

Universitat
Autònoma de
Barcelona

Definition of Framework-based
Performance Models for Dynamic

Performance Tuning

Departament d’Arquitectura
d’Ordinadors i Sistemes Operatius

Thesis submitted by Eduardo Cesar
Galobardes in fulfilment of the requirements
for the degree of Doctor per la Universitat
Autònoma de Barcelona.

Barcelona, February 20th 2006

Definition of Framework-based Performance Models for Dynamic
Performance Tuning

Thesis submitted by Eduardo César
Galobardes in fulfillment of the requirements for
the degree of Doctor per la Universitat
Autònoma de Barcelona. This work has been
developed in the Computer Architecture and
Operating System Department of the
Universidad Autònoma de Barcelona and was
advised by Dr. Joan Sorribes Gomis,

Bellaterra February 20th 2006

Thesis Advisor

Joan Sorribes Gomis

To Elisa and our children David and Ruth
To my parents Juan and Ariana

Acknowledgements

A lot of people have made this work possible and I wish to express my

gratitude to all of them for their inestimable help and for cheering me up in my

weakest moments.

I would like to thank especially Joan Sorribes for being my advisor

throughout this work and for spending so much time an effort on it. Furthermore,

I also want to thank Emilio Luque for his invaluable advice and dedication to this

work.

I would like to thank especially Tomàs Margalef and Ania Morajko for the

long and profitable discussions about performance modeling.

My deepest gratitude goes to my wife Elisa and our children David and

Ruth, for being so patience and sacrificing so many weekends, but especially

for the encouragement I have received from them.

How to forget the amazing support received from Barton Miller and the

Paradyn group of the University of Wisconsin at Madison, thanks to all of them.

Thanks also to Barton Miller and his family, and to Miron Livny for the great

moments we have shared in Madison, our second home.

Thanks to Andreu Moreno, Jose Gabriel Mesa, Paola Caymes, Judith

Colome, and Francesc Noguera for their, sometimes ongoing, contributions to

this project.

I would also like to thank Anna Cortés, Miquel A. Senar, Daniel Franco,

Juan C. Moure, Josep Jorba, and Fernando Cores for their encouragement and

friendship.

I do not want to forget the rest of the CAOS group and those who have

been members of it during this long trip.

Last but not least, I want to thank my parents and siblings for their

indefatigable support.

Table of Contents

Chapter I: Introduction 11
1. Introduction 13
2. Parallel/Distributed Application Development 14

2.1. Parallel functional languages 15
2.2. Pattern and framework-based methodologies 16
2.3. Representation-oriented approaches 19

3. Monitoring and Tuning Parallel/Distributed Applications 20
3.1. Predictive performance analysis/tuning 22
3.2. Static trace-based performance analysis/tuning 24
3.3. Dynamic performance analysis/tuning 25

4. Our Proposal 27
4.1. Related studies 29
4.2. Organization of this thesis 32

Chapter II: Dynamic Automatic Performance Tuning Based on Application Structure 35
1. Introduction 37
2. Monitoring, Analysis, and Tuning Model 37

2.1. Monitors 40
2.2. Analyzer 41
2.2. Tuner 42

3. Master/Worker Framework 43
3.1. Framework structure and functional description 43
3.1. Framework associated bottlenecks 45

4. Pipeline Framework 46
4.1. Framework structure and functional description 46
4.1. Framework associated bottlenecks 48

5. Structure and Objectives of the Developed Performance Models 49

Chapter III: Master/Worker Framework Performance Model 51
1. Introduction 53
2. Load Balancing through Data Distribution 55

2.1. Fixed Size Chunking (FSC) 57
2.2. Dynamic Predictive Factoring (DPF) 61
2.3. Dynamic Adjusting Factoring (DAF) 63
2.4. Policy Comparison through Experimentation 68

3. Adapting the Number of Workers 77
3.1. Expressions for modeling a balanced Master/Worker 78
3.2. Analysis of the Master/Worker performance expressions 86
3.3. Efficiency indexes 93
3.4. Experimental evaluation on a real platform 100

4. Global Master/Worker Model and Last Considerations 113

Chapter IV: Pipeline Framework Performance Model 119

1. Introduction 121

2. Stage Modeling 122
2.1. Single stage modeling 124
2.2. Replicated stage modeling 125
2.3. Calculating the best replication pattern 130

3. Experimental Validation of the Model 132
4. Global Pipeline Performance Model 143

Chapter V: Conclusions and Future Work 147
1. Conclusions 149
2. Current and Future Work 154

References 157

Chapter I: Introduction
Introduction
Parallel/Distributed program development

Development cycle
Frameworks & Skeletons
Performance tuning

Some existing approaches
Discussion

Chapter II: Dynamic automatic performance tuning based on application structure
Introduction
General performance tuning model for applications with a known structure

Measurement
Framework performance model
Tuning points and actions

Description of the Master/Worker and Pipeline frameworks
Master/Worker

Structure and Functionality
Bottlenecks

Pipeline
Structure and Functionality
Bottlenecks

Chapter III: Master/Worker framework performance model

Introduction
Load balancing through data distribution

Fixed size chunks
Factoring with inter-iteration adaptation
Adaptative factoring
Comparison through simulation and experimentation

Adapting the number of workers
Expressions for modeling a balanced Master/Worker
Experimental evaluation on a real platform
Efficiency indexes

Considerations about the global model

Chapter IV: Pipeline framework performance model
Introduction
Load balancing through stage replication

General algorithm
Expressions for modeling a pipeline stage
Experimental evaluation on a real platform

Considerations about the performance model

Chapter V: Conclusions and future work
Conclusions
Current and future work

References

Chapter I:
Introduction

Abstract

The main objective of this chapter is to introduce the

motivations that have inspired this work, as well as this

thesis’ framework and background. In addition, an overview

of other studies related to ours is included in order to

illustrate the originality and soundness of our work.

Chapter I. Introduction

12

Definition of Framework-based Performance Models for Dynamic Performance Tuning

 13

1. Introduction

Parallel and distributed programming constitutes a highly promising approach to

improving the performance of many applications. However, in comparison to

sequential programming, many new problems arise in all phases of the development

cycle of this kind of applications.

For example, in the analysis phase of parallel/distributed programs, the

programmer has to decompose the problem (data and/or code) to find the

concurrency of the algorithm. In the design phase, the programmer has to be aware

of the communication and synchronization conditions between tasks. In the

implementation phase, the programmer has to learn how to use specific

communication libraries and runtime environments but also to find a way of

debugging programs. Finally, to obtain the best performance, the programmer has

to tune the application by using monitoring tools, which collect information about the

application�s behavior. Tuning can be a very difficult task because it can be difficult

to relate the information gathered by the monitor to the application�s source code.

Moreover, tuning can be even more difficult for those applications that change their

behavior dynamically because, in this case, a problem might happen or not

depending on the execution conditions.

It can be seen that these issues require a high degree of expertise, which prevents

the more widespread use of this kind of solution. One of the best ways to solve

these problems would be to develop, as has been done in sequential programming,

tools to support the analysis, design, coding, and tuning of parallel/distributed

applications.

In the particular case of performance analysis and/or tuning, it is important to note

that the best way of analyzing and tuning parallel/distributed applications depends

on some of their behavioral characteristics. If the application to be tuned behaves in

a regular way then a static analysis (predictive or trace based) would be enough to

find the application�s performance bottlenecks and to indicate what should be done

to overcome them. However, if the application changes its behavior from execution

to execution or even dynamically changes its behavior in a single execution then the

static analysis cannot offer efficient solutions for avoiding performance bottlenecks.

In this case, dynamic monitoring and tuning techniques should be used instead.

However, in dynamic monitoring and tuning, decisions must be taken efficiently,

which means that the application�s performance analysis outcome must be accurate

and punctual in order to effectively tackle problems; at the same time, intrusion on

Chapter I. Introduction

14

the application must be minimized because the instrumentation inserted in the

application in order to monitor and tune it alters its behavior and could introduce

performance problems that were not there before the instrumentation.

This is more difficult to achieve if there is no information about the structure and

behavior of the application; therefore, blind automatic dynamic tuning approaches

have limited success, whereas cooperative dynamic tuning approaches can cope

with more complex problems at the cost of asking for user collaboration. We have

proposed a third approach. If a programming tool, based on the use of skeletons or

frameworks, has been used in the development of the application then much

information about the structure and behavior of the application is available and a

performance model associated to the structure of the application can be defined for

use by the dynamic tuning tool. The resulting tuning tool should produce the

outcome of a collaborative one while behaving like an automatic one from the point

of view of the application developer.

In this chapter we want to summarize and review some of the most important

structure-oriented tools for parallel/distribute development (section 2), as well as the

most relevant approaches and tools for performance tuning (section 3). We

conclude with the presentation of the proposal that is developed in this thesis

(section 4), and an overview of related studies (section 5).

2. Parallel/Distributed Application Development

There is no doubt that developing parallel/distributed applications is the way to

cope with many complex problems such as weather forecasting, genetic and

medical research, physics of high energy simulation, and so on; however,

developing this kind of applications involves dealing with many more problems than

its sequential counterpart.

First, application designers must find out how to decompose a problem into sub-

problems that can be solved concurrently. This decomposition must be devised

taking into consideration the characteristics of the problem but also the

characteristics of the computation and general programming model to be used.

The reason is that: it is not the same to design an application for a Multiple

Instruction Single Data (MISD) computer, in which, theoretically a single memory is

shared by multiple processors as to design an application for a Single Instruction

Multiple Data (SIMD) one, where, theoretically, multiple processors synchronously

execute the same code over different streams of data, or as to design it for a

Definition of Framework-based Performance Models for Dynamic Performance Tuning

 15

Multiple Instruction Multiple Data (MIMD) computer, (the most general and powerful

computation model) in which multiple independent code streams hosted in different

processors operate asynchronously over different streams of data.

Moreover, it is not the same to design an application on a Message Passing

programming model, where a set of processes with access to their local private

variables interchange data among themselves by sending and receiving messages,

as to design an application on a Shared Memory programming model, where a set

of processes have access to their local private variables and also to a central pool of

shared ones, as to design an application on a Data Parallel programming model,

which is closely related to the SIMD computation model because it consist of

applying the same instructions to different elements of a data structure.

Secondly, application programmers must deal with communication libraries, race

conditions, poor debugging tools, and so on. The main problem, at this level, is that

programming parallel/distributed applications using low level primitives, such as

sockets o binary semaphores, is like developing a complex sequential tool using

assembly language.

However, the solution to many computationally intensive problems exhibits a

degree of commonality that can be exploited. This fact makes it possible to define

patterns describing common problems and the core of their solution for

parallel/distributed applications design and programming. Furthermore, this

constitutes the basis for many developing tools and design methodologies that we

summarize in the next subsections by discussing some relevant examples.

2.1. Parallel functional languages

The potential of functional languages for parallelism is supported by the

abstraction mechanism of these languages, as well as their sophisticated type

system, and high level coordination. However, the key advantage of the functional

paradigm is that referential transparency guarantees considerable freedom of

execution order without changing program semantics.

Several parallel functional languages have been defined, many of them based on

Haskell [HH92] a standard lazy functional research language with a sophisticated

type and class system and with a relatively mature development environment

including compilers, interpreters, libraries, and profiling tools. A comprehensive

summary of the parallel functional Haskell-based languages can be found at

[TLP02]. These languages are classified in two major categories: Parallel Haskells

Chapter I. Introduction

16

and Distributed Haskells, depending on whether additional processors are used to

reduce program runtime (parallelism) or to allow machines to interact in a common

virtual world.

Parallel Haskells are classified in:

• Skeleton-based Haskells, such as HDC [Her00], which is a subset of

Haskell with skeleton-based coordination that supports two divide-and-

conquer skeletons and a parallel map.

• Data parallel Haskells, such as Nepal [CK+01], which provides special

syntax for array comprehensions and parallel implementations of basic

functions over these arrays; in addition, data parallelism can be nested

and latter flattered using a special flattering transformation.

• Semi-explicit parallel Haskells, such as Eden [LOP05], which coordinates

parallel computation using explicit process creation and interconnection,

enabling the programmer to define arbitrary process networks.

• Haskell with a coordination language, such as Caliban [KT99], which is a

subset of Haskell plus a set of constructs for explicit partitioning of

computation into threads and for assigning threads to processors in a

static process network.

Finally, among Distributed Haskells we have Haskell with Ports [HN02], which

extends concurrent Haskell with the port data type to allow distributed system

development.

However, functional programming suffers two main problems: first, it is not a

popular programming paradigm, though programs tend to be simpler and smaller

than those written with imperative languages; secondly, and more importantly, the

performance improvements obtained with these languages are quite limited when

compared to imperative ones. A comprehensive study on the performance of

programs written with some of these languages can be seen in [LR+03].

2.2. Pattern and framework-based methodologies

A pattern for parallel applications� design and programming can be defined as,

�abstractions that capture the expertise needed to write parallel programs� [MA+02]

or, more generally, as a �solution to a problem in a context� [MSM04]. The main idea

is that patterns are applicable to different problems domains (each with different

characteristics and concerns) and that they must be adapted for each particular

problem.

Definition of Framework-based Performance Models for Dynamic Performance Tuning

 17

Once a pattern has been selected, we can use a framework to implement the

solution without going into the tedious and error-prone process of writing the code

from scratch. A framework can thus be defined as a piece of code that implements

the application-independent structure of a specific kind of program, including the

flow of control between the offered operations. Usually, programmers only should

provide the functionality of those operations that are specific to the developed

application. A representative example of a framework-based tool is CO2P3S

[MA+02], which offers the possibility of choosing an application pattern and

parameterize it to obtain a framework in form of a class that has some hook

methods that must be provided by the user in order to get the application�s code.

Besides frameworks, there are also skeletons, which are conceptually similar to

frameworks but with a more functional approach (it can be seen in the previous

subsection that there is a Skeleton-based Haskells category). Among the skeleton-

based tools, it is worth mentioning eSkel [Col04] and llc [DG+03]. eSkel is a library

of C functions and type definitions that extend the standard C binding to MPI with

skeletal operations while llc is an extension of the C language by means of pragmas

that introduce parallel constructions, such as data parallel or pipeline, into the

application.

We want to take a closer look at the Pattern Language for Parallel Programming

(PLPP) presented at [MSM04] because it is a comprehensive approach to parallel

application design. Moreover, we will use it in the next chapter when describing the

frameworks we have modeled. The aim of this pattern language is to guide the

application designer through the entire process of developing a parallel program

assuming only that the designer has a good understanding of the actual problem to

be solved. The idea is then to work through the pattern language in order to obtain a

detailed application design.

PLPP is organized in four design spaces:

1. The Finding Concurrency design space shown in figure 1 is intended to

help in finding the problem concurrency and decompose it in a set of sub-

problems.

2. The Algorithm Structure design space shown in figure 2 contains patterns

that help to find an appropriate algorithm structure to exploit the

concurrency that has been identified.

3. The Supporting Structures design space includes patterns describing

useful abstract data types and other supporting structures.

Chapter I. Introduction

18

4. The Implementation Mechanism design space contains patterns that

describe lower-level implementation issues.

 Figure 1. PLPP Finding Concurrency design space patterns and organization.

Figure 2. PLPP Algorithm Structure design space patterns and organization.

Once the problem has been subdivided, the concurrency disclosed, and the target

platform constraints are known, the algorithm structure should be selected by first

Begin here

Decomposition Strategy

Task Decomposition

Data Decomposition

Dependency Analysis

Group Tasks

Order Tasks

Data Sharing Design Evaluation

To algorithm structure design space

Start

Organize by Ordering Organize by tasks Organize by data

Regular Linear LinearIrregular Recursive Recursive

Pipeline
processing

Asynchronous
composition

Divide &
Conquer

Partitioning Geometric
decomposition

Recursive data

Independent Dependent

Separable
dependences

Inseparable
dependences

Embarrassingly
parallel

Separable
dependences

Protected
dependences

Decision
branch
point

Decision

Terminal
pattern

Definition of Framework-based Performance Models for Dynamic Performance Tuning

 19

considering if the sub-problems must be solved in an orderly way or not (Organize

by Ordering), or if simply solving the tasks will do the job (Organized by Tasks), or

when data decomposition is the major concurrent organizational principle

(Organized by Data).

Finally, each of these branches leads to new patterns that are closer to

implementation issues. In this way, if the organizational principle is the order then

we can choose the Pipeline terminal pattern for calculations that can be orderly

applied on different sets of data, or the Asynchronous Decomposition pattern for

groups of tasks that interact through asynchronous events. If tasks are the

organizational principle, which is the most common case, then we can choose the

Embarrassingly Parallel pattern for totally independent tasks, or the Separable

Dependences one when dependences can be pulled outside concurrent execution,

or the Protected Dependences pattern when dependences cannot be pulled outside

concurrent execution and must be managed during this execution, or the Divide and

Conquer one when the sub-problems are found recursively. Finally, if data

decomposition is the organizing principle then we can choose the Geometric

Decomposition pattern if the problem space can be decomposed into discrete

subspaces and a solution computed for each subspace and then each partial

solution aggregated to the global one, or the Recursive Data one, if the problem is

defined in terms of following the links of a recursive structure.

2.3. Representation-oriented approaches

Graphical interfaces are used in many tools, such as CO2P3S [MA+02], in order to

facilitate the application�s specification. However, for some tools, intended for use in

the whole development process, researchers have adopted some graphical or other

high-level representation of applications as their guiding principle.

This is the case of GRADE [KC+97], that was designed as an environment for

specifying, executing, debugging, and monitoring parallel applications using the

PVM library. This environment is based on a graphical language called GRAPNEL

that allows a multi-layer representation of the application. The upper layer allows the

representation of processes and communication channels, the second layer is for

graphically representing the internal algorithm of each process plus its

communication operations (sends & receives), and the third level is for including the

process code in C. This approach has proved quite successful and lately it has

evolved from parallel to GRID application development [LS+05].

Chapter I. Introduction

20

Another recent example is the UML-based approach presented in [PF02]. This

study proposes taking advantage of a popular (and well supported) modeling

language such as UML and adding extensions to model the most important

constructs of message passing and shared memory paradigms to it, plus

performance annotations. In this way, it is possible to model distributed applications

obtaining performance information at an early development stage of an application.

This approach has, lately, been more concentrated on performance predictability

issues than on design ones [PF05].

3. Monitoring and Tuning Parallel/Distributed Applications

The main reason for investing resources and effort in developing

parallel/distributed applications is to increase their performance. However, in many

cases the results, in terms of performance, of such difficult and usually long

developments are rather disappointing.

Theoretically, Amdahl�s law [Amd67] limits the performance gain to the

parallelizable portion of the algorithm divided by the number of processors. This law

states that the minimum execution time of an application running on n processors is:

)T(1)/n-(1 T(1) T(n) αα += , where T(1) is the time of the application running in one

processor, and α is the non parallelizable portion of the application; hence, the

speedup of the application (T(1)/T(N)) is limited to n/(α*(n-1)+1) that, as can be seen

in figure 3, clearly shows that there is an efficiency loss for each new added

resource. This result is quite shocking because it strongly limits performance gains

due to application of parallelism and, in addition, it is not even considering

parallelism overheads, such as the cost of message passing. Fortunately, Amdahl�s

law is based on the assumption that the algorithm to be parallelized is immutable

(meaning that α is the same for any number of processors), which is overly

simplistic because it does not take into consideration scalability issues.

Problem scalability was taken into consideration by [Gus88] and a new expression

for speedup known as the Gustafson-Baris� law, was defined as: n � (1 � n)α. This,

as can be seen in figure 4, is a linear expression that promises bigger performance

gains but, again, without considering parallelism overheads.

In conclusion, a parallel application can run several times faster than its sequential

counterpart, though the results, in terms of performance, are likely to be highly

disappointing if the application is not accurately tuned. In order to be able to do the

Definition of Framework-based Performance Models for Dynamic Performance Tuning

 21

appropriated performance tuning, it is necessary to have a thorough knowledge of

the application and its running environment, as well as a high degree of expertise.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 5 10 15 20 25 30 35 40

Expected Speedup (75%)
Expected Speedup (90%)

Figure 3. Expected speedup, according to Amdahl�s law, for a 75% parallelizable application

and for a 90% parallelizable one.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 5 10 15 20 25 30 35 40

Expected Speedup (75%)
Expected Speedup (90%)

Figure 4. Expected speedup, according to Gustafson-Baris�s law, for a 75% parallelizable

application and for a 90% parallelizable one.

This is a very complicated task and, consequently, the aid of tools for monitoring

the application�s execution in order to track the most relevant performance

parameters, as well as tools for analyzing the monitored data in order to find the

application�s performance bottlenecks, is usually very welcomed. The general

performance tuning cycle shown in figure 5 consists, in the first place, of getting

relevant performance data from the application�s execution (monitoring). That data

should then be analyzed (automatically or not) to discover the application�s

Chapter I. Introduction

22

performance bottlenecks. Finally, once these problems have been related to the

proper application�s portion of code, modifications can be introduced on the

application to overcome these problems (automatically or not, dynamically or not).

Nonetheless, it also can be useful to have tools to carry on some performance

analysis in advance (before the application is executed or even completely coded) in

order to generate a tuned first version and avoid future time consuming code

modifications.

Consequently, we can find predictive or trace-based performance analysis and/or

tuning tools. Moreover, in the second case, the analysis can be performed when the

application has finished its execution (post-mortem static analysis) or on the fly while

the application is running (dynamic analysis), and the same can be said for the

tuning process. According to this classification, a summary of some relevant tool

examples is presented in the following subsections.

Figure 5. Performance analysis/tuning cycle.

3.1. Predictive performance analysis/tuning

Obtaining an early insight of the performance behavior of an application from a

model of the application by means of a predictive performance analysis tool can be

very helpful for design decisions and also for avoiding time-consuming code

modifications.

Bottlenecks

Application development

Monitored execution

Solutions

Source code relation

Performance data

Application

Source
Instrumentation

Modifications

Monitoring Tuning

Performance
analysis

Measurements Changes

Definition of Framework-based Performance Models for Dynamic Performance Tuning

 23

A good example of such a tool is the Performance Prophet [PF05], which using a

model of the application specified in the modified UML language defined in [PF02],

can quickly generate and evaluate many application�s performance models. The tool

extracts the application�s significant performance characteristics from its

specification, neglecting those parts of the specification that are not relevant in

performance terms, thereby simplifying the performance model definition and

analysis. Then it operates by mixing analytical and simulation evaluation models by

using mathematical expressions to model code blocks involving a single processing

unit and event driven simulation to model code blocks involving multiple processing

units. As a result, the authors claim that this tool offers comparative accuracy

between parallelization strategies despite the specific difference between the real

execution of a parallelization strategy and the tool outcome for the same strategy,

which means that the results given by the tool for two different parallelization

strategies are likely to keep the same relation than their real implementations.

Another approach consists of carrying out the performance analysis at compile

time. This is the case of P3T+ [FP00], which predicts application performance based

on information gathered at compiler time, plus sequential simulation and architecture

parameters.

Figure 6. Dimemas and Paraver interoperation scheme.

A third approach, aimed at allowing the study of the application�s performance on

different platforms or parallel machines, consists of using one or more trace files

(some from real executions, but mainly from simulations) to predict the behaviour of

Chapter I. Introduction

24

the application under different circumstances. This approach is implemented in

Dimemas [BR+03] and Paraver [Paraver], a couple of tools that allow an accurate

predictive performance analysis and tuning of parallel applications without actually

using a parallel machine. A schematic representation of the Dimemas-Paraver

performance analysis and tuning operative model is shown in figure 6. We can see,

there, that the application�s trace file for visualization can be obtained from a real

execution on a parallel machine or from a simulated one from Dimemas.

Finally, a very complete set of predictive tools was integrated in the POEMS

project [DB+99], which was a very ambitious project for performance prediction of

large scale adaptative parallel applications. The idea was to create an environment

based on the composition of components represented by compositional objects;

those objects would be stored in a database in order to be available to the users.

The components were defined as models of application and system elements (OS

and hardware). Consequently, using those components plus a performance

knowledge base responsible for carrying on the performance analysis, the task

dependence graph of the application (automatically generated by the compiler), and

the execution description of each task (obtained from simulation), users would be

able to comprehensibly analyse the application�s performance at different levels.

3.2. Static trace-based performance analysis/tuning

In the classical approach to performance analysis and tuning, both the analysis

and the tuning were not automatic, which means that the only available supportive

tools were monitors, that were responsible for gathering information and registering

an ordered trace of all relevant performance events, and visualization tools

responsible for showing the information gathered in the most friendly and

meaningful way. Many tools from this group can be mentioned, for example: Vampir

[NA+96], Tape/PVM [Ma95] and XPVM [GB+94], ParaGraph [HF03], or Pablo

[RR+93].

The main problem of this approach is that a high expertise degree is required to be

able to detect performance problems, and it must be still higher to be able to relate

those problems to the application code. Consequently, a more comprehensive

approach to post-mortem performance analysis consisting of carrying out an

automatic performance analysis, by means of adding some degree of knowledge to

the tool, has been proposed in several studies, such as KappaPi [EM+00], Paradise

[KK96], Expert [WM00], or AIMS [Yan94]. Usually, these tools work through a trace

Definition of Framework-based Performance Models for Dynamic Performance Tuning

 25

file and use some heuristic knowledge to discover simple, and sometimes not so

simple, problems such as sends that are called too late and make the receiver

process wait too long (late-send). Finally, the main problems related to this

approach are the generation and storage of possibly huge trace files and controlling

the overhead introduced by the instrumentation needed to gather the performance

data, which many times must be directly introduced by the programmer.

3.3. Dynamic performance analysis/tuning

In order to eliminate the need for generating and storing huge trace files and to

take control of the amount of instrumentation introduced (and hence of the intrusion

degree), tools with the ability to dynamically analyze the application�s performance

have been developed.

Some of them, such as Paradyn [MC+95] and Dynamic Statistical Projection

Pursuit (PP) [VR99], are still only focused on analyzing performance. In the specific

case of Paradyn, performance bottlenecks are sought using the W3 search model

(Why is there a performance bottleneck? Where is it located? When did it happen?),

whereas PP dynamically analyzes performance and minimizes instrumentation

intrusion. It identifies through projection indexes the most important metrics that

reflect the application�s performance.

However, if a tool is able to dynamically insert instrumentation in an application

and also to detect the application�s performance bottlenecks and their causes on the

fly then it can also be possible to extend the tool to automatically solve these

problems (at least some of them). This approach has been called dynamic

performance tuning and has been implemented by many tools, such as the

Monitoring Analysis and Tuning Environment (MATE) [Mor03], the Mirror Object

Steering System (MOSS) [ES98], Autopilot [RS+01], Java HotSpot [JHS02], and

Active Harmony [TC+02].

We will discuss in more detail in the next chapter the dynamic performance tuning

approaches and related problems, and especially the MATE tool because it is the

frame in which the work presented in this thesis has been developed. However, we

can say that dynamic tuning is some times the only way to improve the application�s

performance because the static approach discussed before is useful for those

applications that show a steady behavior from execution to execution but not for

applications that show significant differences between executions depending, for

Chapter I. Introduction

26

instance, on the input data or even for those applications that show a highly dynamic

behavior in a single execution.

Nevertheless, taking tuning decisions dynamically requires a highly efficient

analysis because performance problems must be detected quickly in order to get

greater improvements and with as little instrumentation as possible in order to

minimize intrusion. This means that much information about the behavior of the

application must be available to the tuning tool with little intrusion, which is difficult to

achieve if all information must be blindly gathered at execution time.

Three different approaches have been proposed to solve this problem, in the first

place, the cooperative approach implemented in tools such as MOSS [ES98] in

which human users (programmers, final users) actively participate in the tuning

process (completely or partially) by carrying out tasks such as inserting

instrumentation into the application, analyzing gathered information, or taking tuning

decisions. This approach is highly effective but demands a high degree of user

expertise. In the second place, the automatic approach, which is implemented in

tools such as Java HotSpot [JHS02], consists of searching for performance

inefficiencies without any specific knowledge on the application. This approach is

transparent to the users but is strongly limited because generating enough

knowledge to take complex decisions needs too much time to be effective. Finally,

the semi-automatic or automatic with knowledge approach, used in tools such as

Autopilot [RS+01], Active Harmony [TC+02], and MATE [Mor03], consists of carrying

out an automatic tuning (without user intervention) but with previous knowledge

about the application.

In the case of Autopilot, programmers have to explicitly insert instrumentation in

the application, and then the application is steered, interactively or automatically,

through a set of sensor processes responsible for gathering performance

information. There is also a fuzzy logic engine responsible for selecting resource

managing policies based on the gathered data and a set of actuators responsible for

invoking local functions or modifying application variables. Active Harmony is a tool

focused on the automatic selection of the most appropriated algorithm to perform a

calculation, providing a Library Specification Layer that allows the integration of

different libraries with similar functionality. Developers must explicitly introduce calls

to the system API to indicate the places where decisions have to be taken and

which are the tunable parameters. At run time, the Adaptation Controller is

Definition of Framework-based Performance Models for Dynamic Performance Tuning

 27

responsible for evaluating the application�s behavior and heuristically exploring the

tunable parameters value space in order to find the best configuration.

Finally, MATE is an environment that provides a general performance analysis and

tuning framework for developing dynamic tuning tools. In this environment,

performance knowledge is provided from outside allowing the application of tuning

techniques at different levels (system calls, libraries, the application code), and by

different approaches (automatic, automatic with knowledge). Moreover,

instrumentation of applications is not explicit, which allows tuning tools to be built

that are completely transparent to the application developers. Regarding the

structure and specification of performance knowledge, MATE requires an

specification of the parameters that should be monitored at run time (measure

points), a set of code pieces specifying an analysis model to be applied to the data

gathered (performance expressions or strategies), and a set of actions to be applied

if a performance drawback is discovered during the analysis period (tuning points).

4. Our Proposal

We saw in the previous sections that two kind of supportive tools are of utmost

importance for overcoming the difficulties of developing parallel/distributed

applications: in the first place, design and programming tools aimed at accelerating

the implementation process and reducing the possibility of costly to prune

programming errors; in the second place, performance analysis and tuning tools

aimed at obtaining the best performance (usually in terms of execution time) for the

applications developed.

In the first group of tools, a very common approach consists of providing the

programmers with predefined structures that partially implement and hide several

functional and structural aspects of the most popular parallel/distributed

programming constructions. This is the case of skeletons and frameworks, which

allow programmers to focus on the functionality of the problem being solved rather

than on synchronization and communication issues at the price of some loss of

performance. However, using this kind of supportive tools has another result: the

overall structure of every application developed with them, as well as the

interrelations between its components can be known in advance, and that can be

very useful for modeling broad sets of applications without knowing their specific

functionality.

Chapter I. Introduction

28

In the group of performance and tuning tools, the most sophisticated ones are

those able to provide advice, or even directly apply corrections, as to what changes

must be carried out on an application in order to improve its performance. These

tools can be divided in those that make a post-mortem trace-based analysis of the

application and those that make a dynamic on the fly performance analysis and

possibly tuning. The former should be used for applications with regular behavior

because the performance analysis and tuning process must be done only once, and

consequently, the overhead associated with this process will happen only once.

However, for those applications that present different behaviors from one execution

to another, or even in the same execution, the dynamic performance tuning

approach can lead to better results.

In addition, the main requirements for a successful dynamic performance tuning

process are low intrusion and having as much previous knowledge about the

application as possible. Some times, this knowledge must be completely provided

by the user (collaborative approach); some times, it should be partially provided by

the user (automatic with knowledge approach); however, in both cases, there is a

demand for significant user expertise, as well as the requirement of learning how to

use the tool.

The objective of this thesis and our main contribution is to demonstrate that it is

possible to define performance models associated to the application�s structure

suitable for integration in a dynamic performance tuning tool. This way, users can

take advantage of developing applications using a supportive tool and can also

transparently use a dynamic tuning tool without having to specify complex model

parameters or interpret difficult analysis data and still get highly efficient results.

From the point of view of final users, they are using a very efficient dynamic

automatic tuning tool while from the tuning tool point of view (if it had one) the user

is using an automatic with knowledge approach.

To fulfill this objective, we have chosen to develop the performance model for the

Master/Worker and Pipeline frameworks because their popularity and usefulness. In

addition, the models have been designed for the MATE environment. Therefore, we

have analyzed the structure and functionality of those structures in order to

determine the main performance drawbacks associated with these frameworks.

Then we have developed the corresponding set of performance modeling strategies

and expressions following MATE�s subjacent performance model architecture

(measure points + performance expressions + tuning points).

Definition of Framework-based Performance Models for Dynamic Performance Tuning

 29

Finally, though the general idea has been very innovative and original there are

several studies regarding definition of performance models associated with the

application�s structure. In the next subsection, we include a summary of the most

relevant ones. Next, in section 4.2, we conclude this chapter with a description of

the organization of this thesis.

