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Glossary

Area area of a reservoir
C* cotree of a graph
G* augmented graph
H(K) matrix of mass balance equation with flows
HG(k) Index set of signomial terms
substituted for k time steps
IG(k) Index set of posinomial terms

R resistance of a pipe
R0 true resistance of a pipe
T* tree of a graph
J Jacobian
U subset of a graph

Set of output singular values
V Set of input singular values
Qt t subproblem generated in branch and

bound algorithm
S feasible region in optimisation problems
St feasible region of the t subproblem
Y admittance of a pipe

b number of pumps
d demand pattern
d0 true demand pattern
f(x) cost function
h head of junctions
h0 head of junctions measurement
h(x), g(x) equality and inequality constraints
hr level of reservoirs
hr0 level of reservoir measurements
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l number of pipes
n number of junctions
q flow through a pipe
q0 flow through a pipe measurement
r number of reservoirs
u input of a system
v number of valves
w demand factor
w0 true demand factor
x variable
xr variable corresponding to parameter
xt variable corresponding to state variable
x* minimiser
z measurement

Σ matrix of singular values
Λ incidence matrix

ρ weigh factor in cost function
descriptor in classification process
posinomial functions

σ singular value
ξ measurement error
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Abstract

Process control and supervision is based mainly in the use of models, which have to be
as accurate as possible. Complex processes, like water distribution networks, fall into
such a situation too. Water is a necessary element and its shortage in good conditions is
a major problem. Therefore, a good management of water distribution is vital.

This thesis has been carried out with the collaboration of two research groups. One is
more oriented to the application -water networks- and the other one is more oriented to
the technology –control and supervision-. Experience of both groups has generated the
necessity of calibration of water network models in order to be able to do good
simulations, optimisations, supervisions, leak detections, etc. For this reason, the main
objective of this thesis is to develop a closed methodology for the calibration process of
water distribution network models.

The originality of this work comes both from the magnitude of the problem and the
techniques used. On the one hand, a water network includes different elements (nodes,
reservoirs, pipes, valves, and pumps), and its calibration requires the study of those
elements in detail. On the other hand it has to be applied to huge systems. Special
attention has been paid to the three main parts of calibration: identifiability study,
macrocalibration and microcalibration. Each of those steps needs specific techniques.
Some of the techniques used in this thesis are little known or unknown at all in the
water industry.

The identifiability study has been developed for different case studies, ranging from
simple, illustrating case to real huge networks. The simplest experiments were
performed with linear and static networks. In general, networks are non-linear and the
use of more than one time-step in the measurements provides better identifiability
conditions. The methodology proposed allows the determination of the extended-period
identifiability for general networks (non-linear). The obtained tool helps in the design of
identification problems using topological information of the network.
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When the model is generated, large errors are introduced. These errors are detected in a
first calibration effort, macrocalibration. This process is done manually and the
objective in this thesis is to give support to such work. The methodology followed by
the experts has been analysed. Specific algorithms have been used in this thesis for each
kind of error. In order to detect errors in huge amount of elements classification
algorithms have been used. Those algorithms allow the generation of knowledge from
simulation experiments and optimisation of likelihood functions.

The parameter tuning, microcalibration, is treated as an optimisation problem. The non-
convexity of the problem is detected by a detailed characterisation. This non-convexity
shows to be a problem for the local optimisers. The capabilities of some global
optimisation algorithms have been explored. The computing cost for the global
optimisers, especially when huge networks are identified, represents a major limitation.
The Extended Kalman Filter has been used with promising results.

Results of this thesis have been presented in three Conferences [Per-01a], [Per-01b],
[Per-03] and a paper is will be finished before the end of the year.

El control i supervisió de processos es basa generalment en la utilització de models.
Models que han de ser tan acurats com sigui possible. Processos complexes com les
xarxes de distribució d’aigua no escapen d’aquesta situació. Una bona gestió d’aquest
element tan necessari i cada cop més escàs en les condicions adequades és una
necessitat vital.

Aquesta tesi ha estat realitzada amb la col·laboració de dos grups de recerca, un més
orientat a l’aplicació –xarxes d’aigua- i l’altre ala metodologia –control i supervisió -.
L’experiència d’ambdós grups va generar la necessitat de la calibració de models de
xarxes per tal de poder realitzar bones simulacions, optimitzacions, supervisió, detecció
de fuites, etc. L’objectiu principal d’aquesta tesi és desenvolupar una metodologia per
aquesta calibració.

L’originalitat d’aquest treball rau tan en l’abast del problema com les tècniques
emprades. Una xarxa inclou elements diversos i la calibració requereix l’estudi detallat
de cada element així com l’aplicació a sistemes immensos. Els diversos passos per
assolir una bona calibració requereixen tècniques específiques. En aquesta tesi s’ha
aplicat tècniques poc o gens conegudes en l’àmbit de les xarxes d’aigua.

Tres grans parts es poden destacar. L’estudi d’identificabilitat que s’ha realitzat per
diferents casuístiques partint dels casos més senzills i il·lustratius fins a sistemes reals.
L’eina obtinguda permet dissenyar els problemes d’identificació a partir de
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característiques tipològiques de la xarxa. Per als errors més grans i que normalment
s’introdueixen en el moment de generar el model s’ha investigat algoritmes de
classificació. Aquesta tècnica permet generar el coneixement a partir d’experiments de
simulació i minimització de funcions de versemblança. S’han explorat les possibilitats
de l’optimització global per superar els reptes que representa la no convexitat dels
problemes de sintonia de paràmetres.

Els resultats d’aquesta tesi s’han presentat en tres congressos [Per-01a], [Per-01b], [Per-
03] i s’està redactant un article per a revista abans de final d’any.
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1. Introduction

The first civilisations appeared by the big rivers. The flowing waters of the Euphrates,
the Nile, the Indus and the Yangtze were silent witnesses of the human settlements
along their banks and the flourishing of their culture [Rub-02]. They switched from
subsistence agriculture to organised farming in a short time. Water and civilisation, two
terms historically associated that now appear unsettled and in some cases contradictory.
The reason? The shortage of this odourless, tasteless and in small quantities colourless
liquid resource. The world-wide consumption of the last century has increased seven
fold. In Spain (data from the hydrologic plans that are gathered in the White Book of the
Water in Spain) the actual demand is 35,000 hm3/year, 68% corresponds to agricultural
irrigation, 18% usage by population and industry and 14% in the cooling of energy
stations.

In the last half of the XX century the answer to this increase in the demand was
basically the construction of more and larger hydraulic infrastructures, especially
reservoirs and canals for deviating rivers. More than 85% of the 40,000 reservoirs built
in the world have been constructed in the last 35 years. In Spain (Greenpeace [Gre-03])
there are 1,200 reservoirs, the country with the largest number of such infrastructures
for surface area and inhabitants. Such engineering works have guaranteed the supply of
water to great urban and rural areas but have, in the opinion of ecologists, led to the
degradation of the fluvial deltas and increased the risk of extinction of some species in
wetland areas.

These developments, that have given an extraordinary hydraulic patrimony and supplied
more than 40 million inhabitants, irrigated more than three million hectares and
produced hydroelectric energy needed for the development of the country, are now in
crisis. Nobody can ignore the fact that it is not possible to satisfy a demand without
limit with a permanent increase of the offer of a commodity that has ecological,
physical and economic limitations. As the most accessible sources of water are
exhausted new resources are obtained in an increasingly complicated and hence more
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expensive way. This leads to a worse quality of the resource and the necessity of a new
culture of water usage based on a more rational and sustainable use of this valuable
resource.

The challenge is to spend less and more efficiently. To guarantee a sufficient supply of
water does not in itself suffice to solve the distribution problems. It is necessary to
continue conserving water. This is a broad concept that includes all those techniques
orientated to help in the saving and better management of this liquid. These Techniques
appear in the White Book of Water [Min-00].

Such techniques include the modernisation and rehabilitation of the networks to
minimise leakage. This is a problem that affects not only the urban centres where 30%
of the water that enters the network does not get to its destination at the consumption
points but also the watering infrastructures. There are 100,000 kilometres of canals
where 30% are 100 years old and most of the remainder more than 40 years old.
Installation of low consumption devices nowadays allows savings of 50% without
losing quality in the service. There are models of taps, showers and toilets with such
improved efficiency. Wastewater can be reused after a good process of depuration.
Education campaigns are crucial for saving water and the introduction of new tariffs can
stimulate such savings. The contamination of both surface (rivers become increasingly
polluted as they pass by cities and industrial areas) and ground water (polluted by
nitrates, heavy metals and organic components and affected by salinisation) should be
reduced.

Drinking water quality is not an objective any more but an obligation. For centuries,
Europe had to cope with plagues and epidemics unaware of their origin. In 1854 in
London, during a cholera epidemic, Dr John Snow discovered that the means of
dissemination of this disease was water. He treated the water with chlorine and it
eradicated the disease.  After this experience the temporary treatment of water with
chlorine began, first in the United Kingdom and afterwards in the United States
becoming generalised at the beginning of XX century. It brought about the reduction of
diseases such as Hepatitis A, Cholera and Typhus. The purification of water with
chlorine has been the sanitary measure that has saved most lives in the last century.

In Spain the modern treatment stations (ETAP) use slow filtration systems that
reproduce the conditions of the riverbeds. In these installations during 1999 five
millions cubic meters of water were treated, this was the volume of water available for
purification. In Spain the European legislation defines three types of water depending
on which treatment it undergoes. This ranges from the simplest physical treatment and
disinfecting to the most sophisticated physical and chemical treatment and disinfecting.
So now in the quick filtration plants water undergoes treatment that includes different
phases: caption, mixing with coagulating and reactive substances, decantation and sand
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separation, flocculation, sedimentation, filtration and disinfecting. This procedure may
last five hours and some new tools have been added. These technologies allow the
fulfilment of the quality standards. Active carbon (produced by the combustion in
special and controlled conditions of organic substances) that presents a big exposed area
can trap by absorption suspended particles and dissolved substances. The disinfecting
process using Ozone is very efficient but is more expensive than the use of chlorine.
Inverse osmosis uses membranes to separate dissolved salts. In general solar
technologies applied to the purification of water are only useful for water with low
contamination.

Desalination of water is the other choice to increase the availability of water instead of
reusing residual water. It is a perfectly viable solution from a technological point of
view and widely used in Spain, where there are more than 700 plants working. The
problem is the high cost of the technology. Nowadays the water obtained by this process
is the most expensive in Spain. Nevertheless the latest advances in this technology and
the introduction of inverse osmosis have decreased the energetic cost to 4Kwh for each
cubic metre. The cost seems to be decreasing and the supporters of this technology
believe that soon this water will be cheaper on the East Coast of Spain than the cost in
the cession of water from the river Ebro included in the Plan Hidrologico Español. On
the other hand the energy needed is a great drawback for obtaining a sustainable supply
of water by this method. Anyway this technology that used to be restricted to the
Canary Islands and Ceuta is extended now to the Baleares, Murcia, and the Costa del
Sol. An important plant is working in Almeria where there is the biggest desalination
plant in Europe with a production estimated at 120,000 cubic meters a day, that can be
duplicated, uses the inverse osmosis and will solve the supply problems of the nearby
urban centres.

Although the chemical purification methodologies guarantee that the water that comes
from the taps is all right from the sanitary point of view in the last few years the
consumption of bottled water has increased spectacularly. This happens despite
consumers having to pay between 500 and 1000 times more for this water than that in
the public network, and that in more than 50% of cases this bottled water has the same
quality as the tap water except for some salts and aggregated minerals. Consumption of
bottled water increases in the world by 7% each year. The reason has to be found in the
fact that consumers don’t like tap water, sometimes because it has a disagreeable taste
or odour or sometimes because it can appear white colour.

Aware of this problem the distribution companies have started plans to determine and
increase the quality of the water offered to their customers. For example the Societat
General d’Aigües de Barcelona (Agbar), in collaboration with the French society
Lyonaise des Aux and the North American Water Works Association Research, have
developed a system to quantify the colour, taste and odour of the drinking water. If there
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is any case in which one of these characteristics becomes unpleasant the causes are
discovered and corrected. For this purpose there are some professionals that can detect
30 different tastes and smells in the water like the ones who work with wine. Typical
tastes of chlorine, humid soil, metallic, cooked vegetable or the classical acid, sweet,
salt and bitter can define the water. After the taste process the chemical analysis allows
the detection of substances that produce such problems and the water can be treated
adequately.

All these initiatives support the idea that is frequently held amongst the specialists; that
bottled water does not solve the problem of water healthiness. First of all, as the
association WWF/Adena says, because it should be able to take for granted that the
water that comes from the taps and wells is pure and healthy for human consumption.
On this purpose the association points towards the more environmental friendly
agricultural techniques. Because the purity of the public networks’ water would
increase, instead of the dependence on bottled water, with an additional benefit to the
environment. This reasoning is justified also in the fact that 25% bottled water is
consumed some distance away from the producing plant which means high
environmental costs related to the manufacturing and transport of this water.

Actually what is apparent after all these facts is that the water that is consumed is cheap
but the solutions to guarantee its availability are not. In Spanish cities, the price per
cubic metre in the year 2000 oscillated between 0.1 EUR in Melilla or 0.23 EUR in
Huesca and 1.25 EUR or 1.3 EUR paid by a Balear or Barcelona citizen. Though the
notable differences reflect the difficulties that each have to obtain potable water
(especially dramatic on the Mediterranean coast) the reality is that water is a limited
resource and should be treated not just as a social commodity, but an economical one
too. Citizens should use water in the most efficient way and pay for the real cost of this
precious resource. The Worldwatch Institute estimates that only 15% of the real cost is
paid, a fact which does not encourage water conservation [Wor-01].

Careful usage as recommended by experts, should be supported by different initiatives.
Specific legislation and recommendations for the population about this necessity would
help avoid wastage. The adoption of financial incentives would stimulate the
substitution (for uses that do not require high quality water) of the potable water with
that coming from the regeneration of residual waters. The objective of these
programmes would be the adjustment of the resource to the demands in order to liberate
high quality flows to the most appropriate uses. It is not sensible to use potable water to
water the plants, wash the car, or clean the streets.
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1.1. Use of models
The problem outlined in the previous section affects all of society. Some of the
solutions suggested so far depend on the customers, others depend on the governments,
some depend on production companies and some on the distribution companies.
Distribution of water also presents some challenges.

Distribution has improved in the last century although it existed in ancient civilisations.
In particular there are many Ponts del Diable (aqueducts) in Europe that are an
important part of the civil engineering legacy of the Roman Empire. The name in
Catalan comes from the belief, in the high Middle Age, that such big structures had
been built by the Devil. Of course the health conditions and standards have changed
since those first distribution networks. The quality control of the water that flows
through the network is an obligation nowadays. The physical conditions of the water
offered to the customers, (if not so vital as its sanitation) is an objective of all the
distribution companies. It is necessary to assure a pressure of water and a reliability of
the service so that people, industry, hostelry, hospitals and all of society can trust in a
basic service. Another important aspect already mentioned is the huge quantity of water
that disappears in the network before it reaches its target.

Supervision of processes is part of the CIM (Computer Integrated Manufacturing)
pyramid and it takes an important place in it. The knowledge provided by supervision
allows an understanding of what happens in an industry or plant. This knowledge is
indispensable for any quality certification, as the quality concept has more to do with
the reliability of the data and assertions than to improve an unknown level. This
knowledge is useful to correct any failure in the process or to improve its functioning.
In a distribution network such supervision uses the data-loggers distributed in the
network (the communications are often by radio due to the remote location of these
measures), informatic applications that show the working state of the network and,
depending on the company, some decision tools that help the human operators. In the
figure 1.1 an integrated system as proposed in the European project WATERNET,
Knowledge Capture for Advanced Supervision of Water Distribution Networks,
ESPIRIT IV nº 22,186 (June 1996- June 1998). [Cem-97] is shown. In it the Distributed
Information Management System (DIMS) gets data from Remote Units. These data are
used for all other packages.
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Machine
Learning

Remote Units

Simulation

Optimization

Water Quality

Supervision

Models ManagerDIMS

Fig. 1. 1
In this project a complete tool for water distribution network management was
developed. In the figure there appear with the supervisor other tools that in a modern
system are increasingly important. The optimisation tool tries to save money by taking
advantage of the different electric and water tariffs. The machine learning is used to
generate demand forecast and to make decision in case of fault detection in the systems
behaviour. The water quality tool uses models of the network to forecast the chlorine
concentration and age of the water in the network in order to assure the standards.
Remote units send the information to the supervisor. Simulation uses models to forecast
the hydraulic behaviour of the network so that the supervisor and optimiser can compare
the reality with the expected behaviour. The model manager is a very important piece as
all the tools use a kind of model. In figure 1.2 the different models used in this project
are presented.
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Fig. 1. 2
From the physical-operating model, where the real devices are, an initial theoretical
model is developed. The second level of abstraction gives a model suitable for
simulation with all the nodes, pipes, pumps, valves and reservoirs. This model gives the
forecasted hydraulic behaviour of the network. For optimisation and even for the quality
simulation such a huge model has to be simplified which is done in the next level by
deleting small pipes, reservoirs, nodes and thus obtaining a small model that represents
the behaviour. Finally, the machine-learning tool uses a qualitative model.

The main problem that appeared in this project was the reliability of the model. It
should have been calibrated by one of the partners. They developed a heuristic way for
the calibration and simplification but did not get good results in the timing required by
the rest of the tasks. Finally our group used a manual way for the adjustment of
parameters in order to produce a model for the optimisation. As can be seen in figure
1.2 the lack of a good simulation model invalidates the entire model management tool
and most of the tools are therefore useless for that network.

1.2. Calibration Process
The ability to model larger water distribution systems has improved considerably over
the past decades. The cost to set up and execute a mathematical representation or
network simulation model has fallen with the advent of widespread usage of
microcomputers. However the cost for calibration of the simulation model and for data
collection required for estimating parameters has not decreased. In many cases, due to
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the high expense and perceived lack of benefits, a thorough calibration effort is not
performed. Without good parameter estimates, a simulation model may not be
modelling reality and therefore the planning or operating decisions made, based on
simulation analysis, may be in serious error.

When calibrating a water distribution system, the desire is to determine the actual
values of the system parameters such as pipe roughness. With those values, the system
can be simulated for a range of conditions with confidence in the model’s results.
However, all the parameters are typically not measured directly due to the expense of
data collection. Four types of data (state variables) may be available from the field tests
or the network telemetry system: nodal pressure heads, nodal demands, pipe flow, and
tank levels. All four state variables supply information which can be used to determine
the proper values of the system’s parameters. Pump operations and pressure reducing
valve settings may also be collected during these tests.

The surrogate objective of the calibration exercise is to match the observed values of the
state variables with those generated by the network simulation model. In practice, given
a set or sets of measured state variables, engineers apply trial and error techniques with
their judgement to vary the parameters and accomplish this task. Trial and error
techniques are extremely tedious and have no guarantee of reasonable results. The
number of parameters to be estimated complicates the task. For example, the transition
capacity of a pipe diminishes at an unknown rate with the time, which varies from
system to system and even within a given system. In addition, losses that occur through
regulating or pressure reducing valves may increase with time or they may be closed
when believed to be open. Many nodal demands are usually not known precisely, and
must also be estimated at any instant or over a period of time. The process is further
complicated by the amount of data required to give confidence in the parameter
estimation. As more pipes are added to the network model, more data is necessary to
accurately determine the true field values or to determine an equivalent model of the
true system hydraulics in the case of a skeletal system model. If data is collected for a
single load, compensating errors may occur in situations where more than one set of
parameter values gives good modelling results. This may also occur when more than
one demand pattern is analysed, but the range of different values should be reduced.
Therefore, a calibration procedure should be capable of analysing multiple demand
patterns while considering all of the unknown parameters.

Several researchers have proposed algorithms for system calibration. Walski [Wals-83]
suggested lumping groups of pipes to equivalent pipes and determining the lumped
coefficients using analytic equations for single demand patterns. When the number of
unknown parameters equals the number of nodes or pipes for single load patterns, it is
possible to rework the equations of continuity and energy to consider the parameters as
unknown, which can be solved in an iterative manner ([Don-74], [Rah-80], [Gof-81],
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and [Orm-86b]). Shamir [Sha-74] presented a method to calibrate the network using an
optimisation algorithm which could analyse single demand patterns. Later, Coulbeck
[Cou-85] linearised the network equations and used an optimisation procedure. Finally,
Ormsbee [Orm-88] combined a simulation model and a modified Box Complex Direct
Search method to consider sets of independent loads or extended time period
simulations.

Ormsbee and Lingireddy [Orm-97] describe the calibration task. The water distribution
system must be represented by a node-link database (links represent individual pipe
sections, and nodes represent points in the system where two or more pipes join or
where water is being input or withdrawn. Data associated with pipes include length,
diameter and roughness. Data associated with nodes include elevation and demand
associated. Physical data for reservoir (geometry, initial water level), pumps (pump
flow-head characteristic curve) and valves must be obtained. In general the most
uncertain model parameters include pipe roughness and nodal demands. Because of the
difficulty of obtaining economic and reliable measurements, final model values are
normally determined by model calibration. In general, a network model calibration can
be divided into seven main steps:

Identify the intended use of the model: Before calibrating a model it is important to
identify its intended use (pipe sizing, operational studies, design studies, water quality
studies) and the associated type of hydraulic analysis (steady state versus extended-
period). Water quality and operational studies require an extended-period analysis,
whereas some design studies may be performed using a steady-state analysis. Walski
[Wals-83] justifies the guidance about the collected field data required given by the
intended use and the type of the analysis.

Determine model parameter estimates: In most models some degree of uncertainty is
associated with several parameter-pipe roughness, demands assigned to each node-.
Initial estimates of pipe roughness values may be obtained using average values from
literature but this information’s specific applicability decreases significantly as the pipes
age increases. To obtain initial estimates of roughness it is best to divide the water
distribution system into composite zones that contain pipes of similar material and age.
Walski [Wals-84] describes parallel-pipe method and two-hydrant method for
estimation of the roughness. Initial average estimates of nodal demands can be obtained
by identifying a region of influence associated with each node, identifying the types of
demand units in the service area, and multiplying the number of each type by an
associated demand factor [Wals-95].

Collect Calibration Data: The most common types of data are those for flow rate, tank
water level and pressure. Depending on the level of instrumentation and telemetry,
much of the data may already be collected as part of normal operations.



