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Abstract 

The main objective of this chapter is to introduce the 

motivations that have inspired this work, as well as this 

thesis’ framework and background. In addition, an overview 

of other studies related to ours is included in order to 

illustrate the originality and soundness of our work.  
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1. Introduction 
 

Parallel and distributed programming constitutes a highly promising approach to 

improving the performance of many applications. However, in comparison to 

sequential programming, many new problems arise in all phases of the development 

cycle of this kind of applications.  

For example, in the analysis phase of parallel/distributed programs, the 

programmer has to decompose the problem (data and/or code) to find the 

concurrency of the algorithm. In the design phase, the programmer has to be aware 

of the communication and synchronization conditions between tasks. In the 

implementation phase, the programmer has to learn how to use specific 

communication libraries and runtime environments but also to find a way of 

debugging programs. Finally, to obtain the best performance, the programmer has 

to tune the application by using monitoring tools, which collect information about the 

application�s behavior. Tuning can be a very difficult task because it can be difficult 

to relate the information gathered by the monitor to the application�s source code. 

Moreover, tuning can be even more difficult for those applications that change their 

behavior dynamically because, in this case, a problem might happen or not 

depending on the execution conditions. 

It can be seen that these issues require a high degree of expertise, which prevents 

the more widespread use of this kind of solution. One of the best ways to solve 

these problems would be to develop, as has been done in sequential programming, 

tools to support the analysis, design, coding, and tuning of parallel/distributed 

applications.  

In the particular case of performance analysis and/or tuning, it is important to note 

that the best way of analyzing and tuning parallel/distributed applications depends 

on some of their behavioral characteristics. If the application to be tuned behaves in 

a regular way then a static analysis (predictive or trace based) would be enough to 

find the application�s performance bottlenecks and to indicate what should be done 

to overcome them. However, if the application changes its behavior from execution 

to execution or even dynamically changes its behavior in a single execution then the 

static analysis cannot offer efficient solutions for avoiding performance bottlenecks.   

In this case, dynamic monitoring and tuning techniques should be used instead. 

However, in dynamic monitoring and tuning, decisions must be taken efficiently, 

which means that the application�s performance analysis outcome must be accurate 

and punctual in order to effectively tackle problems; at the same time, intrusion on 
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the application must be minimized because the instrumentation inserted in the 

application in order to monitor and tune it alters its behavior and could introduce 

performance problems that were not there before the instrumentation.  

This is more difficult to achieve if there is no information about the structure and 

behavior of the application; therefore, blind automatic dynamic tuning approaches 

have limited success, whereas cooperative dynamic tuning approaches can cope 

with more complex problems at the cost of asking for user collaboration. We have 

proposed a third approach. If a programming tool, based on the use of skeletons or 

frameworks, has been used in the development of the application then much 

information about the structure and behavior of the application is available and a 

performance model associated to the structure of the application can be defined for 

use by the dynamic tuning tool. The resulting tuning tool should produce the 

outcome of a collaborative one while behaving like an automatic one from the point 

of view of the application developer.  

In this chapter we want to summarize and review some of the most important 

structure-oriented tools for parallel/distribute development (section 2), as well as the 

most relevant approaches and tools for performance tuning (section 3). We 

conclude with the presentation of the proposal that is developed in this thesis 

(section 4), and an overview of related studies (section 5). 

 
2. Parallel/Distributed Application Development 
 

There is no doubt that developing parallel/distributed applications is the way to 

cope with many complex problems such as weather forecasting, genetic and 

medical research, physics of high energy simulation, and so on; however, 

developing this kind of applications involves dealing with many more problems than 

its sequential counterpart.  

First, application designers must find out how to decompose a problem into sub-

problems that can be solved concurrently. This decomposition must be devised 

taking into consideration the characteristics of the problem but also the 

characteristics of the computation and general programming model to be used.  

The reason is that: it is not the same to design an application for a Multiple 

Instruction Single Data (MISD) computer, in which, theoretically a single memory is 

shared by multiple processors as to design an application for a Single Instruction 

Multiple Data (SIMD) one, where, theoretically, multiple processors synchronously 

execute the same code over different streams of data, or as to design it for a 
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Multiple Instruction Multiple Data (MIMD) computer, (the most general and powerful 

computation model) in which multiple independent code streams hosted in different 

processors operate asynchronously over different streams of data. 

Moreover, it is not the same to design an application on a Message Passing 

programming model, where a set of processes with access to their local private 

variables interchange data among themselves by sending and receiving messages, 

as to design an application on a Shared Memory programming model, where a set 

of processes have access to their local private variables and also to a central pool of 

shared ones, as to design an application on a Data Parallel programming model, 

which is closely related to the SIMD computation model because it consist of 

applying the same instructions to different elements of a data structure. 

Secondly, application programmers must deal with communication libraries, race 

conditions, poor debugging tools, and so on. The main problem, at this level, is that 

programming parallel/distributed applications using low level primitives, such as 

sockets o binary semaphores, is like developing a complex sequential tool using 

assembly language.  

However, the solution to many computationally intensive problems exhibits a 

degree of commonality that can be exploited. This fact makes it possible to define 

patterns describing common problems and the core of their solution for 

parallel/distributed applications design and programming. Furthermore, this 

constitutes the basis for many developing tools and design methodologies that we 

summarize in the next subsections by discussing some relevant examples. 

 
2.1. Parallel functional languages 
 

The potential of functional languages for parallelism is supported by the 

abstraction mechanism of these languages, as well as their sophisticated type 

system, and high level coordination. However, the key advantage of the functional 

paradigm is that referential transparency guarantees considerable freedom of 

execution order without changing program semantics. 

Several parallel functional languages have been defined, many of them based on 

Haskell [HH92] a standard lazy functional research language with a sophisticated 

type and class system and with a relatively mature development environment 

including compilers, interpreters, libraries, and profiling tools. A comprehensive 

summary of the parallel functional Haskell-based languages can be found at 

[TLP02]. These languages are classified in two major categories: Parallel Haskells 



Chapter I. Introduction 

16 

and Distributed Haskells, depending on whether additional processors are used to 

reduce program runtime (parallelism) or to allow machines to interact in a common 

virtual world.  

Parallel Haskells are classified in: 

• Skeleton-based Haskells, such as HDC [Her00], which is a subset of 

Haskell with skeleton-based coordination that supports two divide-and-

conquer skeletons and a parallel map. 

• Data parallel Haskells, such as Nepal [CK+01], which provides special 

syntax for array comprehensions and parallel implementations of basic 

functions over these arrays; in addition, data parallelism can be nested 

and latter flattered using a special flattering transformation.   

• Semi-explicit parallel Haskells, such as Eden [LOP05], which coordinates 

parallel computation using explicit process creation and interconnection, 

enabling the programmer to define arbitrary process networks. 

• Haskell with a coordination language, such as Caliban [KT99], which is a 

subset of Haskell plus a set of constructs for explicit partitioning of 

computation into threads and for assigning threads to processors in a 

static process network. 

Finally, among Distributed Haskells we have Haskell with Ports [HN02], which 

extends concurrent Haskell with the port data type to allow distributed system 

development.   

However, functional programming suffers two main problems: first, it is not a 

popular programming paradigm, though programs tend to be simpler and smaller 

than those written with imperative languages; secondly, and more importantly, the 

performance improvements obtained with these languages are quite limited when 

compared to imperative ones. A comprehensive study on the performance of 

programs written with some of these languages can be seen in [LR+03]. 

 
2.2. Pattern and framework-based methodologies 
 

A pattern for parallel applications� design and programming can be defined as, 

�abstractions that capture the expertise needed to write parallel programs� [MA+02] 

or, more generally, as a �solution to a problem in a context� [MSM04]. The main idea 

is that patterns are applicable to different problems domains (each with different 

characteristics and concerns) and that they must be adapted for each particular 

problem. 
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Once a pattern has been selected, we can use a framework to implement the 

solution without going into the tedious and error-prone process of writing the code 

from scratch. A framework can thus be defined as a piece of code that implements 

the application-independent structure of a specific kind of program, including the 

flow of control between the offered operations. Usually, programmers only should 

provide the functionality of those operations that are specific to the developed 

application. A representative example of a framework-based tool is CO2P3S 

[MA+02], which offers the possibility of choosing an application pattern and 

parameterize it to obtain a framework in form of a class that has some hook 

methods that must be provided by the user in order to get the application�s code.  

Besides frameworks, there are also skeletons, which are conceptually similar to 

frameworks but with a more functional approach (it can be seen in the previous 

subsection that there is a Skeleton-based Haskells category). Among the skeleton-

based tools, it is worth mentioning eSkel [Col04] and llc [DG+03]. eSkel is a library 

of C functions and type definitions that extend the standard C binding to MPI with 

skeletal operations while llc is an extension of the C language by means of pragmas 

that introduce parallel constructions, such as data parallel or pipeline, into the 

application.  

We want to take a closer look at the Pattern Language for Parallel Programming 

(PLPP) presented at [MSM04] because it is a comprehensive approach to parallel 

application design. Moreover, we will use it in the next chapter when describing the 

frameworks we have modeled. The aim of this pattern language is to guide the 

application designer through the entire process of developing a parallel program 

assuming only that the designer has a good understanding of the actual problem to 

be solved. The idea is then to work through the pattern language in order to obtain a 

detailed application design.   

PLPP is organized in four design spaces:  

1. The Finding Concurrency design space shown in figure 1 is intended to 

help in finding the problem concurrency and decompose it in a set of sub-

problems. 

2. The Algorithm Structure design space shown in figure 2 contains patterns 

that help to find an appropriate algorithm structure to exploit the 

concurrency that has been identified. 

3. The Supporting Structures design space includes patterns describing 

useful abstract data types and other supporting structures. 
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4. The Implementation Mechanism design space contains patterns that 

describe lower-level implementation issues. 

 

 Figure 1.  PLPP Finding Concurrency design space patterns and organization. 

  

Figure 2.  PLPP Algorithm Structure design space patterns and organization. 
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considering if the sub-problems must be solved in an orderly way or not (Organize 

by Ordering), or if simply solving the tasks will do the job (Organized by Tasks), or 

when data decomposition is the major concurrent organizational principle 

(Organized by Data).  

Finally, each of these branches leads to new patterns that are closer to 

implementation issues. In this way, if the organizational principle is the order then 

we can choose the Pipeline terminal pattern for calculations that can be orderly 

applied on different sets of data, or the Asynchronous Decomposition pattern for 

groups of tasks that interact through asynchronous events. If tasks are the 

organizational principle, which is the most common case, then we can choose the 

Embarrassingly Parallel pattern for totally independent tasks, or the Separable 

Dependences one when dependences can be pulled outside concurrent execution, 

or the Protected Dependences pattern when dependences cannot be pulled outside 

concurrent execution and must be managed during this execution, or the Divide and 

Conquer one when the sub-problems are found recursively. Finally, if data 

decomposition is the organizing principle then we can choose the Geometric 

Decomposition pattern if the problem space can be decomposed into discrete 

subspaces and a solution computed for each subspace and then each partial 

solution aggregated to the global one, or the Recursive Data one, if the problem is 

defined in terms of following the links of a recursive structure. 

 
2.3. Representation-oriented approaches 
 

Graphical interfaces are used in many tools, such as CO2P3S [MA+02], in order to 

facilitate the application�s specification. However, for some tools, intended for use in 

the whole development process, researchers have adopted some graphical or other 

high-level representation of applications as their guiding principle.  

This is the case of GRADE [KC+97], that was designed as an environment for 

specifying, executing, debugging, and monitoring parallel applications using the 

PVM library. This environment is based on a graphical language called GRAPNEL 

that allows a multi-layer representation of the application. The upper layer allows the 

representation of processes and communication channels, the second layer is for 

graphically representing the internal algorithm of each process plus its 

communication operations (sends & receives), and the third level is for including the 

process code in C. This approach has proved quite successful and lately it has 

evolved from parallel to GRID application development [LS+05].    
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Another recent example is the UML-based approach presented in [PF02]. This 

study proposes taking advantage of a popular (and well supported) modeling 

language such as UML and adding extensions to model the most important 

constructs of message passing and shared memory paradigms to it, plus 

performance annotations. In this way, it is possible to model distributed applications 

obtaining performance information at an early development stage of an application. 

This approach has, lately, been more concentrated on performance predictability 

issues than on design ones [PF05]. 

 
3. Monitoring and Tuning Parallel/Distributed Applications 
 

The main reason for investing resources and effort in developing 

parallel/distributed applications is to increase their performance. However, in many 

cases the results, in terms of performance, of such difficult and usually long 

developments are rather disappointing.  

Theoretically, Amdahl�s law [Amd67] limits the performance gain to the 

parallelizable portion of the algorithm divided by the number of processors. This law 

states that the minimum execution time of an application running on n processors is: 

)T(1)/n-(1  T(1)  T(n) αα += , where T(1) is the time of the application running in one 

processor, and α is the non parallelizable portion of the application; hence, the 

speedup of the application (T(1)/T(N)) is limited to n/(α*(n-1)+1) that, as can be seen 

in figure 3, clearly shows that there is an efficiency loss for each new added 

resource. This result is quite shocking because it strongly limits performance gains 

due to application of parallelism and, in addition, it is not even considering 

parallelism overheads, such as the cost of message passing. Fortunately, Amdahl�s 

law is based on the assumption that the algorithm to be parallelized is immutable 

(meaning that α is the same for any number of processors), which is overly 

simplistic because it does not take into consideration scalability issues.  

Problem scalability was taken into consideration by [Gus88] and a new expression 

for speedup known as the Gustafson-Baris� law, was defined as: n � (1 � n)α. This, 

as can be seen in figure 4, is a linear expression that promises bigger performance 

gains but, again, without considering parallelism overheads.  

In conclusion, a parallel application can run several times faster than its sequential 

counterpart, though the results, in terms of performance, are likely to be highly 

disappointing if the application is not accurately tuned. In order to be able to do the 
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appropriated performance tuning, it is necessary to have a thorough knowledge of 

the application and its running environment, as well as a high degree of expertise.  
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Figure 3. Expected speedup, according to Amdahl�s law, for a 75% parallelizable application 

and for a 90% parallelizable one. 
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Figure 4. Expected speedup, according to Gustafson-Baris�s law, for a 75% parallelizable 

application and for a 90% parallelizable one. 

This is a very complicated task and, consequently, the aid of tools for monitoring 

the application�s execution in order to track the most relevant performance 

parameters, as well as tools for analyzing the monitored data in order to find the 

application�s performance bottlenecks, is usually very welcomed. The general 

performance tuning cycle shown in figure 5 consists, in the first place, of getting 

relevant performance data from the application�s execution (monitoring). That data 

should then be analyzed (automatically or not) to discover the application�s 
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performance bottlenecks.  Finally, once these problems have been related to the 

proper application�s portion of code, modifications can be introduced on the 

application to overcome these problems (automatically or not, dynamically or not).  

Nonetheless, it also can be useful to have tools to carry on some performance 

analysis in advance (before the application is executed or even completely coded) in 

order to generate a tuned first version and avoid future time consuming code 

modifications.  

Consequently, we can find predictive or trace-based performance analysis and/or 

tuning tools. Moreover, in the second case, the analysis can be performed when the 

application has finished its execution (post-mortem static analysis) or on the fly while 

the application is running (dynamic analysis), and the same can be said for the 

tuning process. According to this classification, a summary of some relevant tool 

examples is presented in the following subsections. 

 
Figure 5. Performance analysis/tuning cycle. 
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A good example of such a tool is the Performance Prophet [PF05], which using a 

model of the application specified in the modified UML language defined in [PF02], 

can quickly generate and evaluate many application�s performance models. The tool 

extracts the application�s significant performance characteristics from its 

specification, neglecting those parts of the specification that are not relevant in 

performance terms, thereby simplifying the performance model definition and 

analysis. Then it operates by mixing analytical and simulation evaluation models by 

using mathematical expressions to model code blocks involving a single processing 

unit and event driven simulation to model code blocks involving multiple processing 

units. As a result, the authors claim that this tool offers comparative accuracy 

between parallelization strategies despite the specific difference between the real 

execution of a parallelization strategy and the tool outcome for the same strategy, 

which means that the results given by the tool for two different parallelization 

strategies are likely to keep the same relation than their real implementations.   

Another approach consists of carrying out the performance analysis at compile 

time. This is the case of P3T+ [FP00], which predicts application performance based 

on information gathered at compiler time, plus sequential simulation and architecture 

parameters. 

 

Figure 6. Dimemas and Paraver interoperation scheme. 

A third approach, aimed at allowing the study of the application�s performance on 

different platforms or parallel machines, consists of using one or more trace files 

(some from real executions, but mainly from simulations) to predict the behaviour of 
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the application under different circumstances. This approach is implemented in 

Dimemas [BR+03] and Paraver [Paraver], a couple of tools that allow an accurate 

predictive performance analysis and tuning of parallel applications without actually 

using a parallel machine. A schematic representation of the Dimemas-Paraver 

performance analysis and tuning operative model is shown in figure 6. We can see, 

there, that the application�s trace file for visualization can be obtained from a real 

execution on a parallel machine or from a simulated one from Dimemas.  

Finally, a very complete set of predictive tools was integrated in the POEMS 

project [DB+99], which was a very ambitious project for performance prediction of 

large scale adaptative parallel applications. The idea was to create an environment 

based on the composition of components represented by compositional objects; 

those objects would be stored in a database in order to be available to the users. 

The components were defined as models of application and system elements (OS 

and hardware). Consequently, using those components plus a performance 

knowledge base responsible for carrying on the performance analysis, the task 

dependence graph of the application (automatically generated by the compiler), and 

the execution description of each task (obtained from simulation), users would be 

able to comprehensibly analyse the application�s performance at different levels. 

 
3.2. Static trace-based performance analysis/tuning 
 

In the classical approach to performance analysis and tuning, both the analysis 

and the tuning were not automatic, which means that the only available supportive 

tools were monitors, that were responsible for gathering information and registering 

an ordered trace of all relevant performance events, and visualization tools 

responsible for showing the information gathered in the most friendly and 

meaningful way. Many tools from this group can be mentioned, for example: Vampir 

[NA+96], Tape/PVM [Ma95] and XPVM [GB+94], ParaGraph [HF03], or Pablo 

[RR+93].  

The main problem of this approach is that a high expertise degree is required to be 

able to detect performance problems, and it must be still higher to be able to relate 

those problems to the application code. Consequently, a more comprehensive 

approach to post-mortem performance analysis consisting of carrying out an 

automatic performance analysis, by means of adding some degree of knowledge to 

the tool, has been proposed in several studies, such as KappaPi [EM+00], Paradise 

[KK96], Expert [WM00], or AIMS [Yan94]. Usually, these tools work through a trace 
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file and use some heuristic knowledge to discover simple, and sometimes not so 

simple, problems such as sends that are called too late and make the receiver 

process wait too long (late-send). Finally, the main problems related to this 

approach are the generation and storage of possibly huge trace files and controlling 

the overhead introduced by the instrumentation needed to gather the performance 

data, which many times must be directly introduced by the programmer. 

 
3.3. Dynamic performance analysis/tuning 
 

In order to eliminate the need for generating and storing huge trace files and to 

take control of the amount of instrumentation introduced (and hence of the intrusion 

degree), tools with the ability to dynamically analyze the application�s performance 

have been developed.  

Some of them, such as Paradyn [MC+95] and Dynamic Statistical Projection 

Pursuit (PP) [VR99], are still only focused on analyzing performance. In the specific 

case of Paradyn, performance bottlenecks are sought using the W3 search model 

(Why is there a performance bottleneck? Where is it located? When did it happen?), 

whereas PP dynamically analyzes performance and minimizes instrumentation 

intrusion. It identifies through projection indexes the most important metrics that 

reflect the application�s performance. 

However, if a tool is able to dynamically insert instrumentation in an application 

and also to detect the application�s performance bottlenecks and their causes on the 

fly then it can also be possible to extend the tool to automatically solve these 

problems (at least some of them). This approach has been called dynamic 

performance tuning and has been implemented by many tools, such as the 

Monitoring Analysis and Tuning Environment (MATE) [Mor03], the Mirror Object 

Steering System (MOSS) [ES98], Autopilot [RS+01], Java HotSpot [JHS02], and 

Active Harmony [TC+02]. 

We will discuss in more detail in the next chapter the dynamic performance tuning 

approaches and related problems, and especially the MATE tool because it is the 

frame in which the work presented in this thesis has been developed. However, we 

can say that dynamic tuning is some times the only way to improve the application�s 

performance because the static approach discussed before is useful for those 

applications that show a steady behavior from execution to execution but not for 

applications that show significant differences between executions depending, for 
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instance, on the input data or even for those applications that show a highly dynamic 

behavior in a single execution.  

Nevertheless, taking tuning decisions dynamically requires a highly efficient 

analysis because performance problems must be detected quickly in order to get 

greater improvements and with as little instrumentation as possible in order to 

minimize intrusion. This means that much information about the behavior of the 

application must be available to the tuning tool with little intrusion, which is difficult to 

achieve if all information must be blindly gathered at execution time.  

Three different approaches have been proposed to solve this problem, in the first 

place, the cooperative approach implemented in tools such as MOSS [ES98] in 

which human users (programmers, final users) actively participate in the tuning 

process (completely or partially) by carrying out tasks such as inserting 

instrumentation into the application, analyzing gathered information, or taking tuning 

decisions. This approach is highly effective but demands a high degree of user 

expertise. In the second place, the automatic approach, which is implemented in 

tools such as Java HotSpot [JHS02], consists of searching for performance 

inefficiencies without any specific knowledge on the application. This approach is 

transparent to the users but is strongly limited because generating enough 

knowledge to take complex decisions needs too much time to be effective. Finally, 

the semi-automatic or automatic with knowledge approach, used in tools such as 

Autopilot [RS+01], Active Harmony [TC+02], and MATE [Mor03], consists of carrying 

out an automatic tuning (without user intervention) but with previous knowledge 

about the application. 

In the case of Autopilot, programmers have to explicitly insert instrumentation in 

the application, and then the application is steered, interactively or automatically, 

through a set of sensor processes responsible for gathering performance 

information. There is also a fuzzy logic engine responsible for selecting resource 

managing policies based on the gathered data and a set of actuators responsible for 

invoking local functions or modifying application variables. Active Harmony is a tool 

focused on the automatic selection of the most appropriated algorithm to perform a 

calculation, providing a Library Specification Layer that allows the integration of 

different libraries with similar functionality. Developers must explicitly introduce calls 

to the system API to indicate the places where decisions have to be taken and 

which are the tunable parameters. At run time, the Adaptation Controller is 
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responsible for evaluating the application�s behavior and heuristically exploring the 

tunable parameters value space in order to find the best configuration. 

Finally, MATE is an environment that provides a general performance analysis and 

tuning framework for developing dynamic tuning tools. In this environment, 

performance knowledge is provided from outside allowing the application of tuning 

techniques at different levels (system calls, libraries, the application code), and by 

different approaches (automatic, automatic with knowledge). Moreover, 

instrumentation of applications is not explicit, which allows tuning tools to be built 

that are completely transparent to the application developers. Regarding the 

structure and specification of performance knowledge, MATE requires an 

specification of the parameters that should be monitored at run time (measure 

points), a set of code pieces specifying an analysis model to be applied to the data 

gathered (performance expressions or strategies), and a set of actions to be applied 

if a performance drawback is discovered during the analysis period (tuning points).  

 
4. Our Proposal 
 

We saw in the previous sections that two kind of supportive tools are of utmost 

importance for overcoming the difficulties of developing parallel/distributed 

applications: in the first place, design and programming tools aimed at accelerating 

the implementation process and reducing the possibility of costly to prune 

programming errors; in the second place, performance analysis and tuning tools 

aimed at obtaining the best performance (usually in terms of execution time) for the 

applications developed.  

In the first group of tools, a very common approach consists of providing the 

programmers with predefined structures that partially implement and hide several 

functional and structural aspects of the most popular parallel/distributed 

programming constructions. This is the case of skeletons and frameworks, which 

allow programmers to focus on the functionality of the problem being solved rather 

than on synchronization and communication issues at the price of some loss of 

performance. However, using this kind of supportive tools has another result: the 

overall structure of every application developed with them, as well as the 

interrelations between its components can be known in advance, and that can be 

very useful for modeling broad sets of applications without knowing their specific 

functionality. 
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In the group of performance and tuning tools, the most sophisticated ones are 

those able to provide advice, or even directly apply corrections, as to what changes 

must be carried out on an application in order to improve its performance. These 

tools can be divided in those that make a post-mortem trace-based analysis of the 

application and those that make a dynamic on the fly performance analysis and 

possibly tuning. The former should be used for applications with regular behavior 

because the performance analysis and tuning process must be done only once, and 

consequently, the overhead associated with this process will happen only once. 

However, for those applications that present different behaviors from one execution 

to another, or even in the same execution, the dynamic performance tuning 

approach can lead to better results. 

In addition, the main requirements for a successful dynamic performance tuning 

process are low intrusion and having as much previous knowledge about the 

application as possible. Some times, this knowledge must be completely provided 

by the user (collaborative approach); some times, it should be partially provided by 

the user (automatic with knowledge approach); however, in both cases, there is a 

demand for significant user expertise, as well as the requirement of learning how to 

use the tool.  

The objective of this thesis and our main contribution is to demonstrate that it is 

possible to define performance models associated to the application�s structure 

suitable for integration in a dynamic performance tuning tool. This way, users can 

take advantage of developing applications using a supportive tool and can also 

transparently use a dynamic tuning tool without having to specify complex model 

parameters or interpret difficult analysis data and still get highly efficient results. 

From the point of view of final users, they are using a very efficient dynamic 

automatic tuning tool while from the tuning tool point of view (if it had one) the user 

is using an automatic with knowledge approach. 

To fulfill this objective, we have chosen to develop the performance model for the 

Master/Worker and Pipeline frameworks because their popularity and usefulness. In 

addition, the models have been designed for the MATE environment. Therefore, we 

have analyzed the structure and functionality of those structures in order to 

determine the main performance drawbacks associated with these frameworks. 

Then we have developed the corresponding set of performance modeling strategies 

and expressions following MATE�s subjacent performance model architecture 

(measure points + performance expressions + tuning points). 
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Finally, though the general idea has been very innovative and original there are 

several studies regarding definition of performance models associated with the 

application�s structure. In the next subsection, we include a summary of the most 

relevant ones. Next, in section 4.2, we conclude this chapter with a description of 

the organization of this thesis.  

 
4.1. Related studies 
 

The group of parallel computing of the Statistics and Computer Science 

Department of La Laguna University has great experience in the development of 

programming tools based on frameworks, parallelizing compilers, and performance 

modeling at different application levels. In particular, they have developed models 

for Master/Worker applications on homogeneous [RR+98] and heterogeneous 

[AG+03] networks of workstations and also models for Pipeline applications on 

homogeneous [MA+01] and heterogeneous [AG+02] networks of workstations. 