4.1. Related studies

The group of parallel computing of the Statistics and Computer Science

Department of La Laguna University has great experience in the development of

programming tools based on frameworks, parallelizing compilers, and performance

modeling at different application levels. In particular, they have developed models

for Master/Worker applications on homogeneous [RR+98] and heterogeneous

[AG+03] networks of workstations and also models for Pipeline applications on

homogeneous [MA+01] and heterogeneous [AG+02] networks of workstations.

Their study for Master/Worker applications [RR+98] is mainly focused on

explaining why there are differences in the message latency of an Ethernet network

when using one to all communications in TCP and UDP protocols. With the objective

of illustrating the theoretical model presented, a Master/Worker matrix multiplication

application is used and its execution time modeled with the following expression:

()))/((/))/((PNPDNPNPNP iPPPPiBRBRiBRBR βαβαβα ++++++ 3

Where P is the number of processors (one worker per processor), Ni is the size of

one matrix, Ni/P is the part of the second matrix sent to each worker, DN3/P is the

computation time of each worker (assuming homogeneous workstations), and α and

β are the network latency and inverse bandwidth respectively (sub-indexes BR and

PP meaning broadcast and point to point respectively).

It can be seen that this expressions has the form: Time for sending data (first two

terms) + Time for computing (third term) + Time for receiving results (fourth term),

which is basically the one we have used to define our Master/Worker performance

model for balanced (almost homogeneous) Master/Worker applications. Obviously,

we have a different objective: dynamic performance tuning vs. an example for a

specific case of communication modeling; hence, we have analyzed many more

cases and studied other aspects of the problem. The main problem is to estimate

(dynamically) how many workers (processors) can be efficiently used by the

application.

Chapter I. Introduction

30

The people of La Laguna University have generalized this study to the case of

heterogeneous Master/Worker applications [AG+03]. This time, the more ambitious

objective was to assign the heaviest tasks to the fastest processors and

communication channels. The basic idea is to define a more general expression that

includes the execution time differences of workers; the resulting expression is the

following one:

∑∑
==

+++
p

i
i

p

i
i dSCR

11
11 0),max(

Where R1 is the receiving time of worker 1 (one worker per processor), C1 is the

computation time of worker 1, Si is the sending time of processor i, and di is the

accumulated delay between the first i-1 workers and worker i. Communication times

are calculated as in the expression for the homogeneous case by using the latency

plus inverse bandwidth approximation. Computation times (Ci) should be estimated

because this models is not intended to be used in a dynamic tuning environment.

It is clear that in order to get the best execution time, this expression has to be

minimized, which means finding the appropriate mapping of tasks to processors and

communication channels. However, this expression is too complex (basically due to

the fourth term) to be solved analytically, and numerical approximations must be

used instead.

We have adopted a radically different approach to heterogeneous Master/Worker

applications modeling. Actually, we do not try to model this kind of application

because heterogeneity means, in this case, inefficiency, and assigning heaviest

tasks to the fastest processors will hardly eliminate it (only relieve it). We have

designed, instead, some strategies to dynamically balance the workers� load, which

result in significant performance improvements and in nearly homogeneous

applications that can be treated following the homogenous model in order to adapt

the number of workers.

Regarding their studies on performance models for Pipeline applications

(homogeneous [MA+01] and heterogeneous [AG+02]) they have defined

expressions that model the whole application live (filling in the pipe, all stages

working, draining the pipe), which makes sense because their objective is to predict

the application�s behavior in order to make the best possible mapping of stages in

the available processors. The specific tuning parameters considered in their model

are the number of processors, the granularity (number of stages) to be assigned to

each processor, and the size of communication buffers. The general target of their

Definition of Framework-based Performance Models for Dynamic Performance Tuning

 31

model is to minimize the start up time (filling in the pipe), and balance processors

load by grouping stages (calculating the granularity for each processor).

Although we share the main objective of eliminating load unbalances, we consider

that filling in and draining phases are transient activities and, consequently, that

performance inefficiencies associated with these phases cannot be solved

dynamically and should be considered design problems (developers must assure

that the number of data sets to be processed is significantly greater than the number

of stages). Moreover, we have proposed replication of stages as the main solution to

load unbalances instead of stage grouping, which we consider mainly as a mean of

freeing processors. Therefore, our model, designed from the beginning to be used in

a dynamic tuning environment, eliminates the complexity of modeling the start up

phase of the application because it is not suitable to be tuned dynamically, but on

the other hand, adds the complexity of modeling replicated stages. It is worth noting

that the Pipeline performance model we present in this work is not as completely

defined as the Master/Worker one and it does not consider grouped stages yet.

Another highly relevant group in this area is the Murray Cole�s group of the School

of Informatics of the University of Edinburgh. This group has a long-term experience

in development programming tools based on skeletons (we have previously

mentioned eSkel [Col04] library). Lately, they have developed an extensive work on

performance modelling of skeleton-based parallel programs [BC+04]. They have

realized that using skeletons carries with it considerable information about implied

scheduling dependences and have decided to use process algebras (specifically

PEPA [Hill96]) for modelling them.

In the study referred to, the pipeline skeleton is used to illustrate the overall idea

and the developed tool. Although describing PEPA is beyond the scope of this work,

we believe that it is intuitive enough and that it is worthwhile to include the

description of the pipeline application model. The idea is to algebraically define all

the application components (stages, processor, and network) in the following way:

• iiii

def

i StageTmoveTprocessTmoveStage •••= +),(),(),(1

• iii

def

i ocessorprocessocessor Pr),(Pr •= µ if there is one stage per processor

∑ =
•=

l

kj ijj

def

i ocessorprocessocessor Pr),(Pr µ if from stage k to stage l are

assigned to processor i

• ∑ =
•=

n

i ii

def
NetworkmoveNetwork

0
)),((λ

Chapter I. Introduction

32

Where n is the number of stages, T (processing and moving times), µi (processor

characterization), and λi (characterizes connections among stages and between the

first and last stages and the user). Next, based on the previous constructions, the

more general Pipeline and Processors structures are defined in the following way:

•
{ } { } { } 110

121
−

−

= nmovemovemove

def
StageStageStagePipeline

n

><><>< ...

• m

def
ocessorocessorocessorocesors Pr...PrPrPr 10=

Finally, an algebraic expression is built to define the mapping of the pipeline on the

available processors and network (using the collaboration operator><):

• ocessorsPipelineNetworkMapping
LpLm

def
Pr><><= , where

Lp = {processi} (i=0..n-1) and Lm = {movei} (i=0..n)

Once the model has been defined, the PEPA Workbench [Hae03] is used to

calculate the application throughput providing µ and λ, and determining T. This way,

it is possible to predict the best mapping of stages on a given network of processors.

The main difference between this approach and ours, besides the use of process

algebras to define the programming structure, is that, at the moment, this is not

intended for dynamic tuning. Therefore, their study is focused on improving

performance by finding the best mapping for the pipe stages, which is a task that

should be carried out before starting the execution of the application. In fact, their

current objectives are to provide a tool for automatically generate the algebraic

description of a specific application and to find the way of getting a good estimation

of the model parameters.

4.2. Organization of this thesis

We have organized the contents of this thesis into 5 chapters, being the first one

this introduction.

In Chapter II, we introduce a more detailed description of the dynamic tuning

environment MATE and the Master/Worker and Pipeline frameworks with the

objective of formalizing the structure and objectives of the performance models that

will be presented later on.

Next, in Chapter III, we present a very detailed description of the performance

model developed for dynamically tuning Master/Worker applications. This is a two-

phase model consisting of a strategy for balancing the workers� load, and an

analytical model for adapting the number of workers of the application. The results

Definition of Framework-based Performance Models for Dynamic Performance Tuning

 33

of a wide set of experiments are presented in order to validate this performance

model.

Then, in Chapter IV, the performance model proposed for dynamically tuning

Pipeline applications is introduced. The main objective of including this model in this

study is not only the analysis of Pipeline applications but also to demonstrate that it

is possible to define models for frameworks other than Master/Worker.

Finally, in Chapter V, we present the conclusions and summarize the main

achievements of this thesis and indicate what are, in our opinion, the most relevant

open issues and challenges to be faced in the future.

Chapter I. Introduction

34

Chapter II:

Dynamic Automatic Performance
Tuning Based on Application

Structure

Abstract

The aim of this chapter is to describe the structure of the

performance models that will be presented later and the

aims of those performance models. To achieve these

objectives, we introduce a brief description of the MATE

dynamic tuning environment, a tool that provides a

framework for developing dynamic tuning tools and,

consequently, requires the performance knowledge to be

provided from outside. We also introduce a description of the

structure and functionality of the Master/Worker and Pipeline

frameworks in order to highlight their advantages, but also

their performance bottlenecks suitable to be dynamically

overcome.

Definition of Framework-based Performance Models for Dynamic Performance Tuning

 36

Chapter II Dynamic automatic performance tuning based on application structure

 37

1. Introduction

The main objective of this work, as we mentioned in the previous chapter, is to

demonstrate that it is possible to develop a performance model associated with the

structure of the applications suitable for use in a Dynamic and Automatic Tuning

Environment. Consequently, before introducing the performance models developed

for the selected structures, we want to describe in detail the underlying monitoring,

analyzing, and tuning model, as well as the structural and functional characteristics

of the Master/Worker and Pipeline frameworks, because they are the determinant

elements for the definition of the proposed performance models.

On the one hand, the monitoring, analyzing, and tuning model determines the

structure of the performance model and its capabilities and limitations. It is not the

same to use a static approach as to use a dynamic one. In the former, a longer and

deeper analysis can be done, but in the latter performance improvements are

obtained earlier. Moreover, it is not the same to use a model based on dynamically

selecting the appropriate problem solving strategy (like Active Harmony [TC+02]), or

another based on dynamically discovering and overcoming the application

bottlenecks (like MATE [MM+03]). On the other hand, the specific contents of the

performance model will depend on the framework used to develop an application

because there will be different performance targets for each framework depending

on its dynamically solvable performance associated bottlenecks.

In conclusion, we have to describe the selected monitoring, analysis, and tuning

model in order to establish the general structure of the performance models we are

going to develop later. In addition, we have to describe the selected frameworks in

order to identify the objectives that will guide the development of those performance

models, and also justify why we have chosen these frameworks. Consequently, in

this chapter, we include in section 2 a detailed description of our target model for

dynamic and automatic performance tuning. In section 3, one finds the description of

the Master/Worker framework. Section 4 gives the description of the Pipeline

framework. Finally, in section 5, we summarize the structure and requirements for

the performance models that will be defined in the following chapters.

2. Monitoring, Analysis, and Tuning Model

In this section, we describe the automatic performance analysis and dynamic

performance tuning model of the Monitoring Analysis and Tuning Environment

Definition of Framework-based Performance Models for Dynamic Performance Tuning

 38

(MATE) [Mor03] that determines the framework for the structure of the performance

models that are going to be described in the next chapters. This model has been

designed and implemented by the Parallel and Distributed Applications Performance

Group of the Computer Architecture and Operating Systems Department of the

Autonomous University of Barcelona and, as well as other projects, such as Mirror

Object Steering System (MOSS) [ES98], Autopilot [RS+01], and Active Harmony

[TC+02], is inspired by the necessity of improving the performance of some

applications dynamically, and it is based on the possibility of dynamically inserting

instrumentation into the application code without re-compiling or re-linking it.

 As previously mentioned, there are applications with a dynamic behavior that

cannot be successfully improved through a static performance analysis and tuning

approach. These applications can be instrumented on the fly using an

instrumentation library like Dyninst [HB02] in order to obtain some relevant

measures. These measures can be used for analyzing the application performance

in parallel with its own execution and, if the analysis discovers any performance

drawback, some application parameters can be modified to overcome it (or them).

Classically, it has been considered that this process can be performed using a

cooperative or an automatic approach. In the former, the application developer

collaborates with the tuning process by providing information online about what

should be measured, how it should be analyzed, and what can be changed. This

approach is simpler, powerful, and the instrumentation can be static, however, it

demands a high degree of expertise from the developer and the application must be

prepared for being tuned. In the latter, the application is treated as a black-box and

the tuning application tries to discover and solve some common problems. This

approach has the advantage of being completely independent of developers, but the

lack of knowledge about the application being tuned usually limits the complexity of

the problems that can be tackled, and, consequently, the tool’s potentiality for

getting significant performance improvements. Moreover, this approach needs

dynamic instrumentation and, in consequence, introduces some degree of intrusion

that can modify the application behavior, making it difficult to know if the problem

that is being solved has been introduced by the tuning tool.

We have introduced a third approach that we have called the automatic with

knowledge approach because, on the one hand, there is no collaboration demand

for the developer and the application is still a black-box, but on the other hand, the

application architecture and functional structure is known because it has been

Chapter II Dynamic automatic performance tuning based on application structure

 39

developed using a known framework. This approach can lead to significant

performance improvements because it can deal with complex problems: in addition,

it can be implemented with or without dynamic instrumentation, though in the

second case intrusion can be minimized. Nevertheless, as there are several

frameworks and also several programming environments based on frameworks, it is

required that the tuning tool be flexible enough to allow it to be adaptable to these

different possibilities.

The MATE environment fulfills this requirement by forcing an environment

independent specification of the performance knowledge. This means that MATE

implements the architecture of a dynamic analysis and automatic tuning tool, defines

the components of the performance knowledge, and how it should be specified, but

MATE does not provide any performance knowledge by itself. This makes it suitable

for developing several different strategies of dynamic tuning, depending on the

approach (cooperative, automatic, or automatic with knowledge), and also on the

element on which it is applied (the application itself, the application framework, the

libraries used by the application, or the system libraries).

Figure 1. MATE steering loop.

The architecture or steering loop implemented in MATE is composed of three main

modules: the Monitor, the Analyzer, and the Tuner, as shown in figure 1. The

Monitor module (also called Tracer) is responsible for gathering all the events

produced during the application execution; in consequence, there must be a monitor

Process 0

Process 1

Process 2

Analyzer

MonitorTuner Monitor Tuner

Machine 0 Machine 1

Machine 2

Events Instrumentation change

Tuning actions Tuning actions

Definition of Framework-based Performance Models for Dynamic Performance Tuning

 40

in any machine hosting application processes. The Analyzer module is responsible

for the automatic and dynamic analysis and tuning of the application and also it is

responsible for informing the user about problems detected and actions undertaken.

Finally, the Tuner is responsible for inserting modifications into the running

processes for overcoming performance bottlenecks; consequently, as in the case of

the monitor, there must be a tuner in every machine hosting application processes.

With the aim of presenting the performance model architecture associated with

MATE, we describe in the next few subsections the functionality of those modules,

their interrelations, and the parameters that should be defined for each one.

2.1. Monitors

This module has to gather all the relevant events produced during application

execution, in order to monitor each application process, which means that there

should be an instance of the monitor in every machine hosting an application

process.

Consequently, the environment must be aware of every newly created process, as

well as every new machine available to the application. In the case of the current

MATE implementation on the PVM library, it takes advantage of the tasker and

hoster services of this library in order to catch every request for creating new

processes or adding new hosts to the virtual machine. That way, when the creation

of a new application process is requested, the Monitor residing at the corresponding

host catches it and performs the appropriate steps to create an instrumented

process, which is the requested process plus extra calls to monitor the desired

events. Moreover, when the addition of a new host is requested for the master PVM

daemon, the Monitor residing in the same host (the Master Monitor) catches it and

performs the appropriate steps to add a monitored host, which is the requested host

with a Monitor module running on it.

Using the tasker and hoster services solves the problem of tracking all the

application processes and available resources, but there are still a couple of

problems to be solved. In the first place, temporal relationships between events

gathered by different monitors must be preserved in order to reach right conclusions

in the analysis regardless of any possible differences between local clocks. MATE

implements a global timestamp scheme where each local Monitor is responsible for

synchronizing its local clock with the one of the Master Monitor. Secondly, there

must be a mechanism to indicate the events that should be monitored. Monitors use

Chapter II Dynamic automatic performance tuning based on application structure

 41

the DynInst library to insert instrumentation dynamically in the monitored process

code. This instrumentation is a piece of code (snippet) consisting of a call to an

interface library for describing what the event is, when it happened, and where it

was registered. In addition, Monitor is responsible for sending the gathered

information to the Analyzer, thereby minimizing the intrusion into the network by

means of event buffering and aggregation.

Finally, as MATE does not provide performance knowledge by itself, the definition

of the points of the application process that should be instrumented by the Monitor

depends on the performance model provided. These points are called measure

points and the Monitor is instructed by the Analyzer about which points should be

instrumented upon the creation of an application process. Moreover, it is possible to

change these measure points during runtime, depending on the execution

conditions and performance drawbacks detected. Consequently, any performance

model defined for MATE must include a set of measure points that indicate what

information should be gathered to evaluate the model.

2.2. Analyzer

The Analyzer is the module responsible for the dynamic performance analysis of

the parallel/distributed application. It must be able to examine the application

behavior, identify persistent performance bottlenecks, and provide the solutions for

overcoming them. In addition, the Analyzer must inform users about the problems

detected and actions undertaken.

The functionality of this module is composed of two steps: an initialization one and

the evaluation one. In the first one, the Analyzer uploads the performance

knowledge provided and sets up the necessary Monitor and Tuner modules. In the

second, the Analyzer receives the events gathered by Monitors and evaluates the

application behavior using a set of evaluation expressions and/or strategies; if it

detects a persistent performance problem (transient ones not worth solving), then it

tracks the causes of the problem down (it may need to instruct Monitors to insert

more instrumentation), and finally it sends to the appropriate Tuner(s) the changes

that have to be made in the application process(es) to overcome the problem.

 The current MATE implementation has only one Analyzer process that is

responsible for doing a centralized performance analysis of the whole application.

This approach works well for medium-sized applications but is difficult to scale for

large ones; in addition, it is likely to be highly intrusive if the Analyzer is hosted in the

Definition of Framework-based Performance Models for Dynamic Performance Tuning

 42

same machine as other application process(es). To solve the first problem, a

distributed analysis scheme is being designed and, to solve the second problem, the

Analyzer is executed on a dedicated node.

Finally, the evaluation expressions and/or strategies used to evaluate the

application’s performance must be part of any performance model defined for MATE

and are provided in the form of evaluation routines written in C++ called tunlets.

2.2. Tuner

Tuners are responsible for dynamically inserting modifications into the application

processes. Consequently, a Tuner instance must be present in every machine

hosting an application process. Actually, in the current MATE implementation the

Monitor and Tuner modules are integrated in a single process controlling all the

application processes executed on a given node.

When the Analyzer detects a performance problem and finds its solution, it sends

a tuning requirement to the appropriate Tuner instance(s), then each Tuner applies

the modification dynamically to the corresponding process(es). A tuning requirement

is composed of a target process, a tuning point, a tuning action, and a

synchronization method. The tuning point specifies what must be changed in the

given process, the tuning action is the command to be performed on that point, and

the synchronization method specifies the conditions that must hold for the tuning

action to be performed in order to keep the application’s consistency.

The tuning actions offered by MATE are:

• Changing the value of an application variable.

• Function replacement. A function call can be replaced with another with

the same signature.

• Function invocation. A function call is inserted into the application code

and it will be invoked each time this code section is reached.

• One-time function invocation. A function call is done at the specified point

but the invocation code is not inserted in the process code.

• Changing the arguments of a function call.

Finally, as in the cases of the Analyzer and Monitors, the performance knowledge

components of the tuner, the tuning points, the tuning actions, and the

synchronization method must be specified by the performance model defined for

MATE.

Chapter II Dynamic automatic performance tuning based on application structure

 43

In summary, the MATE architecture determines that any performance model

defined for this dynamic tuning environment must consist of a set of measure points,

which are the inputs to the model to be monitored; a set of evaluation strategies

and/or expressions used by the Analyzer to find and solve performance bottlenecks

through their evaluation on the inputs; finally, a set of tuning points and actions that

the Analyzer sends to the Tuners for dynamically introducing changes into the

application in order to overcome the performance problems detected.

3. Master/Worker Framework

3.1. Framework structure and functional description

The Master/Worker framework consists of a Master process and a farm of Worker

processes. The Master is responsible for decomposing a problem into a set of tasks,

for distributing them among the Workers, and for gathering the results produced by

those Workers. Each Worker process gets messages with tasks, processes these

tasks, and sends back the results to the Master.

 The Master/Worker model is used in many scientific, engineering and commercial

applications, such as software building and testing, sensitivity analysis, parameter

space exploration, image and movie rendering, high energy physics event

reconstruction, processing of optical DNA sequencing, training of neural networks

and stochastic optimization among others [Can98, WW95, AI98].

Figure 2. Generalized Master/Worker algorithm

There are several reasons that made this framework quite popular; among them

as we will show later, it can be used to implement many of the patterns described in

the introductory chapter; or that it is suitable for programs to be executed in

networks of workstations because with this framework it is possible to implement

programs that dynamically adjust the computation load between units of execution,

Initialization
Do
 For task = 1 to N
 PartialResult = + Function (task)
 end
 act_on_bach_complete()
while (end condition not met).

Worker
Tasks
Master
Tasks

Definition of Framework-based Performance Models for Dynamic Performance Tuning

 44

or that Master/Worker programs work particularly well on heterogeneous networks,

since faster or less-loaded processors naturally take on more work.

The general Master/Worker functionality can be summarized with the algorithm of

figure 2. It can be seen there, that the process of distributing tasks among workers

and waiting for results can be repeated several times in an iterative way. This

functionality, represented graphically in figure 3, makes this framework suitable to

implement many of the parallel patterns discussed in the previous chapter.

This way, the Separable-Dependences pattern, which can be used for task-based

decompositions, in which dependences between tasks exist but can be pulled

outside of the concurrent computation of tasks, can be implemented with this pattern

by letting the Master do some data replication before distributing tasks and some

results aggregation at the end the iteration. Moreover, the Geometric-Decomposition

pattern, which can be used for data-based decompositions, in which a core date

structure is decomposed in not completely independent chunks that can be updated

concurrently, can also be implemented with the Master/Worker framework if the

Master can cope with dependences at the beginning of each iteration. Finally, the

Embarrassingly-Parallel pattern, which can be used for task-based decomposition

as well as data-based ones in which tasks are completely independent of each

other, is naturally implemented with this framework.

Figure 3. Parbegin-parend structure corresponding to the general Master/Worker
framework.

Some simple real application examples of each pattern could be mentioned, such

as numerical integration of a given function over a given interval using the trapezoid

parbegin

parend

Task 1 Task 2 Task 3 Task N ...

new task set

Chapter II Dynamic automatic performance tuning based on application structure

 45

rule for the separable-dependences pattern because each worker can calculate the

integral of some sub-interval while the Master aggregates the results, or matrix

multiplication using a block decomposition for the geometric-decomposition pattern

because matrixes are decomposed in blocks that are sent to workers that perform a

classical matrix multiplication on them while the Master aggregates the results, or

vector addition for the embarrassingly-parallel pattern because the vector to be

added can be decomposed in chunks that can be independently added.

The main reason we have principally focused on this framework in developing our

work is because it is so useful and widely used. Actually, we have developed not

only its performance model, but also an implementation of the framework [Mes04]

aimed to be used for carrying out experimentation on real applications [MCe+05,

MC+05], such as the classical N-body and a forest fire propagation simulator named

xFire [JM+98].

3.1. Framework associated bottlenecks

As previously explained, one of the advantages of using the Master/Worker

framework for developing an application is its flexibility in dynamically adjusting the

computation load between the execution units, which is a significant characteristic in

order to get good performance from the assigned resources, though this adaptation

depends on a careful design and the characteristics of the application. Furthermore,

a second relevant performance parameter for this kind of applications is to

determine the appropriate number of execution units (processors) that should be

associated with them.

Figure 4. 8 independent tasks distributes among (a) 4 execution units with poor load
balancing, (b) 4 execution units with good load balancing, and (c) five execution units
with good load balancing.

Both characteristics are illustrated schematically in figure 4. In this figure, each box

represents a task and the size of each box represents the computational

requirements of the task: hence, it can be seen that a good load balancing is likely

to improve the application’s performance especially if tasks are of different lengths,

a b c

d

e

f
g

h a

b

c d

e

f

g

h a b c

d

e

f
g

h

(a) (b) (c)

Definition of Framework-based Performance Models for Dynamic Performance Tuning

 46

and also that adding more workers may lead to performance improvements

especially if the computational requirements are high. However, adding too many

workers could lead to wasted resources without improving the application’s

performance, as can be seen in the figure for case (c) where adding more workers

cannot improve the application’s performance due to the length of task a.

Moreover, the number of tasks and its associated computational needs are likely

to vary during the execution of the application: hence, making these problems more

difficult to solve. Consequently, load unbalance and an inappropriate number of

workers seems to be the most relevant performance bottlenecks of these

applications, and dynamically adjusting the workers’ load, and dynamically adapting

the number of workers the most significant challenges to improve their performance.

Nevertheless, there are other requirements for getting good performance from a

Master/Worker application: in the first place, the number of tasks should be much

higher than the number of workers because, on the contrary, balancing the load

could be significantly more difficult to achieve; in the second place, the cost of

initializing and sending a task to a worker must be much less than the cost of

computing the task because, on the contrary, the advantages of concurrent

processing are lost due to the cost of setting tasks up. These performance

problems, however, are unlikely to be solved dynamically because they are

produced by design pitfalls and not due to execution conditions.

4. Pipeline Framework

4.1. Framework structure and functional description

The Pipeline framework is a well-known parallel programming structure used as

the most direct way to implement algorithms that consist of performing an orderly

sequence of essentially identical calculations on a sequence of inputs. Each of

these calculations can be broken down into a certain number of different stages, and

these stages can be applied concurrently to different inputs. Many image treatment

programs and the computation of the Fast Fourier Transformation (FFT) are suited

to be implemented using this framework.

In figure 5 this description is schematically illustrated for a pipeline consisting of

four stages, supposing that the calculations to be performed are named C1, C2, and

so forth. Then the pipeline operation begins with the first stage performing its part of

C1. When that is completed, the second stage of the pipeline performs its part of

Chapter II Dynamic automatic performance tuning based on application structure

 47

C1, while the first stage simultaneously performs its part of C2. Next, stage 3

performs its part of C1, while stage 2 concurrently performs its part of C2 and stage

1 its part of C3.

stage 0: C1 C2 C3 C4 C5 C6

stage 1: C1 C2 C3 C4 C5 C6

stage 2: C1 C2 C3 C4 C5 C6

stage 3: C1 C2 C3 C4 C5 C6

Figure 5. Schematic representation of the functionality of a four-stage pipeline over six
calculations.

The structure behind this functionality is a linear arrangement of processes, like

the one shown in figure 6 (a), in which each one is responsible for performing one or

more stages. However, this structure can be extended, as in the example shown in

figure 6 (b), to include situations in which some operations can be performed

concurrently over different calculations. This suggests that a pipeline can be

represented as a directed acyclic graph, with vertices corresponding to stages (or

elements of calculation) and edges indicating dataflow. Clearly, this structure is

suited to be implemented in a message-passing environment rather than in a

shared-memory one.

 Figure 6. Structure of a four-stage linear pipeline (a) and four-stage non-linear one (b).

Finally, it can be seen that there are three different kinds of processes in a

Pipeline structure, the first stage process that has a succeeding stage but not a

preceding one, the last stage process that has a preceding stage but not a

Time

Stage 0

Stage 0

Stage 1 Stage 2 Stage 3

Stage 1

Stage 2a

Stage 3

Stage 2b

(a)

(b)

Definition of Framework-based Performance Models for Dynamic Performance Tuning

 48

succeeding one, and the intermediate stage process that has both a preceding and

a succeeding stage.

4.1. Framework associated bottlenecks

It can be seen in figure 5 that at the beginning, while the Pipeline is being filled

and the number of calculations is less than four, some stages are idle. In general, in

an

n-stage Pipeline there are idle stages at least until n calculations have been pushed

into the pipe. It can also be seen in the same figure that at the end, when the

Pipeline is being drained processing the last four calculations, there are also some

idle stages. In general in an n-stage Pipeline there are idle stages at least while

processing the last n-1 calculations.

These inefficiencies in the filling and draining phases (also known as ramp-in and

ramp-out phases) of the execution of a Pipeline application cannot be avoided in the

straightforward implementation of the structure but can be minimized if the number

of calculations is large compared to the number of stages. Clearly, ensuring this

condition is a design problem that cannot be dealt with dynamically because it is, in

any case, a transient problem.

However, there is a second source of performance inefficiencies in Pipeline

applications. Suppose, as shown in figure 7, that in an n-stage pipe every stage

except one takes roughly the same amount of time to perform its part of calculation

and the exception takes three times more than the rest. It is easy to see that all the

stages that come after the slow one are idle two thirds of the time.

Consequently, as the number of calculations per unit of time or throughput of the

Pipeline application is determined by the pace of the slowest stage of the pipe, it is

important to avoid significant differences between the computational efforts of pipe

stages. This is a load balancing problem that can be solved in the design phase of

the application (statically) if the calculations to be performed are known in advance

and their associated operation time even. What should be done in this case is to

group faster operations in the same processor, in order to increase the resource

availability, while replicating slower ones in other processors in order to increase

their throughput. On the contrary, if the operation time depends on the calculation

and varies along the application execution the problem can be solved the same way

but dynamically at execution time.

Chapter II Dynamic automatic performance tuning based on application structure

 49

stage 0: C1 C2 C3 C4 C5 C6

stage 1: C1 C2 C3 C4

stage 2: C1 C2 C3

stage 3: C1 C2 C3

Figure 7. Unbalanced Pipeline execution.

5. Structure and Objectives of the Developed Performance
Models

In the first place, this work has been developed in the same research group that

has designed and implemented the MATE dynamic tuning environment and it is

closely associated with MATE. Therefore, the structure of the defined performance

models is the one required by this environment; hence, the models that have been

developed and that will be presented in the next chapters consist of three main

parts:

• The measure points or set of application parameters that should be

monitored in order to evaluate the performance expressions and/or

strategies.

• Performance expressions and/or strategies are the main components

of the performance model and must be designed with the aim of

describing the behavior of the application in order to dynamically detect its

performance bottlenecks and generate the appropriated actions to

overcome them.

• The tuning points and actions are the set of parameters and changes of

these parameters used for improving the application’s performance.

These actions should also include a set of safety conditions that indicate

when these actions can be applied without altering the application’s

consistency.

In the second place, we have chosen to develop the performance model of two

popular and well-known frameworks: the Master/Worker and the Pipeline. The

Master/Worker framework is widely used because of its adaptability to clusters of

workstations and its flexibility in implementing several application design patterns,

while Pipeline framework is very useful for exploiting the concurrency of algorithms

Time

Definition of Framework-based Performance Models for Dynamic Performance Tuning

 50

consisting of the application of an orderly sequence of calculations over a stream of

data.

Moreover, the main objective of the developed performance model associated with

the Master/Worker framework must be to balance the load of workers in order to

obtain the best performance from the available resources, but also to determine the

number of workers that should be used to improve the application’s performance,

whereas the main objective of the performance model developed, associated with

the Pipeline framework, must be to determine what stages should be replicated and

how many replicas of each one should be introduced in order to improve the

application’s throughput and, consequently, its performance.

Finally, we want to highlight that, as a consequence of focusing on dynamic tuning

and the performance model architecture we are using, a generic framework analysis

methodology can be established. This methodology consists firstly in identifying

those performance problems suited for being solved dynamically, then in finding or

defining the magnitudes that should be monitored in order to identify those problems

(inputs) and those that had to be changed in order to overcome them (outputs);

finally, in building the set of performance analysis strategies or expressions that

make it possible to determine, based on the defined inputs, the best performance

improving actions (outputs).

Chapter II Dynamic automatic performance tuning based on application structure

 51

Chapter III:
Master/Worker Framework

Performance Model

Abstract

In this chapter, we present the performance model we have

defined to dynamically improve the performance of

applications developed with the Master/Worker framework.

The objective of this model is to improve the application’s

performance in two phases in the first one the worker’s loads

are balanced in order to make efficient use of the available

resources, while in the second phase the number of workers

associated to the application is evaluated in order to

determine if the application’s performance can be

significantly improved by adding more workers. We also

present a set of experiments that validate both phases of the

model.

Chapter III Master/Worker Framework Performance Model

 52

Definition of Framework-based Performance Models for Dynamic Performance Tuning

 53

1. Introduction

In this chapter, we will introduce our proposal for a performance model associated

with the Master/Worker framework. To fulfill this objective we will first recall the

framework associated performance problems presented in the previous chapter, and

then discuss in which order they should be solved to improve the overall application

execution time. Finally, we will devote the rest of the chapter to define, according to

the general performance model introduced in the previous chapter, the strategies

and expressions that are part of our performance model and the experimentation

that has been carried out to validate them.

