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Chapter 1

Introduction

The study of motion is very old: the first documents go back more than two millennia,
even before Greek science. But it was not until 1834, when Ampere proposed the devel-
opment of an independent science under the name of kinematics in his famous essay on
the classification of sciences.

Despite of its “advanced age”, some of the basic problems in kinematics are still
unsolved and constitute an active focus of research in our days. Among these unsolved
problems we can point out the direct kinematics problem for parallel mechanisms or the
wmverse kinematics problem for serial chains. The solution of the latter is the main goal
of this work. This problem is difficult due to its inherent computational complexity (i.e.,
it is NP-complete) and due to the numerical issues involved to guarantee correctness and
to ensure termination.

The positional inverse kinematics problem is fundamental, not only in the design of
robot manipulators, but also in other applications including computer animation or molec-
ular modeling. The pressing need to have a solution for it in many practical applications,
together with the fact that the problem can be stated very simply and that it seems at
first sight easy to solve, makes the challenge to face and solve it still more interesting.

Inverse kinematics can be fit into a much more general problem, which constitutes
one of the major requirements in fundamental robotics: solving loops of kinematic con-
straints [58]. This is a basic problem when dealing with task-level robot programming,
assembly planning [62], or constraint-based modeling problems.

Kinematics of interconnected rigid bodies may lead to very complex computations and
it is important to perform them in the most compact form and to search for their most
rational organization. This goal motivates a great deal of research on the fundamental
operations and the algebraic structures underlying kinematic methods. Nevertheless, no
general satisfactory solution, convenient for practical use, has been found on the general
positional inverse kinematics problem.

In the general case, the problem reduces to computing all the solution of a multivariate
algebraic system. Their solution has been pursued from a large variety of ways, which
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will be described and briefly discussed in Section 1.2.2. However, no serious incursion has
been done from interval analysis and their associated global methods to solve the systems
of nonlinear equations arising in kinematics. Probably because of its fairly youth, interval
methods are practically unknown among the robotics and kinematics community.

We are aware only of two papers where interval methods are applied to kinematics
problems. In Hentenryck’s paper on interval cuts [67], two examples of inverse kinematics
problems are solved among many other examples, but no general treatment of the problem
is done. Shortly after our first contribution in the area [6], a brief paper describing an
initial implementation of an algorithm for solving inverse kinematics problems based on
Krawaczyk’s method appeared in the Journal of Mechanical Design [48], but no further
research has been done by its authors.

1.1 Objectives and Contributions

The main goal of this thesis is to establish the theoretical basis for applying interval
methods to the resolution of inverse kinematics problems. To this end, a new general
framework for the analysis of spatial kinematic chains has been developed, which consti-
tutes our main theoretical contribution. We have not only obtained the necessary tools
required for a general solution of the problem, but also a whole new approach to the
kinematic analysis of spatial mechanisms has been deeply exploited and formalized. This
approach is based on a deep understanding of the self-motion manifold of the orthogonal
spherical mechanism [9]. The main advantage of this approach is its generality. It is based
upon a representation of any kinematic chain by two vectors. This representation allows
the same treatment of the problem with any mechanism, regardless of its number of links
and of its geometry.

Because of the relative novelty of interval methods and the fact that they are still
being actively investigated, the bibliography regarding the global solution of nonlinear
systems based on interval analysis is still very scarce. There are no comprehensive and
up-to-date surveys on the subject. An effort has been made to collect the latest results
available and present them in a clarifying way, without unnecessary formalisms, but with
continuous references to more detailed bibliography. In this sense, Chapter 5 can be seen
as a survey of interval methods for solving systems of nonlinear equations, providing the
groundwork necessary for the material to be developed in the following chapters. After
briefly reviewing some basics on interval analysis we introduce the central problem of the
second part of the thesis: the verified solution of nonlinear systems of equations.

The second main contribution of this thesis is the development of ad hoc interval meth-
ods for the inverse kinematics problem; namely, direct cuts and propagation of intervals
in spherical mechanisms.

Interval methods are effectively a new tool for the solution of inverse kinematics prob-
lems. They obtain all solutions, are general and work for any geometry (also special
geometries) and configuration (also singular configurations) of the mechanism. However,
for the moment, computation times are still high compared to those obtained using the
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recently introduced elimination methods [34].

Although our last chapter deals with an implementation and experiments, this thesis
should not be seen as an exhaustive experimental study of interval methods for the solu-
tion of inverse kinematics problems. That chapter has been included to corroborate the
theoretical results, which are the main contribution of this work.

1.2 The Inverse Kinematics Problem

In this section we describe some basic ideas on inverse kinematics problems and present
a brief chronological overview of the methods that have been used to solve it. When
necessary, the reader is addressed to proper references for more details.

1.2.1 Basic Backgrond

In an informal way, the inverse kinematics problem can be described as the problem of
computing all joint positions of a manipulator corresponding to a given pose (position and
orientation) of the end-effector. In the general case, the problem boils down to computing
all the solutions of a multivariate algebraic system.

The inverse kinematics problem has a wide range of applications in robotics. Most
of the high level problem solving about the physical world is posed in Cartesian terms.
However, robots are actuated in joint space, which is what we ultimately can control. The
mapping from Cartesian space to joint space leads to the inverse kinematics problem.

Formalizing the problem, forward kinematics is a mapping from joint space to Carte-
sian space:

F(Q) =W,

where (2 is a vector in joint space and W, in Cartesian space. This is a many-to-one map-
ping, because there is a unique Cartesian configuration for a given set of joint variables,
but different sets of joint variables may lead to the same Cartesian configuration.

With inverse kinematics, we are referring to the inverse mapping from Cartesian space
to joint space:

F'(W)=Q.

The inverse kinematics is typically a one-to-many mapping. There are usually multiple
sets of joint variables that yield a particular Cartesian configuration. For instance, for a
robot manipulator with six rotational joints, the direct kinematics would be a mapping
from the six dimensional torus, T to the product of R® by the rotations space SO(3),
that is,

F:T° — R x SO(3)
F(§) = x.
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Then, the inverse kinematic mapping is:
Flx) =90.

The problem is obvious from the difference between the topological structure of the joint
space and the Cartesian space; in this case, the topological difference between 7° and
R* x SO(3) [3, 32]. This fact, not only leads to the multiplicity of solution, but also
causes the existence of singularities (configurations for which the Jacobian of F has not
maximal rank) [4, 16].

For special geometries, such as those characterized by three consecutive intersecting
axes or parallel joint axes, the solution of the inverse kinematics problem can be expressed
as a closed form function. In [12] and [41] we can find the closed form solutions for most
of these manipulators. However, no such formulation is known for the general case and no
good practical solutions are available to solve them using iterative methods. As a result,
most industrial manipulators are designed so that a closed form solution exists for them.
Of course, this imposes important restrictions to the designers.

1.2.2 Historical Development

This section is intended to be an overview of the main methods that have been used to
solve the inverse kinematics problem of serial manipulators. For more complete surveys
on the topic, refer to Roth’s papers [39, 52, 53].

The most commonly used methods for solving sets of nonlinear equations are gradient-
based iterative methods. Such methods require an initial guess at a solution and typically
only provide a single solution of the problem close to the initial guess. Moreover, they
tend to diverge, converge very slowly or even converge to erroneous solutions. In order to
overcome these difficulties, two methods have been developed simultaneously. These are
continuation and elimination methods, which will be described later on in this section.

Inverse kinematics of TR closed mechanisms, or the equivalent 6R manipulators, have
received the most attention, probably because they are more complex than manipulators
with some prismatic joints. In a luncheon talk by Professor F. Freudenstein at the 1972
ASME Mechanisms Conference, he put forward the idea that the position analysis of the
closed series-loop seven revolute (7R) chain was the most challenging unsolved problem.
He called it “the Mount Everest of Kinematics” [53].

Number of Solutions

In [39] there is a summary of different methods for bounding the number of solutions for
various kinematics problems.

The number of solutions of the inverse kinematics problem of a 6R manipulator
has been progressively bounded. The first attempt to solve this problem was done by
Pieper [42] in 1968, who proposed iterative numerical techniques for manipulators of gen-
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eral geometry. For 6R manipulators of general geometry, Pieper showed that a naive
elimination strategy would yield a univariate polynomial of degree 524,288.

In 1972, Roth, Rastegar and Scheinman [55] showed that, in general, this problem
has at most 32 solutions. Their proof was based on arguments from synthetic geometry
and was non-constructive. Albala and Angeles [1] presented in 1979 the first constructive
solution of the problem, in form of a 12 x 12 determinant. In 1980, Duffy and Crane [14]
provided a solution in terms of a 32" polynomial, which always yield to false roots in
addition to the desired values. Five years later, Tsai and Morgan [65] found only 16
solutions for various 6R manipulators and conjectured that this was the maximum.

It was not until 1988, when Lee and Liang [30, 31] obtained a 16 degree polynomial
based on Duffy’s method and on dyalitic elimination.

Two basic approaches have been used for successfully solving inverse kinematics prob-
lems: continuation and elimination methods.

Continuation Methods

In order to overcome the difficulties of classical iteration methods, Roth and Freudenstein
developed in 1963 a technique known as bootstrap method [54]. This iterative procedure has
been improved and is now known as the homotopy or continuation method. It computes the
solutions of the algebraic system by following paths in the complex space. Continuation
methods have been widely used in kinematics, for instance by Tsai [65], by Wampler [68,
69] and by Raghavan [46].

The advantages of continuation methods is that they incorporate a good initial guess,
yield all possible solutions and are robust in practice. However, since they are iterative
numerical procedures, they can have numerical instabilities and can require dealing with
a large number of unwanted solutions. Moreover, the current algorithms and implemen-
tations have to be designed for each different type of mechanism and are too slow for
practical applications (around 10 seconds for the best known algorithm [68]).

Elimination Methods

Elimination methods are based on removing variables from the system of equations, and
are used along with algorithms for finding roots of univariate polynomials. The elimination
methods will, in theory, lead to a solution of any system of multivariate polynomial
equations. In practice, the method can only be applied to relatively simple systems
of equations. Beyond this, it explodes in complexity and introduces large numbers of
extraneous roots.

However, recently, an elimination method known as Sylvester’s dialytic method has
been applied with success to kinematic problems [14, 30]. In 1989, Raghavan and Roth [44]
obtained a 16" degree polynomial for 6R manipulators, without containing extraneous
roots. One year later they generalized the algorithm for manipulators with some prismatic
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joints [45].

This approach can be slow in practice due to symbolic expansion and may suffer from
numerical instabilities. This is mainly due to the fact that the problem of computing
roots of a high degree polynomial can be numerically ill-conditioned. Moreover, these
algorithms seldom work for mechanisms with special geometries. Although these cases
can be treated separately, there is no general approach for all special geometries.

Lastly, Manocha developed an efficient algorithm based on the use of linear algebra [33,
34]. The algebraic formulation given in [44] is used along with matrix computations and
the problem is reduced to computing the eigenvalue decomposition of a numeric matrix.
The algorithm is extremely fast, taking on the order of tens of milliseconds. However, it
is not a general algorithm, working only for 6R mechanisms.

1.3 General Outlook at the Dissertation

This thesis is divided into two main parts. The first one is devoted to the kinematic
analysis of spatial mechanisms, while the second one focuses on interval methods and
their use in inverse kinematics. The main results of this thesis are summarized in [8],
which can be regarded as an extended 10 page abstract.

Part I: Kinematic Analysis of Spatial Mechanisms

In a spherical mechanism, any point in a moving body is confined to lie within a spherical
surface, and all spherical surfaces of motion are concentric. Considering the progress of
mechanisms from planar to spherical, and from spherical to spatial, spherical mechanisms
can be seen as an intermediate stage between planar and spatial mechanisms. Actually,
plane mechanisms are a special case of spherical mechanisms in which the radius of the
sphere extends to infinity.

The orthogonal spherical mechanism with n degrees of freedom is defined as a single-
loop kinematic chain consisting of n rotational pairs, so that all axes of rotation meet at
a point and any axis is orthogonal to that of the next pair in the chain. This mechanism
becomes redundant for n > 3, so that the set of angles that keep it closed can be seen
as a variety of dimension n — 3 embedded in the n—fold torus, 7. This set is called the
self-motion set of the orthogonal spherical mechanism, SS™3 for short. Chapter 3 focuses
on the characterization of this set.

The interest of the pursued characterization in the analysis of spatial mechanisms
derives from the analysis of the so-called n—bar mechanism (Chapter 2). The factoriza-
tion of the loop equation of this particular mechanism into a rotation and a translation
equation, shows that, while the solution to the former is directly SS™~2, the solution to

the latter can be expressed (excluding singular points) in terms of the tangent bundle of
S5n=3,



1.3 General Outlook at the Dissertation 7

These chapters have been formally structured with definitions and detailed proofs of
all its lemmas and theorems. Most of these results have been justified with a combination
of geometric, algebraic and visual reasoning, in order to avoid awkward proofs. The result
of this first part is a set of general closure equations completely defining any single loop
mechanism. Some examples are given in Chapter 4, in order to clarify the basic ideas
presented up to this point.

Part II: Interval Methods

In the second part, we first survey the main results in interval methods for solving systems
of nonlinear equations (Chapter 5). Here, we have given priority to clearness in front of
an excessive formalism, which would hide many of the ideas behind interval methods.
References to more detailed bibliography are continuously given.

Chapter 6 is devoted to ad hoc interval methods developed for inverse kinematics
problems. Direct cuts are simple procedures based on the closure equations, which con-
siderably speed up general interval methods. We also describe an algorithm for nearly
general interval propagation in spherical mechanisms based on geometric reasoning.

To check in practice the theoretical results of this work, an algorithm for the resolu-
tion of inverse kinematics problems has been developed and described in Chapter 7. This
algorithm is general in the sense that it can be applied directly to any single loop mecha-
nism, which is not the case in continuation and elimination methods. Its implementation
is simple and provides highly satisfactory results in terms of reliability and completeness,
although much research has still to be done in order to get fast computations.
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Chapter 2

The n-bar Mechanism

The n-bar mechanism used throughout this thesis was introduced first by Enric Celaya
in some seminars in 1991 and appeared later in [59] as a tool for analyzing redundant
single-loop spatial kinematic chains. In further papers [6, 7, 63, 64], it has been used as
an alternative to the Denavit-Hartenberg parameters (D-H parameters) [12, 13, 41] for
representing spatial mechanisms. The simpler structure of the n-bar mechanism leads to
more regular equations than using the D-H parameters.

In this chapter, we define the n-bar mechanism and describe its relation with the
Denavit-Hartenberg parameters, how it can be used to represent any single-loop spatial
mechanism and the factorization of its loop equation into a rotation and a translation
equation. The solution spaces of both these equations are closely related to the orthogonal
spherical mechanism, which is exhaustively analyzed in next chapter.

2.1 Definition

The n-bar mechanism is a closed single-loop mechanism composed of n links —from now
on bars—, each one being orthogonal to the next one. Each bar has two degrees of freedom
(d.o.f.): a translational one (d;), which is the distance along the bar from the previous
joint to the next one (it can be negative), and a rotational one (¢;), which corresponds
to the angle between bar (i + 1) and the plane defined by the two previous bars (i and
i — 1) measured in the direction of bar i (Figure 2.1).

2.2 The Loop Equation

A reference frame can be associated with each bar, representing its spatial position and
orientation. It will be taken with its x-axis pointing in the positive direction of the
corresponding bar and the y-axis in the negative direction of the previous bar. According
to the previous definitions, frame 7 + 1 can be expressed in terms of frame ¢ with the
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Figure 2.1: The n-bar mechanism (a) and definitions of the involved degrees of freedom

(b).

transformation T'(d;)R(¢;)Z, where T(d;) stands for a translation along the z-axis, R(¢;),
a rotation around the z-axis and Z, a rotation of 7/2 radians around the z-axis.

Then, the loop equation of the n-bar mechanism can be expressed as

n

[[T@)R(g)Z=1. (2.1)

i=1
10) 2 (¢1, 02, ..., ¢,) will be called the wvector of rotations and d = (dy,dy,...,d,), the
vector of translations.

Expressing equation (2.1) in terms of homogeneous transforms [41], we get the follow-
ing matrix equation:

0 -1 0 d;

n

cos¢; 0 —sing; 0 .
H sing; 0 cos¢; O | I. (2:2)
- 0 0 0 1

2.3 The n-bar Mechanism and the Denavit-Hartenberg
Parameters

We can regard each link of a spatial mechanism as two bars of an n-bar mechanism:
the odd bars will include the dimensions of each link (the D-H parameters «; and a;)

and the even ones will describe the connection between two consecutive links (6; and ;)
(Figure 2.2).

Remark 2.1. A mechanism described by the Denavit-Hartenberg parameters (o, a;, 6;
and t;) [12] can always be represented by an n-bar mechanism, where
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Axis 1

Axis 1 —1 Link i — 1
Link %

Figure 2.2: The Denavit-Hartenberg parameters of a mechanism (a) and the corresponding
ones in an n-bar mechanism (b).

$i =0G1)2 + 7 } when 7 is odd

di = Z(ifl)ﬂ
¢i = izt T } when 7 is even
di = tz/g

Three orthogonal bars are enough to reach any point in 3D space with arbitrary
orientation. Then, if the mechanism described by the Denavit-Hartenberg parameters is
not closed (e.g. a manipulator), we can always close the associated n-bar mechanism with
three bars, representing the position of the last bar (the end-effector in a manipulator)
with respect to the base (Appendix A).

As an example, let us describe a PUMA 560 with an n-bar mechanism. The Denavit-
Hartenberg parameters of the PUMA 560 are given in Table 2.1.
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il ain [aa [ 4]0
1 0 0 016
—7/2| 0 |06

0 Q9 t3 03
—7T/2 as t4 94
/2 | 0 | 0|65
—7T/2 0 0 06

O O x| W DN

Table 2.1: Denavit-Hartenberg parameters of the PUMA 560.

Then, using Remark 2.1, the associated n-bar mechanism will have the following vec-
tors of rotations and translations:

1] 2 [ 3] 4 [5] 6 | 7] 8 | 9 | 10 [..
¢||m|0+7m | 7/2 | 0+7 | T |Os+7 | 7/2|0,+7 | —7/2 | O0s+7
djflo 0 0 0 as 13 as 14 0 0

1] 12 131415 |

/2 | O+ 7 | $13 | P14 | P15
0 0 diz | dis | dis

Table 2.2: Vectors of rotations and translations of an n-bar mechanism representing a
PUMA 560.

013, O14, 15, di3, di4 and di5 are used to represent the end-effector’s position with
respect to the robot base (Appendix A).

Since any single-loop mechanism can be described by their Denavit-Hartenberg pa-
rameters, we conclude that:

Remark 2.2. Any single-loop mechanism can be described by an n-bar mechanism by
taking as many bars as needed and restricting some of its degrees of freedom.

Note that the description of a mechanism by an n-bar mechanism is not unique. Since
the translations are not restricted to be positive, we can always choose between two
directions for each bar. This will imply to change the sign of translation d; and also some
changes in the neighboring rotations. These symmetric configurations, which represent
the same mechanism, are analyzed in Section 3.2.6.

2.4 Factorization of the Loop Equation

The solution of any kinematic equation can be factored into a solution to both its rotation
and translation equations. While the solution to the former can be obtained quite easily,
the latter leads, in general, to inextricable formulae. This is why this factorization strategy
has had very limited practical application in the past, except for some simple problems
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arising in the field of geometric reasoning [61]. Herein, this strategy plays a fundamental
role.

The loop equation (2.1) can be factored into the following two equations [59]:

n

A
F(¢) = [[R(#)Z =1 (2.3)
i=1
and
A
T(¢,d) =N(p)d=0, (2.4)
where N () 2 (n;ny ... n,), and n; 2 (Niz Miy ni,)" is the unit vector pointing in the

positive direction of bar 7 with respect to the first bar of the n-bar mechanism. The former
equation (2.3) will be called the rotation equation and the latter one (2.4), the translation
equation.

The rotation equation can be extracted directly from the original loop equation by
simply removing all translations. It only assures that the final orientation of the chain is
the same as the first one, without constraining the translation values.

The translation equation, however, involves both translations and rotations. It can
also be expressed as

i=1

It states that the chain really closes, i.e. that the last bar ends at the beginning of the
first one without constraining its orientation. This leads to the following remark:

Remark 2.3. The solutions to both the rotation equation (2.3) and the translation equa-
tion (2.4) are the solutions to the loop equation (2.1).

Thus, we can regard the solution to the loop equation (2.1) as the intersection of the
solutions to equations (2.3) and (2.4). In chapter 3, both are separately analyzed.

2.5 The Generalized n-bar Mechanism

A more general version of the n-bar mechanism can be defined when the bars are not
required to be orthogonal. We will call such a mechanism a generalized n-bar mechanism.

Each bar of a generalized n-bar mechanism is defined not only by its rotation and
translation, but also by a rotation matrix R;, which turns the reference frame so that the
r-axis points in the direction of the next bar.

The loop equation can then be expressed as

n

[[T@)R(s)R: =1. (2.5)

=1
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The n-bar mechanism described in Section 2.1 is a special case of this generalized
version, where all R; are rotations of 7/2 radians around the z-axis. Therefore, any single
loop kinematic chain can be described by a generalized n-bar mechanism. Moreover, fewer
bars are usually required than using an orthogonal n-bar mechanism.

Here, the loop equation (2.5) can be factorized as for the orthogonal n-bar mechanism,
resulting in:

F(¢) = HR(¢z‘)Ri =1 (2.6)
and
T(¢,d) 2 N($)d =0, (2.7)

where N (¢) is defined as in equation (2.4).

Next chapter is devoted to the study of the orthogonal spherical mechanism, which
is closely related to the orthogonal n-bar mechanism. However, many of the results are
more general and can be applied to the generalized n-bar mechanism.



Chapter 3

The Orthogonal Spherical
Mechanism

3.1 Definition and Motivation

Definition 3.1 (The orthogonal spherical mechanism). The orthogonal spherical
mechanism with n degrees of freedom is defined as a single-loop kinematic chain consisting
of n rotational pairs, so that all axes of rotation meet at a point and any axis is orthogonal
to that of the next pair in the chain (Figure 3.1).

Figure 3.1: The orthogonal spherical mechanism.

A body performing a spherical motion has only three degrees of freedom, which can be
expressed as rotations about three perpendicular axes. Thus, for n > 3 this mechanism
becomes redundant, so that the set of angles that keep it closed can be seen as a variety
of dimension n — 3 embedded in the n—fold torus, 7™. Herein, this set is called the
self-motion set of the orthogonal spherical mechanism, SS™ 3 for short. The self-motion
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set term is motivated by the fact that any path in it leads to a continuous motion of the
spherical mechanism which does not require to open it.

Articles published on the analysis and synthesis of spherical mechanisms are quite
scattered. The reader is referred to [11] for a compilation and review of some of the
important knowledge and techniques so far developed in this branch of the theory of
mechanisms.

The interest of the characterization of the self-motion set of the orthogonal spherical
mechanism in the analysis of spatial mechanisms derives from the analysis of the n-bar
mechanism introduced in the previous chapter. The factorization of the loop equation of
this particular mechanism into a rotation and a translation equation, shows that, while
the solution to the former is directly SS™2, the solution to the latter can be expressed
(excluding singular points) in terms of the tangent bundle of SS™~3.

This chapter is structured as follows. The solution space of both the rotation and
the translation equations are separately analyzed in Sections 3.2 and 3.3, respectively.
Since the rotation equation is equivalent to the loop equation of the orthogonal spherical
mechanism, Section 3.2 can also be seen as devoted to the characterization of SS™ 3.
Its dimension, connectness, singularities and symimetries are fully studied in this section.
Section 3.3 can also be seen as a characterization of the tangent space of SS™~3, since
it is proved that the solution set of the translation equation of the n-bar mechanism is
provided by the tangent bundle of SS™3.

3.2 The Self-motion Set

3.2.1 The Rotation Equation

There is a spherical kinematic loop associated with any spatial kinematic loop called its
spherical indicatriz [20]. Its revolute axes are parallel to those in the corresponding spatial
kinematic loop, so that they all intersect at the origin. The rotation equation of the n-bar
mechanism (2.3) corresponds to the loop equation of its spherical indicatrix which can be
simply obtained by removing all translations from the loop equation (2.1).

Since two consecutive axes of rotations of the n-bar mechanism are orthogonal, the
rotational equation (2.3) is also the loop equation of the orthogonal spherical mecha-
nism defined above. Therefore, we will indistinctively speak of the orthogonal spherical
mechanism or of the rotational component of the n-bar mechanism.

In the previous section it has been intuitively shown that the solution space of the
rotation equation (2.3) is of dimension n — 3 (a proof is given in Section 3.2.2).

Since F(¢) is a 3x3 matrix, the rotation equation (2.3) consists of nine equations.
Considering that there are three rotational degrees of freedom in space, it could be ex-
pected that there would be three equations representing this information. However, two
equations are enough. Let us suppose that fi; (the first row-first column element of
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F(¢)) is equaled to 1. Since F(¢) is an orthogonal matrix, all row and column vectors
are unitary and therefore fi9, fi3, fo1 and f3; are necessarily 0. Likewise, if fo9 is also 1,
fo3 and f3o will be 0. Finally, since the determinant of F(¢) is 1 (it is a product of proper
orthogonal matrices), f33 has to be 1. This leads to:

Remark 3.1. Any two elements of the diagonal of F(¢) equaled to 1 are equivalent to
considering the whole rotation matrix equation (2.3).