Their study for Master/Worker applications [RR+98] is mainly focused on 

explaining why there are differences in the message latency of an Ethernet network 

when using one to all communications in TCP and UDP protocols. With the objective 

of illustrating the theoretical model presented, a Master/Worker matrix multiplication 

application is used and its execution time modeled with the following expression:   

( ) ))/((/))/(( PNPDNPNPNP iPPPPiBRBRiBRBR βαβαβα ++++++ 3  

Where P is the number of processors (one worker per processor), Ni is the size of 

one matrix, Ni/P is the part of the second matrix sent to each worker, DN3/P is the 

computation time of each worker (assuming homogeneous workstations), and α and 

β are the network latency and inverse bandwidth respectively (sub-indexes BR and 

PP meaning broadcast and point to point respectively).  

It can be seen that this expressions has the form: Time for sending data (first two 

terms) + Time for computing (third term) + Time for receiving results (fourth term), 

which is basically the one we have used to define our Master/Worker performance 

model for balanced (almost homogeneous) Master/Worker applications. Obviously, 

we have a different objective: dynamic performance tuning vs. an example for a 

specific case of communication modeling; hence, we have analyzed many more 

cases and studied other aspects of the problem. The main problem is to estimate 

(dynamically) how many workers (processors) can be efficiently used by the 

application. 
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The people of La Laguna University have generalized this study to the case of 

heterogeneous Master/Worker applications [AG+03]. This time, the more ambitious 

objective was to assign the heaviest tasks to the fastest processors and 

communication channels. The basic idea is to define a more general expression that 

includes the execution time differences of workers; the resulting expression is the 

following one: 

∑∑
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p
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i
i dSCR
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Where R1 is the receiving time of worker 1 (one worker per processor), C1 is the 

computation time of worker 1, Si is the sending time of processor i, and di is the 

accumulated delay between the first i-1 workers and worker i. Communication times 

are calculated as in the expression for the homogeneous case by using the latency 

plus inverse bandwidth approximation. Computation times (Ci) should be estimated 

because this models is not intended to be used in a dynamic tuning environment.  

It is clear that in order to get the best execution time, this expression has to be 

minimized, which means finding the appropriate mapping of tasks to processors and 

communication channels. However, this expression is too complex (basically due to 

the fourth term) to be solved analytically, and numerical approximations must be 

used instead. 

We have adopted a radically different approach to heterogeneous Master/Worker 

applications modeling. Actually, we do not try to model this kind of application 

because heterogeneity means, in this case, inefficiency, and assigning heaviest 

tasks to the fastest processors will hardly eliminate it (only relieve it). We have 

designed, instead, some strategies to dynamically balance the workers� load, which 

result in significant performance improvements and in nearly homogeneous 

applications that can be treated following the homogenous model in order to adapt 

the number of workers. 

Regarding their studies on performance models for Pipeline applications 

(homogeneous [MA+01] and heterogeneous [AG+02]) they have defined 

expressions that model the whole application live (filling in the pipe, all stages 

working, draining the pipe), which makes sense because their objective is to predict 

the application�s behavior in order to make the best possible mapping of stages in 

the available processors. The specific tuning parameters considered in their model 

are the number of processors, the granularity (number of stages) to be assigned to 

each processor, and the size of communication buffers. The general target of their 
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model is to minimize the start up time (filling in the pipe), and balance processors 

load by grouping stages (calculating the granularity for each processor).  

Although we share the main objective of eliminating load unbalances, we consider 

that filling in and draining phases are transient activities and, consequently, that 

performance inefficiencies associated with these phases cannot be solved 

dynamically and should be considered design problems (developers must assure 

that the number of data sets to be processed is significantly greater than the number 

of stages). Moreover, we have proposed replication of stages as the main solution to 

load unbalances instead of stage grouping, which we consider mainly as a mean of 

freeing processors. Therefore, our model, designed from the beginning to be used in 

a dynamic tuning environment, eliminates the complexity of modeling the start up 

phase of the application because it is not suitable to be tuned dynamically, but on 

the other hand, adds the complexity of modeling replicated stages. It is worth noting 

that the Pipeline performance model we present in this work is not as completely 

defined as the Master/Worker one and it does not consider grouped stages yet.  

Another highly relevant group in this area is the Murray Cole�s group of the School 

of Informatics of the University of Edinburgh. This group has a long-term experience 

in development programming tools based on skeletons (we have previously 

mentioned eSkel [Col04] library). Lately, they have developed an extensive work on 

performance modelling of skeleton-based parallel programs [BC+04]. They have 

realized that using skeletons carries with it considerable information about implied 

scheduling dependences and have decided to use process algebras (specifically 

PEPA [Hill96]) for modelling them.  

In the study referred to, the pipeline skeleton is used to illustrate the overall idea 

and the developed tool. Although describing PEPA is beyond the scope of this work, 

we believe that it is intuitive enough and that it is worthwhile to include the 

description of the pipeline application model. The idea is to algebraically define all 

the application components (stages, processor, and network) in the following way: 

• iiii

def

i StageTmoveTprocessTmoveStage •••= + ),(),(),( 1  

• iii
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Where n is the number of stages, T (processing and moving times), µi (processor 

characterization), and λi (characterizes connections among stages and between the 

first and last stages and the user). Next, based on the previous constructions, the 

more general Pipeline and Processors structures are defined in the following way: 

• 
{ } { } { } 110

121
−

−

= nmovemovemove

def
StageStageStagePipeline

n

><><>< ...  

• m

def
ocessorocessorocessorocesors Pr...PrPrPr 10=  

Finally, an algebraic expression is built to define the mapping of the pipeline on the 

available processors and network (using the collaboration operator>< ): 

• ocessorsPipelineNetworkMapping
LpLm

def
Pr><><= , where 

Lp = {processi} (i=0..n-1) and Lm = {movei} (i=0..n) 

Once the model has been defined, the PEPA Workbench [Hae03] is used to 

calculate the application throughput providing µ and λ, and determining T. This way, 

it is possible to predict the best mapping of stages on a given network of processors.  

The main difference between this approach and ours, besides the use of process 

algebras to define the programming structure, is that, at the moment, this is not 

intended for dynamic tuning. Therefore, their study is focused on improving 

performance by finding the best mapping for the pipe stages, which is a task that 

should be carried out before starting the execution of the application. In fact, their 

current objectives are to provide a tool for automatically generate the algebraic 

description of a specific application and to find the way of getting a good estimation 

of the model parameters.   

 
4.2. Organization of this thesis  
 

We have organized the contents of this thesis into 5 chapters, being the first one 

this introduction. 

In Chapter II, we introduce a more detailed description of the dynamic tuning 

environment MATE and the Master/Worker and Pipeline frameworks with the 

objective of formalizing the structure and objectives of the performance models that 

will be presented later on. 

Next, in Chapter III, we present a very detailed description of the performance 

model developed for dynamically tuning Master/Worker applications. This is a two-

phase model consisting of a strategy for balancing the workers� load, and an 

analytical model for adapting the number of workers of the application. The results 
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of a wide set of experiments are presented in order to validate this performance 

model.  

Then, in Chapter IV, the performance model proposed for dynamically tuning 

Pipeline applications is introduced. The main objective of including this model in this 

study is not only the analysis of Pipeline applications but also to demonstrate that it 

is possible to define models for frameworks other than Master/Worker.  

Finally, in Chapter V, we present the conclusions and summarize the main 

achievements of this thesis and indicate what are, in our opinion, the most relevant 

open issues and challenges to be faced in the future.  
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Abstract 

The aim of this chapter is to describe the structure of the 

performance models that will be presented later and the 

aims of those performance models. To achieve these 

objectives, we introduce a brief description of the MATE 

dynamic tuning environment, a tool that provides a 

framework for developing dynamic tuning tools and, 

consequently, requires the performance knowledge to be 

provided from outside. We also introduce a description of the 

structure and functionality of the Master/Worker and Pipeline 

frameworks in order to highlight their advantages, but also 

their performance bottlenecks suitable to be dynamically 

overcome. 
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1. Introduction 
 

The main objective of this work, as we mentioned in the previous chapter, is to 

demonstrate that it is possible to develop a performance model associated with the 

structure of the applications suitable for use in a Dynamic and Automatic Tuning 

Environment. Consequently, before introducing the performance models developed 

for the selected structures, we want to describe in detail the underlying monitoring, 

analyzing, and tuning model, as well as the structural and functional characteristics 

of the Master/Worker and Pipeline frameworks, because they are the determinant 

elements for the definition of the proposed performance models.   

On the one hand, the monitoring, analyzing, and tuning model determines the 

structure of the performance model and its capabilities and limitations. It is not the 

same to use a static approach as to use a dynamic one. In the former, a longer and 

deeper analysis can be done, but in the latter performance improvements are 

obtained earlier. Moreover, it is not the same to use a model based on dynamically 

selecting the appropriate problem solving strategy (like Active Harmony [TC+02]), or 

another based on dynamically discovering and overcoming the application 

bottlenecks (like MATE [MM+03]). On the other hand, the specific contents of the 

performance model will depend on the framework used to develop an application 

because there will be different performance targets for each framework depending 

on its dynamically solvable performance associated bottlenecks.   

In conclusion, we have to describe the selected monitoring, analysis, and tuning 

model in order to establish the general structure of the performance models we are 

going to develop later. In addition, we have to describe the selected frameworks in 

order to identify the objectives that will guide the development of those performance 

models, and also justify why we have chosen these frameworks. Consequently, in 

this chapter, we include in section 2 a detailed description of our target model for 

dynamic and automatic performance tuning. In section 3, one finds the description of 

the Master/Worker framework.  Section 4 gives the description of the Pipeline 

framework. Finally, in section 5, we summarize the structure and requirements for 

the performance models that will be defined in the following chapters. 
 

2. Monitoring, Analysis, and Tuning Model 
 

In this section, we describe the automatic performance analysis and dynamic 

performance tuning model of the Monitoring Analysis and Tuning Environment 
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(MATE) [Mor03] that determines the framework for the structure of the performance 

models that are going to be described in the next chapters. This model has been 

designed and implemented by the Parallel and Distributed Applications Performance 

Group of the Computer Architecture and Operating Systems Department of the 

Autonomous University of Barcelona and, as well as other projects, such as Mirror 

Object Steering System (MOSS) [ES98], Autopilot [RS+01], and Active Harmony 

[TC+02], is inspired by the necessity of improving the performance of some 

applications dynamically, and it is based on the possibility of dynamically inserting 

instrumentation into the application code without re-compiling or re-linking it. 

 As previously mentioned, there are applications with a dynamic behavior that 

cannot be successfully improved through a static performance analysis and tuning 

approach. These applications can be instrumented on the fly using an 

instrumentation library like Dyninst [HB02] in order to obtain some relevant 

measures. These measures can be used for analyzing the application performance 

in parallel with its own execution and, if the analysis discovers any performance 

drawback, some application parameters can be modified to overcome it (or them).  

Classically, it has been considered that this process can be performed using a 

cooperative or an automatic approach. In the former, the application developer 

collaborates with the tuning process by providing information online about what 

should be measured, how it should be analyzed, and what can be changed. This 

approach is simpler, powerful, and the instrumentation can be static, however, it 

demands a high degree of expertise from the developer and the application must be 

prepared for being tuned. In the latter, the application is treated as a black-box and 

the tuning application tries to discover and solve some common problems. This 

approach has the advantage of being completely independent of developers, but the 

lack of knowledge about the application being tuned usually limits the complexity of 

the problems that can be tackled, and, consequently, the tool’s potentiality for 

getting significant performance improvements. Moreover, this approach needs 

dynamic instrumentation and, in consequence, introduces some degree of intrusion 

that can modify the application behavior, making it difficult to know if the problem 

that is being solved has been introduced by the tuning tool. 

We have introduced a third approach that we have called the automatic with 

knowledge approach because, on the one hand, there is no collaboration demand 

for the developer and the application is still a black-box, but on the other hand, the 

application architecture and functional structure is known because it has been 
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developed using a known framework. This approach can lead to significant 

performance improvements because it can deal with complex problems: in addition, 

it can be implemented with or without dynamic instrumentation, though in the 

second case intrusion can be minimized. Nevertheless, as there are several 

frameworks and also several programming environments based on frameworks, it is 

required that the tuning tool be flexible enough to allow it to be adaptable to these 

different possibilities.       

The MATE environment fulfills this requirement by forcing an environment 

independent specification of the performance knowledge. This means that MATE 

implements the architecture of a dynamic analysis and automatic tuning tool, defines 

the components of the performance knowledge, and how it should be specified, but 

MATE does not provide any performance knowledge by itself. This makes it suitable 

for developing several different strategies of dynamic tuning, depending on the 

approach (cooperative, automatic, or automatic with knowledge), and also on the 

element on which it is applied (the application itself, the application framework, the 

libraries used by the application, or the system libraries).   

Figure 1.  MATE steering loop. 

The architecture or steering loop implemented in MATE is composed of three main 

modules: the Monitor, the Analyzer, and the Tuner, as shown in figure 1. The 

Monitor module (also called Tracer) is responsible for gathering all the events 

produced during the application execution; in consequence, there must be a monitor 
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in any machine hosting application processes. The Analyzer module is responsible 

for the automatic and dynamic analysis and tuning of the application and also it is 

responsible for informing the user about problems detected and actions undertaken. 

Finally, the Tuner is responsible for inserting modifications into the running 

processes for overcoming performance bottlenecks; consequently, as in the case of 

the monitor, there must be a tuner in every machine hosting application processes.  

With the aim of presenting the performance model architecture associated with 

MATE, we describe in the next few subsections the functionality of those modules, 

their interrelations, and the parameters that should be defined for each one. 

 
2.1. Monitors 

 

This module has to gather all the relevant events produced during application 

execution, in order to monitor each application process, which means that there 

should be an instance of the monitor in every machine hosting an application 

process.  

Consequently, the environment must be aware of every newly created process, as 

well as every new machine available to the application. In the case of the current 

MATE implementation on the PVM library, it takes advantage of the tasker and 

hoster services of this library in order to catch every request for creating new 

processes or adding new hosts to the virtual machine. That way, when the creation 

of a new application process is requested, the Monitor residing at the corresponding 

host catches it and performs the appropriate steps to create an instrumented 

process, which is the requested process plus extra calls to monitor the desired 

events. Moreover, when the addition of a new host is requested for the master PVM 

daemon, the Monitor residing in the same host (the Master Monitor) catches it and 

performs the appropriate steps to add a monitored host, which is the requested host 

with a Monitor module running on it. 

Using the tasker and hoster services solves the problem of tracking all the 

application processes and available resources, but there are still a couple of 

problems to be solved. In the first place, temporal relationships between events 

gathered by different monitors must be preserved in order to reach right conclusions 

in the analysis regardless of any possible differences between local clocks. MATE 

implements a global timestamp scheme where each local Monitor is responsible for 

synchronizing its local clock with the one of the Master Monitor. Secondly, there 

must be a mechanism to indicate the events that should be monitored. Monitors use 
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the DynInst library to insert instrumentation dynamically in the monitored process 

code. This instrumentation is a piece of code (snippet) consisting of a call to an 

interface library for describing what the event is, when it happened, and where it 

was registered. In addition, Monitor is responsible for sending the gathered 

information to the Analyzer, thereby minimizing the intrusion into the network by 

means of event buffering and aggregation.  

Finally, as MATE does not provide performance knowledge by itself, the definition 

of the points of the application process that should be instrumented by the Monitor 

depends on the performance model provided.  These points are called measure 

points and the Monitor is instructed by the Analyzer about which points should be 

instrumented upon the creation of an application process. Moreover, it is possible to 

change these measure points during runtime, depending on the execution 

conditions and performance drawbacks detected. Consequently, any performance 

model defined for MATE must include a set of measure points that indicate what 

information should be gathered to evaluate the model.  

 
2.2. Analyzer 
 

The Analyzer is the module responsible for the dynamic performance analysis of 

the parallel/distributed application. It must be able to examine the application 

behavior, identify persistent performance bottlenecks, and provide the solutions for 

overcoming them. In addition, the Analyzer must inform users about the problems 

detected and actions undertaken. 

The functionality of this module is composed of two steps: an initialization one and 

the evaluation one. In the first one, the Analyzer uploads the performance 

knowledge provided and sets up the necessary Monitor and Tuner modules. In the 

second, the Analyzer receives the events gathered by Monitors and evaluates the 

application behavior using a set of evaluation expressions and/or strategies; if it 

detects a persistent performance problem (transient ones not worth solving), then it 

tracks the causes of the problem down (it may need to instruct Monitors to insert 

more instrumentation), and finally it sends to the appropriate Tuner(s) the changes 

that have to be made in the application process(es) to overcome the problem. 

  The current MATE implementation has only one Analyzer process that is 

responsible for doing a centralized performance analysis of the whole application. 

This approach works well for medium-sized applications but is difficult to scale for 

large ones; in addition, it is likely to be highly intrusive if the Analyzer is hosted in the 
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same machine as other application process(es). To solve the first problem, a 

distributed analysis scheme is being designed and, to solve the second problem, the 

Analyzer is executed on a dedicated node. 

Finally, the evaluation expressions and/or strategies used to evaluate the 

application’s performance must be part of any performance model defined for MATE 

and are provided in the form of evaluation routines written in C++ called tunlets.   

 
2.2. Tuner 
 

Tuners are responsible for dynamically inserting modifications into the application 

processes. Consequently, a Tuner instance must be present in every machine 

hosting an application process. Actually, in the current MATE implementation the 

Monitor and Tuner modules are integrated in a single process controlling all the 

application processes executed on a given node. 

When the Analyzer detects a performance problem and finds its solution, it sends 

a tuning requirement to the appropriate Tuner instance(s), then each Tuner applies 

the modification dynamically to the corresponding process(es). A tuning requirement 

is composed of a target process, a tuning point, a tuning action, and a 

synchronization method. The tuning point specifies what must be changed in the 

given process, the tuning action is the command to be performed on that point, and 

the synchronization method specifies the conditions that must hold for the tuning 

action to be performed in order to keep the application’s consistency. 

The tuning actions offered by MATE are: 

• Changing the value of an application variable. 

• Function replacement. A function call can be replaced with another with 

the same signature. 

• Function invocation. A function call is inserted into the application code 

and it will be invoked each time this code section is reached. 

• One-time function invocation. A function call is done at the specified point 

but the invocation code is not inserted in the process code. 

• Changing the arguments of a function call. 

Finally, as in the cases of the Analyzer and Monitors, the performance knowledge 

components of the tuner, the tuning points, the tuning actions, and the 

synchronization method must be specified by the performance model defined for 

MATE. 
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In summary, the MATE architecture determines that any performance model 

defined for this dynamic tuning environment must consist of a set of measure points, 

which are the inputs to the model to be monitored; a set of evaluation strategies 

and/or expressions used by the Analyzer to find and solve performance bottlenecks 

through their evaluation on the inputs; finally, a set of tuning points and actions that 

the Analyzer sends to the Tuners for dynamically introducing changes into the 

application in order to overcome the performance problems detected. 

 
3. Master/Worker Framework 

 
3.1. Framework structure and functional description 

 
The Master/Worker framework consists of a Master process and a farm of Worker 

processes. The Master is responsible for decomposing a problem into a set of tasks, 

for distributing them among the Workers, and for gathering the results produced by 

those Workers. Each Worker process gets messages with tasks, processes these 

tasks, and sends back the results to the Master. 

 The Master/Worker model is used in many scientific, engineering and commercial 

applications, such as software building and testing, sensitivity analysis, parameter 

space exploration, image and movie rendering, high energy physics event 

reconstruction, processing of optical DNA sequencing, training of neural networks 

and stochastic optimization among others [Can98, WW95, AI98]. 

 
Figure 2.  Generalized Master/Worker algorithm 

There are several reasons that made this framework quite popular; among them 

as we will show later, it can be used to implement many of the patterns described in 

the introductory chapter; or that it is suitable for programs to be executed in 

networks of workstations because with this framework it is possible to implement 

programs that dynamically adjust the computation load between units of execution, 

Initialization 
Do 
 For task = 1 to N 
     PartialResult  =  +  Function (task) 
 end 
 act_on_bach_complete( ) 
while (end condition not met). 

Worker 
Tasks 
Master 
Tasks 
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or that Master/Worker programs work particularly well on heterogeneous networks, 

since faster or less-loaded processors naturally take on more work. 

The general Master/Worker functionality can be summarized with the algorithm of 

figure 2.  It can be seen there, that the process of distributing tasks among workers 

and waiting for results can be repeated several times in an iterative way. This 

functionality, represented graphically in figure 3, makes this framework suitable to 

implement many of the parallel patterns discussed in the previous chapter. 

This way, the Separable-Dependences pattern, which can be used for task-based 

decompositions, in which dependences between tasks exist but can be pulled 

outside of the concurrent computation of tasks, can be implemented with this pattern 

by letting the Master do some data replication before distributing tasks and some 

results aggregation at the end the iteration. Moreover, the Geometric-Decomposition 

pattern, which can be used for data-based decompositions, in which a core date 

structure is decomposed in not completely independent chunks that can be updated 

concurrently, can also be implemented with the Master/Worker framework if the 

Master can cope with dependences at the beginning of each iteration. Finally, the 

Embarrassingly-Parallel pattern, which can be used for task-based decomposition 

as well as data-based ones in which tasks are completely independent of each 

other, is naturally implemented with this framework. 

Figure 3. Parbegin-parend structure corresponding to the general Master/Worker 
framework. 

Some simple real application examples of each pattern could be mentioned, such 

as numerical integration of a given function over a given interval using the trapezoid 

parbegin 

parend 

Task 1 Task 2 Task 3 Task N ... 

new task set 
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rule for the separable-dependences pattern because each worker can calculate the 

integral of some sub-interval while the Master aggregates the results, or matrix 

multiplication using a block decomposition for the geometric-decomposition pattern 

because matrixes are decomposed in blocks that are sent to workers that perform a 

classical matrix multiplication on them while the Master aggregates the results, or 

vector addition for the embarrassingly-parallel pattern because the vector to be 

added can be decomposed in chunks that can be independently added.  

The main reason we have principally focused on this framework in developing our 

work is because it is so useful and widely used. Actually, we have developed not 

only its performance model, but also an implementation of the framework [Mes04] 

aimed to be used for carrying out experimentation on real applications [MCe+05, 

MC+05], such as the classical N-body and a forest fire propagation simulator named 

xFire [JM+98]. 

 
3.1. Framework associated bottlenecks 
 

As previously explained, one of the advantages of using the Master/Worker 

framework for developing an application is its flexibility in dynamically adjusting the 

computation load between the execution units, which is a significant characteristic in 

order to get good performance from the assigned resources, though this adaptation 

depends on a careful design and the characteristics of the application. Furthermore, 

a second relevant performance parameter for this kind of applications is to 

determine the appropriate number of execution units (processors) that should be 

associated with them. 

  
Figure 4. 8 independent tasks distributes among (a) 4 execution units with poor load 
balancing, (b) 4 execution units with good load balancing, and (c) five execution units 
with good load balancing. 

Both characteristics are illustrated schematically in figure 4. In this figure, each box 

represents a task and the size of each box represents the computational 

requirements of the task: hence, it can be seen that a good load balancing is likely 

to improve the application’s performance especially if tasks are of different lengths, 
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and also that adding more workers may lead to performance improvements 

especially if the computational requirements are high. However, adding too many 

workers could lead to wasted resources without improving the application’s 

performance, as can be seen in the figure for case (c) where adding more workers 

cannot improve the application’s performance due to the length of task a.  

Moreover, the number of tasks and its associated computational needs are likely 

to vary during the execution of the application: hence, making these problems more 

difficult to solve. Consequently, load unbalance and an inappropriate number of 

workers seems to be the most relevant performance bottlenecks of these 

applications, and dynamically adjusting the workers’ load, and dynamically adapting 

the number of workers the most significant challenges to improve their performance. 

Nevertheless, there are other requirements for getting good performance from a 

Master/Worker application: in the first place, the number of tasks should be much 

higher than the number of workers because, on the contrary, balancing the load 

could be significantly more difficult to achieve; in the second place, the cost of 

initializing and sending a task to a worker must be much less than the cost of 

computing the task because, on the contrary, the advantages of concurrent 

processing are lost due to the cost of setting tasks up. These performance 

problems, however, are unlikely to be solved dynamically because they are 

produced by design pitfalls and not due to execution conditions. 

 
4. Pipeline Framework 

 
4.1. Framework structure and functional description 

 
The Pipeline framework is a well-known parallel programming structure used as 

the most direct way to implement algorithms that consist of performing an orderly 

sequence of essentially identical calculations on a sequence of inputs. Each of 

these calculations can be broken down into a certain number of different stages, and 

these stages can be applied concurrently to different inputs. Many image treatment 

programs and the computation of the Fast Fourier Transformation (FFT) are suited 

to be implemented using this framework.  

In figure 5 this description is schematically illustrated for a pipeline consisting of 

four stages, supposing that the calculations to be performed are named C1, C2, and 

so forth. Then the pipeline operation begins with the first stage performing its part of 

C1. When that is completed, the second stage of the pipeline performs its part of 
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C1, while the first stage simultaneously performs its part of C2. Next, stage 3 

performs its part of C1, while stage 2 concurrently performs its part of C2 and stage 

1 its part of C3.  

 

stage 0:  C1  C2  C3  C4  C5  C6       

stage 1:    C1  C2  C3  C4  C5  C6     

stage 2:      C1  C2  C3  C4  C5  C6   

stage 3:        C1  C2  C3  C4  C5  C6 

Figure 5.  Schematic representation of the functionality of a four-stage pipeline over six 
calculations.  

The structure behind this functionality is a linear arrangement of processes, like 

the one shown in figure 6 (a), in which each one is responsible for performing one or 

more stages. However, this structure can be extended, as in the example shown in 

figure 6 (b), to include situations in which some operations can be performed 

concurrently over different calculations. This suggests that a pipeline can be 

represented as a directed acyclic graph, with vertices corresponding to stages (or 

elements of calculation) and edges indicating dataflow. Clearly, this structure is 

suited to be implemented in a message-passing environment rather than in a 

shared-memory one. 

 Figure 6.  Structure of a four-stage linear pipeline (a) and four-stage non-linear one (b).  

Finally, it can be seen that there are three different kinds of processes in a 

Pipeline structure, the first stage process that has a succeeding stage but not a 

preceding one, the last stage process that has a preceding stage but not a 

Time 
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Stage 1 

Stage 2a 
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succeeding one, and the intermediate stage process that has both a preceding and 

a succeeding stage.  

 
4.1. Framework associated bottlenecks 
 

It can be seen in figure 5 that at the beginning, while the Pipeline is being filled 

and the number of calculations is less than four, some stages are idle. In general, in 

an  

n-stage Pipeline there are idle stages at least until n calculations have been pushed 

into the pipe. It can also be seen in the same figure that at the end, when the 

Pipeline is being drained processing the last four calculations, there are also some 

idle stages. In general in an n-stage Pipeline there are idle stages at least while 

processing the last n-1 calculations.  

