47

Chapter 3

Characterizing and modeling a personal
computer-based software router

3.1 Introduction

This chapter presents our experiences building and conducting the parameteriza-
tion of a performance model of a personal computer-based software router; that is, a
software router built upon off-the-self personal computer technology. The resulting
model is an open multiclass priority network of queues that we solved by simulation.
While the model is not particularly novel from the system modeling point of view, in
our opinion, it is an interesting result to show that such a model can estimate, with high
accuracy, not just average performance-numbers but the complete probability distribu-
tion function of packet latency, allowing performance analysis at several levels of detail.
The validity and accuracy of the queuing network model has been established by con-
trasting its packet latency predictions in both, time and probability spaces. Moreover,
we introduced into the validation analysis the predictions of a router’s single first-come,
first-served queue model. We did this for quantitatively assessing the advantages of the
more complex queuing network model with respect to the simpler and widely used but
not so accurate, as here shown, single queue model, under the considered scenario that
the router’s CPU is the system bottleneck and not the communications links. The single
queue model was also solved by simulation. The queuing network model was success-
fully parameterized with respect central processing unit speed, memory technology,
packet size, routing table size, and input/output bus speed. Results revel not evident and
important performance trends for router design.

PH.D. DISSERTATION OsSCAR IVAN LEPE ALDAMA

48 SYSTEM MODELING—3.2

This chapter is organized as follows. The first two sections set the background.
Section 3.2 briefly discuss about trade-offs in system modeling and puts in perspective
the appropriateness of networking software’s single queue models with respect to queu-
ing network models. Section 3.3 presents personal-computer-based software routers’
chief technological and performance issues. Moreover, it puts this router technology in
perspective when comparing it with others. Following the background sections, section
3.4 presents the case on queuing network modeling for personal computer-based soft-
ware routers and describes an example model. Furthermore, it explains how to modify
or extend the example model for modeling software routers with different configura-
tions. Then, section 3.5 describes the laborious system characterization process and the
implications that this process’s results had on system modeling. The model’s validation
is discussed in section 3.6. Section 0 argues about the model’s parameterization and, as
a result of this, presents interesting software routers’ performance trends. Finally, sec-
tion 3.8 presents example uses of the softiware router queuing network model for capac-
ity planning and as an uniform experimental test bed. Then, section 3.9 summarizes the
chapter.

3.2 System modeling

Performance models of computer systems are important for researching and de-
veloping new ideas. These performance models are commonly built from a spectrum of
techniques as those shown in Figure 3.1. A researcher or engineer may use hardware
prototyping, hardware simulators, queuing networks, simple queues or simple math.
Evidently, there are tradeoffs to consider when choosing a technique. Complexity, ease
to reason with, and obtained results’ relevance are of chief concern. Clearly, hardware
prototyping is the technique that can give results with greater relevance. However, it is
also the most complex technique and it is difficult to reason with—it is not ease to see
how a component’s variation influences others or the whole system. On the other side of
the spectrum, single-queue theory is a simple technique that is easy to reason with but
gives results of limited relevance or scope. Networks of queues are important models of
multiprogrammed and time-shared computer systems. However, these models have not
been used for performance modeling of computer networking software. Instead, simple
queues are generally used for modeling network nodes implementing networking soft-
ware.

Figure 3.1—A spectrum of performance modeling techniques.

Hardware Prototype Hardware Simulator Queuing Network FIFO queue Simple Calculations

; N
(Target Application and OS)

Hardware Model
K

%
Simulation Kernel) .

Target Target 110
ISA Interface S
Host Plataform
<)

Complexity / Time cost

Easy to reason with

Relevance of given results

OSCAR IVAN LEPE ALDAMA PH.D. DISSERTATION

3.3—PERSONAL COMPUTER-BASED SOFTWARE ROUTERS 49

3.3 Personal computer-based software routers

3.3.1 Routers’ rudiments

A router is a machine capable of conducting packet switching or layer 3 forward-
ing. Within the Internet realm, routers forward Internet Protocol (IP) datagrams and
bind the subnets that form the Internet. Consequently, routers’ performance directly in-
fluences packet’s end-to-end throughput, latency and jitter.

In general, in order to perform its chief function, routers do several tasks
[McKeown 2001]; see Figure 3.2. These tasks have different comply urgency and com-
plexity levels, and are done at different time scales. For instance, routing is a complex
task (mainly due to the size of the data it processes and because this data is stored dis-
tributively) that is done every time there is a change in network topology and may take
up to few hundred seconds to comply [Labovitz et al. 2001]. On the other hand, packet
classification has to be done every time a packet arrives and consequently should com-
ply at wire speeds, where wire speed means, for example, around 5 microseconds for
Fast Ethernet [Quinn and Russell 1997] and around 2 microseconds for Gigabit Ethernet
(when operating half duplex and with packet bursting enabled) [Stephen 1998]. In order
to cope with this operational diversity, routers have, in general, a two-plane architec-
ture; see Figure 3.2.

3.3.2 The case for software router

Evidently, a router’s data plane’s implementation mostly determines a router’s
performance influence on packet throughput, latency and jitter. Naturally, different lev-
els of router’s features, like raw packet switching performance, support for extended
functionality, cost and upgradeability, may be set using different implementation tech-
nologies for the data plane. A router’s data plane may be implemented using the fol-
lowing technologies:

Figure 3.2—IP router architecture

Routing

Admission Protocols

Control Reservation

per-packet
Data Plane {pmcessing}
Packet Switching
Classification
' Fwding Outpu't *
Policing & table | | Swiing Scheduling
Access Control | | [lookup
"W”W

connect

PH.D. DISSERTATION OsSCAR IVAN LEPE ALDAMA

50 PERSONAL COMPUTER-BASED SOFTWARE ROUTERS—3.3

¢ General-purpose computing hardware and software. For instance, a
workstation or personal computer running some kind of Unix or Linux

e Specialized computing hardware and software. For instance, Cisco‘s
2500 or 7x00 hardware executing Cisco’s IOS forwarding software

® Application specific integrated circuits. For instance, Juniper’s M-120

For performance reasons it is interesting to classify routers in software and hard-
ware routers.

® Hardware routers are routers whose data plane is implemented with
hardware only. For instance, Juniper’s M-120

e Software routers are routers whose data plane is implemented partly or
completely with software. For instance, Cisco’s 2500 and 7x00 product
series, or a workstation or personal computer running some kind of
Unix or Linux

Evidently, hardware routers outperform software routers in raw packet switching.
At the Internet’s core, where data links are utterly fast and expensive, hardware routers
are deployed in order to sustain high data link utilization. At the Internet’s edge, factors
like multiprotocol support, packet filtering and ciphering, or above level 3 switching are
more important than data link utilization, however. Consequently, at the Internet’s edge
software routers are deployed. Besides, software routers have other features that made
them more attractive than hardware routers at particular scenarios; software routers are
easier to modify and extend, have shorter times-to-market, longer life cycles, and cost
less.

3.3.3 Personal computer-based software routers
Evidently, a software router’s performance is affected by the following

e The host’s hardware architecture
e The forwarding program’s software architecture

e The network interface card’s hardware and corresponding device driver
architectures

For this research we selected to work with personal computing technology. This
technology provided us with an open work environment—one that is easily controllable
and observable—for which there is lots of publicly available and highly detailed techni-
cal information. Moreover, other software routers have similar or at least comparable
architectures so our findings may be extrapolated. For this research we used computers
with the following features:

Intel IA32 architecture

Intel’s Pentium class microprocessor as central processing unit
Periphery Component Interconnect (PCI) input/out bus

Direct memory access (DMA) capable network interface cards attached
to the PCI input/output bus

e Networking software as a subsystem of the kernel of a BSD-derived
operating system

OSCAR IVAN LEPE ALDAMA PH.D. DISSERTATION

3.4—A QUEUING NETWORK MODEL OF A PERSONAL COMPUTER-BASED SOFTWARE ROUTER 51

3.4 A queuing network model of a personal
computer-based software router

After this chapter’s description of a personal computer-based software router, it
should be clear that no single-queue model could capture the whole system behavior. In
order to model the pipeline-like organization and priority preemptive execution of the
BSD networking code, a queuing network model is at least required. Figure 3.3 shows a
queuing network model of a personal computer-based sofiware router. The model corre-
sponds to a personal computer that executes the BSD networking code for forwarding
IP datagrams between two DMA capable network interface cards. Moreover, the model
is restricted to a router that is threaded by a single unidirectional packet flow. (Packets
only enter the router through the number-one network interface card and only exit the

Figure 3.3—A queuing network model of a personal computer-based software router that
has two network interface cards and that is traversed by a single packet flow. The
number and meaning of the shown queues is a result of the characterization proc-
ess presented in the next section

Customer
source or
sink

Service
station

SRC —

Queue

sink

T e

ifeotx

"l
fast noise 2 P DEVNULL

>
(=

slow noise

-r————

dma - Direct Memory Access
if(IF) - Interface

ifeotx - IF End Of Transmission
na(NA) - Network Adapter

nab - NA buffer

PH.D. DISSERTATION OsSCAR IVAN LEPE ALDAMA

52 A QUEUING NETWORK MODEL OF A PERSONAL COMPUTER-BASED SOFTWARE ROUTER—3.4

router through the number-two network interface card.) Models for routers with differ-
ent number of network interface cards or different packet flow configuration may be de-
rived after the one here shown as later explained. The shown model is comprised of:

¢ Four service stations, one per each router’s active element: the central
processing unit (cpu), the input/output bus control logic (/0 BUS), the
network interface card’s packet upload control logic (Na11N) and the
network interface card’s packet download control logic (na20uUT)

e FEight first-come, first-served queues (nalbrx, na2btx, dmatx, dmarx,
ipintrqg, ifsnd, ipreturn and ifeotx) and their corresponding ser-
vice time politics, which model network interface cards’ local memory
(nalbrx, na2brx) and BSD networking mbuf queues. The number and
meaning of the networking related queues, (dmarx, ipintrqg, ifsnd,
ipreturn and ifeotx) as well as the features of the service time poli-
tics applied by the cpu service station, are a result of the characteriza-
tion process that section 3.5 describes. The service time politics applied
by the 1/0 BUs service station (to customers at nalbrx and dmatx
queues) were not computed after our own measurements but after the
results presented by Loeb et al. [2001]. A PCI bus working at 33 MHz,
with a 32-bit data path, which data phases last 1 bus cycle, and whose
data transactions were never preempted, was considered. The service
time politic applied by the NA20UT service station (to customers at the
na2btx queue) corresponds to a zero-overhead synchronous data link of
particular speed

¢ Nine customer transitions between queues representing the per-packet
network processing’s execution order. Cloning transitions, pictured by
circles at their cloning point, result in customers’ copies walking the
cloning paths. Blockable transitions, having a “t” like symbol over the
blocking point, result in service stations not servicing transitions’
source queues, if transitions’ destination queues are full

® One customer source for driving the model. It spawns one customer per
packet traversing the router. An auxiliary first-come, first-served queue
and its corresponding service time politic are used for modeling the
communications medium’s speed

e A set of two customer sources, two FCFS queues and two transitions
through the central processing unit for modeling the “noise” process.
This process is defined and its relevance explained in subsections 3.5.9
and 3.5.10.

e A set of one FCFS queue and one customer sink for computing per
packet statistics

e A set of one FCFS queue and one customer sink for trashing residual
customers

May this relatively simple model give useful predictions? Is this a better model of
a software router than the widely used single queue model, under the considered sce-
nario that the central processing unit is the system’ s bottleneck a not the communica-
tions links? These are some questions for which we wanted an answer but couldn’t find
one before we started this research. But before elaborating on the quest for these an-

OSCAR IVAN LEPE ALDAMA PH.D. DISSERTATION

3.4—A QUEUING NETWORK MODEL OF A PERSONAL COMPUTER-BASED SOFTWARE ROUTER 53

swers, the rest of this section is devoted to presenting modeling details. These details are
important for deriving models of routers with different configurations.