26 Identifiabilitity and calibration of water network models

Evaluate model results: Using telemetry data, the model simulates operating conditions
(different simulators are available, EPANET, FINESSE, PICCOLO, SIAR,
WATERNET, etc.) for the day the field data were collected. The predicted pressures,
flows and tank water levels are then compared with the observed values in attempt to
assess model accuracy. Deviations between results may be caused by several factors
(erroneous parameters, erroneous data, incorrect network geometry).

Perform macrolevel calibration: If one (or more) of the measured state variable values
is different from the modelled values by an amount deemed excessive (i.e. greater than
30%), the cause for the difference probably extends beyond errors in the estimates for
either pipe roughness or demands. The only way to adequately address such macrolevel
errors is to systematically review the data associated with the model and compare them
with the field data.

Perform sensitivity analysis: Before attempting a microlevel calibration, it is helpful to
perform a sensitivity analysis of the model to help identify the most likely source of
model error.

Perform microlevel calibration: The parameters to be adjusted in this final phase of
calibration are pipe roughness and nodal demands. Historically, most attempts at model
calibration have employed an empirical or trial-and-error approach which can prove to
be extremely time-consuming and frustrating. Calibration of multitank systems can
sometimes be facilitated by collecting multiple data sets with all but one the tanks
closed [Crui-92]. Several researchers have proposed different algorithms for use in
automatically calibrating hydraulic network models. Most of these techniques have been
restricted to steady-state calibration. These techniques have been based on the use of
analytical equations [Wals-83], simulation models [Rah-80][Gof-81][Bou-91] and
optimisation methods [Mer-83][Cou-85][Orm-89]. . The Water Software Systems group
in Leicester proposes a microcalibration procedure [Ula-00].

1.3. Thesis objectives
The main objective of this thesis is the development of a tool for water distribution
systems calibration. Such calibration is based in the last instance on optimisation that is
used for solving inverse mathematical problems such as calibration. The search for a
global minimum of an error function (difference between measurements and model)
may lead to global optimisation algorithms. The analysis of the need of such algorithms
and the study of the contribution they can make to the calibration are specific
objectives.
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A methodology for this development must be established, such a methodology should
allow the application of this module to a wide variety of water distribution systems.
This module will generate a calibrated model from the initial one and some real
measurements that will allow the parameter estimation.

Initial
 Model

Measurements

Macrocalibration

microcalibration

User’s Interface

Calibrated

model

 Demand

GIS

Fig. 1. 3

In figure 1.3 appear the tasks the calibration includes. From the GIS (Geographic
Information System) database an initial model is extracted, and some measurements
must be done. Using this information the topological and the parametrical calibration
produce the definitive model. The calibration is divided in the macro, based on trial and
error methodology dealing with crude errors, and the micro, based on optimisation for
model parameter tuning. For each task some more concrete objectives have been
defined.

The intended use of the models is simulation. In figure 1.2 these models appear as the
previous stage of more abstracted models. These kinds of models are the key ones for
the management objectives that have been suggested for a better usage of water.
Simulation models work in an extended-period scenario. Parameters to be estimated are
those that are less likely to be measured and change within time. Special emphasis will
be put on pipe roughness and node demand factors but these could be generalised to
pump curves or valves coefficients. These networks are often divided in regions
containing similar material and age that generally are isolated by reservoirs and valves.
These are the networks that will be calibrated in this thesis.
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The theoretical identifiability of the model has to be studied. What is a minimum
number of measurements that have to be taken in order to observe the state of the
system? These measurements are taken in different loads, and the state of the system
can include the parameters to be calibrated.  A rigorous study will be carried out, but the
result has to be a practical way of determining the identifiability of a network.

Connected with the identifiability the meter placement in order to get the correct data
for the calibration will be studied, and a methodology developed to do this task. Once
more a tool has to be the result of the work, so that companies that have to calibrate
networks can design the experiments with an important saving in meters. This will
provide some knowledge about the identifiability of the network depending on the
topology.

Macrocalibration, the first step of the calibration, is carried out mainly in the industries
by experts in a tiresome process of trial and error. An automatic system could carry out
the macrocalibration that concerns the topological and crude errors in the model, or at
least could support the task of the experts. Different approaches for such a challenge
will be explored. The knowledge of experts will be organised and the methodology of
the decision making defined.

The last step in the calibration, the parameter tuning or microcalibration, is based on
optimisation. First of all a serious study of the requirements of the algorithms that will
be used is carried out. A classification of the problems and algorithms is done in order
to choose a proper algorithm. The optimisation module aims at finding a global
minimum of the overall differences between the measurements and corresponding
simulation resulting in a parameter tuning. There are different algorithms that solve this
kind of problem. The research group of ESAII-Terrassa [Pui-99] is working on control
applications of interval arithmetic, thus algorithms based on this arithmetic will be tried
for this application. The equation formulation for water distribution network calibration
using these algorithms and the development of the methodology that enables the
application to other networks is an important objective. The numerical libraries that
exist to solve such problems should be proven for this specific application and
eventually improved.

A prototype for the calibration of networks will be constructed. This application will
include the three tasks that are developed in this thesis. This prototype will be
programmed basically in Matlab [Mat-03]. This choice is justified as the group is used
to such an environment and the programming task is not a key point of this work. The
prototype will be developed in such a way to allow remote work using the internet, so
that more companies could test it and decide to apply it to their own problem.
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This calibration methodology will be described in the thesis in order to allow industrial
applications. The application to other networks is another objective in order to state the
generality of the methodology. Small examples help one to understand the different
phases of the process. Finally a huge network comparable with parts of real networks is
used in each section to test the methodology.

1.4. Thesis organisation
This thesis is organised in an introduction, three main sections and a last section for
conclusions. Results are presented in each section first for small networks that help in
the understanding of the methodology, and a last case study. In the conclusions section
the personal achievements, the objectives fulfilment and the future work proposed are
included.

Section 2 presents the model that centres the attention of the work, equations and
parameters. The identifiability study of this problem from different points of view -
static, dynamic, extended-period, linear and non-linear- is done, and a methodology is
chosen. The experimental design for the calibration based on this identifiability study is
presented in this section.

The macrocalibration process is treated in section 3. First the expert work manually
done is analysed. The knowledge organisation is chosen. The methodology is described
and adapted to the macrocalibration purpose. The developed tool is tested with different
networks and mismatches in them.

Finally in section 4 the microcalibration problem is studied. First of all the problem
characterisation based on the classification of optimisation problems and algorithms,
fixes the kind of algorithms that will be studied. Different algorithms are presented and
applied to small examples to understand their way of working. These algorithms are
presented in an order of improving results. Finally a real case is treated and the results
obtained from the calibration using real data are presented.
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2.  Extended period Identifiability in Water Networks

The concept of state occupies a central position in modern control theory. However, it
appears in many other technical and non-technical contexts as well. In thermodynamics
the equations of state are prominently used. Binary sequential networks are normally
analysed in terms of their states. In everyday life, monthly financial statements are
commonplace. The State of the nation debate is another familiar example. In all these
examples the concept is essentially the same. It is a complete summary of the status of
the system at a particular point in time. Knowledge of the state at some initial time t0,
plus the knowledge of the system inputs after t0, allows the determination of the state at
later time t1. The systems of interest for this thesis are dynamic systems. The word
dynamic refers to something active or changing with time. Figure 2.1 shows the space
state representation for a discrete-time linear system where the state is defined only for
discrete times.

B(k) Delay C(k)

A(k)

D(k)

++

+
+

u(k) y(k)x(k)x(k+1)

Fig. 2. 1: space state representation for a discrete-time linear system
One possible representation for the water distribution network is to use levels in
reservoirs as state variables, inputs are demands and external apportions, outputs would
be any measurement and the relation between two time steps (matrix A(k)) comes from
the change of level in reservoirs. The physical water network behaviour is monitored
through a telemetry system. However only a limited number of flows and heads are
measured directly and they do not constitute a complete picture of the System State. It is
therefore necessary to estimate unknown variables based on available measurements
and mathematical models of the network.
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Observability is a property of the coupling between the state and the output and thus
involves the matrices A and C. A linear system is observable at t0 if x(t0) can be
determined from the output function y(t0,t1) (or output sequence) for t0≤t1, where t1 is
some finite time. If this is true for all t0 and x(t0) it is called completely observable.
Clearly Observability of a system will be a major requirement in filtering and state
estimation or reconstruction problems.

In the water distribution systems, state estimation is not used in the same sense as in
control. Most tasks of supervision are done using simulation. The model itself possesses
parameters, which are not known exactly. The model needs to be calibrated to update
the parameter values. Here the problem of finding these parameter will be treated as a
generalisation of state estimation. The measurements are not ideal, the estimation-
calibration problem is then formulated as a problem of minimising a suitably chosen
measure of the inconsistencies.

Before the optimisation problem is stated and the algorithms to solve it are chosen it has
to be proven that the system has a unique solution. This chapter treats the Identifiability
(a concept close to observability) conditions of a water network that has to be
calibrated. This problem includes the state estimation problem. In the first section the
special case of water network calibration is presented with particularities of such a
system.

It is always possible to tune the parameters (p*) of a model so as to make its input-
output behaviour (M(p*)) identical to that of the process (M(p))  for any time and input,
which will be denoted by M(p*)=M(p). If a system is identifiable it means that this
identical input-output behaviour implies that the parameters p* of the model equals
those of the process (p) [Wal-97].

The problem is presented in section 2.2. The parallelism of estimation and equation
solution is treated in section 2.2. In section 2.3 the Identifiability concept in general and
for these particular systems is presented. The classification based on the repetition of
measurement follows in sections 2.4, 2.5 and 2.6. The identification problem design that
is closely related with the identifiability is treated in sections 2.7 and 2.8. Small
networks have been used in these sections as examples. In section 2.9 a bigger network
is treated as a case study.

2.1. Water Network state and parameter estimation
problem

The choice of state variables is not unique. Typically in a water network, nodal heads
(including reservoir heads), that is h and hr, and reservoir inflows qlr [Brd-94] are
chosen as the state variables.
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[ ]lrr qhhx ,,= (2.1)

The network model is assumed to be represented by flow continuity equations and by
branch flow-head characteristics modelled by Hazen-Williams relations. Thus, the
demands are expressed in terms of flows. The branch characteristics are used to express
flows in terms of x.
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Where Λ is the incidence matrix of the network, q is the vector of flows [m3/h] in the l
pipes. The distribution of demand is assumed to be constant and represented by vector
w, total demand, d, is the variable obtained by demand prediction and measurements in
boundary flows. ∆hj [m] represents the head loss in pipe j which has Rj resistance and
flow qj. Other elements such as valves can be understood as generalisation of pipes with
minor changes in equations and for simplicity are not included in this study. The
specificity of such elements is taken into account in the first step of calibration,
macrocalibration. The knowledge used in this process depends on the behaviour and
type of each element and even for different valves and pumps is different. In the
microcalibration the work is restricted to pipes while a generalisation could be done
without changing qualitatively the algorithm and results.

Some of these heads and flows are measured. All the heads and reservoir inflows should
be determined in order to estimate the state of the network. Some parameters appear in
the equations, such as resistances and demand factors. The state estimation problem
assumes that these parameters are known so that a model of the network is available and
the estimation will depend only on the observability of the system based on the
measured variables. If all of these parameters are not known they will have to be
estimated as well and the problem becomes a generalised one, a state and parameter
estimation. The calibration process of a network includes the measurement of physical
parameters (reservoir areas, length of pipes, etc.) but some parameters have to be
estimated. These are generally resistances (or in alternative formulation, roughness) of
pipes and demand distribution factors, this is the state and parameter estimation problem
as it has been stated.

The main difference between variables and parameters is that the latter are constant in
time, assuming a determined time horizon. For state estimation the system has been
treated as a static one. Dynamics of the water systems would lead to transient equations
the use of which is not generally extended in simulation, optimisation and, generally, in
water management procedures. The quasi-static approach used in simulation comes
from the reservoir dynamics. For each simulation time step the system is assumed static
and a mass balance in reservoirs relates to each time step.
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Where A  [m2] is the area of the reservoir, a known parameter.

State estimation
The quasi-static problem does not improve state estimation qualitatively. It improves
numerically as the measurements are not exact and, as it has been said, the problem is
treated as an optimisation one.

Parameter estimation
A qualitative difference could appear as these parameters do not change in time so the
number of variables do not increase exactly as the number of equations if the number of
time steps increase. So this quasi-static approach is taken into account when the
identifiability study is carried on. When parameters are estimated identifiability
substitutes observability concept.

Example 2.1: In order to illustrate the difference between both problems when more
than one time-step is used. Imagine a reservoir, a pipe and a junction as appears in
figure 2.2.

hr

A

R

qw·d

h

Fig. 2. 2
These are the equations of the reservoir:

dwqAkhrkhr ·))·1()(( +=+−

In the first example it is assumed that all parameters – Area (A) and demand coefficient
(w)- are known. Level of the reservoir is measured but flow and total demand are not
measured. With one time step there is one equation, the state is not observable because
there are two variables unknown. If another time step is taken there are two equations
and four variables, as both demand and flow change each time step. The equations can
be rewritten as follows:
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Numerically it is clear that the system of equations is non-determined as the matrix is
2x4:
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On the other hand if flow and total demand are known and what is searched for are the
parameters A and w equations are rewritten for two time steps (with only one time step
the problem is not soluble as there are two variables and one equation):
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Now numerically it is seen that the problem is determined and the solution is unique.
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So the increase of the time steps is qualitatively different in the parameter estimation
problem and in the state estimation problem.
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2.2. Estimation problem and equation solution
The parameter and state estimation problem in static approach appears to be a set of
equations that have to be solved (equation 2.4). The variables are the unmeasured heads,
flows and the unknown parameters (x). The state estimation problem would be a
particular case with no parameters in variable vector. As the network equations are non-
linear it is a non-linear equations set that has to be solved. The inaccuracy (ξ) in
measurements (z) leads us to treat the problem as a minimising one, resolution
techniques are not discussed here. The equivalence with the equation set solution is
used for the identifiability study discussed in further sections.

ξ+= )(xgz (2.4)

A network has r reservoirs, n junctions (nodes will be used in general for both
reservoirs and junctions), and l pipes. Two vectors could be defined, the non-measured
vectors of heads (hr-, h-), flows (q-), resistance (R-) and demand factors (w-) and the
measured or known vectors (hr+, h+, q+, R+, w+). The expression of equations is too
general if has to be applied to any network.
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The last equation comes from the normalisation of the demand factors.

Example 2.2: The simple network showed in figure 2.3 will be used to illustrate the
equations formulation of the system. The measurements are levels in r1 and r2, head in
junction n1, flows pipes p1 and p4 and both demand factors w1 and w2.
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Fig. 2. 3
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These equations have to be changed if some new measurement is introduced. For the
general development and easier modification of the problem, adding sensors or
changing the network, all the variables and parameters are included in vector x=[hr h q
R w] and treated as unknown variables. As a variable is measured or a parameter known
a new equation is introduced. For this particular case:
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The last nine equations are those that introduce measurements or known parameters.
This notation makes it easy to introduce or remove sensors. Reservoirs introduce the
value of one variable in two different moments as the quasi-static equations described.
This is the way to know the reservoir inflow. The order used is not arbitrary as will be
seen when a new time step is introduced. Levels of reservoirs are already present for
this new time step, only heads and flows are introduced after these levels and the levels
for the next time step before resistances and demand factors. So this time generalisation
is the easiest.

Example 2.3: Here are shown the equations for the same network for two time steps.
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2.3. Identifiablity
When one system is being identified, input has to be selected in order to get a response
of the system that will be measured during a period of time. When a water network has
to be identified the measurements that will be taken appear as the outputs of the system.
The conditions in which these measurements are taken if not forced, can be selected as
the inputs. Finally the number of measurements taken by each meter is the extension in
time of the identification process.

Looking at a water network at one time instant; the flows, heads, boundary flows,
demands, demand factors and resistances are related by equations 2.2 and 2.3. The
identification problem tries to determine parameters such as resistances and demand
coefficients, which are constant (they change in a large period of time) and would
provide the model of this network. Total demands can be measured or known a
posteriori by invoicing. Boundary flows can be determined as well. These boundary
flows come from a reservoir where head is easy to measure or are bought outside and
the flow is measured. The measurement of heads in the nodes and flows in the pipes
depend on the availability of meters or the opportunity to add them. As more
measurements are available, namely outputs, the calibration will be possible or easier
and more robust. The variables not measured; flows, heads, boundary flows, demands,
demand factors and resistances have to be treated as parameters to be determined and a
large number of such unmeasured parameters reduce the identifiability of the system.
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The identifiability study tries to determine the necessary meters that have to be installed
in order to have a good calibration but not to increase the cost unnecessarily.

As the parameters of the network (resistances and demand factors) are constant in time
they relate measurements taken in different time steps. That means that if the same
measurements are taken more than once the number of unknown variables increases but
not as the number of equations does. So a system that is not identifiable with just one
time step can become identifiable if some time steps are included. As the Time period
of the input signal and output measurement is determined in the identification of a
system, so must in this case the number of time steps that make the system identifiable.
If the minimum of time steps is determined and more than these are taken into account
the optimisation will take advantage of this redundancy.

If many measurements are taken in the same conditions they will not add any
information. Many measurements have in this case the aim of filtering the noise in the
measurements. The selection of a good input is a vital step in the identification problem
in order to get the information from that output generated by the system. In the
identification of water network some variables can be altered or even fixed as heads in
some nodes related to a reservoir or boundary flows. If this actuation is not possible the
measurements can be taken in different conditions selecting the instants when total
demands, level of reservoirs, etc. are different. A good selection of the input set is
necessary to get a good set of outputs with the information for calibrating the model.

In the previous section the estimation problem has been presented as a set of equations.
The identifiability of the system would be equivalent for the equation to have a unique
solution. Such a condition implies that the number of equations is the same as the
number of variables. All these variables have to appear in at least one equation as the
unique unknown variable or with variables that can be determined by other equations.
This study is done for the static problem [Oza-86],[Car-91] using graph analysis. For
the linear case this condition reduces to the invertibility of the matrix of the equations
set [Sor-80]. Water networks’ models are in general non-linear, only in special cases
where all heads or flows are measured it will become linear. The approximation by
Taylor series drives to the use of jacobian to study the identifiability of the network.

The interest of using more than one time step in the measurement makes necessary the
generalisation of the identifiability conditions. The identifiability study should
determine; which are the variables that have to be measured, how many time steps must
be taken into account, and which are the conditions in each time step that make all these
measurements useful for the calibration (figure 2.4).
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Water
network

Boundary
conditions measurements

t(i) ∈{t(1)…t(k)}
Fig. 2. 4:Identification experiment

Conditions of identifiability for non-linear dynamic systems can be found in the
literature [Wal-96]. If they have to be applied to water networks without using transient
equations the system becomes a discrete one based on the quasi-static equations. State
variables are the levels of reservoirs that are the variables that evolve in time, this leads
to a difficult algebraic manipulation of differential equations that will make such an
approach non operative. The topological approach that appears to be so useful in the
static problem (for it allows the localisation of the missing sensors) has appeared to be
difficult to generalise. Besides it would only assure the existence of equations from
where the variable could be inferred but with no idea whether these equations are
numerically well posed as no numerical value enters in its process. The generalisation
of the Jacobian for the identifiability study appears to be the best approach. This
equation approach converts the quasi-static problem to an extended period static
problem as all the equations are treated as belonging to the same set with no time
meaning.

If the formulation of the system is taken from an equation point of view, then all this
discussion would be about the invertibility of a function in general and a matrix in the
linear case. This approach has been used and has been crucial in the most general cases.
Nevertheless the system approach, and with the concept of identifiability as a property,
has been kept. Such an approach brings us to the more physical world. It is important
not to forget the origin of the issues that we deal with when immense arrays are used
and linear and non-linear functions are analysed, modified and inverted.

2.4. Static Identifiability
To study the static case will be insufficient for the purpose of this thesis but it is a good
starting point. The Identifiability condition can be presented as both a necessary and
sufficient condition.

1. The number of equations has to be greater than or equal to the number of
variables.

2. Each variable has to appear in an equation where all the rest of the variables are
measured or can be inferred from another equation.

The second condition is not obvious especially in non-linear systems. In this section two
different approaches will be presented. They are applied to the same simple example.
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2.4.1. Graph interpretation
Much literature exists on the study of observability for electric networks [Fet-76], [Bret-
96]. A good idea is to exploit the analogy between these systems and water networks
that are much less studied from a theoretical point of view. Carpentier [Car-91] uses the
algorithm proposed by Ozawa [Oza-86] to determine the identifiability of a water
network with some measurements provided. The idea in the background is that some
operations in graphs (contracting, deleting) are equivalent to operations on equations
(eliminating known variables, using equations to know variables). In studying water
network problems, it is often convenient to treat the network as if it was a closed one.
That is why the datum node is introduced so from the graph G the augmented graph G*

is generated. The head loss is used instead of heads and levels. The head loss equations
(2.6) are added to those in equations 2.2 and 2.3.

0=∆Γ h (2.6)

Example 2.4: Now the subsequent steps for the identifiability determination are
explained using the network of figure 2.3 with the measurements of example 2.2, note
that reservoirs in this case are treated as junctions and demand is equivalent to inflow
which in this case is known. In figure 2.5 the augmented graph is presented.
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Fig. 2. 5
1. First of all the pipe subsets are represented explicitly

{ }7,6,5,1* =bU elements with two or more parameters known (demand and head loss)
{ }2* =πU elements of which only head difference is known
{ }8,4* =fU  elements of which only flow is known (demand)
{ }∅=*

´rU  elements of which only resistance is known (flow is unknown)
{ }3* =uU elements for which nothing is known

2. The flow graph is defined as: ****** )( rrufr UUUUGG ×∪∪⋅= π
, it contains no arc. Where

**
rUG ⋅  means the graph obtained for *G by deleting all the arcs not in *

rU .
**
rUG × means the graph obtained from *G by contracting all the arcs not in *

rU . Tree
and cotree of the flow graph are { } { }∅=∅= ** ; frfr CT  that means that there are no
unknown flow and no flow equation left after the operation. A tree of a graph G, T,
is a maximal partial graph of G which does not contain any cycle (loop). The cotree,
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CT, associated with T is the partial graph of G incorporating all the arcs of G-T and
has no cocicle (cut).

3. The head graph is defined as: ****** )( rrfur UUUUGG ⋅∪∪×=π
, is empty as well. Tree and

cotree of the head graph are { } { }∅=∅= ** ; rr CT ππ  with the same meaning about variables
and equations.