These inefficiencies in the filling and draining phases (also known as ramp-in and 

ramp-out phases) of the execution of a Pipeline application cannot be avoided in the 

straightforward implementation of the structure but can be minimized if the number 

of calculations is large compared to the number of stages. Clearly, ensuring this 

condition is a design problem that cannot be dealt with dynamically because it is, in 

any case, a transient problem. 

However, there is a second source of performance inefficiencies in Pipeline 

applications. Suppose, as shown in figure 7, that in an n-stage pipe every stage 

except one takes roughly the same amount of time to perform its part of calculation 

and the exception takes three times more than the rest. It is easy to see that all the 

stages that come after the slow one are idle two thirds of the time.  

Consequently, as the number of calculations per unit of time or throughput of the 

Pipeline application is determined by the pace of the slowest stage of the pipe, it is 

important to avoid significant differences between the computational efforts of pipe 

stages. This is a load balancing problem that can be solved in the design phase of 

the application (statically) if the calculations to be performed are known in advance 

and their associated operation time even. What should be done in this case is to 

group faster operations in the same processor, in order to increase the resource 

availability, while replicating slower ones in other processors in order to increase 

their throughput. On the contrary, if the operation time depends on the calculation 

and varies along the application execution the problem can be solved the same way 

but dynamically at execution time. 
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stage 0:  C1 C2 C3 C4 C5 C6        

stage 1:   C1 C2 C3 C4 

stage 2:      C1   C2   C3   

stage 3:       C1   C2   C3  

Figure 7.  Unbalanced Pipeline execution. 

 
5. Structure and Objectives of the Developed Performance 
Models  
 

In the first place, this work has been developed in the same research group that 

has designed and implemented the MATE dynamic tuning environment and it is 

closely associated with MATE. Therefore, the structure of the defined performance 

models is the one required by this environment; hence, the models that have been 

developed and that will be presented in the next chapters consist of three main 

parts: 

• The measure points or set of application parameters that should be 

monitored in order to evaluate the performance expressions and/or 

strategies. 

• Performance expressions and/or strategies are the main components 

of the performance model and must be designed with the aim of 

describing the behavior of the application in order to dynamically detect its 

performance bottlenecks and generate the appropriated actions to 

overcome them. 

• The tuning points and actions are the set of parameters and changes of 

these parameters used for improving the application’s performance. 

These actions should also include a set of safety conditions that indicate 

when these actions can be applied without altering the application’s 

consistency.    

In the second place, we have chosen to develop the performance model of two 

popular and well-known frameworks: the Master/Worker and the Pipeline. The 

Master/Worker framework is widely used because of its adaptability to clusters of 

workstations and its flexibility in implementing several application design patterns, 

while Pipeline framework is very useful for exploiting the concurrency of algorithms 

Time 
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consisting of the application of an orderly sequence of calculations over a stream of 

data. 

Moreover, the main objective of the developed performance model associated with 

the Master/Worker framework must be to balance the load of workers in order to 

obtain the best performance from the available resources, but also to determine the 

number of workers that should be used to improve the application’s performance, 

whereas the main objective of the performance model developed, associated with 

the Pipeline framework, must be to determine what stages should be replicated and 

how many replicas of each one should be introduced in order to improve the 

application’s throughput and, consequently, its performance. 

Finally, we want to highlight that, as a consequence of focusing on dynamic tuning 

and the performance model architecture we are using, a generic framework analysis 

methodology can be established. This methodology consists firstly in identifying 

those performance problems suited for being solved dynamically, then in finding or 

defining the magnitudes that should be monitored in order to identify those problems 

(inputs) and those that had to be changed in order to overcome them (outputs); 

finally, in building the set of performance analysis strategies or expressions that 

make it possible to determine, based on the defined inputs, the best performance 

improving actions (outputs). 



Chapter II Dynamic automatic performance tuning based on application structure 

 51

 



 
 
 
 
 
 
 
 

Chapter III: 
Master/Worker Framework 
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Abstract 

In this chapter, we present the performance model we have 

defined to dynamically improve the performance of 

applications developed with the Master/Worker framework. 

The objective of this model is to improve the application’s 

performance in two phases in the first one the worker’s loads 

are balanced in order to make efficient use of the available 

resources, while in the second phase the number of workers 

associated to the application is evaluated in order to 

determine if the application’s performance can be 

significantly improved by adding more workers. We also 

present a set of experiments that validate both phases of the 

model. 
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1. Introduction 
 

In this chapter, we will introduce our proposal for a performance model associated 

with the Master/Worker framework. To fulfill this objective we will first recall the 

framework associated performance problems presented in the previous chapter, and 

then discuss in which order they should be solved to improve the overall application 

execution time.  Finally, we will devote the rest of the chapter to define, according to 

the general performance model introduced in the previous chapter, the strategies 

and expressions that are part of our performance model and the experimentation 

that has been carried out to validate them. 

In Chapter II, we have shown that Master/Worker applications could suffer from 

two main performance bottlenecks related to the framework structure and 

functionality: the first one was the load unbalance of the workers, which could 

produce long idle times for quick or lightly loaded workers, and the second one was 

the use of an inadequate number of workers (too short or too large) to process the 

set of tasks at hand.  

It is worth noting that both problems may depend on dynamic conditions, such as 

the amount of available tasks or the processors� load; thus, they are suitable for 

being solved dynamically.  

In figure 1, we can see that balancing workers� load leads to significant 

performance improvements. Here, we show the execution trace file of a synthetically 

generated Master/Worker application with 10 workers, processing 10000 tasks per 

iteration, and each task with an associated mean processing time of 2 ms. and a 

standard deviation of 1.6 ms (80%).  

For the first execution trace (a), the Master is distributing the whole set of tasks at 

the beginning of each iteration, and we can see how several workers are resting idle 

too much time (green areas mean worker busy while black ones mean worker idle). 

However, we can see in (b) how a simple change in the task distribution policy leads 

to a better behavior of the application.  

In addition, when the load unbalance between the different workers of the 

application is high, adding more workers has a limited positive impact on the 

application performance (actually it is likely to have a negative one) as we can 

observe in figure 2, where we show the execution time of a Master/Worker 

application, which processes 1024 1Kbyte tasks each iteration, with each task 

having an associated processing time distributed accordingly to table 1, and using 

an increasing number of workers (from 8 to 52). To allow comparison, we have also 
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included the best expected execution time for a balanced application of the same 

characteristics, which is basically the overall execution time divided by the number 

of workers plus a communication overhead. 

 
(a) 

 
(b) 

Figure 1.  Unbalanced (a) and balanced (b) Master/Worker application. It is an 
application with 10 workers, processing 10,000 50byte tasks with an associated mean 
processing time of 2 ms. each and a standard deviation of 1.6 ms. (80%)  

It is clear that we are only able to take advantage of the extra available resources 

up to 20 processors; this is because the tasks that are assigned to each worker are 

chosen randomly among the groups with available tasks, meaning that there is a 

uniform probability of choosing a task from any group. When the number of 

processors is low, each one receives many tasks given more chance to be well 

assorted with every kind of them (short ones and large ones), in a proportion similar 

to the one of table 1. On the contrary, when the number of processors is high the 

number of tasks received is lower and it is likely that a processor with bad luck, i.e. 

one that receives several large tasks, would stall the whole application.  

In contrast, it is possible to get large improvements from adding workers to a 

balanced application, as the best expected execution time function of figure 2 

suggests. Moreover, we will show that it is possible to predict this improvement quite 

accurately. As a consequence, it is clear that, in order to improve the efficiency of 
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the decision about the number of workers of our application, this step should be 

preceded by a load balancing phase. 
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Figure 2.  Real and best expected execution time of a Master/Worker application using 
from 8 to 52 processors, processing 1024 1Kb tasks each iteration, and task associated 
processing time distributed accordingly to table 1. 

 

Number 
of tasks 

% Over total 
(1024 tasks) 

Associated computation 
time  (ms/task) 

% Over iteration 
execution time  (2 s) 

205 20 0.6 10 
154 15 1.2 10 
307 30 1.7 25 
154 15 2.3 15 
102 10 3.4 15 
102 10 5 25 

Table 1. Distribution of task processing time for the application shown in figure 2. 

Consequently, in the rest of this chapter, we introduce in the first place the 

discussion of different strategies for achieving a good load balance for the 

application, including the experimental results that validate them; next, we present 

the set of expressions that model the performance of a homogeneous 

Master/Worker application, making it possible to dynamically calculate the 

appropriate number of workers to be used by the application; then, we present the 

formal analysis that works as a glue among the load balancing strategies and the 

model for calculating the appropriate number of workers; finally, we include a 

summary of the Master/Worker model for dynamic performance tuning. 
 

2. Load Balancing through Data Distribution 
 

The execution time of a Master/Worker application with N workers, and a set of 

tasks that can be sequentially processed in time T, can be roughly bounded by the 

expressions T/N (lower bound), and T (upper bound), though in both cases some 
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communication time should be added. Getting an execution time closer to the lower 

bound mainly depends on a good load balancing among workers which, in turn, 

relies on a good data distribution policy.  

We were aware of this problem from the very beginning of our research, 

nevertheless, we did not propose the first, mostly informal, solutions until [CM+04] 

and [MCa+05]. Lately, we have studied it in much more depth [MoC+05]. Our main 

source of inspiration for coping with this problem has been the works about the 

distribution of parallel loops, like [KW85], [FSF92], [BV01], and [BV02]. They define 

many policies aimed at balancing the computation load of a set of processors used 

to execute several instances of a parallel loop, which is a very similar problem to the 

one of task distribution for Master/Worker applications.  

The general solution of the task distribution problem could be stated in the 

following way:  

Instead of distributing the whole set of tasks among workers and waiting for 
the results (with no control over load balancing), the master will make a 
partial distribution by dividing this set of tasks in different portions called 
batches. The number of tasks assigned to each batch depends on the 
distribution strategy, and it may be different from one batch to another. The 
idea is to distribute the first of these batches among workers in chunks of 
(roughly) the same number of tasks, then when a worker ends the processing 
of its assigned chunk the master will send it a new chunk from the next 
batch, the process continues until all batches have been completely 
distributed. This way, workers which have received tough tasks will not 
receive more load and workers which have received lighter tasks will be 
employed to do more work.  

Different strategies can be used to determine the batch sizes with the objective of 

getting a better load balancing with little computation and communication 

overheads. We have adapted, implemented and analyzed three different strategies 

that will be treated in deep later in this chapter:  

• Fixed Size Chunking (FSC), which consists of dividing the set of tasks in 

some number of equal sized batches (with the only possible exception of 

the last one). In this case, we must try to find the best number of batches 

to improve load balancing. 

• Dynamic Predictive Factoring (DPF), which consists of building the first 

batch with some portion of the task set, the second with the same portion 

of the remaining tasks, and so on until some lower bound for the batch 

cardinality is reached. In this case, we must try to find the best factor to 
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determine the portion of the remaining task set that will be distributed in 

each batch. 

• Dynamic Adjusting Factoring (DAF) which is like DPF but with a variable 

factor that is recomputed from batch to batch depending on the current 

load balancing conditions. 

 
2.1. Fixed Size Chunking (FSC) 
 

This is the simplest strategy intended to improve the load balancing of the 

application. As we illustrate in figure 3, it consists of dividing the set of tasks into a 

series of batches of the same size then the tasks of the first batch are distributed 

among workers in equal size chunks. When a worker finishes the processing of its 

assigned chunk, the master sends a new chunk from another batch until all batches 

have been distributed. We proposed this adaptation of the Fixed Size Chunking 

policy [KW85] to the M/W task distribution problem in [CM+04]. 

The number of batches to be distributed depends on a partition factor, which is the 

proportion of the whole set of tasks to be included in each batch, for example: a 

factor of 0.2 means that the set of tasks will be divided into 5 batches, each one 

including 20% of the tasks. This means that low partition factors will produce more 

batches with fewer tasks, whereas high partition factors will produce fewer batches 

with more tasks. 

As a consequence, a low partition factor leads to a finer grained distribution of 

tasks, but also to a higher communication overhead, since we are producing more 

messages with fewer tasks, while a higher partition factor leads to a coarser grained 

distribution of tasks, but also to a lower communication overhead. Therefore, it is 

better to choose higher partition factors in order to minimize communication 

overhead, but if the standard deviation of the tasks processing time is large enough, 

a lower factor must be used with the objective of getting a finer grained distribution 

of tasks in order to minimize load unbalancing.  

In figure 3, we show a hypothetical case of a Master/Worker with three workers 

and 12 tasks to be computed. Tasks are distributed in two batches of 6 tasks each, 

implying chunks of two tasks for each worker. For this example, we get a 

performance improvement of 16.67% from the application of the policy because a 

complete distribution of tasks would have produced a total execution time of 12 time 

units, since the tasks labeled 4, 1, 5, and 2 (total execution time of 12 time units) 

would have been assigned to worker 0. 
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Figure 3. Schematic execution of an application using the FSC distribution policy. In 
this case, a factor of 0.5 has been used to generate two batches with three chunks of 
two tasks each.    

However, we can also see in this example one of the main drawbacks of this 

policy, which is its lack of sensitivity to load unbalances in the last batches for 

relatively high partition factors. We can observe that if we had chosen a factor of 

0.25, which would have lead to the distribution of one-task chunks, the total 

execution time, not including communications, would have been of 9 time units, only 

one unit over the best possible execution time of 8 (24 total processing time 

associated to tasks/ 3 workers). 

We can try to estimate the best partition factor at execution time from the history of 

each worker, assuming that, in the near future, their behavior will not substantially 
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change. The idea is to find a good partition factor by calculating the mean time 

invested by each worker to process the last x tasks that it has received, and then 

estimate what will happen to the next set of tasks by simulating different values of 

the partition factor. 

Let us specify in greater detail how this estimation is accomplished: 

1. For the first iteration of the application an arbitrary predefined partition 

factor of 0.25 is used. With such a low partition factor we are being 

pessimistic about the tasks processing time standard deviation, but not too 

much in order to avoid a high communication overhead. During this 

iteration the number of chunks processed by each processor and the time 

spent on this processing are stored for their future use in the calculation of 

new partition factors. 

2. For the second iteration, we use the same partition factor of 0.25, and we 

also store the per processor number of processed chunks and processing 

time. However, at the same time, we use the stored data to simulate what 

would have happened if other partition factors had been used. The 

algorithm of this simulation is the following: 

a. Choose a test partition factor of 0.1. 

b. Calculate the batches and chunks that will result from the 

application of this partition factor. This is possible because we know 

the number of tasks being processed and the number of workers of 

our application. 

c. Using the historical data about the processing time spent by each 

processor on the chunks it has received, calculate the processor 

mean processing time per task. 

d. Using the calculated partition and mean time and the expressions 

developed for the estimation of the execution time of a 

Master/Worker application, which will be discussed in the second 

part of this chapter, we can estimate the execution time of a whole 

iteration for this partition factor (considering communication).   

e. If this estimated execution time is the best one so far, then the 

tested partition factor becomes the new proposed partition factor.  

f. If the test partition factor is less than 1.0, increase it by 0.1 and go 

to (b), otherwise, the process is done. 
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3. For the third and subsequent iterations we use the partition factor proposed 

by the simulation process described above and, in addition, we keep on 

storing processing data and repeating simulations to adapt the partition 

factor to possible variations of the processing times associated with the 

tasks.   
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Figure 4. Execution times of a 10-worker application using the FSC distribution policy 
with different degrees of standard deviation and different partition factors.    

Some experimental results of the application of this policy are shown in figure 4. In 

this figure, we show the execution times of a configurable Master/Worker application 

with 10 workers for different standard deviation values for the processing time 

associated with tasks. The application executes 15 iterations of 10,000 tasks each, 

the mean processing time associated with each task is 2 ms. which leads to a global 

processing time of 20 sec/iteration and a lower bound of 2 sec/iteration with 10 

workers. The size of each task is 50 bytes, which means that the master is sending 

50 bytes/task to the workers and the workers are replying with 50 bytes/task to the 

master, this makes a total communication volume of 106 bytes. Finally, we have 

included in the figure the results of using a constant partition factor of 1.0, 0.5, 0.25, 

and also those obtained from the use of the estimation algorithm described above.   

We can see in this figure that for higher values of the standard deviation we are 

getting, in general, higher execution times, and also that higher partition factors lead 

to better results for lower values of the standard deviation but worse for higher ones, 

while lower partitions factors are working well for higher values of the standard 

deviation and poorly for lower ones. Finally, we can see that the results obtained by 

the dynamic estimation of the partition factor are as good as, or better than, the best 

ones of the fixed partition factors. 
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2.2. Dynamic Predictive Factoring (DPF) 
 

We have observed that the previously described FSC policy lacks the necessary 

sensitivity to deal with load unbalances introduced by the lasts distributed chunks. 

This drawback appears because all chunks include the same number of tasks and 

because we prefer to have the biggest possible chunks to minimize both the 

communication overhead and load unbalance. 

With the objective of overcoming this problem, an adaptation of the Factoring 

policy [FSF92], which is a partition policy based on assigning large chunks at the 

beginning of the iteration and small ones at the end, was first proposed in [Mor03] 

and further developed in [MCa+05] with the name of Dynamic Predictive Factoring 

(DPF). 

The general idea of this policy, as shown in figure 5, consists of dividing the set of 

tasks into batches of decreasing size, then, as in the case of the FSC policy, the 

tasks of the first batch are distributed among workers in equal-size chunks, and 

when a worker finishes the processing of its assigned chunk the master sends a 

new chunk from another batch, until all batches have been processed. 

Again, the number of batches to be distributed depends on a partition factor, but 

for the DPF policy this factor is used on the whole set of tasks to calculate the 

number of tasks of the first batch, then on the tasks left out (those not included in 

the first batch) to calculate the number of tasks included in the second batch, and so 

on for the remaining batches, until some predefined lower limit for the per chunk 

number of tasks is reached.  

Intuitively, we are assuming with this policy that sending bigger chunks at the 

beginning of an iteration not only is not likely to make any worker go beyond the T/N 

target time, but is also useful for minimizing the communication overhead. However, 

as we get closer to the end of the iteration it is more probable that processing a 

large chunk causes a significant deviation in the overall execution time. 

Consequently, as the iteration advances, the chunk size should be progressively 

reduced to minimize this effect, although the communication overhead is increased. 

We illustrate this in the example in figure 5, there we can see that applying this 

policy to the same example of figure 3 with a partition factor of 0.5, we are getting 

the same total execution time than that of the best case of FSC (partition factor of 

0.25), but with 3 (25%) messages less. 

Although the DPF policy is more sensitive to load unbalances introduced by the 

last chunks, choosing the appropriate partition factor will determine the degree of 
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success  of the method. Choosing a high partition factor could lead to load 

unbalances if the processing time standard deviation is also high; on the contrary, 

being too conservative by choosing a low partition factor could produce an 

unnecessary increment of the communication overhead. 

As for the FSC policy, we can try to estimate the best partition factor by a 

simulation process based on the history of the execution of each worker, assuming 

that, for the next few succeeding iterations, they will show a steady behavior. The 

estimation process is like the one described for the FSC policy, changing only the 

way batches are defined. Actually, this estimation process was first proposed in 

[Mor03] for the DPF policy. 

 
Figure 5. Schematic execution of an application using the DPF distribution policy. In 
this case a factor of 0.5 has been used to generate a first batch with three chunks of two 
tasks each, and two batches with three chunks of one task each. 
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Finally, in figure 6 we show some experimental results of the application of the 

DPF policy. The executed application has exactly the same characteristics as the 

one used for the FSC policy, i.e., same number of workers, same amount of data, 

same mean processing time and standard deviation, etc., with the only change 

being the distribution policy. This does not mean that all workers will process the 

same tasks as in the previous example because it depends on the distribution 

policy; actually, the set of tasks will differ because only the mean processing time 

and standard deviation is preserved.  
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Figure 6. Execution times of a 10-worker application using the DPF distribution policy 
with different degrees of standard deviation and different partition factors. 

We can see in figure 6 that we are getting acceptable results even for high values 

of the standard deviation in the task processing time. Even so, we could see that 

dynamic estimation of the partition factor seems worthwhile because it usually leads 

to better results for all displayed values of the standard deviation. 

2.3. Dynamic Adjusting Factoring (DAF) 
 

For the policies analyzed so far, we have seen that estimating the partition factor 

appears to be a promising approach to obtain nearly the best outcome from them. 

Even so, it should be noticed that we are assuming that the application conditions 

that were used to estimate the partition factor are already present when it goes into 

use two iterations later. That means that for applications with significant variations 

from iteration to iteration, or even for applications with some �different� iterations, we 

could get results that are not as good from these distribution policies. 

Moreover, even for applications with a steady behavior, we have seen that the 

distribution policies present their worst results for higher values of the standard 
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deviation of the task processing time. It is because only the mean processing time of 

tasks is used for the estimation of the partition factor.  

These were the reasons that motivated us to adapt the Dynamic Adjusting 

Factoring policy [BV02] (which is a partition policy that tries to adapt the partition 

factor immediately to the current conditions of the application) to the task distribution 

problem [MoC+05]. 

The original Factoring policy (intended for parallel loops scheduling) tries to assign 

to processors the biggest possible chunks of parallel loop iterations that minimize 

the probability of exceeding the expected optimal execution time (T/N). This can be 

easily adapted to Master/Worker applications by substituting parallel loop iterations 

by tasks.  

This statement can be formalized mathematically in the following way:  

Suppose that we have N available workers (processors) for executing M tasks 

(M>>N), each one modeled as an identical independent random variable with mean 

µ and standard deviation σ. Assuming that all workers are initially idle, we can 

model the execution of a batch of N chunks as an Nth order statistic, which is the 

maximum of N identically distributed random variables.   

In general, an upper bound for the expected value of an Nth order statistic is 

defined by the expression 2Nσµ + . Consequently, supposing that the number of 

tasks included in each chunk of the first batch is F0, we will have a mean execution 

time of µF0 and a standard deviation of σF0, and an upper bound for its processing 

of 200 NFF σµ + . 

As our target is not to exceed the optimal execution time, which can be expressed 

as ( )NMµ , we can say that fulfilling the expression ( )NMNFF µσµ =+ 200  should 

be the goal of our policy. To do so, we need to compute F0, which is the portion of 

the set of tasks to be distributed in the first batch divided by the number of 

processors, thus it can be expressed as M/(N*x0), where x0 is the inverse of the 

partition factor used by the policy to generate the first batch to be distributed. 

Finally, we solve this expression for x0, getting: 

( )
µ

σµ 2
0

Nx +=   (1) 

However, for the succeeding batches we cannot assume that all workers are idle, 

because when any worker finishes the processing of its first chunk the master is 

going to assign it a new chunk from another batch, independently of whatever the 

state of the remaining workers may be. 
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Consequently, to calculate the number of tasks to be included in each chunk of 

batch j, a more conservative target than the optimal expected processing time for 

the currently remaining tasks (Rj) is proposed in order to compensate for the 

differences in the processing starting times of those chunks. The restriction over the 

target consists of trying to match the optimal expected processing time for the set of 

remaining tasks, but excluding the tasks that will be included in the current batch. 

Therefore, the resulting goal expression is ( )[ ]jjjj FNRNFF −=+ µσµ 2 .  

Obviously, this time we must solve this expression for xj, which will be inverse of 

the partition factor used to calculate the number of tasks of the batch j, obtaining: 

( )
µ

σµ 22 Nx j
+=   (2) 

Now, using expressions (1) and (2), we can define a new distribution algorithm 

that immediately adapts the partition factor to the application current executing 

conditions: 

1. With the goal of accumulating enough information to compute the adaptive 

factor, the first iteration will be executed using the DPF partition method 

with a fixed factor of 0.5. This initial factor is arbitrarily chosen because it 

has generally behaved quite well. 

2. At the beginning of the remaining iterations, calculate x0, using the 

information accumulated in the past and expression (1). Then using the 

same data and expression (2), calculate x1.  Prepare chunks of batches 0 

and 1 for being distributed among workers. 

3. When the number of available chunks falls below a predefined threshold, 

which we have fixed as half the number of workers (N/2), use expression 

(2) to compute xj (from j = 2), then calculate the number of tasks for batch 

j, and prepare the new chunks to be distributed among workers. 

4. If the number of tasks per chunk reaches some predefined lower limit, the 

remaining tasks are distributed in the last N chunks, and the distribution 

process ends. 

Before showing an example of the application of the DAF tasks distribution policy, 

we want to introduce some comments about the tasks per chunk lower limit that we 

mentioned above, as well as in the discussion of the DPF policy. Furthermore, some 

of these observations are also valid for the FSC partition policy.  

At first, it seems pretty clear that a chunk should include a least one task and a 

batch should include as many chunks as there are workers, thus a batch will include 
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at least  as many tasks as there are workers. There are some exceptions caused by 

rounding effects, for example, if we have 1123 tasks and we are using the FSC 

policy with a partition factor of 0.2, then we will have five batches with 224 tasks 

(  2.0*1123 ) and 3 tasks left that can be used to build an extra 3 task chunk. The 

bottom line of what we are saying is that, mainly for DPF and DAF policies, the 

partition method will not be applied if the number of remaining tasks is about to fall 

below the number of workers. 

However, in the end, we are going to face performance inefficiencies far before 

reaching this limit because the defined policies do not always directly consider some 

relevant application features, such as the communication cost and the Master�s 

chunk managing capability. 

The communication cost is considered both by the FSC and DPF policies, 

because the estimation process uses performance expressions that include this 

cost, but not by the DAF policy. Nevertheless, taking into consideration the Master�s 

chunk managing capability will strongly minimize this problem. 

We define the Master’s Chunk Managing Capability as the maximum number of 

chunks that the Master can manage from the time it sends a chunk to a worker until 

the moment if receives the answer for the same chunk from that worker. Task 

managing includes message handling times and eventually some computation made 

by the Master on the tasks. It is, in the end, a communication capacity problem, 

which mainly depends on the number of workers, the chunk size, and the mean task 

processing time. 

We will get back to this problem in much greater detail in the second part of this 

chapter, when we discuss the estimation of the number of workers. We can say now 

, however, that if the number of tasks per chunk causes the Master to fall below its 

chunk managing capability it will not be able to feed all workers and, as a result, 

there will be some idle workers.  

The good news is that it is possible to estimate the number of tasks that will 

produce this inefficiency and, consequently, we can use this number as a lower 

bound for the number of tasks that will be included in each chunk.  

Coming back to DAF policy, in figure 7, we show some experimental results of the 

application of that policy. The example is again the same one used to illustrate the 

previously defined policies, but this time we only show the execution with and 

without applying the distribution policy. We can see in the figure that we are getting 



Definition of Framework-based Performance Models for Dynamic Performance Tuning 
 

 67

results not only very close to the theoretical optimal execution time, but also that 

they are little affected by the high values of the standard deviation. 
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Figure 7. Execution times of a 10-worker application using the DAF distribution policy 
with different degrees of standard deviation. 

