89

Chapter 4

Input/output bus usage control in
personal computer-based software
routers

4.1 Introduction

In this chapter we address the problem of resource sharing in personal computer-
based software routers when supporting communication quality assurance mechanisms,
widely known as QoS mechanism. Others have put forward solutions that are focused
on suitably distributing the workload of the central processing unit. However, the in-
crease in central processing unit speed in relation to that of the input/output (I/O) bus
means attention must be paid to the effect the limitations imposed by this bus on the
system’s overall performance.

Here we propose a mechanism that jointly controls both the I/O bus and the cen-
tral processing unit operation. This mechanism involves changes to the operating system
kernel code and assumes the existence of certain network interface card’s functions, al-
though it does not require changes to the personal computer hardware. Here we also
present a performance study that provides insight into the problem and helps to evaluate
both the effectiveness of our approach, and several software router design trade-offs.

The chapter is organized as follows. Section 4.2 presents the problem, section 4.3
discusses our proposed solution and section 4.4 presents a performance study of the
proposed mechanism in isolation, carried out by simulation. Then, section 4.5 considers
the performance of a software router incorporating the proposed mechanism, carried out

PH.D. DISSERTATION OsSCAR IVAN LEPE ALDAMA

90 THE PROBLEM—4.2

also by simulation. Section 4.6 discuses on a particular implementation of the proposed
mechanism and presents measured performance data. Finally, section 4.7 summarizes.

4.2 The problem

Given that there are inherent performance limitations in the architecture of a soft-
ware router, but also that there are reasons that make its use attractive, (see previous
chapter’s section 3.3) the question of how to optimize its performance arises. In addi-
tion, if we want to support QoS mechanisms, we must find suitable ways of sharing re-
sources and, as Nagle said, providing protection, so ill behaved sources can only have
limited negative impact on well-behaved ones [Nagle 1987]. There are two different as-
pects of the problem of resource sharing: the fair share of the communications link for
each output network interface card and the fair share of router resources, mainly central
processing unit and input/output (I/O) bus. The first aspect affects output packets flows
that share a single network interface card, while the second aspect affects all packets
flows that go through the router. We will focus our work on the second aspect of this
problem.

In other works the problem of fairly sharing software router resources is tackled in
terms of protecting [Indiresan, Mehra and Shin 1997; Mogul and Ramakrishnan 1997]
or sharing [Druschel and Banga 1996; Qie et al. 2001] the use of the central processing
unit amongst different packets flows in an efficient way. However, the increase in cen-
tral processing unit speed in relation to that of the I/O bus makes it easy for this bus to
constitute a bottleneck. This is why we address this problem in this article, considering
not only the sharing of the software router’s central processing unit, but also its I/O bus.

4.3 Qur solution

The mechanism we propose for implementing input/output (I/O) bus sharing be-
tween differentiated packets flows manipulates the vacancy space of each direct mem-
ory access receive channel (see chapter 2’s subsection 2.6.6 for a description on direct
memory access channels) in such a way that the overall I/O bus’ activity follows a
schedule similar to one produced by a general processor sharing (GPS) server [Demers,
Keshav and Shenker 1989]. The mechanism, that we named Bus Utilization Guard
(BUG), acts as a flow scheduler that indirectly regulates the I/O bus utilization. Packets
flows wanting to traverse the router have to get registered before the BUG. This may be
accomplished either manually or by means of any resource reservation protocol like
RSVP. In any case, a packets flow is required to submit target resource utilization for
registering and the system is required to manage packets flow identifications for packets
flows it admits. Note that the system has to be able to map each differentiated packets
flow to a direct memory access channel, DMA channel for short. Figure 4.1 shows the
BUG’s system architecture.

OSCAR IVAN LEPE ALDAMA PH.D. DISSERTATION

4.3—OUR SOLUTION 91

Figure 4.1—The BUG’s system architecture. The BUG is a piece of software embedded in the
operating system’s kernel that shares information with the network interface card’s device
drivers and manipulates the vacancy of each DMA receive channel

oesrptor e Desrtr J Desr e esertr

\ l Empty pty s Filled
BI:SeSr l Packet acket Pac Packet
' I Buffer Buffer B Buffer

PH.D. DISSERTATION OsSCAR IVAN LEPE ALDAMA

92 OUR SOLUTION—4.3

4.3.1 BUG’s specifications and network interface card’s requirements

The mission of the BUG is to assist supporting QoS system behavior by indirectly
controlling input/output bus usage following a GPS like policy. (For now we regard to
the input/output bus simply as the bus.) We thought of the BUG as either a piece of
software within the operating system’s kernel or as a hardware add-on attached to the
AGP connector. We wanted the BUG not to require any change to the host computer’s
hardware architecture. However, the BUG still requires the network interface cards to
keep a running sum of packets and bytes received per differentiated packets flow.
Moreover, the BUG can only differentiate packets flows when they are mapped to sepa-
rate DMA channels. Therefore, if it is wanted to differentiate packets flows entering the
router through a network interface card, the latter must support several DMA chan-
nels—one channel per differentiable packets flow.

Because the BUG protects a rather fast resource and due to its software only im-
plementation requirement, it was important that the BUG would have low overhead.
Moreover, because the BUG uses the bus it thrives to protect, (as will be explained lat-
er) for polling information from the network interface cards and configuring them, it
was important the BUG would be as low intrusive as possible. Table 4-1 summarizes
these specifications and requirements.

TABLE 4-|

BUG’s specifications

Avoid host hardware modifications
Low overhead
Avoid intrusion

Network interface card’s requirements

Per packets flow DMA channels
To be able to keep some packets flow state information

OSCAR IVAN LEPE ALDAMA PH.D. DISSERTATION

4.3—OUR SOLUTION 93

4.3.2 Low overhead and intrusion

In order to minimize overhead and intrusion, we devised the BUG to get activated
only every T seconds, where 7 >> 7 the time required in the worst case for executing
BUG’s activities when it gets activated. Figure 4.2 illustrates this behavior. As will be
shown, 7 influences packet latency because during the time the BUG is running no
packet may traverse the protected bus.