3.4.1 The forwarding engine, the network interface cards and the packet flows

Model elements depicted at Figure 3.3 within the dotted line model the router.
Model elements outside the dotted line are auxiliary elements. For modeling a router
with more network interface cards some elements have to be replicated. Gray areas de-
pict elements that conjunctively model a network interface card. The model requires one
such group of elements for each network interface card that both inputs and outputs
packets. Network interface cards that only inputs or output packets require only part of
these elements. The model requires some other queues—and corresponding service time
politics and transitions—to be replicated depending on the packet flow configuration.
The figure depicts these queues with a shadow following their top right side. To further
clarify this, consider the example shown in Figure 3.3. As said before, for this model,
packets enter the router through one network interface card and exit it though the other.
Consequently only a single dmarx queue and a single pair of dmatx and ifsnd queues
are required—as you may already guess, one dmarx queue is required per each network
interface card entering packets to the router and one pair of dmatx and ifsnd queues is
required per each network interface card exiting them.

3.4.2 The service stations’ scheduling politics and the mapping between
networking stages and model elements

The service station acting as the input/output bus has a round-robin no-preemptive
scheduling policy that mimics the basic behavior of the PCI bus’ arbitration scheme.
The service station acting as the central processing unit has a prioritized preemptive
scheduling policy that mimics the basic behavior of the BSD’s software interrupt
mechanism. At any given time, this service station preemptively serves the customer up
front of the queue with the smallest priority number. Figure 3.3 shows queue’s priority
numbers in front every queue served by the CPU service station. The priority scheme
shown in Figure 3.3 models the fact that any task at the network-interfaces layer pre-
empts any task at the protocols layer. It also models the fact that once a message enters
a layer it’s processing is not preempted by another message entering the same layer.

For better explaining the above consider Figure 3.4. This figure shows a router‘s
model with a different mapping of networking stages to queues—and their correspond-
ing service time politic. Besides, the input/output bus logic and the noise are not mod-
eled and the network interface cards’ models were simplified. This figure’s model uses
a one-to-one mapping between the C language functions implementing BSD networking
and the model’s queues. You can check this by comparing Figure 3.4 with previous
chapter’s Figure 2.5. Observed that the queues named ip_ input, ip_ forward,
ip_output and ether output, which represent tasks at the protocols layer, have all
higher priority numbers than the queues named ether_input, if_intr, if read and
if_start, which are tasks at the network-interfaces layer. Moreover, the priority of
ip_input is greater that the priority of ip_forward, which is greater than the priority of
ip_output, which is greater than the priority of ether output. This models the fact
that a message recently arriving to ip_input waits processing until a message that is

PH.D. DISSERTATION OsSCAR IVAN LEPE ALDAMA

54 A QUEUING NETWORK MODEL OF A PERSONAL COMPUTER-BASED SOFTWARE ROUTER—3.4

being forwarding (ip_forward) completes the rest of the protocols layer’s stages—that
is, ip_output and ether output. For the same reason the priority of if intr is
greater than the priority of if_read and if_start, which is greater than the priority of
ether_input.

In order to complete this discussion let us note that while the model in Figure 3.4
is clearly a more detailed model of a software router with respect to that of Figure 3.3, it
is not a better model. As will be explained in the next section, the model at Figure 3.4
gives inaccurate results due to service time correlations between some networking
stages.

Figure 3.4—A queuing network model of a personal computer-based software router that
shows a one-to-one mapping between C language functions implementing the
BSD networking code and the model’'s queues. In order to simplify the figure, this
model does not include the models for input/output bus and the noise. Moreover, it
uses a simplified version of the network interface card model

(Legend
Customer
source or
sink
Service
station
. Queue
\—
ether_output
—
if_start nic's fifo
2
~_ B — I e

OSCAR IVAN LEPE ALDAMA PH.D. DISSERTATION

3.5—SYSTEM CHARACTERIZATION 55

3.5 System characterization

This section reports on the assessment of the model’s service time politics, which
are applied by the model’s CPU service station. These service time politics model the
execution times of the BSD networking code executed on behalf of each forwarded IP
datagram. We used software profiling for assessing these execution times. Of the sev-
eral tools and techniques that were available for profiling in-kernel software, software
profiling is a good trade off between process intrusion, measurement quality and set up
costs. We expected the profiled code to have stochastic behavior due to the hardware’s
features of cache memory and dynamic instruction scheduling—branch prediction, out-
of-order and speculative execution. Thus, we strived to compute service time histo-
grams rather than single value descriptors. We also carried out a data analysis for un-
veiling some data correlations and hidden processes that forced us to adapt the model’s
queuing network structure. The rest of this section is devoted to report the details of this
process.

3.5.1 Tools and techniques for profiling in-kernel software

As stated before, for our research we used a networking code that is a subsystem
of the kernel of a BSD-derived operating system. More specifically, we used the kernel
of FreeBSD release 4.1.1. From the profiling point of view this kind of software pre-
sents a problem: the microprocessor runs the operating system kernel’s code in supervi-
sor (or similar) mode and, because of this, special tools and techniques are needed for
profiling “alive” kernel’s code. Where by “alive code” we mean code that is executed at
full speed, in contrast to code that is executed step-by-step. Of the to-us-known tools
and techniques for kernel’s code profiling we used software profiling [Chen and Eustace
1995; Kay and Pasquale 1996; Mogul and Ramakrishnan 1997; Papadopoulos and
Parulkar 1993]. This technique is a reasonably flexible tool that does not requires addi-
tional support. Contrarily, other tools, like programmable instrumentation toolkits [Aus-
tin, Larson and Ernst 2002] and logic analyzers, although more powerful are complex
and proprietary and thus require a considerably amount of time, effort and money. For
the kind of task at hand, the use of these tools was considered too timely, energetically
and economically expensive.

3.5.2 Software profiling

A software probe may be defined as a little piece of software manually introduced
at strategic places of target software for gathering performance information. The soft-
ware probes, or just probes, are supplemented by data structures and routines that ma-
nipulate the recorded information. One important aspect when designing probes is
minimizing its overhead.

We found two ways to use probes [Kay and Pasquale 1996; Mogul and
Ramakrishnan 1997; Papadopoulos and Parulkar 1993]. Each way uses a different
mechanism to gather information. One uses software mechanisms, resulting in instru-
ments that, we can say, are self-sufficient. The other relays on special-purpose micro-
processor-registers used as event counters. Both have tradeoffs. Software only probes

PH.D. DISSERTATION OsSCAR IVAN LEPE ALDAMA

56 SYSTEM CHARACTERIZATION—3.5

are portable but can incur in relatively higher overhead, depending on the complexity of
the gathered information. Event-counters based probes are hardware dependant, and
thus are not portable, but can gather information hidden to software, like instruction
count mix, interruptions, TLB misses, etc.

As our reference systems wore Intel’s Pentium class microprocessors, our probes
take advantage of these microprocessors’ performance monitoring event counters
(PMEC). These kind of microprocessor has three such event counters, of which two are
programmable [Shanley 1997]. Four model specific registers (MSR), which can be ac-
cessed through the rdmsr (read MSR) and wrmsr (write MSR) ring-0 instructions, im-
plement the three PMECs. One MSR implements the PMEC’s control and event selec-
tor register. It is a 64-bit read/write register employed for programming the type of
event that each of the two programmable PMECs would count. Another MSR imple-
ments the time stamp counter (TSC), a read-only 64-bit free-running counter that in-
crements on every clock cycle and that can be use to indirectly measure execution time.
This register can also be accessed through the rdtsc (read TSC) ring-0 instruction. Fi-
nally, two MSRs separately implement the two programmable PMECs. Each of these is
40-bit read-only register that counts occurrences or duration of one of several dozen
events, such as cache misses, instruction count, or interrupts.

The technique we employed for software profiling is as follows:

1) A probe is placed at the activation point and at each returning point of
each profiled software object. Note that some of these objects have
more than one returning point

2) When an experiment is exercised, each probe reads and records values
from the three PMEC along with a unique tag that identifies the probe

3) The recorded information is placed in a single heap inside the kernel.
We decided to do this, instead of using, let say, one heap-per-object,
because in this way we found it is easier to observe and analyze object-
activation nesting. Furthermore, a common heap facilitated calculating
each object expenses in a chain of nested activations

4) When an experiment is finished, the recorded information is extracted
from the in-kernel heap and is organized by an "ad-hoc" computer pro-
gram. This program classifies the records by its source probe, computes
the monitored event expenses per activation and writes the results in
several text files—one per source probe. Each produced text file holds a
table with one row per object activation and one column per PMEC.
This kind of text files can be feed to most widely available statistical
and graphical computer programs for analysis

3.5.3 Probe implementation

Before implementing the probes, there were some questions to answer. The first
question was: which hardware events do we monitor? At first sight the answer to this
question seams simple: because we were interested in measuring execution time, we had
to monitor machine cycles. But because we also wanted to know how those cycles were
spent, and to see a proof of the concurrent nature of the software objects we instru-
mented, we decided to monitor as well instructions and hardware interrupts. The in-

OSCAR IVAN LEPE ALDAMA PH.D. DISSERTATION

3.5—SYSTEM CHARACTERIZATION 57

struction count will give us an idea of the path taken by the microprocessor through
code. The interrupt count will show us the concurrent behavior of not only the instru-
mented objects but of the whole kernel. In turn, this will serve us to discriminate mean-
ingless data: a high interrupt count would mean that the microprocessor spent too much
time doing something else besides exercising the instrumented object.

