23

Chapter 2

Internet protocols’ BSD software
implementation

2.1 Introduction

This chapter’s objective is to understand the influence that operating system de-
sign and implementation techniques have over the performance of the Internet proto-
cols’ BSD software implementation. Later chapters discuss how to apply this knowl-
edge for building a performance model of a personal computer-based software router.

The chapter is organized as follows. The first three sections set the conceptual
framework for the document but may be skipped by a reader familiar with BSD’s net-
working subsystem. Section 2.2 presents a brief overview on BSD’s interprocess com-
munication facility. Section 2.3 presents BSD’s networking architecture. And BSD’s
software interrupt mechanism is presented in section 2.4. Following sections present the
chief features, components and structures of the Internet protocol’s BSD software im-
plementation. These sections present several ideas and diagrams that are referenced in
latter document’s sections and should not be skipped. Section 2.5 presents the software
implementation while section 2.6 the run-time environment. Finally, section 2.7 pre-
sents brief descriptions of other system’s networking architectures and section 2.8 sum-
marizes.

PH.D. DISSERTATION OsSCAR IVAN LEPE ALDAMA

24 INTERPROCESS COMMUNICATION IN THE BSD OPERATING SYSTEM—2.2

2.2 Interprocess communication in the BSD
operating system

The BSD operating system [McKusick et al. 1996] is a flavor of UNIX [Ritchie
and Thompson 1978] and historically, UNIX systems were weak in the area of inter-
process communication [Wright and Stevens 1995]. Before the 4.2 release of the BSD
operating system, the only standard interprocess communication facility was the pipe.
The requirements of the Internet [Stevens 1994] research community resulted in a sig-
nificant effort to address the lack of a comprehensive set of interprocess communication
facilities in UNIX. (At the time 4.2BSD was being designed there was no global Inter-
net but an experimental computer network sponsored by the United States of America’s
Defense Advanced Research Projects Agency. Consequently, this computer network
was known as the DARPANET.)

2.2.1 BSD’s interprocess communication model

4.2BSD’s interprocess communication facility was designed to provide a suffi-
ciently general interface upon which distributed-computing applications—sharing of
physically distributed computing resources, distributed parallel computing, computer
supported telecommunications—could be constructed independently of the underlying
communication protocols. This facility has outlasted and is present in the current 4.4 re-
lease. For now on, when referring to the BSD operating system, we mean the 4.2 release
or any follow-on release like the current 4.4. While designing the interprocess-
communication facilities that would support these goals, the developers identified the
following requirements and developed unifying concepts for each:

e The system must support communication networks that use different
sets of protocols, different naming conventions, different hardware, and
so on. The notion of a communication domain was defined for these
reasons.

® A unified abstraction for an endpoint of communication is needed that
can be manipulated with a file descriptor. The socket is the abstract ob-
ject from which messages are sent and received.

¢ The semantic aspects of communication must be made available to ap-
plications in a controlled and uniform way. So, all sockets are typed ac-
cording to their communication semantics.

e Processes must be able to locate endpoints of communication so that
they can rendezvous without being related. Hence, sockets can be
named.

Figure 2.1 depicts the OMT Object Model [Rumbaugh et al. 1991] for these re-
quirements.

2.2.2 Typical use of sockets

First, a socket must be created with the socket system call, which returns a file
descriptor that is then used in later socket operations:

OSCAR IVAN LEPE ALDAMA PH.D. DISSERTATION

2.2—INTERPROCESS COMMUNICATION IN THE BSD OPERATING SYSTEM 25

s = socket (domain,
int s, domain,

type, protocol);
type, protocol;

After a socket has been created, the next step depends on the type of socket being
used. The most commonly used type of socket requires a connection before it can be
used. The creation of a connection between two sockets usually requires that each socket
have an address (name) bound to it. The address to be bound to a socket must be formu-
lated in a socket address structure.

error = bind(s, addr,
int error, s, addrlen;
struct sockaddr *addr;

addrlen);

A connection is initiated with a connect system call:

error = connect (s, peeraddr,
int error, s, peeraddrlen;
struct sokaddr *peeraddr;

peeraddrlen);

When a socket is to be used to wait for connection-requests to arrive, the system
call pair 1isten/accept is used instead:

error = listen(s,
int error, s,

backloqg);
backlog;

Connections are then received, one at a time, with:

snew = accept (s, peeraddr,
int snew, s, peeraddrlen;
struct sockaddr *peeraddr;

peeraddrlen) ;

A variety of calls are available for transmitting and receiving data. The usual read
and write system calls, as well as the newer send and recv system calls can be used
with sockets that are in a connected state. The sendto and recvfrom system calls are

Figure 2.1—OMT object model for BSD IPC

runs in

Process

Client | [Service
1.%
ommunicates with

Host Network

B

L1 L 1.7

C belongs Communication

Domain

Channel

named networks

Network Name

named services
. _named hosts

*T

obeys a

Protocol

named

1

prot
1..*

is bound to

51 Name Scheme

|

|

i

Host Name

1.*

Stream Socket

Datagram Socket

Raw Socket

Socket Name

Protocol Name

Service Name

PH.D. DISSERTATION

OsSCAR IVAN LEPE ALDAMA

26 BSD’S NETWORKING ARCHITECTURE—2.3

most useful for connectionless sockets, where the peer’s address is specified with each
transmitted message. Finally, the sendmsg and recvmsg system calls support the full in-
terface to the interprocess-communication facilities.

The shutdown system call terminates data transmission or reception at a socket.
Sockets are discarded with the normal c1ose system call.

2.3 BSD’s networking architecture

BSD’s networking architecture has two planes, as shown in Figure 2.2: the user
plane and the memory management plane. The user plane defines a framework within
which many communication domains may coexist and network services can be imple-
mented. The memory management plane defines memory management policies and
procedures that comply with the user plane’s memory requirements. More on this a lit-
tle further.