May T be arbitrarily large? As will be shown, the BUG is a reactive mechanism
that from a summary of what have happened at the bus during the last 7" seconds it ad-
justs DMA receive channel’s vacancy spaces so that the bus’ behavior during a busy pe-
riod resembles that of a GPS server. Consequently, a priori, 7 cannot be arbitrarily
large. Intuitively, there must be a 7y, beyond which either the BUG cannot react fast
enough or the required adjustments are unfeasible to perform. Besides, as will be
shown, there is a proportional relationship between 7" and BUG’s main memory storage
requirement. Indeed, a priori, the mean number of packets that the BUG has to be aware
of increases with 7" and more packets imply more mbuf descriptors, which require more
main memory. Actually, the DMA channels are the ones requiring the added memory
and not the BUG.

To further reduce intrusion, we devised the BUG as a bistate mechanism. At every
activation, the BUG firstly determines how much of the bus resources have been used
during the last 7 seconds. If the bus has not been one hundred percent utilized, the BUG
enters monitoring state and no further action is taken. Otherwise, the BUG enters en-
forcing state and executes all its tasks. Figure 4.2 also illustrates this behavior.

Figure 4.2—The BUG’s periodic and bistate operation for reducing overhead and intru-
sion

T T A=
— H Enforcing

Poll NICs

Compute
shares

Adjust vacancy
spaces

not fully used fully used

U/\‘,

fully used
wontang) enoons)|
not fully used /

PH.D. DISSERTATION OsSCAR IVAN LEPE ALDAMA

94 OUR SOLUTION—4.3

4.3.3 Algorithm

The BUG emulates a packet-by-packet GPS server with batched arrivals. The
GPS server’s inputs are computed afier data polled from network interface cards and
network interface card’s device drivers. Figure 4.3 shows and example scenario. Ap-
pendix B lists the C++ language code of the algorithm’s implementation used for the
simulation experiments described in section 4.4 and 4.5.

Assume that the mechanism is in monitoring state at cycle k*7. Then, the mecha-
nism gathers D;;—the number of bytes transferred through the bus during period
((k-1)*T, k*T) by DMA receive channel-i, channel-i for short. If sum(D;y) < T/sus,
where [gys is the cost per bit of bus transfer, the mechanism remains at monitoring state
and no further actions are taken. On the contrary, the mechanism detects the start of a
busy period and enters enforcing state. When at this state, the mechanism polls each
network interface card to gather N;;—the number of bytes stored at the network inter-
face card associated with channel-i—and computes the amount of bus utilization
granted to each DMA receive channel, or y;. This is done after the outputs of the emu-
lated GPS server, or G;x. GPS server’s inputs are the N;; at the start of a busy period.
Afterwards, the inputs are the amount of arrived traffic during the last period or 4;,=N
ik—Nir1+D;r. BUG is work-conservative and thus:

Yk = Gi,k + (T/ﬁBUS‘ (G11k+...+GN,k)) (1)

Observe that sum(%) > T/Bgus, a situation that can lead to an unfair share. Conse-
quently, the BUG is prepared with an unfairness-counterbalancing algorithm. This algo-
rithm computes an unfairness level per DMA receive channel, u ;x, and if it detects at
least one deprived packets flow then it reduces every depriver packets flow’s bus utili-
zation grant, %y, by the corresponding unfairness value. In this case we have:

Yk = |—%,k -u i,k—| 2)

One problem with this approach is that if unfairness is detected then
sum(y+#) < T/Psus; that is, the unfairness-counterbalancing algorithm may artificially
produce some bus idle time. This problem also arises when packetzing bus utilization

Figure 4.3—The BUG’s packet-by-packet GPS server emulation with batch arrivals

Arrivals/Departures
Patterns

—— 4l

k=Tt &0 Flow! Flow2 Flow3

GPS input GPS Bus' Capacity Share

\4

N W A g o
T

\4

-
T

r» Bus capacity

Time

OSCAR IVAN LEPE ALDAMA PH.D. DISSERTATION

4.3—OUR SOLUTION 95

grants, as shortly explained. Happily, a single mechanism, one that allows the BUG to
vary the length of its activation period, solves both problems.

The BUG will switch from enforcing state to monitoring state at the start of any
activation instant that sum(D;x) < T/Bsus. When this switch occurs, the BUG resets the
emulated GPS server and stops regulating the bus usage by giving away:

Yk = (T/Psus) 3)

4.3.4 Algorithm’s details

The BUG requires detecting when the bus is fully utilized. One approach to do
this is asking the bus for its accumulated idle time at each activation period. If there is a
difference between the current value and the read previously then the bus was not fully
utilized during the last 7' time units. The problem with this approach is that the PCI bus
specification does not defines such a thing as bus accumulated idle time [Shanley and
Anderson 2000]. Upon this absence, the BUG computes the bus utilization level after
the received byte-count it collects at each activation-instant from network interface
cards’ device drivers.

The BUG is a work-conservative mechanism in which any idle time detected at
the emulated GPS server is given away for all packets flows to use. Moreover, when at
monitoring state it sets all use-grants to a value proportional to a complete T period, so
the bus can get busy as soon as possible. Figure 4.4 shows an example scenario. This
has two evident implications. On the good side, packets do not experience any initial
waiting. On the bad side, some unfairness may arise because some packets flow may
use more than its solicited share in detriment of other packets flows. Happily, unfairness
may only occur during a bus busy period. Therefore, the BUG only needs to look for
and correct unfairness when at enforcing state. Observe that the emulated GPS server
cannot deal with any unfairness because the latter is produced outside its scope. Thus,
any counterbalancing mechanism has to be implemented as part of the BUG’s control-
logic.