4. The pipes in which only the resistance is known can be divided in three subsets:
• *

+rU  minimal subset of *
rU that ***

rfrr CTU π∩⊇+
, **

frr TU ∩+
is tree of **

+× rfr UG  and
**
rr CU π∩+
is cotree of **

+⋅ rr UGπ . In this case { }∅=+ ·*
rU .

• *
−rU  minimal subset of *

rU that ***
rfrr TCU π∩⊇−
, **

frr CU ∩−
is tree of **

−⋅ rfr UG  and
**
frr TU ∩−
is cotree of **

−× rr UGπ . In this case { }∅=−
*
rU .

• { }∅=−−= −+
****

0 rrrr UUUU
5. The tree of G* that allows us to write flow equations must be determined from its

definition { }5,3,2,1**** =∪∪= uffrfbff TTTT π
 where:

{ }5,1* =fbfT  is a tree of )( ***
fb UUG ∪×

{ }3,2* =ufT π
 is a tree of )( ***

uUUG ∪⋅ π

{ }∅=∪∪= −+
**

0
**

frfrfrfr TTTT

6. The tree for the head equations { }4,3,2***
0

*** =∪∪∪∪= −+ furrrb TTTTTT πππππππ
 where:

{ }8,5,3,1* =ππbT  is a tree of )( ***
πUUG b ∪⋅

{ }3* =fuTπ
 is a tree of )( ***

uf UUG ∪×

{ }∅=∩= ++
***
rrr UTT ππ  is a tree of **

+⋅ rr UGπ

{ }∅=∩= −−
***
rrr UTT ππ  is a tree of **

−× rr UGπ

{ }∅=∩= *
0

**
0 rrr UTT ππ  is a tree of *

0
*** )( rrrr UUUG ×∪⋅ −+π

7. Redundancy in flow equations comes from the equations generated by arcs
in { }5,1** =∪ +frfbf TT , which involve only variables of ***

frb UUU ∪∪ +
. Only two of the four

flow equation (linear independent) are used to determine q2 and q3, the other two
are redundant

8. Redundancy in head equations comes from the equations generated by arcs
in { }8,6** =∪ +rb CC πππ

, which involve only variables of ***
πUUU rb ∪∪ +
. Equations

∆h1+∆h6+∆h5=0 and ∆h2+∆h7+∆h5=0 are redundant.
9. { }∅=*

0frC and { }∅=*
0frT generate the equations which involve calculable variables. In

this case this set is empty.
10. The flow equations generated by the arcs in { }∅=−

*
frT and the head difference

equations generated by the arcs in { }∅=−
*
frC  cannot be solved without adding new

measurements. This part of the global problem remains unidentifiable. So in this
case, flow in 2 and 3 are unidentifiable.
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11. The flow of an arc in { }2,3** =∪ uUUπ  can be obtained if a cocycle, generated by the
arc such that all the other arcs in the cocycle belong to

{ }8,7,6,5,4,1*
0

*** =∪∪∪ + rfrb UUUU , exists. In this case the cocycles, generated by 2 and 3,
{ }5,4,2,1  { }6,4,3,1  fulfil the condition and so flow is identifiable.

12. The head difference of an arc in { }8,4,3** =∪ uf UU  can be obtained if a cycle,
generated by this arc such that all the other arcs in the cycle belong to

{ }7,6,5,2,1*
0

*** =∪∪∪ + rrb UUUU π , exists. In this case the cycles generated don’t fulfil the
condition so head differences are unidentifiable.

A resistance variable of an arc in { }8,4,3,2*** =∪∪ uf UUUπ
 can finally be obtained if the

flow and the head difference of this arc were previously obtained. In this case only 2
can be obtained. Estimation in these conditions has given the wrong results shown in
figure 2.7. The unidentifiability of the system doesn’t come from condition 4 -that has
to do with pipes where roughness is known. As the roughness is constant some more
measurements taken in other time steps can improve this identifiability.

2.4.2. Equation interpretation
In some cases, when all heads are known, equations of the model become linear.
Equation 2.4 can be written in matrix form, equation 2.7. The identifiability condition
can be expressed in terms of the rank of matrix G as it is equivalent to the solvability of
the equations set. Linear algebra imposes that a condition (the number of variables and
rank of G are equal) has to be necessary and sufficient.

ξ+= xGz * (2.7)

Kalman filter allows the estimation of parameter in a system from the inputs and
outputs measured. Such a filter is robust to the measurement noise. Kalman filter gives
a estimation of these parameters (ψ) generated as the arguments of a minimisation
(equation 2.8).

t1,....,i               arg
1

2
=−= ∑

=ℜ∈

i

j
rjj

r
i xGzmin

n
ψ (2.8)

Where xr are the parameters that are searched. Assuming that matrix G1’· G1 is positive
defined (this is a identifiability condition is equivalent to the analysis of rank of G1 that
has already stated), the least squares estimate can be generated by a recursive algorithm.
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where λ is a exponential forgetting factor. When λ=1 the usual least squares problem is
obtained. As the system is non-linear a extended Kalman filter (EKF) has to be
introduced [Ver-97]. Here extended has nothing to do with the extended period that will
be used later in this thesis but with the generalisation for non-linear systems. This
method may be viewed as an incremental version of the Gauss-Newton-like iteration.
The method starts with some xr0, then updates xr via a Gauss-Newton –Like iteration
aimed at minimising

22 )()( rr xgzxf −= (2.10)

then updates xr via a Gauss-Newton-like iteration aimed at minimising and similarly
continues, with the ith step consisting of a Gauss-Newton-like iteration aimed at
minimising the partial sum

2

1
)(∑

=

i

j
rj xf

Thus, a cycle through the data set of EKF sequentially generates the vectors

∑
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1 ),(~arg ψψ

Where ),(~
1−ij rf ψ are the linearised functions

)()'()(),(~
1111 −−−− −∇+= irijijirj xffxf ψψψψ

and ψ0=xr0 is the initial estimate of xr. Using the formulas of Kalman Filter (2.9) with
the identifications
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The first identification is equivalent to work with increments what is normal when the
linearisation is used. The algorithm can be rewritten as
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The convergence condition is following Bertsekas reasoning [Ver-97] that ∇f1(r) ∇f1(r)’
has rank equal to the number of parameters that are estimated. In the water system
calibration problem f1(y,x,r)=z-g1(x,r) is the vectorial equation system of the network.
The Jacobian that is searched would give an idea of the relation of outputs
(measurements, z) and parameters (r) independently of the state variables that are not
measured but are not intended to be estimated. Differentiating f1(z,x,r)
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This development is based on the implicit function theorem:

IMPLICIT FUNCTION THEOREM Let the function G:Rn+m→Rm be C1 in the
neighbourhood  Ω of the vector (x0, z0) in Rn+m with G(x0, z0)=0. If JG(z0)≠0, then
there exists a neighbourhood Ω1 of x0 in Rn, a neighbourhood of (x0,z0) in Rn+m, and a
function g:Rn→Rm in C1(Ω1) such that z=g(x) satisfies G(x,g(x))=0 in Ω2. Furthermore,
Jg(x)=-[JG(y)]-1JG(x)

The idea is to solve the first part of equations in last system of equation 2.13 in order to
obtain the relation between measurements and parameters (∇xrz). To do it analytically is
an extremely difficult problem because the intermediate variables xt, that are not
measured have to be eliminated from equations that are non-linear. It is done
numerically for a working point. Using the first notation presented in example 2.1
(without ordering the variables in a convenient way) equations can not allow an explicit
expression without losing generality. It would make necessary to redo all the
calculations depending on the measurements available. The second form of the
equations presented in example 2.2 for general purposes is useful when the Jacobian has
to be calculated. It means to assume that all variables have to be estimated and include
new equations for measurements such as 2.14 for those that are measured or known
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ii zx = (2.14)

These new equations will generate rows in the Jacobian with one number 1 each in the
position of the measurement (reservoirs, nodes and pipes in this order). They are
represented in equation 2.15 by B. Vector x includes all the variables, measured and
estimated: reservoirs and junctions’ head, pipes, valves and pumps’ flow, pipes’
roughness and junctions’ demand factors in this order.  Equation 2.15 presents the form
of a generic Jacobian where variables (x) are both state(xt) and parameters(xr).
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Where z is the number of measurements. B is a sub-matrix with z rows and r+n+l all
zeros except single 1 in each row in the position of a measurement. The identifiability
condition is that the rank of J is equal to the number of variables, 2*r+2*n+2*l (heads,
flows, roughness and demand factors). This Jacobian will be used later for the
identification problem design because the relation between measurements and state
variables is important for the meter placement. Following equation 2.13 and in order to
have a compact matrix to determine the identifiablility of the network a new matrix will
be generated numerically:
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This is a (r+2n+2l+1×2r+2n+2l) matrix, but it is used to obtain a square matrix with the
dimensions of the number of parameters (l+n×l+n) ∇xrz ∇xrz’ solving 2.13 partially.
This has to have rank l+n in order to assure the observability as is stated previously
[Bert-96].

Example 2.5: at the same system of example 2.4. Variables are 16 –two levels for each
reservoir (4); head and demand factor for each junction (4); flow and roughness for each
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pipe (8)-. The system is not identifiable as had been stated by the previous method. The
first two rows of Jacobian correspond to the mass balance in the reservoir, the next two
rows to the mass balance of the junctions. The next four rows correspond to the
hydraulic equations by Hazen-Williams in each pipe. The next eight rows correspond to
the measurements -four levels and four flows-. The last row corresponds to the relation
between demand factors.
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The dimension of the Jacobian is 18x16 but its rank is of 15. So the system is not
identifiable, as the number of variables is not equal to the rank of the Jacobian. The
calculation of ∇xrz ∇xrz’ is done numerically. The result is a 6×6 matrix:
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The rank of this matrix is 5 so it is smaller than the number of parameters that are
intended to be estimated. In figures 2.6 and 2.7 appears the estimation of the
parameters. Of course the measurements are well estimated and so are the flows (it was
seen in previous methodology that the problem was in head estimation). The flow sub-
problem may be identifiable but the heads at the junctions and the resistaces are not well
estimated. The (·) represents the estimated values and (o) the actual ones.
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2.5. Dynamic Identifiability
When the identifiability is studied for a calibration problem some constant parameters
are estimated. It means that the demand factors or the resistances of the pipes do not
change in each sample of measurements. So if more than one time step is taken into
account some more information is provided. Perhaps a system that is not identifiable
just with one time step becomes identifiable with more time steps, as the number of
equations introduced may be greater than the new variables to be estimated.

Walter [Wal-96] uses the state space formulation in order to study the identifiability of a
system using the dynamic information. Consider the model







=

==

).),((),(

)()0(              ),,),(),(()(
:)( 0

ptxhpty

pxxpttutxftx
dt
d

pM (2.17)

If

),(lim)(
0

pty
dt
dpa

tk +→
= (2.18)

then a suffient condition for M(·) to be uniquely identifiable is

*,,....1,0       *),()( max ppkkpapa kk =⇒== )) (2.19)

There kmax is a positive integer, small enough for the computations to remain tractable.

The model that is being calibrated is quasi-static. It means that in a time step heads are
considered constant and flows in steady state. Dynamics are introduced by the
reservoirs that increase or decrease their level and a new steady state is calculated. The
methodology proposed by Walter is adapted for the study of extended-period
identifiability of a network.

Example 2.6: A simple case, figure 2.8, that is not observable using only one time-step
measurement is posed in state space and the Taylor approach is used to prove it is
identifiable as a dynamic system. Using optimisation its calibration has been successful.
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Equations of this dynamic not linear system are
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The state variables are the level h1 and h2, measurement is h2 and the unknown
parameter is R. Demands are the inputs of the system. Output is head of the second
reservoir. Using Ozawa’s algorithm, it has been proved that knowing demands, h2 and
ignoring flow q, resistance and h1 the model is not observable in one time step
measurement.

The flow q appears in the static equation so cannot be treated as a state variable, it is
substituted in the dynamic equation and the problem appears as follows.
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Here Y is the admittance and u represents the inputs, demands. An initial condition is
necessary in order to examine the identifiability following the approach presented.  The
head at the initial moment is x(0)=[110 100]. The equations with kmax=2 show that the
dynamic system is identifiable
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from the second one it can be seen that only one solution for Y is possible so parameter
R=1/Y can be found. Using the constr.m function of Matlab the optimisation problem
converged and the calibration was succesful. A problem appears in the case of nodes
which cannot be treated as dynamic elements and have to be substituted, as was done
with flows.

Example 2.7: Network in figure 2.9 includes a node that presents problems for the
formulation as has already been told. Parameters to be identified are R1 and R2. A1 and
A2 are known, demands d1 and d2 are treated as inputs and the measurements are done
in h1 and h2.
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







=

=
=−

=−

−=

−−=

2

1

21

852.1
22

852.1
11

2
2

1
1

23

31

22

11

h
h

y

qq
qRhh

qRhh

dq
dt

dhA

dq
dt
dhA

These equations can be treated in order to obtain a new formulation useful for the
identifiability study.
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where x1=h1, x2=h2, Y1=1/R1, u1=d1, u2=d2.

Using Ozawa’s approach the network is not identifiable with just one measurement in h1
and h2. In order to study the identifiability, the approach proposed by Walter is used.
The initial conditions needed are:
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Both parameters always appear together in the same expression so only this
combination of the parameters could be identified taking more time steps. However this
has been tried using optimisation and the identification failed as was expected. The
network was easily observed introducing the measurement of h3. The identifiability has
not been studied using this approach, as it is not obvious to introduce the dynamic of a
node without reservoir.

Example 2.8: A modification to the previous system is done and the study though
difficult to work out seems to indicate that identifiability improves. The identification of
both resistances, when only a node without demand and no head measure separates the
pipes, it showed to be impossible even increasing the number of measurements. This
identification could be even useless, as an equivalent resistance could be enough for
both pipes together. A demand at the node makes the identification necessary but it may
improve the identifiability as well. Figure 2.10 shows the new network.
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These equations can be treated in order to obtain a new formulation useful for the
identifiability study. The isolation of q1 gives a very complicated result due to the
exponent 1.852. It has been solved using Maple [Map-03] but in order to simplify the
equations this exponent is approximed to 2.
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where x1=h1, x2=h2, Y1=1/R1, u1=d1, u2=d2, u3=d3.

Using Ozawa’s approach the network is not identifiable with just one measurement in h1
and h2. In order to study the identifiability the approach proposed by Walter should be
used. The inclusion of the third demand in a non-linear relationship between the
resistances intuitively means that in order to obtain a0, a1,...,akmax only a set of
parameters work, if it works with exponent 2 it can be assumed that with 1.852 it would.
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This has been tried using optimisation and the identification worked while the same
failed if demand 3 was zero. The expressions of a0, a1,...,akmax contain derivatives of the
output in respect to the time. Expressions are too complicated to do it without software
(Mapple, Mathematica). It has been done but even for such simple example the solution
is a multiple and very complicates expression.

The complexity of these studies even for such small networks makes difficult their use
for real networks. The study of the extended-period identifiability should use easier
expressions that can be generalised easily. The linear algebra theories seem to fulfil this
condition. Even for non-linear models the approach is similar to the methodology
proposed by Walter as both use Taylor series approximation.

2.6. Extended Period Identifiability
In state estimation problems the identifiability condition doesn’t change when new time
steps are added, unless the system is treated as a dynamic one. Transient equations
appear in such cases and they are much more complicated, especially for huge
networks. Using the quasi-static approach allows us to use simpler equations related
from one time step to the next one by reservoir equations. Each time step is equivalent
to the former and introduces the same number of variables so the identifiability can be
decided from one time step in state estimation. If parameters are estimated the number
of variables increases differently from the number of equations as these parameters are
constants. This is the main reason to introduce the extended period identifiability
concept, not called dynamic as it is based on quasi-static equations.

Here once more it should be recalled that the meaning of extended is different to that  in
Extended Kalman Filter (EKF) where it concerns be with non-linearity. Here extended
is a time concept and at the end of this sections both extended meanings will meet when
extended-period non-linear systems are treated.

The introduction of new equations (repeating the measurements in different times) can
be useful but the conditions cannot be the same. In figure 2.4 the three important
elements of identification experiments appear. So far the output (measurements) has
been treated. Adding new time steps the time horizon is introduced in this problem. The
inputs have to change during this horizon otherwise outputs wouldn’t carry more
information about the system. Inputs must be as orthogonal as possible in order to
contain as much information as possible for the identification process. These
orthogonal inputs have to be obtained in water networks working in changing
conditions of demands or reservoir levels.

The problem in extended period identifiability is no longer just counting equations but
to assure they are not linearly dependent. The generalisation of topological approach



2 Extended period identifiability in water networks 55

would not help in this new challenge. So the generalisation of Jacobian methodology is
presented after some results for the linear particular case.

2.6.1. Linear case
If all heads are measured this problem becomes linear, so the l non-linear equations
become linear. Using a nodal model, equations 2.2 can be written as:

0)( =⋅+∆⋅Λ dwhQ (2.20)

where Q(∆h) is a vector of pipe equations
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where yi is the admittance of pipe i. ∆H can be defined as
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So that equation 2.20 can be written as
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where I is a unit matrix and y and w are the parameters to be estimated. Equations are
aggregated in equation 2.23 for each time step and it becomes like equation 2.24.
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The matrix
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has n*K+1 rows, when relation between all the demand factors is added, and (l+n)
columns where l denotes the number of branches in the network. The model is
identifiable if matrix H(K) has a full rank of (l+n).
There is a theorem, which may make the problem of extended-period identifiability
easier:

Theorem 1 [Sor-80]
The matrix H(K) has a full rank if and only if the matrix H(K)T H(K) is positive
definite. Applying this theorem to our matrix H(K), given by 2.25, the following is
obtained
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This is a (l+n)×(l+n) matrix and its size does not depend on the number of time steps K.
It is easier to investigate matrix 2.26 than matrix 2.25. This matrix may not be positive-
defined for K=1 but if we take more time steps K>1 then the matrix may become
positive-defined. In order to get information from each time step the measurements
must be independent.

Example 2.9: To exemplify the identifiability studies and in order to get some
conclusions the same square network is used. Now all heads (reservoir levels included)
are known and so are the demands. No flow is measured and resistances have to be
estimated as well. That means that from reservoir equations the inflow can be obtained.
The values of variables are the following:
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The eigenvalues of ATA are λ. A real symmetric matrix is positive defined iff all its
eigenvalues are positive. ATA is easily proven to be real and symmetric. Minimum
eigenvalue for matrix A1TA1 is λ1=0 when only one time step is used so the system is
not identifiable and the results of trying to estimate the parameters are shown in figure
2.11. Here only the constant parameters are presented. Demand factors can be estimated
easily and the numerical problems affect the resistances estimation.
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Fig. 2. 11
When two measurements are taken the matrix is positive definite as the minimum
eigenvalue is λ=0.01, it is very small and it could mean that the problem is not well
conditioned. The repetition of measurements improves the results. In figure 2.12 the
evolution of the minim eigenvalue (log) is shown as the number of measurements
increases. With 2 measurements it is already identifiable, with more measurements the
numerical identifiability improves as the minim eigenvalue increases. This is the reason
why the estimation is not that good and why with more measurements it improves, the
results with 10 measurements appear in figure 2.13. Both resistances and demand
factors appear well estimated and this estimation improves as the number of time steps
increases.
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2.6.2. Known demand factors
To simplify the problem even further it can be assumed that w is known. Then equation
2.23 becomes

[ ] NqyH =∆Λ (2.27)

where qN represents all nodal flows including the demands. If measurements are
repeated many times and a collection of equations 2.24 can be arranged into a single
equation
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or alternatively

)()( KQyKH N= (2.29)
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The diagonal elements of each matrix )(kH∆  can be arranged into a column vector )(* kh∆
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THEOREM
The number of linearly independent vectors )(* kh∆ , k=1,2,…,K is denoted by s. Then

sKHrank =)( (2.31)

This means that if

ls = (2.32)

the water network is identifiable.
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PROOF
The condition presented is a sufficient but not necessary. Then it must be demonstrated
just in one way. By linear algebra it is known that in a linear system as 2.29 the
condition to have a compatible and determined system is that the rank of matrix H(K) is
m (number of unknown variables) assumed that the measurements are consistent and so
the system can not be incompatible.

As the hypothesis of the theorem is that s=l, it (the theorem) will be demonstrated when
2.31 is demonstrated:
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H(K) has m columns, if it is demonstrated that there are m linear independent rows then
the rank of this matrix will be m. H(l) can be written:

 





















Λ∆Λ∆Λ∆

Λ∆Λ∆Λ∆
Λ∆Λ∆Λ∆

=

ll

ll

ll

lhlhlh

hhh
hhh

KH

)(...)()(
............

)2(...)2()2(
)1(...)1()1(

)(

*
2

*
21

*
1

*
2

*
21

*
1

*
2

*
21

*
1

(2.34)

where Λj are columns of the incidence matrix and the s=l linear independent vectors
)(* kh∆  have been used. So we have m submatrixes (n-1×l). In order to have non-zero

element rows we can use a linear combination of all the elements of a submatrix and
substitute the first row. By construction (as in an incidence matrix) each column has two
non-zero elements 1 and –1, these new rows will not have zero elements as they are the
products of the sum of all the rows multiplied by its order:
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As these rows are linear combination of the others, the rank of the matrix cannot
increase. So if rank(H’(K)) is m so will be rank(H(K)). By taking only these new rows
we get an m×m matrix. If all the columns are linear independent so will be the rows. To
have a column, which is a linear combination of the columns, equation 2.37 should have
a different solution apart from the trivial (λ1=λ2...=λl=0):
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It can be written as a linear system:
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In order to have a non trivial solution the l×l matrix of the former system should be
singular and it is not possible as the rows are the linearly independent )(* kh∆ , so it has
been demonstrated that H’(K) has rank m and so has H(K).