2.3.1 Memory management plane

It is well known [McKusick et al. 1996; Wright and Stevens 1995] that the re-
quirements placed by interprocess communication and network protocols on a memory
management scheme tend to be substantially different from those of other parts of the
operating system. Basically, network messages processing require attaching and/or de-
taching protocol headers and/or trailers to messages. Moreover, some times these head-
ers’ and trailers’ sizes vary with the communication session’s state; some other times
the number of these protocol elements is, a priori, unknown. Consequently, a special-
purpose memory management facility was created by the BSD developing team for the
use of the interprocess communication and networking systems.

Figure 2.2—BSD’s two-plane networking architecture. The user plane is depicted with its
layered structure, which is described in following sections. Bold circles in the figure
represent defined interfaces between planes and layers: A) Socket-to-Protocol, B)
Protocol-to-Protocol, C) Protocol-to-Network Interface, and D) User Layer-to-
Memory Management. Observe that this architecture implies that layers share the
responsibility of taking care of the storage associated with transmitted data

/ Memory-Management Plane

User Plane D

Socket Layer

o
.A -

------ Protocol Layer - - @% - 1 o
.C

Network-Interface Layer

OSCAR IVAN LEPE ALDAMA PH.D. DISSERTATION

2.3—BSD’S NETWORKING ARCHITECTURE 27

The memory management facilities revolve around a data structure called an
mbuf. Mbufs, or memory buffers, are 128 bytes long, with 100 or 108 of this space re-
served for data storage. There are three sets of header fields that might be present in an
mbuf and which are used for identifying and managing purposes. Multiple mbufs can be
linked forming mbuf-chains to hold an arbitrary quantity of data. For very large mes-
sages, the system can associate larger sections of data with an mbuf by referencing an
external mbuf-cluster from a private virtual memory area. Data is stored either in the
internal data area of the mbuf or in the external cluster, but never in both.

2.3.2 User plane

The user plane, as said before, provides a framework within which many commu-
nication domains may coexist and network services can be implemented. Networking
facilities are accessed through the socket abstraction. These facilities include:

e A structured interface to the socket layer.
e A consistent interface to hardware devices.
¢ Network-independent support for message routing.

The BSD developing team devised a pipelined implementation for the user plane
with three vertically delimited stages or layers. As Figure 2.2 and Figure 2.3 show, these
layers are the sockets layer, the protocols layer, and the network-interfaces layer.
Jointly, the protocols layer and the network-interfaces layer are named the networking
support. Basically, the sockets layer is a protocol-independent interface used by appli-
cations to access the networking support. The protocols layer contains the implementa-
tion of the communication domains supported by the system, where each communica-
tion domain may have its own internal structure. Last but not least, the network-
interfaces layer is mainly concerned with driving the transmission media involved.

Figure 2.3—BSD networking user plane’s software organization

user process

7777777777777777777777 system calls

kernel

y

Socket layer

A A
socket
queues
\

Protocols Iayer l@— software interrupt @ spinet
(IP, ESP, AH, cryptographic algoxithms) (caused by interface layer)

interface protocol queue
queues (IP input)

/
Interfaces layer

function call

function call

la@— software interrupt @ splimp
(caused by hardware-interrupt handler)

PH.D. DISSERTATION OsSCAR IVAN LEPE ALDAMA

28 THE SOFTWARE INTERRUPT MECHANISM AND NETWORKING PROCESSING—2.4

Entities at different layers communicate through well-defined interfaces and their
execution is decoupled by means of message queues, as shown in Figure 2.3. Concur-
rent access to these message queues is controlled by the software interrupt mechanism,
as explained in the next section.

2.4 The software interrupt mechanism and
networking processing

Networking processing within the BSD operating system is pipelined and inter-
rupt driven. To show how this works, let us describe the sequence of chief events oc-
curred during message reception and transmission. If you feel lost during the first read,
please keep an eye on Figure 2.3 during the second pass. It helps. During the following
description, when we say “the system” we mean a computer system executing a BSD
derived operating system.

2.4.1 Message reception

When a network interface card captures a message from a communications link, it
posts a hardware interrupt to the system’s central processing unit. Upon catching this in-
terrupt—preempting any running application program and entering supervisor mode and
the operating system kernel’s address space—the system executes some network-
interfaces layer task and marshals the message from the network interface card’s local
memory to a protocols layer’s mbuf queue in main memory. During this marshaling the
system does any data-link protocol duties and determines to which communication do-
main the message is destined. Just after leaving the message in the selected protocol’s
mbuf queue and before terminating the hardware interrupt execution context, the system
posts a software interrupt addressed to the corresponding profocols layer task. Consider-
ing that the arrived message is destined to a system’s application program and that the
addressed application has an opened socket, the system, upon catching the outstanding
software interrupt, executes the corresponding protocols layer task and marshals the
message from the protocol’s mbuf queue to the addressed socket’s mbuf queue. All pro-
tocols processing within the corresponding communication domain takes place at this
software interrupt’s context. Just after leaving the message into the addressed socket’s
mbuf queue and before terminating the software interrupt execution context, the system
flags for execution any application program that might be sleeping over the addressed
socket, waiting for a message to arrive. When the system is finished with all the inter-
rupts execution contexts and its scheduler schedules for execution the application pro-
gram that just received the message, the system executes the corresponding sockets
layer task and marshals the message from the socket’s mout queue to the corresponding
application’s buffer in user address space. Afterwards, the system exits supervisor mode
and the address space of the operating system’s kernel and resumes the execution of the
communicating application program.

Here let us spot a performance detail of the previous description. The message
marshalling between mbuf queues does not always imply a data copy operation. There
are copy-operations involve when marshalling messages between a network interface
card’s local memory and a protocol’s mbuf queue and between a socket’s mbuf queue

OSCAR IVAN LEPE ALDAMA PH.D. DISSERTATION

2.4—THE SOFTWARE INTERRUPT MECHANISM AND NETWORKING PROCESSING 29

and an application program’s buffer. But there is no data copy operation between a pro-
tocol’s and a socket’s mbuf queues. Here, only mbuf references—also know as point-
ers—are copied.

2.4.2 Message transmission

Message transmission network processing may be initiated by several events. For
instance, by an application program issuing the sendmsg—or similar—system call. But
it can also be initiated when forwarding a message, when a protocol timer expires or
when the system has deferred messages.