Of course, unfairness may be avoided altogether by implementing a non-work-
conservative mechanism, in which packet arrivals occurred during an activation period
get artificially batched at the next activation instant. (By appropriately manipulating the
DMA receive channel’s vacancy spaces.) But then packets would experience added la-
tency. We also have implemented a non-work-conservative BUG and it works well
throughput-wise. However, here we only present results from the work-conservative
version because we believe it is a better overall solution.

When at enforcing state, the BUG has to check for unfairness. To do this, upon
entering this state the BUG starts comparing two running sums per packets flow:
sumy(G;y) and sumD;). Then, unfairness may be computed as:

Uik = sumi(Di,k) — sumi(Gi,k) (4)

A positive difference denotes a depriver packets flow, while a negative value de-
notes a deprived one. If the BUG detects at least one deprived packets flow, then all de-

PH.D. DISSERTATION OsSCAR IVAN LEPE ALDAMA

96 OUR SOLUTION—4.3

priver packets flows will have their bus utilization grant,), reduced by u; and all de-
prived packets flows will get theirs augmented by u;x. Any % that gets negative is
topped to zero. Figure 4.5 shows an example scenario.

The BUG is required to packetize the computed bus utilization grants before ad-
justing vacancy spaces at DMA receive channels. This is required because while the
GPS algorithm’s information unit is the byte, the information unit for DMA channels is
the packet. Figure 4.6 shows an example scenario. When packetizing utilization grants it
may happen that modulus(), L;) # 0, where L; is the mean packet length for channel-i.
Hence, some rounding off is required. We have tested rounding off both down and up
and both produce particular problems. However, the former gave us a more stable
mechanism. Of course, if we let the BUG to round off its bus utilization grants, then its
emulated GPS server will get out of synch with respect to what is happening at the bus.
Therefore, we also programmed the BUG to accordingly adjust the state of its emulated
GPS server. If nothing else is done, some bus idle time is artificially produced and the
overall share assigned to that packets flow would be much less of what it should be.
This problem, and the induced by the unfairness counterbalancing mechanism, can be
solved if we let the BUG reduced its next activation period length by some df time
value. Evidently, this increases the BUG’s overhead. But as long as df is a small fraction
of T, the overhead’s increase will remain at acceptable levels.

The BUG normally works periodically with period 7, but the implementation of
the unfairness counterbalancing mechanism and the bus utilization grants packetization
requirement may induce some bus idle time if nothing else is done. For circumventing
this problem we allow the BUG to adjust its activation period and set it to the length of
the expected busy period afier an enforcing state activation during which the emulated
GPS server ran at 100% utilization. The busy period’s length is just sum(y#/Psus),
where p# is the packetized bus utilization grant of packets flow i at activation instant &
after adjusted for unfairness if necessary. Observe that this value is equal to 7 — df,
where it is expected that dt >> T thanks to the BUG implementation’s properties. Note
that only at the considered activation instant is the activation period adjusting required.

4.3.5 Algorithm’s a priori estimated costs

When at monitoring state, the BUG only needs “to keep an eye” on the bus
utilization at every activation instant, and thus we can say this task’s costs are low.
However, this task still requires O(n) work, where » is the number of DMA receive-
channels associated to network interface cards.

When at enforcing state, the BUG performs a sequence of tasks involving loops:
assessing bus utilization, computing GPS server’s inputs, executing the GPS server it-
self and adjusting packets flows’ bus grants. Of all these tasks, the GPS server requires
the largest number of instructions. Shreedhar and Barghese [1995] state that a naive im-
plementation of a GPS server requires O(log(m)) work per packet, where m is the num-
ber of packets in the router. However, Keshav [1991] shows that good implementation
requires O(log(n)), where n is the number of active packets flows.

Section 4.6 reports the a posteriori BUG’s costs measurements.

OSCAR IVAN LEPE ALDAMA PH.D. DISSERTATION

4.3—OUR SOLUTION 97

Figure 4.4—The BUG is work conservative

GPS input

(new and backlog) GPS Bus Capacity Share Flow Grants
h

Y
ong Aq
Aeme uanin

N W A O o
N W A O o

Y
Sdo 8yl
Aq paindwon

—_

1+

TFlow1 Flow2 Flow3

r» Bus capacity

Time TFlow1 Flow2 Flow3

Figure 4.5—The BUG’s unfairness counterbalancing mechanism.

Possible . Next Flow Grants
Flow Grants Actual Use Unfariness Supposing a (4,4,4) arrival vector.
A G > Capacity A A A £G < Capacity
6 6 3+ 6
[0]
5 g5 5 21 5
rm
4 6% 4 1+ 4
. R) Flow3
o Flow1 Flow2
2 33 2 A 2
oY1
1 38 1 2L 1
g
TFlow1 Flow2 Flow3 TFlow1 Flow2 Flow3 Flow1 Flow2 Flow3

Figure 4.6—The BUG’s bus utilization grant packetization policy. In the considered
scenario, three packets flows with different packet sizes traverse the router and
the BUG has granted each an equal number of bus utilization bytes. Packet
sizes are small, medium and large respectively for the orange, green and blue
packets flows. After packetization, some idle time gets induced.

Byte grants

Packetized
grants
i Back-to-back
i packetized grants
1 1 ‘
L J

PH.D. DISSERTATION OsSCAR IVAN LEPE ALDAMA

98 OUR SOLUTION—4.3

4.3.6 An example scenario

In order to see how all this works allow us to present a step-by-step description of
an example operation scenario for the BUG. The scenario considers the operation of the
BUG protected bus in isolation. Three packets flows load the system. Each packets flow
solicits one third of the bus capacity. All packets are of the same size and six packets
fully occupy the bus. Figure 4.7 shows a picture of the description that follows. In the
picture time runs downwards. Marks at the time axis denote BUG’s nominal activation
instants and thus are spaced by 7T seconds. The picture shows the BUG’s operation vari-
ables as vectors. For each vector, dimension k corresponds to packets flow k. Table 4-II
defines the used vectors.