Lemma 3.1. The partial derivative of F(¢) with respect to ¢;, for a value of ¢ that
satisfies the rotation equation (2.3), is a skew-symmetric matriz, whose vector linear
invariant! is the direction of the i'" bar; that is,

iU YOR
09i |p(g)-1
A 0 Nz Ny
where  N;(¢d) = | ny, 0 —nig
Ny Tir 0

Proof. The partial derivatives of the rotation equation (2.3) with respect to ¢; are straight-
forward:

OF (¢)

Go = Al (#)QAI(®) | (3.1)
where
I k=1+1
LD = TRG)Z k<! (3.2)
j=k
and
00 O
Q2 (o 0 —1
01 O

Since F(¢p) = A" (p)AR(9), if ¢ satisfies F(¢p) = I, then
Al(®) = (A7)
Moreover, the matrices A%(¢) are orthogonal, so that (Af(q,’)))_1 = (Af(qb))t. Then,

IF (¢)
0% |p(g)=1

= AT (9)Q (Al Y(9)" .

. . . . . . t
LThe vector linear invariant of a 3 x 3 skew-symmetric matrix A is the vector a = (a32 ais a21) .
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Denoting
Nix  Ojx Qg
i A A
AT ) = (mioja) = [ niy oy ay |,
Niz Oiz Qz
we can write
- - . Nix  Oig Qg 00 0 Mgy My Ny
All_ (¢)Q (Azl_ (d’)) = Ny Oy G4y 00 -1 Oix Oy Oiz =
Niz Oiz Qg 01 0 Qi Qijy Ay
0 (Oiyaia: - Oizaiy) (Oizaim - Oizaiz)
(Oiwaiy - Oiyaiw) 0 (Oiza/z'y - Oiyaiz)
(Oimaiz - Oizaim) (Oiyaiz - Oizaiy) 0

Since Azfl(qb) are orthonormal matrices, n; is the cross product of o, and a;. Thus,

Nix = O4yliz — 04204y
Ny = 0424z — Ojg iz

Niz = OjxQiy — OjyQig -

Then,
. . : 0 —MNyy Ny
Azlil(d’)Q (Azlil(qb)) = P 0 Niz |
Niy  Nig 0
which proves the lemma. O

3.2.2 SS"3 and SM™3

The solution of the rotation equation (2.3) can be seen as a subset of the space formed by
the n-fold product of the rotational variables, that is, the n-torus, 7". Equation (2.3) has
a straightforward geometric interpretation as a spherical polygon, which will be useful
later. Let us first recall some concepts. A spherical polygon is a closed figure on the
surface of a sphere composed of arcs of great circles (or sides) limited by common points
(or wvertices). If one assigns a circulating direction to the sides of a spherical polygon,
the exterior angle between two adjacent sides is defined as the angle measured from the
prolongation of the first side beyond the common vertex, to the second side.

Equation (2.3) can be interpreted as an n-sided spherical polygon. Consider a unit
sphere centered at the coordinate origin. As a result of applying successive rotations, the
x-axis will describe a spherical polygon with sides of length 7/2 and exterior angles equal
to ¢; (Figure 3.2).
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Figure 3.2: Spherical polygon generated by the z-axis with sides of length 7 and exterior
angles equal to ¢;.

Note that by varying the angles between two sides of length /2, one can form a
triangle whose third side may attain any value between 0 and w. Therefore, one can
arbitrarily fix n — 3 consecutive variables of an orthogonal spherical mechanism. This
leads to a spherical chain with n — 2 sides that can always be closed using two sides.
Moreover, if the resulting angle between these two sides is different from 0 and 7, then
there are two solutions corresponding to the two symmetric placements of the two sides
on the sphere (Figure 3.3). As the angle approaches 0 or 7, the two solution branches
fuse into a single one.

Figure 3.3: Two symmetric placements for two sides to close the spherical polygon.

Definition 3.2 (Self-motion Set, SS™" ). The set of points ¢ in 7™ that fulfill the
rotation equation (2.3), thatis { ¢ € T" | F(¢p) =1}, will be called the self-motion set,
S$S™3 for short.

As it has already been mentioned, the term self-motion set is motivated by the fact
that any trajectory inside this set corresponds to a continuous motion of the corresponding
spherical mechanism, which does not require to open it [5].

Proposition 3.1. SS"3 is an (n-3)-dimensional algebraic variety embedded in T™.

Proof. A spherical mechanism becomes redundant for n > 3. Then, if we choose n — 3
rotations, we will always be able to find some values for the other three rotations. In
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general, we cannot fix more than n— 3 rotations, except for some singular points, as shown
in next section. Then, since we can locally parameterize SS™ 2 using n — 3 parameters,
except for some singular points, the self-motion set is an (n-3)-dimensional variety. [

The self-motion set can be seen as smooth hypersurfaces of dimension n — 3 possibly
intersecting themselves. As it will become clear in the next subsection, the stratification
of this set leads to a manifold of dimension n — 3 connected through singular points. See
Chapter 1 of Part I in [15] for an introduction to the stratification of algebraic sets.

Definition 3.3 (Self-motion Manifold, SM"~3). The self-motion manifold, SM"™3
is the manifold resulting from removing all the singularities from SS5"~3.

As it will be proved next, singular points correspond to those situations in which the
n-bar mechanism becomes planar, that is, when all axes of rotation lie on the same plane.
From a topological point of view, removing from SS"~3 all these points yields a (n-3)-
manifold, the self-motion manifold (SM"?); then, the self-motion set can be alternatively
seen as a pseudo-manifold, i.e. a punched manifold, since the (n — 3)-manifold is pinched
in a discrete set of points: the singular points.

3.2.3 Singularities of SS"3

The Jacobian of F(¢) is defined as

& (k@) o) R
VE(g) = (Z@ 2@ . 2o (3.3)

By Lemma 3.1, the Jacobian in a point ¢ of the self-motion set will be

VF(9)lgessn s = (Ni(@) Na() ... Ni(¢)) - (3.4)

Definition 3.4 (Global Singularity). Global singularities of SS™~3 are defined as those
values of ¢ for which VF(¢)| pessn—s 18 not of full rank, 3.

If n is even, let us group the rotational variables in couples as follows:

(¢1 ¢2), (¢3 ¢4)a KR ((bnfl ¢n)

Now a will be the number of couples that are (0 0), b the number of couples (0 7) and ¢
the number of couples (7 0).

Lemma 3.2. ¢ = (¢1 ¢2 ... ¢n) is a global singularity iff:

1. n s even
2. ¢pj(mod7w)=0, i=1,...,n and (3.5)
3. (a+0b) and (b+c) are both even
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Proof. By analyzing (3.4), it is clear that global singularities have to correspond to those
situations where all n bars are on a plane. Since an n-bar mechanism can degenerate
to planar only when n is even, we can conclude that there are no global singularities
when 7 is odd. The second condition of the lemma ensures that the mechanism lies on
the plane defined by the first and the last bar. The last condition is a simplified version
of the closure equation (2.3) when the second condition holds, inspired in the geometric
interpretation of the rotation equation as a spherical polygon. Both provide a necessary
and sufficient condition for the n-bar mechanism to be in a planar configuration and,
hence, for the configuration point to be singular. O

Corollary 3.1. Global singularities are discrete points of SS™ 3.

Corollary 3.2. Global singularities are of corank 1.

Proof. The corank of a singularity is defined as the difference between rank(VF ()| 4c gp/n-2)
(in a non-singular point) and the rank in the singularity. Note that the rank in a singu-
larity can never be lower than 2 since all the axes of rotation can never be arranged so
that they are aligned. Then the corank cannot be greater than 1. O

Corollary 3.3. When n is odd, SM™ 3 = SS™ 3.

Corollary 3.4. When n is even the number of different singularities is 2" 2.

Proof. We can choose for the n — 2 first rotations the values 0 or 7, which leads to 2”2
possible combinations. Then, using the above lemma, we can choose one, and only one,
of the groups (0 0), (0 ), (7 0), (7 7) so that the third condition holds. O

3.2.4 The Connectivity of SS"3 and SM"3

Note that SS™~® might not be fully connected. Bounds on the number of connected com-
ponents of the self-motion set are discussed in [5], where it is shown that the self-motion
set of a redundant chain can have no more connected components than the maximum
number of inverse kinematics solutions of a non-redundant kinematic chain of the same
class. A discrete closed-form solution exists for spherical mechanisms with up to three
degrees of freedom. For n = 3, there are two discrete solutions. Therefore, for n > 3 the
self-motion set of a spherical redundant mechanism can have at most two disconnected
components.

Lemma 3.3. SS"3 is a connected subset of T".

Proof. Let us consider the previous interpretation of the rotation equation as a spherical
polygon. To prove that SS™3 has a single connected component, it suffices to show that
a reference configuration can be reached from every other configuration. When n is even,
let the reference configuration be ¢; = 7, Vi = 1,...,n and when n is odd let it be

h=¢=0¢3=7/2, ¢ =1, Vi=4,...,n.
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Now, from any initial configuration, one can make the first n — 3 exterior angles attain
sequentially their values at the reference configuration. Thanks to the last two sides, the
chain will remain closed throughout the process. When these n—3 angles have reached the
reference values, the other three angles have to be those corresponding to the reference
configuration or its symmetric ones (Figure 3.3). If they are the symmetric ones, we
can always move the first n — 3 angles again, so that the two sides corresponding to
the last three angles are aligned. Then we move the n — 3 angles back to the reference
configuration, but now bringing the two sides to the right configuration. O

Lemma 3.4. SM™ 3 is a connected subset of T™ when n > 4.

Proof. . Given the length of the proof, we will only sketch it out. The idea is to link
any two points of SM™ 3 following a path completely contained in SM™ 3. Any point
of SM™3 has at least one ¢; different from 0 or 7. We fix it and make the other angles
(except three consecutive ones) attain the values of the other configuration we want to
link to it. Then, we make the fixed angle, ¢;, attain the corresponding final value. If we
were to fall in a singularity, it can be shown that it is avoidable. Finally we have to check
if the three consecutive ¢; used to close the chain are the ones of the final point. If they
are the symmetric ones, we have to proceed similarly to the preceding proof. O

In Chapter 4 we will prove that for n = 4, SM? is not connected.

3.2.5 Parameterizations of SM"3

The self-motion manifold is an (n-3)-dimensional manifold of class C*, which can be
parameterized by a set of = n — 3 independent parameters, ©¥» = {¢1,%s,..., 9.}, so
that it can be locally generated by continuously sweeping 1; through their ranges. Among
all possible parameterizations, we can take r coordinates of the surrounding space T™ as
local coordinates in the neighborhood of each point ¢ € SM" 3. This is, in fact, the
implicit function theorem formulated in convenient terms, whose proof can be found in
any textbook of differential geometry (see for example [70]).

Definition 3.5 (Trivial Parameterization). In particular, we can take r consecutive
variables as parameters. This will be called a trivial parameterization.

Let us take a trivial parameterization. Without loss of generality, let the set of pa-
rameters ¥ = {11, 1s,...,1,} be the first r rotational variables: ¢; =¢; (i =1,...,r).
Then, from (2.3) we have

A ne

A(y) 2 (ZAT@))" = R(#u2) ZR(d0 1) ZR(4n) (3.6)
which in general has two solutions for ¢, s, ¢,_1 and ¢, given any proper orthogonal
matrix A (1) encompassing all the parameters; namely,

bno = atan2(tag, Faz)
¢n71 = :Fa:COS(_U,ll) (37)
On = atan2(Faiq, Fai3),



3.2 The Self-motion Set 25

where a;; denotes the element (i, j) of A(¢p). One solution corresponds to the upper row
of signs and the other, to the lower one. Note that the two solutions correspond to the
two symmetric branches in Figure 3.3.

Definition 3.6 (Singularities of a trivial parameterization). Given a trivial param-
eterization, the points of SM™ 3 where a;; = +1 are called singularities of the parame-
terization.

In a singularity of a trivial parameterization, when a;; = +1, equation (3.7) has
infinite solutions and it can be shown that they correspond to those situations in which
the last three bars are coplanar.

These three equations (3.7) almost provide the same information as the rotation equa-
tion (2.3); actually, they are equivalent but for the singularities of the chosen parameter-
ization.

Proposition 3.2. The set of all trivial parameterizations provide an atlas for SM™3.

Proof. An atlas is a set of parameterizations that covers completely the manifold, which
means that any point can be parameterized locally by one of these parameterizations.
Any point ¢° in SM™ 3 has at least an angle ¢ whose value is different from 0 or 7.
Then, we can take a trivial parameterization containing all the angles except ¢?_;, ¢? and
¢?, 1, which will locally parameterize SM™? in a neighborhood of ¢ O

We can also take r non-consecutive variables as parameters, but the formulation be-
comes a bit more complex. Actually, the rotation equation (2.3) can be written as

B(¢) = R(¢a) C(¢) R(¢s) D(¥) R(¢c) , (3-8)

where ¢,, ¢y, and ¢, are the variables that are not parameters and B(v), C(v) and D(9))
are rotation matrices that depend on the parameters. There exist two values for ¢,, ¢y
and ¢, that satisfy (3.8) iff

(1 =ci)(1 —dfy) = (bu — enndi)* > 0,
where b;;, ¢;; and d;; denote the elements (i, j) of B(%), C(¢) and D().

Expressions for ¢,, ¢, and ¢, in terms of the elements of B(%), C(¢) and D(1)) can
be found in [61]:

¢p = atan2(ih F gw, gi + hw)
¢ = atan2(ei3bio — €12b13, €12b12 + €13b13)

¢ = atan2(fsz, fo2)

where

w=+/(1=c)(1—d}) — (b — c11dyy)?
g = ciady + c13d3

h = c13da1 — ci2d3;

1= b1y —cndny
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and

E = CR(4,)D
F = BR!(¢,)E

In what follows, when we refer to a parameterization, we mean a trivial parameterization.

3.2.6 Symmetries of SS"3

The self-motion set of the orthogonal n-bar mechanism is highly symmetric. There are
symmetric points with respect to any singularity of the parameterization, which corre-
spond to the two solutions of (3.7).

Definition 3.7 (Symmetric Points). Given a point ¢° = (¢; ... ¢,)! € SS™ 3, the
points

¢Z:(¢1 ¢i,1+ﬂ' '¢i ¢i+1+ﬂ' ¢n)t 7::1,2,...,77,

are also in SS™~% and will be called symmetric points of ¢°.

It is obvious that symmetric points are also in SS™ 3 by analyzing the two solutions
of equation (3.7), which correspond to the two symmetric branches in Figure 3.3. It will
be said that ¢’ is obtained from ¢° by applying a symmetry to variable ¢;.

Proposition 3.3. Given two vectors ¢° = (¢ ... ¢,)" andd® = (d; ... d,)! that satisfy
loop equation (2.1), the vectors

¢.i =(p1 ... ¢iat+mT -4 Gip+T ... ) and
ClZ = (d1 e di,1 'di dz'_|_1 e dn)t 1=1

also satisfy the loop equation.

Proof. When a symmetry is applied to ¢;, n; points in the opposite direction. Then, by
changing the sign of d;, the chain is kept closed. O

Lemma 3.5. Any point on SS™3 has 2" — 1 different symmetric points, except for:

1. Singular points, which have 2% — 1 different symmetric points.

2. Points that have all its even or odd elements equal to 0 or m, assuming that n is
even, which have 2"~' — 1 different symmetric points.

Proof. It can be seen that the application of two or more symmetries is commutative
and that applying a symmetry twice to the same ¢; does not change the point. Thus,
the iterative computation of all the symmetries of Definition 3.7 leads to 2" symmetric
points. But some of these points can be repeated. Applying symmetries to a rotation that
is neither 0 nor 7 will change its sign and it is impossible to get again its previous value by
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applying symmetries to its neighboring rotations. However, if we apply a symmetry to an
angle that is 0 or 7, this value does not change and the neighboring ones are incremented
by 7. To bring those changed values to their original values, we have to apply a symmetry
to its neighboring rotations (i — 2 and ¢ + 2) and so on. Then, it can be easily shown
that the only points that can have repeated symmetric points are those enumerated in
this lemma. 0J

Corollary 3.5. All singular points are symmetric.

Proof. Any symmetric point of a singular point is singular too, since adding 7 or changing
the sign of a variable that is 0 or 7 leads to 0 or . Then, all singular points have to
be symmetric since there are the same number of different singular points (2"2) than
different symmetric points of a singular one. U

The points of case 2 in Lemma 3.5 are those corresponding to configurations of mecha-
nisms that have the directions of alternating bars in a plane and the other ones orthogonal
to it. This is the case of an n-bar mechanism representing a planar mechanism: the odd
bars will represent the elements of the planar mechanism and the even bars, of length
0, will be orthogonal to them representing the axes of rotation of the planar mechanism.
Note the difference between an n-bar mechanism in a planar configuration (global singu-
larity), where all n bars are contained in a plane, and a planar mechanism represented by
an n-bar mechanism.

3.2.7 Differential Approximations of the Rotation Equation

In this section, we obtain the Taylor’s approximation of F(¢ + A¢), when ¢ is restricted
to $S™73, in terms of directions of bars.

Lemma 3.6. Take a point ¢ € SS™2 and a small perturbation of it, ¢' = ¢ + Adg.
Then, ¢' € SS"3 iff

N()Ap=0, (3.9)

which is called the equation of approximation in [66].

Proof. The first order Taylor’s expansion of the rotation equation (2.3) around a point
b, i

F(¢y + Ag) = F(¢y) + VF(¢)Ag .
Given ¢ € SS™ 3, ¢ + A¢ will also be another point of the self-motion set if

V()| yes5ns A =0 .

Using (3.4), we can write this equation in terms of the directions of bars, that is,

iniﬁ@ =0,
=1

which is equivalent to the equation of approximation (3.9). O
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Proposition 3.4. The k™ derivative of F(¢) in ¢ € SS™3 is

0*F(¢)
06,003, ... 003, | seggn—s

= N;, (¢)Ni, () - - - Niy () (3.10)

where 17 < ig < - -+ < 4.

Proof. By using the same notation in the proof of Lemma 3.1, the second partial derivative
of F(¢) can be expressed as

F ()
00;00;

= Al (¢)QAI ' (¢)QA} () -

Since A!"'(¢)A] '(¢)A%(¢) =1 when ¢ € SS"3, we have that

0°F (@)

56:00, = AT (9)Q (ATT(9) AT (9)Q (AT(9) -

peSSn—3

The second derivatives of F ()| ;cgg.-s are then the product of the first two derivatives

0°F (@)
0¢i00;

= Ni(9)N;(¢) , (3.11)

pessn—3

where ¢ < j. Similarly, higher order partial derivatives in a point of the self-motion set
are obtained in terms of the directions of the bars. O

We can express the second order Taylor’s approximation of the rotation equation (2.3)
for configurations in SS™~3 as

1
VE(9)|gessn-s Ab + 5 AGVF(9)] g0 A =0, (3.12)
where

MO N@ONG) - N(@N()
O B G

Ni(@)Na(@) No(@)Na(d) ... N2(¢)

is the Hessian of F(¢) in a point of the self-motion set.

Higher order approximations could also be obtained in terms of products of the skew-
symmetric matrices N;(¢).
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3.3 The Tangent Space of SM" 3

3.3.1 The Translation Equation

We have seen that the solution space of the rotation equation —excluding global singularities—
is a manifold, the self-motion manifold (SM"~3). The solution space of the translation
equation seems to have, however, a much more complicated structure, since it depends
on the involved rotations. In this section we will analyze the structure of the solution of
the translation equation and its relation with its rotation counterpart.

Most of the results concerning the tangent space of SM™™3 are valid for generalized
n-bar mechanisms. Only the last equations in Section 3.3.5 are given for orthogonal n-bar
mechanisms.

Proposition 3.5. The set of solutions d = (di do ... dy)' of the translation equa-
tion (2.4)
T(¢,d) =) nid; =0 (3.13)
i=1

is an (n-8)-linear variety in R* if ¢ € SM™™3 and an (n-2)-linear variety if ¢ is a global
singularity.

Proof. If ¢ € SM™3, the rank of N(¢) = (n; ny ... n,) is 3, i.e. the mechanism
is not planar. Let n; ,n;, n; be linear independent. Any choice of {d;; i # 41,149,143 }
determines the three variables d;,,d;,,d;;. When ¢ is a global singularity, we can only
take two linear independent n;, and n — 2 translations can be taken so that the other two
are determined. O

Since the solution of the translation equation is a linear variety, it can always be
parameterized with n-3 or n-2 translational variables, d;. For example, é; = d; (1 =
1,...,n—3) can be used to parameterize this variety outside of a global singularity if the
last three bars are not coplanar.

3.3.2 Spatial to Spherical Transference

Theorem 3.1 (Spatial to Spherical Transference). The solution of the translation
equation (outside the global singularities of its rotation equation) is the tangent bundle of
SM™ 3, which can be expressed as

d=K), A=\ ... M) eR73, (3.14)
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where
9 04,
oy oY,
K= : :
On O
o oY,

and ¥ = (11,9, ... ,%,) is an arbitrary parameterization of SM™ 3.

Proof. Using Lemma 3.1, the translation equation (3.13) can be rewritten as
~ OF
S E@), g

or shorter
VF(¢)d =0 , (3.15)
which is another version of the translation equation.

The tangent space of an m-dimensional variety embedded in an n-dimensional space is
defined as the orthogonal complement to the vector space spanned by n —m independent
gradient vectors of this variety [29, p. 80]. VF(¢) contains 9 gradient vectors, but the
space spanned by these vectors is only of dimension 3 as explained before. Equation (3.15)
says that d has to be orthogonal to these vectors to close the chain and is therefore included
in the tangent space of F(¢). The union of the tangent spaces at all points ¢ € SM"™3
is called the tangent bundle of SM™ 3 and is the solution of the translation equation. [

Fixing the rotations of the n-bar mechanism in a non-planar configuration is equivalent
to choosing a point of SM™ 3. Then, all possible translational solutions, according to
Theorem 3.1, will be included in the tangent space of the SM"~3 at that point (Figure 3.4).
Since the tangent space is a linear space of dimension » = n — 3, we can find r vectors as
a basis of all solutions for the translational equation.

Figure 3.4: d must be contained in the tangent space of SM™=3 of the corresponding
spherical mechanism to keep the n-bar mechanism closed.
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From equation (3.13), it follows that d has to be orthogonal to

Pz = (nlw Nog - - - nnw) ’ Py = (nly Noy - - nny) and P: = (nlz Noy --- nnz) )
which are linearly independent, except for a global singularity.

Then, d has to be included in the orthogonal space of the space defined by p,,
py and p, in R*. We can get a basis of this space by orthonormalizing, using the
Gram-Schmidt algorithm, these three vectors with a basis of R", e.g. the canonical one,
[(10...0), (01 ...0), ... ... (00 ... 1) ]. We will get three vectors as a basis of
the space generated by p,, py and p,, and n — 3 vectors as a basis of its orthogonal space.

3.3.3 The Tangent Space in Terms of Bar Directions

. : 0 :
A basis of the tangent space is also the set of vectors —¢, where 1 = 1,...,r, as stated

(]
in Theorem 3.1. Next we obtain these derivatives in terms of bar directions.

Theorem 3.2. The derivatives of ¢, expressed in terms of bar directions, for a parame-
terization of n — 3 vartables,

Y= 1,02, U) = (01,02, -, Gat, a1y - s Pomt, Pot1s e ooy Pets Petts -+ Pn)

are.

e For the variables taken as parameters, ¢;(i # a,b,c),

0o; .

90, if ¥; = ¢; and
0p; .

6%—0 if Y # &

e For variables ¢q, ¢p and @,
00, __|ninbnc|
oY |ngmyn,|
0y . | n, n; N, |
0; N ‘ n, n, n. ‘ (316)
d¢. _ |ngmym, |
oY |ngmpym. |’

Proof. The derivatives of the variables taken as parameters are simple to obtain. To get
the derivatives of the variables which are not used as parameters (¢q, ¢p, ¢.), with respect
to the parameters, the implicit function theorem is used. To this end, let us define

0a(®) 2 b0 00(¥) 2, e1h) 2 6,
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when F(¢) = 1.

By the implicit function theorem, we can differentiate F (1) with respect to any v; as
follows:

OF(¥) _ OF(9) , OF(8) dgul®) , OF($) (¥ , OF(6) Dpel®)

= =0. (3.17
o 06 T . 0% | 9% b | 08 oW, (317
By Lemma 3.1,
0pa (1) Os(¥) O ()
N N N, = —N; 1
Ton T on U ow (318)
or equivalently,
Opa() | Opp(th) | Opc(vp) _
R T T
By solving this linear system using Cramer’s rule, we get the announced result. U

Corollary 3.6. For the particular case of a trivial parameterization of the first n — 3
variables, matriz K in Equation (3.14) can now be easily calculated in terms of bar direc-

tions:
[ ©)
0 . 1
_ |Il1 Np—1 nn| _ |n'r Nnp_—1 nn‘
K = Np—2 N1 0y | e [np—2 Np—1 np| : (319)
__|np—2 0y ny| __[np—2n; ng|
|nn72 np—1 nn| e ‘nn72 Np-—1 nn|
\_ [np 2 ny 1 ng| _ |np_2 np_1 ng
|nn—2 np—1 nn| e ‘nn—2 np—1 nn|

Notice that most of the values of K are 0.

