it is worth mentioning the role of incremental planning to
detect long-term trends in contrast with in-operation network planning, based on
parameters like the compound annual growth rate (CAGR) [Ko13].

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

1,8

1 3 5 7 9 11 13 15

realTraffic

averPred

O
D

 b
it

ra
te

 (
G

b
/s

)

Day

monitoring
μ

0,0

1,0

2,0

3,0

4,0

5,0

6,0

7,0

8,0

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

realtraffic

minPredμ

O
D

 b
it

ra
te

 (
G

b
/s

)

Day

monitoring

Smooth evolutionary traffic

Sharp evolutionary traffic

b)

a)

Fig. 5-12 ANN adaptation to smooth (a) and sharp (b) evolutionary bitrate.

5.5 Conclusions

In this chapter, a centralised data analytics framework has been presented to
enable network controllers to obtain predictive traffic flow models based on
monitoring data. Monitoring data is collected from MPLS routers at regular

76 Towards Cognitive In-Operation Network Planning

intervals and sent to a centralised repository where a time series for every
monitored flow is stored. Periodically, modelled data is produced, conveniently
summarised the collected data and using it as the input of an estimator algorithm.

Two different approaches have been proposed to produce traffic models, namely a
Piece-wise linear estimation algorithm and an ANN-based estimation algorithm,
both capable of transforming monitoring data into quality traffic prediction. Both
model estimation approaches were numerically evaluated against monitoring time
series generated in iONESim.

Although the numerical evaluation shows comparable predictive quality for the two
proposed approaches, we have identified a series of opposed trade-offs between the
two approaches, relative to either their theoretical properties or from their
numerical evaluation. These trade-offs are summarized in Table 5-7.

Table 5-7 Statistics vs ANN –based estimation

 Piece-wise linear model ANN model

Pros
Evaluation takes o(1) and only
depends on time.

Adapts to evolutionary traffic.

No assumptions about underlying
traffic distribution.

Cons

Does not adapt to evolutionary
traffic.

Assumes normality in the
traffic.

Evaluation takes O(s·p) and
depends on modelled data.

Predicts a single value.

In the following chapter, we propose to apply some of these traffic modelling
approaches to predict the OD bitrate in a core VNT. By combining this prediction
with optimisation techniques, the VNT can be periodically adapted to current and
future traffic.

Chapter 6

VNT reconfiguration based on
traffic prediction

In this chapter, we target at adapting the VNT to future traffic conditions. To that
end, predictive traffic models for the OD traffic can be used as input of the VNT
reconfiguration problem based on traffic prediction (VENTURE). The VENTURE
problem is formally stated and formulated as a MILP model. Given its complexity,
a heuristic algorithm providing a better trade-off between optimality and
complexity is designed. The discussion is finally supported by results from
exhaustive simulation over a realistic scenario.

6.1 VNT design and reconfiguration options

Several approaches to design and dynamically reconfigure the VNT can be devised.
In this section, we start reviewing two of them: i) the static VNT design and ii) the
threshold-based VNT capacity reconfiguration. For the rest of this chapter, let us
assume an underlying optical layer with unlimited spectrum availability.

In the static VNT design, the topology is designed and dimensioned to cope with
the maximum of daily traffic forecast for every OD pair during a planning period.
The resulting topology is thus, capable of supporting the traffic at any time during
that period provided a perfect traffic forecast. Fig. 6-1 presents an example for a
seven-node VNT, where the capacity of every vlink supports the maximum daily
traffic volume. For illustrative purposes, the plot in Fig. 6-1a shows the variability
in link 6-1 that needs to be dimensioned with a capacity of 200 Gb/s. Fig. 6-1b
shows the resulting VNT with the capacity of every vlink. It is clear, in view of Fig.

78 Towards Cognitive In-Operation Network Planning

6-1a, that the main drawback of the static VNT design is over-provisioning since
most of the available capacity in the VNT will remain underutilised along the day.

Aiming at reducing capacity over-provisioning, that of the vlinks can be adapted
over time instead of allocating a constant amount of resources. Let us assume that
the capacity of the existing vlinks can be increased and decreased to follow the
traffic variations but no new vlinks can be created or removed, keeping hence the
VNT invariant. Traffic can be monitored at IP routers, and when the amount of
traffic through a vlink reaches some threshold (e.g., 90%) the network controller
can increase the capacity of such vlink by setting-up a parallel lightpath between
the two IP routers; conversely, unused capacity can be released by tearing down
lightpaths.

The example in Fig. 6-2a presents monitored traffic data captured during the last
two hours in node 6, where traffic from that node to every other node in the VNT
(labelled as 6→N), from node 6 to node 7 (6→7), and from node 6 to every other
node except to node 7 (6→N\{7}) are plotted. Fig. 6-2b shows the initial VNT where
every vlink is supported by a 100 Gb/s lightpath in the underlying optical layer; the
IP/MPLS path for OD 6-7 is also shown. A 90% threshold is configured and, in the
event of threshold violation, the capacity of some vlinks is increased. In our
example, two threshold violations for vlinks 1-6 and 1-7 are received, so the VNT
capacity is updated (Fig. 6-2c). It is worth noting that IP/MPLS path for OD 6→7 is
not affected by the VNT reconfiguration. As shown in the example, the threshold-
based reconfiguration can adapt the VNT capacity to traffic changes, so resources
in the optical layer are allocated only when vlinks need to increase their capacity.
However, the same number of transponders as in the static VNT design approach
needs to be installed in the IP routers; for instance, in the example in Fig. 6-2 two
transponders are installed in routers 6 and 7 and another four in router 1 reserved
for vlinks 1-6 and 1-7.

F
o

re
c

a
s

t
T

ra
ff

ic
 (

G
b

/s
)

Hour of the day

6 7

2

3

1

4

5

(b)

200

0

50

100

150

200

0 4 8 12 16 20 24

Link 6‐1

Capacity x1

(a)

200

100

300

200

300

Fig. 6-1 Static VNT design.

Chapter 6 – VNT reconfiguration based on traffic prediction 79

Let us assume now that, instead of monitoring vlink capacity usage, OD traffic is
monitored in the routers. Indeed, analysing the plots in Fig. 6-2a we realise that
traffic 6→7 is responsible for the registered traffic increment. In this case, let us
assume that new vlinks can be created/removed in addition to increasing the
capacity of the existing ones, so the VNT is changed. We propose an approach
where OD traffic is periodically analysed, and the current VNT is reconfigured
accordingly. An example following this approach is illustrated in Fig. 6-3, where
the OD traffic 6→7 is analyzed at t=60, and a maximum value (e.g., 90 Gb/s) is
predicted for the next hour. Then, a new vlink between nodes 6 and 7 can be
created by establishing a lightpath on the optical layer and traffic 6→7 rerouted
(Fig. 3b). Note that this solution reduces two transponders to be installed in router
1 compared to the previous approaches. It is clear that this reduction will happen
when the amount of traffic is large enough. In particular, when the amount of
traffic exceeds the capacity of the installed transponders (e.g., 100 Gb/s) direct
vlinks can be created for part of that traffic, while the residual part could be routed
through a different IP/MPLS path.

T
ra

ff
ic

 (
G

b
/s

)

Time (min)

6 7

2

3

1

4

5

(c)

200 200

6 7

2

3

1

4

5

(b)

100 100

0

50

100

150

200

0 20 40 60

6‐>7
6‐>N\{7}
6‐>N
Vlink Threshold

(a)

90% threshold
exceeded

60 80 100 120

Fig. 6-2 Threshold-based VNT capacity reconfiguration.

In order to adapt the VNT to changes in the traffic, we propose a predictive model
built upon the monitored OD traffic data. For every OD pair, meaningful statistical
values are predicted (e.g., the maximum bitrate for the next hour) and used to
adapt the VNT to meet the future traffic matrix, assuming that every OD traffic
can be conveyed through two IP/MPLS paths at the most. We call this approach as
VENTURE.

Let us present the proposed modules for the VENTURE approach, extending those
presented in Chapter 5 for traffic modelling. Let us assume that traffic monitoring
data is collected at the edge IP routers at regular intervals, e.g., every 15 minutes.
Every edge router collects a set of samples for the traffic to every other destination
router, which is stored in a collected data repository (Fig. 6-4). Note that since we
focus on OD traffic monitoring, |N|·(|N|-1) traffic samples need to be stored at
every monitoring interval, where |N| is the number of routers.

80 Towards Cognitive In-Operation Network Planning

6 7

2

3

1

4

5

(b)

100 100

100
6 7

2

3

1

4

5

(a)

100 100

Fig. 6-3 VNT reconfiguration based on OD traffic prediction.

Following a predefined period, e.g., every hour, a time series from the collected
data repository is retrieved for each OD pair and pre-processed applying data
stream mining sketches to conveniently summarise collected data thus producing
modelled data representing the OD pair that is stored in a modelled data
repository. Modeled data includes, among others, for every OD the minimum,
maximum, average, and last collected bitrate within the hour.

Estimator

Network Controller

Multilayer
Network

VNT

IP/MPLS Layer

Optical Layer

Collected
Data Repo

Modeled
Data Repo

Predictive
Model Repo

VNT
Optimizer

Decision
Maker

Current
Traffic
Matrix

Predicted
Traffic
Matrix

Fig. 6-4 Applying the OAA loop for VNT reconfiguration.

The set of modelled variables for the current period t is stored in a repository
together with variables belonging to previous periods. A prediction module based
on machine learning techniques generates the OD traffic matrix predicted for the
next period that is used by a decision maker module to decide whether the current
VNT needs to be reconfigured. In case that a reconfiguration needs to be
performed, the decision maker module triggers the execution of a VNT
reconfiguration algorithm in a VNT optimiser module receiving as input the

Chapter 6 – VNT reconfiguration based on traffic prediction 81

current and the predicted OD traffic matrices. Once the VNT optimiser returns a
solution, the network controller would be responsible for implementing the changes
in the data plane.

6.2 The VENTURE problem

Next, we first formally state the VENTURE problem to be solved in the VNT
optimiser and devise a MILP to model it. In light of the complexity of the problem,
a heuristic algorithm is eventually devised.

 Problem statement

The VENTURE problem can be formally stated as follows:

Given:

 The current VNT represented by a graph G(N, E’), being N the set of routers
and E’⊆ E the set of current vlinks. Set E is the set of all possible vlinks
connecting two routers,

 the set P with the transponders available in the routers; every transponder
with capacity B,

 the current traffic matrix D,
 the predicted traffic matrix OD. The bitrate bo of OD pair o must be served

following one single path. Only in the case that bo is enough to fill
transponders with an amount over a given boundary usage tbu, the bitrate
of pair o can be split into two flows and served through different paths.

Output: The reconfigured VNT G*(N, E*), where E*⊆ E, and the paths for the
traffic on G*.

Objective: Maximize current and predicted served traffic matrices, while
minimising the total number of transponders used.

 Mathematical model

Note from the problem statement that both, the current and the predicted traffic
matrices must be served. Consequently, we generate an input traffic matrix OD,
where every pair o is the maximum of both, the current and the predicted traffic. In
addition, a parameter ko will be used to specify whether pair o can be served using
one or two paths.

The following sets and parameters are defined:

82 Towards Cognitive In-Operation Network Planning

Topology:

N set of routers, index n.
E set of all possible vlinks, index e.
E+(n) subset of E with vlinks outgoing from router n.
E-(n) subset of E with vlinks incident in router n.
Traffic:

OD set of origin-destination pairs, index o. Every o is defined by the tuple <so,
to, do, bo>, where so and to specify the source and target nodes, do the
currently served bitrate and bo the maximum of current and predicted
bitrate to serve for pair o, respectively.

ko maximum number of paths to serve pair o; ko = 2 if bo ≥ tbu; ko = 1
otherwise.

Equipment:

P set of transponders, index p. Every transponder consists of one
transmitter (tx) and one receiver (rx).

P+(n) subset of tx transponders in router n.
P-(n) subset of rx transponders in router n.
P(n) subset of transponders in n. P(n) = P+(n) U P-(n).
B capacity of every transponder.
The decision variables are:

xp binary, 1 if transponder p is used, 0 otherwise.
xpe binary, 1 if transponder p is used to support vlink e, 0 otherwise.
xok integer, fraction of bitrate of pair o served through path k.
xoke integer, fraction of bitrate of pair o served through path k using vlink e.
zoke binary, 1 if pair o is routed using path k through vlink e, 0 otherwise.
yn integer+, number of transponders used at router n.
vo integer+, fraction of unserved bitrate of pair o.
Then, the proposed ILP formulation is as follows:

(VENTURE) 



Nn

n
ODo

o yvP)ꞏ1|(|min (6-1)

subject to:















 
 

oo

oo

o

oo

nEe
oke

nEe
oke

tnkkODo
tsNn

kkODo
snkkODo

zz

,..1,1
},{\

,..1,
0

,..1,1

)()(

(6-2)

EekkODozbx ookeooke  ,..1, (6-3)

EekkODoxx ookoke  ,..1, (6-4)

Chapter 6 – VNT reconfiguration based on traffic prediction 83

EekkODoxzbx ookeokeook  ,..1,)1((6-5)

ODobvx oo

k

k
ok

o


1

(6-6)

ODodx o

k

k
ok

o


1

(6-7)

NjiEjiexBx
iPp

pe
ODo

k

k
oke

o

 
 

,|),(
)(1

(6-8)

NjiEjiexBx
jPp

pe
ODo

k

k
oke

o

 
 

,|),(
)(1

(6-9)

)(,
)(

nPpNnxx p
nEe

pe







 (6-10)

)(,
)(

nPpNnxx p
nEe

pe







 (6-11)

Nnyx n
nPp

p 
)(

 (6-12)

Nnyx n
nPp

p 
)(

 (6-13)

The multi-objective cost function (6-1) minimises both, unserved traffic and used
transponders, where the highest cost corresponds to the first term. This is achieved
by considering one cost unit of unserved traffic equal to equipping all the available
ports in the network.

The network flow constraints in (6-2) define paths on the topology for every OD
pair. Each of these paths has a continuous capacity assigned along its route, as
imposed by constraints (6-3)-(6-5): constraint (6-3) allows setting a capacity in each
link of a path whereas constraints (6-4) and (6-5) force this capacity to remain
constant along all traversed link. Note that optimal solutions might include loops
that they can be safely removed in a post-processing phase.

Although constraint (6-6) allows serving only a fraction of the total capacity bo of
every OD pair; it has to include at least the currently served bitrate as stated in
constraint (6-7). This constraint ensures that the OD traffic matrix before the
reconfiguration remains served in any solution.

Constraints (6-8)-(6-13) deal with transponder equipment. Constraints (6-8) and
(6-9) assign transmission and reception transponders to vlinks, respectively to
support the capacitated paths. It is worth noticing that two transponders need to

84 Towards Cognitive In-Operation Network Planning

be equipped to support one capacity increment for a vlink: a transmission
transponder in the vlink’s source node (constraint (6-8)) and a reception
transponder in the vlink’s target node (constraint (6-9)). Constraints (6-10) and
(6-11) prevent from equipping the same transponder to increase the capacity of
different vlinks. Finally, constraints (6-12) and (6-13) compute the number of
transponders to be installed in every router, represented by the maximum between
the number of transponders used for transmission and reception.

The size of the proposed formulation is O(|N|4+|P|·|N|2) variables and
O(|N|4+|P|·|N|) constraints. As an example, the size of the above formulation
for the network instance with ko=2 and 14 nodes presented in section 0 is of 2·105
variables and 105 constraints. As a result, solving the proposed formulation
becomes impractical for realistic scenarios even using commercial solvers; in our
tests, solving times were longer than 10h. Consequently, we developed a heuristic
algorithm that provides a much better trade-off between optimality and
complexity.

6.3 Basic heuristic algorithms

The heuristic algorithm devised to solve the VENTURE problem is based in the
greedy notion that OD pairs with higher bitrate should be routed first to obtain
cost-saving solutions, as illustrated in Fig. 6-5: starting from an empty VNT, Fig.
6-5a shows an example solution where OD 1→3 is routed first through direct vlink
1→3. Next, OD pairs 1→2 and 1→2 are routed through their respective direct
vlinks to minimize transponder utilization locally. As a result, 3×100 Gb/s
transponders are needed. In contrast, Fig. 6-5b illustrates the same scenario when
OD pairs are processed from higher to lower OD bitrate, only needing in this case 2
transponders to allocate the same capacity.

OD2→3 = 80 Gb/s OD1→3 = 20 Gb/s

31

2

a)

100

b)

OD1→2 = 80 Gb/s

31

2
100100100

100

Fig. 6-5 Rationale behind the heuristic algorithm.