TABLE 4-I|
Vector DEFINITION
A NUMBER OF PACKET ARRIVALS DURING THE LAST ACTIVATION PERIOD
D Number of packet departures during the last activation period
N Number of packets waiting at the buffers of some NIC

G Qutputs produced by the emulated GPS
Gac Running sum of GPS outputs

Dac Running sum of departures
U Unfairness (Dye + D - Gyc)
Y USE GRANT GIVEN BY BUG

Because vectors A and B denote events occurred anytime during the previous ac-
tivation period, we show them between activation instants. The rest are computed, or
considered, at every activation-instant and therefore we show them grouped and pointed
at the corresponding instant. Observe that D values are arbitrary and that to simplify
things, all units are given in packets, not bytes.

At the first activation instant, the BUG measures a bus utilization level of 50%
and thus it stays at monitoring state, sets use-grants per packets flow to six, and resets
the GPS server’s state. The BUG does not consider state variables printed in gray at this
point time.

At the second activation instant, the BUG measures a bus utilization level of
100% and thus enters enforcing state, runs the GPS server, checks for unfairness, sets
use-grants after the GPS’s outputs and the unfairness levels, and allows the GPS server
to keep its state. Because this is the first time into enforcing state, GPS server’s inputs
are taken after NIC occupation levels. In this case, inputs do not saturate the GPS
server, which reports some idle time. At the same time, the BUG detects a packets flow
is being deprived of some solicited bus time. Therefore, depriver packets flows have
their use-grants reduced and deprived ones augmented. At the same time, all packets
flows get additional use-grants proportional to the GPS server’s idle time.

OSCAR IVAN LEPE ALDAMA PH.D. DISSERTATION

4.3—OUR SOLUTION 99

Figure 4.7—We show an example of the behavior of the BUG mechanism. Vectors A,
D, N, G and g are defined as: A = (A4, Ay, A3), etc. We assume that the system
serves three packets flows with the same shares and with the same packet
lengths. In a period T up to six packets can be transferred through the bus

o7
= (bus 50%
l D'=(1,1,1) | Monitoring
Y =(0+6,0+6,0+6)
Gl =(222)
T of— iD‘ = (0,0,0)
bus 100%
D2=(3,3,0) | Enforcing
N2 =(0,0,3)
G2 =(0,03)+3
pgps 50%
Uz =(1,1,-2
Y2 = (0+3,0+3,5+3)
= (2,2,5)
OT e iDz =(3,3,0)

A’=(333) (bus 100%
D3=(2,2,2) | Enforcing

G =(2,22)
paps 100%
U =(3,3,-3)
73 =(0,0,5)
=(4,4,7)
3 — H 103 _ (5 5,2)

A*=(1,1,1) (bus 100%
D*=(0,0,5) | Enforcing

5 packet
transmission time —
A

G* =(2,22)
pgps 100%
Ut =(1,1,0

)
2,2,2)
(6,6,9)
(5,5,7)

~ %<«,4

N
-

A%=(2,2,2) fbus 100%
D°=(2,2,2) | Enforcing

G* =(2,22)
paps 100%
Us =(1,1,0)
<P =222
GS. =(838,11)
5T o— ac =
| D% =(7.7.9)
("bus 83%

D%=(2,2,0) | Monitoring

< < ¥ =(0+6,0+6,0+6)
Gé =(2,2,2)
6T onsle—— DGac _ (0,0,0)

PH.D. DISSERTATION OsSCAR IVAN LEPE ALDAMA

100 BUG PERFORMANCE STUDY—4.4

At the third activation instant, the BUG again measures a bus utilization level of
100% and remains at enforcing state. This time, GPS server’s inputs are taken after the
arrivals. The GPS server now gets 100% used and thus no idle-time related use-grants
will be added. However, the BUG still detects a packets flow being deprived of some
solicited bus time and thus the GPS server’s outputs get adjusted appropriately for com-
puting the use-grants. Observe that at this point, the sum of all use-grants is not six and
thus the BUG reduces the length of its next activation period.

At the fourth activation instant, the BUG remains at enforcing state. At this time
the GPS server gets 100% used, again, and no packets flow is detected as being de-
prived. Therefore, use-grants are directly taken from the GPS server’s outputs. The fifth
activation period is pretty much the same as the previous, apart from vector D.

At the sixth activation period, the BUG enters monitoring state and thus sets use-
grants per packets flow to six, and does a GPS server mind reset.

4.4 BUG performance study

The BUG has several operational latitudes, as previous section shows, like the ac-
tivation period value and its variation, the effectiveness of the rounding off policy, or
the influence that a highly variant traffic has over the dual-mode operation. In order to
assess how and how much this latitudes influence overall performance, we devised a se-
ries of simulation experiments. At the same time, this experiments allowed us to see
how well a PCI bus controlled by a BUG approximates a bus ideally supporting QoS,
like a weighted fair queuing bus, or WFQ bus.

4.4.1 Experimental setup

We study the performance of a BUG regulated PCI bus, to which three network
interface cards were attached. For the comparison studies we similarly configured a hy-
pothetical, ideal WFQ bus and a plain PCI bus. Each bus was traversed by three packet-
flows, each coming from a single network interface card. Buses were modeled with
queuing networks. Figure 4.8 shows these models. We approximated the PCI bus opera-
tion by a server using a round robin scheduler. Operational parameters for all busses
where computed after a 33 MHz, 32 bits PCI bus. Data links are assumed to sustain one
gigabit per second throughput. We used a simple yet meaningful QoS differentiation:
the packet size. Indeed, as reported elsewhere [Shreedhar and Varghese 1996], round
robin scheduling is particularly unfair upon packets flows with different packet sizes.
The packets flows used had features shown in Table 4-III. Different experiments used
different inter-arrival processes to show particular behavior.