This basis, although comparatively much simpler to get than the one obtained as the
orthogonal space of vectors p,, p, and p, in Section 3.3.2, has a drawback: it is only
valid outside singularities of the parameterization, i.e. when | n, n, n. | # 0. However,
this can be easily overcome, since it is always possible to find three non-coplanar bars,
provided that the mechanism is not planar.

It can be seen from Figure 2.1 that | n, 5 n, 1 n, | = sin¢,_;. Then the parameteri-
zation is valid only when sin ¢,,_; # 0, which is equivalent to say that the last three bars
are not coplanar, as already mentioned.

Going back to the general case, the derivatives of ¢,, ¢, and ¢, have a simple geometric
interpretation: n,, n, and n, constitute a normalized (but non-orthogonal) basis in R?,
because the used parameterization is only valid if n,, n, and n. are not coplanar. It can

0¢, O c . . .
ai, — aZ(: and — a0, are just the components of n; in the basis
defined by n,, n, and n, in R® (Figure 3.5).

be easily seen that —
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Figure 3.5: Geometric interpretation of ¢,z, ¢, and ¢..

Combining Theorem 3.1 with Theorem 3.2, we obtain:

n

da:_zwdi

i=1 | n, n; n; ‘
1#£a,b,c
n

dy = — Z M d. (3'20)

i—1 |nanbnc‘ ’
i1#£a,b,c
n

dc:_zwd.

. | n, n; n. | v
=1
i#£a,b,c

which is another version of the translation equation (3.13) for points outside singularities
of the parameterization. This is an important result because of its simplicity (compare it
to the development in [64] using spherical trigonometry).

It is important to remark that these results have been derived without requiring the
n-bar mechanism to be orthogonal and are, therefore, valid for any generalized n-bar
mechanism.

3.3.4 Higher Order Derivatives in Terms of Bar Directions

The second derivatives of the variables that are not parameters can also be obtained
relatively easily in terms of bar directions.

Lemma 3.7. The second derivatives of ¢ in terms of bar directions for a parameteriza-
tion of n — 3 variables,

¢ = (¢1,¢2, c '7¢r) = (¢1a¢27 <. -a¢a—1;¢a+1a .. -a¢b—1a¢b+17 .. -a¢c—1a¢c+1a .. :(bn) )
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are:

0%, __|tnbnc| oy __\natnc\ 020, __|nanbt|
a,(pzad)j | n, n, N, | ’ 8,‘1)181/)] | n, n; n. | ’ a"/)za’(/]] | n, n 1. | .

t is the vector linear invariant (as defined in Lemma 3.1) of the skew-symmetric matriz

a a¢a a¢b c a¢c
abcj 61/1 + Tij aw abcj awz )

T = The; + (3.21)

where

0d, O0dp 0,
r o =N,N; + N,N, =% + N,N + NN,
bej b, PO, b,

N,N, = yr<s (3.23)
NsN, ifr>s.

and (3.22)

Proof. Derivating (3.17), we get

F(v) T4 OF (@) 0*pa () n OF (¢) *ps(v) n OF (¢) *¢.(v)
OY;0v; 0p, 000, Opy  OY;01); 0p.  OY;0;

where

T — 0°F(¢) N F () 0pa(1p) n 0°F () Ops(v) n F(¢) 0p.(¢)
09;0¢;  00;00, O 000y O 0¢i0¢. O
o°F () +82F(¢) 0pq (1) +32F(¢) Oy (V) +32F(¢) 0. ()
00.00; 00,00, 0, 09,00y OV 00,00, O
°F(¢) +52F(¢) 00q (1) +52F(¢) 0y (1) +32F(¢) 590c(¢)] .
0pp0¢;  0dp0d, OV, 0gp0dy  OY; 0gp0p.  OY; 0
°F(9) +52F(¢) 00q (1) +32F(¢) (1) +82F(¢) 0pc(P), 0pc(¢)
00:.00; 0600, 0V, 0p.00y  OY; 0¢.00. OY; oy

Using the definition of 7 (3.22) and N, N, (3.22), we can write T as in (3.21).

=0, (3.24)

+

0pa(1p)
O
580b(¢)

+|

]

+

+|

+1

]

Then, from (3.24),

Poul) | Pl®) _ Pl
00w, oY, | 0%y,

T+N, =0,

which indicates that T is a skew-symmetric matrix. If we define t = (t32 t13 tgl)t we
get the following linear system

?pa (1) 0y (1p) (1)

n, +n + n.
B0y | 0o B 0;

which can be solved using Cramer’s rule, getting the announced result. O

= —t,
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Note that vector t depends only on the directions of bars a, b, ¢, 7 and j (the derivatives
0¢,/0; can be computed from bar directions according to Theorem 3.2).

Higher order derivatives have the same appearance, the only difference being the
expression of t, which becomes more complex as the order increases. The derivatives
would still depend only on the directions of bars a, b, ¢ and on the bars associated with
the parameters with respect to which we are differentiating.

Corollary 3.7. The second derivatives of ¢ fori < j < a < b < ¢ can be computed as in
Lemma 3.7 with vector t being

t:(nj/\na)w+(nb/\nc)|n“n”nj||naninc|

| n, ny n, | | n, n n, |2

Proof. Since i < j < a < b < ¢, we can write a"bcj (Equation (3.22)) as

8¢a 8¢b a¢c
= NN+ NN 222 | NGNG o2 4 NN 22 =
i = ", K20 0Y;
Oy . O b
= NNy + N, 22 N, 9% N, 90y

0, o, O,
According to Equation(3.18),

9¢a Oy 9¢.
N; + N, +N + N, =0.
R TP RN
Thus, aibcj = 0. Matrix 7., can be expressed as the Lie bracket of N; and Nj:
0¢a Oy 99
whei = NNy + NN, + NgNy— + NN, — =
" KT
0o ~; 9% 99

= N;N,—NN;+N,(N;+N,—+N,—+N

= N;N,—N,N. = [N.,,N,| .
81,[7] 8¢] Caw]) Jj-"a a="j [ 7 a]

(3.25)
Similarly, we get:
| n, ny n; |
N 3.26
abcg [ bs ]| n, n, n, | ( )
abcy =0.
Then,
| n; ny 0, | | n, ny n; || n, n; n |
= [N, N, |]————— + [Ny, N, 3.27
[ I ]|nanbnc|+[ b ] |nanbnc|2 ( )

The Lie brackets of skew-symmetric matrices have a simple formulation in terms of its
vector linear invariant. Some tedious, but straightforward, manipulations yield to:

vect([N,, Ng]) = n, Any
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where vect(A) is the vector linear invariant of matrix A. This is a well-known result
derived from the isomorphism between the Lie algebra of the set of vectors with the cross
product and the Lie algebra of the skew-symmetric matrices.

Expressing Equation (3.27) with the linear invariants and substituting the Lie brackets
by the cross products, we obtain the mentioned expression for t. O

For the orthogonal m-bars mechanism and considering a trivial parameterization of
the first n — 3 variables, the second derivatives of ¢,,_o, ¢,_1 and ¢, with respect to the
parameters are:

by B | tij D, My, |
O O a |n,_on,_;n, |
0*Pn—1 _ | 0,9 t;; 0y, | (3.28)
3¢i3¢j | n, 2N, 1Ny \ '
%y, _ _| n, 5N, 1t |
5%8%’ N | n, 2N, 1Ny, \ ’
with
t = (nj A nn_2) | n; n, ;n, | i (nn—l A nn) | n, o n; n, | | n, o N, 1Ny | ’
| n, ,n, i n, | | n, s n, i n, | | n, s n, ; Ny, |
where 7 < j.

3.3.5 The Tangent Space in Terms of Rotations

Equations (3.16), (3.20) and (3.28) are given in terms of bar directions n;. If we want
them in terms of the rotation variables, we should express directions in terms of rotations
using the rotation equation (2.3).

In this section we describe two sets of equations for the tangent space of the SM™~3 of
the orthogonal n-bar mechanism in terms of rotations. Although both sets are straight-
forwardly differentiable, the second set of equations is specially simple and requires less
operations than the first one. This is the reason for using the second set in the second
part of this thesis. These parametric rotation and translation equations are summarized
in Table 3.1.

First Set
Theorem 3.3. The derivatives ong‘f’i for a trivial parameterization v; = ¢; (i =1,2,...,71),
outside of singularities of that parameterization, can be computed as:

6¢n—2 . 0

O; n—i—1 1

Db

(STIMI =G ( H M"k> ol - (3.29)

9¢n k=1

oY; - 0
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where
—= (; 0 0 0
A SN Qp—1
G = 0 —1 0 0
0 0 —4 <;n_1 0
and
cos ¢, sing, 0 0
A 0 0 sin@g—1 —COSPg—1
M, = 1 0 0 0 (3.30)
0 1 0 0

Note that sin ¢, ; # 0, because it is assumed that we are using a proper parameteri-
zation.

Proof. Taking three consecutive bars of the n-bar mechanism, it is easy to show (see
Figure 2.1) that

| n, 1Ng Ny ‘: sin ¢a 3
N, 1 Ny = —COS Py , (3.31)

n, = —COos ¢a71naf2 + sin ¢a71(na72 X nafl) .
Let us also consider the following two relations:

(axb)-(cxd)=(a-c)(b-d)—(a-d)(b-c),
labcllade|/—|abd|lace/+]abellacd =0. (3.32)

While the former is a classic vectorial relation, the latter is a reduced form of the
Grassmann-Pliicker relations [60].

Using equations (3.31) and (3.32), we can express any determinant of the type
|ni n, 1 nn‘ ) ‘nn—Q n; nn‘ , Or |nn—2 n, 1 ni| )

in terms of the parameters. To this end, if we define

vfl 2 In; n,_1 n,| and
wi é ‘na72 n; na‘ _ |na72 n; na|
¢ |na—2 n, 1 na| sin ¢a,—1

the following two recursive expressions can be obtained:

i i i

Vg = Vg 1€OSPq1 + W_ySINPg_,
7 — 2 1 2

w, = U_oSiN@g_o — W, _,COSPe_o .

(3.33)

Now, let z! 2 (vt wt v¢ | w' ). Then, using the previous definition of M, (3.30), we
can write Equation (3.33) in matrix form:

i _ i
z, =M, 1z,_; .
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Since zi,, = (0 1 0 0)' it is clear that

, 0
. a—i—1 1
7zl = (H Ma_k> 0 (3.34)
k=1 0
Considering
’U:,i@ |ni n, 1 nn|
7 — wy, 0,2 0; My |/ Sin gy
" U1 In; n, o Ny, ’
Wy, N, 3 M; 0, 1|/ singp o

we realize the similitude between the first three components and the expressions of the
derivatives in (3.16) (with a = n—2, b = n—1 and ¢ = n). Note that the third component
of z! is equivalent to |n, 2 n, ; n;|. The first and third components should be divided
by |n, o n, ; n,| and we can get rid of the last one. O

Corollary 3.8. The translational equations (3.20), and its derivatives with respect to ¢;
(i=1,...,n—3), can be rewritten as

_ 0
dn_g n—3 /n—i—1 d

d, .| =G (H Mn_k> NE (3.35)
d, i=1 \ k=1 0

s ol 0 100y 0

A 100 0|"F d;

o —G,_l IHM"—’“ 0 000 kﬂlM"—’“ 0

o I 0o 00 0" 0

The proof follows directly from Theorem 3.1 and Equation (3.29).

Second Set

The second set of equations for the tangent space of the SM™ 3 can be derived from the
following theorem:
Theorem 3.4. The derivatives ong‘fi for a trivial parameterization ; = ¢; (i =1,2,...,71)

and the derivatives g—; for a parameterization 6; = d; (1 = 1,2,...,7), can be calculated
in terms of rotations as:

6¢n—2 8dn_2

agwil 3(186i n—>2 t 1
i | = | ot | = L) (A7(@)) | O]
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A 0 —sin¢g, 1 €os ¢, 1
where L(dp_1) = sin;i_l sin ¢, _1 0 0
0 0 1

Proof. The translation equation (3.13) can also be written as:

T(p,d) =) Al'(¢)| 0] =0.
0

=1

Applying the implicit function theorem as in Section 3.3.3 to this equation we get the
following expression:

1 Odn—2 Odn—1 Odn

i-1 n—3 09; n—2 09; n—1 80
AT (o) [0 +AT™ ()| O |+AT(®)| 0O |+AT (d)| 0 ] =0.
0 0 0 0

Multiplying by (A77%)~! we get

Odp—2 Odp—1 ddn 1
95; n—2 09; n—1 a0i n—3 t
I 0 + AL 5(9) 0 +AL @) 0 | =- (Ai (¢)) 0
0 0 0 0
This is,
1\ 54 0\ 54, — COS fn—1 ad e
0| ==+ |cosdn o | ——+ | —singy osing, 1 | —5— = — (A77%())" (0] ,
09; . 09; : 09;
0 sin ¢y, COS o SIN 1 0

which leads to the aforementioned expression for the derivatives of the translations. Like-
wise, we get the derivatives for the rotations. Note that sin ¢,,_; # 0, because it is assumed
that we are not in a singularity of the chosen trivial parameterization. O

Corollary 3.9. The translation equations (3.20) in terms of the rotational variables and
their derivatives can be expressed as shown in Table 3.1.

A naive algorithm would require about three times more operations for the first set
of equation than for this one. However, with an efficient algorithm that would take into
account the components of the matrices and vectors that are zero, the difference would
decrease significantly.
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Table 3.1: Parametric rotation and translation equations and their derivatives.

rotations translations
¢n—2 = atan2(taz1,Fa3z1) dp_2 n—3 ¢+ [di
equations ¢n—1 = Facos(—a11) dp—1 | =L(¢n-1 Z (A” 2 ) 0
bn = atan2(Fa12,Fa13) dn i=1 0
O¢pn_2 Odp_o
derivatives 8¢ ‘ 1 9h; dg
with respect %n=t | = L(gn-1) (A;”—Z(qp)) ilo Odu-t | = L(¢n—1 Z (A’ L(¢)QAT™ 2(¢)) 0
to v; () o 0 ods = 0
i=1,...,n—3 9v; 9%;
9dn_2
gﬁn_g n—2 3 ) t dz
Son=t | =Lga-1)Y_ | (A7 3 (#)QALZ3(9)) | O
Adn i=1 0
O¢pn—2
derivatives ad,, _o
with respect Obn_1 n—3 : [di
Ady _ _
t0 ¢n2, el | =L'(9a-1)Y_ | (A77%(9) | O
Pn—1 Odn i=1 0
and ¢y,. Bn-1
9dp_2 0
Bgfn 1| =1{o
S 0
bn
9dp 2
derivatives 96; 1
with respect a%’;fl = L(¢n-1) (A?72(¢)) 0
to d; ddy, 0
i=1,...,n—3 99
notation

I ifj=k41
o) k0 -1 o0
Aj(e) = H (cos ¢; 0 —sing;

sin ¢; 0 cos ¢;

1>

ail  ai2 a3 + (0 1 0
A n—3
A(p) = a2 a2 a3 (A1 (w)) -1.0 0 Q
a3l 632 433

0 0 1

1>
/N

S O O
= o o
|
OHO
SN———

A ) 0 —singp_1 cosdp_1 , A 0 0 1
L(¢n-1) = gng.—; | sindn—1 0 0 L' (¢n-1)= gz5— |0 0 0
0 0 1 0 0 cos¢p_1




Chapter 4

Examples

This chapter contains two examples. The first one is the global analysis of the 4-bar
mechanism, including the stratification of SS!. The second one is a local analysis of a
6-bar mechanism in three different situations: a regular configuration, a singularity of a
parameterization and a global singularity of SS3.

4.1 Global Analysis of the 4-bar Mechanism

The loop equation of the 4-bar mechanism is:

HT(di)R(¢i)Z =1.

The self-motion set of its spherical indicatrix will be the set of rotations (points in 7*)

4
that fulfill the rotation equation HR(qﬁi)Z =1; that is,

=1
COS (2 COS (4 + Sin g COS ¢3 Sin Py — sin ¢4 sin ¢4
sin ¢ sin ¢ cos P4 + COS @1 Sin 3 sin gy — sin 1 COS P2 COS P3 8in gy  COS P COS 3 + sin ¢y COS P2 Sin Pg
COS ¢ sin ¢y cOS P4 + sin ¢y sin 3 sin g, — cOS Py COS P2 COSP3sin gy, Sin P COS P3 + COS P COS P2 Sin P3

Sin ¢4 sin ¢2 Sin @4 + €OS 1 Sin P3 cos ¢4 — sin @1 oS P2 COS P3 COS P4 010
COS ¢1 sin ¢ sin ¢4 + sin ¢; sin 3 oS P4 — COS Py COS P2 COS P3 COS Py 0 01

— COS ¢ Sin ¢4 + sin ¢ COS 3 COS P4 ) (1 0 0)

As stated in Remark 3.1, we need to solve this system of nine equations only for two
equations of the diagonal. Let us take the elements (1,1) and (2, 2), which lead to a much
simpler system:

COS (9 COS P4 + SIN P €OS Pz sin Py = 1
COS (1 €COS P3 + Sin P €OS Pg Sin 3 = 1
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To solve it, let us suppose that sin ¢gsin¢@, # 0 . Then, from the first equation,

1— 1— 2
COS by COS by N ( COS by COS ¢4) <1.

sin ¢2 sin Q54 sin ¢2 sin ¢4

COS (3 =

Changing sin®¢; for (1 — cos?¢;), we get
cos? ¢y + cos® ¢y — 208 g cos Py = (oS Py — cos py)? < 0 = by =ty .
Then, cos¢s = +1 and from the second equation, cos¢; = cos @3 = +1 , leading to the
following two solution sets (0 # 0, 7):
d=(006006)" and ¢=(707-9) .
In a similar way, we can solve the system when sin ¢ sin ¢4 = 0, leading to:
¢=(00600)) and ¢p=0O7-07) .

The stratification of this algebraic set leads to 8 strata of dimension 1, whose union is
SM!, and 4 of dimension 0, which are the singular points. As shown in the following
diagram, the strata of dimension 1 are connected through those of dimension 0:

(0000)

(006 0) (060 0)
(-6 0-60) (0-60-6)

(07 0)! (07 0m)f

(-0 7 6) (6 7-0m)
(m 6 m-0) (-0 70 m)

t

(mmm )

strata of dim 0| (singularities) (6 =1]0,7)

Since the number of bars is even, as stated in Corollary 3.4, there are 2"~2 = 4 singular
points, which correspond to the strata of dimension 0. Notice that SM* is not connected
(see Lemma 3.4).

Observe that all the strata are linear, therefore their tangent spaces are constant. For
example, the tangent space of the upper left strata on the diagram is (1 0 1 0)*. Thus,

d=\(1010), AER,
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is the only possible solution of the corresponding equation of translations for any point
on these strata. For the other strata, the solutions are:

d=X0101)" upper right strata
d=X(10-10)" lower left strata
d=X010-1)" lower right strata , AeR

4.2 Local Analysis of the 6-bar Mechanism

The loop equation of the 6-bar mechanism is

6

H T(di)R(¢z‘)Z =1

=1

The loop equation of its spherical indicatrix (the rotation equation) is then

6

[[R(#)z=1. (4.1)

=1

In Section 3.2 we pointed out that, although this expression consists of nine equations,
the dimension of the self-motion set is only n —3 = 3. Here, the configuration space is the
torus of dimension 6, 7%, and SS® is a sub-set of T of dimension 3, with some singular
points.

The global singularities correspond to the configurations in which the mechanism is
planar. If the number of bars were odd, there would be no global singularities. Since it
is even, there are 2" 2 = 16 global singularities, which are the points that fulfill condi-
tions (3.5); that is,

a7 rmam (ma000 0)F
(m m 0 m O )t (m # m 0 7 0)
0 07 7« 0 0) 07 7= nm 0 m)t
(

(r 0 7 7« O)t 0 000 7 m
O 7 0xmxmm (* 0x 0 x 7
© 00 a7 0 (OO0Ox 00 7
O 7 0O0x 0 (O« 7 0 0 0)
(r 00 00 ™ (00 0 0

Notice that any of these singularities can be obtained one from any other by applying
symmetries (Corollary 3.5).

Excluding these points, the set of trivial parameterizations consisting of 3 consecutive
variables provide an atlas for the whole self-motion set (Proposition 3.2).
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4.2.1 Finding a General Solution

Now, let us suppose that three rotations and two translations are known: ¢; = 30°,
(bg = 450, ¢3 = 900, d2 = 7 and d3 = 2. We look for the values of ¢4, ¢5, ¢6; dl, d4, d5
and dg that close the mechanism (Figure 4.1).

z

d4\

Figure 4.1: The 6-bar mechanism of the example.

Since only three rotations are unknown, they can take only two values, corresponding
to the two symmetric closures of the spherical polygon (Figure 3.3).

Let us express loop equation (4.1) as in (3.6):

vz vz V32
1 2 2
R(¢s) ZR(45) ZR(¢s) = (ZR(¢1) ZR(¢2) ZR(3) Z)™" = _§ ? _ 5’/2
_V3 1
2 2
We can calculate ¢4, ¢5 and ¢g using (3.7):
. Vi 3y —22.21°
¢4 = atan2(FY, £%5°) = { 157 790
¢5 = Facos(—¥2) = F110.70° (4.2)

S

B s 32, _ [ —130.89°
¢e = atan2(F 2, TS )_{ 49.11°

Note that ¢} =@} +7 , ¢f = —¢2 and ¢t = ¢+ 7 as stated in Section 3.2.6
(superindexes 0 and 1 denote the two different solutions). We arbitrarily take the first
solution; we can always get the second one as the symmetric of the first one.

According to Theorem 3.1, the translations have to be included in the tangent space
of SM? in ¢°. We can get a basis of the tangent space from three different ways:
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e As the orthogonal space to vectors p,, p, and p, (Section 3.3.2).
e From the derivatives in terms of bar directions (Section 3.3.3).

e From the first and second set of equations for the derivatives in terms of the variables
of rotation (Sections 3.3.5 and 3.3.5).

Note that we need a parameterization for the second and third cases, but not for the
first one.

Using Vectors p,, p, and p,

Since
i—1 1
n, = [HR(qﬁj)Z 0l ,
j=1 0

we can calculate the directions of the 6 bars:

. t t
G0 me(og ) me(g g 0
n4_(§ _? 3/2) n;,—(% 0 —\%) ng= (0 -1 O)t

We can now obtain a basis of the tangent space of SM? in ¢° as the orthogonal space
to vectors pg, py and p, as explained in section 3.3.2. Using the Gram-Schmidt method
to orthonormalize these three vectors with the canonical basis of R®, we get the following
basis for the tangent space of the self-motion manifold in ¢°:

d1 0.7483 0 0

7 —0.0926  0.6682 0 )
a— | 2| _ 03024 00327 07000 Al

dy —0.5292 —0.2291 0.1000 AQ

ds —0.2449 0.2828  (.6481 3

dg 0 0.6481 —0.2828

Solving this linear system, the set of solutions is:

d = 404 — 171X\
d, = =543 + 1.38)\
ds = 1.85 + 1.12)\
d¢ = 727 — 049\ , where A€R .

Assuming that we want to set d5 to 0, the vectors of rotations and the vector of translations
that close the mechanism are

¢’ = (30 45 90 —22.21 —110.70 —130.89)
d° = (687 7 2 -7.72 0 8.08)" .
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By applying a symmetry to ¢5, as described in Section 3.2.6, we obtain another solution
which corresponds to the second solution of (4.2). ¢4 and ¢ are incremented by 7 and
¢s and ds change their signs:

o' (30 45 90 157.79 110.70 49.11)*
d = (687 7 2 -772 0  8.08).

Using the Derivatives in Terms of Bar Directions

We could have also used a parameterization to get a basis for the tangent space of SM?
as described in Section 3.3.3. Taking ¢1, ¢ and ¢3 as parameters, using (3.16) we have

9¢4 _ _ |minsme| _ O¢s _ _ [mamins| _ e _ ... _—
?TE = —|ni nz ni‘ = —0.8081 gTE = —|ni n; n2| = —0.6547 % =---=0.2857
gTﬁz = —0.3499 ngz = 0.3780 ngg = (0.9897
4 __ 5 6 —
s = 0.1429 e = 0.9258 s = —0.4041 .

Then, a basis of the tangent space is

1 0 0
0 1 0
0 0 1

K=1_08081 —0.3499 01429 |

—0.6547 0.3780  0.9258
0.2857  0.9897 —0.4041

which yields to the same solution as above. This method to get a basis for the tangent
space is faster than the previous one, but we require a valid trivial parameterization.

Using the Derivatives in Terms of Rotations

Finally, we can also get the translation equations directly from the rotations as described
in Section 3.3.5, without having to calculate the directions of the bars.

These alternatives also require a trivial parameterization, but not the directions of
bars.

First Set. We can rewrite Equation (3.35) for n = 6 as:

0 0 0
d d d

M:;M, 03 + M3 02 + M, 01 )
0 0 0
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which results in the following system:

d, = —-0.81d; — 2.16
ds = —0.65d; + 4.50
ds = 0.29d; + 6.12

If we set ds to 0, we obtain the same vector of translations as above.

