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Abstract

Diabetes is a metabolic disease characterized by elevated plasma glucose levels, correspond-
ing to acute or chronic hyperglycaemia, which can lead to long-term micro- or macrovascular
complications. This is so due to the lack of insulin secretion by the beta-cells in the islets of
Langerhans in the pancreas (type 1 diabetes) or a combination of resistance to insulin action
and an inadequate compensatory insulin secretory response (type 2 diabetes). Diabetes is one of
the most serious diseases that must be regulated artificially. According to the latest data from
the International Diabetes Federation, it is estimated that the number of diabetics worldwide
will increase from 284.6 million in 2010 to 438.4 million in 2030, equivalent to 6.6% and 7.8%,
respectively, of the world’s adult population aged between 20 and 79 years.

The conventional diabetes therapy is usually based on subcutaneous insulin injections. Be-
cause of the difficulty inherent in selecting the correct insulin dose and the risk of hyper- and
hypoglycaemic episodes in patients with type 1 diabetes, dosage-aid systems are very useful for
these patients. Calculating a risk index requires the evaluation of the impacts of bolus insulin
and food intake on postprandial glucose levels, to predict short-term postprandial glycaemia
sufficiently accurately. The use of dynamic models provides valuable information about post-
prandial glucose excursions. However, one of the main challenges to be considered is the large
intra-individual variability among patients. The different sources of uncertainty, such as the
uncertainty in the food intake, are other challenges to be considered because it is not possible to
measure precisely the carbohydrate content and meal composition of a mixed meal in real-life
situations. These factors make it necessary to develop prediction tools that can accommodate
different sources of uncertainty (inputs, parameters, and initial states).

In this study, I propose a novel method to estimate the dose and injection-to-meal time for
low-risk intensive insulin therapy. This dosage-aid system uses an optimization algorithm to
determine the insulin dose and injection-to-meal time that minimizes the risk of postprandial
hyper- and hypoglycaemia in type 1 diabetic patients. To this end, the algorithm applies a
methodology that quantifies the risk of experiencing different grades of hypo- or hyperglycaemia
in the postprandial state induced by insulin therapy according to an individual patient’s pa-
rameters. This methodology is based on modal interval analysis (MIA), a mathematical theory
developed by researchers at the University of Barcelona and the University of Girona. Applying
MIA, the postprandial glucose level is predicted with consideration of intra-patient variability
and other sources of uncertainty. A worst-case approach is then used to calculate the risk index.
In this way, a safer prediction of possible hyper- and hypoglycaemic episodes induced by the in-
sulin therapy tested can be calculated in terms of these uncertainties. A study of the behaviour
of three postprandial insulin action and glucose kinetics models in the context of intra-patient
variability and uncertainty about food intake also revealed that, with such variability, simple
glucose–insulin models may be sufficient to describe the patient dynamics in most situations.
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Resumen

La diabetes es una enfermedad metabólica caracterizada por niveles elevados de glucosa en
plasma (hiperglucemia), que puede conducir a largo plazo a complicaciones micro y macrovascu-
lares. Esta enfermedad se debe a la falta de secreción de insulina por parte de las células beta de
los islotes de Langerhans en el páncreas (diabetes tipo 1) o a una resistencia celular a la acción
de la insulina combinada con una deficiente secreción de insulina del páncreas (diabetes tipo
2). La diabetes es una de las enfermedades más graves que deben ser reguladas artificialmente.
Según los últimos datos de la International Diabetes Federation, se estima que el número de
diabéticos en todo el mundo pasará de 284,6 millones en 2010 hasta 438,4 millones en 2030, lo
que equivale a 6,6 % y el 7,8%, respectivamente, de la población adulta del mundo en edades
comprendidas entre 20 y 79 años.

La terapia convencional de la diabetes generalmente se basa en inyecciones subcutáneas de
insulina. Debido a la inherente dificultad en la selección de una correcta dosis de insulina y
el riesgo de episodios de hiper e hipoglucemia en pacientes con diabetes tipo 1, los sistemas
de ayuda a la dosificación de insulina son muy útiles para mejorar la calidad de vida de estos
pacientes. El cálculo de un ı́ndice de riesgo que permita predecir de forma segura la glucemia
postprandial a corto plazo, requiere la evaluación de los efectos del bolo de insulina y la ingesta
de alimentos en la glucosa postprandial. El uso de modelos dinámicos proporciona información
valiosa acerca de excursiones de la glucosa postprandial. Sin embargo, uno de los principales
retos a considerar es la gran variabilidad intraindividual entre los pacientes. Diferentes fuentes
de incertidumbre tal como la incertidumbre en los alimentos ingeridos, son otros retos que deben
ser considerados ya que no es posible medir con precisión la cantidad y el contenido de carbo-
hidratos de una comida mixta en situaciones de la vida real. Estos factores hacen necesario el
desarrollo de herramientas de predicción que tengan en cuenta diferentes fuentes de incertidum-
bre (entradas, parámetros y condiciones iniciales).

En esta tesis, se propone un nuevo método para estimar la dosis y el instante de inyección que
genere el menor riesgo para una terapia intensiva de insulina. Este sistema de ayuda a la dosifi-
cación utiliza un algoritmo de optimización para determinar la dosis de insulina y el instante de
inyección que reduzcan al máximo el riesgo de hiperglucemia e hipoglucemia posprandial en pa-
cientes diabéticos tipo 1. Para ello, el algoritmo aplica una metodoloǵıa que cuantifica el riesgo
de sufrir diferentes grados de hipoglucemia e hiperglucemia en estado postprandial inducida por
la terapia de insulina de acuerdo a los parámetros de cada paciente. Esta metodoloǵıa se basa
en el análisis intervalar modal (MIA), una teoŕıa matemática desarrollada por investigadores de
la Universidad de Barcelona y la Universidad de Girona. Aplicando MIA se predice el nivel de
glucosa postprandial considerando la variabilidad intrapaciente y otras fuentes de incertidumbre.
Para calcular el ı́ndice de riesgo se utiliza un planteamiento del peor caso. De esta manera se cal-
cula una predicción más segura de posibles episodios de hiperglucemia e hipoglucemia inducida
por la terapia de insulina en términos de dichas incertidumbres. Considerando la variabilidad
intrapaciene y la incertidumbre presente en la ingesta de alimentos, fue realizado un estudio del
comportamiento de tres modelos de acción de insulina y cinética de la glucosa posprandial con-
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cluyendo que con dicha variabilidad un modelo de glucosa-insulina de baja complejidad puede
ser suficiente para describir la dinámica de los pacientes en la mayoŕıa de las situaciones.
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Resum

La diabetis és una malaltia metabòlica caracteritzada per nivells elevats de glucosa en plasma
(hiperglucèmia), que a llarg termini pot conduir a complicacions micro i macrovasculars. Aque-
sta malaltia es deu a la manca de secreció d’insulina per part de les cèl·lules beta en els illots
de Langerhans del pàncrees (diabetis tipus 1) o una resistència cel·lular a l’acció de la insulina
combinada amb una deficient secreció d’insulina del pàncrees (diabetis tipus 2). La diabetis
és una de les malalties més greus que han de ser regulades artificialment. Segons les últimes
dades de la International Diabetes Federation, s’estima que el nombre de diabètics a tot el món
passarà de 284,6 milions el 2010 fins 438,4 milions el 2030, el que equival a 6,6 % i a 7,8% ,
respectivament, de la població adulta del món d’edats compreses entre 20 i 79 anys.

La teràpia convencional de la diabetis generalment es basa en injeccions subcutànies d’insulina.
A causa de la dificultat inherent en la selecció de la dosi correcta d’insulina i el risc d’episodis
d’hiper i hipoglucèmia en pacients amb diabetis tipus 1, els sistemes d’ajuda a la dosificació
d’insulina són molt útils per millorar la qualitat de vida d’aquests pacients. El càlcul d’un ı́ndex
de risc que permeti predir de manera segura la glucèmia postprandial a curt termini, requereix
l’avaluació dels efectes del bol d’insulina i de la ingesta d’aliments durant la glucosa postpran-
dial. L’ús de models dinàmics proporciona informació valuosa sobre les excursions de la glucosa
postprandial. No obstant això, un dels reptes principals a considerar és la gran variabilitat
intraindividual entre els pacients. Diverses fonts d’incertesa, tals com la incertesa en la ingesta
d’aliments, s’han considerar, ja que no és possible mesurar amb precisió la quantitat i composició
de carbohidrats d’un menjar mixt en situacions de la vida real. Aquests factors fan necessari el
desenvolupament d’eines de predicció que tinguin en compte diverses fonts d’incertesa (entrades,
paràmetres i condicions inicials).

En aquesta tesi, es proposa un nou mètode per estimar la dosi i l’instant d’injecció que generi
el menor risc per a una teràpia intensiva d’insulina. Aquest sistema d’ajuda a la dosificació util-
itza un algorisme d’optimització per a determinar la dosi d’insulina i l’instant d’injecció que
redueixin al màxim el risc d’hiperglucèmia i hipoglucèmia postprandial en pacients diabètics ti-
pus 1. Per això, l’algorisme aplica una metodologia que quantifica el risc de patir diferents graus
d’hipoglucèmia i hiperglucèmia en estat postprandial indüıda per la teràpia d’insulina d’acord
amb els paràmetres de cada pacient. Aquesta metodologia es basa en l’anàlisi intervalar modal
(MIA), una teoria matemàtica desenvolupada per investigadors de la Universitat de Barcelona i
la Universitat de Girona. Aplicant MIA es prediu el nivell de glucosa postprandial considerant
la variabilitat intrapacient i altres fonts d’incertesa. Per calcular l’́ındex de risc s’utilitza un
plantejament del pitjor cas. D’aquesta manera es calcula una predicció més segura de possibles
episodis d’hiperglucèmia i hipoglucèmia indüıda per la teràpia d’insulina en termes de les in-
certeses. Considerant la variabilitat intrapaciene i la incertesa present en la ingesta d’aliments,
es va realitzat un estudi del comportament de tres models d’acció d’insulina i cinètica de la
glucosa postprandial concloent que amb aquesta variabilitat, un model de glucosa-insulina de
baixa complexitat pot ser suficient per descriure la dinàmica dels pacients en la majoria de les
situacions.
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Nomenclature

The following acronyms, abbreviations and variables are used in this thesis.

Acronyms and abbreviations

AP Artificial Pancreas
ADA American Diabetes Association
CGM Continuous Glucose Monitor
CHO Carbohydrates
CSII Continuous subcutaneous insulin infusion
DCCT Diabetes Control and Complications Trial
DM Diabetes Mellitus
EGP Endogenous Glucose Production
FDA Food and Drug Administration
HbA1c Glycosylated Haemoglobin
ICU Intensive Care Unit
ID Insulin pharmacodynamics
IDF International Diabetes Federation
IU Insulin Unit
IP Insulin pharmacokinetics
IvalDb Interval Value Double
IVGTT Intravenous Glucose Tolerance Test
JDRF Juvenile Diabetes Research Foundation
MCS Monte Carlo Simulation
MDI Multiple Daily Injection
MI Monomeric Insulin
MIA Modal Interval Analysis
NIH National Institutes of Health
NPH Neutral Protamine Hagedorn
OGTT Oral Glucose Tolerance Test
PD Pharmacodynamics
PK Pharmacokinetics
RI Risk Index
SAAM Simulation Analysis and Modeling
SC Subcutaneous
SD Standard Deviation
T1DM Type 1 diabetes mellitus
UVa University of Virginia

Variables

αhm Weight of relative importance of mild hypoglycaemia
αHm Weight of relative importance of mild hyperglycaemia
αhs Weight of relative importance of severe hypoglycaemia
αHs Weight of relative importance of severe hyperglycaemia
BW Body weight (kg)
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D Amount of carbohydrates ingested (mg)
di Insulin dose (mU)
∆t Integration step
γ(t) Weighting function for the time occurrence of hyperglycaemia
Gb Plasma glucose concentration in basal state (mg)
GC Preprandial glucose measurement (mg/dL)
Gmax Upper bound of the predicted manifold glucose trajectories (mg/dL)
Gmin Lower bound of the predicted manifold glucose trajectories (mg/dL)
hm Glucose range of mild hypoglycaemia (mg/dL)
Hm Glucose range of mild hyperglycaemia (mg/dL)
hs Glucose range of severe hypoglycaemia (mg/dL)
Hs Glucose range of severe hyperglycaemia (mg/dL)
I Insulin concentration (mU L−1)
Ib Basal value of insulin concentration (mU dL−1)
II Initial bolus insulin dose (mU min−1)
IM Initial injection-to-meal time (min)
J Cost function that represent the risk index
Jhm Risk of mild hypoglycaemia
JHm Risk of mild hyperglycaemia
Jhs Risk of severe hypoglycaemia
JHs Risk of severe hyperglycaemia
Ra Glucose absorption rate (mg min−1)
S Appearance rate of insulin in plasma (mU min−1)
tim Relative time between insulin injection and meal ingestion (min)
u Insulin input (mU min−1)
Vg Glucose distribution space (dL)
Vi Insulin distribution volume (L kg−1)
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Chapter 1

Introduction

This introductory chapter presents an overview of the thesis, beginning with the general consid-
erations that motivated this research. The main problems and challenges, the objectives, and
the methodology used in this study are briefly explained. Finally, a description of the structure
and content of the thesis is presented.

1.1 Motivation

Diabetes mellitus (DM) is a metabolic disease characterized by elevated plasma glucose lev-
els, corresponding to acute or chronic hyperglycaemia, which can lead to long-term micro- or
macrovascular complications. Because of these complications, diabetes is a major cause of death
in most countries. According to the International Diabetes Federation (IDF), cardiovascular dis-
eases resulting from damage to the large blood vessels cause the death of 50% or more of people
with diabetes, depending on the population examined. In a study of 216 countries and territories
for the years 2010 and 2030, the IDF concluded that close to four million deaths in the 20–79
years age group can be attributed to diabetes in 2010, accounting for 6.8% of global all-cause
mortality in this age group (Shaw et al., 2010)
.

Diabetes is rapidly emerging as a global health-care problem, which threatens to reach pan-
demic levels by 2030. One of the main reasons for this increase in the disease is the changes in
lifestyle that have led to low levels of physical activity and increasing obesity. Most people in
whom diabetes is diagnosed in childhood or adolescence have type 1 diabetes. It is estimated
that some 76,000 children aged under 15 years develop type 1 diabetes annually worldwide, and
this number is increasing at an alarming rate.

In the 1990s, the Diabetes Control and Complications Trial (DCCT) (DCCT, 1993) showed
that any improvement in glucose control, as measured by the level of glycated haemoglobin
(HbA1c), reduces the risk of the chronic complications associated with diabetes. HbA1c is a
form of haemoglobin used primarily to identify the average plasma glucose concentration over
prolonged periods of time. Based on these results, euglycaemia has been established as the
control objective for patients with type 1 diabetes, unless contraindications exist. However,
no universal, efficient, and safe system for normalizing the glucose levels of DM patients is yet
available.

In type 1 diabetes, the insulin-producing cells of the pancreas are destroyed, which can ul-
timately lead to a total loss of insulin production. Therefore, exogenous insulin administration
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is required to replace its physiological secretion. Different dosage regimens are used, such as
multiple daily injection (MDI) therapy, continuous subcutaneous insulin infusion (CSII) with an
external pump, or conventional treatment. MDI therapy is based on multiple insulin injections
using a combination of short- and long-acting insulin analogues. Treatment with CSII combines
continuous baseline insulin release by administering additional short-acting insulin before meals
and in response to high glycaemic values. Insulin is administered from a small infuser subcuta-
neously via a catheter.

Typically, before each meal, the patient measures his/her preprandial blood glucose level and
calculates the adjusted insulin dose in relation to the planned carbohydrate intake, according
to rules prescribed in the therapy plan by the physician. This therapy involves a risk of severe
hypoglycaemia, with all its consequences, if the dose is too high. Although several rules exist
for the calculation of the bolus insulin dose, and these have even been recently incorporated into
the automatic calculations of some insulin pumps, trial-and-error adjustments of the therapy
must be made. The therapeutic goal in type 1 diabetes is to minimize the number of hypo-
glycaemic episodes and maximize the patient’s glucose control. For this reason, the automatic
control of insulin infusion, called the closed-loop insulin delivery or “artificial pancreas” has
been presented as the ideal technological solution (Hoshino et al., 2009; Kumareswaran et al.,
2009; Bondia et al., 2010).

The closed-loop insulin delivery requires a continuous glucose monitors (CGMs) to measure
glucose concentration, an algorithm to determine the insulin delivery rate and an insulin pump
delivering computed insulin doses. Closed-loop systems can be divided into “fully closed-loop”
and “semi-closed-loop”. The former do not require any information provided by the patient
while the latter require that the patient introduces the time and size of the meal. Currently,
there is a large international effort to develop an artificial pancreas. So far, a few prototypes
have been developed and testing has been limited to clinical settings.

The United States Food and Drug Administration (US FDA) has established a multidisci-
plinary group of scientists and clinicians, in partnership with the National Institutes of Health
(NIH), to address the clinical, scientific, and regulatory challenges related to this unique medical
product. Further evidence supporting its utility is the almost simultaneous open call for an ar-
tificial pancreas by the NIH in the USA. The European Commission and the Juvenile Diabetes
Research Foundation (JDRF) have also been principal players in the development of an artificial
pancreas.

Despite the extensive work that has already been done to develop the artificial pancreas,
many challenges are still to be faced, such as the accuracy and reliability of current CGMs, and
the safety of insulin pumps. The lack of accuracy and reliability of CGM systems has been a
technological bottleneck for the automation of insulin delivery. Different CGMs have reported
relative errors greater than 20%. This is challenging for a closed-loop controller, especially when
the temporal pattern of this error presents in the form of a bias. Similarly, reliability is one of
the main requirements for CGMs. To improve their reliability, self-monitoring capacity should
be embedded in CGMs, and should include the detection of abrupt faults and malfunctions
(Mazze et al., 2009). In relation to the insulin pumps, although these are highly developed to
be integrated into an artificial pancreas, is still necessary to improve their reliability. Most infu-
sion system failures involve the infusion set components and the subcutaneous infusion site, e.g.
obstruction of infusion set, infection of infusion site, leakage from the infusion site or leakage at
the infusion set connection (Guilhem et al., 2006).
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Current insulin pumps are “open-loop” systems. Although the user can measure blood glu-
cose levels and alter the insulin dose accordingly, pumps do not automatically respond to changes
in blood glucose level. Considering the inherent difficulty in selecting the insulin dose and the
risk of hyper- and hypoglycaemic episodes, dosage-aid systems would be extremely useful for
patients with type 1 diabetes.

An insulin dosage tool relies on sufficiently accurate predictions of glycaemia. However, there
exists great intra- and inter-individual variability in patient behaviour. Intra-patient variability
is related to the changes that occur within a patient during the day, such as the diurnal changes
in insulin sensitivity. The factors that affect inter-patient variability include sex, age, weight,
hormonal changes, stress, illness, and activity levels. Different sources of uncertainty are also
important in the prediction of glycaemia. An important source of uncertainty is the patient’s
food intake, because it is difficult to estimate this precisely for a mixed meal. Therefore, the
development of prediction tools that can accommodate different sources of uncertainty (input,
parameters, and initial states) is required.

Many systems have been developed to educate and support the patient in the process of
establishing the correct dose of insulin (Lehmann and Deutsch, 1995). Most of these systems
are intended for educational purposes (Levy et al., 1989; Lehmann and Deutsch, 1992a; Hejlesen
et al., 2000; Agar et al., 2005; Hedbrant et al., 2007), and only a few decision-support systems
have been developed (Hejlesen et al., 1997; Mougiakakou and Nikita, 2000; Campos-Delgado
et al., 2003; Cook et al., 2005). Insulin dosage advisory systems have also been incorporated
into insulin pumps (Takahashi et al., 2008; Zisser et al., 2008), based on proportionality rules
that consider the insulin/carbohydrate ratio, insulin sensitivity, and the insulin remaining from
previous injections “insulin on board”. Nevertheless, none of them addresses the problem of
different sources of uncertainty, as mentioned previously. This study was specifically directed to
overcoming this problem.

This research presents a novel method for estimating the dose and injection time relative to
meal times required for low-risk intensive insulin therapy. The algorithm is based on the interval
simulation of an individual patient’s glucoregulatory model. The interval simulation is performed
using modal interval analysis (MIA) (Gardeñes et al., 2001), which allows the overestimation of
interval computations to be avoided or minimized under some conditions. MIA has been suc-
cessfully applied to different fields, such as fault detection (Sainz et al., 2002; Calderón-Espinoza
et al., 2007), control (SIGLA/X Group, 1999; Herrero, 2006b), computer graphics (Flórez-D́ıaz,
2008), and global optimization (Sainz et al., 2008), among others.

Several mathematical models that include subcutaneous insulin absorption, carbohydrate di-
gestion and absorption, insulin pharmacokinetics and pharmacodynamics, and glucose metabolism
are studied here using MIA to allow the computation of the tight enclosure of the envelope that
includes all possible behaviours of the system. These models can be combined to represent a
glucoregulatory model. Therefore, a library of interval models of the physiological subsystems
of glucose regulation was developed. Some of these models have been used for the prediction
of plasma glucose (considering uncertainty) (Calm et al., 2007a,b; Bondia et al., 2007; Garćıa-
Jaramillo et al., 2009a; Bondia et al., 2009; Garćıa-Jaramillo et al., 2011a; Calm et al., 2011;
Revert et al., 2011).

The interval glucose prediction is used to develop a method to quantify the risk of suffering
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different grades of hypo- and hyperglycaemia. The risk index (RI) is calculated based on a
suitable cost function, and the dosage-aid system then calculates the optimum insulin dosage
and injection-to-meal time with the lowest risk according to the model.

The method developed here can be used by patients and physicians to evaluate the risk of
hypoglycaemia or hyperglycaemia within the framework of a dosage-aid system.

1.2 Problems and Challenges

A list of the main problems in the development of insulin dosage tools is outlined below.

• Inter- and intra-patient variability: A dosage-aid system must be patient-specific be-
cause of the large inter-subject variability in glucose regulation. For instance, two children
of the same age and weight often require quite different amounts of insulin. The insulin
dosage tools must also cope with intra-patient variability. The tool must take into account
the variations in insulin sensitivity that arise from circadian rhythms, changes in insulin
absorption, etc.

• Sources of uncertainty: Food intake is an important source of uncertainty because
accurate estimates are difficult to make for a mixed meal. In this regard, it is well known
that diabetic patients tend to consistently underestimate the carbohydrate content of their
meals (Graff et al., 2000). The input, parameters, and the initial state of the model may
also include uncertainty. The disturbances affecting the system, such as stress and exercise,
are other sources of uncertainty.

• Model identification: Model identification in diabetes is a complex process because
simple models cannot represent all the glucose dynamics, and complex models are difficult
or impossible to identify (Galvanin et al., 2009).

• Long physiological delays in the subcutaneous route: In healthy people, insulin is
delivered from the β-cells in the pancreas to the portal circulation. The delay in insulin
action in this case is about 30 min (Hovorka, 2006). When the subcutaneous route is used
for the delivery of insulin, the delay in insulin action is about 80 min from the time of
infusion, even when rapid-acting insulin analogues are used. More delay is attributable
to the glucose sensing in the subcutaneous route, because the transport of glucose from
blood to the interstitial fluid.

• Risks of intensive therapy: The counteraction of intensive insulin therapy required
to achieve glucose control objectives is an increase in the risk of severe hypoglycaemia,
with all its consequences. One fact that illustrates the difficulties of achieving an optimal
metabolic control is that, even in the DCCT study, which had a significant infrastructure,
less than 5% of patients with intensified treatment achieved optimal HbA1c levels (<6.5%),
and they did so at the expense of suffering more frequent severe hypoglycaemia (DCCT,
1993). Non-achievement of the control goals is frequently a source of frustration for the
patients and their physicians as well, since it is well known that poorly controlled diabetes
leads to chronic complications with significant morbidity and mortality.

1.3 Objectives

The general objective of this research was to include intra-patient variability and different sources
of uncertainty in the design of strategies for insulin dosage adjustment.
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To achieve this objective, the study addressed the following specific aims:

1. To consider the different sources of uncertainty and the large inter- and intra-patient
variability, in order to obtain an optimal interval simulation that includes all possible
behaviours of the glucose–insulin system. For this purpose, interval analysis has been
shown to be a potential tool, because uncertainty can be naturally described as intervals,
not only in the patient model parameters, but also in the initial states and inputs (for
instance, the rough estimation of carbohydrate intake). MIA is used to reduce the impact
of multiple instances of the same variable in the expression to be evaluated, leading to
an overestimation of the result. By applying MIA, different models of the glucose–insulin
system can be examined to achieve the optimal calculation. A library of glucoregulatory
interval models can then be constructed.

2. To quantify hypo- and hyperglycaemia risk indices based on interval predictions of the
patient’s postprandial glucose. In this way, a risk prediction system can be established to
quantify the risk of different grades of hypo- and hyperglycaemic episodes in the postpran-
dial state for a given insulin therapy. By considering inter- and intra-patient variability
and other sources of uncertainty, we can more safely predict the possible hyper- and hy-
poglycaemic episodes induced by the insulin therapy tested.

3. To develop an insulin dosage-aid system based on worst case analysis and risk prediction
to estimate the bolus insulin dose and injection times. The information contained in the
risk index is integrated into an optimization algorithm to calculate the insulin dose and
injection-to-meal time that minimize the risk of postprandial hyper- or hypoglycaemia in
type 1 diabetic patients.

1.4 Thesis Structure

This thesis is organized into three parts, as shown in Figure 1.1. Part I is related to the back-
ground of type 1 diabetes, and the state-of-the-art of the plasma glucose and insulin modelling
are presented. Part II focuses on the methodology used in developing a library of interval models
of the physiological subsystems of glucose regulation. Finally, the insulin dosage-aid system is
presented in Part III.

Here, a more detailed overview of all the chapters of the dissertation is described:

• Chapter 1 outlines the motivation for this research, the problems and challenges involved,
and the research objectives.

• Chapter 2 starts with an overview of diabetes, in which the complications and health-care
costs for diabetic patients are described. Next, different types of insulin and the major
advances in insulin therapy for type 1 diabetic patients are presented. The variability in
blood glucose prediction is also explained. The state-of-the-art of the different mathemati-
cal models that describe the processes of insulin pharmacokinetics and pharmacodynamics,
carbohydrate absorption, and glucose transport and elimination are presented.

• Chapter 3 addresses the techniques used to solve the problem of simulating uncertain
systems, with a particular emphasis on the concepts and results of MIA.
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Conclusions and Future Work
Chapter 7

Conclusions and Future Work
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Chapter 6
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Part I. Diabetes 
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Glucorregulatory 
Interval Models

Part III. Insulin 
Dosage-aid System

Figure 1.1: Thesis outline.

• Chapter 4 presents the prediction of plasma glucose using MIA. This prediction is per-
formed while considering different sources of uncertainty. Therefore, a selection of the
models presented in Chapter 2 is studied to produce the optimal calculation. Next, the
results obtained with MIA are compared with those obtained with Monte Carlo simula-
tion (MCS) with a uniform probability distribution. Finally, three plasma glucose interval
models are compared.

Publications related to this chapter:

[Calm2007a ] Calm, R., Garćıa-Jaramillo, M., Veh́ı, J., Bondia, J., Taŕın, C., and Garćıa-
Gab́ın, W. (2007). Prediction of glucose excursions under uncertain parameters and
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food intake in intensive insulin therapy for type 1 diabetes mellitus. In 29th Annual
International Conference of the IEEE Engineering in Medicine and Biology Society,
pages 1770-1773, 22-26 August, Lyon, France.

[Calm2007b ] Calm, R., Garćıa-Jaramillo, M., Veh́ı, J., Bondia, J., Taŕın, C., and Garćıa-
Gab́ın, W. (2007). Simulación intervalar del metabolismo de la glucosa en pacientes
con diabetes mellitus tipo 1. In IX Jornadas de ARCA. Sistemas Cualitativos y
Diagnosis, Lloret de Mar, Spain.

[Bondia2007 ] Bondia, J., Calm, R., Garćıa-Jaramillo, M., Veh́ı, J., Taŕın, C., and
Garćıa-Gab́ın, W. (2007). Predicción de glucemia en pacientes con diabetes tipo 1
ante incertidumbre. In I Simposio de Modelado y Simulación de sistemas dinámicos
(SIMOSI), Congreso Español de Informática (CEDI), Zaragoza, Spain.

[Calm2011 ] Calm, R., Garćıa-Jaramillo, M., Bondia, J., Sainz, M., and Veh́ı, J. (2011).
Comparison of interval and monte carlo simulation for the prediction of postpran-
dial glucose under uncertainty in type 1 diabetes mellitus. Computer Methods and
Program in Biomedicine, In press.

[Garcia-Jaramillo2011b ] Garćıa-Jaramillo, M., Calm, R., Bondia, J., and Veh́ı, J.
(2011b). Interval simulation of glucose prediction models in presence of intra-individual
variability and uncertain food intake. In Workshop on Control, Dynamics, Monitor-
ing and Applications, Caldes de Montbui, Spain.

[Garcia-Jaramillo2011c ] Garćıa-Jaramillo, M., Calm, R., Bondia, J., and Veh́ı, J.
(2011c). Prediction of postprandial blood glucose under uncertainty and intra-patient
variability in type 1 diabetes: a comparative study of three interval models. Computer
Methods and Programs in Biomedicine, Submitted.

• Chapter 5 describes computing the risk of postprandial hypo- and hyperglycaemia in
type 1 diabetic patients while considering intra-patient variability and other sources of
uncertainty. First, a brief summary of the principal methods used to analyse the risk of
suffering hypo- and hyperglycaemic events is presented. A method of quantifying the risk
of suffering different grades of hypo- or hyperglycaemia, using interval prediction, is then
proposed. Finally, a model-based prediction of worst-case glucose excursions is made by
considering intra-patient variability and uncertain initial states and food intake.

Publications related to this chapter:

[Garcia-Jaramillo2009a ] Garćıa-Jaramillo, M., Calm, R., Bondia, J., Taŕın, C., and
Veh́ı, J. (2009). Computing the risk of postprandial hypo- and hyperglycemia in type
1 diabetes mellitus considering intrapatient variability and other sources of uncer-
tainty. Journal of Diabetes Science and Technology, 3(4):895-902.

[Garcia-Jaramillo2009b ] Garćıa-Jaramillo, M., Calm, R., Bondia, J., Taŕın, C., and
Veh́ı, J. (2009). Prediction of postprandial hypo- and hyperglycemia events by means
of interval models with uncertain parameters and food intake. Poster, In 2nd Inter-
national Conference on Advanced Technologies & Treatments For Diabetes, Athens,
Greece.

• Chapter 6 describes the dosage-aid system. First, a chronological summary is given of
the different methods used to support the patient in the insulin dosage process for different
purposes. Next, the methodology and algorithm used to calculate the optimum insulin
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dose and injection-to-meal time based on a worst-case approach are described. Finally,
to demonstrate the feasibility of the proposed methodology, three different scenarios for a
virtual patient with nominal parameters are considered to calculate the insulin doses and
injection-to-meal times with the lowest risk.

Publications related to this chapter:

[Calm2009 ] Calm, R., Garćıa-Jaramillo, M., Bondia, J., and Veh́ı, J. (2009). Insulin
dosage based on risk index of postprandial hypo- and hyperglycemia in type 1 diabetes
mellitus with uncertain parameters and food intake. In Small Workshop on Interval
Methods (SWIM), Lausanne, Switzerland.

[Garcia-Jaramillo2011a ] Garćıa-Jaramillo, M., Calm, R., Bondia, J., Taŕın, C., and
Veh́ı, J. (2011a). Insulin dosage optimization based on prediction of postprandial
glucose excursions under uncertain parameters and food intake. Computer Methods
and Programs in Biomedicine, In press.

• Chapter 7 discusses the conclusions and contributions of this research, and future work.



Chapter 2

Type 1 Diabetes: Therapies and
Models

2.1 Glucose–Insulin System

The normal regulation of the blood glucose level is achieved by the glucose–insulin system. A
healthy person normally has a fasting sugar level in the range of 70–110 mg/dL. After 1 g/kg
of glucose intake, the glucose level increases to 120–140 mg/dL, returning to baseline after 2
h. Exogenous factors that affect the blood glucose concentration include food intake, rate of
digestion, exercise, and reproductive state. A simple description of the glucose–insulin system
is shown in Figure 2.1. When a person eats a meal, his/her glucose level rises (the blood glucose
level moves to the red area) and the pancreas responds by secreting insulin, which signals to the
liver to stop making glucose. The medical term for high blood glucose is “hyperglycaemia”.

Figure 2.1: The blood glucose–insulin system (adapted from Makroglou et al. (2006)).

Insulin is a hormone produced by the β-cells of the islets of Langerhans in the pancreas (see
Figure 2.2). The main action of insulin is to regulate the glucose levels in the blood, allowing
the body’s cells to absorb glucose from the bloodstream, which brings the blood glucose to the
green area.

When there is too much insulin in the bloodstream and too little food has been eaten, the

9
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Figure 2.2: Insulin production in the human pancreas (taken from National Institutes of Health
(2006)).

glucose level decreases. The same situation occurs when exercise has been undertaken without
extra food intake. These situations correspond to the blue area in Figure 2.1. The medical term
for low blood glucose is “hypoglycaemia”. When a person has hypoglycaemia, the α-cells react
by releasing glucagon, which acts on the liver cells, causing them to release glucose into the
blood until the person is back in the green area again (Makroglou et al., 2006). In a healthy
person, the production of glucagon declines when the blood glucose and insulin concentrations
rise after a meal. Glucagon and insulin are part of a feedback system that maintains the blood
glucose at the correct level.

2.2 Diabetes Overview

Diabetes mellitus (DM) is a metabolic disease characterized by elevated plasma glucose levels.
The metabolic control objective is to normalize the blood sugar and prevent or delay the onset
of long-term complications. Unlike a healthy person, when a diabetic patient ingests 1 g/kg
glucose, his/her blood glucose levels become high, and only return to baseline after 4–6 h. This
is shown in Figure 2.3, where the oral glucose tolerance test (OGTT) is represented schematically.

Figure 2.3: Oral glucose tolerance test. The blue line corresponds to a healthy person and the
red line to a diabetic patient.

DM is one of the most serious diseases that must be regulated artificially. According to the
latest data from the International Diabetes Federation (IDF), it is estimated that the number
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of diabetics worldwide will increase from 284.6 million in 2010 to 438.4 million in 2030, equiv-
alent to 6.6% and 7.8%, respectively, of the world’s adult population aged between 20 and 79
years (see Figure 2.4). Between 2010 and 2030, there will be a 69% increase in the number of
adults with diabetes in developing countries and a 20% increase in developed countries (Shaw
et al., 2010). These statistics are probably an underestimate of the future prevalence of diabetes
in this pandemic. The worldwide increase in people with diabetes is attributable to an aging
population, the growth in population size, urbanization, and the high prevalence of obesity and
sedentary lifestyles.

Figure 2.4: IDF regions and global projections for the number of people with diabetes (20–79
years), 2010–2030. (Taken from International Diabetes Federation (2009)).

The health-care costs of diabetic people are double the costs incurred by people without
diabetes. In Europe, health spending by diabetics is estimated to be between USD 3000 and
USD 6500 annually. This range is exceeded in the United States. Health-care expenditure on
diabetes will account for 12% of the total health-care expenditure in the world in 2010. The
total annual global health expenditure for diabetes in 2010 was estimated to fall between USD
376 billion (R=2) and USD 672 billion (R=3), where R is the ratio of diabetic to non-diabetic
medical care expenses (Zhang et al., 2010). Figure 2.5 shows the estimated expenditure for
diabetes by IDF region for 2010 and 2030, assuming R=2. For the reasons discussed above,
there are clear economic and social benefits in identifying effective therapies for diabetes.

Clinically, glycaemic control is assessed by the measurement of glycosylated haemoglobin
(HbA1c). It is based on the fact that red blood cells live for approximately 120 days and reflect
the average measurement of blood glucose over the past 6–12 weeks. This test, in conjunction
with home glucose monitoring, is used as the basis for treatment adjustments.

The normal range for the HbA1c test is 4–6% for people without diabetes. The Diabetes
Association recommends that the ideal range of HbA1c for adults and adolescents with diabetes
is generally less than 7% and that physicians should re-evaluate and, in most cases, significantly
change the treatment regimen in patients with HbA1C consistently above this level (Ameri-
can Diabetes Association, 2004).
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Figure 2.5: Health expenditures (USD) for diabetes in 2010 and 2030 by region (Interna-
tional Diabetes Federation, 2009).

2.2.1 Types of diabetes

Diabetes mellitus is usually referred to simply as “diabetes”, which means “flowing through”,
while “mellitus” means “sweet as honey”. Diabetes is also described as either insulin dependent
(IDDM) or non-insulin dependent (NIDDM), or, more recently, as type 1 diabetes and type 2
diabetes, respectively.

In the past, diabetes was diagnosed by tasting the urine. The only treatment was alcohol,
which lowers the blood sugar level. Before insulin was discovered, type 1 diabetes always re-
sulted in death, usually quite quickly. Insulin has been medically available since 1921.