When an application program issues the sendmsg system call, giving a data buffer
as one of the arguments, (other arguments are, for instance, the communication domain
identification and the destination socket’s address) the system enters into supervisor
mode and into the operating system’s kernel address space and executes some sockets
layer task. This task builds an mpbuf upon the selected communication domain and
socket type and, considering that the given data buffer fits inside one mbuf, it copies into
the built mbut’s payload the contents of the given data buffer. In case that the communi-
cation channel protocol’s state allows the system to immediately transmit a message, the
system executes the appropriate profocols layer task and marshals the message through
the arbitrary protocol structure of the corresponding communication domain. Among
other protocol-dependent tasks, the system here selects a communication link for trans-
mitting the message out. Considering that the network interface card attached to the se-
lected communications link is idle, the system executes the appropriate network-
interfaces layer task and marshals the message from the corresponding mbuf in main
memory to the network interface card’s local memory. At this point the system hands
over the message delivery’s responsibility to the network interface card.

Observe that under the considered situation the system executes the message
transmission in a single execution context—that of the communicating application—and
no intermediary buffering is required. On the contrary, if for instance the system finds
an addressed network interface card busy, the system would place the mobuf in the corre-
sponding network interface’s mbuf queue and would defer the execution of the network-
interfaces layer task. For cases like this, network interface cards are built to produce a
hardware interrupt not just when receiving a message but at the end of every busy pe-
riod. Moreover, network interface card’s hardware interrupt handlers are built to always
check for deferred message at the corresponding network interface’s output mbuf queue.
When deferred messages are found, the system does whatever is required to transmit
them out. Observe that in this case the message transmission is done in the execution
context of the network interface card’s hardware interrupt.

Another scenario happens if a communication channel protocol’s state impedes
the system to immediately transmit a message. For instance, when a TCP connection’s
transmission window is closed [Stevens, 1994]. In this case, the system would place the
message’s mbuf in the corresponding socket’s mbuf queue and defers the execution of
the protocols layer task. Of course, the deferring protocol must have some built-in
means for later transmitting or discarding any deferred message. For instance, TCP may
open a connection’s transmission window after receiving one or more segments from
the other end. Upon opening the transmission window, TCP will start transmitting as

PH.D. DISSERTATION OsSCAR IVAN LEPE ALDAMA

30 THE SOFTWARE INTERRUPT MECHANISM AND NETWORKING PROCESSING—2.4

many deferred messages as possible as soon as possible—that is, just after finishing
message reception. Observe that in this case the message transmission is done in the
execution context of the protocols layer reception software interrupt. Also observe that
when transmitting deferred messages at the profocols layer, the system may defer again
at the network-interfaces layer as explained above.

Communications protocols generally defined timed operations that require the in-
terchange of messages with peers, and thus require transmitting messages. For instance,
TCP’s delayed acknowledge mechanism [Stevens 1994]. In this cases, protocols may
relay on the BSD callout mechanism [McKusick et al, 1996] and request for the system
to execute some task at predefined times. The BSD callout mechanism uses the sys-
tem‘s real-time clock for scheduling the execution of any enlisted task. It arranges itself
to issue software interrupts every time an enlisted task is required to execute. If the
called out task initiates the transmission of a networking message, this message trans-
mission is done in the execution context of the callout mechanism software interrupt.
Once again, as explained above, transmission hold off may happen at the network-
interfaces layer as explained above.

Finally, let us consider the message-forwarding scenario. In this scenario some
communications protocol—implemented at the protocols layer—is capable of forward-
ing messages; for instance, the Internet Protocol, IP, within the Internet communication
domain [Stevens 1994]. During message reception, a protocol like IP may find out that
the received message is not addressed to the local system but to another system to which
it knows how to get to by means of a routing table. In this case, the protocol will launch
a message transmission task upon the message being forwarded. Observe that this mes-
sage transmission processing is done in the execution context of the protocols layer re-
ception software-interrupt.

2.4.3 Interrupt priority levels

There is a priority level assigned to each hardware and software interrupt handler.
The ordering of the different priority levels means that some interrupt handler preempts
the execution of any lower-priority one. One concern with these different priority levels
is how to handle data structures shared between interrupt handlers executed at different
priority levels. The BSD interprocess communication facility code is sprinkled with
calls to the functions splimp and splnet. These two calls are always paired with a call
to splx to return the processor to the previous level. The result of this synchronization
mechanism is a sequence of events like the one depicted in the Figure 2.4.

1) While a sockets layer task is executing at sp10, an Ethernet card re-
ceives a message and posts a hardware interrupt causing a network in-
terfaces layer task—the Ethernet device driver—to execute at splimp.
This interrupt preempts the sockets layer code.

2) While the Ethernet device driver is running, it places the received mes-
sage into the appropriate protocols layer’s input mbuf queue—for in-
stance [IP—and schedules a software interrupt to occur at splnet. The

software interrupt won’t take effect immediately since the kernel is cur-
rently running at a higher priority level.

OSCAR IVAN LEPE ALDAMA PH.D. DISSERTATION

2.5—BSD IMPLEMENTATION OF THE INTERNET PROTOCOLS SUITE 31

3) When the Ethernet device driver completes, the protocols layer exe-
cutes at splnet.

4) A terminal device interrupt occurs—say the completion of a SLIP
packet. It is handled immediately, preempting the protocols layer, since
terminal processing’s priority, at spltty, is higher than protocols
layer’s.

5) The SLIP device driver places the received packet onto IP’s input mbuf
queue and schedules another software interrupt for the protocols layer.

6) When the SLIP device driver completes, the preempted protocols layer
task continues at splnet and finishes processing the message received
from the Ethernet device driver. Then, it processes the message re-
ceived form the SLIP device driver. Only when IP’s input mbuf queue
gets empty the protocols layer task will return control to whatever it
preempted—the sockets layer task in this example.

7) The sockets layer task continues form where it was preempted.