Example 2.10: The same system, figure 2.3, used before has been tested. The results
are the same as those obtained when the demands were not known. So the system is
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identifiable with two or more time steps. The condition s=l=4 implies that there are
three linear independent vectors )(* kh∆ so at least four time steps should be taken. It is a
sufficient but not necessary condition, so it is not inconsistent that with two time steps it
works. In table 2.1 appear the singular values for different numbers of time steps. Here
it can be seen that the problem is not numerically well conditioned.
Table 2.1

1 time
step

2 time
steps

3 time
steps

4 time
steps

3.31 4.6 5.6 4.91
- 0.16 0.46 0.59
- - 0.01    0.01
- - 0.002

2.6.3. Non-linear case
The linear methodology has been generalised for more time steps. When not all heads
are known the methodology based on Jacobian, presented in section 2.4.2 for the static
case, should be used. The notation used in section 2.2 is justified now because of the
easy generalisation. Some indices will be defined, they will help in the construction of
the ∇f1(r)·∇f1(r)’ matrix, a generalisation of equation 2.16. There are still r reservoirs, n
junctions (with demand factor associated), l pipes (with resistances associated). The
indices for the levels of reservoirs (hr), heads of junctions (h) and flows of pipes (q) that
are measured are zhr, zh, zq respectively. The indices for the resistances of pipes (R)
and demand factors of junctions (w) that are known are zr and zw respectively. The
indices for the levels of reservoirs (hr), heads of junctions (h) and flows of pipes (q) that
are not measured are xhr, xh and xq respectively. The indices for the resistances of pipes
(R) and demand factors of junctions (w) that are known are xr and xw respectively. The
last ones are the parameters that are tuned and the non-measured variables have to be
estimated as they are part of the same problem. An important index is t for the number
of time-steps. Total demand d(k) is a curve for k=0...t, there are t vectors of levels,
heads and flows (hr(k), h(k) and q(k)).

The vector in which variables have to be estimated includes all the variables and
parameters, so that if the measurements change or the number of time steps increases
the new system is automatically generated- this was seen in the static study. Equation
2.39 shows the construction of the vector x:
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The total number of variables is (l+n+r)*(t+1). Available equations are:
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And those generated by measurements:
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Jacobian will be composed by one corresponding to the variables in which the number
increases with time steps (Jxt) and one corresponding to the constant parameters (Jxr).
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The last row is the relation between demand factors. The first one is the composition of
those corresponding to each time-step.
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Bt is a submatrix with zt rows and r+n+l all zeros except a 1 in each row in the position
of a measurement (zhr,zh,zf).
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B0 is a submatrix with z0 rows and n+l all zeros except a 1 in each row in the position of
a measurement (zr,zw).

The identifiability condition is that the rank of J is equal to the number of variables, this
is the generalisation of condition used in section 2.4.2. In order to get a more compact
condition equation 2.16 can be applied with new Jxt. And matrix ∇xrz plays a equivalent
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role to H(K) in the linear case. ∇xrz ∇xrz’ has always the same dimension, l+n×l+n.  The
identifiability condition in this case is this matrix not to be singular. Each Jacobian is a
very large matrix and no example will be shown explicitly.

Example 2.11: This methodology can be applied to the linear case so that
identifiablility of example 2.9 with more than 1 time step has been stated as Jacobian
becomes of full-rank. For the non-linear case, the dynamic identifiability was used in
example 2.6. It showed that the dynamic system was identifiable, the same conclusion
would be obtained applying the extended-period identifiability. For the example 2.4 and
2.5 this is the methodology that allows the generalisation of the identifiability as with
unknown heads the problem is non-linear. The Jacobian when there are two time steps
used is 30x24 and its rank is 24 so it is full rank and the system is identifiable the
compact matrix ∇xrz ∇xrz’ is a 6×6 matrix with rank 6. Figure 2.14 shows the estimation
of the parameters that has been successful. Here the increase of time-steps has saved the
addition of a sensor.
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Fig. 2. 14
This is the methodology used from this point. It is the most general that can be applied
to non-linear systems with more than one time-step. The extended period identifiability
is then studied using the jacobian of the function.
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2.7. Identification problem design
In section 2.3 the three main decisions for the identification experiments are presented.
Sensor placement, understood as output specification, is a common problem for static
and extended period problems. Introducing new time steps, the time horizon and
orthogonality of inputs come across. The minimum time horizon to assure
identifiability, given a set of sensors, is determined by methodologies presented in
previous section. More time steps are always taken in order to have redundancy so it is
not critical as long as the network is identifiable. These repeated measurements provide
new information if they are not taken in the same conditions. The choice of conditions –
inputs- is a really critical point in identification process. So a methodology should help
to make these two decisions easy when trying to identify a big network.

In the linear case a matrix that doesn’t increase with time steps )())(( KHKH T  has been
used. Such a matrix does not exist in non-linear case because flows cannot be
substituted in general, as they can be in the linear case where all heads are known. The
equivalent matrix is the Jacobian of the measurements with respect to the parameters.
When this Jacobian is multiplied with its transpose a square matrix is found with
dimensions equal to the number of parameters. If all variables are taken as parameters
that have to be estimated this product (jacobian by its transpose) loses the compactness
but it can be used in the identifiability study as it has been shown in previous section
and the presence of all variables will allow the meter placement decisions. To assure
identifiability this product should be positive definite -that means (as it is real and
symmetric) its eigenvalues are positive. These eigenvalues and eigenvectors give the
singular value decomposition of the Jacobian. This decomposition will be very useful
when making decisions in the process of calibrating a network.

Interpretation of this Jacobian and its singular values is fundamental in order to get
some conclusions. In multivariable control [Sko-96] singular value decomposition is
well known and gives a useful tool to treat both spaces, input and output for a system.
Singular values relate some special directions in input space to some directions in
output space.

Definition 2.1: Any complex l×m matrix A may be factorised into singular value
decomposition

TVUA Σ= (2.47)

where the l×l matrix U and the m×m matrix V are unitary, and the l×m matrix Σ
contains a diagonal matrix Σ1 of real, non-negative singular values, σi, arranged in a
descending order as in



68 Identifiabilitity and calibration of water network models

[ ]
{ }

σσσσσ

σσσ

≡≥≥≥≡

==Σ
≤Σ=Σ

≥






Σ
=Σ

k

k mlminkdiag
ml

ml

...

},{  ,...,,
  ;0

  ;
0

11

211

1

1

(2.48)

The unitary matrices U and V form orthonormal basis for the column (output) space and
the row (input) space of A. The column vectors of V, denoted vi, are called right or
input singular vectors and the column vectors of U, denoted ui, are called left or output
singular vectors. Singular values are calculated following equation 2.49.

)()( AAA H
ii λσ = (2.49)

Where λi(AHA) is the eigenvalue i of the matrix product AHA.

Example 2.12: In the example 2.4 and 2.5 the same problem is analysed. The jacobian
used in 2.5 is not a square matrix as it is not in general. This matrix has the physical
meaning of a linear approximation of the function that relates the variables that are
estimated and the measurements. The singular value decomposition gives the following
results.
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It was already known that the system was not identifiable. The last singular value is 0
that means that the jacobian is not full rank which confirms that the system is not
identifiable. Now using the singular vectors some further knowledge can be extracted.
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In figure 2.15 the magnitude order of the singular value is presented and it can be seen
that the last one is zero.

In the second plot the rounds (o) represent the values of the components of the input
singular vector corresponding to the smallest singular value. This singular vector is the
direction in the input space. In this particular case it can be seen that the components
that are most relevant correspond to those variables that are not measured , i.e. head of
node 2 and roughness in pipes 3 and 4. Symbol sum (+) is used for the same value if the
variable is measured. It can be seen that neither head in second junction or roughness
are measured. This suggests that introducing a sensor in this node would improve the
identifiability.

The third plot shows only the value of the sum of the absolute values of the components
of the last singular vector (V) related with  levels, heads and flows that are the ones that
can be measured. In this case again the most relevant is the head of node 2 that is not
measured.
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Fig. 2. 15
Watching the identification as a set of non-linear equations approximated in a linear one
by Jacobian, this matrix relates an input space of variables with an output space of
measures. The non-identifiability of the problem is detected by a zero singular value
that is related with a specific direction in input space. Variables included in this
direction would improve identifiability in case they were measured. Observation of the
input singular vectors gives a guide in the difficult task of sensor placement.
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For the orthogonality of inputs (not variables but conditions) a sufficient condition has
been given for the linear case where demands are known. These are rather restrictive
situation and conditions. For non-linear cases the examination of minimum singular
value gives an idea of the numerical conditioning of the problem. For the coefficient of
maximum and minimum singular value -condition number- is used in control.  As the
original model has the same structure as the real one and conditions that can be changed
are known, the results of the simulations with the original model will give a good
estimation of what will happen in experimentation.

2.8. Topology characterisation
Using the same techniques some knowledge about topologies in networks has been
investigated. Basically the two main topologies used in water distribution networks are
the tree ones with no redundancy and those that contain loops introduced to assure a
reliable service. Two studies have been carried out, since in order to compare these two
topologies a criterion of size has been defined. First two networks with the same
number of nodes are used that means that the number of pipes is greater when some
loops exist. A part of anytown network shown in figure 2.19 is used. The identifiability
of a tree network with 1 reservoir, 7 junctions and 7 pipes (figure 2.16) is compared
with the identifiability of a network with 1 reservoir and 7 junctions and 12 pipes
(figure 2.17). There are 5 loops (elements of cotree). 24 time steps, corresponding to
day simulation with 1 hour sampling, are used. In table 2.2 the difference in the sensor
requirement by both topologies is shown. The sensors have been chosen using the
jacobian approach to decide the identifiability and the singular value decomposition to
decide the next sensor to be added. The network with loops has more elements to
identify but needs fewer sensors because of the topology.

Fig. 2. 16
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Fig. 2. 17
Table 2.2
Network Sensors
Tree network (figure 2.16), 7 junctions and
7 pipes

1 level, 7 head and 6 flow

Loop network (figure 2.17), 7 junctions and
12 pipes

1 level, 6 head and 4 flow

Loop network (figure 2.18), 5 junctions and
7 pipes

1 level, 5 head

Fig. 2. 18
Using the number of pipes as a measure of the network an equivalent network with 7
pipes but with loops, instead of the tree structure, is used (figure 2.18). Its identifiability
has been compared with that of the tree network. Again fewer sensors are required as
can be seen in table 2.2.
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2.9. Case Study
Recent developments, including the restructuring of water networks into smaller
subnetworks (called Pressure Management Areas (PMA)) and the introduction of more
pressure and flow monitoring points have increased the opportunity of getting reliable
models. A network called Anytown, a benchmark provided by WSS [WSS-03], is used
to show the methodology of the experiment design for identification based on the
identifiability study presented in this thesis. It could be part of a real network, a PMA
controlled by two PRV and with 24 nodes, 1 tank, 2 reservoirs and 53 pipes.

Fig. 2. 19
It is assumed that the reservoirs and tanks have level sensors and their in/out flows are
measured too. With one time step,3 level sensors, 24 head sensors and 54 flow sensors
are required. Figure 2.20 shows the singular values and vectors before adding the last
sensor in junction 5 and become identifiable. Only two components appear; two heads
(resistances and demand factors are not plotted).
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Fig. 2. 20
In figure 2.21 the minimum singular value after adding the last sensor has increased to
~10-10. It can be seen in the first plot where the logarithm of singular values are
presented.

Fig. 2. 21
Using 10 time steps the number of sensors is reduced to 3 level sensors, 12 head sensors
and 5 flow sensors. With 24 time steps the number of sensors is the same. With this
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configuration the minimum singular value is similar to the previous ~10-10 (figure 2.22)
and the system becomes identifiable. It is not very well numerically conditioned but the
decrease of number of sensors makes clear the importance of taking into account the
advantages of more than one time step in identification.

Fig. 2. 22
The results of the identification are not satisfying. These bad results are due to the
algorithm used. In section 4.3 it is demonstrated that the optimisation needed for such a
problem is global optimisation. In this chapter such algorithms have not been used.
Only the Matlab local algorithms based on gradient have been used for their availability
in the moment of the study of identifiablility. These algorithm have been useful for
small examples when the identifiablity methodology was defined. Next step in the
calibration process is to start to improve the model from the initial one. This is done in
chapters 3 and 4.
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3. Macrocalibration of Water Networks

The first step of calibration should attempt to correct gross errors introduced during
model building. The characteristic of these errors is that the measurements disagree by a
large amount. The typical causes are:

Inaccurate plant models such as pumps and reservoirs
Incorrect network topology
Incorrect boundary conditions

This stage of calibration is normally done manually using some common sense rules
[WSS-98]. But it can be time-consuming and require skill and judgement. In order to
perform macrocalibration automatically, the knowledge has to be organised. An expert
system allows the diagnosis of errors and finding their causes. Another approach would
be the classification of the errors for correction.

In the research group in Terrassa [UPC-03], some work has been done on diagnosis
using classification [Pie-91]. Aguilar [Agui-01] treats the supervision of process. It
includes data collection, data processing and finally interpretation as meaningful
messages for an eventual operator. This last functionality needs a dialogue with process
experts so that the functional states of the process are correctly defined and interpreted,
making reference to physical, chemical or biological concepts. Most essential is to be
able to determine if the process is in normal or abnormal operation, so that the
supervisory system helps the operator to choose the possible actions. The proposed
methodology can be described in three steps: first to make an independent clustering
from past running data, second to establish a dialogue with the expert so that as the
classes resulting from the clustering process can be associated with meaningful
physiological states (most work has been done in chemical process), third and finally to
construct a finite state machine that represents the possible transitions between
physiological states and enables the real time monitoring of the process [Sarr-02].

The tool is expected to diagnose and correct errors. When there is more than one error
present the strategy of MYCIN can be adopted [Dur-94]. When some possible causes of
errors have been detected and the changes in the model have been proposed, the tool
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should test these changes and check the improvement in the results according to the
scheme in figure 3.1.

Model
diagnosisdiscrepancies

Physical
system

-
+

inputs

outputs

Change
parameters/structure

Fig. 3. 1
Of course, as the errors searched for in this phase of calibration are mixed with the ones
intended to be solved in further steps, the former are more difficult to find out. This is a
weak point of the calibration process that can only be solved by means of iteration of
the whole process. The idea is to help the manual process of finding big errors. In figure
3.2 this idea of iteration is presented. Macroclibration is repeated after the
microcalibration with the new parameters so the model will improve with each step.

Macrocalibration

Original model

Improved model

Tuned model

Microcalibration

Fig. 3. 2
The main idea is that this tool allows the detection of these errors. When one error is
detected it can be checked in the information sources. Each improvement in the model
may allow the detection of other errors thus the process is iterative.

In a real network normally the measurements available are not more than 20% of the
variables. Such a situation is a handicap for this tool but not worse than for the expert
who is nowadays carrying out this process. The methodology proposed in this thesis has
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been selected to make easier the generation of the knowledge used for the error
detection. This knowledge will be different depending on the distribution of sensors in
the network.

In section 3.1 the knowledge organisation is discussed. In 3.2 the errors that are treated
in this process are presented following expert’s indications. Classification method used
is described in section 3.3. The tool for macrocalibration is presented in section 3.4,
there the concrete aspects of the implementation are described and illustrated by
examples.

3.1. Knowledge Organisation
The knowledge provided by calibration experts needs to be organised to allow the
identification of errors in the model. This organisation is not a trivial task and different
approaches can be used. The choice will depend on the origin of this information. Two
approaches are presented and the choice is justified.

3.1.1. Expert system
This system would examine the errors between the results of the initial model and the
measurements, diagnose the causes of large errors and prescribe some action in order to
reduce them. Knowledge derived from the experts that do this task could be captured in
rules (knowledge base) in a intuitive way [Dur-94]. However if the knowledge comes
from experimentation, the generation of rules is not direct and requires much heuristics
and definition of thresholds etc. The “working memory” consists of the model results
and measurements. The “inference engine” combines both informations and
automatically the conclusions that the expert would have deduced (figure 3.3).

Knowledge Base

rules to diagnose error causes

Working Memory

local knowledge, model results
and measurements

Inference

Engine

User

case facts

conclusions: diagnose
and prescription

Fig. 3. 3
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There are different approaches to knowledge representation. A rule-based Expert
System is a computer program that processes problem-specific information contained in
the working memory with a set of rules contained in a knowledge base, using an
inference engine to infer new information. This is the most popular choice. For many
problems, humans naturally express their problem solving knowledge in IF…THEN
type statements. A rule is an independent chunk of knowledge, its independence permits
it to be reviewed and verified easily. New rules can be added anywhere in the
knowledge base, so long as the necessary logical relationships are assured. Heuristic
rules that work in a common-sense fashion can be written and the system can establish a
level of belief in the rules’ premises and conclusions.

3.1.2. Classifying algorithms
The goal of classification is the identification of structures in data similar to known
structures. Methods developed in the field of soft computing such as fuzzy logic are
becoming increasingly popular. Such methods offer an attractive alternative to statistical
approaches, as they do not require prior assumptions of statistical models.

The objects to be classified in the calibration problem are the nodes and elements. Each
object may be associated with a class (error), which is characterised by the ρ-
coefficient. Descriptors are derived for each class. Descriptors will be the same for
nodes and reservoirs, other descriptors will be defined for elements (pipes, valves and
pumps).

The first step is to define the descriptors of the classes. This is the most heuristic part of
the method. The number of descriptors defines the dimension of the space of objects to
be classified. The quantification of each descriptor defines the object. The classification
process uses this information to recognise whether an object belongs to a class that is
defined by a certain quantification of the descriptors.

In figure 3.4 the process of classification is represented. The objects will be all the
nodes, and elements with the descriptors of their possible modelling errors. Classes
correspond to error in the elevation, demand, roughness and so on. The
macrocalibration finishes when all objects are classified as non-erroneous ones.
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A major drawback for the use of an expert system is the generation of the rules, i.e. the
knowledge that should be provided by an expert. The experts are not always available
and even then the work is not straightforward. The use of logical connectives based
classifying algorithms allows generation of knowledge automatically using
optimisation. The definition of the descriptors is based on heuristics. Rules in expert
systems, when working with quantities, need thresholds in order to decide whether the
antecedents are fulfilled. In the classification process no threshold must be defined. The
choice of LAMDA (learning algorithm for multivariate data analysis) [Agu-99]
classification method is based on these considerations. Rules of the expert system are
presented as example in section 3.4, this natural language is useful to understand the
definition of the errors. From these rules it is easy to generate the descriptors.

3.2. Errors in Macrocalibration Stage
After some meetings with experts who manually carry out this stage of the calibration
process the steps followed have been organised. This will allow performing it more
automatically. In some cases information will be translated to the fuzzy method of
conceptual clustering proposed for this process, some steps will be programmed as a
classical algorithm. This could help the expert to detect and even correct the gross errors
in the model. The steps are presented in the order that they normally appear in the
process.

3.2.1. Disconnection
First of all the existence of separate networks is at least good information for the
calibration to begin with, most of the time this is due to errors made while introducing
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data. Special interest should be taken for separate strings (networks without supplies).
Software such as Strumap (GIS by Geodesys Limited) [Geo-03] includes such tracing
that detects these disconnections.

Example 3.1: The network in figure 3.5 is an obvious case of disconnected network.
Obvious because if it is compared with the one in figure 3.6 the difference is clear
between them. With a huge amount of pipes and nodes it is not so easy to detect if a
pipe is missing. Thus experts examine whether there is an unsuspected disconnected
subnetwork.
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In this case as there are reservoirs in both subnetworks the simulation finishes
successfully. The model could be accepted but the comparison (figure 3.7) of the heads
in one time step (t=10h) –correct (connected model ‘o’) vs. erroneous (disconnected
model ‘*’)- shows the difference.
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Figure 3.8 shows the evolution of level in both reservoirs. In the disconnected model
(dashed line) reservoir 1, with higher elevation, does not supply as much water as in the
real system, this water has to be supplied by the second reservoir.
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Fig. 3. 8
If the flows were measured the disconnection could have been detected when the
missing pipe’s flow were compared but in general there are no flow meters dispersed
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throughout the network. Tuning parameters cannot solve such a discrepancy. The
disconnection is studied before any further step in the calibration, and when detected,
test if it is coherent with the real network.

3.2.2. Total demand
In simulators the domestic demand is modelled as a pattern of total demand that then is
allocated by fixed demand normalised coefficients associated to the nodes. Before any
study of the model is done the total demand (profile) must be compared with the
SCADA data. A discrepancy may come from the use of old profiles.

Example 3.2: The same network of figure 3.6 has been simulated with two demand
patterns. In figure 3.9 appear both the patterns –the correct and the wrong one (dashed)-.
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Looking at heads at nodes and reservoirs in figure 3.10 and flows in figure 3.11 (time
t=10h) it can be seen that this kind of error is widespread and unless it is detected such
discrepancy invalidates parameter tuning.
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3.2.3. Supplies
Boosters are the pumps that introduce the water to the network. A difference in the flow
compared with that of the SCADA could be due to the model of supply used. These
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supplies may be modelled as a reservoir with constant level from which flow is coming.
The reality is often that water comes from another network with no constant pressure. A
solution is to substitute the reservoir with a tank with curve varying level equal to that at
the end of the booster that has always pressure logger. If the inflow is not yet equal to
that in the SCADA the problem must be in the network or may be caused by other
supplies that can have a similar modelling error and affect this one.

Example 3.3: The network of figure 3.6 has been modified. In figure 3.12 it has a pump
that supplies water from another network. This pump links two independent
subnetworks. The modelling of the first subnetwork, the one of figure 3.6, could be
intended independently as the other subnetwork could belong to another company.
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Fig. 3. 12
It could be modelled as figure 3.13 where only one subnetwork is taken into account.
The supply is modelled as a reservoir with a constant level.
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Fig. 3. 13
In figure 3.14 the evolution of the flow through the pump is plotted. In the real network
the flow changes throughout time depending on the head of the junction. It decreases as
the head of the junction decreases. In the simplified model (dashed line) it remains
almost constant, though the pattern is very similar it has no tendency, because the
reservoir has a constant level.
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3.2.4. Overflow in reservoirs
If a reservoir presents an overflow it may be due to an error in typing of size (area).
Characteristics of A-valves associated to this reservoir can be the cause as well. These
two possible causes should be checked but could be anything in the network. The same
should be done for empty reservoirs.

Example 3.4: In case such an error is present in the model it wouldn’t allow a correct
simulation. Warnings would signal that the problem might be in the area of reservoirs.
On figure 3.15 the real evolution of the level in the first reservoir of model 3.6 differs
from the evolution given by a model (dashed line) when the diameter of this reservoir is
half the original.
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3.2.5. Pump curves
A fixed-head-pump must accomplish a relation between the head increase and flow that
appear in the model as a curve characterised by three parameters (A,B,C). If the
SCADA data of a pump does not correspond to this curve what is most likely to happen
is that the manufacture’s parameters have not been updated. Updating these parameters
would consist of adjusting real data to a new curve.