Based on this idea, we divide the input traffic matrix into two subsets for their
processing: the first subset is formed by those OD pairs with enough capacity to fill
transponders above a pre-defined threshold, whereas the second subset contains all
the remaining OD pairs of less capacity. The heuristic algorithm is then separated

Chapter 6 – VNT reconfiguration based on traffic prediction 85

into three ordered stages, where high OD pair capacity is allocated first through a
direct vlink in the hope of minimising the cost of the resulting VNT.

Table 6-1 Main Algorithm

INPUT G(N,E’), D, OD, B, tbu
OUTPUT G*, F
1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:

Q ← ∅, U ← ∅
for each d ∈ D do dealloc(G, d)
for each e ∈ E’ do

setCapacity(e, 0)
releaseTransponders(e)

for each o ∈ OD do
Q ← Q U {<o, go, lo> = splitOD(o, B, tbu)}

<Q, F’> ← PhaseI(G, Q)
<G’, Q, F’’> ← PhaseII(G, Q)
for each q ∈ Q do

U ← U U {<o, uo = go + lo>}
if U=∅ then return <G’, F’ U F’’>
<G*, F’’’> ← PhaseIII(G’, U, thr)
if F’’’=∅ then return INFEASIBLE
return <G*, F’ U F’’ U F’’’>

The heuristic algorithm to solve the VENTURE problem is shown in Table 6-1.
After deallocating current traffic and releasing used resources (lines 2-5 in Table
6-1), bitrate bo of OD pairs is split into two different flows and stored in set Q: flow
go carries bitrate enough to fill transponders with an amount over tbu and flow lo
carries the remaining bitrate; these flows will be routed through different paths
(lines 6-7). Next, the first two phases focus on routing every flow go through the
direct vlink connecting source and destination routers (lines 8-9); sets F stores the
path of the flows. The first phase selects those flows for which a direct vlink
already exists in the current VNT and the second phase does the same for the rest
of flows thus, creating new direct vlinks. After these two phases, the residual
bitrate uo is checked and stored in set U. If all traffic has been already served, the
algorithm ends (lines 10-12); otherwise, OD pairs are sorted by the amount of
unserved bitrate and the third phase eventually routes the unserved bitrate by
possibly increasing the capacity of existing vlinks or by adding new ones (line 13).
The reconfigured VNT and the new routing are eventually returned.

The algorithm for the first phase is detailed in Table 6-2. The original
uncapacitated topology is used to route flows go through an existing direct vlink to
introduce inertia to the changes in the current topology (line 3 in Table 6-2). The
number of transponders to be allocated in the end routers of the direct vlink is
computed as the minimum between the amounts of transponders needed to allocate
go and the unused transponders (lines 4-7); those transponders are allocated to add
capacity to the direct vlink (line 8) and a shortest path is computed on the resulting
VNT (line 9). In case that a path is found (i.e., capacity was added to the direct
vlink), the path is allocated and the amount of served bitrate reduced from the one

86 Towards Cognitive In-Operation Network Planning

requested (lines 10-13). The updated set Q and the found paths stored in set F are
eventually returned (line 14).

Table 6-2 Phase I Algorithm

INPUT G(N,E), Q
OUTPUT Q, F

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:

F ← ∅
for each q=<o, go, lo> ∈ Q do

if e=(so, to) ∉ E OR go=0 then continue
no ← ceil (go / B)
ns ← getNumUnusedTransponders(so, P+)
nt ← getNumUnusedTransponders(to, P-)
n ← min{no, ns, nt}
allocateTransponders(e, n)
f ← SP(G, o, go)
if f ≠ ∅ then

allocate(G, f)
F ← F U {f}
go ← go – f.b

return <Q, F>

The second phase is similar to the first phase, but for flows go through non-existing
direct vlink. New capacitated direct vlinks are thus, added to the topology to
support those flows.

In the third phase, the current topology is extended to a full mesh topology by
adding uncapacitated vlinks (lines 2-4 in Table 6-3). Next, a randomised routing
procedure runs for a given number of iterations (lines 6-31); at every iteration, the
initial extended topology and the unserved bitrate are cloned, and the latter
randomly sorted, giving higher priority to flows with higher remaining traffic (lines
7-12). Those flows with unserved bitrate are routed using one single path (lines 13-
16). Aiming at minimizing the number of used transponders, link metrics are set
proportional to the number of transponders needed to allocate the remaining
capacity of the current flow (line 15). If no path is found, the corresponding cost is
added to the iteration cost (lines 17-19); otherwise, in case the path capacity does
not serve the remaining bitrate, we check whether the capacity of its links can be
increased using the available resources, i.e., transponders in the end nodes and
spectral resources to create a lightpath at the optical layer (lines 20-22). Finally,
the path is allocated, and the remaining bitrate of the flow is updated as well as
the iteration cost (lines 23-26). Once a solution has been built, a local search
procedure is executed (line 27) aiming at finding a local minimum. The best
topology and the found paths are returned as final solution (lines 29-32).

Chapter 6 – VNT reconfiguration based on traffic prediction 87

Table 6-3 Phase III Algorithm

INPUT G(N, E), U, thr
OUTPUT G*(N, E*), F

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:

G*(N, E*) ← G(N, E); F ← ∅
for each e=(i, j) ∉ E | i, j ∈ N, i ≠ j do

E* ← E* U {e}
setCapacity(e, 0)

bestCost ← +∞
for ite = 1 .. maxIter do

iteCost ← 0
Gite ← G
Uite ← U
Fite ← ∅
for each u ∈ Uite do u.order ← rand(0,1) * uo
sort(Uite, u.order, DESC)
for each u ∈ Uite do

if u.uo = 0 then continue
updateMetrics(Gite, u.uo)
f ← SP(Gite, u.o, u.uo)
if f = ∅ then

iteCost ← iteCost + u.uo·(|P|+1)
continue

if f.b < u.uo AND canIncreaseCap(f, Gite, u.uo) then
increaseCap(f, Eite, u.uo)
f.b ← u.uo

Fite ← Fite U {f}
allocate(Gite, f)
u.uo ← u.uo – f.b
iteCost ← iteCost + u.uo·(|P|+1)

<Gite, Fite> ← doLocalSearch(Gite, Fite)
iteCost ← iteCost + numUsedTransponders(Gite)
if iteCost < bestCost then

bestCost ← iteCost
<G*, F> ← <Gite, Fite>

return <G*, F>

The local search procedure tries to reduce the total number of used transponders
during the constructive phase. Since the number of transponders used in a node is
computed as the maximum between transmission and reception, this procedure
focuses on releasing transponders that actively contribute to that maximum at
every node. The algorithm is detailed in Table 6-4, where all current vlinks in the
VNT are processed (lines 2-20). The vlink with ports most actively contributing to
the cost function is selected along with the set of paths routed through it (lines 6-7).
This set is released from the VNT and sorted with respect to the bitrate (lines 8-
11). Next, the set of paths is re-routed by possibly using new vlinks at zero
objective cost (lines 13-15). In case of a feasible solution, the VNT is updated with
these changes (line 20).

88 Towards Cognitive In-Operation Network Planning

Table 6-4 Local Search Procedure

INPUT G(N,E), F
OUTPUT G*(N,E*), F*

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:

G* ← G; F* ← F; Erem ← E
while Erem ≠ ∅ do
for each e ∈ Erem do

e.balance ← computeTransponderBalance(e)
sort(Erem, e.balance, DESC)
e ← removeFirst(Erem)
Fe ← getPaths(e)
<Gaux, Faux> ← <G*, F*>
release(Gaux, Fe)
Eaux ← Eaux \ {e}
sort(Fe, f.b, DESC)
allRerouted ← true
for each f ∈ Fe do

recomputeZeroCostLinks(Gaux)
f’ ← SP(Gaux, o, f.b)
if f’ = ∅ then

allRerouted ← false; break
allocate(Gaux, f’)
Faux ← (Faux \ {f}) U {f’}

if allRerouted then <G*, F*> ← <Gaux, Faux>
return <G*, F*>

Table 6-5 presents the time complexity and running times of the proposed
algorithms, where R0 is the worst-case time complexity to find a feasible lightpath
to support every direct vlink. For illustrative purposes, the computation time for
the scenario with 14 nodes presented in section 0 is also provided. We studied the
performance of the ILP formulation versus the proposed heuristic algorithm in a
set of network instances with ko=2 and 10 nodes, where solutions for the ILP could
be obtained using a commercial solver. The heuristic algorithm produced solutions
within one minute of computation with cost 1% higher than those produced by
solving the ILP formulation in not less than 4 hours. This indicates the good trade-
off between complexity and optimality of the proposed heuristic, which will be
evaluated in more detail in Chapter 7.

Table 6-5 Time complexity and running times of the algorithms

Phase I/II Phase III (per iter) Local Search

O(|N|2·R0) O(|N|2·(|E|·log|N|+R0)) O(|E|2·(log|E| + |Fe|·log|N|))

<1ms 298ms 234ms

The previous algorithms provide some basic procedures to solve the VENTURE
problem. As we will see in-depth in the next chapter, these procedures can be used
in combination with advanced metaheuristic algorithms for combinatorial network
optimisation. Among all the solving methods considered including those above, let

Chapter 6 – VNT reconfiguration based on traffic prediction 89

us advance the reader that Iterated Local Search (ILS) appears to provide the best
performance among all, and hence we fix it as the selected VENTURE algorithm
for the following numerical study.

6.4 Numerical results

 Simulation scenario

For evaluation purposes, we ran simulations in iONESim. To measure the effect of
volumetric and directional changes in traffic, we implemented generators that
inject traffic following the Users and Datacenter pre-defined traffic profiles
following the traffic generation set up presented in Section 5.4.1.

Finally, the set of nodes was divided into two subsets to generate changes in the
direction of the traffic; ODs with destination one of the nodes in the first subset
follow the Users profile, while the others follow the DC2DC one. We consider a
scenario where a maximum of 26 × 100 Gb/s transponders per node is equipped.
With such configuration, the static and threshold-based approaches are applied to
a full-mesh 14-node VNT, where the initial capacity of each vlink ranges from 100
to 200 Gb/s. To obtain OD traffic prediction, the ANN models presented in Chapter
5 were trained applying the fitting algorithm in Fig. 5-4 on a training dataset with
modelled data belonging to the last weeks. Results presented are the average of
100 runs with different random number generation seeds.

Next, we compare the effect of the unserved traffic and the number of used
transponders under the following approaches:

 A threshold-based VNT reconfiguration approach, running continuously
with a vlink utilisation threshold of 90%.

 The VENTURE algorithm triggered at fixed intervals of one hour.

 For the sake of completeness, we also include the static VNT approach
where no reconfiguration is performed. This VNT is computed by running
the VENTURE algorithm using as input the maximum predicted traffic
matrix for the whole simulated period, thus obtaining a full-mesh topology.

 Blocking probability performance

Let us now analyse the obtained blocking probability for the range of loads
considered, where a value of 1 represents a reference traffic matrix. Values for
both, the static and the threshold-based approaches are omitted since yield zero
blocking probability.

90 Towards Cognitive In-Operation Network Planning

Normalized load

B
lo

ck
in

g
 p

ro
b

ab
il

it
y

(%
)

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

0.25 0.5 0.75 1

maximum

average

Fig. 6-6 Average and maximum hourly blocking probability of VENTURE vs load.

Hour of the day

B
lo

ck
in

g
 p

ro
b

ab
il

it
y

(%
)

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

0 2 4 6 8 10 12 14 16 18 20 22

Hour of the day

B
lo

ck
in

g
 p

ro
b

ab
il

it
y

(%
)

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

0 2 4 6 8 10 12 14 16 18 20 22

a) b)

Fig. 6-7 Blocking probability along one day of VENTURE for a normalised load of
0.48 (a) and 1.0 (b).

In the case of the VENTURE approach, Fig. 6-6 plots the average and maximum
hourly blocking along a day. We observe that, for a wide range of traffic loads,
maximum blocking probability is below 0.24%, while that on average is virtually
zero. Fig. 6-7a-b analyse the evolution of blocking probability during the day for a
low and a high load, respectively. We observe that small peaks of blocking
probability appear related to abrupt changes in the injected traffic and last for a
couple of hours at the most, which is the time that VENTURE takes in fully
adapting the VNT to traffic changes with the specific configuration selected.

Chapter 6 – VNT reconfiguration based on traffic prediction 91

 Transponder utilisation performance

Let us now focus on the use of transponders. Fig. 6-8 plots, for each approach, the
maximum transponder usage as a function of the load. Both, the static and the
threshold-based approaches show a constant transponder usage for loads lower
than 0.5, which is increased from that load up. For low loads, the capacity of vlinks
in the fully meshed VNT is 100 Gb/s in both cases, and it is increased to 200 Gb/s
for high loads under the static approach. The threshold-based approach, however,
is able to manage the use of transponders by flexibly using available transponders
to increment the capacity of vlinks running out of capacity; this way it achieves
transponder savings up to 11% with respect to the static VNT approach.

Normalized load

M
ax

im
u

m
 u

se
d

 t
ra

n
sp

o
n

d
er

s

0

50

100

150

200

250

300

350

400

0.25 0.5 0.75 1

static

threshold-based

venture

Fig. 6-8 Maximum used transponders vs load.

Interestingly, transponder usage scales linearly with the load with VENTURE.
Compared to the threshold-based approach, VENTURE obtains savings between
8% and 42%. Fig. 6-9a-b focus on the use of transponders along the day for a low
and high load for the three approaches. Apart from the constant transponder usage
in the static approach, we show the different usages of the threshold-based and the
VENTURE approaches. In particular, we observe how the VENTURE approach is
able to remarkably reduce up to 45% transponder usage at some hours, mainly
when the DC2DC traffic profile is dominant. On the other hand, in those hours
when Users traffic profiles dominate, transponder usage under VENTURE still
outperforms that of the threshold-based approach.

In conclusion, the VENTURE approach maximises the overall utilisation of
available transponders in two different ways: i) by reconfiguring the virtual
topology to follow traffic direction changes, and ii) by increasing the capacity of
vlinks when the traffic increases.

92 Towards Cognitive In-Operation Network Planning

Hour of the day

U
se

d
 t

ra
n

sp
o

n
d

er
s

0

50

100

150

200

0 2 4 6 8 10 12 14 16 18 20 22

static
threshold-based
venture

0

50

100

150

200

250

300

350

400

0 2 4 6 8 10 12 14 16 18 20 22

Hour of the day

N
o

rm
al

iz
ed

 O
D

 b
it

ra
te

a) b)

Fig. 6-9 Daily transponder usage for a normalised load of 0.48 (a) and 1.0 (b).

6.5 Conclusions

An efficient approach, named as VENTURE, to adapt the current VNT to future
traffic conditions aiming at minimising OPEX has been proposed. The approach
consists in monitoring OD traffic in the IP/MPLS routers and applying data
analytics to learn predictive models that are used as inputs of a reconfiguration
problem. In particular, an ANN for every OD pair was proposed as a predictive
model along with an algorithm to obtain a highly accurate ANN using as few
coefficients as possible. The VENTURE reconfiguration problem was formally
stated and formulated as an ILP. Given its complexity for valid short-term
solutions, a heuristic algorithm to provide near-optimal solutions in practical
computation times was proposed.

We compared the performance of VENTURE through simulation against the static
and the threshold-based approaches. We observed savings between 8% and 42% in
the number of transponders to be installed in the routers when the VENTURE
approach was applied. Also, VENTURE can deactivate transponders during low
traffic hours thus, decreasing the energy consumption and releasing lightpaths
from the underlying optical layer, which contribute to a costs reduction.

Chapter 7

Advanced VENTURE algorithms

The VENTURE problem presented and solved in Chapter 6 is an application of
cognitive in-operation network planning, where data analytics (prediction) is
combined with mathematical optimisation to adapt the VNT to the near future.
The problem was mathematically formulated, and a heuristic algorithm devised to
produce quality solutions in practical times. The proposed heuristic algorithm was
evaluated against purely reactive approaches offering considerable savings
regarding needed transponders.

Despite the outperforming results of the VENTURE algorithm against purely
reactive VNT reconfiguration, the question how well does the VENTURE algorithm
perform remains to be answered formally. In other words, an assessment of the
VENTURE algorithm’s performance including, among others, optimality study
against exact solutions and a comparison against competitive, state-of-the-art
heuristics is needed. In particular, it would be interesting to see if the inclusion of
traffic prediction in other solving methods could provide better solutions than our
proposal.

To that end, we first show the application of two metaheuristics to solve the
VENTURE problem; we propose two state-of-the-art, neighbourhood-based
metaheuristics selected for their proven performance in solving combinatorial
network optimisation problems. Both metaheuristics are adapted to the VENTURE
problem use case. Secondly, a numerical study is performed to assess the quality of
the solutions provided by the original approach, by comparing them against those
obtained using two proposed metaheuristics and also against those obtained by
using an exact solving method.