2.5 BSD implementation of the Internet protocols
suite

Figure 2.5 shows a control and data flow diagrams of the chief tasks that imple-
ment the Internet protocols suite within BSD. Furthermore, it shows its control and data
associations with chief tasks at both the sockets layer and the network-interfaces layer.
Within the 4.4BSD-lite source code distribution, the files implementing the Internet pro-
tocols suite are located at the sys/netinet subdirectory. On the other hand, the files
implementing the sockets layer are located at the sys/kern subdirectory. The files im-
plementing the network-interfaces layer are scattered among few subdirectories. The
tasks implementing general data-link protocol tasks, such as Ethernet, the address reso-
lution protocol or the point-to-point protocol, are located at the sys/net subdirectory.
On the other hand, the tasks implementing hardware drivers are located at hardware de-

Figure 2.4—Example of priority levels and kernel processing

preempted
preempted
spl0 socket socket
protocol protocol
splnet (IP input + TGP input) (IP input + TCP input)
SLIP
spltty device driver
aolinm Ethernet
pLimp device driver
A T A T y

step 1 2 3 4 5 6 7

PH.D. DISSERTATION OsSCAR IVAN LEPE ALDAMA

32 BSD IMPLEMENTATION OF THE INTERNET PROTOCOLS SUITE—2.5

pendent subdirectories, such as the sys/i386/isa or the sys/pci subdirectories.

As can be seen in Figure 2.5, the protocols implementation, in general, provides
output and input tasks per protocol. In addition, the IP protocol has a special
ip_forwarding task. It can also be seen that the IP protocol does not have an input
task. Instead, the implementation comes with an ipintr task. The fact that IP input
processing is started by a software interrupt may be the cause of this apparent fault to

Figure 2.5—BSD implementation of the Internet protocol suite. Only chief tasks, mes-
sage queues and associations are shown. Please note that some control flow ar-
rows are sourced at the bounds of the squares delimiting the implementation lay-
ers. This is for denoting that a task is executed after an external event, such as an
interrupt or a CPU scheduler event

kernel

soreceive

b

Sockets layer

socket
receive buffer| socket

transm. buffer

ip_output

Protocols layer

(1afe) 90p8IUI A POsNED)
10ulds @ idnusjul remyos

ipintrq

A

ehter_output,

Network-interfaces layer

(481puey 1dnusjuI-arempiey Aq pasneo)
dwds @ jdnusjul aremyos

received transmitted
packets packets
Legend

—» Function call
— Function call (other tasks involved)

—> Data flow
S Task

E Message queue

OSCAR IVAN LEPE ALDAMA PH.D. DISSERTATION

2.6—RUN-TIME ENVIRONMENT: THE HOST’S HARDWARE 33

the general rule. (The FreeBSD operating system drops the ipintr task in favor of an
ip_input task.) Observe that the figure depicts all the control and data flows corre-
sponding to the message reception and message transmission scenarios described in the
previous section.

In order to complete the description let me note some facts on the network-
interfaces layer. The tasks shown at the bottom half of the layer depict hardware de-
pendent tasks. The names depicted, xintr, Xread and Xstart are not actual task names
but name templates. For building actual task names the capital “x” is substituted by the
name of a hardware device. For example, the FreeBSD source code distribution has
xlintr, xlread and x1start for the x1 device driver, which is the device deriver used
for the 3COM’s 3C900 and 3C905 families of PCI/Fast-Ethernet network interface
cards.

2.6 Run-time environment: the host’s hardware

The BSD operating system was devised to run on a computing hardware with an
organization much like the one shown in Figure 2.6. This computing hardware organiza-
tion is widely used for building personal computers, low-end servers and workstations
or high-end embedded systems. The shown organization is an instance of the classical
stored-program computer architecture with the following features [Hennessy and Patter-
son 1995]:

A single central processing unit
A four-level, hierarchic memory (not shown)
A two-tier, hierarchic bus

[]
[]
[]
e Interrupt driven input/output processing (not shown)

Figure 2.6—Chief components in a general purpose computing hardware.

CPU K System Bus M,;Arilgry

Bridge

AN

1/0 Bus

NIC NIC

N
NS

Other
devices

PH.D. DISSERTATION OsSCAR IVAN LEPE ALDAMA

34 RUN-TIME ENVIRONMENT: THE HOST’S HARDWARE—2.6

e Programmable or direct memory access network interface cards

2.6.1 The central processing unit and the memory hierarchy

Nowadays, personal computers and the like computing systems are provisioned
with high-performance microprocessors. These microprocessors in general leverage the
following technologies: very-low operation cycle period, pipelines, multiple instruction
issues, out-of-order and speculative execution, data prefetching or trace caches.

In order to sustain a high operation throughput, this kind of microprocessors re-
quires very fast access to instructions and data. Unfortunately, current memory technol-
ogy lags behind microprocessor technology in its performance/price ratio. That is, low
latency memory components have to be small in order to remain economically feasible.
Consequently, personal computers and the like computing systems—but also other
computing systems using high-performance microprocessors—are suited with hierar-
chically organized memory. Ever faster and thus smaller memory components are
placed lower in the hierarchy and thus closer to the microprocessor. Several caching
techniques are used for mapping large address spaces onto the smaller and faster mem-
ory components, which in consequence are named cache memories [Hennessy and Pat-
terson 1995]. These caching techniques mainly consist of replacement policies for
swapping out of the cache memory computer program’s address space sections (named
address space pages) that are not expected to be used in the near future in favor of active
ones. The caching techniques also determine what to do with the swapped out address
space sections—it may or may not be stored in the memory component at the next
higher level, considering that the computer program’s complete address space is always
resident in the memory component at the top of the hierarchy.

Another important aspect of the microprocessor-memory relationship is the wire
latency. That is, the time required for a data signal to travel from the output ports of a
memory component to the input ports of a microprocessor, or vice versa. Nowadays, the
lowest wire latencies are obtained when placing a microprocessor and a cache memory
in the same chip. The next worst step happens when placing these components within a
single package. The next worst step occurs when the cache memory is part of the main
memory component and thus it is at the opposite side of the system bus with respect to
the microprocessor.

Let us cite some related performance numbers of an example microprocessor. The
Intel’s Pentium 4 microprocessor is available at speeds ranging from 1.6 to 2.4 GHz. It
has a pipelined, multiple issue, speculative, and out-of-order engine. It has a 20 KB, on-
chip, separated data/instruction level-one cache, whose wire latency is estimated at two
clock cycles. And it has a 512 or 256 KB on-chip and unified level-two cache, whose
wire latency is estimated at 10 clock cycles.