TABLE 4-ll|
Packet length (bytes) Solicited share
Flow 1 172 1/3
Flow 2 558 1/3
Flow 3 1432 1/3

OSCAR IVAN LEPE ALDAMA PH.D. DISSERTATION

4.4—BUG PERFORMANCE STUDY 101

Figure 4.8—Queuing network models for: a) PCI bus, b) WFQ bus, and ¢) BUG
protected PCI bus; all with three network interface cards attached to it and
three packets flows traversing them

a)

b)

c)

link1

nabirx sink1
0 (2= TG
link2 nab2rx o) sink2
link3 nab3rx sink3
@& (=L T Gw)

.E link1 . nab1rx , \
link2 nab2rx
L |
-IN

link3 nab3rx

NA3) _
AN WFQ[]
wf?arrivals
que?artures
wffsiinal

flowgffowzfiow | | sinkd
i TG
110 .
BUS sink2
sink3

bugsignal
Ff'] ;

PH.D. DISSERTATION OsSCAR IVAN LEPE ALDAMA

102 BUG PERFORMANCE STUDY—4.4

4.4.2 Response to unbalanced constant packet rate traffic

Figure 4.9 shows responses to unbalanced constant bit rate traffic. Each line at
every chart denotes the running sum of output bytes over time for one of the three con-
sidered packets flows. Each chart in a row corresponds to a particular bus. Left to right,
first the WFQ bus, then the plain PCI, and last but not least the BUG equipped PCI bus.
Each row corresponds to a particular traffic pattern. The traffic pattern for row (a) was
as follows. At time zero, flowl and flow2 start loading the system with a load level
equivalent to 45% of a PCI bus capacity each; that is, 475.2 Mbps. Two milliseconds
later (first arrow) or 20 times BUG’s activation period flow3 starts loading the system
also at 475.2 Mbps. Then, two milliseconds later (second arrow) flow3 augments its
load to 1 Gbps. Traffic patterns for row (b) and (c) are similar but changing packets
flows’ roles.

For these experiments we set BUG’s nominal activation period to 0.1 millisec-
onds. At this value, and under the considered bus’ speed, the worst-case DMA receive
channel size is 76, which corresponds to flow1. Putting this on implementation perspec-

Figure 4.9—BUG performance study: response comparison to unbalanced constant
packet rate traffic between a WFQ bus, a PCI bus and a BUG protected PCI bus;
first, middle and left columns respectively. At row (a) flow3 is the misbehaving flow
while flow2 and flow1 are for (b) and (c), respectively

1/0 Bus with WFQ scheduling

1/0 Bus with Round Robin scheduling
Departure Trace when Flow 3 misbehaves

1/0 Bus with BUG scheduling
Departure Trace when Flow 3 misbehaves

Departure Trace when Flow 3 misbehaves
07

- 07 07
Flows Flows Flows
small pkts small pkis small pkis
06 H 06 H 0.6 H
large pkts ==---- large pkts -=---- large pkts -=----
05 05| 05|
% 3 %
> 04 > 04 > 04
= 2 2
3 03f 3 03 3 03F T=01ms
3 3 3 But = 76 pkts
02 02 02
01| 01| 01|
00 = 00 1= 00 11 I
0 0 0o 1 6 7 8 9 10
a) time [ms] time [ms] time [ms]
1/0 Bus with WFQ scheduling 1/0 Bus with Round Robin scheduling 1/0 Bus with BUG scheduling
Departure Trace when Flow 2 misbehaves Departure Trace when Flow 2 misbehaves Departure Trace when Flow 2 misbehaves
07 - 07 07
Flows Flows Flows
small pkts small pkis small pkis
06 H 06 H 0.6 H
large pkts ==---- large pkts -=---- large pkts -=----
05 05| 05|
% 3 %
> 04 > 04 > 04
= 2 2
3 03F T=01ms 3 03 3 03F T=01ms
3)) 3) 3 Buff=76pkts
02 : : 02 : 02 ; 1
o1 i 1 o1 i 1 o1 i :
0.0 1 i 1 i | 1 1 1 1 1 0.0 1 i 1 i | 1 1 1 1 1 0.0 1 i 1 i | 1 1 1 1]
o 1 2 3 4 5 6 7 8 9 10 o 1 2 3 4 5 6 7 8 9 10 o 1 2 3 4 5 6 7 8 9 10
b) time [ms] time [ms] time [ms]
1/0 Bus with WFQ scheduling 1/0 Bus with Round Robin scheduling 1/0 Bus with BUG scheduling
Departure Trace when Flow 1 misbehaves Departure Trace when Flow 1 misbehaves Departure Trace when Flow 1 misbehaves
07 - 07 07
Flows Flows Flows
small pkts small pkis small pkis
06 H 06 H 06
large pkts ==---- large pkts -=---- large pkts -=----
05 05| 05|
% 3 %
3 04t 3 04t 2 04 ~
= 2 2 -
3 03 3 03| T=01ms 3 03 =01ms
3 H) P 3 Buff=76pkts
02 02 - 02 - i =8
o1 o1 o1 i :
: e ;
0.0 LZ 0.0 LZ L 1 L 1 L 1 0.0 k1) L 1 L 1 L 1 L |
0 0 5 6 7 8 9 10 o 1 2 3 4 5 6 7 8 9 10
C) time [ms] time [ms] time [ms]

OSCAR IVAN LEPE ALDAMA

PH.D. DISSERTATION

4.4—BUG PERFORMANCE STUDY 103

tive we may say that 76 mbufs corresponds to a little more than half the nominal DMA
channel size for FreeBSD, which is 128. At the same time, a 0.1 period is only 10 times
smaller than the nominal FreeeBSD’s real-time clock period and thus feasible to imple-
ment. On the other hand, this implies that the BUG should take no more than 10 micro-
seconds to execute if we want the overhead premise of 7 >> 7 to hold. For a software
router wearing a 1 GHz central processing unit this means 10 thousand cycles. A priori
that should be enough.