Variable-speed-pumps (vsp) and head-control-pumps (hcp) do not always follow the
same curve. Depending on the velocity the relation may vary but some limits would
never be violated: maximum flow, negative head loss. Causes are difficult to find out.
For hcp, wrong setpoint could be the cause.
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Example 3.5: The network of figure 3.12 has a pump with a characteristic described by
the curve on figure 3.16 (continuous line). This curve is taken as the real one due to the
ageing. A slightly different characteristic could correspond to the original pump, it
could be provided by the constructor.
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Fig. 3. 16
Figure 3.17 shows the evolution of the flows of the pump, with the real (continuous
line) and theoretical (dashed line) pump curves. Figure 3.18 shows the evolution of the
head at the end node of the pump. These are the effects of a bad pump curves and thus
the pump curves have to be calibrated as time passes and ageing occurs or even poor
original information could invalidate the model.
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Even if the pump curve is correct but the speed of this device is variable, the problem
can be the working speed. In figure 3.19 the flow of the pump (continuous line) is
compared with the flow of the same pump working with 20% less speed. On figure 3.20
the heads of nodes are represented for a time step, here the effect on the origin and end
node of the pump can be observed.
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3.2.6. Pressures
The low and even negative pressures at a node or group of nodes signal a model error.
Different causes can be explored.

1. Error in elevation (negative or positive).
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2. PRV (Pressure reducing valves) are very often used nowadays in order to
control pressure in PMA (pressure management areas). A wrong set point of this
valve can cause bad pressures in an area.

3. A more difficult formulation is necessary to take into account the
comprehension of the global network behaviour. Where does water come from
and where does it go?  This is essential to detect disconnections that are not
suspected. A disconnection close to a main source should be suspicious.

Example 3.6: Network on figure 3.21 has a PRV. On figure 3.22 the heads of all
nodes are plotted for four models. The correct model (o) and one with a wrong
setting on the valve (*) and one with a wrong topological value at node 5, the ending
node of the valve, (+) and a wrong topological value in node 1(·).

Fig. 3. 21
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Fig. 3. 22
The PRV assures that node 5 has 11m of pressure and it is wrong only for the model
with a wrong setting. If the ending node of the PRV has a wrong topological value it
affects the pressure of all nodes in the region (node 3 and 4 are the ones related through
a reservoir and thus they are less affected) in a similar way to that due to a wrong
setting, but for the node itself. If the topological error is in any node but 5 it affects only
this node and all the rest have the correct pressure.

3.2.7. Pressure reducing valves
These elements must be watched in particular. If any of these elements have a zero of
flow or head loss the model may have a problem as these elements are introduced with a
specific function.
1) It may be reversed. A particular case and one which is more easily found out is that

in which the valve goes from a network part to a main supply pipe.
2) The network upstream may be disconnected and have no demand, it should be tested

in the original model.
3) A non-existing connection introduced by error in the model between two PMA can

be detected as the cause of this. Simplification of the model can help to detect this
wrong connections and disconnections.

Example 3.7: Pressures of model in figure 3.21 (o) are compared with the same
network with the reversed valve. The results for a time step (t=10) are shown in figure
3.23. It is difficult to find any special characteristic for this error in the model if this
figure is compared with 3.22.
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Taking both nodes (start and end) of the valve, the evolution in time of the head can
shed more light on the cause of the mismatch. This is presented in figure 3.24.
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Fig. 3. 24
This work, done in collaboration with experts that develop the macrocalibration
manually and presented using simple examples, shows the need of a tool that solves
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such tasks as automatically as possible. Even if the decisions are not taken
automatically some software has to be developed to help the expert.

3.3. Lamda Classification Method
The goal of classification is the identification of structures in data similar to known
structures. Methods developed in the field of soft computing such as fuzzy logic are
becoming increasingly popular. Such methods offer an attractive alternative to statistical
approaches as they do not require prior assumptions of the statistical properties of the
data.

LAMDA (learning algorithm for multivariate data analysis) [Pie-89] is a fuzzy method
of conceptual clustering and classification. The LAMDA algorithm computes the degree
of adequacy of an object to a class with the partial or marginal information available.

The difference between LAMDA and the classical clustering and classification
approaches is that LAMDA models the total indistinguishability or homogeneity inside
the feature space from which the information is extracted. This is done by means of a
special class, so called non-informative class, NIC, which accepts all objects in the
same status. Therefore, the degree of adequacy of the objects of this class acts as a
minimum threshold to assign an element to a significant class. The minimum threshold
is therefore not fixed arbitrarily, but is automatically determined by the proper context.

Consider a set of objects or situations X (nodes and elements with possible model
errors) and a set of attributes of finite cardinal n (discrepancies between measurements
and model results, surrounding discrepancies, evolution in time of these discrepancies,
etc.). An object is represented by n-component vector x where xj∈Aj is the value taken
by jth descriptor of that object. The attributes can be of qualitative or quantitative type
(we are using only quantitative).

All the concepts presented now are illustrated in example 3.8. To make possible a direct
correspondence between objects and classes, the latter must be described with reference
to the same attribute used for observations. Given an object x and a class Ci∈C,
LAMDA computes for every attribute the so-called marginal adequacy degree MADij:
Aj x Ci → [0,1] between the value that the attribute j takes over x and the value that the
attribute takes over Ci. Thus a MAD vector can be associated with object x. This vector
has a number of components equal to the number of attributes. MAD is a membership
function derived from a fuzzy generalisation of a binomial probability law assuming
that xj∈[0,1]:
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where ρji∈(0,1) is the possibility of the object x to belong to class Ci concerning only
that attribute. Note that when ρji=0.5, for every distance function ν, MADij is equal to
0.5.Thus, the NIC class is characterised by a MAD vector with ρjNIC=0.5 for every j.

All previously calculated marginal information given by the n MADji is used to compute
the global adequacy degree (GADi) of each class. GADi is obtained by summarising that
MADij through a logical aggregation operator L. Two properties required for such
operators are commutativity and monotonicity. By commutativity we mean that the
order in which we index the MADji functions does not affect the classification. By
monotonicity we mean that as the value of an individual MADij increases, so does the
GADi. To connect all MADji, LAMDA uses a type of aggregation operators called
Mixed Connectives of linear compensation [Wais-98]. These operations are located
within the framework of fuzzy sets theory. In LAMDA the mixed connectives used are
derived from the following linear convex combination:

(·))1((·) NTL ααα −+= (3.2)

where α is a parameter belonging to the unit interval, T(·) is a continuous n-norm and
N(·) its dual n-conorm. An example of these two norms is the pair used for this
application, the product and the sum minus the product:

bababaN
babaT

⋅−+=
⋅=

),(
),(

(3.3)

In figure 3.25 the classification process is represented in three steps. In the first step for
each object the marginal adequacy degrees (m11,..,m1n;..;mk1,..,mkn) are computed from
the object respect to all the classes (k) and for the descriptors (n) following equation 3.1.
In the second step, the global adequacy degree (g1, g2,.., gk) is computed  from the MAD
of each class using the mixed connective of the equation 3.2. Finally, in the step 3 the
maximum GAD is determined classifying the object to the corresponding class.
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Data for each class and each attribute are used separately to obtain the corresponding
estimate by maximising a likelihood criterion. Consider a subset of X of finite cardinal t
where all objects belong to class Ci. Being xk

j the value that the kth object x of the subset
takes in the jth attribute. The estimated parameters ρji maximise likelihood criteria which
represents the belonging to a class of all the cases which are known to belong to it:
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Where xj are the descriptors of objects that are known to belong to class defined by ρi-
coefficients. When an object is associated to one of these classes the actuation is to
change the erroneous parameter and recalculate the descriptors in order to reclassify.
The representation of a class is expected to vary after a new individual has been
assigned to it. For the quantitative descriptors the probability is modified following
equation 3.5.
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Where N is the number of objects previously assigned to this class.

Two principal properties make LAMDA a convenient classification technique. Firstly,
with the NIC class, it is possible to identify in the feature space where there was no
sufficient learning data leading the classificator to not being able to determine a class.
Secondly, due to the simple learning algorithm and the sequential expression of learning
equations, it is possible to adapt the classification parameters on-line.
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Example 3.8: In the model of figure 3.6 two errors in the first junction (the one on the
left end) are introduced. First one of elevation (topographic head) and the dashed line
represents in figure 3.26 the evolution of the pressure in this junction and flows in the
pipes connected to it (these have no difference with the correct model, continuous line).
The dotted line is the evolution of the same model but with an error in demand, instead
of elevation, in the same junction.
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Fig. 3. 26
The head is different for the three cases. So to find one of these two errors just looking
at the integral of this error it would be impossible to distinguish between both causes of
error. Using the error in flows of pipes associated with this node more information can
help because for the topographic error these flows are like the correct model. Let’s
define as descriptors of errors the integral of the error and whether the flows are correct
or not. These descriptors are values between 0 and 1, open set. The integral of the error
is normalised using the maximum for all the junctions.
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The validity of the flows is evaluated calculating the integral of the absolute value of the
error in flow for each pipe that is related with each node and adding all these, afterwards
it is normalised. Both descriptors use the evolution of the variable, the integral has a
forgetting factor in order to give more relevance to the last values. In table 3.1 the
descriptors for the first node in each case are presented:
Table 3.1
Class\ρ Integral of error Error in flows
No error 0.0001 0.0001
Topographic error 0.9999 0.0001
Demand error 0.9999 0.87
In a straightforward way these values for the erroneous cases could be selected as the
descriptors of each class ‘topographic error’ and ‘demand error’ in figure 3.27 the
point on the bidimensional space of both descriptors appears.

Let’s take the same network that can have an error (actually there is an error in demand
in junction 2). The descriptors for node 1 are evaluated; marginal adequacy degree
(MAD) is calculated for each attribute and the general adequacy degree (GAD) comes
from these MAD. In figure 3.27 the three points (o) represent the centre of each class
localised by their ρ (table 3.1). For each junction (object) the descriptors have been
calculated (table 3.2) and represented (* for those of NIC and + for that with error in
demand).
Table 3.2
Junction\descriptor Integral of error Error in flows
1 0.6696 0.6510
2 1 0.8510
3 0.0508 0
4 0.0517 0
5 0.3976 1
With these descriptors and applying equation 3.1 and 3.2 the marginal and the global
adequacy degree is calculated (α=0.9). In table 3.3 the marginal degrees are presented
for junction 2. In table 3.4 the general adequacy degree for the 5 junctions are presented
Table 3.3
class \marginal adequacy degree MAD21 MAD22
NIC 0.5 0.5
Topographic error 0.9999 0.0004
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Demand error 0.9999 0.6554
Table 3.4
junction \global adequacy degree GAD1 GAD2 GAD3
1 0.3 0.0051 0.0667
2 0.3 0.1003 0.6898
3 0.3 0.1001 0.0140
4 0.3 0.1001 0.0140
5 0.3 0.0004 0.0881
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Fig. 3. 27
Junction 2 is the one closest to the class 3, a demand error. Using equation 3.5 the value
of ρ is recalculated. This value has changed for the third class after classifying one
object in it: ρ3=(1.0000    0.8605).

There a grid of points has been classified in order to have a graphical idea of the
classification areas. On figure 3.28 the biggest area corresponds to NIC (points
represented by o), around the two errors some points are classified (* for the
topographic and + for the demand). The use of two descriptors allows the representation
on two dimensions. When the number of descriptors increases so does the dimension of
the space.
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Fig. 3. 28
Parameter α changes this classification. If its value decreases the classification areas
increases in expense of NIC. On figure 3.29 the same classification is done with α=0.5
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Fig. 3. 29
Generation of parameters ρ for third class is done minimising the likelihood function of
equation 3.4 where the objects x are the nodes of the used network where a demand
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error has been forced. This has been done with 5 cases and the result is a different
parameter than those used so far that came from one case.
ρ=(0.9999  0.7727)

3.4.   Macrocalibration Process
The errors presented in section 3.2 are the ones that should be detected in order to
improve the model before the calibration process goes on. The macrocalibration
procedure proposed here would take into account all these situations. Classification
methods, and particularly LAMDA algorithms, have shown to be useful to generating
and organising knowledge. This algorithm is used in some of the steps in the
macrocalibration process. For some specific steps a classical search algorithm is enough
and more suitable.

The classification methods are applied to each element in the network. So it has been
used to detect errors related to a specific element. A missing pipe is not detected by this
tool, unless it causes a disconnection, this was the expert methodology presented in
section 3.2. The knowledge is based in the integral of errors (head, flows,...) in the
element and its neighbours, derivatives (sum of the variation in time of the error), parity
(whether the signs of two errors are the same, e.g. head in a junction and flows in pipes
related to it)  , etc. A forgetting factor is used in their calculation in order to weigh the
last values (equation 3.6). This knowledge will be different depending on the
measurements available. If an element has no meter the descriptors used will not
include its own variables but from nearby elements some information can be induced.
The generation of this knowledge based on optimisation allows the customisation. Of
course the lack of sensors makes the detection poorer.

In figure 3.30 the 7 steps of the proposed procedure are presented in the order suggested
by experts. They are developed later in this section. The methodology described by
figure 3.1 is the one that is used in each step. When one of the error detectors gives a
positive response (demand pattern differences between model and real system, for
example) the user is asked to analyse that specific part of the model, improve it and start
the macrocalibration again. Nevertheless the process can be executed until the end
before any improvement is introduced in order to decide which of all the errors detected
is more dramatic. Numerical data and graphic representation is given in each step in
order to allow decision-making.

The prototype developed is based on Matlab in order to use the optimisation toolbox in
the knowledge generation process. For this generation and for the test two simulation
models have been used. One is supposed to be correct (in further work data will come
from SCADA system) and the other one has some errors that should be detected in this
process. Simulation has been carried out using EPANET.
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Fig. 3. 30

3.4.1. Connectivity Study
Using output and input files for the simulation model, an incidence matrix is generated.
With this matrix and knowing the number of reservoirs, junctions, pipes, valves and
pumps the network is easily analysed. This functionality gives the number of
disconnected networks along with the nodes and elements that each one contains.

Example 3.9: Applying the macrocalibration tool would warn that there are two
disconnected subnetworks. It provides information about each subnetwork, three
matrices with the reservoirs, junctions and pipes of each and an object with all the
incidence matrices.

These matrices show which element is in each subnetwork. Each row represents a
subnetwork and includes the number of the element (reservoir in ress, junciton in nods
and pipe in pips) so the number of columns is equal to number of each kind of element.
Finally each lambdas is the incidence matrix for each subnetwork.
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3.4.2. Demand Pattern Comparison
From the same files used before, the demand pattern can be measured if the areas with
common patterns are known. This pattern is compared with the real one that can be
obtained from the inflows of reservoirs and boundary flows that are normally known.

3.4.3. Classification
In the first attempt all nodes (reservoirs and junctions) and all elements (pipes, valves
and pumps) were treated together in two classification steps. It has shown to be easier
and more reliable to do it in separate processes so that descriptors can be defined more
specifically without increasing the complexity in excess.
Table 3.5

Element Error
Junction Topographic

Demand factor
Reservoir Topographic

Wrong area
Pipe Roughness
Valve Setting

Reversed direction
Pump Curve

Speed
Variable head at origin

First of all the knowledge has been generated. Some known errors have been introduced
in different networks. The discrepancies between the correct model and the erroneous
one, together with the knowledge of the error location and using a likelihood function
that has to be maximised, allowed the generation of these descriptors. The heuristic part
that remains is to define them but the numerical values are generated automatically
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following a supervised learning. As example the generation of descriptors for junctions
is presented.

Example 3.10: The two possible errors in models treated in this example are a wrong
elevation of a junction, and demand associated with a junction. The first step is to define
the descriptors associated with junctions. The evolution of the discrepancies in the
variables associated with a junction with a known error in demand and the elements
surrounding has been analysed. Therefore the conditions that are accomplished by these
variables when the known error appears can be decided heuristically. The expert
analysis of these evolutions of the discrepancies in different networks and in different
conditions has led to the laws below. This language is used here because it is more
understandable however it will be translated into descriptors.

If there is an important error in reservoir level
And this error is not constant
And this error has a definite (positive or negative) derivative
And there is error in the flows of adjacent elements
And the parity of these errors and the error in level is opposite
And there is error in the head of nodes related by these elements
And the parity of these errors and the error in level is the same
Then may be an error in the demand

The same is done for an error in a topographic head. The discrepancies that are taken
into account are the same, so the laws, and therefore the descriptors will be the same.

If there is an important error in node head
And this error is almost constant
And this error has a no definite (positive nor negative) derivative
And there is no error in the flows of adjacent elements
And the parity of these errors and the error in level is not opposite and not the
same
And there is no error in the head of nodes related by these elements
And the parity of these errors and the error in level is not opposite and not the
same
Then may be an error in topographic head

There are 7 descriptors that represent this that take values between 0 and 1 depending
on the accomplishment of each statement. The quantification of the ρ-parameters of a
class takes the place of the thresholds in the expert system. The maximisation of
likelihood function (equation 3.4) gives these parameters automatically.
Table 3.6 shows the ρ-coefficients for each descriptor and class including the NIC. This
is the translation of the laws presented into classes. These have been obtained by
experiments comparing simulations of correct and incorrect models where the errors
were known. These wrong models were generated with quantities in the errors,
topology, elevations and parameters values.
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Table 3.6
Descriptor Topographic

error
Demand error NIC

Integral absolute error
(low, indifferent, great)

0.9999 0.8750 0.50

Error is constant
(no, indifferent, yes)

0.9999 0.5568 0.50

Definite parity in derivative
(no, indifferent, yes)

0.50 0.5625 0.50

Error in flows
(no, indifferent, yes)

0.0001 0.2573 0.50

Parity of errors with flows
(opposite, indifferent, same)

0.5000 0.0748 0.50

Error in heads
(no, indifferent, yes)

0.2639 0.7018 0.50

Parity of errors with
heads/levels
(opposite, indifferent, same)

0.7500 0.9361 0.50

Using these descriptors for the classification of errors in network of figure 3.6 the result
is shown in figure 3.31. Here the five junctions are presented with the integral of error
in their heads without normalising it (the main variable related to these elements) and
using different colours for each class. Nodes 1, 3 and 5 have been classified in the NIC
(o), second node in demand error class (+) and the fourth in topological error class (*).
It has worked properly even with two errors in the same network. Sometimes one error
can hide other smaller errors that can be detected after solving the main ones following
figure 3.2.
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Fig. 3. 31
This process is repeated for reservoirs (topographic and area error), pipes (roughness
error), valves (setting error and reversed position) and pumps (curve error, variable head
at the origin). Network characteristics are sometimes critical for the descriptors and
specific generation of descriptors might be necessary. During the classification process
the descriptors are modified so that the knowledge is improved with their use.
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Example 3.11: In the previous section some examples have been used to illustrate the
errors that we intend to solve in this calibration step. Some of these errors will be
treated using LAMDA classification algorithms. Here these examples will illustrate the
functionality of this algorithm.

In example 3.4 the erroneous area of the first reservoir implied a wrong simulation of its
level but it affected not only this component of the network. In the classification process
(figure 3.32) the behaviour of the first junction is associated to a demand error (+)
together with the classification of the reservoir in the class of erroneous area (+). This
makes clear the need of a feedback after any change in the network. Of course if the
reservoir area is checked and the model improved both simulations will agree in the
results. But if the demand is changed in junction 1 the simulation of the new model will
not improve and the process shown in figure 3.1 avoids introducing new errors instead
of correcting the ones that exist.
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Fig. 3. 32
In example 3.5 the pump had an erroneous curve and it can be detected using the
classification (figure 3.33). All pipes are classified in the NIC class even those that have
an important error in their flows. The only pump appears classified with an error in its
curve (*).
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Fig. 3. 33
The behaviour of the model with an error in speed in the pump is very similar to the
behaviour when the curve is erroneous. No different classes are generated for both
errors and both errors are classified in the same class. When one of these errors is found
the cause can be checked, as the speed is information that is available and if it is correct
the curve has to be recalculated. On figure 3.34 the pump with erroneous (example 3.6)
speed is classified (*).
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Fig. 3. 34
In example 3.7 a reversed valve, is shown  to affect heads of nodes, which are perfectly
modelled. With classification this node appears in NIC class. In figure 3.35 the valve is
classified in the class of reversed valves (+). In figure 3.36 the same system is classified
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but in this case the valve has a wrong setting instead of being reversed and it is well
classified (*) in the corresponding class.
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Fig. 3. 36

3.5. Case Study
The network as shown in section 2.9 with some modifications (introduction of valves
and pumps, figure 3.37) for illustrating the identifiability study and the identification
problem design is used now for illustrating the macrocalibration process. Two
simulation models are used. The first one is the original. The one used in section 2.9 is
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used as the real system and the results of simulation are compared with those of the
second model in order to improve it. A second model is generated from the original
introducing some errors. Such errors can easily appear in the typing process or even due
to the use of an old model. The macrocalibration process described so far will detect
some of these errors. Some are small mismatches of roughness and demand factors that
are left to the last step of the calibration process.

Fig. 3. 37
The erroneous model is constructed introducing mismatches in the original model. All
demand factors are rounded to an integer. The roughness of pipes has an error within
5% of its value. Both types of errors can be produced by the use of an old model where
the change of demand behaviour and the ageing of pipes have not been taken into
account. All these mismatches will not be detected by the macrocalibration, or at least it
is not the aim of this step.

An erroneous demand pattern substitutes the correct one. Such a pattern can have
changed after the model has been used for some time.  Other great errors are introduced:
great roughness error, great demand factor error, erroneous valve setting, reversed
valve, erroneous pump curve, erroneous pump speed, erroneous topographic head,
erroneous area. All these errors are more likely to be a consequence of mistyping in the
process of generating the model. Their nature makes them susceptible of being detected
by the macrocalibration process.

The macrocalibration process as presented in figure 3.30 has been developed in a
Matlab environment. Castells [Cas-01] programmed it for his project directed by the
author. This environment allows the use of such techniques through the network using
the Matlab server toolbox. This work is now improved in order to integrate all the steps
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of the calibration presented in this work so that the use of such tool or at least the
demonstration can be done in the easiest way.