2.6.2 The busses organization

For reasons not relevant to this discussion, the use of a hierarchical organization
of busses is attractive. Nowadays, personal computers and the like computing systems
come with two-tier busses. One bus, the so named system bus, links the central process-
ing unit and the main memory through a very fast point-to-point bus. The second bus,

OSCAR IVAN LEPE ALDAMA PH.D. DISSERTATION

2.6—RUN-TIME ENVIRONMENT: THE HOST’S HARDWARE 35

named the input/output bus, links all input/output components or periphery devices, like
network interface cards and video or disk controllers, through a relatively slower multi-
drop input/output bus.

For quantitatively putting these busses on perspective, let us note some perform-
ance numbers of two widely deployed busses: the system bus of Intel’s Pentium 4 mi-
croprocessor and the almost omnipresent Peripheral Component Interconnect in-
put/output bus. [Shanley and Anderson 2000] The specification for the Pentium 4’s sys-
tem bus states a speed operation of 400 MHz and a theoretical maximum throughput of
3.2 Gigabytes per second. (Here, 1 Gigabytes equals 109 bytes.) On the other hand, the
PCI bus specification states a selection of path widths between 32 and 64 bits and a se-
lection of speed operations between 33 and 66 MHz. Consequently, the theoretical
maximum throughput for the PCI bus stays between 132 and 528 Mbytes per second for
the 33-MHz/32-bit PCI and the 66-MHz/64-bit PCI, respectively. (Here, 1 Mbytes
equals 10”6 bytes.)

2.6.3 The input/output bus’ arbitration scheme

One more important aspect to mention with respect to the input/output bus is its
arbitration scheme. Because the input/output bus is a multi-drop bus, its path is shared
by all components attached to it and thus some access protocol is required.

The omnipresent PCI bus [Shanley and Anderson 2000] uses a set of signals for
implementing a use-by-request master-slave arbitration scheme. These signals are emit-
ted through a set of wires separated from the address/data wires. There is a request/grant
pair of wires for each bus attachment and a set of shared wires for signaling an initiator-
ready event, (FRAME and IRDY) a target-ready event, (TRDY and DEVSEL) and for
issuing commands (three wires).

A periphery device attached to the PCI bus (device for short) that wants to transfer
some data, requests the PCI bus mastership by emitting a request signal to the PCI bus
arbiter. (Bus arbiter for short.) The bus arbiter grants the bus mastership by emitting a
grant signal to a requesting device. A granted device becomes the bus master and drives
the data transfer by addressing a slave device and issuing to it read or writes commands.
A device may request bus mastership and the bus arbiter may grant it at any time, even
when other device is currently performing a bus transaction, in what is called “hidden
bus arbitration.” This seams a natural way to improve performance. However, devices
may experience reduced performance or malfunctioning if bus masters are preempted to
quickly. Next subsection discusses this and other issues regarding performance and la-
tency.

The PCI bus specification does not defines how the bus arbiter should behave
when receiving simultaneous requests. The 2.1PCI bus specification only states that the
arbiter is required to implement a fairness algorithm to avoid deadlocks. Generally,
some kind of bi-level round robin policy is implemented. Under this policy, devices are
separated in two groups: a fast access and a slow access group. The bus arbiter rotates
grants through the fast access group allowing one grant to the slow access group at the
end of each cycle. Grants for slow access devices are also rotated. Figure 2.7 depicts
this policy.

PH.D. DISSERTATION OsSCAR IVAN LEPE ALDAMA

36 RUN-TIME ENVIRONMENT: THE HOST'S HARDWARE—2.6

2.6.4 PCI hidden bus arbitration’s influence on latency

PCI bus masters should always use burst transfers to transfer blocks of data be-
tween themselves and target devices. If a bus master is in the midst of a burst transac-
tion and the bus arbiter removes its grant signal, this indicates that the bus arbiter has
detected a request from another bus master and is granting bus mastership for the next
transaction to the other device. In other words, the current bus master has bee pre-
empted. Due to PCI’s hidden bus arbitration this could happen any moment, even one
bus cycle before the current bus master has initiated its transaction. Evidently this ham-
pers PCI’s burst transactions support and leads to bad performance.

In order to avoid this the 2.1PCI bus specification mandates the use of a master la-
tency timer per PCI device. The value contained in this latency timer defines the mini-
mum amount of time that a bus master is permitted to retain bus mastership. Therefore,
a current bus master retains bus mastership until either it completes its burst transaction
or its latency timer expires.

Note that independently of the latency timer a PCI device must be capable of
managing bus transaction preemption; that is, it must be capable of “remembering” the
state of a transaction so it may continue where it left off.

The latency timer is implemented as a configuration register in a PCI device’s
configuration space. It is either initialized by the system’s configuration software at
startup, or contains a hardwire value. It may equal zero, in which case a device can only
enforce single data phase transactions. Configuration software computes latency timer
values for PCI devices not having it hardwire from its knowledge of the bus speed and
each PCI device’s target value, stored in another PCI configuration register.

Figure 2.7—Example PCI arbitration algorithm

Fast access group

e

e \

- \

- \

7 \
. \
\
\
\

Example sequence:

Slow access group

OO D

OW>oc W W>

OSCAR IVAN LEPE ALDAMA PH.D. DISSERTATION

2.6—RUN-TIME ENVIRONMENT: THE HOST’'S HARDWARE 37

2.6.5 Network interface card’s system interface

There are two different techniques for interfacing a computer system with periph-
ery devices like network interface cards. If using the programmable input/output tech-
nique, a periphery device interchanges data between its local memory and the system’s
main memory by means of a program executed by the central processing unit. This pro-
gram articulates either input/output or memory instructions that read or write data from
or to particular main memory’s locations. These locations were previously allocated and
initialized by the system’s configuration software at startup. The periphery device’s and
motherboard’s organizations determine the use of either input/output or memory in-
structions. When using this technique, periphery devices interrupt the central processing
unit when they want to initiate a data interchange.