In Chapter II, we have shown that Master/Worker applications could suffer from

two main performance bottlenecks related to the framework structure and

functionality: the first one was the load unbalance of the workers, which could

produce long idle times for quick or lightly loaded workers, and the second one was

the use of an inadequate number of workers (too short or too large) to process the

set of tasks at hand.

It is worth noting that both problems may depend on dynamic conditions, such as

the amount of available tasks or the processors� load; thus, they are suitable for

being solved dynamically.

In figure 1, we can see that balancing workers� load leads to significant

performance improvements. Here, we show the execution trace file of a synthetically

generated Master/Worker application with 10 workers, processing 10000 tasks per

iteration, and each task with an associated mean processing time of 2 ms. and a

standard deviation of 1.6 ms (80%).

For the first execution trace (a), the Master is distributing the whole set of tasks at

the beginning of each iteration, and we can see how several workers are resting idle

too much time (green areas mean worker busy while black ones mean worker idle).

However, we can see in (b) how a simple change in the task distribution policy leads

to a better behavior of the application.

In addition, when the load unbalance between the different workers of the

application is high, adding more workers has a limited positive impact on the

application performance (actually it is likely to have a negative one) as we can

observe in figure 2, where we show the execution time of a Master/Worker

application, which processes 1024 1Kbyte tasks each iteration, with each task

having an associated processing time distributed accordingly to table 1, and using

an increasing number of workers (from 8 to 52). To allow comparison, we have also

Chapter III Master/Worker Framework Performance Model

 54

included the best expected execution time for a balanced application of the same

characteristics, which is basically the overall execution time divided by the number

of workers plus a communication overhead.

(a)

(b)

Figure 1. Unbalanced (a) and balanced (b) Master/Worker application. It is an
application with 10 workers, processing 10,000 50byte tasks with an associated mean
processing time of 2 ms. each and a standard deviation of 1.6 ms. (80%)

It is clear that we are only able to take advantage of the extra available resources

up to 20 processors; this is because the tasks that are assigned to each worker are

chosen randomly among the groups with available tasks, meaning that there is a

uniform probability of choosing a task from any group. When the number of

processors is low, each one receives many tasks given more chance to be well

assorted with every kind of them (short ones and large ones), in a proportion similar

to the one of table 1. On the contrary, when the number of processors is high the

number of tasks received is lower and it is likely that a processor with bad luck, i.e.

one that receives several large tasks, would stall the whole application.

In contrast, it is possible to get large improvements from adding workers to a

balanced application, as the best expected execution time function of figure 2

suggests. Moreover, we will show that it is possible to predict this improvement quite

accurately. As a consequence, it is clear that, in order to improve the efficiency of

Definition of Framework-based Performance Models for Dynamic Performance Tuning

 55

the decision about the number of workers of our application, this step should be

preceded by a load balancing phase.

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

8 12 16 20 24 28 32 36 40 44 48 52

tim
e

(s
)

workers

Adding workers to an unbalanced application

Real
Best

Figure 2. Real and best expected execution time of a Master/Worker application using
from 8 to 52 processors, processing 1024 1Kb tasks each iteration, and task associated
processing time distributed accordingly to table 1.

Number
of tasks

% Over total
(1024 tasks)

Associated computation
time (ms/task)

% Over iteration
execution time (2 s)

205 20 0.6 10
154 15 1.2 10
307 30 1.7 25
154 15 2.3 15
102 10 3.4 15
102 10 5 25

Table 1. Distribution of task processing time for the application shown in figure 2.

Consequently, in the rest of this chapter, we introduce in the first place the

discussion of different strategies for achieving a good load balance for the

application, including the experimental results that validate them; next, we present

the set of expressions that model the performance of a homogeneous

Master/Worker application, making it possible to dynamically calculate the

appropriate number of workers to be used by the application; then, we present the

formal analysis that works as a glue among the load balancing strategies and the

model for calculating the appropriate number of workers; finally, we include a

summary of the Master/Worker model for dynamic performance tuning.

2. Load Balancing through Data Distribution

The execution time of a Master/Worker application with N workers, and a set of

tasks that can be sequentially processed in time T, can be roughly bounded by the

expressions T/N (lower bound), and T (upper bound), though in both cases some

Chapter III Master/Worker Framework Performance Model

 56

communication time should be added. Getting an execution time closer to the lower

bound mainly depends on a good load balancing among workers which, in turn,

relies on a good data distribution policy.

We were aware of this problem from the very beginning of our research,

nevertheless, we did not propose the first, mostly informal, solutions until [CM+04]

and [MCa+05]. Lately, we have studied it in much more depth [MoC+05]. Our main

source of inspiration for coping with this problem has been the works about the

distribution of parallel loops, like [KW85], [FSF92], [BV01], and [BV02]. They define

many policies aimed at balancing the computation load of a set of processors used

to execute several instances of a parallel loop, which is a very similar problem to the

one of task distribution for Master/Worker applications.

The general solution of the task distribution problem could be stated in the

following way:

Instead of distributing the whole set of tasks among workers and waiting for
the results (with no control over load balancing), the master will make a
partial distribution by dividing this set of tasks in different portions called
batches. The number of tasks assigned to each batch depends on the
distribution strategy, and it may be different from one batch to another. The
idea is to distribute the first of these batches among workers in chunks of
(roughly) the same number of tasks, then when a worker ends the processing
of its assigned chunk the master will send it a new chunk from the next
batch, the process continues until all batches have been completely
distributed. This way, workers which have received tough tasks will not
receive more load and workers which have received lighter tasks will be
employed to do more work.

Different strategies can be used to determine the batch sizes with the objective of

getting a better load balancing with little computation and communication

overheads. We have adapted, implemented and analyzed three different strategies

that will be treated in deep later in this chapter:

• Fixed Size Chunking (FSC), which consists of dividing the set of tasks in

some number of equal sized batches (with the only possible exception of

the last one). In this case, we must try to find the best number of batches

to improve load balancing.

• Dynamic Predictive Factoring (DPF), which consists of building the first

batch with some portion of the task set, the second with the same portion

of the remaining tasks, and so on until some lower bound for the batch

cardinality is reached. In this case, we must try to find the best factor to

Definition of Framework-based Performance Models for Dynamic Performance Tuning

 57

determine the portion of the remaining task set that will be distributed in

each batch.

• Dynamic Adjusting Factoring (DAF) which is like DPF but with a variable

factor that is recomputed from batch to batch depending on the current

load balancing conditions.

2.1. Fixed Size Chunking (FSC)

This is the simplest strategy intended to improve the load balancing of the

application. As we illustrate in figure 3, it consists of dividing the set of tasks into a

series of batches of the same size then the tasks of the first batch are distributed

among workers in equal size chunks. When a worker finishes the processing of its

assigned chunk, the master sends a new chunk from another batch until all batches

have been distributed. We proposed this adaptation of the Fixed Size Chunking

policy [KW85] to the M/W task distribution problem in [CM+04].

The number of batches to be distributed depends on a partition factor, which is the

proportion of the whole set of tasks to be included in each batch, for example: a

factor of 0.2 means that the set of tasks will be divided into 5 batches, each one

including 20% of the tasks. This means that low partition factors will produce more

batches with fewer tasks, whereas high partition factors will produce fewer batches

with more tasks.

As a consequence, a low partition factor leads to a finer grained distribution of

tasks, but also to a higher communication overhead, since we are producing more

messages with fewer tasks, while a higher partition factor leads to a coarser grained

distribution of tasks, but also to a lower communication overhead. Therefore, it is

better to choose higher partition factors in order to minimize communication

overhead, but if the standard deviation of the tasks processing time is large enough,

a lower factor must be used with the objective of getting a finer grained distribution

of tasks in order to minimize load unbalancing.

In figure 3, we show a hypothetical case of a Master/Worker with three workers

and 12 tasks to be computed. Tasks are distributed in two batches of 6 tasks each,

implying chunks of two tasks for each worker. For this example, we get a

performance improvement of 16.67% from the application of the policy because a

complete distribution of tasks would have produced a total execution time of 12 time

units, since the tasks labeled 4, 1, 5, and 2 (total execution time of 12 time units)

would have been assigned to worker 0.

Chapter III Master/Worker Framework Performance Model

 58

Figure 3. Schematic execution of an application using the FSC distribution policy. In
this case, a factor of 0.5 has been used to generate two batches with three chunks of
two tasks each.

However, we can also see in this example one of the main drawbacks of this

policy, which is its lack of sensitivity to load unbalances in the last batches for

relatively high partition factors. We can observe that if we had chosen a factor of

0.25, which would have lead to the distribution of one-task chunks, the total

execution time, not including communications, would have been of 9 time units, only

one unit over the best possible execution time of 8 (24 total processing time

associated to tasks/ 3 workers).

We can try to estimate the best partition factor at execution time from the history of

each worker, assuming that, in the near future, their behavior will not substantially

5

2
5 Master

W 0 W 1 W 2

4 5 2 1
1 2 1 1

Batch 0 T=0

Master

W 0 W 1 W 2

4 2
1 1

T=3

Master

W 0 W 1 W 2

T=5

Master

W 0 W 2 W 1

T=7

Master

W 0 W 1 W 2

T=10 W i

W i

t

t

Batch 1

1
1

1
4

1
1

1
1

1
4

4 2
1 2 1

1
1

1
1

1
4

4 5 2
1 2 1

1
4

1
1

1
1

4 5 2
1 2 1

1
1

1
1

1
4

Idle worker

Busy worker

Task not
processed

Processed
task

4 Task being
processed

Batch 0 Batch 1

Batch 0 Batch 1 Batch 0 Batch 1

Batch 0 Batch 1

Definition of Framework-based Performance Models for Dynamic Performance Tuning

 59

change. The idea is to find a good partition factor by calculating the mean time

invested by each worker to process the last x tasks that it has received, and then

estimate what will happen to the next set of tasks by simulating different values of

the partition factor.

Let us specify in greater detail how this estimation is accomplished:

1. For the first iteration of the application an arbitrary predefined partition

factor of 0.25 is used. With such a low partition factor we are being

pessimistic about the tasks processing time standard deviation, but not too

much in order to avoid a high communication overhead. During this

iteration the number of chunks processed by each processor and the time

spent on this processing are stored for their future use in the calculation of

new partition factors.

2. For the second iteration, we use the same partition factor of 0.25, and we

also store the per processor number of processed chunks and processing

time. However, at the same time, we use the stored data to simulate what

would have happened if other partition factors had been used. The

algorithm of this simulation is the following:

a. Choose a test partition factor of 0.1.

b. Calculate the batches and chunks that will result from the

application of this partition factor. This is possible because we know

the number of tasks being processed and the number of workers of

our application.

c. Using the historical data about the processing time spent by each

processor on the chunks it has received, calculate the processor

mean processing time per task.

d. Using the calculated partition and mean time and the expressions

developed for the estimation of the execution time of a

Master/Worker application, which will be discussed in the second

part of this chapter, we can estimate the execution time of a whole

iteration for this partition factor (considering communication).

e. If this estimated execution time is the best one so far, then the

tested partition factor becomes the new proposed partition factor.

f. If the test partition factor is less than 1.0, increase it by 0.1 and go

to (b), otherwise, the process is done.

Chapter III Master/Worker Framework Performance Model

 60

3. For the third and subsequent iterations we use the partition factor proposed

by the simulation process described above and, in addition, we keep on

storing processing data and repeating simulations to adapt the partition

factor to possible variations of the processing times associated with the

tasks.

 2

 2.5

 3

 3.5

 4

 4.5

0% 10% 20% 40% 80%

tim
e

(s
)

stddev

Fixed Size Chunking -Experimental Results-

F=0.25
F=0.5
F=1.0
F=sim

Figure 4. Execution times of a 10-worker application using the FSC distribution policy
with different degrees of standard deviation and different partition factors.

Some experimental results of the application of this policy are shown in figure 4. In

this figure, we show the execution times of a configurable Master/Worker application

with 10 workers for different standard deviation values for the processing time

associated with tasks. The application executes 15 iterations of 10,000 tasks each,

the mean processing time associated with each task is 2 ms. which leads to a global

processing time of 20 sec/iteration and a lower bound of 2 sec/iteration with 10

workers. The size of each task is 50 bytes, which means that the master is sending

50 bytes/task to the workers and the workers are replying with 50 bytes/task to the

master, this makes a total communication volume of 106 bytes. Finally, we have

included in the figure the results of using a constant partition factor of 1.0, 0.5, 0.25,

and also those obtained from the use of the estimation algorithm described above.

We can see in this figure that for higher values of the standard deviation we are

getting, in general, higher execution times, and also that higher partition factors lead

to better results for lower values of the standard deviation but worse for higher ones,

while lower partitions factors are working well for higher values of the standard

deviation and poorly for lower ones. Finally, we can see that the results obtained by

the dynamic estimation of the partition factor are as good as, or better than, the best

ones of the fixed partition factors.

Definition of Framework-based Performance Models for Dynamic Performance Tuning

 61

2.2. Dynamic Predictive Factoring (DPF)

We have observed that the previously described FSC policy lacks the necessary

sensitivity to deal with load unbalances introduced by the lasts distributed chunks.

This drawback appears because all chunks include the same number of tasks and

because we prefer to have the biggest possible chunks to minimize both the

communication overhead and load unbalance.

With the objective of overcoming this problem, an adaptation of the Factoring

policy [FSF92], which is a partition policy based on assigning large chunks at the

beginning of the iteration and small ones at the end, was first proposed in [Mor03]

and further developed in [MCa+05] with the name of Dynamic Predictive Factoring

(DPF).

The general idea of this policy, as shown in figure 5, consists of dividing the set of

tasks into batches of decreasing size, then, as in the case of the FSC policy, the

tasks of the first batch are distributed among workers in equal-size chunks, and

when a worker finishes the processing of its assigned chunk the master sends a

new chunk from another batch, until all batches have been processed.

Again, the number of batches to be distributed depends on a partition factor, but

for the DPF policy this factor is used on the whole set of tasks to calculate the

number of tasks of the first batch, then on the tasks left out (those not included in

the first batch) to calculate the number of tasks included in the second batch, and so

on for the remaining batches, until some predefined lower limit for the per chunk

number of tasks is reached.

Intuitively, we are assuming with this policy that sending bigger chunks at the

beginning of an iteration not only is not likely to make any worker go beyond the T/N

target time, but is also useful for minimizing the communication overhead. However,

as we get closer to the end of the iteration it is more probable that processing a

large chunk causes a significant deviation in the overall execution time.

Consequently, as the iteration advances, the chunk size should be progressively

reduced to minimize this effect, although the communication overhead is increased.

We illustrate this in the example in figure 5, there we can see that applying this

policy to the same example of figure 3 with a partition factor of 0.5, we are getting

the same total execution time than that of the best case of FSC (partition factor of

0.25), but with 3 (25%) messages less.

Although the DPF policy is more sensitive to load unbalances introduced by the

last chunks, choosing the appropriate partition factor will determine the degree of

Chapter III Master/Worker Framework Performance Model

 62

success of the method. Choosing a high partition factor could lead to load

unbalances if the processing time standard deviation is also high; on the contrary,

being too conservative by choosing a low partition factor could produce an

unnecessary increment of the communication overhead.

As for the FSC policy, we can try to estimate the best partition factor by a

simulation process based on the history of the execution of each worker, assuming

that, for the next few succeeding iterations, they will show a steady behavior. The

estimation process is like the one described for the FSC policy, changing only the

way batches are defined. Actually, this estimation process was first proposed in

[Mor03] for the DPF policy.

Figure 5. Schematic execution of an application using the DPF distribution policy. In
this case a factor of 0.5 has been used to generate a first batch with three chunks of two
tasks each, and two batches with three chunks of one task each.

5

2
5 Master

W 0 W 1 W 2

4 5 2 1
1 2 1 1

B. 0 T=0

Master

W 0 W 1 W 2

4 2
1 1

T=3

Master

W 0 W 1 W 2

T=4

Master

W 0 W 2 W 1

T=5

Master

W 0 W 1 W 2

T=6

B. 1
1
1

1
4

4 2
1 2 1

1
1

4 5 2
1 2 1

1
4

1
1

1
1

4 5 2
1 2 1

1
1

1
1

1
4

Batch 0

Batch 0 Batch 0

Batch 0

B. 2

1
1

B. 1
1
1

1
4
B. 2

1
1

1
4
B. 2

B. 1 B. 1

B. 2

B. 1

B. 2

Master

W 0 W 1 W 2

T=7
4 5 2
1 2 1

1
1

1
1

1
4

Batch 0 B. 1

B. 2

Finishing time: 9

Definition of Framework-based Performance Models for Dynamic Performance Tuning

 63

Finally, in figure 6 we show some experimental results of the application of the

DPF policy. The executed application has exactly the same characteristics as the

one used for the FSC policy, i.e., same number of workers, same amount of data,

same mean processing time and standard deviation, etc., with the only change

being the distribution policy. This does not mean that all workers will process the

same tasks as in the previous example because it depends on the distribution

policy; actually, the set of tasks will differ because only the mean processing time

and standard deviation is preserved.

 2

 2.5

 3

 3.5

 4

 4.5

0% 10% 20% 40% 80%

tim
e

(s
)

stddev

Factoring (Fixed Factor) -Experimental Results-

F=sim
F=0.5

F=0.25
F=1.0

Figure 6. Execution times of a 10-worker application using the DPF distribution policy
with different degrees of standard deviation and different partition factors.

We can see in figure 6 that we are getting acceptable results even for high values

of the standard deviation in the task processing time. Even so, we could see that

dynamic estimation of the partition factor seems worthwhile because it usually leads

to better results for all displayed values of the standard deviation.

2.3. Dynamic Adjusting Factoring (DAF)

For the policies analyzed so far, we have seen that estimating the partition factor

appears to be a promising approach to obtain nearly the best outcome from them.

Even so, it should be noticed that we are assuming that the application conditions

that were used to estimate the partition factor are already present when it goes into

use two iterations later. That means that for applications with significant variations

from iteration to iteration, or even for applications with some �different� iterations, we

could get results that are not as good from these distribution policies.

Moreover, even for applications with a steady behavior, we have seen that the

distribution policies present their worst results for higher values of the standard

Chapter III Master/Worker Framework Performance Model

 64

deviation of the task processing time. It is because only the mean processing time of

tasks is used for the estimation of the partition factor.

These were the reasons that motivated us to adapt the Dynamic Adjusting

Factoring policy [BV02] (which is a partition policy that tries to adapt the partition

factor immediately to the current conditions of the application) to the task distribution

problem [MoC+05].

The original Factoring policy (intended for parallel loops scheduling) tries to assign

to processors the biggest possible chunks of parallel loop iterations that minimize

the probability of exceeding the expected optimal execution time (T/N). This can be

easily adapted to Master/Worker applications by substituting parallel loop iterations

by tasks.

This statement can be formalized mathematically in the following way:

Suppose that we have N available workers (processors) for executing M tasks

(M>>N), each one modeled as an identical independent random variable with mean

µ and standard deviation σ. Assuming that all workers are initially idle, we can

model the execution of a batch of N chunks as an Nth order statistic, which is the

maximum of N identically distributed random variables.

In general, an upper bound for the expected value of an Nth order statistic is

defined by the expression 2Nσµ + . Consequently, supposing that the number of

tasks included in each chunk of the first batch is F0, we will have a mean execution

time of µF0 and a standard deviation of σF0, and an upper bound for its processing

of 200 NFF σµ + .

As our target is not to exceed the optimal execution time, which can be expressed

as ()NMµ , we can say that fulfilling the expression ()NMNFF µσµ =+ 200 should

be the goal of our policy. To do so, we need to compute F0, which is the portion of

the set of tasks to be distributed in the first batch divided by the number of

processors, thus it can be expressed as M/(N*x0), where x0 is the inverse of the

partition factor used by the policy to generate the first batch to be distributed.

Finally, we solve this expression for x0, getting:

()
µ

σµ 2
0

Nx += (1)

However, for the succeeding batches we cannot assume that all workers are idle,

because when any worker finishes the processing of its first chunk the master is

going to assign it a new chunk from another batch, independently of whatever the

state of the remaining workers may be.

Definition of Framework-based Performance Models for Dynamic Performance Tuning

 65

Consequently, to calculate the number of tasks to be included in each chunk of

batch j, a more conservative target than the optimal expected processing time for

the currently remaining tasks (Rj) is proposed in order to compensate for the

differences in the processing starting times of those chunks. The restriction over the

target consists of trying to match the optimal expected processing time for the set of

remaining tasks, but excluding the tasks that will be included in the current batch.

Therefore, the resulting goal expression is ()[]jjjj FNRNFF −=+ µσµ 2 .

Obviously, this time we must solve this expression for xj, which will be inverse of

the partition factor used to calculate the number of tasks of the batch j, obtaining:

()
µ

σµ 22 Nx j
+= (2)

Now, using expressions (1) and (2), we can define a new distribution algorithm

that immediately adapts the partition factor to the application current executing

conditions:

1. With the goal of accumulating enough information to compute the adaptive

factor, the first iteration will be executed using the DPF partition method

with a fixed factor of 0.5. This initial factor is arbitrarily chosen because it

has generally behaved quite well.

2. At the beginning of the remaining iterations, calculate x0, using the

information accumulated in the past and expression (1). Then using the

same data and expression (2), calculate x1. Prepare chunks of batches 0

and 1 for being distributed among workers.

3. When the number of available chunks falls below a predefined threshold,

which we have fixed as half the number of workers (N/2), use expression

(2) to compute xj (from j = 2), then calculate the number of tasks for batch

j, and prepare the new chunks to be distributed among workers.

4. If the number of tasks per chunk reaches some predefined lower limit, the

remaining tasks are distributed in the last N chunks, and the distribution

process ends.

Before showing an example of the application of the DAF tasks distribution policy,

we want to introduce some comments about the tasks per chunk lower limit that we

mentioned above, as well as in the discussion of the DPF policy. Furthermore, some

of these observations are also valid for the FSC partition policy.

At first, it seems pretty clear that a chunk should include a least one task and a

batch should include as many chunks as there are workers, thus a batch will include

Chapter III Master/Worker Framework Performance Model

 66

at least as many tasks as there are workers. There are some exceptions caused by

rounding effects, for example, if we have 1123 tasks and we are using the FSC

policy with a partition factor of 0.2, then we will have five batches with 224 tasks

( 2.0*1123) and 3 tasks left that can be used to build an extra 3 task chunk. The

bottom line of what we are saying is that, mainly for DPF and DAF policies, the

partition method will not be applied if the number of remaining tasks is about to fall

below the number of workers.

However, in the end, we are going to face performance inefficiencies far before

reaching this limit because the defined policies do not always directly consider some

relevant application features, such as the communication cost and the Master�s

chunk managing capability.

The communication cost is considered both by the FSC and DPF policies,

because the estimation process uses performance expressions that include this

cost, but not by the DAF policy. Nevertheless, taking into consideration the Master�s

chunk managing capability will strongly minimize this problem.

We define the Master’s Chunk Managing Capability as the maximum number of

chunks that the Master can manage from the time it sends a chunk to a worker until

the moment if receives the answer for the same chunk from that worker. Task

managing includes message handling times and eventually some computation made

by the Master on the tasks. It is, in the end, a communication capacity problem,

which mainly depends on the number of workers, the chunk size, and the mean task

processing time.

We will get back to this problem in much greater detail in the second part of this

chapter, when we discuss the estimation of the number of workers. We can say now

, however, that if the number of tasks per chunk causes the Master to fall below its

chunk managing capability it will not be able to feed all workers and, as a result,

there will be some idle workers.

The good news is that it is possible to estimate the number of tasks that will

produce this inefficiency and, consequently, we can use this number as a lower

bound for the number of tasks that will be included in each chunk.

Coming back to DAF policy, in figure 7, we show some experimental results of the

application of that policy. The example is again the same one used to illustrate the

previously defined policies, but this time we only show the execution with and

without applying the distribution policy. We can see in the figure that we are getting

Definition of Framework-based Performance Models for Dynamic Performance Tuning

 67

results not only very close to the theoretical optimal execution time, but also that

they are little affected by the high values of the standard deviation.

 2

 2.5

 3

 3.5

 4

 4.5

0% 10% 20% 40% 80%

tim
e

(s
)

stddev

Adaptative Factoring -Experimental Results-

AF
F=1.0

Figure 7. Execution times of a 10-worker application using the DAF distribution policy
with different degrees of standard deviation.

Finally, in figure 8 we show the comparison of the execution times we have

obtained with the application of the three policies described to the same 10-worker

example, though for the DPF and FSC policies we are only displaying the adaptive

version. It seems clear that DPF and DAF are overrunning the FSC results for any

standard deviation, while presenting similar outcomes among them, except for high

values of the standard deviation where DAF policy is clearly the best. We will try to

confirm these results through a more extensive experimentation in the next section.

 2

 2.1

 2.2

 2.3

 2.4

 2.5

 2.6

 2.7

 2.8

 2.9

 3

0% 10% 20% 40% 80%

tim
e

(s
)

stddev

Policies Comparision -Experimental Results-

AF
FF

FSC

Figure 8. Comparison of results of the application of the three policies discussed on the
same application.

Chapter III Master/Worker Framework Performance Model

 68

2.4. Policy Comparison through Experimentation

In the previous sections, we presented three possible task distribution policies

aimed at solving the load unbalance performance problem for Master-Worker

applications. We discussed their theoretical pros and cons, and we illustrated their

application using an example. Now, our goal is to provide stronger evidence about

their performance through the use of extensive experimentation.

Before getting into the results discussion, we want to briefly describe the platform

used to execute all these experiments, the tools developed to generate the

appropriated synthetic programs, as well as the set of experiments we are

presenting in this section.

 Mean Processing Time per Task and Standard deviation (%)

 0,5 ms 2 ms 6ms

workers Data
Volume 0 10 20 40 80 0 10 20 40 80 0 10 20 40 80

240 Kb x x x x x x x x x x x x x x x
25

1 Mb x x x x x x x x x x x x x x x

50 240 Kb x x x x x x x x x x

Table 2. Summary of the configurations executed in order to test the task distribution
policies.

We have executed our experiments on one of the clusters of the Computer

Science Department of the Wisconsin University at Madison. It is a 150 dual

933MHz nodes connected to a 100Mbit switch, which has a gig-uplink to the core of

the network (6 clusters). We have developed, on this platform, a set of configurable

programs to test our models. These programs have been developed in C plus MPI,

and the ones that are used specifically to test the task distribution policies accept

the following parameters: distribution policy (none, FSC, DPF, or DAF), task size

(number of bytes sent and received to and from the worker), network parameters

(message overhead and communication speed per byte), and processing time

matrix (generated by a statistical tool in accordance to a given mean and standard

deviation).

 Mean Processing Time per Task

 0.5 ms (x10000 tasks ≈ 5 sec) 2 ms (x10000 tasks ≈ 20
sec)

6 ms (x10000 tasks ≈ 60
sec)

workers Ideal Execution time (Total execution time/number of workers)

25 200 ms 800 ms 2.4 sec

50 100 ms 400 ms 1.2 sec

Table 3. Ideal execution time for 10000 tasks and 25, and 50 workers.

Definition of Framework-based Performance Models for Dynamic Performance Tuning

 69

The set of experiments that we have designed for this section are summarized in

table 2. We have executed each configuration using the three policies described and

also distributing the whole set of tasks from the beginning, i.e., without any

distribution policy. Each execution has been made with 10000 tasks, which results in

the ideal execution time shown in table 3. In addition, each configuration has been

executed for 15 iterations. The resulting times have been processed in order to

eliminate statistical anomalies; finally, the mean execution time has been plotted in

the figures displayed below (9 to 16). Each figure includes four graphs: three for the

execution time of the application using each policy against the distribution without

using any policy (a- FSC, b- DPF, and c- DAF), and the last one (d) for the

comparison between the distribution policies.

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

0% 10% 20% 40% 80%

tim
e

(s
)

stddev

Fixed Size Chunking -Experimental Results-

FSC
F=1.0

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

0% 10% 20% 40% 80%

tim
e

(s
)

stddev

Factoring (Fixed Factor) -Experimental Results-

FF
F=1.0

 (a) (b)

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

0% 10% 20% 40% 80%

tim
e

(s
)

stddev

Adaptative Factoring -Experimental Results-

AF
F=1.0

 0.24

 0.26

 0.28

 0.3

 0.32

 0.34

 0.36

 0.38

 0.4

 0.42

 0.44

0% 10% 20% 40% 80%

tim
e

(s
)

stddev

Policies Comparision (V=120K u=0.5ms)-Experimental Results-

AF
FF

FSC

 (c) (d)

Figure 9. Execution of a 25-worker application with an associated mean processing time
of 0.5 ms per task, a communication volume of 240 Kb, and for a standard deviation
ranging from 0% to 80%. Distribution policy used: (a) FCS, (b) DPF, and (c) DAF. Policy
comparison (d).

Chapter III Master/Worker Framework Performance Model

 70

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

0% 10% 20% 40% 80%

tim
e

(s
)

stddev

Fixed Size Chunking -Experimental Results-

FSC
F=1.0

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

0% 10% 20% 40% 80%

tim
e

(s
)

stddev

Factoring (Fixed Factor) -Experimental Results-

FF
F=1.0

 (a) (b)

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

0% 10% 20% 40% 80%

tim
e

(s
)

stddev

Adaptative Factoring -Experimental Results-

AF
F=1.0

 0.26

 0.28

 0.3

 0.32

 0.34

 0.36

 0.38

 0.4

0% 10% 20% 40% 80%

tim
e

(s
)

stddev

Policies Comparision (V=1M u=0.5ms)-Experimental Results-

AF
FF

FSC

 (c) (d)

Figure 10. Execution of a 25-worker application with an associated mean processing
time of 0.5 ms per task, a communication volume of 1 Mb, and for a standard deviation
ranging from 0% to 80%. Distribution policy used: (a) FCS, (b) DPF, and (c) DAF. Policy
comparison (d).

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

0% 10% 20% 40% 80%

tim
e

(s
)

stddev

Fixed Size Chunking -Experimental Results-

FSC
F=1.0

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

0% 10% 20% 40% 80%

tim
e

(s
)

stddev

Factoring (Fixed Factor) -Experimental Results-

FF
F=1.0

 (a) (b)

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

0% 10% 20% 40% 80%

tim
e

(s
)

stddev

Adaptative Factoring -Experimental Results-

AF
F=1.0

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

0% 10% 20% 40% 80%

tim
e

(s
)

stddev

Policies Comparision (V=120K u=2ms)-Experimental Results-

AF
FF

FSC

 (c) (d)

Figure 11. Execution of a 25-worker application with an associated mean processing
time of 2 ms per task, a communication volume of 240 Kb, and for a standard deviation
ranging from 0% to 80%. Distribution policy used: (a) FCS, (b) DPF, and (c) DAF. Policy
comparison (d).

Definition of Framework-based Performance Models for Dynamic Performance Tuning

 71

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

0% 10% 20% 40% 80%

tim
e

(s
)

stddev

Fixed Size Chunking -Experimental Results-

FSC
F=1.0

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

0% 10% 20% 40% 80%

tim
e

(s
)

stddev

Factoring (Fixed Factor) -Experimental Results-

FF
F=1.0

 (a) (b)

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

0% 10% 20% 40% 80%

tim
e

(s
)

stddev

Adaptative Factoring -Experimental Results-

AF
F=1.0

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

0% 10% 20% 40% 80%

tim
e

(s
)

stddev

Policies Comparision (V=1M u=2ms)-Experimental Results-

AF
FF

FSC

 (c) (d)

Figure 12. Execution of a 25-worker application with an associated mean processing
time of 2 ms per task, a communication volume of 1 Mb, and for a standard deviation
ranging from 0% to 80%. Distribution policy used: (a) FCS, (b) DPF, and (c) DAF. Policy
comparison (d).

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

0% 10% 20% 40% 80%

tim
e

(s
)

stddev

Fixed Size Chunking -Experimental Results-

FSC
F=1.0

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

0% 10% 20% 40% 80%

tim
e

(s
)

stddev

Factoring (Fixed Factor) -Experimental Results-

FF
F=1.0

 (a) (b)

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

0% 10% 20% 40% 80%

tim
e

(s
)

stddev

Adaptative Factoring -Experimental Results-

AF
F=1.0

 2.4

 2.6

 2.8

 3

 3.2

 3.4

 3.6

 3.8

0% 10% 20% 40% 80%

tim
e

(s
)

stddev

Policies Comparision (V=120K u=6ms)-Experimental Results-

AF
FF

FSC

 (c) (d)

Figure 13. Execution of a 25-worker application with an associated mean processing
time of 6 ms per task, a communication volume of 240 Kb, and for a standard deviation
ranging from 0% to 80%. Distribution policy used: (a) FCS, (b) DPF, and (c) DAF. Policy
comparison (d).