A second question was: where do we place the profiling probes? Other way to
look at this problem is to answer: what level of granularity do we use when delimiting
code for profiling? A priori we choose a C language function level of granularity. This
means that we flanked with profiling probes each of the C language functions imple-
menting [P forwarding. From previous chapter’ s Figure 2.5 it can be see that these
functions are: Xintr, Xread, Xstart, ether_input, ether_output, ipintr,
ip_forward and ip_output. However, as will be explained in the next section, we
found out that this level of granularity did not result in appropriate model’s service
times. Therefore, a posteriori, we increased the level of granularity and flanked with
profiling probes all the code executed from when an mbuf is taken out of any mbuf
queue to when this mbuf is placed in another mouf queue. This level of granularity re-
sulted in the definition of the following five “profiling grains”; see Figure 3.3:

e The driver reception, dmarx; this grain spans xint r (the reception part),
Xread and ether_input

e The protocol processing, ipintr; this grain spans from the activation
point of ip input, through ip forwarding, ip_ output and
ether_output, and up to the code at ether output that either places
the packet at the interface’s transmission queue or activates xstart

e The driver transmission, ifsnd; this grain corresponds to xstart.

e The return from protocol processing, ipreturn; this grain spans from
where the protocol processing grain left off, to the returning points of
ether_ output, ip_output, ip_forwarding and ip_input

e The driver end-of-transmission interrupt handler, ifeotx; this grain
corresponds to the part in xintr that attends the end-of-transmission in-
terrupt that network interface cards signal

A third question was: how do we manipulate the PMEC? Searching the FreeBSD
documentation on the web (http://www.freebsd.org) we found that this operating system
implements a device driver named /dev/perfmon, which implements an interface to the
PMECs. We also found that this device driver uses three FreeBSD kernel’s C language
macro definitions for manipulating the Intel’s Pentium's MSR and for reading the TSC.
These macro definitions, wrmsr, rdmsr and rdtsc, are defined in the header file
cpufunc.h stored in the sys/i386/include/ directory.

A fourth question was: how will we switch probes on and off? Papadopoulos and
Gurudatta [1993] present one way to do it. Although their mechanism did not fit us, it
did give us a hint. Like them, we decided to use a test variable for controlling probe ac-
tivation. Departing from their methodology, we decided to use a spill-monitoring vari-
able that we named num_entries. Num_entries would count the number of entries re-
corded in the heap and probes would be active as long as num_entries is less than the
heap's capacity. At any given time we could deactivate the probes by writing a value
bigger than the heap's capacity, and vice versa.

PH.D. DISSERTATION OsSCAR IVAN LEPE ALDAMA

58 SYSTEM CHARACTERIZATION—3.5

A last question was: how will we implement the heap of records. For answering
this, we considered that heap manipulation would have to require as few instructions as
possible. Thus, we decided not to employ dynamic memory and defined a static array of
records. This has the inconvenient of limiting the size of the heap. (Compiler related re-
strictions limited the size of the profiling records heap to around 100 thousand entries.)
Each record is implemented by a C language structure with the following members:

e id holds an integer value taken from a defined enumeration of probe
identifiers.

e tsc holds the 64-bit number read form the TSC.

® instruc holds the 64-bit number read from PMECI1; which is initially
configured to count executed instructions.

® interrup holds the 64-bit number read form PMEC2; which is initially
configured to count hardware interruptions.

For the enumeration that defines the probe identifiers, we decided to employ a
scheme that would allow us to readily identify both the source object and probe's loca-
tion inside the object. Thus, each probe identifier has two 4-bits parts: one for identify-
ing the source object and another for identifying the probe's location inside the object.
Moreover, given that every profiled object has one activation point but many return
points we decided to use the number 0x0 for identifying the activation point and num-
bers between 0x1 and OxF for identifying returning points.

With all this set up, we were able to devise a sequence of instructions that would
work for any probe. In order to ease the probe codification process, we defined a set of
C language macro definitions that were added to the kernel.h header file stored in the
sys/sys/ directory. The text for the macro definitions is shown in Figure 3.5.

Figure 3.5—Probe implementation for FreeBSD

#1if defined(I586_CPU)
#define NAVI_RDMSR1 rdmsr (0x12)
#define NAVI_RDMSR2 rdmsr (0x13)

#elif defined(I686_CPU)
#define NAVI_RDMSR1 rdmsr (0Oxcl)
#define NAVI_RDMSR2 rdmsr (0xc2)

#endif

#define NAVI_REPORT (a) \
if (navi_entrynum < NAVI_NUMENTRIES) { \

disable_intr(); \
navi_buffer[navi_entrynum].id = a; \
navi_buffer[navi_entrynum].tsc = rdtsc(); \
navi_buffer[navi_entrynum].instruc = NAVI_RDMSR1; \
navi_buffer[navi_entrynum++].interrup = NAVI_RDMSR2; \
enable_intr(); \

OSCAR IVAN LEPE ALDAMA PH.D. DISSERTATION

3.5—SYSTEM CHARACTERIZATION 59

3.5.4 Extracting information from the kernel

Extracting special information from a "live kernel" is a well-known procedure.
You just have to implement a new system call. This is trivial but cumbersome. FreeBSD
has an easier way to go: the sysct1(8) subsystem. This subsystem defines a set of C
language macro definitions for exporting kernel variables, and the system call
sysctl (2) for reading and writing the exported variables. The scheme for identifying
variables is similar to the one use for a management information base, MIB [Stallings
1997]. The header file sysctl.h, stored in the sys/sys/ directory, has the definitions
of the macro definitions, and the file kern mib.c, stored in the sys/kern/ directory,
uses the macro definitions for initializing the subsystem. The sysctl(8) and
sysctl(2) man pages explain how to use this subsystem, but they do not say how to
extend it. Honing [1999] explains how to accomplish this.

3.5.5 Experimental setup

Figure 3.6 shows the experimental setup we used for system characterization and
model validation. We characterized and modeled two systems: a plain IP router and an
IP router configured as a security gateway [Kent and Atkinson 1998]. In any case, we
wanted the systems under test’s central processing units to be the bottlenecks. That is
why the IP router under test wore as its central processing unit an 100 MHz Intel’s Pen-
tium microprocessor, while the security gateway under test wore a 600 MHz Intel’s
Pentium III. Indeed, it is well known that the software implementing authentication and
encryption algorithms consumes more computing power than plain IP forwarding. (Af-
ter our research we now know exactly how much more computing power a security
gateway consumes when compared to a plain IP router.)

Figure 3.6—Experimental setup

Source A Source B SourceC Source D HP Internet
Advisor

A->D: secured,

AH tunnel,
ESP tunnel.
B->D: unsecured.
\»
Securit

IP Router
| Under Test

Adsociations ~ Security Gateway

,

Security Gateway
Under Test

Phantom Sink

PH.D. DISSERTATION OsSCAR IVAN LEPE ALDAMA

60 SYSTEM CHARACTERIZATION—3.5

Traffic generation was accomplished using a modified version of Richard Ste-
vens’ sock program [Stevens 1994, appendix C] and using the traffic generation facility
of a Hewlett-Packard’s Internet Advisor J2522B. During system characterization ex-
periments were driven only by a single sock source, while during model validation we
used a mix of sources. As we did not have any special requirements for the source
nodes, besides being able to run the sock program, we used whatever we had at hand.
Thus, sources A and B wore 100 MHz and 120 MHz Intel’s Pentiums, respectively;
source C wore a 233 MHz Intel’s Pentium II and source D a 400 MHz Intel’s Pentium
III. During experiments with the security gateway, in order to avoid that performance
limitations at the IPSEC tunnel’s inbound security gateway would modify the traffic’s
features or interfere with the characterization of the security gateway under test, which
was the outbound one, the inbound gateway wore a 650 MHz Intel’s Pentium III. The
“phantom sink” was implemented using an address resolution protocol (ARP) table en-
try for an inexistent node.

All the computers shown are personal computers with Intel IA32/PCI hardware
architecture executing FreeBSD release 4.1.1 as their operating system. Main memory
configuration varies between 16, 32 and 64 Megabytes. In any case, it was more than
enough for storing the router’s working set; that is, the most used sections of the
router’s software. Indeed, the FreeBSD kernel’s image we used was relatively very
small; it did not occupy more than 3 Mbytes. (1 Mbytes equals 2720 bytes.) This image
included, besides the normal stuff, (the kernel was configured to include only a reduced
set of features [Leffer and Karels 1993]) the profiling probes and the storage for the
heap of profiling records. Of course, the main memory space require for storing a
FreeBSD system’s data varies as a function of the software load offered to the system—
number of processes, devices, open files, open sockets, etc. In our case this was not an
issue because we configured each FreeBSD system so it would only execute the chief
system processes—init, pagedaemon, vmdaemon, syncer and only a few getty. With
this configuration we wanted to avoid uncontrolled process context changes that will
drain computing power.

All computers had 3COM 905B-TX PCl/Fast Ethernet network interface cards at-
tached to either 10 Megabit per second Ethernet or 100 Megabit per second Fast
Ethernet channels. A 3COM Office Connect TP4/Combo Ethernet hub was used for
linking all sources, the router under test and the inbound security gateway. A point-to-
point Fast Ethernet link was used for the IPSEC tunnel. FreeBSD kernels were config-
ured to use the x1 (8) device driver for controlling the 3COM network interface cards.
All computers had onboard EIDE/PCI hard disk controllers. A plain and basic FreeBSD
system requires around 400 Megabytes of disk storage for holding the chief file sys-
tems. With the considered configuration, no swap space was required.

3.5.6 Traffic pattern

The traffic pattern for system characterization served to purposes:
¢ Minimizing the preemption of networking stages

¢ Avoiding that packet arrivals would be in synchronization with any ker-
nel supported clock

OSCAR IVAN LEPE ALDAMA PH.D. DISSERTATION

3.5—SYSTEM CHARACTERIZATION 61

The first feature was important for easing the system characterization process. Re-
call that we have set up probes at the activation and returning points of selected sofi-
ware tasks, and that each probe records the current value of the three PMECs. There-
fore, the actual resource consumption of any profiled task is equal to the subtraction of
the values recorded at a returning point minus the values recorded at its corresponding
activation point. Observe that any preemption of a profiled task, which will occur be-
tween its activation and returning points, will result in a record reporting higher re-
source consumption.

We saw two ways to solve this problem. One was to build a computer program
that would identify overblown records and would try to eliminate from them the pre-
emption costs. The other solution was to use a traffic pattern that would assure the sys-
tem under test would forward one packet at a time. The tradeoffs here were the experi-
ment’s run time and the solution’s complexity. Clearly, the second solution is simpler.
As for the experiment’s run time it turn out not to be an issue. Indeed, given that the
heap of profiling records was limited in size to 100 thousand entries and that the
forwarding of a packet produced around 12 entries, experimental runs can only be as
long as to produce 8333 packets. At the same time, our slowest system under test would
forward one packet in less than 80 microseconds—as we found out a posteriori. Conse-
quently, we used the second solution.