From Figure 4.9’s left-most column we can see that during the first two millisec-
onds the ideal bus allows a 50% bus share between the two active packets flows. Then,
after the third packets flow gets active, the bus allows a 33% bus share irrespectively of
the load level of the so-called misbehaving packets flow. (The small share differences
are due to WFQ’s well-known misbehavior upon packet bursts. Zhang and Keshav
[1991] explain this.)

From Figure 4.9°s middle column we can see that a plain PCI bus only adequately
follows the ideal behavior during the first two milliseconds. A that point in time, (first
arrow) the round robin scheduling deprives flow1 from having enough bus time in favor
of both flow2 and flow3. Moreover, flow3 is never deprived and flow2 is when flow3
gets greedy after the second arrow at row (a).

From Figure 4.9’s right-most columns we can see that the BUG equipped PCI bus
behaves very much like the ideal bus does.

4.4.3 Study on the influence of the activation period

We repeated the experiments of the previous subsection but only for the BUG pro-
tected PCI bus and augmenting BUG’s activation period T. We wanted to see if we
could find any macroscopic problems related to this operational parameter. Per BUG’s
algorithm description, as 7" becomes relatively larger small-scale injustices appear; we
wanted to see if these microscopic injustices might reflect macroscopically and how.

We incremented 7 until the BUG regulated DMA channel’s size became unrea-
sonable large. Indeed, as stated in subsection 4.3.2, there is a proportional relationship
between 7 and BUG regulated DMA channels’ sizes. As stated in the previous section,
for the considered bus’ speed and with T equal to 0.1 milliseconds the BUG requires 76
mbufs on the worst case, or a little more than half the nominal DMA channel size for
FreeBSD. With T equal to 0.5 milliseconds the required DMA channel’s size is 383, al-
ready more than double the normal size. And with T equal to 10 milliseconds each
DMA channel requires 7674 or 14.9 Mbytes of non-swappable or wired memory. (1
Mbytes equals 2°20 bytes.) Certainly, recall that FreeBSD’s release 4.1.1 only uses
mbuf clusters and thus each DMA channel’s slot requires at least 2048 bytes.

Figure 4.10 shows the study’s results and as seen there the BUG protected PCI
bus maintains its excellent macroscopic behavior. As in the previous figure, each line at
every chart denotes the running sum of output bytes over time for one of the three con-
sidered packets flows. Departing from previous figure, each row now corresponds to a
particular experiment using a particular BUG activation period 7. Moreover, each col-
umn now corresponds to a particular traffic pattern with respect to the misbehaving

PH.D. DISSERTATION OsSCAR IVAN LEPE ALDAMA

104

BUG PERFORMANCE STUDY—4.4

flow: flowl for the left column, flow2 for the center column, and flow3 for the right

column.

4.4.4 Response to on-off traffic

Figure 4.11 shows responses to on-off traffic. Each line at every chart but one de-
notes the running sum of output bytes over time for one of the three considered packets
flows. The one line denotes the running sum of input bytes. Each chart compares one
particular packets flow’s output process as produced by each of the three considered
buses. Left to right, the first chart is for flow1; the second one is for flow2; and the last

Figure 4.10—BUG performance study: on the influence of the activation period

1/O Bus with BUG scheduling
Departure Trace when Flow 1 misbehaves

1/0 Bus with BUG scheduling
Departure Trace when Flow 2 misbehaves

1/0 Bus with BUG scheduling
Departure Trace when Flow 3 misbehaves

25— 25 25—
- Flows Flows P
p Small pkis Small pkis
e medium pkts ————— medium pkts ————— //
20 H - 20 H large pkts ------ 20 H large pkts ------
7 7 7 e
L 15| 2 15 T=05ms 2 15 T=05ms P
3 3 Buff = 383 pkis 3 Buff = 383 pkis S
= =3 . . =3 . . /
2 2 : 2
5 10 35 10| £ 10}
3 3 3
05 05 05
00 T i N T TR T R R B 00 T P T R TR TR T TR T 00 & i S S T T SR T B
0 5 10 15 20 25 3 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50) 15 20 25 30 35 40 45 50
a) time [ms] time [ms] time [ms]
/O Bus with BUG scheduling /O Bus with BUG scheduling /O Bus with BUG scheduling
Departure Trace when Flow 1 misbehaves Departure Trace when Flow 2 misbehaves Departure Trace when Flow 3 misbehaves
50 50— 50—
Flows . Flows Flows P
small pkis e small pkis small pkis e
: e r r d
40 H large pkts ------ e 40 H large pkts ------ 40 H large pkts ------
B B T B T
30 30 T=1ms 30 T=1ms
2 2 Buff = 767 pkts 2 Buff = 767 pkts S
2 2 2
3 20 35 20 g 20
3 3 3
10 10 10
0.0 1 1 i | 1 1 1 1 1 0.0 1 i 1 i | 1 1 1 1 1 0.0 1 & i | 1 1 1 1]
0 10 20 30 40 5 60 70 8 90 100 0 10 20 30 40 5 60 70 8 90 100 0 10 20 30 40 5 60 70 8 90 100
b) time [ms] time [ms] time [ms]
/O Bus with BUG scheduling /O Bus with BUG scheduling /O Bus with BUG scheduling
Departure Trace when Flow 1 misbehaves Departure Trace when Flow 2 misbehaves Departure Trace when Flow 3 misbehaves
250 250 250
Flows P Flows Flows P
small pkis / small pkis small pkis e
200 H large pkis ------ e 200 H large pkts ------ 200 H large pkts ------
B B T B T
15.0 |- 150 T=5ms 150 T=5ms /
2 2 Buff = 3837 pkts 2 Buff = 3837 pkts g
F F F -
5 1o £ 100 2
3 3 3
50 50
0.0 0.0 1 i. . 1 i 1 1 | 1 1 1 1 | 1 1]
0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500
C) time [ms] time [ms] time [ms]
/O Bus with BUG scheduling /O Bus with BUG scheduling /O Bus with BUG scheduling
Departure Trace when Flow 1 misbehaves Departure Trace when Flow 2 misbehaves Departure Trace when Flow 3 misbehaves
50.0 50.0 — 50.0 —
Flows p Flows Flows P
small pkis e small pkis small pkis P
400 H_large pkts ------ 7 400 H _large pkts ------ 400 H _large pkts ------
7 y
o o o
£ 300F T=10ms £ 300F T=10ms 2 300F T=10ms S
3 Buff = 7674 pkts 3 Buff = 7674 pkts 3 Buff = 7674 pkts
2 2 2
5 200 S 200 =
3 3 3
100 - 10.0
0.0 1 1 i. . 1 i 1 1 | 1 1 1 1 | 1 1]