Finally, in figure 8 we show the comparison of the execution times we have 

obtained with the application of the three policies described to the same 10-worker 

example, though for the DPF and FSC policies we are only displaying the adaptive 

version. It seems clear that DPF and DAF are overrunning the FSC results for any 

standard deviation, while presenting similar outcomes among them, except for high 

values of the standard deviation where DAF policy is clearly the best. We will try to 

confirm these results through a more extensive experimentation in the next section.  
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Figure 8. Comparison of results of the application of the three policies discussed on the 
same application. 
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2.4. Policy Comparison through Experimentation  
 

In the previous sections, we presented three possible task distribution policies 

aimed at solving the load unbalance performance problem for Master-Worker 

applications. We discussed their theoretical pros and cons, and we illustrated their 

application using an example. Now, our goal is to provide stronger evidence about 

their performance through the use of extensive experimentation. 

Before getting into the results discussion, we want to briefly describe the platform 

used to execute all these experiments, the tools developed to generate the 

appropriated synthetic programs, as well as the set of experiments we are 

presenting in this section. 

      Mean Processing Time per Task and Standard deviation (%) 

  0,5 ms 2 ms 6ms 

# workers Data 
Volume 0 10 20 40 80 0 10 20 40 80 0 10 20 40 80 

240 Kb x x x x x x x x x x x x x x x 
25 

1 Mb x x x x x x x x x x x x x x x 

50 240 Kb      x x x x x x x x x x 

Table 2. Summary of the configurations executed in order to test the task distribution 
policies. 

We have executed our experiments on one of the clusters of the Computer 

Science Department of the Wisconsin University at Madison. It is a 150 dual 

933MHz nodes connected to a 100Mbit switch, which has a gig-uplink to the core of 

the network (6 clusters).  We have developed, on this platform, a set of configurable 

programs to test our models. These programs have been developed in C plus MPI, 

and the ones that are used specifically to test the task distribution policies accept 

the following parameters: distribution policy (none, FSC, DPF, or DAF), task size 

(number of bytes sent and received to and from the worker), network parameters 

(message overhead and communication speed per byte), and processing time 

matrix (generated by a statistical tool in accordance to a given mean and standard 

deviation).  

 Mean Processing Time per Task 

 0.5 ms (x10000 tasks ≈ 5 sec) 2 ms (x10000 tasks ≈ 20 
sec) 

6 ms (x10000 tasks ≈ 60 
sec) 

# workers Ideal Execution time (Total execution time/number of workers) 

25 200 ms 800 ms 2.4 sec 

50 100 ms 400 ms 1.2 sec 

Table 3. Ideal execution time for 10000 tasks and 25, and 50 workers. 
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The set of experiments that we have designed for this section are summarized in 

table 2. We have executed each configuration using the three policies described and 

also distributing the whole set of tasks from the beginning, i.e., without any 

distribution policy. Each execution has been made with 10000 tasks, which results in 

the ideal execution time shown in table 3. In addition, each configuration has been 

executed for 15 iterations. The resulting times have been processed in order to 

eliminate statistical anomalies; finally, the mean execution time has been plotted in 

the figures displayed below (9 to 16). Each figure includes four graphs: three for the 

execution time of the application using each policy against the distribution without 

using any policy ( a- FSC, b- DPF, and c- DAF), and the last one (d) for the 

comparison between the distribution policies. 
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Figure 9. Execution of a 25-worker application with an associated mean processing time 
of 0.5 ms per task, a communication volume of 240 Kb, and for a standard deviation 
ranging from 0% to 80%. Distribution policy used: (a) FCS, (b) DPF, and (c) DAF. Policy 
comparison (d).   
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Figure 10. Execution of a 25-worker application with an associated mean processing 
time of 0.5 ms per task, a communication volume of 1 Mb, and for a standard deviation 
ranging from 0% to 80%. Distribution policy used: (a) FCS, (b) DPF, and (c) DAF. Policy 
comparison (d).   
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Figure 11. Execution of a 25-worker application with an associated mean processing 
time of 2 ms per task, a communication volume of 240 Kb, and for a standard deviation 
ranging from 0% to 80%. Distribution policy used: (a) FCS, (b) DPF, and (c) DAF. Policy 
comparison (d).   
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Figure 12. Execution of a 25-worker application with an associated mean processing 
time of 2 ms per task, a communication volume of 1 Mb, and for a standard deviation 
ranging from 0% to 80%. Distribution policy used: (a) FCS, (b) DPF, and (c) DAF. Policy 
comparison (d).   
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Figure 13. Execution of a 25-worker application with an associated mean processing 
time of 6 ms per task, a communication volume of 240 Kb, and for a standard deviation 
ranging from 0% to 80%. Distribution policy used: (a) FCS, (b) DPF, and (c) DAF. Policy 
comparison (d).   
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Figure 14. Execution of a 25-worker application with an associated mean processing 
time of 6 ms per task, a communication volume of 1 Mb, and for a standard deviation 
ranging from 0% to 80%. Distribution policy used: (a) FCS, (b) DPF, and (c) DAF. Policy 
comparison (d).   
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Figure 15. Execution of a 50-worker application with an associated mean processing 
time of 2 ms per task, a communication volume of 240 Kb, and for a standard deviation 
ranging from 0% to 80%. Distribution policy used: (a) FCS, (b) DPF, and (c) DAF. Policy 
comparison (d).   
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Figure 16. Execution of a 50-worker application with an associated mean processing 
time of 6 ms per task, a communication volume of 240 Kb, and for a standard deviation 
ranging from 0% to 80%. Distribution policy used: (a) FCS, (b) DPF, and (c) DAF. Policy 
comparison (d).   

We can see that, in general, we have obtained the expected results: the Dynamic 

Adjusting Factoring policy (DAF) leads to the best results and is less affected by a 

high standard deviation, the factoring policy with Dynamic Predictive Factoring 

(DPF) is quite good for a small and medium standard deviation, and the fixed size 

chunking policy (FSC) is, usually by far, the worst one.  

Nevertheless, we think that the outcomes of the DPF policy for the configurations 

displayed in figures 9, 10, and 11 deserve some further discussion. For these cases, 

we can see that the DPF policy shows a behavior that is some times worse than the 

FSC one, and usually closer to FSC than to DAF.   

We believe that the atypical values of these figures could be partially caused by 

statistical deviations, as a result of running only fifteen iterations of the application. 

For instance, we can see in figure 17 the mean execution time of each worker for 

the application of figure 9 and for an 80% standard deviation using the FSC policy 

(a) and that of the DPF (b); it is clear that there is a greater dispersion for the values 

in the case of DPF than for those of FSC, which is likely to make it more difficult to 

balance the DPF case. This is happening, regardless of using the same 

configuration for both cases, because the parameters passed to the application are 
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the mean execution time and the standard deviation and not the actual execution 

times.  

However, this is not the main problem; actually, running more iterations in order to 

get more statistically sound results will not make the real problem disappear. 

Because the real problem is that both policies only take into consideration the mean 

execution time associated with each worker and neglect the standard deviation 

associated to this time. In consequence, in regard to the experiments, we use the 

same mean processing time for all tasks; thus, in the long run for all workers, the 

FSC and DPF policies will tend to be overoptimistic because on average the 

application seems more and more homogeneous for each new iteration, while the 

real situation is likely to be far from homogenous due to the high standard deviation. 

As an example, we can see in figure 17 the value of the partition factor in each 

iteration for the FSC policy (c) and the DPF policy (d) given the mean execution 

times per worker of graphs (a) and (b) respectively.  There, we can see how, as the 

mean processing times of the workers become closer to each other, the partition 

factor increases because the policy assumes that the application is more and more 

homogeneous.  
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Figure 17.  Mean execution time/processor in each iteration for a 25-worker application 
with a mean processing time of 0.5 ms/task, a communication volume of 240 Kb, and a 
standard deviation of 80%, using the FSC policy (a), and using DPF policy (b). Factor 
variation in each iteration for both policies, (a) FSC and (b) DPF. 
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We outlined this problem when we described the distribution policies and we said 

that estimating the partition factor for both FSC and DPF assumes a steady 

behavior of the application. It should be noticed that recalling less history could 

improve the results for a high standard deviation, just because the policy will expect 

more dispersion and, in consequence, will be more conservative; on the other hand, 

it could worsen the results for a low standard deviation by being more sensitive to 

those few values that are far from the mean.  

Even though, empirically, this explains why the distribution policy does not always 

lead to the results expected, we still have to clarify why it seems to have a greater 

effect over the DPF policy than over the FSC one. To do so, it will be helpful to 

analyze what happens for different partition factor values in the FSC policy: 

• Partition factor below 0.4. These values lead to several batches (no less 

than three); if the task processing time standard deviation is low then we 

will have an unnecessary increase of the communication overhead. On the 

other hand, if the task processing time standard deviation is high then 

many batches should help to balance the processor load.   

• Partition factor greater or equal to 0.5 and lesser or equal to 0.7. These 

values lead to only two batches with the second batch including a 

significant number of tasks. In this situation, a worker that has received a 

regular chunk in the first round, which means that this worker neither needs 

too much time nor too little to process it, is likely to require a second chunk 

and if this second chunk is a tough one, which means that the worker will 

spend above average time to process it, then the overall performance of 

the application will be worsened because the policy is not flexible enough 

to recover from a situation like that. 

• Partition factor greater than 0.7. These values also lead to only two 

batches, but this time the second batch includes few tasks. In this case, if 

the task processing time standard deviation is low, a set of chunks with a 

few tasks will help to minimize load unbalance. 

As a result, it is very unlikely to get intermediate values for the partition factor from 

the estimation process for the FSC policy. This is a fundamental difference 

regarding DPF policy because, for this policy, any partition factor value (except 1 

obviously) could lead to the creation of several batches and, consequently, it is more 

probable to have smooth variations of the partition factor for the DPF policy than for 

that of the FSC. This annoying behavior of the FSC policy will generally lead to 
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obtaining worse results with this policy than with the others, but for a high 

processing time standard deviation, which is only indirectly seen by the policy 

through the per processor mean, these steep variations on the partition factor could 

sometimes lead to better results than the gradual adaptation of the DPF one.    

This analysis can be seen in graphs (c) and (d) of figure 17, but it is even clearer 

in graphs (a) and (b) of figure 18. In those graphs, we show the variation of the 

partition factor for the FSC (a) and DPF (b) policies during the execution of the 50-

worker application of figure 15 for a standard deviation of 20% and 80%. We can 

see there how, for a low standard deviation (20%), both policies choose high 

partition factors, but for a high standard deviation the DPF policy only slightly 

decreases the chosen factor, while the FSC sharply jumps from very low factors to 

very higher ones and vice versa. 

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10  12  14

pa
rt

iti
on

 fa
ct

or

iteration

Load Balancing Algorithms -Experimental Results-

FSC 20%
FSC 80%

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  2  4  6  8  10  12  14

pa
rt

iti
on

 fa
ct

or

iteration

Load Balancing Algorithms -Experimental Results-

FF 20%
FF 80%

 
(a)                     (b) 

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0  10  20  30  40  50  60  70  80  90  100

pa
rt

iti
on

 fa
ct

or

iteration

Load Balancing Algorithms -Experimental Results-

20%

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0  20  40  60  80  100  120  140  160  180

pa
rt

iti
on

 fa
ct

or

iteration

Load Balancing Algorithms -Experimental Results-

80%

 
     (c)                     (d) 

 
Figure 18.  Factor variation during the execution of a 50-worker application with a mean 
execution time of 6 ms per task, 240 Kb of communication volume, and a standard 
deviation of 20% and 80%. FSC (a), DPF (b), DAF with a 20% standard deviation (c), 
and DAF with an 80% standard deviation. 

Finally, we can also see in figure 18 (c) and (d) how the DAF distribution policy 

deals with load unbalancing. We can see that, independently of the standard 

deviation value, at the beginning of the iteration the partition factor is higher than at 

the end, assuming that there will be enough margin during the iteration to overcome 

any possible load unbalance. Moreover, we can see that the policy is aware of the 
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standard deviation of the processing time because it produces a consistent output 

with no sharp variations.       

 

3. Adapting the Number of Workers 
 

As we mentioned in the previous section, in an ideal Master/Worker application the 

total execution time would be equal to the sequential execution time divided by the 

number of workers, but this is assuming that there is no communication cost, that 

the application is executing on a dedicated and homogeneous platform, that we 

have achieved a perfect load balancing, and that the computation also scales 

ideally. In this ideal world, any available resource that can be assigned to the 

application must be assigned, because it will be efficiently used to improve the 

application performance.  

However, one observes, in the real world that the speedup of the application 

usually decreases as new resources are assigned to it, indicating a loss in 

efficiency. Moreover, at some point, assigning more resources to the application will 

produce performance decreases because the costs introduced are greater than the 

advantages brought by the new resources.        

Consequently, we must take all these parameters into consideration in order to be 

able to decide how many resources must be used to optimize the application 

performance ensuring, at the same time, an efficient use of these resources. With 

this objective, we have developed an analytical model, based on the behavior of a 

Master/Worker application. 

We presented a first version of this analytical model in [CMo+02], and successive 

extensions to it were presented in [CM+03] and [CM+04]. Finally, in [MCe+05] and 

[MC+05] we presented a couple of implementations of a tuning tool that uses part of 

the model to dynamically improve the performance of real applications. This model 

is employed to evaluate the behavior of the application when it is executing and 

decide if it will be worthwhile to change the number of workers in order to improve its 

performance. With the objective of defining a useful model for making the best 

possible predictions, we have taken into consideration all the relevant parameters, 

but at the same time, we have tried to keep the model as simple as possible. 

The only assumptions we have made when defining the model are that there is 

only one worker executing in each processor, and that the application is balanced. 

The former can be justified by efficiency reasons because having several workers 
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on the same processor is only useful in terms of performance if they can get blocked 

in I/O operations. On the other hand, we have previously shown that it is possible to 

get a pretty good balance of the application load by using tasks distribution 

methods; thus, we can simplify the complexity and increase the efficiency of the 

model by assuming that there has been a load balancing stage before deciding on 

the number of workers. In addition, although we do not make any specific 

assumption about the hardware platform used for the execution of the application, 

we have not dealt with heterogeneous platforms and, consequently, the 

performance model makes more sense on homogeneous ones.   

The detailed definition and discussion of the model and the results of the extensive 

experimentation we have done are shown and commented on the following 

subsections. 

 
3.1. Expressions for modeling a balanced Master/Worker 

 

Before defining the expressions that describe the behavior of a Master/Worker 

application, we have to indicate the parameters that we have taken into 

consideration and the terminology that will be used from now on. 

Firstly, we have characterized the interconnection network with the classical 

message start up time plus communication time formula, which is quite simple 

although [GL99] claims that it is not very accurate because it could lead to many 

pitfalls, such as ignoring the contention with jobs not related to the application, or 

ignoring the synchronization component of the communication, or ignoring cache 

effects. Nevertheless, we use this expression because our model will be used in a 

dynamic tuning environment, so we will be able to monitor the network conditions 

and adapt the expression parameters accordingly.  

Secondly, in order to be able to evaluate the model expressions, we need to know 

the time each worker is making useful computation, the time the master invests in 

building new sets of data, the amount of data sent and received to/from each 

worker, and the kind of communication protocol (blocking/synchronous or not).   

Thirdly, we should be aware of some parameter dependence on the number of 

workers. For example, for some problem solutions a constant amount of data is 

distributed among the workers, while for other problem solutions the whole data set 

is sent to all workers; in the first case adding new workers not only decreases the 

number of tasks each worker will compute, but also the amount of data it will 

receive. By contrast, in the second case, the amount of data received by the worker 
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will be the same, although it will compute fewer tasks. The dependences that we 

have considered can be summarized as follows: 

• Between the amount of data to be communicated and the variation of 

the number of workers. 

• Between the computational load and the variation of the number of 

workers.  

Finally, we will use the following terminology to identify the different parameters 

that are part of our performance model: 

• mo: per message start up time, in ms.  

• λ: per byte communication cost (inverse bandwidth), in ms/byte. 

• wm
iv / : size sent/received to/from worker i, in bytes. 

• V: total communication volume, in bytes.  

• n: current number of workers of the application. 

• α: portion of V sent to the workers, αV = ∑
−

=

1

0

n

i

m
iv  and (1- α)V = ∑
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=

1

0

n

i

w
iv . 

• µi: processing time worker i has spent in processing its assigned 

tasks, in ms.  

• µm: processing time spent by the master on the preparation of a new 

set of tasks. 

• Tc: total processing time o workers (∑
−

=

1

0

n

i
iµ ), in ms. 

Now, it is time to develop the performance model expressions, which are based on 

the structure and functional behavior of the Master/Worker pattern. The idea is to 

define, in the first place, a general performance expression and then, considering 

different execution conditions and the parameter dependences, derivate more 

specific expression sets, the former must clearly reflect the pattern functional 

behavior, and the latter must be useful for improving the application performance. 

In figure 19, we show a graphical representation of the execution trace of an 

iteration of a Master/Worker application; there, we can see that the iteration begins 

with the master distributing tasks among workers, this step implies a communication 

phase between the master and each worker. Each worker then goes on processing 

the set of tasks it has received; next, each worker sends back to the master the 

results of its calculations, implying another communication phase between each 
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worker and the master; finally, the master could spend some processing time to 

generate a new set of tasks for another iteration.  

How long the first communication phase (data distribution) lasts depends on the 

interconnection network parameters, the amount of data to be sent, the number of 

workers, and the communication protocol; consequently, we can define it as function 

S(λ , mo, αV, n). The duration of the workers� computation phase depends on the 

total processing time and the number of workers; it can, therefore, be defined as a 

function C(Tc,n). Finally, the amount of time the second communication phase 

(results gathering) takes depends again on the network parameters, the amount of 

data being transferred, and the number of workers; thus, it can be defined as a 

function R(λ,mo,(1α)V,n). 

 

 
  Figure 19.  Typical execution trace of an iteration of a Master/Worker application. 

It should be noticed that, when defining these functions, we must be aware of the 

existing overlapping times among them. In particular, we can graphically see in 

figure 19 that there is a time overlap between the data distribution phase and the 

calculation phase, and another one between the calculation phase and the results 

gathering phase. Based on this analysis, we are able to define a general 

performance expression for the execution time of an iteration of a Master/Worker 

application (Tt) as: 

Tt = S(λ , mo, αV, n) + C(Tc, n) + R(λ , mo, (1-α)V, n) + µm  (3) 
As of now, we want to specify these functions for different execution conditions 

and, after that, we will consider the parameter dependences defined above. In the 

first place, we will develop the data distribution function (S) considering the 

communication protocol. As we previously mentioned, we can use the m
io vm λ+  

expression to model the transference of m
iv  bytes from the master to worker i. 

Workers 

Data distribution Workers computing  Gathering results 

Master 
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However, we want to calculate the time necessary to perform the whole data 

distribution, which is not always the addition of the times spent sending messages to 

each worker. It depends on the communication protocol (synchronous or 

asynchronous) that is in use when the communication takes place. As a 

consequence, we have the following cases: 

• If a synchronous communication protocol is being used then the master 

has to finish each transference (the data is received by the worker) 

before starting the next one. Thus resulting in: 

( ) ( )∑
−

=

+=
1

0

,,,
n

i

m
ioo vmnVmS λαλ  

• If an asynchronous communication protocol is being used then when the 

master makes a send operation the data is stored in some intermediate 

buffer and the next transference could begin before the previous one has 

ended. Consequently, as sending operations are overlapped in time, only 

the greater of the two components of the communication expression has 

to be added for each worker. Hence the resulting expressions are: 
m
noo vnmnVmS 1),,,( −+= λαλ    if   { }10 −≤≤∀≥ niivm m

io λ ; or 
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In the second place, we will define the computation function (C) considering that 

there is a time overlap among the workers� processing phase and the distribution 

phase. Specifically, when the last chunk of tasks sent by the master has been 

received by the destination worker (an event that marks the end of the 

communication phase) every other worker has already started processing its tasks. 

As we have assumed that the execution is balanced, which means that the mean 

processing times of all workers will be very similar, we can assume that the last 

worker to start will also be the last one to finish; therefore, we can define the 

function C(Tc,n) as µn-1.  

Finally, we will define the results gathering function (R) taking into consideration 

the overlapping of time with the computation phase. There is time overlapping with 

the computation phase because when the last worker to end its processing starts 

sending some results back to the master (the event that marks the end of the 

computation phase) every other worker has already sent back its results. As a 

consequence, it seems that we only have to be aware of this last data transference 

in order to define function R, but there is a final consideration to be made, which is 

that there cannot be overlapping of time between the data distribution and results 
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gathering phases. This time overlapping is possible if a worker sends back its 

answer before the master has ended the data distribution. In that case, there will be 

a delay in the results reception by the master and the iteration will last longer. The 

problem is the same that was introduced when explaining the Dynamic Adjusting 

Factoring (DAF) data distribution policy, which led us to the definition of the Master’s 

Chunk Managing Capability concept (see section 2.3). Summarizing, function R(λ , 

mo, (1-α)V, n) can be defined as w
no vm 1−+ λ , provided that the Master has not 

reached its Master’s Chunk Managing Capability. 

The analysis of the execution conditions of the application leads to the derivation 

of the following set of expressions from expression (3): 
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Next, we will analyze the effect of the parameter dependences mentioned before 

in order to complement these performance expressions. These dependences should 

be considered with the objective of improving the prediction accuracy of the model. 

In particular, it is very important to be able to forecast which would be the 

communication volume (V) and processing time (Tc) for a certain number of workers 

because, as we have seen, the performance expressions depend on these values.    

Firstly, we will analyze the dependence between the amount of data to be 

communicated (V) and the variation in the number of workers. Assuming that there 

is an abstraction of the problem being solved as a set of data structures, the issue 

we are considering now consists in knowing how the amount of data transferred 

back and forth between the Master and the Workers varies in relation to changes in 

the number of workers. Whereas it is fair to assume that the number of tasks 

assigned to each worker will decrease as the number of workers increases, the 

overall volume of data transferred could remain steady if each worker receives and 

sends back less data, or could increase if the decrease of the data received and 

sent by each worker is not proportional to the number of new workers.  

More specifically, the new total volume of data to be communicated (V�) will be in 

the range [V, (n�/n)V], where n� is the number of workers for which we are making 

the prediction, n is the current number of workers, and V is the current data volume. 
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We will get the lower bound of this range in those cases where the total 

communication volume is constant, no matter the number of workers used, and the 

upper bound when the communication volume increases in a one to one proportion 

with the number of workers. It should be noticed that for a decrease in the number of 

workers, which might be worthwhile to consider in some situations, there will be a 

swapping of roles between both bounds. Consequently we can define the new 

communication volume (V�) as a function of the current communication volume (V), 

in the following way: V� = V + ∆V, where ∆V will depend on the number of workers or 

will be 0.    

Secondly, a similar analysis can be made on the dependence between the total 

workers� processing time (Tc) and variations in the number of workers. The variation 

degree of the workers� processing time (Tc) depends on the portion of processing 

time that each worker spends computing tasks and the portion that it spends 

executing task independent code (such as initialization). The greater the former, the 

littler the Tc variation when the number of workers changes, because increasing the 

number of workers decreases the number of tasks received by each worker and, as 

a result, only the task dependent portion of the processing time will proportionally 

decrease, while the independent portion will remain steady, thus increasing the 

overall processing time.  

Therefore, we can say that the new overall processing time (Tc�) will be Tc + (n�-

n)(portion of processing time each worker spends executing task independent 

code), where n� is the number of workers for which we are making the prediction and 

n is the current number of workers. As a consequence, Tc� can be defined as a 

function of Tc in the following way: Tc�=Tc + ∆Tc. However, this time we may assume 

that task processing portion will be significantly greater than the task independent 

one because if the contrary happens the parallelization degree of the application will 

be low, which would be considered a design problem. Consequently, there should 

be a significant change in the number of workers in order to notice a meaningful 

variation of the overall processing time. 

Summarizing, we can say that changing the number of workers could cause 

variations in the overall communication volume (V) and the overall workers 

processing time (Tc), in addition, the variation of V can be significant, while Tc 

variation should not. As a consequence, if we want to produce good performance 

predictions for our tuning tools we have to be able to measure the ∆V and ∆Tc 

variation factors.    
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Once we have decided how to deal with the dependences among some model 

parameters, it is time to make some final remarks that will lead to simpler 

expressions with the objective of simplifying the application of the model by a tuning 

tool. We have said before that both communication functions (S and R) depend on 

the number of workers (n) and the overall communication volume (V), and also that 

the processing function (C) depends on the number of workers and the overall 

processing time (Tc), but when writing the expressions none of these parameters 

explicitly appeared. That was because then it was clearer to describe the 

performance functions in terms of particular data transfers ( wm
iv / ) and execution 

times (µi) than doing so in terms of V and Tc.  

However, as we have assumed that the application is balanced, we can say that 

the overall processing time and data will be fairly distributed among all workers. 

Therefore, we can define m
iv  as nV /α , w

iv  as nV /)1( α− , and µi as Tc/n. Clearly, it 

will be easier to store and use only the overall amount of data transferred between 

the master and the workers (V) and the overall processing time of the workers (Tc), 

than the specific values of each worker. Moreover, it is necessary to define the 

performance expressions in terms of the number of workers to fulfill the objectives of 

being able to predict the performance of the application for a different number of 

workers. Applying these substitutions to expressions (4), (5), and (6) results in the 

following set of expressions to describe the performance of a Master/Worker 

application: 
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Finally, we would like to introduce a more formal definition of the Master’s Chunk 

Managing Capability concept. We have said that it is the maximum number of data 

chunks the Master can manage from the time it sends a chunk to a worker until it 

receives the answer for the same chunk from that worker. If this capability is 

persistently exceeded then there will be workers answering more quickly than the 

Master�s capability to send data to all of them. There can be two different 

consequences: if the Master prioritizes receives over sends then some workers will 

not receive data and will be idle, as can be seen in figure 20 (a); on the contrary, if 
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the Master prioritizes sends over receives then workers will have to wait for the 

Master to end the data distribution before their answers are received, as can be 

seen in figure 20 (b). 

In order to calculate the Master’s Chunk Managing Capability and, in 

consequence, be able to detect when it is being exceeded, we must be able to know 

how many chunks can be sent by the Master from the time it sends a chunk to a 

worker to the moment the answer of that worker, for the same chunk, is available.  

 
(a) 

 
(b) 

 

Figure 20.  Illustration of the possible effects of exceeding the Master�s Chunk Managing 
Capability. Workers left completely idle, because receives are being prioritized over 
sends (a). Workers delayed, because sends are being prioritized over receives (b).     

The expression to calculate this value can be obtained from equating the time 

needed by the Master to distribute tasks with the time needed by a Worker to get a 

chunk, process the received tasks, and send back the results to the Master. 

Considering different communication conditions we get the following equations for 

the Master’s Chunk Managing Capability:     
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Substituting the particular data volumes and processing times of these 

expressions by their simplifications on V and Tc, and solving them for the number of 

workers, we get that if the number of workers (n) is greater than the following 

expressions our application will be exceeding the Master�s Chunk Managing 

Capability: 

Communication Protocol   
 

Asynchronous Synchronous 

m
io vm λ≥
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3.2. Analysis of the Master/Worker performance expressions 

 

Before continuing with the definition of our performance model for Master/Worker 

applications, and discussing how the decision of changing the number of workers 

should be taken, we want to introduce some mathematical analyses of the 

expressions defined so far, with the aim of showing their interrelations, as well as 

their adaptability to real executing conditions.      