An updated etiological classification of diabetes mellitus was made by the American Diabetes
Association (ADA) (American Diabetes Association, 2010).

Type 1 diabetes

Type 1 diabetes mellitus (T1DM, previously known as insulin-dependent or childhood-onset di-
abetes) is an autoimmune disease characterized by elevated plasma glucose levels, corresponding
to acute or chronic hyperglycaemia. This results from the destruction by cells of the immune
system of the insulin-producing β-cells in the islets of Langerhans in the pancreas, ultimately
leading to the total loss of insulin production. Without insulin, glucose remains in the blood-
stream, so blood glucose levels increase, especially after meals are consumed (Hanas, 2004). The
glucose is then passed out of the body in the urine.

The symptoms of type 1 diabetes are tiredness, hunger, polyuria, polydipsia, and weight loss.
Untreated hyperglycaemia can lead to serious long-term complications, including cardiovascular
diseases, kidney failure, blindness, and stroke.

In the 1990s, the Diabetes Control and Complications Trial (DCCT) (DCCT, 1993) showed
that any improvement in glucose control, as measured by the level of HbA1c, reduces the risk
of the chronic complications associated with diabetes. For this reason, euglycaemia has been
established as the control objective for patients with type 1 diabetes, except when some con-
traindication exists. The treatment required to achieve this glucose control objective involves
the injection of insulin into the body, exercise, and a healthy diet. A type 1 diabetic patient is



2.2. Diabetes Overview 13

dependent on insulin injections because insulin is not secreted by the pancreas. However, this
therapy has a counteraction which is it increases the risk of severe hypoglycaemia, with all its
consequences. When hypoglycaemia is untreated, it will worsen and cause confusion, clumsiness,
or fainting. Severe hypoglycaemia can lead to seizures, coma, and even death.

Type 2 diabetes

Type 2 diabetes involves a reduction in the efficiency of insulin in promoting the transport of
plasma glucose into cells due to a resistance to insulin, resulting in the eventual loss of insulin
production. Initially, oral drugs, such as metformin, are required to increase the body’s sensi-
tivity to insulin, or to increase the release of insulin from the pancreas. Over time, the number
of β-cells starts to decline, and then the type 2 diabetic patient must be treated with insulin
injections like the type 1 diabetic to maintain his/her blood sugar at normal levels. Approxi-
mately 90–95% of diabetic patients have type 2 diabetes.

A degree of hyperglycaemia sufficient to increase the risk of macrovascular and microvascular
complications, but without clinical symptoms, may be present for a long time before type 2
diabetes is detected.

2.2.2 Complications

Diabetes mellitus is a disease with a great socio-sanitary impact because of its high frequency
and, more importantly, the consequences of its chronic complications. Insulin deficiency causes
elevated plasma glucose concentrations, and if these are not controlled well, they may precipitate
short-term and long-term complications.

Short-term complications

Hypoglycaemia and hyperglycaemia are considered short-term complications of diabetes. The
symptoms of hypoglycaemia include: weakness or shakiness, sweating, dizziness, hunger, ner-
vousness, and confusion. If hypoglycaemia is not treated, headache, irritability, poor circulation,
poor co-ordination, and numbness in the mouth and tongue may occur. Serious hypoglycaemia
can result in altered consciousness, seizures, coma, and even death.

The symptoms of hyperglycaemia include excessive thirst and hunger, frequent urination,
nausea, vomiting, and lack of energy. Prolonged hyperglycaemia can lead to a condition called
“ketoacidosis”. Ketoacidosis is caused by high levels of ketones in the blood and urine, and can
lead to acidosis, a condition in which the blood is too acidic. When this happens, the condition is
known as “diabetic ketoacidosis” (DKA). Unless treated promptly, DKA may induce a diabetic
coma.

Long-term complications

High blood sugar levels over the long term increase the risk of a series of medical problems.
Long-term complications may cause small and large blood vessel disease (see Figure 2.6). Small
blood vessel disease (microvascular disease) can damage the kidneys, eyes, or nerves, and large
blood vessel disease (macrovascular disease) can cause heart disease, stroke, or peripheral vas-
cular disease. In Table 2.1, the long-term complications of diabetes are described (Beers and
Jones, 2004).
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Figure 2.6: The major complications of diabetes (Taken from International Diabetes Federation
(2009)).

Diabetic complications can often be prevented if the doctor’s orders are followed and the
patient’s blood sugar levels are controlled.

2.2.3 Type 1 diabetes therapy

The real cure for diabetes would be a pancreatic or Langerhans islet transplantation. However,
for immunological reasons, this transplantation is not always successful and the procedure poses
serious risks. Islet cell transplantation requires the use of immune-suppressing medications, and
the body often destroys the transplanted islet cells, just as it destroyed its own natural islet
cells, making the medication-free period short-lived. Furthermore, an insufficient supply of islet
cells is an obstacle to the wider use of this treatment. Transplantation is usually reserved for
those with very difficult-to-control diabetes. Approaches that simulate β-cell replenishment by
neogenesis or the replication of stem cells are still in the research stage (Efrat, 2003). Until now,
the most widely used therapy has been the subcutaneous injection of insulin.

One of the main problems in the field of biomedical engineering is the control of blood
glucose. This is because patients are extremely diverse in their physiological dynamics, and their
characteristics also vary with time. Because there is no outer control loop replacing the partially
or totally deficient system of blood glucose control in the human body, patients must regulate
their glucose levels manually. They must decide the appropriate insulin dose to be injected
based on their measured glucose levels. Good nutrition and regular physical activity are also
important components of diabetes treatment and the prevention of long-term complications.
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Tissue or
Organ
affected

Disease What happens Complications

Eyes Glaucoma and
retinopathy

Pressure builds up inside the eye, which
can decrease blood flow to the retina and
optic nerve and damage them. The small
blood vessels of the retina become dam-
aged; fluid leaks into the black of the eyes,
and abnormally weak blood vessels grow
and can burst

Loss of vision and ultimately, blindness

Kidneys Nephropathy The changes in the very small blood ves-
sels of the kidneys produce damage to the
filtering ability of these

Poor kidney function; kidney failure
and the need for dialysis or kidney
transplantation

Nervous
system

Neuropathy The small blood vessels that feed nerves in
the hands and feet and nerves that control
unconscious functions, such as blood pres-
sure, digestive processes and sexual func-
tioning, become damaged. The function
abnormally or stop functioning overall

Numbness and tingling especially the
feet and legs, sensitivity to touch or
muscle weakness, chronic pain, numb-
ness and muscle wasting, sores and ul-
cers; dizziness or faintness due to a
drop in blood pressure after standing
or sitting up

Heart Coronary heart Fat (plaque) and blood blots build up in
the large blood vessels and stick to the ves-
sels walls. This provoke blockage of the
blood vessels supplying blood to the heart

Heart attack

Brain Cerebrovascular The artery that supplies blood to the brain
tissue is blocked, or a ruptured artery
causes bleeding into the brain

Aphasia, dizziness, loss of balance or
coordination; sudden blurred, double
or decreased vision in one or both eyes;
stroke

Peripheral
arteries

Peripheral Vas-
cular

Build-up of plaque in the arteries that are
located of the body reducing the flow of
blood to the legs

Foot ulcers, infections, and even loss of
a toe, foot, or lower leg

Table 2.1: The long-term complications of diabetes.

Insulin therapy

The intensive insulin therapy required to achieve the glucose control objective in T1DM patients
is based on the administration of basal and bolus insulin to replace its physiological secretion.
This insulin is released by the pancreas in a healthy person after a meal (see Figure 2.7), be-
tween meals, and during the night. Therefore, in a T1DM patient, the bolus insulin emulates the
secretion of insulin after a meal, while the basal insulin emulates the insulin secretion between
meals and during the night.

Figure 2.7: Endogenous insulin release in a healthy person to a food intake.

Before the eighties, insulin was extracted from bovine or pig pancreas. Since 1980, insulin
with the same structure as human insulin has been synthesized, and insulin analogues have been
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developed using genetic manipulation. Currently, the available insulin analogues are classified
according to their duration of action as rapid-acting (e.g., Lispro, Aspart), short-acting (e.g.,
regular Actrapid), intermediate-acting (e.g., NPH, Lente), and very-long-acting insulins (e.g.,
Glargine, Detemir). Regular short-acting and rapid-acting insulins are given as a bolus injection
before meals. Rapid-acting insulin analogues have a much more rapid action than short-acting
insulins, as can be seen in Table 2.2. Intermediate-acting and very-long-acting insulins are used
as basal insulin, and are injected once or twice daily, according to the dosage regimen. A review
of insulin analogues and a representation of the insulin profiles achieved with different dosage
regimens has been published by Gossain (2003).

Insulin Onset of action Peak effect Duration
Lispro 5-15 minutes 30-90 minutes 3-5 hours
Aspart 10-20 minutes 1-3 hours 3-5 hours

Regular insulin 30-60 minutes 1-5 hours 6-10 hours
Buffered regular insulin 30-60 minutes 1-3 hours 8 hours

Lente 1-3 hours 6-14 hours 16-24 hours
NPH 1-2 hours 6-14 hours 16-24+ hours

Glargine 1.1 hours None ∼24 hours
Ultralente 4-6 hours 8-20 hours >24 hours

Table 2.2: Pharmacokinetics of available insulin products.

A combination of basal and bolus insulin can be used to achieve normal glucose levels. Dif-
ferent dosage regimens are used, such as multiple daily injections (MDI) regimens, continuous
subcutaneous insulin infusion (CSII), or conventional treatment. A common treatment for type
1 patients involves injecting a combination of short- and intermediate-acting insulins twice daily,
before breakfast and before the evening meal. Intensified regimens can improve the control of
blood glucose, and involve multiple daily injections of short-acting insulins with meals and a
long-acting insulin at night, or CSII with a short-acting insulin delivered through a pump. The
effects of CSII on glycaemic control were compared with those of MDI injections by Jeitler et al.
(2008). This meta-analysis showed that CSII gives a greater reduction of HbA1c than MDI both
in adults and adolescents with type 1 diabetes.

The frequency and quantity of the insulin dose depend on each individual patient’s weight,
physical activity, carbohydrates consumed, insulin sensitivity, disease history, etc. Before each
meal, patients normally measure their preprandial blood glucose level and then calculate the ad-
justed insulin dose in relation to the planned carbohydrate intake, according to rules prescribed
by the physician involved in the therapy plan. If the dose is too high, there is a risk of severe
hypoglycaemia, with all its consequences.

Because the use of an external closed-loop system that can replace a partially or totally de-
ficient system of blood glucose control in the human body is still in the research stage, patients
must regulate their glucose levels themselves. They must decide the appropriate insulin dose to
be injected based on glucose measurements and meal intakes.

The concept of glycaemic control in a “closed loop” is an attractive idea that has arisen
from the weaknesses inherent in injection therapies or traditional therapies based on insulin
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pumps. These therapies are likely to produce abnormal glucose levels, and present difficult and
inappropriate tasks for the patient. For these reasons, a substitute for the healthy beta cell of
the pancreas, which simulates its endocrine function, called the “artificial pancreas” (AP), can
be established to provide fully automated glycaemic control, or a closed loop (Kumareswaran
et al., 2009). This AP consists of continuous glucose monitoring coupled to an insulin-delivery
device, and a closed-loop algorithm which provides the correct dose of insulin at the right time
without human intervention (Harvey et al., 2010).

In recent years, significant progress has been made in the development of an AP. Improve-
ments in continuous glucose monitors have meant considerable progress in this direction. Today,
the problem lies in the demands of “closing the loop”, because this advance requires better-
performing sensors (more reliable and accurate) and control algorithms that take into account
the drawbacks of subcutaneously use and telemedicine support. The main actors in the devel-
opment of the AP, in addition to the European Commission, have been the Juvenile Diabetes
Research Foundation (JDRF) and the National Institute of Health (NIH) in the USA. Glob-
ally, the most important advances in the field of AP development have been made through the
“Artificial Pancreas Project” (Kowalski and Lum, 2009), launched by the JDRF in 2006 to val-
idate the effectiveness of new technologies in continuous glucose monitoring and to promote the
development of simulators that will allow us to “close the loop” by linking continuous glucose
monitors with insulin pumps.

Diet and physical activity

Several studies have clearly demonstrated the benefits of a healthy diet, regular exercise, and
weight loss for individuals already diagnosed with diabetes (Fowler, 2007). Obese people have a
higher incidence of hypertension and hyperlipidaemia than non-obese people, which may further
increase their risk of the microvascular and macrovascular complications of diabetes (Mokdad
et al., 2003).

Therefore, an important part of treating people with type 1 diabetes is good nutrition, careful
monitoring of carbohydrate and fat intake, regular physical activity, maintenance of a healthy
weight, and not smoking. Diabetic patients should eat at about the same times each day and
try to be consistent with the types of food eaten. In this way, glucose levels that are too high or
too low can be prevented. To this end, it is recommended that diabetic patients create a meal
plan that accommodates their health goals, food preferences, and lifestyles. The American Dia-
betes Association and the American Dietetic Association have information for planning healthy,
balanced meals.

The patient with type 1 diabetes must learn to count or at least closely estimate the amount
of carbohydrate that is consumed to help regulate their blood glucose levels and to adjust their
insulin dose. Failure to do so can lead to dangerous hyperglycaemia or hypoglycaemia. Patients
adjust their doses of insulin according to the amount of carbohydrate consumed and their insulin
therapy. For therapies involving multiple daily injections or CSII, the patient must calculate the
dose based on his/her carbohydrate intake. However, when fixed doses of rapid- or short-acting
insulin are administered, the diabetic patient must keep the amount of carbohydrate relatively
constant from meal to meal (Rabasa-Lhoret et al., 1999).

Exercise is also an essential part of treatment because regular exercise helps control blood
glucose. It also helps to burn excess calories and fat, to achieve a healthy weight. However,
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physical activity lowers blood glucose, often long after the patient has finished exercising. There-
fore, it is necessary to monitor blood glucose before and after physical activity, and to be wary
of hypoglycaemia, which can develop during or even several hours after exercise. The diabetic
patient should also have carbohydrate sources available and consume them as necessary to avoid
hypoglycaemia.

Exercise affects the insulin dose required. When a diabetic patient exercises, he/she needs
less insulin because exercise allows glucose to enter the muscle cells for immediate use. Therefore,
the diabetic patient must determine the effect of exercise on his/her blood glucose, adjusting
the insulin dose by self-monitoring.

2.2.4 Variability on blood glucose prediction

Great inter- and intra-patient variability is a major challenge in developing an AP. The factors
that affect inter-patient variability include sex, age, weight, hormonal changes, stress, illness,
and activity levels. Other factors that may cause fluctuations in glucose metabolism include
variations in meal absorption, insulin sensitivity, and subcutaneous absorption.

Intra-patient variability is related to the changes that occur within a patient during the day,
such as the diurnal changes in insulin sensitivity. The significant variability that occurs in the
relevant parameters between patients and within a given patient during the course of the day or
week has been documented in the literature (Simon et al., 1987; Bremer and Gough, 1999; Acik-
goz and Diwekar, 2010). Various errors can also influence inter- and intra-patient variability,
including errors in counting the carbohydrates in meals, sensor measurements, and the accuracy
of blood glucose meters (Chassin et al., 2004; Kildegaard et al., 2007; Kirchsteiger et al., 2009).

Different studies of this variability can be found in the literature. For example, the variabil-
ity in subcutaneous absorption has been widely studied by Heinemann (2002); Barnett (2003);
Heise et al. (2004); Guerci and Sauvanet (2005); Scholtz et al. (2005); Goykhman et al. (2009).
Uncertainty in the amount of meal and the times of meals have also been examined (Graff et al.,
2000; Chassin et al., 2004; Kildegaard et al., 2007; Kirchsteiger et al., 2009).

Inter- and intra-patient variability can create difficulties in continuous glucose control, and
it may be virtually impossible to apply the same controller to different patients, or even to the
same patient, who may show large variations on different days. Therefore, different diabetes
simulators have been developed to accommodate this variability in virtual patients (Wilinska
and Hovorka, 2008). In a model based control, the success of an optimal control method depends
on the accuracy of the model and how well this variability is taken into account.

2.3 Plasma Glucose and Insulin Modelling

To perform a model-based in silico simulation and for clinical diabetes decision support, a
pharmacodynamic model of the interaction between glucose and insulin is required. This math-
ematical model describes the processes of insulin pharmacokinetics (PK) and pharmacodynamics
(PD), carbohydrate absorption, and glucose transport and elimination (see Figure 2.8). Many
models of glucose regulation have been proposed in recent decades, using experimental data
to measure glucose production, glucose utilization, and insulin and meal absorption. A re-
view of glucose–insulin dynamics has been presented by Nucci and Cobelli (2000), Mari (2002),
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Makroglou et al. (2006) and Wilinska and Hovorka (2008).

Figure 2.8: Unit processes in glucose and insulin subsystems.

Mathematical models of diabetes are used for a variety of applications: to estimate insulin
sensitivity, for educational purposes, and as advisory systems. According to Chee and Fernando
(2007), these models range from simple expressions that relate glucose and insulin in linear
models (e.g., Ackerman et al. (1964); Cerasi et al. (1974); Salzsieder et al. (1985)), to simple
non-linear models (e.g., Bergman et al. (1981); Candas and Radziuk (1994); De Gaetano and
Arino (2000)), to more comprehensive mathematical models (e.g., Sorensen (1985); Cobelli et al.
(1986); Parker et al. (1999); Hovorka et al. (2004); Dalla Man et al. (2007b)). Compartment
models have been used by some of these authors in the development of their models. This allows
them to describe the processes that occur in the inaccessible portions of the system, because they
are not directly measurable. The inaccessible portion of a system is represented by a number of
interconnected compartments.

Models that describe the glucose–insulin system allow the estimation of the plasma glucose
concentration, which is difficult to measure in a clinical environment. Based on this estimation,
it might be possible to optimize an insulin therapy.

Different models of subcutaneous insulin absorption, gastric emptying, digestion and absorp-
tion, insulin kinetics, and glucose metabolism are described in this section.

2.3.1 Subcutaneous insulin absorption

As discussed in Section 2.2.3, people with type 1 diabetes must inject themselves with insulin
one or more times daily. After a subcutaneous injection, the insulin is gradually absorbed by
the body, and once inside the individual, the insulin concentration is time dependent.

When a specific amount of insulin is injected subcutaneously into a patient, it diffuses
throughout the adipose tissue, where it undergoes a series of molecular transformations, to
be absorbed into the bloodstream through the capillary wall. This process is known as the
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absorption of insulin (see Figure 2.9).

 
 
 
 
 

Subcutaneous insulin 
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dose (IU) 
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Figure 2.9: Diagram of the insulin absorption model.

A comparison of six models that represent the insulin via the subcutaneous absorption was
presented by Nucci and Cobelli (2000). Four of these are compartment models as shown Fig-
ure 2.10 (Kobayashi et al., 1983; Kraegen and Chisholm, 1984; Puckett and Lightfoot, 1995;
Shimoda et al., 1997), one based on a logistic equation (Berger and Rodbard, 1989) and one
complex conceptual model (Trajanoski et al., 1993).

(a) Kobayashi et al. (1983) (b) Kraegen and Chisholm (1984)

(c) Puckett and Lightfoot (1995) (d) Shimoda et al. (1997))

Figure 2.10: Compartment models of insulin absorption.

Several models have been proposed for various insulin preparations, most of which are com-
partmental models. For example, a single compartment with first-order kinetics and a pure
delay was proposed by Kobayashi et al. (1983) to describe the subcutaneous absorption of reg-
ular insulin (RI). The term “regular insulin” is taken to mean regular human insulin. As seen
in Figure 2.10(a), in this model the input u(t) (Umin−1) is the rate of insulin administration, τ
(min) is the time lag, ka and ke (min−1) are the rate constants for absorption and elimination
respectively and the compartment x1 (µU) represents the amount of insulin in the subcuta-
neous depot. Later, Kraegen and Chisholm (1984) presented a two-compartment description
of subcutaneous insulin kinetics for regular insulin with five parameters, including the insulin
degradation rate in the subcutaneous tissue kd. The input u(t) and the parameters Vd and ke

(see Figure 2.10(b)) have the same meanings as in the previous model.

The model of Kraegen and Chisholm (1984) was refined with a more minimal approach by
Puckett and Lightfoot (1995), who modelled the long-acting ultralente insulin in addition to
regular insulin. The difference between this and the previous model is in the removal of insulin
degradation, kd, (see Figure 2.10(c)) from the subcutaneous distribution pools and the imple-
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mentation of an effectiveness parameter at the injection site. The parameter ka represents the
rate constant from the subcutaneous depot to the interstitial fluids and from the interstitial
fluids to the blood.

Two insulin preparations, regular insulin and a monomeric insulin (MI) analogue, were mod-
elled by Shimoda et al. (1997) with a two-compartment model. It was fitted to clinical data from
10 type 1 diabetes patients, although the model was not identifiable a priori. The rate constants
kd and ke are the degradation constants in the subcutaneous tissue and plasma, respectively.
Compartment x1 represents the subcutaneous insulin mass where the injection takes place and
compartment x2 the subcutaneous insulin mass proximal to the plasma (see Figure 2.10(d)).

More dynamics of insulin analogues (regular, NPH, lente, and ultralente) were incorpo-
rated by Berger and Rodbard (1989) in a non-compartmental model. This model has been
adopted by the Automated Insulin Dosage Advisor (AIDA) decision-support system Lehmann
and Deutsch (1992a). The subcutaneous insulin plasma rate of appearance is described with
a three-parameter logistic equation with linear dose dependence. The model accounts for the
inverse dynamics between absorption and the insulin dose, which are more important when a
bolus injection is considered. The same relationship between dose and absorption time is taken
into account by Trajanoski et al. (1993), who simplified the model of subcutaneous insulin ab-
sorption proposed by Mosekilde et al. (1989) to describe MI absorption.

Subsequently, based on the work of Trajanoski et al. (1993), a novel, comprehensive, generic
subcutaneous insulin absorption model that included the insulin glargine was proposed by Taŕın
et al. (2005), using partial differential equations. This model allows the exogenous insulin flow
into the bloodstream of each insulin preparation/class to be computed over time, depending
on the injected insulin dose. In contrast to Trajanoski et al. (1993), who considered only two
different association states for insulin, the hexameric and dimeric, a bound insulin state was
adopted. This allows the consideration of reduced insulin solubility at physiological pH and the
precipitation or crystallization of very-long-acting insulin analogues, such as insulin glargine,
which delay absorption.

The Taŕın et al. model of subcutaneous insulin absorption allows the simulation of rapidly
acting insulin analogues, short-acting (regular) insulin preparations, intermediate-acting insulins
(both semilente and NPH types), and very-long-acting insulin analogues. Figure 2.11 shows the
resulting exogenous insulin flow profiles using the Taŕın et al. (2005) model after the injection
of 10 IU of the different insulin formulations modelled. This model has been incorporated into
the AIDA v4 Diabetes Simulator (Lehmann et al., 2009).

Later, Wilinska et al. (2005) evaluated 11 compartment-based models that simulate the CSII.
According to his evaluation, the best model was the 10th model, which was a four-compartment
model of MI absorption with fast/slow absorption channels and local insulin degradation.

More recently, non-linear compartment models of subcutaneous absorption have been devel-
oped. A model formed by the two compartments S1 and S2, which represents the absorption
of subcutaneously administered short-acting insulin (e.g., lispro), was developed by Hovorka
et al. (2004). Later, Dalla Man et al. (2007a) presented a model with two compartments that
represented polymeric (Isc1) and monomeric (Isc2) insulin in the subcutaneous tissue.

The main features of the models mentioned in this subsection are shown in chronological



22 2. Type 1 Diabetes: Therapies and Models

Figure 2.11: Exogenous insulin flow corresponding to 10 IU of different insulin formulations.

order in Table 2.2.

Model Model type Insulin type

Kobayashi et al. (1983) Single compartment RI

Kraegen and Chisholm (1984) Dual compartment RI

Berger and Rodbard (1989) Noncompartmental RI, NPH, lente, and ultralente

Mosekilde et al. (1989) Noncompartmental RI

Trajanoski et al. (1993) Noncompartmental MI

Puckett and Lightfoot (1995) Dual compartment RI and ultralente

Shimoda et al. (1997) Dual compartment RI and MI

Taŕın et al. (2005) Comprehensive RI, NPH, lente, ultralente and
Glargine

Wilinska et al. (2005) Four compartment MI

Hovorka et al. (2004) Dual compartment RI

Dalla Man et al. (2007a) Dual compartment RI and MI

Table 2.3: Summary of the subcutaneous absorption models.

In summary, the kinetics of most insulin analogues are best represented with non-compartmental
models, whereas compartmental models have mainly been used to represent the kinetics of regu-
lar insulin. Similarly, most existing models describe only one type of insulin, or a limited number
of types.

The models proposed by Hovorka et al. (2004), Wilinska et al. (2005), and Dalla Man et al.
(2007a) have been incorporated into the library of interval glucoregulatory models proposed in
Chapter 4 of this work. The Taŕın et al. (2005) model has been used to represent subcutaneous
insulin absorption in different examples presented in this thesis.

2.3.2 Gastric emptying, digestion, and absorption

Digestion is the process in which food is converted into simple compounds by chemical processes
to be absorbed and assimilated by the body. Digestion can occur at many levels in the body.
Generally, it refers to the breakdown of macromolecules or the matrices of cells or tissues into
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smaller molecules and component parts.

The process of meal glucose rate of appearance can be divided into several main processes,
including digestion in the stomach and gut, gastric emptying into the gut, absorption from the
gut, and subsequent transport into the plasma. Figure 2.12 is a diagram of the gastric emptying,
digestion, and absorption model.

 
 
 
 
 

Gastric emptying, 
digestion and absorption Food (gr) Glucose rate of 

appearance 

Figure 2.12: Diagram of gastric emptying, digestion, and absorption model.

The input into this model corresponds, in the simplest cases, to the carbohydrate intake.
In more elaborate models, the carbohydrates, monosaccharides, oligosaccharides, and polysac-
charides can be distinguished in the portions, and are also measured in grams. In even more
sophisticated models, the input may introduce carbohydrates (and their types), proteins, and
lipids to emulate more complex intake.

The kinetics of meal glucose appearance in the plasma is the least commonly studied area
when the glucose–insulin system is modelled. This is attributable to the different factors that
affect the dynamic model. For example, the rate of absorption of a mixed meal depends on its
fat, protein and fiber content and the time of day at which the meal is consumed, which affect
the absorption dynamics. Therefore, the meal carbohydrate content and type and the meal time
are the main factors affecting meal glucose appearance in the plasma.

Most models reported in the literature typically focus on the gut absorption of glucose, and
mixed meals have been considered only recently. Compartment and non-compartment models
have been used to represent these dynamics.

One of the most popular models to describe the kinetics of meal glucose appearance in the
plasma was presented by Lehmann and Deutsch (1992b). This model uses two compartments:
the first regulates the glucose flux from the stomach to the small intestine with a triangular
or trapezoidal function, and the second regulates the glucose entering the portal vein with a
first-order linear function. Previously, a one-compartment model was used to describe the ab-
sorption model with a linear function, as described by Lehmann and Deutsch (1992b), whereas
implementing a power exponential for the process of gastric emptying was developed by Elashoff
et al. (1982). A similar approach was taken by Fisher (1991).

Later, Worthington (1997) also used a one-compartment model, but included a time delay
to represent the glucose absorption from the gut. This time delay had the smallest fitting error
that was obtained with a model fitted to plasma glucose, so it is dependent on the model of
glucose kinetics used.

A two-compartment chain with identical fractional transfer rates was proposed by Hovorka
et al. (2004) to describe the catabolism of carbohydrates to monosaccharides (mostly glucose)
that takes place during meal digestion, as well as intestinal absorption. The model includes two
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parameters: carbohydrate bioavailability and the time to the peak appearance of glucose from
the gut. The glucose flux from the gut is assumed to be a saturable process.

Other models take into account the type of meal content, such as those listed below. Arleth
et al. (2000) classified gut absorption according to the class of carbohydrates, based on their
different absorption rates: sugars, rapidly absorbed starches, and slowly absorbed starches. The
ingestion of the only liquid meal was represented as a square pulse by Fabietti et al. (2001),
who described the appearance of glucose in the peripheral circulation with a third-order glu-
cose transfer function. Later, a mixed-meal model was developed by Roy and Parker (2006) to
include the absorption of carbohydrates, protein, and free fatty acids, based on Lehmann and
Deutsch (1992b).

The physiological model of intestinal glucose absorption proposed by Dalla Man et al. (2006)
consists of two stomach compartments and one intestinal-tract compartment, after they had eval-
uated the Elashoff et al. (1982) and Lehmann and Deutsch (1992b) models. The process of the
gastrointestinal subsystem is as follows: the meal is digested in the stomach with a grinding coef-
ficient; then, the chyme (partially digested food) enters the intestine with a fractional coefficient
of transfer; finally, the glucose is absorbed and enters the bloodstream. The non-linear gastric
emptying rate is described by a hyperbolic tangent function of the proportion of the consumed
carbohydrates remaining in the stomach. There is no saturation term for gastric emptying or
gut absorption for large meals.

The models formulated by Hovorka et al. (2004) and Dalla Man et al. (2006) have been in-
corporated into the library of interval glucoregulatory models proposed in Chapter 4 of this work.

2.3.3 Insulin action and glucose kinetics

When insulin acts on the bloodstream, it influences the blood glucose level, producing effects
in various tissues. The insulin is degraded and removed. This process is called “insulin action”
and typically includes a remote compartment to represent the delay in its action. Modelling the
glucose distribution incorporates: the introduction of glucose into the system from the gut; the
insulin-dependent and -independent glucose utilizations; the removal of glucose by the kidneys;
and the buffering of glucose by the liver. Finally, the glucose dynamics include the interactions
of blood glucose with all the systems in the patient’s body. The conceptual paradigm for models
that represent the kinetics of glucose and insulin action is illustrated in Figure 2.13.

As mentioned at the beginning of this section, models of glucose kinetics and insulin action
can be classified as simple expressions that relate glucose and insulin to very complex math-
ematical models. One of the first linear models proposed in the literature was formulated by
Ackerman et al. (1964). This model consists of a system of equations in which the parameters
have been lumped into two dependent variables and four rate constants. Salzsieder et al. (1985)
also presented a linear model that was intended to be individually identifiable and physiologi-
cally relevant. It was based on a combination of black-box model identification from normal dog
experimental data and state–space model identification from long-term diabetic dogs.

In the early 1980s, the minimal model was proposed by Bergman et al. (1981), and is com-
posed of two parts: the minimal model for glucose disappearance and the minimal model for
insulin kinetics. This model introduced the variable insulin action to account for the delay in
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Figure 2.13: Representation of the glucose-insulin system (Wilinska and Hovorka, 2008).

insulin transport to the periphery, as well as the insulin sensitivity of the cells, thus combin-
ing transport kinetics and action dynamics. The minimal model was originally developed to
estimate insulin sensitivity and glucose effectiveness from the intravenous glucose tolerance test
(IVGTT), but it has also been widely used in the area of glucose control (Wilinska and Hovorka,
2008), and different modifications have been presented and validated (Fernandez et al., 2007).

Many variations of the minimal model have been proposed, and a more formal mathematical
analysis of this model is given by De Gaetano and Arino (2000). The original minimal model
is composed of two separate parts, but the glucose–insulin system is an integrated dynamic
physiological system, which should be dealt with as a whole. Therefore, De Gaetano and Arino
(2000) proposed a global dynamic model of the glucose–insulin system that incorporated a de-
lay differential equation model. Later, based on this model, Mukhopadhyay et al. (2004) added
a generic weight function to the delay integral kernel for the pancreatic response to glucose.
Another variation of the minimal model was proposed by Derouich and Boutayeb (2002) to
introduce parameters related to physical exercise.

Caumo and Cobelli (1993) formulated a new model to interpret labelled IVGTT data be-
cause the minimal model provided a non-physiological pattern of hepatic glucose production. In
this model, the fast and medium compartments were combined and the losses from both com-
partments were made equal to allow their unique identifiability. However, this model requires
the use of glucose tracers to be uniquely identifiable, and is therefore impractical for widespread
clinical use. A two-compartment model was also developed by Vicini et al. (1997) based on the
model of Caumo and Cobelli (1993), the objective of which was to provide indices of glucose
effectiveness and insulin sensitivity.

Later, a glucose–insulin reference model was formulated by Vicini et al. (1999) to investigate
the consequences of the single glucose compartment hypothesis embedded in the minimal model
of glucose disposal. For this, they used the model by Caumo and Cobelli (1993) as the reference
for glucose kinetics; to define the insulin subsystem, the C-peptide model published by Toffolo
et al. (1995) was modified to describe the post-hepatic insulin delivery, i.e., after its extraction



26 2. Type 1 Diabetes: Therapies and Models

by the liver; and the derivation of the peripheral uptake indices was based on the model of Vicini
et al. (1997).

The two-compartment minimal model proposed by Vicini et al. (1997) can be seen as the
immediate precursor of the model formulated by Hovorka et al. (2002). The model proposed by
Hovorka et al. (2002) was built on experimental and modelling work, which used glucose tracers
to determine the structure and parameter values for the glucose kinetics in normal subjects under
basal conditions and during the IVGTT. The effects of insulin on glucose distribution/transport,
glucose disposal, and endogenous glucose production are taken into account in this model. The
model has been used for both simulation and control purposes in many different scenarios, from
critical patients (Hovorka et al., 2007) to overnight experiments (Hovorka et al., 2004) with
successful results, and recently it has been implemented in a mathematical patient simulator
(Wilinska et al., 2010).

More recently, the minimal model has also been modified for intensive care unit (ICU) pa-
tients by Van Herpe et al. (2006). Other variations of the minimal model have been proposed
by Dua et al. (2006) and Roy and Parker (2006). A good overview of the minimal model is
presented by Bergman (1997).

One of the initial comprehensive models was formulated by Guyton et al. (1978). The glu-
coregulatory system was structured organ-by-organ to simulate the whole body physiologically,
but it was unsuitable for parametrization in individual subjects (Palerm, 2003). This model was
extended by Sorensen (1985), who divided the body into six physiological compartments, as can
be seen in Figure 2.14, where the organ groups represent the central nervous system, lung and
myocardial, gastrointestinal, hepatic, renal, and peripheral tissues. The model is composed of
eight mass balance equations and 17 parameters for the glucose subsystem, seven mass balance
equations and 18 parameters for the insulin subsystem, and a single mass balance equation and
two parameters for the glucagon subsystem. To represent a subject with T1DM, insulin secre-
tion is disabled in this model, and meal disturbances and the parameters for the uncertainty
analysis are taken into account.

Figure 2.14: Flow diagram representing the Sorensen glucose model.
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Guyton’s model was also used by Lehmann and Deutsch (1992b) in combination with the
PK model for insulin action designed by Berger and Rodbard (1989). Guyton incorporated
the dynamics for the appearance of glucose from a carbohydrate meal. Lehmann and Deutsch
(1992b) concluded that the model was not sufficiently refined for individual simulations, and
therefore the model can only be used as a tool for education/teaching/demonstration of the
glucose–insulin interaction in T1DM for patients and medical staff. For this reason, the model
is used in a freeware educational simulator program, called AIDA, about the glucose–insulin in-
teraction, insulin dosage, and dietary adjustments in diabetes mellitus (Lehmann, 2001). Based
on this model, Parker et al. (1999) designed another extension of Sorensen’s model with the
objective of implementing the carbohydrate meal dynamics presented by Lehmann and Deutsch
(1992b).

Finally, one of the most recent and most used models representing the glucose–insulin system
was formulated by Dalla Man et al. (2007b). Dalla Man and colleagues introduced a minimal
model assessment of insulin sensitivity on a multi-sample OGTT (seven samples over 2 h). To
develop the model was used a database of 204 healthy persons, who received a triple racer,
mixed meal. Because the model refers to a healthy person, a model that simulates the specific
metabolic parameters of a T1DM patient was adapted from it by Magni et al. (2007). The
main change was to replace the subsystem of the pancreatic β-cells with a unit that models the
dynamics of a subcutaneous infusion of insulin.

The model of Dalla Man et al. was integrated into the UVa simulator (Kovatchev et al.,
2009), which is an in silico model of type 1 diabetes accepted by the US FDA as a substitute
for animal trials in the preclinical testing of closed-loop control strategies.

In general, the main advantage of the simple models is the minimal numbers of parameters
required to allow the identification of the model, but with a low glucose prediction accuracy.
Conversely, comprehensive models use a large number of parameters to describe the full system,
taking into account all interactions. This allows better accuracy in the glucose prediction.

More information about the mathematical models that are used to control the glucose–
insulin system can be found in the following reviews: Carson and Cobelli (2001); Palerm (2003);
Boutayeb and Chetouani (2006); Makroglou et al. (2006); Chee and Fernando (2007); Wilinska
and Hovorka (2008); Wong (2008); Cobelli et al. (2009).

The models proposed by Bergman et al. (1981), Hovorka et al. (2004), Dalla Man et al.
(2007b), and Panunzi et al. (2007) are examined in detail in Chapter 4.

2.4 Summary

In this chapter, some medical background about diabetes and a brief overview of existing phys-
iological models that describe the glucoregulatory system of healthy subjects and patients with
diabetes have been presented. The different subsystems have been represented by compart-
ment and non-compartment models, which can be classified as simple equations to very complex
mathematical models. The classifications of the long-term complications of diabetes and the
pharmacokinetics of the available insulin products were also presented.