Second set. The parametric translation equation in Table I can also be written as:

dn—2 ¢ dn—3 ‘ dn—4 ¢ d2
dn-1 | = L(¢n-1) (A"=2(¢)) 0 |+ (An7i(e) 0 | +---+(A%(9) | -
dp, 0 0 0

In our example,

dy . d3 . dy
ds | =L(¢s) (As(¢)) 0]+ (A3(9) | —du ,
de 0 0

which leads to the same system as for the first set of equations. However, using this
second set, we perform about one third of the operations required by the first set.
4.2.2 Dealing with a Singularity of a Trivial Parameterization
Let us take the same trivial parameterization as above, but now we set

¢1=30°, ¢, =0°, ¢3=—150° .
Expressing the loop equation as in (3.6), we get the following A () matrix:

0
0

O = O

Alp)=1| 0
0 -1

Since aj; = —1, we are in a singularity of the parameterization; | ny ns ng |= 0 and
sin(¢s) = 0. In other words, taking the first three rotations, there are infinite solutions for
the other three rotations. It can be checked that in this case ¢5 =0 and ¢g = ¢4 + 7 .

Now, if we want to calculate a basis for d, we can use the method described in
Section 3.3.2 (Gram-Schmidt) or, alternatively, choose another trivial parameterization

(e.g. ¢2, ¢35 and ¢4).
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4.2.3 Dealing with a Global Singularity

Let us suppose we are on SS®in¢ = (0 # 0 0 7 0), which is a global singular
point according to Lemma 3.2, i.e. all bars are coplanar. This means that no parame-
terization can be taken and therefore we cannot obtain a basis for d using the results of
Sections 3.3.3 and 3.3.5. Instead, we can use the method of Section 3.3.2 (Gram-Schmidt).
The directions of the bars for this point are

n,=(100) mn=(010) mny=(100)
n=(0 -10) ny=(-100) ng=(0 —10)".

d has to be orthogonal to p,, py, and p,. Now these three vectors are linearly dependent
and therefore its orthogonal space is of dimension n — 2 = 4. Imposing that d has to be
orthogonal to p, and p, we obtain

d2:d4+d6 and d5:d1+d3 y
which is clearly the solution (Figure 4.2).

z

Yy
di /
do

/

d
z y d4 d3

Figure 4.2: Singular configuration of the 6-bar mechanism.
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Interval Methods






Chapter 5

Preliminaries

5.1 Introduction

Interval arithmetic generalizes ordinary arithmetic by using intervals in addition to real
numbers. Originally, the purpose of interval analysis was to provide upper and lower
bounds on the effect of rounding errors on a computed quantity. Interval mathematics
can be said to have begun with the appearance of R. E. Moore’s book Interval Analysis [36]
in 1966. Moore extended the use of interval analysis to bound the effect of errors from all
sources, including approximation errors and errors in data.

E. Hansen, in his book Global Optimization Using Interval Analysis [17], highlights
the importance of interval analysis:

“...the introduction of interval analysis is the single most important advance
in numerical analysis other than the advent of modern computer and high-level
programming languages. The success of its original purpose of error analysis
1s enough to make this true.”

However, interval analysis has had other successful applications. The most important
one was to solve (at least to a large extent) a previously unsolved problem: the general
optimization problem. But interval analysis is also used for solving systems of nonlinear
equations and, in general, for improving algorithms by making them more reliable and
robust.

In this chapter we focus on a rather narrow part of interval mathematics. Our goal is
to introduce the basic tools to solve a system of nonlinear equations, which is the problem
we face in inverse kinematics. We shall describe the well known interval Newton methods
which will be used together with the specific methods developed in Chapter 6.

Interval Newton methods for solving systems of nonlinear equations can be used to find
and bound all solutions in a given region. The bounds are guaranteed to be correct despite
errors from rounding, approximation and uncertain data. Moreover, proof of existence
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and/or uniqueness follows as a by-product of the algorithm and no extra computing is
required.

The theory exposed in this chapter is based on Hansen’s book [17] and on Kearfott’s
book Rigorous Global Search: Continuous Problems' [24]. We present the results in a
plain form, avoiding complicated mathematic formalism in order to give the reader a
quick idea about interval methods for solving systems of nonlinear equations. References
to more detailed bibliography are also given.

5.2 Interval Arithmetic

5.2.1 Interval Numbers and Notation

An interval number is a closed real interval z = [a, b], consisting of the set {z : a < x < b}
of real numbers between and including the endpoints a and b. The set of intervals will
be denoted IR, the set of n-dimensional interval vectors, also referred as bozes, will be
denoted by IR", and the set of m by n matrices whose entries are intervals will be denoted
by TR™*".

We shall use standard notation for noninterval elements: lower case will denote scalar
quantities, boldface lower case will denote vectors and boldface upper case will denote
matrices. Underscores will be used for the corresponding interval quantities, vectors and
matrices. Brackets “[-]” will delimit intervals while parentheses “(-)”will delimit vectors
and matrices. We will use left-pointing arrows over an interval quantity for its lower bound
and right-pointing ones for its upper bound. Left and right-pointing arrows over interval
vectors and matrices will denote the vector or matrix whose components are respectively
lower or upper bounds of corresponding components (Table 5.1).

Other symbols and real-valued functions over intervals which will be used are:

& will denote a representative point in z; often its center. Similarly, x and X will
denote a representative point for the box x and interval matrix X respectively.

e The midpoint or center of an interval z is m(z) = (E;’? The vector or matrix whose

entries are midpoints of the entries of the vector x or matrix X will be denoted by
m(x) or m(X).

e The width of an interval z is denoted by w(z) = T — & . The width of a box or an

interval matrix is defined component-wise and is denoted by w(x) or w(X).

e The absolute value or magnitude of an interval is defined as |z| = max{|T |, |Z’[}.
The magnitude of a box will be interpreted component-wise, |x| = (|z1| (22| ... |Za]),
and similarly for an interval matrix.

LThe first edition of this book has many flaws. Some of them are corrected in the erratas available at
http://interval.usl.edu/kearfott.html.
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real | interval
scalars | z z=[7, 7]
vectors | x x=[%,%]=(z,,2,-..,2,), where z; = [T ;, T]
§:(<Z17<Z2a "agn)a‘nd? ( 17?2%";?”)
L1 Lyp - Zig
. L1 Loy -+ Ly
matrices | X | X = [z, X] = " |, where z;; = [T, T3]
Ly Ly Lip
Ty T T 10 Ty T T 1
= 4 <— = = —
i L o1 L o9 L op ? o1 Loo Lon
X = and X =
o —
<En L 19 <Zm E)n L 19 E)ln

Table 5.1: Adopted interval notation.

The mignitude of an interval z will be defined by < z >= ming¢, |z|.

The norm of an interval vector is defined as [|x|| = |||x]||-

The conver hull of two intervals z and y is the smallest interval including z and y
and will be denoted by z U y.

If F is a function F : R® — R™, F*(x) denotes? the range of F' over the box x.

Comparison of intervals will be similar to set comparison: z < y will mean that every
element of z is smaller than every element of y, i.e., T < T Comparison of interval
vectors x,y € IR" will be component-wise: x <y W111 mean that z; <y, for ¢ between 1
and n, but note that x <y will mean that z; <y, for 7 ranging from 1 to n, and z; # Y,
for at least one 1.

5.2.2 Real Interval Arithmetic

The four elementary operations for the arithmetic of real numbers, +, —, X and <+, can
be generalized into the interval case. We will use the same symbols for both interval and
exact-value operations. If op denotes any one of these operators, then the corresponding
operations for interval numbers obey

={zopy|r€xandyecy} for op€ {+,—,x and +}. (5.1)

2The notation is suggestive of “united” interval extension, a term first introduced by Moore.
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Thus, the image of each of the four basic interval operations is the eract-range of the
corresponding real operation. The following rules can be derived from this definition:

sty = [T+, 7T+71], (5.2)
z-y =[T-7.7-9I, (5.3)
zxy = min{CTY, 7. 2V, TV} ma{TY,. TV, TY, T, (54)
z+y =zx[1/7,1/%] if0gy (5.5)

The interval quotient x <+ y is undefined when 0 € y. An extension to interval arith-
metic for this case based on infinite intervals was first introduced by Hanson [18] and
Kahan [22] independently and later corrected by Novoa [40] and Ratz [49] also separately.
This arithmetic is called extended interval arithmetic, also known as Kahan-Novoa-Ratz
arithmetic. Here, the set of real intervals [a, b] € IR is augmented with the set of comple-
ments |a, b = [—00, a] U [b, oo]. Then, the division of two ordinary intervals z and y with
0 € y is still defined according to (5.1) and can be computed with the following rules:

(¢ x[1/7,1/9] if0¢y,

[—00, 00] if0ezand0 ey,

[T, ] if T <0and g <7 =0,
T P [—o0 ::]U[_H_oo] 1f:<0and<_<_0<§,
[?,7]:” 00, T Y] ?f_<0and0—g<g, (5.6)
== [oo<_<_] 1f0<§and<@<@:0,

[—00, TYIU[T ¥, 00] if0<T and g <0< 7,

[T 7, ] f0<T and 0=y <7,

0 1f0¢§andg—().

\

For our purposes, i.e. when solving systems of nonlinear equations, it will suffice to
intersect the result of Formula (5.6) with an ordinary interval, to obtain either a single
interval, two intervals, or the empty set. Thus, we will not have to face intervals extending
to infinity.

5.2.3 Interval Dependency

Although the ranges of interval arithmetic operations are exactly the ranges of the corre-
sponding real operations, this is not the case if the operations are composed. Combined
interval expressions, such as 22 — z, can be evaluated applying the primitive operations
in sequence. By doing so, we are implicitly assuming that the variable z varies indepen-
dently in the term z? and the term z, and the resulting value may have excess width. For
example, if

f(.’L') = 372 -,
evaluating f over the interval [0, 1] with interval arithmetic gives

[0, 1]2 - [07 1] = [0, 1] - [07 1] = [_1a 1] )
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while the actual range is f*([0,1]) = [-1/4,0]. When a given variable occurs more than
once in an interval computation, it is treated as a different variable and causes widening
of computed intervals. In general, one should try to minimize the number of different
instances of the same variable in an interval expression in order to avoid an excessive
expansion of the resulting interval?.

A consequence of interval dependency is that algebraic expressions that are equivalent
in real arithmetic lead to different results when evaluated in interval arithmetic. For
instance, if f above is written as z(x — 1), the evaluation over the same interval [0, 1]
gives a tighter bound:

[0,1]([0,1] = 1) = [0,1][~1,0] = [-1,0] .

Note that real interval arithmetic always computes rigorous bounds, in the sense that
the actual range is always included.

5.2.4 Rounded Interval Arithmetic

In the previous sections we assumed infinitely precise computations. However, when
interval arithmetic is implemented on a computer, the default rounding may result in
erroneous results. For example, consider the functions given in [21]:

a=z4+y—=x where £ = 1e34 and y = 2,
b=92" —y* +2¢2 where z = 10864 and y = 18817 .

The correct values are ¢ = 2 and b = 1. However, by using the IEEE standard double
precision arithmetic [57], the results are completely wrong, that is a =0 and b = 2.

Nonetheless, if instead of rounding to the nearest machine number, the lower bound
of the intervals is rounded down to the largest machine number less than or equal to the
exact result and the upper bound is rounded up to the smallest machine number greater
or equal than the actual result, then the resulting interval definitely includes all possible
values even in cases where rounding errors degenerate results. This process is called
outward rounding. In the previous example, using double precision interval arithmetic of
BIAS/PROFIL interval libraries [28] with outward rounding, the resulting intervals are:

a = [0, 1.15292e18] and
b=[-14, 2] .

This example is highly degenerate and the resulting intervals are extremely wide, but
indeed bound the correct values. Rounded interval arithmetic may sometimes give com-
pletely useless results, but at least it does never “lie”! Usually, rounded interval evaluation
returns essentially similar results as exact-value evaluation. If it returns wide intervals, it
warns the user about degenerate situations.

3This is true in most cases, but not always!
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Another interesting example can be found in Hansen’s book [17]. Evaluating the
function

f(z,y) = 333.75y% + 2?(112%y* — y® — 121y* — 2) + 5.5¢4° + ;_y

for x = 77617 and y = 33096, using single, double and extended precision gives:

f=1.172603... for single precision,
f =1.1726039400531 . .. for double precision, and
f=1.172603940053178 . .. for extended precision.

It is a common mistake to believe that if two results agree to some number of digits using
different precisions, then those digits are correct. In this example all three results agree
in the first seven decimal digits. However, they all are completely incorrect; the right
value is f = —0.827396.... If we evaluate f using BIAS/PROFIL [28] we obtain a wide
interval containing the correct result: [—8.26414e21,7.08355¢21]. Here again, the fact
that the interval is wide suggests an underlying roundoff problem.

5.3 Interval Functions

An nterval function is an interval-valued function of one or more interval arguments:
F:IR" —» IR™.

Interval functions are usually related to real-valued functions. For example, the interval
function sin z includes all possible values of the real-valued function sin x over the interval
z. We will call sinz an extension of sinx. In some special cases, we will underline the
extension in order to prevent confusion, but we will often use the same symbol to denote
both the real valued function and any extension of it. Whether the function is real-valued
or an interval function can be distinguished by the nature of its arguments.

5.3.1 Exact-range Functions

For many simple functions F' : R* — R™, its exact-range function F* : IR" — IR™
can be obtained directly using monotonicity and deriving simple formulas as for the
elementary operators in Section 5.2.2. For example, e” evaluated over an interval z gives
[e@, e?], since the exponential function is monotonic increasing. Integer powers can also
be computed exactly and the same happens for trigonometric functions, although here
the resulting formulas are more complicated. A list of the exact-range functions we have
used (with m = n — 1), together with its formulas, are given in Appendix B.

Ranges of functions can also be computed with any desired accuracy —within the
limits of the floating point system— from Taylor series, or any other expansion, that has
an explicit formula for its error [24, p. 12].
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5.3.2 Interval Extensions

In the example of Section 5.2.3, we showed how to obtain bounds on the range of a
function using interval arithmetic. The function was evaluated as a sequence of the four
basic operations, and we stated the dependency problem, which prevents to get tight
bounds on the result when a variable is repeated in the function. In this section, we
introduce different methods, or interval extensions, for obtaining the range of functions.

Consider a real-valued function f : R® — R of real variables x = (21, x9,...,%,). An
interval function f : TR" — IR is said to be an interval extension of f if

{f(x)|xex} C f(x) VxelR".

The basic interval Newton method for solving systems of nonlinear equations uses two
interval extensions, the natural interval extension and the Taylor interval extension. Other
implementations of the Newton method (e.g. [67]) make also use of the so-called distributed
interval extension.

Natural Interval Extension

In the example of Section 5.2.3, we evaluated the function f over an interval z by simply
replacing each occurrence of the variable x by the interval  and by executing all opera-
tions according to formulas (5.2) through (5.5). This evaluation is obviously an interval
extension and we will call it natural interval extension.

In fact, we can extend the concept of natural interval extension to any function
F: R* — R™ composed of the four operations {4, —, X and +} and of any exact-range
function.

It is important to note that the natural extension evaluated in a box x corresponds to
the actual range of the real-valued function F' over that box if each variable appears only
once in the expression and if real interval arithmetic and exact-range functions are used.

We will refer to natural extensions even when rounded interval arithmetic is used.
Then, the function range when each variable appears only once is merely an enclosure of
the actual range that is tight to within roundout error.

Taylor Interval Extension

Using natural extensions in functions with repeated variables, the bounds on the ranges so
obtained are often too wide to be of any practical interest. The Taylor interval extension,
or mean value exrtension, gives sometimes tighter bounds and is more desirable in some
contexts, as for example in solving systems of nonlinear equations and in optimization.
Taylor extension is based on bounding the range of the derivatives in series expansions.

Suppose f : R* — R has continuous derivatives and X is a representative point of box
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x € R". The Taylor interval extension for f over x and centered at x is defined as

2

where i’ (x) is a component-wise interval enclosure for the range of the gradient of f over
x. It can be proved from the mean value theorem and properties of interval arithmetic
that the Taylor extension is an enclosure for the range of f over x.

Taylor interval extensions give tighter bounds on the range of a function over an
interval when its width is small enough, but not necessarily when the interval is wide.
For example, suppose the function from the previous example f(z) = z? — z evaluated
in the interval x = [—1/2,1]. Taking £ = 1/2 as a representative point in z and being
f'(x) = 2z — 1 the exact range of the derivative, the natural and the Taylor interval
extensions are

[ ((=1/2,1]) = [-1/2,1” = [-1/2,1] = [0,1] — [-1/2,1] = [-1,3/2] and

[p([=1/2,1],1/2) = =1/4+ (2[-1/2,1] = 1) ([-1/2,1] = 1/2) =
=—1/4+4[-2,1][-1,1/2] = [-5/4,7/4] , respectively.

Thus, W(in([—l/Q, 1])) = 2.5 and W(iT([—1/2, 1], 1/2)) = 3, whereas the width of the

actual range is w(f*([~1/2,1])) = 1. This illustrates that a Taylor extension may not
be superior to a natural extension when the width of the arguments are large. If we take
a narrower interval, for instance z = [0.4,0.6], and Z = 0.5, then the natural and Taylor
extensions are

£, ([0.4,0.6]) = [~0.44, —0.04] and
[,([0.4,0.6],0.5) = [—0.27, —0.23] , respectively.

Here, the width of the natural extension is much wider than the width of the Taylor
extension. This exemplifies an unsolved problem in interval analysis: it is not known how
small an interval has to be for the result from the Taylor expansion to be tighter than the
one obtained using the natural evaluation.

5.4 Interval Linear Systems

Interval linear systems are the basis of interval Newton methods for solving systems of
nonlinear equations.

In this section we will first describe the solution set of interval linear systems. Then
we will explain the necessity to precondition the system and finally introduce directly the
preconditioned interval Gauss-Seidel method, the most suitable solution algorithm for our
purposes.
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5.4.1 Solution Set

Consider an interval linear system described by

where A € IR™", b € IR and x € IR".

Different solution sets may be defined depending on whether a solution x requires that
Ax = b for every matrix A € A and vector b € b or not.

Here, we will consider the solution set to be the set £(A,b) C R" such that, if
x € X(A,b), there exists a matrix A € A and a vector b € b such that Ax =b. X(A,b)
is sometimes called the united solution set, but we will simply refer to it as the solution
set.

In general, the solution set is not an interval vector, but a non-convex polygonal region,
which can be quite complicated in high-dimensional problems. In fact, the computation of
Y(A,b) isin general an NP-complete problem [51]. The next example from Hansen [17]
illustrates that the solution set ¥(A,b) is not simple. Let us consider

_ ([2,3] [0,1] an _ [0, 120]
A_([1,2] [2,3]) d b ([60,240])' (5-8)

The actual solution set to Ax = b, i.e. 3(A,b) , is shown in Figure 5.1.

T2
(—120, 240)
-+ 200
(0,120)
100 7
(60,90)
(0,20)
(—12,24) (60,0)
_100 (3070) 100 :I;l
(90, —60)
T —100

Figure 5.1: The solution set X.(A,b) for the linear system (5.8)
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Instead of working with the solution set, we shall consider the solution hull denoted by
[¥(A,Db); that is, the box formed from bounds on the coordinates of 3(A,b) . However,
computing the solution hull is also NP-complete [51] and we will have to work with outer
estimates to ¥(A,b) (Figure 5.2).

- outer estimate
- solution hull, [X(A, b)

- solution set, X(A,b)

Figure 5.2: Solution set, solution hull and outer estimates of interval linear systems

The three most common methods for computing outer estimates to ¥(A,b) are the
interval Gaussian elimination method, the interval Gauss-Seidel method and the Krawczyk
method.

Interval Gaussian elimination and the interval Gauss-Seidel method are similar to their
corresponding real standard versions. Although the interval Gauss-Seidel method requires
an initial guess box, it sometimes leads to tighter enclosures of the solution set than
Gaussian elimination. Moreover, since the Gauss-Seidel method proceeds coordinate by
coordinate, it may produce tighter bounds on certain variables when Gaussian elimination
fails, even when the interval matrix A contains singular matrices, or when the system is
not square; i.e. A € IR™" with m # n.

Much of the theoretical literature concerns the Krawczyk method, whose convergence
properties are particularly simple to analyze. However, Gauss-Seidel method always give
tighter results than the Krawczyk method, so the Gauss-Seidel method is preferable in
practice.

5.4.2 Preconditioning the System

The interval versions of Gaussian elimination and the Gauss-Seidel method obtained by
simply replacing the algorithm by an interval one cannot be recommended in practice.
It is usually necessary to precondition the system by a point matrix Y € R**™ for these
methods to be effective.

When preconditioning a system, the algorithms are applied, not to the original sys-
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tem 5.7, but to
Mx=c where M =YA andc=YDb.

The preconditioning matrix Y is chosen to make the solution set of M x = ¢ easier to
bound. Usually, Y is taken as the inverse of m(A) in order to have a matrix M that
somehow approximates a diagonal matrix. In Section 5.7 we will describe the different
preconditioners we can use.

An important result is that the solution set of the preconditioned system always in-
cludes the solution set of the original system (a proof can be found in [38], Section 4.1):

£(YA,Yb) D £(A,b).

Therefore, when solving a preconditioned system, we do not miss any solution of the
original interval linear system. Even though preconditioning in general increases the size
of the actual solution set, it nonetheless allows the Gauss-Seidel, Gaussian elimination
and Krawczyk methods to compute tighter bounds for the components of the solution set.
Thus, preconditioning should be in general used.

5.4.3 Preconditioned Interval Gauss-Seidel Method

We will use the preconditioned interval Gauss-Seidel method to solve systems of linear
equations for three reasons:

1. Tt gives tighter bounds than either Gaussian elimination or the Krawczyk method [37].
2. It works even when Gaussian elimination fails because A contains singular matrices.

3. It can be used for non-square systems (A € R™*" with m # n). Even when the
system is underdetermined, the solution set can still be bounded.

An interval version of the Gauss-Seidel method was first introduced by Alefeld and
Herzbergin in 1970 [2]. The Gauss-Seidel method proceeds coordinate by coordinate
and needs an initial guess box. Each iteration works only on a single column of A and
requires a single row of the preconditioner Y. As a result, we obtain a new bound for one
of the variables. Thus, the preconditioner can be computed row by row with some of the
variables already bounded. This results in a gain in efficiency when using preconditioners
which depend on the variables (e.g. the optimal preconditioners of Section 5.7.2). The
computation of the preconditioner rows will be analyzed in Section 5.7.

The algorithm can be summarized in the following steps:



62 Preliminaries

DO for i =1 to n (number of variables)

1. Compute the i-th row y; of the preconditioner

1—1 ~
N > (vidy)Z; — 35 (viay)z,
B Yia;

=17

END DO

where a; denotes the i-th column of A, z, is the i-th compo-
nent of box x and Z; the corresponding bounded variable.

Algorithm 5.1: Preconditioned interval Gauss-Seidel algorithm for a system A x = b.

If the intersection in Step 2 is empty, the system does not have a solution in the
original box x. This is true even when outward rounding is used.

Note that the denominator y;a, may contain the origin. Then, the division using
extended interval arithmetic (5.6) yields a result which is not finite. However, when
intersecting it with z;, the new bounds for the variable will be finite and may be either
empty or consist of one interval or the union of two intervals. As before, if the intersection
is empty the system does not have a solution. If the intersection leads to two intervals,
we may consider only its convex hull or we may decide to split the box in that dimension
in order to reduce the solution space.

Usually, a single iteration of the Gauss-Seidel method does not give tight results and
multiple sweeps are required to get useful bounds.

We will denote the result of 7 iterations of the preconditioned interval Gauss-Seidel
algorithm by

x = GS;(x) .
It is important to point out that the sequential nature of Algorithm 5.1 is not critical.
Any order of the variables may be chosen and the algorithm will lead to similar results.

Finally, note that lim GS;(x) does usually not converge to the convex hull of the
1—00

solution set, but to an outer estimate.

5.4.4 Existence and Uniqueness

Most of the automatic verification procedures are based on the following result concerning
the computational existence and uniqueness of the solutions:
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e The intersection of the solution hull of an interval linear system and a box x is
always contained in the resulting box from the preconditioned interval Gauss-Seidel
method. In other words,

(A, b)Nx) C GS;(x) .

e If the resulting box from the preconditioned interval Gauss-Seidel method is strictly
included in the original box, i.e., if GS;(x) C int(x), then for each A € A and
b € b, the system Ax = b has a unique solution in x.

Considerations related to these results and their proofs can be found in [38].

5.5 Interval Derivatives

Interval derivatives are mainly used in bounding variations of functions in boxes. We have
already introduced them in the Taylor extensions in Section 5.3.2 and we will use them
extensively in interval Newton methods.

Consider the real function F': R® — R™. The interval derivative or interval Jacobian
matriz of F will refer to a component-by-component interval extension over a box x of
the Jacobian matrix of F', which will be denoted by F'(x).

5.5.1 Slopes

Often, it is not necessary to use interval extensions of the Jacobian matrix. For example,
interval Newton methods as explained below, are based in a Taylor extension of a multi-
variate function. Then, we only need a matrix A, such that given a box x and a point in
it x € x, for every x € x,

F(x) - F(x) = A(x — x) for some A € A . (5.9)

A matrix A that satisfies (5.9) is said to be a slope matriz. Actually, the interval
Jacobian of F' is a slope matrix, but with the term slope matrix we will refer to a good
outer estimate of the smallest set of matrices satisfying (5.9). Slopes lead generally to
tighter bounds in Taylor extensions of F'(x) than using interval derivatives. We will also
use the term slope matrix when x in (5.9) is not a point, but an interval, as for instance
in Theorem 5.3.