A first analysis of the model compared with the measurements (a correct model in this
case) detects differences in heads and flows (figures 3.38 and 3.39). In figure 3.40 can
be seen that the total demand pattern does not fit with the real one. Adjusting this
pattern is the first improvement to be made and the errors are reduced.
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Fig. 3. 40
The classification done after this first adjust signals some errors. In figure 3.41 area
error is signalled in reservoir 1. It had a diameter 10 times smaller. Such an error could
be a typing error and can be solved in the study after this classification. Other errors of
demand are checked and are not due to one big error so they should be solved in the
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next step, microcalibration. On figure 3.42 two other errors are detected; a roughness of
pipe 51 is signalled and the setting of valve 1.
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Fig. 3. 42
Once these three errors have been corrected a new classification is carried out. Here two
new errors are detected a topographic error in node 7 and a curve error in the second
pump. Once these errors are corrected no more big errors are detected. The real and
simulated heads and flows appear on figure 3.45 and 3.46. They have improved and the
most important fact is that this model is ready for the microcalibration process.
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4. Microcalibration of water networks

The Macrocalibration process can detect some errors in the model as have been shown
in the previous chapter. These are big errors, the ones that are not solved by tuning
some parameters as their existence is unexpected. But there are other errors in the
model. Generally they are less dramatic but more widespread and abundant. These little
mismatches with the reality are treated in identification problems as the variables of an
optimisation problem because of the over-estimation in the equations. The problem tries
to find the set of parameters that give a simulation closer to reality. The reality provided
by the measurements of levels, heads and flows together with some parameters that are
assumed to be correct as the area of reservoirs, demand curves, length and diameter of
the pipes are the inputs of the problem. The formulation comes from the known
topology of the network and the laws of physics. The outputs of the optimisation are
variables such as pipe roughness and demand factors. This idea is shown by figure 4.1.

Inputs outputs

Measurements

levels, heads, flows

known parameters

areas, demand curves...

Tuned parameters

pipe roughness

demand factors...

Cost functions

model error

Constraints

physical laws

optimisation

Fig. 4. 1
The first step is to formulate this problem. Formulation is not unique as will be seen in
the next section. A better formulation can have better numerical behaviour but the
characteristics of the problem do not change. These characteristics are studied in
section 4.3 after a brief overview of the optimisation problem classification presented in
section 4.1. In further sections some algorithms that have been tested in this application
are described and numerical results are used to decide the best option. A real network
with real data is used to see try the application of the methodology of this thesis.
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4.1. Optimisation problems classification

A general Optimisation Problem for minimisation is defined as follows.

Given a Set D and a function PD:f → , find at least a point D* ∈x that satisfies
Dxff ∈∀≤ )()( * xx , or demonstrate that such a point does not exist.

A possible mathematical formulation of the minimisation is:

Dtosubject
fmin

∈x
x)(

(4.1)

In this formulation )x,,x,x( n21 L=x  is a n-dimensional vector of unknown variables.
Function f is the objective function and D is the feasibility domain of x as specified by
the constraints.

A vector D* ≤x  that satisfies )(f)(f * xx ≤ for all D* ∈x is called a global minimiser of
f over D and the value of f(x*) is called the global minimum. A vector D* ∈x  is called
a local minimiser of f over D if )(f)(f * xx ≤  for all D* ∈x close to x*. The value of f at
this point is called local minimum. Maximisation problems can be formulated as
minimisation ones just using  ))D(f(min)D(fmax −−= .

The optimisation problems can be classified depending on the mathematical
characteristics of the objective function and constraints [Pui-99]. Such a classification is
presented in figure 4.2 with special attention to the problem that is examined in this
thesis.
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Fig. 4. 2
Optimisation problems are classified as continuous if the unknown variables take real
and continuous values, that means that D is the domain of the real numbers. A problem
is discrete if its variables take discrete values, normally integers and that is why they are
known sometimes by integer problems. There are some problems with both types of
variables that are called mixed. This is the first classification that appears in the tree.
The problem examined in this thesis belongs to the first group. All variables (heads,
flows, demand factors, roughness...) take real continuous values.

Constraints are another concept used for the classification. Problems can be constrained
if they have constraints otherwise they are unconstrained. The last ones can be
formulated:

nRtosubject
fmin

∈x
x)(

(4.2)

The problem treated here has constraints that are the physics of the network. Depending
on the form of these constraints it can be classified in linear or non-linear. If the
constraints that define the domain D are linear the problem is relatively easy to solve.
Included in this type of problems there are two classes that have been exhaustively
studied and well solved: lineal program and quadratic program. If the constraints and
the objective function are lineal the problem can be formulated:
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Where ci, aij and bj are constant real coefficients. A linear programming problem has a
unique local minimum that is global.

If the objective function f is a quadratic function and the constraints are linear it can be
formulated:
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Where  ci, aij and bj are constant real coefficients.

The problem treated here has a quadratic objective function but constraints are not
linear. The non-linear programming can be formulated as:

nR
g

htosubjecto
fmin

∈

≤
=

x
x

x
x

0)(
0)(

)(

(4.5)

Where h(x) represents a set of equality constraints and g(x) a set of inequality
constraints. Problems with non-linear constraints are difficult to solve as they determine
feasibility zones difficult to find and a non-linear objective function can have local
minima. A problem is convex if the function f and domain D are convex, these problems
have only a global minimum. All problems that don’t satisfy this condition are non-
convex. In this last group are included most of the real problems. It is demonstrated
later that the case treated here is one.

When the problem is non-convex a new classification is needed from the algorithm
point of view. This is showed in figure 4.3.
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Fig. 4. 3
Now the problem is classified depending on the aim of the optimisation. Here the global
minimiser is searched as this is the one that has the parameters of the network. The local
optimisation done in this thesis has been used to illustrate the need of a global
optimiser.

Deterministic optimisation methods do an exhaustive search of the feasibility domain D
of the optimisation problem. In order to do this they use different strategies. Branch
and Bound methods find and keep areas that may contain minima while eliminating the
ones that cannot contain any. Covering based methods approach the solution using
tighter bounds each time. Generalised Gradient methods avoid being trapped in a local
optimum changing the shape of the function.

4.2. Formulation of the optimisation problem
The aim of this problem is to find a model that simulates the system as well as possible.
What has to be minimised is the error between the variables of the model and the
measurements. The most frequently used objective function is the quadratic error of the
simulation results. It is calculated by comparing the measurements of head and flow
with that predicted by the model (equation 4.6), weighted so that the addition has sense.
With an ideal model this error should be zero, so the minimisation of this error will lead
to an approximate model. The physics of the network are the constraints of the problem;
the mass conservation both in nodes and reservoirs (equations 4.7 and 4.8) and head-
flow relationship for pipes (equation 4.9).
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where
hil is head at the node (junction or reservoir) i in time step l (variable)
h0il is head at the node (junction or reservoir) i in time step l (measurement)
qil is flow in element i in time step l (variable)
q0il is flow in element i in time step l (measurement)
ρ is the weight factor
r is number of reservoirs
n is number of junctions
m is number of elements
t is number of time steps

tl andr i   0
1
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+ forqhAhA
p

j
jliliili (4.7)

hil is the level of water in reservoir i at time step l

qjl are the flows that arrive to reservoir i in time step l
p is number of flows that arrive to the reservoir 1 in time step l
Ai is the area of reservoir i

tl andn j    0
1
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fordq
m

i
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djl are the demands at junction j in time step l

tl and mi   0852,1
21 ≤≤∀=−− forqRhh iliilil (4.9)

h1il and h2il are heads of nodes in pipe i instant l
Ri is roughness of pipe i
This is not the only way to formulate such a problem. It is the most straightforward but
even in this work some modifications have been used in order to show certain properties
or to solve it more easily. Using the residual formulation allows one to have an
unconstrained problem and is especially useful in the convexity study. In equation 4.10
constraints presented in equations 4.7 to 4.9 have become a part of the cost function. In
this equation measured variables are substituted by their value.
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4.3. Problem characterisation
Before the techniques and the solver are selected the problem must be characterised.
Both the objective function and the constraints have to be analysed in order to be sure
that the solution exists and to use the best technique for this particular problem. The
best-behaved optimisation problems are those that are convex, see classification in
section 4.1.

Definition 4.1: A function is convex in a convex set S if and only if ∀ x’ and x’’ ∈S

10
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c
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The convexity of the objective functions and the constraints would be a useful property
because of the following theorem.

Theorem 4.1:
Consider a NLP (non-linear programming) that is a minimisation problem. Suppose the
feasible region S for NLP is a convex set. If f(x) is convex on S, then any local
minimum for NLP is an optimal solution to this NLP.

The optimisation problem that has to be solved is a NLP. The study of each part of the
problem has been done.

4.3.1. Cost function
The cost function presented in equation 4.6 is convex (as any quadratic function is) and
the sum of convex functions is convex. It can be demonstrated easily from the
definition:
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4.3.2. Constraints
Not only the cost function has to be convex to assure the global minimum of a problem.
The set has to be convex and this set is defined by the constraints. To avoid the study of
the convexity of this set, a second formulation can be used, equation 4.10. It is assumed
that the set is a hyper-rectangle defined by bounds in the variables and the constraints
are included in the cost function that has to be convex. Each term of the sum has to be
convex and the convexity of the sum of them is straightforward. For the first term
constraint definition can be used:
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The demonstration for constraint presented in equation 4.8 is equivalent. The problem
arises when the third constraint (equation 4.9) is treated. If the definition is applied to
this part of the cost function the condition of convexity cannot be assured because of the
product of two variables and the exponent of one of them.
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somehow this problem had already been detected in the identifiability study. In general
non-linear functions are not necessarily non-convex but the linear ones are all convex.
This constraint was the one that made the problem non-linear. The particular case of a
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linear problem appeared when all heads were known and hence both variables could be
isolated, the same would happen if all flows were known. Now it is intended to
determine not only convexity of functions but also whether the problem is convex or
not. A property of convex functions is used.

Theorem 4.2
Suppose f(x1,x2,...xn) has continuous second-order partial derivatives for each point
x=(x1, x2,...xn). It is a convex function on S if and only if for each x∈S, H is positive
semidefinite, i.e. all principal minors of H and the diagonal elements are nonnegative.

The Hessian of third constraint introduced in cost function of equation 4.10 is presented
in equation 4.13. It can have negative diagonal elements or principal minors. In next
section an example of non-convexity proved by this property is shown.
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The problem cannot be assured to be convex and as it becomes more complex it can be
assured that it is not. The problem is linear except for the last constraint where two
variables are multiplying and one has a coefficient. The feasible region of an
Optimisation problem involving non-linear equality constraints, is not a convex set,
regardless of whether the equality constraint is convex or not [Flou-01]. The set
generated by an equality constraint on a bi-dimensional space would be a line, in order
to have a convex set this line should be a straight one generated only by linear equality
constraints.

Example 4.1: A simple example of the optimisation that is supposed to be done will
shed light on the problem of non-convexity. A very simple case is used again. Figure
4.4 shows a network with two reservoirs, two pipes, a demand associated with the
junction. The measurements of flow in pipe one and head in junction will be used for
the cost function. The parameters to be determined are the resistance in both pipes, and
the variables to be determined are the flows. Demand and levels in reservoirs are
known, they are not introduced in the cost function in order to reduce the dimensions to
two and make the example illustrative.
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Taking h10 and h20 as a known value and using as domain roughness R1 and R2 and
getting the possible values of q1 and h1 from the constraints the cost function is
represented in figure 4.5 and 4.6 for a set of possible roughness. It can be seen that the
function has a minimum and does not show to have problems for the convergence of the
minimisation.

Fig. 4. 5
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The problem does appear when the set is studied. It is not convex. In figure 4.7 the
possible q1 and h1 are represented, they have been obtained from the set of possible
roughness and using the constraints.

Fig. 4. 7
This is what was expected from a signomial programming. The no-convexity doesn’t
guarantee the global optimum using local optimisation.

Looking at figure 4.2, classification of the problem treated in this thesis can be
summarised in a non-convex (non-linear) constrained continuous problem. Following
this classification, and assuming that what is searched is the global minima, figure 4.3
provides some enlightenment regarding which kind of algorithm should be used. Before
deciding which algorithms should be used some characteristics of the problem are
studied. Through the investigation of cost minimisation techniques for engineering
design problems, Zener [Zen-61],[Zen-62] stimulated the initial work in the area that is
now known as geometric programming.  The term geometric programming was adopted
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because of the crucial role that the arithmetic –geometric mean inequality played in this
initial development.

A posynomial is a function g of positive vector variable x∈Rm having the form
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Where aij are arbitrary real numbers and the coefficients ci are positive.
A posynomial program is a minimisation problem of the form

0 xand p1,2,...,k   ,1 subject to         0 >=≤)x(g)x(gmin k (4.15)

where each gk, k=1,2,...p, is a posynomial.
The problem presented in equations 4.6 to 4.9 can be formulated as:
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There is no product of variables and the coefficients are integers.
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This problem is slightly different to the posynomial as not all the coefficients are
positive. Such programs are called signomial programs and were first studied by Passy
and Wilde [Pas-67] and Blau and Wilde [Bla-69]. While posynomial programs have an
equivalent reformulation as convex programs, no such formulation exists for a



4 Microcalibration in water networks 127

signomial case. Duffin and Peterson [Duf-67] show that any signomial program can be
transformed into an equivalent program of the form

 p1,2,...,k   ,1 
1
 subject to
         0

=≥
≤

)x(g
)x(g
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k
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(4.20)

Where gk(x) is a posynomial for k=1,2...q. This program is called the reversed
posynomial program.

The reversed constraints g(x)≥1 reformulated in equation 4.17 to 1.19 give rise to a
non-convex feasible region. In general, local minima for signomial problems are not
global minima.

4.4. Local Optimisation
The problem that is faced here is a non-linear and non-convex optimisation one. In
order to solve such a problem classically, a methodology based on the search of an
optimum from a seed, and using a search guided by the derivatives of the objective
function, and with the local minimum conditions was used. These set of techniques are
called local optimisation or non-linear programming, in contrast to those that
guarantee the finding of the global optimum, global optimisation. The non-linear
programming techniques work correctly, however they cannot assure the global
optimum, but rather a local one. Some times this local optimum is a global one, when
there is only one optimum; both objective function and feasible region are convex.

A non-linear programming problem with equality constraints like that presented in
equations 4.6 to 4.9 can be expressed using Lagrange multipliers:
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Once the Lagrangian is constructed what is searched is the point (x1*, x2*,....,λ1*,
λ2*....) that minimises L(x*,λ*).  Then it accomplishes:
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This demonstrates that x* satisfies the constraints of the optimisation problem. So now
the problem becomes
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When the minimisation problem has a differentiable function with continuity most of
the algorithms applied are based on the following idea. From an initial point x0 vectors
are generated successively x1, x2,... so that the cost function decreases in each iteration.

)()( 1 kk xJxJ <+ (4.24)

Thus successively the estimation is improving till the minimum is reached or the
algorithm cannot advance anymore. The next step is obtained using the following
expression of equation 4.25.

kkkk dxx α+=+1 (4.25)

Where if the gradient ∇f(xk)≠0 the direction is chosen so that:

0)'( <∇ kk dxf (4.26)

Normally direction is chosen as:

)( kkk xfDd ∇−= (4.27)

The step αk is fixed and positive. If Dk is chosen I (identity) then the method is called a
gradient descendent method. If the gradient ∇f(xk)=0 then the algorithm stops. This is
the basic algorithm based on gradient. It is the simplest and the one with the slowest
convergence. The most sophisticated algorithm based on this idea is the Newton
method. It has the fastest convergence. The difference in respect to the previous
algorithm is the descent direction used.

)())(( 12
kkk xfxfd ∇∇−= − (4.28)

Conjugate gradient method and quasi-Newton method, are intermediate algorithms
from the complexity point of view. When equality non-linear constraints are present
New algorithms are developed as an evolution of these.

Reduced Gradients based methods are extensions of the algorithms used for the linear
constraints. These methods have as a basic principle to remain in a feasible region
defined by the non-linear constraints, while the cost function is minimised.



4 Microcalibration in water networks 129

Sometimes in the cost function some constraints are introduced. This is called the
penalisation or barrier function. Associated with this methodology exist a parameter c
that determines the  severity of the penalisation. These are the augmented Lagrangian
methods.

When a point x* fulfils the sufficient conditions of a local minimum in a problem of
optimisation with non-linear constraints, such a point is a minimum of the Lagrange
function in a sub-space of vectors which are orthogonals to the gradient of the
constraints. Such a property suggests that x* can be defined as the solution of a sub-
problem of optimisation with linear constraints selected in a way that the minimisation
is done inside the desired subspace. Restricting the desired subspace the Lagrange has
not to be augmented in order to convert the point x* from a stationary point to a
minimum. Projected Lagrangian Methods include those that contain a sequence of
sub-problems of optimisation with linear constraints based in a Lagrange function.

4.4.1. Matlab
Matlab has a toolbox of optimisation with different optimisation functions that allow
solving problems of non-linear optimisation finding local optima. In this case what is
needed is a function that solves problems with non-linear constraints.

Function constr of MATLAB optimises functions with constraints. The algorithm used
by this function is called Sequential Quadratic Programming. This algorithm belongs
to those based on projected Lagrangian. It uses the algorithm of quasi-Newton to solve
the Kuhn-Tucker conditions of the original problem. The problem associated is a
minimisation of a quadratic approximation of the Lagrangian function over the feasible
region defined by the linear approximation of the constraints.

The problem presented in equation 4.5 generates in an iteration (xk,uk,vk), where uk and
vk are respectively the estimation of Lagrange multipliers for the equality and inequality
constraints, the following quadratic optimisation sub-problem:
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If dk solves problem QP(xk,uk,vk) with the Lagrange multipliers uk+1, vk+1 and if dk=0
then xk together with (uk+1,vk+1) gives a solution to the problem P. Otherwise a new
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point is generated xk=xk+dk, k is increased in 1 and the process is repeated. One
drawback of this method is the need of calculating second derivatives of the objective
function and the constraints, besides ∇2L(xk) can be non-positive defined. In order to
avoid this last problem the quasi-Newton positive-defined approximations for ∇2L(xk)
can be used.

One of the main drawbacks of this method is that it guarantees convergence only when
the seed is close enough to the solution, which is actually difficult. In order to avoid this
problem and improve the convergence, the merit function is introduced. Merit function
is minimised with the objective function but it is only useful as a descending function, it
guides the algorithm and indicates the progress. This has to be easy to evaluate in order
not to deteriorate the convergence speed of the algorithm. An example of such a
function is presented in equation 4.30:
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Algorithm 4.1: Sequential Quadratic Programming
(1) Initialise k=1 and a seed is selected in the feasible region x1. An

approximation Bk positive defined is selected for ∇2L(xk) defined in
respect to the lagrangian multipliers uk≥0 and vk associated with the
constraints. The optimisation problem P is solved. Bk could be arbitrary
with no relation with ∇2L(xk).

(2) The quadratic problem is solved where ∇2L(xk)has been substituted by
Bk. dk and (uk+1,vk+1) are obtained.
(a) If dk=0 the algorithm stops.
(b) Otherwise xk+1=xk+λdk, where λ minimises FE(xk+λdk) for λ∈R1 and

λ≥0.  Bk is updated to a positive matrix Bk+1 using the quasi-Newton
method. k is increased in 1 and step 2 is repeated.

(c) 
This is the optimisation tool used in the examples 2.5, 2.9 and 2.11. It has been useful
for small problems where the seed could be selected close enough to the result but in the
case study of section 2.9, when a more realistic networks was calibrated, the algorithm
showed to be insufficient. The non-convexity of the problem demonstrated in previous
sections fits with this observation.

Example 4.2: Figure 4.8 shows a simplification of Barcelona’s network. This is used to
show how this algorithm fails as the network grows and to have an example to test other
algorithms that should work better.
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Fig. 4. 8
Having all levels and three flows measured, variables are 8 flows, two heads, 11
roughness and two demand factors. The system is identifiable with 3 time-steps but the
algorithm fails in the estimation even with 8 time steps. Figure 4.9 shows the result of
the estimation for levels, heads and flows. Figure 4.10 shows the result of the estimation
for roughness and demand factors.
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Though most of the flows are not known, both flows and demands are well estimated
because of the linear relations. The non-linear relations, that have been shown to be
non-convex relations, make impossible a good estimation of the roughness.

0 1 2 3 4 5 6 7 8 9 10 11
0

5

10

15

20
real and estimated pipes' roughness

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1
real and estimated junctions'demand factors

Fig. 4. 10

4.4.2. GAMS-CONOPT
Another solver available in the group is GAMS. GAMS (General Algebraic Modelling
System) [Gam-03] was developed by Meeraus and Brooke of the GAMS Development
Corporation. For linear, and non-linear programming, GAMS is a high-level modelling
language that is formally similar to Fortran. It allows the user to describe models in
concise algebraic statements that are readily comprehensible to other readers. Features
such as sensitivity analysis and report generation are provided. GAMS provides an
interface to the MINOS system developed by Murtagh [Mur-86]. Limitations on
problem size include a limit of 32,767 rows in constraints matrix for the MINOS
module. Additional modules (which link GAMS to other numerical optimisation codes)
are available as options. Some of these are available for certain environments. In the
group some work had been done with CONOPT [Con-03] for non-linear mixed–integer
programming. It had been used in the pump-scheduling of the network in WATERNET
project.

The algorithm in CONOPT is based on the generalised reduced-gradient (GRG)
algorithm. All matrix operations are implemented by using sparsematrix techniques to
allow very large models. Without compromising the reliability of the GRG approach,
the overhead of the GRG algorithm is minimised by, for example, using dynamic
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feasibility tolerances, reusing Jacobians whenever possible, and using an efficient
reinversion routine. The algorithm uses many dynamically set tolerances and therefore
runs, in most cases, with default parameters.

Reduced-gradient algorithms avoid the use of penalty parameters by searching along
curves that stay near the feasible set. Essentially, these methods take the formulation 4.5
and use the equality constraints to eliminate a subset of the variables, thereby reducing
the original problem to a bound–constrained problem in the space of the remaining
variables. If xB is the vector of eliminated or basic variables and xN is the vector of non-
basic variables, then xB=h(xN).

Results obtained using this solver were not better than those obtained with Matlab. The
local optimisations algorithms show to be insufficient for this problem.

4.5. Global Optimisation
The problem presented in equation 4.5 corresponds to a general optimisation problem
with equality and inequality constraints. The box X=(x1,...xn) defines an artificial
limitation on the search region, while iii xxx ≤≤  represent actual bound constraints for a
subset of the coordinates. In fact, if actual bound constraints exist, it can be
advantageous to treat bound constraints separately from the inequality and equality
constraints.

Deterministic algorithms used to find the global minimum of a function, in a region, do
an exhaustive search  of all such regions. In this thesis three different algorithms have
been used. All of them have in common that they use the branch and bound algorithm
for the search. The basic branch and bound is presented:

Algorithm 4.2:Abstract Branch-and-Bound Pattern for Optimisation)
INPUT:an initial box X0
OUTPUT:a list of boxes that have been proven to contain critical points and a list U of
boxes with small objective function values, but which could not otherwise be resolved.