With the direct memory access (DMA) technique the data interchange is carried
out without the central processing unit intervention. Instead, a DMA periphery device
uses a pair of specialized electronic engines for performing the data interchange with
the system’s main memory. The one specialized engine is part of the same periphery
device and the other is part of the bridge chipset; see Figure 2.6. Evidently, the in-
put/output bus must support DMA transactions. In a DMA transaction, one engine as-
sumes the bus master role and issues read or write commands; the other engine’s role is
as servant and follows commands. Generally, the DMA engine at the bridge chipset
may assume both roles. When incorporating a master DMA engine, a periphery device
interrupts the central processing unit after finishing a data interchange. It is important to
note that DMA engines do not allocate nor initialize the main memory’s locations from
or to where data is read or written. Instead, the corresponding device driver is responsi-
ble of that and somehow communicates the location’s addresses to the master DMA en-
gine. Next subsection further explains this.

Periphery devices’ system interface may incorporate both previously described
techniques. For instance, they may relay on programmable input/output for setup and
performance statistics gathering tasks and on DMA for input/output data interchange.

2.6.6 Main memory allocation for direct memory access network interface cards

Generally, a DMA capable network interface card supports the usage of a linked
list of message buffers, mbufs, for data interchange with main memory; see Figure 2.8.
During startup, the corresponding device driver builds two of this mbuts lists, one for
handling packets exiting the system, named the transmit channel, and the other for han-
dling packet entering it, named the receive channel. Moufs in these lists are wrapped
with descriptors that hold additional list management information, including the mbut’s
main memory start address and size. Network interface cards maintain a local copy of
the current mbuf’s list descriptor. They use the list descriptor’s data to marshal DMA
transfers. A network interface card may get list descriptors either autonomously, by
DMA, or by device driver command, by programmable input/output code. The method
used depends on context as explained in the next paragraphs. Generally, a list descriptor
includes a “next element” field. If a network interface card supports it, it uses this field
to fetch the next current mbut’s list descriptor. This field is set to zero to instruct the
network interface card to stop doing DMA through a channel.

PH.D. DISSERTATION OsSCAR IVAN LEPE ALDAMA

38 RUN-TIME ENVIRONMENT: THE HOST'S HARDWARE—2.6

Transmit channel. At system startup, any transmit channel is empty and device
drivers zero network interface cards’ local copy of the current mbuf descriptor. When
there is a network message to transmit, a device driver queues the corresponding mbuf
to a transmit channel and does whatever necessary so the appropriate network interface
card gets its copy of the new current mbuz’s list descriptor. This means that device driv-
ers either copies the list descriptor by programmable input/output code or instruct net-
work interface cards to DMA copy it. It may also happen that device drivers do not have
to signal network interface cards because the latter are programmed to periodically poll
transmit channels looking for new elements. Generally, list descriptors have a “message
processed” field required for transmit channel operation. After a network interface card
DMA copies a message from the transmit channel, it sets the “message processed” field
and, after transmitting the message through the data link, signals the appropriate device
driver to notify of a message transmission. (Signaling may be batched for improved per-
formance.) When acknowledging an end-of-transmission signal, a device driver will
walk the transmit channel dequeuing each list element that has it “message processed”
field set.

Receive channel. At system startup device drivers provide receive channels with
a predefined number of empty mbufs. Naturally, this number is a trade-off between
channel-overrun probability and memory wastage, which in turn depends on the opera-
tion velocity difference between the host computer and the data link. Continuing with
system startup, device drivers make whatever necessary so network interface cards get
their copy of the new current mbuf’s list descriptor of the appropriate receive channel.
This means that device drivers either copy the list descriptor by programmable in-
put/output code or instruct network interface cards to DMA copy it. It may also happen
that device drivers do not have to signal network interface cards because the latter are
programmed to periodically poll receive channels looking for new elements. After re-
ceiving and DMA coping one or more network messages, a network interface card sig-
nal the appropriate device driver to notify of a message reception. When acknowledging
a reception signal, a device driver will walk the receive channel dequeuing and process-
ing each list element that has its “message size” field greater than zero. Moreover, a de-
vice driver must provide its receive channel with more empty mbufs as soon as possible
for avoiding the corresponding network interface card to stall; a situation that may result
in network message losses.

OSCAR IVAN LEPE ALDAMA PH.D. DISSERTATION

2.6—RUN-TIME ENVIRONMENT: THE HOST’S HARDWARE

39

Figure 2.8—Main memory allocation for direct memory access network interface

cards

Processed buffers
emptied and dequeued
by device driver

Filled buffers
queued by

device drivey

| Descriptor |—>| Descriptorl
Processed Processed
Message Message
Buffer Buffer

Main memory

a) Transmit channel

Empty buffers
queued by

%vice driver

,,,,,

Local
Memory

e
//////
- p
e -

7 >|| DeS/Cr,iP*O/f |—>| Des<1riptor |—>| Descriptor |_l

v

Jarrent
Message
Buffer

Filled
Message
Buffer

Filled
Message
Buffer

|

DMA

V

Filled buffers
dequeued by

device driveW

l_l Descriptor |<—| Descriptorlﬁ
5 v y

Empty Empty
Message Message
Buffer Buffer

Main memory

b) Receive channel

PH.D. DISSERTATION

s
~

— /I Des?w |<—| Des<Iiptor |<—| DesTptorl

AN~ rrent Filled Filled
| Message Message Message
Buffer Buffer Buffer
Local _J
Memory DMA
[\

OsSCAR IVAN LEPE ALDAMA

40 OTHER SYSTEM’S NETWORKING ARCHITECTURES—2.7

2.7 Other system’s networking architectures

BSD-like networking architectures are known to have good and bad qualities al-
most since its inception [Clark 1982]. While communications links worked at relatively
low speeds the tradeoff between modularity and efficiency was positive. With the ad-
vent of multi-megabit data communication technologies this started not to hold true.
Worst yet, since some five years ago networking application programs are not improv-
ing performance proportionally to the central processing unit’s and communication
link’s speeds. Others [Abbot and Peterson 1993; Coulson and Blair 1995; Druschel and
Banga 1996; Druschel and Peterson 1993; Eicken et al. 1992; Geist and Westall 1998;
Hutchinson and Peterson 1991; Mosberger and Peterson 1996] have pointed that operat-
ing system overheads and networking software not exploiting cache memory features
cause the problem. These same people have proposed new networking architectures to
improve overall networking application programs’ performance. Strikingly, although
these new networking architectures are relatively old none have been deployed in pro-
duction systems. Arguably, the reason is that most of these networking architectures re-
quired large changes in networking application programs, at best. In the worst case they
also require changes in communication protocols’ design and implementation.