The idea behind slopes is most easily introduced with a one-dimensional example.
Suppose a Taylor expansion of f(z) = z? in the interval [0, 2], centered at 1. Its derivative
f'(xz) = 2z evaluated in [0, 2] is f'([0,2]) = [0,4]. The mean value extension is then

fra([0,2],1) = £(1) + £([0,2])([0,2] = 1) = [-3,5] .
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A slope for f in the interval [0, 2] and centered in 1 is
f@) = f@) _ a1

rT—2I z—1
s=]1,3].

=z+1 forzel0,2], (5.10)

&

The mean value extension using this slope is now

fTs([O: 2]; 1) = f(l) +§([Oa 2] - 1) = [_2’4] :

The graphical interpretation of this results can be seen in Figure 5.3. The shaded cone is
the region where the Taylor extension assumes that the function plot is contained. The
difference between interval slope and the derivative range is clearly seen.

.’EQ $2
4+ 44
2 + 2 4
| ‘ fra | | frs
[ [ I I
12 r 1 2 ’
_HpEE —9
-4 -+ | -4+
z | z

Figure 5.3: Taylor extension of 22 using interval derivative (left) and using a slope (right).

This figure illustrates the fact that usually the bounds obtained using slopes are tighter
than the ones using extensions of derivatives. In the limit, when w(z) decreases to zero,
slope-based evaluation would give bounds whose width is half the width obtained using
derivatives [24, pp. 28-29]*.

Multivariate slopes may be obtained by setting, for each component of the slope ma-
trix, all variables other than the active one to their interval and not to point values
(Algorithm 3 in [24]). This algorithm requires a method for computing a slope of a uni-
variate function. However, slopes of a univariate function are not always easy to compute.
We can get them as in the previous example, but the resulting fraction can usually not
be simplified as in (5.10). Then, both the numerator and the denominator include the
zero and the division using extended interval arithmetic (5.6) is unbounded.

Slopes can also be implemented in a process similar to automatic differentiation, first
described by Neumaier (see Section 6.7 in [17] and [50]).

“The proof given in the book has some mistakes. A correct proof can be found in the erratas (available
at http://interval.usl.edu/kearfott.html).



5.5 Interval Derivatives 65

5.5.2 Hansen Slopes

In Taylor extensions of multivariate functions, the derivative matrix can be computed
using point values for some of the variables. This technique, due to Hansen (Sections 6.3
and 6.4 in [17]), is based on decomposing the variation in f : R* — R into changes in
displacements along the coordinate directions.

The mean value extension of a multivariate function f : R* — R is

frix%) = f&) + (@) x-%) (5.11)
where f’(x) is an extension of the gradient of f evaluated in x. Note that all arguments of

f'(x) are intervals. But some of these arguments can be replaced by noninterval quantities
expanding the function coordinate by coordinate.

We regard first f(z1,xo,...,2,) only as a function of z; and expand it about Z;:

f(ilagb""in) = f(ib&%-"ax_n)+f{(£1>£2""’£n)(£1 _il) ’

where f] is the derivative of f with respect to variable z;.

We now expand f(Z;,s,...,%,) about Z, as a function of z, and obtain

f(il,b,---,fﬂ_n) = f@1ai2a§3>---a33_n)+fé(i1>£2>---ax_n)(£2 — Iy) .

We expand successively f with some variables fixed to point values. At the end we obtain

f(21a£2a---a§n) = f@1ai2a---ain)+
+ fi(&y, 2o, -y 3,) (T — E) +
+f£(i1a§2a---ax_n)(£2_i2)+ (5.12)
+ f3(@ys o, T3, 5 Ta) (T3 — T3) +
+...+
+ o (&1, Zoy - ey 1y Tn) (2, — E,) -

In (5.11) all the arguments of f’ were intervals, while in (5.12), some are real. Thus,
a bound on f(x) using this technique is generally tighter than the corresponding one
evaluating the gradient over x. Hansen extensions clearly correspond to the definition
of slope matrices. Moreover, we can change f] by a method for computing slopes of
univariate functions, getting still tighter bounds.

Observe that in (5.12) any sequence of the variables could be taken and the order
of the indices would change. Particular orders may give better inclusions of f than
others. Several heuristics can be used to order the variables [24, p. 34]. In any case, for
tighter inclusions, results corresponding to several different orders can be computed and
intersected.
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5.6 Interval Newton Methods

Multivariate interval Newton methods for solving systems of nonlinear equations are
closely tied to the methods for linear systems discussed in Section 5.4. In particular,
they require the iterative execution of the Gauss-Seidel algorithm to bound the solution
sets of linear systems of the form

S(x—-%)=-F(%), (5.13)
where S is either F’(x), the Jacobian matrix of F in x, or a slope matrix as explained in the
previous section. Since X is usually an approximation to a root of F', (5.13) approximates
an homogeneous system of equations and there is more structure and symmetry than in the
general systems of Section 5.4. For instance, the computation of the LP preconditioners
(Section 5.7) is based on the assumption that F(x) is small.

Assume that F': x C R* - R™, x € x and x* € x is a solution of system F', that is,
F(x*) = 0. Then the mean value theorem says that

Fx)+S(x"—%)=0

for some matrix S € S. Thus, x* — X must be in the solution set of the system (5.13).
Any root x* of F' within x must be within X + X, where X is any bounding interval for the
solution set of Equation (5.13). If we use the interval Gauss-Seidel algorithm described
in Section 5.4.3, replacing b by —F(X), A by S, and z;, by z;, — &;, we can change Step 2
of Algorithm 5.1 by

5 —z,N (iz B yiF'(X) + 23;11 (vis;)(@; — ;) + > (vis;) (2 — ig))  (5.14)

yis;

where s; denotes the i-th column of S. Rigorously, all of the computations, including eval-
uation of F'(x), should be done with outward rounded interval arithmetic. As explained
in 5.4.3, extended interval arithmetic can be used when 0 € y;s;.

An important fact making interval Newton methods efficient is its local quadratic
convergence (see Theorem 1.14 in [24]). However, Newton methods without any branching
are often not able to isolate all solutions of the system. The basic ideas of a branch-and-
bound algorithm for a verified solution of nonlinear systems are given in Section 5.8.

5.6.1 Existence and Uniqueness

The existence/uniqueness theory and the quadratic convergence properties of interval
Newton methods are analogous to the Kantorovich theorem for the classic Newton method
(see for example [47]). Theorems regarding existence and uniqueness are given in [24, pp.
59-65]. Here, we will focus only on the results concerning the Gauss-Seidel method. We
will have to introduce some theorems (the only ones in this chapter!).

The most general theorem regarding existence and uniqueness is:
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Theorem 5.1 (Derivative Based Existence and Uniqueness). Suppose a function
F : x = R*, F'(x) is an interval Jacobian matriz for F over x, X € X, and X =X+,
where v € IR" is any interval vector such that

S(E,-FE) Cv.
Then, if X C x, it follows that there exists a unique solution of F(x) within x.
Theorem 5.1 encompasses any method for bounding the solution set E(E', —-F (X)),

in particular, the interval Gauss-Seidel method. Note that it is assumed that F’ is an
interval Jacobian matrix and not a slope matrix.

A similar existence theorem is possible with a slope matrix:

Theorem 5.2 (Slope Based Existence). Suppose I, is defined by the second part of
Formula (5.14), that is,

yiF(X) + 23;11 (Yi§j)@j - ij) + E?:iﬂ(}’iﬁj)@j - ij)
Yis;

%

X
&3¢

i

for i ranging from 1 to n, where F' : x — R", S is a slope matriz for F' over x at X, and
Y s non-singular.

If 2, C z; for i between 1 and n, then there exists an x* € x such that F(x*) = 0.

This result can be extended to non-square systems. Then, Y must have at least one
maximal minor which is not singular.

Uniqueness using slopes requires additional consideration. In [24, Figure 1.6], there is
an illustrating example of non-uniqueness with slopes .

In [56], Rump pointed out that uniqueness verification with slope matrices is still
possible in certain context, such as with the e-inflation technique, as explained in Section
4.2 in [24]. This technique is based on:

Theorem 5.3. Let F': x C R* — R”, and let z C x be such that there exists an X* € z
with F(x*) = 0. Let S(F,x,2z) be a slope matriz for F over x at z. If S(F,x,2) is reqular
(it does not contain any singular matriz), then X* is unique within x.

Theorem 5.3 allows verification of uniqueness within larger boxes than when an interval
Jacobian F'(x) is used, provided that the box z can be found. This is because slope bounds
S(F,x,z) are generally narrower than interval Jacobians F’(x).

5.7 Preconditioners

As mentioned in Section 5.4.2; it is usually necessary to precondition an interval linear
system by a point matrix for the interval Gauss-Seidel method to be effective. Two
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families of preconditioners have been mainly used: the inverse midpoint preconditioners
and the optimal linear-programming preconditioners. The latter can be computed as a
linear-programming problem using some heuristics based on assuming the linear system
to be homogeneous. This is the case in nonlinear systems of equations solved using an
interval Newton method, but not in general linear systems of equations.

5.7.1 The Inverse Midpoint Preconditioner

If Ax = b is a square interval linear system, the inverse midpoint preconditioner is

The inverse midpoint preconditioner was first introduced by Hansen. It is the most
commonly used in the literature and has often been assumed to be the best possible
preconditioner [38]. However, alternate preconditioners are better in some circumstances.

In [56], Rump observed that much of the computation related to preconditioning and
bounding the solution sets of the preconditioned systems can be simplified when the
preconditioner is Y™, These shortcuts make use of floating point arithmetic in much of
the computations and are detailed in [24, pp. 115-118].

One of the drawbacks of the inverse midpoint preconditioner is that it requires the
system to be square.

5.7.2 Optimal Preconditioners

When A has some rows with much wider entries than others, preconditioners other than
the inverse midpoint preconditioner can be more effective. Kearfott introduced for the
interval Gauss-Seidel method preconditioners that optimize some criteria, and whose com-
putation is usually based on some heuristics.

A first review on optimal preconditioners for the interval Gauss-Seidel method can be
found in [26]. For more detail, take a look at the unpublished Novoa’s work [40] (available
via ftp).

Optimal LP preconditioners optimize some aspect of the reduced box in the Gauss-
Seidel method (Z; in equation (5.14)) at each step. In fact, they are computed row by
row and are sometimes termed row-wise preconditioners. Heuristics enable such precon-
ditioners to be computed as solutions to linear programming problems.

LP preconditioners usually optimize an aspect of z; before its intersection with the
initial range of the variable z,. That is,

< i—1 ~ . n -
Fo= i — yiF(X) + Zj:l(yi§j)(£j - ig) + Zj:i+1(}’i§j)(£j - &j) . (5.15)
yis;
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We denote the numerator as n,;(y;) and the denominator as d;(y;):

n,(yi) . [W( i), W (.Y)]

(i) T 7

1532
Il
8¢
|

8.

C- and E-preconditioners

Two preconditioners are defined depending upon whether 0 € d,(y;):

e A preconditioning row y; is a C-preconditioner 5 if 0 & d,(y;). Furthermore, y; is a
normal C-preconditioner provided d ;(y;) = 1.

e A preconditioning row y; is an E-preconditioner ® if 0 € d,(y;) and 0 & n,(y;)-

Observe that preconditioners which are not C- neither E-preconditioners will necessar-
ily have 0 € d,(y;) and 0 € n,(y;). Such preconditioning rows are useless, since Z; is
unbounded.

An interesting property of C-preconditioners is that they always exist, provided that
at least one element of the corresponding row of S does not contain 0 [19].

Optimality Criteria

Different optimality criteria can be defined for both preconditioners. However, most
practical experience has been done with width-optimal C-preconditioners, which mini-
mize the width of Z; over all C-preconditioners. They are commonly denoted by C"-
preconditioners.

Other optimality criteria are based on maximizing the lower bound of Z,, minimizing
its upper bound, or minimizing the magnitude of Z, — ;. There are equivalent optimizing
criteria for E-preconditioners, but there has been few practical experience in its use. Note
that the E-preconditioners generally produce two subboxes. The proliferation of subboxes
reduces in general the overall efficiency of Newton methods.

Depending on the optimality criteria, preconditioners are better to prove existence
and uniqueness or to reduce the box. For instance, the CV-preconditioner is usually a
good general-purpose preconditioner. However, the magnitude-optimal C-preconditioner
is better in existence and uniqueness tests and an E-preconditioner can be efficient for
bisection. A detailed discussion about the different characteristics of the optimal precon-
ditioners can be found in [24, pp. 123-128 and 141].

5The C comes from contraction.
6The E comes from extension.
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5.7.3 Width-optimal C-preconditioners

Width-optimal preconditioners tend to minimize the width of the i** variable under the
interval Gauss-Seidel method. Ideally, they would minimize w(Z; N z,), but it is easier to
optimize w(Z;).

The computation of optimal preconditioners is a nonlinear optimization problem.
However, heuristic considerations allow it to be reformulated as a linear programming
problem.

A normal C%V —preconditioner (y;) is the solution of
. &-(w))
min w|——~] . 5.16
Tilyi)=1 <(—iz(y1) ( )

The formulation as a linear programming problem involves rewriting each of the com-
ponents of y; as a difference of positive and negative parts. The positive part of a real
number a will be denoted by a* = max{a, 0} and the negative part, by a~ = max{—a, 0}.

We will need some elementary properties of interval arithmetic. Suppose that a,b € R
and z,y € IR. Then,

1. az=[Ta" - Ta ,Ta" —Ta | =am(z)+ i|a|w(z)[-1,1], (5.17)
2. Ifm (g) =0, then zy = ;|z|w(y)[-1,1], (5.18)
3. |z| =max{—T, T}, (5.19)
4. max{a,b}=a+(b—a)". (5.20)

From now on, we will take X as the center of the box x. After each step of the Gauss-Seidel
method (5.14), the interval z; may be substituted by the new one Z;. Now, consider the
numerator and denominator in equation (5.15), but denoting by z, instead of Z; the new
intervals for the variables that have already been reduced:

(YZ) - + Z YZ (_)) : (5'21)

J#Z
m
d;(yi) = yis; = Z Yik Sk -
k=1

Here we introduce the first approximation: let us assume that m(x) is a good approxi-
mation of a root of F(x) and ||F(m(x))|| is small enough, so that 0 € n;(y;). Then, if

—

n;(y:)

oy \Yi

4y
and (5.16) is reduced to

min W( (vi) -
d i(y:)=1

o
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The width of the numerator is given only by the second term of equation (5.21), since
the first term y;F'(m(x)) has zero width. Using property (5.18), the second term of the
numerator can be rewritten as

1> e

7j=1
J#i

kJSk;]

and the numerator’s width as

w(n,(yi) = Z Zyk St (5.22)
1
i
Now, let us define the following variables:
_27.7 Z y'L k _k 3J and
vj 2 T)zg + Ty - (5.23)

Variables v; will be used to represent 7;(y;), ;(y:) and w(n;(y;)) in the linear pro-
gramming problems.

We can now rewrite (5.22) as
n

w(ng(yi)) = D_w(zy) [rig -
j=1

i

Using the previous properties (5.19) and (5.20), |r; ;| can be expressed as

|ri;| =max{—F;;, T} =—Ti; + (Ti; + Tij)T = Tij+ (Tij + Tij)”
(5.24)
Property (5.17) allows us to write
—
Ty = Zyz k Sk = Z (Ui 3 ki — Yip 5 k) and (5.25)
Ic;l
Ty = Zy’ kSkj = Z (U T kg = Yip T k) - (5.26)
k=1

Substituting in (5.24), we get

m

Zz',j| = Z (yifk?k,j - y;,—lc(gk,j) + v} and (5.27)
k;l

il =D W T hs — vin Thg) + vy - (5.28)

B
Il
—
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The width of the numerator can now be expressed as

m
i(yi)) =0 Z (Z (Yip Bk = Vi k) + v;) ’
k=1

J#z

n m
+(1-6)) w(z)) (Z (Wi & kg = Vik T i) + Uj) , (5:29)
j=1 k=1
J#i

which constitutes the objective function of the linear programming problem. Here, both
equations (5.27) and (5.28) are added not only for flexibility but also for possible adjust-
ments of the linear programming problems to attain numerical stability in their solution.

In the linear programming problem, ., v, v;” and v; will be the 2(m +n — 1)
domain variables, subjected to non-negative constraints. Additionally, we should consider
the constraints derived from he definition of variables v;. Combining (5.25) and (5.26)
with the definition of v; (5.23), we have

m m
Uj:Z(y;:k_yijk) (T kg + Fy) 22 Yok ~ Yik) 0 (55) -
k=1

k=1

+

Since v; = v; — vy, the constraints can be written as

22 yzk yzk ( Sk,j ) (530)

The last constraint corresponds to the normalization condition. Using (5.26), the lower
bound of the denominator is

m
— _
di(y) = Tii =Y WS ki — vip Tha)
k=1

and the constraint results in

m

Wi F ki —¥ip ha) = 1. (5.31)
k=1

Summarizing, a C"V-LP-preconditioner for the i-th variable is any solution of the linear
programming problem with the 2(m + n — 1) variables

+ + - — .+ + .t - - -
(yi,l,...yi,m,yi,l,...,yi,m,vl s U U ey Uy ey U1 Uiy - -5 Upy)

with the objective function (5.29), and with the n constraints (5.30) and (5.31), and

subjected to non-negativity constraints on all the variables.

In fact, there is an abuse of notation here, since y: ko Yiks v;-L and v;" are not necessarily
the positive and negative parts of numbers. The preconditioner is actually formed by
taking

Yik = Yk — Yips I1<k<m.

)
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In [40], Novoa develops a general theory which clarifies in which circumstances the solution
of such a linear programming problem corresponds to an optimal preconditioner. The
adopted treatment is general; other optimal preconditioners and cases where X is not the
center of the box are included. The main result is that the linear programming problem
is feasible if and only if the corresponding preconditioner exists. As stated above, a C-
preconditioners exists, provided that at least one element of the corresponding row of S
does not contain 0 [19].

Structure of the Linear-programming Problem

The linear programming problem as given above can be written as

minimize C*X

subject to
AX =B,
X >0,

where

(e 8L L T
St —Sf O1x(n-1) O1x(n-1) ’

-1 BV

_>
= (W) S W) S W) Ouen)

C
X:(yil,"'y;—m’yi_,l’""yi_,m’v

’ P X YV R s PV P Tesg I
and

Sﬁi e R (=1 is the midpoint matrix of S with the i-th column removed,
Sﬁi e Rmx(n-1) is the lower bound matrix of S with the i-th column removed,
Sﬁi e <=1 is the upper bound matrix of S with the i-th column removed,
Sf is the i-th column of the lower bound matrix of S,
S’f is the i-th column of the upper bound matrix of S,
w(x_,;) is the vector w(x) with the i-th component removed,
I, ; € R®DX(=1)  ig the identity matrix and
0,, € RP™ is a matrix of zeros.

5.8 Nonlinear Systems of Equations

In this section we combine the techniques explained in the previous sections into an overall
algorithm for finding all solutions of a nonlinear system of equations F'(x) =0, F': R* —
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R™. First, we will give an idea of the basic steps of the algorithm. In the subsequent
sections, we will describe some heuristic-based variants that can improve its efficiency.
Most of the ideas of these improved algorithms were introduced in [25] and [56] and are
extensively developed in [24].

In what follows, ||w(x)||re; Will denote the relative diameter of box x, which is defined

||w(z>||rel:max{ w(z,) }

1<i<n | max{1, m(z;)}

as

5.8.1 The Basic Branch-and-bound Algorithm

The basic algorithm is based on a branch-and-bound technique, where the interval Gauss-
Seidel method is used to reduce the boxes.

Put x, into an empty list L.
DO k =1 to M WHILE L # (.
1. Remove the first box from £ and place it in the current box x,.

2. DO WHILE ||w(x,) ||re1 > €a:

a. Try to verify that 0 ¢ F™(x,) using a natural extension.
IF 0 ¢ F*(x,) is verified, THEN EXIT loop 2 and CYCLE main loop.

b. Compute the interval derivative F’(x,) or the slope matrix of F over x,
at m(x,) and compute F(m(x,)).

c. Perform a Gauss-Seidel sweep using Equation (5.14) fori =1,...,n.

d. IF the Gauss-Seidel sweep proved that x,. could not contain any roots,
THEN EXIT loop 2 and CYCLE main loop.

e. IF the Gauss-Seidel sweep did not result in a change in x,,
THEN bisect x, and insert one of the boxes into £, while the other one
becomes x,.

END DO

3. Insert x, into list U.

END DO

Algorithm 5.2: Basic branch-and-bound algorithm for finding solutions of nonlinear sys-
tems of equations.
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The algorithm takes as input a function F' : R* — R™, its interval derivative F’ or
a method to compute a slope matrix of this function, an initial box x,, the maximum
number of subboxes M to be processed, and a domain tolerance ¢;. As output we will
get a list of boxes U containing all solutions to F'(x) = 0.

If we exit the algorithm properly, that is, we exit the main loop because L is empty
without exceeding the maximum number of processed boxes, then all the solutions to
F(x) = 0 will be in the boxes of list . However, a box in U/ will contain a solution only
if the existence condition of Theorem 5.2 holds. Usually, when the processed box is small
enough, either existence can be proved or the box vanishes after a Gauss-Seidel sweep.
The case in which existence cannot be proved in small boxes, and the Gauss-Seidel method
does not eliminate it, seldom occurs in practice. Actually, we have never found it in our
experiments. Note that the proof of existence does not require any extra computing.

Note also that Step 2.b of Algorithm 5.2, F(m(x,)) should be computed using interval
arithmetic to bound roundoff errors.

In the following sections, we will briefly describe the variants of the basic algorithm
that can improve its performance.

5.8.2 Bisection

In Step 2.e of Algorithm 5.2, the current box has to be split into two subboxes when the
Gauss-Seidel algorithm is not able to make any improvement. The idea of generalized
bisection is to replace a single box by two smaller boxes. This allows either the overesti-
mation in interval extensions to be reduced, so that 0 ¢ F“(x) can be verified (Step 2.a
of Algorithm 5.2), or the interval Gauss-Seidel method to converge in the split boxes.

Generalized bisection divides a box by one of its coordinates, k: x will be divided
into x( and x®, where z\" = QZ@) =gz if i # k, gg) = [T, Tk + ZT%)/2] and

i

L(f) = [(Tr+ T%)/2, T

A natural choice for the bisection coordinate £ would be the coordinate for which the
width w(z), is maximum. However, k corresponding to maximum width is not always the
most effective at reducing overestimation or producing boxes in which the Gauss-Seidel
method will converge.

In [27], Kearfott and Novoa proposed an heuristic choice of k, which they named
mazimum smear heuristic. This heuristic is similar to the one proposed in [17] (Section
8.8). A coordinate of maximum smear k satisfies

1<j<n | 1<i<m

v = { mo s D)}

This heuristic attempts to choose a coordinate such that the function components vary
the most across ;..
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5.8.3 Introducing Uniqueness Verification

We can introduce a new output list of boxes, where uniqueness has been verified according
to Theorems 5.1 or 5.3. Then, the output of the algorithm will consists of a list R of boxes,
each of them containing a unique root, and a list ¢ of boxes, whose relative diameter is
smaller than €4, such that all roots of F' in x,,, not in boxes in R, are in boxes in U.

5.8.4 Approximate Roots and e-inflation

Existence and uniqueness verification is usually easier when a root is approximately cen-
tered within the box. This does not usually occur while iterating the interval Gauss-Seidel
method with a width-optimal preconditioner.

Algorithm 5.2 can be improved using approximate roots when they are available. Then,
boxes can be centered around the approximate root, so that ||F'(x)|| is small. Centering
and small norm make existence and uniqueness verification easier (see Lemma 6.2 in [24]).

On the other hand, if the Jacobian matrix is singular or ill-conditioned at a root,
interval Newton methods may not be able to reduce any box containing it. In such cases,
efficiency of the search process is increased if a small box is constructed, centered at the
root, and increasing the widths until it is possible to verify existence or uniqueness. This
process is named e-inflation [56].

An algorithm for finding an approximate root, and verifying uniqueness within a box
as large as possible around that root, is detailed in Section 4.2 in [24]. This algorithm
will be introduced in Algorithm 5.2 between Steps 1 and 2 and also after the Gauss-Seidel
sweep, if uniqueness could not be proved for the current box.

5.8.5 Box Complementation

e-inflation shall be used together with a box complementation process. This allows us to
remove boxes from the search region that are difficult to analyze. A box complementation
algorithm produces a list of boxes whose union is the complement of a box in the union
of an original list of boxes. For instance, in Figure 5.4, box complementation of box x in
the list of boxes x;, X,, X3, results in Y ¥y ¥y ¥,

Observe that boxes are usually of higher dimension than this two-dimensional example,
so that box complementation will generate still more boxes. Fortunately, in practice, box
complementation does usually not increase significantly the total number of processed
boxes. Experiments with the overall root finding algorithm in [25] indicate that it leads
to a net advantage with approximate roots.
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Figure 5.4: Box complementation.

5.9 Interval Cuts

The problem of finding solutions to systems of nonlinear equations has also been ap-
proached from a different point of view, based on refinements of constraint propagation
techniques that have been developed in the Al and logic programming communities. Van
Hentenryck, McAllester and Kapur described and implemented a system called Newton,
which is exhaustively described in [67]. A latter technical report [35] gives a clarifying
abstract presentation of the three cuts which are the base of the pruning phase of their
algorithm.