94 Towards Cognitive In-Operation Network Planning

7.1 GRASP heuristic algorithm

In order to adapt the GRASP metaheuristic to solve the VENTURE problem, we
need to provide the definitions of candidate and the GCF. A candidate for the
VENTURE problem is defined as an OD pair with some remaining capacity to be
allocated in the VNT. In particular, this is formally defined in lines 10-11 of
VENTURE algorithm’s main pseudocode (Table 6-1). For the sake of clarity let us
refresh the definition provided there: a candidate u is a tuple <o, uo>, where o
represents an OD pair and uo the capacity that remains to be allocated in the VNT.

Regarding the GCF, the pseudocode in Table 7-1 details how the greedy cost of a
candidate u can be computed during the execution of the VENTURE-based GRASP
heuristic. Let us first denote the current solution x as the tuple <G(N,E), F>
containing the current VNT with a set of allocated paths F thus following the same
notation of Chapter 6. The algorithm starts by updating the vlink metrics of the
extended topology as a function of the capacity to be allocated (lines 1-9). A low
metric is set if a vlink has enough capacity to allocate the needed bitrate (lines 3-4),
whereas a high metric is used otherwise. In the case that a vlink has not enough
capacity to allocate uo we distinguish between two cases: a high metric is set in
case that the vlink capacity can be increased (with the corresponding transponder
utilisation) or the link metric is otherwise forbidden (lines 5-9). Once the vlink
metrics are updated the shortest path is computed for OD pair o (line 10), and its
total metric is eventually returned as the greedy cost (lines 11-14).

Table 7-1: GCF for GRASP-based VENTURE

INPUT u=<o, uo>, x=<G(N,E), F)
OUTPUT cost
1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:

for e ∈ E do
b ← unusedCapacity(e)
if b ≥ uo then

e.metric ← 1
else

if canIncreaseCap(e, uo - b) then
e.metric ← |E|

else
e.metric ← +∞

f ← SP(G, o)
cost ← 0
for e ∈ f do

cost ← cost + e.metric
return cost

Since the computational complexity of updating the vlink metrics is O(|E|) and it
is lower than that of the selected shortest path algorithm (Dijkstra’s), the worst-
case time complexity of the previous GCF is that of the shortest path algorithm:
O(|E|+|N|·log(N)). That said, the worst-case time complexity needed to

Chapter 7 – Advanced solving techniques for VENTURE 95

recompute the whole candidate list (line 4 in Table 2-2) is
O(|OD|·(|E|+|N|·log(N))).

Finally, the local search procedure used in this implementation of GRASP is the
same presented in Table 6-4 of Chapter 6 for the original VENTURE algorithm.
Notice that this implementation of GRASP starts from a partial solution provided
during phases I and II of the algorithm. Therefore, although GRASP produces
multiple solutions all of them will share the part deterministically built in the two
first phases, possibly leading to a limited exploration of the feasible region
(independently of the α parameter). To overcome this possibility, we next present
an alternative approach which allows overcoming this problem.

7.2 ILS heuristic algorithm

Let us now present the adaptation of ILS used in replacement for the third phase
VENTURE algorithm. As explained before, to use ILS we need to provide a
constructive, a local search and perturbation procedures. The local search
procedure considered for ILS is the one already presented in Table 6-4, also used
for GRASP.

As for the constructive phase, Table 7-2 presents the considered procedure. A major
part of the procedure is based on the original third phase algorithm presented in
Chapter 6 (Table 6-3). However, in this case, only a single greedy solution is built
instead of performing a greedy-randomised multi-start search. The procedure
starts by extending the current topology to a full mesh by creating zero-capacity
vlinks (lines 1-4). Next, the set of unserved OD capacities is sorted greedily, by
placing first those OD pairs with higher unserved bitrate (line 5). Once the set of
OD pairs is sorted, an iterative procedure is run to process the sorted list of OD
pairs aiming at allocating their remaining capacity in the VNT (lines 6-17). At each
iteration, the vlink metrics are adapted in order to minimise the transponders
needed to allocate the remaining bitrate of a given OD pair (line 8). This minimum
cost path is obtained by computing the shortest path algorithm (line 9) similarly to
the GCF defined for GRASP (Table 7-1); observe that an empty shortest path can
be returned if there is not enough capacity left in the VNT. In case that a path with
insufficient bitrate is found we check whether the traversed vlinks can increase
their capacity by using additional transponders (lines 12-14). The path is allocated
and added to the set of paths F (lines 15-16). After processing all the OD pairs, the
final solution is returned (line 18).

The computational complexity of this constructive procedure is
O(|N|2·(|E|·log|N| + R0)), where R0 is the worst-case time complexity to find a
feasible lightpath to support every direct vlink. Note that this is equivalent to a
single iteration of the original third phase algorithm presented in Chapter 6.

96 Towards Cognitive In-Operation Network Planning

Table 7-2: Constructive procedure for ILS-based VENTURE

INPUT G(N, E), U, thr
OUTPUT x = <G*(N, E*), F>

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:

G*(N, E*) ← G(N, E); F ← ∅
for each e = (i, j) ∉ E | i, j ∈ N, i ≠ j do

E* ← E* U {e}
setCapacity(e, 0)

sort(U, u.uo, DESC)
for each u ∈ U do

if u.uo = 0 then continue
updateMetrics(G*, u.uo)
f ← SP(G*, u.o, u.uo)
if f = ∅ then

continue
if f.b < u.uo AND canIncreaseCap(f, G*, u.uo) then

increaseCap(f, E*, u.uo)
f.b ← u.uo

F ← F U {f}
allocate(G*, f)

return <G*, F>

The perturbation procedure that is applied to a solution at each iteration of ILS is
presented in Table 7-3. The procedure consists of two blocks: solution destruction
and solution restoration blocks. During the destruction block, the current solution
is broken by removing a random subset of capacitated vlinks from the VNT (lines
1-9). The amount of removed vlinks is determined by the value of the strength
parameter (i.e., a percentage of current vlinks). For each removed vlink, the set of
paths traversing the vlink is retrieved (line 5) and all of them released from the
VNT (line 7); a set U is used to keep track of the released paths (line 8). Finally,
the capacity of each removed vlink is set back to zero (line 9), thus allowing a
possible re-utilisation in the future. During the solution restoration block, all the
released paths from the VNT are re-allocated following a greedy constructive
approach, the same than the one presented for the constructive procedure in Table
6-3. In this case, however, the number of processed elements in U is not fixed and
depends on the perturbation strength.

An important aspect of ILS-based VENTURE is its capability to perform a broader
exploration of the solution space in contrast with both the original VENTURE
algorithm and GRASP-based VENTURE. The explanation to this can be found in
the perturbation procedure: the procedure does not only re-allocate those elements
u ∈ U used as input for the third phase but in general any u = <o, uo> affected by
the removal of a vlink, thus opening the possibility of re-allocating OD pair
capacity pre-fixed during phases I and II of the algorithm.

Chapter 7 – Advanced solving techniques for VENTURE 97

Table 7-3: Perturbation procedure for ILS-based VENTURE

INPUT x = <G(N, E), F>, strength
OUTPUT xpert = <G*(N, E*), F>

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:

G*(N, E*) ← G(N, E); F ← ∅
Erem ← selectAtRandom(E, e.b > 0, strength)
U ← ∅	
for e ∈ Erem do

Fe ← getPathsTraversing(e)
for f ∈ Fe do

release(f)
U ← U U u = <f.o, f.b>

setCapacity(e, 0)
sort(U, u.uo, DESC)
for each u ∈ U do

if u.uo = 0 then continue
updateMetrics(G*, u.uo)
f ← SP(G*, u.o, u.uo)
if f = ∅ then

continue
if f.b < u.uo AND canIncreaseCap(f, G*, u.uo) then

increaseCap(f, E*, u.uo)
f.b ← u.uo

F ← F U {f}
allocate(G*, f)

return <G*, F>

7.3 Numerical results

In this section we present the reference instances used to compare the VENTURE
algorithm against the presented GRASP and ILS -based VENTURE versions, also
including an exact solving method for the sake of a clearer evaluation.

 Instance generation

Aiming at extensively evaluating the various algorithms for solving the VENTURE
problem we devised an instance generator capable of generating off-line instances
by tunning a set of parameters. Recall from Chapter 6 that an instance of the
VENTURE problem consists of the current and the predicted traffic matrices (i.e.,
D and OD) along with the current VNT; for the sake of simplicity, we considered an
empty topology as initial VNT. Once the number of network nodes |N| is defined
(and so the sizes of D and OD) two different sets of parameters allow specifying
how both traffic matrices are generated. For the generation of D we must define (i)
the total bitrate in the traffic matrix (in Gb/s), (ii) a subset of OD pairs (called
hubs) concentrating a given amount of the total bitrate and (iii) a roughness

98 Towards Cognitive In-Operation Network Planning

parameter that specifies the variability between the bitrate of different OD pairs.
Once these three parameters are set, the generation of matrix D is as follows.
Initially, a fraction of the total bitrate is assigned to the subset of hub OD pairs.
The remaining bitrate is then distributed among |N|·(|N|-1) bins using a
truncated normal distribution centred at zero with variance inversely proportional
to roughness: a lower roughness value causes the bitrate to be uniformly
distributed among the bins whereas a large value causes the opposite. Once the
remaining bitrate is distributed across the bins, the bitrate of each bin is mapped
to an entry in matrix D at random. Fig. 7-1 illustrates how choosing different
roughness values can lead to the generation of different traffic matrices. The
matrices are represented by a heat map, where dark (clear) represents high (low)
OD bitrate.

Destination node

O
ri

g
in

 n
o

d
e

Destination node

O
ri

g
in

 n
o

d
e

a) b)

N
o

rm
al

iz
ed

 b
it

ra
te

0.0

1.0

Fig. 7-1 Generation of matrix D for a 15-node VNT: low (a) and high (b) roughness
values used for the bitrate distribution.

Destination node

O
ri

g
in

 n
o

d
e

Destination node

O
ri

g
in

 n
o

d
e

a) b)

N
o

rm
al

iz
ed

 b
it

ra
te

0.0

1.0

D OD

Fig. 7-2 Approximately 50% of the OD pairs in D increase their capacity a 70%.

Once matrix D is computed, it is used as input for the generation of matrix OD by
modifying OD bitrate in terms of traffic direction and volume. Directional traffic

Chapter 7 – Advanced solving techniques for VENTURE 99

variations can be introduced in matrix D by allowing a particular subset of OD
pairs to increase (or decrease) their bitrate. To that end, a subset of candidate OD
pairs is defined to increase or decrease their bitrate along with a percentage
specifying the relative increment or decrement. A uniform probability can be
adjusted to decide which candidate OD pairs are selected for incrementing or
decrementing their entry in matrix OD. For illustrative purposes, Fig. 7-2 shows
an example pair <D, OD>. In one hand, OD bitrate in matrix D is uniformly
distributed (i.e., no hubs and a low roughness). On the other hand, matrix OD is
generated by increasing each OD pair’s bitrate a 70% percent with probability 50%
of being selected. Note that a specific subset of candidate OD pairs can also be
specified to have more control over the generation of matrix OD.

Using the generator above, a set of 12 reference instances representing different
traffic scenarios of a 15-node VNT were generated. We assume that an unlimited
number of B = 100 Gb/s transponders are available in the optical layer. We chose
this network size to facilitate the obtention of exact solutions, therefore allowing a
more detailed performance analysis of the different VENTURE heuristics. These
instances are divided into three groups depending on the bitrate granularity of
each OD pair with respect to B. A high granularity is defined to represent traffic
scenarios where bitrate values are below B, average granularity to represent OD
bitrate centered around B, and finally low granularity for traffic scenarios with OD
bitrate above B.

Uniform bitrate, noise fluctuation (A)

Non-uniform bitrate, noise fluctuation (B) Non-uniform decrement (D)

Non-uniform increment (C)

Volumetric Directional

Fig. 7-3 Different <D, OD> traffic transitions for a given granularity value.

100 Towards Cognitive In-Operation Network Planning

These three scenarios are selected since they induce a different combinatorial
complexity for the computation of paths serving D and OD. For each granularity
value, the four instances shown in Fig. 7-3 are defined to represent four different
traffic scenarios. Among them, two of the instances represent uniform and non-
uniform volumetric variation (A and B) whereas the other two represent directional
traffic variation (C and D).

 Performance evaluation

The performance of the different solving methods for the VENTURE problem was
evaluated by solving the previous set of instances. Specifically, we compare the
performance of 4 solving methods, 3 of which are heuristic algorithms (the
VENTURE algorithm from Chapter 6 hereafter referred to as base VENTURE,
GRASP-based VENTURE and ILS-based VENTURE) and the fourth is an exact
method (branch and bound). The three heuristics were implemented in C++
whereas Branch and Bound (B&B) is based on CPLEX v.12.5.1 commercial solver.
For the particular case of parameter-based metaheuristics (GRASP and ILS),
different values of their parameters are studied. In addition, 100 repetitions of
each instance and algorithm configuration pair were run with different random
seeds. The stopping criterion for the heuristics is a maximum running time of 1
minute, whereas for CPLEX the maximum running time is set to 4 hours to
facilitate the optimality gap estimation. All solving methods were executed on a
computer with an Intel Core i7-4790K processor, 16GB of RAM and Ubuntu 16.04.

Table 7-4 shows the objective cost value of the four different solving methods. For
GRASP and ILS, we show the results obtained with the best parameter
configuration. For B&B, the best linear relaxation objective cost obtained during
the execution of B&B is also shown; we use it to estimate the absolute and relative
optimality gaps of each solving method. We can observe that all the heuristic
algorithms present an optimality gap between 8% and 9%. By looking at the table,
we observe a larger gap in all the methods for those instances with high bitrate
granularity. This can be explained as a result of the higher granularity of the OD
bitrate with respect to B: more MPLS paths can be allocated in the same vlink in
contrast with low granularity instances requiring more capacity increments to
perform such grooming. This induces more routing combinations to serve matrices
D and OD at a low cost, hence more complexity in finding quality solutions. By
analysing the average and low granularity instances, we detect that the gap
effectively decreases. Although for high granularity instances B&B outperforms the
heuristics in terms of solution quality, these latters are capable of finding quality
solutions in only one minute. For average and low granularity instances at least
one heuristic approach outperforms B&B both regarding optimality and running
time, being ILS the best performing heuristic.

Chapter 7 – Advanced solving techniques for VENTURE 101

Table 7-4 Objective cost and optimality gap of VENTURE solving methods.

Instance Objective function cost Optimality gap (%)

Granul. Type

B&B (4 hours) Heuristics (60 seconds)

B&B Base GRASP ILS Best

bound

Best

integer
Base GRASP ILS

High

A 142.00 165 167.37 164.91 165.63 16.20% 17.87% 16.13% 16.64%

B 190.75 212 212.08 214.40 213.25 11.14% 11.18% 12.40% 11.80%

C 166.69 187 187.56 186.50 187.42 12.18% 12.52% 11.88% 12.44%

D 136.10 148 157.98 153.81 154.28 8.74% 16.08% 13.01% 13.36%

Average

A 230.74 250 250.81 255.46 249.23 8.35% 8.70% 10.71% 8.01%

B 357.80 377 376.92 379.77 377.70 5.37% 5.34% 6.14% 5.56%

C 291.07 315 314.57 320.24 313.55 8.22% 8.07% 10.02% 7.72%

D 217.08 235 235.53 237.83 233.53 8.26% 8.50% 9.56% 7.58%

Low

A 455.44 484 484.14 488.25 480.99 6.27% 6.30% 7.20% 5.61%

B 721.24 745 746.06 749.59 745.81 3.29% 3.44% 3.93% 3.41%

C 590.00 618 618.98 624.15 616.65 4.75% 4.91% 5.79% 4.52%

D 426.22 457 457.26 460.89 453.56 7.22% 7.28% 8.13% 6.41%

Next, we study in detail the parameter tuning for GRASP. In particular, Fig. 7-4
shows the absolute optimality gap variation that is obtained when GRASP-based
VENTURE is executed and the solutions obtained compared against those
produced by base VENTURE, as a function of the α parameter. Exactly as before,
an estimation of the absolute optimality gap is computed using the best linear
relaxation objective cost obtained during B&B execution. Although for average and
low granularity instances it is immediate to see that GRASP does not improve the
performance of the solutions obtained by base VENTURE, results show different
behaviour for high granularity instances. If we focus on these, we can see that in
three out of four traffic transitions (A, C and D) GRASP-based VENTURE is able to
decrease the optimality gap between 5% and 20% when compared to base
VENTURE. We observe a typical behaviour in the tunning of the α parameter,
where a value of α ∈ [0.4, 0.6] produces the best tradeoff between greediness and
randomness.