Chapter III Master/Worker Framework Performance Model

 72

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

0% 10% 20% 40% 80%

tim
e

(s
)

stddev

Fixed Size Chunking -Experimental Results-

FSC
F=1.0

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

0% 10% 20% 40% 80%

tim
e

(s
)

stddev

Factoring (Fixed Factor) -Experimental Results-

FF
F=1.0

 (a) (b)

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

0% 10% 20% 40% 80%

tim
e

(s
)

stddev

Adaptative Factoring -Experimental Results-

AF
F=1.0

 2.4

 2.6

 2.8

 3

 3.2

 3.4

 3.6

 3.8

 4

0% 10% 20% 40% 80%

tim
e

(s
)

stddev

Policies Comparision (V=1M u=6ms)-Experimental Results-

AF
FF

FSC

 (c) (d)

Figure 14. Execution of a 25-worker application with an associated mean processing
time of 6 ms per task, a communication volume of 1 Mb, and for a standard deviation
ranging from 0% to 80%. Distribution policy used: (a) FCS, (b) DPF, and (c) DAF. Policy
comparison (d).

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

0% 10% 20% 40% 80%

tim
e

(s
)

stddev

Load Balancing Algorithms -Experimental Results-

FSC
F=1.0

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

0% 10% 20% 40% 80%

tim
e

(s
)

stddev

Load Balancing Algorithms -Experimental Results-

FF
F=1.0

 (a) (b)

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

0% 10% 20% 40% 80%

tim
e

(s
)

stddev

Load Balancing Algorithms -Experimental Results-

AF
F=1.0

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

0% 10% 20% 40% 80%

tim
e

(s
)

stddev

Load Balancing Algorithms -Experimental Results-

AF
FF

FSC

 (c) (d)

Figure 15. Execution of a 50-worker application with an associated mean processing
time of 2 ms per task, a communication volume of 240 Kb, and for a standard deviation
ranging from 0% to 80%. Distribution policy used: (a) FCS, (b) DPF, and (c) DAF. Policy
comparison (d).

Definition of Framework-based Performance Models for Dynamic Performance Tuning

 73

 1

 1.5

 2

 2.5

 3

 3.5

0% 10% 20% 40% 80%

tim
e

(s
)

stddev

Load Balancing Algorithms -Experimental Results-

FSC
F=1.0

 1

 1.5

 2

 2.5

 3

 3.5

0% 10% 20% 40% 80%

tim
e

(s
)

stddev

Load Balancing Algorithms -Experimental Results-

FF
F=1.0

 (a) (b)

 1

 1.5

 2

 2.5

 3

 3.5

0% 10% 20% 40% 80%

tim
e

(s
)

stddev

Load Balancing Algorithms -Experimental Results-

AF
F=1.0

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

0% 10% 20% 40% 80%

tim
e

(s
)

stddev

Load Balancing Algorithms -Experimental Results-

AF
FF

FSC

 (c) (d)

Figure 16. Execution of a 50-worker application with an associated mean processing
time of 6 ms per task, a communication volume of 240 Kb, and for a standard deviation
ranging from 0% to 80%. Distribution policy used: (a) FCS, (b) DPF, and (c) DAF. Policy
comparison (d).

We can see that, in general, we have obtained the expected results: the Dynamic

Adjusting Factoring policy (DAF) leads to the best results and is less affected by a

high standard deviation, the factoring policy with Dynamic Predictive Factoring

(DPF) is quite good for a small and medium standard deviation, and the fixed size

chunking policy (FSC) is, usually by far, the worst one.

Nevertheless, we think that the outcomes of the DPF policy for the configurations

displayed in figures 9, 10, and 11 deserve some further discussion. For these cases,

we can see that the DPF policy shows a behavior that is some times worse than the

FSC one, and usually closer to FSC than to DAF.

We believe that the atypical values of these figures could be partially caused by

statistical deviations, as a result of running only fifteen iterations of the application.

For instance, we can see in figure 17 the mean execution time of each worker for

the application of figure 9 and for an 80% standard deviation using the FSC policy

(a) and that of the DPF (b); it is clear that there is a greater dispersion for the values

in the case of DPF than for those of FSC, which is likely to make it more difficult to

balance the DPF case. This is happening, regardless of using the same

configuration for both cases, because the parameters passed to the application are

Chapter III Master/Worker Framework Performance Model

 74

the mean execution time and the standard deviation and not the actual execution

times.

However, this is not the main problem; actually, running more iterations in order to

get more statistically sound results will not make the real problem disappear.

Because the real problem is that both policies only take into consideration the mean

execution time associated with each worker and neglect the standard deviation

associated to this time. In consequence, in regard to the experiments, we use the

same mean processing time for all tasks; thus, in the long run for all workers, the

FSC and DPF policies will tend to be overoptimistic because on average the

application seems more and more homogeneous for each new iteration, while the

real situation is likely to be far from homogenous due to the high standard deviation.

As an example, we can see in figure 17 the value of the partition factor in each

iteration for the FSC policy (c) and the DPF policy (d) given the mean execution

times per worker of graphs (a) and (b) respectively. There, we can see how, as the

mean processing times of the workers become closer to each other, the partition

factor increases because the policy assumes that the application is more and more

homogeneous.

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 2 4 6 8 10 12 14

m
ea

n
ex

ec
ut

io
n

tim
e

iteration number

Fixed Size Chunking -Experimental Results-

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 2 4 6 8 10 12 14

m
ea

n
ex

ec
ut

io
n

tim
e

iteration number

Factoring (Fixed Factor) -Experimental Results-

(a) (b)

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14

P
ar

tit
io

n
F

ac
to

r

iteration number

Load Balancing Algorithms -Experimental Results-

FSC

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 0 2 4 6 8 10 12 14

P
ar

tit
io

n
F

ac
to

r

iteration number

Load Balancing Algorithms -Experimental Results-

FF

(c) (d)

Figure 17. Mean execution time/processor in each iteration for a 25-worker application
with a mean processing time of 0.5 ms/task, a communication volume of 240 Kb, and a
standard deviation of 80%, using the FSC policy (a), and using DPF policy (b). Factor
variation in each iteration for both policies, (a) FSC and (b) DPF.

Definition of Framework-based Performance Models for Dynamic Performance Tuning

 75

We outlined this problem when we described the distribution policies and we said

that estimating the partition factor for both FSC and DPF assumes a steady

behavior of the application. It should be noticed that recalling less history could

improve the results for a high standard deviation, just because the policy will expect

more dispersion and, in consequence, will be more conservative; on the other hand,

it could worsen the results for a low standard deviation by being more sensitive to

those few values that are far from the mean.

Even though, empirically, this explains why the distribution policy does not always

lead to the results expected, we still have to clarify why it seems to have a greater

effect over the DPF policy than over the FSC one. To do so, it will be helpful to

analyze what happens for different partition factor values in the FSC policy:

• Partition factor below 0.4. These values lead to several batches (no less

than three); if the task processing time standard deviation is low then we

will have an unnecessary increase of the communication overhead. On the

other hand, if the task processing time standard deviation is high then

many batches should help to balance the processor load.

• Partition factor greater or equal to 0.5 and lesser or equal to 0.7. These

values lead to only two batches with the second batch including a

significant number of tasks. In this situation, a worker that has received a

regular chunk in the first round, which means that this worker neither needs

too much time nor too little to process it, is likely to require a second chunk

and if this second chunk is a tough one, which means that the worker will

spend above average time to process it, then the overall performance of

the application will be worsened because the policy is not flexible enough

to recover from a situation like that.

• Partition factor greater than 0.7. These values also lead to only two

batches, but this time the second batch includes few tasks. In this case, if

the task processing time standard deviation is low, a set of chunks with a

few tasks will help to minimize load unbalance.

As a result, it is very unlikely to get intermediate values for the partition factor from

the estimation process for the FSC policy. This is a fundamental difference

regarding DPF policy because, for this policy, any partition factor value (except 1

obviously) could lead to the creation of several batches and, consequently, it is more

probable to have smooth variations of the partition factor for the DPF policy than for

that of the FSC. This annoying behavior of the FSC policy will generally lead to

Chapter III Master/Worker Framework Performance Model

 76

obtaining worse results with this policy than with the others, but for a high

processing time standard deviation, which is only indirectly seen by the policy

through the per processor mean, these steep variations on the partition factor could

sometimes lead to better results than the gradual adaptation of the DPF one.

This analysis can be seen in graphs (c) and (d) of figure 17, but it is even clearer

in graphs (a) and (b) of figure 18. In those graphs, we show the variation of the

partition factor for the FSC (a) and DPF (b) policies during the execution of the 50-

worker application of figure 15 for a standard deviation of 20% and 80%. We can

see there how, for a low standard deviation (20%), both policies choose high

partition factors, but for a high standard deviation the DPF policy only slightly

decreases the chosen factor, while the FSC sharply jumps from very low factors to

very higher ones and vice versa.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14

pa
rt

iti
on

 fa
ct

or

iteration

Load Balancing Algorithms -Experimental Results-

FSC 20%
FSC 80%

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14

pa
rt

iti
on

 fa
ct

or

iteration

Load Balancing Algorithms -Experimental Results-

FF 20%
FF 80%

(a) (b)

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 10 20 30 40 50 60 70 80 90 100

pa
rt

iti
on

 fa
ct

or

iteration

Load Balancing Algorithms -Experimental Results-

20%

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0 20 40 60 80 100 120 140 160 180

pa
rt

iti
on

 fa
ct

or

iteration

Load Balancing Algorithms -Experimental Results-

80%

 (c) (d)

Figure 18. Factor variation during the execution of a 50-worker application with a mean
execution time of 6 ms per task, 240 Kb of communication volume, and a standard
deviation of 20% and 80%. FSC (a), DPF (b), DAF with a 20% standard deviation (c),
and DAF with an 80% standard deviation.

Finally, we can also see in figure 18 (c) and (d) how the DAF distribution policy

deals with load unbalancing. We can see that, independently of the standard

deviation value, at the beginning of the iteration the partition factor is higher than at

the end, assuming that there will be enough margin during the iteration to overcome

any possible load unbalance. Moreover, we can see that the policy is aware of the

Definition of Framework-based Performance Models for Dynamic Performance Tuning

 77

standard deviation of the processing time because it produces a consistent output

with no sharp variations.

3. Adapting the Number of Workers

As we mentioned in the previous section, in an ideal Master/Worker application the

total execution time would be equal to the sequential execution time divided by the

number of workers, but this is assuming that there is no communication cost, that

the application is executing on a dedicated and homogeneous platform, that we

have achieved a perfect load balancing, and that the computation also scales

ideally. In this ideal world, any available resource that can be assigned to the

application must be assigned, because it will be efficiently used to improve the

application performance.

However, one observes, in the real world that the speedup of the application

usually decreases as new resources are assigned to it, indicating a loss in

efficiency. Moreover, at some point, assigning more resources to the application will

produce performance decreases because the costs introduced are greater than the

advantages brought by the new resources.

Consequently, we must take all these parameters into consideration in order to be

able to decide how many resources must be used to optimize the application

performance ensuring, at the same time, an efficient use of these resources. With

this objective, we have developed an analytical model, based on the behavior of a

Master/Worker application.

We presented a first version of this analytical model in [CMo+02], and successive

extensions to it were presented in [CM+03] and [CM+04]. Finally, in [MCe+05] and

[MC+05] we presented a couple of implementations of a tuning tool that uses part of

the model to dynamically improve the performance of real applications. This model

is employed to evaluate the behavior of the application when it is executing and

decide if it will be worthwhile to change the number of workers in order to improve its

performance. With the objective of defining a useful model for making the best

possible predictions, we have taken into consideration all the relevant parameters,

but at the same time, we have tried to keep the model as simple as possible.

The only assumptions we have made when defining the model are that there is

only one worker executing in each processor, and that the application is balanced.

The former can be justified by efficiency reasons because having several workers

Chapter III Master/Worker Framework Performance Model

 78

on the same processor is only useful in terms of performance if they can get blocked

in I/O operations. On the other hand, we have previously shown that it is possible to

get a pretty good balance of the application load by using tasks distribution

methods; thus, we can simplify the complexity and increase the efficiency of the

model by assuming that there has been a load balancing stage before deciding on

the number of workers. In addition, although we do not make any specific

assumption about the hardware platform used for the execution of the application,

we have not dealt with heterogeneous platforms and, consequently, the

performance model makes more sense on homogeneous ones.

The detailed definition and discussion of the model and the results of the extensive

experimentation we have done are shown and commented on the following

subsections.

3.1. Expressions for modeling a balanced Master/Worker

Before defining the expressions that describe the behavior of a Master/Worker

application, we have to indicate the parameters that we have taken into

consideration and the terminology that will be used from now on.

Firstly, we have characterized the interconnection network with the classical

message start up time plus communication time formula, which is quite simple

although [GL99] claims that it is not very accurate because it could lead to many

pitfalls, such as ignoring the contention with jobs not related to the application, or

ignoring the synchronization component of the communication, or ignoring cache

effects. Nevertheless, we use this expression because our model will be used in a

dynamic tuning environment, so we will be able to monitor the network conditions

and adapt the expression parameters accordingly.

Secondly, in order to be able to evaluate the model expressions, we need to know

the time each worker is making useful computation, the time the master invests in

building new sets of data, the amount of data sent and received to/from each

worker, and the kind of communication protocol (blocking/synchronous or not).

Thirdly, we should be aware of some parameter dependence on the number of

workers. For example, for some problem solutions a constant amount of data is

distributed among the workers, while for other problem solutions the whole data set

is sent to all workers; in the first case adding new workers not only decreases the

number of tasks each worker will compute, but also the amount of data it will

receive. By contrast, in the second case, the amount of data received by the worker

Definition of Framework-based Performance Models for Dynamic Performance Tuning

 79

will be the same, although it will compute fewer tasks. The dependences that we

have considered can be summarized as follows:

• Between the amount of data to be communicated and the variation of

the number of workers.

• Between the computational load and the variation of the number of

workers.

Finally, we will use the following terminology to identify the different parameters

that are part of our performance model:

• mo: per message start up time, in ms.

• λ: per byte communication cost (inverse bandwidth), in ms/byte.

• wm
iv / : size sent/received to/from worker i, in bytes.

• V: total communication volume, in bytes.

• n: current number of workers of the application.

• α: portion of V sent to the workers, αV = ∑
−

=

1

0

n

i

m
iv and (1- α)V = ∑

−

=

1

0

n

i

w
iv .

• µi: processing time worker i has spent in processing its assigned

tasks, in ms.

• µm: processing time spent by the master on the preparation of a new

set of tasks.

• Tc: total processing time o workers (∑
−

=

1

0

n

i
iµ), in ms.

Now, it is time to develop the performance model expressions, which are based on

the structure and functional behavior of the Master/Worker pattern. The idea is to

define, in the first place, a general performance expression and then, considering

different execution conditions and the parameter dependences, derivate more

specific expression sets, the former must clearly reflect the pattern functional

behavior, and the latter must be useful for improving the application performance.

In figure 19, we show a graphical representation of the execution trace of an

iteration of a Master/Worker application; there, we can see that the iteration begins

with the master distributing tasks among workers, this step implies a communication

phase between the master and each worker. Each worker then goes on processing

the set of tasks it has received; next, each worker sends back to the master the

results of its calculations, implying another communication phase between each

Chapter III Master/Worker Framework Performance Model

 80

worker and the master; finally, the master could spend some processing time to

generate a new set of tasks for another iteration.

How long the first communication phase (data distribution) lasts depends on the

interconnection network parameters, the amount of data to be sent, the number of

workers, and the communication protocol; consequently, we can define it as function

S(λ , mo, αV, n). The duration of the workers� computation phase depends on the

total processing time and the number of workers; it can, therefore, be defined as a

function C(Tc,n). Finally, the amount of time the second communication phase

(results gathering) takes depends again on the network parameters, the amount of

data being transferred, and the number of workers; thus, it can be defined as a

function R(λ,mo,(1α)V,n).

 Figure 19. Typical execution trace of an iteration of a Master/Worker application.

It should be noticed that, when defining these functions, we must be aware of the

existing overlapping times among them. In particular, we can graphically see in

figure 19 that there is a time overlap between the data distribution phase and the

calculation phase, and another one between the calculation phase and the results

gathering phase. Based on this analysis, we are able to define a general

performance expression for the execution time of an iteration of a Master/Worker

application (Tt) as:

Tt = S(λ , mo, αV, n) + C(Tc, n) + R(λ , mo, (1-α)V, n) + µm (3)
As of now, we want to specify these functions for different execution conditions

and, after that, we will consider the parameter dependences defined above. In the

first place, we will develop the data distribution function (S) considering the

communication protocol. As we previously mentioned, we can use the m
io vm λ+

expression to model the transference of m
iv bytes from the master to worker i.

Workers

Data distribution Workers computing Gathering results

Master

Definition of Framework-based Performance Models for Dynamic Performance Tuning

 81

However, we want to calculate the time necessary to perform the whole data

distribution, which is not always the addition of the times spent sending messages to

each worker. It depends on the communication protocol (synchronous or

asynchronous) that is in use when the communication takes place. As a

consequence, we have the following cases:

• If a synchronous communication protocol is being used then the master

has to finish each transference (the data is received by the worker)

before starting the next one. Thus resulting in:

() ()∑
−

=

+=
1

0

,,,
n

i

m
ioo vmnVmS λαλ

• If an asynchronous communication protocol is being used then when the

master makes a send operation the data is stored in some intermediate

buffer and the next transference could begin before the previous one has

ended. Consequently, as sending operations are overlapped in time, only

the greater of the two components of the communication expression has

to be added for each worker. Hence the resulting expressions are:
m
noo vnmnVmS 1),,,(−+= λαλ if { }10 −≤≤∀≥ niivm m

io λ ; or

∑
−

=

+=
1

0

),,,(
n

i

m
ioo vmnVmS λαλ if not

In the second place, we will define the computation function (C) considering that

there is a time overlap among the workers� processing phase and the distribution

phase. Specifically, when the last chunk of tasks sent by the master has been

received by the destination worker (an event that marks the end of the

communication phase) every other worker has already started processing its tasks.

As we have assumed that the execution is balanced, which means that the mean

processing times of all workers will be very similar, we can assume that the last

worker to start will also be the last one to finish; therefore, we can define the

function C(Tc,n) as µn-1.

Finally, we will define the results gathering function (R) taking into consideration

the overlapping of time with the computation phase. There is time overlapping with

the computation phase because when the last worker to end its processing starts

sending some results back to the master (the event that marks the end of the

computation phase) every other worker has already sent back its results. As a

consequence, it seems that we only have to be aware of this last data transference

in order to define function R, but there is a final consideration to be made, which is

that there cannot be overlapping of time between the data distribution and results

Chapter III Master/Worker Framework Performance Model

 82

gathering phases. This time overlapping is possible if a worker sends back its

answer before the master has ended the data distribution. In that case, there will be

a delay in the results reception by the master and the iteration will last longer. The

problem is the same that was introduced when explaining the Dynamic Adjusting

Factoring (DAF) data distribution policy, which led us to the definition of the Master’s

Chunk Managing Capability concept (see section 2.3). Summarizing, function R(λ ,

mo, (1-α)V, n) can be defined as w
no vm 1−+ λ , provided that the Master has not

reached its Master’s Chunk Managing Capability.

The analysis of the execution conditions of the application leads to the derivation

of the following set of expressions from expression (3):

Communication Protocol

Asynchronous Synchronous
m
io vm λ≥

m

w
nn

m
no vvmnTt µλµλ +++++= −−− 111)1((4)

m
io vm λ≤

m

n

i

w
nn

m
io vvmTt µλµλ ++++= ∑

−

=
−−

1

0
112 (5)

() m
w
non

n

i

m
io vmvmTt µλµλ +++++= −−

−

=
∑ 11

1

0

 (6)

Next, we will analyze the effect of the parameter dependences mentioned before

in order to complement these performance expressions. These dependences should

be considered with the objective of improving the prediction accuracy of the model.

In particular, it is very important to be able to forecast which would be the

communication volume (V) and processing time (Tc) for a certain number of workers

because, as we have seen, the performance expressions depend on these values.

Firstly, we will analyze the dependence between the amount of data to be

communicated (V) and the variation in the number of workers. Assuming that there

is an abstraction of the problem being solved as a set of data structures, the issue

we are considering now consists in knowing how the amount of data transferred

back and forth between the Master and the Workers varies in relation to changes in

the number of workers. Whereas it is fair to assume that the number of tasks

assigned to each worker will decrease as the number of workers increases, the

overall volume of data transferred could remain steady if each worker receives and

sends back less data, or could increase if the decrease of the data received and

sent by each worker is not proportional to the number of new workers.

More specifically, the new total volume of data to be communicated (V�) will be in

the range [V, (n�/n)V], where n� is the number of workers for which we are making

the prediction, n is the current number of workers, and V is the current data volume.

Definition of Framework-based Performance Models for Dynamic Performance Tuning

 83

We will get the lower bound of this range in those cases where the total

communication volume is constant, no matter the number of workers used, and the

upper bound when the communication volume increases in a one to one proportion

with the number of workers. It should be noticed that for a decrease in the number of

workers, which might be worthwhile to consider in some situations, there will be a

swapping of roles between both bounds. Consequently we can define the new

communication volume (V�) as a function of the current communication volume (V),

in the following way: V� = V + ∆V, where ∆V will depend on the number of workers or

will be 0.

Secondly, a similar analysis can be made on the dependence between the total

workers� processing time (Tc) and variations in the number of workers. The variation

degree of the workers� processing time (Tc) depends on the portion of processing

time that each worker spends computing tasks and the portion that it spends

executing task independent code (such as initialization). The greater the former, the

littler the Tc variation when the number of workers changes, because increasing the

number of workers decreases the number of tasks received by each worker and, as

a result, only the task dependent portion of the processing time will proportionally

decrease, while the independent portion will remain steady, thus increasing the

overall processing time.

Therefore, we can say that the new overall processing time (Tc�) will be Tc + (n�-

n)(portion of processing time each worker spends executing task independent

code), where n� is the number of workers for which we are making the prediction and

n is the current number of workers. As a consequence, Tc� can be defined as a

function of Tc in the following way: Tc�=Tc + ∆Tc. However, this time we may assume

that task processing portion will be significantly greater than the task independent

one because if the contrary happens the parallelization degree of the application will

be low, which would be considered a design problem. Consequently, there should

be a significant change in the number of workers in order to notice a meaningful

variation of the overall processing time.

Summarizing, we can say that changing the number of workers could cause

variations in the overall communication volume (V) and the overall workers

processing time (Tc), in addition, the variation of V can be significant, while Tc

variation should not. As a consequence, if we want to produce good performance

predictions for our tuning tools we have to be able to measure the ∆V and ∆Tc

variation factors.

Chapter III Master/Worker Framework Performance Model

 84

Once we have decided how to deal with the dependences among some model

parameters, it is time to make some final remarks that will lead to simpler

expressions with the objective of simplifying the application of the model by a tuning

tool. We have said before that both communication functions (S and R) depend on

the number of workers (n) and the overall communication volume (V), and also that

the processing function (C) depends on the number of workers and the overall

processing time (Tc), but when writing the expressions none of these parameters

explicitly appeared. That was because then it was clearer to describe the

performance functions in terms of particular data transfers (wm
iv /) and execution

times (µi) than doing so in terms of V and Tc.

However, as we have assumed that the application is balanced, we can say that

the overall processing time and data will be fairly distributed among all workers.

Therefore, we can define m
iv as nV /α , w

iv as nV /)1(α− , and µi as Tc/n. Clearly, it

will be easier to store and use only the overall amount of data transferred between

the master and the workers (V) and the overall processing time of the workers (Tc),

than the specific values of each worker. Moreover, it is necessary to define the

performance expressions in terms of the number of workers to fulfill the objectives of

being able to predict the performance of the application for a different number of

workers. Applying these substitutions to expressions (4), (5), and (6) results in the

following set of expressions to describe the performance of a Master/Worker

application:

Communication Protocol

Asynchronous Synchronous
m
io vm λ≥

mo n

VTcmnTt µλ
+

+
++=

)()1((7)

m
io vm λ≤

()()[]

mo n
TcVnmTt µλα

+
++−

+=
112 (8)

()()[]
mo n

TcVnmnTt µλα
+

++−
++=

11)1((9)

Finally, we would like to introduce a more formal definition of the Master’s Chunk

Managing Capability concept. We have said that it is the maximum number of data

chunks the Master can manage from the time it sends a chunk to a worker until it

receives the answer for the same chunk from that worker. If this capability is

persistently exceeded then there will be workers answering more quickly than the

Master�s capability to send data to all of them. There can be two different

consequences: if the Master prioritizes receives over sends then some workers will

not receive data and will be idle, as can be seen in figure 20 (a); on the contrary, if

Definition of Framework-based Performance Models for Dynamic Performance Tuning

 85

the Master prioritizes sends over receives then workers will have to wait for the

Master to end the data distribution before their answers are received, as can be

seen in figure 20 (b).

In order to calculate the Master’s Chunk Managing Capability and, in

consequence, be able to detect when it is being exceeded, we must be able to know

how many chunks can be sent by the Master from the time it sends a chunk to a

worker to the moment the answer of that worker, for the same chunk, is available.

(a)

(b)

Figure 20. Illustration of the possible effects of exceeding the Master�s Chunk Managing
Capability. Workers left completely idle, because receives are being prioritized over
sends (a). Workers delayed, because sends are being prioritized over receives (b).

The expression to calculate this value can be obtained from equating the time

needed by the Master to distribute tasks with the time needed by a Worker to get a

chunk, process the received tasks, and send back the results to the Master.

Considering different communication conditions we get the following equations for

the Master’s Chunk Managing Capability:

Communication Protocol

Asynchronous Synchronous
m
io vm λ≥

wm

o
m
no vvmvnm 0001 2 λµλλ +++=+ −

m
io vm λ≤

wm

o

n

i

m
io vvmvm 000

1

0

2 λµλλ +++=+ ∑
−

=

wm
o

n

i

m
io vvmvnm 000

1

0

2 λµλλ +++=+ ∑
−

=

Chapter III Master/Worker Framework Performance Model

 86

Substituting the particular data volumes and processing times of these

expressions by their simplifications on V and Tc, and solving them for the number of

workers, we get that if the number of workers (n) is greater than the following

expressions our application will be exceeding the Master�s Chunk Managing

Capability:

Communication Protocol

Asynchronous Synchronous

m
io vm λ≥

()()













+

+−+
1

12

o

oo

m
TcVmm λα (10)

m
io vm λ≤









−
+

omV
TcV

λα
λ (11)

() () ()












 ++−+−

o

ooo

m
TcVmmVVm

2
422 2 λλαλα (12)

3.2. Analysis of the Master/Worker performance expressions

Before continuing with the definition of our performance model for Master/Worker

applications, and discussing how the decision of changing the number of workers

should be taken, we want to introduce some mathematical analyses of the

expressions defined so far, with the aim of showing their interrelations, as well as

their adaptability to real executing conditions.

In the first place, we show in figure 21 the output of functions (7) and (8) (graphs

(a) & (b) respectively), and (9) (graphs (c) & (d)), for fixed values of V (1Kbyte for (a)

& (c) and 1Mbyte for (b) & (d)), and Tc (2 sec.), and different number of workers

(from 5 to 120 (a) & (c) and from 1 to 150 (b) & (d)), assuming a message overhead

of 1 ms. and a per byte transmission time of 1µs. The idea is to show the expected

execution values for configurations that should be calculated with expressions (7)

and (8) (graphs (a) and (b)), and compare them with the corresponding synchronous

example (graphs (c) and (d)). Moreover, using expressions (10), (11), and (12) the

number of workers that can be managed by the Master without exceeding the

Master’s Chunk Managing Capability has been calculated and it is indicated in each

graph by an arrow and the label of the applied expression.

There are several observations that can be made in figure 21:

• First, we can see that expressions (7) and (9) (graphs (a), (c), and (d))

show that adding more workers can significantly improve the

performance of the application, but also that beyond some point this

action leads to performance loses. However, expression (8) (graph (b))

Definition of Framework-based Performance Models for Dynamic Performance Tuning

 87

produces lower and lower values as we increase the number of workers.

A simple analysis of the expressions is enough to explain these

observations: It can be easily shown that the second term of expressions

(7) (
n

VTc)(λ+
), and (8) and (9) (

()()[]
n

TcVn ++− λα 11
), decreases if n

increases and V and Tc remain constant, getting closer and closer to 0.

By contrast, whereas the first term of expressions (7) and (9) ((n+1)mo)

increases linearly with n, the first term of expression (8) (2mo) is constant.

As a result, while expressions (7) and (9) will have a decreasing value if

and only if the reduction of the second term is greater than the growth of

the first one, expression (8) will have a constantly decreasing value that

will get closer and closer to 2mo + µm. Nevertheless, if the overall data

volume (V) does not increase linearly with the number of workers

(V�<(n�/n)V), adding new workers to the application will lead to smaller

messages and eventually to overrunning the m
io vm λ≤ condition and,

consequently, from this point expression (7) should be used instead.

 50

 100

 150

 200

 250

 300

 350

 20 40 60 80 100 120

E
xe

c.
 ti

m
e

Number of Workers

Modeling Master/Worker Applications

(10)

mess. overhead dominates

 800

 1000

 1200

 1400

 1600

 1800

 2000

 20 40 60 80 100 120 140

E
xe

c.
 ti

m
e

Number of Workers

Modeling Master/Worker Applications

(11)

mess. comm. dominates

 (a) (b)

 50

 100

 150

 200

 250

 300

 350

 20 40 60 80 100 120

E
xe

c.
 ti

m
e

Number of Workers

Modeling Master/Worker Applications

(12)

synchronous comm.

 1000

 1100

 1200

 1300

 1400

 1500

 1600

 1700

 1800

 1900

 2000

 20 40 60 80 100 120 140

E
xe

c.
 ti

m
e

Number of Workers

Modeling Master/Worker Applications

(12) synchronous comm.

 (c) (d)

Figure 21. Expected execution times for an application with 1 Kbyte of communication
volume (V) and 2 sec. of processing time (Tc), using asynchronous communication (a)
and synchronous communication (c). The same for an application with 1 Mbyte of
communication volume (V) (b and d).

Chapter III Master/Worker Framework Performance Model

 88

• Next, it can also be seen that functions (7) and (9) have a minimum

value, which tells us for what number of workers we obtain the lowest

execution time. Clearly, this is the optimal number of workers in order to

maximize the applications performance. Actually, it is possible to find this

value analytically if the relationship between V and V� is clearly

established beforehand (for badly designed applications, it may also be

necessary to consider the relation between Tc and Tc�). We only have to

solve the expression 0=
∂
∂

n
Tt for n in order to get the number of workers

with the lowest associated execution time. We have solved this

expression for the number of workers ([CM+04] and [MCe+05]) making V�

= V and V�=(n�/n)V, and we obtained the following results:

Communication Protocol

Asynchronous Synchronous

V�=V ()







 +=
o

opt m
VTcn λ (13) ()()








 −+=
o

opt m
VTcn λα1 (14)

V�=(n�/n)V 



=

o
opt m

Tcn (15) ()





+= Vm
Tcn

o
opt αλ (16)

In the examples shown above, these expressions lead to the following

results: 44 workers for graphs (a) and (c) using expressions (13) and

(14), and 45 workers for graph (d) using expression (14). In addition, if

we had increased the communication volume (V) linearly with the number

of workers we would have got the following results: 44 workers for graph

(a) using expression (15), 32 workers for graph (c) using expression (16),

and for graph (d) the models says that it is better to run the application

sequentially.

We should introduce a commentary about applications modeled by

expression (8) and the number of workers that maximizes performance.

We mentioned before that condition m
io vm λ≤ will eventually be overrun if

the data volume does not increase linearly, for example if the

communication volume (V) stays constant this will happen for

omVn /λα> workers. From that number of workers, the application will be

modeled by expression (7) and, as a consequence, either it reaches its

minimum value at the switching point if function (7) is already increasing

Definition of Framework-based Performance Models for Dynamic Performance Tuning

 89

for that number of workers, or it will reach its minimum value later

following expression (13) if not.

Finally, finding the optimal number of workers that minimizes execution

time could seem attractive, but, as we will explain in the next section, the

efficiency in the use of the resources (processors) is likely to decrease

sharply when the number of workers is around the optimal value,

consequently, we must find a compromise between performance and

efficient use of resources.

• Finally, we have included a mark in each graph that indicates the number

of workers that can be managed by the Master without exceeding the

Master’s Chunk Managing Capability (MCMC), specifically by using

expression (10) we got that the Master can manage up to 45 workers for

the prediction shown in graph (a), by using expression (11) we got that it

can manage up to 3 for the prediction shown in graph (b), and by using

expression (12) we got that it can manage up to 48 and 2 for the

predictions shown in graphs (c) and (d) respectively.