Chapter 3

Interval Models and Interval
Simulation

Dynamic models provide valuable information about the postprandial glucose excursion. How-
ever, one of the main challenges that must be considered is the large intra-individual variability
among the patients. Another important source of uncertainty is food intake, because it is impos-
sible to measure the carbohydrate content of a mixed meal precisely in real-life situations. These
factors make it necessary to develop prediction tools that can accommodate different sources of
uncertainty (inputs, parameters, and initial states).

These uncertainties can be unstructured (the equations that model the system are unknown)
or structured (the equations are known but the values of their parameters are unknown). They
cannot be represented with quantitative models, i.e., models in which the parameters are real
numbers. If it is necessary to consider these uncertainties, other kinds of models are required
to overcome this shortcoming of quantitative models. Some types of models that can represent
the uncertainties of systems are qualitative, fuzzy, and interval models.

Uncertainty will be represented here by an interval model, i.e., a model in which the param-
eters, inputs, and/or initial states take interval values.

This chapter presents different techniques to solve the problem of simulating uncertain sys-
tems. The way to deal with this problem is with the theory of modal interval analysis (MIA),
so a particular emphasis is given to the concepts and results of MIA.

3.1 Modal Interval Analysis

MIA is a logical and algebraic completion of classical interval analysis in which several of the se-
mantic and algebraic shortcomings of classical interval analysis are overcome. The main concept
is the modal interval, which incorporates in its definition a logical quantifier to give meaning
to the interval computations. Some basic definitions and results of MIA are presented in this
section. The reader is referred to Gardeñes et al. (2001) and Sainz et al. (2002) for a deeper
coverage of this subject.

29
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3.1.1 Definition

A modal interval is defined as a couple X = (X ′,∀) or X = (X ′,∃) where X ′ is its classic interval
domain, X ′ ∈ I(R), and the quantifiers ∀ and ∃ are a selection modality. The set of the modal
intervals is represented by I∗(R). Modal intervals of the type X = (X ′,∃) are called proper
intervals or existential intervals, modal intervals of the type A = (X ′,∀) are called improper
intervals or universal intervals. The canonical representation of a modal interval is:

• Proper interval: X = [a, b] = ([a, b]′,∃) if a ≤ b

• Improper interval: X = [a, b] = ([b, a]′,∀) if a ≥ b

• Point-wise interval: X = [a, b] = ([a, b]′, {∃,∀}) if a = b

For example, the interval [4,6] corresponds to ([4, 6]′,∃) and the interval [7,5] corresponds to
([5, 7]′,∀). The bounds a and b are named as the infimum, a = Inf([a, b]) and the supremum,
b = Sup([a, b]) of the interval. A point-wise interval [a, a], also represented as [a], can be consid-
ered as proper or improper and it is identifiable with the real number a. The set of n-dimensional
modal interval vectors will be denoted by I∗(Rn) := {([a1, b1], . . . , [an, bn])/[ai, bi] ∈ I∗(R) i =
1, . . . , n}. Definitions and relationship in I∗(R) are generalized in a natural way in I∗(Rn).

For an interval A = [a1, a2] the operators Prop, Impr and Dual are defined as:

Prop([a1, a2]) :=

{
[a1, a2] if a1 ≤ a2

[a2, a1] if a1 > a2.

Improp([a1, a2]) :=

{
[a2, a1] if a1 ≤ a2

[a1, a2] if a1 > a2.

Dual([a1, a2)] := [a2, a1].

Example 3.1 Given a modal interval A = [−3, 3] the operators Prop, Impr and Dual are:

Prop([3,−3]) = [−3, 3],

Impr([−3, 3]) = [3,−3],

Dual([−3, 3]) = [3,−3].

3.1.2 Modal interval relations and operations

The process of construction of modal intervals is completed with the concept of modal quantifier
Q defined by:

Q(x,A)P (x) :=
{

(∃x ∈ A′)P (x), if A = (A′,∃)
(∀x ∈ A′)P (x), if A = (A′,∀),

which allows to define the set of real predicates accepted by a modal interval A:

Pred(A) := {P (·) ∈ Pred(R) Q(x,A)P (x)}.
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With the identification of a modal interval with the set of those real predicates which it
accepts: A ↔ P (A) arises the inclusion of two intervals as the inclusion of the set of predicates
that they accept, that is to say, if A, B ∈ I∗(R)

A ⊆ B :⇔ Pred(A) ⊆ Pred(B).

Using their canonical coordinates A = [a1, a2] and B = [b1, b2], this inclusion maintains the
traditional modus operandi ; that is to say

[a1, a2] ⊆ [b1, b2] ⇔ (a1 ≥ b1, a2 ≤ b2).

Example 3.2 Given two modal intervals A = ([−2, 2]′,∃) = [−2, 2] and B = ([−2, 2]′,∀) =
[2,−2], B is included in A because [2,−2] ⊆ [−2, 2] is true, which means that the set of accepted
predicates by B is included to the set accepted by A.

Geometrical representations of modal intervals and the inclusion and inequalities relations
can be seen in Figure 3.1.
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Figure 3.1: (a) Geometrical representation of modal intervals (b) Inclusions and inequalities.

The lattice operations meet (∧) and join (∨) on I∗(R) for a bounded family of modal intervals
A(I) := {A(i) = [a1(i), a2(i)] ∈ I∗(R) i ∈ I} (I is the index’s domain) are defined as the
⊆-maximum interval contained in all A(i), for the meet, and the ⊆-minimum interval which
contains all A(i), for the join, i.e.,

∧
i∈I

A(i) = A ∈ I∗(R) is such that ∀i ∈ I X ⊆ A(i) ⇔ X ⊆ A,

∨
i∈I

A(i) = B ∈ I∗(R) is such that ∀i ∈ I X ⊇ A(i) ⇔ X ⊇ B,

denoted by A ∧ B and A ∨ B for the corresponding two-operands case. The result, as a
function of the interval bounds, is

∧
i∈I

A(i) = [max
i∈I

a1(i),min
i∈I

a2(i)]



32 3. Interval Models and Interval Simulation

∨
i∈I

A(i) = [min
i∈I

a1(i),max
i∈I

a2(i)].

With these operations the set of modal intervals is a reticle for this ⊆-relation, while the
classic intervals are not, therefore, modal intervals are a reticular completion of the set of classic
intervals. Both operators are isotonic, i.e., if Ai ⊆ Bi for every i ∈ I, then

∧
i∈I

Ai ⊆
∧
i∈I

Bi and
∨
i∈I

Ai ⊆
∨
i∈I

Bi,

and they also associative and distributive with respect to each other.

Example 3.3 Given two modal intervals A = [−2, 2] and B = [6, 4],

A ∧ B = [−2, 2] ∧ [6, 4] = [6, 2]

A ∨ B = [−2, 2] ∨ [6, 4] = [−2, 4]

In the set of the real numbers there are two relationships: ≤ and ≥ and the extension of
these relationships to intervals is defined by:

[a1, a2] ≤ [b1, b2] :⇔ (a1 ≤ b1, a2 ≤ b2),

which leads to the lattice operators “Min” and “Max”: for a bounded family of modal
intervals A(I) := {A(i) ∈ I∗(R)| i ∈ I}

Min A(i) = A ∈ I∗(R) is such that (∀i ∈ I) X ≤ A(i) ⇔ X ≤ A;
i∈I

Max A(i) = B ∈ I∗(R) is such that (∀i ∈ I) X ≥ A(i) ⇔ X ≥ B
i∈I

and computationally

Min
i∈I

A(i) = [min
i∈I

a1(i),min
i∈I

a2(i)],

Max
i∈I

A(i) = [max
i∈I

a1(i),max
i∈I

a2(i)]

The set of the modal intervals is also a lattice for this ≤-relation. Figure 3.2(a) shows ge-
ometrical representation of the Meet, Join and figure 3.2(b) representation of Min and Max
operators for two intervals.

3.1.3 Modal interval arithmetic

The modal interval arithmetic coincides with the so-called Kaucher complete interval arithmetic
(Kaucher, 1980). However, MIA not only extends the classical interval arithmetic to include
the whole interval lattice, but it gives logical meaning to the results, which is related to the
modality of the involved intervals (e.g., proper or improper).
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A

B

A ∨B

A ∧B

(a)

Min(A,B)

A

B

Max(A,B)

(b)

Figure 3.2: Lattice operators: (a) Meet, Join and (b) Max, Min.

The basic four operations are defined as:

Sum : A + B = [a1 + b1, a2 + b2]
Rest : A − B = [a1 − b2, a2 − b1]

Product : A ∗ B = [a1b1, a2b2] if a1 ≥ 0, a2 ≥ 0, b1 ≥ 0, b2 ≥ 0
[a1b1, a1b2] if a1 ≥ 0, a2 ≥ 0, b1 ≥ 0, b2 < 0
[a2b1, a2b2] if a1 ≥ 0, a2 ≥ 0, b1 < 0, b2 ≥ 0
[a2b1, a1b2] if a1 ≥ 0, a2 ≥ 0, b1 < 0, b2 < 0
[a1b1, a2b1] if a1 ≥ 0, a2 < 0, b1 ≥ 0, b2 ≥ 0
[max(a1b1, a2b2),min(a2b1, a1b2)] if a1 ≥ 0, a2 < 0, b1 ≥ 0, b2 < 0
[0, 0] if a1 ≥ 0, a2 < 0, b1 < 0, b2 ≥ 0
[a2b2, a1b2] if a1 ≥ 0, a2 < 0, b1 < 0, b2 < 0
[a1b2, a2b2] if a1 < 0, a2 ≥ 0, b1 ≥ 0, b2 ≥ 0
[0, 0] if a1 < 0, a2 ≥ 0, b1 ≥ 0, b2 < 0
[min(a1b2, a2b1),max(a1b1, a2b2)] if a1 < 0, a2 ≥ 0, b1 < 0, b2 ≥ 0
[a2b1, a1b1] if a1 < 0, a2 ≥ 0, b1 < 0, b2 < 0
[a1b2, a2b1] if a1 < 0, a2 < 0, b1 ≥ 0, b2 ≥ 0
[a2b2, a2b1] if a1 < 0, a2 < 0, b1 ≥ 0, b2 < 0
[a1b2, a2b2] if a1 < 0, a2 < 0, b1 < 0, b2 ≥ 0
[a2b2, a1b1] if a1 < 0, a2 < 0, b1 < 0, b2 < 0

if 0 /∈ [b1, b2]
Division : A/B = [a1/b2, a2/b1] if a1 ≥ 0, a2 ≥ 0, b1 > 0, b2 > 0

[a2/b2, a1/b1] if a1 ≥ 0, a2 ≥ 0, b1 < 0, b2 < 0
[a1/b2, a2/b2] if a1 ≥ 0, a2 < 0, b1 > 0, b2 > 0
[a2/b1, a1/b1] if a1 ≥ 0, a2 < 0, b1 < 0, b2 < 0
[a1/b1, a2/b1] if a1 < 0, a2 ≥ 0, b1 > 0, b2 > 0
[a2/b2, a1/b2] if a1 < 0, a2 ≥ 0, b1 < 0, b2 < 0
[a1/b1, a2/b2] if a1 < 0, a2 < 0, b1 > 0, b2 > 0
[a2/b1, a1/b2] if a1 < 0, a2 < 0, b1 < 0, b2 < 0
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The next equation can also used for the division

1
B

=
[

1
b2

,
1
b1

]
and if 0 /∈ [b1, b2]

A

B
= A ∗ 1

B

3.1.4 Semantic extensions

In the set-theoretical interval analysis, the semantic extension of an R
n to R continuous function

z = f(x1, . . . , xn) is the interval united extension Rf of f which for the interval argument
X ′ = (X ′

1, . . . ,X
′
n) ∈ I(Rn) is defined as the range of f−values on X ′

Rf (X ′
1, . . . ,X

′
n) := {f(x1, . . . , xn) | x1 ∈ X ′

1, . . . , xn ∈ X ′
n)}

= [min{f(x1, . . . , xn) | x1 ∈ X ′
1, . . . , xn ∈ X ′

n},
max{f(x1, . . . , xn) | x1 ∈ X ′

1, . . . , xn ∈ X ′
n}].

Since the range of values of a general function is generally not computable, set-theoretical in-
terval extensions fR(X ′

1, . . . ,X
′
n) are defined like their corresponding real functions f(x1, . . . , xn),

if only replacing their numerical arguments x1, . . . , xn by the interval arguments X ′
1, . . . ,X

′
n, and

their “real” arithmetic operators w by their corresponding interval operations W which, in the
common case of the truncated computations of any actual arithmetic, must be the outwards-
directed ones W R; indeed, X ′WY ′ ⊆ X ′W RY ′ := Out(X ′WY ′). The relation between both
extensions is

Rf (X ′
1, . . . ,X

′
n) ⊆ fR(X ′

1, . . . ,X
′
n),

where fR(X ′
1, . . . ,X

′
n), computable from the bounds of the intervals X ′

1, . . . ,X
′
n, may usu-

ally represent an overestimation of Rf (X ′
1, . . . ,X

′
n).

The critical basic fact is that the classic interval extensions of f obtain only one kind of
interval predicate compatible with the outer rounding of f(X ′) : if Z ′ = fR(X ′

1, . . . ,X
′
n), the

only valid semantic statement will be

(∀x1 ∈ X ′
1) . . . (∀xn ∈ X ′

n) (∃z ∈ Z ′) z = f(x1, . . . , xn).

In the context of the modal intervals, it may be expected, as a starting point, that as soon
as the R-predicate P (x) results into the modal interval predicate Q(x,X)P (x), the relation
z = f(x1, . . . , xn) must become some kind of interval relation Z = F (X1, . . . ,Xn) guaranteeing
some sort of (n + 1)- dimensional interval predicate of the form

Q1(x1,X1) . . . Qn(xn,Xn) Qz(z, Z) z = f(x1, . . . , xn),

where an ordering problem obviously arises since the quantifying prefixes are not generally
commutative.
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3.1.5 Semantic functions

The extension of a given function f : R
n → R to modal intervals will now be discussed. In MIA,

the similar role to the “united extension” for the classical intervals (Moore, 1979) is played by
the semantic ∗ and ∗∗-functions, denoted by f∗ and f∗∗.

A key concept in MIA is the ∗-semantic extension f∗ of a continuous function f to a modal
interval vector X ∈ R

n, which can be seen as the modal interval counterpart of the range (or
interval united extension) of a continuous function in classic Interval Analysis. f∗ is defined by:

f∗(X) :=
∨

xp∈X′
p

∧
xi∈X′

i

[f(xp, xi), f(xp, xi)]

=
[

min
xp∈X′

p

max
xi∈X′

i

f(xp, xi), max
xp∈X′

p

min
xi∈X′

i

f(xp, xi)
]

where x = (xp, xi) is the component-splitting corresponding to the proper and improper
components of X = (Xp,Xi).

Another semantic extension defined in MIA is the ∗∗-semantic extension, which is the dual
formulation of the ∗-semantic extension. It is defined by

f∗∗(X) :=
∧

xi∈X′
i

∨
xp∈X′

p

[f(xp, xi), f(xp, xi)]

=
[

max
xi∈X′

i

min
xp∈X′

p

f(xp, xi), min
xi∈X′

i

max
xp∈X′

p

f(xp, xi)
]

Remark 3.1 If Xi = ∅, (allowing for the abuse of language), then

f∗(X) = f∗∗(X) = [min{f(x1, . . . , xn) | x1 ∈ X ′
1, . . . , xn ∈ X ′

n},
= max{f(x1, . . . , xn) | x1 ∈ X ′

1, . . . , xn ∈ X ′
n}],

which corresponds to the interval united extension Rf of classical interval analysis.

If Xp = ∅, it results instead

f∗(X) = f∗∗(X) = [max{f(x1, . . . , xn) | x1 ∈ X ′
1, . . . , xn ∈ X ′

n},
= min{f(x1, . . . , xn) | x1 ∈ X ′

1, . . . , xn ∈ X ′
n}],

Example 3.4 For the continuous real function f(x1, x2) = (x1 + x2)2 the computation of the
∗-semantic and the ∗∗-semantic functions for X = ([−1, 1], [1,−1]) yields the following results:
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f∗([−1, 1], [1,−1]) =
∨

x1∈[−1,1]′

∧
x2∈[−1,1]′

[(x1 + x2)2, (x1 + x2)2]

=
∨

x1∈[−1,1]′
[if x1 < 0 then (x1 − 1)2 else (x1 + 1)2, 0] = [1, 0]

f∗∗([−1, 1], [1,−1]) =
∧

x2∈[−1,1]′

∨
x1∈[−1,1]′

[(x1 + x2)2, (x1 + x2)2]

=
∧

x2∈[−1,1]′
[0, if x2 < 0 then (x2 − 1)2 else (x2 + 1)2] = [0, 1].

However, in general, f∗ and f∗∗ are not generally computable, except for simple functions
like this example or arithmetic operators.

Remark 3.2 From the duality between the lattice operators meet and join, f∗∗ = Dual(f∗(Dual(X)))
and a double implementation to obtain both semantic extensions is not necessary. Interesting
properties of the semantic extensions are the isotonicity

X ⊆ Y ⇒ f∗(X) ⊆ f∗(Y ) and f∗∗(X) ⊆ f∗∗(Y )

and the inclusion

f∗(X) ⊆ f∗∗(X).

In the special case when f∗(X) = f∗∗(X), f is said to be JM -commutable (Join-Meet com-
mutable) for X ∈ I∗(Rn). Classic examples are the arithmetic operators, which according to
the previous definitions, can be calculated by means of operations between the bounds of the
intervals (SIGLA/X Group, 1999).

3.1.6 Semantic theorems

Two key results, named semantic theorems, give logical interpretation to these semantic exten-
sions.

Theorem 3.1 (∗-semantic theorem) Given a continuous real function f : R
n → R, a modal

vector X = (Xp,Xi) ∈ I∗(Rn) and Z ∈ I∗(Rn), then

f∗(X) ⊆ Z ⇔ (∀xp ∈ X ′
p) Q(z, Z) (∃xi ∈ X ′

i) z = f(xp, xi).

where Q = ∃ when Z is a proper interval and Q = ∀ when Z is an improper interval.

Example 3.5 For the continuous real function f(x, y) = x + y

f∗([x1, x2], [y1, y2]) = [x1 + y1, x2 + y2].

For X = [1, 2] and Y = [2, 3] and since the result is Z = [3, 5], we may write [1, 2] + [2, 3] =
[3, 5], with the meaning

(∀x ∈ [1, 2]′) (∀y ∈ [2, 3]′) (∃z ∈ [3, 5]′) x + y = z.
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Similarly, for X = [1, 2] and Y = [4, 1] the result is Z = [3, 5] and [1, 2]+ [4, 1] = [5, 3] means
in this case

(∀x ∈ [1, 2]′) (∀z ∈ [3, 5]′) (∃y ∈ [1, 4]′) x + y = z.

And so on, for X = [2, 1] and Y = [1, 4] the result is Z = [3, 5] and [2, 1] + [1, 4] = [3, 5]
means

(∀y ∈ [1, 4]′) (∃x ∈ [1, 2]′) (∃z ∈ [3, 5]′) x + y = z;

for X = [2, 1] and Y = [3, 2] the result is Z = [5, 3] and [2, 1] + [3, 2] = [5, 3] with the
interpretation

(∀z ∈ [3, 5]′) (∃x ∈ [1, 2]′) (∃y ∈ [2, 3]′) x + y = z.

Theorem 3.2 (∗∗-semantic theorem) Given a continuous real function f : R
n → R, a modal

vector X = (Xp,Xi) ∈ I∗(Rn) and Z ∈ I∗(Rn), then

f∗∗(X) ⊇ Z ⇔ (∀xi ∈ X ′
i) Q(z,Dual(Z)) (∃xp ∈ X ′

p) z = f(xp, xi).

Example 3.6 For the function f(x, y) = xy and X = [−1, 2], Y = [5, 3] the value of f∗ and
f∗∗ is f∗([−1, 2], [5, 3]) = f∗∗([−1, 2], [5, 3]) = [−3, 6]. Then, in accordance with both semantic
theorems,

(∀x ∈ [−1, 2]′) (∃z ∈ [−3, 6]′) (∃y ∈ [3, 5]′) z = xy,

(∀y ∈ [3, 5]′) (∀z ∈ [−3, 6]′) (∃x ∈ [−1, 2]′) z = xy.

Both semantic theorems are extremely important because they make equivalent any logical
formula involving intervals, functional predicates, and the universal quantifiers preceding the
existential ones to an interval inclusion.

3.1.7 Modal rational extensions

Semantic extensions f∗ and f∗∗ can be equal or not, but they are out of reach for any direct
computation except for simple real functions. When the continuous function f is a rational func-
tion, there exist modal rational extensions that are obtained using a computing program defined
by the syntax tree of the expression of the function in which the real arguments are transformed
into interval arguments and the real operators are transformed into their ∗-semantic extensions.
If f is a R

n to R rational function, its rational extension to the modal intervals X1, . . . ,Xn,
represented by fR(X1, . . . ,Xn), is the function fR from I∗(Rn) to I∗(R) defined by the com-
putational program indicated by the syntax tree of f when the real operators are transformed
to their semantic extensions.
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Example 3.7 For the continuous function f(x, y) =
x

x + y
, the modal ration extension to the

intervals X = [1, 2], Y = [3, 4] is

fR1([1, 2], [3, 4]) =
[1, 2]

[1, 2] + [3, 4]
=

[
1
6
,
2
4

]

fR2([1, 2], [3, 4]) =
1

1 +
y

x

=
1

1 +
[3, 4]
[1, 2]

=
[
1
5
,
2
5

]

Different values are obtained for fR, therefore, to these possible variations of a rational
function of real variable, the criteria which characterize the functions that give the optimal
solution is studied in the next subsection.

Important results about the interpretability and optimality of rational extensions are de-
scribed in the next subsection.

3.1.8 Interpretability and optimality

The problem with the semantic extensions f∗ and f∗∗ is that are interpretable but not gener-
ally computable and rational extensions are computable but not generally interpretable. The
interpretation problem for the modal syntactic functions fR, which are the core of numerical
computing, consists in relating them to the corresponding semantic functions by means of inclu-
sion relations which are interpretable in accordance with the Semantic Theorems. In this case,
if for X ∈ I∗(Rn) one of the relations

f∗(X) ⊆ fR(X) or f∗∗(X) ⊇ fR(X),

then the computation fR(X) is called interpretable.

In the other hand, the lack of computability of f∗ and f∗∗ can be solved by means of modal
syntactic computations which are inner or outer approximations, although in many cases it will
involve a loss of information. To avoid it it will be necessary to find criteria such that, in an
ideal arithmetic without rounding,

f∗(X) = fR(X) = f∗∗(X).

In this case fR(X) is called optimal, i.e., fR is an optimal computation on X.

Definition 3.1 (Optimality) A modal syntactic function fR is said to be optimal if for every
X ∈ I∗(Rn), for which fR(Prop(X)) is defined, the conditions f∗ = f∗∗ and fR(X) = f∗(X)
do hold.

Similarly we can speak of optimality on a given interval-domain: If this property holds par-
ticularly for an A ∈ I∗(Rn), we will say that fR is optimal for A.

In case of only the equality fR(X) = f∗(X) being meant, without any previous supposition
about the equality of f∗(X) and f∗∗(X), we will speak of ∗-optimality; and similarly we would
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speak of ∗∗-optimality for the case of fR(X) = f∗∗(X).

MIA provides a collection of results about the inclusions or equalities that solve part of
the double problem of the interpretability of modal rational extensions and the computability
of semantic extensions. The next definitions are required for a correct understanding of the
following results about the interpretability of rational extensions (for a detailed description of
these theorems, see Gardeñes et al. (2001)).

Uni-incidence and multi-incidence

An important role in obtaining these relations of inclusion and equality is played by the incidence
of the involved variables.

Definition 3.2 (Uni-incidence and multi-incidence) A component xi of x is “uni-incident” in
a continuous real function f it occupies only one leaf of the syntactic tree of f . Otherwise xi is
“multi-incident” in f(x). A vector x is “uni-incident” in f(x), when each one of its components
does hold this property.

Example 3.8 In the function f : R
2 → R defined by

f(x1, x2) = x2 +
x2

1

x2

the variable x1 is uni-incident and x2 multi-incident.

Interpretability in the uni-incidence case

A first result will relate the modal semantic extension f∗ with the outer rounding of the modal
syntactic extension Out(fR(X)). For that, and considering a function as a composition of their
operators, it is possible to consider a successive application of the semantic theorems.

Theorem 3.3 (∗-interpretability of modal syntactic functions) If the improper components of
X are uni-incident in fR(X) and Out(fR(Prop(X))) does exist, then Out(fR(X)) ⊇ f∗(X).

This theorem states that if the continuity of the functions on the implied domains by
Out(fR(Prop(A))) is assured, and if for the digitalization of the data of A and all the el-
ementary operations defining fR(.) is used the external rounding, then the result fR(A) is
interpretable in the terms of the ∗-semantic theorem.

Example 3.9 For the continuous function f(x, y) =
xy

y + 1
, the modal ration extension to the

intervals X = [1, 2], Y = [3, 4] is

fR([1, 2], [3, 4]) =
[1, 2] ∗ [3, 4]
[3, 4] + 1

=
[
3
5
, 2

]
.

As there are no improper arguments,

Out

([
3
5
, 2

])
⊇ f∗(X,Y ),

which can be interpreted with the ∗-semantics



40 3. Interval Models and Interval Simulation

(∀x ∈ [1, 2]′) (∀y ∈ [3, 4]′)
(
∃z ∈ Out

([
3
5
, 2

]′))
z =

xy

y + 1
.

The same applies for any superset of Out([3/5, 2]).

Theorem 3.4 (∗∗-interpretability of modal syntactic functions) If the proper components of X
are uni-incident in fR(X), and Inn(fR(Prop(X))) does exist, then

Inn(fR(X)) ⊆ f∗∗(X),

where Inn represents the inner rounding of the interval f(R).

Inn(fR(X)) = Dual(Out(fR(Dual(X)))) ⊆ Dual(f∗(Dual(X))) = f∗∗(X).

According with this theorem, if the domains implied in the definition of f∗∗(A) and the
definition and computation of fR(Prop(A)) are well defined, because they do not comprise any
divide by 0, then the result of the computation Inn(fR(A)) is acceptable from the point of view
of the ∗∗-semantic theorem and can be interpreted according to this same theorem.

Example 3.10 For the continuous function f(x, y) =
xy

y + 1
, the modal rational extension to

the intervals X = [1, 2], Y = [4, 3] is,

fR([1, 2], [4, 3]) =
[1, 2] ∗ [4, 3]
[4, 3] + 1

=
[
1,

6
5

]

At is uni-incident in the proper parameters,

Inn

([
1,

6
5

])
⊆ f∗∗(X,Y ),

which can be interpreted with the ∗∗-semantics

(∀y ∈ [3, 4]′)
(
∀z ∈ Inn

([
1,

6
5

]′))
(∃x ∈ [1, 2]′) z =

xy

y + 1
.

The same conclusion can be stated for any subset of Inn([1, 6/5]′).

Theorem 3.5 (Interpretability of modal syntactic functions) If all the fR- variables are uni-
incident, then with an ideal arithmetic

f∗(X) ⊆ fR(X) ⊆ f∗∗(X)

or else

f∗(X) ⊆ Out(fR(X)) and Inn(fR(X)) ⊆ f∗∗(X).
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Optimality in the uni-incidence case

Now on we will find out criteria to characterize the all the fR-variables are uni-incident functions
for which the program fR(.), assuming an ideal computation (without rounding), is such that

f∗(X) = fR(X) = f∗∗(X).

Theorem 3.6 (Optimality and uni-incidence) If in fR(X) all arguments are uni-incident and
f is globally JM-commutable, then

f∗(X) = fR(X) = f∗∗(X).

Remark 3.3 In particular, if all the X components are uni-incident and with the same modal-
ity, f∗(X) = fR(X) = f∗∗(X).

In what now follows we will construct the fundamental class of uni-incident optimal modal
syntactic functions. The uni-incident hypothesis is assumed but usually not explicitly repeated.

Theorem 3.7 (Left monotonous associativity) If g is a monotonous operator of one variable
and fR(X) is optimal, then gR(fR(X)) is also optimal.

Remark 3.4 A more precise and only a little more verbose statement of the previous theorem
would be: if g is a one variable monotonous operator and if fR(X) does exist,

(g ◦ f)∗(X) = g∗(f∗(X))

and in case fR(X) is optimal

(g ◦ f)∗(X) = (g ◦ f)R(X) := gR(fR(X)).

Example 3.11 Let us consider the function h(x, y) = ex+y composed of the operators f(x, y) =
x + y and g(z) = ez. As fR is optimal and g is one-variable and monotonous, then h∗(X,Y ) =
hR(X,Y ) = eX+Y . For h(x, y) = (x + y)2, composed of f(x, y) = x + y and g(z) = z2, fR is
optimal but g is one-variable and not monotonous, and the result is not applicable.

Theorem 3.8 (Right monary associativity) If g1(x1), . . . , gn(xn) are continuous operators of
one variable and fR(X) is optimal, then fR(g1R(X1), . . . , gnR(Xn)) is also optimal.

Example 3.12 For the right associativity, the right one-variable operators do not need monotony;
on the contrary, the left one-variable operators do. Thus, x2 + y2 is optimal because it is com-
posed of g1R(x) = x2, g2R(y) = y2, and

fR(g1R(x), g2R(y)) = g1R(x) + g2R(y)
g1R is optimal (one-variable and continuous)
g2R is optimal (one-variable and continuous)

⎫⎬
⎭ ⇒ fR optimal
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Tree-optimality

The following concept leads to important results about the optimality when there are multi-
incident variables.

Definition 3.3 A syntactic tree of a continuous function f is tree-optimal on X if, for any of
its non-uniformly monotonic operators (eg. ∗, /) it is followed downwards in the syntactic tree
only by one-variable operators (eg. pow, exp, sin) and upwards by uniformly monotonic operators
(eg. +,−).

Example 3.13 The continuous function f(x, y, z, u) = xy + zu, which has a rational syntactic
extension given by

fR(X,Y,Z,U) = X ∗ Y + Z ∗ U,

is tree-optimal in any (X,Y,Z,U) ∈ I∗(R4) because the involved non-uniformly monotonic
operator ∗ is followed downward by variables (see Figure 3.3(a)). However, the continuous
function

g(x, y, z, u) = (x + y)(z + u),

which has rational syntactic extension given by

gR(X,Y,Z,U) = (X + Y ) ∗ (Z + U),

is not tree-optimal in all I∗(R4) because the non-uniformly monotonic operator ∗ is followed
downward by the binary operator + (see Figure 3.3(b)). However, it can be optimal on a given
X. For instance, if ∅ /∈ X ′, fR is optimal.

+

X Y

* *

Z U

(a)

*

X Y

+ +

Z U

(b)

Figure 3.3: Syntactic tree of a rational function: (a) fR (b) gR

Theorem 3.9 (Optimality of tree-optimal modal syntactic functions) If fR(X) is tree-optimal
and X is uni-incident in fR, then fR(X) is optimal (that is, f∗(X) = fR(X) = f∗∗(X) as far
as X is uni-incident in fR).

Example 3.14 The R
4 to R continuous function defined by f(x, y, z, u) = xy + zu is tree-

optimal and therefore an optimal modal syntactic function for every (X,Y,Z,U) ∈ I∗(R4).

The R
4 to R continuous function defined by g(x, y, z, u) = (x+y)(z+u) is neither tree-optimal

nor optimal for some (X,Y,Z,U) for example:
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g∗([−2, 2], [−1, 1], [−1, 1], [2,−2]) = [1.5,−1.5],
g∗∗([−2, 2], [−1, 1], [−1, 1], [2,−2]) = [−1.5, 1.5],
gR([−2, 2], [−1, 1], [−1, 1], [2,−2]) = [0, 0],

But it is optimal in other domains, for example

g∗([1, 3], [0, 3], [4, 2], [3, 1]) = [7, 18],
g∗∗([1, 3], [0, 3], [4, 2], [3, 1]) = [7, 18],
gR([1, 3], [0, 3], [4, 2], [3, 1]) = [7, 18].

Interpretability in the multi-incidence case

The following theorems provide two important results in the case of multi-incident components.

Theorem 3.10 (Coercion to ∗-interpretability) If in fR(X) there are multi-incident improper
components, and if Xt∗ is obtained from X by substituting all the incidences of each multi-
incident improper component into a point-wise interval defined for any point of its domain, then
f∗(X) ⊆ fR(Xt∗) (the existence requirements being presupposed).

Example 3.15 For the continuous function f(x, y) = y − xy, its ∗-semantic extension to the
intervals X1 = [2, 3], X2 = [4, 3] is

f∗([2, 3], [4, 3]) =
∨

x∈[2,3]′

∧
y∈[3,4]′

[y − xy, y − xy] = [−6,−4].

For the modal syntactic extensions fR(Xt∗) we have

fR1([2, 3], [4, 4]) = [4, 4] − [2, 3] ∗ [4, 4] = [−8,−4]
fR2([2, 3], [3, 3]) = [3, 3] − [2, 3] ∗ [3, 3] = [−6,−3]

and f∗(X) ⊆ fR1(Xt∗), f∗(X) ⊆ fR2(Xt∗).

Theorem 3.11 (Coercion to ∗∗-interpretability) If in fR(X) there are multi-incident proper
components, and if Xt∗∗ is obtained from X by substituting all the incidences of each multi-
incident proper component into a point-wise interval defined for any point of its domain, then
fR(Xt∗∗) ⊆ f∗∗(X) (the existence requirements being presupposed).

Theorem 3.12 (Interval coercion to ∗-interpretability) If fR(X) is tree-optimal with multi-
incident improper components, and if XT ∗ is obtained from X by transforming, for every multi-
incident improper component, all incidences but one into their duals, then

f∗(X) ⊆ fR(XT ∗)

(the existence requirements being presupposed).

Theorem 3.13 (Interval coercion to ∗∗-interpretability) If fR(X) is tree-optimal with multi-
incident proper components, and if XT ∗∗ is obtained from X by transforming, for every multi-
incident proper component, all incidences but one into its dual, then
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fR(XT ∗∗) ⊆ f∗∗(X)

(the existence requirements being presupposed).

Example 3.16 For f(x, y) = y − xy and X = ([2, 3], [4, 3]) is

f∗(X) =
∨

x∈[2,3]′

∧
y∈[3,4]′

[y − xy, y − xy]

=
∨

x∈[2,3]′
[3 − 3x, 4 − 4x] = [−6,−4],

fR(XT ∗) = [4, 3] − [2, 3] ∗ [3, 4] = [−8, 3],
or

fR(XT ∗) = [3, 4] − [2, 3] ∗ [4, 3] = [−6,−4],

where, for both computations, the relation f∗(X) ⊆ fR(XT ∗) holds. For the same function
and X = ([1, 3], [3, 4])

f∗∗(X) = f∗(X) =
∨

y∈[3,4]′

∧
x∈1,3]′

[y − xy, y − xy],

=
∨

y∈[3,4]′
[y − 3y, y − y] = [−8, 0]

fR(XT ∗∗) = [3, 4] − [1, 3] ∗ [4, 3] = [−6, 0],
or

fR(XT ∗∗) = [4, 3] − [1, 3] ∗ [3, 4] = [−8, 0],

and fR(XT ∗∗) ⊆ f∗∗(X). (The reason for the coincidence, when such is the case, will be
found later on).

Definition 3.4 (Total monotony) A continuous real function f is x-totally monotonous for a
multi-incident variable x ∈ R if it is uniformly monotonous for this variable and for each one
of its incidences (considering each leaf of the syntactic tree as an independent variable). Any
uni-incident uniformly monotonous variable is totally monotonous too.

Theorem 3.14 (Interval ∗-partially optimal coercion) Let X be an interval vector, and fR
defined in the domain Prop(X) and totally monotonous for a subset Z of multi-incident compo-
nents. Let XDT ∗ be the enlarged vector of X, such that each incidence of every multi-incident
component of the subset with total monotony is included in XDT ∗ as an independent component,
but transformed into its dual if the corresponding incidence-point has a monotony-sense contrary
to the global one of the corresponding Z-component; for the rest, every multi-incident improper
component is transformed into its dual in every of its incidences except one. Then

f∗(X) ⊆ fR(XDT ∗).

Moreover if fR(X) is tree-optimal,

fR(XDT ∗) ⊆ fR(XT ∗),
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under the condition that the multi-incident components not belonging to Z suffer in XT ∗ the
same transformation as in XDT ∗.