102 Towards Cognitive In-Operation Network Planning

-25%

-20%

-15%

-10%

-5%

0%

5%

10%

15%

20%

25%

0 0.2 0.4 0.6 0.8 1

A B C D

α

Average granularity

-25%

-20%

-15%

-10%

-5%

0%

5%

10%

15%

20%

25%

0 0.2 0.4 0.6 0.8 1

O
p

ti
m

al
it

y
 g

ap
 v

ar
ia

ti
o

n

α

High granularity

-25%

-20%

-15%

-10%

-5%

0%

5%

10%

15%

20%

25%

0 0.2 0.4 0.6 0.8 1

α

O
p

ti
m

al
it

y
 g

ap
 v

ar
ia

ti
o

n

Low granularity

Fig. 7-4 Gap reduction of GRASP-based VENTURE w.r.t. base VENTURE for
different values of the α parameter.

Similarly, Fig. 7-5 shows the optimality gap variation when ILS-based is run
against base VENTURE. In contrast with GRASP, ILS is able to decrease the gap
obtained with base VENTURE for any traffic granularity, with the exception of B-
type instances (non-uniformly distributed OD bitrate) where base VENTURE finds
better solutions. In those instances where ILS finds better solutions we obtain an
optimality gap reduction between 5% and 20%. Note that as a result of the quality
of the base VENTURE algorithm, a 20% decrement in terms of optimality gap
translates in only 2% decrement of objective cost value (used transponders).
Regarding the best parameterisation of ILS, it is worth observing that the optimal
strength parameter value seems to present dependency on the OD bitrate
granularity. For low granularity instances, it is better to apply aggressive
perturbations (60%-70% of vlinks removed), for average granularity instances the

Chapter 7 – Advanced solving techniques for VENTURE 103

optimal strength is decreased (50%-60% of vlinks removed) reaching the most
conservative perturbation strength for high granularity instances (10%-30% of
vlinks removed). In light of these results, let us focus only on ILS-based VENTURE
for the last part of this study, as it appears as the best candidate.

-25%

-20%

-15%

-10%

-5%

0%

5%

10%

15%

20%

25%

0.1 0.3 0.5 0.7 0.9

A B C D

Strength

Average granularity

-20%

-15%

-10%

-5%

0%

5%

10%

15%

20%

25%

0.1 0.3 0.5 0.7 0.9

O
p

ti
m

al
it

y
 g

ap
 v

ar
ia

ti
o

n

Strength

High granularity

-25%

-20%

-15%

-10%

-5%

0%

5%

10%

15%

20%

25%

0.1 0.3 0.5 0.7 0.9

Strength

O
p

ti
m

al
it

y
 g

ap
 v

ar
ia

ti
o

n

Low granularity

Fig. 7-5 Gap reduction of ILS-based VENTURE w.r.t. base VENTURE for different
values of the perturbation strength parameter.

Although the evaluation of the heuristics above for VENTURE is done by setting a
maximum running time of 1 minute, we are interested in knowing how the search
of solutions evolves during an execution. Or in other words, to study how much
time is needed by each of the heuristics to reach a comparable solution quality. To
that end, we make use of a data visualisation technique known as time-to-target
plot (tttplot) [Ai07]. Given a target objective cost value C, a tttplot shows an
estimation of the cumulative probability distribution of the random variable time to
target objective cost C. By analysing these plots, we can draw conclusions about the

104 Towards Cognitive In-Operation Network Planning

convergence of base and ILS -based VENTURE to a common target cost under
different instances. For the next tttplots, the least objective cost obtained among
the compared heuristics is used as a target.

0%

20%

40%

60%

80%

100%

0 10 20 30 40 50 60

ILS (10%)

ILS (50%)

ILS (90%)

Base

Running time (s)

0%

20%

40%

60%

80%

100%

0 10 20 30 40 50 60

0%

20%

40%

60%

80%

100%

0 10 20 30 40 50 60
0%

20%

40%

60%

80%

100%

0 10 20 30 40 50 60

Running time (s)Running time (s)

Running time (s)
T

im
e-

to
-t

ar
g

et
 p

ro
b

ab
ili

ty
T

im
e-

to
-t

ar
g

et
 p

ro
b

ab
ili

ty

T
im

e-
to

-t
ar

g
et

 p
ro

b
ab

ili
ty

T
im

e-
to

-t
ar

g
et

 p
ro

b
ab

ili
ty

instance A instance B

instance C instance D

Fig. 7-6 Running time vs time-to-target probability of ILS-based and base
VENTURE for low granularity instances.

Fig. 7-6 shows the tttplots corresponding to the execution of base VENTURE and
ILS-based VENTURE with perturbation strengths 10%, 50, and 90% in the subset
of low granularity instances. We can observe that all the configurations of ILS-
based VENTURE reach the target objective cost with 80% probability in no more
than 10 seconds (6% of the total running time). This is in contrast with base
VENTURE, which presents a slower convergence to the target objective cost: it
reaches it with probability 80% in approx. 25% of the total running time. This does
not hold for B-type instances, where all the heuristics seem to converge at the same
rate to a given target cost. Note that in the previous figure there are not crossings
between curves, meaning that we all the heuristics can be ordered from slower to
faster convergence rate to an objective target cost. However, this rate does not

Chapter 7 – Advanced solving techniques for VENTURE 105

imply reaching a better final solution. In fact, if we collate these results with those
in Fig. 7-5 for low granularity instances, we realise that the optimal configuration
of ILS for the different instances does not reach a given target cost faster. Similar
results are shown in Fig. 7-7 for instances with average OD bitrate granularity. In
contrast with the previous results, in these instances, base VENTURE presents a
shorter time-to-target than ILS for some parameter configurations and instances.

0%

20%

40%

60%

80%

100%

0 10 20 30 40

ILS (10%)

ILS (50%)

ILS (90%)

Base

0%

20%

40%

60%

80%

100%

0 10 20 30 40

0%

20%

40%

60%

80%

100%

0 10 20 30 40
0%

20%

40%

60%

80%

100%

0 10 20 30 40

Running time (s)

Running time (s)Running time (s)

Running time (s)

T
im

e-
to

-t
ar

g
et

 p
ro

b
ab

ili
ty

T
im

e-
to

-t
ar

g
et

 p
ro

b
ab

ili
ty

T
im

e-
to

-t
ar

g
et

 p
ro

b
ab

ili
ty

T
im

e-
to

-t
ar

g
et

 p
ro

b
ab

ili
ty

instance A instance B

instance C instance D

Fig. 7-7 Running time vs time-to-target probability of ILS-based and base
VENTURE for average granularity instances.

7.4 Conclusions

The VENTURE problem was presented and solved in Chapter 6 by introducing a
heuristic approach known as the VENTURE algorithm. This algorithm showed
interesting savings in terms of used transponders in contrast with purely reactive
VNT reconfiguration. Notwithstanding these results, it remained unclear whether

106 Towards Cognitive In-Operation Network Planning

this algorithm was the best option among the possible heuristic approaches for
solving the VENTURE problem.

To answer this question, GRASP and ILS metaheuristics have been presented and
used to solve VENTURE. These two metaheuristics were chosen because of their
proven performance to solve combinatorial network optimisation problems. As a
result, we compared the performance of three different algorithms: the original
VENTURE algorithm from Chapter 6, GRASP-based and ILS-based VENTURE.
These three algorithms were also compared to an exact method using a commercial
solver.

To perform an exhaustive evaluation of the different solving methods for
VENTURE we developed an instance generator capable of producing instances
with volumetric and directional traffic changes. A set of 12 instances were
generated featuring different traffic changes and OD bitrate granularity with
respect vlink capacity.

We observed that the heuristic approaches present a similar optimality gap of 9%
on average. However, this gap decreases with the OD bitrate granularity, reaching
a 5% optimality gap when solving those traffic scenarios. We also observed that the
heuristics outperform branch and bound, being ILS the best candidate heuristic.
Although ILS is capable of decreasing up to a 20% the optimality gap obtained with
the original VENTURE algorithm, this translates in only 2% objective cost
decrement. By analysing tttplots for ILS-based VENTURE and the original
VENTURE algorithm, we observed a similar evolution towards quality solutions in
their executions. Therefore, the correct performance of the VENTURE algorithm
devised in Chapter 6 is validated.

Chapter 8

Core VNT reconfiguration based
on metro-flow traffic prediction

In this chapter, we propose to aggregate metro-flow traffic models into OD traffic
models for the core. Section 8.1 presents the drawbacks of using predictive OD
traffic models based on monitoring the core, motivating the need of extending data
analytics to the metro areas to obtain metro-flow predictive models that can be
afterwards aggregated to obtain updated OD models in practical times. Based on
aggregated models, we can predict future traffic for the OD pairs and use it as
input for core VNT re-optimisation purposes.

The discussion is supported by the results presented in Section 8.3. The accuracy of
OD predictive models based on metro-flow model aggregation is validated by means
of exhaustive numerical results, as well as their validity for supporting core VNT
reconfiguration based on traffic prediction under metro-flow rerouting is the
network simulation scenario.

8.1 Flow traffic prediction under changing traffic

Modelling core OD and metro-flow traffic independently at each network segment
can lead to degraded performance in the quality of the predictive models after
metro-flow rerouting. OD pairs might aggregate many metro-flows and hence,
reroute some of the metro-flows in the metro areas might change the aggregated
traffic pattern of some ODs in the core network. For illustrative purposes, Fig. 8-1
presents an example of a metro-flow (mf1) originated at some metro network and
routed toward datacenter DC2 through the core VNT. The metro-flow is

108 Towards Cognitive In-Operation Network Planning

encapsulated in a MPLS Label Switched Path (LSP) and routed through the VNT.
Initially, the LSP enters the core VNT through ingress node R2 toward egress node
R3, so it is aggregated into core OD pair R2→R3. Due to metro re-optimisation, the
metro controller reroutes the metro-flow LSP so that to enter the core VNT through
edge node R1, being aggregated into core OD pair R1→R3. As a result, the traffic
profiles of both OD pairs (R1→R3 and R2→R3) have now changed.

Fig. 8-2 illustrates the traffic profile change in OD R2→R3. Before the rerouting
event, the predictive core OD model perfectly fits the actual traffic; once metro-flow
LSP mf1 has been rerouted, the OD traffic profile changes and the corresponding
predictive model becomes obsolete, thus triggering a re-estimation based on new
monitoring data. Note that the difference between the actual traffic volume and the
obsolete prediction can be mistakenly confused with an OD traffic anomaly [AV17-
1], which would trigger unnecessary network reconfiguration. During this re-
estimation process, the VENTURE algorithm will not be available for execution.

OD R1→R3

R3

R1

R2

R4

R5

R6

MPLS-LSP
for mf1

Metro Network

Users

DC2

DC1

Core Network (VNT)

OD R2→R3

OD R4→R5

OD R1→R6

OD monitoring

Metro-flow monitoring R1a

R1b

R1c

R2a

R2b

Fig. 8-1. OD traffic can change due to metro-wide re-configuration.

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40

OD traffic
model based on OD monitoring
aggregated metro-flow models

N
o

rm
a

liz
e

d
 t

ra
ff

ic

Time (h)

Obsolete
model

OD Traffic
change

Re-routing

Fig. 8-2. Example of a traffic model that becomes obsolete.

Chapter 8 – Core VNT reconfiguration based on metro-flow traffic prediction 109

Alternatively, OD traffic can be predicted by considering its relationship with
metro-flow traffic. Effectively, by aggregating the traffic models of those metro-
flows being routed through each core OD pair, we can produce new, updated OD
traffic models. Immediately after the rerouting event, the obsolete model for ODs
R1→R3 and R2→R3 are replaced by new ones based on the aggregation of metro-
flows predictive models. Fig. 8-2 shows how the aggregation of metro-flow traffic
predictions perfectly fits the new OD traffic pattern without the need of restarting
the process of monitoring and estimation from scratch. By following this approach,
the core network operator can keep the predictive capabilities, provided that some
coordination between metro and core segments exist.

8.2 Metro-flow based OD pair traffic modelling

In Chapter 6, predictive models for the maximum OD bitrate were estimated
aiming at re-configuring the VNT minimising traffic losses. Extending that
approach to this new traffic scenario, predictive models for the maximum OD
bitrate could be obtained by aggregating those for the maximum metro-flow bitrate.
However, the aggregation of maximum predictors entails large overestimation as
we prove next.

Let us consider a metro-flow f and the set Yf containing all the data collected from
f at the same period, but across m consecutive periods. Given a core OD pair od, we
can consider the previous sets for all its metro-flows F(od)={f1,…fn} and for itself,
denoting it as YOD. It can be mathematically proven that the maximum value
attained in YOD is upper bounded by the sum of the maximum values attained in
each Yf, as expressed in eq. (8-1). In other words, that the sum of the maximum
metro-flow bitrate always overestimates the maximum OD bitrate. As a result,
solving the VENTURE problem based on large traffic overestimation would entail
overprovisioning, thus removing the efficiency of the algorithm. Therefore, we need
to devise a traffic model aggregation procedure that allows predicting the
maximum OD bitrate accurately. The magnitude of the overestimation above is
numerically evaluated in Section 8.3.





)(

)max()max(
odFf

fod YY
(8-1)

Instead, for a particular core OD pair od let us assume that predictive models for
the mean (μf) and the variance (σ2f) are available for each metro-flow f in F(od); the
estimation of models for the mean and the variance is presented in detail in
Chapter 5. From the linearity of the expectation [Ho13], the average OD traffic
(μod) is equivalent to the sum of the metro-flow average traffic (eq. (8-2)). Regarding
the OD pair variance (σ2od), it can be expressed as the summation of metro-flow
variances if and only if variances are uncorrelated (eq. (8-3)). Correlation is
commonly observed in the traffic and has been already studied in the literature

110 Towards Cognitive In-Operation Network Planning

[Zha13]. Therefore, it would not be realistic to assume that the aggregated metro-
flows have uncorrelated traffic if, for instance, they convey similar service traffic.
When correlation is present between metro-flows, the expression of the OD
variance becomes more complex since it additional nonzero covariances between all
pairs of aggregated flows needs to be added [Ho13]. In Section 8.3 we analyse the
bias introduced in the estimation of σ2od when covariance terms are excluded
(linear aggregation).

Table 8-1 presents the proposed algorithm to create or update core OD traffic
models after a metro-flow rerouting event. It receives the set Q with all OD pairs,
where each pair includes its model m and the set of aggregated metro-flows. First,
the set of obsolete models is found by inspecting the current aggregation of the
metro-flows (line 1 in Table 8-1). For each obsolete OD model, the type of the model
determines whether it is a model estimated from core traffic monitoring
(NEW_CORE) (lines 4-5), from metro traffic monitoring (NEW_METRO) (lines 6-7)
or it is a model that needs to be updated (UPDATE) by including the new metro-
flows entering the OD pair and excluding those ones leaving it from the prediction
(lines 8-9). For the updating process, we can take advantage of the linearity of the
mean and the variance in the aggregation to produce updates applying equations
(8-4) and (8-5), only taking into account those metro-flows leaving and entering the
core OD.

Finally, the algorithm returns the set of updated models (line 9). Note that the
aggregation of μ and σ2 models entails adding the metro-flows piece-wise linear
functions. However, this is immediate from the piece-wise linearity of these
functions by simply adding the slopes and intercepts for each segment to obtain the
aggregated piece-wise linear function for μod and σ2od. For the sake of simplicity, we
assume that all aggregated models present the same period and number of
segments. Otherwise, additional computation would be required to obtain the
partitioning resulting from merging all the piecewise linear functions μf and σ2f
using the least common multiple period.





)(

)()(
odFf

fod tt 
(8-2)





)(

22)()(
odFf

fod tt 

(8-3)





)()(

)()()(
odFf

f
odFf

fod

OUTIN

ttt  (8-4)

 
)(

2

)(

22)()()(
odF

f
odFf

fod

OUTIN

ttt  (8-5)

Chapter 8 – Core VNT reconfiguration based on metro-flow traffic prediction 111

Table 8-1: OD model update algorithm

INPUT Q = {<od, m, F(od)>}
OUTPUT S = {<od, m’>}

1:
2:
3:
4:
5:
6:
7:
8:
9:
10
:
11
:

Qobs ← getObsoleteModels(Q)
S ← ∅
for each q = <od, m, F(od)> in Qobs do
if type(m) = NEW_METRO then

m’ ← m
else if type(m) = NEW_METRO then

m’ ← newAggregate(F(od)) (eq. (8-2),(8-3))
else if type(m) = UPDATE then

m’ ← updateAggregate(m, F(od)) (eq. (8-4),(8-5))
S ← S U {<od, m’>}

return S

Let us now analyse the worst-case time complexity of the previous algorithm,
assuming that all OD models need to be re-estimated (|Qobs|=|Q|) with a
maximum number of metro-flows |F| for each re-estimation. Let us also assume
that all aggregated models are of type NEW_CORE (i.e., built from scratch using
eqs. (8-2) and (8-3)) being this the most time-consuming case. Then, the worst-time
complexity is O(|Q|·|F|·nSegm).