The heart of Newton is a propagation process which iteratively improves known bounds
on variables using a set of inference rules called interval cuts. An interval cut is a method
of inferring new bounds on a variable so that every constraint appears to be locally
consistent. The local consistency condition of Newton is called boz-consistency, an ap-
proximation of arc-consistency, a well-known notion in artificial intelligence and used in
many systems to solve discrete combinatorial search problems.

The three interval cuts used in Newton are:

e Newton Cuts. Newton cuts are based on a natural evaluation of an equation for
a representative value of the variable to cut. Evaluating the derivative of that
equation over the whole box, some values of the variable can be eliminated. An
intuitive description of Newton cuts can be found in [35].

e Snake Cuts. Snake cuts are similar to Newton cuts, but they use a distributed
evaluation of the function. They are more useful in very large boxes, while Newton
cuts become more useful as the boxes get smaller.

e Combination Cuts. Combination cuts use a Taylor evaluation, which is more accu-
rate for small boxes, over a linear combination of the constraint equations.

Let us briefly describe how a Newton cut proceeds.

A Newton cut is schematically represented in Figure 5.5. Let e = 0 be a constraint,
b, a given box for the variables, z, a variable appearing in e (the one we want to reduce),
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e
evaluatlon of e
/ with x = [¢, ]
s
0 a €z

Figure 5.5: A Newton cut. Here the interval [a, b] will be reduced to [a,c — 2-].

and [a, b], the interval of z in b. We choose ¢ in the interval [a,b]. We evaluate e for a
box identically to b except that the variable x is fixed to ¢. Let us assume that the lower
bound, s, is positive. Now we evaluate the derivative of e with respect to z in b and
denote the resulting interval [D;, D,|. Note that the values of slopes D, and D, represent
the fastest possible rate of descent of the value of expression e. We can ensure that there
is no solution with « € [c, b] when either D; > 0 or Dl <Oand c— 7 >b If D <0
and ¢ — 3~ < b, we can reduce interval [c, d] to [c — 5-,b]. Likewise, there is no solution
1n[ac]1fD < 0orif D, >Oandc——<aand1fD > 0 and ¢ — - > a, we can
reduce interval [a, c] to [a,c — 5-]. It can “be shown that we can choose ¢ such that we
always achieve some reduction of the bounds. Many heuristics can be used to choose c,
but usually the middle point of the interval [a, b] is taken.

Although Newton and snake cuts are less expensive to compute, at the end we nearly
always end up with combination cuts, which are much more efficient in small boxes.

For further details on these three cuts refer to [35, 67].

It is important to note that combination cuts are quite similar to solving the system
using the interval Newton method described in Section 5.6. The linearization is equivalent
to the Taylor evaluation and preconditioning the system is equivalent to a linear combi-
nation of the constraint equations. Therefore, we are not going to use these interval cuts,
but the interval Newton method described in Section 5.6. However, we have introduced
interval cuts here, since we have used the ideas behind them to develop some specific cuts
for our constraint equations (the closure equations), which are described in next chapter.



Chapter 6

Specific Interval Methods

In the previous chapter we have presented interval methods for solving systems of non-
linear equations. In this chapter we exploit the special features of the inverse kinematics
problem and the closure equations developed in Chapter 2: in Section 6.1 three domain-
dependent cuts are presented, in Section 6.2 a nearly complete interval propagation for
spherical mechanisms based on spherical geometry is described and, finally, in Sections 6.3
and 6.4 we develop a tighter interval evaluation for matrix A’(¢) defined in (3.2) and for
other vectors required by direct cuts, respectively.

6.1 Direct Cuts

Following the idea behind interval cuts described in Section 5.9, we have developed a
family of cuts specifically for the rotation equation (2.3) and the translation equation (2.4).
In those equations, it is possible to isolate the variable we want to cut and evaluate directly
its range of possible values; this is the reason for calling them direct cuts.

By using direct cuts we are reducing the overestimation of Newton, snake and combi-
nation cuts, since we are evaluating directly the variable we want to cut using a natural
evaluation. Thus, the error due to the evaluation of its derivative is not introduced.

However, direct cuts are usually not able to reduce the interval of a variable to its actual
range of possible values. This is due to interval dependency, that leads to overestimation
(see Section 5.2.3).

Direct cuts also suffer from another drawback, which is common to Newton and snake
cuts. All these cuts work only for a set of equations at a time. Usually they will not be
able to reduce the range of the variables to the minimum considering the whole system.
This fact can be seen more clearly with an example. Consider the system of equations:

r—y=0
z+y=1.

If the initial box is z = [0,1],y = [0,1], we cannot reduce it by applying cuts to the
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equations of the system independently. We will have to perform combination cuts or,
equivalently, the interval Newton method described in Section 5.6, to get the solution
(x =0.5, y = 0.5).

Basically, direct cuts are used to accelerate the pruning process, which actually is the
interest of domain-dependent cuts. But they are not enough by themselves to converge
to a solution and require to be complemented with an interval Newton method or with
combination cuts.

We can divide direct cuts into three groups: two cuts for the variables of rotation
—derived from both the rotation and translation equation— and one cut for the variables
of translation —derived from the translation equation.

6.1.1 Cutting ¢; through the Rotation Equation

The rotation equation (2.3) can be written as

AT ()R(H)ZAY,(9) =1.

In this equation, the only matrix that involves ¢; is R(¢;), which can be isolated:
R(¢:) = (ZAL, (9)AT(9))" .
Let us define the interval matrix V'(¢) as:

i A n i
Vi(¢) = (ZA},(9)AT ()" . (6.1)
All possible values of ¢; that close the spherical mechanism for the box ¢ must fulfill
R(¢:) € VI(¢) .

Thus, the chain can be effectively closed if
Levy and 0 € vy, vy, 05, s ,
where v?, denotes the (j, x) element of matrix V'(¢).
If the previous conditions hold, the possible values for ¢; will be:
¢, = arccos(vhy N vhs) N arcsin(vh, N —vb,) . (6.2)

The interval of possible values for ¢; can be cut by intersecting the initial range of ¢; with
the interval obtained from (6.2).

Note that the arcsin function gives only values between —m/2 and +7/2. However,
we need to evaluate this function in an interval and get all possible values between 0 and
2m. In Appendix B it is shown that the result might encompass up to three intervals.
Something similar happens with the arccos function, but there only two intervals are
possible. Then, the intersection of intervals in (6.2) might lead to as much as four disjoint
intervals. For the sake of simplicity, we take as the final interval for ¢; the convex hull of the
resulting intervals. However, branching in these cases could be an important improvement
in the efficiency of the overall algorithm.
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6.1.2 Cutting ¢; through the Translation Equation

We can also isolate ¢; from the translation equation (2.4):

i dk dk
S ati@) (0] +aie) | 3 Akt 0] -o.
k=1 0 k=i+1 0
Multiplying by (A% (¢))* we get
dk dk
(AT (g ZA’“ +R(¢,)Z ZAz+1 =0.
0 k=i+1 0
Defining
A . i—1 dk
wi(9,d) = - (A7'(9)' Y_ATT(9) | 0| and (6.3)
k=1 0
dg
Z Az+1 0 ’ (64)
k=i+1 0
we can write
dy, ' '
0 | —wi(o,d) = R(¢:)Zwi(o,d) .
0
In other words,
0 -1 0 wt wh, — d;
cos¢; 0 —sing; | |wi, | = why : (6.5)
sing; 0  cos¢; wig Whs

where wj; and w}; stand for the (j) element of vectors w{(¢,d) and w{ (¢, d) respectively.

Let us extend the definitions of wf(¢,d) and wi(¢,d) (Equations (6.3) and (6.4))
to the interval case. When evaluated over a box of rotations and translations (¢, d), we
will denote both vectors with an underscore. wj; and w}; will stand for the () element of
these vectors.

From Equation (6.5) it can be seen that the chain can be effectively closed if
0 € (why +wiy, —d;) -

Solving the linear system derived from (6.5), we obtain the possible values for ¢;:

[ w wzﬁ wiswhy wj 2w11 wiswg
¢, = arcsin ( 03 =0 ﬂarccos 0 = (6.6)
— 2

wn + wis wn +w
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As previously, we can cut the initial interval of ¢; by intersecting it with the range obtained
in (6.6).

The division of intervals by an interval including the origin leads to disjoint intervals
(Section 5.2.2). However, in equation (6.6), the denominators are greater or equal than
0 and the division leads to a single interval, possibly extending to infinity. This does not
imply any difficulty, since we have to intersect this interval with [—1, 1], the interval where
the arcsin and arccos functions are defined.

Note also that the translation equation depends on where we place the first bar of the
n-bar mechanism in the chain. This can be easily seen by observing that the translation
equation (2.4) does not involve the last angle ¢,. In general, the resulting direct cut using
Equation (6.6) will be different from the one obtained using a translational equation where
the first angle is another one. Therefore, we have n different translation equations and
each angle ¢; can be cut using any of them. This was not the case with the rotation
equation, since it is the same wherever we take the reference.

In Section 6.4 we show how the interval evaluation of w)(¢,d) and w'(¢,d) can be

computed much more accurately than using directly the definitions (6.3) and (6.4).

6.1.3 Cutting d; through the Translation Equation

In order to isolate d;, we express the translation equation (2.4) as follows:

i—1 dy, _ d; n dy
S A (@) 0] +AT @) [0+ D AP | 0] =0.
k=1 0 0 k=i+1 0

Multiplying this equation by (Alfl)t, we get:

di . . i—1 dz n dk
0] =-(A7"e) D AT @) [0]| - > A @) |0 |=
0 k=1 0 k=i+1 0
Defining
wi(¢,d) = wi(¢,d) — Al(P)w!(e,d) , (6.8)

it can be seen from Equation (6.7), that the chain can be closed if

0 € Wy, wi .
The possible values for d; are:

d; = w?n . (6.9)
We can cut the initial interval of d; by intersecting it with the range obtained in (6.9).

Here n different translation equations can also be used to cut each d,, as in the previous
subsection.
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6.2 Interval Propagation in Spherical Mechanisms

Interval propagation in spherical mechanisms is an unsolved problem in its most general
formulation. Sometimes a revolute pair is not able to perform complete rotations due to
design constraints, collision between links, or even limitations coming from other loops
sharing the same revolute pair. Thus, in general, the values for the variables are externally
restricted to an interval. The most general problem is then finding all the values for a
rotation ¢ that are compatible with those actually possible for the other variables ¢;

(i # k).

E. Celaya obtained an algorithm for interval propagation within a rotation equation
based on geometric considerations, which could be extended to multiple loops [10]. Al-
though this algorithm works for any number of variables, it only gives the range for a
certain variable when another one is restricted to an interval and all other variables are
free. This limitation makes the algorithm of little interest, specially for more than 5
variables. We have not devised any way to extend this algorithm to the general case.

We have developed an algorithm based on spherical geometry which is able to perform
a nearly general interval propagation: it propagates the range of all except one variable
over another one. Therefore, the resulting interval is usually not the minimal one, except
for those cases in which at least one variable is not restricted.

Interval propagation can be used as a cut over the rotation equation. Consider a
box of variables of rotations. We can propagate the intervals of n — 1 variables over
the remaining variable and reducing its range of possible values. Observe that these
cuts use only the rotation equation. Therefore, they act similarly than direct cuts of
Section 6.1.1. Nevertheless, the interval propagation described here and direct cuts are
based on completely different basis, thus leading to different results. Usually, interval
propagation gives tighter enclosures, but it is also computationally much more expensive.
This trade-off between speed and tight enclosures should be carefully evaluated to obtain
a good performance.

6.2.1 Background and Definitions

The closure equation of any spherical mechanism (not necessarily orthogonal) can always
be expressed as the rotational equation of an n-bar mechanism (it is a particular case of
Remark 2.2):

n

F(¢)=[R(¢)Z=T1. (6.10)

i=1

Consider the geometric interpretation of this equation as an n-sided spherical polygon
with arcs of length 7/2 and exterior angles ¢; as described in Section 3.2.2. The rotation
equation (6.10) will hold for a vector of rotations ¢ = (1, ¢o, ..., ¢,) if, and only if, the
corresponding spherical chain closes (Figure 6.1).
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Figure 6.1: Spherical polygon generated by the z-axis with sides of length 7 and exterior
angles equal to ¢;.

We will name the vertices of this chain pg, p1, ..., pn, Where p; is the vertex between
arc ¢ and arc 7 + 1.

Definition 6.1 (Spherical Interval). We define a spherical interval [@,, ] as the set
of values between ¢, and ¢, considered as angles between 0 and 27, in counter-clockwise

sense (Figure 6.2).
N
N\
/
\/} [d)aa ¢b]
¢

a

Figure 6.2: A spherical interval, [¢,, ¢].

For instance, the spherical interval [150,120] includes all angles from 150 to 360 and
from 0 to 120 degrees.

Definition 6.2 (Spherical Region). A spherical region R’ is the set of possible posi-
tions of the end of arc t, assuming that ¢; € [@iq, di|, for i = s+ 1,...,t, and that the
polygon is open and fixed at the beginning of arc s.

For example, R? is the region swept by point ps (end of arc 3) with respect to arc 1
when ¢y and ¢3 vary in [¢ag, Pop] and [¢s,, 3] respectively (Figure 6.3).

Let us point out some properties about spherical regions:

2. ’Ré_l is a maximal arc of center p;,_; and “length” ¢, — ¢,.
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DPo

Figure 6.3: An example of a spherical region, R?.

3. Ri CR;if j <.
4. R! is always a region bounded by maximal arcs.

5. All points in R’ are possible centers for arcs R:™.

6.2.2 Outlook of the Algorithm

We will consider an interval propagation of variables ¢; (i = 2,...,n) over variable ¢.
Propagations over other variables can be achieved by simply shifting indices of the vari-
ables.

The basic idea of the propagation algorithm is to characterize exactly region R7. This
region includes all possible positions of p, when ¢; € [@iq, Pw), for i = 2,...,n. If the
starting point of the chain is not in this region (py ¢ R), then the spherical chain cannot
be effectively closed for those rotations. Otherwise, if py € RY, there are values for ¢,
that close the chain.

The problem is now to compute the range of possible values for ¢;. Region R}~
includes all possible positions for p,_;. But p,_; has to be at 7/2 radians from p,. Thus,
we can intersect a circle of radius 7/2 radians with R} ™" and p,_; will necessarily be in
this arc (we will name it R"™'). We can now compute the possible angles for ¢; (see
Figure 6.4 on next page). But this range of possible values is not the minimal range.
In other words, that variable ¢; has to be included in this range of possible values, is a
necessary but not sufficient condition for the spherical chain to close for the given ranges
of the other variables. The problem comes from the fact that all points in arc 7%’1"”_1 are
obviously possible locations for point p,_; (since R?~' € R?"!). But if we draw an arc
from some of these points to py, it will probably require ¢,_; to be out of its range.

The interval propagation over ¢; leads only to the exact range if variable ¢,_; is not
restricted; otherwise, the resulting range for ¢, is wider.
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Figure 6.4: Possible angles for ¢;.

6.2.3 The Overall Propagation Algorithm

The interval propagation algorithm can be summarized in the following steps:

1. Compute R}

2. IFpy & R}
THEN the chain cannot be closed
ELSE (po € RY)
a. Compute R}~
b. Compute R
c. Compute the range of possible angles for ¢,

Algorithm 6.1: Interval propagation in Spherical Mechanisms.

They key point of the algorithm is to efficiently compute the spherical region ’R{ (steps
1, 2.a. and 2.b.). We describe it in next section.

R7! is obtained by intersecting R?~! with a circle of radius 7/2 centered at po.
Note that, depending on the shape of R ', R" ! may consist of one or more disjoint
spherical intervals. The range of possible values for ¢; (step 2.c.) is then straightforwardly
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computed as the exterior angle between the possible arcs from 7U37f_1 to pp and the first
arc of the chain (Figure 6.4).

6.2.4 Computation of Spherical Regions

First, we need some definitions.

Definition 6.3 (Arc or Maximal Arc). We define a mazimal arc (or simply an arc)
as the connected subset of the intersection between the unit sphere and a plane through
its center.

Definition 6.4 (Center of an Arc). The center of an arc c¢ is a point on the unit
sphere, which is equidistant to all points of the arc. There are two diametrically op-
posed centers for each arc. For an oriented arc (an arc with an initial point p; and an end
point p.), we will consider the center the one that defines an angle in counter-clockwise
sense from p; to p, (Figure 6.5), when the sphere is seen from outside.

De

1

R
3\,/

Figure 6.5: A spherical arc and its center.

Equivalently, the center c of an oriented arc is a point over the sphere which is equidis-
tant to all points of the arc, such that

| o¢ op; ope | > 0,
where o is the center of the sphere.

Definition 6.5 (Spherical Quadrangle). The spherical region of the type R: ,, which
is delimited by four arcs (Figure 6.6), is called a spherical quadrangle.

b2

b3 C3
D4

Figure 6.6: A spherical quadrangle.
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We will define a spherical quadrangle by its four vertices (p1, pe, ps and p4) and the
four centers of the arcs (¢1, ¢a, c3 and ¢4), where ¢; is the center of arc p; p;11. However,
the contour is not enough to define a quadrangle; we also need to know which is the
interior of the quadrangle. Note that a quadrangle can be seen from two sides as shown
in Figure 6.7.

Figure 6.7: The same outline may define two spherical quadrangle.

We define the interior of a quadrangle as those points which see points p;, ps, ps and
p4 in counter-clockwise sense (Figure 6.7).

A spherical region can be a point, an arc, a spherical quadrangle or a connected set of
points with a more complex shape. In the latter case, the region can always be described as
the union of possibly overlapping spherical quadrangles. Now, we can represent a spherical
region as a set of quadrangles that cover completely the region and by an outline, i.e. a
set of arcs that cover completely the border. Some of the arcs of the outline, or parts of
them, can also be inside the region (Figure 6.8). The order of the arcs also determine the
region interior as in a single quadrangle.

(a) (b) (c)

Figure 6.8: A region (a), its outline (b) and a possible set of quadrangles covering the
region (c).

To check if a point is included in a region, we have only to verify that this point is
contained at least in one of the quadrangles that compose that region.

We will use spherical coordinates (Figure 6.9) to express the position of points over
the unit sphere.
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Figure 6.9: Spherical coordinates.

The algorithm for computing spherical regions generates them by progressively sweep-
ing all rotation variables in their ranges. It begins with an initial chain with all the
variables set to the lower limit of their interval: ¢; = ¢;,. Then it generates the region
Ry _,, which will be an arc. Rotating ¢,,—; to its higher limit (¢,_,), it generates R}._,,
which will be a spherical quadrangle. We can enlarge the region until we get R} by
successively sweeping all variables in their ranges.

Let’s assume that we have a region R} and we want to enlarge this region rotating
¢; to get R? ;. An easy way to do this is to rotate everything in the unit sphere (the
quadrangles and the initial chain) in order to put p; ; on the South pole, (0, —7/2). Then,
the rotation about p;_; of any point will only affect its first coordinate. To generate the
new region, we add to the sides facing left (the sense of rotation of ¢;) new quadrangles,
enlarging also the outline (Figure 6.10).

/= initial region

Figure 6.10: Generation of a new spherical region. Rotating the initial region around the
South pole ¢ degrees, quadrangles z;, 2o and 23 are generated.

Attention has to be paid to the arcs that have a maximum or a minimum with respect
to coordinate 6. If this happens, the arcs are divided into two arcs and only those that
face left lead to new quadrangles.
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The algorithm for generating spherical regions can be summarized as follows:

1. Generate the initial chain with ¢; = ¢;,

2. Change the coordinates in order to locate p,,_; at the South pole
Rotate p, ¢, degrees around the South pole and generate arc R} _,

3. Change the coordinates in order to locate p,_5 at the South pole
Rotate arc R]'_, ¢,_1 degrees around the South pole and generate quadrangle R} _,
Put R} _, into an empty list of quadrangles Z and its arcs in a cyclic ordered
list O (the outline)

4. FOR:=3TO n DO
a. Change the coordinates in order to locate p,_; at the South pole
b. Divide those arcs of the outline that contain maximums or minimums
c. FOR each arc of the outline that faces left (6; > 6.) DO
Generate a new quadrangle rotating the arc ¢,,_; degrees around the
South pole and include it in Z
Remove that arc from the outline O and add the three new arcs

of the new quadrangle

Algorithm 6.2: Generating a spherical region.

Key Points and Implementation

Although the general ideas of the propagation algorithm are not complicated (Sections 6.2.2
and 6.2.4), the implementation requires some attention.

We enumerate here the main subtasks we need to solve and point out some of their
key points:

1. Changing coordinates. Locating the rotation point at the South pole makes the
generation of new quadrangles much easier. However, this implies a change of coor-
dinates of all previously computed quadrangles and of the original chain. Minimizing
here the number of computations is essential.

If we want to change the coordinates of point p to put ¢ at the South pole, we apply
the following change of coordinates:

Py = atan2 (sin(p¢ — gg) , COS gy * tan pg — sin gy * cos(py — q¢))
Pp = — arcsin (cos o * coS(Py — p) * COS Py + sin gy * sin pg) .
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2. Dividing arcs at mazimums or minimums. We have to consider the case of an arc
with a minimum and a maximum, although it seldom happens in practice.

3. Generating new quadrangles. This is an inexpensive operation, since only the second
coordinate of the new arcs is affected. The center of the new horizontal arcs will be
the South or north pole.

4. FEnlarging the outline. This is one of the trickiest points. Four different cases have
to be considered in order to avoid arcs of the outline to be in the interior of the
spherical region, which would generate useless quadrangles.

5. Verifying whether a point is in the interior of a quadrangle. We locate successively
the centers of the arcs at the South pole and verify whether the point is under or
above the parallel of the arc.

6. Computing arc ﬁ?_l. We put pg at the South pole and look for those arcs of the
outline that intersect the equator. Note that R?~' may consist of one, two or more
disjoint spherical arcs.

7. Computing the range of ¢,. It is straightforward from 7U€’1’_1.

This interval propagation algorithm has been implemented in C and tested in several
spherical mechanisms. The propagation does not result in the smallest possible interval,
but by iterating it for all variables gives usually tight enclosures of the actual range.

Used as interval cuts for the rotation equation of an n-bar mechanism, this interval
propagation does effectively cut the box of variables of rotation. Moreover, it gives tighter
enclosures of the actual range of possible values for the variables than applying direct cuts
over the rotation equation.

However, when solving an inverse kinematics problem of a spatial mechanism, the
influence of cuts acting only over the rotation equation is small. Direct cuts are useful
since they require few computations, but cuts derived from an interval propagation are
computationally too expensive. Experiments show that it is not worth the time required
by them for the small improvement achieved in front of direct cuts.

6.3 Accurate Interval Evaluation of Matrices Ag ()

It has already been mentioned that one of the major problems in interval methods is
the overestimation of the actual range of possible values when evaluating a function with
one or more variables appearing more than once. This is exactly the case in the interval
evaluation of matrices Al(¢), which appear both in direct cuts and in the parametric
equations. In this section we introduce an exact interval evaluation for the product

X

R(#)Z |y | - (6.11)
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This product appears repeatedly in the direct cuts derived from the translation equation
(Sections 6.1.2 and 6.1.3) and also leads to a more accurate evaluation of matrices A/(¢)
without much extra computing.

A natural evaluation of (6.11) results in:

0 -1 0
= | cos ﬂ 0 —sin g
sin g 0 cos ?,

—Y
= gcosﬂ_ —gsing
gsing_ + gcosﬂ_

o 1o I
N8

The first component, a, yields the exact value, but there is an overestimation in the
evaluation of b and ¢ since ¢; appears twice in each expression. We can regard both
expressions as particular cases of

p=msing+mncose . (6.12)

Our goal is to obtain the exact range of p evaluated over a box < m,n, ¢ >. Since p is
linear with respect to m and n, the maximum and the minimum values of p must lie in
one of the four edges of the box corresponding to the extremes of m and n (Figure 6.11).

L
m and 7
/ m and 7
¢’v 777777 = m
"d\\q T @andﬁ
e
¢ m and

Figure 6.11: Box < m,n,$ > and the edges where the maximum and minimum values of
p (6.12) have to be.

Let us analyze the upper right edge corresponding to 7 and 7. Equating the deriva-
tive of p with respect to ¢ to zero,

9p =M cos¢p— Wsing =0,

9¢

gives us two extremes for ¢:

¢e1 = arctan % and ¢, = arctan % + 7.
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The exact range of p for that edge will be the convex hull of p evaluated at E), z, De1
(only if ¢e1 € ¢) and B¢y (only if ¢es € ):

b =p(. 7, 9)Up(@, 2, 9)
Up( W, ¢e1) (only if ¢e1 € ¢)
Up(TE, T, dea) (only if ey € ?) .

Similarly, we obtain the range of p for the other edges. The exact range for p over the
whole box < m,n, ¢ > is then the convex hull of the ranges of p for the four edges:

The computation of the exact range of p = msin ¢+ ncos ¢ can be summarized in the
following algorithm:

p=10
FOR ¢ = 7 and ¢ = ' DO
FORb =7 andb—WDO -
Q—QUP(%% Q)Up(a,b, ?)
¢, = arctan —

IF ¢ € ¢ THEN p=pUp(a,b,d.)
IF ¢ +m € ¢ THEN p=pUp(a,b, ¢, + )

Algorithm 6.3: Exact range of p = msin ¢ + ncos ¢.