The traffic’s second feature, avoiding synchronization with kernel clocks, is im-
portant for dealing with software preemptions not related to networking tasks. A
FreeBSD kernel includes tasks that attend urgent events, like the system real-time
clock’s interrupt-handler, or a page-fault exception’s or hard disk’s interrupt-handler.
Such tasks are executed with high priority and thus preempt any networking task. Our
systems under test, which had a simplified configuration as stated before, only produced
urgent events related to the real-time clock and therefore launched high priority tasks
following a periodic pattern—with different periods but all being a multiple of the real-
time clock’s period. A posteriori we found out that if sources (which were also
FreeBSD systems using the same kind of real-time clocks to time the traffic production)
produced IP datagrams periodically, packets arrivals at the system under test may get in
synch with one or more periodic and high priority kernel tasks. This situation would re-
sult in a number of overblown measurements larger than when the traffic is not syn-
chronized with these kernel tasks.

Differently from the first problem, this one is unavoidable. Moreover, as we found
out a posteriori, a way for characterizing this preemption process is required for produc-
ing an accurate system model. Consequently, the traffic pattern should help characterize
this preemption process. The technique we used for characterizing this process, as will
be explained later, required that the sequence of packets experiencing preemption would
not be a periodic process. And this explains the traffic’s second feature.

All the above resulted in the following traffic pattern for system characterization:
® A packet trace with random packet inter-arrival times of at least 2 times

the mean system under test’s packet processing time and as much be-
tween 3 and 10 time this mean value

PH.D. DISSERTATION OsSCAR IVAN LEPE ALDAMA

62 SYSTEM CHARACTERIZATION—3.5

3.5.7 Experimental design

We carried out a large set of experiments for assessing the influence that various
operational parameters have over service times. The parameters we considered are:

Packet’s size

Inter-packet arrival time

Packets burst’s size (number of packets in a packets burst)
Encryption protocol

Authentication protocol

Traffic mix

Routing table’s size

Besides, we carried out some more experiments for assessing the behavior of
various system elements. The elements we considered are:

Code paths

Central processing unit speed
Main memory

Cache memory

Finally, we carried out some more experiments for assessing the overhead and in-
trusion of the profiling probes.

3.5.8 Data presentation

Upon the data gathered from each PMEC of each profiling grain (section 3.5.3) at
each experiment, we produced a set of data descriptors and corresponding charts. As
stated in this section’s introduction, we expected the profiled code to have stochastic
behavior and thus we strived to produce histograms as data descriptors. For each ex-
periment we produced the following six charts:

Central processing unit cycle count trace and histogram (2 charts)
Machine code instruction count trace and histogram (idem)
Hardware interrupt count trace

Correlation between cycle count and instruction count

Figure 3.7 and Figure 3.8 show some example charts sets. Appendix A shows the
charts sets for all the experiments.

3.5.9 Data analysis

At the instruction and cycle count charts in Figure 3.7 and Figure 3.8, it can be
seen that points form lanes. From the correlation cycles/instructions chart it can be seen
that each lane in the instruction count chart correlates to a single lane in the cycle count
chart. This was something expected as the software probes at each layer were pro-
grammed to profiled more than one routine. Thus, each data lane represents a code path
through the networking software. In the case of Figure 3.7, the upper lane corresponds

OSCAR IVAN LEPE ALDAMA PH.D. DISSERTATION

3.5—SYSTEM CHARACTERIZATION 63

to the Encapsulating Security Payload (ESP) protocol, the middle lane corresponds to
the Authentication Header (AH) protocol, and the lower lane corresponds to the Internet
Protocol (IP) protocol. In the case of Figure 3.8, the upper data lane corresponds to the
networking message reception routine while the lower lane corresponds to the end-of-
transmission interrupt handler. From the charts alone one cannot tell which data corre-
spond to each path. To do this one has to analyze the recorded data with respect to the
identification tag written by the softiware probes with each performance record.

It is striking although expected that the lanes at the instruction count charts are
narrow—in fact these are single valued—while they are thick at the cycle count charts.
This clearly proves our assumption that the networking code would have stochastic be-
havior and the importance of representing the model’s service times with histograms.

From the shown charts it is evident that there are some kernel activities not related
to networking processing that are consuming system resources. This is evident from the
existence of several outlier points at the cycle and instruction charts. Moreover, these

Figure 3.7—Characterization charts for a security gateway’s protocols layer

Cucle Count Instruction Count Interruption Count
50600 36085 —— — —— 2
45000 |
400008 - asees
u 2
35000 - S 2000 g
u 30000 - et
L + o
= eseen | ¢ 15000 - B
3 eeves - £ :
w |
15000 [2 1e000 £
16808 - —
5008
& |))) & I I i i B
B 15008 30808 45000 686080 75008 8 15008 30808 45000 68080 750008 8 15808 30808 45000 60088 75008
Packet number Packet number Packet number
Histogram for cucles Histogram for instructions Co-relation Cycles + Instructions
1 1 45000
40000 [
35080 [
T 8.1 —‘ ‘ ‘ E o 8.1 F -
H H 30000 [
E E H {
2 2 o 25808 |- i
4 < 5 20000 -
L oe.et b 4 L oe.et b < s
15008
1 10000 |-
@.08081 N T N N I | 0 | - @.8081 | -) N T T N S Y |
QU T T N O QU O T 0T T T NENONENONEPENENIVO WD 508 - |
R P R N R T R R I PUBP DT ANTON GO0 0D Mo ; i i i]
IR R v e TP iR RS UMb ONA S o @i 8
ﬁﬁﬁﬁﬁﬁﬁﬁ Smoyhn® SQUANORRS ~0O%inh © 5600 10000 15080 20080 25000 30008
Docurencies Occurencies Instructions

Figure 3.8—Characterization charts for a router’s network interfaces layer

Cycle Count ~ Instruction Count Interruption Count
2000 2
1200 |-
1600 |-
" w
2 400 [<
5 .
- 1208 | by
44 o
¢ 1000 B
£ see &
) - +
£ eoo [£
408 =
200
a 1 1 1 1 a 1 L
® 15608 30088 45080 6OODE 75000 ® 15008 30088 45080 6OOBE 75000 o 15608 30806 45000 60BEO 75000
Packet number Packet number Packet number
Histogram for cucles Histogram for instructions Co-relation Cycles + Instructions
1 1 7000
‘ ‘ ‘ 6008 -
2 9.1 F | E 7 et i 5608 -
H < "
E o u aoo0 [
3 Y z :
¢ 5 5 3000 !
< L o = ol
L e.o1 s e.o1 b 4 a
2000
| 1000 |-
. L Ll
DO UT VDD UTODDMTODD M T D 8.081 R — T 0§ 0§ f i i § i 3
R v e e N R T 6 D 3 5 @ 00 o W 0B o 1D 7 0 8 a
ﬂﬂﬂﬂﬂﬂ Lt T T R R TRT N i) Rl BT G ol S Vo T T T Y IOV Y AN SN SN s) B 208 408 600 SOD10DA DA 406 cRd SaEeRD
Occurencies Occurencies Instructions

PH.D. DISSERTATION OsSCAR IVAN LEPE ALDAMA

64 SYSTEM CHARACTERIZATION—3.5

points correspond to probe records detecting at least one interruption—there is a one to
one relationship between these points and impulses in the interruption count chart. For
us this clearly implies that the networking activities were being preempted by some
other not-instrumented activity. We named this activity, or collection of activities, the
“noise” process, as it is an ever-present process which influences system performance
but over which we have no control. In order to model this “noise’s” influence we added
a set of elements to the router’s model, as described in section 3.4. Consequently, when

computing service time histograms we disregarded the outlier measurements.

3.5.10 “Noise” process characterization

A precise representation of the “noise” process would require analyzing activa-
tion sequences for several kernel tasks. A priori we decided not to do this, as it is a labo-
rious task. Instead, we tried a simpler approach. A posteriori, the used approach turn out
to be enough for producing highly accurate results, as later section 3.6 shows.

The used approach’s objective was to estimate the probability density function
(PDF) of two random variables: the inter-arrival time of “noise” events and the number
of central processing unit cycles consume by these events. The motivation for going this
way arose when doing initial model validations, as later discussed in section 3.6. In-
deed, we were able to determine that the packet latency measures clustered at the sec-
ond band shown in most charts were due to packets that were preempted at least once.
Under the assumed load conditions, this preemption can only be due to the “noise”
process and so finding plausibly relationships between the second band measures and
this process may solve the problem.

The first relationship we found was associated to “noise” events’ inter-arrival
times. The inter-arrival time of “noise” events must be constant—as we have associated
this process to activities tied to the system’s real-time clock. Therefore, we only had to
estimated its period or rate. We did this by computing the relative frequency of the sec-
ond band measures. Considering no correlation between the occurrence of “noise”
events and packet arrivals (something that we accomplish by using a special traffic pat-
tern as stated before in subsection 3.5.6), we computed a mean arrival rate for “noise”
events as A= p/T, where p is the probability of a record detecting a preemption and T

is the mean service time computed over records that did not detected preemption. The
estimated period of 4.2 milliseconds is very closed to the 4 milliseconds period of some
bookkeeping kernel routines reported in the literature [McKusick et al. 1996].

After settling that the “noise” process was a periodic process we proceed to esti-
mate the cycle count’s PDF. The fact that this process was periodic was important as
this allow us to discard one random dimension and consider that any variation in the
second band measures was just related to the randomness of the service times. (See sec-
tion 3.6) Given this and the fact that latency times experience by preempted packets un-
der the assumed load conditions are equal to the sum of a unpreempted service time plus
a value associated to a “noise” event’ service time, we decided to use the average num-
bers—mean and variance—that characterize the second-band packet-latency measures
for characterizing, after some manipulations, the “noise” service times. Where by ma-
nipulations we mean subtracting the means and heuristically finding a well-known PDF

OSCAR IVAN LEPE ALDAMA PH.D. DISSERTATION

3.6—MODEL VALIDATION 65

that best fits the observed values—given that its mean and variance are known. We tried
uniform, exponential and normal PDF but the best fit was given by the normal PDF.

3.6 Model validation

This section presents a validation for our IP router’s and security gateway’s queu-
ing network models. The validation is based on a two-dimension comparison (we elabo-
rate on this shortly) between the queuing network models’ predictions and both meas-
urements taken from real systems and predictions from a simpler single queue model, as
stated in this chapter’s introduction. All the models were solved by computer simula-
tion, using a computer program built by us.