Limiting the piece-wise linear model evaluation to the mean and the variance as
presented in Chapter 5 discards other interesting estimations such as the
maximum bitrate, important to re-optimise the VNT as presented in Chapter 6.
Although the algorithm does not directly provide this estimation, we can obtain it
in a later stage by applying results from probability theory involving μ and σ2.
Given a time t, let us assume that the traffic is distributed following a normal
distribution N(μ, σ2). Then, eq. (8-6) predicts the maximum bitrate with a
confidence of 95% and 99.7%, respectively for k=2 and k=3 [Gr06].

)()()(max 2 tktt ododod  

(8-6)

Finally, note that the previous prediction provides the maximum traffic with
granularity T (e.g., 15 min), which might not be enough for VNT reconfiguration
actions typically requiring the maximum predicted bitrate during larger intervals
(e.g., one hour as proposed in Chapter 6). One solution to obtain predictions for
larger intervals is to produce several predictions along the considered interval and
keep the maximum value obtained. Although this procedure entails multiple
evaluations of the model thus, increasing the complexity of the proposed algorithm,
the number of these evaluations needed to ensure the highest prediction provided
by the model is known. This follows from the fact that eq. (8-6) defines a piece-wise
linear function for the maximum prediction and that the maximum value in a
piece-wise linear function segment that takes place at the edges. Thus, it is enough

112 Towards Cognitive In-Operation Network Planning

to produce predictions at those time points where two consecutive segments of the
piece-wise linear functions are connected.

Note that the presented approach assumes that OD traffic can be accurately
approximated as the sum of the metro-flow bitrate participating in the OD. In the
next section, this assumption is validated for a wide range of traffic conditions.

8.3 Illustrative numerical results

In this section, we first evaluate the proposed approach to obtain OD core traffic
models based on the aggregation of metro-flow traffic models. To that end, we
analyse the key aspects regarding metro-flow model aggregation into core OD
models and their use for VNT reconfiguration based on traffic prediction.
Simulated metro and core-flow monitoring data for the next study was obtained
following the same set up presented in Section 5.4 of this thesis.

 Metro-flow model aggregation analysis

Let us start this study with a preliminary analysis validating the upper bound
stated in eq. (8-1). This is, to assess that the sum of maximum predicted metro-flow
bitrate overestimates the maximum OD bitrate. To that end, we ran simulations
where an increasing number of metro-flows (Users and Datacenter) are aggregated
into a single OD pair and monitored for 3 months. These traffic profiles correspond
to those already detailed in Section 5.4.1. After this time, predictive models for the
maximum bitrate of each metro-flow are estimated and the sum of their outputs
compared with the maximum predicted OD bitrate, therefore evaluating the
magnitude of the bound stated by eq. (8-1).

M
ax

. p
re

d
. o

ve
re

st
im

at
io

n

Aggregated metro-flows

0%

20%

40%

60%

80%

100%

120%

0 200 400 600 800 1000

DC

Users

Fig. 8-3 Predictive error resulting from the aggregation of maximums.

Chapter 8 – Core VNT reconfiguration based on metro-flow traffic prediction 113

Results in Fig. 8-3 show the relative overestimation that is introduced when the
sum of maximum metro-flow bitrate is used as an estimator of the maximum OD
bitrate. We can observe how this overestimation doubles the target prediction
value when it is used under bursty traffic patterns such as Users. In contrast, for
less variable traffic profiles such as Datacenter, the overestimation remains around
20%. In any case, the results validate eq. (8-1) and thus the impossibility of solving
the VENTURE problem efficiently based on this prediction.

Next, we analyse under which traffic conditions the proposed predictive model
aggregation (formally stated by eqs. (8-2) and (8-3)) is valid. These equations
assume that the bitrate of an OD can be accurately approximated as the sum of the
aggregated metro-flow bitrates. Therefore, the first analysis focuses on the traffic
conditions that allow such approximation.

The scenario where several metro-flows are aggregated into a single core OD pair
can be modelled using queuing theory; metro-flow packets arrive to a packet-
switching node, where they are queued and aggregated into a single OD pair at a
maximum give rate, e.g., 100 Gb/s. As proposed in [Gro08], this can be
mathematically modelled by a G/D/1 queue, assuming a generic distribution of
arriving packets and a single server with constant service time. In such queue, the
sum of the metro-flow bitrates accurately approximates the resulting OD pair
bitrate as long as the actual service rate does not exceed 90% of its maximum
(queue length remains small) [Gro08]. Such condition must be ensured during the
process of VNT reconfiguration, and therefore vlink capacities must be
dimensioned to ensure that OD capacity utilisation is under the threshold above.

Let us finally evaluate the bias introduced in the estimation of σ2od (as presented in
section 8.2) by running experiments where the maximum bitrate (eq. (8-6)) is
predicted for a single OD pair aggregating Users metro-flows only, which leads to a
large and positive covariance. Fig. 8-4a shows the minimum value of k needed to
predict the maximum bitrate below a given error, for a different number of
aggregated metro-flows. A value of k close to 6 suffices to ensure an error below 2%
for any number of aggregated metro-flows. On the contrary, we observe that the
value of k cannot be bounded to ensure a prediction error close to 0%; in fact, the
minimum value of k seems to increase with the number of aggregated metro-flows.
Finally, we observe that a value of approximately k=5.75 tightly bounds the
prediction error below 1.6% for any number of aggregated metro-flows. For the
particular case of 500 aggregated metro-flows, Fig. 8-4b illustrates the prediction
error for as a function of k.

Finally, Fig. 8-5 illustrates the bitrate of an OD pair along the day mixing different
metro-flow traffic profiles, as well as the predictions based on the proposed metro-
flow model aggregation. Note that min and max models have been obtained for k=5.
As expected, because of traffic aggregation, the variability of OD traffic is much
smaller than that of metro-flows.

114 Towards Cognitive In-Operation Network Planning

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

5.0 5.5 6.0 6.5 7.0 7.5 8.0
Aggregated metro-flows

k

a) b)

4

5

6

7

8

0 200 400 600 800 1000

0% error
1,6% error
2% error

k

P
re

d
ic

ti
o

n
 e

rr
o

r

Fig. 8-4 (a) Value of k (eq. (8-6)) vs number of aggregated metro-flows and (b)
prediction error vs value of k for 500 aggregated metro-flows.

0

20

40

60

80

100

0 2 4 6 8 10 12 14 16 18 20 22

monitoring
μ
μ ± 5ꞏsqrt(σ^2)

Hour of the day

O
D

 b
it

ra
te

 (G
b

/s
)

Fig. 8-5 Prediction of min/max/avg OD bitrate during one day.

 VNT reconfiguration performance

For evaluation purposes, we ran simulations in iONESim considering a 14-node
core VNT interconnecting seven metro networks using dual-homing, where 100
Gb/s lightpaths support vlinks in the metro areas. A total of 1,400 metro-flows
following the Users and DC profiles presented in Chapter 5 were injected into the
core VNT.

Once models have been estimated, two metro-flow rerouting actions are triggered
daily in all metro areas, being the core controller notified for such changes. The
first rerouting action, taking place at 7 am, splits the set of metro-flows entering
the core VNT into two sets, each rerouted to one of the egress routers of the metro
area in the hope of avoiding congestion. Two rerouting schemes for this action are
considered:

Chapter 8 – Core VNT reconfiguration based on metro-flow traffic prediction 115

 Randomized rerouting: the set of metro-flows is evenly split into two
separate subsets at random, each rerouted to one egress router.

 Per type of service rerouting: the subset of all flows belonging to a randomly
selected type of service is selected and rerouted towards the second router.

The second rerouting action takes place at 8 pm and groups all metro-flows to use
one single egress router. Under these scenarios, we evaluated two different
approaches to reconfigure the core VNT:

 The first approach, named as threshold-based uses a fully meshed VNT and
increases or decreases the vlink capacity according to a capacity usage
threshold. This approach is followed when the core controller is not able to
rebuild obsoleted OD traffic models under frequent metro-flow rerouting.

 In the second approach, the VENTURE algorithm runs periodically, e.g.,
every hour, to optimise the VNT using updated OD traffic predictions based
on metro-flow model aggregation.

Fig. 8-6 shows the maximum number of 100Gb/s transponders needed to convey
core traffic under the randomised (a) and the per type of service (b) rerouting
schemes, for a range of increasing traffic loads. Note that since the number of
transponders is not limited in the nodes, both reconfiguration approaches offer zero
blocking probability. It can be observed that VENTURE can adapt the VNT using
fewer transponders than that of the threshold-based approach in the studied range
of loads, producing savings up to 30% under the randomised rerouting scheme and
up to 40% when per type of service rerouting is considered.

100

150

200

250

300

350

400

450

500

550

0.1 0.3 0.5 0.7 0.9

threshold-based

venture

0.1 0.3 0.5 0.7 0.9

M
ax

im
u

m
 u

se
d

 t
ra

n
sp

o
n

d
er

s

Normalized load

a)

Normalized load

b)

Fig. 8-6 Maximum used transponders under randomised (a) and per type of service
(b) rerouting schemes.

116 Towards Cognitive In-Operation Network Planning

8.4 Conclusions

Aggregated metro-flow traffic predictive model is proposed to cope with OD traffic
changes in the core as a result of uncoordinated metro-flow rerouting, where the
predictive traffic models are used to reconfigure the core VNT. By conveniently
aggregating metro-flows after they become rerouted, OD predictive models can be
rebuilt fast to keep the predictive capabilities in the core. To obtain quality metro-
flow predictive models, an estimation algorithm that allows obtaining models that
can be aggregated and evaluated efficiently is presented.

The process of metro-flow modelling was analysed, concluding that at least 2
months of monitoring data aggregated every 15 minutes are needed to obtain
quality predictions for different traffic profiles. The aggregated traffic model was
then used as input for a VNT reconfiguration algorithm, which was evaluated
against a threshold-based approach used when new models cannot be rebuilt under
changing OD traffic, obtaining savings as high as 40% regarding used
transponders.

Chapter 9

Experimental validation

This chapter presents the network architectures that allow bringing the procedures
and algorithms from the previous chapters to experimental environments. Two
different and complementary network control and management architectures are
motivated, presented and experimentally assessed.

The first architecture aims at enabling traffic monitoring and data analytics with
predictive models in the network controller. The architecture includes a central
domain controller performing data analytics and is based on the extended node
presented in [Gi17]. To demonstrate the proposed architecture, an OAA loop use
case is defined along with their respective workflows. The use case contains i)
predictive traffic model estimation and ii) periodic VNT reconfiguration based on
traffic prediction, both supported by the algorithms devised in Chapter 5 and
Chapter 6 for traffic modelling and for solving the VENTURE problem,
respectively.

The second architecture complements the previous by enabling the sharing of
predictive models across multiple data analytics -based network controllers. This
architecture features a flow controller, an entity responsible for storing and
disseminating updated traffic models across the participating controllers. To
demonstrate this architecture, one use case is presented along with three
workflows demonstrating the storage and dissemination of updated predictive
traffic models between metro and core controllers. This use case paves the way to
the aggregation of metro-flow traffic models into core-flow ones in experimental
environments, based on the ideas presented in Chapter 8.

Both architectures are experimentally assessed by implementing the
aforementioned use cases in a distributed test-bed connecting premises from UPC
(Barcelona, Spain) and Scuola Sant’Anna/CNIT (Pisa, Italy).

118 Towards Cognitive In-Operation Network Planning

9.1 Bringing data analytics to the network

In this section we motivate the proposed architecture, whose main concept is
illustrated in Fig. 9-1, where optical and MPLS packet nodes that are extended
with monitoring capabilities [Gi17] provide monitoring data to a centralised control
and management system (hereafter domain controller) extended with data
analytics capabilities.

Data
Analytics

Control and
Management

Domain Control and Management

Extended Nodes

L0
L2

Data collection

Data mining and
machine learning

Decision Making

Fig. 9-1. Conceptual architecture.

In connection-oriented networks, typical observation points are: i) optical
connections, where bit error rate (BER) and Tx/Rx optical power, among other
parameters, can be measured at the optical transponders; and ii) MPLS LSPs,
where packets and bit rate can be measured in any MPLS switch along the route of
the LSP.

Although extended nodes enable monitoring for data analytics, the scarcity of
computational and storage resources becomes insufficient when large datasets
need to be processed and global network knowledge to be discovered. Consequently,
data analytics capabilities are needed at the domain controller. The domain data
analytics is thus responsible for: i) collating, processing, and storing monitoring
data and ii) managing the configuration of extended nodes. With this global vision,
the domain analytics is able to perform a network-wide knowledge discovery in
data (KDD). Since large amounts of data need to be collected, stored and analyzed,
the domain data analytics module needs to be designed with big data capabilities.

Aiming at facilitating decision-making, we extend the definitions in [RFC7011] and
propose a monitoring hierarchy consisting of three different elements: i)
observation points are locations in the network where monitoring data records are

Chapter 9 – Experimental validation 119

generated (as in [RFC7011]), ii) observation groups are sets of observation points,
which monitoring data needs to be aggregated. An observation group can aggregate
monitoring data from observation points defined in different nodes; and iii)
monitoring entities, as sets of observation groups, that gather monitoring data
collected from related observation groups, possibly in different layers.

For illustrative purposes, Fig. 9-2 presents examples of the proposed monitoring
hierarchy. Fig. 9-2a shows three separate LSPs that convey the traffic of OD pair
R1→R3. To measure the OD traffic, that of each LSP needs to be metered and
aggregated. Packet LSPs can be monitored by activating one single observation
point in any packet node along their route, which is advantageous since the
number of observation points that can be configured in every packet node is
limited, as already introduced. Notwithstanding observation points have been
activated for the three LSPs in our example in Fig. 9-2a, not all of them are in the
same packet node, so an observation group that aggregates monitoring data records
received from every LSP supporting the OD traffic is configured.

This hierarchy is set up in the domain controller and sent to the corresponding
nodes so that data can be aggregated, if possible, directly in the extended node or,
otherwise, in the domain controller. In the example, node R1 collects traffic
samples for LSP-1 and LSP-2 and exports them to the domain controller as a
single, aggregated traffic sample for OD R1→R3. The remaining observation point
data for LSP-3 in node R2 will be aggregated to that from node R1 once data arrive
in the domain controller, to produce the final sample for the OD.

Observation groups aggregate data of the same type. To relate observation groups
from related connections collected at different network layers belonging to the
same network entity, we define a monitoring entity, which is identified by a
symbolic name. To illustrate this, Fig. 9-2b shows an MPLS VNT where the
capacity of the virtual link (vlink) R1→R2 is supported by a lightpath in the optical
layer. Observation group 1 is configured to monitor the bitrate conveyed through
the virtual link, whereas observation group 2 monitors the optical path BER. By
defining a virtual link monitoring entity parenting both observation groups,
heterogeneous data correlation across multiple network layers becomes easier.

Finally, a custom monitoring templating system based on the IPFIX protocol
[RFC7011] is included to support monitored data pre-processing and
transformation in the extended nodes. Templates allow defining custom fields for
collected and exported data.

120 Towards Cognitive In-Operation Network Planning

Observation Group
Traffic R1-R3

R1
R2

R3

LSP-1

LSP-2

LSP-3

Observation
Points

a)

vlink

supporting
lightpath

Obs. group 1
(vlink bitrate)

Obs. group 2
(lightpath BER)

Monitoring entity

R2R1

b)

Fig. 9-2. Proposed monitoring hierarchy.

9.2 Proposed architectures

 Domain controller architecture

Fig. 9-3 presents the proposed architecture, where extended nodes [Gi17] receive
IPFIX protocol messages from physical devices containing data records from
multiple observation points. To configure the extended node, the controller pushes
a set of observation groups, where each of them defines a set of rules used to map
data records from specific observation points to that observation group. When a
new IPFIX message arrives at the extended node, the IPFIX speaker creates a list
of pairs key-value (sample) for every data record in the message; in addition to
header fields such as TimeStamp, data records contain a set of fields which
structure (template) is identified by the field DataSet Id.

Monitored data exported from the extended nodes is collected at the domain
controller by an IPFIX speaker that forwards it to a data manager module in
charge of processing samples and storing them into a collected distributed big data
repository (in our implementation we use Cassandra [Cas]). To adequately handle

Chapter 9 – Experimental validation 121

samples, observation group handlers are defined to ensure the right aggregation of
data coming from observation points in different nodes, finally generating
notifications upon the reception of new samples.