Example 3.17 Let us consider the continuous function f from R
2 to R defined by f(x, y) =

xy +
1

x + y
with X = [10, 5] and Y = [2,−1]. Ac- cording with theorem of coercion to the

∗-interpretability, there exist four possibilities for the computation of fR(XT ∗)

fR(XT ∗
1 ) = X ∗ Y +

1
Dual(X) + Dual(Y )

⊆ [20.0833,−9.75]

fR(XT ∗
2 ) = Dual(X) ∗ Y +

1
X + Dual(Y )

⊆ [10.1428,−4.8889]

fR(XT ∗
3 ) = Dual(X) ∗ Dual(Y ) +

1
X + Y

⊆ [−9.75, 20.0834]

fR(XT ∗
4 ) = X ∗ Dual(Y ) +

1
Dual(X) + Y

⊆ [−4.8888, 10.1429]

The derivatives prove that f is y-uniformly monotonous, isotonic for the first incidence and
antitonic for the second one. As X is improper there exist two possibilities for the computation
of fR(XDT ∗)

fR(XDT ∗
1 ) = X ∗ Y +

1
Dual(X) + Dual(Y )

= fR(XT ∗
1 ) ⊆ fR(XT ∗

4 )

fR(XDT ∗
2 ) = Dual(X) ∗ Y +

1
X + Dual(Y )

= fR(XT ∗
2 ) ⊆ fR(XT ∗

3 )

verifying the relations of inclusion due to the tree-optimality of fR.

Theorem 3.15 (Interval ∗∗-partially optimal coercion) Let X be an interval vector, and fR
defined in the domain Prop(X) and totally monotonous for a subset Z of multi-incident compo-
nents. Let XDT ∗∗ be the enlarged vector of X, such that each incidence of every multi-incident
component of the subset with total monotony is included in XDT ∗ as an independent compo-
nent, but transformed into its dual if the corresponding incidence-point has a monotony-sense
contrary to the global one of the corresponding Z-component; for the rest, every multi-incident
proper component is transformed into its dual in every of its incidences except one. Then

fR(XDT ∗∗) ⊆ f∗∗(X)

Moreover if fR(X) is tree-optimal,

fR(XT ∗∗) ⊆ fR(XDT ∗∗).

under the condition that the multi-incident components not belonging to Z suffer in XT ∗∗

the same transformation as in XDT ∗∗.

Theorem 3.16 (Partially optimal coercion) Let X be an interval vector, and fR defined on the
domain Prop(X) and totally monotonous for all its multi-incident components. Let XD be the
enlarged vector of X, such that each incidence of every multi-incident component is included in
XD as an independent component, but transformed into its dual if the corresponding incidence-
point has a monotony-sense contrary to the global one of the corresponding X−component. Then

f∗(X) ⊆ fR(XD) ⊆ f∗∗(X).
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Optimality in the multi-incidence case

Theorem 3.17 (Coercion to optimality) Let X be an interval vector, fR(X) defined and tree-
optimal on the domain X ′ and f totally monotonous for all its multi-incident components. Let
XD be defined as the enlarged vector of X, such that each incidence of every multi-incident
component is included in XD as an independent component, but transformed into its dual if
the corresponding incidence-point has a monotony-sense contrary to the global one of the corre-
sponding X-component. Then,

f∗(X) = fR(XD) = f∗∗(X).

This theorem is very useful when the function involved in the logical formula verifies the
optimality conditions, because the rational computation fR(XD) is the equal to f∗(X), except
for rounding. If the function is not totally monotonic for each multi-incident component, these
theorems can be partially applied to reduce the complexity of the problem. All these computa-
tions are carried out by controlling the rounding of the operations and taking into account the
multi-incident variables in the functions.

Example 3.18 1. for f(x) = x−x, is fR(XD) = X−Dual(X) or fR(XD) = Dual(X)−X,

2. for f(x) =
x

x
, is fR(XD) =

X

Dual(X)
or fR(XD) =

Dual(X)
X

, whenever 0 /∈ X ′,

3. for f(x) =
1

(1 + x)
+

1
(1 − x)

and X =
[
1
4
,
1
2

]
, is

fR(XD) =
1

(1 + Dual(X))
+

1
(1 − X)

=
1(

1 +
[
1
2
,
1
4

]) +
1(

1 −
[
1
4
,
1
2

])

because the f -tree is optimal in this case for X ′ ⊆ [0, 1)′.

MIA provides a strong theoretical background for dealing with problems involving uncer-
tainty and logical quantifiers. Different works involving the application of MIA have been pro-
posed. More specifically, in his thesis, Veh́ı (Veh́ı, 1998) proposed a methodology for designing
robust controllers. In (Armengol, 1999), Armengol proposed an original approach to deal with
the problem of robust fault detection involving dynamic systems. Calm presented an MIA ap-
proach to tackle the problem of simulation and control (Calm, 2005). Herrero (Herrero, 2006b)
proposed a new approximate methodology based on MIA for solving complex problems, such as
quantified real constraint. MIA was used by Wan (Wan, 2007) for the computation of robust
controllable sets for general constrained non-linear uncertain discrete-time systems. Another
application of MIA was formulated by Flórez (Flórez-D́ıaz, 2008) to solve reliability problems in
the intersection test for the ray tracing of implicit surfaces. Finally, based on the work presented
by Armengol, Gelso (Gelso, 2009) proposed a methodology for fault detection, isolation, and
identification based on interval models. Other studies that have used MIA can also be found in
the literature (SIGLA/X Group, 1999; Sainz et al., 2002; Calderón-Espinoza et al., 2007; Garćıa
et al., 2008; Sainz et al., 2008).
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3.2 Interval Simulation

The simulation of a model with particular real values for the parameters, starting from any initial
state, yields trajectories of the output variables across time. When the quantities involved in the
simulation take values inside the intervals of variation, the set of trajectories determines a plane
band bounded by an envelope, as depicted in Figure 3.4. At each time step of the simulation,
the envelope, i.e., the possible maximum and minimum values of the variable, must be deter-
mined. This is a range computation problem. The function whose range must be determined
is defined by the interval model of the system, and the parameter space is determined by the
interval values of the parameters, the input, and the initial state. The simulation of an interval
model provides intervals (ranges) that can be estimates of the envelopes. These envelopes can
be obtained by numerical integration, qualitative reasoning, fuzzy logic, etc. (Calm, 2005). A
way to compute these estimates is by interval arithmetic (Calm et al., 2007a).

Figure 3.4: Output of an interval dynamic model: upper and lower bounds of the multiple
possible system responses (shared area).

Interval arithmetic has been implemented in different arithmetic libraries. However, interval
arithmetic applications have the limitations inherent to interval arithmetic. The main limita-
tion of interval arithmetic is that it has not some of the properties of real number arithmetic,
for instance the distributive property (Armengol, 1999). This means that the exact range of
a function is not always computable. Therefore, the results are often very overbounded, and
if tighter results are needed, high computational efforts are required. Some solvers based on
interval arithmetic are presented in this section.

3.2.1 Programming tools

Different interval arithmetic libraries have been developed to perform classical or complex in-
terval operations that handle different data types. They have been implemented in different
platforms and programming languages, and some of the software has even been commercial-
ized. A brief list of different software packages (Interval Computations, 2010) that permit the
development of numerical applications using interval arithmetic is presented below.

• Boost (Brönnimann et al., 2003): Interval C++ library implemented within the popular
BOOST C++ Libraries framework, which consists on a set of free peer-reviewed portable
and standard C++ source libraries. The design of the library is unique in that uses policies
to specify the variable behaviors: rounding, checking and comparisons.
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• COSY (Makino and Berz, 2006): Can be used as stand-alone program or via C++ and
Fortran 90/95 frontends. COSY is based on Taylor model and interval methods. It is in-
tended for verified solution of such problems as ordinary differential equations, quadrature,
range bounding, etc.

• FADBAD/TADIFF (Bendtsen and Stauning, 1996): Implemented in C++ code, imple-
ments the forward, backward and Taylor methods utilizing C++ templates and operator
overloading. These AD-templates enable the user to differentiate functions that are im-
plemented in arithmetic types, such as doubles and intervals. One of the major ideas in
FADBAD++ is that the AD-template types also behave like arithmetic types.

• Gaol (Goualard, 2002): C++ interval arithmetic library that offers the relational interval
operators used in interval constraint programming. Gaol provides support for the double-
precision interval and only global rounding is available.

• HSolver (Ratschan and She, 2004): Allows analysis of hybrid systems with non-linear
ODEs over an unbounded time horizon, uses intervals as its main work-horse.

• INTLAB (Rump, 1999): MATLAB toolbox for self-validating algorithms that include
interval arithmetic for real and complex data, including vectors and matrices, interval
arithmetic for real and complex sparse matrices, automatic differentiation, etc.

• MISO (Modal Interval Solver) (Herrero, 2006a): Software package developed using the
wxWidgets framework, that containing a set of solvers based on MIA. The solver were
implemented in C++ code. These solvers are:

– FSTAR solver: Allows doing computations with Modal Intervals.
– QRCS solver: Allows proving the satisfiability of a class of quantified real constraints.
– MINIMAX solver: Allows solving constrained minimax optimization problems.
– QSI solver: Allows obtaining inner and outer approximations of the solution set of a

class of quantified real constrains.
– SQUALTRACK solver: Allows detecting faults in dynamic systems.

• PROFIL/BIAS (Programmer’s Runtime Optimized Fast Interval Library, Basic Interval
Arithmetic Subroutines) (Knüppel, 1994): C++ class library provides a user-friendly envi-
ronment for implementing interval algorithms. It is a public-domain software in continuous
evolution that emphasizes the efficient use of hardware, portability, and the independence
of a particular presentation of intervals.

• RealPaver (Granvilliers and Benhamou, 2006): Interval software implementing constraint
satisfaction techniques for solving nonlinear systems.

• ValEncIA-IVP (Rauh et al., 2005): Software for the validation of state enclosures using
interval arithmetic for initial value problems, which can be applied to the simulation of
systems with both uncertain parameters and uncertain initial conditions. It was developed
using PROFIL/BIAS 2.0.2, FADBAD++ 1.4, and gcc4.0.2 under SuSe Linux 10.0.

• VNODE-LP (Nedialkov, 2002): C++ package for computing bounds on solutions in IVPs
for Ordinary Differential Equations (ODE).

• VSPODE (Validating Solver for Parametric ODEs) (Lin and Stadtherr, 2006): Based on
VNODE, but uses Taylor models as the underlying validated data type. It helps to obtain
validated solutions of IVPs for ODEs with interval-valued parameters and initial values.
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In this work, the IvalDb (Interval Value Double) library was used (Herrero, 2006a). IvalDb is
a module of the FSTAR solver that is incorporated in the Modal Interval Solver (MISO) package.
The main feature of IvalDb is the set of modal interval arithmetic operators, like +, −, log, sin,
etc., which take advantage of the C++ operator overloading concept. The IvalDb library was
inspired by an existing single floating point precision modal interval library (Garćıa Reyero and
Mart́ınez, 1999), which controls numerical errors using floating point emulation. IvalDb doubles
the floating point precision and uses a much simpler strategy to control numerical errors. The
IvalDb library was developed by Pau Herrero in the MICELab group of the University of Girona.

3.2.2 f ∗ algorithm

As shown in the previous section, computing the ∗-semantic extension (f∗) of a continuous func-
tion f using any interpretable rational extension can cause an overestimation of the interval
evaluation, attributable to possible multiple occurrences of a variable. For this reason, an al-
gorithm based on MIA and branch-and-bound techniques, which allows the approximation of
f∗ by computing the inner and outer approximations, was proposed by (Herrero, 2006b) in his
PhD thesis.

The f∗ algorithm can be considered sound because it provides an inner approximation of the
∗-semantic extension, or expressed differently, all the points of the inner approximations belong
to the solution. The f∗ algorithm is complete because it also provides an outer approximation
of the ∗-semantic extension, which guarantees that all the solution points are included in the
approximation provided. This algorithm can be found online, incorporated in the MISO package
(Herrero, 2006a).

A set of strategies was introduced to make the f∗ algorithm suitable for practical applica-
tions. Basically, these strategies try to reduce, as far as possible, the number of bisections and
to obtain better local approximations of the resulting partitions. Some of these improvements
are simple algorithmic tricks, while others are based on important results of MIA.

The main problem of the f∗ algorithm is its computational complexity, attributable to the
branch-and-bound techniques used.

3.2.3 Simulators for uncertain models

A brief description of some simulators for uncertain models is given here. These are classified
according to the information used for the simulation (see Figure 3.5). Simulators that can be
used to deal with qualitative and semi-qualitative models focus on the generation of envelopes.
A review on interval model simulators has been presented by Armengol et al. (2000).

Quantitative simulation

Quantitative simulation is used to make numerical predictions about the system states. This
implies the prediction of the values of the variables at determined time points. Different methods
based on quantitative simulation to simulate the behavior of interval models are:

• Superimposed thresholds (constant or variable): the envelope behavior is obtained by
superimposing a tolerance to the nominal trajectory.
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Semiqualitative simulation 

Quantitative 
simulation 

Qualitative 
simulation  

 
 
 
 
 

Interval 
arithmetic 

Interval 
Arithmetic 

Fuzzy sets 

Figure 3.5: Classification of simulators.

• Quantitative model methods: the envelope is obtained by superimposing the trajectories
obtained by means of a numeric simulation for all the sample models. The sample models
can be chosen randomly (Monte Carlo) or systematically.

• Optimization: finding the limits of the envelope at a given time point is equivalent to
finding the maximum and the minimum of a function into a parameter space, i.e. solving
a global optimization problem.

Qualitative simulation

Qualitative simulation predicts qualitative states in which the system will be, by using qualitative
information about the relations between the variables. Qualitative simulations can be classified
into two types: non-constructive and constructive. Non constructive qualitative simulation con-
sists of two phases (Coghill, 1996): TG (Transition Generation), in which the transitions are
generated, and QA (Quantitative Analyisis), in which the states are filtered using the model
to eliminate the ones that do not fulfil the constraints (constraint propagation). Most of the
qualitative simulators of this type are not casual and do not hence consider time explicitly.
Therefore, they predict the sequence of states that the system goes trough but do not provide
information about their occurrence time point or their duration. Constructive qualitative sim-
ulators, however are casual and consider time.

Some qualitative simulators are, for example, QSIM (Qualitative Simulator) (Kuipers, 1994),
PA (Predictive Algorithm) (Wiegand, 1991).

Semi-qualitative simulation

When some numerical knowledge is available, as in interval models, there are still notable defi-
ciencies in the attempts that have been made to take advantage of it in qualitative simulators.
Quantitative information can be added to enhance these qualitative methods. The resulting
methods are called semiqualitative methods. Some qualitative simulators are, for example, Q2
(Kuipers and Berleant, 1988), Q3 (Berleant and Kuipers, 1993), SQSIM (Kay, 1996). Moreover,
some semiqualitative simulators are based on fuzzy sets, or interval arithmetic, e.g. NIS (Nu-
merical Interval Simulator) (Vescovi et al., 1995), NSIM (Numerical Simulator using Interval
Methods) (Kay and Kuipers, 1992), Simulator of (Gasca et al., 2002).
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3.3 Monte Carlo Simulation

The Monte Carlo method dates from the 1940s, when it was used by physicists working on
nuclear weapons projects in the Los Alamos National Laboratory (Metropolis, 1987). Random-
ization methods based on Monte Carlo techniques are popular methods by which the effects of
uncertainty are incorporated into numerical models. In these techniques, the parameters are
randomly sampled from underlying probability distributions. Monte Carlo simulation (MCS)
offers an alternative to analytical mathematics with which to understand a statistic’s sampling
distribution and to evaluate its behaviour in random samples.

MCS is mainly used when an exact result is unfeasible or impossible to compute with a
deterministic algorithm. During MCS, values are sampled at random from the input proba-
bility distributions. Each set of samples is called an “iteration”, and the resulting outcome
from that sample is recorded. MCS does this hundreds or thousands of times, and the result
is a probability distribution of the possible outcomes. In this way, MCS provides a much more
comprehensive view of what may happen. A procedural problem that arises in virtually every
MCS study concerns the number of independent trials (sample size) that must be performed to
guarantee a specified bound or error (Fishman, 1996).

The analytical and computational steps that are needed for performing MCS are:

• Definition of the system.

• Generation of random numbers.

• Generation of random variables.

• Evaluation of the model N(number of iterations) times.

• Statistical analysis of the resulting behavior.

• Study of efficiency and convergence.

The definition of the system should include its boundaries, input parameters, output (or
behaviour) measures, architecture, and the models that relate the input parameters and the
architecture to the output parameters.

The chief advantage of MCS, compared with the other numerical methods that can solve the
same problems, is that it is conceptually very simple. It does not require any specific knowledge
of the form of the solution or its analytic properties. MCS is also relatively easy to implement
on a computer. The main disadvantage of MCS is that it is slow. Many samples may be required
(in the order of thousands or even millions) to obtain acceptable precision in the answer. In
particular, because the probabilistic error bound decreases with the reciprocal square root of
the number of iterations, to achieve one more decimal digit of precision in the answer requires
102 = 100 times more iterations.

In this work, the interval parameters are represented in terms of normal and uniform prob-
ability distributions to generate MCSs.
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The uniform distribution

A random variable with a uniform distribution, U(a, b), can take on any value in its range with
equal probability, where the parameters a and b are the lower and upper bounds of this range
(see Figure 3.6). The probability density function of the continuous uniform distribution is:

f(x) =

⎧⎨
⎩

1
b − a

for a ≤ x ≤ b

0 otherwise.

 

a b 

1 
b-a 

Figure 3.6: Probability density function of U(a, b).

In its standard form, U(0, 1), the uniform distribution is the building block of all MCS work
because, in one way of another, the variables with all other distribution functions are derived
from it. This is because the U(0, 1) distribution can be used to simulate a set of random proba-
bilities, which are used to generate other distribution functions with inverse transformation and
acceptance/rejection methods.

To simulate a uniform distribution, we must be able to generate a set of numbers that are
equiprobable, independent, and reproducible. In this work, uncertainties in the MCS interval
parameters are represented in terms of uniform probability distributions. A number of possible
postprandial responses based on this distribution were obtained by applying MCS. However,
MCS cannot guarantee that the actual response for a given model is within this group of re-
sponses, leading to missed hypo- and hyperglycaemic events. Moreover, a large computational
effort might also be required when the number of uncertain parameters increases. The imple-
mentation of MCS is described in Chapter 4.

The normal distribution

The normal distribution is a symmetric bell-shaped curve characterized fully by its parameters:
mean µ (where the peak of the density occurs) and variance σ2 (which indicates the spread or
girth of the bell curve), as shown in Figure 3.7. The normal distribution is often used to describe,
at least approximately, any variable that tends to cluster around a mean. The distribution of a
random variable X, for which the probability density function is f , is given by:

f(x) =
1√

2πσ2
e

(x−µ)2

2σ2 for −∞ ≤ x ≤ ∞
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Figure 3.7: Probability distribution around the mean in a distribution N(µ, σ).

In Chapter 5, a MCS study is carried out to represent the parameter uncertainty in terms of a
normal probability distribution. The objective was to calculate the probability of the occurrence
of hypo- and hyperglycaemic events.

3.4 Summary

In this chapter, a brief description has been presented of the interval arithmetic libraries and
different simulator for uncertain models. The main concepts and results of MIA have been briefly
introduced, with particular emphasis on the interpretability and optimality of the syntactic
functions. With this result, the computation of semantic extensions of continuous functions is
possible using an interval rational computation. MIA allows the efficient computation of these
extensions and guarantees optimality in the case of total monotony. If the function is not totally
monotonic for each multi-incident component, these theorems can be partially applied to reduce
the complexity of the problem.





Chapter 4

Interval Glucoregulatory Models

In this chapter, modal interval analysis (MIA) (Gardeñes et al., 2001) has been applied to the
prediction of plasma glucose in the context of uncertain food intake and uncertain patient pa-
rameters, such as insulin sensitivity. As result, the upper and lower bounds of all the possible
glucose excursions experienced by the patient are predicted. One of the main problems of inter-
val computations is the overestimation of the result, due to the existence of multiple instances
of the same variable in the expression to be evaluated. MIA allows the impact of this problem
to be reduced. Each interval function to be evaluated is automatically analysed and put, if
possible, in its optimal form, yielding an exact computation of the range.

In the previous chapter, a summary of the principal results of MIA was presented. Some
mathematical models of the glucose–insulin system referred to in Chapter 2 are examined here,
with different sources of uncertainty. Each model is first described (Section 4.1) and then stud-
ied using MIA to achieve an optimal computation (Section 4.3). For each model, the results
obtained with MIA are compared with those obtained with MCS, considering the uniform prob-
ability distribution. The superior performance of MIA is demonstrated, allowing to address the
worst-case analysis in a mathematically guaranteed way, with little computational effort.

In Section 4.4, a comparison of three plasma glucose interval models is presented to demon-
strate the dominance of intake in the postprandial phase when the different sources of uncertainty
are considered.

4.1 Model of Glucose Regulation in T1DM

Mathematical models of glucose regulation have been studied over the past 40 years. Makroglou
et al. (2006) has presented an overview of the glucose–insulin regulatory models available in
the literature. More recently, the engineering effort in modelling the insulin–glucose system
throughout the last 50 years has been presented by Cobelli et al. (2009), starting with the
minimal model and including subsequent models. The most well-known model is the so-called
“minimal model”, which contains a minimal number of parameters (Bergman et al., 1981) and
is widely used in physiological research to estimate glucose effectiveness and insulin sensitivity
in the IVGTT.

In this section, different models of the glucose–insulin system are described in detail (see
Figure 4.1). The models have been selected according to the needs of the research projects
INSULAID (Bondia and Veh́ı, 2007) and INSULAID2 (Bondia and Veh́ı, 2010), in which the
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study underlying this thesis has been involved.

Two carbohydrate digestion and absorption models are presented (Hovorka et al., 2004;
Dalla Man et al., 2006). Three compartment models of subcutaneous insulin absorption have
been described (Hovorka et al., 2004; Wilinska et al., 2005; Dalla Man et al., 2007a) for the bolus
administration and the infusion of rapid-acting insulin. Finally, four insulin action and glucose
kinetics models are described. These models were intended for different purposes: measurement
of insulin sensitivity and control (Bergman et al., 1981), simulation and control (Hovorka et al.,
2002), simulation (Dalla Man et al., 2007b), and control (Panunzi et al., 2007).

  
Hovorka et al, PM, 25(4), 2004 
Wilinska et al, TBE, 52(1), 2005 
Dalla Man et al, JDST, 1(3), 2007 

Subcutaneous 
insulin absorption 

Gastric emptying, 
digestion and 

absorption 

Insulin type 
Dose 

Injection time 

Quantity 
Nutritional content 

Ingestion time 

Plasma 
Glucose 

Hovorka et al, PM, 25(4), 2004 
Dalla Man et al, TBE, 53(12), 2006 

MODEL 

Insulin action and 
glucose kinetics 

Bergman et al, JCI, 68(6), 1981 
Hovorka et al, PM, 25(4), 2004  
Dalla Man et al, TBME, 54(10), 2007 
Panunzi et al, TBMM, 4(35), 2007 

Figure 4.1: Models of the glucose-insulin system in T1DM studied in this work.

4.1.1 Carbohydrate digestion and absorption models

The mathematical models used in this chapter to describe glucose absorption were formulated
by Hovorka et al. (2004) and Dalla Man et al. (2006).

Hovorka et. al model

The model formulated by Hovorka et al. (2004), described the carbohydrates catabolism to
monosaccharide (mostly glucose) taking place during meal digestion, as well as intestinal ab-
sorption. The glucose absorption rate Ra(t) (mg min−1) is represented by:

Ra(t) =
DAGt exp(−t/tmax,G)

t2max,G

(4.1)

being D (mg) the amount of carbohydrates ingested, AG (dimensionless) is carbohydrate
bioavailability and tmax,G (min) is the time-of-maximum appearance of glucose in plasma.
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Dalla Man et. al model

Dalla Man et al. (2006) proposed a three-compartment nonlinear model (see Figure 4.2), two for
the glucose in the stomach solid Qsto1 (mg) and liquid Qsto2 (mg), and one for the glucose in the
intestinal tract Qgut (mg). The meal is digested in the stomach with a grinding coefficient kgri

(min−1); then the chyme (partially-digested food) enters the intestine with fractional coefficient
of transfer kempt (min−1) and finally glucose is absorbed and enters the bloodstream.

Figure 4.2: Scheme of gastro-intestinal Dalla Man et al. system (adapted from Dalla Man et al.
(2007b).

The rate of appearance Ra (mg kg−1 min−1) describes glucose transit through the stomach
and intestine:

Qsto(t) = Qsto1(t) + Qsto2(t) Qsto(0) = 0

dQsto1(t)
dt

= −kgri Qsto1(t) + D δ(t) Qsto1(0) = 0

dQsto2(t)
dt

= −kempt(t,Qsto) Qsto2(t) + kgri Qsto1(t) Qsto2(0) = 0

Qgut(t)
dt

= −kabs Qgut(t) + kempt(t,Qsto) Qsto2(t) Qgut(0) = 0

Ra(t) =
f kabs Qgut(t)

BW
Ra(0) = 0

(4.2)

In order to guarantee model identifiability, kgri is fixed and equal to kmax (min−1). Further-
more, f is the fraction of intestinal absorption which actually appears in plasma (90%), kabs

(min−1) is the rate constant of intestinal absorption, D (mg) is the amount of carbohydrate to
be ingested, δ(t) is the impulse function, and BW (kg) is the body weight.

The coefficient of gastric emptying kempt is a time-variant nonlinear function of Qsto as shown
in Figure 4.3

kempt(t,Qsto) = kmin+
kmax − kmin

2
{tanh(α(Qsto(t)−b D))−tanh(β(Qsto(t)−d D))+2} (4.3)

The parameters α and β are constraints in order to kempt(t,Qsto) = kmax for Qsto(t) = D
and Qsto(t) = 0, as follows:

α =
5

2 D (1 − b)
, β =

5
2 D c

where kmin and kmax are the minimum and maximum rate of gastric emptying respectively,
b is the percentage of the dose for which the rate of gastric emptying decreases at kmean, and c
is the percentage of the dose for which the rate of gastric emptying is back to kmean.
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Figure 4.3: kempt(t,Qsto) function, where D is the total glucose quantity of the last meal.

4.1.2 Subcutaneous insulin absorption models

Three compartmental models that represent subcutaneous insulin absorption are studied in this
work.

Hovorka et al.

An insulin absorption model was developed by Hovorka et al. (2004). This model is described by
two-compartments that represents the absorption of subcutaneously administered short-action
insulin (see Figure 4.4).

Figure 4.4: Compartment model of subcutaneous insulin absorption proposed by Hovorka et al.
(2004).

The model is represented by the following equations:

dS1(t)
dt

= u(t) − S1(t)
tmax,I

S1(0) = u(0) tmax,I

dS2(t)
dt

=
S1(t)
tmax,I

− S2(t)
tmax,I

S2(0) = S1(0)

S(t) =
S2(t)
tmax,I

(4.4)

where S1 and S2 (mU) represents insulin masses in the accessible and nonaccessible com-
partments, u (mU min−1) represents administration (bolus and infusion) of rapid-acting insulin,
tmax,I (min) is the time-to-maximum of absorption of subcutaneously injected and S (mU min−1)
is the appearance rate of insulin in plasma.
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Wilinska et al.

Eleven alternative compartment models have been postulated by Wilinska et al. (2005) to repre-
sent the insulin kinetics after the administration of a bolus of insulin or the continuous infusion
of insulin (lispro). In this work, the model that best fits the experimental data is considered,
and is based on the model diagram in Figure 4.5.

Figure 4.5: Model diagram of subcutaneous insulin absorption proposed by Wilinska et al.
(2005).

The model considered two different pathways of insulin absorption, slow and fast. The first
consisting of two compartments, Q1a (mU) which represents mass of insulin administered as
continuous infusion, and Q2 (mU) represents insulin mass in the non-accessible subcutaneous
compartments. The second is represented by one compartment Q1b (mU) which is mass of
insulin given as a bolus. The proportion of insulin channelled through these two pathways was
considered to be the same for the two delivery modes, continuous infusion and the bolus. The
insulin concentration is now directly calculated from the fourth compartment Q3 (mU) which
represents insulin mass in the plasma compartment. This model was formulated to overcome
underestimation of the postprandial plasma insulin peak. The equations of the model are:

dQ1a(t)
dt

= k u(t) − ka1Q1a(t) − LDa(t) Q1a(0) = 0

dQ1b

dt
= (1 − k)u(t) − ka2Q1b(t) − LDb(t) Q1b(0) = 0

dQ2(t)
dt

= ka1Q1a(t) − ka1Q2(t) Q2(0) = 0

dQ3(t)
dt

= ka1Q2(t) + ka2Q1b(t) − keQ3(t) Q3(0) = 0

I(t) =
Q3(t)

Vi BW
I(0) = 0

(4.5)

being,

LDa(t) =
VMAX,LD Q1a(t)
kM,LD + Q1a(t)

LDb(t) =
VMAX,LD Q1b(t)
kM,LD + Q1b(t)
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where u (mU min−1) represents the insulin input; k (unitless) is the proportion of the total
input flux passing through the slower, two compartment channel; I (mU L−1) is the insulin
concentration; ka1, ka2 and ke are transfer rates (min−1); VMAX,LD (mU min−1) is the saturation
level describing Michaelis-Menten dynamics of insulin degradation for continuous infusion and
bolus; kM,LD (mU) is the value of insulin mass at which insulin degradation is equal to half of
its maximal value for continuous infusion and bolus; LDa and LDb (mU min−1) represents local
degradation at the injection site for continuous infusion and bolus, respectively; Vi (L kg−1)
represents the insulin distribution volume and BW (kg) is the body weight.

Dalla Man et al.

The model formulated by Dalla Man et al. (2007a) to describe the subcutaneous insulin ab-
sorption uses two-compartments: S1 and S2 (pmol kg−1) to represent the polymeric and the
monomeric insulin in the subcutaneous tissue respectively (see Figure 4.6).

Figure 4.6: Scheme of subcutaneous insulin kinetics proposed by Dalla Man et al. (2007a).

The model is represented by the following equations:

dS1(t)
dt

= u(t) − (ka1 + kd)S1(t) S1(0) =
u(0)

kd + ka1

dS2(t)
dt

= kd S1(t) − ka2S2(t) S2(0) =
kd S1(0)

ka2

S(t) = ka1 S1(t) + ka2 S2(t) S(0) = Sb

(4.6)

where u (pmol kg−1 min−1) represents injected insulin flow, kd (min−1) is called degrada-
tion constant, ka1 and ka2 (min−1) are absorption constants. The quantity Sb (pmol min−1)
represents insulin infusion to maintain diabetic patient at basal steady state and S (pmol kg−1

min−1) is the rate of appearance of insulin in plasma.

4.1.3 Insulin action and glucose kinetics models

The models used to describe the kinetics of glucose in this work are those presented by Bergman
et al. (1981), Hovorka et al. (2002), Dalla Man et al. (2007b), and Panunzi et al. (2007).

Bergman et al.

The model developed by Bergman et al. (1981) has been modified by Roy and Parker (2006)
(see Figure 4.7). The modified model is used in this work.
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Figure 4.7: Schematic representation of Bergman model.

Bergman et al. used a three-compartmental mathematical model to represent the concen-
trations: plasma insulin I (mU mL−1), remote insulin X (min−1), and plasma glucose G (mg
dL−1). Then, the minimal model is given by:

dI(t)
dt

= −n I(t) + p4 S(t) I(0) = Ib

dX(t)
dt

= −p2 X(t) + p3(I(t) − Ib) X(0) = 0

dG(t)
dt

= −p1 G(t) − X(t) G(t) + p1 Gb +
Ra(t)
Vg

G(0) = Gb

(4.7)

where n (min−1) is the fractional disappearance rate of insulin, p4 (mL−1) is the insulin
distribution model, S (mU min−1) is the exogenous insulin infusion rate obtained of any subcu-
taneous insulin model, and Ib (mU mL−1) is the basal value of insulin concentration. The remote
insulin compartment are governed by the parameters p2 (min−1), and p3 (mL mU−1min−2), the
first represents the rate constant expressing the spontaneous decrease of tissue glucose uptake
ability and the last the insulin-dependent increase in tissue glucose uptake ability per unit of
insulin concentration excess over baseline insulin. Parameter p1 (min−1) represents the rate at
which glucose is removed from the plasma space independent of the influence of insulin. Plasma
glucose concentration in basal state is denoted by Gb. The glucose absorption rate Ra (mg
min−1) is obtained of any digestion and absorption model. Finally, Vg (dL) is the glucose dis-
tribution space.

Hovorka et al.

A glucose kinetics and insulin action model was formulated by Hovorka et al. (2002). The model
regards separately at each action of insulin on different phenomena with its final effect on blood
glucose. The relation between insulin in plasma, every virtual compartment representing insulin
actions and the two compartments for glucose are shown in Figure 4.8.
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Figure 4.8: Compartment model of glucose-insulin system (adapted from Hovorka et al. (2004)).

Two compartments representing kinetics of native glucose:

dQ1(t)
dt

= −X1(t)Q1(t) + k12Q2(t) − F c
01(t) − FR(t) + Ra(t)

+EGP0(1 − X3(t)) Q1(0) = G(0) Vg

dQ2(t)
dt

= X1(t)Q1(t) − (k12 + X2(t))Q2(t) Q2(0) =
Q1(0)X1(0)
k12 + X2(0)

G(t) =
Q1(t)

Vg
G(0) = Gb

(4.8)

where Q1 and Q2 (mmol) represents the masses of glucose in the accessible and non-accessible
compartments, k12 (min−1) represents the transfer rate constant from the non-accessible to
the accessible compartment, Vg (L kg−1) represents the distribution volume of the accessible
compartment, G (mmol L−1) is the glucose concentration and EGP0 (mmol min−1) represents
endogenous glucose production extrapolated to the zero insulin concentration. F c

01 (mmol min−1)
is the total non-insulin-dependent glucose disposal, and FR is the renal glucose clearance above
the glucose threshold of 9 mmol L−1:

F c
01(t) =

⎧⎨
⎩

f01G(t)
4.5

if G(t) < 4.5 mmol L−1

f01 if G(t) ≥ 4.5 mmol L−1
(4.9)

FR(t) =

{
0 if G(t) < 9 mmol L−1

0.003(G(t) − 9)Vg if G(t) ≥ 9 mmol L−1
(4.10)

The model adds a new compartment for every action of insulin, and there are three considered
events: insulin increases the flow of glucose from blood to the tissues, insulin increases the glucose
uptake by muscles and adipose tissue, and insulin inhibits production of glucose of glucose in
the liver. These three influences are reflected in the model as virtual compartments (see Figure
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4.8). The insulin actions are modelled as first-order processes:

dX1(t)
dt

= −ka1X1(t) + ka1SIT I(t) X1(0) = SIT I(0)

dX2(t)
dt

= −ka2X2(t) + ka2SIDI(t) X2(0) = SID I(0)

dX3(t)
dt

= −ka3X3(t) + ka3SIEI(t) X3(0) = SIE I(0)

(4.11)

where X1 (min−1) represents the effects of insulin on glucose distribution/transport, X2

(min−1) represents the effect on glucose disposal, and X3 (min−1) the effect on endogenous glu-
cose production; kai, i = 1, . . . , 3 are deactivation rate constants, and SIT , SID and SIE (min−1

per mU L−1) are insulin sensitivities to transport, disposal, and endogenous glucose production,
respectively.

Plasma insulin concentration I (mU L−1) is considered to affect on glucose transport from
plasma to the tissues, hepatic glucose production, and peripheral glucose disposal (Hovorka
et al., 2004), and thus described as:

dI(t)
dt

=
S(t)
Vi

− keI(t) I(0) = Ib (4.12)

where ke (min−1) is the fractional elimination rate, Vi (L kg−1) is the insulin distribution
volume, and S (mU min−1) is the appearance rate of insulin in plasma.

Dalla Man et al.

The model described here was developed in Cobelli’s group in Padova, Italy (Dalla Man et al.
(2007b)) and is one of the most important models in diabetes research. Some modifications were
presented by Magni et al. (2007) to simulate the specific metabolism of T1DM. This model is
composed of one glucose and one insulin subsystem linked by the control of insulin on glucose
utilization and endogenous production, as can be seen in Figure 4.9.

Next, the models corresponding to each one of the subsystems are described.

Glucose Subsystem: Dalla Man et al. (2007b) used a two-compartment model to describe
glucose kinetics, as can be seen in Figure 4.10.

The model equations are:

dGp(t)
dt

= EGP (t) + Ra(t) − Uii(t) − E(t) − k1Gp(t) + k2Gt(t) Gp(0) = Gpb

dGt(t)
dt

= −Uid(t) + k1Gp(t) − k2Gt(t) Gt(0) = Gtb

G(t) =
Gp(t)

Vg
G(0) = Gb

(4.13)

where Gp and Gt (mg kg−1) are glucose masses in plasma and rapidly-equilibrating tissues,
and in slowly equilibrating tissues, respectively, G (mg dL−1) plasma glucose concentration,
with the suffix b denoting the basal state. EGP (mg kg−1 min−1) is the endogenous glucose
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Figure 4.9: Scheme of the glucose-insulin system in T1DM. Solid lines represent glucose and
insulin fluxes; dashed lines represent control signals. Physical activity affects insulin-independent
glucose utilization (taken from Dalla Man et al. (2009)).

Figure 4.10: Schema of the glucose subsystem (adapted by Dalla Man et al. (2006)).

production, Ra (mg kg−1 min−1) is the glucose rate of appearance in plasma, E (mg kg−1 min−1)
is renal excretion, Uii and Uid are the insulin independent and dependent glucose utilizations,
respectively. Vg (dL kg−1) is the distribution volume of glucose and k1 and k2 (min−1) are the
rate parameters.