One dimension of the comparison contrasts per-packet processing latency traces.
(For simplicity, for now on we will refer to the per-packet processing latency as la-
tency.) In this dimension we can qualitatively compare the temporal behavior of the sys-
tems. The other dimension compares the complementary cumulative probability func-
tions, for now on CCPF, of the latency traces. Through this dimension we can quantita-
tively compare the performance of the systems at several levels of detail. For example,
we can either do a broad comparison by comparing mean values or we can assess dif-
ferent service levels by watching at different percentile values.

Performance experiments were devised for stressing different system behavior.
Experiments varied accordingly to the operational parameters of packet length and in-
ter-packet time-gap. In spite of all the possible combinations of these two parameters,
two main kinds of traffic are identified. On kind has fixed size packets produced with
constant inter-packet time-gap, for now on IPG. The other kind has fixed size packets
produced with randomly variable IPG.

The traffic of the first kind was initially intended to validate service time distribu-
tions computed after the characterization process. Later, it was also used for validating
the “noise” process’s model. It is interesting to note that the equipment we used to pro-
duce the traffic—an HP Internet Advisor—was not able to deliver a pure constant IPG
traffic at all IPG values. For IPG values below 1 millisecond, the equipment produced
packets bursts 1 millisecond apart. The resulted traffic had an average IPG equal to the
one we selected but the IPG between packets in a packets burst was almost equal to the
minimum Ethernet inter-frame gap. While this was firstly annoying, we were able to
take advantage of this “equipment feature” and used the resulted one mega packets
bursts per second traffic for some validation experiments. In these cases, experiments
varied according to the number of packets within a packets burst, or packets burst’s size.

The traffic of the second kind was devise to resemble usual traffic on a real local
area network; that is, a traffic with a high ratio between its peek and average packet rate.
It was produced by the superposition of four on/off sources with geometrically random
state periods. During the on state, the traffic was produced with a geometrically random
IPG.

When watching at the validation charts it is important to take into account that all
systems, the real one and both models, were feed with exactly the same input traffic. We
assured this by gathering traffic traces during the performance-measuring experiments

PH.D. DISSERTATION OsSCAR IVAN LEPE ALDAMA

66 MODEL VALIDATION—3.6

that we carry on with the real IP router, and later feeding these traces to both models
runs.

3.6.1 Service time correlations

Before presenting the final model validation, allow us here discuss on the service
time correlations we observed when using the one-to-one mapping between the C lan-
guage functions implementing BSD networking and the model’s queues. Subsections
3.4.2 and 3.5.3 presented this problem’s implications on system modeling and probe
implementation, respectively. Figure 3.9 presents the CCPF comparison for packet la-
tency traces gather after some experimental runs. It clearly shows that a router’s model
with queues mapped as stated before is not a good model. Figure 3.10 presents an ex-
ample chart we produced after a service times’ correlation analysis. It clearly shows that

Figure 3.9—Comparison of the CCPFs computed after measured data from a software
router and predicted data from a software router’'s queuing network model, which
used a one-to-one mapping between C language networking functions and model’s
queue

pCR>=x)>

1 T T T T T
i 1 S i RSN e SR SR [T T T d (delaylLog)
f
Model - .
@ &7 ode
\

0.0001 L L L P W .)
80004 85004 90008 95004 100008 xasaeq 110000

| —»

Figure 3.10—Example chart from the service time correlation analysis. It shows the plot
of ip_input cycle counts versus ip_output cycle counts. A correlation is clearly
shown

1888

4
|

L s s
1200 1308 1480 1500

OSCAR IVAN LEPE ALDAMA PH.D. DISSERTATION

3.6—MODEL VALIDATION 67

networking functions’ execution times are not independent. As stated in subsections
3.4.2 and 3.5.3, these results drove changes both in the final model and the probe’s im-
plementation.

3.6.2 Qualitative validation

For carrying out the qualitative validation, as defined in this section’s introduc-
tion, we produced latency traces charts like the ones shown along the two leftmost col-
umns of Figure 3.11. There, each row corresponds to a particular experiment. Within
each row, the lefi-hand chart depicts data measured at the system under test while the
center chart depicts data estimated by the queuing network model. Results at a glance
qualitatively validate the queuing network model. Indeed, at all rows both charts have a
lot more similarities than differences. But beyond this broad comparison there are sev-
eral details worth to have a look at.

The first interesting thing that shows up in the charts is the existence of two or
more horizontal bands. These are more evident at the charts for the 100 MHz router but
they also exist at experiments with the 600 MHz security gateway. The first band from
the bottom up corresponds to packets that arrived at the system when it had empty mes-
sage queues and were serviced without preemption. The variability at this band corre-
sponds to the system’s stochastic service-times. The second band (again, from the bot-
tom up) corresponds to packets that although arriving to an empty system experienced
some preemption due to the “noise” process.

Note that the first two bands are omnipresent in charts, and that charts correspond-
ing to experiments with traffic of the first kind show no other bands. Differently, charts
for experiments with “bursty” traffic (traffic with packets bursts) depict some other
bands. These other bands correspond to packets that experienced some queuing time;
they arrived to the system when this had non-empty message queues. These bands’ large
variance is a consequence of random message queue lengths and some additional pre-
emption time due to the “noise” process. The number of these additional bands (addi-
tional to the first two) relates to the size of the driving traffic’s packets bursts.

One discrepancy between the real systems’ behavior and their queuing network
models’ is apparent when looking closely at the measures bands: measures bands’ vari-
ances are a little different. The source of this discrepancy relates to the modeling of the
“noise” process. As explained in subsection 3.5.10, our “noise” characterization trades
off accuracy for simplicity. However, as next section shows, this discrepancy only re-
sults in a minor quantitative error and thus we disregarded doing a more accurate noise
characterization and modeling.

PH.D. DISSERTATION OsSCAR IVAN LEPE ALDAMA

68 MODEL VALIDATION—3.6

3.6.3 Quantitative validation

For carrying out the quantitative validation, as defined in this section’s introduc-
tion, we produced charts comparing three latency’s CCPFs: the real system’s, the queu-
ing network model’s and the single queue model’s. Example charts are shown in the
right column of Figure 3.11. Each chart depicts curves produced after the latency traces
shown in the same row. Again, results at a glance quantitatively validate the queuing
network model and reveal its better suitability with respect to the single queue model.
Beyond this broad comparison there are some details worth to have a look at.

One interesting thing to note is the stepped nature of the real system’s and queu-
ing network model’s curves. This is most evident at experiments with constant IPG.
This nature relates to the central processing unit sharing between packets and the
“noise” process. Differences in the prominence of the steps relates to differences be-
tween the “noise” process’ service times’ real density function and the estimated one.
From the charts it should now be evident that the quantitative error is minor.

Another interesting thing to note is that the error introduced by the statistical es-
timation of the “noise” process’ service times diminishes, as the traffic gets “bursty”.
This is striking although reasonable. Indeed, the average single-packet service time is
significantly larger than the average “noise” service time. Thus, when packets bursts
appear, the packet sojourn time is more affected by the size of message queues than by
the central processing unit sharing with the “noise” process.

OSCAR IVAN LEPE ALDAMA PH.D. DISSERTATION

69

3.6—MODEL VALIDATION

Figure 3.11—Model’s validation charts. The two leftmost columns’ charts depict per-packet

latency traces. The right column’s chart depicts latency traces’ CCPFs

Estimated per-packet latency Comparison of CCPF curves

Observed per-packet latency

Queuing network model
Single queue model
—— Real IP router

T v so+eg — T S0+eg
- J sorel o - so+ez
+3
- J so+ar so+el
so+al
- — sotel g
g so+el
y0+eg 2
g $0+28
y0te9 Z
$0+29
- - po+es
yo+oy | 1 poren
- - vo+ez - - potez
1 1 L 1
00+20 00+20
s E g s E g
o o
(x=<x)d (x=<x)d
yo+oy po+oy
yoteg A vovee
y0+og = vorez
3 s
3
y0+ez € =4 - voree
2 2
ﬂ =
y0+92 ¥ =} vore
& bt
po+el = - vo+eL
£0+o5 7§ - eores
1 1 1 1 1 1 1 00+20 1 1 1 1 1 1 | I e 1] 00+20
0 ['2} '2} 0 'e] 0 0 'e} 0 -4 o 0 0 ['e} 'e] re] ['2} 0 0 'e] < (=]
o o =3 =3 o o o o o o o =3 =3 o o o o o =3 o o o
2 3339923393 99 2 223933939 99
FI S T S S SR S S S S FINT T T S S S S S S S
w0 < < < @ Y N N — [t} o ' < < < o N Y N — [t o
SPUOD3SOUBN SpUOOasOUBN
yo+oy yo+oy
y0+oE y0+og
y0+og y0+og
3
3
y0+ez € yo+ag
2
k]
y0+92 ¥ yo+ag
&
0+l po+ol
£0+o €0+8g
1 1 1 1 1 1 1 1 00+20 1 1 1 L 1 1 1 00+20
0 ['2} '2} 0 'e] 0 'e} 'e} 0 -4 o 0 0 0 ['2} re] 'e} 0 ['e} 'e] =4 (=3
o o =3 =3 o o o o o o o =3 =3 o o o o o o o o o
2 3332992939393 99 2 2232993393 99
§ ¥ 22888 8& 28 8 g &$§ ¢ ¢ 8 & & & 2 8 8
SpUOD3SOUBN SpuodasoueN

s/Md eee @ sweibejep dan o¥q v ‘Od| ueisuod

s/d 0004 ® sweibelep 4an

81Aq ‘(s1sinq josj0Rd-Z BWIOS BJE BIBYY) D] JUBISLOD OPNasy

Nanoseconds

Packet number

Packet number

1 1
o 2 =4
o
(x=<x)d
1 1 1 1 1 1 1)
0 ['2} 0 0 0 0 0 0 0 < (=3
o o o =3 o o o o =3 o o
g 2 & 2 8 &8 & 2 8 8
SPUOJaSOUBN
1 1 1 1 1 1 LY
0 ['2} 0 0 0 0 0 0 0 < (=3
o o o =3 =3 o o o =3 o o
g 2 & 28 & & & 2 g8
SPUOY3SOUBN
s/d 0052 ® sweibelep 4an

aq ¢ ‘sjexoed ¥ 0 ¢ J 1sinq yym deb sing-Jajur Juejsuo

Go+ag

Go+eg

Go+ag

Go+ag

Go+al

Y0+8G

00+80

vo+ey

Y0+og

v0+ag

v0+eg

v0+eg

vo+al

€0+3G

00+80

vo+ey

Y0+eg

v0+ag

v0+eg

v0+eg

vo+al

€0+3G

00+20

Nanoseconds

Packet number

Packet number

So+ag

T T hhaas T

Go+oL

Go+eL

- co+el

v0+e8

Nanoseconds

y0+29

- vo+opy

vo+eg

00+80

0.1
0.01 =
0.001

(x=<x)d

vot+eg

- yo+og

- po+ez

- po+el

Packet number

- €o+eg

5e+05

00+20

4e+05 |~
4e+05 -
4e+05 -
3e+05
2e+05 -
2e+05 -
2e+05 -
1e405 |-
5e+04 |-
0e+00

SpUODasOUEN

vot+ey

Y0+eg

y0+ag

vot+eg

vot+eg

Packet number

y0+al

€0+9G

5e+05

00+20

4e+05 |-
4e+05 -
4e+05 -
3e+05 -
2e+05 -
2e+05 -
2e+05 -
1e+05

5e+04

0e+00

SpUooasouBN

s/d 0004 ® sweibelep 4an oika Z1g
‘(s1s1nq Joxj0Bd-Z SWOS BB 313Y)) D JUEISUOD OPNaSY