To enable data analytics and KDD implementation in the domain controller, a
KDD module is defined; it contains KDD processes that execute intensive data
analytics tasks, either locally or delegated to a computing cluster running, e.g.,
Spark [Spark]. These processes can be managed and configured by an NMS from
an external configuration database in the domain controller. A KDD API is
included to facilitate the implementation of new KDD processes; it allows accessing
and storing data in the collected repository, accessing the process configuration
database, and sending commands to the domain controller.

The analytics controller triggers the execution of KDD processes. KDD processes
need to subscribe to the notifications they can receive; upon the reception of a
notification in the KDD module, all KDD processes subscribed to such type of
notification are run.

Extended Node

Domain Control and Management

KDD

Notif
.

Run

Data Analytics

Notifications

Send configuration

Config

Notif.

Control &
ManagementCommands

Collected Repo

IPFIX
Speaker

Store
Data

RESTCONF
Client

Samples

Obs Group
Handler

Data
Manager

Process
Process

KDD API

Get
samples

DA
Controller

NMS

Fig. 9-3. Detailed architecture, using the extended node proposed in [Gi17].

Besides the domain analytics module, the control and management system is in
charge of the network control and management. The domain analytics controller
can send commands to trigger actions in the network using a REST API; this
interconnection between the domain analytics and the control and management
system is key to enable implementing the OAA loop.

122 Towards Cognitive In-Operation Network Planning

 Multi-domain controller architecture

Although the previous architecture allows to monitor and obtain predictive traffic
models, its scope is limited to the observed network domain, thus lacking a
mechanism to obtain data analytics -based knowledge from foreign network
domains. This mechanism is key in order to enable the aggregation of metro-flow
predictive models into core-flow predictive models as presented in Chapter 8
aiming at ensuring uninterrupted prediction. To alleviate this problem and
complete the previous architecture, we propose a complementary control
architecture that enables the sharing of predictive among multiple domain
controllers.

OD

Observation Points

mf1

Metro 1 Metro 2Core

R1a
R1b R2a

R2b

R2 R3

Metro Controller(s)

IPFIX

Core Controller

IPFIX

Flow Controller

Flow Data

REST API

REST
API

PCEP

Metro-Flow Data

<Symbolic Path Name>
<Output IP>
<Input IP>
<Model>

<Period Start>
<Period Duration>
<Average> [<a1,b1>,…,<an,bn>]
<Variance> [<c1,d1>,…,<cn,dn>]

SDN
Controller

OpenFlow

LSP-DB TED

Stateful
PCE

Metro DB

SR-PCEP

Data
Analytics

Data
Analytics

Fig. 9-4. Proposed flow controller architecture.

Fig. 9-4 presents the proposed architecture where every metro controller contains a
data analytics module based on the previous architecture, capable of storing and
processing metro-flow monitored data to estimate metro-flow predictive models.
The metro controller also includes an SDN controller [SDN] responsible for the
configuration of the network devices. The core controller contains an analogous
analytics module for OD traffic monitoring and prediction and includes an
additional database to store the metro-flow -related data. A Traffic Engineering

Chapter 9 – Experimental validation 123

Database (TED), a Label Switched Path Database (LSP-DB), and a Stateful Path
Computation Element (PCE) complete the core controller’s architecture [RFC7491].

We propose a centralised flow controller with a repository to store flow-related data
that is updated from the metro controllers and used by the core controller to
produce predictive OD traffic models. The repository stores for each metro flow: i)
its LSP’s symbolic path name; ii) the border metro nodes through which the flow
leaves and enters different metro areas and iii) the metro-flow predictive model.
Since periodic models are assumed, the model includes its period and starting time,
as well as two piecewise linear functions defining the average bitrate and its
variance along the period.

Next section presents the use cases and the corresponding workflows that are
executed on the two architectures above, to apply the OAA loop for VNT
reconfiguration based on traffic prediction and to share updated predictive models.

9.3 Use cases and workflows

 Traffic monitoring and model estimation

In the first workflow (Fig. 9-5) monitoring data is collected, and a traffic model for
an LSP (LSP 02-05 in Fig. 9-7) is estimated. MPLS nodes send IPFIX messages
encoding data records with monitored traffic data to the extended node (message 1
in Fig. 9-5).

Extended

Node

KDD process

(Estimator)

IPFIX

MPLS

Node

IPFIX

Data
Analytics
Controller

templateId:264
templateId:500

1

2

Fig. 9-5. Workflow for traffic monitoring and model estimation.

Open Virtual Switches (OVS) can use template ID 264 [Tr13] to that end whose
details are shown in Table 9-1. The monitored samples are aggregated, stored and
periodically sent to the domain controller according to some period parameter T.
The extended nodes export the aggregated samples using a possibly different
template. In this case, we defined template ID 500 with the structure defined in
Table 9-2. Note that in addition to traffic counters, the symbolic name and the
observation group Id are defined in template Id 500.

124 Towards Cognitive In-Operation Network Planning

Table 9-1: IPFIX template 264 (OVS native)

Field Name Description

observationPointId Id of the observation point.

flowDirection Direction of the flow.

src/dst MacAddress IEEE 802 source and destination MAC addreses.

ethernetType
Ethernet type that identifies the client protocol
in the payload.

ethernetHeaderLength Ethernet header length.

flowStart/StopDeltaMicros
Time offset relative to the message timestamp
for the first/last observed packet of this flow.

packetDeltaCount Number of packets since the previous report.

layer2OctetDeltaCount Number of L2 octets since the previous report.

flowEndReason
The reason for terminating the flow and sending
this msg.

Table 9-2: IPFIX template 500 (custom definition)

Field Name Description

symbolicName
String with the Symbolic Name of the monitored
flow.

observationGroupId Id of the observation group.

flowDirection Direction of the flow.

packetDeltaCount Number of packets since the previous report.

layer2BitDeltaCount Number of bits since the previous report.

flowDurationMilliseconds
Time between the first and last observed
packets of the flow.

When a new sample arrives in the domain controller, the data manager stores it in
the collected data repository and notifies the data analytics controller, which
forwards the notification to the KDD module that will select the KDD process
subscribed to such notifications; in this case, the traffic estimator. The estimator
KDD process will eventually produce a new predictive traffic model that it stored in
the configuration.

The KDD estimator process algorithm is presented in Table 9-3 and is executed
every time a new traffic sample arrives in the domain controller (e.g., every 15
min). It receives as input an observation group Id, the time window within which

Chapter 9 – Experimental validation 125

traffic samples will be considered for model estimation, the minimum number of
samples to estimate the model, and the last observed errors between the model and
sampled traffic.

The algorithm starts by retrieving the configuration of the observation group from
a configuration database, the current predictive model if it exists, and the last
received traffic sample (lines 1-3): The configuration contains parameters like the
monitoring period (e.g., 15 min). In case that a predictive model is currently active,
it is re-estimated if its predictive quality drops reflecting an increasing series of
errors (lines 4-7). Otherwise, the estimator returns (line 8).

To estimate a predictive model, a query filter is prepared to retrieve monitored
samples in the specified time window (line 9). The number of available traffic
samples within the time window are first counted (line 10), and if there are enough
to produce a new model, the previous filter is used to query the collected data
repository (lines 11-12). The resulting dataset is used as input of the mathematical
procedure that computes the predictive model, presented in Table 5-2 of Chapter 5.
Once the model has been estimated, it can be evaluated to obtain a bitrate
prediction following the evaluation procedure presented in Table 5-3.

Table 9-3: KDD estimator algorithm

INPUT obsGroupId, window, minSamples, errors

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:

config ← getConfig(obsGroupId)
model ← getModel(obsGroupId)
z = <y, time> ← getLastSample(obsGroupId)
if model ≠ Ø then

error ← computeError(model, z)
errors[obsGroupId].append(<z.time, error>)
if NOT needsEstimation(errors[obsGroupId]) then
return

filters ← (t_begin = z.time – window, t_end = z.time)
count ← sampleCount(obsGroupId, filters)
if count < minSamples then return
Z ← getSamples(obsGroupId, filters)
model ← estimatePiecewiseLinearModel(Z, config)
updateModel(obsGroupId, model)
sendNotif(obsGroupId, MODEL_CHANGED)
return

 VNT reconfiguration based on traffic prediction

The second workflow (Fig. 9-6) focuses only on monitoring and data analytics,
whereas the messages inside the controller (e.g., ABNO [RFC7491]) and between
the controller and the MPLS nodes are not shown for the sake of clarity. A VNT
traffic predictor process in the domain analytics KDD is periodically executed to
predict a traffic matrix used as input to reconfigure the VNT. This prediction is

126 Towards Cognitive In-Operation Network Planning

made using the predictive models produced as explained before. For illustrative
purposes, Fig. 9-7 shows an example of VNT reconfiguration, where predictive
traffic models have been estimated in Fig. 9-7a. According to the traffic estimated
for the next period, LSP 02-05 is rerouted, and vlink R3-R4 is torn down in Fig.
9-7b.

Data
Analytics

Controller

KDD process

(Traffic Predictor)

ABNO

Controller

1

REST

Fig. 9-6. Workflow for VNT reconfiguration based on traffic prediction.

At regular intervals (e.g., every hour), the VNT traffic prediction process generates
a new traffic matrix for the OD traffic in the VNT for the next period. The
predicted matrix along with a VNT reconfiguration request is sent to the data
analytics controller, which notifies to the ABNO controller using a REST request
(message 1 in Fig. 9-6). The ABNO controller follows an internal workflow and
eventually sends the appropriate commands to the MPLS.

R1

R7

R3

R6

R5

R4

Observation Point on
LSP-02-05

R2 R1

R7

R3

R6

R5

R4

R2

a) b)

Fig. 9-7. Example of VNT reconfiguration based on traffic prediction.

 Metro-core model dissemination

Three workflows are defined to store and retrieve metro-flow data in/from the flow
controller. Fig. 9-8a shows the first workflow triggered when a new LSP for a
metro-flow is set-up across different metro domains. Every metro-controller
involved in the LSP creation sends a JSON-encoded REST API message to the flow
controller with the LSP symbolic path name and the input or output metro border

Chapter 9 – Experimental validation 127

node. The flow controller creates a new entry in the flow repository and populates
it correlating the data received from different metro controllers.

Metro

Ctrl 1

Flow

Ctrl

1
REST

Metro

Ctrl 2

1

REST

NBI

NBI

a)

Metro

Ctrl

Flow

Ctrl

Core

Ctrl

1

PCRpt

REST

2

3
c)

Node
Metro

Ctrl

Flow

Ctrl

Core

Ctrl

1
2

IPFIX
REST

PCRpt

REST

3

4
b)

Fig. 9-8. Metro-flow set-up (a), Metro-flow model estimation (b) and Metro-flow re-
routing (c).

Once the LSP for the metro-flow is operational, its traffic is monitored in any of the
nodes in the source metro area and monitored data is exported by means of IPFIX
messages (message 1 in Fig. 9-8b) to the metro controller. When enough monitoring
data has been collected to estimate a new metro-flow model, or to re-estimate an
existing one, the metro controller sends the predictive model to the flow controller
in a REST API message, including the LSP’s symbolic path name for identification
(message 2).

After a metro-flow data entry has been completed or updated, the flow controller
notifies that to the core controller by issuing a PCEP PCReport message [RFC8261]
(message 3) containing the list of updated metro-flow LSPs. A delay has been
introduced to prevent flooding the core controller with several updates from
different metro controllers. The core controller can now retrieve updated metro-
flow data by issuing a REST API request (message 4), being thus able to update
obsolete OD traffic models. When a metro controller decides to re-route one or more
metro-flows, it updates the metro-flow data in the flow controller (message 1 in Fig.
9-8c), which proceeds as described for Fig. 9-8b.

In next section, we experimentally assess the two proposed architectures and their
respective workflows.

128 Towards Cognitive In-Operation Network Planning

9.4 Experimental assessment

 Traffic monitoring and model estimation

The experimental validation of the domain controller architecture was carried out
on a distributed testbed connecting premises in Scuola Sant’Anna/CNIT (Pisa,
Italy) and UPC (Barcelona, Spain), where the multi-domain MPLS-over-optical
VNT depicted in Fig. 9-7 was considered. The Scuola Sant’Anna/CNIT domain
includes 4 commercially available Juniper MPLS routers, and two Ericsson SPO
1400 ROADM employ 10/100 Gb/s transceivers. These network devices are
controlled by a multi-layer domain SDN controller developed in C++. The UPC
domain includes OVSs nodes running on a Mininet environment; these devices are
controlled by a Ryu SDN controller [RyuSDN] running on a virtual Linux host.
UPC’s SYNERGY testbed also includes the extended nodes running on top of the
OVSs and the data analytics -based domain controller all implemented in Python.
The control and management system used in the domain controller followed the
ABNO architecture and was implemented in C++ [Ve15]; it includes an ABNO
controller, a virtual network topology manager (VNTM) and a provisioning
manager (PM) that communicates with both SDN controllers.

An observation point is defined in router R2 to monitor LSP 02-05 traffic, which
follows a daily traffic profile. Regarding monitoring configuration, parameter T is
set to 15 min. The collected data repository and predictive models are initially
empty, and the estimator algorithm is configured to require at least 20 days of
traffic samples to produce accurate enough predictive models.

Fig. 9-9 shows the meaningful messages exchanged between node R2, the related
extended node, and the domain analytics module; messages contents are also
detailed in Fig. 9-9. For the sake of clarity, messages are identified following
workflow in Fig. 9-5. Node R2 sends data records in IPFIX messages to the
extended node (1) containing bitrate information. Every 15 minutes (i.e., 900
seconds) the extended node sends an IPFIX message to the domain controller (2)
with aggregated traffic data for the observation group. Aggregated samples are
stored in the domain controller and trigger the execution of the estimator
algorithm, which does not produce a predictive model until enough monitoring data
(i.e., 20 days) is available. Once the model is estimated, it is locally stored and sent
to the extended node R2 (3) as a JSON encoded object (Fig. 9-10).

Chapter 9 – Experimental validation 129

1 2

1

2

Fig. 9-9. Exchanged monitoring messages for the first workflow and details of the
messages.

{
"numSegments": 96,
"periodLength": 1,
"mu": [
[262597924.3560, 2186827.5712],
[282279377.1089, 1571469.4144],
[296422603.7514, 1549021.5936],

],
"sigma": [
[12113411.3406, 34114.2624],
[15183696.6363,-55562.0480],
[10183112.2130, 23272.6560],

]
}

96 linear functions

3

Fig. 9-10. JSON object storing the predictive model for LSP-02-05.

 VNT reconfiguration based on traffic prediction

Let us imagine that predictive models are now available for every OD pair in the
VNT; then, the VNT can be reconfigured based on traffic prediction at regular
intervals (e.g., every hour). Fig. 9-11 lists the messages related to the workflow in
Fig. 9-6 as well as messages between the ABNO components.

130 Towards Cognitive In-Operation Network Planning

1

Fig. 9-11. Exchanged messages for VNT reconfiguration based on traffic prediction
(Fig. 9-6).

The workflow is triggered when the domain analytics sends a REST request to the
ABNO controller containing a VNT reconfiguration action together with the
predicted traffic matrix (1). The ABNO controller identifies the action and
delegates the request to the VNTM that solves the VENTURE problem and returns
the new topology and the capacity of every vlink, together with the new route for
every LSP.

As a result of the reconfiguration, LSP 02-05 is rerouted and vlink R3-R4 torn
down, as illustrated in Fig. 9-7b. To implement this solution in the VNT, the
VNTM first sends a PCUpdate message to the PM to communicate the LSP
rerouting; the PM forwards the rerouting implementation to the corresponding
domain SDN controller using a REST API request. Once LSP 02-05 has been
successfully rerouted the VNTM receives a PCReport notification, and it sends a
PCInit message to the PM to tear down vlink R3-R4; to that end, the PM sends a
new REST API request to the SDN controller. Once the solution is successfully
implemented in the network, the VNTM notifies it to the ABNO controller by
sending a PCReply message, followed by the final reply from the ABNO controller
to the initial VNT reconfiguration request by the domain analytics.

 Metro-core model dissemination

The experimental validation of the flow controller architecture was carried out on a
distributed test-bed connecting CNIT (Pisa, Italy) and UPC (Barcelona, Spain)
premises. A core controller with segment-routing capabilities [Sga16] was located
at CNIT, whereas the flow controller and two metro controllers were located at
UPC. The core and metro controllers were extended with an HTTP REST API
interface to exchange JSON-encoded messages with the flow controller. The SDN
controller used in the metro areas is based on RyuSDN and uses OpenFlow to
configure the network nodes. Finally, a set of extended nodes4 implemented on top
of OpenVSwitches were deployed using Mininet at UPC premises to allow
monitoring traffic.