At basal steady-state endogenous production EGPb equals glucose disappearance, i.e. the
sum of glucose utilization and renal excretion (which is zero in the normal subject), Ub + Eb:

EGPb = Ub + Eb (4.14)
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The glucose renal excretion E is modeled by a linear relationship with plasma glucose

E(t) =

{
ke1 (Gp(t) − ke2) if Gp(t) > ke2

0 if Gp(t) ≤ ke2

where ke1 (min−1) is the glomerular filtration rate and ke2 (mg kg−1) is the renal threshold
of glucose.

Endogenous glucose production EGP : This model incorporates the notion that a portal
insulin signal controls the rapid suppression of EGP. Since the portal insulin signal is an an-
ticipated version of plasma insulin, it was approximated with a portal-like derivative of insulin
concentration signal.

The endogenous glucose production, is described as:

EGP (t) = kp1 − kp2Gp(t) − kp3Id(t) EGP (0) = EGPb (4.15)

where kp1 (mg kg−1 min−1) is the extrapolated EGP at zero glucose and insulin, kp2 (min−1)
liver glucose effectiveness, and kp3 (mg kg−1 min−1 per pmol L−1) parameter governing ampli-
tude of insulin action on the liver. Id is a delayed insulin signal realized with a chain of two
compartments:

dI1(t)
dt

= −ki(I1(t) − I(t)) I1(0) = Ib

dId(t)
dt

= −ki(Id(t) − I1(t)) Id(0) = Ib

(4.16)

where ki (min−1) is the rate parameter accounting for delay between insulin signal and in-
sulin action. EGP is also constrained to be non-negative.

At basal steady state, one has,

kp1 = EGPb + kp2Gpb + kp3Ib

so,

EGP (t) = EGPb + kp2(Gpb − Gp(t)) + kp3(Ib − Id(t)) (4.17)

Glucose utilization: The model of glucose utilization by body tissues during a meal assumes
that glucose utilization is made up of two components: insulin-independent and insulin depen-
dent.

U(t) = Uii(t) + Uid(t) (4.18)

Insulin-independent utilization takes place in the first compartment, is constant, and repre-
sents glucose uptake by the brain and erythrocytes (Fcns):

Uii(t) = Fcns



66 4. Interval Glucoregulatory Models

Insulin-dependent utilization takes place in the remote compartment and depends nonlinearly
(Michaelis Menten) upon glucose in the tissues:

Uid(t) =
Vm(X(t)) Gt(t)

Km(X(t)) + Gt(t)
(4.19)

where Vm(X(t)) (mg kg−1 min−1 per pmol L−1), and Km(X(t)) (mg kg−1 per pmol L−1)
are assumed to be linearly dependent upon a remote insulin, X (pmol L−1):

Vm(X(t)) = Vm0 + Vmx X(t)
Km(X(t)) = Km0

(4.20)

which depends from insulinemia in the following way

dX(t)
dt

= −p2U X(t) + p2U (I(t) − Ib) X(0) = 0 (4.21)

where I is plasma insulin, and p2U (min−1) is a rate constant defining insulin action on
peripheral glucose utilization. Vm0 (mg kg−1 min−1), and Km0 (mg kg−1) are the Michaelis-
Menten parameter of glucose utilization at zero insulin action, and Vmx (mg kg−1 min−1 per
pmol L−1) is the disposal of insulin sensitivity.

In the basal steady state one has:

Gtb =
Fcns − EGPb + k1Gpb

k2

Ub = EGPb = Fcns +
Vm0Gtb

Km0 + Gtb

from which

Vm0 =
(EGPb − Fcns)(Km0 + Gtb)

Gtb

Insulin subsystem: Insulin flow S, coming from the subcutaneous compartments, enters the
bloodstream and is degraded in the liver and in the periphery. The two-compartment model
used to describe insulin kinetics can be seen in Figure 4.11.

Figure 4.11: Schema of the insulin subsystem (adapted by Dalla Man et al. (2006)).
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The model equations are:

dIl(t)
dt

= −Il(t)(m1 + m3) + m2 Ip(t) Il(0) = Ilb

dIp(t)
dt

= −Ip(t)(m2 + m4) + m1 Il(t) + S(t) Ip(0) = Ipb

dI(t)
dt

=
Ip(t)
Vi

I(0) = Ib

(4.22)

where Ip and Il (pmol kg−1) are insulin masses in plasma and in liver respectively, I (pmol
L−1) is plasma insulin concentration, Vi (L kg−1) is the distribution volume of insulin, m1, m2,
m3, and m4 (min−1) are rate parameters, and m2, m3, and m4 depend on m1 in the following
way:

m2 = 0.6
CL

HEb Vi BW

m3 = m1
HEb

1 − HEb

m4 = 0.4
CL

Vi BW

(4.23)

where HEb is the basal hepatic insulin extraction and was fixed to 0.6, CL (min−1) is the
insulin clearance.

At basal one has

Ilb =
Ipb m2

m1 + m3
Ipb = Ib Vi (4.24)

where Ilb and Ipb corresponds with to the basal steady state of insulin masses in plasma and
in liver respectively.

Panunzi et al.

A discrete single delay model for the IVGTT was proposed by Panunzi et al. (2007). They
compared some of the characteristics of the Bergman model and new features for a proposed
model of the IVGTT scenario with a delayed insulin secretion rate. The new model surpassed
the rest in simulated experiments and in its identifiability properties, but it was only tested
in healthy patients. Therefore, in this work, the model was adapted to simulate the specific
metabolic parameters of T1DM patients.

This model is described by two-compartments (one for glucose and one for insulin) (see
Figure 4.12) which are represented by the following equations:

dG(t)
dt

= −KxgII(t)G(t) +
Tgh

Vg
+

Ra(t)
Vg

G(0) = Gb

dI(t)
dt

= −KxiI(t) +
Tigmax

Vi

(
G(t−τg)

G∗

)γ

1 +
(

G(t−τg)
G∗

)γ +
S(t)
V i

I(0) = Ib

(4.25)

being,
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Figure 4.12: Schematic representation of the two-compartments, one-discrete-delay model
(adapted by Panunzi et al. (2007)).

Tgh = KxgI Ib Gb Vg

Tigmax = Kxi Vi

1 +
(

Gb
G∗

)γ

(
Gb
G∗

)γ

where G (mmol L−1) represents the glucose plasma concentration at time t, Ra (mmol kg−1

min−1) is the glucose absorption rate, and Vg (L kg−1) is the apparent distribution volume
for glucose. I (pM) is the insulin plasma concentration, KxgI (min−1 pM−1) is the second-
order net elimination rate of glucose per unit of insulin concentration, Tgh (mmol min−1 kg−1)
represents the net difference between glucose production and glucose elimination, Kxi (min−1)
is the first order elimination ratio of insulin, and Tigmax (pmol min−1 kg−1) is the maximal rate
of second-phase insulin release. S (pM min−1) is the exogenous insulin infusion rate, Ib (pM)
is the basal value of insulin concentration, Vi (L kg−1) represents the apparent distribution
volume for insulin, τg (min) is the delay with which the pancreas changes secondary insulin
release in response to varying plasma glucose concentrations, γ is the progressivity with which
the pancreas reacts to circulating glucose concentrations, and G∗ (mM) represents the glycemia
at which the insulin secretion rate is half of its maximum.

4.2 Uncertainty and Intra-patient Variability

Dynamic models provide valuable information about postprandial glucose excursions. However,
one of the main challenges is in the large intra-individual patient variability that exists, which
must be taken into account. The insulin needs of a subject vary throughout the day due to, for
example, diurnal changes in insulin sensitivity (intra-subject variability). This variability has
been reported by different authors.

A study of intra-patient variation in plasma glucose was presented by Mooy et al. (1996).
Intra-subject variability of up to 30% was considered by Chassin et al. (2004) in their imple-
mentation of adverse operating conditions to test glucose controllers in a virtual environment.
Taking into account the uncertainty in biomedical systems, Kirchsteiger et al. (2009) considered
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the uncertainty in the parameters of insulin sensitivity to evaluate the performance of the control
system. Other studies about variability on blood glucose prediction were presented in Chapter
2 (Section 2.2.4). In this study, the parameters related to insulin sensitivity are represented by
intervals to accommodate intra-patient variability.

There is also an important source of uncertainty in food intake, because in real-life situ-
ations, it is impossible to precisely measure the carbohydrate content of a mixed meal. For
instance, overestimates of 8.5% and underestimates of 28% have been reported (Graff et al.,
2000). Accordingly, most patients tend to underestimate the carbohydrate content of their in-
take. However, this is usually done in a consistent way, so that their therapy can be adapted
to counteract this bias. For this reason, in this work, uncertainty in food intake estimation is
considered to represent a deviation relative to this bias-corrected estimation.

Other errors can be included in the estimation of the insulin dose, because this dose is
calculated according to intake and blood glucose monitoring, and both may include errors.
The variability present in subcutaneous absorption has also been widely studied by Heinemann
(2002); Barnett (2003); Heise et al. (2004); Guerci and Sauvanet (2005); Scholtz et al. (2005);
Goykhman et al. (2009).

Uncertainty is represented here by an interval model in which the parameters, inputs, and/or
initial states take interval values (Calm et al., 2007a, 2011; Garćıa-Jaramillo et al., 2011b). The
simulation results in the case of a real-valued model are the trajectories of the system variables
across time. When the quantities involved in the simulation take values inside the intervals
of variation, the set of trajectories determines an envelope, representing the set of all possible
responses. In the next section, different models are examined to select an optimal rational
computation that takes into account these uncertainties.

4.3 Library of Interval Models of Physiological Subsystems of

Glucose Regulation

The prediction of glucose excursions is the key to decision-aid systems for insulin therapy op-
timization in T1DM (Garćıa-Jaramillo et al., 2009a) and glucose control strategies (El Youssef
et al., 2009). However, there is great intra- and inter-individual variability in patient behaviour.
Food intake (amount of carbohydrates) is another important source of uncertainty because accu-
rate estimates are difficult to make for a mixed meal. Therefore, the development of prediction
tools that can accommodate different sources of uncertainty (input, parameters, initial state) is
necessary (Calm et al., 2007a).

In this section, the models described in Section 4.1 are evaluated, taking into account the
intra-patient variability and the different sources of uncertainty, such as the uncertainty in
food intake, insulin dose, preprandial blood glucose and initial states. Then, the parameters
and initial states related with these uncertainties were evaluated to obtain an optimal rational
computation. To achieve an optimal computation, each interval model is evaluated to avoid
multi-incident variables. One of the main problems in interval computations arises from the ex-
istence of multiple instances of the same variable in the expression, leading to the overestimation
of the result. To avoid this problem, we have used MIA. Therefore, each interval function to
be evaluated is analysed and put, if possible, into its optimal form (the expression is rewritten
in such a way that the exact range is obtained). Finally, the interval simulation is performed.
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The uncertain parameters, which were studied using MIA, that lead to an overestimation of the
interval computation were not considered in this work. However, when the optimality cannot
be achieved, the f∗ algorithm (Herrero et al., 2005) can be launched. This algorithm uses many
optimality and coercion theorems from modal interval theory to compute tight approximations
of the range by applying branch-and-bound techniques. However, according to the function, the
algorithm may require a large computational effort because it is highly complex. A summary of
the principal results of MIA was presented in Chapter 3.

Another simulation approach studied in this section to obtain a set of possible postprandial
responses is the Monte Carlo simulation (MCS). The output of each interval simulation given by
MIA is compared with the outcome produced by MCS. The number of trials for the latter was in-
creased until no significant changes in the upper and lower bounds were observed. Uncertainties
in the MCS parameters were represented in terms of uniform probability distributions for com-
parison with MIA. Multiplicative congruential random generation was used to return successive
pseudo-random numbers (Rubinstein and Kroese, 2007). A iterative program was implemented
in C/C++ using the function rand(). To guarantee randomness between successive iterations,
the seed of the rand() function is initialized at each loop using the srand() function and fixing
the seed based on the system’s clock. The MIA and MCS simulations were performed using
Borland C++ Builder (version 6.0).

The results of the comparison of MIA and MCS show that the latter cannot guarantee that
the actual response for a given model is within the set, leading to missed hypo- and hyper-
glycaemic events. A large computational effort might also be required when the number of
uncertain parameters increases (Calm et al., 2011).

The library of interval models proposed in this work has been used in different studies
within the projects INSULAID (Bondia and Veh́ı, 2007) and INSULAID2 (Bondia and Veh́ı,
2010). Some of these works have been presented by Calm et al. (2007a,b); Bondia et al. (2007);
Garćıa-Jaramillo et al. (2009a); Bondia et al. (2009); Garćıa-Jaramillo et al. (2011a); Calm et al.
(2011); Revert et al. (2011); Laguna (2010); Garćıa-Jaramillo et al. (2011b).

Currently, an application of the fault detection technique based on the interval model is being
developed by the MICELab group in collaboration with the Institute of Biomedical Engineering
of Imperial College London. This technique is used to detect erroneous continuous glucose sensor
data and insulin infusion faults using retrospective data from a clinical experiment that tested
a closed-loop controller.

4.3.1 Carbohydrate digestion and absorption interval models

The glucose absorption model includes uncertainties because patients generally do not know the
exact size and composition of their meals, which they must estimate. The absorption time also
depends on the patient and the meal composition, so it is also an approximation. Therefore,
the amount of carbohydrate ingested, D (mg), is considered an interval.

The models considered here were presented in Section 4.1.1, and were formulated by Hovorka
et al. (2004) and Dalla Man et al. (2006) to describe the glucose transit through the stomach
and intestine.
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Hovorka et al. model

In the model proposed by Hovorka et al. (2004), we consider the input D and the parameter AG

from Equation 4.1 as uncertain. By analysing the monotonic behaviour of Equation 4.1, it can
be seen that the function Ra(t) is monotonic increasing with respect to variables D and AG. An
optimal rational computation of the range for the glucose absorption rate, Ra(t), can then be
obtained with Equation 4.1:

Ra(t) =
DAGt exp(−t/tmax,G)

t2max,G

When the parameter tmax,G is considered to be uncertain, it is a multi-incident parameter
and does not meet the monotonicity conditions of the optimality theorems of MIA. Therefore, an
optimal rational computation of the range of the glucose absorption rate, Ra(t), is not possible.
Consequently, the f∗ algorithm must be used to obtain tight upper and lower bounds for Ra(t).
For more information about the f∗ algorithm, the reader is referred to Chapter 3.

Dalla Man et al. model

The model considered here is that described by Dalla Man et al. (2006). The Euler discrete time
approximation of the glucose rate of appearance model (Equation 4.2) is given by:

Qsto(t) = Qsto1(t) + Qsto2(t)

Qsto1(t + 1) = Qsto1(t)(1 − kmax∆t) + D∆t

Qsto2(t + 1) = Qsto2(t)(1 − kempt(t,Qsto)∆t) + kmaxQsto1(t)∆t

Qgut(t + 1) = Qgut(t)(1 − kabs∆t) + kempt(t,Qsto)Qsto2(t)∆t

Ra(t) =
fkabsQgut(t)

BW

(4.26)

where

kempt(t,Qsto) = kmin +
kmax − kmin

2

[
tanh

(
α

(
Qsto(t)

D
− b

))
−

− tanh

(
β

(
Qsto(t)

D
− c

))
+ 2

] (4.27)

where α and β are constrained

α =
5

2 (1 − b)
, β =

5
2 c

We consider uncertainty only in the input D because only this parameter verifies the mono-
tonicity conditions for optimal computation by the optimality theorems of MIA. The uncertainty
of this input causes the result of the interval computation of Qsto1(t + 1) and Qsto2(t + 1) to be
an interval state. The monotonic behaviour of equations (4.26) are then studied with respect to
the uncertain variable D to produce the optimal rational computation:

1. Monotony of state function Qsto1(t + 1) respect to parameter D

∂Qsto1(t + 1)
∂D

=
∂Qsto1(t)

∂D
(1 − kmax∆t) + ∆t > 0 ⇔ ∆t <

1
kmax
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due to,

∂Qsto1(0)
∂D

= 0

∂Qsto1(1)
∂D

= ∆t > 0

∂Qsto1(2)
∂D

= ∆t(1 − kmax) + ∆t > 0

∂Qsto1(3)
∂D

= ∆t(1 − kmax)2 + ∆t(1 − kmax) + ∆t > 0
...................................................................

Then Qsto1(t + 1) is monotonic increasing respect to D.

2. Monotony of state function Qsto2(t + 1) respect to multi-incident parameter D

∂Qsto2(t + 1)
∂D

=
∂Qsto2(t)

∂D
(1 − kempt(t,Qsto)∆t) − Qsto2(t)

[
kmax − kmin

2

1
D2

(
D

∂Qsto(t)
∂D

− Qsto(t)
) ⎛

⎝ α

cosh2
(
α(Qsto(t)

D − b)
) − β

cosh2
(
β(Qsto(t)

D − c)
)

⎞
⎠

⎤
⎦ ∆t +

+kmax
∂Qsto1(t)

∂D
∆t > 0 ⇔ ∆t <

1
kempt(t,Qsto)

Then Qsto2(t + 1) is globally monotonous respect to D. The monotony of each incidence
of every multi-incident component D is:

∂Qsto2(t + 1)
∂D1

=
(

kmax − kmin

2

)
αQsto(t)

D2 cosh2
(
α(Qsto(t)

D − b)
)Qsto2(t)∆t > 0

∂Qsto2(t + 1)
∂D2

= −
(

kmax − kmin

2

)
βQsto(t)

D2 cosh2
(
β(Qsto(t)

D − c)
)Qsto2(t)∆t < 0

Therefore Qsto2(t + 1) is totally monotonous respect to D.

3. Monotony of state function Qsto2(t + 1) respect to Qsto(t)

∂Qsto2(t + 1)
∂Qsto(t)

= 1 − kempt(t,Qsto)∆t − Qsto2(t)
[
kmax − kmin

2⎛
⎝ α/D

cosh2
(
α(Qsto(t)

D − b)
) − β/D

cosh2
(
β(Qsto(t)

D − c)
)

⎞
⎠

⎤
⎦ ∆t > 0

Then Qsto2(t + 1) is globally monotonous respect to Qsto(t). As in the previous item, the
monotony of each incidence of Qsto(t) is studied:
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∂Qsto2(t + 1)
∂Qsto(t)1

=
(

kmax − kmin

2

)
α/D

cosh2
(
α(Qsto(t)

D − b)
)Qsto2(t)∆t > 0

∂Qsto2(t + 1)
∂Qsto(t)2

= −
(

kmax − kmin

2

)
β/D

cosh2
(
β(Qsto(t)

D − c)
)Qsto2(t)∆t < 0

Thereby, Qsto2(t + 1) is totally monotonous respect to Qsto(t).

Then, taking into account the theorem of coercion to optimality an optimal rational compu-
tation of Ra (Equation 4.26) is obtained by:

Qsto(t) = Qsto1(t) + Qsto2(t)

Qsto1(t + 1) = Qsto1(t)(1 − kmax∆t) + D∆t

Qsto2(t + 1) = Qsto2(t)(1 − kempt(t,Qsto)∆t) + kmaxQsto1(t)∆t (4.28)

Qgut(t + 1) = Qgut(t)(1 − kabs∆t) + kempt(t,Qsto)Qsto2(t)∆t

Ra(t) =
fkabsQgut(t)

BW

where

kempt(t,Qsto) = kmin +
kmax − kmin

2

[
tanh

(
α

(
Dual(Qsto(t))

D
− b

))
−

− tanh

(
β

(
Qsto(t)

Dual(D)
− c

))
+ 2

] (4.29)

As an illustration, MIA and MCS were compared when there was a 10% variation in a food
intake of 80 g. The model parameters are taken from UVa simulator (patient 1) (Kovatchev
et al., 2008). The envelopes obtained for MIA and the simulations obtained for MCS were
indistinguishable (see Figure 4.13), because only one parameter was considered uncertain. How-
ever, 100 MCS trials were necessary to produce no significant changes in the upper and lower
bounds. The number of trials increases in proportion to the number of uncertain parameters.
However, MCS cannot guarantee that the actual response for a given model is within the bounds.

The computation time for MIA was 0.078 s, whereas that for MCS was 3.812 s. Thus, MIA
took only 2.1% of the time required for MCS (a reduction of 97.9%).

4.3.2 Subcutaneous insulin absorption interval model

An optimality analysis of the three s.c. insulin absorption models described in Section 4.1.2 are
examined here.

Hovorka et al.

Because the dose of insulin u is calculated based on meal planning and blood glucose monitoring,
an error in the estimate can occur, as mentioned in Section 4.2. The insulin dose will then be
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Figure 4.13: Glucose interval rate of appearance with 10% variation in food intake. The green
lines indicate each simulation given with the MCS approach and the blue lines show the upper
and lower bounds given by the MIA simulation.

uncertain. The Euler discrete time approximation of the subcutaneous insulin absorption model
(Equation 4.4) is given by:

S1(t + 1) = S1(t) + ∆t

(
u(t) − S1(t)

tmax,I

)

S2(t + 1) = S2(t) +
∆t

tmax,I
(S1(t) − S2(t))

S(t) =
S2(t)
tmax,I

(4.30)

The only parameter that verifies the monotonicity conditions for optimal rational computa-
tion using MIA is the input u. An uncertain input u causes the results of the interval compu-
tations of S1(t + 1) and S2(t + 1) to be interval states. Therefore, the monotonic behaviour of
Equation 4.30 is studied with respect to this uncertainty to obtain an optimal rational compu-
tation using MIA.

1. The function S1(t + 1) is monotonic increasing respect to u(t), since:

∂S1(t + 1)
∂u(t)

=
∂S1(t + 1)

∂u(t)

(
1 − ∆t

tmax,I

)
+ ∆t > 0 ⇔ ∆t < tmax,I

2. The function S1(t + 1) is totally monotonous with respect to S1(t) according with the
partial derivatives:

∂S1(t + 1)
∂S1(t)

= 1 − ∆t

tmax,I
> 0 ⇔ ∆t < tmax,I

∂S1(t + 1)
∂S1(t)1

= 1 > 0

∂S1(t + 1)
∂S1(t)2

= − ∆t

tmax,I
< 0

The same study is performed to S2(t+1), which is totally monotonous with respect to S2(t).
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Applying the theorem of coercion to optimality, the optimal rational computation of equa-
tions S1(t + 1) and S2(t + 1) is given by:

S1(t + 1) = S1(t) + ∆t

(
u(t) − Dual(S1(t))

tmax,I

)

S2(t + 1) = S2(t) +
∆t

tmax,I
(S1(t) − Dual(S2(t)))

S(t) =
S2(t)
tmax,I

(4.31)

with the constraint ∆t < tmax,I , so the time step ∆t will be defined if this condition is
satisfied.

A comparison of MIA and MCS for the bolus administration of 5 IU of insulin with 5%
variation showed a reduction in the computation time of 98.33% for MIA with respect to 100
MCS trials (see Figure 4.14).
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Figure 4.14: Envelopes of s.c. insulin absorption obtained for 5% variations in bolus insulin.
The green lines indicate each simulation given with the MCS approach and the blue lines show
the upper and lower bounds given by the MIA simulation.

Wilinska et al.

The model developed by Wilinska et al. (2005) is studied here to consider the presence of different
sources of uncertainties. The Euler discrete time approximation of the insulin kinetics model
(Equation 4.5) is analysed first. The discrete model is given by:

Q1a(t + 1) = Q1a(t) + ∆t (k u(t) − ka1 Q1a(t) − LDa(t))

Q1b(t + 1) = Q1b(t) + ∆t ((1 − k)u(t) − ka2 Q1b(t) − LDb(t))

Q2(t + 1) = Q2(t) + ∆t (ka1Q1a(t) − ka1 Q2(t))

Q3(t + 1) = Q3(t) + ∆t(ka1 Q2(t) + ka2Q1b(t) − ke Q3(t))

I(t) =
Q3(t)

Vi BW

(4.32)

Like the model of Hovorka et al., in the model developed by Wilinska et al. (2005), the insulin
input u is considered a source of uncertainty. The parameter that represents the transfer rate
ke can also be considered uncertain. This is the only parameter that verifies the monotonicity
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conditions for optimal rational computation using MIA.

By analysing the monotonic behaviour of the state functions Q1a(t + 1) and Q1b(t + 1) with
respect to u(t), and Q3(t + 1) with respect to ke, it can be seen that these state functions are
monotonic, increasing with respect to each parameter evaluated.

The uncertainty in the input u(t) and the parameter ke causes that the results of the interval
computation of all state functions will be interval states. For this reason, a study of the monotony
of Equation 4.32 with respect to multi-incident variables is performed.

1. Monotony of state function Q1a(t + 1) respect to Q1a(t)

∂Q1a(t + 1)
∂Q1a(t)

= 1 + ∆t

(
−ka1 − kM,LDVMAX,LD

(kM,LD + Q1a(t))2

)
> 0 ⇔ ∆t <

1

ka1 +
kM,LDVMAX,LD

(kM,LD + Q1a(t))2
∂Q1a(t + 1)
∂Q1a(t)1

= 1 > 0

∂Q1a(t + 1)
∂Q1a(t)2

= −ka1 < 0

∂Q1a(t + 1)
∂Q1a(t)3

= − VMAX,LD

kM,LD + Q1a(t)
< 0

∂Q1a(t + 1)
∂Q1a(t)4

=
VMAX,LD Q1a(t)

(kM,LD + Q1a(t))2
> 0

Then the function Q1a(t + 1) is totally monotonous with respect to Q1a(t).

2. Monotony of state function Q1b(t + 1) respect to Q1b(t)

∂Q1b(t + 1)
∂Q1b(t)

= 1 + ∆t

(
−ka2 − kM,LDVMAX,LD

(kM,LD + Q1b(t))2

)
> 0 ⇔ ∆t <

1

ka2 +
kM,LDVMAX,LD

(kM,LD + Q1b(t))2
∂Q1b(t + 1)
∂Q1b(t)1

= 1 > 0

∂Q1b(t + 1)
∂Q1b(t)2

= −ka2 < 0

∂Q1b(t + 1)
∂Q1b(t)3

= − VMAX,LD

kM,LD + Q1b(t)
< 0

∂Q1b(t + 1)
∂Q1b(t)4

=
VMAX,LD Q1b(t)

(kM,LD + Q1b(t))2
> 0

Then the function Q1b(t + 1) is totally monotonous with respect to Q1b(t).

3. Monotony of state function Q2(t + 1) respect to Q2(t)
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∂Q2(t + 1)
∂Q2(t)

= 1 − ∆t ka1 > 0 ⇔ ∆t <
1

ka1

∂Q2(t + 1)
∂Q2(t)1

= 1 > 0

∂Q2(t + 1)
∂Q2(t)2

= −∆t ka1 < 0

Then the function Q2(t + 1) is totally monotonous with respect to Q2(t).

4. Monotony of state function Q3(t + 1) respect to Q3(t)

∂Q3(t + 1)
∂Q3(t)

= 1 − ∆tke > 0 ⇔ ∆t <
1
ke

∂Q3(t + 1)
∂Q3(t)1

= 1 > 0

∂Q3(t + 1)
∂Q3(t)2

= −∆t ke < 0

Hence, the function Q3(t + 1) is totally monotonous with respect to Q3(t).

Applying the theorem of coercion to optimality, the rational computation of the model
equations is:

Q1a(t + 1) = Q1a(t) + ∆t

(
k u(t) − ka1 Dual(Q1a(t)) − VMAX,LD Dual(Q1a(t))

kM,LD + Q1a(t)

)

Q1b = Q1b + ∆t

(
(1 − k)u(t) − ka2 Dual(Q1b(t)) − VMAX,LD Dual(Q1b(t))

kM,LD + Q1b(t)

)
Q2(t + 1) = Q2(t) + ∆t(ka1 Q1a(t) − ka1Dual(Q2(t)))

Q3(t + 1) = Q3(t) + ∆t(ka1 Q2(t) + ka2 Q1b(t) − ke Dual(Q3(t)))

I(t) =
Q3(t)

Vi BW

(4.33)

The time step ∆t will be defined so that constraint holds.

∆t < min

⎛
⎜⎜⎝ 1

ka2 +
kM,LD VMAX,LD

(kM,LD + Q1b(t))2

,
1

ka1 +
kM,LD VMAX,LD

(kM,LD + Q1a(t))2

,
1
ke

⎞
⎟⎟⎠

The comparison of MIA and MCS for an infusion of 5 IU of insulin for 15 min, with 5% vari-
ation in the insulin dose and a transfer rate of ke, demonstrates a computation time reduction
of 99.6% for MIA with respect to 500 MCS trials (see Figure 4.15). The model parameters used
were taken from Wilinska et al. (2005).



78 4. Interval Glucoregulatory Models

0 100 200 300 400 500 600
0

5

10

15

20

25

30

35

Time[min]

In
su

lin
 c

on
ce

nt
ra

tio
n 

[m
U

/l]

 

 

MIA
MCS

Figure 4.15: Envelopes of s.c. insulin absorption obtained for a 5% variation in bolus insulin
and a 5% variation in the transfer rate ke. The green lines indicate each simulation given with
the MCS approach and the blue lines show the upper and lower bounds given by the MIA
simulation.

Dalla Man et al.

The third model of subcutaneous insulin absorption studied here was proposed by Dalla Man
et al. (2007a). The Euler discrete time approximation model that represents subcutaneous
insulin absorption (Equation 4.6) is given by:

S1(t + 1) = S1(t) + ∆t(u(t) − (kd + ka1)S1(t))

S2(t + 1) = S2(t) + ∆t(kd S1(t) − ka2 S2(t))

S(t) = ka1 S1(t) + ka2 S2(t)

(4.34)

Uncertainty in the insulin input u is considered by this model. To obtain an optimal rational
computation of Equation 4.34, its monotonic behaviour is studied with respect to this uncertain
input.

So, S1(t + 1) is monotonic increasing with respect to the input u(t), since:

∂S1(t + 1)
∂u(t)

=
∂S1(t + 1)

∂u(t)
(1 − ∆t(kd + ka1)) + ∆t > 0 ⇔ ∆t <

1
ka1 + kd

Because of the uncertainty in the input u(t), the states S1(t+1) and S2(t+1) will be interval
states. Therefore, the monotonic behaviour of the state functions S1(t + 1) and S2(t + 1) are
studied with respect to S1(t) and S2(t), respectively.

The function S1(t + 1) is totally monotonous with respect to S1(t) if:

∆t <

(
1

ka1 + kd

)

because the partial derivative with respect to S1(t) is given by:



4.3. Library of Interval Models of Physiological Subsystems of Glucose Regulation79

∂S1(t + 1)
∂S1(t)

= 1 + ∆t(−(ka1 + kd)) > 0 ⇔ ∆t <
1

ka1 + kd

∂S1(t + 1)
∂S1(t)1

= 1 > 0

∂S1(t + 1)
∂S1(t)2

= −(ka1 + kd) < 0

and similar reasoning applies to S2(t+1), which is totally monotonous with respect to S2(t):

∂S2(t + 1)
∂S2(t)

= 1 − ∆t ka2 > 0 ⇔ ∆t <
1

ka2

∂S2(t + 1)
∂S2(t)1

= 1 > 0

∂S2(t + 1)
∂S2(t)2

= −ka2 < 0

Applying the theorem of coercion to optimality, an optimal rational computation of Equation
4.34, is given by:

S1(t + 1) = S1(t) + ∆t (u(t) − (kd + ka1)Dual(S1(t)))

S2(t + 1) = S2(t) + ∆t (kd S1(t) − ka2 Dual(S2(t)))

S(t) = ka1 S1(t) + ka2 S2(t)

(4.35)

with the constraint:

∆t < min
(

1
ka1 + kd

,
1

ka2

)
(4.36)

To validate the MIA approach, different MCSs were performed for the infusion of 5 IU of
insulin in 15 min with 5% variation. Using MIA, a computation time reduction of 98.7% was
obtained with respect to 100 MCS trials, as can be seen in Figure 4.16. The model parameters
used were taken from Dalla Man et al. (2007a).

4.3.3 Insulin action and glucose kinetics interval model

Because insulin sensitivity exhibits circadian variations in its intensity depending on the patient,
the parameters that represent these sensitivities are likely to be uncertain. To examine this,
the four insulin action and glucose kinetics models presented in Section 4.1.3 and proposed by
Bergman et al. (1981), Hovorka et al. (2004), Dalla Man et al. (2007b), and Panunzi et al. (2007)
are studied here, taking into account the uncertainty in the parameter of insulin sensitivity.

Bergman et al.

The model considered here is that described by Bergman et al. (1981) and modified by Roy and
Parker (2007). In this model, we consider uncertainty in all the parameters of the model: p1,
p2, p3, p4, and n. The parameters corresponding to insulin sensitivity are p2 and p3.
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Figure 4.16: Envelopes of s.c. insulin absorption obtained for 5% variation in the insulin infusion.
The green lines indicate each simulation given with the MCS approach and the blue lines show
the upper and lower bounds given by the MIA simulation.

Taking into account these uncertainties, the monotonic behaviour of the insulin dynamics
and insulin action models presented by Roy and Parker (2007) is studied first.

1. Monotony of state function I(t + 1) with respect to n:

∂I(t + 1)
∂n

=
∂I(t)
∂n

(1 − ∆t n) − ∆t I(t) < 0 ⇔ ∆t <
1
n

Then I(t + 1) is monotonic decreasing with respect to n.

2. Monotony of state function I(t + 1) with respect to p4:

∂I(t + 1)
∂p4

=
∂I(t)
∂p4

(1 − ∆t n) + ∆t S(t) > 0 ⇔ ∆t <
1
n

Hence I(t + 1) is monotonic increasing with respect to p4.

3. Now the monotony of insulin action model is studied. Monotony of state function X(t+1)
with respect to parameter p2:

∂X(t + 1)
∂p2

=
∂X(t)
∂p2

(1 − ∆t p2) − ∆t X(t) p2 < 0 ⇔ ∆t <
1
n

Then X(t + 1) is monotonic decreasing with respect to p2.

4. Monotony of state function X(t + 1) with respect to p3:

∂X(t + 1)
∂p3

=
∂X(t)
∂p3

(1 − ∆t p2) + ∆t (I(t) − Ib) > 0 ⇔ ∆t <
1
p2

Then X(t + 1) is monotonic increasing with respect to p3.

According to this study, and taking into account that the insulin dynamics and insulin action
models do not have multi-incident variables, a rational calculation can be performed with its
Euler discrete model:

I(t + 1) = I(t) (1 − ∆t n) + ∆t p4 S(t)

X(t + 1) = X(t) (1 − ∆t p2) + ∆t p3(I(t) − Ib)
(4.37)
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Next, the glucose metabolism model (Equation 4.7) is evaluated, considering the uncertain-
ties mentioned above. The Euler discrete time approximation of the glucose metabolism model
is given by:

G(t + 1) = ∆t p1(Gb − G(t)) + G(t)(1 − ∆t X(t)) +
Ra(t)
Vg

∆t (4.38)

In this case, the monotonic behaviour of Equation 4.38 is studied with respect to the uncer-
tain parameter p1. This uncertainty also causes that the result of the interval computation of
state G(t + 1) to be an interval state, so the monotonic behaviour of G(t + 1) with respect to
G(t) is also evaluated.

1. Monotony of state function G(t + 1) respect to G(t):

∂G(t + 1)
∂p1

= ∆t(Gb − G(t)) +
∂G(t)
∂p1

(1 − ∆t(p1 + X(t))) < 0 ⇔ ∆t <
1

p1 + X(t)

Then G(t + 1) is monotonic increasing respect to p1.

2. Monotony of state function G(t + 1) respect to each incidence of G(t):

∂G(t + 1)
∂G(t)

= −∆t p1 + (1 − ∆t X(t)) > 0 ⇔ ∆t <
1

p1 + X(t)

∂G(t + 1)
∂G(t)1

= −∆t p1 < 0

∂G(t + 1)
∂G(t)2

= 1 − ∆t X(t) > 0

The function G(t + 1) is totally monotonous with respect to G(t).

Finally, applying the theorem of coercion to optimality to plasma glucose concentration
G(t + 1) (Equation 4.38) the rational computation is given by:

G(t + 1) = ∆t p1(Gb − Dual(G(t))) + G(t) (1 − ∆t X(t)) +
∆t Ra(t)

Vg
(4.39)

The time step ∆t is defined so that ∆t <
1

p1 + X(t)
in order to verify the monotonic condi-

tions.

Different simulations were performed, considering variations in the parameters p1, p2, p3,
n, and food intake to validate the model. A general scenario was considered: capillary blood
glucose 81 mg/dL, 5 IU of bolus insulin, and 60 g of food intake. The following models were
combined to represent the glucoregulatory model:

• For subcutaneous insulin absorption: Tarin et al. model (Taŕın et al., 2005)
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• For carbohydrate digestion and absorption: Hovorka et al. interval model proposed in
Section 4.3.1

• For insulin action and glucose kinetics: Bergman et al. interval model (Section 4.3.3).

Blood glucose was predicted using MIA and MCS, considering variations of 5% in food intake
and 10% in the fractional clearance of insulin (n). Figure 4.17 shows the comparison of the two
methods.
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Figure 4.17: Envelopes of blood glucose obtained for 5% variations in food intake and the
fractional clearance of insulin and 10% variations in the parameters of the glucose kinetics
model. The green lines indicate each simulation given with the MCS approach and the blue
lines show the upper and lower bounds given by the MIA simulation.