OsSCAR IVAN LEPE ALDAMA

PH.D. DISSERTATION

3.6

MODEL VALIDATION

70

Figure 1.11—continuation

Estimated per-packet latency Comparison of CCPF curves

Observed per-packet latency

Queuing network model
Single queue model
——— Real IP router

sotay

So+at

- so+eg

S0+eg

S0+eg

S0+eg

so+el

Y0+eg

0.1
0.01

(x=<x)d

00+30

0.001

votey

5e+05

4e+05 [~
4e+05 =
4e+05 =
3e+05 ~
2e+05 i~
2e+05 ~

SpuodasoueN

2e+05 =

5e+04

Y0+eg

ot+eg

y0+ag

y0+ag

vo+eL

€0+3G

00+30

0e+00

vot+ey

5e+05

4e+05 [~
4e+05 [~
4e+05 |~
3e+05 ~
2e+05 ~
2e+05 ~

spuodasoueN

2e+05

1e+05

5e+04

vot+eg

vot+eg

y0+ag

y0+ag

vo+eL

€0+3G

00+30

0e+00

s/pd 0028 01 dn Jo 18unq ‘s/pid g6 | Jo aje Jasjoed

Nanoseconds

Packet number

Packet number

ueaw ‘sweibelep 4an oiq 95 ‘oupes 140/NO Aising

T T so+eL

50+89

50+8G

S0+ay

S0+9¢

S0+eg

so+el

00+30

0.001

(x=<x)d

votey

Y0+eg

ot+eg

y0+ag

y0+ag

vo+eL

€0+3G

5e+05

00+30

4e+05 [~
4e+05 [~
4e+05 |~
3e+05 ~
2e+05 [~
2e+05 |~
2e+05 =

SpuodasoueN

vot+ey

vot+eg

vot+eg

y0+ag

y0+ag

vo+eL

€0+3G

5e+05

00+30

4e+05 [~
4e+05 [~
4e+05 |~
3e+05 ~
2e+05
2e+05 ~
2e+05 [~
1e+05

5e+04

0e+00

spuodasoueN

s/pid 0086 01 dn Jo 1snq ‘s/pid 2682 Jo 8.l Josjoed

Nanoseconds

Packet number

Packet number

ueaw ‘sweibelep 4an oiq 95 ‘oupes 140/NO Aising

0.
0.01

(x=<x)d

0.001

5e+05

4e+05 [~
4e+05 [~
4e+05 -
3e+05 [~

spuodasoueN

5e+04

0e+00

5e+05

4e+05 [~
4e+05 |~
4e405 |-
3e405 |-
26405 |-
26405 -
26405 [

spuodasoueN

1e+05 =

5e+04

S0+eg

§S0+a¢

S0+eg

S0+eg

so+el

Y0+ag

00+30

vot+ey

Y0t+eg

vot+eg

y0+ag

y0+ag

vo+eL

€0+3G

00+30

vot+ey

Yo+eg

vot+eg

y0+ag

y0+ag

vo+eL

€0+3G

00+30

0e+00

s/pid 0086 03 dn Jo 1sinq ‘s/pid 2682 Jo Sl Jexoed

Nanoseconds

Packet number

Packet number

ueaw ‘sureibelep dan oiq giS oyen 430/NO Aising

PH.D. DISSERTATION

OSCAR IVAN LEPE ALDAMA

3.7—MODEL PARAMETERIZATION 71

3.7 Model parameterization

The previous section showed that it is possible to characterize a particularly slow
software router and use the resulted service times for producing highly accurate predic-
tions with a queuing network model of the same system. This section’s objective is to
present answers to the following questions:

e Is it possible to extrapolate our findings for performance evaluation of
faster systems?

¢ From what point changes in hardware architecture or traffic pattern affect
our model predictions?

3.7.1 Central processing unit speed

For answering this section’s first question we produced Figure 3.12. The figure
shows the execution times measured by the software probes of the plain IP router code
when the operation speed of the router’s central processing unit, for now on CPU, was
varied between 300 MHz and 630 MHz. We were able to do this thanks to a feature of
the Gigabit GA-6VXE+ motherboard and the Intel’s Pentium III type SECC2 micro-
processor that one our test systems had. A set of switches on this motherboard allowed
us to change the operation speed of this type of microprocessor. Let us emphasize the
importance of this feature. Without it, we would have need to change microprocessors,
which may have different cache memory configurations, and even whole motherboards,
which most certainly would have different chipsets, for experimenting at different cen-
tral processing unit speeds. This would result in experiments with too many latitudes
that would produce data too complex to analyze and thus useless.

Figure 3.12—Relationship between measured execution times and central processing
unit operation speed. Observe that some measures have proportional behavior
while others have linear behavior. The main text explains the reasons to these be-
haviors and why the circled measures do not all agree with the regression lines

18 1
y =4.6271x+0.148
16 1 Q
y =2.1723x+ 1.9141 - -
14 1 <
y =0.8898x+ 1.3722 2
12 1 7 @
g " y =0.9017x + 0.0047) & i
8 Yol A
@ y =0.6368x+ 0.1364 & -7
g g _-A
8 & _K
E L AT
6 -7 @A’ A
4+ B
T _g--9
2 1 /%2%9_: SIIX-X T
0 : T T T !
0.0 0.5 1.0 15 20 25 3.0 35

CPU's clock period (ns)

PH.D. DISSERTATION OsSCAR IVAN LEPE ALDAMA

72 MODEL PARAMETERIZATION—3.7

Returning to Figure 3.12, it can be seen that ipintrg’s, ifsnd’s and ipreturn’s
execution times are proportional to the CPU speed, while dmarx’s and eotx’s execution
times vary linearly with respect to the same variable. (See subsection 3.5.3 for the defi-
nition of these software probes.) This has a clear explanation. The second set of probes
profile code that executes some input/output (I/O) instructions for communicating
through the I/O bus with the network interface cards. The operation speed of the I/O bus
was constant during the experiment and therefore the time required to execute the I/0
instructions did not scale with the CPU speed but remained constant. This results in the
offset observed for dmarx’s and eotx’s curves. Note that the value of this offset de-
pends not only on the I/O bus speed but also on the network interface card and corre-
sponding device driver architectures.

In order to complete this analysis we included in Figure 3.12 a set of measure-
ments taken from a different computer. These measurements are circled shown in the
figure. The “new” computer had a 1 GHz Intel’s Pentium III with different cache con-
figuration and a different motherboard, an ASUS TUV4X with different chipset and
main memory chips’ technology. Both computers’ I/O buses operated at identical opera-
tion speeds, however. As the figure shows, not all “new” computer’s measurements
agree with the regression lines of the “old” computer’s measurements. In fact, only
eotx’s new measurement agrees, the rest are lower than their corresponding regression
line. Moreover, ipintrqg’s new measurement is the farthest from its corresponding re-
gression line.

We believe there is no single source for these discrepancies. Moreover, as the
compared computers have no few differences we cannot categorically be sure what
these sources are. However, after knowing that the router software’s performance is not
influence by the memory technology and that the router software is small enough to fit
inside the CPU cache memory, see next subsection, we believe the discrepancies’ main
source is the different level two cache suited by each CPU. Indeed, the SECC2 600
MHz Intel Pentium III had an on-package, half speed, level-two cache while the FC-
PGA2/370 1 GHz Intel Pentium III had an on-chip, full speed, advanced transfer, level-
two cache. What we believe this means is that the “new” computer, when compared to
the “old” one, not only executed instructions faster but also had its pipeline fuller or
with less bubbles as, on average, it did not had to wait as much for the instructions and
their data.

Clearly, different code segments profited differently after this cache’s perform-
ance improvement. Although we have not done a detailed code analysis, we believe it is
mainly due to the relative code sizes each software probe profiled and the mix of in-
structions. Basically, we believe it is reasonable to expect that a large piece of code
without I/O instructions would profit more from a faster cache than a small piece of
code with many I/O instructions. Ipintrq is the probe that profiled the biggest piece of
code, 1261 instructions, and none of them are I/O instructions. We believe that is why
its 1 GHz measurement is the farthest from its corresponding regression line. The other
code sizes are: dmarx, 475; eotx, 236; ifsnd, 216; and ipreturn, 192. As stated be-
fore, dmarx and eotx profiled some I/O instructions. We believe the reason eotx’s 1
GHz measurement is just over the regression line is that the profiled code has a relative
large number of I/O instructions. However, we have not assessed this.

OSCAR IVAN LEPE ALDAMA PH.D. DISSERTATION

3.7—MODEL PARAMETERIZATION 73

3.7.2 Memory technology

We found that the working set of the BSD networking code for both the router
and the security gateway fits inside their CPU’s cache memory. Partridge et al [1998]
have found similar results. Therefore, these systems’ performance is not affected by
main memory technology. We observe this after analyzing several cycle-count traces
from different profiling probes. The analysis consisted in filtering preempted records—
records whose corresponding interrupt count was not zero. Figure 3.13 shows example
charts from two different profiling probes: the ipintrqg probe and the probe profiling
the DES algorithm for the Encapsulating Security Payload protocol (ESP). The figure
shows four outlier measurements circled in each chart. Each of these records corre-
sponds to the first packet being processed by the system after some non-networking-
related activities have been executed. Observe that after these first packets are proc-
essed, no other packet experiences a high cycle count. For Figure 3.13 this means that
only four out of almost 25 (or 35) thousand packets were affected. This suggested to us
that during the processing of the so-called first packet the CPU’s instruction cache
should have been out of networking instructions, and thus the CPU required extra cycles
for reading the instructions from main memory. But this also suggested to us that all
other packets were processed by instructions read from the CPU’s cache, and thus did
not require reading from main memory. Therefore, this subsection’s premise gets sus-
tained.