It can be seen in graphs (a) and (c) that the value of the expression for

this number of workers is closer to the minimum value of the expression,

while for graphs (b) and (c) it is far from the minimum value. Actually, it

can be demonstrated that for applications modeled by expression (7) the

number of workers that make the Master exceed its MCMC will always be

greater than the number of workers needed to get the lowest execution

time, while it is possible for the Master to exceed its MCMC before or

after arriving at the theoretical lowest execution time value for

applications modeled by expressions (8) and (9).

To demonstrate for an application modeled by expression (7) that the

number of workers exceeding the MCMC is always greater than the

number of workers for which the application gets its lowest execution

time we assume that it is possible (nopt > n that causes the Master to

exceed its MCMC) for a communication volume (V) that increases

linearly with the number of workers (which is the less favorable situation

for the application performance) and, as a result, we get a contradiction.

Specifically the demonstration is:

We know that the Master of an application modeled by expression (7)

exceeds its MCMC if the number of workers goes beyond the value of

Chapter III Master/Worker Framework Performance Model

 90

expression (10), i.e., if ()()













+

+−+
> 1

'1
'

2

o

oo

m
TcVmm

n
λα where V� = (n�/n)V

and n is the current number of workers.

From this expression, we can get that n
m
Tc

nm
Vnn

oo
2)1(''2 ++

−
>

λα , then if

we have assumed that nopt > n� we know that nopt
2> n�2, and substituting

nopt by expression (15) we get that n
m
Tc

nm
Vn

m
Tc

ooo
2)1('

++
−

>
λα should be

true. However this expression is equivalent to n
nm

Vn

o
2)1('0 +

−
>

λα , which is

impossible because 0)1('
>

−

onm
Vn λα and 2n > 0. As a result nopt cannot be

greater than the number of workers that causes the Master to exceed its

MCMC.

The same can be said for applications modeled by expression (8) that

reach their lowest execution time modeled by expression (7).

All these observations and analyses can be summarized in the following way:

• An application modeled by expression (7) will reach its lowest execution

time for some number of workers between the values of expressions (13)

and (15) depending on the relationship between the communication

volume (V) and the number of workers.

• The same will be true for an application modeled by expression (8) if the

relationship m
io vm λ≤ does not hold for nopt, which means that for that

number of workers the application is modeled by expression (7). On the

contrary, the application will reach its lowest execution time for

min(expression (11), omVn /λα>), which is either the number of workers

that causes the Master to exceed its MCMC or the number of workers

that causes the application to be modeled by expression (7) because
m
io vm λ≤ does not hold anymore.

• Finally, an application modeled by expression (9) will reach its lowest

execution time for min(expression (12), between the values of

expressions (14) and (15)), depending on the relation among the

communication volume (V) and the number of workers.

Secondly, we want to discuss the sensitivity of the performance expressions to

small variations of the parameters. We want to do that because for real executions,

even for the more stable ones, we will get slightly variable values depending on the

Definition of Framework-based Performance Models for Dynamic Performance Tuning

 91

current conditions of the network (such as network contention), the influence of the

local cache memory, or even from the operating system (such as context switches).

As a result, we will be evaluating the performance of an application based on the

mean values of the observed execution and communication times, the mean values

of the size of messages, and even the mean values of the network overhead and

communication speed. Therefore, we must demonstrate that small variations of the

parameters will not result in completely mistaken predictions of the application

performance.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 20 40 60 80 100 120

E
xe

c.
 ti

m
e

Number of Workers

Modeling Master/Worker Applications

original +10%
V +10%

Tc +10%
mo +10%

lamb +10%
Everything +10%

 0

 50

 100

 150

 200

 250

 20 40 60 80 100 120

E
xe

c.
 ti

m
e

Number of Workers

Modeling Master/Worker Applications

original +10%
V +10%

Tc +10%
mo +10%

lamb +10%
Everything +10%

 (a) (b)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 20 40 60 80 100 120

E
xe

c.
 ti

m
e

Number of Workers

Modeling Master/Worker Applications

original +10%
V +10%

Tc +10%
mo +10%

lamb +10%
Everything +10%

 0

 50

 100

 150

 200

 250

 20 40 60 80 100 120

E
xe

c.
 ti

m
e

Number of Workers

Modeling Master/Worker Applications

original +10%
V +10%

Tc +10%
mo +10%

lamb +10%
Everything +10%

 (c) (d)

Figure 22. Differences of the execution times predicted by the performance expressions
shown in figure 21 and the same example with an individual 10% variation of V, Tc, mo,
and λ, and a 10% variation of all parameters at once.

In order to fulfill this objective, we have analyzed what happens to the expression

outcomes for a variability of ±X% on each parameter, looking first at the influence of

each parameter individually and then looking at the influence of the combination of

all parameters. We will illustrate this analysis with the graphs shown in figure 22.

There,we can see the differences between the values obtained in figure 21 and the

same example with a 10% individual variation of the communication volume (V),

processing time (Tc), network overhead (mo), and communication speed (λ), and a

10% variation of all parameters at once.

Chapter III Master/Worker Framework Performance Model

 92

It can be easily seen that any single X% deviation of any parameter will produce a

global deviation smaller than the X% of the total execution time. As an example let

us analyze the effect of variations on the communication volume (V) and processing

time (Tc); it is easy to see that a deviation of ±X% of any of these parameters, or of

both of them at the same time, will produce in any case (expressions (7), (8), and

(9)) a variation of less than X% on the whole prediction. Assuming the worst

situation for a variation of ±X% of V and/or Tc the following condition for Tt will be

held for expression (7):

t)T
100
X(1µ

n

λV))(Tc
100
X(1

1)m(nTtµ
n

λV))(Tc
100
X(1

1)m(n)Tt
100
X(1 momo +<+

++
++≤≤+

+−
++<−

The following one for expression (8):

()()[] ()()[]
TtX

n

TcVnX

mTt
n

TcVnX

mTtX
momo)

100
1(

11)
100

1(
2

11)
100

1(
2)

100
1(+<+

++−+
+≤≤+

++−−
+<− µ

λα
µ

λα

And, finally, the following one for expression (9):

()()[] ()()[]
TtX

n

TcVnX

mnTt
n

TcVnX

mnTtX
momo)

100
1(

11)
100

1(
)1(

11)
100

1(
)1()

100
1(+<+

++−+
++≤≤+

++−−
++<− µ

λα
µ

λα

This relationship is clearly shown in the graphs of figure 22, where we can see

how the differences between the originally predicted execution time and the one

predicted with a single variation of each parameter, increased (or decreased) by

10%, are always below the differences between the originally predicted execution

time and the predicted execution time increased (or decreased) by 10%.

Actually, only the combined deviation of the communication volume (V) and

network speed (λ) could produce an overall deviation greater than the individual

ones because these parameters appear in the same product. If the application

is computation intensive, then this effect will occur almost unnoticed, as we can

see in graphs (a) and (c) of figure 22. On the contrary, for communication

intensive applications, the effect could lead to wrong predictions as can be

seen in graphs (b) and (d) of figure 22. Specifically, an individual deviation of

X% for V and λ could produce an overall deviation of:

)10010021()1001()1001()1001(222 XXVXXVX ++⇒+=++ λλ , which more than

doubles the individual ones (e.g. for individual deviations of 10% we could get a

21% overall deviation, or for individual deviations of 20% we could get a 44% overall

deviation).

Definition of Framework-based Performance Models for Dynamic Performance Tuning

 93

On the other hand, the same analysis for expressions (10), (11), and (12), which

allow us to estimate the maximum number of workers that can be added without

exceeding the Master’s Chunk Managing Capability (MCMC), reveals that these

expressions are more sensitive to some parameter deviations than expressions (7),

(8), and (9). This happens because we have more products involving two or more

parameters; thereby multiplying the effects of measurement errors.

In conclusion, the Master/Worker performance expressions ((7), (8), and (9)) are

not too sensitive to small measurement mistakes, except for the accumulation of

errors measuring the communication volume (V) and network speed (λ). In contrast,

other expressions, such as (10), (11), and (12) are more sensitive to variations in a

wide range of parameters. Consequently, we have to consider this fact when

evaluating the performance of the application trying to give more credit to the results

of the most reliable expressions.

3.3. Efficiency indexes

Thus far we have defined a set of expressions, which have been called

performance expressions, that model the performance of a Master/Worker

application under different circumstances ((7), (8), and (9)), and also others that can

be useful to determine the limits to the number of workers that can be added to an

application to improve its performance; moreover, some of these expressions ((10),

(11), and (12)) complement the performance ones, while others ((13) to (16)) are

directly derived from them.

Whereas this set of expressions can be useful for tuning the performance of a

Master/Worker application, the efficiency in the use of the available resources is not

taken into consideration in any of these expressions. Nonetheless, this is a relevant

issue if these resources were to be shared among different applications, or even

when a complex application, built as a composition of two or more frameworks, is

analyzed and a decision taken about the best resource assignment. Moreover, it can

be seen intuitively in the example shown in figure 23 that adding more workers to

the application when the execution time is close to its minimum is, from the point of

view of the use of the resources, very inefficient. In this figure, we show the

expected execution times (using expression (7)) of an application with a

communication volume (V) of 4Kbytes and an overall processing time (Tc) of 1.6

sec, assuming also a message overhead mo of 1ms and a network speed of

1µs/byte, for a number of workers ranging from 10 to 60. A simple calculation shows

Chapter III Master/Worker Framework Performance Model

 94

that going from 15 to 20 Workers means a gain of 17.68% in the execution time with

an increase of 33% in the number of resources, while going from 30 to 40 (where

the model predicts the lowest execution time -nopt-) Workers means a gain of 3.99%

for the same relative increment of the number of resources. Since we are increasing

the number of resources in the same proportion, the decreasing gain of the

execution time must be due to a drop in efficiency.

 80

 90

 100

 110

 120

 130

 140

 150

 160

 10 15 20 25 30 35 40 45 50 55 60

E
xe

c.
 ti

m
e

Number of Workers

Modeling Master/Worker Applications

Expected execution time

Figure 23. Expected execution time of an asynchronous Master/Worker application
where V = 4096 bytes, and Tc=1600 ms.

Consequently, the definition of a performance index, which not only takes into

consideration the performance gain but also the efficiency in the use of resources, is

a requirement that must be fulfilled in order to complete the definition of our

Master/Worker performance model.

Several efficiency indexes could be defined for the purpose of taking the best

decision when changing the number of workers. They may range from simple ones,

such as fixing a lower bound for the relationship between the observed speedup and

the ideal one, to more complex ones, such as relating the speedup or execution time

changing rate with the amount of resources needed to achieve it. However, users

must indicate a threshold for such indexes, which implies that they should know

exactly what any value of the index means. It usually demands a high degree of

knowledge about the application and its execution platform. On the other hand, it is

possible to define a performance index, which directly relates the performance with

the efficiency in the use of resources, like the one defined in [HS+04]. The main

advantage of such an index is that it can be automatically optimized because we

can find the best possible relationship between efficiency and performance gain.

Furthermore, we are going to discuss and illustrate in more detail some of the

Definition of Framework-based Performance Models for Dynamic Performance Tuning

 95

indexes previously mentioned in order to emphasize the importance of having at

hand a function that can be automatically optimized.

In the first place, we are going to take a look at a simple index, such as fixing a

lower bound to the relationship between observed speedup (sequential execution

time/observed execution time -Tt-) and ideal speedup (number of workers). That

index indirectly takes into consideration the efficient use of the resources because if

the observed speedup stays close to the ideal one then we are making good use of

the assigned resources. However, the problem is to determine how close is close

enough.

We show in figure 24 the expected and ideal evolution of the speedup for the

example of figure 23; it can be seen that the distance between them becomes

significant from 15 workers on. At that point, the relation among the expected and

the ideal speedup is 0.87, it is 0.79 for 20 workers, it is 0.63 for 30 workers, and it is

0.49 for 40 workers. Supposing now that we have another application with the same

parameters, except for the communication volume (which is 81Kbytes this time),

recalculating the index we will get 0.42 for 29 workers, 0.36 for 38 workers, 0.28 for

56 workers, and 0.22 for 74 workers (where the model predicts the new lowest

execution time -nopt-). A careful look will reveal that we are indicating the value of the

index in equivalent points: for nopt, (3/4)nopt, (1/2)nopt, and (3/8)nopt, but they are quite

different from one configuration to the other. The problem is that what can be

considered a good value for this index also depends on the communication volume.

Consequently, for the user to be able to decide a good index threshold he must also

be aware of the application communication volume.

 0

 10

 20

 30

 40

 50

 60

1 10 20 30 40 50

S
pe

ed
up

Number of workers

Speedup Index

Expected Speedup
Ideal Speedup

Figure 24. Expected speedup and ideal speedup for the application of figure 23.

Chapter III Master/Worker Framework Performance Model

 96

In the second place, we are going to take a look at an index that is based on

relating the variation rate of a performance function (like Tt or Speedup) to the

amount of resources needed to achieve it. This index has the advantage of taking

into consideration both the application performance improvement and the resources

invested to obtain it, but again the user will be responsible for fixing a threshold for

what will be regarded as a good value.

For instance, if we use the expressions for estimating the execution time (Tt) to

define this index, we can define the variation rate as (Tt(y) � Tt(x))/Tt(y), which

produces a value in the range (-1, 1). An absolute value of this function close to 1

indicates a significant variation of the execution time; on the contrary, a value of 0

indicates no variation at all. In addition, we define a resource variation rate as (x �

y)/x, which also produces a value in the range (-1, 1), except 0 because it means

that the number of resources does not change. An absolute value of this function

close to 1 indicates a significant variation of the number of resources, while a value

close to 0 indicates little variation on this number. Finally, we combine both

expressions dividing the first one by the second one to get the following expression:

)()(
))()((

yTtyx
xxTtyTt

−
− . This index will produce a value in the range [-1, 1], if this value is

close to one then the application is expected to make good use of the additional

resources. If the value is close to 0 then the application will not make efficient use of

these resources, and if the value is below 0 then the performance of the application

is expected to worsen iwith the additional resources.

In order to illustrate the usefulness of his index, we can use again the example of

fig 23. For this example, if we are executing the application with 15 workers and

want to know if it will be appropriate to go to 20 workers, we will get a value for the

index of 707.0
939733.122)1520(

20)2048.101939733.122(
=

−
− , and if we are executing the application with

30 workers and want to evaluate if it is worth going to 40 workers we will get

16.0
469867.84)3040(

40)1024.81469867.84(
=

−
− . As it was expected, the index indicates that the first

action is significantly better than the second (we mentioned before that going from

15 to 20 workers implies a performance improvement of more than 17%, while going

from 30 to 40 workers implies an improvement of only 4%).

However, we wanted to know if we would get similar values for similar situations

on other applications (we have just seen that it was not the case for the speedup

Definition of Framework-based Performance Models for Dynamic Performance Tuning

 97

based index); thus, we used the same second example as before, which is the same

application but with a data volume (V) of 81Kbytes instead of 4Kbytes. In order to

get comparable results we evaluate equivalent transitions, which are going from 28

to 37 workers (from (3/8)nopt to (1/2)nopt), and going from 55 to 74 workers (from

(3/4)nopt to nopt), getting an index value of 0.43 for the former and a value of 0.27 for

the latter. These results are sound because the first transition leads to a

performance improvement of 10.5%, which is worse than the one we got for the first

example, while the second transition leads to an improvement of 6.9%, which this

time is better than the one we got for the first example. Again, it is easy to see the

difficulty for the user who has to decide a threshold for the index because what can

be considered a good value for the index will depend on some application

characteristics.

As a result, if using an index that asks the user for a threshold is quite difficult, we

can see why it is very important to define an index that can be optimized without its

intervention. We have adapted the index described in [HS+04] to our model, the

basic idea behind this index, and its main difference with the ones described

previously, is to define an efficiency index and relate it to the application

performance. This efficiency index is defined as the portion of time that workers are

doing useful work over the time they have been available for doing useful work.

More formally, we define the efficiency index for x workers E(x) as
availT
Tc , where Tavail

is ∑
−

=

1

0

x

i
itavail , and tavaili is the time worker i has been available for doing useful work,

which for an application like the ones we are modelling, where workers are not

created or eliminated in the middle of an iteration, will be the whole iteration time

(Tt). Consequently, the efficiency index will be defined as
)(xxTt

Tc , and the

performance index as:

Tc
xxTt

xE
xTtxPi

2)(
)(
)(

)(== (17)

We show in figure 25 the performance index value and execution time for the

example of figure 23 for a number of workers ranging from 5 to 50. It can be seen

that the performance index reaches its minimum value at the point from where

adding more workers to the application is not expected to significantly improve its

performance. Actually, there is only a 13.5% performance gain from 23 workers

Chapter III Master/Worker Framework Performance Model

 98

(93.7433 ms) to 40 workers (lowest expected execution time of 81.1024), increasing

the amount of resources in by 74%.

 50

 100

 150

 200

 250

 300

 5 10 15 20 25 30 35 40 45 50

Number of workers

Performance Index

Min (23 Workers)

Performance Index
Expected Execution time

Figure 25. Performance Index (17) and expected execution time for the application of
figure 23.

We introduce two more examples, shown in figures 26 and 27, in order to illustrate

the index outcomes for applications modeled by expressions (8) and (9)

respectively. The first example (figure 26) shows the expected execution time for a

Master/Worker application with a communication volume (V) of 200Kbytes (90%

distributed by the Master, 10% answered by workers), a processing time (Tc) of 2s,

a network overhead of 1ms, and a network transference speed of 0.001 ms/byte.

For the second example (figure 27), only the communication volume (V) has been

changed from 200Kbytes to 20Kbytes.

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 5 10 15 20 25 30 35 40

Min (10 workers)

Expected Execution Time
Performance Index

 100

 120

 140

 160

 180

 200

 220

 240

 260

 280

 300

 320

 10 15 20 25 30 35 40 45 50

Min (22 Workers)

Min (10 workers)

Expected Execution Time
Performance Index

Figure 26. Performance Index (17) and expected execution time for an asynchronous
Master/Worker application with V=200Kbytes and Tc=2s.

Definition of Framework-based Performance Models for Dynamic Performance Tuning

 99

It can be seen in figure 26 that, although the expected execution time is expected

to steadily decrease (the condition for the application of expression (8) is true), we

are getting the performance index lowest value at 10 workers, which is just two

workers before this application is expected to surpass the Master’s Chunk Managing

Capability (MCMC), which was calculated using expression (11). Actually, it can be

demonstrated that for applications modeled by expression (8) the minimum value of

this performance index will always be obtained before exceeding the MCMC. First, if

we substitute the term Tt(x) of expression (17) by expression (8) the resulting

expression is the particularized performance index for applications modeled by

expression (8); next we calculate the first derivate of this expression (
x
xPi

∂
∂)(), and

finally we equate the resulting expression to 0 (searching for a minimum) and solve

for x. This process, which applied to expressions (7) and (9) leads to hard to solve

quartic expressions, produces for expression (8) the following result:









+
+−

=
omV
TcVx

λα
λα))1((.

Comparing this expression with expression (11) 







−
+

omV
TcV

λα
λ , we can see that the

dividend is smaller and the factor is greater than the ones of expression (11),

consequently the value of expression (11) will be always greater than or equal to x.

 100

 120

 140

 160

 180

 200

 220

 240

 260

 280

 300

 320

 10 15 20 25 30 35 40 45 50

Min (22 Workers)

Min (10 workers)

Expected Execution Time
Performance Index

Figure 27. Performance Index (17) and expected execution time for a synchronous
Master/Worker application with V=20Kbytes and Tc=2s.

In the last example of figure 27 it can be seen that the performance index reaches

its lowest value at 22 workers, which is less than the number of workers that causes

the Master to exceed its MCMC (37 workers accordingly to expression (12)), and

Chapter III Master/Worker Framework Performance Model

 100

obviously less than the number of workers for the lowest expected execution time

(44 workers accordingly to expression (9)).

Finally, there is the problem of determining for what number of workers we get the

lowest index value. We have seen before that it is easy for applications modeled by

expression (8), but when the application is modeled by expressions (7) or (9) and

following the same steps described above (basically solving the 0
)(
=

∂
∂

x
xPi for x) we

find that the following quartic expressions must be solved for x:

0)())(2(43 22234 =+−++++ VTcxmVTcxmxm ooo λλ (for expression (7) and making

0=mµ),

0))1(())())1((2()(43 22234 =+−−+++−+++ TcVxmVTcVmxmVmxm ooooo λααλλααλ

(for expression (9) and making 0=mµ).

The roots of these expressions can be found using the Ferrari technique [Weiss]

or, knowing that we are only interested on finding the floor of the first positive root of

the expression, using a simpler bisection procedure.

In conclusion, the performance index (Pi), which relates execution time with

resource efficiency, allows us to automatically find the number of workers that

maximizes performance (minimizing execution time) without wasting resources for

every Master/Worker application, independently of the value of the parameters that

characterize them.

3.4. Experimental evaluation on a real platform

In the previous sections, we have defined and analyzed a set of expressions

aimed at modeling the performance of Master/Worker applications in a dynamic

performance tuning environment. Now, our goal is to validate this analytical model

through the execution of a wide range of synthetically generated applications on the

same platform described in section 2.4. The characteristics of the applications we

have executed are summarized in table 4, where it can be seen that we have

covered a wide range of possibilities, from low-compute low-communication to

intensive compute and communication applications in order to reach this validation

goal. Moreover, we have executed several configurations with a constant

communication volume and an asynchronous communication protocol, then some

configurations using a synchronous communication protocol, some configurations

with a variable communication volume, and finally, some configurations using a

synchronous communication protocol and a variable communication volume.

Definition of Framework-based Performance Models for Dynamic Performance Tuning

 101

 Comm.

Vol.(V) Proc
Time (Tc)

10 Kbytes 100 Kbytes 512 Kbytes 2 Mbytes

1 sec fig 28

From 2 to 40
workers. Constant
com. volume &
async. com.

From 2 to 40
workers. Constant
com. volume &
async. com.

From 2 to 35
workers. Constant
com. volume &
async. com.

From 2 to 20
workers. Constant
com. volume &
async. com.

fig 29
From 4 to 55
workers. Constant
com. vol & async.
com.

From 4 to 55
workers. Constant
com. vol & async.
com.

From 4 to 40
workers. Constant
com. vol & async.
com.

From 2 to 20
workers. Constant
com. vol & async.
com.

fig 31
From 2 to 55
workers. Constant
com. vol & sync
com.

From 2 to 55
workers. Constant
com. vol & sync
com.

From 2 to 55
workers. Constant
com. vol & sync
com.

From 2 to 55
workers. Constant
com. vol & sync
com.

fig 32

From 2 to 40
workers. Async.
com. & com.
volume that grows
a 10% of the
original for each
new worker.

From 2 to 40
workers. Async.
com. & com.
volume that grows
a 10% of the
original for each
new worker.

From 2 to 40
workers. Async.
com. & com.
volume that grows
a 10% of the
original for each
new worker.

From 2 to 30
workers. Async.
com. & com. volume
that grows a 10% of
the original for each
new worker.

fig 33

From 2 to 40
workers. Async.
com. & com.
volume that grows
a 100% of the
original for each
new worker.

From 2 to 35
workers. Async.
com. & com.
volume that grows
a 100% of the
original for each
new worker.

From 2 to 20
workers. Async.
com. & com.
volume that grows
a 100% of the
original for each
new worker.

5 sec

fig 34

From 2 to 40
workers. Sync.
com. & com.
volume that grows
a 30% of the
original for each
new worker.

From 2 to 40
workers. Sync.
com. & com.
volume that grows
a 30% of the
original for each
new worker.

From 2 to 30
workers. Sync.
com. & com.
volume that grows
a 30% of the
original for each
new worker.

From 2 to 30
workers. Sync. com.
& com. volume that
grows a 30% of the
original for each
new worker.

15
sec fig 30

From 2 to 55
works. Constant
volume of com,
asynchronous
communication.

From 2 to 55
works. Constant
volume of com,
asynchronous
communication.

From 2 to 55 works.
Constant volume of
com, asynchronous
communication.

From 2 to 55 works.
Constant volume of
com, asynchronous
communication.

Table 4. Summary of the configurations executed in order to test the analytical
performance model for Master/Worker applications.

The synthetic application algorithm can be summarized as follows:

1. Master & Workers calculate the size of messages that will be transferred

between them, and the computation time associated with each worker,

using the number of workers (x), communication volume (V), and

processing time (Tc) arguments.

2. The Masters goes into a loop (number of iterations argument) for sending

messages (using the indicated communication protocol) to every Worker

and then waiting for answers from them all.

3. Each worker goes into a loop (number of iterations argument) waiting for a

message from the Master, spending the associated processing time, and

Chapter III Master/Worker Framework Performance Model

 102

answering back with a new message (using the indicated communication

protocol).

The results obtained for each test configuration has been processed in order to

eliminate statistical anomalies. Then, they have been plotted together the results

predicted by the analytical performance model and the real and predicted values of

the performance index for the same configuration. Finally, we have grouped four

graphs in each figure (except in fig 33, which only includes three) corresponding to

the configurations of a file of table 4, and each figure is supplemented by a table

with some relevant magnitudes: the number of workers for the real and expected

lowest execution time, the number of workers for the real and expected lowest

performance index value, and the real and expected highest number of workers the

Master can manage (real values are only shown if they are available).

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

 5 10 15 20 25 30 35 40

E
xe

cu
tio

n
tim

e

Num. Workers

Real vs Expected Execution Times

Real
Expected

P. Index (real)
P. Index (expected)

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 5 10 15 20 25 30 35 40

E
xe

cu
tio

n
tim

e

Num. Workers

Real vs Expected Execution Times

Real
Expected

P. Index (real)
P. Index (expected)

 (a) (b)

 0

 100

 200

 300

 400

 500

 600

 700

 5 10 15 20 25 30 35

E
xe

cu
tio

n
tim

e

Num. Workers

Real vs Expected Execution Times

Real
Expected

P. Index (real)
P. Index (expected)

 100

 200

 300

 400

 500

 600

 700

 2 4 6 8 10 12 14 16 18 20

 600

 800

 1000

 1200

 1400

 1600

E
xe

cu
tio

n
tim

e

Num. Workers

Real vs Expected Execution Times

Real
Expected

P. Index (real)
P. Index (expected)

 (c) (d)

Figure 28. Execution times and Performance Index values of a Master/Worker
application with an associated processing time (Tc) of 1 sec. and constant
communication volumes of 10Kbytes (a), 100 Kbytes (b), 512 Kbytes (c) and 2Mbytes
(d). Ranging from 2 to 40 workers for cases (a), (b) and (c), and from 2 to 20 workers for
case (d). Using asynchronous communication.

Using the experiments of figure 28, we show the results of executing an

application with a low associated processing time of only one second and for

different communication loads using the standard communication mode, which in

Definition of Framework-based Performance Models for Dynamic Performance Tuning

 103

this case means asynchronous sends. Whereas, in general it can be seen that

model matches the application behavior, there are some cases that deserve more

detailed comments.

Firstly, it can be easily seen that small differences between the real execution

value and the expected one lead to significant differences between the real

performance index value and the expected one. This happens because of the

multiplicative effect that the differences between the expected and the observed

execution time (Tt(x)2) introduces in the performance index. However, we can trust

the expected value because, in general, the index tendency is preserved.

Secondly, a sudden discontinuity can be seen in figure 28 (b) for 32 workers,

which is due to the communication library implementation. MPI library uses different

communication protocols depending on the message size and buffers available

[MPI95]. Briefly, if programmers do not choose a particular communication mode

(blocking, non-blocking, buffered, etc.) the library uses the standard send, which

means that depending on the current execution conditions and message

characteristics a ready, a blocking, or even a synchronous send may be issued.

A ready send can be used when the matching receive has been posted and allows

removing some hand-shake messages; thereby improving performance. A blocking

send does not return until the message has been stored away and the sender is free

to reuse the send buffer; it happens when the message is copied in the matching

receiving buffer or in a system buffer. Finally, a synchronous send only returns when

the matching receive has started to receive the message. Usually, MPI

implementations use ready sends for little messages and blocking or synchronous

ones for long messages.

Number of Workers

for the Lowest
Execution Time

MCMC Exceeding
Point

Number of Workers
for the Performance
Index Lowest Value

Real 30 __ 15 Fig. 28
(a) Expected 26 __ 15

Real 36 __ 15 Fig. 28
(b) Expected 32 __ 12

Real 22 __ 14 Fig. 28
(c) Expected 22 __ 13

Real 11 9 9 Fig. 28
(d) Expected 64 10 9

Table 5. Relevant real and expected magnitudes associated with applications of figure
28.

Chapter III Master/Worker Framework Performance Model

 104

Consequently, as far as we have used the standard communication mode in the

synthetic applications, what is reflected in the graph is the change between blocking

communication mode and the ready one. The possibility of having changes like this

should be taken into consideration by the tuning tool (monitoring the message

overhead) because they could cause significant mismatches between the observed

results and the predicted ones.

Finally, the differences between the observed and the predicted values of case 28

(d) should be highlighted, in order to emphasize the relevance of calculating the

Master�s Chunk Managing Capability (MCMC) exceeding point (table 5). It can be

seen that from 9 workers on, the divergence between the observed and expected

values becomes bigger and bigger all the time. In addition, we do not include the

MCMC exceeding point for the other cases because it is always beyond the point

where the lowest execution time is reached.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 10 20 30 40 50
 200

 400

 600

 800

 1000

 1200

 1400

E
xe

cu
tio

n
tim

e

Num. Workers

Real vs Expected Execution Times

Real
Expected

P. Index (real)
P. Index (expected)

 0

 500

 1000

 1500

 2000

 2500

 3000

 10 20 30 40 50
 0

 500

 1000

 1500

 2000

 2500

 3000

E
xe

cu
tio

n
T

im
e

Num. Workers

Real vs Expected Execution Times

Real
Expected

P. Index (real)
P. Index (expected)

 (a) (b)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 5 10 15 20 25 30 35 40
 0

 200

 400

 600

 800

 1000

 1200

E
xe

cu
tio

n
tim

e

Num. Workers

Real vs Expected Execution Times

Real
Expected

P. Index (real)
P. Index (expected)

 0

 500

 1000

 1500

 2000

 2500

 3000

 2 4 6 8 10 12 14 16 18 20

E
xe

cu
tio

n
tim

e

Num. Workers

Real vs Expected Execution Times

Real
Expected

P. Index (real)
P. Index (expected)

 (c) (d)

Figure 29. Execution times and Performance Index values of a Master/Worker
application with an associated processing time (Tc) of 5 sec. and constant
communication volumes of 10Kbytes (a), 100 Kbytes (b), 512 Kbytes (c) and 2Mbytes
(d). Ranging from 4 to 55 workers for cases (a) and (b), from 4 to 40 workers for case
(c), and from 2 to 20 workers for case (d). Using asynchronous communication.

In the graphs of figure 29 we show the results of the execution of an application

with an average associated processing time of five seconds and for different

Definition of Framework-based Performance Models for Dynamic Performance Tuning

 105

communication loads. In this case, we can see that both the lowest execution value

and the lowest performance index value are reached with a significantly greater

number of workers than those of figure 28; nevertheless, it must be noticed that this

increment is far from proportional to that of the processing time. Moreover, it seems

that there are less mismatching points between the observed and the expected

results than for the previous figure, which is because in the previous case the

application executions were more sensitive to any external influence (such as a

context switching) due to the low computing time associated with each worker,

mainly when several workers were used.

A very good example of this fact can be seen in figure 29 (b), again we are

reaching the point of communication mode switching of the communication library at

32 workers, but this time the effect is just barely reflected in the graph.

Finally, we can see in table 6 significant differences between the expected and the

observed number of workers where lowest performance index is reached. We can

partially blame the multiplicative effect of the total expected and observed execution

time (Tt(x)) differences in the performance index expression for this fact. Although

there are exceptions, the absolute differences between the observed index value for

the number of workers that lead to the lowest expected value and the observed

lowest index value are usually not too high. However, in the particular case of figure

29, we are getting significant differences of 21.47% for case (a) and of 20.9% for

case (c) because in both cases the observed execution time has experienced a

slight increase in relation to the expected value just for the number of workers that

should lead to the lowest index value, while next to them we have gotten a few

observed values below the expected ones.

Number of Workers

for the Lowest
Execution Time

MCMC Exceeding
Point

Number of Workers
for the Performance
Index Lowest Value

Real __ __ 41 Fig. 29
(a) Expected 62 __ 35

Real __ __ 37 Fig. 29
(b) Expected 62 __ 35

Real __ __ 36 Fig. 29
(c) Expected 49 __ 28

Real __ __ __ Fig. 29
(d) Expected 50 50 46

Table 6. Relevant real and expected magnitudes associated with applications of figure
29.