In Figure 4.18, the MIA and MCS approaches are shown with variations of 5% in D and 10%
in p2 and p3, with 500 trials performed for MCS. The magenta dashed line illustrates the MCS
approach, considering the same uncertainty but taking the lower bound of p2. In this figure, it
can be seen that this case is not included in the MCS obtained beforehand.
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Figure 4.18: Envelopes of blood glucose obtained for 5% variation in food intake and 10%
variations in p2 and p3. The green lines indicate each simulation given by the MCS approach
and the blue lines show the upper and lower bounds given by the MIA simulation. The magenta
dashed line indicates the MCS approach considering the lower bound of p2.

Hovorka et al.

The presence of different sources of uncertainty in the model described by Hovorka et al. (2004) is
now examined. First, the monotonic behaviour of the PK model 4.12 is evaluated, considering
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uncertainty in ke. As a result, the function I(t) is monotonic, decreasing with respect to ke

because:

∂I(t + 1)
∂ke

=
∂I(t)
∂ke

(1 − ∆t ke) − I(t)∆t < 0 ⇔ ∆t <
1
ke

Therefore, a rational calculation can be performed with its Euler discrete model:

I(t + 1) =
∆tS(t)

Vi
+ (1 − ∆tke)I(t) (4.40)

The PD model 4.11 is a more complex interval model because many parameters are uncertain.
The initial states of the effects of insulin on glucose, Xi(0), i = 1, . . . , 3, and the sensitivity
parameters SIT , SID, and SIE are uncertain and they are considered as intervals. The Euler
discrete time approximation of the insulin PD model is given by:

X1(t + 1) = (1 − ∆tka1)X1(t) + ∆tka1SIT I(t)
X2(t + 1) = (1 − ∆tka2)X2(t) + ∆tka2SID I(t)
X3(t + 1) = (1 − ∆tka3)X3(t) + ∆tka3SIE I(t) (4.41)

According to MIA, this model is optimal because the insulin sensitivities and the initial
states appear only once in each equation. Because this is an interval computation, the states
X1(t + 1), X2(t + 1), and X3(t + 1) will be interval states (Calm et al., 2007a).

In contrast, the interval output of the carbohydrate digestion and absorption subsystem, as
well as the computed interval states from the insulin subsystem, Xi(t), i = 1, 2, 3, will be interval
inputs in the glucose subsystem. Therefore, even if no uncertainty is considered for the glucose
subsystem, it becomes an interval model, and interval methods must be used to compute its
evolution.

The Euler discrete time approximation of the glucose metabolism model (Equation 4.8) is
given by:

Q1(t + 1) = Q1(t)(1 − ∆t X1(t)) + ∆t k12 Q2(t) − ∆t(F c
01(t) + FR(t))+

+∆t(Ra(t) + EGP0(1 − X3(t)))

Q2(t + 1) = ∆t X1(t)Q1(t) + Q2(t)(1 − ∆t(k12 + X2(t)))

G(t) =
Q1(t)

Vg

(4.42)

From total non-insulin-dependent glucose disposal, F c
01(t), and the renal glucose clearance

FR(t), defined by Equations 4.9 and 4.10 respectively, the sum function is considered:

F c
01(t) + FR(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f01Q1(t)
4.5Vg

if Q1(t) < 4.5Vg

f01 if 4.5Vg ≤ Q1(t) ≤ 9Vg

0.003 Q1(t) − 0.027Vg + f01 if Q1(t) > 9Vg
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From the sum function two new constant functions FC(t) and FR(t) are defined as:

FC(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f01

4.5Vg
if Q1(t) < 4.5Vg

0 if 4.5Vg ≤ Q1(t) ≤ 9Vg

0.003 if Q1(t) > 9Vg

(4.43)

FR(t) =

⎧⎪⎨
⎪⎩

0 if Q1(t) < 4.5Vg

f01 if 4.5Vg ≤ Q1(t) ≤ 9Vg

−0.027Vg + f01 if Q1(t) > 9Vg

(4.44)

so that F c
01(t) + FR(t) = FC(t)Q1(t) + FR(t). Then, Equation (4.42) can be rewritten as:

Q1(t + 1) = Q1(t)(1 − ∆t(X1(t) + FC(t))) + ∆t k12 Q2(t)+
+∆t(Ra(t) + EGP0(1 − X3(t)) − FR(t))

Q2(t + 1) = ∆t X1(t) Q1(t) + Q2(t)(1 − ∆t(k12 + X2(t)))

G(t) =
Q1(t)

Vg

(4.45)

Using MIA, the monotonic behaviour of Equation (4.45) is studied with respect to uncertain
parameters (SID, SIE, and SIT ) to obtain an optimal rational computation.

The Q1(t + 1) and Q2(t + 1) state functions are monotonic with respect to SID and SIE if

∆t < min
(

1
X1(t) + FC(t)

,
1

k12 + X2(t)

)

because the partial derivative with respect to SID is given by:

∂Q1(t + 1)
∂SID

= (1 − ∆t(X1(t) + FC(t)))
∂Q1(t)
∂SID

+ ∆tk12
∂Q2(t)
∂SID

< 0 ⇔

⇔ ∆t <
1

X1(t) + FC(t)

∂Q2(t + 1)
∂SID

= ∆tX1(t)
∂Q1(t)
∂SID

− ∂X2(t)
∂SID

Q2(t)∆t +

+(1 − ∆t(k12 + X2(t)))
∂Q2(t)
∂SID

< 0 ⇔ ∆t <
1

k12 + X2(t)

and similar reasoning for SIE. But Q1(t + 1) and Q2(t + 1) are not monotonic with respect
to the multi-incident variable SIT , because the sign of their partial derivatives are not defined,

∂Q1(t + 1)
∂SIT

= −∆t
∂X1(t)
∂SIT

Q1(t) + (1 − ∆t(X1(t) + FC(t)))
∂Q1(t)
∂SIT

+ ∆tk12
∂Q2(t)
∂SIT

∂Q2(t + 1)
∂SIT

= ∆t
∂X1(t)
∂SIT

Q1(t) + ∆tX1(t)
∂Q1(t)
∂SIT

+ (1 − ∆t(k12 + X2(t)))
∂Q2(t)
∂SIT
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A new state function S(t) = Q1(t) + Q2(t) is defined to obtain monotonic behaviour with
respect to the variable SIT . The model in the new state function is:

Q1(t + 1) = (1 − ∆t(k12 + X1(t) + FC(t)))Q1(t) + ∆tk12S(t) + ∆tA(t)

S(t + 1) = ∆t(X2(t) − FC(t))Q1(t) + (1 − ∆tx2(t))S(t) + ∆tA(t)

G(t) =
Q1(t)

Vg

(4.46)

where A(t) := Ra(t) + EGP0(1 − X3(t)) − FR(t).

In Equation 4.46 the state function S(t) is monotonic with respect to SID and SIE because
Q1(t) and Q2(t) are monotonic. Furthermore, Q1(t) and S(t) are also monotonic with respect
to SIT , if X2(t) − FC(t) > 0 and

∆t < min
(

1
k12 + X1(t) + FC(t)

,
1

k12 + X2(t)

)
because:

∂Q1(t + 1)
∂SIT

= −∆t
∂X1(t)
∂SIT

Q1(t) + (1 − ∆t(k12 + X1(t) + FC(t)))
∂Q1(t)
∂SIT

+

+∆tk12
∂S(t)
∂SIT

< 0 ⇔ ∆t <
1

k12 + X1(t) + FC(t)

∂S(t + 1)
∂SIT

= ∆t(X2(t) − FC(t))
∂Q1(t)
∂SIT

+ (1 − ∆tX2(t))
∂S(t)
∂SIT

< 0

⇔ X2(t) − FC(t) > 0

Because of the monotonic behaviour of the model Equations 4.46 with respect to uncertain
variables, it is possible to obtain an optimal rational computation. To simplify the computation,
the equations 4.46 are rewritten as:

Q1(t + 1) = (1 − ∆t(k12 + X1(t)))Q1(t) − ∆t(F c
01(t) + FR(t))+

+∆t k12S(t) + ∆tB(t)

S(t + 1) = ∆tX2(t)Q1(t) − ∆t(F c
01(t) + FR(t))+

+(1 − ∆tX2(t)) S(t) + ∆tB(t)

G(t) =
Q1(t)

Vg

(4.47)

where B(t) := Ra(t) + EGP0(1 − X3(t)).

Applying the theorem of coercion to optimality, the optimal rational computation for the
equations of the model 4.47 are:

Q1(t + 1) = Q1(t)(1 − ∆t(k12 + X1(t))) − ∆t(Dual(F c
01(t)) + Dual(FR(t)))+

+∆tk12S(t) + ∆t B(t)

S(t + 1) = ∆t Dual(X2(t))Q1(t) − ∆t(Dual(F c
01(t)) + Dual(FR(t)))+

+S(t)(1 − ∆ tX2(t)) + ∆t B(t)

G(t) =
Q1(t)

Vg

(4.48)
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with the constraints:

∆t < min
(

1
k12 + X1(t) + FC(t)

,
1

k12 + X2(t)

)

X2(t) − FC(t) > 0 (4.49)

The F c
01(t) and FR(t) functions are monotonic increasing with respect to Q1(t), then they

can be computed as function of the interval bounds. Therefore,

F c
01(t) =

[
F c

01(t), F c
01(t)

]

FR(t) =
[
FR(t), FR(t)

]
where

F c
01(t) =

⎧⎨
⎩

f01Q1(t)

4.5Vg
if Q1(t) < 4.5Vg

f01 if Q1(t) ≥ 4.5Vg

F c
01(t) =

⎧⎨
⎩

f01Q1(t)
4.5Vg

if Q1(t) < 4.5Vg

f01 if Q1(t) ≥ 4.5Vg

and

FR(t) =

{
0 if Q1(t) < 9Vg

0.003Q1(t) − 0.027Vg if Q1(t) ≥ 9Vg

FR(t) =

{
0 if Q1(t) < 9Vg

0.003Q1(t) − 0.027Vg if Q1(t) ≥ 9Vg

The state function Q2(t) can be obtained from S(t) as:

Q2(t + 1) = S(t + 1) − Dual(Q1(t + 1))

The time step ∆t will be defined so that condition (Equation 4.49) holds. If condition (Equa-
tion 4.49) does not hold, the interval model (Equation 4.48) may lead to overestimation.

To run the interval simulation for the whole system, the initial states and inputs must be
given. Because not all the states are measurable (in fact, only capillary glucose measurements
will be available), the initial state must be estimated. This is done by simulating the past history
of the patient in terms of insulin injections and meals. Because there is uncertainty, the initial
state will correspond to an interval vector.

In equilibrium state, the initial masses of glucose in the two compartments are:

Q1(0) = G(0)Vg

Q2(0) =
Dual(X1(0)) Q1(0)

k12 + X2(0)

(4.50)

where G(0) represents the (measurable) initial glucose concentration.
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A comparison of MIA and MCS in the prediction of postprandial glucose under uncertainty
in type 1 diabetes mellitus has been made using this model (Calm et al., 2011). In the present
study, the models presented in Taŕın et al. (2005) for subcutaneous insulin absorption and the
interval model of Hovorka et al. for the other components of the model have been combined to
represent the glucoregulatory model. The model parameters used for the components of the last
model are taken from Hovorka et al. (2002) (patient 2). The simulations were performed for a
6 h period after a meal, considering the scenarios given in Table 4.1.

Scenario Capillary Insulin Carbohydrate Variation in Variation in
blood glucose bolus (g) carbohydrate insulin sensitivity

(mg/dL) (IU) (%) (%)
scenario 1 80 5.5 60 10 0
scenario 2 250 6.5 60 0 10 (SIT , SID)
scenario 3 150 7.0 70 10 8 (SIT , SID, SIE)
scenario 4 150 7.0 77 0 8 (SIT , SID, SIE)

Table 4.1: Simulation scenarios for the interval model of Hovorka et al..

Figures 4.19–4.22 show the upper and lower bounds for plasma glucose for the different sce-
narios. The total simulation time for each scenario is reported in Table 4.2. The computation
time is drastically reduced by using MIA rather than MCS.

Scenario Number of trials MCS time(sec) MIA time (sec) Time reduction Figure
scenario 1 1000 31.32 4.73 84.9% Figure 4.19
scenario 2 1000 34 4.33 87.3% Figure 4.20
scenario 3 10000 275 4.58 98.3% Figure 4.21
scenario 4 10000 268 5 98.1% Figure 4.22

Table 4.2: Simulation time for a 6-hour period after a meal for different scenarios.

Figure 4.19 shows the results for scenario 1, in which only the uncertainty in the amount of
carbohydrate ingested, D, was considered.

The envelopes obtained with MIA and MCS are indistinguishable. However, 1000 MCS trials
were required to achieve this result. From a computational perspective, MIA took only 15.1%
of the time required for MCS (a reduction of 84.9%). The same conclusion can be drawn from
Figure 4.20 for the results for scenario 2, with uncertainty in transport (SIT ) and peripheral
insulin sensitivity (SID).

As the number of uncertain parameters increases, a considerable increase in the number of
MCS trials is required to obtain good estimates of the envelopes, with a consequent increase in
the computational effort. This is not the case for MIA because the computation time does not
vary with the number of uncertain parameters. This can be observed in Table 4.2. The MIA
computation time was only 1.7% of the MCS time for scenario 3 and only 1.9% for scenario
4. Besides the increase in computational effort, there is no guarantee that the MCS-computed
envelope includes all possible trajectories for the uncertainty considered. This can be observed
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Figure 4.19: Envelopes of blood glucose obtained for 10% variation in D = 60 and 0% variation
in insulin sensitivity (scenario 1). The green lines indicate each simulation given with the MCS
approach and the blue lines show the upper and lower bounds given by the MIA simulation.
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Figure 4.20: Envelopes of blood glucose obtained for D = 60 and 10% variation in hepatic
and peripheral insulin sensitivity (scenario 2). The green lines indicate each simulation given
with the MCS approach and the blue lines show the upper and lower bounds given by the MIA
simulation.

in Figures 4.21 and 4.22.
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Figure 4.21: Envelopes of blood glucose obtained for 10% variation in D = 70 and 8% variation
in insulin sensitivity (scenario 3). The green lines indicate each simulation given with the MCS
approach and the blue lines show the upper and lower bounds given by the MIA simulation.

The results for MCS with 10,000 trials with a 10% variation in D are shown in Figure 4.21,
and Figure 4.22(a) shows the MCS results considering the upper D band, i.e., D=77∈[63,77].
It can be seen that this case is not included in the MCS with D=[63,77]. Figure 4.22(b) shows
a magnification of the boxed zone in Figure 4.22(a).
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Figure 4.22: (a) Envelopes obtained for D = 77 and 8% variation in insulin sensitivity with
scenario 4 compared with those for scenario 3 (b) Magnification of rectangle (Fig. 4.22(a)).

Dalla Man et al.

Each subsystem of the model proposed by Dalla Man et al. (2007b) was studied to obtain op-
timal interval computations when uncertainty in different parameters was considered. For this
model, the parameters related to insulin sensitivity were kp3, Vmx, and Vm0, which are therefore
considered interval parameters. The parameters ki and p2U , which are related to insulin action,
are also considered interval parameters.

Glucose subsystem interval model

The Euler discrete time approximation of the glucose metabolism model (4.13) is given by:

If Gp(t) > ke2

Gp(t + 1) = ∆t[EGP b + kp2Gpb + kp3(Ib − Id(t)) + Ra(t) − Uii(t) +
+k2Gt(t) + ke1ke2] + Gp(t)(1 − ∆t(k1 + kp2 + ke1)) (4.51)

else

Gp(t + 1) = ∆t[EGPb + kp2Gpb + kp3(Ib − Id(t)) + Ra(t) − Uii(t) +
+k2Gt(t)] + Gp(t)(1 − ∆t(k1 + kp2)) (4.52)

Gt(t + 1) = ∆t

(
k1Gp(t) − Vm(X(t))Gt(t)

Km0 + Gt(t)

)
+ Gt(t)(1 − ∆tk2) (4.53)

G(t) =
Gp(t)

Vg
(4.54)

Because of the uncertainty in the insulin sensitivity parameters, Gt and Gp (mg/kg) are also
interval states. The uncertain parameters are uni-incident and do not produce computational
problems because verifies the monotonicity conditions. Gt(t) is multi-incident in Equation 4.53,
so monotony is studied with respect to this multi-incidence.



90 4. Interval Glucoregulatory Models

∂Gt(t + 1)
∂Gt(t)

= ∆t

(
− Vm(X(t))Km0

(Km0 + Gt(t))2
+ (1 − k2∆t)

)
> 0 ⇔

⇔ ∆t <
1

Vm(X(t))Km0

(Km0 + Gt(t))2
+ k2

∂Gt(t + 1)
∂Gt(t)1

= ∆t

(
− Vm(X(t))

Km0 + Gt(t)

)
< 0

∂Gt(t + 1)
∂Gt(t)2

= ∆t

(
Vm(X(t))Gt(t)
(Km0 + Gt(t))2

)
> 0

∂Gt(t + 1)
∂Gt(t)3

= 1 − k2∆t > 0 ⇔ ∆t <
1
k2

Applying the theorem of coercion to optimality, the optimal rational computation for the
equations of the model are:

If Gp(t) > ke2

Gp(t + 1) = ∆t[EGPb + kp2Gpb + kp3(Ib − Id(t)) + Ra(t) − Uii(t)+
+k2Gt(t) + ke1ke2] + Gp(t)(1 − ∆t(k1 + kp2 + ke1))

else
Gp(t + 1) = ∆t[EGPb + kp2Gpb + kp3(Ib − Id(t)) + Ra(t) − Uii(t)+

+k2Gt(t)] + Gp(t)(1 − ∆t(k1 + kp2))

Gt(t + 1) = ∆t

(
k1Gp(t) − Vm(X(t))Dual(Gt(t))

Km0 + Gt(t)

)
+ Gt(t)(1 − k2 ∆t)

G(t) =
Gp(t)
Vg

(4.55)

The time step ∆t is defined so that

∆t < min

⎛
⎜⎜⎝ 1

k2
,

1
Vm(X(t)) Km0

(Km0 + Gt(t))2
+ k2

⎞
⎟⎟⎠ =

1
Vm(X(t)) Km0

(Km0 + Gt(t))2
+ k2

Endogenous glucose production interval model

For this subsystem, uncertainty is considered in the parameter ki (the rate parameter ac-
counting for the delay between the insulin signal and insulin action). The Euler discrete time
approximation of the model for the delayed insulin signal (Equation 4.16) is given by:

I1(t + 1) = I1(t) + ki∆t(I(t) − I1(t))
Id(t + 1) = Id(t) + ki∆t(I1(t) − Id(t))

(4.56)

By analysing the monotonic behaviour of state functions I1(t + 1) and Id(t + 1) with respect
to parameter ki, it can be seen that these state functions are monotonic with respect to ki.
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The uncertainty in the parameter ki causes that the results of the interval computations
of I1(t + 1) and Id(t + 1) will be interval states. For this reason, a study of the monotony of
Equation 4.56 with respect to multi-incident variables is performed.

1. Monotony of state function I1(t + 1) respect to I1(t)

∂I1(t + 1)
∂I1(t)

= 1 − ∆t ki < 0 ⇔ ∆t <
1
ki

∂I1(t + 1)
∂I1(t)1

= 1 > 0

∂I1(t + 1)
∂I1(t)2

= −∆t ki < 0

Then the function I1(t + 1) is totally monotonous with respect to I1(t).

2. Monotony of state function Id(t + 1) respect to Id(t)

∂Id(t + 1)
∂Id(t)

= 1 − ∆t ki < 0 ⇔ ∆t <
1
ki

∂Id(t + 1)
∂Id(t)1

= 1 > 0

∂Id(t + 1)
∂Id(t)2

= −∆t ki < 0

Then the function Id(t + 1) is totally monotonous with respect to Id(t).

Therefore, the optimal rational computation of the delayed insulin signal 4.56 is given by:

I1(t + 1) = I1(t) + ∆t ki (I(t) − Dual(I1(t)))
Id(t + 1) = Id(t) + ∆t ki (I1(t) − Dual(Id(t)))

(4.57)

with the constrain: ∆t <
1
ki

.

Glucose utilization interval model

For this subsystem, uncertainty is considered in the parameter corresponding to the rate
constant for insulin action on peripheral glucose utilization p2U . The Euler discrete model that
represents the insulin in the interstitial fluid (Equation4.21) is given by:

X(t + 1) = ∆t p2U (−X(t) + I(t) − Ib) + X(t) (4.58)

When the monotony of this equation is analysed with respect to parameter p2U , it can be
seen that the state function X(t+1) is monotonic with respect to p2U . Furthermore, the uncer-
tainty of this parameter means that the results of the interval computation of X(t + 1) will be
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interval states. Therefore, a study of the monotonic behaviour of Equation 4.21 is performed.

Therefore, the function X(t+1) is totally monotonous with respect to X(t) according to the
partial derivatives:

∂X(t + 1)
∂X(t)

= −∆t p2U + 1 > 0 ⇔ ∆t <
1

p2U

∂X(t + 1)
∂X(t)1

= −∆t p2U < 0

∂X(t + 1)
∂X(t)2

= 1 > 0

Applying the theorem of coercion to optimality, the optimal rational computation for the
equations of the model 4.58 is:

X(t + 1) = ∆t p2U (−Dual(X(t)) + I(t) − Ib) + X(t) (4.59)

Different simulations were performed, considering uncertainties in the parameters ki, kp3,
Vmx, and Vm0 to validate the model. A general scenario was considered: capillary blood glucose
150 mg/dL, 5 IU of bolus insulin, and 70 g of food intake. To represent the interval glucoregu-
latory model, the following interval models were combined:

• For subcutaneous insulin absorption: Dalla Man et al. interval model

• For carbohydrate digestion and absorption: Dalla Man et al. interval model

• For insulin action and glucose kinetics: Dalla Man et al. interval model.

As in the previous models studied, MCS and MIA were compared, considering in this case
5% variations in the uncertain parameters corresponding to the glucose subsystem. Figure 4.23
shows the results of this comparison.
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Figure 4.23: Envelopes of blood glucose obtained for 5% variations in the parameters of the
glucose kinetics model (ki, kp3, Vmx, and Vm0). The green lines indicate each simulation given
with the MCS approach and the blue lines show the upper and lower bounds given by the MIA
simulation.
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Panunzi et al.

In this model, the parameter corresponding to insulin sensitivity, KxgI , is considered uncertain.
The Euler discrete time approximation of the model 4.25 is given by:

I(t + 1) = I(t)(1 − Kxi∆t) + ∆t
Tigmax

Vi

1(
G∗

G(t − τg)

)γ

+ 1
+

S(t)
Vi

∆t

Tigmax = KxiIb

[(
G∗

Gb

)γ

+ 1
] (4.60)

When t is greater than τg, the optimal rational computation for insulin plasma concentration
is given by:

I(t + 1) = I(t)(1 − Kxi∆t) + ∆t Tigmax
1(

G∗

Dual(G(t − τg))

)γ

+ 1
+

S(t)
Vi

∆t (4.61)

The Euler discrete time approximation of the glucose metabolism model (Equation 4.25), is
given by:

G(t + 1) = G(t)(1 − KxgI I(t)∆t) + KxgI Ib Gb∆t +
Ra(t)

Vg
∆t. (4.62)

The function G(t + 1) is totally monotonous with respect to multi-incident parameter KxgI ,
because:

∂G(t + 1)
∂KxgI

=
∂G(t)
∂KxgI

(1 − KxgII(t)∆t) − G(t)I(t)∆t + IbGb∆t < 0 ⇔ ∆t <
1

KxgII(t)

∂G(t + 1)
∂KxgI1

= −G(t)I(t)∆t < 0

∂G(t + 1)
∂KxgI2

= Ib Gb∆t > 0

Applying the theorem of coercion to optimality, the optimal rational computation for the
plasma glucose concentration G(t) (Equation 4.62) is:

G(t + 1) = G(t)(1 − KxgI I(t)∆t) + Dual(KxgI)Ib Gb∆t +
Ra(t)

Vg
∆t. (4.63)

The results for MCS with 500 trials that considered a variation of 10% in D are shown in
Figure 4.24. A general scenario was considered: capillary blood glucose 81 mg/dL, 5 IU of bolus
insulin, and 70 g of food intake. A time reduction of 99.68% was obtained with MIA with respect
to the time required for MCS.
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Figure 4.24: Envelopes of blood glucose obtained for a 10% variation in D and a 10% variation in
insulin sensitivity KxgI . The green lines indicate each simulation given with the MCS approach
and the blue lines show the upper and lower bounds given by the MIA simulation.

4.4 Comparative Study of Three Interval Models

Different simulation models of glucose regulation in T1DM patients have been reviewed (Wilin-
ska and Hovorka, 2008; Cobelli et al., 2009), but no comparative study is available, in contrast
to the situation for ICU glucose models (Van Herpe et al., 2009). Here, we focus on models that
predict postprandial glucose.

There is no consensus about the degree of complexity a glucoregulatory model should use
to describe physiological phenomena, considering the large intra-patient variability observed,
which can jeopardize any attempt to obtain accurate model predictions after a few hours. Here,
we compare three postprandial insulin action and glucose kinetics models in the presence of
intra-patient variability (insulin sensitivity) and uncertainty in food intake estimates (Garćıa-
Jaramillo et al., 2011c). These models are combined with shared insulin pharmacokinetic and
glucose intestinal absorption sub-models. The influence of the complexity of the insulin action
and glucose kinetics sub-models on postprandial glucose excursions under uncertainty is then
analysed. The kinetic parameters for the comparison of each model are adjusted based on data
for 10 adults from the educational version of the University of Virginia (UVa) simulator (Ko-
vatchev et al., 2009).

As described in detail in the previous section, MIA (Gardeñes et al., 2001) is used to pre-
dict the plasma glucose for each model, taking into account the different sources of uncertainty.
This yields upper and lower bounds that define an envelope for all possible glucose excursions
experienced by the patient predicted by each model.

To compare the three insulin action and glucose kinetics models, some interval models that
were rewritten and presented in this chapter (Section 4.3) to consider uncertainty are used here
to represent the glucose–insulin system:

• For intestinal glucose absorption: Dalla Man et al. interval model

• For subcutaneous insulin absorption: Dalla Man et al. interval model

• For insulin action and glucose kinetics: Bergman et al., Dalla Man et al. and Hovorka et
al. interval models.

Subcutaneous insulin absorption was used with no consideration of uncertainty. Therefore,
to predict postprandial glycaemia, we combined the model for gastric emptying, digestion, and
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absorption and the model for subcutaneous insulin absorption with each of the models for insulin
action and glucose kinetics. The relationships among the different models used are shown in
Figure 4.25.

  Dalla Man et al, JDST, 1(3), 2007 
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Hovorka et al, PM, 25(4), 2004  
Dalla Man et al, TBME, 54(10), 2007 
 

Figure 4.25: Glucose-insulin system in T1DM.

4.4.1 Parameter adjustment

The main objective of this study was to compare the plasma glucose dynamics of three models,
Bergman et al. (1981) (model 1), Hovorka et al. (2004) (model 2), and Dalla Man et al. (2007b)
(model 3), in the insulin therapy for a specific patient. This requires that the parameters of
each model be adjusted, considering intra-patient variability, to reflect the “same” patient.

The glucose kinetics parameters of model 1 and model 2 were adjusted for a suite of virtual
patients from the UVa simulator using model 3. The UVa simulator (Kovatchev et al., 2009) is
an in silico model of T1DM accepted by the US FDA as a substitute for animal trials in the pre-
clinical testing of closed-loop control strategies. The simulator provides a set of virtual subjects
based on real individual data, a simulated sensor that replicates typical errors in continuous
glucose monitoring, and a simulated insulin pump. In the educational version of the simulator,
30 virtual subjects are available, including 10 children, 10 adolescents, and 10 adults.

The parameters related to insulin sensitivity in model 1 and model 2 were adjusted because
these physiological parameters display huge variations between patients and they are critical
to the patient’s treatment. The parameters considered to be oscillatory, according to Wilinska
et al. (Wilinska and Hovorka, 2008) for model 2, were also adjusted. The parameters of each
model were then adjusted numerically with the non-linear least-squares method, using simula-
tion analysis and modelling (SAAM II) (Barrett et al., 1998). SAAM II is a software tool for
simulation and data fitting, returning optimal parameter estimates and the associated statistics.
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SAAM II has a flexible graphical user interface for the easy implementation of compartmen-
tal models using drag-and-drop icons. Figure 4.26 shows the implementation of compartmental
model 1 (see Figure 4.26(a)) and model 2 (see Figure 4.26(b)) in SAAM II. For each model,
the number of compartments is specified and then connected by transfer coefficients, and the
input data are associated by forcing functions. A type is established for each parameter, fixed
or adjustable, and the latter has upper and lower limits. Finally, when the model is built, the
system of equations is automatically generated from the model structure.

(a) (b)

Figure 4.26: Visual representation of model 1 (a) and model 2 (b) constructed using SAAM II.

Profiles of the glucose rate of appearance in the plasma, the rate of appearance of insulin
in the plasma, and the plasma glucose concentration were obtained with the UVa simulator.
These experimental data for each patient were then used to adjust the parameters of model 1
and model 2 (see Figure 4.27).
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Figure 4.27: Methodology for parameter adjustment using SAAM II.

The adjustable parameters have upper and lower limits. These limits are established for
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each model according to the inter- and intra-patient variability, taking into account that the
limits are not widely divergent from the initial value. SAAM II uses information on these limits
as part of the fitting procedure. The limits are established by considering the inter- and intra-
patient variability in the parameters for model 1 (Dua et al., 2006; Roy and Parker, 2007) and
the inter-patient variability in the parameters for model 2, based on the six patients reported
by Hovorka et al. (Hovorka et al., 2002). The limits of these parameters and the values for the
fixed parameters are shown in Table 4.3.

Model Parameter Fixed Lower limit Upper limit
p1 – 0.0035 0.0665
p2 – 0.0050 0.0950

Model 1 p3 – 2.68e-6 5.32e-5
n – 0.0142 0.2698
p4 0.0980 – –
Vg * – –
f01 – 0.0071 0.0121
k12 – 0.0390 0.0968
ka1 – 0.0007 0.0157
ka2 – 0.0231 0.1630
ka3 – 0.0114 0.0691

Model 2 kb1 – 3.25e-6 7.58e-5
kb2 – 6.77e-6 2.50e-4
kb3 – 2.31e-4 3.99e-3
ke – 0.0138 0.2622
Vg * – –
Vi * – –

Table 4.3: Limit values for the adjustment parameters and values for the fixed parameters. *
Values are taken from UVa simulator patients.

When the model has been fully specified and the initial parameter estimates have been en-
tered, the model can be fitted to the data. For some patients, SAAM II does not yield successful
identification and therefore report statistics, which provide information on the identification
accuracy, are not obtained.

Once the parameters of each model are adjusted for a specific therapy, the next step is
to compare the behaviours of the three interval models when considering the uncertainties in
insulin sensitivity and food intake. The percentage variations in the parameters related to insulin
sensitivity were set to achieve similar upper and lower bounds in the steady state.

4.4.2 Adjustment results

The glucose concentrations for 10 adults from the UVa simulator were simulated in an open loop
over a period of 1000 min. For each patient, the following typical scenario was assumed:

• Food intake: 80 g

• Bolus insulin: 5 IU
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• Insulin rate to achieve basal glucose of 100 mg/dL.

The glucose kinetics parameters for models 1 and 2 were adjusted according to the method-
ology presented above. The results of the adjustment study are shown in Table 4.4, and Figure
4.28 shows a representative fit of the models for a set of glucose data for adult patient 3 from
the UVa simulator.

Parameter Nominal 1 2 3 4 5 6 7 8 9 10

p1 0.0350 0.0096 0.0096 0.0082 0.0349 0.0112 0.0035 0.0287 0.0200 0.0083 0.0122
p2 0.0500 0.0349 0.0294 0.0126 0.0050 0.0231 0.0875 0.0050 0.0779 0.0712 0.0950
p3 2.80e-5 2.68e-6 7.33e-6 5.68e-6 5.72e-6 2.68e-6 5.32e-5 8.89e-6 2.68e-6 2.68e-6 5.39e-6
n 0.1420 0.0585 0.1064 0.1063 0.1000 0.1221 0.1230 0.1106 0.0142 0.0496 0.0886

f01 0.0075 0.0071 0.0071 0.0071 0.0071 0.0071 0.0071 0.0071 0.0074 0.0071 0.0071
k12 0.0871 0.0968 0.0968 0.0968 0.0625 0.0390 0.0390 0.0414 0.0390 0.0968 0.0390
ka1 0.0157 0.0022 9.31e-4 0.0073 0.0081 0.0155 0.0030 0.0157 0.0056 0.0157 0.0157
ka2 0.0231 0.0231 0.0231 0.0231 0.1630 0.0231 0.0962 0.0893 0.0231 0.0231 0.0253
ka3 0.0143 0.0691 0.0691 0.0114 0.0160 0.0691 0.0691 0.0114 0.0691 0.0691 0.0691
kb1 2.49e-5 4.72e-6 3.25e-6 1.02e-5 1.95e-5 3.61e-6 7.64e-6 2.44e-5 3.25e-6 3.25e-6 3.25e-6
kb2 1.41e-5 1.46e-5 8.00e-6 2.20e-5 1.05e-4 2.50e-4 6.77e-6 3.26e-5 9.23e-5 6.39e-5 1.08e-4
kb3 5.42e-4 2.31e-4 2.31e-4 4.00e-3 3.13e-4 2.31e-4 2.31e-4 2.95e-4 2.31e-4 2.31e-4 2.31e-4
ke 0.1380 0.2191 0.2622 0.2622 0.2144 0.2622 0.2622 0.1936 0.1452 0.2622 0.2622

Table 4.4: Adjustment parameters for 10 patients of model 1 (first four parameters) and model
2 (last nine parameters).
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Figure 4.28: Representative adjustments of the models to a set of glucose data. The blue solid
line represents the glucose concentration for a virtual patient (model 3); the red dotted line shows
the glucose concentration estimated by adjusted model 1; and the green dashed line shows that
estimated by adjusted model 2.

Model fitting was assessed with the method of least-squares. The fitting was classified as
very good (<20,000), good (20,000–60,000), or fair (>60,000) according to the indices obtained
for adjusted model 1 and model 2 for each patient. Figure 4.29 shows that very good fitting was
achieved for 70% of the UVa simulator patients (2, 3, 4, 5, 7, 9, and 10) for model 1, but for
only 40% of the patients (1, 3, 4, and 7) for model 2. Fitting was good for 30% (patients 1, 6,
and 8) and 40% of the patients (2, 5, 8, and 10) for model 1 and model 2, respectively, because
the adjustment in the transient state was not fully achieved for some patients. Finally, fitting
was fair for 20% of the patients (6 and 9) for model 2. The parameters of model 1 were easily
adjusted from experimental data because it is a low-order model.

The models were compared with the parameters adjusted. For this comparison, we con-
sidered only the eight patients for whom the adjustments in model 1 and model 2 were very
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(a)

(b)

Figure 4.29: Assessment of the model adjustments (a) by model, and (b) by associated patient.

good or good, and excluded two patients for whom the adjustments were only fair in model 2.
The interval simulation for each model was performed taking into account the uncertainty in
the parameters related to insulin sensitivity and the uncertainty in the amount of carbohydrate
ingested. The percentage variation for each insulin sensitivity parameter was established based
on the standard errors presented by Hovorka et al. (2002) for model 2. Thus, the uncertain
parameters of model 1 and model 3 were varied to achieve a range bound similar to that of
model 2 at steady state. The percentages assigned are shown in Table 4.5.

Model Parameter uncertainty

Model 1 p1 (min−1): 8% p2 (min−1): 10% p3 (mL mU−1 min−2): 10%
Model 2 SIT (mU L min−1): 4% SID (mU L min−1): 6% SIE (mU L min−1): 3%
Model 3 Vm0 (mg kg−1min−1): 7% Vmx (mg kg−1min−1 per pmol L−1): 5% kp3 (mg kg−1min−1 per pmol L−1): 4%

Table 4.5: Uncertain parameters.

A variation of 7% in the basal glucose concentration in the initial state of model 1 was also
considered, to establish a relationship with the Vm0 parameter, which affects the steady state of
model 3. A 7.5% uncertainty for meal ingestion was considered in all models as the corrected
carbohydrate estimation to counteract deviations from the average bias.

The interval simulations for each model and each patient were performed considering the
uncertainties described above. When the three envelopes generated by the models for each
patient were compared, it was clear that the simplest insulin model assessed (model 1) included
the responses of the other two models when a good fit of the model parameters was achieved.
To evaluate how much of the response of model 2 (YM2) or model 3 (YM3) was included in
the model 1 response (YM1), the absolute error was then calculated for each sample time. The
maximum absolute error is a measure of the inclusion accuracy. The absolute error for each step
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is given by:

Absolute error(k) = max(Inf (YM1(k)) − min(Inf (YM1(k)), Inf (YMj(k))),
max(Sup (YM1(k)), Sup (YMj(k))) − Sup (YM1(k)))
j = 2, 3; k = 0, . . . , T,

(4.64)

where T is the total simulation time. Then,

Maximum absolute error = max
k

(Absolute error(k)). (4.65)

The mean absolute error for model 2 was 8.2, with a standard deviation of 3.58, whereas
the mean value for model 3 was 6.94, with a standard deviation of 6.52 (see Table 4.6). This
difference is the result of the parameter adjustment, because better adjustment leads to a lower
absolute error. Considering the maximum absolute error between model 2 and model 3, the
mean ± SD value was 9.36 ± 5.19. These mean values correspond to differences between the
sensor and reference values reported in the literature on blood glucose monitoring (Wentholt
et al., 2008).