For completing the picture, allow us here discuss why is it that we hold that some
non-networking related activities trashed the CPU’s instruction cache. It happened that
because we could only allocate a probe-record heap big enough for storing 100 thou-
sand records—for all the probes in the kernel—we had to break each experiment in four
rounds. After each round, we have to start a shell session in the system’s console and in-
teract with the system. During this interaction we executed several shell commands for
extracting the heap of profiling records from the kernel’s address space and save it to a
file. Then, we executed some other shell commands for preparing the system for the
next round and for launching the round. Clearly, after all this, the CPU’s instruction
cache was filled with whatever instructions but the ones of the networking software.

Figure 3.13—Oultliers related to the CPU’s instruction cache. The left chart was drawn af-
ter data taken from the ipintrg probe. The right chart corresponds to the ESP
(DES) probe at a security gateway. Referenced outlier points are highlighted

7 7645{& fbuht T 7 Cycle Count
S@aa 44888
BBBEi(\'_D 420868 >\-_>
sl 36000
£0an - zc@08

Seas - 24088
22008
ela L] 1]
28808
26808 o
1608 24p08 o e s

5} L 1 zzaaa 1
a 15680 26800 45880 a 15688 26800

Facket number FPacket number

Cycles
Cycles

4p08 [
zeon BEd G R
zooe [

BT T T T T T T T

PH.D. DISSERTATION OsSCAR IVAN LEPE ALDAMA

74 MODEL PARAMETERIZATION—3.7

3.7.3 Packet’s size

Figure 3.14 shows the influence that packet size has over probe measured execu-
tion times. On one hand it shows that the execution time of the plain IP router code is
insensitive to the packet size. This is most likely due to the way FreeBSD release 4.1.1
manages message buffers—it uses cluster message buffers indistinctly of packet size.
On the other hand, as expected, it shows that the execution time of the code implement-
ing authentication and encryption algorithms for IPSEC protocols augment with the size
of the packet. The figure shows curves for a pair of authenticating algorithms—md5 and
shal—and for three encrypting algorithms—DES, triple DES and blowfish. Each of
these curves reflects the various behaviors of these algorithms. It can be seen that blow-
fish has the smallest dependence to packet size, while DES and triple DES have the
greatest. On the other hand, it can be seen that blowfish has the largest set up time and
that triple DES is truly three times costlier than DES.

Figure 3.14—Relationship between measured execution times and message size

Pentium III 600MHz

1000
Bookkeeping
IF start

EoT int

Rx int

IP forwarding
AH(md5)
AH(shal)
ESP(des)
ESP(3des)
ESP(blowfish)

4 » D> @O B0 X X +

Microseconds (logscale)

0 200 400 600 800 1000 1200 1400 1600
Packet size (bytes)

OSCAR IVAN LEPE ALDAMA PH.D. DISSERTATION

3.7—MODEL PARAMETERIZATION 75

3.7.4 Routing table’s size

Another aspect that generally influences the performance of routers is the routing
table lookup algorithm. Table 3-I consigns IP forwarding’s average execution times for
our 600 MHz system, when its routing table had 4, 16, 64, 128, 256, 512 and 1024 en-
tries. Traffic threading the router was randomly distributed across addresses. The times
obtained (15.44, 15.98, 16.16 and 16.37 s) do not show significant variations. Conse-
quently, we can say that for the expected routing table’s sizes that a software router may
face—at the Internet’s edge—routing performance is not influenced by routing table’s
size.

TABLE 3-|

Routing table size IP forwarding time

[us]
4 15.44
16 15.98
64 16.16
128 16.37
256 16.56
512 16.81
1024 17.41

3.7.5 Input/output bus’s speed

After settling that router’s networking software’s execution time varies propor-
tionally with CPU’s speed, we computed the expected execution times for IP forward-
ing and encrypting/authenticating of 1500 bytes network messages at selected CPU
speeds and compared it with transfer times through I/O buses of, one, 33 MHz operation
speed and 32-bit data path, and the other, 66 MHz operation speed and 64-bit data path.
The results at Table I clearly show that for the CPUs that will be available on the market
in the following years, the bus is potentially a bottleneck to the system.

TABLE 3-

Forwarding + 10 Bus transfer

CPU speed Forwarding

[MHz] [ls] 3[?15]8 33 x 32 wel 66 x 64
600 15.44 580 11.4 2.9
1200 7.72 290 11.4 2.9

4800 1.93 72.5 11.4 2.9

PH.D. DISSERTATION OsSCAR IVAN LEPE ALDAMA

76 MODEL’S APPLICATIONS—3.8

3.8 Model’s applications

Now that we have proved the validity of the queuing network model, in this sec-
tion we apply it for capacity planning and as a uniform experimental test-bed. When
used as a capacity planning tool, the queuing network model may help to devise system
configurations for tuning a system supporting communication quality assurance mecha-
nisms, widely known as QoS mechanisms. Indeed, user QoS levels may be map to pa-
rameters such as overall maximum latency, sustainable throughput or packet loss rate.
Then, the queuing network model’s ability to estimate the complete probability density
function of performance parameters may be used for identifying system’s operational
regions that meet these QoS levels. Subsection 3.8.1 elaborates on this.

When used as a uniform experimental test-bed, the queuing network model eases
the performance study of systems that incorporate some modifications or extensions.
Generally, all there is to do is to adjust the model’s queuing network. Certainly, when
adjusting the queuing network care must be taken to remap service times. And although
this remapping may not be trivial it is clearly easier than producing correct software for
a new real system. Following this rationale, subsection 3.8.2 presents performance
evaluation results of two modified software routers: one that incorporates the Mogul and
Ramakrishnan’s [1997] receiver live-lock avoidance mechanism and another that be-
sides this incorporates a weighted fair queuing scheduler for IP packet flows.

3.8.1 Capacity planning

Figure 3.15 shows two charts drawn from data estimated by the queuing network
model. In each chart some router performance variable in plot against the average traffic
load in packets per second (pps). We are assuming the performance bottleneck is the
router and that the traffic load is Poisson. Five curves are drawn in all charts, each one
corresponding to the performance of a system under particular conditions. Let us now
discuss how to use these charts for capacity planning.

Forwarding capacity. Let us define forwarding capacity as the maximum load
value at which an IP router can forward packets without losing any. Observe that, as
noted in subsection 3.7.3, packet forwarding as implemented in FreeBSD 4.1.1 is insen-
sible to the packet size. Thus, for assessing the forwarding capacity of a system we look
at the losses chart and find the load at which the system starts to loose packets. For ex-
ample, a 100 MHz system has a forwarding capacity of, more or less, 8.5 kpps. This
means that it can hardly drive a single Ethernet—which may produce packets at rates
exceeding 14 kpps. On the other hand, a 650 MHz system has a forwarding capacity of
55 kpps.

Encryption capacity. The above mapped to an IPSEC router results to the en-
cryption capacity. That is, the maximum load value at which an IPSEC router can for-
ward encrypted packets. Differently from packet forwarding, as also noted in subsection
3.7.3, packet encryption performance is influence by the packet size and the encryption
algorithm used. In fact, an IPSEC router has a bimodal response with respect to packet
size. When packets are smaller than a particular value the router performance is limited
by its forwarding capacity. When packets are bigger than this value, the encryption ca-
pacity is the performance limit. To numerically show this, consider the following. Let us

OSCAR IVAN LEPE ALDAMA PH.D. DISSERTATION

3.8—MODEL'’S APPLICATIONS 77

defined # as the packet forwarding time ad #“, as the per-byte encryption time. Thus, the
maximum processing capacity of an IPSEC router expressed in packets per second is

equal to C(pps)=1/(t, +t“.* L), where L is the packet size in bytes. This expression
measure in bytes per second maps to:

1
C(Bps)= —
fo+-L
L

Figure 3.15—Capacity planning charts

Latency @ 99 percentile

laaa
laa-IP-1
E58-IF -1
4 658-MDS-DES-312 -- -
: i| 658-MDS<DES~1386 ---------
L {1 658-MD5-3DES-518 ————-
jSEB/MDS/EDES/lBBB —————
L :
2 18 ——
=]
5]
o
]
- 1 e
e :
a.1
B.81 HE il i ::::;:;i i iiiiiiil
18a@ 18@a 18868 1a8aa8
a) load [pps]l
Losses
188-IF-1
E58-IF -1
1 658-MDS-DES~S18 -- -
558-MD5-DES~1386 ---------
658-MD5-32DES~518 ————-
ES8-MOS-3DES~1386 -----
P
u
=]
e
| B.1
B.81 i iqiiqqqil HER T T S H
laan la6@8 1a8aa8
b) load [ppsl

PH.D. DISSERTATION OsSCAR IVAN LEPE ALDAMA

78 MODEL’S APPLICATIONS—3.8

Clearly, when L—0, C(Bps) —L/t; and when L— oo, C(Bps) —1/t",

Returning to the encryption capacity example, from the losses chart, a 650 MHz
system configured for authenticate and encrypt a communication session—using both
AH and ESP protocols, and using DES for encrypting, has an encryption capacity of 4.2
kpps when processing 512 byte packets and 3.6 kpps when processing 1386 byte pack-
ets. If it uses 3DES for 1386 bye packets, this system’s encryption capacity is around
1.5 kpps.

Maximum latency. If someone is interested in knowing what is the minimum
clock rate (read: price) that supports packet latencies not higher than certain value with
some probability, he must look at the corresponding latency percentile chart. For exam-
ple, a 100MHz IP router operating at its forwarding capacity of 8.5 kpps has a 99-
percentile latency around 10 ms. As another example, a 650 MHz IPSEC router config-
ured to use 3DES, processing 1386 byte packets and operating at its encryption capacity
of 1.5 kpps has a 99-percentile latency around 10 ms.

3.8.2 Uniform experimental test-bed

The following study’s objective is to observe the performance of a personal com-
puter-based software router supporting communication quality assurance mechanisms,
or Quality-of-Service (QoS) mechanisms. Here it is shown that the considered software
routers cannot sustain system wide QoS behavior solely by adding QoS aware CPU
schedulers. Where by this schedulers we do not mean user processes schedulers but
networking tasks schedulers; that is, schedulers regulating the marshalling of packets
through the networking software. The next chapter presents a solution to this problem.

The study that concerns us here compares the performance of two routers. The
one’s CPU speed is 1 GHz and the other’s is 3 GHz. These routers model’s service
times were extrapolated applying section 3.7’s parameterization rules to section 3.5’s
measurements for the 600-MHz system. We considered a PCI /O bus like the one de-
scribed in section 3.4. The data links were considered to have a 1 Gbps throughput.

For this study the router workload consisted on the superposition of three traffic-
flows with characteristics shown in Table 3-III. The offered load in bits per second for
each flow is identical. As we are interested mainly in system throughput under overload
we have considered Poisson input traffic.

TABLE 3-llI
Packet length (bytes) Solicited share
Flow 1 172 1/3
Flow 2 558 1/3
Flow 3 1432 1/3

It was expected that an ideal QoS aware router would allocate one third of its re-
sources to each flow.