In this section we briefly explore post-BSD networking architectures. We think
this is interesting in the context of this document because we believe that these rela-
tively new networking architectures have several similarities with the BSD networking
architecture. Consequently, the methodology defined in this document may easily be
applied for studying the performance of these other systems.

2.7.1 Active Messages [Eicken et al. 1992]

An active message is a message that incorporates the name of the remote proce-
dure that will process it. When an active message arrives to the system, the operating
system does not have to buffer the data because it can learn from the active message the
name of the software module where the data goes. Like traditional communications pro-
tocol messages, active messages are encapsulated. Differently form traditional protocol
layers, each software layer can learn the next procedure that will process the message
and directly call it to run. This can avoid copy memory operations and reduce central
processing unit context switches. Unfortunately, this requires a network wide naming
space for procedures that is not standard in current protocol specifications. Fast Sockets
[Rodrigues, Anderson and Culler 1997] is protocol stack with active messages that im-
plements a BSD socket like network application program interface and can inter-operate
with legacy TCP/IP systems. However, this interoperation is limited.

2.7.2 Integrated Layer Processing [Abbot and Peterson 1993]

Integrated Layer Processing (ILP) reduces the copy memory operations and cre-
ates a running pipeline of layers’ code by means of a proposed dynamic code hooking.
This dynamic hooking, as showed in Figure 2.9, allows integrally running independ-
ently constructed layers’ code and eliminates interlayer buffering. The result is im-
proved performance, due to better cache behavior, less copy memory operations and

OSCAR IVAN LEPE ALDAMA PH.D. DISSERTATION

2.7—QTHER SYSTEM’'S NETWORKING ARCHITECTURES 41

less central processing unit context switches, all without scarifying modularity. A brief
description of this technique follows.

Dynamic code hooking requires that software modules implement a special inter-
face. Also, the hooked modules have to agree on the data type that they process, i.e., a
machine word. This means that ILP cannot be applied to legacy protocol stacks but new
protocols can be designed to meet the interface and data specification. Basically, the
module interface is a mixed form of code-in-lining and loop unrolling with an interlayer
communication mechanism implemented with central processing unit’s registers. (this
can be done only if all modules process data one word at a time.) That is, the program-
mer must implement each module as a loop that processes incoming metadata a word at
a time. Inside the loop, he must place an explicit hook that the runtime environment will
use to dynamically link the next layer’s code and transfer data. The first and last mod-
ules in the pipeline are special because they read/write information from/to a buffer in
memory.

There is another restriction to ILP. Protocol metadata is encapsulated; that is, one
layer's header is another one's data. Furthermore, these layer's header could be no-
existent for a third one. So, for this technique to work, the integrated processing can
only be applied to the part of a message that all layers agree exists and has the same
meaning; that is, the user application data. This means another change in protocol speci-
fication; protocol processing must be divided in three parts: (1) protocol initialization,
(2) data processing and (3) protocol consolidation. The first and third parts implement

Figure 2.9—Integrated layering processing [Abbot and Peterson 1993]

l input buffer /—q l input buffer
read read
f1 f1
\Nrite
— l — "
/read
f2 3
ite write
TN N
\—J output buffer
read
3
T \write
l output buffer
a)
LEVEL N
INTEGRATED
DATA LEVEL N-1
MANIPULATION
INITIAL LEVEL N-2
b)

PH.D. DISSERTATION OsSCAR IVAN LEPE ALDAMA

42 OTHER SYSTEM’S NETWORKING ARCHITECTURES—2.7

protocol control so they process control data in message headers and/or trailers. Those
parts have to be run in the traditional serial order. Only data processing parts can be in-
tegrated. This is shown in Figure 8

2.7.3 Application Device Channels [Druschel 1996]

This technique improve overall telematic system performance by allowing com-
mon telecommunication operations bypass operating system’s address space; that is,
send and receive data operations are done by layered protocol code at user application’s
address space. System security is preserved because connection establishment and tire
down are still controlled by protocol code within operating system’s kernel.

Figure 2.10 shows a typical scenario for application device channels (ADCs).
There, it can be seen that an ADC is formed by a pair of code stubs that cooperate to
send and receive messages to and from the network. One stub is at the adapter driver
and the other at the user application. The user-level layered protocols can process mes-
sages using single-address-space procedure-calls to improve overall performance. Also,
because the operating system’s scheduler is not aware of the layered structure of user-
level protocols, it is unlikely to interleave its run with other processes and overall per-
formance is improved. Moreover, because there is no need to general-purpose protocols,
user-level protocols can easily be optimized to meet user application needs, further im-
proving performance. Finally, there is still a need to implement some protocol code in-
side the kernel because the operating system controls ADC allocation and connection
establishment and tired down.

Figure 2.10—Application Device Channels [Druschel 1996]

Application Connection

Management

Send Receive

Protocol
Library

(015

Network Protocols

Network Interface

OSCAR IVAN LEPE ALDAMA PH.D. DISSERTATION

2.7—OTHER SYSTEM’S NETWORKING ARCHITECTURES 43

2.7.4 Microkernel operating systems’ extensions for improved networking
[Coulson et al. 1994; Coulson and Blair 1995]

Even though mechanism like Application Device Channels can exploit the notion
of user-level resource management to improve traditional telematic system’s perform-
ance, other requirements of modern telematic systems cannot be met. Telematic systems
like distributed multimedia, loosely couple parallel computing and wide-area network
management, require real time behavior and end-to-end communications quality assur-
ance mechanisms, better known as QoS mechanisms. While legacy operating systems
cannot provide these requirements [Vahalia 1996], the so named microkernel operating
systems can [Liedtke 1996]. Furthermore, microkernel operating systems lend them-
selves to user-level resource management and can have multiple personalities that per-
mit concurrently run modern and legacy telematic systems.