0 100 200 300 400 500 600

d)

time [ms]

OSCAR IVAN LEPE ALDAMA

700 800 900 1000

"0 100 200 300 400 500 600 700

800 900 1000

time [ms]

"0 100 200 300 400 500 600 700 800 900 1000

time [ms]

PH.D. DISSERTATION

4.4—BUG PERFORMANCE STUDY 105

one is for flow3. Sources’ on-state period-lengths were set to a constant value. Packet
inter-arrival processes were Poisson with mean bit rate equal to 3520 Mbps, or 300% of
the PCI bus capacity. Sources’ off-state period-lengths were drawn afier an exponential
random process with mean value equal to nine times the on-state period-length. Conse-
quently, all packets flows overall mean bit rates were equal to 30% of the PCI bus ca-
pacity or 352 Mbps.

Besides observing the system response to this kind of traffic, with these experi-
ments we wanted to see if we could find any BUG pathology related to operating-mode
cycles, where the continuous but random path into and out of enforcing mode may pro-
duce some wrong behavior. Consequently, we ran several experiments with different
on-off cycle lengths. Here we present results for two different on-state period-lengths.

Figure 4.11.a presents results when the on-state period is equal to eight times the
BUG activation period, T, and Figure 4.11.b presents results when the on-state period is
equal to 0.5T. From both figures we can see that despite the traffic’s fluctuations, the
BUG quite well follows the ideal WFQ policy, while the PCI like Round Robin policy
again favors the largest-packets flow and affects the most to the smallest-packets flow.
Furthermore, it seams that the BUG is not macroscopically sensitive to a traffic pattern
that repeatedly takes it in and out of enforcing mode.

4.4.5 Response to self-similar traffic

In order to evaluate the long-range behavior of a BUG protected PCI bus we per-
form an experiment feeding synthetic self-similar traffic to the simulators of the com-
pared buses. This traffic trace was composed of 6.5 million packets, classified in the
three packets flows described in Table 4-III, and had an average throughput of 125
Mbytes per second (1 Mbytes equals 106 bytes), or 100% the maximum theoretical

Figure 4.11— BUG performance study: response comparison to on-off traffic between an
ideal WFQ bus, a PCI bus, and a BUG protected PCI bus

[/u Bus Per Flow Output Comparissor

140 Bus Per Flow Ou tp 1: Co mp rissor
uuuuu 11 packets 8T on-period packe d

Flow2 medium packets 2T on-perio

170 Bus Per Flow Dutput Comparisson
Flow3 large packets 8T on-period

1400

1406

Input
§ WFQg ——
* RoundRobin -----
BUG-C

1200 1208

1000 1006

Output [Kbytesd

Output [Kbytes
Output [Kbytes]

a)

Output [Kbytes]

b)

28
time [ms]

[/u B us Per Flow Output Co mp rissan
uuuuu 11 packets 8.5T

time [ms]

I/0 Bus Per Flow Dutput Comparisson
Flow2 medium packets 0.5T on-period

18 15 28 25 38

time [ms]

1/0 Bus Per Flow Output Comparisson
Flow3 large packets 8.5T on-period

4 A R R R TR T S N

Output [Kbytesd

(((((

Output [Kbytes]

B 2 4 6 8 18 12 14 16 18 2¢

time [ms]

PH.D. DISSERTATION

o i
@ 2 4 6 8 18 12 14 16 18 2¢

time [ms]

a
B 2 4 6 8 18 12 14 16 18 28

time [ms]

OsSCAR IVAN LEPE ALDAMA

Input

oundROb in

BUG-C -

106 BUG PERFORMANCE STUDY—4.4

throughput of the PCI bus. The simulation run spanned 18.874 real-time seconds. Table
4-1V lists variance values of output-byte traces’ correlation functions between the ideal
WFQ bus and both, the plain PCI bus (round robin) and the BUG protected PCI bus,
when different observation periods where applied. In this table we can see that correla-
tion’s variance values for the plain PCI bus are higher than the values for the BUG pro-
tected PCI bus. Moreover, the values’ differences get relatively larger with the observa-
tion period, although the increase is not proportional to the size of the observation pe-
riod. For instance, Flow1’s relative difference at an observation period of 0.1 millisec-
onds is around 1.845 (14.36 / 7.78), at 1 millisecond is 3.02, and at 2.5 milliseconds is
3.342.

Evidently, these results are a good news, bad news case, where the good news are,
of course, that the BUG protected PCI bus better follows the long-range behavior of the
ideal WFQ bus when compared to a plain PCI bus even under a very high variability
operation scenario. However, the variance values for the BUG protected PCI bus are
somewhat higher than we expected. We recognize that it is interesting to dig further into
this issue. However, we are leaving this as future work.