OSCAR IVAN LEPE ALDAMA PH.D. DISSERTATION

3.8—MODEL'’S APPLICATIONS 79

Basic system. In order to set a comparison baseline, we firstly studied the per-
formance of the considered routers when they use a basic BSD networking software.
Figure 3.16 shows the queuing network model for a basic software router traversed by
three packet flows. Figure 3.17 shows performance data computed after the models for
global offered loads in the range of [0, 1400 Mbps]. As can be seen, the router with the
1 GHz CPU has a linear increase of the aggregated throughput for offered loads below
225 Mbps. At this point, the CPU utilization is 100% while the bus utilization is around
50% and the system enters into a saturation state. If we further increase the offered load,
the throughput decreases until a receiver live-lock condition appears for an offered load
of 810 Mbps. During the saturation state most losses occur in the IP input buffer.

For the router with the 3-GHz central processing unit, the bus saturates for an of-
fered load of 500 Mbps. The bus utilization at this point is 100% while the CPU utiliza-
tion is around 70%. The system behavior for increasing offered loads depends on which
priorities are used by the bus arbiter. The results here shown correspond to the case in
which reception has priority over transmission. We observe that system throughput de-
creases with increasing offered loads. This can be explained if we observe that CPU
utilization is increasing and most losses occur in the drivers transmit queue. This indi-
cates that the transfer from NIC to CPU increases with increasing offered loads and
hence the CPU processes more work. However this work cannot be transferred to the
output NIC as the bus is saturated by the NIC to CPU transfers.

If transfers NIC-CPU and CPU-NIC have the same priority the CPU never rea-
ches saturation, and losses can either occur in the NIC’s reception queue or in the device
driver’s output transmission queue.

Consequently, the basic system cannot provide a fair share of the resources when
it is in saturation.

PH.D. DISSERTATION OsSCAR IVAN LEPE ALDAMA

80 MODEL’S APPLICATIONS—3.8

Figure 3.16—Queuing network model for a BSD based software router with two network inter-
face cards attached to it and three packet flows traversing it

000

netup

o]

o
BUS
, | ene)

sink1

TG

sink2

sink3

TG

j l lifsnd: CPU

o

,,,,,

fast noise
| = 1

slow noise

OSFN

-\\;\ /é/

OSSN

a

V

OSCAR IVAN LEPE ALDAMA PH.D. DISSERTATION

3.8—MODEL’S APPLICATIONS 81

Figure 3.17—Basic system’s performance analysis: a) system’s overall throughput; b) per flow
throughput share for system one; c) per flow throughput share for system two

aga
aga -
n
o
=2
=
+
>
2
+
>
o
a 2ea 408 608 268 1888 1268 1400
a) Aggregated load [Mbps]
1
8.8
8.6
8.4
8.2
o A S S T S R S
a 166 2P8 3260 408 SA@ 600 FO8 S668 200
b) Aggregated load [Mbps]
1
lowl —+—
P pp——
low3 ---8---
= T e O S
a.6
a.4
a.2 :
a i i i i i i
a 288 408 &08 208 le@8e 1268 14680
C) Aggregated load [Mbps]

PH.D. DISSERTATION OsSCAR IVAN LEPE ALDAMA

82 MODEL’S APPLICATIONS—3.8

Mogul and Ramakrishnan [1997] based software router. We performed simi-
lar experiments with a model of a software router that includes the modifications pro-
posed by Mogul and Ramakrishnan. The proposed modification’s objective is to elimi-
nate the receiver live-lock pathology. Basically, this is accomplished by turning off the
software interrupt mechanism and driving networking processing by a polling scheduler
during a router’s busy period. As a consequence, networking processing is no longer
conducted through a pipeline but is done as a run-to-completion task. From the queuing
network modeling point of view, this results in the aggregation of all networking related
service queues into a single queue. Mogul and Ramakrishnan showed that the resulting
total IP processing time is actually shorter than the sum of the times for each individual
phase. They showed that the added polling scheduler’s processing costs is compensated
by the dropped IP queue manager’s processing costs. Moreover, the run-to-completion
processing gets implemented with fewer function calls. We took advantaged of these
observations and considering that basic networking phases’ service times are independ-
ent we computed the service time of the aggregated service as the sum of the basic net-
working phases’ service times.

Figure 3.18 shows the queuing network model for a Mogul and Ramakrishnan
based software router and Figure 3.19 shows performance data computed after this
model when parameterized for the two routers described at this section’s introduction.
Naturally, offered load was similar to the one used for the basic system. As can be seen
and as expected, the performance of the two modified routers do not change with re-
spect to that of the basic system when operating below saturation. Moreover, they reach
saturation at more or less the same offered load. But now, the throughput degradation is
gone thanks to the receiver live-lock elimination mechanism. However, the system still
does not achieve a fair share of router resource.

OSCAR IVAN LEPE ALDAMA PH.D. DISSERTATION

3.8—MODEL'’S APPLICATIONS 83

Figure 3.18—Queuing network model for a Mogul and Ramakrishnan [1997] based software
router with two network interface cards attached to it and three packet flows traversing it

D

]/ netup

fordfordfor] |
nabirx
1
NA- nab2rx
IN
\ nab3rx
1
o]
BUS
dmaitx
)
dma2tx
—_— s 2
dma3tx
N sink1
M\ sink2
sink3

dma3rx

D)

.

CPU
(RR)

i

e Y
26> (DEVNULL}
N /

fast noise

1
slow noise \ l
1

Vv

OSFN

|

\;\\/

OSSN

] k [£F e=L.
.
I

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ifeotx I
1
1
1
1
t
|
|
t
1
1
1
1
1
1
1
1
1
1
1
1
1
1

PH.D. DISSERTATION OsSCAR IVAN LEPE ALDAMA

84

MODEL’S APPLICATIONS—3.8

Figure 3.19—Mogul and Ramakrishnan [1997] based software router's performance analysis:
a) system’s overall throughput; b) per flow throughput share for system one; c) per flow
throughput share for system two

OSCAR IVAN LEPE ALDAMA

a)

b)

c)

Output [Mbps]l

Bag —e—
[y 1 R —

a8 2ea 488 £8a 808 1868 12008 1460

Aggregated load [Mbps]
1
8.8
8.6
a.4
a.z
@ A S SR S S SR S
8 188 268 368 408 S00 688 788 208 980
Aggregated load [Mbps]
1
8.8
8.6
a.4
a.z
a
8 =s1e] 488 11 888 1888 1288 1400
Aggregated load [Mbps]

PH.D. DISSERTATION

3.8—MODEL'’S APPLICATIONS 85

Mogul and Ramakrishnan [1997] based software router with a QoS aware
CPU scheduler. When a software router includes the modifications proposed by Mogul
and Ramakrishnan, to us, it seams possible to introduce a QoS aware CPU scheduler
like a WFQ scheduler. Indeed, once the polling scheduler is in control, it may use what-
ever policy it implements to select the next packet for processing. This scheme is pro-
posed by Qie et al. [2001], although for and operating system other than UNIX.

Figure 3.20 shows the queuing network model for this kind of software routers
and Figure 3.21 shows performance data computed after this model when parameterized
for the two routers described at this section’s introduction. As can be seen, the consid-
ered networking architecture can only support QoS communications when the CPU is
the system’s bottleneck, as in the case of the router with a CPU operating at 1 GHz.
(Figure 3.21.a.) However, when the bus becomes the system’s bottleneck the router fair
share is not achieve. (Figure 3.21.b.) By the way, the system’s overall throughput chart
has been omitted in Figure 3.21, as it is identical to the one presented in Figure 3.19.

PH.D. DISSERTATION OsSCAR IVAN LEPE ALDAMA

86 MODEL’S APPLICATIONS—3.8

Figure 3.20—Queuing network model for a software router including the receiver live-
lock avoidance mechanism and a QoS aware CPU scheduler, similar to the
one proposed by Qie et al. [2001]. The router has two network interface cards
and three packet flows traverse it

[} 1
[} —l 1
: 7 nabtx: :
! o] | (o ,
1 | L ouT, "
]); 1
1 1
1 nabrxi |
1 1
1 1
| nabrx2 |
1 1
1 1
1 nabrx3 1
1 1
1 1
1 1
! nabt !
1 ” 1
netup | . | |
ofordor | ! !
1 1
1 1
| nab1rx |
1 1 1
1 1
| . nab2rx |
- " 1 |
1 1
| nab3rx |
1 1 1
1 110 1
1 BUS 1
I dmattx , oo 1
- L= !
! dma2tx !
1) 1
[} > 1
: dma3tx / :
—_— 2 sink1
[} 1
. S i)
| dmairx |
| | I /\ 1 sink2
| i Bl g
| dma2rx |
[} 1 1
. _ 1 b e
| P [— T}
1 1
! 11 !
1 isignal]
[} 1
] | 1
[} 1
: wigcost :
- le]—/\— -
[} 1
[} J/ 1
] 1 | 1
1 dmarx |
! foncfioncfion]] !
[}
1 | [! 1
[} 1
' cPU '
RR
1) (RR) |
1 ifeotx 1
1 l 1 N
1 [LT .
1 1 26> (DEVNULL}
1 fast noise] / Mo’
OSFN + | = 7P
1 1
' | /
OSSN t t
1 V 1
1 1
1 1
1 1
[} 1
[} 1
[} 1
[} 1
[} 1
[} 1
[} 1
[} 1
[} 1
1 1

OSCAR IVAN LEPE ALDAMA PH.D. DISSERTATION

3.8—MODEL'’S APPLICATIONS

87

Figure 3.21—Qie et al. [2001] based software router's performance analysis: a) per
flow throughput share for system one; b) per flow throughput share for system

two

PH.D. DISSERTATION

a)

b)

I A T S S S S
@ 180 208 308 400 S0P 600 70 S0 900

Aggregated load [Mbps]

i i i i i
@ 286 498 608 800 1080 1200 1488

Aggregated load [Mbps]

OsSCAR IVAN LEPE ALDAMA

88 SUMMARY—3.9

3.9 Summary

® A queuing network model of a software router gives accurate results

e Single queue models of software routers ignore chief system features

e Characterizing the system was hard not because of the studied system
but due to the required process

¢ Armed with a mature process, characterization becomes straightforward

e The model’s service times computed after some system may be used for
predicting the performance of other systems, if scaled appropriately

e Service times scale linearly with CPU operation speed but can be con-
sidered constant with respect to message and routing table sizes

e Service times’ offset varies with respect to the network interface card’s
and device driver’s technology and the cache memory performance

¢ In the advent of CPU’s working above 1 GHz, the I/O bus is the bottle-
neck

OSCAR IVAN LEPE ALDAMA PH.D. DISSERTATION