1. Initialise a list of boxes L by placing the initial search region X0 in L.
2. DO WHILE L≠∅.

a) Remove the first box X from L.
b) (Process X) Do one of the following:

 reject X
 reduce the size of X;
 determine that X contains a unique critical point, then find the critical point

to high accuracy;
 subdivide X to make it more likely to succeed at rejecting, reducing, or

verifying uniqueness.
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c) Insert one or more boxes derived from X onto L, U or C, depending on
the size of the resulting box(es) from Step 2b and whether the (possible)
computational existence test in that step determined an unique critical point.

END DO

Algorithm 4.2 represents a general description, and many details such as stopping
criteria and tolerances, are absent. Such details differ in particular actual algorithms.
The three algorithms used in this thesis used different methods for both branching
(subdivide the boxes or regions) and bounding (finding lower and upper bounds for the
function in each region in order to reject boxes). Reasons for selecting these algorithms
were different in each one.

Signomial programming: In the characterisation of the problem, it was formulated as a
signomial problem. It is a  non-convex problem but taking advantage of the form and
using a special way in  the branching process the bounding can be done based on
convex optimisation. This algorithm has been used to utilise the geometry of the
problem.

Lipschitzian optimisation: some branch-and-bound algorithms use the lipschitz
constant of the function for the bounding process. The research group works mainly
with Matlab software and there is a collaboration agreement with the distribution
company. In Matlab environment there is a commercial software for global optimisation
based in these algorithms and has been tested for the calibration problem.

Interval arithmetic: the research group has worked since 1998 in interval arithmetic
with different purposes such as fault detection, robust control, identification....The
knowledge on this subject included the optimisation algorithms that use interval
arithmetic for the bounding of the function and interval boxes for the branching. A tool
based on these algorithms has been tested presenting the best results.

4.5.1. Signomial programming
A signomial programming problem such as the one presented with equations 4.16 to
4.19 can generally be expressed in the following form as two non-convex separable
programming problems:

0 xand q1,2,...,k   ,1 subject to
 000

≥=≤−=
−=

)x(h)x(g)x(f
)x(h)x(g)x(fmin

kkk

(4.31)

where each gk(t) and hk(t) are posynomial
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Where the number of posynomial terms is n, and q is the number of the signomial
constraints. The exponents aij are arbitrary real numbers and the coefficients ci are all
positive. Define the exponent matrix A as

{ }
nxmija=A

The index sets IG(k)and IH(k) (k=0,1,...,q) are mutually disjointed subsets of the set
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Where ik∈IG(k) and ik’∈IH(k). Some of the sets IG(k) and IH(k) may be empty although
the sets IG(k)∪ IH(k) must not be empty for any k=0,1,...,q.
Two new sets are defined
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Notice, when the set IH is empty, i.e., IH=0, the program becomes posynomial. Each
posynomial program is equivalent to a convex program (minimises a convex function
over a convex domain). This equivalence is established by introducing the one-to one
transformation by letting z=(z1,... zm)T

 and letting

mjex jz
j ,...,2,1      , == (4.33)

The problem is equivalent to the convex problem
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Where ai=(ai1,...,aim) is the ith row of the exponent matrix A and ci is the positive
coefficient associated with the ith posynomial term. (ai,z) denotes the inner product of
the vectors ai with the vector z. One can easily check that e(a

i
,z) defines a convex

function of z. The significance of this equivalence is that every local solution of convex
problem presented in equation 4.34, z*, is also a global optimal solution to it. Because
the transformation 4.33 is a one-to-one transformation, the corresponding x*=(x*

1,...,
x*

m)T is also a global solution of the original problem. Similarly, the one-to-one
transformation can be applied to signomial program P that becomes problem Q
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Obviously functions Gk(z) and Hk(z) are convex since they are sums of convex
functions of linear functions.

There have been some investigations of methods for finding global minima for
signomial problems. Falk [Fal-73] proposes a branch-and bound algorithm that
converges to global minima for (nonconvex) signomial programs. Using the initial a
priori lower and upper bounds on variable z, l and L, can be defined sets

{ }Lzlz ≤≤= :R (4.36)

Given set R above a related set S1 is described

{ }IHiMmS ii ∈≤≤= ;),(: 111 zaz (4.37)

where m1
i=min{(ai,z):z∈R} and M1

i=max{(ai,z):z∈R}; i∈IH. Each inequality definition
of S1 defines a region in ℜn between two parallel hyperplanes. Notice that the elements
of the row vector ai decide the slope of the hyperplanes. The numbers m1

i and M1
i can

be easily computed to be
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Clearly, R⊆S1 and hence S1 contains global solution of problem Q. The algorithm
generates a sequence of problems Qt’s defined on sets St, t=1,2,3,... The set St is defined
as

{ }IHi;M),(m:S t
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t
i
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where numbers m1
i and M1

i are updated during the process of branching-and –bounding.
Notice that St⊆S1 and S1=∪t∈I(s)St where I(s) is the set containing all the intermediate
nodes at step s. In figure 4.11 the darkest region corresponds to the rectangular bounds
of the original problem R, the lighter shaded region corresponds to the overestimation S.

Each  of these problems Qt’s is referred to as a node in the process of branching-and-
bounding. New problems are created by selecting an existing node QT and by setting up
new problems that serve better estimates of Problem Q than QT at each stage s, only two
new nodes are created. This process of generating new problems is referred to as
branching. Hence, stage 1 consist of Problem Q1, stage 2 of problems Q1, Q2 and Q3,
and stage s of Problems Q1,...,Q2s-1. Therefore, there are (2s-1) sub-problems at the stage
s. If all the problems Qt’s were drawn in one chart with the branchings shown as a line
(branch) connecting two related nodes, a branch-and-bound tree would be obtained.
Problem Qt is defined as
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Notice that lt
i is a linear overestimate of cie(a

i
,z) when mt

i≤(ai,z)≤Mt
i, i.e.
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i (4.41)

so that Ft
k(z) underestimates Fk(z) when z∈St:
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this overestimate is shown in figure 4.12. Following with the same example. Problem Qt

is a convex program so it can be solved by any convex programming algorithm and
achieve its global solution. Solution for each problem Qt is defined zt if it exists and the
lower and upper bounds on F0 over F(Q)∩St.
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z* is the global solution of problem Q and v* is the value of objective function F(z*).
The numbers vb(s) and Vb(s) defined as

{ }
{ }

)(

)(

)(

)(

sIt

t
b

sIt

t
b

VminsV

vminsv

∈

∈

=

=
(4.45)

Constitute the best available lower and upper bounds on v*.A node Qt is called
intermediate at the stage if no new problem has been created from it. Set I(s)={t: Qt is
an intermediate problem at stage s}. The branching is controlled by the Weak Refining
Rule. Only two new nodes are created in each stage. A node QT such that satisfies
T∈I(s) and vT=Vs is chosen. Index K that maximises LT

K(zT)-H 
K(zT) is chosen and then

select any I∈IH(K) so that the difference l T
K(zT)-cie(a

i
,zT) is maximal. Next  the

corresponding interval (mT
I,MT

I) is divided into (mT
I, (aI,zT)) and ((aI,zT),MT

I, upon
which new problems Q2s and Q2s+1 are created. An algorithm based on signomial
programming has been implemented using MATLAB. It will be useful to follow what
has been said so far with the steps required when using the example of only one pipe.
These are the steps:

Algorithm 4.3

Step 1: Initialisation.

Set up and solve Problem Q1 to obtain z1, v1, V1, U1

Set s=1, t=1, I(1)

Step 2: Check for solution
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If Vb(s)=vb(s) then a global solution of Problem Q is z*=zT where vT=Vs.
Otherwise go to step 3.

Step 3: Choose a Branching Node T
Select T∈I(s) such that vT=vb(s). Go to Step 4.

Step 4: Select a Branching Term (ai,z)
Step 4.1 Select a K∈{0,1,...q} such that LT

k(zT)-Hk(zT) is maximal.
Step 4.2 Select an I∈IH(K) so that lT

i(zT)-e(ai,zT) is maximal.
Step 4.3 Go to Step 5

Step 5: Generate Problem Q2s(see Fig. 4.13)
Set m2s

i=mT
i; M2s

i=MT
i; ∀i∈IH; i≠I

M2s
I=(aI,zT); m2s

I=mT
I

Step 6: Generate Problem Q2s+1

Set m2s+1
i=mT

i; M2s+1
i=MT

i; ∀i∈IH; i≠I
m2s+1

I=(aI,zT); M2s+1
I=mT

I
Step 7: Solve Problems Q2s and Q2s+1

Step 7.1 Solve (or check feasibility) Problems Q2s and Q2s+1 to obtain:
z2s, z2s+1, v2s, v2s+1, u2s, u2s+1.

Step 7.2 Compute Vs+1 and Us+1.
Step 7.3 Update the set I(s+1) from I(s):

delete the node T, add two nodes 2s and 2s+1. Set s:=s+1.

Step 7.4 Go to Step 3.

Example 4.3: Figure 2.8 shows the simplest system used to illustrate this algorithm.
Heads are known, so variables are flow and roughness. Constraint 4.9 is expressed in
residual form 4.10. The problem appears this way. There are no constraints and only
two variables in order to make it understandable.
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In figure 4.11 both regions R (original boundary region) and S1 for the first problem is
shown. In order to get this region all these values have been calculated:
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The overestimation of the only H term appears in figure 4.12. These are the values for
this special case:
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Now follows the algorithm for this problem.
Step 1: The problem is initialised
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Step 2
Obviously Vb(s)≠vb(s) so go to step 3
Step 3
The node chosen the first time is the only one and it is true that v1=vb(1)
Step 4
The signomial term selected is the only one that has Hk term. It is term H0
corresponding to cost function. And as it has only one term this is chosen, IH=3.
Step 5
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In figure 4.13 appears the new overestimation for the two new problems Q2 and Q3.
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Step 7
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This algorithm assures the global optimal. In figure 4.14 the boundaries of the cost
function appear and it can be seen that it converges and solution is found. It generates a
huge number of optimisation problems that explodes when the number of variables
increases as occurs with problems in the real network.

4.5.2. Lipschitzian Optimisation
DIRECT (dividing rectangles) is an algorithm for finding the minimum of a Lipschitz
continuous function. DIRECT is designed to solve problems subject to box constraints.
An exact mathematical definition of the problem is given below after the definition of
Lipschitz continuity.

Definition 4.2: Let f:RN→R. f is called Lipschitz continuous with Lipschitz-constant γ if
and only if
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Problem
Let f:RN→R. f is called Lipschitz continuous with Lipschitz-constant γ solve
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It is important to note that the function is not needed to be continuous and the
derivatives do not need to exist.

The classical 1-D Lipschitzian Optimisation will help to understand the base of these
algorithms. Let N=1 and let f be Lipschitz continuous with constant γ on [a,b].
Therefore by setting x’=a and x’=b in equation 4.46 the following inequalities are
produced:
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With these inequalities a piecewise linear function f̂ , which lies below f .
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Note that also that f̂ has a minimum value of

[ ] 22 /)ab(/)b(f)a(f)b,a(B −γ−+=

Example 4.4: Figure 4.15 shows this using the same cost function as in example 4.3.
This is the constraint that makes the problem non-convex. Here it appears one-
dimensional in order to show the way this algorithm works as simply as possible.
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The idea is now to divide the search area into two intervals I1=[a,x(a,b)] and
I2=[x(a,b),b], calculate the new values of x and B for each of these two intervals and
choose a new interval to divide. Obviously the interval with the lowest value of B will
be chosen. Following this ideas is Piyavskii’s [Piy-72] algorithm, that obtains a
piecewise linear function, this produces a better approximation of the real function in
every iteration.

Algorithm 4.4
1. n=1, sample=1,lsample=a,usample=b
2. Calculate B1,x1
3. Do while n<numit

a. n=n+1
b. ln=xsample,un=usample,usample=xsample
c. Calculate Bn, xn, Bsample, xsample
d. Choose new interval to sample

4. substitute xsample ,lsample , usample and Bsample by xn, xsample , ln, lsample , un, usample, Bn,
Bsample

In this algorithm the first two steps are the initialisation, where n is a counter-variable,
sample is the interval in which the algorithm is sampling and lsample and usample are the
lower and upper bounds of the sampling area In the inner loop the counter-variable n is
increased, after which the active interval is divided into two new intervals. In the next
step the algorithm recalculates the values of x and B and then chooses a new interval to
sample. This new interval will be the interval with the lowest value of B. This is done
until a given number of function evaluation is done. In figure 4.16 an example of the
first 3 steps iterations is shown and it can be seen that the piecewise linear function f̂
becomes a better approximation of the real function in every iteration. Because of the
appearance, f̂  is often called saw-tooth cover.
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Fig. 4. 16
However, there are two problems to deal with:
• In higher dimensions this algorithm has the need to store 2N corners for each

Hyperrectangle, where N is the dimension of the problem and more restrictive, has
to evaluate the functions at all these points.

• In applications the Lipschitz-constant is normally not known if the function itself is
a complicated problem or a simulation.

These problems are addressed by the DIRECT algorithm, where DIRECT stands for
dividing rectangles. This algorithm was developed by D.R. Jones, Perttunen and B.E.
Stuckman [Jon-93].

Inequality of equation  4.48 for the one-dimensional formulation will be used to
illustrate the procedure. Let c=(a+b)/2 and set x’=c. Then for ∀x∈[a,b]

)cx()c(f)x(f)cx()c(f:cx
)cx()c(f)x(f)cx()c(f:cx

−γ−≤≤−γ+<
−γ+≤≤−γ−≥

(4.50)

These two inequalities define an area in which the function has to lie. Furthermore a
lower bound D(a,b) is found for f in [a,b] by setting x=a or x=b in these inequalities:

2/)ab()c(f)b,a(D −γ−= (4.51)

In figure 4.17 this area (shaded) is shown for the cost function used so far.
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Fig. 4. 17
One major issue for the DIRECT algorithm is how to divide the interval into
subintervals. It divides the interval into three subintervals. Three are needed enabling
those which have been evaluated already to be saved; the point is a middle point of
these intervals. This means that in every step the function has to be evaluated at two
new points. Figure 4.18 shows the dividing strategy for the example.
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Fig. 4. 18
The next question is how to decide which interval to choose and if this can be done
without knowing the Lipschitz-constant γ. Therefore suppose the minimisation area has
already been partitioned in M intervals [ai,bi] with centre in ci. A graph is created with
the length (bi-ai)/2 of each of these intervals on the x-axis and f(ci) on the y-axis, as
shown in figure 4.19. If a line with slope γ is laid through each of these points, the
intersection of this line and the y-axis is the point (0,D(ai,bi)), where D(ai,bi) is the
lower bound for the function in this interval. Therefore it is clear that the interval with
the lowest value of D(ai,bi) will be chosen as the one in which the algorithm will sample



148 Identifiabilitity and calibration of water network models

in the next iteration. This is the methodology used to decide that the interval of the
middle had to be divided in third iteration as shown in figure 4.18.
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Fig. 4. 19
As stated before, in many applications the Lipschitz constant γ is not known. Therefore
an estimation of such a constant has to be found based on the known data. This is done
by looking at the convex hull of data-points. For all data-points at the lower side of the
convex hull there exists some constant iK~ such that the corresponding interval would be
the choice if γ= iK~ . It can be easily seen that from several intervals with the same length
only the one with the lowest function-value at the middle point can be chosen. A formal
definition of this is given in definition 4.3. First inequality expresses this property;
second inequality forces the possibility of having sufficient decrease in the interval.
definition 4.3:
Let ε>0be a positive constant and fmin be the current best function value. Interval j is
said to be potentially optimal if there exists some rate of change constant K~ >0 such that

[ ] [ ]
[ ] minminjjj

jjijjj

ff/)ab(K~)c(f

i,/)ab(K~)c(f/)ab(K~)c(f

ε−≤−−

∀−−≤−−

2

22

Taking all this together, the one-dimensional DIRECT algorithm can be described as
follows:

Algorithm 4.5
1. m=1,c1=(a+b)/2
2. evaluate f(c1), fmin=f(c1), t=0
3. Do while t<numit and m<numfunc

a. Identify the set S of potentially optimal intervals
b. DO while S≠0

i. Take j∈S
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ii. Sample new points (cm+1,cm+2), update borders
iii. Evaluate f(cm+1), f(cm+2), update fmin
iv. Set M=m+2, S=S\{j}

c. t=t+1
Once again in the algorithm the first two steps are the initialisation. The variable m is a
counter for the number of function evaluations done and t is a counter for the number of
iterations. There are no better termination criteria than to stop after numit iterations or
after numfunc function evaluations. The identification of the potentially optimal
intervals is done using definition 4.3.

Figure 4.20 shows the surface of the cost function used so far in this section but with
two variables, flow and roughness. In figure 4.21 the contour shows that this surface is
not convex and has very flat zones.

Fig. 4. 20

Fig. 4. 21
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The main difference in higher dimension compared to the 1-D case is the problem of the
division of the search space. For better understanding firstly the hypercube is described
and then the more general case of a hyper-rectangle.
1. Let c (13,0) be the centre point of the hypercube, in this example a square

{(12,13),(-1,1)}. Sample the points c±δei, where δ equals 1/3 of the side-length of
the cube and ei is the i-th Euclidean base-vector. Define wi by

{ } { }iii ecfecfminw δδ −+= (,(

Divide then in the order given by wi, starting by the lowest wi. This means the
hypercube is first divided along the vertical direction as w2=0.05. The remaining area is
divided in the direction of the second lowest until it has been divided along all
directions. This is showed in figure 4.22.
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Fig. 4. 22
2. A hyper-rectangle is divided along the longest side, which assures that the maximal

side-length decreases. The last step divides the hyper-rectangle with lowest value of
the function in the longest side.

4.5.3. The solver: Tomlab
The Tomlab optimisation environment for MATLAB is a flexible and reliable
environment for the solution of most types of applied optimisation problems. Tomlab
/SOL was written by Professor Kenneth Holmström, in cooperation with the Systems
Optimisation Laboratory (SOL) at Stanford and UC San Diego. It runs on a matlab 5 or
later version.

The toolbox includes two solvers for global optimisation, which are possible to mix
together in the solution process. The routine glcSolve implements an extended version
of DIRECT that handles problems with both non-linear and integer constraints. Since no
Lipschitz is used there is no natural way of defining convergence (except when the
optimal function value is known). Therefore glcSolve is run for a predefined number of
function evaluations and considers the best function value found as the optimal one. It is
possible for the user to restart glcSolve with the final status of all parameters from the
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previous run. DIRECT does not exactly handle equality constraints but the inequality
constraint can be used equivalently.

The example of two-reservoirs has been identified using 39 iterations and 6.65 CPU
time. Barcelona network from figure 4.8 has been identified As the results seemed to be
promising another more complex network has tried to be identified. No better results
than those obtained by the local optimisers were found.

4.5.4. Interval Newton Methods
Interval arithmetic was introduced in its modern form by R. E Moore (Moore 1966). If x
and y are elements of I(ℝ) then the four elementary operations for such idealised
interval arithmetic are defined:
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(4.52)

Interval arithmetic has some main difficulties that have to be taken into account;
ordinary interval division is not always defined, over-estimation when there is multi-
incidence of a intervalar variable, Interval arithmetic is subdistributive.

If such arithmetic is implemented on a computer using, equations 4.52, then the default
rounding may result in non-rigor. Nonetheless, with directed rounding, such bounds can
be computed rigorously. In particular if instead of rounding to the nearest, the lower
bound of the interval is rounded down to the largest machine number less than the exact
range, and the upper bound is rounded up to the smallest machine number greater than
the actual result, then the computed interval necessarily contains the exact range.
Simulated Directed Rounding is a device with which rigorous enclosures to floating
point results may be obtained in FORTRAN-77 and other languages that do not have
access to true directed rounding, or in machines without hardware-supported directed
rounding. This is one example of the difficulties that interval arithmetic implies and has
to be taken into account when the software and hardware are chosen.



152 Identifiabilitity and calibration of water network models

Example 4.4: Imagine a cost function like the one presented in equation 4.7 with only
one variable, the level of a reservoir and its measurement. The value of this variable has
a range so the range of this cost function can be evaluated using interval arithmetic
presented in equation 4.52.
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In this example appears clearly the effect of multincidence. The product hr1*hr1 could
never give a negative value unless it had been evaluated using intervalar arithmetic. The
term standard function means a set of functions, such as the specified in FORTRAN-77
standard, that are bundled with a particular compiler or software package.

Definition 4.4: A function f:I(ℝ)→I(ℝ) is said to be an interval extension of f:ℝ→ℝ
provided

{ } )()( xfx ⊆∈⊥xxf

for all intervals x⊂ I(ℝ) within the domain of f. (Interval extensions are defined
similarly for ℝn→ℝn)
An early criticism of intervalar arithmetic was that the bounds on the ranges so obtained
were too wide or pessimistic to be of value. This is frequently the case when intervalar
arithmetic is applied naively, but a good understanding of its properties leads to
appropriate and effective algorithms.

Theorem 4.1: Suppose φ:ℜn→ℜ, is formally written as a sequence of computations of
standard functions {wj}q

j=1 interspersed with the four basic arithmetic operations.
Suppose that in this expression, each of the n variables {xi}n

i=1 occurs formally only
once. Then, if φ(X) is evaluated with exact interval arithmetic and computation of the
exact ranges of each wj, the resulting interval enclosure will be the exact range φ(X).

If in example 4.4 the square were not interpreted as the product of two variables so that
the number of incidences could be kept as one, the result would have been [0,400]. So
in formulating the optimisation problem and in order to maximise the sharpness of the
interval extension it is suggested to minimise the number of incidences of each variable.

Definition 4.5: If F:ℜn→ℜm is a function computable as an expression, algorithm or
computer program involving the four elementary arithmetic operations interspersed
with evaluations of standard functions {wj}q

j=1, then a natural interval extension of F,



4 Microcalibration in water networks 153

whose value over an interval vector X is denoted F(X), is obtained by replacing each
occurrence of each component xi of X by the corresponding interval component xi of X,
by executing all operations according to formulas 4.52 and by computing the exact
ranges of the standard functions.

Natural interval extensions are first order. Second order are somewhat desirable, and
indeed, almost indispensable in certain contexts. Second-order extensions may be
obtained by series expansions and bounding the range of derivatives.