Patient Model 2 Model 3
1 9.77 14.77
2 6.09 1.96
3 3.75 2.89
4 14.12 18.39
5 4.30 4.25
7 11.61 9.37
8 8.68 1.64
10 7.26 2.20

Mean 8.20 6.94
SD 3.58 6.52

Table 4.6: Maximum absolute errors (mg/dL) for the envelopes of model 2 and model 3 with
respect to model 1.

As an illustration, a comparison of the three glucose kinetics models for adult patient 3,
considering the uncertainties discussed above, is shown in Figure 4.30(a). This patient belongs
to the set of 30% of adults for whom a very good fit was observed for models 1 and 2. The
envelope for model 1 contains all possible glucose concentration responses of model 2 and model
3. The same effect was observed for postprandial glucose in 50% of the patients for whom very
good adjustment was achieved (for example patient 5), as evident in Figure 4.30(b). For the
remaining 20% of patients, the absolute error was greater because the envelopes differed more
widely.

According to the results obtained here, the consideration of model 1, which has low com-
plexity together with uncertainty, may be enough to tightly embed the responses of the other
models in most cases.
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Figure 4.30: Comparison of the glucose concentrations for adult patients 3 (a) and 5 (b), for
whom a good fit was observed. The red solid line indicates the blood glucose response envelope
given by model 1; the green dashed line shows that given by adjusted model 2; and the blue
dotted line that given by model 3.

To validate the previous statement and the parameter adjustment, additional tests were
carried out using the same adjusted parameters for each model and each patient, but with a
different therapy. The example of a therapy consisting of 4 IU of bolus insulin and a food in-
take of 60 g given to patient 3 is shown in Figure 4.31(a). The envelope for model 1 contains
the model 2 and model 3 envelopes, corresponding to the glucose concentration responses for
approximately the first 7 h. The same can be seen in Figure 4.31(b) for patient 5.
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Figure 4.31: Validation of the proposed methodology by varying the food intake and bolus
insulin for patients 3 (a) and 5 (b). The red solid lines indicates the blood glucose response
envelope given by model 1; the green dashed line shows that given by adjusted model 2; and the
blue dotted line that given by model 3.

Finally, the responses obtained with the therapy used in the adjustment were compared with
those obtained with the therapy used in the validation. For this purpose, the absolute error was
calculated using Equation 4.64 for each patient used in the validation and then compared with
the absolute error obtained for the adjusted patients (see Figure 4.32).

This comparison shows that the absolute error obtained for the validation and the absolute
error obtained for the adjusted patients are strongly related (the Pearson correlation coefficients
for the absolute errors with respect to model 1 were 0.83 and 0.98 for model 2 and model
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(a)

(b)

Figure 4.32: Adjusted absolute errors vs validation absolute errors for model 2 (a) and model 3
(b), with respect to model 1.

3, respectively). Therefore, we can conclude that when a good fit of parameters is achieved,
these can be used in other therapies and different meals. Similarly, the conclusion that model 1
includes the responses of models 2 and 3 was verified.

4.5 Summary

In this chapter, different carbohydrate digestion and absorption models, subcutaneous insulin
absorption models, and insulin action and glucose kinetics models were studied using MIA to
consider different sources of uncertainty. Equations that allows an optimal interval computation
of the postprandial glucose in patients with T1DM for each model were obtained.

MIA has been presented as a tool to predict glucose excursions in type 1 diabetes with uncer-
tain parameters, initial conditions, and meal intake. In contrast to probabilistic methods, such
as MCS, sharp envelopes containing all possible patient responses can be computed using MIA
(guaranteed simulation). Its computational efficiency has been compared with that of MCS. In
contrast to the latter, the computation time of MIA is independent of the number of uncertain
parameters, yielding time reductions of up to 98%. Therefore, a worst-case analysis can be
performed efficiently, which is extremely important in the context of diabetes. The prediction of
possible hyper- and hypoglycaemic episodes considering patient variability may yield safer and
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more robust insulin infusion algorithms.

A comparison of three insulin action and glucose kinetics models was presented. The be-
haviours of the models proposed by Bergman et al. (1981), Hovorka et al. (2004), and Dalla Man
et al. (2007b) for insulin therapy were analysed in detail. The plasma glucose dynamics were
compared by adjusting the model parameters to accommodate intra-patient variability when
the “same” patient was used for each model. As a result, the glucose response envelope for a
simple model (Bergman et al. (1981)) included the responses of the other two models (Hovorka
et al. (2004) and Dalla Man et al. (2007b)) when a very good fit of the simple model parameters
was achieved. Therefore, with variability, simple glucose–insulin models may be sufficient to
describe patient dynamics in most situations.

The proposed methodology was validated for each model by varying the therapy tested, and
high correlation coefficients were obtained.





Chapter 5

Postprandial Hypo- and
Hyperglycaemia Risk Index

In intensive insulin therapy, the patient calculates the adjusted insulin dose according to his/her
preprandial blood glucose level and food intake, but if the dose is too high, there is a risk of
severe hypoglycaemia, with all its consequences. High glycaemic variability is another risk factor
for hypoglycaemia.

So far, no gold standard method has been devised to analyse the risk of suffering hypo-
glycaemic or hyperglycaemic events in the postprandial state. The possible methods can be
classified as:

• Glycemic variability measures: M-value was formulated by Schlichtkrull et al. (1965) to
encapsulate a glycemic profile in a single quantitative value. Later, mean amplitude
of glycemia excursions (MAGE) (Service et al., 1970) was proposed to quantify major
swings of glycemia and to exclude minor ones. Subsequently, the mean of daily differences
(MODD) based on day-to-day variability was designed by Molnar et al. (1972). Mean ab-
solute difference (MAD) (Moberg et al., 1993) is other glucose variability measure which is
calculated by adding the absolute differences of all blood glucose values and dividing them
by the number of values minus one. More recently continuous overall net glycemic action
(CONGAn) was formulated by McDonnell et al. (2005) to assess intra-day glycemic vari-
ation. CONGAn has been defined as the standard deviation of the differences in glucose
concentration using varying time differences of n hours.

• Extreme values risk measures: low blood glucose index (LBGI) (Kovatchev et al., 1998) and
high blood glucose index (HBGI) (Kovatchev et al., 2002) were proposed as a measure of
the risk of severe hypoglycaemia and hyperglycaemia respectively, based on self monitoring
blood glucose (SMBG). Lability index (LI) (Ryan et al., 2004) was presented as a measure
of hypoglycaemia and glycaemic lability for islet transplantation. Average daily risk range
(ADRR) (Kovatchev et al., 2006) which is a variability measure computed from routine
SMBG combining the LBGI and HBGI. On the other hand, glycaemic penalty index was
proposed by Van Herpe et al. (2008) as a tool for assessing the overall glycemic control
behavior in ICU patients.

• A probabilistic model for predicting hypoglycaemia was presented by Murata et al. (2004).

A review of the advantages, limitations, and inter-relationships of the available methods for
evaluating the quality of glycaemic control and assessing glycaemic variability has been pub-
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lished by Rodbard (2009), and measures with which to evaluate glycaemic control have been
classified by de Adana et al. (2008).

Any attempt to predict the risk of postprandial hypo- or hyperglycaemia should consider the
different sources of uncertainty and patient variability, so that the method is reliable enough to
be used in any insulin dosage advisory system. However, none of the aforementioned methods
deals with this problem.

As mentioned throughout this work, the interval simulation of glucose prediction models
can provide valuable information about postprandial glucose responses in the presence of, for
instance, intra-individual variability and uncertain food intake. Therefore, one of the goals of
this research is to develop a method to quantify the risk of developing different grades of hypo-
and hyperglycaemic episodes using interval prediction.

In this chapter, a method for computing the risk of postprandial hypo- or hyperglycaemia
in T1DM patients, considering intra-patient variability and other sources of uncertainty, is pre-
sented. Similarly, the relationship between the risk index (RI) and the probability of a hypo-
or hyperglycaemic event is evaluated with the Monte Carlo simulation (MCS). A model-based
prediction of the worst-case glucose excursion is then made, considering intra-patient variability,
an uncertain initial state, and uncertain food intake.

5.1 Hyper- and Hypoglycaemia Risk Index

Calculating RI requires the evaluation of the impact of bolus insulin and food intake on post-
prandial glucose, thus allowing the sufficiently accurate prediction of short-term postprandial
glycaemia, taking into account the large intra-individual variability of the patients. For this rea-
son, a worst-case approach is introduced to calculate RI (Garćıa-Jaramillo et al., 2008, 2009a,b).

The RI is computed from a quantification of the excursions, provided by the glucoregulatory
model with uncertainty, in the mild and severe hypo- and hyperglycaemia ranges and their
relative importance. A library of the interval glucoregulatory models for this purpose was
presented in Chapter 4. To compute RI, the following considerations are taken into account:

1. Glucose ranges corresponding to severe (Hs) and mild (Hm) hyperglycaemia and to severe
(hs) and mild (hm) hypoglycaemia are those depicted in Figure 5.1 with thresholds hs=36,
hm=70, Hm=150, and Hs=250 mg/dL.

2. A weighting function γ(t) is defined for the time occurrence of hyperglycaemia (mild and
severe). Major relevancy is given to zones far from meal time to take into account long-term
hyperglycaemia (see Figure 5.1).

γ(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0.5 0 ≤ t < 60
0.75 60 ≤ t < 120
1 120 ≤ t < 180
1.25 180 ≤ t < 240
1.5 240 ≤ t < 300.

This weight is assigned only in cases of hyperglycaemia, because glucose levels commonly
increase after intake. So the more time has elapsed after the intake, greater weight is
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Figure 5.1: Grid for glucose ranges and hyperglycaemia time weights (cursive numbers) used for
risk index computation.

assigned. In the case of hypoglycaemia, the relevancy of risk is independent of the time
after intake.

3. Weights are defined to quantify the relative importance of mild and severe hypo- and
hyperglycaemic events (αhs, αhm, αHm, and αHs). They are adjusted using a quadratic
function in the following way: αhs=αhm = 1; for mild hyperglycaemia, αHm=1/16; and
for severe hyperglycaemia, αHs=1/4 (see Figure 5.2).
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Figure 5.2: Quadratic function to quantify the relative importance of severe and mild hypogly-
caemia (red dotted line), mild hyperglycaemia (cyan dashed line), and severe hyperglycaemia
(green dash-dotted line).

These values, obtained heuristically with clinical judgements, can be modified by the physi-
cian according to patient’s specific needs.

The greatest weight is assigned to the risk of hypoglycaemia, because it can cause serious
complications in the short and long terms. Hypoglycaemia affects the brain or central ner-
vous system, which derives almost all of its energy from glucose. Severe hyperglycaemia
presents a greater risk than moderate hyperglycaemia, and is therefore assigned a greater
weight.

We define Gmax(t) and Gmin(t) as the upper and lower bounds of the predicted manifold
glucose trajectories. The RI is then computed as a weighted sum of the risk of each event (mild
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or severe hypo- or hyperglycaemia), given by a normalized measure of the area under the curve
in each glucose range:

JHs =

∫
THs

γ(t) (Gmax(t) − Hm) dt

Hs − Hm
THs = {t / Gmax(t) ≥ Hs}

JHm =

∫
THm

γ(t) (Gmax(t) − Hm) dt

Hs − Hm
THm = {t / Hm ≤ Gmax(t) < Hs}

Jhs =

∫
Ths

(hm − Gmin(t)) dt

hm − hs
Ths = {t / Gmin(t) ≤ hs}

Jhm =

∫
Thm

(hm − Gmin(t)) dt

hm − hs
Thm = {t / hs < Gmin(t) ≤ hm} (5.1)

where Hs, Hm, hs, and hm are the threshold values described in item 1 and γ(t) is the
weighting assigned to the time of occurrence of hyperglycaemia.

The RI is finally calculated as the weighted sum:

J := αHs JHs + αHm JHm + αhs Jhs + αhm Jhm. (5.2)

Example 5.1 An example of RI calculation for one predicted manifold, defined by its upper
and lower bounds, is shown in Figure 5.3. The area under the curve (AUC) in each glucose
range for the different episodes is represented by mi i = 1, .., 3 for mild hyperglycaemia and by
si i = 1, .., 3 for severe hyperglycaemia. The components of RI corresponding to hyperglycaemia
are then calculated according to Equation 5.1 as:

JHm =
0.5 m1 + 0.75 m2 + 1.5 m3

Hs − Hm

JHs =
0.75 s1 + 1 s2 + 1.25 s3

Hs − Hm
. (5.3)

Figure 5.3: Example of an RI computation for hyperglycaemic events.
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In this example, episodes of hypoglycaemia (Jhm and Jhs) are not induced. Therefore, to
obtain the final RI, Equation 5.2 is applied to the risk obtained in Equation 5.3.

J =
1
4

(
0.75 s1 + 1 s2 + 1.25 s3

Hs − Hm

)
+

1
16

(
0.5 m1 + 0.75 m2 + 1.5 m3

Hs − Hm

)
. (5.4)

Example 5.2 We present another example to illustrate the risk of hypoglycaemia and hyper-
glycaemia. In this case, three AUCs present the risk of mild hyperglycaemia (m1, m2, and m3),
two AUCs the risk of severe hyperglycaemia (s1, s2), one AUC the risk of mild hypoglycaemia
(m4), and one AUC the risk of severe hypoglycaemia (s3), as shown in Figure 5.4.

Figure 5.4: Example of RI computation for hypo- and hyperglycaemic events.

Then, the components of RI corresponding to hypo- and hyperglycaemia are:

JHm =
0.5 m1 + 0.75 m2 + 1 m3

Hs − Hm

JHs =
0.5 s1 + 0.75 s2

Hs − Hm

Jhm =
m4

hm − hs

Jhs =
s3

hm − hs
.

With the normalized measure of the AUC for each glucose range (mild and severe hypogly-
caemia and hyperglycaemia), RI is calculated, taking into account the relative importance of
the risk of each event by:

J =
1
4

(
0.5 s1 + 0.75 s2

Hs − Hm

)
+

1
16

(
0.5 m1 + 0.75 m2 + 1 m3

Hs − Hm

)
+

+ 1
(

s3

hm − hs

)
+ 1

(
m4

hm − hs

)
.

(5.5)

5.2 Risk Index Validation

To validate the feasibility of RI, different scenarios were analysed. First, an interval simulation
of each scenario was performed, considering different sources of uncertainty, and then RI was
calculated. Next, the set of RIs was analysed globally and, as a result, similar behaviours for
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different ranges of indices and preprandial glucose values were encountered. An MCS was used to
verify these behaviours. Throughout this section, each phase of the validation of RI is discussed
in detail.

5.2.1 Scenarios

A virtual patient with nominal parameters taken from Hovorka et al. (2002) (patient 2) was
used in the validation of RI. A total of 3315 different scenarios were established for this patient:

• Preprandial glucose: 80–240 mg/dL in increments of 10 mg/dL

• Food intake: 40, 60, and 80 g

• Bolus insulin: thirteen insulin doses in increments of 0.5 IU selected within the range of
2–10 IU

• Mealtimes: 0, 15, 30, 45, and 60 min (after bolus insulin).

The uncertainty in the patient’s hepatic and peripheral insulin sensitivities was considered:
SIT (distribution/transport) with 11% variation, SID (disposal) with 8% variation, and SIE (en-
dogenous glucose production) with 2% variation, according to the standard deviation presented
by Hovorka et al. (2002).

An uncertainty of 5% in the carbohydrate content of the planned meal was also considered.
In this context, it is well known that diabetic patients tend to consistently underestimate the
carbohydrate content of their meals. When RI is applied to a specific patient, this deviation
is taken into account in the process of adjusting the model by correcting for the bias in the
patient’s carbohydrate estimate. Therefore, the 5% uncertainty considered here represents the
deviation with respect to this bias-corrected estimate.

5.2.2 Interval simulation

In this study, the insulin action and glucose kinetic, and carbohydrate digestion and absorption
model from Hovorka et al. (2004) and insulin absorption model from Taŕın et al. (2005) were
used to represent the glucoregulatory model. However, this index can also be used with other
glucoregulatory models representing the patient’s behaviour. The interval model of Hovorka et
al., presented in Section 4.3.3, was used to compute the tight enclosure of the envelope that
includes all possible behaviours of the system. This model has been combined with the model
proposed by Taŕın et al. (2005) for subcutaneous insulin absorption. Interval simulations of the
model were performed during the 5 h period after a meal.

To run the interval simulation of the whole system, the initial states and inputs must be
given. In this study, three days were simulated for the given therapy. Starting from a real initial
state, the interval values for the states at the beginning of the third day will be considered to
represent the set of possible initial states the patient may experience.

5.2.3 Study of RI

Based on the interval simulation, RI was calculated for each scenario. Next, the behaviour of RI
in the set of 3315 scenarios was studied with respect to the risk of mild or severe hypoglycaemia
or mild or severe hyperglycaemia. In this way, it was possible to establish similar behaviours
for some risk groups. Consequently, RI was classified into one of the following four types:



5.2. Risk Index Validation 111

• Low risk: index lower than 10

• Intermediate risk: index between 10 and 60

• High risk: index between 60 and 120

• Very high risk: index higher than 120.

In the same way, it was also possible to establish similar behaviours for indices in three
ranges of preprandial glucose: 80–120 mg/dL (range 1), 130–190 mg/dL (range 2), and 200–240
mg/dL (range 3).

To validate the relationships referred to above, a MCS study was then carried out. MCS
was used to calculate the probability of the different hypo- and hyperglycaemic events for each
preprandial glucose range. To reduce the number of MCS trials required, a reference model
for the preprandial glucose ranges was proposed. This model corresponded to the value for
preprandial glucose with least variation in each range. To establish the reference model for each
preprandial glucose range, the χ2 test was used as:

χ2 =
n∑

i=1

(Oi − Ei)2

Ei
, (5.6)

where Oi is the observed frequency of the preprandial glucose value, Ei is the reference
model, and n is the number of cells in the table. In our case, the number of cells was 12, which
was determined by the three ranges of preprandial glucose and the four types of risk. The χ2

statistic can then be used to calculate a p value by comparing the value of the statistic to a
χ2 distribution. Because there were two independent variables (preprandial glucose range and
type of risk), six degrees of freedom were established for the χ2 test. The reference model was
chosen as the preprandial glucose that presented the lowest p value with respect to the different
preprandial glucose values in each range.

Based on the result of the χ2 test, the reference models selected for each preprandial glucose
range were: 100, 160, and 220 mg/dL, as indicated by each ellipse in Figure 5.5. The null
hypothesis formulated was that p > α. The significance level α was set as 0.05. The resulting p
value for 97% of the preprandial glucose was greater than α, so the null hypothesis was accepted.
This indicates that the distribution of RI values for the reference model and a high percentage
of preprandial glucose in the same range do not show variation.

5.2.4 Results of RI validation

Once a reference model was proposed for each preprandial glucose value corresponding to the
reference model, 19,500 MCSs were performed for the variation in food intake and bolus insulin
described in Section 5.2.1. In the MCSs, parameter uncertainty was represented in terms of
normal probability distributions. The occurrence of hypo- or hyperglycaemic events was then
computed for each MCS. An event of severe hyperglycaemia was considered to occur when the
maximum glucose value was greater than 250 mg/dL and mild hyperglycaemia when it was
between 150–250 mg/dL. Severe hypoglycaemia was considered to occur when the minimum
glucose value was lower than 36 mg/dL and mild hypoglycaemia when it was 36–70 mg/dL.
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Figure 5.5: RI value distribution versus preprandial glucose. Preprandial glucose with least
variation in each range is indicated by an ellipse.

The percentage of scenarios in which hypo- or hyperglycaemic events occurred in the MCSs
was calculated for each preprandial glucose reference model. An analysis of each event accord-
ing to the value of RI was then performed, considering the ranges of RI previously described
(<10, 10–60, 60–120, and >120). These results are shown in Figure 5.6, classified according to
preprandial glucose (euglycaemia, mild and severe hyperglycaemia).

When these results are analysed, the information contained in RI is clearly dependent on the
preprandial glucose. For preprandial euglycaemia (Figure 5.6(a)), there is risk of mild hypogly-
caemia and a significant risk of mild hyperglycaemia. An important risk of mild hypoglycaemia
occurs for RI values between 10 and 60. For RI values between 60 and 120, the risk will translate
into severe hyperglycaemia. Values greater than 120 reflect the occurrence of severe hypogly-
caemia in 100% of cases. Mild hyperglycaemic events may occur for RI values in the lower
and upper ranges, whereas a significant risk of severe hyperglycaemia will be reflected in the
intermediate ranges. Therefore, if an insulin therapy yields RI values below 10, there will be no
risk of severe hyperglycaemia or severe hypoglycaemia. Values between 10 and 60 will indicate
a risk of mild hypoglycaemia or severe hyperglycaemia. Values between 60 and 120 will predict
a significant risk of severe hyperglycaemia. Finally, with RI values greater than 120, severe
hypoglycaemia will occur.

In the case of preprandial values in mild hyperglycaemia (Figure 5.6(b)), there is a risk of
severe hyperglycaemia for RI values between 10 and 60. For RI values greater than 60, this
risk increase rapidly, reaching a probability of about 90%. A risk of mild hypoglycaemia can
occur at RI values lower than 60, but when values greater than 60 are reached, there is a risk
of severe hypoglycaemia. Similar behaviour is observed for preprandial values in the severe
hyperglycaemia range (Figure 5.6(c)), except that the risk of severe hypoglycaemia is lower.

5.3 Interpretation of RI

Based on the results obtained in the validation of RI, a summary of the probability of mild or
severe hypoglycaemic events and mild or severe hyperglycaemic events is depicted as a grid in
Table 5.1. To construct this grid, a descriptive statistic, specifically a frequency analysis, was
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(a)

(b)

(c)

Figure 5.6: Percentage of scenarios in which hypo- and hyperglycaemic events can occur:
(a) preprandial euglycaemia 100 mg/dL; (b) preprandial mild hyperglycaemia 160 mg/dL; (c)
preprandial severe hyperglycaemia 220 mg/dL.

used to calculate the number of occurrences. For each one of the 19,500 MCS trials performed
in each range of preprandial glucose, the percentage occurrence of each RI value (mild or severe
hypoglycaemia and mild or severe hyperglycaemia) was calculated. These percentages were
analysed and classified according to the probability of occurrence:

• Very low: less than 10%

• Low: between 10% and 30%

• Moderate: between 30% and 50%

• High: between 50% and 80%

• Very high: higher than 80%.
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A percentage of risk occurrences lower than 10% indicates a very low risk probability, and
is represented on the grid by cyan boxes. Percentages between 10% and 30% represent a low
risk probability (lavender blue boxes); a moderate risk probability is indicated for percentages
between 30% and 50% (medium purple boxes). A high risk probability occurs when the percent-
age is between 50% and 80% (azure boxes). Finally, a percentage higher than 80% represents a
very high risk probability (dark azure boxes). White boxes in the Table 5.1 indicate no risk.

Table 5.1: Probability of hypo- and hyperglycaemia classified according to preprandial capillary
glucose and the RI.

To check whether the probabilities shown in Table 5.1 represent the risk probabilities for
different therapies, RIs for different scenarios were calculated. Table 5.2 shows RIs for different
bolus insulin–meal time pairs for each preprandial glucose range, classified by severe and mild
hypoglycaemia, and severe and mild hyperglycaemia risk indices. The time column indicated in
the table corresponds to the meal time after the bolus insulin is administered. The total index
is shown in the last column.

Examples of the blood glucose responses for selected bolus insulin–meal time pairs, indicated
in the colours used in Table 5.2, are shown in Figure 5.7. This figure illustrates different scenarios
for preprandial glucose values in euglycaemia, mild hyperglycaemia, and severe hyperglycaemia.
The red solid line corresponds to a scenario with RI values <10; the blue dashed line corresponds
to a scenario with RI values in the 10–60 range; the green dotted line shows RI values in the
60–120 range; and the magenta dash-dotted line corresponds to RI values >120 (see Table 5.2).

With euglycaemic preprandial glucose, an RI value <10 corresponds to a bolus insulin–meal
time pair producing the envelope closest to euglycaemia (red solid line in Figure 5.7(a)). When
severe and mild hyperglycaemic episodes and/or mild hypoglycaemic episodes occurred during
the simulation, an intermediate RI value (10<RI<60) was generated (blue dashed line, Fig-
ure 5.7(a)). A high risk (60<RI value<120) appears when sustained hyperglycaemia is present
and/or mild hypoglycaemia is produced (green dotted line, Figure 5.7(a)). Finally, an RI value
>120 arises when there is severe hypoglycaemia for a long time (magenta dashed-dotted line,
Figure 5.7(a)). These risks relate to the probabilities listed in Table 5.1.



5.3. Interpretation of RI 115

Preprandial Bolus Meal Hypoglycaemia Hyperglycaemia Total
Glucose (mg/dL) (IU) (g) (min) Severe (Index) Mild (Index) Severe (Index) Mild (Index) Index

4.5 40 45 0.00 0.15 0.00 0.23 0.38
2.5 40 60 0.00 0.32 0.00 6.85 7.17
4.5 60 15 0.00 0.00 3.96 6.49 10.45

100 7.5 80 0 0.00 35.16 14.66 1.78 51.60
3.5 60 60 0.00 2.32 63.29 1.07 66.68
4.0 60 15 0.00 3.36 101.96 0.46 105.78
9.0 80 0 85.44 29.44 6.79 1.59 123.26
7.0 60 0 119.40 35.52 0.00 0.15 152.07

7.0 60 45 0.00 0.31 0.00 1.51 1.83
3.0 40 30 0.00 0.00 0.00 8.59 8.59
6.5 80 60 0.00 0.00 22.41 4.12 26.53

160 7.0 60 0 0.00 50.00 8.00 1.93 59.93
2.5 40 30 0.00 0.00 59.23 1.33 60.56
9.0 80 15 27.54 49.19 6.72 2.00 85.45
4.0 80 45 0.00 0.00 120.44 0.45 120.89
10 80 0 138.52 21.24 11.83 1.24 172.83

9.0 80 60 0.00 1.50 0.00 2.62 4.12
6.5 60 30 0.00 0.00 2.64 4.55 7.19
5.5 40 0 0.00 3.42 9.92 2.08 15.42

220 7.5 80 0 0.00 17.80 36.22 1.62 55.64
4.5 60 15 0.00 0.00 57.35 4.62 61.97
8.0 60 0 27.54 36.70 15.64 1.34 117.38
9.5 80 15 0.00 29.11 13.88 1.75 120.10
2.0 60 30 138.52 0.00 171.97 0.75 172.72

Table 5.2: Examples of risk indices for each preprandial glucose value with different bolus insulin
doses and meal time combinations.
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Figure 5.7: Blood glucose response for 5 h considering preprandial glucose: (a) euglycaemia,
(b) mild hyperglycaemia, and (c) severe hyperglycaemia. The red solid line indicates RI values
less than 10, the blue dashed line represents RI values between 10 and 60, the green dotted line
represents RI values between 60 and 120, and the magenta dashed−dotted line represents RI
values greater than 120.
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Similarly, Figure 5.7(b) illustrates scenarios with preprandial glucose values of 160 mg/dL.
As observed, RI value is proportional to the presence of sustained hyperglycaemia. Figure 5.7(c)
illustrates the scenarios for a preprandial glucose value of 220 mg/dL. Similar conclusions are
drawn. The lowest index indicates that the glucose trajectory will converge on euglycaemia,
with the lowest exposure to a hyperglycaemic state. On the contrary, the greatest risk occurs
when there is an excess (magenta dashed-dotted line) or lack (green dotted line) of insulin.

These results show that there are some risks according to the probabilities shown in Table
5.1.

5.4 Worst-case Prediction of Hypo- and Hyperglycaemic Events

A methodology has been developed to evaluate postprandial hypo- and hyperglycaemic events
based on the worst-case glucose excursions (Garćıa-Jaramillo et al., 2009b). In Chapter 4, dif-
ferent models representing the glucose–insulin system have been described that consider intra-
patient variability and other sources of uncertainty. The worst case is obtained from the predic-
tion of glucose excursions derived from several interval models. For this purpose, it is necessary
to adjust the parameters of each model to reflect the “same” patient. For more information
about parameter adjustment, a comparative study of three interval models was performed in
Chapter 4 (Section 4.4), for which the parameters of each model were adjusted to accommodate
intra-patient variability.

To apply this methodology, the postprandial glucose excursions are first predicted for each
glucose–insulin interval model (Modeli, i = 1, . . . , n) for which intra-patient variability and un-
certainty in the initial state, food intake, and insulin dose can be considered. The worst case
is obtained by considering the envelope that includes all the predicted glucose excursions of
each model (Modeli, i = 1, . . . , n) (see Figure 5.8). The worst case allows the estimation of the
probability of experiencing a postprandial hypo- or hyperglycaemic event independently of the
model used.
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Figure 5.8: The worst case is indicated by thicker green line, for model 1 (red dotted line), model
2 (magenta dashed-dotted line), and model 3 (blue dashed line).

Finally, the risk of a hypo- or hyperglycaemic event can be predicted for the worst case using
RI, according to the metrics previously established by the physician. For the different examples
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of the methodology presented in this section, hyperglycaemia is considered relevant only 2 h af-
ter a meal. A measurement of plasma glucose 2 h after the start of a meal is practical, generally
approximates the peak value in patients with diabetes, and provides a reasonable assessment of
postprandial hyperglycaemia (American Diabetes Association, 2001).

Therefore, in this case the weighting function γ(t) used to calculate RI is:

γ(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 0 ≤ t < 60
0 60 ≤ t < 120
1 120 ≤ t < 180
1.25 180 ≤ t < 240
1.5 240 ≤ t < 300.

A scheme for the prediction of hypo- and hyperglycaemic events is shown in Figure 5.9.

Interval 
simulation

Prediction of hypo-
and hyperglycemia 

events

Metrics

Capillary 
Glucose InsulinCHO

Glucose-insulin 
interval models

Worst-case

Risk Index

Figure 5.9: Methodology used to evaluate postprandial hypo- and hyperglycaemic events con-
sidering the worst case.

By analysing the example presented in Figure 5.8, it can be clearly seen that the probability
of experiencing severe hyperglycaemia is between 245 and 340 min and that of experiencing mild
hyperglycaemia is between 121 and 244 min and between 341 to 420 min (see Figure 5.10).

An example of this methodology applied to postprandial glucose excursions predicted with
two insulin action and glucose kinetics interval models (Hovorka et al. (2004) and Dalla Man
et al. (2007b)) for a 5 h period after a meal is presented. A virtual patient from a validated
glucoregulatory model reported in the literature (patient 2) (Hovorka et al., 2002) is considered.
The degrees of uncertainty in the patient’s insulin sensitivity and the carbohydrate contents of
the planned meal were established. The worst-case envelope are used to evaluate severe and
mild hypo- and hyperglycaemic events.

For this patient, 65 different scenarios were evaluated, considering:

• Preprandial glucose: 150 mg/dL
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Figure 5.10: Example of risk prediction considering the worst case. Severe and mild hypergly-
caemic events are indicated by red and purple rectangles, respectively. The vertical dashed line
indicates the relevance of hyperglycaemia 2 h after a meal.

• Food intake: 60 g with 5% variation

• Bolus insulin: thirteen insulin doses in increments of 0.5 IU selected within the range of
2–10 IU

• Mealtimes: 0, 15, 30, 45, and 60 min (after bolus insulin)

• Insulin sensitivity parameters: SIT with 11% variation, SID 8% variation and SIE 2%
variation.

The severe and mild hypo- and hyperglycaemic events were calculated according to RI for the
worst-case prediction (see Figure 5.11). The RI value varies in the range 1.54–142.7, performing
well in all cases according to clinical judgments.

Figure 5.11: Percentage of scenarios in which hypo- and hyperglycaemic events can occur.

Of the scenarios, 52.31% presented a risk of severe hyperglycaemia for a long time, 73.85%
mild hyperglycaemia, 4.62% severe hypoglycaemia, and 30.77% mild hypoglycaemia. The RI
values for some scenarios are shown in Table 5.3.
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Bolus Meal Hypoglycaemia Hyperglycaemia Total
(IU) (min) Severe Mild Severe Mild Index

Index Duration Index Duration Index Duration Index Duration

6.5 45 0.00 0 0.00 0 0.00 0 2.28 143 2.28
5.5 30 0.00 0 0.00 0 0.00 0 5.47 180 5.47
6.0 15 0.00 0 2.43 31 0.00 0 3.92 113 6.35
5.0 30 0.00 0 0.00 0 4.67 14 6.71 164 11.38
8.0 45 0.00 0 54.55 100 0.00 0 0.30 44 54.85
7.5 15 26.35 26 55.41 86 0.00 0 1.85 55 83.61
3.5 30 0.00 0 0.00 0 86.50 180 0.00 0 86.50
7.5 0 73.78 64 35.29 59 0.00 0 2.09 44 111.16
2.5 30 0.00 0 0.00 0 20.68 180 0.00 0 120.68
2.0 45 0.00 0 0.00 0 135.88 180 0.00 0 135.88
8.0 0 113.70 87 26.77 47 0.00 0 2.23 34 142.70

Table 5.3: Examples of RI values considering the worst-case.

The risk was lowest when the bolus insulin–meal time pair produced an envelope closer
to euglycaemia, i.e., when a low risk of hypo- and hyperglycaemia was produced. The RI
value increases when severe hyperglycaemia and/or mild hypoglycaemia occur. The risk is high
when some cases of severe hypoglycaemia and/or severe hyperglycaemia appear. Finally, severe
hypoglycaemia and/or severe hyperglycaemia for a long time generated a very high risk, as
shown in the duration column (Table 5.3). In the latter case, the hyperglycaemia that occurred
2 h after intake produced the highest RI values, especially those generated at great distances
from the intake point. The influence of the weighting factor γ(t) is apparent in these situations.

5.5 Summary

In this chapter, the objective was to develop a methodology to quantify the risk of suffering
different grades of hypo- and hyperglycaemic episodes in the postprandial state. When intra-
patient variability and uncertainty in the carbohydrate content are considered, a safer prediction
can be made of possible hyper- and hypoglycaemic episodes induced by the insulin therapy tested.

The RI proposed in this work is based on metrics that have been established according to the
clinical relevance of each episode of hypo- and hyperglycaemia. The relevance of these metrics
can be clearly appreciated in risk interpretation. Moreover, an intensive study analysed the
relationship between different ranges for the value of RI and the occurrence of mild and severe
hypoglycaemic and hyperglycaemic events. These events were also calculated in terms of the
worst-case predictions for the models of Hovorka et al. and Dalla Man et al. However, the
methodology developed here can be applied to any interval model.





Chapter 6

Insulin Dosage Optimization

The calculation of an insulin dose is a complex process in which numerous factors must be taken
into account, such as the preprandial glucose level, meal composition, insulin sensitivity, active
insulin, and intra-patient variability. The inappropriate calculation of these factors can lead
to either under- or overdosing of prandial insulin (Toussi et al., 2008), resulting in undesired
glucose fluctuations.

Because of the difficulty of selecting the correct insulin dose and the problem of hyper- and
hypoglycaemic episodes in T1DM patients, dosage-aid systems are very useful for these patients.
In this chapter, a novel method is presented for estimating the doses and injection times rel-
ative to meal times required for low-risk intensive insulin therapy. The algorithm is based on
the interval simulation of an individual patient’s glucoregulatory model. For this purpose, a
library of interval models of the physiological subsystems of glucose regulation was presented
in Chapter 4. The predicted envelopes of glucose excursions are used to calculate RI values for
severe and mild hyper- and hypoglycaemic episodes (Garćıa-Jaramillo et al., 2009a; Calm et al.,
2009). This information is integrated into a dosage-aid system to calculate the optimum insulin
dose and injection-to-meal time with the lowest risk according to the model (Garćıa-Jaramillo
et al., 2011a).

The system presented is constructed in a modular way and can be used with other glucoreg-
ulatory models, as well as in a feed-forward action in closed-loop glucose control.

6.1 Background on Insulin Dosage

T1DM patients are often advised to use dose adjustment guidelines to calculate their doses of
insulin for each self-administration event. However, they may follow their guidelines totally, par-
tially, or not at all. Therefore, blood glucose levels can be affected by the adherence of patients
to these guidelines (Toussi et al., 2008).

The bolus calculator is one of the most common methods used to calculate insulin doses for
continuous subcutaneous insulin infusions (CSII). It uses rules based on the amount of carbohy-
drate to be ingested, insulin sensitivity expressed as an insulin-to-carbohydrate ratio, and the
active insulin (Walsh et al., 2010). Another calculator based on a nutrition database indicates
to the patient the type of boluses needed to deliver an extended bolus for meals (Pankowska
and Blazik, 2010). However, many patients might not estimate their carbohydrates accurately,
so an under- or overdose of prandial insulin can be calculated.