Chapter III Master/Worker Framework Performance Model

 106

In the graphs of figure 30, we show the results of the execution of an application

with a high associated processing time of fifteen seconds and for different

communication loads. Again, a close matching between observed and predicted

values is confirmed because this application is still more immune from external

influences than the previous ones. Moreover, we can see again that more workers

can be added to the application (table 7) than for the previous case (table 6) before

reaching the applications� lowest execution time and performance index lowest

value, but also that this increment is not proportional to that of the processing time.

In addition, the performance index values are closer to those of the total execution

time in the range shown than in the previous cases; it is because the communication

overhead is very low in relation to the processing time and, consequently, the total

execution time is closer to the processing time (Pi(x) = Tt(x)2/Tc ≈ Tt(x)). Moreover,

the low weight of communications also makes the protocol change of graph 30 (b)

go unnoticed.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 10 20 30 40 50

E
xe

cu
tio

n
T

im
e

Num. Workers

Real vs Expected Execution Times

Real
Expected

P. Index (real)
P. Index (expected)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 10 20 30 40 50

E
xe

cu
tio

n
T

im
e

Num. Workers

Real vs Expected Execution Times

Real
Expected

P. Index (real)
P. Index (expected)

 (a) (b)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 10 20 30 40 50

E
xe

cu
tio

n
T

im
e

Num. Workers

Real vs Expected Execution Times

Real
Expected

P. Index (real)
P. Index (expected)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 10 20 30 40 50

E
xe

cu
tio

n
T

im
e

Num. Workers

Real vs Expected Execution Times

Real
Expected

P. Index (real)
P. Index (expected)

 (c) (d)

Figure 30. Execution times and Performance Index values of a Master/Worker application with an

associated processing time (Tc) of 15 sec. and constant communication volumes of 10Kbytes (a), 100

Kbytes (b), 512 Kbytes (c) and 2Mbytes (d). The range is from 4 to 55 workers in all cases and

asynchronous communication is used.

Definition of Framework-based Performance Models for Dynamic Performance Tuning

 107

In this case, there is also a closer match between the expected and observed

values of the performance index than the one obtained for the application of figure

29. In particular, there are differences of only 1.3% and 1.9% between the observed

and the expected lowest index value for cases (b) and (c) respectively.

Number of Workers

for the Lowest
Execution Time

Number of Workers
for the Performance
Index Lowest Value

Real __ __ Fig. 30
(a) Expected 107 61

Real __ __ Fig. 30
(b) Expected 107 61

Real __ 45 Fig. 30
(c) Expected 84 48

Real __ 44 Fig. 30
(d) Expected 84 50

Table 7. Relevant real and expected magnitudes associated with applications of figure
30.

 0

 500

 1000

 1500

 2000

 2500

 3000

 10 20 30 40 50

E
xe

cu
tio

n
T

im
e

Num. Workers

Real vs Expected Execution Times

Real
Expected

P. Index (real)
P. Index (expected)

 0

 500

 1000

 1500

 2000

 2500

 3000

 10 20 30 40 50

E
xe

cu
tio

n
T

im
e

Num. Workers

Real vs Expected Execution Times

Real
Expected

P. Index (real)
P. Index (expected)

 (a) (b)

 0

 500

 1000

 1500

 2000

 2500

 3000

 10 20 30 40 50

E
xe

cu
tio

n
T

im
e

Num. Workers

Real vs Expected Execution Times

Real
Expected

P. Index (real)
P. Index (expected)

 0

 500

 1000

 1500

 2000

 2500

 3000

 10 20 30 40 50

E
xe

cu
tio

n
T

im
e

Num. Workers

Real vs Expected Execution Times

Real
Expected

P. Index (real)
P. Index (expected)

 (c) (d)

Figure 31. Execution times and Performance Index values of a Master/Worker
application with an associated processing time (Tc) of 5 sec. and constant
communication volumes of 10Kbytes (a), 100 Kbytes (b), 512 Kbytes (c) and 2Mbytes
(d). The range is from 2 to 40 workers for cases (a), (b) and (c), and from 2 to 30 workers
for case (d). Synchronous communication is used.

Chapter III Master/Worker Framework Performance Model

 108

In the graphs of figure 31, we show the results of the execution of an application

with an average associated processing time of five seconds and for different

communication loads using a synchronous communication protocol, which in a MPI

environment means, as we mentioned before, that a send will not finish until the

matching receive begins.

We can see that there is also a closer match between the observed values and the

expected ones, and we can say that, comparing these results with the ones shown

in figure 29 (same application using standard communication protocol), using a

synchronous communication protocol produces a significant decrease in the

application�s performance; as a consequence, the lowest execution time and lowest

performance index values are reached with less workers. Actually, differences

become greater when more workers (thus more communications) are added. For

instance, with a communication volume of 100 Kbytes the differences ranges from

0.9% for 2 workers to 17% for 40 workers.

Moreover, there is a result that should be especially highlighted: it is the influence

of the communication protocol on the MCMC for big messages (table 8), if

compared to the results shown in figure 29. However, it should be noticed that,

despite the performance index sensitivity to little variations of the total execution

time, the index lowest value is reached before the MCMC exceeding point. This is

happening because, for applications using this protocol, when the MCMC exceeding

point is reached the possible performance gains are quite limited due to the

dominating communication component of the total execution time.

Number of Workers

for the Lowest
Execution Time

MCMC Exceeding
Point

Number of Workers
for the Performance
Index Lowest Value

Real __ __ 27 Fig. 31
(a) Expected 55 __ 27

Real __ __ 38 Fig. 31
(b) Expected 55 __ 31

Real 45 41 34 Fig. 31
(c) Expected 49 43 25

Real 48 30 21 Fig. 31
(d) Expected 46 30 21

Table 8. Relevant real and expected magnitudes associated with applications of figure 31.

Using the experiments of figure 32 we show the results of executing an application

with a medium associated processing time of five seconds and for different

communication loads using the standard communication mode, which in this case

Definition of Framework-based Performance Models for Dynamic Performance Tuning

 109

means asynchronous sends. The difference with the application of figure 29 is that

the overall communication volume increases with each worker added to the

application. In this case, with each new worker, starting from the second, the

communication volume (V) increases by 10% of the original value, it is

1Kbyte/worker for the 10Kbytes case, 10Kbytes/worker for the 100Kbytes case,

51.2Kbytes/worker for the 512Kbytes case, and 204.8Kbytes/worker for the 2Mbytes

case.

 0

 500

 1000

 1500

 2000

 2500

 3000

 5 10 15 20 25 30 35 40

E
xe

cu
tio

n
T

im
e

Num. Workers

Real vs Expected Execution Times

Real
Expected

P. Index (real)
P. Index (expected)

 0

 500

 1000

 1500

 2000

 2500

 3000

 5 10 15 20 25 30 35 40

E
xe

cu
tio

n
T

im
e

Num. Workers

Real vs Expected Execution Times

Real
Expected

P. Index (real)
P. Index (expected)

 (a) (b)

 0

 500

 1000

 1500

 2000

 2500

 3000

 5 10 15 20 25 30 35 40

E
xe

cu
tio

n
T

im
e

Num. Workers

Real vs Expected Execution Times

Real
Expected

P. Index (real)
P. Index (expected)

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5 10 15 20 25 30

E
xe

cu
tio

n
T

im
e

Num. Workers

Real vs Expected Execution Times

Real
Expected

P. Index (real)
P. Index (expected)

 (c) (d)

Figure 32. Execution times and Performance Index values of a Master/Worker
application with an associated processing time (Tc) of 5 sec. and initial communication
volumes of 10Kbytes (a), 100 Kbytes (b), 512 Kbytes (c) and 2Mbytes (d), which are
incremented in a 10% for each added worker. The range is from 2 to 40 workers for
cases (a), (b) and (c), and from 2 to 30 workers for case (d). Asynchronous
communication is used.

As expected, there is, in all cases, a negative effect on the application

performance when compared to the results of figure 29. In addition, this negative

effect is more significant when the communication volume is larger. For instance, we

can see in this example that for an initial communication volume of 10 Kbytes (figure

32 (a)) the results are comparable to (slightly better than) those obtained for the

synchronous communication protocol of figure 31 (a), while for a communication

volume of 2 Mbytes (figure 32 (d)) the results are significantly worse than those of

figure 31 (d).

Chapter III Master/Worker Framework Performance Model

 110

We can also see that there are again significant differences between the real and

expected number of workers for the performance index lowest value (table 9).

However, the highest difference between the expected and observed index values is

of only 13.5% for figure 32 (c), not far from the 9.6% of figure 32 (a), the 10.9% of

figure 32 (b) and the 9.9% of figure 32 (d).

Number of Workers

for the Lowest
Execution Time

MCMC Exceeding
Point

Number of Workers
for the Performance
Index Lowest Value

Real __ __ 37 Fig. 32
(a) Expected 54 __ 31

Real __ __ 36 Fig. 32
(b) Expected 48 __ 28

Real __ __ 18 Fig. 32
(c) Expected 44 41 24

Real 19 19 10 Fig. 32
(d) Expected 22 19 11

Table 9. Relevant real and expected magnitudes associated with applications of figure 32.

The experiments of figure 33 show the results of executing an application with a

medium associated processing time of five seconds and for different communication

loads using the standard communication mode, which in this case means

asynchronous sends. The difference with the application of figure 29 is that the

overall communication volume increases with each worker added to the application.

In this case, with each new worker, starting from the second, the communication

volume (V) increases in a 100% of the original value, it is 10Kbyte/worker for the

10Kbytes case, 100Kbytes/worker for the 100Kbytes case, and 512Kbytes/worker

for the 512Kbytes case. We have skipped the 2 Mb case because there won�t be

any benefit from parallelization for an application with the given characteristics.

It can be seen that for an application with little communication (10Kb case), like

the one of figure 33 (a), it is possible to improve performance even if adding more

workers implies a relatively significant growth of the communication volume. On the

other hand, an application that from the beginning has an important communication

component, like the one of figure 33 (c), will receive very little advantage from the

addition of new resources.

Definition of Framework-based Performance Models for Dynamic Performance Tuning

 111

 0

 500

 1000

 1500

 2000

 2500

 3000

 5 10 15 20 25 30 35 40

E
xe

cu
tio

n
T

im
e

Num. Workers

Real vs Expected Execution Times

Real
Expected

P. Index (real)
P. Index (expected)

 0

 500

 1000

 1500

 2000

 2500

 3000

 5 10 15 20 25 30 35

E
xe

cu
tio

n
T

im
e

Num. Workers

Real vs Expected Execution Times

Real
Expected

P. Index (real)
P. Index (expected)

 (a) (b)

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 2 4 6 8 10 12 14 16 18 20

E
xe

cu
tio

n
T

im
e

Num. Workers

Real vs Expected Execution Times

Real
Expected

P. Index (real)
P. Index (expected)

(c)

Figure 33. Execution times and Performance Index values of a Master/Worker
application with an associated processing time (Tc) of 5 sec. and initial communication
volumes of 10Kbytes (a), 100 Kbytes (b), and 512 Kbytes (c), which are incremented in a
100% for each added worker. The range is from 2 to 40 workers for case (a), from 2 to
35 workers for case (b), and from 2 to 20 workers for case (c). Asynchronous
communication is used.

Number of Workers

for the Lowest
Execution Time

Number of Workers
for the Performance
Index Lowest Value

Real __ 31 Fig. 33
(a) Expected 48 28

Real 32 18 Fig. 33
(b) Expected 31 18

Real 12 6 Fig. 33
(c) Expected 14 8

Table 10. Relevant real and expected magnitudes associated with applications of figure
33.

The experiments of figure 34 show the results of executing an application with a

medium associated processing time of five seconds and for different communication

loads using the synchronous communication protocol. The difference with the

application of figure 31 is that, this time, the overall communication volume

increases with each worker added to the application. In this case, with each new

worker, starting from the second, the communication volume (V) increases by 30%

Chapter III Master/Worker Framework Performance Model

 112

of the original value: it is 3Kbyte/worker for the 10Kbytes case, 30Kbytes/worker for

the 100Kbytes case, 153.6Kbytes/worker for the 512Kbytes case, and 614.4Kbytes

for the 2Mbytes case.

 0

 500

 1000

 1500

 2000

 2500

 3000

 5 10 15 20 25 30 35 40

E
xe

cu
tio

n
T

im
e

Num. Workers

Real vs Expected Execution Times

Real
Expected

P. Index (real)
P. Index (expected)

 0

 500

 1000

 1500

 2000

 2500

 3000

 5 10 15 20 25 30 35 40

E
xe

cu
tio

n
T

im
e

Num. Workers

Real vs Expected Execution Times

Real
Expected

P. Index (real)
P. Index (expected)

 (a) (b)

 500

 1000

 1500

 2000

 2500

 3000

 5 10 15 20 25 30

E
xe

cu
tio

n
T

im
e

Num. Workers

Real vs Expected Execution Times

Real
Expected

P. Index (real)
P. Index (expected)

 500

 1000

 1500

 2000

 2500

 3000

 3500

 2 4 6 8 10 12 14

E
xe

cu
tio

n
T

im
e

Num. Workers

Real vs Expected Execution Times

Real
Expected

P. Index (real)
P. Index (expected)

 (c) (d)

Figure 34. Execution times and Performance Index values of a Master/Worker
application with an associated processing time (Tc) of 5 sec. and initial communication
volumes of 10Kbytes (a), 100 Kbytes (b), 512 Kbytes (c) and 2Mbytes (d), which are
incremented by 30% for each added worker. The range is from 2 to 40 workers for cases
(a) and (b), from 2 to 30 workers for case (c), and from 2 to 15 workers for case (d).
Synchronous communication is used.

Number of Workers

for the Lowest
Execution Time

MCMC Exceeding
Point

Number of Workers
for the Performance
Index Lowest Value

Real __ __ 34 Fig. 34
(a) Expected 48 __ 28

Real 34 __ 19 Fig. 34
(b) Expected 33 __ 18

Real 21 __ 11 Fig. 34
(c) Expected 19 __ 10

Real 13 13 5 Fig. 34
(d) Expected 12 12 6

Table 11. Relevant real and expected magnitudes associated with applications of figure
34.

Definition of Framework-based Performance Models for Dynamic Performance Tuning

 113

As expected, once we have separately seen the effects of synchronous

communication and communication volume increase, the combination of both facts

has a very significant worsening effect on the application�s performance, which in

some cases is as bad as the one caused by the 100% increment shown in figure 33

(see figure 34 (a) and (b)).

4. Global Master/Worker Model and Last Considerations

Our objective, in the last section of this chapter, is to sum up the performance

model for Master/Worker applications according to the general model for dynamic

performance tuning presented in Chapter II. Firstly, we summarize the set of

expressions and strategies that must used by the dynamic tuning tool to evaluate

the performance of the application and predict what will happen if some conditions

change. Next, we indicate which are the application parameters that must be

monitored at run time in order to be able to detect the performance bottlenecks.

Finally, the parameters that can be changed at run time to improve the applications

performance and when can those changes take place are indicated. In addition,

given that the proposed performance model includes two phases (load balancing &

adjusting the number of workers), some considerations are included in this summary

about the conditions that must hold to guarantee that both phases can be safely

combined.

In the first place, we have shown at the beginning of this chapter that, in order to

improve the performance of a Master/Worker application, we should be able to

balance the workers� load and then to determine the appropriate number of workers

to do the work. Therefore, we proposed a two phase strategy for the automatic

performance tuning of this kind of applications, the first phase consisting of applying

a load balancing strategy and the second one of using an analytical model to

evaluate and predict an appropriate number of workers for the application.

With the objective of balancing the workers load, we have adopted a partial task

distribution policy, which basically consists of dividing the set of tasks to be

processed in sub-sets called batches and then distributing them among workers one

by one in units called chunks. The number of tasks to be included in each batch is

determined by a distribution strategy by calculating a partition factor. We have

proposed a distribution balancing strategy that has been called: Dynamic Adjusting

Factoring (section 2.3), which is based on making a self-adaptative partial

distribution of the tasks to be processed. The main goal behind this strategy is to

Chapter III Master/Worker Framework Performance Model

 114

statistically minimize the possibility that the time spent by a worker processing its

current assigned chunk surpasses the optimal processing time of Tc/N (where Tc is

the total processing time associated with the set of tasks and N the current number

of workers). In order to reach this goal, the distribution strategy dynamically adapts

the partition factor taking into consideration the mean processing time and standard

deviation per task (expressions (1) & (2)).

A balanced application makes good use of its assigned resources and, as a result,

achieves the best possible performance for those resources. However, it should be

evaluated if it is possible to get further performance improvements by changing

(usually adding) the number of assigned resources. This evaluation must be based

on dynamic predictions of the number of resources needed by the application to

achieve its ideal performance and, if the predicted value is different from the current

one, then decide if it will be profitable to assign (or liberate) the extra resources. We

have defined an analytical model for balanced Master/Worker applications aimed at

performing this evaluation. The model takes into consideration the current and

expected application characteristics to determine the number of workers that should

be used in order to efficiently complete the work in the minimum amount of time.

This analytical model includes expressions for modeling the execution time of an

application iteration depending on the communication protocol: expressions (7) and

(8) if an asynchronous communication protocol is used, and expression (9) if not. In

addition, the model includes expressions to determine the Master�s workers

management capacity, which is the highest number of workers that the master can

send tasks to before receiving the first answer. It is called Master�s Chunk Managing

Capacity (MCMC) because it is also useful for the distribution strategy in order to

establish a lower bound for the number of tasks to be included in a batch; once

again, the expressions depend on the communication protocol: expressions (10)

and (11) if an asynchronous communication protocol is used, and expression (12) if

not. Finally, the model includes a performance index (Pi �expression (17)) intended

for figuring out the number of workers that would lead to the best execution time �

resource efficiency ratio.

Both phases, load balancing and adapting the number of workers, have been

individually validated by experimentation, and in figure 35 we can see that the

overall two phase model is also sound. In this figure, we are recovering the example

of figure 2 adding the observed execution time of the balanced application for

different numbers of workers, in order to show that the performance of an

Definition of Framework-based Performance Models for Dynamic Performance Tuning

 115

application balanced through the use of a distribution strategy can be improved by

adjusting the number of workers assigned to it.

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

8 12 16 20 24 28 32 36 40 44 48 52

tim
e

 (
s)

workers

Model Results V=1 Mb T=2s 8 to 52 workers (1024 tasks)

Real 30%
Real 100%

Expected

Figure 35. Real (with and without applying a load balancing strategy) and expected
execution times of a Master/Worker application using from 8 to 52 processors,
processing 1024 1Kb tasks each iteration, and task associated processing time
distributed according to table 1 (section 1).

However, assuming that we start from a balanced execution, it is not known in

advance if the distribution strategy will able to succeed in balancing the load for a

different number of workers. There are some conditions that must hold in order to

make it possible: one is that the number of tasks should be considerably greater

than the number of workers, and the other that a major portion of processing time

should not be concentrated on a small portion of tasks. Moreover, as far as it is

possible to monitor the number of tasks and calculate the mean processing time

associated with each task and its standard deviation, it is possible to define an index

to measure the quality of the distribution strategy outcome and to predict if it is likely

to succeed in balancing the load for a different number of workers.

One possible way for evaluating the quality of the distribution policy outcome is by

relating the mean idle time per processor with the total execution time through an

expression like:))(1(1
1

0

xTt
x

x

i
i∑

−

=

− µ (where x is the number of workers, µi the

processing time spent by worker i, and Tt(x) the total iteration time). For this

expression, a 0 value indicates a perfectly balanced application (all workers have

been busy the whole iteration), while a value closer to 1 indicates that there is a

significant load unbalance in the application. Nevertheless, this expression cannot

be used for predicting the quality of the distribution strategy outcome for a different

Chapter III Master/Worker Framework Performance Model

 116

number of workers because we cannot apply expressions (7), (8), or (9) for

predicting the total execution time in that they are only valid for balanced

applications.

On the other hand, as we mentioned in section 2.3, an upper bound for a Pth order

statistic (P independent random variables with mean µ and standard deviation σ) is

defined by the expression 2Pσµ + , which leads to the following relationship:

xNxNxTt 2)()(σµ +≤ , for a Master/Worker application with N tasks to process, a

mean processing time of µ, and a standard deviation of σ. Then, substituting Tt(x)

by its upper bound in the previously defined quality index leads to the following

upper bound of it:)21(1
xσ

µ
+ . As a result, this expression can be used as a guide

to decide if it is worthwhile to change the number of workers depending on how easy

it will be to balance the application load. However, the defined execution time upper

bound is quite conservative (it can be much greater than the real value) and can

lead to rejecting configurations that have a reasonable chance of improving the

application performance.

Finally, it can be deduced from the index expression that increasing the number of

workers (x) without changes in µ and σ causes the index to increase, which means

that increasing the number of processors makes it more difficult to get a balanced

execution; in addition, it can also be seen that, for the same reason, it will be difficult

to balance applications with higher standard deviations. Both observations are in

accordance with the conditions required for balancing the load of an application that

were stated before: a number of tasks significantly greater than the number of

workers, and a major portion of the processing time should not be concentrated on a

small number of tasks.

In the second place, in order to be able to apply the strategies and calculate the

performance expressions several application parameters must be monitored, these

parameters have been called the measure points of the performance model and are

as follows:

• Network parameters: mo and λ which could be calculated at the beginning

of the execution and should be re-evaluated periodically allowing the

adaptation of the system to the network load conditions.

• Message sizes (wm
iv /) have to be captured when master sends/receives

data to/from workers in order to calculate the total communication volume

Definition of Framework-based Performance Models for Dynamic Performance Tuning

 117

(V) and the portion of it that is sent by the Master (α), but also to track the

relation between the communication volume and the number of workers

(∆V).

• Workers’ processing times (µi) have to be measured in order to calculate

the mean processing time µ, the standard deviation σ, and the total

computing time (Tc). This parameter could be obtained by measuring the

time spent by the Do_Work function of each worker.

Finally, when applying the strategy for balancing the workers load or the

expression for adapting the number of workers, some changes might be introduced

in the application at run time. It is very important to know exactly what parameters

should be changed and when can these changes take place. These parameters

have been called the tuning points of the performance model and are as follows:

• Partition factor of the Dynamic Adjusting Factoring strategy (xo): one of the

major advantages of this data distribution strategy is that the factor is

always being recalculated and can be changed at any moment.

• Number of workers: this parameter is more sensitive than the previous one.

The number of workers can only be changed at the beginning of an

iteration, and only if the added workers (if the number of workers has been

increased) have already been set up and are ready to receive tasks.

Chapter III Master/Worker Framework Performance Model

 118

Chapter IV:
Pipeline Framework Performance

Model

Abstract

In this chapter, we present the performance model we have

defined to dynamically improve the performance of

applications developed with the Pipeline framework. The

objective of this model is to improve the application’s

throughput by devising the best stage replication pattern on

the available resources. We also present a set of

experiments that validate the model.

Definition of Framework-based Performance Models for Dynamic Performance Tuning

 120

Chapter IV Pipeline Framework Performance Model

 121

1. Introduction

In this chapter we will introduce our proposal for a performance model associated

with the Pipeline framework. Whereas, we have not defined a performance model as

comprehensive and detailed for Pipeline applications as the one presented in

Chapter III for Master/Worker ones (mainly because this is already a work in

progress [CM+05]), we include this proposal with the aim of demonstrating that the

general dynamic performance tuning methodology based on associating a

performance model with high-level programming structures can be applied to

programming structures other than the Master/Worker. To fulfill this objective, we

will first recall the framework associated performance problems presented in

Chapter II. Next, we will define, according to the general performance model

introduced in the same chapter, the strategies and expressions that are part of our

performance model and the experimentation that has been carried out to validate

them.

In Chapter II, we have described the Pipeline framework that will be analyzed and

the possible inefficiencies of pipelined applications. We saw that, on the one hand,

the concurrency is limited at the beginning of the computation as the pipe is filled

(also called ramp-in time), and at the end of the computation as the pipe is drained

(also known as ramp-out time); this is a transient inefficiency that should be dealt

with at the design phase of the application because the way to avoid it is to ensure

that the number of calculations the application will perform is substantially higher

than the number of stages of the pipe. On the other hand, it is important for there not

to be any significant differences between the computational efforts of the pipe

stages because the application throughput of a pipe is determined by its slowest

stage. This is the most important inefficiency of this structure, and the most difficult

to overcome because it does not depend exclusively on the application design, but

also on run-time conditions. Consequently, this drawback is suitable for being solved

dynamically and there are different approaches for doing so depending on the target

index to be optimized and availability of resources.

 Therefore, we may want to improve the efficiency in the use of resources, or even

try to free some underused resources to increase their availability, in this case

dynamic mapping of stages could be used to group fast stages; thereby improving

the use of resources. On the other hand, we may want to improve the application

throughput, in which case, if there are available processors, replicating slower

Definition of Framework-based Performance Models for Dynamic Performance Tuning

 122

stages will increase throughput and reduce the application execution time.

Furthermore, we may want to increase the application throughput but also make an

adequate use of resources. Consequently, a mixed approach could be defined, as a

compromise between optimizing throughput and efficient resource management.

Our aim is to implement a mixed strategy, with the main objective of optimizing the

application throughput but also of making a reasonable use of resources. However,

as a first step towards this objective we have concentrated on optimizing application

throughput and, as a consequence, the model presented does not include

considerations about the efficiency of resource management. Hence, we are going

to discuss only the strategies and expressions that will be applied to decide, given a

certain number of available resources, which pipe stages should be replicated in

order to improve the application throughput.

2. Stage Modeling

The general strategy for increasing the throughput of the slower stages, in order to

improve the global application performance, will consist of calculating the best

replication pattern for the current application�s characteristics and available number

of processors.

Consequently, if we want to increase the application throughput, we must minimize

the time needed by each stage to process its inputs, including the time required to

deliver the results to the next stage. We call this quantity the production time; hence,

we need expressions to find the production time each stage can reach (its

independent production time), and also expressions that explain its observed

production time due to the influence of other stages (its dependent production time).

Moreover, we should find different expressions to make these calculations for single,

and replicated stages.

Nevertheless, before introducing these expressions, we have to discuss the

general model of a replicated stage. The idea is that the original application has

been written using a linear pipeline framework, which is a simplification that does not

affect the applicability of the model but reduces the complexity of the replication

strategy. Then the tuning tool, after taking into consideration the performance

analysis and available resources, could decide to replicate some stages. In addition,

this replication must be transparent to the rest of the pipe stages, particularly to

those stages immediately preceding and succeeding the replicated one. Therefore,

a replicated stage consists of several copies of the original linear stage plus a data

Chapter IV Pipeline Framework Performance Model

 123

management and distribution process that bridges these copies with the rest of the

pipe.

Figure 1. Schematic representation of a replicated stage. Stage i+1 has been replicated
k times and a communication manager (CM) has been added to control the replicas�
state and distribute incoming tasks.

This replicated stage scheme is shown in figure 1. It can be seen there that a new

process, called Communication Manager (CM), is responsible for receiving

messages from the preceding stage and distributing them among the stage replicas.

The CM functionality consists basically of monitoring the replicas� state (which

replicas are busy and which are free), receiving messages from the preceding stage

(provided that there is a least one free replica in order to be consistent with the

linear case where a stage only receives a message when it is free), and distributing

these messages to free replicas. To be aware of the state of the replicas the CM

receives an acknowledgement message each time one of them ends its processing.

In adition, we should decide whether the CM should run in a separate processor or

should share one with a replica. The first approach is simpler to model but could

lead to a poorer use of resources. The second, in contrast, seems to lead to a better

use of resources, but is more difficult to implement with some communication

libraries, and is also difficult to model because the CM affects, and is affected by,

the activity of the replica that shares a processor with it. We have modeled both

options, but we have only validated experimentally the first one; therefore, we will

put a greater emphasis on this model.

Before defining the expressions that describe the behavior of a Pipeline

application, we have also to indicate the parameters that we have taken into

consideration and the terminology that will be used from now on. In the first place

and for the same reasons explained in section 3.1 of Chapter III, we have

characterized the interconnection network with the classical message start up time

plus communication time formula. In the second place, in order to be able to

evaluate the model expressions, we need to know the time each stage is making

Si CMSi+1 R0
Si+1 Si+2

R1
Si+1

Rk-1
Si+1

Data msgs.

Acknowledge msgs.

.

.

.

Definition of Framework-based Performance Models for Dynamic Performance Tuning

 124

useful computation, the amount of data sent and received to/from each stage, and

the kind of communication protocol (synchronous or not).

Finally, as we did for the Master/Worker framework, we assume in our analysis

that there is just one process per processor, although this time it is not a matter of

effiecincy, as it was in the Master/Worker case, but a way of simplifying the analysis

process. As previously mentioned, grouping quick stages in the same processor can

be useful for balancing the application computational load while freeing resources.

In addition, we use the following terminology:

• mo = per message start up time, in ms.

• λ = per byte communication cost (inverse bandwidth), in ms/byte.

• vi = data volume sent by stage i, in bytes.

• tci = computation time stage i needs to process an input, in ms.

• Trk
i = production time of k replica of stage i, in ms.

• Tri = independent production time of stage i, in ms.

• rTri = dependent production time of stage i, in ms.

• P = communication protocol (synchronous or asynchronous sends).

2.1. Single stage modeling

A single pipe stage is one that receives messages with data, except for the first

one, makes its portion of calculation of this data, and sends the results to the next

stage, except for the last one. It is clear that the independent production time (Tri) of

such a stage will depend on its position in the pipe, its associated computation time

(tci), and the current communication characteristics -C(P,vi)- (communication

protocol -P- and message size -vi-).

This way, we can define the independent production time of a single stage as:

 Tri = tci + C(P,vi) (1)

Where C(P,vi) is defined as:

0 if (i == n-1) (n = total number of pipe stages)

Because the last stage will be able to process its next message just after it finishes

the computation of the latest one.

mo if (i < n-1) and (P is not synchronous)

If the communication protocol in use does not force synchronous sends, the stage

will just have to wait to deliver the message to the library interface before being

ready to accept a new one.

Chapter IV Pipeline Framework Performance Model

 125

mo + λvi if (i < n-1) and (P is synchronous)

Because when using synchronous sends, the stage will have to wait for the whole

communication to take place before going to the next receive operation.

On the other hand, the dependent production time of the stage depends on its

independent prodution time (Tri), if the application computational load is balanced or

the current stage is among the slowest stages of the application, or it depends on

the dependent production times of the following and previous stages. As these

dependent production times could also depend on those of its neitghbouring stages,

it can be seen that there is a propagation of the times of the slowest stages through

the pipe until all stages are synchronized with them.

Consequently, it can be said that:

rTri = Tri if the application computational load is balanced or this stage is
among the slowest ones.

Or,

rTri = rTri�1 if the preceeding stage is slower than the succeeding one and
both are slower than the current stage, or the preceeding stage is
slower than the current one and it is the last stage.

Or,

rTri =rTri+1 if the succeeding stage is slower than the preceeding one and
both are slower than the current stage, or the succeeding stage
is slower than the current one and it is the first stage.

While it is easy to visualize that the current stage has to wait for a preceeding

slower stage, having to wait for a slower succeeding stage deserves more detailed

comment. If the communication is synchronous the current stage will have to wait in

the send call until the succeeding one issues a matching receive, but if the

communication is not synchronous, it is supposed that the message will be stored in

a library/system buffer and the sender will continue its execution. However, if the

processing time difference between both stages is big enough, these buffers will

eventually get full and the faster stage will be forced to wait until some of them are

freed, in practice, this is like changing to a synchronous protocol.

2.2. Replicated stage modeling

A replicated pipe stage is one where data messages are received by a special

process called Communication Manager (CM), which is responsible for deciding

which stage replica will process the data. In addition, the CM will only issue a

receive operation for the previous stage if there is at least a free replica. Then the

Definition of Framework-based Performance Models for Dynamic Performance Tuning

 126

chosen replica makes the stage portion of calculation of this data and sends the

results to the next stage, unless it is the last one.

To calculate the independent production time of such a stage, we must decide first

if the CM is executed in an independent processor or it shares a processor with one

of the replicas. As we mentioned previously, the first option could lead to a poorer

use of resources, but is easier to model and implement, while the second option

could lead to a more efficient use of resources, but it is more difficult to model and

could be difficult to implement for some communication libraries or execution

environments. As a consequence, we will discuss in detail the model for the first

option, which will be experimentaly validated later, and we also will include the

definition of the model for the second one.

Thus, to calculate the independent production time of a replicated stage,

considering that the CM is executed in an independent processor, we must take into

account the managing time associated with the CM (tgi) and the waiting time for one

free replica (wci). The term tgi depends on the communication protocol and possibly

on the message size. Basically, the CM looks at the communication channel and

waits for messages that could come from the previous stage or from one of the

stage replicas (acknowledgments indicating that the replica is free). As there could

be many message sources it should look at the channel without blocking.