Chapter 9 – Experimental validation 131

Fig. 9-12a lists the REST API messages exchanged between the metro controllers
and flow controller after an LSP for a metro-flow across the two metro domains is
set-up. Messages specify the LSP’s symbolic path name (LSP-01-02) and the IP
address of the metro border node. Fig. 9-12b shows an IPFIX flow message
(labelled as 1 in Fig. 9-8b) containing monitoring data from LSP-01-02 that is sent
to the source metro controller for traffic model estimation. After collecting enough
traffic data, a predictive model is estimated by the metro controller and sent to the
flow controller in a JSON-encoded REST API message (message 2). The details are
shown in Fig. 9-13a and include the LSP symbolic path name and the data
representing the metro-flow predictive model.

Next, the flow controller issues a PCEP PCReport message to the core controller
notifying the new data available for LSP-01-02 (message 3). The PCReport message
contains a list of Stateful Request Parameters (SRP) and one LSP object with the
LSP’s symbolic path name. The core controller then issues a REST-API request
with the symbolic path name of the LSP (message 4) to retrieve its data (Fig.
9-13b).

Finally, Fig. 9-12c lists the messages exchanged as a result of re-routing of LSP-01-
02. First, the new border output node is sent by the metro controller in a REST API
message to the flow controller (labelled as 1; in Fig. 9-8c). Once the flow controller
updates the metro-flow data, equivalent messages to those for model creation are
exchanged with the core controller to allow obtaining updated data for the re-
routed LSPs (notice the updated border node in Fig. 9-13c).

1

2

3

4

1

2

3

a)

b)

c)

Fig. 9-12. Messages list for metro-flow set-up (a), metro-flow traffic model update
(b) and metro-flow LSP re-routing (c).

132 Towards Cognitive In-Operation Network Planning

a)

4

c)

2

b)

4

Fig. 9-13. Details of traffic model (a), metro-flow (b) and updated metro-flow (c).

9.5 Conclusions

The dynamicity introduced by new internet services requires from control and
management architectures to help reducing resource overprovisioning. In this
paper, we propose a new monitoring and data analytics network architecture
where data analytics is applied at the domain controller.

In that regard, this paper proposed a hierarchical monitoring and data analytics
architecture based on extended nodes that collate monitoring data and a
centralised domain data analytics module that is able to perform network-wide
data analytics on monitoring data collected from all the nodes in the network. The
IPFIX protocol is used to define custom templates to convey monitoring samples
from the different network layers. In that regard, a monitoring hierarchy that
allows aggregation of samples from logically-related observation points, as well as
to correlation of data from observation groups belonging to the same resource
entity, was defined.

Chapter 9 – Experimental validation 133

The proposed architecture was demonstrated through an OAA loop use case, and
workflows on the proposed architecture were designed. First, a predictive L2 traffic
model estimation and dissemination is proposed. The predictive model structure as
well as the algorithms to estimate such models follow the ones presented in
Chapter 5. An algorithm to estimate such models from monitored data was also
presented. Next, predictive models were used to demonstrate periodical VNT
reconfiguration based on traffic prediction.

To complement the previous architecture, a flow controller architecture is also
proposed to allow adjacent domain controllers to share predictive traffic models
among them. This facilitates the core controller re-estimating obsolete OD traffic
models applying statistics for metro-flow model aggregation, as proposed in
Chapter 8.

One use case composed by three workflows has been proposed to keep updated
metro-flow data in the flow controller, either triggered by the estimation of a new
predictive traffic model or for a re-routing action modifying the OD traffic
aggregation in the core network. In any case, these actions originated by metro
controllers are properly notified to the flow controller and eventually to the core
controller.

The proposed architectures were experimentally assessed by implementing the
proposed use cases on a distributed testbed connecting premises in UPC and
Scuola Sant’Anna/CNIT.

Chapter 10

Closing discussion

10.1 Main Contributions

The main contributions of this thesis are:

 In Chapter 4, the iONESim network simulator was introduced as a means
of evaluating the algorithms for cognitive in-operation network planning
proposed in this thesis. The simulator allows combining in-operation
network planning with data analytics based on monitoring data as well as
the simulation of realistic metro and core flow bitrate based on a traffic
generation framework.

 In Chapter 5, network traffic flow modelling was studied, and two different
traffic modelling approaches proposed: a piece-wise linear model providing a
constant-time, point-wise time evaluation and an ANN model capable of
adapting to evolutionary traffic and requiring fewer assumptions about the
underlying traffic distribution. The data analytics architecture needed to
collect, process and transform monitoring data into both types of traffic
models were proposed as well as the algorithms for their estimation and
evaluation.

 In Chapter 6, The VENTURE problem was presented to reconfigure the
VNT based on traffic prediction periodically. The benefits of using
VENTURE against a reactive, threshold-based VNT reconfiguration were
demonstrated by evaluating both approaches through simulation, obtaining
savings between 8% and 42% regarding used transponders.

 In Chapter 7, advanced solving methods for VENTURE were studied to
evaluate the extent of improvement of this new VNT reconfiguration

136 Towards Cognitive In-Operation Network Planning

approach. Two state-of-the-art metaheuristics for combinatorial network
optimisation (GRASP and ILS) as well as the original VENTURE algorithm
were evaluated, obtaining an optimality gap between 5% and 9% within 1
minute of execution, being ILS the overperforming option.

 To ensure prediction under changing traffic patterns in the core, in Chapter
8 we proposed to extend traffic modelling to metro areas and aggregate the
resulting metro-flow predictive models into quality OD core traffic models
while in-operation. The problem of metro-flow model aggregation into
quality core-flow models was mathematically studied and evaluated through
simulation, showing the benefits of achieving uninterrupted quality
prediction.

 Finally, in Chapter 9 we devised network architectures to bring the
algorithms of the previous chapters to real environments. To enable the
traffic modelling and VNT reconfiguration (Chapter 5 and Chapter 6) a
domain control and management architecture was proposed. To support
metro-flow model aggregation (Chapter 8) a flow controller was proposed.
These architectures were experimentally assessed through a series of
workflows in a distributed test-bed connecting UPC and CNIT premises.

In view of the above, we can conclude that the goals of this thesis have been
successfully reached.

10.2 List of Publications

 Publications in Journals

[Mo17-1] F. Morales, Ll. Gifre, F. Paolucci, M. Ruiz, F. Cugini, P. Castoldi, and
L. Velasco, “Dynamic Core VNT Adaptability based on Predictive
Metro-Flow Traffic Models,” in Journal of Optical Communications and
Networking, vol. 9, pp. 1202-1211, 2017.

[Mo17-2] F. Morales, M. Ruiz, Ll. Gifre, L. M. Contreras, V. López, and L.
Velasco, “Virtual Network Topology Adaptability based on Data
Analytics for Traffic Prediction,” (Invited) in Journal of Optical
Communications and Networking, vol. 9, pp. A35-A45, 2017.

 Publications in Conferences

[Mo17-3] F. Morales, Ll. Gifre, F. Paolucci, M. Ruiz, F. Cugini, L. Velasco and P.
Castoldi, “Experimental Assessment of a Flow Controller for Dynamic
Metro-Core Predictive Traffic Models Estimation,” in Proceedings of the
European Conference on Optical Communication (ECOC), 2017.

Chapter 10 – Closing discussion 137

[Mo17-5] F. Morales, M. Ruiz, and L. Velasco, “Data analytics based origin-
destination core traffic modelling,” in Proceedings of the International
Conference on Transparent Optical Networks (ICTON), 2017.

[Mo17-6] F. Morales, M. Ruiz, and L. Velasco, “Core VNT Adaptation Based on the
Aggregated Metro-Flow Traffic Model Prediction,” in Proceedings of the
Optical Fiber Communication Conference (OFC), 2017.

[AV16] A. P. Vela, A. Via, F. Morales, M. Ruiz, and L. Velasco, “Traffic
generation for telecom cloud -based simulation,” in Proceedings of the
International Conference on Transparent Optical Networks (ICTON),
2016.

[Gi16-2] Ll. Gifre, F. Morales, L Velasco, and M. Ruiz, “Big Data Analytics for the
Virtual Network Topology Reconfiguration Use Case,” in Proceedings of
the International Conference on Transparent Optical Networks (ICTON),
2016.

[Mo16] F. Morales, M. Ruiz, and L. Velasco, “Virtual Network Topology
Reconfiguration based on Big Data Analytics for Traffic Prediction,” in
Proceedings of the Optical Fiber Communication Conference (OFC), 2016.

 Book Chapters

[Mo17-7] F. Morales, M. Ruiz and L. Velasco, “Chapter 11 - Virtual network
topology design and reconfiguration”, in Provisioning, Recovery and In-
operation Planning in Elastic Optical Networks, ISBN 978-1-119-33856-7,
Wiley, 2017.

 Other Works Not Included in This Thesis

[Ve17] L. Velasco, A. P. Vela, F. Morales, and M. Ruiz, “Designing, Operating
and Re-Optimizing Elastic Optical Networks,” (Invited Tutorial) in
Journal of Lightwave Technology, vol. 35, pp. 513-526, 2017.

10.3 List of Research Projects

 European Funded Projects

 METRO-HAUL: “METRO High bandwidth, 5G application-aware optical
network, with edge storage, compUte and low Latency”, grant agreement
no. 761727, 2017-2020.

138 Towards Cognitive In-Operation Network Planning

 Spanish Funded Projects

 SYNERGY: “Service-oriented hYbrid optical NEtwork and cloud
infrastructuRe featuring high throuGhput and ultra-low latencY”, Ref:
TEC2014-59995-R, 2015-2017.

 Pre-doctoral Scholarship

 Pre-doctoral scholarship “FPI-UPC 275-701” funded by the Computer
Architecture Department, UPC, 2016-2017.

 Pre-doctoral scholarship “FI-DGR 2017” funded by “Agència de Gestió
d'Ajuts Universitaris i de Recerca” (AGAUR), Generalitat de Catalunya,
2017-2018.

10.4 Topics for Further Research

In this thesis we present the first step towards cognitive in-operation planning,
focusing on VNT reconfiguration based on traffic prediction and on procedures to
estimate quality traffic flow predictive models. In light of the results obtained, we
encourage further research on other cognitive in-operation planning applications
both in the optical and in the MPLS layer.

In particular, for the subject of VNT reconfiguration, decision-making techniques
need to be explored to both automatically decide when to reconfigure the VNT and
to automatically tune the reconfiguration parameters based on learning from past
experience. From the data analytics point of view, the detection of obsolete
predictive models and the correct discrimination between persistent (concept-drift)
and temporary (anomalies) traffic variations is of high importance to ensure the
correctness of the predictive traffic models and shall be explored as well.

List of Acronyms

ABNO Application-Based Network Operations

ACF Auto-Correlation Function

AIC Akaike Information Criterion

ANN Artificial Neural Network

API Application Programming Interface

ARIMA Auto-Regressive Integrated Moving Average

AS Autonomous System

BER Bit Error Rate

BQPSK Binary Quadrature Phase-Shift Keying

BV Bandwidth-Variable

BVT Bandwidth-Variable Transponder

CAGR Compounded Annual Growth Rate

CAPEX Capital Expenditures

CL Candidate List

CLI Command-Line Interface

CP Connection Point

CV Coefficient of Variation

DB Database

DC Datacenter

DWDM Dense Wavelength Division Multiplexing

EON Elastic Optical Network

FEC Forward Equivalence Class

FT Fixed Transponder

140 Towards Cognitive In-Operation Network Planning

Gb Gigabit

GCF Greedy Cost Function

GCO Grup de Comunicacions Òptiques

GMPLS Generalised Multi-Protocol Label Switching

GRASP Greedy-Randomised Adaptive Search Procedure

HTTP Hypertext Transfer Protocol

IAT Inter-Arrival Time

IETF Internet Engineering Task Force

ILP Integer Linear Programming

ILS Iterated Local Search

IP Internet Protocol

IPFIX IP Flow Information Export protocol

ITU-T International Telecommunications Union (Telecom. standardization sector)

JSON Javascript Object Notation

KB Kilobyte

KDD Knowledge Discovery in Data

LER Label Edge Router

LP Linear Programming

LP-SA Link-Path Slot Assignment

LSP Label-Switched Path

LSR Label Switch Router

MAC Media Access Control

MB Megabyte

MILP Mixed Integer Linear Programming

MPLS Multi-Protocol Label Switching

NBI Northbound Interface

NLP Non-Linear Programming

NMS Network Management System

NP Non-deterministically Polynomial

OAA Observe, Analyse, Act

OAM Operations, Administrations and Maintenance

OD Origin-Destination

ONF Open Networking Foundation

List of Acronyms 141

OPEX OPerational EXpenditures

OSS Operations Support System

OVS Open Virtual Switch

PCE Path Computation Element

PCEP Path Computation Element communication Protocol

PM Provisioning Manager

QAM Quadrature Amplitude Modulation

QPSK Quadrature Phase-Shift Keying

RAM Random Access Memory

RCL Restricted Candidate List

REST REpresentational State Transfer

RFC Request For Comments

RMSA Routing, Modulation format and Spectrum Allocation

ROADM Reconfigurable Optical Add-Drop Multiplexer

RSA Routing and Spectrum Allocation

RSS Residual Sum of Squares

RWA Routing and Wavelength Assignment

SBI Southbound Interface

SBVT Sliceable Bandwidth Variable Transponder

SDN Software Defined Network

SNC Subnetwork Connection

SNMP Simple Network Management Protocol

SP Shortest Path

SRP Stateful Request Parameters

TCO Total Cost of Ownership

TCP Termination Connection Point

TE Traffic Engineering

TED Traffic Engineering Database

TTT Time To Target

VM Virtual Machine

VNT Virtual Network Topology

VNTM Virtual Network Topology Manager

WDM Wavelength Division Multiplexing

142 Towards Cognitive In-Operation Network Planning

WSS Wavelength Selective Switch

References

[5G] 5GPPP Working Group on Network Management and QoS, “Cognitive
Network Management for 5G”, 2016.

[Ag15] A. Aguado, M. Davis, S. Peng, M. V. Alvarez, V. López, T. Szyrkowiec and R.
Casellas, “Dynamic Virtual Network Reconfiguration over SDN
Orchestrated Multi-Technology Optical Transport Domains,” in Proceedings
of the European Conference on Optical Communications (ECOC), 2015.

[Agr09] F. Agraz, L. Velasco, J. Perelló, M. Ruiz, S. Spadaro, G. Junyent, and J.
Comellas, “Design and Implementation of a GMPLS-Controlled Grooming-
capable Optical Transport Network,” in Journal of Optical Communications
and Networking, vol. 1, pp. A258-A269, 2009.

[Ai07] R. Aiex, M.G.C. Resende and C.C. Ribeiro, “TTT plots: a Perl program to
create time-to-target plots,” in Springer Optimization Letters, vol. 1, pp. 355-
366, 2007.

[Al16] R. Alvizu, X. Zhao, G. Maier, Y. Xu and A. Pattavina, “Energy aware
optimization of mobile metro-core network under predictable aggregated
traffic patterns,” in Proceedings of the International Conference on
Communications (ICC), 2016.

[Ap10] R. Aparicio-Pardo, P. Pavon-Marino, N. Skorin-Kapov, B. Garcia-Manrubia,
and J. Garcia-Haro, “Algorithms for Virtual Topology Reconfiguration under
Multi-Hour Traffic using Lagrangian Relaxation and Tabu Search
approaches,” in Proceedings of the International Conference on Transparent
Optical Networks (ICTON), 2010.

[Ap12] R. Aparicio-Pardo, N. Skorin-Kapov, P. Pavon-Marino, and B. Garcia-
Manrubia, “(Non-)Reconfigurable Virtual Topology Design Under Multihour
Traffic in Optical Networks,” in Transactions on Networking, vol. 20, no. 5,
pp. 1567-1580, 2012.

[As14] M. T. Asif, J. Dauwels, C. Y. Goh, A. Oran, E. Fathi, M. Xu and P. Jaillet,
“Spatiotemporal patterns in large-scale traffic speed prediction,” in
Transactions on Intelligent Transportation Systems, vol. 15(2), pp. 794-804,
2014.

[AV16] A. P. Vela, A. Via, F. Morales, M. Ruiz, and L. Velasco, “Traffic generation
for telecom cloud -based simulation,” in Proceedings of the International
Conference on Transparent Optical Networks (ICTON), 2016.

[AV17-1] A. P. Vela, M. Ruiz, L. Velasco, “Distributing Data Analytics for Efficient
Multiple Traffic Anomalies Detection,” in Elsevier Computer
Communications, vol. 107, pp. 1-12, 2017.