In the first place, we show in figure 21 the output of functions (7) and (8) (graphs 

(a) & (b) respectively), and (9) (graphs (c) & (d)), for fixed values of V (1Kbyte for (a) 

& (c) and 1Mbyte for (b) & (d)), and Tc (2 sec.), and different number of workers 

(from 5 to 120 (a) & (c) and from 1 to 150 (b) & (d)), assuming a message overhead 

of 1 ms. and a per byte transmission time of 1µs. The idea is to show the expected 

execution values for configurations that should be calculated with expressions (7) 

and (8) (graphs (a) and (b)), and compare them with the corresponding synchronous 

example (graphs (c) and (d)). Moreover, using expressions (10), (11), and (12) the 

number of workers that can be managed by the Master without exceeding the 

Master’s Chunk Managing Capability has been calculated and it is indicated in each 

graph by an arrow and the label of the applied expression.      

There are several observations that can be made in figure 21: 

• First, we can see that expressions (7) and (9) (graphs (a), (c), and (d)) 

show that adding more workers can significantly improve the 

performance of the application, but also that beyond some point this 

action leads to performance loses. However, expression (8) (graph (b)) 



Definition of Framework-based Performance Models for Dynamic Performance Tuning 
 

 87

produces lower and lower values as we increase the number of workers. 

A simple analysis of the expressions is enough to explain these 

observations: It can be easily shown that the second term of expressions 

(7) (
n

VTc )( λ+
), and (8) and (9) (

( )( )[ ]
n

TcVn ++− λα 11
), decreases if n 

increases and V and Tc remain constant, getting closer and closer to 0. 

By contrast, whereas the first term of expressions (7) and (9) ((n+1)mo) 

increases linearly with n, the first term of expression (8) (2mo) is constant. 

As a result, while expressions (7) and (9) will have a decreasing value if 

and only if the reduction of the second term is greater than the growth of 

the first one, expression (8) will have a constantly decreasing value that 

will get closer and closer to 2mo + µm. Nevertheless, if the overall data 

volume (V) does not increase linearly with the number of workers 

(V�<(n�/n)V), adding new workers to the application will lead to smaller 

messages and eventually to overrunning the m
io vm λ≤  condition and, 

consequently, from this point expression (7) should be used instead. 
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Figure 21.  Expected execution times for an application with 1 Kbyte of communication 
volume (V) and 2 sec. of processing time (Tc), using asynchronous communication (a) 
and synchronous communication (c). The same for an application with 1 Mbyte of 
communication volume (V) (b and d). 
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• Next, it can also be seen that functions (7) and (9) have a minimum 

value, which tells us for what number of workers we obtain the lowest 

execution time. Clearly, this is the optimal number of workers in order to 

maximize the applications performance. Actually, it is possible to find this 

value analytically if the relationship between V and V� is clearly 

established beforehand (for badly designed applications, it may also be 

necessary to consider the relation between Tc and Tc�). We only have to 

solve the expression 0=
∂
∂

n
Tt for n in order to get the number of workers 

with the lowest associated execution time. We have solved this 

expression for the number of workers ([CM+04] and [MCe+05]) making V� 

= V and V�=(n�/n)V, and we obtained the following results: 

Communication Protocol   
 

Asynchronous Synchronous 
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opt m
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+= Vm
Tcn

o
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In the examples shown above, these expressions lead to the following 

results: 44 workers for graphs (a) and (c) using expressions (13) and 

(14), and 45 workers for graph (d) using expression (14). In addition, if 

we had increased the communication volume (V) linearly with the number 

of workers we would have got the following results: 44 workers for graph 

(a) using expression (15), 32 workers for graph (c) using expression (16), 

and for graph (d) the models says that it is  better to run the application 

sequentially.  

We should introduce a commentary about applications modeled by 

expression (8) and the number of workers that maximizes performance. 

We mentioned before that condition m
io vm λ≤ will eventually be overrun if 

the data volume does not increase linearly, for example if the 

communication volume (V) stays constant this will happen for 

omVn /λα>  workers. From that number of workers, the application will be 

modeled by expression (7) and, as a consequence, either it reaches its 

minimum value at the switching point if function (7) is already increasing 
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for that number of workers, or it will reach its minimum value later 

following expression (13) if not.  

Finally, finding the optimal number of workers that minimizes execution 

time could seem attractive, but, as we will explain in the next section, the 

efficiency in the use of the resources (processors) is likely to decrease 

sharply when the number of workers is around the optimal value, 

consequently, we must find a compromise between performance and 

efficient use of resources.      

• Finally, we have included a mark in each graph that indicates the number 

of workers that can be managed by the Master without exceeding the 

Master’s Chunk Managing Capability (MCMC), specifically by using 

expression (10) we got that the Master can manage up to 45 workers for 

the prediction shown in graph (a), by using expression (11) we got that it 

can manage up to 3 for the prediction shown in graph (b), and by using 

expression (12) we got that it can manage up to 48 and 2 for the 

predictions shown in graphs (c) and (d) respectively.  

It can be seen in graphs (a) and (c) that the value of the expression for 

this number of workers is closer to the minimum value of the expression, 

while for graphs (b) and (c) it is far from the minimum value. Actually, it 

can be demonstrated that for applications modeled by expression (7) the 

number of workers that make the Master exceed its MCMC will always be 

greater than the number of workers needed to get the lowest execution 

time, while it is possible for the Master to exceed its MCMC before or 

after arriving at the theoretical lowest execution time value for 

applications modeled by expressions (8) and (9).  

To demonstrate for an application modeled by expression (7) that the 

number of workers exceeding the MCMC is always greater than the 

number of workers for which the application gets its lowest execution 

time we assume that it is possible (nopt > n that causes the Master to 

exceed its MCMC) for a communication volume (V) that increases 

linearly with the number of workers (which is the less favorable situation 

for the application performance) and, as a result, we get a contradiction. 

Specifically the demonstration is: 

We know that the Master of an application modeled by expression (7) 

exceeds its MCMC if the number of workers goes beyond the value of 
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expression (10), i.e., if ( )( )

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we have assumed that nopt > n� we know that nopt
2> n�2, and substituting 

nopt by expression (15) we get that n
m
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m
Tc

ooo
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++
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true. However this expression is equivalent to n
nm
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o
2)1('0 +

−
>

λα , which is 

impossible because 0)1('
>

−

onm
Vn λα  and 2n > 0. As a result nopt cannot be 

greater than the number of workers that causes the Master to exceed its 

MCMC.  

The same can be said for applications modeled by expression (8) that 

reach their lowest execution time modeled by expression (7). 

All these observations and analyses can be summarized in the following way: 

• An application modeled by expression (7) will reach its lowest execution 

time for some number of workers between the values of expressions (13) 

and (15) depending on the relationship between the communication 

volume (V) and the number of workers. 

• The same will be true for an application modeled by expression (8) if the 

relationship m
io vm λ≤ does not hold for nopt, which means that for that 

number of workers the application is modeled by expression (7). On the 

contrary, the application will reach its lowest execution time for 

min(expression (11), omVn /λα> ), which is either the number of workers 

that causes the Master to exceed its MCMC or the number of workers 

that causes the application to be modeled by expression (7) because 
m
io vm λ≤ does not hold anymore. 

• Finally, an application modeled by expression (9) will reach its lowest 

execution time for min( expression (12), between the values of 

expressions (14) and (15) ), depending on the relation among the 

communication volume (V) and the number of workers. 

Secondly, we want to discuss the sensitivity of the performance expressions to 

small variations of the parameters. We want to do that because for real executions, 

even for the more stable ones, we will get slightly variable values depending on the 
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current conditions of the network (such as network contention), the influence of the 

local cache memory, or even from the operating system (such as context switches). 

As a result, we will be evaluating the performance of an application based on the 

mean values of the observed execution and communication times, the mean values 

of the size of messages, and even the mean values of the network overhead and 

communication speed. Therefore, we must demonstrate that small variations of the 

parameters will not result in completely mistaken predictions of the application 

performance. 
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Figure 22.  Differences of the execution times predicted by the performance expressions 
shown in figure 21 and the same example with an individual 10% variation of V, Tc, mo, 
and λ, and a 10% variation of all parameters at once. 

In order to fulfill this objective, we have analyzed what happens to the expression 

outcomes for a variability of ±X% on each parameter, looking first at the influence of 

each parameter individually and then looking at the influence of the combination of 

all parameters. We will illustrate this analysis with the graphs shown in figure 22. 

There,we can see the differences between the values obtained in figure 21 and the 

same example with a 10% individual variation of the communication volume (V), 

processing time (Tc), network overhead (mo), and communication speed (λ), and a 

10% variation of all parameters at once.  
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It can be easily seen that any single X% deviation of any parameter will produce a 

global deviation smaller than the X% of the total execution time. As an example let 

us analyze the effect of variations on the communication volume (V) and processing 

time (Tc); it is easy to see that a deviation of ±X% of any of these parameters, or of 

both of them at the same time, will produce in any case (expressions (7), (8), and 

(9)) a variation of less than X% on the whole prediction. Assuming the worst 

situation for a variation of ±X% of V and/or Tc the following condition for Tt will be 

held for expression (7): 

t)T
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And, finally, the following one for expression (9): 
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This relationship is clearly shown in the graphs of figure 22, where we can see 

how the differences between the originally predicted execution time and the one 

predicted with a single variation of each parameter, increased (or decreased) by 

10%, are always below the differences between the originally predicted execution 

time and the predicted execution time increased (or decreased) by 10%. 

Actually,  only  the  combined  deviation  of  the  communication  volume  (V)  and  

network speed  (λ)  could  produce an overall deviation greater than the individual 

ones because  these  parameters  appear  in  the  same  product. If  the  application  

is  computation intensive, then this effect  will occur  almost  unnoticed, as  we  can  

see  in  graphs  (a)  and  (c)  of  figure 22.  On  the  contrary,  for  communication  

intensive  applications,  the  effect  could  lead  to  wrong  predictions  as  can  be  

seen  in  graphs  (b)  and  (d) of  figure  22.  Specifically, an  individual  deviation  of  

X%  for  V and λ could produce an overall deviation of: 

)10010021()1001()1001()1001( 222 XXVXXVX ++⇒+=++ λλ , which more than 

doubles the individual ones (e.g. for individual deviations of 10% we could get a 

21% overall deviation, or for individual deviations of 20% we could get a 44% overall 

deviation).  
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On the other hand, the same analysis for expressions (10), (11), and (12), which 

allow us to estimate the maximum number of workers that can be added without 

exceeding the Master’s Chunk Managing Capability (MCMC), reveals that these 

expressions are more sensitive to some parameter deviations than expressions (7), 

(8), and (9). This happens because we have more products involving two or more 

parameters; thereby multiplying the effects of measurement errors.  

In conclusion, the Master/Worker performance expressions ((7), (8), and (9)) are 

not too sensitive to small measurement mistakes, except for the accumulation of 

errors measuring the communication volume (V) and network speed (λ). In contrast, 

other expressions, such as (10), (11), and (12) are more sensitive to variations in a 

wide range of parameters. Consequently, we have to consider this fact when 

evaluating the performance of the application trying to give more credit to the results 

of the most reliable expressions.  

 
3.3. Efficiency indexes 

 

Thus far we have defined a set of expressions, which have been called 

performance expressions, that model the performance of a Master/Worker 

application under different circumstances ((7), (8), and (9)), and also others that can 

be useful to determine the limits to the number of workers that can be added to an 

application to improve its performance; moreover, some of these expressions ((10), 

(11), and (12)) complement the performance ones, while others ((13) to (16)) are 

directly derived from them. 

Whereas this set of expressions can be useful for tuning the performance of a 

Master/Worker application, the efficiency in the use of the available resources is not 

taken into consideration in any of these expressions. Nonetheless, this is a relevant 

issue if these resources were to be shared among different applications, or even 

when a complex application, built as a composition of two or more frameworks, is 

analyzed and a decision taken about the best resource assignment. Moreover, it can 

be seen intuitively in the example shown in figure 23 that adding more workers to 

the application when the execution time is close to its minimum is, from the point of 

view of the use of the resources, very inefficient. In this figure, we show the 

expected execution times (using expression (7)) of an application with a 

communication volume (V) of 4Kbytes and an overall processing time (Tc) of 1.6 

sec, assuming also a message overhead mo of 1ms and a network speed of 

1µs/byte, for a number of workers ranging from 10 to 60. A simple calculation shows 
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that going from 15 to 20 Workers means a gain of 17.68% in the execution time with 

an increase of 33% in the number of resources, while going from 30 to 40 (where 

the model predicts the lowest execution time -nopt-) Workers means a gain of 3.99% 

for the same relative increment of the number of resources. Since we are increasing 

the number of resources in the same proportion, the decreasing gain of the 

execution time must be due to a drop in efficiency.    
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Figure 23.  Expected execution time of an asynchronous Master/Worker application 
where V = 4096 bytes, and Tc=1600 ms. 

Consequently, the definition of a performance index, which not only takes into 

consideration the performance gain but also the efficiency in the use of resources, is 

a requirement that must be fulfilled in order to complete the definition of our 

Master/Worker performance model.    

Several efficiency indexes could be defined for the purpose of taking the best 

decision when changing the number of workers. They may range from simple ones, 

such as fixing a lower bound for the relationship between the observed speedup and 

the ideal one, to more complex ones, such as relating the speedup or execution time 

changing rate with the amount of resources needed to achieve it. However, users 

must indicate a threshold for such indexes, which implies that they should know 

exactly what any value of the index means. It usually demands a high degree of 

knowledge about the application and its execution platform. On the other hand, it is 

possible to define a performance index, which directly relates the performance with 

the efficiency in the use of resources, like the one defined in [HS+04]. The main 

advantage of such an index is that it can be automatically optimized because we 

can find the best possible relationship between efficiency and performance gain. 

Furthermore, we are going to discuss and illustrate in more detail some of the 
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indexes previously mentioned in order to emphasize the importance of having at 

hand a function that can be automatically optimized. 

In the first place, we are going to take a look at a simple index, such as fixing a 

lower bound to the relationship between observed speedup (sequential execution 

time/observed execution time -Tt-) and ideal speedup (number of workers). That 

index indirectly takes into consideration the efficient use of the resources because if 

the observed speedup stays close to the ideal one then we are making good use of 

the assigned resources. However, the problem is to determine how close is close 

enough.  

We show in figure 24 the expected and ideal evolution of the speedup for the 

example of figure 23; it can be seen that the distance between them becomes 

significant from 15 workers on. At that point, the relation among the expected and 

the ideal speedup is 0.87, it is 0.79 for 20 workers, it is 0.63 for 30 workers, and it is 

0.49 for 40 workers. Supposing now that we have another application with the same 

parameters, except for the communication volume (which is 81Kbytes this time), 

recalculating the index we will get 0.42 for 29 workers, 0.36 for 38 workers, 0.28 for 

56 workers, and 0.22 for 74 workers (where the model predicts the new lowest 

execution time -nopt-). A careful look will reveal that we are indicating the value of the 

index in equivalent points: for nopt, (3/4)nopt, (1/2)nopt, and (3/8)nopt, but they are quite 

different from one configuration to the other. The problem is that what can be 

considered a good value for this index also depends on the communication volume. 

Consequently, for the user to be able to decide a good index threshold he must also 

be aware of the application communication volume.  
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Figure 24.  Expected speedup and ideal speedup for the application of figure 23. 
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In the second place, we are going to take a look at an index that is based on 

relating the variation rate of a performance function (like Tt or Speedup) to the 

amount of resources needed to achieve it. This index has the advantage of taking 

into consideration both the application performance improvement and the resources 

invested to obtain it, but again the user will be responsible for fixing a threshold for 

what will be regarded as a good value.  

For instance, if we use the expressions for estimating the execution time (Tt) to 

define this index, we can define the variation rate as (Tt(y) � Tt(x))/Tt(y), which 

produces a value in the range (-1, 1). An absolute value of this function close to 1 

indicates a significant variation of the execution time; on the contrary, a value of 0 

indicates no variation at all. In addition, we define a resource variation rate as (x � 

y)/x, which also produces a value in the range (-1, 1), except 0 because it means 

that the number of resources does not change. An absolute value of this function 

close to 1 indicates a significant variation of the number of resources, while a value 

close to 0 indicates little variation on this number. Finally, we combine both 

expressions dividing the first one by the second one to get the following expression: 

)()(
))()((

yTtyx
xxTtyTt

−
− . This index will produce a value in the range [-1, 1], if this value is 

close to one then the application is expected to make good use of the additional 

resources. If the value is close to 0 then the application will not make efficient use of 

these resources, and if the value is below 0 then the performance of the application 

is expected to worsen iwith the additional resources. 

In order to illustrate the usefulness of his index, we can use again the example of 

fig 23. For this example, if we are executing the application with 15 workers and 

want to know if it will be appropriate to go to 20 workers, we will get a value for the 

index of 707.0
939733.122)1520(

20)2048.101939733.122(
=

−
− , and if we are executing the application with 

30 workers and want to evaluate if it is worth going to 40 workers we will get 

16.0
469867.84)3040(

40)1024.81469867.84(
=

−
− . As it was expected, the index indicates that the first 

action is significantly better than the second (we mentioned before that going from 

15 to 20 workers implies a performance improvement of more than 17%, while going 

from 30 to 40 workers implies an improvement of only 4%).  

However, we wanted to know if we would get similar values for similar situations 

on other applications (we have just seen that it was not the case for the speedup 
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based index); thus, we used the same second example as before, which is the same 

application but with a data volume (V) of 81Kbytes instead of 4Kbytes. In order to 

get comparable results we evaluate equivalent transitions, which are going from 28 

to 37 workers (from (3/8)nopt to (1/2)nopt), and going from 55 to 74 workers (from 

(3/4)nopt to nopt), getting an index value of 0.43 for the former and a value of 0.27 for 

the latter. These results are sound because the first transition leads to a 

performance improvement of 10.5%, which is worse than the one we got for the first 

example, while the second transition leads to an improvement of 6.9%, which this 

time is better than the one we got for the first example. Again, it is easy to see the 

difficulty for the user who has to decide a threshold for the index because what can 

be considered a good value for the index will depend on some application 

characteristics.  

As a result, if using an index that asks the user for a threshold is quite difficult, we 

can see why it is very important to define an index that can be optimized without its 

intervention. We have adapted the index described in [HS+04] to our model, the 

basic idea behind this index, and its main difference with the ones described 

previously, is to define an efficiency index and relate it to the application 

performance. This efficiency index is defined as the portion of time that workers are 

doing useful work over the time they have been available for doing useful work. 

More formally, we define the efficiency index for x workers E(x) as 
availT
Tc , where Tavail 

is ∑
−

=

1

0

x

i
itavail , and tavaili is the time worker i has been available for doing useful work, 

which for an application like the ones we are modelling, where workers are not 

created or eliminated in the middle of an iteration, will be the whole iteration time 

(Tt). Consequently, the efficiency index will be defined as 
)(xxTt

Tc , and the 

performance index as: 

Tc
xxTt

xE
xTtxPi

2)(
)(
)(

)( ==   (17) 

We show in figure 25 the performance index value and execution time for the 

example of figure 23 for a number of workers ranging from 5 to 50. It can be seen 

that the performance index reaches its minimum value at the point from where 

adding more workers to the application is not expected to significantly improve its 

performance. Actually, there is only a 13.5% performance gain from 23 workers 
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(93.7433 ms) to 40 workers (lowest expected execution time of 81.1024), increasing 

the amount of resources in by 74%. 
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Figure 25.  Performance Index (17) and expected execution time for the application of 
figure 23. 

We introduce two more examples, shown in figures 26 and 27, in order to illustrate 

the index outcomes for applications modeled by expressions (8) and (9) 

respectively. The first example (figure 26) shows the expected execution time for a 

Master/Worker application with a communication volume (V) of 200Kbytes (90% 

distributed by the Master, 10% answered by workers), a processing time (Tc) of 2s, 

a network overhead of 1ms, and a network transference speed of 0.001 ms/byte. 

For the second example (figure 27), only the communication volume (V) has been 

changed from 200Kbytes to 20Kbytes. 
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Figure 26.  Performance Index (17) and expected execution time for an asynchronous 
Master/Worker application with V=200Kbytes and Tc=2s. 
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It can be seen in figure 26 that, although the expected execution time is expected 

to steadily decrease (the condition for the application of expression (8) is true), we 

are getting the performance index lowest value at 10 workers, which is just two 

workers before this application is expected to surpass the Master’s Chunk Managing 

Capability (MCMC), which was calculated using expression (11). Actually, it can be 

demonstrated that for applications modeled by expression (8) the minimum value of 

this performance index will always be obtained before exceeding the MCMC. First, if 

we substitute the term Tt(x) of expression (17) by expression (8) the resulting 

expression is the particularized performance index for applications modeled by 

expression (8); next we calculate the first derivate of this expression (
x
xPi

∂
∂ )( ), and 

finally we equate the resulting expression to 0 (searching for a minimum) and solve 

for x. This process, which applied to expressions (7) and (9) leads to hard to solve 

quartic expressions, produces for expression (8) the following result: 









+
+−

=
omV
TcVx

λα
λα ))1(( . 

Comparing this expression with expression (11) 







−
+

omV
TcV

λα
λ , we can see that the 

dividend is smaller and the factor is greater than the ones of expression (11), 

consequently the value of expression (11) will be always greater than or equal to x.  
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Figure 27. Performance Index (17) and expected execution time for a synchronous 
Master/Worker application with V=20Kbytes and Tc=2s. 

In the last example of figure 27 it can be seen that the performance index reaches 

its lowest value at 22 workers, which is less than the number of workers that causes 

the Master to exceed its MCMC (37 workers accordingly to expression (12)), and 
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obviously less than the number of workers for the lowest expected execution time 

(44 workers accordingly to expression (9)). 

Finally, there is the problem of determining for what number of workers we get the 

lowest index value. We have seen before that it is easy for applications modeled by 

expression (8), but when the application is modeled by expressions (7) or (9) and 

following the same steps described above (basically solving the 0
)(
=

∂
∂

x
xPi  for x) we 

find that the following quartic expressions must be solved for x: 

0)())(2(43 22234 =+−++++ VTcxmVTcxmxm ooo λλ  (for expression (7) and making 

0=mµ ), 

0))1(())())1((2()(43 22234 =+−−+++−+++ TcVxmVTcVmxmVmxm ooooo λααλλααλ   

(for expression (9) and making 0=mµ ). 

The roots of these expressions can be found using the Ferrari technique [Weiss] 

or, knowing that we are only interested on finding the floor of the first positive root of 

the expression, using a simpler bisection procedure.   

In conclusion, the performance index (Pi), which relates execution time with 

resource efficiency, allows us to automatically find the number of workers that 

maximizes performance (minimizing execution time) without wasting resources for 

every Master/Worker application, independently of the value of the parameters that 

characterize them.  

 
3.4. Experimental evaluation on a real platform 

 
In the previous sections, we have defined and analyzed a set of expressions 

aimed at modeling the performance of Master/Worker applications in a dynamic 

performance tuning environment. Now, our goal is to validate this analytical model 

through the execution of a wide range of synthetically generated applications on the 

same platform described in section 2.4. The characteristics of the applications we 

have executed are summarized in table 4, where it can be seen that we have 

covered a wide range of possibilities, from low-compute low-communication to 

intensive compute and communication applications in order to reach this validation 

goal. Moreover, we have executed several configurations with a constant 

communication volume and an asynchronous communication protocol, then some 

configurations using a synchronous communication protocol, some configurations 

with a variable communication volume, and finally, some configurations using a 

synchronous communication protocol and a variable communication volume.  
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           Comm.  
              
Vol.(V) Proc 
Time (Tc) 

10 Kbytes 100 Kbytes 512 Kbytes 2 Mbytes 

1 sec fig 28 

From 2 to 40 
workers. Constant 
com. volume & 
async. com.  

From 2 to 40 
workers. Constant 
com. volume & 
async. com. 

From 2 to 35 
workers. Constant 
com. volume & 
async. com. 

From 2 to 20 
workers. Constant 
com. volume & 
async. com. 

fig 29 
From 4 to 55 
workers. Constant 
com. vol & async. 
com. 

From 4 to 55 
workers. Constant 
com. vol & async. 
com. 

From 4 to 40 
workers. Constant 
com. vol & async. 
com. 

From 2 to 20 
workers. Constant 
com. vol & async. 
com. 

fig 31 
From 2 to 55 
workers. Constant 
com. vol & sync 
com. 

From 2 to 55 
workers. Constant 
com. vol & sync 
com. 

From 2 to 55 
workers. Constant 
com. vol & sync 
com. 

From 2 to 55 
workers. Constant 
com. vol & sync 
com. 

fig 32 

From 2 to 40 
workers. Async. 
com. & com. 
volume that grows 
a 10% of the 
original for each 
new worker.   

From 2 to 40 
workers. Async. 
com. & com. 
volume that grows 
a 10% of the 
original for each 
new worker.   

From 2 to 40 
workers. Async. 
com. & com. 
volume that grows 
a 10% of the 
original for each 
new worker.   

From 2 to 30 
workers. Async. 
com. & com. volume 
that grows a 10% of 
the original for each 
new worker.   

fig 33 

From 2 to 40 
workers. Async. 
com. & com. 
volume that grows 
a 100% of the 
original for each 
new worker. 

From 2 to 35 
workers. Async. 
com. & com. 
volume that grows 
a 100% of the 
original for each 
new worker. 

From 2 to 20 
workers. Async. 
com. & com. 
volume that grows 
a 100% of the 
original for each 
new worker. 

 
5 sec 

fig 34 

From 2 to 40 
workers. Sync. 
com. & com. 
volume that grows 
a 30% of the 
original for each 
new worker. 

From 2 to 40 
workers. Sync. 
com. & com. 
volume that grows 
a 30% of the 
original for each 
new worker. 

From 2 to 30 
workers. Sync. 
com. & com. 
volume that grows 
a 30% of the 
original for each 
new worker. 

From 2 to 30 
workers. Sync. com. 
& com. volume that 
grows a 30% of the 
original for each 
new worker. 

15 
sec fig 30 

From 2 to 55 
works. Constant 
volume of com, 
asynchronous 
communication. 

From 2 to 55 
works. Constant 
volume of com, 
asynchronous 
communication. 

From 2 to 55 works. 
Constant volume of 
com, asynchronous 
communication. 

From 2 to 55 works. 
Constant volume of 
com, asynchronous 
communication. 

Table 4. Summary of the configurations executed in order to test the analytical 
performance model for Master/Worker applications. 

The synthetic application algorithm can be summarized as follows: 

1. Master & Workers calculate the size of messages that will be transferred 

between them, and the computation time associated with each worker, 

using the number of workers (x), communication volume (V), and 

processing time (Tc) arguments. 

2. The Masters goes into a loop (number of iterations argument) for sending 

messages (using the indicated communication protocol) to every Worker 

and then waiting for answers from them all. 