Under this trend, the SUMO project at Lancaster University
(http://www.comp.lancs.ac.uk/computing/research/sumo/sumo.html, current as 2 July
2002) have extend a microkernel OS to support an end-to-end quality of service archi-
tecture over ATM networks for multimedia distributed computing. Figure 2.11 shows
the microkernel SUMO extensions. SUMO extends the basic microkernel concepts with
rtports, rthandlers, QoS controlled connections, and QoS handlers. This set of ab-
stractions promote a event driven style of programming that, with the help of a split-
level central processing unit scheduling mechanism; a QoS external memory mapper; a
connection oriented network actor; and a flow management actor, allows the implemen-
tation of QoS controlled multimedia distributed systems.

Figure 2.11—SUMO extensions to a microkernel operating system [Coulson et al. 1994;
Coulson and Blair 1995]

application

riport
ngvi 3 rthandiers
/ \ application
= PrOgrAMmer’s
interface (APT)

user level

i library

device

rtport on device

71"

kemel kernel

device

PH.D. DISSERTATION OsSCAR IVAN LEPE ALDAMA

44 OTHER SYSTEM’S NETWORKING ARCHITECTURES—2.7

2.7.5 Communications oriented operating systems [Mosberger and Peterson 1996]

While the techniques just described look for better telematic system’s perform-
ance in computation-oriented operating systems, the Scout project at Princeton Univer-
sity (formerly at University of Arizona) is aimed at building a communication-oriented
operating system. This project is motivated by the fact that telematic systems workloads
have only a low percentage of computations. Here, communication operations are the
common case.

Just as computation oriented operating systems extend the use of the processor by
means of software abstractions like processes or threads, the Scout operating system ex-
tend the use of physical telecommunication channels by means of a software abstraction
called “path”. This path is the next step consequence of all the previously described
techniques and can be seen as the virtual trail drawn by a message that travels through a
layered system from a source module to a sink one; see Figure 2.12. This path has a pair
of buffers, one at each end, and a transformation rule. The buffers are used the regular
way; the transformation rule represents the set of operations that act over each message
that travels through the path.

Within Scout, all resource management and allocation is done on behalf of a path.
So, it is possible to obtain the following benefits: (1) early work segregation for better
resource management, (2) allow central processing unit scheduling for the hole path
which improves performance, (3) allow easy implementation of admission control
mechanism and (4) early work discard for reduced waste of resources.

Figure 2.12—Making paths explicit in the Scout operating system [Mosberger and
Peterson 1996]

[
\ Capa 4
\

N
AL
4 N

) Capa 2
e

7
[

Path A Path
a)

@.A.. km g(m) , m S
b)

OSCAR IVAN LEPE ALDAMA PH.D. DISSERTATION

2.7—OTHER SYSTEM’S NETWORKING ARCHITECTURES 45

2.7.6 Network processors

Although the network processor concept is not a networking architecture solution
to the problem of better telematic systems we decided to include a brief mention to it
because it is the current hot topic on programmable-by-software hardware for commu-
nications systems. (We got 15 references after a search at IEEE Explore of the pattern
“‘network processors’ in <ti> not ‘neural network’ in <ti>” restricted to not being be-
fore 1999. Besides, see Geppert, L. Editor “The new chips on the block,” IEEE Spec-
trum, January 2001, p.66-68.) Network processors are microprocessors specialized for
executing communications software. They exploit communications software’s intrinsic
parallelism at several levels: data, task, thread and instruction [Verdu et al. 2002]. Data-
level parallelism (DLP) exists because, in general, one packet processing is independent
of others—previous or subsequent. Vector processor and SIMD chip multiprocessors
are known to effectively leverage this kind of parallelism. They are also known to re-
quire processing regularity, however, to avoid load unbalancing that hampers perform-
ance. Communication software does not exhibit enough processing regularity—in gen-
eral, the number of instructions required to process one packet has no correlation with
others. One work around for this problem exploits thread-level parallelism (TLP) con-
junctionally with DLP. The idea then is to simultaneously combine several execution
contexts within the microprocessor so if a microprocessor’s execution unit stalls for
whatever reason, (the address resolution is not complete or the forwarding data has to be
fetched form main memory or current communication session’s state impedes further
processing) the hardware may automatically change the execution context and proceed
processing another thread—packet. This technique, which has in multitasking its soft-
ware counterpart, is known as simultaneous multi-threading [Eggers et al. 1997].

PH.D. DISSERTATION OsSCAR IVAN LEPE ALDAMA

46 SUMMARY—2.8

2.8 Summary

e Internet protocols’ BSD implementation is networking’s de facto stan-
dard. In some way or another, most available systems derive their struc-
ture, concepts, and/or code from it.

¢ Networking processing within a BSD system is pipelined and governed
by the software interrupt mechanism.

e Message queues are used by a BSD system for decoupling processing
between networking pipeline’s stages.

e The software interrupt mechanism defines preemptive interrupt levels.

e All of the above suggests to us that widely used, single-queue perform-
ance models of software routers incur in significant error. We further
discuss this in chapter 3,when proposing a networking queue perform-
ance model for these systems.

e Networking processing in PC-based telematic systems has some ran-
dom variability due to microprocessor features like pipelines, multiple
instruction issues, out-of-order and speculative execution, data prefetch-
ing, and trace caches. We take this into account when defining a charac-
terization process of these systems, as discuss in chapter 3.

e The PCI I/O bus uses simple bi-level round robin policy for bus arbitra-
tion. We will show in chapter 3 that this may hamper a PC-based soft-
ware router of sustaining system-wide QoS behavior, and in chapter 4
we propose a solution to this problem.

e Devices and device drivers supporting DMA transactions use a pair of
message buffer lists, called receive and transmit channels, which may
be used to implement a credit-based flow-control mechanism for fairly
sharing I/O bus bandwidth, as will be discussed later in chapter 4.

OSCAR IVAN LEPE ALDAMA PH.D. DISSERTATION