TABLE 4-1V
Period Plain PCI bus BUG protected PCI bus
[ms] Flow! Flow2 Flow3 Flow! Flow2 Flow3
0.1 1436 270 1.62 7.78 1.58 0.95
0.5 4924 7.51 473 1947 329 2.09
1 8139 1168 7.39 2690 4.67 3.01
15 109.88 1536 976 3335 581 3.68
2 13363 1821 1173 3942 7.3 3.89
25 156.78 2111 13.63 46.91 8.04 4.66

Before passing to another issue, here we consign details on how we produced the
self-similar traffic trace. We used Christian Schuler’s program (Christian Schuler, Re-
search Institute for Open Communication Systems, GMD FOKUS, Hardenbergplatz 2,
D-10623 Berlin, Germany), which implements Vern Paxson’s self-similar traffic fast
approximation method [Paxson 1997]. Upon given a Hurst parameter, a mean value,
and a variance, Schuler’s program produces a list of numbers. Each number represents a
count of packet arrivals within an arbitrary period. Schuler’s program does not give any
meaning to this period, leaving to the program’s user its definition. Paxson’s method
uses a fractional gaussian noise process and consequently the output of Schuler’s pro-
gram may contain negative numbers. The given mean and variance values influence the
relative count of these negative numbers. It is up to the program’s user the use of proper
program inputs and the negative number’s interpretation. Schuler’s program output cor-
responds to an aggregated traffic trace. Given that we wanted this aggregated traffic to
be composed of the three packets flows described in Table 4-II1, we filtered Schuler’s
program output through an ad hoc program to adequately produce three traffic traces
corresponding each to a required packets flow.

OSCAR IVAN LEPE ALDAMA PH.D. DISSERTATION

4.5—A PERFORMANCE STUDY OF A SOFTWARE ROUTER INCORPORATING THE BUG 107

We employed a Hurst parameter of 0.8, a mean value of 25 packets per observa-
tion period, and a variance for times the mean value. We determined this set of parame-
ters after what Lucas et al [1997] have reported. Their paper reports statistical character-
istics of traffic threading the University of Virginia’s campus network, which hosts ap-
proximately 10 thousand computers. The traffic analyzed focuses on three 90-minute in-
tervals starting at 2:15 AM, 2:00 PM, and 9:00 PM. Regardless of the utilization levels
exhibited during these periods, the paper reports the traffic adjusting to a Hurst parame-
ter of 0.8 and having a variance for times its mean value.

We came to the value of 25 packets per observation period empirically. We ran
Schuler‘s program with several mean values (and before the stated Hurst parameter and
variance) and counted the number of negative numbers contained in the output trace.
Schuler’s program ran pretty fast on UPC’s SGI Power Challenge so, a priori, we did
not invest any time selecting the initial trial value. We randomly choose 10 packets per
observation period and the output resulted with 4.9% of negative numbers. Entering 20
packets per observation we got a trace with 1.2% of those numbers. With 30 we got
0.3% and with 25 we got 0.5%.

We conveniently attribute a 72 microseconds value to Schuler’s program observa-
tion period. This value, conjunctively with the given packets flows’ features and the se-
lected mean value of 25 packets-per-observation, results in a traffic trace of 125 Mbytes
per second average throughput.

4.5 A performance study of a software router
incorporating the BUG

Naturally, after proving that a BUG protected bus works fine in isolation, at least
at the queuing network modeling level of detail, we wanted to see if such a bus may im-
prove the operation of a software router bore up to provide differentiated services. In
order to do this we basically extended the set of experiments presented in previous
chapter’s subsection 3.8.2. Following the rationale presented there, we extended the
queuing network model that previous chapter’s Figure 3.20 shows and introduced the
flow monitors and flow scheduler shown in Figure 4.8.c. The resulted model’s opera-
tional parameters and the features of the workload were set as in previous chapter’s
mentioned section. Once again, we have performed the simulation for routers config-
ured with two different central processing units. The one’s CPU speed is 1 GHz and the
other’s is 3 GHz. As before, note that for the considered traffic the CPU is the system’s
bottleneck for the 1 GHz router while the bus is the system’s bottleneck for the 3 GHz
router.

4.5.1 Results

Figure 4.12 shows results for the system with a WFQ scheduling for the CPU and
the BUG mechanism for controlling The bus usage. We see that the obtained results
correspond to almost an ideal behavior, as under saturation throughput does not de-
crease with increasing offered loads and the system achieves a fair share of both router
resources: CPU and The bus.

PH.D. DISSERTATION OsSCAR IVAN LEPE ALDAMA

108 A PERFORMANCE STUDY OF A SOFTWARE ROUTER INCORPORATING THE BUG—4.5

Figure 4.12—QoS aware system’s performance analysis: a) system’s overall
throughput; b) per packets flow throughput share for system one; c) per pack-
ets flow throughput share for system two

feaa ——
1ot R —

Output [Mhps]

a 2ea 488 [1:1:] 888 1808 1268 1488

a) Aggregated load [Mbps]

a i i i i i i i i
a 188 288 388 488 S5S88 608 700 568 9648

b) Aggregated load [Mbps]

a 288 48a 688 888 1888 1288 1488

C) Aggregated load [Mbps]

OSCAR IVAN LEPE ALDAMA PH.D. DISSERTATION

4.6—AN IMPLEMENTATION 109

4.6 An implementation

Currently we are working on a BUG implementation for a FreeBSD powered PC-
based software router, using 3COM’s 3C905B network interface cards based on the
“hurricane” PCI bus-master chips and controlled by the FreeBSD x1 driver.

4.7 Summary

e We presented a mechanism for improving the resource sharing of the
input/output bus of personal computer-based software routers

e The mechanism that we proposed and called BUG, for bus utilization
guard, does not imply any changes in the host computer’s hardware, al-
though some special features are required for network interface cards—
they should have different direct memory access channels for each dif-
ferentiated packets flow and they should be able to give information
about the number of bytes and packets stored for each of these channels

¢ The BUG mechanism can be run by the central processing unit or by a
suitable coprocessor attached at the AGP connector.

e Using a queuing model solved by simulation, we studied BUG’s per-
formance. The results show that BUG is effective in controlling the bus
share between different packets flows

e When we use this mechanism in combination with the known tech-
niques for central processing unit usage control, we obtain a nearly
ideal behavior of the share of the software router resources for a broad
range of workloads

PH.D. DISSERTATION OsSCAR IVAN LEPE ALDAMA