3. Each worker goes into a loop (number of iterations argument) waiting for a 

message from the Master, spending the associated processing time, and 
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answering back with a new message (using the indicated communication 

protocol). 

The results obtained for each test configuration has been processed in order to 

eliminate statistical anomalies. Then, they have been plotted together the results 

predicted by the analytical performance model and the real and predicted values of 

the performance index for the same configuration. Finally, we have grouped four 

graphs in each figure (except in fig 33, which only includes three) corresponding to 

the configurations of a file of table 4, and each figure is supplemented by a table 

with some relevant magnitudes: the number of workers for the real and expected 

lowest execution time, the number of workers for the real and expected lowest 

performance index value, and the real and expected highest number of workers the 

Master can manage (real values are only shown if they are available). 
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    (c)                (d) 

Figure 28.  Execution times and Performance Index values of a Master/Worker 
application with an associated processing time (Tc) of 1 sec. and constant 
communication volumes of 10Kbytes (a), 100 Kbytes (b), 512 Kbytes (c) and 2Mbytes 
(d). Ranging from 2 to 40 workers for cases (a), (b) and (c), and from 2 to 20 workers for 
case (d). Using asynchronous communication.   

Using the experiments of figure 28, we show the results of executing an 

application with a low associated processing time of only one second and for 

different communication loads using the standard communication mode, which in 
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this case means asynchronous sends. Whereas, in general it can be seen that 

model matches the application behavior, there are some cases that deserve more 

detailed comments.  

Firstly, it can be easily seen that small differences between the real execution 

value and the expected one lead to significant differences between the real 

performance index value and the expected one. This happens because of the 

multiplicative effect that the differences between the expected and the observed 

execution time (Tt(x)2) introduces in the performance index. However, we can trust 

the expected value because, in general, the index tendency is preserved. 

Secondly, a sudden discontinuity can be seen in figure 28 (b) for 32 workers, 

which is due to the communication library implementation. MPI library uses different 

communication protocols depending on the message size and buffers available 

[MPI95]. Briefly, if programmers do not choose a particular communication mode 

(blocking, non-blocking, buffered, etc.) the library uses the standard send, which 

means that depending on the current execution conditions and message 

characteristics a ready, a blocking, or even a synchronous send may be issued.  

A ready send can be used when the matching receive has been posted and allows 

removing some hand-shake messages; thereby improving performance. A blocking 

send does not return until the message has been stored away and the sender is free 

to reuse the send buffer; it happens when the message is copied in the matching 

receiving buffer or in a system buffer. Finally, a synchronous send only returns when 

the matching receive has started to receive the message. Usually, MPI 

implementations use ready sends for little messages and blocking or synchronous 

ones for long messages.   

  
Number of Workers 

for the Lowest 
Execution Time 

MCMC Exceeding 
Point 

Number of Workers 
for the Performance 
Index Lowest Value 

Real 30 __ 15 Fig. 28 
(a) Expected 26 __ 15 

Real 36 __ 15 Fig. 28 
(b) Expected 32 __ 12 

Real 22 __ 14 Fig. 28 
(c) Expected 22 __ 13 

Real 11 9 9 Fig. 28 
(d) Expected 64 10 9 

Table 5. Relevant real and expected magnitudes associated with applications of figure 
28. 
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Consequently, as far as we have used the standard communication mode in the 

synthetic applications, what is reflected in the graph is the change between blocking 

communication mode and the ready one. The possibility of having changes like this 

should be taken into consideration by the tuning tool (monitoring the message 

overhead) because they could cause significant mismatches between the observed 

results and the predicted ones. 

Finally, the differences between the observed and the predicted values of case 28 

(d) should be highlighted, in order to emphasize the relevance of calculating the 

Master�s Chunk Managing Capability (MCMC) exceeding point (table 5). It can be 

seen that from 9 workers on, the divergence between the observed and expected 

values becomes bigger and bigger all the time. In addition, we do not include the 

MCMC exceeding point for the other cases because it is always beyond the point 

where the lowest execution time is reached.  
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Figure 29. Execution times and Performance Index values of a Master/Worker 
application with an associated processing time (Tc) of 5 sec. and constant 
communication volumes of 10Kbytes (a), 100 Kbytes (b), 512 Kbytes (c) and 2Mbytes 
(d). Ranging from 4 to 55 workers for cases (a) and (b), from 4 to 40 workers for case 
(c), and from 2 to 20 workers for case (d).  Using asynchronous communication. 

In the graphs of figure 29 we show the results of the execution of an application 

with an average associated processing time of five seconds and for different 
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communication loads. In this case, we can see that both the lowest execution value 

and the lowest performance index value are reached with a significantly greater 

number of workers than those of figure 28; nevertheless, it must be noticed that this 

increment is far from proportional to that of the processing time. Moreover, it seems 

that there are less mismatching points between the observed and the expected 

results than for the previous figure, which is because in the previous case the 

application executions were more sensitive to any external influence (such as a 

context switching) due to the low computing time associated with each worker, 

mainly when several workers were used. 

A very good example of this fact can be seen in figure 29 (b), again we are 

reaching the point of communication mode switching of the communication library at 

32 workers, but this time the effect is just barely reflected in the graph.  

Finally, we can see in table 6 significant differences between the expected and the 

observed number of workers where lowest performance index is reached. We can 

partially blame the multiplicative effect of the total expected and observed execution 

time (Tt(x)) differences in the performance index expression for this fact. Although 

there are exceptions, the absolute differences between the observed index value for 

the number of workers that lead to the lowest expected value and the observed 

lowest index value are usually not too high. However, in the particular case of figure 

29, we are getting significant differences of 21.47% for case (a) and of 20.9% for 

case (c) because in both cases the observed execution time has experienced a 

slight increase in relation to the expected value just for the number of workers that 

should lead to the lowest index value, while next to them we have gotten a few 

observed values below the expected ones.   

  
Number of Workers 

for the Lowest 
Execution Time 

MCMC Exceeding 
Point 

Number of Workers 
for the Performance 
Index Lowest Value 

Real __ __ 41 Fig. 29 
(a) Expected 62 __ 35 

Real __ __ 37 Fig. 29 
(b) Expected 62 __ 35 

Real __ __ 36 Fig. 29 
(c) Expected 49 __ 28 

Real __ __ __ Fig. 29 
(d) Expected 50 50 46 

Table 6. Relevant real and expected magnitudes associated with applications of figure 
29. 
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In the graphs of figure 30, we show the results of the execution of an application 

with a high associated processing time of fifteen seconds and for different 

communication loads. Again, a close matching between observed and predicted 

values is confirmed because this application is still more immune from external 

influences than the previous ones. Moreover, we can see again that more workers 

can be added to the application (table 7) than for the previous case (table 6) before 

reaching the applications� lowest execution time and performance index lowest 

value, but also that this increment is not proportional to that of the processing time.  

In addition, the performance index values are closer to those of the total execution 

time in the range shown than in the previous cases; it is because the communication 

overhead is very low in relation to the processing time and, consequently, the total 

execution time is closer to the processing time (Pi(x) = Tt(x)2/Tc ≈ Tt(x)). Moreover, 

the low weight of communications also makes the protocol change of graph 30 (b) 

go unnoticed. 
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        (c)            (d) 

Figure 30. Execution times and Performance Index values of a Master/Worker application with an 

associated processing time (Tc) of 15 sec. and constant communication volumes of 10Kbytes (a), 100 

Kbytes (b), 512 Kbytes (c) and 2Mbytes (d). The range is from 4 to 55 workers in all cases and 

asynchronous communication is used.  
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In this case, there is also a closer match between the expected and observed 

values of the performance index than the one obtained for the application of figure 

29. In particular, there are differences of only 1.3% and 1.9% between the observed 

and the expected lowest index value for cases (b) and (c) respectively.  

  
Number of Workers 

for the Lowest 
Execution Time 

Number of Workers 
for the Performance 
Index Lowest Value 

Real __ __ Fig. 30 
(a) Expected 107 61 

Real __ __ Fig. 30 
(b) Expected 107 61 

Real __ 45 Fig. 30 
(c) Expected 84 48 

Real __ 44 Fig. 30 
(d) Expected 84 50 

Table 7. Relevant real and expected magnitudes associated with applications of figure 
30. 
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     (c)                  (d) 

Figure 31. Execution times and Performance Index values of a Master/Worker 
application with an associated processing time (Tc) of 5 sec. and constant 
communication volumes of 10Kbytes (a), 100 Kbytes (b), 512 Kbytes (c) and 2Mbytes 
(d). The range is from 2 to 40 workers for cases (a), (b) and (c), and from 2 to 30 workers 
for case (d). Synchronous communication is used. 
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In the graphs of figure 31, we show the results of the execution of an application 

with an average associated processing time of five seconds and for different 

communication loads using a synchronous communication protocol, which in a MPI 

environment means, as we mentioned before, that a send will not finish until the 

matching receive begins. 

We can see that there is also a closer match between the observed values and the 

expected ones, and we can say that, comparing these results with the ones shown 

in figure 29 (same application using standard communication protocol), using a 

synchronous communication protocol produces a significant decrease in the 

application�s performance; as a consequence, the lowest execution time and lowest 

performance index values are reached with less workers. Actually, differences 

become greater when more workers (thus more communications) are added. For 

instance, with a communication volume of 100 Kbytes the differences ranges from 

0.9% for 2 workers to 17% for 40 workers.  

Moreover, there is a result that should be especially highlighted: it is the influence 

of the communication protocol on the MCMC for big messages (table 8), if 

compared to the results shown in figure 29. However, it should be noticed that, 

despite the performance index sensitivity to little variations of the total execution 

time, the index lowest value is reached before the MCMC exceeding point. This is 

happening because, for applications using this protocol, when the MCMC exceeding 

point is reached the possible performance gains are quite limited due to the 

dominating communication component of the total execution time.  

  
Number of Workers 

for the Lowest 
Execution Time 

MCMC Exceeding 
Point 

Number of Workers 
for the Performance 
Index Lowest Value 

Real __ __ 27 Fig. 31 
(a) Expected 55 __ 27 

Real __ __ 38 Fig. 31 
(b) Expected 55 __ 31 

Real 45 41 34 Fig. 31 
(c) Expected 49 43 25 

Real 48 30 21 Fig. 31 
(d) Expected 46 30 21 

Table 8. Relevant real and expected magnitudes associated with applications of figure 31.  

Using the experiments of figure 32 we show the results of executing an application 

with a medium associated processing time of five seconds and for different 

communication loads using the standard communication mode, which in this case 
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means asynchronous sends. The difference with the application of figure 29 is that 

the overall communication volume increases with each worker added to the 

application. In this case, with each new worker, starting from the second, the 

communication volume (V) increases by 10% of the original value, it is 

1Kbyte/worker for the 10Kbytes case, 10Kbytes/worker for the 100Kbytes case, 

51.2Kbytes/worker for the 512Kbytes case, and 204.8Kbytes/worker for the 2Mbytes 

case. 
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Figure 32. Execution times and Performance Index values of a Master/Worker 
application with an associated processing time (Tc) of 5 sec. and initial communication 
volumes of 10Kbytes (a), 100 Kbytes (b), 512 Kbytes (c) and 2Mbytes (d), which are 
incremented in a 10% for each added worker. The range is from 2 to 40 workers for 
cases (a), (b) and (c), and from 2 to 30 workers for case (d). Asynchronous 
communication is used. 

As expected, there is, in all cases, a negative effect on the application 

performance when compared to the results of figure 29. In addition, this negative 

effect is more significant when the communication volume is larger. For instance, we 

can see in this example that for an initial communication volume of 10 Kbytes (figure 

32 (a)) the results are comparable to (slightly better than) those obtained for the 

synchronous communication protocol of figure 31 (a), while for a communication 

volume of 2 Mbytes (figure 32 (d)) the results are significantly worse than those of 

figure 31 (d).     
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We can also see that there are again significant differences between the real and 

expected number of workers for the performance index lowest value (table 9). 

However, the highest difference between the expected and observed index values is 

of only 13.5% for figure 32 (c), not far from the 9.6% of figure 32 (a), the 10.9% of 

figure 32 (b) and the 9.9% of figure 32 (d).  
 

  
Number of Workers 

for the Lowest 
Execution Time 

MCMC Exceeding 
Point 

Number of Workers 
for the Performance 
Index Lowest Value 

Real __ __ 37 Fig. 32 
(a) Expected 54 __ 31 

Real __ __ 36 Fig. 32 
(b) Expected 48 __ 28 

Real __ __ 18 Fig. 32 
(c) Expected 44 41 24 

Real 19 19 10 Fig. 32 
(d) Expected 22 19 11 

Table 9. Relevant real and expected magnitudes associated with applications of figure 32.  

The experiments of figure 33 show the results of executing an application with a 

medium associated processing time of five seconds and for different communication 

loads using the standard communication mode, which in this case means 

asynchronous sends. The difference with the application of figure 29 is that the 

overall communication volume increases with each worker added to the application. 

In this case, with each new worker, starting from the second, the communication 

volume (V) increases in a 100% of the original value, it is 10Kbyte/worker for the 

10Kbytes case, 100Kbytes/worker for the 100Kbytes case, and 512Kbytes/worker 

for the 512Kbytes case. We have skipped the 2 Mb case because there won�t be 

any benefit from parallelization for an application with the given characteristics.   

It can be seen that for an application with little communication (10Kb case), like 

the one of figure 33 (a), it is possible to improve performance even if adding more 

workers implies a relatively significant growth of the communication volume. On the 

other hand, an application that from the beginning has an important communication 

component, like the one of figure 33 (c), will receive very little advantage from the 

addition of new resources. 
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(c) 

Figure 33. Execution times and Performance Index values of a Master/Worker 
application with an associated processing time (Tc) of 5 sec. and initial communication 
volumes of 10Kbytes (a), 100 Kbytes (b), and 512 Kbytes (c), which are incremented in a 
100% for each added worker. The range is from 2 to 40 workers for case (a), from 2 to 
35 workers for case (b), and from 2 to 20 workers for case (c). Asynchronous 
communication is used. 

  
Number of Workers 

for the Lowest 
Execution Time 

Number of Workers 
for the Performance 
Index Lowest Value 

Real __ 31 Fig. 33 
(a) Expected 48 28 

Real 32 18 Fig. 33 
(b) Expected 31 18 

Real 12 6 Fig. 33 
(c) Expected 14 8 

Table 10. Relevant real and expected magnitudes associated with applications of figure 
33. 

The experiments of figure 34 show the results of executing an application with a 

medium associated processing time of five seconds and for different communication 

loads using the synchronous communication protocol. The difference with the 

application of figure 31 is that, this time, the overall communication volume 

increases with each worker added to the application. In this case, with each new 

worker, starting from the second, the communication volume (V) increases by 30% 
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of the original value: it is 3Kbyte/worker for the 10Kbytes case, 30Kbytes/worker for 

the 100Kbytes case, 153.6Kbytes/worker for the 512Kbytes case, and 614.4Kbytes 

for the 2Mbytes case. 
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         (c)                (d) 

Figure 34. Execution times and Performance Index values of a Master/Worker 
application with an associated processing time (Tc) of 5 sec. and initial communication 
volumes of 10Kbytes (a), 100 Kbytes (b), 512 Kbytes (c) and 2Mbytes (d), which are 
incremented by 30% for each added worker. The range is from 2 to 40 workers for cases 
(a) and (b), from 2 to 30 workers for case (c), and from 2 to 15 workers for case (d). 
Synchronous communication is used. 

  
Number of Workers 

for the Lowest 
Execution Time 

MCMC Exceeding 
Point 

Number of Workers 
for the Performance 
Index Lowest Value 

Real __ __ 34 Fig. 34 
(a) Expected 48 __ 28 

Real 34 __ 19 Fig. 34 
(b) Expected 33 __ 18 

Real 21 __ 11 Fig. 34 
(c) Expected 19 __ 10 

Real 13 13 5 Fig. 34 
(d) Expected 12 12 6 

Table 11. Relevant real and expected magnitudes associated with applications of figure 
34. 
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As expected, once we have separately seen the effects of synchronous 

communication and communication volume increase, the combination of both facts 

has a very significant worsening effect on the application�s performance, which in 

some cases is as bad as the one caused by the 100% increment shown in figure 33 

(see figure 34 (a) and (b)). 

 
4. Global Master/Worker Model and Last Considerations 

 

Our objective, in the last section of this chapter, is to sum up the performance 

model for Master/Worker applications according to the general model for dynamic 

performance tuning presented in Chapter II. Firstly, we summarize the set of 

expressions and strategies that must used by the dynamic tuning tool to evaluate 

the performance of the application and predict what will happen if some conditions 

change. Next, we indicate which are the application parameters that must be 

monitored at run time in order to be able to detect the performance bottlenecks. 

Finally, the parameters that can be changed at run time to improve the applications 

performance and when can those changes take place are indicated. In addition, 

given that the proposed performance model includes two phases (load balancing & 

adjusting the number of workers), some considerations are included in this summary 

about the conditions that must hold to guarantee that both phases can be safely 

combined.  

In the first place, we have shown at the beginning of this chapter that, in order to 

improve the performance of a Master/Worker application, we should be able to 

balance the workers� load and then to determine the appropriate number of workers 

to do the work. Therefore, we proposed a two phase strategy for the automatic 

performance tuning of this kind of applications, the first phase consisting of applying 

a load balancing strategy and the second one of using an analytical model to 

evaluate and predict an appropriate number of workers for the application. 

With the objective of balancing the workers load, we have adopted a partial task 

distribution policy, which basically consists of dividing the set of tasks to be 

processed in sub-sets called batches and then distributing them among workers one 

by one in units called chunks. The number of tasks to be included in each batch is 

determined by a distribution strategy by calculating a partition factor. We have 

proposed a distribution balancing strategy that has been called: Dynamic Adjusting 

Factoring (section 2.3), which is based on making a self-adaptative partial 

distribution of the tasks to be processed. The main goal behind this strategy is to 
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statistically minimize the possibility that the time spent by a worker processing its 

current assigned chunk surpasses the optimal processing time of Tc/N (where Tc is 

the total processing time associated with the set of tasks and N the current number 

of workers). In order to reach this goal, the distribution strategy dynamically adapts 

the partition factor taking into consideration the mean processing time and standard 

deviation per task (expressions (1) & (2)). 

A balanced application makes good use of its assigned resources and, as a result, 

achieves the best possible performance for those resources. However, it should be 

evaluated if it is possible to get further performance improvements by changing 

(usually adding) the number of assigned resources. This evaluation must be based 

on dynamic predictions of the number of resources needed by the application to 

achieve its ideal performance and, if the predicted value is different from the current 

one, then decide if it will be profitable to assign (or liberate) the extra resources. We 

have defined an analytical model for balanced Master/Worker applications aimed at 

performing this evaluation. The model takes into consideration the current and 

expected application characteristics to determine the number of workers that should 

be used in order to efficiently complete the work in the minimum amount of time. 

This analytical model includes expressions for modeling the execution time of an 

application iteration depending on the communication protocol: expressions (7) and 

(8) if an asynchronous communication protocol is used, and expression (9) if not. In 

addition, the model includes expressions to determine the Master�s workers 

management capacity, which is the highest number of workers that the master can 

send tasks to before receiving the first answer. It is called Master�s Chunk Managing 

Capacity (MCMC) because it is also useful for the distribution strategy in order to 

establish a lower bound for the number of tasks to be included in a batch; once 

again, the expressions depend on the communication protocol: expressions (10) 

and (11) if an asynchronous communication protocol is used, and expression (12) if 

not. Finally, the model includes a performance index (Pi �expression (17)) intended 

for figuring out the number of workers that would lead to the best execution time � 

resource efficiency ratio.  

Both phases, load balancing and adapting the number of workers, have been 

individually validated by experimentation, and in figure 35 we can see that the 

overall two phase model is also sound. In this figure, we are recovering the example 

of figure 2 adding the observed execution time of the balanced application for 

different numbers of workers, in order to show that the performance of an 



Definition of Framework-based Performance Models for Dynamic Performance Tuning 
 

 115

application balanced through the use of a distribution strategy can be improved by 

adjusting the number of workers assigned to it. 
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Figure 35.  Real (with and without applying a load balancing strategy) and expected 
execution times of a Master/Worker application using from 8 to 52 processors, 
processing 1024 1Kb tasks each iteration, and task associated processing time 
distributed according to table 1 (section 1). 

However, assuming that we start from a balanced execution, it is not known in 

advance if the distribution strategy will able to succeed in balancing the load for a 

different number of workers. There are some conditions that must hold in order to 

make it possible: one is that the number of tasks should be considerably greater 

than the number of workers, and the other that a major portion of processing time 

should not be concentrated on a small portion of tasks. Moreover, as far as it is 

possible to monitor the number of tasks and calculate the mean processing time 

associated with each task and its standard deviation, it is possible to define an index 

to measure the quality of the distribution strategy outcome and to predict if it is likely 

to succeed in balancing the load for a different number of workers.  

One possible way for evaluating the quality of the distribution policy outcome is by 

relating the mean idle time per processor with the total execution time through an 

expression like: ))(1(1
1

0

xTt
x

x

i
i∑

−

=

− µ (where x is the number of workers, µi the 

processing time spent by worker i, and Tt(x) the total iteration time). For this 

expression, a 0 value indicates a perfectly balanced application (all workers have 

been busy the whole iteration), while a value closer to 1 indicates that there is a 

significant load unbalance in the application. Nevertheless, this expression cannot 

be used for predicting the quality of the distribution strategy outcome for a different 
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number of workers because we cannot apply expressions (7), (8), or (9) for 

predicting the total execution time in that they are only valid for balanced 

applications.    

On the other hand, as we mentioned in section 2.3, an upper bound for a Pth order 

statistic (P independent random variables with mean µ and standard deviation σ) is 

defined by the expression 2Pσµ + , which leads to the following relationship:  

xNxNxTt 2)()( σµ +≤ , for a Master/Worker application with N tasks to process, a 

mean processing time of µ, and a standard deviation of σ. Then, substituting Tt(x) 

by its upper bound in the previously defined quality index leads to the following 

upper bound of it: )21(1
xσ

µ
+ . As a result, this expression can be used as a guide 

to decide if it is worthwhile to change the number of workers depending on how easy 

it will be to balance the application load. However, the defined execution time upper 

bound is quite conservative (it can be much greater than the real value) and can 

lead to rejecting configurations that have a reasonable chance of improving the 

application performance. 

Finally, it can be deduced from the index expression that increasing the number of 

workers (x) without changes in µ and σ causes the index to increase, which means 

that increasing the number of processors makes it more difficult to get a balanced 

execution; in addition, it can also be seen that, for the same reason, it will be difficult 

to balance applications with higher standard deviations. Both observations are in 

accordance with the conditions required for balancing the load of an application that 

were stated before: a number of tasks significantly greater than the number of 

workers, and a major portion of the processing time should not be concentrated on a 

small number of tasks. 

In the second place, in order to be able to apply the strategies and calculate the 

performance expressions several application parameters must be monitored, these 

parameters have been called the measure points of the performance model and are 

as follows: 

• Network parameters: mo and λ which could be calculated at the beginning 

of the execution and should be re-evaluated periodically allowing the 

adaptation of the system to the network load conditions. 

• Message sizes ( wm
iv / ) have to be captured when master sends/receives 

data to/from workers in order to calculate the total communication volume 
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(V) and the portion of it that is sent by the Master (α), but also to track the 

relation between the communication volume and the number of workers 

(∆V).  

• Workers’ processing times (µi) have to be measured in order to calculate 

the mean processing time µ, the standard deviation σ, and the total 

computing time (Tc). This parameter could be obtained by measuring the 

time spent by the Do_Work function of each worker. 

Finally, when applying the strategy for balancing the workers load or the 

expression for adapting the number of workers, some changes might be introduced 

in the application at run time. It is very important to know exactly what parameters 

should be changed and when can these changes take place. These parameters 

have been called the tuning points of the performance model and are as follows: 

• Partition factor of the Dynamic Adjusting Factoring strategy (xo): one of the 

major advantages of this data distribution strategy is that the factor is 

always being recalculated and can be changed at any moment. 

• Number of workers: this parameter is more sensitive than the previous one. 

The number of workers can only be changed at the beginning of an 

iteration, and only if the added workers (if the number of workers has been 

increased) have already been set up and are ready to receive tasks.   
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Abstract 

In this chapter, we present the performance model we have 

defined to dynamically improve the performance of 

applications developed with the Pipeline framework. The 

objective of this model is to improve the application’s 

throughput by devising the best stage replication pattern on 

the available resources. We also present a set of 

experiments that validate the model.   



Definition of Framework-based Performance Models for Dynamic Performance Tuning 
 

 120 

  



Chapter IV  Pipeline Framework Performance Model 
 

 121

1. Introduction 

 
In this chapter we will introduce our proposal for a performance model associated 

with the Pipeline framework. Whereas, we have not defined a performance model as 

comprehensive and detailed for Pipeline applications as the one presented in 

Chapter III for Master/Worker ones (mainly because this is already a work in 

progress [CM+05]), we include this proposal with the aim of demonstrating that the 

general dynamic performance tuning methodology based on associating a 

performance model with high-level programming structures can be applied to 

programming structures other than the Master/Worker. To fulfill this objective, we 

will first recall the framework associated performance problems presented in 

Chapter II. Next, we will define, according to the general performance model 

introduced in the same chapter, the strategies and expressions that are part of our 

performance model and the experimentation that has been carried out to validate 

them.  

In Chapter II, we have described the Pipeline framework that will be analyzed and 

the possible inefficiencies of pipelined applications. We saw that, on the one hand, 

the concurrency is limited at the beginning of the computation as the pipe is filled 

(also called ramp-in time), and at the end of the computation as the pipe is drained 

(also known as ramp-out time); this is a transient inefficiency that should be dealt 

with at the design phase of the application because the way to avoid it is to ensure 

that the number of calculations the application will perform is substantially higher 

than the number of stages of the pipe. On the other hand, it is important for there not 

to be any significant differences between the computational efforts of the pipe 

stages because the application throughput of a pipe is determined by its slowest 

stage. This is the most important inefficiency of this structure, and the most difficult 

to overcome because it does not depend exclusively on the application design, but 

also on run-time conditions. Consequently, this drawback is suitable for being solved 

dynamically and there are different approaches for doing so depending on the target 

index to be optimized and availability of resources.  

 Therefore, we may want to improve the efficiency in the use of resources, or even 

try to free some underused resources to increase their availability, in this case 

dynamic mapping of stages could be used to group fast stages; thereby improving 

the use of resources. On the other hand, we may want to improve the application 

throughput, in which case, if there are available processors, replicating slower 
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stages will increase throughput and reduce the application execution time. 

Furthermore, we may want to increase the application throughput but also make an 

adequate use of resources. Consequently, a mixed approach could be defined, as a 

compromise between optimizing throughput and efficient resource management. 