121
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Precise carbohydrate counting was associated with lower HbA1c in one study of children with
diabetes (Mehta et al., 2009), and inaccurate carbohydrate counting has been identified as one
of the two major sources of error in predicting blood glucose levels, together with blood glucose
monitor inaccuracy (Kildegaard et al., 2007). A novel tool used to achieve greater accuracy in
estimating the insulin bolus (“bolus guide”) was presented by Shapira et al. (2010), and this
system is based on ranges of carbohydrate load.

A brief chronological summary of the different methods used to support patients in the in-
sulin dosage process is presented here for educational purposes and decision support. The first
advisory algorithms for intensive insulin therapy were presented in the early 1980s. Skyler et al.
(1981) developed an algorithm in which heuristic rules and preprandial glucose measurements
were used to tune the insulin dose. Similarly, the use of a pocket computer to help to determine
the proper insulin dose for people with diabetes was formulated by Chanoch et al. (1985) based
on the algorithm proposed by Jovanovic and Peterson (1982). To optimize the insulin dose,
the algorithm takes into account patient-specific parameters, such as weight, sex, and physical
activity, together with the carbohydrate content of meals and blood glucose measurements.

Schiffrin et al. (1985) also explored the use of a computer to adjust short- and intermediate-
acting insulin doses. Their algorithm used preprandial blood glucose measurements and was
based on a two injections per day strategy. However, it also used a linear dose calculation and
variable maximal value. The same team later presented an advanced algorithm with complete
linear regulation (Albisser et al., 1986). An algorithm for dose adjustment combined with an
evaluation program for a personal computer that contains a control matrix structured according
to Skyler’s algorithm was published by Pernick and Rodbard (1986).

Schrezenmeir and colleagues developed algorithms for different therapies using a pocket com-
puter: the computer-assisted meal-related insulin therapy (CAMIT) (Schrezenmeir et al., 1985,
1990) for CSII (Schrezenmeir et al., 1987), and the computer-assisted conventional insulin ther-
apy (CACIT) (Beyer et al., 1990).

The use of a computer algorithm in children was investigated by Chiarelli et al. (1990),
who compared insulin doses adjusted with computer algorithms with those adjusted with man-
ual methods in two matched groups of a priori well-controlled diabetic children. Their results
showed fewer episodes of hypoglycaemia in the computer-assisted group. However, the same
comparison was made by Peters et al. (1991), and their conclusion was that the metabolic con-
trol and safety of the two techniques were similar. Several algorithms that have been developed
to assist in the processes of diabetes self-management for better blood glucose control have been
presented by Albisser (2003).

Many systems have also been developed to educate and support the patient in the process
of insulin dose estimation (Lehmann and Deutsch, 1995). The majority of these systems are
intended for educational purposes, as listed below. The computer program DIABLOG was de-
veloped by Biermann and Mehnert (1990) to graphically represent glucose and insulin profiles
for a 24 h period for a patient-specific insulin-pump therapy. In 1992, Lehmann and Deutsch
(1992a) designed one of the most popular educational systems for diabetics based on a simple
model of the interaction between glucose and insulin in the human body (Lehmann and Deutsch,
1992b; Lehmann, 1999, 2001) called the Automated Insulin Dosage Advisor (AIDA). This tool
helps the user (patients or health-care workers) to understand the glucoregulatory system in
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patients with T1DM.

Another educational tool that allows the patient to predict his/her daily profiles of glycaemia
and insulinaemia based on a mathematical model is the Karlsburg Diabetes Management Sys-
tem (KADIS) (Rutscher et al., 1994). The models developed by Puckett and Lightfoot (1995)
for glucose kinetics and the model of glucose absorption developed by Hovorka et al. (2002)
are used to predict glucose profiles for GlucoSim (Agar et al., 2005), a Web-based educational
simulation package that computes the dynamics of glucose–insulin levels in the human body.

The Särimner diabetes simulator was created during the late 1980s and was validated by
patients and professionals in the early 1990s (Hedbrant et al., 1991). Its purpose is to create
a learning situation to teach and communicate intuitive thinking in relation to insulin dose
decisions. Another educational tool called EduDIABNET, which is based on a physiological
model represented by a quantitative causal probabilistic network, was proposed by Hernando
et al. (2001). Later, Hedbrant et al. (2007) presented the experiences from previous work with
teenagers using the Särimner diabetes simulator. More recently, a novel educational tool, the
Glucose–Insulin and Glycemic Index Web Simulator (GIGISim) (Bulka et al., 2009), has been
proposed, based on artificial intelligence. The postprandial glucose profiles of T1DM patients
are simulated according to a human carbohydrate metabolism model.

Decision-support systems for people with diabetes have also been devised, such as the Dia-
betes Advisory System (DIAS) (Cavan et al., 1996, 1998; Hejlesen et al., 1997), which incorpo-
rates a model of human carbohydrate metabolism implemented in a Bayesian network, whereas
two feed-forward neural networks were used by Mougiakakou and Nikita (2000): the first neu-
ral network provides the insulin regime, which is applied as the input into the second neural
network, which estimates the appropriate insulin dose for a short-term period. The Intelligent
Dosing System (IDS) (Cook et al., 2005) is an intelligent dosing strategy that suggests the aver-
age daily insulin dose to patients with predominantly type 2 diabetes between clinic visits. This
approach is somewhat related to run-to-run control, but leaves decisions about how to distribute
the insulin dose throughout the day to the clinician.

Insulin dosage advisory systems have also been incorporated into insulin pumps (Taka-
hashi et al., 2008; Zisser et al., 2008) based on proportionality rules that consider the in-
sulin/carbohydrate ratio, insulin sensitivity, and the insulin remaining from previous injections
(insulin on board).

In the area of telemedicine, several platforms have been proposed for diabetes monitoring
and management (Bellazzi, 2008). The Vie-diab system (Popow et al., 2003) creates a daily
colour-coded graph plot of the patient’s data that allows the physician to easily track the pa-
tient’s management of his/her diabetes. SMARDIAB was recently developed by Mougiakakou
et al. (2010) and is designed to support the monitoring, management, and treatment of patients
with T1DM. This platform allows the optimization of diabetes treatments with computational
tools for the real-time personalized estimation of the infusion rate, for which the patient has a
user-friendly Web and mobile-phone interface.

In recent years, different advisory/control systems have been developed that take into ac-
count the repetitive nature of an intensive glucose control therapy regimen, because patients
must perform the same tasks each day to adjust their insulin therapies. Some of these systems,
based on a run-to-run strategy, have been presented by Zisser et al. (2005), Owens et al. (2006),
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and Palerm et al. (2007a,b). They considered a proportional correction term for the reference
error. Therefore, after each day, the insulin doses are updated, looking for an eventual reference
value. An extension of previous approaches was proposed by Campos-Delgado et al. (2008) that
follows the run-to-run philosophy using a Proportional Integrative (PI) correction strategy and
combining rapid- and slow-acting insulins.

In summary, most insulin dosage systems are intended for educational purposes, and only a
few decision-support systems have been developed. Most of these support systems do not take
into account intra-patient variability or different sources of uncertainty. The main contribution
of the tool proposed in this chapter is to integrate these uncertainties into a dosage-aid system.

6.2 Bolus Insulin Dose and Injection-to-Meal Time Optimiza-

tion

Patient-specific bolus insulin optimization unavoidably requires the evaluation of its impact
on postprandial glucose, so sufficiently accurate short-term postprandial glycaemia predictions
are necessary. As mentioned in Chapter 4, a glucose prediction tool that considers different
sources of uncertainty has been developed in this work, so a worst-case approach is introduced
to optimize the insulin dose and injection-to-meal time. With this worst-case approach, the
prediction of possible hyper- and hypoglycaemic episodes induced by insulin therapy, based on
an individual patient’s parameters, is more robust. Finally, this information is integrated into
a dosage-aid system, where the optimal insulin dose and injection-to-meal time can be calculated.

To accommodate the uncertainty in glucose prediction, it is necessary to consider the dy-
namic model Σ(x,u;p,x0), where x is the state vector, u is the input vector, p is the parameter
vector, and x0 is the initial state vector. The input vector u contains information about the
meal, insulin injection, and the respective times. If uncertainty is introduced into model Σ,
considering the uncertain parameters, inputs, and initial states (these correspond to the interval
vectors denoted P, U, and X0, respectively), an interval extension of model Σ is obtained.
Then, using MIA, the glucose excursions are calculated taking into account all sources of uncer-
tainty.

The safety of the predicted manifold postprandial glucose excursions is quantified using a
cost function J , which represents the risk index (RI). RI comprises metrics that classify hyper-
and hypoglycaemic episodes of the glucose prediction provided by the dynamic model with
uncertainties (Garćıa-Jaramillo et al., 2009a) (see Chapter 5 for more information). The cost
function should be easily tunable because the therapeutic goal is patient-specific.

Therefore, given the interval extension of the model, denoted as Σ(X,U;P,X0), the optimal
insulin dose and timing are formulated as the following optimization problem:

(tim, di) = argmintim,di
J(Σ(X,U;P,X0)),

where di is the bolus insulin dose and tim denotes the relative time between the insulin
injection and meal ingestion.

To calculate the dose and injection-to-meal time that minimize the cost function, an ini-
tial dose and injection-to-meal time are estimated and taken as the starting point of a two-
dimensional grid search (see Section 6.2.1). The initial dose is calculated according to rules for
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the carb factor and correction factor, and the initial injection-to-meal time is established ac-
cording to the preprandial blood glucose. The RI value is then computed for each pair of bolus
insulin and injection-to-meal time on the grid. Finally, the optimization algorithm selects the
solution that generates the lowest risk of hyper- and hypoglycaemia. Other useful information
can be extracted from this analysis, such as the dose that allows greater injection time flexibility,
i.e., the insulin dose that produces a similar risk with different injection times.

Next, the optimization strategy used is presented.

6.2.1 Grid search method

To calculate the optimum insulin dose and injection-to-meal time, a two-dimensional grid search
can be performed because the input space is discrete. The grid is built from a starting point
composed of an initial insulin dose and an initial injection-to-meal time (start time for the meal
after the insulin dose). The steps used to build the grid search are detailed below.

First, the starting point is calculated to be the centre of the exploratory grid. The initial
insulin dose (II) is computed based on heuristic rules and the injection-to-meal time (IM) is
established according to the preprandial blood glucose. II is calculated using the carb factor
and correction factor rules. These rules are based on the patient’s total daily dose (TDD) and
the factor value associated with each rule (i.e., 450 or 500 for the carb factor and 1500 or 2000
for the correction factor). To determine the carb factor (the number of grams of carbohydrate
that will be metabolized by one unit of insulin), the “500 Rule” is used for rapid-acting insulin
and the “450 Rule” for short-acting insulin (Walsh and Roberts, 1994).

In contrast, the “1500 Rule” for regular short-acting insulin and the “2000 Rule” for rapid-
acting insulin are used to determine the correction factor, which estimates how far the blood
glucose level is likely to drop per unit of insulin (Hanas, 2004). The correction factor is only
calculated when the patient has high levels of glucose and requires a bolus of insulin to bring it
down.

The carb factor and correction factor are then given by factor/TDD.

Example 6.1 .

1. Carb factor using the 450 Rule: for a TDD=25 IU.

carb factor=
450
25

= 18 g of carb metabolized by 1 unit of insulin.

2. Correction factor using the 2000 Rule: for a TDD=25 IU.

correction factor=
2000
25

= 80 mg/dL per unit of insulin.

An analysis of the different formulae proposed to derive the pump doses from the TDD has
been presented by Walsh et al. (2010). The formulae were initially empirical, but were later
based on research conducted by single clinics.
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Using the planned carbohydrate (grams) intake, the carb factor, and the correction factor,
II is calculated based on the preprandial glucose measurement GC (mg/dL) as:

II =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

CHO
carb factor

+
GC − Gobjmin

correction factor
if GC < Gobjmin

CHO
carb factor

+
GC − Gobjmax

correction factor
if GC > Gobjmax

CHO

carb factor
if Gobjmin ≤ GC ≤ Gobjmax

(6.1)

where Gobjmin and Gobjmax are the minimum and maximum glucose objectives, respectively,
defined to regulate blood glucose to around the normal level (target). Therefore, subtracting
the glucose objective from the preprandial glucose level will determine the reduction (mg/dL)
in insulin required. To calculate II in this work, the minimum glucose objective was established
as 70 mg/dL and the maximum as 150 mg/dL.

The other component from the centre of the grid search is set. In accordance with preprandial
glucose, different values for IM (Hanas, 2004), which indicates the start time for the meal after
the regular insulin dose, were established as shown in Table 6.1.

Blood Glucose (mg/dL) IM (min)
< 70 0

70 − 140 30
140 − 180 45

> 180 60

Table 6.1: Initial meal time (IM) during regular insulin therapy according to preprandial glu-
cose.

The blood glucose reading before a meal will indicate when it is appropriate to administer
the injection. For instance, when the blood glucose is high, the patient can wait 45–60 min
before eating. However, if the blood glucose is low, the patient should leave the injection until
it is time to eat. For a normal glucose level, the patient should administer the insulin at least
30 min before eating. In this work, II was established for a regular short-acting insulin, but it
can be modified for other types of insulin, based on clinical judgements.

Once the initial estimate is calculated, the exploratory grid is defined as the Cartesian prod-
uct (II + ni∆I) × (M1 + nt∆M), where ni = −ki, . . . , ki (with one step size) indicates the
range of the insulin grid size, ki, that allows the lower and upper limits of the insulin grid to
be established, and ∆I is the increase in bolus insulin. With respect to the injection-to-meal
time, the lower limit of the grid is denoted by M1, the range of the grid size is established by
nt = 0, . . . , kt (with one step size), kt, which allows the upper limit of the grid to be set, and
finally, ∆M indicates the granularity of the injection-to-meal time. The values considered in
this study are: ∆I = 0.5, ki = 6, M1 = 0, kt = 4, and ∆M = 15. The element of the grid with
the lowest RI value is finally chosen.

Example 6.2 A general scenario is considered to build the two-dimensional grid search.
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• Preprandial glucose measurement: 180 mg/dL

• Food intake: 60 g

• TDD: 45 IU

• Insulin injection: regular short-acting insulin.

First, taking into account the type of insulin injection, the rule for the carb and correction
factors is chosen and the centre of the exploratory grid is calculated as:

carb factor =
450
45

= 10 g correction factor =
1500
45

= 33 mg/dL.

Then, considering these factors, the food intake, and the preprandial glucose measurement,
II is given by:

II =
60
10

+
180 − 150

33
= 7 IU,

and according to Table 6.1, IM is 45 min.

Next, the two-dimensional exploratory grid is defined as the following Cartesian product:

(4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10) × (0, 15, 30, 45, 60)

Hence, the maximum grid size is ±3 IU and 0-60 min for the injection-to-meal time, as shown
in Figure 6.1.
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Figure 6.1: Example of a two-dimensional grid search. The point corresponds to the initial
insulin dose and the initial injection-to-meal time.
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6.2.2 Dose and injection-to-meal time optimization algorithm

Once the grid search is performed, an optimization algorithm is developed to obtain the insulin
dose and injection-to-meal time that minimizes the risk of postprandial hyper- and hypogly-
caemia. Algorithm 1 summarizes the main steps of this algorithm in a pseudocode form.

To simplify the presentation of the algorithm, the following notation and concepts are intro-
duced.

• The metrics used in the computation of RI to quantify the clinical relevance of each episode
of hypo- and hyperglycaemia.

– hs and hm: Glucose ranges corresponding to severe and mild hypoglycaemia respec-
tively

– Hs and Hm: Glucose ranges corresponding to severe and mild hyperglycaemia re-
spectively

– αhs, αhm: Weights defined to quantify the relative importance of severe and mild
hypoglycaemic events

– αHs, αHm: Weights defined to quantify the relative importance of severe and mild
hyperglycaemic events

– γ(t): weighting function to quantify the time occurrence of hyperglycaemia.

• The grid search is performed using the following steps:

1. The initial bolus insulin dose II is obtained from the heuristic rules and the initial
injection-to-meal time, IM , according to the values specified in Table 6.1 (Section
6.2.1).

2. The grid size is calculated according to the step size established from the bolus insulin,
∆I, and the injection-to-meal time, ∆M , as well as the search range of the insulin
dose n and the search range of the injection-to-meal time (initial=M1, final=M2).

3. IM and II are used to initialize the list where the results for RI are stored.

• According to the established metrics, RI is calculated with the cost function, J , for each
insulin dose and injection-to-meal time of the grid search. This RI is computed as a
weighted sum of the risk for each severe (Jhs) and mild hypoglycaemic event (Jhm) and
severe (JHs) and mild hyperglycaemic event (JHm). Finally, the results for J are stored for
each insulin dose and injection-to-meal time pair and then sorted from lowest to highest.
For more information about the RI, the reader is referred to Chapter 5.
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Algorithm 1. Dose and meal time optimization.

Input:

Dynamical model with uncertainty Σ(X,U;P,X0)

Meal size (grams CH)

Capillary Glucose (GC)

Metrics (hs, hm, Hs, Hm, αhs, αhm, αHs, αHm, γ(t))

Output:

Sorted list £ of mealtime, bolus insulin and associated risk index

1. Build grid search:

Calculate initial estimate for bolus insulin dose (II) by means of heuristic rules

Calculate initial mealtime (IM)

I1 := II − n∆I, I2 := II + n∆I, ∆I:=granularity considered for the insulin dose.

M1 := 0, M2 := 60, ∆M :=granularity considered for the mealtime.

£ := (IM, II, J(IM, II));

2. for (Bolus insulin = I1 : ∆I : I2)

3. for (Mealtime = M1 : ∆M : M2)

4. Compute glucose prediction envelopes (interval simulation)

5. Obtain hyperglycaemia and hypoglycaemia episodes and calculate JHs, JHm, Jhs, Jhm

6. Calculate risk index J

7. £ := £ ∪ (Mealtime, Bolus insulin, J)

8. end for

9. end for

10. return sort by risk index (£)

6.3 Methodology Assessment

To demonstrate the feasibility of the proposed methodology, three different scenarios were consid-
ered for a virtual patient with nominal parameters, and predictions of the patient’s postprandial
glucose at 5 h intervals were used to predict the risk associated with a given therapy. The insulin
dose and injection-to-meal time with the lowest risk were then calculated.

6.3.1 Scenarios

The following daily situation was evaluated for a virtual patient taken from Hovorka et al. (2002)
(patient 2):

• Meal ingestion: 60 g of carbohydrate with 5% variation

• Insulin injection: regular insulin

• Insulin sensitivity parameters: SIT with 11% variation, SID with 8% variation and SIE

with 2% variation according to the standard deviation presented in (Hovorka et al., 2002).
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Three scenarios were considered, corresponding to preprandial glucose levels:

i) Initial euglycemia: 100 mg/dL

ii) Initial mild hyperglycaemia: 180 mg/dL

iii) Initial severe hyperglycaemia: 250 mg/dL.

For this example, the models presented in (Taŕın et al., 2005) for subcutaneous insulin ab-
sorption and the Hovorka et al. insulin action and glucose kinetics interval model were combined
to illustrate the glucoregulatory model. The Hovorka interval model is presented in Chapter 4
(Section 4.3.3).

6.3.2 Initial states

To run an interval simulation of the whole system, the initial states and inputs must be given.
Because not all the states are measurable (in fact, only preprandial glucose measurements will
be available), the initial state must be estimated. This is done by simulating the past history of
the patient in terms of his/her insulin injections and meals. Because it is uncertain, the initial
state will correspond to an interval vector.

In this study, three days were simulated for a given therapy, assuming that the patient
followed the same regime every day. Starting from the real initial state, the interval values for
the states at the beginning of the third day will be considered to represent the set of possible
initial states the patient may experience.

6.3.3 Results

The algorithm was initialized using the insulin bolus calculated with Equation 6.1 and the
injection-to-meal time (Table 6.1) as described in item 6.2.1. The search grid is built with in-
crements of 0.5 IU and 15 min. The maximum grid size in this study was established as ±3
IU and 0–60 min for the injection-to-meal time. A total of 65 grid points were then examined.
However, the grid size can be modified according to the desired search area.

An example of RI calculation, in this case for scenario i), is shown in Table 6.2, which sum-
marizes the results for low risk (index value <10), intermediate risk (index value of 10–60),
high risk (index value of 60–120), and very high risk (index value >120). The initialization
value obtained with the heuristic rules is an insulin dose of 5 IU injected 30 min before eating,
which has an RI value of 5.36. The minimum RI value for hyper- and hypoglycaemia is 2.10,
corresponding to an insulin dose of 6 IU administered 30 min before eating.

The metrics proposed in this work (see Chapter 5) were established according to the clinical
relevance of every hyper- and hypoglycaemic episode. Therefore, these metrics can be modified
by the physician according to the patient’s medical history. The relevance of these metrics can
be clearly appreciated in the results shown in Table 6.2.

Very high RI values occur when the insulin bolus–meal time pair produces severe hypogly-
caemia for a long time and/or mild hyperglycaemia (index value of 125.15 in Table 6.2). There
is also a high risk when the combinations produce the highest blood glucose level for a long time
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Bolus Meal Severe Hypoglycaemia Mild Hypoglycaemia Severe Hyperglycaemia Mild Hyperglycaemia Total
(IU) (min) Index Index Index Index Index

6.0 30 0.00 0.00 0.00 2.10 2.10
6.5 45 0.00 2.31 0.00 1.12 3.43
5.0 30 0.00 0.00 0.00 5.36 5.36
4.5 30 0.00 0.00 0.00 7.25 7.25
7.0 45 0.00 8.79 0.00 0.54 9.34
5.0 0 0.00 0.00 7.21 3.86 11.07
7.0 60 0.00 17.30 0.00 0.45 17.75
4.0 45 0.00 0.00 23.92 5.39 29.31
6.5 0 0.00 36.50 0.00 2.28 38.78
3.5 15 0.00 0.00 43.57 4.40 47.97
8.0 45 0.00 51.03 0.00 0.02 51.05
3.5 45 0.00 0.00 64.50 0.97 65.47
3.0 60 0.00 1.06 77.19 0.84 79.09
3.0 15 0.00 0.00 82.58 0.54 83.12
7.5 0 31.40 62.22 0.00 1.55 95.17
2.0 60 0.00 0.00 105.78 0.57 106.35
2.0 0 0.00 0.00 116.27 0.30 116.57
8.0 0 91.10 32.76 0.00 1.29 125.15

Table 6.2: Risk in scenario (i) is classified as: low risk (<10), intermediate risk (10-60), high
risk (60-120), and very high risk (>120).

and/or mild hypoglycaemia (index values of 65.47–116.57).

When severe and mild hyperglycaemic episodes and/or mild hypoglycaemic episodes occur
during the simulation, an intermediate RI value is generated (index values of 11.07–51.05). The
lowest RI values (<10) all indicate mild hyperglycaemic episodes, and a few reflect mild hypo-
glycaemia (lasting for <20 min and with values close to those for euglycaemia). Hyperglycaemic
episodes occurring within 2 h after ingestion generated a low level of risk. In contrast, hyper-
glycaemia occurring for long periods after food intake generated the highest RI values.

The previous results are also shown in Figure 6.2, where Figure 6.2(a), (c) and (e) show a
two-dimensional grid with RI evaluation for each scenario. The area demarcated by the rectan-
gle corresponds to the four lowest values for RI, and the points correspond to the initial insulin
dose and the injection-to-meal time calculated with heuristic rules.

Another graphical interpretation can be drawn from these data that reflects the influence of
the injection-to-meal time with respect to the insulin dose. For each injection-to-meal time, RI
value associated with each insulin dose is placed in a continuous line, where RI values are ex-
pressed in logarithmic form to minimize the influence of their variability. In this way, the insulin
dose and injection-to-meal time pair with the lowest risk is more easily detected. Similarly, it is
possible to find the insulin dose that generates a similar risk for different injection-to-meal times
in order to identify the insulin dose that allows more flexibility in the injection time. These
interpretations can be seen in Figure 6.2, where (b), (d) and (f) show the influence of the meal
time with respect to the bolus insulin dose.

For scenario i), the lowest RI values occur between 5.5 and 6.0 IU of insulin and between
15 and 30 min for the injection-to-meal time, with an RI value of <3.60 (see Figure 6.2(a). In
this case, the combinations of bolus insulin doses and injection-to-meal times that produce fewer
episodes of hyper- and hypoglycaemia are in the centre of the grid. The greatest risk occurs at
the borders, corresponding to excess or insufficient insulin. This greatest risk with respect to
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Figure 6.2: Grid-based optimization for scenarios i (a), ii (c), and iii (e). The points correspond
to currently used heuristic rules. Relationship between insulin bolus and injection-to-meal time,
with the optimal RI indicated by a circle for scenarios i (b), ii (d), and iii (f). The RI value is
represented on a logarithmic scale.

the insulin dose is also evident in Figures 6.2(c) and (e), but in these cases, the corresponding
injection-to-meal times are longer because of the preprandial glucose level.

For scenario ii), RI value is <3.42 when the insulin dose is between 7.0 and 7.5 IU and the
injection-to-meal time is between 45 and 60 min (see Figure 6.2(c)). In this case, the dose that
generates the lowest index is greatly influenced by the meal time. This means that the selection
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of 6 IU may be too risky if the patient does not adhere exactly to the recommended meal time.
For this reason, a safer bolus insulin dose would be 5.5 IU, which is less dependent on the meal
time.

Finally, for scenario iii), the area demarcated is the same as that for scenario ii), but RI
value is <6.20 (see Figure 6.2(e)). For scenarios ii) and iii), the risk is directly related to the
injection-to-meal time.

The previous results are summarized in Table 6.3, where a comparison is presented of the
initial estimate versus the optimal insulin performance calculated with the proposed methodol-
ogy.

Scenario Initial estimate Optimal estimate
II (IU) IM (min) RI di (IU) tim (min) RI

(i) 5.0 30 5.36 6.0 30 2.10
(ii) 5.5 45 6.95 7.5 60 1.03
(iii) 7.0 60 4.44 7.5 60 2.72

Table 6.3: Comparison of RI values for the initial estimate (II) versus the optimal insulin
performance for each scenario.

In Figure 6.3, the glucose excursions for the optimal therapy are compared with the initial
estimate therapy. The optimum bolus dose di and the injection-to-meal time tim for the three
preprandial scenarios considered were calculated with the optimization algorithm. The initial
insulin dose II and the initial injection-to-meal time IM were also calculated for the same sce-
narios using heuristic rules.

With regard to the initial meal times versus the optimal meal times, the minimum RI value
in scenario i) was obtained for an injection given 30 min before eating. However, the optimiza-
tion suggests a higher bolus insulin dose, which reduces RI value by 61% (see Figure 6.3(a)).

To reduce the risk for scenario ii) (Figure 6.3(b)), it is necessary to increase the injection-
to-meal time and the bolus insulin dose compared with those determined with heuristic rules.
This yields a reduction of 85% in the mild hyperglycaemia risk. Finally, for scenario iii), the
optimum bolus dose is 7.5 IU injected 1 h before eating (Figure 6.3(c)). This reduces by 39%
the risk of mild hyperglycaemia given by the initial estimation.

6.4 Summary

In this chapter, RI presented in Chapter 5 has been integrated into a dosage-aid system of bolus
insulin doses and injection-to-meal times that minimizes the risk of postprandial hyper- and
hypoglycaemia in patients with T1DM. A summary of the different methods used to support
the patient in the insulin dosage process were presented.

Three scenarios were evaluated for a virtual patient, and the Hovorka et al. model was used
to illustrate the prediction of glucose excursions. In each scenario, the bolus insulin and injection
time computed by the insulin dosage proposed in this work achieved a reduction in RI values
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Figure 6.3: Blood glucose response over 5 h for scenarios i (a), ii (b), and iii (c). Triangles
indicate the start time of the meals. The solid line indicates the blood glucose for the correct
bolus dose of insulin (minimal index) and the dotted line is the blood glucose response to the
initial insulin bolus and meal.

with respect to RI values obtained with heuristic rules.

To apply the methodology presented here in a patient-specific scenario, it is necessary to
adjust the model to that patient. The model parameters would be estimated from measurements
made for several days with a continuous glucose monitor.



Chapter 7

Conclusions and Future Work

I conclude this thesis by noting the contributions presented in the previous chapters. Some
directions for possible future work on the subject of this thesis are also discussed.

7.1 Contributions

The main contribution of this thesis is the integration of intra-patient variability and other
sources of uncertainty into the design of strategies for insulin dosage adjustment. Specifically,
the contributions of the thesis can be summarized as follows:

• A library of interval models of the physiological subsystems of glucose regulation was built.
Different mathematical models of the glucose–insulin system were studied that took into
account the large intra-patient variability and different sources of uncertainty. This vari-
ability and uncertainty were represented by an interval model in which the parameters,
inputs, and/or initial states took interval values. Each model was studied to determine
the parameters that reflect intra-patient variability and the inputs and parameters that
are sources of uncertainty. The parameters related to insulin sensitivity were then repre-
sented by intervals to accommodate patient variability. Similarly, food intake and insulin
dose inputs were considered as interval values. The interval simulation was performed
using MIA, in contrast to probabilistic methods such as MCS, to demonstrate its superior
performance, which allows the worst-case analysis to be addressed in a mathematically
guaranteed way with little computational effort. Therefore, the worst-case analysis can be
performed efficiently, which is extremely important in the context of diabetes.

• A comparative study was performed to assess the behaviour of three postprandial insulin
action and glucose kinetics models for a specific insulin therapy regime in the presence
of intra-patient variability and uncertainty in food intake estimation. The results of that
study showed that a low-complexity model that can be easily identified for a single patient
and that includes uncertainty may be enough to tightly embed the patient dynamics
response of the complex models.

• A cost function was proposed to compute the risk of postprandial hypo- and hypergly-
caemic episodes in T1DM patients that considers intra-patient variability and other sources
of uncertainty. The RI is based on the interval simulation of an individual patient’s glu-
coregulatory model. To quantify the relevance of RI to each hypo- and hyperglycaemic
episode, different metrics were established based on clinical judgments. Therefore, these
metrics can be modified by the physician according to the patient’s medical history. The

135
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predicted envelopes of the glucose excursions and the established metrics were used in the
cost function to calculate RI values for severe and mild hyper- and hypoglycaemic episodes.
By considering the intra-patient variability and uncertainty in food intake, a safer predic-
tion of the possible hyper- and hypoglycaemic episodes induced by insulin therapy can be
calculated, reducing the number of false negative predictions.

• A dosage-aid system that minimizes the risk of postprandial hyper- and hypoglycaemia
in T1DM patients is proposed. For this purpose, RI was integrated into an optimization
algorithm. This algorithm calculates RI value for each bolus insulin dose and injection-to-
meal time pair in a two-dimensional grid search and then selects the optimum insulin dose
and injection-to-meal time that generate the lowest risk according to the model. Other
useful information can also be extracted from the dosage-aid system, such as the dose
that allows the greatest flexibility in the injection time, i.e., the insulin dose that produces
a similar risk with different injection times. The system proposed is modular and can
be used with other glucoregulatory models, and in a feed-forward action for closed-loop
glucose control. The resulting optimum bolus dose is apparently consistent with clinical
judgments. However, formal clinical validation is required. The author is currently working
on the clinical validation of this decision-support system.

7.2 Future Work

Besides the contributions presented, several open improvements should be undertaken.

The first is aimed to the development of a software application of the library of glucorregu-
latory interval models.

The second is related to the adjusted models using data from real patients. In this thesis,
an in silico simulation was performed using virtual patient profiles, but another simulation must
be performed using the profiles of real patients.

The third is oriented toward the clinical validation of the dosage-aid system. The resulting
bolus dose presented in this research is apparently consistent with clinical judgments, but a
formal clinical validation is required. This should involve a survey of different specialists in the
field of T1DM to analyse different glucose excursions and evaluate the possible risk of hypo-
and hyperglycaemia in each of them. The results will be compared with those obtained with
the cost function proposed in this thesis.

Finally, a novel tool to help physicians administer safe therapies to their patients will be
developed based on RI. The performance of the therapy could be evaluated from measurements
made for several days with a continuous glucose monitor.

7.3 Publications

During the research work leading to this thesis, the following conference and journal papers have
been published:
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7.3.1 Journal papers

Garćıa-Jaramillo, M., Calm, R., Bondia, J., Taŕın, C., and Veh́ı, J. (2009a). Computing the
risk of postprandial hypo- and hyperglycemia in type 1 diabetes mellitus considering intrapa-
tient variability and other sources of uncertainty. Journal of Diabetes Science and Technology,
3(4):895-902.

Garćıa-Jaramillo, M., Calm, R., Bondia, J., Taŕın, C., and Veh́ı, J. (2011a). Insulin
dosage optimization based on prediction of postprandial glucose excursions under uncertain
parameters and food intake. Computer Methods and Programs in Biomedicine, In press,
doi:10.1016/j.cmpb.2010.08.007.

Calm, R., Garćıa-Jaramillo, M., Bondia, J., Sainz, M., and Veh́ı, J. (2011). Comparison
of interval and monte carlo simulation for the prediction of postprandial glucose under uncer-
tainty in type 1 diabetes mellitus. Computer Methods and Program in Biomedicine, In press,
doi:10.1016/j.cmpb.2010.08.008.

Garćıa-Jaramillo, M., Calm, R., Bondia, J., and Veh́ı, J. (2011c). Prediction of post-
prandial blood glucose under uncertainty and intra-patient variability in type 1 diabetes: a
comparative study of three interval models. Computer Methods and Programs in Biomedicine,
Submitted.

7.3.2 Conference papers

Calm, R., Garćıa-Jaramillo, M., Veh́ı, J., Bondia, J., Taŕın, C., and Garćıa-Gab́ın, W.
(2007a). Prediction of glucose excursions under uncertain parameters and food intake in inten-
sive insulin therapy for type 1 diabetes mellitus. In 29th Annual International Conference of
the IEEE Engineering in Medicine and Biology Society, pages 1770-1773, 22-26 August, Lyon,
France.

Calm, R., Garćıa-Jaramillo, M., Veh́ı, J., Bondia, J., Taŕın, C., and Garćıa-Gab́ın, W.
(2007b). Simulación intervalar del metabolismo de la glucosa en pacientes con diabetes mellitus
tipo 1. In IX Jornadas de ARCA. Sistemas Cualitativos y Diagnosis, Lloret de Mar, Spain.

Bondia, J., Calm, R., Garćıa-Jaramillo, M., Veh́ı, J., Taŕın, C., and Garćıa-Gab́ın, W.
(2007). Predicción de glucemia en pacientes con diabetes tipo 1 ante incertidumbre. In I
Simposio de Modelado y Simulación de sistemas dinámicos (SIMOSI), Congreso Español de In-
formática (CEDI), Zaragoza, Spain.

Calm, R., Garćıa-Jaramillo, M., Bondia, J., and Veh́ı, J. (2009). Insulin dosage based
on risk index of postprandial hypo- and hyperglycemia in type 1 diabetes mellitus with uncer-
tain parameters and food intake. In Small Workshop on Interval Methods (SWIM), Lausanne,
Switzerland.

Garćıa-Jaramillo, M., Calm, R., Bondia, J., and Veh́ı, J. (2011b). Interval simulation of
glucose prediction models in presence of intra-individual variability and uncertain food intake.
In Workshop on Control, Dynamics, Monitoring and Applications, Caldes de Montbui, Spain.
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7.3.3 Poster

Garćıa-Jaramillo, M., Calm, R., Bondia, J., Taŕın, C., and Veh́ı, J. (2008). Risk index
of Postprandial Hypo- and Hyperglycemia in Type 1 Diabetes Mellitus with consideration of
intra-patient variability and other sources of uncertainty. Poster, In Eighth Annual Diabetes
Technology Meeting, Bethesda, Maryland, USA.

Garćıa-Jaramillo, M., Calm, R., Bondia, J., Taŕın, C., and Veh́ı, J. (2009b). Prediction
of postprandial hypo- and hyperglycemia events by means of interval models with uncertain
parameters and food intake. Poster, In 2nd International Conference on Advanced Technologies
& Treatments For Diabetes, Athens, Greece.
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Brönnimann, H., Melquiond, G., and Pion, S. (2003). The boost interval arithmetic library. In
Real Numbers and Computers.

Bulka, J., Izworski, A., Koleszynska, J., Lis, J., and Wochlik, I. (2009). Automatic meal planning
using artificial intelligence algorithms in computer aided diabetes therapy. In 4th International
Conference on Autonomous Robots and Agents, pages 393–397.

Calderón-Espinoza, G., Armengol, J., Veh́ı, J., and Gelso, E. R. (2007). Dynamic diagnosis based
on interval analytical redundancy relations and signs of the symptoms. Artificial Intelligence
Communications, 20:39–47.

Calm, R. (2005). Análisis intervalar modal: su construcción teórica, implementación y posi-
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Garćıa-Jaramillo, M., Calm, R., Bondia, J., Taŕın, C., and Veh́ı, J. (2009b). Prediction of
postprandial hypo- and hyperglycemia events by means of interval models with uncertain
parameters and food intake. In 2nd International Conference on Advanced Technologies &
Treatments For Diabetes.
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