Consequently, the managing time will be the time needed to make 1 or 2 probes of

the channel with its corresponding receives plus the time needed to send the

requirements to the free replica.

Therefore, if the communication protocol is synchronous, the CM should wait

2*(mo+λvi) to be ready to process the next requirement message. It has to spend

twice the communication time because it has to synchronously receive the message

from the previous stage (mo + λvi) and then synchronously send it to a free replica

(mo + λvi). On the other hand, if the communication protocol is asynchronous then

the CM will only have to wait for some network overhead before seeing if there is a

new requirement message, because, in this case, library buffers allow for

overlapping communications.

The term wci depends on the processing capacity of the replicas and the

managing capacity of the CM. Given m replicas, if the CM spends more time

managing m input messages than the time spent by the set of replicas processing

the same number of messages then there will always be free replicas (wci = 0),

which could be an undesirable situation because it means that there is at least some

Chapter IV Pipeline Framework Performance Model

 127

idle time and, in consequence, the application is wasting resources. Actually, this is,

in the long run, the same problem of exceeding the Master�s Chunk Managing

Capacity (MCMC) discussed in section 3.1 of Chapter III, with the CM acting as the

Master and the replicas as the Workers.

Moreover, if the CM has the capacity to feed the m replicas, then the term wci will

be less than or equal to the production time of the set of replicas, plus the time

needed to send the message to a replica, unless the protocol is synchronous,

because, in such a case, the communication time is included in the tgi. Furthermore,

the production time of a given set of replicas depends on the independent

production time of each replica Trk
i, which in turn is calculated in the same way as

the independent production time of a single stage plus the time needed to send the

acknowledgement message to the CM.

In particular, in order to calculate the production time of the set of replicas we

know that if there is a set of m processes and each one is able to process a

requirement in a certain time period, which we have called Trk
i (0=<i<m), then we

can say that in time units the set of processes shall have produced an integer

number of requirements and none will be currently processing a new one. In this

period of time, the replica k (0≤i<m) has processed k
i

m

j

j
i TrTr∏

−

=

1

0

 requirements; in

consequence, the set of m replicas have processed

requirements. If we divide this expression by the elapsed time period then we have

the number of requirements processed in one time unit, i.e. ,

which could be simplified to∑ −

=

1

0
)1(

m

l
l
iTr . Finally, the inverse of this expression

(
∑ −

=

1

0
1

1
m

l
l
iTr)(

) will tell us the time needed by the set of processes to process a single

requirement.

Summarizing, the definition of independent production time of replicated stages is:
 Tri = tgi + wci (2)

Where, tgi = mo + c if (protocol is asynchronous)

 2*(mo + λvi) + c if not

and wci = 0 if
∑
−

=

1

0

)1(1
m

k

k
iTr

<= tgi

i

m

k
k

i vTr λ+∑ −

=

1

0
)1(1 if not and protocol is asynchronous

 ∑ −

=

1

0
)1(1

m

k
k

iTr if not and protocol is synchronous

∏
−

=

1

0

m

j

j
iTr

∑ ∏
−

=

−

=

1

0

1

0

m

l

l
i

m

j

j
i TrTr)(

∏∑ ∏
−

=

−

=

−

=

1

0

1

0

1

0

m

j

j
i

m

l

l
i

m

j

j
i TrTrTr)(

Definition of Framework-based Performance Models for Dynamic Performance Tuning

 128

The constant c that appears in these expressions represents the overhead

introduced by the probes made by the CM on the communication channel in order to

monitor all the different potential message sources, and it is included for completion

reasons, but it will be discarded later because it is difficult to evaluate and its values

are too small to affect the results.

Before introducing the analysis of the CM sharing processor with a replica, we

want to include more detailed comments about how to detect whether the replica

mangement capability of the CM has been exceeded, a problem that, as we

mentioned above, is equivalent to the prediction of the exceeding point of the

Master�s Chunk Management Capacity (MCMC) for the Master/Worker framework.

Figure 2. Example of a replicated stage where the CM has exceeded its replica
managing capability. In this case, the 2nd stage has three replicas (processes 2, 3, and
4) and, as it can be seen, the notification messages are received by its CM (process 1)
only when it needs a free replica.

Suppose, that there are m replicas of a stage and that when the CM has managed

k input messages (k < m) there is always some replica which has finished its

processing and has already sent back the corresponding acknowledging message.

Figure 3. The 4th stage has four replicas (processes 4, 5, 6, and 7) and, as can be
seen, process 4 and process 5 are always able to deliver their notification messages
before the CM (process 3) is able to send requirements to processes 6 and 7.

So, if the previous stage is producing requirements quickly enough, and the CM

gives a higher priority to input messages than to notification ones wherever there

are free replicas (a fair situation), then the freed replica will be idle till the moment

the CM needs a free replica. This situation is unlikely to happen if the protocol is

CM
Replicas

CM
Replicas

Chapter IV Pipeline Framework Performance Model

 129

asynchronous because the tgi is quite short, in this case, and it is probable that the

CM will check for notification messages frequently, not only when it needs a free

replica but when there are no input messages. On the other hand, when the

communication protocol is synchronous, this situation can arise if Tri-1 is smaller than

tgi, which happens if the previous stage is the first one and tc0 is smaller than the

communication time or in the unlikely situation when tci-1 is smaller than the constant

c (channel probes overhead). This case is illustrated in figure 2, where it can be

seen that all replicas are used, but also that they are idle most of the time.

Otherwise, if the CM frequently checks for notification messages because there

are periods when there are no input messages from the previous stage, then there

will be some replicas that will not be used at all as we can see in figure 3. This is the

most common situation (even for synchronous communications).

Going back to the model, if the CM shares the processor with one of the replicas,

we will decrease the cost in resources because we are not using extra processors

for the CMs, but it is harder to analyze, its implementation depends on the

communication library or execution environment capabilities, and can be less

efficient than the CM in an independent processor option. Moreover, analyzing this

option must take into consideration the possibility of implementing the CM as an

independent process or as a thread. For the first possibility, we will get an easier

implementation, because all replicas will be managed the same way, but the

efficiency is worsened in any case. The worse case is when the communication

library implementation is itself not efficient. The reason is that, as we will keep using

communication primitives to communicate the CM with the local replica, the

efficiency will depend on whether the local communications are done on shared

memory, or not. If threads are used then a different management has to be done for

the local replica because local communications should be explicitly made through

shared memory.

Therefore, to calculate the independent production time of a replicated stage with

the CM sharing processor with a replica, we must now take into consideration the

waiting time for the CM (wgi), which is the time we could be forced to wait for its

activation, the managing time associated with the CM (tgi), and the waiting time for

one free replica (wci). Then, the independent production time of a replicated stage

with the CM sharing processor with a replica can be defined as:

Tri = wgi + tgi + wci (3)
The term wgi will depend on the CM implementation. When it tests the shared

variables, and hears the communication channels once, and there are no free

Definition of Framework-based Performance Models for Dynamic Performance Tuning

 130

replicas and/or no new input messages (requirements) then it could leave the

processor to the sharing replica (which in turn could be doing nothing if it is free), or

it could be busy waiting until something happens. In any case, if there are not more

processes in the same processor, the CM activation will have to wait between 0 and

less than 2 times the quantum assigned by the system to each thread/process, plus

the context switching time. On the other hand, the term tgi is like the one defined for

expression (2) if the received message is sent to a replica running in a different

processor. However, if the replica sharing processor with the CM is free then a copy

in memory is done instead of a full communication and the management time is

reduced, especially if the communication protocol is synchronous. Finally, the term

wci is like the one defined for expression (2) because the way the waiting time is

calculated does not change. However, there is a especial case when calculating the

replicas independent production time (Tri
k), which is the case of the replica sharing

the processor with the CM. The production time of this replica has to include a

processor sharing overhead that will be in the (0, tci) interval assuming that there

are no other processes in the same processor, 0 if the replica associated processing

time is less than the system quantum, and tci or (tci � quantum) if tci is greater than

the quantum.

Finally, knowing that the dependent production time of a stage just defines the

effect of its neighbors on the stage, we can say that the dependent production time

of a replicated stage is defined in exactly the same way as for a single stage.

2.3. Calculating the best replication pattern

If there were always enough available processors, a straightforward strategy to

optimize the application throughput would be to replicate each stage until it matches

the throughput of the fastest stage. However, as it is not the regular case, a strategy

has to be defined to find the best replication pattern for a limited number of available

processors.

In the first place, we must be able to calculate the number of processors needed

for equating the Tri of an stage to the Trk of another given that Trk < Tri. As stage i

must be replicated in order to achieve that matching, we can use expression (3) and

say that the following expression must hold: Trk = tgi + wci, which substituting tgi and

wci by the corresponding expressions leads to:)11(
1

0
∑
−

=

++=
m

l

l
iiok TrvmTr λ if the

Chapter IV Pipeline Framework Performance Model

 131

communication is asynchronous and to)11()(2
1

0
∑
−

=

++=
m

l

l
iiok TrvmTr λ if not.

Furthermore, assuming a homogenous hardware (processors and network), the

term ∑
−

=

1

0

1
m

l

l
iTr can be rewritten as l

iTrm / where m is the number of replicas that must

be included in order to achieve Trk=Tri. Consequently, solving the previous

expressions for m will let us to know the number of processors that will be needed

for the replicas of stage i. Then this number, plus the processor for the CM, if it is

executed in an independent processor, is the number of processors that should be

dedicated to stage i in order to match the throughput of stage k. Summing up, the

expressions for knowing the number of processors needed for matching the

throughput of stages Tri and Trk (Trk < Tri) are:

1
)(
+

+−
=

iok

r
i

i vmTr
Tr

p
λ

 if the communication protocol is asynchronous (4)

1
)(2
+

+−
=

iok

r
i

i vmTr
Tr

p
λ

 if not (5)

In the second place, we use these expressions to define an algorithm to calculate

the best replication pattern for a n-stage pipeline. The goal is to find which is the

best stage throughput that can be matched with the available number of processors.

The steps to achieve it are:

1. Search stage k where Trk = min(Tri) ((0 ≤ i < n) and if stage k has not

been previously probed). Mark stage k as probed.

2. Search stage g where Trg = max(Tri) ((0 ≤ i < n) and if stage g has not

been previously considered). Mark stage g as considered.

3. Depending on the communication protocol, use expressions (4) or (5) to

calculate the number of processors (pi) needed to equate Trg with Trk.

4. If the current ∑pi > m then

a. Unmark all considered stages.

b. Go to 1.

5. If there are no considered stages go to 2

Finally, it is worth noting that this algoritm can be used, slightly modified, even if

there are stages that are already replicated because expressions (4) and (5) are

based on the independent production time (Tri
r) of the replicas; in consequence, if a

stage is already replicated, these expressions can be used to determine the number

of extra replicas that should be added to improve the stage throughput. In contrast,

Definition of Framework-based Performance Models for Dynamic Performance Tuning

 132

this strategy should be supplemented with an idle replica detection method, based

on monitoring those replicas that are idle most of the time, in order to determine if a

replicated stage has too many replicas.

3. Experimental Validation of the Model

As for the Master/Worker framework, we have developed a set of configurable

programs to test our model. We have executed our experiments on one of the

clusters of the Computer Science Department of the Wisconsin University at

Madison. It is a 150 dual 933MHz nodes connected to a 100Mbit switch, which has

a gig-uplink to the core of the network (6 clusters). These programs have been

developed in C plus MPI, and the ones that are used specifically to test the model

for Pipeline applications accept the following parameters: message size for all

messages (this decision simplifies the program and does not affect results), time

needed for each stage to process its input data and number of replicas of each

stage, and if a stage is replicated then the processing time associated with each

replica must be specified.

Single Stage Replicated Stage
Message size Processing time Message size Processing time

2 Mbytes 1 sec/stage 512 bytes stages 0,2, &4: 1 sec
stage 1: 1.5 sec
stage 3: 3 sec

50 Kbytes 100 ms/stage 1.5 Mbytes stages 0,2, &4: 1 sec
stage 1: 1.5 sec
stage 3: 3 sec

50 Kbytes 10 ms/stage 512 bytes stages 0,2, &4: 10 ms
stage 1: 15 ms
stage 3: 30 ms

200 Kbytes stages 0,2, &4: 1 sec
stage 1: 1.2 sec
stage 3: 2 sec

1 Kbyte stages 0,2, &4: 100
ms stage 1: 120 ms

stage 3: 200 ms

Table 1. Summary of the configurations executed in order to test the pipeline model.

The set of experiments that have been executed is summarized in table 1. We

have included a set of experiments for validating the single stage model and another

for validating the replicated stage with CM running in an independent processor

model. It can be seen that it is a comprehensive set that covers all the cases

described in section 2 (except for replicated stages), with the CM sharing a

processor with one replica because the MPI library that has been used to implement

Chapter IV Pipeline Framework Performance Model

 133

the test applications supports neither threads nor customized process mapping.

Once the results of these experiments have been presented and discussed we will

introduce a final example for discussing the application of the strategy presented in

section 2.3.

In figure 4, a portion of the Gantt trace of a pipeline application execution with a

significant processing time associated with each stage and large messages is

shown. It is easy to see that the communication protocol is synchronous forced by

the message size because the sends are blocked until the matching receive is

issued. It can also be seen in table 2 that, by applying expression (1), the defined

model is matching the application�s behavior.

Figure 4. Five-stage pipeline with an associated processing time of 1 sec/stage and a
communication volume of 2 Mbytes/msg.

 Stage 0 Stage 1 Stage 2 Stage 3 Stage 4

Expected Tri 1.197 sec 1.197 sec 1.197 sec 1.197 sec 1 sec

Expected rTri � � � � 1.197 sec

Observed T 1.22 sec 1.22 sec 1.22 sec 1.22 sec 1.22 sec

Table 2. Expected and observed times for the example of figure 4.

Figure 5. Five-stage pipeline with an associated processing time of 100 ms/stage and a

communication volume of 50 Kbytes/msg.

In figure 5, a portion of the Gantt trace of the execution of a pipeline application

with medium size messages and small processing time associated with each stage

is shown. This time, the communication protocol is asynchronous (non-

 Send Receive Inner stage, last stage, and first stage processing

 Send Receive Inner stage, last stage, and first stage processing

Definition of Framework-based Performance Models for Dynamic Performance Tuning

 134

blocking/buffered sends) and it can still be shown that, applying expression (1), the

defined model is matching the application behavior (table 3).

 Stage 0 Stage 1 Stage 2 Stage 3 Stage 4

Expected Tri 106 ms 106 ms 106 ms 106 ms 100 ms

Expected rTri � � � � 106 ms

Observed T 107 ms 107 ms 107 ms 107 ms 107 ms

Table 3. Expected and observed times for the example in figure 5.

 Stage 0 Stage 1 Stage 2 Stage 3 Stage 4

Expected Tri 17.3 ms 17.3 ms 17.3 ms 17.3 ms 10 ms

Expected rTri � � � � 17.3 ms

Observed T 17.5 ms 17.5 ms 17.5 ms 17.5 ms 17.5 ms

Table 4. Expected and observed times for the example in figure 6.

Figure 6 shows the portion of a Gantt trace of the execution of a pipeline

application with a very small associated processing time. When using low

processing times the application is more sensitive to the influences of the

environment, such as other processes executing in the same cluster, or even in the

same machine, network traffic, and so on. For cases like this we have statistically

filtered the data in order to eliminate anomalous measurements. The obtained

results are shown in table 4.

Figure 6. Five-stage pipeline with an associated processing time of 10 ms/stage and a
communication volume of 50 Kbytes/msg.

Figure 7 shows the portion of a Gantt trace of the execution of a pipeline

application with a different, but always significant, processing time associated with

each stage and a message size of 200 Kbytes, this is significant but not large

enough to immediately force a synchronous communication protocol. It can be seen

that, at the point marked by the arrow, stages 0, 1 and 2 are affected by a change in

the communication protocol produced by the low pace of stage 3 and the message

 Send Receive Inner stage, last stage, and first stage processing

Chapter IV Pipeline Framework Performance Model

 135

size. The model says that, when the communication protocol is synchronous and the

processing time of the next stage is greater than ours and than that of our previous

stages, the stage has to wait and its effective processing time will be the same as

the next stage. This statement is confirmed by results shown in table 5.

Figure 7. Five-stage pipeline with an associated processing time of 1 sec for stages 0, 2,
and 4; 1.2 sec for stage 1; and 2 sec for stage 3. Communication volume of 200
Kbytes/msg.

 Stage 0 Stage 1 Stage 2 Stage 3 Stage 4

Expected Tri 1.002 sec 1.202 sec 1.002 sec 2.002 sec 1 sec

Expected rTri 2.002 sec 2.002 sec 2.002 sec � 2.002 sec

Observed T 2.015 sec 2.03 sec 2.03 sec 2.03 sec 2.03 sec

Table 5. Expected and observed times for the example in figure 7.

 Stage 0 Stage 1 Stage 2 Stage 3 Stage 4

Expected Tri 101.54 ms 121.54 ms 101.54 ms 201.54 ms 100 ms

Expected rTri � � 121.54 ms � 201.54 ms

Observed T 100.05 ms 120.2 ms 120.2 ms 200.09 ms 200.09 ms

Table 6. Expected and observed times for the example in figure 8.

Figure 8 shows the portion of a Gantt trace of the execution of a pipeline

application with a different, but always small, processing time associated with each

stage and a message size of 1Kbyte. It can be seen in figure 8 (b) that computation

time differences between stages 0 and 1 have no effect on the communication

protocol, while the differences between stages 2 and 3 have a limited effect at the

signaled points. In both cases it is due to the tiny message size.

Actually, the communication library (MPI) uses a more efficient communication

protocol (see the explanation about ready sends in section 3.4 of Chapter III) when

sending small messages to processes that have already issued the corresponding

receive. In the example, this is happening between stages 1 and 2, and 3 and 4;

however, it cannot take place between stages 0 and 1, and 2 and 3 because the

 Send Receive Inner stage, last stage, and first stage processing

Definition of Framework-based Performance Models for Dynamic Performance Tuning

 136

matching receives have not been issued yet. Consequently, small messages make it

difficult to get communications blocked not only because buffers are difficult to get

full but also because the slow stages send their messages faster. In addition, using

expression (1) we get the results shown in table 6.

(a)

(b)

Figure 8. Five-stage pipeline with an associated processing time of 100 ms for stages 0,
2, and 4; 120 ms for stage 1; and 200 ms for stage 3. Communication volume of 1
Kbyte/msg. Detail (a) and broad view (b).

Figure 9 shows the portion of a Gantt trace of the execution of a pipeline

application with a different, but always significant, processing time associated with

each stage, a message size of 512 bytes, and for different replication patterns: no

replication (a), replication of stage 1 (b) and (c), replication of stage 3 (d), and

replication of stages 1 and 3 (e). It can be seen again in figure 9 (a) that, despite the

small messages, slow stages affect the performance of the succeeding ones, but

also the one of its previous stages (at the signaled points). For this case (figure 9

(a)), the expected and observed Tri and rTri of each stage are shown in table 7.

 Stage 0 Stage 1 Stage 2 Stage 3 Stage 4

Expected Tri 1.0021 sec 1.5021 sec 1.0021 sec 3.0021 sec 1 sec

Expected rTri � � 1.5021 sec � 3.0021 sec

Observed T 1.0025 sec 1.5001 sec 1.5001 sec 3.0023 sec 3.0023 sec

Table 7. Expected and observed times for the example of figure 9 (a).

 Send Receive Inner stage, last stage, and first stage processing

Chapter IV Pipeline Framework Performance Model

 137

(a)

(b)

(c)

(d)

(e)

Figure 9. Five-stage pipeline with an associated processing time of 1 sec for stage s 0,
2, and 4; 1.5 sec for stage 1, and 3 sec for stage 3. Communication volume of 512
bytes/msg. Without replicated stages (a), replicating stage 1 (b) & (c), replicating stage 3
(d), and replicating stages 1 and 3 (e).

In figure 9 (b) and (c), it can be seen that stage 0 never becomes blocked because

the replicated stage 1 is now processing even faster than stage 0; moreover, as

 Send Receive stage processing, and CM

CM
Replicas

CM
Replicas

CM
Replicas

CM
Replicas

CM
Replicas

Definition of Framework-based Performance Models for Dynamic Performance Tuning

 138

stage 1 has increased its throughput, stage 2 (process 4) has also increased its own

and it is becoming blocked earlier (signaled point in figure 9 (b)) than in the non-

replicated case because stage 3 is as slow as it was. For this case (figure 9 (b) and

(c)), the expected and observed Tri and rTri of each stage, and the Tri
k of the stage 1

replicas, are shown in table 8.

In figure 9 (d), it can be seen that replicating stage 3 is improving the overall

application throughput, which is obvious since it was the slowest pipe stage; in

addition, stage 2 does not get blocked anymore. However, as stage 1 is not

replicated, it will happen to stage 0. For this case (figure 9 (d)), the expected and

observed Tri and rTri of each stage, and the Tri
k of the stage 3 replicas, are shown in

table 9.

 Stage 0 Stage 1 Stage 2 Stage 3 Stage 4

Expected Tri 1.0021sec 0.75496 sec
Tr1

0,1 = 1.51
1.0021 sec 3.0021 sec 1 sec

Expected rTri � 1.0021sec � � 3.0021 sec

Observed T 1.0015 sec 1.0017 sec 1.002 sec 3.001 sec 3.001 sec

Table 8. Expected and observed times for the example of figure 9 (b) and (c).

 Stage 0 Stage 1 Stage 2 Stage 3 Stage 4

Expected Tri 1.0021 sec 1.5021 sec 1.021 sec 1.502625 sec
Tr3

0,1 = 3.012
1 sec

Expected rTri � � 1.5021 sec � 1.502625 sec

Observed T 1.003 sec 1.51 sec 1.509 sec 1.504616 sec 1.504616 sec

Table 9. Expected and observed times for the example of figure 9 (d).

Finally, in figure 9 (e), it can be seen that, as expected, adding an extra replica to

stage 1 is completely useless because the communication manager (CM) is not

receiving enough inputs to keep three replicas busy. Actually, we have already seen

that with two replicas we are not using all of the stage capabilities. However,

introducing a third replica of stage 3 improves the application throughput to its best

(one output every second). It is clear that the best replication pattern for this

application is to have two replicas of stage 1 and three of stage 3. In this case

(figure 9 (e)), the expected Tr1 is 0.5022 sec, but the observed one is 1.0013126

sec, which is the Tr0 that limits the throughput of stage 1. In addition, the expected

and observed Tr3 are 1.0021879 sec and 1.00073 sec respectively (with an

observed Tr3
0 = Tr3

2 = 3.0032 sec and Tr3
1 = 3.00013 sec).

Chapter IV Pipeline Framework Performance Model

 139

 Stage 0 Stage 1 Stage 2 Stage 3 Stage 4

Expected Tri 1.0021 sec 0.5022 sec
Tr1

0,1,2 =
1.515 sec

1.0021 sec 1.002188 sec
Tr3

0,1 =
3.022 sec

1 sec

Expected rTri � 1.0021 sec � � 1.002188 sec

Observed T 1.001313 sec 1.00132 sec 1.002 sec 1.012 sec 1.0123 sec

Table 10. Expected and observed times for the example of figure 9 (e).

 Stage 0 Stage 1 Stage 2 Stage 3 Stage 4

Expected Tri 1.1486 sec 1.6486 sec 1.1486 sec 3.1486 sec 1 sec

Expected rTri 3.1486 sec 3.1486 sec 3.1486 sec � 3.1486 sec

Observed T 3.129 sec 3.132 sec 3.133 sec 3.137 sec 3.136 sec

Table 11. Expected and observed times for the example of figure 10 (a).

(a)

(b)

Figure 10. Five-stage pipeline with an associated processing time of 1 sec for stages 0,
2, and 4; 1.5 sec for stage 1; and 3 sec for stage 3. Communication volume of 1.5
Mbytes/msg. Without replicated stages (a) and replicating stages 1 and 3 (b).

Figure 10 shows the portion of a Gantt trace of the execution of a pipeline

application with a different, but always significant, processing time associated with

each stage, a message size of 1.5 Mbytes, and for different replication patterns: no

replication (a), replication of stage 1 and 3 (b). In figure 10 (a), supplemented by

table 11, it can be seen that, as expected, all pipe stages are quickly synchronized

with the slowest one (stage 3) due to the message size that forces a synchronous

 Send Receive stage processing, and CM

CM
Replicas

CM
Replicas

Definition of Framework-based Performance Models for Dynamic Performance Tuning

 140

communication protocol. In addition, it can be seen in figure 10 (b) that having two

replicas of stage 2 and 3 of stage 3 is the best replication pattern for this application,

in spite of the fact that stage 1 replicas are not being made the most of, as can be

seen in table 12.

 Stage 0 Stage 1 Stage 2 Stage 3 Stage 4

Expected Tri 1.1486 sec 0.92 sec
Tr1

0,1 =
1.515 sec

1.1486 sec 1.151 sec
Tr3

0,1,2 =
3.002 sec

1 sec

Expected rTri 1.151 sec 1.151 sec 1.151 sec � 1.151 sec

Observed T 1.15 sec 1.1503 sec 1.1512 sec 1.1513 sec 1.1513 sec

Table 12. Expected and observed times for the example of figure 10 (b).

Figure 11 shows the portion of a Gantt trace of the execution of a pipeline

application with a different, but always very low, processing time associated with

each stage, a message size of 512 bytes, and for different replication patterns: no

replication (a), replication of stage 1 (b), and replication of stage 3 (c). It can be seen

that, although the application is more sensitive to environmental influences, and in

consequence the measurements obtained are less accurate, the model is able to

catch the application�s behavior. Thus, it can be seen in figure 11 (b) and table 14

that it predicts that 3 replicas for stage 1 are too many, but it can also be seen in

figure 11 (c) and table 15 that the same measure for stage 3 is profitable, even

though not all the processing capacity of the replicated stage is being used.

 Stage 0 Stage 1 Stage 2 Stage 3 Stage 4

Expected Tri 12.131 ms 16.427ms 12.131 ms 31.427 ms 10 ms

Expected rTri � � 16.427 ms � 31.427 ms

Observed T 12.01 ms 15.05 ms 15.34 ms 30.64 ms 30.67 ms

Table 13. Expected and observed times for the example of figure 11 (a).

 Stage 0 Stage 1 Stage 2 Stage 3 Stage 4

Expected Tri 11.427 ms 6.8638 ms
Tr1

0,1,2 =
15.437 ms

12.131 ms 31.427 ms 10 ms

Expected rTri � 11.427 ms � � 31.427 ms

Observed T 11.13 ms 11.34 ms 12.39 ms 30.32 ms 31.24 ms

Table 14. Expected and observed times for the example of figure 11 (b).

Chapter IV Pipeline Framework Performance Model

 141

 Stage 0 Stage 1 Stage 2 Stage 3 Stage 4

Expected Tri 11.427 ms 16.427ms 11.427 ms 12.187 ms
Tr3

0,1,2 =
30.6 ms

10 ms

Expected rTri � � 16.427 ms 16.427 16.427

Observed T 10.93 ms 15.8 ms 15.83 ms 15.9 ms 15.87 ms

Table 15. Expected and observed times for the example of figure 11 (c).

(a)

(b)

(c)

Figure 11. Five-stage pipeline with an associated processing time of 10 ms for stages 0,
2, and 4; 15 ms for stage 1; and 30 ms for stage 3. Communication volume of 512
bytes/msg. Without replicated stages (a), replicating stages 1 (b) and replicating stage 3
(b).

Finally, once we have presented and discussed the results of this comprehensive

set of experiments that were mainly intended to validate the stage models

introduced in sections 2.1 and 2.2, we want to include a final example with the

objective of illustrating the application of the performance improving strategy defined

in section 2.3. The application under consideration is again a five-stage pipe with

10Kb messages and the following processing times associated with each stage: 100

CM
Replicas

CM
Replicas

Definition of Framework-based Performance Models for Dynamic Performance Tuning

 142

ms for stages 0 and 4, 400 ms for stage 1, 300 ms for stage 2, and 200 ms for stage

3. It can be seen that it has been designed to have an intuitive best replication

pattern of 4 replicas for stage 1, 3 for stage 2, and 2 for stage3.

Nevertheless, we want to describe in more detail the application of the strategy

assuming that there are more than 9 available processors. In the first place, stage 1

or stage 4 is chosen as the min(Tri) and marked as probed (step 1). Next, stage 1 is

chosen as the one with max(Tri) and marked as considered (step 2). Then,

expression (4) is applied to calculate that 4 processors are needed to match Tr0

(step 3). Finally, as the number of available processors has not been exceeded

(step 4) and there are already more stages to be considered (step 5), we return to

step 2. It is clear that in the second iteration of this algorithm it will be determined

that stage 2 has to be replicated three times, and in the third and last iteration of the

algorithm it will be determined that stage 3 must be replicated twice.

On the contrary, supposing that the number of available processors is between 6

and 8, then in the second or third iteration the number of processors needed will be

exceeded, and then the algorithm will have to be executed from step 1, then stage

3, which is the stage with the next min(Tri), will be selected. Next, it will be

determined that stage 1 will have to be replicated twice, as well as stage 2, which is

the best replication pattern that can be obtained for that number of processors.

(a)

(b)

Figure 12. Five-stage pipeline with an associated processing time of 100 ms for stages 0
and 4; 400 ms for stage 1; 300 ms for stage 2; and 200 for stage 3. Communication
volume of 10 Kbytes/msg. Without replicated stages (a), replicating stages 1, 2, and 3
(b).

CM

Replicas
CM

Replicas
CM

Replicas

Chapter IV Pipeline Framework Performance Model

 143

Finally, this discussion is illustrated in figure 12, where the portion of a Gantt trace

of the execution of this application without replicas (a) is shown. There, the

problems described before (all stages synchronized with the slowest one) can be

easily identified. There also can be seen the results of applying the strategy with

enough processors to develop the best pattern (b). Moreover, in tables 16 for (a)

and 17 for (b) the results that supplement these traces are included.

 Stage 0 Stage 1 Stage 2 Stage 3 Stage 4

Expected Tri 102.131 ms 402.131 ms 302.131 ms 202.131 ms 100 ms

Expected rTri 402.131 ms � 402.131 ms 402.131 ms 402.131 ms

Observed T 407.34 ms 409.045 ms 409.7 ms 410.1 ms 409.9 ms

Table 16. Expected and observed times for the example of figure 12 (a).

 Stage 0 Stage 1 Stage 2 Stage 3 Stage 4

Expected Tri 102.131 ms 101.067 ms 101.421 ms 102.131 ms 100 ms

Expected rTri � � � � 102.131 ms

Observed T 101.45 ms 101.502 ms 101.283 ms 110.2 ms 110.43 ms

Table 17. Expected and observed times for the example of figure 12 (b).

4. Global Pipeline Performance Model

Our objective, in the last section of this chapter, is to sum up the performance

model for Pipeline applications according to the general model for dynamic

performance tuning presented in Chapter II. We summarize, in the first place, the

set of expressions and strategies that must be used by the dynamic tuning tool to

evaluate the performance of the application and predict what will happen if some

conditions change. We then indicate which are the application parameters that must

be monitored at run time in order to be able to detect the performance bottlenecks.

Finally, we will indicate the parameters that can be changed at run time to improve

the applications� performance and when can these changes take place.

In the first place, we want to recall once more that the proposed model is not

completely defined because a comprehensive model has to include, in addition to

the replication strategy presented, mechanisms to decide when and why fast stages

should be grouped or under what conditions they could be separated. Moreover, our

main objective has been to demonstrate that our hypothesis, about the utility of

relating a performance model to the most common distributed application structures

Definition of Framework-based Performance Models for Dynamic Performance Tuning

 144

in order to be used in a dynamic performance tuning environment, can be

realistically implemented for frameworks other than the Master/Worker.

Nevertheless, we have designed a strategy to optimize the throughput of a

pipeline application by looking for the best slow stages replication pattern for a given

number of processors. In order to fulfill this objective, we have defined a set of

expressions for estimating the capabilities of each stage (expressions (1), (2), and

(3)), as well as a rationale to identify the bottleneck stage(s) (the slowest one(s))

and to decide how many replicas of each stage should be included.

In the second place, in order to be able to apply the strategies and calculate the

performance expressions several application parameters must be monitored. Said

parameters have been called the measure points of the performance model and are

as follows:

• Network parameters: mo and λ which could be calculated at the beginning

of the execution and should be re-evaluated periodically allowing the

adaptation of the system to the network load conditions.

• Message sizes (vi) have to be captured for each stage when it sends (or

receives) data to (or from) next (or previous) stage.

• Stages processing times (tci) plus the time spent sending the message to

the next stage have to be measured in order to calculate the independent

production time Tri of each stage.