Our aim is to implement a mixed strategy, with the main objective of optimizing the 

application throughput but also of making a reasonable use of resources. However, 

as a first step towards this objective we have concentrated on optimizing application 

throughput and, as a consequence, the model presented does not include 

considerations about the efficiency of resource management. Hence, we are going 

to discuss only the strategies and expressions that will be applied to decide, given a 

certain number of available resources, which pipe stages should be replicated in 

order to improve the application throughput.  
 

2. Stage Modeling 
 

The general strategy for increasing the throughput of the slower stages, in order to 

improve the global application performance, will consist of calculating the best 

replication pattern for the current application�s characteristics and available number 

of processors.   

Consequently, if we want to increase the application throughput, we must minimize 

the time needed by each stage to process its inputs, including the time required to 

deliver the results to the next stage. We call this quantity the production time; hence, 

we need expressions to find the production time each stage can reach (its 

independent production time), and also expressions that explain its observed 

production time due to the influence of other stages (its dependent production time). 

Moreover, we should find different expressions to make these calculations for single, 

and replicated stages.  

Nevertheless, before introducing these expressions, we have to discuss the 

general model of a replicated stage. The idea is that the original application has 

been written using a linear pipeline framework, which is a simplification that does not 

affect the applicability of the model but reduces the complexity of the replication 

strategy. Then the tuning tool, after taking into consideration the performance 

analysis and available resources, could decide to replicate some stages. In addition, 

this replication must be transparent to the rest of the pipe stages, particularly to 

those stages immediately preceding and succeeding the replicated one. Therefore, 

a replicated stage consists of several copies of the original linear stage plus a data 
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management and distribution process that bridges these copies with the rest of the 

pipe.  

Figure 1.  Schematic representation of a replicated stage. Stage i+1 has been replicated 
k times and a communication manager (CM) has been added to control the replicas� 
state and distribute incoming tasks. 

This replicated stage scheme is shown in figure 1. It can be seen there that a new 

process, called Communication Manager (CM), is responsible for receiving 

messages from the preceding stage and distributing them among the stage replicas. 

The CM functionality consists basically of monitoring the replicas� state (which 

replicas are busy and which are free), receiving messages from the preceding stage 

(provided that there is a least one free replica in order to be consistent with the 

linear case where a stage only receives a message when it is free), and distributing 

these messages to free replicas. To be aware of the state of the replicas the CM 

receives an acknowledgement message each time one of them ends its processing.  

In adition, we should decide whether the CM should run in a separate processor or 

should share one with a replica. The first approach is simpler to model but could 

lead to a poorer use of resources. The second, in contrast, seems to lead to a better 

use of resources, but is more difficult to implement with some communication 

libraries, and is also difficult to model because the CM affects, and is affected by, 

the activity of the replica that shares a processor with it. We have modeled both 

options, but we have only validated experimentally the first one; therefore, we will 

put a greater emphasis on this model. 

Before defining the expressions that describe the behavior of a Pipeline 

application, we have also to indicate the parameters that we have taken into 

consideration and the terminology that will be used from now on. In the first place 

and for the same reasons explained in section 3.1 of Chapter III, we have 

characterized the interconnection network with the classical message start up time 

plus communication time formula. In the second place, in order to be able to 

evaluate the model expressions, we need to know the time each stage is making 
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useful computation, the amount of data sent and received to/from each stage, and 

the kind of communication protocol (synchronous or not).   

Finally, as we did for the Master/Worker framework, we assume in our analysis 

that there is just one process per processor, although this time it is not a matter of 

effiecincy, as it was in the Master/Worker case, but a way of simplifying the analysis 

process. As previously mentioned, grouping quick stages in the same processor can 

be useful for balancing the application computational load while freeing resources. 

In addition, we use the following terminology: 

• mo = per message start up time, in ms. 

• λ = per byte communication cost (inverse bandwidth), in ms/byte. 

• vi = data volume sent by stage i, in bytes. 

• tci = computation time stage i needs to process an input, in ms.  

• Trk
i = production time of k replica of stage i, in ms. 

• Tri = independent production time of stage i, in ms. 

• rTri = dependent production time of stage i, in ms. 

• P = communication protocol (synchronous or asynchronous sends). 
 

2.1. Single stage modeling 
 

A single pipe stage is one that receives messages with data, except for the first 

one, makes its portion of calculation of this data, and sends the results to the next 

stage, except for the last one. It is clear that the independent production time (Tri) of 

such a stage will depend on its position in the pipe, its associated computation time 

(tci), and the current communication characteristics -C(P,vi)- (communication 

protocol -P- and message size -vi-).   

This way, we can define the independent production time of a single stage as: 

    Tri = tci + C(P,vi)            (1) 

Where C(P,vi) is defined as: 

0  if (i == n-1) (n = total number of pipe stages)   

Because the last stage will be able to process its next message just after it finishes 

the computation of the latest one. 

mo  if ( i  < n-1) and (P is not synchronous) 

If the communication protocol in use does not force synchronous sends, the stage 

will just have to wait to deliver the message to the library interface before being 

ready to accept a new one.   
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mo + λvi  if ( i < n-1 ) and (P is synchronous)  

Because when using synchronous sends, the stage will have to wait for the whole 

communication to take place before going to the next receive operation.   

On the other hand, the dependent production time of the stage depends on its 

independent prodution time (Tri), if the application computational load is balanced or 

the current stage is among the slowest stages of the application, or it depends on 

the dependent production times of the following and previous stages. As these 

dependent production times could also depend on those of its neitghbouring stages, 

it can be seen that there is a propagation of the times of the slowest stages through 

the pipe until all stages are synchronized with them.   

Consequently, it can be said that: 

rTri = Tri if the application computational load is balanced or this stage is 
among the slowest ones. 

Or, 

rTri = rTri�1 if the preceeding stage is slower than the succeeding one and 
both are slower than the current stage, or the preceeding stage is 
slower than the current one and it is the last stage.   

Or, 

rTri =rTri+1 if the succeeding stage is slower than the preceeding one and 
both are slower than the current stage, or the succeeding stage 
is slower than the current one and it is the first stage.  

While it is easy to visualize that the current stage has to wait for a preceeding 

slower stage, having to wait for a slower succeeding stage deserves more detailed 

comment. If the communication is synchronous the current stage will have to wait in 

the send call until the succeeding one issues a matching receive, but if the 

communication is not synchronous, it is supposed that the message will be stored in 

a library/system buffer and the sender will continue its execution. However, if the 

processing time difference between both stages is big enough, these buffers will 

eventually get full and the faster stage will be forced to wait until some of them are 

freed, in practice, this is like changing to a synchronous protocol. 
 

2.2. Replicated stage modeling 
 

A replicated pipe stage is one where data messages are received by a special 

process called Communication Manager (CM), which is responsible for deciding 

which stage replica will process the data. In addition, the CM will only issue a 

receive operation for the previous stage if there is at least a free replica. Then the 
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chosen replica makes the stage portion of calculation of this data and sends the 

results to the next stage, unless it is the last one.   

To calculate the independent production time of such a stage, we must decide first 

if the CM is executed in an independent processor or it shares a processor with one 

of the replicas. As we mentioned previously, the first option could lead to a poorer 

use of resources, but is easier to model and implement, while the second option 

could lead to a more efficient use of resources, but it is more difficult to model and 

could be difficult to implement for some communication libraries or execution 

environments. As a consequence, we will discuss in detail the model for the first 

option, which will be experimentaly validated later, and we also will include the 

definition of the model for the second one.    

Thus, to calculate the independent production time of a replicated stage, 

considering that the CM is executed in an independent processor, we must take into 

account the managing time associated with the CM (tgi) and the waiting time for one 

free replica (wci). The term tgi depends on the communication protocol and possibly 

on the message size. Basically, the CM looks at the communication channel and 

waits for messages that could come from the previous stage or from one of the 

stage replicas (acknowledgments indicating that the replica is free). As there could 

be many message sources it should look at the channel without blocking. 

Consequently, the managing time will be the time needed to make 1 or 2 probes of 

the channel with its corresponding receives plus the time needed to send the 

requirements to the free replica.    

Therefore, if the communication protocol is synchronous, the CM should wait 

2*(mo+λvi) to be ready to process the next requirement message. It has to spend 

twice the communication time because it has to synchronously receive the message 

from the previous stage (mo + λvi) and then synchronously send it to a free replica 

(mo + λvi). On the other hand, if the communication protocol is asynchronous then 

the CM will only have to wait for some network overhead before seeing if there is a 

new requirement message, because, in this case, library buffers allow for 

overlapping communications. 

The term wci depends on the processing capacity of the replicas and the 

managing capacity of the CM. Given m replicas, if the CM spends more time 

managing m input messages than the time spent by the set of replicas processing 

the same number of messages then there will always be free replicas (wci = 0), 

which could be an undesirable situation because it means that there is at least some 
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idle time and, in consequence, the application is wasting resources. Actually, this is, 

in the long run, the same problem of exceeding the Master�s Chunk Managing 

Capacity (MCMC) discussed in section 3.1 of Chapter III, with the CM acting as the 

Master and the replicas as the Workers.  

Moreover, if the CM has the capacity to feed the m replicas, then the term wci will 

be less than or equal to the production time of the set of replicas, plus the time 

needed to send the message to a replica, unless the protocol is synchronous, 

because, in such a case, the communication time is included in the tgi. Furthermore, 

the production time of a given set of replicas depends on the independent 

production time of each replica Trk
i, which in turn is calculated in the same way as 

the independent production time of a single stage plus the time needed to send the 

acknowledgement message to the CM. 

In particular, in order to calculate the production time of the set of replicas we 

know that if there is a set of m processes and each one is able to process a 

requirement in a certain time period, which we have called Trk
i (0=<i<m), then we 

can say that in time units the set of processes shall have produced an integer 

number of requirements and none will be currently processing a new one. In this 

period of time, the replica k (0≤i<m) has processed   k
i

m

j

j
i TrTr∏

−
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0

 requirements; in 

consequence, the  set  of  m  replicas have processed      

requirements. If we divide this expression by the elapsed time period then we have 

the number of requirements processed in one time unit, i.e. , 
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 ) will tell us the time needed by the set of processes to process a single 

requirement. 

Summarizing, the definition of independent production time of replicated stages is: 
    Tri = tgi + wci           (2) 
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The constant c that appears in these expressions represents the overhead 

introduced by the probes made by the CM on the communication channel in order to 

monitor all the different potential message sources, and it is included for completion 

reasons, but it will be discarded later because it is difficult to evaluate and its values 

are too small to affect the results. 

Before introducing the analysis of the CM sharing processor with a replica, we 

want to include more detailed comments about how to detect whether the replica 

mangement capability of the CM has been exceeded, a problem that, as we 

mentioned above, is equivalent to the prediction of the exceeding point of the 

Master�s Chunk Management Capacity (MCMC) for the Master/Worker framework. 

          
Figure 2.  Example of a replicated stage where the CM has exceeded its replica 
managing capability. In this case, the 2nd stage has three replicas (processes 2, 3, and 
4) and, as it can be seen, the notification messages are received by its CM (process 1) 
only when it needs a free replica.  

Suppose, that there are m replicas of a stage and that when the CM has managed 

k input messages (k < m) there is always some replica which has finished its 

processing and has already sent back the corresponding acknowledging message.  

 
Figure 3. The 4th stage has four replicas (processes 4, 5, 6, and 7) and, as can be 
seen, process 4 and process 5 are always able to deliver their notification messages 
before the CM (process 3) is able to send requirements to processes 6 and 7. 

So, if the previous stage is producing requirements quickly enough, and the CM 

gives a higher priority to input messages than to notification ones wherever there 

are free replicas (a fair situation), then the freed replica will be idle till the moment 

the CM needs a free replica. This situation is unlikely to happen if the protocol is 

CM 
Replicas 

CM 
Replicas 
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asynchronous because the tgi is quite short, in this case, and it is probable that the 

CM will check for notification messages frequently, not only when it needs a free 

replica but when there are no input messages. On the other hand, when the 

communication protocol is synchronous, this situation can arise if Tri-1 is smaller than 

tgi, which happens if the previous stage is the first one and tc0 is smaller than the 

communication time or in the unlikely situation when tci-1 is smaller than the constant 

c (channel probes overhead). This case is illustrated in figure 2, where it can be 

seen that all replicas are used, but also that they are idle most of the time.  

Otherwise, if the CM frequently checks for notification messages because there 

are periods when there are no input messages from the previous stage, then there 

will be some replicas that will not be used at all as we can see in figure 3. This is the 

most common situation (even for synchronous communications).  

Going back to the model, if the CM shares the processor with one of the replicas, 

we will decrease the cost in resources because we are not using extra processors 

for the CMs, but it is harder to analyze, its implementation depends on the 

communication library or execution environment capabilities, and can be less 

efficient than the CM in an independent processor option. Moreover, analyzing this 

option must take into consideration the possibility of implementing the CM as an 

independent process or as a thread. For the first possibility, we will get an easier 

implementation, because all replicas will be managed the same way, but the 

efficiency is worsened in any case. The worse case is when the communication 

library implementation is itself not efficient. The reason is that, as we will keep using 

communication primitives to communicate the CM with the local replica, the 

efficiency will depend on whether the local communications are done on shared 

memory, or not. If threads are used then a different management has to be done for 

the local replica because local communications should be explicitly made through 

shared memory. 

Therefore, to calculate the independent production time of a replicated stage with 

the CM sharing processor with a replica, we must now take into consideration the 

waiting time for the CM (wgi), which is the time we could be forced to wait for its 

activation, the managing time associated with the CM (tgi), and the waiting time for 

one free replica (wci). Then, the independent production time of a replicated stage 

with the CM sharing processor with a replica can be defined as: 

Tri = wgi + tgi + wci    (3) 
The term wgi will depend on the CM implementation. When it tests the shared 

variables, and hears the communication channels once, and there are no free 
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replicas and/or no new input messages (requirements) then it could leave the 

processor to the sharing replica (which in turn could be doing nothing if it is free), or 

it could be busy waiting until something happens. In any case, if there are not more 

processes in the same processor, the CM activation will have to wait between 0 and 

less than 2 times the quantum assigned by the system to each thread/process, plus 

the context switching time. On the other hand, the term tgi is like the one defined for 

expression (2) if the received message is sent to a replica running in a different 

processor. However, if the replica sharing processor with the CM is free then a copy 

in memory is done instead of a full communication and the management time is 

reduced, especially if the communication protocol is synchronous. Finally, the term 

wci is like the one defined for expression (2) because the way the waiting time is 

calculated does not change. However, there is a especial case when calculating the 

replicas independent production time (Tri
k), which is the case of the replica sharing 

the processor with the CM. The production time of this replica has to include a 

processor sharing overhead that will be in the (0, tci) interval assuming that there 

are no other processes in the same processor, 0 if the replica associated processing 

time is less than the system quantum, and tci or (tci � quantum) if tci is greater than 

the quantum. 

Finally, knowing that the dependent production time of a stage just defines the 

effect of its neighbors on the stage, we can say that the dependent production time 

of a replicated stage is defined in exactly the same way as for a single stage. 
 

2.3. Calculating the best replication pattern 
 

If there were always enough available processors, a straightforward strategy to 

optimize the application throughput would be to replicate each stage until it matches 

the throughput of the fastest stage. However, as it is not the regular case, a strategy 

has to be defined to find the best replication pattern for a limited number of available 

processors. 

In the first place, we must be able to calculate the number of processors needed 

for equating the Tri of an stage to the Trk of another given that Trk < Tri. As stage i 

must be replicated in order to achieve that matching, we can use expression (3) and 

say that the following expression must hold: Trk = tgi + wci, which substituting tgi and 

wci by the corresponding expressions leads to: )11(
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0
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communication is asynchronous and to )11()(2
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Furthermore, assuming a homogenous hardware (processors and network), the 
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iTrm / where m is the number of replicas that must 

be included in order to achieve Trk=Tri. Consequently, solving the previous 

expressions for m will let us to know the number of processors that will be needed 

for the replicas of stage i. Then this number, plus the processor for the CM, if it is 

executed in an independent processor, is the number of processors that should be 

dedicated to stage i in order to match the throughput of stage k. Summing up, the 

expressions for knowing the number of processors needed for matching the 

throughput of stages Tri and Trk (Trk < Tri) are: 
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In the second place, we use these expressions to define an algorithm to calculate 

the best replication pattern for a n-stage pipeline. The goal is to find which is the 

best stage throughput that can be matched with the available number of processors. 

The steps to achieve it are: 

1. Search stage k where Trk = min(Tri) (( 0 ≤ i < n ) and if stage k has not 

been previously probed). Mark stage k as probed. 

2. Search stage g where Trg = max(Tri) ((0 ≤ i < n ) and if stage g has not 

been previously considered). Mark stage g as considered. 

3. Depending on the communication protocol, use expressions (4) or (5) to 

calculate the number of processors (pi) needed to equate Trg with Trk.  

4. If the current ∑pi > m then 

a. Unmark all considered stages. 

b. Go to 1. 

5. If there are no considered stages go to 2 

Finally, it is worth noting that this algoritm can be used, slightly modified, even if 

there are stages that are already replicated because expressions (4) and (5) are 

based on the independent production time (Tri
r) of the replicas; in consequence, if a 

stage is already replicated, these expressions can be used to determine the number 

of extra replicas that should be added to improve the stage throughput. In contrast, 
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this strategy should be supplemented with an idle replica detection method, based 

on monitoring those replicas that are idle most of the time, in order to determine if a 

replicated stage has too many replicas.   

 
3. Experimental Validation of the Model 

 

As for the Master/Worker framework, we have developed a set of configurable 

programs to test our model. We have executed our experiments on one of the 

clusters of the Computer Science Department of the Wisconsin University at 

Madison. It is a 150 dual 933MHz nodes connected to a 100Mbit switch, which has 

a gig-uplink to the core of the network (6 clusters). These programs have been 

developed in C plus MPI, and the ones that are used specifically to test the model 

for Pipeline applications accept the following parameters: message size for all 

messages (this decision simplifies the program and does not affect results), time 

needed for each stage to process its input data and number of replicas of each 

stage, and if a stage is replicated then the processing time associated with each 

replica must be specified. 

Single Stage Replicated Stage 
Message size Processing time Message size Processing time 

2 Mbytes 1 sec/stage 512 bytes stages 0,2, &4: 1 sec 
stage 1: 1.5 sec 
stage 3: 3 sec 

50 Kbytes 100 ms/stage 1.5 Mbytes stages 0,2, &4: 1 sec 
stage 1: 1.5 sec 
stage 3: 3 sec 

50 Kbytes 10 ms/stage 512 bytes stages 0,2, &4: 10 ms 
stage 1: 15 ms 
stage 3: 30 ms 

200 Kbytes stages 0,2, &4: 1 sec 
stage 1: 1.2 sec 
stage 3: 2 sec 

  

1 Kbyte stages 0,2, &4: 100 
ms stage 1: 120 ms 

stage 3: 200 ms 

  

Table 1. Summary of the configurations executed in order to test the pipeline model. 

The set of experiments that have been executed is summarized in table 1. We 

have included a set of experiments for validating the single stage model and another 

for validating the replicated stage with CM running in an independent processor 

model. It can be seen that it is a comprehensive set that covers all the cases 

described in section 2 (except for replicated stages), with the CM sharing a 

processor with one replica because the MPI library that has been used to implement 



Chapter IV  Pipeline Framework Performance Model 
 

 133

the test applications supports neither threads nor customized process mapping. 

Once the results of these experiments have been presented and discussed we will 

introduce a final example for discussing the application of the strategy presented in 

section 2.3. 

In figure 4, a portion of the Gantt trace of a pipeline application execution with a 

significant processing time associated with each stage and large messages is 

shown. It is easy to see that the communication protocol is synchronous forced by 

the message size because the sends are blocked until the matching receive is 

issued. It can also be seen in table 2 that, by applying expression (1), the defined 

model is matching the application�s behavior.  

 
 

Figure 4. Five-stage pipeline with an associated processing time of 1 sec/stage and a 
communication volume of 2 Mbytes/msg. 

 Stage 0 Stage 1 Stage 2 Stage 3 Stage 4 

Expected Tri 1.197 sec 1.197 sec 1.197 sec 1.197 sec 1 sec 

Expected rTri � � � � 1.197 sec 

Observed T 1.22 sec 1.22 sec 1.22 sec 1.22 sec 1.22 sec 

Table 2. Expected and observed times for the example of figure 4. 

 
 
Figure 5. Five-stage pipeline with an associated processing time of 100 ms/stage and a 

communication volume of 50 Kbytes/msg.  

In figure 5, a portion of the Gantt trace of the execution of a pipeline application 

with medium size messages and small processing time associated with each stage 

is shown. This time, the communication protocol is asynchronous (non-

   Send       Receive        Inner stage,      last stage, and        first stage processing   
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blocking/buffered sends) and it can still be shown that, applying expression (1), the 

defined model is matching the application behavior (table 3).  
 

 Stage 0 Stage 1 Stage 2 Stage 3 Stage 4 

Expected Tri 106 ms 106 ms 106 ms 106 ms 100 ms 

Expected rTri � � � � 106 ms 

Observed T 107 ms 107 ms 107 ms 107 ms 107 ms 

Table 3. Expected and observed times for the example in figure 5. 

 Stage 0 Stage 1 Stage 2 Stage 3 Stage 4 

Expected Tri 17.3 ms 17.3 ms 17.3 ms 17.3 ms 10 ms 

Expected rTri � � � � 17.3 ms 

Observed T 17.5 ms 17.5 ms 17.5 ms 17.5 ms 17.5 ms 

Table 4. Expected and observed times for the example in figure 6. 

Figure 6 shows the portion of a Gantt trace of the execution of a pipeline 

application with a very small associated processing time. When using low 

processing times the application is more sensitive to the influences of the 

environment, such as other processes executing in the same cluster, or even in the 

same machine, network traffic, and so on. For cases like this we have statistically 

filtered the data in order to eliminate anomalous measurements. The obtained 

results are shown in table 4.  
 

 

 
Figure 6. Five-stage pipeline with an associated processing time of 10 ms/stage and a 
communication volume of 50 Kbytes/msg. 

 

Figure 7 shows the portion of a Gantt trace of the execution of a pipeline 

application with a different, but always significant, processing time associated with 

each stage and a message size of 200 Kbytes, this is significant but not large 

enough to immediately force a synchronous communication protocol. It can be seen 

that, at the point marked by the arrow, stages 0, 1 and 2 are affected by a change in 

the communication protocol produced by the low pace of stage 3 and the message 
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size. The model says that, when the communication protocol is synchronous and the 

processing time of the next stage is greater than ours and than that of our previous 

stages, the stage has to wait and its effective processing time will be the same as 

the next stage. This statement is confirmed by results shown in table 5. 
 

 
 
 

Figure 7. Five-stage pipeline with an associated processing time of 1 sec for stages 0, 2, 
and 4; 1.2 sec for stage 1; and 2 sec for stage 3. Communication volume of 200 
Kbytes/msg. 

 Stage 0 Stage 1 Stage 2 Stage 3 Stage 4 

Expected Tri 1.002 sec 1.202 sec 1.002 sec 2.002 sec 1 sec 

Expected rTri 2.002 sec 2.002 sec 2.002 sec � 2.002 sec 

Observed T 2.015 sec 2.03 sec 2.03 sec 2.03 sec 2.03 sec 

Table 5. Expected and observed times for the example in figure 7. 

 

 Stage 0 Stage 1 Stage 2 Stage 3 Stage 4 

Expected Tri 101.54 ms 121.54 ms 101.54 ms 201.54 ms 100 ms 

Expected rTri � � 121.54 ms � 201.54 ms 

Observed T 100.05 ms 120.2 ms 120.2 ms 200.09 ms 200.09 ms 

Table 6. Expected and observed times for the example in figure 8. 

Figure 8 shows the portion of a Gantt trace of the execution of a pipeline 

application with a different, but always small, processing time associated with each 

stage and a message size of 1Kbyte. It can be seen in figure 8 (b) that computation 

time differences between stages 0 and 1 have no effect on the communication 

protocol, while the differences between stages 2 and 3 have a limited effect at the 

signaled points. In both cases it is due to the tiny message size.  

Actually, the communication library (MPI) uses a more efficient communication 

protocol (see the explanation about ready sends in section 3.4 of Chapter III) when 

sending small messages to processes that have already issued the corresponding 

receive. In the example, this is happening between stages 1 and 2, and 3 and 4; 

however, it cannot take place between stages 0 and 1, and 2 and 3 because the 
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matching receives have not been issued yet. Consequently, small messages make it 

difficult to get communications blocked not only because buffers are difficult to get 

full but also because the slow stages send their messages faster. In addition, using 

expression (1) we get the results shown in table 6. 

 
(a) 

 

 
(b) 

 
 

Figure 8. Five-stage pipeline with an associated processing time of 100 ms for stages 0, 
2, and 4; 120 ms for stage 1; and 200 ms for stage 3. Communication volume of 1 
Kbyte/msg. Detail (a) and broad view (b).  

Figure 9 shows the portion of a Gantt trace of the execution of a pipeline 

application with a different, but always significant, processing time associated with 

each stage, a message size of 512 bytes, and for different replication patterns: no 

replication (a), replication of stage 1 (b) and (c), replication of stage 3 (d), and 

replication of stages 1 and 3 (e). It can be seen again in figure 9 (a) that, despite the 

small messages, slow stages affect the performance of the succeeding ones, but 

also the one of its previous stages (at the signaled points). For this case (figure 9 

(a)), the expected and observed Tri and rTri of each stage are shown in table 7. 

 Stage 0 Stage 1 Stage 2 Stage 3 Stage 4 

Expected Tri 1.0021 sec 1.5021 sec 1.0021 sec 3.0021 sec 1 sec 

Expected rTri � � 1.5021 sec � 3.0021 sec 

Observed T 1.0025 sec 1.5001 sec 1.5001 sec 3.0023 sec 3.0023 sec 

Table 7. Expected and observed times for the example of figure 9 (a). 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 

Figure 9. Five-stage pipeline with an associated processing time of 1 sec for stage s 0, 
2, and 4; 1.5 sec for stage 1, and 3 sec for stage 3. Communication volume of 512 
bytes/msg. Without replicated stages (a), replicating stage 1 (b) & (c), replicating stage 3 
(d), and replicating stages 1 and 3 (e).  

In figure 9 (b) and (c), it can be seen that stage 0 never becomes blocked because 

the replicated stage 1 is now processing even faster than stage 0; moreover, as 

   Send       Receive        stage processing, and        CM   
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stage 1 has increased its throughput, stage 2 (process 4) has also increased its own 

and it is becoming blocked earlier (signaled point in figure 9 (b)) than in the non-

replicated case because stage 3 is as slow as it was. For this case (figure 9 (b) and 

(c)), the expected and observed Tri and rTri of each stage, and the Tri
k of the stage 1 

replicas, are shown in table 8. 

In figure 9 (d), it can be seen that replicating stage 3 is improving the overall 

application throughput, which is obvious since it was the slowest pipe stage; in 

addition, stage 2 does not get blocked anymore. However, as stage 1 is not 

replicated, it will happen to stage 0. For this case (figure 9 (d)), the expected and 

observed Tri and rTri of each stage, and the Tri
k of the stage 3 replicas, are shown in 

table 9. 