Observe that this procedure gives the exact range of the product (6.11) only if the
components of the vector (z, y and z) are independent.

When evaluating A7(¢), we have products of the type (6.11) with components which
are dependent. Therefore, the evaluation will not give the exact range, but an enclosure
for Al(¢). However, this enclosure is much tighter than the one obtained using its natural
evaluation.

The interval evaluation of A(¢) involves j — i intermediate matrices A¥(¢). Each of
these matrices is a rotation matrix, with all its elements in the interval [—1, 1]. However,
due to overestimation, we will obtain intervals including values outside [—1,1]. Thus, we
normalize each of the intermediate matrices A¥(¢) by intersecting them with the unit
matrix
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Using this accurate interval evaluation of matrices AJ(¢) in the overall algorithm
described in next chapter, we reduce the number of processed boxes between 20% and
50%. The reduction is higher in large boxes, where overestimation is more important.

6.4 Accurate Interval Evaluation of Vectors w(¢,d)
and w!(¢,d)

The definitions of w{(¢,d) and wi(¢,d) given in Section 6.1.2 are not suitable for a
natural interval evaluation. In the expressions given there, (6.3) and (6.4), many of the
matrices AJ(¢) use the same rotation matrices and the corresponding rotation variables
appear several times. For instance, for n = 5,

dy dy ds
wi(p,d) =A5(¢) | 0 ) +A3(¢) | 0 | +A3(e) | O
0 0 0

Here, ¢3 appears twice; in A3(¢) and in Aj(¢). A natural interval evaluation of this
expression will lead to an overestimation of w%(¢,d).

(¢,
We rewrite here the definitions of w{(¢,d) and w}(¢,d) in order to minimize the
appearances of each variable:

' d; ' . di—1 ' . di—o
wo(p,d) = | 0| + (A1(e)) 0 |+ (AZ3(e)) 0 |+
0 0 0
dz',g . d2 ¢ dl
(A3 () 0 |+ +(A%() || 0| +(Al(9) | O
0 0 0
dit1 diyo dit3
wi(p,d)=1| 0 | +AfTi(9) 0 | +A5(e) 0 ]+
0 0 0
dn—l dn
A3 () 0 A l(o) | 0O
0 0

Each of the groups

and (A; (d)))t Yy

Al(o)

IS S

can be evaluated with the algorithm described in the previous section in order to minimize
the overestimation effect.



Chapter 7

Implementation and Experiments

Solving positional inverse kinematics problems using interval methods can be done in
a wide variety of ways. First, we can choose as closure equation any of those derived
in Chapters 2 and 3, or any other one that can be found in the literature. Second,
the obtained system of equations can then be solved by any of the variants of general
global interval methods summarized in Chapter 5, together with specific interval methods
developed for the closure equations as those described in Chapter 6. Moreover, interval
methods usually rely on a large number of heuristic decisions, which can be determinant
in the efficiency of the algorithm.

A complete and exhaustive experimental study of interval methods for the solution of
inverse kinematics problems is out of the scope of this thesis. As already mentioned, the
objectives of this work are more on the theoretical side. However, this work would be
incomplete without a chapter dedicated to an implementation of the theoretical results in
both the kinematic analysis of spatial mechanisms and the specific interval methods for
the derived closure equations.

This chapter should be seen as a proposal for a simple algorithm for solving inverse
kinematics problems of single-loop, non-redundant spatial kinematic chains. It has been
developed in order to be as effective and as fast as possible. However, still much ex-
perimental research can be done in the applied interval methods themselves, in the set
of closure equations used and in the involved heuristics, which would probably lead to
important improvements in the overall efficiency of the algorithm. In particular, many
ideas from the general algorithm in [24] have been avoided here for the sake of simplicity.
Their inclusion in our algorithm may improve its efficiency.

This chapter is divided in three sections: the first one describes the derived algorithm,
the second section is devoted to its implementation, and the last one presents some ex-
perimental results.
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7.1 The General Algorithm

The derived overall algorithm is summarized here. It combines an interval Newton method
over the parametric rotation and translation equations (Table 3.1) with our direct cuts and
a branch-and-bound strategy, in order to isolate all solutions into boxes as small as desired.
Details concerning the interval Newton method and direct cuts appear in subsequent
sections. The algorithm solves inverse kinematics problems for single-loop, non-redundant
mechanisms, although it can be straightforwardly extended to more general cases.

INPUT: An initial box x,, the maximum allowable number of subboxes M to be
processed, and a domain tolerance €.

OUTPUT:  One of the following:

1. If the search was successful, a list R of boxes with relative diameter
smaller than ¢, such that all solutions are necessarily contained in
these boxes.

2. If the search did not complete with M boxes processed, a list R as
above and a list £ of boxes that have not been fully analyzed.

k=1
FOR sol=1 to 2
1. Place the initial box x, onto an empty list L.
2. DO WHILE £ #0 AND k£ < M.
k=Fk+1.
Remove a box from L and place it in the current box x,.
Reduce x, using direct cuts (Algorithm 7.2).
Reduce x, using an interval Newton method (Algorithm 7.3) over the
parametric equations for solution sol.
e. IF c. or d. proved that x, could not contain any roots THEN
CYCLE loop 2.
f. IF ||w(x,) ||rer < € THEN
Insert x, into R.
ELSE
Bisect x, (Algorithm 7.4) and insert both boxes into L.
END DO
END FOR

o0 oo

Algorithm 7.1: Overall branch-and-bound algorithm for the solution of inverse kinematics
problems.

The input of the algorithm is an initial box x,, the desired accuracy € and the maximum
number of boxes to process M. The box x, is described by means of an interval vector
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of rotations and an interval vector of translations. Most of the elements of these vectors
are degenerate intervals of zero width corresponding to the geometry of the mechanism.
The other elements are those representing the configuration of the mechanism (rotations
and translations of joints) and are intervals whose limits are the allowed range of joint
motions.

The algorithm is based on a simple branch-and-bound strategy. Bounding is done in
two steps: first the box is reduced using direct cuts (Step 2.c) and then it is reduced with
an interval Newton method (Step 2.d).

Actually, the inverse kinematic problem is solved twice: once for the first solution
of the parametric closure equations and once for the second solution (Equation (3.7)).
In Section 7.1.6 we suggest a possible improvement to avoid having to repeat the whole
branch-and-bound process.

The reason for applying first direct cuts and then an interval Newton method comes
from the efficiency of these methods for bounding boxes depending on their relative size.
Newton methods are based on a Taylor interval extension, which gives usually tighter
bounds in small boxes (Section 5.3.2). On the other hand, direct cuts are based on a
natural evaluation, working better in larger boxes. Moreover, our direct cuts are much
faster than an interval Newton method, making them useful for quickly eliminating boxes
far from solutions, without requiring the computation of an interval Newton method.

This strategy is based on the one described in [67] for interval cuts (Section 5.9). Our
direct cuts and interval Newton methods are analogous to Newton cuts and combined
cuts, respectively. The former are more efficient at the beginning of the bounding phase,
while the latter work better for small boxes.

We have also tested to apply again direct cuts after the interval Newton method.
However, direct cuts seldom reduce a box after an interval Newton method did it. And if
they are able to, they do not reduce it significantly.

Existence and uniqueness are not verified in this algorithm (in Section 7.1.4 we give
some considerations on these properties). Therefore, although the resulting boxes will
contain necessarily all solutions, some of them could include no solutions at all or even
they could include two or more solutions. However, taking e small enough, we never got
false boxes containing no solutions in our experiments (refer to Section 7.3).

If the search exceeds the number of allowed boxes M, we simply stop. The output
will consist of boxes in R, whose width is smaller than e, which will probably contain
solutions, and larger boxes in £ that have not been fully analyzed. Note that, if the
algorithm finished with sol = 1, then only the solutions corresponding to the first solution
of the parameterized closure equations are included in the boxes in R and £. There may
be some solutions, which are neither in boxes in R nor in boxes in £, which would be
obtained for sol = 2.
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7.1.1 Direct Cuts

As explained above, direct cuts are first applied in the bounding phase because of its
simplicity and its ability to cut large boxes.

The process of reducing a box using direct cuts (Step 2.c) is described in the following
algorithm:

INPUT: A box x.

OUTPUT: One of the following:
1. The same box x if it could not be reduced.
2. A reduced box x if it could be reduced.
3. The status “has no root” associated with box x.

FOR var =1 TO nvar (number of variables)
1. (cut variable var using the rotation equation)
IF var is a rotational variable
Cut x in the direction of variable var using the rotation equation
(Section 6.1.1, Equations (6.1) and (6.2)).
2. (cut variable var using the translation equation)
FOR first =1 TO n (number of bars)
IF var is a rotational variable
Cut x in the direction of variable var using the translation equation
beginning with bar first (Section 6.1.2, Equations (6.3) to (6.6)).
ELSE (var is a translational variable)
Cut x in the direction of variable var using the translation equation
beginning with bar first (Section 6.1.3, Equations (6.8) and (6.9)).
END FOR

END FOR

Algorithm 7.2: Reducing a box with direct cuts.

For the computation of direct cuts we will use the accurate interval evaluations of
matrices A(¢) and vectors wi(¢,d) and w’(¢,d) described in Sections 6.3 and 6.4,
respectively. Refer to Section 6.1 for a detailed description on direct cuts.

Observe that this algorithm does not iterate direct cuts until no more reduction is
achieved. Each variable is cut only once with the rotation equation (if the variable is a
rotation) and once with each of the n possible cuts with the translation equation (n is
the number of bars of the n-bar mechanism).

Boxes can be reduced much more iterating this algorithm. Sometimes, direct cuts
are able by themselves to isolate boxes as small as desired with the solutions. However,
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experiments show that the reduction after the first or the second iteration decreases
significantly and the convergence becomes extremely slow. In general, it is more efficient
to apply an interval Newton method after the first reduction by direct cuts.

Table 7.1 shows the performance (number of bisections and CPU time) of the example
in Section 7.3.1 when iterating direct cuts more than once. Observe that the number of
bisections decreases and the CPU time increase with the number of iterations. In some
cases, the time-optimal number of iterations is two, but in general one iteration is enough.

number of direct cuts 1 2 3 4 5 6 7 8 9 10
number of bisections | 197 137 133 129 125 123 123 123 122 120
CPU time 757 767 817 827 827 837 84”7 86”7 8%’ 96”

Table 7.1: Number of bisections and computation time versus direct cuts iterations.

Actually, direct cuts are useful to reduce asymmetric boxes, i.e. they are usually able
to significantly cut boxes where a variable has a much larger width than all the others. In
these cases, direct cuts tend to reduce the box in the direction of the variable with larger
width, and the box becomes less asymmetric.

7.1.2 Interval Newton Method

An interval Newton method is applied in Step 2.d. of Algorithm 7.1 after reducing the
box using direct cuts.

An interval Newton method could work over any set of closure equations defining the
mechanism. For instance, we could take as rotation equation the original one obtained
from the factorization (Section 2.4, Equation (2.3)),

F(¢) = [[R6)Z =T, (7.1)

or the equations derived from the parameterization of the SM™~3 (Equation (3.7)):

bno = atan2(+ag, Fas)
$n1 = TFacos(—ai)
On = atan2(Faiq, Fa13) -

Both equations are equivalent except for the singularities of the parameterization, where
the second one is not valid.

As translation equations, we can use any of the variants described in Chapters 2 and 3;
for instance:

e The original translation equation derived from the factorization (Equation (2.4)):

T(¢,d) = N (¢)d =0.
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e The translation equation of Section 3.3.2 (Equation (3.15)):

VF(¢)d=0.

e The parameterized translation equation in terms of bar directions (Equation (3.20)):

n n
da:—zi‘nznbn”d dy=— 3 IBeminel, (7.2
i ‘nanbnc‘ i—1 |nanbnc‘
z:,éabc i1#£a,b,c

e The first set of parameterized translation equations in terms of rotations (Equa-
tion (3.35)):

dn2
dn—1

oo Ko

n—3 [/n—i—1
SINETET
=1 k=1

dy

e The second set of parameterized translation equations in terms of rotations (Ta-
ble 3.1):

dp—o -3 d;

dns ¢n12 (Ar2(9))" | 0
dn = 0

Several reasons have pushed us to choose the parametric rotation and translation
equations of Table 3.1 in front of the other possible closure equations.

The main reason is that the rotation equation (7.1) is expressed as a matrix equation
consisting of nine scalar equations. As explained in Section 3.2, we cannot take three
independent equations from these nine ones. However, any two elements of the diagonal
of F(¢) equated to 1 are equivalent to considering the whole rotation matrix equation
(Remark 3.1). Problem arise when the derivatives of these equations with respect to any
variable are identically zero in points of the SS™ 3, which is obvious from Lemma 3.1.
Thus, the zeros of the equations of the diagonal of F(¢) correspond to maximums or
minimums of the function. It is not suitable to use an interval Newton method over
equations whose derivatives are zero in the solutions for two reasons:

e the Jacobian or slope matrix tends to zero in small boxes including a solution,
which entails problems both in the computation of the preconditioner and in the
convergence of the Gauss-Seidel method; and

e existence and uniqueness usually cannot be verified.
Moreover, we have explicit expressions for the derivatives of the parameterized closure

equations (Table 3.1), which can be directly used to compute the Jacobian or slope matrix,
without requiring automatic differentiation.
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The fact that these equations are not valid for a singularity of the parameterization
does not cause any problem, because we can always choose a trivial parameterization
provided that the n-bar mechanism is not planar.

We do not use the translation equations in terms of bar directions (7.2) since our
variables are rotations. Getting bar directions from rotations implies an overestimation
of the interval evaluations due to repeated variables.

Finally, we have chosen the second set of parameterized translation equations in terms
of rotations in order to have as simple expressions as possible and, again, to avoid over-
estimation due to multiple appearance of the variables.

The process of reducing a box with an interval Newton method (Step 2.d of Algo-
rithm 7.1) is described in the following algorithm:

INPUT: A box x and the variable sol, taking the value 1 or 2, depending
on whether we use the first or the second solution of the rotation
equations (3.7).

OUTPUT:  One of the following:
1. The same box x if it could not be reduced.
2. A reduced box x if it could be reduced.
3. The status “has no root” associated with box x.

m=0
DO WHILE (enough reduction) AND m < 10
1. m=m+1
2. Compute the Hansen slope matrix in box x according to Section 5.5.2
using the expressions of the derivatives of Table 3.1
3. Evaluate the constraint equations in the center of the box.
4. FOR var =1 TO nwvar (number of variables)
a. Compute the preconditioner row Y.
b. Reduce the range of variable var with a Gauss-Seidel iteration
(Equation (5.14)).
END FOR
END DO

Algorithm 7.3: Reducing a box with an interval Newton method.

The main loop is iterated until no relevant reduction is achieved. Experimental results
have shown that the efficiency of the overall algorithm increases if boxes are split when the
convergence of interval Newton method becomes too slow. Two criteria have been taken
to measure the reduction of a box: the mazimum reduction and the average reduction.
The maximum reduction considers only the reduction of the variable that has been cut the
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most; the average reduction is the mean value of the reductions of all variables, considering
as variable those which are not of zero width. It seems to be a good choice to impose a
maximal reduction greater than 1% in order to iterate again the main loop.

However, if the number of iterations increases too much, it is worth splitting the box,
although still a maximal reduction greater than 0.01 can be achieved. We have limited
experimentally the number of iterations to 10.

Despite the apparent simplicity of the algorithm, some of the steps need a deeper
insight. Let us analyze them step by step:

Step 2. The Hansen Jacobian matrix is computed as described in Section 5.5.2. We
use the expressions for the derivatives given in Table 3.1. In order to minimize the
overestimation effect, we evaluate matrices A’(¢) using Algorithm 6.3 in Section 6.3.

In our experiments, we always use the sequence of the variables as in Equation 5.12.
However, particular orders may give better results than others. In [24, p. 34|, Kearfott
proposes two heuristics for choosing the sequence of the variables in order to have a Hansen
slope matrix leading to sharper inclusions. The idea is to expand last with respect to the
variables leading to wide intervals, that is, the variables for which the scaled partial
derivative widths differ the most from the corresponding point approximation widths.

The Hansen slope matrix is computed for each Gauss-Seidel iteration. However, we
could use the Hansen slope computed for the previous iteration, which is an enclosure of
the Hansen slope that would be obtained for the present box. We loss in efficiency, but
we do not have to recalculate the Hansen slope at each iteration. This strategy has been
said to be effective in some instances, but in our experiments, it rather slowed down the
whole process.

Step 3. The evaluation of the constraints are based on the rotation and translation
equations of Table 3.1. Note that the evaluation of the constraint equations in the center
of the box could actually be computed using floating point arithmetic. However, if we
want to bound roundoff errors, we should use interval arithmetic. Here, we do not need
an accurate evaluation of matrices Ag((ﬁ), since the variables are all of zero (or nearly
zero) width.

Step 4.a. The preconditioner row Y,,, is computed as a width-optimal C-preconditioner,
using the structure given in Section 5.7.3. The resulting linear programming problem can
be solved using the simplex method. We have adapted the algorithm described in [43] for
our case. This algorithm does not take into account the cases when the simplex method
does not converge (this happens less than once out of 1000 executions). In those cases,
we use the inverse midpoint preconditioner described in Section 5.7.1. If the center of the
Jacobian matrix were to be a singular matrix, we would not use any preconditioner; but
it never happened in practice in our experiments.



7.1 The General Algorithm 103

Step 4.b. Since we are using a C-preconditioner, we should never get a denominator
including the origin and, thus, each Gauss-Seidel iteration will give a single interval.
However, this would be true for a real C-preconditioner. Since we are introducing some
heuristics in order to compute the preconditioner as a linear programming problem, we
could get a denominator including the zero, at least theoretically, but we never got it in
practice. Moreover, if the simplex method does not converge, we would use the inverse
midpoint preconditioner, which could also lead to a denominator including the origin.
Therefore, we have to consider this case and use extended interval arithmetic as explained
in Section 5.4.3. In those cases, we could split the box, probably increasing the overall
efficiency of the algorithm. However, since these cases are extremely rare, we take the
convex hull of the resulting interval.

7.1.3 The Bisection Algorithm

The overall algorithm 7.1 comes to bisection when direct cuts and the interval Newton
method have not been able to reduce the box below the specified accuracy. Bisection
divides the box into two subboxes as described in Section 5.8.2. We use here the following
simple algorithm:

INPUT: A box x.
OUTPUT: Two boxes x! and x2, whose union is the input box x.

1. Choose the bisection coordinate zy.

| . oz =

<T (zk‘l‘fk
- 2

Algorithm 7.4: The bisection algorithm.

The box is divided across the bisection coordinate in two subboxes of the same size.
We choose as bisection coordinate that of maximum width. However, this is not always
the most effective at reducing overestimation or producing boxes in which the Gauss-
Seidel method will converge. In Section 5.8.2 we describe an heuristic for choosing the
bisection coordinate: the mazimum smear heuristic [27].
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7.1.4 Existence and Uniqueness

We have already said that existence and uniqueness are not verified in algorithm (7.1).
Existence could easily be verified without extra computing according to the slope-based
existence theorem (Theorem 5.2). However, in our algorithm, we would only need to check
for existence in the final boxes. If we perform a Gauss-Seidel sweep in a final box and
the resulting box is completely included in it, we know that there is at least a solution in
that box (there may be more). Otherwise, there may or may not be a solution.

It is a nonsense checking for existence in the middle of the process. If we knew that
there is a solution in an intermediate box, we would have to keep on reducing it in order
to isolate it. And if we could not proof existence, we would have to keep on reducing
too. The existence test in an intermediate box is useful if we make use of approximate
roots and e-inflation (Section 5.8.4), isolating the single roots using another —not global—
method for solving systems of nonlinear equations (i.g. a gradient based method).

Uniqueness verification with slope matrices (as is our case) is only possible in certain
contexts, such as with the e-inflation technique, and cannot be used in our algorithm.
Nevertheless, we can always perform a last interval Gauss-Seidel iteration with a Jaco-
bian matrix over the final boxes an try to verify existence and uniqueness according to
Theorem 5.1. However, in most practical applications, it does not matter if in the result-
ing box (of width smaller than the required accuracy) there is a single solution or if it is
double.

Therefore, although the resulting boxes will contain necessarily all solutions, some
of them could include no solutions or could include two or more solutions. However,
with a small enough tolerance, we never got false boxes containing no solutions in our
experiments (refer to Section 7.3).

7.1.5 Tolerance and Precision

An interesting property of the proposed algorithm is that high precision does usually
not increase significantly the computation time. For instance, let us consider the second
example in Section 7.3.1. The difference in CPU time if we require boxes of width smaller
than 10~% or smaller than 107!2 is less than 0.5 seconds, while the whole process takes
1°15”.

This fact is due to the convergence of the interval Newton method. Once a box
containing a solution has been reduced to a certain size, the interval Newton method
converges without more bisections. This size depends on the problem, but is usually
much larger than the specified tolerance. Then, when asking for higher precision, the
number of processed boxes does not increase and the computation time is nearly the
same.
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7.1.6 Avoiding the Second Solution

One of the main drawbacks of our algorithm is that it has to be repeated twice, once for
each of the two solutions of the parametric rotation equation. However, the parametric
equations are only used in the interval Newton method. Thus, when reducing or eliminat-
ing an intermediate box with an interval Newton method, we may have eliminated roots,
which would be obtained with the other solution of the parametric equations. That is the
reason for having to solve the problem twice.

On the other hand, when reducing or eliminating a box with direct cuts, we never miss
any solution, since we are using the original closure equations. It could be interesting to
take advantage of the eliminated parts by direct cuts so that we could not have them for
the second solution of the parametric equations.

A possible algorithm could try to reduce each box first with direct cuts. The resulting
box would then be reduced with an interval Newton method using the first solution of
the parametric equations. If it eliminates the box, we could label it as a candidate to
only have roots corresponding to the second solution of the parametric equations. From
then on, we would only need to reduce that box with the second solution and we could do
similarly for the other solution. If the box were not eliminated by any of the two solutions,
we could duplicate the box, so that each box is reduced only by one of the solutions, or
we may take the convex hull of the two reduced boxes and keep on reducing the box with
both solutions. This choice could be taken depending on the relative reductions achieved
by both solutions.

At first glance, this could improve our algorithm, but this idea should be more ex-
tensively developed and tested to fully prove it. Actually, we would avoid reducing the
same box (or part of it) with direct cuts twice. However, direct cuts are computationally
simple and not much time consuming, and it is not clear whether the strategy proposed
in this section would lead to any important improvement.

7.1.7 Singularities and Redundant Mechanisms

It is worth noting that Algorithm 7.1 also works for singular points. For instance, in a
singular position of a PUMA 560 manipulator, there are infinite solutions for its inverse
kinematics problem: the solution is actually a 1-dimensional self-motion manifold. Our
algorithm would give as resulting boxes in R a discretization of this self-motion manifold.
In practice, if we require a high or even a medium precision, we would require a large
number of boxes and the algorithm becomes extremely slow.

This is also the case for redundant mechanisms. The solution of the inverse kinematics
problem is also a manifold, whose dimension depends on the redundancy of the mecha-
nism. Our algorithm could, theoretically, give a discretization of the self-motion manifold.
But again, the number of boxes may be huge, mainly if the degree of redundancy is high.



106 Implementation and Experiments

7.2 Implementation using BIAS/PROFIL Interval Li-
braries

Algorithm 7.1 has been implemented in C++ using BIAS/PROFIL interval libraries.
BIAS/PROFIL are portable C++ class libraries developed by Olaf Kniippel from the
Technische Universitit Hamburg-Harburg (Germany). BIAS/PROFIL introduce new
data types as vectors, matrices, intervals, interval vectors and matrices, integer vectors
and matrices, and lots of operations between them. Additionally, several commonly used
routines as a basic linear interval system solver, etc., are also included, as well as some
basic list utilities.

The philosophy of these libraries is similar to that of INTLIB, a FORTRAN-77 package
developed by Kearfott [23]. The idea is to offer totally portable routines upon which more
efficient machine-specific versions can be based.

In Kniippel’s libraries, the set of basic routines is named BIAS, while the set containing
the higher-level functions is called PROFIL. All interval operations of PROFIL are based
on BIAS with the advantage that PROFIL is independent of the internal representation
and the implementation of the interval types.

The package is portable, except for a single small assembler language routine that is
called to change rounding modes; versions of this routine are available for a large variety
of machine, including Sun, PC, HP workstations, etc.

The package is available via anonymous ftp at
ti3sun.ti3.tu-harburg.de/pub/profil/

An extensive documentation can be found in
http://www.ti3.tu-harburg.de/Software/PROFIL/Profil.texinfo_toc.html.

Reports 93.3 [28], 93.4, 93.5 and 95.4 of the Technische Universitidt Hamburg-Harburg
also deal on the subject and are available via ftp at

ti3sun.ti3.tu-harburg.de/pub/reports/

The general structure and main features of the BIAS/PROFIL package are described in
Appendix C, together with some tips on its installation, which cannot be found elsewhere.

The implementation has been done in order to validate the theoretical results of this
work. However, the code has not been optimized, but rather organized (or maybe dis-
organized) in order to allow to perform different experiments in a straightforward way.
Thus, there is plenty of room for improvements.