144 Towards Cognitive In-Operation Network Planning

[AV17-2] A. P. Vela, M. Ruiz, F. Fresi, N. Sambo, F. Cugini, L Velasco, and P.
Castoldi, “Early Pre-FEC BER Degradation Detection to Meet Committed
QoS,” in Proceedings of the Optical Fiber Communication Conference (OFC),
2017.

[Ba04] C. Barakat, P. Thiran, G. Iannaccone, C. Diot and P. Owezarski, “Modeling
Internet backbone traffic at the flow level,” in Transactions on Signal
processing, vol. 51(8), pp. 2111-2124, 2003.

[Be92] D. P. Bertsekas, R. G. Gallager and P. Humblet, Data networks, 2nd edition,
Prentice-Hall, 1992.

[Ca16] A. Castro, L. Velasco, Ll. Gifre, C. Chen, J. Yin, Z. Zhu, R. Proietti and S. J.
B. Yoo, “Brokered orchestration for end-to-end service provisioning across
heterogeneous multi-operator (Multi-AS) optical networks,” in Journal of
Lightwave Technology, vol. 34(23), pp. 5391-5400, 2016.

[CaPhd] A. Castro, Off-Line and In-Operation Optical Core Networks Planning,
Doctoral dissertation, Computer Architecture Department, Universitat
Politècnica de Catalunya, 2014.

[Cas] Apache Cassandra: http://cassandra.apache.org

[Ch06] T. M. Chen, “Network Traffic Modeling,” in Handbook of Computer Networks
vol. 3, Wiley, 2007.

[Cisco17] “Cisco Visual Networking Index,” Cisco, 2017.

[Cisco99] “MPLS Traffic Engineering”, Cisco white paper, 1999.

[El01] A. Elwalid, C. Jin, S. Low and I. Widjaja, “MATE: MPLS adaptive traffic
engineering,” in Proceedings of the International Conference on Computer
Communications (INFOCOM), 2001.

[Em08] F. Emmert-Streib and M. Dehmer, Information Theory and Statistical
Learning, Springer Science and Business Media, 2008.

[Fe02] P. Festa and M.G. Resende, “GRASP: An annotated bibliography,” in Essays
and Surveys on Metaheuristics, vol. 6, pp. 325-367, 2002.

[Fe15] N. Fernández, R. Durán, D. Siracusa, A. Francescon, I. de Miguel, E.
Salvadori, J. Aguado and R. Lorenzo, “Virtual Topology Reconfiguration in
Optical Networks by Means of Cognition: Evaluation and Experimental
Validation,” in Journal of Optical Communications and Networking, vol. 7,
pp. A162 - A173, 2015.

[Ga14] J. Gama, I. Zliobaitė, A. Bifet, M. Pechenizkiy, and A. Bouchachia, “A survey
on concept drift adaptation,” in Journal of Computing Surveys, vol. 46, p. 44,
2014.

[Gen03] A. Gençata and B. Mukherjee, “Virtual-Topology Adaptation for WDM Mesh
Networks Under Dynamic Traffic,” in Transactions on Networking, vol. 11,
pp. 236-247, 2003.

[Gi14] Ll. Gifre, F. Paolucci, A. Aguado, R. Casellas, A. Castro, F. Cugini, P.
Castoldi, L. Velasco, and V. López, “Experimental Assessment of In-
Operation Spectrum Defragmentation,” in Springer Photonic Network
Communications, vol. 27, pp. 128-140, 2014.

[Gi15] Ll. Gifre, F. Paolucci, L. Velasco, A. Aguado, F. Cugini, P. Castoldi, and V.
López, “First Experimental Assessment of ABNO-driven In-Operation
Flexgrid Network Re-Optimization,” in Journal of Lightwave Technology,
vol. 33, pp. 618-624, 2015.

[Gi16-1] Ll. Gifre, L. M. Contreras, V. Lopez, and L. Velasco, “Big Data Analytics in
Support of Virtual Network Topology Adaptability,” in Proceedings of the
Optical Fiber Communication Conference (OFC), 2016.

References 145

[Gi17] Ll. Gifre, A. P. Vela, M. Ruiz, J. López de Vergara, and L. Velasco,
“Experimental Assessment of Node and Control Architectures to Support the
Observe-Analyze-Act Loop,” in Proceedings of the Optical Fiber
Communication Conference (OFC), 2017.

[GiPhD] Ll. Gifre, In-Operation Planning in Flexgrid Optical Core Networks, Doctoral
dissertation, Computer Architecture Department, Universitat Politècnica de
Catalunya, 2016.

[GiPhD] Ll. Gifre, In-Operation Planning in Flexgrid Optical Networks, Doctoral
dissertation, Computer Architecture Department, Universitat Politècnica de
Catalunya, 2016.

[Gr06] E. W. Grafarend, Linear and Nonlinear Models: Fixed Effects, Random
Effects, and Mixed Models, Walter de Gruyter, 2006.

[Gro08] D. Gross, J. F. Shortle, J. M. Thompson and C. M. Harris, Fundamentals of
Queuing Theory, 4th edition, Wiley, 2008.

[Ho13] R. V. Hoog, Introduction to Mathematical Statistics, Pearson, 2013.

[Hol03] M. Hollick, T. Krop, J. Schmitt, H. P. Huth and R. Steinmetz, “A hybrid
workload model for wireless metropolitan area networks,” in Proceedings og
the Vehicular Technology Conference, 2003.

[It95] H. Ito, “Computational complexity of multicommodity flow problems with
uniform assignment of flow,” in Electronics and Communications in Japan
vol. 78(8), pp. 52-62, 1995.

[Ko13] S. K. Korotky, “Semi‐Empirical Description and Projections of Internet
Traffic Trends Using a Hyperbolic Compound Annual Growth Rate,” in Bell
Labs Technical Journal, vol. 18, no 3, pp. 5-21, 2013.

[Lau00] F. Lau, S. H. Rubin, M. H. Smith and L. Trajkovic, “Distributed denial of
service attacks,” in Proceedings of the International Conference on Systems,
Man, and Cybernetics, 2000.

[Lee14] D. Lee, S. Zhou, X. Zhong, Z. Niu, X. Zhou and H. Zhang, “Spatial modeling
of the traffic density in cellular networks,” in Wireless Communications, vol.
21(1), pp. 80-88, 2014.

[Lo03] H.R. Lourenço, O.C. Martin and T. Stutzle, “Iterated local search,” in
International Series in Operations Research and Management Science, pp.
321-54, 2003.

[Lu11] H Lütkepohl, “Forecasting aggregated time series variables: A survey,” in
Journal of Business Cycle Measurement and Analysis, vol. 2010, pp. 1-26,
2011.

[Ma08] E. C. Malthouse, K. M. Derenthal, “Improving predictive scoring models
through model aggregation,” in Elsevier Journal of Interactive Marketing,
vol. 22, pp. 51-68, 2008.

[Mal14] M. Malboubi, L. Wang, C. N. Chuah and P. Sharma, “Intelligent SDN based
traffic (de)aggregation and measurement paradigm (iSTAMP),” in
Proceedings of the Internation Conference on Computer Communications
(INFOCOM), 2014.

[Me10] M. Medhat Gaber, A. Zaslavsky, S. Krishnaswamy, “Data Stream Mining,”
in Data Mining and Knowledge Discovery Handbook, Springer, pp. 759-787,
2010.

[Oh10] Y. Ohsita, T. Miyamura, S. Arakawa, S. Ata, E. Oki, K. Shiomoto and M.
Murata, “Gradually Reconfiguring VNT Based on Estimated Traffic
Matrices,” in Transactions on Networking, vol. 18, pp. 177-189, 2010.

[OMNeT] OMNeT++: http://www.omnetpp.org.

[ONF] Open Networking Foundation [Online]. Available:
https://www.opennetworking.org/.

146 Towards Cognitive In-Operation Network Planning

[OpenFlow] OpenFlow [Online]. Available: http://www.openflow.org/.

[Pa10] P. Pavon-Marino, R. Aparicio-Pardo, B. Garcia-Manrubia, and N. Skorin-
Kapov, “Virtual topology design and flow routing in optical networks under
multihour traffic demand,” in Photonic Network Communications, vol. 19,
no. 1, pp. 42-54, Feb. 2010.

[Pe13] O. Pedrola, M. Ruiz, L. Velasco, D. Careglio, O. González de Dios, and J.
Comellas, “A GRASP with path-relinking heuristic for the survivable
IP/MPLS-over-WSON multi-layer network optimization problem,” in
Elsevier Computers and Operations Research, vol. 40, pp. 3174-3187, 2013.

[Pro18] R. Proietti, X. Chen, A. Castro, G. Liu, H. Lu, K. Zhang, J. Guo, Z. Zhu, L.
Velasco, and S. J. Ben Yoo, “Experimental Demonstration of Cognitive
Provisioning and Alien Wavelength Monitoring in Multi-domain EON,”
accepted in Proceedings of the Optical Fiber Communication Conference
(OFC), 2018.

[Ra09] R. Randhawa, C. A. Shaffer, J. J. Tyson, “Model aggregation: a building-
block approach to creating large macromolecular regulatory networks,” in
Oxford Academic Bioinformatics, vol. 25, no 24, p. 3289-3295, 2009.

[RFC1157] J. Case, M. Fedor, M. Schoffstall and J. Davin, “A Simple Network
Management Protocol (SNMP),” IETF RFC1157, 1990.

[RFC3031] E. Rosen, A. Viswanathan, A. Viswanathan, “Multiprotocol Label Switching
Architecture,” IETF RFC3031, 2001.

[RFC3535] J. Schoenwaelder, “Overview of the 2002 IAB Network Management
Workshop,” IETF RFC3535, 2002.

[RFC3945] E. Mannie, “Generalized Multi-Protocol Label Switching (GMPLS)
Architecture,” IETF RFC3945, 2004.

[RFC4655] A. Farrel, J.-P. Vasseur, and J. Ash, “A Path Computation Element (PCE)-
Based Architecture,” IETF RFC4655, 2006.

[RFC5212] K. Shiomoto, D. Papadimitriou, JL. Le Roux, M. Vigoureux, and D.
Brungard, “Requirements for GMPLS-Based Multi-Region and Multi-Layer
Networks (MRN/MLN),” IETF RFC5212, 2008.

[RFC5623] E. Oki, T. Takeda, JL. Le Roux, and A. Farrel, “Framework for PCE-Based
Inter-Layer MPLS and GMPLS Traffic Engineering,” IETF RFC5623, 2009.

[RFC7011] B. Claise, B. Trammell, P. Aitken, “Specification of the IP Flow Information
Export (IPFIX) Protocol,” IETF RFC 7011, 2013.

[RFC7491] D. King and A. Farrel, “A PCE-Based Architecture for Application-Based
Network Operations,” IETF RFC7491, 2015.

[RFC8261] E. Crabbe, I. Minei, J. Medved and R. Varga, “PCEP Extensions for Stateful
PCE,” IETF RFC 8261, 2017.

[Ri13] C. C.Ribeiro, I. Rosseti and R. C. Souza, “Probabilistic stopping rules for
GRASP heuristics and extensions,” in International Transactions in
Operational Research, vol. 20(3), pp. 301-323, 2013.

[Ro08] J. P. Roorda and B. Collings, “Evolution to colorless and directionless
ROADM architectures,” in Optical Fiber Conference/National Fiber Optic
Engineers Conference, 2008.

[Ru14] M. Ruiz, L. Velasco, A. Lord, D. Fonseca, M. Pióro, R. Wessäly, and J.P.
Fernández-Palacios, “Planning Fixed to Flexgrid Gradual Migration: Drivers
and Open Issues,” in Communications Magazine, vol. 52, pp. 70-76, 2014.

[Ru16] M. Ruiz, M. Germán, L. M. Contreras, and L. Velasco, “Big Data-backed
Video Distribution in the Telecom Cloud,” in Elsevier Computer
Communications, vol. 84, pp. 1-11, 2016.

[RyuSDN] Ryu SDN framework: https://osrg.github.io/ryu

References 147

[Sa16] N. Sambo, F. Cugini, A. Sgambelluri, and P. Castoldi, “Monitoring Plane
Architecture and OAM Handler,” in Journal of Lightwave Technology, vol.
34, pp. 1939-1945, 2016.

[SDN] C. S. Li and W. Liao, “Software defined networks,” in Communications
Magazine, vol. 51(2), pp. 113-113, 2013.

[Sga16] A. Sgambelluri, F. Paolucci, A. Giorgetti, F. Cugini and P. Castoldi,
“Experimental Demonstration of Segment Routing,” in Journal of Lightwave
Technology, vol. 34, pp. 205-212, 2016.

[Spark] Apache Spark: http://spark.apache.org

[St82] K. Steiglitz and C. H. Papadimitriou, Combinatorial Optimization:
Algorithms and Complexity, Prentice-Hall, New Jersey, 1982.

[Ta07] V. Tabatabaee, A. Kashyap, B. Bhattacharjee, R. J. La, and M. A. Shayman,
“Robust Routing with Unknown Traffic Matrices,” in Proceedings of the
International Conference on Computer Communications (INFOCOM), 2007.

[Tr13] B. Trammell and B. Claise, “Applying IPFIX to network Measurement and
Management,” IETF tutorial. Available on https://www.ietf.org/slides/slides-
edu-ipfix-00.pdf

[Ve12] L. Velasco, M. Klinkowski, M. Ruiz, and J. Comellas, “Modeling the Routing
and Spectrum Allocation Problem for Flexgrid Optical Networks,” in
Springer Photonic Network Communications, vol. 24, pp. 177-186, 2012.

[Ve13] L. Velasco, P. Wright, A. Lord, and G. Junyent, “Saving CAPEX by
Extending Flexgrid-based Core Optical Networks toward the Edges,”
(Invited Paper) in Journal of Optical Communications and Networking, vol.
5, pp. A171-A183, 2013.

[Ve14.1] L. Velasco, D. King, O. Gerstel, R. Casellas, A. Castro, and V. López, “In-
Operation Network Planning,” in IEEE Communications Magazine, vol. 52,
pp. 52-60, 2014.

[Ve14.2] L. Velasco, A. Castro, M. Ruiz, and G. Junyent, “Solving Routing and
Spectrum Allocation Related Optimization Problems: from Off-line to In-
Operation Flexgrid Network Planning,” in Journal of Lightwave Technology,
vol. 32(16), pp. 2780-2795, 2014.

[Ve14.3] L. Velasco, A. Asensio, J. Ll. Berral, E. Bonetto, F. Musumeci, V. López,
“Elastic Operations in Federated Datacenters for Performance and Cost
Optimization,” in Computer Communications, vol. 50, pp. 142-151, 2014.

[Ve15] L. Velasco and Ll. Gifre, “iONE: A Workflow-Oriented ABNO
Implementation,” in Proceedings of the International Photonics in Switching
Conference, 2015.

[Ve16] L. Velasco, A. P. Vela, F. Morales, and M. Ruiz, “Designing, Operating and
Re-Optimizing Elastic Optical Networks,” in Journal of Lightwave
Technology, vol. 35, pp. 513-526, 2017.

[Wei94] W. Wei, Time series analysis, Addison-Wesley publications, 1994.

[Wi98] W. Willinger and V. Paxson, “Where mathematics meets the Internet,” in
Notices of the AMS, vol. 45, pp. 961-970, 1998.

[Wu15] X. Wu, Z. Lü, Q. Guo & T. Ye, “Two-level iterated local search for WDM
network design problem with traffic grooming,” in Elsevier Applied Soft
Computing, vol. 37, pp. 715-724, 2015.

[Yu09] X. Yuan, N. Chen, D, Wang, G. Xie, and D. Zhang, “Traffic prediction models
of traffics at application layer in metro area network,” in Journal of
Computer Research and Development, vol. 3, p. 13, 2009.

148 Towards Cognitive In-Operation Network Planning

[Zh03] Y. Zhang, M., Roughan, N., Duffield and A. Greenberg, “Fast accurate
computation of large-scale IP traffic matrices from link loads,” in
SIGMETRICS Performance Evaluation Review, vol. 31, no. 1, pp. 206-217,
2003.

[Zha13] J. Zhang, Y. Xiang, Y. Wang, W. Zhou, Y. Xiang and Y. Guan, “Network
traffic classification using correlation information”, in Transactions on
Parallel and Distributed Systems, vol. 24, pp. 104-117, 2013.

[Zhe17] L. Zheng, D. Liu, W. Liu, Z. Liu, Z. Li, T. Wu, “A Data Streaming Algorithm
for Detection of Superpoints with Small Memory Consumption,” in
Communications Letters, vol. PP, pp.1-1, 2017.

[Zu03] M. Zukerman, T. D. Neame and R. G. Addie, “Internet traffic modeling and
future technology implications,” in Proceedings of the Computer and
Communications Conference, 2003.