Definition 4.6: Suppose φ:D⊆ℜn→ℜhas continuous derivatives, X⊆D and Xm∈X. Then
the mean value extension for φ over X and centered at Xm is defined by

)X)(()X(:)X,( mmm −φ∇+φ=φ XXX2

where ∇φ(X) is a componentwise interval enclosure for the range of ∇φ over X.

It follows from the mean value theorem and the properties of interval arithmetics that
φ2(X,Xm) is an enclosure  for the range of φ over X and an 2-order interval extension.
For the example 4.4.

[ ] [ ] [ ]625,575)115130,100)(130,100120(2)115120(),( 2
12 −=−−+−=rhJ r1h

A primary use of interval derivable information is in bounding ranges or variations in
functions over regions. This has been seen deriving the second order interval extension.
Such information is also crucial in intervalar Newton Methods to speed and memory-
efficient verified global optimisation algorithms. However, it is not always necessary to
use interval extensions of the derivative. In fact, there are techniques that actually lead
to tighter bounds. To understand these techniques, it is useful to introduce the concept
of a slope matrix for a function.

Definition 4.7: Let F: ℜn→ℜm. The matrix A is said to be an interval slope matrix (or,
more generally, a slope set) for F over , X and centered on the interval vector Xm if, for
every X∈X and Xm∈Xm,

A∈−=− A)XX(A)X(F)X(F mm  somefor  

Any smallest such set of matrices satisfying this condition will be denoted by
S#(F,X,Xm). An interval vector that contains S#(F,X,Xm) (generally a good computed
outer estimate) will be denoted by S(F,X,Xm).

Description of a global optimisation problem requires specification of an objective
function and constraints [Kear-96]. However, algorithms for verified global
optimisation may require both floating point and interval values of the objective
function, gradient and Hessian matrices, as well as, possibly, interval values of the
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intermediate quantities obtained in computing a natural interval extension. With floating
point and interval values of the constraints and their gradients, this makes at least ten
different routines that would be required for each problem, an unacceptable burden if
many problems are to be solved. The early approaches used numerical differentiation,
others preprocessed using symbolic packages such as Maple. Each of these approaches
has failings. Numerical differentiation can be overwhelmed by both truncation and
roundoff error. Symbolic differentiation requires substantial separate machinery, and
can also result in expressions for the derivatives that are many times larger than the
optimal. An alternate technique is automatic differentiation.

An object for automatic differentiation is an- ordered pair of the form <u,u’> where the
elements u and u’ are real numbers or intervals. The rules for differentiation arithmetic
are based on the elementary rules of differentiation. For example the operations
presented before have the following rules

vuuvvuvvuu

vuuvvuvvuu

vuvuvvuu

vuvuvvuu
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'',·',·',

'',',',

'',',',

+=

+=
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(4.53)

A combination of several techniques is used in state-of-the–art interval global
optimisation codes for step 2b of algorithm 4.6. Some of these techniques are outlined
as the following algorithm.

Algorithm 4.6 (Range check and Critical Point Verification)
INPUT: a box X and a current rigorous upper bound φon the global minimum.
OUTPUT: one or more boxes derived from X, or the information that X cannot

contain a global minimum, or information that X contains a critical point.
1. (Feasibility check; for constrained problems only)

a. (Exist if infeasibility is proven) DO for i=1 to m:
i. Compute an enclosure ci(X) for the range of ci over X.
ii. IF 0∉ ci(X) THEN discard X and EXIT

b. Verify, if possible, that there exists at least one feasible point in X.
2. (Range check or “midpoint test”)

a. Compute a lower bound )( Xφ  on the range of φ over X.
b. IF φ>φ )( X THEN discard X and EXIT

3. (Update the upper bound on the minimum.) If the problem is unconstrained or
feasibility was proven is Step 1b, THEN

a. Use interval arithmetic to compute an upper bound )( Xφ of the objective function
φ over X.
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b. { })(,min Xφφ←φ .
4. (“monotonicity test”)

a. Compute ab enclosure )( Xφ∇ of the range of φ∇ over X.. (Note: if X is “thin”, i.e.
some bound constraints are active over X, then a reduced gradient can be used)

b. IF 0∉ )( Xφ∇  THEN discard X and EXIT.
5. (“concavity test”) If the Hessian matrix2 ∇2φ cannot be positive definite any-where

in X THEN discard X and EXIT.
6. Quadratic convergence and computational existence/uniqueness) Use an interval

Newton method (with Fritz John equations in the constrained case) to possibly do
one or more of the following:

reduce the size of X;
discard X;
verify that a unique critical point exists in X.
(Bisection or geometric tessellation) If Step 6 did not result in a sufficient change in X,
then bisect X along a coordinate direction )(or otherwise tessellate X), returning all
resulting boxes for subsequent processing.
End Algorithm 4.6

4.5.5. The solver GlobSol
The Global Solution initiative of sun Microsystems is intended to develop R. Baker
Kearfott’s INOPT_90 software for solving non-linear systems and global optimisation
problems into a commercial quality package. It has been used for the networks treated
so far. The results didn’t seem to guarantee the solution of any network. The cause of
this problem may be more in the software than in the algorithm. The development of
this software is on-going and it is difficult to say whether the improvement of such tools
will overcome these difficulties.

4.6. The recursive least square method
The problems presented by a global optimisation solution for the estimation of
parameters of the network lead to the investigation of other possibilities. Andersen
[And-00] proposes a least square methodology for the state estimation. The non-linear
system is linearised and the Jacobian is the base for the least square estimation problem.
Bertsekas [Ber-96] presents extended Kalman filter. It is called extended because it
treats with non-linear systems. These problems are extended in time in order to identify
systems that would be unidentifiable with one time step. Though it is normal to think in
Kalman filter for dynamic systems it can be used for random variables in order to find a
mean value. Using some notes by professor Astrom [Ast-95] this point of view seems
possible.

Consider two jointly distributed random vectors x and y. x is viewed as a measurement
that provides information about x. What is searched is a function f(·), called estimator,
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where f(x) is an estimate of y given x. A commonly used estimator is the least squares
estimator, which is obtained by minimisation of the following expected squared error
over all f(·):

[ ] [ ][ ]xxfyEExfyE |)()( 22 −=− (4.54)

it is clear that f*(·) is a least squares estimator if f*(x) minimises the conditional
expectation in the right-hand side above for every x. Suppose that the least squares
estimator E[y|x] is very complicated or otherwise difficult to calculate. It would then
make sense to consider instead minimisation over r of
[ ]2),( rxhyE −

over a class of estimators from a given architecture h(·,r) that depends on a parameter
vector r. Assume further that there are sample pairs (x1,y1),..., (xm,ym). The preceding
expected value can be approximated by

2

),(1 ∑ − rxhy
m ii (4.55)

Then if r* minimises the above sum of squares, h(x,r*) is an approximation to the least
squares estimator E[y,x].

Optimality conditions impose the convexity of the function. Such convexity can be
formulated using the Hessian matrix and imposing its positive semidefinition. Such
condition cannot be assured in the problems that are treated in this thesis. The approach
used is to linearise the problem and treat it as a Linear Least squares problem. Consider
the least squares problem for the case that the function g(r) are linear of the form

rXyrg iii −=)( (4.56)

where yi∈ℜm are given vectors and Xi are given m×n matrices. In other words, what is
done is to fit a linear model to the set of input-output pairs (x1,X1),..., (xm,Xm). Each such
pair is a data block. The cost function has the form
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it is quadratic and convex. If the matrix of equation 4.47 is invertible the problem has a
unique solution r*, obtained by setting the gradient to zero. This linear square estimate
can also be computed recursively using the Kalman Filter. This algorithm has many
important applications in control and communications systems, and has been studied
extensively. An important characteristic of the algorithm is that it processes the least
squares terms ||yi-Xir|| incrementally, one at a time. Consider equation 4.45. The Kalman



4 Microcalibration in water networks 157

Filter sequentially generates the vectors that solve the partial least squares subproblems
involving only the first i squared terms, where i=1,...m:
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r n
min arg

j
jji rXy (4.58)

Thus the algorithm first finds ψ1 by minimising the first term ||y1-X1r||2, then finds ψ2

By minimising the sum of the two terms ||y1-X1r||2+||y2-X2r||2, etc. The solution of the
original least squares problem is obtained at the last step as r*=ψm. The method can be
conveniently implemented so that the solution of each new sub-problem is easy given
the solution of the earlier sub-problems, as will be shown in equation 4.48.
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When λ=1 the original least squares is obtained, a λ<1 de-emphasises the effect of the
initial terms and is sometimes useful in the situations where the mechanism that
generates the data changes slowly with time.

Algorithm 4.7 shows the implementation of this technique assuming that Xi’Xi is
positive defined. Such assumption will be analysed when the special case of water
networks is treated.
Algorithm 4.7

1. Set H0=0 , ψ0=r0 and i=1
2. DO for i=1 to m

a) Hi=λ Hi-1+Xi’Xi

b) ψi=ψi-1+ Hi
-1 Xi’(yi- Xiψi-1)

c) i=i+1
Example 4.5: Imagine that the relation between two vectors in this linear example is a
constant matrix. Vector y is measured, it has a small noise (≈1%) and the two
parameters r one is constant and the other one increase linearly with time.
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The use of the algorithm 4.7 with 100 iterations allows the proper estimation of the
constant parameter. It can be seen in figure 4.23 where the continuous line is the real
and the dashed line corresponds to estimation.
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4.6.1. Recursive Linear Least squares applied to the water networks
In order to apply this technique to the problem that is treated here, estimation of
parameters in water network has to be linearised. Function g of equation 2.4 represents
equations 4.7 to 4.9, physical constraints in a water network, using the general notation
used in example 2.2. This equation has been linearised becoming 2.7. Equation 4.60
shows the incremental problem that arises when a system of equations is linearised.

ξξ +∆=∆⇒+∆+=∆+ xJzxJxgzz xx 00
)( 00 (4.60)

Looking at equation 4.55, vector y corresponds to the difference between the initial
model simulation results and the measurements taken. Jacobian is calculated using the
parameters and the unknown variables that are obtained by simulation of the original
model. The result of the estimation ∆x is the increment of the vector x (parameters and
variables) done to the original model in order to obtain a better model.

One of the main advantages of this method is that the identifiability study developed in
chapter 2 has an obvious interpretation in this formulation. If the Jacobian is full rank
and its rank is higher than the number of variables and parameters that have to be
estimated the pseudo inverse exists and the problem has a solution. This condition is the
same condition imposed by the positive definition of Xi’Xi.

The linear least square method has no convergence problems because of the convexity.
The reliability of the result will depend on the reliability of the linear approximation.
The recursivity of the method helps in improving this reliability. This recursivity is
understood in three different ways shown by figures 4.24, 4.26 and 4.28. These three
approaches are illustrated with a simple example and the improvement of recalculating
the working point in each iteration is shown.
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Example 4.6: The network of figure 2.3 was identifiable in one time-step when all
heads are known (reservoirs and junctions) and two flows are measured (q1 and q4).
Using the recursive least square state and parameter estimation presented in algorithm
4.7, where Xi is now the Jacobian, the estimation of the roughness and demand factors
(all unknown) is carried out. In figure 4.25 these parameters are presented, the correct
ones (o), the estimated (·) and the original model (+).
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Fig. 4. 25
The parameters improve but it could not be taken as a good result. Increasing the
number of time steps does not necessarily improve the estimation because as the time
passes the jacobian, which uses variables in its calculation, becomes less and less
reliable. The use of two consecutive days may introduce little improvement as the
working point is the same and the problem becomes numerically repetitive. The rls has
been repeated changing the original model that provides the jacobian as figure 4.26
shows. What has been done is the introduction of the estimated parameters as original
ones and then the calculation of the Jacobian is iteratively improved. In figure 4.27 a
second estimation is showed.
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Little improvement is seen. The third approach is to recalculate the jacobian in each
iteration. This occurs properly in the rls. The simulator requires updating in each
iteration. Such updating can be done using Epanet-Toolkit that works as an interface
between the simulator and other applications.
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Initial parameters
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parameters
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Fig. 4. 28
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When the system is not identifiable with one time-step matrix H is not invertible any
more. On the other-hand it has been seen that the use of more than one time step can
increase the identifiability and thus this method should be generalised. The
generalisation of the jacobian presented in section 2.6.3 was easily calculated due to the
problem formulation used. Taking into account as many time steps as identifiability
requires and using such jacobian as the linearisation of a generalised non-linear
problem, Extended Kalman Filter can be applied.

The Extended Kalman Filter understood as the application of the linear Kalman Filter to
the linerised system, following scheme presented in figure 4.28, is identical to the
formulas 2.12 presented in section 2.4.2. In that section the convergence conditions
were used to determine the identifiability of the network.

Example 4.7: The network of figure 4.8 where local optimiser failed has been used to
test this method. In figure 4.30 the evolution of the parameter is shown. There are four
resistances that present a wrong evolution, demand factors converge better. This has
been obtained with 10 time steps. Figure 4.31 shows the real value (o), initial value (+)
and estimation (*).
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In order to improve the estimation based on local optimisation a search of new initial
conditions has carried out. This has improved the results and a combination of these two
techniques is proposed for such problems. In figure 4.32 the new results are shown.
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4.7. Case Study
The experience of WSS with real networks and their contacts had provided some real
data and a real network model. They have allowed the application of the techniques
proposed in this thesis. Figure 4.33 shows a real network. It has 1 reservoir, 236
junctions and 243 pipes.
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Fig. 4. 33
Data are recorded at 20 second intervals. The inlet is measured. Head in reservoir is
known and thus it is represented as a curved head reservoir. In figure 4.34 both
measurements (continuous) and simulations (dashed) appear as the same curve because
it is introduced as an input that is known. There are four more heads that are measured;
Average zonal node pressure (AZNP that corresponds to junction 42) presented in
figure 4.35; target point pressure (TP, junction 58) presented in figure 4.36; critical
point pressure (CP, junction 228) represented in figure 4.37; pressure measurement
point 1 (PM1, junction 113). In this thesis the steps are 1 hour.
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The first attempt to improve the model was using microcalibration. The extended
Kalman Filter approach has been applied to this case study. The few measurements
provided and the enormous size of the network constrained the resistances and demand
factors that could be tuned. The identifiability study as presented in chapter 2 allowed to
know these limits. The attempts to apply the microcalibration left almost unchanged the
parameters. This is not a bad result if the head curves are observed carefully. The error
between simulation and measurements is very similar in each junction in spite of their
location (they are in each edge of the network). A correction in roughness or demand
factors would change differently these curves for each junction.

On the other side some experiments have been carried out. First the  roughness of pipe
75 (C-factor in the simulator) has been multiplied by 10. This pipe is attached to
junction 42. Figure 4.38 shows the new pressure comparison for junction 42. It is almost
identical to that in figure 4.34. If the demand factors of junctions 42 (0.04 in this
network) and 58 (0) are exchanged the effect is not much stronger. Figures 4.30 and
4.40 show the pressures comparisons for junctions 42 and 58 in this new situation.
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It is clear that the cause of the discrepancies is a global error in the model. There are
two inputs in the model. The head of the reservoir is a measurement and thus it is as
reliable as the measurements in the junctions. The other input is the demand curve that
affects all junctions with demand associated. It is not a measurement but a prediction.
Such an error in modelling would have been detected comparing the SCADA data for
consumptions and this demand curve as it is explained in chapter 3. The real data are
not available and a readjustment is done in this curve and the result was an important
improvement in the pressure simulation. Figures 4.42 to 4.45 show the new
comparisons for pressures in the junctions where it is measured. The conclusion of this
real case is that a good macrocalibration is necessary in order to apply microcalibration
techniques. Any improvement of demand factors and roughness would require more
data. The small influence of tuning is unique resistance or demand factor is due to the
small number of measurements.
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5. Conclusions

The general objective of this thesis was to face a major problem for the water
distribution systems’ management. The importance and criticality of calibration in such
systems was justified in the introduction. In order to meet such a challenge, the first idea
was to study the application of global optimisation techniques. Experience in
optimisation of such systems and the non-convexity of the problem leads to these
algorithms. The theoretical study of the identifiability and the problem design needed
and the elimination of major errors in the network using some artificial intelligence
techniques are two other main parts of this work.

The calibration problem is presented as the identification of a system. Input has to be
introduced within a time-period in order to obtain the model from the output. These
three factors are crucial for the observability of a system. The identifiability can be
treated as a generalisation of observability. Definition and understanding of
identifiability is provided. The importance of this analysis is justified.

State-of-the-art in calibration of networks and systems has been studied and applied to
water networks. Although different approaches are found in the literature, the
improvement introduced by repeating the measurements (quasi-static simulation with
more than one time-step) is not well covered. The linear case is just a linear algebra
problem that appears in many basic books. In general the problem is non-linear and the
jacobian is used in order to linearise. The topologic identifiability uses graph theory and
an enlightening example is presented.

The equations for the linear and non-linear case are developed and the identifiability
conditions are generalised for extended period case. For the linear case some conditions
are imposed on the input. This means that not only whether the quantity of sensors is
enough and well distributed, and how many time steps must be taken into account is
studied, but also the measurement conditions. The condition is a sufficient one but not
necessary.
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Although a topological identifiability study would be useful in order to decide the
location of new sensors, this has appeared to be not possible to generalise without
introducing the reservoir and their dynamics. The extended-period jacobian is a good
method for the identifiability study. In order to get topological information about the
non-identifiable variables the singular value decomposition is useful. Results using this
methodology are coherent with the ones obtained using topological identifiability for a
static case. This methodology is easily generalised using the formulation proposed in
this thesis.

The design of the identification problem goes beyond the mere identifiability study. One
aim of the thesis was to give a useful methodology for the sensor placement, a major
challenge. The use of singular value decomposition in their interpretation as input and
output directions and gains, allows the signalling of those variables that are most critical
in the identification.

A big network has been used as a case study. The introduction of extended period
measurements has much improved the identifiability allowing the use of fewer sensors.
The results are promising. Three case studies have been used to show some
characteristics of the identification problem depending on the topology. The number of
sensors required when no loop is present is greater than the number required in
networks with loops, comparing when both networks have the same number of nodes or
same number of pipes. This could have been found out using a topological approach for
one time step but not in the extended-period case.

The modelling of the water network using optimisation techniques for the parameter
estimation may have convergence problems unless macrocalibration is performed first
to remove crude errors. The first task has been to organise the errors that the experts aim
to detect in this phase. Some of these errors need an easy algorithm to be studied
(connectivity, total demand, etc.). Other errors are more subtle and some kind of
knowledge organisation has been used in order to detect them.

Two approaches have been considered, expert system and classification. They appear in
literature when macrocalibration is intended. The inference engine of such an expert
systems does not seem to be especially critical as there are not so many rules enchained,
the first prototypes have been implemented using Matlab.

This simplicity is common to the classification algorithms so it hasn’t been a major
reason for the usage. Classification methods have presented once more applied to
examples of simple water networks.

The problems of generating the knowledge for an expert system do not appear using
LAMDA (a classification algorithm). This algorithm has worked well when all the
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information required was present and for some special cases of errors. All the process
for cluster generation, object classification and cluster modification has been presented.

The results obtained applying these techniques are promising. They have been obtained
with knowledge generated from a simple network and applied to a much more
complicated one. Results would be more reliable if the user generated from his own
network or a similar network from the topological and hydraulic point of view. The idea
of this tool is not to detect, classify and solve all errors. It is a support tool for the user
who has to make there own decisions. In big networks an automatic tool that signals
suspicious elements may be very useful.

The last step, though of course not the least in this thesis, has been the study of different
techniques for the microcalibration process. This process is not understood as an error
detection method but one of tuning of parameters and is formulated as an optimisation
problem. This formulation and its theoretical study confirm the need of global
optimisers due to the non-convexity of the problem.

The comparative study of the methods has been done in a progressive way. First the
local optimisers have been tested and have shown themselves insufficient as the
problems become slightly complicated. The number of variables explodes as the
number of time steps increase. This difficulty is presented by the global solvers that
have been tested. Signomial algorithms appeared overwhelmed by the simplest network.
Lipschitz optimisation gives results that cannot be guaranteed as global minima with a
similar limitation to that of the local optimisers. Interval arithmetics optimiser seemed
to give promising results but the software available failed and however the improved
versions of it could open a field of application.

As an alternative, a classical algorithm in identification is adapted to the concrete
problem. The recursive least squares is used to determine the parameters of the network
using one or more time steps (extended period). The linearisation of the network has to
be done for each iteration in order to obtain the best results.

The development of the prototype has all been carried out in simulation. The difficulty
to obtain real data from companies, when no concrete project is in operation made it
impossible to link this work with database and SCADA. Now some projects in the
group with companies in Spain and South America, may allow the application of some
of these techniques to real cases. On the other-hand the work done together with the
Water Software Systems group in Leicester has opened a way of co-operation with it
may lead to the development of new projects with industrial orientation.

My personal achievements in this thesis have been to supply a solution for each of the
three main steps of the calibration process that have been studied deeply.
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A tool for the identifiability is proposed. Such a tool is able to determine whether a
network is identifiable with the available measurements and where should be added new
sensors. This has a straightforward industrial application and is ready to be used.

A methodology and  a tool to support the expert who carries out the macrocalibration
process. It is not an automatic process but all the steps suggested by the expert are
treated systematically and an algorithm specific has been developed. The use of
LAMDA allows the generation of knowledge in a easier way compared with other
methods as expert systems.

The parameter tuning has the major drawback that it drives to a non-convex
optimisation problem. The original idea of applying global optimisation algorithms has
been reduced to the statement of the limitations of these tools. An alternative is
suggested based in Extended Kalman Filter. This recursive estimation together with the
use of different initial conditions is the suggested method.

The tool for the calibration has been developed for each functionality, identifiability
study, macrocalibration and microcalibration. The Web-server toolbox in Matlab
allowed the remote macrocalibration and now a integration project is been carried out.

This thesis has been written in order to gather all the tested technologies and justify
those that have been chosen. Those that are not so common in water industry have been
illustrated with small networks.

As a future work this tool should be applied to a real network. This means an integration
effort of SCADA, data base, simulator and the tools developed in this thesis. A
customisation of the macrocalibration tool would be convenient. This tool should be
adapted to the topology and the sensors available in the network. Such customisation is
possible with the guides given in this thesis. The new software that appears in global
optimisation could improve the reliability of some of the algorithms specially those
based on intervalar algebra. The application of Extended Kalman Filter to a real
network needs once again the integration of software and the availability of real data.
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