We have been running the program in a SUN Ultra 2 2300 Creator with a 296 MHz
processor. The CPU times given for the experiments in next section correspond to this
machine.
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7.3 Experimental Results

We have tested the implementation of Algorithm 7.1 in kinematic chains with 6 degrees-
of-freedom (rotational and translational d.o.f.). Some examples of the inverse kinematics
of five different mechanisms are shown next. They include:

an industrial manipulator (a PUMA 560) for three different poses of the end-effector;

a particular 6R mechanism, also in three different configurations;

a Stanford manipulator in the same configuration as in the example in [48];

an RPRRPR manipulator in the same configuration as in [48] (originally from [46]);
and

the inverse kinematics problem for a 7R closed mechanism (the same example of
Duffy [14] and Lee [30]).

For each of these examples, we give the number of branchings, the number of boxes
eliminated by direct cuts and by an interval Newton iteration, the average sweeps of the
interval Newton methods and the required CPU time. For all examples we require the
resulting boxes be of width smaller than 1 x 1075. In all cases, the resulting boxes include
all solutions (8, 6, 4 or 2 depending on the case).

7.3.1 A PUMA 560 Manipulator

We use 14 bars to describe a PUMA 560 and 3 more bars to close the chain. The vectors
of rotations and translations we have used for representing a PUMA 560 are:

¢ :(9Oa 015 —90, 02, 1805 035 905 045 905 055 905 065 905 O: ¢155 ¢165 ¢17)
d =(0,0,0,0,432,149.098, —20.5, 433, 0,0, 0,56.5, 0, 0, d15, d1s, d17)

Note that 12 bars would be enough for a 6R mechanism according to Remark 2.1. How-
ever, we have used here 14 bars in order to maintain the same reference frames used by
the Denavit-Hartenberg parameters.

The last three bars close the kinematic chain and represent the end effector’s pose
with respect to the base. The values for these three bars can be obtained from the end
effector’s position as explained in Appendix A.

The results for three different end-effector’s poses are shown in Table 7.2.
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configuration branching direct Newton avg. New. CPU
cuts sweeps  time

¢=(...,195,90,335) 236 159 71 1.88 1'24”

d=(...,—780,—15,430)

¢ = (...,200,56,305) 197 154 37 240 1157

d=(...,—370,600,—550)

¢=(..,178,52,279) 328 282 40 1.78 1°42”

d=(...,340,—-200,615)

Table 7.2: A PUMA 560 manipulator.

7.3.2 A Particular 6R Mechanism

Most industrial manipulators are of special geometries. In order to validate the algorithm
for any general mechanism, we have tested it with many randomly generated mechanisms.
This example corresponds to one of them, in particular it is a 6R open mechanism repre-
sented with 12 bars. Three more bars are used to close it. The randomly chosen vectors
of rotations and translations are:

¢ :(903 015 903 025 903 035 903 04, 9(]’ 05’ 90a 06, ¢13a ¢14a ¢15)
d :(57 2’ 7a 4) 8a 07 2: 07 12) 157 6: 37 d13a d14a d15)

configuration branching direct Newton avg. New. CPU
cuts sweeps  time

¢ =(...,200,15,85) 1636 1484 152 1.68 6’14”

d=(...,9,0,7)

¢ =(...,300,340,5) 1983 1804 179 1.79 752"

d=(...,1,7,5)

¢ =(...,20,30,340) 1874 1771 103 1.24 6’197

d=(...,6,8,10)

Table 7.3: A particular 6R mechanism.

7.3.3 A Stanford Manipulator

In Rao’s paper [48], an example is given for a Stanford manipulator. We reproduce here
the same example solved with our algorithm in order to compare the results. We use
a 12-bar mechanism to represent a Stanford manipulator, with three more bars to close
it. These three bars have been calculated to get the same end-effector’s pose as in Rao’s
paper. The vectors of rotations and translations are:

& =(61, 90, 6, 270, 180, 180, 64, 90, 5, 270, 65, 180, 269.554, 126.53, 170.919)
d =(0,0,2,0,ds,0,0,0,0,0,4,0, —7.36145, —2.19932, 1.06964)
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We have considered two cases. The first one searches for solutions in the same box as
in Rao’s paper and finds the same two solutions. In the second case, we search the whole
space (the rotations ranging from 0 to 360 degrees) and get the four possible solutions.

box branching direct Newton avg. New. CPU

cuts sweeps time
Rao’s box 16 13 3 2.19 6”
whole space 58 50 6 1.799 19

Table 7.4: A Stanford manipulator.

In Rao’s paper [48], 19,440 bisections are needed to isolate the two solutions using
Krawczyk’s method [37]. With our algorithm, we reduce the number of bisections to 16.
This dramatic reduction is due to several factors:

e we use the interval Gauss-Seidel method, which usually converges much faster than
the Krawczyk’s method,

e we use optimal preconditioners, and

e we first reduce the box using direct cuts.

7.3.4 An RPRRPR Manipulator

We consider here an RPRRPR manipulator, which appeared originally in [46]. This
example is also solved in [48] using Krawczyk’s method. We reproduce here the same
example solved with our algorithm, using a 12-bar mechanism with three more bars to
close it. These three bars have been calculated to get the same end-effector’s pose as in
Rao’s paper. The vectors of rotations and translations are:

¢ = (61,314.989,244.973,257.922, 03, 202.976, 0,4, 226.009, 233.973, 215.008, 6, 226.983,
324.475,130.632,216.495)

d = (0.21,1.46, ds, 0.56,0.29, 0.38, —0.54, 0.56, ds, 1.08, 0.48, 0.67, —2.11931, 1.37138,
2.81638)

We have considered two cases. The first one searches for solutions in the same boxes
as in Rao’s paper and finds the same two solutions. In the second case, we search the
whole space (the rotations ranging from 0 to 360 degrees).



110 Implementation and Experiments

box branching direct Newton avg. New. CPU

cuts sweeps time
Rao’s first box 106 54 53 3.56 51”
Rao’s second box 40 3 38 3.87 247
whole space 5809 4879 930 1.70 2842”

Table 7.5: An RPRRPR manipulator.

In Rao’s paper [48], 3,350 and 9,584 bisections are needed to isolate the two solutions
using Krawczyk’s method [37]. With our algorithm, we reduce the number of bisections
to 106 and 40 from the same boxes.

7.3.5 Duffy’s TR Example

In [14], Duffy solved the inverse kinematics for a 7R closed mechanism as example of its
results. 8 years later, Lee used the same example to corroborate his results [30]. We have
chosen the same example here, which can be represented by a 14-bar mechanism with the
following vectors of rotations and translations:

& =(61,260, 6, 273, 63, 300, 84, 300, 65, 273, 05, 260, 6, 215)
d =(1.0,0.9,1.2,1.1,0.8,1.5,2.0,1.5,0.8,1.1,1.2,0.9, 1.0, 0.5)

We give here the results for a single value of 67:

configuration branching direct Newton avg. New. CPU
cuts sweeps time
6; = 30 11264 9977 1284 1.53 38°25”

Table 7.6: Dufty’s 7R example.

Although there are no apparent differences with the other examples, in these last two
cases the program takes a long time to obtain the solutions. The reason for this behavior
has not been explained yet.

7.3.6 Discussion

With a tolerance of ¢ = 1 x 107 in both the rotation (in radians) and the translation
variables, we never got boxes containing no solutions. This does not mean that it can not
happen. It is theoretically possible indeed to have a box with relative width smaller than
€ where existence could not be verified. Nevertheless, the fact that we have never come
across such a case indicates, at least, that it is extremely unusual.
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We also never came across a solution box containing more than one solution. However,
this could be easily managed if we choose a configuration with two solutions separated
less than €. Nevertheless, in practical applications, probably it does not matter if the box
contains one or more solutions because of mechanical tolerances.

Note that the number of bisections is much lower than the one obtained using an
exhaustive search of the box. While the number of branchings in our algorithm ranges
from some few bisections up to 12.000, an exhaustive search would require about 103°
bisections for the specified tolerance [48]; the reduction in the number of analyzed boxes
is dramatic.
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Chapter 8

Conclusions

The first part of this work expands on the structure of the self-motion set of the orthogonal
spherical mechanism showing how a thorough understanding of it is fundamental in the
study of spatial mechanisms. To this end, the following two facts have been exploited:
(a) any kinematic loop equation can be modeled as the loop equation derived from the
so-called n-bar mechanism by taking as many bars as needed and constraining some of
the resulting degrees of freedom and (b) the solution of the translation equation resulting
from the factorization of the loop equation of the n-bar mechanism is provided by the
tangent bundle of the self-motion manifold of its spherical indicatrix. As a consequence, a
new unified approach for the analysis of any single kinematic loop containing independent
revolute, prismatic and cylindrical pairs has been devised.

In the second part of this thesis, it is proved how interval methods are suitable for
solving inverse kinematics problems. They can already be seen as a competitive alternative
to elimination and continuation methods. The main advantages of interval methods for
solving the problem at hand are listed below.

1. The proposed interval method for solving inverse kinematics problems is general in
the sense that it can be applied to any single loop kinematic chain, regardless of its
geometry, its number of links or its degrees of freedom. The input of the algorithm
is always a couple of interval vectors, the vectors of rotation and translation, which
define completely the mechanism and its joint limits. No symbolic computations
have to be performed and the closure equations are always treated in the same way.

2. The algorithm finds all solutions contained in the initial box. Also for singular
configurations or for mechanisms with special geometries, all solutions are included
in the resulting boxes.

3. Interval methods include in a natural way joint limits. Moreover, when searching
for solutions in a tight range of the joint variable, the algorithm searches only in
that small box and not in the whole joint space.

4. Interval methods used with outward rounding (Section 5.2.4) avoid numerical prob-
lems in the context of floating point arithmetic, which can be the case when dealing
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with high-degree polynomials in elimination methods. We may get large boxes en-
closing the solutions, but we would never lose solutions.

5. The algorithm works for redundant mechanisms too, returning a discretized version
of the self-motion manifold. It can also be straightforwardly extended to multiple
loops by adding additional constraint equations (closure equations) sharing some
variables.

6. A final advantage of interval methods is that they are simple to implement. The main
problem are the basic interval subroutines, but using an existing interval library
saves us much of the work.

The main disadvantages of the proposed interval method can be summarized in the
following points:

1. Slowness is obviously one of the biggest problems in our implementations. However,
we should take two important aspects into account. Firstly, the computation times
can be improved with an accurate code optimization and with an experimental study
of the many heuristics that are involved in the method. Secondly, which is much
more important, we cannot compare our method at the same level as continuation or
elimination methods. While these methods are specific for some class of mechanisms,
our interval method works for any single loop mechanism, regardless of its number
and type of links or its geometry. But for the moment, the algorithm is still too
slow for most applications.

2. Another potential problem is the appearance of bozes containing no solutions. We
have already mentioned that we have never encountered such boxes in our experi-
ments with small enough accuracies. However, it could theoretically happen. This
problem is more a mathematical problem than an actual mechanical one: with the
tolerances of current mechanical systems, it does not matter if a small box of width
107% does contain a solution or not, as long as the end-effector is close enough to
the required pose.

3. Our interval method is not suitable to evaluate the maximum number of solutions
of a certain class of mechanisms. And it also gives little or no information about
how some parameters may influence the solutions.

4. A final problem is related to the complexity of the method. Although the actual
complexity is much lower in order than the worst case complexity, we do not have
any theoretical way to bound it, or, at least, to know its average value. We can
relay on a large number of experiments, but we could always be surprised by an
unexpected long computation.

This work has shown the potential of interval methods for inverse kinematics problems.
Hopefully, this thesis will encourage other people to investigate in this direction, opening
a new field of research in kinematics.
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8.1 Future Research

The work presented here may be further developed in two main directions corresponding
to the two parts in which we have divided the thesis:

1. Kinematic analysis of spatial mechanisms. Although the theory of this part
has been widely explored, there are still some points where important results could
be obtained. In particular, it would be interesting to characterize more deeply the
S$S5™3 and its singularities in terms of Morse theory and bifurcations [15]. A better
knowledge of the SS™ 2 could be useful in the understanding of spatial mechanisms.

Another interesting idea that could be developed is to get a lower bound on how
close two solutions can be in the SS™ 3. This bound will depend on the vector
of translations. This would allow us to verify uniqueness in boxes whose width is
smaller than that lower bound and we could apply a gradient method with much
faster convergence.

2. Interval methods. This second part is the most challenging one, leaving plenty
of directions for future work. They can all be grouped under the idea of realizing
an exhaustive experimental study of interval methods for the solution of inverse
kinematics problems. Many different mechanisms should be tried, as well as many
different configurations for them, to be able to validate the results.

(a) As stated above, the proposed algorithm can be improved from a wide variety
of ways. In Section 7.1 (specially in Subsection 7.1.2), we have indicated many
possibilities in order to improve the algorithm. Some of the improvements are
related to heuristics and some to the variants of the interval Newton method.

(b) Our algorithm is performed twice, once for each of the two solutions of the
rotation equation. Following the ideas given in Section 7.1.6 a more efficient
algorithm could probably be designed.

(c) The interval Newton method could be extended to use not only first derivatives,
but also second derivatives. The results of Section 3.3.4 could be used.

(d) The interval propagation in spherical mechanisms is limited because one vari-
able is not restricted. The algorithm can be probably generalized to all vari-
ables being restricted and could be simplified in order to make it useful as
interval cuts.

(e) Our algorithm could also use an interval Newton method working over another
set of closure equations, as those summarized in Section 7.1.2. Different interval
Newton methods could also be combined.

(f) Some of the concepts from [24] could be introduced, as e-inflation, approximate
roots, box complementation or even the automatic differentiation. Some of
these techniques allow to perform not only existence, but also uniqueness tests.
Boxes that have been verified to contain a unique solution, could then be
reduced with a much faster gradient method.
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(2)
(h)

Another interesting point is to apply the algorithm to redundant or to multiple
loop mechanisms.

It would also be interesting to develop an interval method for a specific class
of mechanisms; for instance for a 6R manipulator, and optimize the algorithm
for that particular case. The computation times would drastically drop down,
so that they could be compared with continuation or elimination methods.

Finally, some actual applications could be solved with an interval method.
For example, calibration problems, CAD problems or any other that can be
expressed in terms of kinematic restrictions.



Appendix A

Closing an Open Mechanism with
Three Orthogonal Bars

Three orthogonal bars are enough to reach any point in 3D space with arbitrary orien-
tation. Then, any open n-bar mechanism can be closed adding three more bars. For
instance, an n-bar mechanism describing a manipulator can always be closed with three
more bars, which represent the end-effector’s position and orientation with respect to the
base. Note that there are two possible solutions, depending on whether we take d,,_; to
be positive or negative.

The rotations and translations of these last three fictitzous bars can be computed from
the position and orientation of the last bar (or end-effector). If C is the orientation matrix
of the last bar with respect to the base and p is its position (Figure A.1), we can write
the rotation and translation equations, (2.3) and (2.4), as:

CR($y_2)ZR(¢n_1)ZR($,)Z =1  and (A1)
dn—2 dn—l dn

p+C| 0 | +CR(¢n2)Z| 0 | +CR($s2)ZR(¢.1)Z| 0 | =0. (A2)
0 0 0

From the rotation equation (A.1) we can isolate C,

€11 Ci2 Ci13
C=lca co e :(R(¢n—2)ZR(¢n—1)ZR(¢n)Z)t:

C31 C32 Cs3
Sn—15n Cpn—1 Sn—1Cn
= —Cn—2Cp — Sp—2Cn—151 Sp—25n—-1 Cp—2Sp — Sp—2Cn—1Cp ’
—Sp—2Cp + Cp—2Cn—15n  Cp—25n—1 Sp—2Sn — Cp—2Cp—1Cp

where s; = sin ¢; and c; = cos ¢;.

Taking the first row and the second column we can obtain two possible solutions for
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Figure A.1: Closing an open n-bar mechanism with three orthogonal bars.

the rotations when cg; # +1:

Gn—o = atan2(£coe, Fco3)
¢n_1 = Facos(car) (if co1 # £1)
an = atan?(:l:cll, :*2631)

If ¢o; = £1, ¢p,_1 is O or 7, and ¢,,_5 and ¢,, are dependent. Developing the other elements
of matrix C we get

Gn—2 — Op = atan2(—cy3, —C12) for co; =1 and
On—2 + ¢n = atan2(—ci3, —ci2) for o1 = -1,
and ¢,,_1 is obviously 0 if co; = 1 and 7 if ¢o; = —1.

From the translation equation (A.2) we can isolate —C'p, which we will define as
vector b:

b1 A dn—2 - Cn—ldn
b = b2 = _Ctp = Cn—Zdn—l - Sn—ZSn—ldn
b3 Sn—an—l + Cn—2sn—1dn

Solving this linear system we get the translations:

b3 coS ¢y, o — by sin ¢, o
N sin ¢p—1
dp—1 = bo cOS P2 + b3 Sin ¢y o (if co1 # £1)
dn 2 = b1 + dy, cos P, 1

dnp
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When ¢y = £1, d,, 5 and d,, are parallel. Then,

_ b b
¢n72 = atanQ(\/b%::ng’ \/b;_bg) ,

$n = Pn-2 F atan2(—ci3, —cia) ,
¢n71 =0 (lf Co1 = ].) or mw (lf Co1 = —1) y

dpoq = 673 and
Vb3 + b3
dp—o = by =d, .

We can summarize the computation of three orthogonal bars to close an open mecha-
nism with the algorithm described below. It takes as input the orientation matrix of the

last bar, C, and its position vector, p.

IF C21 7é +1
Pn—2= atan2(ca2, —C23)
¢n—1: aCOS(Cgl)
d)n = atan2(011, 631)

dp_1= by cOS p,,_o + b3 sin ¢, _»
dn72: b1 + dn COs qﬁnfl
ELSE
bos = ++/b3 + b3
dn—1=b3/bos
GOn—o= atan2(dy,_1, ba/bs3)
IF Co1 = 1
On = Pn_o — atan2(—ci3, —c12)
¢n =0
dp—= by + d,
ELSE (621 = —1)
¢n = Pn_2 + atan2(—ci3, —c12)

¢n =T
dn—? bl - dn
END IF
END IF

d, = (b3 COS ¢,—p — by sin ¢n—2)/(Sin <f>n—1)

Algorithm A.1: Computation of the last three bars for closing open mechanisms.

Note that, in this algorithm, C is assumed to be a proper orthogonal matrix.
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Appendix B

Exact-range Functions

Here is a list of the exact range functions we have used, together with its formulas. When
implementing them in a computer, the lower bounds of the intervals shall be rounded

down and the upper bounds, rounded up.

Integer Powers

> zelRand neN,

[<z>" |z|"] if n is even
=< [T, " if n is odd
Sin
> z € [0, 27|

[

[

[
sinz = < [—1,1]

[

[~1.sin 7]

-

<m/2 or 3r/2<T
<m/2< @<

if ¢ <7/2 and 7 < T < 371/2
if T <7/2 and 37/2< 7T
if x € [1/2,37/2]

if 1/2<Z <7 and 37/2< 7T
ifr<‘T <3r/2<7T

if
if

|aT mi

|8

These formulas can only be used for z € [0,27] and are therefore not valid for intervals

including the origin (e.g.

[—0.1,0.2]) or for intervals whose width is greater than 2.

General formulas for any interval z € IR, can be found in the code of BIAS (function

BiasSin in file BiasF.c, see Appendix C).
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Cos
> z € [0,2n7]
(([cos T, cos T ] it 7 <
[~1,cos T ] ifT <7/2 and 71 < T < 37T/2
< [-1,cos(max{T,2r — 7'})] if T <«/2 and 37?/2 <7
cosx =
B [-1,cos(max{T,2r — Z})] ifn/2<T <1< 7Z< 37r/2
[—1,cos T ifr/2<T <7 and 37/2< 7T
 [cos ‘T, cos T] ifT >n

As for the sinus function, these formulas can only be used for z € [0,27]. General
formulas for any interval z € IR, can be found in the code of BIAS (function BiasCos in
file BiasF.c, see Appendix C).

Arcssin

In some applications, inverse trigonometric functions can be viewed as an infinite sequence
of intervals. However, for our purposes, we require that the results are in the interval
[0, 27]. The following formulas give the result in this interval, which can be composed by
up to three disjoint intervals.

> z€[-1,1]
arcsinx =
([0, 27] if z =[—1,1]
[arcsin ‘T, 7 — arcsin ‘] if 0 <z and T =1
[0, 7 — arcsin T ] U [27 + arcsin ‘T, 27] if —1<%T <0and @ =1
[arcsin ‘T, arcsin 7] U [m — arcsin j’, —arcsin‘z] f0<T and 0<7T<1
_J [0, arcsin ]U[W—arcsm? m—arcsin‘z| U... if —1<%T <0.
B U [27 + arcsin ‘T, 27] ... and O <7T<1
[0, arcsin E)] U [ — arcsin t), 27] if T =—land0< 7 <1
[W—arcsin?,w—arcsin?] U... 1f—1< 7 <0and T <0
U [27 + arcsin ‘T, 27 + arcsin 7]
| [ — arcsin E’, 27 + arcsin E)] ifT =—land T <0
Arcscos

These formulas give the results in the interval [0, 27|, which can be composed by one or
two disjoint intervals.
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> z€[-1,1]

[arccos T, 21 — arccos '] if ‘T =—1
arccos r =

[arccos T, arccos T U [27 — arccos T, 2 — arccos 7| if —1<T
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Appendix C

BIAS/PROFIL Interval Libraries

BIAS/PROFIL Interval Libraries are actually two libraries: one containing the basic
routines, named BIAS, and a set of routines containing the higher-level functions, called
PROFIL. All interval operations of PROFIL are based on BIAS with the advantage that
PROFIL is independent from the internal representation and the implementation of the
interval types.

The package is portable, except for a single small assembler language routine that is
called to change rounding modes; versions of this routine are available for a large variety
of machines, including Sun, PC (running either DOS or Linux), HP workstations, etc (but
not yet for Silicon Graphics workstations).

Documentation can be found either in html format at
http://www.ti3.tu-harburg.de/Software/PROFIL/Profil.texinfo_toc.html,

or in the technical reports 93.3 [28], 93.4, 93.5 and 95.4 of the Technische Universitét
Hamburg-Harburg (available via ftp at ti3sun.ti3.tu-harburg.de/pub/reports/).

C.1 Installation Tips

We will need the dmake utility, a free software package, for the installation of PRO-
FIL/BIAS.

C.1.1 Dmake Installation

Dmake is a Make like tool written by Dennis Vadura (University of Waterloo), differing
from other versions of Make in that it supports significant enhancements.

Dmake is available through anonymous ftp from plg.uwaterloo.ca in the pub/dmake
directory.
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Once we have downloaded and unpacked the source distribution, you can find the
installation instructions in the files contained in the readme sub-directory.

Two steps should be pointed out:

1. Before compiling dmake, we shall edit the startup.h file in the corresponding di-
rectory (unix if we are in a UNIX machine) and indicate the path where we will set
the file startup.mk; for instance:

MAKESTARTUP := $(ROOTDIR)/usr/local/lib/dmake/startup.mk

2. In order to compile BIAS/PROFIL with dmake, we require a larger maximal name
length. If we are not sure about the maximal name length defined by the compiler,
we can edit the posix.h file in the dmake directory, replacing the three lines

#ifndef _POSIX_NAME_MAX
#tdefine _POSIX_NAME_MAX 14
#tendif

by the following two lines

#undef _POSIX_NAME_MAX
#define POSIX_NAME MAX 64

C.2 BIAS/PROFIL Basic Installation

The package is available via anonymous ftp at ti3sun.ti3.tu-harburg.de. We will
refer to the installation of the unix version throughout, which is contained in the di-
rectory /pub/profil/unix. We use only the basic package (profil.tar.Z) and the
extension package (profext.tar.Z). We neither use the package related with long reals
(profillr.tar.Z), nor the package dealing with global optimization (profopt.tar.Z).

The installation procedure is well described in the documentation in html format
http://www.ti3.tu-harburg.de/Software/PROFIL/Profil.texinfo_toc.html.

However, there are some details that can be confusing and are worth to be described
here.

1. Some compilers added an underscore before C symbols, but since the new format
ELF, this is no longer true. BIAS was written before that and since it contains
some few assembler statements, compilation may fail. Once you have downloaded
and unpacked the files, we shall edit file Bias0.c in directory /Profil/BIAS and
add a line in the section corresponding to Implementation of global functions (lines
82 and 83). It should look like:

#if defined (_MSC__) || defined (__BORLANDC_.) \
|l (defined (__I386__) && defined (__GNUC_.)) \
|| (defined (sparc) && defined (__GNUC_.))
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VOID BiasRoundUp (VOID) { _BiasRoundUp (); }
VOID BiasRoundDown (VOID) { _BiasRoundDown (); }
VOID BiasRoundNear (VOID) { _BiasRoundNear (); }

#endif
In Linux with ELF format, we should remove one of the underscores in lines 80 to
83 in file biasint.h.

2. There is a mistake in the function BiasArcCos. We should edit file BiasF.c in
directory /Profil/BIAS and change for that function all asin for acos. The first
line after the variable declarations should be substituted by

x_inf = BiasSup (pX); x_sup = BiasInf (pX);
and in the next line, we shall interchange x_inf and x_sup.

3. It is convenient to add to the Makefile in the Profil directory the compiling option
-w in line 64 to hide the warning messages.
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