Finally, when applying the stage replication strategy, some changes might be

introduced in the application at run time. It is very important to know exactly what

parameters should be changed and when these changes can take place. These

parameters have been called the tuning points of the performance model and are

the following:

• Stage type: a non-replicated stage is a single process responsible for

performing the computation associated with the stage. If the tuning

application decides that the stage should be replicated then a set of new

processes (the replicas) have to be created and the original process

becomes the communication manager (CM). As a result, there are three

different stage types: single, replica, and CM, as well as two

transformations: from single to CM and vice versa. Finally, a stage may

become a CM only before receiving a data message from its previous

stage and if the replicas have already been set up and are ready to receive

data.

Chapter IV Pipeline Framework Performance Model

 145

• Number of replicas: The number of replicas of a replicated stage can be

changed if the application conditions change (for example, some stages

start to do more work, or simply more processors become available). This

parameter can be changed before the CM goes into checking the

communication channel for new incoming data messages or replica

acknowledgements, and only if the new replicas have already been set up

and are ready to receive data.

Definition of Framework-based Performance Models for Dynamic Performance Tuning

 146

Chapter V:

Conclusions and Future Work

Abstract

This chapter contains the main conclusions obtained from

the work included in this thesis, as well as the main work

lines that are currently being undertaken and the future work

plan aimed at continuing the research on framework-related

performance models for dynamic automatic application

performance tuning.

Chapter V Conclusions and Future Work

 148

Framework-based Performance Models for Dynamic Tuning

 149

1. Conclusions

In this work, we have proposed and developed structure-related performance

models for dynamic performance tuning of parallel/distributed applications, based on

the study of the characteristics of the parallel programming support tools. In this last

chapter, we shall review the main objectives stated in this work and see how they

have been attained.

The main motivation of our work is that developing parallel/distributed applications

is, for many reasons, harder than developing sequential ones but, on the other

hand, these kinds of applications are the most promising way of coping, within

reasonable time limits, with many complex problems.

This means that developing parallel/distributed applications is worth the effort

because of the huge potential performance gains over sequential applications.

Moreover, supportive tools can be developed in order to facilitate the design and

development of these kinds of applications. In that regard, one of the most

successful classes of supportive tools is the one that is based on exploiting the

degree of commonality that many solving strategies share by providing a set of pre-

defined structures called patterns (at design level), and frameworks or skeletons (at

the implementation level). However, the price for enjoying the advantages of

development tools is usually the loss of some degree of flexibility for performance

tuning, as well as the introduction of some execution time overhead attributable to

the tool.

In the end however, the result achieved by the first versions of a

parallel/distributed application in terms of performance is usually disappointing, and

forces programmers to engage in a difficult process of performance analysis and

tuning of the application. Again, supportive tools are likely to be helpful in this

process. The most sophisticated performance-related supportive tools are those

including some degree of automatic performance tuning, and especially the ones

that are able to do dynamic tuning. However, dynamic automatic tuning tools must

fulfill two requirements: keep instrumentation low and make quick and accurate

decisions. Therefore, in order to fulfill these conditions, the tuning tool must have a

clear improvement target (library level, program level, application level), and it must

include as much previous knowledge about the application as possible.

The core idea behind our work, extensively described in Chapter I, was to take

advantage of the intrinsic knowledge that the use of framework or skeletons

Chapter V Conclusions and Future Work

 150

provides about the application�s structure and functionality for developing

performance models intended to be used in a dynamic tuning environment.

In addition, the general structure of these performance models is determined by

the steering loop architecture of the dynamic performance environment and consists

of a set of parameters that should be monitored (measure points), a set of

performance analysis and tuning strategies and/or expressions, and a set of tuning

parameters and actions. This steering loop architecture, as well as the structure of

the frameworks that have been treated in this work, were described in Chapter II.

The discussion about this approach can be found in:

[MCe+01] A. Morajko, E. Cesar, T. Margalef, J. Sorribes, E. Luque, �Dynamic

Performance Tuning Environment�, LNCS, Vol. 2150 (Euro-Par 2001),

pp. 36-45, Springer-Verlag. 2001.

[CMo+02] E. Cesar, A. Morajko, T. Margalef, J. Sorribes, A. Espinosa, E. Luque:

Dynamic Performance Tuning Supported by Program Specification.

Scientific Programming, Vol. 10, pp. 35-44. IOS Press. 2002.

The first step towards developing this idea consisted of defining a performance

model for homogeneous Master/Worker applications. A homogenous Master/Worker

application is one in which every worker receives roughly the same number of tasks

and spends roughly the same amount of time processing them. Under these

conditions, the main tuning action is to adapt the number of workers of the

application. Consequently, a set of expressions for modeling the application�s

execution time were developed depending on communication parameters (network

latency and bandwidth, and communication volume) and computation time. From

these expressions, which modeled the behavior of the application, we derived a

target function for calculating for what number of workers the application would run

in the minimum time. This study can be found in:

[CM+03] E. Cesar, J. G. Mesa, J. Sorribes, and E. Luque. �POETRIES:

Performance Oriented Environment for Transparent Resource-

management, Implementing End-user parallel/distributed applications�,

LNCS, Vol. 2790, pp. 141-146. Springer-Verlag. 2003

This model was further developed, incorporating expressions for determining the

number of workers the Master can deal with for the current communication

conditions. In addition, a simple strategy for dynamically minimizing load

unbalancing was defined, thereby giving us the ability to apply a two-phase model to

improve the performance of any Master/Worker application. Finally, a more complex

Framework-based Performance Models for Dynamic Tuning

 151

and powerful balancing strategy, based on the factoring algorithm for scheduling

parallel loops, was defined and incorporated into the model, thereby taking

advantage of the dynamic nature of our model to define a self-adjusting strategy.

The resulting Master/Worker performance model, as well as its application on real

applications, can be found at:

[CM+04] E. Cesar, J. G. Mesa, J. Sorribes, E. Luque. �Modeling Master-Worker

Applications in POETRIES�. Proceedings of the 9th International

Workshop on High-Level Parallel Programming Models and Supportive

Environments (HIPS 2004). pp. 22 - 30. IEEE Computer Society. Santa

Fe, New Mexico. April 2004.

[MCe+05] Anna Morajko, Eduardo César, Paola Caymes-Scutari, Tomàs Margalef,

Joan Sorribes, and Emilio Luque. �Automatic Tuning of Master/Worker

Applications�, LNCS, Vol. 3648, pp. 95-103. Springer-Verlag. 2005.

[MC+05] Anna Morajko, Eduardo César, Paola Caymes-Scutari, Tomàs Margalef,

Joan Sorribes, and Emilio Luque. �Development and Tuning Framework

of Master/Worker Applications�. Invited paper. Journal of Computer

Science & Technology (JCS&T). Vol. 5, num. 3, pp 115-120. 2005.

[MoC+05] Andreu Moreno Vendrell, Eduardo César, Joan Sorribes, Tomàs

Margalef, Emilio Luque. �Balanceo de carga en sistemas distribuidos

Master-Worker�, XVI Jornadas de Paralelismo 2005, pp. 443-450,

Granada, 2005.

Finally, the performance model for Master/Worker applications described in

Chapter III has been supplemented by taking into consideration the possibility of

variations in the communication volume related to changes in the number of

workers, as well as an efficiency index to determine for what number of workers the

best performance/resource efficiency relationship is obtained. We also have defined

a second index focused on calculating how likely it would be to get a balanced

execution, applying our adaptative strategy, for a certain number of workers, which

allows us to evaluate the convenience of adding more workers to the application. All

this work has led to the definition of a very complete and detailed performance

model for Master/Worker applications that can be summarized as:

1. A load balancing phase: applying the Dynamic Adjusting Factoring (DAF)

strategy, which is based on making a partial distribution of tasks, and that

leads to highly balanced executions, even for applications with big

differences among task associated computation times (high variance). In

Chapter V Conclusions and Future Work

 152

order to determine the portion of tasks to be distributed in any given

moment the following expressions are used:

()
µ

σµ 2
0

Nx += (1) and ()
µ

σµ 22 Nx j
+= (2)

Where µ is the worker�s mean execution time per task, σ is its standard

deviation, N is the number of workers (processors), x0 is the factor to be

applied at the beginning of each iteration, and xi represents the

dynamically adjusting factor for the rest of the iteration.

2. A number of workers adjusting phase: once we have a balanced

execution that has very likely improved the application�s performance by

efficiently using the available resources, it is possible to evaluate if adding

more workers can lead to further execution time reductions. To do so, we

have to determine firstly the number of workers that would lead to the best

performance/efficiency relationship, using the expression:

Tc
xxTtxPi

2)()(= (17)

Where x is the number of workers being considered, Tc is the overall

computation time, and Tt is the expected execution time for x workers

calculated by using one of the following expressions:

Communication Protocol

Asynchronous Synchronous
m
io vm λ≥

mo n

VTcmnTt µλ
+

+
++=

)()1((7)

m
io vm λ≤

()()[]
mo n

TcVnmTt µλα
+

++−
+=

112 (8)

()()[]
mo n

TcVnmnTt µλα
+

++−
++=

11)1((9)

Where, mo and λ are the network parameters, V is the overall (predicted)

communication volume, and n the number of workers. However, some of

these expressions can only be applied if the Master has the capacity of

dealing with the number of workers under consideration for the predicted

communication conditions. We have called this restriction the Master�s

Chunk Managing Capability (MCMC), which can be estimated with the

following set of expressions:

Framework-based Performance Models for Dynamic Tuning

 153

Communication Protocol

Asynchronous Synchronous

m
io vm λ≥

()()













+

+−+
1

12

o

oo

m
TcVmm λα (10)

m
io vm λ≤









−
+

omV
TcV

λα
λ (11)

() () ()












 ++−+−

o

ooo

m
TcVmmVVm

2
422 2 λλαλα (12)

 Finally, the tuning system should only change the number of workers if it is likely
to get a balanced execution for that number of workers. We have defined an index

()21(1
xσ

µ
+), based on the number of workers and the task-related execution time

variance, in order to get a hint about how difficult it would be to get a balanced
application for the new number of workers.

 The next step was focused on demonstrating that the idea of developing

framework-related performance models for dynamic automatic tuning is extensible

to frameworks other than Master/Worker. Consequently, we have developed a

performance model related to the structure of the Pipeline framework, described in

Chapter IV, though it is not as comprehensive as the one for the Master/Worker.

In this case, the general strategy for improving the application�s performance

consists of determining the best replication pattern for the pipe stages over the

available resources. To achieve this objective, we have designed expressions that

model the behavior of single and replicated stages, differentiating the observed

behavior, which can be influenced by previous or succeeding stages, from the

potential one. Based on these expressions, we have defined an algorithm for

determining the best replication pattern for the application. This algorithm can be

summarized as follows:

1. Search stage k where Trk = min(Tri) ((0 ≤ i < n) and if stage k has not

been previously probed). Mark stage k as probed.

2. Search stage g where Trg = max(Tri) ((0 ≤ i < n) and if stage g has not

been previously considered). Mark stage g as considered.

3. Depending on the communication protocol, use expresions (4) or (5) to

calculate the number of processors (pi) needed to equate Trg with Trk.

4. If the current ∑pi > m then

a. Unmark all considered stages.

b. Go to 1.

5. If there are no considered stages go to 2

Chapter V Conclusions and Future Work

 154

Where Tri is the potential execution time of stage i, and expressions (4) and (5)

are:

1
)(
+

+−
=

iok

r
i

i vmTr
Tr

p
λ

 if the communication protocol is asynchronous (4)

1
)(2
+

+−
=

iok

r
i

i vmTr
Tr

p
λ

 if not (5)

Where mo and λ are the network parameters, and vi the communication volume of

stage i to stage i+1.

This performance model for Pipeline applications can be found in:

[CM+05] E. Cesar, J. Sorribes, E. Luque, �Modeling Pipeline Applications in

POETRIES�. LNCS, Vol. 3648, pp. 83-92. Springer-Verlag. 2005

 Finally, both models are supported by a real, though synthetically generated,

experimentation specifically designed to demonstrate the validity of each defined

strategy and set of expressions.

In conclusion, we have achieved the objective of demonstrating that we can take

advantage of the knowledge about the application contained on the frameworks or

skeletons, provided as supportive tools for their development, in order to define

performance models intended to be used in a dynamic automatic performance

tuning environment.

Moreover, we have found that a common generic framework analysis methodology

can be used to define the performance model associated with any framework. This

methodology consists, in the first place, of finding the performance bottlenecks

related to the framework that are suited to be solved dynamically and, in the second

place, of defining the parameters (inputs) that should be monitored to detect those

problems and the parameters (outputs) that can be changed to overcome them. The

methodology also consists of defining the analysis expressions and strategies that,

using the monitored input parameters, detect the problems and correct them by

changing the appropriate output parameters.

2. Current and Future Work

There are three clearly defined lines of work that are being currently developed in

different degrees. The first one is the completion of current performance models and

development of new ones, the second, is the implementation of a robust dynamic

tuning tool with MATE for the framework-related dynamic automatic performance

tuning of parallel applications. The third is the generalization of the idea of

Framework-based Performance Models for Dynamic Tuning

 155

developing models based on the applications structure for dynamic tuning to Grid

environments.

Regarding the completion of current performance models and the development of

new ones, we are, firstly, focused on closing the last minor issues of the

Master/Worker model; secondly, working on new performance models for other

frameworks, especially the Pipeline, but also on a performance model for mixed

applications.

The Master/Worker model issues pending are, in the first place, the definition of a

better indicator of how likely it would be to achieve a balanced execution for a

different number of workers because the current one uses an upper bound that is

not close enough to the real values, and, in the second place, the study of how

much history should be recorded in order to calculate the mean processing time and

variance for the Dynamic Adjusting Factoring (DAF) policy.

In reference to completing the Pipeline model and defining new ones for other

frameworks, we are working on a model for Pipeline applications that includes the

possibility of grouping several stages in the same processor in order to liberate

resources for replicating other stages, and also with the objective of not wasting

resources dedicated to stages with a too low associated computation time. In

addition, we have started the study of the performance characteristics of Divide &

Conquer applications.

The main challenge concerning the definition of performance models is to find the

way of mixing models for complex applications, with the objective of deciding what

tuning actions will be more advantageous. The idea is that a very complex

application can be implemented with a composition of frameworks, for example: a

Master/Worker in which each worker is parallelized as a Pipeline. Thus, in a case

like this, the tuning application will need a mechanism to decide whether to adapt

the number of workers before improving the pipeline throughput or, on the contrary,

start with the pipelines and then adapt the number of workers.

As for the implementation of a robust and more general framework-related

performance tuning tool on MATE, the main problems are the difficulty of

implementing complex tunlets and, even more, to coordinate them when there are

many tunlets responsible for different aspects (or phases) of the performance

analysis. Currently, other members of our research group are focused on the

definition of a high level tunlet specification language aimed at solving these

problems.

Chapter V Conclusions and Future Work

 156

Finally, in relation to the application of the idea of dynamically and automatically

tuning parallel applications on the Grid, there are some previous related studies in

our research group [Hey01], and currently there are other members of the group

working on the problem of dynamically inserting instrumentation on a parallel

application running on the Grid. It is clear that this is a major challenge, as is the

general idea that it can be applied to the Grid, which is a suitable place for long

execution time applications. However, it is also clear that performance models must

take into consideration many extra parameters, such as the possibility of machines�

losses, the cost of check-pointing, the highly heterogeneous nature of

communication channels and processors (including the possibility of processes

sharing a processor with others non-related to the application processes), and the

middleware overhead.

Framework-based Performance Models for Dynamic Tuning

 157

References

References

 158

Framework-based Performance Models for Dynamic Tuning

 159

[AG+02] F. Almeida, D. González, L.M. Moreno, C. Rodríguez. �An Analytical

Model for Pipeline Algorithms on Heterogeneous Clusters�. Proceedings

of Recent Advances in Parallel Virtual Machine and Message Passing

Interface: 9th European PVM/MPI Users' Group Meeting, pp. 441 � 449.

2002.

[AG+03] Almeida, F. Gonzalez, D. Moreno, L.M. Rodriguez, C. Toledo, J. �On

the prediction of master-slave algorithms over heterogeneous clusters�.

Proceedings. Eleventh Euromicro Conference on Parallel, Distributed and

Network-Based Processing, pp. 433- 437. 2003.

[Amd67] Amdahl, G. M. "Validity of the single-processor approach to achieving

large scale computing capabilities". In the proceedings of the AFIPS

Conference. AFIPS Press: 483-485, 1967

[AI98 �Wind: The Production Flow Solver of the NPARC Alliance�, AIAA 98-

0935, available from:

 http://www.grc.nasa.gov/www/winddocs/aiaa98/aiaa-98-0935.html.

[BR+03] Rosa M. Badia, G. Rodriguez, Jesús Labarta. "Deriving Analytical Models

from a Limited Number of Runs". Minisymposium on Performance

Analysis, ParCo 2003.

[BV01] Ioana Banicescu and Vijay Velusamy. �Performance of scheduling

scientific applications with adaptative weighted factoring�. Proceedings of

the 15th International Parallel & Distributed Processing Symposium, pp.

84. IEEE Computer Society, 2001.

[BV02] Ioana Banicescu and Vijay Velusany. �Load balancing highly irregular

computations with the adaptative factoring�. Proceedings of the 16th

International Parallel & Distributed Processing Symposium, pp. 195. IEEE

Computer Society, 2002.

[BC+04] A. Benoit, M. Cole, S. Gilmore and J. Hillston. �Evaluating the

performance of skeleton-based high level parallel programs�. The

International Conference on Computational Science (ICCS 2004), Part III,

LNCS, pp. 299-306. Springer Verlag, 2004.

[Can98] E. Cantu-Paz, �Designing efficient master-slave parallel genetic

algorithms�, in J. Koza, W. Banzhaf, K. Chellapilla, K. Deb, M. Dorigo, D.

Fogel, M. Garzon, D. E. Goldberg, H. Iba and R. Riolo, editors, Genetic

References

 160

Programming: Proceeding of the Third Annual Conference, San

Francisco, Morgan Kaufmann, 1998.

[CMo+02] E. Cesar, A. Morajko, T. Margalef, J. Sorribes, A. Espinosa, E. Luque:

Dynamic Performance Tuning Supported by Program Specification.

Scientific Programming, Vol. 10, pp. 35-44. IOS Press. 2002.

[CM+03] E. Cesar, J. G. Mesa, J. Sorribes, and E. Luque. �POETRIES:

Performance Oriented Environment for Transparent Resource-

management, Implementing End-user parallel/distributed applications�,

LNCS, Vol. 2790, pp. 141-146. Springer-Verlag. 2003

[CM+04] E. Cesar, J. G. Mesa, J. Sorribes, E. Luque. �Modeling Master-Worker

Applications in POETRIES�. Proceedings of the 9th International

Workshop on High-Level Parallel Programming Models and Supportive

Environments (HIPS 2004). pp. 22 - 30. IEEE Computer Society. Santa

Fe, New Mexico. April 2004.

[CM+05] E. Cesar, J. Sorribes, E. Luque, �Modeling Pipeline Applications in

POETRIES�. LNCS, Vol. 3648, pp. 83-92. Springer-Verlag. 2005

[CK+01] M. Chakravarty, G. Keller, R. Lechtchinsky, and W. Pfannenstiel. �Nepal,

Nested data-parallelism in Haskell�. LNCS, Vol. 2150, pp. 524-534.

Springer-Verlag. 2001.

[Col04] Murray Cole. �Bringing Skeletons out of the Closet: A Pragmatic

Manifesto for Skeletal Parallel Programming�. Parallel Computing, Vol 30,

no. 3, pp. 389-406. 2004.

[DB+99] Deelman, Bagrodia, Dube, Browne, Hoisie, Luo, Lubeck, Wasserman,

Oliver, Teller, Sundram-Stukel, Vernon, Adve, Houstis, and Rice.

�POEMS: End-to-end Performance Design of Large Parallel Adaptive

Computational Systems�.

http://www.cs.utexas.edu/users/poems/Papers/Wosp/wosp_dave.html

[DG+03] A.J. Dorta, J.A. González, C. Rodríguez, and F. Sande. �Llc: A parallel

skeletal language�. Parallel Processing Letters, 13 (3), pp. 437-448. 2003.

[ES98] Greg Eisenhauer and Karsten Schwan. �An Object-Based Infrastructure

for Program Monitoring and Steering�. Proceedings of the 2nd

SIGMETRICS Symposium on Parallel and Distributed Tools (SPDT�98).

pp. 10-20. 1998.

Framework-based Performance Models for Dynamic Tuning

 161

[EM+00] A. Espinosa, T. Margalef, E. Luque, �Integrating Automatic Techniques in

a Performance Analysis Session�, LNCS, Vol. 1900 (Euro-Par 2000), pp.

173-177, Springer-Verlag, 2000.

[FP00] T. Fahringer, A. Po�gaj, �P3T+: A Performance Estimator for Distributed

and Parallel Programs�, Scientific Programming, IOS Press, Vol. 8, no. 2,

The Netherlands, 2000.

[FSF92] Susan Flynn Hummel, Edith Schonberg, and Laurence E. Flynn.

�Factoring: a method for scheduling parallel loops�. Communications of

the ACM, vol. 35, num. 8, pp. 90 � 101, 1992.

[GB+94] Al Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang, Robert

Manchek, Vaidy Sunderam. �PVM: Parallel Virtual Machine�. Technical

Report ORNL/TM-12187, Oak Ridge National Laboratory, 1994.

[GL99] William Gropp and Ewing Lusk. �Reproducible Measurements of MPI

Performance Characteristics�. Technical Report ANL/MCS-P755-0699.

Mathematics and Computer Science Division, Argonne National

Laboratory, 1999.

[Gus88] J.L. Gustafson. �Reevaluating Amdahl's Law". Chapter for book,

Supercomputers and Artificial Intelligence, Edited by Kai Hwang, 1988.

http://www.scl.ameslab.gov/Gus/Publications/Gus/AmdahlsLaw/Amdahls.pdf

[Hae03] N. V. Haenel. �User Guide for the Java Edition of the PEPA Workbench�.

LFCS, University of Edinburgh. 2003.

[HF03] Michael T. Heath and Jennifer E. Finger. �ParaGraph: A Performance

Visualization Tool for MPI�.

http://www.csar.uiuc.edu/software/paragraph/userguide.pdf 2003

[Her00] C. Herrmann. �The Skeleton-based Parallelization of Divide-and-Conquer

Recursions�. Ph.D. thesis. University of Passau. 2000.

[Hey01] Elisa Heymann. �Effective Resource Management for Master/Worker

Applications in Opportunistic Environments�. PhD. Thesis. Autonomous

University of Barcelona. 2001.

[HS+04] E. Heymann, M.A. Senar, E. Luque, and M. Livny. �Efficient resource

management applied to master-worker applications�. Journal of Parallel

and Distributed Computing, 64 (2004), pp. 767-773. 2004.

References

 162

[Hill96] J. Hillston. �A Compositional Approach to Performance Modeling�.

Cambridge University Press. 1996.

[HK99] Jeffrey K. Hollingsworth and Peter J. Keleher. �Prediction and adaptation

in Active Harmony�. Cluster Computing, vol. 2, pp. 195-205. 1999.

[HB02] Hollingsworth, J. K., Buck, B. �DyninstAPI Programmer�s Guide. Release

3.0�. University of Maryland, 2002.

[HH92] P. Hudak, J. H. Fasel, �A Gentle Introduction to Haskell�, Technical

Report, Computer Science Department, Yale University, 1992.

[HN02] F. Huch, U. Norbisrath, �Distributed Programming in Haskell with Ports�,

Proceedings of the 12th International Workshop on Implementation of

Functional Languages, 2002.

[JHS02] �The Java HotSpot Virtual Machine, v1.4.1�. White Paper. 2002.

http://java.sun.com/products/hotspot/docs/whitepaper/Java_Hotspot_v1.4.

1/Java_HSpot_WP_v1.4.1_1002_1.html

[JM+98] Jorba, J., Margalef, T., Luque, E., Andre, J, Viegas, D.X. "Application of

Parallel Computing to the Simulation of Forest Fire Propagation", Proc.

3rd International Conference in Forest Fire Propagation, Vol. 1, pp. 891-

900. Portugal, November 1998.

[KC+97] P. Kacsuk, J.C. Cunha, G. Dózsa, J. Lourenco, T. Antao and T. Fadgyas.

�GRADE: A Graphical Development and Debugging Environment for

Parallel Programs�.

Parallel Computing Journal, Vol. 22, No. 13, pp. 1747-1770, Elsevier.

1997.

[KT99] P. Kelly, F. Taylor. �Coordination Languages�. Research Directions in

Parallel Functional Programming. pp. 305-321. Springer-Verlag. 1999.

[KK96] S. Krishnan, L. V. Kale. �Automating Parallel Runtime Optimizations Using

Post-Mortem Analysis�. International Conference on Supercomputing, pp.

221-228. 1996.

[KW85] Clyde P. Kruskal and Alan Weiss. �Allocating independent subtasks on

parallel processors�. IEEE transactions in Software Engineering, vol. 11,

num. 10, pp. 1001�1016, 1985.

[LR+03] H. W. Loidl, F. Rubio, N. Scaife, K. Hammond, S. Horiguchi, U. Klusik, R.

Loogen, G. J. Michaelson, R. Peña, S. Priebe, Á.J. Rebón, P. W. Trinder.

Framework-based Performance Models for Dynamic Tuning

 163

�Comparing Parallel Functional Languages: Programming and

Performance�. Higher-Order and Symbolic Computation, 16, pp. 203-251.

Kluwer Academic Publishers. 2003.

[LOP05] Rita Loogen, Yolanda Ortega-Mallén, and Ricardo Peña-Marí. �Parallel

Functional Programming in EDEN�. Journal of Functional Programming,

No. 15 (2005), 3, pp. 431-475.

[LS+05] Róbert Lovas, Raül Sirvent, Gergely Sipos, Josep M. Pérez, Rosa M.

Badia, Péter Kacsuk. �GRID superscalar enabled P-GRADE portal�.

Preliminary proceedings, CoreGrid Workshop on Integrated Research in

Grid Computing. Pisa, Italy, pp. 467-476. 2005.

[MA+02] S. MacDonald, J. Anvik, S. Bromling, J. Schaeffer, D. Szafrom, K. Tan.

�From Patterns to Frameworks to Parallel Programs�. Parallel Computing,

Vol. 28, no. 12, pp. 1663-1683. 2002.

[Ma95] Eric Maillet. �Tape/Pvm an efficient performance monitor for Pvm

applications. User guide�. LMC-IMAG, Grenoble, France, 1995.

[MSM04] Timothy G. Mattson, Beverly A. Sanders, and Berna L. Massingill.

�Patterns for Parallel Programming�. Addison-Wesley, 2004.

[Mes04] Jose G. Mesa. �Desarrollo de un Framework para Aplicaciones

Master/Worker�. MD. Research work. Universitat Autònoma de Barcelona,

February, 2004.

[MC+95] B. P. Miller, M. D. Callaghan, J. M. Cargille, J. K. Hollingsworth, R. B.

Irvin, K. L. Karavanic, K. Kunchithapadam, T. Newhall, �The Paradyn

Parallel Performance Measurement Tool�, IEEE Computer 28, 11, pp. 37-

46, November 1995.

[MCa+05] Anna Morajko, Paola Caymes, Tomàs Margalef, Emilio Luque. �Automatic

Tuning of Data Distribution Using Factoring in Master/Worker

Applications�, LNCS, Vol. 3515/2005, pp. 132 -139, Springer-Verlag. 2005

[MCe+01] A. Morajko, E. Cesar, T. Margalef, J. Sorribes, E. Luque, �Dynamic

Performance Tuning Environment�, LNCS, Vol. 2150 (Euro-Par 2001),

pp. 36-45, Springer-Verlag. 2001.

[MCe+05] Anna Morajko, Eduardo César, Paola Caymes-Scutari, Tomàs Margalef,

Joan Sorribes, and Emilio Luque. �Automatic Tuning of Master/Worker

Applications�, LNCS, Vol. 3648, pp. 95-103. Springer-Verlag. 2005.

References

 164

[MC+05] Anna Morajko, Eduardo César, Paola Caymes-Scutari, Tomàs Margalef,

Joan Sorribes, and Emilio Luque. �Development and Tuning Framework

of Master/Worker Applications�. Invited paper. Journal of Computer

Science & Technology (JCS&T). Vol. 5, num. 3, pp 115-120. 2005.

[Mor03] Anna Morajko. �Dynamic Tuning of Parallel Applications�, PhD. Thesis,

Universitat Autònoma de Barcelona, December, 2003.

[MM+03] A. Morajko, O. Morajko, J. Jorba, T. Margalef and E. Luque. �Automatic

Performance Analysis and Dynamic Tuning of Distributed Applications�.

Parallel Processing Letters. Vol. 13, number 2. 2003.

[MA+01] L. M. Moreno, F. Almeida, D. González, and C. Rodríguez. �The Tuning

Problem on Pipelines�. LNCS, Vol. 2150, pp. 117-121. Springer-Verlag.

2001.

[MoC+05] Andreu Moreno Vendrell, Eduardo César, Joan Sorribes, Tomàs

Margalef, Emilio Luque. �Balanceo de carga en sistemas distribuidos

Master-Worker�, XVI Jornadas de Paralelismo 2005, pp. 443-450,

Granada, 2005.

[MPI95] �MPI: A Message-Passing Interface Standard�. Message Passing

Interface Forum. June, 1995.

[NA+96] W. E. Nagel and A. Arnold and M. Weber and H. C. Hoppe and K.

Solchenbach. �VAMPIR: Visualization and Analysis of {MPI} Resources�,

Supercomputer, Vol. 12, no. 1, pp. 69-80. 1996.

[Paraver] �Paraver Reference Manual�. http:// //www.cepba.upc.edu/paraver/

[PF02] S. Pllana and T. Fahringer. �On Customizing the UML for Modeling

Performance-Oriented Applications�. In proceedings of <<UML>> 2002,

"Model Engineering, Concepts and Tools", LNCS 2460, Dresden,

Germany. Springer-Verlag 2002.

[PF05] S. Pllana and T. Fahringer. �Performance Prophet: a performance

modeling and prediction tool for parallel and distributed programs�. ICPP

2005 Workshops. International Conference Workshops. p.p. 509 � 516.

2005.

[RS+01] Randy L. Ribler, Huseyin Simitci, Daniel A. Reed. �The Autopilot

performance-directed adaptive control system�. Future Generation

Computer Systems. Vol. 18. pp. 175-187. 2001.

Framework-based Performance Models for Dynamic Tuning

 165

[RR+93] Reed, D.A. Roth, P.C. Aydt, R.A. Shields, K.A. Tavera, L.F. Noe,

R.J. Schwartz, B.W. �Scalable performance analysis: the Pablo

performance analysis environment�. Proceedings of the Scalable Parallel

Libraries Conference, pp. 104-113. USA. 1993.

[RR+98] J. Roda, C. Rodríguez, F. Almeida, and D. Morales. �Prediction of Parallel

Algorithms Performance on bus based Networks using PVM�. In

Proceedings of the Sixth Euromicro Workshop on Parallel and Distributed

Processing, pp. 57-63. 1998.

[TC+02] Cristian Ţăpuş, I-Hsin Chung, and Jeffry Hollingsworth. �Active Harmony:

Towards Automated Performance Tuning�. Proceedings of the 2002

ACM/IEEE conference on Supercomputing. Pp 1-11. Baltimore, Maryland,

2002.

[TLP02] P.W. Trinder, H-W. Loidl, R.F. Pointon. �Parallel and Distributed Haskells�.

Journal of Functional Programming. Volume 12 , Issue 5 (July 2002). pp

469 � 510.

[Weiss] Eric W. Weisstein. MathWorldTM, Online mathematics encyclopedia.

http://mathworld.wolfram.com

[VR99] J. S. Vetter, D. A. Reed, �Managing Performance Analysis with Dynamic

Statistical Projection Pursuit�, Proceedings of SC�99, Portland, 1999.

[WK+98] Randolph Wang, Arvind Krishnamurthy, Richard P. Martin, Thomas E.

Anderson, and David E. Culler. �Modeling Communication Pipeline

Latency�. Measurement and Modeling of Computer Systems, pp. 22-32.

1998.

[WW95] K. Williams, S. Williams, �Implementation of an Efficienct and Powerful

Parallel Pseudo-random Number Generator�, available from:

http://www.cs.reading.ac.uk/cs/CCL/rand.epvm95.html.

[WM00] Felix Wolf and Bernd Mohr. �Automatic Performance Analysis of MPI

Applications Based on Event Traces�. LNCS, Vol. 1900 / 2000, p.123.

Springer-Verlag. 2000.

[Yan94] Jerry Yan. �Performance Tuning with AIMS � An Automated

Instrumentation and Monitoring System for Multicomputers�. Proceedings

of the Twenty-Seventh Annual Hawaii International Conference on

System Sciences. pp. 625-633. 1994.