 Stage 0 Stage 1 Stage 2 Stage 3 Stage 4 

Expected Tri 1.0021sec 0.75496 sec 
Tr1

0,1 = 1.51 
1.0021 sec 3.0021 sec 1 sec 

Expected rTri � 1.0021sec � � 3.0021 sec 

Observed T 1.0015 sec 1.0017 sec 1.002 sec 3.001 sec 3.001 sec 

Table 8. Expected and observed times for the example of figure 9 (b) and (c). 

 Stage 0 Stage 1 Stage 2 Stage 3 Stage 4 

Expected Tri 1.0021 sec 1.5021 sec 1.021 sec 1.502625 sec 
Tr3

0,1 = 3.012 
1 sec 

Expected rTri � � 1.5021 sec � 1.502625 sec

Observed T 1.003 sec 1.51 sec 1.509 sec 1.504616 sec 1.504616 sec

Table 9. Expected and observed times for the example of figure 9 (d). 

Finally, in figure 9 (e), it can be seen that, as expected, adding an extra replica to 

stage 1 is completely useless because the communication manager (CM) is not 

receiving enough inputs to keep three replicas busy. Actually, we have already seen 

that with two replicas we are not using all of the stage capabilities. However, 

introducing a third replica of stage 3 improves the application throughput to its best 

(one output every second). It is clear that the best replication pattern for this 

application is to have two replicas of stage 1 and three of stage 3. In this case 

(figure 9 (e)), the expected Tr1 is 0.5022 sec, but the observed one is 1.0013126 

sec, which is the Tr0 that limits the throughput of stage 1. In addition, the expected 

and observed Tr3 are 1.0021879 sec and 1.00073 sec respectively (with an 

observed Tr3
0 = Tr3

2 = 3.0032 sec and Tr3
1 = 3.00013 sec).   
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 Stage 0 Stage 1 Stage 2 Stage 3 Stage 4 

Expected Tri 1.0021 sec 0.5022 sec 
Tr1

0,1,2 =  
1.515 sec  

1.0021 sec 1.002188 sec 
Tr3

0,1 =  
3.022 sec 

1 sec 

Expected rTri � 1.0021 sec � � 1.002188 sec

Observed T 1.001313 sec 1.00132 sec 1.002 sec 1.012 sec 1.0123 sec 

Table 10. Expected and observed times for the example of figure 9 (e). 

 

 Stage 0 Stage 1 Stage 2 Stage 3 Stage 4 

Expected Tri 1.1486 sec 1.6486 sec 1.1486 sec 3.1486 sec 1 sec 

Expected rTri 3.1486 sec 3.1486 sec 3.1486 sec � 3.1486 sec 

Observed T 3.129 sec 3.132 sec 3.133 sec 3.137 sec 3.136 sec 

Table 11. Expected and observed times for the example of figure 10 (a). 

 

 
(a) 

 
(b) 

 

Figure 10. Five-stage pipeline with an associated processing time of 1 sec for stages 0, 
2, and 4; 1.5 sec for stage 1; and 3 sec for stage 3. Communication volume of 1.5 
Mbytes/msg. Without replicated stages (a) and replicating stages 1 and 3 (b). 

Figure 10 shows the portion of a Gantt trace of the execution of a pipeline 

application with a different, but always significant, processing time associated with 

each stage, a message size of 1.5 Mbytes, and for different replication patterns: no 

replication (a), replication of stage 1 and 3 (b). In figure 10 (a), supplemented by 

table 11, it can be seen that, as expected, all pipe stages are quickly synchronized 

with the slowest one (stage 3) due to the message size that forces a synchronous 
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communication protocol. In addition, it can be seen in figure 10 (b) that having two 

replicas of stage 2 and 3 of stage 3 is the best replication pattern for this application, 

in spite of the fact that stage 1 replicas are not being made the most of, as can be 

seen in table 12.   

 Stage 0 Stage 1 Stage 2 Stage 3 Stage 4 

Expected Tri 1.1486 sec 0.92 sec 
Tr1

0,1 =  
1.515 sec 

1.1486 sec 1.151 sec 
Tr3

0,1,2 = 
3.002 sec 

1 sec 

Expected rTri 1.151 sec 1.151 sec 1.151 sec � 1.151 sec 

Observed T 1.15 sec 1.1503 sec 1.1512 sec 1.1513 sec 1.1513 sec 

Table 12. Expected and observed times for the example of figure 10 (b). 

Figure 11 shows the portion of a Gantt trace of the execution of a pipeline 

application with a different, but always very low, processing time associated with 

each stage, a message size of 512 bytes, and for different replication patterns: no 

replication (a), replication of stage 1 (b), and replication of stage 3 (c). It can be seen 

that, although the application is more sensitive to environmental influences, and in 

consequence the measurements obtained are less accurate, the model is able to 

catch the application�s behavior. Thus, it can be seen in figure 11 (b) and table 14 

that it predicts that 3 replicas for stage 1 are too many, but it can also be seen in 

figure 11 (c) and table 15 that the same measure for stage 3 is profitable, even 

though not all the processing capacity of the replicated stage is being used.  

 

 Stage 0 Stage 1 Stage 2 Stage 3 Stage 4 

Expected Tri 12.131 ms 16.427ms 12.131 ms 31.427 ms 10 ms 

Expected rTri � � 16.427 ms � 31.427 ms 

Observed T 12.01 ms 15.05 ms 15.34 ms 30.64 ms 30.67 ms 

Table 13. Expected and observed times for the example of figure 11 (a). 

 

 Stage 0 Stage 1 Stage 2 Stage 3 Stage 4 

Expected Tri 11.427 ms 6.8638 ms 
Tr1

0,1,2 = 
15.437 ms 

12.131 ms 31.427 ms 10 ms 

Expected rTri � 11.427 ms � � 31.427 ms 

Observed T 11.13 ms 11.34 ms 12.39 ms 30.32 ms 31.24 ms 

Table 14. Expected and observed times for the example of figure 11 (b). 

 



Chapter IV  Pipeline Framework Performance Model 
 

 141

 Stage 0 Stage 1 Stage 2 Stage 3 Stage 4 

Expected Tri 11.427 ms 16.427ms 11.427 ms 12.187 ms 
Tr3

0,1,2 =  
30.6 ms 

10 ms 

Expected rTri � � 16.427 ms 16.427 16.427 

Observed T 10.93 ms 15.8 ms 15.83 ms 15.9 ms 15.87 ms 

Table 15. Expected and observed times for the example of figure 11 (c). 

 
(a) 

 
(b) 

 
(c) 

Figure 11. Five-stage pipeline with an associated processing time of 10 ms for stages 0, 
2, and 4; 15 ms for stage 1; and 30 ms for stage 3. Communication volume of 512 
bytes/msg. Without replicated stages (a), replicating stages 1 (b) and replicating stage 3 
(b). 

Finally, once we have presented and discussed the results of this comprehensive 

set of experiments that were mainly intended to validate the stage models 

introduced in sections 2.1 and 2.2, we want to include a final example with the 

objective of illustrating the application of the performance improving strategy defined 

in section 2.3. The application under consideration is again a five-stage pipe with 

10Kb messages and the following processing times associated with each stage: 100 

CM 
Replicas 

CM 
Replicas 
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ms for stages 0 and 4, 400 ms for stage 1, 300 ms for stage 2, and 200 ms for stage 

3. It can be seen that it has been designed to have an intuitive best replication 

pattern of 4 replicas for stage 1, 3 for stage 2, and 2 for stage3. 

Nevertheless, we want to describe in more detail the application of the strategy 

assuming that there are more than 9 available processors. In the first place, stage 1 

or stage 4 is chosen as the min(Tri) and marked as probed (step 1). Next, stage 1 is 

chosen as the one with max(Tri) and marked as considered (step 2). Then, 

expression (4) is applied to calculate that 4 processors are needed to match Tr0 

(step 3). Finally, as the number of available processors has not been exceeded 

(step 4) and there are already more stages to be considered (step 5), we return to 

step 2. It is clear that in the second iteration of this algorithm it will be determined 

that stage 2 has to be replicated three times, and in the third and last iteration of the 

algorithm it will be determined that stage 3 must be replicated twice.  

On the contrary, supposing that the number of available processors is between 6 

and 8, then in the second or third iteration the number of processors needed will be 

exceeded, and then the algorithm will have to be executed from step 1, then stage 

3, which is the stage with the next min(Tri), will be selected. Next, it will be 

determined that stage 1 will have to be replicated twice, as well as stage 2, which is 

the best replication pattern that can be obtained for that number of processors.   
 

 
(a) 

 
(b) 

Figure 12. Five-stage pipeline with an associated processing time of 100 ms for stages 0 
and 4; 400 ms for stage 1; 300 ms for stage 2; and 200 for stage 3. Communication 
volume of 10 Kbytes/msg. Without replicated stages (a), replicating stages 1, 2, and 3 
(b). 

CM 

Replicas 
CM 

Replicas 
CM 
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Finally, this discussion is illustrated in figure 12, where the portion of a Gantt trace 

of the execution of this application without replicas (a) is shown. There, the 

problems described before (all stages synchronized with the slowest one) can be 

easily identified. There also can be seen the results of applying the strategy with 

enough processors to develop the best pattern (b). Moreover, in tables 16 for (a) 

and 17 for (b) the results that supplement these traces are included. 

 Stage 0 Stage 1 Stage 2 Stage 3 Stage 4 

Expected Tri 102.131 ms 402.131 ms 302.131 ms 202.131 ms 100 ms 

Expected rTri 402.131 ms � 402.131 ms 402.131 ms 402.131 ms 

Observed T 407.34 ms 409.045 ms 409.7 ms 410.1 ms 409.9 ms 

Table 16. Expected and observed times for the example of figure 12 (a). 

 Stage 0 Stage 1 Stage 2 Stage 3 Stage 4 

Expected Tri 102.131 ms 101.067 ms 101.421 ms 102.131 ms 100 ms 

Expected rTri � � � � 102.131 ms 

Observed T 101.45 ms 101.502 ms 101.283 ms 110.2 ms 110.43 ms 

Table 17. Expected and observed times for the example of figure 12 (b). 

 

4. Global Pipeline Performance Model 
 

Our objective, in the last section of this chapter, is to sum up the performance 

model for Pipeline applications according to the general model for dynamic 

performance tuning presented in Chapter II. We summarize, in the first place, the 

set of expressions and strategies that must be used by the dynamic tuning tool to 

evaluate the performance of the application and predict what will happen if some 

conditions change. We then indicate which are the application parameters that must 

be monitored at run time in order to be able to detect the performance bottlenecks. 

Finally, we will indicate the parameters that can be changed at run time to improve 

the applications� performance and when can these changes take place. 

In the first place, we want to recall once more that the proposed model is not 

completely defined because a comprehensive model has to include, in addition to 

the replication strategy presented, mechanisms to decide when and why fast stages 

should be grouped or under what conditions they could be separated. Moreover, our 

main objective has been to demonstrate that our hypothesis, about the utility of 

relating a performance model to the most common distributed application structures 
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in order to be used in a dynamic performance tuning environment, can be 

realistically implemented for frameworks other than the Master/Worker. 

Nevertheless, we have designed a strategy to optimize the throughput of a 

pipeline application by looking for the best slow stages replication pattern for a given 

number of processors. In order to fulfill this objective, we have defined a set of 

expressions for estimating the capabilities of each stage (expressions (1), (2), and 

(3)), as well as a rationale to identify the bottleneck stage(s) (the slowest one(s)) 

and to decide how many replicas of each stage should be included. 

In the second place, in order to be able to apply the strategies and calculate the 

performance expressions several application parameters must be monitored. Said 

parameters have been called the measure points of the performance model and are 

as follows: 

• Network parameters: mo and λ which could be calculated at the beginning 

of the execution and should be re-evaluated periodically allowing the 

adaptation of the system to the network load conditions. 

• Message sizes (vi) have to be captured for each stage when it sends (or 

receives) data to (or from) next (or previous) stage.  

• Stages processing times (tci) plus the time spent sending the message to 

the next stage have to be measured in order to calculate the independent 

production time Tri of each stage. 

Finally, when applying the stage replication strategy, some changes might be 

introduced in the application at run time. It is very important to know exactly what 

parameters should be changed and when these changes can take place. These 

parameters have been called the tuning points of the performance model and are 

the following: 

• Stage type: a non-replicated stage is a single process responsible for 

performing the computation associated with the stage. If the tuning 

application decides that the stage should be replicated then a set of new 

processes (the replicas) have to be created and the original process 

becomes the communication manager (CM). As a result, there are three 

different stage types: single, replica, and CM, as well as two 

transformations: from single to CM and vice versa. Finally, a stage may 

become a CM only before receiving a data message from its previous 

stage and if the replicas have already been set up and are ready to receive 

data. 
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• Number of replicas: The number of replicas of a replicated stage can be 

changed if the application conditions change (for example, some stages 

start to do more work, or simply more processors become available). This 

parameter can be changed before the CM goes into checking the 

communication channel for new incoming data messages or replica 

acknowledgements, and only if the new replicas have already been set up 

and are ready to receive data. 
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Abstract 

This chapter contains the main conclusions obtained from 

the work included in this thesis, as well as the main work 

lines that are currently being undertaken and the future work 

plan aimed at continuing the research on framework-related 

performance models for dynamic automatic application 

performance tuning. 
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1. Conclusions 
 

In this work, we have proposed and developed structure-related performance 

models for dynamic performance tuning of parallel/distributed applications, based on 

the study of the characteristics of the parallel programming support tools. In this last 

chapter, we shall review the main objectives stated in this work and see how they 

have been attained. 

The main motivation of our work is that developing parallel/distributed applications 

is, for many reasons, harder than developing sequential ones but, on the other 

hand, these kinds of applications are the most promising way of coping, within 

reasonable time limits, with many complex problems.  

This means that developing parallel/distributed applications is worth the effort 

because of the huge potential performance gains over sequential applications. 

Moreover, supportive tools can be developed in order to facilitate the design and 

development of these kinds of applications. In that regard, one of the most 

successful classes of supportive tools is the one that is based on exploiting the 

degree of commonality that many solving strategies share by providing a set of pre-

defined structures called patterns (at design level), and frameworks or skeletons (at 

the implementation level). However, the price for enjoying the advantages of 

development tools is usually the loss of some degree of flexibility for performance 

tuning, as well as the introduction of some execution time overhead attributable to 

the tool. 

In the end however, the result achieved by the first versions of a 

parallel/distributed application in terms of performance is usually disappointing, and 

forces programmers to engage in a difficult process of performance analysis and 

tuning of the application. Again, supportive tools are likely to be helpful in this 

process. The most sophisticated performance-related supportive tools are those 

including some degree of automatic performance tuning, and especially the ones 

that are able to do dynamic tuning. However, dynamic automatic tuning tools must 

fulfill two requirements: keep instrumentation low and make quick and accurate 

decisions. Therefore, in order to fulfill these conditions, the tuning tool must have a 

clear improvement target (library level, program level, application level), and it must 

include as much previous knowledge about the application as possible. 

The core idea behind our work, extensively described in Chapter I, was to take 

advantage of the intrinsic knowledge that the use of framework or skeletons 
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provides about the application�s structure and functionality for developing 

performance models intended to be used in a dynamic tuning environment.  

In addition, the general structure of these performance models is determined by 

the steering loop architecture of the dynamic performance environment and consists 

of a set of parameters that should be monitored (measure points), a set of 

performance analysis and tuning strategies and/or expressions, and a set of tuning 

parameters and actions. This steering loop architecture, as well as the structure of 

the frameworks that have been treated in this work, were described in Chapter II. 

The discussion about this approach can be found in:  

[MCe+01] A. Morajko, E. Cesar, T. Margalef, J. Sorribes, E. Luque, �Dynamic 

Performance Tuning Environment�,  LNCS, Vol. 2150 (Euro-Par 2001), 

pp. 36-45, Springer-Verlag. 2001. 

[CMo+02] E. Cesar, A. Morajko, T. Margalef, J. Sorribes, A. Espinosa, E. Luque: 

Dynamic Performance Tuning Supported by Program Specification.  

Scientific Programming, Vol. 10, pp. 35-44. IOS Press. 2002.  

The first step towards developing this idea consisted of defining a performance 

model for homogeneous Master/Worker applications. A homogenous Master/Worker 

application is one in which every worker receives roughly the same number of tasks 

and spends roughly the same amount of time processing them. Under these 

conditions, the main tuning action is to adapt the number of workers of the 

application. Consequently, a set of expressions for modeling the application�s 

execution time were developed depending on communication parameters (network 

latency and bandwidth, and communication volume) and computation time. From 

these expressions, which modeled the behavior of the application, we derived a 

target function for calculating for what number of workers the application would run 

in the minimum time. This study can be found in: 

[CM+03] E. Cesar, J. G. Mesa, J. Sorribes, and E. Luque. �POETRIES: 

Performance Oriented Environment for Transparent Resource-

management, Implementing End-user parallel/distributed applications�, 

LNCS, Vol. 2790, pp. 141-146. Springer-Verlag. 2003  

This model was further developed, incorporating expressions for determining the 

number of workers the Master can deal with for the current communication 

conditions. In addition, a simple strategy for dynamically minimizing load 

unbalancing was defined, thereby giving us the ability to apply a two-phase model to 

improve the performance of any Master/Worker application. Finally, a more complex 
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and powerful balancing strategy, based on the factoring algorithm for scheduling 

parallel loops, was defined and incorporated into the model, thereby taking 

advantage of the dynamic nature of our model to define a self-adjusting strategy. 

The resulting Master/Worker performance model, as well as its application on real 

applications, can be found at: 

[CM+04] E. Cesar, J. G. Mesa, J. Sorribes, E. Luque. �Modeling Master-Worker 

Applications in POETRIES�. Proceedings of the 9th International 

Workshop on High-Level Parallel Programming Models and Supportive 

Environments (HIPS 2004). pp. 22 - 30. IEEE Computer Society.  Santa 

Fe, New Mexico. April 2004.  

[MCe+05] Anna Morajko, Eduardo César, Paola Caymes-Scutari, Tomàs Margalef, 

Joan Sorribes, and Emilio Luque. �Automatic Tuning of Master/Worker 

Applications�, LNCS, Vol. 3648, pp. 95-103. Springer-Verlag. 2005.  

[MC+05] Anna Morajko, Eduardo César, Paola Caymes-Scutari, Tomàs Margalef, 

Joan Sorribes, and Emilio Luque. �Development and Tuning Framework 

of Master/Worker Applications�. Invited paper. Journal of Computer 

Science & Technology (JCS&T). Vol. 5, num. 3, pp 115-120. 2005.  

[MoC+05] Andreu Moreno Vendrell, Eduardo César, Joan Sorribes, Tomàs 

Margalef, Emilio Luque. �Balanceo de carga en sistemas distribuidos 

Master-Worker�, XVI Jornadas de Paralelismo 2005, pp. 443-450, 

Granada, 2005.   

Finally, the performance model for Master/Worker applications described in 

Chapter III has been supplemented by taking into consideration the possibility of 

variations in the communication volume related to changes in the number of 

workers, as well as an efficiency index to determine for what number of workers the 

best performance/resource efficiency relationship is obtained. We also have defined 

a second index focused on calculating how likely it would be to get a balanced 

execution, applying our adaptative strategy, for a certain number of workers, which 

allows us to evaluate the convenience of adding more workers to the application. All 

this work has led to the definition of a very complete and detailed performance 

model for Master/Worker applications that can be summarized as: 

1. A load balancing phase: applying the Dynamic Adjusting Factoring (DAF) 

strategy, which is based on making a partial distribution of tasks, and that 

leads to highly balanced executions, even for applications with big 

differences among task associated computation times (high variance). In 
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order to determine the portion of tasks to be distributed in any given 

moment the following expressions are used: 

( )
µ

σµ 2
0

Nx +=  (1) and ( )
µ

σµ 22 Nx j
+=  (2) 

Where µ is the worker�s mean execution time per task, σ is its standard 

deviation, N is the number of workers (processors), x0 is the factor to be 

applied at the beginning of each iteration, and xi represents the 

dynamically adjusting factor for the rest of the iteration.   

2. A number of workers adjusting phase: once we have a balanced 

execution that has very likely improved the application�s performance by 

efficiently using the available resources, it is possible to evaluate if adding 

more workers can lead to further execution time reductions. To do so, we 

have to determine firstly the number of workers that would lead to the best 

performance/efficiency relationship, using the expression: 

Tc
xxTtxPi

2)()( =  (17) 

Where x is the number of workers being considered, Tc is the overall 

computation time, and Tt is the expected execution time for x workers 

calculated by using one of the following expressions: 

Communication Protocol   
 

Asynchronous Synchronous 
m
io vm λ≥

 
mo n

VTcmnTt µλ
+

+
++=

)()1(  (7) 

m
io vm λ≤

 

( )( )[ ]
mo n

TcVnmTt µλα
+

++−
+=

112 (8) 

( )( )[ ]
mo n

TcVnmnTt µλα
+

++−
++=

11)1( (9) 

Where, mo and λ are the network parameters, V is the overall (predicted) 

communication volume, and n the number of workers. However, some of 

these expressions can only be applied if the Master has the capacity of 

dealing with the number of workers under consideration for the predicted 

communication conditions. We have called this restriction the Master�s 

Chunk Managing Capability (MCMC), which can be estimated with the 

following set of expressions:  
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 Finally, the tuning system should only change the number of workers if it is likely 
to get a balanced execution for that number of workers. We have defined an index 

( )21(1
xσ

µ
+ ), based on the number of workers and the task-related execution time 

variance, in order to get a hint about how difficult it would be to get a balanced 
application for the new number of workers.  

 The next step was focused on demonstrating that the idea of developing 

framework-related performance models for dynamic automatic tuning is extensible 

to frameworks other than Master/Worker. Consequently, we have developed a 

performance model related to the structure of the Pipeline framework, described in 

Chapter IV, though it is not as comprehensive as the one for the Master/Worker.  

In this case, the general strategy for improving the application�s performance 

consists of determining the best replication pattern for the pipe stages over the 

available resources. To achieve this objective, we have designed expressions that 

model the behavior of single and replicated stages, differentiating the observed 

behavior, which can be influenced by previous or succeeding stages, from the 

potential one. Based on these expressions, we have defined an algorithm for 

determining the best replication pattern for the application. This algorithm can be 

summarized as follows: 

1. Search stage k where Trk = min(Tri) (( 0 ≤ i < n ) and if stage k has not 

been previously probed). Mark stage k as probed. 

2. Search stage g where Trg = max(Tri) ((0 ≤ i < n ) and if stage g has not 

been previously considered). Mark stage g as considered. 

3. Depending on the communication protocol, use expresions (4) or (5) to 

calculate the number of processors (pi) needed to equate Trg with Trk.  

4. If the current ∑pi > m then 

a. Unmark all considered stages. 

b. Go to 1. 

5. If there are no considered stages go to 2 
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Where Tri is the potential execution time of stage i, and expressions (4) and (5) 

are: 
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Where mo and λ are the network parameters, and vi the communication volume of 

stage i to stage i+1. 

This performance model for Pipeline applications can be found in: 

[CM+05]  E. Cesar, J. Sorribes, E. Luque, �Modeling Pipeline Applications in 

POETRIES�. LNCS, Vol. 3648, pp. 83-92. Springer-Verlag. 2005 

 Finally, both models are supported by a real, though synthetically generated, 

experimentation specifically designed to demonstrate the validity of each defined 

strategy and set of expressions. 

In conclusion, we have achieved the objective of demonstrating that we can take 

advantage of the knowledge about the application contained on the frameworks or 

skeletons, provided as supportive tools for their development, in order to define 

performance models intended to be used in a dynamic automatic performance 

tuning environment.  

Moreover, we have found that a common generic framework analysis methodology 

can be used to define the performance model associated with any framework. This 

methodology consists, in the first place, of finding the performance bottlenecks 

related to the framework that are suited to be solved dynamically and, in the second 

place, of defining the parameters (inputs) that should be monitored to detect those 

problems and the parameters (outputs) that can be changed to overcome them. The 

methodology also consists of defining the analysis expressions and strategies that, 

using the monitored input parameters, detect the problems and correct them by 

changing the appropriate output parameters.      

 
2. Current and Future Work 
 

There are three clearly defined lines of work that are being currently developed in 

different degrees. The first one is the completion of current performance models and 

development of new ones, the second, is the implementation of a robust dynamic 

tuning tool with MATE for the framework-related dynamic automatic performance 

tuning of parallel applications. The third is the generalization of the idea of 
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developing models based on the applications structure for dynamic tuning to Grid 

environments. 

Regarding the completion of current performance models and the development of 

new ones, we are, firstly, focused on closing the last minor issues of the 

Master/Worker model; secondly, working on new performance models for other 

frameworks, especially the Pipeline, but also on a performance model for mixed 

applications.  

The Master/Worker model issues pending are, in the first place, the definition of a 

better indicator of how likely it would be to achieve a balanced execution for a 

different number of workers because the current one uses an upper bound that is 

not close enough to the real values, and, in the second place, the study of how 

much history should be recorded in order to calculate the mean processing time and 

variance for the Dynamic Adjusting Factoring (DAF) policy. 

In reference to completing the Pipeline model and defining new ones for other 

frameworks, we are working on a model for Pipeline applications that includes the 

possibility of grouping several stages in the same processor in order to liberate 

resources for replicating other stages, and also with the objective of not wasting 

resources dedicated to stages with a too low associated computation time. In 

addition, we have started the study of the performance characteristics of Divide & 

Conquer applications. 

The main challenge concerning the definition of performance models is to find the 

way of mixing models for complex applications, with the objective of deciding what 

tuning actions will be more advantageous. The idea is that a very complex 

application can be implemented with a composition of frameworks, for example: a 

Master/Worker in which each worker is parallelized as a Pipeline. Thus, in a case 

like this, the tuning application will need a mechanism to decide whether to adapt 

the number of workers before improving the pipeline throughput or, on the contrary, 

start with the pipelines and then adapt the number of workers.  

As for the implementation of a robust and more general framework-related 

performance tuning tool on MATE, the main problems are the difficulty of 

implementing complex tunlets and, even more, to coordinate them when there are 

many tunlets responsible for different aspects (or phases) of the performance 

analysis. Currently, other members of our research group are focused on the 

definition of a high level tunlet specification language aimed at solving these 

problems.    
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Finally, in relation to the application of the idea of dynamically and automatically 

tuning parallel applications on the Grid, there are some previous related studies in 

our research group [Hey01], and currently there are other members of the group 

working on the problem of dynamically inserting instrumentation on a parallel 

application running on the Grid. It is clear that this is a major challenge, as is the 

general idea that it can be applied to the Grid, which is a suitable place for long 

execution time applications. However, it is also clear that performance models must 

take into consideration many extra parameters, such as the possibility of machines� 

losses, the cost of check-pointing, the highly heterogeneous nature of 

communication channels and processors (including the possibility of processes 

sharing a processor with others non-related to the application processes), and the 

middleware overhead. 
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